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ANALYZE, predict, and explain the motion of selected

objects in vertical, horizontal, and inclined planes. CHAPTER 1 Fundamentals of Dynamics
INVESTIGATE, represent, and analyze motion and CHAPTER 2 Dynamics in Two

forces in linear, projectile, and circular motion. Dimensions

RELATE your understanding of dynamics to the CHAPTER 3 Planetary and Satellite
development and use of motion technologies. Dynamics

Spectators are mesmerized by trapeze artists
making perfectly timed releases, gliding
through gracefu I arcs, and intersecting the paths of
their partners. An error in timing and a graceful arc
could become a trajectory of panic. Trapeze artists
know that tiny differences in height, velocity, and
timing are critical. Swinging from a trapeze, the
performer forces his body from its natural straight-
line path. Gliding freely through the air, he is
subject only to gravity. Then, the outstretched hands
of his partner make contact, and the performer is
acutely aware of the forces that change his speed
and direction.

In this unit, you will explore the relationship
between motion and the forces that cause it and
investigate how different perspectives of the same
motion are related. You will learn how to analyze
forces and motion, not only in a straight line, but
also in circular paths, in parabolic trajectories, and

on inclined surfaces. You will discover how the
motion of planets and satellites is caused, described,
and analyzed.

UNIT PROJECT PREP

Refer to pages 126-127 before beginning this unit.
In the unit project, you will design and build a
working catapult to launch small objects through
the air.

m What launching devices have you used, watched,
or read about? How do they develop and control
the force needed to propel an object?

What projectiles have you launched? How do
you direct their flight so that they reach a
maximum height or stay in the air for the
longest possible time?
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PREREQUISITE
CONCEPTS AND SKILLS

m Using the kinematic equations for
uniformly accelerated motion.

How many times have you heard the saying, “It all depends
on your perspective”? The photographers who took the two
pictures of the roller coaster shown here certainly had different
perspectives. When you are on a roller coaster, the world looks
and feels very different than it does when you are observing the
motion from a distance. Now imagine doing a physics experiment
from these two perspectives, studying the motion of a pendulum,
for example. Your results would definitely depend on your
perspective or frame of reference. You can describe motion from
any frame of reference, but some frames of reference simplify the
process of describing the motion and the laws that determine
that motion.

In previous courses, you learned techniques for measuring and
describing motion, and you studied and applied the laws of
motion. In this chapter, you will study in more detail how to
choose and define frames of reference. Then, you will extend
your knowledge of the dynamics of motion in a straight line.
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MULTI
LAB

Thinking Physics

TARGET SKILLS
e Predicting
¢ ldentifying variables
e Analyzing and interpreting

Suspended Spring

Tape a plastic cup to one end of a short
section of a large-diameter spring, such as
a Slinky™. Hold the other end of the spring
hlgh enough so that the plastic cup is at least
1 m above the floor. Before you
release the spring, predict the
exact motion of the cup
from the instant that it is
released until the moment
that it hits the floor. While
your partner watches the
cup closely from a kneel-
- ing position, release the
'.fb‘ top of the spring. Observe
the motion of the cup.

Analyze and Conclude

1. Describe the motion of the cup and the
lower end of the spring. Compare the
motion to your prediction and describe
any differences.

2. Is it possible for any unsupported object
to be suspended in midair for any length
of time? Create a detailed explanation to
account for the behaviour of the cup at the
moment at which you released the top of
the spring.

3. Athletes and dancers sometimes seem to
be momentarily suspended in the air.

How might the motion of these athletes
be related to the spring’s movement in

this lab?

Thought Experiments

Without discussing the following questions
with anyone else, write down your answers.

1. Student A and
Student B sit in
identical office
chairs facing
each other, as
illustrated.
Student A, who
is heavier than Student B, suddenly push-
es with his feet, causing both chairs to
move. Which of the following occurs?

(a) Neither student applies a force to the
other.

(b) A exerts a force that is applied to B,
but A experiences no force.

(c) Each student applies a force to the
other, but A exerts the larger force.

(d) The students exert the same amount
of force on each other.

2. A golf pro drives a ball through the air.
What force(s) is/are acting on the golf ball
for the entirety of its flight?

(a) force of gravity only

(b) force of gravity and the force of
the “hit”

(¢) force of gravity and the force of air
resistance

(d) force of gravity, the force of the “hit,”
and the force of air resistance

3. A photographer
accidentally drops ”

<
s

a camera out of a A’
small airplane as /
it flies horizontally. /

As seen from the 4
ground, which path would the camera
most closely follow as it fell?
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Analyze and Conclude

Tally the class results. As a class, discuss the
answers to the questions.
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Inertia and Frames
of Reference

SECTION S—m—e—
EXPECTATIONS

* Describe and distinguish
between inertial and non-
inertial frames of reference.

* Define and describe the
concept and units of mass.

* Investigate and analyze
linear motion, using vectors,
graphs, and free-body
diagrams.

KEY

TERMS
* inertia
e inertial mass
e gravitational mass
* coordinate system
e frame of reference
e inertial frame of reference

e non-inertial frame of
reference

e fictitious force

Imagine watching a bowling ball sitting still in the rack. Nothing
moves; the ball remains totally at rest until someone picks it up
and hurls it down the alley. Galileo Galilei (1564—1642) and later
Sir Isaac Newton (1642-1727) attributed this behaviour to the
property of matter now called inertia, meaning resistance to
changes in motion. Stationary objects such as the bowling ball
remain motionless due to their inertia.

Now picture a bowling ball rumbling down the alley.
Experience tells you that the ball might change direction and, if
the alley was long enough, it would slow down and eventually
stop. Galileo realized that these changes in motion were due to
factors that interfere with the ball’s “natural” motion. Hundreds
of years of experiments and observations clearly show that Galileo
was correct. Moving objects continue moving in the same direc-
tion, at the same speed, due to their inertia, unless some external
force interferes with their motion.

m You assume that an inanimate object such as a bowling ball
will remain stationary until someone exerts a force on it. Galileo and
Newton realized that this “lack of motion” is a very important property
of matter.

Analyzing Forces

Newton refined and extended Galileo’s ideas about inertia and
straight-line motion at constant speed — now called “uniform
motion.”

NEWTON'S FIRST LAW: THE LAW OF INERTIA

An obiject at rest or in uniform motion will remain at rest or in
uniform motion unless acted on by an external force.

6 MHR e Unit 1 Forces and Motion: Dynamics



Newton’s first law states that a force is required to change an
object’s uniform motion or velocity. Newton’s second law then
permits you to determine how great a force is needed in order to
change an object’s velocity by a given amount. Recalling that
acceleration is defined as the change in velocity, you can state
Newton’s second law by saying, “The net force (F) required to
accelerate an object of mass m by an amount (@) is the product

LANGUAGE LINK

The Latin root of inertia means
“sluggish” or “inactive.” An inertial
guidance systemrelies on a gyro-
scope, a “sluggish” mechanical device
that resists a change in the direction

of motion. What does this suggest
about the chemical properties of an
inert gas?

of the mass and acceleration.”

NEWTON'S SECOND LAW

The word equation for Newton’s second law is: Net force is
the product of mass and acceleration.

—_N\
—_\
F = ma

QuantitySymbol Sl unit

force id N (newtons)
mass m kg (kilograms)
acceleration a Ez (metres per second

squared)

Unit analysis

metres) m _kg-m

second? kgz == =N

(mass)(acceleration) = (kilogram) ( s .

Note: The force (ﬁ) in Newton’s second law refers to the
vector sum of all of the forces acting on the object.

Inertial Mass

When you compare the two laws of motion, you discover that the
first law identifies inertia as the property of matter that resists
a change in its motion; that is, it resists acceleration. The second
law gives a quantitative method of finding acceleration, but it does
not seem to mention inertia. Instead, the second law indicates
that the property that relates force and acceleration is mass.
Actually, the mass (m) used in the second law is correctly
described as the inertial mass of the object, the property that
resists a change in motion. As you know, matter has another prop-
erty — it experiences a gravitational attractive force. Physicists
refer to this property of matter as its gravitational mass. Physicists
never assume that two seemingly different properties are related
without thoroughly studying them. In the next investigation, you
will examine the relationship between inertial mass and gravita-
tional mass.

Chapter 1 Fundamentals of Dynamics ¢ MHR



INVESTIGATION 1A

Measuring Inertial Mass

Problem

Is there a direct relationship between an object’s
inertial mass and its gravitational mass?

Hypothesis
Formulate an hypothesis about the relationship

between inertial mass and its gravitational mass.

Equipment

m dynamics cart

m pulley and string

m [aboratory balance

m standard mass (about 500 g)

m metre stick and stopwatch or motion sensor

m unit masses (six identical objects, such as small
C-clamps)

m unknown mass (measuring between one and six unit
masses, such as a stone)

Procedure

1. Arrange the pulley, string, standard mass,
and dynamics cart on a table, as illustrated.

dynamics
cart

\

15

pulley

standard
mass

2. Set up your measuring instruments to deter-
mine the acceleration of the cart when it is
pulled by the falling standard mass. Find
the acceleration directly by using computer
software, or calculate it from measurements
of displacement and time.

3. Measure the acceleration of the empty cart.

8 MHR e Unit 1 Forces and Motion: Dynamics

10.

1.

TARGET SKILLS
¢ Hypothesizing
¢ Performing and recording
¢ Analyzing and interpreting

. Add unit masses one at a time and measure

the acceleration several times after each
addition. Average your results.

. Graph the acceleration versus the number of

unit inertial masses on the cart.

. Remove the unit masses from the cart and

replace them with the unknown mass, then
measure the acceleration of the cart.

. Use the graph to find the inertial mass of the

unknown mass (in unit inertial masses).

. Find the gravitational mass of one unit of

inertial mass, using a laboratory balance.

. Add a second scale to the horizontal axis of

your graph, using standard gravitational mass
units (kilograms).

Use the second scale on the graph to predict
the gravitational mass of the unknown mass.

Verify your prediction: Find the unknown’s
gravitational mass on a laboratory balance.

Analyze and Conclude

1.

Based on your data, are inertial and
gravitational masses equal, proportional,
or independent?

. Does your graph fit a linear, inverse, expo-

nential, or radical relationship? Write the
relationship as a proportion (a « 7).

. Write Newton’s second law. Solve the

expression for acceleration. Compare this
expression to your answer to question 2.
What inferences can you make?

. Extrapolate your graph back to the vertical

axis. What is the significance of the point at
which your graph now crosses the axis?

. Verify the relationship you identified in

question 2 by using curve-straightening
techniques (see Skill Set 4, Mathematical
Modelling and Curve Straightening). Write a
specific equation for the line in your graph.



Over many years of observations and investigations, physicists
concluded that inertial mass and gravitational mass were two
different manifestations of the same property of matter. Therefore,
when you write m for mass, you do not have to specify what type
of mass it is.

Action-Reaction Forces

Newton’s first and second laws are sufficient for explaining and
predicting motion in many situations. However, you will discover
that, in some cases, you will need Newton’s third law. Unlike

the first two laws that focus on the forces acting on one object,
Newton’s third law considers two objects exerting forces on each
other. For example, when you push on a wall, you can feel the
wall pushing back on you. Newton’s third law states that this
condition always exists — when one object exerts a force on
another, the second force always exerts a force on the first. The
third law is sometimes called the “law of action-reaction forces.”

NEWTON'S THIRD LAW

For every action force on an object (B) due to another object
(A), there is a reaction force, equal in magnitude but opposite
in direction, on object A, due to object B.

N —_
FAonB = _FBonA

To avoid confusion, be sure to note that the forces described in
Newton’s third law refer to two different objects. When you apply
Newton’s second law to an object, you consider only one of these
forces — the force that acts on the object. You do not include
any forces that the object itself exerts on something else. If this
concept is clear to you, you will be able to solve the “horse-cart
paradox” described below.

e Conceptual Problem

e The famous horse-cart paradox asks, “If the cart is pulling on
the horse with a force that is equal in magnitude and opposite in
direction to the force that the horse is exerting on the cart, how
can the horse make the cart move?” Discuss the answer with a
classmate, then write a clear explanation of the paradox.

Chapter 1 Fundamentals of Dynamics ¢ MHR



TARGET SKILLS

ocuick B:ELEERVEL * Initiating and planning
| LAB e Performing and recording
e Analyzing and interpreting

Sometimes it might not seem as though an
object on which you are pushing is exhibiting
any type of motion. However, the proper appa-
ratus might detect some motion. Prove that you
can move — or at least, bend — a wall.

Do not look into the laser.

Glue a small mirror to a 5 cm T-head dissect-
ing pin. Put a textbook on a stool beside the
wall that you will attempt to bend. Place the

pin-mirror assembly on the edge of the textbook.

As shown in the diagram, attach a metre stick to
the wall with putty or modelling clay and rest
the other end on the pin-mirror assembly. The
pin-mirror should act as a roller, so that any
movement of the metre stick turns the mirror
slightly. Place a laser pointer so that its beam
reflects off the mirror and onto the opposite
wall. Prepare a linear scale on a sheet of paper
and fasten it to the opposite wall, so that you
can make the required measurements.

opposite wall wall

poster putty

rod or metre stick \

s s
. I .
dissecting

pin

I\

. textbook
mirror

Push hard on the wall near the metre stick and
observe the deflection of the laser spot. Measure

m the radius of the pin (r)
m the deflection of the laser spot (S)

m the distance from the mirror to the opposite
wall (R)

10 MHR e Unit 1 Forces and Motion: Dynamics

Analyze and Conclude

1. Calculate the extent of the movement (s) —

or how much the wall “bent” — using the
formula s = £2.
2R

2. If other surfaces behave as the wall does,
list other situations in which an apparently
inflexible surface or object is probably
moving slightly to generate a resisting or
supporting force.

3. Do your observations “prove” that the wall
bent? Suppose a literal-minded observer
questioned your results by claiming that you
did not actually see the wall bend, but that
you actually observed movement of the laser
spot. How would you counter this objection?

4. Is it scientifically acceptable to use a mathe-
matical formula, such as the one above,
without having derived or proved it? Justify
your response.

5. If you have studied the arc length formula in
mathematics, try to derive the formula above.
(Hint: Use the fact that the angular displace-
ment of the laser beam is actually twice the
angular displacement of the mirror.)

Apply and Extend
6. Imagine that you are explaining this experi-

ment to a friend who has not yet taken a
physics course. You tell your friend that
“When I pushed on the wall, the wall
pushed back on me.” Your friend says,
“That’s silly. Walls don’t push on people.”
Use the laws of physics to justify your
original statement.

7. Why is it logical to expect that a wall will
move when you push on it?

8. Dentists sometimes check the health of your
teeth and gums by measuring tooth mobility.
Design an apparatus that could be used to
measure tooth mobility.




Frames of Reference

In order to use Newton’s laws to analyze and predict the motion of
an object, you need a reference point and definitions of distance
and direction. In other words, you need a coordinate system. One
of the most commonly used systems is the Cartesian coordinate
system, which has an origin and three mutually perpendicular
axes to define direction.

Once you have chosen a coordinate system, you must decide
where to place it. For example, imagine that you were studying
the motion of objects inside a car. You might begin by gluing metre
sticks to the inside of the vehicle so you could precisely express
the positions of passengers and objects relative to an origin. You
might choose the centre of the rearview mirror as the origin and
then you could locate any object by finding its height above or
below the origin, its distance left or right of the origin, and its
position in front of or behind the origin. The metre sticks would
define a coordinate system for measurements within the car, as
shown in Figure 1.2. The car itself could be called the frame of
reference for the measurements. Coordinate systems are always
attached to or located on a frame of reference.

*MIXEED Establishing a coordinate system and defining a frame of
reference are fundamental steps in motion experiments.

An observer in the car’s frame of reference might describe the
motion of a person in the car by stating that “The passenger did
not move during the entire trip.” An observer who chose Earth’s

surface as a frame of reference, however, would describe the pas-
s . . . « . . COURSE CHALLENGE
senger’s motion quite differently: “During the trip, the passenger
moved 12.86 km.” Clearly, descriptions of motion depend very Reference Frames
much on the chosen frame of reference. Is there a right or wrong A desire to know your location
way to choose a frame of reference? on Earth has made GPS receivers
The answer to the above question is no, there is no right or very popular. Discussion about

location requires the use of

wrong choice for a frame of reference. However, some frames of
frames of reference concepts.

reference make calculations and predictions much easier than

. . ) . Ideas about frames of reference
do others. Think again about the coordinate system in the car. and your Course Challenge are
Imagine that you are riding along a straight, smooth road at a cued on page 603 of this text.
constant velocity. You are almost unaware of any motion. Then

Chapter 1 Fundamentals of Dynamics ¢ MHR 11



g PHYSICS FILE oy

Albert Einstein used the equiva-
lence of inertial and gravitational
mass as a foundation of his
general theory of relativity,
published in 1916. According to
Einstein’s principle of equiva-
lence, if you were in a laboratory
from which you could not see
outside, you could not make

any measurements that would
indicate whether the laboratory
(your frame of reference) was
stationary on Earth’s surface or
in space and accelerating at a

value that was locally equal to g.

GIMEED The crosses on the

car seat and the dots on the
passenger’s shoulder represent
the changing locations of the car
and the passenger at equal time
intervals. In the first three frames,
the distances are equal, indicating
that the car and passenger are
moving at the same velocity. In
the last two frames, the crosses
are closer together, indicating that
the car is slowing. The passenger,
however, continues to move at
the same velocity until stopped
by a seat belt.

the driver suddenly slams on the brakes and your upper body falls
forward until the seat belt stops you. In the frame of reference of
the car, you were initially at rest and then suddenly began to
accelerate.

According to Newton’s first law, a force is necessary to cause a
mass — your body — to accelerate. However, in this situation you
cannot attribute your acceleration to any observable force: No
object has exerted a force on you. The seat belt stopped your
motion relative to the car, but what started your motion? It would
appear that your motion relative to the car did not conform to
Newton’s laws.

The two stages of motion during the ride in a car — moving
with a constant velocity or accelerating — illustrate two classes of
frames of reference. A frame of reference that is at rest or moving
at a constant velocity is called an inertial frame of reference.

When you are riding in a car that is moving at a constant
velocity, motion inside the car seems similar to motion inside a
parked car or even in a room in a building. In fact, imagine that
you are in a laboratory inside a truck’s semitrailer and you cannot
see what is happening outside. If the truck and trailer ran perfectly
smoothly, preventing you from feeling any bumps or vibrations,
there are no experiments that you could conduct that would allow
you to determine whether the truck and trailer were at rest or
moving at a constant velocity. The law of inertia and Newton’s
second and third laws apply in exactly the same way in all inertial
frames of reference.

Now think about the point at which the driver of the car abrupt-
ly applied the brakes and the car began to slow. The velocity was
changing, so the car was accelerating. An accelerating frame of
reference is called a non-inertial frame of reference. Newton’s
laws of motion do not apply to a non-inertial frame of reference.
By observing the motion of the car and its occupant from outside
the car (that is, from an inertial frame of reference, as shown in
Figure 1.3), you can see why the law of inertia cannot apply.

—

In the first three frames, the passenger’s body and the car are
moving at the same velocity, as shown by the cross on the car seat
and the dot on the passenger’s shoulder. When the car first begins
to slow, no force has yet acted on the passenger. Therefore, his

12 MHR e Unit 1 Forces and Motion: Dynamics



body continues to move with the same constant velocity until a
force, such as a seat belt, acts on him. When you are a passenger,
you feel as though you are being thrown forward. In reality, the car
has slowed down but, due to its own inertia, your body tries to
continue to move with a constant velocity.

Since a change in direction is also an acceleration, the same
situation occurs when a car turns. You feel as though you are
being pushed to the side, but in reality, your body is attempting to
continue in a straight line, while the car is changing its direction.

INERTIAL AND NON-INERTIAL FRAMES OF REFERENCE

An inertial frame of reference is one in which Newton’s first
and second laws are valid. Inertial frames of reference are at
rest or in uniform motion, but they are not accelerating.

A non-inertial frame of reference is one in which Newton’s
first and second laws are not valid. Accelerating frames of
reference are always non-inertial.

Clearly, in most cases, it is easier to work in an inertial frame of
reference so that you can use Newton’s laws of motion. However,
if a physicist chooses to work in a non-inertial frame of reference
and still apply Newton’s laws of motion, it is necessary to invoke
hypothetical quantities that are often called fictitious forces:
inertial effects that are perceived as “forces” in non-inertial frames
of reference, but do not exist in inertial frames of reference.

e Conceptual Problem

W PHYSICS FILE g

e Passengers in a high-speed elevator feel as though they are being Earth and everything on it are in
pressed heavily against the floor when the elevator starts moving continual circular motion. Earth
up. After the elevator reaches its maximum speed, the feeling is rotating on its axis, travelling
disappears. around the Sun and circling the

centre of the galaxy along with

the rest of the solar system. The
direction of motion is constantly

(a) When do the elevator and passengers form an inertial
frame of reference? A non-inertial frame of reference?

(b) Before the elevator starts moving, what forces are acting on changing, which means the
the passengers? How large is the external (unbalanced) force? motion is accelerated. Earth is a
How do you know? non-inertial frame of reference,

and large-scale phenomena such
as atmospheric circulation are
greatly affected by Earth’s contin-

() Is a person standing outside the elevator in an inertial or
non-inertial frame of reference?

(d) Suggest the cause of the pressure the passengers feel when ual acceleration. In laboratory
the elevator starts to move upward. Sketch a free-body experiments with moving objects,
diagram to illustrate your answer. however, the effects of Earth'’s

rotation are usually not

(e) Is the pressure that the passengers feel in part (d) a fictitious
force? Justify your answer. ®

detectable.

Chapter 1 Fundamentals of Dynamics ¢ MHR 13



Concept Organizer

at rest

Newton's laws
of motion

constant I
velocity apply

Some amusement park rides make you feel as though you are
being thrown to the side, although no force is pushing you
outward from the centre. Your frame of reference is moving
rapidly along a curved path and therefore it is accelerating.
You are in a non-inertial frame of reference, so it seems as
though your motion is not following Newton’s laws of motion.

inertial frame
of reference

Newton'’s laws

= N

non-inertial frame b
r]:zr::eT:n(t):L changing of reference ;
velocity Newton's laws

do not apply

m Section Review

m You can determine the nature of a

frame of reference by analyzing its
acceleration.

1. State Newton’s first law in two different
ways.

2. @ Identify the two basic situations that
Newton'’s first law describes and explain how
one statement can cover both situations.

3. State Newton’s second law in words and
symbols.

4. @D A stage trick involves covering a table
with a smooth cloth and then placing dinner-
ware on the cloth. When the cloth is sudden-
ly pulled horizontally, the dishes “magically”
stay in position and drop onto the table.

(a) Identify all forces acting on the dishes
during the trick.

(b) Explain how inertia and frictional forces
are involved in the trick.

5. Give an example of an unusual frame
of reference used in a movie or a television
program. Suggest why this viewpoint was
chosen.

6. Identify the defining characteristic of
inertial and non-inertial frames of reference.
Give an example of each type of frame of
reference.

UNIT PROJECT PREP

7. @ In what circumstances is it necessary to
invoke ficticious forces in order to explain
motion? Why is this term appropriate to
describe these forces?

8. @ Compare inertial mass and gravitational
mass, giving similarities and differences.

9. @ Why do physicists, who take pride in
precise, unambiguous terminology, usually

speak just of “mass,” rather than distinguish-

ing between inertial and gravitational mass?

m What frame of reference would be the best
choice for measuring and analyzing the
performance of your catapult?

m What forces will be acting on the payload of
your catapult when it is being accelerated?
When it is flying through the air?

m How will the inertia of the payload affect
its behaviour? How will the mass of the
payload affect its behaviour?

Test your ideas using a simple elastic band or
slingshot.

Take appropriate safety precautions
before any tests. Use eye protection.

14 MHR e Unit 1 Forces and Motion: Dynamics
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Analyzing Motion

The deafening roar of the engine of a competitor’s tractor conveys
the magnitude of the force that is applied to the sled in a tractor-
pull contest. As the sled begins to move, weights shift to increase
frictional forces. Despite the power of their engines, most tractors
are slowed to a standstill before reaching the end of the 91 m
track. In contrast to the brute strength of the tractors, dragsters
“sprint” to the finish line. Many elements of the two situations
are identical, however, since forces applied to masses change the
linear (straight-line) motion of a vehicle.

In the previous section, you focussed on basic dynamics —
the cause of changes in motion. In this section, you will analyze
kinematics — the motion itself — in more detail. You will
consider objects moving horizontally in straight lines.

Kinematic Equations

To analyze the motion of objects quantitatively, you will use the
kinematic equations (or equations of motion) that you learned in
previous courses. The two types of motion that you will analyze
are uniform motion — motion with a constant velocity — and
uniformly accelerated motion — motion under constant accelera-
tion. When you use these equations, you will apply them to only
one dimension at a time. Therefore, vector notations will not be
necessary, because positive and negative signs are all that you
will need to indicate direction. The kinematic equations are
summarized on the next page, and apply only to the type of
motion indicated.

"

.
b

\

@GIEEED 1n a tractor pull, vehicles develop up to 9000 horsepower
to accelerate a sled, until they can no longer overcome the constantly
increasing frictional forces. Dragsters, on the other hand, accelerate right
up to the finish line.

ot

SECTION ™

EXPECTATIONS

* Analyze, predict, and explain
linear motion of objects in
horizontal planes.

* Analyze experimental data to
determine the net force acting
on an object and its resulting
motion.

KEY

TERMS
e dynamics
e kinematics
e uniform motion
e uniformly accelerated motion
e free-body diagram
* frictional forces
* coefficient of static friction

e coefficient of kinetic friction

L%y,
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Uniform motion

m definition of velocity = AA—CtI
m Solve for displacement in terms of Ad = vAt
velocity and time.
Uniformly accelerated motion
m definition of acceleration a= i—‘;
or
=2
VY
m Solve for final velocity in terms of
initial velocity, acceleration, and
time interval. Vo = vy + aAt
m displacement in terms of initial velocity,
final velocity, and time interval Ad = WM
m displacement in terms of initial velocity,
acceleration, and time interval Ad = vAL + %aAl‘2
m final velocity in terms of initial velocity,
acceleration, and
displacement Vi = v+ 2aAd

e Conceptual Problem

e The equations above are the most fundamental kinematic
equations. You can derive many more equations by making
combinations of the above equations. For example, it is some-
times useful to use the relationship Ad = v,At — %aAtZ. Derive
this equation by manipulating two or more of the equations
above. (Hint: Notice that the equation you need to derive is very
similar to one of the equations in the list, with the exception
that it has the final velocity instead of the initial velocity. What
other equation can you use to eliminate the initial velocity from
the equation that is similar to the desired equation?)

Combining Dynamics and Kinematics

When analyzing motion, you often need to solve a problem in two
steps. You might have information about the forces acting on an

ELECTRONIC object, which you would use to find the acceleration. In the next
LEARNING PARTNER . . .

step, you would use the acceleration that you determined in order
Refer to your Electronic Learning to calculate some other property of the motion. In other cases, you
Partner to enhance your under- might analyze the motion to find the acceleration and then use the

standing of acceleration and

ity acceleration to calculate the force applied to a mass. The following
velocity.

sample problem will illustrate this process.
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SAMPLE PROBLEM

Finding Velocity from Dynamics Data

In television picture tubes and computer monitors (cathode ray tubes),
light is produced when fast-moving electrons collide with phosphor
molecules on the surface of the screen. The electrons (mass 9.1 X 103! kg)
are accelerated from rest in the electron “gun” at the back of the vacuum
tube. Find the velocity of an electron when it exits the gun after experi-
encing an electric force of 5.8 x 107> N over a distance of 3.5 mm.

Conceptualize the Problem

m The electrons are moving horizontally, from the back to the front of the
tube, under an electric force.

m The force of gravity on an electron is exceedingly small, due to the
electron’s small mass. Since the electrons move so quickly, the time
interval of the entire flight is very short. Therefore, the effect of the force
of gravity is too small to be detected and you can consider the electric
force to be the only force affecting the electrons.

m Information about dynamics data allows you to find the electrons’
acceleration.

m Each electron is initially at rest, meaning that the initial velocity is zero.

m Given the acceleration, the equations of motion lead to other variables
of motion.

m Let the direction of the force, and therefore the direction of the accelera-
tion, be positive.

Identify the Goal
The final velocity, v,, of an electron when exiting the electron gun

Identify the Variables and Constants

Known Implied Unknown
m,=9.1x107"kg vi=0 % a
F=58x10"N 1%

Ad =3.5x 102 m

Develop a Strategy
Apply Newton’s second law to find

the net force. F = g
Write Newton’s second law in terms . F
of acceleration. a=n
Substitute and solve. Fo 158X 105N
9.1 x 1031 kg
kﬁ is equivalent to 2. aT=6.374 x 10 %[toward the front of tube]
g s

continued
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continued from previous page

Apply the kinematic equation that vy = vi + 2aAd
relate?, initial veloc1tyi accelerat.lon, V2=0+ 2(6.374 % 1015 22)(3'5 « 10~ m)
and displacement to final velocity. s

v, = 6.67 967 x 10° %

Vs = 6.7 X 106%

The final velocity of the electrons is about 6.7 x 10 m/s in the direction
of the applied force.

Validate the Solution

Electrons, with their very small inertial mass, could be expected to reach

high speeds. You can also solve the problem using the concepts of work and

energy that you learned in previous courses. The work done on the electrons

was converted into kinetic energy, so W = FAd = %mvz. Therefore,

v= [2FAd \/2(5‘8 x10 P N)3.5 X 107 m) _ g 679 x 108 X = 6.7 x 10° 2.
m 9.1 x 10~°! kg s s

Obtaining the same answer by two different methods is a strong validation
of the results.

PRACTICE PROBLEMS

1. A linear accelerator accelerated a germanium 2. A hockey stick exerts an average force of
ion (m = 7.2 x 1072° kg) from rest to a 39 N on a 0.20 kg hockey puck over a
velocity of 7.3 x 10° m/s over a time interval displacement of 0.22 m. If the hockey puck
of 5.5 x 107® s. What was the magnitude started from rest, what is the final velocity of
of the force that was required to accelerate the puck? Assume that the friction between
the ion? the puck and the ice is negligible.

Determining the Net Force

In almost every instance of motion, more than one force is acting
on the object of interest. To apply Newton’s second law, you need
to find the resultant force. A free-body diagram is an excellent tool
that will help to ensure that you have correctly identified and
combined the forces.

To draw a free-body diagram, start with a dot that represents
the object of interest. Then draw one vector to represent each force
acting on the object. The tails of the vector arrows should all start
at the dot and indicate the direction of the force, with the arrow-
head pointing away from the dot. Study Figure 1.6 to see how a
free-body diagram is constructed. Figure 1.6 (A) illustrates a crate
being pulled across a floor by a rope attached to the edge of the
crate. Figure 1.6 (B) is a free-body diagram representing the forces
acting on the crate.

Two of the most common types of forces that influence the
motion of familiar objects are frictional forces and the force of
gravity. You will probably recall from previous studies that the
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magnitude of the force of gravity acting on objects on or near
Earth’s surface can be expressed as F' = mg, where g (which is
often called the acceleration due to gravity) has a value 9.81 m/s?.
Near Earth’s surface, the force of gravity always points toward the
centre of Earth.

Whenever two surfaces are in contact, frictional forces oppose
any motion between them. Therefore, the direction of the friction-
al force is always opposite to the direction of the motion. You
might recall from previous studies that the magnitudes of friction-
al forces can be calculated by using the equation Fy = uFy. The
normal force in this relationship (Fy) is the force perpendicular
to the surfaces in contact. You might think of the normal force as
the force that is pressing the two surfaces together. The nature of
the surfaces and their relative motion determines the value of
the coefficient of friction (u). These values must be determined
experimentally. Some typical values are listed in Table 1.1.

Table 1.1 Coefficients of Friction for Some Common Surfaces

Coefficient of
kinetic friction

Coefficient of

static friction

(us) ()
rubber on dry, solid surfaces 1-4 1
rubber on dry concrete 1.00 0.80
rubber on wet concrete 0.70 0.50
glass on glass 0.94 0.40
steel on steel (unlubricated) 0.74 0.57
steel on steel (lubricated) 0.15 0.06
wood on wood 0.40 0.20
ice on ice 0.10 0.03
Teflon™ on steel in air 0.04 0.04
ball bearings (lubricated) <0.01 <0.01
joint in humans 0.01 0.003

If the objects are not moving relative to each other, you would
use the coefficient of static friction (u;). If the objects are moving,
the somewhat smaller coefficient of kinetic friction (uy) applies to
the motion.

As you begin to solve problems involving several forces, you
will be working in one dimension at a time. You will select a
coordinate system and resolve the forces into their components
in each dimension. Note that the components of a force are not
vectors themselves. Positive and negative signs completely
describe the motion in one dimension. Thus, when you apply
Newton’s laws to the components of the forces in one dimension,
you will not use vector notations.

B
Py
Fy
T
Fy

CTMIEXD (A) The forces of

gravity (Fy), friction (Fy), the
normal force of the floor ( Fy),
and the applied force of the rope
( F,) all act on the crate at the
same time. (B) The free-body
diagram includes only those
forces acting on the crate and
none of the forces that the crate
exerts on other objects.

——

&r.
LEARNING PARTNER ;

ELECTRONIC

Refer to your Electronic Learning
Partner to enhance your under-
standing of forces and vectors.
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Another convention used in this textbook involves writing the
sum of all of the forces in one dimension. In the first step, when
the forces are identified as, for example, gravitational, frictional,
or applied, only plus signs will be used. Then, when information
about that specific force is inserted into the calculation, a positive
or negative sign will be included to indicate the direction of
that specific force. Watch for these conventions in sample
problems.

SAMPLE PROBLEM

Working with Three Forces

To move a 45 kg wooden crate across a wooden floor
(# = 0.20), you tie a rope onto the crate and pull on the
rope. While you are pulling the rope with a force of
115 N, it makes an angle of 15° with the horizontal.

How much time elapses between the time at which the

crate just starts to move and the time at which you are

pulling it with a velocity of 1.4 m/s?

Conceptualize the Problem

m To start framing this problem, draw a free-body diagram. 7
N
®m Motion is in the horizontal direction, so the net horizontal
force is causing the crate to accelerate. - ¥,
m Let the direction of the motion be the positive horizontal Fy =—
direction.
m There is no motion in the vertical direction, so the vertical .
acceleration is zero. If the acceleration is zero, the net vertical Fy
force must be zero. This information leads to the value of the
normal force. Let “up” be the positive vertical direction. ;\
N
m Since the beginning of the time interval in question is the N
instant at which the crate begins to move, the coefficient of N oy 15 Fa
kinetic friction applies to the motion. i hioo Vo Fox x
® Once the acceleration is found, the kinematic equations allow
you to determine the values of other quantities involved in N
the motion. Fe

Identify the Goal

The time, At, required to reach a velocity of 1.4 m/s

Identify the Variables

Known Implied Unknown

Fo=+115N m=45kg vizo% Fy @
— S m —

6=15 Vf:1‘4? g=9.81£2 ig At
L =10.20 s F
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Develop a Strategy

To find the normal force, apply Newton’s
second law to the vertical forces. Analyze the
free-body diagram to find all of the vertical
forces that act on the crate.

To find the acceleration, apply Newton’s sec-

ond law to the horizontal forces. Analyze the

free-body diagram to find all of the horizontal
forces that act on the crate.

To find the time interval, use the kinematic
equation that relates acceleration, initial veloc-
ity, final velocity, and time.

—_

F =ma

Fa(vertical) + Fg + FN = Ima
F; = -mg

Fa(vertical) — mg + FN = ma

FN =ma+ mg — Fa[vertical)

Fx =0 + (45 kg) <9.81 %) — (115 N) sin 15°
Fx = 441.45 N — 29.76 N

Fn=411.69 N
T =ma
Fa(horizontal) + Ff =ma
Ff= _,UFN
a= Fa(horizontal) - ,UFN
m
_ (]15 N) cos15° — (0.20](411.69 N)
45 kg
7= 111.08 N — 82.34 N
45 kg
a=0.6387 %
_ir—v
Y’
At= =T
a
o l4Z-0D
0.6387
At=2.19s
At=2.2s

You will be pulling the crate at 1.4 m/s at 2.2 s after the crate begins to move.

Validate the Solution

N
Check the units for acceleration: — = —
kg kg

= % The units are correct. A velocity

of 1.4 m/s is not very fast, so you would expect that the time interval required to
reach that velocity would be short. The answer of 2.2 s is very reasonable.

PRACTICE PROBLEMS

3. In a tractor-pull competition, a tractor
applies a force of 1.3 kN to the sled, which
has mass 1.1 x 10* kg. At that point, the co-
efficient of kinetic friction between the sled
and the ground has increased to 0.80. What
is the acceleration of the sled? Explain the
significance of the sign of the acceleration.

4. A curling stone with mass 20.0 kg leaves the
curler’s hand at a speed of 0.885 m/s. It slides
31.5 m down the rink before coming to rest.
(a) Find the average force of friction acting on

the stone.

(b) Find the coefficient of kinetic friction

between the ice and the stone.
continued P
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continued from previous page

5. Pushing a grocery cart with a force of 95 N, (a) Calculate the horizontal force acting on
applied at an angle of 35" down from the the skateboard.
horizontal, makes the cart travel at a constant (b) Calculate the initial acceleration of the
speed of 1.2 m/s. What is the frictional force skateboard.

acting on the cart?
7. A mountain bike with mass 13.5 kg, with

6. A man walking with the aid of a cane a rider having mass 63.5 kg, is travelling at

approaches a skateboard (mass 3.5 kg) lying 32 km/h when the rider applies the brakes,
on the sidewalk. Pushing with an angle of locking the wheels. How far does the bike
60° down from the horizontal with his cane, travel before coming to a stop if the coeffi-
he applies a force of 115 N, which is enough cient of friction between the rubber tires and
to roll the skateboard out of his way. the asphalt road is 0.60?

TARGET SKILLS
GRIIEN'd Best Angle for  Predicting
LAB Pu"ing a Block e Performing and recording

¢ Analyzing and interpreting

Set two 500 g masses on a block of wood. Analyze and Conclude
Attach a rope and drag the block along a table. If 1. Identify from your graph the “best” angle at
the rope makes a steeper angle with the surface, which to move the block.

friction will be reduced (why?) and the block

will slide more easily. Predict the angle at 2. How close did your prediction come to the

which the block will move with least effort. experimental value?

Attach a force sensor to the rope and measure 3. Identify any uncontrolled variables in the
the force needed to drag the block at a constant experiment that could be responsible for
speed at a variety of different angles. Graph some error in your results.

our results to test your prediction.
Y yourp 4. In theory, the “best” angle is related to the

coefficient of static friction between the
surface and the block: tan @pest = ts. Use your
------- results to calculate the coefficient of static
friction between the block and the table.

side view

5. What effect does the horizontal component
of the force have on the block? What effect
does the vertical component have on the
block?

top view 6. Are the results of this experiment relevant to

competitors in a tractor pull, such as the one
described in the text and photograph caption
at the beginning of this section? Explain your
answer in detail.
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Applying Newton’s Third Law

Examine the photograph of the tractor-trailer in Figure 1.7 and
think about all of the forces exerted on each of the three sections
of the vehicle. Automotive engineers must know how much force
each trailer hitch needs to withstand. Is the hitch holding the sec-
ond trailer subjected to as great a force as the hitch that attaches
the first trailer to the truck?

TS IVAY This truck and its two trailers move as one unit. The velocity
and acceleration of each of the three sections are the same. However, each
section is experiencing a different net force.

To analyze the individual forces acting on each part of a train
of objects, you need to apply Newton’s third law to determine the
force that each section exerts on the adjacent section. Study the
following sample problem to learn how to determine all of the
forces on the truck and on each trailer. These techniques will
apply to any type of train problem in which the first of several
sections of a moving set of objects is pulling all of the sections
behind it.

SAMPLE PROBLEM

Forces on Connected Objects

A tractor-trailer pulling two trailers starts
from rest and accelerates to a speed of

16.2 km/h in 15 s on a straight, level section
of highway. The mass of the truck itself (T)
is 5450 kg, the mass of the first trailer (A) is
31 500 kg, and the mass of the second trailer
(B) is 19 600 kg. What magnitude of force
must the truck generate in order to acceler-
ate the entire vehicle? What magnitude of
force must each of the trailer hitches withstand while the vehicle
is accelerating? (Assume that frictional forces are negligible in
comparison with the forces needed to accelerate the large masses.)

continued

Chapter 1 Fundamentals of Dynamics ¢ MHR 23
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Conceptualize the Problem

m The truck engine generates energy to turn the
wheels. When the wheels turn, they exert a
frictional force on the pavement. According to
Newton’s third law, the pavement exerts a
reaction force that is equal in magnitude and
opposite in direction to the force exerted by
the tires. The force of the pavement on the
truck tires, f\p onT, accelerates the entire
system.

m The truck exerts a force on trailer A.
According to Newton’s third law, the trailer
exerts a force of equal magnitude on the
truck.

m Trailer A exerts a force on trailer B, and trailer
B therefore must exert a force of equal magni-
tude on trailer A.

Identify the Goal

= Summarize all of the forces by drawing free-
body diagrams of each section of the vehicle.

trailer B trailer A truck

—_
FPonT

—_ —_ —_ N
FAonB FB onA FTonA FAonT

m The kinematic equations allow you to calcu-
late the acceleration of the system.

= Since each section of the system has the
same acceleration, this value, along with the
masses and Newton’s second law, lead to all
of the forces.

® Since the motion is in a straight line and the
question asks for only the magnitudes of the
forces, vector notations are not needed.

The force, Fpont, that the pavement exerts on the truck tires; the force, Frona, that
the truck exerts on trailer A; the force, Faong, that trailer A exerts on trailer B

Identify the Variables

Known Implied
vi = 16.2 kTm mr = 5450 kg vi=0 kTm
e 15 my = 31 500 kg

mg = 19 600 kg

Develop a Strategy

Use the kinematic equation that relates the ini-
tial velocity, final velocity, time interval, and
acceleration to find the acceleration.

Find the total mass of the truck plus trailers.

Use Newton’s second law to find the force
required to accelerate the total mass. This will
be the force that the pavement must exert on
the truck tires.

The pavement exerts 1.7 X 10* N on the truck tires.
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Unknown
a Frona  FaonT Hlotal
FPonT FAonB FBonA
Vo — V1
a =
At
Jari Jatl 1k 1000
a= (162 ?_0?><36005>( Uqﬁm)
B 15 s
a=0302
S

Mliota] = MT + A + 1B
Mioral = 5450 kg + 31 500 kg + 19 600 kg
IMiota] = 56 550 kg

—

F = ma
m
Fpont = (56 550 kg) (0.30 —2)
S
kg-m
SZ
FponT = 1.7 X 10* N

Fpont =16 965




Use Newton’s second law to find the force nec- Fpong = Mpa
essary to accelerate trailer B at 0.30 m/s%. This
is the force that the second trailer hitch must
withstand.

Faonp = (19 600 kg) (0.30 %)

Faonp = 5.88 x 10 kgs—'zm
Faonp =5.9 % 10° N

The force that the second hitch must withstand is 5.9 x 10° N.

Use Newton’s second law to find the total force FiotalonA = INad

; 2
necessary to accelerate trailer A at 0.30 m/s*. Fiowlona = (31 500 kg) (0'30 %)

FtotalonA =9.45 X ]_03 kgs—zm

FtotalonA =9.5 X 103 N

Use the free-body diagram to help write the Fiotal = Frona + FBona

expression for total (horizontal) force on

trailer A.

The force that the first hitch must withstand is Frona = Fiotalona — FBona

the force that the truck exerts on trailer A. Frona = 9.45 x 10® N — (-5.88 x 10° N)
Solve the force equation above for Frona and Frona =1.533 x 10* N

calculate the value. According to Newton’s Frona=1.5x10* N

third law, FBonA = _FAonB-

The force that the first hitch must withstand is 1.5 x 10* N.

Validate the Solution

You would expect that Fpon1 > Frona > Faonp- The calculated forces
agree with this relationship. You would also expect that the force
exerted by the tractor on trailer A would be the force necessary to
accelerate the sum of the masses of trailers A and B at 0.30 m/s?.

Frona = (31 500 kg + 19 600 kg) (0.30 S—“;) =15330N=15x10*N

This value agrees with the value above.

PRACTICE PROBLEMS

8. A 1700 kg car is towing a larger vehicle with 9. An ice skater pulls three small children, one
mass 2400 kg. The two vehicles accelerate behind the other, with masses 25 kg, 31 kg,
uniformly from a stoplight, reaching a speed and 35 kg. Assume that the ice is smooth
of 15 km/h in 11 s. Find the force needed to enough to be considered frictionless.

accelerate the connected vehicles, as well as

(a) Find the total force applied to the “train”
the minimum strength of the rope between

of children if they reach a speed of

them. 3.5 m/s in 15 s.
2400 ke 1700 kg (b) If the skater is holding onto the 25 k
Y : es‘aerls 0 '1ng.0n0 e g
=& — child, find the tension in the arms of the

next child in line.

vn=0km/h v,=15km/h
At=11s continued P
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10. A solo Arctic adventurer pulls a string of two (a) Calculate the frictional force acting on the
toboggans of supplies across level, snowy toboggans.
ground. The toboggans have masses of 95 kg (b) Find the tension in the rope attached to
and 55 kg. Applying a force of 165 N causes the second (55 kg) toboggan.

the toboggans to accelerate at 0.61 m/s?.

m Section Review

1. How is direction represented when ana- 8. An object is
lyzing linear motion? being acted on by T, »
. . ;
2 When you pull on a rope, the rope pulls fﬁrc(e; pictured in —
back on you. Describe how the rope creates ¢ diagran. A | Fe
this reaction force. (a) Could the object Fy

be accelerating

3. Explain how to calculate horizontally? Explain.

(a) the horizontal component (Fy) of a force I (b) Could the object be moving horizontally?
(b) the vertical component (Fy) of a force F Explain.
(c) the coefficient of friction (1) between 9. @ Three identical blocks, fastened together
two surfaces by a string, are pulled across a frictionless
(d) the gravitational force (F) acting on an surface by a constant force, F.
o RN
4. Define (a) a normal force and (b) the
weight of an object. (a) Compare the tension in string A to the
5, An object is being propelled horizontal- magnitude of the applied force, F.
ly by a force F. If the force doubles, use (b) Draw a free-body diagram of the forces
Newton’s second law and kinematic acting on block 2.

equations to determine the change in 10. A tall person and a short person pull

(a) the acceleration of the object on a load at different angles but with equal

(b) the velocity of the object after 10 s force, as shown.

6. A 0.30 kg lab cart is observed to acceler-
ate twice as fast as a 0.60 kg cart. Does that
mean that the net force on the more massive
cart is twice as large as the force on the
smaller cart? Explain.

1. A force F produces an acceleration a
when applied to a certain body. If the mass

of the body is doubled and the force is (a) Which person applies the greater horizon-
increased fivefold, what will be the effect tal force to the load? What effect does this
on the acceleration of the body? have on the motion of the load?

(b) Which person applies the greater vertical
force to the load? What effect does this
have on frictional forces? On the motion

of the load?
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Vertical Motion

Catapulting a diver high into the air requires a force. How large a SECTION \

force? How hard must the board push up on the diver to overcome EXPECTATIONS
her weight and accelerate her upward? After the diver leaves the « Analyze the motion of objects in
board, how long will it take before her ascent stops and she turns vertical planes.

and plunges toward the water? In this section, you will investigate
the dynamics of diving and other motions involving rising and

. . . L . terms of forces.
falling or straight-line motion in a vertical plane.

* Explain linear vertical motion in

e Solve problems and predict the

motion of objects in vertical
planes.

KEY °\\

TERMS
e apparent weight
* tension
e counterweight
e free fall
* air resistance

e terminal velocity

After the diver leaves the diving board and before she hits the
water, the most important force acting on her is the gravitational force
directed downward. Gravity affects all forms of vertical motion.

Weight versus Apparent Weight

One of the most common examples of linear vertical motion is
riding in an elevator. You experience some strange sensations
when the elevator begins to rise or descend or when it slows and
comes to a stop. For example, if you get on at the first floor and
start to go up, you feel heavier for a moment. In fact, if you are
carrying a book bag or a suitcase, it feels heavier, too. When the
elevator slows and eventually stops, you and anything you are
carrying feels lighter. When the elevator is moving at a constant
velocity, however, you feel normal. Are these just sensations that
living organisms feel or, if you were standing on a scale in the
elevator, would the scale indicate that you were heavier? You can
answer that question by applying Newton’s laws of motion to a
person riding in an elevator.

Chapter 1 Fundamentals of Dynamics ¢ MHR
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Imagine that you are standing on a scale in an eleva-

SAMPLE PROBLEM

tor, as shown in Figure 1.9. When the elevator is standing

still, the reading on the scale is your weight. Recall that
your weight is the force of gravity acting on your mass.
Your weight can be calculated by using the equation

Fy = mg, where g is the acceleration due to gravity. Vector
notations are sometimes omitted because the force due

to gravity is always directed toward the centre of Earth.

weight of Find out what happens to the reading on the scale by
Eg;lssn on studying the following sample problem.

@TMZEED When you are standing on a scale, you exert a force
normal force on the scale. According to Newton's third law, the scale must
of scale exert an equal and opposite force on you. Therefore, the reading
on person on the scale is equal to the force that you exert on it.

Apparent Weight

A 55 kg person is standing on a scale in an elevator. If the scale is
calibrated in newtons, what is the reading on the scale when the
elevator is not moving? If the elevator begins to accelerate upward
at 0.75 m/s?, what will be the reading on the scale?

Conceptualize the Problem

Start framing the problem by drawing a free-body diagram of the

person on the scale. A free-body diagram includes all of the forces Ty
P

acting on the person.

Q)

The forces acting on the person are gravity (T'\g) and the normal
force of the scale.

According to Newton’s third law, when the person exerts a force

( Fps) on the scale, it exerts an equal and opposite force ( Fgsp) on the
person. Therefore, the reading on the scale is the same as the force
that the person exerts on the scale.

e

When the elevator is standing still, the person’s acceleration is zero.

When the elevator begins to rise, the person is accelerating at the same
rate as the elevator.

Since the motion is in one dimension, use only positive and negative
signs to indicate direction. Let “up” be positive and “down” be
negative.

Apply Newton’s second law to find the magnitude of Fep.

By Newton’s third law, the magnitudes of ?\ps and T’\sp are equal to
each other, and therefore to the reading on the scale.

28 MHR e Unit 1 Forces and Motion: Dynamics



Identify the Goal

The reading on the scale, F'\sp , when the elevator is standing still and
when it is accelerating upward

Identify the Variables

Known Implied Unknown
m =55 kg g=19.81 S—H;‘ Frs  Fsp
T=+0.75 % Fy

Develop a Strategy

Apply Newton’s second law and solve for the = it

force that the scale exerts on the person. - IR
The force in Newton’s second law is the vector g & g = i
sum of all of the forces acting on the person. Fop = —f'\g + ma

|

In the first part of the problem, the acceleration Fsp =~(-mg) + ma

is zero. ?\Sp = (55 kg) (9.81 %) +0
Fop = 539.55 X8I0

S
Fep=5.4x10°N

When the elevator is not moving, the reading on the scale is 5.4 x 10? N,
which is the person’s weight.

Apply Newton’s second law to the case in =

which the elevator is accelerating upward. = N

The acceleration is positive. Fg + Fsp = ma
F\SP = _T'\g + ma

Fsp = (55 kg) (9.81 %) + (55 kg) (+0.75 Sﬂz)

Fsp = 580.8 N
Fop = 5.8 x 10° N[up]

When the elevator is accelerating upward, the reading on the scale
is 5.8 x 10* N.

Validate the Solution

When an elevator first starts moving upward, it must exert a force
that is greater than the person’s weight so that, as well as supporting
the person, an additional force causes the person to accelerate.

The reading on the scale should reflect this larger force. It does.

The acceleration of the elevator was small, so you would expect
that the increase in the reading on the scale would not increase

by a large amount. It increased by only about 7%.

continued
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PRACTICE PROBLEMS

11. A 64 kg person is standing on a scale in an
elevator. The elevator is rising at a constant

velocity but then begins to slow, with an

acceleration of 0.59 m/s*. What is the sign of
the acceleration? What is the reading on the

scale while the elevator is accelerating?

12. A 75 kg man is standing on a scale in an

elevator when the elevator begins to descend

with an acceleration of 0.66 m/s?. What is

the direction of the acceleration? What is the

reading on the scale while the elevator is
accelerating?

13. A 549 N woman is standing on a scale in
an elevator that is going down at a constant
velocity. Then, the elevator begins to slow
and eventually comes to a stop. The magni-
tude of the acceleration is 0.73 m/s*. What
is the direction of the acceleration? What is
the reading on the scale while the elevator

is accelerating?

As you saw in the problems, when you are standing on a scale
in an elevator that is accelerating, the reading on the scale is
not the same as your true weight. This reading is called your
apparent weight.

When the direction of the acceleration of the elevator is
positive — it starts to ascend or stops while descending — your
apparent weight is greater than your true weight. You feel heavier
because the floor of the elevator is pushing on you with a greater

GIZERTY Mobile construction cranes can

withstand the tension necessary to lift loads of
up to 1000 t.
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force than it is when the elevator is stationary or
moving with a constant velocity.

When the direction of the acceleration is
negative — when the elevator is rising and slows to
a stop or begins to descend — your apparent weight
is smaller than your true weight. The floor of the
elevator is exerting a force on you that is smaller
than your weight, so you feel lighter.

Tension in Ropes and Cables

While an elevator is supporting or lifting you, what

is supporting the elevator? The simple answer is
cables — exceedingly strong steel cables. Construction
cranes such the one in Figure 1.10 also use steel cables
to lift building materials to the top of skyscrapers
under construction. When a crane exerts a force on
one end of a cable, each particle in the cable exerts an
equal force on the next particle in the cable, creating
tension throughout the cable. The cable then exerts a
force on its load. Tension is the magnitude of the force
exerted on and by a cable, rope, or string. How do
engineers determine the amount of tension that these
cables must be able to withstand? They apply
Newton’s laws of motion.



To avoid using complex mathematical analyses, you can make
several assumptions about cables and ropes that support loads.
Your results will be quite close to the values calculated by
computers that are programmed to take into account all of the
non-ideal conditions. The simplifying assumptions are as follows.

m The mass of the rope or cable is so much smaller than the mass
of the load that it does not significantly affect the motion or
forces involved.

m The tension is the same at every point in the rope or cable.

m If a rope or cable passes over a pulley, the direction of the
tension forces changes, but the magnitude remains the same.
This statement is the same as saying that the pulley is friction-
less and its mass is negligible.

SAMPLE PROBLEM

Tension in a Cable

An elevator filled with people has a total mass of 2245 kg. As the elevator
begins to rise, the acceleration is 0.55 m/s?. What is the tension in the
cable that is lifting the elevator?

Conceptualize the Problem

m To begin framing the problem, draw a free-body diagram.

m The tension in the cable has the same magnitude as the force Fr
it exerts on the elevator.

= Two forces are acting on the elevator: the cable (Fr) and
gravity (Fy).

m The elevator is rising and speeding up, so the acceleration is T:‘g

upward.
m Newton’s second law applies to the problem.
m The motion is in one dimension, so let positive and negative signs

indicate direction. Let “up” be positive and “down” be negative.

Identify the Goal

The tension, Fr, in the rope

Identify the Variables

Known Implied Unknown
m = 2245 kg g =981 g Fr
@=0.55 3 [up] F,

continued
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continued from previous page
Develop a Strategy

Apply Newton’s second law and insert all of
the forces acting on the elevator. Then solve for
the tension.

Substitute values and solve.

— —
F =ma
N —_

—

Fr+ F, = nia

—_ —_
FT=—Fg+mE\

Fr= ~(~mg) + nia’

N

F = (2245 kg) (9.81 %) + (2245 kg) (0.55 %)

kg-m

Fr =23 258.2 =2

—

Fr = 2.3 x 10* N[up]

The magnitude of the tension in the cable is 2.3 x 10* N[up].

Validate the Solution

The weight of the elevator is (2245 kg)(9.81 m/s?) = 2.2 x 10* N.

The tension in the cable must support the weight of the elevator and
exert an additional force to accelerate the elevator. Therefore, you
would expect the tension to be a little larger than the weight of the
elevator, which it is.

PRACTICE PROBLEMS

14.

15.

A 32 kg child is practising climbing skills

on a climbing wall, while being belayed
(secured at the end of a rope) by a parent.
The child loses her grip and dangles from the
belay rope. When the parent starts lowering
the child, the tension in the rope is 253 N.
Find the acceleration of the child when she
is first being lowered.

A 92 kg mountain climber rappels down a
rope, applying friction with a figure eight (a
piece of climbing equipment) to reduce his
downward acceleration. The rope, which is
damaged, can withstand a tension of only
675 N. Can the climber limit his descent to a
constant speed without breaking the rope? If
not, to what value can he limit his down-
ward acceleration?
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17.

18.

. A 10.0 kg mass is hooked on a spring scale
fastened to a hoist rope. As the hoist starts
moving the mass, the scale momentarily
reads 87 N. Find

(a) the direction of motion
(b) the acceleration of the mass

(c) the tension in the hoist rope

Pulling on the strap of a 15 kg backpack, a
student accelerates it upward at 1.3 m/s?.
How hard is the student pulling on the strap?

