FIRST STEP TO INORGANIC CHEMISTRY

BY PRINCE SINGH

Plot No. 38, Near Union Bank of India, Rajeev Gandhi Nagar, Kota, Rajasthan – 324005 Mob.: 9214233303

Atomic & Ionic Radii

Q.1 The size of the following species increases in the order: (A) $Mg^{2+} < Na^+ < F^-$ (B) $F^- < Na^+ < Mg^{2+}$ (D) $Na^+ < F^- < Mg^{2+}$ (C) $Mg < F^- < Na^+$ Q.2 Highest size will be of $(A) Br^-$ (B) I (C) I⁻ (D) I^+ Element Hg has two oxidation states Hg⁺¹ & Hg⁺². the right order of radii of these ions. Q.3 (B) $Hg^{+2} > Hg^{+1}$ (C) $Hg^{+1} = Hg^{+2}$ (D) $Hg^{+2} \ge Hg^{+1}$ (A) $Hg^{+1} > Hg^{+2}$ Q.4 The correct order of increasing atomic size of element N,F, Si & P. (A) N < F < Si < P(B) F > N < P < Si(D) F < N < Si < P(C) F < N < P < SiQ.5 The correct order of atomic or ionic size (B) Cl < Mg < Ca(C) $Ca^{+2} < S^{-2} < Cl$ (D) $Na^{+} < Mg^{+2} < Cl$ (A) N < Li < BIonization Energy or Potential Q.6 In which of the following electronic configuration ionisation energy will be maximum in (B) [Ne] $3s^2 3p^2$ (D) [Ar] $3d^{10} 4s^2 4p^3$ (A) [Ne] $3s^2 3p^1$ (C) [Ne] $3s^2 3p^3$ Q.7 The correct order of second ionisation potential of C, N, O and F is: (A) C > N > O > F(B) O > N > F > C(C) O > F > N > C(D) F > O > N > CQ.8 Decreasing ionization potential for K, Ca & Ba is (A) Ba> K > Ca(B) Ca > Ba > K(C) K > Ba > Ca(D) K > Ca > BaQ.9 The ionization energy will be maximum for the process. (A) Ba \rightarrow Ba⁺⁺ (B) Be \rightarrow Be⁺⁺ (C) $Cs \rightarrow Cs^+$ (D) $Li \rightarrow Li^+$ 0.10The correct order of second I.P. (A) Na < Mg > Al < Si(B) Na > Mg < Al > Si(C) Na > Mg > Al < Si(D) Na > Mg > Al > SiQ.11 Alkaline earth metals always form dipositive ions due to (B) $IE_2 - IE_1 = 17 \text{ eV}$ (A) $IE_2 - IE_1 > 10 \text{ eV}$ (C) $IE_2 - IE_1 \le 10 \text{ eV}$ (D) None of these Q.12 Amongst the following, the incorrect statement is $(A) IE_1(Al) \leq IE_1(Mg)$ (B) IE_1 (Na) $\leq IE_1$ (Mg) (C) IE_2 (Mg) > IE_2 (Na) (D) IE_3 (Mg) $> IE_3$ (Al) Electron affinity or Electron Gain Enthalpy

Q.13 The electron affinity of the members of oxygen family of the periodic table, follows the sequence

(A) O > S > Se

(B) S > O > Se

(C) O < S > Se

(D) Se > O > S

Q.14 The process requires absorption of energy is

(B) $Cl \rightarrow Cl^-$

 $(C) O^- \rightarrow O^{2-}$

(D) $H \rightarrow H^-$

Of the following elements, which possesses the highest electron affinity?

(A) As

(B) O

(D) Se

Electron affinities of O,F,S and Cl are in the order. Q.16

(A) O < S < Cl < F

(B) O < S < F < C1

(C) S < O < Cl < F

(D) S < O < F < C1

Q.17 Which of the following statement is not true?

(A) F atom can hold additional electron more tightly than Cl atom

(B) Clatom can hold additional electron more tightly than F atom

(C) The incoming electron encounters greater repulsion for F atom than for Cl atom

(D) It is easier to remove an electron from F than Cl.

Increasing order of Electron affinity for following configuration.

(a) $1s^2$, $2s^2 2p^3$

(b) $1s^2$, $2s^2 2p^4$

(c) $1s^2$, $2s^2 2p^6 3s^2 3p^4$

(d) $1s^2$, $2s^2 2p^6$, $3s^2 3p^3$

(A) a < d < b < c (B) d < a < c < b

(C) a < b < c < d

(D) a < b < d < c

Q.19 Highest electron affinity is shown by

 $(A) F^{-}$

(B) Cl

(C) Li⁺

(D) Na⁺

Electronegativity

The outermost electronic configuration of most electronegative element is: Q.20

 $(A) ns^2 np$

(B) ns^2np^4

(C) $ns^2 np^5$

(D) $ns^2 np^6$

In the following which configuration of element has maximum electronegativity. Q.21

(A) $1s^2$, $2s^2 2p^5$

(B) $1s^2$, $2s^2 2p^6$

(C) $1s^2$, $2s^2 2p^4$

(D) $1s^2$, $2s^2$ $2p^6$, $3s^2$ $3p^3$

On the Pauling's electronegativity scale, which element is next to F. Q.22

(A) Cl

(B) O

(C) Br

(D) Ne

The increasing order of acidic nature of Li₂O, BeO, B₂O₃

(A) $\text{Li}_2\text{O} > \text{BeO} < \text{B}_2\text{O}_3$

(B) $\text{Li}_2\text{O} < \text{BeO} < \text{B}_2\text{O}_3$ (D) $\text{Li}_2\text{O} > \text{BeO} > \text{B}_2\text{O}_3$

(C) $\text{Li}_2\text{O} < \text{BeO} > B_2\text{O}_3$

Bond distance C–F in (CF₄) & Si–F in (SiF₄) are respective 1.33Å & 1.54 Å. C–Si bond is 1.87 Å. Q.24 Calculation the covalent radius of F atom ignoring the electronegativity differences.

(A) 0.64 Å

(B) $\frac{1.33+1.54+1.8}{3}$ Å (C) 0.5 Å

(D) $\frac{1.54}{2}$ Å

Which of the following element is having highest electronegativity.

(A) $1s^2 2s^2 2p^1$

(B) [Ne] $3s^2 3p^1$

(C) [He] $2s^2 2p^4$

(D) [Ne] $3s^2 3p^5$

Q.26 The lowest electronegativity of the element from the following atomic number is.

(A)37

(B)55

(C)9

(D)35

ETOOSINDIA First Step to Inorganic Chemistry by P.S. Sir Which one is not correct order of electronegativity. (A) F > Cl > Br > I(B) Si > Al > Mg > Na(C) Cl > S > P > Si(D) None of these Calculate the bond length of C–X bond if C – C bond length is 1.54 Å and X–X bond length is 1.2 Å and electronegativities of C and X are 2.0 and 3.0 respectively. (A) 2.74 Å(B) 1.37 Å (D) 1.28 Å (C) 1.46 Å Miscellaneous Which of the following does not reflect the periodicity of element 0.29 (A) Bonding behaviour (B) Electronegativity (C) Ionisation potential (D) Neutron/Proton ratio Choose the s-block element from the following: (A) $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^6$, $3d^5$, $4s^1$ (B) $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^6$, $3d^{10}$, $4s^1$ (C) $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^6$, $4s^1$ (D) all of the above False statement for periodic classification of elements is Q.31 (A) The properties of the elements are periodic function of their atomic numbers. (B) No. of non-metallic elements is less than the no. of metallic elements. (C) First ionization energy of elements does not increase regularly with the increasing of atomic number in a period. (D) d-subshell is filled by final electron with increasing atomic number of inner transition elements. Pick out the isoelectronic species from the following: III. NH₃ I. +CH₃ H_3O^+ IV. CH₃ (A) I and II (C) I and III (B) III and IV (D) II, III and IV If there were 10 periods in the periodic table then how many elements would this period can maximum comprise of. (A) 50(B) 72 (C) 32(D) 98 Among the following which species is/are paramagnetic (i) Sr^{2+} (ii) Fe^{3+} (iii) Co²⁺ (iv) S^{2-} $(v) Pb^{2+}$ (A) i, iv, v(B) i, ii, iii (C) ii, iii (D) iv, v If each orbital can hold a maximum of three electrons, the number of elements in 9th period of periodic Q.35 table (long form) are (A)48(B) 162 (C) 50(D)75Q.36 The Z_{eff} for 3d electron of Cr 4s electron of Cr

(B) 4.95, 2.95, 4.6, 8.05

(D) none of these

3d electron of Cr³⁺

(A) 4.6, 2.95, 4.95, 8.05

(C) 4.6, 2.95, 5.3, 12.75

3s electron of Cr³⁺ are in the order respectively

Q.37 Which among the following factors is most important in making fluorine, the strongest oxidising halogen:

(A) Bond dissociation energy

(B) Ionisation Enthalpy

(C) Hydration enthalpy

(D) Electron affinity

Q.38 Which of the following element has highest metallic character.

	Element	IP
(A)	P	17 eV
(B)	Q	2 eV
(C)	R	10 eV
(D)	S	13 eV

Q.39 The electronic configuration of an element is 1s² 2s² 2p⁶ 3s² 3p⁴. The atomic number and the group number of the element 'X' which is just below the above element in the periodic table are respectively.

- (A) 24 & 6
- (B) 24 & 15
- (C) 34 & 16
- (D) 34 & 8

Q.40 The correct order of increasing hydration energy of following ion is

(A) $Fe^{+2} < Co^{+2} < Fe^{+3}$

(B) $Fe^{+2} < Co^{+2} > Fe^{+3}$

(C) $Fe^{+2} > Co^{+2} > Fe^{+3}$

(D) $Fe^{+2} < Fe^{+3} < Co^{+2}$

More than one correct

Q.41 Which of the following is correct order of EA.

(A) N < C < O < F

(B) F > C1 > Br > I

(C) Cl > F > Br > I

(D) C < N < O < F

Q.42 Select the correct statement(s).

- (A) The value of electron gain enthalpy of an element can be -ve or +ve.
- (B) In the periodic table, metallic character of the elements increases down the group and decreases across the period
- (C) The Cl⁻ & S²⁻ are isoelectronic species but first one is not smaller in size than the second
- (D) Ionization enthalpy of an atom is equal to electron gain enthalpy of cation

Q.43 In which of the following are the orders of electron affinity of the elements or ions shown correctly

- $(A) S > O^-$
- (B) $N^- > P$
- (C) $O^{-} > S^{-}$
- (D) O > S

Q.44 Which of the following parameters can't be estimated by using Born-Haber cycle (for the formation of the ionic compound)?

(A) Hydration energy

(B) Electron gain enthalpy

(C) Lattice energy

(D) Electronegativity

Q.45 Which of the following are correct

- (A) $IE_2(Mg) \le IE_2(Na)$
- $(B) EA(N) \le EA(P)$
- (C) Atomic size Mg⁺² > Atomic size (Li⁺)
- (D) IP of Na \leq Mg \leq Al

Q.46	If Aufbau's principle and Hund's rule were not followed. (A) K would have been d–block element & paramagnetic. (B) Cu would have been s–block element. (C) Cr would have been diamagnetic (D) Fe ⁺³ ion would have 5 unpaired electrons.								
Q.47	In halogen, which c (A) Ionisation energ (C) Bond length	~	ies increase from iodine to (B) Electronegativi (D) Electron affinit	ty					
Q.48	Which of the follow (A) Al and Ga	ving pair have nearly the (B) Fe and Ni	e same atomic radii (C) Zr and Hf	(D) Pt & Pd					
Q.49	In which of the follo (A) Ba, Ca	owing sets of elements (B) Sb, Sn	1 st element is more metal (C) Ge, S	llic then second. (D) Na, F					
Q.50	(A) Electronegtaive (B) Electron gain e (C) Electron gain e	ving statements, which ity of sulphur is greater to nthalpy of oxygen is sm nthalpy of fluorine is monthalpy of chlorine	than that of oxygen. aller than that of sulphur. ost negative						
Q.51	The ionic compour (A) electron gain en (B) ionization energy (C) lattice energy of (D)	gy of A is low f AB is high	n the						
Q.52	Which of the following is/are correct? (A) For $A(g) + e^- \longrightarrow A^-(g) \Delta H$ may be negative (B) For $A^-(g) + e^- \longrightarrow A^{2-}(g) \Delta H$ may be negative (C) For $A^-(g) + e^- \longrightarrow A^{2-}(g) \Delta H$ may be positive (D) For $Ne(g) + e^- \longrightarrow Ne^-(g) \Delta H$ may be zero								
Q.53				are respectively 81 Kcal / mole, on the electronegativity of A may be					
	(A) 2.81	(B) 1.8	(C) 1.99	(D) 3.0					

				Answ	er Ke	V							
Q.1	A	Q.2	C		A		C	Q.5	В	Q.6	C	Q.7	C
Q.8	В	Q.9	В	Q.10	В	Q.11	C	Q.12	C	Q.13	C	Q.14	C
Q.15	C	Q.16	В	Q.17	A	Q.18	A	Q.19	C	Q.20	C	Q.21	A
Q.22	В	Q.23	В	Q.24	C	Q. 25	C	Q.26	В	Q.27	D	Q.28	D
Q.29	D	Q.30	C	Q.31	D	Q.32	D	Q.33	В	Q.34	C	Q.35	D
Q.36	C	Q.37	C	Q.38	В	Q.39	C	Q.40	A	Q.41	A,C		
Q.42	A,B,D	Q.43	A,D	Q.44	A,D	Q.45	A,B	Q.46	A,B,C	Q.47	A,B		
0.48	A.B.C	.D		0.49	A.C.D	0.50	B.D	0.51	A.B.C	0.52	A.C	0.53	A.C

IONIC BOND

1	Only	one	ontion	is	correct)
١	Only	UIIC	opiion		correct

Q.1	An ionic bond A^+B^- is most likely to be formed when: (A) the ionization energy of A is high and the electron gain enthalpy of B is low (B) the ionization energy of A is low and the electron gain enthalpy of B is high (C) the ionization energy of A and the electron gain enthalpy of B both are high (D) the ionization energy of A and the electron gain enthalpy of B both are low							
Q.2	The compound which (A) C ₂ H ₄ Cl ₂	contains ionic as well as (B) CH ₃ I	covalent bonds is (C) KCN	(D) H ₂ O ₂				
Q.3	The hydration of ionic (A) Evolution of heat (C) Dissociation into ionic (C)	•	(B) Weakening of attractive forces (D) All of these					
Q.4	In which of the following (A) NCl ₃	ng species the bonds are (B) RbCl	Non-directional? (C) BeCl ₂	(D) BCl ₃				
Q.5	Which has the lowest a (A) <i>LiF</i>	nnion to cation size ratio (B) NaF	: (C) <i>CsI</i>	(D) CsF				
Q.6	The compound which I (A) LiF	has the highest Lattice er (B) LiCl	nergy is (C) NaCl	(D) MgO				
Q.7	A bond formed betwee (A) ionic	en two like atoms canno (B) covalent	t be (C) coordinate	(D) metallic				
Q.8	Which of the following (A) Green Vitriol (C) Alcohol	g, when dissolved in water	er is non -conductor. (B) Indian salt Petre (D) Potash alum					
Q.9	An electrovalent comp (A) Presence of oppos (C) Non-directional na		oace isomerism because (B) High melting points (D) Crystalline nature					
Q.10		contains electrovalent a (B) H_2O_2	and polar covalent bonds (C) NH ₄ Cl	s? (D) <i>HCN</i>				
COVA	LENT BOND , CO-C	ORDINATE BOND &	LEWIS STRUCTUR	PE.				
Q.11	_	d by the overlap of atom e following overlaps is a		dB. If the bond is formed along				
	(A) s orbital of A and	- -	(B) p_x orbital of A and					
	(C) p_z orbital of A and	$d p_x$ orbital of B	(D) p_x orbital of A and	ds orbital of B				
Q.12		are present in IF_7 molec						
	(A) 6	(B) 7	(C) 5	(D) 8				

 PCl_5 exists but NCl_5 does not because: Q.13

- (A) Nitrogen has no vacant 2*d*-orbitals
- (B) NCl_5 is unstable
- (C) Nitrogen atom is much smaller than P
- (D) Nitrogen is highly inert

Which of the following has/have a strong covalent bond?

