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CHAPTER

Simple Harmonic Motion

PERIODIC MOTION

When a body or a moving particle repeats its motion along
a definite path after regular intervals of time, its motion is
said to be periodic motion and the interval of time is called
time period (7). The path of periodic motion may be linear,
circular, elliptical or any other curve; for example, rotation
of the earth around the sun.

Oscillatory Motion

To and fro type of motion is called oscillatory motion. A
particle has oscillatory motion when it moves about stable
equilibrium position. It need not be periodic and need not
have fixed extreme positions.

The oscillatory motions in which energy is conserved
are also periodic, for example, motion of pendulum of a
wall clock.

The force/torque (directed towards equilibrium point)
acting in oscillatory motion is called restoring force/torque.

Damped oscillations are those in which energy consumed

due to some resistive forces and hence total mechanical
energy decreases and after some time oscillation will stop.:

Oscillatory Equation

Consider a particle free to move on the x-axis that is being
acted upon by a force given by

The above equation is called oscillatory equation. Here, & is
a positive constant and x is the displacement from the mean
position. ,

Now, the following cases are possible depending on
the value of .

1. Ifnisaneven integer (0,2,4,...), force is always along
the negative x-axis whether x is positive or negative.

Hence, the motion of the particle is not oscillatory. If
the particle is released from any position on the x-axis
(except x = 0), a force in the negative direction of
x-axis acts on it and it moves rectilinearly along the
negative x-axis.

2. If nis an odd integer (1, 3, 5, ...), force is along the
negative x-axis for x > 0 and along the positive x-axis
for x < 0 and zero for x = 0. Thus, the particle will
oscillate about the stable equilibrium position x = 0.
The force in this case is called the restoring force.

Ifn =1, 1ie., F = —kx, the motion is said to be SHM
(simple harmonic motion).

If the restoring force/torque acting on the body
in oscillatory motion is directly proportional to the
displacement of the body/particle with reference to the
mean position and is always directed towards equilibrium
position, then the motion is called simple harmonic motion
(SHM). 1t is the simplest form of oscillatory motion.

TYPES OF SHM
near SHM

A particle is said to be in linear simple harmonic motion
when it moves to and fro about an equilibrium point, along
a straight line. In Fig. 1.1, 4 and B are extreme positions
and M is the mean position, so AM = MB = amplitude.

A i

\)‘éllar SHM

A body/particle is said to be in angular simple harmonic
motion when it is free to rotate about a given axis and
executes angular oscillations.

B

Figure 1.1
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ANALYSIS OF MOTION IN LINEAR SHM

When the particle is moved away from the mean position or
equilibrium position and released, a force (—kx) comes into
play to pull it back towards the mean position. By the time
it attains the mean position, it has picked up some kinetic
energy and so it overshoots, stopping somewhere on the other
side and is again pulled back towards the mean position.

It is necessary to study the change in speed and
acceleration of a particle during SHM. Let us consider a
particle whose positionisx =0 at ¢ = 0 and v = v, (Fig. 1.2).
Then we divide the motion of the particle in one time period
into four parts:

. Extreme . Mean .Extreme
| position | position ! position
| vi= v,
| AT ~\B
jv=20 lv=0
¢ ) ‘ ;
i > ' !
—
i Amplitude |
x=0"t=0 !
b X
Figure 1.2

(A) fromAtoB
(C) fromAtoC

(B) from Bto A
(D) from Cto A

Note

As shown in Fig. 1.2, the path of the particle is a
straight line.

(1) Motion of a Particle from A to B

Initially, the particle is at 4 (mean position) and is moving
towards the positive x-direction with speed v, As the
particle is moving towards B, force acting on it towards
A is increasing. Consequently, its acceleration towards 4
is increasing in magnitude, while its speed decreases and
finally it comes to rest momentarily at B.

(2) Motion of a Particle from B to A

Now the particle starts moving towards A4 with initial
speed v = 0. As the particle is moving towards 4, force is
acting on it towards 4 and decreasing as it approaches A.
Consequently, its acceleration towards 4 is decreasing in
magnitude while its speed increases and finally it comes to
A with the same speed v = v,

_/Fr/equency

_WW

(3) Motion of a Particle from A to C

The motion of a particle from 4 to C is qualitatively the
same as the motion of a particle from 4 to B.

(4) Motion of a Particle from Cto A

It is qualitatively the same as the motion of a particle from
Bto A.

Supimary
Motion Velocity (direction/ Acceleration
from magnitude) (direction/magnitude)
A—-B V-l a1
B—A V1 a—|
A—C V| a—1
C—A V—1 a—|
CHARACTERISTICS OF SHM

Mean Position

It is the position where the net force on the particle is zero.

Extreme Point

It is the point where the speed of the particle is zero.

Displacement

It is defined as the distance of the particle from the mean
position at that instant.

Amplitude

It is the maximum value of displacement of the particle
from its mean position.
Extreme position — Mean position = Amplitude

It depends on the energy of the system.

The frequency of SHM is equal to the number of complete
oscillations per unit time.

1 w
=—=—=5 orHz
S T 2w

Time Period

Smallest time interval after which the oscillatory motion
gets repeated is called the time period.

r=2T

w




SOLVED EXAMPLE
EXAMPLE 1
Describe the motion of a particle acted upon by a force.
(a) F-;3x+3 (b) F -—3x -3
(¢ F=—3x+3 d) F=3x-3
SOLUTION
(a) Given

F=3x+3 1))

We find the mean position at which the net force on the
particle is zero.

_’—L x=—1 ]f\
= 3x+3=0
= x=—1.

If we substitute x = 0 in Eq. (1), then

F=3N @)
(away from M.P.)
Now substituting x = —2 in Eq. (1)
F=-3N 3)
(away from M.P))
From Egs. (1) and (2), we conclude that the particle
does not perform SHM.
y Given
F=-3x-3 4
at ML.P. F=0
= x=—1.

Now put ¥ = 0 in Eq. (4)
= F = —3 N (towards M.P)
If x=-2,

F =13 N (towards M.P)

We conclude from the above calculation that in
every case (whether the particle is left from M.P. or

Simple Harmonic Motion 1.3

right from M.P), force acts towards M.P. so the particle

performs S.H.M.
(c) Given
F=-3x+43
when F =0
x=1(M.P).
Now put x = 0.
Then F =3 N (towards M.P).

Ifx=2
F = —3 (towards M.P).

i.e., Particle performs SHM.

(d) Given
F=3x-3
Mean position at x = 1.
Whenx =0,
F = —3 N (away from M.P.).
Ifx=2,
F =3 N (away from M.P).
Particle does not perform SHM. |

EQUATION OF SIMPLE HARMONIC
MOTION
The necessary and sufficient condition for SHM is given as
F=—kx
We can write the above equation in the following way:
ma = —hx
d*x
m—=
dr’
d*x k
—+—x=0 1
ar’ m M
Equation (1) is double differential equation of SHM.

2
d—f—i—wzx:O.
dt

The solution for the above equation is

Now

x = A sin(wt + ¢),

where
w = angular frequency
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v"x = displacement from mean position

\/ k = SHM constant.

The equality (wt + ¢) is called the phase angle or simply the
phase of the SHM and ¢ is the initial phase, i.e., the phase
at 1= 0 and depends on the initial position and direction of
velocity at £ = 0,

To understand the role of ¢ in SHM, we take two
particles performing SHM in the following condition:

Suppose we choose ¢ = 0 at an instant when the
particle is passing through its mean position towards right
(i.e., positive direction) ag shown in Fig. 1.3, then

InFig. 1.3,att=0x=0
1e., x = A sin wt.

The particle is at its mean position.

-A  MP

Figure 1.3

InFig. |.4atr=0,x = A4, and the particle is moving towards
the mean position,

ie., x = 4 sin(wt + 7/2).
’
A MP N X

Figure 1.4
Here, m/2 is the only phase possible.

~ SOLVED EXAMPLES

EXAMPLE 2

A particle starts from the mean position and moves towards
the positive extreme as shown below. Find the equation of
the SHM. Amplitude of SHM is 4.

—-A o A

SOLUTION

General equation of SHM can be written as

x = A4 sin(wt + ¢).

Att=0,x=0, ,
0=4sin ¢
=07
¢ € [0, 27).
Also,at =0, v = +ve.
Awcos ¢ = +ve
or ¢=0."

Hence, if the particle is at mean position at ¢ = 0 and is
moving towards the positive extreme, then the equation of
the SHM is given by

x = A sin wt.

Similarly, for a particle moving towards the negative
extreme,

¢=m.

Equation of SHM is
x = 4 sin(wt + )
or X = —A sin wt. |

EXAMPLE 3 -
Write the equation of SHM for the situation shown below:

SOLUTION

General equation of SHM can be written as

x = 4 sin{wt + ¢).
Att=0,x=4/2,

= ; =4 sip ¢
= ¢ =30°, 150°.
Alsoatt=0,v= —ve,

Awcos ¢ = —ve

= ¢ = 150°. ]




VELOCITY

It is the rate of change of particle displacement with respect
to time at that instant.
Let the displacement from the mean position is
given by
x =4 sin(wt + ¢)

d
Velocity v=2 — gwcos (wr +¢)

dat
/7 v=Awcos (Wl + ¢) )

= 5 ‘

At the mean position (x = 0), velocity is maximum,

Voo = wA. )

At the extreme position (x = 4), velocity is minimum,

Ty ., = Z€ro,

mi

Graph of Velocity (v) versus Displacement (x)
v=wNA® —x*
y? :wz(Az_x2>

Vi ix? =t 4

v N X’ i
A4 A
Velocity (v)
[ atw=1
wA | it will circular
-A A X
Figure 1.5

The graph would be a half ellipse (Fig. 1.5).

ACCELERATION

It is the rate of change of a particle’s velocity with respect
to time at that instant.
Acceleration,
_dv_d

a= e E[ch‘:os(wt +¢)]

= —

Simple Harmonic Motion 1.5

a = —wA4 sin(wt + ¢)

a=—uw.

Notes

Negative sign shows that acceleration is always
directed towards the mean position. At the mean
position (x = 0), acceleration is minimum,

a_. — ZCro.
n

mil
At the extreme position (x = A), acceleration is
maximum,

(" 10, =

ol

Graph of Acceleration (A) versus
Displacement (x)

a— —wx
s

f slope of this _!graph)‘

_lo2a \represent(t?

Figure 1.6

GRAPHICAL REPRESENTATION OF
DISPLACEMENT, VELOCITY AND
ACCELERATION IN SHM

Displacement
x =4 sin wt
Velocity,
v = Aw cos wt
. T
= Aw sin (wt +—)
2
or v=w\A—x*
Acceleration,
a= —w?A sin wt

= w?4 sin(wt + )

or a= —wk.
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{’ﬁote_ /

2
V=i A —x
a= —u.

These relations are true for any equation of x.

Time, ¢t 0 T/4 T/2 3T1/4 T
Displacement, x 0 A 0 -A 0
Velocity, v Aw 0 —Auw 0 Aw
Acceleration, a 0 —uw?A 0 w?A 0__

T4 T2 3714 T 574 3772

| ' ! A |
i LI o

TN, i
j Ny
- ' \‘"'-.-
I T
RN |
L AK_J_T_. !
i : e
Figure 1.7

1. All the three quantities displacement, velocity and
acceleration vary harmonically with time, having the
same period.

2. The maximum velocity is w times the

= wA). .

acceleration is «? times the displacement

amplitude ( a. = wA).

A In SHM, the velocity is ahead of displacement by a

amplitude

( max

phase angle of i

“5. In SHM, the acceleration is ahead of velocity by a

phase angle of g .

SOLVED EXAMPLES

EM(PLE 4

The equation of a particle executing simple harmonic

motion is x=(5 m)sin|(rs™") +§’ Write down the

amplitude, time period and maximum speed. Also find the
velocity at ¢ = 1 s,

SOLUTION

Comparing with equation x = 4 sin(wt + ¢), we see that the
amplitude = 5 m

. . 2
and time period = <~

The maximum speed = 4

=5m x 7§

= 57 m/s.
The velocity at time ¢
= £:chos(wt+6).

dt
Atr=1s,
v=_5m) (x sl“) cos[ﬂ—l—g]
= —S—ﬂ-m/s . |
2

EXAMPLE 5

A particle executing simple harmonic motion has angular
frequency 6.28 s! and amplitude 10 c¢m. Find (a) the
time period, (b) the maximum speed, (c) the maximum
acceleration, (d) the speed when the displacement is 6 cm
from the mean position, (¢) the speed at f = 1/6 s assuming
that the motion starts from restats =0,

SOLUTION
(a) Time period = 2w_7r e 6%7788
=1s. '
(b) Maximum speed = Aw
= (0.1 m) (6.28 5.
(¢)  Maximum acceleration — Aw?

= (0.1 m) (6.28 s-1y?
=4 m/s2.




—

7
&

(d) V= A2 . x2

) = (628 s7)y/(10 cm)’ — (6 cm)’
) a0k \ ) =50.2 cm/s
(:-) At t = 0, the velocity is zero, i.e., the particle is at
" an extreme. The equation for displacement may be

written as /

/Tx=Acoswt )

The velocity is
L v=—Awsin wt, )
At t= és R R
v=—(0.1m) (628 s—') sin[gg—g]
— (—0.628 m/s) sin%
= —54.4 ci/s
(towards mean position). |
: ote

-~

If the mean position is not at the origin, then we
can replace x by x — x, and the equation becomes
x —x, = —A sin wi, where x, is the position co-ordinate
“of the mean position.

A

A

MPLE 6

A particle of mass 2 kg is moving on a straight line under
the action force ' = (8 — 2x) N. It is released at rest from
x=6m.

(a) Is the particle moving simple harmonically?

(b) Find the equilibrium position of the particle.

(c¢) Write the equation of motion of the particle.

(d) Find the time period of SHM.

SOLUTION
F=8—-2x

or F=-2(x—4).

For equilibrium position, F = 0,

= x =4 mis in equilibrium position.

Hence, the motion of the particle is SHM with force
atp—

constant 2 and equilibrium position x = 4.
T

Simple Harmonic Motion 1.7

(a) Yes, motion is SHM.

(b) Equilibrium position is x = 4 m.

(c) Atx = 6m, particle at rest, i.e., it is one of the extreme
position. Hence, amplitude is 4 = 2 m and initially the
particle at the extreme position.

Equation of SHM can be written as

x—4=2coswt,

where
w:\/E:\/g:l(s)_l,
m 2
ie., x=4+2cost
(d) Time period,
2
T=""=27s. |
w

SHM AS A PROJECTION OF UNIFORM
CIRCULAR MOTION

Consider a particle Q, moving on a circle of radius 4 with
a constant angular velocity w. The projection of O on
a diameter BC is P. It is clear from the figure that as Q
moves around the circle, the projection P executes a simple
harmonic motion on the x-axis between B and C. The angle
that the radius OQ makes with the positive vertical in the
clockwise direction in at # = 0 is equal to phase constant (¢).

Let the radius OQ, makes an angle wt with the OQ,
at time ¢. Then,

x(t) = A4 sin(wt + ¢)

; “A~;,I,:Qo(at t=0)
L /) | e Qatt=1
a Fh L wl Y
B"....,,...:/_j_’___.:__:l_____

\ OE‘ P[l_PJ,:'I C

x(t)

In the above discussion, the foot of projection is x-axis.
So it is called a horizontal phasor. Similarly, the foot of
perpendicular on y-axis will also execute SHM of amplitude
A and angular frequency w[p(f) = A cos wi]. This is called
vertical phasor. The phases of the two SHM differ by #/2.

—
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Problem Solving Strategy in Horizontal Phasor

1. First assume a circle of radius equal to amplitude of
SHM.

2. Assume a particle is rotating in a circular path moving
with a constant w same as that of SHM in clockwise
direction. «

- Angle made by the particle at + = 0 with the
vertical is equal to phase constant.

- Horizontal component of velocity of particle gives you
the velocity of particle performing SHM, for example.

upper

Figure 1.8
From Fig. 1.8,
W) = Aw cos (wt + ®).

Component of acceleration of a particle in the
horizontal directton is equal to the acceleration of
particle performing SHM. The acceleration of a
particle in uniforin circular motion is only centripetal
and has a magnitude ¢ = w24,

Figure 1.9

From Fig. 1.9,
: a(t) = —uw?4 sin(wt + ®).

SOLVED EXAMPLES

EXAMPLE 7 -

A particle starts from 4/2 and moves towards the positive
extreme as shown below. Find the equation of the SHM.
Given amplitude of SHM is 4.

Step 3: In AORQ,

o t=0
— —
—A Al2 +A
SOLUTION
We will solve the above problem with the help of horizontal
phasor.

Step 1: Draw a perpendicular line in the upward direction
from point P on the circle, which cuts it at point R and S,

Step 2: Horizontal component of v(7) at R gives the direction
Pto 4 while at S gives P to O. So at 7 — 0 particle is at R.

iR

cos0=ﬂ=60°
A4

= ¢ =30°.
So, equation of the SHM is
x = A sin(wt + 30°).

) . —/3
A particle starts from point x = ——— 4 and move towards
negative exireme as shown.

+A
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(a) Find the equation of the SHM. PLE9 o

(b) Find the time taken by the particle to go directly from — Two particles undergo SHM along the parallel lines with the
its initial position to negative extreme. same time period (7) and equal amplitudes. At a particular

(c) Find the time taken by the particle to reach at mean  jngtant, one particle is at its extreme position while the other
position. is at its mean position. They move in the same direction.

They will cross each other after a further time.

B o . A
B’ . o’ Al

(a) T/8 (b) 37718

() T/6 (d) 4773

=it . : SOLUTION
-A —J312A (00 A
{ This problem is easy to solve with the help of a phasor
SOLUTION diagram. . :

il

First, we draw the initial position of both the particles

) . .
The figure shows the solution of the problem with the help on the phasor as shown in the figure.

of phase. Horizontal component of velocity at Q gives the
required direction of velocity at ¢ = 0.

In AOSQ, !
V3/24 ;
0sf =~ = !
A 2 !
= == ;
6 B’ _«ll 1A att=0
-A A
Now ¢= L )
2 6 From the above figure, phase difference between both the
_8m  Arw particles is /2.
6 3 They will cross each other when their projection from
the circle on the horizontal diameter meets at one point.

28 [Egnation of SHM - Let after time  both will reach at P'Q’ point having
) 4 phase diffgrence 7/2 as shown in the figure.
( = Asm[w! +T .

:(b) Now to reach the particle at left extreme point, it will
travel angle @ alofig the circle. So time taken,

j=9_T
w 6w
T
= . t=—s.
12
(¢) To reach the particle at mean position, it will travel an after t =t
anlea—1+£—2—7r | '(
SFATTe 3 - W

Both will meet at —4/+/2 . :
5 ™ When they meet, angular displacement of P is

0 = /2 + 7/4 = 3n/4.

. a
So, time taken = — =
w

w |~
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So they will meet after time
Kig

= s
4xw

3

4% 2
3T
"R

g

A* EXAMPLE 10

Two particles execute SHM of the same amplitude of 20 cm
with the same period along the same line about the same
equilibrium position, If the phase difference is 7/3, then
find out the maximum distance between these two.

SOLUTION

Let us assume that one particle starts from the mean
position and another starts at a distance x having ¢ = /3,
This condition is shown in the figure.

(M (ii)

The above figures show the situation of maximum distance
between them. )

So maximum distance = 4 = 10 ¢m (as 24 =20 cm).

]

EXAMPLE 11

Two particles execute SHM of the same time period but
different amplitudes along the same line. One starts from
the mean position having amplitude 4 and other starts from
the extreme position having amplitude 24. Find out the
time when they both will meet.

SOLUTION

We solve the above problem with the help of a phasor diagram.
First, we draw the initial position of both the particles
on the phasor,

LAY
—2A o) 24
From the figure, phase difference between both the particles
is /2.
They will meet each other when their projection from
the circle on the horizontal diameter meets at one point.

Now from the figure,
EF =4 cos®=24sin6

tan 6 = 1
2

6 =tan™' [lJ
2

So time taken by the particle to cross each other

angle travelled by A

la=
w
= t:m' [ ]
w

EXAMPLE 12

Two particles have the time periods 7 and 577/4. They start
SHM at the same time from the mean position. After how




many oscillations of the particle having smaller time period,
will they be again in the same phase?

GOLUTION

They will be again at m.p. and moving in same direction
when the particle having smaller time period makes #,
oscillations and the other one makes 7, oscillations.

= nT = §4£ Xn,
i )
n, 4
= n =35n,= 4, |
ENERGY OF SHM
Kinetic Energy

Kinetic energy (KE) = %mv2

e %mA%uz cos(wt + ¢)
1
= —muwH4* — x?)
2
=X
m
= KE = lK(A2 ~x*)
2
KE = %KA2 (atx = 0)

Frequency of KE = 2 X (frequency of SHM).

Potential Eriergy
Simple harmonic motion is defined by the equation
F=—kx

The work done by the force F' during a displacement from
xtox + dxis

dW = Fdx = —loxdbx.

Simple Harmonic Motion 1.11

The work done in a displacement from x = 0 to x is
W= f (—har)dx
0

=——kx*
2

l kx
1 |

dx
Figure 1.10

Let U(x) be the potential energy of the system when the
displacement is x. As the change in potential energy
corresponding to a conservative force is the negative of the
work done by that force,

UX)—Uyp =—W = %kx2.

Let us choose the potential energy to be zero when the
particle is at the mean oscillation position, x = 0.

Then Uyp=0
1,2 1, »
and U(x)zzkx <PE>0_1-——Zka
k= muw?
1 2.2 1 2
U(x)==mw’x® <PE>,_ =—ka
2 6
U= —;—mofA2 sin’ (wt + @) .
But x = A sin(wt + ¢).

Kinetic enetgy of the particle at any instant is

K= lmv2
2
= %mAqu2 cos® (wt +¢)
1 2 2 2
= —mw* (42 = x*)..
2 )
So the total mechanical energy at time ¢ is
E=U+K
= E= %mofA2 .
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Note

U.= U,p, (which is not always = 0).

L e Ny
R

U=U__ cos®wt

max

ANAK =K, sin ot

'—"—‘-—"—"‘-F

Figure 1.11

Potential, kinetic and total energy plotted as a function of
time.

(ii)

Figure 1.12

Potential, kinetic and total energy are plotted as a function
of displacement from the mean position.

SOLVED EXAMPLES

Exw;LE 13

\A‘particle of mass 0.50 kg executes a simple harmonic

motion under a force F — —(50 N/m)x. If it crosses the
centre of oscillation with a speed of 10 m/s, find the
amplitude of the motion.

SOLUTION

The kinetic energy of the particle when it is at the centre of

oscillation is

E:lmv2
2

= 21(,0.60 keg)(10 my/s)’
—257

The potential energy is zero here. At the maximum
displacement x = A, the speed is zero and hence the kinetic

. .1
energy is zero. The potential energy here is —k4” . As there
is o loss of energy, 2

lkA2 =251
2

The force on the particle is given by
F=—(50 N/m) x.

Thus, the spring constant is k = 50 N/m.
Equation (1) gives

%(60 Nm)A* =257

or, = ﬁ mL.
METHOD TO DETERMINE TIME PERIOD
AND ANGULAR FREQUENCY IN SIMPLE
HARMONIC MOTION

To understand the steps which are usually followed to find
out the time period, we will take one example,

MH'APLE 14

A mass m is attached to the free end of a massless spring of
spring constant & with its other end fixed to a rigid support
as shown in the figure. Find out the time period of the mass,
if it is displaced slightly by an amount x downward.

SOLUTION
The following steps are usually followed in this method:

Step 1: Find the stable equilibrium position which is
usually known as the mean position. Net force or torque
on the particle at this position is zero. Potential energy is
minimum.




S - -

is
ue
18

In our example, initial position is the mean position.

Step 2: Write down the mean position—force relation. In the
above figure, at the mean position,

(1)

Step 3: Now displace the particle from its mean position by
a small displacement x (in linear SHM) or angle ¢ (in case
of an angular SHM) as shown in the figure.

kx, = mg

Step 4: Write down the net force on the particle in the
displaced position.

From the above figure,

F  =mg —k(x +x)) 2)

Step 5: Now try to reduce this net force equation in the
form of F = —kx (in linear SHM) or 7 = —# (in angular
SHM) using mean position—force relation in step 2 or
binomial theorem.

From Eq. (2),
F  =mg—hkx—kx;
Using Eq (1) in the above equation,
F =k 3

Equation (3) shows that the net force acts towards the mean
position and is proportional to x, but in this SHM, constant
K 18 Teplaced by the spring constant . So,

Tzzw/ e =27r\/E n
KSHM k

Note

If we apply constant force on the string, then time

m

period T is always the same T =27,
. SHM

Simple Harmonic Motion  1.13

Note (contd)

W@?

27r

In the above, both cases

JEXAMPLE 15

The string, the spring and the pulley shown in the figure are
‘light. Find the time period of the mass m.

irs

IR

SOLUTION
Let in equilibrium position of the block, extension in spring
i8x,.

0

o, = mg 1

Natural length

XO 0wos "o
Equilibrium position

Now if we displace the block by x in the downward direction,

net force on the block towards mean position is
F=k(x+x)—mg=hk using Eq. (1).

Hence, the net force is acting towards the mean position
and is also proportional to x. So, the particle will perform
SHM and its time period would be

T=2n ﬂ. [ |
\ &
EXAMPLE 16

The figure shows a system consisting of a massless pulley, a
spring of force constant k and a block of mass m. If the block
is slightly displaced vertically down from its equilibrium
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position and then released, find the period of its vertical  Now compare Eq. (3) with F = — 2
oscillation in cases (a) and (b).

K
i " then Ko = 1"
. = T=2r |- g 2
KSHM K
Case (b)

In this situation, if the mass m moves down distance x from
its equilibrium position, then the pulley will also move by x
0B and so the spring will stretch by 2,
(a) (b) At equilibrium,

SOLUTION

Let us assume that in equilibrium condition, spring is x,
elongated from its natural length
Case (a)

When the block is displaced,

When equillibrium When displaced block by ‘x' F =mg—T
net
In equilibrium T, =mg = mg — 2k (x, + 2)
and box, = 2T, = 4
= kx, = 2mg (1)  Now F=-K, x
If the mass m moves down a distance from its equilibri
ol gu m then Ko = 4K.
position, then the pulley will move down by By So the
extra force in the spring will be % . From the figure, So the time period 7= 27WE . ]
F . =mg—T EXAMPLE 17
i The left block in figure collides inelastically with the right
=mg—"ly 4+ ¥ block and sticks to it. Find the amplitude of the resultin
g T p g
2 2 simple harmonic motion.
kx,  kx
F. =mg— = %
net g 2 4
From Eq. (1), =81

3




sOLUTION

he collision is for a small interval only, we can apply the

Yy : :
{ conservation of momentum. The common

principal © e -
veloeity alfier the colligsion is =L The kinetlic energy

, 2
§ 1 (2m)[z] = lmv2 . This is also the total energy of
W 2 4

yibration as the spring is unstretched at this moment. If the

. 1
amplitude is 4, the total energy can also be written as 0 kA?

1 1
Thus, EMZ - Z mv2 ’
m
Vi A= —v. |
giving ”Zk

EXAMPLE 18

The system is in equilibrium and at rest. Now mass m, is
removed from m,. Find the time period and amplitude of the
resultant motion. (Given spring constant is K.)

SOLUTION

Initial extension in the spring

B (m +m,)g
k
Now, if we remove m,, equilibrium position (EP)of m, will

be % below natural léngth of the spring.

At the initial position, since velocity is zero, i.e., it is

the extreme position,
, m
Hence, amplitude = ?g

Time period = 27, ’_n;{_z . ||

EXAMPLE 19

A block of mass m, is in equilibrium and at rest. The mass
m, moving with velocity u vertically downwards collides
with m, and sticks to it. Find the energy of oscillation.

—— — - ﬁ
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SOLUTION

[ HEEL

At equilibrium position,

m,g = kx,
= b =8
K

After collision, m, sticks to m,.
By momentum conservation,

mu=(m +m)v

mu

V=
ml+m2

Now both the blocks are executing SHM, which can be
interpreted as follows:

N.L. V—
] I MR-
::-‘. mg :E: m1g >
' K K
Now, we know that
V2= (A* — x?) (1)
W= )
m +m,
- SN
k
Put the values of v, w?and x in Eq. (1),
U ’ _ k Az_[%]z
m +m, m, +m, k
= kA® = L’”)L +[MJ2
m, o, k

= Energy of oscillation = %kA2

1| miu’ +[mfg""] .
my -+ m, k

2
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'EXAMPLE 20

A body of mass m falls from a height # on to the pan of
a spring balance. The masses of the pan and spring are
negligible. The spring constant of the spring is k. Having
stuck to the pan, the body starts performing harmonic
oscillations in the vertical direction. Find the amplitude and
energy of oscillation.

SOLUTION

Suppose by falling down through a height 4, the mass m
compresses the spring balance by a length x.

o GE,
k b
\/?
w= |—
m
Velocity at Ov = .2gh

v T 7

k 2
zgh:\ﬁ Az_[ﬂ]
m k
mg |y, 2k
k mg

= A=
- F 1.,
Energy of oscillation = B kA

2
sl
2 Lk mg

2
zmgh+(n;él? . -H

EXAMPLE 21

A body of mass 2m is connected to another body of mass
m as shown in the figure. The mass 2m performs vertical
SHM. Then find out the maximum amplitude of 2m such
that the mass m does not lift up from the ground.

2

3
e

SOLUTION

In the given situation, 2m mass is in equilibrium condition.
Let us assume that the spring is compressed x
distance from its natural length.

0

= kx, = 2mg
2
== xo z_n1g_
k

The lower block will be lift up, only in the case when
the spring force on it will be greater than equal to mg and in
the upward direction.

= kx' = mg
= x ="E
k

The above situation atises when the 2m block moves
upward mg/k from the natural length as shown in the figure.

Block m does not lift up if the maximum amplitude of the
2m block is

_2mg  mg

ko k -
_ 3mg

k

EXAMPLE 22

A block of mass m is at rest on the another block of the
same mass as shown in the figure. Lower block is attached
to the spring, then determine the maximum amplitude of
motion so that both the block will remain in contact.




e

he
ed
of

[m ]

SOLUTION

The blocks will remain in contact till the blocks do not go above
the natural length of the spring, because after this condition the
deceleration of the lower block becomes more than the upper
block due to spring force. So they will get separated.

So maximum possible amplitude = x,

Two Block Systems

EXAMPLE 23

Two blocks of mass m, and m, are connected with a spring
of natural length ¢ and spring constant k. The system is
lying on a smooth horizontal surface. Initially, spring is
compressed by x, as shown in the figure.

Show that the two blocks will perform SHM about
their equilibrium position. Also (a) find the time period,
(b) find the amplitude of each block and (c) the length of
the spring as a function of time.

SOLUTION

(a) Here both the blocks will be in equilibrium at the same
time when the spring is in its natural length. Let EP,
and EP, be the equilibrium positions of blocks 4 and B
as shown in the figure.

(b)

Simple Harmonic Motion 1.17

Let at any time during oscillation, blocks are at a
distance of x, and x, from their equilibrium positions.

As no external force is acting on the spring block
system,

(m, +m)Ax_=mx

Xy —mx, =0
or mlxl = mzxz.

For the first particle, force equation can be
written as

d’x
o, +) = —m
or k[xI +ﬂx, =—ma,
, L
k
or i = )y
mm,

o om +my)

mm,
Hence, T=2r |4
k(m, +m,)
= ZW\/E
K
where = L - ,
(mI +m, )

which is known as reduced mass.
Let the amplitude of blocks be A, and 4,
mlA ,=mA,

By energy conservation,

1 1
Lk(A+ ) =Lk
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or 4, +4,= X,
or 4, +4,= X,
or 4 —|~ﬂAl =x,
m2
n,
or 4 =%
m; +m,
nyx
Similarly, =t
% 4 m +m,

(¢) Let equilibrium position of the first particle be the
origin, i.e., x = 0,

EP, EP
— i

2

The x co-ordinate of particles can be written as
X, =4, cos wt
and x,=4{~4,coswt
Hence, length of spring can be written as
length = X, =X,

={-(4, +4)coswr. W

COMBINATION OF SPRINGS

Figure 1.13

Series Combination

. Total displacement,

. . xl + x2.
Tension in both the springs = kx = kpx,.
Equivalent constant in series combination k., is given by

Uk, = Vk, + Uk,

= r'=2q ||i”—
ke,

In series combination, tension is the same in all the
springs and extension will be different. (If k is same, then
deformation is also the same.)

Parallel Combination

ORHOI0101010

Figure 1.14

Extension is the same for both springs, but the force acting
will be different,
Force acting on the system = F

F=—(hx+ k)
= F=—(k +k)x
= F= —keqx

ko =k +k
= T=27 kﬂ
e

EXAMPLE 24 )
Find the time period of the oscillation of mass m in figure

a andb. What is the equivalent spring constant of the spring
in each case?

SOLUTION
In Figure (a),

kik,

W1 " ki +k,




which gives

k1k2
k, +k,
(T — Iy
Ktk °
—00000
k\
0000
klkZ
= — + k
- k1 + kz ’
. _ ks Ak, + Kk,
. kl + k2
m
T=2r |—
Now i

=G | m(k, + k,)
ke, + k, ey + Kk,

In Figure (b), if the block is displaced slightly by an amount
x, then both the springs are displaced by x from their natural
length so it is a parallel combination of springs, which gives

ko =k +k,
T =27 =
\’ keq
- k +k,
Jre
ing Notes

1. In series combination, extension of springs will be
reciprocal of its spring constant.

kocllt
ki, =kt,= k3éa

2. If a spring is cut in n equal pieces, then the spring
constant of one piece will be nk.

EXAMPLE 25

The friction coefficient between the two blocks shown
in the figure is u and the horizontal plane is smooth. (a)
If the system is slightly displaced and released, find the
time period. (b) Find the magnitude of the frictional force

Simple Harmonic Motion 1.19

between the blocks when the displacement from the mean
position is x. (¢) What can be the maximum amplitude if the
upper block does not slip relative to the lower block?

m

M
A e

SOLUTION
(a) For small amplitude, the two blocks oscillate together.

The angular frequency is w = JL , and so
the time period M+m

e L
k

(b) The acceleration of the blocks at displacement x from
the mean position is

2 —kx
a=—-wx= .
M+4+m
The resultant force on the upper block is, therefore,

e
ma = .
M+m

This force is provided by the friction of the lower
block. Hence, the magnitude of the frictional force

mk x|
is )
M+m

(¢) Maximum force of friction required for simple

harmonic motion of the upper block is at the

+m
extreme positions. But the maximum frictional force
can only be umg. Hence,

mkd "
M+m e
or A= (M +m)g
k
ENERGY METHOD

Another method of finding time period of SHM is energy
method. To understand this method, we will consider the
following example.
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EXAMPLE 26

Figure shows a system consisting of pulley having radius R,
a spring of force constant k and a block of mass . Find the
period of its vertical oscillation.

LI
k
m
T

SOLUTION
The following steps are usually followed in this method:

mg
i T = kx,

Step 1: Find the mean position. In following figure, point A
shows the mean position.

Step 2: Write down the mean position force relation from
the figure.

mg = kx,
Step 3: Assume that the particle is performing SHM with
amplitude 4. Then displace the particle from its mean
position.

Step 4: Find the total mechanical energy (£) in the displaced -

position since mechanical energy in SHM remains constant
dE

—=0.

dt

1
*  E= %mv2+%lw2+§k(x+xo)2—mgx

E= Lmy —l—lli—l—lk(x%—x Y —mgx
2" TR 2 o

dE _ 2my ﬂ 2y @ 2 x+ 1‘;}@_ dx

el i =— (1
a2 di 2R dt @ " W
dx dv  d*x

Put == =v and — =— in Eq. (1),
dt dt dr’ e

|

aE _,
dt
d*x v d*x
= my—-—+ —— 4o+ kx,y—mgv =0,
i B dr oV eV
which gives [m—I—L]d—zx—ch—O
& R*) ar?
2
d°x k =0 @)

£ et
. ['”ﬂ?]

Compare Eq. (2) with SHM equation, then

ANGULAR SHM

If the restoring torque acting on the body in oscillatory
motion is directly proportional to the angular displacement
of the body from its equilibrium position, i.e.,

T=—kO
k = SHM constant
9 = angular displacement from M.P.
SHM equation is given by
d*0

T +w20 =0
dt”

Here

where [ is the moment of inertia of the body/particle about
a given axis.




out

L 4 hmgcosa
m é\o“ mg
«©
Figure1.15
If a heavy point-mass is suspended by a weightless,
inextensible and perfectly flexible string from a rigid
support, then this arrangement is called a simple pendulum.

Time period of a simple pendulum 7' = 27 \/Z .
g

(Sometimes we can take g = 72 for making the calculation
simple.)

Proof
Now taking moment of forces acting on the bob about
point O.

T= TT + ng
7,=0
= 7= —(mg sin H)L.

If 0 is very small, then sin 6 =~

= T=—mgll (1)
Now compare Eq. (1) with
L
which gives Koy = Mgt
= =2 \j ,!
"K SHM

Notes

1. Time period of second pendulum is 2 seconds.

2. Simple pendulum performs angular SHM but due
to small angular displacement, it is considered as
linear SHM

3. If time period of a clock based upon simple
pendulum increases, then the clock will become
slow, but if time period decreases, then the clock
will become fast.
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Time period of pendulam of very large length is

TIME PERIOD OF A SIMPLE PENDULUM IN
ACCELERATING REFERENCE FRAME

T=2n IL .
gcff

where g = effective acceleration due to gravity in the
reference system = |g —d|. d@ = acceleration of the point
of suspension with respect to the ground.

Condition for applying this formula,
|g—d | = constant.

If the acceleration & is upwards,

then gal=g+a
and T=2m d .
g+a
Time lost or gained in time # is given by
AT = £t :
‘SOLVED EXAMPLES

EXAMPLE 27 -
IfT=2s,T, ,=3s,then

AT=1s.

Since time lost by the clock in 3 s is = 15,
then time lost by clockin 1 s = % S.

Time lost by the clock in an hour

= %x3600 =1200s. =

EXAMPLE 28

A simple pendulum is suspended from the ceiling of a car
which is accelerating uniformly on a horizontal road. The
acceleration of the car is g, and the length of the pendulum




1.22 Physics Module-2

is £,. Then find the time period of small oscillations of the
pendulum about the mean position.

SOLUTION

We shall work in the car frame. As it is accelerated with
respect to the road, we shall have to apply a pseudo force
ma, on the bob of mass m.

For mean position, the acceleration of the bob with
respect to the car should be zero. If §; be the angle made
by the string with the vertical, the tension, weight and the
pseudo force will add to zero in this position.

Hence, resultant of mg and ma, (say F = myg® + a )
has to be along the string.

ma, a
tanf, = —>=—".
mg g

Now, suppose the string is further deflected by an
angle 8 as shown in the figure.

Now, restoring torque about point O can be given by
T=Ia.
(F sin 6)¢ = —mfla
Substituting F and using sin § = 6, for small 6,

(myg* +a; Y0 =—mla
_ 4 \fg" i clf‘: 0

or o=
{
= o NE+a

4

This is an equation of simple harmonic motion with time period

2 \ﬁ;

w (g~ +tag)

COMPOUND PENDULUM/PHYSICAL
PENDULUM

When a rigid body is suspended from an axis and made to
oscillate about that, then it is called a compound pendulum.

r 13 | ol
\ | mgsin# @
g

4
. mg cos 8
Figure 1.16
C = position of centre of mass

S = point of suspension

£ = distance between the point of suspension and centre
of mass.

(It remains constant during motion for a small angular
displacement # from mean position.)
The restoring torque is given by

7= —mglsin §

T = —mgll
For small 6,
sinf =0
or, Ioe = —mgth,

where,
I = moment of inertia about the point of suspension

or o= _met
I
. o2 met
Il

Time period,

T=2rm i .
\} mgl
EXAMPLE 29 B

A ring is suspended at a point on its rim and it behaves as
a second’s pendulum when it oscillates such that its centre
moves in its own plane. The radius of the ring would be

(g=7".




SOLUTION
Time period of second pendulum 7' = 2 cm.

T=2m —1—
\ Mgd

Moment of inertia with respect to axis O
I'=MR* + MR* = 2MR?,

The distance between the centre of mass and the axis O

d=R
2
2 =2 2MR
MgR
= R=0.5m. | |

EXAMPLE 30

A circular disc has a tiny hole in it, at a distance z from its
centre. Its mass is M and radius R (R > 2). Horizontal shaft
is passed through the hole and held fixed so that the disc can
freely swing in the vertical plane. For small disturbance, the
disc performs SHM whose time period is minimum for z.
Find the value of z.

SOLUTION

. . ! . 1
The time period with respect to the axis T = 27 [—— .
where Mgd

I = moment of inertia with respect to the axis O

d = distance between COM and O

MR

= I + Mz*
d=1z
; )
MR + Mz?
= T =27 2
Mgz

Simple Harmonic Motion
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The time period will be minimum when

2

—+z = minimum.
2z

Let us say

=0
dz
2
= —iz—Jrl_O
2z
= z=

EXAMPLE 31

Find out the angular frequency of the small oscillation

about the axis O,

\5\\\5‘?\" S

SOLUTION

iy

mg

(k16) (k16)

The compression in spring (1) = /0
and the extension in spring (2) = /6.
Net torque opposite to the mean position
= —(2kl6)] — mgésin& =T

# is small
= sin 8 ~ 6.

T = —Iu%
net
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o = B(-ﬁk! +mg) -
2 ml

TORSIONAL PENDULUM

In torsional pendulum, an extended object is suspended at
the centre by a light torsion wire. A torsion wire is essentially
inextensible but is free to twist about its axis. When the
lower end of the wire is rotated by a slight amount, the
wire applies a restoring torque causing the body to oscillate
rotationally when released.

LLLLLEE i
A
@& @
A X X
Figure 1.17

The restoring torque produced is given by
T=—C0,
where, C = torsional constant

or I = —(C8,
where, / = moment of inertia about the vertical axis.

or o= —98

I
TIZ’/T\/Z.
C

Time period,

Note

The above concept of torsional pendulum is used in
inertia table to calculate the moment of inertia of an
unknown body.

SOLVED EXAMPLE

EXAMPLE 32

A uniform disc of radius 5.0 cm and mass 200 g is fixed at
its centre to a metal wire, the other end of which is fixed
to a ceiling. The hanging disc is rotated about the wire
through an angle and is released. If the disc ma kes torsional

oscillations with time period 0.20 s, find the torsional
constant of the wire.
p/ s

SOLUTION

The situation is shown in the figure. The moment of inertia
of the disc about the wire is

e mr® _ (0.200kg)(5.0x10”? m)’
2 2
=2.5 x 10~ kgm?.

The time period is given by

T:27T\/z
C

2
or C= 4;21

_ 4r’(2.5x10°* kgm)
(0.02 s)

kgm’

2
S

=0.25 |

VECTOR METHOD OF COMBINING TWO OR
MORE SIMPLE HARMONIC MOTIONS

A simple harmonic motion is produced when a force (called
restoring force) proportional to the displacement acts on a
particle. If a particle is acted upon by two such forces, the
resultant motion of the particle is a combination of two
simple harmonic motions.

In the Same Direction

(a) Having the Same Frequencies

A, __;4\_2_;:05 ¢

Figure 1.18




ed
1a

wo

guppose the two individual motions are represented by,
x, =4, sinwt
and x, = A, sin(wt + ¢).

Both the simple harmonic motions have the same

angular frequency w.
X =x +Xx,

= A, sin wt + A, sin(wt + ¢)

= 4 sin(wt + @)

Here, A:JAf—FAf +2A44,cos¢
and tan o = — 2S¢ _
A4 + A, cos¢

Thus, we can see that this is similar to the vector
addition. The same method of vector addition can be applied to
the combination of more than two simple harmonic motions.

Important Points to Remember Before Solving the
Questions:
1. Convert all the trigonometric ratios into sine form and
ensure that wf term is with positive sign.
2. Make the sign between two terms positive.
3. A4, is the amplitude of that SHM whose phase is small.
4. Then, resultantx = 4__ sin(phase of 4, + «),

where 4 is the vector sum of 4 and 4, with angle between
them is the phase difference between two SHMs.

SOLVED EXAMPLES

EXAMPLE 33

x, = 3 sin wt; x, = 4 cos wt. Find (a) the amplitude of the
resultant SHM and (b) equation of the resultant SHM.

SOLUTION

First write all SHMs in terms of sine functions with positive
amplitude. Keep wt with positive sign.
x, = 3 sin wt

x, = 4 sin(wt + 7/2)

A:J3:+42+2x3x4cosg

B cruTN

=5

Simple Harmonic Motion 1.25

4sin g 4
tangp=——=—=—=¢
3+4cos L3
2
=53°
Equation x = 5 sin{wt + 53°). |
EXAMPLE 34

x, = 5 sinwt + 30°); x, = 10 cos (wi).
Find the amplitude of the resultant SHM.

10
SOLUTION
x, = 5 sin(wt + 30°) 60°
. i 5 ’
x, = 10 sin(wt + 5) Phasor diagram
A=+[5? 4-10% +2x5x10c0s 60°
=+/25+100+50 u
=175 =57
EXAMPLE 35

A particle is subjected to two simple harmonic motions
x, = A, sinwt
and x, = A, sin(wt + 7/3).

Find (a) the displacement at 1 = 0, (b) the maximum speed
of the particle and (c) the maximum acceleration of the
particle.
SOLUTION
(@) Att=0, x, =4 sinwr=0
and x, = A, sin(wt + 7/3)
4,3

= A, sin(n/3) = =

Thus, the resultant displacement at r = 0 is

x=x +x,

B
4,427

(b) The resultant of the two motion is a simple harmonic
motion of the same angular frequency w. The amplitude
of the resultant motion is

A= JAIZ + A2 + 24,4, cos(/ 3)
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2 2
=2+ A2+ 44 H oY B8 ey

44 44

(general equation of ellipse)

©)

The maximum speed is

u =Aw

= W\ AT+ A+ 44,

(¢) The maximum acceleration is

Special case

a_ = Auw
= WA+ 4+ 44,
(b) Having different frequencies Figure 1.20
x, =4 sinwt 1) If¢=0
2 2
x,= A, sinw,t x_2+y_2__21=0
Al A2 A1A2
Then the resultant displacement, x =x, +x, =4, sinw ¢+
A, sin w,t. This resultant motion is not SHM. i y= % x (equation of a straight line).
1
In Two Perpendicular Directions
) Ifp=90°
x = A, sin wt H ) )
= x_2 + y_2 =1 (equation of ellipse).
y =4, sin(wt + ¢) ) 4 4

So equation of the path may be obtained by
eliminating ¢ from Egs. (1) and (2)

The amplitudes 4, and 4, may be different and phase
difference ¢ and w is the same. A,

N/

. X
sin wt = = A3) Figure 1.21 ‘
() I ¢ =90°
X @) and A =4,=4,

J

then x? + y* = A? (equation of a circle). '
Kq \

Figure 1.19 Figure 1.22 ‘

On rearranging we get The above figures are called Lissajous figures.
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MIND MAP
1. Equation of S.H.M
(a) Linear: a = —w’ 3. Angular S HM
—Linear SAM (b) Aﬂg“‘j" ra=—w (a) Displacement:
(a) Displacement of particle 0 =, sin(wt + ¢)
x = A sin(wt + ) (b) Angular velocity
(b) Velocity j—f =f,w cos(wt +¢) _
d I
7): = Aw cos(wt +¢) (c) Acceleration k
2y
=wVd —x* ‘; ? = —f,w’ sin(wt + @)
at
F (c) Acceleration — %
2
iTx:_sz sin(wt + ) (d) Phase: wt + ¢
dt (¢) Phase constant: ¢
=—w'x

(d) Phase: wt+ ¢
(¢) Phase constant: ¢

5. Time period:

Pendulums:

(2) Simple pendulum:

/
4. Energy in SHM T=2n \/:
g

1
(a) K= 5 mw’ (4 —x?) : (b) Physical pendulum:

(b) U= %mwzx2 SHM T =27 /L
mgl

(c) Torsional pendulum:

E:K—FU:lmuﬂA2

(© 2 I
= constant T= ZW\/:
cons C

. 7. Composition of 2 SHMs:
6. Mass-spring system Combination of springs: : ,
X, = 4, sinwt
m
@y = 2”\/; (a) Series: IR S x, = 4, sin(wt + ¢)
’ Ke KK,
(b) Two bodies system: x=x +x,
(b) Parallel: K, =K, + K, x = A sin(wt + 8)
= EHJZ_ :
k (c) Spring cut into two parts m:n where, 4= J A+ 42 +24.4, cos
where = —" K :M, B =l tn)k 4, sing
m, 4, ! m 2 n and tand = —2———
: A + 4, cosd
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EXERCISES

JEE Main
Linear SHM

1. For a particle executing simple harmonic motion, the
acceleration is proportional to
(A) displacement from the mean position
(B) distance from the mean position
(C) distance travelled since t =0
(D) speed

2. The distance moved by a particle in simple harmonic
motion in one time period is
(A) 4 (B) 24
(C) 44 (D) zero

3. The time period of a particle in simple harmonic
motion is equal to the time between consecutive
appearance of the particle at a particular point in its
motion. This point is
(A) the mean position
(B) an extreme position
(C) between the mean position and the positive

extreme
(D) between the mean position and the negative
extreme

4. A particle is executing SHM of amplitude ‘e’ and
time period = 4 seconds. Then the time taken by
it to move from the extreme position to half the
amplitude is

(A) 1s (B) és

© %s (D) %s

5. Equations y = 24 cos® wt and y = A(sin wt + NE)
cos wr) represent the motion of two particles.
(A) Only one of these is S.H.M
(B) Ratio of maximum speeds is 2:1
(C) Ratio of maximum speeds is 1:1
(D) Ratio of maximum accelerations is 1:4

6. The displacement of a body executing SHM is given
by x = A sin(2mt + «/3). The first time from t = 0
when the velocity is maximum is

10.

11.

(A) 0335 (B) 0.16's
(C) 025 (D) 055

A simple harmonic motion having an amplitude 4
and time period T is represented by the equation y =
5sinm(¢t + 4) m. Then the values of 4 (in metre) and T
(in seconds) are

(A) A=5T=2 (B) 4=10;
(C) 4=5T=1 (D) 4=10;

=1
r=2
Two particles are in SHM on same straight line with

amplitudes 4 and 24 and with the same angular
frequency w. It is observed that when the first particle

is at a distance A/+2 from the origin and going
towards mean position, other particle is at extreme
position on other side of mean position. Find phase
difference between the two particles.

(A) 45° (B) 90°

(C) 135° (D) 180°

The time period of a particle in simple harmonic
motion is equal to the smallest time between the

particle acquiring a particular velocity v. The value of
vis

(A) v
B) 0
(C) betweenOandv__
(D) between 0 and —v

max

max

The average acceleration in one time period in a simple
harmonic motion is
(A) Au? (B) Aw2

©) A2 (D) zero
A mass m is performing linear simple harmonic

motion, then correct graph for acceleration ¢ and
corresponding linear velocity v is

(B)
Vz \\\
> e >
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12.

13.

14.

15.

16.

17.

(S D)

a° a?

The time taken by a particle performing SHM to pass
from point 4 to B where its velocities are same is 2
seconds. After another 2 seconds it returns to B. The
time period of oscillation is (in seconds)

(A) 2 (B) 8

©) 6 (D) 4

A simple pendulum performs SHM about x = 0 with
an amplitude « and time period T. The speed of the
pendulum at x = a/2 will be

mav3 7ra\/§
(A) T (B) T

ma 31
© o (D) =

A particle executes SHM given by the equation y =
0.45 sin 2¢ where y is in metre and ¢ is in seconds. What
is the speed of the particle when its displacement is
7.5 cm?

(A) 0.075/3 ms™!
(©) 0.15+3 ms™!

(B) 7543 ms™!
(D) 15+/3 ms™'

The maximum displacement of a particle executing
SHM is 1 cm and the maximum acceleration is (1.57)?
cm/s?. Then the time period is
(A) 0.25s
(C) 1.57s

(B) 4.00s
(D) (1.57)s

A particle performing SHM is found at its equilibrium
atf =1 s and itis found to have a speed of 0.25 m/s at
t = 2 s. If the period of oscillation is 6 s. Calculate the
amplitude of oscillation.

3 3
(A) Em‘ B) Em
© Em ®) 2m

™ 8

The angular frequency of motion whose equation is
d*y

4 a + 9y =0 is (y = displacement and ¢ = time)

18.

19.

20.

21.

Simple Harmonic Motion 1.29

(A) (B)

© D)

NS ORI NN
Wi Ols

Two particles are in SHM in a straight line about same
equilibrium position. Amplitude 4 and time period
T of both the particles are equal. At time ¢ = 0, one
particle is at displacement y, = +4 and the other at
y, = —A/2, and they are approaching towards each
other. After what time they cross each other?

(A) 173 (B) 1774

(C) 5176 (D) Tl

Two particles execute SHM of same amplitude of
20 cm with same period along the same line about the
same equilibrium position. The maximum distance
between the two is 20 cm. Their phase difference in
radians is

2r
(A) 5 B)

&3 N[

™
&5 D)

A particle of mass 1 kg is undergoing SHM, for
which graph between force and displacement
(from mean position) as shown. Its time period, in
seconds, is

A F(N)
135
- 1.5
5 Loxm
—13.5/~"
(A) 7/3 (B) 27/3
(C) 7/6 (D) 3/

A point particle of mass 0.1 kg is executing SHM of
amplitude of 0.1 m. When the particle passes through
the mean position, its kinetic energy is 8 x 1072 J. The
equation of motion of this particle when the initial
phase of oscillation is 45° can be given by

(A) 0.1005[4t+§] (B) o.1sin[4t+§]

(C) 0.4sin [t + g] (D) 0.2 sin[% + 21]




1.30 Physics Module-2

22,

23.

24.

25.

26.

A particle executes SHM of period 1.2 s and amplitude
8 cm. Find the time it takes to travel 3 cm from the
positive extremely of its oscillation.

(A) 028 s (B) 0.32s
(C) 0.17 s (D) 0.42s
A particle performs SHM with a period T and

amplitude a. The mean velocity of the particle over
the time interval during which it travels a distance a/2
from the extreme position is

(A) a/T (B) 2a/T
(©) 3T (D) al2T
A toy car of mass m is having two similar rubber

ribbons attached to it as shown in the figure. The force
constant of each rubber ribbon is £ and surface is
frictionless. The car is displaced from mean position
by x cm and released. At the mean position, the ribbons
are underformed. Vibration period is

m(2k) 1 Jm{'?.k]
A) 2 |——= B) — =
(A) 2my= ®) 2y 2
m m
C) 2w, |— D) 2
© 2m B 2m ek
A spring mass system oscillates with a frequency v. If

it is taken in an elevator slowly accelerating upwards,
the frequency will
(A) increase

(C) remain same

(B) decrease
(D) become zero

A hollow metal sphere is filled with water and hung
by a long thread. A small hole is drilled at the bottom
through which water slowly flows out. Now the sphere
is made to oscillate, the period of oscillation of the
pendulum

(A) remains constant

(B) continuously decreases

(C) continuously increases

(D) first increases and then decreases

Question No. 27 to 29

The graph in the figure shows that a quantity y varies with
displacement d in a system undergoing simple harmonic
motion.

27.

28.

29.

30.

31.

32.

@ y "y /
0 I iG] G|
(1I0) y av) y
<)
o) " o> d

Which graphs best represents the relationship obtained
when y is

The total energy of the system

A) I ®B) I1

(C) 11 (D) Iv
The time

A1 B) I

(C) 11 D) IV
The unbalanced force acting on the system

(A) 1 (B) I
(C) 1 (D) None of these
The potential energy of a simple harmonic oscillator of

mass 2 kg in its mean position is 5 J. If its total energy
is 9 J and its amplitude is 0.01 m, its time period would
be

™ T
A) — B) —s
(A) TL (B) 0
T s
C — D) —s
© 50 ° (& 100
Find the ratio of time periods of two identical springs

if they are first joined in series and then in parallel and
a mass m is suspended from them.

(A) 4 (B) 2

© 1 D) 3

Two bodies P and Q of equal masses are suspended
from two separate massless springs of force constants
k, and k,, respectively. If the maximum velocity of them
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are equal during their motion, the ratio of amplitude of their lower ends. Their time periods when they are
PtoQis allowed to oscillate will be in the ratio

kl kz
A & (B) \/;.

k, k, 2L
I ©) kl (D) \/;
33. A spring mass system performs SHM. If the mass is
doubled keeping amplitude same, then the total energy 2M
of SHM will become @) (b)
(A) double (B) half
(C) unchanged (D) 4 times (A) 12 (B) 2:1
(©) 14 (D) 4:1

34. A massatthe end of a spring executes harmonic motion
about an equilibrium position with an amplitude 4. Its ~ 39. A body of mass ‘m’ hangs from three springs, each of

speed as it passes through the equilibrium position is spring constant ‘k” as shown in the figure. If the mass is
V. If extended 24 and released, the speed of the mass slightly displaced and let go, the system will oscillate
passing through the equilibrium position will be with the time period
| (A) 2V (B) 4V
14 vV
C) — D) —
© : (D) 2
35. A particle is subjected to two mutually perpendicular
simple harmonic motions such that its x and y coordinates K
are given by x = 2sin wt; y = 2sin {wt + EJ . The path of
the particle will be 4
(A) an ellipse (B) astraight line
(C) aparabola (D) acircle (A) 2 %: (B) 27 fi;:
i 36. The amplitude of the vibrating particle due to : = —
; (C) 2o -Eﬂ (D) 27 yi
Id superposition of two SHMs, » = sin[wt—kﬁ] and Y 3 - "
Y, = sin wf is 3
40. A block of mass m is connected between two springs
A1 ' (B) V2 (constants K| and K,) as shown in the figure and is
© 3 (D) 2 made to oscillate, the frequency of oscillation of the
system will be
37. Two simple harmonic motions y =Asinwtand y, = . =
gs + A cos wt are superimposed on a particle of mass m. The J { 2 I
nd total mechanical energy of the particle is : %
1
(A) —muw4? B) muw?4> 112 . Y2
2 ( (A) 1 n (B) — _L
! 2m | K, + K, 2w (K, + K, )m
© " mw*A4? (D) zero
ed o (K +K,)" 1 ((K, +K,)m)"
nts 38. Two springs of the same material but of lengths L and © o I D) wl K K.
*m 2L are suspended with masses M and 2M attached at 8
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41.

42.

43.

A particle of mass 4 kg moves between two points A
and B on a smooth horizontal surface under the action
of two forces such that when it is at a point 2, the

forces are 2P4 N and 2PB N. If the particle is
released from rest at 4, find the time it takes to travel a
quarter of the way from 4 to B.

7r ™
A) —s B) —s
(A) 7 B) i
(C) s D) Zs
4
In an elevator, a spring clock of time period 7S (mass

attached to a spring) and a pendulum clock of time
period TP are kept. If the elevator accelerates upwards
(A) TS as well as TP increases

(B) TS remains same, TP increases

(C) TS remains same, TP decreases

(D) TS as well as TP decreases

Two pendulums have time periods 7' and 57/4. They
start SHM at the same time from the mean position.
Alter how many oscillations of the smaller pendulum
they will be again in the same phase?

44,

45.

46.

(A) 5
(©) 11

®B) 4
D) 9

A simple pendulum is oscillating in a lift. If the lift
is going down with constant velocity, the time period
of the simple pendulum is T,. If the lift is going down
with some retardation its time period is T 5» then

A) T, >T,

B T <T,

O T =1,

(D) depends upon the mass of the pendulum bob

A simple pendulum with length ¢ and bob of mass m
cxecutes SHM of small amplitude 4. The maximum
tension in the string will be
(A) mg (1 4+ 4/0)

(C) mg[1+ (/6]

B) mg (1 4 4/£)
(D) 2mg

A ring is suspended at a point on its rim and it behaves
as a second’s pendulum when it oscillates such that its
centre moves in its own plane. The radius of the ring
would be (g = 7?)
(A) 0.5m

(C) 0.67Tm

(B) 1.0m
D) 1.5m

JEE Advanced

Single Correct

1.

The maximum acceleration of a particle in SHM is
made two times keeping the maximum speed to be
constant. It is possible when
(A) amplitude of oscillation is
frequency remains constant
(B) amplitude is doubled while frequency is halved
(C) frequency is doubled while amplitude is halved
(D) frequency is doubled while amplitude remains
constant

doubled while

. A small mass executes linear SHM about O with

amplitude @ and period T. Its displacement from O at
time 7/8 after passing through O is

(A) a/8 (B) a22

(C) a2 (D) a/\2

- Two particles undergo SHM along parallel lines with

the same time period (7) and equal amplitudes. At a

particular instant, one particle is at its extreme position
while the other is at its mean position. They move in
the same direction. They will cross each other after a
further time

B (@] A

L & 4 —=

B’/ o’ A’

° 4 @ — 9
(A) T8 (B) 3718
(©) TI6 (D) 4773

- A particle executes SHM with time period T and

amplitude 4. The maximum possible average velocity

. T .
n time — 1is
4

24 44
(A) T ) T

84 424
© ol D) oy
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_ Time period of a particle executing SHM is 8 5. At

¢ = 0, it is at the mean position. The ratio of the
distance covered by the particle in the 1st second to
the 2nd second is

1
2
) J2 +1 ®) V2

©) _\IE D) V2 +1

. Two particles P and Q describe simple harmonic

motions of the same period, same amplitude, along
the same line about the same equilibrium position O.
When P and Q are on opposite sides of O at the same
distance from O, they have the same speed of 1.2 m/s
in the same direction, when their displacements are the
same. They have the same speed of 1.6 m/s in opposite
directions. The maximum velocity in m/s of either
particle is
(A) 2.8

(C) 24

(B) 2.5
D) 2

. A body performs simple harmonic oscillations along

the straight line ABCDE with C as the mid-point of AE.
Its kinetic energies at B and D are each one fourth of
its maximum value. If AE = 2R, the distance between
Band Dis

[ L

l
A B C D E

V3R R
®) = ® -
(C) V3R (D) V2R

. A body at the end of a spring executes SHM with a

period ¢, while the corresponding period for another
spring is t,. If the period of oscillation with the two
springs in series is T, then

(A) T=t+1, (B) T* =t +¢

1 .1 1 1 1 I
C) —=—+— D) —=— -+
()Ttl t ()T2 A

. A particle moves along the x-axis according to x = A4

[1 + sin wf]. What distance does it travel between ¢ = 0
and t = 2.57/w?
(A) 44
(C) 54

(B) 64
(D) None of these

10.

11.

12.

13.

14.

Simple Harmonic Motion 1.33

A particle executes SHM on a straight line path. The
amplitude of oscillation is 2 cm. When the displacement
of the particle from the mean position is 1 cm, the
numerical value of magnitude of acceleration is equal
to the numerical value of magnitude of velocity. The
frequency of SHM (in second™) is

(A) 2m3 (B) 2—7;

NG

3 1
o) X2
© 2m ) 27r\/§

Vertical displacement of a plank with a body of mass
‘m’ on it is varying according to the law y = sin wt +

3 cos wt. The minimum value of w for which the
mass just breaks off the plank and the moment it occurs
first after t = 0 are given by (y is positive vertically
upwards)

(A) \E‘\_/—gl (B_]' i‘ E
2 6 \/E J2'3\¢e

g 7w |2 — 2%
C }—,— = D) 2g, |—
© 27343 (D) \/& ig

Two particles 4 and B perform SHM along the same
straight line with the same amplitude ‘a’, same
frequency ¢/ and same equilibrium position ‘O’ The
greatest distance between them is found to be 3a/2. At
some instant of time, they have the same displacement
from mean position. What is the displacement?

(A) al2 (B) a7 /4
(©) Bal2 (D) 3 al4

| 12

A particle starts oscillating simple harmonically from
its equilibrium position. Then the ratio of kinetic
energy and potential energy of the particle at the time
T/12 is (T = time period)
(A) 2:1
€y 41

(B) 3:1
(D) 1:4

In the figure, the block of mass m, attached to the
spring of stiffness & is in contact with the completely
elastic wall, and the compression in the spring is ‘e’.
The spring is compressed further by ‘e’ by displacing
the block towards left and is then released. If the
collision between the block and the wall is completely
elastic, then the time period of oscillations of the block
will be




15.

16.

17.

18.

21 (m m
R ® o
T |m T |m
C) —.— D) —.[—
© X D) V%
A 2 kg block moving with 10 m/s strikes a spring of

constant 7* N/m attached to 2 kg block at rest kept on
a smooth floor. The time for which rear moving block
remain in contact with spring will be

—+10m/s _
—yowmm| 2 kg
TR 2
1
A \/E S B ——= S
(A) (B) 7
1
©) 1s (D) D s

In the above question, the velocity of the rear 2 kg
block after it separates from the spring will be

(A) 0m/s B) 5m/s

(C) 10 m/s (D) 7.5 m/s

The springs in Figures A and B are identical but length
in A4 is three times each of that in B. The ratio of period
TA/TB is

, ,
.llllllllllll!'

(A) V3.

©) 3

B) 1/3
(D) 1/3
A particle of mass m moves in the potential energy U

as shown in the figure. The period of the motion when
the particle has total energy E is

19.

20.

21.

U(x)

1
U==k®x<0
Shcx <

(A) 2nm/k +4\2E / mg*
(B) 27m/ k
(C) wmlk + 22E [ mg®

(D) 2y2E/mg*

A man is swinging on a swing made of 2 ropes of equal
length Z and in direction perpendicular to the plane of
paper. The time period of the small oscillations about
the mean position is

L L
M
(A) 27 L (B) 27 ﬁ
V-?g \ 2¢
(©) 2r |—L (D) n,\ﬁ
23g g

A ring of diameter 2 m oscillates as a compound
pendulum about a horizontal axis passing through a
point at its rim. It oscillates such that its centre moves
in a plane which is perpendicular to the plane of the
ring. The equivalent length of the simple pendulum is
(A) 2m B) 4m

(€C) 1.5m (D) 3m

A small bob attached to a light inextensible thread of
length [ has a periodic time T when allowed to vibrate
as a simple pendulum. The thread is now suspended

from a fixed end O of a vertical rigid rod of length :1—6
(as in the figure). If now the pendulum performs

periodic oscillations in this arrangement, the periodic
time will be
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25. A rod whose ends are 4 and B of length 25 cm is
hanged in vertical plane. When hanged from points
4 and B, the time periods calculated are 3 s and 4 s,
respectively. Given the moment of inertia of rod about
axis perpendicular to the rod is in the ratio 9:4 at points
A and B. Find the distance of the centre of mass from
point 4.
(A) 9cm (B) 5cm
(C) 25 cm D) 20cm
(A) 5 (B) =
Multiple Correct
o T (D) 2T

26. A spring has natural length 40 cm and spring constant
500 N/m. A block of mass 1 kg is attached at one end
of the spring and other end of the spring is attached to
ceiling. The block released from the position, where

22. A system of two identical rods (L-shaped) of mass
m and length / is resting on a peg P as shown in the

lai‘ ﬁgulre-g Iff;[hz :}i’swm_lsddli‘p;ac;(lla{[?(:;i plane by a small the spring has length 45 cm.
Ot angle v, ind the period ot osc : (A) The block will perform SHM of amplitude 5 cm.
-u

(B) The block will have maximum velocity 3045
cm/s.

(C) The block will have maximum acceleration
15 m/s?,

(D) The minimum potential energy of the spring will

be zero.
(A) 27 \/7 (B) 2w ‘}Jj ) . . . .
35_{ 3¢ 27. A particle executing a simple harmonic motion of

period 2 s. When it is at its extreme displacement from

_ 2/ e its mean position, it receives an additional energy

(C) 2 \{T: (D) 37 \/3_3 equal to what it had in its mean position. Due to this,
o E in its subsequent motion,

(A) its amplitude will change and become equal to

23. In the figure, the springs are connected to the rod at

one end and at the mid-point. The rod is hinged at its ‘/5 times its previous amplitude
und lower end. Rotational SHM of the rod (mass m, length (B) its periodic time will become doubled, i.e., 4 s
h a L) will oceur only if (C) its potential energy will be decreaséd
Lves (D) it will continue to execute simple harmonic
' the kR motion of the same amplitude and period as
his mﬁ before receiving the additional energy
k 28. A part of a simple harmonic motion is graphed in the
R figure, where y is the displacement from the mean
dof lg position. The correct equation describing this SHM is
o i
' (A) k> mg/3L (B) k> 2mg/3L o
3¢ (C) k> 2mg/5L (D) k>0 /\
2 i (06)7 s)
orms 24. What is the angular frequency of oscillations of the rod Ol/ ©3)r| |
. in the above problem if k = mg/L? |
iodic (A) (3/2) [kim]"? (B) (3/4) [k/m]" ol '
(C) [2 k/5m]"? (D) None of these
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29.

30.

31.

32.

33.
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(A) y = 4c0s(0.61)

10 7
B) y=2sin| —t——
= [3 2J
(10
C) y=4sin|—t+—
ok [3 2]

10 T
D) y = 2cos —t+——]
©)y [3 2

Two particles execute SHM with amplitudes 4 and 24
and angular frequencies w and 2w, respectively. At
t = 0, they start with some initial phase difference. At

2 . s
t= 2T , they are in same phase. Their initial phase
w
difference is

s 27
(A) 3 (B) Tl

© ¥ (D) =
3

Two particles are in SHM with the same angular
frequency and amplitudes 4 and 24, respectively,
along the same straight line with the same mean
position. They cross each other at position A4/2 distance
from mean position in opposite direction. The phase
between them is

5w _ l T l
(A) I — sin [4] (B) ¢ sin [4}
St _1 l ﬁ _ = l
© g —cos [4J (D) g —cos [4]

The equation of motion for an oscillating particle is
given by x = 3sin(4r?) + 4cos(4mt), where x is in mm
and ¢ is in seconds.

