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OVERALL EXPECTATIONS

ANALYZE, predict, and explain the motion of selected 
objects in vertical, horizontal, and inclined planes.

INVESTIGATE, represent, and analyze motion and 
forces in linear, projectile, and circular motion.

RELATE your understanding of dynamics to the 
development and use of motion technologies.

UNIT CONTENTS

CHAPTER 1 Fundamentals of Dynamics 

CHAPTER 2 Dynamics in Two 
Dimensions

CHAPTER 3 Planetary and Satellite  
Dynamics

Spectators are mesmerized by trapeze artists
making perfectly timed releases, gliding

through gracefu l arcs, and intersecting the paths of
their partners. An error in timing and a graceful arc
could become a trajectory of panic. Trapeze artists
know that tiny differences in height, velocity, and
timing are critical. Swinging from a trapeze, the 
performer forces his body from its natural straight-
line path. Gliding freely through the air, he is 
subject only to gravity. Then, the outstretched hands
of his partner make contact, and the performer is
acutely aware of the forces that change his speed
and direction.

In this unit, you will explore the relationship
between motion and the forces that cause it and
investigate how different perspectives of the same
motion are related. You will learn how to analyze
forces and motion, not only in a straight line, but
also in circular paths, in parabolic trajectories, and
on inclined surfaces. You will discover how the
motion of planets and satellites is caused, described,
and analyzed.

Refer to pages 126–127 before beginning this unit.
In the unit project, you will design and build a
working catapult to launch small objects through
the air.
� What launching devices have you used, watched,

or read about? How do they develop and control
the force needed to propel an object?

� What projectiles have you launched? How do
you direct their flight so that they reach a 
maximum height or stay in the air for the 
longest possible time?

UNIT PROJECT PREP
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C H A P T E R Fundamentals of Dynamics1

How many times have you heard the saying, “It all depends
on your perspective”? The photographers who took the two

pictures of the roller coaster shown here certainly had different
perspectives. When you are on a roller coaster, the world looks
and feels very different than it does when you are observing the
motion from a distance. Now imagine doing a physics experiment
from these two perspectives, studying the motion of a pendulum,
for example. Your results would definitely depend on your 
perspective or frame of reference. You can describe motion from
any frame of reference, but some frames of reference simplify the
process of describing the motion and the laws that determine 
that motion. 

In previous courses, you learned techniques for measuring and
describing motion, and you studied and applied the laws of
motion. In this chapter, you will study in more detail how to
choose and define frames of reference. Then, you will extend 
your knowledge of the dynamics of motion in a straight line.

� Using the kinematic equations for
uniformly accelerated motion.
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M U L T I

L A B

Thinking Physics
TARGET SKILLS

Predicting
Identifying variables
Analyzing and interpreting

Suspended Spring
Tape a plastic cup to one end of a short 
section of a large-diameter spring, such as 
a Slinky™. Hold the other end of the spring
high enough so that the plastic cup is at least

1 m above the floor. Before you
release the spring, predict the

exact motion of the cup
from the instant that it is
released until the moment
that it hits the floor. While
your partner watches the
cup closely from a kneel-
ing position, release the

top of the spring. Observe
the motion of the cup.

Analyze and Conclude
1. Describe the motion of the cup and the

lower end of the spring. Compare the
motion to your prediction and describe
any differences.

2. Is it possible for any unsupported object 
to be suspended in midair for any length
of time? Create a detailed explanation to
account for the behaviour of the cup at the
moment at which you released the top of
the spring.

3. Athletes and dancers sometimes seem to
be momentarily suspended in the air. 
How might the motion of these athletes 
be related to the spring’s movement in 
this lab?

Thought Experiments
Without discussing the following questions
with anyone else, write down your answers. 

1. Student A and 
Student B sit in
identical office
chairs facing
each other, as
illustrated.
Student A, who
is heavier than Student B, suddenly push-
es with his feet, causing both chairs to
move. Which of the following occurs?

(a) Neither student applies a force to the
other.

(b) A exerts a force that is applied to B, 
but A experiences no force.

(c) Each student applies a force to the
other, but A exerts the larger force.

(d) The students exert the same amount 
of force on each other.

2. A golf pro drives a ball through the air.
What force(s) is/are acting on the golf ball
for the entirety of its flight?
(a) force of gravity only
(b) force of gravity and the force of 

the “hit”
(c) force of gravity and the force of air

resistance 
(d) force of gravity, the force of the “hit,”

and the force of air resistance

3. A photographer 
accidentally drops
a camera out of a
small airplane as 
it flies horizontally.
As seen from the
ground, which path would the camera
most closely follow as it fell?

Analyze and Conclude
Tally the class results. As a class, discuss the
answers to the questions.

A B C D

A B
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Imagine watching a bowling ball sitting still in the rack. Nothing
moves; the ball remains totally at rest until someone picks it up
and hurls it down the alley. Galileo Galilei (1564–1642) and later
Sir Isaac Newton (1642–1727) attributed this behaviour to the 
property of matter now called inertia, meaning resistance to
changes in motion. Stationary objects such as the bowling ball
remain motionless due to their inertia. 

Now picture a bowling ball rumbling down the alley.
Experience tells you that the ball might change direction and, if
the alley was long enough, it would slow down and eventually
stop. Galileo realized that these changes in motion were due to
factors that interfere with the ball’s “natural” motion. Hundreds 
of years of experiments and observations clearly show that Galileo
was correct. Moving objects continue moving in the same direc-
tion, at the same speed, due to their inertia, unless some external
force interferes with their motion.

You assume that an inanimate object such as a bowling ball
will remain stationary until someone exerts a force on it. Galileo and
Newton realized that this “lack of motion” is a very important property 
of matter.

Analyzing Forces
Newton refined and extended Galileo’s ideas about inertia and
straight-line motion at constant speed — now called “uniform
motion.”

NEWTON’S FIRST LAW: THE LAW OF INERTIA
An object at rest or in uniform motion will remain at rest or in
uniform motion unless acted on by an external force.

Figure 1.1

Inertia and Frames 
of Reference1.1
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• Describe and distinguish
between inertial and non-
inertial frames of reference.

• Define and describe the 
concept and units of mass. 

• Investigate and analyze 
linear motion, using vectors,
graphs, and free-body 
diagrams.

• inertia

• inertial mass

• gravitational mass

• coordinate system

• frame of reference

• inertial frame of reference

• non-inertial frame of 
reference

• fictitious force

 T E R M S
K E Y

E X P E C T A T I O N S
S E C T I O N



Newton’s first law states that a force is required to change an
object’s uniform motion or velocity. Newton’s second law then
permits you to determine how great a force is needed in order to
change an object’s velocity by a given amount. Recalling that
acceleration is defined as the change in velocity, you can state
Newton’s second law by saying, “The net force (

⇀F ) required to
accelerate an object of mass m by an amount (⇀a ) is the product 
of the mass and acceleration.”

Inertial Mass
When you compare the two laws of motion, you discover that the
first law identifies inertia as the property of matter that resists 
a change in its motion; that is, it resists acceleration. The second
law gives a quantitative method of finding acceleration, but it does
not seem to mention inertia. Instead, the second law indicates 
that the property that relates force and acceleration is mass. 

Actually, the mass (m) used in the second law is correctly
described as the inertial mass of the object, the property that
resists a change in motion. As you know, matter has another prop-
erty — it experiences a gravitational attractive force. Physicists
refer to this property of matter as its gravitational mass. Physicists
never assume that two seemingly different properties are related
without thoroughly studying them. In the next investigation, you
will examine the relationship between inertial mass and gravita-
tional mass.

QuantitySymbol SI unit
force

⇀F N (newtons)

mass m kg (kilograms)

acceleration ⇀a m
s2 (metres per second

squared)

Unit analysis
(mass)(acceleration) = (kilogram)

( metres
second2

)
kg m

s2 = kg · m
s2 = N

Note: The force (
⇀F ) in Newton’s second law refers to the 

vector sum of all of the forces acting on the object. 

⇀F = m⇀a

NEWTON’S SECOND LAW
The word equation for Newton’s second law is: Net force is
the product of mass and acceleration.
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The Latin root of inertia means 
“sluggish” or “inactive.” An inertial
guidance system relies on a gyro-
scope, a “sluggish” mechanical device
that resists a change in the direction
of motion. What does this suggest
about the chemical properties of an
inert gas?

LANGUAGE LINK



I N V E S T I G A T I O N  1-A

Measuring Inertial Mass

TARGET SKILLS

Hypothesizing
Performing and recording
Analyzing and interpreting
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Problem
Is there a direct relationship between an object’s
inertial mass and its gravitational mass?

Hypothesis
Formulate an hypothesis about the relationship
between inertial mass and its gravitational mass.

Equipment
� dynamics cart
� pulley and string
� laboratory balance
� standard mass (about 500 g)
� metre stick and stopwatch or motion sensor 
� unit masses (six identical objects, such as small 

C-clamps) 
� unknown mass (measuring between one and six unit

masses, such as a stone)

Procedure
1. Arrange the pulley, string, standard mass,

and dynamics cart on a table, as illustrated.

2. Set up your measuring instruments to deter-
mine the acceleration of the cart when it is
pulled by the falling standard mass. Find 
the acceleration directly by using computer
software, or calculate it from measurements
of displacement and time.

3. Measure the acceleration of the empty cart.

4. Add unit masses one at a time and measure
the acceleration several times after each
addition. Average your results.

5. Graph the acceleration versus the number of
unit inertial masses on the cart.

6. Remove the unit masses from the cart and
replace them with the unknown mass, then
measure the acceleration of the cart.

7. Use the graph to find the inertial mass of the
unknown mass (in unit inertial masses).

8. Find the gravitational mass of one unit of
inertial mass, using a laboratory balance.

9. Add a second scale to the horizontal axis of
your graph, using standard gravitational mass
units (kilograms).

10. Use the second scale on the graph to predict
the gravitational mass of the unknown mass.

11. Verify your prediction: Find the unknown’s
gravitational mass on a laboratory balance.

Analyze and Conclude
1. Based on your data, are inertial and 

gravitational masses equal, proportional, 
or independent?

2. Does your graph fit a linear, inverse, expo-
nential, or radical relationship? Write the
relationship as a proportion (a ∝ ?).

3. Write Newton’s second law. Solve the 
expression for acceleration. Compare this
expression to your answer to question 2.
What inferences can you make?

4. Extrapolate your graph back to the vertical
axis. What is the significance of the point at
which your graph now crosses the axis?

5. Verify the relationship you identified in
question 2 by using curve-straightening 
techniques (see Skill Set 4, Mathematical
Modelling and Curve Straightening). Write a
specific equation for the line in your graph.

pulley

standard
mass

dynamics
cart



Over many years of observations and investigations, physicists
concluded that inertial mass and gravitational mass were two 
different manifestations of the same property of matter. Therefore,
when you write m for mass, you do not have to specify what type
of mass it is.

Action-Reaction Forces
Newton’s first and second laws are sufficient for explaining and
predicting motion in many situations. However, you will discover
that, in some cases, you will need Newton’s third law. Unlike 
the first two laws that focus on the forces acting on one object,
Newton’s third law considers two objects exerting forces on each
other. For example, when you push on a wall, you can feel the
wall pushing back on you. Newton’s third law states that this 
condition always exists — when one object exerts a force on
another, the second force always exerts a force on the first. The
third law is sometimes called the “law of action-reaction forces.” 

To avoid confusion, be sure to note that the forces described in
Newton’s third law refer to two different objects. When you apply
Newton’s second law to an object, you consider only one of these
forces — the force that acts on the object. You do not include 
any forces that the object itself exerts on something else. If this
concept is clear to you, you will be able to solve the “horse-cart
paradox” described below.

• The famous horse-cart paradox asks, “If the cart is pulling on
the horse with a force that is equal in magnitude and opposite in
direction to the force that the horse is exerting on the cart, how
can the horse make the cart move?” Discuss the answer with a
classmate, then write a clear explanation of the paradox.

Conceptual Problem

⇀FA on B = −⇀FB on A

NEWTON’S THIRD LAW
For every action force on an object (B) due to another object
(A), there is a reaction force, equal in magnitude but opposite
in direction, on object A, due to object B.
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Bend a Wall
Bend a WallQ U I C K

L A B

TARGET SKILLS

Initiating and planning
Performing and recording
Analyzing and interpreting

Sometimes it might not seem as though an
object on which you are pushing is exhibiting
any type of motion. However, the proper appa-
ratus might detect some motion. Prove that you
can move — or at least, bend — a wall.

Do not look into the laser.

Glue a small mirror to a 5 cm T-head dissect-
ing pin. Put a textbook on a stool beside the
wall that you will attempt to bend. Place the
pin-mirror assembly on the edge of the textbook.
As shown in the diagram, attach a metre stick to
the wall with putty or modelling clay and rest
the other end on the pin-mirror assembly. The
pin-mirror should act as a roller, so that any
movement of the metre stick turns the mirror
slightly. Place a laser pointer so that its beam
reflects off the mirror and onto the opposite
wall. Prepare a linear scale on a sheet of paper
and fasten it to the opposite wall, so that you
can make the required measurements.

Push hard on the wall near the metre stick and
observe the deflection of the laser spot. Measure

� the radius of the pin (r)

� the deflection of the laser spot (S)

� the distance from the mirror to the opposite
wall (R)

Analyze and Conclude
1. Calculate the extent of the movement (s) —

or how much the wall “bent” — using the 

formula s = rS
2R

.

2. If other surfaces behave as the wall does, 
list other situations in which an apparently
inflexible surface or object is probably 
moving slightly to generate a resisting or 
supporting force.

3. Do your observations “prove” that the wall
bent? Suppose a literal-minded observer
questioned your results by claiming that you
did not actually see the wall bend, but that
you actually observed movement of the laser
spot. How would you counter this objection? 

4. Is it scientifically acceptable to use a mathe-
matical formula, such as the one above, 
without having derived or proved it? Justify
your response. 

5. If you have studied the arc length formula in
mathematics, try to derive the formula above.
(Hint: Use the fact that the angular displace-
ment of the laser beam is actually twice the
angular displacement of the mirror.)

Apply and Extend
6. Imagine that you are explaining this experi-

ment to a friend who has not yet taken a
physics course. You tell your friend that
“When I pushed on the wall, the wall
pushed back on me.” Your friend says,
“That’s silly. Walls don’t push on people.”
Use the laws of physics to justify your 
original statement.

7. Why is it logical to expect that a wall will
move when you push on it?

8. Dentists sometimes check the health of your
teeth and gums by measuring tooth mobility.
Design an apparatus that could be used to
measure tooth mobility.

rod or metre stick

scale

poster putty
laser

dissecting
pin

textbookmirror

wallopposite wall

R
S

CAUTION



Frames of Reference
In order to use Newton’s laws to analyze and predict the motion of
an object, you need a reference point and definitions of distance
and direction. In other words, you need a coordinate system. One
of the most commonly used systems is the Cartesian coordinate
system, which has an origin and three mutually perpendicular
axes to define direction. 

Once you have chosen a coordinate system, you must decide
where to place it. For example, imagine that you were studying
the motion of objects inside a car. You might begin by gluing metre
sticks to the inside of the vehicle so you could precisely express
the positions of passengers and objects relative to an origin. You
might choose the centre of the rearview mirror as the origin and
then you could locate any object by finding its height above or
below the origin, its distance left or right of the origin, and its
position in front of or behind the origin. The metre sticks would
define a coordinate system for measurements within the car, as
shown in Figure 1.2. The car itself could be called the frame of
reference for the measurements. Coordinate systems are always
attached to or located on a frame of reference.

Establishing a coordinate system and defining a frame of 
reference are fundamental steps in motion experiments.

An observer in the car’s frame of reference might describe the
motion of a person in the car by stating that “The passenger did
not move during the entire trip.” An observer who chose Earth’s
surface as a frame of reference, however, would describe the pas-
senger’s motion quite differently: “During the trip, the passenger
moved 12.86 km.” Clearly, descriptions of motion depend very
much on the chosen frame of reference. Is there a right or wrong
way to choose a frame of reference?

The answer to the above question is no, there is no right or
wrong choice for a frame of reference. However, some frames of
reference make calculations and predictions much easier than 
do others. Think again about the coordinate system in the car.
Imagine that you are riding along a straight, smooth road at a 
constant velocity. You are almost unaware of any motion. Then 

Figure 1.2
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Reference Frames
A desire to know your location 
on Earth has made GPS receivers
very popular. Discussion about
location requires the use of
frames of reference concepts.
Ideas about frames of reference
and your Course Challenge are
cued on page 603 of this text.

COURSE CHALLENGE



the driver suddenly slams on the brakes and your upper body falls
forward until the seat belt stops you. In the frame of reference of
the car, you were initially at rest and then suddenly began to
accelerate. 

According to Newton’s first law, a force is necessary to cause a
mass — your body — to accelerate. However, in this situation you
cannot attribute your acceleration to any observable force: No
object has exerted a force on you. The seat belt stopped your
motion relative to the car, but what started your motion? It would
appear that your motion relative to the car did not conform to
Newton’s laws. 

The two stages of motion during the ride in a car — moving
with a constant velocity or accelerating — illustrate two classes of
frames of reference. A frame of reference that is at rest or moving
at a constant velocity is called an inertial frame of reference. 

When you are riding in a car that is moving at a constant 
velocity, motion inside the car seems similar to motion inside a
parked car or even in a room in a building. In fact, imagine that
you are in a laboratory inside a truck’s semitrailer and you cannot
see what is happening outside. If the truck and trailer ran perfectly
smoothly, preventing you from feeling any bumps or vibrations,
there are no experiments that you could conduct that would allow
you to determine whether the truck and trailer were at rest or
moving at a constant velocity. The law of inertia and Newton’s 
second and third laws apply in exactly the same way in all inertial
frames of reference. 

Now think about the point at which the driver of the car abrupt-
ly applied the brakes and the car began to slow. The velocity was
changing, so the car was accelerating. An accelerating frame of 
reference is called a non-inertial frame of reference. Newton’s
laws of motion do not apply to a non-inertial frame of reference.
By observing the motion of the car and its occupant from outside
the car (that is, from an inertial frame of reference, as shown in
Figure 1.3), you can see why the law of inertia cannot apply. 

In the first three frames, the passenger’s body and the car are
moving at the same velocity, as shown by the cross on the car seat
and the dot on the passenger’s shoulder. When the car first begins
to slow, no force has yet acted on the passenger. Therefore, his

12 MHR • Unit 1  Forces and Motion: Dynamics

Albert Einstein used the equiva-
lence of inertial and gravitational
mass as a foundation of his 
general theory of relativity, 
published in 1916. According to
Einstein’s principle of equiva-
lence, if you were in a laboratory
from which you could not see
outside, you could not make 
any measurements that would
indicate whether the laboratory
(your frame of reference) was
stationary on Earth’s surface or 
in space and accelerating at a
value that was locally equal to g.

PHYSICS FILE

The crosses on the
car seat and the dots on the 
passenger’s shoulder represent
the changing locations of the car
and the passenger at equal time
intervals. In the first three frames,
the distances are equal, indicating
that the car and passenger are
moving at the same velocity. In
the last two frames, the crosses
are closer together, indicating that
the car is slowing. The passenger,
however, continues to move at 
the same velocity until stopped 
by a seat belt.

Figure 1.3



body continues to move with the same constant velocity until a
force, such as a seat belt, acts on him. When you are a passenger,
you feel as though you are being thrown forward. In reality, the car
has slowed down but, due to its own inertia, your body tries to
continue to move with a constant velocity. 

Since a change in direction is also an acceleration, the same 
situation occurs when a car turns. You feel as though you are
being pushed to the side, but in reality, your body is attempting to
continue in a straight line, while the car is changing its direction. 

Clearly, in most cases, it is easier to work in an inertial frame of
reference so that you can use Newton’s laws of motion. However,
if a physicist chooses to work in a non-inertial frame of reference
and still apply Newton’s laws of motion, it is necessary to invoke
hypothetical quantities that are often called fictitious forces:
inertial effects that are perceived as “forces” in non-inertial frames
of reference, but do not exist in inertial frames of reference.

• Passengers in a high-speed elevator feel as though they are being
pressed heavily against the floor when the elevator starts moving
up. After the elevator reaches its maximum speed, the feeling
disappears.

(a) When do the elevator and passengers form an inertial 
frame of reference? A non-inertial frame of reference?

(b) Before the elevator starts moving, what forces are acting on
the passengers? How large is the external (unbalanced) force?
How do you know?

(c) Is a person standing outside the elevator in an inertial or
non-inertial frame of reference?

(d) Suggest the cause of the pressure the passengers feel when
the elevator starts to move upward. Sketch a free-body 
diagram to illustrate your answer.

(e) Is the pressure that the passengers feel in part (d) a fictitious
force? Justify your answer.

Conceptual Problem

INERTIAL AND NON-INERTIAL FRAMES OF REFERENCE
An inertial frame of reference is one in which Newton’s first
and second laws are valid. Inertial frames of reference are at
rest or in uniform motion, but they are not accelerating.

A non-inertial frame of reference is one in which Newton’s
first and second laws are not valid. Accelerating frames of 
reference are always non-inertial.
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Earth and everything on it are in
continual circular motion. Earth 
is rotating on its axis, travelling
around the Sun and circling the
centre of the galaxy along with
the rest of the solar system. The
direction of motion is constantly
changing, which means the
motion is accelerated. Earth is a
non-inertial frame of reference,
and large-scale phenomena such
as atmospheric circulation are
greatly affected by Earth’s contin-
ual acceleration. In laboratory
experiments with moving objects,
however, the effects of Earth’s
rotation are usually not
detectable. 

PHYSICS FILE



You can determine the nature of a
frame of reference by analyzing its
acceleration.

Figure 1.4

Concept Organizer

yes

no

Newton’s laws
of motion

frame of
reference

at rest

constant
velocity

Some amusement park rides make you feel as though you are 
being thrown to the side, although no force is pushing you 
outward from the centre. Your frame of reference is moving 
rapidly along a curved path and therefore it is accelerating. 
You are in a non-inertial frame of reference, so it seems as 
though your motion is not following Newton’s laws of motion.

changing
velocity

Is
⇀a = 0?

inertial frame 
of reference

Newton’s laws
apply

non-inertial frame 
of reference

Newton’s laws
do not apply

1.1 Section Review

1. State Newton’s first law in two different
ways.

2. Identify the two basic situations that
Newton’s first law describes and explain how
one statement can cover both situations.

3. State Newton’s second law in words and
symbols.

4. A stage trick involves covering a table
with a smooth cloth and then placing dinner-
ware on the cloth. When the cloth is sudden-
ly pulled horizontally, the dishes “magically”
stay in position and drop onto the table.

(a) Identify all forces acting on the dishes
during the trick.

(b) Explain how inertia and frictional forces
are involved in the trick.

5. Give an example of an unusual frame 
of reference used in a movie or a television
program. Suggest why this viewpoint was
chosen.

6. Identify the defining characteristic of
inertial and non-inertial frames of reference.
Give an example of each type of frame of 
reference.

7. In what circumstances is it necessary to
invoke ficticious forces in order to explain
motion? Why is this term appropriate to
describe these forces?

8. Compare inertial mass and gravitational
mass, giving similarities and differences.

9. Why do physicists, who take pride in 
precise, unambiguous terminology, usually
speak just of “mass,” rather than distinguish-
ing between inertial and gravitational mass?

C

C

C

K/U

K/U

MC

K/U

C

K/U

� What frame of reference would be the best
choice for measuring and analyzing the 
performance of your catapult?

� What forces will be acting on the payload of
your catapult when it is being accelerated?
When it is flying through the air?

� How will the inertia of the payload affect 
its behaviour? How will the mass of the 
payload affect its behaviour?

Test your ideas using a simple elastic band or
slingshot. 

Take appropriate safety precautions
before any tests. Use eye protection.

CAUTION

UNIT PROJECT PREP
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The deafening roar of the engine of a competitor’s tractor conveys
the magnitude of the force that is applied to the sled in a tractor-
pull contest. As the sled begins to move, weights shift to increase
frictional forces. Despite the power of their engines, most tractors
are slowed to a standstill before reaching the end of the 91 m
track. In contrast to the brute strength of the tractors, dragsters
“sprint” to the finish line. Many elements of the two situations 
are identical, however, since forces applied to masses change the
linear (straight-line) motion of a vehicle.

In the previous section, you focussed on basic dynamics — 
the cause of changes in motion. In this section, you will analyze
kinematics — the motion itself — in more detail. You will 
consider objects moving horizontally in straight lines. 

Kinematic Equations
To analyze the motion of objects quantitatively, you will use the
kinematic equations (or equations of motion) that you learned in
previous courses. The two types of motion that you will analyze
are uniform motion — motion with a constant velocity — and 
uniformly accelerated motion — motion under constant accelera-
tion. When you use these equations, you will apply them to only
one dimension at a time. Therefore, vector notations will not be
necessary, because positive and negative signs are all that you 
will need to indicate direction. The kinematic equations are 
summarized on the next page, and apply only to the type of
motion indicated.

In a tractor pull, vehicles develop up to 9000 horsepower 
to accelerate a sled, until they can no longer overcome the constantly
increasing frictional forces. Dragsters, on the other hand, accelerate right 
up to the finish line.

Figure 1.5

Analyzing Motion1.2
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• Analyze, predict, and explain
linear motion of objects in 
horizontal planes.

• Analyze experimental data to
determine the net force acting
on an object and its resulting
motion.

• dynamics

• kinematics

• uniform motion

• uniformly accelerated motion

• free-body diagram

• frictional forces

• coefficient of static friction

• coefficient of kinetic friction

 T E R M S
K E Y

E X P E C T A T I O N S
S E C T I O N



• The equations above are the most fundamental kinematic 
equations. You can derive many more equations by making 
combinations of the above equations. For example, it is some-
times useful to use the relationship ∆d = v2∆t − 1

2 a∆t2 . Derive 
this equation by manipulating two or more of the equations
above. (Hint: Notice that the equation you need to derive is very
similar to one of the equations in the list, with the exception
that it has the final velocity instead of the initial velocity. What
other equation can you use to eliminate the initial velocity from
the equation that is similar to the desired equation?)

Combining Dynamics and Kinematics
When analyzing motion, you often need to solve a problem in two
steps. You might have information about the forces acting on an
object, which you would use to find the acceleration. In the next
step, you would use the acceleration that you determined in order
to calculate some other property of the motion. In other cases, you
might analyze the motion to find the acceleration and then use the
acceleration to calculate the force applied to a mass. The following
sample problem will illustrate this process.

Conceptual Problem

a = ∆v
∆t

or

a = v2 − v1
∆t

v2 = v1 + a∆t

∆d = (v1 + v2)
2

∆t

∆d = v1∆t + 1
2 a∆t2

v2
2 = v2

1 + 2a∆d

Uniformly accelerated motion
� definition of acceleration

� Solve for final velocity in terms of 
initial velocity, acceleration, and 
time interval.

� displacement in terms of initial velocity,
final velocity, and time interval

� displacement in terms of initial velocity,
acceleration, and time interval

� final velocity in terms of initial velocity,
acceleration, and 
displacement

v = ∆d
∆t

∆d = v∆t

Uniform motion
� definition of velocity

� Solve for displacement in terms of 
velocity and time.
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Refer to your Electronic Learning
Partner to enhance your under-
standing of acceleration and 
velocity.

ELECTRONIC
LEARNING PARTNER



Finding Velocity from Dynamics Data
In television picture tubes and computer monitors (cathode ray tubes),
light is produced when fast-moving electrons collide with phosphor 
molecules on the surface of the screen. The electrons (mass 9.1 × 10−31 kg)
are accelerated from rest in the electron “gun” at the back of the vacuum
tube. Find the velocity of an electron when it exits the gun after experi-
encing an electric force of 5.8 × 10−15 N over a distance of 3.5 mm.

Conceptualize the Problem
� The electrons are moving horizontally, from the back to the front of the

tube, under an electric force.

� The force of gravity on an electron is exceedingly small, due to the 
electron’s small mass. Since the electrons move so quickly, the time
interval of the entire flight is very short. Therefore, the effect of the force
of gravity is too small to be detected and you can consider the electric
force to be the only force affecting the electrons.

� Information about dynamics data allows you to find the electrons’ 
acceleration.

� Each electron is initially at rest, meaning that the initial velocity is zero.

� Given the acceleration, the equations of motion lead to other variables 
of motion.

� Let the direction of the force, and therefore the direction of the accelera-
tion, be positive.

Identify the Goal
The final velocity, v2, of an electron when exiting the electron gun

Identify the Variables and Constants 
Known Implied Unknown
me = 9.1 × 10−31 kg

F = 5.8 × 10−15 N
∆d = 3.5 × 10−3 m

v1 = 0 m
s

a
v2

Develop a Strategy

⇀a = 6.374 × 1015 m
s2 [toward the front of tube]N

kg
is equivalent to m

s2 .

⇀a = +5.8 × 10−15 N
9.1 × 10−31 kg

Substitute and solve.

⇀a =
⇀F
m

Write Newton’s second law in terms 
of acceleration.

⇀F = m⇀a

Apply Newton’s second law to find
the net force.

SAMPLE PROBLEM 
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The final velocity of the electrons is about 6.7 × 106 m/s in the direction
of the applied force.

Validate the Solution
Electrons, with their very small inertial mass, could be expected to reach 
high speeds. You can also solve the problem using the concepts of work and
energy that you learned in previous courses. The work done on the electrons 
was converted into kinetic energy, so W = F∆d = 1

2 mv2. Therefore, 

v =
√

2F∆d
m

=
√

2(5.8 × 10−15 N)(3.5 × 10−3 m)
9.1 × 10−31 kg

= 6.679 × 106 m
s

≅ 6.7 × 106 m
s

. 

Obtaining the same answer by two different methods is a strong validation 
of the results.

1. A linear accelerator accelerated a germanium
ion (m = 7.2 × 10−25 kg) from rest to a 
velocity of 7.3 × 106 m/s over a time interval
of 5.5 × 10−6 s. What was the magnitude 
of the force that was required to accelerate
the ion? 

2. A hockey stick exerts an average force of 
39 N on a 0.20 kg hockey puck over a 
displacement of 0.22 m. If the hockey puck
started from rest, what is the final velocity of
the puck? Assume that the friction between
the puck and the ice is negligible.

PRACTICE PROBLEMS

v2
2 = v2

1 + 2a∆d

v2
2 = 0 + 2

(
6.374 × 1015 m

s2

)
(3.5 × 10−3 m)

v2 = 6.67 967 × 106 m
s

v2 ≅ 6.7 × 106 m
s

Apply the kinematic equation that
relates initial velocity, acceleration,
and displacement to final velocity.
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continued from previous page

Determining the Net Force
In almost every instance of motion, more than one force is acting
on the object of interest. To apply Newton’s second law, you need
to find the resultant force. A free-body diagram is an excellent tool
that will help to ensure that you have correctly identified and
combined the forces.

To draw a free-body diagram, start with a dot that represents
the object of interest. Then draw one vector to represent each force
acting on the object. The tails of the vector arrows should all start
at the dot and indicate the direction of the force, with the arrow-
head pointing away from the dot. Study Figure 1.6 to see how a
free-body diagram is constructed. Figure 1.6 (A) illustrates a crate
being pulled across a floor by a rope attached to the edge of the
crate. Figure 1.6 (B) is a free-body diagram representing the forces
acting on the crate.

Two of the most common types of forces that influence the
motion of familiar objects are frictional forces and the force of
gravity. You will probably recall from previous studies that the



magnitude of the force of gravity acting on objects on or near
Earth’s surface can be expressed as F = mg, where g (which is
often called the acceleration due to gravity) has a value 9.81 m/s2.
Near Earth’s surface, the force of gravity always points toward the
centre of Earth.

Whenever two surfaces are in contact, frictional forces oppose
any motion between them. Therefore, the direction of the friction-
al force is always opposite to the direction of the motion. You
might recall from previous studies that the magnitudes of friction-
al forces can be calculated by using the equation Ff = µFN. The
normal force in this relationship (FN) is the force perpendicular 
to the surfaces in contact. You might think of the normal force as
the force that is pressing the two surfaces together. The nature of
the surfaces and their relative motion determines the value of 
the coefficient of friction (µ). These values must be determined
experimentally. Some typical values are listed in Table 1.1.

Table 1.1 Coefficients of Friction for Some Common Surfaces

If the objects are not moving relative to each other, you would
use the coefficient of static friction (µs). If the objects are moving,
the somewhat smaller coefficient of kinetic friction (µk) applies to
the motion. 

As you begin to solve problems involving several forces, you
will be working in one dimension at a time. You will select a 
coordinate system and resolve the forces into their components 
in each dimension. Note that the components of a force are not
vectors themselves. Positive and negative signs completely
describe the motion in one dimension. Thus, when you apply
Newton’s laws to the components of the forces in one dimension,
you will not use vector notations. 

Surface

rubber on dry, solid surfaces

rubber on dry concrete

rubber on wet concrete

glass on glass

steel on steel (unlubricated)

steel on steel (lubricated)

wood on wood

ice on ice

Teflon™ on steel in air

ball bearings (lubricated)

joint in humans

Coefficient of
static friction

(µs)

1–4

1.00

0.70

0.94

0.74

0.15

0.40

0.10

0.04

<0.01

0.01

Coefficient of
kinetic friction

(µk)

1

0.80

0.50

0.40

0.57

0.06

0.20

0.03

0.04

<0.01

0.003
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(A) The forces of 

gravity (
⇀
Fg), friction (

⇀
F f), the 

normal force of the floor (
⇀
FN),

and the applied force of the rope
(
⇀
Fa) all act on the crate at the

same time. (B) The free-body 
diagram includes only those
forces acting on the crate and
none of the forces that the crate
exerts on other objects.

Figure 1.6

⇀
FN

⇀
F f

⇀
Fg

⇀
Fa

B

A

⇀
F f

⇀
Fa

⇀
Fg

⇀
FN

Refer to your Electronic Learning
Partner to enhance your under-
standing of forces and vectors.

ELECTRONIC
LEARNING PARTNER



Another convention used in this textbook involves writing the
sum of all of the forces in one dimension. In the first step, when
the forces are identified as, for example, gravitational, frictional, 
or applied, only plus signs will be used. Then, when information
about that specific force is inserted into the calculation, a positive
or negative sign will be included to indicate the direction of 
that specific force. Watch for these conventions in sample 
problems.

Working with Three Forces
To move a 45 kg wooden crate across a wooden floor 
(µ = 0.20), you tie a rope onto the crate and pull on the
rope. While you are pulling the rope with a force of
115 N, it makes an angle of 15˚ with the horizontal.
How much time elapses between the time at which the
crate just starts to move and the time at which you are
pulling it with a velocity of 1.4 m/s?

Conceptualize the Problem
� To start framing this problem, draw a free-body diagram.

� Motion is in the horizontal direction, so the net horizontal 
force is causing the crate to accelerate.

� Let the direction of the motion be the positive horizontal
direction.

� There is no motion in the vertical direction, so the vertical
acceleration is zero. If the acceleration is zero, the net vertical
force must be zero. This information leads to the value of the
normal force. Let “up” be the positive vertical direction.

� Since the beginning of the time interval in question is the
instant at which the crate begins to move, the coefficient of
kinetic friction applies to the motion. 

� Once the acceleration is found, the kinematic equations allow
you to determine the values of other quantities involved in 
the motion.

Identify the Goal
The time, ∆t, required to reach a velocity of 1.4 m/s

Identify the Variables
Known Implied Unknown
⇀Fa = +115 N

θ = 15˚

µ = 0.20

m = 45 kg

vf = 1.4 m
s

vi = 0 m
s

g = 9.81 m
s2

⇀FN
⇀Fg
⇀F f

⇀a
∆t

⇀
FN

⇀
FN

⇀
F f

⇀
F f

⇀
Fg

⇀
Fg

⇀
Fa

y

x

⇀
Fa

Fax

Fay
15˚

15˚

SAMPLE PROBLEM 
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Develop a Strategy

You will be pulling the crate at 1.4 m/s at 2.2 s after the crate begins to move.

Validate the Solution
Check the units for acceleration: N

kg
=

kg · m
s2

kg
= m

s2 . The units are correct. A velocity 

of 1.4 m/s is not very fast, so you would expect that the time interval required to
reach that velocity would be short. The answer of 2.2 s is very reasonable.

3. In a tractor-pull competition, a tractor 
applies a force of 1.3 kN to the sled, which
has mass 1.1 × 104 kg. At that point, the co-
efficient of kinetic friction between the sled
and the ground has increased to 0.80. What 
is the acceleration of the sled? Explain the
significance of the sign of the acceleration.

4. A curling stone with mass 20.0 kg leaves the
curler’s hand at a speed of 0.885 m/s. It slides
31.5 m down the rink before coming to rest. 

(a) Find the average force of friction acting on
the stone.

(b) Find the coefficient of kinetic friction
between the ice and the stone.

PRACTICE PROBLEMS

a = vf − vi
∆t

∆t = vf − vi
a

∆t =
1.4 m

s − 0 m
s

0.6387 m
s2

∆t = 2.19 s

∆t ≅ 2.2 s

To find the time interval, use the kinematic
equation that relates acceleration, initial veloc-
ity, final velocity, and time.

⇀F = m⇀a

Fa(horizontal) + Ff = ma

Ff = −µFN

a = Fa(horizontal) − µFN

m

a = (115 N) cos 15˚ − (0.20)(411.69 N)
45 kg

a = 111.08 N − 82.34 N
45 kg

a = 0.6387 m
s2

To find the acceleration, apply Newton’s sec-
ond law to the horizontal forces. Analyze the
free-body diagram to find all of the horizontal
forces that act on the crate.

⇀F = m⇀a
Fa(vertical) + Fg + FN = ma

Fg = −mg
Fa(vertical) − mg + FN = ma
FN = ma + mg − Fa(vertical)

FN = 0 + (45 kg)
(
9.81 m

s2

)
− (115 N) sin 15˚

FN = 441.45 N − 29.76 N
FN = 411.69 N

To find the normal force, apply Newton’s 
second law to the vertical forces. Analyze the
free-body diagram to find all of the vertical
forces that act on the crate.
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Bend a Wall
Best Angle for 
Pulling a Block

Q U I C K

L A B

TARGET SKILLS

Predicting
Performing and recording
Analyzing and interpreting

Set two 500 g masses on a block of wood.
Attach a rope and drag the block along a table. If
the rope makes a steeper angle with the surface,
friction will be reduced (why?) and the block
will slide more easily. Predict the angle at
which the block will move with least effort.
Attach a force sensor to the rope and measure
the force needed to drag the block at a constant
speed at a variety of different angles. Graph
your results to test your prediction.

Analyze and Conclude
1. Identify from your graph the “best” angle at

which to move the block.

2. How close did your prediction come to the
experimental value?

3. Identify any uncontrolled variables in the
experiment that could be responsible for
some error in your results.

4. In theory, the “best” angle is related to the
coefficient of static friction between the 
surface and the block: tan θ best = µs. Use your
results to calculate the coefficient of static
friction between the block and the table.

5. What effect does the horizontal component
of the force have on the block? What effect
does the vertical component have on the
block?

6. Are the results of this experiment relevant to
competitors in a tractor pull, such as the one
described in the text and photograph caption
at the beginning of this section? Explain your
answer in detail.

side view

top view

θ

5. Pushing a grocery cart with a force of 95 N,
applied at an angle of 35˚ down from the 
horizontal, makes the cart travel at a constant
speed of 1.2 m/s. What is the frictional force
acting on the cart?

6. A man walking with the aid of a cane
approaches a skateboard (mass 3.5 kg) lying
on the sidewalk. Pushing with an angle of
60˚ down from the horizontal with his cane,
he applies a force of 115 N, which is enough
to roll the skateboard out of his way. 

(a) Calculate the horizontal force acting on
the skateboard.

(b) Calculate the initial acceleration of the
skateboard.

7. A mountain bike with mass 13.5 kg, with 
a rider having mass 63.5 kg, is travelling at
32 km/h when the rider applies the brakes,
locking the wheels. How far does the bike
travel before coming to a stop if the coeffi-
cient of friction between the rubber tires and
the asphalt road is 0.60?

continued from previous page



Applying Newton’s Third Law
Examine the photograph of the tractor-trailer in Figure 1.7 and
think about all of the forces exerted on each of the three sections
of the vehicle. Automotive engineers must know how much force
each trailer hitch needs to withstand. Is the hitch holding the sec-
ond trailer subjected to as great a force as the hitch that attaches
the first trailer to the truck? 

This truck and its two trailers move as one unit. The velocity
and acceleration of each of the three sections are the same. However, each
section is experiencing a different net force.

To analyze the individual forces acting on each part of a train 
of objects, you need to apply Newton’s third law to determine the
force that each section exerts on the adjacent section. Study the
following sample problem to learn how to determine all of the
forces on the truck and on each trailer. These techniques will
apply to any type of train problem in which the first of several 
sections of a moving set of objects is pulling all of the sections
behind it.

Figure 1.7
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Forces on Connected Objects
A tractor-trailer pulling two trailers starts 
from rest and accelerates to a speed of 
16.2 km/h in 15 s on a straight, level section 
of highway. The mass of the truck itself (T) 
is 5450 kg, the mass of the first trailer (A) is
31 500 kg, and the mass of the second trailer
(B) is 19 600 kg. What magnitude of force
must the truck generate in order to acceler-
ate the entire vehicle? What magnitude of
force must each of the trailer hitches withstand while the vehicle 
is accelerating? (Assume that frictional forces are negligible in 
comparison with the forces needed to accelerate the large masses.)

AB

SAMPLE PROBLEM 

continued



Conceptualize the Problem

Identify the Goal
The force, FP on T, that the pavement exerts on the truck tires; the force, FT on A, that
the truck exerts on trailer A; the force, FA on B, that trailer A exerts on trailer B

Identify the Variables
Known Implied Unknown

vf = 16.2 km
h

∆t = 15 s

mT = 5450 kg
mA = 31 500 kg
mB = 19 600 kg

vi = 0 km
h

a
FP on T

FT on A

FA on B

FA on T

FB on A

mtotal

Develop a Strategy

The pavement exerts 1.7 × 104 N on the truck tires.

⇀F = m⇀a

FP on T = (56 550 kg)
(
0.30 m

s2

)
FP on T = 16 965 kg · m

s2

FP on T ≅ 1.7 × 104 N

Use Newton’s second law to find the force
required to accelerate the total mass. This will
be the force that the pavement must exert on
the truck tires.

mtotal = mT + mA + mB

mtotal = 5450 kg + 31 500 kg + 19 600 kg

mtotal = 56 550 kg

Find the total mass of the truck plus trailers.

a = v2 − v1
∆t

a =

(
16.2 km

h − 0 km
h

) (
1 h

3600 s

) ( 1000 m
1 km

)
15 s

a = 0.30 m
s2

Use the kinematic equation that relates the ini-
tial velocity, final velocity, time interval, and
acceleration to find the acceleration.

� The truck engine generates energy to turn the
wheels. When the wheels turn, they exert a
frictional force on the pavement. According to
Newton’s third law, the pavement exerts a
reaction force that is equal in magnitude and
opposite in direction to the force exerted by
the tires. The force of the pavement on the
truck tires, 

⇀FP on T, accelerates the entire 
system.

� The truck exerts a force on trailer A.
According to Newton’s third law, the trailer
exerts a force of equal magnitude on the
truck. 