- (A) Cl-F
- (B) F-F
- (C) C-Cl
- (D) C-F

Which of the following species are hypervalent?

- 1. PCl₅,
- 2. BF₃,
- 3. XeF_2 ,
- 4. CO₃²⁻

- (A) 1, 2, 3
- (B) 1, 3
- (C) 3, 4
- (D) 1, 2

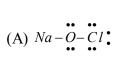
The types of bond present in N_2O_5 are 0.16

- (A) only covalent
- (B) only ionic
- (C) ionic and covalent (D) covalent & coordinate

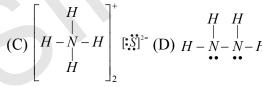
 NH_3 and BF_3 combine readily because of the formation of: Q.17

(A) a covalent bond

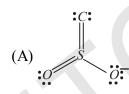
(B) a hydrogen bond

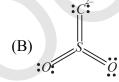

(C) a coordinate bond

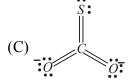
(D) an ionic bond

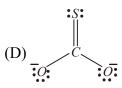

Which of the following molecules does not have coordinate bonds? Q.18

- (A) CH₃-NC
- (B) CO
- $(C) O_3$
- (D) CO_2^2


Which of the following Lewis dot diagrams is(are) incorrect? Q.19




(B)
$$\vdots \ddot{C}l : \qquad (C) \begin{vmatrix} H \\ \downarrow \\ H - N - H \\ \downarrow \\ H \end{vmatrix}$$



Q.20 The possible structure(s) of monothiocarbonate ion is:

The valency of sulphur in sulphuric acid is: Q.21

(A) 2

- (C)4
- (D)6

Q.22 The total number of valence electrons in 4.2g of N_3^- ion are :

- (A) $2.2 N_A$
- (B) $4.2 N_A$
- (C) 1.6 N_4
- (D) $3.2 N_A$

V.B.T. & HYBRIDISATION

In the following compound $\overset{1}{C}H_2 = \overset{2}{C}H - \overset{3}{C}H_2 - C \equiv CH$, the $C_2 - C_3$ bond is of the type:

- (A) $sp sp^2$
- (B) $sp^3 sp^3$
- (C) $sp sp^3$
- (D) $sp^2 sp^3$

Which of the following has a geometry different from the other three species (having the same geometry)?

- (A) BF_4^-
- (B) SO_4^{2-}
- (C) XeF_4
- (D) PH_A^+

Q.25	Maximum bond energy is in:							
	(A) F_2	(B) N_2	(C) O ₂	(D) equal				
Q.26	Among the following species, identify the isostructural pairs : NF_3 , NO_3^- , BF_3 , H_3O^+ , OF_2							
	(A) $[NF_3, NO_3^-]$ and $[$	BF_3, H_3O^+	(B) $[NF_3, OF_2]$ and $[$	NO_3^-, BF_3]				
	(C) $[NF_3, H_3O^+]$ and	$[NO_3^-, BF_3]$	(D) $[NF_3, H_3O^+]$ and	$d[OF_2, BF_3]$				
Q.27	Number and type of (A) one sigma (σ) and (C) one σ and one ar		oon atoms in CaC_2 are: (B) one σ and two π ! (D) one σ bond	bonds				
Q.28	In $C-C$ bond in C_2 species is / are	H ₆ undergoes heteroltic	fission, the hybridisation	n of carbon in the resulting two				
	*	(B) sp^3 both	(C) sp^2 , sp^3	(D) sp, sp^2				
Q.29	The hybridisation and	d shape of BrF ₃ molecule	e are :					
	(A) sp^3d and bent T	shape	(B) sp^2d^2 and tetrage	onal				
	(C) sp^3d and bent		(D) none of these					
Q.30	The shape of methyl	cation (CH_3^+) is likely to	o be:					
	(A) linear	(B) pyramidal	(C) planar	(D) spherical				
Q.31	The structure of <i>XeF</i>	involves hybridization	of the type:					
	(A) sp^3	(B) dsp^2	(C) sp^3d	(D) sp^3d^2				
Q.32	In the XeF_4 molecule (A) sp^2 -hybridized st (C) sp^3d^3 -hybridized		(B) sp^3 -hybridised sta (D) sp^3d^2 -hybridized					
Q.33	How many σ - and π - (A) 10σ , 4π	bonds are there in salic (B) 16σ , 4π	ylic acid? (C) 18σ, 2π	(D) 16σ, 2π				
Q.34	Which of the following	ng has been arranged in i	ncreasing order of size o	f the hybrid orbitals?				
	$(A) sp < sp^2 < sp^3$	$(B) sp^3 < sp^2 < sp$	$(C) sp^2 < sp^3 < sp$	(D) $sp^2 < sp < sp^3$				
Q.35	In the context of carb	on, which of the following	ng is arranged in the corre	ect order of electronegativity:				
	$(A) sp > sp^2 > sp^3$	$(B) sp^3 > sp^2 > sp$	$(C) sp^2 > sp > sp^3$	(D) $sp^3 > sp > sp^2$				
Q.36	•			verlap, the bond strength decreases in the order:				
	(A) $p-p > s-s > p$ (C) $s-s > p-p > p$		(B) $p - p > p - s > s - s$ (D) $s - s > p - s > p - s$	(B) $p-p > p-s > s-s$ (D) $s-s > p-s > p-p$				
	(\sim) \sim		$(-)$ \sim P \sim P	F				

Q.37	The shapes of IF_5 and IF_7 are respectively: (A) distorted square pyramidal and pentagonal bipyramidal (B) octahedral and pyramidal (C) trigonal bipyramidal and pentagonal bipyramidal (D) distorted square planar and distorted octahedral								
Q.38	Carbon atoms in $C_2(C$	CN) ₄ are:							
	(A) sp-hybridized		(B) sp^2 -hybridized						
	(C) sp - and sp^2 hybrid	dized	(D) sp , sp^2 and sp^3 - 1	nybridized					
Q.39	CO_2 is isostructural wi	ith							
	(I) $HgCl_2$ (A) I and III	(II) NO ₂ (B) II and IV	(III) SnCl ₄ (C) I and IV	(IV) C_2H_2 (D) III and IV					
Q.40	The ratio of σ and π b (A) 2	onds in benzene is: (B) 6	(C) 4	(D) 8					
Q.41	The bond angle and hy	bridization in ether (CH	I_3OCH_3) is:						
		(B) $104^{\circ}31'$, sp^3		(D) None of these					
Q.42	The shape of a molecu(A) Octahedral	ale which has 3 bond pai (B) Pyramidal	irs and one lone pair is: (C) Triangular planar	(D) Tetrahedral					
Q.43	Which molecule is T sl	haped:							
	(A) BeF_2	(B) BCl ₃	(C) NH_3	(D) ClF_3					
Q.44	According to hybridisa	ation theory maximum s	-character is found in bo	nd formed by () atom.					
	(A) ${}^{*}_{C}H_{4}$	(B) *SF_6	(C) ${\rm \mathring{X}} {\rm eO}_6^{4-}$	(D) ${}^{*}F_4$					
Q.45	A σ-bond is formed by other along:	two p_x orbitals each co		ectron when they approach each					
	(A) x - axis	(B) y - axis	(C) z - axis	(D) any direction					
Q.46	Which of the following	g pairs is (are) isostructur	ral?						
	(A) SF_4 and SiF_4	(B) SF_6 and SiF_6^{2-}	(C) SiF_6^{2-} and SeF_6^{2-}	(D) XeO_6^{4-} and TeF_6^{2-}					
Q.47	The structure of XeF_6 in vapour phase is (A) pentagonal bipyramidal (C) capped octahedron (B) trigonal bipyramidal (D) square bipyramidal								
MISC	ELLEANEOUS (INC	CLUDING BOND AN	GLES & BOND LEN	GTH)					
Q.48	Cyanogen, $(CN)_2$, has (A) Linear	s a shape/structure (B) Zig-zag	e: (C) V-shape	(D) Cyclic					

(C) Ethylene

In which of the following sovents, KI has highest solubility? The dielectric constant (∈) of each liquid is given in parentheses. (A) $C_6H_6 (\in = 0)$ (B) $(CH_3)_2 CO (= 2)$ (C) $\mathring{CH}_3\mathring{OH}$ ($\in =32$) (D) $CCl_{4} (\in = 0)$ 0.50The formal charges on the three O-atoms in O₃ molecule are (A) 0, 0, 0(B) 0, 0, -1(C) 0, 0, +1(D) 0, +1, -1The types of bonds present in $CuSO_4 \cdot 5H_2O$ are Q.51(A) electrovalent and covalent (B) electrovalent, coordinate covalent & H-bond (C) covalent, coordinate covalent & H-bonds (D) electrovalent, covalent, coordinate covalent & H-bond Q.52 Which of the following has been arranged in order of decreasing dipole moment? (A) $CH_3Cl > CH_3F > CH_3Br > CH_3I$ (B) $CH_3F > CH_3Cl > CH_3Br > CH_3I$ (C) $CH_3Cl > CH_3Br > CH_3I > CH_3F$ (D) $CH_3F > CH_3Cl > CH_3I > CH_3Br$ Which of the following has the least dipole moment 0.53(A) NF_3 $(B) CO_{2}$ (C) SO₂ (D) NH, The experimental value of the dipole moment of HCl is 1.03 D. The length of the H-Cl bond is 1.275 Å. The percentage of ionic character in HCl is: (A)43(D) 7 (B) 21(C) 17is 1.5 D. The dipole moment of 0.55The dipole moment of (A) 0 D(B) 1.5 D (C) 2.86 D (D) 2.25 D The correct order of decreasing X - Q - X bond angle is (X = H, F or Cl): (A) $H_2O > Cl_2O > F_2O$ (B) $Cl_2O > H_2O > F_2O$ (C) $F_2O > Cl_2O > H_2O$ (D) $F_2O > H_2O > Cl_2O$ Q.57 Which has higher bond energy: (D) I_2 (A) F_2 (B) Cl_2 (C) Br_{γ} Q.58 The bond angle in PH_3 is: (A) Much lesser than NH_3 (B) Equal to that in NH_3 (C) Much greater than in NH_3 (D) Slightly more than in NH_3 Q.59 H-B-H bond angle in BH_4^- is: $(A) 180^{\circ}$ (B) 120° $(C) 109^{\circ}$ (D) 90° In the series ethane, ethylene and acetylene, the C-H bond energy is maximum in (A) The same in all the three compounds (B) Ethane

(D) Acetylene

Q.61 If ethylene molecule lies in X-Y plane then nodal planes of the π -bond will lie in

(A) XZ plane

(B) YZ plane

(C) In a plane that bisects C–C axis

(D) XY plane

OTHER FORCES

Q.62 Which of the following models best describes the bonding between layer of the graphite structure?

(A) metallic bonding

(B) ionic bonding

(C) non-metallic covalent bonding

(D) van der Waals forces

Q.63 Ethanol has a higher boiling point than dimethyl ether though they have the same molecular weight. This is due to:

(A) resonance

(B) coordinate bonding

(C) hydrogen bonding

(D) ionic bonding

Q.64 Arrange the following in order of decreasing boiling point:

(I) *n*-Butane

(II) *n*-Butanol

(III) *n*-Butyl chloride

(IV) Isobutane

(A) *IV* > *III* > *II* > *I* (C) *I* > *II* > *III* > *IV*

(B) IV > II > III > I(D) II > III > I > IV

Q.65 Which of the following compounds would have significant intermolecular hydrogen bonding?

HF, CH_3OH , N_2O_4 , CH_4

(A) HF, N_2O_4

(B) HF, CH_4 , CH_3OH

(C) HF, CH_3OH

(D) CH_3OH , CH_4

Q.66 For H_2O_2 , H_2S , H_2O and HF, the correct order of decreasing strength of hydrogen bonding is:

(A) $H_2O > HF > H_2O_2 > H_2S$

(B) $HF > H_2O_2 > H_2O > H_2S$

(C) $HF > H_2O > H_2O_2 > H_2S$

(D) $H_2O_2 > H_2O > HF > H_2S$

Q.67 Which one of the following does not have intermolecular H-bonding?

(A) H₂O

(B) o-nitro phenol

(C) HF

(D) CH₂COOH

Q.68 The order of strength of hydrogen bonds is:

(A) ClH ...Cl > NH ...N > OH ...O > FH ...F

(B) ClH...Cl < NH...N < OH...O < FH...F

(C) ClH...Cl < NH...N > OH...O > FH...F

(D) ClH...Cl < NH...N < OH...O > FH...F

Q.69 Which of the following exhibit/s H-bonding?