(A) The motion'is simple harmonic.

(B) The period of oscillation is 0.5 s.

(C) The amplitude of oscillation is 5 mm.

(D) The particle starts its motion from the equilibrium.

A particle is executing SHM of amplitude 4, about the
mean position X = 0. Which of the following cannot
be a possible phase difference between the positions of

the particle at x = +4/2 and x = —A4/2 ?
(A) 75° (B) 165°
(C) 135° (D) 195°

Speed v of a particle moving along a straight line,
when it is at a distance x from a fixed point on the line

34.

35.

3e6.

37.

is given by 2 = 108 — 9x? (all quantities in SI unit).

Then

(A) the motion is uniformly accelerated along the
straight line

(B) the magnitude of the acceleration at a distance
3 cm from the fixed point is 0.27 m/s?

(C) the motion is simple harmonic about x = V12 m

(D) the maximum displacement from the fixed point
is 4 cm

A block is placed on a horizontal plank. The plank is

performing SHM along a vertical line with amplitude

of 40 cm. The block just loses contact with the plank

when the plank is momentarily at rest. Then

(A) the period of its oscillations is 27/5 s

(B) the block weights on the plank double its weight,
when the plank is at one of the positions of
momentary rest

(C) the block weights 1.5 times its weight on the plank
halfway down from the mean position

(D) the block weights its true weight on the plank,
when velocity of the plank is maximum

The potential energy of a particle of mass 0.1 kg,
moving along the x-axis, is given by U = 5x (x — 4) J
where x is in metres. It can be concluded that

(A) the particle is acted upon by a constant force

(B) the speed of the particle is maximum atx = 2 m
(C) the particle executes simple harmonic motion

(D) the period of oscillation of the particle is 7/5 s

A particle is executing SHM with amplitude 4, time
period 7, maximum acceleration a, and maximum
velocity v,. It starts from mean position at £ = () and at
time ¢, it has the displacement 4/2, acceleration ¢ and
velocity v then
(A) t=1T/12

©) v=y)2

B) a=aq/2
(D) t=T/8

The amplitude of a particle executing SHM about O is

10 cm. Then

(A) When the K.E. is 0.64 of its max. K.E. its
displacement is 6 cm from O. ,

(B) When the displacement is 5 cm from O its K.E. is
0.75 of its max. PE.

(C) Its total energy at any point is equal to its
maximum K.E.

(D) Its velocity is half the maximum velocity when its
displacement is half the maximum displacement.
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38. The displacement of a particle varies according to
the relation x = 3sin 100¢ + 8cos® 507, Which of the

following is/are correct about this motion? 43.

(A) The motion of the particle is not SHM.
(B) The amplitude of the SHM of the particle is 5
units.

(C) The amplitude of the resultant SHM is J73 units.
(D) The maximum displacement of the particle from
the origin is 9 units.

39. In SHM, acceleration versus displacement (from mean
position) graph
(A) is always a straight line passing through origin
and slope —w?
(B) is always a straight line passing through origin
and slope +w*
(C) is a straight line not necessarily passing through
origin
(D) none of these
40. A particle moves in the xy plane according to the law

x = asinwt and y = a(l — cos wf), where a and w are
constants. The particle traces

(A) aparabola 44.

(B) a straight line equally inclined to x and y axes
(C) acircle
(D) a distance proportional to time

41. For a particle executing SHM, x = displacement from
equilibrium position, v = velocity at any instant and
a = acceleration at any instant, then
(A) v—x graph is a circle
(B) v—x graph is an ellipse
(C) a—x graph is a straight line
(D) a—v graph is an ellipse

42. The figure shows a graph between velocity and
displacement (from mean position) of a particle
performing SHM.

v (in cm/s)

10
/‘L\M

X
\—}_/(ln cm) 45,

(A) The time period of the particle is 1.57 s.
(B) The maximum acceleration will be 40 cm/s?.

(C) The velocity of particle is 2 21 cm/s when it is at
a distance 1 cm from the mean position.

Simple Harmonic Motion 1.37

(D) None of these

Two blocks of masses 3 kg and 6 kg rest on a horizontal
smooth surface. The 3 kg block is attached to a
spring with a force constant £ = 900 Nm™' which is
compressed 2 m from beyond the equilibrium position.
The 6 kg mass is at rest at 1 m from mean position, 3 kg
mass strikes the 6 kg mass and the two stick together.

1 m

hand
%‘nmm*ﬁkﬁﬁlﬁ 6 kg E
T
Equilibrium
position

(A) Velocity of the combined masses immediately
after the collision is 10 ms™'.

(B) Velocity of the combined masses immediately
after the collision is 5 ms™'.

(C) Amplitude of the resulting oscillation is V2 m.
(D) Amplitude of the resulting oscillation is J52m.

A particle starts from a point P at a distance of 4/2 from
the mean position O and travels towards left as shown
in the figure. If the time period of SHM, executed
about O is T and amplitude A4, then the equation of
motion of particle is

Al2
P
———»
A
(A) x=4 sin[z—wt—i-z]
T 6
B)x=4 sin[z—wt+5—ﬂ]
T 6

©) x:Acos[z—”tJrE]
T 6

(D) x:Acos[z—Wt—FE]
T 3

The angular frequency of a spring block system is
w,. This system is suspended from the ceiling of an
elevator moving downwards with a constant speed
v,- The block is at rest relative to the elevator. Lift
is suddenly stopped. Assuming the downwards as a
positive direction, choose the wrong statement.
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46.

47.

48.

49,

(A) The amplitude of the block is Yo
wO

(B) The initial phase of the block is 7.
(C) The equation of motion for the block is Yo

) Wo
sin wyf.
(D) The maximum speed of the block is v,

A disc of mass 3m and a disc of mass m are connected

by a massless spring of stiffness k. The heavier disc

is placed on the ground with the spring vertical and

lighter disc on top. From its equilibrium position, the

upper disc is pushed down by a distance 6 and released.

Then

(A) if § > 3mglk, the lower disc will bounce up

(B) if 6 = 2mglk, maximum normal reaction from
ground on lower disc = 6mg

(C) if § = 2mglk, maximum normal reaction from
ground on lower disc = 4 mg

(D) if 6 > 4mglk, the lower disc will bounce up

A system is oscillating with undamped simple

harmonic motion. Then the

(A) average total energy per cycle of the motion is its
maximum kinetic energy

(B) average total energy per cycle of the motion is

—\/—5 times its maximum kinetic energy

— I .
(C) root mean square velocity 1s «/T times its
maximum velocity 2

(D) mean velocity is 1/2 of maximum velocity

A particle of mass m performs SHM along a straight

line with frequency fand amplitude A.

(A) The average kinetic energy of the particle is zero.

(B) The average potential energy is mmff A%

(C) The frequency of oscillation of kinetic energy is
2f.

(D) Velocity function leads acceleration by 7/2.

A linear harmonic oscillator of force constant 2 X
106 Nm-! and amplitude 0.01 m has a total mechanical
energy of 160 1. Its

(A) maximum potential energy is 100J
(B) maximum kinetic energy s 100 ]
(C') maximum potential energy is 160
(D) minimum potential energy 1s zero

. The graph plotted between phase angle (¢) and

digplacement of a particle from equilibrium position
(v) is a sinusoidal curve as shown in the figure. Then
the best matching is

/ ! \w 3n/2 2 N
o| w2z : P wt
Column A
(A) K.E. versus phase

(B) PE. versus phase angle (i)

(C) T.E. versus phase angle (iii) T

(D) Velocity versus phase

angle curve

curve N o
H H \ ! / 2
HI WA~ () 4

w2 ™ 32

curve

angle curve

(A) (A) - (i), (B) - (ii), (C) - (iii) and (D) - (iv)

(B) (A) - (i), (B) - (i), (C) - (iii) and (D) - (iv)
(C) (A) - (i), (B) - (1), (C) - (iv) and (D) - (iii)
(D) (A) - (i), (B) - (iii), (C) —(iv) and (D) - (1)
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Level I
Linear SHM

1.

The equation of a particle executing SHM is

x = (5m)sin . Write down the amplitude,

—1 m
T+ —
(rs™ )+
phase constant, time period and maximum speed.

A particle having mass 10 g oscillates according to the
equation x = (2.0 cm) sin[100 s°'] ¢ + g]. Find

(A) the amplitude, the time period and the force
constant; (B) the position, the velocity and the
acceleration at £ = 0.

The equation of motion of a particle started at t = 0 is
given by x = 5sin(20 ¢ + 7/3) where x is in centimetre
and ¢ in seconds. When does the particle

(A) first come to rest?

(B) first have zero acceleration?

(C) first have maximum speed?

. A body is in SHM with period T when oscillated from

a freely suspended spring. If this spring is cut in two
parts of length ratio 1:3 and again oscillated from the
two parts separately, then the periods are 7, and T,.
Find T/T,.

The system shown in the figure can move on a smooth
surface. The spring is initially compressed by 6 cm and
then released. Find:

k =800 N/m
3 kgl mmTT6 9
FEEETEETTEETT T T i TiiirTiived
(A) Time period
(B) Amplitude of 3 kg block
(C) Maximum momentum of 6 kg block

A body undergoing SHM about the origin has its
equation is given by x = 0.2cos 5rt. Find its average
speed fromt =0 to £ = 0.7 s.

The acceleration—displacement (¢ — x) graph of a
particle executing simple harmonic motion is shown
in the figure. Find the frequency of oscillation.

8.

10.

11.

Simple Harmonic Motion 1.39

A block of mass 0.9 kg attached to a spring of force
constant & is lying on a frictionless floor. The spring is

compressed to V2 cm and the block is at a distance

1/+/2 cm from the wall as shown in the figure. When
the block is released, it make clastic collision with the
wall and its period of motion is 0.2 s. Find the
approximate value of k.

I

. Aforce f= —10x + 2 acts on a particle of mass 0.1 kg,

where ‘&’ is in m and F in Newton. If it is released from
rest at x = —2 m, find:

(A) Amplitude

(B) Time period

(C) Equation of motion

Potential energy (U) of a body of unit mass moving in
a one-dimensional conservative force field is given by,
U= (x* — 4x + 3). All units are in SI.

(A) Find the equilibrium position of the body.

(B) Show that oscillations of the body about this
equilibrium position is simple harmonic motion
and find its time period.

(C) Find the amplitude of oscillations if speed of the

body at equilibrium position is 2 J6 mis.

The resulting amplitude 4’ and the phase of the
vibrations §
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12.

13.

14.

15.

S = A cos(wt) + . cos [wt + E] + N cos(wt + 7) +
2 2 4
% cos [wt +377r] = A’ cos(wt + 0)

are and

respectively.

A body is exccuting SHM under the action of force
whose maximum magnitude is 50 N. Find the
magnitude of force acting on the particle at the time
when its energy is half kinetic and half potential.

A 1 kg block is executing simple harmonic motion
of amplitude 0.1 m on a smooth horizontal surface
under the restoring force of a spring of spring constant
100 N/m. A block of mass 3 kg is gently placed on
it at the instant it passes through the mean position.
Assuming that the two blocks move together, find the
frequency and the amplitude of the motion.

The springs shown in the figure are all unstretched
in the beginning when a man starts pulling the block.
The than exerts a constant force F' on the block. Find
the amplitude and the frequency of the motion of the
block.

TITTTITREiTrIa i irer i ivire’7

Two identical springs are attached to a small block
P. The other ends of the springs are fixed at 4 and B.
When P is in equilibrium, the extension of top spring
is 20 cm and extension of bottom spring is 10 cm. Find
the period of small vertical oscillations of P about its
equilibrium position. (Take g = 9.8 m/s?)

16.

17.

18.

19.

20.

21.

The figure shows the displacement-time graph of
a particle executing SHM. If the time period of
oscillation is 2 s, then the equation of motion is given
by x =

T

Two particles 4 and B execute SHM along the same
line with the same amplitude @, same frequency and
same equilibrium position O. If the phase difference
between them is ¢ = 2sin”'(0.9), then find the
maximum distance between the two.

Two blocks 4 (5 kg) and B (2 kg) attached to the
ends of a spring constant 1120 N/m are placed on a
smooth horizontal plane with the spring undeformed.
Simultaneously velocities of 3 m/s and 10 m/s along
the line of the spring in the same direction are imparted
to A and B then

3m/s 10 mis

— b
a5 T 2|8

(A) Find the maximum extension of the spring.

(B) When does the first maximum compression occurs
after start.

The motion of a particle is described by x = 30
sin(mt + m/6), where x is in cm and 1 in seconds.
Potential energy of the particle is twice of kinetic
energy for the first time after r = 0 when the particle is
at position after time.

A particle is performing SHM with acceleration a =
8w — 4m2x, where x is the coordinate of the particle
w.rt. the origin, The parameters are in SI units. The
particle is at rest at x = —2 at £ = 0. Find coordinate of
the particle w.r.t. origin at any time.

(A) Find the time period of oscillations of a torsional
pendulum, if the torsional constant of the wire is
K = 10 J/rad. The moment of inertia of rigid
body is 10 kg m? about the axis of rotation.
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(B) A simple pendulum of length / = 0.5 m is
hanging from ceiling of a car. The car is kept on a
horizontal plane. The car starts accelerating on the
horizontal road with acceleration of 5 m/s?. Find
the time period of oscillations of the pendulum for
small amplitudes about the mean position.

An object of mass 0.2 kg executes SHM along the

Simple Harmonic Motion 1.41

(B) What must be the acceleration of the lift for the

period of oscillation of the pendulum to be %?

29. A simple pendulum of length ¢ is suspended throtigh
the ceiling of an elevator. Find the time period of small
oscillations if the elevator (A) is going up with an
acceleration g, (B) is going down with an acceleration

22. ) a, and (C) is moving with a uniform velocity.
x-axis with frequency of (25/7) Hz. At the point x =
0.04 m, the object has KE 0.5 J and PE 0.4 J. The = 30. A simple pendulum fixed in a car has a time period
amplitude of oscillation is of 4 seconds when the car is moving uniformly on

. . . a horizontal road. When the accelerator is pressed,
23. Abody of mass 1 kg is suspended from a weightless spring . ) )
) the time period changes to 3.99 seconds. Making an
having force constant 600 N/m. Another body of mass 0.5 . . )
. . . approximate analysis, find the acceleration of the car.
- kg moving Yertlcally upwards hits the suspen.de(‘i quy
and with a velocity of 3.0 m/s and gets embedded in it. Find 39 g jdentical rods each of mass m and length L, are
fnce the frequency of oscillations and amplitude of motion. rigidly joined and then suspended in a vertical plane so
. the 24. A block is kept on a horizontal table. The table is as to oscillate freely about an axis pormal to the plane
undergoing simple harmonic motion.of frequency Of paper passing through *S” (point f’f s.uspens1on).
3 Hz in a horizontal plane. The coefficient of static Find the time period of such small oscillations.
o the friction between the block and the table surface is 0.72. s
on a Find the maximum amplitude of the table at which the \\ )
rmed. block does not slip on the surface. S
along ) . ) _ '
parted 25. A particle of mass m moves in a one-dimensional potential
energy U(x) = —ax? + bx*, where ‘a’ and ‘b’ are positive
constants. Then what is the angular frequency of small
oscillations about the minima of the potential energy. .

26. A pendulum having time period equal to .2 seconds is 32. A simple pendulum has a time period T = 2 s when
called a seconds. pendulurp. Those used in pendulum it swings freely. The pendulum is hung as shown in
clocks are of this type. Find thezleng2th 6f'a EEeomds the figure, so that only one-fourth of its total length

Vooeurs pendulum at a place where g = 7* m/s”. is free to swing to the left of obstacle. It is displaced
| 27. The angle made by the string of a simple pendulum with to position 4 and released. How long does it take to
' swing to extreme displacement B and return to A4?
L = 3§ the vertical depends on time as 6 = 97r_0 sin[(ws™") £]. Assume that displacement angle is always small.
fec'ond.s. Find the length of the pendulum if g = 7> m/s?
. kinetic @E}@
article is 28. A pendulum is suspended in a lift and its period of &
5 oscillation is T, when the lift is stationary. e
(A) What will the period T of oscillation of pendu-
tion a = Ium be, if the lift begins to accelerate downwards
¢ particle . 3g
mits. The with an acceleration equal to == ? B A
rdinate of
) Level I
\ torsional ) ) . . . . . . L s
——— 1. A point particle of mass 0.1 kg is executing SHM with equation of motion of this particle if the initial phase
ia of rigid amplitude of 0.1 m. When the particle passes through of oscillation is 45°.

rion.

the mean position, its K.E. is 8 x 107* J. Obtain the
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2. The particle executing SHM in a straight line has velocities
& mfs, 7 m/s. 4 m/s at three points distant 1 m from each
other, What will be the maximum velocity of the particle?

3. One end of an ideal spring is fixed to a wall at origin
O and the axis of spring is parallel to the x-axis. A
block of mass m = 1 kg is attached to free end of the
spring and it is performing SHM. Equation of position
of block in coordinate system shown is x = 10 + 3sin
101, ¢ is in seconds and x in em. Another block of mass
M = 3 kg, moving towards the origin with velocity 30
cm/s collides with the block performing SHM at 1 =0
and gets stuck to it, calculate:

(A) new amplitude of oscillations,

(B) new equation for position of the combined
body.

(C) loss of energy during collision. Neglect friction.

WA

3 kg

o { < 1,

4. A mass M is in static equilibrium on a massless
vertical spring as shown in the figure. A ball of mass
m dropped from certain height sticks to the mass M
after colliding with it. The oscillations they perform
reach to height ‘e’ above the original level of scales
and depth ‘b’ below it.

TRARRATRR RUSNURAY W

(A) Find the force constant of the spring.

(B) Find the oscillation frequency.

(C) What is the height above the initial level from
which the mass m was dropped?

5. Two identical balis 4 and B each of mass 0.1 kg are
attached to two identical massless springs. The spring
mass system is constrained to move inside a rigid
smooth pipe in the form of a circle as in the figure. The
pipe is fixed in a horizontal plane. The centres of the
ball can move in a circle of radius 0,06 m, Each spring
has a natural length 0.067 m and force constant 0.1
N/m. Initially both the balls are displaced by an angle
of 6 = 7/6 radian with respect to diameter PQ of the
circle and released from rest.

. Anideal gasisenclosedinavertical cylindrical container

. A massless rod is hinged at O. A string carrying a

. Two blocks 4 (2 kg) and B (3 kg) rest up on a smooth

. Consider a fixed ring shaped uniform body of linear

ball B.
(B) What is the total energy of the system?
(C) Find the speed of ball 4 when A and B are at the
two ends of the diameter PQ.

and supports a freely moving piston of mass mr. The
piston and the cylinder have equal cross-sectional area
A, atmospheric pressure is P and when the piston is
in equilibrium position. Show that the piston executes
SHM and find the frequency of oscillation (system is
completely isolated from the surrounding). v = Cp/Cv.
Height of the gas in equilibrium position is h.

mass m at one end is attached to point 4 on the rod so
that OA4 = a. At another point B (OB = b) of the rod,
a horizontal spring of force constant k is attached as
shown in the figure. Find the period of small vertical
oscillations of mass m around its equilibrium position.

horizontal surface are connected by a spring of stiffness
120 N/m. Tnitially, the spring is underformed. A is
imparted a velocity of 2 m/s along the line of the spring
away from B. Find the displacement of 4 ¢ second later.

3 kg 2 kg

2m/s
IB 00080000 A

mass density p and radius R. A particle at the centre of
ring is displaced along the axis by a small distance, show 6.
that the particle will execute SHM under gravitation of
ring and find its time period neglecting other forces.
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evious Year Questions

]EE Mal'-"

[fa gpring has time period T and is cut into n equal
then the time period of each part will be

pﬂl‘t.‘iq
[AIEEE 2002]

@) T ® -
©) nT O T

In a simple harmonic oscillator, at the mean position
[AIEEE 2002]
(A) kinetic energy is minimum, potential energy is
maximum
(B) both kinetic and potential energies are maximum
(C) kinetic energy is maximum, potential energy is
minimum
(D) both kinetic and potential energies are minimum

. A child swinging on a swing in sitting position, stands

up, then the time period of the swing will
[AIEEE 2003]
(A) increase
(B) decrease
(C) remain same
(D) increase if the child is long and decrease if the
child is short

. Abody executes simple harmonic motion. The potential

energy (PE), the kinetic energy (KE) and total energy
(TE) are measured as a function of displacement x.
Which of the following statement is true?

[AIEEE 2003]
(A) KE is maximum when x = 0 '
(B) TE is zero whenx =0
(C) KE is maximum when x is maximum
(D) PE is maximum when x = 0

. The length of a simple pendulum executing simple

harmonic motion is increased by 21%. The percentage
increase in the time period of the pendulum of

increased length is [AIEEE 2003]
A) 11% (B) 21%
(C) 42% (D) 10.5%

Two particles 4 and B of equal masses are suspended
from two massless springs of spring constants k, and
k,, respectively. If the maximum velocities, during
oscillations are equal, the ratio of amplitudes of 4 and
Bis [AIEEE 2003]

10.

11.

Simple Harmonic Motion 1.43

k, K
(A) k—z B) K,
ky k
© ,|F (D) k

A mass M is suspended from a spring of negligible
mass. The spring is pulled a little and then released so
that the mass executes SHM of time period 7. If the
mass is increased by m, the time period becomes 5773,

then the ratio of — is [AIEEE 2003]
3 25

A) 2 B) =2

(A) = (B) 9
16 5

c) = D) >

© ) (D) 5

The total energy of a particle, executing simple

harmonic motion is [AIEEE 2004]
(A) px B) p
(C) independent of x (D) ux'

where x is displacement from the mean position

. A particle at the end of a spring executes simple

harmonic motion with a period ¢, while the
corresponding period for another spring is ¢,. If the
period of oscillation with the two springs in series is 7,
then [AIEEE 2004]

(&) T=t+1, (B) T* =1 +1
© T'=¢t" +¢ (D) T =¢"+1t°

The bob of a simple pendulum executes simple
harmonic motion in water with a period ¢, while the
period of oscillation of the bob is £, in air. Neglecting
frictional force of water and given that the density
of the bob is (4/3) x 1000 kgm 3. What relationship

between # and ¢, is true? [AIEEE 2004]
A) t=1, ®B) t:%o
©) t=2, (D) t=4,

) ) e d
If a simple harmonic motion is represented by —dt_f +

[AIEEE 2005]

o, its time period is




12.

13.

14.

16.

17.

1.44 Physics Module-2

2r 27
A) I B) L
(A) 5 B) I
(©) 27a (D) 2o

Two simple harmonic motions are represented by the

equations y, = 0.1sin {1 007rt—|—§J and y, = 0.1cos 7.

The phase difference of the velocity of particle 1, with
respect to the velocity of particle 2 is  [AIEEE 2005]

—T m
(A) e (B) 3
-7 i
© 3 (D) 3

The function sin? (wr) represents [AIEEE 2005]

(A) a periodic, but not simple harmonic, motion with
aperiod 27/ w

(B) a periodic, but not simple harmonic with a period
wilw

(C) asimple harmonic motion with a period 27/ w

(D) a simple harmonic motion with aperiod 7/ w
Starting from the origin, a body oscillates simple

harmonically with a period of 2 s. After what lime
will its kinetic energy be 75% of the total energy?

[AIEEE 2006]
1 1
(A) 7 (B) 78
1 1
© ot (D) 75

The maximum velocity of 4 particle, executing simple
harmonic motion with an amplitude 7 mm, is 4.4 ms',

The period of oscillation is [AIEEE 2006]
(A) 0.01s (B) 105
(C) 0.1s (D) 100 s

The displacement of an object attached to a spring and
executing simple harmonic motion is given by

x=2x10"cosnt metre. The time at which the
maximum speed first occurs is [AIEEE 2007]
(A) 0.5s (B) 0.75s
(C) 0.125 s (D) 0.255

A particle of mass m executes simple harmonic
mation with amplitude & and frequency v. The average

Kinetic energy during its motion from the position of

equilibrium to the end is [AIEERE 2007]

18.

19.

20.

21.

1
(A) 7 ma?+* (B) 7 ma® 2

(C) 4n? ma® v? D) 27 ma* v*

Two springs, of force constants k, and k,, are connected
to a mass m as shown in the figure. The frequency of
oscillation of the mass is £ If both k, and k, are made
four times their original values. the frequency of

oscillation becomes [AIEEE 2007]
_k1 k)
=N

S S

(A) > (B) 4

© 4 @®) 2f

A point mass oscillates along the x-axis according to

the law x = x, cos (wt—ﬂ'/4). If the acceleration of

the particle is written as a = 4 cos (wt+6 ), then
[AIEEE 2007]

s

(A) A:xo,éz—z B) A=xw’,6=

i
4
(D) 4=xuw’,6= %:I

(C) 4=xw’ 6= —%

I x, v and a denote the displacement, the velocity
and the acceleration of a particle executing, simple
harmonic motion of time period of 7. then which of
the following does not change with time?

[AIEEE 2009]
(A) @®T? +4n2? (B) ixT—
(©) aT +2mv (D) “V—T

A mass M, attached to a horizontal spring, executes
SHM with amplitude A4 i+ When the mass M passes
through its mean position then a smaller mass m is
placed over it and both of them move together with

amplitude 4,. The ratio of [%J is [AIEEE 2011]

M+m M 172
4 ® [+ o
M—l—m 172 M
© [ M J ®) M+m




o
v

of
de
of
17

:cules
1asses
. m is
- with

2011]

Two particles are executing simple harmonic motion

22 of the same amplitude A4 and frequency w along the

23.

24.

y-axis. Their mean position is separated by distance X

X, > 4)- If the maximum separation between them is

(XO + A), the phase difference between their motion is
0

[AIEEE 2011]
m @
(A) 3 B) 4
s T
©) 5 (D) 3

If a spring of stiffness k is cut into two parts 4 and B
of length 4:IB = 2:3, then the stiffness of spring 4 is

given by [AIEEE 2011]
5 3k
Zk B) =

@) 5 (B) s
2k

© H D) k

This question has statement 1 and statement 2. Of the
four choices given after the statement, choose the one
that best describes the two statements.

If two springs S, and S, of force constants K and
K,, respectively, are stretched by the same force, it

Simple Harmonic Motion  1.45

25. A particle moves with simple harmonic motion in

26.

27

-

a straight line. In first T s, after starting from rest it
travels a distance a, and in next 7 s it travels 2a, in the
same direction, then [JEE Main 2014]
(A) amplitude of motion is 4a

(B) time period of oscillations is 67

(C) amplitude of motion is 3a

(D) time period of oscillations is 87

A pendulum made of a uniform wire of cross-sectional
area A has time period T. When an additional mass M
is added to its bob, the time period changes to TM. If
the Young’s modulus of the material of the wire is Y,
then 1/Y is equal to (g = gravitational acceleration)
[JEE Main 2015]

T, )| 4 NEAES
(3] | ® -7 |3

|4 T, ) _|Me
o %t o[-

For a simple pendulum, a graph is plotted between
its kinetic energy (KE) and potential energy (PE)
against its displacement d. Which one of the following
represents these correctly? (graphs are schematic and

Then whfch of the graphs represent variations of
potential energy? [JEE (Scr)’ 2003]

(A) (1) and (II) ,
(B) (ID) and (IV)
(C) (D) and (IV)
(D) (ID) and (IID)

is found that more work is done on spring S, than on .
spring S, [ AIEEIIE 2012] not drawn to scale) [JEE Main 2015]
(4) tf e ® &
Statement 1: If stretched by the same amount, work
done on S, will be more than that on S,,. i
Statement 2: k, < k,
(A) Statement 1 is false, Statement 2 is true. I"
(B) Statement 1 is true, Statement 2 is false. e
(C) Statement 1 is true, Statement 2 is true, Statement © e ke (D)
2 is the correct explanation for Statement 1.
(D) Statement 1 is {rue, Statement 2 is true, Statement \ jPE
2 is not the correct explanation of Statement 1. ¥d
JEE Advanced &
PE o
1. A particle is executing SHM according to y = a cos wt. 3 v




2.

1.46 Physics Module-2

Two masses m, and m, connected by a light spring of
natural length l is mmpn,w.,d completely and tied
by a string, Thls system while moving with a velocity
v, along the +ve x-axis pass through the origin at
¢ = 0. At this position, the string snaps. Position of
mass m, at time is given by the equation x () = vt —
A(1 — cos wi).

Calculate:
(A) Position of the particle m, as a function of time.
(B) [, in terms of 4. [JEE 2003]

A block P of mass m is placed on a frictionless
horizontal surface. Another block Q of the same mass
is kept on P and connected to the wall with the help
of a spring of spring constant k as shown in the figure.
1t is the coefficient of friction between P and Q. The
blocks move together performing SHM of amplitude
A. The maximum value of the friction force between P

and Q is [JEE 2004]
7 It
7 Ql~
“-wowvovoees] P | smooth
S
(A) k4 ® “
2
(C) zero (D) p,mg

A simple pendulum has time period T,. When the point
of suspension moves vertically up according to the
equation y = k> where k = 1 m/s* and ‘¢’ is time then

2
the time period of the pendulum is T,. Then [%] is
2

[JEE 2005(Ser)]
@) 2 ® L
6 10
6 5
© $ ® >

. A small body attached to one end of a vertically

hanging spring is performing SHM about its mean
position with angular frequency w and amplitude a. If
at a height y* from the mean position, the body gets
detached from the spring, calculate the value of y* so
that the height H attained by the mass is maximum.
The body does not interact with the spring during

6. Function x = A sin® wt + B cos? wt + C sin wt cos wt

7. A student performs an experiment for determination of

8. Column I describes some situations in which a

its subsequent motion after detachment (aw® > g).
[JEE 2005]

represents SHM [JEE 2006]
(A) for any value of 4, B and C (except C = 0)

(B) if 4 = — B, C = 2B, amplitude = |B~2|
(C) ifA=B,C=0
(D) if 4 = B, C = 2B, amplitude = |B|

2
g[: 4;2 l] I ~ 1 m and he commits an error of Al

For T, he takes the time of n oscillations with the
stop watch of least count AT and he commits a
human error of 0.1 s. For which of the following
data, the measurement of g will be most accurate?

[JEE 2006]

Al AT n Amplitude of oscillation
(A) Smm 0.2s 10 5 mm
(B) 5mm 02s 20 5 mm
(C) 5mm 0.1s 20 1 mm
(D) 1 mm 0.1s 50 1 mm

small object moves. Column II describes some
characteristics of these motions. Match the situations
in Column I with the characteristics in Column I and
indicate your answer by darkening appropriate bubbles

in the 4 x 4 matrix given in the ORS. [JEE 2007]
Column I Column IT o
(A) The object moves on the x-axis  (P) The object
under a conservative force in executes a
such a way that its “speed” and SHM.

“position” satisfy v =

2
¢\Je, —x°, where ¢, and c,
are positive constants,
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Column I Column II
B) The object moves on the x-axis  (Q) The object
in such a way that its velocity does not
and its displacement from the change its
origin satisfy v = —kx, where k direction.

is a positive constant.

(C) The object is attached to one

(R) The kinetic

end of a massless spring of energy of
a given spring constant. The the object
other end of the spring is keeps on
attached to the ceiling of an decreasing,.

(D) The object is projected from

elevator. Initially everything

is at rest. The elevator starts
going upwards with a constant
acceleration a. The motion of
the object is observed from the
elevator during the period it
maintains this acceleration.

(S) The object

the earth’s surface vertically can change
upwards with a speed its direction
only once.

2\JGM, / R,, where M. is the

mass of the earth and R° is the
radius of the earth. Neglect
forces from objects other than
the earth.

9. A block (B) is attached to two unstretched springs S1

and 82 with spring constants k and 4#, respectively
(see Figure I). The other ends are attached to identical
supports M1 and M2 not attached to the walls. The

springs and supports have negligible mass. There is no -

friction anywhere. Block B is displaced towards wall 1
by a small distance x (Figure II) and released. The
block returns and moves a maximum distance ¥
towards wall 2. Displacements x and y are measured
with respect to the equilibrium position of block B.

The ratio 2 in the figure is [JEE 2008]
x

10.

11.

12.

Simple Harmonic Motion 1.47

1 1
©) 2 (D) a

The x—¢ graph of the particle undergoing simple
harmonic motion is shown in the figure. The acce-

leration of the particle at t =4 /3 s is [JEE 2009]
’\1“
JAWA
o b
x
0 4\/8 12 1)
1_
3 —7’
A)—n’cm/s? B cm/s?
( )327r cm/s )] %

2
©) T cm/s? (D) —ﬁwzcm/sz
32 32

The mass M shown in the figure oscillates in simple
harmonic motion with amplitude 4. The amplitude of

the point P is [JEE 2009]
K, K,
TV 000 v |
(A) kA (B) k4
kZ kZ
© kA D) k,A
k +k, k +k,

A uniform rod of length L and mass M is pivoted at
the centre. Its two ends are attached to two springs
of equal spring constants k. The springs are fixed
to rigid supports as shown in the figure, and the
rod is free to oscillate in the horizontal plane. The
rod is gently pushed through a small angle 0 in one
direction and released. The frequency of oscillation
is [JEE 2009]

1 |2k
A) — 2%
()27rM
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6k 1 f24k
il (D) —, ==
M 2n\ M

13. A metal rod of length ‘L’ and mass ‘m’ is pivoted at
one end. A thin disc of mass ‘M’ and radius ‘R’ (< L)
is attached at its centre to the free end of the rod.
Consider two ways the disc is attached: (case A) The
disc is not free to rotate about its centre and (case B)
the disc is free to rotate about its centre. The rod-disc
system performs SHM in vertical plane after being
released from the same displaced position which of the
following statement(s) is/are true? [JEE 2011]

1
© P

LLLL Ll

(A) Restoring torque in case A = Restoring torque in
case B

(B) Restoring torque in case A < Restoring torque in
case B

(C) Angular frequency for case A > Angular
frequency for case B

(D) Angular frequency for case A < Angular
frequency for case B

Question No. 14 to 16

When a particle of mass m moves on the x-axis in a poten-
tial of the form V(x) = kx?, it performs simple harmonic
motion. The corresponding time period is proportional to

T as can be seen easily using dimensional analysis.

However, the motion of a particle can be periodic even
when its potential energy increases on both sides of x = 0
in a way different from kx* and its total energy is such that
the particle does not escape to infinity. Consider a particle
of mass m moving on the x-axis. Its potential energy is
M(x) = ax* (o > 0) for |x| near the origin and becomes a
constant equal to ¥V, for |x| > X, (see the figure).

[JEE 2010]

14. If the total energy of the particle is E, it will perform
periodic motion only if
(A) E<O
© V,>E>0

(B) E>0
(D) E>V,

15. For periodic motion of small amplitude 4, the time
period T of this particle is proportional to

(A) A\/E
o «a
@ 1 |a
© A\/% D) 2\/%

16. The acceleration of this particle for x| > X is
(A) proportional to ¥

m

1
(B)Z —

(B) proportional to %,
mX,

(C) proportional to 7y

(D) zero Mo

17. A point mass is subjected to two simultaneous
sinusoidal displacements in the x-direction, x,(f) =

A sin wt and x(f) = 4 sin [wt + 27”] Adding a third

sinusoidal displacement x,(f) = B sin(wt + ¢) brings
the mass to a complete rest. The values of B and ¢ are

[JEE 2011]
(A) 243" (B) A,4_7r

"4 3
(©) ﬁA,%” (D) A,%

Question No. 18 to 20

Phase space diagrams are useful tools in analyzing all kinds
of dynamical problems. They are especially useful in study-
ing the changes in motion as initial position and momentum
are changed. Here, we consider some simple dynamical sys-
tems in one-dimension. For such systems, phase space is a
plane in which position is plotted along the horizontal axis
and momentum is plotted along the vertical axis. The phase
space diagram is x(f) vs. p(¢) curve in this plane. The arrow
on the curve indicates the time flow. For example, the phase
space diagram for a particle moving with constant veloc-
ity is a straight line as shown in the figure. We use th¢ sign
convention in which position of momentum upwards (or
to right) is positive and downwards (or to left) is negative.

[JEE 2012]
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18.

19.

20.

Momenium —»

Position —>

The phase space diagram for a ball thrown vertically
up from the ground is

Momentum Mo t
( A) m‘L (B) m:an um
._il_. . .
Position K j Position
L 4 v
©) Momentum (D) Momentum

'y &

™,

‘.

b
L
&

! \k Position

v v

"~ Position

The phase space diagram for simple harmonic motion
is a circle centred at the origin, In the figure, the two
circles represent the same oscillator but for different
initial conditions, and £, and £, are the total mechanical
energies respectively. Then

Momentum
A

mhanaa ?.
Posilion

(A) E, = \2E, (B) E, = 2E,

(C) E,=4E, (D) E, = 15E,
Consider the spring-mass system, with the mass
submerged in water, as shown in the figure. The phase
space diagram for one cycle of this system is

21.

22,

Simple Harmonic Motion 1.49

RAREARARAA
A) Momentum (B) Momentum
#
[
; Position | Position
v
© Momentum D) Momentum
&
—
Position Position
v

A particle of mass m is attached to one end of a mass-
less spring of force constant &, lying on a frictionless
horizontal plane. The other end of the spring is
fixed. The particle starts moving horizontally from
its equilibrium position at time ¢+ = 0 with an initial
velocity u,. When the speed of the particle is 0.5 u,,
it collides elastically with a rigid wall. After this
collision, [JEE Advanced 2013]
(A) the speed of the particle when it returns to its
equilibrium position is #,
(B) the time at which the particle passes through the

equilibrium position for the first time is ¢ = 71’\/%

(C) the time at which the maximum compression of

. . 4 |m
the spring occurs is ¢t = EX'

(D) the time at which the particle passes through the
equilibrium position for the second time is

it (1
3Vk

Two independent harmonic oscillators of equal
mass are oscillating about the origin with angular
frequencies w, and w, and have total energies £, and
E., respectively. The variations of their moments p

t

29

with positions x are shown in the figures. If a/b = n*
and a/R = n, then the correct equation(s) is (are)
[JEE Advanced 2015]




(A) Ew,=Ew,

©) ww,=n
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Angular SHM

26, 1m 27. 1m 28, (A)2 ,(B) 3 gupwards 29. (A) 27

0. £ 31 2n il 3,
10 185 2
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Waves

WAVES

Waves are distributed energy or distributed ‘disturbance
(force)’.

Important Points Regarding Waves

1. The disturbance (force) is transmitted from one point
to another.

2. The energy is transmitted from one point to another.

3. The energy or disturbance passes in the form of waves
without any net displacement of the medium.

4. The oscillatory motion of the preceding particle is
imparted to the adjacent particle following it.

5. We need to keep creating disturbances in order to
propagate waves (energy or disturbance) continuously.

WAVES CLASSIFICATION

Waves are classified under two high-level headings.

Mechanical Waves

The motion of the particle constituting the medium follows
mechanical laws, i.e., Newton’s laws of motion. Mechanical
waves originate from a disturbance in the medium (such as
a stone dropping in a pond) and the disturbance propagates
through the medium. The forces between the atoms in the
medium are responsible for the propagation of mechanical
waves. Each atom exerts a force on the atoms near it, and
through this force, the motion of the atom is transmitted to
the others, The atoms in the medium do not experience any
net displacement.

Mechanical waves are further classified in two
categories:

1. Transverse waves (waves on a string)
2. Longitudinal waves (sound waves)

L

CHAPTER

Non-mechanical Waves

These are electromagnetic waves. Electromagnetic
waves do not require a medium for propagation. Speed
of electromagnetic waves in vacuum is a universal
constant. The motion of the electromagnetic waves in a
medium depends on the electromagnetic properties of
the medium.

Transverse Waves

If the disturbance travels in the x-direction, but the particles
move in a direction perpendicular to the x-axis as the wave
passes, then those waves are called as transverse waves.

=¥

Figure 2.1

Consider a sinusoidal harmonic wave travelling through a
string and the motion of a particle as shown in Fig. 2.1 (only
one unit of wave is shown for illustration purpose). Since
the particle is displaced from its natural (mean) position,
the tension in the string arising from the deformation tends
to restore the position of the particle. On the other hand,
velocity of the particle (kinetic energy) which is moving
it farther is zero. Therefore, the particle is pulled down
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due to tension towards mean position. In the process, it
acquires kinetic energy (greater speed) and overshoots
the mean position in the downward direction. The cycle of
restoration of position continues as vibration (oscillation)
of the particle takes place.

Longitudinal Waves

Longitudinal waves are characterized by the direction
of vibration (disturbance) and wave motion. They are
along the same direction. It is clear that vibration in the
same direction needs to be associated with a ‘restoring’
mechanism in the longitudinal direction.

MATHEMATICAL DESCRIPTION OF WAVES

We shall attempt here to evolve a mathematical model of
a travelling transverse wave. For this, we choose a specific
set up of a string and associated transverse waves travelling
through it. The string is tied to a fixed end, while disturbance
is imparted at the free end by up and down motion. For our
purpose, we consider that pulse is small in dimension and the
string is light, elastic and homogeneous. The assumptions
are required as we visualize a small travelling pulse, which
remains undiminished when it moves through the strings.
We also assume that the string is long enough so that our
observation is not subjected to pulse reflected at the fixed end.

For understanding purpose, we first consider a single
pulse as shown in Fig. 2.2 (irrespective of whether we can
realize such pulse in practice or not). Our objective here is
to determine the nature of a mathematical description which
will enable us to determine displacement (disturbance) of
the string as the pulse passes through it. We visualize two
snapshots of the travelling pulse at two close time instants
tand ‘¢ + Ar. The single pulse is moving towards right in
the positive x-direction. '

Y 123
PO

Figure 2.2

The vibration and wave motion are at right angle to
each other.

Three positions along the x-axis indicated as 1,
2 and 3 are marked with three vertical dotted lines. At
cither of the two instants as shown, the positions of string

particles have different displacements from the undisturbed
position on the horizontal x-axis. We can conclude from
this observation that displacement in the y-direction is g
function of the positions of the particle in the x-direction,
As such, the displacement of a particle constituting the
string is a function of x.

Let us now observe the positions of a given particle,
say 1. It has certain positive displacement at time ¢ = £. At the
next snapshot at ¢t = ¢ + A, the displacement has reduced
to zero. The particle at 2 has maximum displacement at
t = t, but the same has reduced at t = ¢ + At. The third
particle at 3 has certain positive displacement at ¢ = £. At
t =t + At, it acquires additional positive displacement and
reaches the position of maximum displacement. From these
observations, we conclude that displacement of a particle at
any position along the string is a function of #.

Combining the two observations, we conclude that
displacement of a particle is a function of both position of
the particle along the string and time,

y=fx, 1.

We can further specify the nature of the mathematical
function by association the speed of the wave in our
consideration. Let v be the constant speed with which the
wave travels from the left end to the right end. We notice
that wave function at a given position of the string is a
function of time only as we are considering displacement at
a particular value of x. Let us consider the left-hand end of
the string as the origin of reference (x = 0 and ¢ = 0). The
displacement in the y-direction (disturbance) at x = O is a
function of time, 7 only:

y=ff) =Asinwt.

The disturbance travels to the right at a constant speed v.
Let it reach a point specified as x = x after time ¢. If we
visualize to describe the origin of this disturbance at x = 0,
then the time elapsed for the disturbance to move from the
origin (x = 0) to the point (x = x) is x/v. Therefore, if we
want to use the function of displacement at x = 0 as given
above, then we need to subtract the time elapsed and set the
equation as

x
y=rflt—=
Y

= A sinw téi]

Y

This can also be expressed as

ﬁ» e

1%
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shape

on is written as

equati
y(x, = f[t—i—i] >

v
The quantity x — vI is called the phase of the wave function.
As phase of the pulse has a fixed value,

x — vt = constant.

Taking the derivative w.r.t. time,

dx —

dt
where v is the phase velocity, often called the wave
velocity. It is the velocity at which a particular phase of the
disturbance travels through space.

In order for the function to represent a wave
travelling at speed v, the quantities x, v and ¢ must appear
in the combination (x + vf) or (x — vf). Thus, (x — v£)* is
acceptable, but x* — Vf* is not.

v,

DESCRIBING WAVES

Two kinds of graphs may be drawn: displacement-distance
and displacement—time.

A displacement—distance graph for a transverse
mechanical waves shows the displacement y of the
vibrating particles of the transmitting medium at different
distances x from the source at a certain instant, i.e., it is
like a photograph showing the shape of the wave at that

particular instant.
The maximum displacement of each particle from its

undisturbed position is the amplitude of the wave.
In Fig. 2.3, itis O4 or OB.

_ One wavelength

AN
\ / \ / Distance x

Trough Trough

Displacement
o b

o8]

Crest Crest

Figure 2.3
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The wavelength \ of a wave is generally taken as the
distance between two successive crests or two successive
troughs. To be more specific, it is the distance between two
consecutive points on the wave which have the same phase.

A displacement-time graph may also be drawn for a
wave motion, showing how the displacement of one particle
at a particular distance from the source varies with time. If
this is simple harmonic variation, then the graph is a sine
curve.

Wave Length, Frequency and Speed

If the source of a wave makes f vibrations per second, they
will the particles of the transmitting medium. That is, the
frequency of the waves equals frequency of the source.

When the source makes one complete vibration, one
wave is generated and the disturbance spreads out a distance
X from the source. If the source continues to vibrate with
constant frequency f, then f waves will be produced per
second and the wave advances a distance fA in 1 s. If v is
the wave speed, then

v=fA.

This relationship holds for all wave motions.

Note

Frequency depends on the source (not on the medium),
v depends on the medium (not on the source frequency),
but wavelength depends on both the medium and the

source.

Initial Phase

At x = 0 and ¢ = 0, the sine function evaluates to zero and
as such y-displacement is zero. However, a wave form can
be such that y-displacement is not zero at x = 0 and ¢ = 0.
In such a case, we need to account for the displacement by
introducing an angle like

y(x, ) = 4 sin(kx — wt + @),

where ¢ is the initial phase.
Atx=0andt =0,

(0, 0) = A sin(¢).

The measurement of an angle is determined by the following
two aspects of wave form at x = 0, ¢t = 0: (i) whether the
displacement is positive or negative and (ii) whether the
wave form has a positive or negative slope.

For a harmonic wave represented by a sine function,
there are two values of initial phase angle for which
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displacement at reference origin (x = 0, £ = 0) is positive T 37
and has equal magnitude. We know that the sine values of p=—,—.
angles in the first and second quadrants are positive. A pair
of initial phase angles, say ¢ = 7/3 and 27/3 correspond to  To choose the correct phase angle ¢ we displaced to wave,
equal positive sine values: Slightly in the positive x-direction such that,

sin 8 = sin(mr — 6)

.o [ 7r]
sin—=sin|7m——
3 3

. [ 27r] 1
=sin|—|=—.
3 2
To choose the initial phase between the two values /3 and Figure 2.5

2m/3, we can look at a wave motion in yet another way. In Figure 2.5, particle at a is moving downward towards
A wave form at an instant is displaced by a distance Ax in . . . A .

. . point b, i.e., particle at x = 0 and y = —= have negative
a very small time interval At then the speed of the particle . . . 2

S iy NN Cpy— velocity, which gives

at # = 0 and x = 0 is in the upward positive direction in
further time A,
%:wA cos(w—lcx+¢),

Att=0,x=0is

cos ¢ = negative (from Fig. 2.5) 2

From the above discussion, 37/4 gives sin ¢ is positive and
cos ¢ is negative, i.e.,

p="T. g

Note

Equation of the wave which is moving in the negative
EXAMPLE 1 x-direction is shown in Fig. 2.6.

Find out the expression of the wave equation which is
moving in the positive x-direction and at x = 0, ¢ = 0,

. X
hy - /\ /—\ attime ¢ _y=Asmw(t+;]
Y&l —/—- / \ v :
| \/ \/ B
SOLUTION ly=Asinud/

Let y=Asin(wt — kx + ¢) Figure 2.6
att=0andx=0.

+«——V

y = A sin(wt + kx + ¢).
i:A sin¢

V2

EXAMPLE 2 -
= sin ¢ =

If (wt) and (kx) terms have the same sign, then the wave
moves towards the negative x-direction and vice versa and
with a different initial phase.

-
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y = Asin{wf — ) Wave moves towards

y = Asin(—kx+ wt) the + ve x-direction

Wave moves towards o

= Asin(kx +wt +) the — ve x-direction.
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y= Asm( —kx — wt)
(

y= Asm(kx—l—wt)

PARTICLE VELOCITY AND ACCELERATION

particle velocity at a given position x = x is obtained by
differentiating the wave function with respect to time 7. We
need to differentiate the equation by treating x as a constant.
The partial differentiation yields particle velocity as
0, =< y(x1)

el

= 2A sin(kx—wt)
ot

= —wd cos(loc —wt).

We can use the property of cosine function to find the
maximum velocity. We obtain the maximum speed when
the cosine function evaluates to —1:

=wA.

= Vpnm

The acceleration of the particle is obtained by differentiating
the expression of velocity partially with respect to time:

0
= a,=—v
I) at P

= %{—wA cos{kx — wt)}

=_—w’4 sin(kx — wt)
=—w'y.

Again the maximum value of the acceleration can be
obtained using the property of sine function:
= a, =uwA.

P

DIFFERENT FORMS OF WAVE FUNCTIONS

The different forms of wave functions give rise to a bit of
confusion about the form of wave function. The forms used
for describing waves are

V(x, 1) = A sin(kx — wr)

Waves 2.5

y(x, ) = A sin{wt — kx 4 )

Which of the two forms is correct? In fact, both are correct
so long as we are in a position to accurately interpret
the equation. Starting with the first equation and using
trigonometric identity, we have,

= A sin{fx — wi) = A sin(m — kx + wr)

= A sin(wt — kx + ).

Thus, we see that the two forms represent waves having the

same speed |v = = . They differ, however, in phase. There

is a phase difference of . This has implications on the
waveform and in the manner particles oscillate at any given
time instant and position. Let us consider two waveforms
at x = 0, t = 0. The slopes of the waveforms are given as

2y()c t)= kA cos (kx —wt)
Ox
=kA
= a positive number
and gy(x,t) = —kA cos{wt — kx)
Ox

= —kd

= a negative number.

Forms of Wave Functions

y
& v
—
y = A sin[kx—wt] //\ /\
; U -
¥ v
P

y = A sinfwt—kx-+]

f\. Vp m
» X

Figure 2.7

Exchange of terms in the argument of a sine function results
in a phase difference of 7.

In the first case, the slope is positive, and hence,
particle velocity is negative. It means the particle is moving
from the reference origin or mean position to negative
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extreme position. In the second case, the slope is negative,
and hence, the particle velocity is positive. It means the
particle is moving from the positive extreme position to
the reference origin or mean position. Thus, the two forms
represent waves that differ in the direction in which the
particle is moving at a given position.

Once we select the appropriate wave form, we can
write the wave equation in other forms as given here:

¥(x, £) = A sin(kx — wr)
wt]

e
k

=4 sin%r(x-vt) .

=Asink

Further, substituting for £ and w in the wave equation, we

have,

2 27
x, 1) = A sin|—x ——1¢
¥ ) [A T

. x t
= A sin 27r[———J.
AT
If we want to represent the waveform moving in the negative

x-direction, then we need to replace ¢ by —.

LINEAR WAVE EQUATION

By using the wave function y = 4 sin(wt — kx + ¢), we can
describe the motion of any point on the string. Any point
on the string moves only vertically, and so its x-coordinate
remains constant. The transverse velocity v, of the point
and its transverse acceleration a, are therefore:

7= ‘@
7 dt x = conslant
dy
= —87:wA cos(wt —kx + @) @)
Ll
¢ dt X = constant
v 2
= v, _9y
ot o
= —w sin(wt — kx + ¢) @)
and hence,
vV max . wA
av max . wZA

The transverse velocity and transverse acceleration of
any point on the string do not reach their maximum value
simultaneously. In fact, the transverse velocity reaches
its maximum value (wA) when the displacement y = 0,
whereas the transverse acceleration reaches its maximum
magnitudes (w?4) when y = +:4.

Further,
3
dx { = constant
= 4 = —kA cos(wt — kx + ¢) 3)
Ox
_ 9y
Ox*
= —i4 sin(wt — kx + ¢) 4
From Eqgs. (1) and (3),
9 Ch 4
ot k Ox
= v, = —v, X slope,

i.e., if the slope at any point is negative, particle velocity
and vice versa, for a wave moving along the positive x-axis,
ie., v, is positive.

For example, consider two points A and B on the
y-curve for a wave, as shown. The wave is moving along
the positive x-axis.

Figure 2.8

The slope at 4 is positive; therefore, at the given
moment, its velocity is negative, which indicates that the
wave is moving in the downward direction. For the particle
at point B, the situation is the opposite.

Now using Egs. (2) and (4),

0 L2
oxr WP o
o’y 1 0%
= gr__~ory
ot v o

1

H|
;.
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This i known as the linear wave equation or differential
aquation representation of the travelling wave model. We
pave developed the linear wave equation from a sinusoidal
-mcchanical wave travelling through a medium. But it is
much more general, The linear wave equation successfully
Jescribes  waves on  strings, sound waves, and also
ectromagnetic waves.
Thus, the above equation can be written as,

el

Gy _ 0y

= 1
or* Ox*? M
The general solution of this equation is of the form
y(x, 1) = f(ax + bt) @

Thus, any function of x and ¢ which satisfies Eq. (1) or
which can be written as Eq. (2) represents a wave. The only
condition is that it should be finite everywhere and at all
times. Further, if these conditions are satisfied, then speed
of wave (v) is given by,

N coefficientoft b

" cocfficientof x @

Thus, plus (4) sign between ax and bt implies that the wave
is travelling along the negative x-direction and minus (—)
sign shows that it is travelling along the positive x-direction.

EXAMPLE 3

Verify that the wave function
2

(x— 3t) +1
is a solution to the linear wave equation x and y are in cm.

SOLUTION
By taking partial derivatives of this function w.r.t x and ¢,

&y 12(x—3) -4
2 _——’
O [(e—30F 1]

9%y  108(x—3t)' —36

and —= ;
o (x—3) +1]
2 2
or )
‘ ox* 991’

\ Comparing with the linear wave equation, we see that the
wave function is a solution to the linear wave equation if

Waves 2.7

the speed at which the pulse moves is 3 cm/s. It is apparent
from the wave function; therefore, it is a solution to the
linear wave equation. [ |

EXAMPLE4
A wave pulse is travelling on a string at 2 m/s. Displacement
y of the particle at x = 0 at any time ¢ is given by

B
YT
Find:

(a) the expression of the function y = (x, ¥, ie,

displacement of a particle position x and time ¢.

(b) the shape of the pulseatt=0and¢=1s.

SOLUTION

(a) By replacing ¢ by

x .
[t — —] , we can get the desired wave
function, i.e., N

2

L)
i-2] +1
2

(b) We can use wave function at a particular instant, say
t =0, to find the shape of the wave pulse using different

y:

values of x.
at t=0 y=xz2
Z—H

at x=0 y=2
x=2 y=1
x=-2 y=1
x=4 y=04
x=—-4 y=04

Using these values, the shape is drawn as shown below.

Y 4
2

Similarly, for ¢ = 1 s, the shape can drawn. What do you
conclude about the direction of motion of the wave from
the graphs? Also check how much the pulse has move in
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1-s time interval. This is equal to the wave speed. Here is
the procedure.

2
y: 3
X
1-3)
at t=1s
at x=2 y =2 (maximum value)
at x=0 y=1
Ya

tq/é'
e

| ; i -
-2 0 2 4 6

The pulse has moved to the right by 2 units in 1 s interval.
X
Alsoast — E = constant,

Differentiating w.r.t time

|
2 dr
dax _
dt
EXAMPLE 5

A sinusoidal wave travelling in the pos1t1ve X- dlrectlon has
an amplitude of 15 cm, wavelength 40 cm and frequency
8 Hz. The vertical displacement of the medium at f = 0 and
x = 0is also 15 ¢m, as shown.

y(cm)
s Ja— 40—
1 / \
- x(cm)

(a) Find the angular wave number,
frequency and speed of the wave.

(b) Determine the phase constant ¢ and write a general
expression for the wave function.

period angular

SOLUTION

(@ k==

w=2nf=16s""
v =fA =320 cm/s.

(b) Itis given that A = 15cmand alsoy = 15cmatx =0
and ¢ = 0.

Then using
y = A sin(wt — kx + ¢)
15=15sin ¢
= sin ¢ = 1.
Therefore, the wave function is
. T
y= Asm(wt—kx+—2—)
i 7w rad s
=(15cm)sin|(167s™ M —|——=—|x+ | =
20 cm 2

SPEED OF A TRANSVERSE WAVE ON A
STRING

Consider a pulse travelling along a string with a speed v to
the right. If the amplitude of the pulse is small compared to
the length of the string, the tension 7 will be approximately
constant along the string. In the reference frame moving
with speed v to the right, the pulse is stationary and the
string moves with a speed v to the left. Figure 2.9 shows
a small segment of the string of length A/. This segment
forms part of a circular arc of radius R. Instantaneously,
the segment is moving with speed v in a circular path, so
it has centripetal acceleration v/R. The forces acting on
the segment are the tension 7 at each end. The horizontal
components of these forces are equal and opposite and
thus cancel. The vertical component of these forces point
radially inward towards the centre of the circular arc. These
radial forces provide centripetal acceleration. Let the angle
subtended by the segment at the centre be 26. The net radial
force acting on the segment is




Figure 2.9

2.9(a). To obtain the speed v of a wave on a stretched
It is convenient to describe the motion of a small
nt of the string in a moving frame of reference.

igure 2.9(b). In the moving frame of reference, the
I segment of length Al moves to the left with speed
net force on the segment is in the radial direction
: -:'se the horizontal components of the tension force
i) cancel.

> F =2Tsing = 210,

where we have used the approximation sin  ~ @ for smal] 4.
If p is the mass per unit length of the string, the mass
e segment of length A/ is

m = Al
=2uRO (as Al = 2R0),
From Newton’s second law,

2
my

XF =ma= —_
' R

2
279 = (21R9) %

V= [—

)

'SOLVED EXAMPLES

AMPLE 6 _

the speed of the wave generated in the string as in he
Fiiation shown, Assume that the tension is not affected by
M€ Mass of the eord.

Waves 2.9

sy
500 g/m
20 kg
SOLUTION
T=20x10=200N
[3
V= :@ = 20m/s. o
0.5
EXAMPLE 7

A taut string having tension 100 N and linear mass density
0.25 kg/m is used inside a cart to generate a wave pulse
starting at the left end as shown. What should be the velocity
of the cart so that pulse remains stationary w.r.t the ground.

SOLUTION

. T

Velocity of pulse = |=- = 29 m/s.
Jz
Now ‘71)0 = gpc + 17(,(]
0=207 + ¥,
Voo = =201 m/s. [

EXAMPLE 8

One end of a 12.0-m-long rubber tube with a total mass of
0.9 kg is fastened to a fixed support. A cord attached to the
other end passes over a pulley and supports an object with a
mass of 5.0 kg. The tube is struck a transverse blow at one
end. Find the time required for the pulse to reach the other
end (g = 9.8 m/s?),

SOLUTION

Tension in the rubber tube 4B,
T'=mg
T=(50)9.8)=49N
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or
Mass per unit length of the rubber tube,
09
12
= 0.075 kg/m
B 1
i
A
Speed of the wave on the tube,
T
v=[—
L
= Jﬂ =25.56m/s
0.075
The required time is
AB
t="—
v
- =047s. wQ
25.56

EXAMPLE 9

A uniform rope of mass 0.1 kg and length 2.45 m hangs

from a ceiling.

(a) Find the speed of transverse wave in the rope at a point
at 0.5 m distance from the lower end.

(b) Calculate the time taken by a transverse wave to travel
the full length of the rope.

SOLUTION

(a) As the string has mass and it is suspended vertically,
tension in it will be different at different points. For a
point at a distance x from the free end, tension will be
due to the weight of the string below it. So, if m is the

mass of string of length /, the mass of length x of the
) ) ml
string will be 7 b

T= [?] Xg = uxg

[5=4)
g
T
LA
n
¢ )

or v= L= [

Atx=0.5m,

v=1/0.5%9.8
=2.21m/s.

(b) From Eq. (1), we see that velocity of the wave is
different at different points. So, if at point x the wave
travels a distance dx in time dt, then

dt—dx: dx
v ox
] ! dx
I
0 0 gx
or =2 i
g
=2 ﬁg =1.0s. |
9.8

ENERGY CALCULATION IN WAVES
Kinetic Energy per Unit Length

The velocity of a string element in transverse direction is
greatest at mean position and zero at the extreme positions
of waveform. We can find an expression of the transverse
velocity by differentiating displacement with respect to
time. Now, the y-displacement is given by

y =4 sin(kx — wi).

Differentiating partially with respect to time, the expression
of particle velocity is



ot

= —wA cos(kx — wr).

In order to calculate the kinetic energy, we consider a small
giring element of length dx having mass per unit length p.
The kinetic energy of the element is given by

dK = ldmv2
2 P

= %udxszz cos’ (kx — wt).

This is the kinetic energy associated with the element in
motion. Since it involves squared of cosine function, its
value is greatest for a phase of zero (mean position) and

(1)

zero for a phase of g (maximum displacement).

Now, we get kinetic energy per unit length, X, by
dividing this expression with the length of a small string
considered
ve s
wave

= %uw2A2 cos’ (kx — wt).

Rate of Transmission of Kinetic Energy

The rate, at which kinetic energy is transmitted is obtained
by dividing the expression of kinetic energy by a small time
element, dt:

dKk 1 dx

2 T WA cos (ke —wt).
3 i A )

dx
— . H
7 ence,

dKk 1 B3
— = — pvw* A" cos” (kx —wt),
T ( )

Here, kinetic energy is a periodic function. We can obtain

«ction is ‘the average rate of transmission of kinetic energy by

ositions integrating the expression for integral wavelengths. Since
mnsverse only cos?(kx —wr) is the varying entity, we need to find
spect to average of this quantity only. Its integration over integral

. 1
Wavelengths gives a value of o Hence, the average rate of
' transmission of kinetic energy is
tpression
dK

:lxluvsz2
di % 272

But, wave or phase speed, v, is the time rate of position, i.e.,'

Waves 2.11

1 2 2
= puvw A",
4#

Elastic Potential Energy

The elastic potential energy of the string element results
as a string element is stretched during its oscillation. The
extension or stretching is maximum at the mean position.
We can see in Fig. 2.10 that the length of the string element
of equal x-length dx is greater at the mean position than at
the extreme. As a matter of fact, the elongation depends
on the slope of the curve. Greater the slope, greater is the
elongation. The string has the least length when the slope is
zero. For illustration purpose, the curve is purposely drawn
in such a manner that the elongation of the string element
at mean position is highlighted.

~
U

BN
{AVIAV,

Figure 2.10 The string element stretched most at
equilibrium position.

L

Greater extension of the string clement corresponds to a
greater elastic energy. As such, it is greatest at the mean
position and zero at the extreme position. This deduction is
contrary to the case of SHM in which potential energy is
greatest at the extreme position and zero at the mean position.

Potential Energy per Unit Length

When the string segment is stretched from the length dx to
the length ds, an amount of work = T (ds — dx) is done.
This is equal to the potential energy stored in the stretched
string segment. So the potential energy in this case is

2

X x-|:dx

Figure 2.11
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U=T(ds — dx).

ds =J(dx" +dy*)

Now,

from the binomial expansion.

2
ds ~ dx + %[d_y] dx

So,
dx
U = T(ds — dx)
2
. lT [QZ] dx
2 \ox
or the potential energy density
2
w_11() "
de 2 \0Ox
& = kA cos(kx — wf)
dx
and T=vw

Substituting the above value in Eq. (1), we get

au 1 5, 5
22—~ w4 cos” (kx —wt
= 2" ( )

Rate of Transmission of Elastic Potential Energy

The rate. at which elastic potential energy is transmitted
is obtained by dividing expression of kinetic energy by a
small time element, ¢, This expression is the same as that
for kinetic energy.

dUu 1 5 o
= vt A cost (ke —wt
2" \ )

and average rate of transmission of elastic potential
energy is

dUu 1 1
‘ =L
a2
:—]-uvsz2
4

Mechanical Energy per Unit Length

Since the expression of elastic potential energy is the same
as that of kinetic energy, we obtain the mechanical energy
expression by muitiplying the expression of kinetic energy
by 2. The mechanical energy associated with a small string
element dx is

dE = 2xdK
1 2
= 2x—dmv
2 4

= pdxwtA4? cos*(kx — wi).
Similarly, the mechanical energy per unit length is
g, -
dx
1
=2x —2—sz2 cos” (fox — wt)

= puw?A? cos*(kx — wi).

Average Power Transmitted

The average power transmitted by a wave is equal to the
time rate of transmission of mechanical energy over integral
wavelengths. It is equal to

dE
Igavg:E avg
:2><luvw2A2
4
1 2 42
=—pvw A",
2#

If the mass of the string is given in terms of mass pet
unit volume p, then we make appropriate changes in the
derivation. We exchange j by rs, where s is the cross-
section of the string

1 2 42
P = Epsvw A

avg

Energy Density

Gince there is no loss of energy involved, it is expected that
energy per unit length is uniform throughout the string. As
much energy enters that much energy goes out for a given
length of string. This average value along unit length of the
string length is equal to the average rate al which energy 18

being transferred.
The average mechanical energy per unit length is
equal to integration of expression over integral wavelength
E1I

avg

1
—=2x— w4’
M

1 2 42
=—puvw A"
5 K
We have derived this expression for harmonic wave along
a string. The concept, however, can be extended to two-
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(hree-dimensional transverse waves. In the case of
i1u‘ce—dimensional {ransverse waves, we consider a small
;mlumctric element. We, then, use density p in place of
per unit length, 1. The corresponding average energy

mass | . ! i
per unit volume is referred to as energy densily w:

I )i
w=—pww’ A
2

[ntensity

Intensity of wave (]) is defined as power transmitted per

unit cross-section area of the medium:
AZ
I = psvw’ —

| P
=—pvw A°.
2P

Intensity of wave () is a very useful concept for three-
dimensional waves radiating in all directions from the
source. This quantity is usually referred in the context of
light waves, which is transverse harmonic waves in three
dimensions. Intensity is defined as the power transmitted
per unit cross-sectional area. Since light spreads uniformly
all around, intensity is equal to power transmitted, divided
by spherical surface drawn at that point with source at its
centre.

Phase Difference Between Two Particles in the Same
Wave

The general expression for a sinusoidal wave travelling in
the positive x-direction is

y(x, ) = A sin(wt — kx).
Equation of a particle at x| is given by
y, = A4 sin(wt — kx,).
Equation of a particle which is at x, from the origin
¥, = A sin(wt — kx,).

Phase difference between particles is

k(x, — x)=A¢
KAx = A¢
= Ax = Ad

k-

PRINCIPLE OF SUPERPOSITION

This principle defines the displacement of a medium
particle when it is oscillating under the influence of two
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or more than two waves. The principle of superposition is
stated as:

When two or more waves superpose on a medium
particle, then the resultant displacement of that medium
particle is given by the vector sum of the individual
displacements produced by the component waves at that
medium particle independently.

Let 3,,7,,..., ¥y be the displacements produced by
N independent waves at a medium particle in the absence of
others, then the displacement of that medium, when all the
waves are superposed at that point, is given as

5}:)—5| +5}2 +y3 ++5)’N

If all the waves producing oscillations at that point are
collinear, then the displacement of the medium particle where
superposition is taking place can be simply given by the
algebraic sum of the individual displacement. Thus, we have

y=yty, et

The above equation is valid only if all the individual
displacements y,, y,, ..., ¥, are along the same straight line.

A simple example of superposition can be understood
from Fig. 2.12. Suppose two wave pulses are travelling
simultaneously in opposite directions as shown. When they
overlap each other, the displacement of the particle on the
string is the algebraic sum of the two displacements as the
displacements of the two pulses are in the same direction.
Fig. 2.12 (b) also shows the similar situation when the wave
pulses are in the opposite side.

Applications of Principle of Superposition of
Waves

There are several different phenomena that take place

- during the superposition of two or more waves depending

on the wave characteristics, which are being superposed.
We will discuss some standard phenomena:

1. Interference of waves

2. Stationary waves

3. Beats

4. Lissajou’s figures (not discussed here in detail)

Lets discuss these in detail.

Interference of Waves

Suppose two sinusoidal waves of the same wavelength and
amplitude travel in the same direction along the same straight
line (may be on astretched string), then superposition principle
can be used to define the resultant displacement of every
medium particle. The resultant wave in the medium depends
on the extent to which the waves are in phase with respect to
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Figure 2.12

each other, that is, how much one wave form is shifted from
the other waveform. If the two waves are exactly in the same
phase, that is, the shape of one wave exactly fits on to the
other wave, then they combine to double the displacement of
every medium particle as shown in Fig. 2.13(a). We call this
phenomenon as constructive interference. If the superposing
waves are exactly out of phase or in opposite phase, then they
combine to cancel all the displacements at every medium
particle and medium remains in the form of a straight line as
shown in Fig. 3.13(b).