� Trailer A exerts a force on trailer B, and trailer
B therefore must exert a force of equal magni-
tude on trailer A.

� Summarize all of the forces by drawing free-
body diagrams of each section of the vehicle. 

� The kinematic equations allow you to calcu-
late the acceleration of the system.

� Since each section of the system has the 
same acceleration, this value, along with the
masses and Newton’s second law, lead to all
of the forces.

� Since the motion is in a straight line and the
question asks for only the magnitudes of the
forces, vector notations are not needed.
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trailer Atrailer B truck

FA on B FA on T FP on TFB on A FTon A
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The force that the second hitch must withstand is 5.9 × 103 N.

The force that the first hitch must withstand is 1.5 × 104 N.

Validate the Solution
You would expect that FP on T > FT on A > FA on B. The calculated forces
agree with this relationship. You would also expect that the force
exerted by the tractor on trailer A would be the force necessary to
accelerate the sum of the masses of trailers A and B at 0.30 m/s2.

FT on A = (31 500 kg + 19 600 kg)
(
0.30 m

s2

)
= 15 330 N ≅ 1.5 × 104 N

This value agrees with the value above.

8. A 1700 kg car is towing a larger vehicle with
mass 2400 kg. The two vehicles accelerate
uniformly from a stoplight, reaching a speed
of 15 km/h in 11 s. Find the force needed to
accelerate the connected vehicles, as well as
the minimum strength of the rope between
them. 

9. An ice skater pulls three small children, one
behind the other, with masses 25 kg, 31 kg,
and 35 kg. Assume that the ice is smooth
enough to be considered frictionless.

(a) Find the total force applied to the “train”
of children if they reach a speed of 
3.5 m/s in 15 s.

(b) If the skater is holding onto the 25 kg
child, find the tension in the arms of the
next child in line.

PRACTICE PROBLEMS

FT on A = Ftotal on A − FB on A

FT on A = 9.45 × 103 N − (−5.88 × 103 N)
FT on A = 1.533 × 104 N
FT on A ≅ 1.5 × 104 N

The force that the first hitch must withstand is
the force that the truck exerts on trailer A.
Solve the force equation above for FT on A and
calculate the value. According to Newton’s
third law, FB on A = −FA on B.

Ftotal = FT on A + FB on AUse the free-body diagram to help write the
expression for total (horizontal) force on 
trailer A.

Ftotal on A = mAa

Ftotal on A = (31 500 kg)
(
0.30 m

s2

)
Ftotal on A = 9.45 × 103 kg · m

s2

Ftotal on A ≅ 9.5 × 103 N

Use Newton’s second law to find the total force
necessary to accelerate trailer A at 0.30 m/s2.

FA on B = mBa

FA on B = (19 600 kg)
(
0.30 m

s2

)
FA on B = 5.88 × 103 kg · m

s2

FA on B ≅ 5.9 × 103 N

Use Newton’s second law to find the force nec-
essary to accelerate trailer B at 0.30 m/s2. This
is the force that the second trailer hitch must
withstand.
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2400 kg 1700 kg

v1 = 0 km/h v2 = 15 km/h
∆t = 11 s continued



10. A solo Arctic adventurer pulls a string of two
toboggans of supplies across level, snowy
ground. The toboggans have masses of 95 kg
and 55 kg. Applying a force of 165 N causes
the toboggans to accelerate at 0.61 m/s2. 

(a) Calculate the frictional force acting on the
toboggans.

(b) Find the tension in the rope attached to
the second (55 kg) toboggan. 
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1.2 Section Review

1. How is direction represented when ana-
lyzing linear motion?

2. When you pull on a rope, the rope pulls
back on you. Describe how the rope creates
this reaction force.

3. Explain how to calculate

(a) the horizontal component (Fx) of a force F

(b) the vertical component (Fy) of a force F

(c) the coefficient of friction (µ) between 
two surfaces

(d) the gravitational force (Fg) acting on an
object

4. Define (a) a normal force and (b) the
weight of an object.

5. An object is being propelled horizontal-
ly by a force F. If the force doubles, use
Newton’s second law and kinematic 
equations to determine the change in

(a) the acceleration of the object

(b) the velocity of the object after 10 s

6. A 0.30 kg lab cart is observed to acceler-
ate twice as fast as a 0.60 kg cart. Does that
mean that the net force on the more massive
cart is twice as large as the force on the
smaller cart? Explain.

7. A force F produces an acceleration a
when applied to a certain body. If the mass
of the body is doubled and the force is
increased fivefold, what will be the effect 
on the acceleration of the body?

8. An object is 
being acted on by
forces pictured in
the diagram. 

(a) Could the object
be accelerating
horizontally? Explain.

(b) Could the object be moving horizontally?
Explain.

9. Three identical blocks, fastened together
by a string, are pulled across a frictionless
surface by a constant force, F.

(a) Compare the tension in string A to the
magnitude of the applied force, F.

(b) Draw a free-body diagram of the forces
acting on block 2.

10. A tall person and a short person pull 
on a load at different angles but with equal
force, as shown. 

(a) Which person applies the greater horizon-
tal force to the load? What effect does this
have on the motion of the load?

(b) Which person applies the greater vertical
force to the load? What effect does this
have on frictional forces? On the motion
of the load?

K/U

3
B A F

2 1

C

⇀
F4 ⇀

F1

⇀
F3

⇀
F2

K/U

K/U

K/U

K/U

K/U

K/U

K/U

K/U
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Catapulting a diver high into the air requires a force. How large a
force? How hard must the board push up on the diver to overcome
her weight and accelerate her upward? After the diver leaves the
board, how long will it take before her ascent stops and she turns
and plunges toward the water? In this section, you will investigate
the dynamics of diving and other motions involving rising and
falling or straight-line motion in a vertical plane.

After the diver leaves the diving board and before she hits the
water, the most important force acting on her is the gravitational force
directed downward. Gravity affects all forms of vertical motion.

Weight versus Apparent Weight
One of the most common examples of linear vertical motion is 
riding in an elevator. You experience some strange sensations
when the elevator begins to rise or descend or when it slows and
comes to a stop. For example, if you get on at the first floor and
start to go up, you feel heavier for a moment. In fact, if you are
carrying a book bag or a suitcase, it feels heavier, too. When the
elevator slows and eventually stops, you and anything you are 
carrying feels lighter. When the elevator is moving at a constant
velocity, however, you feel normal. Are these just sensations that
living organisms feel or, if you were standing on a scale in the 
elevator, would the scale indicate that you were heavier? You can
answer that question by applying Newton’s laws of motion to a
person riding in an elevator. 

Figure 1.8

Vertical Motion1.3
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• Analyze the motion of objects in
vertical planes.

• Explain linear vertical motion in
terms of forces.

• Solve problems and predict the
motion of objects in vertical
planes.

• apparent weight

• tension

• counterweight

• free fall

• air resistance

• terminal velocity

 T E R M S
K E Y

E X P E C T A T I O N S
S E C T I O N



Imagine that you are standing on a scale in an eleva-
tor, as shown in Figure 1.9. When the elevator is standing
still, the reading on the scale is your weight. Recall that
your weight is the force of gravity acting on your mass.
Your weight can be calculated by using the equation
Fg = mg, where g is the acceleration due to gravity. Vector 
notations are sometimes omitted because the force due 
to gravity is always directed toward the centre of Earth.
Find out what happens to the reading on the scale by
studying the following sample problem.

When you are standing on a scale, you exert a force
on the scale. According to Newton’s third law, the scale must
exert an equal and opposite force on you. Therefore, the reading
on the scale is equal to the force that you exert on it.

Figure 1.9
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Apparent Weight
A 55 kg person is standing on a scale in an elevator. If the scale is
calibrated in newtons, what is the reading on the scale when the
elevator is not moving? If the elevator begins to accelerate upward
at 0.75 m/s2, what will be the reading on the scale?

Conceptualize the Problem
� Start framing the problem by drawing a free-body diagram of the 

person on the scale. A free-body diagram includes all of the forces
acting on the person.

� The forces acting on the person are gravity (
⇀Fg) and the normal

force of the scale.

� According to Newton’s third law, when the person exerts a force
(
⇀FPS) on the scale, it exerts an equal and opposite force (

⇀FSP) on the
person. Therefore, the reading on the scale is the same as the force
that the person exerts on the scale.

� When the elevator is standing still, the person’s acceleration is zero. 

� When the elevator begins to rise, the person is accelerating at the same
rate as the elevator.

� Since the motion is in one dimension, use only positive and negative
signs to indicate direction. Let “up” be positive and “down” be 
negative.

� Apply Newton’s second law to find the magnitude of 
⇀FSP.

� By Newton’s third law, the magnitudes of 
⇀FPS and 

⇀FSP are equal to
each other, and therefore to the reading on the scale.

⇀
Fg

⇀
FSP

⇀a

SAMPLE PROBLEM 

weight of
person on
scale

normal force
of scale
on person



Identify the Goal
The reading on the scale, 

∣∣⇀FSP
∣∣, when the elevator is standing still and

when it is accelerating upward

Identify the Variables
Known Implied Unknown

m = 55 kg
⇀a = +0.75 m

s2

g = 9.81 m
s2

⇀FPS
⇀Fg

⇀FSP

Develop a Strategy

When the elevator is not moving, the reading on the scale is 5.4 × 102 N,
which is the person’s weight.

When the elevator is accelerating upward, the reading on the scale 
is 5.8 × 102 N.

Validate the Solution
When an elevator first starts moving upward, it must exert a force
that is greater than the person’s weight so that, as well as supporting
the person, an additional force causes the person to accelerate. 
The reading on the scale should reflect this larger force. It does. 
The acceleration of the elevator was small, so you would expect 
that the increase in the reading on the scale would not increase 
by a large amount. It increased by only about 7%.

⇀F = m⇀a
⇀Fg + ⇀FSP = m⇀a
⇀FSP = −⇀Fg + m⇀a
⇀FSP = −(−mg) + m⇀a
⇀FSP = (55 kg)

(
9.81 m

s2

)
+ (55 kg)

(
+0.75 m

s2

)
⇀FSP = 580.8 N
⇀FSP ≅ 5.8 × 102 N[up]

Apply Newton’s second law to the case in
which the elevator is accelerating upward. 
The acceleration is positive.

⇀F = m⇀a
⇀Fg + ⇀FSP = m⇀a
⇀FSP = −⇀Fg + m⇀a
⇀FSP = −(−mg) + m⇀a
⇀FSP = (55 kg)

(
9.81 m

s2

)
+ 0

⇀FSP = 539.55 kg · m
s2

⇀FSP ≅ 5.4 × 102 N

Apply Newton’s second law and solve for the
force that the scale exerts on the person. 
The force in Newton’s second law is the vector 
sum of all of the forces acting on the person. 

In the first part of the problem, the acceleration
is zero.
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11. A 64 kg person is standing on a scale in an
elevator. The elevator is rising at a constant
velocity but then begins to slow, with an
acceleration of 0.59 m/s2. What is the sign of
the acceleration? What is the reading on the
scale while the elevator is accelerating?

12. A 75 kg man is standing on a scale in an 
elevator when the elevator begins to descend
with an acceleration of 0.66 m/s2. What is
the direction of the acceleration? What is the

reading on the scale while the elevator is
accelerating?

13. A 549 N woman is standing on a scale in 
an elevator that is going down at a constant
velocity. Then, the elevator begins to slow
and eventually comes to a stop. The magni-
tude of the acceleration is 0.73 m/s2. What 
is the direction of the acceleration? What is
the reading on the scale while the elevator 
is accelerating?

PRACTICE PROBLEMS

As you saw in the problems, when you are standing on a scale
in an elevator that is accelerating, the reading on the scale is 
not the same as your true weight. This reading is called your
apparent weight. 

When the direction of the acceleration of the elevator is 
positive — it starts to ascend or stops while descending — your
apparent weight is greater than your true weight. You feel heavier
because the floor of the elevator is pushing on you with a greater

force than it is when the elevator is stationary or
moving with a constant velocity. 

When the direction of the acceleration is 
negative — when the elevator is rising and slows to 
a stop or begins to descend — your apparent weight
is smaller than your true weight. The floor of the 
elevator is exerting a force on you that is smaller 
than your weight, so you feel lighter.

Tension in Ropes and Cables
While an elevator is supporting or lifting you, what 
is supporting the elevator? The simple answer is 
cables — exceedingly strong steel cables. Construction
cranes such the one in Figure 1.10 also use steel cables
to lift building materials to the top of skyscrapers
under construction. When a crane exerts a force on 
one end of a cable, each particle in the cable exerts an
equal force on the next particle in the cable, creating
tension throughout the cable. The cable then exerts a
force on its load. Tension is the magnitude of the force
exerted on and by a cable, rope, or string. How do
engineers determine the amount of tension that these
cables must be able to withstand? They apply
Newton’s laws of motion.

Mobile construction cranes can
withstand the tension necessary to lift loads of
up to 1000 t.

Figure 1.10
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To avoid using complex mathematical analyses, you can make
several assumptions about cables and ropes that support loads.
Your results will be quite close to the values calculated by 
computers that are programmed to take into account all of the
non-ideal conditions. The simplifying assumptions are as follows.

� The mass of the rope or cable is so much smaller than the mass
of the load that it does not significantly affect the motion or
forces involved.

� The tension is the same at every point in the rope or cable.

� If a rope or cable passes over a pulley, the direction of the 
tension forces changes, but the magnitude remains the same.
This statement is the same as saying that the pulley is friction-
less and its mass is negligible.
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Tension in a Cable
An elevator filled with people has a total mass of 2245 kg. As the elevator
begins to rise, the acceleration is 0.55 m/s2. What is the tension in the
cable that is lifting the elevator?

Conceptualize the Problem
� To begin framing the problem, draw a free-body diagram.

� The tension in the cable has the same magnitude as the force
it exerts on the elevator.

� Two forces are acting on the elevator: the cable (
⇀FT) and 

gravity (
⇀Fg).

� The elevator is rising and speeding up, so the acceleration is
upward.

� Newton’s second law applies to the problem.

� The motion is in one dimension, so let positive and negative signs
indicate direction. Let “up” be positive and “down” be negative.

Identify the Goal
The tension, FT, in the rope

Identify the Variables
Known Implied Unknown

m = 2245 kg
⇀a = 0.55 m

s2 [up]

g = 9.81 m
s2

⇀FT
⇀Fg

⇀
Fg

⇀
FT

⇀a

SAMPLE PROBLEM 

continued



Develop a Strategy

The magnitude of the tension in the cable is 2.3 × 104 N[up].

Validate the Solution
The weight of the elevator is (2245 kg)(9.81 m/s2) ≅ 2.2 × 104 N. 
The tension in the cable must support the weight of the elevator and
exert an additional force to accelerate the elevator. Therefore, you
would expect the tension to be a little larger than the weight of the
elevator, which it is.

14. A 32 kg child is practising climbing skills 
on a climbing wall, while being belayed
(secured at the end of a rope) by a parent.
The child loses her grip and dangles from the
belay rope. When the parent starts lowering
the child, the tension in the rope is 253 N.
Find the acceleration of the child when she
is first being lowered.

15. A 92 kg mountain climber rappels down a
rope, applying friction with a figure eight (a
piece of climbing equipment) to reduce his
downward acceleration. The rope, which is
damaged, can withstand a tension of only
675 N. Can the climber limit his descent to a
constant speed without breaking the rope? If
not, to what value can he limit his down-
ward acceleration?

16. A 10.0 kg mass is hooked on a spring scale
fastened to a hoist rope. As the hoist starts
moving the mass, the scale momentarily
reads 87 N. Find

(a) the direction of motion

(b) the acceleration of the mass

(c) the tension in the hoist rope 

17. Pulling on the strap of a 15 kg backpack, a
student accelerates it upward at 1.3 m/s2 .
How hard is the student pulling on the strap?

18. A 485 kg elevator is rated to hold 15 people
of average mass (75 kg). The elevator cable
can withstand a maximum tension of
3.74 × 104 N, which is twice the maximum
force that the load will create (a 200% safety
factor). What is the greatest acceleration that
the elevator can have with the maximum
load?

PRACTICE PROBLEMS

⇀F = (2245 kg)
(
9.81 m

s2

)
+ (2245 kg)

(
0.55 m

s2

)
⇀FT = 23 258.2 kg · m

s2

⇀FT ≅ 2.3 × 104 N[up]

Substitute values and solve. 

⇀F = m⇀a
⇀FT + ⇀Fg = m⇀a
⇀FT = −⇀Fg + m⇀a
⇀FT = −(−mg) + m⇀a

Apply Newton’s second law and insert all of
the forces acting on the elevator. Then solve for
the tension.
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Connected Objects
Imagine how much energy it would require to lift an elevator
carrying 20 people to the main deck of the CN Tower in
Toronto, 346 m high. A rough calculation using the equation
for gravitational potential energy (Eg = mg∆h), which you
learned in previous science courses, would yield a value of
about 10 million joules of energy. Is there a way to avoid
using so much energy?

Elevators are not usually simply suspended from cables.
Instead, the supporting cable passes up over a pulley and
then back down to a heavy, movable counterweight, as
shown in Figure 1.11. Gravitational forces acting downward
on the counterweight create tension in the cable. The cable
then exerts an upward force on the elevator cage. Most of 
the weight of the elevator and passengers is balanced by 
the counterweight. Only relatively small additional forces
from the elevator motors are needed to raise and lower 
the elevator and its counterweight. Although the elevator 
and counterweight move in different directions, they are 
connected by a cable, so they accelerate at the same rate. 

Elevators are only one of many examples of machines 
that have large masses connected by a cable that runs over 
a pulley. In fact, in 1784, mathematician George Atwood
(1745–1807) built a machine similar to the simplified 
illustration in Figure 1.12. He used his machine to test 
and demonstrate the laws of uniformly accelerated motion
and to determine the value of g, the acceleration due to 
gravity. The acceleration of Atwood’s machine depended 
on g, but was small enough to measure accurately. In the 
following investigation, you will use an Atwood machine 
to measure g.

An Atwood machine uses a counterweight to 
reduce acceleration due to gravity.

Figure 1.12

Ft

Fg

m1
Ft

Fg

m2
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Most elevators are 
connected by a cable to a counter-
weight that moves in the opposite
direction to the elevator. A typical
counterweight has a mass that is 
the same as the mass of the empty
elevator plus about half the mass 
of a full load of passengers.

Figure 1.11



I N V E S T I G A T I O N  1-B

Atwood’s Machine

TARGET SKILLS

Predicting
Performing and recording
Analyzing and interpreting

George Atwood designed his machine to demon-
strate the laws of motion. In this investigation,
you will demonstrate those laws and determine
the value of g.

Problem
How can you determine the value of g, the
acceleration due to gravity, by using an 
Atwood machine?

Prediction
� Predict how changes in the difference between

the two masses will affect the acceleration of
the Atwood machine if the sum of the masses
is held constant.

� When the difference between the two masses
in an Atwood machine is held constant, 
predict how increasing the total mass (sum of
the two masses) will affect their acceleration. 

Equipment
� retort stand 
� clamps
� masses: 100 g (2), 20 g (1), 10 g (10), or similar identi-

cal masses, such as 1 inch plate washers
� 2 plastic cups to hold masses 
� light string

Traditional instrumentation
lab pulley
lab timer
metre stick

Probeware
Smart Pulley® or photogates or ultrasonic 

range finder
motion analysis software
computer

Procedure
Constant Mass Difference

1. Set up a data table to record m1, m2, total
mass, ∆d and ∆t (if you use traditional 
equipment), and a.

2. Set up an Atwood machine at the edge of a
table, so that m1 = 120 g and m2 = 100 g. 

3. Lift the heavier mass as close as possible to
the pulley. Release the mass and make the
measurements necessary for finding its
downward acceleration. Catch the mass
before it hits the floor. 

� Using traditional equipment, find displace-
ment (∆d) and the time interval (∆t) while
the mass descends smoothly.

� Using probeware, measure velocity (v) 
and graph velocity versus time. Find 
acceleration from the slope of the line 
during an interval when velocity was
increasing steadily.

4. Increase each mass by 10 g and repeat the
observations. Continue increasing mass and
finding acceleration until you have five total
mass-acceleration data pairs.

5. Graph acceleration versus total mass. Draw 
a best-fit line through your data points.
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Constant Total Mass
6. Set up a data table to record m1, m2, mass

difference (∆m ), ∆d and ∆t (if you use 
traditional equipment), and a.

7. Make m1 = 150 g and m2 = 160 g. Make
observations to find the downward accelera-
tion, using the same method as in step 3.

8. Transfer one 10 g mass from m1 to m2. The
mass difference will now be 30 g, but the
total mass will not have changed. Repeat
your measurements.

9. Repeat step 8 until you have data for five
mass difference-acceleration pairs.

10. Graph acceleration versus mass difference.
Draw a best-fit line or curve through your
data points.

Analyze and Conclude
1. Based on your graphs for step 5, what type of

relationship exists between total mass and
acceleration in an Atwood machine? Use
appropriate curve-straightening techniques 
to support your answer (see Skill Set 4,
Mathematical Modelling and Curve
Straightening). Write the relationship 
symbolically.

2. Based on your graphs for step 10, what 
type of relationship exists between 
mass difference and acceleration in an
Atwood machine? Write the relationship
symbolically.

3. How well do your results support your 
prediction? 

4. String that is equal in length to the string
connecting the masses over the pulley is
sometimes tied to the bottoms of the two
masses, where it hangs suspended between
them. Explain why this would reduce 

experimental errors. Hint: Consider the mass
of the string as the apparatus moves and how
that affects m1 and m2.

5. Mathematical analysis shows that the accel-
eration of an ideal (frictionless) Atwood 

machine is given by a = g m1 − m2
m1 + m2

. Use this 

relationship and your experimental results 
to find an experimental result for g.

6. Calculate experimental error in your value 
of g. Suggest the most likely causes of 
experimental error in your apparatus 
and procedure.

Apply and Extend
7. Start with Newton’s second law in the form 

⇀a =
⇀F
m

and derive the equation for a in 

question 5 above. Hint: Write 
⇀F and m

in terms of the forces and masses in the
Atwood machine.

8. Using the formula a = g m1 − m2
m1 + m2

for an

Atwood machine, find the acceleration 
when m1 = 2m2.

9. Under what circumstances would the accel-
eration of the Atwood machine be zero?

10. What combination of masses would make 
the acceleration of an Atwood machine 
equal to 1

2 g?

www.mcgrawhill.ca/links/physics12

For some interactive activities involving the Atwood
machine, go to the above Internet site and click on 
Web Links.

WEB LINK



Assigning Direction to the 
Motion of Connected Objects
When two objects are connected by a flexible cable or rope that
runs over a pulley, such as the masses in an Atwood machine,
they are moving in different directions. However, as you learned
when working with trains of objects, connected objects move as 
a unit. For some calculations, you need to work with the forces
acting on the combined objects and the acceleration of the 
combined objects. How can you treat the pair of objects as a unit
when two objects are moving in different directions?

Since the connecting cable or rope changes only the direction of
the forces acting on the objects and has no effect on the magnitude

of the forces, you can assign the direction
of the motion as being from one end of the
cable or rope to the other. You can call 
one end “negative” and the other end 
“positive,” as shown in Figure 1.13.

When you have assigned the direc-
tions to a pair of connected objects, you
can apply Newton’s laws to the objects as 
a unit or to each object independently.
When you treat the objects as one unit, 
you must ignore the tension in the rope
because it does not affect the movement of
the combined objects. Notice that the force
exerted by the rope on one object is equal
in magnitude and opposite in direction 
to the force exerted on the other object.
However, when you apply the laws of
motion to one object at a time, you must
include the tension in the rope, as shown
in the following sample problem.
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You can assign the bottom of the left-hand side
of the machine to be negative and the bottom of the right-
hand side to be positive. You can then imagine the connected
objects as forming a straight line, with left as negative and
right as positive. When you picture the objects as a linear
train, make sure that you keep the force arrows in the same
relative directions in relation to the individual objects.

Figure 1.13

⇀
Fg1

⇀
Fg1

⇀
Fg2

⇀
Fg2

⇀
FT

⇀
FT

⇀
FT

⇀
FT

+

+

−

−

m
1 m

2

m1

m2
m1

m2

Motion of Connected Objects
An Atwood machine is made of two objects 
connected by a rope that runs over a pulley.
The object on the left (m1) has a mass of 
8.5 kg and the object on the right (m2) 
has a mass of 17 kg. 

(a) What is the acceleration of the masses?

(b) What is the tension in the rope?

8.5 kg
17 kg

m1

m
1

m2

m
2⇀

Fg1
⇀
Fg2

⇀
FT

⇀
FT

SAMPLE PROBLEM 



Conceptualize the Problem
� To start framing the problem, draw free-body diagrams. 

Draw one diagram of the system moving as a unit and
diagrams of each of the two individual objects.

� Let the negative direction point from the centre to the
8.5 kg mass and the positive direction point from the
centre to the 17 kg mass.

� Both objects move with the same acceleration. 

� The force of gravity acts on both objects.

� The tension is constant throughout the rope. 

� The rope exerts a force of equal magnitude and opposite 
direction on each object.

� When you isolate the individual objects, the tension in the 
rope is one of the forces acting on the object.

� Newton’s second law applies to the combination of the two
objects and to each individual object.

Identify the Goal
(a) The acceleration, ⇀a , of the two objects

(b) The tension, 
∣∣⇀FT

∣∣, in the rope

Identify the Variables
Known Implied Unknown

m1 = 8.5 kg
m2 = 17 kg

g = 9.81 m
s2

⇀Fg1
⇀Fg2

⇀FT

Develop a Strategy

(a) The acceleration of the combination of objects is 3.3 m/s2 to the right.

⇀F = m⇀a
⇀Fg1 + ⇀Fg2 = (m1 + m2)⇀a

−m1g + m2g = (m1 + m2)⇀a

⇀a = (m2 − m1)g
m1 + m2

⇀a =
(17 kg − 8.5 kg)9.8 m

s2

8.5 kg + 17 kg
⇀a = 3.27 m

s2

⇀a ≅ 3.3 m
s2 [to the right]

Apply Newton’s second law to the combina-
tion of masses to find the acceleration. 

The mass of the combination is the sum of
the individual masses.

⇀
FT

⇀
Fg1

⇀
Fg2

⇀
Fg2

⇀
FT

m1 + m2

⇀
Fg1

m1 m2
+−

+−

+−
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(b) The tension in the rope is 1.1 × 102 N.

Validate the Solution
You can test your solution by applying Newton’s second law to the second mass.

⇀Fg2 + ⇀FT = m2
⇀a

m2g + ⇀FT = m2
⇀a

⇀FT = m2
⇀a − m2g

⇀FT = (17 kg)
(
3.27 m

s2

)
− (17 kg)

(
9.81 m

s2

)
⇀FT = −111.18 N
⇀FT = −1.1 × 102 N

The magnitudes of the tensions calculated from the two masses independently
agree. Also, notice that the application of Newton’s second law correctly gave
the direction of the force on the second mass.

19. An Atwood machine consists of masses of
3.8 kg and 4.2 kg. What is the acceleration of
the masses? What is the tension in the rope?

20. The smaller mass on an Atwood machine is
5.2 kg. If the masses accelerate at 4.6 m/s2 ,
what is the mass of the second object? What
is the tension in the rope?

21. The smaller mass on an Atwood machine is
45 kg. If the tension in the rope is 512 N,
what is the mass of the second object? What
is the acceleration of the objects?

22. A 3.0 kg counterweight is connected to a 
4.5 kg window that freely slides vertically in
its frame. How much force must you exert to
start the window opening with an accelera-
tion of 0.25 m/s2?

23. Two gymnasts of identical 37 kg mass dangle
from opposite sides of a rope that passes over
a frictionless, weightless pulley. If one of the
gymnasts starts to pull herself up the rope
with an acceleration of 1.0 m/s2 , what 
happens to her? What happens to the other
gymnast?

PRACTICE PROBLEMS

⇀F = m⇀a
⇀Fg1 + ⇀FT = m1

⇀a

−m1g + ⇀FT = m1
⇀a

⇀FT = m1g + m1
⇀a

⇀FT = (8.5 kg)
(
9.81 m

s2

)
+ (8.5 kg)

(
3.27 m

s2

)
⇀FT = 111.18 kg · m

s2

⇀FT ≅ 1.1 × 102 N

Apply Newton’s second law to m1 and
solve for tension.
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Objects Connected at Right Angles
In the lab, a falling weight is often used to provide a constant force
to accelerate dynamics carts. Gravitational forces acting downward
on the weight create tension in the connecting string. The pulley
changes the direction of the forces, so the string exerts a horizontal
force on the cart. Both masses experience the same acceleration
because they are connected, but the cart and weight move at right
angles to each other. 

You can approach problems with connected objects such as the
lab cart and weight in the same way that you solved problems
involving the Atwood machine. Even if a block is sliding, with 
friction, over a surface, the mathematical treatment is much the
same. Study Figure 1.14 and follow the directions below to learn
how to treat connected objects that are moving both horizontally
and vertically.

� Analyze the forces on each individual object, then label the 
diagram with the forces.

� Assign a direction to the motion.

� Draw the connecting string or rope as though it was a straight
line. Be sure that the force vectors are in the same direction 
relative to each mass.

� Draw a free-body diagram of the combination and of each 
individual mass.

� Apply Newton’s second law to each free-body diagram.

When you visualize the string “straightened,” the force of
gravity appears to pull down on mass 1, but to the side on mass 2. Although
it might look strange, be assured that these directions are correct regarding
the way in which the forces affect the motion of the objects.

Figure 1.14

⇀
Fg1

⇀
Fg1

⇀
Fg2

⇀
Fg2

⇀
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⇀
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⇀
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⇀
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⇀
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⇀
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⇀
F f

⇀
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m2
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+

− +
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Connected Objects
A 0.700 kg mass is connected to a 1.50 kg lab cart 
by a lightweight cable passing over a low-friction
pulley. How fast does the cart accelerate and what
is the tension in the cable? (Assume that the cart
rolls without friction.)

Conceptualize the Problem
� Make a simplified diagram of the connected

masses and assign forces.

� Visualize the cable in a straight configuration.

� Sketch free-body diagrams of the forces acting 
on each object and of the forces acting on the
combined objects.

� The force causing the acceleration of both masses is the force of
gravity acting on mass 2.

� Newton’s second law applies to the combined masses and to each
individual mass.

� Let left be the negative direction and right be the positive direction.

Identify the Goal
The acceleration of the cart, ⇀a , and the magnitude of the tension force
in the cable, FT

Identify the Variables and Constants
Known Implied Unknown

m1 = 1.50 kg
m2 = 0.700 kg

g = 9.81 m
s2

⇀a
⇀FT

⇀Fg1
⇀Fg2

⇀
Fg1

⇀
Fg2

⇀
FN

m2

m2

m2

m1

m1

 m1 + m2

− +

⇀
FT

⇀
FT

⇀
Fg2

m2

1.50 kg

0.700 kg

SAMPLE PROBLEM 
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Develop a Strategy

The cart accelerates at about 3.1 m/s2 . Since the sign is positive, 
it accelerates to the right.

The tension in the cable is about 4.7 N.

Validate the Solution
The acceleration of the combined masses is less than 9.81 m/s2, which is 
reasonable since only part of the mass is subject to unbalanced gravitational
forces. Also, the tension calculated at m2 is also about 4.7 N.

⇀F = m⇀a
⇀Fg + ⇀FT = m2

⇀a
⇀FT = m2

⇀a − ⇀Fg
⇀FT = (0.700 kg)

(
3.121 36 m

s2

)
− (0.700 kg)

(
9.81 m

s2

)
⇀FT ≅ −4.7 N

24. A Fletcher’s trolley apparatus consists of a
1.90 kg cart on a level track attached to a
light string passing over a pulley and holding
a 0.500 kg mass suspended in the air.
Neglecting friction, calculate 

(a) the tension in the string when the 
suspended mass is released

(b) the acceleration of the trolley

25. A 40.0 g glider on an air track is connected
to a suspended 25.0 g mass by a string pass-
ing over a frictionless pulley. When the mass
is released, how long will it take the glider to
travel the 0.85 m to the other end of the
track? (Assume the mass does not hit the
floor, so there is constant acceleration during
the experiment.)

PRACTICE PROBLEMS

⇀F = m⇀a
⇀FT = m1

⇀a
⇀FT = (1.5 kg)

(
3.121 36 m

s2

)
⇀FT = 4.682 04 N
⇀FT ≅ 4.7 N

Apply Newton’s second law to mass 1
to find the tension in the rope.

⇀a =
(0.700 kg)

(
9.81 m

s2

)
0.700 kg + 1.5 kg

⇀a = 3.121 36 m
s2

⇀a ≅ 3.1 m
s2

Substitute values and solve.

⇀F = m⇀a
⇀Fg2 = (m1 + m2)⇀a

m2g = (m1 + m2)⇀a

⇀a = m2g
m1 + m2

Apply Newton’s second law to the
combined masses and solve for 
acceleration. 
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Free Fall 
Have you ever dared to
take an amusement park
ride that lets you fall
with almost no support
for a short time? A roller
coaster as it drops from
a high point in its track
can bring you close to
the same feeling of free
fall, a condition in
which gravity is the
only force acting on you.
To investigate free fall
quantitatively, imagine,
once again, that you are
standing on a scale in an
elevator. If the cable was
to break, there were no
safety devices, and 
friction was negligible,
what would be your
apparent weight?

If gravity is the only
force acting on the 
elevator, it will acceler-
ate downward at the acceleration due to gravity, or g. Substitute
this value into Newton’s second law and solve for your 
apparent weight. 

The reading on the scale is zero. Your apparent weight is zero.
This condition is often called “weightlessness.” Your mass has 
not changed, but you feel weightless because nothing is pushing
up on you, preventing you from accelerating at the acceleration
due to gravity.

FN = mg − mg
FN = 0

� Solve for the normal force.

FN − mg = −mg� The force of gravity is –mg.

FN + Fg = −mg� Let “up” be positive and “down” be
negative. The total force acting on you
is the downward force of gravity and
the upward normal force of the scale.
Your acceleration is g downward.

⇀F = m⇀a� Write Newton’s second law.
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When you are on a free-fall
amusement park ride, you feel weightless.

Figure 1.15



• How would a person on a scale in a freely falling elevator 
analyze the forces that were acting? Make a free-body analysis
similar to the one in the sample problem (Apparent Weight) on
page 28, using the elevator as your frame of reference. Consider
these points.

(a) To an observer in the elevator, the person on the scale would
not appear to be moving.

(b) The reading on the scale (the normal force) would be zero.

Close to Earth’s surface, weightlessness is rarely experienced,
due to the resistance of the atmosphere. As an object collides with
molecules of the gases and particles in the air, the collisions act as
a force opposing the force of gravity. Air resistance or air friction
is quite different from the surface friction that you have studied.
When an object moves through a fluid such as air, the force of 
friction increases as the velocity of the object increases. 

A falling object
eventually reaches
a velocity at which
the force of friction
is equal to the force
of gravity. At that
point, the net force
acting on the object
is zero and it no
longer accelerates
but maintains a 
constant velocity
called terminal
velocity. The shape
and orientation of
an object affects its
terminal velocity. For example, skydivers control their velocity by
their position, as illustrated in Figure 1.16. Table 1.2 lists the
approximate terminal velocities for some common objects.

Table 1.2 Approximate Terminal Velocities

Object

large feather

fluffy snowflake

parachutist

penny

skydiver (spread-eagled)

Terminal velocity (m/s downward)

0.4

1

7

9

58

Conceptual Problem
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In 1942, Soviet air force pilot 
I. M. Chisov was forced to 
parachute from a height of
almost 6700 m. To escape being
shot by enemy fighters, Chisov
started to free fall, but soon lost
consciousness and never opened
his parachute. Air resistance
slowed his descent, so he 
probably hit the ground at about
193 km/h, plowing through a
metre of snow as he skidded
down the side of a steep ravine.
Amazingly, Chisov survived with
relatively minor injuries and
returned to work in less than 
four months.

PHYSICS FILE

Air resistance is of great concern to
vehicle designers, who can increase
fuel efficiency by using body shapes
that reduce the amount of air friction
or drag that is slowing the vehicle.
Athletes such as racing cyclists and
speed skaters use body position 
and specially designed clothing to 
minimize drag and gain a competitive
advantage. Advanced computer 
hardware and modelling software are
making computerized simulations of 
air resistance a practical alternative to
traditional experimental studies using
scale models in wind tunnels.

TECHNOLOGY LINK

Gravity is not the
only force affecting these sky-
divers, who have become experts
at manipulating air friction and
controlling their descent.

Figure 1.16
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CANADIANS IN PHYSICS

Father of the Canadian Space Program
Can you imagine sending one of the very first
satellites into space? How about writing a report
that changed the entire direction of Canada’s space
efforts, or being involved in a telecommunications
program that won an Emmy award? These are just
a few of the accomplishments that earned John H.
Chapman the nickname “Father of the Canadian
Space Program.”

Chapman, who 
was born in 1921, was
a science graduate of
McGill University in
Montréal. In 1951, 
the London, Ontario,
native became section
leader of the Defence
Research Board’s unit
at Shirley’s Bay,
Ontario. While there,
he played a key role
in several ground-
breaking projects.

Lift Off!
Early in the history of space exploration, Canadian
space scientists focussed on the study of Earth’s
upper atmosphere and ionosphere. They wanted
to understand the behaviour of radio waves in
these lofty regions, especially above Canada’s
North. As head of the government team research-
ing this area, Chapman was a moving force in the
Alouette/International Satellites for Ionospheric
Studies (ISIS) program. 

With the successful launch of Alouette I in 1962,
Canada became the third nation to reach space,
following the Soviet Union and the United States.
Designed to last for one year, Alouette I functioned
for ten. It has been hailed as one of the greatest
achievements in Canadian engineering in the past
century. The ISIS satellites lasted for 20 years,
earning Canada an international reputation for
excellence in satellite design and engineering.

During this time, Chapman brought Canadian
industry into the space age. He argued that private
companies, not just government laboratories, had

the “right stuff” to design and build space hard-
ware. As a result, Canadian industry was given a
steadily increasing role in the manufacture of
Alouette II and the ISIS satellites.

Connecting Canada and the World
Chapman also influenced the very purpose for
which Canada’s satellites were built. The Chapman
Report, issued in 1967, helped turn Canada’s space
program away from space science and toward
telecommunications. Chapman believed that 
satellites could deliver signals to rural and remote
regions of the country. This was achieved in 1972,
when Canada placed the Anik A1 satellite into 
stationary orbit above the equator and became 
the first country to have its own communications
satellite system of this type.

Today, live news reports can be delivered from
remote locations, due to technology that Chapman
and his team helped pioneer in co-operation with
NASA and the European Space Agency. Before the
Hermes satellite was launched in 1976, videotapes
of news events were flown to a production centre
and distributed. This was a time-consuming
process. With Hermes in place, a telecommunica-
tions dish on location could beam news up to the
satellite and, from there, to anywhere in the world.
Hermes was also revolutionary because it sent and
received television signals on high frequencies that
did not interfere with frequencies already in use.
For this innovation, the Hermes satellite program
won an Emmy in 1987.

At the time of his death in 1979, John Chapman
was the Assistant Deputy Minister for Space in the
Canadian Department of Communications. On
October 2, 1996, in recognition of his distinguished
career, the headquarters of the Canadian Space
Agency was dedicated as the John H. Chapman
Space Centre.

www.mcgrawhill.ca/links/physics12

For more information about the Canadian Space Agency
and the Alouette, Hermes, and ISIS space programs, 
visit the above Internet site and click on Web Links.

WEB LINK

John Herbert Chapman



Bend a Wall
Descending 
Drops

Q U I C K

L A B

TARGET SKILLS

Performing and recording
Modelling concepts
Analyzing and interpreting

You can observe
drops of water
falling at terminal
velocity through
cooking oil in a test
tube. Use an eye-
dropper to carefully
“inject” drops of
cold water below 
the surface of the
cooking oil. Measure
the diameter of the drops and the speed of 
their descent. 

Analyze and Conclude
1. Assume that the drops are spherical and are

pure water with density 1.0 g/cm3. Using the 

formulas for volume of a sphere 
(
V = 4

3 πr3
)

and density 
(
D = m

V

)
, calculate the mass of 

each drop.

2. Calculate the gravitational force and the
retarding force on each drop.

3. What force(s) are retarding the downward
force of gravity acting on the drops? Compare
these forces to those acting on an object
falling through air.

4. The curved sides of the test tube act like a
lens, producing some optical magnification
of objects inside. Describe in detail how this
might be affecting your results.

5. How well does this activity model the 
movement of an object through air and the
phenomenon of terminal velocity? Justify
your answer.

1.3 Section Review

1. Explain why your apparent weight is
sometimes not the same as your true weight.

2. Explain how Newton’s third law applies
to connected objects that are all pulled by
one end.

3. How does an Atwood machine make it
easier to determine g (the acceleration due 
to gravity), rather than by just measuring the
acceleration of a free-falling object?

4. Suppose you are standing on a scale in a
moving elevator and notice that the scale
reading is less than your true weight.

(a) Draw a free-body diagram to represent the
forces acting on you.

(b) Describe the elevator motion that would
produce the effect.

5. List the simplifying assumptions usual-
ly made about supporting cables and ropes.
Why are simplifying assumptions needed?

6. Two objects are moving in different
directions. Under what circumstances can
you treat this as a one-dimensional problem?

7. By the mid-1800s, steam-driven elevators
with counterweights had been developed.
However, they were not in common use until
1852, when Elisha Otis invented an elevator
with a safety device that prevented the eleva-
tor from falling if the cable broke. How do
you think that the invention of a safe eleva-
tor changed modern society?

8. Describe a situation in which you could
be standing on a scale and the reading on the
scale would be zero. (Note: The scale is func-
tioning properly and is accurate.) What is the
name of this condition?

C

MC

K/U

K/U

C

C

K/U

K/U
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⇀
Fg

+y

+x

θ = 30˚

Fg||

Fg||

Fg⊥

When you watch speed skiers, it appears as though there is no
limit to the rate at which they can accelerate. In reality, their
acceleration is always less that that of a free-falling object, because
the skier is being accelerated by only a component of the force 
of gravity and not by the total force. Using the principles of
dynamics and the forces affecting the motion, you can predict
details of motion along an inclined plane.

Gravitational forces acting on downhill skiers have produced
speeds greater than 241 km/h, even though only part of the total gravitation-
al force accelerates a skier.

Choosing a Coordinate System for an Incline
The key to analyzing the dynamics and motion of objects on an
inclined plane is choosing a coordinate system that simplifies the
procedure. Since all of the motion is along the plane, it is conven-
ient to place the x-axis of the coordinate system parallel to the
plane, making the y-axis perpendicular to the plane, as shown 
in Figure 1.18. 

Figure 1.17

Motion along an Incline1.4
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• Analyze the motion of objects
along inclined planes.

• Use vector and free-body 
diagrams to analyze forces.

• Predict and explain motion
along inclined planes.

E X P E C T A T I O N S
S E C T I O N

To find the compo-
nents of the gravitational force
vector, use the shaded triangle.
Note that 

⇀
Fg is perpendicular to

the horizontal line at the bottom
and Fg⊥ is perpendicular to the
plane of the ramp. Since the
angles between two sets of 
perpendicular lines must be 
equal, the angle (θ) in the triangle
is equal to the angle that the
inclined plane makes with the 
horizontal.