 $(A) CH_{\Delta}$

(B) H₂Se

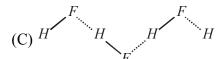
(C) N₂H₄

(D) H₂S

Q.70 Among the following, van der Waals forces are maximum in

(A) HBr

(B) LiBr


(C) LiCl

(D) AgBr

Q.71 The *H* bond in solid *HF* can be best represented as:

(A) H - F H - F H - F

(B) $H_{\downarrow_{E},\dots}H_{\downarrow_{E},\dots}H$

Q.72	The volatility of <i>HF</i> is (A) its low polarizability (C) its small molecular	y	(B) Strong intramolecular H-bonding (D) Strong intermolecular H-bonding			
Q.73	Two ice cubes are presholding them together: (A) van der Waal's for (C) Hydrogen bond for	ces	unite to form one cube. (B) Covalent attraction (D) Dipole-dipole attra			
Q.74	Intramolecular hydroge (A) Salicylaldehyde	en bonding is found in : (B) Water	(C) Acetaldehyde	(D) Phenol		
Q.75	The pairs of bases in D (A) Hydrogen bonds	NA are held together by (B) Ionic bonds		(D) Deoxyribose groups		
Q.76	In dry ice there are: (A) Ionic bond	(B) Covalent bond	(C) Hydrogen bond	(D) Vander Waal's forces		
Q.77	In which of the following (A) Boiling of H ₂ O (C) Boiling of CF ₄	ng compounds, breaking	g of covalent bond takes (B) Melting of KCN (D) Melting of SiO ₂	place?		
(More	than one options are	correct)				
Q.78	(B) They can attain sta(C) Their potential ene	tain stable configuration ble configuration if poss orgy can increase and her orgy can decrease and he	ible, to that of nearest no nce bond energy may inc	obel gas. crease.		
Q.79	(A) They are good con(B) They are generally(C) They consist of ion	statement(s) is/are correductors of electricity at resoluble in polar solvents is. e high melting and boiling	oom temperature in aqu			
Q.80	Which of the following (A) NH ₄ Cl	compounds contain ion (B) KCN	ic, covalent and cordinat (C) NaBF ₄	te bonds? (D) NaOH		
Q.81	(C) high solubilities in p	and low boiling points and nondirectional bond polar solvents and low so	lubilities in nonpolar sol	vents conductors of electricity in the		
Q.82	Which of the following (A) SiO_2	have a three dimensiona (B) Diamond	al network structure? (C) P_4 (white)	(D) CCl ₄		
Q.83		e directional ndirectional med between two atoms		ectronegativity value. t it has zero dipole moment		

Q.84	The octet rule is not obeyed in:										
	(A) <i>CO</i> ₂	(B) BCl_3	(C) PCl_5	(D) SiF_4							
Q.85	To which of the following species octet rule is not applicable:										
	(A) BrF_5	(B) SF_6	(C) <i>IF</i> ₇	(D) <i>CO</i>							
Q.86	Pick out among the fo	ollowing species isoele	ctronic with CO_2 :								
	(A) N_3^-	(B) (<i>CNO</i>) ⁻	(C) $(NCN)^{2-}$	(D) NO_2^-							
Q.87	Which of the following oxyacids of sulphur contain $S - S$ bonds?										
	$(A) H_2S_2O_8$	(B) $H_2S_2O_6$	(C) $H_2S_2O_4$	(D) $H_2S_2O_5$							
Q.88	Which of the following	ng species contain coor	dinate covalent bond:								
	(A) AlCl ₃	(B) <i>CO</i>	(C) $[Fe(CN)_6]^{4-}$	(D) N_3^-							
Q.89		ng statement(s) is / are in he mixing of atomic or	not correct? bitals of large energy diffe	erence.							
	(B) sp^2 – hybrid orbitals are formed from two p - atomic orbitals and one s - atomic orbital										
	(C) sp^3d^2 – hybrid orbitals are all at 90° to one another										
	(D) sp^3 – hybrid orbitals are directed towards the corners of a regular tetrahedron										
Q.90	Which of the following	ng species is (are) isost	ructural with XeF ₄ ?								
	(A) <i>ICl</i> ₄	(B) I ₃	(C) BrF ₄	(D) <i>XeO</i> ₄							
Q.91	Which of the following statements is/are correct?										
	(A) NH_2^+ shows sp^2 – hybridisation whereas NH_2^- shows sp^3 – hybridisation										
	(B) $Al(OH)_4^-$ has a regular tetrahedral geometry										
	(C) sp^2 – hybridized orbitals bonded to same substituents have equal s - and p - character (D) Hybridized orbitals always form σ - bonds										
Q.92	There is change in the	e hybridisation when:									
	(A) NH ₃ combines v	•	(B) AlH ₃ combines	with H^-							
	(C) NH_3 forms NH_2^- (D) SiF_4 forms SiF_6^{2-}										
Q.93	(A) Hybridisation is t	ng statement is/are corr he mixing of pure atom orbitals are at 90° to ea	nic orbitals having less ene	ergy difference							
	(C) sp^3d – hybrid orl	oitals are directed towa	ords the corners of a regu	lar tetrahedron							
	•		vards the corners of a reg								
Q.94	(B) <i>p</i> -orbitals always (C) <i>s</i> -orbitals never	und the single bond is a overlap sideways	•								

Q.95	sp^3 hybridisation is in :								
	(A) AlH_4^-	(B) <i>CH</i> ₃ ⁻	(C) ClO_2^-	(D) NH_{2}^{-}					
Q.96		has (have) regular octah		(D) 105					
	(A) $SbCl_6^-$	(B) $SnCl_6^{2-}$	(C) XeF_6	(D) IO_6^{5-}					
Q.97	Shape of NH_3 is very s	similar to :							
	(A) SeO_3^{2-}	(B) CH_3^-	(C) BH_3	(D) CH_3^+					
Q.98	Which of the following	g have same shape as <i>NF</i>	H ₂ +?						
	(A) <i>CO</i> ₂	(B) $SnCl_2$	(C) <i>SO</i> ₂	(D) BeCl ₂					
Q.99	Which of the following	is (are) linear?							
	(A) I_3^-	(B) I_3^+	(C) PbCl ₂	(D) XeF ₂					
Q.100	Which of the following	species are linear?							
	(A) ICl ₂	(B) I ₃	(C) N_3^-	(D) ClO ₂					
Q.101	Which of the following (A) Water	compounds possesses z (B) Benzene		de (D) Boron trifluoride					
Q.102	(A) The crystal lattice (B) The density of wat (C) Above 4° C the the increases and water sta		d from 0° C to 4° C nolecules increases. The	bonds erefore, intermolecular distance					
		g compounds has bond a (B) H_2S		(D) <i>SF</i> ₆					
Q.104	For propadiene $H_2C = 1$	= C = CH ₂ , correct state 2 3	ement(s) is / are :						
	 (A) Molecule is non pla (B) Molecule is nonpol (C) Nodal plane of π-l (D) Nodal plane of π-l 	ar	$\frac{1}{2}$ is perpendicular to that $\frac{1}{2}$ is coplanar with that $\frac{1}{2}$	at of formed by $C_2 \& C_3$. If formed by $C_2 \& C_3$.					
Q.105	Molecule(s) having bo (A) O ₂ F ₂	th polar and non polar b (B) S_2Cl_2	onds is / are (C) N ₂ H ₄	(D) S ₂ F ₁₀					

Match the Column:

Q.106 Column I

- (A) BrF₃
- (B) $\operatorname{TeF}_{5}^{-}$
- (C) IF₇
- (D) XeF_4

Q.107 Column I

- (A) $I(CN)_2^-$
- (B) CO_3^{2-}
- (C) XeO_2F_2
- (D) SOF₄

Column II

- (P) One angle $\leq 90^{\circ}$
- (Q) Central atom is sp^3d^2 hybridised
- (R) Non planar
- (S) Polar

Column II

- (P) Having $p\pi p\pi$ bond & $\mu_D = 0$
- (Q) Having $p\pi d\pi$ bond & $\mu_D \neq 0$
- (R) Planar
- (S) Central atom is sp³d

Q.108 Column I

- $(A) H_2S_2O_5$
- (B) $H_6 B_2 O_7^{2-}$
- (C) $H_4P_2O_6$
- (D) $H_6Si_2O_7$

Column II

- (P) Central atom is sp³ hybridised
- (Q) M-O-M ie oxo linkage is present
- (R) M–M ie oxo linkage is absent
- (S) Non planar

ANSWER KEY

EXERCISE - I

Q.1	В	Q.2	C	Q.3	D	Q.4	В
Q.5	D	Q.6	D	Q.7	A	Q.8	C
Q.9	C	Q.10	C	Q.11	D	Q.12	В
Q.13	A	Q.14	D	Q.15	В	Q.16	D
Q.17	C	Q.18	D	Q.19	A	Q.20	D
Q.21	D	Q.22	C	Q.23	D	Q.24	C
Q.25	В	Q.26	C	Q.27	В	Q.28	C
Q.29	A	Q.30	C	Q.31	C	Q.32	D
Q.33	В	Q.34	A	Q.35	A	Q.36	В
Q.37	A	Q.38	С	Q.39	C	Q.40	C
Q.41	C	Q.42	В	Q.43	D	Q.44	A
Q.45	A	Q.46	В	Q.47	C	Q.48	A
Q.49	С	Q.50	D	Q.51	D	Q.52	A
Q.53	В	Q.54	C	Q.55	A	Q.56	В
Q.57	В	Q.58	A	Q.59	C	Q.60	D
Q.61	D	Q.62	D	Q.63	C	Q.64	D
Q.65	С	Q.66	C	Q.67	В	Q.68	В
Q.69	C	Q.70	D	Q.71	C	Q.72	D
Q.73	C	Q.74	A	Q.75	A	Q.76	В
Q.77	D	Q.78	B,D	Q.79	A,B,C,D	Q.80	A,C
Q.81	B,C,D	Q.82	A,B	Q.83	A,B	Q.84	В,С
Q.85	A,B,C	Q.86	A,B,C	Q.87	B,C,D	Q.88	B,C,D
Q.89	A,C	Q.90	A,C	Q.91	A,B,C	Q.92	B,D
Q.93	A,B,D	Q.94	A,B,D	Q.95	A,B,C,D	Q.96	A,B,D

ETOOSINDIA INDIA'S NO. 1 ONLINE COACHING First Ste			rst Step to Inorganic Chemistry by P.S. Sir					
Q.97	А,В	Q.98 B	3,C	Q.99	A,D	Q.100 A,B,C		
Q.101	B,C,D	Q.102 A	х,В,С	Q.103	B,D	Q.104 A,B,C		
~	A,B,C,D (A) P,R,S (B) P,R (C)	Q,S (D) Q	_	(A) P,S	(B) P,Q,R,S (C	C) P,R (D) P,Q		

Q.108~(A)~P,R,S~(B)~P,Q,S~(C)~P,R,S~(D)~P,Q,S

EXERCISE - II

(Assertion & Reason)

- Q.1 **Statement-1:** Higher the lattice energy greater will be the ease of formation of an ionic compound.
 - **Statement-2:** Lattice energy is evolved during formation of an ionic compound.
 - (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
 - (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.
 - (C) Statement-1 is true, statement-2 is false.
 - (D) Statement-1 is false, statement-2 is true.
- Q.2 **Statement-1:** Lattice energy of an ionic solid can not be infinite.
 - **Statement-2:** As interionic distance tends to zero, repulsive forces dominate over attractive forces.
 - (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
 - (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.
 - (C) Statement-1 is true, statement-2 is false.
 - (D) Statement-1 is false, statement-2 is true.
- Q.3 **Statement-1:** If all substituents and lone pairs are symmetrically placed around central atom, the molecule will be non polar.
 - **Statement-2:** The direction of bond moment is from positive pole towards negative pole.
 - (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
 - (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.
 - (C) Statement-1 is true, statement-2 is false.
 - (D) Statement-1 is false, statement-2 is true.
- Q.4 **Statement-1:** During formation of co-ordinate bond acceptor accepts electron pair only when its octet has not been completed
 - **Statement-2:** Inspite of having completed octet, acceptor can accept electron pair provided it has empty 'd' orbitals.
 - (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
 - (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.
 - (C) Statement-1 is true, statement-2 is false.
 - (D) Statement-1 is false, statement-2 is true.
- Q.5 **Statement-1:** On the basis of overlapping of pure atomic orbital the shape of NH₃ molecule will be trigonal pyramidal.
 - **Statement-2:** According to pure atomic orbital overlapping each ∠ HNH is of 90°.
 - (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
 - (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.
 - (C) Statement-1 is true, statement-2 is false.
 - (D) Statement-1 is false, statement-2 is true.
- Q.6 **Statement-1:** lone pair lone pair repulsion is found to be greater than lone pair b.p. repulsion.
 - **Statement-2:** lone pair is under the influence of one nucleus while b.p. is under that of two nuclei.
 - (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
 - (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.
 - (C) Statement-1 is true, statement-2 is false.
 - (D) Statement-1 is false, statement-2 is true.

ETOOSINDIA

First Step to Inorganic Chemistry by P.S. Sir

- Q.7 **Statement-1:** Phosphorus exists as P_4 not as P_2
 - **Statement-2:** Sidewise overlapping between two 3p orbitals is less effective.
 - (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
 - (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.
 - (C) Statement-1 is true, statement-2 is false.
 - (D) Statement-1 is false, statement-2 is true.
- Q.8 **Statement-1:** Inorganic benzene $(B_3N_3H_6)$ and organic benzene (C_6H_6) are isoelectronic & hence are isostructural.

Statement-2: d_{C-C} in benzene is greater than d_{B-N} in inorganic benzene (borazine).

- (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
- (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.
- (C) Statement-1 is true, statement-2 is false.
- (D) Statement-1 is false, statement-2 is true.
- Q.9 **Statement-1:** Compounds, like graphite, H₃BO₃, boron nitride (inorganic graphite etc.), which composed of layers in solid state have lubricating action.

Statement-2: Two dimensional layers are bonded to one another by weak Vander Waals forces.

- (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
- (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.
- (C) Statement-1 is true, statement-2 is false.
- (D) Statement-1 is false, statement-2 is true.

EXERCISE - II

- Q.1 B Q.2 D Q.3 A Q.4 B
- Q.5 A Q.6 A Q.7 B Q.8 B
- Q.9 A

MOLE CONCEPT

1.	The charge on 1 gram	ions of Al^{3+} is: $(N_A = Av$	ogadro number, e = cha	rge on one electron)
	(A) $\frac{1}{27}$ N _A e coulomb	(B) $\frac{1}{3} \times N_A e coulomb$	(C) $\frac{1}{9} \times N_A e $ coulomb	(D) $3 \times N_A e coulomb$
2.		g expressions is correct (r of the gas, $N = no.$ of mo (B) $m = N_A$		is, $N_A = Avogadro constant$, m $(D) m = mn/N_A$
3.	The modern atomic we (A) C ¹²	eight scale is based on : (B) O ¹⁶	(C) H ¹	(D) N ¹⁴
4.	The weight of a molec (A) 1.09×10^{-21} g	ule of the compound C_{60} (B) 1.24×10^{-21} g	1 H ₂₂ is: (C) 5.025 × 10 ⁻²³ g	(D) 16.023×10^{-23} g
5.				
6.	A gaseous mixture co molecules of CO ₂ (g) a (A) 5:2		(g) in 2:5 ratio by mas (C) 1:2	s. The ratio of the number of (D) 5:4
7.	Four 1-1 litre flasks are separately filled with the gases H_2 , He , O_2 and O_3 at the same term and pressure. The ratio of total number of atoms of these gases present in different flask wo (A) 1:1:1:1 (B) 1:2:2:3 (C) 2:1:2:3 (D) 3:2:2:1			
8.	Under the same conditions, two gases have the same number of molecules. The (A) be noble gases (B) have equal volumes (C) have a volume of 22.4 dm³ each (D) have an equal number of at			S
9.	16 g of an ideal gas SO $(A) x = 3$	O_x occupies 5.6 L. at ST (B) $x = 2$	P. The value of x is (C) $x = 4$	(D) none
10.	0.44 g of a colourless o (A) N_2O	oxide of nitrogen occupi (B) NO	tes 224 mL at STP. The α (C) N_2O_2	compound is: (D) NO ₂
11.	4.4 of CO_2 and 2.24 litting the container will be (A) 6.022×10^{23}	2	d in a container. The total (C) 2 mole	number of molecules present (D) 6.023×10^{23}
12.	How many atoms are contained in one mole (A) $45 \times 6.02 \times 10^{23}$ atom / mol (C) $5 \times 6.02 \times 10^{23}$ atom / mol		of sucrose $(C_{12}H_{22}O_{11})$? (B) $20 \times 6.02 \times 10^{23}$ atom / mol (D) None of these	
13.	4 g atom of Ag contain (A) 108 g	as: (B) 4 g	(C) 432 g	(D) none of these
14.	Which sample contains (A) 1 mg of C_2H_{10}	s the largest number of a (\mathbf{B}) 1 mg of N_2	toms? (C) 1 mg of Na	(D) 1 mL of water
15.	1.0 g of hydrogen conta atoms in 1 g of He is:	ains 6×10^{23} atoms. The a	atomic mass of helium is 4	4. It follows that the number of
	(A) $\frac{1}{4} \times 6 \times 10^{23}$	(B) $4 \times 6 \times 10^{23}$	(C) 6×10^{23}	(D) 12×10^{23}