A 485 kg elevator is rated to hold 15 people
of average mass (75 kg). The elevator cable
can withstand a maximum tension of

3.74 x 10* N, which is twice the maximum
force that the load will create (a 200% safety
factor). What is the greatest acceleration that

the elevator can have with the maximum
load?



Connected Objects

Imagine how much energy it would require to lift an elevator
carrying 20 people to the main deck of the CN Tower in
Toronto, 346 m high. A rough calculation using the equation
for gravitational potential energy (E; = mgAh), which you
learned in previous science courses, would yield a value of
about 10 million joules of energy. Is there a way to avoid
using so much energy?

Elevators are not usually simply suspended from cables.
Instead, the supporting cable passes up over a pulley and
then back down to a heavy, movable counterweight, as Q
shown in Figure 1.11. Gravitational forces acting downward 4
on the counterweight create tension in the cable. The cable
then exerts an upward force on the elevator cage. Most of
the weight of the elevator and passengers is balanced by
the counterweight. Only relatively small additional forces
from the elevator motors are needed to raise and lower
the elevator and its counterweight. Although the elevator
and counterweight move in different directions, they are
connected by a cable, so they accelerate at the same rate.

Elevators are only one of many examples of machines
that have large masses connected by a cable that runs over
a pulley. In fact, in 1784, mathematician George Atwood
(1745-1807) built a machine similar to the simplified

illustration in Figure 1.12. He used his machine to test GERZEELD Most elevators are

. . connected by a cable to a counter-
and demonstrate the laws of uniformly accelerated motion weight that moves in the opposite
and to determine the value of g, the acceleration due to direction to the elevator. A typical
gravity. The acceleration of Atwood’s machine depended counterweight has a mass that is
on g, but was small enough to measure accurately. In the the same as the mass of the empty

elevator plus about half the mass

following investigation, you will use an Atwood machine
of a full load of passengers.

to measure g.

F

F,
my t
Fg

m;

Fg

CIMIEEED An Atwood machine uses a counterweight to
reduce acceleration due to gravity.
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TARGET SKILLS
¢ Predicting
¢ Performing and recording
¢ Analyzing and interpreting

INVESTIGATION

" Atwood’s Machine

George Atwood designed his machine to demon-
strate the laws of motion. In this investigation,
you will demonstrate those laws and determine
the value of g.

Problem

How can you determine the value of g, the
acceleration due to gravity, by using an
Atwood machine?

Prediction

m Predict how changes in the difference between
the two masses will affect the acceleration of
the Atwood machine if the sum of the masses
is held constant.

Procedure
Constant Mass Difference

1. Set up a data table to record m;, m,, total

m When the difference between the two masses
in an Atwood machine is held constant,
predict how increasing the total mass (sum of
the two masses) will affect their acceleration.

Equipment

m retort stand

m clamps

m masses: 100 g (2), 20 g (1), 10 g (10), or similar identi-
cal masses, such as 1inch plate washers

m 2 plastic cups to hold masses

m [ight string

Traditional instrumentation
lab pulley
lab timer
metre stick

Probeware
Smart Pulley® or photogates or ultrasonic
range finder
motion analysis software
computer

34 MHR e Unit 1 Forces and Motion: Dynamics

mass, Ad and At (if you use traditional
equipment), and a.

. Set up an Atwood machine at the edge of a

table, so that m; = 120 g and m, = 100 g.

. Lift the heavier mass as close as possible to

the pulley. Release the mass and make the
measurements necessary for finding its
downward acceleration. Catch the mass
before it hits the floor.

m Using traditional equipment, find displace-
ment (Ad) and the time interval (At) while
the mass descends smoothly.

m Using probeware, measure velocity (v)
and graph velocity versus time. Find
acceleration from the slope of the line
during an interval when velocity was
increasing steadily.

. Increase each mass by 10 g and repeat the

observations. Continue increasing mass and
finding acceleration until you have five total
mass-acceleration data pairs.

. Graph acceleration versus total mass. Draw

a best-fit line through your data points.



Constant Total Mass
6.

10.

Set up a data table to record m;, m,, mass
difference (Am), Ad and At (if you use
traditional equipment), and a.

. Make m; = 150 g and m, = 160 g. Make

observations to find the downward accelera-
tion, using the same method as in step 3.

. Transfer one 10 g mass from m; to m,. The

mass difference will now be 30 g, but the
total mass will not have changed. Repeat
your measurements.

. Repeat step 8 until you have data for five

mass difference-acceleration pairs.

Graph acceleration versus mass difference.
Draw a best-fit line or curve through your
data points.

Analyze and Conclude

1.

Based on your graphs for step 5, what type of
relationship exists between total mass and
acceleration in an Atwood machine? Use
appropriate curve-straightening techniques

to support your answer (see Skill Set 4,
Mathematical Modelling and Curve
Straightening). Write the relationship
symbolically.

. Based on your graphs for step 10, what

type of relationship exists between

mass difference and acceleration in an
Atwood machine? Write the relationship
symbolically.

. How well do your results support your

prediction?

. String that is equal in length to the string

connecting the masses over the pulley is
sometimes tied to the bottoms of the two
masses, where it hangs suspended between
them. Explain why this would reduce

experimental errors. Hint: Consider the mass
of the string as the apparatus moves and how
that affects m; and ms.

5. Mathematical analysis shows that the accel-
eration of an ideal (frictionless) Atwood
machine is given by a = gu. Use this

my + Iy
relationship and your experimental results
to find an experimental result for g.

6. Calculate experimental error in your value
of g. Suggest the most likely causes of
experimental error in your apparatus
and procedure.

Apply and Extend

7. Start with Newton’s second law in the form

—

a= % and derive the equation for a in

question 5 above. Hint: Write F and m
in terms of the forces and masses in the
Atwood machine.
8. Using the formula a = gu for an
mq + 1y
Atwood machine, find the acceleration
when my = 2m,.

9. Under what circumstances would the accel-
eration of the Atwood machine be zero?

10. What combination of masses would make
the acceleration of an Atwood machine
equal to % g?

WEB LINK

www.mcgrawhill.ca/links/physics12

For some interactive activities involving the Atwood
machine, go to the above Internet site and click on
Web Links.
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Assigning Direction to the
Motion of Connected Objects

When two objects are connected by a flexible cable or rope that
runs over a pulley, such as the masses in an Atwood machine,
they are moving in different directions. However, as you learned
when working with trains of objects, connected objects move as
a unit. For some calculations, you need to work with the forces
acting on the combined objects and the acceleration of the
combined objects. How can you treat the pair of objects as a unit
when two objects are moving in different directions?

Since the connecting cable or rope changes only the direction of
the forces acting on the objects and has no effect on the magnitude
of the forces, you can assign the direction

of the motion as being from one end of the
Tr\gl - — *F, cable or rope to the other. You can call
B e e g— one end “negative” and the other end

Fr Fr “positive,” as shown in Figure 1.13.

When you have assigned the direc-
Fr Fr tions to a pair of connected objects, you
can apply Newton’s laws to the objects as
my + m, a unit or to each object independently.
- my my When you treat the objects as one unit,
M you must ignore the tension in the rope
Fg» because it does not affect the movement of
the combined objects. Notice that the force
exerted by the rope on one object is equal

m You can assign the bottom of the left-hand side  in magnitude and opposite in direction
of the machine to be negative and the bottom of the right- to the force exerted on the other Object.
hand side to be positive. You can then imagine the connected

. . - : . However, when you apply the laws of
objects as forming a straight line, with left as negative and . . .
right as positive. When you picture the objects as a linear TnOthIl to one ol.)]ect. at a time, you must
train, make sure that you keep the force arrows in the same include the tension in the rope, as shown

relative directions in relation to the individual objects. in the following sample problem.

SAMPLE PROBLEM

Motion of Connected Objects

An Atwood machine is made of two objects
connected by a rope that runs over a pulley.
The object on the left (m,) has a mass of

8.5 kg and the object on the right (m,)

has a mass of 17 kg. 8.5kg | my

(a) What is the acceleration of the masses? My 17 kg

(b) What is the tension in the rope? IR Fr Fr N
Fg1<—§ ------ »-i--< ------ §—> ng

36 MHR e Unit 1 Forces and Motion: Dynamics



Conceptualize the Problem

m To start framing the problem, draw free-body diagrams.
Draw one diagram of the system moving as a unit and
diagrams of each of the two individual objects.

o

—_
1 FgZ

m Let the negative direction point from the centre to the My + My

8.5 kg mass and the positive direction point from the
centre to the 17 kg mass.

=

1 Fr

el

2

m Both objects move with the same acceleration.
m,

m The force of gravity acts on both objects. - +

m The tension is constant throughout the rope.

m The rope exerts a force of equal magnitude and opposite
direction on each object.

®m When you isolate the individual objects, the tension in the
rope is one of the forces acting on the object.

m Newton’s second law applies to the combination of the two
objects and to each individual object.

Identify the Goal
(a) The acceleration, @, of the two objects
(b) The tension, ’T'\T

, in the rope

Identify the Variables
Known Implied Unknown

m; = 8.5 kg g=9.81 S—n; 1_7\g1 I_T\T
m; =17 kg fgz

Develop a Strategy

Apply Newton’s second law to the combina- 0=
tion of masses to find the acceleration. N
. . . Fg1+Fg2=(m1+m2)
The mass of the combination is the sum of N

a

the individual masses. —mg + myg = (my + my)

—
a

(my — m)g
mq + Iy

al

al

(17 kg - 8.5 kg)9.8

8.5 kg +17 kg

al

m
3.27 =&
52

N
a

(a) The acceleration of the combination of objects is 3.3 m/s? to the right.

= 3.3 %[to the right]

my

continued
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Apply Newton’s second law to m; and
solve for tension.

—_

Fgl + F1r = mqja
—_\

-mg + Fr=mia

Fr = (8.5 kg) (9.81 %) + (8.5 kg) (3.27 %)

kg-m

SZ

Fr=111.18

Fr=1.1x 102N
(b) The tension in the rope is 1.1 x 10% N.

Validate the Solution
You can test your solution by applying Newton’s second law to the second mass.

—

N
ng + Fp = mzﬁ

— —_
myg + Fr = mea

T
|

N
= pa — g

Fr=(17 kg) (3.27 %) - (17 kg) (9-81 %)

T
I

-111.18 N

—_N

Fr=-1.1 x 10> N

The magnitudes of the tensions calculated from the two masses independently
agree. Also, notice that the application of Newton’s second law correctly gave
the direction of the force on the second mass.

PRACTICE PROBLEMS

19. An Atwood machine consists of masses of
3.8 kg and 4.2 kg. What is the acceleration of
the masses? What is the tension in the rope?

20. The smaller mass on an Atwood machine is
5.2 kg. If the masses accelerate at 4.6 m/s?,
what is the mass of the second object? What
is the tension in the rope?

21. The smaller mass on an Atwood machine is
45 kg. If the tension in the rope is 512 N,
what is the mass of the second object? What
is the acceleration of the objects?
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22. A 3.0 kg counterweight is connected to a
4.5 kg window that freely slides vertically in
its frame. How much force must you exert to
start the window opening with an accelera-
tion of 0.25 m/s*?

23. Two gymnasts of identical 37 kg mass dangle
from opposite sides of a rope that passes over
a frictionless, weightless pulley. If one of the
gymnasts starts to pull herself up the rope
with an acceleration of 1.0 m/s?, what
happens to her? What happens to the other
gymnast?



Objects Connected at Right Angles

In the lab, a falling weight is often used to provide a constant force
to accelerate dynamics carts. Gravitational forces acting downward
on the weight create tension in the connecting string. The pulley
changes the direction of the forces, so the string exerts a horizontal
force on the cart. Both masses experience the same acceleration
because they are connected, but the cart and weight move at right
angles to each other.

You can approach problems with connected objects such as the
lab cart and weight in the same way that you solved problems
involving the Atwood machine. Even if a block is sliding, with
friction, over a surface, the mathematical treatment is much the
same. Study Figure 1.14 and follow the directions below to learn
how to treat connected objects that are moving both horizontally
and vertically.

m Analyze the forces on each individual object, then label the
diagram with the forces.

m Assign a direction to the motion.

m Draw the connecting string or rope as though it was a straight
line. Be sure that the force vectors are in the same direction
relative to each mass.

m Draw a free-body diagram of the combination and of each
individual mass.

= Apply Newton’s second law to each free-body diagram.

Fn
T T Fr I_JA'T____(\@%_,
N ] ml o =
N Fr Q Fgp
Ff 14 1
| Z:
- - — F1
FgllTFN Fr ¢
0
e |
: < — e e — e —————— + =
; —_
\ Fy

GIMIEEDD When you visualize the string “straightened,” the force of
gravity appears to pull down on mass 1, but to the side on mass 2. Although
it might look strange, be assured that these directions are correct regarding
the way in which the forces affect the motion of the objects.
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SAMPLE PROBLEM

Connected Objects

A 0.700 kg mass is connected to a 1.50 kg lab cart
by a lightweight cable passing over a low-friction
pulley. How fast does the cart accelerate and what
is the tension in the cable? (Assume that the cart
rolls without friction.)

Conceptualize the Problem

m Make a simplified diagram of the connected
masses and assign forces.

m Visualize the cable in a straight configuration. F —

m Sketch free-body diagrams of the forces acting ] |
on each object and of the forces acting on the
combined objects.

1.50 kg m,
14 my; — N T - O{D
m,
Fn 0.700 kg
N Fr FgZ
I FT e
m;
— T,
Fg mq + m,
e e e e - + —

m The force causing the acceleration of both masses is the force of
gravity acting on mass 2.

m Newton’s second law applies to the combined masses and to each
individual mass.

m Let left be the negative direction and right be the positive direction.

Identify the Goal

The acceleration of the cart, @, and the magnitude of the tension force
in the cable, Fr

Identify the Variables and Constants

Known Implied Unknown
m; = 1.50 kg g=9.81 S—Hzl a  Fg
m; = 0.700 kg Fr Ty
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Develop a Strategy

Apply Newton’s second law to the
combined masses and solve for

=\

=m

| =

Fgo = (my + my)a@

acceleration. T
myg = (my; + my)a
")
mq + 1y
Substitute values and solve. _. (0.700 kg) (9_81 %)
a=
0.700 kg + 1.5 kg
T=3.121 36 S—“Q
a=31%

S

The cart accelerates at about 3.1 m/s?. Since the sign is positive,
it accelerates to the right.

Apply Newton’s second law to mass 1 =
to find the tension in the rope. . N
Fr=mja
Fr= (1.5 kg) (3.121 36 S%)

Fr=4.68204 N
Fr=47N
The tension in the cable is about 4.7 N.

Validate the Solution

The acceleration of the combined masses is less than 9.81 m/s?, which is
reasonable since only part of the mass is subject to unbalanced gravitational
forces. Also, the tension calculated at m; is also about 4.7 N.
F=ma
F\g +Fr=msa
Fr=msa-— F\g
Fr = (0.700 kg) (3.121 36 %) ~ (0.700 kg) (9.81 %)

Fr=-47N

PRACTICE PROBLEMS

24. A Fletcher’s trolley apparatus consists of a
1.90 kg cart on a level track attached to a

25. A 40.0 g glider on an air track is connected

light string passing over a pulley and holding
a 0.500 kg mass suspended in the air.
Neglecting friction, calculate

(a) the tension in the string when the
suspended mass is released

(b) the acceleration of the trolley

to a suspended 25.0 g mass by a string pass-
ing over a frictionless pulley. When the mass
is released, how long will it take the glider to
travel the 0.85 m to the other end of the
track? (Assume the mass does not hit the
floor, so there is constant acceleration during
the experiment.)
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Free Fall

Have you ever dared to
take an amusement park
ride that lets you fall
with almost no support
for a short time? A roller
coaster as it drops from
a high point in its track
can bring you close to
the same feeling of free
fall, a condition in
which gravity is the
only force acting on you.
To investigate free fall
quantitatively, imagine,
once again, that you are
standing on a scale in an
elevator. If the cable was
to break, there were no
safety devices, and
friction was negligible,
what would be your
apparent weight?

If gravity is the only
force acting on the amusement park ride, you feel weightless.

elevator, it will acceler-

ate downward at the acceleration due to gravity, or g. Substitute
this value into Newton’s second law and solve for your
apparent weight.

m Write Newton’s second law. F = mia
m Let “up” be positive and “down” be Fy+ Fy = -mg
negative. The total force acting on you
is the downward force of gravity and
the upward normal force of the scale.
Your acceleration is g downward.
m The force of gravity is —mg. Fy — mg = —-mg
m Solve for the normal force. Fy=mg - mg
Fnv=0

The reading on the scale is zero. Your apparent weight is zero.
This condition is often called “weightlessness.” Your mass has
not changed, but you feel weightless because nothing is pushing
up on you, preventing you from accelerating at the acceleration
due to gravity.
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e Conceptual Problem

e How would a person on a scale in a freely falling elevator
analyze the forces that were acting? Make a free-body analysis
similar to the one in the sample problem (Apparent Weight) on
page 28, using the elevator as your frame of reference. Consider
these points.

(a) To an observer in the elevator, the person on the scale would
not appear to be moving.

(b) The reading on the scale (the normal force) would be zero.

Close to Earth’s surface, weightlessness is rarely experienced,
due to the resistance of the atmosphere. As an object collides with
molecules of the gases and particles in the air, the collisions act as
a force opposing the force of gravity. Air resistance or air friction
is quite different from the surface friction that you have studied.
When an object moves through a fluid such as air, the force of
friction increases as the velocity of the object increases.

A falling object
eventually reaches
a velocity at which
the force of friction
is equal to the force
of gravity. At that
point, the net force
acting on the object
is zero and it no
longer accelerates
but maintains a
constant velocity
called terminal
velocity. The shape
and orientation of
an object affects its
terminal velocity. For example, skydivers control their velocity by
their position, as illustrated in Figure 1.16. Table 1.2 lists the
approximate terminal velocities for some common objects.

Table 1.2 Approximate Terminal Velocities

“ Terminal velocity (m/s downward)

large feather 0.4
fluffy snowflake 1
parachutist 7
penny 9
skydiver (spread-eagled) 58

B PHVSICS FILE .

In 1942, Soviet air force pilot

I. M. Chisov was forced to
parachute from a height of
almost 6700 m. To escape being
shot by enemy fighters, Chisov
started to free fall, but soon lost
consciousness and never opened
his parachute. Air resistance
slowed his descent, so he
probably hit the ground at about
193 km/h, plowing through a
metre of snow as he skidded
down the side of a steep ravine.
Amazingly, Chisov survived with
relatively minor injuries and
returned to work in less than
four months.

CGIEED Gravity is not the

only force affecting these sky-
divers, who have become experts
at manipulating air friction and
controlling their descent.

TECHNOLOGY LINK

Air resistance is of great concern to
vehicle designers, who can increase
fuel efficiency by using body shapes
that reduce the amount of air friction
or drag that is slowing the vehicle.
Athletes such as racing cyclists and
speed skaters use body position

and specially designed clothing to
minimize drag and gain a competitive
advantage. Advanced computer
hardware and modelling software are
making computerized simulations of
air resistance a practical alternative to
traditional experimental studies using
scale models in wind tunnels.
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M CANADIANS IN PHYSICS

Father of the Canadian Space Program
Can you imagine sending one of the very first
satellites into space? How about writing a report
that changed the entire direction of Canada’s space
efforts, or being involved in a telecommunications
program that won an Emmy award? These are just
a few of the accomplishments that earned John H.
Chapman the nickname “Father of the Canadian
Space Program.”
Chapman, who
was born in 1921, was
a science graduate of
McGill University in
Montréal. In 1951,
the London, Ontario,
native became section
leader of the Defence
Research Board’s unit
at Shirley’s Bay,
Ontario. While there,
he played a key role
in several ground-
breaking projects.

John Herbert Chapman

Lift Off!

Early in the history of space exploration, Canadian
space scientists focussed on the study of Earth’s
upper atmosphere and ionosphere. They wanted
to understand the behaviour of radio waves in
these lofty regions, especially above Canada'’s
North. As head of the government team research-
ing this area, Chapman was a moving force in the
Alouette/International Satellites for lonospheric
Studies (ISIS) program.

With the successful launch of Alouette Iin 1962,
Canada became the third nation to reach space,
following the Soviet Union and the United States.
Designed to last for one year, Alouette | functioned
for ten. It has been hailed as one of the greatest
achievements in Canadian engineering in the past
century. The ISIS satellites lasted for 20 years,
earning Canada an international reputation for
excellence in satellite design and engineering.

During this time, Chapman brought Canadian
industry into the space age. He argued that private
companies, not just government laboratories, had

the “right stuff” to design and build space hard-
ware. As a result, Canadian industry was given a
steadily increasing role in the manufacture of
Alouette Il and the ISIS satellites.

Connecting Canada and the World

Chapman also influenced the very purpose for
which Canada’s satellites were built. The Chapman
Report, issued in 1967, helped turn Canada’s space
program away from space science and toward
telecommunications. Chapman believed that
satellites could deliver signals to rural and remote
regions of the country. This was achieved in 1972,
when Canada placed the Anik AT satellite into
stationary orbit above the equator and became
the first country to have its own communications
satellite system of this type.

Today, live news reports can be delivered from
remote locations, due to technology that Chapman
and his team helped pioneer in co-operation with
NASA and the European Space Agency. Before the
Hermes satellite was launched in 1976, videotapes
of news events were flown to a production centre
and distributed. This was a time-consuming
process. With Hermes in place, a telecommunica-
tions dish on location could beam news up to the
satellite and, from there, to anywhere in the world.
Hermes was also revolutionary because it sent and
received television signals on high frequencies that
did not interfere with frequencies already in use.
For this innovation, the Hermes satellite program
won an Emmy in 1987.

At the time of his death in 1979, John Chapman
was the Assistant Deputy Minister for Space in the
Canadian Department of Communications. On
October 2, 1996, in recognition of his distinguished
career, the headquarters of the Canadian Space
Agency was dedicated as the John H. Chapman
Space Centre.

WEB LINK

www.mcgrawhill.ca/links/physics12

For more information about the Canadian Space Agency
and the Alouette, Hermes, and ISIS space programs,
visit the above Internet site and click on Web Links.
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IK'® Descending
LAB Drops

You can observe
drops of water
falling at terminal
velocity through
cooking oil in a test
tube. Use an eye-
dropper to carefully
“inject” drops of
cold water below
the surface of the
cooking oil. Measure
the diameter of the drops and the speed of
their descent.

Analyze and Conclude

1. Assume that the drops are spherical and are

pure water with density 1.0 g/cm?®. Using the

formulas for volume of a sphere (V = i7U°3)

3
BEEER. Scction Review

TARGET SKILLS
¢ Performing and recording
e Modelling concepts
e Analyzing and interpreting

and density (D = %), calculate the mass of

each drop.

. Calculate the gravitational force and the

retarding force on each drop.

. What force(s) are retarding the downward

force of gravity acting on the drops? Compare
these forces to those acting on an object
falling through air.

. The curved sides of the test tube act like a

lens, producing some optical magnification
of objects inside. Describe in detail how this
might be affecting your results.

. How well does this activity model the

movement of an object through air and the
phenomenon of terminal velocity? Justify
your answer.

1. Explain why your apparent weight is
sometimes not the same as your true weight.

2 Explain how Newton’s third law applies
to connected objects that are all pulled by
one end.

3. @ How does an Atwood machine make it
easier to determine g (the acceleration due
to gravity), rather than by just measuring the
acceleration of a free-falling object?

4. @ Suppose you are standing on a scale in a
moving elevator and notice that the scale
reading is less than your true weight.

(a) Draw a free-body diagram to represent the
forces acting on you.

(b) Describe the elevator motion that would
produce the effect.

. List the simplifying assumptions usual-

ly made about supporting cables and ropes.
Why are simplifying assumptions needed?

. Two objects are moving in different

directions. Under what circumstances can
you treat this as a one-dimensional problem?

. By the mid-1800s, steam-driven elevators

with counterweights had been developed.
However, they were not in common use until
1852, when Elisha Otis invented an elevator
with a safety device that prevented the eleva-
tor from falling if the cable broke. How do
you think that the invention of a safe eleva-
tor changed modern society?

. @ Describe a situation in which you could

be standing on a scale and the reading on the
scale would be zero. (Note: The scale is func-
tioning properly and is accurate.) What is the
name of this condition?
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SECTION S—me—
EXPECTATIONS

* Analyze the motion of objects
along inclined planes.

e Use vector and free-body
diagrams to analyze forces.

* Predict and explain motion
along inclined planes.

To find the compo-

nents of the gravitational force
vector, use the shaded triangle.
Note that Fg is perpendicular to
the horizontal line at the bottom
and Fy, is perpendicular to the
plane of the ramp. Since the
angles between two sets of
perpendicular lines must be
equal, the angle () in the triangle
is equal to the angle that the
inclined plane makes with the
horizontal.

Motion along an Incline

When you watch speed skiers, it appears as though there is no
limit to the rate at which they can accelerate. In reality, their
acceleration is always less that that of a free-falling object, because
the skier is being accelerated by only a component of the force

of gravity and not by the total force. Using the principles of
dynamics and the forces affecting the motion, you can predict
details of motion along an inclined plane.

SN IEVA Gravitational forces acting on downhill skiers have produced
speeds greater than 241 km/h, even though only part of the total gravitation-
al force accelerates a skier.

Choosing a Coordinate System for an Incline

The key to analyzing the dynamics and motion of objects on an
inclined plane is choosing a coordinate system that simplifies the
procedure. Since all of the motion is along the plane, it is conven-
ient to place the x-axis of the coordinate system parallel to the
plane, making the y-axis perpendicular to the plane, as shown

in Figure 1.18.

¥
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The force of gravity affects motion on inclined planes, but the
force vector is at an angle to the plane. Therefore, you must
resolve the gravitational force vector into components parallel to
and perpendicular to the plane, as shown in Figure 1.18. The
component of force parallel to the plane influences the accelera-
tion of the object and the perpendicular component affects the
magnitude of the friction. Since several forces in addition to the
gravitational force can affect the motion on an inclined plane,
free-body diagrams are essential in solving problems, as shown in
the sample problem below.

SAMPLE PROBLEM

Sliding Down an Inclined Plane

You are holding an 85 kg trunk at the top of a ramp that slopes from

a moving van to the ground, making an angle of 35° with the ground.

You lose your grip and the trunk begins to slide.

(a) If the coefficient of friction between the trunk and the ramp is 0.42,
what is the acceleration of the trunk?

(b) If the trunk slides 1.3 m before reaching the bottom of the ramp,
for what time interval did it slide?

Conceptualize the Problem

m To start framing the problem, draw a free- force, apply Newton’s second law to the forces
body diagram. or components of forces that are perpendicu-
m Beside the free-body diagram, draw a coordi- lar to the ramp.
nate system with the x-axis parallel to the m The acceleration perpendicular to the ramp is
ramp. On the coordinate system, draw the Zero.
forces and components of forces acting on m The component of gravity parallel to the trunk
the trunk. causes the trunk to accelerate down the ramp.
TT\N Y\ Fy m Friction between the trunk and the ramp
opposes the motion.
Fy m If the net force along the ramp is positive, the
trunk will accelerate down the ramp.
m To find the acceleration of the trunk down the
7 ramp, apply Newton’s second law to the
& forces or components of forces parallel to the
m Let the direction pointing down the slope be ramp.
the positive direction. m Given the acceleration of the trunk, you can
= To find the normal force that is needed to use the kinematic equations to find other
determine the magnitude of the frictional quantities of motion.

Identify the Goal
(a) The acceleration, g, of the trunk along the ramp

(b) The time interval, At, for the trunk to reach the end of the ramp

continued
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continued from previous page

Identify the Variables

Known Implied

m = 85 kg 6 =35 g=9812

1= 0.42 Ad=1.3m vieo
a =0

Develop a Strategy

Apply Newton’s second law to the forces per-
pendicular to the ramp. Refer to the diagram to
find all of the forces that are perpendicular to
the ramp. Solve for the normal force.

Insert values and solve. Note that the accelera-
tion perpendicular to the ramp (a,) is zero.

Apply Newton’s second law to the forces par-
allel to the ramp. Refer to the diagram to find
all of the forces that are parallel to the ramp.
Solve for the acceleration parallel to the ramp.

Insert values and solve.

Unknown

T’\g T’\f 1%
Fg Ty q
Fg

F=nia

FN+FgL:maL
Fn — mgcos 8 = ma;
Fn = mgcos 6 + ma;

Fy = (85 kg) (9.81 %) c0s35° + 0
Fy = 683.05 N

F = mia’
Fg + It = ma
F¢ = uFy in negative direction
mgsin 6 — uFy = ma;
mgsin 6 — uFy

a = m

(85 kg) (9.81 ) sin 35° — (0.42)(683.05 N)

85 kg
a,=2.25171%
S

_ m
GH =2.3 ?

(a) The acceleration of the trunk down the ramp is 2.3 m/s?.

Apply the kinematic equation that relates dis-
placement, acceleration, initial velocity, and
time interval. Given that the initial velocity
was zero, solve the equation for the time
interval.

Insert values and solve.

Ad = viAt + %aAtZ

AL = 2Ad

a
Af = [ 2Ad

a

Af = 2(1.3 m)m

2.25171 3
At =1.075s
At=1.1s

(b) The trunk slid for 1.1 s before reaching the end of the ramp.

Validate the Solution

(a) Since the ramp is not at an extremely steep slope and since there is a significant
amount of friction, you would expect that the acceleration would be much

smaller than 9.81 m/s?, which it is.

(b) The ramp is very short, so you would expect that it would not take long for the
trunk to reach the bottom of the ramp. A time of 1.1 s is quite reasonable.
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PRACTICE PROBLEMS

26. A 1975 kg car is parked at the top of a steep
42 m long hill inclined at an angle of 15°. If
the car starts rolling down the hill, how fast
will it be going when it reaches the bottom of
the hill? (Neglect friction.)

21. Starting from rest, a cyclist coasts down the
starting ramp at a professional biking track. If
the ramp has the minimum legal dimensions
(1.5 m high and 12 m long), find

(a) the acceleration of the cyclist, ignoring
friction

ARN'd The Slippery
LAB Slope

You can determine the coefficients of static and
kinetic friction experimentally. Use a coin or
small block of wood as the object and a textbook
as a ramp. Find the mass of the object.
Experiment to find the maximum angle of incli-
nation possible before the object begins to slide
down the ramp (61). Then, use a slightly greater
angle (62), so that the object slides down the
ramp. Make appropriate measurements of dis-
placement and time, so that you can calculate
the average acceleration. If the distance is too
short to make accurate timings, use a longer
ramp, such as a length of smooth wood or
metal.

Analyze and Conclude

1. Calculate the gravitational force on the object
(weight). Resolve the gravitational force into
parallel and perpendicular components.

2. Draw a free-body diagram of the forces acting
on the object and use it to find the magnitude
of all forces acting on the object just before
it started to slide (at angle 6;). Note: If the

28.

(b) the acceleration of the cyclist if all
sources of friction yield an effective
coefficient of friction of = 0.11

(c) the time taken to reach the bottom of the
ramp, if friction acts as in (b)

A skier coasts down a 3.5° slope at constant
speed. Find the coefficient of kinetic friction
between the skis and the snow covering

the slope.

TARGET SKILLS
¢ Performing and recording
e Analyzing and interpreting

object is not accelerating, no net force is
acting on it, so every force must be balanced
by an equal and opposite force.

. Calculate the coefficient of static friction, us,

between the object and the ramp, using your
answer to question 2.

. Use the data you collected when the ramp

was inclined at 6, to calculate the accelera-
tion of the object. Find the net force
necessary to cause this acceleration.

. Use the net force and the parallel component

of the object’s weight to find the force of
friction between the object and the ramp.

. Calculate the coefficient of kinetic friction,

M, between the object and the ramp.

. Compare ys and y. Are they in the expected

relationship to each other? How well do your
experimental values agree with standard
values for the materials that you used for
your object and ramp? (Obtain coefficients

of friction from reference materials.)
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SAMPLE PROBLEM

Pushing or Pulling an Object Up an Incline

You are pulling a sled and rider with combined

mass of 82 kg up a 6.5° slope at a steady speed. If
the coefficient of kinetic friction between the sled
and snow is 0.10, what is the tension in the rope?

Conceptualize the Problem

m Sketch a free-body diagram of the forces acting on
the sled. Beside it, sketch the components of the
forces that are parallel and perpendicular to the slope.

m Since the sled is moving at a constant velocity, the
acceleration is zero.

m The parallel component of the sled’s weight and the force
of friction are acting down the slope (positive direction).

m The applied force of the rope acts up the slope on the
sled (negative direction).

m The tension in the rope is the magnitude of the force that
the rope exerts on the sled.

m Newton’s second law applies independently to the forces
perpendicular and parallel to the slope.
Identify the Goal

The magnitude of the tension, 7,

, in the rope

Identify the Variables and Constants

Known Implied Unknown
m=82kg g=9.81 % Fy, Fy Fy
M= 0.19 =0 m Fxn Fy F,
6=6.5 s

v = constant

Develop a Strategy

Apply Newton’s second law to the forces perpendi- = i
cular to the slope. Refer to the diagram to find all
of the forces that are perpendicular to the slope.
Solve for the normal force.

FN+Fgl:mal
Fn — mgcos 68 = ma;
Fn = mgcos 6 + ma;

Insert values and solve. Note that the acceleration Fx = (82 kg) (9.81 2) c0s6.5° + 0
perpendicular to the slope (a,) is zero. s?

Fy=799.25 N
Apply Newton’s second law to the forces parallel T = it

to the slope. Refer to the diagram to find all of the
forces that are parallel to the slope. Solve for the
force that the rope exerts on the sled.

Fi + Fy + Fg = mq,

uFn + F, + mgsin 6 = maq
F. = ma) — uFx — mgsin
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Insert values and solve. F, = (82 kg) (0 %) - (0.10)(799.25 N) —

(82 kg) (9.81 %) sin 6.5°
F,=-79.925 N - 91.063 N
F,=-170.988 N

iF. =17 x 102N

The tension force in the rope is about 1.7 x 10% N.

Validate the Solution

The tension is much less than the force of gravity on the sled, since
most of the weight of the sled is being supported by the ground.
The tension is also greater than the parallel component of the sled’s
weight, because the rope must balance both the force of friction
and the component of the force of gravity parallel to the slope.

PRACTICE PROBLEMS

29. You flick a 5.5 g coin up a smooth board 30. You are pushing a 53 kg crate at a constant

propped at an angle of 25° to the floor. If the
initial velocity of the coin is 2.3 m/s up the
board and the coefficient of kinetic friction
between the coin and the board is 0.40, how
far does the coin travel before stopping?

BT, Scction Review

velocity up a ramp onto a truck. The ramp
makes an angle of 22° with the horizontal.
If your applied force is 373 N, what is the
coefficient of friction between the crate and
the ramp?

1. Sketch a free-body diagram and an
additional diagram showing the parallel and
perpendicular components of gravitational
force acting on an object on a ramp inclined
at an angle of 0 to the horizontal. State the
equation used to calculate each force
component.

2 Which component of gravitational force
affects each of the following?
(a) acceleration down a frictionless incline

(b) the force of friction acting on an object
on a ramp

(c) the tension in a rope holding the object
motionless

(d) the tension in a rope pulling the object up
the ramp

. @ Why is it necessary to use two coefficients

(kinetic and static) to describe the frictional
forces between two surfaces? How do you
decide which coefficient to use when solving
a problem?

. @ Suppose you are pulling a heavy box up a

ramp into a moving van. Why is it much
harder to start the box moving than it is to
keep it moving?
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CHAPTER

REFLECTING ON CHAPTER 1

m Dynamics relates the motion of objects to the
forces acting on them.

m Inertia is the tendency of objects to resist
changes in motion.

m In an inertial frame of reference, Newton’s
laws of motion describe motion correctly.
Inertial frames of reference might be stationary
or moving at constant velocity.

® [n non-inertial frames of reference, Newton’s
laws of motion do not accurately describe
motion. Accelerating frames of reference are
non-inertial.

m Fictitious forces are needed to explain motion
in non-inertial frames of reference. If the same
motion is observed from an inertial frame
of reference, the motion can be explained
without the use of fictitious forces.

m Inertial mass is equivalent to gravitational
mass.

Knowledge/Understanding

1. Identify and provide examples of what physi-
cists consider to be the two “natural” types of
motion.

2. What is the term used to describe the tendency
for objects to have differing amounts of “per-
sistence” in maintaining their natural motion?

3. What concept is used to quantify the inertia of
an object?

4. Distinguish between, and provide examples of,
inertial and non-inertial frames of reference.

5. Imagine that you are looking sideways out of

a car that is stopped at a stoplight. The light

turns green and your driver accelerates until

the car is travelling with uniform motion at the
speed limit.

(a) Sketch a velocity-time graph of your motion,
illustrating the time intervals during which
you were stopped, accelerating, and travel-
ling with a constant velocity.
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Frictional forces are described by the equation
Fi = uFn, where u is the coefficient of friction
between two surfaces and Fy is the normal
force pressing the surfaces together. The coeffi-
cient of kinetic friction (ux) applies when the
object is moving. The coefficient of static fric-
tion (us) applies when the object is motionless.

The weight of an object is the gravitational
force on it (F = mg).

Free fall is vertical motion that is affected by
gravitational forces only. In free fall, all objects
accelerate at the same rate.

Terminal velocity is the maximum downward
speed reached by a falling object when the
force of air friction becomes equal to the force
of gravity.

Air resistance depends on the surface area,
shape, and speed of an object relative to the
air around it.

(b) Identify the time interval(s) during which
you were observing objects at the side of the
road from an inertial frame of reference or
from a non-inertial frame of reference.

(c) Use this example to explain why Newton’s
first and second laws do not accurately
predict the motion of the objects you are
observing at the side of the road while you
are accelerating.

. You know that if you drop two balls from rest

from the top of a building, they will accelerate

uniformly and strike the ground at the same

time (ignoring air resistance). Consider these
variations.

(a) Suppose you drop a ball from rest from the
top of a building and it strikes the ground
with a final velocity v¢. At the same time
that the first ball is dropped, your friend
launches a second ball from the ground with
a velocity v, the same velocity with which
the first ball strikes the ground. Will the
second ball reach the top of the building at



the same time that the first ball strikes the
ground? Explain where the balls cross paths,
at half the height of the building, above the
halfway point or below the halfway point.
Ignore air resistance.

(b) You launch a ball from the edge of the top of
a building with an initial velocity of 25 m/s
[upward]. The ball rises to a certain height
and then falls down and strikes the ground
next to the building. Your friend on the
ground measures the velocity with which
the ball strikes the ground. Next, you launch
a second ball from the edge of the building
with a velocity of 25 m/s [downward].
Ignoring air resistance, will the second ball
strike the ground with greater, smaller,
or the same velocity as the first ball?

Hint: what is the velocity of the first ball when

it is at the height of the top of the building

(after falling from its maximum height) and

on its way down?

. You are having a debate with your lab partner
about the correct solution to a physics problem.
He says that the normal force acting on an
object moving along a surface is always equal
and opposite to the force of gravity. You
disagree with this definition.

(a) Provide the proper definition for the normal
force acting on an object.

(b) Describe, with the aid of free-body diagrams,
three situations in which the normal force
acting on an object cannot be determined
using your lab partner’s definition.

(c) Describe, with the aid of a free-body
diagram, a situation in which your lab
partner’s definition could apply.

Inquiry

8. You are given two bowling balls. One is pure

wood, while the other has an iron core. Your

task is to verify Newton’s laws. Accordingly,

you set up an inclined plane in such a way that

you can let the balls roll down the plane and

along the floor.

(a) Design an experiment to determine which
ball has more inertia.

W """""“,H]m Vi
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(b) Sketch a velocity-time graph to illustrate
your predictions of the motion of each ball.

(c) Explain how Newton’s first law affects the
motion of the ball during each phase of its
motion. Explain your reasoning.

(d) Draw a free-body diagram for each ball as
it descends the ramp. Write equations to
predict the acceleration of each. Provide an
analysis of the equations to show that each
ball’s acceleration down the ramp should be
the same.

(e) The analysis in (d) seems to defy Newton’s
first law. Initially, you might predict that the
ball with more inertia would have a differ-
ent acceleration. Provide an explanation,
based on Newton’s laws, of why the ball
with more inertia does not experience a
greater acceleration.

. Recall the apparatus set-up you used for

Investigation 1-A to explore inertial mass. In
this case, you are given a dynamics cart that
has a mass of 500 g and you use a falling mass
of 200 g.

(a) Assume that the coefficient of friction
between the cart and the ramp is 0.12.
Calculate theoretical predictions for the
acceleration of the system when incremental
masses of 100 g, 200 g, 300 g, 400 g, and
500 g are added to the cart.

(b) Plot an acceleration-versus-incremental-
mass graph for your theoretical values.

(c) Does the line on this graph pass through the
origin? Explain your reasoning.
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(d) What acceleration is indicated at the point
where the line on the graph crosses the
y-axis?

(e) Describe two different modifications you
could make to this set-up so that the cart
would have zero acceleration.

Communication

10. Draw a free-body diagram of a diver being low-
ered into the water from a hovering helicopter
to make a sea rescue. His downward speed is
decreasing. Label all forces and show them
with correct scale lengths.

11. Use free-body diagrams to show that the
tension in the rope is the same for both of
the following situations.

(a) Two horses are pulling in opposite
directions on the same rope, with equal
and opposite forces of 800 N.

(b) One horse is pulling on a rope, which is tied
to a tree, with a force of 800 N.

12. A toy rocket is shot straight into the air and
reaches a height of 162 m. It begins its descent
in free fall for 2 s before its parachute opens.
The rocket then quickly reaches terminal
velocity.

(a) Sketch a velocity-time graph for the descent.

(b) Draw a free-body diagram for each of the
three passes of the descent: the free fall, the
parachute opening and slowing the descent,
and terminal velocity

13. A large crate sits on the floor of an elevator.
The force of static friction keeps the crate from
moving. However, the magnitude of this force
changes when the elevator (a) is stationary,

(b) accelerates downward and (¢) accelerates
upward. Explain how the three forces should
be ranked from weakest to strongest.

14. Two blocks, of mass M and mass m, are in
contact on a horizontal frictionless table (with
the block of mass M on the left and the block
of mass m on the right). A force F; is applied
to the block of mass M and the two blocks
accelerate together to the right.
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(a) Draw a free-body diagram for each block.

(b) Suppose the larger block M exerts a force F
on the smaller mass m. By Newton’s third
law, the smaller block m exerts a force F, on
the larger block M. Argue whether F; = F, or
not. Justify your reasoning.

(c) Derive an expression for the acceleration of
the system.

(d) Derive an expression for the magnitude of
the force F, that the larger block exerts on
the smaller block.

(e) Choose different values of M and m (e.g.

M = 2m, M = 5m, including the case M = m)
and compare the magnitudes of F, and F;.
(f) Comment on the above results.

Making Connections

15. Car tires are designed to optimize the amount
of friction between the tire surface and the
road. If there is too little friction, the car will
be hard to control. Too much friction will
negatively affect the car’s performance and
fuel efficiency.

(a) List the different types of road conditions
under which cars are operated. Research
the different types of tread designs that have
been developed to respond to these condi-
tions. Explain how the different designs
are intended to increase or decrease the
coefficient of friction between a car’s tires
and the road.

(b) Compare the positive and negative factors of
using “all-season” tires rather than changing
car tires to suit the season (e.g., changing to
special winter tires). Do a cost analysis of
the two systems and recommend your
choice for the climatic conditions in your
own community.

Problems for Understanding

16. Suppose a marble is rolling with a velocity of
3.0 m/s[N] and no horizontal force is acting
on it. What will be its velocity at 10.0 s?

17. What is the mass of a sack of potatoes that
weighs 110 N (1.1 x 102 N)?



18.

19.

20.

21.

22,

23.

24.

25.

A physics teacher is in an elevator moving
upward at a velocity of 3.5 m/s when he drops
his watch. What are the initial velocity and
acceleration of the watch in a frame that is
attached to (a) the elevator and (b) the
building?

(a) What is the acceleration of a 68.0 kg crate
that is pushed across the floor by a 425 N
force, if the coefficient of kinetic friction
between the box and floor is 0.5007

(b) What force would be required to push the
crate across the floor with constant velocity?

A red ball that weighs 24.5 N and a blue ball
that weighs 39.2 N are connected by a piece of
elastic of negligible mass. The balls are pulled
apart, stretching the elastic. If the balls are
released at exactly the same time, the initial
acceleration of the red ball is 1.8 m/s? east-
ward. What is the initial acceleration of the
blue ball?

If a 0.24 kg ball is accelerated at 5.0 m/s?, what
is the magnitude of the force acting on it?

A 10.0 kg brick is pulled from rest along a hori-
zontal bench by a constant force of 4.0 N. It is
observed to move a distance of 2.0 m in 8.0 s.
(a) What is the acceleration of the brick?
(b) What is the ratio of the applied force to
the mass?
(c) Explain why your two answers above do not
agree. Use numerical calculations to support
your explanation.

A football is thrown deep into the end zone for
a touchdown. If the ball was in the air for 2.1 s
and air friction is neglected, to what vertical
height must it have risen?

A 2200 kg car is travelling at 45 km/h when its

brakes are applied and it skids to a stop. If the

coefficient of friction between the road and the

tires is 0.70, how far does the car go before

stopping?

A 55.0 kg woman jumps to the floor from a

height of 1.5 m.

(a) What is her velocity at the instant before her
feet touch the floor?

26.

21.

28.

29.

30.

31

(b) If her body comes to rest during a time
interval of 8.00 x 1072 s, what is the force of
the floor on her feet?

You are pushing horizontally on a 3.0 kg block
of wood, pressing it against a wall. If the coeffi-
cient of static friction between the block and
the wall is 0.60, how much force must you
exert on the block to prevent it from sliding
down?

The maximum acceleration of a truck is

2.6 m/s?. If the truck tows another truck with a
mass the same as its own, what is its maximum
acceleration?

A force F produces an acceleration a when

applied to a certain body. If the mass of the

body is doubled and the force is increased five-

fold, what will be the effect on the following?

(a) the acceleration of the body

(b) the distance travelled by the body in a
given time

A 45.0 kg box is pulled with a force of 205 N

by a rope held at an angle of 46.5° to the

horizontal. The velocity of the box increases

from 1.00 m/s to 1.50 m/s in 2.50 s. Calculate

(a) the net force acting horizontally on the box.

(b) the frictional force acting on the box.

(c) the horizontal component of the applied
force.

(d) the coefficient of kinetic friction between
the box and the floor.

A Fletcher’s trolley apparatus consists of a

4.0 kg cart and a 2.0 kg mass attached by a

string that runs over a pulley. Find the accelera-

tion of the trolley and the tension in the string

when the suspended mass is released.

You are a passenger on an airplane and you

decide to measure its acceleration as it travels

down the runway before taking off. You take

out a yo-yo and notice that when you suspend

it, it makes an angle of 25° with the vertical.

Assume the plane’s mass is 4.0 x 10° kg.

(a) What is the acceleration of the airplane?

(b) If the yo-yo mass is 65 g, what is the tension
in the string?
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Dancers spin, twist, and swing through the air. Athletes move
in constantly changing directions. The details of these com-
plex motions are studied by kinesiologists by tracking the position
of sensors fastened to knees, elbows, or other joints. Position-time
data gathered from such experiments can be used to produce
photo-realistic animations for movies and video games. This

data can also be used to study the details of the motion from a
physicist’s point of view, providing a basis for measurement of
changes in speed and direction — accelerations and the forces
that cause them.

When you turn while you run, walk, or dance, you are moving
in two dimensions. You might change direction suddenly or do it
over several steps, following a curved path. In either case, changes
in direction are accelerations, and accelerations require an unbal-
anced force. In this chapter, you will examine the accelerations
and forces involved in two types of two-dimensional motion —
objects following a curved path after being launched into the air
and objects moving in a circle or part of a circle.
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MULTI
LAB

Motion in
Two Dimensions

TARGET SKILLS

e Performing and recording
e Analyzing and interpreting

Wear impact-resistant safety goggles.
Also, do not stand close to other people or
equipment while doing these activities.

Race to the Ground

If your school has a vertical acceleration
demonstrator, set it up to make observations.
If you do not have a demonstrator, devise a
method for launching one object, such as a
small metal ball, in the horizontal direction,
while at the same instant dropping a second
object from exactly the same height. Perform

several trials, observing the paths of the
objects very carefully.

Analyze and Conclude

1. Describe in detail the paths of the two
objects. Compare the motion of the
two objects.

2. Which object hit the floor first?

3. Did the horizontal motion of the first
object appear to affect its vertical
motion? Explain your reasoning for
your conclusion.

Feel the Force

According to the law of inertia, objects must
experience an unbalanced force to change

the direction of their motion. What does this
suggest about an object moving in a circle?
Assemble the apparatus as shown in the
diagram to obtain information on the forces
involved in circular motion. Gently swing the
mass in a horizontal circle. Carefully increase
the speed of rotation and observe the effect
on the elastic band and the path of the object.
Change the angle so that the object moves
first in an inclined plane and then in a
vertical plane and repeat your observations.

elastic band
string

/
o

~— -

small mass
loose loop of
string

Analyze and Conclude
1. How does the force exerted on the object

by the elastic band change as the elastic
band stretches?

2. How does the force exerted on the object
change as the speed of the mass increases?

3. Sketch free-body diagrams showing the
forces acting on the object as it moves in a

(a) horizontal plane

(b) vertical plane (at the top of the swing,
the bottom of the swing, and when it is
at one side of the circle)

4. Describe and attempt to explain any other
changes you observed in the object’s
motion as its speed varied.

5. Was there any difference in the force
exerted by the elastic band at the highest
and lowest points of the mass’s path when
it moved in a vertical plane? If so, suggest
an explanation.
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SECTION S—me—
EXPECTATIONS

* Describe qualitatively and
quantitatively the path of
a projectile.

* Analyze, predict, and explain
projectile motion in terms of

horizontal and vertical
components.

* Design and conduct experi-
ments to test the predictions
about the motion of a projectile.

KEY "\
TERMS

* trajectory

* projectile
° range

* parabola

HISTORY LINK

Calculating actual trajectories of
artillery shells was an enormous

task before the advent of electronic
computers. Human experts required
up to 20 h to do the job, even with
mechanical calculators. ENIAC, the
first electronic computer that stored
its program instructions, was built in
1946 and could calculate the trajectory
of an artillery shell in about 30 s. The
vacuum tubes in ENIAC's processing
unit required 174 kW of electric power,
so the energy required to calculate
one trajectory was comparable to

the energy needed to actually fire the
artillery shell!

Projectile Motion

GIMZEXED After the water leaves the pipes in this fountain, the only
forces acting on the water are gravity and air friction.

A tourist visiting Monte Carlo, Monaco, would probably stand
and admire the beauty of the fountain shown in the photograph,
and might even toss a coin into the fountain and make a wish.
A physics student, however, might admire the symmetry of the
water jets. He or she might estimate the highest point that the
water reaches and the angle at which it leaves the fountain, and
then mentally calculate the initial velocity the water must have
in order to reach that height.

The student might then try to think of as many examples of this
type of motion as possible. For example, a golf ball hit off the tee,
a leaping frog, a punted football, and a show-jumping horse all
follow the same type of path or trajectory as the water from a
fountain. Any object given an initial thrust and then allowed to
soar through the air under the force of gravity only is called a
projectile. The horizontal distance that the projectile travels is
called its range.

Air friction does, of course, affect the trajectory of a projectile
and therefore the range of the projectile, but the mathematics
needed to account for air friction is complex. You can learn a great
deal about the trajectory of projectiles by neglecting friction, while
keeping in mind that air friction will modify the actual motion.

You do not need to learn any new concepts in order to analyze
and predict the motion of projectiles. All you need are data that
will provide you with the velocity of the projectile at the moment
it is launched and the kinematic equations for uniformly
accelerated motion. You observed projectile motion in the Race
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to the Ground segment of the Multi-Lab and identified a feature of ELECTRONIC ﬁ

the motion that simplifies the analysis. The horizontal motion of LEARNING PARTNER

the projectile does not influence the vertical motion, nor does the To enhance your understanding of

vertical motion affect the horizontal motion. You can treat the two-dimensional motion, go to your
motion in the two directions independently. The following points Electronic Learning Partner for an

will help you analyze all instances of projectile motion. interactive activity.

m Gravity is the only force influencing ideal projectile motion.
(Neglect air friction.)

m Gravity affects only the vertical motion, so equations for
uniformly accelerated motion apply.

m No forces affect horizontal motion, so equations for uniform
motion apply.

m The horizontal and vertical motions are taking place during the
same time interval, thus providing a link between the motion in
these dimensions.

Projectiles Launched Horizontally

If you had taken a picture with a strobe light of your Race to the
Ground lab, you would have obtained a photograph similar to

the one in Figure 2.2. The ball on the right was given an initial
horizontal velocity while, at the same moment, the ball on the left
was dropped. As you can see in the photograph, the two balls
were the same distance from the floor at any given time — the
vertical motion of the two balls was identical. This observation
verifies that horizontal motion does not influence vertical motion.
Examine the following sample problem to learn how to make

use of this feature of projectile motion.

GEEEEED vou can

see that the balls are
accelerating downward,
because the distances
they have travelled
between flashes of the
strobe light are increasing.
If you inspected the hori-
zontal motion of the ball
on the right, you would
find that it travelled the
same horizontal distance
between each flash of the
strobe light.
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SAMPLE PROBLEM

Analyzing a Horizontal Projectile

While hiking in the wilderness, you come to a cliff overlooking
a river. A topographical map shows that the cliff is 291 m high

Pee
Pee

and the river is 68.5 m wide at that point. You throw a rock
directly forward from the top of the cliff, giving the rock
a horizontal velocity of 12.8 m/s.

(a) Did the rock make it across the river?
(b) With what velocity did the rock hit the ground or water?

Conceptualize the Problem

m Start to frame the problem by making a rough sketch of y
the cliff with a coordinate system superimposed on it.

Write the initial conditions on the sketch. vi=12.8 ~=

m The rock initially has no vertical velocity. It falls, from rest, =
with the acceleration due to gravity. Since “down” was cliff ™
chosen as negative, the acceleration of the rock is
negative. (Neglect air friction.) 291m

m Since the coordinate system was placed at the top of the
cliff, the vertical component of the displacement of the

rock is negative. —
river

68.5 m

m The displacement that the rock falls determines the time
interval during which it falls, according to the kinematic
equations.

m The rock moves horizontally with a constant velocity until
it hits the ground or water at the end of the time interval.

m The final velocity of the rock at the instant before it hits the
ground or water is the vector sum of the horizontal velocity
and the final vertical velocity.

m Use x to represent the horizontal component of displacement
and y for the vertical component of displacement. Use x and y
subscripts to identify the horizontal and vertical components
of the velocity.

Identify the Goal

(a) Whether the horizontal distance, Ax, travelled by the rock was
greater than 68.5 m, the width of the river

(b) The final velocity, Vi, of the rock the instant before it hit the ground

Identify the Variables

Known Implied Unknown
Ay=-291m  riverwidth=685m  ay=-9.81 3 Ax
m R
=12.8 — R m Vi
Vx i viy=0.0 =
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Develop a Strategy

Find the time interval during which the rock was Ay = vyiAt + %aAtz
falling by using the kinematic equation that relates

displacement, initial velocity, acceleration, and time
interval. Note that the vertical component of the 24y _ A2

Ay = %aAtz

initial velocity is zero and solve for the time interval. a
Af= [2AY
a
Insert numerical values and solve. A= 2(~291 n1)
—9.81 &
At = v/59.327 s?
At =17.7024 s
Find the horizontal displacement of the rock by using = AX
=
the equation for uniform motion (constant velocity) At
that relates velocity, distance, and time interval. Ax = At
Solve for displacement.
Use the time calculated above and initial velocity Ax = (12.8 %)(7_70243)

to calculate the horizontal distance travelled by
the rock. Choose the positive value for time, since
negative time has no meaning in this application. Ax =98.6 m

Ax =98.591 m

(a) Since the horizontal distance travelled by the rock (98.6 m) was much
greater than the width of the river (68.5 m), the rock hit the ground on
the far side of the river.

Find the vertical component of the final velocity
by using the kinematic equation that relates initial

velocity, final velocity, acceleration, and time. Viy = Viy + aAt
Insert the numerical values and solve. Viy = 0.0 % . (_9 81 %)(7_7024 3)
vy = —75.561 %
Use' the PythagOIjean theorem Wi = /()2 + (vy)? v
to find the magnitude of the «
i 2 2
resultant velocity. T = \/(12.8 %> N (—75.561 %)

Vil = ,/5873.30 -
S

Vil = 76.637 %

Vil = 76.6 %

continued
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continued from previous page

Use trigonometry to find the angle that the rock made iR ) — T
with the horizontal when it struck the ground. Vx
6 = tan~! ¥
Vx
75.561 2
= _1 _ B
0 = tan 128 0
6 = tan™" 5.9032
6 = 80.385°
6 =80.4°

(b) The rock hit the ground with a velocity of 76.6 m/s at an angle of 80.4°
with the horizontal.

Validate the Solution

The distance that the rock fell vertically was very large, so you would
expect that the rock would be travelling very fast and that it would hit
the ground at an angle that was nearly perpendicular to the ground.
Both conditions were observed.