Figure 1.18



The force of gravity affects motion on inclined planes, but the
force vector is at an angle to the plane. Therefore, you must
resolve the gravitational force vector into components parallel to
and perpendicular to the plane, as shown in Figure 1.18. The 
component of force parallel to the plane influences the accelera-
tion of the object and the perpendicular component affects the
magnitude of the friction. Since several forces in addition to the
gravitational force can affect the motion on an inclined plane, 
free-body diagrams are essential in solving problems, as shown in
the sample problem below.
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Sliding Down an Inclined Plane
You are holding an 85 kg trunk at the top of a ramp that slopes from
a moving van to the ground, making an angle of 35˚ with the ground.
You lose your grip and the trunk begins to slide. 
(a) If the coefficient of friction between the trunk and the ramp is 0.42,

what is the acceleration of the trunk?
(b) If the trunk slides 1.3 m before reaching the bottom of the ramp,

for what time interval did it slide?

Conceptualize the Problem

Identify the Goal
(a) The acceleration, a||, of the trunk along the ramp

(b) The time interval, ∆t, for the trunk to reach the end of the ramp 

� To start framing the problem, draw a free-
body diagram. 

� Beside the free-body diagram, draw a coordi-
nate system with the x-axis parallel to the
ramp. On the coordinate system, draw the
forces and components of forces acting on 
the trunk. 

� Let the direction pointing down the slope be
the positive direction.

� To find the normal force that is needed to
determine the magnitude of the frictional

force, apply Newton’s second law to the forces
or components of forces that are perpendicu-
lar to the ramp.

� The acceleration perpendicular to the ramp is
zero.

� The component of gravity parallel to the trunk
causes the trunk to accelerate down the ramp.

� Friction between the trunk and the ramp
opposes the motion.

� If the net force along the ramp is positive, the
trunk will accelerate down the ramp.

� To find the acceleration of the trunk down the
ramp, apply Newton’s second law to the
forces or components of forces parallel to the
ramp.

� Given the acceleration of the trunk, you can
use the kinematic equations to find other
quantities of motion.

SAMPLE PROBLEM 

⇀
FN

⇀
FN

⇀
F f⇀

F f

⇀
Fg

⇀
Fg

+y

+x θ

Fg||

Fg⊥

continued



Identify the Variables
Known Implied Unknown
m = 85 kg
µ = 0.42

θ = 35˚
∆d = 1.3 m

g = 9.81 m
s2

vi = 0
a⊥ = 0

⇀Fg

Fg||
Fg⊥

⇀F f
⇀FN

vf

a||

Develop a Strategy

(a) The acceleration of the trunk down the ramp is 2.3 m/s2 .

(b) The trunk slid for 1.1 s before reaching the end of the ramp.

Validate the Solution
(a) Since the ramp is not at an extremely steep slope and since there is a significant

amount of friction, you would expect that the acceleration would be much
smaller than 9.81 m/s2, which it is.

(b) The ramp is very short, so you would expect that it would not take long for the
trunk to reach the bottom of the ramp. A time of 1.1 s is quite reasonable.

∆t =

√
2(1.3 m)

2.251 71 m
s2

∆t = 1.075 s

∆t ≅ 1.1 s

Insert values and solve.

∆d = vi∆t + 1
2 a∆t2

∆t2 = 2∆d
a

∆t =
√

2∆d
a

Apply the kinematic equation that relates dis-
placement, acceleration, initial velocity, and
time interval. Given that the initial velocity
was zero, solve the equation for the time 
interval.

a|| =
(85 kg)

(
9.81 m

s2

)
sin 35˚ − (0.42)(683.05 N)

85 kg

a|| = 2.251 71 m
s2

a|| ≅ 2.3 m
s2

Insert values and solve.

⇀F = m⇀a
Fg|| + Ff = ma||

Ff = µFN in negative direction
mg sin θ − µFN = ma||

a|| = mg sin θ − µFN

m

Apply Newton’s second law to the forces par-
allel to the ramp. Refer to the diagram to find
all of the forces that are parallel to the ramp.
Solve for the acceleration parallel to the ramp.

FN = (85 kg)
(
9.81 m

s2

)
cos 35˚ + 0

FN = 683.05 N

Insert values and solve. Note that the accelera-
tion perpendicular to the ramp (a⊥ ) is zero.

⇀F = m⇀a
FN + Fg⊥ = ma⊥
FN − mg cos θ = ma⊥
FN = mg cos θ + ma⊥

Apply Newton’s second law to the forces per-
pendicular to the ramp. Refer to the diagram to
find all of the forces that are perpendicular to
the ramp. Solve for the normal force.
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Bend a Wall
The Slippery 
Slope

Q U I C K

L A B

TARGET SKILLS

Performing and recording
Analyzing and interpreting

You can determine the coefficients of static and
kinetic friction experimentally. Use a coin or
small block of wood as the object and a textbook
as a ramp. Find the mass of the object.
Experiment to find the maximum angle of incli-
nation possible before the object begins to slide
down the ramp (θ l). Then, use a slightly greater
angle (θ 2), so that the object slides down the
ramp. Make appropriate measurements of dis-
placement and time, so that you can calculate
the average acceleration. If the distance is too
short to make accurate timings, use a longer
ramp, such as a length of smooth wood or
metal.

Analyze and Conclude
1. Calculate the gravitational force on the object

(weight). Resolve the gravitational force into
parallel and perpendicular components.

2. Draw a free-body diagram of the forces acting
on the object and use it to find the magnitude
of all forces acting on the object just before 
it started to slide (at angle θ l). Note: If the

object is not accelerating, no net force is 
acting on it, so every force must be balanced
by an equal and opposite force.

3. Calculate the coefficient of static friction, µs,
between the object and the ramp, using your
answer to question 2.

4. Use the data you collected when the ramp
was inclined at θ 2 to calculate the accelera-
tion of the object. Find the net force 
necessary to cause this acceleration.

5. Use the net force and the parallel component
of the object’s weight to find the force of 
friction between the object and the ramp.

6. Calculate the coefficient of kinetic friction,
µk, between the object and the ramp.

7. Compare µs and µk. Are they in the expected
relationship to each other? How well do your
experimental values agree with standard 
values for the materials that you used for
your object and ramp? (Obtain coefficients 
of friction from reference materials.) 

26. A 1975 kg car is parked at the top of a steep
42 m long hill inclined at an angle of 15˚. If
the car starts rolling down the hill, how fast
will it be going when it reaches the bottom of
the hill? (Neglect friction.)

27. Starting from rest, a cyclist coasts down the
starting ramp at a professional biking track. If
the ramp has the minimum legal dimensions
(1.5 m high and 12 m long), find 

(a) the acceleration of the cyclist, ignoring
friction

(b) the acceleration of the cyclist if all
sources of friction yield an effective 
coefficient of friction of µ = 0.11

(c) the time taken to reach the bottom of the
ramp, if friction acts as in (b)

28. A skier coasts down a 3.5˚ slope at constant
speed. Find the coefficient of kinetic friction
between the skis and the snow covering 
the slope.

PRACTICE PROBLEMS



Pushing or Pulling an Object Up an Incline
You are pulling a sled and rider with combined
mass of 82 kg up a 6.5˚ slope at a steady speed. If
the coefficient of kinetic friction between the sled
and snow is 0.10, what is the tension in the rope?

Conceptualize the Problem
� Sketch a free-body diagram of the forces acting on 

the sled. Beside it, sketch the components of the 
forces that are parallel and perpendicular to the slope.

� Since the sled is moving at a constant velocity, the 
acceleration is zero. 

� The parallel component of the sled’s weight and the force 
of friction are acting down the slope (positive direction).

� The applied force of the rope acts up the slope on the
sled (negative direction).

� The tension in the rope is the magnitude of the force that 
the rope exerts on the sled.

� Newton’s second law applies independently to the forces 
perpendicular and parallel to the slope.

Identify the Goal
The magnitude of the tension, 

∣∣⇀Fa
∣∣, in the rope

Identify the Variables and Constants
Known Implied Unknown
m = 82 kg
µ = 0.10
θ = 6.5˚
v = constant

g = 9.81 m
s2

a|| = 0 m
s2

⇀Fg
⇀FN

Fg||
⇀F f

Fg⊥
⇀Fa

Develop a Strategy

⇀F = m⇀a

Ff + Fa + Fg|| = ma||
µFN + Fa + mg sin θ = ma||
Fa = ma|| − µFN − mg sin θ

Apply Newton’s second law to the forces parallel
to the slope. Refer to the diagram to find all of the
forces that are parallel to the slope. Solve for the
force that the rope exerts on the sled.

FN = (82 kg)
(
9.81 m

s2

)
cos 6.5˚ + 0

FN = 799.25 N

Insert values and solve. Note that the acceleration
perpendicular to the slope (a⊥ ) is zero.

⇀F = m⇀a

FN + Fg⊥ = ma⊥
FN − mg cos θ = ma⊥
FN = mg cos θ + ma⊥

Apply Newton’s second law to the forces perpendi-
cular to the slope. Refer to the diagram to find all
of the forces that are perpendicular to the slope.
Solve for the normal force.

⇀
FN

⇀
FN

⇀
F f

⇀
F f

⇀
Fa

⇀
Fa

⇀
Fg

⇀
Fg

+y

+x
θ

Fg||

Fg⊥

m = 82 kg

6.5˚µ = 0.10

SAMPLE PROBLEM 
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The tension force in the rope is about 1.7 × 102 N.

Validate the Solution
The tension is much less than the force of gravity on the sled, since
most of the weight of the sled is being supported by the ground. 
The tension is also greater than the parallel component of the sled’s
weight, because the rope must balance both the force of friction 
and the component of the force of gravity parallel to the slope.

29. You flick a 5.5 g coin up a smooth board
propped at an angle of 25˚ to the floor. If the
initial velocity of the coin is 2.3 m/s up the
board and the coefficient of kinetic friction
between the coin and the board is 0.40, how
far does the coin travel before stopping?

30. You are pushing a 53 kg crate at a constant
velocity up a ramp onto a truck. The ramp
makes an angle of 22˚ with the horizontal. 
If your applied force is 373 N, what is the
coefficient of friction between the crate and
the ramp?

PRACTICE PROBLEMS

Fa = (82 kg)
(
0 m

s2

)
− (0.10)(799.25 N) −

(82 kg)
(
9.81 m

s2

)
sin 6.5˚

Fa = −79.925 N − 91.063 N

Fa = −170.988 N

|⇀Fa| ≅ 1.7 × 102 N

Insert values and solve.
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1.4 Section Review

1. Sketch a free-body diagram and an 
additional diagram showing the parallel and 
perpendicular components of gravitational
force acting on an object on a ramp inclined
at an angle of θ to the horizontal. State the
equation used to calculate each force 
component.

2. Which component of gravitational force
affects each of the following?

(a) acceleration down a frictionless incline

(b) the force of friction acting on an object 
on a ramp

(c) the tension in a rope holding the object
motionless

(d) the tension in a rope pulling the object up
the ramp

3. Why is it necessary to use two coefficients
(kinetic and static) to describe the frictional
forces between two surfaces? How do you
decide which coefficient to use when solving
a problem?

4. Suppose you are pulling a heavy box up a
ramp into a moving van. Why is it much
harder to start the box moving than it is to
keep it moving? 

C

C

K/U

K/U



C H A P T E R Review1

Knowledge/Understanding
1. Identify and provide examples of what physi-

cists consider to be the two “natural” types of
motion.

2. What is the term used to describe the tendency
for objects to have differing amounts of “per-
sistence” in maintaining their natural motion?

3. What concept is used to quantify the inertia of
an object?

4. Distinguish between, and provide examples of,
inertial and non-inertial frames of reference.

5. Imagine that you are looking sideways out of 
a car that is stopped at a stoplight. The light
turns green and your driver accelerates until
the car is travelling with uniform motion at the
speed limit.
(a) Sketch a velocity-time graph of your motion,

illustrating the time intervals during which
you were stopped, accelerating, and travel-
ling with a constant velocity.

(b) Identify the time interval(s) during which
you were observing objects at the side of the
road from an inertial frame of reference or
from a non-inertial frame of reference.

(c) Use this example to explain why Newton’s
first and second laws do not accurately 
predict the motion of the objects you are
observing at the side of the road while you
are accelerating.

6. You know that if you drop two balls from rest
from the top of a building, they will accelerate
uniformly and strike the ground at the same
time (ignoring air resistance). Consider these
variations.
(a) Suppose you drop a ball from rest from the

top of a building and it strikes the ground
with a final velocity vf. At the same time
that the first ball is dropped, your friend
launches a second ball from the ground with
a velocity vf, the same velocity with which
the first ball strikes the ground. Will the 
second ball reach the top of the building at
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� Dynamics relates the motion of objects to the
forces acting on them.

� Inertia is the tendency of objects to resist
changes in motion. 

� In an inertial frame of reference, Newton’s
laws of motion describe motion correctly.
Inertial frames of reference might be stationary
or moving at constant velocity.

� In non-inertial frames of reference, Newton’s
laws of motion do not accurately describe
motion. Accelerating frames of reference are
non-inertial.

� Fictitious forces are needed to explain motion
in non-inertial frames of reference. If the same
motion is observed from an inertial frame 
of reference, the motion can be explained
without the use of fictitious forces. 

� Inertial mass is equivalent to gravitational
mass.

� Frictional forces are described by the equation
Ff = µFN, where µ is the coefficient of friction
between two surfaces and FN is the normal
force pressing the surfaces together. The coeffi-
cient of kinetic friction (µk) applies when the
object is moving. The coefficient of static fric-
tion (µs) applies when the object is motionless.

� The weight of an object is the gravitational
force on it (Fg = mg).

� Free fall is vertical motion that is affected by
gravitational forces only. In free fall, all objects
accelerate at the same rate.

� Terminal velocity is the maximum downward
speed reached by a falling object when the
force of air friction becomes equal to the force
of gravity.

� Air resistance depends on the surface area,
shape, and speed of an object relative to the
air around it.

REFLECTING ON CHAPTER 1
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the same time that the first ball strikes the
ground? Explain where the balls cross paths,
at half the height of the building, above the
halfway point or below the halfway point.
Ignore air resistance. 

(b) You launch a ball from the edge of the top of
a building with an initial velocity of 25 m/s
[upward]. The ball rises to a certain height
and then falls down and strikes the ground
next to the building. Your friend on the
ground measures the velocity with which
the ball strikes the ground. Next, you launch
a second ball from the edge of the building
with a velocity of 25 m/s [downward].
Ignoring air resistance, will the second ball
strike the ground with greater, smaller, 
or the same velocity as the first ball? 

Hint: what is the velocity of the first ball when
it is at the height of the top of the building
(after falling from its maximum height) and 
on its way down? 

7. You are having a debate with your lab partner
about the correct solution to a physics problem.
He says that the normal force acting on an
object moving along a surface is always equal
and opposite to the force of gravity. You 
disagree with this definition.
(a) Provide the proper definition for the normal

force acting on an object.
(b) Describe, with the aid of free-body diagrams,

three situations in which the normal force
acting on an object cannot be determined
using your lab partner’s definition.

(c) Describe, with the aid of a free-body 
diagram, a situation in which your lab 
partner’s definition could apply. 

Inquiry
8. You are given two bowling balls. One is pure

wood, while the other has an iron core. Your
task is to verify Newton’s laws. Accordingly,
you set up an inclined plane in such a way that
you can let the balls roll down the plane and
along the floor.
(a) Design an experiment to determine which

ball has more inertia.

(b) Sketch a velocity-time graph to illustrate
your predictions of the motion of each ball.

(c) Explain how Newton’s first law affects the
motion of the ball during each phase of its
motion. Explain your reasoning.

(d) Draw a free-body diagram for each ball as 
it descends the ramp. Write equations to
predict the acceleration of each. Provide an
analysis of the equations to show that each
ball’s acceleration down the ramp should be
the same. 

(e) The analysis in (d) seems to defy Newton’s
first law. Initially, you might predict that the
ball with more inertia would have a differ-
ent acceleration. Provide an explanation,
based on Newton’s laws, of why the ball
with more inertia does not experience a
greater acceleration.

9. Recall the apparatus set-up you used for
Investigation 1-A to explore inertial mass. In
this case, you are given a dynamics cart that
has a mass of 500 g and you use a falling mass
of 200 g. 
(a) Assume that the coefficient of friction

between the cart and the ramp is 0.12.
Calculate theoretical predictions for the
acceleration of the system when incremental
masses of 100 g, 200 g, 300 g, 400 g, and 
500 g are added to the cart.

(b) Plot an acceleration-versus-incremental-
mass graph for your theoretical values.

(c) Does the line on this graph pass through the
origin? Explain your reasoning.



(d) What acceleration is indicated at the point
where the line on the graph crosses the 
y-axis?

(e) Describe two different modifications you
could make to this set-up so that the cart
would have zero acceleration.

Communication
10. Draw a free-body diagram of a diver being low-

ered into the water from a hovering helicopter
to make a sea rescue. His downward speed is
decreasing. Label all forces and show them
with correct scale lengths.

11. Use free-body diagrams to show that the 
tension in the rope is the same for both of 
the following situations.
(a) Two horses are pulling in opposite 

directions on the same rope, with equal 
and opposite forces of 800 N.

(b) One horse is pulling on a rope, which is tied
to a tree, with a force of 800 N.

12. A toy rocket is shot straight into the air and
reaches a height of 162 m. It begins its descent
in free fall for 2 s before its parachute opens.
The rocket then quickly reaches terminal 
velocity.
(a) Sketch a velocity-time graph for the descent.
(b) Draw a free-body diagram for each of the

three passes of the descent: the free fall, the
parachute opening and slowing the descent,
and terminal velocity

13. A large crate sits on the floor of an elevator.
The force of static friction keeps the crate from
moving. However, the magnitude of this force
changes when the elevator (a) is stationary, 
(b) accelerates downward and (c) accelerates
upward. Explain how the three forces should
be ranked from weakest to strongest. 

14. Two blocks, of mass M and mass m, are in 
contact on a horizontal frictionless table (with
the block of mass M on the left and the block 
of mass m on the right). A force F1 is applied 
to the block of mass M and the two blocks
accelerate together to the right. 

(a) Draw a free-body diagram for each block. 
(b) Suppose the larger block M exerts a force F2

on the smaller mass m. By Newton’s third
law, the smaller block m exerts a force F2 on
the larger block M. Argue whether F1 = F2 or
not. Justify your reasoning.

(c) Derive an expression for the acceleration of
the system.

(d) Derive an expression for the magnitude of
the force F2 that the larger block exerts on
the smaller block. 

(e) Choose different values of M and m (e.g.
M = 2m, M = 5m, including the case M = m)
and compare the magnitudes of F1 and F2.

(f) Comment on the above results. 

Making Connections
15. Car tires are designed to optimize the amount

of friction between the tire surface and the
road. If there is too little friction, the car will 
be hard to control. Too much friction will 
negatively affect the car’s performance and 
fuel efficiency.
(a) List the different types of road conditions

under which cars are operated. Research 
the different types of tread designs that have
been developed to respond to these condi-
tions. Explain how the different designs 
are intended to increase or decrease the
coefficient of friction between a car’s tires
and the road.

(b) Compare the positive and negative factors of
using “all-season” tires rather than changing
car tires to suit the season (e.g., changing to
special winter tires). Do a cost analysis of
the two systems and recommend your
choice for the climatic conditions in your
own community.

Problems for Understanding
16. Suppose a marble is rolling with a velocity of

3.0 m/s[N] and no horizontal force is acting 
on it. What will be its velocity at 10.0 s?

17. What is the mass of a sack of potatoes that
weighs 110 N (1.1 × 102 N)?
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18. A physics teacher is in an elevator moving
upward at a velocity of 3.5 m/s when he drops
his watch. What are the initial velocity and
acceleration of the watch in a frame that is
attached to (a) the elevator and (b) the 
building?

19. (a) What is the acceleration of a 68.0 kg crate
that is pushed across the floor by a 425 N
force, if the coefficient of kinetic friction
between the box and floor is 0.500?

(b) What force would be required to push the
crate across the floor with constant velocity?

20. A red ball that weighs 24.5 N and a blue ball
that weighs 39.2 N are connected by a piece of
elastic of negligible mass. The balls are pulled
apart, stretching the elastic. If the balls are
released at exactly the same time, the initial
acceleration of the red ball is 1.8 m/s2 east-
ward. What is the initial acceleration of the
blue ball?

21. If a 0.24 kg ball is accelerated at 5.0 m/s2, what
is the magnitude of the force acting on it?

22. A 10.0 kg brick is pulled from rest along a hori-
zontal bench by a constant force of 4.0 N. It is
observed to move a distance of 2.0 m in 8.0 s.
(a) What is the acceleration of the brick?
(b) What is the ratio of the applied force to 

the mass?
(c) Explain why your two answers above do not

agree. Use numerical calculations to support
your explanation.

23. A football is thrown deep into the end zone for
a touchdown. If the ball was in the air for 2.1 s
and air friction is neglected, to what vertical
height must it have risen?

24. A 2200 kg car is travelling at 45 km/h when its
brakes are applied and it skids to a stop. If the
coefficient of friction between the road and the
tires is 0.70, how far does the car go before
stopping?

25. A 55.0 kg woman jumps to the floor from a
height of 1.5 m.
(a) What is her velocity at the instant before her

feet touch the floor?

(b) If her body comes to rest during a time
interval of 8.00 × 10−3 s, what is the force of
the floor on her feet? 

26. You are pushing horizontally on a 3.0 kg block
of wood, pressing it against a wall. If the coeffi-
cient of static friction between the block and
the wall is 0.60, how much force must you
exert on the block to prevent it from sliding
down?

27. The maximum acceleration of a truck is
2.6 m/s2. If the truck tows another truck with a
mass the same as its own, what is its maximum
acceleration?

28. A force F produces an acceleration a when
applied to a certain body. If the mass of the
body is doubled and the force is increased five-
fold, what will be the effect on the following?
(a) the acceleration of the body
(b) the distance travelled by the body in a 

given time

29. A 45.0 kg box is pulled with a force of 205 N
by a rope held at an angle of 46.5˚ to the 
horizontal. The velocity of the box increases
from 1.00 m/s to 1.50 m/s in 2.50 s. Calculate
(a) the net force acting horizontally on the box.
(b) the frictional force acting on the box.
(c) the horizontal component of the applied

force.
(d) the coefficient of kinetic friction between

the box and the floor.

30. A Fletcher’s trolley apparatus consists of a 
4.0 kg cart and a 2.0 kg mass attached by a
string that runs over a pulley. Find the accelera-
tion of the trolley and the tension in the string
when the suspended mass is released.

31. You are a passenger on an airplane and you
decide to measure its acceleration as it travels
down the runway before taking off. You take
out a yo-yo and notice that when you suspend
it, it makes an angle of 25˚ with the vertical.
Assume the plane’s mass is 4.0 × 103 kg. 
(a) What is the acceleration of the airplane? 
(b) If the yo-yo mass is 65 g, what is the tension

in the string? 

Chapter 1  Fundamentals of Dynamics • MHR 55



C H A P T E R

Dynamics in 
Two Dimensions2

Dancers spin, twist, and swing through the air. Athletes move
in constantly changing directions. The details of these com-

plex motions are studied by kinesiologists by tracking the position
of sensors fastened to knees, elbows, or other joints. Position-time
data gathered from such experiments can be used to produce
photo-realistic animations for movies and video games. This 
data can also be used to study the details of the motion from a
physicist’s point of view, providing a basis for measurement of
changes in speed and direction — accelerations and the forces 
that cause them.

When you turn while you run, walk, or dance, you are moving
in two dimensions. You might change direction suddenly or do it
over several steps, following a curved path. In either case, changes
in direction are accelerations, and accelerations require an unbal-
anced force. In this chapter, you will examine the accelerations
and forces involved in two types of two-dimensional motion —
objects following a curved path after being launched into the air
and objects moving in a circle or part of a circle.

� Resolving vectors into 
components

� Combining vector components

PREREQUISITE

CONCEPTS AND SKILLS

Multi-Lab
Motion in 
Two Dimensions 57

2.1 Projectile Motion 58

Investigation 2-A
The Components of
Projectile Motion 64

2.2 Uniform Circular 
Motion 78

Investigation 2-B
Verifying the Circular
Motion Equation 89

CHAPTER CONTENTS
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M U L T I

L A B

Motion in 
Two Dimensions

TARGET SKILLS

Performing and recording
Analyzing and interpreting

Wear impact-resistant safety goggles.
Also, do not stand close to other people or
equipment while doing these activities.

Race to the Ground 
If your school has a vertical acceleration
demonstrator, set it up to make observations.
If you do not have a demonstrator, devise a
method for launching one object, such as a
small metal ball, in the horizontal direction,
while at the same instant dropping a second
object from exactly the same height. Perform

several trials, observing the paths of the
objects very carefully. 

Analyze and Conclude
1. Describe in detail the paths of the two

objects. Compare the motion of the 
two objects.

2. Which object hit the floor first?

3. Did the horizontal motion of the first
object appear to affect its vertical 
motion? Explain your reasoning for 
your conclusion.

CAUTION

Feel the Force 
According to the law of inertia, objects must
experience an unbalanced force to change 
the direction of their motion. What does this
suggest about an object moving in a circle?
Assemble the apparatus as shown in the 
diagram to obtain information on the forces
involved in circular motion. Gently swing the
mass in a horizontal circle. Carefully increase
the speed of rotation and observe the effect
on the elastic band and the path of the object.
Change the angle so that the object moves
first in an inclined plane and then in a 
vertical plane and repeat your observations.

Analyze and Conclude
1. How does the force exerted on the object

by the elastic band change as the elastic
band stretches?

2. How does the force exerted on the object
change as the speed of the mass increases?

3. Sketch free-body diagrams showing the
forces acting on the object as it moves in a

(a) horizontal plane

(b) vertical plane (at the top of the swing,
the bottom of the swing, and when it is
at one side of the circle)

4. Describe and attempt to explain any other
changes you observed in the object’s
motion as its speed varied. 

5. Was there any difference in the force
exerted by the elastic band at the highest
and lowest points of the mass’s path when
it moved in a vertical plane? If so, suggest
an explanation.

elastic band

small mass

string

loose loop of
string
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After the water leaves the pipes in this fountain, the only
forces acting on the water are gravity and air friction.

A tourist visiting Monte Carlo, Monaco, would probably stand 
and admire the beauty of the fountain shown in the photograph,
and might even toss a coin into the fountain and make a wish. 
A physics student, however, might admire the symmetry of the
water jets. He or she might estimate the highest point that the
water reaches and the angle at which it leaves the fountain, and
then mentally calculate the initial velocity the water must have 
in order to reach that height. 

The student might then try to think of as many examples of this
type of motion as possible. For example, a golf ball hit off the tee,
a leaping frog, a punted football, and a show-jumping horse all 
follow the same type of path or trajectory as the water from a
fountain. Any object given an initial thrust and then allowed to
soar through the air under the force of gravity only is called a 
projectile. The horizontal distance that the projectile travels is
called its range.

Air friction does, of course, affect the trajectory of a projectile
and therefore the range of the projectile, but the mathematics
needed to account for air friction is complex. You can learn a great
deal about the trajectory of projectiles by neglecting friction, while
keeping in mind that air friction will modify the actual motion.

You do not need to learn any new concepts in order to analyze
and predict the motion of projectiles. All you need are data that
will provide you with the velocity of the projectile at the moment
it is launched and the kinematic equations for uniformly 
accelerated motion. You observed projectile motion in the Race 

Figure 2.1

Projectile Motion2.1
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• Describe qualitatively and
quantitatively the path of 
a projectile.

• Analyze, predict, and explain
projectile motion in terms of
horizontal and vertical 
components.

• Design and conduct experi-
ments to test the predictions
about the motion of a projectile.

• trajectory

• projectile

• range

• parabola

 T E R M S
K E Y

E X P E C T A T I O N S
S E C T I O N

Calculating actual trajectories of
artillery shells was an enormous 
task before the advent of electronic
computers. Human experts required 
up to 20 h to do the job, even with
mechanical calculators. ENIAC, the
first electronic computer that stored 
its program instructions, was built in
1946 and could calculate the trajectory
of an artillery shell in about 30 s. The
vacuum tubes in ENIAC’s processing
unit required 174 kW of electric power,
so the energy required to calculate
one trajectory was comparable to 
the energy needed to actually fire the
artillery shell!

HISTORY LINK



to the Ground segment of the Multi-Lab and identified a feature of
the motion that simplifies the analysis. The horizontal motion of
the projectile does not influence the vertical motion, nor does the
vertical motion affect the horizontal motion. You can treat the
motion in the two directions independently. The following points
will help you analyze all instances of projectile motion.

� Gravity is the only force influencing ideal projectile motion.
(Neglect air friction.)

� Gravity affects only the vertical motion, so equations for 
uniformly accelerated motion apply.

� No forces affect horizontal motion, so equations for uniform
motion apply. 

� The horizontal and vertical motions are taking place during the
same time interval, thus providing a link between the motion in
these dimensions. 

Projectiles Launched Horizontally
If you had taken a picture with a strobe light of your Race to the
Ground lab, you would have obtained a photograph similar to 
the one in Figure 2.2. The ball on the right was given an initial
horizontal velocity while, at the same moment, the ball on the left 
was dropped. As you can see in the photograph, the two balls
were the same distance from the floor at any given time — the 
vertical motion of the two balls was identical. This observation
verifies that horizontal motion does not influence vertical motion.
Examine the following sample problem to learn how to make 
use of this feature of projectile motion. 
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You can 
see that the balls are 
accelerating downward,
because the distances 
they have travelled
between flashes of the
strobe light are increasing.
If you inspected the hori-
zontal motion of the ball
on the right, you would
find that it travelled the
same horizontal distance
between each flash of the
strobe light.

Figure 2.2

To enhance your understanding of
two-dimensional motion, go to your
Electronic Learning Partner for an
interactive activity.

ELECTRONIC
LEARNING PARTNER



Analyzing a Horizontal Projectile
While hiking in the wilderness, you come to a cliff overlooking 
a river. A topographical map shows that the cliff is 291 m high
and the river is 68.5 m wide at that point. You throw a rock
directly forward from the top of the cliff, giving the rock 
a horizontal velocity of 12.8 m/s. 

(a) Did the rock make it across the river? 

(b) With what velocity did the rock hit the ground or water?

Conceptualize the Problem
� Start to frame the problem by making a rough sketch of 

the cliff with a coordinate system superimposed on it. 
Write the initial conditions on the sketch.

� The rock initially has no vertical velocity. It falls, from rest,
with the acceleration due to gravity. Since “down” was
chosen as negative, the acceleration of the rock is 
negative. (Neglect air friction.)

� Since the coordinate system was placed at the top of the
cliff, the vertical component of the displacement of the
rock is negative.

� The displacement that the rock falls determines the time
interval during which it falls, according to the kinematic
equations.

� The rock moves horizontally with a constant velocity until 
it hits the ground or water at the end of the time interval. 

� The final velocity of the rock at the instant before it hits the
ground or water is the vector sum of the horizontal velocity 
and the final vertical velocity.

� Use x to represent the horizontal component of displacement 
and y for the vertical component of displacement. Use x and y
subscripts to identify the horizontal and vertical components 
of the velocity.

Identify the Goal
(a) Whether the horizontal distance, ∆x, travelled by the rock was

greater than 68.5 m, the width of the river

(b) The final velocity, ⇀vf , of the rock the instant before it hit the ground

Identify the Variables
Known Implied Unknown
∆y = −291 m

vx = 12.8 m
s

river width = 68.5 m ay = −9.81 m
s2

viy = 0.0 m
s

∆x
⇀vf

291 m

cliff

?

river
68.5 m

y

x

⇀v i = 12.8 m
s

SAMPLE PROBLEM 

60 MHR • Unit 1  Forces and Motion: Dynamics



Develop a Strategy

(a) Since the horizontal distance travelled by the rock (98.6 m) was much
greater than the width of the river (68.5 m), the rock hit the ground on
the far side of the river.

y

x

⇀v f

vx

θ

vfy

|⇀vf| =
√

(vx)2 + (vfy)2

|⇀vf| =
√(

12.8 m
s

)2
+

(
−75.561 m

s

)2

|⇀vf| =
√

5873.30 m2

s2

|⇀vf| = 76.637 m
s

|⇀vf| ≅ 76.6 m
s

Use the Pythagorean theorem
to find the magnitude of the
resultant velocity.

vfy = 0.0 m
s

+
(

−9.81 m
s2

)
(7.7024 s)

vfy = −75.561 m
s

Insert the numerical values and solve.

vfy = viy + a∆t

Find the vertical component of the final velocity 
by using the kinematic equation that relates initial
velocity, final velocity, acceleration, and time.

∆x =
(
12.8 m

s

)
(7.7024 s)

∆x = 98.591 m

∆x ≅ 98.6 m

Use the time calculated above and initial velocity 
to calculate the horizontal distance travelled by 
the rock. Choose the positive value for time, since
negative time has no meaning in this application.

vx = ∆x
∆t

∆x = vx∆t

Find the horizontal displacement of the rock by using
the equation for uniform motion (constant velocity)
that relates velocity, distance, and time interval.
Solve for displacement.

∆t =

√
2(−291 m)
−9.81 m

s2

∆t =
√

59.327 s2

∆t = ±7.7024 s

Insert numerical values and solve.

∆y = vyi∆t + 1
2 a∆t2

∆y = 1
2 a∆t2

2∆y
a

= ∆t2

∆t =
√

2∆y
a

Find the time interval during which the rock was
falling by using the kinematic equation that relates
displacement, initial velocity, acceleration, and time
interval. Note that the vertical component of the 
initial velocity is zero and solve for the time interval.
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(b) The rock hit the ground with a velocity of 76.6 m/s at an angle of 80.4˚
with the horizontal.

Validate the Solution
The distance that the rock fell vertically was very large, so you would
expect that the rock would be travelling very fast and that it would hit
the ground at an angle that was nearly perpendicular to the ground. 
Both conditions were observed.

1. An airplane is dropping supplies to northern
villages that are isolated by severe blizzards
and cannot be reached by land vehicles. The
airplane is flying at an altitude of 785 m and
at a constant horizontal velocity of 53.5 m/s.
At what horizontal distance before the drop
point should the co-pilot drop the supplies
so that they will land at the drop point?
(Neglect air friction.)

2. A cougar is crouched on the branch of a tree
that is 3.82 m above the ground. He sees an
unsuspecting rabbit on the ground, sitting
4.12 m from the spot directly below the
branch on which he is crouched. At what
horizontal velocity should the cougar jump
from the branch in order to land at the point
at which the rabbit is sitting?

3. A skier leaves a jump with a horizontal
velocity of 22.4 m/s. If the landing point is
78.5 m lower than the end of the ski jump,
what horizontal distance did the skier jump?
What was the skier’s velocity when she 
landed? (Neglect air friction.)

PRACTICE PROBLEMS

tan θ = vfy

vx

θ = tan−1 vfy

vx

θ = tan−1 75.561 m
s

12.8 m
s

θ = tan−1 5.9032

θ = 80.385˚

θ ≅ 80.4˚

Use trigonometry to find the angle that the rock made
with the horizontal when it struck the ground.
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y = −785 m

+x

+y
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4. An archer shoots an arrow toward a target,
giving it a horizontal velocity of 70.1 m/s. 
If the target is 12.5 m away from the archer,
at what vertical distance below the point of
release will the arrow hit the target? (Neglect
air friction.)

5. In a physics experiment, you are rolling a
golf ball off a table. If the tabletop is 1.22 m
above the floor and the golf ball hits the floor
1.52 m horizontally from the table, what was
the initial velocity of the golf ball?

6. As you sit at your desk at home, your
favourite autographed baseball rolls across 
a shelf at 1.0 m/s and falls 1.5 m to the 
floor. How far does it land from the base 
of the shelf?

7. A stone is thrown horizontally at 22 m/s
from a canyon wall that is 55 m high. At
what distance from the base of the canyon
wall will the stone land?

8. A sharpshooter shoots a bullet horizontally
over level ground with a velocity of
3.00 × 102 m/s. At the instant that the bullet
leaves the barrel, its empty shell casing falls
vertically and strikes the ground with a 
vertical velocity of 5.00 m/s.

(a) How far does the bullet travel?

(b) What is the vertical component of the 
bullet’s velocity at the instant before it
hits the ground?

Projectiles Launched at an Angle
Most projectiles, including living ones such as 
the playful dolphins in Figure 2.3, do not start
their trajectory horizontally. Most projectiles, 
from footballs to frogs, start at an angle with the 
horizontal. Consequently, they have an initial
velocity in both the horizontal and vertical 
directions. These trajectories are described
mathematically as parabolas. The only additional
step required to analyze the motion of projectiles
launched at an angle is to determine the magni-
tude of the horizontal and vertical components of
the initial velocity. 

Mathematically, the path of any ideal projectile
lies along a parabola. In the following investigation,
you will develop some mathematical relationships
that describe parabolas. Then, the sample problems
that follow will help you apply mathematical 
techniques for analyzing projectiles.
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Dolphins have been
seen jumping as high as 4.9 m
from the surface of the water in 
a behaviour called a “breach.”

Figure 2.3



TARGET SKILLS

Analyzing and interpreting
Modelling concepts
Communicating results

I N V E S T I G A T I O N  2-A

The Components 
of Projectile Motion

TARGET SKILLS

Analyzing and interpreting
Modelling concepts
Communicating results

A heavy steel ball rolling up and down a ramp
follows the same type of trajectory that a projec-
tile follows. You will obtain a permanent record
of the steel ball’s path by placing a set of white
paper and carbon paper in its path. You will
then analyze the vertical and horizontal motion
of the ball and find mathematical 
relationships that describe the path.

Problem
What patterns exist in the horizontal and 
vertical components of projectile velocity?

Hypothesis
Formulate a hypothesis about the relationships
between time and the vertical distance travelled
by the steel ball. 

Equipment  
� large sheet of plywood 
� very heavy steel ball
� metre stick, graph paper, tape
� set of white paper and carbon paper 

(or pressure-sensitive paper)

Procedure
1. Set up the apparatus as illustrated. 

Wear impact-resistant safety goggles.
Also, do not stand close to other people or
equipment while doing these activities.

2. Practise rolling the steel ball up the slope at
an angle, so that it follows a curved path that
will fit the size of your set of white paper
and carbon paper.

3. Tape the carbon paper and white paper onto
the plywood so that, when the steel ball rolls
over it, the carbon paper will leave marks on
the white paper. 

4. Roll the steel ball up the slope at an angle, as
you practised, so that it will roll over the
paper and leave a record of its path.

5. Remove the white paper from the plywood.
Draw approximately nine or more equally
spaced lines vertically through the trajectory.

Analyze and Conclude
1. Measure the vertical 

displacement in each
segment of the path 
of the steel ball, as
shown in the diagram. 

2. Assuming that the motion of the ball was
uniform in the horizontal direction, each
equally spaced vertical line represents the
same amount of time. Call it one unit of time.

3. Separate your data into two parts: (a) the
period of time that the ball was rolling
upward and (b) the period of time that the
ball was rolling downward. For each set of
data, make a graph of vertical-distance-
versus-time units.

4. Use curve-straightening techniques to 
convert your graphs to straight lines. (See
Skill Set 4.)

5. Write equations to describe your graphs.

6. Is the vertical motion of the steel ball 
uniform or uniformly accelerated? 

7. How does it compare to the vertical motion
of a freely falling object?

8. Was your hypothesis valid or invalid? 

9. Is this lab an appropriate model for actual
projectile motion? Explain why or why not. 

CAUTION
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Analyzing Parabolic Trajectories
1. A golfer hits the golf ball off the tee, 

giving it an initial velocity of 32.6 m/s
at an angle of 65˚ with the horizontal.
The green where the golf ball lands is
6.30 m higher than the tee, as shown
in the illustration. Find 

(a) the time interval during which 
the golf ball was in the air 

(b) the horizontal distance that it travelled

(c) the velocity of the ball just before it 
hit the ground (neglect air friction)

Conceptualize the Problem
� Start to frame the problem by making a sketch 

that includes a coordinate system, the initial 
conditions, and all of the known information.

� The golf ball has a positive initial velocity in 
the vertical direction. It will rise and then fall
according to the kinematic equations.

� The vertical acceleration of the golf ball is 
negative and has the magnitude of the 
acceleration due to gravity.

� The time interval is determined by the vertical
motion. The time interval ends when the golf ball 
is at a height equal to the height of the green.

� The golf ball will be at the height of the green twice,
once while it is rising and once while it is falling.

� Motion in the horizontal direction is uniform; that is, 
it has a constant velocity.

� The horizontal displacement of the ball depends on the horizontal
component of the initial velocity and on the duration of the flight.

Identify the Goal
(a) The time interval, ∆t, that the golf ball was in the air 

(b) The horizontal distance, ∆x, that the golf ball travelled

(c) The final velocity of the golf ball, ⇀vf

Identify the Variables
Known Implied Unknown
|⇀vi| = 32.6 m

s
θ i = 65˚

∆y = 6.30 m ay = −9.81 m
s2 ∆t

∆x
vix

⇀vf

θ f

viy

y

x

⇀v i = 32.6 m
s

6.30 m65˚

6.30 m
65˚

SAMPLE PROBLEMS
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Develop a Strategy

(a) The smaller value is the time that the ball reached a height of
6.30 m when it was rising. The golf ball hit the green 5.8 s after
it was hit off the tee.

(b) The golf ball travelled 80 m in the horizontal direction.

vfy = viy + ay∆t

vfy = 29.55 m
s

+
(

−9.81 m
s2

)
(5.803 s)

vfy = −27.38 m
s

Find the vertical component of the final velocity
by using the kinematic equation that relates the
initial and final velocities to the acceleration and
the time interval.

v = ∆x
∆t

∆x = v∆t

∆x =
(
13.78 m

s

)
(5.803 s)

∆x = 79.965 m

∆x ≅ 8.0 × 101 m

Use 5.803 s and the equation for constant veloci-
ty to determine the horizontal distance travelled
by the golf ball.

4.905∆t2 − 29.55∆t + 6.30 = 0

∆t =
29.55 ±

√(
29.55

)2 − 4(4.905)(6.30)

2(4.905)

∆t = 29.55 ±
√

749.597
9.81

∆t = 0.2213 s (or) 5.803 s

∆t ≅ 5.8 s

Rearrange the equation into the general form of a
quadratic equation and solve using the quadratic 

formula ∆t = −b ±
√

b2 − 4ac
2a

.

∆y = viy∆t + 1
2 ay∆t2

6.30 m = 29.55 m
s

∆t + 1
2

(
−9.81 m

s2

)
∆t2

Find the time interval at which the ball is at a
vertical position of 6.30 m by using the kinematic
equation that relates displacement, initial 
velocity, acceleration, and the time interval. 
You cannot solve directly for the time interval,
because you have a quadratic equation.
Substitute in the numerical values. 

viy = |⇀vi| sin θ

viy = 32.6 m
s

sin 65˚

viy = 29.55 m
s

vix = |⇀vi| cos θ

vix = 32.6 m
s

cos 65˚

vix = 13.78 m
s

Find the horizontal and vertical components of
the initial velocity. 
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(c) The final velocity of the golf ball just before it hit the ground was
31 m/s at 63˚ with the horizontal.