2A--y

ResultantI/\ /\ /r\=
ERVAVAS

Figure 2.13

v

We call this phenomenon as destructive interference.
Thus, we can state that when waves meet, they interfere
constructively if they meet in the same phase and
destructively if they meet in the opposite phases. In either
case, the wave patterns do not shift relative to each other
as they propagate. Such superposing waves which have the
same form and wavelength and have a fixed phase relation
to each other are called coherent waves. Sources of coherent
waves are called coherent sources. Two independent sources
can never be coherent in nature due to practical limitations
of manufacturing process. Generally, all coherent sources
are made either by splitting of the wave forms of a single
source or the different sources are fed by a single main
energy source.

In simple words, interference is the phenomenon of
superposition of two coherent waves travelling in the same
direction.

We have discussed that the resultant displacement
of a medium particle when two coherent waves interfere
at that point is the sum or difference of the individual
displacements by the two waves if they are in the same phase
(phase difference = 0, 2m,...) or opposite phase (phase
difference = 7, 37,...), respectively. But the two waves
can also meet at a medium particle with phase difference
other than 0 or 27. If the phase difference ¢ is such that
0 < ¢ < 2m, then how is the displacement of the point of
superposition given? Now we discuss the interference of
waves in detail analytically.
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A nalytical Treatment of Interference of Waves = Ax = n.
i 8 For constructive interference,
1
q t k 2
A, sin(wt + kx) y, = A, sinwt + k) A = (\/Z . \/Z) .
¥, = A, sin(wt + kx,) When I =L=1
X?
Sz Illet = 41
A, sin(wt + k.
an(w & Anct :AI +A2'
Figure 2.14 . . .
When superposing waves are in opposite phase, the

resultant amplitude is the difference of two amplitudes and

Interference implies super position of waves.
I, is minimum; this is known as destructive interference.

Whenever two or more than two waves superimpose each
other, they give sum of their individual displacements. For I to be minimum,
Let the two waves coming from sources Sl and S, be cos Ap = —1

y, =A, sin(wt + kx,) Ap=Q2n+ Dr

= A, sin(wt + kx.), respectively.
Yo = A, sin( o) 1P v where n = {0, 1,2,3,4,5, ...}

Due to superposition, )
TWAx =Qn+ U

ynet . yl + y2
Voo = A, sin(wt + kx ) + A, sin(wt + kx,). A

nce. = Ax= 2n+1)=.

tfere Phase difference between y, and y, = k(x, — x,) 2

| 311:1 ie. Ag = k(x, — x,). For destructive interference,

ither 2

bther As A(b _ Z—WAX [net = (\/Z + \/Z)

e the A

ation (where Ax = path difference and A¢ = phase difference) It =1

erent

2 2 [net = 0

urces 4, = ‘[Al + A4 +24 .4 cos¢

tions A =4 —A

i net 2"
urces = A=A+ A +244, cosg I

iingle I +L)

main IL.=1+1+ 21,1, cos¢ Ratio of I and] = L[i_(_zl

L' : (as f x A4%). (\/Z_\/Z)
on of When the two displacements are in phase, then the resultant Generally,
same amplitude will be the sum of the two amplitudes and 7 will
be maximum, This is known as constructive inl‘erFerenlce. La=1+ 14+ 2JII; cos¢

sment For I  to be maximum,

erfere If =T =31

vidual . cos ¢ =1 Py
phase s = 2nr, o = 21+ 2[cos ¢
phase
waves where n = {0,1,2,3,4,5, ...} I, =211 + cos ¢)
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SOLVED EXAMPLES

EXAMPLE 10 -

Wave from two sources, each of the same frequency and
travelling in the same direction, but with intensity in the
ratio 4:1 interfere. Find the ratio of maximum to minimum
intensity.

SOLUTION

EXAMPLE 11

A triangular pulse moving at 2 ¢cm/s on a rope approaches
an end at which it is free to slide on a vertical pole.

2 cm/s
—

(a) Draw the pulse at % s interval until it is completely

reflected.
(b) What is the particle speed on the trailing edge at the
instant depicted?

SOLUTION

(a) Reflection of a pulse from a free boundary is really the
superposition of two identical waves travelling in the
opposite directions. This can be shown as below.

g 4= [ 0.5¢cm
Fro | o

05 e, Ao
—Temi[ciiem” T1emi 61 om

Att=1/2s
(9) (h) (0
T Bem L e arS
2em 1com 1ecm 2cm Tem 2
Att=2s

0 (k) @i

il .
In every ES’ each pulse (one real moving

towards right and one imaginary moving towards
left) travels at a distance of 1 c¢m, as the wave speed
is 2 cm/s.

(b) Particle speed,

= |—v (slope)).
Here, v = wave speed
=2cm/s
and slope = ]
op 2"

Particle speed = 1 cm/s
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’.]‘hc figure shows a rectangular pulse and triangular pulse
).)"-m{;hil'lg cach other. The pulse speed is 0.5 em/s. Sketch

I:|1.".3 resultant pulse at £ = 2 s.

-2 -1 01t 2 3

— x(cm)

SOLUTION

In 2 s, each pulse will travel a distance of 1 cm.
The two pulses overlap between 0 and 1 cm as
shown in the figure. So, 4, and 4, can be added as shown

in Fig. ().

€Y *
LA, 2cm
—1 ol 1
® F o
1 ] 1} 1
S R o
' Ve |
‘ 2cm
oAl N\
0 1 2
(¢ T
! 4 ] 2cm
L A
! SCRTERI 1
| l |
! A :\: 2cm

Resultant pulse
att=2s |

REFLECTION AND TRANSMISSION IN
WAVES

1. When a pulse travelling along a string reaches the
end, it is reflected. If the end is fixed as shown in
Fig. 2.15 (a), the pulse returns inverted. This is because
as the leading edge reaches the wall, the string pulls
up the wall. According to Newton’s third law, the wall
will exert an equal and opposite force on the string at

Waves 2.17

all instants. This force is, therefore, directed first down
and then up. It produces a pulse that is inverted but

otherwise identical to the original.
The motion of the free end can be studied by

letting a ring at the end of the string slide smoothly on
the rod. The ring and rod maintain the tension but exert
no transverse force.

A
A (Vp
AN AN
SN

g
N .

o

(a) (b)

Figure 2.15 Reflection of wave pulse (a) at a fixed end
of a string and (b) at a free end. Time increases from top
to bottom in each figure

When a wave arrives at this free end, the
ring slides the rod. The ring reaches a maximum
displacement. At this position, the ring and string
come momentarily to rest as in the fourth drawing
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from the top in Fig. 3.15(b). But the string is stretched ~ we consider an example where a light string is attached to 3
in this position, giving increased tension, so the free  heavy string as shown in Fig. 2.17 (a). |'

end of the string is pulled back down, and again a If a wave pulse is produced on a light string moving
reflected pulse is produced, but now the direction of  towards the friction, a part of the wave is reflected and a
the displacement is the same as for the initial pulse. part is transmitted on the heavier string. The reflected wave

2. The formation of the reflected pulse is similar to  is inverted with respect to the original one.
the overlap of two pulses travelling in the opposite

directions. The net displacement at any point is given v | L
by the principle of superposition. R T
. v, = .
2
S\ i wa | W) & >,
T = ' _— M (Vi)

— J

y = A sin(wt — kx)

F\‘ / T2y A sin(ut — k)
—V

2 y = A sinwt + kX + )
[ jo M o | (IS Figure 2.17 (a)

On the other hand if the wave is produced on the
‘ o heavier string which moves toward the junction, a part will
rooon s be reflected and a part will be transmitted. No inversion in
[ - wave shape will take place.
The wave velocity is smaller for the heavier string
than for lighter string.

. — - — v
| I S T Ay = Asin(wt — k)
| «— L
| .y

(a) (b) - t el
A Figurer 3.16
Figure 2.16(a) shows two pulses with the same V— /I\ / [ A
shape, one inverted with respect to the other, travelling
in the opposite directions. Because these two pulses have y=A, sin(wt — y = A,sin(wt — k)

the same shape, the net displacement of the point where .
the string is attached to the wall is zero at all times. Figure 2.17 (b)

Figure 2.16(b) shows two pulses with the same Now to find the relation between 4, 4 and 4, we
shape, ‘travelling in the opposite directions but not  consider Fig. 2.17 (b).
inverted relative to each other. Note that at one instant, the
displacement of the free end is double the pulse height.

Incident power = Reflected power + Transmitted power

P =P +P
REFLECTION AND TRANSMISSION . s L
BETWEEN TWO STRINGS 2 A v =20 P A v 20 P Ay, (1)
l Here, we are dealing with the case where the end point is  Put B, = 12
. neither completely fixed nor completely free to move. As i
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in Eq. (1), then
A 2l 2 A 2
- P S Wl B
12 v, v,
A4 -4r=2p )
v2

Maximum displacement of joint particle P (as shown in the
figure) is due to left string

=4,+4.
Maximum displacement of joint particle due to right string
=4,

At the boundary (at point P), the wave must be continuous,
that is, there are no kinks in it. Then we must have

A, +4 =4 3)
From Egs. (2) and (3),
4,-4 =24 @)
V2

From Egs. (3) and (4),

4 2v, 4
v+ Y,
V. Vv
A = 2 1 -
e
STANDING WAVES

In the previous section, we have discussed that when -

two coherent waves superpose on a medium particle.
interference takes place. Similarly, when two coherent
waves travelling in the opposite directions superpose,
then simultaneous interference of all the particles in the
medium takes place. These waves interfere to produce a
pattern of all the particles in the medium, which is what
we call a stationary wave. If the two interfering waves
which travel in the opposite directions carry equal energies,
then no net flow of encrgy takes place in the region of
superposition. Within this region, redistribution of energy
takes place between the particles in the medium. There are
some medium particles where constructive interference
takes place and hence energy increases and on the other
hand there are some medium particles where destructive
interference takes place and energy decreases. Now we will
discuss the stationary waves analytically.
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Let two waves of equal amplitude travel in opposite
directions along the x-axis. The wave equation of the two
waves can be given as

Y, = A sin(wt — kx) (1
[wave travelling in +x direction]

and ¥, = A sin(wt + kx) (2)

[wave travelling in —x direction].

When the two waves superpose on medium particles, the
resultant displacement of the medium particles can be
given as

Y=y -+,
or Yy =Asin(wt — kx) + A4 sin(wt + x)
or y = A [sin wt cos kx — cos wt sin ko

+ sin wt cos kx + cos wt sin kx|

or Y =24 cos kx sin wt 3)
Equation (3) can be rewritten as

¥ = R sin wt 4)
where R =24 cos kx %)

Here, Eq. (4) is an equation of SHM. It implies that afier
superposition of the two waves, the medium particles
execute SHM with the same frequency w and amplitude
R, which is given by Eq. (5). Here, we can see that the
oscillation amplitude of the medium particles depends on x,
i.e., the position of medium particles. Thus, on superposition
of two coherent waves travelling in the opposite directions,
the resulting interference pattern, we call stationary waves,
the oscillation amplitude of the medium particle at different
positions is different.

At'some point on the medium, the resultant amplitude
is maximum, which is given as

R is maximum when cos kr = +1

or 2)\—7Tx:N7r [Nef]
N
or X = ——
2
or x:O’a\_,/\,E‘.
2 2
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and the maximum value of R is given as

Rmnx = :tZA (6)

. . .. A 3A
Thus, in the medium at position x = 0, P A, !
the waves interfere constructively and the amplitude of
oscillations becomes 2A4. Similarly, at some points on the
medium, the waves interfere destructively, the oscillation
amplitude become minimum i.e. zero in this case. These are

the points where R is minimum, when

‘s

coskx =0
or CiE g 2N+ l)E
A 2
A
or x:(2N+1)Z [Nel
A 3X 5
or x==,=,=,..
4 4 4
and the minimum value of R is given as
min = 0 (7)
Thus, in the medium at position x = % R %, % yee

the waves interfere destructively and the amplitude of
oscillation becomes zero. These points always remain
at rest. Figure 2.18(a) shows the oscillation amplitude of
different medium particles in a stationary wave.

Antinodes

‘2"‘“ Na\ e w4 va
Nodes
Figure 2.18 (a)

In Fig. 2.18(a) we can see that the medium particles
at which constructive interference takes place are called
antinodes of the stationary wave and the points of destructive
interferencé are called nodes of stationary waves, which
always remain at rest.

Figure 2.18(b) explains the movement of the medium
particles with time in the region whére stationary waves
are formed. Let us assume that at an instant # = 0, all the
medium particles are at their extreme positions as shown
in Fig. 2.18(b)-(1). Here, points ABCD are the nodes of
stationary waves where medium particles remains at rest.

All other starts moving towards their mean positions ang
at t = T/4, all the particles cross their mean position ag
shown in Fig. 2.18(b)-(3). It can be seen from the figure
that the particles at nodes are not moving. Now, the medium
crosses its mean position and starts moving to the other side
of the mean position towards the other extreme position.
At time ¢ = 7/2, all the particles reach the other extreme
position as shown in Fig. 2.18(b)-(5) and at time ¢ = 3774
all these particles again cross their mean position in the
opposite direction as shown in Fig. 2.18(b)-(7).

v 437
A B L D~ T7p gC D _TI_'_C-..D

t=0 T4 =1-0 t=T/4
(M (2) (3

1
D a7 c~_b AWE )

t="T/2 TR2<t>T4

?7:1 '< t< 0' T/4
4 (5) (6)

A CJ/’L\UJ

F_iLLf_,_m_LT.T_t_qf
A B¥%“c piiv I\“’{

t=23T/4 T<t<3T/4 t=T
™ (8) ©)

Figure 2.18 (b)

Based on the above analysis of one complete
oscillation of the medium particles, we can make some
interference for stationary waves. These are

1. In oscillations of stationary wave in a region, some
points are always at rest (nodes) and some oscillate
with maximum amplitudes (antinodes).” All other
medium particles oscillate with amplitudes less than
those of the antinodes.

2, All medium particles between two successive nodes
oscillate in the same phase and all medium particles
on one side of a node oscillate in opposite phase with
those on the other side of the same node.

3. In the region of a stationary wave during one complete
oscillation all the medium particles come in the form
of a straight line twice.

4. If the component wave amplitudes are equal, then in
the region where stationary wave is formed, no net
flow of energy takes place. Only redistribution of
energy takes place in the medium.

Different Equations for a Stationary Wave

Consider two equal-amplitude waves travelling in the
opposite directions as
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y, = A sin(wt — kx) (11
and v, = A sin(wt + kx) (12)
The result of superposition of these two waves is

y = 24 cos kx sin wt, (13)

which is the equation of a stationary wave where 24 cos
kx represents the amplitude of the medium particle situated
at position x and sin wt is the time sinusoidal factor,
Equation (13) can be written in several ways depending on
the initial phase differences in the component waves given
by Eqgs. (11) and (12). If the superposing waves are having
an initial phase difference 7, then the component waves can
be expressed as

y, = A4 sin(wt — kx) (14)

y, = —A sin(wt — kx) (15)
Superposition of the above two waves will result in

y = 24 sin kx cos wt (16)

Equation (16) is also an equation of stationary wave but
here amplitude of different medium particles in the region

of interference is given by
R =24 sin kx (17

Similarly, the possible equations of a stationary wave can
be written as

y = A, sin ko cos(wt + ¢) (18)
y = A, cos kx sin(wt + ¢) 19)
y = 4, sin kx sin(wt + ¢) (20)
y = A, cos kx cos(wt + ¢) (21) |

Here, 4, is the amplitude of antinodes. In a pure stationary
wave, it is given as

A, =24,
where 4 is the amplitude of the component waves. If we

carefully look at Egs. (18)—(21), we can see that in Egs. (18)
and (20), the particle amplitude is given by
R =4, sin kx (22)
Here, at x = 0, the nodes are R = 0 and in Egs. (19) and
(21), the particle amplitude is given as
R= A cos kx (23)

Here, at x = 0, there is an antinode at R = A, Thus, we can
state that in a given system of co-ordinates when the origin
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of the system is at a node, we use either Eq. (18) or Eq. (20)
for analytical representation of a stationary wave and we
use Eq. (19) or Eq. (21) for the same when an antinode is
located at the origin of the system.

SOLVED EXAMPLES

EXAMPLE 13

Find out the equation of the standing waves for the following
standing wave pattern.

.2 .
(a) A sin wa coswt (b) Asin WTX cos wt

(¢) Acos X cos wt
2L

(d) A cos % cos wt

SOLUTION

General equation of a standing wave

y = A’ cos wi,
where

A" = 4 sin(fox + 6).
Here, A=1L
= k= L

L
A" = 4 sin(kx + 6)
=A sin[zlx+0].
L

At x = 0 node,
= A =0atx=0
= 0=0

Equation of a standing wave

.27
=4 s1nT X COS Wt ||

EXAMPLE 14

The figure shows the standing waves pattern in a string at
¢ = 0. Find out the equation of the standing wave, where the
amplitude of the antinode is 24.
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SOLUTION

Let we assume the equation of standing waves is
Al sin(wt + @),

where A' = 24 sin(kx + 6)

x = 0 is node

= A'=0,atx=0
24sin8 =0
= =20

at ¢ = 0 particle at is at y = A4 and going towards the mean
position,

u T 5w
= p=—-+=-=—
2 3 6
So equation of the standing waves is
y=24 sinkxsin[wt%—%], |

EXAMPLE 15

A string 120 cm in length sustains standing wave with the
points of the string at which the displacement amplitude is
equal to 3.5 mm being separated by 15.0 cm. The maximum
displacement amplitude is x = 95 mm, then find out the
value of x.

SOLUTION

In this problem, two cases are possible:

B O

Casc 1 is that 4 and B have the same displacement
amplitude and case 2 is that C and D have the same

amplitude, viz., 3.5 mm. In case 1, if x = 0 is taken at the
antinode, then

A = acos kx.
In case 2, if x = 0 is taken at the node, then
A = a sin kx.

But since nothing is given in the question. Hence from both
the cases, the result should be the same. This is possible
only when

a cos kx = a sin kx

or kx = l
4
A
or a=
cos kx
= 3'5, =4.95 mm. [ ]
cosm/4

Energy of a Standing Wave in One Loop

When all the particles of one loop are at the extreme
position, then the total energy in the loop is in the form of
potential energy only. When the particles reach their mean
position, the total potential energy converts into kinetic
energy of the particles so we can say total encrgy of the
loop remains constant.

Total kinetic energy at the mean position is equal to
the total energy of the loop because potential energy at the
mean position is zero.

L= )2
Figure 2.19

Small kinetic energy of the particle which is in element
dx is

d(KE) = %a’mv2

dm = pdx.
Velocity of the particle at the mean position

= 24 sin kxw.

Then, d(KE) = % judx - 4A4%* sin? kx
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= d(KE) = 242 - sin’koedx
M2

fd(KE) = 2A21,uzu\/‘sin2 fox dx
0

M2

Total KE = AW’p f (1—cos 2 kx)dx
0
. 2
= A2l — sin 2kx
| 2k |
1 2, 2
= EAA W .

STATIONARY WAVES IN STRINGS

When Both Ends of a String Are Fixed

A string of length L is stretched between two points. When
the string is set into vibrations, a transverse progressive
wave begins to travel along the string. It is reflected at
the other fixed end. The incident and the reflected waves
interfere to produce a stationary transverse wave in
which the ends are always nodes, if both ends of a string
are fixed.

Fundamental Mode

In the simplest form, the string vibrates in one loop in
which the ends are the nodes and the centre is the antinode.
This mode of vibration is known as the fundamental mode
and the frequency of vibration is known as the fundamental
frequency or first harmonic.

'Figure 2.20
Since the distance between the consecutive nodes
A
is —,
2 I ﬁ
2
[ =2L.

If f, is the fundamental frequency of vibration, then the

velocity of the transverse waves is given as,

v=AJ

Waves 2.23

v
or i B )

First Overtone

The same string under the same conditions may also vibrate
in two loops, such that the centre is also the node

2 A
2 2
Figure 2.21

'Y
2
l2 e L.'
If £, is the frequency of vibrations,
v v
h=y=1
v
Lh=71 @

The frequency £, is known as the second harmonic or first
overtone.

Second overtone

The same string under the same conditions may also vibrate
in three segments.

S S S

Figure 2.22
e B
2
2
A3 - gL .

If £, is the frequency in this mode of vibration, then

3v
h=ar

The frequency f; is known as the third harmonic or second
overtone,

&)
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Thus, a stretched string vibrates with frequencies
that are integral multiples of the fundamental frequencies.
These frequencies are known as harmonics.

The velocity of a transverse wave in stretched string
is given as

v =

>

Ll
L

where
T = tension in the string.
(= linear density or mass per unit length of the
string.
If the string fixed at two ends vibrates in its
fundamental mode, then

1T
f:Z\E ©

n |T  n" harmonic
In general, f= — |—
20N (n—1)" overtone

Note

In general, any integral multiple of the fundamental
frequency is an allowed frequency. These higher
frequencies are called overtones. Thus, v, = 2v, is the
first overtone, v, = 3v, is the second overtone, etc. An
integral multiple of a frequency is called its harmonic.
Thus, for a string fixed at both the ends, all the overtones
are harmonics of the fundamental frequency and all the
harmonics of the fundamental frequency are overtones.

When One End of the String is Fixed and Other
is Free: Free End Acts as Antinode

Lo
\ >
{ S (=N4
Figure 2.23
L r :
[ =— [— fundamental or I harmonic.
' 40\
2.
[‘._.'h- _-'__.“( ;:\3/\/4
Figure 2.24
3T .
f =—,|— I harmonic or I overtone.
40\ p
In general,
D=~
== {‘J;; ) \/z } ((2n + 1)™ harmonic, n™ overtone).
' H

S.No. Travelling waves Stationary waves

1 These waves advance in a medium with a definite These waves remain stationary between two boundaries in
velocity. the medium.

2 In these waves, all particles of the medium oscillate  In these waves, all particles except nodes oscillate with same

with same frequency and amplitude.

3 At any instant phase of vibration varies continuously
from one particle to the other, i.e., phase difference
' between two particles can have any value between
0 and 27.

4 In these wave, at no instant all the particles of
the medium pass through their mean positions
simultaneously.

5 These waves transmit energy in the medium.

frequency but different amplitudes. Amplitude is zero at
nodes and maximum at antinodes.

At any instant the phase of all particles between two
successive nodes is the same, but phase of particles on one
side of a node is opposite to the phase of particles on the
other side of the node, i.e, phase difference between any two
particles can be either 0 or .

In these waves all particles of the medium pass through their
mean position simultaneously twice in each time period.

These waves do not transmit energy in the medium.
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JEE Main

1. A transverse wave is described by the equation ¥ =
Y, sin 27(ft — x/A). The maximum particle velocity is
equal to four times the wave velocity if
A) A=7Y/4 B) A=nY/2
©) A=Y, (D) A=2r7,

2. Both the strings, show in figure, are made of the
same material and have same cross section. The
pulleys are light. The wave speed of a transverse wave
in the string AB is v, and in CD itis v,. The v /v, is

i

A) 1 (B) 2
©) V2 (D) 1/V2

3. A transverse wave of amplitude 0.50 m, wavelength
1 m and frequency 2 Hz is propagating in a string in
the negative x-direction. The expression form of the
wave 1s
(A) ¥(x, ) = 0.5 sin(2px — 4p?)

(B) y(x, £y = 0.5 cos(2px + 4pf)
(©C) y(x, t) = 0.5 sin(px — 2pt)
(D) y(x, ) = 0.5 cos(2px — 2pt)

4. A wave pulse is generated in a string that lies along the
x-axis. At the points 4 and B, as shown in figure, if
R, and R, are ratio of wave speed to the particle
speed, respectively, then

(A) R, >R,
(B) R, >R,
(C)R,=R,
(D) Information is not sufficient to decide

5. A wave is propagating along x-axis. The
displacement of particles of the medium in the

~ EXERCISES
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— -

Z-direction at t = 0 is given by: z= exp[_(x + 2)2],
where ‘x’ is in meters. At t = 1 s, the same wave

disturbance is given by: z = exp [_ (2—x) ], Then the
wave propagation velocity is

(A) 4 m/s in +x direction

(B) 4 m/s in —x direction

(C) 2 m/s in +x direction

(D) 2 m/s in —x direction

. The equation of a wave travelling along the positive

x-axis, as shown in figure at ¢ = 0 is given by

Y4
14 —>
7 ; X
—0.5
—0.1 4

(A) sin[kx — wt +%] (B) sin[loc —wt —%]

(C) sin [wt —kx + %J (D) sin[wt —kx — %]

. The velocity of a wave propagating along a stretched

string is 10 m/s and its frequency is 100 Hz. The phase
difference between the particles situated at a distance
of 2.5 cm on the string will be

(A) /8 (B) n/4

(C) 3n/8 D) 72

. If the speed of the wave shown in the figure is 330 m/s

in the given medium, then the equation of the wave
propagating in the positive x-direction will be (all
quantities are in MKS units)

Yt 0.05m

AWANAW




10.

11.

12.
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(A) y = 0.05 sin 27(4000¢ — 12.5x)
(B) y = 0.05 sin 27(40007 — 122.5x)
(C) y = 0.05 sin 2m(3300¢ — 10x)
(D) y = 0.05 sin 2m(3300x — 10¢)

The displacement y (in cm) produced by a simple

harmonic wave is : y = &sin[20007rt — %] cm, The
™

time period and maximum velocity of the particle will

be, respectively, are

(A) 1072 second and 200 m/s

(B) 10~?second and 2000 m/s

(C) 1072 second and 330 m/s

(D) 10~*second and 20 m/s

The figure shows the shape of part of a long string in
which transverse waves are produced by attaching one
end of the string to tuning for & of frequency 250 Hz.
What is the velocity of the waves?

5cm
o . 0.3_cm .
A ~ Jos
Csem 0.1cm \/ cm \
(A) 1.0 ms™! (B) 1.5 ms™!
(©) 2.0 ms™! (D) 2.5ms™!

A block of mass 1 kg is hanging vertically
from a string of length 1 m and Mass/
length = 0.001 kg/m. A small pulse is
generated at its lower end. The pulse reaches
the top end in approximately.
(A) 025

(C) 0.02s

(B) 0.1s
(D) 0.01s

A uniform rope of length 10 m and mass 15 kg hangs
vertically from a rigid support. A block of mass 5 kg is
attached to the free end of the rope. A transverse pulse
of wavelength 0.08 m is produced at the lower end of
the rope. The wavelength of the pulse when it reaches
the top of the rope will be-

13.

14.

15.

16.

|

(A) 0.08 m
(C) 0.16m

(B) 0.04 m
D) Om

A uniform rope having some mass hangs vcrticany-

from a rigid support. A transverse wave pulse jg

produced at the lower end. The speed (v) of the waye

pulse varies with height (4) from the lower end as:

@ ®) vt
~

=¥
=

(©) v4 (D) v4

:h h

A wire of 1072 kg m~' passes over a frictionless light
pulley fixed on the top of a frictionless inclined plane,
which makes an angle of 30° with the horizontal.
Masses m and M are tied at two ends of wire such
that m rests on the plane and M hangs freely vertically
downwards. The entire system is in equilibrium and
a transverse wave propagates along the wire with a
velocity of 100 ms~'.

m_1
(A) M=5ke ®) =
(C) m=20kg (D) =4

A pulse shown here is reflected from the rigid wall 4
and then from free end B. The shape of the string after
these two reflection will be

o
(A) J])ﬁ’_'—AE
© | WE _ M

A wave pulse on a string has the dimension shown in
the figure. The waves speed is v = 1 cm/s. If point O is
a free end. The shape of wave at time 1 = 3 s is

Z
[~
=

=

(B)
(#B — A
(D)
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17.

18.

19.

20.

21.

—» v=1cm/s
1 ch/\_.
0]
»
2cm

f————
1cm 1cm

©

A string 1 m long is drawn by a 300 Hz vibrator attached
to its end. The string vibrates in three segments. The
speed of transverse waves in the string is equal to

(A) 100 m/s (B) 200 m/s

(C) 300 m/s (D) 400 m/s

For a wave displacement amplitude is 10~8 m, density
of air is 1.3 kg m~3, velocity in air is 340 ms~' and
frequency is 2000 Hz. The intensity of wave is

(A) 5.3 x 10-*Wm? (B) 53 x 10°Wm
(C) 3.5 x 108 Wm™ (D) 3.5 x 10-*Wm™?

Two waves of equal amplitude 4, and equal frequency
travel in the same direction in a medium. The amplitude
of the resultant wave is
(A) 0

(C) 24

B) 4

When two waves of the same amplitude and frequency

but having a phase difference of ¢, travelling with the

same speed in the same direction (positive x), interfere,

then

(A) their resultant amplitude will be twice that of a
single wave but the frequency will be same

(B) their resultant amplitude and frequency will both
be twice that of a single wave

(C) their resultant amplitude will depend on the phase
angle while the frequency will be the same

(D) the frequency and amplitude of the resultant wave
will depend upon the phase angle.

A wave pulse, travelling on a two piece string, gets
partially reflected and partially transmitted at the

(D) between 0 and 24 .

22.

23,

24,

25.

2.27
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junction. The reflected wave is inverted in shape as
compared to the incident one. If the incident wave has
wavelength A and the transmitted wave X, then

(A) M >\

B) X=X

C) N <X\

(D) nothing can be said about the relation of A and N

The rate of transfer of energy in a wave depends

(A) directly on the square of the wave amplitude and
square of the wave frequency

(B) directly on the square of the wave amplitude and
square root of the wave frequency

(C) directly on the wave frequency and square of the
wave amplitude

(D) directly on the wave amplitude and square of the
wave frequency

Two wave pulses travel in opposite directions on a
string and approach each other. The shape of the one
pulse is inverted with respect to the other.

(A) The pulses will collide with each other and vanish
after collision.

(B) The pulses will reflect from each other i.e.,
the pulse going towards right will finally move
towards left and vice versa.

(C) The pulses will pass through each other but their
shapes will be modified.

(D) The pulses will pass through each other without
any change in their shape.

A wave is represented by the equation
y =10sin27 (1007 — 0.02.X)
+10sin27(100¢ +0.02.X).

The maximum amplitude and loop length are
respectively

(A) 20 units and 30 units

(B) 20 units and 25 units

(C) 30 units and 20 units

(D) 25 units and 20 units

A wire of linear mass density 9x10’kg/m is
stretched between two rigid supports under a tension
0f 360 N. The wire resonates at frequency 210 Hz. The
next higher frequency at which the same wire resonates
is 280 Hz. The number of loops produced in first case
will be
A) 1

<3

®) 2
(D) 4
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strings of different masses per unit length — 2 and
441 the composite string is under the same tension. A
transverse wave pulse: ¥ = (6 mm) sin(5¢ - 40x),
where ‘1" is in seconds and ‘¥ in metres, is sent along
the lighter string towards the joint. The joint is at
¥ = 0. The equation of the wave pulse reflected from
the joint is

(A) (2 mm) sin(5¢ — 40x)

(B) (4 mm) sin(40x — 5¢)

(€©) —(2 mm) sin(5¢ — 40x)

(D) (2 mm) sin(5¢ — 10x)

26. The resultant amplitude due to superposition of two (A) 350Hz (B) 5Hz
waves (C) 70 Hz (D) 170 Hz
Y, = Ssin(wr — k) 28. In a stationary wave represented by y = g sin wt cos
. the amplitude of the component progressive wave ig
and Y, =—5cos(wt — hx —150°) is
A) & B) a
(A) 5 (B) 53 )3 =)
D
© s ;——2_ B D) s (‘2 T (C) 2a (D) none of these
27. A stretched sonometer wire resonates at a frequency
of 350 Hz and at the next higher frequency of 420 Hz,
The fundamental frequency of this wire is :
JEE Advanced
Single Correct . In the previous question, the percentage of powe
L. Two stretched wires 4 and B of the same lengths transmitted to the heavier string through the joint i
vibrate independently. If the radius, density and approximately
tension of wire 4 are respectively twice those of wire (A) 33% (B) 89%
B, then the fundamental frequency of vibration of A (©) 67% (D) 75%
relative to that of B is
(A) 1:1 B) 1:2 . The frequency of a sonometer wire is f, but whe
(C) 1:4 (D) 1:8 the weights producing the tensions are completely
immersed in water the frequency becomes £12 and on
2. A copper wire is held at the two ends by rigid supports. immersing the weights in a certain liquid the frequency
AL 30°C the wire is just taut, with negligible tension, becomes /3. The specific gravity of the liquid is:
The speed of transverse waves in this wire at 10°C is 4 16
(@ =17 x 10°C, ¥ = 1.3 x 10" N/m?, df — 9 x @I 5 L&
107 kg/m?),
(A) 80 m/s (B) 90 m/s © B o) 32
(C) 100 m/s (D) 70 m/s 12 27
- - A wave moving with constant speed on a uniform
3. A composition string is made up by joining two

string passes the point x = 0 with am plitude 4, angular
frequency w, and average rate of energy transfer P, As
the wave travels down the string it gradually loses
energy and at the point x = £, the average rate of energy

2
transfer becomes 7" At the point x = ¢, angular

frequency and amplitude are respectively.
(A) w,and 4,/2

(B) w/+/2 and 4,
(C) less than wyand 4,

D) wy V2 and 4, N2
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10.

11.

A harmonic wave is travelling on string 1. At a
junction with string 2, it is partly reflected and partly

ransmitted. The linear mass density of the second
string is four times that of the first string, and that
the boundary between the two strings is at x = 0.
If the expression for the incident wave is, y, = 4,
cos(kx — wf), then find out the expression for the
transmitted wave.

(A) %A,. cos(2kx — w;t)

(B) % A cos (2klx —w)

1

(©) % A4, cos(2kx — wt)

(D) None of these

. A taut string at both ends vibrates in its n"™ overtone.

The distance between adjacent node and antinode is
found to be ‘d@’. If the length of the string is L, then
(A) L=2dn+1) B) L=dn+1)

(C) L=2dn (D) L=2d(n—1)

. A metallic wire of length L is fixed between two rigid

supports. If the wire is cooled through a temperature
difference AT (Y = young’s modulus, p = density, « =
coefficient of linear expansion), then the frequency of
transverse vibration is proportional to

A 2 B Ya
® 7 (),/p
C) =& 0
© e ® 7

A standing wave y= Asin(? mX) cos(lOOOm) is

maintained in a taut string where y and x are expressed
in metres. The distance between the successive points
oscillating with the amplitude A4/2 across a node is

equal to
(A) 2.5cmm (B) 25 cm
(C) 5cm (D) 10 cm

A string of length 1 m and linear mass density

0.01kgm ™' is stretched to a tension of 100 N. When
both ends of the string are fixed, the three lowest

frequencies for standing wave are f|, f, and f;. When

12.

Waves 2.29

only one end of the string is fixed, the three lowest

frequencies for standing wave are n,,n, andn,. Then
(A) n,=5n=f,=125Hz
B) f,=5,=n,=125Hz
(©) f,=n,=3f, =150Hz

(D) nZ:f';—fZ=75Hz

A wave represented by the equation y = a cos{(kx — w¥)
is superposed with another wave to form a stationary
wave such that the point x = 0 is a node. The equation
for other wave is

(A) a sin(kx + wr)
(C) —a cos(hkx — wr)

(B) —a cos(kx + wt)
(D) —a sin(kx — wi)

Multiple Correct

13.

14.

15.

16.

A wave equation which gives the displacement along

the y direction is given by ¥ = 10~* sin(60¢ + 2x),

where x and y are in metres and ¢ is time in seconds.

This represents a wave

(A) travelling with a velocity of 30 m/s in the negative
x direction

(B) of wavelength 7 metre

(C) of frequency 30/7 hertz

(D) of amplitude 10~* metre travelling along the
negative x direction

The displacement of a particle in a medium due to a
wave travelling in the x-direction through the medium
is given by y = 4 sin(at — bx), where ¢ = time, and «
and (3 are constants.

(A) The frequency of the wave is .

(B) The frequency of the wave is a/2.

(C) The wavelength is 27/3.

(D) The velocity of the wave is a/3.

A sinusoidal progressive wave is generated in a string.
It’s equation is given by y = (2 mm) sin(2px — 100p¢
+ 7/3). The time when particle at x = 4 m first passes
through mean position, will be

1 1
I 1

A transverse wave is described by the equation y =
A sin[2m(ft — x/A)]. The maximum particle velocity is
equal to four times the wave velocity if

B) A=7wd/2

D) AN=274

(A) \=rd/4
(C) A=A
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17.

18.

A wave equation is given as y = cos(500f — 70x),

where y is in mm, x in m and ¢ is in seconds,

(A) The wave must be a transverse propagating wave.

(B) The speed of the wave is 50/7 m/s

(C) The frequency of oscillations 10007 Hz

(D) Two closest points which are in same phase have
separation 207/7 cm.

Al a certain moment, the photograph of a string on
which a harmonic wave is travelling to {he right is
shown. Then, which of the following is true regarding
the velocities of the points P, O and R on the string?

Ay
Q
P 7
(A) v, is upwards (B) Vo=V,
(C) IVPI > 'VQ| B IVRI (D) vQ = vR

Question No. 19 to 22

The figure represents the instantaneous picture of a trans-
verse harmonic wave traveling along the negative x-axis.
Choose the correct alternative(s) related to the movement
of the nine points shown in the figure.

19.

20.

21.

22,

Y

The points moving upward is/are

(A) a B) ¢
©r D) g
The points moving downwards is/are
(A) o (B) b
© d (D) h
The stationary points is/are

(A) o B) b
©f (D) h

The points moving with maximum speed is/are
(A) b (B) ¢
©) d (D) A

23.

24,

A perfectly elastic uniform string is suspendeq
vertically with its upper end fixed to the ceiling and the
lower end loaded with the weight. If a transverse wave
is imparted to the lower end of the string, the pulse wi]]
(A) not travel along the length of the string

(B) travel upwards with increasing speed

(C) travel upwards with decreasing speed

(D) travelled upwards with constant acceleration

One end of a string of length L is tied to the ceiling
of a lift accelerating upwards with an acceleration 2g.
The other end of the string is free. The linear mass
density of the string varies linearly from 0 to A from
bottom to top.

(A) The velocity of the wave in the string will be 0.
(B) The acceleration of the wave on the string will be

3g/4 everywhere.
(C) The time taken by a pulse to reach from bottom to

top will be /8L /3g.

(D) The time taken by a pulse to reach from bottom to

top will be \J4L/3g.

25. A plane wave y = 4 sin w[t — i] undergo a normal

26.

%

incidence on a plane boundary separatin g medium M,

and M, and splits into a reflected and transmitted wave

having speeds v, and v, then

(A) for all values of v, and v, the phase of transmitted
wave is same as that of incident wave

(B) for all values of v, and v, the phase of reflected
wave is same as that of incident wave

(C) the phase of transmitted wave depends upon v,
and v,

(D) the phase of reflected wave depends upon v,
and v,

Two waves of equal frequency /and velocity v travel

in opposite directions along the same path. The waves

have amplitudes A and 34. Then

(A) the amplitude of the resulting wave varies with
position between maxima of amplitude 44 and
minima of zero amplitude

(B) the distance between a maxima and adjacent
minima of amplitude is V/2f

(C) at point on the path the average displacement is
Zero

(D) the position of 2 maxima or minima of amplitude
does not change with time




D W

fomt

18

1SS

be
1to

nto

'‘mal

1M
vave

itted
ected
on v
on v
travel
waves

s with
A and

jacent
nent is

iplitude

27. The vibration of a string fixed at both ends are
described by ¥ = 2 sin(px) sin(100pt) where Y is in
mm, x is in cm, ¢ in seconds, then
(A) Maximum displacement of the particle at x =

1/6 cm would be 1 mm.
(B) velocity of the particle at x = 1/6 cm at time ¢ =

1/600 sec will be 157+/3 mm/s

(C) If the length of the string is 10 cm, number of
loop in it would be 5

(D) None of these

28. In a standing wave on a string,

(A) in one time period all the particles are
simultaneously at rest twice

(B) all the particles must be at their positive extremes
simultaneously once in one time period

(C) all the particles may be at their positive extremes
simultaneously once in a time period

(D) all the particles are never at rest simultaneously

29. A standing wave pattern of amplitude 4 in a string of
length L shows 2 nodes (plus those at two ends). If
one end of the string corresponds to the origin and v is
the speed of progressive wave, the disturbance in the
string, could be represented (with appropriate phase) as

. [ 2mx 2mvt
A) y(x, 1) = Asin|——=|cos| ——
(A) ¥, 1) u [ " ]
(B) )’(X, t) = Acos %Tx sin .M_Vt]
(©) y(x, ) = Acos 4? COS[M]

(D) y(x, £) = Asin [%Tx]cos[%]

30. The length, tension, diameter and density of a wire
B are double than the corresponding quantities for
another stretched wire 4. Then.

(A) the fundamental frequency of B is L, times
that of 4. 22

(B) the velocity of wave in B is S times that of
velocity in 4. V2

(C) the fundamental frequency of 4 is equal to the
third overtone of B.

Waves 2.31

(D) The velocity of wave in B is half that of velocity
in 4.

31. A string is fixed at both ends vibrates in a resonant
mode with a separation 2.0 cm between the consecutive
nodes. For the next higher resonant frequency, this
separation is reduced to 1.6 cm. The length of the

string is
(A) 4.0 cm (B) 8.0cm
(C) 12.0 cm (D) 16.0cm

32. A clamped string is oscillating in nth harmonic, then

(A) total energy of oscillations will be #* times that of
fundamental frequency

(B) total energy of oscillations will be (n — 1)* times
that of fundamental frequency

(C) average kinetic energy of the string over a
complete oscillations is half of that of the total
energy of the string

(D) none of these

33. The figure, shows a stationary wave between two fixed
points P and Q. Which point(s) of 1, 2 and 3 are in
phase with the point x?

P a
(B) 1and?2 only
(D) 3 only

(A) 1,2 and 3
(C) 2 and 3 only

34, The equation of a wave disturbance is given as

cos(107x), wherex and y are

= 0.02 cos [g 1+ 50mt

in meters and ¢ in seconds. Choose the wrong statement.
(A) Antinode occurs at x = 0.3 m.

(B) The wavelength is 0.2 m.

(C) The speed of the constituent waves is 4 m/s.

(D) Node occurs atx = 0.15 m.

35. In a stationary wave,
(A) all the particles of the medium vibrate in phase
(B) all the antinodes vibrate in phase
(C) the alternate antinodes vibrate in phase
(D) all the particles between consecutive nodes
vibrate in phase
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L. Consider the wave v = (5 mm) sin(l em N — What will be the amplitude of pulse in this medium

(60 s7') #] Find (A) the amplitude (B) the wave
number, (C) the wavelength, (D) the frequency, (e) the

- The string shown in figure is driven at a frequency

of 5.00 Hz. The amplitude of the motion is 12.0 cm,
and the wave speed is 20.0 my/s. Furthermore, the
wave is such that y = 0 at x = 0 and ¢ = 0. Determine
(A) the angular frequency and (B) wave number
for this wave. (C) Write an expression for the wave

. A parabolic pulse given by equation y(in cm) =

0.3 — 0.1(x — 562 (y > O)x in metre and 7 in seconds
travelling in a uniform string. The pulse passes through
a boundary beyond which its velocity becomes 2.5 my/s.

after transmission?

time period and (f) the wave velocity. 6. In the arrangement shown in figure, the string
has mass of 4.5 g. How much time will it take for a
. The wave function for a traveling wave on a taut string transverse disturbance produced at the floor to reach
is (in SI unit) the pulley? Take g = 10 m/s?
y(x, 1) = (0.350 m) sin(10ps — 3px + w/4).
(A) What are the speed and direction of travel of the
wave?
(B) What is the vertical displacement of the string at
t=0,x=0.100 m?
(C) What are wavelength and frequency of the wave?
(D) What is the maximum magnitude of the transverse
speed of a particle of the string?
7. A uniform rope of length 12 m and mass 6 kg hanged

vertically from a rigid support. A block of mass 2 kg is
attached to the free end of the rope. A transverse pulse
of wavelength 0.06 m is produced at the lower end of
the rope. What is the wavelength of the pulse when it
reaches the top of the rope?

function. Calculate (D) the maxjmum transverse speed 8. A particle on stretched string supporting a travelling
and (¢) the maximum transverse acceleration of a point wave, takes 5.0 ms to move from its mean position
on the string, to the extreme position. The distance between two
consecutive particles, which are at their mean position,
is 2.0 em. Find the frequency, the wavelength and the
wave speed.

. 9. A 6.00 m segment of a long string has a mass of
! 180 g. A high-speed photograph shows that the segment
| contains four complete cycles of wave. The string is
x=0 vibrating sinusoidally with a frequency of 50.0 Hz and
a peak-to-valley displacement of 15.0 em. (The “peak-
4. Two strings 4 and B with ; = 2 kg/m and 4 = 8 to-valley™ di.s!'»lace.menl is the vertical d.istancc from Fhe
kg/m respectively are joined in series and kept on a ﬁ}rthcst positive displacement to Ithe farthest 1ilegalnfe
horizontal table with both the ends fixed. The tension in displacement, ) (A) Write the function that describes this
the string is 200 N. If a pulse of amplitude 1 cm travels wave l.mvehng in the p})5|t'ivexdi1'ta.cl ion. (B) Determine

in 4 towards the junction, then find the amplitude of the power being supplied to the string,
reﬂegted and transmitted pulse. 10. A 200 Hz wave with amplitude 1 mm travels on a long

string of linear mass density 6 g/m kept under a tension
of 60 N. (A) Find the average power transmitted across
a given point on the string. (B) Find the total energy
associated with the wave in a 2.0 m long portion of the
string.
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11.

12.

13.

14.

15.

16.

17.

The equation of a plane wave travelling along the

. m—— . .2
positive direction of x-axis is y = a s1n7 (vt — x).
When this wave is reflected at a rigid surface and its

amplitude becomes 80%, then find the equation of the
reflected wave,

A travelling wave of amplitude 54 is partially reflected
from a boundary with the amplitude 34. Due to
superposition of two waves with different amplitudesin
opposite directions a standing wave pattern is formed,
Determine the amplitude at node and antinodes.

Two waves are described by y, = 0.30 sin[w(5x —
200) #] and y, = 0.30 sin[7(5x — 2007) + 7/3], where
Y, ¥, and x are in metres and ¢ is in seconds. When
these two waves are combined, a traveling wave is
produced. What are the (A) amplitude, (B) wave speed,
and (C) wave length of that traveling wave?

What are (A) the lowest frequency, (B) the second
lowest frequency, and (C) the third lowest frequency
for standing waves on a wire that is 10.0 m long has a
mass of 100 g. and is stretched under a tension of 250 N
which is fixed at both ends?

A nylon guitar string has a linear density of 7.20 g/m
and is under a tension of 150 N. The fixed supports are
distance D = 90.0 cm apart. The string is oscillating
in the standing wave pattern shown in the figure.
Calculate the (A) speed wavelength, and ©
frequency of the traveling waves whose superposition
gives this standing wave.

D

A string that is stretched between fixed supports
separated by 75.0 cm has resonant frequencies of 420
and 315 Hz with no intermediate resonant frequencies.
What are

(A) the lowest resonant frequencies and

(B) the wave speed ?

A string oscillates according to the equation

¥ = (0.50 cm) sin [g cm"]x cos[(40m s~

18.

19.

20.

21.

22.

23.

24.

Waves 2.33

What are the (A) amplitude and (B) speed of the two
waves (identical except for direction of travel) whose
superposition gives this oscillation ? (C) What is the
distance between nodes ? (D) What is the transverse
speed of a particle of the string at the position x =
1.5 cm when ¢ = 9/8 s?

In an experiment of standing waves, a string 90 cm
long is attached to the prong of an electrically driven
tuning fork that oscillates perpendicular to the length
of the string at a frequency of 60 Hz. The mass of the
string is 0.044 kg. What tension must the string be
under (weights are attached to the other end) if it is to
oscillate in four loops?

A string vibrates in 4 loops with a frequency of 400 Hz.

(A) What is its fundamental frequency?

(B) What is frequency will cause it to vibrate into 7
loops?

A string fixed at both ends is vibrating in the lowest
mode of vibration for which a point at quarter of
its lengths from one end is a point of maximum
displacement. The frequency of vibration in this mode
is 100 Hz. What will be the frequency emitted when it
vibrates in the next mode such that this point is again a
point of maximum displacement.

A guitar string is 90 cm long and has a fundamental
frequency of 124 Hz. Where should it be pressed to
produce a fundamental frequency of 186 Hz?

A 2.00 m long rope, having a mass of 80 g, is fixed at
one end and is tied to a light string at the other end. The
tension in the string is 256 N. (A) Find the frequencies
of the fundamental and the first two overtones. (B) Find
the wavelength in the fundamental and the first two
overtones,

A stretched uniform wire of a sonometer between two
fixed knife edges, when vibrates in its second harmonic
gives 1 beat per second with a vibrating tuning fork of
frequency 200 Hz. Find the percentage change in the
tension of the wire to be in unison with the tuning for £.

A Sonometer wires resonates with a given tuning fork
forming standing waves with five antinodes between the
two bridges when a mass of 9 kg is suspended from the
wire. When this mass is replaced by M, the wire resonates
with the same tuning fork forming three antinodes for the
same position of bridges. Find the value of M.
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25. A 40 cm long wire having a mass 3.2 gm and area of
¢.s. 1 mm? is stretched between the support 40.05 cm
apart. In its fundamental mode. It vibrate with a
frequency 1000/64 Hz. Find the young’s modulus of
the wire. :

26. A steel rod having a length of 1m is fastened at itg

middle. Assuming young’s modulus to be 2 x 10"
Pa, and density to be 8 g/cm’, find the fundamenta]
frequency of the longitudinal vibration and frequency
of first overtone.

Level I

1. The figure shows a snap photograph of a vibrating
string at ¢ = 0. The particle P is observed moving up
with velocity 207 cm/s. The angle made by string
with the x-axis at P is 6°.

¥y
(in 102 m)
4 P.
2@ . » X
0| 1.5\ 35 5. 7.5
(in 102 m)

(A) Find the direction in which the wave is moving,

(B) The equation of the wave.

(C) The total energy carried by the wave per cycle
of the string, assuming that y, the mass per unit
length of the string = 50 g/m.

2. A uniform rope of length Z and mass m is held at one end
and whirled in a horizontal circle with angular velocity
w. Ignore gravity. Find the time required for a transverse
wave to travel from one end of the rope to the other.

3. A symmetrical triangular pulse of maximum height
0.4 m and total length 1 m is moving in the positive
x-direction on a string on which the wave speed is

24 m/s. At t = 0 the pulse is entirely located between
x =0 and x = | m. Draw a graph of the transverse
velocity of particle of string versus time at x = +1 m.

. In a stationary wave pattern that forms as a result of

reflection of waves from an obstacle the ratio of the
amplitude at an antinode and a node is 8 = 1.5. What
percentage of the energy passes across the obstacle?

. A string, 25 cm long, having a mass of 0.25 gm/cm, is

under tension. A pipe closed at one end is 40 cm long.
When the string is set vibrating in its first overtone, and
the air in the pipe in its fundamental frequency, 8 beats/s
are heard. It is observed that decreasing the tension in the
string, decreases the beat frequency. If the speed of sound
in air is 320 m/s, find the tension in the string.

- A metal rod of length / = 100 cm is clamped at two

points. Distance of each clamp from nearer end is ¢ =
30 cm. If density and Young’s modulus of elasticity of
rod material are p = 9000 kgm=> and ¥ = 144 GPa,
respectively, calculate minimum and next higher
frequency of natural longitudinal oscillations of the
rod.

Previous Year Questions
JEE Main

1. A wave y = a sin(wt — kx) on a string meets with
another wave producing a node at x = 0. Then the
equation of the unknown wave is

[AIEEE 2002]
(A) y=asin(wt + kx)
(B) y = —asin(wt + kx)
(C) y=asin(wt — kx)
(D) y = —asinwt ~ kx)

2. Length of a string tied to two rigid supports is 40 cm.
Maximum length (wavelength in cm) of a stationary
wave produced on it, is [AIEEE 2002]

(A) 20 (B) 80
(C) 40 (D) 120

. The displacement of a particle varies according to the

relation x = 4(cost -+sinmt). The amplitude of the

particle is [AIEEE 2003]
(A) -4 (B) 4
©) 42 (D) 8

. A metal wire of linear mass density of 9.8 gm™' is

stretched with a tension of 10 kg-wt between two
rigid supports 1 m apart. The wire passes at its middle
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point between the poles of a permanent magnet and
it vibrates in resonance when carrying an alternating
current of frequency n. The frequency n of the

alternating source is [AIEEE 2003]
(A) 50Hz (B) 100 Hz
(C) 200 Hz (D) 25Hz

. The displacement y of a wave travelling in the

x-direction is given by [AIEEE 2003]

y=10"" sin[600t—2x+§]m,

where, x is expressed in metres and ¢ in seconds. The
speeds of the wave-motion, in ms™'is

(A) 300 (B) 600

(C) 1200 (D) 200

. The displacement y of a particle in a medium can be

expressed as
y=10"° sin[lOOt —20x + %] m,

where ¢ is in second and x in metre. The speed of the

wave is [AIEEE 2004}
(A) 2000 ms~' (B) 5ms~’
(C) 20 ms™! (D) 5mms™

. A string is stretched between fixed points separated by

75.0 cm. It is observed to have resonant frequencies
of 420 Hz and 315 Hz. There are no other resonant
frequencies between these two. Then, the lowest
resonant frequency for this string is ~ [AIEEE 2006]
(A) 105 Hz (B) 1.05Hz
(C) 1050 Hz (D) 10.5Hz

. A wave travelling along the x-axis is described by the.

equation y(x, ) = 0.005 cos(ax—,@t). If the
wavelength and the time period of the wave are 0.08 m
and 2.0 s, respectively. then « and g in appropriate
units are

[AIEEE 2008]

(A) a=2500m, 8=
0.08 . 2.0

B :‘—’ = —
( ) “ w T
© a=22 p=12
m

.

D) a=12.50m, 3 = -

D) o mh=30

9.

10.

11.

12.
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The equation of a wave on a string of linear mass
density 0.04 kg m™' is given by y = 0.02 (m)

sin 271'[ A ] The tension in the string
0.04(s)  0.50(m)

is [AIEEE 2009]

(A) 40N (B) 125N

(©) 05N (D) 6.25N

The transverse displacement y(x, f) of a wave on a
—(ax? +b7+2-Jab x1) This

[AIEEE 2011]

string is given by y(x,t)=e
represents a

(A) wave moving in-x direction with speed \/E
a
(B) standing wave of frequency Jb

1
(C) standing wave of frequency —=
Vb
(D) wave moving in +x direction with speed \/%

A travelling wave represented by y = A4 sin(wt — kx) is
superimposed on another wave represented by

y = Asin(wt + kx) The resultantis [AIEEE 2011]

(A) astanding wave having nodes at
x = [n+l]—>l,n =0,1,2
2)2

(B) a wave travelling along +x direction
(C) a wave travelling along —x direction

(D) a standing wave having nodes at x = %; n=20,
1,2

Statement I: Two longitudinal waves given by
equations y (x, t) = 2a sin(wt — kx) and y,(x, t) = a
sin(2wt — 2kx) will have equal intensity.

[AIEEE 2011]

Statements II: Intensity of waves of given frequency

in same medium is proportional to square of amplitude

only.

(A) Statement I is true, Statement II is true.

(B) Statement I is true, Statement II is false.

(C) Statement I is true, Statement II true; Statement II
is the correct explanation of Statement 1.

(D) Statement I is true, Statement II is true; Statement
II is not correct explanation of Statement 1.
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‘ JEE Advanced

wire resonates with the same tuning fork forming three
antinodes for the same positions of the bridges. The
value of M is [JEE-2002(Scr), 3]
(A) 25kg (B) Skg

(C) 12.5kg (D) 125kg

. Astringer between x = 0 and x = [ vibrates in fundamental

mode. The amplitude A, tension 7"and mass per unit length
4 is given. Find the total energy of the string. [JEE-2003]

x=0 x=1

. A string fixed at both ends is in resonance in its 2nd

harmonic with a tuning fork of frequency J;- Now it’s
one end becomes free. If the frequency of the tuning
fork is increased slowly from f] then again a resonance
is obtained when the frequency is £,. If in this case the
string vibrates in nth harmonic then

[JEE 2005(Scr)]
@A) n=3, f,=27 ®) n=3, f="7
T 2~—4 1 = 2_4 1
3

© n=5, f,=2 ®) =5, f,=27,

. A transverse harmonic disturbance is produced in a string.

The maximum transverse velocity is 3 m/s and maximum
transverse acceleration is 90 m/s2 If the wave velocity is
20 m/s then find the waveform. [JEE 2005]

. A massless rod is suspended by two identical strings

AB and CD of equal length. 4 block of mass m is
suspended from point O such that BO is equal to ‘x’

Further, it is observed that the frequency of the first
harmonic (fundamental frequéncy) in 4B is equal to
the second harmonic frequency in CD. Then, length of
BOis [JEE 2006]

LLLLLLLLLLLLLLL LY
A

O™

&

1]

[m]

1. A sonometer wire resonates with a given tuning fork L L
forming standing waves with five antinodes between (A) 5 (B) i
the two bridges when a mass of 9 kg is suspended from
the wire. When this mass is replaced by mass M, the © 4?]4 (D) %

. A transverse sinusoidal wave moves along a string

in the positive x-direction at a speed of 10 cm/s. The
wavelength of the wave is 0.5 m and its amplitude is
10 cm. At a particular time ¢, the snap-shot of the wave
is shown in figure. The velocity of point P when its
displacement is 5 c¢m is Figure: [JEE-2008]

y

B) — X5 ms

\}E?ﬁ‘ " \/_7T
50
\/i‘ﬂ' = fﬂ

(C) —5?.' m/s (D) —WZ m/s

. A 20 cm long string, having a mass of 1.0 g, is fixed at

both the ends. The tension in the string is 0.5 N. The
string is set into vibrations using an external vibrator of
frequency 100 Hz. Find the separation (in cm) between
the successive nodes on the string. [JEE 2009]

. When two progressive waves y, = 4 sin(2x — 6¢) and

»,=3 sin[2x — 6t —g] are superimposed, then find

the amplitude of the resultant wave. [JEE 2010]

. One end of a taut string of length 3 m along the x axis

is fixed at x = 0. The speed of the waves in the string
is 100 ms™'. The other end of the string is vibrating
in the direction so that stationary waves are set up in
the string. The possible waveform of these stationary

waves is (are) [JEE Advanced 2014]
(A) y() =4 sin™F cos 2™
6 Bl
B)y()=4 sin? cos 100
X 2507t

Cyyv=4 sins% cos

D) y () =4 sins% cos 250pt




1d
0]

s
ng
ng
‘in
ry
4]

ANSWER KEYS

Exercises
JEE Main

1. B 2. D 3. B 4. A 5. A 6. D 7. D 8. C 9. A 10. A
1.0 12.C 0 B.C 14 C 154 16D 17.B 18D 19D 20 C
21.C  22A 23D 4B 25C  26A 2.C 28 A

JEE Advanced

1. B 2.D 3. C 4. B 5.D 6. A 7. C 8. A 9. B 10. C
11. D 12. B 13. A,B,C,D 14. B,C,D15. C 16. B 17. A,B,D18. C,D

19. A,D 20. C 21. B,C 22.C,D 23.B,D 24. B,C 25.A,D 26.C,D 27.A,B 28.A,C
29. D 30. C,D 31.B 32.A,C 33.C 4. C 35. C,D
JEE Advanced

Level I

1. (A) Amplitude 4 =5 mm  (B) Wave number k = [ ¢m-! (C) Wavelength \ = 2y 2 em

(f) Wave velocity u = n) = 60 cm/s

w 60 o . 1 m
mey v = — = — Hz I" I i
(D) Frequency v o (e) Time period T ol

[S]

(A ?fm/s (B) —5.48cm (C) 0.667m,5.00Hz (D) 11.0 m/s

(%)

. (A) 10rrad/s (B) w/2rad/m (C) y=(0.120 m) sin(1.57x — 31.47) (D) 1.27 m/s (e) 118 m/s?
1 2
4. 4 = _gcm A= —3—cm 5.02Zem 6. 0025 7. 0.12m 8. 50 Hz, 4.0cm, 2.0 m/s

o

. (A) y=(7.50 cm) sin(4. 19x—314t) (B) 625W 10. (A) 047W, (B) 9.4mJ
11. ' _O8asm—(vt+x+ ) 12. 24,84 13. (A) 0.52m; (B) 40 m/s; (C) 0.40m

sJ10

14. (A) ——Hz (B) 510 Hz; € 5\/5 Hz 15. (A) 144m/s; (B) 60.0 cm; (C) 241 Hz

16. (A) 105Hz; (B) 158m/s 17. () 025 em (B) 12 x 10emss; (C) 20em: (D) 0
18. 36N 19. (A) 100 Hz (B) 700 Hz 20. 300 Hz 21. 60 cm from an end

22. (A) 10Hz,30 Hz, 50 Hz (B) 8.00m, 1.60m 23. 1% 24, 25kg 25. 1 x 10°Nm? 26. 2.5kHz, 7.5 kHz

Level I

1. (A) Negatlvex B) y=4x10" 3s1n1007r[3t+0 5x+ﬁ

(r,y inmetre); (C) 144p* x 105] 2.
V2w

3. v
19.2 m/s

4. 96% 5. 67.6N 6. 10 kHz, 30 kHz

1/48 sec 1/24 sec

—n

—-19.2 m/s
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Previous Year Questions

JEE Main
1. B 2. B 3.C
11. A 12. B
JEE Advanced
2_2
1. A 2. AT
4]

8.5 9. A,C,D

3.

C

5 A 6. B 7. A 8. A

4. y = (10 cm) sin(30r & % x+f) 5 A

6.

A




Sound Waves

SOUND WAVES

Sound is a type of longitudinal wave. In general, majority of
the longitudinal waves are termed as sound waves. Sound is
produced by a vibrating source, like when a gong of a bell
is struck with a hammer, sound is produced. The vibrations
produced by a gong are propagated through air. Through
air, these vibrations reach the ear and the ear drum is set
into vibrations. These vibrations are communicated to the
human brain. By touching the gong of the bell by hand, we
can feel the vibrations.

PROPAGATION OF SOUND WAVES

Sound is a mechanical three-dimensional and longitudinal
wave that is created by a vibrating source such as a guitar
string, the human vocal cords, the prongs of a tuning fork
or the diaphragm of a loudspeaker. Being a mechanical
wave, sound needs a medium having properties of inertia

and elasticity for its propagation. Sound waves propagate in

any medium through a series of periodic compressions and
rarefactions of pressure, which is produced by the vibrating
source.

Consider a tuning fork producing sound waves.

A B

Normal attospheric

Undisturbed tuning fork )
pressure

Figure 3.1

- 4

A /B
« éﬁ..—.’."’{ '
. ) Normal atmospheric
Undisturbed tuning fork pressure
Figure 3.2

‘When prong B moves outwards towards right, it compresses
the air in front of it, causing the pressure to rise slightly. The
region of increased pressure is called a compression pulse
and it travels away from the prong with the speed of sound.

After producing the compression pulse, the prong B
reverses its motion and moves inwards. This drags away-some
air from the region in front of it, causing the pressure to dip
slightly below the normal pressure. This region of decreased
pressure is called rarefaction pulse. Following immediately
behind the compression pulse, the rarefaction pulse also
travels away from the prong with the speed of sound.

A B
_— ‘
Rarefraction Compression
pulse pulse
Figure 3.3

A longitudinal wave in a fluid is described in terms of the
longitudinal displacements suffered by the particles of the
medium,
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' ¥ =Asinwt ¥y =Asin w(t - x/V)
~A0) A “«—> A
H - y
: %
¢ X
Figure 3.4

Consider a wave going in the x-direction in a fluid, Suppose
that at a time ¢, the particle at the undisturbed position x
suffers a displacement y in the x-direction.

y:Asinw[t—gJ (1)

Position of any particle from the ori ginatany time = x - y,
where x = distance of the mean position of the particle
from the origin, v = displacement of the particle from ils
mean position.

General equation is given as
0,0) = y=Asin(wt + ¢)
0,x)= y=4Asin[(t - x/1) + ¢]

Displacement wave, y = 4 sin(wt — kx + ¢)

[Fwe fix x = x,, then we are dealing with the particle
whose mean position is at a distance X, from the origin and
this particle is performing SHM of amplitude 4 with time
period 7'and phase difference — —f + o

COMPRESSION WAVES

When a longitudinal wave is propagated in a gaseous
medium, it produces compression and rarefaction in the
medium periodically. In the region where compression
oceurs, the pressure is more than the normal pressure of
the medium. Thus, we can also describe longitudinal waves
in a gaseous medium as pressure waves and these are also
termed as compression waves in which the pressure at
different points of the medium also varies periodically
with their displacements. Let us discuss the propagation
of excess pressure in a medium in longitudinal wave
analytically.

Figure 3.5

Consider a longitudinal wave propagating in the positiyg
v-direction as shown in Fig. 3.5. The figure shows a
segment AB of the medium of width dx. In (his medium,
let a longitudinal wave is propagating whose equation jg
given as
y = A sin{wt — kx), o)
where y is the displacement of the medium particle situated.
at a distance x from the origin, along the direction of
propagation of the wave. In Fig, 3.5, 44 is the mediuny
segment whose medium particle is at position x = x and B
i atx = x + dx at an instant. If after some time 7, mediur
particle at A reaches a point A", which is displaced by y,
and the medium particle at b reaches point B whichis at
displacement y + dy from B. Here. dy is given by Fq. (3.1) as
dy = —Ak cos(wt — kx)dx
Here, due to displacement of section 4B to A'B’ , the change
in volume of its section is given as
dV = —Sdy
= Sdk cos(wt — kx)dx
The volume of section 4B is V = Sdx.

Thus, the volume strain in section 43 is

AV —SAkcos(wt — kx)dx

[S— area of cross-section]

14 Sdx
or iVK = —Ax cos(wt — kx)

If B is the bulk modulus of the medium, then the excess
pressure in the section 4B can be given as

AP = — B[ﬂJ Q)
vV
AP = BAk cos(wt — kx)
or AP = AP cos(wt — kx) 3)

Here, AP is the pressure amplitude at a medium particle
at position x from the origin and AP is the excess pressure
at that point. Equation (3) shows that excess pressure varies
periodically at every point of the medium with pressure
amplitude AP,, which is given as

AP, =Bk = 2" 45 4)
A

Equation (4) is also termed as the equation of pressure
wave in gaseous medium. We can also see that the pressure
wave differs in phase by 7/2 from the displacement wave
and pressure maxima occurs where the displacement is zero
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and displacement maxima occurs when the pressure is at its
normal level. Remember that pressure maxima implies that
the pressure at a point is pressure amplitude times morc or
less than the normal pressure level of the medium.

 SOLVED EXAMPLE

EXAMPLE 1

A sound wave of wayelength 40 cm travels in air. If the
difference between the maximum and minimum pressures
at a given point is 2.0 x 10~ N/n??, find the amplitude of
vibration of the particles of the medium. The bulk modulus
of air is 1.4 x 10° N/m>

SOLUTION
The pressure amplitude is

2 3 2
P = 2.0x10 me_

=10 N/m’
The displacement amplitudes S is given by
P,= Bks,
_h _ B
° Bk 2B
107 N/m” x (40 % 10*m)
2x 7w x 14 x10*N/m*

R 5-6k B
T

or,

Density Wave

In this section, we will find the relation between pressure
wave and density wave. ‘
According to the definition of bulk modulus (B),

- dp ]
B=|- _ 1
[ dv iy M
Further, volume = mas.s
density
or y==1
p
or dv=—-"dp=—"dp
p p
B V= 4o
v p

Sound Waves 3.3

Substituting in Eq. (1), we get

p(dP) _dp
d T — L ———
P="p Ty
5>
B V?

Or this can be written as,

l
V2
So, this relation relates the pressure equation with the
density equation. For example, if

AP = (AP), sin(kx — wt),
then Ap = (Ap), sin(kx — wi)
_(AP),
m V}!
Thus, density equation is in phase with the pressure equation
and this is 90° out of phase with the displacement equation.

P
Ap=EAp=—A
p="ghr p

where,

_ P
(Ap),= 2 (AP)

Velocity and Acceleration of a Particle
General equation of a wave is given by

y = A sin{wt — kx)

= % = Aw cos(wt — kx) )
0%y -

a,= Y = —Auw? sin(wt — kx) 2)
22 = — Ak cos(wt — kx) 3)
Ox

9y

Here, — = slope of (y, x) curve.
Ox

Now again differentiating Eq. (3),
9%y

S —Ak? sin(wt — kx) “)
x
From Eqs. (2) and (4),

&y =7’ oy

or* ox’

VELOCITY OF SOUND/LONGITUDINAL
WAUVES IN SOLIDS

Consider a section AB of medium as shown in Fig. 3.6(a) of
cross-sectional area S. Let 4 and B be two cross-sections as
shown. Let in this medium sound propagation is from left
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to right. If wave source is at origin O and when it oscillates,
the oscillations at that point propagate along the rod.