PRACTICE PROBLEMS

1. An airplane is dropping supplies to northern 2. A cougar is crouched on the branch of a tree
villages that are isolated by severe blizzards that is 3.82 m above the ground. He sees an
and cannot be reached by land vehicles. The unsuspecting rabbit on the ground, sitting
airplane is flying at an altitude of 785 m and 4.12 m from the spot directly below the
at a constant horizontal velocity of 53.5 m/s. branch on which he is crouched. At what
At what horizontal distance before the drop horizontal velocity should the cougar jump
point should the co-pilot drop the supplies from the branch in order to land at the point
so that they will land at the drop point? at which the rabbit is sitting?

(Neglect air friction.) 3. A skier leaves a jump with a horizontal

velocity of 22.4 m/s. If the landing point is
M % % -5 78.5 m lower than the end of the ski jump,
0. what horizontal distance did the skier jump?

S~ What was the skier’s velocity when she
. landed? (Neglect air friction.)

~

AN y=-785m

+y A N

\ N
\ \j
\ AN
+x \ —>
A}
\

62 MHR e Unit 1 Forces and Motion: Dynamics



4. An archer shoots an arrow toward a target,
giving it a horizontal velocity of 70.1 m/s.
If the target is 12.5 m away from the archer,
at what vertical distance below the point of
release will the arrow hit the target? (Neglect
air friction.)

5. In a physics experiment, you are rolling a
golf ball off a table. If the tabletop is 1.22 m
above the floor and the golf ball hits the floor
1.52 m horizontally from the table, what was
the initial velocity of the golf ball?

6. As you sit at your desk at home, your
favourite autographed baseball rolls across
a shelf at 1.0 m/s and falls 1.5 m to the
floor. How far does it land from the base
of the shelf?

Projectiles Launched at an Angle

Most projectiles, including living ones such as
the playful dolphins in Figure 2.3, do not start
their trajectory horizontally. Most projectiles,
from footballs to frogs, start at an angle with the
horizontal. Consequently, they have an initial
velocity in both the horizontal and vertical
directions. These trajectories are described
mathematically as parabolas. The only additional
step required to analyze the motion of projectiles
launched at an angle is to determine the magni-
tude of the horizontal and vertical components of
the initial velocity.

Mathematically, the path of any ideal projectile
lies along a parabola. In the following investigation,
you will develop some mathematical relationships
that describe parabolas. Then, the sample problems
that follow will help you apply mathematical
techniques for analyzing projectiles.

@GIMIZEED Dolphins have been
seen jumping as high as 4.9 m
from the surface of the water in

a behaviour called a “breach.”

1. A stone is thrown horizontally at 22 m/s

from a canyon wall that is 55 m high. At
what distance from the base of the canyon
wall will the stone land?

. A sharpshooter shoots a bullet horizontally

over level ground with a velocity of

3.00 x 10* m/s. At the instant that the bullet
leaves the barrel, its empty shell casing falls
vertically and strikes the ground with a
vertical velocity of 5.00 m/s.

(a) How far does the bullet travel?

(b) What is the vertical component of the
bullet’s velocity at the instant before it
hits the ground?
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INVESTIGATION

The Components
of Projectile Motion

A heavy steel ball rolling up and down a ramp
follows the same type of trajectory that a projec-
tile follows. You will obtain a permanent record
of the steel ball’s path by placing a set of white
paper and carbon paper in its path. You will
then analyze the vertical and horizontal motion
of the ball and find mathematical

relationships that describe the path.

Problem

What patterns exist in the horizontal and
vertical components of projectile velocity?

Hypothesis

Formulate a hypothesis about the relationships
between time and the vertical distance travelled

by the steel ball.
Equipment

m |arge sheet of plywood
m very heavy steel ball
m metre stick, graph paper, tape

m set of white paper and carbon paper
(or pressure-sensitive paper)

Procedure

1. Set up the apparatus as illustrated.
Wear impact-resistant safety goggles.
Also, do not stand close to other people or
equipment while doing these activities.

2. Practise rolling the steel ball up the slope at
an angle, so that it follows a curved path that
will fit the size of your set of white paper
and carbon paper.

64 MHR e Unit 1 Forces and Motion: Dynamics

TARGET SKILLS
¢ Analyzing and interpreting
e Modelling concepts
e Communicating results

3. Tape the carbon paper and white paper onto
the plywood so that, when the steel ball rolls
over it, the carbon paper will leave marks on
the white paper.

4. Roll the steel ball up the slope at an angle, as
you practised, so that it will roll over the
paper and leave a record of its path.

5. Remove the white paper from the plywood.
Draw approximately nine or more equally
spaced lines vertically through the trajectory.

Analyze and Conclude

-

1. Measure the vertical
displacement in each ’ .
segment of the path ! R
of the steel ball, as !
shown in the diagram. |/

[\
‘\
\|
2. Assuming that the motion of the ball was
uniform in the horizontal direction, each
equally spaced vertical line represents the
same amount of time. Call it one unit of time.

3. Separate your data into two parts: (a) the
period of time that the ball was rolling
upward and (b) the period of time that the
ball was rolling downward. For each set of
data, make a graph of vertical-distance-
versus-time units.

4. Use curve-straightening techniques to
convert your graphs to straight lines. (See
Skill Set 4.)

5. Write equations to describe your graphs.

6. Is the vertical motion of the steel ball
uniform or uniformly accelerated?

7. How does it compare to the vertical motion
of a freely falling object?

8. Was your hypothesis valid or invalid?

9. Is this lab an appropriate model for actual
projectile motion? Explain why or why not.



SAMPLE PROBLEMS

Analyzing Parabolic Trajectories

1. A golfer hits the golf ball off the tee,
giving it an initial velocity of 32.6 m/s
at an angle of 65° with the horizontal.
The green where the golf ball lands is
6.30 m higher than the tee, as shown
in the illustration. Find

(a) the time interval during which
the golf ball was in the air

(b) the horizontal distance that it travelled

(c) the velocity of the ball just before it
hit the ground (neglect air friction)

Conceptualize the Problem

m Start to frame the problem by making a sketch
that includes a coordinate system, the initial e
conditions, and all of the known information. %

m The golf ball has a positive initial velocity in 4
the vertical direction. It will rise and then fall ‘ \
according to the kinematic equations. Vi =32.6 — '

m The vertical acceleration of the golf ball is I
negative and has the magnitude of the 65° [ 6.30 m
acceleration due to gravity. = — [ —-"""---- E—

m The time interval is determined by the vertical
motion. The time interval ends when the golf ball
is at a height equal to the height of the green.

m The golf ball will be at the height of the green twice,
once while it is rising and once while it is falling.

® Motion in the horizontal direction is uniform; that is,
it has a constant velocity.

m The horizontal displacement of the ball depends on the horizontal
component of the initial velocity and on the duration of the flight.

Identify the Goal

(a) The time interval, At, that the golf ball was in the air

(b) The horizontal distance, Ax, that the golf ball travelled

(¢c) The final velocity of the golf ball, V¢

Identify the Variables

Known Implied Unknown

Vil = 32.6 % Ay = 6.30 m ay = -9.81 SEZ At i

0, = 65° Ax 0t
Vix Viy

continued
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continued from previous page
Develop a Strategy

Find the horizontal and vertical components of Vix = [Vi| cos 0 Viy = [Vi| sin 6

the initial velocity.
Y Vix = 32.6 % cos65°  viy = 32.6 % sin 65°

vix = 13.78 & Viy = 29.55 &
s s
Find the time interval at which the ball is at a Ay = viyAt + %ayAtz
vertical position of 6.30 m by using the kinematic
equation that relates displacement, initial
velocity, acceleration, and the time interval.
You cannot solve directly for the time interval,
because you have a quadratic equation.
Substitute in the numerical values. 6.30 m = 29.55 LAt + %(—9.81 %)Atz
s s
Rearrange the equation into the general form of a 4.905At* — 29.55At + 6.30 = 0
quadratic equation and solve using the quadratic ;
b+ Vb2 — 29.55 * \/ 29.55)" — 4(4.905)(6.30
formula At = u Af = ( ) ( )( )
2a 2(4.905)
Af = 29.55 + /749.597
9.81

At =0.2213 s (or) 5.803 s
At=5.8s

(a) The smaller value is the time that the ball reached a height of
6.30 m when it was rising. The golf ball hit the green 5.8 s after
it was hit off the tee.

Use 5.803 s and the equation for constant veloci- _Ax
ty to determine the horizontal distance travelled At
by the golf ball. Ax = VAt

Ax = (13.78 %)(5.8035}

Ax = 79.965 m
Ax =8.0 x 10' m
(b) The golf ball travelled 80 m in the horizontal direction.
Find the vertical component of the final velocity Viy = Viy + ayAt
by using the kinematic equation that relates the

initial and final velocities to the acceleration and
the time interval. Viy = —27.38 %

viy = 29.55 = + (-9.81 53 )(5.803.4)
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Use the Pythagorean theorem to find the magni- N
vl =/ (13.78

m 2 m \?
tude of the final velocity. —> ol (—27.38 ?>

S

2
Wil = /939.55 5
S

Vil = 30.65 %

Vil = 31 ==
s
Use trigonometry to find the angle that the final tan 6 = (&)
velocity makes with the horizontal. Vx
0 = tan™ (ﬂ>
Vx
| -27.38
—tan 1" st
0=tan” — 78 |

6 =tan'1.9869

6 = 63.28°
0 =63°
y R N\\
s R
Viy V\f
65° 63 6.30 m
X
(¢) The final velocity of the golf ball just before it hit the ground was
31 m/s at 63° with the horizontal.
Validate the Solution
Since the golf ball hit the ground at a level slightly higher than the
level at which it started, you would expect the final velocity to be
slightly smaller than the initial velocity and the angle to be a little
smaller than the initial angle. These results were obtained. All of
the units cancelled properly.
continued »
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continued from previous page

2. You are playing tennis with a friend on tennis
courts that are surrounded by a 4.8 m fence.
Your opponent hits the ball over the fence
and you offer to retrieve it. You find the ball
at a distance of 12.4 m on the other side of the
fence. You throw the ball at an angle of 55.0°
with the horizontal, giving it an initial velocity
of 12.1 m/s. The ball is 1.05 m above the ground
when you release it. Did the ball go over the
fence, hit the fence, or hit the ground before
it reached the fence? (Ignore air friction.)

Conceptualize the Problem
m Make a sketch of the initial conditions and the
three options listed in the question.

m Choose the origin of the coordinate
system to be at the point at which the ball
left your hand.

m The equations for uniformly accelerated
motion apply to the vertical motion.

m The definition for constant velocity
applies to the horizontal motion.

m Because the x-axis is above ground level,
you will have to determine where the top
of the fence is relative to the x-axis.

m The time interval is the link between the
vertical motion and the horizontal motion.
Finding the time interval required for the ball to reach
the position of the fence will allow you to determine
the height of the ball when it reaches the fence.

Identify the Goal

Whether the ball went over the fence, hit the fence, or hit the ground
before reaching the fence

Identify the Variables

Known Implied Unknown
Wil =121 7% Ax=124m ay=-9.81 5 At Tiy
0 =55° h=48m V\ix Ay

Develop a Strategy

Find the x- and y-components of the initial Vix = [Vi| cos 0 Viy = [Vi| sin 6
locity. . . 2
velocity Vig = 12.1 %00555 Viy = 12.1 %511155
Vix = 6.940 % viy = 9.912 %
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To find the time interval, use the equation
for the definition of constant velocity

and the data for motion in the horizontal
direction.

To find the height of the ball at the time that
it reaches the fence, use the kinematic equa-
tion that relates displacement, acceleration,
initial velocity, and time interval.

Determine the position of the top of the
fence in the chosen coordinate system.

v = AX
At
At = AX
Vx
12.4 11
At = ===
6.940 &
At=1.787 s

Ay = viyAt + %ayAtz

Ay = (9.912 %)(1.787,3) + %(—9.81 %)(1.7874{)2

Ay =2.05m

Vtence = h - Yeground to x-axis
Vience = 4.8 m — 1.05 m
Vience = 3.75 m

The ball hit the fence. The fence is 3.75 m above the horizontal axis
of the chosen coordinate system, but the ball was only 2.05 m above

the horizontal axis when it reached the fence.

Validate the Solution

The units all cancel correctly. The time of flight (about 1.8 s) and the
height of the ball (about 2 m) are reasonable values.

PRACTICE PROBLEMS

9. While hiking in the wilderness, you come
to the top of a cliff that is 60.0 m high. You
throw a stone from the cliff, giving it an
initial velocity of 21 m/s at 35° above the

horizontal. How far from the base of the cliff

does the stone land?

10. A batter hits a baseball, giving it an initial
velocity of 41 m/s at 47° above the horizon-

tal. It is a home run, and the ball is caught by

a fan in the stands. The vertical component
of the velocity of the ball when the fan
caught it was —11 m/s. How high is the fan
seated above the field?

1. During baseball practice, you go up into the

bleachers to retrieve a ball. You throw the
ball back into the playing field at an angle of
42° above the horizontal, giving it an initial
velocity of 15 m/s. If the ball is 5.3 m above
the level of the playing field when you throw
it, what will be the velocity of the ball when
it hits the ground of the playing field?

. Large insects such as locusts can jump as far

as 75 cm horizontally on a level surface.

An entomologist analyzed a photograph and
found that the insect’s launch angle was 55°.
What was the insect’s initial velocity?

You have learned to make predictions about projectile motion
by doing calculations, but can you make any predictions about
patterns of motion without doing calculations? In the following
Quick Lab, you will make and test some qualitative predictions.
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QUICK
~ LAB

Football punters try to maximize “hang time”
to give their teammates an opportunity to rush
downfield while the ball is in the air. Small
variations in the initial velocity, especially the
angle, make the difference between a great kick
and good field position for the opposition.
What launch angle above the horizontal do
you predict would maximize the range of an
ideal projectile? Make a prediction and then, if
your school has a projectile launcher, test your
prediction by launching the same projectile sev-
eral times at the same speed, but at a variety of
different angles. If you do not have a projectile
launcher, try to devise a system that will allow
you to launch a projectile consistently with the
same speed but at different angles. Carry out
enough trials so you can be confident that you
have found the launch
angle that gives the
projectile the longest
range. Always consult
with your teacher
before using a
launch system.

- _=-_'_"-_f:f'!_ -
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Maximum Range
of a Projectile

TARGET SKILLS
e |nitiating and planning
e Predicting
e Performing and recording

Analyze and Conclude
1. What effect do very large launch angles have
on the following quantities?
(a) maximum height
(b) vertical velocity component
(¢) horizontal velocity component

(d) range

2. What effect do very small launch angles have
on the above quantities?

3. Did you see any patterns in the relationship
between the launch angle and the range of
the projectile? If so, describe these patterns.

4. How well did your experimental results
match your prediction?

5. What factors might be causing your projectile
to deviate from the ideal?

6. Suppose your experimental results were
quite different from your prediction. In
which number would you place more
confidence, your theoretical prediction
or your experimental results? Why?




Symmetrical Trajectories

If a projectile lands at exactly the same level from which it was
launched and air friction is neglected, the trajectory is a perfectly
symmetrical parabola, as shown in Figure 2.4. You can derive
some general relationships that apply to all symmetrical trajecto-
ries and use them to analyze these trajectories. Follow the steps in
the next series of derivations to see how to determine the time of
flight, the range, and the maximum height for projectiles that have
symmetrical trajectories.

v
/"”_- -~~~~\\

_ 7’ ~

Vi ’,/ \\\
A ’ .

4 A
: I’ H \\
1 ’ . .
I S (maximum N
. 1 .
Vg height) %
: 4 X
1
A0 N
N X
- A
Vix
R (range)

m The maximum height, H, and the range, R, as well as the time
of flight, T, are functions of the initial velocity, Vi, the angle, 6, and the
acceleration due to gravity, g.

Time of flight

m The time of flight ends when the projectile hits the ground.
Since the height of the projectile is zero when it hits the
ground, you can express this position as Ay = 0. Write the
kinematic equation for vertical displacement and set Ay = 0.

m Write the vertical component of the velocity in terms of
the initial velocity and the angle 6. Then, substitute the
expression into the equation above. Also, substitute —g
for the acceleration, a.

m Rearrange the equation to put the zero on the right-hand side
and factor out a At.

m If either factor is zero, the equation above is satisfied. Write
the two solutions.

m At = 0 represents the instant that the projectile was launched.
Therefore, the second expression represents the time of flight,
T, that the projectile spent in the air before it landed. Since T
is a scalar, write the initial velocity without a vector symbol.

ELECTRONIC

&r.
LEARNING PARTNER ,

Enhance your knowledge and test
your predictive skills by doing

the projectile motion interactive
activity provided by your Electronic
Learning Partner.

1
Ay = viyAl + EaAtZ

_ 1
0 = viyAt + gaAtZ

Viy = [Vi| sin 0
0 = ([7i| sin O)At + %(—g)Atz
LoAt2 — [WiAtsind = 0
2 1

At(%gAt - [Vilsinf) =0

At=0 or %gAt: [Vi| sin @
_ 2[Vi|sin 6
g

At

_ 2visin @

8
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Range

The range is the horizontal distance that the projectile has
travelled when it hits the ground. Write the equation for
displacement in the horizontal direction.

Write the expression for the horizontal component of velocity
in terms of the initial velocity and the launch angle 6.
Substitute this expression into the equation for the
displacement above.

Since the projectile is at the endpoint of its range, R, when

AX = VixAt

Vix = [Vi| cos 0
Ax = ([Vi] cos 8)At

R= (vicos 6)(2v;sin 6)

At = T, substitute the expression for T into the equation and g
simplify. Since R is always in one dimension, omit the vector R v22 sin 6 cos 0
symbol for the initial velocity. a g

m Write the trigonometric identity for 2 sin 6 cos 8 and substitute 2sin 6cos 6 = sin 26
the simpler form into the equation. R vZsin 20
8

Maximum height

m Substitute the expression for initial vertical velocity in terms H= —([vi] sin )?
of the initial velocity and the launch angle, 6. Substitute —g 2(-g)
for a. Now Ay is the maximum height, H. Since H is always in v2sin?
one dimension, omit the vector symbol for the initial velocity. H= IT
These three relationships — time of flight, range, and the

maximum height — allow you to make important predictions

about projectile motion without performing calculations. For

example, you can determine the launch angle that will give

you the maximum range by inspecting the equation for range.

Study the logic of the following steps.

m Inspect the equation for range. R- vZsin 26

8

m For a given initial velocity on the surface of Earth, the only sin26=1
variable is 6. Therefore, the term “sin 26” determines the v3(1)
maximum range. The largest value that the sine of any angle Rmax = ==
can achieve is 1.

m For what angle, 0, is sin 26 = 1? Recall that the angle for sin260 =1
which the sine is 1 is 90°. Use this information to find 6. 260 =sin"1

20 =90°
6 =45°

As a projectile rises, it slows its upward motion, stops, and
then starts downward. Therefore, at its maximum height, its
vertical component of velocity is zero. Write the kinematic

szy = Vizy + 2aAy
0 = vj, + 2aAy

. N e : 2aAy = -v}
equation that relates initial and final velocities, acceleration, , y
and displacement and solve for displacement, Ay. Ay = _z‘zi]y
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For any symmetrical trajectory, neglecting air friction, the
launch angle that yields the greatest range is 45°. Draw some
conclusions of your own by answering the questions in the
Conceptual Problems that follow.

e Conceptual Problems

e Examine the equation for maximum height. For a given initial
velocity, what launch angle would give a projectile the greatest
height? What would be the shape of its trajectory?

e Examine the equation for time of flight. For a given initial veloc-
ity, what launch angle would give a projectile the greatest time
of flight? Would this be a good angle for a football punter? Why?

e Consider the equation for range and a launch angle of 30°. What
other launch angle would yield a range exactly equal to that of
the range for an angle of 30°7

e Find another pair of launch angles (in addition to your answer
to the above question) that would yield identical ranges.

e The acceleration due to gravity on the Moon is roughly one

sixth of that on Earth (gmoon = % g). For a projectile with a given

initial velocity, determine the time of flight, range, and maxi-
mum height on the Moon relative to those values on Earth.

¢ The general equation for a parabola is y = Ax* + Bx + C, where

A, B, and C are constants. Start with the following equations of
motion for a projectile and develop one equation in terms of Ax
and Ay by eliminating Af. Show that the resulting equation, in
which Ay is a function of Ax, describes a parabola. Note that
the values for the initial velocity (v;) and launch angle (6) are
constants for a given trajectory.

AXx = v;Atcos @

Ay = viAtsin 6 — %gAtZ

SAMPLE PROBLEM

Analyzing a Kickoff

A player kicks a football for the opening kickoff. He gives the ball an
initial velocity of 29 m/s at an angle of 69° with the horizontal. Neglecting
friction, determine the ball’s maximum height, hang time, and range.

Conceptualize the Problem

m A football field is level, so the trajectory of the ball is a
symmetrical parabola.

® You can use the equations that were developed for symmetrical
trajectories.

m “Hang time” is the time of flight of the ball.

continued
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continued from previous page
Identify the Goal

The maximum height, H, of the football
The time of flight, T, of the football
The range, R, of the football

Identify the Variables and Constants

Known Implied Unknown
|ﬁ|=29% g=9.81% H
6 =69° T

R

Develop a Strategy

Use the equation for the maximum height of a Ho v sin® 6
symmetrical trajectory. - 2g
Substitute the numerical values and solve. (29 m)z(sin 69")2
H =
2(9.81 %)
[ (841 )(0.871 57)
19.62 %
H =37.359m
H=37m

The maximum height the football reached was 37 m.

Use the equation for the time of flight of a T - 2visin6
symmetrical trajectory. g
Substitute the numerical values and solve. e 2(29 m)(sin 69°)
ST ey
. (58 g)(o.gjr?. 58)
9.81 %
T =5.5196 s
T=55s

The time of flight, or hang time, of the football was 5.5 s.

Use the equation for the range of a symmetrical R- vZsin26
trajectory. - g
Substitute the numerical values and solve. (29 E)z(sin 2(69°))
R="1
9.81%
i (841 )(0.669 13)
9.81%
R =57.3637m
R=57m

The football travelled 57 m.
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Validate the Solution

All of the values are reasonable for a football kickoff. In every case, the
units cancel properly to give metres for the range and maximum height

and seconds for the time of flight, or hang time.

PRACTICE PROBLEMS

13. A circus stunt person was launched as a
human cannon ball over a Ferris wheel. His
initial velocity was 24.8 m/s at an angle of
55°. (Neglect friction)

(a) Where should the safety net be positioned?

(b) If the Ferris wheel was placed halfway

between the launch position and the safety

net, what is the maximum height of the

Ferris wheel over which the stunt person

could travel?

BEEER. Scction Review

(c) How much time did the stunt person
spend in the air?

. You want to shoot a stone with a slingshot

and hit a target on the ground 14.6 m away.
If you give the stone an initial velocity of
12.5 m/s, neglecting friction, what must be
the launch angle in order for the stone to hit
the target? What would be the maximum
height reached by the stone? What would be
its time of flight?

1. Projectiles travel in two dimensions at
the same time. Why is it possible to apply
kinematic equations for one dimension to
projectile motion?

2, How does the analysis of projectiles

launched at an angle differ from the analysis

of projectiles launched horizontally?

3. @ Explain why time is a particularly signifi-

cant parameter when analyzing projectile
motion.

4. @ What can you infer about the velocity at
each labelled point on the trajectory in this
diagram?

RN

X0

. @ Imagine that you are solving a problem in

projectile motion in which you are asked to
find the time at which a projectile reaches

a certain vertical position. When you solve
the problem, you find two different positive
values for time that both satisfy the condi-
tions of the problem. Explain how this result
is not only possible, but also logical.

. What properties of projectile motion

must you apply when deriving an equation
for the maximum height of a projectile?

. What properties of projectile motion

must you apply when deriving an equation
for the range of a projectile?

. @ Suppose you knew the maximum height

reached by a projectile. Could you find its
launch angle from this information alone?
If not, what additional information would
be required?
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The BIG Motion Picture:
An IMAX Interview

“Filling people’s peripheral vision with image to the
point that they lose the sense of actually watching a

picture and become totally absorbed in the medium”
is the goal of the IMAX Corporation, which has been
making and screening large-format films since 1970.

Former IMAX executive vice-president of technology
Michael Gibbon went on to say in a recent interview,

“If you give people a very large image, you can
almost disconnect them from reality. They become
very involved with the ‘thing’ they are seeing.”
IMAX develops and supplies all of the equipment
used by filmmakers and theatres to create an exciting
and enthralling film experience — the camera, the
projector, and even the enormous movie screen.
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The roots of the IMAX system go back to
Montréal’s Expo ’67, where films shown simultane-
ously on multiple wide screens by several standard
35 mm movie theatre projectors became very popular.
A small group of Canadians involved in making some
of those films decided to design a new system using a
single, powerful projector, rather than the cumber-
some multiple projectors. The resulting IMAX system
premiered at Expo ’70 in Osaka, Japan, and the first
permanent IMAX projection system was installed at
Toronto’s Ontario Place in 1971. In 1997, IMAX
Corporation won an Oscar, the highest award of the
Academy of Motion Picture Arts and Sciences, for
scientific and technical achievement.



We spoke to Gibbon, who joined IMAX in 1986
and is now a consultant to the corporation, about the
technical challenges IMAX faces when producing its
large-screen films.

Q: How did IMAX create the technology to give
people this sense of total immersion in the image?
A: Sensibly, IMAX chose the largest film format that
was commercially available, rather than have
Kodak produce something new. It was 70 mm,
but IMAX turned it on its side and advanced it
15 perforations at a time.

Q: Can you explain a bit more about the film stock

and film frames?

A: A filmstrip is a series of individual frames with
perforations that run along the sides to help feed
film through the projector. Today’s cinemas show
films with a frame size of 35 mm and advance it
four perforations at a time. 70 mm existed when
our corporation was starting up, but IMAX’s
choice of advancing it 15 perforations at a time
was fairly revolutionary.

: What was the first challenge?

: There were a number of 70 mm projectors in exis-
tence from quite early in the history of cinema,
advancing five perforations of film at a time. There
were many more 35 mm projectors advancing four
perforations of film at a time. Our challenge was
to move a format three times larger than 70 mm/
5 perforations, and to do that in such a way that
the film and film frame not only survived the
process, but also were steady when projected.

We needed steadiness because we were going to
sit people very close to a very large image.

> o

Q: In terms of film motion, what was the problem,
exactly?

A: Tt’s the sheer dynamics of the film. You're trying
to advance the film quickly. You need to run it at
24 frames per second. That’s the standard rate of
film advancement. Also, the 35 mm mechanism
is fairly rough on a film. It has a high acceleration
rate, so the stresses on the perforations are not
minor — you can damage the film. When the
frame comes to a rest, it can deform, particularly
around the perforations, so that you’re not
absolutely sure where you're going to finish up.

Q:

So the frame “overshoots” too far or “under-
shoots” not far enough?

: Yes, this was a known problem in the 35 mm

projectors. The IMAX Rolling Loop projector was
created to solve the problem of advancing more
film quickly, yet making sure that the film was
firmly in place for exposure in the aperture. The
fundamental advantage it has over the 35 mm
projectors is fixed registration pins.

: Where are registration pins? How do they work?

: They are pins that are fixed on either side of the

aperture. They simply hold the film in place when
it is being illuminated.

: How does the Rolling Loop work?

: There is a rotor and on the periphery of that rotor

are a total of eight gaps. The film is induced to
build or loop up into the gaps, and the rotor
rotates. Essentially, what it’s doing is lifting up the
film, putting it into the gap, and rolling it along.

: Did you experiment with different interior

motions inside the projector?

: What evolved after a number of experiments was

a deceleration cam. This takes the film, which is
coming in at almost two metres per second, grabs
it in the last part of its travel, slowly brings it
down in a controlled manner and then puts it
onto the registration pins at a very low final
velocity. The pins hold the frame in a very precise
location and then it’s vacuumed up against the
lens to keep the entire frame in focus.

: What are you looking at for the future?

: Digital is an obvious consideration, but the image

quality is not at the level of film. It doesn’t yet
have the ability to depict fine detail or to produce
the same amount of light. But we’re working on it.

Making Connections

1.

2.

IMAX films are known for creating a sense of
motion, instead of simply showing a picture of it.
How does IMAX do this?

Research the differences between the IMAX
Rolling Loop projector and a standard 35 mm
projector.
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SECTION S—me—
EXPECTATIONS

* Analyze, predict, and explain
uniform circular motion.

* Explain forces involved in
uniform circular motion in
horizontal and vertical planes.

* Investigate relationships
between period and frequency
of an object in uniform
circular motion.

KEY "\

TERMS
e uniform circular motion
e centripetal acceleration

e centripetal force

Uniform Circular Motion

Have you ever ridden on the Round Up at the Canadian National
Exhibition, the ride shown in the photograph? From a distance, it
might not look exciting, but the sensations could surprise you.

Everyone lines up around the outer edge and the ride slowly
begins to turn. Not very exciting yet, but soon, the ride is spinning
quite fast and you feel as though you are being pressed tightly
against the wall. The rotations begin to make you feel disoriented
and your stomach starts to feel a little queasy. Then, suddenly, the
floor drops away, but you stay helplessly “stuck” to the wall. Just
as you realize that you are not going to fall, the entire ride begins
to tilt. At one point during each rotation, you find yourself looking
toward the ground, which is almost directly in front of you. You
do not feel as though you are going to fall, though, because you are
literally stuck to the wall.

GIMZEX) if this ride stopped turning, the people would start to fall.
What feature of circular motion prevents people from falling when the ride

is in motion and they are facing the ground?

What is unique about moving in a circle that allows you to
apparently defy gravity? What causes people on the Round Up to
stick to the wall? As you study this section, you will be able to
answer these questions and many more.

Centripetal Acceleration

Amusement park rides are only one of a very large number of
examples of circular motion. Motors, generators, vehicle wheels,
fans, air in a tornado or hurricane, or a car going around a curve
are other examples of circular motion. When an object is moving
in a circle and its speed — the magnitude of its velocity — is
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constant, it is said to be moving with uniform circular motion. N
The direction of the object’s velocity is always tangent to the
circle. Since the direction of the motion is always changing, the R
object is always accelerating.

Figure 2.6 shows the how the velocity of the object changes
when it is undergoing uniform circular motion. As an object
moves from point P to point Q, its velocity changes from v; to V5.
Since the direction of the acceleration is the same as the direction
of the change in the velocity, you need to find AV or v, — V.
Vectors and V; and 7, are subtracted graphically under the circle.
To develop an equation for centripetal acceleration, you will first
need to show that the triangle OPQ is similar to the triangle
formed by the velocity vectors, as shown in the following points.

J

® r; =1, because they are radii of the same circle. Therefore, N 7
. . . . AV 2
triangle OPQ is an isosceles triangle. 6,
m [V;] = [Vz] because the speed is constant. Therefore, the triangle N
formed by -V, v, and AV is an isosceles triangle. N _\1 N
— N . . . . AV = Vo —Vq
m 1, 1v; and r, LV, because the radius of a circle is perpendicular
to the tangent to the point where the radius contacts the circle. CITTETD The direction of the
m 6. = 6, because the angle between corresponding members of change in velocity is found by
sets of perpendicular lines are equal. defining the vector v and then

. . . adding V, and —V3. Place the tail
m Since the angles between the equal sides of two isosceles of =1 at the tip of V, and draw

triangles are equal, the triangles are similar. the resultant vector, AV, from the

Now use the two similar triangles to find the magnitude of the tail of V2 to the tip of V1.

acceleration. Since the derivation involves only magnitudes, omit
vector notations.

m The ratios of the corresponding sides of
similar triangles are equal. There is no
need to distinguish between the sides
and r, or v; and v, because the radii
are equal and the magnitudes of the Ar Av
velocities are equal. T v

m The object travelled from point P to
point Q in the time interval Atf.
Therefore, the magnitude of the object’s
displacement along the arc from P
to Qis Ad = vAt

m The length of the arc from point P to
point Q is almost equal to Ar. As the
angle becomes very small, the lengths

become more nearly identical. Ar = vAt
m Substitute this value of Ar into the first VAt _ Av
equation. r v
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MATH LINK

Mathematicians have developed a
unique system for defining compo-
nents of vectors such as force,
acceleration, and velocity for move-
ment on curved paths, even when the
magnitude of the velocity is changing.
Any curve can be treated as an arc of
a circle. So, instead of using the x- and
y-components of the typical Cartesian
coordinate system, the vectors are
divided into tangential and radial
components. The tangential compo-
nent is the component of the vector
that is tangent to the curved path at
the point at which the object is
momentarily located. The radial com-
ponent is perpendicular to the path
and points to the centre of the circle
defined by the arc or curved section of
the path. Radial components are the
same as centripetal components.

m Divide both sides of the equation by At. v _ Av
r VAt
m Recall the definition of acceleration. a=Av
At
Vv _a
m Substitute a into the equation for % Ty
m Multiply both sides of the equation by v. o= v
r

The magnitude of the acceleration of an object moving with
uniform circular motion is a = v?/r. To determine its direction,
again inspect the triangle formed by the velocity vectors in
Figure 2.6. The acceleration is changing constantly, so imagine a
vector V; as close to 7; as possible. The angle 6 is extremely
small. In this case, AV is almost exactly perpendicular to both 7}
and V. Since V; and 7V, are tangent to the circle and therefore are
perpendicular to the associated radii of the circle, the acceleration
vector points directly toward the centre of the circle.

Describing the acceleration vector in a typical Cartesian
coordinate system would be extremely difficult, because the
direction is always changing and, therefore, the magnitude of
the x- and y-components would always be changing. It is much
simpler to specify only the magnitude of the acceleration, which
is constant for uniform circular motion, and to note that the
direction is always toward the centre of the circle. To indicate this,
physicists speak of a “centre-seeking acceleration” or centripetal
acceleration, which is denoted as a., without a vector notation.

CENTRIPETAL ACCELERATION

Centripetal acceleration is the quotient of the square of the
velocity and the radius of the circle.

2

v
A= —
r
Quantity Symbol Sl unit
centripetal ac SEZ (metres per second squared)
acceleration
velocity (magnitude) % % (metres per second)
radius (of circle) r m (metres)
Unit Analysis
2 2 2
metre _ (fe)”  (2) ¥ m
second? metre m m o s?

Note: The direction of the centripetal acceleration is always
along a radius pointing toward the centre of the circle.
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Centripetal Force

According to Newton’s laws of motion, an object will accelerate
only if a force is exerted on it. Since an object moving with uni-
form circular motion is always accelerating, there must always be
a force exerted on it in the same direction as the acceleration, as
illustrated in Figure 2.7. If at any instant the force is withdrawn,
the object will stop moving along the circular path and will
proceed to move with uniform motion, that is, in a straight line
that is tangent to the circular path on which it had been moving.
Since the force causing a centripetal acceleration is always
pointing toward the centre of the circular path, it is called a
centripetal force. The concept of centripetal force differs greatly

from that of other forces that you have encountered. It is not a A force acting

type of force such as friction or gravity. It is, instead, a force that perpendicular to the direction of

is required in order for an object to move in a circular path. the velocity is always required in
A centripetal force can be supplied by any type of force. For order for any object to move

example, as illustrated in Figure 2.8, gravity provides the cen- continuously along a circular path.

tripetal force that keeps the Moon on a roughly circular path
around Earth, friction provides a centripetal force that causes a
car to move in a circular path on a flat road, and the tension in a
string tied to a ball will cause the ball to move in a circular path
when you twirl it around. In fact, two different types of force
could act together to provide a centripetal force.

FCTTEW RS Any force that is directed toward the centre of a circle can
provide a centripetal force.

You can determine the magnitude of a centripetal force required
to cause an object to travel in a circular path by applying Newton’s
second law to a mass moving with a centripetal acceleration.
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m Write Newton’s second law. F = mia

m Write the equation describing centripetal _ v
acceleration. T r

m Substitute into Newton’s second law.
Omit vector notations because the force
and acceleration always point toward P mv?
the centre of the circular path. ¢ r

The equation for the centripetal force required to cause a mass
m moving with a velocity v to follow a circular path of radius ris
summarized in the following box.

CENTRIPETAL FORCE
The magnitude of the centripetal force is the quotient of the
mass times the square of the velocity and the radius of
the circle.
P mv?>
¢ r
Quantity Symbol S| unit
centripetal force F, N (newtons)
mass m kg (kilograms)
velocity v % (metres per second)
radius of circular path r m (metres)
Unit Analysis
; metres )2
(newtons) = (kllogram(SPmnd) )
metres
m 2 m?
N = kg($)” _ kefr _ kg-m =N
m at s?

SAMPLE PROBLEMS

Centripetal Force in a Horizontal and a Vertical Plane
1. A car with a mass of 2135 kg is rounding [

N not enough friction

a curve on a level road. If the radius of
curvature of the road is 52 m and the
coefficient of friction between the tires
and the road is 0.70, what is the maxi-
mum speed at which the car can make
the curve without skidding off the road?
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Conceptualize the Problem

m Make a sketch of the motion of the car and the forces acting on it.

m The force of friction must provide a sufficient centripetal force to

cause the car to follow the curved road.

m The magnitude of force required to keep the car on the road
depends on the velocity of the car, its mass, and the radius

of curvature of the road.

m Since ris in the denominator of the expression for centripetal force,
as the radius becomes smaller, the amount of force required

becomes greater.

m Since v is in the numerator, as the velocity becomes larger, the force
required to keep the car on the road becomes greater.

Identify the Goal

The maximum speed, v, at which the car can make the turn

Identify the Variables

Known Implied
m=2135kg  p=0.70 g =981 SEZ
r=52m

Develop a Strategy

Set the frictional force equal to the centripetal
force.

Since the car is moving on a level road, the
normal force of the road is equal to the weight
of the car. Substitute mg for Fy.

Solve for the velocity.

Substitute in the numerical values and solve.

Unknown
Fy Fy
v
Fi=F,
2
UFN = er
mv?
umg = T
)
v =./urg

v = \/(0.70)(52 m)(‘w1 S%)

2
V:,/357.OSI§—Z

v = 18.897 %

V519E
S

If the car is going faster than 19 m/s, it will skid off the road.

Validate the Solution

A radius of curvature of 52 m is a sharp curve. A speed of 19 m/s is
equivalent to 68 km/h, which is a high speed at which to take a sharp
curve. The answer is reasonable. The units cancelled properly to give

metres per second for velocity.

continued
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continued from previous page

2. You are playing with a yo-yo with a mass of 225 g. The full length
of the string is 1.2 m. You decide to see how slowly you can swing
it in a vertical circle while keeping the string fully extended, even
when the yo-yo is at the top of its swing.

(a) Calculate the minimum speed at which you can swing the yo-yo
while keeping it on a circular path.

(b) At the speed that you determine in part (a), find the tension in the
string when the yo-yo is at the side and at the bottom of its swing.

Conceptualize the Problem

m Draw free-body diagrams of the yo-yo at the top, bottom, and one side
of the swing.

____________________
Pie S e S e )
’ S ’, ~ ’, ~
’ - \\ ’ ‘\ ’ ‘\
’ ’ ’

’ FT Fg . ’ \ ’ .
’ A3 ’ A3 ’ A3
1 \ 1 — 1 \
1 \ 1 1 \

h \ h FT \ h \
1 | 1 1 |
[l 1 [l [l 1
\‘ h \‘ r \‘ h
U U N U
A ’ A 7 A F. 7
A ’ N ’ A T ’
. ’ \ PN . ’
A . A 4 F A 4
~ . ~ ’ ~ ’
S - So . 8 S~ .
—————— - N‘—_——" Sea _—"
p—
Fq

m At the top of the swing, both tension and the force of gravity are acting
toward the centre of the circle.

m If the required centripetal force is less than the force of gravity, the
yo-yo will fall away from the circular path.

m If the required centripetal force is greater than the force of gravity, the
tension in the string will have to contribute to the centripetal force.

m Therefore, the smallest possible velocity would be the case where the
required centripetal force is exactly equal to the force of gravity.

m At the side of the swing, the force of gravity is perpendicular to the
direction of the required centripetal force and therefore contributes
nothing. The centripetal force must all be supplied by the tension in
the string.

m At the bottom of the swing, the force of gravity is in the opposite
direction from the required centripetal force. Therefore, the tension in
the string must balance the force of gravity and supply the required
centripetal force.

Identify the Goal

The minimum speed, v, at which the yo-yo will stay on a circular path

The tension, Fr, in the string when the yo-yo is at the side of its circular path
The tension, Fr, in the string when the yo-yo is at the bottom of its

circular path
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Identify the Variables

Known Implied
m = 225 kg g=9.81822
r=12m

Develop a Strategy

Set the force of gravity on the
yo-yo equal to the centripetal
force and solve for the velocity.

Substitute numerical values
and solve.

A negative answer has no
meaning in this application.

Unknown
Vmin
Fr(side)
FT(bottom)

Fy=F,

v = +3.431 %

V53.4E
S

(a) The minimum speed at which the yo-yo can move is 3.4 m/s.

Set the force of tension in the
string equal to the centripetal
force. Insert numerical values
and solve.

Fr=F,
2
FT _ mv
r
1k 2
. (225 8)(stoits) (3431 2)
T 1.2 m
kg™
Fr = 2.207 ~8sZ
FT =2.2N

(b): Side — When the yo-yo is at the side of its swing, the tension in the string is 2.2 N.

Set the centripetal force equal to
the vector sum of the force of
tension in the string and the gravi-
tational force. Solve for the force
due to the tension in the string.

Substitute numerical values and
solve.

F.=Fr + F,

mv?
r

= Fr —mg

2
mv
Fr= - + mg

2
(225 8)(oit5) (3431 2)

_ 1 kg m
Fr= 1.2m - (ZZSg)(mOOg) (9'81 sz>
kg - m?% )
Fr=2.207 —=— 4 2.207 X810
B
Fr=4.414 N
FT =44N

(b): Bottom — When the yo-yo is at the bottom of its swing, the tension in the string is 4.4 N.

continued
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PRACTICE PROBLEMS

continued from previous page

Validate the Solution

The force of gravity (weight) of the yo-yo is 2.2 N. At the top of the swing, the
weight supplies the entire centripetal force and the speed of the yo-yo is deter-
mined by this value. At the side of the swing, the tension must provide the
centripetal force and the problem was set up so that the centripetal force had

to be equal to the weight of the yo-yo, or 2.2 N. At the bottom of the swing, the
tension must support the weight (2.2 N) and, in addition, provide the required
centripetal force (2.2 N). You would therefore expect that the tension would be
twice the weight of the yo-yo. The units cancel properly to give newtons for force.

15. A boy is twirling a 155 g ball on a 1.65 m
string in a horizontal circle. The string will
break if the tension reaches 208 N. What is
the maximum speed at which the ball can
move without breaking the string?

16. An electron (mass 9.11 x 107%! kg) orbits a

hydrogen nucleus at a radius of 5.3 x 107 m

at a speed of 2.2 x 10° m/s. Find the

centripetal force acting on the electron. What

type of force supplies the centripetal force?

17. A stone of mass 284 g is twirled at a constant

speed of 12.4 m/s in a vertical circle of
radius 0.850 m. Find the tension in the
string (a) at the top and (b) at the bottom of
the revolution. (c) What is the maximum

Fy +B (no force)

18.

19.

speed the stone can have if the string will
break when the tension reaches 33.7 N?

You are driving a 1654 kg car on a level
road surface and start to round a curve at
77 km/h. If the radius of curvature is 129 m,
what must be the frictional force between
the tires and the road so that you can safely
make the turn?

A stunt driver for a movie needs to make a
2545 kg car begin to skid on a large, flat,
parking lot surface. The force of friction
between his tires and the concrete surface is
1.75 x 10* N and he is driving at a speed of
24 m/s. As he turns more and more sharply,
what radius of curvature will he reach when
the car just begins to skid?

Centripetal Force versus Centrifugal Force

You read in Chapter 1, Fundamentals of Dynamics, that a
centrifugal force is a fictitious force. Now that you have learned
about centripetal forces, you can understand more clearly why a
centrifugal force is classed as fictitious.

Analyze the motion of and the force on a person who is riding

CIZEXD Assume that the

Round Up ride is rotating at a con-
stant speed and you are at point
A. After a short time interval, in
the absence of a force acting on
you, you would move to point B,
radially outward from point C.

A centripetal force is required to
change the direction of your
velocity and place you at point C.

the Round Up. Imagine that Figure 2.9 is a view of the Round Up
ride from above and at some instant you are at point A on the ride.
At that moment, your velocity (V') is tangent to the path of the
ride. If no force was acting on you at all, you would soon be locat-
ed at point B. However, the solid cylindrical structure of the ride
exerts a normal force on you, pushing you to point C. There is no
force pushing you outward, just a centripetal force pushing you
toward the centre of the circular ride.
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An Amusing Side of Physics

Your roller-coaster car is heading up the first and
highest incline. As you turn around to wave to
your faint-of-heart friends on the ground, you
realize that six large players from the Hamilton
Tiger Cats football team have piled into the three
cars immediately behind you! Now you’re poised
at the top, ready to drop, and hoping fervently
that the roller-coaster manufacturer designed the
cars to stay on the track, even when carrying
exceptionally heavy loads.

Perhaps your anxiety will lessen if you are
aware that a highly qualified mechanical engineer,
such as Matthew Chan, has checked out the
performance specifications of the roller coaster,
as well as all of the other rides at the amusement
park. They meet Canada’s safety codes, or the park
is not allowed to operate them.

Chan has worked for the Technical Standards
and Safety Authority (TSSA) for the past 11 years.
As special devices engineer for the Elevating and
Amusement Devices Safety Division, he spends
most of his time in the office, verifying design sub-
missions from elevator, ski lift, and amusement
park ride manufacturers.

When some unique piece of machinery comes
along or when he wants to verify how equipment
will perform in reality versus on paper, Chan goes
into the field. He confesses a special fondness
for going on-site to test amusement park rides,
including at Canada’s Wonderland, north of
Toronto, the Western Fair in London, Ontario,
and Toronto’s Canadian National Exhibition.

His favourite challenge is analyzing the perform-
ance of reverse bungees, amusement park rides
that look like giant slingshots and that hurl people
hundreds of feet into the air. Chan says that most
reverse bungees are unique devices — rarely are
two designed and made exactly the same. “It takes
all of your engineering knowledge to analyze these
devices,” claims Chan. “There are no hard and fast
rules for how reverse bungees are made, and the
industry is always changing.”

A reverse bungee ride

A university degree in mechanical engineering
is required to become a special devices engineer,
and Chan says that an understanding of the
dynamics of motion is a must. You have to be able
to predict how a device will behave in a variety of
“what if” scenarios. The details of balance, mass
placement, overload situations, restraint systems,
and footings are all worked through carefully.

In short, you are in good hands. Now, sit back,
relax, and enjoy the ride!

Going Further

1. According to Chan, one of the best ways to get
a hands-on feel for the complex dynamic forces
at work in amusement park rides is to build and
operate scale models. Form a study group with
some of your friends and investigate designs
for your favourite ride. Build a scale model and
test it to determine the smallest and greatest
weights it can carry safely.

2. Visit a science centre that has exhibits demon-
strating the principles of dynamics.

WEB LINK

www.mcgrawhill.ca/links/physics12

The Internet has sites that allow you to design and “run”
your own amusement park rides. Go to the Internet site
shown above and click on Web Links.
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Describing Rotational Motion

When an object is constantly rotating, physicists sometimes

find it more convenient to describe the motion in terms of the
frequency — the number of complete rotations per unit time — or
physics12and follow the links for the period — the time required for one complete rotation —

an in-depth activity on circular instead of the velocity of the object. You can express the cen-
mation. tripetal acceleration and the centripetal force in these terms by
finding the relationship between the magnitude of the velocity of
an object in uniform circular motion and its frequency and period.

PROBEWARE

If your school has probeware
equipment, visit
www.mcgrawhill.ca/links/

m Write the definition of velocity.
Since period and frequency are
scalar quantities, omit vector _ Ad
notations. At

m The distance that an object travels
in one rotation is the circumfer-
ence of the circle. Ad = 2nr

m The time interval for one cycle is
the period, T. At=T

m Substitute the distance and period 2nr
into the equation for velocity, v.

m Substitute the above value for v a = v*
into the equation for centripetal ‘oor
. . . 2
acceleration, a, and simplify. o = (2%)
7 or
anr?
2
ag = ;
_4n’r
c — TZ
m Substitute the above value for a F. = ma,
into the equation for centripetal F 4m2r
force and simplify. e ( T2 )
4an’mr
F, T2
m The frequency is the inverse of f= 1 =1
the period. T f
m Substitute the above value for the _4nr
period into the equation for cen- ¢ (]%)2
tripetal acceleration and simplify. ag = 4n’rf?
m Substitute the above value for F, = m(4n’rf?)
acceleration into the equation for F, = an’*mrf*

the centripetal force.
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INVESTIGATION 2-B

Verifying the
' Circular Motion Equation

You have seen the derivation of the equation for

circular motion and solved problems by using
it. However, it is always hard to accept a theo-
retical concept until you test it for yourself. In

TARGET SKILLS
¢ Performing and recording
* Analyzing and interpreting
e Communicating results

. Fasten three washers to the free end of the

string, using a bent paper clip to hold them
in place. Swing the string at a velocity that
will maintain the chosen radius. Measure

the time for several revolutions and use it
to calculate the period of rotation.

this investigation, you will obtain experimental
data for uniform circular motion and compare
your data to the theory.

glass tube,
Problem wrapped thored ball
How well does the equation describe actual with tape ethered ba

or #4 two-hole

experimental results? rubber stopper

Equipment

m |aboratory balance
m force probeware or stopwatch
m hall on the end of a strong string

m glass tube (15 cm long with fire-polished ends, metal
wrapped in tape) washers

m metre stick

bent paper clip

5. Calculate the gravitational force on the
washers (weight), which creates tension
in the string. This force provides the
centripetal force to keep the ball moving
on the circular path.

m 12 metal washers

® tape

m paper clips

Wear impact-resistant safety goggles.

Also, do not stand close to other people and

” ) ' - - 6. Repeat for at least four more radii.
equipment while doing this activity.

Alternative B: Using Probeware
Procedure
Alternative A: Using Traditional Apparatus
1. Measure the mass of the ball.

1. Measure the mass of the ball.

2. Attach the free end of the string to a swivel
on a force probe, as shown in the diagram on

2. Choose a convenient radius for swinging the next page.

the ball in a circle. Use the paper clip or 3

tape as a marker, as shown in the diagram at

the top of the next column, so you can keep

the ball circling within your chosen radius.

. Set the software to collect force-time data
approximately 50 times per second. Start the
ball rotating at constant velocity, keeping the
radius at the proper value, and collect data

3. Measure the mass of one washer. for at least 10 revolutions.

continued
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continued from previous page

tethered
ball ™Sgz=—=—=—- S -

wrapped

to computer

force probe

4. Examination of the graph will show regular
variations from which you can calculate the
period of one revolution, as well as the
average force.

6.0
Z 4.0
[eb}
2
o
2.0
0 4 3 12 16
Time (s)
one
/ revolution

l

5. Repeat for at least five different radii.

Analyze and Conclude
1. For each radius, calculate and record in your
data table the velocity of the ball. Use the
period and the distance the ball travels in
one revolution (the circumference of its
circular path).
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2. For each radius, calculate and record in

your data table er .

2
m;/ . Each radius will

produce one data point on your graph.

3. Graph F; against

4. Draw the best-fit line through your data
points. How can you tell from the position
of the points whether the relationship

2
being tested, F; = my

, actually describes

the data reasonably well?

5. Calculate the slope of the line. What does
the slope tell you about the validity of the
mathematical relationship?

6. Identify the most likely sources of error in
the experiment. That is, what facet of the
experiment might have been ignored, even
though it could have a significant effect on
the results?

Apply and Extend

Based on the experience you have gained in
this investigation and the theory that you have
learned, answer the following questions about
circular motion. Support your answers in each
case by describing how you would experimen-
tally determine the answer to the question and
how you would use the equations to support
your answer.

7. How is the required centripetal force affected
when everything else remains the same but
the frequency of rotation increases?

8. How is the required centripetal force affected
when everything else remains the same but
the period of rotation increases?

9. If the radius of the circular path of an object
increases and the frequency remains the
same, how will the centripetal force change?

10. How can you keep the velocity of the object
constant while the radius of the circular
path decreases?



Banked Curves

Have you ever wondered why airplanes tilt or bank so
much when they turn, as the airplanes in the photograph
are doing? Now that you have learned that a centripetal
force is required in order to follow a curved path or
turn, you probably realize that banking the airplane has
something to do with creating a centripetal force. Land
vehicles can use friction between the tires and the road
surface to obtain a centripetal force, but air friction (or
drag) acts opposite to the direction of the motion of the
airplane and cannot act perpendicular to the direction
of motion. What force could possibly be used to provide
a centripetal force for an airplane?

When an airplane is flying straight and horizontally,

L‘
the design of the wings and the flow of air over them

creates a lift force (L) that keeps the airplane in the air, M When an airplane follows a
curved path, it must tilt or bank to generate

as shown in Figure 2.11. The lift must be equal in
magnitude and opposite in direction to the weight of

the airplane in order for the airplane to remain on a

level path. When an airplane banks, the lift force is still
perpendicular to the wings. The vertical component of
the lift now must balance the gravitational force, while
the horizontal component of the lift provides a centripetal
force. The free-body diagram on the right-hand side of
Figure 2.11 helps you to see the relationship of the forces
more clearly.

a centripetal force.

=

A

£

path of airplane

———————

el

GMIEXID When a pilot banks an airplane, the forces of gravity and lift
are not balanced. The resultant force is perpendicular to the direction that
the airplane is flying, thus creating a centripetal force.

Cars and trucks can use friction as a centripetal force. However,
the amount of friction changes with road conditions and can
become very small when the roads are icy. As well, friction causes
wear and tear on tires and causes them to wear out faster. For
these reasons, the engineers who design highways where speeds
are high and large centripetal forces are required incorporate
another source of a centripetal force — banked curves. Banked
curves on a road function in a way that is similar to the banking
of airplanes.
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GTMIEXED When you look at a

cross section of a car rounding a
curve, you can see that the only
two forces in a vertical plane that
are acting on the car are the force
of gravity and the normal force
of the road. The resultant force

is horizontal and perpendicular
to the direction in which the car
is moving. This resultant force
supplies a centripetal force

that causes the car to follow

a curved path.

Figure 2.12 shows you that the normal force of the road on a
car provides a centripetal force when the road is banked, since
a normal force is always perpendicular to the road surface.

You can use the following logic to develop an equation relating
the angle of banking to the speed of a vehicle rounding a curve.
Since an angle is a scalar quantity, omit vector notations and use
only magnitudes. Assume that you wanted to know what angle of
banking would allow a vehicle to move around a curve with a
radius of curvature r at a speed v, without needing any friction
to supply part of the centripetal force.

m Since a car does not move in a
vertical direction, the vertical
component of the normal force must

be equal in magnitude to the force Fncos 6 = Fy
of gravity. Fycos 6 = mg
m The horizontal component of the Fysin 6 = F,
2
norm.al force must supply the Fysing = MY
centripetal force. r
m Divide the second equation by the Bgsing mTVZ
first and simplify. Ficos6  mg

. v?

sinf _

cosf g

2

tan 6 = —

8

Notice that the mass of the vehicle does not affect the amount of
banking that is needed to drive safely around a curve. A semitrailer
and truck could take a curve at the same speed as a motorcycle
without relying on friction to supply any of the required centripetal
force. Apply what you have learned about banking to the following
problems.
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e Conceptual Problem

e A conical pendulum swings
in a circle, as shown in the
diagram. Show that the form
of the equation relating the
angle that the string of the
pendulum makes with the
vertical to the speed of the
pendulum bob is identical to
the equation for the banking
of curves. The pendulum has
a length L, an angle 6 with the
vertical, a force of tension Fr in the string, a weight mg, and
swings in a circular path of radius r. The plane of the circle is
a distance h from the ceiling from which the pendulum hangs.

SAMPLE PROBLEM

Banked Curves and Centripetal Force

Canadian Indy racing car driver Paul Tracy set the speed record for time
trials at the Michigan International Speedway (MIS) in the year 2000.
Tracy averaged 378.11 km/h in the time trials. The ends of the 3 km oval
track at MIS are banked at 18.0° and the radius of curvature is 382 m.

(a) At what speed can the cars round the curves without needing to
rely on friction to provide a centripetal force?

(b) Did Tracy rely on friction for some of his required centripetal force?

Conceptualize the Problem

m The normal force of a banked curve provides a centripetal force to
help cars turn without requiring an excessive amount of friction.

m For a given radius of curvature and angle of banking, there is one
speed at which the normal force provides precisely the amount of
centripetal force that is needed.

Identify the Goal

(a) The speed, v, for which the normal force provides exactly the
required amount of centripetal force for driving around the curve

(b) Whether Tracy needed friction to provide an additional amount of
centripetal force

Identify the Variables and Constant

Known Implied Unknown
r=382m g=9.81s—nz1 4
6 =18.0°

Ve = 378.11 kTm

continued
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continued from previous page

Develop a Strategy

Write the equation that relates angle of banking,

speed, and radius of curvature, and solve for speed, v.

Substitute the numerical values and solve.

2
tan =
rg

v’ =rgtan 6

v =,/rgtan 6

v= \/(382 m)(9.81 S%)(tan 18.0°)

2
v=,/1217.61 %

(a) A vehicle driving at 34.9 m/s could round the curve without needing

any friction for centripetal force.

Convert the velocity in m/s into km/h.

V= (34-894 %{)(36(1)108) ( 1(1)01(()11;1)
v =125.619 kTm
v =126 kTm

(b) Tracy was driving three times as fast as the speed of 126 km/h at
which the normal force provides the needed centripetal force. Paul
had to rely on friction for a large part of the needed centripetal force.