Validate the Solution
Since the golf ball hit the ground at a level slightly higher than the
level at which it started, you would expect the final velocity to be
slightly smaller than the initial velocity and the angle to be a little
smaller than the initial angle. These results were obtained. All of 
the units cancelled properly.

y

x

⇀v f

vx

vfy

6.30 m65˚ 63˚

tan θ =
( vfy

vx

)
θ = tan−1

( vfy

vx

)

θ = tan−1 | − 27.38 m
s |

|13.78 m
s |

θ = tan−1 1.9869

θ = 63.28˚

θ ≅ 63˚

Use trigonometry to find the angle that the final
velocity makes with the horizontal.

|⇀vf| =
√(

13.78 m
s

)2
+

(
−27.38 m

s

)2

|⇀vf| =
√

939.55 m2

s2

|⇀vf| = 30.65 m
s

|⇀vf| ≅ 31 m
s

Use the Pythagorean theorem to find the magni-
tude of the final velocity. 
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2. You are playing tennis with a friend on tennis 
courts that are surrounded by a 4.8 m fence.
Your opponent hits the ball over the fence 
and you offer to retrieve it. You find the ball 
at a distance of 12.4 m on the other side of the
fence. You throw the ball at an angle of 55.0˚
with the horizontal, giving it an initial velocity
of 12.1 m/s. The ball is 1.05 m above the ground
when you release it. Did the ball go over the
fence, hit the fence, or hit the ground before 
it reached the fence? (Ignore air friction.)

Conceptualize the Problem
� Make a sketch of the initial conditions and the 

three options listed in the question. 

� Choose the origin of the coordinate 
system to be at the point at which the ball
left your hand.

� The equations for uniformly accelerated
motion apply to the vertical motion.

� The definition for constant velocity
applies to the horizontal motion.

� Because the x-axis is above ground level,
you will have to determine where the top
of the fence is relative to the x-axis.

� The time interval is the link between the
vertical motion and the horizontal motion. 
Finding the time interval required for the ball to reach
the position of the fence will allow you to determine
the height of the ball when it reaches the fence.

Identify the Goal
Whether the ball went over the fence, hit the fence, or hit the ground
before reaching the fence

Identify the Variables
Known Implied Unknown
|⇀vi| = 12.1 m

s
θ = 55˚

∆x = 12.4 m
h = 4.8 m

ay = −9.81 m
s2 ∆t

⇀vix

⇀viy

∆y

Develop a Strategy
viy = |⇀vi| sin θ

viy = 12.1 m
s

sin 55˚

viy = 9.912 m
s

vix = |⇀vi| cos θ

vix = 12.1 m
s

cos 55˚

vix = 6.940 m
s

Find the x- and y-components of the initial
velocity.

y

x

⇀v i = 12.1 m
s

3.75 m

1.05 m

fence
ground
level

12.4 m

55˚

vix

viy
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The ball hit the fence. The fence is 3.75 m above the horizontal axis
of the chosen coordinate system, but the ball was only 2.05 m above
the horizontal axis when it reached the fence.

Validate the Solution
The units all cancel correctly. The time of flight (about 1.8 s) and the
height of the ball (about 2 m) are reasonable values.

9. While hiking in the wilderness, you come 
to the top of a cliff that is 60.0 m high. You
throw a stone from the cliff, giving it an 
initial velocity of 21 m/s at 35˚ above the
horizontal. How far from the base of the cliff
does the stone land?

10. A batter hits a baseball, giving it an initial
velocity of 41 m/s at 47˚ above the horizon-
tal. It is a home run, and the ball is caught by
a fan in the stands. The vertical component
of the velocity of the ball when the fan
caught it was –11 m/s. How high is the fan
seated above the field?

11. During baseball practice, you go up into the
bleachers to retrieve a ball. You throw the
ball back into the playing field at an angle of
42˚ above the horizontal, giving it an initial
velocity of 15 m/s. If the ball is 5.3 m above
the level of the playing field when you throw
it, what will be the velocity of the ball when
it hits the ground of the playing field?

12. Large insects such as locusts can jump as far
as 75 cm horizontally on a level surface. 
An entomologist analyzed a photograph and
found that the insect’s launch angle was 55˚.
What was the insect’s initial velocity?

PRACTICE PROBLEMS

yfence = h − yground to x−axis

yfence = 4.8 m − 1.05 m
yfence = 3.75 m

Determine the position of the top of the
fence in the chosen coordinate system. 

∆y = viy∆t + 1
2 ay∆t2

∆y =
(
9.912 m

s

)
(1.787 s) + 1

2

(
−9.81 m

s2

)
(1.787 s)2

∆y = 2.05 m

To find the height of the ball at the time that
it reaches the fence, use the kinematic equa-
tion that relates displacement, acceleration,
initial velocity, and time interval.

vx = ∆x
∆t

∆t = ∆x
vx

∆t = 12.4 m
6.940 m

s

∆t = 1.787 s

To find the time interval, use the equation
for the definition of constant velocity 
and the data for motion in the horizontal
direction.
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You have learned to make predictions about projectile motion
by doing calculations, but can you make any predictions about
patterns of motion without doing calculations? In the following
Quick Lab, you will make and test some qualitative predictions. 



Bend a Wall
Maximum Range
of a Projectile

Q U I C K

L A B

TARGET SKILLS

Initiating and planning
Predicting
Performing and recording

Football punters try to maximize “hang time” 
to give their teammates an opportunity to rush
downfield while the ball is in the air. Small
variations in the initial velocity, especially the
angle, make the difference between a great kick
and good field position for the opposition.

What launch angle above the horizontal do
you predict would maximize the range of an
ideal projectile? Make a prediction and then, if
your school has a projectile launcher, test your
prediction by launching the same projectile sev-
eral times at the same speed, but at a variety of
different angles. If you do not have a projectile
launcher, try to devise a system that will allow
you to launch a projectile consistently with the
same speed but at different angles. Carry out
enough trials so you can be confident that you
have found the launch 
angle that gives the
projectile the longest
range. Always consult
with your teacher
before using a 
launch system.

Analyze and Conclude
1. What effect do very large launch angles have

on the following quantities?

(a) maximum height 

(b) vertical velocity component 

(c) horizontal velocity component 

(d) range

2. What effect do very small launch angles have
on the above quantities?

3. Did you see any patterns in the relationship
between the launch angle and the range of
the projectile? If so, describe these patterns.

4. How well did your experimental results
match your prediction? 

5. What factors might be causing your projectile
to deviate from the ideal?

6. Suppose your experimental results were
quite different from your prediction. In
which number would you place more 
confidence, your theoretical prediction 
or your experimental results?  Why? 

?

?

?

45˚

60˚

30˚
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Symmetrical Trajectories
If a projectile lands at exactly the same level from which it was
launched and air friction is neglected, the trajectory is a perfectly
symmetrical parabola, as shown in Figure 2.4. You can derive
some general relationships that apply to all symmetrical trajecto-
ries and use them to analyze these trajectories. Follow the steps in
the next series of derivations to see how to determine the time of
flight, the range, and the maximum height for projectiles that have
symmetrical trajectories.

The maximum height, H, and the range, R, as well as the time
of flight, T, are functions of the initial velocity, ⇀v i, the angle, θ, and the 
acceleration due to gravity, g.

Figure 2.4

θ

viy

vix

⇀v i

H
(maximum

height)

R (range)

y

x
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Time of flight

T = 2vi sin θ
g

� ∆t = 0 represents the instant that the projectile was launched.
Therefore, the second expression represents the time of flight,
T, that the projectile spent in the air before it landed. Since T
is a scalar, write the initial velocity without a vector symbol.

∆t = 0 or  12 g∆t = |⇀vi| sin θ

∆t = 2|⇀vi| sin θ
g

� If either factor is zero, the equation above is satisfied. Write
the two solutions.

1
2 g∆t2 − |⇀vi|∆t sin θ = 0

∆t
( 1

2 g∆t − |⇀vi| sin θ
)

= 0

� Rearrange the equation to put the zero on the right-hand side
and factor out a ∆t.

viy = |⇀vi| sin θ

0 = (|⇀vi| sin θ )∆t + 1
2 (−g)∆t2

� Write the vertical component of the velocity in terms of 
the initial velocity and the angle θ. Then, substitute the
expression into the equation above. Also, substitute –g
for the acceleration, a.

∆y = viy∆t + 1
2 a∆t2

0 = viy∆t + 1
2 a∆t2

� The time of flight ends when the projectile hits the ground.
Since the height of the projectile is zero when it hits the
ground, you can express this position as ∆y = 0. Write the
kinematic equation for vertical displacement and set ∆y = 0.

Enhance your knowledge and test
your predictive skills by doing 
the projectile motion interactive
activity provided by your Electronic
Learning Partner.

ELECTRONIC
LEARNING PARTNER



Range

Maximum height

These three relationships — time of flight, range, and the 
maximum height — allow you to make important predictions
about projectile motion without performing calculations. For
example, you can determine the launch angle that will give 
you the maximum range by inspecting the equation for range.
Study the logic of the following steps.

sin 2θ = 1
2θ = sin−1 1
2θ = 90˚
θ = 45˚

� For what angle, θ, is sin 2θ = 1? Recall that the angle for
which the sine is 1 is 90˚. Use this information to find θ.

sin 2θ = 1

Rmax = v2
i (1)
g

� For a given initial velocity on the surface of Earth, the only
variable is θ. Therefore, the term “sin 2θ” determines the 
maximum range. The largest value that the sine of any angle
can achieve is 1.

R = v2
i sin 2θ

g
� Inspect the equation for range.

H = −(|⇀vi| sin θ)2

2(−g)

H = v2
i sin2 θ

2g

� Substitute the expression for initial vertical velocity in terms
of the initial velocity and the launch angle, θ. Substitute –g
for a. Now ∆y is the maximum height, H. Since H is always in
one dimension, omit the vector symbol for the initial velocity.

v2
fy = v2

iy + 2a∆y

0 = v2
iy + 2a∆y

2a∆y = −v2
iy

∆y =
−v2

iy

2a

� As a projectile rises, it slows its upward motion, stops, and
then starts downward. Therefore, at its maximum height, its
vertical component of velocity is zero. Write the kinematic
equation that relates initial and final velocities, acceleration,
and displacement and solve for displacement, ∆y.

2 sin θ cos θ = sin 2θ

R = v2
i sin 2θ

g

� Write the trigonometric identity for 2 sin θ cos θ and substitute
the simpler form into the equation.

R = (vi cos θ)(2vi sin θ)
g

R = v2
i 2 sin θ cos θ

g

� Since the projectile is at the endpoint of its range, R, when
∆t = T, substitute the expression for T into the equation and
simplify. Since R is always in one dimension, omit the vector
symbol for the initial velocity.

vix = |⇀vi| cos θ
∆x = (|⇀vi| cos θ )∆t

� Write the expression for the horizontal component of velocity
in terms of the initial velocity and the launch angle θ.
Substitute this expression into the equation for the 
displacement above.

∆x = vix∆t

� The range is the horizontal distance that the projectile has
travelled when it hits the ground. Write the equation for 
displacement in the horizontal direction.
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For any symmetrical trajectory, neglecting air friction, the
launch angle that yields the greatest range is 45˚. Draw some 
conclusions of your own by answering the questions in the
Conceptual Problems that follow.

• Examine the equation for maximum height. For a given initial
velocity, what launch angle would give a projectile the greatest
height? What would be the shape of its trajectory?

• Examine the equation for time of flight. For a given initial veloc-
ity, what launch angle would give a projectile the greatest time
of flight? Would this be a good angle for a football punter? Why?

• Consider the equation for range and a launch angle of 30˚. What
other launch angle would yield a range exactly equal to that of
the range for an angle of 30˚?

• Find another pair of launch angles (in addition to your answer
to the above question) that would yield identical ranges. 

• The acceleration due to gravity on the Moon is roughly one 

sixth of that on Earth (gmoon = 1
6 g). For a projectile with a given 

initial velocity, determine the time of flight, range, and maxi-
mum height on the Moon relative to those values on Earth.

• The general equation for a parabola is y = Ax2 + Bx + C, where
A, B, and C are constants. Start with the following equations of
motion for a projectile and develop one equation in terms of ∆x
and ∆y by eliminating ∆t. Show that the resulting equation, in
which ∆y is a function of ∆x, describes a parabola. Note that 
the values for the initial velocity (vi) and launch angle (θ) are
constants for a given trajectory.

∆x = vi∆t cos θ
∆y = vi∆t sin θ − 1

2 g∆t2

Conceptual Problems
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Analyzing a Kickoff
A player kicks a football for the opening kickoff. He gives the ball an 
initial velocity of 29 m/s at an angle of 69˚ with the horizontal. Neglecting
friction, determine the ball’s maximum height, hang time, and range.

Conceptualize the Problem
� A football field is level, so the trajectory of the ball is a 

symmetrical parabola.

� You can use the equations that were developed for symmetrical
trajectories.

� “Hang time” is the time of flight of the ball.

SAMPLE PROBLEM 

continued
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Identify the Goal
The maximum height, H, of the football
The time of flight, T, of the football
The range, R, of the football

Identify the Variables and Constants
Known Implied Unknown
|⇀vi| = 29 m

s
θ = 69˚

g = 9.81 m
s2 H

T
R

Develop a Strategy

The maximum height the football reached was 37 m.

The time of flight, or hang time, of the football was 5.5 s.

The football travelled 57 m.

R =
(
29 m

s

)2(sin 2
(
69˚

))
9.81 m

s2

R =
(
841 m2

s2

)
(0.669 13)

9.81 m
s2

R = 57.3637 m

R ≅ 57 m

Substitute the numerical values and solve.

R = v2
i sin 2θ

g
Use the equation for the range of a symmetrical
trajectory.

T =
2
(
29 m

s

)(
sin 69˚

)(
9.81 m

s2

)
T =

(
58 m

s

)
(0.933 58)

9.81 m
s2

T = 5.5196 s

T ≅ 5.5 s

Substitute the numerical values and solve.

T = 2vi sin θ
g

Use the equation for the time of flight of a 
symmetrical trajectory.

H =
(
29 m

s

)2(sin 69˚
)2

2
(
9.81 m

s2

)
H =

(
841 m2

s2

)
(0.871 57)

19.62 m
s2

H = 37.359 m

H ≅ 37 m

Substitute the numerical values and solve.

H = v2
i sin2 θ

2g
Use the equation for the maximum height of a 
symmetrical trajectory.
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2.1 Section Review

1. Projectiles travel in two dimensions at
the same time. Why is it possible to apply
kinematic equations for one dimension to
projectile motion?

2. How does the analysis of projectiles
launched at an angle differ from the analysis
of projectiles launched horizontally?

3. Explain why time is a particularly signifi-
cant parameter when analyzing projectile
motion.

4. What can you infer about the velocity at
each labelled point on the trajectory in this
diagram? 

5. Imagine that you are solving a problem in
projectile motion in which you are asked to
find the time at which a projectile reaches 
a certain vertical position. When you solve
the problem, you find two different positive
values for time that both satisfy the condi-
tions of the problem. Explain how this result
is not only possible, but also logical.

6. What properties of projectile motion
must you apply when deriving an equation
for the maximum height of a projectile?

7. What properties of projectile motion
must you apply when deriving an equation
for the range of a projectile?

8. Suppose you knew the maximum height
reached by a projectile. Could you find its
launch angle from this information alone? 
If not, what additional information would 
be required?

I

K/U

K/U

C

a

b

c

d

C

C

K/U

K/U
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Validate the Solution
All of the values are reasonable for a football kickoff. In every case, the
units cancel properly to give metres for the range and maximum height
and seconds for the time of flight, or hang time.

13. A circus stunt person was launched as a
human cannon ball over a Ferris wheel. His
initial velocity was 24.8 m/s at an angle of
55˚. (Neglect friction)

(a) Where should the safety net be positioned? 

(b) If the Ferris wheel was placed halfway
between the launch position and the safety
net, what is the maximum height of the
Ferris wheel over which the stunt person
could travel?

(c) How much time did the stunt person
spend in the air?

14. You want to shoot a stone with a slingshot
and hit a target on the ground 14.6 m away. 
If you give the stone an initial velocity of 
12.5 m/s, neglecting friction, what must be
the launch angle in order for the stone to hit
the target? What would be the maximum
height reached by the stone? What would be
its time of flight?

PRACTICE PROBLEMS



P H Y S I C S  M A G A Z I N E

The BIG Motion Picture:
An IMAX Interview
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“Filling people’s peripheral vision with image to the
point that they lose the sense of actually watching a
picture and become totally absorbed in the medium”
is the goal of the IMAX Corporation, which has been
making and screening large-format films since 1970.
Former IMAX executive vice-president of technology
Michael Gibbon went on to say in a recent interview,
“If you give people a very large image, you can
almost disconnect them from reality. They become
very involved with the ‘thing’ they are seeing.”

IMAX develops and supplies all of the equipment
used by filmmakers and theatres to create an exciting
and enthralling film experience — the camera, the
projector, and even the enormous movie screen. 

The roots of the IMAX system go back to
Montréal’s Expo ’67, where films shown simultane-
ously on multiple wide screens by several standard
35 mm movie theatre projectors became very popular.
A small group of Canadians involved in making some
of those films decided to design a new system using a
single, powerful projector, rather than the cumber-
some multiple projectors. The resulting IMAX system
premiered at Expo ’70 in Osaka, Japan, and the first
permanent IMAX projection system was installed at
Toronto’s Ontario Place in 1971. In 1997, IMAX
Corporation won an Oscar, the highest award of the
Academy of Motion Picture Arts and Sciences, for
scientific and technical achievement.



We spoke to Gibbon, who joined IMAX in 1986
and is now a consultant to the corporation, about the
technical challenges IMAX faces when producing its
large-screen films.

Q: How did IMAX create the technology to give 
people this sense of total immersion in the image? 

A: Sensibly, IMAX chose the largest film format that
was commercially available, rather than have
Kodak produce something new. It was 70 mm, 
but IMAX turned it on its side and advanced it 
15 perforations at a time. 

Q: Can you explain a bit more about the film stock
and film frames? 

A: A filmstrip is a series of individual frames with
perforations that run along the sides to help feed
film through the projector. Today’s cinemas show
films with a frame size of 35 mm and advance it
four perforations at a time. 70 mm existed when
our corporation was starting up, but IMAX’s
choice of advancing it 15 perforations at a time
was fairly revolutionary. 

Q: What was the first challenge? 
A: There were a number of 70 mm projectors in exis-

tence from quite early in the history of cinema,
advancing five perforations of film at a time. There
were many more 35 mm projectors advancing four
perforations of film at a time. Our challenge was
to move a format three times larger than 70 mm/
5 perforations, and to do that in such a way that
the film and film frame not only survived the
process, but also were steady when projected. 
We needed steadiness because we were going to
sit people very close to a very large image. 

Q: In terms of film motion, what was the problem,
exactly?

A: It’s the sheer dynamics of the film. You’re trying
to advance the film quickly. You need to run it at
24 frames per second. That’s the standard rate of
film advancement. Also, the 35 mm mechanism 
is fairly rough on a film. It has a high acceleration
rate, so the stresses on the perforations are not
minor — you can damage the film. When the
frame comes to a rest, it can deform, particularly
around the perforations, so that you’re not
absolutely sure where you’re going to finish up.

Q: So the frame “overshoots” too far or “under-
shoots” not far enough? 

A: Yes, this was a known problem in the 35 mm 
projectors. The IMAX Rolling Loop projector was
created to solve the problem of advancing more
film quickly, yet making sure that the film was
firmly in place for exposure in the aperture. The
fundamental advantage it has over the 35 mm 
projectors is fixed registration pins. 

Q: Where are registration pins? How do they work? 

A: They are pins that are fixed on either side of the
aperture. They simply hold the film in place when
it is being illuminated. 

Q: How does the Rolling Loop work? 

A: There is a rotor and on the periphery of that rotor
are a total of eight gaps. The film is induced to
build or loop up into the gaps, and the rotor
rotates. Essentially, what it’s doing is lifting up the
film, putting it into the gap, and rolling it along. 

Q: Did you experiment with different interior
motions inside the projector? 

A: What evolved after a number of experiments was 
a deceleration cam. This takes the film, which is
coming in at almost two metres per second, grabs
it in the last part of its travel, slowly brings it
down in a controlled manner and then puts it
onto the registration pins at a very low final 
velocity. The pins hold the frame in a very precise
location and then it’s vacuumed up against the
lens to keep the entire frame in focus. 

Q: What are you looking at for the future? 

A: Digital is an obvious consideration, but the image
quality is not at the level of film. It doesn’t yet
have the ability to depict fine detail or to produce
the same amount of light. But we’re working on it.

Making Connections
1. IMAX films are known for creating a sense of

motion, instead of simply showing a picture of it.
How does IMAX do this? 

2. Research the differences between the IMAX
Rolling Loop projector and a standard 35 mm 
projector. 
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Have you ever ridden on the Round Up at the Canadian National
Exhibition, the ride shown in the photograph? From a distance, it
might not look exciting, but the sensations could surprise you. 

Everyone lines up around the outer edge and the ride slowly
begins to turn. Not very exciting yet, but soon, the ride is spinning
quite fast and you feel as though you are being pressed tightly
against the wall. The rotations begin to make you feel disoriented
and your stomach starts to feel a little queasy. Then, suddenly, the
floor drops away, but you stay helplessly “stuck” to the wall. Just
as you realize that you are not going to fall, the entire ride begins
to tilt. At one point during each rotation, you find yourself looking
toward the ground, which is almost directly in front of you. You
do not feel as though you are going to fall, though, because you are
literally stuck to the wall.

If this ride stopped turning, the people would start to fall.
What feature of circular motion prevents people from falling when the ride
is in motion and they are facing the ground?

What is unique about moving in a circle that allows you to
apparently defy gravity? What causes people on the Round Up to
stick to the wall? As you study this section, you will be able to
answer these questions and many more. 

Centripetal Acceleration
Amusement park rides are only one of a very large number of
examples of circular motion. Motors, generators, vehicle wheels,
fans, air in a tornado or hurricane, or a car going around a curve
are other examples of circular motion. When an object is moving
in a circle and its speed — the magnitude of its velocity — is 

Figure 2.5

Uniform Circular Motion2.2
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• Analyze, predict, and explain
uniform circular motion. 

• Explain forces involved in 
uniform circular motion in 
horizontal and vertical planes.

• Investigate relationships
between period and frequency
of an object in uniform 
circular motion.

• uniform circular motion

• centripetal acceleration

• centripetal force

 T E R M S
K E Y

E X P E C T A T I O N S
S E C T I O N



constant, it is said to be moving with uniform circular motion.
The direction of the object’s velocity is always tangent to the 
circle. Since the direction of the motion is always changing, the
object is always accelerating. 

Figure 2.6 shows the how the velocity of the object changes
when it is undergoing uniform circular motion. As an object
moves from point P to point Q, its velocity changes from ⇀v1 to ⇀v2.
Since the direction of the acceleration is the same as the direction
of the change in the velocity, you need to find ∆⇀v or ⇀v2 − ⇀v1.
Vectors and ⇀v1 and ⇀v2 are subtracted graphically under the circle.
To develop an equation for centripetal acceleration, you will first
need to show that the triangle OPQ is similar to the triangle
formed by the velocity vectors, as shown in the following points. 
� r1 = r2 because they are radii of the same circle. Therefore, 

triangle OPQ is an isosceles triangle.

� |⇀v1| = |⇀v2| because the speed is constant. Therefore, the triangle
formed by −⇀v1, ⇀v2, and ∆⇀v is an isosceles triangle. 

� r1⊥⇀v1 and r2⊥⇀v2 because the radius of a circle is perpendicular
to the tangent to the point where the radius contacts the circle. 

� θr = θv because the angle between corresponding members of
sets of perpendicular lines are equal.

� Since the angles between the equal sides of two isosceles 
triangles are equal, the triangles are similar.

Now use the two similar triangles to find the magnitude of the
acceleration. Since the derivation involves only magnitudes, omit
vector notations.

v∆t
r

= ∆v
v

� Substitute this value of ∆r into the first
equation.

∆r = v∆t

� The length of the arc from point P to
point Q is almost equal to ∆r . As the
angle becomes very small, the lengths
become more nearly identical. 

∆d = v∆t

� The object travelled from point P to
point Q in the time interval ∆t.
Therefore, the magnitude of the object’s
displacement along the arc from P 
to Q is 

∆r
r

= ∆v
v

� The ratios of the corresponding sides of
similar triangles are equal. There is no
need to distinguish between the sides r1

and r2 or v1 and v2, because the radii 
are equal and the magnitudes of the
velocities are equal.
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The direction of the
change in velocity is found by
defining the vector −⇀v1 and then
adding ⇀v2 and −⇀v1. Place the tail
of −⇀v1 at the tip of ⇀v2 and draw
the resultant vector, ∆⇀v , from the
tail of ⇀v2 to the tip of −⇀v1.

Figure 2.6

r1 θr

θv

r2

∆⇀v = ⇀v2 − ⇀v1

∆r

−⇀v1

⇀v2∆⇀v

O

⇀v1

⇀v2

P
Q



The magnitude of the acceleration of an object moving with 
uniform circular motion is a = v2/r . To determine its direction,
again inspect the triangle formed by the velocity vectors in 
Figure 2.6. The acceleration is changing constantly, so imagine a
vector ⇀v2 as close to ⇀v1 as possible. The angle θ is extremely
small. In this case, ∆⇀v is almost exactly perpendicular to both ⇀v1

and ⇀v2. Since ⇀v1 and ⇀v2 are tangent to the circle and therefore are
perpendicular to the associated radii of the circle, the acceleration
vector points directly toward the centre of the circle. 

Describing the acceleration vector in a typical Cartesian 
coordinate system would be extremely difficult, because the 
direction is always changing and, therefore, the magnitude of 
the x- and y-components would always be changing. It is much 
simpler to specify only the magnitude of the acceleration, which 
is constant for uniform circular motion, and to note that the 
direction is always toward the centre of the circle. To indicate this,
physicists speak of a “centre-seeking acceleration” or centripetal
acceleration, which is denoted as ac , without a vector notation.

Quantity Symbol SI unit

centripetal ac
m
s2 (metres per second squared)

acceleration

velocity (magnitude) v m
s

(metres per second)

radius (of circle) r m (metres)

Unit Analysis

metre
second2 =

( metre
second

)2

metre

(m
s

)2

m
=

m2

s2

m
= m

s2

Note: The direction of the centripetal acceleration is always
along a radius pointing toward the centre of the circle.

ac = v2

r

CENTRIPETAL ACCELERATION
Centripetal acceleration is the quotient of the square of the
velocity and the radius of the circle.

a = v2

r
� Multiply both sides of the equation by v.

v
r

= a
v� Substitute a into the equation for ∆v

∆t
.

a = ∆v
∆t

� Recall the definition of acceleration.

v
r

= ∆v
v∆t

� Divide both sides of the equation by ∆t.
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Mathematicians have developed a
unique system for defining compo-
nents of vectors such as force, 
acceleration, and velocity for move-
ment on curved paths, even when the
magnitude of the velocity is changing.
Any curve can be treated as an arc of
a circle. So, instead of using the x- and
y-components of the typical Cartesian
coordinate system, the vectors are
divided into tangential and radial 
components. The tangential compo-
nent is the component of the vector
that is tangent to the curved path at
the point at which the object is
momentarily located. The radial com-
ponent is perpendicular to the path
and points to the centre of the circle
defined by the arc or curved section of
the path. Radial components are the
same as centripetal components.

MATH LINK



Centripetal Force
According to Newton’s laws of motion, an object will accelerate
only if a force is exerted on it. Since an object moving with uni-
form circular motion is always accelerating, there must always be
a force exerted on it in the same direction as the acceleration, as
illustrated in Figure 2.7. If at any instant the force is withdrawn,
the object will stop moving along the circular path and will 
proceed to move with uniform motion, that is, in a straight line
that is tangent to the circular path on which it had been moving. 

Since the force causing a centripetal acceleration is always
pointing toward the centre of the circular path, it is called a 
centripetal force. The concept of centripetal force differs greatly
from that of other forces that you have encountered. It is not a
type of force such as friction or gravity. It is, instead, a force that 
is required in order for an object to move in a circular path. 

A centripetal force can be supplied by any type of force. For
example, as illustrated in Figure 2.8, gravity provides the cen-
tripetal force that keeps the Moon on a roughly circular path
around Earth, friction provides a centripetal force that causes a 
car to move in a circular path on a flat road, and the tension in a
string tied to a ball will cause the ball to move in a circular path
when you twirl it around. In fact, two different types of force
could act together to provide a centripetal force.

Any force that is directed toward the centre of a circle can 
provide a centripetal force. 

You can determine the magnitude of a centripetal force required
to cause an object to travel in a circular path by applying Newton’s
second law to a mass moving with a centripetal acceleration. 

Figure 2.8

⇀
Fg ⇀

F f
⇀
Fr
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A force acting 
perpendicular to the direction of
the velocity is always required in
order for any object to move 
continuously along a circular path.

Figure 2.7
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The equation for the centripetal force required to cause a mass
m moving with a velocity v to follow a circular path of radius r is
summarized in the following box. 

Quantity Symbol SI unit

centripetal force Fc N (newtons)

mass m kg (kilograms)

velocity v m
s

(metres per second)

radius of circular path r m (metres)

Unit Analysis

(newtons) =
( kilogram

( metres
second

)2

metres

)

N =
kg

(m
s

)2

m
=

kgm2

s2

m
= kg · m

s2 = N

Fc = mv2

r

CENTRIPETAL FORCE
The magnitude of the centripetal force is the quotient of the
mass times the square of the velocity and the radius of 
the circle.

Fc = mv2

r

� Substitute into Newton’s second law.
Omit vector notations because the force
and acceleration always point toward
the centre of the circular path.

ac = v2

r
� Write the equation describing centripetal

acceleration.

⇀F = m⇀a� Write Newton’s second law.
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Centripetal Force in a Horizontal and a Vertical Plane
1. A car with a mass of 2135 kg is rounding 

a curve on a level road. If the radius of
curvature of the road is 52 m and the 
coefficient of friction between the tires 
and the road is 0.70, what is the maxi-
mum speed at which the car can make 
the curve without skidding off the road? r

⇀v

⇀
F f

not enough friction

SAMPLE PROBLEMS



Conceptualize the Problem
� Make a sketch of the motion of the car and the forces acting on it.

� The force of friction must provide a sufficient centripetal force to
cause the car to follow the curved road.

� The magnitude of force required to keep the car on the road 
depends on the velocity of the car, its mass, and the radius 
of curvature of the road.

� Since r is in the denominator of the expression for centripetal force, 
as the radius becomes smaller, the amount of force required 
becomes greater.

� Since v is in the numerator, as the velocity becomes larger, the force
required to keep the car on the road becomes greater.

Identify the Goal
The maximum speed, v, at which the car can make the turn

Identify the Variables
Known Implied Unknown
m = 2135 kg
r = 52 m

µ = 0.70 g = 9.81 m
s2 Ff

v
FN

Develop a Strategy

If the car is going faster than 19 m/s, it will skid off the road.

Validate the Solution
A radius of curvature of 52 m is a sharp curve. A speed of 19 m/s is
equivalent to 68 km/h, which is a high speed at which to take a sharp
curve. The answer is reasonable. The units cancelled properly to give
metres per second for velocity.

v =
√

(0.70)(52 m)
(
9.81 m

s2

)

v =
√

357.08 m2

s2

v = 18.897 m
s

v ≅ 19 m
s

Substitute in the numerical values and solve.

v2 = µmg
( r

m

)
v =

√
µrg

Solve for the velocity.

µmg = mv2

r
Since the car is moving on a level road, the 
normal force of the road is equal to the weight 
of the car. Substitute mg for FN.

Ff = Fc

µFN = mv2

r

Set the frictional force equal to the centripetal
force.

⇀v

Fc = Ff
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2. You are playing with a yo-yo with a mass of 225 g. The full length
of the string is 1.2 m. You decide to see how slowly you can swing
it in a vertical circle while keeping the string fully extended, even
when the yo-yo is at the top of its swing. 

(a) Calculate the minimum speed at which you can swing the yo-yo
while keeping it on a circular path.

(b) At the speed that you determine in part (a), find the tension in the
string when the yo-yo is at the side and at the bottom of its swing.

Conceptualize the Problem
� Draw free-body diagrams of the yo-yo at the top, bottom, and one side

of the swing.

� At the top of the swing, both tension and the force of gravity are acting
toward the centre of the circle. 

� If the required centripetal force is less than the force of gravity, the 
yo-yo will fall away from the circular path. 

� If the required centripetal force is greater than the force of gravity, the
tension in the string will have to contribute to the centripetal force. 

� Therefore, the smallest possible velocity would be the case where the
required centripetal force is exactly equal to the force of gravity.

� At the side of the swing, the force of gravity is perpendicular to the
direction of the required centripetal force and therefore contributes
nothing. The centripetal force must all be supplied by the tension in
the string.

� At the bottom of the swing, the force of gravity is in the opposite
direction from the required centripetal force. Therefore, the tension in
the string must balance the force of gravity and supply the required
centripetal force.

Identify the Goal
The minimum speed, v, at which the yo-yo will stay on a circular path
The tension, FT, in the string when the yo-yo is at the side of its circular path
The tension, FT, in the string when the yo-yo is at the bottom of its
circular path

⇀
FT

⇀
FT

⇀
FT

⇀
Fg

⇀
Fg

⇀
Fg
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Identify the Variables
Known Implied Unknown
m = 225 kg
r = 1.2 m

g = 9.81 m
s2 vmin

FT(side)

FT(bottom)

Develop a Strategy

(a) The minimum speed at which the yo-yo can move is 3.4 m/s.

(b): Side – When the yo-yo is at the side of its swing, the tension in the string is 2.2 N.

(b): Bottom – When the yo-yo is at the bottom of its swing, the tension in the string is 4.4 N.

FT =
(225 g)

( 1 kg
1000 g

)(
3.431 m

s

)2

1.2 m
+ (225 g)

( 1 kg
1000 g

)(
9.81 m

s2

)

FT = 2.207
kg · m2

s2

m
+ 2.207 kg · m

s2

FT = 4.414 N

FT ≅ 4.4 N

Substitute numerical values and
solve.

Fc = FT + Fg

mv2

r
= FT − mg

FT = mv2

r
+ mg

Set the centripetal force equal to
the vector sum of the force of 
tension in the string and the gravi-
tational force. Solve for the force
due to the tension in the string.

FT = Fc

FT = mv2

r

FT =
(225 g)

( 1 kg
1000 g

)(
3.431 m

s

)2

1.2 m

FT = 2.207
kgm2

s2

m
FT ≅ 2.2 N

Set the force of tension in the
string equal to the centripetal
force. Insert numerical values 
and solve.

v =
√(

9.81 m
s2

)
(1.2 m)

v =
√

11.772 m2

s2

v = ±3.431 m
s

v ≅ 3.4 m
s

Substitute numerical values 
and solve.

A negative answer has no 
meaning in this application.

Fg = Fc

mg = mv2

r

mg
( r

m

)
= v2

v =
√

gr

Set the force of gravity on the 
yo-yo equal to the centripetal
force and solve for the velocity.
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Validate the Solution
The force of gravity (weight) of the yo-yo is 2.2 N. At the top of the swing, the
weight supplies the entire centripetal force and the speed of the yo-yo is deter-
mined by this value. At the side of the swing, the tension must provide the 
centripetal force and the problem was set up so that the centripetal force had 
to be equal to the weight of the yo-yo, or 2.2 N. At the bottom of the swing, the 
tension must support the weight (2.2 N) and, in addition, provide the required 
centripetal force (2.2 N). You would therefore expect that the tension would be
twice the weight of the yo-yo. The units cancel properly to give newtons for force.

15. A boy is twirling a 155 g ball on a 1.65 m
string in a horizontal circle. The string will
break if the tension reaches 208 N. What is
the maximum speed at which the ball can
move without breaking the string?

16. An electron (mass 9.11 × 10−31 kg) orbits a
hydrogen nucleus at a radius of 5.3 × 10−11 m
at a speed of 2.2 × 106 m/s. Find the 
centripetal force acting on the electron. What
type of force supplies the centripetal force?

17. A stone of mass 284 g is twirled at a constant
speed of 12.4 m/s in a vertical circle of
radius 0.850 m.  Find the tension in the
string (a) at the top and (b) at the bottom of
the revolution. (c) What is the maximum 

speed the stone can have if the string will
break when the tension reaches 33.7 N?

18. You are driving a 1654 kg car on a level 
road surface and start to round a curve at 
77 km/h. If the radius of curvature is 129 m,
what must be the frictional force between 
the tires and the road so that you can safely
make the turn?

19. A stunt driver for a movie needs to make a
2545 kg car begin to skid on a large, flat,
parking lot surface. The force of friction
between his tires and the concrete surface is
1.75 × 104 N and he is driving at a speed of
24 m/s. As he turns more and more sharply,
what radius of curvature will he reach when
the car just begins to skid?

PRACTICE PROBLEMS

Centripetal Force versus Centrifugal Force
You read in Chapter 1, Fundamentals of Dynamics, that a 
centrifugal force is a fictitious force. Now that you have learned
about centripetal forces, you can understand more clearly why a
centrifugal force is classed as fictitious. 

Analyze the motion of and the force on a person who is riding
the Round Up. Imagine that Figure 2.9 is a view of the Round Up
ride from above and at some instant you are at point A on the ride.
At that moment, your velocity (⇀v ) is tangent to the path of the
ride. If no force was acting on you at all, you would soon be locat-
ed at point B. However, the solid cylindrical structure of the ride
exerts a normal force on you, pushing you to point C. There is no
force pushing you outward, just a centripetal force pushing you
toward the centre of the circular ride.

Assume that the
Round Up ride is rotating at a con-
stant speed and you are at point
A. After a short time interval, in
the absence of a force acting on
you, you would move to point B,
radially outward from point C. 
A centripetal force is required to
change the direction of your
velocity and place you at point C.

Figure 2.9

⇀v you

FN

θ

B (no force)

C

A
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CAREERS IN PHYSICS

An Amusing Side of Physics
Your roller-coaster car is heading up the first and
highest incline. As you turn around to wave to
your faint-of-heart friends on the ground, you 
realize that six large players from the Hamilton
Tiger Cats football team have piled into the three
cars immediately behind you! Now you’re poised
at the top, ready to drop, and hoping fervently 
that the roller-coaster manufacturer designed the
cars to stay on the track, even when carrying
exceptionally heavy loads. 

Perhaps your anxiety will lessen if you are
aware that a highly qualified mechanical engineer,
such as Matthew Chan, has checked out the 
performance specifications of the roller coaster, 
as well as all of the other rides at the amusement
park. They meet Canada’s safety codes, or the park
is not allowed to operate them.

Chan has worked for the Technical Standards
and Safety Authority (TSSA) for the past 11 years.
As special devices engineer for the Elevating and
Amusement Devices Safety Division, he spends
most of his time in the office, verifying design sub-
missions from elevator, ski lift, and amusement
park ride manufacturers. 

When some unique piece of machinery comes
along or when he wants to verify how equipment
will perform in reality versus on paper, Chan goes
into the field. He confesses a special fondness 
for going on-site to test amusement park rides,
including at Canada’s Wonderland, north of
Toronto, the Western Fair in London, Ontario, 
and Toronto’s Canadian National Exhibition.

His favourite challenge is analyzing the perform-
ance of reverse bungees, amusement park rides
that look like giant slingshots and that hurl people
hundreds of feet into the air. Chan says that most
reverse bungees are unique devices — rarely are
two designed and made exactly the same. “It takes
all of your engineering knowledge to analyze these
devices,” claims Chan. “There are no hard and fast
rules for how reverse bungees are made, and the
industry is always changing.”

A reverse bungee ride

A university degree in mechanical engineering
is required to become a special devices engineer,
and Chan says that an understanding of the
dynamics of motion is a must. You have to be able
to predict how a device will behave in a variety of
“what if” scenarios. The details of balance, mass
placement, overload situations, restraint systems,
and footings are all worked through carefully.

In short, you are in good hands. Now, sit back,
relax, and enjoy the ride!

Going Further
1. According to Chan, one of the best ways to get

a hands-on feel for the complex dynamic forces
at work in amusement park rides is to build and
operate scale models. Form a study group with
some of your friends and investigate designs
for your favourite ride. Build a scale model and
test it to determine the smallest and greatest
weights it can carry safely.

2. Visit a science centre that has exhibits demon-
strating the principles of dynamics. 

www.mcgrawhill.ca/links/physics12

The Internet has sites that allow you to design and “run”
your own amusement park rides. Go to the Internet site
shown above and click on Web Links. 

WEB LINK



Describing Rotational Motion
When an object is constantly rotating, physicists sometimes 
find it more convenient to describe the motion in terms of the 
frequency — the number of complete rotations per unit time — or
the period — the time required for one complete rotation —
instead of the velocity of the object. You can express the cen-
tripetal acceleration and the centripetal force in these terms by
finding the relationship between the magnitude of the velocity of
an object in uniform circular motion and its frequency and period. 

Fc = m(4π2rf 2)
Fc = 4π2mrf 2

� Substitute the above value for
acceleration into the equation for
the centripetal force.

ac = 4π2r( 1
f

)2

ac = 4π2rf 2

� Substitute the above value for the
period into the equation for cen-
tripetal acceleration and simplify.

f = 1
T

or T = 1
f

� The frequency is the inverse of 
the period.

Fc = mac

Fc = m
( 4π2r

T2

)
Fc = 4π2mr

T2

� Substitute the above value for a
into the equation for centripetal
force and simplify. 

ac = v2

r

ac =
( 2πr

T

)2

r

ac =
4π2r2

T2

r

ac = 4π2r
T2

� Substitute the above value for v
into the equation for centripetal
acceleration, a, and simplify.

v = 2πr
T

� Substitute the distance and period
into the equation for velocity, v.

∆t = T
� The time interval for one cycle is

the period, T. 

∆d = 2πr

� The distance that an object travels
in one rotation is the circumfer-
ence of the circle. 

v = ∆d
∆t

� Write the definition of velocity.
Since period and frequency are
scalar quantities, omit vector 
notations.
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If your school has probeware
equipment, visit
www.mcgrawhill.ca/links/
physics12 and follow the links for
an in-depth activity on circular
motion.

PROBEWARE



I N V E S T I G A T I O N  2-B

Verifying the 
Circular Motion Equation

TARGET SKILLS

Performing and recording
Analyzing and interpreting
Communicating results

You have seen the derivation of the equation for
circular motion and solved problems by using
it. However, it is always hard to accept a theo-
retical concept until you test it for yourself. In
this investigation, you will obtain experimental
data for uniform circular motion and compare
your data to the theory. 

Problem
How well does the equation describe actual
experimental results? 

Equipment 
� laboratory balance
� force probeware or stopwatch 
� ball on the end of a strong string
� glass tube (15 cm long with fire-polished ends,

wrapped in tape)
� metre stick
� 12 metal washers
� tape
� paper clips

Wear impact-resistant safety goggles.
Also, do not stand close to other people and
equipment while doing this activity.

Procedure
Alternative A: Using Traditional Apparatus

1. Measure the mass of the ball.

2. Choose a convenient radius for swinging 
the ball in a circle. Use the paper clip or 
tape as a marker, as shown in the diagram at
the top of the next column, so you can keep
the ball circling within your chosen radius.