INDIA'S I	NO.1 ONLINE COACHING			PRINCE OF CHEMISTR
16.	The number of molecu (A) 3.5×10^{23}	tles in 4.25g of ammonia (B) 1.5×10^{23}	is approximately: (C) 0.5×10^{23}	(D) 2.5×10^{23}
17.	The total number of properties $(A)1.084 \times 10^{25}$	rotons, electrons and new (B) 6.022×10^{23}	utrons is $12g$ of ${}_{6}^{12}$ C is : (C) 6.022×10^{22}	(D) 18
18.	Weight of a single mol (A) 3.0×10^{-23} g	ecule of water is : (B) 6.02×10^{23} g	(C) 6.02×10^{-23} g	(D) none of these
19.	Number of electrons is $(A) 6.02 \times 10^{23}$	n 1.8 mL of H_2O is: (B) 3.011 × 10 ²³	(C) 0.6022×10^{23}	(D) 60.22×10^{23}
20.	22.4 litre of water vap (A) 18 litre	our at NTP, when conde (B) 1 litre	ensed to water, occupies (C) 1 mL	an approximate volume of a (D) 18 mL
21.	The least number of m (A) 2 g hydrogen	olecules are contained in (B) 8 g oxygen	1: (C) 4 g nitrogen	(D) 16 g CO ₂
22.	Which has the maximu (A) 6 g C	um number of atoms? (B) 1 g H ₂	(C)12 g Mg	(D) 30 g Ca
23.	The number of atoms (A) 6.02×10^{22}	is 3.2 g of oxygen gas ar (B) 6.02×10^{23}	re: (C) 12.04×10^{22}	(D) 12.04×10^{23}
24.	Number of atoms in 5 (A) twice that in 60g c (C) half in 8 g He	58.5g Fe (at. mass 55.8. carbon	5) is: (B) 6.023×10^{22} (D) $558.5 \times 6.023 \times 10^{22}$	10^{23}
25.	How many moles of n (A) 0.02	magnesium phosphate M ₂ (B) 3.125×10^{-2}		25 mole of oxygen atoms? (D) 2.5×10^{-2}
26.		ing pairs do 1 g of each 1 (B) N_2 and C_3O_2	=	molecules? (D) N ₂ O and CO ₂
27.	Number of atoms in 5 (A) Twice that of 70g (C) Both (A) and (B)	60g of Fe (atomic mass N	56g mol ⁻¹) is: (B) Half that of 20g H (D) None of these	
28.	How many moles of el	ectron weigh one kilogra	am:	
	(A) 6.023×10^{23}	(B) $\frac{1}{9.108} \times 10^{31}$	(C) $\frac{6.023}{9.108} \times 10^{54}$	(D) $\frac{1}{9.108 \times 6.023} \times 10^8$
29.	Which has maximum r (A) 24 g of C (12)	number of atoms: (B) 56 g of Fe (56)	(C) 27 g of Al (27)	(D) 108 g Ag (108)
30.	One litre of a gas at S' (A) C_2H_2	ΓP weight 1.16 g it can μ (B) CO	cossible be (C) O ₂	(D) CH ₄
31.	100 mL of PH ₃ on dec (A) 50 mL increase		nosphorus and hydrogen (C) 900 mL decrease	a. The change in volume is (D) Nil.
32.	Number of g of oxyge (A) 20.8	en in 32.2 g Na ₂ SO ₄ .10F (B) 22.4	H ₂ O is (C) 2.24	(D) 2.08

33.	The volume occupied (A) 22.4 L	by 4.4 g of CO ₂ at STP (B) 2.24 L	is (C) 0.224 L	(D) 0.1 L	
34.	The number of water m (A) 6.023×10^{19}	nolecules present in a drop (B) 1.084×10^{18}	p of water (volume 0.002) (C) 4.84×10^{17}	18 mL) at room temperature is (D) 6.023×10^{23}	
35.	The total number of pr (A) 1.5057×10^{24}		carbonate is $(N_0 = 6.02)$ (C) 3.0115×10^{24}	(23×10^{23}) (D) 4.0956×10^{24}	
36.	The incorrect statemen (A) It occupies 2.24 lit	-			
		$\frac{1}{2}$ mole of CO same mole of CO and N 3.01×10^{23} molecules o	2		
37.	The number of water n (A) 18	nolecules in 1 litre of war (B) 18×1000	ter is (C) N _A	(D) 55.55 N _A	
38.	The number of moles of (A) 0.5	of BaCO ₃ which contain (B) 1	1.5 moles of oxygen ato (C) 3	oms is (D) 6.02×10^{23}	
39.	The number of moles of (A) 1 mol	of sodium oxide in 620g (B) 10 moles	of it is (C) 18 moles	(D) 100 moles	
40.	The number of sodium (A) 12×10^{23}	atoms in 2 moles of sod (B) 26×10^{23}	ium ferrocyanide is (C) 34×10^{23}	(D) 48×10^{23}	
41.	molecules			true about their number of	
42.	2 2	(B) $N_{O_2} < N_{H_2}$ 023×10^{23}) of carbon ato	2 2	(D) $N_{O_2} + N_{H_2} = 1$ mole	
72,	(A) 12 grams of ¹² CO ₂ (C) 44 grams of ¹² CO ₂	2	(B) 22.4 litre ¹² CO ₂ in room temperature (D) 12 moles of ¹² CO ₂		
43.	The number of water m (A) 18 molecules of water (C) 18 gram of water	nolecules is maximum in ater	(B) 1.8 gram of water (D) 18 moles of water		
44.	If Avogadro number N_A , is changed from 6.022×10^{23} mol ⁻¹ to 6.022×10^{20} mol ⁻¹ this would change (A) The definition of mass in units of grams (B) The mass of one mole of carbon (C) The ratio of chemical species to each other in a balanced equation (D) The ratio of elements to each other in a compound				
45.	Which of the following (A) CO and CO ₂	pairs of substances illus (B) H ₂ O and D ₂ O	trate the law of multiple of (C) NaCl and NaBr	proportions (D) MgO and Mg(OH) ₂	
46.	The law of definite pro (A) Nitrogen atomic w (C) Nitrogen equivalent	eight is not constant	e to nitrogen oxide beca (B) Nitrogen molecula (D) Oxygen atomic we	r weight is variable	

	_	v	vww.etoosindia.com	Page#4	
58.	A compound contains of the compound is (A) N ₂ O	69.5% oxygen and (B) NO ₂	30.5% nitrogen and its (C) N_2O_4	molecular weight is 92. The formula $ (\mathbf{D}) \mathrm{N_2O_5} $	
57.	•		ydrogen and oxygen. Its rical formula of the con (C) CH ₃ O	s elemental analysis gave C. 38.71 % apound would be (D) CH ₂ O	
56.	The percentage of oxy (A) 40	ygen in NaOH is (B) 60	(C) 8	(D) 10	
55.	If 1 ml of water conta (A) 1.800×10^{22} mole (C) 1.344×10^{18} mole	ecules	o. of molecules in a drop of water is (B) 1.376×10^{26} molecules (D) 4.346×10^{20} molecules		
54.	If N _A is Avogadro's nu (A) 2.4 N _A	umber then number (B) 4.2 N _A	of valence electrons in (C) 1.6 N _A	4.2 g of nitride ions (N^{3-}) (D) 3.2 N_A	
53.	Hydrogen also comb carbon. if carbon and	ines with carbon to oxygen combine tog			
52.		compound C, 3.00 proportion	g nitrogen combines wi (B) Law of multi	npound B, 2.00 g nitrogen combines th 5.11 g oxygen. These results obey tiple proportion of partial pressure	
51.		w of constant prop	ortions is true, then the	ntage composition: Ca = 40%; C = weight of calcium in 4 g of a sample (D) 16 g	
50.	Different proportions (A) Equivalent proportions (C) Constant proportions	tion	ious oxides of nitrogen (B) Multiple pro (D) Conservatio	portion	
49.	Which one of the follo (A) H ₂ O, Na ₂ O	wing paris of compo (B) MgO, Na ₂ O		of multiple proportion (D) SnCl ₂ , SnCl ₄	
48.	•	at of lead from one of ates proportions	oxide was half the weight (B) Law of cons	llic lead by heating in a current of ght of lead obtained from the other tant proportions valent proportions	
	(A) Constant proportion (C) Multiple proportion	ions	(B) Conservatio (D) Reciprocal p		
47.	The perecentage of copper and oxygen in samples of CuO obtained by different methods were for to be the same Thish illustrates the law os			ed by different methods were found	

69.	(A) 10.8	(B) 10.2	(C) 11.2	(D) 10.6 molecule. The mass percentage	
68.	Boron has two stable isotopes, 10 B (relative abundance = 19%) and 11 B (relative abundance = 8 The atomic mass (in amu) that should appear for boron in the periodic table is :				
67.	Three oxides of nitrogen N_2O , NO_2 and N_2O_3 are mixed in a molar ratio of 3:2:1. Find the averamolar mass of gaseous mixture. (A) 50 (B) 25 (C) 90 (D) 75				
66.			weight. The moleculous present in one moleculous (C) 4	ar weight of haemoglobin is cule of haemoglobin is (D) 2	
65.	What weight of SO ₂ can be made by burning sulphur in 5.0 moles of oxygen (A) 640 grams (B) 160 grams (C) 80 grams (D) 320 grams				
64.	What is the % of H_2C (A) 45	O in Fe(CNS) ₃ .3H ₂ O (B) 30	(C) 19	(D) 25	
03.	be (A) 22.4	(B) 44.8	(C) 67.2	(D) 33.6	
63.	(A) Ca _{1/2} Br H. evolved at STP on	(B) CaBr ₂	(C) CaBr	(D) Ca ₂ Br xcess of aqueous NaOH would	
62.	weight of compound	is 200. (Atomic wt. Ca	=40, Br = 80)	and 80% Br (by wt.) if molecular	
61.	The empirical formula compound is: (A) C ₂ H ₄ O ₂		ecular mass 120 is CH_2C (C) $C_3H_6O_3$	O. The molecular formula of the (D) all of these	
60.	The percentage of P_2 (A) 23.48	O_5 in diammonium hydr (B) 46.96	ogen phosphate $(NH_4)_2$ (C) 53.78	HPO ₄ is (D) 71.00	
		es a violet colour with d		mmonia, leaving a solid residue. e copper sulphate. The organic (D) HCOONH ₄	

72.	If the mass of proton is doubled and that of neutron is halved, the molecular weight of CO_2 , co only C^{12} and O^{16} atoms, will				
	(A) not change(C) decrease by 2	25%	(B) increase by 2(D) increase by 5		
73.	perature?	wing will occupy greate		lar conditions of pressure and tem-	
	(A) 6 gm oxygen (C) 5.25 gm nitro	gen	(B) 0.98 gm hydr (D) 1.32 gm heliu	•	
74.	Density of dry air of N_2 by weight in (A) 78%		O ₂ is 1.15 g/L at 740 mm (C) 70.02%	and 300 K. What is % composition (D) 62.75%	
75.	, ,	` ,	· /	the vapour density of the mixture.	
13.	is:	c of H ₂ and CO ₂ gas con	italis 00 mass 70 of CO_2	. the vapour density of the mixture	
	(A) 6.1	(B) 5.4	(C) 2.7	(D) 10.8	
76.	The vapour densi mixture is:			5. The mole fraction of N_2O_4 in the	
	(A) 0.1	(B) 0.2	(C) 0.5	(D) 0.8	
77.	²⁴ Mgand remainir	ng 21 mole % of 25Mg ar	nd ²⁶ Mg. Calculate mole	_	
	(A) 10	(B) 11	(C) 15	(D) 16	
78.		of a gaseous mixture was and 860 K temperators (B) 1.2 g/L		0^{24} molecules of N ₂ and 32 g of O ₂ tm L/mole.K) (D) 12 g/L	
79.		olecular weight, if the ga		a mean molecular weight 40. What io b: a under identical conditions?	
	(A) 40	(B) 48	(C) 62	(D) 72	
80.	Complete combus molecular mass X		ound X gives 2.63 g of 0	CO_2 and 1.28 g of H ² O. The lowest	
	(A) 43 g	(B) 86 g	(C) 129 g	(D) 172 g	
81.	The sulphate of a The atomic weigh		6 of M. This sulphate is	isomorphous with ZnSO ₄ · 7H ₂ O.	
	(A) 40.3	(B) 36.3	(C) 24.3	(D) 11.3	
82.	In an organic comweight. Molecular	•	108 gm mol ⁻¹ C, H and N	N atoms are present in 9:1:3.5 by	
83.		(B) $C_7H_{10}N$ ain compound was foun at is the formula of the C_7		(D) $C_4H_{18}N_3$ line (at. mass 127) and 80 g oxygen	
	(A) IO	(B) I ₂ O	(C) I_5O_3	(D) I_2O_5	

84. An element A is tetravalent and another element B is divalent. The formula of the comp from these elements will be:				he formula of the compound formed		
	$(\mathbf{A})\mathbf{A}_2\mathbf{B}$	(B) AB	(C) AB_2	(D) A2B3		
85.	_	d in making nylon, is 43 cular weight of compour (B) 116		re four oxygen atoms per molecule. (D) 146		
86.	. ,	, ,	,	o give a compound having 75.8% of		
ou.	`	fthe compound is:	(C) X ₂ Y ₂			
87.	produced in this re	eaction will be		sel and exploded. Amount of water		
	(A) 2 mol	(B) 3 mol	(C) 4 mol	(D) 1 mol		
88.		oxygen gas (O_2) measu H_8) measured under the (B) 10L		is needed to burn completely 1L of (D) 6L		
00		, ,	` '	. ,		
89.	(A) 50 mL increase		ease (C) 900 mL dec	drogen. The change in volume is crease (D) Nil.		
90. Calculate the mass of residue obtained on strongly heating $2.76 \text{ g Ag}_2\text{CO}_3$.						
	$Ag_2CO_3 \xrightarrow{\Delta} 2Ag + CO_2 + \frac{1}{2}O_2$					
	(A) 2.16 g	(B) 4.32	(C) 1.08	(D) 2		
91.	How many mole (A) 2 mole	of Zn(FeS ₂) can be mad (B) 3 mole	e from 2 mole zinc, 3 mole (C) 4 mole	mole iron and 5 mole sulphur. (D) 5 mole		
92.	A sample of KClO The Weight of ox	O ₃ on decomposition yie tygen produced,	elded 448 mL of oxyge	en gas at NTP.		
	(A) 0.64 g	(B) 1.64 g	(C) 4 g	(D) 1.4 g		
93.	12 g of alkaline ea	arth metal gives 14.8 g o	f its nitride. Atomic we	eight of metal is -		
	(A) 12	(B) 20	(C) 40	(D) 14.8		
94.	How many moles	of potassium chlorate r	need to be heated to pro	oduce 11.2 litre oxygen at N.T.P.		
	(A) $\frac{1}{2}$ mol	(B) $\frac{1}{3}$ mol	(C) $\frac{1}{4}$ mol	(D) $\frac{2}{3}$ mol		
95.	Equal weight of 'X' (At. wt. = 36) and 'Y' (At. wt. = 24) are reacted to form the compound X_2Y_3 . Then: (A) X is the limiting reagent (B) Y is the limiting reagent (C) No reactant is left over and mass of X_2Y_3 formed is double the mass of 'X' taken (D) none of these					