Validate the Solution

An angle of banking of 18° is very large compared to the banking on
normal highway curves. You would expect that it was designed for
speeds much higher than the highway speed limit. A speed of 126 km/h
is higher than highway speed limits.

PRACTICE PROBLEMS

20. An engineer designed a turn on a road so

21.

that a 1225 kg car would need 4825 N of
centripetal force when travelling around the
curve at 72.5 km/h. What is the radius of
curvature of the road?

A car exits a highway on a ramp that is
banked at 15° to the horizontal. The exit
ramp has a radius of curvature of 65 m. If
the conditions are extremely icy and the
driver cannot depend on any friction to help
make the turn, at what speed should the
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22.

23.

driver travel so that the car will not skid off
the ramp?

An icy curve with a radius of curvature of
175 m is banked at 12°. At what speed must
a car travel to ensure that it does not leave
the road?

An engineer must design a highway curve
with a radius of curvature of 155 m that can
accommodate cars travelling at 85 km/h. At
what angle should the curve be banked?



You have studied just a few examples of circular motion that
you observe or experience nearly every day. Although you rarely
think about it, you have been experiencing several forms of
circular motion every minute of your life. Simply existing on
Earth’s surface places you in uniform circular motion as Earth
rotates. In addition, Earth is revolving around the Sun. In the
next chapter, you will apply many of the concepts you have just
learned about force and motion to the motion of planets, moons,

and stars, as well as to artificial satellites.

EEFTA, Scotion Review

1. Define uniform circular motion and
describe the type of acceleration that is
associated with it.

2, Study the diagram in Figure 2.6 on
page 79. Explain what approximation was
made in the derivation that requires you to
imagine what occurs as the angle becomes
smaller and smaller.

3. @ What are the benefits of using the concept
of centripetal acceleration rather than work-
ing on a traditional Cartesian coordinate
system?

4. Explain how centripetal force differs
from common forces, such as the forces of
friction and gravity.

5. If you were swinging a ball on a string
around in a circle in a vertical plane, at what
point in the path would the string be the
most likely to break? Explain why. In what
direction would the ball fly when the string
broke?

6. @ Explain why gravity does not affect
circular motion in a horizontal plane, and
why it does affect a similar motion in a
vertical plane.

7. @ Describe three examples in which differ-
ent forces are contributing the centripetal
force that is causing an object to follow a
circular path.

8. @ When airplane pilots make very sharp
turns, they are subjected to very large

10.

1.

UNIT PROJECT PREP

g forces. Based on your knowledge of cen-
tripetal force, explain why this occurs.

. @ A centrifugal force, if it existed, would be
directed radially outward from the centre of
a circle during circular motion. Explain why
it feels as though you are being thrown out-
ward when you are riding on an amusement
park ride that causes you to spin in a circle.

On a highway, why are sharp turns
banked more steeply than gentle turns? Use
vector diagrams to clarify your answer.

@ Imagine that you are in a car on a major
highway. When going around a curve, the car
starts to slide sideways down the banking of
the curve. Describe conditions that could
cause this to happen.

Parts of your catapult launch mechanism will
move in part of a circle. The payload, once
launched, will be a projectile.

m How will your launch mechanism apply
enough centripetal force to the payload to
move it in a circle, while still allowing the
payload to be released?

® How will you ensure that the payload is
launched at the optimum angle for
maximum range?

m What data will you need to gather from
a launch to produce the most complete
possible analysis of the payload’s actual
path and flight parameters?
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CHAPTER

REFLECTING ON CHAPTER 2

m Ideal projectiles move in a parabolic trajectory "
in a vertical plane under the influence of
gravity alone.

m The path of a projectile is determined by the "
initial velocity.

m The range of a projectile is its horizontal
displacement.

= For a given magnitude of velocity, the maxi- "
mum range of an ideal projectile occurs when
the projectile is launched at an angle of 45°.

m Projectile trajectories are computed by L
separately analyzing horizontal and vertical
components of velocity during a common
time interval.

= Objects in uniform circular motion experience
a centripetal (centre-seeking) acceleration:
ac = v2Ir.

Knowledge/Understanding

1. Differentiate between the terms “one-dimen-
sional motion” and “two-dimensional motion.”
Provide examples of each.

2. Explain what physicists mean by the “two-

dimensional nature of motion in a plane,” 6.

when common sense suggests that an object

can be travelling in only one direction at any 1.

particular instant in time.

3. Describe and explain two specific examples
that illustrate how the vertical and horizontal
components of projectile motion are indepen-
dent of each other.

4. When analyzing ideal projectiles, what type of 8.

motion is the horizontal component? What type
of motion is the vertical component?

5. Standing on the school roof, a physics student

swings a rubber stopper tied to a string in a 8.

circle in a vertical plane. He releases the string

so that the stopper flies outward in a horizontal

direction.

(a) Draw a sketch of this situation. Draw and
label the velocity and acceleration vectors at
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A centripetal (centre-seeking) force is required
to keep an object in uniform circular motion:
F, = mv?/r.

Centripetal force can be supplied by any type
of force, such as tension, gravitational forces,
friction, and electrostatic force, or by a
combination of forces.

The force of gravity has no effect on circular
motion in a horizontal plane, but does affect
circular motion in a vertical plane.

Objects moving around banked curves experi-
ence a centripetal force due to the horizontal
component of the normal force exerted by the
surfaces on which they travel.

the instant at which he releases the string in
order to produce the horizontal motion.

(b) Explain at what point the horizontal compo-
nent of the stopper’s motion becomes
uniform.

Explain why an object with uniform circular
motion is accelerating.

Draw a free-body diagram of a ball on the end
of a string that is in uniform circular motion in
a horizontal plane. Explain why the weight of
the ball does not affect the value of the tension
of the string that is providing the centripetal
force required to maintain the motion.

Draw a free-body diagram of a car rounding a

banked curve. Explain why the weight of the

car does affect the value of the centripetal force

required to keep the car in a circular path.

A rubber stopper tied to a string is being swung

in a vertical loop.

(a) Draw free-body diagrams of the stopper at
its highest and lowest points.

(b) Write equations to show the relationships
among the centripetal force, the tension in



the string, and the weight of the stopper for
each location.

10. Outline the conditions under which an object
will travel in uniform circular motion and
explain why a centripetal force is considered
to be the net force required to maintain this
motion.

Inquiry

11. Design and conduct a simple experiment to test
the independence of the horizontal and vertical
components of projectiles. Analyze your data
to determine the percent deviation between
your theoretical predictions and your actual
results. Identify factors that could explain any
deviations.

12. Design and construct a model of a vertical
loop-the-loop section of a roller coaster. Refine
your model, and your skill at operating it, until
the vehicle will consistently round the loop
without falling. Determine the minimum speed
at which the vehicle must travel in order to
complete the vertical loop without falling.
Given the radius of your loop, calculate the
theoretical value of the speed at which your
vehicle would need to be travelling. Explain
any deviation between the theoretical predic-
tion and your actual results.

Communication

13. A stone is thrown off a cliff that has a vertical
height of 45 m above the ocean. The initial
horizontal velocity component is 15 m/s. The
initial vertical velocity component is 10 m/s
upward. Draw a scale diagram of the stone’s
trajectory by locating its position at one-second
time intervals. At each of these points, draw a
velocity vector to show the horizontal velocity
component, the vertical velocity component,
and the resultant velocity in the frame of
reference of a person standing on the cliff.
Assume that the stone is an ideal projectile
and use 10 m/s? for the value of g to simplify
calculations.

14. Draw a diagram to represent an object moving

15.

16.

17.

with uniform circular motion by constructing a
rectangular x—y-coordinate system and drawing
a circle with radius of 5 cm centred on the
origin. Label the point where the circle crosses
the positive y-axis, A; the positive x-axis, B; the
negative y-axis, C; and the negative x-axis, D.
(a) At each of the four labelled points, draw a

2 cm vector to represent the object’s instan-

taneous velocity.

(b) Construct a series of scale vector diagrams
to determine the average acceleration
between A and B, B and C, C and D, and D
and A. Assume the direction of motion to
be clockwise.

(c) Designate on the diagram at which points
the average accelerations would occur and
draw in the respective acceleration vectors.

(d) Write a general statement about the direc-
tion of the acceleration of an object in
circular motion.

The mass of an object does not affect the angle
at which a curve must be banked. The law of
inertia, however, states that the motion of any
object is affected by its inertia, which depends
on its mass. How can objects rounding banked
curves obey the law of inertia if the amount of
banking required for a curve of a given radius
of curvature and speed is independent of mass?

You are facing north, twirling a tethered ball in
a horizontal circle above your head. At what
point in the circle must you release the string
in order to hit a target directly to the east?
Sketch the situation, indicating the correct
velocity vector.

A transport truck is rounding a curve in the

highway. The curve is banked at an angle of 10°

to the horizontal.

(a) Draw a free-body diagram to show all of the
forces acting on the truck.

(b) Write an equation in terms of the weight of
a truck, that will express the value of the
centripetal force needed to keep the truck
turning in a circle.
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Making Connections

18. A pitched baseball is subject to the forces of
gravity, air resistance, and lift. The lift force is
produced by the ball’s spin. Do research to
find out
(a) how a spinning baseball creates lift
(b) how a pitcher can create trajectories for
different types of pitches, such as fastballs,
curve balls, knuckle balls, and sliders

(c) why these pitches are often effective in
tricking the batter

19. Discuss similarities between a banked curve in
a road and the tilt or banking of an airplane as
it makes a turn. Draw free-body diagrams for
each situation. What is the direction of the lift
force on the airplane before and during the
turn? Explain how tilting the airplane creates
a centripetal force. What must the pilot do to
make a sharper turn?

Problems for Understanding

20. You throw a rock off a 68 m cliff, giving it a
horizontal velocity of 8.0 m/s.

(a) How far from the base of the cliff will it
land?
(b) How long will the rock be in the air?

21. A physics student is demonstrating how the
horizontal and vertical components of projec-
tile motion are independent of each other.

At the same instant as she rolls a wooden ball

along the floor, her lab partner rolls an identical

wooden ball from the edge of a platform

directly above the first ball. Both balls have

an initial horizontal velocity of 6.0 m/s.

The platform is 3.0 m above the ground.

(a) When will the second ball strike the
ground?

(b) Where, relative to the first ball, will the
second ball hit the ground?

(c) At what distance from the base of the
platform will the second ball land?

(d) With what velocity will the second ball
land?
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22,

23.

24.

25.

26.

21.

(a) A 350 g baseball is thrown horizontally at
22 m/s[forward] from a roof that is 18 m
high. How far does it travel before hitting
the ground?

(b) If the baseball is thrown with the same
velocity but at an angle of 25° above the
horizontal, how far does it travel? (Neglect
air friction.)

A rescue plane flying horizontally at

175 km/h[N], at an altitude of 150 m, drops a

25 kg emergency package to a group of explor-

ers. Where will the package land relative to the

point above which it was released? (Neglect
friction.)

You throw a ball with a velocity of 18 m/s at
24° above the horizontal from the top of your
garage, 5.8 m above the ground. Calculate the
(a) time of flight
(b) horizontal range
(c) maximum height
(d) velocity when the ball is 2.0 m above

the roof
(e) angle at which the ball hits the ground
Using a slingshot, you fire a stone horizontally
from a tower that is 27 m tall. It lands 122 m
from the base of the tower. What was its initial
velocity?
At a ballpark, a batter hits a baseball at an angle
of 37° to the horizontal with an initial velocity
of 58 m/s. If the outfield fence is 3.15 m high
and 323 m away, will the hit be a home run?

An archer shoots a 4.0 g arrow into the air,

giving it a velocity of 40.0 m/s at an elevation

angle of 65°. Find

(a) its time of flight

(b) its maximum height

(c) its range

(d) its horizontal and vertical distance from the
starting point at 2.0 s after it leaves the bow

(e) the horizontal and vertical components of
its velocity at 6.0 s after it leaves the bow

(f) its direction at 6.0 s after leaving the bow
Plot the trajectory on a displacement-
versus-time graph.



28.

29.

30.

31.

32.

33.

34.

A hang-glider, diving at an angle of 57.0°
with the vertical, drops a water balloon at an
altitude of 680.0 m. The water balloon hits

the ground 5.20 s after being released.

(a) What was the velocity of the hang-glider?

(b) How far did the water balloon travel during
its flight?

(c) What were the horizontal and vertical
components of its velocity just before
striking the ground?

(d) At what angle does it hit the ground?

A ball moving in a circular path with a

constant speed of 3.0 m/s changes direction by

40.0° in 1.75 s.

(a) What is its change in velocity?

(b) What is the acceleration during this time?

You rotate a 450 g ball on the end of a string in
a horizontal circle of radius 2.5 m. The ball
completes eight rotations in 2.0 s. What is the
centripetal force of the string on the ball?

A beam of electrons is caused to move in a

circular path of radius 3.00 m at a velocity

of 2.00 x 107 m/s. The electron mass is

9.11 x 10731 kg.

(a) What is the centripetal acceleration of one
of the electrons?

(b) What is the centripetal force on one
electron?

A car travelling on a curved road will skid

if the road does not supply enough friction.
Calculate the centripetal force required to keep
a 1500 kg car travelling at 65 km/h on a flat
curve of radius 1.0 x 10 m. What must be the
coefficient of friction between the car’s wheels
and the ground?

Consider an icy curved road, banked 6.2° to
the horizontal, with a radius of curvature of
75.0 m. At what speed must a 1200 kg car
travel to stay on the road?

You want to design a curve, with a radius of
curvature of 350 m, so that a car can turn at
a velocity of 15 m/s on it without depending
on friction. At what angle must the road be
banked?

35.

36.

37.

(a) A motorcycle stunt rider wants to do a loop-
the-loop within a vertical circular track. If
the radius of the circular track is 10.0 m,
what minimum speed must the motorcyclist
maintain to stay on the track?

(b) Suppose the radius of the track was dou-
bled. By what factor will the motorcyclist
need to increase her speed to loop-the-loop
on the new track?

An amusement park ride consists of a large
cylinder that rotates around a vertical axis.
People stand on a ledge inside. When the
rotational speed is high enough, the ledge
drops away and people “stick” to the wall.

If the period of rotation is 2.5 s and the radius

is 2.5 m, what is the minimum coefficient

of friction required to keep the riders from

sliding down?

Use your understanding of the physics of circu-

lar motion to explain why we are not thrown

off Earth like heavy particles in a centrifuge or
mud off a tire, even though Earth is spinning
at an incredible rate of speed. To make some
relevant calculations, assume that you are
standing in the central square of Quito, a city
in Ecuador that is located on Earth’s equator.

(a) Calculate your average speed around
the centre of Earth.

(b) Determine the centripetal force needed to
move you in a circle with Earth’s radius at
the speed that you calculated in part (a).

(c) In what direction does the centripetal force
act? What actual force is providing the
amount of centripetal force that is required
to keep you in uniform circular motion on
Earth’s surface?

(d) What is your weight?

(e) What is the normal force exerted on you by
Earth’s surface?

(f) Use the calculations just made and other
concepts about circular motion that you
have been studying to explain why you
are not thrown off Earth as it spins around
its axis.
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On April 13, 1970, almost 56 h and 333 000 km into their
flight to the Moon, the crew of Apollo 13 heard a loud bang
and felt the spacecraft shudder. Astronaut Jack Swigert radioed
NASA Ground Control: “Houston, we’ve had a problem here.”
The above photograph, taken by the astronauts after they
jettisoned the service module, shows how serious that problem
was — an oxygen tank had exploded and damaged the only other
oxygen tank. After assessing the situation, the astronauts climbed
into the lunar landing module, where the oxygen and supplies
were designed to support two people for two days. They would
have to support the three astronauts for four days.

The spacecraft was still hurtling toward the Moon at more than
5000 km/h, and the engines of the lunar landing module could
certainly not provide the force necessary to turn the craft back
toward Earth. The only available force that could send the astro-
nauts home was the gravitational force of the Moon, which swung
the crippled spacecraft around behind the Moon and hurled it
back toward Earth. With the engines of the lunar landing module,
the crew made two small course corrections that prevented the
craft from careening past Earth into deep space. Exactly 5 days,
22 h, and 54 min after lift-off, the astronauts, back inside the
command module, landed in the Pacific Ocean, less than 800 m
from the rescue ship.

In this chapter, you will learn about Newton’s law of universal
gravitation and how it guides the motion of planets and satellites
— and damaged spacecraft.
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Kepler's

Empirical Equations

orbit of Pluto —

orbit of Earth

orbit of Uranus

orbit of Jupiter

orbit of Mercury

The famous German astronomer Johannes
Kepler (1571-1630) studied a vast amount of
detailed astronomical data and found three
empirical mathematical relationships within
these data. Empirical equations are based solely
on data and have no theoretical foundation.
Often, however, an empirical equation will
provide scientists with insights that will lead
to a hypothesis that can be tested further.

In this chapter, you will learn the significance
of Kepler’s empirical equations. First, however,
you will examine the data below, which is
similar to the data that Kepler used, and look
for a relationship.

Orbital radius Orbital period
R(AU)* T(days)

Mercury 0.389 87.77
Venus 0.724 224.70
Earth 1.000 365.25
Mars 1.524 686.98
Jupiter 5.200 4332.62
Saturn 9.150 10 759.20

* One astronomical unit (AU) is the average distance from
Earth to the Sun, so distances expressed in AU are fractions
or multiples of the Earth’s average orbital radius.

From the data, make a graph of radius (R)
versus period (7). Study the graph. Does the
curve look like an inverse relationship, a

orbit of Venus

TARGET SKILLS
e [nitiating and planning
¢ Analyzing and interpreting
e Communicating results

orbit of Neptune
.

orbit of Saturn

orbit of Mars

logarithmic relationship, or an exponential
relationship? Choose the type of mathematical
relationship that you think is the most likely.
Review Skill Set 4, Mathematical Modelling and
Curve Straightening, and make at least four
attempts to manipulate the data and plot the
results. If you found a relationship that gives
you a straight-line plot, write the mathematical
relationship between radius and period. If you
did not find the correct relationship, confer with
your classmates to see if anyone found the cor-
rect relationship. As a class, agree on the final
mathematical relationship.

Analyze and Conclude

1. When Kepler worked with astronomical data,
he did not know whether a relationship
existed between specific pairs of variables.

In addition, Kepler had no calculator — he
had to do all of his calculations by hand.
Comment on the effort that he exerted in
order to find his relationships.

2. Think about the relationship between the
radius of an orbit and the period of an orbit
on which your class agreed. Try to think of
a theoretical basis for this relationship.

3. What type of additional information do you
think that you would need in order to give
a physical meaning to your mathematical
relationship?
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Newton’s Law of
Universal Gravitation

SECTION S—m—e—
EXPECTATIONS

* Describe Newton's law of
universal gravitation.

e Apply Newton’s law of universal
gravitation quantitatively.

KEY

TERMS
* Tychonic system
* Kepler's laws

* law of universal gravitation

In previous science courses, you learned about the Ptolemaic
system for describing the motion of the planets and the Sun. The
system developed by Ptolemy (151-127 B.C.E.) was very complex
because it was geocentric, that is, it placed Earth at the centre of
the universe. In 1543, Nicholas Copernicus (1473-1543) proposed
a much simpler, heliocentric system for the universe in which
Earth and all of the other planets revolved around the Sun. The
Copernican system was rejected by the clergy, however, because
the religious belief system at the time placed great importance
on humans and Earth as being central to a physically perfect uni-
verse. You probably remember learning that the clergy put Galileo
Galilei (1564—1642) on trial for supporting the Copernican system.
Have you ever heard of the Tychonic system? A famous Danish
nobleman and astronomer, Tycho Brahe (1546—1601), proposed a
system, shown in Figure 3.1, that was intermediate between the
Ptolemaic and Copernican systems. In Brahe’s system, Earth is
still and is the centre of the universe; the Sun and Moon revolve
around Earth, but the other planets revolve around the Sun.
Brahe’s system captured the interest of many scientists, but never
assumed the prominence of either the Ptolemaic or Copernican
systems. Nevertheless, Tycho Brahe contributed a vast amount
of detailed, accurate information to the field of astronomy.

GIMIEXED The Tychonic

universe was acceptable

to the clergy, because it
maintained that Earth was
the centre of the universe.
The system was somewhat
satisfying for scientists,
because it was simpler
than the Ptolemaic system.
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Laying the Groundwork for Newton

Astronomy began to come of age as an exact science with the
detailed and accurate observations of Tycho Brahe. For more

than 20 years, Brahe kept detailed records of the positions of the
planets and stars. He catalogued more than 777 stars and, in 1572,
discovered a new star that he named “Nova.” Brahe’s star was one
of very few supernovae ever found in the Milky Way galaxy.

In 1577, Brahe discovered a comet and demonstrated that it was
not an atmospheric phenomenon as some scientists had believed,
but rather that its orbit lay beyond the Moon. In addition to mak-
ing observations and collecting data, Brahe designed and built the
most accurate astronomical instruments of the day (see Figure 3.2).
In addition, he was the first astronomer to make corrections for the
refraction of light by the atmosphere.

In 1600, Brahe invited Kepler to be one of his assistants. Brahe
died suddenly the following year, leaving all of his detailed data
to Kepler. With this wealth of astronomical data and his ability to
perform meticulous mathematical analyses, Kepler discovered
three empirical relationships that describe the motion of the
planets. These relationships are known today as Kepler’s laws.

KEPLER'S LAWS

1. Planets move in elliptical orbits, with the Sun at one focus
of the ellipse.

2. An imaginary line between the Sun and a planet sweeps
out equal areas in equal time intervals.

3. The quotient of the square of the period of a planet’s revo-
lution around the Sun and the cube of the average distance
from the Sun is constant and the same for all planets.

—+ =k or 3 =73 where A and B are two planets.
r A B

HISTORY LINK

Tycho Brahe was a brilliant
astronomer who led an unusual and
tumultuous life. At age 19, he was
involved in a duel with another student
and part of his nose was cut off. For
the rest of his life, Brahe wore an
artificial metal nose.

——

GIMZEED Brahe’s observatory
in Hveen, Denmark, contained
gigantic instruments that, without
magnification, were precise to
1/30 of a degree.

— .
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MATH LINK Kepler’s first law does not sound terribly profound, but he was
contending not only with scientific observations of the day, but

A circle is a special case of an ellipse. also with religious and philosophical views. For centuries, the
An ellipse is defined by two focuses perfection of “celestial spheres” was of extreme importance in
and the relationship /P + RP = k, religious beliefs. Ellipses were not considered to be “perfect,”

where kis a constant and is the same so many astronomers resisted accepting any orbit other than a

for every point on the ellipse. If the
two focuses of an ellipse are brought
closer and closer together until they
are superimposed on each other, the
ellipse becomes a circle.

“perfect” circle that fit on the surface of a sphere. However, since
Kepler published his laws, there has never been a case in which
the data for the movement of a satellite, either natural or artificial,
did not fit an ellipse.

Kepler’s second law is illustrated in Figure 3.3. Each of the
shaded sections of the ellipse has an equal area. According to
Kepler’s second law, therefore, the planet moves along the arc of
each section in the same period of time. Since the arcs close to the
Sun are longer than the arcs more distant from the Sun, the planet
must be moving more rapidly when it is close to the Sun.

P

/////////// g
%

m According to Kepler's second law, the same length of time
was required for a planet to move along each of the arcs at the ends of the
segments of the ellipse. Kepler could not explain why planets moved faster
when they were close to the Sun than when they were farther away.

When Kepler published his third law, he had no way of know-
ing the significance of the constant in the mathematical expression
T?/r® = k. All he knew was that the data fit the equation. Kepler
suspected that the Sun was in some way influencing the motion
of the planets, but he did not know how or why this would lead
to the mathematical relationship. The numerical value of the
constant in Kepler’s third law and its relationship to the interac-
tion between the Sun and the planets would take on significance
only when Sir Isaac Newton (1642—1727) presented his law of
universal gravitation.
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Universal Gravitation HISTORY LINK

Typically in research, the scientist makes some observations that
lead to an hypothesis. The scientist then tests the hypothesis by
planning experiments, accumulating data, and then comparing
the results to the hypothesis. The development of Newton’s law of

Sir Edmond Halley, the astronomer
who prompted Newton to publish
his work on gravitation, is the same
astronomer who discovered the

universal gravitation happened in reverse. Brahe’s data and comet that was named in his honour

Kepler’s analysis of the data were ready and waiting for Newton to — Halley’s Comet. Without Halley’s

use to test his hypothesis about gravity. urging, Newton might never have
Newton was not the only scientist of his time who was search- published his famous Principia,

ing for an explanation for the motion, or orbital dynamics, of the greatly slowing the progress of

planets. In fact, several scientists were racing to see who could physics.

find the correct explanation first. One of those scientists was
astronomer Edmond Halley (1656—1742). Halley and others, based
on their calculations, had proposed that the force between the
planets and the Sun decreased with the square of the distance
between a planet and the Sun. However, they did not know how to
apply that concept to predict the shape of an orbit.

Halley decided to put the question to Newton. Halley first met
Newton in 1684, when he visited Cambridge. He asked Newton
what type of path a planet would take if the force attracting it to
the Sun decreased with the square of the distance from the Sun.
Newton quickly answered, “An elliptical path.” When Halley
asked him how he knew, Newton replied that he had made that
calculation many years ago, but he did not know where his
calculations were. Halley urged Newton to repeat the calculations
and send them to him.

Three months later, Halley’s urging paid off. He received an
article from Newton entitled “De Motu” (“On Motion”). Newton
continued to improve and expand his article and in less than
three years, he produced one of the most famous and fundamental
scientific works: Philosophiae Naturalis Principia Mathematica
(The Mathematical Principles of Natural Philosophy). The treatise
contained not only the law of universal gravitation, but also
Newton’s three laws of motion.

Possibly, Newton was successful in finding the law of universal
gravitation because he extended the concept beyond the motion of
planets and applied it to all masses in all situations. While other
scientists were looking at the motion of planets, Newton was
watching an apple fall from a tree to the ground. He reasoned that
the same attractive force that existed between the Sun and Earth
was also responsible for attracting the apple to Earth. He also
reasoned that the force of gravity acting on a falling object was
proportional to the mass of the object. Then, using his own third
law of action-reaction forces, if a falling object such as an apple
was attracted to Earth, then Earth must also be attracted to the
apple, so the force of gravity must also be proportional to the
mass of Earth. Newton therefore proposed that the force of gravity
between any two objects is proportional to the product of their
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masses and inversely proportional to the square of the distance
between their centres — the law of universal gravitation. The
mathematical equation for the law of universal gravitation is given
in the following box.

NEWTON'S LAW OF UNIVERSAL GRAVITATION
The force of gravity is proportional to the product of the two
masses that are interacting and inversely proportional to the
square of the distance between their centres.

_ Iy
Fg— G—3

r
Quantity Symbol Sl unit
force of gravity Fy N (newtons)
first mass m kg (kilograms)
second mass m, kg (kilograms)
distance between the
centres of the masses r m (metres)
universal gravitational

N.-m?

constant G Tz (newton - metre
squared per
kilogram squared)

Unit Analysis
newton - metre? ) (kilogram - kilogram )
kilogram? metre?

newton = (

N-m®y kg kg _
(g ) (™) =N
Note: The value of the universal gravitational constant is
N-m?

kg -

G=6.67 x 10711

e Conceptual Problem

* You have used the equation F, = mg many times to calculate the

weight of an object on Earth’s surface. Now, you have learned

that the weight of an object on Earth’s surface is F, = GmEsz,

rE—o
where mg is the mass of Earth, m, is the mass of the object, and

I'io is the distance between the centres of Earth and the object.
Explain how the two equations are related. Express g in terms
of the variables and constant in Newton’s law of universal
gravitation.
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SAMPLE PROBLEM

Weighing an Astronaut

A 65.0 kg astronaut is walking on the surface of the Moon, which
has a mean radius of 1.74 x 10° km and a mass of 7.35 x 10%? kg.
What is the weight of the astronaut?

Conceptualize the Problem

m The weight of the astronaut is the gravitational force on her.

» The relationship F, = mg, where g = 9.81 SEZ’ cannot be used in
this problem, since the astronaut is not on Earth’s surface.

m The law of universal gravitation applies to this problem.

Identify the Goal

The gravitational force, Fy, on the astronaut

Identify the Variables and Constants

uete Implied , Unknown
my; = 7.35 X 10* kg G=6.67 x 107! Nk'l? F,
m, = 65.0 kg g

r=1.74 x 10° km (1.74 x 10° m)

Develop a Strategy

Apply the law of universal Fy= Gm112n2
gravitation. r , - )
Substitute the numerical values F,= (6.67 % 1011 ngl ) (7.35 x 10 gg(65.20 g)
and solve. 8 (1.74 x 10° m)
F,=105.25 N
Fy=105N

The weight of the astronaut is approximately 105 N.

Validate the Solution

Weight on the Moon is known to be much less than that on Earth.
The astronaut’s weight on the Moon is about one sixth of her weight

on Earth (65.0 kg x 9.81 % = 638 N), which is consistent with this
common knowledge.

continued
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PRACTICE PROBLEMS

continued from previous page

1. Find the gravitational force between Earth
and the Sun. (See Appendix B, Physical
Constants and Data.)

2. Find the gravitational force between Earth
and the Moon. (See Appendix B, Physical
Constants and Data.)

3. How far apart would you have to place two

7.0 kg bowling balls so that the force of gravi-

ty between them would be 1.25 x 107* N?
Would it be possible to place them at this
distance? Why or why not?

4. Find the gravitational force between the
electron and the proton in a hydrogen atom
if they are 5.30 x 10! m apart. (See
Appendix B, Physical Constants and Data.)

5. On Venus, a person with mass 68 kg would
weigh 572 N. Find the mass of Venus from
this data, given that the planet’s radius is
6.31 x 10° m.

6. In an experiment, an 8.0 kg lead sphere is

brought close to a 1.5 kg mass. The gravita-
tional force between the two objects is

1.28 X 1078 N. How far apart are the centres
of the objects?

. The radius of the planet Uranus is 4.3 times

the radius of earth. The mass of Uranus is
14.7 times Earth’s mass. How does the
gravitational force on Uranus’ surface
compare to that on Earth’s surface?

. Along a line connecting Earth and the Moon,

at what distance from Earth’s centre would
an object have to be located so that the
gravitational attractive force of Earth on the
object was equal in magnitude and opposite
in direction from the gravitational attractive
force of the Moon on the object?

Gravity and Kepler's Laws

The numerical value of G, the universal gravitational constant,
was not determined experimentally until more than 70 years after
Newton’s death. Nevertheless, Newton could work with concepts
and proportionalities to verify his law.

Newton had already shown that the inverse square relationship
between gravitational force and the distance between masses
was supported by Kepler’s first law — that planets follow

elliptical paths.

Kepler’s second law showed that planets move more rapidly
when they are close to the Sun and more slowly when they are
farther from the Sun. The mathematics of elliptical orbits in
combination with an inverse square relationship to yield the speed
of the planets is somewhat complex. However, you can test the
concepts graphically by completing the following investigation.
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INVESTIGATION 3-A

Orbital Speed of Planets

Can you show diagrammatically that a force
directed along the line between the centres of
the Sun and a planet would cause the planet’s
speed to increase as it approached the Sun and
decrease as it moved away? If you can, you have
demonstrated that Kepler’s second law supports
Newton’s proposed law of universal gravitation.

Problem

How does a force that follows an inverse square
relationship affect the orbital speed of a planet
in an elliptical orbit?

Equipment
m corkboard or large, thick piece of cardboard
m 2 pushpins

m blank paper

m 30 cm loop of string
= pencil

m ruler

Procedure

1. Place the paper on the corkboard or card-
board. Insert two pushpins into the paper
about 8 to 10 cm apart.

2. Loop the string around the pushpins, as
shown in the illustration. With your pencil,

TARGET SKILLS
* Modelling concepts
* Analyzing and interpreting
e Communicating results

pull the string so that it is taut and draw an
ellipse by pulling the string all the way
around the pushpins.

. Remove the string and pushpins and label

one of the pinholes “Sun.”

. Choose a direction around the elliptical orbit

in which your planet will be moving. Make
about four small arrowheads on the ellipse
to indicate the direction of motion of the
planet.

. Make a dot for the planet at the point that is

most distant from the Sun (the perihelion).
Measure and record the distance on the
paper from the perihelion to the Sun. From
that point, draw a 1 cm vector directed
straight toward the Sun.

. This vector represents the force of gravity

on the planet at that point: Fyper = 1 unit.
(Fg(per) is the force of gravity when the planet
is at perihelion.)

. Select and label at least three more points on

each side of the ellipse at which you will
analyze the force and motion of the planet.

. For each point, measure and record, on a

separate piece of paper, the distance from the
Sun to point P, as indicated in the diagram.
Do not write on your diagram, because it
will become too cluttered.

P

perihelion

continued
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9. Follow the steps in the table to see how to determine the length of the force vector at each point.

10.

1n.

12.

13.

Procedure

m The masses of the Sun and planet remain the same, so the value
Gmgmy,, is constant. Therefore, the expression F,r* for any point on

the orbit is equal to the same value.

= Consequently, you can set the expression F,r* for any one point
equal to F,r* for any other point. Use the values at perihelion as a
Then solve for the Fyp). Fyp) =

reference and set Fypyr? equal to F, g(peri)l}z)eri-

® You can now find the relative magnitude of the gravitational
force on the planet at any point on the orbit by substituting the
magnitudes of the radii into the above equation. For example,

Equation

_ Msimy
Fy=G 2
Fgr* = Gmgmy,

2 2
Fyperi) Theri = Fypy1p

2
Fg(peri) rperi

2
Ip

(1 unit)(15.6 cm)?

Fe = (5.9 cm)>?

Fg(py = 6.99 units

the magnitude of the force at point P in step 8 is 6.99 units.

Calculate the length of the force vector from
each of the points that you have selected on
your orbit.

On your diagram, draw force vectors from
each point directly toward the Sun, making
the lengths of the vectors equal to the values
that you calculated in step 10.

At each point at which you have a force
vector, draw a very light pencil line tangent
to the ellipse. Then, draw a line that is
perpendicular (normal) to the tangent line.

Graphically draw components of the force
vector along the tangent (Fr) and normal (Fy)

lines, as shown in the diagram.
normal

Analyze and Conclude
1.

The tangential component of the force vector
(Fr) is parallel to the direction of the velocity
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of the planet when it passes point P. What
effect will the tangential component of force
have on the velocity of the planet?

. The normal component of the force vector

(Fn) is perpendicular to the direction of
the velocity of the planet when it passes
point P. What effect will the normal
component of force have on the velocity
of the planet?

. Analyze the change in the motion of the

planet caused by the tangential and normal
components of the gravitational force at each
point where you have drawn force vectors.
Be sure to note the direction of the velocity
of the planet as you analyze the effect of the
components of force at each point.

. Summarize the changes in the velocity of the

planet as it makes one complete orbit around
the Sun.

. The force vectors and components that you

drew were predictions based on Newton’s
law of universal gravitation. How well do
these predictions agree with Kepler’s
observations as summarized in his second
law? Would you say that Kepler’s data
supports Newton’s predictions?



Kepler’s third law simply states that the ratio T%/r? is constant
and the same for each planet orbiting the Sun. At first glance,
it would appear to have little relationship to Newton’s law of
universal gravitation, but a mathematical analysis will yield a
relationship. To keep the mathematics simple, you will consider
only circular orbits. The final result obtained by considering
elliptical orbits is the same, although the math is more complex.
Follow the steps below to see how Newton’s law of universal
gravitation yields the same ratio as given by Kepler’s third law.

= Write Newton’s law of uni- F, = msmmy
versal gravitation, using msg r
for the mass of the Sun and
m,, for the mass of a planet.

m Since the force of gravity

must provide a centripetal 2 r
force for the planets, set the GHs _ 2
gravitational force equal to

the required centripetal

force.

Simplify the equation.

m Since Kepler’s third law v = Ad
includes the period, T, as a At
variable, find an expression Ad = 2mr
for the velocity, v, of the At=T
planet in terms of its period.

A planet travels a distance V= Z—;Er
equal to the circumference of
the orbit during a time inter-
val equal to its period.
m Substitute the expression for mg _ (2mr)?
) : G = (4L
the velocity of the planet into r
the above equation. cms _ Amr?
T 2
r T
® Multiply each side of the ( ﬂ) (E) _ (4752,1’2) <z)
equation by T2/r%. r . rf AT
GmgT — 411:2
r
» Solve for T?/13. T _ 4’
rr  Gmg

As you can see, Newton’s law of universal gravitation indicates
not only that the ratio T?/r? is constant, but also that the constant
is 4n*/Gmg. All of Kepler’s laws, developed prior to the time when
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HISTORY LINK

Henry Cavendish was a very wealthy
and brilliant man, but he also was very
reclusive. He was rarely seen in public
places, other than at scientific meet-
ings. His work was meticulous, yet

he published only a very small part

of it. After his death, other scientists
discovered his notebooks and finally
published his results. Cavendish had
performed the same experiments and
obtained the same results for some
experiments that were later done by
Coulomb, Faraday, and Ohm, who
received the credit for the work.

g PHYSICS FILE oy

The value of G shows that the
force of gravity is extremely
small. For example, use unit
amounts of each of the variables
and substitute them into Newton’s
law of universal gravitation.

You will find that the mutual
attractive force between two

1 kg masses that are 1 m apart

is 6.672 59 x 107" N.

Newton did his work, support Newton’s law of universal gravita-
tion. Kepler had focussed only on the Sun and planets, but
Newton proposed that the laws applied to all types of orbital
motion, such as moons around planets. Today, we know that all
of the artificial satellites orbiting Earth, as well as the Moon,
follow Kepler’s laws.

Mass of the Sun and Planets

Have you ever looked at tables
that contain data for the mass

of the Sun and planets and |
wondered how anyone could light
“weigh” the Sun and planets 1 source

or determine their masses?
English physicist and chemist
Henry Cavendish (1731-1810)
realized that if he could
determine the universal
gravitational constant, G, he
could use the mathematical
relationship in Kepler’s third
law to calculate the mass of
the Sun. A brilliant experi-
mentalist, Cavendish
designed a torsion balance,
similar to the system in
Figure 3.4, that allowed

him to measure G.

A torsion balance can measure extremely small amounts of the
rotation of a wire. First, the torsion balance must be calibrated to
determine the amount of force that causes the wire to twist by a
specific amount. Then, the large spheres are positioned so that the
bar supporting them is perpendicular to the rod supporting the
small spheres. In this position, the large spheres are exerting equal
gravitational attractive forces on each of the small spheres. The
system is in equilibrium and the scale can be set to zero. The large
spheres are then moved close to the small spheres and the amount
of twisting of the wire is determined. From the amount of twisting
and the calibration, the mutual attractive force between the large
and small spheres is calculated.

Using his torsion balance, Cavendish calculated the value of G
to be 6.75 x 10711 N-m?/kg?. The best-known figure today is
6.672 59 x 101! N- m?/kg®. Cavendish’s measurement was within
approximately 1% of the correct value. As Cavendish did, you can
now calculate the mass of the Sun and other celestial bodies.

mirror

Vi

m In the torsion balance

that Cavendish designed and used, the
spheres were made of lead. The small
spheres were about 5 cm in diameter
and were attached by a thin but rigid
rod about 1.83 m long. The large
spheres were about 20 cm in diameter.
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SAMPLE PROBLEM

The Mass of the Sun

Find the mass of the Sun, using Earth’s orbital radius and period of revolution.

Conceptualize the Problem

m Kepler’s third law, combined with Newton’s law of universal gravitation,
yields an equation that relates the period and orbital radius of a satellite
to the mass of the body around which the satellite is orbiting.

m Earth orbits the Sun once per year.

m Let Rg represent the radius of Earth’s orbit around the Sun. This value
can be found in Appendix B, Physical Constants and Data.

Identify the Goal

The mass of the Sun, mg

Identify the Variables and Constants

Known Implied

2
G=6.67x 101t N1

kg?
T = 365.25 days
Ri(ombiy = 1.49 x 10 m

Sun

Develop a Strategy

Write Kepler’s third law, using the
constant derived from Newton’s law
of universal gravitation.

Solve for the mass of the Sun.

Convert the period into SI units.

Substitute the numerical values into
the equation and solve.

Unknown

ms
T? _ 4n?
r*  Gmg
e 4r?
— g = Gmgﬂ’@

_ (4N / 1r®
ms = (%) ()
24 b\ (60 oin \ (605 _ .
365.25 days ( Fs )( = )(m) = 3.1558 x 107 s
e = ( 4n? ) (1.49 x 10" m)®
®7 \6.67 x 1071 52 /(31558 x 107 5)°

ms = 1.9660 x 10°° kg
ms = 1.97 x 10°° kg

The mass of the Sun is approximately 1.97 x 103° kg.

Validate the Solution

The Sun is much more massive than any of the planets. The value

sounds reasonable.

Check the units: (ﬁ)(

) < () () - (i) (2

):kg.

continued
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PRACTICE PROBLEMS

continued from previous page

9. Jupiter’s moon Io orbits Jupiter once every
1.769 days. Its average orbital radius is
4.216 x 10® m. What is Jupiter’s mass?

10. Charon, the only known moon of the planet
Pluto, has an orbital period of 6.387 days at
an average distance of 1.9640 x 10’ m from
Pluto. Use Newton’s form of Kepler’s third
law to find the mass of Pluto from this data.

11. Some weather satellites orbit Earth every
90.0 min. How far above Earth’s surface is
their orbit? (Hint: Remember that the centre
of the orbit is the centre of Earth.)

12. How fast is the moon moving as it orbits
Earth at a distance of 3.84 x 10° km?

13.

14.

On each of the Apollo lunar missions, the
command module was placed in a very low,
approximately circular orbit above the Moon.
Assume that the average height was 60.0 km
above the surface and that the Moon’s radius
is 7738 km.

(a) What was the command module’s orbital
period?

(b) How fast was the command module
moving in its orbit?

A star at the edge of the Andromeda galaxy
appears to be orbiting the centre of that
galaxy at a speed of about 2.0 x 10 km/s.
The star is about 5 x 10° AU from the centre
of the galaxy. Calculate a rough estimate of
the mass of the Andromeda galaxy. Earth’s
orbital radius (1 AU) is 1.49 x 108 km.

Newton’s law of universal gravitation has stood the test of time
and the extended limits of space. As far into space as astronomers
can observe, celestial bodies move according to Newton’s law. As
well, the astronauts of the crippled Apollo 13 spacecraft owe their
lives to the dependability and predictability of the Moon’s gravity.
Although Albert Einstein (1879-1955) took a different approach in
describing gravity in his general theory of relativity, most calcula-
tions that need to be made can use Newton’s law of universal
gravitation and make accurate predictions.

m Section Review

1. Explain the meaning of the term “empir-

ical” as it applies to empirical equations.

2, What did Tycho Brahe contribute to
the development of the law of universal
gravitation?

3. Describe how Newton used each of the
following phenomena to support the law of
universal gravitation.

(a) the orbit of the moon
(b) Kepler’s third law

4. How did Newton’s concepts about
gravity and his development of the law of
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5.

6.
1.

universal gravitation differ from the ideas of
other scientists and astronomers who were
attempting to find a relationship that could
explain the motion of the planets?

Describe the objective, apparatus, and
results of the Cavendish experiment.

@ Explain how you can “weigh” a planet.

@ Suppose the distance between two
objects is doubled and the mass of one is
tripled. What effect does this have on the
gravitational force between the objects?



Planetary and
3.2 Satellite Motion

A perfectly executed football or hockey pass is an amazing
achievement. A fast-moving player launches an object toward the
place where a fast-moving receiver will most likely be when the
ball or puck arrives. The direction and force of the pass are guided
by intuition and skill acquired from long practice.

Launching a spacecraft has the same objective, but extreme
precision is required — the outcome is more critical than that of
an incomplete pass. Scientists and engineers calculate every detail
of the trajectories and orbits in advance. The magnitude and
direction of the forces and the time interval for firing the rockets
are analyzed and specified in minute detail. Even last-minute
adjustments are calculated exhaustively. The process can be
extremely complex, but it is based on principles that you have
already studied — the dynamics of circular motion and the law
of universal gravitation.

position of moon
at earth landing

position of moon 5
at earth launch

GIMZEX) The steps in a typical Apollo lunar mission are: (1) lift off and
enter Earth orbit, (2) leave Earth orbit, (3) release booster rocket, turn, and
dock with lunar module that is stored between the booster rocket and the
service module, (4) make a mid-course correction, (5) enter lunar orbit,
(6) command module continues to orbit the Moon, while the lunar module
descends to the lunar surface, carries out tasks, ascends, and reconnects
with the command module, (7) leave lunar orbit, (8) eject lunar module,
(9) mid-course correction, (10) eject service module, and (11) command
module lands in the Pacific Ocean.

SECTION

EXPECTATION

e Use Newton’s law of universal
gravitation to explain planetary
and satellite motion.

KEY '\

TERMS
e geostationary orbit
° microgravity

e perturbation
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Newton's Mountain

The planets in our solar system appear to have been “orbiting” the
Sun while they were forming. Great swirling dust clouds in space
began to condense around a newly formed Sun until they finally
became the planets. How, then, do artificial satellites begin
orbiting Earth?

Soon after Newton formulated his law of universal gravitation,
he began thought experiments about artificial satellites. He
reasoned that you could put a cannon at the top of an extremely
high mountain and shoot a cannon ball horizontally, as shown in
Figure 3.6. The cannon ball would certainly fall toward Earth. If
the cannon ball travelled far enough horizontally while it fell,
however, the curvature of Earth would be such that Earth’s surface
would “fall away” as fast as the cannon ball fell.

You can determine how far the cannon ball will fall in one
second by using the kinematic equation Ad = viAt + 2aAt?. If a
cannon ball had zero vertical velocity at time zero, in one second

it would fall a distance Ad = 0 + %(—9.81 %)(1 s)2=-4.9m.

From the size and curvature of Earth, Newton knew that Earth’s
surface would drop by 4.9 m over a horizontal distance of 8 km.

GEIMZEXD The values shown here represent the distance that the cannon
ball would have to go in one second in order to go into orbit.

Newton’s reasoning was absolutely correct, but he did not
account for air friction. Although the air is too thin to breathe
easily on top of Mount Everest, Earth’s highest mountain, it would
still exert a large amount of air friction on an object moving at
8 km/s. If you could take the cannon to 150 km above Earth’s
surface, the atmosphere would be so thin that air friction would
be negligible. Newton understood how to put an artificial satellite
into orbit, but he did not have the technology.
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Today, launching satellites into orbit is almost routine, but the
scientists and engineers must still carefully select an orbit and
perform detailed calculations to ensure that the orbit will fulfil the
purpose of the satellite. For example, some weather satellites orbit
over the Poles at a relatively low altitude in order to collect data
in detail. Since a satellite is constantly moving in relation to a
ground observer, the satellite receiver has to track the satellite
continually so that it can capture the signals that the satellite is
sending. In addition, the satellite is on the opposite side of Earth
for long periods of time, so several receivers must be located
around the globe to collect data at all times.

Communication satellites and some weather satellites travel
in a geostationary orbit over the equator, which means that they
appear to hover over one spot on Earth’s surface at all times.
Consequently, a receiver can be aimed in the same direction at
all times and constantly receive a signal from the satellite. The
following problem will help you to find out how these types of
orbits are attained.

SAMPLE PROBLEM

B PHYSICS FILE __uu

Arthur C. Clarke (1917-), scientist
and science fiction writer, wrote
a technical paper in 1945, setting
out the principles of geostation-
ary satellites for communications.
Many scientists in the field at the
time did not believe that it was
possible. Today, geostationary
orbits are sometimes called
“Clarke orbits.” Clarke also
co-authored the book and movie

2001: A Space Odyssey.

Geostationary Orbits

At what velocity and altitude must a satellite orbit in order to
be geostationary?

Conceptualize the Problem

m A satellite in a geostationary orbit must remain over the same
point on Earth at all times.

m To be geostationary, the satellite must make one complete orbit
in exactly the same time that Earth rotates on its axis. Therefore,
the period must be 24 h.

m The period is related to the velocity of the satellite.

m The velocity and altitude of the satellite are determined by the
amount of centripetal force that is causing the satellite to remain
on a circular path.

m Earth’s gravity provides the centripetal force for satellite motion.

m The values for the mass and radius of Earth are listed in
Appendix B, Physical Constants and Data.

Identify the Goal

(a) The velocity, v, of a geostationary satellite

(b) The altitude, h, of a geostationary satellite

continued
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continued from previous page

Identify the Variables and Constants

Known Implied Unknown
Orbit is geostationary. T =24h mg =5.98 X 10** kg r (radius of satellite’s orbit}
%
G=6.67x 10" N'grgl Ig = 6.38 X 10° m h
Develop a Strategy
To find the velocity, start by setting Fy=F;
the gravitational force equal to the e my?
centripetal force. G—L—= = ==
r r
Simplify the expression. mg _
r
To eliminate r from the equation, use the _Ad
equation for the definition of velocity At
and solve for r. Recall that the period, T, Ad = 2nr
is known.
At=T
_ 2mnr
T
_
2n
Substitute the expression for r into the GTTE = v2
equation for v above and solve for v. n
2 _ ZTEGIHE
vT
3 _ ZnGmE
e
_ 3 ZTEGH'IE
YTNTT
Convert T to SI units. T = (24h’)<60 mlﬁ)(GO s) _8.64x 10 s
B4 min
Substitute numerical values and solve. €/2n<6.67  10-11 Nké?z)(S-gB « 10% kg)
v 8.64 X 10° 5

m3
V= \3/2.9006 x 1010 —

SS
v =3.0724 x 103 %

v =3.07 x 10° %

(a) The orbital velocity of the satellite is about 3.07 x 10% m/s, which

is approximately 11 000 km/h.
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To find the altitude of the satellite, r=vr

substitute the value for velocity into the 2n

expression above that devel

Sqes you digveloped G (3.0724 x 10° ) (8.64 x 10% s)
find r in terms of v. P =

27
r=4.2249 x 10’ m

The calculated value for ris the distance r=rg+h
from Earth’s centre to the satellite. To h=r-1g
find the altitude of the satellite, you

) ) h =4.2249 x 10’ m - 6.38 x 10° m
must subtract Earth’s radius from r.

h=3.5869 x 10’ m
h=3.59%x10"m

(b) The altitude of all geostationary satellites must be 3.59 x 10”7 m,
or 3.59 x 10* km, above Earth’s surface.

Validate the Solution

A velocity of 11 000 km/h seems extremely fast to us, but the
satellite is circling Earth once per day, so the velocity is reasonable.

N-m? . m3
g NI k. m? kg [ kg-m® 3
Check the units for velocity. kgs 5 =3 Ns~kg2 . . .SZ =9 —Isna - _Isn

PRACTICE PROBLEMS

15. The polar-orbiting environmental satellites
(POES) and some military satellites orbit at
a much lower level in order to obtain more
detailed information. POES complete an
Earth orbit 14.1 times per day. What are the
orbital speed and the altitude of POES?

16. The International Space Station orbits at an
altitude of approximately 226 km. What is
its orbital speed and period?

17. (a) The planet Neptune has an orbital radius
around the Sun of about 4.50 x 10'* m.
What are its period and its orbital speed?

(b) Neptune was discovered in 1846. How
many orbits has it completed since its
discovery?

NASA operates two polar-orbiting environmental
satellites (POES) designed to collect global data on
cloud cover; surface conditions such as ice, snow,
and vegetation; atmospheric temperatures; and
moisture, aerosol, and ozone distributions.
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“Weightlessness” in Orbit

You have probably seen pictures of astronauts in
a space capsule, space shuttle, or space station
similar to Figure 3.7. The astronauts appear to
float freely in the spacecraft and they describe
the condition as being “weightless.” Is a 65 kg
astronaut in a space station weightless? Check

it out, using the following calculation.

FTNEW A If an astronaut in a spacecraft dropped an
apple, it would fall toward Earth, but it would not look
as though it was falling.

m The space station orbits at an altitude of r=rmg+h
approximately 226 km. Find the radius 6 1000 m
of its orbit by adding the altitude to r=6.38x10"m + 226 krﬁ( km )
Earth’s radius. r=6.606 X 10° m
m Use Newton’s law of universal gravitation F, = Gml_énz
r

to find the astronaut’s weight.

2 24
F,= (6_67 » 10-11 N-m )(5.98 x 102* kg)(65 kg)

kg? (6.606 x 10° m)?
Fy =594 N

The astronaut’s weight on Earth would be

Fy = mg = (65 kg)(9.81 kgs~2m) = 638 N. There is very little

difference between the astronaut’s weight on Earth and in the
space station. Why do astronauts appear “weightless” in space?
Think back to your calculations of apparent weight in Chapter 1,
Fundamentals of Dynamics. When the imaginary elevator that you
were riding in was falling with an acceleration of 9.81 m/s?, the
scale you were standing on read zero newtons. Your apparent
weight was zero because you, the scale, and the elevator were
falling with the same acceleration. You and the scale were not
exerting any force on each other.
The same situation exists in the space station and all orbiting
spacecraft all of the time. As in the case of Newton’s cannon ball,

everything falls to Earth with the same acceleration, but Earth is

www.mcgrawhill.ca/links/

physics12 “falling away” equally as fast. You could say that a satellite is

To learn about the effects of weight- “falling around Earth.” Some physicists object to the term

lessness on the human body, go to “weightlessness” because, as you saw, there is no such condition.
the above Internet site and click on NASA coined the term microgravity to describe the condition of
Web Links. apparent weightlessness.
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PHYSICS & TECHNOLOGY
TARGET SKILLS

o Analyzing and interpreting
° Communicating results

Simulating Microgravity

In preparation for space flights, astronauts benefit
by practising movements in microgravity condi-
tions. As you recall from your study of projectile ." -

-

motion, an object will follow a parabolic trajectory -

if the only force acting on it is gravity. Large jet SPARCE
aircraft can fly on a perfect parabolic path by TECHNOLOGY
exerting a force to overcome air friction. Thus, oNn ERRTH

inside the aircraft, all objects move as though they
were following a path determined only by gravity.
Objects inside the aircraft, including people, exert
no forces on each other, because they are all
“falling” with the same acceleration. Astronauts
can experience 20 s of microgravity on each
parabolic trajectory.

Scientists have also found that certain chemical Analyze
and physical reactions occur in a different way in 1. Explain in detail why an airplane must use
microgravity. They believe that some manufactur- energy to follow an accurate parabolic
ing processes can be carried out more efficiently trajectory, but everything inside the airplane
under these conditions — a concept that might appears to be weightless.

lead to manufacturing in space. To test some

of these reactions without going into orbit,
researchers sometimes use drop towers, as shown
in the photograph. A drop tower has a very long

shaft that can be evacuated to eliminate air friction. WEB LINK
A sample object or, sometimes, an entire experi-

2. Do research to learn about some chemical or
physical processes that might be improved by
carrying them out in microgravity.

ment is dropped and the reaction can proceed www.mcgrawhill.ca/links/physics12

for up to 10 s in microgravity conditions. These To learn more about experiments carried out in drop

experiments provide critical information for future towers, go to the above Internet site and click on
kprocessing in space. Web Links. )

Perturbing Orbits

In all of the examples that you have studied to this point, you
have considered only perfectly circular or perfectly elliptical
orbits. Such perfect orbits would occur only if the central body
and satellite were totally isolated from all other objects. Since this
is essentially never achieved, all orbits, such as those of planets
around the Sun and moons and satellites around planets, are
slightly distorted ellipses. For example, when an artificial satellite
is between the Moon and Earth, the Moon’s gravity pulls in an
opposite direction to that of Earth’s gravity. When a satellite is on
the side of Earth opposite to the Moon, the Moon and Earth exert
their forces in the same direction. The overall effect is a very slight
change in the satellite’s orbit. Engineers must take these effects
into account.
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In the solar system, each planet exerts a gravitational force on
every other planet, so each planet perturbs the orbit of the other
planets. In some cases, the effects are so small that they cannot be
measured. Astronomers can, however, observe these perturbations
in the paths of the planets when the conditions are right. In fact,
in 1845, two astronomers in two different countries individually
observed perturbations in the orbit of the planet Uranus. British
astronomer and mathematician John Couch Adams (1819-1892)
and French astronomer Urbain John Joseph Le Verrier (1811-1877)
could not account for their observed perturbations of the planet’s
orbit, even by calculating the effects of the gravitational force of
the other planets. Both astronomers performed detailed calcula-
tions and predicted both the existence and the position of a new,
as yet undiscovered planet. In September of 1846, at the Berlin
Observatory, astronomer J.G. Galle (1812—1910) searched the skies
at the location predicted by the two mathematical astronomers.
Having excellent star charts for comparison, Galle almost immedi-
ately observed the new planet, which is now called “Neptune.”

About 50 years later, U.S. astronomer Percival Lowell
(1855—1916) performed calculations on the orbits of both
Neptune and Uranus, and discovered that these orbits were
again perturbed, probably by yet another undiscovered planet.
About 14 years after Lowell’s death, astronomer Clyde Tombaugh
(1906-1997), working in the Lowell Observatory, discovered the
planet now called “Pluto.”

Since the discovery of two planets that were predicted mathe-
matically by the perturbations of orbits of known planets, several
more predictions about undiscovered planets have been made.
None have been discovered and most astronomers believe that no
more planets exist in our solar system. The laws of Newton and
Kepler, however, have provided scientists and astronomers with
a solid foundation on which to explain observations and make
predictions about planetary motion, as well as send space probes
out to observe all of the planets in our solar system.

m Section Review

you were at the spot on Earth just below the
point where the satellite started to orbit, how
would the path of the satellite appear to you?