3. Measure the mass of one washer.

4. Fasten three washers to the free end of the
string, using a bent paper clip to hold them
in place. Swing the string at a velocity that
will maintain the chosen radius. Measure 
the time for several revolutions and use it 
to calculate the period of rotation.

5. Calculate the gravitational force on the 
washers (weight), which creates tension 
in the string. This force provides the 
centripetal force to keep the ball moving 
on the circular path.

6. Repeat for at least four more radii.

Alternative B: Using Probeware
1. Measure the mass of the ball.

2. Attach the free end of the string to a swivel
on a force probe, as shown in the diagram on
the next page. 

3. Set the software to collect force-time data
approximately 50 times per second. Start the
ball rotating at constant velocity, keeping the
radius at the proper value, and collect data
for at least 10 revolutions. 

tethered ball
or #4 two-hole
rubber stopper

paper clip

strong string

bent paper clip

glass tube,
wrapped
with tape

metal
washers

CAUTION
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4. Examination of the graph will show regular
variations from which you can calculate the
period of one revolution, as well as the 
average force.

5. Repeat for at least five different radii.

Analyze and Conclude
1. For each radius, calculate and record in your

data table the velocity of the ball. Use the
period and the distance the ball travels in
one revolution (the circumference of its 
circular path).

2. For each radius, calculate and record in 

your data table mv2

r
.

3. Graph Fc against mv2

r
. Each radius will 

produce one data point on your graph.

4. Draw the best-fit line through your data
points. How can you tell from the position 
of the points whether the relationship 

being tested, Fc = mv2

r
, actually describes 

the data reasonably well?

5. Calculate the slope of the line. What does 
the slope tell you about the validity of the
mathematical relationship?

6. Identify the most likely sources of error in
the experiment. That is, what facet of the
experiment might have been ignored, even
though it could have a significant effect on
the results?

Apply and Extend
Based on the experience you have gained in 
this investigation and the theory that you have
learned, answer the following questions about
circular motion. Support your answers in each
case by describing how you would experimen-
tally determine the answer to the question and
how you would use the equations to support
your answer.

7. How is the required centripetal force affected
when everything else remains the same but
the frequency of rotation increases?

8. How is the required centripetal force affected
when everything else remains the same but
the period of rotation increases?

9. If the radius of the circular path of an object
increases and the frequency remains the
same, how will the centripetal force change?

10. How can you keep the velocity of the object
constant while the radius of the circular 
path decreases?

Time (s)

2.0

4.0

6.0

0 4 8 12 16

F
or

ce
 (

N
)

one
revolution

force probe

to computer

glass tube,
wrapped
with tape

strong
string

C-clamp

fishing
swivel
force
probe

tethered
ball
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Banked Curves
Have you ever wondered why airplanes tilt or bank so
much when they turn, as the airplanes in the photograph
are doing? Now that you have learned that a centripetal
force is required in order to follow a curved path or 
turn, you probably realize that banking the airplane has
something to do with creating a centripetal force. Land
vehicles can use friction between the tires and the road
surface to obtain a centripetal force, but air friction (or
drag) acts opposite to the direction of the motion of the
airplane and cannot act perpendicular to the direction 
of motion. What force could possibly be used to provide
a centripetal force for an airplane?

When an airplane is flying straight and horizontally,
the design of the wings and the flow of air over them 
creates a lift force (L) that keeps the airplane in the air, 
as shown in Figure 2.11. The lift must be equal in 
magnitude and opposite in direction to the weight of 
the airplane in order for the airplane to remain on a 
level path. When an airplane banks, the lift force is still 
perpendicular to the wings. The vertical component of 
the lift now must balance the gravitational force, while 
the horizontal component of the lift provides a centripetal 
force. The free-body diagram on the right-hand side of 
Figure 2.11 helps you to see the relationship of the forces 
more clearly.

When a pilot banks an airplane, the forces of gravity and lift
are not balanced. The resultant force is perpendicular to the direction that
the airplane is flying, thus creating a centripetal force.

Cars and trucks can use friction as a centripetal force. However,
the amount of friction changes with road conditions and can
become very small when the roads are icy. As well, friction causes
wear and tear on tires and causes them to wear out faster. For
these reasons, the engineers who design highways where speeds
are high and large centripetal forces are required incorporate
another source of a centripetal force — banked curves. Banked
curves on a road function in a way that is similar to the banking 
of airplanes. 

Figure 2.11

path of airplane
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⇀
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⇀
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⇀
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When an airplane follows a
curved path, it must tilt or bank to generate 
a centripetal force.

Figure 2.10



Figure 2.12 shows you that the normal force of the road on a 
car provides a centripetal force when the road is banked, since 
a normal force is always perpendicular to the road surface. 

You can use the following logic to develop an equation relating
the angle of banking to the speed of a vehicle rounding a curve.
Since an angle is a scalar quantity, omit vector notations and use
only magnitudes. Assume that you wanted to know what angle of
banking would allow a vehicle to move around a curve with a
radius of curvature r at a speed v, without needing any friction 
to supply part of the centripetal force.

Notice that the mass of the vehicle does not affect the amount of
banking that is needed to drive safely around a curve. A semitrailer
and truck could take a curve at the same speed as a motorcycle
without relying on friction to supply any of the required centripetal
force. Apply what you have learned about banking to the following
problems.

C

C
r

r

FN

mg

FN sin θ
FN cos θ

θ

θθ

FN sin θ
FN cos θ

=
mv2

r
mg

sin θ
cos θ

=
v2

r
g

tan θ = v2

rg

� Divide the second equation by the
first and simplify.

FN sin θ = Fc

FN sin θ = mv2

r

� The horizontal component of the
normal force must supply the 
centripetal force.

FN cos θ = Fg

FN cos θ = mg

� Since a car does not move in a 
vertical direction, the vertical 
component of the normal force must
be equal in magnitude to the force
of gravity.
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When you look at a
cross section of a car rounding a
curve, you can see that the only
two forces in a vertical plane that
are acting on the car are the force
of gravity and the normal force 
of the road. The resultant force 
is horizontal and perpendicular 
to the direction in which the car 
is moving. This resultant force 
supplies a centripetal force 
that causes the car to follow 
a curved path.

Figure 2.12



Banked Curves and Centripetal Force
Canadian Indy racing car driver Paul Tracy set the speed record for time
trials at the Michigan International Speedway (MIS) in the year 2000.
Tracy averaged 378.11 km/h in the time trials. The ends of the 3 km oval
track at MIS are banked at 18.0˚ and the radius of curvature is 382 m. 

(a) At what speed can the cars round the curves without needing to
rely on friction to provide a centripetal force? 

(b) Did Tracy rely on friction for some of his required centripetal force?

Conceptualize the Problem
� The normal force of a banked curve provides a centripetal force to

help cars turn without requiring an excessive amount of friction.

� For a given radius of curvature and angle of banking, there is one
speed at which the normal force provides precisely the amount of 
centripetal force that is needed.

Identify the Goal
(a) The speed, v, for which the normal force provides exactly the

required amount of centripetal force for driving around the curve

(b) Whether Tracy needed friction to provide an additional amount of
centripetal force

Identify the Variables and Constant
Known Implied Unknown
r = 382 m
θ = 18.0˚

vPT = 378.11 km
h

g = 9.81 m
s2 v

SAMPLE PROBLEM 

continued

• A conical pendulum swings 
in a circle, as shown in the
diagram. Show that the form
of the equation relating the
angle that the string of the
pendulum makes with the
vertical to the speed of the
pendulum bob is identical to
the equation for the banking
of curves. The pendulum has
a length L, an angle θ with the 
vertical, a force of tension FT in the string, a weight mg, and
swings in a circular path of radius r. The plane of the circle is 
a distance h from the ceiling from which the pendulum hangs.

FT

L

h

θ

r

mg

Conceptual Problem
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Develop a Strategy

(a) A vehicle driving at 34.9 m/s could round the curve without needing
any friction for centripetal force.

(b) Tracy was driving three times as fast as the speed of 126 km/h at
which the normal force provides the needed centripetal force. Paul
had to rely on friction for a large part of the needed centripetal force.

Validate the Solution
An angle of banking of 18˚ is very large compared to the banking on 
normal highway curves. You would expect that it was designed for
speeds much higher than the highway speed limit. A speed of 126 km/h
is higher than highway speed limits.

20. An engineer designed a turn on a road so
that a 1225 kg car would need 4825 N of 
centripetal force when travelling around the
curve at 72.5 km/h. What is the radius of 
curvature of the road?

21. A car exits a highway on a ramp that is
banked at 15˚ to the horizontal. The exit
ramp has a radius of curvature of 65 m. If 
the conditions are extremely icy and the
driver cannot depend on any friction to help
make the turn, at what speed should the

driver travel so that the car will not skid off
the ramp?

22. An icy curve with a radius of curvature of
175 m is banked at 12˚. At what speed must
a car travel to ensure that it does not leave
the road?

23. An engineer must design a highway curve
with a radius of curvature of 155 m that can
accommodate cars travelling at 85 km/h. At
what angle should the curve be banked? 

PRACTICE PROBLEMS

v =
(
34.894 m

s

)( 3600 s
h

)( 1 km
1000 m

)
v = 125.619 km

h

v ≅ 126 km
h

Convert the velocity in m/s into km/h.

v =
√

(382 m)
(
9.81 m

s2

)
(tan 18.0˚)

v =
√

1217.61 m2

s2

v = 34.894 m
s

v ≅ 34.9 m
s

Substitute the numerical values and solve.

tan θ = v2

rg

v2 = rg tan θ

v =
√

rg tan θ

Write the equation that relates angle of banking,
speed, and radius of curvature, and solve for speed, v.

continued from previous page



You have studied just a few examples of circular motion that
you observe or experience nearly every day. Although you rarely
think about it, you have been experiencing several forms of 
circular motion every minute of your life. Simply existing on
Earth’s surface places you in uniform circular motion as Earth
rotates. In addition, Earth is revolving around the Sun. In the 
next chapter, you will apply many of the concepts you have just
learned about force and motion to the motion of planets, moons,
and stars, as well as to artificial satellites.

2.2 Section Review

1. Define uniform circular motion and
describe the type of acceleration that is 
associated with it.

2. Study the diagram in Figure 2.6 on 
page 79. Explain what approximation was
made in the derivation that requires you to
imagine what occurs as the angle becomes
smaller and smaller.

3. What are the benefits of using the concept
of centripetal acceleration rather than work-
ing on a traditional Cartesian coordinate 
system?

4. Explain how centripetal force differs
from common forces, such as the forces of
friction and gravity.

5. If you were swinging a ball on a string
around in a circle in a vertical plane, at what
point in the path would the string be the
most likely to break? Explain why. In what
direction would the ball fly when the string
broke?

6. Explain why gravity does not affect 
circular motion in a horizontal plane, and
why it does affect a similar motion in a 
vertical plane.

7. Describe three examples in which differ-
ent forces are contributing the centripetal
force that is causing an object to follow a 
circular path. 

8. When airplane pilots make very sharp
turns, they are subjected to very large 

g forces. Based on your knowledge of cen-
tripetal force, explain why this occurs.

9. A centrifugal force, if it existed, would be
directed radially outward from the centre of
a circle during circular motion. Explain why
it feels as though you are being thrown out-
ward when you are riding on an amusement
park ride that causes you to spin in a circle.

10. On a highway, why are sharp turns
banked more steeply than gentle turns? Use
vector diagrams to clarify your answer.

11. Imagine that you are in a car on a major
highway. When going around a curve, the car
starts to slide sideways down the banking of
the curve. Describe conditions that could
cause this to happen.

Parts of your catapult launch mechanism will
move in part of a circle. The payload, once
launched, will be a projectile.
� How will your launch mechanism apply

enough centripetal force to the payload to
move it in a circle, while still allowing the
payload to be released?

� How will you ensure that the payload is
launched at the optimum angle for 
maximum range?

� What data will you need to gather from 
a launch to produce the most complete 
possible analysis of the payload’s actual
path and flight parameters?

UNIT PROJECT PREP
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C
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C

K/U

K/U

C

K/U

K/U

Chapter 2  Dynamics in Two Dimensions • MHR 95



C H A P T E R Review2

Knowledge/Understanding
1. Differentiate between the terms “one-dimen-

sional motion” and “two-dimensional motion.”
Provide examples of each.

2. Explain what physicists mean by the “two-
dimensional nature of motion in a plane,”
when common sense suggests that an object 
can be travelling in only one direction at any
particular instant in time.

3. Describe and explain two specific examples
that illustrate how the vertical and horizontal
components of projectile motion are indepen-
dent of each other.

4. When analyzing ideal projectiles, what type of
motion is the horizontal component? What type
of motion is the vertical component?

5. Standing on the school roof, a physics student
swings a rubber stopper tied to a string in a 
circle in a vertical plane. He releases the string
so that the stopper flies outward in a horizontal
direction. 
(a) Draw a sketch of this situation. Draw and

label the velocity and acceleration vectors at

the instant at which he releases the string in
order to produce the horizontal motion. 

(b) Explain at what point the horizontal compo-
nent of the stopper’s motion becomes 
uniform.

6. Explain why an object with uniform circular
motion is accelerating.

7. Draw a free-body diagram of a ball on the end
of a string that is in uniform circular motion in
a horizontal plane. Explain why the weight of
the ball does not affect the value of the tension
of the string that is providing the centripetal
force required to maintain the motion.

8. Draw a free-body diagram of a car rounding a
banked curve. Explain why the weight of the
car does affect the value of the centripetal force
required to keep the car in a circular path.

9. A rubber stopper tied to a string is being swung
in a vertical loop. 
(a) Draw free-body diagrams of the stopper at

its highest and lowest points. 
(b) Write equations to show the relationships

among the centripetal force, the tension in
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� Ideal projectiles move in a parabolic trajectory
in a vertical plane under the influence of 
gravity alone.

� The path of a projectile is determined by the
initial velocity.

� The range of a projectile is its horizontal 
displacement.

� For a given magnitude of velocity, the maxi-
mum range of an ideal projectile occurs when
the projectile is launched at an angle of 45˚.

� Projectile trajectories are computed by 
separately analyzing horizontal and vertical
components of velocity during a common 
time interval.

� Objects in uniform circular motion experience
a centripetal (centre-seeking) acceleration:
ac = v2/r.

� A centripetal (centre-seeking) force is required
to keep an object in uniform circular motion:
Fc = mv2/r .

� Centripetal force can be supplied by any type
of force, such as tension, gravitational forces,
friction, and electrostatic force, or by a 
combination of forces.

� The force of gravity has no effect on circular
motion in a horizontal plane, but does affect
circular motion in a vertical plane.

� Objects moving around banked curves experi-
ence a centripetal force due to the horizontal
component of the normal force exerted by the
surfaces on which they travel.

REFLECTING ON CHAPTER 2



the string, and the weight of the stopper for
each location. 

10. Outline the conditions under which an object
will travel in uniform circular motion and
explain why a centripetal force is considered 
to be the net force required to maintain this
motion.

Inquiry
11. Design and conduct a simple experiment to test

the independence of the horizontal and vertical
components of projectiles. Analyze your data 
to determine the percent deviation between
your theoretical predictions and your actual
results. Identify factors that could explain any
deviations. 

12. Design and construct a model of a vertical 
loop-the-loop section of a roller coaster. Refine
your model, and your skill at operating it, until
the vehicle will consistently round the loop
without falling. Determine the minimum speed
at which the vehicle must travel in order to
complete the vertical loop without falling.
Given the radius of your loop, calculate the 
theoretical value of the speed at which your
vehicle would need to be travelling. Explain
any deviation between the theoretical predic-
tion and your actual results.

Communication
13. A stone is thrown off a cliff that has a vertical

height of 45 m above the ocean. The initial 
horizontal velocity component is 15 m/s. The
initial vertical velocity component is 10 m/s
upward. Draw a scale diagram of the stone’s
trajectory by locating its position at one-second
time intervals. At each of these points, draw a
velocity vector to show the horizontal velocity
component, the vertical velocity component,
and the resultant velocity in the frame of 
reference of a person standing on the cliff.
Assume that the stone is an ideal projectile 
and use 10 m/s2 for the value of g to simplify
calculations.

14. Draw a diagram to represent an object moving
with uniform circular motion by constructing a
rectangular x–y-coordinate system and drawing
a circle with radius of 5 cm centred on the 
origin. Label the point where the circle crosses
the positive y-axis, A; the positive x-axis, B; the
negative y-axis, C; and the negative x-axis, D. 
(a) At each of the four labelled points, draw a 

2 cm vector to represent the object’s instan-
taneous velocity. 

(b) Construct a series of scale vector diagrams
to determine the average acceleration
between A and B, B and C, C and D, and D
and A. Assume the direction of motion to 
be clockwise. 

(c) Designate on the diagram at which points
the average accelerations would occur and
draw in the respective acceleration vectors.

(d) Write a general statement about the direc-
tion of the acceleration of an object in 
circular motion.

15. The mass of an object does not affect the angle
at which a curve must be banked. The law of
inertia, however, states that the motion of any
object is affected by its inertia, which depends
on its mass. How can objects rounding banked
curves obey the law of inertia if the amount of
banking required for a curve of a given radius
of curvature and speed is independent of mass?

16. You are facing north, twirling a tethered ball in
a horizontal circle above your head. At what
point in the circle must you release the string
in order to hit a target directly to the east?
Sketch the situation, indicating the correct
velocity vector.

17. A transport truck is rounding a curve in the
highway. The curve is banked at an angle of 10˚
to the horizontal. 
(a) Draw a free-body diagram to show all of the

forces acting on the truck. 
(b) Write an equation in terms of the weight of 

a truck, that will express the value of the
centripetal force needed to keep the truck
turning in a circle.
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Making Connections
18. A pitched baseball is subject to the forces of

gravity, air resistance, and lift. The lift force is
produced by the ball’s spin. Do research to 
find out
(a) how a spinning baseball creates lift
(b) how a pitcher can create trajectories for 

different types of pitches, such as fastballs,
curve balls, knuckle balls, and sliders 

(c) why these pitches are often effective in
tricking the batter

19. Discuss similarities between a banked curve in
a road and the tilt or banking of an airplane as
it makes a turn. Draw free-body diagrams for
each situation. What is the direction of the lift
force on the airplane before and during the
turn? Explain how tilting the airplane creates 
a centripetal force. What must the pilot do to
make a sharper turn?

Problems for Understanding
20. You throw a rock off a 68 m cliff, giving it a

horizontal velocity of 8.0 m/s. 
(a) How far from the base of the cliff will it

land? 
(b) How long will the rock be in the air?

21. A physics student is demonstrating how the
horizontal and vertical components of projec-
tile motion are independent of each other. 
At the same instant as she rolls a wooden ball
along the floor, her lab partner rolls an identical
wooden ball from the edge of a platform 
directly above the first ball. Both balls have 
an initial horizontal velocity of 6.0 m/s. 
The platform is 3.0 m above the ground. 
(a) When will the second ball strike the

ground? 
(b) Where, relative to the first ball, will the 

second ball hit the ground?
(c) At what distance from the base of the 

platform will the second ball land? 
(d) With what velocity will the second ball

land? 

22. (a) A 350 g baseball is thrown horizontally at
22 m/s[forward] from a roof that is 18 m
high. How far does it travel before hitting
the ground? 

(b) If the baseball is thrown with the same
velocity but at an angle of 25˚ above the 
horizontal, how far does it travel? (Neglect
air friction.) 

23. A rescue plane flying horizontally at 
175 km/h[N], at an altitude of 150 m, drops a
25 kg emergency package to a group of explor-
ers. Where will the package land relative to the
point above which it was released? (Neglect
friction.)

24. You throw a ball with a velocity of 18 m/s at
24˚ above the horizontal from the top of your
garage, 5.8 m above the ground. Calculate the
(a) time of flight 
(b) horizontal range 
(c) maximum height
(d) velocity when the ball is 2.0 m above 

the roof 
(e) angle at which the ball hits the ground

25. Using a slingshot, you fire a stone horizontally
from a tower that is 27 m tall. It lands 122 m
from the base of the tower. What was its initial
velocity? 

26. At a ballpark, a batter hits a baseball at an angle
of 37˚ to the horizontal with an initial velocity
of 58 m/s. If the outfield fence is 3.15 m high
and 323 m away, will the hit be a home run? 

27. An archer shoots a 4.0 g arrow into the air, 
giving it a velocity of 40.0 m/s at an elevation
angle of 65˚. Find
(a) its time of flight 
(b) its maximum height 
(c) its range 
(d) its horizontal and vertical distance from the

starting point at 2.0 s after it leaves the bow
(e) the horizontal and vertical components of

its velocity at 6.0 s after it leaves the bow
(f) its direction at 6.0 s after leaving the bow

Plot the trajectory on a displacement-
versus-time graph.
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28. A hang-glider, diving at an angle of 57.0˚ 
with the vertical, drops a water balloon at an
altitude of 680.0 m. The water balloon hits 
the ground 5.20 s after being released. 
(a) What was the velocity of the hang-glider? 
(b) How far did the water balloon travel during

its flight? 
(c) What were the horizontal and vertical 

components of its velocity just before 
striking the ground? 

(d) At what angle does it hit the ground? 
29. A ball moving in a circular path with a 

constant speed of 3.0 m/s changes direction by
40.0˚ in 1.75 s. 
(a) What is its change in velocity?
(b) What is the acceleration during this time? 

30. You rotate a 450 g ball on the end of a string in
a horizontal circle of radius 2.5 m. The ball
completes eight rotations in 2.0 s. What is the
centripetal force of the string on the ball?

31. A beam of electrons is caused to move in a 
circular path of radius 3.00 m at a velocity 
of 2.00 × 107 m/s. The electron mass is
9.11 × 10−31 kg. 
(a) What is the centripetal acceleration of one

of the electrons? 
(b) What is the centripetal force on one 

electron? 

32. A car travelling on a curved road will skid 
if the road does not supply enough friction.
Calculate the centripetal force required to keep
a 1500 kg car travelling at 65 km/h on a flat
curve of radius 1.0 × 102 m. What must be the
coefficient of friction between the car’s wheels
and the ground?

33. Consider an icy curved road, banked 6.2˚ to 
the horizontal, with a radius of curvature of
75.0 m. At what speed must a 1200 kg car 
travel to stay on the road? 

34. You want to design a curve, with a radius of
curvature of 350 m, so that a car can turn at 
a velocity of 15 m/s on it without depending 
on friction. At what angle must the road be
banked? 

35. (a) A motorcycle stunt rider wants to do a loop-
the-loop within a vertical circular track. If
the radius of the circular track is 10.0 m,
what minimum speed must the motorcyclist
maintain to stay on the track? 

(b) Suppose the radius of the track was dou-
bled. By what factor will the motorcyclist
need to increase her speed to loop-the-loop
on the new track? 

36. An amusement park ride consists of a large
cylinder that rotates around a vertical axis.
People stand on a ledge inside. When the 
rotational speed is high enough, the ledge
drops away and people “stick” to the wall. 
If the period of rotation is 2.5 s and the radius
is 2.5 m, what is the minimum coefficient 
of friction required to keep the riders from 
sliding down? 

37. Use your understanding of the physics of circu-
lar motion to explain why we are not thrown
off Earth like heavy particles in a centrifuge or
mud off a tire, even though Earth is spinning 
at an incredible rate of speed. To make some
relevant calculations, assume that you are
standing in the central square of Quito, a city 
in Ecuador that is located on Earth’s equator. 
(a) Calculate your average speed around 

the centre of Earth.
(b) Determine the centripetal force needed to

move you in a circle with Earth’s radius at
the speed that you calculated in part (a).

(c) In what direction does the centripetal force
act? What actual force is providing the
amount of centripetal force that is required
to keep you in uniform circular motion on
Earth’s surface? 

(d) What is your weight? 
(e) What is the normal force exerted on you by

Earth’s surface? 
(f) Use the calculations just made and other

concepts about circular motion that you
have been studying to explain why you 
are not thrown off Earth as it spins around
its axis.

Chapter 2  Dynamics in Two Dimensions • MHR 99



C H A P T E R

Planetary and 
Satellite Dynamics3

On April 13, 1970, almost 56 h and 333 000 km into their
flight to the Moon, the crew of Apollo 13 heard a loud bang

and felt the spacecraft shudder. Astronaut Jack Swigert radioed
NASA Ground Control: “Houston, we’ve had a problem here.” 
The above photograph, taken by the astronauts after they 
jettisoned the service module, shows how serious that problem
was — an oxygen tank had exploded and damaged the only other
oxygen tank. After assessing the situation, the astronauts climbed
into the lunar landing module, where the oxygen and supplies
were designed to support two people for two days. They would
have to support the three astronauts for four days. 

The spacecraft was still hurtling toward the Moon at more than
5000 km/h, and the engines of the lunar landing module could
certainly not provide the force necessary to turn the craft back
toward Earth. The only available force that could send the astro-
nauts home was the gravitational force of the Moon, which swung
the crippled spacecraft around behind the Moon and hurled it
back toward Earth. With the engines of the lunar landing module,
the crew made two small course corrections that prevented the
craft from careening past Earth into deep space. Exactly 5 days, 
22 h, and 54 min after lift-off, the astronauts, back inside the 
command module, landed in the Pacific Ocean, less than 800 m
from the rescue ship.

In this chapter, you will learn about Newton’s law of universal
gravitation and how it guides the motion of planets and satellites
— and damaged spacecraft.

� Centripetal force

� Centripetal acceleration
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The famous German astronomer Johannes
Kepler (1571–1630) studied a vast amount of
detailed astronomical data and found three
empirical mathematical relationships within
these data. Empirical equations are based solely
on data and have no theoretical foundation.
Often, however, an empirical equation will 
provide scientists with insights that will lead 
to a hypothesis that can be tested further. 

In this chapter, you will learn the significance
of Kepler’s empirical equations. First, however,
you will examine the data below, which is 
similar to the data that Kepler used, and look
for a relationship.

From the data, make a graph of radius (R)
versus period (T). Study the graph. Does the
curve look like an inverse relationship, a 

logarithmic relationship, or an exponential 
relationship? Choose the type of mathematical
relationship that you think is the most likely.
Review Skill Set 4, Mathematical Modelling and
Curve Straightening, and make at least four
attempts to manipulate the data and plot the
results. If you found a relationship that gives
you a straight-line plot, write the mathematical
relationship between radius and period. If you
did not find the correct relationship, confer with
your classmates to see if anyone found the cor-
rect relationship. As a class, agree on the final 
mathematical relationship.

Analyze and Conclude
1. When Kepler worked with astronomical data,

he did not know whether a relationship
existed between specific pairs of variables. 
In addition, Kepler had no calculator — he
had to do all of his calculations by hand.
Comment on the effort that he exerted in
order to find his relationships. 

2. Think about the relationship between the
radius of an orbit and the period of an orbit
on which your class agreed. Try to think of 
a theoretical basis for this relationship.

3. What type of additional information do you
think that you would need in order to give 
a physical meaning to your mathematical
relationship?

Planet

Mercury

Venus

Earth

Mars

Jupiter

Saturn

Orbital radius
R (AU)*

0.389

0.724

1.000

1.524

5.200

9.150

Orbital period
T (days)

87.77

224.70

365.25

686.98

4332.62

10 759.20

* One astronomical unit (AU) is the average distance from 
Earth to the Sun, so distances expressed in AU are fractions
or multiples of the Earth’s average orbital radius.

orbit of Pluto
orbit of Neptune

orbit of Uranus

orbit of Jupiter

orbit of Earth

orbit of Mercury

orbit of Venus

orbit of Mars

orbit of Saturn



In previous science courses, you learned about the Ptolemaic 
system for describing the motion of the planets and the Sun. The
system developed by Ptolemy (151–127 B.C.E.) was very complex
because it was geocentric, that is, it placed Earth at the centre of
the universe. In 1543, Nicholas Copernicus (1473–1543) proposed
a much simpler, heliocentric system for the universe in which
Earth and all of the other planets revolved around the Sun. The
Copernican system was rejected by the clergy, however, because
the religious belief system at the time placed great importance 
on humans and Earth as being central to a physically perfect uni-
verse. You probably remember learning that the clergy put Galileo
Galilei (1564–1642) on trial for supporting the Copernican system. 

Have you ever heard of the Tychonic system? A famous Danish
nobleman and astronomer, Tycho Brahe (1546–1601), proposed a
system, shown in Figure 3.1, that was intermediate between the
Ptolemaic and Copernican systems. In Brahe’s system, Earth is 
still and is the centre of the universe; the Sun and Moon revolve
around Earth, but the other planets revolve around the Sun.
Brahe’s system captured the interest of many scientists, but never
assumed the prominence of either the Ptolemaic or Copernican
systems. Nevertheless, Tycho Brahe contributed a vast amount 
of detailed, accurate information to the field of astronomy.

Newton’s Law of 
Universal Gravitation3.1
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• Describe Newton’s law of 
universal gravitation.

• Apply Newton’s law of universal
gravitation quantitatively.

• Tychonic system

• Kepler’s laws

• law of universal gravitation

 T E R M S
K E Y

E X P E C T A T I O N S
S E C T I O N

The Tychonic
universe was acceptable 
to the clergy, because it
maintained that Earth was
the centre of the universe.
The system was somewhat
satisfying for scientists,
because it was simpler
than the Ptolemaic system.

Figure 3.1



Laying the Groundwork for Newton
Astronomy began to come of age as an exact science with the
detailed and accurate observations of Tycho Brahe. For more 
than 20 years, Brahe kept detailed records of the positions of the
planets and stars. He catalogued more than 777 stars and, in 1572,
discovered a new star that he named “Nova.” Brahe’s star was one
of very few supernovae ever found in the Milky Way galaxy. 

In 1577, Brahe discovered a comet and demonstrated that it was
not an atmospheric phenomenon as some scientists had believed,
but rather that its orbit lay beyond the Moon. In addition to mak-
ing observations and collecting data, Brahe designed and built the
most accurate astronomical instruments of the day (see Figure 3.2).
In addition, he was the first astronomer to make corrections for the
refraction of light by the atmosphere.

In 1600, Brahe invited Kepler to be one of his assistants. Brahe
died suddenly the following year, leaving all of his detailed data
to Kepler. With this wealth of astronomical data and his ability to
perform meticulous mathematical analyses, Kepler discovered
three empirical relationships that describe the motion of the 
planets. These relationships are known today as Kepler’s laws.

or where A and B are two planets.
T2

A
r3
A

= T2
B

r3
B

,T2

r3 = k

KEPLER’S LAWS
1. Planets move in elliptical orbits, with the Sun at one focus

of the ellipse.

2. An imaginary line between the Sun and a planet sweeps
out equal areas in equal time intervals.

3. The quotient of the square of the period of a planet’s revo-
lution around the Sun and the cube of the average distance
from the Sun is constant and the same for all planets. 
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Tycho Brahe was a brilliant
astronomer who led an unusual and
tumultuous life. At age 19, he was
involved in a duel with another student
and part of his nose was cut off. For
the rest of his life, Brahe wore an 
artificial metal nose.

HISTORY LINK

Brahe’s observatory
in Hveen, Denmark, contained
gigantic instruments that, without
magnification, were precise to
1/30 of a degree.

Figure 3.2



Kepler’s first law does not sound terribly profound, but he was
contending not only with scientific observations of the day, but
also with religious and philosophical views. For centuries, the
perfection of “celestial spheres” was of extreme importance in 
religious beliefs. Ellipses were not considered to be “perfect,” 
so many astronomers resisted accepting any orbit other than a
“perfect” circle that fit on the surface of a sphere. However, since
Kepler published his laws, there has never been a case in which
the data for the movement of a satellite, either natural or artificial,
did not fit an ellipse.

Kepler’s second law is illustrated in Figure 3.3. Each of the
shaded sections of the ellipse has an equal area. According to
Kepler’s second law, therefore, the planet moves along the arc of
each section in the same period of time. Since the arcs close to the
Sun are longer than the arcs more distant from the Sun, the planet
must be moving more rapidly when it is close to the Sun. 

According to Kepler’s second law, the same length of time 
was required for a planet to move along each of the arcs at the ends of the
segments of the ellipse. Kepler could not explain why planets moved faster
when they were close to the Sun than when they were farther away.

When Kepler published his third law, he had no way of know-
ing the significance of the constant in the mathematical expression
T2/r3 = k . All he knew was that the data fit the equation. Kepler
suspected that the Sun was in some way influencing the motion 
of the planets, but he did not know how or why this would lead 
to the mathematical relationship. The numerical value of the 
constant in Kepler’s third law and its relationship to the interac-
tion between the Sun and the planets would take on significance
only when Sir Isaac Newton (1642–1727) presented his law of 
universal gravitation. 

Figure 3.3

v

v
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A circle is a special case of an ellipse.
An ellipse is defined by two focuses
and the relationship F1P + F2P = k ,
where k is a constant and is the same
for every point on the ellipse. If the 
two focuses of an ellipse are brought
closer and closer together until they
are superimposed on each other, the
ellipse becomes a circle.

P

F1 F2

MATH LINK



Universal Gravitation
Typically in research, the scientist makes some observations that
lead to an hypothesis. The scientist then tests the hypothesis by
planning experiments, accumulating data, and then comparing 
the results to the hypothesis. The development of Newton’s law of
universal gravitation happened in reverse. Brahe’s data and
Kepler’s analysis of the data were ready and waiting for Newton to
use to test his hypothesis about gravity. 

Newton was not the only scientist of his time who was search-
ing for an explanation for the motion, or orbital dynamics, of the
planets. In fact, several scientists were racing to see who could
find the correct explanation first. One of those scientists was
astronomer Edmond Halley (1656–1742). Halley and others, based
on their calculations, had proposed that the force between the
planets and the Sun decreased with the square of the distance
between a planet and the Sun. However, they did not know how to
apply that concept to predict the shape of an orbit. 

Halley decided to put the question to Newton. Halley first met
Newton in 1684, when he visited Cambridge. He asked Newton
what type of path a planet would take if the force attracting it to
the Sun decreased with the square of the distance from the Sun.
Newton quickly answered, “An elliptical path.” When Halley
asked him how he knew, Newton replied that he had made that
calculation many years ago, but he did not know where his 
calculations were. Halley urged Newton to repeat the calculations
and send them to him. 

Three months later, Halley’s urging paid off. He received an 
article from Newton entitled “De Motu” (“On Motion”). Newton
continued to improve and expand his article and in less than 
three years, he produced one of the most famous and fundamental
scientific works: Philosophiae Naturalis Principia Mathematica
(The Mathematical Principles of Natural Philosophy). The treatise
contained not only the law of universal gravitation, but also
Newton’s three laws of motion. 

Possibly, Newton was successful in finding the law of universal
gravitation because he extended the concept beyond the motion of
planets and applied it to all masses in all situations. While other
scientists were looking at the motion of planets, Newton was
watching an apple fall from a tree to the ground. He reasoned that
the same attractive force that existed between the Sun and Earth
was also responsible for attracting the apple to Earth. He also 
reasoned that the force of gravity acting on a falling object was
proportional to the mass of the object. Then, using his own third
law of action-reaction forces, if a falling object such as an apple
was attracted to Earth, then Earth must also be attracted to the
apple, so the force of gravity must also be proportional to the 
mass of Earth. Newton therefore proposed that the force of gravity
between any two objects is proportional to the product of their
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Sir Edmond Halley, the astronomer
who prompted Newton to publish 
his work on gravitation, is the same
astronomer who discovered the 
comet that was named in his honour
— Halley’s Comet. Without Halley’s
urging, Newton might never have 
published his famous Principia, 
greatly slowing the progress of
physics.

HISTORY LINK



masses and inversely proportional to the square of the distance
between their centres — the law of universal gravitation. The
mathematical equation for the law of universal gravitation is given
in the following box.

• You have used the equation Fg = mg many times to calculate the
weight of an object on Earth’s surface. Now, you have learned 

that the weight of an object on Earth’s surface is Fg = G mEmo
r2
E-o

, 

where mE is the mass of Earth, mo is the mass of the object, and
rE-o is the distance between the centres of Earth and the object.
Explain how the two equations are related. Express g in terms 
of the variables and constant in Newton’s law of universal 
gravitation.

Conceptual Problem

Quantity Symbol SI unit
force of gravity Fg N (newtons)

first mass m1 kg (kilograms)

second mass m2 kg (kilograms)

distance between the 
centres of the masses r m (metres)

universal gravitational 
constant G N · m2

kg2 (newton · metre
squared per 
kilogram squared)

Unit Analysis

newton =
( newton · metre2

kilogram2

)( kilogram · kilogram
metre2

)
( N · m2

kg2

)( kg · kg
m2

)
= N

Note: The value of the universal gravitational constant is 

G = 6.67 × 10−11 N · m2

kg2 .

Fg = G m1m2
r2

NEWTON’S LAW OF UNIVERSAL GRAVITATION
The force of gravity is proportional to the product of the two
masses that are interacting and inversely proportional to the
square of the distance between their centres. 
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Weighing an Astronaut
A 65.0 kg astronaut is walking on the surface of the Moon, which
has a mean radius of 1.74 × 103 km and a mass of 7.35 × 1022 kg.
What is the weight of the astronaut?

Conceptualize the Problem
� The weight of the astronaut is the gravitational force on her.

� The relationship Fg = mg, where g = 9.81 m
s2 , cannot be used in 

this problem, since the astronaut is not on Earth’s surface.

� The law of universal gravitation applies to this problem. 

Identify the Goal
The gravitational force, Fg, on the astronaut

Identify the Variables and Constants
Known Implied Unknown
mM = 7.35 × 1022 kg
ma = 65.0 kg

r = 1.74 × 103 km (1.74 × 106 m)

G = 6.67 × 10−11 N · m2

kg2 Fg

Develop a Strategy

The weight of the astronaut is approximately 105 N.

Validate the Solution
Weight on the Moon is known to be much less than that on Earth.
The astronaut’s weight on the Moon is about one sixth of her weight 

on Earth (65.0 kg × 9.81 m
s2 ≅ 638 N ), which is consistent with this 

common knowledge.

Fg = G m1m2
r2

Fg =
(
6.67 × 10−11 N · m2

kg2

) (7.35 × 1022 kg)(65.0 kg)
(1.74 × 106 m)2

Fg = 105.25 N

Fg ≅ 105 N

Apply the law of universal 
gravitation.
Substitute the numerical values
and solve.

SAMPLE PROBLEM 
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1. Find the gravitational force between Earth
and the Sun. (See Appendix B, Physical
Constants and Data.)

2. Find the gravitational force between Earth
and the Moon.  (See Appendix B, Physical
Constants and Data.)

3. How far apart would you have to place two
7.0 kg bowling balls so that the force of gravi-
ty between them would be 1.25 × 10−4 N?
Would it be possible to place them at this
distance? Why or why not?

4. Find the gravitational force between the 
electron and the proton in a hydrogen atom
if they are 5.30 × 10−11 m apart. (See
Appendix B, Physical Constants and Data.)

5. On Venus, a person with mass 68 kg would
weigh 572 N. Find the mass of Venus from
this data, given that the planet’s radius is
6.31 × 106 m.

6. In an experiment, an 8.0 kg lead sphere is
brought close to a 1.5 kg mass. The gravita-
tional force between the two objects is
1.28 × 10−8 N. How far apart are the centres
of the objects?

7. The radius of the planet Uranus is 4.3 times
the radius of earth. The mass of Uranus is
14.7 times Earth’s mass. How does the 
gravitational force on Uranus’ surface 
compare to that on Earth’s surface?

8. Along a line connecting Earth and the Moon,
at what distance from Earth’s centre would
an object have to be located so that the 
gravitational attractive force of Earth on the
object was equal in magnitude and opposite
in direction from the gravitational attractive
force of the Moon on the object?

PRACTICE PROBLEMS
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Gravity and Kepler’s Laws
The numerical value of G, the universal gravitational constant,
was not determined experimentally until more than 70 years after
Newton’s death. Nevertheless, Newton could work with concepts
and proportionalities to verify his law.

Newton had already shown that the inverse square relationship
between gravitational force and the distance between masses 
was supported by Kepler’s first law — that planets follow 
elliptical paths. 

Kepler’s second law showed that planets move more rapidly
when they are close to the Sun and more slowly when they are
farther from the Sun. The mathematics of elliptical orbits in 
combination with an inverse square relationship to yield the speed
of the planets is somewhat complex. However, you can test the
concepts graphically by completing the following investigation.

continued from previous page



I N V E S T I G A T I O N  3-A

Orbital Speed of Planets

TARGET SKILLS

Modelling concepts
Analyzing and interpreting
Communicating results
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Can you show diagrammatically that a force
directed along the line between the centres of
the Sun and a planet would cause the planet’s
speed to increase as it approached the Sun and
decrease as it moved away? If you can, you have
demonstrated that Kepler’s second law supports
Newton’s proposed law of universal gravitation. 

Problem
How does a force that follows an inverse square
relationship affect the orbital speed of a planet
in an elliptical orbit?

Equipment
� corkboard or large, thick piece of cardboard 
� 2 pushpins
� blank paper
� 30 cm loop of string
� pencil
� ruler

Procedure
1. Place the paper on the corkboard or card-

board. Insert two pushpins into the paper
about 8 to 10 cm apart.

2. Loop the string around the pushpins, as
shown in the illustration. With your pencil, 

pull the string so that it is taut and draw an
ellipse by pulling the string all the way
around the pushpins. 

3. Remove the string and pushpins and label
one of the pinholes “Sun.”

4. Choose a direction around the elliptical orbit
in which your planet will be moving. Make
about four small arrowheads on the ellipse 
to indicate the direction of motion of the
planet.

5. Make a dot for the planet at the point that is
most distant from the Sun (the perihelion).
Measure and record the distance on the
paper from the perihelion to the Sun. From
that point, draw a 1 cm vector directed
straight toward the Sun. 

6. This vector represents the force of gravity 
on the planet at that point: Fg(per) = 1 unit.
(Fg(per) is the force of gravity when the planet
is at perihelion.)

7. Select and label at least three more points on
each side of the ellipse at which you will
analyze the force and motion of the planet. 

8. For each point, measure and record, on a
separate piece of paper, the distance from the
Sun to point P, as indicated in the diagram.
Do not write on your diagram, because it 
will become too cluttered.

P

15.6 cm perihelion

Sun

5.9 cm

continued



10. Calculate the length of the force vector from
each of the points that you have selected on
your orbit.

11. On your diagram, draw force vectors from
each point directly toward the Sun, making
the lengths of the vectors equal to the values
that you calculated in step 10.

12. At each point at which you have a force 
vector, draw a very light pencil line tangent
to the ellipse. Then, draw a line that is 
perpendicular (normal) to the tangent line. 

13. Graphically draw components of the force
vector along the tangent (FT) and normal (FN)
lines, as shown in the diagram. 

Analyze and Conclude
1. The tangential component of the force vector

(FT) is parallel to the direction of the velocity

of the planet when it passes point P. What
effect will the tangential component of force
have on the velocity of the planet?

2. The normal component of the force vector
(FN) is perpendicular to the direction of 
the velocity of the planet when it passes 
point P. What effect will the normal 
component of force have on the velocity 
of the planet?