96.			$358 \text{ g of TiCl}_4 \text{ is reacted}$ wt. Ti = 48, Mg = 24]	with 96	g of Mg	g. Calcula	te % yield of Ti if 32 g of Ti is
		5.38 %	(B) 66.6 %	(C) 10	00 %		(D) 60 %
97.	500 m (A) 0.		olution contains 6.02 × 1 (B) 1.0 M	10 ²² mol (C) 0.		The conce	entration of the solution is (D) 2.0 M
98.	Equal (A) 0.		and NaCl are present in (B) 55.5	n a solut (C) 1.		nce, mol	ality of NaCl solution is : (D) 0.18
99.	Mole : (A) 13		H ₂ O is 0.2. The molality (B) 15.5	of A in 1 (C) 14			(D) 16.8
100.		= 39) is :	ution containing 2.8%(r	mass / vo (C) 0.		olution of	KOH is: (Given atomic mass (D) 1 M
101.	, ,		$\frac{M}{30}$ its molarity for CF in				
	(A) $\frac{M}{90}$	<u>1</u> 0	(B) $\frac{M}{30}$	(C) $\frac{M}{10}$	<u>I</u>	(D) $\frac{M}{5}$	
102.		HCl to obtain 0	that must be added to .25 M solution of HCli (B) 100 ml			250 ml o	f 0.6 M HCl and 750 ml of (D) 300 mℓ
103.	` /	volume of a 0.8	M solution contains 100 (B) 125 mL	` ,	oles of t	he solute'	
104.	Then t	the ratio of the co	oncentration of cation ar	nd anion		tion and 1	IM of 200 ml CaCl ₂ solution.
	(A) 1/		(B) 2	(C) 1.	5		(D) 1
105.	(A) (B) (C) (D)	the following: Column I C ₁₂ H ₂₂ O ₁₁ CH ₃ COOH Ca(OH) ₂ CH ₃ COOC ₂ H (A) R, (B) P,S (6)		Colum (P) (Q) (R) (S)	16 N _A 28 × 1 90 N _A	\ atoms/f N _A atoms/f atoms/f of O-ato	s/mol mol
106.	Match	the following:			Colui	II	
	Column I (A) Gram atom present in one atom			(P)	$2 N_A$		
	(B)	N _A gram atom	contains atom		(Q)	$\frac{1}{N_A}$	
	(C)	No. of protons	s in 1 gm molecule of H	2	(R)	4 N _A	
	(D)	No. of electroatom to conve	ns added to 32 gm O rt it into O ²⁻		(S)	N_A^2	

Oxidation Number & Calculations

	1.	Calculate the O.N.	of all atoms in	following	compounds:
--	----	--------------------	-----------------	-----------	------------

- **(1)** Fe_3O_4
- **(2)** FeO
- $Na_2S_4O_6$ **(3)**
- **(4)** C_2H_5OH

- FeSO₄.(NH₄)₂SO₄.6H₂O **(5)**
- CO_2 **(6)**
- **(7)** FeS₂

- PbS **(8)**
- **(9)** CS_2 HCN (13)
- (10)CrO₅ **HNC (14)**
- **(11)** $(N_2H_5)_2SO_4$ Ba[H₂PO₂]₂ (15)

- (12) N_2O_5 (16) OsO_4
- **(17)** $H_2S_2O_3$
- (18)CH₃SO₃H
- Ba₂XeO₆ **(19)**

- Ba(SCN)₂ (20)
- 2. The oxidation number of Oxygen in Na₂O₂ is:
 - (A) + 1
- **(B)** + 2
- (C) 2
- **(D)** -1
- In FeCr₂O₄, the oxidation numbers of Fe and Cr are: 3.
 - (A) + 2 and + 3
- **(B)** 0 and +2
- (C) + 2 and + 6
- **(D)** + 3 and + 6

- 4. The average oxidation state of Fe in Fe₂O₄ is:
 - (A) 2 and 3
- **(B)** 8/3
- **(C)** 2
- **(D)** 3
- 5. Which of the following are examples of disproportionation reaction:
 - (A) HgO \longrightarrow Hg + O₂

- **(B)** KClO₃ \longrightarrow KCl + O₂
- (C) $KClO_3 \longrightarrow KClO_4 + KCl$
- **(D)** $Cl_2 + OH^- \longrightarrow ClO^- + Cl^- + H_2O$
- 6. The oxidation number of Phosphorus in $Mg_2P_2O_7$ is:
 - (A) + 3
- **(B)** + 2
- (C) + 5
- **(D)** -3
- The oxidation states of Sulphur in the anions SO_3^{2-} , $S_2O_4^{2-}$ and $S_2O_6^{2-}$ follow the order: **(A)** $S_2O_6^{2-} < S_2O_4^{2-} < SO_3^{2-}$ **(B)** $S_2O_4^{2-} < SO_3^{2-} < S_2O_6^{2-}$ 7.
 - (A) $S_2O_6^{2-} < S_2O_4^{2-} < SO_3^{2-}$
- (C) $SO_3^{2-} < S_2O_4^{2-} < S_2O_6^{2-}$
- **(D)** $S_2O_4^2 < S_2O_6^{2-} < SO_3^{2-}$
- 8. Match List-I (Compounds) with List-II (Oxidation states of Nitrogen) and select answer using the codes given below the lists:

List-I		List-II		
(A)	NaN ₃	(1)	+5	
(B)	N,H,	(2)	+2	
(C)	NO	(3)	-1/3	
(D)	N_2O_5	(4)	-1	

- **(A) (B) (C) (D) (D) (C) (A)** 3 2 1 **(B)** 4 3 2 1 2 2 **(D) (C)**
- 9. 1 mole of N₂H₄ loses ten moles of electrons to form a new compound Y. Assuming that all the nitrogen appears in the new compound, what is the oxidation state of nitrogen in Y? (There is no change in the oxidation state of hydrogen).
 - (A) 1
- **(B)** -3
- (C) + 3
- **(D)** + 5

INDIA'S	NO.1 ONLINE COACHING				PRINCE OF CHEMISTRY
10.	MnO_4^{-} \longrightarrow	MnO ₄ ²⁻ MnO ₂ MnO ₂ Mn ₂ O ₃ tion number respe	•	anging to -	(D) 2, 6, 4, 3
11.	Oxidation numbe (A) Zero, since it (B) -1, since it co (C) +1, since it co (D) +1 and -1 sin	contains Cl ₂ ntains Cl ⁻ ontains ClO ⁻	(bleaching powder O- and Cl-	ris)	
12.	Which of the follo (A) $2NaAg(CN)$ (B) $BaO_2 + H_2SO$ (C) $N_2O_5 + H_2O$ (D) $AgNO_3 + KI$	$ \begin{array}{ccc} 2 + Zn & \longrightarrow Na_{2}Z \\ O_{4} & \longrightarrow BaSO_{4} \\ & \longrightarrow 2HNO_{3} \end{array} $	$+ H_2O_2$		
13.	In the coordination (A) +1	on compound, K ₄ (B) +2	$[Ni(CN)_6]$, the oxi (C) -1	dation state of n (D) 0	ickel is
14.	The oxidation sta (A) +2		H ₃) ₄ Cl ₂] ⁺ is - (C) 0	(D) +	1
15.	The oxidation star potassium dichron (A) +6		the final product for (C) +	·	ction between Kl and acidified (D) +2
16.	Which of the follo (A) $Ca(OH)_2 + H$ (B) $NaCl + H_2SO$ (C) $2PCl_5 + H_2SO$ (D) $2HI + H_2SO$	$H_2SO_4 \rightarrow CaSO_4$ $O_4 \rightarrow NaHSO_4$ - $O_4 \rightarrow 2POCl_3$ +	+ HCl $- 2HCl + SO_2Cl_2$	oxidizing behavio	our of H ₂ SO ₄ ?
17.	Amongst the follo (A) $[Fe(CN)_6]^{3-}$ (B) $[CrO_2Cl_2]$ and (C) TiO_2 and Mn (D) $[MnCl_4]^{2-}$ and	and $[Co(CN)_6]^3$ of $[MnO_4]$	ving both the meta	als in their highes	st oxidation state is :
18.	The oxidation nu (A) +3	mber of phospho (B) +2	rus in Ba $(H_2PO_2)_2$		I
19.	The number of ele $NO_3^- + 4H^+ + e^-$ (A) 5		e the following equals is	uation :-	(D) 2

20. Identify the oxidant and the reductant in the following reactions:

(A)
$$KMnO_4 + KCl + H_2SO_4 \longrightarrow MnSO_4 + K_2SO_4 + H_2O + Cl_2$$

(B) FeCl₂ + H₂O₂ + HCl
$$\longrightarrow$$
 FeCl₃ + H₂O

(C)
$$Cu + HNO_3$$
 (dil) $\longrightarrow Cu (NO_3)_2 + H_2O + NO$

(**D**)
$$Na_2HAsO_3 + KBrO_3 + HCl \longrightarrow NaCl + KBr + H_3AsO_4$$

(E)
$$I_2 + Na_2S_2O_3 \longrightarrow Na_2S_4O_6 + NaI$$

21. **(A)** Write balanced net ionic equations for the following reactions in acidic solution:

(i)
$$MnO_4^{-} + C_2O_4^{-2-} + H^+ \longrightarrow Mn^{2+} + CO_2^{-} + H_2O$$

(ii) $S_2O_3^{-2-}(aq) + Cr_2O_7^{-2-}(aq) \longrightarrow S_4O_6^{-2-}(aq) + Cr^{3+}(aq)$

(ii)
$$S_2O_3^{2-}(aq) + Cr_2O_7^{2-}(aq) \longrightarrow S_4O_6^{2-}(aq) + Cr^{3+}(aq)$$

(iii)
$$IO_3^-(aq) + Re(s) \longrightarrow ReO_4^-(aq) + I^-(aq)$$

(iv)
$$Cu + HNO_3 \longrightarrow Cu(NO_3)_2 + NO_2 + H_2O$$

(B) Write balanced net ionic equations for the following reactions in basic solution:

(i)
$$H_2O_2(aq) + Cl_2O_7(aq) \longrightarrow ClO_2(aq) + O_2(g)$$

(ii)
$$Cl_2 + OH^- \longrightarrow Cl^- + ClO^-$$

Which of the following are examples of disproportionation reaction: 22.

(A) HgO
$$\longrightarrow$$
 Hg + O₂

(B)
$$KClO_3 \longrightarrow KCl + O_2$$

(C)
$$KClO_3 \longrightarrow KClO_4 + KCl$$

(**D**)
$$Cl_2 + OH^- \longrightarrow ClO^- + Cl^- + H_2O$$

23. In the reaction $xHI + yHNO_3 \longrightarrow NO + I_2 + H_2O$, upon balancing with whole number coefficients

(A)
$$x = 3$$
, $y = 2$

(B)
$$x= 2, y = 3$$

(B)
$$x = 2, y = 3$$
 (C) $x = 6, y = 2$

(D)
$$x = 6, y = 1$$

For the redox reaction $xP_4 + yHNO_3 \longrightarrow H_3PO_4 + NO_2 + H_2O$, upon balancing with whole 24. number coefficients:

(A)
$$x = 1, y = 5$$

(B)
$$x = 2$$
, $y = 10$

(B)
$$x = 2$$
, $y = 10$ **(C)** $x = 1$, $y = 20$

(D)
$$x = 1, y = 15$$

In the reaction $X^- + XO_3^- + H^+ \longrightarrow X_2 + H_2O$, the molar ratio in which X^- and XO_3^- react is: 25.

26. CN⁻ is oxidised by NO₃⁻ in presence of acid:

a CN⁻ + b NO₃⁻ + c H⁺
$$\longrightarrow$$
 (a + b) NO + a CO₂ + $\frac{c}{2}$ H₂O

What are the whole number values of a, b, c in that order:

In the following reaction: $Cr(OH)_3 + OH^- + IO_3^- \rightarrow CrO_4^{2-} + H_2O + I^-$ 27.

(A) IO_3^- is oxidising agent

- **(B)** Cr(OH)₃ is oxidised
- (C) 6e⁻ are being taken per iodine atom
- **(D)** None of these

For the redox reaction, $MnO_4^7 + C_2O_4^{2-7} + H^+ \rightarrow Mn^{2+} + CO_2 + H_2O$ the correct coefficients of the 28. reactants for the balanced reaction are:

MnO₄
$$C_2O_4^{2-}H^+$$
 (A) 2 5 16

29.	acidic solution	on is:			ne mole ferrous oxalate in
	(A) $2/5$	(B) 3/5	(C) 4/5	(D) 1	
30.	is:	·			alphite ion in acidic solution
	(A) $2/5$	(B) 3/5	(C) 4/5	(D) 1	
31.	The equivale (A) Mn ₂ O ₃	ent mass of MnSO ₄ is h (B) MnO ₂	nalf its molecular ma (C) Mn	ass when it is converged O_4 (D	erted to:) MnO ₄ ²⁻
32.	The oxidatio (A) 0, +1 an	n number of sulphur i d -2 (B) +2, +1	on S_8 , S_2F_2 and H_2S real and -2 (C) 0, $+$		o) -2, +1 and -2
33.	Among the for (A) MnO ₄	ollowing species in whollowing (B) Cr(CN	nich oxidation state of $\binom{3}{6}$ (C) NiF		6 : 0) CrO ₂ Cl ₂
34.	Oxidation nu (A) +2	umber of iron in Na ₂ [1 (B) +3	Fe(CN) ₅ NO ^{\oplus}] is: (C) +8/3	(D) none of	of these
35.	_	solution of 6.3 g of ox red to completely neut (B) 20 mL		solution is:	mL. The volume of 0.1 N
	. ,	. ,	` ,	`	, , , , , , , , , , , , , , , , , , , ,
36.	In basic med $(A) IO_3$	ium I oxidises by Mn (B) I ₂	O ₄ . In this process (C) IO ₄) IO
37.	Determine th (A) Na ⁺ (E) CO ₃ ²⁻	e equivalent weight of t (B) Al ³⁺ (F) SO ₄ ²⁻	(C) NO	`)) Cl ⁻
38.	Determine th	e equivalent weights of (B) K ₂ SO ₄	•	$(PO_4)_2$	
39.	-	chlorine gas at STP v med. What is the equiv	_		5.56 gm of chloride of the
40.	-	nt weight of a metal is weight of the metal?	double that of oxyge Ans- 1.5	n. How many time	s is the weight of its oxide
41.	An oxide ofr (A) 32	netal have 20% oxyger (B) 40	n, the equivalent weig (C) 48	ght of oxide is: (D) 52	
42.	mass of sulph	nur in S_2Cl_2 is:			a SCl ₂ is 16. The equivalent
	(A) 8	(B) 16	(C) 64	(D	9) 32
43.	Equivalent m (A) 68.2	ass of a bivalent metal (B) 103.7	is 32.7. Molecular m (C) 136		is: 0) 166.3