1. @ Explain Newton’s thought experiment
about “launching a cannon-ball satellite.”

2. @ Why must a geostationary satellite orbit

over the equator? To answer that question, 3. What conditions create apparent weight-

think about the point that is the centre of the
orbit. If you launched a satellite that had a
period of 24 hr, but it did not start out over
the equator, what path would it follow? If
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lessness when an astronaut is in an orbiting
spacecraft?

. How could you discover a planet with-

out seeing it with a telescope?



CHAPTER

REFLECTING ON CHAPTER 3

= Tycho Brahe collected detailed astronomical
data for 20 years.

m Johannes Kepler analyzed Brahe’s data and
developed three empirical equations that are
now called “Kepler’s laws.”

1. Planets follow elliptical paths.

2. The areas swept out by a line from the Sun
to a planet during a given time interval are
always the same.

2 2 2
3.L3:I<0rT—§“:LBB
I A TB

m Kepler’s laws support Newton’s law of
universal gravitation.

= Newton extended the concept of gravity and
showed that not only does it cause celestial
bodies to attract each other, but also that all
masses exert a mutually attractive force on
each other.

= Newton’s law of universal gravitation is

written mathematically as F, = GT2I2,
r

m Newton’s law of universal gravitation shows
that the constant in Kepler’s third law is
given byL2 _ Am .

r* Gms

Knowledge/Understanding

1. Distinguish between mass and weight.

2. Define (a) heliocentric and (b) geostationary.
3. State Kepler’s laws.

4. Several scientists and astronomers had devel-
oped the concept that the attractive force on
planets orbiting the Sun decreased with the
square of the distance between a planet and
the Sun. What was Newton’s reasoning for
including in his law of universal gravitation
the magnitude of the masses of the planets?
In what other ways did Newton’s law of
universal gravitation differ conceptually
from the ideas of other scientists of his time?

5. Explain how Kepler’s third law supports
Newton’s law of universal gravitation.

You can use the combination of Newton’s law
of universal gravitation and Kepler’s third law
to determine the mass of any celestial body
that has one or more satellites.

Cavendish used a torsion balance to determine
the universal gravitational constant, G, in
Newton’s law of universal gravitation:

G =6.67 x 10711 N - m?/kg?.

Newton reasoned that if you shot a cannon
ball from the top of a very high mountain and
it went fast enough horizontally, it would fall
exactly the same distance that Earth’s surface
would drop, due to the spherical shape. This
is the correct theory about satellite motion.

A satellite in a geostationary orbit appears to
hover over one spot on Earth’s surface,
because it completes one cycle as Earth makes
one revolution on its axis.

Apparent weightlessness in orbiting spacecraft
is due to the fact that the spacecraft and
everything in it are falling toward Earth with
exactly the same acceleration.

The planets Neptune and Pluto were both
discovered because their gravity perturbed
the path of other planets.

6. Is Kepler’s constant a universal constant?
That is, can it be applied to Jupiter’s system
of satellites or to other planetary systems?
Explain.

1. How does a torsion balance work?

. Explain whether it is possible to place a
satellite into geosynchronous orbit above
Earth’s North Pole.

Inquiry

9. No reliable evidence supports the astrological
claim that the motions of the stars and planets
affect human activities. However, belief in
astrology remains strong. Create an astrology
defence or opposition kit. Include any or all
of the following: arguments based on Newton’s
laws to refute or support astrological claims,
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an experiment that tests the validity of birth
horoscopes, a report on scientific studies

of astrological claims and any findings, a sum-
mary of the success and failure of astrological
predictions and a comparison of these to the
success of predictions based on chance.

10. Devise an observational test (which will require
a telescope) that will convince a doubting
friend that Earth orbits the Sun.

11. Demonstrate the inverse square law form of the
universal law of gravitation by calculating the
force on a 100.0 kg astronaut who is placed at
a range of distances from Earth’s surface, out
to several Earth radii. Make a graph of force
versus position and comment on the results.

12. You often hear that the Moon’s gravity, as
opposed to the Sun’s gravity, is responsible

for the tides.

(a) Calculate the force of gravity that the Moon
and the Sun exert on Earth. How does
this appear to conflict with the concept
stated above?

(b) Calculate the force of the Moon’s gravity on
1.00 x 10* kg of water at the surface of an
ocean on the same side of Earth as the Moon
and on the opposite side of Earth from the
Moon. Also, calculate the Moon’s gravity
on 1.00 x 10* kg of matter at Earth’s centre.
(Assume that the distance between the
Moon’s centre and Earth’s centre is
3.84 x 108 m and that Earth’s radius is
6.38 x 10° m.)

(c) Perform the same calculations for the Sun’s
gravity on these masses. (Use 1.49 x 10! m
for the distance between the centres of Earth
and the Sun.)

(d) Examine your results from parts (b) and (c)
and use them to justify the claim that the
Moon’s gravity is responsible for tides.

13. Many comets have been identified and the
regularity of their return to the centre of the
solar system is very predictable.

(a) From what you have learned about satellite
motion, provide a logical explanation for the
disappearance and reappearance of comets.
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(b) Make a rough sketch of the solar system
and add to it a probable comet path.

(c) What is the nature of the path taken
by comets?

Communication

14. Consider a marble of mass m accelerating in
free fall in Earth’s gravity. Neglect air resistance
and show that the marble’s acceleration due to
gravity is independent of its mass. (That is, you
could use a bowling ball, a feather, or any other
object in free fall and obtain the same result.)
Hint: Equate Newton’s universal law of gravita-
tion to Newton’s second law. Look up the
values for Earth’s mass and radius and use
them in your acceleration equation to calculate
the marble’s acceleration. This number should
be familiar to you!

15. Suppose that the Sun’s mass was four times
greater than it is now and that the radius of
Earth’s orbit was unchanged. Explain whether
a year would be longer or shorter. By what
factor would the period change? Explain in
detail how you determined your answer.

16. (a) At what distance from Earth would an astro-
naut have to travel to actually experience a
zero gravitational force, or “zero g”?
(b) Are astronauts in a space shuttle orbiting
Earth subject to a gravitational force?
(c) How can they appear to be “weightless”?

17. A cow attempted to jump over the Moon but
ended up in orbit around the Moon, instead.
Describe how the cow could be used to
determine the mass of the Moon.

18. Discuss what would happen to Earth’s motion
if the Sun’s gravity was magically turned off.

19. The Sun gravitationally attracts Earth. Explain
why Earth does not fall into the Sun.

Making Connections

20. Examine some Olympic records, such as those
for the long-jump, shot-put, weightlifting,
high-jump, javelin throw, 100 m dash, 400 m
hurdles, and the marathon. How would you
expect these records to change if the events



were performed under an athletic dome on
the Moon?

21. Einstein once recalled his inspiration for the
theory of general relativity from a sudden
thought that occurred to him: “If a person falls
freely, he will not feel his own weight.” He said
he was startled by the simple thought and that
it impelled him toward a theory of gravitation.
Although the mathematics of the general theory
of relativity is advanced, its concepts are
fascinating and have been described in several
popular books. Research and write a short essay
on the general theory of relativity, including a
discussion of its predictions and tests, and how
it supersedes (but does not replace) Newton’s
theory of gravitation.

Problems for Understanding

22. The gravitational force between two objects is
80.0 N. What would the force become if the
mass of one object was halved and the
distance between the two objects was doubled?

23. Two stars of masses m+ and 3m are
7.5 x 10" m apart. If the force on the large
star is F, which of the following is the force
on the small star?
(@) F/9 (b) F/3 (¢) F (d) 3F  (e) 9F
24. For the above situation, if the acceleration of
the small star is a, what is the acceleration of
the large star?
(@) a/9 (b) a/3 (d) 3a (e) 9a
25. (a) Use Newton’s law of universal gravitation
and the centripetal force of the Sun to
determine Earth’s orbital speed. Assume that
Earth orbits in a circle.
(b) What is Earth’s centripetal acceleration
around the Sun?

(c) a

26. Calculate the Sun’s acceleration caused by
the force of Earth.

21. A space shuttle is orbiting Earth at an altitude
of 295 km. Calculate its acceleration and com-
pare it to the acceleration at Earth’s surface.

28. Orbital motions are routinely used by
astronomers to calculate masses. A ring of
high-velocity gas, orbiting at approximately

29.

30.

31

32,

33.

3.4 x 10* m/s at a distance of 25 light-years
from the centre of the Milky Way, is considered
to be evidence for a black hole at the centre.
Calculate the mass of this putative black hole.
How many times greater than the Sun’s mass
is it?

In a Cavendish experiment, two 1.0 kg spheres
are placed 50.0 cm apart. Using the known
value of G, calculate the gravitational force
between these spheres. Compare this force to
the weight of a flea.

The Hubble space telescope orbits Earth with
an orbital speed of 7.6 x 103 m/s.

(a) Calculate its altitude above Earth’s surface.
(b) What is its period?

The Moon orbits Earth at a distance of

3.84 x 10® m. What are its orbital velocity
and period?

The following table gives orbital information
for five of Saturn’s largest satellites.

Mean orbital
radius (m) Period (days)

Tethys 2.95 x 108 1.888
Dione 3.78 x 10° 2.737
Rhea 5.26 x 108 4.517
Titan 1.221 x 10° 15.945
lapetus 3.561 x 10° 79.331

(a) Determine whether these satellites obey
Kepler’s third law.

(b) If they obey Kepler’s third law, use the data
for the satellites to calculate an average
value for the mass of Saturn.

Suppose the Oort cloud of comets contains
10'% comets, which have an average diameter
of 10 km each.

(a) Assume that a comet is composed mostly of
water-ice with a density of 1.00 g/cm® and
calculate the mass of a comet.

(b) Calculate the total mass of the Oort cloud.

(c) Compare your mass of the Oort cloud to
the mass of Earth and of Jupiter.
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PROJECT

Catapult Machine

Background

Humans have built machines for launching
projectiles since ancient times. The Romans
constructed ballista to hurl stones and catapulta
to shoot arrows. In one design, stretched or
twisted ropes were suddenly released to launch
the projectile. Other machines bent and then
released wooden beams. The medieval trebuchet
harnessed the energy of a falling counterweight.
More recently, catapults powered by com-
pressed air provided the first effective method
of launching aircraft from ships.

A medleval catapult

Challenge

In a small group, design, construct, test, and
evaluate a catapult that launches a standard
projectile to meet specified flight criteria. Your
class as a whole will decide on the criteria for
the flight and any restrictions on building
materials and cost. Each catapult will be
evaluated by comparing its performance to the
expected results for an ideal projectile. As part
of the project, you will prepare a report that
outlines the design features of your catapult,
provides an analysis of its operation, and makes
recommendations for its improvement.
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Materials

m construction materials, such as wood, plastic,
cardboard, metal

m elastic materials, such as elastic bands,
springs, or a mousetrap

m materials to attach parts together, such as
fasteners, tape, and glue

m materials for the projectile
e foam plastic egg carton
e plastic sandwich bags
e sand

Safety Precautions - - -

m Wear eye protection when using power tools.

m Ensure that electrical equipment, such as
power tools, is properly grounded.

m Take appropriate precautions when using
electrical equipment.

m Take appropriate precautions when using
knives, saws, and other sharp tools.

= Handle glue guns with care to avoid burns.
Hot glue guns take several minutes to cool
after they are disconnected.

m Wear eye protection at all times when testing
your catapult.

m Test your catapult in a large, clear space,
away from other people and from equipment
and windows that could be damaged.

m Ensure that all spectators are behind the
catapult before firing it.

Project Criteria

A. As a class, decide on the criteria for evaluat-
ing your catapults. Possible challenges are to
construct catapults that launch projectiles to
hit a specific target, or to achieve maximum
range or a specified flight time, or to reach a
particular height or go over a wall.



B. As a class, decide whether your catapults are
to be made entirely from recycled materials
or to be constructed from other materials
within a set cost limit.

. Research, design, and construct your catapult
to launch egg-carton projectiles. These pro-
jectiles are to be made from a single section
of a foam plastic egg carton, filled with
25 grams of sand in a plastic bag. Tape the
bag of sand securely inside the egg-carton
section. The total mass of the projectile is not
to exceed 30 grams.

. Prepare a written report about your project
that includes

® an appropriate title and the identification
of group members

m a labelled design drawing of the catapult

m an overview of the physics involved that
includes calculations of
e the average force applied to the
projectile
e the distance through which the force is
applied
e the time for which the force is applied
m a theoretical prediction for the perform-
ance of your projectile that includes
e its range
e its maximum height
e its flight time
® an analysis of the catapult’s performance
that includes calculations or measurements
of the
e average launch velocity
e launch angle
e flight time
e range
e maximum height achieved
® an evaluation of the catapult’s performance
and recommendations for its refinement

\.

ASSESSMENT

After you complete this project

e assess the performance of your catapult. How
closely did the projectile meet your challenge
criteria?

o assess the design of your catapult. What
physics and engineering principles did you
incorporate into its design?

o assess the problem-solving effectiveness of
your group. What design and construction
obstacles did you face during this project?
How did you overcome them?

Action Plan

1.
2.

Work in groups of two to four people.

Establish a time line for the design, construc-
tion, testing, and evaluation phases of this
project.

. Research possible designs and energy sources

for your catapult. Select one that can be
adapted to be feasible and meet the design
criteria.

. Construct and test your catapult, measuring

the quantities specified above.

. Prepare the written report and enter the

competition.

Evaluate

1.

Compare the average performance of your
catapult with your theoretical predictions
and the challenge criteria set out by the
class.

. Recommend refinements to your catapult.

Indicate specifically how performance was
affected by each design feature that you have
identified for improvement.

WEB LINK

www.mcgrawhill.ca/links/physics12

For a lot of pictures and some stories about “leverage
artillery” used in times past and for plans for various
types of catapults, go to the above Internet site and
click on Web Links.
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Knowledge/Understanding
Multiple Choice
In your notebook, choose the most correct answer

for each of the following questions. Outline your
reasons for your choice.

1. A ball is thrown upward. After it is released,
its acceleration
(a) is zero
(b) increases
(c) decreases
(d) remains constant
(e) increases, then decreases

2. You drop a 1.0 kg stone off the roof of a 10-
storey building. Just as the stone passes the
fifth floor, your friend drops a 1.0 kg ball out of
a fifth-floor window. If air resistance is neglect-
ed, which of the following statements is true?
Explain your reasoning.

(a) The stone and the ball hit the ground at the
same time and at the same speed.

(b) The stone hits the ground first and with a
greater speed than the ball does.

(c) The stone and the ball hit the ground at the
same time, but the speed of the stone is
greater.

(d) The ball hits the ground before the stone.

3. A football is thrown by a quarterback to a
receiver deep in the end zone. The acceleration
of the football during the flight
(a) depends on how the ball was thrown
(b) depends on whether the ball is going up or
coming down

(c) is the same during the entire flight

(d) is greatest at the top of its trajectory

(e) is greatest at the beginning and end of its
trajectory

4. A ball of mass m; is dropped from the roof
of a 10-storey building. At the same instant,
another ball of mass m; is dropped out of a
ninth-storey window, 10 m below the roof.
The distance between the balls during the flight
(a) remains at 10 m throughout
(b) decreases
(c) increases
(d) depends on the ratio m,/m,
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5. On a position-time graph, a straight horizontal

line corresponds to motion at
(a) zero speed

(b) constant speed

(c) increasing speed

(d) decreasing speed

Short Answer
6. (a) Define what is meant by a net or unbalanced

force acting on an object.

(b) Explain, with the aid of a free-body diagram,
how an object can be experiencing no net
force when it has at least three forces acting
on it.

(c) Describe, with the aid of a free-body dia-
gram, an object that is experiencing a net
force. Identify in which direction the object
will move and with what type of motion.
Relate the direction and type of motion to
the direction of the net force.

. A child is riding a merry-go-round that is

travelling at a constant speed.

(a) Is he viewing the world from an inertial or
non-inertial frame of reference? Explain
your reasoning.

(b) What type of force does his horse exert on
him to keep him travelling in a circle? In
which direction does this force act?

(¢) In what direction does the child feel that a
force is pushing him? Explain why this per-
ceived force is called a “fictitious force.”

. A football is kicked into the air. Where in its

trajectory is the velocity at a minimum? Where
is it at a maximum?

. A bright orange ball is dropped from a hot-air

balloon that is travelling with a constant

velocity.

(a) Draw a sketch of the path the ball will travel
from the perspective of a person standing on
the ground from the instant in time at which
the ball was dropped until the instant it
lands.

(b) From the ground, what type of motion is
observed in the horizontal dimension?
Identify the mathematical equations that can
be used to model this motion.



(c) From the ground, what type of motion is
observed in the vertical dimension? Identify
the mathematical equations that can be used
to model this motion.

(d) Identify the variable that is common to the
equations that describe the horizontal
motion and those that describe the vertical

motion.

(e) Describe, with the aid of sketches, how
motion on a plane can be modelled by
considering its component motion along two
directions that are perpendicular to each
other.

Inquiry

10. A rope and pulley are often used to assist in
lifting heavy loads. Demonstrate with the use
of free-body diagrams and equations that, using
the same force, a heavier load can be lifted with
a rope and pulley system than with a rope
alone.

11. A wooden T-bar attached to a cable is used at
many ski hills to tow skiers and snowboarders
up the hill in pairs. Design a T-bar lift for a ski
hill. Estimate how much tension the cable for
an individual T-bar should be able to with-
stand, assuming that it transports two adults,
the slope is 10.0°, and the T-bar cable pulls the
people at an angle of 25.0° to the slope.
Determine how the tension is affected when the
steepness of the slope, the angle of the T-bar
cable to the slope, or the coefficient of friction
of the snow changes.

12. Examine three different ways of suspending
signs (for example, for stores) in front of build-
ings or above sidewalks by using cables or rods
(that is, the sign is not attached directly to the
building). Determine which method can
support the heaviest sign.

13. Review the meaning of the kinematics equations
for constant acceleration by deriving them for
yourself. Begin with the following situation. In
a time interval, At, a car accelerates uniformly
from an initial velocity, vi, to a final velocity, vs.
Sketch the situation in a velocity-versus-time
graph. By determining the slope of the graph

and the area under the graph (Hint: What
quantities do these represent?), see how many
of the kinematics equations you can derive.

Communication

14.

15.

16.

17.

According to Newton’s third law, for every
action force, there is an equal and opposite
reaction force. How, then, can a team win a
tug-of-war contest?

Consider a block of wood on an incline.

Determine the acceleration of the block and the

normal force of the incline on the block for the

two extreme cases where 6 = 0° and 6 = 90°,
and for the general case of 0° < 8 < 90°. Discuss
the results, particularly why an inclined plane
could be described as a way of “diluting”
gravity. (Note: Galileo recognized this.)

You probably have a working understanding

of mass and velocity, but what about force and

acceleration? At what rate can a person acceler-

ate on a bicycle? What average force does a

tennis racquet exert on a tennis ball?

(a) Construct examples of everyday situations
involving accelerations of approximately
0.5 m/s?, 2.0 m/s?, 5.0 m/s?, and 20 m/s?.

(b) Construct examples of everyday situations
involving forces of 1 N, 10 N, 50 N, 100 N,
1000 N, and 1.0 x 10* N.

A ball rolls down an inclined plane, across a
horizontal surface, and then up another
inclined plane. Assume there is no friction.

(a) What forces act on the ball at the beginning,
middle, and end of its roll?

(b) If the angles of the inclined planes are equal
and the ball begins its roll from a vertical
height of 10 cm, how high will the ball roll
up the second inclined plane?

(c) If the first inclined plane is twice as steep as
the second and the ball begins its roll from a
vertical height of 10 cm, to what height will
the ball roll up the second inclined plane?

(d) If the ball begins its roll from a vertical
height of 10 cm on the first inclined plane
and the second inclined plane is removed,
how far will the ball roll across the
horizontal surface?
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(e} Explain how the above four situations are
explained by using the law of inertia.

18. A car turns left off the highway onto a curved
exit ramp.

(a) What type of motion does the passengers’
frame of reference experience relative to the
ground?

(b) Explain why the passengers feel a force to
the right as the car turns.

(c) How would an observer on an overpass
describe the motion of the passengers and
the car at the beginning of the curve?

(d) Suppose that in the middle of the turn, the
car hits a patch of ice. Sketch the path of the
car as it slides.

(e) Determine the magnitude and direction of
the force that the road exerts in dry and icy
road conditions and discuss the results for
the two situations.

19. Suppose you could place a satellite above
Earth’s atmosphere with a gigantic crane. In
which direction would the satellite travel when
the crane released it? Explain your answer.

20. Explain why the kinematics equations, which
describe the motion of an object that has
constant acceleration, cannot be applied to
uniform circular motion.

Making Connections

21. Choose an Olympic sport and estimate the
magnitude of realistic accelerations and forces
involved in the motion. For example, approxi-
mately how fast do Olympic athletes accelerate
during the first 10 m of the 100 m dash? What
average force is applied during this time? What
average force do shot-putters exert on the shot-
put as they propel it? How does this compare to
the force exerted by discus throwers?

22. In automobiles, antilock braking systems were
developed to slow down a car without letting
the wheels skid and thus reduce the stopping
distance, as compared to a braking system in
which the wheels lock and skid. Explain the
physics behind this technology, using the
concepts of static friction and kinetic friction.
Develop and solve a problem that demonstrates
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23.

24.

25.

26.

this situation. In which case, stopping without
skidding or stopping with skidding, do you use
the coefficient of kinetic friction and in which
case do you use the coefficient of static
friction?

“Natural motion” is difficult to explore
experimentally on Earth because of the inher-
ent presence of friction. Research the history of
friction experiments. Examine the relationship
between static and kinetic friction. Explain
why a fundamental theory of friction eludes
physicists.

Aristotle’s theory of dynamics differed from
Newton’s and Galileo’s theories partly because
Aristotle tried to develop common sense expla-
nations for real-life situations, whereas Newton
and Galileo imagined ideal situations and
tested them by experiment. Outline in an essay
the differences in these two approaches and
their results.

Railroads are typically built on level land, but

in mountainous regions, inclines are unavoid-

able. In 1909, to improve the Canadian Pacific

Railway through the Rocky Mountains, near

Field, British Columbia, engineers significantly

reduced the grade of the old track by building a

spiral tunnel through a mountain. Research this

engineering feat and answer the following
questions.

(a) What is the grade of the incline?

(b) How much force must the train exert going
up through the tunnel, as compared to when
it goes down or travels on level track, or as
compared to what it required for travel on
the old track?

(c) What is the elevation of the train before
entering and after leaving the tunnel?

(d) What is the typical acceleration of the train
in the tunnel? Make some rough calcula-
tions, if necessary, to support your answers.

Tycho Brahe built two observatories and had
his assistants observe the same things inde-
pendently. He also repeated observations in
order to understand his errors. He is recognized
as the greatest astronomical observer prior to
development of the telescope. Research the



contribution he made to observational
astronomy and the role his methods played
in developing the scientific method.

21. In the solar system, objects at greater distances
from the Sun have slower orbital velocities
because of the decrease in the gravitational
force from the Sun. This pattern is expected to
be observed in the Milky Way galaxy also.
However, some objects that are more distant
from the centre of the galaxy than the Sun
(such as star clusters) have higher orbital
velocities than the Sun. This is considered to
be evidence for dark matter in the galaxy.
Review some recent articles in astronomy
magazines and research the nature of this
problem. Why are the above observations
considered to be evidence for dark matter?
How strong is this evidence? What are some of
the candidates?

28. Volcanoes on Mars, such as Olympus Mons,
are much taller than those on Earth. Compare
the sizes of volcanoes on different bodies in the
solar system and discuss the role that gravity
plays in determining the size of volcanoes.

Problems for Understanding

29. A 1.2 x 10® kg car is pulled along level ground
by a tow rope. The tow rope will break if the
tension exceeds 1.7 X 10® N. What is the largest
acceleration the rope can give to the car?
Assume that there is no friction.

30. Two objects, m; and m,, are accelerated inde-
pendently by forces of equal magnitude. Object
1, accelerates at 10.0 m/s? and m, at 20.0 m/s?.
What is the ratio of (a) their inertial masses?

(b) their gravitational masses?

31. A 720 kg rocket is to be launched vertically
from the surface of Earth. What force is needed
to give the rocket an initial upward acceleration
of 12 m/s*? Explain what happens to the
acceleration of the rocket during the first few
minutes after lift-off if the force propelling it
remains constant.

32. A 42.0 kg girl jumps on a trampoline. After
stretching to its bottom limit, the trampoline

33.

34.

35.

36.

37.

exerts an average upward force on the girl over

a displacement of 0.50 m. During the time that

the trampoline is pushing her up, she experi-

ences an average acceleration of 65.0 m/s?. Her

velocity at the moment that she leaves the

trampoline is 9.4 m/s[up].

(a) What is the average force that the
trampoline exerts on the girl?

(b) How high does she bounce?

An 8.0 g bullet moving at 350 m/s penetrates a
wood beam to a distance of 4.5 cm before com-
ing to rest. Determine the magnitude of the
average force that the bullet exerts on the beam.

Soon after blast-off, the acceleration of the

Saturn V rocket is 80.0 m/s?[up].

(a) What is the apparent weight of a 78.0 kg
astronaut during this time?

(b) What is the ratio of the astronaut’s apparent
weight to true weight?

A 1500 kg car stands at rest on a hill that has
an incline of 15°. If the brakes are suddenly
released, describe the dynamics of the car’s
motion by calculating the following: (a) the car’s
weight, (b) the component of the weight parallel
to the incline, (¢) the car’s acceleration, (d) the
velocity acquired after travelling 100.0 m (in
m/s and km/h), and (e) the time for the car to
travel 100.0 m.

A 2.5 kg brick is placed on an adjustable
inclined plane. If the coefficient of static
friction between the brick and the plane is 0.30,
calculate the maximum angle to which the
plane can be raised before the brick begins

to slip.

Superman tries to stop a speeding truck before
it crashes through a store window. He stands in
front of it and extends his arm to stop it. If the
force he exerts is limited only by the frictional
force between his feet and the ground, and

Us = ux = 1.0, (a) what is the maximum force
he can exert? (Let Superman’s mass be

1.00 x 10% kg, the truck’s mass 4.0 x 10*kg,
and the truck’s velocity 25 m/s.) (b) What is
the minimum distance over which he can stop
the truck?
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38.

39.

40.

a.

Two bricks, with masses 1.75 kg and 3.5 kg,

are suspended from a string on either side of a
pulley. Calculate the acceleration of the masses
and the tension in the string when the masses
are released. Assume that the pulley is massless
and frictionless.

A helicopter is flying horizontally at 8.0 m/s

when it drops a package.

(a) How much time elapses before the velocity
of the package doubles?

(b) How much additional time is required for
the velocity of the package to double again?

(c) At what altitude is the helicopter flying if
the package strikes the ground just as its
velocity doubles the second time?

A soccer player redirects a pass, hitting the ball

toward the goal 21.0 m in front of him. The ball

takes off with an initial velocity of 22.0 m/s at

an angle of 17.0° above the ground.

(a) With what velocity does the goalie catch the
ball in front of the goal line?

(b) At what height does the goalie catch the
ball?

(c) Is the ball on its way up or down when it is
caught?

A wheelchair basketball player made a basket
by shooting the ball at an angle of 62°, with an
initial velocity of 6.87 m/s. The ball was 1.25 m
above the floor when the player released it and
the basket was 3.05 m above the floor. How far
from the basket was the player when making
the shot?
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42,

43.

44,

45,

46.

41.

48.

A 10.0 g arrow is fired horizontally at a target
25 m away. If it is fired from a height of 2.0 m
with an initial velocity of 40.0 m/s, at what
height should the target be placed above the
ground for the arrow to hit it?

A Ferris wheel of radius 10.0 m rotates in a
vertical circle of 7.0 rev/min. A 45.0 kg girl
rides in a car alone. What (vertical) normal
force would she experience when she is:

(a) halfway towards the top, on her way up?
(b) at the top?

(c) halfway towards the bottom?

(d) at the bottom?

Compare this to her weight in each case.

How much force is needed to push a 75.0 kg
trunk at constant velocity across a floor, if the
coefficient of friction between the floor and the
crate is 0.277

A car can accelerate from rest to 100 km/h
(1.00 x 102 km/h) in 6.0 s. If its mass is
1.5 x 10° kg, what is the magnitude and
direction of the applied force?

A 62.4 kg woman stands on a scale in an

elevator. What is the scale reading (in newtons)

for the following situations.

(a) The elevator is at rest.

(b) The elevator has a downward acceleration
of 2.80 m/s%.

(c) The elevator has an upward acceleration of
2.80 m/s?.

(d) The elevator is moving upward with a
constant velocity of 2.80 m/s.

Suppose you attach a rope to a 5.0 kg brick
and lift it straight up. If the rope is capable of
holding a 20.0 kg mass at rest, what is the
maximum upward acceleration you can give
to the brick?

A 52.0 kg parachutist is gliding to Earth with a

constant velocity of 6.0 m/s[down]. The para-

chute has a mass of 5.0 kg.

(a) How much does the parachutist weigh?

(b) How much upward force does the air exert
on the parachutist and parachute?



49. (a) If you want to give an 8.0 g bullet an accel-
eration of 2.1 x 10* m/s?, what average net
force must be exerted on the bullet as it is
propelled through the barrel of the gun?

(b) With this acceleration, how fast will the
bullet be travelling after it has moved
2.00 cm from rest?

50. A snowboarder, whose mass including the
board is 51 kg, stands on a steep 55° slope and
wants to go straight down without turning.
What will be his acceleration if (a) there is
no friction and (b) the coefficient of kinetic
friction is 0.207? (¢) In each case, starting from
rest, what will be his velocity after 7.5 s?

51. Replace the cart in a Fletcher’s trolley appara-
tus (see page 8) with a block of wood of mass
4.0 kg and use a suspended mass of 2.0 kg.
Calculate the acceleration of the system and the
tension in the string when the mass is released,
if the coefficient of friction between the block
of wood and the table is
(a) 0.60
(b) 0.20
(c) What is the maximum value of the coeffi-

cient of friction that will allow the system
to move?

52. Calculate the acceleration of two different
satellites that orbit Earth. One is located at
2.0 Earth radii and the other at 4.0 Earth radii.

53. (a) Calculate your velocity on the surface of
Earth (at the equator) due to Earth’s rotation.
(b) What velocity would you require to orbit
Earth at this distance? (Neglect air resistance
and obstructions.)

54. Two galaxies are orbiting each other at a separa-
tion of 1 x 10'* AU and the orbital period is
estimated to be 30 billion years. Use Kepler’s
third law to find the total mass of the pair of
galaxies. Calculate how many times larger the
mass of the pair of galaxies is than the Sun’s
mass, which is 1.99 x 103° kg.

COURSE CHALLENGE

Scanning Technologies: Today and Tomorrow

Consider the following as you begin gathering information
for your end-of-course project.

® Analyze the contents of this unit and begin recording
concepts, diagrams, and equations that might be
useful.

m Collect information in a variety of ways, including
concept organizers, useful Internet sites, experimental
data, and perhaps unanswered questions to help you
create your final presentation.

® Scan magazines, newspapers, and the Internet for
interesting information to enhance your project.
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OVERALL EXPECTATIONS UNIT CONTENTS

DEMONSTRATE an understanding of work, energy,
impulse, momentum, and conservation of energy CHAPTER 4 Momentum and Impulse
and of momentum.

CHAPTER 5 Conservation of Energy

INVESTIGATE and analyze two-dimensional situations

involving conservation of energy and of momentum. CHAPTER 6 Energy and Motion

. . in Space
DESCRIBE and analyze how common impact-absorbing

devices apply concepts of energy and momentum.

The motion of water, subjected to 4000 kPa of
pressure, has sufficient energy to cut through
steel. The motion of electrically charged particles,
propelled at speeds in excess of 3.0 x 10* m/s, could
provide the energy needed to power space probes
in the near future. In the small photograph of an
experimental ion engine, the blue glow is composed
of electrically charged ions of xenon gas, travelling
at speeds in excess of 3.0 X 10* m/s. An ion engine
emits even smaller high-speed particles than a
water-jet cutting tool.

In this unit, you will build on previous studies
of energy to include another concept: momentum.
Momentum considers the amount of motion in an
object and the effect of moving objects — large or
small, solid, liquid, or gas — on each other. You
will use the concepts of energy and momentum to
analyze physical interactions, such as collisions
and propulsion systems. You will also examine
two great theoretical foundations of physics: the
law of conservation of momentum and the law of
conservation of energy.

UNIT PROJECT PREP

Refer to pages 262-263 before beginning this unit.
In this unit project, you will create a presentation
——— ! that explores the importance of scientific theories.

o L ‘ ‘m ® What theories do you already know that are
-_-_M helpful in analyzing changes in the motion of

an object?
iy m |In what career fields are ideas, principles, or
mathematical techniques used to analyze the
'y "9--- J_- ' motion and interactions of objects?
- \. y
‘I I d 1-—"“ E
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CHAPTER °

CHAPTER CONTENTS

Investigation 4-A
Newton’s Cradle 137

4.1 Defining Momentum
and Impulse 138

4.2 Conservation of
Momentum 148

4.3 Elastic and
Inelastic Collisions 163

Investigation 4-B
Examining Collisions 164

PREREQUISITE
CONCEPTS AND SKILLS

= Newton’s laws of motion

m Kinetic energy
m Gravitational potential energy

m Conservation of mechanical energy

Momentum and Impulse

The driver of the race car in the above photograph walked
away from the crash without a scratch. Luck had little to do
with this fortunate outcome, though — a practical application of
Newton’s laws of motion by the engineers who designed the car
and its safety equipment protected the driver from injury.

You learned in Unit 1 that Newton’s laws can explain and pre-
dict a wide variety of patterns of motion, such as the motion of a
projectile and the orbits of planets. How can some of the same
laws that guide the stars and planets protect a race car driver who
is in a crash?

When Newton originally formulated his laws of motion, he
expressed them in a somewhat different form than you see in most
textbooks today. Newton emphasized a concept called a “quantity
of motion,” which is defined as the product of an object’s mass
and its velocity. Today, we call this quantity “momentum.” In this
chapter, you will see how the use of momentum allows you to
analyze and predict the motion of objects in countless situations
that you might not yet have encountered in your study of physics.
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INVESTIGATION 4-A

Newton’s Cradle

Newton’s cradle, also called a “Newtonian

demonstrator,”

looks like a simple child’s toy.

However, explaining the motion of Newton’s
cradle requires the application of more than
one important physical principle.

L 1

Problem

Explain the motion of a Newton’s cradle.

Equipment

m Newton's cradle

= modelling clay

Procedure

1.

Pull to the side one sphere at the end of the
row of the Newton’s cradle, keeping the
supporting cords taut. Then, release the
sphere. Observe and record the resulting
motion of the spheres.

. Pull two spheres to the side, keeping all of

the supporting cords taut and keeping the
spheres in contact. Release the spheres and
observe and record the resulting motion.

. Repeat step 2, using first three spheres and

then four spheres.

. Pull back two spheres from one end and one

sphere from the other end. Release all of the
spheres at the same time. Observe and record
the motion.

. Pull one of the end spheres aside and put a

small piece of modelling clay on the second
sphere at the point where the first sphere

EEIHAIE]

TARGET SKILLS
® Hypothesizing
® Performing and recording
* Analyzing and interpreting

will hit it. Release the first sphere and
observe and record the motion of the
spheres.

. Leaving the clay in place between the two

spheres, pull back one sphere from the oppo-
site end of the row. Release the sphere and
observe and record the resulting motion.

Analyze and Conclude

. Summarize any patterns of motion that you

observed for the various trials with the
Newton’s cradle.

. Imagine that an end sphere was moving at

0.16 m/s when it hit the row and that two
spheres bounced off the other end. What
would the speed of the two spheres have
to be in order to conserve kinetic energy?
Assume that each sphere has a mass of
0.050 kg.

. Could kinetic energy be conserved in the

pattern described in question 2?7 During your
trials, did you ever observe the pattern
described in question 27

. Did you ever observe a pattern in which

more than one sphere was released and only
one sphere bounced off the far end?

. Propose a possible explanation for the

motion you observed in Procedure steps 5
and 6.

. Momentum is involved in the motion of the

spheres. Write a definition of momentum as
you now understand it.

. Formulate an hypothesis that could explain

why some patterns that would not violate the
law of conservation of energy were, however,
not observed.

. As you study this chapter, look for explana-

tions for the patterns of motion that you
observed. Reread your hypothesis and make
any necessary corrections.
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Defining Momentum
and Impulse

SECTION S—m—e—
EXPECTATIONS

* Define and describe the
concepts and units related to
momentum and impulse.

 Analyze and describe practical
applications of momentum,
using the concepts of
momentum.

* |dentify and analyze social
issues that relate to the
development of safety devices
for automobiles.

KEY

TERMS
°* momentum
* impulse

* impulse-momentum theorem

By now, you have become quite familiar with a wide variety of sit-
uations to which Newton’s laws apply. Frequently, you have been
cautioned to remember that when you apply Newton’s second law,
you must use only the forces acting on one specific object. Then,
by applying Newton’s laws, you can predict precisely the motion
of that object. However, there are a few types of interactions for
which it is difficult to determine or describe the forces acting on
an object or on a group of objects. These interactions include colli-
sions, explosions, and recoil. For these more complex scenarios,

it is easier to observe the motion of the objects before and after the
interaction and then analyze the interaction by using Newton’s
concept of a quantity of motion.

Defining Momentum

Although you have not used the mathematical expression for
momentum, you probably have a qualitative sense of its meaning.
For example, when you look at the photographs in Figure 4.1, you
could easily list the objects in order of their momentum. Becoming
familiar with the mathematical expression for momentum will
help you to analyze interactions between objects.

Momentum is the product of an object’s mass and its velocity,
and is symbolized by p. Since it is the product of a vector and
a scalar, momentum is a vector quantity. The direction of the
momentum is the same as the direction of the velocity.

m If the operator of each of these vehicles was suddenly to slam
on the brakes, which vehicle would take the longest time to stop?
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DEFINITION OF MOMENTUM

Momentum is the product of an object’s mass and its velocity.

P=mv
Quantity Symbol Sl unit
momentum i kng (kilogram metres per second)
mass m kg (kilograms)
velocity v % (metres per second)
Unit Analysis

kg-m
s
Note: Momentum does not have a unique unit of its own.

(mass)(velocity) = kg - % =

SAMPLE PROBLEM

Momentum of a Hockey Puck

Determine the momentum of a 0.300 kg hockey puck travelling
across the ice at a velocity of 5.55 m/s[N].

Conceptualize the Problem
m The mass is moving; therefore, it has momentum.
m The direction of an object’s momentum is the same as the direction

of its velocity.

Identify the Goal
The momentum, P, of the hockey puck

Identify the Variables and Constants

Known Unknown
m = 0.300 kg P

V'=5.55 %[N]

Develop a Strategy

Use the equation that defines momentum. P=mv
b= L
P = (0.300 kg) x (5.55 . [N])
D= 1.665 kgT'm[N]
D=1.67 kgs'm [N]
kg-m
The momentum of the hockey puck was 1.67 — [N].

continued
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continued from previous page

Validate the Solution

Approximate the solution by multiplying 0.3 kg times 6 m/s. The magnitude
of the momentum should be slightly less than this product, which is

1.8 kg-m/s. The value, 1.67 kg-m/s, fits the approximation very well. The
direction of the momentum is always the same as the velocity of the object.

PRACTICE PROBLEM

1. Determine the momentum of the following

objects.

(a) 0.250 kg baseball travelling at 46.1 m/s[E]
(b) 7.5 x 10° kg train travelling west at

125 km/h

MATH LINK

In reality, Newton expressed his
second law using the calculus that
he invented. The procedure involves
allowing the time interval to become
smaller and smaller, until it becomes
“infinitesimally small.” The result
allows you to find the instantaneous
change in momentum at each instant
in time. The formulation of Newton’s
second law using calculus looks

like this. N
=_dp
F at

(c) 4.00 x 10° kg jet travelling south at
755 km/h

(d) electron (9.11 x 107*" kg) travelling north
at 6.45 x 10° m/s

Defining Impulse

Originally, Newton expressed his second law by stating that the
change in an object’s motion (rate of change of momentum) is pro-
portional to the force impressed on it. Expressed mathematically,
his second law can be written as follows.

—~  AD

F=r
To show that this expression is fundamentally equivalent to the
equation that you have learned in the past, take the following
steps.

= Write the change in momentum as
the difference of the final and initial
momenta. At

® Write momentum in terms of mass

and velocity. At

» If you assume that m is constant 7o m(v; —7v)
(that is, does not change for the At
duration of the time interval), you o mAV
can factor out the mass, m. At

m Recall that the definition of average e AV
acceleration is the rate of change of At

velocity, and substitute an @ into
the above expression. = ma

Knowing that F= AA—I; is a valid expression of Newton’s second

law, you can mathematically rearrange the expression to demon-
strate some very useful relationships involving momentum. When
you multiply both sides of the equation by the time interval, you
derive a new quantity, FAt, called “impulse.”

FAL = Ap
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Impulse is the product of the force exerted on an object and MISCONCEPTION

the time interval over which the force acts, and is often given the
symbol J . Impulse is a vector quantity, and the direction of the
impulse is the same as the direction of the force that causes it.

F = nia Is Correct!

When students read the sentence
“If you assume that mis constant
(that is, does not change for the

DEFINITION OF IMPULSE duration of the time intervall, you
can factor out the mass, m,” they
Impulse is the product of force and the time interval. sometimes think that the result
N of the derivation, F = ma, is
J = FAt wrong. However, this equation
is a special case of Newton’s
Quantity Symbol SI unit second law that is correct for
impulse T‘ N-s (newton seconds) all cases in which the mass, m,
N is constant. Since the mass is
force F N (newtons) constant in a very large number
time interval At s (seconds) of situations, it is acceptable to
consider F = ma as a valid
Unit Analysis statement of Newton's
(impulse) = (force)(time interval) =N -s ! second law.

Note: Impulse is equal to the change in momentum, which

has units of kng To show that these units are equivalent

to the N-s, express N in terms of the base units.
kg -Zm e kg-m
S S

N.S:

SAMPLE PROBLEM

Impulse on a Golf Ball

If a golf club exerts an average force of 5.25 x 10° N[W] on a golf
ball over a time interval of 5.45 x 10~ s, what is the impulse of
the interaction?

Conceptualize the Problem

m The golf club exerts an average force on the golf ball for a period
of time. The product of these quantities is defined as impulse.

m Impulse is a vector quantity.

m The direction of the impulse is the same as the direction of its
average force.

Identify the Goal

The impulse, T, of the interaction

Identify the Variables and Constants

Known Unknown
F =5.25 x 10° N[W] T

At=5.45 x107*s

continued

Chapter 4 Momentum and Impulse « MHR 141



continued from previous page

Develop a Strategy

Apply the equation that defines impulse.

When the golf club strikes the golf ball, the impulse to
drive the ball down the fairway is 2.86 N -s[W].

Validate the Solution

Round the values in the data to 5000 N[W] and 0.0006 s
and do mental multiplication. The product is 3 N-s[W].
The answer, 2.86 N -s[W], is very close to the estimate.

PRACTICE PROBLEMS

2. A sledgehammer strikes a spike with an
average force of 2125 N[down] over a time
interval of 0.0205 s. Calculate the impulse of

the interaction.

3. In a crash test, a car strikes a wall with an
average force of 1.23 x 10”7 N[S] over an
interval of 21.0 ms. Calculate the impulse.

5% 10°
4 %x10°

3x10°

Force (N)

2% 10°

1x10°

0.0 5.00 10.00

Time (ms)

CIMX®D You can find the

impulse of an interaction (area
under the curve) by using the
same mathematical methods that
you used to find work done from
a force-versus-position curve.

T=TAt

7= (5.25 x 10° N[W])(5.45 x 107 s)
7=2.8612 N-s[W]

7=2.86 N-s[W]

PROBLEM TIP

When you want to use mental
math to approximate an answer to
validate your calculations, you can
usually find the best approximation
by rounding one value up and

the other value down before
multiplying.

4. In a crash test similar to the one described in
problem 3, another car, with the same mass
and velocity as the first car, experiences an
impulse identical to the value you calculated
in problem 3. However, the second car was
designed to crumple more slowly than the
first. As a result, the duration of the interac-
tion was 57.1 ms. Determine the average
force exerted on the second car.

The Impulse-Momentum Theorem

You probably noticed that the sample and practice problems above
always referred to “average force” and not simply to “force.”
Average force must be used to calculate impulse in these short,
intense interactions, because the force changes continually
throughout the few milliseconds of contact of the two objects.
For example, when a golf club first contacts a golf ball, the force
is very small. Within milliseconds, the force is great enough to
deform the ball. The ball then begins to move and return to its
original shape and the force soon drops back to zero. Figure 4.2
shows how the force changes with time. You could find the
impulse by determining the area under the curve of force versus
time.

In many collisions, it is exceedingly difficult to make the
precise measurements of force and time that you need in order
to calculate the impulse. The relationship between impulse and
momentum provides an alternative approach to analyzing such
collisions, as well as other interactions. By analyzing the momen-
tum before and after an interaction between two objects, you can
determine the impulse.
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When you first rearranged the expression for Newton’s second
law, you focussed only on the concept of impulse, FAt. By taking
another look at the equation FAL = AP, you can see that impulse
is equal to the change in the momentum of an object. This rela-
tionship is called the impulse-momentum theorem and is often
expressed as shown in the box below.

7~
ELECTRONIC ,
LEARNING PARTNER
Refer to your Electronic Learning

Partner to enhance your under-
standing of momentum.

IMPULSE-MOMENTUM THEOREM

Impulse is the difference of the final momentum and initial
momentum of an object involved in an interaction.

—_
FAt = nmiv, — miv;y

Quantity Symbol S unit
force 7 N (newtons)
time interval At s (seconds)
mass m kg (kilograms)
initial velocity i % (metres per second)
final velocity ) % (metres per second)
Unit Analysis
(force)(time interval) = (mass)(velocity)
e Lo kgem = kg-m
N-s=kg s PR .

Note: Impulse is a vector quantity. The direction of the
impulse is the same as the direction of the change in the
momentum.

SAMPLE PROBLEM

Impulse and Average Force of a Tennis Ball

A student practises her tennis volleys by hitting a tennis ball against a wall.

(a) If the 0.060 kg ball travels 48 m/s before hitting the wall and then
bounces directly backward at 35 m/s, what is the impulse of the

interaction?

(b) If the duration of the interaction is 25 ms, what is the average force

exerted on the ball by the wall?

Conceptualize the Problem

m The mass and velocities before and after the interaction are known, so it
is possible to calculate the momentum before and after the interaction.

® Momentum is a vector quantity, so all calculations must include directions.

continued
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m Since the motion is all in one dimension, use plus and minus to denote
direction. Let the initial direction be the positive direction.

® You can find the impulse from the change in momentum.

Identify the Goal PROBLEM TIP

The impulse, T\, of the interaction Whenever you use a result from

The average force, T, on the tennis ball one step in a problem as data for
the next step, use the unrounded

Identify the Variables and Constants form of the data.

Known Unknown

m = 0.060 kg v, =48 2 T

At = 25 ms = 0.025 s ?2=_35S% F

Develop a Strategy

Use the impulse-momentum theorem to FAt = v, — mivy

calculate the impulse. N
P FAt = 0.060 kg (—35 %) — 0.060 kg (48 %)

Fat=-21 60 _ 5 gg K6
FAt = -4.98 kgT'm
FAt=-5.0 kg;m
(a) The impulse was 5.0 kg-m/s in a direction opposite to the initial
direction of the motion of the ball.
Use the definition of impulse to find the TAL = —4.98 kg-m
average force. s
ko -
7 498 ==
At
kg -m
?\= —4.98 .
0.025 s
F=-199.2 N
F=-20x10*N
(b) The average force of the wall on the tennis ball was 2.0 x 10 N in
the direction opposite to the initial direction of the ball.
Validate the Solution
Use an filternative math.ematical tecbnique FAt = m(¥, - 7))
for the impulse calculation by factoring N m m
out the mass, subtracting the velocities, FAt = 0.060 kg (_35? - 48?)

then multiplying to see if you get the

FAt = (0.060 kg) (—83 E)
same answer. S

FAt=-a.98 X8 o 50 kg-m
s s
. kg -m
Check the units for the second part of the & _kg-m _ -
problem. s 2
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PRACTICE PROBLEMS

5. The velocity of the serve of some profession-
al tennis players has been clocked at 43 m/s
horizontally. (Hint: Assume that any vertical
motion of the ball is negligible and consider
only the horizontal direction of the ball after

6. A 0.35 kg baseball is travelling at 46 m/s

toward the batter. After the batter hits the
ball, it is travelling 62 m/s in the opposite

direction. Calculate the impulse of the bat on
the ball.

it was struck by the racquet.) If the mass of
the ball was 0.060 kg, what was the impulse
of the racquet on the ball?

7. A student dropped a 1.5 kg book from a
height of 1.75 m. Determine the impulse that
the floor exerted on the book when the book
hit the floor.

Impulse and Auto Safety

One of the most practical and important applications of impulse is
in the design of automobiles and their safety equipment. When a
car hits another car or a solid wall, little can be done to reduce
the change in momentum. The mass of the car certainly does not
change, while the velocity changes to zero at the moment of
impact. Since you cannot reduce the change in momentum,

you cannot reduce the impulse. However, since impulse ( FAt)
depends on both force and time, engineers have found ways to
reduce the force exerted on car occupants by extending the time
interval of the interaction. Think about how the design of a car
can expand the duration of a crash.

In the early days of auto manufacturing, engineers and design-
ers thought that a very strong, solid car would be ideal. As the
number of cars on the road and the speed of the cars increased,
the number and seriousness of accident injuries made it clear that
the very sturdy cars were not protecting car occupants. By the late
1950s and early 1960s, engineers were designing cars with very
rigid passenger cells that would not collapse onto the passengers,
but with less rigid “crumple zones” in the front and rear, as shown
in Figure 4.3.

PROBEWARE

If your school has probeware
equipment, visit
www.mcgrawhill.ca/links/
physics12 and follow the links for
an in-depth activity on impulse
and momentum.

crumple zones crumple zones

T -

——

= )
ELECTRONIC @
| passenger cell | LEARNING PARTNER y 4

Use the crash test provided by
your Electronic Learning Partner to
enhance your understanding of
momentum.

m Although a car crash seems almost instantaneous, the time
taken for the front or rear of the car to “crumple” is great enough to signifi-
cantly reduce the average force of the impact and, therefore, the average
force on the passenger cell and the passengers.
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QUICK
LAB

Designing
Crumple Zones

How soft is too soft and how rigid is too rigid
for an effective vehicle crumple zone? In this
lab, you will design and test several materials to
determine the optimum conditions for passen-
gers in a vehicle.

Obtain a rigid (preferably metal) toy vehicle
to simulate the passenger cell of an automobile.
The vehicle must have an open space in the
centre for the “passenger.” Make a passenger out
of putty, modelling clay, or some material that
will easily show “injuries” in the form of dents
and deformations.

Design and build some type of device that
will propel your vehicle rapidly into a solid
wall (or stack of bricks) with nearly the same
speed in all trials. The wall must be solid, but
you will need to ensure that you do not damage
the wall. Perform several crash tests with your
vehicle and passenger and observe the types of
injuries and the extent of injuries caused by
the collision.

Select a variety of materials, from very soft to
very hard, from which to build crumple zones.
For example, you could use very soft foam rub-
ber for the soft material. The thickness of each
crumple zone must be approximately one third
the length of your vehicle.

One at a time, attach your various crumple
zones to your vehicle and test the effectiveness
of the material in reducing the severity of injury
to the passenger. Be sure that the vehicle travels
at the same speed with the crumple zone
attached as it did in the original crash tests
without a crumple zone. Also, be sure that the
materials you use to attach the crumple zones
do not influence the performance of the crumple
zones. Formulate an hypothesis about the rela-
tive effectiveness of each of the various crumple
zones that you designed.
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TARGET SKILLS
Hypothesizing

Performing and recording
Analyzing and interpreting
e Communicating results

Analyze and Conclude

1. How do the injuries to the passenger that
occurred with a very soft crumple zone
compare to the injuries in the original
crash tests?

2. How do the injuries to the passenger that
occurred with a very rigid crumple zone
compare to the injuries in the original
crash tests?

3. Describe the difference in the passenger’s
injuries between the original crash tests and
the test using the most effective crumple
zone material.

Apply and Extend

4. The optimal crumple zone for a very massive
car would be much more rigid than one for a
small, lightweight car. However, a crash
between a large and a small car would result
in much greater damage to the small car.
Write a paragraph responding to the question
“Should car manufacturers consider other
cars on the road when they design their
own cars, or should they ignore what might
happen to other manufacturers’ cars?”

5. Crumple zones are just one of many types of
safety systems designed for cars. Should the
government regulate the incorporation of
safety systems into cars? Give a rationale for
your answer.

6. Some safety systems are very costly. Who
should absorb the extra cost — the buyer,
the manufacturer, or the government? For
example, should the government provide a
tax break or some other monetary incentive
for manufacturers to build or consumers to
buy cars with highly effective safety systems?
Give a rationale for your answer.



When a rigid car hits a wall, a huge force stops the car almost
instantaneously. The car might even look as though it was only
slightly damaged. However, parts of the car, such as the steering
wheel, windshield, or dashboard, exert an equally large force on
the passengers, stopping them exceedingly rapidly and possibly

causing very serious injuries.

When a car with well-designed crumple zones hits a wall, the
force of the wall on the car causes the front of the car to collapse

WEB LINK

www.mcgrawhill.ca/links/
physics12

To learn more about the design and
testing of helmets and other safety
equipment in sports, go to the above
Internet site and click on Web Links.

over a slightly longer time interval than it would in the absence of
a crumple zone. Since FAt is constant and At is larger, the average
force, f, is smaller than it would be for a rigid car. Although
many other factors must be considered to reduce injury in colli-
sions, the presence of crumple zones has had a significant effect
in reducing the severity of injuries in automobile accidents.

The concept of increasing the duration of an impact applies to
many forms of safety equipment. For example, the linings of safety
helmets are designed to compress relatively slowly. If the lining
was extremely soft, it would compress so rapidly that the hard
outer layer of the helmet would impact on the head very quickly.
If the lining did not compress at all, it would collide with the
head over an extremely short time interval and cause serious
injury. Each type of sport helmet is designed to compress in a way
that compensates for the type of impacts expected in that sport.

Section Review

1. Define momentum qualitatively and
quantitatively.

2, What assumption do you have to make
in order to show that the two forms of

Newton’s second law [?= % and F = ma)
are equivalent?

3. @ Try to imagine a situation in which the
form F = mia would not apply, but the form

—\

= % could be used. Describe that situa-

tion. How could you test your prediction?

4. @ State the impulse-momentum theorem
and give one example of its use.

5. A bungee jumper jumps from a very high
tower with bungee cords attached to his
ankles. As he reaches the end of the bungee
cord, it begins to stretch. The cord stretches
for a relatively long period of time and then
it recoils, pulling him back up. After several

bounces, he dangles unhurt from the bungee
cord (if he carried out the jump with all of
the proper safety precautions). If he jumped
from the same point with an ordinary rope
attached to his ankles, he would be very
severely injured. Use the concept of impulse
to explain the difference in the results of a
jump using a proper bungee cord and a jump
using an ordinary rope.

UNIT PROJECT PREP

Can environmentally responsible transporta-
tion be the product of properly applying
scientific models and theories?

m |s the theory of momentum and impulse
currently used in vehicle design?

m Can you envision using momentum and
impulse theory to design more environmen-
tally responsible transportation systems?
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SECTION S—me—
EXPECTATIONS

* Define and describe the
concepts related to elastic
and inelastic collisions and
to open and closed energy
systems.

* Analyze situations involving
the conservation of momen-
tum and apply them
quantitatively.

* Investigate the law of con-
servation of momentum in
one and two dimensions.

KEY ™\

TERMS
* conservation of momentum
* system of particles
* internal force
* external force
° open system
* closed system
* isolated system

e recoil

Conservation of Momentum

When the cue ball hits the eight ball in billiards, the eight ball hits
the cue ball. When a rock hits the ground, the ground hits the
rock. In any collision, two objects exert forces on each other. You
can learn more about momentum by analyzing the motion of both
objects in a collision.

GCITER WS The game of billiards offers many excellent examples of
collisions.

Newton'’s Third Law and Momentum

Newton’s third law states that “For every action force on object B
due to object A, there is a reaction force, equal in magnitude but
opposite in direction, acting on object A due to object B.” Unlike
Newton’s second law, which focusses on the motion of one specif-
ic object, his third law deals with the interaction between two
objects. When you apply Newton’s third law to collisions, you
discover one of the most important laws of physics — the law of
conservation of momentum. The following steps, along with the
diagram in Figure 4.5, show you how to derive the law of conser-
vation of momentum by applying Newton’s third law to a collision
between two objects.