3. Analyze the change in the motion of the
planet caused by the tangential and normal
components of the gravitational force at each
point where you have drawn force vectors.
Be sure to note the direction of the velocity
of the planet as you analyze the effect of the
components of force at each point.

4. Summarize the changes in the velocity of the
planet as it makes one complete orbit around
the Sun.

5. The force vectors and components that you
drew were predictions based on Newton’s
law of universal gravitation. How well do
these predictions agree with Kepler’s 
observations as summarized in his second
law? Would you say that Kepler’s data 
supports Newton’s predictions?

FT

Fg

Fg

FN

Sun

P

normal

tangent
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9. Follow the steps in the table to see how to determine the length of the force vector at each point.

Procedure Equation

Fg(P) = (1 unit)(15.6 cm)2

(5.9 cm)2

Fg(P) = 6.99 units

� You can now find the relative magnitude of the gravitational 
force on the planet at any point on the orbit by substituting the
magnitudes of the radii into the above equation. For example, 
the magnitude of the force at point P in step 8 is 6.99 units.

Fg(peri) r2
peri = Fg(P) r2

P

Fg(P) =
Fg(peri) r2

peri

r2
P

� Consequently, you can set the expression Fgr2 for any one point
equal to Fgr2 for any other point. Use the values at perihelion as a
reference and set Fg(P)r2 equal to Fg(peri)r2

peri. Then solve for the Fg(P).

Fg = G
mSmp

r2

Fgr2 = GmSmp

� The masses of the Sun and planet remain the same, so the value
GmSmp is constant. Therefore, the expression Fgr2 for any point on
the orbit is equal to the same value.



Kepler’s third law simply states that the ratio T2/r3 is constant
and the same for each planet orbiting the Sun. At first glance, 
it would appear to have little relationship to Newton’s law of 
universal gravitation, but a mathematical analysis will yield a 
relationship. To keep the mathematics simple, you will consider
only circular orbits. The final result obtained by considering 
elliptical orbits is the same, although the math is more complex.
Follow the steps below to see how Newton’s law of universal 
gravitation yields the same ratio as given by Kepler’s third law.

As you can see, Newton’s law of universal gravitation indicates
not only that the ratio T2/r3 is constant, but also that the constant
is 4π2/GmS. All of Kepler’s laws, developed prior to the time when 

T2

r3 = 4π2

GmS

� Solve for T2/r3.

(
G mS

r

)( T2

r2

)
=

( 4π2r2

T2

)( T2

r2

)
GmST2

r3 = 4π2

� Multiply each side of the 

equation by T2/r2.

G mS
r

=
( 2πr

T

)2

G mS
r

= 4π2r2

T2

� Substitute the expression for
the velocity of the planet into
the above equation.

v = ∆d
∆t

∆d = 2πr

∆t = T

v = 2πr
T

� Since Kepler’s third law
includes the period, T, as a
variable, find an expression
for the velocity, v, of the
planet in terms of its period.

A planet travels a distance
equal to the circumference of
the orbit during a time inter-
val equal to its period.

G
mSmp

r2 = mpv2

r

G mS
r

= v2

� Since the force of gravity
must provide a centripetal
force for the planets, set the
gravitational force equal to
the required centripetal
force.

Simplify the equation.

Fg = G
mSmp

r2
� Write Newton’s law of uni-

versal gravitation, using mS

for the mass of the Sun and
mp for the mass of a planet.
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Newton did his work, support Newton’s law of universal gravita-
tion. Kepler had focussed only on the Sun and planets, but
Newton proposed that the laws applied to all types of orbital
motion, such as moons around planets. Today, we know that all 
of the artificial satellites orbiting Earth, as well as the Moon, 
follow Kepler’s laws.

Mass of the Sun and Planets
Have you ever looked at tables
that contain data for the mass
of the Sun and planets and
wondered how anyone could
“weigh” the Sun and planets
or determine their masses?
English physicist and chemist
Henry Cavendish (1731–1810)
realized that if he could 
determine the universal 
gravitational constant, G, he
could use the mathematical
relationship in Kepler’s third
law to calculate the mass of
the Sun. A brilliant experi-
mentalist, Cavendish 
designed a torsion balance,
similar to the system in 
Figure 3.4, that allowed 
him to measure G. 

A torsion balance can measure extremely small amounts of the
rotation of a wire. First, the torsion balance must be calibrated to
determine the amount of force that causes the wire to twist by a
specific amount. Then, the large spheres are positioned so that the
bar supporting them is perpendicular to the rod supporting the
small spheres. In this position, the large spheres are exerting equal
gravitational attractive forces on each of the small spheres. The
system is in equilibrium and the scale can be set to zero. The large
spheres are then moved close to the small spheres and the amount
of twisting of the wire is determined. From the amount of twisting
and the calibration, the mutual attractive force between the large
and small spheres is calculated. 

Using his torsion balance, Cavendish calculated the value of G
to be 6.75 × 10−11 N · m2/kg2. The best-known figure today is
6.672 59 × 10−11 N · m2/kg2 . Cavendish’s measurement was within
approximately 1% of the correct value. As Cavendish did, you can
now calculate the mass of the Sun and other celestial bodies.

light
source

mirror

support

0 1 2 3
4
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In the torsion balance 
that Cavendish designed and used, the
spheres were made of lead. The small
spheres were about 5 cm in diameter
and were attached by a thin but rigid
rod about 1.83 m long. The large
spheres were about 20 cm in diameter.

Figure 3.4

The value of G shows that the
force of gravity is extremely
small. For example, use unit
amounts of each of the variables
and substitute them into Newton’s
law of universal gravitation. 
You will find that the mutual
attractive force between two 
1 kg masses that are 1 m apart 
is 6.672 59 × 10−11 N.

PHYSICS FILE

Henry Cavendish was a very wealthy
and brilliant man, but he also was very
reclusive. He was rarely seen in public
places, other than at scientific meet-
ings. His work was meticulous, yet 
he published only a very small part 
of it. After his death, other scientists 
discovered his notebooks and finally
published his results. Cavendish had
performed the same experiments and
obtained the same results for some
experiments that were later done by
Coulomb, Faraday, and Ohm, who
received the credit for the work.

HISTORY LINK



The Mass of the Sun
Find the mass of the Sun, using Earth’s orbital radius and period of revolution.

Conceptualize the Problem
� Kepler’s third law, combined with Newton’s law of universal gravitation,

yields an equation that relates the period and orbital radius of a satellite 
to the mass of the body around which the satellite is orbiting.

� Earth orbits the Sun once per year.

� Let RE represent the radius of Earth’s orbit around the Sun. This value
can be found in Appendix B, Physical Constants and Data.

Identify the Goal
The mass of the Sun, mS

Identify the Variables and Constants
Known Implied Unknown
Sun G = 6.67 × 10−11 N · m2

kg2

T = 365.25 days
RE(orbit) = 1.49 × 1011 m

mS

Develop a Strategy

The mass of the Sun is approximately 1.97 × 1030 kg.

Validate the Solution
The Sun is much more massive than any of the planets. The value
sounds reasonable.

Check the units: 
( 1

N · m2

kg2

)( m3

s2

)
=

( kg2

N · m2

)( m3

s2

)
=

( kg2

kg · m
s2 · m2

)( m3

s2

)
= kg .

mS =
( 4π2

6.67 × 10−11 N · m2

kg2

) (1.49 × 1011 m)3

(3.1558 × 107 s)2

mS = 1.9660 × 1030 kg

mS ≅ 1.97 × 1030 kg

Substitute the numerical values into
the equation and solve.

365.25 days
( 24 h

day

)( 60 min
h

)( 60 s
min

)
= 3.1558 × 107 sConvert the period into SI units.

T2

r3 mS = 4π2

GmS
mS

mS =
( 4π2

G

)( r3

T2

)
Solve for the mass of the Sun.

T2

r3 = 4π2

GmS

Write Kepler’s third law, using the
constant derived from Newton’s law 
of universal gravitation.

SAMPLE PROBLEM 

Chapter 3  Planetary and Satellite Dynamics • MHR 113

continued



9. Jupiter’s moon Io orbits Jupiter once every
1.769 days. Its average orbital radius is
4.216 × 108 m. What is Jupiter’s mass?

10. Charon, the only known moon of the planet
Pluto, has an orbital period of 6.387 days at
an average distance of 1.9640 × 107 m from
Pluto. Use Newton’s form of Kepler’s third
law to find the mass of Pluto from this data.

11. Some weather satellites orbit Earth every 
90.0 min. How far above Earth’s surface is
their orbit? (Hint: Remember that the centre
of the orbit is the centre of Earth.)

12. How fast is the moon moving as it orbits
Earth at a distance of 3.84 × 105 km? 

13. On each of the Apollo lunar missions, the
command module was placed in a very low,
approximately circular orbit above the Moon.
Assume that the average height was 60.0 km
above the surface and that the Moon’s radius
is 7738 km. 

(a) What was the command module’s orbital
period?

(b) How fast was the command module 
moving in its orbit?

14. A star at the edge of the Andromeda galaxy
appears to be orbiting the centre of that
galaxy at a speed of about 2.0 × 102 km/s.
The star is about 5 × 109 AU from the centre
of the galaxy. Calculate a rough estimate of
the mass of the Andromeda galaxy. Earth’s
orbital radius (1 AU) is 1.49 × 108 km.

PRACTICE PROBLEMS
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Newton’s law of universal gravitation has stood the test of time
and the extended limits of space. As far into space as astronomers
can observe, celestial bodies move according to Newton’s law. As
well, the astronauts of the crippled Apollo 13 spacecraft owe their
lives to the dependability and predictability of the Moon’s gravity.
Although Albert Einstein (1879–1955) took a different approach in
describing gravity in his general theory of relativity, most calcula-
tions that need to be made can use Newton’s law of universal 
gravitation and make accurate predictions.

3.1 Section Review

1. Explain the meaning of the term “empir-
ical” as it applies to empirical equations.

2. What did Tycho Brahe contribute to 
the development of the law of universal 
gravitation?

3. Describe how Newton used each of the
following phenomena to support the law of
universal gravitation.

(a) the orbit of the moon

(b) Kepler’s third law

4. How did Newton’s concepts about 
gravity and his development of the law of

universal gravitation differ from the ideas of
other scientists and astronomers who were
attempting to find a relationship that could
explain the motion of the planets?

5. Describe the objective, apparatus, and
results of the Cavendish experiment.

6. Explain how you can “weigh” a planet.

7. Suppose the distance between two 
objects is doubled and the mass of one is
tripled. What effect does this have on the
gravitational force between the objects?

I

C

K/U

K/U

K/U

K/U

K/U

continued from previous page



A perfectly executed football or hockey pass is an amazing
achievement. A fast-moving player launches an object toward the
place where a fast-moving receiver will most likely be when the
ball or puck arrives. The direction and force of the pass are guided
by intuition and skill acquired from long practice. 

Launching a spacecraft has the same objective, but extreme 
precision is required — the outcome is more critical than that of
an incomplete pass. Scientists and engineers calculate every detail
of the trajectories and orbits in advance. The magnitude and 
direction of the forces and the time interval for firing the rockets
are analyzed and specified in minute detail. Even last-minute
adjustments are calculated exhaustively. The process can be
extremely complex, but it is based on principles that you have
already studied — the dynamics of circular motion and the law 
of universal gravitation.

The steps in a typical Apollo lunar mission are: (1) lift off and
enter Earth orbit,  (2) leave Earth orbit,  (3) release booster rocket, turn, and
dock with lunar module that is stored between the booster rocket and the
service module,  (4) make a mid-course correction,  (5) enter lunar orbit,  
(6) command module continues to orbit the Moon, while the lunar module
descends to the lunar surface, carries out tasks, ascends, and reconnects
with the command module,  (7) leave lunar orbit,  (8) eject lunar module,
(9) mid-course correction,  (10) eject service module, and  (11) command
module lands in the Pacific Ocean.

Figure 3.5
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Planetary and 
Satellite Motion3.2
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• Use Newton’s law of universal
gravitation to explain planetary
and satellite motion.

• geostationary orbit

• microgravity

• perturbation

 T E R M S
K E Y

E X P E C T A T I O N
S E C T I O N



Newton’s Mountain
The planets in our solar system appear to have been “orbiting” the
Sun while they were forming. Great swirling dust clouds in space
began to condense around a newly formed Sun until they finally
became the planets. How, then, do artificial satellites begin 
orbiting Earth?

Soon after Newton formulated his law of universal gravitation,
he began thought experiments about artificial satellites. He 
reasoned that you could put a cannon at the top of an extremely
high mountain and shoot a cannon ball horizontally, as shown in
Figure 3.6. The cannon ball would certainly fall toward Earth. If
the cannon ball travelled far enough horizontally while it fell,
however, the curvature of Earth would be such that Earth’s surface
would “fall away” as fast as the cannon ball fell. 

You can determine how far the cannon ball will fall in one 
second by using the kinematic equation ∆d = vi∆t + 1

2a∆t2. If a 
cannon ball had zero vertical velocity at time zero, in one second 

it would fall a distance ∆d = 0 + 1
2

(
−9.81 m

s2

)
(1 s)2 = −4.9 m. 

From the size and curvature of Earth, Newton knew that Earth’s
surface would drop by 4.9 m over a horizontal distance of 8 km. 

The values shown here represent the distance that the cannon
ball would have to go in one second in order to go into orbit.

Newton’s reasoning was absolutely correct, but he did not
account for air friction. Although the air is too thin to breathe 
easily on top of Mount Everest, Earth’s highest mountain, it would
still exert a large amount of air friction on an object moving at 
8 km/s. If you could take the cannon to 150 km above Earth’s 
surface, the atmosphere would be so thin that air friction would 
be negligible. Newton understood how to put an artificial satellite
into orbit, but he did not have the technology.

Figure 3.6
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Today, launching satellites into orbit is almost routine, but the
scientists and engineers must still carefully select an orbit and 
perform detailed calculations to ensure that the orbit will fulfil the
purpose of the satellite. For example, some weather satellites orbit
over the Poles at a relatively low altitude in order to collect data
in detail. Since a satellite is constantly moving in relation to a
ground observer, the satellite receiver has to track the satellite 
continually so that it can capture the signals that the satellite is
sending. In addition, the satellite is on the opposite side of Earth
for long periods of time, so several receivers must be located
around the globe to collect data at all times. 

Communication satellites and some weather satellites travel 
in a geostationary orbit over the equator, which means that they
appear to hover over one spot on Earth’s surface at all times.
Consequently, a receiver can be aimed in the same direction at 
all times and constantly receive a signal from the satellite. The 
following problem will help you to find out how these types of
orbits are attained.
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Arthur C. Clarke (1917–), scientist
and science fiction writer, wrote
a technical paper in 1945, setting
out the principles of geostation-
ary satellites for communications.
Many scientists in the field at the
time did not believe that it was
possible. Today, geostationary
orbits are sometimes called
“Clarke orbits.” Clarke also 
co-authored the book and movie
2001: A Space Odyssey.

PHYSICS FILE

Geostationary Orbits
At what velocity and altitude must a satellite orbit in order to 
be geostationary?

Conceptualize the Problem
� A satellite in a geostationary orbit must remain over the same

point on Earth at all times.

� To be geostationary, the satellite must make one complete orbit
in exactly the same time that Earth rotates on its axis. Therefore,
the period must be 24 h. 

� The period is related to the velocity of the satellite.

� The velocity and altitude of the satellite are determined by the
amount of centripetal force that is causing the satellite to remain
on a circular path.

� Earth’s gravity provides the centripetal force for satellite motion.

� The values for the mass and radius of Earth are listed in
Appendix B, Physical Constants and Data.

Identify the Goal
(a) The velocity, v, of a geostationary satellite

(b) The altitude, h, of a geostationary satellite

SAMPLE PROBLEM 

continued



Identify the Variables and Constants
Known Implied Unknown
Orbit is geostationary. T = 24 h

G = 6.67 × 10−11 N · m2

kg2

mE = 5.98 × 1024 kg

rE = 6.38 × 106 m

r (radius of satellite’s orbit}
h

Develop a Strategy

(a) The orbital velocity of the satellite is about 3.07 × 103 m/s, which
is approximately 11 000 km/h.

v =
3

√
2π

(
6.67 × 10−11 N · m2

kg2

)
(5.98 × 1024 kg)

8.64 × 104 s

v = 3
√

2.9006 × 1010 m3

s3

v = 3.0724 × 103 m
s

v ≅ 3.07 × 103 m
s

Substitute numerical values and solve.

T = (24 h)
( 60 min

h

)( 60 s
min

)
= 8.64 × 104 sConvert T to SI units.

G mE
vT
2π

= v2

v2 = 2πGmE
vT

v3 = 2πGmE
T

v = 3

√
2πGmE

T

Substitute the expression for r into the
equation for v above and solve for v.

v = ∆d
∆t

∆d = 2πr

∆t = T

v = 2πr
T

r = vT
2π

To eliminate r from the equation, use the
equation for the definition of velocity
and solve for r. Recall that the period, T,
is known.

Fg = Fc

G mEms
r2 = msv2

r

G mE
r

= v2

To find the velocity, start by setting 
the gravitational force equal to the 
centripetal force.

Simplify the expression.
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(b) The altitude of all geostationary satellites must be 3.59 × 107 m,
or 3.59 × 104 km, above Earth’s surface.

Validate the Solution
A velocity of 11 000 km/h seems extremely fast to us, but the 
satellite is circling Earth once per day, so the velocity is reasonable.

Check the units for velocity. 
3

√
N · m2

kg2 kg

s
= 3

√
N · m2 · kg

s · kg2 = 3

√
kg · m3

s2

s · kg
= 3

√
m3

s3 = m
s

15. The polar-orbiting environmental satellites
(POES) and some military satellites orbit at 
a much lower level in order to obtain more
detailed information. POES complete an
Earth orbit 14.1 times per day. What are the
orbital speed and the altitude of POES?

16. The International Space Station orbits at an
altitude of approximately 226 km. What is 
its orbital speed and period?

17. (a) The planet Neptune has an orbital radius
around the Sun of about 4.50 × 1012 m.
What are its period and its orbital speed? 

(b) Neptune was discovered in 1846. How
many orbits has it completed since its 
discovery?

NASA operates two polar-orbiting environmental 
satellites (POES) designed to collect global data on
cloud cover; surface conditions such as ice, snow, 

and vegetation; atmospheric temperatures; and
moisture, aerosol, and ozone distributions.

PRACTICE PROBLEMS

r = rE + h

h = r − rE

h = 4.2249 × 107 m − 6.38 × 106 m

h = 3.5869 × 107 m

h ≅ 3.59 × 107 m

The calculated value for r is the distance
from Earth’s centre to the satellite. To
find the altitude of the satellite, you
must subtract Earth’s radius from r. 

r = vT
2π

r =

(
3.0724 × 103 m

s

)
(8.64 × 104 s)

2π
r = 4.2249 × 107 m

To find the altitude of the satellite, 
substitute the value for velocity into the
expression above that you developed to
find r in terms of v.
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Fg = G m1m2
r2

Fg =
(
6.67 × 10−11 N · m2

kg2

) (5.98 × 1024 kg)(65 kg)
(6.606 × 106 m)2

Fg = 594 N

� Use Newton’s law of universal gravitation
to find the astronaut’s weight.

r = rE + h

r = 6.38 × 106 m + 226 km
( 1000 m

km

)
r = 6.606 × 106 m

� The space station orbits at an altitude of
approximately 226 km. Find the radius 
of its orbit by adding the altitude to
Earth’s radius.
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www.mcgrawhill.ca/links/
physics12

To learn about the effects of weight-
lessness on the human body, go to 
the above Internet site and click on
Web Links.

WEB LINK

The astronaut’s weight on Earth would be 

Fg = mg = (65 kg)(9.81 kg · m
s2 ) ≅ 638 N. There is very little 

difference between the astronaut’s weight on Earth and in the
space station. Why do astronauts appear “weightless” in space?
Think back to your calculations of apparent weight in Chapter 1,
Fundamentals of Dynamics. When the imaginary elevator that you
were riding in was falling with an acceleration of 9.81 m/s2, the
scale you were standing on read zero newtons. Your apparent
weight was zero because you, the scale, and the elevator were
falling with the same acceleration. You and the scale were not
exerting any force on each other. 

The same situation exists in the space station and all orbiting
spacecraft all of the time. As in the case of Newton’s cannon ball,
everything falls to Earth with the same acceleration, but Earth is
“falling away” equally as fast. You could say that a satellite is
“falling around Earth.” Some physicists object to the term 
“weightlessness” because, as you saw, there is no such condition.
NASA coined the term microgravity to describe the condition of
apparent weightlessness.

“Weightlessness” in Orbit
You have probably seen pictures of astronauts in
a space capsule, space shuttle, or space station
similar to Figure 3.7. The astronauts appear to
float freely in the spacecraft and they describe
the condition as being “weightless.” Is a 65 kg
astronaut in a space station weightless? Check 
it out, using the following calculation.

If an astronaut in a spacecraft dropped an
apple, it would fall toward Earth, but it would not look
as though it was falling.

Figure 3.7
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Simulating Microgravity
In preparation for space flights, astronauts benefit
by practising movements in microgravity condi-
tions. As you recall from your study of projectile
motion, an object will follow a parabolic trajectory
if the only force acting on it is gravity. Large jet 
aircraft can fly on a perfect parabolic path by 
exerting a force to overcome air friction. Thus,
inside the aircraft, all objects move as though they
were following a path determined only by gravity.
Objects inside the aircraft, including people, exert
no forces on each other, because they are all
“falling” with the same acceleration. Astronauts
can experience 20 s of microgravity on each 
parabolic trajectory.

Scientists have also found that certain chemical
and physical reactions occur in a different way in
microgravity. They believe that some manufactur-
ing processes can be carried out more efficiently
under these conditions — a concept that might
lead to manufacturing in space. To test some 
of these reactions without going into orbit,
researchers sometimes use drop towers, as shown
in the photograph. A drop tower has a very long
shaft that can be evacuated to eliminate air friction.
A sample object or, sometimes, an entire experi-
ment is dropped and the reaction can proceed 
for up to 10 s in microgravity conditions. These
experiments provide critical information for future
processing in space.

Analyze
1. Explain in detail why an airplane must use

energy to follow an accurate parabolic 
trajectory, but everything inside the airplane
appears to be weightless.

2. Do research to learn about some chemical or
physical processes that might be improved by
carrying them out in microgravity.

PHYSICS & TECHNOLOGY
TARGET SKILLS

Analyzing and interpreting
Communicating results

www.mcgrawhill.ca/links/physics12

To learn more about experiments carried out in drop 
towers, go to the above Internet site and click on 
Web Links.

WEB LINK

Perturbing Orbits
In all of the examples that you have studied to this point, you
have considered only perfectly circular or perfectly elliptical
orbits. Such perfect orbits would occur only if the central body
and satellite were totally isolated from all other objects. Since this
is essentially never achieved, all orbits, such as those of planets
around the Sun and moons and satellites around planets, are
slightly distorted ellipses. For example, when an artificial satellite
is between the Moon and Earth, the Moon’s gravity pulls in an
opposite direction to that of Earth’s gravity. When a satellite is on
the side of Earth opposite to the Moon, the Moon and Earth exert
their forces in the same direction. The overall effect is a very slight
change in the satellite’s orbit. Engineers must take these effects
into account. 



In the solar system, each planet exerts a gravitational force on
every other planet, so each planet perturbs the orbit of the other
planets. In some cases, the effects are so small that they cannot be
measured. Astronomers can, however, observe these perturbations
in the paths of the planets when the conditions are right. In fact,
in 1845, two astronomers in two different countries individually
observed perturbations in the orbit of the planet Uranus. British
astronomer and mathematician John Couch Adams (1819–1892)
and French astronomer Urbain John Joseph Le Verrier (1811–1877)
could not account for their observed perturbations of the planet’s
orbit, even by calculating the effects of the gravitational force of
the other planets. Both astronomers performed detailed calcula-
tions and predicted both the existence and the position of a new,
as yet undiscovered planet. In September of 1846, at the Berlin
Observatory, astronomer J.G. Galle (1812–1910) searched the skies
at the location predicted by the two mathematical astronomers.
Having excellent star charts for comparison, Galle almost immedi-
ately observed the new planet, which is now called “Neptune.” 

About 50 years later, U.S. astronomer Percival Lowell
(1855–1916) performed calculations on the orbits of both 
Neptune and Uranus, and discovered that these orbits were 
again perturbed, probably by yet another undiscovered planet.
About 14 years after Lowell’s death, astronomer Clyde Tombaugh
(1906–1997), working in the Lowell Observatory, discovered the
planet now called “Pluto.”

Since the discovery of two planets that were predicted mathe-
matically by the perturbations of orbits of known planets, several
more predictions about undiscovered planets have been made.
None have been discovered and most astronomers believe that no
more planets exist in our solar system. The laws of Newton and
Kepler, however, have provided scientists and astronomers with 
a solid foundation on which to explain observations and make
predictions about planetary motion, as well as send space probes
out to observe all of the planets in our solar system. 
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3.2 Section Review

1. Explain Newton’s thought experiment
about “launching a cannon-ball satellite.”

2. Why must a geostationary satellite orbit
over the equator? To answer that question,
think about the point that is the centre of the
orbit. If you launched a satellite that had a
period of 24 hr, but it did not start out over
the equator, what path would it follow? If

you were at the spot on Earth just below the
point where the satellite started to orbit, how
would the path of the satellite appear to you?

3. What conditions create apparent weight-
lessness when an astronaut is in an orbiting
spacecraft?

4. How could you discover a planet with-
out seeing it with a telescope?
K/U

K/U

I

C



C H A P T E R Review3

Knowledge/Understanding
1. Distinguish between mass and weight. 
2. Define (a) heliocentric and  (b) geostationary.
3. State Kepler’s laws.
4. Several scientists and astronomers had devel-

oped the concept that the attractive force on
planets orbiting the Sun decreased with the
square of the distance between a planet and
the Sun. What was Newton’s reasoning for
including in his law of universal gravitation
the magnitude of the masses of the planets?
In what other ways did Newton’s law of 
universal gravitation differ conceptually 
from the ideas of other scientists of his time?

5. Explain how Kepler’s third law supports
Newton’s law of universal gravitation.

6. Is Kepler’s constant a universal constant? 
That is, can it be applied to Jupiter’s system 
of satellites or to other planetary systems?
Explain.

7. How does a torsion balance work?
8. Explain whether it is possible to place a 

satellite into geosynchronous orbit above
Earth’s North Pole. 

Inquiry
9. No reliable evidence supports the astrological

claim that the motions of the stars and planets
affect human activities. However, belief in
astrology remains strong. Create an astrology
defence or opposition kit. Include any or all 
of the following: arguments based on Newton’s
laws to refute or support astrological claims, 
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� Tycho Brahe collected detailed astronomical
data for 20 years.

� Johannes Kepler analyzed Brahe’s data and
developed three empirical equations that are
now called “Kepler’s laws.”

1. Planets follow elliptical paths. 
2. The areas swept out by a line from the Sun

to a planet during a given time interval are
always the same.

3. T2

r3 = k or 
T2

A
r3
A

= T2
B

r3
B

� Kepler’s laws support Newton’s law of 
universal gravitation.

� Newton extended the concept of gravity and
showed that not only does it cause celestial
bodies to attract each other, but also that all
masses exert a mutually attractive force on
each other.

� Newton’s law of universal gravitation is 

written mathematically as Fg = G m1m2
r2 .

� Newton’s law of universal gravitation shows
that the constant in Kepler’s third law is 

given by T
2

r3 = 4π2

Gms
.

� You can use the combination of Newton’s law
of universal gravitation and Kepler’s third law
to determine the mass of any celestial body
that has one or more satellites.

� Cavendish used a torsion balance to determine
the universal gravitational constant, G, in
Newton’s law of universal gravitation:
G = 6.67 × 10−11 N · m2/kg2.

� Newton reasoned that if you shot a cannon
ball from the top of a very high mountain and
it went fast enough horizontally, it would fall
exactly the same distance that Earth’s surface
would drop, due to the spherical shape. This
is the correct theory about satellite motion.

� A satellite in a geostationary orbit appears to
hover over one spot on Earth’s surface,
because it completes one cycle as Earth makes
one revolution on its axis.

� Apparent weightlessness in orbiting spacecraft
is due to the fact that the spacecraft and 
everything in it are falling toward Earth with
exactly the same acceleration.

� The planets Neptune and Pluto were both 
discovered because their gravity perturbed 
the path of other planets.

REFLECTING ON CHAPTER 3



an experiment that tests the validity of birth
horoscopes, a report on scientific studies 
of astrological claims and any findings, a sum-
mary of the success and failure of  astrological
predictions and a comparison of these to the
success of predictions based on chance. 

10. Devise an observational test (which will require
a telescope) that will convince a doubting
friend that Earth orbits the Sun. 

11. Demonstrate the inverse square law form of the
universal law of gravitation by calculating the
force on a 100.0 kg astronaut who is placed at 
a range of distances from Earth’s surface, out 
to several Earth radii. Make a graph of force
versus position and comment on the results. 

12. You often hear that the Moon’s gravity, as
opposed to the Sun’s gravity, is responsible 
for the tides. 
(a) Calculate the force of gravity that the Moon

and the Sun exert on Earth. How does 
this appear to conflict with the concept 
stated above?

(b) Calculate the force of the Moon’s gravity on
1.00 × 104 kg of water at the surface of an
ocean on the same side of Earth as the Moon
and on the opposite side of Earth from the
Moon. Also, calculate the Moon’s gravity 
on 1.00 × 104 kg of matter at Earth’s centre.
(Assume that the distance between the
Moon’s centre and Earth’s centre is
3.84 × 108 m and that Earth’s radius is
6.38 × 106 m.) 

(c) Perform the same calculations for the Sun’s
gravity on these masses. (Use 1.49 × 1011 m
for the distance between the centres of Earth
and the Sun.)

(d) Examine your results from parts (b) and (c)
and use them to justify the claim that the
Moon’s gravity is responsible for tides.

13. Many comets have been identified and the 
regularity of their return to the centre of the
solar system is very predictable. 
(a) From what you have learned about satellite

motion, provide a logical explanation for the
disappearance and reappearance of comets.

(b) Make a rough sketch of the solar system 
and add to it a probable comet path.

(c) What is the nature of the path taken 
by comets?

Communication
14. Consider a marble of mass m accelerating in

free fall in Earth’s gravity. Neglect air resistance
and show that the marble’s acceleration due to
gravity is independent of its mass. (That is, you
could use a bowling ball, a feather, or any other
object in free fall and obtain the same result.)
Hint: Equate Newton’s universal law of gravita-
tion to Newton’s second law. Look up the 
values for Earth’s mass and radius and use
them in your acceleration equation to calculate
the marble’s acceleration. This number should
be familiar to you! 

15. Suppose that the Sun’s mass was four times
greater than it is now and that the radius of
Earth’s orbit was unchanged. Explain whether 
a year would be longer or shorter. By what 
factor would the period change? Explain in
detail how you determined your answer.

16. (a) At what distance from Earth would an astro-
naut have to travel to actually experience a
zero gravitational force, or “zero g”? 

(b) Are astronauts in a space shuttle orbiting
Earth subject to a gravitational force? 

(c) How can they appear to be “weightless”?
17. A cow attempted to jump over the Moon but

ended up in orbit around the Moon, instead.
Describe how the cow could be used to 
determine the mass of the Moon.

18. Discuss what would happen to Earth’s motion
if the Sun’s gravity was magically turned off. 

19. The Sun gravitationally attracts Earth. Explain
why Earth does not fall into the Sun. 

Making Connections 
20. Examine some Olympic records, such as those

for the long-jump, shot-put, weightlifting, 
high-jump, javelin throw, 100 m dash, 400 m
hurdles, and the marathon. How would you
expect these records to change if the events 
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were performed under an athletic dome on 
the Moon? 

21. Einstein once recalled his inspiration for the
theory of general relativity from a sudden
thought that occurred to him: “If a person falls
freely, he will not feel his own weight.’’ He said
he was startled by the simple thought and that
it impelled him toward a theory of gravitation.
Although the mathematics of the general theory
of relativity is advanced, its concepts are 
fascinating and have been described in several
popular books. Research and write a short essay
on the general theory of relativity, including a
discussion of its predictions and tests, and how
it supersedes (but does not replace) Newton’s
theory of gravitation.

Problems for Understanding
22. The gravitational force between two objects is

80.0 N. What would the force become if the
mass of one object was halved and the 
distance between the two objects was doubled? 

23. Two stars of masses m∗ and 3m∗ are
7.5 × 1011 m apart. If the force on the large 
star is F, which of the following is the force 
on the small star? 
(a) F/9 (b) F/3 (c) F (d) 3F (e) 9F

24. For the above situation, if the acceleration of
the small star is a, what is the acceleration of
the large star? 
(a) a/9 (b) a/3 (c) a (d) 3a (e) 9a

25. (a) Use Newton’s law of universal gravitation
and the centripetal force of the Sun to 
determine Earth’s orbital speed. Assume that
Earth orbits in a circle.

(b) What is Earth’s centripetal acceleration
around the Sun?

26. Calculate the Sun’s acceleration caused by 
the force of Earth.

27. A space shuttle is orbiting Earth at an altitude 
of 295 km. Calculate its acceleration and com-
pare it to the acceleration at Earth’s surface.

28. Orbital motions are routinely used by
astronomers to calculate masses. A ring of 
high-velocity gas, orbiting at approximately

3.4 × 104 m/s at a distance of 25 light-years
from the centre of the Milky Way, is considered
to be evidence for a black hole at the centre.
Calculate the mass of this putative black hole.
How many times greater than the Sun’s mass 
is it? 

29. In a Cavendish experiment, two 1.0 kg spheres
are placed 50.0 cm apart. Using the known
value of G, calculate the gravitational force
between these spheres. Compare this force to
the weight of a flea. 

30. The Hubble space telescope orbits Earth with
an orbital speed of 7.6 × 103 m/s.
(a) Calculate its altitude above Earth’s surface.
(b) What is its period?

31. The Moon orbits Earth at a distance of
3.84 × 108 m. What are its orbital velocity 
and period? 

32. The following table gives orbital information
for five of Saturn’s largest satellites.

(a) Determine whether these satellites obey
Kepler’s third law.

(b) If they obey Kepler’s third law, use the data
for the satellites to calculate an average
value for the mass of Saturn. 

33. Suppose the Oort cloud of comets contains
1012 comets, which have an average diameter 
of 10 km each. 
(a) Assume that a comet is composed mostly of

water-ice with a density of 1.00 g/cm3 and 
calculate the mass of a comet.

(b) Calculate the total mass of the Oort cloud. 
(c) Compare your mass of the Oort cloud to 

the mass of Earth and of Jupiter.

Satellite

Tethys

Dione

Rhea

Titan

Iapetus

Mean orbital
radius (m)

2.95 × 108

3.78 × 108

5.26 × 108

1.221 × 109

3.561 × 109

Period (days)

1.888

2.737

4.517

15.945

79.331
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P R O J E C T

Catapult Machine

1U N I T

Background
Humans have built machines for launching 
projectiles since ancient times. The Romans
constructed ballista to hurl stones and catapulta
to shoot arrows. In one design, stretched or
twisted ropes were suddenly released to launch
the projectile. Other machines bent and then
released wooden beams. The medieval trebuchet
harnessed the energy of a falling counterweight.
More recently, catapults powered by com-
pressed air provided the first effective method
of launching aircraft from ships. 

A medieval catapult

Challenge
In a small group, design, construct, test, and
evaluate a catapult that launches a standard 
projectile to meet specified flight criteria. Your
class as a whole will decide on the criteria for
the flight and any restrictions on building 
materials and cost. Each catapult will be 
evaluated by comparing its performance to the
expected results for an ideal projectile. As part
of the project, you will prepare a report that 
outlines the design features of your catapult,
provides an analysis of its operation, and makes
recommendations for its improvement. 

Materials
� construction materials, such as wood, plastic,

cardboard, metal

� elastic materials, such as elastic bands,
springs, or a mousetrap

� materials to attach parts together, such as 
fasteners, tape, and glue

� materials for the projectile
• foam plastic egg carton
• plastic sandwich bags
• sand

Safety Precautions  
� Wear eye protection when using power tools.

� Ensure that electrical equipment, such as
power tools, is properly grounded.

� Take appropriate precautions when using
electrical equipment.

� Take appropriate precautions when using
knives, saws, and other sharp tools.

� Handle glue guns with care to avoid burns.
Hot glue guns take several minutes to cool
after they are disconnected.

� Wear eye protection at all times when testing
your catapult.

� Test your catapult in a large, clear space,
away from other people and from equipment
and windows that could be damaged.

� Ensure that all spectators are behind the 
catapult before firing it.

Project Criteria 
A. As a class, decide on the criteria for evaluat-

ing your catapults. Possible challenges are to
construct catapults that launch projectiles to
hit a specific target, or to achieve maximum
range or a specified flight time, or to reach a
particular height or go over a wall.
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ASSESSMENT

assess the performance of your catapult. How 
closely did the projectile meet your challenge 
criteria?
assess the design of your catapult. What 
physics and engineering principles did you 
incorporate into its design?
assess the problem-solving effectiveness of 
your group. What design and construction 
obstacles did you face during this project? 
How did you overcome them?

After you complete this project

B. As a class, decide whether your catapults are
to be made entirely from recycled materials
or to be constructed from other materials
within a set cost limit.

C. Research, design, and construct your catapult
to launch egg-carton projectiles. These pro-
jectiles are to be made from a single section
of a foam plastic egg carton, filled with 
25 grams of sand in a plastic bag. Tape the
bag of sand securely inside the egg-carton
section. The total mass of the projectile is not
to exceed 30 grams.

D. Prepare a written report about your project
that includes

� an appropriate title and the identification
of group members

� a labelled design drawing of the catapult

� an overview of the physics involved that
includes calculations of 
• the average force applied to the 

projectile
• the distance through which the force is

applied
• the time for which the force is applied

� a theoretical prediction for the perform-
ance of your projectile that includes
• its range
• its maximum height
• its flight time 

� an analysis of the catapult’s performance
that includes calculations or measurements
of the
• average launch velocity
• launch angle
• flight time
• range
• maximum height achieved

� an evaluation of the catapult’s performance
and recommendations for its refinement

Action Plan
1. Work in groups of two to four people.

2. Establish a time line for the design, construc-
tion, testing, and evaluation phases of this
project. 

3. Research possible designs and energy sources
for your catapult. Select one that can be
adapted to be feasible and meet the design
criteria. 

4. Construct and test your catapult, measuring
the quantities specified above.

5. Prepare the written report and enter the 
competition.

Evaluate
1. Compare the average performance of your

catapult with your theoretical predictions
and the challenge criteria set out by the
class.

2. Recommend refinements to your catapult.
Indicate specifically how performance was
affected by each design feature that you have
identified for improvement.
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U N I T Review1

Knowledge/Understanding
Multiple Choice
In your notebook, choose the most correct answer
for each of the following questions. Outline your
reasons for your choice.

1. A ball is thrown upward. After it is released, 
its acceleration
(a) is zero
(b) increases
(c) decreases
(d) remains constant
(e) increases, then decreases

2. You drop a 1.0 kg stone off the roof of a 10-
storey building. Just as the stone passes the
fifth floor, your friend drops a 1.0 kg ball out of
a fifth-floor window. If air resistance is neglect-
ed, which of the following statements is true?
Explain your reasoning.
(a) The stone and the ball hit the ground at the

same time and at the same speed.
(b) The stone hits the ground first and with a

greater speed than the ball does.
(c) The stone and the ball hit the ground at the

same time, but the speed of the stone is
greater.

(d) The ball hits the ground before the stone.
3. A football is thrown by a quarterback to a

receiver deep in the end zone. The acceleration
of the football during the flight
(a) depends on how the ball was thrown
(b) depends on whether the ball is going up or

coming down
(c) is the same during the entire flight
(d) is greatest at the top of its trajectory
(e) is greatest at the beginning and end of its

trajectory 

4. A ball of mass m1 is dropped from the roof 
of a 10-storey building. At the same instant,
another ball of mass m2 is dropped out of a
ninth-storey window, 10 m below the roof. 
The distance between the balls during the flight
(a) remains at 10 m throughout
(b) decreases
(c) increases
(d) depends on the ratio m1/m2

5. On a position-time graph, a straight horizontal
line corresponds to motion at
(a) zero speed
(b) constant speed
(c) increasing speed
(d) decreasing speed

Short Answer
6. (a) Define what is meant by a net or unbalanced

force acting on an object. 
(b) Explain, with the aid of a free-body diagram,

how an object can be experiencing no net
force when it has at least three forces acting
on it.

(c) Describe, with the aid of a free-body dia-
gram, an object that is experiencing a net
force. Identify in which direction the object
will move and with what type of motion.
Relate the direction and type of motion to
the direction of the net force. 

7. A child is riding a merry-go-round that is 
travelling at a constant speed. 
(a) Is he viewing the world from an inertial or

non-inertial frame of reference? Explain
your reasoning.

(b) What type of force does his horse exert on
him to keep him travelling in a circle? In
which direction does this force act? 

(c) In what direction does the child feel that a
force is pushing him? Explain why this per-
ceived force is called a “fictitious force.”

8. A football is kicked into the air. Where in its
trajectory is the velocity at a minimum? Where
is it at a maximum? 

9. A bright orange ball is dropped from a hot-air
balloon that is travelling with a constant 
velocity. 
(a) Draw a sketch of the path the ball will travel

from the perspective of a person standing on
the ground from the instant in time at which
the ball was dropped until the instant it
lands. 

(b) From the ground, what type of motion is
observed in the horizontal dimension?
Identify the mathematical equations that can
be used to model this motion. 
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(c) From the ground, what type of motion is
observed in the vertical dimension? Identify
the mathematical equations that can be used
to model this motion. 

(d) Identify the variable that is common to the
equations that describe the horizontal
motion and those that describe the vertical
motion.

(e) Describe, with the aid of sketches, how
motion on a plane can be modelled by 
considering its component motion along two
directions that are perpendicular to each
other. 

Inquiry
10. A rope and pulley are often used to assist in

lifting heavy loads. Demonstrate with the use 
of free-body diagrams and equations that, using
the same force, a heavier load can be lifted with
a rope and pulley system than with a rope
alone. 

11. A wooden T-bar attached to a cable is used at
many ski hills to tow skiers and snowboarders
up the hill in pairs. Design a T-bar lift for a ski
hill. Estimate how much tension the cable for
an individual T-bar should be able to with-
stand, assuming that it transports two adults,
the slope is 10.0˚, and the T-bar cable pulls the
people at an angle of 25.0˚ to the slope.
Determine how the tension is affected when the
steepness of the slope, the angle of the T-bar
cable to the slope, or the coefficient of friction
of the snow changes. 

12. Examine three different ways of suspending
signs (for example, for stores) in front of build-
ings or above sidewalks by using cables or rods
(that is, the sign is not attached directly to the
building). Determine which method can 
support the heaviest sign. 

13. Review the meaning of the kinematics equations
for constant acceleration by deriving them for
yourself. Begin with the following situation. In
a time interval, ∆t, a car accelerates uniformly
from an initial velocity, vi, to a final velocity, vf.
Sketch the situation in a velocity-versus-time
graph. By determining the slope of the graph 

and the area under the graph (Hint: What 
quantities do these represent?), see how many
of the kinematics equations you can derive. 