44.	20.0 gm of an acid fur equivalent of the acid v (A) 40 g		₃ O ⁺ ions in its aqueous	s solutions. The value of 1 g (D) 100 g		
45.	In which of the following reaction equivalent mass of H_3PO_4 is $M/2$ (M molecular mass) (A) $H_3PO_4 + NaOH \longrightarrow NaH_2PO_4$ (B) $H_3PO_4 + 2NaOH \longrightarrow Na_2HPO_4$ (C) $H_3PO_4 + NaOH \longrightarrow Na_3PO_4$ (D) None					
46.	The number of molecut (A) 6.02×10^{20}	lles in 100 mL of 0.02 N (B) 6.02×10^{18}	H_2SO_4 is: (C) 6.02×10^{21}	(D) 6.02×10^{22}		
47.	Upon heating a litre of $(N/2)$ HCl solution, 2.675 g of hydrogen chloride is lost and the volume of solution shrinks to 750 mL. What is the normality of the resultant solution? (A) 0.569 N (B) 0.5 N (C) 0.42 N (D) 1.707 N					
48.	An ion is reduced to the ion is: (A) 0.1	e element when it absorb (B) 0.01	os 6×10^{20} electrons. The (C) 0.001	e number of equivalents of the (D) 0.0001		
49.		s of Mg would have to re				
50.	When N_2 is converted (A) 1.67	into NH ₃ , the equivalent (B) 2.67	weight of nitrogen will (C) 3.67	be: (D) 4.67		
51.	$28 \text{ NO}_3^- + 3\text{As}_2\text{S}_3 + 4\text{H}_2\text{O} \longrightarrow 6\text{AsO}_4^{3-} + 28\text{NO} + 9\text{SO}_4^{2-} + 8\text{H}^+.$ What will be the equivalent mass of As_2S_3 in above reaction : (Molecular mass of $\text{As}_2\text{S}_3 = \text{M}$)					
	$(\mathbf{A})\frac{\mathrm{M}}{2}$	(B) $\frac{M}{4}$	(C) $\frac{M}{24}$	(D) $\frac{M}{28}$		
52.	In the following reaction: $3\text{Fe} + 4\text{H}_2\text{O} \longrightarrow \text{Fe}_3\text{O}_4 + 4\text{H}_2$, if the atomic weight of iron is 56, then its equivalent weight will be: (A) 42 (B) 21 (C) 63 (D) 84					
53.	If 25 mL of a H ₂ SO ₄ solution reacts completely with 1.06 g of pure Na ₂ CO ₃ , what is the normality of this acid solution: (A) 1 N (B) 0.5 N (C) 1.8 N (D) 0.8 N					
54.	(A) 1 N (B) 0.5 N (C) 1.8 N (D) 0.8 N In the ionic equation $2K^{+}BrO_{3}^{-} + 12H^{+} + 10e^{-} \longrightarrow Br_{2} + 6H_{2}O + 2K^{+}$, the equivalent weight of KBrO ₃ will be : (A) M/5 (B) M/2 (C) M/6 (D) M/4					
55.		${}_{2}O_{3} + 4Cl_{2} + 5H_{2}O \longrightarrow$ of Na ₂ S ₂ O ₃ will be : (M (B) M/8				

In the reaction

56.

		www.etoosindia.com Page#14					
67.		les of dichloroacetic nium dichloroacetate (B) 0.1	- L		tralize how many moles of ammonia to (D) 0.6		
66.			st these solution	-	of another solution contains 3.2 gm of obtain a neutral solution? (D) 4:15		
65.	The volume solution is: (A) 10 mL	e of 1.5M H ₃ PO ₄ so (B) 30 n		ed to neutralize (C) 20 mL	e exactly 90 mL of a 0.5 M Ba(OH) ₂ $(\mathbf{D}) 60 \text{ mL}$		
64.		0.125 g of pure Na ₂ 0	CO_3 :	will be required (C) 26.3 mL	for complete reaction with a solution (D) 32.6 mL		
03.	acidic mediu	•	(C) $\frac{3}{4}$	idise a mixture	(D) $\frac{5}{3}$		
63.	$(A) \frac{5}{2}$ How many 1	(B) $\frac{2}{5}$		(C) $\frac{3}{5}$	(D) $\frac{5}{3}$ of 1 mole of each FeSO ₄ & FeC ₂ O ₄ in		
62.	_	_			of KMnO ₄ in acidic medium is:		
	(A) $\frac{5}{2}$	(B) $\frac{2}{5}$	(C) $\frac{3}{5}$		(D) $\frac{5}{3}$		
61.	The number of moles of oxalate ions oxidized by one mole of MnO_4^- ion in acidic medium is:						
60.	In the exper		noles of K ₂ Cr ₂ C ation is :		is oxidised by $Cr_2O_7^{2-}$ in acid medium. or 3.36×10^{-3} moles of ABD. The new (D) +n		
59.	oxalate: (A) 25 mL o			oxidize 25 mL of an acid solution of 0.1 M iron (II) (B) 25 mL of 0.2 M KMnO ₄ (D) 15 mL of 0.1 M KMnO ₄			
58.	in acidic med (A) more by	If equal volumes of 0.1 M KMnO ₄ and 0.1 M K in acidic medium, then Fe ²⁺ oxidised will be: (A) more by KMnO ₄ (C) equal in both cases			(B) more by K ₂ Cr ₂ O ₇ (D) cannot be determined.		
57.	The normal (A) 0.1	ity of 0.3 M phosph (B) 0.9	orus acid (H ₃ I	PO ₃) is: (C) 0.3	(D) 0.6		
	(A) 79.75	(B) 159	will be :	(C) 329	(D) None of these		

INDIA'S	NO.1 ONLINE COACHING			PRINCE OF CHEMISTRY			
68.		ts as an oxidising agent electrons transferred in (B) 1, 5, 3, 7		M_{10}^{2-} , M_{10}^{2-} , M_{10}^{2-} , M_{10}^{2-} , and M_{10}^{2-} , [AIEEE 2002] (D) 3, 5, 7, 1			
69.	What will happen if the solution of potassium chromate reacts with excess amount of nitric acid (A) Cr reduces in the oxidation state +3 from CrO_4^{2-} . [AIEEE 2003] (B) Cr oxidises in the oxidation state +7 from CrO_4^{2-} . (C) Cr^{+3} and $Cr_2O_7^{2-}$ will be formed. (D) $Cr_2O_7^{2-}$ and H_2O will be formed.						
70.	Amount of oxalic acid present in a solution can be determined by its titration with KMnO ₄ solution the presence of H ₂ SO ₄ . The titration gives unsatisfactory result when carried out in the presence HCl, because HCl: (A) furnishes H ⁺ ions in addition to those from oxalic acid. (B) reduces permanganate to Mn ²⁺ . (C) oxidises oxalic acid to carbon dioxide and water. (D) gets oxidised by oxalic acid to chlorine.						
71.	29.5 mg of an organic compound containing nitrogen was digested according to Kjeldahl's method and the evolved ammonia was absorbed in 20 mL of 0.1 M HCl solution. The excess of the acid required 15 mL of 0.1 M NaOH solution for complete neutralization. The percentage of nitrogen in the compound is: [AIEEE 2010, 4/144] (A) 59.0 (B) 47.4 (C) 23.7 (D) 29.5						
72.	Consider the following reaction: [JEE Mains-2013] $xMnO_4^- + yC_2O_4^{2-} + zH^+ \rightarrow xMn^{2+} + 2yCO_2 + \frac{z}{2}H_2O$ The values of x, y and z in the reaction are, respectively: (A) 5, 2 and 16 (B) 2, 5 and 8 (C) 2, 5 and 16(D) 5, 2 and 8						
73.	The equivalent material $(A) \operatorname{Mn_2O_3}$	ass of MnSO ₄ is half its i	molecular mass when it (C) MnO ₄ ⁻	is converted to : [JEE 1998, 2] (D) MnO ₄ ²⁻			
74.	-	ion of 6.3 g of oxalic ac completely neutralise 1 (B) 20 mL		oto 250 mL. The volume of 0.1 N [JEE 2001, 1/35] (D) 4 mL			
75.	In basic medium, (A) IO ₃ ⁻	I ⁻ is oxidised by MnO_4^{-1} (B) I_2	. In this process, I ⁻ char (C) IO ₄ ⁻	ges to : [JEE 2004, 3/84] (D) IO ⁻			
76.	The oxidation stat potassium dichron (A) + 4		al product formed by the $(C) + 2$	reaction between KI and acidified [AIEEE 2005] (D) + 3			
77.	Consider a titration of potassium dichromate solution with acidified Mohr's salt solution using diphenylamine as indicator. The number of moles of Mohr's salt required per mole of dichromate is: [JEE 2007, 3/162]						
	(A) 3	(B) 4	(C) 5	(D) 6			

25 mL of household bleach solution was mixed with 30 mL of 0.50 M KI and 10 mL of 4N acetic 78. acid. In the titration of the liberated iodine, 48 mL of 0.25 N Na₂S₂O₃ was used to reach the end point. The molarity of the household bleach solution is: [JEE 2012, 3/136]

(A) 0.48 M

(B) 0.96 M

(C) 0.24 M

(D) 0.024 M

79. Bleaching powder contains a salt of an oxoacid as one of its components. The anhydride of that [JEE 2012, 3/136] oxoacid is

(A) Cl₂O

(B) Cl_2O_7

(C) ClO₂

(D) Cl₂O₆

80. The following equations are balanced atomwise and chargewise.

(i) $Cr_2O_7^{2-} + 8H^+ + 3H_2O_2 \longrightarrow 2Cr^{3+} + 7H_2O + 3O_2$ (ii) $Cr_2O_7^{2-} + 8H^+ + 5H_2O_2 \longrightarrow 2Cr^{3+} + 9H_2O + 4O_2$ (iii) $Cr_2O_7^{2-} + 8H^+ + 7H_2O_2 \longrightarrow 2Cr^{3+} + 11H_2O + 5O_2$

The precise equation/equations representing the oxidation of H₂O₂ is/are:

(A) (i) only

(B) (ii) only

(C) (iii) only

(D) all the three

QUANTUM NUMBERS & FILLING OF ELECTRONS

	(A) $n = 3$		(B	n = 5		(C) $n = 4$	(D) $n = 2$	(E) $n = 4$					
	$\ell = 1$			$\ell = 2$		$\ell = 1$	$\ell = 0$	$\ell = 2$					
	Point out t	he angu	ılar mome	entum of a	ın electro	n in,							
	(A) 4s orb) 3p orbita									
	Which of t	Which of the following sets of quantum numbers are impossible for electrons?											
			C	•		•							
		Set	n	ℓ	m	S							
		(i)	1	0	1	$+\frac{1}{2}$							
		(ii)	3	0	0	$-\frac{1}{2}$							
		(iii)	1	2	2	$+\frac{1}{2}$							
		(iv)	4	3	-3	$+\frac{1}{2}$							
		(v)	5	2	1	$+\frac{1}{2}$ $-\frac{1}{2}$ $+\frac{1}{2}$ $+\frac{1}{2}$ $-\frac{1}{2}$							
		(vi)	3	2	1	0							
	-	,			•								
	Which of t (A) [Ar]4					ation of $Cu^{2+}(Z=2)$ (C) [Ar]4s ¹ 3d ¹⁰)					
Spin magnetic moment of X^{n+} ($Z=26$) is $\sqrt{24}$ B.M. Hence number of unpaired electrons and value of													
	n respectiv	vely are											
(A) 4, 2			(R	12/		(C) 3, 1	$(\mathbf{D}) \cap \mathcal{D}$						
	(I 1) 4 , 2		(D	2, 4		(-)-,	(D) 0, 2						
	Which of t	the follo	owing ion	s has the n	naximum	number of unpaire	d d-electrons?						
		the follo	owing ion		naximum								
	Which of t (A) Zn^{2+} Find the to		owing ion (B) and spin	s has the n) Fe ²⁺ magnetic		number of unpaire	d d-electrons?						
	Which of t (A) Zn ²⁺ Find the to (i) Fe ⁺³	otal spin	owing ion (B) a and spin (ii)	s has the n) Fe ²⁺ magnetic Cu ⁺	moment	number of unpaire (C) Ni ³⁺ of following ion.	d d-electrons?						
	Which of t (A) Zn ²⁺ Find the to	otal spin	owing ion (B) a and spin (ii)	s has the r) Fe ²⁺ magnetic Cu ⁺ n a d ⁷ con	moment	number of unpaire (C) Ni ³⁺ of following ion.	d d-electrons?						
	Which of t (A) Zn ²⁺ Find the to (i) Fe ⁺³ The total s (A) 1	otal spin	owing ion (B) a and spin (ii) ulting from (B)	s has the r) Fe ²⁺ magnetic Cu ⁺ n a d ⁷ con) 2	moment figuration	number of unpaire (C) Ni ³⁺ of following ion. n is: (C) 5/2	d d-electrons? (D) Cu ⁺						
	Which of t (A) Zn ²⁺ Find the to (i) Fe ⁺³ The total s	otal spin spin resu ne electr	owing ion (B) and spin (ii) ulting from (B)	s has the r) Fe ²⁺ magnetic Cu ⁺ n a d ⁷ con) 2	moment figuration	number of unpaire (C) Ni ³⁺ of following ion. n is: (C) 5/2	d d-electrons? (D) Cu ⁺						
	Which oft (A) Zn ²⁺ Find the to (i) Fe ⁺³ The total s (A) 1 Given is th	otal spin spin resu ne electr	owing ion (B) and spin (ii) ulting from (B) ronic confi	s has the range of the second	moment figuration	number of unpaire (C) Ni ³⁺ of following ion. n is: (C) 5/2	d d-electrons? (D) Cu ⁺						
	Which of t (A) Zn ²⁺ Find the to (i) Fe ⁺³ The total s (A) 1 Given is th K	otal spin spin resu ne electr L 8	owing ion (B) and spin (ii) ulting from (B) conic confi	s has the r) Fe ²⁺ magnetic Cu ⁺ n a d ⁷ con) 2 iguration N 2	moment figuration	number of unpaire (C) Ni ³⁺ of following ion. n is: (C) 5/2	d d-electrons? (D) Cu ⁺ (D) 3/2						
	Which of t (A) Zn ²⁺ Find the to (i) Fe ⁺³ The total s (A) 1 Given is th K 2	otal spin spin resu ne electr L 8	owing ion (B) and spin (ii) ulting from (B) conic confi M 11 ectrons p	s has the re) Fe ²⁺ magnetic Cu ⁺ n a d ⁷ con) 2 iguration N 2 resent wit	moment figuration of elements $h \ell = 2 \text{ in } M$	number of unpaire (C) Ni ³⁺ of following ion. n is: (C) 5/2 nt X:	d d-electrons? (D) Cu ⁺ (D) 3/2						
	Which of t (A) Zn ²⁺ Find the to (i) Fe ⁺³ The total s (A) 1 Given is th K	otal spin spin resu ne electr L 8	owing ion (B) and spin (ii) ulting from (B) ronic confi M 11 ectrons p K 2	s has the real properties of the real propert	moment figuration of elements $ h \ell = 2 in $	number of unpaire (C) Ni ³⁺ of following ion. n is: (C) 5/2 nt X:	d d-electrons? (D) Cu ⁺ (D) 3/2						

PRINCE OF CHEMISTRY

11.	_	and state of Cr atom (2), $\ell = 1$ and 2 are, respe		ne numb	ers of	electrons with t	he azimuthal
	(A) 16 and 5	(B) 12 and 5	-	6 and 4		(D) 12 and 4	
12.	The orbital angular $(A) + \frac{1}{2} \frac{h}{2\pi}$	momentum of an electr (B) zero	f an electron in 2s-orbital is: (C) $\frac{h}{2\pi}$			(D) $\sqrt{2} \frac{h}{2\pi}$	
13.	The possible value (A) 1 and 2	of ℓ and m for the last e (B) 2 and + 1		he Cl ⁻ ion and – 1	n are :	(D) 1 and – 1	
14.	be	th n = 3 has only one radi					e electron will
	(A) 0	(B) $\sqrt{6} \frac{h}{2\pi}$	(C) √	$2 \overline{2\pi}$		(D) $3\left(\frac{1}{2\pi}\right)$	
15.	The possible set of n ℓ (A) 2 1 (C) 3 1	equantum no. for the ung m 0 1		ron of ch n 2 3	ℓ	is : m 1 0	
16.	Which of the follow (A) The electronic (B) The magnetic of (C) In silver ato	wing statement(s) is (are configuration of Cr is [aquantum number may hat om, 23 electrons have ber of Ag = 47)) correct? Ar] (3d) ⁵ (4 ve negative	s)¹. (Ato values.	omic nu	umber of Cr = 24)	
17.	(A) Along the x-ax	bability of finding electronis is 45° from the x and y axi	(B) A	(B) Along the y-axis			
18.	3p _y orbital has (A) XY	nodal plane : (B) YZ	(C) Z	X	(D) A	Allofthese	
19.	- · · ·						
20.	According to Schr (A) Particle only (C) Both simultane	odinger model nature of ously	(B) W	ave only	/	es and sometimes	particle
21.	The radial distribu (A) 1	tion curve of 2s sublevel (B) 3	consists of (C) 2	x nodes	, x is:	(D) 0	
22.	d _{z²} orbital has: (A) Two lobe alon (B) A lobe & a ring	g Z axis & a ring in X-Y g along Z axis axis and a ring in Y-Z p	plane	ı.com			Page# 18