GEEXED Object A

exerts a force on object B,
causing a change in B’s
momentum. At the same
time, object B exerts a
force equal in size and
opposite in direction on
object A, changing A's
momentum.
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m Write the impulse-momentum
theorem for each of two objects, A N N IR
and B, that collide with each other. FpAt = mpVp; — mpVe:

— —_\ —_\
FAAt = maVA, — MaAVAq

m Apply Newton’s third law to the
forces that A and B exert on each

other. T'\A = —fB
m The duration of the collision is the
same for both objects. Therefore,
you can multiply both sides of the
equation above by At. FaAt = —FpAt
m Substitute the expressions for
change in momentum in the first
step into the equation in the third
step and then simplify. MAT Az — MAV A1 = —(MpTE2 — MEVEL)

m Algebraically rearrange the last
equation so that (1) the terms rep-
resenting the before-collision con-
ditions precede the equals sign and
(2) the terms for the after-collision
conditions follow the equals sign. MAVA1 + MEVE1 = MAVA2 + MEVE2

—_ —_ —_ N
MAVA2 — IMAVA1 = —INBVB2 + IIIBVB1

The last equation is a mathematical expression of the law of
conservation of momentum, which states that the total momentum
of two objects before a collision is the same as the total momen-
tum of the same two objects after they collide.

LAW OF CONSERVATION OF MOMENTUM

The sum of the momenta of two objects before collision is
equal to the sum of their momenta after they collide.

N N — =0
IMAVA + MBVE = NIAV A + ITIBV B

Quantity Symbol S| unit

mass of object A ma kg (kilograms)

mass of object B mg kg (kilograms)

velocity of object A mm  PHYSICS FILE o
before the collision A m (metres per second) When working with collisions,

. . S instead of using subscripts such
velocity of object B N m as “2,” physicists often use
before the collision VB " (metres per second) a superscript symbol called a
velocity of object A “prime,” which looks like an

.. — m apostrophe, to represent the
after the collision VA s (metres per second) variables aftera collision. The
velocity of object B variable is said to be “primed.”
after the collision T4 M (metres per second) Look for this notation in the box

S on the left.
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MISCONCEPTION

A Closed System Is Not Isolated

Many people confuse the terms
“closed” and “isolated” as they
apply to systems. Although it
might sound as though closed
systems would not exchange
anything with their surroundings,
they do allow energy to enter or
leave. Only isolated systems
prevent the exchange of energy
with the surroundings.

COURSE CHALLENGE

Momentum

A moving planet, bowling ball, or
an electron share the property
of momentum. Learn more about
momentum conservation as it
relates to your Course Challenge
on page 603 of this text.

The law of conservation of momentum can be broadened to
more than two objects by defining a system of particles. Any
group of objects can be defined as a system of particles. Once a
system is defined, forces are classified as internal or external
forces. An internal force is any force exerted on any object in the
system due to another object in the system. An external force is
any force exerted by an object that is not part of the system on an
object within the system.

Scientists classify systems according to their interaction with
their surroundings, as illustrated in Figure 4.6. An open system
can exchange both matter and energy with its surroundings.
Matter does not enter or leave a closed system, but energy can
enter or leave. Neither matter nor energy can enter or leave an

isolated system.
«
closed system

open system

isolated system

An open pot of potatoes boiling on the stove represents an
open system, because heat is entering the pot and water vapour is leaving
the system. A pressure cooker prevents any matter from escaping but heat
is entering, so the pressure cooker represents a closed system. If the pot is
placed inside a perfect insulator, neither heat nor water can enter or leave
the system, making it an isolated system.

A force can do work on a closed system, thus increasing the
energy of the system. Clearly, if no external forces can act on a
system, it is isolated. To demonstrate that the momentum of an
isolated system is conserved, start with the impulse-momentum
theorem, where ﬁsys represents the total momentum of all of the
objects within the system.

®m An impulse on a system due to an
external force causes a change in the

momentum of the system. FoAt = Aﬁsys

m If a system is isolated, the net

external force acting on the system N
(0.0 N) At = |AP,|

is zero.
m If the impulse is zero, the change in Ko m
momentum must be zero. IAﬁ;yS| =0.0 gs
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The last expression is an alternative form of the equation for the
conservation of momentum. The equation states that the change in
momentum of an isolated system is zero. The particles or objects
within the system might interact with each other and exchange
momentum, but the total momentum of the isolated system does
not change.

In reality, systems are rarely perfectly isolated. In nearly all real
situations, immediately after a collision, frictional forces and inter-
actions with other objects change the momentum of the objects
involved in the collision. Therefore, it might appear that the law
of conservation of momentum is not very useful. However, the law A moving car and

always applies to a system from the instant before to the instant its occupants can be defined as
after a collision. If you know the conditions just before a collision, being a system. The children in
you can always use conservation of momentum to determine the the car might be exerting forces

on each other or on objects that
they are handling. Although they
are exchanging momentum
between themselves and the
objects, these changes have no

Collisions in One Dimension offont o the total memomtim

Since momentum is a vector quantity, both the magnitude and the of the system.
direction of the momentum must be conserved. Therefore, momen-

tum is conserved in each dimension, independently. For complex

situations, it is often convenient to separate the momentum into

its components and work with each dimension separately. Then

you can combine the results and find the resultant momentum of

the objects in question. Solving problems that involve only one

dimension is good practice for tackling more complex problems.

momentum and, thus, velocity of an object at the instant after a
collision. Often, these values are all that you need to know.

SAMPLE PROBLEM

Analyzing a Collision between Boxcars

A 1.75 x 10* kg boxcar is rolling down
a track toward a stationary boxcar that
has a mass of 2.00 x 10* kg. Just before
the collision, the first boxcar is moving
east at 5.45 m/s. When the boxcars
collide, they lock together and continue
down the track. What is the velocity of
the two boxcars immediately after the
collision?

continued
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continued from previous page

Conceptualize the Problem

m Make a sketch of the momentum vectors

before after
representing conditions just before and just
after the collision. .
m Before the collision, only one boxcar (A) is
moving and therefore has momentum. N m N m IR
. L. VA=5.4:5 — VB =0.00 — VABZ?
m At the instant of the collision, momentum s s
8 G my=1.75x10*kg mp=2.00x 10* kg

m After the collision, the two boxcars (A and B)
move as one mass, with the same velocity.

Identify the Goal

The velocity, Vg, of the combined boxcars immediately after the collision

Identify the Variables and Constants

Known Implied Unknown
my = 1.75 x 10* kg V5 = 0.00 % Ths

mpg = 2.00 x 10* kg
Va = 5.45 %[E]

Develop a Strategy

Apply the law of conservation of MAVA + MpVE = MAV A + MV §
momentum.
After the collision, the two masses MAVA + mpvy = (mMa + Mp) 7V AR

act as one, with one velocity. Rewrite
the equation to show this condition.

Solve for VAg. —, _ MAVA + mpVp
(ma + mg)
Substitute values and solve. ., (1.75 x 10* kg)(5.45 2[E]) + (2.00 x 10* kg)(0.00 =)
VAB =

(1.75 x 10* kg + 2.00 x 10* kg)

o, _ 95375 x 10 X2 [E]
ABT 375 x 107 kg

Vip = 2.543 %[E]

Vhp = 2.54 %[E]
The locked boxcars were rolling east down the track at 2.54 m/s.

Validate the Solution

The combined mass of the boxcars was nearly double the mass of the boxcar
that was moving before the collision. Since the exponents of mass and velocity
are always one, making the relationships linear, you would expect that the
velocity of the combined boxcars would be just under half of the velocity of the
single boxcar before the collision. Half of 5.45 m/s is approximately 2.7 m/s.
The calculated value of 2.54 m/s is very close to what you would expect.
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PRACTICE PROBLEMS

8. Claude and Heather are practising pairs
skating for a competition. Heather (47 kg) is
skating with a velocity of 2.2 m/s. Claude
(72 kg) is directly behind her, skating with a
velocity of 3.1 m/s. When he reaches her, he
holds her waist and they skate together. At
the instant after he takes hold of her waist,
what is their velocity?

9. Two amusement park “wrecker cars” are

heading directly toward each other. The com-
bined mass of car A plus driver is 375 kg and
it is moving with a velocity of +1.8 m/s. The
combined mass of car B plus driver is 422 kg
and it is moving with a velocity of —1.4 m/s.
When they collide, they attach and continue
moving along the same straight line. What is
their velocity immediately after they collide?

Recoil

Imagine yourself in the situation illustrated in Figure 4.8. You are
in a small canoe with a friend and you decide to change places.
Assume that the friction between the canoe and the water is
negligible. While the canoe is not moving in the water, you very
carefully stand up and start to take a step. You suddenly have the
sense that the boat is moving under your feet. Why?

et

If you start to step forward in a canoe, the canoe recoils under
your feet.

When you stepped forward, your foot pushed against the
bottom of the canoe and you started to move. You gained momen-
tum due to your velocity. Momentum of the system — you, your
friend, and the canoe — must be conserved, so the canoe started to
move in the opposite direction. The interaction that occurs when
two stationary objects push against each other and then move
apart is called recoil. You can use the equation for conservation
of momentum to solve recoil problems, as the following problem
illustrates.
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SAMPLE PROBLEM

Recoil of a Canoe

For the case described in the text, find the velocity of the canoe
and your friend at the instant that you start to take a step, if your
velocity is 0.75 m/s[forward]. Assume that your mass is 65 kg
and the combined mass of the canoe and your friend is 115 kg.

Conceptualize the Problem

m Make a simple sketch of the conditions before and after you took a step.

before after
o0 - o>
mp =115 kg mp =65 kg mp=115kg mp=65kg
V5 = 0.00 % ?Azo.oog V=1 V4 =0.75 %

m The canoe was not moving when you started to take a step.

® You gained momentum when you started to move. Label yourself “A”
and consider the direction of your motion to be positive.

m The canoe had to move in a negative direction in order to conserve
momentum. Label the canoe and your friend “B.”

Identify the Goal
The initial velocity, 7§ of the canoe and your friend

Identify the Variables and Constants

Known Implied Unknown

—, m N m N
ma = 65 kg VA=0.75? VA=0.00? Vh
mg =115 kg Vg = 0.00 %

Develop a Strategy

Apply conservation of momentum. MAVA + MEVE = MAV A + MV §
Velocities before the interaction were zero; 0.0 kg-m _ LT 4 e
: = IMAV A BVB

therefore, the total momentum before the s
interaction was zero. Set these values MAV A = —INMBV
equal to zero and solve for the velocity Sy __m AT A
of B after the reaction. T mg
Substitute values and solve. —, (65 kg)(0.75 )

\74 =9

115 kg

V4 = —0.4239 %
Vi = -0.42 %

The velocity of the canoe and your friend, immediately after you started
moving, was —0.42 m/s.
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Validate the Solution

Since the mass of the canoe plus your friend was larger than your mass,
you would expect that the magnitude of their velocity would be smaller,
which it was. Also, the direction of the velocity of the canoe plus your
friend must be negative, that is, in a direction opposite to your direction.

Again, it was.

PRACTICE PROBLEMS

10. A 1385 kg cannon containing a 58.5 kg
cannon ball is on wheels. The cannon fires

the cannon ball, giving it a velocity of
49.8 m/s north. What is the initial velocity
of the cannon the instant after it fires the
cannon ball?

Collisions in Two Dimensions

Very few collisions are confined to one dimen-

sion, as anyone who has played billiards knows.
Nevertheless, you can work in one dimension at
a time, because momentum is conserved in each
dimension independently. For example, consider

the car crash illustrated in Figure 4.9. Car A is
heading north and car B is heading east when
they collide at the intersection. The cars lock

together and move off at an angle. You can find
the total momentum of the entangled cars because

the component of the momentum to the north

must be the same as car A’s original momentum.
The eastward component of the momentum must
be the same as car B’s original momentum. You

can use the Pythagorean theorem to find the

resultant momentum, as shown in the following

problems.

1.

12.

While you are wearing in-line skates, you are
standing still and holding a 1.7 kg rock.
Assume that your mass is 57 kg. If you throw
the rock directly west with a velocity of

3.8 m/s, what will be your recoil velocity?

The mass of a uranium-238 atom is

3.95 x 107*° kg. A stationary uranium atom
emits an alpha particle with a mass of

6.64 x 10727 kg. If the alpha particle has a
velocity of 1.42 x 10* m/s, what is the recoil
velocity of the uranium atom?

v
VAB
g
ma
i 6
LI LA x

mp T—\A
r
‘-
E
|-
ma

ST RN Momentum is conserved independently
in both the north-south dimension and the east-west
dimension.
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SAMPLE PROBLEMS

Applying Conservation of Momentum in Two Dimensions

1. A billiard ball of mass 0.155 kg is rolling directly
away from you at 3.5 m/s. It collides with a stationary
golf ball of mass 0.052 kg. The billiard ball rolls off
at an angle of 15° clockwise from its original direction
with a velocity of 3.1 m/s. What is the velocity of the
golf ball?

Conceptualize the Problem

m Sketch the vectors representing the momentum of the
billiard ball and the golf ball immediately before and
just after the collision. It is always helpful to superim-
pose an x—y-coordinate system on the vectors so that
the origin is at the point of the contact of the two balls.
For calculations, use the angles that the vectors make
with the x-axis.

® Momentum is conserved in the x and y directions
independently.

m The total momentum of the system (billiard ball and
golf ball) before the collision is carried by the billiard
ball and is all in the positive y direction.

m After the collision, both balls have momentum in both
the y direction and the x direction.

m Since the momentum in the x direction was zero before
the collision, it must be zero after the collision.
Therefore, the x-components of the momentum of
the two balls after the collision must be equal in
magnitude and opposite in direction.

m The sum of the y-components of the two balls after the
collision must equal the momentum of the billiard ball
before the collision.

m Use subscript “b” for the billiard ball and subscript “g”
for the golf ball.

Identify the Goal
The velocity, V\é, of the golf ball after the collision

Identify the Variables and Constants

Known Implied Unknown
my=0.155kg v, =3.5 %[forward] Vg = 0.00 % v

mg = 0.052 kg VY = 3.1 %[15“ clockwise from original]
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—, m
15 Vp = 3.1 ?
:
_\ 1
v =1 :
:
1 1
1 75“|
) |
mg=0.052 kg
g N
vy = 3.5 %
my, =0.155 kg

PROBLEM TIP

When you are working with many
bits of data in one problem, it is
often helpful to organize the

data in a table such as the one
shown here.

oot

before AN




Develop a Strategy

Write the expression for the conserva-
tion of momentum in the x direction.

Note that the x-component of the
momentum of both balls was zero
before the collision. Then solve for the
x-component of the velocity of the golf
ball after the collision.

Substitute values and solve.

Carry out the same procedure for the
y-components.

Use the Pythagorean theorem to find
the magnitude of the resultant velocity
vector of the golf ball.

Use the tangent function to find the
direction of the velocity vector.

Since the x-component is negative
and the y-component is positive, the
vector is in the second quadrant. Use
positive values to find the magnitude
of the angle from the x-axis.

Since the x-component is negative and
the y-component is positive, the
resultant vector lies in the second
quadrant and the angle is measured
clockwise from the x-axis.

MpVhy + MgVgx = MpVhy + MgVgy

ke.-m
0.0 gT = mpViy + MgVgx
MgVgy = —MpVix
v = _ Vi
gx
myg

, _ (0.155 kg)(3.1 % cos 75°)

Vex = 0.052 kg
Vix = —2.3916 %

MpVhy + MgVey = MpVhy + MgVgy
Teze
mpVy + 0.0 % = mpVhy + MgVgy
’r ’
MgVgy = MpVhy — MbVhy

T = My Vhy — meI;y

gy — mg
, _ (0.155 kg)(3.5 ) - (0.155 kg)(3.1 % sin 75°)
Vey = 0.052 kg

iy = 1.507 %

2 2 2
[Vel® = vis + vig

2 2
wy? = (—2.3916 %) + (1.507 %)

2 2

[Vel? = 5.7198 % +2.271 %
2
[v4l? = 7.9908 %
[V =2.8268 %
, m
I?g| = 2.8 ?
V,
tan 6 = % y
e , m — m
0 1.507 % ng = 1.507 ? 15° Vp = 3.1 ?
tan = ——5— -,
2.3916 = vi=2.8
0 = tan"' 0.6301 :
_ o 1
0= 32.022 L s B}
0=32 !
’o_ m
Vix = ~2.3916 5 a5
S
continued P
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continued from previous page

The velocity of the golf ball after the collision is 2.8 m/s at 32°
clockwise from the negative x-axis. (At more advanced levels,
you will be expected to report angles counterclockwise from the
positive x-axis. In this case, the angle would be 180° — 32° = 148°
counterclockwise from the x-axis.)

Validate the Solution

Since all of the momentum before the collision was in the positive y
direction, the y-component of momentum after the collision had to be in
the positive y direction, which it was. Since there was no momentum in
the x direction before the collision, the x-components of the momentum
after the collision had to be in opposite directions, which they were.

2. The police are investigating an accident similar to the one pictured in
Figure 4.9. Using data tables, they have determined that the mass
of car A is 2275 kg and the mass of car B is 1525 kg. From the skid
marks and data for the friction between tires and concrete, the police
determined that the cars, when they were locked together, had a veloc-
ity of 31 km/h at an angle of 43° north of the eastbound street. If the
speed limit was 35 km/h on both streets, should one or both cars be
ticketed for speeding? Which car had the right of way at the intersec-
tion? Was one driver or were both drivers at fault for the accident?

Conceptualize the Problem Fia o 31 kTm[E 43N]

m Sketch a vector diagram of the momentum before and A
after the collision. !
m Consider the two cars to be a “system.” Before the vy = 1Val
collision, the north component of the momentum of the _ \43 '
system was carried by car A and the east component mp=1525kg | Vx= Vsl
was carried by car B. Ty = ? my = 2275 kg
® Momentum is conserved in the north-south direction Va="?
and in the east-west direction independently.

m After the collision, the cars form one mass with all of
the momentum. PROBLEM TIP

In this problem, you have two

Identify the Goal unknown values, the velocity of car

The velocities, V4 and 75, of the two cars before the A and the velocity of car B before
collision (in order to determine who should be ticketed) the collision. To find two unknown
values, you need at least two
Identify the Variables and Constants equations. Since momentum is a
vector quantity, conservation of
Known K Unknown momentum provides three equa-
mp = 2275 kg Vag = 31 Tm[E43°N] Va tions, one for each dimension.
mp = 1525 kg B Remember, use as many dimen-

sions as you have unknowns and
you will be able to solve momen-
tum problems with as many as
three unknowns.
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Develop a Strategy

Write the equation for conservation of
momentum.

Work with the north-south direction only.
Modify the equation to show that car B
was moving directly east before the crash;
its north-south momentum was zero. After
the crash, the cars were combined.

Solve the equation for the original velocity
of car A.

Substitute the values and solve.

Carry out the same procedure for the
east-west direction of the momentum.

N N —, —,
IMAVA + IBVE = NIAV A + ITIBV B

mpVA[N] = (ma + mp)vi/p[N]

(Note that vector notations are not included,
because you are considering only the north-south
component of the velocities.)

vaIN] = (ma + mp)vap(N]
mpa

(2275 kg + 1525 kg)(31 S sin43°)

ANl = 2275 kg
va[N] = (3800 kg)(Szlzl;—lTS)l(((;.ﬁm 998 4)
vaIN] = 35.3 K2

Va =35 kTm[N]

(Note that the north component of car A’s velocity
before the crash was the total velocity.)

mgvg[E] = (ma + mp)vaglE]

valE] = (mp + mp)vap[E]

mg
k_m o
vslE] = (2275 kg + 1525 kg)(31 7* cos 43°)
1525 kg
vs[E] = 56.49 kTm
Vi = 56/ L[]

h

Car A was travelling 35 km/h north and car B was travelling 56 km/h
east at the instant before the crash. Therefore, car B was speeding and
the driver should be ticketed. As well, the driver on the right has the
right of way, giving car A the right of way at the intersection. The driver
of car B was at fault for the collision. Nevertheless, the driver of car A
would have benefited if he or she could have prevented the crash.

Validate the Solution

The angle at which the locked cars moved after the crash was very
close to 45°, which means that the momentum of the two cars before
the crash was nearly the same. Car B had a smaller mass than car A, so
car B must have moving at a greater speed (magnitude of the velocity),
which agrees with the results. Also, the units all cancelled to give

km/h, which is correct for velocity.

continued
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continued from previous page

PRACTICE PROBLEMS

13.

14.

A 0.150 kg billiard ball (A) is rolling toward
a stationary billiard ball (B) at 10.0 m/s. After
the collision, ball A rolls off at 7.7 m/s at an
angle of 40.0° clockwise from its original
direction. What is the speed and direction

of ball B after the collision?

A bowling ball with a mass of 6.00 kg rolls
with a velocity of 1.20 m/s toward a single
standing bowling pin that has a mass of
0.220 kg. When the ball strikes the bowling
pin, the pin flies off at an angle of 70.0°

15.

counterclockwise from the original direction
of the ball, with a velocity of 3.60 m/s. What
was the velocity of the bowling ball after it
hit the pin?

Car A (1750 kg) is travelling due south and
car B (1450 kg) is travelling due east. They
reach the same intersection at the same time
and collide. The cars lock together and move
off at 35.8 km/h[E31.6°S]. What was the
velocity of each car before they collided?

Angular Momentum

Why is a bicycle easy to balance when you are riding, but falls

WEB LINK

www.mcgrawhill.ca/links/
physics12

For information on current accident-
investigation research topics and
technological developments related to
vehicle safety, go to the above Internet
site and click on Web Links.

over when you come to a stop? Why does a toy gyroscope, like the
one in Figure 4.10, balance on a pointed pedestal when it is spin-
ning, but falls off the pedestal when it stops spinning? The answer
lies in the conservation of angular momentum.

GCINEY RGN When a
spinning object begins
to fall, its angular
momentum resists the
direction of the fall.

When an object is moving on a curved path or rotating, it has
angular momentum. Angular momentum and linear (or transla-
tional) momentum are similar in that they are both dependent on
an object’s mass and velocity. Analyze Figure 4.11 to find the third
quantity that affects angular momentum.

—__

GITXED 4s the

distance from the centre
of rotation increases,

a unit of mass must
move faster in order

to maintain a constant
rate of rotation.
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PHYSICS & TECHNOLOGY

The Physics of a Car Crash

Skid marks, broken glass, mangled pieces of

metal — these telltale signs of an automobile crash
are stark reminders of the dangers of road travel.
For accident investigators, sometimes referred to
as “crash analysts” or “reconstructionists,” these
remnants of a collision can also provide valuable
clues that will help in under-standing the cause and
the nature of an accident.

The reasons for studying a car crash can vary,
depending on who is conducting the investigation.
Police officers might be interested in determining
how fast a vehicle was being driven prior to a
collision in order to know whether to lay criminal
charges. Insurance companies might require proof
that the occupants of a car were wearing seat belts
to make decisions on insurance claims.

Government agencies, meanwhile, conduct
large-scale research projects (based on both real-
world accidents and staged collisions) that guide in
the establishment of safety standards and regula-
tions for the manufacture of automobiles.

Regardless of the purpose, however, most car
crash investigations share some common ele-
ments. First, they typically draw on the same
fundamental concepts and principles of physics
that you are learning in this chapter — especially
those related to energy and momentum. As well,
these investigations often incorporate an array of
technological resources to help with both the data-
collection and data-analysis phases of the process.
Investigators make use of a variety of data-collec-
tion tools, ranging from everyday hardware, such
as a measuring tape and a camera, to more
sophisticated instruments, such as brake-activated
chalk guns and laser-operated surveyors’ transits.

Customized computer programs, designed with
algorithms based on Newtonian mechanics, are
used to analyze data collected from the scene

\_

TARGET SKILLS

e Predicting

* Hypothesizing

¢ Communicating results
® Conducting research

of the accident.
The length and
direction of skid
marks, “crush”
measurements
and stiffness
coefficients associated with the damaged vehicles,
coefficients of friction specific to the tires and road
surface — known or estimated values of these

and other relevant parameters are fed into the
computer programs. The programs then generate
estimates of important variables, such as the
speed at the time of impact or the change in speed
over the duration of a collision. Quantitative and
qualitative data obtained from car accidents is also
often coded and added to large computerized data-
bases that can be accessed for future investiga-
tions and for research purposes.

Recently, some automobile manufacturers have
started installing event data recorders (EDRs) in the
vehicles they build. Like the cockpit data recorder
or “black box” commonly used in the aviation
industry, EDRs in road vehicles record valuable
data such as vehicle speed, engine revolutions
per minute, brake-switch status, throttle position,
and seat-belt use. This information is processed by
a vehicle’s central computer system to monitor and
regulate the operation of such safety components
as air bags and antilock brakes. It also provides
accident investigators with an additional source of
data about the conditions that existed immediately
before and during a collision. As a result, EDRs
promise to provide significant enhancement to the
field of automobile accident investigation.

Analyze
1. Why is it important for car accident investiga-
tors to take into account the weather conditions
that existed at the time of a car crash? List
some specific weather conditions and predict
the effects that they might have on the calcula-
tions carried out as part of an investigation.

2. Explore the Internet to learn about current
research topics and technological develop-
ments related to vehicle safety. Prepare a
one-page report on your research results.
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g PHYSICS FILE oy

Although Kepler knew nothing
about angular momentum, his
second law, the law of areas,

is an excellent example of the
conservation of angular momen-
tum. With somewhat complex
mathematics, it is possible to
write the law of conservation of
angular momentum for a planet
in orbit and show that it is equiva-
lent to Kepler's second law.

Picture the movement of a unit of mass in each of the two
wheels illustrated in Figure 4.11. If the two wheels are rotating
at the same rate, each unit of mass in the large wheel is moving
faster than a unit of mass in the small wheel. Thus, r, the distance
of a mass from the centre of rotation, affects the angular momen-
tum. The magnitude of the angular momentum, L, of a particle that
is moving in a circle is equal to the product of its mass, velocity,
and distance from the centre of rotation, or L = mvr. You will not
pursue a quantitative study of angular momentum any further in
this course, but it is essential to be aware of the law of conserva-
tion of angular momentum in order to have a complete picture of
the important conservation laws of physics. Similar to conserva-
tion of linear momentum, the angular momentum of an isolated
system is conserved.

m Section Review

. @ Explain qualitatively how Newton’s third DA

law is related to the law of conservation of

momentum.

. What is the difference between an inter-
nal force and an external force?

. How does a closed system differ from

an isolated system?

. Under what circumstances is the change

_
PB
—_

Pa Py

‘ﬁ;\\ /ﬁé'
Da Dy

—

in momentum of a system equal to zero? pa

. Define and give an example of recoil.

. @ The vectors in the following diagrams

ﬁ\A / T)\B
Db

represent the momentum of objects before

and after a collision. Which of the diagrams
(there might be more than one) does not
represent real collisions? Explain your

reasoning.

7. @ Some collision problems have two
unknown variables, such as the velocities of
two cars before a collision. Explain how it is
possible to find two unknowns by using only
the law of conservation of momentum.

8. Two cars of identical mass are approach-
ing the same intersection, one from the south
and one from the west. They reach the inter-
section at the same time and collide. The
cars lock together and move away at an angle
of 22° counterclockwise from the road, head-
ing east. Which car was travelling faster than
the other before the collision? Explain your
reasoning.
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Elastic and
Inelastic Collisions

Momentum is conserved in the two collisions pictured in Figure SECTION \
4.12, but the two cases are quite different. When the metal spheres EXPECTATIONS
in the Newton’s cradle collided, both momentum and kinetic * Distinguish between elastic and
energy were conserved. When the cars in the photograph crashed, inelastic collisions.

kinetic energy was not conserved. This feature divides all colli-
sions into two classes. Collisions in which kinetic energy is

: . R ) concepts related to momentum,
conserved are said to be elastic. When kinetic energy is not energy, and elastic and
conserved, the collisions are inelastic. inelastic collisions.

e Define and describe the

e Investigate the laws of conser-
vation of momentum and of
energy in one and two
dimensions.

KEY

TERMS
e glastic

e inelastic

How do the collisions
pictured here differ
from each other?

Analyzing Collisions

You can determine whether a collision is elastic or inelastic by
calculating both the momentum and the kinetic energy before and
after the collision. Since momentum is always conserved at the
instant of the collision, you can use the law of conservation of
momentum to find unknown values for velocity. Then, use the
known and calculated values for velocity to calculate the total
kinetic energy before and after the collision. You will probably

recall that the equation for kinetic energy is E = %mvz.
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INVESTIGATION 4-B

f Examining Collisions

You have learned the definition of elastic and
inelastic collisions, but are there characteristics
that allow you to predict whether a collision
will be elastic? In this investigation, you will
observe and analyze several collisions and draw
conclusions regarding whether a type of colli-
sion will be elastic or inelastic.

Problem

What are the characteristics of elastic and
inelastic collisions?

Equipment

m air track (with source of compressed air)

m 2 gliders (identical, either middle- or
large-sized)

m 2 photogate timers

m |aboratory balance

m 4 glider bumper springs

m 2 Velcro™ bumpers (or a needle and a piece
of wax)

m 2 velocity flags (10 cm) (or file cards cutto a
10 cm length)

m modelling clay

Procedure

1. Set up the air track and adjust the levelling
screw to ensure that the track is horizontal.
You can test whether the track is level by
turning on the air pressure and placing a
glider on the track. Hold the glider still and
then release it. If the track is level, the glider
will remain in place. If the glider gradually
starts moving, the air track is not level.

2. Attach a velocity flag (or 10 cm card) and
two bumper springs to each glider. If only
one bumper spring is attached, the glider
might not be properly balanced.

3. Position the photogates about one fourth the
length of the track from each end, as shown
in the diagram. Adjust the height of the
photogates so that the velocity flags will pass
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¢ Predicting
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through the gates smoothly but will trigger
the gates.
photogate

ﬂ/ timers N\

~ air pump

4. Label one glider “A” and the other glider
“B.” Use the laboratory balance to determine
accurately the mass of each glider.

5. With the air flowing, place glider A on the
left end of the air track and glider B in the
centre.

6. Perform a test run by pushing glider A so
that it collides with glider B. Ensure that the
photogates are placed properly so that the
flags are not inside the gates when the gliders
are in contact. Adjust the positions of the
photogates, if necessary.

7. The first set of trials will be like the test run,
with glider A on the left end of the track and
glider B in the centre. Turn on the photogates
and press the reset button. Push glider A and
allow it to collide with glider B. Allow both
gliders to pass through a photogate after the
collision, then catch them before they
bounce back and pass through a photogate
again. Record the data in a table similar to
the one shown on the next page. Since all of
the motion will be in one dimension, only
positive and negative signs will be needed to
indicate direction. Vector notations will not
be necessary.

The displacement, Ad, is the distance that
the gliders travelled while passing through
the photogates. This displacement is the
length of the flag. Time At; is the time that
a glider spent in the photogate before the



8.

10.

collision, while At; is the time the glider
took to pass through the photogate after the
collision. Calculate velocity, v, from the dis-
placement and the time interval. Be sure to
include positive and negative signs.

Glider A (mass =?)

Ad | g |

Glider B (mass =?)

Increase the mass of glider B by attaching
some modelling clay to it. Be sure that the
clay is evenly distributed along the glider.

If the glider tips to the side or to the front

or back, the motion will not be smooth.
Determine the mass of glider B. Repeat step 7
for the two gliders, which are now of
unequal mass.

. Exchange the gliders and their labels. That is,

the glider with the extra mass is on the left
and becomes glider “A.” The glider with no
extra mass should be in the centre and
labelled “B.” Repeat step 7 for the new
arrangement of gliders.

Remove the clay from the glider. Place one
glider at each end of the track. Practise start-
ing both gliders at the same time, so that
they collide near the middle of the track.
The collision must not take place while
either glider is in a photogate. When you
have demonstrated that you can carry out

1.

12.

the collision correctly, perform three trials
and record the data in a table similar to the
ones shown here. This table will need two
additional columns — one for the initial time
for glider B and a second for the initial
velocity of glider B.

Remove the bumper springs from one end of
each glider and attach the Velcro™ bumpers.
(If you do not have Velcro™ bumpers, you
can attach a large needle to one glider and a
piece of wax to the other. Test to ensure that
the needle will hit the wax when the gliders
collide.)

With the Velcro™ bumpers attached, perform
three sets of trials similar to those in steps 7,
8, and 9. You might need to perform trial
runs and adjust the position of the photo-
gates so that both gliders can pass through
the photogate before reaching the right-hand
end of the air track. Record the data in tables
similar to those you used previously.

Analyze and Conclude

1.

For each glider in each trial, calculate the
initial momentum (before the collision) and
the final momentum (after the collision).

. For each trial, calculate the total momentum

of both gliders before the collision and the
total momentum of both after the collision.

. For each trial, compare the momentum

before and after the collision. Describe how
well the collisions demonstrated conserva-
tion of momentum.

. In any case for which momentum did not

seem to be conserved, provide possible
explanations for errors.

. Calculate the kinetic energy of each glider in

each trial. Then calculate the total kinetic
energy of both gliders before and after the
collision for each trial.

continued
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continued from previous page

6. Compare the kinetic energies before and after
the collisions and decide which collisions
were elastic and which were inelastic. Due
to measurement errors, do not expect the
kinetic energies to be identical before and
after a collision. Decide if the values appear
to be close enough that the differences could
be attributed to measurement errors.

7. Examine the nature of the collisions that you
considered to be elastic and those that you
classed as inelastic. Look for a trend that
would permit you to predict whether a colli-
sion would be elastic or inelastic. Discuss
your conclusions with the rest of class. How
well did your conclusions agree with those
of other class members?

Apply and Extend

8. If you have access to an air table, a strobe
light, and a Polaroid™ camera, you can
observe and collect data for collisions in two
dimensions. (If you do not have the equip-
ment, your teacher might be able to provide
you with simulated photographs.) Using the
laboratory balance, determine the mass of
each of two pucks. If the pucks have nearly
the same mass, add some mass to one of
them, using modelling clay.

People with certain medical conditions,
such as epilepsy, can experience seizures if
exposed to strobe lighting.

9. With the air pressure on, place a puck in the
centre of the table. Direct the strobe light
onto the table and set up the camera so that
it is above the table and pointing down. Turn
on the strobe light and set the camera for a
long exposure time. At the moment that one
partner pushes the other puck toward the
stationary puck in the centre of the table, the
other partner should take a picture. Take
enough photographs to provide each pair of
partners with a photograph.
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10.

1.

12.

13.

14.

15.

16.

Determine the scale of the photograph by
determining the ratio of the size of the air
table to its apparent size in the photograph.
Measure two or three distances before and
after the collision. Correct the distances by
using the scale that you determined. Measure
the angles that the pucks took after the colli-
sion in relation to the original direction.

Using the rate at which the strobe light was
flashing, determine the time between flashes.
Calculate the velocity, momentum, and
kinetic energy of each puck before and after
the collision.

Compare the total momentum before and
after the collision and comment on how well
the motion seemed to obey the law of conser-
vation of momentum.

Compare the total kinetic energies before
and after the collision. Decide whether the
collisions were elastic or nearly so.

Compare your results from your one-
dimensional data and two-dimensional data,
and comment on any differences that you
noticed.

Review the results you obtained in
Investigation 4-A, Newton’s Cradle. Do you
think the collisions were elastic or inelastic?
Explain why.

Support your answer to question 15 by per-
forming trial calculations. Assume that the
spheres in Newton’s cradle each has a mass
of 0.200 kg and that, when one sphere collid-
ed with the row, it was moving at 0.100 m/s.
Imagine that, when one sphere collided with
the row, two spheres bounced up from the
opposite end. Calculate the velocity that the
two spheres would have to have in order to
conserve momentum. Calculate the kinetic
energy before and after. Use these calculations
to explain why you did not observe certain
patterns in the motion of Newton’s cradle.



SAMPLE PROBLEM

Classifying a Collision

A 0.0520 kg golf ball is moving east with a velocity of 2.10 m/s when it
collides, head on, with a 0.155 kg billiard ball. If the golf ball rolls
directly backward with a velocity of —1.04 m/s, was the collision elastic?

Conceptualize the Problem

®m Momentum is always conserved in a collision. = ® The motion is in one dimension, so only
m If the collision is elastic, kinetic energy must positive and negative signs are necessary
also be conserved. to indicate directions.

Identify the Goal

Is the total kinetic energy of the system before the collision, Eyg,
equal to the total kinetic of the system after the collision, E{g + Eiy,?

Identify the Variables and Constants
Known Implied Unknown

mg=0.0520kg vy =+2.10 % v = 0.0 % Vi,  Eg
my, = 0.155 kg vi=-1.0a 2 By  E
s
Develop a Strategy
Since momentum is always conserved, use MgVy + MpVy, = MgV + My,
the law of conservation of momentum to mgvg + 0.0 — mgvf, = myv,
find the velocity of the billiard ball after the ,
.. , MgV — MgV,
collision. v,= 286 68
Iy
, _ (0.0520 kg)(2.10 ) — (0.0520 kg)(-1.04 )
b= 0.155 kg
i, = 1.0534 %
Calculate the kinetic energy of the golf ball Eig = % mgvgz

before the collision. m\2
Fig = 5(0.0520 kg) (2.10 1)

Ejg=0.114 66 ]

Calculate the sum of the kinetic energies of Elg=+

the balls after the collision. i m\2
Fg = 3(0.0520 kg) (~1.04 1)

F{g = 0.028 12 ]

’2
MgVy

Eiy, = %meéz

B, = +(0.155 kg) (1.0534 %)2
Ey, = 0.086 00 ]

Ef, + E{p, = 0.028 12 ] + 0.085 99 J
By + Eyp =0.114 12 ]

continued

Chapter 4 Momentum and Impulse ¢ MHR 167



continued from previous page

The kinetic energies before and after the collision are the same to the third
decimal place. Therefore, the collision was probably elastic.

Validate the Solution

Although the kinetic energies before and after the collision differ in the fourth
decimal place, the difference is less than 1%. Since the data contained only
three significant digits, this difference could easily be due to the precision of
the measurement. Therefore, it is fair to say that the collision was elastic.

PRACTICE PROBLEMS

16. A billiard ball of mass 0.155 kg moves with a 17. Car A, with a mass of 1735 kg, was travelling

velocity of 12.5 m/s toward a stationary north at 45.5 km/h and Car B, with a mass of
billiard ball of identical mass and strikes it 2540 kg, was travelling west at 37.7 km/h
with a glancing blow. The first billiard ball when they collided at an intersection. If the
moves off at an angle of 29.7° clockwise cars stuck together after the collision, what
from its original direction, with a velocity of was their combined momentum? Was the
9.56 m/s. Determine whether the collision collision elastic or inelastic?

was elastic.

LANGUAGE LINK

In science, the word “elastic” does
not mean “easily stretched.” In fact,
it can mean exactly the opposite. For
example, glass is very elastic, up to its
breaking point. Also, “elastic” is the
opposite of “plastic.” Find the correct
meanings of the words “elastic”

and “plastic” and then explain why
“elastic” is an appropriate term to
apply to collisions in which kinetic
energy is conserved.

Elastic Collisions

By now, you have probably concluded that when objects collide,
become deformed, and stick together, the collision is inelastic.
Physicists say that such a collision is completely inelastic.
Conversely, when hard objects such as billiard balls collide,
bounce off each other, and return to their original shape, they
have undergone elastic collisions. Very few collisions are perfectly
elastic, but in many cases, the loss of kinetic energy is so small
that it can be neglected.

Since both kinetic energy and momentum are conserved in per-
fectly elastic collisions, as many as four independent equations
can be used to solve problems. Since you have two equations, you
can solve for up to four unknown quantities. When combining
these equations, however, the math becomes quite complex for all
cases except head-on collisions, for which all motion is in one
dimension.

An analysis of head-on collisions yields some very informative
results, however. For example, if you know the velocities of the
two masses before a collision, you can determine what the veloci-
ties will be after the collision. The following derivation applies to
a mass, my, that is rolling toward a stationary mass, m,. Follow the
steps to find the velocities of the two objects after the collision in
terms of their masses and the velocity of the first mass before the
collision. Since the motion in head-on collisions is in one dimen-
sion, vector notations will not be used.
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m Write the equations for the
conservation of momentum
and kinetic energy for a
perfectly elastic collision,
inserting zero for the velocity
of the second mass before
the collision.

Multiply by 2 both sides of
the equation for conservation
of kinetic energy.

Algebraically rearrange both
equations so that terms
describing mass 1 are on

the left-hand side of the
equations and terms describ-
ing mass 2 are on the
right-hand side.

Factor m; out of the left-hand
side of both equations.

Divide the first equation by
the second equation.

Notice that the masses can-
cel. Expand the expression
in the denominator on the
left. Notice that it is the
difference of perfect squares.

Simplify. Solve the equation
for v4 by inverting. Also,
solve the equation for v7.

Develop two separate equa-
tions by substituting the
values for v4 and v above
into the equation for
conservation of momentum,
myvy — myvi = myvs. Expand
and rearrange the equations

myvy + 0 = myvy + mevy

2

mv? = myvi? + myvy?

myvy — mMvi = MV

m1V12 - m1V{2 = széz

my(vy — v1) = myvj

my(vi - vi%) = mpv4®

(v —vi) _ v

mi(vi—vi%)  pvy?

(v <v1) _ ¥

(VJ//V{)(Vl +vi) v
1 1

(vi+vi) v
Vo= + V]

Vi=VvVs—1"p

myvy — Vi = myV3

myvy — mvi = my(vy + vi)
My V4 — IVi = Mo Vq + MyVy
ITMV{ + sz{ =1V, — 1l Vq

vi(my + my) = vi(my — my)

llelz +0= %nhv{z + %széz

myvy — Vi = Oyvy

myvy — my(vi — vq) = myvy
myvy — mMyvy + Myvy = MyVy
2M4 vy = M4 Vy + MyVy

2myvy = (my + my)vj

and then solve for vi (left) , my — 1y , 2my
) (s M=\—_——"7T""-_/"J|" e=\"/—"—7FT"——"|"n
and v; (right). my + my my + my
The two equations derived above allow you to find the veloci-
ties of two masses after a head-on collision in which a moving
mass collides with a stationary mass. Without doing any calcula-
tions, however, you can draw some general conclusions. First,
consider the case in which the two masses are identical.
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my 1y
-9
V1
il *

my 1y

@ 0
my m;- v

When one moving mass collides
head on with an identical station-
ary mass, the first mass stops.
The second mass then moves
with a velocity identical to the
original velocity of the first mass.

.
N
141

my =g >

—_— —
’ ” —
my m; V2

When one moving mass collides
head on with a much smaller sta-
tionary mass, the first mass con-
tinues at nearly the same speed.
The second mass then moves
with a velocity that is approxi-
mately twice the original velocity
of the first mass.

.+

’ N

14
m,

Case 1: my = m;,

Since the masses are equal, call them both “m.” Substitute m into
the two equations for the velocities of the two masses after the
collision. Then, mathematically simplify the equations.

my —m 2m
vi=——2\wn vi=|—"21|wn
my + iy mq + 1y

, (m—m) , (Zm )
Mi=\—"—7T——"7/)"n vy = 141
m+m m+m
V{=<40 >V1 Véz(—>V1
m+ m 2m

vi=0 Vs =W

Case 2: m; >>> m-

Since mass 1 is much larger than mass 2, you can almost ignore
the mass of the second object in your calculations. You can there-
fore make the following approximations.

my—my=m; and mq+ m,=nm

Substitute these approximations into the two equations for the
velocities of the two masses after the collision. Then, mathemati-
cally simplify the equations.

vi= (Ea=iz ), vi=(—2m ),
* mq + My ! 2 mq + 1y !
, o1, , 217
viz|=—|v vy = v
1 (H’l/l ) 1 2 ( 7 1

Vi=wn vy = 2%,

Case 3: m; <<< my

Since mass 1 is much smaller than mass 2, you can ignore the
mass of the first object in your calculations. You can therefore
make the following approximations.

m —my=-my and my+my=m, and m; =0

Substitute these approximations into the two equations for the
velocities of the two masses after the collision. Then mathemati-
cally simplify the equations.

vi = (E 2z )y, vi= (2 )y,
mq + Iy my + 11y
-1, 0

V] = 2w, vi=z—)w
Bt my

Vi =-1y v, =0

When one moving mass collides head on with a much larger stationary
mass, the first mass bounces backward with a velocity opposite in direction
and almost the same in magnitude as its original velocity. The motion of the
second mass is almost imperceptible.
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e Conceptual Problems

——

S )

e Using the special cases of elastic collisions, qualitatively explain féiﬁmﬁg ISARTNER @I

what would happen in each of the following situations.
Study the effects of the variable

(a) A bowling ball collides head on with a single bowling pin. elasticity of a bouncing ball by

(b) A golf ball hits a tree. using the interactive activity in
(¢) A marble collides head on with another marble that is not your Electronic Learning Partner.
moving.

e (Cars, trucks, and motorcycles do not undergo elastic collisions,
but the general trend of the motion is similar to the motion of
objects involved in elastic collisions. Describe, in very general
terms, what would happen in each of the following cases. In
each case, assume that the vehicles did not become attached to
each other.

(a) A very small car runs into the back of a parked tractor-trailer.

(b) A mid-sized car runs into the back of another mid-sized car
that has stopped at a traffic light.

(c) A pickup truck runs into a parked motorcycle.

Inelastic Collisions

When you are working with inelastic collisions, you can apply
only the law of conservation of momentum to the motion of the
objects at the instant of the collision. Depending on the situation,
however, you might be able to apply the laws of conservation of
energy to motion just before or just after the collision. For exam-
ple, a ballistic pendulum can be used to measure the velocity of a
projectile such as a bullet, as illustrated in Figure 4.13. When the
bullet collides with the wooden block of the ballistic pendulum, it
becomes embedded in the wood, making the collision completely
inelastic.

After the collision, you can apply the law of conservation of
mechanical energy to the motion of the pendulum. The kinetic
energy of the pendulum at the instant after the collision is con-
verted into potential energy of the pendulum bob. By measuring
the height to which the pendulum rises, you can calculate the
velocity of the bullet just before it hit the pendulum, as shown
in the following sample problem.

GIMIXXE) A ballistic pendu-

lum is designed to have as little
friction as possible. Therefore,
you can assume that, at the top
of its swing, the gravitational

— potential energy of the pendu-
my, ’//_h lum bob is equal to the kinetic
= - energy of the pendulum bob at

Vb mp

the lowest point of its motion.
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SAMPLE PROBLEMS

Energy Conservation Before and After a Collision

1. A forensic expert needed to find the velocity of a bullet fired from a
gun in order to predict the trajectory of a bullet. He fired a 5.50 g
bullet into a ballistic pendulum with a bob that had of mass 1.75 kg.
The pendulum swung to a height of 12.5 cm above its rest position
before dropping back down. What was the velocity of the bullet just
before it hit and became embedded in the pendulum bob?

Conceptualize the Problem

m Sketch the positions of the bullet and pendulum
bob just before the collision, just after the colli-
sion, and with the pendulum at its highest point.

®m When the bullet hit the pendulum, momentum

was conserved. PD

m If you can find the velocity of the combined bullet -= %:u 125 (frfl_l B
and pendulum bob after the collision, you can use Bullet Momentum Mechanical
conservation of momentum to find the velocity of has initial is conserved. energy is
the bullet before the collision. velocity. Kinetic energy conserved.

- . . L is not conserved.
m The collision was completely inelastic so kinetic

energy was not conserved.

m However, you can assume that the friction of the pendulum is
negligible, so mechanical energy of the pendulum was conserved.

m The gravitational potential energy of the combined masses at the
highest point of the pendulum is equal to the kinetic energy of the
combined masses at the lowest point of the pendulum.

m If you know the kinetic energy of the combined masses just after the
collision, you can find the velocity of the masses just after the collision.

m Use the subscripts “b” for the bullet and “p” for the pendulum.

Identify the Goal
The velocity, v, of the bullet just before it hit the ballistic pendulum

Identify the Variables and Constants

Known Implied Unknown
my=5.50g Ah=125cm  g=9.81 S—Hzl ?b E,
my = 1.75 kg Vp By

Develop a Strategy

To find the velocity of the combined masses

of the bullet and pendulum bob just after

the collision, use the relationship that

describes the conservation of mechanical

energy of the pendulum. Ex(bottom) = Eg(top)
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Substitute the expressions for kinetic
energy and gravitational potential energy
that you learned in previous physics
courses. Solve for velocity. Convert all
units to SI units.

Define the direction of the bullet as
positive during and immediately after
the collision.

Apply the conservation of momentum to
find the velocity of the bullet before the
collision. Convert all units to SI units.

il 2 —
Em Vhottom = MgAh

2
Vhottom ~ ngh

Vbottom = 1/ 28Ah

Vhottom = \/2 (9.81 S%) (12.5 crmi) (

| 2
m
Vbottom = 2.4525 ?

Vbottom = +1.566 %

700 o)

— — - =0
mpVp + MpVp = MpVp + mMpVp
myvy, + 0 = (my, + mp]?ﬁ/p

_ (mb + mp)Vﬁ/p

T, =
my,

1 kg m
. [5:50g(ak;) +1.75 kg | 1.566 2
V=

1 kg

5.50 8 (1305%)
— (1.7555 kg)1.566 %
Vh =

0.005 50 kg
Vi, = 499.8387 %

Vb = 5.00 x 107 %[in positive direction]

The velocity of the bullet just before the collision was about 500 m/s in

the positive direction.

Validate the Solution

In both calculations, the units cancelled to give metres per second, which is
correct for velocity. The velocity of 500 m/s is a reasonable velocity for a bullet.

2. A block of wood with a mass of 0.500 kg slides across the floor toward
a 3.50 kg block of wood. Just before the collision, the small block is
travelling at 3.15 m/s. Because some nails are sticking out of the
blocks, the blocks stick together when they collide. Scratch marks on
the floor show that they slid 2.63 cm before coming to a stop. What is
the coefficient of friction between the wooden blocks and the floor?

Conceptualize the Problem

. 0.500kg [ myp ;

m Sketch the blocks just before, 3.50 k my, ] T

mgp * 8 myg ! msb: .

at the moment of, and after "
the collision, when they came o _gqs I Momentum R Friction

b= 20T is conserved. Ad =2.63 cm

to a stop.

m Momentum is conserved
during the collision.

Collision is
completely inelastic.

continued
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continued from previous page

m Since the blocks stuck together, the collision was completely inelastic,
so kinetic energy was not conserved. Some kinetic energy was lost to
sound, heat, and deformation of the wood during the collision.

m Some kinetic energy remained after the collision.

m The force of friction did work on the moving blocks, converting the
remaining kinetic energy into heat.

® Due to the law of conservation of energy, you know that the work
done by the force of friction was equal to the kinetic energy of the
blocks at the instant after the collision.

m Since the motion is in one direction, use a plus sign to symbolize direction.
m Use the subscripts “sb” for the small block, “Ib” for the large block, and

“cb” for connected blocks.

Identify the Goal
The coefficient of friction, i, between the wooden blocks and the floor

Identify the Variables and Constants

Known Implied Unknown

mg, = 0.500kg Vi = 3.15 % g=19.81 S% g W Fy
— N N — E —

mp=350kg  AG_263cm Vi, =0.00 = Fy 2k Ve

Develop a Strategy

Apply the law of conservation of energy to Mg Ve + MVip = MV b + MV b
find the velocity of the connected blocks of — ,
L mgVsp + 0 = (Mg, + M)V &
wood after the collision.
Vi = MshVsh
mgp + myy
—., _ (0.500 kg)(3.15 %)

Vb = 9,500 kg + 3.50 kg

- _ 1575 kg
= 200 kg

Vi =0.393 75 %[to the right]

Due to the law of conservation of energy,
the work done on the blocks by the force
of friction is equal to the kinetic energy of

the connected blocks after the collision. Wito stop blocks) = Ey (after collision)

Substitute the expressions for work and
kinetic energy into the equations. FiAd = %mv2

Friction is the force doing the work, and it
is always parallel to the direction of Fiad = Lmv?
motion. Substitute the formula for the 2

_1 2
force of friction. HFNAd = o IV
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Since the blocks are moving horizontally,
the normal force is the weight of the
blocks. Substitute the weight into the
expression and solve for the coefficient of
friction.

umgAd = %IHV

2

e Lmv?
migAd
VZ
H= 2gAd
B (0.393 75 2)*
H= 20081 2)(2:63 o) (02
0.15 504 &
0.5160 %
1= 0.300 46
1 = 0.300

The coefficient of friction between the blocks and the floor is 0.300.

Validate the Solution

All of the units cancel, which is correct because the coefficient of
friction is unitless. The value of 0.300 is quite reasonable for a
coefficient of friction between wood and another similar surface.

19.

20.

PRACTICE PROBLEMS

18.

A 12.5 g bullet is shot into a ballistic
pendulum that has a mass of 2.37 kg. The
pendulum rises a distance of 9.55 cm above

its resting position. What was the speed of
the bullet?

A student flings a 23 g ball of putty at a 225 g
cart sitting on a slanted air track that is 1.5 m
long. The track is slanted at an angle of 25°
with the horizontal. If the putty is travelling
at 4.2 m/s when it hits the cart, will the cart
reach the end of the track before it stops and
slides back down? Support your answer with
calculations.

A car with a mass of 1875 kg is travelling
along a country road when the driver sees a
deer dart out onto the road. The driver slams
on the brakes and manages to stop before
hitting the deer. The driver of a second car
(mass of 2135 kg) is driving too close and
does not see the deer. When the driver real-
izes that the car ahead is stopping, he hits
the brakes but is unable to stop. The cars

21.

lock together and skid another 4.58 m. All
of the motion is along a straight line. If

the coefficient of friction between the dry
concrete and rubber tires is 0.750, what was
the speed of the second car when it hit the
stopped car?

You and some classmates read that the
record for the speed of a pitched baseball is
46.0 m/s. You wanted to know how fast your
school’s star baseball pitcher could throw.
Not having a radar gun, you used the con-
cepts you learned in physics class. You made
a pendulum with a rope and a small box
lined with a thick layer of soft clay, so that
the baseball would stick to the inside of the
box. You drew a large protractor on a piece
of paper and placed it at the top, so that one
student could read the maximum angle of the
rope when the pendulum swung up. The
rope was 0.955 m long, the box with clay had
a mass of 5.64 kg, and the baseball had a
mass of 0.350 kg. Your star pitcher pitched a
fastball into the box and the student reading

continued »
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continued from previous page
the angle recorded a value of 20.0° from the
resting, vertical position. How fast did your
star pitcher pitch the ball?

‘ f@ wooden box
- lined with
baseball clay

22. A 55.6 kg boulder sat on the side of a moun-
tain beside a lake. The boulder was 14.6 m
above the surface of the lake. One winter
night, the boulder rolled down the mountain,

m Section Review

directly into a 204 kg ice-fishing shack that
was sitting on the frozen lake. What was the
velocity of the boulder and shack at the
instant that they began to slide across the
ice? If the coefficient of friction between the
shack and the rough ice was 0.392, how far
did the shack and boulder slide?

frozen lake

1. What is the difference between an elas-
tic collision and an inelastic collision?

2. @ Describe an example of an elastic colli-
sion and an example of an inelastic collision
that were not discussed in the text.

3. ®@ Given a set of data for a collision,
describe a step-by-step procedure that you
could use to determine whether the collision
was elastic.

4, @ The results of the head-on collision in
which the moving mass was much larger
than the stationary mass (m; >>> m,) showed
that (a) that the velocity of mass 1 after the
collision was almost the same as it had been

176 MHR e Unit 2 Energy and Momentum

before the collision and (b) that mass 2,
which was stationary before the collision,
attained a velocity nearly double that of
mass 1 after the collision. Explain how it is
possible for kinetic energy (%mvz) to be
conserved in such a collision, when there
was a negligible change in the velocity of
mass 1 and a large increase in the velocity
of mass 2.

. @O Imagine that you have a very powerful

water pistol. Describe in detail an experi-
ment that you could perform, including the
measurements that you would make, to
determine the velocity of the water as it
leaves the pistol.



The Invisible Universe

Go outside on a cloudless night and look up.

You might see the Moon, a few planets, and many
stars. The universe stretches before you, but your
eyes are not taking in the full picture. Astronomer
Dr. Samar Safi-Harb and her colleagues see a
very different universe by using instruments that
detect X rays and several other wavelengths of
electromagnetic radiation that are invisible to the
human eye.

Dr. Safi-Harb is an
assistant professor
with the Department of
Physics and Astronomy
at the University of
Manitoba. She uses the
instruments aboard
satellites such as
NASA's Chandra X-ray
Observatory to research
the death throes of
super-massive stars.
When a super-massive
star runs out of nuclear
energy, it collapses under its own weight and its
outer layers burst into space in a violent explosion
called a “supernova.” In some cases, the mass left
behind compacts into a neutron star. This astound-
ing type of star is so dense that all of its matter
fits into a volume no larger than that of a city. A
neutron star, along with its strong magnetic field,
spins incredibly fast — up to several dozen times
per second!

A neutron star is a remarkable source of electro-
magnetic radiation. As its magnetic field spins
through space, it creates an electric field that gen-
erates powerful beams of electromagnetic waves,
ranging from radio waves to gamma rays. If the
beams sweeps past Earth, astronomers detect
them as pulses, like a lighthouse beacon flashing
past. Such neutron stars are called “pulsars.”

The Crab Nebula is one of Dr. Safi-Harb's
favourite objects in the sky. It is the remains of a
star that went supernova in 1054 A.D. The Crab

Dr. Samar Safi-Harb

CAREERS IN PHYSICS

Nebula is energized by fast-moving particles emit-
ted from its central pulsar. “It looks different at
different wavelengths,” she explains. “The radio
image reveals a nebula a few light-years across
that harbours low-energy electrons. The diffuse
optical nebula shines by intermediate energy
particles, showing a web of filaments that trace the
debris of the explosion. The X-ray image reveals a
smaller nebula — the central powerhouse —
containing very energetic particles. Its jets, rings,
and wisp-like structures unveil the way pulsars
dump energy into their surroundings.”