Communication
14. According to Newton’s third law, for every

action force, there is an equal and opposite
reaction force. How, then, can a team win a 
tug-of-war contest?

15. Consider a block of wood on an incline.
Determine the acceleration of the block and the
normal force of the incline on the block for the
two extreme cases where θ = 0˚ and θ = 90˚,
and for the general case of 0˚ < θ < 90˚. Discuss
the results, particularly why an inclined plane
could be described as a way of “diluting” 
gravity. (Note: Galileo recognized this.)

16. You probably have a working understanding 
of mass and velocity, but what about force and
acceleration? At what rate can a person acceler-
ate on a bicycle? What average force does a 
tennis racquet exert on a tennis ball? 
(a) Construct examples of everyday situations

involving accelerations of approximately
0.5 m/s2, 2.0 m/s2, 5.0 m/s2, and 20 m/s2.

(b) Construct examples of everyday situations
involving forces of 1 N, 10 N, 50 N, 100 N,
1000 N, and 1.0 × 104 N. 

17. A ball rolls down an inclined plane, across a
horizontal surface, and then up another
inclined plane. Assume there is no friction.
(a) What forces act on the ball at the beginning,

middle, and end of its roll?
(b) If the angles of the inclined planes are equal

and the ball begins its roll from a vertical
height of 10 cm, how high will the ball roll
up the second inclined plane? 

(c) If the first inclined plane is twice as steep as
the second and the ball begins its roll from a
vertical height of 10 cm, to what height will
the ball roll up the second inclined plane?

(d) If the ball begins its roll from a vertical
height of 10 cm on the first inclined plane
and the second inclined plane is removed,
how far will the ball roll across the 
horizontal surface? 
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(e) Explain how the above four situations are
explained by using the law of inertia. 

18. A car turns left off the highway onto a curved
exit ramp.
(a) What type of motion does the passengers’

frame of reference experience relative to the
ground?

(b) Explain why the passengers feel a force to
the right as the car turns.

(c) How would an observer on an overpass
describe the motion of the passengers and
the car at the beginning of the curve?

(d) Suppose that in the middle of the turn, the
car hits a patch of ice. Sketch the path of the
car as it slides.

(e) Determine the magnitude and direction of
the force that the road exerts in dry and icy
road conditions and discuss the results for
the two situations.

19. Suppose you could place a satellite above
Earth’s atmosphere with a gigantic crane. In
which direction would the satellite travel when
the crane released it? Explain your answer.

20. Explain why the kinematics equations, which
describe the motion of an object that has 
constant acceleration, cannot be applied to 
uniform circular motion. 

Making Connections
21. Choose an Olympic sport and estimate the 

magnitude of realistic accelerations and forces
involved in the motion. For example, approxi-
mately how fast do Olympic athletes accelerate
during the first 10 m of the 100 m dash? What
average force is applied during this time? What
average force do shot-putters exert on the shot-
put as they propel it? How does this compare to
the force exerted by discus throwers? 

22. In automobiles, antilock braking systems were
developed to slow down a car without letting
the wheels skid and thus reduce the stopping
distance, as compared to a braking system in
which the wheels lock and skid. Explain the
physics behind this technology, using the 
concepts of static friction and kinetic friction.
Develop and solve a problem that demonstrates

this situation. In which case, stopping without
skidding or stopping with skidding, do you use
the coefficient of kinetic friction and in which
case do you use the coefficient of static 
friction?

23. “Natural motion” is difficult to explore 
experimentally on Earth because of the inher-
ent presence of friction. Research the history of
friction experiments. Examine the relationship
between static and kinetic friction. Explain
why a fundamental theory of friction eludes
physicists.

24. Aristotle’s theory of dynamics differed from
Newton’s and Galileo’s theories partly because
Aristotle tried to develop common sense expla-
nations for real-life situations, whereas Newton
and Galileo imagined ideal situations and 
tested them by experiment. Outline in an essay
the differences in these two approaches and
their results.

25. Railroads are typically built on level land, but
in mountainous regions, inclines are unavoid-
able. In 1909, to improve the Canadian Pacific
Railway through the Rocky Mountains, near
Field, British Columbia, engineers significantly
reduced the grade of the old track by building a
spiral tunnel through a mountain. Research this
engineering feat and answer the following 
questions. 
(a) What is the grade of the incline? 
(b) How much force must the train exert going

up through the tunnel, as compared to when
it goes down or travels on level track, or as
compared to what it required for travel on
the old track? 

(c) What is the elevation of the train before
entering and after leaving the tunnel? 

(d) What is the typical acceleration of the train
in the tunnel? Make some rough calcula-
tions, if necessary, to support your answers. 

26. Tycho Brahe built two observatories and had
his assistants observe the same things inde-
pendently. He also repeated observations in
order to understand his errors. He is recognized
as the greatest astronomical observer prior to
development of the telescope. Research the
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contribution he made to observational 
astronomy and the role his methods played 
in developing the scientific method. 

27. In the solar system, objects at greater distances
from the Sun have slower orbital velocities
because of the decrease in the gravitational
force from the Sun. This pattern is expected to
be observed in the Milky Way galaxy also.
However, some objects that are more distant
from the centre of the galaxy than the Sun
(such as star clusters) have higher orbital 
velocities than the Sun. This is considered to
be evidence for dark matter in the galaxy.
Review some recent articles in astronomy 
magazines and research the nature of this 
problem. Why are the above observations 
considered to be evidence for dark matter? 
How strong is this evidence? What are some of
the candidates?

28. Volcanoes on Mars, such as Olympus Mons, 
are much taller than those on Earth. Compare
the sizes of volcanoes on different bodies in the
solar system and discuss the role that gravity
plays in determining the size of volcanoes. 

Problems for Understanding
29. A 1.2 × 103 kg car is pulled along level ground

by a tow rope. The tow rope will break if the
tension exceeds 1.7 × 103 N. What is the largest
acceleration the rope can give to the car?
Assume that there is no friction. 

30. Two objects, m1 and m2, are accelerated inde-
pendently by forces of equal magnitude. Object
m1 accelerates at 10.0 m/s2 and m2 at 20.0 m/s2.
What is the ratio of (a) their inertial masses? 
(b) their gravitational masses? 

31. A 720 kg rocket is to be launched vertically
from the surface of Earth. What force is needed
to give the rocket an initial upward acceleration
of 12 m/s2? Explain what happens to the 
acceleration of the rocket during the first few
minutes after lift-off if the force propelling it
remains constant.

32. A 42.0 kg girl jumps on a trampoline. After
stretching to its bottom limit, the trampoline

exerts an average upward force on the girl over
a displacement of 0.50 m. During the time that
the trampoline is pushing her up, she experi-
ences an average acceleration of 65.0 m/s2. Her
velocity at the moment that she leaves the
trampoline is 9.4 m/s[up]. 
(a) What is the average force that the 

trampoline exerts on the girl? 
(b) How high does she bounce? 

33. An 8.0 g bullet moving at 350 m/s penetrates a
wood beam to a distance of 4.5 cm before com-
ing to rest. Determine the magnitude of the
average force that the bullet exerts on the beam.

34. Soon after blast-off, the acceleration of the
Saturn V rocket is 80.0 m/s2[up]. 
(a) What is the apparent weight of a 78.0 kg

astronaut during this time? 
(b) What is the ratio of the astronaut’s apparent

weight to true weight? 

35. A 1500 kg car stands at rest on a hill that has
an incline of 15˚. If the brakes are suddenly
released, describe the dynamics of the car’s
motion by calculating the following: (a) the car’s
weight, (b) the component of the weight parallel
to the incline, (c) the car’s acceleration, (d) the
velocity acquired after travelling 100.0 m (in
m/s and km/h), and (e) the time for the car to
travel 100.0 m. 

36. A 2.5 kg brick is placed on an adjustable
inclined plane. If the coefficient of static 
friction between the brick and the plane is 0.30,
calculate the maximum angle to which the
plane can be raised before the brick begins 
to slip. 

37. Superman tries to stop a speeding truck before
it crashes through a store window. He stands in
front of it and extends his arm to stop it. If the
force he exerts is limited only by the frictional
force between his feet and the ground, and
µs = µk = 1.0, (a) what is the maximum force 
he can exert? (Let Superman’s mass be
1.00 × 102 kg, the truck’s mass 4.0 × 104 kg, 
and the truck’s velocity 25 m/s.)  (b) What is 
the minimum distance over which he can stop
the truck?
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38. Two bricks, with masses 1.75 kg and 3.5 kg, 
are suspended from a string on either side of a
pulley. Calculate the acceleration of the masses
and the tension in the string when the masses
are released. Assume that the pulley is massless
and frictionless.

39. A helicopter is flying horizontally at 8.0 m/s
when it drops a package.
(a) How much time elapses before the velocity

of the package doubles?
(b) How much additional time is required for

the velocity of the package to double again?
(c) At what altitude is the helicopter flying if

the package strikes the ground just as its
velocity doubles the second time? 

40. A soccer player redirects a pass, hitting the ball
toward the goal 21.0 m in front of him. The ball
takes off with an initial velocity of 22.0 m/s at
an angle of 17.0˚ above the ground. 
(a) With what velocity does the goalie catch the

ball in front of the goal line?
(b) At what height does the goalie catch the

ball?
(c) Is the ball on its way up or down when it is

caught? 

41. A wheelchair basketball player made a basket
by shooting the ball at an angle of 62˚, with an
initial velocity of 6.87 m/s. The ball was 1.25 m
above the floor when the player released it and
the basket was 3.05 m above the floor. How far
from the basket was the player when making
the shot?

42. A 10.0 g arrow is fired horizontally at a target
25 m away. If it is fired from a height of 2.0 m
with an initial velocity of 40.0 m/s, at what
height should the target be placed above the
ground for the arrow to hit it?

43. A Ferris wheel of radius 10.0 m rotates in a 
vertical circle of 7.0 rev/min. A 45.0 kg girl
rides in a car alone. What (vertical) normal
force would she experience when she is:
(a) halfway towards the top, on her way up?
(b) at the top?
(c) halfway towards the bottom?
(d) at the bottom?
Compare this to her weight in each case.

44. How much force is needed to push a 75.0 kg
trunk at constant velocity across a floor, if the
coefficient of friction between the floor and the
crate is 0.27? 

45. A car can accelerate from rest to 100 km/h
(1.00 × 102 km/h) in 6.0 s. If its mass is
1.5 × 103 kg, what is the magnitude and 
direction of the applied force?

46. A 62.4 kg woman stands on a scale in an 
elevator. What is the scale reading (in newtons)
for the following situations.
(a) The elevator is at rest.
(b) The elevator has a downward acceleration 

of 2.80 m/s2. 
(c) The elevator has an upward acceleration of

2.80 m/s2. 
(d) The elevator is moving upward with a 

constant velocity of 2.80 m/s.

47. Suppose you attach a rope to a 5.0 kg brick 
and lift it straight up. If the rope is capable of 
holding a 20.0 kg mass at rest, what is the 
maximum upward acceleration you can give 
to the brick? 

48. A 52.0 kg parachutist is gliding to Earth with a
constant velocity of 6.0 m/s[down]. The para-
chute has a mass of 5.0 kg.
(a) How much does the parachutist weigh?
(b) How much upward force does the air exert

on the parachutist and parachute?
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49. (a) If you want to give an 8.0 g bullet an accel-
eration of 2.1 × 104 m/s2, what average net
force must be exerted on the bullet as it is
propelled through the barrel of the gun?

(b) With this acceleration, how fast will the 
bullet be travelling after it has moved 
2.00 cm from rest? 

50. A snowboarder, whose mass including the
board is 51 kg, stands on a steep 55˚ slope and
wants to go straight down without turning.
What will be his acceleration if (a) there is 
no friction and  (b) the coefficient of kinetic 
friction is 0.20?  (c) In each case, starting from
rest, what will be his velocity after 7.5 s? 

51. Replace the cart in a Fletcher’s trolley appara-
tus (see page 8) with a block of wood of mass
4.0 kg and use a suspended mass of 2.0 kg.
Calculate the acceleration of the system and the
tension in the string when the mass is released,
if the coefficient of friction between the block
of wood and the table is 
(a) 0.60
(b) 0.20
(c) What is the maximum value of the coeffi-

cient of friction that will allow the system 
to move? 

52. Calculate the acceleration of two different 
satellites that orbit Earth. One is located at 
2.0 Earth radii and the other at 4.0 Earth radii.

53. (a) Calculate your velocity on the surface of
Earth (at the equator) due to Earth’s rotation.

(b) What velocity would you require to orbit
Earth at this distance? (Neglect air resistance
and obstructions.)

54. Two galaxies are orbiting each other at a separa-
tion of 1 × 1011 AU and the orbital period is
estimated to be 30 billion years. Use Kepler’s
third law to find the total mass of the pair of
galaxies. Calculate how many times larger the
mass of the pair of galaxies is than the Sun’s
mass, which is 1.99 × 1030 kg. 
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Scanning Technologies: Today and Tomorrow
Consider the following as you begin gathering information
for your end-of-course project.
� Analyze the contents of this unit and begin recording

concepts, diagrams, and equations that might be 
useful.

� Collect information in a variety of ways, including 
concept organizers, useful Internet sites, experimental
data, and perhaps unanswered questions to help you
create your final presentation.

� Scan magazines, newspapers, and the Internet for 
interesting information to enhance your project.

COURSE CHALLENGE
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OVERALL EXPECTATIONS

DEMONSTRATE an understanding of work, energy, 
impulse, momentum, and conservation of energy 
and of momentum.

INVESTIGATE and analyze two-dimensional situations 
involving conservation of energy and of momentum.

DESCRIBE and analyze how common impact-absorbing 
devices apply concepts of energy and momentum.

UNIT CONTENTS

CHAPTER 4 Momentum and Impulse

CHAPTER 5 Conservation of Energy

CHAPTER 6 Energy and Motion 
in Space

The motion of water, subjected to 4000 kPa of
pressure, has sufficient energy to cut through

steel. The motion of electrically charged particles,
propelled at speeds in excess of 3.0 × 104 m/s, could
provide the energy needed to power space probes 
in the near future. In the small photograph of an
experimental ion engine, the blue glow is composed
of electrically charged ions of xenon gas, travelling
at speeds in excess of 3.0 × 104 m/s. An ion engine
emits even smaller high-speed particles than a
water-jet cutting tool.

In this unit, you will build on previous studies 
of energy to include another concept: momentum.
Momentum considers the amount of motion in an
object and the effect of moving objects — large or
small, solid, liquid, or gas — on each other. You 
will use the concepts of energy and momentum to
analyze physical interactions, such as collisions 
and propulsion systems. You will also examine 
two great theoretical foundations of physics: the 
law of conservation of momentum and the law of
conservation of energy.
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Refer to pages 262–263 before beginning this unit.
In this unit project, you will create a presentation
that explores the importance of scientific theories.
� What theories do you already know that are

helpful in analyzing changes in the motion of 
an object?

� In what career fields are ideas, principles, or
mathematical techniques used to analyze the
motion and interactions of objects?

UNIT PROJECT PREP



C H A P T E R Momentum and Impulse4

The driver of the race car in the above photograph walked
away from the crash without a scratch. Luck had little to do

with this fortunate outcome, though — a practical application of
Newton’s laws of motion by the engineers who designed the car
and its safety equipment protected the driver from injury.

You learned in Unit 1 that Newton’s laws can explain and pre-
dict a wide variety of patterns of motion, such as the motion of a
projectile and the orbits of planets. How can some of the same
laws that guide the stars and planets protect a race car driver who
is in a crash?

When Newton originally formulated his laws of motion, he
expressed them in a somewhat different form than you see in most
textbooks today. Newton emphasized a concept called a “quantity
of motion,” which is defined as the product of an object’s mass
and its velocity. Today, we call this quantity “momentum.” In this
chapter, you will see how the use of momentum allows you to
analyze and predict the motion of objects in countless situations
that you might not yet have encountered in your study of physics.

Investigation 4-A
Newton’s Cradle 137

4.1 Defining Momentum 
and Impulse 138

4.2 Conservation of 
Momentum 148

4.3 Elastic and 
Inelastic Collisions 163

Investigation 4-B
Examining Collisions 164

CHAPTER CONTENTS
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� Newton’s laws of motion

� Kinetic energy

� Gravitational potential energy

� Conservation of mechanical energy

PREREQUISITE

CONCEPTS AND SKILLS



I N V E S T I G A T I O N  4-A

Newton’s Cradle

TARGET SKILLS

Hypothesizing
Performing and recording
Analyzing and interpreting

Newton’s cradle, also called a “Newtonian
demonstrator,” looks like a simple child’s toy.
However, explaining the motion of Newton’s
cradle requires the application of more than 
one important physical principle. 

Problem
Explain the motion of a Newton’s cradle.

Equipment
� Newton’s cradle � modelling clay

Procedure
1. Pull to the side one sphere at the end of the

row of the Newton’s cradle, keeping the 
supporting cords taut. Then, release the
sphere. Observe and record the resulting
motion of the spheres.

2. Pull two spheres to the side, keeping all of
the supporting cords taut and keeping the
spheres in contact. Release the spheres and
observe and record the resulting motion.

3. Repeat step 2, using first three spheres and
then four spheres.

4. Pull back two spheres from one end and one
sphere from the other end. Release all of the
spheres at the same time. Observe and record
the motion.

5. Pull one of the end spheres aside and put a
small piece of modelling clay on the second
sphere at the point where the first sphere

will hit it. Release the first sphere and
observe and record the motion of the
spheres.

6. Leaving the clay in place between the two
spheres, pull back one sphere from the oppo-
site end of the row. Release the sphere and
observe and record the resulting motion.

Analyze and Conclude
1. Summarize any patterns of motion that you

observed for the various trials with the
Newton’s cradle.

2. Imagine that an end sphere was moving at
0.16 m/s when it hit the row and that two
spheres bounced off the other end. What
would the speed of the two spheres have 
to be in order to conserve kinetic energy?
Assume that each sphere has a mass of 
0.050 kg.

3. Could kinetic energy be conserved in the 
pattern described in question 2? During your
trials, did you ever observe the pattern
described in question 2? 

4. Did you ever observe a pattern in which
more than one sphere was released and only
one sphere bounced off the far end? 

5. Propose a possible explanation for the
motion you observed in Procedure steps 5
and 6.

6. Momentum is involved in the motion of the
spheres. Write a definition of momentum as
you now understand it.

7. Formulate an hypothesis that could explain
why some patterns that would not violate the
law of conservation of energy were, however,
not observed. 

8. As you study this chapter, look for explana-
tions for the patterns of motion that you
observed. Reread your hypothesis and make
any necessary corrections.
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By now, you have become quite familiar with a wide variety of sit-
uations to which Newton’s laws apply. Frequently, you have been
cautioned to remember that when you apply Newton’s second law,
you must use only the forces acting on one specific object. Then,
by applying Newton’s laws, you can predict precisely the motion
of that object. However, there are a few types of interactions for
which it is difficult to determine or describe the forces acting on
an object or on a group of objects. These interactions include colli-
sions, explosions, and recoil. For these more complex scenarios, 
it is easier to observe the motion of the objects before and after the
interaction and then analyze the interaction by using Newton’s
concept of a quantity of motion.

Defining Momentum
Although you have not used the mathematical expression for
momentum, you probably have a qualitative sense of its meaning.
For example, when you look at the photographs in Figure 4.1, you
could easily list the objects in order of their momentum. Becoming
familiar with the mathematical expression for momentum will
help you to analyze interactions between objects.

Momentum is the product of an object’s mass and its velocity,
and is symbolized by ⇀p . Since it is the product of a vector and 
a scalar, momentum is a vector quantity. The direction of the
momentum is the same as the direction of the velocity.

If the operator of each of these vehicles was suddenly to slam
on the brakes, which vehicle would take the longest time to stop?

Figure 4.1

Defining Momentum 
and Impulse4.1
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• Define and describe the 
concepts and units related to
momentum and impulse.

• Analyze and describe practical
applications of momentum,
using the concepts of 
momentum.

• Identify and analyze social
issues that relate to the 
development of safety devices
for automobiles.

• momentum

• impulse 

• impulse-momentum theorem

 T E R M S
K E Y

E X P E C T A T I O N S
S E C T I O N

A

B

C



Momentum of a Hockey Puck
Determine the momentum of a 0.300 kg hockey puck travelling
across the ice at a velocity of 5.55 m/s[N].

Conceptualize the Problem
� The mass is moving; therefore, it has momentum.

� The direction of an object’s momentum is the same as the direction
of its velocity. 

Identify the Goal
The momentum, ⇀p , of the hockey puck

Identify the Variables and Constants
Known Unknown
m = 0.300 kg
⇀v = 5.55 m

s
[N]

⇀p

Develop a Strategy

The momentum of the hockey puck was 1.67 kg · m
s

[N].

⇀p = m⇀v
⇀p = (0.300 kg) ×

(
5.55 m

s
[N]

)
⇀p = 1.665 kg · m

s
[N]

⇀p ≅ 1.67 kg · m
s

[N]

Use the equation that defines momentum.

SAMPLE PROBLEM 
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Quantity Symbol SI unit

momentum ⇀p kg · m
s

(kilogram metres per second)

mass m kg (kilograms)

velocity ⇀v m
s

(metres per second)

Unit Analysis
(mass)(velocity) = kg · m

s
= kg · m

s
Note: Momentum does not have a unique unit of its own.

⇀p = m⇀v

DEFINITION OF MOMENTUM
Momentum is the product of an object’s mass and its velocity.

continued



Defining Impulse
Originally, Newton expressed his second law by stating that the
change in an object’s motion (rate of change of momentum) is pro-
portional to the force impressed on it. Expressed mathematically,
his second law can be written as follows.

⇀F = ∆⇀p
∆t

To show that this expression is fundamentally equivalent to the
equation that you have learned in the past, take the following
steps.

Knowing that 
⇀F = ∆⇀p

∆t
is a valid expression of Newton’s second 

law, you can mathematically rearrange the expression to demon-
strate some very useful relationships involving momentum. When
you multiply both sides of the equation by the time interval, you
derive a new quantity, 

⇀F∆t , called “impulse.”
⇀F∆t = ∆⇀p

⇀F =
⇀pf − ⇀pi

∆t

⇀F = m⇀vf − m⇀vi
∆t

⇀F = m(⇀vf − ⇀vi)
∆t

⇀F = m∆⇀v
∆t

⇀a = ∆⇀v
∆t

⇀F = m⇀a

� Write the change in momentum as
the difference of the final and initial
momenta.

� Write momentum in terms of mass
and velocity.

� If you assume that m is constant
(that is, does not change for the
duration of the time interval), you
can factor out the mass, m.

� Recall that the definition of average
acceleration is the rate of change of
velocity, and substitute an ⇀a into
the above expression.
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In reality, Newton expressed his 
second law using the calculus that 
he invented. The procedure involves
allowing the time interval to become
smaller and smaller, until it becomes
“infinitesimally small.” The result
allows you to find the instantaneous
change in momentum at each instant
in time. The formulation of Newton’s
second law using calculus looks 
like this.

⇀
F = d⇀p

dt

MATH LINK

Validate the Solution
Approximate the solution by multiplying 0.3 kg times 6 m/s. The magnitude
of the momentum should be slightly less than this product, which is
1.8 kg · m/s. The value, 1.67 kg · m/s, fits the approximation very well. The
direction of the momentum is always the same as the velocity of the object.

1. Determine the momentum of the following
objects.

(a) 0.250 kg baseball travelling at 46.1 m/s[E]

(b) 7.5 × 106 kg train travelling west at 
125 km/h

(c) 4.00 × 105 kg jet travelling south at 
755 km/h

(d) electron (9.11 × 10−31 kg) travelling north
at 6.45 × 106 m/s

PRACTICE PROBLEM

continued from previous page



Impulse is the product of the force exerted on an object and 
the time interval over which the force acts, and is often given the
symbol 

⇀J . Impulse is a vector quantity, and the direction of the
impulse is the same as the direction of the force that causes it.

Quantity Symbol SI unit
impulse

⇀J N · s (newton seconds)

force
⇀F N (newtons)

time interval ∆t s (seconds)

Unit Analysis
(impulse) = (force)(time interval) = N · s

Note: Impulse is equal to the change in momentum, which 

has units of kg · m
s

. To show that these units are equivalent 

to the N · s, express N in terms of the base units.

N · s = kg · m
s2 · s = kg · m

s

⇀J = ⇀F∆t

DEFINITION OF IMPULSE
Impulse is the product of force and the time interval.
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⇀F = m⇀a Is Correct!
When students read the sentence
“If you assume that m is constant
(that is, does not change for the
duration of the time interval), you
can factor out the mass, m,” they
sometimes think that the result 
of the derivation, 

⇀
F = m⇀a , is

wrong. However, this equation 
is a special case of Newton’s
second law that is correct for 
all cases in which the mass, m,
is constant. Since the mass is
constant in a very large number
of situations, it is acceptable to
consider 

⇀
F = m⇀a as a valid

statement of Newton’s 
second law.

MISCONCEPTION

Impulse on a Golf Ball
If a golf club exerts an average force of 5.25 × 103 N[W] on a golf
ball over a time interval of 5.45 × 10−4 s, what is the impulse of 
the interaction?

Conceptualize the Problem
� The golf club exerts an average force on the golf ball for a period

of time. The product of these quantities is defined as impulse.

� Impulse is a vector quantity.

� The direction of the impulse is the same as the direction of its
average force. 

Identify the Goal
The impulse, 

⇀J , of the interaction

Identify the Variables and Constants
Known Unknown
⇀F = 5.25 × 103 N[W]
∆t = 5.45 × 10−4 s

⇀J

SAMPLE PROBLEM 

continued



The Impulse-Momentum Theorem
You probably noticed that the sample and practice problems above
always referred to “average force” and not simply to “force.”
Average force must be used to calculate impulse in these short,
intense interactions, because the force changes continually
throughout the few milliseconds of contact of the two objects. 
For example, when a golf club first contacts a golf ball, the force 
is very small. Within milliseconds, the force is great enough to
deform the ball. The ball then begins to move and return to its
original shape and the force soon drops back to zero. Figure 4.2
shows how the force changes with time. You could find the
impulse by determining the area under the curve of force versus
time.

In many collisions, it is exceedingly difficult to make the 
precise measurements of force and time that you need in order 
to calculate the impulse. The relationship between impulse and
momentum provides an alternative approach to analyzing such
collisions, as well as other interactions. By analyzing the momen-
tum before and after an interaction between two objects, you can
determine the impulse. 
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Develop a Strategy

When the golf club strikes the golf ball, the impulse to
drive the ball down the fairway is 2.86 N · s[W].

Validate the Solution
Round the values in the data to 5000 N[W] and 0.0006 s
and do mental multiplication. The product is 3 N · s[W].
The answer, 2.86 N · s[W], is very close to the estimate.

2. A sledgehammer strikes a spike with an 
average force of 2125 N[down] over a time
interval of 0.0205 s. Calculate the impulse of
the interaction.

3. In a crash test, a car strikes a wall with an
average force of 1.23 × 107 N[S] over an
interval of 21.0 ms. Calculate the impulse.

4. In a crash test similar to the one described in
problem 3, another car, with the same mass
and velocity as the first car, experiences an
impulse identical to the value you calculated
in problem 3. However, the second car was
designed to crumple more slowly than the
first. As a result, the duration of the interac-
tion was 57.1 ms. Determine the average
force exerted on the second car.

PRACTICE PROBLEMS

⇀J = ⇀F∆t
⇀J = (5.25 × 103 N[W])(5.45 × 10−4 s)
⇀J = 2.8612 N · s[W]
⇀J ≅ 2.86 N · s[W]

Apply the equation that defines impulse.

When you want to use mental 
math to approximate an answer to
validate your calculations, you can
usually find the best approximation
by rounding one value up and 
the other value down before 
multiplying.

PROBLEM TIP

You can find the
impulse of an interaction (area
under the curve) by using the
same mathematical methods that
you used to find work done from
a force-versus-position curve.

Figure 4.2

Time (ms)

F
or

ce
 (

N
)

0.0 5.00 10.00

5 × 103

4 × 103

3 × 103

2 × 103

1 × 103
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When you first rearranged the expression for Newton’s second
law, you focussed only on the concept of impulse, 

⇀F∆t . By taking
another look at the equation 

⇀F∆t = ∆⇀p , you can see that impulse
is equal to the change in the momentum of an object. This rela-
tionship is called the impulse-momentum theorem and is often
expressed as shown in the box below.

Quantity Symbol SI unit
force

⇀F N (newtons)

time interval ∆t s (seconds)

mass m kg (kilograms)

initial velocity ⇀v1
m
s

(metres per second)

final velocity ⇀v2
m
s

(metres per second)

Unit Analysis
(force)(time interval) = (mass)(velocity)

N · s = kg m
s

kg · m
s2 s = kg · m

s
Note: Impulse is a vector quantity. The direction of the
impulse is the same as the direction of the change in the
momentum.

⇀F∆t = m⇀v2 − m⇀v1

IMPULSE-MOMENTUM THEOREM
Impulse is the difference of the final momentum and initial
momentum of an object involved in an interaction.
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Impulse and Average Force of a Tennis Ball
A student practises her tennis volleys by hitting a tennis ball against a wall. 

(a) If the 0.060 kg ball travels 48 m/s before hitting the wall and then
bounces directly backward at 35 m/s, what is the impulse of the 
interaction? 

(b) If the duration of the interaction is 25 ms, what is the average force
exerted on the ball by the wall?

Conceptualize the Problem
� The mass and velocities before and after the interaction are known, so it

is possible to calculate the momentum before and after the interaction.

� Momentum is a vector quantity, so all calculations must include directions. 

SAMPLE PROBLEM 

continued

Refer to your Electronic Learning
Partner to enhance your under-
standing of momentum.

ELECTRONIC
LEARNING PARTNER



� Since the motion is all in one dimension, use plus and minus to denote
direction. Let the initial direction be the positive direction.

� You can find the impulse from the change in momentum. 

Identify the Goal
The impulse, 

⇀J , of the interaction

The average force, 
⇀F , on the tennis ball

Identify the Variables and Constants
Known Unknown
m = 0.060 kg ⇀v1 = 48 m

s
⇀v2 = −35 m

s

⇀J

∆t = 25 ms = 0.025 s
⇀F

Develop a Strategy

(a) The impulse was 5.0 kg · m/s in a direction opposite to the initial
direction of the motion of the ball.

(b) The average force of the wall on the tennis ball was 2.0 × 102 N in
the direction opposite to the initial direction of the ball.

Validate the Solution

kg · m
s
s

= kg · m
s2 = N

Check the units for the second part of the
problem.

⇀F∆t = m(⇀v2 − ⇀v1)
⇀F∆t = 0.060 kg

(
−35 m

s
− 48 m

s

)
⇀F∆t = (0.060 kg)

(
−83 m

s

)
⇀F∆t = −4.98 kg · m

s
≅ −5.0 kg · m

s

Use an alternative mathematical technique
for the impulse calculation by factoring
out the mass, subtracting the velocities,
then multiplying to see if you get the 
same answer.

⇀F∆t = −4.98 kg · m
s

⇀F =
−4.98 kg · m

s
∆t

⇀F =
−4.98 kg · m

s
0.025 s

⇀F = −199.2 N
⇀F ≅ −2.0 × 102 N

Use the definition of impulse to find the
average force.

⇀F∆t = m⇀v2 − m⇀v1

⇀F∆t = 0.060 kg
(

−35 m
s

)
− 0.060 kg

(
48 m

s

)
⇀F∆t = −2.1 kg · m

s
− 2.88 kg · m

s
⇀F∆t = −4.98 kg · m

s
⇀F∆t ≅ −5.0 kg · m

s

Use the impulse-momentum theorem to
calculate the impulse.
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Whenever you use a result from
one step in a problem as data for
the next step, use the unrounded
form of the data.

PROBLEM TIP

continued from previous page
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Impulse and Auto Safety
One of the most practical and important applications of impulse is
in the design of automobiles and their safety equipment. When a
car hits another car or a solid wall, little can be done to reduce 
the change in momentum. The mass of the car certainly does not
change, while the velocity changes to zero at the moment of
impact. Since you cannot reduce the change in momentum, 
you cannot reduce the impulse. However, since impulse (

⇀F∆t)
depends on both force and time, engineers have found ways to
reduce the force exerted on car occupants by extending the time
interval of the interaction. Think about how the design of a car 
can expand the duration of a crash.

In the early days of auto manufacturing, engineers and design-
ers thought that a very strong, solid car would be ideal. As the
number of cars on the road and the speed of the cars increased,
the number and seriousness of accident injuries made it clear that
the very sturdy cars were not protecting car occupants. By the late
1950s and early 1960s, engineers were designing cars with very
rigid passenger cells that would not collapse onto the passengers,
but with less rigid “crumple zones” in the front and rear, as shown
in Figure 4.3. 

Although a car crash seems almost instantaneous, the time
taken for the front or rear of the car to “crumple” is great enough to signifi-
cantly reduce the average force of the impact and, therefore, the average
force on the passenger cell and the passengers.

Figure 4.3

passenger cell

crumple zones crumple zones

5. The velocity of the serve of some profession-
al tennis players has been clocked at 43 m/s
horizontally. (Hint: Assume that any vertical
motion of the ball is negligible and consider
only the horizontal direction of the ball after
it was struck by the racquet.) If the mass of
the ball was 0.060 kg, what was the impulse
of the racquet on the ball?

6. A 0.35 kg baseball is travelling at 46 m/s
toward the batter. After the batter hits the
ball, it is travelling 62 m/s in the opposite
direction. Calculate the impulse of the bat on
the ball.

7. A student dropped a 1.5 kg book from a
height of 1.75 m. Determine the impulse that
the floor exerted on the book when the book
hit the floor.

PRACTICE PROBLEMS

Use the crash test provided by
your Electronic Learning Partner to
enhance your understanding of
momentum.

ELECTRONIC
LEARNING PARTNER

If your school has probeware
equipment, visit
www.mcgrawhill.ca/links/
physics12 and follow the links for
an in-depth activity on impulse 
and momentum.

PROBEWARE



Bend a Wall
Designing 
Crumple Zones

Q U I C K

L A B

TARGET SKILLS

Hypothesizing
Performing and recording
Analyzing and interpreting
Communicating results

How soft is too soft and how rigid is too rigid
for an effective vehicle crumple zone? In this
lab, you will design and test several materials to
determine the optimum conditions for passen-
gers in a vehicle.

Obtain a rigid (preferably metal) toy vehicle
to simulate the passenger cell of an automobile.
The vehicle must have an open space in the
centre for the “passenger.” Make a passenger out
of putty, modelling clay, or some material that
will easily show “injuries” in the form of dents
and deformations. 

Design and build some type of device that
will propel your vehicle rapidly into a solid
wall (or stack of bricks) with nearly the same
speed in all trials. The wall must be solid, but
you will need to ensure that you do not damage
the wall. Perform several crash tests with your
vehicle and passenger and observe the types of
injuries and the extent of injuries caused by 
the collision. 

Select a variety of materials, from very soft to
very hard, from which to build crumple zones.
For example, you could use very soft foam rub-
ber for the soft material. The thickness of each
crumple zone must be approximately one third
the length of your vehicle.

One at a time, attach your various crumple
zones to your vehicle and test the effectiveness
of the material in reducing the severity of injury
to the passenger. Be sure that the vehicle travels
at the same speed with the crumple zone
attached as it did in the original crash tests
without a crumple zone. Also, be sure that the
materials you use to attach the crumple zones
do not influence the performance of the crumple
zones. Formulate an hypothesis about the rela-
tive effectiveness of each of the various crumple
zones that you designed.

Analyze and Conclude
1. How do the injuries to the passenger that

occurred with a very soft crumple zone 
compare to the injuries in the original 
crash tests?

2. How do the injuries to the passenger that
occurred with a very rigid crumple zone
compare to the injuries in the original 
crash tests?

3. Describe the difference in the passenger’s
injuries between the original crash tests and
the test using the most effective crumple
zone material.

Apply and Extend
4. The optimal crumple zone for a very massive

car would be much more rigid than one for a
small, lightweight car. However, a crash
between a large and a small car would result
in much greater damage to the small car.
Write a paragraph responding to the question
“Should car manufacturers consider other
cars on the road when they design their 
own cars, or should they ignore what might
happen to other manufacturers’ cars?”

5. Crumple zones are just one of many types of
safety systems designed for cars. Should the
government regulate the incorporation of
safety systems into cars? Give a rationale for
your answer.

6. Some safety systems are very costly. Who
should absorb the extra cost — the buyer, 
the manufacturer, or the government? For
example, should the government provide a
tax break or some other monetary incentive
for manufacturers to build or consumers to
buy cars with highly effective safety systems?
Give a rationale for your answer.
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When a rigid car hits a wall, a huge force stops the car almost
instantaneously. The car might even look as though it was only
slightly damaged. However, parts of the car, such as the steering
wheel, windshield, or dashboard, exert an equally large force on
the passengers, stopping them exceedingly rapidly and possibly
causing very serious injuries.

When a car with well-designed crumple zones hits a wall, the
force of the wall on the car causes the front of the car to collapse
over a slightly longer time interval than it would in the absence of
a crumple zone. Since 

⇀F∆t is constant and ∆t is larger, the average
force, 

⇀F , is smaller than it would be for a rigid car. Although
many other factors must be considered to reduce injury in colli-
sions, the presence of crumple zones has had a significant effect 
in reducing the severity of injuries in automobile accidents.

The concept of increasing the duration of an impact applies to
many forms of safety equipment. For example, the linings of safety
helmets are designed to compress relatively slowly. If the lining
was extremely soft, it would compress so rapidly that the hard
outer layer of the helmet would impact on the head very quickly.
If the lining did not compress at all, it would collide with the
head over an extremely short time interval and cause serious
injury. Each type of sport helmet is designed to compress in a way
that compensates for the type of impacts expected in that sport. 
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4.1 Section Review

1. Define momentum qualitatively and
quantitatively.

2. What assumption do you have to make
in order to show that the two forms of 

Newton’s second law (
⇀F = ∆⇀p

∆t
and 

⇀F = m⇀a )
are equivalent? 

3. Try to imagine a situation in which the
form 

⇀F = m⇀a would not apply, but the form 
⇀F = ∆⇀p

∆t
could be used. Describe that situa-

tion. How could you test your prediction?

4. State the impulse-momentum theorem
and give one example of its use.

5. A bungee jumper jumps from a very high
tower with bungee cords attached to his
ankles. As he reaches the end of the bungee
cord, it begins to stretch. The cord stretches
for a relatively long period of time and then
it recoils, pulling him back up. After several

bounces, he dangles unhurt from the bungee
cord (if he carried out the jump with all of
the proper safety precautions). If he jumped
from the same point with an ordinary rope
attached to his ankles, he would be very
severely injured. Use the concept of impulse
to explain the difference in the results of a
jump using a proper bungee cord and a jump
using an ordinary rope.

MC

C

I

K/U

K/U

www.mcgrawhill.ca/links/
physics12

To learn more about the design and
testing of helmets and other safety
equipment in sports, go to the above
Internet site and click on Web Links.

WEB LINK

Can environmentally responsible transporta-
tion be the product of properly applying 
scientific models and theories?
� Is the theory of momentum and impulse

currently used in vehicle design?
� Can you envision using momentum and

impulse theory to design more environmen-
tally responsible transportation systems? 
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When the cue ball hits the eight ball in billiards, the eight ball hits
the cue ball. When a rock hits the ground, the ground hits the
rock. In any collision, two objects exert forces on each other. You
can learn more about momentum by analyzing the motion of both
objects in a collision.

The game of billiards offers many excellent examples of 
collisions. 

Newton’s Third Law and Momentum
Newton’s third law states that “For every action force on object B
due to object A, there is a reaction force, equal in magnitude but
opposite in direction, acting on object A due to object B.” Unlike
Newton’s second law, which focusses on the motion of one specif-
ic object, his third law deals with the interaction between two
objects. When you apply Newton’s third law to collisions, you 
discover one of the most important laws of physics — the law of
conservation of momentum. The following steps, along with the
diagram in Figure 4.5, show you how to derive the law of conser-
vation of momentum by applying Newton’s third law to a collision
between two objects. 

⇀vA

⇀vA

⇀
FB∆t

⇀
FA∆t⇀v ′B

⇀v ′A
mA

mA

mA

mB

mB

mB

Figure 4.4

Conservation of Momentum4.2
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• Define and describe the 
concepts related to elastic
and inelastic collisions and
to open and closed energy
systems.

• Analyze situations involving
the conservation of momen-
tum and apply them 
quantitatively.

• Investigate the law of con-
servation of momentum in
one and two dimensions.

• conservation of momentum

• system of particles

• internal force

• external force

• open system

• closed system

• isolated system

• recoil

 T E R M S
K E Y

E X P E C T A T I O N S
S E C T I O N

Object A
exerts a force on object B,
causing a change in B’s
momentum. At the same
time, object B exerts a
force equal in size and
opposite in direction on
object A, changing A’s
momentum.

Figure 4.5



The last equation is a mathematical expression of the law of
conservation of momentum, which states that the total momentum
of two objects before a collision is the same as the total momen-
tum of the same two objects after they collide. 

Quantity Symbol SI unit

mass of object A mA kg (kilograms)

mass of object B mB kg (kilograms)

velocity of object A 
before the collision ⇀vA

m
s

(metres per second)

velocity of object B 
before the collision ⇀vB

m
s

(metres per second)

velocity of object A 
after the collision ⇀v ′A

m
s

(metres per second)

velocity of object B 
after the collision ⇀v ′B

m
s

(metres per second)

mA
⇀vA + mB

⇀vB = mA
⇀v ′A + mB

⇀v ′B

LAW OF CONSERVATION OF MOMENTUM
The sum of the momenta of two objects before collision is
equal to the sum of their momenta after they collide.

⇀FA∆t = mA
⇀vA2 − mA

⇀vA1

⇀FB∆t = mB
⇀vB2 − mB

⇀vB1

⇀FA = −⇀FB

⇀FA∆t = −⇀FB∆t

� Write the impulse-momentum 
theorem for each of two objects, A
and B, that collide with each other.

� Apply Newton’s third law to the
forces that A and B exert on each
other.

� The duration of the collision is the
same for both objects. Therefore, 
you can multiply both sides of the
equation above by ∆t.

� Substitute the expressions for
change in momentum in the first
step into the equation in the third
step and then simplify.

� Algebraically rearrange the last
equation so that (1) the terms rep-
resenting the before-collision con-
ditions precede the equals sign and
(2) the terms for the after-collision
conditions follow the equals sign.

Chapter 4  Momentum and Impulse • MHR 149

When working with collisions,
instead of using subscripts such
as “2,” physicists often use 
a superscript symbol called a
“prime,” which looks like an
apostrophe, to represent the 
variables after a collision. The
variable is said to be “primed.”
Look for this notation in the box
on the left.

PHYSICS FILE

mA
⇀vA2 − mA

⇀vA1 = −mB
⇀vB2 + mB

⇀vB1

mA
⇀vA1 + mB

⇀vB1 = mA
⇀vA2 + mB

⇀vB2

mA
⇀vA2 − mA

⇀vA1 = −(mB
⇀vB2 − mB

⇀vB1)



The law of conservation of momentum can be broadened to
more than two objects by defining a system of particles. Any
group of objects can be defined as a system of particles. Once a
system is defined, forces are classified as internal or external
forces. An internal force is any force exerted on any object in the
system due to another object in the system. An external force is
any force exerted by an object that is not part of the system on an
object within the system.