Velocity of sound
—

\

o .
e —X T —pt———h
tlx + dly

(b)

Figure 3.6

Here, we say an elastic wave has propagated along the rod
with a velocity determined by the physical properties of the
medium. Due to oscillations, say a force F' is developed at
every point of the medium which produces a stress-in the
rod and is the cause of strain or propagation of disturbance
along the rod. This stress at any cross-sectional area can be
given as

stress, S =— (D

'S

Let us consider the section 4B of the medium at a general
instant of time . The end 4 is at a distance x from O and
B is at a distance x + dx from O. Let in time df due to
oscillations, medium particles at @ are displaced along
the length of the medium by y and those at B by y 4 dy.
The resulting position of the sections and A’ and B’ are
shown in Fig. 3.6(b). Here, we can say that the section
AB is deformed (elongated) by a length dy. Thus, strain
produced in it is

4y

Strain in section 4B, E= (2)

dx
If Young’s modulus of the material of medium is ¥, we have
Young’s modulus, Y= bm::‘as e 5

Strain E

F/S
From Egs. (1) and (2), we have ¥ = —
t{'t’_.‘r dy
or F=YS§ & (3)
X

If net force acting on section AB is dF, then it is given as
dF = dma, C))
where dm is the mass of the section 4B and a is its acceleration,
which can be given as for a medium of density p.
dm = pSdx

2
and a= 4 f
dt

2
From Eq. (4), we have dF = (pSdx) Z );
X
dF d’y
= e ©)

From Eq. (3) on differentiating with respect to x, we can
write

dF d’

el ©
From Egs. (5) and (6), we get

d’y (Y\d’y

W‘Haf @

Equation (7) is the differential form of the wave equation,
comparing it with previous equation, we get the wave
velocity in the medium as
y— ¥
'()

Similar to the case of a solid in fluid, instead of Young’s
modulus we use bulk modulus of the medium. Hence, the
velocity of longitudinal waves in a fluid medium is given as
v [B.
,f.'i

where B is the bulk modulus of the medium.
For a gaseous medium, bulk modulus is defined as

B=— P __

(—dvV V)
or B= ~Vd—P
av

Newton’s Formula for Velocity of Sound in
Gases

Newton assumed that during sound propagation, temper-
ature of a medium remains constant. Hence, he stated that
propagation of sound in a gaseous medium is an isothermal
phenomenon. Boyle’s law can be applied in the process. So
for a section of medium, we use

PV = constant.

Differentiating, we get

PdV +VdP = 0
or —Vd—PzP
dv
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or bulk modulus of the medium can be given as B = P
(pressure of the medium)

Newton found that during isothermal propagation of
sound ina gascous medium, bulk modulus of the medium is
equal to the pressure of the medium. Hence, sound velocity
in a gaseous medium can be given as

~-iF »
p \p

From gas law, we have

P RT
== @
p M
From Egs. (1) and (2), we have
RT
V=.—— 3
i, 3)

From the expression in Eq. (1), if we find the sound velocity
in air at normal temperature and atmospheric pressure, we
have

Normal atmospheric pressure,
P=1.01x10°Pa
Density of air at NTP,
p=1.293 kg/m’
Now from Eq. (1),

y= |2
p
3
= y— ’I.O.lxlO
; 1.293
= 279.45 m/s.

But the experimental value of velocity of sound determined
from various experiments gives the velocity of sound at NTP
as 332 m/s. Therefore, there is a difference of about 52 m/s
between the theoretical and experimental values. This large
difference cannot be attributed to the experimental errors.
Newton was unable to explain the error in his formula. This
correction was explained by the French scientist Laplace.

Laplace Correction

Laplace explained that when sound waves propagated in a
gaseous medium, there is compression and rarefaction in
the particles of the medium. Where there is compression,
particles come near each other and are heated up, where
there is rarefaction, the medium expands and there is a fall
of temperature. Therefore, the temperature of the medium
at every point does not remain constant so the process of

Sound Waves 3.5

sound propagation is not isothermal. The total quantity of
heat of the system as a whole remains constant. The medium
does not gain or lose any heat to the surrounding. Thus,
in a gaseous medium, sound propagation is an adiabatic
process. For adiabatic process, the relation in pressure and
volume of a section of medium can be given as

PV7= constant @)

C, . . ) .
Here, v = —£ is the ratio of specific heats of the medium.

4
Differentiating Eq. (1) we get,
dPVi+ V' dVP =0
PdV

or dP+~y——=0
Tav

or —Vd—szP
av

Bulk modulus of medium, B = P,

Thus, Laplace found that during adiabatic propagation
of sound, the bulk modulus of gaseous medium is equal to
the product of ratio of specific heats and the pressure of the
medium. Thus, the velocity of sound propagation can be

given as
v \/E _ [P
p P
- hRT
M

From the above equation, we find the sound velocity in air
at NTP. We have,

From gas law,

- Normal atmospheric pressure,

P=1.01x 10°Pa
Density of air at NTP,
P =1.293 kg/m?
Ratio of specific heat of air,
CP

£ —1.42
CV

’y:

B [1.42%1.01x10°
- 1.293

= 333.04 m/s.
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This value is in agreement with the experimental value.
Now at any temperature £°C, the velocity of sound,

YR(Q2T3 +1°)
¥, =gt
M
/2
N {7R273[1+_l_]
M 273
t
V,= Vo[l-l-;‘g]:Vo 4+0.61T

Velocity of sound increases by 0.61 m/s. When temperature
change by 1°C

Effect of Temperature on Velocity of Sound

We have velocity of sound propagation in a gaseous
medium as

YRT
M
For a given gaseous medium +y, R and M remain constant.

Thus, the velocity of sound is directly proportional to the
square root of absolute temperature of the medium. Thus,

Vocx/_T_

If at two different temperatures T, and T, sound velocities
in the medium are ¥, and V. Then, from the above equation,
we have

Effect of Pressure on Velocity of Sound
We know from the gas law,

P_RT

I M

If the temperature of a medium remains constant, then on
changing pressure, density of the medium proportionally

. P .
changes so that the ratio — remains constant.
p

Hence, if in a medium,

‘T = constant,

P
then, — = constant.
P
. ~P
Thus, velocity of sound, ¥ =  |[~— = constant.
0

Therefore, the velocity of sound in air or in a gas is
independent of change in pressure.

Effect of Humidity on the Velocity of Sound

The density of water vapour at NTP is 0.8 kg/m?, whereg
the density of dry air at NTP is 1.293 kg/m®, Therefop,
water vapour has a density less than the density of dry ili.r,.
As atmospheric pressure remains approximately the same,
the velocity of sound is more in moist air than the \'L‘lt)city:
of sound in dry air.

p— Vdry 4  (from the previous equation),

Effect of Wind on Velocity of Sound

If wind is blowing in the direction of propagation of soung,

it will increase the velocity of sound. On the other hand, jf

wave propagation is opposite to the direction of propagation

of wind, wave velocity is decreased. If wind blows at speed

V , then sound velocity in the medium can be given as
V=V+V,,

where I7S is the velocity of sound in still air.

APPEARANCE OF SOUND TO HUMAN EAR

The appearance of sound to a human ear is characterized
by three parameters: (a) pitch, (b) loudness and (¢) quality.

Pitch and Frequency

Pitch of a sound is that sensation by which we differentiate a
buffalo voice, a male voice and a female voice. We say that a
buffalo voice is of low pitch, a male voice has higher pitch and
a female voice has still higher pitch. This sensation primarily
depends on the dominant frequency present in the sound.
Higher the frequency, higher will be the pitch and vice versa.

Loudness and Intensity

A

The loudness that we sense is related to the intensity
of sound, though it is not directly proportional to it. Our
perception of loudness is better correlated with the sound
level measured in decibels (abbreviated as dB) and defined
as follows.

I
ﬂ:lOlog,O[l—].

0

where [ is the intensity of the sound and I, is a constant
reference intensity 1072 W/m2.The reference intensity
represents roughly the minimum intensity that is just
audible at intermediate frequencies. For I = I, the sound
level § = 0. Maximum tolerable  is 1 W/m? and maximum ||
level is 120 dB

0< /<120
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Quality and Waveform

A sound generated by a source may contain a number
of frequency components in it. Different frequency
components have different amplitudes and superposition
of them results in the actual waveform. The appearance of
sound depends on this waveform apart from the dominant
frequency and intensity. Figure 3.7 shows waveforms for a
tuning fork, a clarinet and a cornet playing the same note
(fundamental frequency = 440 Hz) with equal loudness.

{ANANNA
VAAVARVE

g M/I/M ,
e

P%v%ﬂwr'

Figure 3.7

We differentiate between the sound from a table and that
from a midrange by saying that they have different quality.
Energy in Sound Waves

2 = 2P A WV

Intensity = 2m?A* fpV

AP = AP, cos(wt — kx)

AP, = 3’kA
AP,
BK
WAV

= A=

Intensity =

WAR Y WSAP 1
207K 2/’
AP WV APpBV

23 2,[32;)

-
P

APV
2p

I =
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ANALYTICAL TREATMENT OF
INTERFERENCE OF WAVES

= A, sin (wt + kx,)

, = A, sin (wt + kx,)

A, sin (wt + kx)

Figure 3.8

Interference implies super position of waves. Whenever two
or more than two waves superimpose each other at some
position, then the resultant displacement of the particle is
given by the vector sum of the individual displacements.

Let the two waves coming from sources S, and S, be
y,= A, sin(wr + kx,)
y,= A,sin(wt + kx,), respectively.
Due to superposition,
Y =N T,
Y =A, sin(wt + kx ) + 4, sin(wt + kx,)

Phase difference between y, and y,=k(x,—x),
ie., A = k(x,— x,).
AR Ad— ZTF Ax
(where Ax = path difference and A¢ = phase difference)
— A7 + 4 +244,c08¢
= A=A+ A4 +244,cos¢
I =1+1+ 2Jl1,cos¢ (aslcx A%

When the two displacements are in phase, then the resultant

amplitude will be the sum of the two amplitudes and [ will

be maximum. This is known as constructive interference.
For I , tobe maximum,

cosp=1

= ¢ =2nm, wheren = {0,1,2,3,4,5, ...}
2—7rAx:2n7r
A

= Ax =n).

For constructive interference

L= (I +4L)

When I=1,=1
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Inet =47

Anet = Al + AZ

When Superposing waves are in opposite phase, the
resultant amplitude is the dj fference of two amplitudes and
1, is minimum. This is known as destructive interference,
For I tobe minimum,
cos Agp = —1

Ap=Q2n+ r
where n = {0, 1,2,3,4,5, o}

'ZTWAx = @2n+ Dr

= Ax:(Zn—f—l)%

For destructive interference,

L= G Ty

If =1,

Inel - O

Anet = Al - A2.
Generally,

Ly=1+1+ 21,1, cos ¢
If L=I=1I
I =21+ 2l cos ¢

net

L =2K1 + cos )

= 4/ cog? A¢

2
1 1 2
Ratio of I and/ = i‘[_'_t‘j__—Z_)_

min (\/1—1_@)2
LONGITUDINAL STANDING WAVES

Two longitudinal waves of the same frequency and
amplitude travelling in opposite directions interfere to
produce a standing wave.

If the two interfering waves are given by
P =P sin(wt — k)
and ‘ P,= P sin(wf + kx + ),
then the equation of the resultant standing wave would be
given by

P=P + P,= 2P cos(kx + g) sin(wt 4 %)

i

= P =P/ sin(wt + % ) (1
This is equation of SHM* in which the amplitude p,
depends on position as

P = 2P, cos(kx + —;é) )
Points where pressure remains permanently at jts average
value, ie., pressure amplitude is zero is called 4 pressure
node, and the condition for a pressure node would be given

by

Br==(),
. N
Le., cos(kx + E) =0
ie., kx—l—Q:Zmr:l: E,
2 2
n=0,1,2, ..,

Similarly, points where pressure amplitude is maximum
is called a pressure anti-node and condition for a pressure
anti-node would be given by

2 = +2p,,
. N
Le., cos(fx + 5) =41
or (kx + g) = nm,
n=0,1,2,...
Notes

1. Note that a pressure node in a standing wave
would correspond to a displacement anti-node;
and a pressure anti-node would correspond to a
displacement node.

2. When we label Eq. (1) as SHM, what we mean
is that excess pressure at any point varies simple
harmonically. If the sound waves were represented
in terms of displacement waves, then the equation
of standing wave corresponding to Eq. (1) would be

§=S5cos(wt + ?), !
where A 28, sin(hx + —?).



Notes (Cont'd)

This can be easily observed to be an equation of SHM,
It represents the medium particles moving simple
harmonically about their mean position at x.

REFLECTION OF SOUND WAVES

Reflection of sound waves from a rigid boundary (e.g.,
closed end of an organ pipe) is analogous to reflection of a
string wave from rigid boundary; reflection accompanied
by an inversion, i.e., an abrupt phase change of P. This
is consistent with the requirement of displacement if
amplitude remains zero at the rigid end, since a medium
particle at the rigid end cannot vibrate. As the excess
pressure and displacement corresponding to the same
sound wave vary by 7/2 in terms of phase, a displacement
minima at the rigid end will be a point of pressure
maxima. This implies that the reflected pressure waves
from the rigid boundary will have the same phase as the
incident wave, i.e., a compression pulse is reflected as a
compression pulse and a rarefaction pulse is reflected as a
rarefaction pulse

On the other hand, reflection of sound wave from a
low-pressure region (like the open end of an organ pipe)
is analogous to reflection of string wave from a free end.
This point corresponds to a displacement maxima, so
that the incident and reflected displacement waves at this
point must be in phase. This would imply that this point
would be a minima for pressure wave (i.e., pressure at this
point remains at its average value), and hence the reflected
pressure wave would be out of phase by 7 with respect to
the incident wave, Le., a compression pulse is reflected as a
farefaction pulse and vice versa,

WAVES IN A VIBRATING AIR COLUMN

Hollow pipes have long been used for making musical
sounds. A hollow pipe is called as an organ pipe. To
understand how these work, first we examine the behaviour
ofair in a hollow pipe that is open at both ends. If we blow
air across one end, the disturbance due to the moving air af
that end propagates along the pipe to the far end. When it
reaches the far end, a part of the wave is reflected, similar to
the case when a wave is reflected along 4 string whose end
point is free to move. Since the air particles are free to move
atthe open end, the end point is an anti-node, If one end of
the pipe is closed off, the air is not free to move any further
in that direction and the closed end becomes a node. Now,

L
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the resonant behaviour of the pipe is completely changed.
Similar to the case of g string, here also all harmonic
frequencies are possible and resonance may take place if
the frequency of external source matches with any of the
harmonic frequency of the pipe. Let us discuss this in detail.

VIBRATION OF AIRIN A CLOSED-ORGAN
PIPE

When a tuning fork is placed near the open end of a pipe,
the air in the pipe oscillates with the same frequency as
that of a tuning fork. Here, the open end should be an anti-
node and closed and should be a node for perfect reflection
of waves from either end or for formation of stationary
waves. Since one end is a node and other is an anti-node,
the Towest frequency (largest wavelength) vibration has no
other nodes or anti-nodes between the ends as shown in
Fig. 3.9(a). This is the fundamental (minimum) ﬁ'cquency
at which stationary waves can be formed in a closed-organ
pipe. Thus, if the wavelength is A, then we can see from
Fig. 3.9(a), which shows the displacement wave of the
longitudinal waves in the closed-organ pipe.

A
== 1
y ey
or M =4]

(@ (b)
Figure 3.9

Thus, fundamental frequency of oscillations of a closed-
organ pipe of length / can be given as

14 14
n = — —

D Y] @
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Similarly, first overtone of a closed-pipe vibration is shown

in Fig. 3.9(b). Here, wavelength ) and pipe length [ are
related as

3N
S 3
_A
3

Thus, frequency of the first overtone oscillations of a
closed-organ pipe of length / can be given as

y_w
D Y]

:3n|.

or DY

(4)

This is three times the fundamental frequency. Thus, after
the fundamental frequency only third harmonic frequency
exists for a closed-organ pipe at which resonance can take
place or stationary waves can be formed in it.

Similarly, the next overtone, second overtone is
shown in Fig. 3.9(c). Here, the wavelength A and pipe
length / are related as

5 )\N

4

.
5
Thus, the frequency of second overtone oscillation of a
closed-organ pipe of length / can be given as
!‘.’
sy yi
4]

This is the fifth harmonic frequency of fundamental
oscillations,

or A

_ @n-pr

In general, f 17

Here, frequency of oscillation is called @2n — 1)
harmonic and (n — 1)* overtone.

From the above analysis, it is clear that the resonant
frequencies‘ofthe closed-organ pipe are only odd harmonics
of the fundamental frequency,

Vibration of Air in an Open-Organ Pipe

Figure 3.10 shows the resonant oscillations of an open-
organ pipe. The least frequency at which an open-organ
pipe resonates is the one with the longest wavelength when

"
or A = %l— &)

at both the open ends of a pipe anti-nodes are formed ang
there is one node in between as shown in Fig. 3.10¢a). 1y
this situation, the wavelengths of sound in air ) is related to
length of organ pipe as

= £
2
or A=21

(1)

Thus, the fundamental frequency of organ pipe cap
be given as

N4
nl:X:—

21

Figure 3.10

Similarly, the next higher frequency at which the open-
organ pipe resonates is shown in Fig, 3.10(b), which we
call the first overtone. Here, the wavelength X’ is related to
the length of the pipe as

=N (2)

Thus, here the resonant frequency for the first overtone is
given as

_r_v

, 3;
M= )

which is the second harmonic of fundamental frequency.
Similarly, as shown in Fig. 3.10(c), in second overtone
oscillations, the wavelength A\” of sound is related to the
length of pipe as
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Thus, the frequency of second overtone oscillations of an
en-organ pipe can be given as

op
14
—_——= 6
ny Y, (6)

=3n, (7

which is the third harmonic of fundamental frequency.
14

In general, f= ’;_E

We can say the frequency of oscillation is called n-th
harmonic and (n — 1)* overtone.

The above analysis shows that resonant frequencies
for the formation of stationary waves include all the
possible harmonic frequencies for an open-organ pipe.

End Correction

As mentioned earlier, the displacement anti-node at an open
end of an organ pipe lies slightly outside the open lend. The
distance of the anti-node from the open end is called end
correction and its value is given by

e=0.6r

where » = radius of the organ pipe.

N, A N

P (4]

n“"i 6r

e=06r
6=
Figure 3.11
With end correction, the fundamental frequency of a closed

pipe (f)) and an open organ pipe (f;) will be given by

V
fo= 4(L + 0.61)
%

g B vy

Resonance Tube

This an apparatus used to determine velocity of sound in
air experimentally and also to compare frequencies of two
tuning forks.

Sound Waves 3.11

Figure 3.12

Figure 3.12 shows the setup of a resonance experiment.
There is a long tube T in which initially water is filled up
to the top and the water level can be changed by moving a
reservoir R up and down.

A tuning fork of known frequency n, is struck gently
on a rubber pad and brought near the open tube T due to
which oscillations are transferred to the air column in the
tube above water level. Now, we gradually decrease the
water level in the tube. This air column behaves like a
closed-organ pipe and the water level as the closed end of
pipe. As soon as water level reaches a position where there
is a node of corresponding stationary wave, in air column,
resonance takes place and maximum sound intensity is

. detected. Let at this position length of air column be I,.

If water level is further decreased, again maximum sound
intensity is observed when water level is at another node,
i.e., at a length [, as shown in Fig. 3.12. Here, if we find
two successive resonance lengths /, and /,, we can get the
wavelength of the wave as

or A=2(,-1).
Thus, sound velocity in air can be given as

V =nA

=2n, (l2 —ll)
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SOLVED EXAMPLE

N e
A tube of certain diameter and of length 48 cm is open
at both ends. Its fundamental frequency of resonance is
found to be 320 Hz. The velocity of sound in air is 320 m/s.
Estimate the diameter of the tube. One end of the tube is
now closed. Calculate the lowest frequency of resonance
for the tube.

SOLUTION

The displacement curves of longitudinal waves in a tube
open at both ends is shown in Figs. (a) and (b).

------- 48cm------ »
A ' Ba N
: N ™ /
@ (b)

Let » be the radius of the tube. We know the anti-nodes
occur slightly outside the tube at a distance 0.6r from the
tube end.

The distance between two anti-nodes is given by

%z48+2><0.6r

We have, A= r
n
= @ = 100 cm
320
or 50 =48 + 1.2r
or r= i = 1.67 cm.
1.2

Thus, diameter of the tube is D = 2r = 3.33.

When one end is closed, then

A _ 481 06r
4
=48 + 0.6 x 1.67 =49
or A=4 %49 =196 cm.
Now, n= K
A
Iy LU PN =

Quinck’s Tube

This is an apparatus used to demonstrate the phenomengy
of interference and also used to measure velocity of suun¢
in air. This is made up of two U-tubes 4 and B as shown iy, |
Fig. 3.13. Here, the tube B can slide in and out from the tube
A. There are two openings P and Q in the tube 4. At opening} |
P, a tuning fork or a sound source of known frequency y
is placed, and at the other opening, a detector is placed [gj
detect the resultant sound of interference occurring dyg ' |
to the superposition of two sound waves coming from thg ‘ |
|
|

tubes 4 and B.
|
= |

Detector ]
Figure 3.13 ‘ i

Initially, tube B is adjusted so that the detector detects a
maximum. At this instant, if the length of the paths covered
by the two waves from P to Q from the side 4 and side B
are [, are [, respectively, then for constructive interference,
we must have

1,—1,= NA ) ‘

If now tube B is further pulled out by a distance x so that the
next maximum is obtained and the length of the path from
the side of B is /;, then we have

|
I =1, +2x, Q) "

where x is the displacement of the tube. For the next "
constructive interference of sound at point Q, we have :
|

I =1 =(N+1)A 3 |

|

From Egs. (1), (2) and (3), we get I‘
X == A (4)

Thus, by experiment we get the wavelength of sound as for |
two successive points of constructive interference, the path
difference must be A. As the tube B is pulled out by x, this
introduces a path difference 2x in the path of sound wave §
through tube B. If the frequency of the source is known, n,,

the velocity of sound in the air filled in tube can be given as

V=nA=2nx &)

2 |
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SOLVED EXAMPLES

EXAMPLE 3

[n a large room, a person receives direct sound waves from a
gource 120 m away from him. He also receives waves from
the same source which reaches him, being reflected from
the 25-m-high ceiling at a point halfway between them. For
which wavelength will these two sound waves interference
he constructive?

C
?'fff!&’fﬁr"/g il
Vi

S

Sd/ +

Source Detector

T

SOLUTION

As shown in the figure for reflection from the ceiling,
Path SCP = SC 4+ CP = 25C

(as £Li = Zr, SC = CP)

or path SCP = 24/60° +25° = 130 cm.
So the path difference between the interfering waves along
path SCP and SP,
Ax =130 —-120=10m.
Now for constructive interference at P,
Ax =n), ie., 10=n)\

or A= 1—0,
n
with n=1,2,3,...,
ie., A=10m, 5 m, (10/3) m and so on. B
EXAMPLE 4

Figure shows a tube structure in which a sound signal is
sent from one end and is received at the other end. The
semi-circular part has a radius of 20.0 cm. The frequency of
the sound source can be varied electronically between 1000

and 4000 Hz. Find the frequencies at which the maxima of

intensity are detected. The speed of sound in air = 340 m/s.

@)-

/) 5,

|

Sound Waves 3.13

SOLUTION

The sound wave reaches the detector by two paths
simultaneously in a straight as well as a semi-circular track.
The wave through the straight path travels a distance /, =
2 x 20 cm and the wave through the curved part travels a
distance [, = 7 (20 cm) = 62.8 cm before they meet again
and travel to the receiver. The path difference between the
two waves received is, therefore,

Al=1—1=628cm— 40 cm
=228 cm =0.228 m.

' . 4 .
The wavelength of either wave is 4 e il . For constructive

n n
interference, Al = N, where N is an integer
or 0.228=N [w]
n
or, n= N[ 240 ]
0.228

= N(1491.2) Hz

= N (1490) Hz.
Thus, the frequencies within the specific range which cause
maxima of intensity are 1490 Hz and 2980 Hz. |
EXAMPLE 5

Two sources S| and S, separated by 2.0 m, vibrate according
to equation y, = 0.03 sin 7t and y, = 0.02 sin 7z, where y,
v, and ¢ are in MKS unit. They send out waves of velocity
1.5 m/s. Calculate the amplitude of the resultant motion of
the particle co-linear with S, and S, and located at a point
(a) to the right of S, (b) to the left of S, and (C) in the
middle of S| and S,

SOLUTION

The situation is shown in the figure.

f—1 m—sf—1m—s]
R N S —
1 S, Q S, P,
ez e

The oscillations y, and y, have amplitudes 4, = 0.03 m and
A, = 0.02, respectively.
The frequency of both sources in

W
n=

T oo
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= l = 0.5 Hz.
2
Now wavelength of each wave
Bl -
n
= 1—5 =30m
5

(a) The path difference for all points P, to the right of S, is
A=(SP — S,P)
=55 =2m

Phase difference ¢ = % x Path difference

:2—7T><2.0:i71
3 3

The resultant amplitude for this point is given by

R=\4" 1 47124 4 cosg

= J(0.03)" +(0.02)° +2x0.03% 0.02 x cos (47/3)

Solving, we get R = 0.0265 m.

(b) The path difference for ali points P, to the left of S,
A=(SP- S.P)
=§,5,=2.0m.

Hence, the resultant amplitude for all points to the left
of §, isalso 0,0265 m.

(¢) Fora point O, between 8, and S, the path difference is
zero, L.e., ¢ = 0. Hence, constructive interference take
place at O. Thus, amplitude at this point is maximum
and given as

R= \/212_"‘ A22 il 2A|A2
. AI + Az
=0.03 +0.02
=0.05m. =
EXAMPLE 6

Two point sources of sound are placed at a distance o
and a detector moves on a straight line parallel to the line

joining the sources as shown in the figure. At a dist

D, away from sources, Initially, detector is situated op:

line so that it is equidistant from both the sources. [§

the displacement of the detector when it detects the )

maximum sound and also find its displacement wheg

detects n-th minimum sound.
S *

1

——— Detector
(D)
2¥ (D >>d)

SOLUTION

The situation is shown in the figure,

Let us consider the situation when the detector moy
by a distance x as shown. Let at this position the p
difference between the waves from S, and S, to detector
A, then we have

A=SD - SD~ 850
(Where S O is perpendicular on line S, D).
Here, if 6 is small angle as D > d, we have

S,0=dsing ~
dtan = g%
D
Thus, at the position of detector, path deference is
dx
As — 1
) (1)

The expression for path difference in Eq.(1)is anim portant
formula for such problems. Students are advised to keep
this formula in mind for future use,

When the detector was at point O, path difference was
zero and it detects a maxima, Now, if the detector detects

the #-th maximum, then its path difference at a distance x
from O can be given as

A =np)

or ni
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nAD
or . d
gimilarly, if the detector detects the n-th minima, then the
path difference between the two waves at the detector can
be given as

A=02n+ 1)A
2
d A
2n+1)AD
or x:————( 2d] B

EXAMPLE 7

Two coherent narrow slits emitting wavelength A in the
same phase are placed parallel to cach other at a small
separation of 2)\. The sound is detected by moving a
detector on the screen § at a distance D (>>A) from the slit
S, as shown.in the figure. Find the distance x such that the
intensity at P is equal to the intensity at O.

SOLUTION

When the detector is at O, we can sec that the path difference
in the two waves reaching O is d = 2. Thus at O, the
detector receives a maximum sound. When it reaches P and

again there is a maximum sound detected at P, the path -

difference between the two waves must be A = A, Thus,
from the figure, the path difference at P can be given as

A=SP-85P~=S§0Q
=dcosf=2Xcos¥.
And we have at point P, path difference A = A, Thus,
A=2Acosf=2A

3.15
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or, cos 8 =

or, 0=

SR

Thus, the value of x can be written as

x=Dtan 6= Dtan 6

:Dtan[g]
=.3D ]

EXAMPLE 8

Figure shows two coherent sources S, and S, which emit
sound waves of wavelength A\ in phase. The separation
between the sources is 3. A circular wire of large radius is
placed in such a way that S, S, lies in its plane and the middle
point of S,S, is at the centre of the wire. Find the angular
position 6 on the wire for which constructive interference
takes place.

SOLUTION

I7T\

13
)
From the previous question, we can say that for a point P
on the circle shown in figure, the path difference in the two
waves at P is

A=S§P—SP=dcosb

=3XAcos 0

We know for constructive interference at P, the path
difference must be an integral multiple of wavelength A.
Thus, for a maxima at P, we have,

3Xcos 8 =0;
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3Xhcos B =)
3Acos =2
3hcos @ =3);
or, g="
2
a1
or = cos~ =
3
or 0= cos‘lg
3
or 6=0

There are four points 4, B, C and D on the circle at which
@ =0 or g and there are two points in each quadrant

] 1

: : 2 . 5
at 0=cos” 3 and 6 =cos"§ at which constructive

interference takes place. Thus, there are a total of 12 points
on circle at which maxima oceurs. |

Vibrations of Clamped Rod

We have discussed the resonant vibrations of a string
clamped at two ends. Now, we discuss the oscillations of
a rod clamped at a point on its length. Figure 3.14 shows
a rod AB clamped at its middle point. If we gently hit the
rod at its one end, it begins to oscillate and in the natural
oscillations the rod vibrates at its lowest frequency and
maximum wavelength, which we call fundamental mode of
oscillations. With maximum wavelength, when transverse
stationary waves set up in the rod, the free ends vibrate
as anti-nodes and the clamped end is a node as shown in
FFig. 3.14. Here, if \ be the wavelength of the wave, we have

/-3
2
or i A=2]

Figure 3.14

Thus, the frequency of fundamental oscillations of a rog
damped at mid-point can be given as

4
nozx
1 |Y
=— . [—, (l)‘
21\ p

where Y is the Young’s modulus of the material of the roq
and p is the density of the material of rod,

Next, the higher frequency at which the rod vibrateg
will be the one when wave length is decreased to a value S0

that one node is inserted between the mid-point and an end.

of rod as shown in Fig. 3.15.

\\“ "’- ‘.‘ "" B

e— ! g

AN AT
mk

Figure 3.15

In this case, if ) is the wavelength of the waves in rod, we
have

1= 32
2
- A=% @)

Thus, in this case the oscillation frequency of the rod can
be given as

V
nl::
3 Y
= fim 3
2\ o 3)

This is called the first overtone frequency of the damped
tod or third harmonic frequency. Similarly, the next higher
frequency of oscillation, i.e., the second overtone of the
oscillating rod can be shown in Fig. 3.16. Here, if ) is the
wavelength of the wave, then it can be given as

SA

]=22

2
_
5

or

4)

4
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Figure 3.16

Thus, the frequency of oscillation of the rod can be given as
vV
n,=—
A

= Ll = Sn, (%)

21\ p

Thus, the second overtone frequency is the fifth harmonic
of the fundamental oscillation frequency of the rod. We can
also see from the above analysis that the resonant frequencies
at which stationary waves are set up in a damped rod are
only odd harmonics of fundamental frequency.

Thus, when an external source of frequency matches
with any of the harmonic of the damped rod, then stationary
waves are set up in the rod.

Natural Oscillation of Organ Pipes

When we initiate some oscillations in an organ pipe,
harmonics excited in the pipe depends on how the initial
disturbance is produced in it. For example, if you gently
blow across the top of an organ pipe, it resonates softly at
its fundamental frequency. But if you blow must harder
you hear the higher pitch of an overtone because the faster
airstream higher frequencies in the exciting disturbance.
This sound effect can also be achieved by increasing the air
pressure in an organ pipe.

Kundt’s Tube

This is an apparatus used to find the velocity of sound in a
gaseous medium or in different materials, It consists of a glass
tube as shown in Fig. 3.17. One end of the piston B is fitted,
which is attached to a wooden handle H and can be moved
inside and outside the tube and fixed. The rod M of the required
material is fixed at clamp C in which the velocity of sound is
required, at one end of the rod, a disc 4 is fixed as shown.

A B
M % ” m @ “ H
— I0 »

Arthin layer of
lycopodium powder

Figure 3.17
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In the tube, air is filled at room temperature and a thin layer
of lycopodium powder is put along the length of the tube.
It is a very fine powder, particles of which can be displaced
by the air particles also.

When rod M is gently rubbed with a resin cloth or
hit gently, it starts oscillating in the fundamental mode as
shown in Fig. 3.18, frequency of which can be given as

=
tod )\
i
2L \p
(as \,= =)
‘ e
fo y : L e A
Figure 3.18
BEATS

When two sources of sound that have almost the same
frequency are sounded together, an interesting phenomenon
occurs. A sound with a frequency average of the two is
heard and the loudness of sound repeatedly grows and
then decays, rather than being constant. Such a repeated
variation in amplitude of sound is called ‘beats’.

If the frequency of one of the source is changed, there
is a corresponding change in the rate at which the amplitude
varies. This rate is called beat frequency. As the frequencies
come close together, the beat frequency becomes slower. A
musician can tune a guitar to another source by listening for
the beats while increasing or decreasing the tension in each
string. Eventually, the beat frequency becomes very low so
that effectively no beats are heard, and the two sources are
then in tune.

We can also explain the phenomenon of beat
mathematically. Let us consider the two superposing waves
have frequencies n, and n,, then their respective equations
of oscillation are

y,=A sin2mn ¢t )
and y,=Asin2wn.t 2)

On superposition at a point, the displacement of the medium
particle is given as
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Y=y +y,
Yy =Asin 27n t 4 A sin 27n,t
y=2Acos27r[u)
2
l‘SiI’lZ?T(MJt 3)
2
y:Rsin27r[n'—§\nz]t @)

Then Eq. (4) gives the displacement of the medium particle
where superposition takes place. It shows that the particle

executes SHM with frequency LN

%, average of the two

ssuperposing frequencies, and with amplitude R which
varies with time, given as

R:2Acos27r(n' ;ant ()
Here, R becomes maximum when
cos27r[n' . "th =41
or 27r(n'_n2]t:N7r (Ne
N
or b=
n—n,
I 2

or at time t:0,~—-——.—-—'——....
B=ny n—n,

Atall the above time instants, the sound of maximum
loudness is heard. Similarly, we can find the time instants
when the loudness of sound is minimum, it oceurs when

cos27r(u]t =0
2

or 2n(”';”2Jt=(2N+1)§(Nel)
o 2N 41
2(”1"‘”2)

or at time instants

in the middle of the instants, when loudest sound is heard
Thus, on superposition of the above two frequencie:
at a medium particle, the sound will be increasing,
decreasing, again increasing and decreasing and so on,
This effect is called beats. Here, the time between twg
successive maximum or minimum sounds is called beat
period, which is given as beat period, 7, = time between
two successive maxima — time between two successive

minima —

n —n,

Thus, beat frequency or number of beats heard per
second can be given as

1
fs*i
=m—n

The superposition of two waves of slightly different
frequencies is graphically shown in Fig. 3.19(a), The
resulting envelope of the wave formed after superposition
is also shown in Fig. 3.19(b). Such a waye when propagates
produces *beat effect at the medium particles.

(b)

Figure 3.19

ECHO

The repetition of sound produced due to reflection by
a distant extended surface like a different, hill well,
building, ete., is called an echo. The effect of sound on
human ear remains for approximately one-tenth of a
second. If the sound is reflected back in a time less than
1710 of a second, no echo is heard. Hence, the human ears




are not able to distinguish a beat frequency of 10 Hz or
more than 10 Hz.

pOPPLER'S EFFECT

When a car at rest on a road sounds its high-frequency
horn and you are also standing on the road nearby, you
will hear the sound of the same frequency it is sounding
put when the car approaches you with its horn sounding,
the pitch (frequency) of its sound seems to drop as the
car passes. This phenomenon was first described by an
Austrian Scientist Christine Doppler and is called the
Doppler effect. He explained that when a source of sound
and a listener are in motion relative to each other, the
frequency of the sound heard by the listener is not the same
as the source frequency. Let us discuss the Doppler effect
in detail for different cases.

Stationary Source and Stationary Observer

Figure 3.20 shows a stationary source of frequency n, which
produces sound waves in air of wavelength A, given as

Ay = s (V = speed of sound in air)
1y
4
A=
: fy v
o LN [N /N
S NS N
Observer
Source
(n, Hz)
Figure 3.20

Although sound waves are longitudinal, here we represent
sound waves by the transverse displacement curve as
shown in Fig. 3.20 to understand the concept in a better
way. As the source produces waves, these waves travel
towards the stationary observer O in the medium (air) with
speed ¥ and wavelength ). As observer is at rest here, he/
she will observe the same wavelength A\ approaching him/
her with a speed v so that he/she will hear the frequency
n given as
14

n=-—=mn,

X

This is why when a stationary observer hears the sound
from a stationary source of sound, he/she detects the same

(same as that of the source) (1)

Sound Waves 3.19

frequency sound- which the source is producing. Thus, no
Doppler effect takes place if there is no relative motion
between the source and observer.

Stationary Source and Moving Observer

Figure 3.21 shows the case when a stationary sources of
frequency n, produces sound waves which have wavelength
in air given as

L v
: - Yo
208N, VON. N N b —
s A £0
Observer
Source
(ny, Hz)
Figure 3.21

These waves travel towards the moving observer with
velocity 7, towards the source. When the sound waves
approach the observer, it will receive the waves of
wavelength A with speed ¥ + ¥ (relative speed). Thus,
the frequency of sound heard by the observer can be
given as

Apparent frequency, £th,

&

:nO[V+V0] @

14

Similarly, we can say that if the observer is receding away
from the source, the apparent frequency heard by the
observer will be given as

Moving Source and Stationary Observer

Figure 3.22 shows the situation when a moving source S of
frequency n, produces sound waves in medium (air) and the
waves travel towards the observer with velocity V.
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)
e —v
LN AL S
Sy 8§ X Observer
Source °
(n, Hz)
[—»
1
V.| —
s[”OJ
Figure 3.22

Here, if we carefully look at the initial situation, the source
starts moving with velocity Vs and also starts producing

. T = o
waves. The period of one oscillation is |—/| s, and in this
n,
duration, the source emits one wavelength A in the direction
of propagation of waves with speed ¥, but in this duration,
; > . 1
the source will also move forward by a distance V' | —|.
n,
Thus, the effective wavelength of emitted sound in air is
slightly compressed by this distance as shown in Fig. 3.22.
This is termed as apparent wavelength of sound in medium
(air) by the moving source. This is given as

apparent wavelength, A=\ —V

i] )
1)

0

Now this wavelength will approach the observer with speed
V (O is at rest). Thus, the frequency of sound heard by the
observer can be given as

14
apparent frequency, = T
ap

v
=, [ET_T}'.“J (2)

Similarly, if the source is receding away from the observer,
the apparent wavelength emitted by the source in air
towards the observer will be slightly expanded and the
apparent frequency heard by the stationary observer can

be given as
14
B, =H,|——— 3
ap 0[V+Vg] ()

Moving Source and Moving Observer

Let us consider the situation when both the source and
the observer are moving in the same direction as shown in
Fig. 3.23 at speeds ¥, and V,, respectively.

oA y
Ve —
S.g N\ /\\g/ .
Figure 3.23

In this case, the apparent wavelength emitted by the source
behind it is given as
\ = V4V,

ap

Hy

Now this wavelength will approach the observer at relative
speed V' + V. Thus, the apparent frequency of sound heard
by the observer is given as

v+, V4V,
n = :nO
A Vv,

ap

(D

By looking at the expression of apparent frequency given
by the above equation, we can easily develop a general
relation for finding the apparent frequency heard by a
moving observer due to a moving source as

V£V,
VFV

ap =n,

2)

Here, + and — signs are chosen according to the direction
of motion of source and observer. The §ign convention
related to the motion direction can be stated as

1. For both source and observer ¥, and V. are taken in
equation with —ve sign if they are moving in the
direction of V', i.e., the direction of propagation of
sound from source to observer.

2. For both source and observer V, and V are taken in
Eq. (2) with +ve sign if they are moving in the direction
opposite to ¥, Le., opposite to the direction of
propagation of sound from source to observer.

Doppler Effect in Reflected Sound

When a car is moving towards a stationary wall as
shown in Fig. 3.24, if the car sounds a horn, wave travels
towards the wall and is reflected from the wall. When the
reflected wave is heard by the driver, it appears to be of
relatively high pitch. If we wish to measure the frequency
of reflected sound, then the problem must be handled in
two steps.
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Figure 3.24

First, we treat the stationary wall as stationary observer and
car as @ moving source of sound of frequency n,. In this
case, the frequency received by the wall is given as

14
n =n,|—— (1
-] )
Now the wall reflects this frequency and behaves like a
stationary source of sound of frequency », and the car (driver)
behaves like a moving observer with velocity V. Here, the
apparent frequency heard by the car driver can be given as

VY,
1p—nI—V_
14 [V+K]
= B, I
A
V4V,
— = [t 2
HO[V—V:,] 2

The same problem can also be solved in a different manner
by using method of soundimages. In this procedure, we
assume the image of the sound source behind the reflector.
In the previous example, we can explain this situation as
shown in Fig. 3.25.

J|
v, ]
—p I] , Vci-—
1)) I i ofiien
/%//)/1//17// 777 /1//[/' TTITL 7T, .7 4
Figure 3.25

Here, we assume that the sound which is reflected by the sta-
tionary wall is coming from the image of car which is at the
back of it and coming towards it with velocity ¥ . Now the fre-
quency of sound heard by the car driver can directly be given as

V4V,
V-V,

ap nO

3

This method of images for solving problems of Doppler
effect is very convenient but is used only for velocities of
source and observer, which are very small compared to the
speed of sound and it should not be used frequently when
the reflector of sound is moving.

Sound Waves 3.21

Doppler’s Effect for Accelerated Motion

For the case of a moving source and a moving observer, we
known the apparent frequency the observer can be given as
Vv,
VFV;

“

:nO

nap

Here, ¥ is the velocity of sound and ¥ and V, are the
velocities of the observer and source, respectively.

When a source of observer has accelerated or retarded
motion, then in Eq. (4), we use that value of ¥ at which
the observer receives the sound and for source, we use that
value of ¥ at which it has emitted the wave.

The alternative method of solving this case is by
the traditional method of compressing or expanding the
wavelength of sound by motion of source and using relative
velocity of sound with respect to the observer

Doppler’s Effect When the Source and Observer
Are Not in the Same Line of Motion

Consider the situation shown in Fig. 3.26. Two cars 1 and 2
are moving along perpendicular roads at speeds ¥, and V.
When car 1 sounds a horn of frequency #,, it emits sound
in all directions and say car 2 is at the position as shown in
Fig. 3.26, when it receives the sound. In such cases, we use
velocity components of the cars along the line joining the
source and the observer. Thus, the apparent frequency of
sound heard by car 2 can be given as

V-V, cost,

Ry, =y | ——F——2%
V—V, cost

ap

R
Car 1
it
{';‘Carz
Figure 3.26

1. Doppler effect for circular motion.

2. Doppler effect of light AX= 4\ (Read and Blue
shift).
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JEE Main

1. The elevation of a cloud is 60° above the horizon. A
thunder is heard § s after the observation of lighting.
The speed of sound is 330 ms . The vertical height of
cloud from ground is

(B) 2682 m
(D) 2068 m

(A) 2826 m
(C) 2286 m

2. The ratio of speed of sound in neon to that in water
vapours at any temperature (when molecular weight
of neon is 2.02 x 102 kg mol~! and for water vapours
is 1.8 x 1072 kg mol~")
(A) 1.06
(©) 6.10

(B) 1.60
(D) 15.2

3. A Firecracker exploding on the surface of a lake is
heard as two sounds a time interval ¢ apart by a man
on a boat close to water surface. Sound travels with a
speed  in water and a sped v in air. The distance from
the exploding firecracker to the boat is

(A) uvt B) t(u + v)
u-+v uy
© tu—v) D) uvt
uv U—v

4. The energy per unit area associated with a progressive
sound wave will be doubled if
(A) the amplitude of the wave is doubled
(B) the amplitude of the wave is increased by 50%
(C) the amplitude of the wave is increased by 41%
(D) None of these

5. A sound level 7 is greater by 3.0103 dB from another
sound of intensity 10s Wem =, The absolute value of
intensity of sound level / in Wm-? is
(A) 2.5 x 104 B) 2x 10+
(©) 2.0 x 102 (D) 2.5 x 102

6. A wave travels uniformly in all directions from a point
source in an isotropic medium. The displacement of

10.

11.

the medium at any point at a distance » from the SOurgy
may be represented by (4 is a constant representip,
strength of source) !

A) [4/V7] sintor — wp)
(©) [47] sin(hr — wi)

(B) [A/r] sin(kr —
(D) [417] sin(kr — )

How many times more intense is 90 dB sound tha.
40 dB sound?

(A) 5 B) 50

(C) 500 D) 10°

(A) there is a gain of energy

(B) there is a loss of energy

(C) the energy is redistributed and the distribution
changes with time

(D) the energy is redistributed and the distribution
remains constant in time

. Sound waves from a tuning fork F reach a point P

by two separate routes FAP and FBP (when FBP ig
greater than FAP by 12 cm there is silence at P). If the
difference is 24 cm the sound becomes maximum at
P but at 36 cm there is silence again and so on. If the
velocity of sound in air is 330 ms™', the least frequency

of tuning fork is
(A) 1537 Hz (B) 1735 Hz
(C) 1400 Hz (D) 1375Hz

S, and S, are two sources of sound emitting sine waves.

The two sources are in phase. The sound emitted by

the two sources interfere at point F, The waves of
wavelength

S——2M—poe—— Am— 4,
S, S, F
(A) 1 m will result in constructive interference

2 . . .
(B) B m will result in constructive interference

(C) 4 m will result in destructive interference
(D) All the above

The ratio of intensities between two coherent sound
sources is 4:1 The difference of loudness in dB
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12.

13.

14.

15.

16.

17.

between maximum and minimum intensities when
they interfere in space is
(A) 101log 2
(C) 101og 3

(B) 20 log 3
(D) 20log2

In Quincke’s tube a detector detects minimum
intensity. Now one of the tube is displaced by
5 em. During displacement detector detects maximum
intensity 10 times, then finally a minimum intensity
(when displacement is complete). The wavelength of
sound is:
(A) 10/9 cm
(C) 172 cm

(B) 1cm
(D) 5/9 cm

‘Two waves of sound having intensities 7 and 47 interfere
to produce interference pattern. The phase difference

between the waves % is at point 4 and 7 at point B.

Then the difference between the resultant intensities at
Aand B is
(A) 21
(C) 51

(B) 47
(D) 71

A cylindrical tube, open at one end and closed at the

other, is in acoustic unison with an external source

of frequency held at the open end of the tube, in its

fundamental note. Then

(A) the displacement wave from the source gets
reflected with a phase change of 7 at the closed end

(B) the pressure wave from the source get reflected
without a phase change at the closed end

(C) the wave reflected from the closed end again gets
reflected at the open end

(D) All of these

Sound waves of frequency 660 Hz fall normally on a
perfectly reflecting wall. The shortest distance from the
wall at which the air particle has maximum amplitude
of vibration is (velocity of sound in air is 330 m/s)
(A) 0.125m (B) 0.5m

(C) 0.25m (D) 2m

At the closed end of an organ pipe,
(A) the displacement is zero

(B) the displacement is maximum
(C) the wave pressure is zero

(D) None of these

An open organ pipe of length L vibrates in its
fundamental mode. The pressure variation is maximum

18.

19.

20.

21.

22.

23.
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(A) at the two ends

(B) at the middle of the pipe

(C) at distance L/4 inside the ends
(D) at distance L/8 inside the ends

The effect of making a hole exactly at (1/37) of the

length of the pipe from its closed end is such that:

(A) its fundamental frequency is an octave higher
than the open pipe of same length

(B) its fundamental frequency is thrice that before
making a hole

(C) the fundamental alone is changed while the
harmonics expressed as ratio of fundamentals
remain the same

(D) All the above

An open organ pipe of length L vibrates in second
harmonic mode. The pressure vibration is maximum
(A) at the two ends

(B) ata distance L/4 from cither end inside the tube
(C) at the mid-point of the tube

(D) none of these

An open organ pipe of length / is sounded together with
another organ pipe of length / + x in their fundamental
tones (x << /). The beat frequency heard will be
(speed of sound is v)

VX vi?

A) — B) —
(A) e (B) x
2

VX VX

C D) —
© e (D) Y,

A sufficiently long close organ pipe has a small hole at
its bottom. Initially the pipe is empty. Water is poured
into the pipe at a constant rate. The fundamental
frequency of the air column in the pipe

(A) continuously increasing

(B) first increases and them becomes constant

(C) continuously decreases

(D) first decreases and them become constant

A tuning fork of frequency 340 Hz is vibrated just
above a cylindrical tube of length 120 cm. Water is
slowly poured in the tube. If the speed of sound is
340 ms™', then the minimum height of water required
for resonance is
(A) 95 cm

(C) 45¢em

(B) 75 cm
(D) 25¢cm

An organ pipe P, closed at one end vibrating in its
first overtone. Another pipe P, open at both ends is
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24,

25.

26.

27.

28.

29.

30.

vibrating in its third overtone. They are in a resonance
with a given tuning fork. The ratio of the length of P,

to that of P, is:
(A) 8/3 (B) 3/8
) 12 (D) 1/3

A pipe’s lower end is immersed in water such that
the length of air column from the top open end has
a certain length 25 ¢cm. The speed of sound in air is
350 m/s. The air column is found to resonate with a
tuning fork of frequency 1750 Hz. By what minimum
distance should the pipe be raised in order to make the
air column resonate again with the same tuning fork
(A) 7cm (B) Scm

(©) 35cm (D) 10cm

In case of closed organ pipe which harmonic the p*
overtone will be
(A) 2p+1

©) p+1

(B) 2p -1
®)p-1

A closed organ pipe has length ‘I’. The air in it is vibrating
in the third overtone with maximum displacement
amplitude ‘a’. The displacement amplitude at distance
U/7 from closed end of the pipe is
(A) 0

(C) a2

(B) a
(D) none of these

The number of beats heard per second if there are three
sources of frequencies (n — 1), n and (n + 1) of equal
intensities sounded together is
A) 2
© 4

(B) 1
D) 3

A tuning fork of frequency 280 Hz produces 10 beats/s
when sounded with a vibrating sonometer string. When
the tension in the string increases slightly, it produces
11 beats/s. The original frequency of the vibrating
sonometer string is
(A) 269 Hz

(C) 270 Hz

(B) 291 Hz
(D) 290 Hz

The speed of sound in a gas, in which two waves of
wavelength 1.0 m and 1.02 m produce 6 beats/s, is

approximately
(A) 350 m/s (B) 300 m/s
(C) 380 m/s (D) 410 m/s

Consider two sound sources S| and S, having same
frequency 100 Hz and the observer O located between
them as shown in the figure. All the three are moving

31.

32,

33.

5

with same velocity in same direction. The beat
frequency of the observer is

———> o » o—— —»
S, 30ms™ O 30ms! S,30ms™

(A) 50Hz (B) 5Hz

(C) zero (D) 2.5Hz

A source § of frequency f, and an observer O, moving
with speeds v, and v, respectively, are moving away
from each other. When they are separated by distance
a (t = 0), a pulse is emitted by the source. This pulse is
received by O at time ¢, then ¢, is equal to

(A) a (B) a
v, v, vt
a 1 a
Q) D) ———
¢ ¥, —V, 1 U

A detector is released from rest over a source of sound
of frequency f, = 10° Hz. The frequency observed by
the detector at time # is plotted in the graph. The speed
of sound in air is (g = 10 m/s?)

f(Hz)
2000
1000
- b
30 t(s)
(A) 330 m/s (B) 350 m/s
(C) 300 m/s (D) 310 m/s

An observer starts moving with uniform acceleration ‘a’
towards a stationary sound source of frequency f. As the
observer approaches the source, the apparent frequency f°
heard by the observer varies with time ¢ as:

@Ay r ® r
> f =
© 7 ®
/
‘\
— ¢ +




34. A source of sound § having frequency f. Wind is blowing
from source to observer O with velocity u. If the speed
of sound with respect to air is C, the wavelength of sound
detected by O is

CH+u C—u
(A)

B
i ()f

Sound Waves 3.25

) =ty o <

C(C+u)
(C—u)f f

e

JEE Advanced

single Correct

1. In a test of subsonic Jet flies over head at an altitude
of 100 m. The sound intensity on the ground as the jet
passes overhead is 160 dB. At what altitude should the
plane fly so that the ground noise is not greater than
120 dB.

(A) Above 10 km from ground
(B) Above 1 km from ground
(C) Above 5 km from ground
(D) Above 8 km from ground

2. Three coherent waves of equal frequencies having
amplitude 10 pm, 4 pm, and 7 pm respectively, arrive
at a given point with successive phase difference of the
amplitude of the resulting wave in pm is given by
(A) S B) 6
) 3 (D) 4

3. A person standing at a distance of 6 m from a source
of sound receives sound wave In two ways, one directly
from the source and other after reflection from a
rigid boundary as shown in figure. The maximum
wavelength for which, the person will receive
maximum sound intensity, is

4

(A) 4m ®) §m
€) 2m (D) %m

4. The ratio of maximum to minimum intensity due to

" .49 .
superposition of two waves is % Then the ratio of

the intensity of component waves is

25 16
A) Y (B) %
4 9
©) T (D) T

5. The displacement sound wave in a medium is given by

the equation Y = 4 cos(ax + bt), where 4, a and b are

positive constants. The wave is reflected by an obstacle

situated at x = 0. The intensity of the reflected wave is

0.64 times that of the incident wave. Tick the statement

among the following that is incorrect.

(A) The wavelength and frequency of the wave are
27/a and b/2 respectively.

(B) The amplitude of the reflected wave is 0.8 A4.

(C) The resultant wave formed after reflection is y =
A cos(ax + bf) + [-0.8 A cos(ax — bf)] and V__
(maximum particle speed) is 1.8 bA4.

(D) The equation of the standing wave so formed is
y = 1.6 A sin ax cos bt.

6. A tube of diameter d and of length ¢ l—d—

unit is open at both ends. Its fundamental
frequency of resonance is found to be T
v,. The velocity of sound in air is 330 e
m/s. One end of tube is now closed.
The lowest frequency of resonance of l

tube is v,. Taking into consideration the

. v, .
end correction, —= is

Yi

(£+0.6d)
(£4+0.34d)

(F4+0.3d)

| I
A B) Sl ro6d)
(A) B T 06d)
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10.

11.

12.

© L (£+0.6d) o 1 (d+0.3¢)

2(£+40.34) 2(d+0.60)

In a closed end pipe of length 105 cm, standing waves
are set up corresponding to the third overtone. What
distance from the closed end, amongst the following,
is a pressure Node?
(A) 20 cm
(C) 85cm

(B) 60 cm
(D) 45 cm

A closed organ pipe of radius », and an open organ
pipe of radius , and having same length ‘L’ resonate
when excited with a given tuning fork. Closed organ
pipe resonates in its fundamental mode whereas open
organ pipe resonates in its first overtone, then

A r,—r =1L By r,—r =L2

(C) r,—2r, =25L (D) 2r,—r, =25L

First overtone frequency of a closed organ pipe is
equal to the first overtone frequency of an open organ
pipe. Further nth harmonic of closed organ pipe is also
equal to the mth harmonic of open pipe, where # and m
are

(A) 5,4
(©) 9,6

®B) 7,5
D) 7, 3.

If 7, and I, are the lengths of air column for the first
and second resonance when a tuning fork of frequency
n is sounded on a resonance tube, then the distance
of the displacement antinode from the top end of the
resonance tube is

(A) 21, 1) (B) %(21, -1,)
I,-3], I,—1,
©) == (D) =

The first resonance length of a resonance tube is 40 cm
and the second resonance length is 122 cm. The third
resonance length of the tube will be

(A) 200 cm (B) 202 cm

(C) 203 cm (D) 204 ¢cm

The tuning forks 4 & B produce notes of frequencies
256 Hz & 262 Hz respectively. An unknown note
sounded at the same time as 4 produces beats. When
the same note is sounded with B, beat frequency is
twice as large. The unknown frequency could be

(A) 268 Hz (B) 250 Hz

(C) 260 Hz (D) none of these

13.

14.

15.

16.

A closed organ pipe and an open pipe of same lenggy
produce 4 beats when they are set into vibration
simultaneously. If the length of each of them were Iwicy
their initial lengths, the number of beats produced will jy
(A) 2 (B) 4
€1 D) 8

Two trains move towards each other with the samy |
speed. The speed of sound is 340 ms~". If the pitch of
the tone of the whistle of one when heard on the othey:
changes by 9/8 times, then the speed of each train is

(A) 2ms™!
(C) 20 ms™!

(B) 40 ms™!
(D) 100 ms™!

Source and observer both start moving simultaneously
from origin, one along X-axis and the other along
the Y-axis with speed of source equal to twice the
speed of observer. The graph between the apparent
frequency (n’) observed by observer and time ¢

would be (n is the frequency of the source)
@ 7 ® »

t

A small source of sound moves on a circle as shown in
the figure and an observer is sitting at O. Let at v, Y,
and v, be the frequencies heard when the source is at
A, B, and C respectively.
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18.

19.

20.

A)v>v,>v,
©) v,>v, >V,

®B) v,=v,>V,
D) v,>v, >V,

The frequency changes by 10% as a sound source
approaches a stationary observer with constant
speed v What would be the percentage change in
frequency as the source recedes the observer with
the same speed. Given that v < v. (v = speed of
sound in air)
(A) 14.3%

(C) 10.0%

(B) 20%
(D) 8.5%

An engine whistling at a constant frequency #,
and moving with a constant velocity goes past a
stationary observer. As the engine crosses him, the
frequency of the sound heard by him changes by a
factor f. The actual difference in the frequencies of
the sound heard by him before and after the engine
crosses him is

L (1 2 1, =r
@& Sm(1-1%) ®) 2n0[ y ]
=7 L il

© no[l n f] () 2no[1 - f]

A stationary sound source ‘s’ of frequency 334 Hz and
a stationary observer ‘O’ are placed near a reflecting
surface moving away from the source with velocity 2
m/sec as shown in the figure. If the velocity of the sound
waves in air is ¥ = 330 m/sec, the apparent frequency
oftheechois ¢

(B) 326 Hz
(D) 330 Hz

(A) 332 Hz
(C) 334 Hz

A sounding body of negligible dimension emitting
a frequency of 150 Hz is dropped from a height.
During its fall under gravity it passes near a balloon
moving up with a constant velocity of 2 m/s one
second after it started to fall. The difference in the
frequency observed by the man in balloon just before
and just after crossing the body will be (Given that,
velocity of sound = 300 m/s ; g = 10 m/s?)

A 12 (B) 6
© 38 D) 4

Sound Waves 3.27

21. Two sound sources each emitting sound of wavelength
) are fixed some distance apart. A listener moves with
a velocity u along the line joining the two sources. The
number of beats heard by him per second is

2u u

A) — B) =

(A) i B) 3

u 27

C) — D) =

© 3 (D) .
Multiple Correct

The figure represents the instantaneous picture of a longi-
tudinal harmonic wave travelling along the negative x-axis.
Identify the correct statement(s) related to the movement of
the points shown in the figure.

22. The points moving in the direction of wave are
(A) b ®B) c
©f D) i
23. The points moving opposite to the direction of
propagation are
(A) a ®) d
©f ®)Jj
24. The stationary points are
(A) a ®B) ¢
© g D) &
25, The maximum displaced points are
(A) a B) e
© g (D) i
26. The points of maximum compression are
A)c ®) g
©) e D) &
27. The points of maximum rarefaction are
(A) a B) e
© g ®) i

28. Which of the following graphs is/are correct.
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29.

30.

(A) 554

2.

gz (T = constat)

° 3 Parabola

2 3

Pressure

B ‘;::n
B) %

2.

ks 8

23

Temperalure

©) 50

z5 ¢

=20 _E

8700 Parabola

o c 5

2E2% N

Tension

(D)

(Fundamental freq.
of an organ pipe)

Length of organ pipe

Which of the following statements are wrong about the
velocity of sound in air :

(A) Decreases with increases in temperature

(B) Increases with decrease in temperature

(C) Decreases as humidity increases

(D) Independent of density of air

Two interfering waves have the same wavelength,
frequency, and amplitude, They are traveling in the
same direction but are 90° out of phase. Compared to

the individual waves, the resultant wave will have the.

same.
(A) Amplitude and velocity but different wavelength
(B) Amplitude and wavelength but different velocity
(C) Wavelength and velocity but different amplitude
(D) Amplitude and frequency but different velocity

Question No. 31 to 35

A narrow tube is bent in the form of a circle of radius R
as shown in the figure. Two small holes S and D are mag,
in the tube at the positions right angle to each other. A
source placed at S generated a wave of intensity /, which
is equally divided into two parts: One part travels along the
longer path, while the other travels along the shorter path,
Both the part waves meet at the point D where a detectoy
is placed

31. If a maxima is formed at the detector, then the
magnitude of wavelength A\ of the wave produced ig
“given by

(A) 7R ®) %
TR 27 R
© = @ ZE

32. If the minima is formed at the detector, then the
magnitude of wavelength A of the wave produced is
given by

(A) 27R (B) %TR
© ”—R D) %TR

33. The maximum intensity produced at D is given by

A) 4, (B) 21,
© 1 (D) 31,
34. The maximum value of A to produce a maxima at D ]
is given by
(A) nR (B) 2nR
TR 3mR
6 — D) ——
© ) D) =
35. The maximum value of A to produce a minima at D
is given by
(A) ™R (B) 27R
TR 37R
©) B3 Oy —

2 |

36. The second overtone of an open organ pipe 4 and
a closed pipe B have the same frequency at a given
temperature. If follows that the ratio of the
(A) length of 4 and B is 4:3
(B) fundamental frequencies of 4 & B is 5:6
(C) lengths of B to that of 4 is 5:6
(D) frequencies of first overtone of 4 & B is 10:9




le

th
e

or

he
is

the
| is

it D

at D

and
iven

37.

38.

39.

40.

41.

Four open organ pipes of different lengths and different
gases at same temperature as shown in figure. Let
[ i Jo and £, be their fundamental frequencies, then

[Take v, =7/5]

H

2

[

N,

0, :
T co,
2

213
- _L

T
13
IR
) f/f,= 2

®B) £/ f.= 12/28
(©) ff, = V11728 D) £, /f, = 76 /11

A gas is filled in an organ pipe and it is sounded with

an organ pipe in fundamental mode. Choose the correct

statement(s). (7 = constant)

(A) If gas is changed from H, to O,, the resonant
frequency will increase.

(B) If gas is changed from O, to N, the resonant
frequency will increase.

(C) If gas is changed from N, to He, the resonant
frequency will decrease.

(D) If gas is changed from He to CH,, the resonant
frequency will decrease.

A closed organ pipe of length 1.2 m vibrates in its first
overtone mode. The pressure variation is maximum at
(A) 0.8 m from the open end

(B) 0.4 m from the open end

(C) at the open end

(D) 1.0 m from the open end

For a certain organ pipe three successive resonance
frequencies are observed at 425 Hz, 595 Hz and
765 Hz, respectively. If the speed of sound in air is
340 m/s, then the length of the pipe is

(A) 2.0m (B) 04m

(C) 1.0m (D) 02m

In an organ pipe whose one end is at x = 0, the pressure

3mx . .
is expressed by p=p, cos%sm300m, where x is

in metre and f in second. The organ pipe can be

42.

43.

44.
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(A) closed at one end, open at another with length =
0.5m

(B) open at both ends, length = 1 m

(C) closed at both ends, length = 2 m

(D) closed at one end, open at another with length =

2
=m
3
Two whistles 4 and B each have a frequency of 500
Hz. A4 is stationary and B is moving towards the right
(away from A) at a speed of 50 m/s. An observer is
between the two whistles moving towards the right
with a speed of 25 m/s. The velocity of sound in air
is 350 m/s. Assume there is no wind. Then which of
the following statements are true?
(A) The apparent frequency of whistle B as heard by 4
is 444 Hz approximately.
(B) The apparent frequency of whistle B as heard by
the observer is 469 Hz approximately.
(C) The difference in the apparent frequencies of A4
and B as heard by the observer is 4.5 Hz.
(D) The apparent frequencies of the whistles of each
other as heard by 4 and B are the same.

A source of sound moves towards an observer

(A) the frequency of the source is increased

(B) the velocity of sound in the medium is increased

(C) the wavelength of sound in the medium towards
the observer is decreased

(D) the amplitude of vibration of the particles is
increased

A car moves towards a hill with speed v . It blows a
horn of frequency f which is heard by an observer
following the car with speed v,. The speed of sound in
air is v.

(A) The wavelength of sound reaching the hill is % .

(B) The wavelength of sound reaching the hill is
v—v,
f
(C) The beat frequency observed by the observer is

v+y
=
Vv,
(D) The beat frequency observed by the observer is
2v, (v +v, ) I

2 2
Vi =
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JEE Advanced
Level |
1. A sound wave of frequency 100 Hz is travelling in Then find the loudness level and amplitude at a point
air. The speed of sound in air is 350 m/s. (A) By how located at a distance ‘10R’ from the source. '
much is the phase changed at a given point in 2.5 ms? | 13.
(B) What is the phase difference at a given instant 9. Two point sound sources 4 and B each of power 257 Iy
between two points separated by a distance of 10.0 cm and frequency 850 Hz are 1 m apart.
along the direction of propagation? (A) Determine the phase difference between the
waves emitting from 4 and B received by detector 14.
. The equation of a travelling sound wave is y = 6.0 D as in figure. B |
sin(600r — 1.8x), where y is measured in 10-5 m, (B) Also determine the intensity of the resultant
t in seconds and x in metres. (A) Find the ratio of sound wave as recorded by detector D. Velocity
the displacement amplitude of the particles to the of sound = 340 m/s.
wavelength of the wave. (B) Find the ratio of the
velocity amplitude of the particles to the wave speed. '.:'if L24Am w2 D
;90° .
. A man stands before a large wall at a distance of 1mli
100.0 m and claps his hands at regular intervals, in
such a way that echo of a clap merges with the next ,
clap. If he has to clap 5 times during every 3 s, find the '
velocity of sound in air.
) 10. Two identical loudspeakers are located at points 4 and
& Calculgte the speed of sound in oxygen from the B, 2 m apart. The loudspeakers are driven by the same
following data. The mass of 22.4 litre of oxygen at amplifier. A small detector is moved out from point B 15.
STP(T = 273K ar}dp =1.0 x 10°N/m?) is 32 g, the along a line perpendicular to the line connecting 4 and
molar heat capacity of oxygen at constant volume B. Taking speed of sound in air as 332 m/s. Find the
is C, = 2.5R and that at constant pressure is C, = frequency below which there will be no position along
3.5R. the line BC at which destructive interference occurs.
. In a mixture of gases, the average number of degrees A
of freedom per molecule is 6. The rms speed of the IZ i
molecules of the gasis c. Find the velocity of sound in 8 164
the gas. e
. Find the intensity of sound wave whose frequency is  11. A source of sound §'and a detector D are placed at some
250 Hz. The displacement amplitude of particles of the distance from one another. A big cardboard is placed
medium at this position is 1 x 10~* m. The density near the detector and perpendicular to the line SD as
of the medium is 1 kg/m’, and the bulk modulus of shown in figure. It is gradually moved away and it
elasticity of the medium is 400 N/m2. is found that the intensity changes from a maximum to 1
a minimum as the board is moved through a distance 17
. Two identical sounds 4 and B reach a point in the of 20 em. Find the frequency of the sound emitted. '
same phase. The resultant sound is C. The loudness Velocity of sound in air is 336 m/s.
of C is n dB higher than the loudness of 4. Find the R
value of n. S
. The loudness level at a distance R from a long linear s o
source of sound is found to be 40 dB. At this point, the S
amplitude of oscillations of air molecules is 0.01 ¢m.




.2.‘

13.

14.

Sound of wavelength \ passes through a Quincke’s
tube, which is adjusted to give a maximum intensity
I Find the distance through the sliding tube should be
moved fo give an intensity 2.

The stationary wave y = 2« sin kx cos wr in a closed
organ pipe is the result of the superposition of y = ¢
sin(wt — kx).

The equation of a longitudinal standing wave due to

superposition of the progressive waves produced by

Two sources of sound is s = —20sin 107« sin 1007t

where s is the displacement from mean position

measured In mm, x is in metres and ¢ in seconds. The

specific gravity of the medium is 103, Density of

water = 10* kg/m*, Find:

(A) Wavelength, frequency and velocity of the
progressive waves.

(B) Bulk modulus of the medium and the pressure
amplitude .

(C) Minimum distance between pressure antinode and
a displacement antinode.

(D) Intensity at the displacement nodes.

- Atube 1.0 m long is closed at one end. A wire of length

0.3 m and mass 1 x 10~ kg is stretched between two
fixed ends and is placed near the open end. When
the wire is plucked at its mid-point the air column
resonates in its first overtone. Find the tension in the
wire if it vibrates in its fundamental mode.[V, = =
330 m/s]

- A closed organ pipe of length ¢ = 100 cm is cut into

two unequal pieces. The fundamental freq uency of the
new closed organ pipe piece is found to be same as
the frequency of first overtone of the open organ pipe
piece. Determine the length of the two pieces and the
fundamental tone of the open pipe piece. Take velocity
of sound = 320 m/s.

- Find the number of possible natural oscillations of air

column in a pipe whose frequéncies lie below v, =
1250 Hz. The length of the pipe is ¢ = 85 c¢m. The
velocity of sound is v = 340 m/s.

Consider the two cases:

(A) The pipe is closed from one end

(B) The pipe is opened from both ends

The open ends of the pipe are assumed to be the
antinodes of displacement.

18.

19.

24).

21.

22.

23,

24.
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The first overtone of'a pipe closed at one end resonates
with the third harmonic of a string fixed at its ends, The
ratio of the speed of sound to the speed of transverse
wave travelling on the string is 2:1. Find the ratio of the
length of pipe to the length of string.