In part, the ground-breaking work of
Jocelyn Bell, the discoverer of pulsars, inspired
Dr. Safi-Harb to follow this line of research.
Although an astronomer, she has a doctorate
in physics from the University of Wisconsin,
Madison. Few universities today have astronomy
programs that stand alone from physics.

Going Further

1. Earth is orbited by a wide array of satellites that
explore the sky at high-energy and low-energy
wavelengths. Research two or more of these
satellites and describe how images taken by
them enhance our understanding of the
universe.

2. When two objects in space approach or recede
from one another at great speed, light emitted
from either object appears altered by the time it
reaches the other object. Research and describe
what astronomers mean when they talk about
a “red shift” or a “blue shift” in light.

WEB LINK

www.mcgrawhill.ca/links/physics12

Radio, infrared, optical, X-ray, and gamma-ray images of
our galaxy, the Milky Way, can be found on the Internet.
You can also learn more about Dr. Safi-Harb’s work and
see images of several of her favourite objects in space
by going to the above Internet site and clicking on

Web Links.
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CHAPTER

REFLECTING ON CHAPTER 4

= Newton expressed his second law in terms
of momentum: F = AA_It) .

m Rearrangement of Newton’s form of the
second law yields the quantities of impulse,
FAt, and a change in momentum, Aﬁ\, and
shows that impulse is equal to the change
in momentum: FAt = Ap . This expression is

called the “impulse-momentum theorem.”

= Momentum is mass times velocity p = mv .

m The concept of impulse plays a significant role
in the design of safety systems. By extending
the time, At, of a collision, you can reduce the
amount of force, F, exerted.

Knowledge/Understanding

1. Write Newton’s second law in terms of momen-
tum. Show how this expression of Newton’s
law leads to the definition of impulse and to
the impulse-momentum theorem.

2. Give an example of a situation in which it is
easier to measure data that you can use to
calculate a change in momentum than it is to
determine forces and time intervals.

3. In many professional auto races, stacks of old
tires are placed in front of walls that are close
to turns in the racetrack. Explain in detail,
using the concept of impulse, why the tires are
stacked there.

4. Define “internal force” and “external force” and
explain how these terms relate to the law of
conservation of momentum.

5. At the instant after a car crash, the force of
friction acts on the cars, causing a change in
their momentum. Explain how you can apply
the law of conservation of momentum to car
crashes.

6. When two objects recoil, they start at rest and
then push against each other and begin to
move. Initially, since their velocities are zero,
they have no momentum. When they begin to
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10.

By applying Newton’s third law, you can show
that momentum is conserved in a collision.

The momentum of an isolated system is
conserved.

Recoil is the interaction of two objects that are
in contact with each other and exert a force
on each other. Momentum is conserved during
recoil.

Kinetic energy is conserved in elastic
collisions.

Kinetic energy is not conserved in inelastic
collisions.

move, they have momentum. Explain how
momentum can be conserved during recoil,
when the objects start with no momentum and
then acquire momentum.

. An object that is moving in a circle has angular

momentum. Explain why the amount of angu-
lar momentum depends on the object’s distance
from the centre of rotation.

. Assume that you are provided with data for a

collision between two masses that undergo a
collision. Describe, step by step, how you
would determine whether the collision was
elastic or inelastic.

. Under what conditions is a collision completely
inelastic?
The equations v; = (u) v, and
mq + 11y

vy = <A> v, were developed for
my + 11y

perfectly elastic head-on collisions between
two masses, when mass 1 was moving and
mass 2 was stationary before the collision. Use
these equations to show that, after the collision,
the first mass will come to a complete stop

and the second mass will move away with a
velocity identical to the original velocity of the
first mass.



11. Explain how a forensic expert can determine
the velocity of a bullet by using a ballistic
pendulum.

Inquiry

12. The International Tennis Federation (ITF)
approaches you, a physics student, complain-
ing that too many games in tournaments are
being won on the strength of either player’s
serve. They ask you to examine ways to slow
down the serve and thus make the game more
interesting to watch. Devise a series of experi-
ments to test the ball, the type of racquet used,
and the surface of the courts, from which you
could make recommendations to the ITF about
how to improve the game of tennis.

13. Design a small wooden cart, with several raw
eggs as passengers. Incorporate elements into
your design to ensure that the passengers suffer
no injury if the cart was involved in a collision
while travelling at 5.0 m/s. If possible, test
your design.

14. Design and carry out an experiment in which
an object initially had gravitational potential
energy that is then converted into kinetic
energy. The object then collides with another
object that is stationary. Include in your design
a method for testing whether mechanical
energy is conserved in the first part of the
experiment. If possible, test your design.

Communication

15. A car and a bicycle are travelling with the same
velocity. Which vehicle has greater momentum?
Explain your reasoning.

16. It is a calm day on a lake and you and a friend
are on a sailboat. Your friend suggests attaching
a fan to the sailboat and blowing air into the
sails to propel the sailboat ahead. Explain
whether this would work.

17. Imagine you are standing, at rest, in the middle
of a pond on perfectly frictionless ice. Explain
what will happen when you try to walk back to
shore. Describe a possible method that you
could use to start moving. Would this method
allow you to reach shore? Explain.

18.

19.

20.

21.

22,

23.

24,

You and a friend arrive at the scene of a car
crash. The cars were both severely mangled.
Your friend is appalled at the damage to the
cars and says that cars ought to be made to
be sturdier. Explain to your friend why this
reaction to the crash is unwarranted.

Start with expressions that apply the impulse-
momentum theorem to two objects and use
Newton’s third law to derive the conservation
of momentum for a collision between the two
objects. Explain and justify every substitution
and mathematical step in detail.

Write the units for impulse and for momentum.
Show that these combinations of units are
equivalent and explain your reasoning in
detail.

Movie stunt people can fall from great heights
and land safely on giant air bags. Using the
principles of conservation of momentum and
impulse, explain how this is possible.

Why is a “follow-through” important in sports
in, for example, hitting, kicking, or throwing

a ball?

A boy jumps from a boat onto a dock. Explain
why he would have to jump with more energy
than he would need if he was to jump the same
distance from one dock to another.

In soccer, goalkeepers need to jump slightly
forward to avoid being knocked into the goal
by a fast-moving soccer ball as they jump up to
catch it. If the ball and goalkeeper are momen-
tarily at rest after the catch, what must have
been the relative momenta of the goalkeeper
and ball just before the catch?

Making Connections

25,

Many automobiles are now equipped with air
bags that are designed to prevent injuries to
passengers if the vehicle is involved in a
collision. Research the properties of air bags.

In terms of impulse, how do they work? How
quickly do they inflate? Do they remain
inflated? What force do they exert on the driver
or passenger? What are the safety concerns of
using air bags?
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26. A patient lies flat on a table that is supported
by air bearings so that it is, effectively, a
frictionless platform. As the patient lies there,
the table moves slightly, due to the pulsating
motion of the blood from her heart. By examin-
ing the subtle motion of the table, a ballistocar-
diograph is obtained, which is used to diagnose
certain potential deficiencies of the patient’s
heart. Research the details of how this device
works and the information that can be obtained
from the data.

21. Particle physicists investigate the properties of
elementary particles by examining the tracks
these particles make during collisions in “bub-
ble chambers.” Examine some bubble chamber
photographs (check the Internet) and research
the information that can be obtained. Include a
discussion of how the law of conservation of
linear momentum is applied.

Problems for Understanding

28. Determine the momentum of a 5.0 kg bowling
ball rolling with a velocity of 3.5 m/s[N] toward
a set of bowling pins.

29. What is the mass of a car that is travelling with
a velocity of 28 m/s[W] and a momentum of
4.2 x 10* kg - m/s[W]?

30. The momentum of a 55.0 kg in-line skater is
66.0 kg m/s[S]. What is his velocity?

31. How fast would a 5.0 x 1073 kg golf ball have to
travel to have the same momentum as a 5.0 kg
bowling ball that is rolling at 6.0 m/s[forward]?

32. Calculate the impulse for the following
interactions.

(a) A person knocks at the door with an average
force of 9.1 N[E] over a time interval of
2.5 x 107 s.

(b) A wooden mallet strikes a large iron gong
with an average force of 4.2 N[S] over a time
interval of 8.6 x 1073 s.

33. A volleyball player spikes the ball with an
impulse of 8.8 kg-m/s over a duration of
2.3 X 1073 s. What was the average applied
force?
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34.

35.

36.

37.

38.

39.

40.

a.

If a tennis racquet exerts an average force of
55 N and an impulse of 2.0 N-s on a tennis
ball, what is the duration of the contact?

(a) What is the impulse of a 0.300 kg hockey
puck slapshot that strikes the goal post at a
velocity of 44 m/s[N] and rebounds straight
back with a velocity of 9.2 m/s[S]?

(b) If the average force of the interaction was
—2.5 x 10° N, what was the duration of the
interaction?

A 2.5 kg curling stone is moving down the ice
at 3.5 m/s[W]. What force would be needed to
stop the stone in a time of 3.5 x 107* s?

At an automobile test facility, a car with a

75.0 kg crash-test dummy is travelling

28 m/s[forward] when it hits a wall. Calculate
the force that the seat belt exerts on the dummy
on impact. Assume that the car and dummy
travel about 1.0 m as the car comes to rest

and that the acceleration is constant during

the crash.

A 0.0120 kg bullet is fired horizontally into a
stationary 5.00 kg block of wood and becomes
embedded in the wood. After the impact, the
block and bullet begin to move with an initial
velocity of 0.320 m/s[E]. What was the velocity
of the bullet just before it hit the wood?

A 48.0 kg skateboarder kicks his 7.0 kg board
ahead with a velocity of 2.6 m/s[E]. If he runs
with a velocity of 3.2 m/s[E] and jumps onto
the skateboard, what is the velocity of the
skateboard and skateboarder immediately after
he jumps on the board?

Astrid, who has a mass of 37.0 kg, steps off a
stationary 8.0 kg toboggan onto the snow. If her
forward velocity is 0.50 m/s, what is the recoil
velocity of the toboggan? (Assume that the
snow is level and the friction is negligible.)

A 60.0 t submarine, initially travelling forward
at 1.5 m/s, fires a 5.0 x 10% kg torpedo straight
ahead with a velocity of 21 m/s in relation to
the submarine. What is the velocity of the sub-
marine immediately after it fires the torpedo?



42,

43.

44.

45,

Suppose that a 75.0 kg goalkeeper catches a
0.40 kg ball that is moving at 32 m/s. With
what forward velocity must the goalkeeper
jump when she catches the ball so that the
goalkeeper and the ball have a horizontal
velocity of zero?

In billiards, the 0.165 kg cue ball is hit toward
the 0.155 kg eight ball, which is stationary.

The cue ball travels at 6.2 m/s forward and,
after impact, rolls away at an angle of 40.0°
counterclockwise from its initial direction, with
a velocity of 3.7 m/s. What are the velocity and
direction of the eight ball?

Consider a nuclear reaction in which a neutron
travelling 1.0 X 107 m/s in the +x direction
collides with a proton travelling 5.0 x 10° m/s
in the +y direction. They combine at impact to
form a new particle called a “deuteron.” What
is the magnitude and direction of the deuteron
velocity? Assume for simplicity that the proton
and neutron have the same mass.

A ball of mass m, strikes a stationary ball of
mass m; in a head-on, elastic collision.
(a) Show that the final velocities of the two
balls have the form
v = 2Ly, vp= 2y,
mq + My mq + iy
(b) Examine three cases for the masses
my <<< Iy my = 1y mq >>> 1y
(¢) Comment on the results.

46.

41.

48.

In a demonstration, two identical 0.0520 kg
golf balls collide head on. If the initial velocity
of one ball is 1.25 m/s[N] and the other is
0.860 m/s[S], what is the final velocity of

each ball?

A 750 g red ball travelling 0.30 m/s[E]

approaches a 550 g blue ball travelling

0.50 m/s[W]. They suffer a glancing collision.

The red ball moves away at 0.15 m/s[E30.0°S]

and the blue ball moves away in a north-

westerly direction.

(a) What is the final velocity of the blue ball?

(b) What percentage of the total kinetic energy
is lost in the collision?

You and a colleague are on a spacewalk, repair-

ing your spacecraft that has stalled in deep

space. Your 60.0 kg colleague, initially at rest,

asks you to throw her a hammer, which has a

mass of 3.0 kg. You throw it to her with a

velocity of 4.5 m/s[forward].

(a) What is her velocity after catching the
hammer?

(b) What impulse does the hammer exert on
her?

(c) What percentage of kinetic energy is lost in
the collision?
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CHAPTER CONTENTS

Multi-Lab
Energy
Transformations
in Springs 183

5.1 Work and the
Transformation
of Energy 184

Investigation 5-A
Testing the Law
of Conservation
of Energy 197

5.2 Hooke's Law and
Periodic Motion 201

Investigation 5-B
Testing Hooke's Law 202

Investigation 5-C
Analyzing Periodic
Motion 209

Investigation 5-D
Another Test of the
Law of Conservation
of Energy 21

5.3 Energy
Transformations 213

Investigation 5-E
Mechanical and

Thermal Energy 221
With a “whump,” the fireworks shell is lofted upward into
the darkness. As the shell rises, it slows; kinetic energy
CONCEPTS AND SKILLS transforms into gravitational potential energy. Then, the shell
= Concept of work explodes and chemical potential energy rapidly converts into
heat, light, and sound. The darkness gives way to brilliant colour
and loud bangs startle the crowd below.
m Potential energy There is a balance in all of these transformations and effects.
Energy gained in one form comes at the expense of another. This
is the law of conservation of energy.

In this chapter, you will examine these energy transformations
and balances and investigate a few of their applications.

m Kinetic energy

m Thermal energy and heat
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MULTI

Energy Transformations
LAB in Springs

TARGET SKILLS
¢ Performing and recording
¢ Analyzing and interpreting
e Communicating results

A Spring Pendulum

Hang a spring (at least 50 cm long) from a
rigid support and attach a mass to the lower
end of the spring. Ensure that the mass is
heavy enough to extend the spring noticeably
without overstretching it. The hanging mass
should not come close to the desktop. Pull
the mass to the side and release it, allowing
the spring to swing from side to side. Observe
the motion of the mass and the spring.

Analyze and Conclude

1. What types of periodic (repeating) motion
did you observe?

2. When the amplitude of one type of vibra-
tion was at a maximum, what happened
to the amplitude of the other type of

. When the spring was stretched to a greater

. What was being transferred between

. The law of conservation of energy states

. What eventually happened to the motion

. If the system regularly switched back

length than it was when the mass was
at rest, was the mass moving rapidly
or slowly?

(a) the different types of vibration, and
(b) the mass and the spring?

that the total energy of an isolated system
remains constant. How was that law illus-
trated by the action of the spring and the
mass in this case?

of the spring and the mass? Suggest why
this occurred.

vibration? and forth between the two patterns of
motion, was the time taken for the change
consistent?
Slinky Motion . At what stage or stages in the action of the

Place a Slinky™ toy several steps up from the
bottom of a set of stairs, with the axis of the
spring vertical. Take the top coil and arc it
over and down to touch the next lower step.
Release the Slinky™ and observe its motion.

Analyze and Conclude
1. What is the condition of the coils of the
spring when energy is stored in the
spring?

2. At what stage or stages in the action of the
spring is kinetic energy being converted
into elastic potential energy in the spring?

. Is there any instant during the motion of

. Any system loses energy due to friction,

spring is elastic potential energy in the
spring being converted into kinetic
energy?

the spring when both the kinetic energy
and the elastic potential energy are at a
maximum? Would you expect this to be
possible? Give a reason for your answer.

which converts mechanical energy into
thermal energy. Why then does the spring
continue going down the stairs? From
where is it getting its energy?
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Work and the
Transformation of Energy

SECTION S—m—e—
EXPECTATIONS

* Define and describe concepts
and units related to energy
forms and conservation.

* Analyze and explain
common situations using
the work-energy theorem.

* Investigate the law of
conservation of energy
experimentally.

KEY '\

TERMS
° energy
* work
e work-kinetic energy theorem
e work-energy theorem

* conservation of
mechanical energy

In the introduction to this chapter, you read about some different
types of energy transfers and transformations. You might recall
from previous science courses that the two mechanisms by which
energy is transferred from one system to another are work and
heat. In fact, energy is often defined as the ability to do work.

In this section, you will focus on work, extending your knowledge
and your ability to make predictions about work and solve
problems involving work as the transfer of mechanical energy
from one system to another.

Characterizing Work

What is work? How do you know if one object or system is doing
work on another? If work is being done, how much work is done?
In physics, these questions are easier to answer than in everyday
life. If an object or system, such as your body, exerts a force on an
object and that force causes the object’s position to change, you are
doing work on the object.

The most direct way to express work mathematically is with
the equation W = FAd cos 6, where F is the magnitude of the force
doing work on an object, Ad is the magnitude of the displacement
caused by the force, and 6 is the angle between the vectors for
force and displacement. Notice that the force, F, and displacement,
Ad, do not have vector notations. The reason for the omission of
the vector symbols is that work, W, is a scalar quantity and is
the scalar product of the vectors F and Ad . Since the product
of the vectors is a scalar quantity, the directions of the force and
displacement do not determine a final direction of their product.
To understand why cos 6 is included in the equation, study
Figure 5.1.

————— —
————— A= F
- /

——

Fy=Fsin 6

[Z]
Fy=Fcos@

@GIMEED The only component of the force acting on an object that does
work is the component that is parallel to the direction of the displacement.
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In Figure 5.1, you see a person pulling a crate with a force that
is at an angle, 6, relative to the direction of the motion. Only part
of that force is actually doing work on the crate. In the diagram
beside the sketch, you can see that the x-component (horizontal)
of the force has a magnitude F cos 6. This component is in the
direction of the motion and is the only component that is doing
work. The y-component (vertical) is perpendicular to the direction
of the motion and does no work on the crate.

Figure 5.2 shows four special cases that will clarify the question
of whether work is being done by a force. In part (A), a person is
pushing a cart with a force (F) that is in the same direction as the
motion of the cart. The angle between the force and the displace-
ment is zero, so cos @ = cos0 = 1 and the work is W = FAd. When
the force and the displacement are in the same direction, the
entire force is doing work. In this case, the cart is speeding up, so
its kinetic energy is increasing. The work that the person is doing
on the cart is transferring energy to the cart, so positive work is
being done on the cart.

In part (B) of Figure 5.2, the cart has kinetic energy and is
moving forward. The person is pulling on the cart to slow it down.
Notice that the direction of the force that the person is exerting on
the cart is opposite to the direction of the motion. The angle 0 is
180°, so cos 6 = —1 and, therefore, W = —FAd. Just as the results
indicate, the person is doing negative work on the cart by slowing
it down and reducing its kinetic energy.

A Positive Work B Negative Work

MATH LINK

In mathematics, a scalar product is
also called a “dot product” and the
equatﬁ)\n fg[ work is written as

W = F-Ad The magnitude of a dot
product is always the product of the
magnitudes of the two vectors and the
cosine of the angle between them.

Tr\applied &L» 7 6=0° Fapplied F__ vy N\Ad 6=180°
—> ~—

Motion Motion

of cart of cart
F
-

Ad =0 )
No motion

C No Work F D No Work

In part (C) of Figure 5.2, the person is sitting on the cart,
exerting a downward force on it. The angle 6 is 90°, so
cos 0 = cos 90° = 0 and the work is W = FAd(0) = 0. Even though
the cart is moving, the force that the person is exerting is not
doing work, because it is not directly affecting the horizontal
motion of the cart. Notice that if you use the equation for work
properly, the term cos 6 will tell you whether the work is positive,
negative, or zero.

] = =90° F, lied
Ad 6=90 applie
F Motion

of cart

m In order to do

work, the force must be
acting in a direction parallel
to the displacement.
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Finally, in part (D), the person is pushing on the cart, but the
cart is stuck and will not move. Even though the person is exerting
a force on the cart, the person is not doing work on the cart,
because the displacement is zero.

DEFINING WORK
Work is the product of the force, the displacement, and the
cosine of the angle between the force and displacement
vectors.

W = FAdcos 0
Quantity Symbol SI unit
work w J (joules)
force F N (newtons)
displacement Ad m (metres)
angle between force degrees (The cosine of
and displacement 0 an angle is a number

and has no units.)

Unit Analysis
(joule) = (newton)(metre) J=N-m
A newton - metre is equivalent to a joule.

SAMPLE PROBLEM

Working on the Lawn

A woman pushes a lawnmower with a force
of 150 N at an angle of 35° down from the
horizontal. The lawn is 10.0 m wide and
requires 15 complete trips across and back.
How much work does she do?

AR

Conceptualize the Problem M

m Draw a sketch to show the relationship between

the force and the motion. Aaz
m A force is acting at an angle to the direction of motion. :35
m Since a component of the force is in the direction of the motion, R
the force is doing work on the lawnmower. F=150N

m Work done can be determined from the general work equation.

Identify the Goal
The work, W, done by the woman on the lawnmower
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Identify the Variables and Constants

Known Unknown
F=150N Ad

0 =35° w
width of lawn = 10.0 m

15 trips

Develop a Strategy

Determine the total distance over which Ad = 2(10.0 m)(15)

the force acted. Ad = 300 m

Use the general work equation. W = FAdcos 6

Substitute and solve. W = (150 N)(300 m) cos 35°
W =36 861.8 ]

W=37x10%]

The work done by the woman on the lawnmower is 3.7 x 10*J.

Validate the Solution

If the force had been horizontal, then the work done would have been
300 m x 150 N, which equals 45 000 J. Because the force is at an angle
to the direction of motion, the work done is less than this value.

PRACTICE PROBLEMS

1. A man pulls with a force of 100.0 N at an If the car moves horizontally, how far was
angle of 25° up from the horizontal on a sled it towed?
that is moving horizontally. If the sled moves
a distance of 200.0 m, how much work does
the man do on the sled?

3. A kite moves 14.0 m horizontally while
pulled by a string. If the string did 60.0 J of
work on the kite while exerting a force of

2. A tow truck does 42.0 MJ of work on a car 8.2 N, what angle did the string make with
while pulling it with a force of 3.50 kN the vertical?
exerted upward at 10.0° to the horizontal.

Work and Kinetic Energy

In the examples you just examined, you determined the amount
of work that was done on several objects. Now, consider the form
of the energy that is given to an object on which work is done
and the relationship to the work that was done. First, look at a
situation in which all of the work done on a cart transfers only
kinetic energy to the cart. Imagine that a cart is rolling horizontal-
ly to the right with a speed of v; when a force is exerted on it in
the direction of motion, as shown in Figure 5.3. The force acts
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over a displacement of Aﬁ. Since all of the motion is horizontal,

there will be no changes in gravitational potential energy. Assume
also that friction is negligible. Study Figure 5.3 and then examine
the steps that follow the illustration.

m All of the work being done on the cart is increasing the cart’s
kinetic energy.

m Write the equation for work. From W = FAdcos 0
Figure 5.3, you can see that the angle W = FAd cos 0°
between the force vector and the cos0° = 1
.dlsplacer.nent VeFtor is zero. Use t.hls W = FAd
information to simplify the equation.

m Recall the expression for force from
Newton’s second law. Substitute the
expression for F into the equation for
work. Since work is a scalar quantity, F =ma
do not use vector symbols. W = maAd

m Write the kinematic equation that
relates initial velocity, final velocity, v} = v+ 2aAd
displacement, and acceleration. vZ - v?

— 1
Solve that equation for displacement. Ad = 2q
m Substitute the expression for displace- vi - v2
. . W= ma<71 )
ment into the equation for work. 2a
Simplify the expression. W= m(v§ — v})
2

m Expand the equation. w= %meZ — %mviz

m Recognize the expression %mv2 as W = Eyt — Eyi
kinetic energy. W = AEx

The work done on the cart is equal to the change in the kinetic
energy of the cart. You can now generalize and state that, when

work is done on an object in which the force and displacement are
horizontal and friction is negligible, the work done is equal to the
change in the kinetic energy of the object. The expression W = AEx
is often called the work-kinetic energy theorem.
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SAMPLE PROBLEM

The Hammer and Nail

You drive a nail horizontally into a wall, using a 0.448 kg hammerhead.
If the hammerhead is moving horizontally at 5.5 m/s and in one blow
drives the nail into the wall a distance of 3.4 cm, determine the average
force acting on

(a) the hammerhead
(b) the nail

Conceptualize the Problem
m The hammer possesses kinetic energy.

m The backward force exerted by the nail on the hammer removes all
of the kinetic energy.

m The magnitude of the force exerted by the hammer on the nail equals
the magnitude of the force exerted by the nail on the hammer,
according to Newton’s third law of motion.

Identify the Goal

(a) The force acting on the hammer, I_T\h, by the nail

(b) The force applied to the nail, Fo, by the hammer

Identify the Variables and Constants

When solving problems involving

Known Implied Unknown
N i N work and energy, be sure to
m = 0.448 kg vi=0 S Fy express all quantities in S units.
¥ = 5.5 2 [forward] ¥, For example, a speed of 80 km/h
S

must be converted into 22.2 m/s,
and a mass of 25 g must be
expressed as 0.025 kg.

Aa\= 0.034 m[forward]

Develop a Strategy

With only horizontal motion, work done Pl Aﬁl - AE,

equals the change in kinetic energy.

N - 1 2 1 2

—  Imv?- 1lmv?

— 2MV — MV
. 10.448 kg)(O E)Z ~ 1(0.448 kg)<5.5 9)2
|Fh| _ 2 s 2 s

0.034 m
Fy =-199.2941 N

Fh,=-2.0x10°N

(a) The average force exerted on the hammer by the nail was 2.0 x 10> N[backward].

Apply Newton’s third law to the forces F, = -F,
between the hammer and the nail. — ,
Fp=-(-2.0x10°N)

F,=20x10*N
(b) The force exerted on the nail by the hammer was 2.0 x 10% N[forward].

continued
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continued from previous page

Validate the Solution

Since kinetic energy must be transferred out of the hammerhead,
the force on the hammer must be in the opposite direction to

its motion and so the force must be negative.

PRACTICE PROBLEMS

4. A car with a mass of 2.00 x 10° kg is travel-
ling at 22.2 m/s (80 km/h) when the driver
applies the brakes. If the force of static
friction between the tires and the road is
8.00 x 10°® N[backward], determine the stop-
ping distance of the car. Use the concepts of
work and energy in solving this problem.

5. A 1.00 x 10% g arrow is fired horizontally
from a bow. If the average applied force on

the arrow is 150.0 N and it acts over a
displacement of 40.0 cm, with what speed
will the arrow leave the bow? Use the
concepts of work and energy in solving
this problem.

. A 12.0 kg sled is sliding at 8.0 m/s over ice

when it encounters a patch of snow. If it
comes to rest in 1.5 m, determine the magni-
tude of the average force acting on the sled.

Work and Gravitational Potential Energy

" Consider, now, a contrasting situation — the motion of
the object on which work is being done and the force

that does the work are vertical and there is no change
in the object’s velocity. For example, imagine that you
are lifting a mass at constant speed, so there is no

T *applied change in its kinetic energy. The only energy that
[ m ] the mass will gain will be due to its position in the
L mg Ah gravitational field — gravitational potential energy (E,).

The relationship between the quantities is shown in

XD The upward force that you

apply to the mass is equal in magnitude
and opposite in direction to the force of
gravity. Therefore, the velocity of the mass
is constant and only its height changes.
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Figure 5.4.

Because neither the speed nor the direction of the
mass is changing, it is not accelerating. If the accelera-
tion of the mass is zero, then the net force must be zero
and therefore the magnitude of upward applied force
must equal the magnitude of the downward force of
gravity.

Fapplied =F

Fapplied =mg
Examine the following steps to derive the relationship

between work done by a vertical force and gravitational
potential energy.



Write the equation for work. From
Figure 5.4, you can see that the angle
between the force vector and the
displacement vector is zero. Use this
information to simplify the equation.

To find the amount of work done by the
applied force, substitute the applied
force into the equation.

From Figure 5.4, you can see that the
displacement is the difference of the
initial and final heights. Substitute

this value into the equation for work.

Expand the equation.

Recognize the expression mgh as gravi-
tational potential energy and substitute
E, into the equation for work.

W = FAdcos 8

W = FAd cos0°
cos0° =1

W = FAd

W = FAd

W= FappliedAd

F. applied = H1g

W = mgAd
Ad = hy — by
W = mg(hs - h;)

W = mgh; — mgh;

W = Ey — Ey
W = AE,

When velocity does not change but the object’s position changes
in height, the work done on an object is equal to the change in the

gravitational potential energy of the object.

SAMPLE PROBLEM

A Rescue at Sea

A gas-powered winch on a rescue helicopter does
4.20 x 103 J of work while lifting a 50.0 kg swimmer
at a constant speed up from the ocean. Through what
height was the swimmer lifted?

Conceptualize the Problem

m The speed was constant, so there was no change in
kinetic energy.

m Assume that the work done by the winch equals the
gain in gravitational potential energy of the swimmer.

Identify the Goal
The height, Ah, through which the swimmer was lifted

continued
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Identify the Variables and Constants

Known Implied Unknown
W=420x10°]  g=9.81 % Ah
m = 50.0 kg

Develop a Strategy

With no change in kinetic energy, work W = AE;,
done eguals the change‘ in gravitational W = mgAh
potential energy. Substitute and solve.
W
Ah = —
mg
3
Ap— _ 420x10°]

(50.0 kg)<9.81 ‘Sﬂ)
Ah = 8.562 69 m
Ah = 8.56 m
The height through which the swimmer was lifted was 8.56 m.

Validate the Solution

e 1 kg - m?
1] = M, so the answer has units of —£— = m.
S kg 52
PRACTICE PROBLEMS
7. A motorized crane did 40.4 kJ of work when did 58.8 kJ of work, through what height did
slowly lifting a pile driver to a height of the car rise?
(81.90 n}? What was the mass of the pile 9. A battery-powered scoop used by a Mars
rver: lander lifted a 54 g rock through a height of
8. A 4.00 x 10* kg elevator car rose at a con- 24 cm. If gpars = 3.8 m/s?, how much work
stant speed past several floors. If the motor was done by the scoop?

The Work-Energy Theorem
and Conservation of Energy

Very few processes are as limited as the two situations that you
have just considered — changes in kinetic energy only or in
potential energy only. Real processes usually involve more than
one form of energy. However, you can combine the two cases that
you just considered. For example, if an applied force does work
on an object so that both its kinetic energy and its various forms
of potential energy change, then the work done by that force
equals the total change in both the kinetic energy and the poten-
tial energies: W = AE\ + AE,. The relationship shown in this
equation is known as the work-energy theorem.
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Picture an object or a system of objects on which no work is
being done by some outside agency. In other words, no energy is
being added to the system and no energy is being removed from
the system. This is called an “isolated system.” A swinging pendu-
lum could be such a system until someone comes along and gives
it a shove. A roller coaster in which the car is running freely up
and down slopes and around curves is isolated if wind effects and
friction are ignored. The flight of an arrow away from its position
in a stretched bow can be treated as an isolated system if air
friction effects and wind are again ignored.

.

|

c i
m Our universe is possibly the only truly isolated system.
However, in many applications, such as the ones shown here, you will work

on the assumption that no energy enters from the outside and none is lost
to the outside.

If a system is isolated in that no outside work is done on it,
you can use the work-energy theorem to derive another important
relationship, as shown in the following steps.

m Write the work-energy theorem. W = AEy + AE,

m If the system is isolated, W = 0. 0 = AEy + AE,
Substitute zero into the equation AE + AE, = 0
above.

m Expand the expression and use (Bt — Ex) + (B}, - E;) =0

primes to represent the energies
after the process is complete.

m Rearrange the equation so that Ex + E, = E{ + E}
the initial energies are on the
left-hand side of the equals sign
and all of the final energies are
on the right-hand side.

B Atwood’s machine pulley

D Calorimeter thermometer

L

W PHYSICS FILE g

The work-energy theorem links
two apparently different types of
quantities. On the left-hand side
is a concept that is extremely
concrete in that it deals with
readily measured quantities of
force and distance. On the
right-hand side is the extremely
abstract concept of energy. In
fact, the right-hand side deals
only with energy changes and
never in absolute amounts of

energy.

Chapter 5 Conservation of Energy « MHR 193



——

ELECTRONIC @;‘ The last statement in the derivation is known as the law of
LEARNING PARTNER

conservation of mechanical energy. The equation AE\ + AE, =0
Use the interactive pendulum says that the change of total mechanical energy in an isolated
simulation in your Electronic system is zero. This does not mean, however, that no processes
Learning Partner to enhance are occurring within the system. This last statement implies that
your understanding of energy kinetic energy of an object in the system can be transformed into
transformations. potential energy, or the reverse can happen. In addition, one

object in the system might transfer energy to another object in the
system. Many processes can occur in an isolated system.

THE LAW OF CONSERVATION OF MECHANICAL ENERGY

The law of conservation of mechanical energy states that

the sum of the kinetic and potential energies before a process
occurs in an isolated system is equal to the sum of the
kinetic and potential energies of the system after the process
is complete.

Ex+ E, = E + E|

Quantity Symbol SI unit
kinetic energy before the
— process occurred Ex J (joules)
PROBEWARE -t potential energy before the
E joul
If your school has probeware process occurred P J Goules)
equipment, visit kinetic energy after the
www.mcgrawhill.ca/links/ process was completed E}, ] (joules)

physics12 and follow the links for
an in-depth activity on energy
and momentum in collisions.

potential energy after the
process was completed E} J (joules)

SAMPLE PROBLEM

Conservation of Energy on the Ski Slopes

A skier is gliding along with a speed of 2.00 m/s
at the top of a ski hill, 40.0 m high, as shown

in the diagram. The skier then begins to slide
down the icy (frictionless) hill.

(a) What will be the skier’s speed at a height
of 25.0 m?

(b) At what height will the skier have a speed
of 10.0 m/s?
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Conceptualize the Problem

Sketch the two parts of the problem separately.

Label the initial conditions (top of the hill) “1.” Label
the position when h = 25 m as “2.” Label the position
at which the skier is travelling at 10.0 m/s as “3.”

Use subscripts 1 and 2 to indicate the initial and final
conditions in part (a) and use subscripts 1 and 3 to
indicate the initial and final conditions in part (b).

Define the system as the skier and the slope.

Assume that the system of skier and slope is isolated.

The law of conservation of energy can be applied.

Identify the Goal
(a) the speed, v,, at a height of 25.0 m
(b) the height, h;, at which the skier’s speed will be 10.0 m/s

Identify the Variables and Constants

Known Implied Unknown
vi = 2.00 % g=9.81 S—Hzl v
h; =40.0m hs

vy =10.0 2
S

hy =25.0m

Develop a Strategy

State the law of conservation of mechanical E{ + B}, = Ex + Ep

energy.

Expand by replacing E with the expression 1 mvZ + mgh, = 1mvf + mgh,
that defined the type of energy. 2 2

Divide through by m. SV3 =3V +gh - gh,
Simplify and rearrange the equation to vz =v> + 2g(hy — hy)

solve for v,.

vy = \Jvi + 2l ~ hy)

. 2
Substitute and solve. vy = \/<2.00 %) + 2(9.81 %)(40.0 m — 25.0 m)
2
v, =,/298.3 B2
s
Speed QQes not inyolve direction, so choose v, =+17.271 2
the positive root since speed can never be S
negative. T = 7.3 AR
s

(a) The speed is 17.3 m/s at a height of 25.0 m.

continued
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Write the expanded version of the %mvg + mgh; = %mvlz + mgh,
conservation of mechanical energy. 1, L
Rearrange and solve for height. ghs = 5 vi + ghi - 5 v;

1.2 1.2
ZVi + ghy — v3

h3 =

8

3 3 2 2
Substitute numerical values and solve. %<2‘00 %> N (9.81 ?7)(40.0 m) - %<10.0 %)
h; = —
9.81 1

h; =35.107 m
h; =35.1m

(b) The height must be 35.1 m when the speed is 10.0 m/s.

Validate the Solution

(a) The units for the right-hand side of the equation for v, are Students are often tempted to
m\2 m i m apply the equations for linear
[(?) + (?)m] =5 motion to the solution of these

These are the correct units for the speed. In addition, since problems. ngever, the paths are
not always linear, so the equations

the skier is going downhill, the final speed must be larger .
e . might not apply. One of the great
than the initial speed of 2.00 m/s. Y e T

of energy is that you generally do

(b) The units on the right-hand side of the equation for h; are
not need to know the exact path

2 2
(%) + (;%)(m) - (%) between two points or vector

m =m directions. You need to know the

2 e .

s conditions at only those two points.

Since the speed in part (b) is less than the speed in part (a),
the skier should be higher on the hill than in part (a).

PRACTICE PROBLEMS

Use the following diagram for practice problems 10. A car on a roller coaster is moving along a

10, 11, and 12. level section 12.0 m high at 4.0 m/s when it
begins to roll down a slope, as shown in the
40 diagram. Determine the speed of the car at
s point A.

——

11. What is the height of point B in the roller
coaster track if the speed of the car at that
point is 10.0 m/s?

12. What is the height of y if the speed of the
roller coaster at B is 12.5 m/s?
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When scientists set out to test an hypothesis or
challenge a law, they often use the hypothesis
or law to make a prediction and then test it. In
this investigation, you will make a prediction
based on the law of conservation of energy.

Problem

To perform a test of the law of conservation
of energy

Equipment

m dynamics cart

m balance capable of measuring a mass of 1to 2 kg
m 2 pulleys

m retort stand and clamps for the pulleys

m board (or similar material) to protect the floor from
dropped masses

m metric measuring tape

m selection of masses, including several that can be
suspended on a string

m stopwatch or photogate timers
m string about 4 m long

Procedure

1. Determine the mass of the dynamics cart.

2. Select a mass to be the rider and a mass to
be the hanging mass. Decide on the height of
the hanging mass above the board.

3. Set up the apparatus on a long desktop, as
shown in the diagram.

dynamics hanging

rider cart mass

"/ /

- —

TARGET SKILLS
® Predicting
® Performing and recording
¢ Analyzing and interpreting

4. Using the law of conservation of energy,
calculate the expected speed of the cart and
the hanging mass just before the mass strikes
the board. If the cart is to be released from
rest, determine the average speed of the
system and then the predicted time interval
for the hanging mass to drop to the board.

5. With the entire apparatus in place, hold the
cart still. Release the cart and measure the
time taken for the hanging mass to reach the
board. Be sure to catch the cart before it hits
the lower pulley.

6. Repeat the measurement several times and
average the results.

7. Perform several trial runs with a different
pair of masses for the cart and the hanging
mass.

Analyze and Conclude

1. Prepare a table to show all of your data, as
well as your calculations for the final speed,
average speed, and the time interval.

2. What is the percent difference between the
time as predicted by the law of conservation
of energy and the measured average time?

3. Based on the precision of the timing devices,
what range of experimental error would you
expect in this investigation? How does this
range compare with the percent difference
determined in question 27

4. Do the results of this investigation support
the law of conservation of energy?

Apply and Extend
5. Which part of this investigation caused the
greatest difficulty? Provide suggestions for
overcoming this difficulty.

6. List some of the sources of error in this
investigation and suggest how these errors
might be reduced.
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Work and Energy Change with a Variable Force

Until now, you have assumed that the force in the expression for
work was constant. Quite often, however, you must deal with
situations in which the force varies with the position, as shown in
part (A) of Figure 5.6.

A Force-versus-position graph B Finding the work done C Finding the work and
energy change

A A

X Y
iy B fisy B 1= . .
@ © 1 o i ]
o &) 1 o f 1
5 g Area=W ! 3 H Area =W !
= = Area = AE ! = i Area = AE ]
! : :

Position (H\) Position (H\] Position [_\)

M) The work done, or the change in energy, is equal to the area
under the graph

Since work is defined as the product of force times the displace-
ment over which the force acts, then work must be equivalent
to the graphical area under a graph of force versus position
(displacement is a change in position). Such an area is illustrated
in parts (B) and (C) of Figure 5.6. In the simplest cases, the
graphical area forms a figure for which the area can be readily
determined, as shown in the following sample problem.

SAMPLE PROBLEM

Work Done by a Variable Force

The graph shows the variation of applied force with
position. Determine the work done by the force and
the total energy change due to that force.

Conceptualize the Problem

m The problem involves a graph of force versus
position.

Force, (N)

m The graphical area under the curve provides , —\
the work done. 5.0 8.0 10.0

m Work is equal to the total change in energy. Position, (m)
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Identify the Goal

m The work, W, done by the applied force

m The total energy change AEiq, due to the force

Identify the Variables and Constants

Known

graph of force versus position

Develop a Strategy

Divide the graphical area under the
curve up into recognizable shapes.

Determine the area of each region.

The region from the origin to 5.0 m
is a trapezoid.

The region from 5.0 m to 8.0 m is
a rectangle.

The region from 8.0 m to 10.0 m is
a triangle.

Find the total area.

Unknown

w
AEtotal

Area of trapezoid

A = (average

A:(8.0N+6.0N

2
A=35N-m

A=35]

of parallel sides)(distance between them)

)5.0 m

Area of rectangle = (base)(height)
A = (3.0 m)(6.0 N)

A=18N-m
A=18]

Area of triangle = %(base](height]

A:%(z.o m)
A=6.0N-m
A=6.0]

(6.0 N)

Total area=35]+ 18 ] + 6.0 ]
Total area = 59 ]

W= AEtotal
AEiotal = 59 ]

The work done, and therefore the total change in energy, is 59 J.

Validate the Solution

From examination of the graph, an average force would seem to be
approximately 5 N and acts over 10 m. An approximate value for the
work done would be 50 N. The answer is not far from this value.

continued
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PRACTICE PROBLEMS

A

Force: ?(N)

Force: T'\(N]

tinued from previous page

C
- poped B
= : :
5.0 1= Lo
b} 1 1
&) 1 1
= 1 1
o 1 1
0 =~ 0 - -
0.10 4.0 6.0
Position: H\(m) Position: H\(m)
1
1
1
i
1 1
1 1
1 1
1 1
0 ' '
10 20

Position: E\(m)

13.

14.

15.

Calculate the work done by the force
depicted in part (A) of the diagram.

Determine the magnitude of the energy
change produced by the force illustrated in
part (B) of the diagram.

The force shown in part (C) of the diagram
acts horizontally on a 2.0 kg cart, initially at
rest on a level surface. Determine the speed
of the cart at point A and at point B.

There are many examples in which the applied force
varies with displacement. The more an archery bow string
is pulled back, the greater the force that the string can exert
on the arrow. Force increases with the amount of stretch in
a trampoline. Springs are interesting in that they can exert

forces when they are stretched or compressed, and the
amount of force depends on the amount of extension or
compression. You will study this type of relationship in
the next section of this chapter.

m Section Review

1.

2.

3.

4,

5.

Give examples that were not used in
the text to show that no work is done by an
applied force that is perpendicular to the
direction of the motion of the object.

@ If the force of friction is constant, prove
that the stopping distance of a car on a level
road varies directly with the square of the
initial speed.

When developing the equation for
gravitational potential energy, why was it
necessary to assume that the mass was rising
at a constant speed?

@ Prove the expressions for gravitational
potential energy and kinetic energy

have units that are equivalent to the
newton - metre.

@™ The absolute temperature of a gas is a
measure of the average kinetic energy of the
gas atoms or molecules. What happens to the
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average speed of these particles when the
absolute temperature of the gas is doubled?

(a) What is meant by the term “isolated sys-
tem”?

(b) Describe an example of a system that
could be considered as being isolated.

(¢) Explain why this system is probably not
completely isolated.

. A variable force, ﬁ acts through a

displacement, Ad. The magnitude of the
force is proportional to the displacement, so
F = kAd, where k is constant.

(a) Sketch a graph of this force against
position up to position x.

(b) According to the equation, what is the
value of the force at x?

(¢) Determine an expression for the work
done by this force in terms of k and x.



Hooke’s Law
and Periodic Motion

5.2

The diver approaches the end of the board, bounces a couple of
times, then arcs out into the air in a graceful dive. The diving
board plays an important role in his action. The diver uses
chemical energy to jump, gaining kinetic energy. His kinetic
energy transforms into gravitational potential energy and then
back into kinetic energy. When he returns to the board, slows,
and stops, his kinetic energy does not transform into gravitational
potential energy. In what form is the energy stored?

~y

A diving

board transforms a form
of potential energy into

Describing Elastic Potential Energy

The diving board in Figure 5.7 is behaving much like a spring.
When the diver lands on the board after jumping, the diving board
exerts a force on him, doing work on him that reduces his kinetic
energy to zero. At the same time, the diver is exerting a force on
the diving board, doing work on the board and causing it to bend.
It its bent condition, the diving board is storing energy called
elastic potential energy. Because the diving board is elastic,
it returns to its original form, and in doing so, it transfers
its elastic potential energy back into kinetic energy.

Springs are commonly used, much like
the diving board, to absorb energy, store it as
elastic potential energy, then release it in the
form of kinetic energy. A bicycle seat has a
spring that reduces the jarring effects on the
rider of bumps in the road. Springs in a
mattress provide a flexible support that allows
the surface to match the contours of the sleeper.
Pressure is applied evenly over the lower
surface of the sleeper, rather than being
concentrated at a few points.

In this section, you will examine elastic
potential energy in the form of stretched
and compressed springs.

kinetic energy of the diver.

SECTION ™\

EXPECTATIONS

e Analyze and explain common
situations using the work-
energy theorem.

e State Hooke's law and analyze
it in quantitative terms.

* Define and describe the
concepts and units related
to elastic potential energy.

* Apply Hooke’s law and the
conservation of energy to
periodic motion.

KEY

TERMS
* elastic potential energy
* Hooke's law
* spring constant
e restoring force

e periodic motion

GCTTERR:S In what ways do these springs behave
the same?
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INVESTIGATION 5-B

f Testing Hooke’s Law

Problem

What relationship exists between the force
applied to a spring and its extension?

Equipment

m retort stand and C-clamp

m weight hanger and accompanying set of masses
m coil spring

m ring clamp

m metre stick

Wear protective eye goggles during
this investigation.

Procedure
1. Clamp the retort stand firmly to the desk.

2. Attach the ring clamp close to the top of the
retort stand.

3. Hang the spring by one end from the ring
clamp.

4. Prepare a data table with the headings: Mass
on hanger, m(kg); Applied force, F(N); Height
of hanger above desk, h(m); and Extension of
spring, x(m).

5. Attach the weight holder and measure its
distance above the desktop. Record this
value in the first row of the table. This value
will be your equilibrium value, h,, at which
you will assign the value of zero to the
extension of the spring, x. Put these values
in the first line of your table.

6. To create an applied force, add a mass to the
weight holder. Wait for the spring to come
to rest and measure the height of the weight
holder above the desk. Record these values
in the table.

7. Complete the second row in the table by
calculating the value of the applied force
(weight of the mass) and the extension of
the spring (x = h, — h).
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TARGET SKILLS
¢ Performing and recording
¢ Analyzing and interpreting

¢ Communicating results

8. Continue by adding more masses until you

have at least five sets of data. Make sure that
you do not overextend the spring.

Analyze and Conclude

1.

Draw a graph of the applied force versus the
extension of the spring. Note: Normally, you
would put the independent variable (in this
case, the applied force) on the x-axis and the
dependent variable (in this case, the exten-
sion of the spring) on the y-axis. However,
the mathematics will be simplified in this
case by reversing the position of the
variables.

. Draw a smooth curve through the data

points.

3. Describe the curve and write the equation for

the curve.

. State the relationship between the applied

force and the extension. This relationship
is known as “Hooke’s law.”

5. When the spring is at rest, what is the rela-

tionship between the applied force and the
force exerted on the mass by the spring? This
force is usually referred to as the “restoring
force.” Restate the spring relationship in
terms of the restoring force of the spring.

. By finding the area under the graph between

the origin and the point of maximum exten-
sion, determine the amount of energy stored
in the spring.

. Write an equation for the energy stored in the

spring when the slope of the graph is k and
the extension is x.

. Devise and carry out an experiment to deter-

mine whether a similar relationship exists
for the bending of a metre stick. Obtain your
teacher’s approval before carrying out the
experiment.



Hooke's Law

Investigation 5-B illustrated Hooke’s law, which states that the
amount of extension or compression of a spring varies directly
with the applied force. A graphical illustration of this law for an
extended spring is shown in Figure 5.9.

Since the data produce a straight line, the equation can be
written in the form y = mx + b, where m is the slope and b is the
y-intercept. The slope of the line describing the properties of a
spring, called the spring constant, is symbolized by k and has
units of newtons/metre. Each spring has its own constant that
describes the amount of force that is necessary to stretch (or
compress) the spring a given amount. In your investigation, you
were directed to assign the reference or zero position of your
spring as the position of the spring with no applied force. As a
result, x was zero when F was zero. This choice is the accepted
convention for working with springs, and it makes the y-intercept
equal to zero because the line on the graph passes through the
origin. This relationship leads to the mathematical form of Hooke’s
law (which is summarized in the following box): F, = kx, where
F, is the magnitude of the applied force, x is the magnitude of
the extension or compression, and k is the spring constant.

HOOKE'S LAW
The applied force is directly proportional to the extension or
compression of a spring.
F, = kx

Quantity Symbol Sl unit
applied force F, N (newtons)
spring constant k % (newtons per metre)
amount of extension or
compression of the spring b'e m (metres)
Unit Analysis
newtons = (M)(metre) N = Em =N

metre et

According to Newton’s third law of motion, the force exerted
by the object that is applying the force to the spring is equal and
opposite to the force that the spring exerts on that object. The
force exerted by the spring is called the restoring force. Often,
Hooke’s law is written in terms of the restoring force of the

S

g

= F,e<x
'-8 a

= or
[«b]

= F,=kx
o,

oy

<

Extension (x)

m The applied force

varies directly with the extension
of a spring.
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The spring constant is closely
related to a quantity called the
“modulus of elasticity.” This is
defined as the stress on the
object divided by the strain.
Stress is defined as the applied

spring: Fs = —kx. The negative sign shows that the restoring force
is always opposite to the direction of the extension or compression
of the spring.

spring
restoring force

force divided by the cross-
sectional area, and the strain

is the amount of extension or
compression per unit length.

This quantity is used to predict
how structural components, from
aircraft wings to steel beams, will
behave when under a given load.

GIMEETY The restoring force

always opposes the applied force
and acts in the direction of the
equilibrium position of the spring.

applied force

SAMPLE PROBLEM

Hooke’s Law in an Archery Bow

A typical compound archery bow requires a force of 133 N to hold
an arrow at “full draw” (pulled back 71 cm). Assuming that the
bow obeys Hooke’s law, what is its spring constant?

Conceptualize the Problem

m When an archer draws a bow, the applied force does work on the
bow, giving it elastic potential energy.

m Hooke’s law applies to this problem.

Identify the Goal
The spring constant, k, of the bow

Identify the Variables and Constants

Known Unknown
F,=133 N k
x=71cm

Develop a Strategy

Use Hooke’s law (applied force form). F,=kx
Solve for the spring constant. k=ta
X
Substitute numerical values and solve. k= e b
0.71 m
k =187.32 E
m

k=19x102 N
m

The spring constant of the bow is about 1.9 x 102 %
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Validate the Solution

When units are carried through the calculation, the final quantity
has units of N/m, which are correct for the spring constant.

PRACTICE PROBLEMS

16. A spring scale is marked from 0 to 50 N.
The scale is 9.5 cm long. What is the spring
constant of the spring in the scale?

spring?

17. A slingshot has an elastic cord tied to a
Y-shaped frame. The cord has a spring
constant of 1.10 x 10° N/m. A force of
455 N is applied to the cord.

(a) How far does the cord stretch?

Calculating Elastic Potential Energy

The graph of Hooke’s law in Figure 5.9 not only gives information
about the forces and extensions for a spring (or any elastic sub-
stance), you can also use it to determine the quantity of potential
energy stored in the spring. As discussed previously, you can find
the amount of work done or energy change by calculating the
area under a force-versus-position graph. The Hooke’s law graph
is such a graph, since extension or compression is simply a
displacement. The area under the graph, therefore, is equal to

the amount of potential energy stored in the spring, as illustrated
in Figure 5.11.

S

o]

g -

= !

E i | height=F
_'& i height = kx;
< |

X1

Extension or compression (x)

m The triangular area under the Hooke's law graph gives you
the amount of elastic potential energy stored in the spring at any amount
of extension.

(b) What is the restoring force from the

18. The spring in a typical Hooke’s law appara-
tus has a force constant of 1.50 N/m and a
maximum extension of 10.0 cm. What is the
largest mass that can be placed on the spring
without damaging it?

W PHYSICS FILE g

A perfectly elastic material will
return precisely to its original
form after being deformed, such
as stretching a spring. No real
material is perfectly elastic. Each
material has an elastic limit, and
when stretched to that limit, will
not return to its original shape.
The graph below shows that
when something reaches its
elastic limit, the restoring force
does notincrease as rapidly as it
did in its elastic range.

non-elastic
range

elastic limit —
\
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As you can see in Figure 5.11, the area under the curve of

W, PHYSICS FILE

Robert Hooke (1635-1703) was applied force versus extension of a spring isa tri‘angle. You can ‘
one of the most renowned scien- use the geometry of the graph to derive an equation for the elastic
tists of his time. His studies in potential energy stored in a spring.
elasticity, which resulted in the m Write the equation for the area
law being named after him, of a triangle. A= %(base](height)
allowed him to design better
balance springs for watches. m The elastic potential energy E.=A
He also contributed to our under- ; S
standing of optics and heat. In ii);zf :}Illeacigl“:; g is the area E. = %(base)(height)
1663, he was elected as a Fellow
of the Royal Society in London. m The base of the triangle is the
His studies ranged from the amount of extension of the
microscopic — he observed and spring, x;. base = x;
named the cells in cork and ’
investigated the crystal structure m The height of the triangle is the height = F(x)
of snowflakes — to astronomy — force at an extension of x;. Kk
his diagrams of Mars allowed F(x1) = kx
others to measure its rate of height = kx;
rotation. He also proposed the
inverse square law for planetary m Substitute the values into the E, = %(X1]U<X1)
motion. Newton used this rela- expression for elastic potential
tionship in his law of universal energy. E, = %kxf
gravitation. Hooke felt that he had
not been given sufficient credit by m The expression is valid for any E, = Lkx?
Newton for his contribution, and value of x. 2
the two men remained antagonis-
it tic for the rest of Hooke's life. The equation you just derived applies to any perfectly elastic

system and is summarized in the box below.

ELASTIC POTENTIAL ENERGY

The elastic potential energy of a perfectly elastic material is
one half the product of the spring constant and the square of
the length of extension or compression.

— 172
Ee = EkX
Quantity Symbol Sl unit
elastic potential energy E, J (joules)
spring constant k % (newtons per metre)

length of extension

or compression X m (metres)

Unit Analysis

joule = newton . otre? ]= (E>m2 =N-m=]
metre 1
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SAMPLE PROBLEM

Elastic Potential Energy of a Spring
A spring with spring constant of 75 N/m is resting on a table.

(a) If the spring is compressed a distance of 28 cm, what is the increase
in its potential energy?

(b) What force must be applied to hold the spring in this position?

Conceptualize the Problem
m There is no change in the gravitational potential energy of the spring.
m The elastic potential energy of the spring increases as it is compressed.
® Hooke’s law and the definition of elastic potential energy apply to

this problem.

Identify the Goal

The elastic potential energy, E., stored in the spring
The applied force, F,, required to compress the spring

Identify the Variables and Constants

Known Unknown
k=75 N E,

m
x=0.28 m Fa

Develop a Strategy

Apply the equation for elastic E,= % kx?
potential energy. X N
Substitute and solve. E, = 7(75 E)(O'ZB m)?
E,=2.94]
E,=29]

(a) The potential energy of the spring increases by 2.9 J when it is
compressed by 28 cm.

Use Hooke’s law to calculate the F, = kx
force at 28 cm compression. N
F,= (75 —)(0.28 m)
m
F,=21N

(b) A force of 21 N is required to hold the spring in this position.

Validate the Solution

Round the given information to 80 N and 0.3 m and do mental multiplication.
The resulting estimated change in elastic potential energy is 3.6 J and the
estimated applied force is 24 N. The exact answers are reasonably close to
these estimated values. In addition, a unit analysis of the first part yields

an answer in N-m or joules, while the second answer is in newtons.

Chapter 5 Conservation of Energy
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continued from previous page

PRACTICE PROBLEMS

19. An object is hung from a vertical spring,
extending it by 24 cm. If the spring constant
is 35 N/m, what is the potential energy of the

stretched spring?

20. An unruly student pulls an elastic band that

2.2 J increase in its potential energy. How far
did the student stretch the elastic band?

21. A force of 18 N compresses a spring by
15 cm. By how much does the spring’s
potential energy change?

has a spring constant of 48 N/m, producing a

g PHYSICS FILE oy

Gravitational potential energy is
energy that an object possesses
due to its position in a gravitation-
al field. Elastic potential energy is
a bit harder to picture. However,
when a material is stretched or
twisted, its atoms move relative
to each other. Since the atoms
are held together by electric
forces, elastic potential energy

is related to the position of an
object, such as an atom in an
electric field.

spring \

e

Restoring Force and Periodic Motion

The restoring force exerted by a spring always points toward the
equilibrium or rest position for that spring. When the spring is
extended, the restoring force pulls it back toward its equilibrium
position. When the spring is compressed, the restoring force
pushes it outward. The nature of this force makes it possible for

a spring to undergo a back-and-forth, or oscillating, motion called
periodic motion. If the restoring force obeys Hooke’s law precisely,
the periodic motion is called simple harmonic motion.