23.	 (B) Electron density (C) 2s orbital has one (D) for 2p_z orbital, Y Which of these are income. 	in the XY plane in 3d _{x²-y} in the XY plane in 3d _{z²} of enodal surface Z is the nodal plane. correct statements:	orbital is zero.							
	(A) a & c	(B) b & c	(C) Only b	(D) a, b, d						
24.	Which orbital is non-o	directional (B) p	(C) d	(D) All of These						
25.	For which orbital and direction- (A) d _{x²-y²}	ngular probability distr (B) d ₂ 2	ibution is maximum at $(C) d_{xy}$ $(D) I$	t an angle of 45° to the axial						
26.	If n and ℓ are respect	. , 2	azimuthal quantum nui	mbers, then the expression for						
	(A) $\sum_{\ell=1}^{\ell=n} 2(2\ell+1)$	(B) $\sum_{\ell=1}^{\ell=n-1} 2(2\ell+1)$	(C) $\sum_{\ell=0}^{\ell=n+1} 2(2\ell+1)$	(D) $\sum_{\ell=0}^{\ell=n-1} 2(2\ell+1)$						
27.	(A) Rotation of the el(B) Rotation of the el(C) Magnetic momer	rs + $1/2$ and $-1/2$ for the ectron in clockwise and ectron in anticlockwise at of the electron pointing echanical spin states which	anticlockwise direction and clockwise direction g up and down respectiv	respectively. respectively. ely,						
28.	What are the values of the orbital angular momentum of an electron in the orbitals 1s, 3s, 3d and 2p-									
	(A) $0, 0, \sqrt{6} \hbar, \sqrt{2} \hbar$	(B) 1, 1, $\sqrt{4} \hbar$, $\sqrt{2} \hbar$	(C) $0, 1\sqrt{6}\hbar, \sqrt{3}\hbar$	(D) $0, 0\sqrt{20} h, \sqrt{6}$						
29.	-	filled, the next orbital fille (B) $(n+2)$ p		(D) $(n+2)$ s						
30.	The value of the spin (A) Fe ²⁺	magnetic moment of a p (B) Ni ²⁺	articular ion is 2.83 Boh (C) Mn ²⁺	r magneton. The ion is: (D) Co ³⁺						
31.	Total number of election (A) 8	trons having $n + \ell = 3$ in (B) 10	Cr (24) atom in its gro (C) 12	und state is : (D) 6						
32.	The correct set of fou	r quantum numbers for	the valence electron of I	Rubidium ($Z = 37$) is:						
	(A) $n = 5$, $\ell = 0$, $m = 0$	$=0, s=+\frac{1}{2}$	(B) $n = 5, \ell = 1, m =$	$=0, s=+\frac{1}{2}$						
	(C) $n = 5$, $\ell = 1$, $m = 1$	$=1, s=+\frac{1}{2}$	(D) $n = 6, \ell = 0, m = 0$	$=0, s=+\frac{1}{2}$						
33.	I Orbital angu quantum nun	nber as lowest for this pri	nciple quantum number	having value of the azimuthal is $\frac{h}{\pi}$. The possible atomic number must						
	00 12 01 13.		otoosindia aam	D #40						

	IV Spin magnetic	lectrons for the atom 2: moment of inert gas is and III only (C) I	0	one of these	
34.	(B) Probability of find(C) Probability of find	ing the electron along x ing the electron along y	-axis is zero. mum along x and y-axis.		
35.	The maximum number number, $m_s = -1/2$, is	of electrons that can h	ave principal quantum nu	mber, $n=3$,	and spin quantum [JEE 2011]
36.	Which of the following (A) Mn ⁺²	gions has the maximum (B) Fe ⁺²	magnetic moment? (C) Ti ⁺²	(D) Cr ⁺² .	[AIEEE 2002]
37.	The numbers of d-ele (A) 3	ctrons retained in Fe ²⁺ (B) 4	(atomic number Fe = 26 (C) 5	6) ion is (D) 6	[AIEEE 2003]
38.		omentum for an electre	on revolving in an orbit i	s given by $\sqrt{\ }$	$\frac{h}{\ell(\ell+1)} \frac{h}{2\pi}. \text{ This}$ [AIEEE 2003]
	$(\mathbf{A}) + \frac{1}{2} \cdot \frac{h}{2\pi}$	(B) Zero	(C) $\frac{h}{2\pi}$	(D) $\sqrt{2}$.	<u>h</u> 2π
39.	Which of the followin (A) n = 4, 1 = 3, m = (C) n = 4, 1 = 3, m =	+4, s = $+1/2$	mbers is correct for an ele (B) n = 4, 1 = 4, m = -4 (D) n = 3, l=2, m = -2	-4, s = $-1/2$	
40.	Consider the ground st numbers, $\ell = 1$ and 2 (A) 12 and 4		(C) 16 and 4	ns with the az	[AIEEE 2004]
41.	(A) 3s, 3p and 3d orb(B) 3s and 3p orbitals(C) 3p orbital is lower	ig statements in relation itals all have the same are of lower energy than 3d orbit in energy than 3p orbits.	han 3d orbital oital	is correct ?	[AIEEE 2005]
12.	In a multi-electron atom have the same energy (i) $n = 1$, $l = 0$, $m = 0$ (iii) $n = 2$, $l = 1$, $m = 0$ (v) $n = 3$, $l = 2$, $m = 0$	m, which of the following in the absence of mag 1 0	ng orbitals described by the netic and electric field? (ii) $n = 2$, $l = 0$, $m = 0$ (iv) $n = 3$, $l = 2$, $m = 0$	0	[AIEEE 2005]
43.	(A) (iv) and (v) The 'spin-only' magne	(B) (iii) and (iv)		(D) (i) and $3i^{2+}$ in aqueou	•
TJ.	be (Atomic number:	Ni = 28)	Bohr magneton (μ_{β})] of N		[AIEEE 2006]
	(A) 2.84	(B) 4.90	(C) 0	(D) 1.73	

INDIA'S	NO.1 ONLINE	COACHIN	IG			PRINCE OF CHEMISTRY							
44.	Whic	hofth	e followi	ng set o	f quantum nui	mbers repr	esents	the high	est energ	gyofar	atom?		
	(A) n	n = 3, 1	=0, m	= 0, s =	$=+\frac{1}{2}$	(B) n	= 3, 1	= 1, m	=1, s=	$+\frac{1}{2}$ [AIEEE 2	2008]	
	(C) n	1 = 3, 1	= 2, m	= 1, s =	$=+\frac{1}{2}$	(D) n	(D) $n = 4$, $l = 0$, $m = 0$, $s = +\frac{1}{2}$						
45.		_			m in the increa	asing order	ofthe	ir energy	I				
	(A) 2 $(C) 2$	$2s$, $4d_{xy}$ 2s < 3s 2s < 3s	$3s, 4p_{s}, 3s, 4p_{s}, = 3p_{x} = 3p$	$3p_y$, 48 $3p_y$ < 48 $3p_y$ < 48	$S = 4p_z = 4d_{xy}$ $S = 4p_z = 4d_{xy}$	(B) 2 (D) 2	s < 3s s < 3s	$<3p_x = <3p_x =$	$3p_{y} < 4s$ $3p_{y} < 4s$	$s = 4p_z$ $s < 4p_z$	$= 4d_{xy} < 4d_{xy}$		
46.	Whic	hofthe	e followin	ng orbita	als is closer to	the nucleus	?						
	(A) 5 <i>f</i> (B) 6d					(C) 7:	S		(D) 7	'p			
47.	(A) (1	$r_{\text{max}})_{3d} >$	maximur $(r_{max})_{3p}$ $(r_{max})_{3p}$	$> (r_{\text{max}})_{3s}$		(B) (r	$\left(\frac{1}{1}\right)_{3d}$		$> (r_{\text{max}})_{3p}$				
48.		correct d > 3p		_	ting power of $3s > 3p > 3d$	f 3s, 3p, 3d electrons is: (C) $3s > 3d > 3p$ (D) $3d > 3s$					>3p		
49.		correct $f > 6s$			mber of node $6s > 5d > 4f$				(D) 5	5d > 4f	> 6s		
50.	spin n	nultipli	iary quar cities are	:	mber of a sube			he maxin			ım values	ofthe	
	(A) 9	9, 1		(B) 1	10, 1	(C) 1	(C) 10, 2			(D) 4, –4			
51.		h two d lxy, d _{z2}			ed along the a lxy, pz		t betwo yz, px	een the a		tis ? (D) pz, d _{x²-y²}			
52.			_		s the electrons	s distribute	thems	elves to	retain sir	nilar sp	in as far a	s pos-	
	(A) P		atement in xclusion Rule				(B) Aufbau principle (C) Slater rule						
53.	(A) H	Iund's 1	rule		could explain	(B) A	ufbau'	s princip	le		n N-atom	?	
54.			-	-	principle ts of quantum				principle		t enerov?		
	101 (n	l	m	S	1141110015, 0	n	l	m	S	ciioigj .		
	(A) (C)	3 4	2	1 -1	-1/2 + 1/2	(B) (D)	4 5	3 0	-1	+1/. $-1/.$			
55.	(A) n (B) l; (C) n	gives i gives th gives	dea of the ne shape the energ	e size of of an or gy of the	nents concernifan orbital bital electron in the bin of the elect	e orbital	-	um num	bers is fai	lse?			

Maximum number of electrons in a subshell is given by

56.

	(A) $(2l+1)$	+1)	(C) ($(2l+1)^2$		(D) 2	(D) $2(2l+1)^2$				
57.	In any subshell, the maximum number of electrons having same value of spin quantum number is:										
	$(A) \sqrt{l(l+1)}$	(B) $l + 2$	(B) $l + 2$		(C) $2l + 1$		(D) 4	(D) $4l + 2$			
58.	The orbital angu	lar momentum o	f 3p electro	on is :							
	(A) $\sqrt{3}$ h	(B) $\sqrt{6}$ h		(C) z	ero		(D)	$\sqrt{2} \frac{h}{2\pi}$			
59.	The atomic orbit (A) Hund's rule		vely filled i au principl			_		principle is le-Broglie			
60.	Which of the foll	owing elements	ted by the $2p$	electror	ic conf	iguratior	1?				
	(A) Nitrogen	(B) Fluor	rine	(C) (Oxygen		(D) 1	Neon			
61.	The ratio of mag (A) $\sqrt{5}$: $\sqrt{7}$	gnetic moments of (B) $\sqrt{35}$:	` '	and Co (II (C) 7			(D) .	$\sqrt{24} : \sqrt{15}$			
62.	A compound of pound is present (A) 1	3 BM.	If the var (D) 4		in the com-						
63.	The probability of (A) along X- and (C) along Y - and	d Y - axis	ns in d _{xy} or	(B) a	oital is: (B) along X - and Z -axis (D) at an angle of 45° with X - axis						
64.	The correct order (A) s > p > d >	_			d, f sub-shells is: (C) $d > p > s > f$			(D) $s > f > d > p$			
65.	Read the followi (I) If the radius o (II) For s-orbital (A) only I is corn	f the first Bohr of electron, the orb	rbit of hyd	rogen ator r moment	m is r, the um is ze	en radiu ro		orbit of Li ²⁺			
66.		m 0 0 + 2 2 - er of decreasing e 2 > e1	s -1/2 -1/2	e2 e4 hese elect (B) e	n 4 3	$ \begin{array}{c} 1 \\ 0 \\ 1 \end{array} $ $ > e4 > e4$		s 1/2 1/2			
67.	(A) Greater than	The energy of an electron of 2p _y orbital is (A) Greater than 2p _x orbital (C) Equal to 2s orbital					 (B) Less than 2p_z orbital (D) Same as that of 2p_x and 2p_z orbital 				

68.	The number of u (A) 0	npaired valence electrons (B) 2	in an atom of phos (C) 3	sphorus is : (D) 4						
69.	(A) Principal qua	number defines the orient antum number (n) antum number (m ₁)	(B) Angular	n of orbital in the space around the nucleus? (B) Angular momentum quantum number (D) Spin quantum number (m _s)						
70.	What is the maxim (A) 2	mum number of electrons in (B) 5	n an atom that can h (C) 6	nave the quantum numbers n= 3 and (D) 10	dl=2?					
71.		owing statements about a could be in the third shell		= + 2 incorrect? tron is in a non-spherical orbital						
	(C) The electron may have $m_s = \frac{1}{2}$ (D) The electron is not in a d-orbital									
72.	Which of the foll	owing set of quantum nur	nbers is impossible	for an electron?						
	(A) $n = 1, l = 0, 1$	$\mathbf{m}_{\mathrm{s}} = + \frac{1}{2}$	(B) $n = 0, l = 0$	$=7, m_1 = -6, m_s = -\frac{1}{2}$						
	(C) $n = 2, l = 1,$	$m_l = 0, m_s = +\frac{1}{2}$	(D) $n = 3, l$	$=2, m_l=-3, m_s=+\frac{1}{2}$						
73.74.	In a 3d subshell, all the five orbitals are degenerate. What does it mean? (A) All the orbitals have the same orientation. (B) All the orbitals have the same shape. (C) All the orbitals have the same energy. (D) All the orbitals are unoccupied. Which of the following subshell can accommodate as many as 10 electrons?									
, 1.	(A) 2d	(B) 3d	(C) 3d _{xv}	(D) $3d_{z^2}$						
75.	Which of the following statements is correct for an electron having azimuthal quantum number $l = 2$? (A) The electron may be in the lowest energy shell. (B) The electron is in a spherical orbital.									
	(C) the electron must have spin $m_s = +\frac{1}{2}$									
	(D) The electron may have a magnetic quantum number $= -1$									
76.	For $4p_y$ orbital: nodal plane = (A) 1, 0	There are .and azimuthal quantum n (B) 0, 1	number <i>l</i> = (C) 1, 1	(D) 2, 1						
77.	(A) Number of a	owing statement is correct angular nodes = $n - l - 1$ er of nodes = $n - 1$		of radial nodes = l						
78.	(I) if electron has (II) In 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	order of initials T (True) of szero magnetic number, the orbital diagram, Paulel can explain spectrum of can accommodate maximum (B) FFTF	nen it must be pres di's exclusion prin f the hydrogen ato	ent in s-orbital. ciple is violated. m.						