Ina resonance-column experiment, a long tube, open
at the top, is clamped vertically, B y a separate device,
water level inside the tube can be moved up or down,
The section of the tube from the open end to the water
level act as a closed organ pipe. A vibrating tuning
fork is held above the open end. first and the second
resonances oceur when the water level is 24.1 cm and
74.1 em respectively below the open end, Find the
diameter of the tube. [Hint : end correction is 0.3d]

An open organ pipe filled with air has a fundamental
frequency 500 Hz. The first harmonic of another organ
pipe closed at one end and filled with carbon dioxide
has the same frequency as that of the first harmonie of
the open organ pipe. Calculate the length of each pipe.
Assume that the velocity of sound in air and in carbon
dioxide to be 330 and 264 m/s respectively.

Two identical piano wires have a fundamental
frequency of 600 vib/s, when kept under the same
tension, What fractional increase in the tension of one
wire will lead to the occurrence of 6 beats/s when both
wires vibrate simultaneous|y?

A metal wire of diameter | mm, is held on two
knife edges separated by a distance of 50 cm, The
tension in the wire is 100 N. The wire vibrating in ity
fundamental frequency and a Vibrating tuning for &
logether produces 5 beats/s. The tension in the wire is
then reduced to 81 N. When the two are excited, beats
are again at the same rate. Calculate:

(A) the frequency of the fork,

(B) the density of the material of the wire.

Two stationary sources 4 and B are sounding notes
of frequency 680 Hz. An observer moves from 4 to
B with a constant velocity u, If the speed of sound is
340 ms™', what must be the value of # so that he hears
10 beats/s?

Tuning fork A4 when sounded with 2 tuning fork B of
frequency 480 Hz gives 5 beats/s. When the prongs
of 4 are loaded with wax, it gives 3 beats/s. Find the
original frequency of A.
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25. A. B and €' are three tuning forks. Frequency of 4 ig
350 Hz. Beats produced by 4 and B are 5 per second
and by B and C are 4 per second. When a wax in put on

A beat frequency between 4 and 2 is 2 Hz and between

A and C'is 6 Hz. Then, find the frequency of B and ¢

respectively.

S, (3 & W represent source of sound (of frequency
/), observer & wall respectively. Vo V., V.V are
velocity of observer, source, wall and s.ound (in still
air) respectively. ¥, is the velocity of wind. They are
moving as shown in the figure. Find:

26.

(1) The wavelength of the waves coming towards the
observer from source.
(ii) The wavelength of the waves incid611{ on the wall,
(iii) The wavelen gth of the waves coming towards
observer from the wall. ‘
(iv) Frequency ofthe waves (asdetected by O) coming
from the wall after reflection.

27. S is source R is receiver. R and S are at rest.
Frequency of sound from § is /. Find the beat frequency
registered by R, Velocity of sound is .

28.

29.

30.

31.

u
_‘-'(const.)

A car moving towards a vertical wall sounds g horn,|
The driver hears that the sound of the horn reflecteq |
from the cliff has a pitch half-octave higher than the |
actual sound. Find the ratio of the velocity of the car
and the velocity of sound.

The loudness level at 3 distance R from a long linear
source of sound is found tg be 40 dB. At this point, the
amplitude of oscillations of air molecules is 0,01 cm,
Then find the loudness level and the amplitude at
point located at a distance ‘10R’ from the source.

A fixed source of sound emitting a certain frequency
appears as f when the observer is approaching the
source with speed v and Frequency_{_] when the observer
recedes from the source with the same speed. Find the
frequency of the source,

The first overtone of an open organ pipe beats with
the first overtone of 4 closed organ pipe with a beat
frequency 0f2.2 Hz. The fundamental frequency of the
closed organ pipe is 110 Hz. Find the lengths of the
pipes. Velocity of sound — 330 m/s.

Level 1l

L. The displacement of the medium in a SOI.Il.Id wave is
given by the equation, ¥, = A cos(ax + !’?f) where A,
@ and b are positive constants, The wave lS‘t'efTef:ted
by an obstacle situated at x — (. The inte_nSlt_v of the
reflected wave is 0.64 times that of the incident wave,
(A) What are the wavelength and frequency of the
incident wave?

(B) Write the equation for the reflected wave.

(©) In the resultant wave formed after reflection, ﬁnd
the maximum and minimum values of the particle
speeds in the medium,

2. (A) A standing wave in second overtone is mairlltained
In a open organ pipe of length /. The distance
between consecutive displacement node and
pressure node is ;

(B) Two consecutive overtones produced by a narrow
air column closed at one end and open at the other

are 750 Hz and 1050 Hz, Then the fundamental
frequency from the column jg |

(C) A standing wave of frequency 1100 Hz jn a column
of methane at 20°C produces nodes that are 2( cm
apart. What is the ratio of the heat capacity at
constant pressure to that at constant volume,




(A) How many times will he hear a minimum in sound
intensity?
(B) How far is he from the pole at these moments?

Take the speed of sound to be 330 m/s, and ignore any
sound reflections coming off the ground.

4. A cylinder ABC consists of two chambers 1 and 2
which contains two different gases. The wall € is ri gid
but the walls 4 and B are thin diaphragms. A vibratin g
tuning fork approaches the wall 4 with velocity i =
30 m/s and air columns in chamber | and 2 vibrates
with minimum frequency such that there is node
(displacement) at B and antinode (displacement) at A.
Find

(i) the fundamental frequency of air column,
(ii) the frequency of tuning fork.

Assume thet the velocity of sound in the first and
second chamber be 1100 m/s and 300 m/s, respectively.
Velocity of sound in air is 330 m/s,

5. A source emits sound waves of frequency 1000 Hz.
The source moves to the right with a speed of 32 m/s

Sound Waves 3.33

relative to ground. On the right a reflecting surface

moves towards left with a speed of 64 m/s relative

to the ground. The speed of sound in air is 332 m/s.

Find

(A) the wavelength of sound in air incident on
reflecting surface,

(B) the number of waves arriving per second which
meet the reflecting surface,

(C) the speed of reflected waves,

(D) the wavelength of reflected waves.

. A supersonic jet plane moves parallel to the ground

at speed v = 0.75 mach (1 mach = speed of sound).
The frequency of its engine sound is v, = 2kHz and
the height of the jat plane is # = 1.5 km. At some
instant, an observer on the ground hears a sound
of frequency v = 2v,. Find the instant priot to the
instant of hearing when the sound wave received by
the observer was emitted by the jet plane. Velocity
of sound wave in the condition of observer —
340 m/s.

. A train of length / is moving with a constant speed v

along a circular track of radius R, The engine of the
train emits a whistle of frequency f. Find the frequency
heard by a guard at the rear end of the train. Make
suitable assumption.

- A bullet travels horizontally at 660 m/s at a height of

5 'm from a man. How far is the bullet from the man
when he hears its whistle? Velocity of sound in air =
340 m/s.

Previous Year Questions
JEE Main

1. A tuning fork arrangement (pair) produces 4 beats/s with
one fork of frequency 288 cps. A little wax is placed on
the unknown fork and it then produces 2 beats/s., The

" frequency of the unknown fork is [AIEEE 2002]
(A) 286 cps ﬁ (B) 292 ¢ps
(C) 294 cps (D) 288 ¢ps

2. Tube 4 has both ends open while tube B has one end
closed, otherwise they are identical. The ratio of funda-
mental frequency of tubes 4 and B is [ALEEE 2002]

(A) 1:2 (B) 1:4
(©) 2:1 (D) 4:1

- When temperature increases, the frequency of a tuning
fork [AIEEE 2002]
(A) increases

(B) decreases

(C) remains same

(D) increases or decreases depending on the material
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4.

10.

A tuning fork of known frequency 256 Hz makes
3 beats/s with the vibrating string of a piano. The beat
frequency decreases to 2 beats/s when the tension in
the piano string is slightly increased. The frequency
of the piano string before increasing the tension was
IATEEE 2003)
(B) (256 — 2)Hz
(D) (256 + 5)Hz

(A) (256 + 2)Hz
(C) (256 — 5)Hz

An observer moves towards a stationary source of
sound, with a velocity one-fifth of the velocity of
sound, What is the percentage increase in the apparent

frequency? [AIEEE 2005)
(A) zero (B) 0.5%
(C) 5% (D) 20%

When two tuning forks (forks | and 2) are sounded
simultaneously, 4 beats/s are heard. Now, some tape is
attached on the prong of fork 2. When the tuning forks
are sounded again, 6 beats/s are heard. [ the frequency
of fork is 200 Hz, then what was the original frequency
of fork 2?7

[AIEEE 2005]
(A) 200 Hz (B) 202 Hz
(C) 196 Hz (D) 204 Hz

. A whistle producing sound waves of frequencies

9500 Hz and above is approaching a stationary person
with speed v ms~!. The velocity of sound in air is
300 ms~'. If the person can hear frequencies upto a
maximum of 10,000 Hz, the maximum value of v upto
which he can hear the whistle is [AIEEE 2006]

(A) 15v2mg"" (B) 15/v/2ms"!
(©) 15ms™! (D) 30 ms™!

- A sound absorber attenuates the sound level by 20 db,

The intensity decreases by a factor of [AIEEE 2007]
(A) 1000 (B) 10000
(©) 10 (D) 100

. While measuring the speed of sound by performing

4 resonance column experiment, a student gets the
first resonance condition at a column length of 18 cm
during ‘winter, Repeating the same experiment during
summer she measures the column length to be x cm for
the second resonance. Then [AIEEE 2008|
(A) 18> x B) x> 54

(C) 54 >x> 36 (D) 36 >x>18

The speed of sound in oxygen (O,) at a certain
temperature is 460 ms—', The speed of sound in helium

14.

15.

16.

(He) at the same temperature will be
gases to be ideal)

(A) 1420 mg!

(C) 650 ms !

(assume boy,
|AIEEE 2008
(B) 500 mg-1
(D) 330 mg-

Three sound waves of equal  amplitudes haye
frequencies (v — 1), v and (v + 1). They superpose o
give beat. The number of beats produced per secong

will be [AIEEE 2009
(A) 4 (B) 3
) 2 (D) 1

- A motor cycle starts from rest & accelerates along

a straight path at 2 ms . At the starting point of the
motoreycle, there is a stationary electric siren. How
far has the motorcycle gone when the d river hears the
frequency of the siren at 94% of its value when the
motor cycle was at rest? (speed of sound — 330ms )

[AIEEE 2009)
(A) 499m (B) 98 m
(€) 147m (D) 196 m

- Acylindrical tube, open at both ends, has a fundamental

frequency, £, in air. The tube is dipped vertically in
water so that half of it is in water. The fundamental

frequency of the air-column is now |AIEEE 2012]
(A) / ® L

3 .
© 3L (D) 2/

A sonometer wire of length 1.5 m is made of steel.
The tension in it produces an elastic strain of 1%,
What is the fundamental frequency of steel if density
and elasticity of steel are 7.7 % 10? kg/m® and 2.2 x
10" N/m? respectively? [JEE Main 2013]
(A) 200.5 Hz (B) 770 Hz

(C) 188.5 Hz (D) 178.2 Hz

A pipe of length 85 cm is closed from one end. F ind the
number of possible natural oscillations of air column
in the pipe whose frequencies lie below 1250 Hz. The
velocity of sound in air is 340 m/s.

[JEE Main 2014)
(B) 4
(D) 8

(A) 6
(©) 12

A frain is moving on a straight track with speed
20 ms™". It is blowing its whistle at the frequency of
1000 Hz. The percentage change in the frequency
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heard by a person standing near the track as the train
passes him is (speed of sound = 320 ms™") close to
[JEE Main 2015]
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(A) 18% (B) 24%
(C) 6% (D) 12%

—

JEE Advanced

1. A siren placed at a railway platform is emitting sound

. A closed organ pipe of length L and an open organ pipe

of frequency 5 kHz. A passenger sitting in a moving
train A records a frequency of 5.5 kHz while the train
approaches the siren. During his return journey in a
different train B, he records a frequency of 6.0 kHz,
while approaching the same siren. The ratio of the
velocity of train B to that of train 4 is

[JEE 2002(Scr), 3]
(A) 242/252 (B) 2
(C) 5/6 (D) 11/6

. Two narrow cylindrical pipes 4 and B have the same

length. Pipe 4 is open at both ends and is filled with a
monoatomic gas of malar mass M,. Pipe B is open at
one end and closed at the other end and is filled with a
diatomic gas of molar mass M,. Both gases are at the
same temperature. [JEE 2002, 3 + 2]
(A) If the frequency of the second harmonic of the
fundamental mode in pipe 4 is equal to the frequency
of the third harmonic of the fundamental mode in
pipe B, determine the value of M /M, .
(B) Now the open end of pipe B is also closed (so that
the pipe is closed at both ends). Find the ratio of the
fundamental frequency in pipe 4 to that in pipe 5.

. A police van moving with velocity 22 m/s and emitting

sound of frequency 176 Hz, follows a motor cycle in

turn is moving towards a stationary car and away from

the police van. The stationary car is emitting frequency
165 Hz. If motorcyclist does not hear any beats, then

his velocity is [JEE 2003 (Scr)]
(A) 22 m/s (B) 24 m/s
(C) 20 m/s (D) 18 m/s

. A cylindrical tube when sounded with a tuning for

k gives, first resonance when length of air column is
0.1 and gives second resonance when the length of air
column is 0.35 m. Then end correction is

[JEE 2003 (Scr)]
(A) 0.025 m (B) 0.020m
(C) 0.018m (D) 0.012m

. A tuning fork of frequency 480 Hz resonates with a

tube closed at one end of length, 16 cm and diameter
5 c¢cm in fundamental mode. Calculate velocity of
sound in air. [JEE 2003]

contain gases of densities p, and p, respectively. The
compressibility of gases are equal in both the pipes.
Both the pipes are vibrating in their first overtone with
same frequency. The length of the open organ pipe is
[JEE 2004 (Scr)]

2L
3

(©) AL \/p_T (D) 4L P2
3Nn 3Nnp
7. A source of sound of frequency 600 Hz is placed
inside water. The speed of sound in water is 1500 m/s

and in air is 300 m/s. The frequency of sound
recorded by an observer who is standing in air is

L
@y (B)

[JEE 2004 (Ser)]
(A) 200 Hz (B) 3000 HZ
(C) 120 Hz (D) 600 Hz

8. In a resonance column method, resonance occurs
at two successive level of /| = 30.7 cm and L, =
63.2 cm using a tuning fork of f = 512 Hz. What is
the maximum error in measuring speed of sound using
relations v =fA and A =2(/, — /)  [JEE 2005 (Sc)]
(A) 256 cm/sec (B) 92 cmi/sec
(C) 128 c/sec (D) 102.4 cm/sec

9. A whistling train approaches a junction. An observer
standing at junction observers the frequency to be
2.2 KHz and 1.8 KHz of the approaching and the
receding train. Find the speed of the train (speed
sound = 300 m/s). [JEE 2005]

Question No. 10 to 12

Two plane harmonic sound waves are expressed by the
equations
¥,(xs 1) = A cos(mx — 10077

P55 1) = A cos(0.46mx — 927rr)
(All parameters are in MKS.) [JEE 2006]

10. How many times does an observer hear maximum
intensity in one second?
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11.

12,

(A) 4 (B) 10

<) 6 D) 8

What is the speed of the second?

(A) 200 m/s (B) 180 m/s

(©) 192 m/s (D) 96 m/s

At x = 0 how many times the amplitude of Y +y,is
Zero in one second?

(A) 192 (B) 48

(©) 100 (D) 96

Question No. 13 to 15

Two trains 4 and B are moving with speeds 20 m/s and 30 /s,
respectively in the same direction on the same straight track,
with B ahead of 4. The engines are at the front ends. The

engine of train 4 blows a long whistle,

13.

14.

[JEE 2007]

Intensity

=i
f, f, Fregency

Assume that the sound of the whistle is composed of

components varying in frequency from S, = 800 Hz
t0.f, = 1120 Hz, as shown in the figure. The spread in
the frequency ( highest frequency —lowest frequency)
is thus 320 Hz. The speed of sound in air is 340 m/s.

The speed of sound of the whistle is
(A) 340 m/s for passengers in 4 and 310 my/s for
passengers in B,

(B) 360 m/s for bassengers in 4 and 310 m/s for

passengers in B,

(©) 310 m/s for passengers in 4 and 360 m/s for
bassengers in B,

(D) 340 m/s for bassengers in both the traing,

The distribution of the sound intensity of the whistle
as observed by the bassengers in train 4 is best
represented by

(A) B)
= =
2 2
5 = & —
= gl L
— — . S =
1 f, Freqency f, f, Freqency

15.

16.

17.

18.

C D
©) 5 (D) 3
@ 7
b — 5
g 11 £
f, f Freqe;cy
The spread of frequency as observed by the passengerg

in train B is
(A) 310 Hz
(C) 350 Hz

(B) 330 Hz
(D) 290 Hz

A vibrating string of certain length 7 under a tensiop
T resonates with a mode corresponding to the firgg
overtone (third harmonic) of an air column of lengt
75 cm inside a tube closed abone end, The string alsq
generates 4 beats/s when excited along with a tuning,
fork of frequency n. Now when the tension of the

string is slightly increased the number of beats reduces

to 2 per second. Assuming the velocity of sound in air
to be 340 m/s, the frequency # of the tuning fork in Hy,

is [JEE 2008]
(A) 344 (B) 336
©) 1173 (D) 109.3

A student performed the experiment to measure the speed

of sound in air using resonance air column method, Tio

resonances in the air column ware obtained by lowering

the water level. The resonance with the shorter air colunn

is the first resonance and that with the longer air colurmn

1s the second resonance. Then, [VEE 2009]

(A) the intensity of the sound heard at the first
fesonance was more than that at the second
resonance

(B) the prongs of the tuning fork were kept in a
horizontal plane above the resonance tube

(C) the amplitude of vibration of the ends of the
prongs is typically around [ cm

(D) the length of the air column at the first resonance

1
was somewhat shorter than — th of the wavelength
of the sound in air g

A stationary source is emitting sound at a fixed
frequency £ which is reflected by two cars approaching
the source. The difference between the frequencies of
sound reflected from the cars is 1.2 % of £, What is the
difference in the speeds of the cars (in km per hour) to
the nearest mteger? The cars are moving at constant
speeds much smaller than the speed of sound which is
330 ms, [JEE 2010]

(G

21.

22,




ipe of length 0.8 m is closed at one end. At
2 0.5 m long uniform string is vibrating
its second harmonic and it resonates with the
Hamental frequency of the pipe. If the tension in
wire is 50 N and the speed of sound is 320 ms~',
' mass of the string is: [JEE 2010]
0g (D) 40 g

solumn [ shows four systems, each of the same length
for producing standing waves. The lowest possible

ral frequency of a system is called its fundamental
quency, whose wavelength is denoted as )\ /- Match
h system with statement given in column II
Jeseribing the nature and wavelength of the standing

Rdves. [JEE 2011]
. Column I Column II
Pipe closed at one end (P) Longitudinal
waves

0 ks

]', Pipe open at both ends (Q) Transverse

waves
0 L
{€) Stretched wire clamped at (R) )\ =L
~ both ends
o L
(D) Stretched wire clamped at () A =2L
~ both ends and at mid-point ‘
| | |
lo tw Ll
(T) A, =4L

F b 1
L’ 168 Al A_police car with a siren of frequency 8 kHz is moving
' Wlt.h uniform velocity 36 km/hr towards a tall building
Wwhich reflects the sound waves. The speed of sound in

air is 320 m/s. The frequency of the siren heard by the

car driver is [JEE 2011]
L fi (A) 8.50 kHz (B) 8.25kHz
e (©) 7.75kHz (D) 7.50 kHz

#2. A person blows into open-end of a long pipe. As a
tesult, a high-pressure pulse of air travels down the
- Pipe. When this pulse reaches the other end of the pipe,
[JEE 2012]

23.

24.
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(A) ahigh-pressure pulse starts travelling up the pipe,
if the other end of the pipe is open.

(B) a low-pressure pulse starts travelling up the pipe,
if the other end of the pipe is open.

(C) alow-pressure pulse starts travelling up the pipe,
if the other end of the pipe is closed.

(D) a high-pressure pulse starts travelling up the pipe,
if the other end of the pipe is closed.

Two vehicles, each moving with speed u on the same
horizontal straight road, are approaching each other.
Wind blows along the road with velocity w. One of
these vehicles blows a whistle of frequency f,. An
observer in the other vehicle hears the frequency of
the whistle to be f,. The speed of sound in still air is V.
The correct statement(s) is (are) [JEE 2013]
(A) Ifthe wind blows from the observer to the source,
Vo |
(B) Ifthe wind blows from the source to the observer,
yap
(C) If the wind blows from observer to the source,
5 </

(D) If the wind blows from the source to the observer,

L<t

A studentis performing an experiment using a resonance
column and a tuning fork of frequency 244 s~’. He is
told that the air in the tube has been replaced by another
gas (assume that the column remains filled with the
gas). If the minimum height at which resonance occurs
is (0.350 + 0.005)m, the gas in the tube is

(Useful information: +167RT =640J" mole 2,

N140RT =590J"* mole "2 The molar masses M is
grams are given in the options. Take the values of

. f% for each gas as given there.)

[JEE Advanced 2014]
(A) Neon[M:20, R :l]
20 10
. 10 3
B) Nit M=28, |—==2
(B) 1rogen[ 2% 5]

(C) Oxygen

%= /&_z]
2 16

(D) Argon[M:36, & ;—;]

W

36
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Exercises
JEE Main

1. C 2, A 3.D 4. D 5.B 6. B 7. D 8. D 9. D 10. D
11. B 12. B 13. B 14. D 15. A 16. A 17. B 18. D 19. B 20. C
21. B 22. C 23. B 24. D 25, A 26. B 27. B 28. D 29. B 30. C
31. C 32. C 33. A 34. A
JEE Advanced

1. A 2. A 3. A 4. A 5. B 6. C 7. D 8. C 9. C 10. D
11. D 12. B 13. A 14. C 15. B 16. D 17. D 18. B 19. D 20. A
21. A 22. B 23. C 24, A 25. A, B, C 26. A,D 27.C 28. B,C 29, AB,CD
30. C 31. A, B,D32. A,B,D33. B 34, A 35.B 36. C,D 37.C 38. B,D 398
40. C 41. C 42, C 43. C 44. B,D
JEE Advanced

Level I

L (A) g (B) % 2.(A) L7 %10 (B) 1.08 x 10~ 3, 333m/s 4. 310m/is 5, 203

2 9 :

6. :'T—%'ﬂﬁwm2 7.6 8 30dB, 10410 mm o (Ap ®B) lz(ﬁ—ﬁ;) =(25/312)" 10. 83 Ly
1. 420Hz 12. M8 13. 4fsin (ke + wt) + 2 sin(kx — we)]

14. (A) f=50Hz, A= 02 m, y = 10 ms-' (B) P, =62.8 Nm2 = 20, Nm=2 B = 100 Nm-

(C) M4=0.05m (D) I'=20m2 ~ 200 wm~ 15, 735N 16. 20, 80 cm, 200 Hz
17. (A) v, = ﬁ(Zn +1); six oscillations B) v, = %(n +1), also six oscillations; Here 5 = 0,1,2,...
18. 1:1 19, 3em 20, 33 cm and 13.2 o 21. 2% 22. (A) 95% (B) ﬂx103kg/m3 23. 2.5 ms!
m
24, 485 Hz 25, 345, 341 or 349 Hz ' |
26. (A)(V—V + VIf ®y(r+ v, — VIf (©) (v — PVl
where = (V+ ¥, + Vv + 0, 73 ) Vo= VIV =V, — vy
27. £, =2 58 s 29. 30dB, 10V10 mm 30, Lt/e 4 L=075m,z =130 1.006 m
V+u 2 ¢ ? 151

Level 1]

L. (A) 2nla,bi2m, (B Yy =% 0.84 cos(ax—hr), (C) max— L.8b4,min=0, 2. (A) y6: (B) 150Hz; (C) 128
3.(A) 2 (B) 928 mand 1.99m 4 1650 Hz, 1500 Hz 5. (A) 0.3 m, (B) 1320, (C) 332m/s, (D) 0.2
6.59s 7./ 8. 97m |
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' previous Year Questions
JEE Main
1. B 2. C 3.B 4. C 5.D 6. C 7. C 8. D 9, B 10. A
11. C 1\2. B 13. A 14. D 15. A 16. D
JEE Advanced
1.B 2. (A) 2.116,(B) % 3. A 4. A 5. 336 m/s 6. C 7. D 8. D
9. V. =30m/s 10. A 11. A 12. C 13. B 14. A 15. A 16. A
17. A,C,D 18. 7 19. B 20 A—PT;B—PS;C—QS;D—-QR 21, A
22. B,D . 23.A,B 24.D







Heat-1

CALORIMETRY
HEAT

The energy that is being transferred between two bodies or
between adjacent parts of a body as a result of temperature
difference is called heat. Thus, heat is a form of energy.
It is energy in transit whenever temperature differences
exist. Once it is transferred, it becomes the internal energy
of receiving body. It should be clearly understood that the
word ‘heat’ is meaningful only as long as the energy is
being transferred. Thus, expressions like ‘heat in a body”’ or
‘heat of body’ are meaningless.

T,>T, T,
A Heat B

Figure 4.1

When we say that‘;l body is heated it means that its
molecules begin to move with greater kinetic energy.

The SI unit of heat energy is joule (J). Another
common unit of heat energy is calorie (cal).

Mechanical Equivalent of Heat

In early days, heat was not recognized as a form of energy.
The heat was supposed to be something needed to raise the
temperature of a body or to change its phase. The calorie
was defined as the unit of heat. A number of experiments
were performed ‘to show that the temperature may also
be increased by doing mechanical work on the system.
These experiments established that heat is equivalent to
mechanical energy and measured how much mechanical
energy is equivalent to a calorie. If mechanical work W
produces the same temperature change as heat H, we write,

CHAPTER

W=JH

where J is called the mechanical equivalent of heat. J is
expressed in joule/calories. The value of J gives how many
joules of mechanical work is needed to raise the temperature
of 1 g of water by 1°C.

1 calorie: The amount of heat needed to increase the
temperature of 1 g of water from 14.5°C to 15.5°C at one
atmospheric pressure is 1 calorie.

lcal=4.18617

Specific Heat

Specific heat of a substance is equal to heat gained or
released by that substance to raise or fall its temperature by
1°C for a unit mass of the substance.

When a body is heated, it gains heat. On the other
hand, heat is lost when the body is cooled. The gain or loss
of heat is directly proportional to:

1. the mass of the body AQ o m.
2. rise or fall of temperature of the body AQ o AT:

AQ x mAT
or AQ x msAT
or dQ o« msdT
or O=m f sdT
where s is a constant and is known as the specific heat of
the body s = % . The ST unit of s is J/kg-K and the CGS

unit is cal/g°C.
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Specific heat of water:

. s = 4200 J/kg°C
= 1000 cal/kg°C
= 1 Kcal/kg°C
=1 cal/g°C

5\%5 Specific heat of steam = half of specific heat of water

= specific heat of ice

SOLVED EXAMPLE

EXAMPLE 1

feat required to increase the temperature of | kg water by
20°C.

SOLUTION

Heat required = AQ

= msAf

=1x20

=20 Kcal

S=1 cal/g°C

= 1 Kcal/kg°C " n
Important Points: P
(@) We know, g L , if the substance undergoes the

mAT e '

change of state which occurs at constant temperature
(AT =0), 5y = 0/ = co. Thus, the specific heat of a
substance when it melts or boils at constant temperature

is infinite.
(b) If the' temperature of the substance changes without
the transfer of heat (Q = 0), then s= 0 =
: m

Thus, when a liquid in the thermos flask is shaken, its
temperature increases without the transfer of heat and
hence the specific heat of liquid in the thermos flask
1S Zero.

—

(¢) Toraise the temperature of saturated water vapour, gy,
(Q) is withdrawn. Hence, the specific heat of Saturgg
water vapour is negative. (This is for your iﬂfbl‘lllalioﬁj
only and not in the course.)

(d) The slight variation of specific heat of water with
temperature is shown in the following graph at
1 atmosphere pressure. Its variation is less than 19,
over the interval from 0°C to 100°C,

§"1008
S0
=

S
&8 1.000

+—t—
0 15 35100
Temp(°C)

Heat Capacity or Thermal Capacity

Heat capacity of a body is defined as the amount of heat
required to raise the temperature of that body by 1°C. If
m is the mass and s the specific heat of the body, then heat
capacity = ms.

Units of heat capacity in the CGS system is cal®C-,
The ST unit is JK-!, ‘

Relation Between Specific Heat and Water
Equivalent :

It is the amount of water which requires the same amount
of heat for the same temperature rise as that of the object:

msAT =m,S AT

ms
‘ = m, 6 =—
sw
In calorie, s =1
m_ = ms,
w

m, is also represented by W, so W = ms.

‘}Aw OF MIXTURE

When two substances at dilferent temperatures are mixed
together, the exchange of heat continues to take place till
their temperatures become equal. This temperature is then
called final temperature of the mixture. Here, heat taken by
one substance = heat given by another substance

= ms(T ~T)= mys(T —T)




My, Sy T,

—~
\(T1 >T) ///
7/’

Mixture Temperature = T

SOLVED EXAMPLES

e yior NIECT T@0l)

An iron block of mass 2 kg, fall from a height of 10 m.
After colliding with the ground, it loses 25% energy to
surroundings. Then find the temperature rise of the block
(take specific heat of iron = 470 J/kg°C).

SOLUTION
mSAG = lmgh
4
L - 10x10 _ -
4x470

: QMPLE 3

* The temperatures of equal masses of three different liquids

A, B and C are 10°C, 15°C and 20°C, respectively. The
temperature when 4 and B are mixed is 13°C and when B
and C are mixed, it is 16°C. What will be the temperature
when 4 and C are mixed?

SOLUTION

When 4 and B are mixed

mS, x (13 = 10) = m x S, x (15 — 13)

38, =125, ()
When B and C are mixed
S, x1=§x4 (2)

When C and 4 are mixed
S0 —10)=8, x (20 — 6) (3)
By using Eqgs. (1)-(3), we get

o= 2ec
11
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m m / m

S, S, / S,

10°C S 15°C~ 20°C =
MPLE 4

If three different liquids of different masses, specific heats
and temperatures are mixed with each other and then what
is the temperature mixture at thermal equilibrium?

m,s, T, — specification for liquid,

m,, s,, T, — specification for liquid,

m, sy, I, — specification for liquid.

SOLUTION
Total heat loss or gain by all substances is equal to zero:
AQ=0.
\F/ ms (T — T) + ms,(T— T,) + ms(T = T) = o\)
' ms,T, +;’12TS‘2T2 —_i-m333T3_ o

ms, +nm,s, + mys,

SO T=

PHASE CHANGE

Heat required for the change of phase or state,

Q=mL,
L = latent heat.

1. Latent heat (L): The heat supplied to a substance which
changes its state at constant temperature is called latent
heat of the body.

2. Latent heat of fusion (L) The heat supplied to a
substance which changes it from solid to liquid state
at its melting point and 1 atm. pressure is called latent
heat of fusion.

3. Latent heat of vaporization (L ): The heat supplied to a
substance which changes it from liquid to vapour state
at its boiling point and 1 atm. pressure is called latent
heat of vaporization.

If in question latent heat of water is not mentioned
and to solve the problem it requires assuming that we
should consider the following values.




4.4  Physics Module-2

Latent heat of ice: . —10°C, 100 gm ice ————» 120° 100 gm steam
L =80 cal/g Q=msAT "
= 1 x100 x20
= 80 Kcal/kg 2
= 500 cal.
= 4200 x 80 J/kg v
0°, 100 gm ice
Latent heat of steam. Q=mL, |
L = 540 cal/g =100 x 80
= 8000 cal. |
= 540 Kcal/kg v
0°, 100 gm water
N e F ~ msA
= 4200 x 540 J/kg Q= msAT Q i
. =1 x 100 x 100 =—x100 %20
The given figure represents the change of state by different — 10000 cal. 2
lines: = 1000 cal.
v
100°, 100 gm water
TT Q= mL,
=100 x 540
= 54000 cal
&7 v
‘}?3/ 100°, 100 gm Steam
B e water stream
PR e P —— >
° rb‘é/ I,
ice+water S/ )t
s -
= O?z’ -
)_. 6 o5 Q. = 73.5Kcal. m

@)
T, = Melting temperature \/DKMPI.E 6

7, = Bollng temperature Five hundred grams of water at 80°C is mixed with 100 g of

N

g, > 0 steam at 120°C. Find out the final mixture.
L>h e
SOLUTION
Figure 4.2
120°C steam ———= 100°C steam
Note Req. heat = 100 x % x 20
If we increase the temperature of liquid (phase) KE 1 =1 Kcal
and temperature | but ata later time KE stop increasing
and the phase of the liquid starts changing. 80°C water ———— 100°C water
Req. heat =500 x 1 x 20
SOLVED EXAMPLES = 10 Keal
100 g steam ————— 100 g water at 100°C
__E)JMPLE 5 Req. heat = 100 x 540

Find the amount of heat released if 100 g ice at —10°C is
converted into 120°C, 100 g steam = 54 Kcal




Total heat = 55 Kcal
Remaining heat = 55 — 10

=45 Kcal
Now, we have 600 g water at 100°C

= 4500 = m x 540
R 20
3 g
. 250 250
Finally, we have S g steam and [600——3- g of water
|
HEAT TRANSFER
INTRODUCTION

Heat is energy in transit which flows due to temperature
difference, from a body at higher temperature to a body at
lower temperature. This transfer of heat from one body to
the other takes place through three routes: (i) Conduction,
(i) Convection and (iii) Radiation

Conduction

1. Requires medium

2. Energy is transmitted from one particle to another
particle without displaced particle.

3. No transfer of particle

Convection

1. Requires medium
2. Energy is transferred through movement of the particle
of a medium

Radiation

1. Does not require any medium
2. Energy is transferred through clectromagnetic waves

il

Vaccum . -
—-——1 Radiation Air
et Convection
T1 — | D [t + T2
Conduction Radiation
Air i
Conyect|0n+
i __Radla_llim 1T,
Conduction
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CONDUCTION

Figure 4.3 shows a rod whose ends arc in thermal contact
with a hot reservoir at temperature 7, and a cold reservoir
at temperature T,. The sides of the rod are covered with
insulating medium, and so the transport of heat is along the
rod, not through the sides. The molecules at the hot reservoir
have greater vibrational energy. This energy is transferred
by collisions to the atoms at the end face of the rod. These
atoms in turn transfer energy to their neighbours further
along the rod. Such transfer of heat through a substance in
which heat is transported without direct mass transport is
called conduction.

Figure 4.3

Most metals use another, more effective mechanism to
conduct heat. The free electrons, which move throughout
the metal, can rapidly carry energy from the hotter to cooler
regions; so metals are generally good conductors of heat.
The presence of ‘free’ electrons also causes most metals
to be good electrical conductors. A metal rod at 5°C feels
colder than a piece of wood at 5°C because heat can flow
more easily from your hand into the metal.

Heat transfer occurs only between regions that are at

dQ

different temperatures, and the rate of heat flow is o This
t

rate is also called the heat current, denoted by H. Experiments
show that the heat current is proportional to the cross-sectional

area A of the rod and to the temperature gradient ‘2—T , which
x

is the rate of change of temperature with distance along the
bar. In general,

_ 40
d
dr

= —kd—— (1)

.. 10 - ;
The negative sign is used to make %, a positive quantity
dr

. (i i
since ‘T is negative. The constant £, called the thermal
ol

conductivity, is a measure of the ability of a material to
conduct heat.
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A substance with a large thermal conductivity
kis a a good conductor of heat, The value of k depends
on the temperature, increasing slightly with increasing

temperature, but & can be taken to be practically constant
throughout the substance if the temperature difference
between its ends is not too high.

Let us apply Eq. (1) to a rod of length L and constant
cross-sectional area A4 in which a steady state has been
reached. In a steady state, the temperature at each point is
constant in time. Hence,

-2 og-r, @)
Therefore, the heat AQ transferred in time At is
AQ = kAlu At 3)
Here, AT = temperature difference (TD)
and R= é = thermal resistance of the rod.

Important Points in Conduction

1. Consider a section ab of a rod as shown in Fig. 4.4.
Suppose @, heat enters into the section at @ and O,
leaves at b, then O, < Q. Part of the energy O, — Q,is
utilized in raising the temperature of section ab and lhe
remaining is lost to the atmosphere through ab. If heat
is continuously supplied from the left end of the rod, a
stage comes when temperature of the section becomes
constant. In that case, O, = Q, if rod is insulated from
the surroundings (or loss through ab is zero). This is
called the steady®state condition. Thus, in steady-state
temperature of different sections of the rod becomes
constant (but not same).

Figure 4.4
Hence, in Fig. 4.5,

g, s 2
. T T Ty
Figure 4.5 ‘

T, = constant, T, = constant, etc.

and T|>T2>T3>T4

Now, a natural question arises, why the temperatyrg

of the whole rod does not become equal when hey

is being continuously supplied? The answer is: there
must be a temperature difference in the rod for the hegy
flow, same as we require a potential difference across 5
resistance for the current flow through it.

In steady state, the temperature varies linearly
with distance along the rod if it is insulated.

+T

Figure 4.6
2. Comparing Eq. (3), i.e., heat current

a9
dt

where

with the equation of current flows through a resistance,

(=
dt

e

where R=—
oA

We find the following similarities in heat flow through
arod and current flow through a resistance.

Heat flow through a
conducting rod

Current flow through a
resistance

Heat current, H = aQ Electric current / = g9
dt dt

= rate of heat flow = rate of heat flow
y_ AT _TD AV _PD
R R "R R
_ e LU
R_kA R_[rA

k = thermal conductivity o = electrical conductivity

lI.

Kle
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T . |
From the above table, it is evident that flow of heat through o 1000/ = x) I|
rods in series and parallel is analogous to the flow of current Is== I o
through resistances in series and parallel. This analogy is of
great importance in solving complicated problems of heat EXAMPBYE 8 '
EonducHom Find out the temperature at distance 5 m, ‘ |
_ - — ey |
SOLVED EXAMPLES 4 ¢
T,=80°C ‘—Tm——-—_______'_ 20°C=T,
EXAMPLV - g
Find out the heat current and temperature at any distance .
SOLUTION
k= g W°/C m
T JA=05mr /S .
o= oM =
100°C 0°C A Bi C
' | T,=80°C -——5__. 20°C =17,
—_— SRS X !
10m
9m 41
SOLUTION Heat current is same. so,
R 10 T,~T, T,—T
2x0.5 T -
x
/
ZIO:H = 80-20 80-r
9 5
100
I=— 14
10 T= TO°C |

_ KAAT

=10=——

Slabs in Parallel and Series

and temperature at any distance x (a) Slabs in Series (in Steady State)

Considera composite slab consisting of' two materials having
different thicknesses L, and L,, different cross-sectional
areas A, and A,, and different thermal conductivities K,
and K. The temperature at the outer surface of the states is
maintained at T,and T o and all lateral surfaces are covered
by an adiabatic coating,

kA(100—T)
q:‘—.__
X

KAAT s
=~ g
o ©

[}

N (100—-7) _ (100—0) T

/f =
. Heat reservoir  adiabatic coating

100/ — 77 = 100 at temperature T,
T — X
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Let the emperature at the Jdunction be T singe the steady T,
state has been achieved thermal current through each slab
will be equal. Then thermal current through the first slab

i=<
{
_L,-T
R |
or TH -T= iRl (1) I
and that through the second slab — e, ——
L1
=2
t SOLUTION
_ e Let the interface area be 4.
R L
2 Rj = 1
K A4
or T-T, =R, @ and that of brick wal]
Adding Egs. (1) and (2), we get R — L,
= 2
A
. 2
T, =T, =R +R)i o
1
= _p
7,~T, 5K, A4 :

or ] = tf b
(R' & ) Let the thermal resistance of each sandwich layer — R.
Thus, these two slabs are equivalent to a single slab of Then the above wall can be visualized as a circuit.
thermal resistance R + R,

If more than two slabs are joined in series and are i ] R R R, ;
allowed to attain steady state, then equivalent therma]

resistance is given by 25°C 20°C T, T ~-20°C
R=R 1 R+R +.. -(3) Thermal current through each wall is same.
3
Hence,
EXAMPLE 9 2520 _20-7,
——— D R R
The figure shows the cross-section of the outer wall of :
a house built in a hill-resort to keep the house insulated -7,
from the freezing temperature of outside. The wall consists R
of teak wood of thickness L, and brick of thickness T 42
(L,=5L \)» sandwiching two layers of an unknown material = 4_‘"\0
with identical thermal conductivities and thickness. The R
thermal conductivity of teak wood is K, and that of brick is _
(K, = 5K). Heat conduction through the wall has reached == 20 HER
a steady state with the temperature of three surfaces being =4 T = _ 15°C
known. (T, =25°C, T, =20°C and T, = —20°C.) Find the !
interface temperature 7, and Ty also, 20 — 7, = T, — T,




=

[EXAMPLE 10 -
In Example 3, K| = 0.125 W/m°C, K, = SK, = 0.625 W/
m°C and thermal conductivity of the unknown material is
k=025W/m°C.L =4cm, L,=5cm,L =20cmand L
= 10 cm. If the house consists of a single room of total wall
area of 100 m?, then find the power of the electric heater
peing used in the room.

SOLUTION
R =R

1 2

(4x107%m)
(0.125W/m C)(100 m?)

=32 x 10 °C/w

B (10x10 m)
(0.25W/m C)(100m?)

=40 x 104 °C/'W

Equivalent thermal resistance of the entire wall = R, +
R, + 2R =144 x 10 °C/W
Net heat current, i.e., amount of heat flowing out

T, —-T
of the house per second = - "¢

 25°C—(—-20°C)
 144x107*°C/W

4
_ 45x10 W
144
Hence, the heater must supply 3.12 kW to compensate for
the outflow of heat. [ |

(b) Slabs in Paralle!

Heat reservior |

at temperature T, Heat reservior

at temperature T,

Heat-1 4.9

Consider two slabs held between the same heat IeServoirs,
their thermal conductivities K, and K, and cross-sectional
arcas 4, and A,

Then R = = 5
Kl A]
L
R2 —
K, 4,
Thermal current through slab 1
: T, H T, c
="
RI
and that through slab 2
T, H T, c
ih=
R,

Net heat current from the hot to cold reservoir
i=i+i,

=2+ ]

Rl
T, —T
Comparing with i = -2 —C  we get
eq
1 1 i
_ + [
Req R] R2

If more than two rods are joined in parallel, the equivalent
thermal resistance is given by

RS R
R R, R

eq 1

(5.4)

*<
MPLE 11

Two thin concentric shells made from copper with radii
v, and r, (v, > r,) have a material of thermal conductivity
K filled between them. The inner and outer spheres are
maintained at temperatures T w and T, respectively, by
keeping a heater of power P at the centre of the two spheres.
Find the value of P,

SOLUTION

Heat flowing per second through each cross-section of the
sphere = P = §

Thermal resistance of the spherical shell of radius x
and thickness dx,




/ dly
ol K dma
r
R=
= drx* . K
1 (1 1
4nK nook

Thermal current

EXAMPLE 12

.

A and B.

Find out the equivalent therma] resistance between points

=
oot
(n—1)
B x)
= R Lo llE.
y+£
_ 5[5/ (=) + x|
[(he/ (, — )+ ]
dR = s
kmr?
4 f
) n kemr? (n—rn)x ’
0 koo = 2 7 W

- ~—— Junction Law

Heat current is a Tensor quantity, because it does not follow
the vector laws but the direction of heat current matter.
According to the Junction law, the sum of all the heat

Element is disc
of radius r

current directed towards a point is equal to the sum of all
the heat currents directed away from the points,

EXAMPLE 13
Find out the temperature at point x.
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Eq. (4)/Eq. (5)
i R,=i,R, ©)
Eq. (3)/Eq. (6)
R_R
R, R,
= RR, = R)R,
i+ +i,=0 Now,
b= E'T_'__Ol’ R, R,
R
; _ (x=100) 7 T,
27 2R
R, R, -
. (x=50) '
e
2R
4x = 150
x=1375°C =] 'I
WHEAT STONE BRIDGE e

'ouNlé‘r;ation between R, R, R, and R,, so that there
current in R'.

SOLUTION
: g 100 6R T 3R 0
w |
100°C | 0°C
eal
all 100 4R 2R 0
100—T T-0
SOLUTION 6R 3R
AT=T,-T, = .Y u
; ' 3°C
T-T=hk, O exampLets
T —T=i,R, @)
| Eq.()/Eq.(2)
= LY ®
LR,
T—T,=iR, @)

T—T,=i,R, (5) Find i, /i, ="?
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SOLUTION

bR
100°C |’ 0°C
1
: W
R

i, = %ﬁ =3:1
z']=E x 100 =75
4
. 1
,=— x100=25 i
4

s h EXAMPLE 17

A container of negligible heat capacity contains 1 kg of
water. It is connected by a steel rod of length 10 m and
area of cross-section 10 cm? to a large steam chamber

which is maintained at 100°C. If initial temperature of -

water is 0°C, find the time after which it becomes 50°C.
(Neglect heat capacity of steel rod and assume no loss

of heat to surroundings.) (take specific heat of water =
4180 J/kg°C)

SOLUTION

Let the temperature of water at time ¢ be T, then thermal
current at time ¢,

. { 100 - T]
R
This increases the temperature of water from T'to T + dT
' . dH
= =g —=
dt
)
=ms —
@
7
100—-T dT
L= =ms —
R dt
' f dT [ dT
= — =
< 100 —-T v Rms
= —En[l -
2 Rms
or t = Rmsin 2 sec

L
= — msfn 2 sec
KA

_ (10m)(1kg)(4180J/kg°Cy
46(W/m°C)x(10x10™* m?)

— 48 4 60)x10°
46

=627 x10°s

= 174.16 hours ]

# EXAMPLE 18

On a cold winter day, the atmospheric temperature is —¢
(on Celsius scale) which is below 0°C. A cylindrical drum
ol height 4 made of a bad conductor is completely filleg
with water at 0°C and is kept outside without any lid,
Calculate the time taken for the whole mass of water to
freeze. Thermal conductivity of ice is k and its latent heat of
fusion is L. Neglect expansion of water on freezing.

" SOLUTION

Suppose, the ice starts forming at time # = 0 and a thickness

x is formed at time ¢. The amount of heat flown from the

water to the surrounding in the time interval ¢ to ¢ + dt is
K40

AQ =22 gt
X

" The mass of the ice formed due to the loss of this amount
_ of heat is

dm=&
L

=——dt
xL

The thickness dx of ice formed in time d# is

_dn
Ap

pxL

or dt :ﬁxdx,
Ko

Thy

ih‘-}ﬂ;

or

Th
e
of
lert
ter
(0,
nt]'

s0
Su

tref

Th
10

F

of

of

W




b 2K6

etime T taken for the whole mass of water to freeze

by T L h
fdt:p—fxdx
_ Ko A

| T : pLK’

The ﬂguﬂ* shows a large tank of water .at 4 constant
lﬁmp&ﬁlwﬁ g, and a small vessel containing a mass m
of Water at an initial temperature 6, (<8,). A metal rod of
Iénglhjq an area of cross-section 4 and thermal conductivity
k eopnects the two vessels. Find the time taken for the
tmpapature of the water in the smaller vessel to become 6,
{ <6, < 6,). Specific heat capacity of water is s and all
olier hieat capacities are negligible.

SOUTION

Swpose, the temperature of the water in the smaller vessel
isfat time ¢ In the next time interval dr, a heat AQ is
tusferred to it where

AQ = %(90 —0)dt '6))

Thisheat increases the tempetature of the water of mass m
tof+ d8 where
AQ =ms db (2)
s\

From (15 and (2),

N %(eo—e)dt =ms df

Lms db
or d e
'KA4 6,—-6
r o 6, )
of fdt:ﬂ _L’
0,0
0 0

whet " is the time required for the temperature of the
walirto become 6, '

0,0
Th 7=, =6
KA 6, -0,
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RADIATION

The process of transfer of heat from one place to another
place without heating the intervening medium is called
radiation. The term radiation used here is another word for
electromagnetic waves. These waves are formed due to the
superposition of electric and magnetic fields perpendicular
to each other and carry energy.

Properties of Radiation

1. All objects emit radiations simply because their
temperature is above absolute zero, and all objects
absorb some of the radiation that falls on them from
other objects.

2. Maxwell on the basis of his electromagnetic theory
proved that all radiations are electromagnetic waves
, and their sources are vibrations of charged particles in
atoms and molecules.

- More radiations are emitted at the higher temperature
of a body and lesser at the lower temperature.

. The wavelength corresponding to maximum emission
of radiations shifts from longer wavelength to shorter
wavelength as the temperature increases. Due to
this, the colour of a body appears to be changing.
Radiations from a body at NTP have predominantly
infrared waves.

. Thermal radiations travel with the speed of light and
move in a straight line,

6. Radiations are electromagnetic waves and can also
travel through the vacuum.

- Similar to light, thermal radiations can be reflected,
_refracted, diffracted and polarized.

» Radiation from a point source obeys inverse square

W

=

9]

~

o

| law (intensity i2 ).
s

Prevost Theory of Exchange

According to this theory, all bodies radiate thermal
radiation at all temperatures. The amount of -thermal
radiation radiated per unit time depends on the nature of
the emitting surface, its area and its temperature. The rate is
faster at higher temperatures. Besides, a body also absorbs
part of the thermal radiation emitted by the surrounding
bodies when this radiation falls on it. If a body radiates
more than what it absorbs, its temperature falls. If a body
radiates less than what it absorbs, its temperature rises. And
if the temperature of a body is equal to the temperature of
its surroundings, it radiates at the same rate as it absorbs.
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Perfectly Black Body and Black Body Radiation
(Fery's Black Body)

A perfectly black body is one which absorbs all the heat
radiations of whatever wavelength, incident on it. It neither
reflects nor transmits any of the incident radiation and,
therefore, appears black whatever be the colour of the
incident radiation.

In actual practice, no natural object possesses strictly
the properties of a perfectly black body. But the lamp black
and platinum black are a good approximation of black body.
They absorb about 99% of the incident radiation. The most
simple and commonly used black body was designed by
Ferry. It consists of an enclosure with a small opening which
is painted black from inside. The opening acts as a perfect
black body. Any radiation that falls on the opening goes
inside and has very little chance of escaping the enclosure
before getting absorbed through multiple reflections. The
cone opposite to the opening ensures that no radiation is
reflected back directly.

Absorption, Reflection and Emission of
Radiations

0=0,+0,+0,
9. 0.0
0o

where r = reflecting power, a = absorptive power and ¢ =
transmission powetr.

1. r=0,r=0, a = 1, perfect black body
2. r=1,t=0,a =0, perfect reflector
3. ¥=0,t=1, a = 0, perfect transmitter

(In0|dent) Q,(Reflected)
(Absorbed)

Q, (Transmitted)

(a) Absorptive Power

In particular, absorptive power of a body can be defineq
as the fraction of incident radiation that is absorbed by the
body:
_ Energyabsorbed
Energy incident

As all the radiations incident on a black body are absorbed,
a =1 for a black body.

\M Emissive Power

Consider a small area A4 of a body emitting therma]
radiation, and a small solid angle Aw about the normal to
the radiating surface. Let the energy radiated by the area
A4 of the surface in the solid angle Aw in time At be AU.
We define emissive power of the body as

_ AU
(AD(Aw)AL)
Thus, emissive power denotes the energy radiated per unit

area per unit time per unit solid angle along the normal to
the area.

(c) Spectral Emissive Power (E)\)

Emissive power per unit wavelength range at wavelength
A is known as spectral emissive power, EX. If E is the total
emissive power and E) is the spectral emissive power, they
are related as follows:

E— f E,d)
and dE =FE\
dr
Emissivity

Emissive power of a body toa temperature T
Emissive power of a black body to a same temperature 7

e =
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STEFAN-BOLITZMANN'S LAW

Consider a hot body at temperature T placed in an
environment at a lower temperature 7,. The body emits
more radiation than it absorbs and cools down while the
surroundings absorb radiation from the body and warm up.
The body is losing energy by emitting radiations and this rate

do

Zx T,
dt
—cﬁocA,
dt
do
—xe
dt
= ﬁ:UeAT“
dt
B =edoT*

and is receiving energy by absorbing radiations and this
absorption rate
df
dt
=ad 0'TO4
Here, a is a pure number between 0 and 1 indicating the
relative ability of the surface to absorb radiation from
its surroundings. Note that this a is different from the
absorptive power a. In thermal equilibrium, both the body
and the surrounding have the same temperature (say 7 ) and
P =P, ;
or edoT! = adoT}

b

or e=da

Thus, when T > T, the net rate of heat transfer from the
body to the surroundings is

Net heat loss = @
dt

=edo(T*-T;)

or ms[idyt;]: Ao(T* =T,
= Rate of cooling
dT') edo . 4
——|=—(T" —-T
[ dt] mc( o)
ar 4 4
or — (I —T,
> ( o)

Heat-1 4.15

NEWTON'S LAW OF COOLING

According to this law, if the temperature T of the body is
not very different from that of the surroundings T;, then

. dT . .
the rate of cooling — I is proportional to the temperature
t
difference between them. To prove it, let us assume that

T=T,+ At
‘;—f =g de[(T+AT)* —T}]

Ll oAeT;
dt

1+4AT_1}

0

— 40 AT} AT

if the temperature difference is small.
Thus, the rate of cooling

—d—T x AT
dt
or —ﬁ oc Af
dt
as dT = df
or AT = D0

Variation of Temperature of a Body According
to Newton’s Law

Suppose a body has a temperature 6, at time ¢ = 0. It is
placed in an atmosphere whose temperature is ¢, We are
interested in finding the temperature of the body at time ¢,
assuming Newton’s law of cooling to hold good or by
assuming that the temperature difference is small. As per
this law,

/[ ‘rate of cooling « temperature difference ;s

6, = constant

6, = constant

t=0 —

or [ Zl_ﬂ: 6;14—:](493)(6‘700)
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a9 _ 6,46 ]
—_— = 0 - 9 0 — 0 = e
= a0 and @ [ 2
4ed a6} The equation [— ﬁ] =a(f—0,) becomes
Here, o = ( L J is a constant d dt 0
me

A N

0

0,'—92 :a[ei_QZ J
t

[ i
f & =—q f dt )
; 0-0, 0 This form of the law helps in solving numerical problemg

related to Newton’s law of cooling.

0=20,+(6,—0,)e™
From this expression, we see that ) = fatt=0and =g, Limitations of Newton's Law of Cooling
at 1 = 0o, i.e., temperature of the body varies exponentially
with time from 0, to O, (< 0). The temperature versus time
graph is as shown in Fig, 4.6.

I The difference in temperature between the body ang
i surroundings must be small.
« 2. The loss of heat from the body should be radiation only,
p \ 3¢ The temperature of surroundings must remain constany
4 during the cooling of the body.

0!
9 \ SOLVED EXAMPLE

_ i EXAMPLE 20
7 e ——
) A body at temperature 40°C is kept in a surrounding

of constant temperature 20°C. It is observed that its
Figure 4.6 temperature falls to 35°C in 10 min. Find how much more

time will it take for the body to attain a temperature of 30°C.

Notes - ‘ SOLUTION
Al = Afet
If the body cools by radiation from 0, to@_2 in time ¢, 4 ,e
then taking the approximation for the interval in which temperature falls from 40°C to
do) 6, -4, 35°C
T T (35 — 20) = (40 — 20) 410
3
) 10k 2
and 0=0, = [“Tz] :> ¢ 4
= e In(4/3)
10

il
The equation |— ﬂ] =a(f—6,) becomes
dt for the next interval (30 — 20) = (35 — 20) e
g, —6 6 -6
r 2 a[ ; 2 _00] - e 10k — Z
This form of the law helps in solving numerical

3
problems related to Newton’s law of cooling. = = Enz

(I""n{4/£ B F;E

If the body cools by radiation from g, to g, in time ¢, then - 10 2

taking the approximation I (‘n(3/2))

[_ﬁ] _ 6,4, (fn(413))
dt t = 14.096 min
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From Eq. (14.4),

Alter: (by approximate method)

for the interval in which temperature falls from 40°C
t035°C

_ 40;35 _37

(6)

S5°C
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From the study of the energy distribution of black
body radiation as discussed above

experimentally that the wavelengtl

, it was established
to a maximum intensit

1 (/) corresponding

y of emission decreases inversely
with the increase in the temperature of the black body. i.e.,
o O Tl orl T=h
do . . )
< > =—k((0)-6,) This is called Wien’s displacement law.
blems dt Here, b = 0.282 cmK is the Wien’s constant.
w =—K(37.5°C-20°C) i 5 :
L SOLVED EXAMPLE
yand | - K= %(min"l)
Lonly, for the interval in which temperature falls from 35°C 1o ~ EXAMPLE 21 —_—
astant | 30°C The earth receives solar radiation at a rate of 8.2 J/em? min.
6) = 35430 32.5°C Assuming that the sun radiates like a black body, calculate
)= 2 T the surface temperature of the sun. The angle subtended
by the sun on the earth is 0.53° and the Stefan constant
o ] . -8
ks (30°C-35 C): ~(32.5°C ~20°C) 0 =15.67 X 10~ W/m2-K+,
t
SOLUTION
= Required time, (= EX% min = 14 min |
iding ' /
* ' | NATURE OF THERMAL RAM == Q\
o' | (WIEN’S DISPLACEMER o
| C 0 i S‘ Q_rg '3:
—r= ;
From the energy distribution cy o 7 g e 0OZ% ?é r‘:} %‘ ?
the following conclusions can b crd B 'a’a??.? g 2 2B 25 -%' LER ?é_ &
1. The higher the temperature g & E”; %3 SE' 2 *;‘u’, IR E ‘é 2 & 'wo-% B
C to area under the curve, i.c., | % = E % = & "4» . % % -2 3 ,'_-; 2 o B %
emitted by the body, at a hig, g % ®.5 g B X o BER g% 8 F
2. The energy emitted by o 5 i 2R 8E 3 Sia @ P‘f; =3 & . ,
. - Ug_i 8 o "'"_nn:"dr‘*‘_hﬁ o [AFK}
temperatures is not uniform. m R ?ﬁl-% g E. ; ‘%’{;'at ‘,_5 2 o %‘ & (B) —L" 2/
wavelengths, the energy emiti 8 (,':g“ =S, 7 a6 B Fua* % 2 GR) 2
938885 O8g 8 8° 2K K,
E, 2RgE58ae 58w e™ Oy ==
2000 k ﬁg?%ﬁg‘ zg's @ Kl
I0 B g & - % :; ;_} 3
oW ?123 steel bottom 1.2 ¢m thick rests on a hot
Gy ¢
¥ =
f %

3. Foragiven temperature, therc is a pé

7"\?'{!]

]
|
Ty

Ly "‘n

<

area of the bottom of the pot is 0.150 m2

«ater inside the pot is at 100°C and 0.440 kg
— ourise in ever

¥ 5 minutes. The temperature of the
wer surface of the pot, which is in c
stove is (Given: /.

ontact with the
v = 2256 % 10° J/kg and K. =
50.2 W/m-K)
(A) 105.3°C (B) 205.3°C
(Z,) for which the energy emitted (2 (C) 185.3°C (D) 115.3°C
4. With an increase in the tempera .he
body, the maxima of the curves shi Aalum - g A I
wavelengths.

Fyy -

ake surface is exposed to an atmosphere where the
lemperature is < 0°C. If the thickness of the ice layer
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do
——=a(f-9,
or 5 a(@~-6,)

deAd 0'93
mc

Here, o = [ J is a constant

"

f g =—afdt
60,
(1]

b

0=, +(6~G,)e .

From this expression, we see that (# — fatt=0and @ = 0,
at 1 = oo, i.e., temperature of the body varies exponentially
with time from 6, to 0, (< 6)). The temperature versus time
graph is as shown in Fig. 4.6.

[

A

i

Figure 4.6

Notes

If the body cools by radiation from 0, to&_2 in time ¢,
then taking the approximation

=
dt t
and 0=6, — [ﬂj_@]
' 2
. dé

The equation _7t = a(f—0,) becomes

FONNLED "

¢ 2

This form of the law helps in solving numerical
problems related to Newton’s law of cooling.

If the body cools by radiation from g, to 4}2 in time ¢, then
taking the approximation

o)
ar t

¥ EA EXAMPLE 20

and 0=60 = 0‘;‘02]

The equation [— %f—] =a(f—0,) becomes

@—@=aﬁ—@_%]
t 2

This form of the law helps in solving numerical problemg
related to Newton’s law of cooling,

Limitations of Newton’s Law of Cooling

L The difference in temperature between the body anq
surroundings must be small,

2. The loss of heat from the body should be radiation only,

\ 3¢ The temperature of surroundings must remain constang

during the cooling of the body.

-

| SOLVEDEXAMPLE

A body at temperature 40°C is kept in a surrounding
of constant temperature 20°C. It is observed that its
temperature falls to 35°C in 10 min. Find how much more
time will it take for the body to attain a temperature of 30°C,

SOLUTION
AHf = Afe™

for the interval in which temperature falls from 40°C to
35°C
(35 — 20) = (40 — 20) &0

= e 1%k — E
4
= k= w
10

for the next interval (30 — 20)= (35 —20) e*

= e—]Ok R

3
= kt = Zn3

2
N (In(4/ ﬂ —tn é
10 2
= t= lowmin
' (¢n(4/3))
= 14.096 min
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Alter: (by approximate method)
For the interval in which temperature falls from 40°C
10 35°C

_ 30435 4950c

(0)
prom Eq. (14.4),

dt

(35°C —40°C)

E 10min o

<’—9> —_k(8)—0)
K(37.5°C— 20°C)

1
K = —(min™"'
= 35( )

for the interval in which temperature falls from 35°C to

30°C
(60)— 35—;& —32.5C

C—35°C
M: —(32.5°C —20°C)

= Required time, = 1755><35 min = 14 min =

NATURE OF THERMAL RADIATIONS:
(WIEN'S DISPLACEMENT LAW)

From the energy distribution curve of black body radiation,
the following conclusions can be drawn:

1. The higher the temperature of a body, the higher is the
area under the curve, i.e., more amount of energy is
cmitted by the body at a higher temperature.

2. The energy emitted by the body at different
temperatures is not uniform. For both long and short
wavelengths, the energy emitted is very small.

E

4

2000 k

2

S—

‘/ \ \ X— (in micron)

i "
J '1'|||‘ my

3. Fora given temperature, there is a particular wavelength
() for which the energy emitted (£2) is maximum.

4. With an increase in the temperature of the black
body, the maxima of the curves shift towards shorter
wavelengths.

Heat-1 4.17

From the study of the energy distribution of black
body radiation as discussed above, it was established
experimentally that the wavelength (/) corresponding
to a maximum intensity of emission decreases inversely
with the increase in the temperature of the black body. i.e.,

[ o l or]l T=5»b
m T "

This is called Wien’s displacement law.
Here, b = 0.282 cmK is the Wien’s constant.

SOLVED EXAMPLE

EXAMPLE 21

The earth receives solar radiation at a rate of 8.2 J/cm? min.
Assuming that the sun radiates like a black body, calculate
the surface temperature of the sun. The angle subtended
by the sun on the earth is 0.53° and the Stefan constant
o =567 x 1078 W/m*-K*.

SOLUTION

= earth

sun

Let the diameter of the sun be D and its distance from the
earth be R. From the questions,

D o053x- =925 %107 (1)
R 180
The radiation emitted by the surface of the sun per unit
time is

; 3
47 g] oT* = xD?oT*

At distance R, this radiation falls on an area 4pR’ in unit
time. The radiation received at the earth’s surface per unit
time per unit area is, therefore,
7D*oT*  oT* [2]2
4rR* 4 R
7' (DY ,
? [~] = 8.2 J/em? min
4 \R

Thus,

or i><[5.67 x107° ,—W—]W x(9.25%107%)*
4 m’ —K*

82 W
1074 x60 m*

or T = 5794 K =~ 5800 K. ]
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1. 10 gm of ice at 0°C is kept in a calorimeter of water
equivalent 10 gm. How much heat should be supplied
to the apparatus to evaporate the water thus formed?

(Neglect loss of heat)
' (A) 6200 cal (B) 7200 cal
(©) 13600 cal (D) 8200 cal

2. Heat is being supplied at a constant rate to a sphere of
ice which is melting at the rate of 0.1 gm/sec. It melts
completely in 100 sec. The rate of rise of temperature
thereafter will be (Assume no loss of heat)

(A) 0.8°C/sec (B) 5.4°C/sec
(C) 3.6°C/sec (D) will change with
time

\/)./ A 2100 W continuous flow geyser (instant geyser) has
waler inlet temperature = 10°C while the water flows
out at the rate of 20 g/sec. The outlet temperature of
water must be about
(A) 20°C (B) 30°C
(©) 35°C (D) 40°C

\/./ A continuous flow water heater (geyser) has an electrical
power rating = 2 kW and efficiency of conversion of
electrical power into heat = 80%. If water is flowing
through the device at the rate of 100 cc/sec, and the
inlet temperature is 103C, the outlet temperature will be
(A) 12.2°C (B) 13.8°C
(C) 20°C (D) 16.5°C

5. lee at 0°Cis added to 200 g of water initially at 70°C in
a vacuum flask. When 50 g of ice has been added and
has all melted the temperature of the flask and contents
is 40°C. When a further 80 g of ice has been added and
has all metled, the temperature of the whole is 10°C.
Calculate the specific latent heat of fusion of ice.
[Take S = 1 cal/gm°C]

(A) 3.8 x 10° J/kg (B) 1.2 x 10°J/kg

(©) 2.4 x 10° J/kg (D) 3.0 x 10° J/kg
6. A solid material is supplied 3 ¥

with heat at a constant rate. °

The temperature of material % E

is changing with heat input g CcD

as shown in the figure. What § A B

does slope DE represent. Heat input —»x

(A) latent heat of liquid

(B) latent heat of vapour

(©) heat capacity of vapour

(D) inverse of heat capacity of vapour

. A block of ice with mass m falls into a lake. Alter

impact, a mass of ice m/5 melts. Both the block of ice
and the lake have a temperature of 0°C, If L represents
the heat of fusion, the minimum distance the ice fell
before striking the surface is

@ = ® %
g g
8L L
© £ ® =

. The specific heat of a metal at low temperatures varies

according to S = aT® where a is a constant and T is
abute temperature. The heat energy needed to raise
unit mass of the metal from 7'= 1K to T=2 K is

(A) 3a ® L2
2a 12a
© B (D) '

- The graph shown in the figure represent change in the

temperature of 5 kg of a substance as it abosrbs heat
at a constant rate of 42 kJ min~'. The latent heat of
vapourization of the substance is:

—

0 5 10 15 20 25 30 35 40 45 50 55
time(min) ——»
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11.

12.

13.

14.

(A) 630kJ kg
(C) 84 kI kg

(B) 126 kI kg~!
(D) 12.6 kT kg™

The density of a material 4 is 1500 kg/m® and that
of another material B is 2000 kg/m>. It is found that
the heat capacity of 8 volumes of 4 is equal to heat
capacity of 12 volumes of B. The ratio of specific heats
of 4 and B will be
A) 1:2

©) 3:2

B) 3:1
D) 2:1

Find the amount of heat supplied to decrease the
volume of an ice water mixture by 1 em?® without any
change in temperature. (p. _ 0.9 L, = 80 cal/gm)

ice= pwater” " ic
(A) 360 cal (B) 500 cal
(C) 720 cal (D) none of these
Some steam at 100°C is passed into 1.1 kg of water
contained in a calorimeter of water equivalent 0.02 kg
at 15°C so that the temperature of the calorimeter and
its contents rises to 80°C. What is the mass of stcam
condensing. (in kg)
(A) 0.130
(C) 0.260

(B) 0.065
(D) 0.135

A wall has two layers 4 and B, each made of different
material. Both the layers have the same thickness. The
thermal conductivity for 4 is twice that of B. Under
steady state, the temperature difference across the
whole wall is 36°C. Then the temperature difference
across the layer 4 is
(A) 6°C

(C) 18°C

(B) 12°C
(D) 24°C

Two metal Cubes with 3 cm-edges of copper and
aluminium are arranged as shown in figure. (K, =
385 W/m-K, K,, = 209 W/m-K) (K, = 385 W/m-K,
K, =209 W/m-K)

(A) The total thermal current from one reservoir to the
other is:

100°C 20°C

(A) 143 x 10°W (B) 2.53 x 1 W
(C) 1.53 x 10°W (D) 2.53 x 10*W

(B) The ratio of the thermal current carried by the
copper cube to that carried by the aluminium
cube is

15.

16.

17.