Periodic motion is closely associated with wave motion, a topic
that you have studied in previous physics courses. You might
recall that a vibrating or oscillating object often creates a wave.
You can make the comparison by imagining that you attached a
pen to the end of a spring and allowed it to rest on a long sheet of
paper. If you extended the spring and then released it, the pen
would oscillate back and forth, drawing a line on the paper. If you
pulled the paper under the pen at a steady rate while the pen was
in motion, you would create an image like the one in Figure 5.12.
You probably recognize the figure as having the same shape as the
waves that you studied. Many of the terms that you learned in
connection with waves also apply to periodic motion.

stationary support

———— period (T

dlI‘eCUOIl of motion crest
amphtude of paper
f

rest posmon

amplitude

trough

sheet of paper

GIMIXEED This wave shows how the position of the mass at the end of
a spring changes with time. Mathematically, this graph is called a sine wave.
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INVESTIGATION 5-C TARGET SKILLS

® Predicting
* Analyzing and interpreting
e Communicating results

A Analyzing Periodic Motion

Imagine that a spring is lying on a frictionless 3. Use the mathematical relationships that you
surface. One end is fastened to an immovable have learned in this chapter and previous
object and a 4.0 kg mass is attached to the free chapters to calculate all of the other values
end, as shown in part (A) of the diagram. Then, in the table. Be sure to include positive and
the 4.0 kg mass is pulled 2.0 m to the left and negative directions in your calculations,
held in place. You will follow the mass from where appropriate. (Hint: Note that the

the time it is released until it has travelled from mass was released from rest at point A.)

Point A to point E, and then back to point A
again, by determining the values of several of its  Analyze and Conclude

variables at each labelled point. Let the positive 1. At which points in the cycle does the mass
direction be to the right and negative to the left. have (a) the greatest acceleration and (b) the
greatest speed?
A |
| k=100 X 2. At which points in the cycle does the spring
I v qunhwnwwnnww’ (a) exert the greatest restoring force, ‘
: ‘ (b) possess the greatest amount of elastic
\ 8.0m —— potential energy, and (c) possess the least
B | amount of elastic potential energy?
|
! ’ 3. Why does the mass reverse direction at
M lbblllblllblllblbb 0 point E and then at point A’?
\
{* B C D E 4. If there is no friction, what will happen to
1m 1m 1m 1m the motion of the mass and spring? Give
reasons for your answer.
Problem

5. Plot both of the following relationships on
one graph: acceleration versus position and
velocity versus position. Use different
colours and scales on the vertical axis for

Why does a spring continue to vibrate when
stretched and then released?

Procedure each of the plots.

1. Prepare a table with the headings: Point,
Extension or compression x(m), Restoring 6. Explain the relationships between velocity
force F(N), Acceleration a(m/s?), Elastic and acceleration at those points where
potential energy E,(J), Kinetic energy Ei(]), velocity is zero and where acceleration
Total energy E;(]), Velocity vV (m/s), and dis- is zero.
placement of the mass Ad(m). Provide nine 7. On one graph, again using different colours,
rows under the headings. plot elastic potential energy versus position,

2. Under the heading “Point,” list the letters A kinetic energy versus position, and total
through E in the first five rows. In the follow- energy versus position. Discuss the signifi-
ing four rows, to represent the return trip, list cance of the relationships among these
D through A, with a prime on each letter. In graphs.

the column headed “Extension or compres-
sion,” write the displacement, x, between the
given point and the equilibrium position, C.
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The previous investigation asked
you to imagine a frictionless
surface. Physics courses are
littered with frictionless surfaces
and massless springs, strings,
and ropes. Making these assump-
tions simplifies calculations and
helps to focus on the essential
ideas. Once the process becomes
one of engineering and design,
however, friction and masses of
components become extremely
important and cannot be ignored.

Periodic motion always requires a restoring force that depends
on a displacement from a rest or equilibrium position in order to
keep on repeating. In the case of a vibrating spring, this restoring
force is provided by the attractive forces between atoms in the
spring. In a resonating air column, such as in a sounding trumpet
or clarinet, the restoring force is provided by collisions with
other air molecules. In an oscillating pendulum, such as a mass
swinging on a length of string, the horizontal component of the
tension (7) in the string returns the mass to the centre.

1
1
i
i T Ty
i
swing mass E Ty
(m) : mg
T = tension in string T,=Tsin @
Ty, = Tcos @

m The horizontal component of the tension always acts in the
direction of the equilibrium position of the pendulum. At the equilibrium
position, the horizontal component of the tension is zero.

Periodic (or nearly periodic) motion is seen everywhere.
Playground swings and teeter-totters exhibit periodic motion.
Sound waves, water waves, and earthquake waves involve
periodic motion. The electromagnetic spectrum from the radio
waves that carry signals to our radios and televisions, to the
gamma radiation emitted from radioactive materials, all embody
periodic motion.

GIMIEEDD Waves on the ocean involve both transverse and longitudinal
vibrations.
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In Investigation 5-A, you attempted to test the
law of conservation of energy by making a
prediction involving the transfer of energy
from gravitational potential energy into kinetic
energy. In this investigation, you will examine
the transfer from elastic potential energy into
kinetic energy. You will then use the predicted
value of kinetic energy to determine the launch
velocity of a projectile and, therefore, its range.

Problem

Does the law of conservation of energy make
valid predictions when energy is converted from
elastic potential energy into kinetic energy?

Equipment

m balance m metre stick or

metric tape measure
m ytility clamp
m small spring
m small cardboard box
m masking tape

m retort stand

= ramp or small,
smooth board

m set of masses with
a mass holder

m protractor

Safety goggles must be worn during
this activity.

Procedure
Work in small groups for the investigation.

1. Measure the mass of the spring.

2. Using the equipment, determine the spring
constant for the spring.

3. Set up the ramp on a desk, or make a ramp
by resting one end of the board on a stack
of books. Measure the angle that the ramp
makes with the desktop. Make sure that there
is a long stretch of clear space in front of the
ramp.

4. Decide on the amount of extension that you
intend to use with the spring and then deter-
mine the corresponding elastic potential
energy stored in the spring at that extension.

TARGET SKILLS
® Predicting
® Performing and recording
¢ Analyzing and interpreting

5. Set up the spring by hooking one end over
the upper edge of the ramp. Then, pull it
backward to extend it the selected distance
and release it. Use the law of conservation
of energy to determine the velocity with
which the spring will leave the ramp.

6. Use the velocity and the height of the end of
the ramp to determine the point at which
the spring will hit the floor (or the wall).

7. Place the cardboard box at that predicted
point and perform the launch.

Analyze and Conclude

1. Provide a summary of your force-extension
measurements for the spring.

2. Show your calculation of the spring constant.

3. What extension did the group choose? Show
your calculation of the elastic potential
energy stored in the spring.

4. Show your calculation of the
(a) velocity of the spring as it leaves the ramp

(b) range of the projectile (the spring)

5. How close did the spring come to its predict-
ed landing point?

6. Describe the energy changes that occurred
during the launch and flight of the spring.

1. Does this investigation further confirm the
law of conservation of energy?

Apply and Extend

8. Spring-loaded dart guns with dart safety tips
are available as toys. Decide how you could
determine the spring constant and hence the
maximum range of the projectile (the dart).
If possible, repeat this investigation using
one of these toy guns. You might recall from
earlier studies that the maximum range
occurs when the dart is launched at 45° to
the horizontal.
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m Section Review

1. Explain how each of the following
behave like a spring.

(a) a pole used in pole-vaulting
(b) the strings in a tennis racquet
(e) the string on a bow
2. @ Prove that the expression for elastic

potential energy has units equivalent to the
joule.

3. @M In what way is a spring similar to a
chemical bond?

4. @O List three other forms of periodic motion
not mentioned in the section.

5. A guitar string is vibrating horizontally,
as shown in the diagram. It vibrates between
positions A and B, passing through the equi-
librium or rest position C. In which positions
is the string vibrating with the following?

A

(a) greatest speed
(b) least speed
(c) greatest kinetic energy
(d) greatest elastic potential energy
Give reasons for your choices.

6. @ There are four basic forces in our
universe.

m the weak nuclear force (between particles
in the nucleus)

= the strong nuclear force (between particles
in the nucleus)

m electromagnetic force (between charged
particles)

m gravitational force (between masses)

Which force is responsible for the potential
energy stored in the following?
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(a) a battery
(b) the water behind a dam
(c) a stretched spring

(d) a mound of snow at the top of a slope just
before an avalanche

7. @ Describe an investigation to determine
the force-extension characteristics of an
archery bow.

8. @ Prepare a diagram to demonstrate the
relationships between the gravitational
potential energy, and the kinetic energy of
the swinging bob in a pendulum.

9. @ Given the following graph of applied
force against extension, describe a technique
for determining the amount of potential
energy stored in the object between points A
and B.

Force: F (N)
>

Extension: x (m)

UNIT PROJECT PREP

Once you understand both periodic motion
and the conditions necessary to generate it,
you will find that periodic motion frequently
appears in both natural and manufactured
systems.

m Brainstorm to identify systems that experi-
ence periodic motion.

m Attempt to formulate an argument support-
ing an intrinsic link between understanding
the periodic transformation of energy and
environmentalism.




Energy Transformations

The law of conservation of energy is one of the most useful tools SECTION \

in physics. Since work and energy are scalar quantities, directions EXPECTATIONS
are not involved, as they are in momentum. As a result, vector « Analyze situations involving the

diagrams are not needed, and angles do not have to be calculated. concepts of mechanical energy,
In any given event, the problem is usually to identify the types thermal energy, and its transfer.

of energy involved and to ensure that the total energy in all « Analyze situations involving
its different forms at the end of the event equals the total at the concept of conservation
the beginning. of energy.

The analysis is often easiest when the motion occurs in a
horizontal plane. No change in gravitational potential energy

KEY \
TERMS

e conservative force

is involved. The following sample problem illustrates this feature.

* non-conservative force

SAMPLE PROBLEM

Horizontal Elastic Collisions

A low-friction cart with a mass of 0.25 kg travels
along a horizontal track and collides head on 05k k =155
with a spring that has a spring constant of m=120%8

155 N/m. If the spring was compressed by 6.0 cm, cart v
how fast was the cart initially travelling? i;‘_
Conceptualize the Problem

m The cart is moving so it has kinetic energy.

N
m

spring

m The spring does negative work on the cart, lowering its kinetic energy.
m The cart does work on the spring, giving it elastic potential energy.

m The height of the cart does not change, so there is no change in
gravitational potential energy.

m The term low friction tells you to neglect the energy lost to work
done by friction.

m The law of conservation of energy applies to this problem.

Identify the Goal
The initial speed, v, of the cart

Identify the Variables and Constants

Known Unknown
m = 0.25 kg x =0.060 m 1%
k =155 E

m

continued
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continued from previous page
Develop a Strategy

Write the law of conservation of energy,
including the energy quantities associated
with the interaction. Ek + E¢ = Ex + E,

Initially, the spring was not compressed, so
the initial elastic potential energy was zero. l,=0]

After the interaction, the cart stopped, so the

kinetic energy was zero. E.=0]
Substitute the values for energy listed above. 0J+E=E+0]

Ey = E¢
Expand by substituting the expressions for % mv? = % kx?
the energies. z
Solve for the initial velocity. V= ,/%

N 2
Substitute numerical values and solve. V= \/ (155 161)2[21260 mm,
: g

v = 1.493 99 %
v=152
s
The cart was travelling at approximately 1.5 m/s before the collision.

Validate the Solution
2
Unit analysis of the equation v = ‘/% shows that it is equivalent to m/s,

N 2 kg-m 2
the standard units for velocity. \/m o M /% =
kg kg S s

A velocity of 1.5 m/s is reasonable for a lab cart.

PRACTICE PROBLEMS

22. A 1.2 kg dynamics cart is rolling to the right (c) Determine the acceleration of the cart
along a horizontal lab desk at 3.6 m/s, when at the moment that the spring was
it collides head on with a spring bumper that compressed 0.10 m.

: 2
has a spring constant of 2.00 x 10° N/m. 23. A circus car with a clown has a total mass

of 150 kg. It is coasting at 6.0 m/s, when it
hits a large spring head on. If it is brought to

(a) Determine the maximum compression
of the spring.

(b) Determine the speed of the cart at the a stop by the time the spring is compressed
moment that the spring was compressed 2.0 m, what is the spring constant of the
by 0.10 m. spring?
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The analysis becomes a bit more complicated when the m  PHYSICS FILE o

motion is vertical, since there are now changes in gravitational
potential energy along with elastic potential energy and

kinetic energy.

SAMPLE PROBLEM

The energies discussed here are
commonly found in mechanical
systems with springs and pulleys.
As a result, kinetic energy,
gravitational potential energy,
and elastic potential energy

are commonly referred to as
“mechanical energy.”

Vertical Elastic Collisions

A freight elevator car with a total mass of 100.0 kg is ‘\‘ M M‘
moving downward at 3.00 m/s, when the cable snaps. elevator car
The car falls 4.00 m onto a huge spring with a spring ”m =100 kg
constant of 8.000 x 10* N/m. By how much will the spring l
be compressed when the car reaches zero velocity? 300
’ s

Conceptualize the Problem +00m
m Initially, the car is in motion and therefore has kinetic

energy. It also has gravitational potential energy. 1

X

m As the car begins to fall, the gravitational potential energy ) % i

transforms into kinetic energy. When the elevator hits the Spriig [

spring, the elevator slows, losing kinetic energy, and the

spring compresses, gaining elastic potential energy.
®m When the elevator comes to a complete stop, it has no kinetic

or gravitational potential energy. All of the energy is now

stored in the spring in the form of elastic potential energy.
m Since all of the motion is in a downward direction, define

“down” as the positive direction for this problem.
Identify the Goal
The compression of the spring, x, when the car comes to rest
Identify the Variables and Constants
Known Implied Unknown
Mear = 100.0 kg g=19.81 % x
v = 3.00 %[down]
k = 8.000 x 10°

m
h(above spring) = 4.00 m
Develop a Strategy
Write the law of conservation of energy
for the forms of energy involved in
the problem. Eg + E{ + E{ = Eg + Eo + Ex
continued »
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continued from previous page
Choose the lowest level of the elevator

(maximum compression of the spring)
as the reference level for gravitational

potential energy. Eg=0]

The car comes to a rest at the lowest

point. Ec=0]

Initially, the spring is not compressed. E.=0]

Substitute these initial and final condi- OJ+E+0]=E;+0]+ Ex
tions into the equation for conservation E} = E, + Ex

of energy and simplify.

Expand by substituting the expressions 1 kx? = mgAh + L mv?
for the various forms of energy. 2 2

The change in height for the gravita-
tional potential is 4.00 m, plus the
compression of the spring, x. Substitute
this expression into the equation.

Slnce.the equation yields a quadratic %(8.00 % 103 ﬁ)xz = (100.0 kg)<9.81 %)(4.00 & 5
equation, you cannot solve for x. m s

Substitute in the numerical values
and rearrange so that the right-hand
side is zero. 4.00 x 10°x% — 981x — 3924 — 450 =0

kx? = mg(4.00 + x) + %mv2

N[

+1(100.0 kg)(s.oo %)2

4.00 x 10°x* — 981x — 4374 = 0
Use the quadratic formula to find the
value of x. = 981 £ V(=981)” — 4(4.00 X 10%)(~4374)

2(4.00 x 10%)
x=1.1756 m or - 0.930 25 m

x=1.18 m

Compression cannot be negative (or the spring would be stretching),
so choose the positive value. The spring was compressed 1.18 m.

Validate the Solution

N kg kg - m?
The units on the left-hand side of the final equation are o -m?* = Islzl -m?* = gSz .
kg - m?

On the right-hand side of the equation, the units are kg - % ‘m =

Both sides of the equation have the same units, so you can have
confidence in the equation. The answer is also in a range that would
be expected with actual springs.

Note: The negative root in this problem is interesting in that it does
have meaning. If the car had somehow latched onto the spring during
the collision, the negative value would represent the maximum
extension of the spring if the car had bounced up from the bottom
due to the upward push of the spring.
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PRACTICE PROBLEMS

24.

A 70.0 kg person steps through the window
of a burning building and drops to a rescue
net held 8.00 m below. If the surface of the
net is 1.40 m above the ground, what must be
the value of the spring constant for the net so
that the person just touches the ground when
the net stretches downward?

26. In a “head dip” bungee jump from a bridge

over a river, the bungee cord is fastened to

the jumper’s ankles. The jumper then steps
off and falls toward the river until the cord
becomes taut. At that point, the cord begins
to slow the jumper’s descent, until his head
just touches the water. The bridge is 22.0 m

25. A 6.0 kg block is falling toward a spring
located 1.80 m below. If it has a speed of
4.0 m/s at that instant, what will be the
maximum compression of the spring? The
spring constant is 2.000 x 10° N/m.

above the river. The unstretched length of
the cord is 12.2 m. The jumper is 1.80 m tall
and has a mass of 60.0 kg. Determine the

(a) required value of the spring constant for
this jump to be successful

(b) acceleration of the jumper at the bottom
of the descent

Conservative and Non-Conservative Forces

Until now, you have been asked to assume that objects could move
without friction. A pendulum would keep swinging repeatedly
with the same amplitude, continuously converting energy between
kinetic and gravitational potential forms of energy. A skier could
slide down a hill, converting gravitational potential energy into
kinetic energy and then, faced with an upward slope, could keep
on going, converting the kinetic energy back into potential energy
until the original height was reached.

The forces with which you have been dealing are referred to as
conservative forces. This means that the amount of work that they
do on a moving object does not depend on the path taken by that
object. In the absence of friction, the boulder in Figure 5.15 will
reach the bottom of the hill with the same kinetic energy and
speed whether it dropped off the cliff on the left or slid down the
slope on the right.

boulder

/PR

COURSE CHALLENGE

Energy Transformations

Light energy is transformed into
stored chemical energy each
time you take a photograph. The
operation of infrared cameras,
ultrasound images, and video
cameras also relies on various
energy transformations. Refer
to page 604 for suggestions on
relating energy transformations
to your Course Challenge.

XD Gravity is a conser-

vative force. If the boulder was
dropped over the edge of the cliff,
all of the gravitational potential
energy would be converted into
kinetic energy. Friction is not a
conservative force. If the boulder
slides down the hill, the kinetic
energy at the bottom will not be
as great as it would if the boulder
fell straight down.
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ELECTRONIC

LEARNING PARTNER

To enhance your understanding of
energy transformation, refer to
your Electronic Learning Partner.

R PHYSICS FILE g

Quite often, you might not want
your forces to be conservative.
Without friction, many of your
clothes would simply fall apart
into strands as you moved. In
addition, keep-fit programs would
have to be greatly modified. A
person who rides an exercise
bicycle to lose mass (through
chemical reactions that provide
the energy) does not want the
energy back. It simply is dissipat-
ed as sound and heat. Likewise,
the weight lifter who does work
to lift a bar bell does not expect
to receive that energy back when
the bar bell is lowered.

Friction is a non-conservative force. The amount of work done
by a non-conservative force depends on the path taken by the
force and the object. For example, the amount of energy trans-
ferred to the snow in Figure 5.16 depends on the path taken by
the skier. The skier going straight down the slope should reach
the bottom with a greater speed than the skier who is tracking
back and forth across the slope.

dd u!&*_g

m Although friction between the skis and the snow is small,
friction nevertheless does some work on the skiers, slowing their velocity
a little. The work done by friction is greater along the longer of the paths.

Friction causes the skier to do work on the environment. The
snow heats up slightly and is moved around. For the skier, this is
negative work — the skier is losing energy and cannot regain it as
useful kinetic or potential energy. The sum of the skier’s kinetic
and gravitational potential energy at the end of the run will be
less than it was at the start.

Wind pressure is another example of a non-conservative force.
If the skier had the wind coming from behind, the wind (the
environment) could be doing work on the skier. This would be
positive work. The sum of the skier’s kinetic and gravitational
potential energies could increase beyond the initial total. However,
the amount of energy transferred by the wind would depend to
a large extent on the path of the skier, so the wind would be a
non-conservative force.

When dealing with non-conservative forces, the law of conser-
vation of energy still applies. However, you must account for the
energy exchanged between the moving object and its environment.
One approach to this type of situation is to define the system as
the skier and the local environment; that is, the skier, wind,
and snow become the system. The following sample problem
illustrates this concept.
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SAMPLE PROBLEM

Energy Conversions on a Roller Coaster

A roller-coaster car with a mass of 200.0 kg
(including the riders) is moving to the right at
a speed of 4.00 m/s at point A in the diagram.
This point is 15.00 m above the ground.

The car then heads down the slope toward
point B, which is 6.00 m above the ground.

If 3.40 x 10° J of heat energy are produced
through friction between points A and B,
determine the speed of the car at point B.

Conceptualize the Problem

15.0 m B

m As the roller-coaster car moves down the track, most of the
gravitational potential energy is converted into kinetic energy,

but some is lost as heat due to friction.

m The law of conservation of total energy applies.

® Heat energy must be included as a final energy.

Identify the Goal
The speed of the car at point B, v

Identify the Variables and Constants

Known Implied Unknown
ha =15.00 m Eneat = 3.40 X 10° ] g=9.81 % VB
hg = 6.00 m m = 200.0 kg

Va = 4.00 %

Develop a Strategy

Write the law of conservation of energy,
including heat as a final energy form.

Expand by substituting the expressions
for the forms of energy. Solve for the
speed of the car at point B

E{ + Eg + Eheat = Ex + Eg

1 2 _1 2
S mvy + mghp + Epea = S mvy + mgha

1 2 1 2
S mvy = —mghp — Epeat + S MV + mgha

vio 2(-mghg — Epeat + 3mV3 + mghy)
m

vy = \/2(—mghB — Eheat + 3m(va)* + mghy)
m

S

2[~(11772 x 10* %) — (3.40 x 10° ) + (1.6 x 10° k%) + (2.943 x 10* )

VB =

S

200.0 kg

\/3.1716 x 10% X m
VB =

200.0 kg

continued
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continued from previous page

2
vg = \/1.5858 x 102 %
vp = 1.2593 x 10" =
vg=12.6 m

s
The speed of the car at point B will be 12.6 m/s.

Validate the Solution
The speed at point B is expected to be larger than its speed at point A.

PRACTICE PROBLEMS

21. Determine the speed of the roller-coaster Determine the speed of the sled at point X,
car in the sample problem at point C if point which is 3.0 m above the base of the hill,
C is 8.0 m above the ground and another if the sled does 1.22 x 10° J of work on the
4.00 x 10*J of heat energy are dissipated by snow on the way to point X.
friction between points B and C. g0 M
My = 200 kg ;»
> —4.00
A
C
15.0m B
1 !
6.0 m 8.0m
! l
| | 29. If the sled in the previous question reaches
28. A sled at the top of a snowy hill is moving the base of the hill with a speed of 15.6 m/s,
forward at 8.0 m/s, as shown in the diagram. how much work was done by the snow on
The hEIght Of the hlll is 12.0 m. The total the Sled between points X and Y?

mass of the sled and rider is 70.0 kg.

In solving these problems, you have assumed that the value for
the acceleration due to gravity (g) is constant at 9.81 m/s%. You
probably recall reading that this value is valid only for a small

PROBEWARE

If your school has probeware

equipment, visit region close to Earth’s surface. In Chapter 3, you learned that,
www.mcgrawhill.ca/links/ as you go to the higher altitudes, the acceleration due to gravity
physies12 and follow the links decreases. You worked with forces of gravity at any distance from
for an in-depth activity on energy, Earth, other planets, and even stars. You learned how to calculate

Hooke's law, and simple harmonic

i the radii of orbits and orbital speed of satellites.
motion.

In the next chapter, you will focus on the energy requirements
for sending a satellite into orbit and even for escaping Earth’s
gravitational pull entirely. You will also learn the importance of
the conservation of momentum in navigating through space.
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INVESTIGATION b5-E

f Mechanical and Thermal Energy

Before 1800, physicists and chemists did not
know that a relationship existed between
mechanical energy and heat. Count Rumford
(Benjamin Thompson: 1753-1814) was the first
to observe such a relationship, followed by
Julius Robert Mayer (1814—1878). Rumford and
Mayer made some very important discoveries.
Mayer was unable to express himself clearly

in writing, however, so his discoveries were
overlooked. Eventually, James Prescott Joule
(1818—1889) was credited with the determina-
tion of the mechanical equivalence of heat. In
this investigation you will perform experiments
similar to those of Mayer and Joule.

Problem

How much heat is produced when a mass of
lead pellets is repeatedly lifted and dropped
through a known distance?

Equipment

= halance

m thermometer (°C)
m [ead shot

m cardboard or plastic tube with a small hole in the
side, close to one end; the ends must be able to
be closed

m metre stick
m small amount of masking or duct tape

Procedure
1. Determine the mass of the lead shot.

2. Place the lead shot into the tube and close up

the tube. Let the tube sit upright on a desk
for several minutes to allow the tube and its
contents to come to room temperature. Make
sure that the hole is close to the bottom of
the tube.

3. Insert the thermometer or temperature probe
through the hole in the tube and nestle the
end in the lead shot. Measure and record
the temperature.

TARGET SKILLS
¢ Performing and recording
* Analyzing and interpreting
¢ |dentifying variables

4. Close the hole.
5. Measure the length of the tube.

6. Repeatedly invert the tube for several
minutes, waiting only to allow the lead
shot to fall to the bottom on each inversion.
Keep track of the number of inversions.

7. Finish the inversions with the hole near the
bottom of the tube. Remove the tape and
measure the temperature of the lead shot.
Record the final temperature.

Analyze and Conclude

1. What were the initial and final temperatures
of the lead shot? What was the total mass of
the lead shot?

2. Determine the quantity of heat gained by the
lead shot (the specific heat capacity of lead
is 128 J/kg-C°).

3. Determine the total distance through which
the lead shot was lifted by the inversions
and calculate the total gain in gravitational
potential energy of the lead.

4. Determine the percentage of the gravitational
potential energy that was converted into
heat.

5. If the conversion into heat does not account
for all of the gravitational potential energy
gained by the lead shot, where else might
some of the energy have gone?

Apply and Extend
6. How could this investigation be improved?
Try to design a better apparatus and, if possi-
ble, carry out the investigation again.

7. Do research and write a summary of the
work of Rumford, Mayer, and Joule on the
mechanical equivalence of heat.
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M CANADIANS IN PHYSICS

Follow Your Dreams

One of the great honours in physics is to have

a physical law or constant named after you —
Newton'’s laws, Planck’s constant, the Heisenberg
uncertainty principle. Now, the name of Canadian
physicist Dr. lan Keith Affleck can be added to this
list. “Affleck-Dine Baryogenesis” is the name given
to a physical mechanism that might have played
an important role in the early universe in creating
one of the classes of particles that now make up
all of the matter that exists today.

For Dr. Affleck,
who was born in
Vancouver and grew
up both there and in
Ottawa, understanding
nature has always
been one of his great
interests. “l became
rather fascinated at
a fairly young age
with the idea that

deep things about [ _

the universe could be
understood by using
mathematics,” he explains.
At high school in Ottawa,
he was inspired by the intellectual enthusiasm

of his physics teachers, and in university decided
on a career in theoretical physics. Ironically,

at the time, he “was not very optimistic about
actually being able to make a career from

my interests.”

One of the great questions plaguing theoretical
physicists is nothing less than the age-old philo-
sophical question: Why are we here? It is believed
that at the time of the Big Bang, there were nearly
equal amounts of matter and antimatter. Since
matter and antimatter annihilate each other, if the
amounts of each were exactly equal, there would
be nothing left after particle annihilation. So, there
had to be some excess of matter over antimatter,
and it had to be just the right amount of excess
to yield the universe and the physics that exist
today. Dr. Affleck, together with fellow theoretician
Michael Dine, proposed a possible explanation —

Dr. lan Affleck

Affleck-Dine Baryogenesis. Verifying this principle
is now an active part of physics research all over
the world.

Dr. Affleck has since gone on to bring his
mathematical talents to more immediate problems.
Specifically, he has been hard at work adapting the
mathematics he helped develop for an understand-
ing of the universe to problems of understanding
how and why high-temperature superconductors
work. “I saw some opportunities to apply the same
sort of mathematical ideas more directly,” he says.
Just as there is a problem with the pairing of parti-
cles and antiparticles in the early universe, there
appears to be a pairing mechanism at work in the
behaviour of high-temperature superconductors,
so that it is possible to gain a deeper understand-
ing of these materials through mathematics
originally devised for more abstract research.

Such creative thinking has earned the physicist
a number of awards, including the Rutherford
Medal and the Governor General’s Medal. He is
also the recipient of many honorary degrees.

His advice to aspiring physicists is simple: “They
should follow up on what they find interesting,
and not be afraid to follow their dreams.”

Going Further

1. The astronomer Carl Sagan used to say, “You
never know where inspiration will come from.”
One of Dr. Affleck’s great achievements was to
adapt what seemed like very abstract and very
specific physical theory to a more concrete
problem. This is not the first time this has
happened in the history of physics; look into
a few of the popular books on physics and
see if you can find some other examples.

(Hint: You can start with Carl Sagan.)

2. Much of Dr. Affleck’s recent work has had to do
with superconductivity. Superconductors have
applications in medicine, engineering, and
elsewhere. Research two different present-day
applications related to superconductivity.

3. What are some of the difficulties with the
superconductors now in use? Report and
discuss with the class. Design a poster or a
media presentation to present your findings.
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Concept Organizer

Work done
W = FAd cos 6

Mechanical
kinetic energy

Work
done by
conservative
Gravitational force

potential energy
E, = mgAh
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potential energy

E, = 2ho?
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mechanical
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Conservation of
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GCITCEMPA How many energy transformations are
taking place in the photograph?

BTN, Scction Review

1. D

(a) Why is the application of the law of
conservation of energy often much easier
than the application of the law of
conservation of momentum?

(b) What conditions can increase the difficul-

ty of applying the law of conservation
of energy?

2 Which types of energy are generally
referred to as mechanical energy?

3. @ Using examples not found in the text-
book, describe and explain an example in
which the forces are
(a) conservative

(b) non-conservative

4. @ A student is sliding down a frictionless
water slide at an amusement park.

(a) Sketch a graph of gravitational potential
energy against height for the descent.
(No numbers are required on the axes.)

(b) On the same axes, sketch a graph of the
total energy of the student against height
for the descent.

(¢) On the same axes, sketch a graph of the
kinetic energy of the student against
height for the descent.

5 @O

(a) In an amusement park there is a ride on
which children sit in a simulated log
while it slides rapidly down a water-
covered slope. At the bottom, the log
slams into a trough of water, which slows
it down. Why did the ride designers not
simply have the log slam into a large
spring?

(b) Steel or plastic barrels are located along
highways to cushion the impact if a car
skids into a bridge abutment. These
barrels are often filled with energy-
absorbing material. Why are these barrels
used instead of large springs to bring the
cars to a stop?
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CHAPTER

REFLECTING ON CHAPTER 5

= Work is defined as the product of force times
displacement. In general, if the force acts at an
angle () to the displacement, the work done
by the force is given by W = FAd cos 6.

m The work done by an applied force equals
the change in energy produced by that applied
force.

m Kinetic energy is expressed as Ex = %mvz.

m Gravitational potential energy for positions
near Earth’s surface is expressed as E; = mgAh.

® An isolated system is one that neither gains
energy from its environment nor loses energy
to its environment.

m The law of conservation of energy states that,
in an isolated system, the total energy is
conserved, but can be transformed from one
form to another.

m For an ideal spring, the restoring force is
proportional to the amount of extension or
compression of the spring. This is expressed
as F = —kx, where k is the spring constant.

Knowledge/Understanding

1. Explain what happens to the total mechanical
energy over a period of time for open systems,
closed systems, and isolated systems.

2. Write a general equation that relates the change
in mechanical energy in systems to the amount
of work done on it and the amount of heat lost
by it.

3. You wind up the spring of a toy car and then
release it so that it travels up a ramp. Describe
all of the energy transformations that take
place.

4. Compare how the everyday notion of work as
“exerting energy to complete a task” differs
from the physical definition of work.

5. Explain the sign convention for designating
whether work is being done by an object on its
environment or whether the environment is
doing work on an object.
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The applied force that causes the spring to
stretch (or compress) is equal in magnitude
and opposite in direction to the restoring
force: F, = kx

The amount of elastic potential energy stored
in a spring is equal to the area under the
force-extension (or compression) graph for the
spring. It can be calculated from E, = %kxz.

Applied forces are conservative if the amount
of work that they do on an object as it moves
between two points is independent of the path
of the object between those points.

Applied forces are non-conservative if the
amount of work that they do on an object as it
moves between two points is dependent on
the path of the object between those points.

Work done by an object on its environment is
negative work and decreases the total energy
of that object. Work done on an object by its
environment is positive work and increases
the total energy of the object.

6. (a) Explain whether work done by a frictional

force on an object can be positive.

(b) Explain when the work done by the restor-
ing force of a spring on a mass is considered
to be positive and when it is considered to
be negative with respect to the mechanical
energy of the mass.

(c) Discuss your answers to the above questions
in terms of conservative and non-conserva-
tive forces.

1. Define and give an example of periodic motion.

Inquiry
8. Imagine taking a spring of 10 coils and cutting

it in half. Will each smaller spring have a
smaller, larger, or the same spring constant as
the larger spring? (Hint: Consider the force
required to compress the large and small
springs by the same amount.)



9. A basic clock consists of an oscillator and a
mechanism that is “turned” by the oscillator
(to count the oscillations). Design a clock based
on a simple pendulum or other oscillating
device, using readily available materials. If
possible, construct the clock and determine
its accuracy. Even if you are not successful in
constructing a functional clock, outline the
technological challenges that you encountered.

10. The transformation of energy between kinetic
and potential forms in an ideal simple harmon-
ic oscillator can be modelled mathematically by
writing a total mechanical energy equation for
specified points during its motion. Consider a
spring attached to a wall at floor level. A block
of wood is attached to the other end of the
spring so that the block can oscillate across the
floor in a horizontal plane. Assume that the
floor is frictionless. Set a frame of reference
for the spring so that the equilibrium position
of the system is x = 0 and the maximum
displacements of the block is x = —A and
x =+A. Set the block of wood in motion by
pulling it back to position +A.

(a) Write expressions for the total energy of the
system at points —A, +A, and zero.

(b) At which of the three above points is the
kinetic energy at its maximum and at its
minimum?

(c) At which of the three points is the velocity
at its maximum and at its minimum?

(d) Sketch a graph of energy versus position
with individual curves for the elastic
potential energy and the kinetic energy
of the block as it oscillates. What is the
geometrical shape of each curve?

(e} Sketch a velocity-versus-position graph.

11. Bowling balls need to be returned promptly
from the end of the alley so that they can be
used again. Sketch a ball-return system that
requires no external energy source. Explain the
energy transformations involved in the opera-
tion of your system. Identify the conservative
and non-conservative forces that need to be

taken into consideration. What features does
the design include to minimize wear and tear
on the bowling balls, despite their large mass?

Communication

12. Imagine that you are moving a negatively
charged sphere toward a Van de Graaff genera-
tor. As you bring the sphere closer, does the
energy of the system increase or decrease?
Explain your reasoning.

13. Each of three stones is displaced to a vertical
height of h. Stone R is placed on the top of a
ramp, stone P is at the end of a taut pendulum
string, and stone G is simply held above the
ground. Do each of these stones have the same
gravitational potential energy?

(a) If frictional forces are neglected, will each
stone have the same kinetic energy at the
instant before it reaches the bottom of its
path? Explain your reasoning.

(b) If you consider likely frictional forces, will
each stone have the same kinetic energy at
the instant before it reaches the bottom of
its path?

(c) Use the above two examples to differentiate
between conservative and non-conservative
forces.

14. A child descends a slide in the playground.
Write expressions to show the total mechanical
energy of the child at the top, halfway down,
and at the bottom of the slide. Write a mathe-
matical expression that relates the energy total
at the three positions.

Making Connections

15. When stretched or compressed, a spring stores
potential energy. Make a list of other common
devices that store potential energy when
temporarily deformed.

16. Research and write a brief report about how
chemists use the concept of ideal springs to
model the action of the bonds holding atoms
together in molecules.
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17. Car bumper systems are designed to absorb
the impact of slow-speed collisions in such
a way that the vehicles involved sustain no
permanent damage. Prepare a presentation on
how a bumper system works, including an
explanation of the energy transformations
involved.

Problems for Understanding

18. A 0.80 kg block of wood has an initial velocity
of 0.25 m/s as it begins to slide across a table.
The block comes to rest over a distance of
0.72 m.

(a) What is the average frictional force on the
block?

(b) How much work is done on the block by
friction?

(c) How much work is done on the table by
the block?

19. A 1.5 kg book falls 1.12 m from a table to the
floor.

(a) How much work did the gravitational force
do on it?

(b) How much gravitational potential energy
did it lose?

20. A 175 kg cart is pushed along level ground for

18 m, with a force of 425 N, and then released.

(a) How much work did the applied force do on
the cart?

(b) If a frictional force of 53 N was acting on the
cart while it was being pushed, how much
work did the frictional force do on the cart?

(c) Determine how fast the cart was travelling
when it was released.

(d) Determine how far the cart will travel after
it is released.

21. A man is pushing a 75 kg crate at constant
velocity a distance of 12 m across a warehouse.
He is pushing with a force of 225 N at an angle
of 15° down from the horizontal. The coefficient
of friction between the crate and the floor is
0.24. How much work did the man do on the
crate?
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22,

23.

24.

25.

26.

21.

28.

29.

A boy, starting from rest, does 2750 ] of work to

propel himself on a scooter across level ground.

The combined mass of the boy and scooter is

68 kg. Assume friction can be neglected.

(a) How fast is he travelling?

(b) What is his kinetic energy?

(c) If he then coasts up a hill, to what vertical
height does he rise before stopping?

While coasting on level ground on a bicycle,
you notice that your speed decreased from

12 m/s to 7.5 m/s over a distance of 50.0 m.

If your mass combined with the bicycle’s mass
is 65 kg, calculate the average force that
opposes your motion.

A 0.50 kg air puck is accelerated from rest with
a force of 12.0 N. If the force acts over 45 cm
and the surface is frictionless, how fast is the
puck going when it is released?

If 25 N are required to compress a spring

5.5 cm, what is the spring constant of the

spring?

(a) What is the change in elastic potential
energy of a spring that has a spring constant
of 120 N/m if it is compressed by 8.0 cm?

(b) What force is required to compress the
spring by 8.0 cm?

A 0.500 kg mass resting on a frictionless

surface is attached to a horizontal spring with a

spring constant of 45 N/m. When you are not

looking, your lab partner pulls the mass to one
side and then releases it. When it passes the

equilibrium position, its speed is 3.375 m/s.

How far from the equilibrium position did your

lab partner pull the mass before releasing it?

A mass m, is hung on a spring and stretches
the spring by x = 10.0 cm. What is the spring
constant in terms of the variables?

A dart gun has a spring with a constant of

74 N/m. An 18 g dart is loaded into the gun,
compressing the spring from a resting length
of 10.0 cm to a compressed length of 3.5 cm.
If the spring transfers 75% of its energy to the
dart after the gun is fired, how fast is the dart
travelling when it leaves the gun?



30. A 12 g metal bullet (specific heat capacity:
¢ =669 J/kg’C) is moving at 92 m/s when it
penetrates a block of wood. If 65% of the work
done by the stopping forces goes into heating
the metal, how much will the bullet’s tempera-
ture rise in the process?

31. Consider a waterfall that is 120 m high. How
much warmer is the water at the bottom of the
waterfall than at the top? (The specific heat of
water is 4186 J/kg °C.)

32. A spring with a constant of 555 N/m is attached
horizontally to a wall at floor level. A 1.50 kg
wooden block is pushed against it, compressing
the spring by 12 cm, and then released.

(a) How fast will the block be travelling at the
instant it leaves the spring? (Assume that
friction can be ignored and that the mass of
the spring is so small that its kinetic energy
can be ignored.)

(b) If the block of wood travels 75 cm after
being released and then comes to rest, what
friction force opposes its motion?

33. A simple pendulum swings freely and rises at
the end of its swing to a position 8.5 cm above
its lowest point. What is its speed at its lowest
point?

34. A 50.0 g pen has a retractable tip controlled
by a button on the other end and an internal
spring that has a constant of 1200 N/m.
Suppose you hold the pen vertically on a table
with the tip pointing up. Clicking the button
into the table compresses the spring 0.50 cm.
When the pen is released, how fast will it rise
from the table? To what vertical height will it
rise? (Assume for simplicity that the mass of
the pen in concentrated in the button.)

35.

36.

37.

38.

39.

A spring with a spring constant of 950 N/m is
compressed 0.20 m. What speed can it give to
a 1.5 kg ball when it is released?

A basketball player dunks the ball and momen-
tarily hangs from the rim of the basket. Assume
that the player can be considered as a 95.0 kg
point mass at a height of 2.0 m above the floor.
If the basket rim has a spring constant of
7.4 x 10° N/m, by how much does the player
displace the rim from the horizontal position?
A 35 kg child is jumping on a pogo stick. If the
spring has a spring constant of 4945 N/m and it
is compressed 25 cm, how high will the child
bounce? (Assume that the mass of the pogo
stick is negligible.)
A spring with a spring constant of 450 N/m
hangs vertically. You attach a 2.2 kg block to
it and allow the mass to fall. What is the
maximum distance the block will fall before
it begins moving upward?
A 48.0 kg in-line skater begins with a speed of
2.2 m/s. Friction also does —150 ] of work on
her. If her final speed is 5.9 m/s,
(a) determine the change (final — initial)

in her gravitational potential energy.
(b) By how much, and in which direction

(up or down), has her height changed?
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m Kinetic energy

Energy and
CHAPTER G Motion in Space

Master jugglers can keep as many as eight plates or seven

flaming torches airborne and under perfect control at the
same time. Amazing muscle and hand-eye co-ordination enables
the launching of each object with precisely the right kinetic
energy. Opposing Earth’s gravitational attraction, this energy
allows the object to free fall for a precise interval, returning to the
height of the juggler’s hand at just the right time and location to be
caught and passed to the other hand for another toss.

Launching a missile or an Earth satellite is much like juggling.
Work done against gravitational forces partially overcomes Earth’s
attraction and allows the object to follow a planned trajectory or to
be inserted into a previously defined orbit. With even more initial
energy, a space probe can eventually escape from Earth’s orbit — or
even from the solar system entirely. Successful launches depend on
calculating, modelling, and simulating the energies needed to
attain orbits or trajectories with specific shapes and sizes.

Your investigations of impulse, momentum, work, and energy
have given you many of the mathematical tools needed to analyze
energy and motion in space. In this chapter, you will refine your
concept of gravitational potential energy, find out how much work
must be done to boost an object away from a planet’s surface, and
investigate the energy of satellites in orbit.
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QUICK

Escape from
LAB a Planetoid

Imagine that you are stationed on a spherical

planetoid (a small planet-like object) somewhere

in space. The planetoid has a mass of
1.0 x 10*?* kg and a radius of 1.0 x 10° m.

You want to send a small 6.0 kg canister off into

space so that it will escape the gravity of the
planetoid and not fall back to the surface. You
can accomplish this task by estimating the
amount of work that must be done to lift the
canister to 10 times the radius of the planet.
You cannot use the formula W = FAd cos 6,
because the force changes with the distance
from the centre of the planet. Therefore, you
will need to use a graphical method, such as
the one described in the following steps.

m Prepare a table with two headings: Distance
from the centre of the planetoid (d), and
Gravitational force (N). In the first column,
write the following distances: 1.0 x 10° m,
2.0 x 10°m, 3.0 X 10° m, and so on, up to
10.0 x 10% m. (Notice that these values are
multiples of the radius of the planetoid,
where 1.0 X 10° m represents the surface
of the planetoid.)

m Calculate the force of gravity on the 6.0 kg
canister for each of these distances.

m Plot the graph of gravitational force (y-axis)

against distance from the centre of the plane-

toid. Since your graph is of force versus
position, the area under the graph
represents the amount of work required to
move the canister to a separation of 10 radii
(9 radii from the surface). Graphically
determine the area under the curve and,
thus, the amount of work done.

Note: There are several ways to find the area
under the graph. One is to determine the

TARGET SKILLS
e Analyzing and interpreting
e Communicating results

graphical area represented by each square and
then count the number of squares under the
curve. Where the curve actually crosses a
square, include the square if half or more of it
is under the curve. Another method is to
divide the area up into different regions and
approximate their areas by using figures such
as trapezoids and triangles.

Analyze and Conclude
1. If the canister has been lifted a distance of

10 radii and remains there, what type of
energy does the area under the curve
represent?

. To launch the canister so that it will be able

to travel straight out to a separation of

10 radii, how much kinetic energy must it
be given at the start? From this kinetic
energy, determine the required speed that
would allow the canister to reach this
separation.

. The gravitational force that is trying to pull

the canister back is extremely small at a
separation of 10 radii. With only slightly
more speed, the canister would never return
to the planetoid, so the speed that you found
is essentially the escape speed for the plane-
toid. What is the escape speed for this
planetoid?

Apply and Extend

4. Considering the energies involved, does the

canister have to be thrown straight up at its
escape speed for it to be able to escape?
Give reasons for your answer.
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KEY "\

SECTION S—me—
EXPECTATIONS

e Calculate the generalized
gravitational potential energy
for an isolated system involving
two objects, based on the law
of universal gravitation.

* Determine the escape speed
for a given celestial object.

* Develop appropriate scientific
models for natural phenomena.

TERMS
° gscape energy
* hinding energy

* gscape speed

MISCONCEPTION

Gravity and Orbiting Spacecraft

Many people believe that gravity
does not act on orbiting space-
craft. In fact, a satellite such as
the International Space Station
Freedom still has about 80% of
its initial weight. The impression
of weightlessness comes from
the fact that the weight is being
used to hold the space station in
its orbit. If there was no weight, it
would simply continue to move
off into space.

Energy for Lift-Off

Did you know that it takes almost 10 t of fuel for a large passenger
jet to take off? It is hard to even imagine the amount of energy
required for a rocket or space shuttle to lift off. How do the
engineers and scientists determine these values?

CIMXED The energy to hurl this spacecraft into
orbit comes from the chemical potential energy of the fuel.

Work for Lift-Off

One way to determine the amount of energy needed to carry out a
particular task is to determine the amount of work that you would
have to do. When a spacecraft is lifting off from Earth, the force
against which it must do work is the force of gravity.

In Chapter 3, Planetary and Satellite Dynamics, you learned that

the equation for the gravitational force is F; = Gmllfznz . When

working with a planet and a small object, physicists often use M
for the planet and m for the small object. You can then write the

equation as Fy = G@. In the Quick Lab, Escape from a Planetoid,

you used this expression for force and multiples of the radius of
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the planetoid for position, and then estimated the area under the
curve of force versus position to estimate the amount of work
needed to escape from the planetoid. However, if you were an
engineer working for the space program, you would want a much
more accurate value before you launched a spacecraft. In the
following derivation, you will develop a general expression for the
area under the curve of F, versus r from position r; to r;. This area
will be the amount of work needed to raise an object such as a
spacecraft of mass m from a distance r; to a distance r, from the
centre of a planet of mass M.

Draw a graph of gravitational force
versus position, where the origin of
the graph lies at the centre of the
planet.

Choose points r; and ry. Divide the
axis between r; and r; into six equal
spaces and label the end point “a”
through “e.”

Draw three rectangles with heights Fj,
F., and F,.

A first rough estimate of the total
work done to move m from r; to r»
will be the sum of the areas of the
rectangles.

You could simplify this equation if
you could express the forces in terms
of the points on the curve at the ends

of the rectangles, instead of the centre.

For example, how can you express F,
in terms of Fy and F,? Clearly, F, is
not the average or arithmetic mean of
F, and F, because the curve is an
exponential curve. However, it can be
accurately expressed as the geometric
mean, which is expressed as /F,Fy.
Substitute the geometric mean of each
value for force into the equation for
work. Notice that in the last step, all
intermediate terms have cancelled
each other and only the first and last
terms remain.

Fy $---1

Force
e
1
1
1

\
% :::::::}x

Fodzzzdzzzq-::1

F/
20 abcde

Iy Iy
Position

Wtotal = We + Wc + Wa
Wiotal = Fa(b - rl) + Fc(d - b) + Fe(l‘z - d)

Wootat = VFiFiolb — 12) + VFoFald = b) + v/FaFa(r,  d)
GMm GM GMm GM

Wt = || =72 (b =) + [ Zpt = gt d = D)+
/ Glc\l/ém ) Gi\z/lzm (t, — d)

- GMm ., GMm 4y GMm
Whotal = b (b—r) + bd (d-b)+ dr, (= d)
= b - I d-b Iy — d
Wiow = GMm( 25 + 52 + 26)
VVtotal:GMm<rll_%+%_%+%_rlz)
1 1

mm=awdz—m)
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m At first consideration, this result
would appear to be a rough estimate.
However, consider the fact that you
could make as many rectangles as
you want. Examination of the figure
on the right shows that as the number
of rectangles increases, the sum of
their areas becomes very close to the
true area under the curve. If you drew
an infinite number of rectangles, your
result would be precise. Now, analyze xﬁ
the last two mathematical steps above.
No matter how many rectangles you
drew, all of the intermediate terms
would cancel and the result would be
exactly the same as the result above.

Force

In this case, the result above is not an
approximation but is, in fact, exact.

I

Escape Energy and Speed

Iy
Position

You can now use the equation that you just derived —
MATH LINK 1 1 )
Wiotal = GMIH(— - —) — to determine the amount of energy

I Iy

The arithmetic mean of two values, m needed by a spacecraft to escape from Earth’s gravitational pull.

m+n

and n, is . The geometric mean

is /mn.

Let ry be Earth’s radius so that the spacecraft will be sitting on the
ground. Let r; be so far out into space that the force of gravity

is negligible. Notice that as r, becomes exceedingly large, 1’1

2
approaches zero, so the equation for the amount of work that
must be done to free the spacecraft from the surface of the planet

is Wio escape = GMm/y .

Work represents the change in energy that, in this case, is the
amount of energy that a spacecraft would need to escape Earth’s
gravity. When a spacecraft blasts off from Earth, that amount of
energy is provided as kinetic energy through the thrust of the
engines. If the spacecraft is to escape Earth, therefore, it must be

R PHYSICS FILE g

Escape speed is often referred to
as “escape velocity.” However,
since the direction in which the
escaping object is headed has
no effect on its ability to escape
(unless it is headed into the
ground), the correct term is

“escape speed.”

provided with at least GMm/r; ] of kinetic energy, which probably
come from GMm/r; ] of chemical potential energy in the fuel. For
this reason, the quantity GMm/r, is known as the escape energy
for the spacecraft. If a spacecraft has any less energy, you could
say that it is bound by Earth’s gravity. Therefore, you can think of
the value GMm/r; as the binding energy of the spacecraft to Earth.

Typically, when a spacecraft lifts off, rockets fire, the craft lifts
off, and the rockets continue to fire, accelerating the spacecraft as
it rises. However, you can often obtain important information by
considering the extreme case. For example, if all of the escape
energy must be provided as initial kinetic energy at the moment
of lift-off, what would be the spacecraft’s initial speed?
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m The initial kinetic energy of the
spacecraft would have to be equal

to the escape energy. Let rp be the 1..,2_ GMm
radius of the planet. 2 rp
m Solve for v. V2= 2GMnt
iy,

2GM
VvV =
Tp

This equation gives the escape speed, the minimum speed at the
surface that will allow an object to leave a planet and not return.
Notice that the speed does not depend on the mass of the escaping
object.

ESCAPE SPEED
The escape speed of an object from the surface of a planet
is the square root of two times the product of the universal
gravitational constant and the mass of the planet divided by
the radius of the planet.
_ |2GM
vV =
Tp

Quantity Symbol S| unit
escape speed v % (metres per second)
mass of planet M kg (kilograms)
radius of planet Ip m (metres)
universal gravitational N. m?
constant G —r? (newton metres

squared per

kilograms

squared)
Unit Analysis

N-m?* .
m_ [T K [EEw m? om
s 1 kg s s

SAMPLE PROBLEM

Escaping from Earth

Determine the escape energy and escape speed for a 1.60 x 10* kg
rocket leaving the surface of Earth.

continued
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continued from previous page
Conceptualize the Problem

m FEscape speed is the speed at which a spacecraft would have to be
lifting off Earth’s surface in order to escape Earth’s gravity with no
additional input of energy.

® You can find the radius and mass of Earth in Appendix B,
Physical Constants and Data.

Identify the Goal

The escape energy, Eescape, and escape speed, Vescape, for a rocket from Earth

Identify the Variables and Constants

Known Implied , Unknown
Mhocket = 1.60 x 10* kg G=6.673 x 107" Nk'gnz“ 5

Igarth = 6.38 X 10° m Vescape

MEam = 5.98 x 10%* kg
Develop a Strategy
State the equation for escape B _ GMEgarmMgbject
energy. Substitute and solve. oeape TEarth

(6.673 x 10711 ngff)(s.gs x 102 kg)(1.60 x 10* kg)
Eescape = 6.38 x 10° m

Eescape = 1.00 x 10 ]

State the equation for escape Vescape = /%
arth

speed. Substitute and solve.

2(6.673 x 10711 %)(5.98 x 10%* kg)
Vescape = 6.38 x 10° m

Vescape = 1.1184 x 10% %
Vescape = 1.12 X 10* %

The escape energy for this rocket is 1.00 x 10'? J and its escape
speed is 1.12 x 10* m/s or 11.2 km/s.

Validate the Solution

NI kg-kg  N.m?.kg?
A unit analysis escape energy shows —& - = =N-m=]

kg” - m

which is correct for energy. A unit analysis for escape speed shows

N.-m?2
\ kg? ~kg: N-m*-kg _ kg'm~£=,/£2=Ewhichiscorrect
m - kg? s? kg s s

for speed. A value of a few km/s agrees with the types of speeds observed
during rocket lift-offs.
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PRACTICE PROBLEMS

1. Determine the escape energy and escape
speed for an asteroid with a mass of
1.00 x 10?* kg and a radius of 1.00 x 10° m.
How closely does your answer for escape
energy compare to the value obtained by
finding the area under the force-separation
graph in the Quick Lab at the beginning of
this chapter?

2. Calculate the escape energy and escape
speed for a 15 g stone from Mars. Such
stones have been blasted off the surface of
Mars by meteor impacts and have fallen to
Earth, where they are found preserved in the
snow and ice of the Antarctic. The mass of
Mars is 6.42 x 10?% kg and the radius of Mars
is 3.38 x 10° m.

BEER. Scction Review

3. The Pioneer 10 spacecraft, shown in the
photo, was the first to journey beyond Jupiter
and is now well past Pluto. To escape from
the solar system, how fast did Pioneer 10
have to be travelling as it passed the orbit of
Jupiter? Assume that the mass of the solar
system is essentially concentrated in the
Sun. The mass of the Sun is 1.99 x 10%° kg
and the radius of Jupiter’s orbit is
7.78 x 10" m.

1. State the equations for escape energy
and escape speed. Indicate the meaning of
each factor and the appropriate units for each
factor.

2. @ Prove from basic energy equations that
the escape speed for an object from the sur-
face of a planet is independent of the mass of
the object.

3. Explain the meaning of (a) escape ener-
gy, (b) escape speed, and (c) binding energy.

4. @ Sketch graphs to show how the escape
speed from a planet varies with

(a) the mass of the planet for constant
planetary radius

(b) the radius of the planet for constant
planetary mass

(c) the mass of the escaping object from a
given planet

5. @ What factors would make the actual
energy that must be provided in the form of

fuel greater than the escape energy? Explain
the role of each factor.

6. Look up the meaning of the term “bond
energy”as it applies to bonds between the
atoms in a diatomic molecule. How does the
concept of bond energy relate to the concept
of escape energy?

UNIT PROJECT PREP

Space-based energy schemes have for a long
time been promoted as the environmentally
friendly way to provide energy of the future.
Understanding the physics concepts of low
Earth orbit provides you with a method of
judging each scheme'’s feasibility.

m List environmental factors involved in
getting into Earth orbit.

m How do you envision space travel in the
near future?

m Do you believe that environmental or other
factors will motivate more space-based
power initiatives?
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Energy of
Orbiting Satellites

SECTION S—m—e—
EXPECTATIONS

* Analyze the factors affecting
the motion of isolated celestial
objects, and calculate the
gravitational potential energy
for such a system.

* Analyze isolated planetary and
satellite motion and describe it
in terms of the forms of energy
and energy transformations
that occur.

e Calculate the kinetic and
gravitational potential energy
of a satellite that is in a stable
circular orbit around a planet.

KEY '\

TERMS
e circular orbit

e total orbital energy

The rockets that launched Voyager 1 and Voyager 2, were designed
to escape Earth’s gravity and send them into space to search the
solar system. The Voyager craft have found such things as new
moons orbiting Jupiter, Saturn, Uranus, and Neptune. They have
also discovered volcanoes on Io and rings around Jupiter.
However, the majority of satellites are launched into Earth’s orbit
and will remain captive in Earth’s gravitational field, destined to
circle the planet year after year and perform tasks of immediate
importance to people on Earth.

Satellites in Earth Orbit

Some of these satellites monitor the weather, the growth and
health of crops, the tem