79.	"No two electrons in This principle was en	n an atom can have the sa nunciated by	ame set of four quantur	n numbers''.					
	(A) heisenberg	(B) Pauli	(C) Maxwell	(D) De-Broglie					
80.	The orbital diagram (A)	in which both the Pauli's (B) \[\frac{\frac{1}{1}}{1} \] \[\frac{1}{1} \]	exclusion principle and (C) \[\frac{1}{1} \]	Hund's rule are violated is: (D) \[\frac{1}{1} \] \[\frac{1}{1} \]					
81.	It is not possible to e (A) B	xplain the Pauli's exclusi (B) Be	ion principle with the ho	elp of this atom. (D) H					
82.		ses after f subshell is callender of orbitals in the she (B) 16		ell first occur? (D) 36					
83.	If hydrogen atom in ground state is passed through an inhomogeneous magnetic field, the beam splits in two parts. This interaction with magnetic field shows: (A) existence of ortho and para hydrogen (B) existence of magnetic moment associated with orbital motion of electron (C) existence of spin magnetic moment of electron (D) existence of magnetic moment of proton								
84.	In iron atom, how n (A) 2	nany electrons atom hav (B) 4	e n = 3 and l = 2? (C) 6	(D) 8					
85.	(A) the most probab(B) the most probab	aving different values of le distance increases wit le distance decrease wit le distance remains cons	h increase in n h increase in n						
86.	_	set of quantum numbers	_						
	(A) 2, 0, 0, $+\frac{1}{2}$	(B) 2, 1, $-1 + \frac{1}{2}$	(C) 3, 1, 1, $\pm \frac{1}{2}$	(D) 3, 0, $\pm \frac{1}{2}$					
87.	The aufbau principle (A) n has a lower va (C) $(n+l)$ value is m		con will enter an orbital (B) l has a lower va (D) (n+l) value is r	llue					
88.	The orbital diagram (A) ↑↑ ↑ ↑ ↑	in which aufbau principle (B)	e is violated, is:	(D) [] [] []					
89.	Consider the following mark the incorrect of	= =	rations (remaining inner	orbitals are completely filled) and					
	I. $\frac{3s}{1}$ $\frac{3p}{1}$	II. $\frac{3s}{\uparrow\downarrow}$	$\begin{array}{c} 3p \\ \hline \uparrow \\ \hline \end{array} \qquad \text{III.} \begin{array}{c} 3s \\ \hline \downarrow \\ \hline \end{array}$	3d 1 1 1 1 1					
	IV. $\frac{4s}{\uparrow}$ $\frac{3d}{\uparrow}$	$ \uparrow \uparrow \uparrow $ V. $ \uparrow \uparrow \uparrow $	$\frac{4P}{\uparrow\uparrow\uparrow}$ VI. $\frac{4s}{\uparrow\downarrow}$	3d					

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

(A) 9

0.1 ONLINE COACHING		PRINCE OF CHEMISTRY
 (A) Stability order: II > I > IV > III (B) Order of spin multiplicity: IV > III = I > II (C) V does not violate all the three rules of election of VI represents A and A⁺ when kept near and A⁺ 	etronic configuration	gnetic substance.
Which of the following set of quantum number	belong to highest energ	y?
(A) $n = 4$, $l = 0$, $m = 0$, $s = +\frac{1}{2}$	(B) $n = 2, l = 0, m = 0$	$0, s = +\frac{1}{2}$
(C) $n = 3$, $l = 1$, $m = 1$, $s = +\frac{1}{2}$	(D) $n = 3, l = 2, m =$	$1, s = +\frac{1}{2}$
A subshell $n = 5$, $l = 3$ can accommodate: (A) 10 electrons (B) 14 electrons	(C) 18 electrons	(D) None of these
In H-atom energy of electron is determined by (A) only n (C) n, <i>l</i> , m	(B) n, <i>l</i> (D) all the four quantu	m numbers
How many electron(s) in an atom can have n (A) 1 (B) 2	(0) 5	(D) 10
How many electron(s) in an atom can have n (A) 1 (B) 2 (B) 2	=4, l=2, m=-2 and $=$ (C) $=$ 5	$s = +\frac{1}{2}?$ (D) 10
Which orbital has only positive values of wave (A) 1s (B) 2s	function at all distances (C) 2p	from the nucleus: (D) 3d
The set of quantum numbers, $n = 3$, $l = 2$, $m_l = 4$ (A) describes an electron in a 2s orbital (C) describes an electron in a 3p orbital	(B) is not allowed	he five orbitals of same energy
The set of quantum numbers, $n = 2$, $l = 2$, $m_l = 1$ (A) describes an electron in a 2s orbital (C) describes an electron in a 2p orbital		ne five orbitals of a similar type
Consider the argon atom. For how many elect (A) 1 (B) 6	trons does this atom hav	we $m_l = 1$? (D) 2
An orbital is occupied by an electron with the q type are found in a multi-electron atom? (A) 4p, 3 (B) 4s, 1 Which of the following sets of quantum numbe from a potassium atom in its ground state?	(C) 4d, 5	(D) 3p, 6
(A) $n = 3$, $l = 1$, $m_l = 1$, $m_s = -\frac{1}{2}$	(B) $n = 2, l = 1, m_l =$	$0, m_s = -\frac{1}{2}$
(C) $n = 4$, $l = 0$, $m_l = 1$, $m_s = +\frac{1}{2}$	(D) $n = 4$, $l = 0$, $m_l =$	$0, m_s = +\frac{1}{2}$
The subshell that arises after f is called the g sub	shell. How many electro	on may occupy the g subshell?

(B) 7

(D) 18

Page# 25

(C) 5

102.	Which of the following (A) [Kr] 4s ¹ 3d ⁶	g electron configurations (B) [Kr] 4s ¹ 3d ⁷	s is correct for iron, (ator (C) [Ar] 4s ¹ 3d ⁶	mic number 26) ? (D) [Kr] 4s ² 3d ⁶					
103.	Which of the following (A) [Ar] 3d ¹⁰ 4s ¹	g electron configurations (B) [Kr] 3d ⁹ 4s ¹	s is correct for copper, (a (C) [Ar] 3d ⁹ 4s ²	atomic number 26)? (D) [Kr] 3d ¹⁰ 4s ¹					
104.		ong to d-block	are abnormal and exactly fully filled su	b shells					
105.	Which of the following (A) 1s ¹ 2s ¹		ted states of atoms is imp (C) [Ne] 3s ² 3p ⁶ 4s ¹ 3d						
106.	Among the following (A) 1s ¹ 2s ¹		d states of atoms which is (C) 1s ² 2s ² 2p ⁴ 3s ²	s impossible ? (D) [Ne] 3s ² 3p ⁶ 4s ³ 3d ²					
107.	Among the following tronic configuration is (A) Ti ²⁺ , V ³⁺ , Cr ⁴⁺ , M (C) Ti ⁺ , V ⁴⁺ , Cr ⁶⁺ , Mn	: n ⁵⁺	al ions, the one where all metal ions have same 3d elec (B) Ti ³⁺ , V ²⁺ , Cr ³⁺ , Mn ⁴⁺ (D) Ti ⁴⁺ , V ³⁺ , Cr ²⁺ , Mn ³⁺						
108.	Which of the following (A) Mn	g has the maximum num (B) Ti	ber of unpaired electrons (C) V	s? (D) Al					
109.	Which of the following sets of quantum number is/are not permitted?								
	(A) $n = 3$, $l = 3$, $m = 3$	$+1, s = +\frac{1}{2}$	(B) $n = 3, l = 2, m = 4$	$+2, s = -\frac{1}{2}$					
	(C) $n = 3, l = 1, m = 1$	$+2, s = -\frac{1}{2}$	(D) $n = 3, l = 0, m =$	$0, s = +\frac{1}{2}$					
110.			gy in a many electron ato (C) 4s						
111.	Which of the following (A) 3f	g is/are possible? (B) 4d	(C) 2d	(D) 3p					
112.	If the value of $(n+1)$ is (A) 6	s more than 3 and less the (B) 9	an 6, then what will be the	ne possible number of orbitals? (D) 13					
113.	in	`,	G 1	number is –1. It can be present					
	(A) s orbital	(B) d orbital	(C) p orbitla	$(\mathbf{D})f$ orbital					
114.	Which sets of quantum (A) $n = 2$, $l = 1$, $m = 0$ (C) $n = 3$, $l = 2$, $m = 0$		with the theory? (B) $n = 4$, $l = 3$, $m = 4$ (D) $n = 4$, $l = 3$, $m = 4$						

- Which of the following statements are incorrect for an electron that has n = 4 and m = -2? 115.
 - (A) The electron may be in a d-orbital
 - **(B)** The electron is in the fourth principal electronic shell
 - (C) The electron may be in a p-orbital
 - (D) None of these
- 116. Which of the following sets of quantum number is allowable:

(A)
$$n = 2$$
, $l = 1$, $m = 0$, $s = +1/2$

(B)
$$n = 2$$
, $l = 2$, $m = -1$, $s = -1/2$

(C)
$$n = 2$$
, $l = -2$, $m = 1$, $s = +1/2$

(D)
$$n = 2$$
, $l = 1$, $m = 0$, $s = 0$

- 117. Which shape is associated with the orbital designated by n = 2; l = 1?
 - (A) Spherical
- (B) Tetrahedral
- (C) Dumb-bell
- (D) Pyramidal
- 118. Which out of the following configurations is incorrect?
 - (A) $1s^2 2s^2 2p_x^2 2p_y^2 2p_z^0$ (B) $1s^2 2s^2 2p_y^1 2p_y^1$

- (C) $1s^2 2s^2 2p_x^1 2p_y^1 2p_z^1$ (D) $1s^2 2s^2 2p^6 3s^2 3p^6 3d^5 4s^1$
- 119. Which of the following set of quantum numbers is an impossible arrangement?

(A)
$$n = 3$$
, $m = -2$, $s = +1/2$

(B)
$$n = 4$$
, $m = 3$, $s = +1/2$

(C)
$$n = 5$$
, $m = 2$, $s = -1/2$

(D)
$$n = 3$$
, $m = -3$, $s = -1/2$

120. Which of the following sets of quantum number is not possible?

(A)
$$n = 4$$
, $l = 1$, $m = 0$, $s = +1/2$

(B)
$$n = 4$$
, $l = 3$, $m = -3$, $s = -1/2$

(C)
$$n = 4$$
, $l = -1$, $m = +2$, $s = -1/2$

(D)
$$n = 4$$
, $l = 1$, $m = 0$, $s = -1/2$

3.6 1	•
Mole	Concept

1.	D	2.	C	3.	Α	4.	В	5.	Α	6.	В	7.	C
8.	В	9.	В	10.	A	11.	В	12.	A	13.	C	14.	D
15.	A	16.	В	17.	A	18.	A	19.	A	20.	D	21.	D
22.	В	23.	C	24.	A	25.	В	26.	D	27.	C	28.	D
29.	A	30.	A	31.	Α	32.	В	33.	В	34.	A	35.	C
36.	A	37.	D	38.	Α	39.	В	40.	D	41.	C	42.	C
43.	D	44.	В	45.	A	46.	C	47.	A	48.	C	49.	D
50.	В	51.	C	52.	В	53.	Α	5 4.	A	55.	C	56.	A
57.	C	58.	C	59.	E	60.	C	61.	В	62.	В	63.	В
64.	C	65.	D	66.	C	67.	A	68.	A	69.	D	70.	В
71.	В	72.	В	73.	В	74.	C	<i>75.</i>	C	76.	В	77.	A
78.	В	79.	D	80.	A	81.	C	82.	C	83.	D	84.	C
85.	D	86.	D	87.	C	88.	Α	89.	A	90.	A	91.	A
92.	A	93.	C	94.	В	95.	C	96.	A	97.	C	98.	В
99.	A	100.	В	101.	C	102.	C	103.	В	104.	D		
105	٨、	$(R) R_{-}$	\ (D	\mathbf{c}	σ	(0.9)							

105. $A \rightarrow (R), B \rightarrow (P, S), C \rightarrow (S), D \rightarrow (Q, S)$

106.
$$A \rightarrow (Q), B \rightarrow (S), C \rightarrow (P), D \rightarrow (R)$$

Oxidation Number & its Calculation

2.	D	3.	Α	4.	В	5.	D	6.	C	7.	В	8.	Α
9.	C	10.	C	11.	D	12.	A	13.	В	14.	В	15.	C
16.	D	17.	В	18.	C	19.	C						

```
Oxidant
20.
                             Reductant
         KMnO<sub>4</sub>
                                       KC1
A
                                       FeCl,
B
         H,O,
\mathbf{C}
         HNO,
         KBrO<sub>3</sub>
D
                                       Na, HAsO,
\mathbf{E}
         I_2
                                       Na,S,O,
```

(i)
$$2MnO_4^- + 5C_2O_4^{2-} + 16H^+ \longrightarrow 2Mn^{2+} + 10CO_2 + 8H_2O$$

(ii) $6S_2O_3^{2-}(aq) + Cr_2O_7^{2-}(aq) + 14H^+ \longrightarrow 3S_4O_6^{2-}(aq) + 2Cr^{3+}(aq) + 7H_2O$
(iii) $7IO_3^-(aq) + 6Re(s) + 3H_2O \longrightarrow 6ReO_4^-(aq) + 7I^-(aq) + 6H^+$
(iv) $Cu + 4HNO_3 \longrightarrow Cu(NO_3)_2 + 2NO_2 + 2H_2O$

(i)
$$4H_2O_2(aq) + Cl_2O_7(aq) + 2OH^- \longrightarrow 2ClO_2^-(aq) + 4O_2(g) + 5H_2O$$

(ii) $Cl_2 + 2OH^- \longrightarrow Cl^- + ClO^- + H_2O$

36. A

37. (A) 23; (B)
$$E = 9$$
; (C) $E = 30$; (D) $E = \frac{35.5}{1}$; (E) $E = 30$; (G) $E = 31.67$

PRINCE OF CHEMISTRY

38.	(A) $E = 58.5$			(B) E	(B) $E = 87$			(C) $E = 51.67$							
39.	20.1	40.	1.5	41.	В	42.	D	43.	C	44.	A	45.	В		
46.	Α	47.	A	48.	C	49.	C	50.	D	51.	D	52.	В		
53.	D	54.	A	55.	В	56.	В	57.	D	58.	В	59.	D		
60.	В	61.	A	62.	D	63.	A	64.	A	65.	C	66.	D		
67.	В	68.	C	69.	D	70.	В	71.	C	72.	C	73.	В		
74.	A	<i>7</i> 5.	A	76.	D	77.	D	78.	C	79.	A	80.	Α		

Quantum Numbers & Filling of electrons

1.	3p, 5d, 4p, 2s, 4d			2.	(A) 0 (B) $\frac{h}{\sqrt{2\pi}}$		$\frac{h}{2\pi}$	(C) $\frac{2h}{\pi}$		3.	(i), (iii) and (vi)		
4.	A	5.	D	6.	A	7.	В	8.	(i) (ii)	9.	D	10.	A
11.	В	12.	В	13.	D	14.	C	15.	C	16.	ABC	17.	C
18.	C	19.	C	20.	C	21.	A	22.	A	23.	A	24.	A
25.	C	26.	D	27.	D	28.	A	29.	A	30.	В	31.	A
32.	A	33.	A	34.	C	35.	9	36.	A	37.	D	38.	В
39.	C	40.	В	41.	A	42.	A	43.	A	44.	C	45.	A
46.	C	47.	C	48.	В	49.		50.	C	51.	D	52.	C
53.	A	54.	В	55.	C	56.	В	57.	C	58.	D	59.	В
60.	D	61.	В	62.	D	63.	D	64.	A	65.	В	66.	C
67.	D	68.	C	69.	C	70.	D	71.	D	72.	D	73.	C
74.	В	75.	D	76.	C	77.	C	78.	В	79.	В	80.	A
81.	D	82.	C	83.	C	84.	C	85.	A	86.	C	87.	D
88.	В	89.	C	90.	D	91.	В	92.	A	93.	D	94.	A
95.	A	96.	D	97.	D	98.	C	99.	A	100.	D	101.	D
102.	C	103.	A	104.	A	105.	D	106.	D	107.	A	108.	A
109.	A	110.	A	111.	AC	112.	D	113.	BCD	114 .	D	115.	C
116.	A	117.	C	118.	A	119.	D	120.	C				