18.
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(B) 1.69
(D) 1.84

(A) 1.79
(C) 1.54

Two identical square rods of metal are welded end
to end as shown in figure (A). Assume that 10 cal of
heat flows through the rods in 2 min. Now the rods are
welded as shown in figure. (B) The time it would take
for 10 cal to flow through the rods now, is:

E%’
0°C % 100°C
e— ooc €
A
/
(A) (B)
(A) 0.75 min (B) 0.5 min
(C) 1.5 min (D) 1 min

A wall consists of alternating blocks with length ‘d’
and coefficient of thermal conductivity k, and £,
The cross sectional area of the blocks are the same.
The equivalent coefficient of thermal conductivity
of the wall between left and right is

g |
I
k?
k1
I
k1
K,
K +K
A) K +K, (B) (1722)
2K\K
© 2 o 2\
K, +K, K +K,

A pot with a steel bottom 1.2 cm thick rests on a hot
stove. The area of the bottom of the pot is 0.150 m*
The water inside the pot is at 100°C and 0.440 kg
vapourise in every 5 minutes. The temperature of the
lower surface of the pot, which is in contact with the
stove is (Given: L, = 2.256 x 10° J/kg and K =
50.2 W/m-K)

(A) 105.3°C
(C) 185.3°C

(B) 205.3°C
(D) 115.3°C

A lake surface is exposed to an atmosphere where the
temperature is < 0°C. If the thickness of the ice layer
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formed on the surface grows from 2 ¢m to 4 ¢cm in
I'hour, The atmospheric temperature, 7' will be
(Thermal conductivity ofjice K =4 % 13 callem/s/°C;
density of ice = (0,9 gm/ce. Latent heat of fusion of
ice = 80 cal/gm, Neglect the change of densit y during
the state change. Assume that the water below the ice
has 0° temperature every where)

(A) —20°C (B) o°C

(C) —30°C (D) —15°C

19. Oneendofa2.35m long and 2.0 ¢m radius aluminium
tod (K =235 Wm~'K~") is held at 20°C. The other end
of the rod is in contact with g block of ice at its melting
point. The rate in kg.s~' at which ice melts js
(A) 487 x 10 (B) 247 x 105
(C) 2.47 x 10-¢ (D) 4.87 x 10-6

[Take latent heat of fusion for ice as 13—0 x 10° J kg ']

20. Four rods of same material with different radij » and
length / are used to connect two reservoirs of heat at
different temperatures, Which one will conduct most
heat?

(A) r=2em,/=05m
B)r=2em, /=2m
(O r=05cm,/=05m
M) r=lem/=1m

21. A cylinder of radius R made of a material of thermal
conductivity k, is surrounded by a cylindrical shell of
inner radius R and outer tadius 2R made of a material of
thermal conductivity k,. The two ends of the combined
System are maintained at different tem peratures, There
is no loss of heat from the cylindrical surface and
the system is in steady state. The effective thermal
conductivity of the system is

Kk,

B
’ k +k,

(A) k +k,

1
(© 0k +3k,) D) :J[(-y.- k)

22, Arodof length £ and uniform cross-sectional area has
varying thermal conductivity which changes linearly
from 2 K at end 4 to K gt the other end 8. The ends A
and B of the rod are maintained at constant temperature
100°C and 0°C, respectively, At steady state, the graph
of temperature: 7= T(x) where x = distance from end
A will be

23,

24,

(A) T, (B) I
100°cf 100°CE
L *x L *x
7
© D) ’
100°c' 100°C
L o X L X

Two sheets of thickness d and 2d and same area gre
touching each other on their face. Temperature T.7,.7
shown are in geometric progression with comman ratio
r = 2. Then ratio of thermal conductivity of thinney
and thicker sheet are

TA TB TC
’ r/ /
. d 2d
(A) 1 (B) 2
©) 3 (D) 4

The wall with a cavity consists of two layers of brick
separated by a layer of air. All three layers have the
same thickness and the thermal conductivity of the
brick is much greater than that of air, The left layer is
at a higher temperature than the right layer and steady
state condition exists, Which of the following graphs
predicts correctly the variation of temperature T with

distance d inside the cavity?
Ay T

B) ..




25. A ring consisting of two parts 4DB and ACB of same

26.

27,

-

28,

conductivity k carries an amount of heat H. The ADB
part is now replaced with another metal keeping the
temperatures 7| and 7, constant. The heat cartied
increases to 2H. What should be the conductivity of

the new ADB part? Given ACH

4

A) gk (B) 2%k
©) %k ) 3k

Three conducting rods of same material and cross-
section are shown in figure. Temperatures of 4, D and
C are maintained at 20°C, 90°C and 0°C. The ratio of
lengths of BD and BC if there is no heat flow in 4B is:

A B C
D
A) 277 (B) 7/2
(C) 9/2 (D) 2/9
2

Six identical condugting rods are joined as shown in
figure. Points 4 and D are maintained at temperature
of 200°C and 20°C respectively. The temperature of
junction B will be:

A ) c

200°C 20°C
(A) 120°C B) IOO‘T,C
(C) 140°C (D) 80°C.

A metallic rod of cross-sectional area 9.0 cm? and
length 0.54 m, with the surface insulated to prevent
heat loss, has one end immersed in boiling water and

29.

30.

31.
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the other in ice-water mixture. The heat conducted
through the rod melts the ice at the rate of 1 gm for
every 33 sec. The thermal conductivity of the rod is
(A) 330 Wm—K~! (B) 60 Wm~'K-!

(©) 600 Wm~'K-! (D) 33 Wm~'K~!

A hollow sphere of inner radius R and outer radius 2R
is made of a material of thermal conductivity K. It is
surrounded by another hollow sphere of inner radius
2R and outer radius 3R made of same material of
thermal conductivity K. The inside of smaller sphere is
maintained at 0°C and the outside of bigger sphere at
100°C, The system is in steady state. The temperature
of the interface will be:
(A) 50°C

(C) 75°C

(B) 70°C
(D) 45°C

The ends of a metal bar of constant cross-sectional area
are maintained at temperatures T\ and T, which are
both higher than the temperature of the surroundings.
[ the bar is unlagged, which one of the following
sketches best represents the variation of lemperature
with distance along the bar?

@) 1t ®) 1t

O Distance O Distance
sz‘ T S
O  Distance O Distance

Three identical rods 4B, CD and PQ are joined
as shown. P an Q are mid points of 4B and CD
respectively. Ends 4, B, C and D are maintained at
0°C, 100°C, 30°C and 60°C respectively. The direction
of heat flow in PQ is

0°C c
A 30°C
P
B 60°C
100°C D
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(A) from Pto Q

(B) from Qto P

(C) heat does not flow in PQ
(D) data not sufficient

32. The temperature drop through each layer of two layer
' furnace wall is shown in figure. Assume that the
external temperature 7, and T, are maintained constant
and T, > T,. If the thickness of the layers x, and x,
are the same, which of the following statements are
| correct. ‘

r

Ik.?

K
™

T

(A) k, >k,

(B) k, <k,

(C) k, = k, but heat flow through material (1) is larger

then through (2)

(D) k, = k, but heat flow through material (1) is less
than that through (2)

33. Two rods 4 and B of different materials but same

cross section are joined as in figure. The free end

of 4 is maintained at 100°C and the free end of B is

& maintained at 0°C. If /, = 2/, K, = 2K, and rods are

thermally insulated from sides to prevent heat losses

then the temperature 6 of the junction of the two rods is

gl

1

LA | B | 38.
100°C k,l [ I, 0°C
(A) 80°C (B) 60°C
(C) 40°C (D) 20°C
Question No. 34. to 36

Two rods 4 and B of same cross-sectional are 4 and length

I connected in series between a source (T , = 100°C) and
' a sink (7, = 0°C) as shown in figure. The rod is laterally
insulated a9

100°C

34,

3s.

36.

37.

The ratio of the thermal resistance of the rod is
R
Ay =1 B) =3
R, 3 R,
R 3 4
C) A== D) —
© 2 0 (D) ]

B

If T, and T} are the temperature drops across the rod 4
and B, then

3 T Il

1

A) ®

©

If G, and G, are the temperature gradients across the
rod 4 and B, then

(A) G, _3 (B) ﬁ:l
G, |1 G, 3
(€) i:é (D) ﬂzi
G, 4 G, 3

Two sheets of thickness d and 3d, are touching each
other. The temperature just outside the thinner sheet
side is A4, and on the side of the thicker sheet is C. The
interface temperature is B. 4, B and C are in arithmetic
progressing, the ratio of thermal conductivity of
thinner sheet and thicker sheet is

(A) 1:3 (B) 3:1

©) 2:3 D) 1.9

A cylindrical rod with one end in a steam chamber and
the outer end in ice results in melting of 0.1 gm of ice
per second. If the rod is replaced by another with half
the length and double the radius of the first and if the
thermal conductivity of material of second rod is 1/4
that of first, the rate at which ice melts is gm/sec will
be

(A) 3.2 (B) 1.6

) 0.2 D) 0.1

A composite rod made of three rods of equal length
and cross-section as shown in the fig. The thermal
conductivities of the materials of the rods are K/2, 5 K
and K respectively. The end 4 and end B are at constant
temperatures. All heat entering the face 4 goes out of
the end B there being no loss of heat from the sides of
the bar. The effective thermal conductivity of the bar is
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40.

41.

42.

— ——
Ki2 5K K
(A) 15K/16 (B) 6K/13
(C) 5K/16 (D) 2 K/13.

A rod of length L with sides fully insulated is of a
material whose thermal conductivity varies with

o) .
temperature as K = T where « is a constant. The

ends of the rod are kept at temperature 7', and T, ,- The
temperature 7 at x, where x is the distance from the end
whose temperature is T is

X

T2 B
A) T [FJ

1

x ., T
B) Zin=2
®) L
T,x

© Te™ Ll

D) I, + —+x
(D) T+

Heat flows radially outward through a spherical shell of
outside radius R, and inner radius R,. The temperature
of inner surface of shell is ¢ and that of outer is 0,.
The radial distance from centre of shell where the
temperature is just half way between 6, and 0, is:

R +R, RR,
A | B Sk
® = ()Rj.ue_,
2R R
(C) ik lnk 8 (D) R[-l-&
R +R, 2

The two ends of two similar non-uniform rods of
length A each and thermal conductivity ‘K’ are

maintained at different but constant temperature. The |

) 1 . AT
temperature gradient at any point on the rod is A

The heat flow per unit time through the rod is I: Given
T, > T,. Then which of the following is true:

Rod(l)

43.

44,

45,

46.
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(A) ITof Rod (I} = I of Rod (II)
(B) Tof Rod (I) > I of Rod (II)
(C) ITofRod (I) < I of Rod (IT)
(D) data is insufficient

A system § receives heat continuously from an
electrical heater of power 10 W. The temperature of
§ becomes constant at 50°C when the surrounding
temperature is 20°C. After the heater is switched off,
S cools from 35.1°C to 34.9°C in | minute. The heat
capacity of S'is
(A) 1007J/r°C

(C) 750J/°C

(B) 3001J°C
(D) 1500 J/°C

A sphere of ice at 0°C having initial radius R is placed
in an environment having ambient temperature > 0°C.
The ice melts uniformly, such that shape remains
spherical. After a time ‘¢ the radius of the sphere has
reduced to r. Assuming the rate of heat absorption is
proportional to the surface area of the sphere at any
moment, which graph best depicts r(7).

(A) 1y (B) 14
R R
p — t
C) ra (D) ra
R R
>t —_—— =

The power radiated by a black body is P and it radiates
maximum energy around the wavelength A. If the
temperature of the black body is now changed so that
it radiates maximum energy around wavelength 3/40,
the power radiated by it will increase by a factor of
(A) 4/3 B) 16/9

(C) 64/27 (D) 256/81

A black metal foil is warmed by radiation from a small
sphere at temperature ‘7’ and at a distance ‘d’. It is
found that the power received by the foil is P. If both
the temperature and distance are doubled, the power
received by the foil will be:
(A) 16P

©) 2pP

(B) 4P
®) p




4.24 Physics Module-2

47.

48.

49,

50.

51.

Star S| emits maximum radiation of wavelength 420 nm
and the star §, emits maximum radiation of wavelength
560 nm, what is the ratio of the temperature of S, and
S,

(A) 4/3
(C) 3/4

(B) (4/3)4
(D) (3/4)12

Spheres P and Q are uniformly constructed from the
same material which is a good conductor of heat and
the radius of Q is thrice the radius of P, The rate of fal]
of temperature of P is x times that of O when both are
at the same surface temperature. The value of x js:

(A) 1/4 (B) 173

(C) 3 (D) 4

An ice cube at temperature —20°C ig kept in a room at
temperature 20°C. The variation of temperature of the
body with time is given by
AT (B) T
J va
S

-

.;!

._——\____’ l
(D) 7
’/_w/
e —

(S

-

The spectral emissive power EX for a body at
temperature 7' is plotted against the wavelength and
area under the curve is found to be A. At a different
lemperature T, the area is found to be 94 Then AJA, =

(A) 3 (B) 173

© 1/V3 (D) V3

The intensity of radiation emitted by the Sun has its
maximum value at a wavelength of 510 nm and that

52.

53.

54.

55.

56.

emitted by the North Star has the maximum value o
350 nm. If these stars behave like black bodiey they
the ratio of the surface temperature of the Sun and g,
North Star ig
(A) 1.46
(C) 1.21

(B) 0.69
(D) 0.83

Two bodies P and Q have thermal emissivities ofc ang
£o Tespectively. Surface areas of these bodies are same
and the total radiant power is also emitted at the Samg
rate. If temperature of £ is Ur_ kelvin then l'empcralure_
of Q1e. HQ is

N
(A) [—QJ 9,
g

P

1/4
(B) [ fﬂ] 6,
£

0

1/4 4

(© [E-QJ X (D) [E—QJ 0,
&p P Ep

A black body calorimeter filled with hot water cools
from 60°C to 50°C in 4 min and 40°C to 30°C iy
8 min. The approximate temperature of surrounding ig
(A) 10°C (B) 15°C
(©) 20°C (D) 25°C

The rate of emission of radiation of a black body at
273°C i3 E, then the rate of emission of radiation of
this body at 0°C will be

E FE
(A) i B) Y

© £ (D) 0
8

A body cools from 75°C to 65°C in 5 minutes. If the

room temperature is 25°, then the temperature of the

body at the end of next S minutes is;

(A) 57°C (B) 55°C

(€) 54°C (D) 53°

The temperature of a body falls from 40°C to 36°C in
5 minutes. when placed in a surrounding of constant
temperature  16°C. Then the time taken for the
temperature of the body to become 32°Cis

(A) 5 min (B) 4.3 min

(C) 6.1 min (D) 10.2 min,




plack body, radiation is not;
: (B) absorbed
(D) refracted

rdance with Kirchhoft’s law:
d absorber is bad emitter

d absorber is good reflector
d reflector is good emitter
.od emitter is good absorber

energy radiated by a body depends on:
area of body
pature of surface
mass of body
témperature of body

% Hollow and a solid sphere of same material
A4 identical outer surface are heated to the same

erature;

in the beginning both will emit equal amount of

radiation per unit time.

in the beginning both will absorb equal amount of

 radiation per unit time

both spheres will have same rate of fall of

temperature (d17/dr)

both spheres will have equal temperatures at any

moment. -

he rate of cooling of a body by radiation depends on:
area of body

) mass of body

). specific heat of body

) temperature of body and surrounding.

A polished metallic piece and a black painted wooden
are kept in open in bright sun for a long time:
the wooden piece will absorbs less heat than the
. metallic piece

(B) the wooden piece will have a lower temperature
| than the metallic piece

IC) if touched, the metallic piece will feel hotter than
* the wooden piece

(D) when the two pieces are removed from the open to
a cold room, the wooden piece will lose heat at a
faster rate than the metallic piece

Heat-1 4.25

7. An experiment is perfomed to measure the specific
heat of copper. A lump of copper is heated in an oven,
then dropped into a beaker of water. To calculate the
specific heat of copper, the experimenter must know
or measure the value of all of the quantities below
EXCEPT the
(A) heat capacity of water and beaker
(B) original temperature of the copper and the water
(C) final (equilibrium) temperature of the copper and

the water
(D) time taken to achieve equilibrium after the copper
is dropped into the water

8. One end of a conducting rod is maintained at
temperature S0°C and at the other end, ice is melting
at 0°C. The rate of melting of ice is doubled if:

(A) the temperature is made 200°C and the area of
cross-section of the rod is doubled

(B) the temperature is made 100°C and length of rod
is made four times

(C) area of cross-section of rod is halved and length is
doubled

(D) the temperature is made 100°C and the area of
cross-section of rod and length both are doubled.

9. Two metallic sphere 4 and B are made of same material
and have got identical surface finish. The mass of
sphere A is four times that of B. Both the spheres are
heated to the same temperature and placed in a room
having lower temperature but thermally insulated from
each other.

(A) The ratio of heat loss of 4 to that of B is 2*?

(B) The ratio of heat loss of A4 to that of B is 22°

(C) The ratio of the initial rate of cooling of 4 to that
of B is 2723

(D) The ratio of the initial rate of cooling of 4 to that
of Bis 274°

10. Two bodies 4 and B have thermal emissivities of 0.01
and 0.81 respectively. The outer surface areas of the
two bodies are the same. The two bodies radiate energy
at the same rate. The wavelength ), corresponding to
the maximum spectral radiancy in the radiation from
B, is shifted from the wavelength corresponding to the
maximum spectral radiancy in the radiation from 4 by
1.00 pm. If the temperature of 4 is 5802 K,
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(A) the temperature of B is 1934 K
(B) A,=1.5pum

(C) the temperature of B is 11604 K
(D) the temperature of B is 2901 K

11. Three bodies 4, B and C have equal surface area and

thermal emissivities in the ratio e, e, e, = I:l:l.
2 4
All the three bodies are radiating at same rate. Their
wavelengths corresponding to maximum intensity are
A Ay and A respectively and their temperature are 7',
T, and T, on kelvin scale, then select the incorrect

statement.
A T il =30,
B) JA A =4,

© ved eI, =e,T,
(D) V'eA)‘ATA : eB)\BTB - ec)‘cTc
Question No. 12 to 14

The figure shows a radiant energy spectrum graph for a
black body at a temperature 7.

12. Choose the correct statement(s)

(A) The radiant energy is not equally distributed
among all the possible wavelengths

13.

14.

JEE Advanced

Level I

1. In following equation calculate the value of H. 1 kg
stéam at 200°C = H 4- 1 Kg water at 100°C (S, =
Constant = .5 cal/gm°C) "

2. IFrom what height should » piece of ice (0°C) fall so
that it melts completely? Only one quarter of the heat
produced is absorbed by the ice. The latent heat of ice
is3.4 x 10°Tkg™' and g is 10 N kg,

3. A copper cube of mass 200 g slides down on a rough
inclined plane of inclination 37° 4 a constant speed.

(B) For a particular wavelength the spectral intensity
is maximum

(C) The area under the curve is equal to the toty
rate at which heat is radiated by the body at tha;
temperature

(D) None of these

If the temperature of the body is raised to a higher

temperature T”, then choose the correct statement(s)

(A) The intensity of radiation for every wavelength
increases

(B) The maximum intensity occurs at a shorter
wavelength

(C) The area under the graph increases

(D) The area under the graph is proportional to the
fourth power of temperature

[dentify the graph which correctly represents the
gpectral intensity versus wavelength graph at two
temperatures 77 and T(T < T')

Assume that any loss in mechanical energy goes
into the copper block as thermal energy. Find the
increase in the temperature of the block as it slides
down through 60 cm. Specific heat capacity of
copper = 420 J/kg-K.

10 gm ice at —10°C, 10 gm water at 20°C and 2 g
steam at 100°C are mixed with each other then final
equilibrium temperature.

vap
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5.

10.

Materials A, B and C are solids that are at their melting
temperatures. Material 4 requires 200 J to melt 4 kg,
material B requires 300 J to melt 5 kg, and material
C requires 300 J to melt 6 kg. Rank the materials
according to their heats of fusion, greatest first.

In a thermally iated container, material A of mass m is
placed against material B, also of mass m but at higher
temperature. When thermal equilibrium is reached,
the temperature changes AT, and AT, of 4 and B
are recorded. Then the experiment is repeated, using
A with other materials. All of the same mass m. The
results are given in the table. Rank the four materials
according to their specific heats, greatest first.

Experiment Temperature Changes
1. AT, =450C° AT, = -50C°
2. AT,=+410C° AT, = —20C°
3. AT, =+2C° AT, = —40C°

. Indian style of cooling drinking water is to keep it in a

pitcher having porous walls. Water comes to the outer
surface very slowly and avaporates. Most of the energy
needed for evaporation is taken from the water itself
and the water is cooled down. Assume that a pitcher
contains 10 kg of water and 0.2 g of water comes
out per second. Assuming no backward heat transfer
from the atmosphere to the water, calculate the time in
which the temperature decreases by 5°C. Specific heat
capacity of water = 4200 J/kg-°C and latent heat of
vaporization of water = 2.27 x 10° J/kg.

. An aluminium container of mass 100 gm contains

200 gm of ice at —20°C. Heat is added to the system
at the rate of 100 cal/s. Find the temperature of the
system after 4 minutes (specific heat of ice = 0.5 and
L = 80 cal/gm, specific heat of 47 = 0.2 cal/gm/°C)

. A volume of 120 ml of drink (half alcohol + half water

by mass) originally at a temperature of 25°C is cooled
by adding 20 gm ice at 0°C. If all the ice melts, {ind
the final temperature of the drink.(density of drink =
0.833 gm/cc, specific heat of alcohol = 0.6 cal/gm/°C)

Two identical calorimeter 4 and B contain equal
quantity of water at 20°C. A 5 gm piece of metal X
of specific heat 0.2 cal g~'(C°)™" is dropped into A
and a 5 gm piece of metal Y into B. The equilibrium
temperature in 4 is 22°C and in B 23°C. The initial

11.

12.

13.

14.

15.
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temperature of both the metals is 40°C. Find the
specific heat of metal Y in cal g='(C®)~",

Two 50 gm ice cubes are dropped into 250 gm of water
into a glass. If the water was initially at a temperature
of 25°C and the temperature of ice —15°C. Find the
final temperature of water. (specific heat of ice =
0.5 cal/gm/°C and L = 80 cal/gm). Find final amount
of water and ice.

A substance is in the solid form at 0°C. The amount
of heat added to this substance and its temperature are
plotted in the following graph. If the relative specific
heat capacity of the solid substance is 0.5, find from
the graph

120- ...............................
100
I R /
60 '
40+
20 :

temp(°C) —»

- f—1
1000 2000
Q ——>(Calories)

(i) the mass of the substance;
(ii) the specific latent heat of the melting process,
and
(iii) the specific heat of the substance in the liquid
state.

A uniform slab of dimension 10 cm x 10 cm x 1 ecm
is kept between two heat reservoirs at temperatures
10°C and 90°C. The larger surface areas touch the
reservoirs. The thermal conductivity of the material is
0.80 W/m-°C. Find the amount of heat flowing through
the slab per second.

One end of a steel rod (K = 42 J/m-s-°C) of length
1.0 m is kept in ice at 0°C and the other end is kept
in boiling water at 100°C. The area of cross-section
of the rod is 0.04 cm? Assuming no heat loss to
the atmosphere, find the mass of the ice melting

per second. Latent heat of fusion of ice = 3.36 x
10° J/kg.

A rod CD of thermal resistance 5.0 K/W is joined at
the middle of an identical rod AB as shown in figure.
The ends A, B and D are maintained at 100°C, 0°C and
25°C respectively. Find the heat current in CD.
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Y.} - |
100°C ! c 0°C
25°C D

16. A semicircular rod is joined at its end to a straight rod

17.

18

19.

20

of the same material and same cross-sectional area.
The straight rod forms a diameter of the other rod. The
junctions are maintained at different temperatures. Find
the ratio of the heat transferred through a cross-section
of the semicircular rod to the heat transferred through a
cross-section of the straight rod in a given time,

One end of copper rod of uniform cross-section and
of length'1.45 m is in contact with ice at 0°C and the
other end with water at 100°C., Find the position of
point along its length where a temperature of 200°C
should be maintained so that in steady state the mass
of ice melting is equal to that of steam produced in the
same interval of time [Assume that the whole system
is insulated from surroudings]. [take L, = 540 callg
Lr:‘ 80 cal/g]

Three slabs of same surface area but different
conductivities k,, k, k, and different thickness fy b,
1, are placed in close contact. After steady state his
combination behaves as a single slab. Find is effective
thermal conductivity,

A thin walled metal tank of surface area 5 m? is filled
with water tank and contains an immersion heater
dissipating 1 kW. The tank is covered with 4 cm thick
layer of insulation whose thermal conductivity is
0.2 W/m/K. The outer face of the insulation is 25°C.
Find the temperature of the tank in the steady state.
s

The figure shows the face and interface temperature
of a composite slab containing of four layers of two
materials having identical thickness. Under steady
state condition, find the valye of temperature 0,

20°C 10°C ¢ —5°C —10°C

2k

k = thermal conductivity

22

23

24

25.

(A) 5°C
(©) 4°C

(B) 6°C
(D) 7°C

Inthe square frame of side / of metallic rods, the Corngyy
4 and C are maintained at T and T, respectively, The
rate of heat flow from 4 to C is w, If 4 and D g
instead maintained T, and T, respectively find, fing the
total rate of heat flow.

A hollow metallic sphere of radius 20 cm surrounds 4
concentric metallic sphere of radius 5 cm. The space
between the two spheres is filled with a nonmetallj,
material. The inner and outer spheres are maintained a(
50°C and 10°C respectively and it is found that 1605
Joule of heat passes from the inner sphere to the outer
sphere per second. Find the thermal conductivity of
the material between the spheres.

Find the rate of heat flow through a cross-section of the
rod shown in figure (6, > 6,). Thermal conductivity of
the material of the rod is X

o

&

A metal rod of cross-sectional area 1.0 em?
heated at one end. At one time, the temperature
gradient is 5.0°C/em at cross-section 4 and is 2.6°C/
¢m at cross-section B. Calculate the rate at which the
temperature is increasing in the part AB of the rod.
The heat capacity of the part AB = 0.40 J/°C, thermal
conductivity of the material of the rod — 200 W/m-°C.
Neglect any loss of heat to the atmosphere.

is being

A rod of negligible heat capacity has length 20 ¢m.,
area ol cross-section 1.0 em” and thermal conductivity
200 W/m-°C. The tempeature of one end is maintained
at 0°C and that of the other end is slowly and linearly
varied from 0°C to 60°C in 10 minutes. Assuming
no loss of heat through the sides, find the total heat

“transmitted through the rod in these 10 minutes.
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26.

27.

28.

29.

30.

31.

32.

A pan filled with hot food cools from 50.1°C to 49.9°C
in 5 sec. How long will it take to cool from 40.1°C to
39.9°C if room temperature is 30°C ?

A solid copper cube and sphere, both of same mass
and emissivity are heated to same initial temperature
and kept under identical conditions. What is the ratio
of their initial rate of fall of temperature?

Two spheres of same radius R have their densities in
the ratio 8:1 and the ratio of their specific heats are
1:4. If by radiation their rates of fall of temperature are
same, then find the ratio of their rates of losing heat.

The maximum wavelength in the energy distribution
spectrum of the sun is at 4753A and its temperature is
6050 K. What will be the temperature of the star whose
energy distribution shows a maximum at 9506A.

A black body radiates 5 watts per square cm of its
surface area at 27°C. How much will it radiate per
square ¢cm at 327°C.

A 100 W bulb has tungsten filament of total length
1.- m and radius 4 x 107> m. The emissivity of the
filament is 0.8 and o = 6.0 x 10~* W/m?-K*. Calculate
the temperature of the filament when the bulb is
operating at correct wattage.

A copper sphere is suspended in an evacuated chamber
maintained at 300 K. The sphere is maintained at a
constant temperature of 500 K by heating it electrically. A
total of 210 W of electric power is needed to do it. When
the surface of the copper sphere is completely blackened,
700 W is needed to maintain the same temperature of the
sphere. Calculate the emissivity of copper.

33.

34.

35.

36.
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During a certain duration in the day, the earth is in
radiative equilibrium with the sun. Find the surface
temperature of the earth during that duratian.

[Given, radius of sun = 6.9 x 10" m surface
temperature of sun = 6000 K and the distance of earth
from the sun = 1.49 x 10" m. Assume that the sun and
carth behave as black bodies.]

Estimate the temperature at which a body may appear
blue or red. The values of A for these are 5000
and 7500A respectively. [Given Wein’s constant b =
0.3 cmK]

Find the quantity of energy radiated from 1 cm?® of a
surface in one second by a black body if the maximum
energy density corresponds to a wavelength of 5000A
(b=03cmKand o= 5.6 x 10°* wm?k*)

The following observations have been noted for a
black body spectrum, taken for T = 500 K. Calculate
the value of A at 7= 1000 K.

A 10 8 6 4

(in pm)
E 10 14 16 12

A

(in SI units)

81

38.

A liquid cools from 70°C to 60°C is 5 minutes. Find the
time' in which it will further cool down to 50°C, if its
surrounding is held at a constant temperature of 30°C

A body cools down from 50°C to 45°C in 5 minutes
and to 40°C in another 8 minutes. Find the temperature
of the surrounding.

Level Il

1.

A copper calorimeter of mass 100 gm contains 200 gm of
a mixture of ice and water. Steam at 100°C under normal
pressure is passed into the calorimeter and the temperature
of the mixture is allowed to rise to 50°C. If the mass of the
calorimeter and its contents is now 330 gm, what was the
ratio of ice and water in beginning? Neglect heat losses.
Given:

Specific heat capacity of copper

=042 x 10*Jkg ' K,
Specific heat capacity of water
=42x10°Tkg 'K,

Specific heat of fusion of ice
=336 x 10°T kg
Latent heat of condensation of steam
=22.5x 10°Tkg™!

A solid substance of mass 10 gm at —10°C was heated
to —2°C (still in the solid state). The heat required
was 64 calories. Another 880 calories was required
to raise the temperature of the substance (now in the
liquid state) to 1°C, while 900 calories was required

|
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- A composite body consists of two

to raise the temperature from —2°C to 3°C. Caleulate
the specific hea capacities of the substance in the solid
and liquid state in calories per kilogram per kelvin,
Show that the Jatent heat of fusion £, is related to the
melting point temperature £, by L = 85400 4 2001 -

- A steel drill making 180 rpm is used to drill a hole in 2

block of steel, The mass of the steel block and the drill
is 180 gm. If (he entire mechanical work is used up in
producing heat and the rate of raise in temperature of
the block and the dyil] is 0.5°CYs, Find

(A) the rate of working of the dril] in watts, and

(B) the torque required to drive the dyil].

Specific heat of steel = 0.1 and J — 4.2 J/cal. Use:
P=ry

A flow calorimeter is used to measure the specific heat
of a liquid. Heat is added at a known rate to a stream
of the liquid as it passes through the calorimeter aq
a known rate, Then a4 measurement of the resulting
temperature difference between the inflow and the
outflow points of the liquid stream enables ug to
compute the specific heat of the liquid, A liquid of
density 0.2 g/em? flows through a calorimeter at the
rate of 10 em¥s, Heat ig added by means of 5 250-w
electric heating coil, and 4 temperature difference of
25°C is established in steady-state conditions between
the inflow and the outflow points. Find the specific
heat of the liquid,

« lee at —20°C ig filleg upto height /1 = 10 em in 4

uniform eylindrical vessel, Water at lemperature #°C
is filled in another identical vessel upto the same
height 4 = 1) em. Now, water from second vesse| g
poured into first vessel and it is found that level of
upper surface falls through At = 0.5 em when thermal
equilibrium is reached. Neglecting thermal capacity of
vessels, change in density of water dye to change in
temperature and logg of heat due to rediation, caleulate
initial temperature g of water.

Given, Density of water. £.=1gmem-

Density of ice, £,= 0.9 gm/em?

Specific heat of water. 8, =l cal/gmeC

Specific heat of jce §,= 0.5 cal/gm°C

Specific latent heat of ice, £, = 80 cal/. em

rectangular
plates of the same dimensions by different thermal
conductivities X 4 And K, This body is used to transfer

heat between two objects maintained af different

temperatures. The composite body can be Placeg
such that flow of heat takes place either parallel to ¢4
interface or perpendicular to jt, Calculate the effectiy,
thermal conductivities K” and K of the composite Imdy
for the paralle] and perpendicular orientations, Which
orientation wil] have more thermal conductivity ?

- A highly conducting solid cylinder of radius ¢ angd

- A vertical brick duct (tube) is filled with cast iron. The:

10.

length { is surrounded by a co-axijal layer of a materjy)
having therma] conductivity X and negligible heat
capacity. Temperature of surrounding space (out side
the layer) js T, which is h igher than temperature of the

material is y and outer radiug of the layer is b, calculate
time required to increase lemperature of (he cylindey
from T to 7. Assume end laces to he thermally
insulated,

lower end of the duct is maintained at a temperatyre
T, which is greater than the melting point T of cast
iron and the upper end at a temperature 7' which is
less than the temperature of the melting point of cast

A lagged stick of CTOss section area | em? and length
I'm is initially at 4 temperature of 0°C, 1y i then kept
between 2 reservoirs of temperatype 100°C and ¢°C,
Specific heat capacity is 10 J/kg°C and linear mass
density is 2 kg/m. Find

100°C

————__{ 0°C

X

(A) temperature gradient along the rod in steady state,
(B) total heat absorbed by the rod to reach steady

A cylindrical block of length 0.4 m an area of cross-
section 0.04 m? is placed coaxially on a thin metal
disc of mass (.4 kg and of the same cross-section. The

heat of the material of the disc in 600 J/kg-K, how lon 1'
will it take for the temperature of the disc to | nerease:
to 350 K? Assume, for purposes of calculation, the
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thermal conductivity of the disc to be very high and
the system to be thermally insulated except for the
upper face of the cylinder.

11. A solid copper sphere cools at the rate of 2.8°C per
minute, when its temperature is 127°C. Find the rate at
which another solid copper sphete of twice the radius
lose its temperature at 327°C, if in both the cases, the
room temperature is maintained at 27°C.

12. End 4 of arod 4B of length L = 0.5 m and of uniform
cross-sectional area is maintained at some constant
temperature, The heat conductivity of the rod is k =
17 J/s-m°K. The othet end B of this rod is radiating
energy into vaccum and the wavelength with maximum
energy density emitted from this end is A, = 75000A.
If the emissivity of the end B is e = 1, determme the
temperature of the end A. Assuming that except the
ends, the rod is thermally insulated.

13. The shell of a space station is a blackened sphere in
which a temperature 7 = 500 K is maintained due
to operation of appliances of the station. Find the
temperature of the shell if the station is enveloped by a
thin spherical black screen of nearly the same radius as
the radius of the shell.

Blackened
sphere

Envelope
~

Space to

section

14. A liquid takes 5 minutes to cool from 80°C to 50°C.
How much time will it take to cool from 60°C to

Heat-1 4.31

30°C? The temperature of surrounding is 20°C. Use
exact method.

15. A barometer is faulty. When the true barometer reading
are 73 and 75 cm of Hg, the faulty barometer reads
69 c¢m and 70 cm respectively.
(i) What is the total length of the barometer tube 7
(ii) What is the true reading when the faulty barom-
eter reads 69.5 cm?
(iii) What is the faulty barometer reading when the
true barmeter reads 74 cm?

16. A vessel of volume ¥ = 30! is separated into three
equal parts by stationary semipermeable thin
membrances as shown in the Figure. The left, middle

and right parts are filled with m,, =30 g ofhydrogen,

m, =160g of oxygen, and m, =70g of nitrogen
respectively. The left partition lets through only
hydrogen, while the right partition lets through
hydrogen and nitrogen. What will be the pressure in
each part of the vessel after the equilibrium has been
set in if the vessel is kept at a constant temperature 1'=

300 K?
[A. [ 0] M|

17. Twelve conducting rods form the riders of a uniform
cube of side ‘7", If in steady state, B and F ends of the
rod are at 100°C and 0°C. Find the temperature of the

junction A4 .
F G 0°'o/
E a
100:C _B c
A D

Previous Year Questions
JEE Main

1. Which of the following is more close to a black body 7
(A) Black board paint
(B) Green leaves
(C) Black holes
(D) Red roses

[AIEEE 2002]

2. Infrared radiations are detected by
(A) spectrometer
(B) pyrometer
(C) nanometer
(D) photometer
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3. Heat given to a body which raises its temperature by
1°Cis [AIEEE 2002)
(A) water equivalent
(B) thermal capacity
(C) specific heat
(D) temperature gradient

4. Cooking gas containers are kept in a lorry moving with
uniform speed. The temperature of the gas molecules
inside will [AIEEE 2002]
(A) Increase
(B) Decrease
(C) Remain same
(D) Decrease for some, while increase for others

5. Two spheres of the same material have radii 1 m and
4 m and temperatures 4000 K and 2000 K respectively.
The ratio of the energy radiated per second by the first

sphere to that by the second is: [AIEEE 2002)
(A) 1:1 (B) 16:1
©) 4:1 D) 1:9

6. If mass-energy equivalence is taken ito account, when
water is cooled to form ice, the mass of water should
[AIEEE 2002)
(A) increase
(B) remain unchanged
(C) decrease
(D) first increase then decrease

7. According to Newton’s law of cooling, the rate of

cooling of a body is proportional to (A6)" where Ag
is the difference of the temperature of the hody and the

surrounding, the » is equal to [AIEEE 2003)
(A) 2 ®B) 3
© 4 D) 1

8. If the termperature of the sun were to increase from
T'to 2T and its radius from R to 2R, then the ratio of
the radiant energy received on earth to what it was

previously, will be [AIEEE 2004]
A) 4 (B) 16
©) 32 (D) 64

9. The temperature of the two outer surfaces of a
composite slab, consisting of two materials having
coefficients of thermal conductivity K and 2 K and
thickness x and 4x, respectively are T,and T (T,>T ).

10.

11.

12.

The rate of heat transfer through the slab, in 5 Stegg,
AL, ~T)K

state is
x

J S with fequal to
[AIEEE 21]041

-—rll———tlx-————a

T

2

K 2K T

(A) 1 (B) 12
(C) 273 D) 173

The figure shows a system of two concentric Sphereg,

of radii , and r, and kept at temperature 7 pand 7
respectively. The radial rate of flow of heat i a
substance between the two  concentric spheres, i

proportional to [AIEEE 2005)
( nh—1n) v,
(A =1 (B) In|-2
(1i13) ul
© “_""?M D) (5, —-r)
=y

Assuming the sun to be a spherical body of radius R at
a temperature of 7' K, evaluate the total radiant power,
incident on earth, at a distance r from the sun

[AIEEE 2006]
A R o R T*
() T (B) T
15 R T RoT*
(€) _"Z—T‘— D) 02
T r

where ¥, is the radius of the earth and o is Stefan’s
constant,

One end of a thermally insulated rod is kept at
a lemperature 7, and the other at T, The rod is
composed of two sections of length /, and 1, and
thermal conductivities K, and K, respectively. The
temperature at the interface of the two sections is

[AIEEE 2007]




13.

(A) (KZIZTI + KIZITZ) / (Klll + K212)
(B) (K,L,T,+KLT,)/ (K, +Kl,)
©) (KLT+K,T)/ (Kl +K,1L)

O) (KJLT,+KLTHHK] +K,.)

A long metallic bar is carrying heat from one of its
ends to the other end under steady-state. The variation
of temperature 6 along the length x of the bar from its
hot end is best descirbed by which of the following
figure. [AIEEE 2009]

A) (B)
0 | 0 \

14.

15.
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A liquid in a beaker has temperature 6(f) at time ¢ and
6, is temperature of surrounding, then according to
Newton’s law of cooling, the correct graph between

log (6 — 0,) and ¢ is [AIEEE 2012]
A 2 ®) 2

< S

g g

— 1 —t

© 2 ® 3

e, e,

T — —

Three rods of Copper, Brass and Steel are welded

together to form a Y-shaped structure. Area of cross-
section of each rod = 4 cm? End of copper rod is

X maintained at 100°C where as ends of brass and steel
© o , are kept at 0°C. Lengths of the copper, brass and steel
rods are 46, 13 and 12 cms respectively. The rods are
} thermally insulated from surroundings except at ends.
Thermal conductivities of copper, brass and steel are
0.92, 0.26 and 0.12 CGS units respectively. Rate of
X X heat flow through copper rod is:  [JEE Main 2014]
(A) 4.8 cal/s (B) 6.0 cal/s
(C) 1.2 cal/s (D) 2.4 cal/s
t JEE Advanced
» 1. The temperature of 100 gm of water is to be raised from 3. A double pane window used for insulating a room
: 24°C to 90°C by adding steam to it. Calculate the mass of thermally from outside consists of two glass sheets
| the steam required for this purpose. [JEE 1996] each of area 1 m? and thickness 0.01 m separated by a
) 0.05 m thick stagnant air space. In the steady state, the
2. Two metal cubesA and B of same size are affa‘}ged_ as room glass interface and the glass outdoor interface are
shown in figure. The extreme ends of the combination at constant temperatures of 27°C and 0°C respectively.
are maintained at the indicated temperatures. The Calculate the rate of heat flow through the window ‘
arrangement is t}.lermally insulated. The coefficients of pane. Also find the temperatures of other interfaces. |
k thermal conductivity of 4 and B are 300 W/ m°C and Given thermal conductivities of glass and air as 0.8 |
200 W/m°C respectively. After steady state is reached and 0.08 Wm~'K~' respectively. [JEE 1997] |
the temperature 7 of the interface will be |
it 4. A spherical black body with a radius of 12 cm radiates |
s A B 450 W power at 500 K. If the radius were halved and the
d g (A o temperature doubled, the power radiated in watt would be
e S [ ° (A) 225 (B) 450
s T (C) 900 (D) 1800

[JEE 1996]
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5. Earth receives 1400 W/m? of ar power, 1f all the ar
energy falling on a lens of area 0.2 m? is focussed on
to a block of ice of mass 280 grams, the time taken to
melt the ice will be minutes. (Latent heat
of fusion of ice = 3,3 x (¢ Ikg) [TEE 1997]

6. A solid body X of heat capacity C is kept in an
atmosphere whose temperature is I', = 300 K. At time
{ = 0, the temperature of X is T, = 400 K. It coals
according to Newton's law of cooling. At time /, its
temperature is found to be 350 K. At this time 1,, the
body X is connected to a larger body ¥ at atmospheric
temperature 7, through a conducting rod of length
L, cross-sectional area 4 and thermal conductivity K.
The heat capacity of ¥ is so large that any variation in

10.

A
B) I,>T,>T,
D) I,>T,>7T

A7>r1> T,
© 1,>T,> T,

Three rods made of the same material and having the
same cross-section have been Jjoined as shown in the
figure. Each rod is of the same length. The left ang
right ends are kept at 0°C and 90°C respectively. The
temperature of the junction of the three rods will be

[JEE(Scr) 2001]
its temperature may be neglected. The cross-sectional

area A of the connecting rod is small compared fo the 90°C

surface area of X, Find the temperature of X at time 0°C

t=731, [JEE 1998] 90°C
7. A black body is at a temperature of 2880 K. The energy Eé)) ; 3°g Egg ggog

of radiation emitted by this ohject with wavelength

between 499 nm and 500 nm js U,, between 999 nm
and 1000 nm is U, and between 1499 nm and 1500 nm

11.

An ideal black body at room temperature is thrown

is U,. The Wien constant b — 2.8 » 10 nm K Then into a furnace. 1t is observed that [JEE(Scr) 2002)
5l ” R e [JEE.IQ‘JS] (A) initially it is the darkest body and at later times the
. B . brightest.
:3}) g' ; Eﬁ ([I[;; g,-‘ ; (L, (B) it the darkest body at all times

" 1= 2 2 |

. ADblock of ice at —10°C is slowly heated and converted
to steam at 100°C. Which of the following curves

represents the phenomenon quahlalw{&‘.}li;; Ser) 2000 12. An ice cube of mass 0.1 kg at 0°C is placed in an jated
@A) ®) .t Lig ] container which is at 227°C. The specific heat § of
gT E the container varics with temperature 7" according the
;E;' B empirical relations = A + BT, where 4 — 100 cal/kg-K
g & and B = 2 x 1072 cal/kg-K2. If the final temperature
= @ of the container is 27°C, determine the mass of the
. . . container. (Latent heat of fusion for waler = §
) Heat supplied N Heat supplied 10" cal/kg. Specific heat of water — 10 cal/kg-K)
© of @) o [JEE 2001]
B ©
2 S | g- 13. 2 kg ice at —20°C is mixed with 5 kg water at 20°C.
o @ Then final amount of water in the mixture would be;

Heat supplied Heat supplied "

. The plots of intensity versus wavelength for three
black bodies at temperature T' »» T, and T, respectively

are as shown. Their temperatures are such that
[JEE(Scr) 2000)

(©) it cannot be distinguished at all times,
(D) initially it is the darkest body and at later times it
cannot be distinguished,

Given specific heat of ice = (.5 cal/g®C, specific heat
of water = | cal/g°C, [JEE(Ser) 2003]
Latent heat of fusion of ice = 80 cal/g,

(A) 6 kg (B) 5 kg
(C) 4 kg (D) 2 kg




14.

15.

16.

17.

18.

If emissivity of bodies X and Y are e and e, and
absorptive power are A _and A, then

.
R

==y

i
D) e =e; Ay =4

(A)e>e;d >A
(C)e>e A<A

Hot oil is circulated through an insulated container with
a wooden lid at the top whose t = 5 mm, emissivity =
0.6. Temperature of the top of the lid in steady state is
at 7, = 127°. If the ambient temperature 7 = 27°C.
Calculate [JEE 2003]

T, = 127°C

T,=27°C
<— Hot oil

(A) rate of heat loss per unit area due to rediation
from the lid. 17
(B) temperature of the oil. (Given o = e x 1079

Three discs 4, B, and C having radii 2 m, 4 m and
6 m respectively are coated with carbon black on their
outer surfaces. The wavelengths corresponding to
maximum intensity are 300 nm, 400 nm and 500 nm
respectively. The power radiated by them are O, 0,

and O . respectively. [JEE(Scr) 2004]
(A) @, is maximum (B) O, is maximum
(©) Q. is maximum D) 0,=0,=0.

Two identical conducting rods are first connected
independently to two vessels, one containing water
at 100°C and the other containing ice at 0°C. In
the second case, the rods are joined end to end and
connected to the same vessels. Let ¢, and ¢, g/s be the
rate of of ice in the two cases respectively. The ratio q,/

g, is [JEE(Scr) 2004]
(A) 12 (B) 2/1
(C) 4/1 (D) 1/4

Liquid oxygen at 50 K is heated to 300 K at constant
pressure of 1 atm. The rate of heating is constant.
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Which of the following graphs represents the variation
of temperature with time [JEE(Scr) 2004]

(A) Temp! o (B) Temp. J
Time Tir:1e
(C) Tem (D) Temp'
Time Time

19. A cube of coefficient of linear expansion « is floating

in a bath containing a liquid of coefficient of volume
expansion 7. When the temperature is raised by AT,
the depth upto which the cube is submerged in the
liquid remains the same. Find the relation between v,
and y, showing all the steps. [JEE 2004]

20. One end of a Rod of length L and cross-sectional

area A is kept in a furnace of temperature 7. The
other end of the rod is kept at a temperature T The
thermal conductivity of the material of the |0d is K
and emissivity of the rod is e. It is given that T, =
T, + AT where AT << T,, T, being the temperature
of the surroundings. If AT o< (T, — T,), find the
proportionality constant. Consider that heat is lost only
by radiation at the end where the temperature of the

rod is 7}, [JEE 2004]
Insulated Ts
Furance T, Rod T
1 :
Insulated

21. Three graphs marked as 1, 2, 3 representing the
variation of maximum emissive power and wavelength
of radiation of the sun, a welding arc and a tungsten
filament. Which of the following combination is
[JEE(Scr) 2005]

correct
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(A) 1-bulb, 2 — welding arc, 3 — sun
(B) 2-bulb, 3 — welding arc, 1 — sun
(C) 3-bulb, I — welding arc, 2 — sun
(D) 2-bulb, I — welding arc, 3 — sun

22. In which of the following phenomenon heat convection
does not take place [JEE(Scr) 2005]
(A) land and sea breeze
(B) boiling of water
(C) heating of glass surface due to filament of the bulb
(D) air around the furance

23. 2 litre water at 27°C is heated by a 1 kW heater in
an open container. On an average heat is lost to
surroundings at the rate 160 J/s. The time required for

the temperature to reach 77°Cis  [JEE(Ser) 2005]
(A) 8 min 20 sec (B) 10 min
(C) 7 min (D) 14 min

24, A spherical body of area 4, and emissivity e = 0.6
is kept inside a black body. What is the rate at which
energy is radiated per second at temperature 7'

[JEE(Scr) 2005]
(A) 0.6 AT (B) 0.4 gAT*
(C) 0.8 cAT* (D) 1.0 oAT*

25. 1 calorie is the heat required to increased the
temperature of 1 gm of water by 1°C from
[JEE(Scr) 2005]
(A) 13.5° Cto 14.5°C at 76 mm of Hg
(B) 14.5°C to 15.5°C at 760 mm of Hg
(C) 0°C to 1°C at 760 mm of Hg
(D) 3°C to 4°C to 760 mm of Hg

26. In a dark room with ambient temperature T,, a
black body is kept at a temperature 7. Keeping the
temperature of the black body constant (at T), sunrays
are allowed to fall on the black body through a hole
in the roof of the dark room Assuming that there is
no change in the ambient temperature of the room,
which of the following statement(s) is/are correct?

[JEE 2006]

(A) The quantity of radiation absorbed by the black
body in unit time will increase.

(B) Since emissivity absorptivity, hence the
quantity of radiation emitted by black body in unit
time will increase.

(C) Black body radiates more energy in unit time in
the visible spectrum.

(D) The reflected energy in unit time by the black
body remains same.

27.

28.

29,

30.

31.

In an insulated vessel, 0.05 kg steam at 373 K o J
0.45 kg of ice at 253 K are mixed. Then, find the ﬁﬂi’ll‘
temperature of the mixture. i
= 80 cal/lg = 336 J/g, L
540 cal/g = 2268 J/g,

S = 2100 J/kg K = 0.5 cal/gK and S|
K =1 cal/gK

Vaporizatipy, ==

vater 4200 -Il"kgl
[JEE 2|]l]§]?

Column 1 gives some devices and Column IT gives
some processes on which the functioning of thege
devices depend. Match the devices in Column I wig,
the processes in Column 1I and indicate your answer
by darkening appropriate bubbles in the 4 x 4 matriy

given in the ORS. [JEE 2007y
Column I Columm 11
(A) Bimetallic strip (P) Radiation from a
hot body

(Q) Energy conversion
(R) Melting

(S) Thermal exapansion
of solids

(B) Steam engine

(C) Incandescent lamp
(D) Electric fuse

A metal rod AB of length 10x has its one end 4 in ice
at 0°C, and the other end B in water at 100°C. If a
point P on the rod is maintained at 400°C, then it is
found that equal amounts of water and ice evaporate
and melt per unit time. The latent heat of evaporation
of water is 540 cal g™* and latent heat of melting of ice
is 80 cal g~! . If the point P is at a distance of x from
the ice end 4, find the value of /. [Neglect any heat loss
to the surrounding. [JEE 2009]

A piece of ice (heat capacity = 2100 J kg~! °C* and
latent heat = 3.36 x 10° J kg~') of mass m grams is
at —5°C at atmospheric pressure. It is given 420 J of
heat so that the ice starts melting. Finally when the ice-
water mixture is in equilibrium, it is found that 1 gm
of ice has melted. Assuming there is no other heat
exchange in the process, the value of m is:[JEE 2010]

Three very large plates of same area are kept parallel
and close to each other. They are considered as ideal
black surfaces and have very high thermal conductivity.
The first and third plates are maintained at temperatures
2T and 3T respectively. The temperature of the middle
(i.e. second) plate under steady state condition is
[JEE 2012]




W .~

A

33.

ol wi

©) [%]4 T D) 07T

. Two rectangular blocks, having identical dimensions,

can be arranged either in configuration 1 or in
configuration II as shown in the figure. One of the
blocks has thermal conductivity K and the other 2 K.
The temperature difference between the ends along
the x-axis is the same in both the configurations. it
takes 9 s to transport a certain amount of heat from
the hot end to the cold end in the configuration L
The time to transport the same amout of heat in the

configuration II is [JEE 2013]
Configuration | Configuration Il
2K
K 2K K
(A) 2.0s (B) 3.0s
(C) 455 (D) 6.0s

The figure below shows the variation of specific heat
capacity (C) of a solid as a function of temperature
(7). The temperature is increased continuously from

34,
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0 to 500 K at a constant rate. Ignoring any volume
change, the following statement(s) is (are) correct to a
reasonable approximation. [JEE 2013)

100 200 300 400 500

(A) the rate at which heat is absorbed in the range
0-100 K varies linearly with temperature 7.

(B) heat absorbed in increasing the temperature
from 0 to 100 K is less than the heat required for
increasing the temperature from 400 to 500 K.

(C) there is no change in the rate of heat absorption in
the range 400500 K.

(D) the rate of heat absorption increases in the range
200-300 K.

Parallel rays of light of intensity 7 = 912 Wm~? are
incident on a spherical black body kept in surroundings
of temperature 300 K. Take Stefan-Boltzmann
constant o = 5.7 X 107*Wm 2K and assume that the
energy exchange with the surroundings is only through
radiation. The final steady state temeprature of the
black body is close to
(A) 330K

(C) 990K

(B) 660 K
(D) 1550 K

ANSWER KEYS

Exercises
JEE Main

1. D 2. A 3.C 4. B 5. A
11. C 12. A 13. B 14. (A)A B) D
20. A 21. C 22. B 23. A 24. D
30.-C 31. A 32. A 33. A 34. A
40. A 41. B 42. A 43. D 44. B
50. D 51. B 52. B 53. B 54. A
JEE Advanced

1. C,D 2.A,B,C 3. A,B,D 4. A,B 5.AB

9. A,C 10. A,B 11.D 12. A,B 13. A,B
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JEE Advanced

Level I

L. H=590Kcal. 2. 136km 3. 8.6 x 103°C 4. Ag— ﬂ“c:

11
L(’f;}s =77min 8. 255°C 9. 4°C 10, 27/85

11. 0°C, 125/4 g ice, 1275/4 g water 12. (1) 0.02 kg, (i) 40,000 cal kg™, (iii) 750 cal kg~ K~' 13. 64 J
14. 5x10%g/s 15. 40W 16. 2:7 17. 10 em from end in contact with water at

18, Lhth+t
h 4,
L + —zi, ._'_ 2
kl k2 k3

28.66°C 5. L,>L, I,
6. 8,=5,>8.,>8 7.

19. 65°C 20. 5°C 21. 43w 22. 15 W/m-°C 23, gﬂﬁ%—j) 24. 12 °C/s

1 .
25. 18007 26. 10s 27. (6/m)* 28, 2:1 29, 3025K 30. 80 Watt. 31. 1700K 32. 0.3 33. 15°C

34. 6 x 10°K; 4 x 10°K 35, 7.31 x 10"%erg/em?s 36, A, =3 pm 37. 7minutes. 38, 34°C

Level 1l

1. 1:1.26 2. 800 cal kg™ K1, 1000 cal kg~' K~ 3. (A) 37.8 /s (Watts), (B) 2.005N-m 4. 5000 J/°C kg

- i e 3 T
5.45°C 6. K, >KL, K, = Miﬂ_ K, =M’- 7. f—“loge b log, _"__TL
2 K, +K, 2K > \a =
e M7 —T.) 9. (A) ~100°C/m, (B) 1000J 10. 1663s 11. 9.72°C/min 12, T = 423K
I KL -T)+(T,~1) ’ . e T
13. 7" = 4y2 % 500 =600 K 14. 10 minutes 15, (i) 74 cm, (i) 73.94 cm,  (iii) 69.52 cm

16. @) p, = pH, = 125 10°Pa; p,= pH, + p0, + pN, = 28125 x 10° Pa; p,= pH, + pN, ~1.5625 x 105 Pa
17. 60°C |

Previous Year Questions
JEE Main

1A 2. B 3. B 4. C 5. A 6. A 7.D 8. D 9. D
| 11. B 12. C 13. B~ 14.D 15. A

' JEE Advanced

1. 12gm 2. 60°C 3. 41.53 Watt; 26.48 °C; 0.55°C 4. D 5. 5.5 min
r 2 3 - ¥
6 k=122 73004 50 exp —{Q+M}2q 7. D 8. A 9. B 10. B 11. D
) LC L
12. 0.5kg 13. A 14. A 15. (A) 595 watth?, (B) T, ~ 420K 16. B 17. D 18. C
19. v, =20 20. ——K‘—_ 21. A 22. C 2Z.A 24.A 25B 26. A,D
4eoLT] +K

27. 273K 28. (A) S,Q; (B) & (C) PQ; (D) Q,Ror A)S, B)Q (OFPF (D)R2.9 30. 8¢
3.C 32, A 33. A,B,C,D 34. A
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CONCEPT OF AN IDEAL GAS

A gas has no shape and size and can be contained in a
vessel of any size or shape. It expands indefinitely and
uniformly to fill the available space. It exerts ptessure on
its surroundings.

The gases whose molecules are point masses (mass
without volume) and do not attract each other are called
ideal or perfect gases. It is a hypothetical concept which
cannot exist in reality. The gases such as hydrogen, oxygen
and helium which cannot be liquefied easily are called
permanent gases. An actual gas behaves as ideal gas most
closely at low pressure and high temperature.

Ideal Gas Equation

According to this equation,
PV =nRT =R
M

In this equation,
n = number of moles of the gas —= %
m = total mass of the gas
M = molecular mass of the gas
R = Universal gas constant
= 8.31 J/mol-K
= 2:0 cal/mol-K

KINETIC THEORY OF GASES

Kinetic theory of gases is based on the following basic
assumptions:

1. A gas consists of a very large number of molecules.

These molecules are identical, perfectly elastic and

CHAPTER

hard spheres. They are so small that the volume of
molecules is negligible as compared with the volume
of the gas.

2. Molecules do not have any preferred direction of
motion. Motion is completely random.

3. These molecules travel in straight lires and are in free
motion most of the time. The time of the collision
between any two molecules is very small.

4. The collision between molecules and the wall of the
container is perfectly elastic. It means kinetic energy
is conserved in each collision.

5. The path travelled by a molecule between two
collisions is called free path and the mean of this
distance travelled by a molecule is called mean free
path.

6. The motion of molecules is governed by Newton’s law
of motion.

7. The effect of gravity on the motion of molecules is
negligible.

Note

At higher temperature and low pressure or at higher
temperature and low density, a real gas behaves as an
ideal gas.

EXPRESSION FOR THE PRESSURE OF A GAS

Let us suppose that a gas is enclosed in a cubical box
having length ¢. Let there are N identical molecules, each
having mass m. Since the molecules are of the same mass
and are perfectly elastic, their mutual collisions result in
the interchange of velocities only. Only collisions with the
walls of the container contribute to the pressure by the gas
molecules. Let us focus on a molecule having velocity v,
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and components of velocity Vx,» Vy,» V,, along the x-, -  Where <v?> = mean square velocity in the Y-directigy,
and z-axis as shown in Fig. 5.1. Since the molecules do not favour any particular directign;
therefore <v 2> = <YI> =<y >, ]

/ 7 But <> = <>+ <> 4 <>
D

p C / Y
— , 2 <v*>
vn il X = <vx> - 3 .

| . Pressure is equal to force divided by area. Hence,
7
: , / F
Nz
Ae——(—3 B
Figure 5.1 =M
gure 5. 3
Here, v =y +v2 +v;. M -
The change in momentum of the molecule after one v
collision with wall BCHE Pressure is independent of x-, y- and z-directions,

Here,
=mv, —(-v,)
£ = volume of the container = ¥’
=2mv,,. ’ M = total mass of the gas
The time taken between the successive impacts on the face

BCHE . <v*> = mean square velocity of molecules
__ distance 1 s
velocity e p= 3P ) s
2 From PV = nRT,
v,

. Mass
Molecular Weight

Time rate of change of momentum due to collision

~

¢ _ changein momentum

M
= —(in kg/mol
time taken M, ngilo)
2mv, ; p__M RT
201w,
o mv;
o

Hence, the net force on the.wall BCHE due to the impact of

=
#N molecules of the gas is ‘
2 2 2 2
e my, N mv, N my; mv, =
’ £ ¢ £ [

=203 v, 0 et )

mN
=—<vl>,
£
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m

K = Boltzman’s constant

R
N,

Co-ordinate of the Gases

\(P. V', T) is the coordinate of the gas.
: If the initial condition of gas is given by (P, V\T,)and
final condition of the gas is given by (P,, V,, T,), then

(PVT) = (BT,

Then (P, V, T) defines the situation of gas. When a gas
changes from one coordinate system to another co-ordinate
system, then we have to follow a process.

GAS LAWS

Assuming permanent gases to be ideal, through experiments,
it was established that gases irrespective of their nature
obey the following laws:

Boyle's Law

According to this law, for a given mass of a gas, the volume
of a gas at constant tem perature (called isothermal process)
is inversely proportional to its pressure, i.e.,

1
Vx— (T= constant)
Lp
or PV = constant
or P;V,- = Pfo

Thus, P~V graph in an isothermal process is a rectangular
hyperbola. Or PV versus P or V graph is a straight line
parallel to P or ¥ axis.

T
<

T = constant r

T = constant
—

\\

v ————— % PorVv

Figure 5.2

Charle’s Law

According to this law, for a given mass of a gas the volume
of a gas at constant pressure (called isobaric process) is
directly proportional to its absolute temperature, i.e.,

VT
y

or — = constant
T
V. Vv

or =L
LT,

Thus, V-7 graph in an isobaric process is a straight line
passing through the origin, Or /7 versus Vor T graph is a
straight line parallel to ¥ or T axis.

% VIT

P = constant r P = constant

s

4 T(nK) Vo7
Figure 5.3

Gay Lussac’s Law or Pressure Law

According to this law, for a given mass of a gas the pressure
of a gas at constant volume (called isochoric process) is
directly proportional to its absolute temperature, i.e.,

PxT
P

or — = constant
T
P P

or =L
LT,

Thus, P-T graph in an isochoric process is a straight line
passing through the origin or P/T versus P or T graph is a
straight line parallel to P or 7 axis.

P
PIT
V = constant E—
J i
T(inK) PorT |
Figure 5.4
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Avogadro's Law T = constant
Two gases at same volume, pressure and temperature contain V=1
equal amount of moles (mass of gas may be different) or we P=1
can say contain equal number of particles:
L
' I mole = 6.023 x 102 particles. G B

Reading of P-V Diagram

p [ Isobaric

P4

A Isobaric B

t
_____ _ PR B A
F=W T®
Figure 5.8 |
PV =nRT

)45 - - P = const |
A— BV
Figure 5.5 T1 :I
From PV =mnRT When Tin °C !
P = constant = PV=nR(T +273) !
V=1 vf ‘
T=1 '
P4 Not isobaric
A
T(K)
Isobari
sovare Figure 5.9
B
= —
14
Figure 5:6
¥V = constant 5
—-273 T(°C)
P=|
T=] |
Pt ||'
Va B
Isothermal /
3 |
A7
o |
- a|
{ |
— —— i
T v |
Figure 5.7 Figure 5.11
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A—B ¢ ISOBARIC
P = T Pa Pa
V=1
T=1
—_—
5 B A
% T
»
v
~
Figure 5.12
PV = constant .
r=cC A
B=1 g
V=1 Figure5.14
~ + ISOTHERMAL * ISOCHORIC
Pl PJL A Pa A Pnr
A
B
'B o
v T % T
Vi
r B V‘JL
........ B . A
A
T »T

Figure 5.13 Figure 5.15
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TV Rarue: . T N s il ' =
| SOLVED Exawpues

=

1 Temp. at point
EXAMPLE 1 - o A=T,
Find out the values of co-ordinates at point 4, B and C in

terms of Pressure, volume and temperature and draw the
Curve,

SOLUTION

SOLUTION

A— B (Isobaric)

Wo_ 2,
T, »
T, = 27,
B—C (Isochoric)
A->B V= constant B-C p= constant
A_4
5 2B o2, A
T T 2T, T,
0 .. B 0 C N IDO 2130
T, = 2T, T.=

EXAMPLE 2

A EXAMPLE 3
Find out the valueg of co-ordinates at points 4, B and ( in
terms of pressure, volum

Find out the valyes of co-ord
¢ and temperature and draw the
curve,

terms of pressure, volume g
curve.

inates at points 4, B and o
nd temperatyre and draw il




Lc

A (P Vo T
v, 2v
SOLUTION
P
2V | e (2P, V,,2T,)
C
e (P,2V, 2T,
’ PoVo T
v, 2v, v

A— B : Volume is constant (Isochoric),

h_5
L L
B — C : Temperature is constant (Isothermal),
PV =PV,
(' — A : Pressure is constant (Isobaric),
W hn
T T,
i v
2P, |- 2V 4
P, \
Ty 2T, T To 2 T’° >
|
EXAMPLE 4

Find out the values of co-ordinates at points 4, B and C in
terms of pressure, volume and temperature and draw the
curve.

\?/. h
17— B " c
f Pressure at point
A : A=T,
e i
Vo[- )
Al :
T, 2T,
T

Heat-2 5.7

SOLUTION

c
| (P2V,,2T)

b
0 0T

A — B : Temperature is constant (isothermal).

PV =PV,

2PV, =2VP,
. poth
2

B — C : Volume is constant (Isochoric)

e
I, To
N H _E
2, 2T,
= P.=P, 5]

Some commonly used terms

[ Conducting wall
Figure 5.16

There is heat transfer from gas to surrounding and
final temperature is the same.

1= adiabatic or non-
conducting or insulator

Figure5.17

There is no heat transfer.

R
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Notes (contd)

S
[
Movable Piston

Figure 5.18

Ifitisa diathermic Separator, then the final tem erature
is also the same op both sides (finally, pressure js the
R L i g L

same),
Movable Piston
=]
Adiabatic

i
walls

Figure 5.19

\%fnall)f, if the pressure on both sides is the same, then
it does not move (massless),
— VA THISIeSS):

EXAMPLE 5

—e
IF the temperature increases slow| from T, to 2T, then
what distance will tie piston move?

Heater

SOLUTION
) | 4 vt
Pressure is the same = -2 — 7
L, 21,
V=27,

Th{'le distance moved is estimated as shown below:
Change in volume — Ax
27, - V,=A4x

Non-conducung

\AXAMPLE § . -
[Fthe temperature of the gas changes slowly

then find out the displacensent of the piston.

SOLUTION
gasA = Kx +P0A
gos "

Pressure Variation
Notes

Pressure of the liquid % =p,hg

Figure 5.20

from 7, to 23;”
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Notes (contd) = P, =85cm
/ / PV, =PV,
) h hsin ¢ 85 xAx£=65x30x4
P = s 76 %
) P =Py 0 %9 /= 1950 . -
< 1alm 85
P, = phg P—phsmﬂq g‘i’
Al A ﬁMPLE 8
Figure 5.21 / Find the new length of the gas column in the tube if the
tube is rotated at an angle 60° as shown. (Assume constant
[—> Vaccum temperature.)
76 cm
of Hg P=pyT6x9
1 atm
c 20 ch @4;]/7
Figure 5.22
x cm of Hg pressure means if we placed a straight P 75 _ 2
_ =75-20= P + 20 cos 60 =75
tube vertically in vacuum, fill the tube with Hg up to o = 10 0 5? LEig0eos ¢
height x. PV =PV, 2P 420 =150
Then the pressure exerted by Hg at the bottom of
the tube equals the pressure of the gas. 55x40xA=65%x € x4 2P =130
_55x 40 P=65]
EXAMPLE 7 N"x 65
,\}fﬁ:’i the new length of gas column in the tube if the tube is MPLE 9

inverted (assume temperature is constant). Assume constant temperature if the tube is change d to

vertical position and the pallet comes down by 5 cm, then

L . find out P,
10cm 4 4 10 cm
* P
SOLUTION
Initially, SOLUTION
P, +10= 75 For the upper part,
PV =PV,
= P, = 65.
Finally, P 354 =P 304
75+ 10="P,, P1=%Po (1)




30-5=25

For the lower part,

PV, =PJ,

P,304 = P, 254

30
F, = E 0
Again,
P, +40=P,
From (1) and (2)
30 30
P, +40="_P,
35°° 25°°

Xg Pressure Variation in Atmosphere

Assuming temperature to be constant,

) P+ dP
dn
P
h
U eIy aryi r VT
Figure 5.23
—dP = dHpg
= —dP =dh £l g
RT

PV =nRT

= P= ,DR;T
M
_PM
~ RT

P h
N f 45 - f Me 4,
P RT
-5 0

e L5
Ir})o RT
Mg
= P=Pye & h,

X Pressure Variation in Rotating Rod

@)

3

w
Y P+aP
dx
o

X dm = pAdx

Figure 5.24

(P+ dP)A — PA = dmw’x

AdP = pAw?ddx
dP = pwxdx
P 55
0 = WZfodx
P RT
£ [1]
. 2 2 X
mp? — WM x_J
Do RT [ 2],
P WM X
h—= —
P, RT 2
2 2
p :PoeW Mx .
2RT

MAXWELL'’S DISTRIBUTION LAW

Distribution Curve

dN (v) ) ‘
A plot of p (number of molecules per unit speed
v

interval) against ¢ is known as Maxwell’s distribution
curve. The total area under the curve is given by the integral

j-d]\;—fﬂdv e j\dN(v)zN.

(the
spee
am
slig
me:

(a)

(b)




Note

i dN (v) ) )
The actual formula of —d is not in JEE syllabus.
y

Figure 5.25 shows the distribution curves for two
different temperatures. At any temperature, the number
of molecules in a given speed interval dv is given by the
area under the curve in that interval (shown shaded). This
number increases, as the speed increases, up to a maximum
and then decreases asymptotically towards zero. Thus,
the maximum number of the molecules have speed lying
within a small range centred about the speed corresponding
to the peak (4) of the curve. This speed is called the ‘most
probable speed’ v or v

mp®

dN(v)
dv

AN,

)\

(=&
=

Figure 5.25

The distribution curve is asymmetrical about its peak
(the most probable speed v ) because the lowest possible
speed is zero, whereas there is no limit to the upper speed
a molecule can attain. Therefore, the average speed v is
slightly larger than the most probable speed v, The root-

mean-square speed, v, is still larger (v > v > vp).

ms 1ms

(a) Average (or Mean) Speed
_ 8 RT
V= f—m—
m M,

[ser
N "H—MH
= 1.59VkT /'m

(derivation is not in the course)

(b) RMS Speed

2
vnns - (V )

Heat-2 5.11

_ [T
m

kT
m

=173

(c) Most Probable Speed

The most probable speed v,ory, is the speed possessed by
the maximum number of molecules and corresponds to the I
maximum (peak) of the distribution curve. Mathematically, . I
it is obtained by the condition. |

dN (v)
Cav

{(which is not in the course)].
Hence, the most probable speed is

=[BT
3 mn

2RT
M

= 0 [by substitution of formula of dN(v)

From the above expression, we can see that

vrms >v< vP'

R = 8314 J/mole
k = Boltzmann constant (k = 1.38 x 1072JK-"),

DEGREE OF FREEDOM

“Total number of independent co-ordinates which must be

known to completely specify the position and configuration
of dynamical system is known as ‘degree of freedom ;.
Maximum possible translational degrees of freedom are
three, i.c.,

[lmeJrlmV?JrlmV}].
2 2 2"

Maximum possible rotational degrees of freedom are
three, i.e.,

[ll‘,wf—i—ll,wz—i—llwwf].
25T 20 2T

Vibrational degrees of freedom are two, i.e. (kinetic energy
of vibration and potential energy of vibration).

Monoatomic

For example (all intent gases, He, Ar, etc.)
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f=3 (translational)
VoV V)

Diatomic
For example (gases like H,, N, O, etc.)

S=35 (3 translational 4 2 rotational)
P —— A~

y
% (Vo Y, Vi W, W, W)

A

VoV, W WW .

3Trans. Htrtational

_~ I linear (Co,) N
wime a8 ) flowie

Figure 5.28

Figure 5.26
&/ If temperature < 70 K for diatomic molecules, then
f=3.
)ig If the temperature is in between 250 K and 5000 K, then
f=5.
,gg/ If the temperature is very high (> 5000 K)
=]
[3 translational + 2 rotational 4 2 vibrational].
_~ Triatomic
(Non-linear)
y
» X
Figure 5.27

Total D.OF. =5
VYV, . W, W,

— -
3Trans 2Rotational

f/&' Maxwell’s law of equipartition of energy

. .,
Energy associated with each degree of freedom {E’K T,)
of one particle is same and = EKT sl

If the degree of freedom of a molecule is,_}E tgen tota]

. t
kinetic energy of that molecule = — KT,

Monoatomic

Energy of one particle = %KT ,
3
one mole = ERT i

nmole = %nRT

Diatomic

Energy of one particle = gKT,
S
one mole = ERT’

n mole = %nRT

General degree of freedom

Energy of one particle = %KT ,
t
one mole = ERT ,

n mole = %nRT

Internal energy of a gas only depends on the temperature of
the gas and does not depend on the process taken by the gas
to reach the temperature.

INTERNAL ENERGY

The internal energy of a system is the sum of kinetic
and potential energies of the molecules of the system. It
is denoted by (/. Internal energy (U) of the system is the
function of its absolute temperature (7) and its volume (¥),
ie, U=AT, 1.




Y

e
Hae

B

In case of an ideal gas, intermolecular force is zero.
Hence, its potential energy is also zero. In this case, the
intérnal energy is only due to kinetic energy, which depends
on the absolute temperature of the gas, i.e., U= f{T). For an

ideal gas, intetnal energy U = %nRT.
SOLVED EXAMPLES

EXAMPLE 10

A light container having a diatomic gas enclosed within
is moving with velocity v. Mass of the gas is M and the
number of moles is 7.

mass of gas = M "
temperature T

(i) What is the kinetic energy of the gas with respect to
the centre of mass of the system?
(i) What is K.E. of the gas with respect to the ground?

SOLUTION

®

(ii) Kinetic energy of gas with respect to the ground =
Kinetic energy of the centre of mass with respect to

the ground + Kinetic energy of the gas with respect to
the centre of mass.

K.E. = EnRT
2

1 5
KE.= =My +=nRT
2 2 a 12

4

v \u;}"-.
Mﬁﬁfnz 11

contain monoatomic and diatomic gases, respectively. The
pressure and temperature of the containers are P, T, and

T,, respectively. Ipitially, the stop cock is closed. If the
stop cock is opened, find the final pressure and temperature.

iy
AT

2

SOLUTION
n =20
RT,
IAZ
"= R,
2

Two non-conducting containers having volume V| and V"

Heat-2 5.13

n—n +n

;(numhu of moles are umsuw.d] ﬁt WM

Finally, pressure in both parts and temperature of both the
gases will be equal.

PI+V) _ BV B,
RT RE . RL .
o . M IOV
/ From energy conservatlon,L p L GARTET
/ mL {

3 5

3 5
EanTi +En2RT2 = EnTRT-‘_EanT

(3RV, +5PV,)TT,
3PNT, + 5P2V2T1

|

3PV +5R),
IPV.T, 4 5PV,T

PVT, + PY,T,
V4V,

|

THERMODYNAMICS

Thermodynamics is mainly the study of exchange of heat
energy between bodies and conversion of the same into
mechanical energy and vice versa.

|

Thermodynamic System

Collection of an extremely large number of atoms or
molecules confined within certain boundaries such that
it has a certain value of pressure (P), volume (V) and
temperature (7) is called a thermodynamic system.
Anything outside the thermodynamic system to which
energy or matter is exchanged is called its surroundings.
Taking into consideration the interaction between a system
and its surroundings, a thermodynamic system is divided
into three classes.

\}}
\)I#)
6

Open system; A system is said to be an open system
if it can exchange both energy and matter with its
surroundings. ‘

Closed system: A system is said to be a closed system
if it can exchange only energy (not matter) with its
surroundings.

Isolated system: A system is said to. be isolated if
it can exchange neither energy nor matter with its
surroundings.

JZeroth Law of Thermodynamics

If two systems (B and C) are separately in thermal
equilibrium with a third one (4), then they themselves are
in thermal equilibrium with each other.
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adiabatic wall

diathermic wall
&

Figure 5.29

Equation of State (for Ideal Gases)

. The relation between the thermodynamic variables P,r0
* of a system is called equation of state. The equation of state

for an ideal gas of n moles is given by

PV =nRT

Work Done by a Gas

Let P and V' be the pressure and volume of the gas. If 4 be
the area of the piston, then force exerted by the gas on the
piston is

F=PxA.

Let the piston move through a small distance dx
during the expansion of the gas. Work done for a small
displacement dx is

dW = Fdx = PAdx.

Since Adx = dV, increase in volume of the gas is 4V .

= 3 e AW = PdV

area
enclosed

Figure 5.30

W:fm=fMu

Area enclosed under the P~V curve gives work done during
the process.

AN
or

Different Types of Processes

(a) Isothermal Process
T = constant [Boyle’s law applicable],

PV = constant.

Figure 5.31

There is exchange of heat between the system and (he
surroundings. System should be compressed or expanded
very slowly so that there is sufficient time for exchange of
heat to keep the temperature constant,

Slope of P-V Curve in Isothermal Process

PV = constant = C

- oy 2 o5
dv 14

Work Done in Isothermal Process

Y
v

i

X W = nRTIn

IfV, >V, thenW is pnsitivc]

If ¥V, >V, then W is negative

Y
W =12.303nRT log,, 3

i

P4 Pt
\ Expansion :\r\ \C,ompression
e NG -
i \_\:H }ﬁg :_ \\_:R “‘ﬁj
. —p i ==
V" Vf v V: Vf V
Figure 5.32

Internal Energy in Isothermal Process
U=AD

= AU=0

(b) Isochoric Process (Isometric Process)

V = constant
= Change in volume is zero

P . ,
= — 18 constant

N

= constant (Gay—Lussac law).

ey




Work Done in Isochoric Process
Since change in volume is zero,
dW =pdV = 0.

Indicator Diagram of Isochoric Process

Figure 5.33

Change in Internal Energy in Isochoric Process
AU=n % R AT

Heat Given in an Isochoric Process
AQ= AU= ngR AT

(c) Isobaric Process
Pressure remains constant in isobaric process

P = constant

V
= — = constant.
T

Indicator Diagram of Isobaric Process

T—> v—> T —*{in Kelvin)

IEigure 5.34
Work Done in Isobaric Process
AW = PAV
=PV oot = Vi
=nR(Ty — T,)-
Change in Internal Energy in Isobaric Process

AU= n%RAT

Heat-2 5.15

Heat Given in Isobaric Process

AQ =AU+ AW

AQ= n%RAT+P[Vf— V]
= n%R AT+ nRAT.
The above expression gives an idea that to increase

temperature by AT in isobaric process, heat required is
more than that in the isochoric process.

(d) Cyclic Process

In the cyclic process, initial and final states are the same;
therefore, initial state = final state

Work done = Area enclosed under P-V diagram.

Change in internal energy \

AU=0
AQ =AU+ AW
AQ =AW

If the process on the P-V curve is clockwise, then net work
done is positive and vice versa.

The graphs shown below explain when work is
positive and when it is negative

(—)work T (—)work T (-f-)workT (—)work
RS R
V— V— V— V—
Figure 5.35
SOLVED EXAMPLES
EXAMPLE 12

The cylinder shown in the figure has conducting walls and
temperature of the surrounding is 7. The piston is mitially
in equilibrium, the cylinder contains » moles of a gas. Now
the piston is displaced slowly by an external agent to make
the volume double of the initial. Find the work done by an
external agent in terms of n, R and T
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SOLUTION
First Method

n /
moles

Work done by an external agent is positive, because F,_ and
displacement are in the same direction. Since the walls are
conducting, the temperature remains constant, Applying
equilibrium condition when pressure of the gas is P

PA+F =P 4

Fext = PaImA - PA
d

I/Vexl s fFafdx
i
d d

=[P, adx- f PAds

0 ]

2v

d
=R,mAfdx—fﬂdv
) v

v

=P Ad— nRT1n2
Second Method
}Applying work—energy theorem, on the piston

7 A& Q
W= A0k

Weat W+ =0
v
ann7f —nRT+W_ =0

I

W, =nRT (I — In2), ]

ext

EXAMPLE 13

A non-conducting piston of mass m and area of cross-
section A is placed on a non-conducting cylinder as shown
in the figure. Temperature, spring constant, height of the
piston are given by 7, K and h. respectively. Initially, spring
is relaxed and piston is at rest. Find

(i) Number of moles

(if) Work done by gas to displace the piston by distance,
when the gas is heated slow ly.

(iii) Find the final temperature,

mass =m
9 Area =A

SOLUTION
@) PV = nRT

= [Pm +%]Ah = nRT

mg
[”m +7]A”

= n=
RT
(2) First method
‘KX ¢ mg ¢ Pa(mA
dxt
Ao PPl

Applying Newton’s law on the piston,
mg+P A+ Kx= P A

d
W= [ P adx
0

d
= [ (mg+ Bt e
1]

= Wes=mgd+ P, d4 + %Kdz

Second method
Applying work—energy theorem on the piston

Wa=AKE
Since the piston moves slowly, therefore
AKE = (),




/4

gravity

g + Wiy, + (P ydd) + [~(5 K = 0)] = 0

+ Wgas L Watm + Wsm'ingz 0

1
= Wgnézmgd-i-PmdAﬁ- EKdz [ ]

EXAMPLE 14

Find out the work done in the given graph. Also draw the
corresponding -V curve and P-T curve,

+

2P 77T "

SOLUTION

Since in P-V curves, area under the cycle is equal to work

done; therefore, work done by the gas is equal to P,
Line AB and CD are isochoric line, line BC and D4

are isobaric line.
The T-V curve and P-T curve are drawn as shown.,

T
#» C ﬁ
8 c
i AU
D
b
o T

Y ' m

EXAMPLE 15

TV curve of the cyclic process is as shown below, number
of moles of the gas #. Find the total work done during the

cycle.

-
B c
o7, [ »
T )
AT b
5 7 2V0 >y
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SOLUTION

Since path 4B and CD are isochoric, work done is zero
during path 4B and CD. Process BC and DA are isothermal;

therefore, :

Wuc = nRZTOIn Z—C

B

= 2nRT,In 2

p
W,,=nRT In—4
DA oy

D

= —nRTIn2
Total work done = W+ W,
, = 2nRT Win2 — nRTIn 2

= nRTn 2. |

EXAMPLE 16 -

P-T curve of a cyclic process is shown. Find out the work
done by the gas in the given process if number of moles of
the gas are ».

SOLUTION

Since path 4B and CD are isochoric: therefore, work done
during AB and CD is zero. Path BC' and DA are isobaric.

Hence, W,.=nRAT =nR(T, - T)
Wy =nR(T, — T).
_Total work done = Woe + 49
=nR(T, +T,—-T,—T). o
EXAMPLE 17

Consider the cyclic process ABCA on a sample of 2.0 mol
of an ideal gas as shown in the figure. The temperatures of
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. - — .' _.I \n[-l‘,b d
the gas at 4 and B are 300K and 500 K., respectively. A total ) 3 \}

0f 1200 J heat is withdrawn from the sam ple in the process.
Find the work done by the gas in part BC. Take R = 8.3 J/
mol-K.

increase in internal energ

EXAMPLE 18

I gm of water at 100°C is heated to convert into steam at
100°C at 1 atm. Find out the change in interna] energy of
water. It is given that volume of | gm water at 100°C - |
€. volume of 1 8m steam at 100°C = 1671 ¢, Latent hey
of vaporization — 540 cal/g. (Mechanical equivalent of heyt

SOLUTION

The change in internal energy during the cyclic process is
zero. Hence, the heat supplied to the gas is equal to the

k done by it. | 5
Work done by it, Hence J=42 J/cal,)

W+ Wo k- W, = 1200 J 1
w0 et e & SOLUTION
The work done during the process 43 is

| =nR(T, - T) AQ=mL
\\ i
:| = (2.0 mol)(8.3 Jmol-K)(200 K) \\r":) LG‘ . =1 x 540 cal,
B\ A\
) ! - .
( = 3320 1. o > " \ 540 cal
s o g P _
J The work done by the gas during the process €A is {cm as _l,-\.;:_x;.“- ) \;"f.}l‘ AW = PAYV
|| the volume remains constant. From (1) ‘:{ﬁé..l\ il ,\}_::& 10° (1671_1)X10—6
WY ' P b o
wg ’ : \\‘;‘ s Py
or We=—45205 & Q" _ 10°(1670-1)x -
i { \ O =
. = —45207J. L =40 cal.
| AU =540 — 40
FIRST LAW OF THERMODYNAMiICS 00a .
= cal.
The first law t_)fthcrrm)dynamics is the Jaw “L‘»‘“"SGI'\{{!Q}_JQ
tlferlel'%y. It states that if System absorbs heat dO and as a EXAMPLE 19

result the internal energy of the system changes by dU and

the system does a work dW, then Two moles of a diatomic

[ dQ = dU_‘*‘ﬂV K compressed to increase the temperature from 300 K to 400
= — K. Find the work done by the gas.
[ But, | dW = Pdy |
S —
.r \_dQ =dU + Pqy, ]‘ =/ Non conducting
| . - container
|| which is the mathematical statement of the first law of
f thermodynamics,
- ——— TTTTTE————— = e .

Heat gained by a system, work done by a System ang

4% Heat lost by a system, work done on 4 systen ang
decrease in internal energy are taken as negative.

SOLVED EXAMPLES

From the first law of thermodynamics

conducting container enclosed by a piston. Gas is now

Yy are taken as positive,

—

gas at 300 K are kept in a non-




SOLUTION

AQ=Au+ AW
Since the container is non-conducting,

AQ=0
= Au+ Aw
= AW = —Au

=—n LRAT
2

=-2x %R(4OO — 300)
=—5x 8314 x 1007
=-5x 83147

= —41571J. m

EXAMPLE 20 e

A sample of an ideal gas is taken through the cyclic process
abca. It absorbs 50 J of heat during the part ab, no heat
during bc and reflects 70 J of heat during ca. 40 J of work
is done on the gas during the part bec. (a) Find the internal
energy of the gas at b and c if it is 1500 J at a. (b) Calculate
the work done by the gas during the part ca.

v

SQLUTION

(a) In the part ab, the v6lume remains constant. Thus, the

N\ work done by the gas is zero. The heat absorbed by

the gas is 50 J. The increase in internal energy from
atobis 4

AU=AQ=501.

As the internal energy is 1550 J at a, it will be 1550
J at b."In the part bc, the work done by the gas is
AW = —40J and no heat is given to the system. The
increase in internal energy from b to c is

AU=-AW=401.

Heat-2 5.19

As the internal energy is 1550 J at b, it will be 1590 J
at C.
(b) The change in internal energy, from c to a is

AU=1500J — 15907J

=-901J.
The heat given to the system is
AQ=-T701.
|
Using AQ=AU+ AW, ]
I
|
AW, =AQ - AU
|
=-7074+90J=201. E |
EXAMPLE 21

The internal energy of a monatomic ideal gas is 1.5 nRT.

One mole of helium is kept in a cylinder of cross-section

8.5 cm?, The cylinder is closed by a light frictionless piston.

The gas is heated slowly in a process during which a tota] of

42 J heat is given to the gas. If the temperature rises through

2°C, find the distance moved by the piston. Atmospheric |
pressure = 100 kPa. '

SOLUTION

The change in internal energy of the gas is

AU=1.5nR (AT)

= 1.5 (1 mol) (8.3 J/mol-K) (2K)

=2491.

. The heat given to the gas = 42 J.

The work done by the gas is

AW=AQ — AU
=427-249]
=17.11.

If the distance moved by the piston is x, the work done is

AW = (100 kPa)(8.5 cm?)x.

Thus, (105 N/m?)(8.5 x 10~ m2)x = 17.1J

or, x=02m=20cm. 1

Ly
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EXAMPLE 22 ¢

A sample of an ideal gas has pressure Pvolume v and
temperature 7. It is isothermally expanded to twice its
original volume. It is then compressed at constant pressure
to have the original volume V,. Finally, the gas is heated at
constant voluie to get the original temperature. (a) Show
the process in a V-T diagram. (b) Calculate the heat
absorbed in the process.

SOLUTION

(a) The V=T diagram for the process is shown in the figure.
The initial state is represented by the point a. In the
first step, it is isothermally expanded to a volume 2 ¥
This shown by ab. Then the pressure is kept constant
and the gas is compressed to the volume V,. From the
ideal gas equation, V/T'is constant at constant pressure.
Hence, the process is shown by a line bc which passes
through thie origin. At point ¢, the volume is V,. In the
final step, the gas is heated at constant volume to a
temperature 7,; This is shown by ca. The final state is
the same as the initial state.

(b) The process is cyclic' so that the change in internal
energy is zero. The heat supplied is, therefore, equal to
the work done by the gas. The work done during ab is

v
2v,+ 4
Vil e a
| T
TU
2 r
W, =nRT In =
J Ya
¢
‘ 7 = nRTn2
=p,V,n2.
4 )
' Also, from the ideal gas equation,
rV,=nV,
P
of, = Lo
"7,
12148
27,

_ b

o

In the step be, the pressure remains constant. Hence, the
work done is '

W= 2o (v, 27,

_ PV
2
In the step ca, the volume remains constant and so the work
done is zero. The net work done by the gas in the cyclic

process is

W=w + e
=p,V,[In2 — 0.5]

=0.193p V.
Hence, the heat supplied to the gas is 0. 193p V., |

EXAMPLE 23

A sample of ideal gas (f = 5) is heated at constant pressure,
ITan amount 140 J of heat is supplied to the gas, find (a) the
change in internal energy of the gas and (b) the work done
by the gas,

SOLUTION

Suppose the sample contains n moles. Also suppose the
volume changes from V, to ¥, and the temperature changes
from T, to 7,

The heat supplied is

AQ = AU+ PAV

= AU+ nRAT

2AU
=AU+ =—.
S

(a) The change is internal energy is

AU:ngmg—ﬂ)
=§M@—ﬁ
= ol
f2+fAQ

_ 1907 005,

1.4

¥




(b) The work done by the gas is
AW=AQ - AU

=140J—100J =401 =

EXAMPLE 24

There are two vessels. Each of them contains one mole of
a monoatomic ideal gas. Initial volume of the gas in each
vessel is 8.3 x 1073 m? at 27°C. Equal amount of heat is
supplied to each vessel. In one of the vessels, the volume
of the gas is doubled without change in its internal energy,
whereas the volume of the gas is held constant in the second
vessel. The vessels are now connected to allow free mixing
of the gas. Find the final temperature and pressure of the
combined gas system.

SOLUTION L

369.3 K, 2.462 x 10° N/m?
Efficiency of cycle (7):

Total mechanical work done by the gas

s inthe whole process
Heat absored by the gas (only +ve)
__areaunder the cyclein P-V curve
Heat injected into the system
n= [ _Z for heat engine,
)
T4
= n=|1- T for Carnot cycle. ||
1
EXAMPLE 25

n tholes of a diatomic gas has undergone a cyclic process
ABC as shown in the figuffe. Temperature at 4 is T, Find

Py

Heat-2 5.21

(i) Volume at C
(ii) Maximum temperature
(iii) Total heat given to gas
(iv) is heat rejected by the gas, if yes how much heat is
rejected?
(v) Find out the efficiency.

SOLUTION
(i) Since the triangles OAV, and OCV are similar,

2R K
Vo n
= V=2V,
(ii) Since the process AB is isochoric, I
P, P
TA TE
= T,=2T.

Since the process BC is isobaric,

T, T,
VB VG
= T,=2T,=4T,

(iii) Since the process is cyclic,
AQ =AW
= area under the cycle

1
:EPoVo-

(iv) Since Au and AW both are negative in process C4,
AQ is negative in the process C4 and heat is rejected
in the process CA

AQ., = Awg, + Aug,
o p 2P 5
__E[ y T 2PV, — EnR(TC—Ta)

= [P + 2PV, — 5 ng| APk f.r.a"_n]
nk nik

= —9P V, = Heat injected.

™
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(v) 7= efficiency of the cycle

Work done by the gas
~ heatinjected
Pl l2
—g= BRI2 g
Oijesed

AQinj =AQ,+ AQBC

>R (2T,)+ 25, (2, ~7,)

SnR(ar, -1, +

19
= EPOVOW

19

SPECIFIC HEAT

The specific heat capacity of a substance is defined as the
heat supplied per unit mass of the substance per unit rise
in the temperature. If an amount AQ of heat is given to a
mass m of the substance and its temperature rises by AT,
the specific heat capacity s is given by the equation

s= —AQ
mAT

The molar heat capacities of a gas are defined as the heat

given per mole of the gas per unit rise in the temperature.

The molar heat capacity at constant volume, denoted by

C,is
‘1'

o

c.- 52

" \nAT

Jconslanl volume

S

2

and the molar heat capacity at constant pressure, denoted
by Cp, is

AQ
nAT

S
Z 41
2

2l

R,

constant pressure

where 7 is the amount of the gas in number of moles and i
is the degree of freedom. Quite often, the term specific heat
capacity or specific heat is used for molar heat capacity. 1t
is advised that the unit be carefully noted to determine the

actual meaning. The unit of specific heat capacity is Jkgx
whereas that of molar heat capacity is J/mol-K. ’

Molar Heat Capacity of Ideal Gas in Terms of R

(i) For a monoatomic gas,

f=3
3
C,= =R,
)
5
CP = ER
c
- e
c
=—- =167
(ii) For a diatomic gas,
f=5
¢,= 2R,
2
7
CP = ER Y ‘I
C
=-2L=14
CV
(iii) For a triatomic gas, ‘
f=6 ‘
C,=3R,C,=4R
V= & |
C,
e ; = 1.33. |

[Note for CO,, f=5, it is linear.]
In general, if f is the degree of freedom of a
molecule, then

v

c,=Lr,
2



=2
Il

For any general process,

C— IR " Work done by gas
2 AT

SOLVED EXAMPLES

EXAMPLE 26

Two moles of a‘diatomic 8as at 300 K are enclosed in a
cylinder as shown in the figure. The piston is light. Find out
the heat given if the gas is slowly heated to 400 K in the
following three cases:

Light piston

300 K
2 mole
Diatomic

(i Piston is free to move
(ii) If piston does not move
(iii) If pistgn is heavy and movable.

SOLUTION

() Since the pressure is constant,

AQ=nC,AT 4

= I ;x R x (400 — 300)

= 700R. }
(i) Sitce volume is constant,
AW =0
and T AQ= Ay (from the first law)
AQ = Ay
=nCAT
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=2x ; X R x (400 — 300)

= 500R.
(iii) Since pressure is constant,

AQ=_nCPAT
7
=2 x 5 X R x (400 — 300)

= 700R. |

EXAMPLE 27

P—V curve of a diatomic gas is shown in the figure. Find the
total heat given to the gas in the process 4B and BC.

P

B Diatomic
- Isothermal

A >c
A

v 2V

(1] o

SOLUTION
From the first law of thermodynamics,

AQABC = Au,wc +A W isc

AVVABC = APVAE + AWEC
V.
=0+nRT,In ﬁ
V.
=nRT, lnh
) 0
=nRT,In2
= 2P0 Vin2
Ay = nC AT
5
= J@RY, - Py
= AQype= 2B, + 2PV n2. 8
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EXAMPLE 28 - _

Calculate the value of mechanical equivalent of heat from
the following data. Specific heat capacity of air at constant
volume = 170 cal/kg-K, g = C/C, = 1.4 and the density
of air at STP is 1.29 kg/m’. Gas constant R = 8.3 J/mol-K.

SOLUTION
Using pV = nRT, the volume of 1 mole of air at STP is

y = RL
p
(1mol) x (8.3 / mol-k) x (273K)

1.0x10° N / m?

=0.0224 m’.

The mass of 1 mole is, therefore,

(1.29 kg/m?) x (0.0224 m?) = 0.029 kg,

. The molar heat

The number of moles in 1 kg is

capacity at constant volume is 0.029

- 170 cal
" (1/0.029)mol-k

= 4.93 cal/mol-K.

Heénce, QCp =1C,
= 1.4 x 4.93 cal/mol-K
o, C, ~ €, =04 493 cal/mol-K
~ =197 cal/mol-K.
Thus, 837 =1.97cal.

The mechanical equivalent of heat is

8.3]
1.97cal

= 4.2 J/cal. =

Average Molar Specific Heat of ~Me‘tals [Dulong
and Petit Law]
At room temperature, average molar specific heat of all

metals is the same and is nearly equal to 3R.
(6 cal. mol~'K™") ) =N

Figure 5.36

Notes

Temperature above which the metals have constant C
is called Debye temperature.

Mayer’s equation is given as C,—C,=R (for ideal
gases only).

Adiabatic Process

When no heat is supplied or extracted from the system, the
process is called adiabatic. Process is sudden so that there
is no time for exchange of heat. If walls of a container are
thermally insulated, no heat can cross the boundary of the
system and the process is adiabatic.

Insulating
wall

Figure 5.37
Equation of adiabatic process is given by

PV7 = constant [Poisson law]
T~P'~7 = constant

TV*~! = constant

Slope of P-V curve in adiabatic process

Figure 5.38




Since PV7is constant,

d_P[P

dv

%

slope of P-T curve in adiabatic process

gince 77 P'~71s a constant,

av _
dT

Figure 5.39

Slope of T-V curve

Figure 5.40

dV 1

dar (fy~1>

N

Work Done in Adiabatic Process

AW = —-AU

Heat-2 5.25

= nCV(T’_ — T/i)

_pVi-pYV,
(v-1)

B nR(T, fT_f)
v—1

Work done by the system is positive, if T, > T, (hence
expansion). ’

Work done on the system is negative if 7 ; < T, (hence
compression), ‘

SOLVED EXAMPLES

EXAMPLE 29

A quantity of air is kept in a container having walls which
are slightly conducting. The initial temperature and volume
are 27°C (equal to the temperature of the surroundings) and
800 cm’, respectively. Find the rise in the temperature if the
gas is compressed to 200 cm® (a) in a short time (b) in a
long time. Take v = 1.4,

SOLUTION

(i) When the gas is compressed in a short time, the process
is adiabatic. Thus,

T,V =Tyt
A
or L=T ’l—f‘

04
— (300K) [@}
200

=522 K.

Rise in temperature = T ,— T, =222K.

(i) When the gas is compressed for a long time, the
process is isothermal. Thus, the temperature remains
equal to the temperature of the surroundings, that is,
27°C. The rise in temperature = 0. [}
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EXAMPLE 30

A monoatomic gas is enclosed in a non-conducting
cylinder having a piston which can move freely. Suddenly,
gas is compressed to 1/8 of its initial volume. Find the
final pressure and temperature if the initial pressure and
temperature are P and 7, o> Tespectively.

SOLUTION

Since the process is adiabatic,

nal g
M= S
CV
_SR 3R
2 2
=3
5
Since the process is adiabatic,
TlVlT_l . T2V27—]
2/3
V.
= TO V'OZ/3 = Tﬁnal [_OJ
8
= T=4rT El

0

EXAMPLE 31 o

A cylindrical container having non-conducting walls is
partitioned in two equal parts such that the volume of the
each part is equal to V,. Amovable non-conducting piston is
kept between the two parts. Gas on the left is slowly heated

AE v,
so that the gas on the right is compressed up to volume ?0 .

Find the pressure and temperature on both sides if the initial
pressure and temperature were P, and T, respectively. Also,
find the heat given by the heater to the gas. (Number of
moles in each part is n.)

Non conducting
walls Non conducting
movable piston

PV, T

o Voilo Monoatomic

SOLUTION

Since the process on the right is adiabatic,

PV” = constant.

= PO I/O’y . Pﬁnal(t/()/g),7
= P.a=32 P,

T = T (V8.
Let volume of the left part is V,

V.

= W=V + 2
8
= =%,

Since the number of moles on the left part remains constant,
for the left part PV/T = constant.
Final pressure on both sides will be the same

pOVO - Il—}hmllxl

= o0
‘T;) Tﬁnal

= T = 60T,
AQ=Au+ Aw

AQ = n%(60T0 ~T,) + n37R (4T, - T)

AQ:S’;—Rx59TO+3—’;5><3T. u

0

Free Expansion

If a system, say a gas, expands in such a way that no heat
enters or leaves the system and also no work is done by or
on the system, then the expansion is called ‘free expansion’,
AQ =0, AU = 0 and AW = 0, Temperature in the free
expansion remains constant,

EXAMPLE 32 -

A non-conducting cylinder having volume 2 V, is partitioned
by a fixed non-conducting wall in two equal parts. Partition
is attached with a valve. Right side of the partition is a
vacuum and left part is filled with a gas having pressure and
temperature P and T, respectively. If the valve is opened,
find the final pressure and temperature of the two parts.




Fixed
o Nonconductor
PoVeT, Vacuum
SOLUTION
From the first law of thermodynamics,
AQ =Au+ AW

Since gas expands freely, AW = 0. Since no heat is given
to the gas,

AQ=0.
= Au = 0 and temperature remains constant.
Tﬁnal - TO'

Since the process is isothermal,

PO X l70:13ﬁnal x 2V

0

= P = P2 |

final

Reversible and Irreversible Processes

A process is said to be reversible when the various stages of
an operation in which it is subjected can be traversed back
in the opposite direction in such a way that the substance
passes through exactly the same conditions at every step in
the reverse process as in the direct process,

Comparison of Slopes of Isothermal and Adiabatic
Curves

T Adiabatic

P

isobaric
fsoithermal
0
G’ |adiabatic
o]

Isothermal

fsﬂfheﬁna

m
| Adiabatic v, v,
| 1
I V—’ Wmono < M/di < Wpoly < M/isolhermal < Vvisoba[ic
dP| ‘dP
— > —
av adia av isothermal

' Figure 5.41
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In compression up to the same final volume,

W

adia

> W

isothermal

.

In expansion up to the same final volume,

Limitations of the First Law of Thermodynamics

The first law of thermodynamics tells us that heat and
mechanical work are interconvertible, However, this law
fails to explain the following points:

1. It does not tell us about the direction of transfer of
heat.

2. It does not tell us about the conditions under which
heat energy is converted into work.

3. It does not tell us whether some process is possible or
not,.

Mixture of non-reacting gases:

M, +n,M,

1. Molecular weight =
n +n,

where M. , and M, are molar masses.
2. Specific heat,
nC, +n,C

v »

n +n,

Vy

nC, +nC,
a n+n,
3. For mixture,

al v S L
c!’.—.m ,IrC"‘H + ”-"C-”J I

’}( = : =

Yy

Me, +mC, -

4. Degree of freedom for mixture,

_ it
m-k
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EXERCISES

JEE Main
Kinetic Theory of Gases

1. The temperature at which the r.m.s velocity of oxygen
molecules equal that of nitrogen molecules at 100°C is

nearly:
(A) 4263 K (B) 456.3K
(C) 436.3K (D) 446.3K

2. The rms speed of oxygen molecules in a gas is v. If the
temperature is doubled and the O, molecule dissociated
into oxygen atoms, the rms speed will become

A)v . B) v/2
©) 2v D) 4v

3. Three closed vessels A4, B and C are at the same
temperature T and contain gases which obey the
Maxwellian distribution of velocities. Vessel 4
contains only O,, B only N, and C a mixture of equal
quantities of O, and N,. If the average speed of 0,

molecules in vessel 4 is V,, that of the N, molecules in

vessel Bis V,, the average speed of the O, molecules in

vessel C will be:
A) ¥ +7)n2 (B) 7,
©€) 7y (D) BkT /M

4. M= 100) molecules of a gas have velocities 1, 2, 3.
N/km/s respectively. Then

(A) rms speed and average speed of molecules is -

same. .
(B) ratio of rms speed fd average speed is

VEN+DV 31) /6N

(C) ratio of rms speed to average speed is

JeN+DV -1 /6N

(D) ratio of rms speed to average speed of a molecules

is 2/V6x 2N +1)/ (W +1)

5. A vessel contains a mixture of one mole of oxygen
and two moles of nitrogen at 300 K. The ratio of the
average rotational kinetic energy per O, molecule to
that per N, molecule is:

(A) 1:1
B) 1:2

+ A fixed mass of ideal gas undergoes changes of

- An ideal gas follows a process PT = constant, The

- One mole of an ideal diatomic gas is taken through the

©) 2:1
(D) depends on the moments of inertia of the two
molecules

pressure and volume starting at L, as shown in figure,

- 1—’_M
. \Is<otherrnaf

Which of the following is correct:

Pressure

(A) x| L B) x
o ]
5 LN 5
85 M a
£ E
2 2
Volume
© @) o
® ®
§ M N 8 L M '
W, : \
8| A © N

Volume Volume

correct graph between pressure and volume is
Ay P

cycle as shown in the figure.




P4
2(V,,4P,)
34V, P,
1V, Py Ve Py
—
4

1 — 2: isochoric process

2 — 3: straight line on P-V diagram

3 — 1: isobaric process

The average of molecular speed of the gas in the states
1, 2 and 3 are in the ratio

(A) 1:2:2 (B) 1:42:\2
©) 1:11 (D) 1:2:4
. . ) 2E
9. The pressure of an ideal gas is written as P = Bt

Here E refers to

(A) translational kinetic energy
(B) rotational kinetic energy
(C) vibrational kinetic energy
(D) total kinetic energy.

10. Which of the following quantities is the same for all
ideal gases at the same temperature?
(A) the kinetic energy of 1 mole
(B) the kinetic energy of 1 g
(C) the number of molecules in 1 mole
(D) the number of moleculesin 1 g

11. Find the approx. number of molecules contained in a
vessel of volume 7 litres at 0°C at 1.3 x 10° pascal
(A) 2.4 x 10% (B) 3 x 10%
(\C) 6 x 102 (D) 4.8 x 107

12.] The process AB is shown in the,«(fﬁgram. As the gas is
»taken from A4 fo B, itgfemperature

A
2P1 ----- \
Y-
v 2v

(A) initially increases then decreases
(B) initially decreases then increases
(C) remains constant

(D) variation depends on type of gas

13.

14.

15.

16.
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One mole of a gas expands obeying the relation as
shown in the P/V diagram. The maximum temperature
in this process is equal to

) o ® Lo
) g
© % (D) None

12 gms of gas occupy a volume of 4 x 10> m* at a
temperature of 7°C. After the gas is heated at constant
pressure its density becomes 6 x 10~ gm/cc. What is
the temperature to which the gas was heated.

(A) 1000 K (B) 1400K

(C) 1200K (D) 800K

The expansion of an ideal gas of mass m at a constant
pressure P is given by the straight line B. Then the
expansion of the same ideal gas of mass 2m at a
pressure 2P is given by the straight line

Volume
A
B
/
o f Temparatur;
(4 C (B) A |
C B (D) none

A cylindrical tube of cross-sectional area 4 has two air
tight frictionless pistons at its two ends. The pistons are
tied with a straight two ends. The pistons are tied with
a straight piece of metallic wire. The tube contains a
gas at atmospheric pressure P and temperature T, If
temperature of the gas is doubled then the tension in
the wire is
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aceelerating vertically upwarqd

B) 2 4
(D) 2P 4

Then, the tatio of Pressure at the bottom ang the mid

point of the tybe will be
(A) exp[ 2MgH/RT)
(©) exp[. MgH/RT)

18. An open and wide glass tube
in mercury in such g way that

(B) exp[ —2MgH/RT]
(D) MgH/RT

is immersed vertically
length 0.05 m extends

above mercury level, The open end of'the tube jg closed
and the tube is rajged further by 0.43 1y, The length of

air column aboye mercury
=76 cm of mercury
(A) 0.215m

©) 0.1 m

level in the tube wil] pe:

(B) 02m
(D) 0.4m

19. A barometer tube, containing mercury, is lowered in 2

vessel conta ining mercury untj]

only 50 cm of the tube

is above the level of mereury in the vessel, [f the
atmospheric pressure 18 75 cm of mercury, what is the

bressure at the top of the tube ?
(A) 33.3kpy
(C) 3.33 MPa

Thermodynamics

20. One mole of an ideal gas at temperature T,

2

(B) 66.7 kPa
(D) 6.67 MPa

expends

according to the Jaw Viza(constant). The work

done by the 8as till temperatyre of gas becomes 7, is:

(W) SR(T,-1)

1
© R -1)

®) 3R(1, 1)

®) ZR(7; 1)

21. Consider the pracess on a system shown in fig, During

the process, the cumulative woy

'k done by the syslem

22.

23.

24,

(©) first increases then decreases
(D) first decreases then increases

Three processes from g thermodynamic cycle as
shown on P-¥ diagram for an ideal gas. Process -2
takes place at constant temperature (300 K). Process
2 — 3 takes place at constant volume, During this
process 40 J of heat leaves the system. Process 3
is adiabatic and lemperature 7,15 275 K. Work done by
the gas during the process 3 — | is

v
(A) —407 B) 207
©) +407 D) 4207
When unit mass of water bojlg to become steam at

100°C, it absorbs O amount of heat, The densities of
Water and steam at 100°C are py and p, respectively
and the atmospheric pressure is P, The increase in
internal energy of the water js

@A) 0 ®) Q+p0[i—i]
P op,

© Q+p0[i—i] ) Q—po[i+i]
pZ p] 10] p2

Three processes compose g (hcrnmdymlmics cycle
shown in the ppr diagram, Process | _, 2 takes place
al constant temperature. Process 2 — 3 takes place
at constant volume, and process 3 — | jg adiabatic,
During the complete cycle, the total amount of work
done is 10 J. During process 2 _, 3, the interng| energy
decrease by 20 J and during process 3 _, 1,207 of
work is done on the system. How Mmuch heat is added
to the system during process | — 27

P Ps 1
S 2
0
3
14 v
(A) continuously incarese (A) 0 B) 107
(B) continuously decreases © 207 (D) 307
|
|
L-hf —




25. When a system is taken from state ‘o’ (o state ‘h’along

26.

27.

28.

29,

30.

the path ‘ach’, it is found that a quantity of heat Q=
200 1is absorbed by the system and a work 7 = 80 J is
done by it. Along the path ‘adb’, Q = 144 J. The work
done along the path ‘adb’ is

P
o
a d
»V
(A) 67 B) 127
C) 1817 (D) 247

In the above question, if the work done on (he system
along the curved path ‘ba’ is 52 J, heat absorbed is
(A) =140 (B) —1721

(C) 1401 (Dy 172

In above question, if U, =401, value of U, will be
(A) =501 (B) 10017
(C) —1201 (D) 1601

In above question, if U/ ', = 88 J, heat absorbed for the
path ‘db’ is :
(A) =721
©) 144

B) 727
(D) —1447]

Ideal gas is taken through process shown in figure:

P

(A) In process AB, work done by system is positive.

(B) In process 4B, heal is rejected out of the system.

(C) Inprocess AB, internal energy increases

(D) In process AB internal energy decreases and in
process BC internal energy increases.

A thermodynamic cycle takes in heat energy at a high
temperature and rejects energy at a lower temperature.
IFthe amount of energy rejected at the low temperature
is 3 times the amount of work done by the cycle, the
efficiency of the cycle is
(A) 0.25

(C) 0.67

(B) 033
D) 0.9

31.
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A diatomic gas of molecular weight 30 gm/mole
is filled in a container at 27°C. It is moving at a
velocity 100 my/s. If it is suddenly stopped, the rise in
temperature of gas is:

(A) 60/R @) S0
R
610" 6x10°
C D
© ® D) T

Question No. 32 to 35

Five moles of helium are mixed with two moles of hydrogen
to form a mixture. Take molar mass of helium M =4gand
that of hydrogen M=2g

32,

33.

34.

3s.

36.

37.

The equivalent molar mass of the mixture is

(A) 6¢g B) 13 g/7

©) 18g7 (D) none

The equivalent degree of freedom fofthe mixture is
(A) 3.57 (B) 1.14

(C) 44 (D) none

The equivalent value of + is

(A) 1.59 B) 1.53

© 1.56 (D) none

An ideal gas undergoes the process 1 — 2 as shown in
the figure, the heat supplied and work done in the process
is AQ and AW respectively. The ratio AQ:AW is

A) vy-1
€) y—1

B) v
D) v~ 1/y

A reversible adiabatic path on a P-V diagram for an
ideal gas passes through state A where P = 0.7 x 10°
N/m~ and v = 0.0049 m’. The ratio of specific heat of
the gas is 1.4. The slope of path at 4 is:

(A) 2.0 x 10" Nm-$ (B) 1.0 x 10’ Nm—S
(C) —2.0 x 10" Nm-3 (D) —1.0 x 10’ Nm-*

If heat is added at constant volume, 6300 J of heat are
required to raise the temperature of an ideal gas by
150 K. If instead, heat is added at conslant pressure,
8800 joules are required for the same temperature
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38.

39,

40.

change. When the temperature of the gas changes by
300 K, the internal energy of the gas changes by

(A) 50001 (B) 12600 J

(C) 176007 (D) 226007

-One mole of an ideal monoatomic gas at temperature

T, expands slowly according to the law P/V = constant.
If the final temperature is 2T, heat supplied to the gas
is:

(A) 2RT, ) B) %RJ})
1
(©) R, (D) &Y,
2 moles of a diatomic gas undergoes the process:

PT*1V = constant. Then, the molar heat capacity of the
gas during the process will be equal to

(A) 5R2 (B) 9Rr/2
(C) 3R~ (D) 4R
In the following P-F diagram of an ideal gas, two

adiabates cut two isotherms at T, and T,,. The value of
vV, is
Il (

AB —T,DC— g,
A =vv,
©) >V,

B) <¥/7,
(D) cannot say

A41. Four curves A, B, C and D are drawn in the fig. for

a given amount of gas. The curves which represent
adiabatic and isothermal changes are

X
|

(A) Cand D respectively
(B) D and C respectively

PJL

42.

43.

44,

45.

¥

(C) A4 and B respectively
(D) Band 4 respectively

The figure, shows the graph of logarithmic reading
of pressure and volume for two ideal gases A and B
undergoing adiabatic process. From figure it can be
concluded that

inP.

I

InV
(A) gas B is diatomic
(B) gas 4 and B both are diatomic
(C) gas 4 is monoatomic
(D) gas B is monoatomic & gas A4 is diatomic

An ideal gas expands from volume V\ to V,. This may

be achieved by either of the three processes : isobaric,

isothermal and adiabatic, Let AU be the change in

imternal energy of the gas, O be the quantity of heat

added to the system and W be the work done by the

system on the gas. Identify which of the following

slatements is false for AU?

(A) AU is least under adiabatic process

(B) AUis greatest under adiabatic process.

(C) AUis greatest under the isobaric process

(D) AU in isothermal process lies in-bhetween the
values obtained under isobaric and adiabatic
processes.

A closed container is fully insulated from outside. One
half of it is filled with an ideal gas X separated by a
plate P from the other half ¥ which contains a vacuum
as shown in figure. When P is removed, .Y moves into
Y. Which of the following statements is correct ?

X Y
gas | Vacuum
p
(A) No work is done by X
(B) X decreases in temperature
(C) Xincreases in internal energy
(D) X doubles in pressure.

1 kg of a gas does 20 kJ of work and receives 16 kJ of
heat when it is expanded between two states. A second




46.

kind of expansion can be found between the initial and
final state which requires a heat input of 9 kJ. The work
done by the gas in the second expansion is:

(A) 32kJ (B) 5kJ

(C) -4k (D) 13kJ

An ideal gas undergoes an adiabatic process obeying
the relation PV*? = constant. If its initial temperature

Heat-2 5.33

is 300 K and then its pressure is increased upto four
times its initial value, then the final temperature (in
Kelvin):
(A) 3002
(C) 600

(B) 30032
(D) 1200

JEE Advanced
Kinetic Theory of Gases

1.

According to kinetic theory of gases,

(A) The velocity of molecules decreases for cach
collision

(B) The pressure exerted by a diatomic gas Is
proportional to the mean velocity of the molecule.

(C) The K.E. of the gas decreases on expansion at
constant temperature.

(D) The mean translational K.E. of a diatomic gas
increases with increase in absolute temperature.

Consider a collision between an oxygen molecule

and a hydrogen molecules in a mixture of oxygen

and hydrogen kept at room temperature. Which of the

following are possible ?

(A) The kinetic energies of both the molecules
increase.

(B) The gas is not isotropic and the constant (1/3) in
equation P = (1/3)pv’, is result of this property

(C) The time during which a collision lasts is
negligible compared to the time of free path
between collisions.

(D) There is no force of interaction between molecules
among themselves or between molecules and the
wall except during collision.

. In case of hydrogen and oxygen at N.T.P., which of he

following quantities is/are the same 7
(A) average momentum per molecule
(B) average kinetic energy per molecule
(C) kinetic energy per unit volume

(D) kinetic energy per unit mass

A cylic process ABCD is shown in the P-V diagram.
(BC and DA are isothermal)

Which of the following curves represents the same
process 7

A, B

' A

(©)

TN

. Figure shows the pressure P versus volume ¥ graphs for

two different gas sample at a given temperature. M, and
M, are masses of two samples, 7, and n,, are numbers of
moles. Which of the following must be incorrect.

=/
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(A) M, > M,
© n,>n,

B) M, <M,
D) n, < "y,

6. During an experiment, an ideal gas is found to obey a
condition P%p = constant [p = density of the gas]. The
gas ig initially at temperature T, pressure P and density
p- The gas expands such that density changes to pr2.

(A) The pressure of the gas changes to /2P

(B) The temperature of the gas changes to /2T

(C) The graph of above process on the P-T diagram is
parabola

(D) The graph of the above process on the P-T
diagram is hyperbola.

7. Two vessels of the same volume contain the same gas
at same temperature. If the pressure in the vessel be in
the ratio of 1:2, then
(A) the ratio of the average kinetic energy is 1:2
(B) the ratio of the root mean square velocity is 1:1
(C) the ratio of the avera ge velocity is 1:2
(D) the ratio of number of molecules ig 1:2

Thermodynamics

8. A vertical cylinder with heat-conducting walls is
closed at the bottom and is fitted with a smooth
light piston. It contains one mole of an ideal gas,
The temperature of the gas is always equal to the
surrounding\s temperature, T... The piston is moved up
slowly to increase the volume of the gas to 7 times.
Which of the following is incorrect ?
(A) Work done by the gasis RT In 7.
(B) Work done against the atmosphere is RT(n—1)
(C) There is no change in the internal energy of the
gas. :
(D) The final pressure of the gas is
initial pressure,

—_—_—

times its

(n-1) )

9. An ideal gas is taken from state | to state 2 through
optional path 4, B, C & D as shown in P-} diagram,
Let O, W and U represent the heat supplied, work done
& internal energy of the gas respecti vely. Then

10.

11.

13.

(A) Q,q o Wﬂ = Qc.' = Wc'
(B) Q,¢ — Qn == H{[ - WD
() PF; < W-’I < Wf. < Wn

(D] Q,; > Qﬂ > Qr‘ > Qh

Two moles of monoatomic

gas is expanded frop,
@, V)to(P,2 V,) under isobaric condition. Let AQP
be the heat given to the gas, A W, the work done by the
gas and AU, the change in internal energy. Now the
monoatomic gas is replaced by a diatomic gas. Othey
conditions remaining the same. The corresponding

values in this case are AQZ, AWZ,
then

(A) AQ, — ‘&Qz = AU] o AUz
(B) AU, + AW, > AU, + AW,
(€) AU, > AU,

(D) All of these

AU, respectively,

An enclosed ideal gas is taken through a cycle ag
shown in the figure. Then

(A) Along 4B, temperature decrease while along BC
temperature increases

(B) Along 4B, temperature increases while along BC
the temperature decreases

(C) Along CA work is done by the gas and the internal
energy remains constant ‘

(D) Along CA4 work is done on the gas and internal
energy of the gas increases

- A rigid container of neligible heat capacity contains

one mole of an ideal gas. The temperature of the gas
increases by 1°C if 3.0 cal of heat is added to it. The
gas may be
(A) helium
(C) oxygen

(B) argon
(D) carbon dioxide

A mixture of ideal gases 7 kg of nitrogen and 11 kg of
CO,. Then .

(A) equivalent molecular weight of the mixture is 36.
(B) equivalent molecular weight of the mixture is 18,
(C) ~ for the mixture is 5/2

(D) + for the mixture is 47/35

(Take -y for nitrogen and CO,as1.4and1.3 respectively)




. What is/are the same for 0O, and NH, in gaseous state
(A) ratio of specific heats

(B) average velocity

(C) maximum no. of vibrational degree of freedom
(D) None of these

. moles of a monoatomic gas are expanded to double
its initial volume, through a process P/V = constant.
If its initial temperature is 300 K, then which of the
following is not true.
(A) AT=900K
(C) AQ=3600R

(B) AQ = 3200 R
(D) W =900 R

16. A gas kept in a container of finite conductivity is
suddenly compressed. The process
(A) must be very nearly adiabatic
(B) must be very nearly isothermal
(C) may be very nearly adiabatic
(D) may be very nearly isothermal

17. When an enclosed perfect gas is subjected to an
adiabatic process:

18.
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(A) Its total internal energy does not change

(B) Its temperature does not change

(C) lts pressure varies inversely as a certain power of
its volume ’

(D) The product of its pressure and volume is directly
proportional to its absolute temperature.

For two different gases X and ¥, having degrees of
freedom f; and /, and molar heat capacities at constant
volume C, and C,, respectively, the In P versus In ¥
graph is plotted of adiabatic process, as shown

InP 4

—
Inv

B) f,>,
®) ¢, >c,

(A f>1,
© ¢, >cC,

JEE Advanced
Level I
Kinetic Theory of Gases

1. Consider a sample of oxygen at 300 K. Find the
average time taken by a molecule to travel a distance
equal to the diameter of the earth. (Diameter of earth =
12800 km)

2. Find the average magnitude of linear momentum of
a helium molecule in a sample of helium gas at 0°C
Mass of helium molecule = 6,64 x 102 kg and
Boltazmann constant = 1.38 x 10-2 J/K_

3. The mean speed of the molecules of a hydrogen sample

equals the mean speed of the molecules of helium
, sample. Calculate the ratio of the temperature of the
| hydrogen sample to the temperature of the helium
sample.

4. Find the ratio of the mean speed of hydrogen molecules
to the mean speed of nitrogen molecules in a sample
containing a mixture of the two gases,

A gas mixture consists of 2 moles of oxygen and 4
moles of argon al temperature 7. Neglecting all
vibrational modes, find the total interna] energy of the
system 7

0.040 g of He is kept in a closed container initially at
100.0°C. The container is now heated. Neglecting the
expansion of the container, calculate the temperature
at which the internal energy is increased by 12 J,

Show that the internal energy of the air (treated as
an ideal gas) contained in a room remains constant
as the temperature changes between day and night.
Assume that the atmospheric pressure around remaing
constant and the air in the room maintains this pressure
by communicating with the surrounding through the
windows ete.

Total translational kinetic cnergy per mole of an ideal
gasat0® Cisnearly joules.
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9. During an experiment, an ideal gas is found to obey an
additional law VP? = constant. The gas is initially at
a temperature 7, and volume ¥, When it expands to a
volume 2V, the temperature becomes

10. The following graph shows two isotherms for a fixed
mass of an ideal gas. Find the ratio of r.m.s, speed of
the moelcules at temperatures T, and iy

11. Two moles of an ideal monoatomic gas undergone a
cyclic process ABCA as shown in fi gure. Find the ratio
of temperature at B and A.

P
£
B
3P
:
Pof - —5C
' )
| :
v, BV,

12. Pressure versus temperature graph of an ideal gas is
shown. Density of gas at point 4 is r,. Find the density
~of gas at B,

13. V-T curve for 2 moles of af’gas is straight line as shown
in the graph here. Find the pressure of gas at 4.

Wlit.)
B

e

A

53¢ .
T(K)

14. Examine the following plots and predict whether in
(@) P, <Pyjand T, > T,in
(i) 7,=71, < T, in
(i) ¥, >V, in .
(@iv) P, > P, or otherwise.

P Vir

~Ny
~%

(iii) (iv)

15. The height of mercury in a faulty barometer is 75 cm
and the tube above mercury having air is 10 cm
long, The correct barometer reading is 76 cm. If the
faulty barometer reads 74 cm, find the true barometer

reading.

Thermodynamics

16. One mole of gas expands with temperature T such
that its volume, ¥ = kT where £ is a constant. If the
. temperature of the gas changes by 60°C then find the

~ work done by the gas?

17. One mole of an idel monoatomic gasisat360 K and a
pressure of 10° pa. Itis compressed at constant pressure
until its volume is halved. Taking R as 8.3 J mol-'K~!
and the initial volume of the gas as 3.0 x 102 m?, find
the work done on the gas ?

18. When 1 g of water at 0°Cand 1 x 10° Nm~2 pressure is
converted into ice of volume 1.091 ¢m?, find the work

done by water ?

19. An ideal monoatomic gas is taken round the cycle
ABCDA as shown in the P-V diagram. Find the work
done by the gas during the cycle ?




=
P
£l
B c
2P| ]
P
\ -‘-‘hxl D
" %
o Vv 2v

20. Find the work done by gas going through a cyclic
process shown in figure ?

-

30

-
o

Volume (ltr)

v

k(Pa)
Pressure (kPa)

21. An ideal gas taken around the cycle 4BCA shown in
P-V diagram. Fifid the net work done by the gas during
the cycle ?

P
B

4p -
P, --Bc
ST

0

V, 3V

1

v

22. In the P-V diagram shown in figure, ABC is a
sémicircle. Find the workdone in }he process ABC.
~

P (atm)

%p v(t)

23. Asample of anideal gas initially having internal energy
U, is allowed to expand adiabatically performing work
W. Heat Q is then supplied to it, keeping the volume
constant at its new value, until the pressure rised to
its original value. The internal energy is then U,. (See
Fig.) Find the increase in internal enery (U, — U,) ?

24,

25,

26.

27.
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Pressure —»

Volume —*

When a system is taken from state ‘a’to state ‘b’ along
the path ‘acb’, it is found that a quantity of heat 0 =
200 J is absorbed by the system and work W = 80 J
is done by it. Along the pathy ‘adb’, Q = 144 J. Find
work done along the path ‘adb’?

p

~

Y

a o

v

Find the change in the internal energy of 2 kg of water
as it is heated from 0°C to 4°C. The specific heat
capacity of water is 4200 J/kg-K and its densities at
0°C and 4°C 999.9 kg/m?* and 1000 kg/m? respectively.
Atmospheric pressure = 10° Pa. '

A gas is taken through a cyclic process ABCA as shown
in figure. If 2.4 cal of heat is given in the process, what
is the value of J.

Volume
700 cc ¢
500cc+ 4 5 B
t +—» Pressure
100 kPa 200 kPa

A substance is taken through the process abc as
shown in figure. If the internal energy of the substance
increases by 5000 J and a heat of 2625 cal is given to
the system, calculate the value of J.

300 kPa ¢
200 kPai g 4,—]‘1,
[ 0.02me 0.05 m®
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28.

29.

30.

31.

32.

33.

34.

* 35.

36.

Calculate the change in internal energy of a gas kept in
a rigid container when 100 J of heat is supplied to it.

A mixture of 4 gm helium and 28 gm of nitrogen in
enclosed in a vessel of constant volume 300°K. Find
the quantity of heat absorbed by the mixture to doubled
the root mean velocity of its molecules.

(R = Universal gas constant)

An ideal gas is taken through a cyclic thermodynamic
process through four steps. The amounts of heat
involved in these steps are 0= 5960 J, Q, = —5585 7,
0, = —2980 J and Q, = 3645 J ruspeolrvely The
Lorlupondmg works involved are W, = 2200 J,
W,=—825], W, = —1100 J and W, respectlvely

(l) Find the valuc of W,

(i) What is the efﬁc1ency of the cycle ?

An amount Q of heat is added to a monoatomic ideal
gas in a process in which the gas perform a work 012
on its surrounding. Find the molar heat capacity for the
process.

An ideal gas is taken through a process in which the
pressure and the volume are changed according to the
equation p = k¥, Show that the molar heat capacity of
the gas for the process is given by C = C + RI2.

An ideal gas (c/C,=~is taken through a process in
which the pre%uu, and the volume vary as p = al”.
Find the value of b for which the molar specific heat

" capacity in the pjocess is zero.

Two ideal gases have the same value of C/C, =
What will be the value of this ratio for a mlxtum of tln.
two gases in the ratio 1:2 ? P

A mixture contains | mole of helium (C,=25R,C =
L.5R) and I mole of hydrogen (C,=3. SR Cc=2 SR)
Caleulate the value of C,C, and 7 for mixture.

150 em4 C
100 cm?| , . ‘ b
i
100 kPa 200 kPa

A gaseous mixture consists of 16 g of helium and 16 g
c
of oxygen. Find the ratio C—" of the mixture?

37.

38.

39.

40.

41.

42,

One mole of a gas mixture is heated under cong, ang
pressure, and heat required AQ is plotted Aggaing
temperature difference acquired. Find the value of ¥
for mixture. '

AQ
2500 J

AT

0 100K

An ideal gas has a molar heat capacity C, at constant
volume. Find the molar heat capacity of thls gas as a
function of volume, if the gas undergoes the process :
T=T2

0

One mole of an ideal monoatomic gas undergoes a
process as shown in the figure. Find the molar specific
heat of the gas in the process.

v

~l=

If heat is added at constant volume, 6300 J of heat are
required to raise the temperature of an ideal gas by
150 K. If instead, heat is added at constant pressure,
8800 joules are required for the same temperature

* change. When the temperature of the g gas changes by

300 K. Determine the change is the internal energy of
the gas.

70 calorie of heat is required to raise the temperautre
of 2 mole of an ideal gas at constant pressure from
40°C to 45°C. Find the amount of heat required to
raise the temperature of the same through the same
range at constant volume (R = 2 cal/mol-K)

The volume of one mole of an ideal gas with specific

heat ratio +y is varied according to the law ¥V = % ,
T

where a is a constant. Find the amount of heat obtained
by the gas in this process if the gas temperature is
increased by AT.




. Find the molecular mass of a gas if the specific heats
of the gas are CP = 0.2 cal/gm°C and C, = 0.15 cal/
gm°C. [Take R = 2 cal/mol°C]

. A gas at NTP is suddenly compressed to one-fourth of
its original volume. If vy is supposed to be 3/2, then find
final pressure 7

. Inacycle ABCA consisting of isothermal expansion 4B,
isobaric compression BC and adiabatic compression
CA, find the efficiency of cycle

(Given: T, =T, = 400K, v=1.5)

F

46. P-V graph for an ideal gas undergoing polytropic
process PJ™ = constant is shown here.
Find the value of m.
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v 3TN,
4x10°  V(md)

47. Ideal diatomic gas is taken through a process AQ =
2AU. Find the molar heat capacity for the process
(where AQ is the heat supplied and AU is change in
internal energy)

48. A gas undergoes a process in which the pressure and
volume are related by VP* = constant. Find the buk
modulus of the gas.

49. A container of volume 1 m® is divided into two equal

" compartment by a partition. One of these compartments

contains an ideal gas at 300 K. The other compartment

is vaccum. The whole system, is thermally isolated

from its surroundings. The partition is removed and

the gas expands to occupy the.whole volume of the
container. Find the new temperature ?

Level Il

1. A freely moving piston divides a- vertical cylinder,
closed at both ends, into two parts each containing 1
mole of air. In equilibrium, at T = 300 K, volume of
the upper part in 7 =% times greater than the lower p
part. At what temperature will the ratio of these
volumes be equal to ' = 2? '

A

2. A sample of an ideal non linear tri-atomic gas has a
pressare £, and temperature 7, taken through the cycle
as shown starting from A. Pressure for process C' — D
is 3 times P,. Calculate the heat absorbed in the cycle

and work done. ) 1
' v
»
LA/ P— B , ¢
2 /j
A
Vo —<—D
1 T
=

3. Figure shown three processes for an ideal gas. The
tempeature at ‘e’ is 600 K, pressure 16 atm and
volume 1 litre. The volume at ‘b’ is 4 litre. Out of the
two process ab and ac, one is adiabatic and he other is
isothermal. The ratio of specific heats of the gas is 1.5.
Answer the following :

4 g

p atm

b [

e

4 litre
(i) Which of ab and ac processes is adiabatic. Why 7
(ii) Compute the pressure of th gas at b and ¢.

(iii) Compute the temperature and b and ¢.

(iv) Compute the volume at c. '

4. An ideal gas NTP is enclosed in a adiabatic vertical
cylinder having area of cross section 4 = 27 cm?,
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between two light movable pistons as shown in th
figure. Spring with force constant k = 3700 N/m is in
a relaxed state initially. Now the lower piston is moved
upwards a height 4/2, h being the initial len gth of pas
column. It is observed that the upper piston moves up
by a distance A/16. Find h taking ~ for the gastobe 1.5,
Also find the final temperature of the gas,

. At a temperature of T, = 273°K, two mols of an ideal
gas undergoes a process as shown. The total amount of
heat imparted to the gas equals QO =27.7k]. Determine
the ratio of molar specific heat capacities.

7

273K | -4
v

4v

. A fixed mass of a gas is taken through a process 4 — B
— C— 4. Here 4 — B is isobaric. B — C is adiabatic
and C — 4 is isothemal. Find efficiency of the process
(take y = 1.5)

2

e b
(9]

{

<
n
<

- Acylinder containing a gas is closed by a movable piston.
The cylinder is submerged in an ice-water mixture. The
piston is quickly pushed down from position 1 to position
2. The piston is held at position 2 until the gas is again at
0°C and then slowly raised back to position 1. Represent
the whole process on P-V diagram. If m = 100 gmofice
are melted during the cycle, how much work is done on
the gas. Latent heat of ice = 80 cal/gm.

10.

A parallel beam of particles of mass m moving with
velocities v impings on a wall at an angle @ to its normal,
The number of particles per unit volume in the beam is
n. If the collision of particles with the wall is elastic, then
find the pressure exerted by this beam on the wall,

For the thermodynamic process shown in the figure.
P =1x 105Pa;PH: 0.3 x 10° Pa

P =0.6 x 10° Pa; V, = 0.20 litre

V, = 1.30 litre.

(A) Find the work performed by the system along path
AD.

(B) In the total work done by the system along the
path ADC is 85 J find the volume a point C.

(C) How much work is perfomed by the system along
the path CDA4 ?

The figure shows an insulated cylinder divided into
three parts 4, B and C. Pistons I and II are comnected
by a rigid rod and can move without friction inside the
cylinder. Piston I is perfectly conducting while piston
IT si pefectly insulating. The initial state of the gas(y=
1.5) present in each compartment 4, B and C is as
shown. Now, compartment A is slowly given heat
through a heater A such that the final volume of C

becomes % Assume the gas to be ideal and find.
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(A) Final pressurs in each compartment 4, B and C

(B) Final temperatures in each compartment 4, B
and C

(C) Heat supplied by the heater

(D) Work done by gas in A and B.

(E) Heat flowing across piston 1.

. How many atoms do the molecules of gas consist of if

« increases 1.20 times when the vibrational degrees of
freedom are “frozen” 7 Assume that molecules are non
linear.

. Figure shows the variation of the internal energy U

with the density p of one mole of idel monoatomic gas
for a thermodynamic cycle ABCA.
Here process AB is a part of rectangular hyperbola.

L

i

(A) Draw the P-V diagram for the above process.

(B) Find the net amount of heat absorbed by the
system for the cyclic process.

(C) Find the work done in the process 4B.

An ideal monoatomic gas undergoes a process where
its pressur is inversely proportional to its tempeature.

14.

15.
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(i) Calculate the specific heat for process.
(ii) Find the work done by two moles of gas if the
temperature changes from 7, to T,

An ideal diatomic gas undergoes a process in which its
internal energy ralates to the volume as U = a\V/
where « is a constant.

(A) Find the work performed by the gas and the
amount of heat to be transferred to this gas to
increase its internal energy by 100 J.

(B) Find the molar specific heat of the gas for this
process.

Two rectangular boxes shown in figures has a partition
which can slide without friction along the length of
the box. Initially each of the two chambers of the box
has one mole of a monoatomic ideal gas (y = 5/3)
at a pressure p; volume ¥, and temperature 7;. The
chamber on the left is slowly heated by an electric
heater. The walls of the box and the partitions are
thermally insulated. Heat loss through the lead wires
of the heater is negligible. The gas in the left chamber
expands, pushing the partition until the final pressure
in both chambers becomes 243 P /32 . Determine

777777777 7777777
v

g

(/7777777/77

(i) the final temperature of the gas in each chamber
and

(ii) the work-done by the gas in the right chamber.
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/
4
9
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Previous Year Questions
JEE Main

1.

At what temperature is the rms velocity of a hydrogen
molecule equal to that of an oxygen molecule at 47°C?

.‘ [AIEEE 2002]
(A) 80K (B) —73K
(C) 3K (D) 20K

X ] 7/ . .
I mole of a gas with v = = is mixed with 1 mole of a

. 5 . .
gas with = =, then the value of -« for the resulting

mixture i% [AIEEE 2002]

3.

7 2
A < ®) 5

24 12
© 5= D) =

Which statement is incorrect ? [AIEEE 2002]
(A) All reversible cycles have same efficiency.

(B) Reversible cycle has more efficiency than an
irreversible one.




5.42 Physics Module-2

(C) Carnot cycle is a reversible one.
(D) Carnot cycle has the maximum efficiency in all
cycles.

4. Even Carnot engine cannot give 100% efficiency
because we cannot [AIEEE 2002]
(A) prevent radiation
(B) find ideal sources
(©) reach absolute zero temperature
(D) eliminate friction

5. A carnot engine taken 3 x 106 cg] of heat from a
reservoir at 627°C and gives it to a sink at 27°C. The

work done by the engine is [AIEEE 2002]
(A) 42 x 1057 (B) 84 x 1097
(C) 16.8 x 10¢] (D) zero

6. Which of the following parameters does not charac
terise the thermodynamics state of matter?

[AIEEE 2003]
(A) Temperature (B) Pressure
(C) Work (D) Volume

7. During an adiabatic process, the pressure of a gas is
found to be proportional to the cube of its absolute
temperature. The ratio C,/C, for the gas is

[AIEEE 2003]
(A) 4/3 B) 2
© 573 (D) 32

8. “Heat cannot be itself flow from a body at lower
temperature to 2 body at higher temperature” is a
statement or consequence of [AIEEE 2003]
(A) second law of thermodynamics
(B) conservation of momentum
(C) conservation of mass
(D) first law of thermodynamics

9. One mole of ideal monoatomic gas [ = g} is mixed

with one mole of diatomic gas [ v = 57] . What is y for

the mixture ? 7 denotes the ratio of specific heat at
constant pressure, to that at constant volume

[AIEEE 2004]

3 23

A) = B) =2

A) 3 (B) 15

35 4
© 5 (D) 3

10.

11.

12.

13.

14.

up

Which of the following statement is correet for ap

thermodynamic system ? [AIEEE 2004)

(A) The internal energy changes in all processes,

(B) Internal energy and entropy are state functions,

(C) The change in entropy can never be zero.

(D) The work done in an adiabatic process is alwayy
zero.

A gaseous mixture consists of 16 gofhelium and 16 g

C
of oxygen. The ratio C—” of the mixture is

v [AIEEE 2005]
(B) 1.62
(D) 1.54

(A) 1.59
(C) 1.4

Which of the following is incorrect regarding the first
law of thermodynamics? [AIEEE 2005)
(A) Itis not applicable to any cyclic process

(B) Ttis a restatement of the principle of conservation
of energy

(C) It introduces the concept of the internal energy
(D) It introduces the concept of the entropy

The temperature-entropy diagram of a reversible
engine cycle is given in the figure. Its efficiency is

[AIEEE2005]
.
2T,
s &
S
5, 28,
1 1
A) - B) —
(A) > B) 1
1 2
C) - D) =
© 3 (D) 3

A system goes from 4 to Bvia P
two processes I and II as
shown in figure, [f AU, and
AU, are the changes in
internal energies in the
processes I and [T respectively,
then [AIEEE 2005)




15.

17.

18.

19.

(A) AU, =AU,

(B) relation between AU, and AU, can not be
determined

(©) AU, > AU,
(D) AU, <AU,

Two rigid boxes containing different ideal gases are
placed on a table. Box 4 contains one mole of nitrogen
at temperature 7, while box B contains one mole of
helium at temperature (7/3) T,. The boxes are then
put into thermal contact W1th each other, and heat
flows between them until the gases reach a common
final temperature (Ignore the heat reach a capacity of
boxes). Then, the final temperature of the gases, T, in

terms of T is [AIEEE 2006]
3 7

(A) T,=>7, ®) 7, =21,
3 5

© 1,=>1, (D) 7, =21,

The work of 146 kJ is performed in order to compress
one kilo mole of a gas ddlabaucally and in this process
the temperature of the gas increases by 7°C. The gas is
(R =83 Jmol 'K ) [AIEEE 2006]
(A) diatomic

(B) triatomic

(C) a mixture of monoatomic and diatomic

(D) monoatomic

If C and C, denote the specific heats of nitrogen per
un1t mass at constant pressure and constant volume

respectively, then [AIEEE 2007]
R R

A C,-C =— B) C,-C,=—

(© C,—C=R (D) C,—C,=28R

. . - I
A carnot engine, haying an efficiency of 7 = 10 as heat

engine, is used as a refrigerator, If the work done on the
system is 10 J, the amount of energy absorbed from the

reservoir at lower temperature is [AIEEE 2007]
(A) 997 (B) 907
(©) 171 (D) 1007

An insulated container of gas has two chambers sepa-
rated by an insulating partition. One of the chambers

20.

21.

22.
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has volume V, and contains ideal gas at pressure p, and
temperature T The other chamber has volume ¥, and
contains ideal gas at pressure p, and temperature 7., If
the partition is removed without doing any work on the
gas, the final equilbrium temperature of the gas in the
container will be [AIEEE 2008]

LT, (pV, + p,V,)

(A)
pIL + p T,

@) PHL VT,
prl + szz

pV+pb,

m)ﬂE@%+m%)
VT + p VT,

When a system is taken from state i to state Jalong the
path iaf, it it found that Q = 50 cal and W = 20 cal.
Along the path ibf, Q = 36 cal. W along the path ibfis

[AIEEE 2008]
(A) 6cal (B) 16 cal
(C) 66 cal (D) 14 cal

One kg of a diatomic gas is at a pressure of 8 x 10
Nm~2 The density of the gas is 4 kgm=. What is the
energy of the gas due to its thermal motion?

[AIEEE 2009]
(B) 5x10*J
D) 7x10*7]

(A) 3 x 10¢J
(C) 6 x 10*J

Three perfect gases at absolute temperatures T.T,
and 7 are mixed. The masses of molecules are m

m, and m, and the number of molecules are n,n, and
n, respouwcly Assuming no loss of energy, lhe final
temperature of the mixture is [AIEEE 2011]

niti +n,T, +nT,

A
( ) i +”1 —I—.'r_‘

nT: +nT} +nT?

(B)
mI +mT, +nT,
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23.

24,

25.

\26.

W17 +mT; + Ty

©
mI +nT, +nT,

ORUESASS

A carnot engine operating between temperatures 7,
and T, has efficiency 1/6. When T, is lowered by 62 K
its efficiency increases to 1/3. Then I and T, are,
respectively. [AIEEE 2011]
(A) 372K and 330K

(C) 310K and 248 K (D) 372K and 310K
A thermally insulated vessel contains an ideal gas
of molecular mass M and ratio of specific heats -,
It is moving with speed v and it suddenly brought to
rest. Assuming no heat is lost to the surroundings, its

temperature increase by [AIEEE 2011]
-1 : 2
(A) =1 o ®) M ¢
2vR 2R
(©) M MK (D) __(l—_i MK
2R 2(y+1)R

A container with insulating walls is divided into two
equal parts by a partition fitted with a valve. One part is
filled with an ideal gas at a pressure p and temperature
T, whereas the other part is completely evacuated. If the
valve is suddenly opened, the pressure and temperature

of the gas will be- . [AIEEE 2011]

, q

V4 p T

A) =T B) =~,—

(A) : (B) 23

T

©rr (D) Py
7~

Thespecific heatcépacityof ametalatlowtemperature

3
(7) is given as €, (kIK 'Kg ‘):32[%6]./\ 100 g
vessel of this metal is to be cooled from 20 K to
4 K by a special refrigerator operating at room
temperture (27°C). The amount of work required to
cool the vessel iy [AIEEE 2011]

(A) equal to 0.002 kJ

(B) greater than 0.148 kJ
(C) between 0.148 kJ and 0.028 kJ

(D) less than 0.028 kJ

(B) 330K and 268 K

27. A liquid in a beaker has temperature #(1) at time ¢ and

0, is temperature of surrounding, then according {,
Newton’s law of cooling, the correct graph betweey,

log (6-0,) and ¢ is [AIEEE 2012)
(G ®) 2
s, e,
g g
— —> !
© = D) =
e >
g g
— ¢ — !

28. A Carnot engine, whose efficiency is 40%, takes in

heat from a gource maintained at a temperature of
500 K, It is desired to have an engine of efficiency
60% Then, the intake temperature for the same exhaust
(sink) temperature must be [AIEEE 2012

(A) Efficiency of Carnot engine cannot be made larger
than 50%

(B) 1200 K
(C) 750K
(D) 600K

. 29. Helium gas goes through a eycle ABCDA (consisting

of two isochoric and isobaric lines) as shown in figure.
Efficiency of this cycle is nearly (Assume the gas to be

close to ideal gas) [AIEEE 2012]
2P, B » —]C
________ AL; D
v, 2v,
(A) 154% (B) 9.1%
©) 10.5% D) 12.5%




30. The above P-V diagram represents the thermodynamic
« cycle of an engine, operating with an ideal monoatomic
gas. The amount of heat, extracted from the source in a

single cycle is: [JEE Main 2013]
\P
5P| ... >
Po ______ L 4
v, 2v, Y
11
(A) E PoVo (B) 4p oVo

© 2, ® (2ar,

31. Anideal gas enclosed in a vertical cylindrical container
supports a freely moving piston of mass M. The piston
and the cylinder have equal cross sectional area A.
When the piston is in equilibrium, the volume of the
gas is ¥, and its pressure is P,. The piston is slightly
displaced from the equilibrium position and released.
Assuming that the system is completely isolated from
its surrounding, the piston executes a simple harmonic

motion with frequency : [JEE Main 2013]
2P

(A) R (B) 1 [ MV

S 2m\ MY, 27 \| AyF,

32

33

Heat-2 5.45
AP,
©) 1 AvR (D) _l_wg
21 V,M 2 Ay

. An open glass tube is immersed in mercury in such a
way that a length of 8 cm extends above the mercury
level. The open end of the tube is then closed and
sealed and the tube is raised vertically up by additional
46 cm. What will be length of the air column above
mercury in the tube now? [TEE Main 2014]

(Atmospheric pressure = 76 cm of Hg)

(A) 38cm (B) 6 cm
(©) 16cm (D) 22 cm

. One mole of diatomic ideal
gas undergoes a cyclic process P
ABC as shown in figure. The
process BC is adiabatic. The 600 K
temperature at 4, B and C A 400K C
are 400 K, 800 K and 600 v >
K respectively. Choose the
correct statement:

B 800 k

(A) The change in internal energy in the process AB

is —350R.

(B) The change in internal energy in the process BC
is —500 R.

(C) The change in internal energy in whole
cyclic process is 250 R.

(D) The change in internal energy in the process CA
is 700 R. [JEE Main 2014]

JEE Advanced

1. Anideal gas is taken through the cycle A — B — C —
i, as shown in the figure. If the net heat supplied to the
'gas in the cycle is 5 Jthe work done by the gas in the

process C — A4 is [JEE(Scr) 2002]

wim?)

2 G 4-—B

NA
1
10 P(NI?)

A) —-57 ®B) —-107J
© -151J (D) —207J

Which of the following graphs correctly represents the
variation of 3 = —(dV/dP)/V with P for an ideal gas at
constant temperature?

(A) f ®) iy

our
B

(C) a (D) B4
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3.

A cubical box of side 1 meter contains helium gas
(atomic weight 4) at a pressure of 100 N/m?, During
an observation time of I second, an atom travelling
with the root mean S$quare speed parallel to one of the
edges of the cube, was found to make 500 hits with a
particular wall, without any collision with other atoms,
Take R = 25/3 J/mol-K and k=138 x 10-2 yK.
[JEE 2002]
(A) Evaluate the temperature of the gas
(B) Evaluate the avera ge kinetic energy per atom
(C) Evaluate the total mass of helium pas in the box,

. In the figure 4C represent Adiabatic process. The

corresponding PV graph is [JEE(Scr) 2003]
£
A
L
-
GV B ®) p
A : Iz}
(o] B c
v —V
© %

B
A‘
A @

An insulated container containing monoatomic gas of
molar /n is moving with a velocity v, If the container
is suddenly stopped, find the change in temperature,

[JEE 2003]

An ideal gag expands isothermally from a volume
V', to 7, and then compressed to original volume ,
adiabatically, Initial pressure is £, and final pressure is
P,. The total work done is W. Then [JEE(Scr) 2004)
(A P,>P . W>0 (B) P, < PW <0
©P>Pw <0 ©PpP=pw-y

« The piston cylinder arrangement shown containg 3

diatomic gas at tem perature 300 K. The cross-sectional
area of the eylinder is | m?. [nitially the height of the

(A) 1.55 % 10° Pa
@) §
C
74 v :

11. Match the following for the given process:

@

piston above the base of the cylinder is | m. The ten;.
perature is now raised to 400 K at constant pressure,
Find the new height of the piston above the base of the
cylinder. If the piston is now brought back to its orig;j.
nal height without any heat loss, find the new equilib.
rium temperature of the gas. You can leave the answer
is fraction, [JEE 2004)

- Anideal gas is filled in a closed rigid and thermally insy.-

lated container. A coil of 100 2 resistor carrying current
1 4 for 5 minutes supplies heat to the gas. The change in

internal energy of the gas is [JEE(Scr) 2004]
A) 10KJ (B) 20KJ
©) 30Ky D) 0KJ

- When the pressure is changed from p,= 101 % 103

Pato P, = 1.165 % 10° pa then the volume chan ges by
10% the bulk modulus is [JEE(Ser) 2004]
(B) 0.0015 x 105 Pa

(C) 0.015 x 10°Pa (D) none of these

A cylinder of mass 1 kg is given heat of 20000 T at
atmospheric pressure. [If initially temperature of
cylinder is 20°C, find [JEE 2005]

(A) final temperature of the cylinder
(B) work done by the cylinder
(C) change in internal energy of the cylinder,

(Given that specific heat of cylinder = 400 J kg-t°C~1,
Coefficient of volume expansion’ = 9 x 10-5°C-L,
Atmospheric pressure = |0° N/m? and density of
cylinder = 9000 kg/m?)

[JEE 2006]

P(atm)

W



Column 1 Column IT
(A) ProcessJ — K ® w>0
(B) Process K — L Qw<0
(C) Process L — M ®R) 9>0
(D) Process M — J ®) 0 <0

Question No. 12 to 14

A fixed thermally conducting cylinder has radius R and
length L . The cylinder is open at its bottom and has a small
hole at its top. A piston of mass M is held at a distance L
from the top surface, as shown in the figure. The atmos-
pheric pressure is P,.

e

rs
LI

X
Piston

12. The piston is now pulled out slowly and held at a
distnace 2L from the top. The pressure in the cylinder
between its top and the piston will then be[JEE 2007]

(A) P, (B) P2
Mg F, Mg
(C) TR’ . ® % 2 TR

13. While thie piston is at a distance 2L from the top, the
‘hole at the top is sealed. The piston i§ then released,
‘to a position where it can stay in equilibrium. In this

i condition, the distance of the piston from the top is

J [JEE 2007
2
@) | 28R lop)
TR°F, + Mg
PR’ — Mg
B) | ——=|(2L)
® |~ %R
> R 4 M
(©) M (2L)
TR*F,
@) |5 |ar)
k™ F, — Mg

14,

15.

16.

17.
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The piston is taken completely
out of the cylinder. The hole at
the top is sealed. A water tank
is brought below the cylinder
and put in a position so that the
water surface in the tank is at
the same level as the top of the cylinder as shown in the
figure. The density of the water is p. In equilibrium, the
height H of the water column in the cylinder satisfies

[JEE 2007]
(A) pg(l, — H} + PyL, — H) + LP, =0
®) pg(L, — HY ~ Py(l, — H) — LP, =0
(©) pg(L, — HP + Py(L, ~ H) — L,P, =0

(D) pgll, — H} —

Statement 1

The total translational kinetic energy of all the
molecules of a given mass of an ideal gas is 1.5 times
the product of its pressure and its volume [JEE 2007]
because

Statement 2

The molecules of a gas collide with each other and the
velocities of the molecules change due to the collision.

Pyl — H) +LPy=0

(A) Statement 1is True, Statement 2 is True, Statement
2 is a correct explanation for Statement 1

(B) Statement 1 is True, Statement 2 is True, Statement
2 is NOT a correct explanation for Statement 1

(C) Statement 1 is True, Statement 2 is False

(D) Statement 1 is False, Statement 2 is True

An ideal gas is expanding such that PT? = constant.
The coefﬁment of volume expansion of the gas is
[JEE 2008]

A) (B)

L
7
)

~NA NN

© ®)

~

Column I Contajins a list of processes involving
expansion of an ideal gas. Match this with Column II
describing the thermodynamic change during this
process. Indicate your answer by darkening the

appropriate bubbles of the 4x4 matrix given in the
[JEE 2008]

ORS.
opened

Lq‘ealt;;-lsﬂ vacuum
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Column I Column II
(A) An insulated container (p) The temperature of the
has two chambers by gas decreases

separated a  valve.
Chamber I contains an
ideal gas the Chamber
II' has vacaum. The
valve is opened.

(B) An ideal monoatomic (@) The temperature of the
gas expands to twice gas increase or remains
its original volume constant
such that its pressure

Poc—, where V is
the volume of the gas

(C) An ideal monoatomic (r) The gas loses heat
gas expands to twice
its original volume
such that its pressure

| )
P x V—"”_’ where V is
its volume

(D) An ideal monoatomic (s) The gas gains heat
gas expands such that
its pressure P and
volume V follows the
behaviour shown in
the graph

18. C and C, denote the molar specific heat capacities
of a gas at constant volume and constant pressure,
respectively, Then [JEE 2009]
(A) C, — C. is larger for a diatomic ideal gas than for
a monoatomic ideal gas

(B) Cp + C, is larger for a diatomic ideal gas than for
amonoatomic ideal gas

© C,/C, s larger for a diatomic ideal gas than for a
monoatomic ideal gas

D) Cp.CV is larger for a diatomic ideal gas than for a
monoatomic ideal gas

19.

20.

=

The figure shows the P-V plot of an ideal gas takep

through a cycle ABCDA. The part ABC is a semicircle

and CDA is half of an ellipse. Then, [JEE 2009)
P

3 A

ol (]

9

L C
0 1 2 3 Vv

(A) the process during the path 4 — B is isothermal

(B) heat flows out of the gas during the path B —
C—D

(C) work done during the path 4 — B — Cis Zero

(D) positive work is done by the gas in the cycle
ABCDA

This section contains 2 questions. Each questions
contains statements given in two columns, which have
to be matched. The statements in Column I are labelled
4, B, C and D, while the statements in Column 11
are labelled p, g, 7, s and ¢. Any given statement in
Column I can have correct matching with one or more
statement(s) in Column II. The appropriate bubbles
corresponding to the answers to these questions have
to be darkened as illustrated in the following example:
If the correct matches are 4 - p,sand ; B - g and r;
C-pand ¢; and D - s and 1, then the correct darkening
of bubbles will look like the following,

Column II gives certain systems undergoing a pro-
cess. Column I suggests changes in some of the
parameters related to the system. Match the statements
in Column I to the appropriate process(es) from
Column II. [JEE 2009]

Column I Column II

(A) The energy of the (P) System: A capacitor

(B)

system is increased Initially uncharged

increased
Process: It is connected to a
battery
Mechanical energy (Q) System: A gas in an
is provided to the adiabatic container fitted
system, which is with an adiabatic piston
converted into Process: The gas is piston

energy of random
motion of its parts
compressed by

pushing the piston




Column I Column II
(C) Internal energy (R) System: a gas in a the rigid
of system is container

(D) Mass of the

converted into
its mechanical
energy.

Process: The gas gets cooled
due to colder atmosphere
surrounding it

(S) System: A heavy is
decreased nucleus initially
at rest
Process: The nucleus
fissions into two fragments
of nearly equal masses and
some neutrons are emitted

system is
decreased

(T) System: A resistive wire
loop
Process: The loop is placed
in a time varying magnetic
field perpendicular to its
plane.

21.

22,

23.

A real gas behaves like an ideal gas if its [JEE 2010]
(A) pressure and temperature are both high

(B) pressure and temperature are both low

(C) pressure is high and temperature is low

(D) pressure is low and temperature is high

One mole of an ideal gas in initial sate A undergoes
a cyclic process ABCA, as shown in the figure. Its
pressure at 4 is P. Choose the correct option (s) from

the following. [JEE 2010]
v
r Y
VAV S }B
A i A
: . » T
TO

(A) Internal energies at 4 and B are the same.

(B) Work done by the gas in process 4B is PV, tn4
(C) Pressure at Cis P/

(D) Temperature at Cis T, /4

A diatomic ideal gas is compressed adiabatically to
1/32 of its initial volume. In the initial temperature of
the gas is 7, (in Kelvin) and the final temperature is
aT,. the value of a is [JEE 2010]
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24, 5.6 liter of helium gas at STP is adiabatically

25.

26.

27.

compressed to 0.7 liter. Taking the initial temperature

to be T}, the work done in the process is [JEE 2011]
(A) 9/8RT, (B) 3/2RT,
(C) 15/8RT, (D) 972RT,

One mole of a monatomic ideal gas is taken through a
cycle ABCDA as shown in the P-V diagram. Column II
gives the characteristics involved in the cycle. Match
them with each of the processes given in Column I:

Jr l'
sp|.iB 1A -
1
I |
l ]
RN
1P|~ :Cr-|—b——¥}»——~
1V 3v oV v
Column I Column IT
(A) Process 4 — B (P) Internal energy
decreases
(B) Process B — C (Q) Internal energy
increases
(C) Process C — D (R) Heat is lost

(D) Process D — A (S) Heat is gained

(T) Work is done on the
gas

[JEE 2011]

A mixture of 2 moles of helium gas (atomic mass =
4 amu) and 1 mole of argon gas (atomic mass =
40 amu) is kept at 300 K in a container. The ratio of the

rms speeds [‘—(Mﬂ : [JEE 2012]

vﬂl!k ( ﬂrg‘)n )

(A) 032
(C) 2.24

(B) 0.45
(D) 3.16

Two moles of ideal helium gas are in a rubber balloon
at 30°C. The balloon is fully expandable and can be
assumed to require no energy in its expansion. The
temperature of the gas in the balloon is slowly changed
to 35°C. the amount of heat required in raising the
temperature is nearly (take R = 8.31 J/mol. K)

[JEE 2012]
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(A) 627 (B) 1047
©) 1247 (D) 2087

28. Two non-reactive monoatomic ideal gases have their
atomic masses in the ratio 2:3. The ratio of their partial
pressures, when enclosed in a vessel kept at a constant
temperature, is 4:3. The ratio of their densities is

[JEE 2013]

(A) 14 (B) 1:2
©) 69 D) 8:9

29. One mole of a monatomlc ideal gas is taken along two

cyclic processes E—F—G—E and E—~F—H—E as
shown in the PV digram. The processes involved are
purely isochoric, isobaric, isothermal or adiabatic.

Pll.—_-F

Match the paths in List T with the magnitudes of the
work done in List IT and select the correct answer

using the codes given below the lists. [JEE 2013]
List I List IT
(P) G—E 1.160 P, ¥ In2
QG-H ' 236Py,
(R) F~H 3.24 PV,
(S) F—-G - 4.31 PV,

Codes :

P [0} R S
A) 4 3 2 1
(B) 4 3 1 2
© .3 1 2 4
D) 1 3 2 4
Question No. 30 and 31

In the figure a containner is shown to have a movalble
(without friction) piston-on top. The container and the pis-

ton are all made of perfectly insulating
material allowing no heat transfer between
outside and inside the container. The con-
tainer is divided into two compartments by
a rigid partition made of a thermally con-
ducting material that allows slow transfer
of heat. The lower compartment of the con-
tainer is filled with 2 moles of an ideal
monatomic gas at 700 K and the upper
compartment is filled with 2 moles of an ideal diatomic gas
at 400 K. The heat capacities per mole of an ideal mona-

tomic gas are C, = % R,C,= % R, and those for an ideal
. . 5 -7
diatomis gas are C, =~ R,C_ =—R.
o2 P2 I

30. Consider the partition to be rigidly fixed so that it does
not move. When equilibrium is achieved, the final
temperature to the gases will be
(A) 550K (B) 525K
(©) 513K (D) 490K

31.
without friction so that the pressure of gases in both
compartments is the same, Then total work done by the

Now consider the partition to be free to move

gases till the time they achieve equilibrium will be 1

(A) 250 R
(C) 100 R

(B) 200 R
(D) —100 R

|
A thermodynamic system is taken from an initial state j'
with internal energy U, = 100 J to the final state f slong’
two different paths iaf and ibf, as schematically shown in|
the figure. The work done by the system along the paths.:
af, ib and bf are W,=2001J, W, =50Jand W, = 1001
respectively. The heat supphed to the system along the
path iaf, ib and bf are 0, 9, and O, respectively. If the
internal energy of the system in the state b is U, = 200
and O, = 500 J, the ratio 0,/0.1s

32,

i+
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Exercises

JEE Main

1. A 2. C 3. B 4. D 5 A 6. B 7C 8. A 9. A 10. C
11. A 12. A 13. C 14. B 15. B 16. C 17. C 18. C 19. A 20. B
2. A 22. A 23. B 24. D 25. D 26. B 27. D 28. B 29. B 30. A
31. A 32. D 33. A 34. C 35 A 36. C 37. B 38. A 39. D 40. C
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DEFINITION

Elasticity is that property of the material of a body by virtue
of which the body opposes any change in its shape or size
when deforming forces are applied to it and recovers its
original state as soon as the deforming forces are removed.

On the basis of definition, bodies may be classified
in two types.

Perfectly Elastic (PE)

If a body regains its original-shape and size completely after
the removal of force, it is said to be a perfectly elastic body.
Nearest approach PE: quartz-fibre.

Perfectly Plastic (PP)

If a body does not have the tendency to recover its original
shape and size, it is said to be a perfectly plastic body.
Nearest approach PP; Pyty. d

Limit of Elasticity

The maximum deforming force up to which a body retains
its property of elasticity is called the limit of elasticity of
the material of the body, E

B

STRESS

WHhen a deforming force is appli‘e('i{ to a body, it reacts to the
applied force by developing a reaction (or restoring force
which, from Newton’s third law, is equal in magnitude and
opposite in direction to the applied force). The reaction
Jorce per unit area of the body which is called into play due
to the action of the applied force is called stress. Stress is
measured in units of force per unit area, i.e.,'Nm~2. Thus,

F
stress = —,
A

Elasticity and Thermal Expansio

CHAPTER ;

4
v

-
o

..)_i,:r

where F is the applied force and 4 is the area over which
it acts.

A

x/ —|—+10N

Stress = 10/A

WL

Figure 6.1

Unit of stress: N/m?
Dimension of stress: M'L~!T-2

Types of Stress

Figure 6.2
There are three types of stress.

(a) Tensile Stress
It is the pulling force per unit area.
It is applied parallel to the length.
It causes increase in length or volume.
(b) Compressive Stress
It is the pushing force per unit area.

Figure 6.3

It is applied parallel to the length.
It causes decrease in length or volume.
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(c) Tangential Stress

It is the tangential force per unit area.
It causes shearing of bodies.

Notes

1. If the stress is normal to the surface, it is called
normal stress,

2. Stress is always normal to the surface in case of
change in length of a wire or volume of a body.

3. When an external force compresses the body, the
nature of the atomic force will be repulsive.

4. When external forces causes the body to expand,
the nature of the atomic force will be attractive.

Difference between Pressure Versus Stress

S.No. Pressure Stress

1 Pressure is Stress can be normal or
always normal  tangential.
to the area.

2 It is always It may be compressive or
compressive in  tensile in nature.
nature.

3 Itis a scalar It is a tensor quantity
quantity

SOLVED EXAMPLE
EXAMPLE 1

A 4.0-m-long copper wire of cross-sectional area 1.2 cm? is
stretched by a force of 4.8 x 10°.N. The stress will be

- (A) 4.0 x 10" N/fmm? (B) 4.0 x 107 kN/m?

5} (C) 4.0 x 10" N/m? (D) none of these

SOLUTION [C]

3
Stress = E = M_
A 1.2x10™* m?
=4.0 x 10" N/m? 2]

STRAIN

When a deforming force is applied to a body, it may suffer
a change in size or shape. Strain is defined as the ratio of
the change in size or shape to the original size or shape of
the body. Strain is a number; it has no units or dimensions.

The ratio of the change in length to the original length
is called longitudinal strain. The ratio of the change iy
volume to the original volume is called volume strain. The
strain resulting from a change in shape is called a shearing
strain.

AL _ finallength — original length
L3 4 orginal length
=aAT.

Strain =

Note

Original and final length should be at the same
temperature.

Types of Strain
There are three types of strain.

(a) Linear Strain
The change in length per unit length is called linear strain.

£

S

Figure 6.4

. . Changeinlength AL
Linear strain = ———=~— "5~ _ =%
Original length L

(b) Volume Strain
Change in volume per unit volume is called volume strain.

Volume
sirain

Figure 6.5

Volume strain — Changeinvolume Ay

Original volume V




(d Shear Strain
" he angle through which a line originally normal to the
L ﬂxﬁj surface is turned is known as shear strain.

Shear strain

Figure 6.6

A copper rod 2 m long is stretched by 1 mm. Strain will be
(A) 104 volumetric (B) 5 x 10, volumetric
(C) 5 x 107* longitudinal D) 5 x 1072, volumetric

| SOLUTION [C]

-3
||| Strain = é—g =410 =5 x 107 lopgitudinal, ]
. | THERMAL STRESS

If the ends of a rod are ri gidly fixed and its temperature is
changed, then compressive stresses are sef up in the rod.
These developed stress are called thermal stress.

‘ Thermal stress = YaAt,

ﬂ where Y is the modulus of elasticity, « is the coefficient of
. linear expansion and At is the change in temperature.

WORK DONE IN STRETCHING A WIRE

In stretching a wire, work is done against internal restoring
forces. This work is stored in the body as elastic potential

[ .
energy or strain energy,

Elasticity and Thermal Expansion 6.3

If L = length of wire and
A = cross-sectional area,
v Fl/4
x/L
= F= Zéx .
L

Work done to increase dx length,

AW = Fdx = XLéxdx.

Total work done = W = Txdx
=1X 5y
2 L
2
Work done per unit volume — L . lY [g]
v o2 L
[ V=41]
i = lY(strain)2
)
4 = l>< stress x strain
Vo2
Yo Stre.ss
Strain
w l(stress)2
vV 2 Y
W 1F AL
= — = x==
’ AL 24 [
W= l Fx AL
2
1. .
= 3 load x elongation.
STRESS-STRAIN CURVE

stress

o strain

Figure 6.7
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If we increase the load gradually on a vertically sus-
pended metal wire, the following can be observed.

Region OA

Strain is small (<2%).

Stress o< strain = Hook’s law is valid.

Slope of line 04 gives Young’s modulus ¥ of the
material.

Region AB

Stress is not proportional to the strain, but the wire will
still regain its original length after removing the stretching
foree.

Region BC

If the wire yields, strain increases rapidly with a small
change in stress. This behaviour is shown up to point C,
known as the yield point.

Region CD

Point D corresponds to maximum stress, which is called the
point of breaking or tensile strength.

Region DE

The wire literally flows. In this region, there is maximum
stress corresponding to D after which the wire begins to
flow.

In this region, strain increases even if the wire is
unloaded and ruptures at E.

HOOKE'S LAW

Hooke’s law states that within the elastic limit, (he stress
developed in a body is proportional to the strain produced
in i, Thus, the ratio of stress to strain is a constant, Thig
constant is called the modulus of elasticity. Thus,

. stress
modulus of elasticity =

strain
Since strain has no unit, the unit of the modulus of
clasticity is the same as that of stress, namely, Nm~2,

YOUNG’'S MODULUS

Suppose that a rod of length / and a uniform cross-sectional
area a is subjected to a longitudinal pull. In other words,
two equal and opposite forces are applied af its ends.

Stress = E .
A

The stress in the present case is called linear Stresg,
tensile stress or extensional stress. If the direction of
force is reversed so that AL ig negative, we speak of cony.
pressional strain and compressional stress. If the ¢lastic
limit is not exceeded, then from Hooke’s law,

stress o< strain
or stress = Y x strain
_stress  F L

or Y =. =
strain 4 AL O

where Y, the constant of proportionality, is called the
Young’s modulus of the material of the rod and may be
defined as the ratio of the linear stress to linear strain, pro-
vided the elastic limit is not exceeded. Since strain has ng
units, the unit of ¥ is Nm-2,

Consider a rod of length ¢ o Which is fixed between

two rigid ends separated by a distance ¢ o - Now, if the tem-
perature of the rod is increased by A6 then the strain pro-
duced in the rod will be:

Figure 6.8

length of the rod at new temperature —
natural length of the rod at new temperature

natural length of the rod at new temperature

_ L=l (+add)  —2,ang
 L,0+aA0) 2, (+an0)

Strain =

" «vis very small, strain = —qAf (negative sign in the
answer represents that the length of the rod is less than the
natural length, which means it is compressed by the ends).

We know that v = Slm:“ > then F = yaAT4.
strain

Notes

1. For loaded wire

aL= P
TrY
Y= il and A =772,
ANAL
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Notes (Cont'd) Bulk Modulus
For a rigid body, AL = 0,50 ¥ = o0, i.e., elasticity B= Xo_l_um __Apr
of the rigid body is infinite. Volumestrain AV
2. If the same stretching force is applied to differ- v
ent wires of the same material, 3 VAP
= = —
AL x £2 [as F and Y are constants]. Ay
4 Compressibility
Greater the value of AL, greater will be the elonga- 1
tion, : k= =
3. Elongation of a wire by its own weight N
In this case, F = Mg acts at CG of the wire. So __1{ar
|'| length of wire which is stretched will be L/2 VAP
aL= FL _ %M Modulus of Rigidity
o AY mr'Y
fangential stre
AT % gential strain
[ M= pAL] N e F/A.
2 ¢
pgL
AL = —=— ) )
2 Only-a solid can have shearing as these have a definite
shape.
POISSION'S RATIO
EXAMPLE 3
A wire of length 1 m and area of cross-section 4 x 108 m?
increases in length by 0.2 cm when a force of 16 N is
applied. Value of ¥ for the material of the wire will be
(A) 2 % 10°N/m? (B) 2 < 10" kg/m?
(C) 2 10" N/mm? (D) 2 % 10" N/m?
Figure 6.9
SOLUTION [D]
! By Hook’s law, . M
. Fl4_ FL Linear strain
AT, _4/D
AL/L
B 161
(4x107%)(0.2x107%) dL
= o=—"
=2 x 10" N/m? [ ALD
=
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Interatomic force constant — Young modulus x inter-
atomic distance.

THERMAL EXPANSION

Most substances expand when they are heated. Thermal
expansion is a consequence of the change in average sepa-
ration between the constituent atoms of an object, Atoms
of an object can be imagined to be connected to one
another by stiff springs as shown in Figure 6.10. At ordi-
nary temperatures, the atoms in a solid oscillate about their
equilibrium positions with an amplitude of approximately
107" m. The average spacing between the atom is about
10" m, As the temperature of solid increases, the atoms
oscillate with greater amplitudes, as a result the average
separation between them increases, and consequently, the
object expands.

Figure 6.10

Linear Expansion

J When the rod is heated, the increase in length A7 is propor-
tional to its original length £, and change in temperature is
indicated as AT, where AT'is in “CorK.

L=L+AL
+—1

After heating

«—2
[

| Before heating

} L

Figure 6.11

dL = oL dT
= AL= ol AT
If aAT =1,

AL
o= —"
LAT
where « is called the coefficient of linear expansion, whose
unit is °C~! or K-,
L=L(1+ aAT), where L is the length after heating
the rod.

Variation of o with Temperature and Distance

1. If o varies with distance, a = ax + b,

Then, total expansion = f (ax+b)AT dx .

4)(\}(1)(4‘

Figure 6.12

2. If & varies with temperature, o = f{T).

Then AL= far,ar,

Note

Actually, thermal expansion is always three-dimen.-
sional expansion. When the other two dimensions of
an object are negligible with respect to one, then the
observations are significant only in one dimension,
This is known as linear expansion.

Avery linear dimensions of the object changes in
the same fashion.

— - w S [ .

EXAMPLE 4 o
A rectangular plate has a circular cavity as shown in the

figure. If we increase its temperature, then which dimension

will increase in the figure,

SOLUTION

Distance between any two points on an object increases
with an increase in temperature. So, all dimensjons a, b, c
and o will increase. [ |

ln‘J
wh

in




EXAMPLE 5

In the given figure, when temperature is increased, then
which of the following increases:

(A) R,
(©) R, — R,

SOLUTION

| All of the above
! represents expanded boundary
I ___ represents original boundary

®) R,

As the intermolecular distance between the atoms
i increases on heating, the inner and outer perimeters
increase. Also if the atomic arrangement in the radial direc-
tion is observed, then we can say that it also increases.
Hence, all 4, B and C are true. [ |

EXAMPLE 6

Elasticity and Thermal Expansion 6.7

heating, what will happen to the size of the gap.

SOLUTION

the above example.

Note

Original and final lengths should be at the same
temperature.

A small ring having a smll gap is shown in the figure. On

Thie gap size will also increase, The reason is the same as in

EXAMPLE 7

Find the equilibrium length for the system after increasing
temperature by AT.

i
A=Areamw—>

¥ A Gy
B Qg

A @,
Q, < Q,

B

SOLUTION

Here, ¢/, and £/, are the natural lengths of the rods 4 and

B after an increase in temperature by AT. £/ is the actual
length after the temperature increases by AT.

F——KIA—W
s
r——
et ———

| A

—> F

I

gu_{')d

Sostrainin 4 =

and that in B = g

Now force balance,
b R 1)

and

=, @)
Dividing (1) + (2),

1 v, [t - (1+,AT)|¢, (1+a,AT)

2 7 4 (14+,AT) 4 (14+0,AT) - £}

g bl +21)[1+ (o +0,)AT)
P20, (140, AT) + v, (14 2,AT)
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Measurement of Length by Metallic Scale

Case (i)
When the object is expanded only,

43 =€1{1+O‘0 (02 _91)},

£, = actual length of the object at 6,°C = measure
length of object at #,°C

£, = actual length of the object at 6,°C = measured
length of object at 6,°C
@, = linear expansion coefficient of the object

e ‘,
— < —»

f [ T |
Wizl o, wzzzzzz36, 0 2 3

T

Figure 6.13

Case (ii)
When only measure instrument is expanded, actual length

of the object will not change, but the measured value M7V)
decreases.
Z1
—
: )
r, \
‘——"-_i___'
Ezzzzzzz727726,"C
S R e 9.°C
012345 ™

T T T T g°
01234020

Figure 6:14

MV =4, {1—as(02—01)},

; where o« = linear expansion coefficient of the measuring
. instrument. :

Case (iii)
If both are expanded simultaneously,
MV =1{1+(a, - a)®8,— 0)},

1 ifo > a;, then the measured value is more than actual
value at 6 °C

2. Ifg, < «, then the measured value is less than actual
value at 6 °C

At 6°C, MV =3 4, 6,°C, MV = 4.1.

i :

Effect of Temperature on the Time Period of 5
Pendulum

The time period of a simple pendulum is given by

T~——27r\/Z
g

or Tomﬁ.

As the temperature is increased, length of the penduy-
lum, and hence, time period gets increased or a pendulum
clock becomes slow and it loses the lime,

B \/Z _ i+l
T Vi I
Here, we put Al = laAf in place of AT so as to
avoid the confusion with change in time period. Thus,

! L o A
L: I laAO =(1+aA0)1/2
T /
’ 1
or T NT[1+—2-ozA0]
or AT=T' —-T
1
= —~TaAd.
2

Time lost in time # (by a pendulum clock whose actual
time period is 7'and the changed time period at some higher
temperature 77) is

Atz[éz]t.

TI

Similarly, if the temperature is decreased the length,
and hence, the time period gets decreased. A pendulum
clock in this case runs fast and it gains the time.

T \/T’
T N7
_ [1=lane
B i
zl—laAH
2

or T’=T[l—%aA0]




AT:T—TIZ%TO{AH

and time gained in time ¢ is the same, i.e.,
i

EXAMPLE 8

A second’s pendulum clock has a steel wire. The clock is
calibrated at 20°C. How much time does the clock lose
or gain in one week when the temperature is increased to
30°C? o, = 1.2 x 1075 (°C)~1.

steel

SOLUTION

The time period of second’s pendulum is 2 s. As the temper-
ature increases, length and, hence, time period increases.
Clock becomes slow and it loss the time. The change in
time period is

AT = %TaAG

‘ 1 —5 (e} (o]
I[E](z)(l.zglo )(30°—20°)

=12x10"*s
New time period is.
=T+ AT
=(2+12x10™%
=2.0012s. j’f/

Time lost in one week,
e[
B (1.2><1o-4)(

+ (2.00012)

=36.28s. |

7% 24 x3600)

Superficial or Aerial Expansion

When a solid is heated and its area increases, then the ther-
mal expansion is called superficial or aerial expansion.

Elasticity and Thermal Expansion 6.9

Consider a solid plate of side /, and linear expansion coef-
ficient «r,. Then, 4, = ab.

-
a’ Length(f) = a(1 + o ,AT)
® Breath(f) = b(1 + a AT)

‘«—
a

Figure 6.15
Finalarea=1x b
=ab(l + o AT)
=ab(l +2 a AT)

= ab(1 + BAT)
A= Ai(l + BAT) -
B8=2a

@ = coefficient of area of expansion.

(a) Isotropic Material

An isotropic material is a material that has the same coef-
ficient of linear expansion in all the directions.

(b) Anisotropic Material

Anisotropic material has different coefficients of linear
expansion in different directions.

Notes

Most of the time, we consider a material as an isotro-
pic material.
For an isotropic material,

b1 + a,AT)

a(1+ o, AT)
Figure 6.16
A,=ab
4,=ab(1 + a,AT)(1 + o,AT)
=ab(1 + (o, + a,) AT+ a,,AT?)
=ab(1 + (o, + ,)AT)
= A1 + (o, + a) AD).
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Volume or Cubical Expansion

When a solid is heated and its volume increases, then
the expansion is called volume expansion or cubical

expansion.
] b
&
“ /

Figure 6.17

v, = abc

Notes
Now, after an increase in temperature by AT
v,= a’_ b'c!
= a[H—ozAT]3 be

= abc[l + 3aAT]
v,=v[1+3aAT].

L aAT=1

80, 3a = 7 = coefficient of volume expansion.

-

Zilit g
A1

| =

Solid cube

Hpllow

) Cubical container of
same materia‘lj‘/’

Figure 6.18

1. When the temperature changes, the volume of the
container and the volume of the cube changes in
the same manner because « changes in the same
manner.

2. Involume expansion of container, we use v of the
container material.

Or an isotropic material,

v,=v(1 + 3aAT)

For anisotropic material

v, =v, [H—(d1 +a, +a3)AT}

Notes

H a:fy=1:2:3
(ii) They are dependent on the temperature.

Effect of Temperature on Density

If the initial density of the body is P, mass is m and volume
is v, then
m
bi=—.
y
If the temperature increases, then volume should
change and the final volume is given by

v,=w(1+ yAT).

So the final density
P m
)= —
Vs
o B M
P A7)

p,= p(1+ AT,
From the binomial theorem,
p,= p(l — yAT).
Temperature Scale
0 100°C

32°F 212°F
Freezing Boiling

point 1573 15K 373.15K | points

Figure 6.19
Relation between different scales is given as follows:
K = Kelvin
C = Centigrade
F = Fahrenheit

100°C difference = 180°F difference

1°C difference = %F difference

9—C:F—32
5

K=C+273.15.

W




Relation between temperature on two difference

scales is given as follows

L.F. value = Lower fixed value
UF. value = Upper fixed value

Temperature on S, scale — L.F. value of S,
U.F.valueof S, —L.F.valueof S,

_ Temp.on§, scale —L.F.value of S,
~ U.F.valueof S, —L.F.valueof §,

SOLVED EXAMPLE

EXAMPLE 9

A faulty thermometer reads 5° at freezing point and 95° at
boiling point. Then find out the original reading in °C when
it reads 50°.

SOLUTION
50-5 x-0
95—-5 100
45 X
= =
90 100
= x=50.

(a) Effect of Temperature on Buoyancy Force

“A_f'i,rfwg

Figure 6.20

Initially, at temperature 7,

Fy=vog

Elasticity and Thermal Expansion 6.11

If the temperature increases to AT, then

V(l + 'YBATJpeg

B

(14-v,AT)

(14 7,AT)
(H—’yﬂAT)'

T
|‘|
1
N
|
!
I

1
|
]

RN MG

Figure 6.21

(a) If~y, >, and TT, then Fl.
(b) Ifvy, > v, and TT, then F,| and T| then F.1. |

Barometer

Figure 6.22

There is a capillary tube which have coefficient of linear
expansion ¢_and a liquid of volume v of volume expansion
coefficient v of volume expansion coefficient of 7, at tem-
perature 7, and given 3w, < 1y, . The area of cross-section of
the capillary tube is A.

Now the temperature increases to T’ » so the volume of
the liquid rises in the capillary. Let it increase to height /'
So the volume increase in the tube = A Y/

AV =V[1+~,AT] - V1 + 3a AT]
= Vv, = 3a)AT

Area of cross-section of capillary = 4/
= A[1 + 22 AT].




6.12 Physics Module-2

e @
height in the ca illary tube _ a
R y Note (Cont'd)
H' = ﬂ
=

has the characteristjc

Property of bending on heating
due to unequal lineay i

used as a thermometey by calibra

EXAMPLETO
What will happen to the water leve

o -‘H‘-_'___‘——-—v
Lif the Vesse] ig heated?
SOLUTION

@) If Ye > ., then overflow occurs and is 8iven a4

(@, > o) and width
after expansion,

@) If 7, < ,,

final volume Ve=4AH(1+ Y.AT)

-

final volume V,= A (1+ AT )

Now, A, = A[l +20,A7].
So, H = final height
H{i4ya7] SOLUTION
[1+20,A7] " b =l4a,A7T)= (R 4 9)g
= &=L+ 0Af) = gy
R+d  (I+a.AT
Note TT = %:T‘_QET_)—) from binomia) theorem
f

It two strips of equal length but of different metag o o
placed on each other and riveted, the single Stiip g6 B d
formed is called a bimetallic strip (Fig, 5:23). This gy == (0 —a)AT" “
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s 'EXERCISES .

JEE Main

1.

A steel scale is to be prepared such that the millimetre
intervals are to be accurate within 6 x 10~° mm. The
maximum temperature variation from the temperature
of calibration during the reading of the millimetre
marks is (@ = 12 x 10-°k™")
(A) 4.0°C

(©) 5.0°C

(B) 4.5°C
(D) 5.5°C

A steel rod 25 cm long has a cross-sectional area of
0.8 cm?. Force that would be required to stretch this
rod by the same amount as the expansion produced by
heating it through 10°C is:

(Coefficient of linear expansion of steel is 10-5/°C and
Young’s modulus of steel is 2 x 10'° N/m?.)

(A) 160N (B) 360N

(C) 106 N (D) 260 N

. Two rods of different materials having coefficients of

thermal expansion ¢, «, and Young’s moduli Y|, 7,
respectively are fixed between two rigid massive walls.
The rods are heated such that they undergo the same
increase in temperature. There is no bending of the
rods. If a:a, = 2:3, the thermal stresses developed in
the two rods are equal provided Y., is equal to

(A) 2:3 (B) 1:1

(©) 3:2 (D) 4.9

If I is the moment of inertia of a solid body having

a-coefficient of linear expansion then the change in 7

corresponding to a small change in temperature AT is
1

(A) al AT B) EaIAT

(C) 20 I AT (D) 3aIAT

. A metallic wire of length L is fixed between two rigid

supports. If the wire is cooled through a temperature
difference AT(Y = young’s modulus, p = density, o =
coefficient of linear expansion) then the frequency of
transverse vibration is proportional to :

A) & B Yo
()\/p—Y (B) )

g o) .[2¢
(C)\/% © v

. A metal wire is clamped between two vertical walls. At

20°C the unstrained length of the wire is exactly equal
to the separation between walls. If the temperature of
the wire is decreased the graph between elastic energy
density (#) and temperature (T) of the wire is

(A)  uy B), u
} T (in °C) T (in°C)
] 20 20
© )
\J (in °C) T(in°C)
] 20 20

. A steel tape gives correct measurement at 20°C.

A piece of wood is being measured with the steel
tape at 0°C. The reading is 25 ¢cm on the tape, the real
length of the given piece of wood must be:

(A) 25cm (B) <25cm

(C) >25cm (D) cannot say

. A rod of length 20 cm is made of metal. It expands

by 0.075 cm when its temperature is raised from 0°C
to 100°C. Another rod of a different metal B having
the same length expands by 0.045 cm for the same
change in temperature, a third rod of the same length
is composed of two parts one of metal 4 and the other
of metal B. Thus rod expand by 0.06 cm for the same
change in temperature. The portion made of metal A

has the length.
(A) 20 cm (B) 10 cm
(©) 15cm (D) 18 cm

. A sphere of diameter 7 cm and mass 266.5 gm floats

in a bath of a liquid. As the temperature is raised,
the sphere just begins to sink at a temperature 35°C.
If the density of a liquid at 0°C is 1.527 gm/cc, then
neglecting the expansion of the sphere, the coefficient
of cubical expansion of the liquid is f:

(A) 8.486 x 10~*per °C
(B) 8.486 x 107° per °C
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10.

11.

12.

13.

14.

15.

(C) 8.486 x 107 per °C
(D) 8.486 x 103 per °C

The volume of the bulb of a mercury thermometer at
0°C is ¥, and cross section of the capillary is 4. The
cocfficient of linear expansion of glass is a, per °C
and the cubical expansion of mercury +, per °C. If the
mercury just fills the bulb at 0°C, what is the length of
mercury column in capillary at 7°C,

*) VOT(’y,,, +3ag) ®) VOT(’ym —3ag)
4,(1+2a,7) 4,(142a,T)

- Vol (v, +2a,) - VT (y, —2a,)
4,(14-34,T) 4, (143a,T)

A metallic rod 1 cm long with a square cross-section
is heated through 1°C. If Young’s modulus of elas-
ticity of the metal is E and the mean coefficient of
linear expansion is « per degree Celsius, then the
compressional force required to prevent the rod from
expanding along its length is:(Neglect the change of

. cross-sectional area)

(A) Edat
(C) EA atl(1 — o)

(B) Edat/(1 + af)
(D) Elat

The loss in weight of a solid when immersed in a liquid
at 0°C is W, and at °C is W. If cubical coefficient of
expansion of the solid and the liquid by v, and
respectively, then W is equal to:

A) W1+ (v, — )1 B) W[l =y, — )
©) W (v, — ) D) Wytl(y, — )

A thin walled cylindrical metal vessel of linear
cocfficient of expansion 1073°C~' contains benzenr of
volume expansion coefficient 1073°C-". If the vessel
and its contents are now heated by 10°C, the pressure
due to the liquid at the bottom.

(A) increases by 2%

(B) decreases by 1%

(C) decreases by 2%

(D) remains unchanged

A rod of length 2 m at 0°C and having expansion coeffi-
cient o = (3x + 2) x 107%°C~" where x is the distance (in
cm) from one end of rod. The length of rod at 20°C is:
(A) 2.124 m (B) 3.24m

(C) 2.0120 m (D) 3.124m

A copper ring has a diameter of exactly 25 mm at
its temperature of 0°C. An aluminium sphere has a

16.

17.

18.

diameter of exactly 25.05 mm at its temperature of
100°C. The sphere is placed on top of the ring and twg
arc allowed to come to thermal equilibrium, no heat
being lost to the surrounding. The sphere just passes
through the ring at the equilibrium temperature. The
ratio of the mass of the sphere & ring is :

(given: o, = 17 x 1079/°C, v, = 2.3 x 1075/°C, spe-
cific heat of Cu = 0.0923 Cal/g°C and specific heat of
Al =0.215 cal/g°C)
(A) 1/5

(C) 23/54

(B) 23/108
(D) 216/23

A cuboid ABCDEFGH is anisotropic with o, = 1 x

107%°C, @, = 2 x 1079°C, o, = 3 x 107/°C,
Cocfticient of superficial expansion of faces can be
y
»
A B
D C
F G,
—rX
E
H

z

(A) Bpep =5 x 1079/°C
(B) Byogy =4 X 1079/°C
(C) Bopgy =3 X 1075/°C
(D) By =2 x 1075°C

An open vessel is filled completely with oil which has

same coefficient of volume expansion as that of the

vessel. On heating both oil and vessel,

(A) the vessel can contain more volume and more
mass of oil

(B) the vessel can contain same volume and same
mass of oil

(C) the vessel can contain same volume but more
mass of oil

(D) the vessel can contain more volume but same
mass of oil

A metal ball immersed in Alcohol weights W, at 0°C
and W, at 50°C. The coefficient of cubical expansion
of the metal (), is less than that of alcohol ().
Assuming that density of metal is large compared to
that of alcohol, it can be shown that

A W >w,

®B) W, =W,

© w<w,

(D) any of (A), (B) or (C)




19.

20.

21.

22,

23,

24,

A solid ball is completely immersed in a liquid. The
coefficients of volume expansion of the ball and liquid
are 3 x 107 and 8 x 107° per °C respectively. The
percentage change in upthrust when the temperature is
increased by 100°C is
(A) 0.5%

©) 1.1%

(B) 0.11 %
(D) 0.05%

A thin copper wire of length L increase in length by
1% when heated from temperature 7 , to 7,. What is
the percentage change in area when a thin copper plate
having dimensions 2L x L is heated from T to T 57
A) 1% (B) 2%

©€) 3% D) 4%

If two rods of length L and 2L having coefficients
of linear expansion o and 2« respectively are
connected so that total length becomes 3L, the
average coefficient of linear expansion of the
composition rod equals:

3 5
e ® Ja

© ga (D) none of these
The bulk modulus of copper is 1.4 x 10" Pa and the
coefficient of linear expansion is 1.7 x 10-%(C°)~".
What hydrostatic pressure is necessary to prevent a
copper block from expanding when its temperature is
increased from 20°C to 30°C ?
(A) 6.0 x 10°Pa

(C) 5.2 x 10 Pa

(B) 7.1 x 107 Pa
(D) 40 atm

The coefficients of thermal expansion of steel and
a metal X are respectively 12 x 107° and 2 x 10-¢
per °C, At 40°C, the side of a cube of metal X was
measured using a steel vernier callipers. The reading
was 100 mm. Assuming that the calibration of the
vernier was done at 0°C, then the actual length of the
side of the cube at 0°C will be

(A) > 100 mm

(B) < 100 mm

(C) =100 mm

(D) data insufficient to conclude

A glass flask contains some mercury at room tem-
perature. It is found that at different temperature the
volume of air inside the flask remains the same. If the
volume of mercury in the flask is 300 cm?, then vol-
ume of the flask is (given that coefficient of volume
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expansion of mercury and coefficient of linear expan-
,sion of glass are 1.8 x 10~4°C)~' and 9 x 10-5(°C) -
respectively)

(A) 4500 cm’®
(C) 2000 cm?

Question No. 25 to 29

(B) 450 cm?
(D) 6000 cm®

Solids and liquids both expand on heating. The density of
substance decreases on expanding according to the relation

1+9(%, -T,)

where, p, — density at T
p, — density at T,
v — coeff. of volume expansion of substances
when a solid is submerged in a liquid, liquid exerts an
upward force on solid which is equal to the weight of liquid
displaced by submerged part of solid.
Solid will float or sink depends on relative densities
of solid and liquid.
A cubical block of solid floats in a liquid with half
of its volume submerged in liquid as shown in figure (at
temperature T)

P

a_— coeff. of linear expansion of solid
7, — coefl. of volume expansion of liquid
p, — density of solid at temp. T

p, — density of liquid at temp. T

25. The relation between densities of solid and liquid at
temperature T is
(A) py=2p,
©) ps=p,

B) py=(112)p,
(D) py= (1/4)p,

26. If temperature of system increases, then fraction of
solid submerged in liquid
(A) increases
(B) decreases
(C) remains the same
(D) inadequate information

27. Imagine fraction submerged does not change on increas-
ing temperature the relation between 7, and o is
(A) Y, = 3“'.\' (B) v, = Zr.rs
(C) v, = 4o (D) v, = (3/2)g
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28. Imagine the depth of the block submerged in the liquid

29.

30.

31.

32.

does not change on increasing temperature then
(A) v, =2 (B) 7, = 3«
(©) 7, =32 (D) 7, = 43)ax

Assume block does not expand on heating. The tem-
perature at which the block just begins to sink in
liquid is

(A) T+ 1/, B) T+ 1/2y)
(C) T+ 2/7L (D) T+ ,/2
The coetficient of apparent expansion of a liquid in

a copper vessel is C and in a silver vessel is S, The
coefficient of volume expansion of copper is 7Y, What
is the coefficient of linear expansion of silver ?

oy A+ + S C—q. +8
w (€20:19) o (C2t9)

O+ — 8 C—v -8
(C) g_ R ) (1)) (—’;/____2

An aluminium container of mass 100 gm contains
200 gm of ice at —20°C. Heat is added to the system
at the rate of 100 cal/s. The temperature of the system
after 4 minutes wij] be (specific heat of ice = 0.5 and
L = 80 cal/gm, specific heat of 4/ = 0.2 cal/gm/°C)
(A) 40.5°C (B) 25.5°C

(C) 30.3°C (D) 35.0°C

Two vertical glass tubes filled with a liquid are con-
nected by a capillary tube as shown in the figure. The
tube on the left ig put in an ice bath at 0°C while the

tube on the rj ght is kept at 30°C in a water bath. The .

differenece in the levels of the liquid in the two tubes
is 4 cm while the height of the liquid column at 0°C is
120 em. The cocfficient of volume expansion of liquid
is (Ignore expansion of glass tube)

+ Water

-—* 30°C

33.

34.

(A) 22 x 10-4°C
(C) 11 x 10-4/°C

(B) 1.1 x 10~4°C
(D) 2.2 x 10-4/°C

A difference of temperature of 25°C is equivalent tq a
difference of:

(A) 45°F
(C) 32°F

(B) 72°F
(D) 25°F

Two thermometers ¢ and y have fundamental intervalg
of 80° and 120°, When immersed in ice, they show the
reading of 20° and 30°, If v measures the temperatyye
of a body as 120°, the reading of x is:

(A) 59° (B) 65°
(€) 75° (D) 80°

Multiple Choice Questions

35.

36.

37.

When an enclosed perfect gas is subjected to an adia-

batic process:

(A) Its total internal energy does not change

(B) Its temperature does not change

(C) Its pressure varies inversely as a certain power of
its volume

(D) The product of its pressure and volume is directly
proportional to its absolute temperature,

Fourrods 4, B, C, D of same length and material but of

different radii r, ry2 N3 and 27 respectively are

held between two rigid walls, The temperature of all

tods is increased by same amount. If the rods donot

bend, then

(A) the stress in the rods are in the ratio 1:2:3:4

(B) the force on the rod exerted by the wall are in the
ratio 1:2:3:4

(C) the encrgy stored in the rods due to clasticity are
in the ratio 1:2:3:4

(D) the strains produced in the rods are in the ratio
1:2:3:4

A body of mass M is attached to the lower end of a

metal wire, whose upper end is fixed. The elongation

of the wire is /.

(A) Loss in gravitational potential energy of M is Mgl

(B) The elastic potential energy stored in the wire is
Mgl

(C) The elastic potential energy stored in the wire is
172 Mgl

(D) Heat produced is 1/2 Mgl




38. When the temperature of a copper coin is raised by
80°C, its diameter increases by (0.2%.
(A) Percentage rise in the area of a face is 0.4%
(B) Percentage rise in the thickness is 0.4%
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(C) Percentage rise in the volume is 0.6%
(D) Coefficient of linear expansion of copper is
0.25 x 10~C°-!,

JEE Advanced

1. We have a hollow sphere and a solid sphere of equal
radii and of the same material. They are heated to
raise their temperature by equal amounts. How will
the change in their volumes, due to volume expan-
sions, be related? Consider two cases (i) hollow
sphere is filled with air, (ii) there is vaccum inside
the hollow sphere.

2. The time represented by the clock hands of a pendulum
clock depends on the number of oscillation performed
by pendulum every time it reach to its extreme position
the second hand of the clock advances by one second
that means second hand move by two second when one
oscillation in complete
(A) How many number of oscillations completed by
pendulum of clock in 15 minutes at calibrated
temperature 20°C

(B) How many number of oscillations are completed
by a pendulum of clock in 15 minute at temperature
of40°Cif v =2 x 10-%¢

(C) What time is represented by the pendulum clock
at 40°C after 15 minutes if the initial time shown
by the clock is 12:00 pm ?

(D) If the clock gains two second in 15 minutes then
find (i) Number of extra oscillation (ii) New time
period (iii) change in temperature.

3. Consider a cylindrical container of cross section area
‘4’, length ‘A’ having coefficient of linear expansion
. The container is filled by liquid of real expansion
coefficient ~y, up to height h,. When temperature of the
system is increased by Ag then

(A) Find out new height, area and volume of cyclin-
drical container and new volume of liquid.

(B) Find the height of liquid level when expansion of
container is neglected.

(C) Find the relation between 7, and o for which
volume of container above the liquid level.

(1) increases (ii) decreases

(i11) remains constant.

D) If Y, >3a,andh=h , then calculate, the volume
of liquid overflow

(E) Whatis the relation between -y, and o, for which
volume of empty space becomes independent of
change of temp.

(F) If the surface of a cylindrical container is marked
with numbers for the measurement of liquid
level of liquid filled inside it. If we increase the
temperature of the system be A then

(i) Find height of liquid level as shown by the
scale on the vessel. Neglect expansion of
liquid

(i) Find height of liquid level as shown by the
scale on the vessel. Neglect expansion of
container

(i1i) Find relation between 7, and er_so that height
of liquid level with respect to ground
(1) increases (2) decreases
(3) remains constant.

- A loaded glass bulb weighs 156.25 g in air. When

the bulb is immersed in a liquid at temperature
15°C, it weighs 56,25 g. On heating the liquid, for a
temperature upto 52°C the apparent weight of the bulb
becomes 66.25 g. Find the coefficient of real expansion
of the liquid. (Given coefficient of linear expansion of
glass =9 x 10-6/°C).

. A body is completely submerged inside the liquid. It is

in equilibrium and in rest condition at certain tempera-
ture. It -y, volumetric expansion coefficient of liquid
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« = linear expansion coefficient by of body. It we

increases temperature by Af amount than find

(A) New thrust force if initial volume of body is v,
and density of liquid is d,,

(B) Relation between c, and vy, so body will (i) move
upward (ii) down ward (iii) remains are rest

6. A clock pendulum made of invar has a period of 0.5 sec
at 20°C. If the clock is used in a climate where average
temperature is 30°C, aporoximately. How much fast or
slow will the clock run in 10° sec.

(o, =1 x1079°C)

7. An iron bar (Young’s modulus = 10" N/m?, o =
107%/°C) 1 m long and 10~ m? in area is heated from
0°C to 100°C without being allowed to bend or expand.
Find the compressive force developed inside the bar.

8. Three aluminium rods of equal length form an
equilateral triangle ABC. Taking O (mid point of rod
BC) as the origin.Find the increase in Y-coordinate of
center of mass per unit change in temperature of the
system. Assume the length of the each rod is 2 m, and

a,= 43 x 107°C

B 0 C

9. If two rods of length L and 2L having coefficients of
linear expansion « and 2« respectively are connected
so that total length becomes 3L, determine the average
coefficient of linear expansion of the composite rod.

10. A thermostatted chamber at small height % above
earth’s surface maintained at 30°C has a clock fitted

11.

12.

13.

14.

in it with an uncompensated pendulum. The clock
designer correctly designs it for height %, but for
temperature of 20°C. If this chamber is taken to earth’s
surface, the clock in it would click correct time. Find
the coefficient of linear expansion of material of
pendulum. (earth’s radius is R)

The coefficient of volume expansion of mercury is 20
times the coefficient of linear expansion of glass Find
the volume of mercury that must be poured into a glass
vessel of volume V so that the volume above mercury
may remain constant at all temperature.

A metal rod 4 of 25 cm lengths expands by 0.050 cm.
When its temperature is raised from 0°C to 100°C.
Another rod B of a different metal of length 40 cm
expands by 0.040 cm for the same rise in temperature.
A third rod C of 50 cm length is made up of pieces of
rods 4 and B placed end to end expands by 0.03 cm on
heating from 0° C to 50°C. Find the lengths of each
portion of the composite rod.

The figure shows three temperature scales with the
freezing and boiling points of water indicated.

70°x —H— 120°W |

L 90°Y —H Boiling point

§ jiasi

—20°x 30°W —— 0°Y — Freezing point

(A) Rank the size of a degree on these scales, greatest
first.

(B) Rank the following temperatures, highest first
50°X, 50°W and 50°Y.

What is the temperature at which we get the same
reading on both the centigrade and Fahrenheit
scales ?

Previous Year Questions
JEE Main

1. A wire suspended vertically from one of its ends is
stretched by attaching a weight of 200 N to the lower
end. The weight stretches the wire by 1 mm. The the
elastic energy stored in the wire is [AIEEE 2003]

(A) 027 (B) 107
(C) 207 D) 0.17




. A wire fixed at the upper end stretches by length / by

applying 2 force F. The work done in siretching is

[AIEEE 2004]
F
(A) 5 (B) FI
Fl
(C) 2FI (D) Fy

. If S is stress and Y is Young’s modulus of material of a

wire, the energy stored in the wire per unit volume is

[AIEEE 2005]
S2
(A) 28°Y ®)
2Y S
© ® 2

. A wire clongates by / mm when a load w is hanged

from it. If the wire goes over a pulley and two weights
w each are hung at the two ends, the elongation of the

wire will be (in mm) |[AIEEE 2006]
Al B) 21
(C) zero (D) é

. Two wires are made of the same material and have the

same volume. However, wire 1 has cross-sectional
atea A and wire-2 has cross-sectinal area 34. If the

length of wire 1 increases by AX on applying force F,
how much force is needed to stretch wire 2 by the same

amount ? [AIEEE 2009]
A) F (B) 4F
(C) 6F (D) 9F

. A metal rod of Young’s modulus ¥ and coefficient of

thermal expansion « is held at its two ends such that
its length remains invariant. If its temperature is raised
by #°C, the linear strees developed in it is

[AIEEE 2011]
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A — (B) Yot

1
© — D) 7

7. An aluminium sphere of 20 cm diameter is heated

from 0°C to 100°C. Its volume changes by (given that
coefficient of linear expansion for aluminium

a, =23x10"°/°C [AIEEE 2011]
(A) 289cc (B) 2.89 cc
(C) 9.28cc (D) 49.8 cc

. A wooden wheel of radius R is made of two semi-

circular parts (see figure). The two parts are held
together by a ring made of a metal strip of cross-sec-
tional area S and length L. L is slightly less than
27R. To fit the ring on the wheel, it is heated so that
its temperature rises by AT and it just steps over the
wheel. As it cools down to surrounding temperatute,
it presses the semicircular parts together. If the coef-
ficient of linear expansion of the metal is o and its
Young’s modulus is Y, the force that one part of the
wheel applies on the other part is

[AIEEE 2012]

(A) 2msyaAT
(C) msyaAT

(B) syaAT
(D) 2syaAT

JEE Problems

1. The apparatus shown in the figure consists of four glass

columns connected by horizontal sections. The height
of two central columns B and C are 49 c¢m each. The
two outer columns A & D are open to the atmosphere.
A and C are maintained at a temperature of 95°C while

the columns B and 4 are maintained at 5°C. The height
of the liquid in 4 and D measured from the base line
are 52.8 cm & 51 cm respectively. Determine the
coefficient of thermal expansion of the liquid.

[JEE 1997]
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A B C D
956° 5° 95° 5°

2. A bimetallic strip is formed out of two identical strips
one of copper and the other of brass. The coefficient of
linear expansion of the two metals are e and ev,. On
heating, the temperature of the strip goes up by A7'and
the strip bends to form an arc of radius of curvature R.
Then R is : [JEE 1999]
(A) proportional at AT
(B) inversely proportional to AT
(C) proportional to |y, — a,|
(D) inversely proportional to o, — o

3. Two rods one of aluminium of length /, having
coefficient of linear expansion o, and other steel of
length /, having coefficient of linear expansion a, are
joined end to end. The expansion in both the rods is
same on variation of temperature. Then the value of is

d [JEE(Scr) 2003]
ll + lZ
(A) — ®B) —%
a B 250 7 o, —Q,
(C) & (D) None of these

o,

4. A cube of coefficient of linear expansion «, is floating
in a bath containing a liquid of coefficient of volume

expansion 7. When the temperature is raised by A7, -

the depth upto which the cube is submerged in the
liquid remains the same. Find the relation between o
and , showing all the steps. [JEE 2004]

S. A 0.1 kg mass is suspended from a wire of negligible
mass. The length of the wire is 1 m and its cross-sectional

area is 4.9 x 1077 m?. If the mass is pulled a little in
the verticzllly downward direction and released. it et
forms simple harmonic motion of angular ﬁ'cquency
140 red s-'. If the Youngs modulus of the material of
the wire is # > 10" Nm2, the value of n is [JEE 2010)

- A glass capillary tube is of the shape of a truncateq

cone with an apex angle o so that its two ends have
cross sections of different radii. when dipped in watey
vertically, water rises in it fo a height A, where the
radius of its cross section is 4. If the surface tension of
water is S, its density is p, and its contact angle with
glass is fl, the value of / will be (g is the acceleration

due to gravity)
Ih

(A) bipsé cos (0 = a)

2s
B) —cos(f0+«
5pg (0 1)

2s
(C) —cos(f+a/2
e )

2s
(D) —cos(@+w/2
o )

. The pressure that has to be applied to the ends of a

steel wire of length 10 cm to keep its length constant
when its temperature is raised by 100°C is

[JEE Main 2014]
(For steel Young’s modulus is 2 x 10" Nm~2 and
coefficient of thermal expansion is 1.1 x 10-5 K™Y
(A) 22x10"Pa (B) 2.2 x 10°Pa
(C) 22 x 10°Pa (D) 22 x 10°Pa

ANSWER KEYS

Exercises
JEE Main
1. C 2. A 3. C 4. C 5. B

11. B 12. A 13. C 14. C 15. C




21. C 22. B 23. A 24. C 25. B 26. A 27. A 28. A 29, A
| 31. B 32. C 33. A 34. D 35. C,D 36.B,C 37. A,C,D38. A,C,D
JEE Advancgd

1. (i) hollow sphere > solid sphere, (ii) hollow sphere = solid sphere
900
. (A) 450 (B) 449 (C) 12:14:59 (D) () 1 (ii) —s (i) ————
2. (A) ®) © 12 D) O 1 (i) s (i) —=rss
3. (A) h'=h{l+ o, AG}, 4" = A{1 + 20, AG}, V' = 4h{1 + 3o, AG}
volume of liquid ¥, = 4h (1 + v, A6)

(B) k' =h{l +~, A8} (C) (D)7, <3e, (i) v, > 3, (iii) 7, = 3o,
| (D) AV =A4h(y, —3a,)A0 (E) 3ha,=hy,

(F) () 2, (1 — 30, AB), (i) h,(1 + v, AB), (iii) (1) v, > 2a,(2) 7, <2, 3) 7, = 2¢,
-3¢ h'i_AH
I+, A0

6. Ssecslow 7. 10000N 8. 4 x 10°°m/°C 9. 50/3 10. /SR 11. 37720 12. 10 cm, 40 cm
13. (A) Alltie (B) 50°X, 50°Y, 50°W. 14. —40°C or —40°F ’

.Y, = [§+27x37><10 6]/ C 5 (A) Vodog[ ] ®) (i), < 3a, (i) 7, > 3e, (iii) 7, = 3a,

Previous Year Questions

JEE Main

1.D 2. D 3. B 4. A 5.D 6. C 7. A 8. D
JEE Problems

1. 2 x 10*C 2.B,D 3. A 4. y,=20,5. 4 6. D 7. C
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Student Performance Report Structure

SPR (STUDENT PERFORMANCE REPORT)

SPR gives an exhaustive analysis of student’s performance in various tests given by him/her
{tincludes:
¢ Cumulative performance * Question wise analysis

¢ Detailed test analysis * Time spent on every question
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