Scientists classify systems according to their interaction with
their surroundings, as illustrated in Figure 4.6. An open system
can exchange both matter and energy with its surroundings.
Matter does not enter or leave a closed system, but energy can
enter or leave. Neither matter nor energy can enter or leave an 
isolated system.

An open pot of potatoes boiling on the stove represents an
open system, because heat is entering the pot and water vapour is leaving
the system. A pressure cooker prevents any matter from escaping but heat
is entering, so the pressure cooker represents a closed system. If the pot is
placed inside a perfect insulator, neither heat nor water can enter or leave
the system, making it an isolated system.

A force can do work on a closed system, thus increasing the
energy of the system. Clearly, if no external forces can act on a 
system, it is isolated. To demonstrate that the momentum of an
isolated system is conserved, start with the impulse-momentum
theorem, where ⇀psys represents the total momentum of all of the
objects within the system.

⇀Fext∆t = ∆⇀psys

(0.0 N) ∆t = |∆⇀psys|

|∆⇀psys| = 0.0 kg · m
s

� An impulse on a system due to an
external force causes a change in the
momentum of the system.

� If a system is isolated, the net 
external force acting on the system
is zero.

� If the impulse is zero, the change in
momentum must be zero.

Figure 4.6

open system closed system isolated system
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A Closed System Is Not Isolated
Many people confuse the terms
“closed” and “isolated” as they
apply to systems. Although it
might sound as though closed
systems would not exchange
anything with their surroundings,
they do allow energy to enter or
leave. Only isolated systems 
prevent the exchange of energy
with the surroundings.

MISCONCEPTION

Momentum
A moving planet, bowling ball, or
an electron share the property 
of momentum. Learn more about
momentum conservation as it
relates to your Course Challenge
on page 603 of this text.

COURSE CHALLENGE



The last expression is an alternative form of the equation for the
conservation of momentum. The equation states that the change in
momentum of an isolated system is zero. The particles or objects
within the system might interact with each other and exchange
momentum, but the total momentum of the isolated system does
not change.

In reality, systems are rarely perfectly isolated. In nearly all real
situations, immediately after a collision, frictional forces and inter-
actions with other objects change the momentum of the objects
involved in the collision. Therefore, it might appear that the law
of conservation of momentum is not very useful. However, the law
always applies to a system from the instant before to the instant
after a collision. If you know the conditions just before a collision,
you can always use conservation of momentum to determine the
momentum and, thus, velocity of an object at the instant after a
collision. Often, these values are all that you need to know.

Collisions in One Dimension
Since momentum is a vector quantity, both the magnitude and the
direction of the momentum must be conserved. Therefore, momen-
tum is conserved in each dimension, independently. For complex
situations, it is often convenient to separate the momentum into
its components and work with each dimension separately. Then
you can combine the results and find the resultant momentum of
the objects in question. Solving problems that involve only one
dimension is good practice for tackling more complex problems.
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A moving car and 
its occupants can be defined as
being a system. The children in
the car might be exerting forces
on each other or on objects that
they are handling. Although they
are exchanging momentum
between themselves and the
objects, these changes have no 
effect on the total momentum 
of the system.

Figure 4.7

Analyzing a Collision between Boxcars
A 1.75 × 104 kg boxcar is rolling down 
a track toward a stationary boxcar that
has a mass of 2.00 × 104 kg. Just before
the collision, the first boxcar is moving
east at 5.45 m/s. When the boxcars 
collide, they lock together and continue
down the track. What is the velocity of
the two boxcars immediately after the 
collision?

A B

A B

A B

⇀v = 5.45 m
s

⇀v = 0

SAMPLE PROBLEM 

continued



Conceptualize the Problem
� Make a sketch of the momentum vectors

representing conditions just before and just
after the collision.

� Before the collision, only one boxcar (A) is
moving and therefore has momentum.

� At the instant of the collision, momentum 
is conserved.

� After the collision, the two boxcars (A and B) 
move as one mass, with the same velocity.

Identify the Goal
The velocity, ⇀v ′AB, of the combined boxcars immediately after the collision

Identify the Variables and Constants
Known Implied Unknown
mA = 1.75 × 104 kg
mB = 2.00 × 104 kg
⇀vA = 5.45 m

s
[E]

⇀vB = 0.00 m
s

⇀v ′AB

Develop a Strategy

The locked boxcars were rolling east down the track at 2.54 m/s.

Validate the Solution
The combined mass of the boxcars was nearly double the mass of the boxcar
that was moving before the collision. Since the exponents of mass and velocity
are always one, making the relationships linear, you would expect that the
velocity of the combined boxcars would be just under half of the velocity of the
single boxcar before the collision. Half of 5.45 m/s is approximately 2.7 m/s.
The calculated value of 2.54 m/s is very close to what you would expect.

⇀v ′AB =
(1.75 × 104 kg)(5.45 m

s [E]) + (2.00 × 104 kg)(0.00 m
s )

(1.75 × 104 kg + 2.00 × 104 kg)

⇀v ′AB =
9.53 75 × 104 kg · m

s [E]
3.75 × 104 kg

⇀v ′AB = 2.543 m
s

[E]

⇀v ′AB ≅ 2.54 m
s

[E]

Substitute values and solve.

⇀v ′AB = mA
⇀vA + mB

⇀vB
(mA + mB)

Solve for ⇀v ′AB.

mA
⇀vA + mB

⇀vB = (mA + mB)⇀v ′ABAfter the collision, the two masses
act as one, with one velocity. Rewrite
the equation to show this condition.

mA
⇀vA + mB

⇀vB = mA
⇀v ′A + mB

⇀v ′BApply the law of conservation of
momentum.

mB = 2.00 × 104 kgmA = 1.75 × 104 kg

⇀v ′AB = ?

before after

⇀vA = 5.45 m
s

⇀vB = 0.00 m
s
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8. Claude and Heather are practising pairs 
skating for a competition. Heather (47 kg) is
skating with a velocity of 2.2 m/s. Claude 
(72 kg) is directly behind her, skating with a
velocity of 3.1 m/s. When he reaches her, he
holds her waist and they skate together. At
the instant after he takes hold of her waist,
what is their velocity?

9. Two amusement park “wrecker cars” are
heading directly toward each other. The com-
bined mass of car A plus driver is 375 kg and
it is moving with a velocity of +1.8 m/s. The
combined mass of car B plus driver is 422 kg
and it is moving with a velocity of −1.4 m/s.
When they collide, they attach and continue
moving along the same straight line. What is
their velocity immediately after they collide?

PRACTICE PROBLEMS
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Recoil
Imagine yourself in the situation illustrated in Figure 4.8. You are
in a small canoe with a friend and you decide to change places.
Assume that the friction between the canoe and the water is 
negligible. While the canoe is not moving in the water, you very
carefully stand up and start to take a step. You suddenly have the
sense that the boat is moving under your feet. Why?

If you start to step forward in a canoe, the canoe recoils under
your feet.

When you stepped forward, your foot pushed against the 
bottom of the canoe and you started to move. You gained momen-
tum due to your velocity. Momentum of the system — you, your
friend, and the canoe — must be conserved, so the canoe started to
move in the opposite direction. The interaction that occurs when
two stationary objects push against each other and then move
apart is called recoil. You can use the equation for conservation 
of momentum to solve recoil problems, as the following problem
illustrates.

Figure 4.8



Recoil of a Canoe
For the case described in the text, find the velocity of the canoe
and your friend at the instant that you start to take a step, if your
velocity is 0.75 m/s[forward]. Assume that your mass is 65 kg
and the combined mass of the canoe and your friend is 115 kg. 

Conceptualize the Problem
� Make a simple sketch of the conditions before and after you took a step.

� The canoe was not moving when you started to take a step. 

� You gained momentum when you started to move. Label yourself “A”
and consider the direction of your motion to be positive.

� The canoe had to move in a negative direction in order to conserve
momentum. Label the canoe and your friend “B.”

Identify the Goal
The initial velocity, ⇀v ′B of the canoe and your friend

Identify the Variables and Constants
Known Implied Unknown
mA = 65 kg

mB = 115 kg

⇀v ′A = 0.75 m
s

⇀vA = 0.00 m
s

⇀vB = 0.00 m
s

⇀v ′B

Develop a Strategy

The velocity of the canoe and your friend, immediately after you started
moving, was –0.42 m/s.

⇀v ′B = −
(65 kg)(0.75 m

s )
115 kg

⇀v ′B = −0.4239 m
s

⇀v ′B ≅ −0.42 m
s

Substitute values and solve.

0.0 kg · m
s

= mA
⇀v ′A + mB

⇀v ′B

mA
⇀v ′A = −mB

⇀v ′B
⇀v ′B = − mA

⇀v ′A
mB

Velocities before the interaction were zero;
therefore, the total momentum before the
interaction was zero. Set these values
equal to zero and solve for the velocity 
of B after the reaction.

mA
⇀vA + mB

⇀vB = mA
⇀v ′A + mB

⇀v ′BApply conservation of momentum.

mB = 115 kg mA = 65 kg

⇀v ′B = ?

before after

⇀vB = 0.00 m
s

⇀vA = 0.00 m
s

mB = 115 kg mA = 65 kg

⇀v ′A = 0.75 m
s

SAMPLE PROBLEM 
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Validate the Solution
Since the mass of the canoe plus your friend was larger than your mass,
you would expect that the magnitude of their velocity would be smaller,
which it was. Also, the direction of the velocity of the canoe plus your
friend must be negative, that is, in a direction opposite to your direction.
Again, it was.

PRACTICE PROBLEMS
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Collisions in Two Dimensions
Very few collisions are confined to one dimen-
sion, as anyone who has played billiards knows.
Nevertheless, you can work in one dimension at 
a time, because momentum is conserved in each
dimension independently. For example, consider
the car crash illustrated in Figure 4.9. Car A is
heading north and car B is heading east when 
they collide at the intersection. The cars lock
together and move off at an angle. You can find 
the total momentum of the entangled cars because
the component of the momentum to the north
must be the same as car A’s original momentum.
The eastward component of the momentum must
be the same as car B’s original momentum. You
can use the Pythagorean theorem to find the
resultant momentum, as shown in the following
problems. Momentum is conserved independently

in both the north-south dimension and the east-west
dimension.

Figure 4.9

y

x
mB

mB

mA

mA

⇀vA

⇀vAB

B
⇀v θ

10. A 1385 kg cannon containing a 58.5 kg 
cannon ball is on wheels. The cannon fires
the cannon ball, giving it a velocity of 
49.8 m/s north. What is the initial velocity 
of the cannon the instant after it fires the
cannon ball? 

11. While you are wearing in-line skates, you are
standing still and holding a 1.7 kg rock.
Assume that your mass is 57 kg. If you throw
the rock directly west with a velocity of 
3.8 m/s, what will be your recoil velocity?

12. The mass of a uranium-238 atom is
3.95 × 10−25 kg. A stationary uranium atom
emits an alpha particle with a mass of
6.64 × 10−27 kg. If the alpha particle has a
velocity of 1.42 × 104 m/s, what is the recoil
velocity of the uranium atom?

mA mB
B

⇀v⇀vA



Applying Conservation of Momentum in Two Dimensions
1. A billiard ball of mass 0.155 kg is rolling directly 

away from you at 3.5 m/s. It collides with a stationary
golf ball of mass 0.052 kg. The billiard ball rolls off 
at an angle of 15˚ clockwise from its original direction
with a velocity of 3.1 m/s. What is the velocity of the 
golf ball?

Conceptualize the Problem
� Sketch the vectors representing the momentum of the

billiard ball and the golf ball immediately before and
just after the collision. It is always helpful to superim-
pose an x–y-coordinate system on the vectors so that
the origin is at the point of the contact of the two balls.
For calculations, use the angles that the vectors make
with the x-axis.

� Momentum is conserved in the x and y directions 
independently.

� The total momentum of the system (billiard ball and
golf ball) before the collision is carried by the billiard
ball and is all in the positive y direction.

� After the collision, both balls have momentum in both
the y direction and the x direction.

� Since the momentum in the x direction was zero before
the collision, it must be zero after the collision.
Therefore, the x-components of the momentum of 
the two balls after the collision must be equal in 
magnitude and opposite in direction.

� The sum of the y-components of the two balls after the
collision must equal the momentum of the billiard ball
before the collision.

� Use subscript “b” for the billiard ball and subscript “g”
for the golf ball.

Identify the Goal
The velocity, ⇀v ′g , of the golf ball after the collision

Identify the Variables and Constants
Known Implied Unknown

mb = 0.155 kg

mg = 0.052 kg

⇀vb = 3.5 m
s

[forward] ⇀vg = 0.00 m
s

⇀v ′g
⇀v ′b = 3.1 m

s
[15˚ clockwise from original]

15˚

⇀v ′b = 3.1

x

y

m
s

3.5 m
s

⇀vb =

SAMPLE PROBLEMS

15˚

75˚

⇀v ′b = 3.1 m
s

3.5 m
s

⇀vb =

mb = 0.155 kg

mg = 0.052 kg

⇀v ′g = ?

θ

When you are working with many
bits of data in one problem, it is
often helpful to organize the 
data in a table such as the one
shown here.

PROBLEM TIP

Object

before

after

A

B

total

A

B

total

Px Py
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Develop a Strategy

tan θ = vgy

vgx

tan θ =
1.507 m

s
2.3916 m

s

θ = tan−1 0.6301
θ = 32.22˚
θ ≅ 32˚

Use the tangent function to find the
direction of the velocity vector.

Since the x-component is negative 
and the y-component is positive, the
vector is in the second quadrant. Use
positive values to find the magnitude
of the angle from the x-axis. 

Since the x-component is negative and
the y-component is positive, the
resultant vector lies in the second
quadrant and the angle is measured
clockwise from the x-axis.

|⇀v ′g|2 = v ′gx
2 + v ′gy

2

|⇀v ′g|2 =
(

−2.3916 m
s

)2
+

(
1.507 m

s

)2

|⇀v ′g|2 = 5.7198 m2

s2 + 2.271 m2

s2

|⇀v ′g|2 = 7.9908 m2

s2

|⇀v ′g| = 2.8268 m
s

|⇀v ′g| ≅ 2.8 m
s

Use the Pythagorean theorem to find
the magnitude of the resultant velocity
vector of the golf ball.

mbvby + mgvgy = mbv ′by + mgv ′gy

mbvby + 0.0 kg · m
s = mbv ′by + mgv ′gy

mgv ′gy = mbv ′by − mbvby

v ′gy = mbvby − mbv ′by

mg

v ′gy =
(0.155 kg)(3.5 m

s ) − (0.155 kg)(3.1 m
s sin 75˚)

0.052 kg

v ′gy = 1.507 m
s

Carry out the same procedure for the
y-components.

v ′gx = −
(0.155 kg)(3.1 m

s cos 75˚)
0.052 kg

v ′gx = −2.3916 m
s

Substitute values and solve. 

0.0 kg · m
s

= mbv ′bx + mgv ′gx

mgv ′gx = −mbv ′bx

v ′gx = − mbv ′bx
mg

Note that the x-component of the
momentum of both balls was zero
before the collision. Then solve for the
x-component of the velocity of the golf
ball after the collision.

mbvbx + mgvgx = mbv ′bx + mgv ′gx

Write the expression for the conserva-
tion of momentum in the x direction.
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15˚

32˚

⇀v ′b = 3.1 m
s

3.5 m
s

⇀vb =

⇀v ′g ≅ 2.8 m
s

v ′gx = −2.3916 m
s

v ′gy = 1.507 m
s

y

x

continued



The velocity of the golf ball after the collision is 2.8 m/s at 32˚
clockwise from the negative x-axis. (At more advanced levels, 
you will be expected to report angles counterclockwise from the
positive x-axis. In this case, the angle would be 180˚ − 32˚ = 148˚
counterclockwise from the x-axis.)

Validate the Solution
Since all of the momentum before the collision was in the positive y
direction, the y-component of momentum after the collision had to be in
the positive y direction, which it was. Since there was no momentum in
the x direction before the collision, the x-components of the momentum
after the collision had to be in opposite directions, which they were.

2. The police are investigating an accident similar to the one pictured in
Figure 4.9. Using data tables, they have determined that the mass 
of car A is 2275 kg and the mass of car B is 1525 kg. From the skid
marks and data for the friction between tires and concrete, the police
determined that the cars, when they were locked together, had a veloc-
ity of 31 km/h at an angle of 43˚ north of the eastbound street. If the
speed limit was 35 km/h on both streets, should one or both cars be
ticketed for speeding? Which car had the right of way at the intersec-
tion? Was one driver or were both drivers at fault for the accident?

Conceptualize the Problem
� Sketch a vector diagram of the momentum before and

after the collision.

� Consider the two cars to be a “system.” Before the 
collision, the north component of the momentum of the
system was carried by car A and the east component
was carried by car B.

� Momentum is conserved in the north-south direction
and in the east-west direction independently.

� After the collision, the cars form one mass with all of
the momentum.

Identify the Goal
The velocities, ⇀vA and ⇀vB, of the two cars before the 
collision (in order to determine who should be ticketed)

Identify the Variables and Constants
Known Unknown
mA = 2275 kg
mB = 1525 kg

⇀v ′AB = 31 km
h

[E43˚N] ⇀vA
⇀vB

43˚

⇀v B = ?
mB = 1525 kg

⇀v A = ?

v y
⇀v || A=

v x
⇀v || B=

mA = 2275 kg

v⇀′

′

′

AB = 31 km
h

[E 43˚ N]

In this problem, you have two
unknown values, the velocity of car
A and the velocity of car B before
the collision. To find two unknown
values, you need at least two
equations. Since momentum is a
vector quantity, conservation of
momentum provides three equa-
tions, one for each dimension.
Remember, use as many dimen-
sions as you have unknowns and
you will be able to solve momen-
tum problems with as many as
three unknowns.

PROBLEM TIP

continued from previous page
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Develop a Strategy

Car A was travelling 35 km/h north and car B was travelling 56 km/h
east at the instant before the crash. Therefore, car B was speeding and
the driver should be ticketed. As well, the driver on the right has the
right of way, giving car A the right of way at the intersection. The driver
of car B was at fault for the collision. Nevertheless, the driver of car A
would have benefited if he or she could have prevented the crash.

Validate the Solution
The angle at which the locked cars moved after the crash was very
close to 45˚, which means that the momentum of the two cars before
the crash was nearly the same. Car B had a smaller mass than car A, so
car B must have moving at a greater speed (magnitude of the velocity),
which agrees with the results. Also, the units all cancelled to give
km/h, which is correct for velocity.

mBvB[E] = (mA + mB)v ′AB[E]

vB[E] = (mA + mB)v ′AB[E]
mB

vB[E] =
(2275 kg + 1525 kg)(31 km

h cos 43˚)
1525 kg

vB[E] = 56.49 km
h

⇀vB ≅ 56 km
h

[E]

Carry out the same procedure for the 
east-west direction of the momentum.

vA[N] =
(2275 kg + 1525 kg)(31 km

h sin 43˚)
2275 kg

vA[N] =
(3800 kg)(31 km

h )(0.681 998 4)
2275 kg

vA[N] = 35.3 km
h

⇀vA ≅ 35 km
h

[N]

(Note that the north component of car A’s velocity
before the crash was the total velocity.)

Substitute the values and solve. 

vA[N] = (mA + mB)v′AB[N]
mA

Solve the equation for the original velocity
of car A.

mAvA[N] = (mA + mB)v ′A/B[N]
(Note that vector notations are not included,
because you are considering only the north-south
component of the velocities.)

Work with the north-south direction only.
Modify the equation to show that car B
was moving directly east before the crash;
its north-south momentum was zero. After
the crash, the cars were combined.

mA
⇀vA + mB

⇀vB = mA
⇀v ′A + mB

⇀v ′B
Write the equation for conservation of
momentum.
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13. A 0.150 kg billiard ball (A) is rolling toward
a stationary billiard ball (B) at 10.0 m/s. After
the collision, ball A rolls off at 7.7 m/s at an
angle of 40.0˚ clockwise from its original
direction. What is the speed and direction 
of ball B after the collision?

14. A bowling ball with a mass of 6.00 kg rolls
with a velocity of 1.20 m/s toward a single
standing bowling pin that has a mass of
0.220 kg. When the ball strikes the bowling
pin, the pin flies off at an angle of 70.0˚

counterclockwise from the original direction
of the ball, with a velocity of 3.60 m/s. What
was the velocity of the bowling ball after it
hit the pin?

15. Car A (1750 kg) is travelling due south and
car B (1450 kg) is travelling due east. They
reach the same intersection at the same time
and collide. The cars lock together and move
off at 35.8 km/h[E31.6˚S]. What was the
velocity of each car before they collided?

PRACTICE PROBLEMS

Angular Momentum
Why is a bicycle easy to balance when you are riding, but falls
over when you come to a stop? Why does a toy gyroscope, like the
one in Figure 4.10, balance on a pointed pedestal when it is spin-
ning, but falls off the pedestal when it stops spinning? The answer
lies in the conservation of angular momentum.

When an object is moving on a curved path or rotating, it has
angular momentum. Angular momentum and linear (or transla-
tional) momentum are similar in that they are both dependent on
an object’s mass and velocity. Analyze Figure 4.11 to find the third
quantity that affects angular momentum. 

www.mcgrawhill.ca/links/
physics12

For information on current accident-
investigation research topics and
technological developments related to
vehicle safety, go to the above Internet
site and click on Web Links.

WEB LINK

continued from previous page

When a
spinning object begins 
to fall, its angular
momentum resists the
direction of the fall.

Figure 4.10

As the 
distance from the centre
of rotation increases, 
a unit of mass must
move faster in order 
to maintain a constant
rate of rotation.

Figure 4.11



The Physics of a Car Crash
Skid marks, broken glass, mangled pieces of 
metal — these telltale signs of an automobile crash
are stark reminders of the dangers of road travel.
For accident investigators, sometimes referred to
as “crash analysts” or “reconstructionists,” these
remnants of a collision can also provide valuable
clues that will help in under-standing the cause and
the nature of an accident.

The reasons for studying a car crash can vary,
depending on who is conducting the investigation.
Police officers might be interested in determining
how fast a vehicle was being driven prior to a 
collision in order to know whether to lay criminal
charges. Insurance companies might require proof
that the occupants of a car were wearing seat belts
to make decisions on insurance claims. 

Government agencies, meanwhile, conduct
large-scale research projects (based on both real-
world accidents and staged collisions) that guide in
the establishment of safety standards and regula-
tions for the manufacture of automobiles.

Regardless of the purpose, however, most car
crash investigations share some common ele-
ments. First, they typically draw on the same 
fundamental concepts and principles of physics
that you are learning in this chapter — especially
those related to energy and momentum. As well,
these investigations often incorporate an array of
technological resources to help with both the data-
collection and data-analysis phases of the process.
Investigators make use of a variety of data-collec-
tion tools, ranging from everyday hardware, such
as a measuring tape and a camera, to more
sophisticated instruments, such as brake-activated
chalk guns and laser-operated surveyors’ transits.

Customized computer programs, designed with
algorithms based on Newtonian mechanics, are
used to analyze data collected from the scene 

of the accident. 
The length and 
direction of skid 
marks, “crush” 
measurements 
and stiffness 
coefficients associated with the damaged vehicles, 
coefficients of friction specific to the tires and road
surface — known or estimated values of these 
and other relevant parameters are fed into the
computer programs. The programs then generate
estimates of important variables, such as the 
speed at the time of impact or the change in speed
over the duration of a collision. Quantitative and
qualitative data obtained from car accidents is also
often coded and added to large computerized data-
bases that can be accessed for future investiga-
tions and for research purposes.

Recently, some automobile manufacturers have
started installing event data recorders (EDRs) in the
vehicles they build. Like the cockpit data recorder
or “black box” commonly used in the aviation
industry, EDRs in road vehicles record valuable
data such as vehicle speed, engine revolutions 
per minute, brake-switch status, throttle position,
and seat-belt use. This information is processed by
a vehicle’s central computer system to monitor and
regulate the operation of such safety components
as air bags and antilock brakes. It also provides
accident investigators with an additional source of
data about the conditions that existed immediately
before and during a collision. As a result, EDRs
promise to provide significant enhancement to the
field of automobile accident investigation.

Analyze
1. Why is it important for car accident investiga-

tors to take into account the weather conditions
that existed at the time of a car crash? List
some specific weather conditions and predict
the effects that they might have on the calcula-
tions carried out as part of an investigation.

2. Explore the Internet to learn about current
research topics and technological develop-
ments related to vehicle safety. Prepare a 
one-page report on your research results.

PHYSICS & TECHNOLOGY
TARGET SKILLS

Predicting
Hypothesizing
Communicating results
Conducting research
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Picture the movement of a unit of mass in each of the two
wheels illustrated in Figure 4.11. If the two wheels are rotating 
at the same rate, each unit of mass in the large wheel is moving
faster than a unit of mass in the small wheel. Thus, r, the distance
of a mass from the centre of rotation, affects the angular momen-
tum. The magnitude of the angular momentum, L, of a particle that
is moving in a circle is equal to the product of its mass, velocity,
and distance from the centre of rotation, or L = mvr. You will not
pursue a quantitative study of angular momentum any further in
this course, but it is essential to be aware of the law of conserva-
tion of angular momentum in order to have a complete picture of
the important conservation laws of physics. Similar to conserva-
tion of linear momentum, the angular momentum of an isolated
system is conserved. 
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Although Kepler knew nothing
about angular momentum, his
second law, the law of areas, 
is an excellent example of the
conservation of angular momen-
tum. With somewhat complex
mathematics, it is possible to
write the law of conservation of
angular momentum for a planet 
in orbit and show that it is equiva-
lent to Kepler’s second law.

PHYSICS FILE

4.2 Section Review

1. Explain qualitatively how Newton’s third
law is related to the law of conservation of
momentum.

2. What is the difference between an inter-
nal force and an external force?

3. How does a closed system differ from
an isolated system?

4. Under what circumstances is the change
in momentum of a system equal to zero?

5. Define and give an example of recoil. 

6. The vectors in the following diagrams 
represent the momentum of objects before
and after a collision. Which of the diagrams
(there might be more than one) does not
represent real collisions? Explain your 
reasoning.

7. Some collision problems have two
unknown variables, such as the velocities of
two cars before a collision. Explain how it is
possible to find two unknowns by using only
the law of conservation of momentum.

8. Two cars of identical mass are approach-
ing the same intersection, one from the south
and one from the west. They reach the inter-
section at the same time and collide. The
cars lock together and move away at an angle
of 22˚ counterclockwise from the road, head-
ing east. Which car was travelling faster than
the other before the collision? Explain your
reasoning.

MC

C

⇀pB
⇀pA

⇀p ′A

⇀p ′B

⇀pB
⇀pA

⇀p ′A
⇀p ′B

⇀pB
⇀pA

⇀p ′A

⇀p ′B

⇀pB

⇀pA

⇀p ′A

⇀p ′B

I

K/U

K/U

K/U

K/U

C



Momentum is conserved in the two collisions pictured in Figure
4.12, but the two cases are quite different. When the metal spheres
in the Newton’s cradle collided, both momentum and kinetic 
energy were conserved. When the cars in the photograph crashed,
kinetic energy was not conserved. This feature divides all colli-
sions into two classes. Collisions in which kinetic energy is 
conserved are said to be elastic. When kinetic energy is not
conserved, the collisions are inelastic.

How do the collisions 
pictured here differ 
from each other?

Analyzing Collisions
You can determine whether a collision is elastic or inelastic by
calculating both the momentum and the kinetic energy before and
after the collision. Since momentum is always conserved at the
instant of the collision, you can use the law of conservation of
momentum to find unknown values for velocity. Then, use the
known and calculated values for velocity to calculate the total
kinetic energy before and after the collision. You will probably
recall that the equation for kinetic energy is E = 1

2 mv 2.

Figure 4.12

Elastic and 
Inelastic Collisions4.3

• Distinguish between elastic and
inelastic collisions.

• Define and describe the 
concepts related to momentum,
energy, and elastic and 
inelastic collisions.

• Investigate the laws of conser-
vation of momentum and of
energy in one and two 
dimensions.

• elastic

• inelastic

 T E R M S
K E Y

E X P E C T A T I O N S
S E C T I O N
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I N V E S T I G A T I O N  4-B

Examining Collisions

TARGET SKILLS

Predicting
Performing and recording
Analyzing and interpreting

You have learned the definition of elastic and
inelastic collisions, but are there characteristics
that allow you to predict whether a collision
will be elastic? In this investigation, you will
observe and analyze several collisions and draw
conclusions regarding whether a type of colli-
sion will be elastic or inelastic.

Problem
What are the characteristics of elastic and
inelastic collisions?

Equipment
� air track (with source of compressed air)
� 2 gliders (identical, either middle- or 

large-sized)
� 2 photogate timers
� laboratory balance
� 4 glider bumper springs
� 2 Velcro™ bumpers (or a needle and a piece 

of wax)
� 2 velocity flags (10 cm) (or file cards cut to a 

10 cm length)
� modelling clay

Procedure
1. Set up the air track and adjust the levelling

screw to ensure that the track is horizontal.
You can test whether the track is level by
turning on the air pressure and placing a
glider on the track. Hold the glider still and
then release it. If the track is level, the glider
will remain in place. If the glider gradually
starts moving, the air track is not level.

2. Attach a velocity flag (or 10 cm card) and
two bumper springs to each glider. If only
one bumper spring is attached, the glider
might not be properly balanced. 

3. Position the photogates about one fourth the
length of the track from each end, as shown
in the diagram. Adjust the height of the 
photogates so that the velocity flags will pass

through the gates smoothly but will trigger
the gates.

4. Label one glider “A” and the other glider
“B.” Use the laboratory balance to determine
accurately the mass of each glider.

5. With the air flowing, place glider A on the
left end of the air track and glider B in the
centre. 

6. Perform a test run by pushing glider A so
that it collides with glider B. Ensure that the
photogates are placed properly so that the
flags are not inside the gates when the gliders
are in contact. Adjust the positions of the
photogates, if necessary.

7. The first set of trials will be like the test run,
with glider A on the left end of the track and
glider B in the centre. Turn on the photogates
and press the reset button. Push glider A and
allow it to collide with glider B. Allow both
gliders to pass through a photogate after the
collision, then catch them before they
bounce back and pass through a photogate
again. Record the data in a table similar to
the one shown on the next page. Since all of
the motion will be in one dimension, only
positive and negative signs will be needed to
indicate direction. Vector notations will not
be necessary.
The displacement, ∆d, is the distance that
the gliders travelled while passing through
the photogates. This displacement is the
length of the flag. Time ∆ti is the time that 
a glider spent in the photogate before the 

photogate
timers

air pump
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collision, while ∆tf is the time the glider 
took to pass through the photogate after the
collision. Calculate velocity, v, from the dis-
placement and the time interval. Be sure to
include positive and negative signs.

8. Increase the mass of glider B by attaching
some modelling clay to it. Be sure that the
clay is evenly distributed along the glider. 
If the glider tips to the side or to the front 
or back, the motion will not be smooth.
Determine the mass of glider B. Repeat step 7
for the two gliders, which are now of
unequal mass.

9. Exchange the gliders and their labels. That is,
the glider with the extra mass is on the left
and becomes glider “A.” The glider with no
extra mass should be in the centre and
labelled “B.” Repeat step 7 for the new
arrangement of gliders.

10. Remove the clay from the glider. Place one
glider at each end of the track. Practise start-
ing both gliders at the same time, so that 
they collide near the middle of the track. 
The collision must not take place while
either glider is in a photogate. When you
have demonstrated that you can carry out 

the collision correctly, perform three trials
and record the data in a table similar to the
ones shown here. This table will need two
additional columns — one for the initial time
for glider B and a second for the initial 
velocity of glider B.

11. Remove the bumper springs from one end of
each glider and attach the Velcro™ bumpers.
(If you do not have Velcro™ bumpers, you
can attach a large needle to one glider and a
piece of wax to the other. Test to ensure that
the needle will hit the wax when the gliders
collide.) 

12. With the Velcro™ bumpers attached, perform
three sets of trials similar to those in steps 7,
8, and 9. You might need to perform trial
runs and adjust the position of the photo-
gates so that both gliders can pass through
the photogate before reaching the right-hand
end of the air track. Record the data in tables
similar to those you used previously.

Analyze and Conclude
1. For each glider in each trial, calculate the

initial momentum (before the collision) and
the final momentum (after the collision).

2. For each trial, calculate the total momentum
of both gliders before the collision and the
total momentum of both after the collision.

3. For each trial, compare the momentum
before and after the collision. Describe how
well the collisions demonstrated conserva-
tion of momentum. 

4. In any case for which momentum did not
seem to be conserved, provide possible
explanations for errors.

5. Calculate the kinetic energy of each glider in
each trial. Then calculate the total kinetic
energy of both gliders before and after the
collision for each trial. 

Glider A (mass = ?)

Trial ∆ti ∆tf

1

2

3

Glider B (mass = ?)

Trial ∆tf

1

2

3

∆⇀d

∆⇀d ⇀v i

⇀v f

⇀v f
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6. Compare the kinetic energies before and after
the collisions and decide which collisions
were elastic and which were inelastic. Due 
to measurement errors, do not expect the
kinetic energies to be identical before and
after a collision. Decide if the values appear
to be close enough that the differences could
be attributed to measurement errors.

7. Examine the nature of the collisions that you
considered to be elastic and those that you
classed as inelastic. Look for a trend that
would permit you to predict whether a colli-
sion would be elastic or inelastic. Discuss
your conclusions with the rest of class. How
well did your conclusions agree with those
of other class members? 

Apply and Extend
8. If you have access to an air table, a strobe

light, and a Polaroid™ camera, you can
observe and collect data for collisions in two
dimensions. (If you do not have the equip-
ment, your teacher might be able to provide
you with simulated photographs.) Using the
laboratory balance, determine the mass of
each of two pucks. If the pucks have nearly
the same mass, add some mass to one of
them, using modelling clay.

People with certain medical conditions,
such as epilepsy, can experience seizures if
exposed to strobe lighting.

9. With the air pressure on, place a puck in the
centre of the table. Direct the strobe light
onto the table and set up the camera so that
it is above the table and pointing down. Turn
on the strobe light and set the camera for a
long exposure time. At the moment that one
partner pushes the other puck toward the 
stationary puck in the centre of the table, the
other partner should take a picture. Take
enough photographs to provide each pair of
partners with a photograph.

10. Determine the scale of the photograph by
determining the ratio of the size of the air
table to its apparent size in the photograph.
Measure two or three distances before and
after the collision. Correct the distances by
using the scale that you determined. Measure
the angles that the pucks took after the colli-
sion in relation to the original direction. 

11. Using the rate at which the strobe light was
flashing, determine the time between flashes.
Calculate the velocity, momentum, and 
kinetic energy of each puck before and after
the collision.

12. Compare the total momentum before and
after the collision and comment on how well
the motion seemed to obey the law of conser-
vation of momentum.

13. Compare the total kinetic energies before 
and after the collision. Decide whether the
collisions were elastic or nearly so.

14. Compare your results from your one-
dimensional data and two-dimensional data,
and comment on any differences that you
noticed. 

15. Review the results you obtained in
Investigation 4-A, Newton’s Cradle. Do you
think the collisions were elastic or inelastic?
Explain why. 

16. Support your answer to question 15 by per-
forming trial calculations. Assume that the
spheres in Newton’s cradle each has a mass
of 0.200 kg and that, when one sphere collid-
ed with the row, it was moving at 0.100 m/s.
Imagine that, when one sphere collided with
the row, two spheres bounced up from the
opposite end. Calculate the velocity that the
two spheres would have to have in order to
conserve momentum. Calculate the kinetic
energy before and after. Use these calculations
to explain why you did not observe certain
patterns in the motion of Newton’s cradle.

CAUTION
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Classifying a Collision
A 0.0520 kg golf ball is moving east with a velocity of 2.10 m/s when it
collides, head on, with a 0.155 kg billiard ball. If the golf ball rolls 
directly backward with a velocity of –1.04 m/s, was the collision elastic?

Conceptualize the Problem

Identify the Goal
Is the total kinetic energy of the system before the collision, Ekg, 
equal to the total kinetic of the system after the collision, E′kg + E′kb?

Identify the Variables and Constants
Known Implied Unknown

mg = 0.0520 kg

mb = 0.155 kg

vg = +2.10 m
s

v ′g = −1.04 m
s

vb = 0.0 m
s

v ′b
Ekg

E′kg

E′kb

Develop a Strategy

E′kg = 1
2 mgv′g2

E′kg = 1
2 (0.0520 kg)

(
−1.04 m

s

)2

E′kg = 0.028 12 J

E′kb = 1
2 mbv′b2

E′kb = 1
2 (0.155 kg)

(
1.0534 m

s

)2

E′kb = 0.086 00 J

E′kg + E′kb = 0.028 12 J + 0.085 99 J
E′kg + E′kb = 0.114 12 J

Calculate the sum of the kinetic energies of
the balls after the collision.

Ekg = 1
2 mgv2

g

Ekg = 1
2 (0.0520 kg)

(
2.10 m

s

)2

Ekg = 0.114 66 J

Calculate the kinetic energy of the golf ball
before the collision.

mgvg + mbvb = mgv′g + mbv′b
mgvg + 0.0 − mgv′g = mbv′b

v′b = mgvg − mgv′g
mb

v′b =
(0.0520 kg)(2.10 m

s ) − (0.0520 kg)(−1.04 m
s )

0.155 kg

v′b = 1.0534 m
s

Since momentum is always conserved, use
the law of conservation of momentum to 
find the velocity of the billiard ball after the
collision.

� Momentum is always conserved in a collision.

� If the collision is elastic, kinetic energy must
also be conserved. 

� The motion is in one dimension, so only 
positive and negative signs are necessary 
to indicate directions.

SAMPLE PROBLEM 

continued



The kinetic energies before and after the collision are the same to the third 
decimal place. Therefore, the collision was probably elastic.

Validate the Solution
Although the kinetic energies before and after the collision differ in the fourth
decimal place, the difference is less than 1%. Since the data contained only
three significant digits, this difference could easily be due to the precision of
the measurement. Therefore, it is fair to say that the collision was elastic.

16. A billiard ball of mass 0.155 kg moves with a
velocity of 12.5 m/s toward a stationary 
billiard ball of identical mass and strikes it
with a glancing blow. The first billiard ball
moves off at an angle of 29.7˚ clockwise 
from its original direction, with a velocity of
9.56 m/s. Determine whether the collision
was elastic.

17. Car A, with a mass of 1735 kg, was travelling
north at 45.5 km/h and Car B, with a mass of
2540 kg, was travelling west at 37.7 km/h
when they collided at an intersection. If the
cars stuck together after the collision, what
was their combined momentum? Was the
collision elastic or inelastic?

PRACTICE PROBLEMS

continued from previous page

Elastic Collisions
By now, you have probably concluded that when objects collide,
become deformed, and stick together, the collision is inelastic.
Physicists say that such a collision is completely inelastic.
Conversely, when hard objects such as billiard balls collide,
bounce off each other, and return to their original shape, they 
have undergone elastic collisions. Very few collisions are perfectly
elastic, but in many cases, the loss of kinetic energy is so small
that it can be neglected. 

Since both kinetic energy and momentum are conserved in per-
fectly elastic collisions, as many as four independent equations
can be used to solve problems. Since you have two equations, you
can solve for up to four unknown quantities. When combining
these equations, however, the math becomes quite complex for all
cases except head-on collisions, for which all motion is in one
dimension. 

An analysis of head-on collisions yields some very informative
results, however. For example, if you know the velocities of the
two masses before a collision, you can determine what the veloci-
ties will be after the collision. The following derivation applies to
a mass, m1, that is rolling toward a stationary mass, m2. Follow the
steps to find the velocities of the two objects after the collision in
terms of their masses and the velocity of the first mass before the
collision. Since the motion in head-on collisions is in one dimen-
sion, vector notations will not be used.
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In science, the word “elastic” does
not mean “easily stretched.” In fact, 
it can mean exactly the opposite. For
example, glass is very elastic, up to its
breaking point. Also, “elastic” is the
opposite of “plastic.” Find the correct
meanings of the words “elastic” 
and “plastic” and then explain why
“elastic” is an appropriate term to
apply to collisions in which kinetic
energy is conserved.

LANGUAGE LINK
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m1v1 − m1v′1 = m2v′2
m1v1 − m1(v′2 − v1) = m2v′2
m1v1 − m1v′2 + m1v1 = m2v′2
2m1v1 = m1v′2 + m2v′2
2m1v1 = (m1 + m2)v′2

v′2 =
(

2m1
m1 + m2

)
v1

The two equations derived above allow you to find the veloci-
ties of two masses after a head-on collision in which a moving
mass collides with a stationary mass. Without doing any calcula-
tions, however, you can draw some general conclusions. First,
consider the case in which the two masses are identical.

m1v1 − m1v′1 = m2v′2
m1v1 − m1v′1 = m2(v1 + v′1)
m1v1 − m1v′1 = m2v1 + m2v′1
m1v′1 + m2v′1 = m1v1 − m2v1

v′1(m1 + m2) = v1(m1 − m2)

v′1 =
(

m1 − m2
m1 + m2

)
v1

� Develop two separate equa-
tions by substituting the 
values for v′1 and v′2 above
into the equation for 
conservation of momentum,
m1v1 − m1v′1 = m2v′2. Expand
and rearrange the equations
and then solve for v′1 (left)
and v′2 (right). 

1
(v1 + v′1)

= 1
v′2

v′2 = v1 + v′1
v′1 = v′2 − v1

� Simplify. Solve the equation
for v′2 by inverting. Also,
solve the equation for v′1.

(v1 − v′1)
(v1 − v′1)(v1 + v′1)

= v′2
v′22

� Notice that the masses can-
cel. Expand the expression 
in the denominator on the
left. Notice that it is the 
difference of perfect squares.

m1(v1 − v′1)
m1(v2

1 − v′12)
= m2v′2

m2v′22
� Divide the first equation by

the second equation.

m1(v1 − v′1) = m2v′2
m1(v2

1 − v′12) = m2v′22

� Factor m1 out of the left-hand
side of both equations.

m1v1 − m1v′1 = m2v′2
m1v2

1 − m1v′12 = m2v′22

� Algebraically rearrange both
equations so that terms
describing mass 1 are on 
the left-hand side of the
equations and terms describ-
ing mass 2 are on the 
right-hand side.

m1v2
1 = m1v′12 + m2v′22

� Multiply by 2 both sides of
the equation for conservation
of kinetic energy.

m1v1 + 0 = m1v′1 + m2v′2
1
2 m1v2

1 + 0 = 1
2 m1v′12 + 1

2 m2v′22

� Write the equations for the
conservation of momentum
and kinetic energy for a 
perfectly elastic collision,
inserting zero for the velocity
of the second mass before 
the collision.



Case 1: m1 = m2

Since the masses are equal, call them both “m.” Substitute m into
the two equations for the velocities of the two masses after the 
collision. Then, mathematically simplify the equations.

Case 2: m1 >>> m2

Since mass 1 is much larger than mass 2, you can almost ignore
the mass of the second object in your calculations. You can there-
fore make the following approximations.

m1 − m2 ≅ m1 and m1 + m2 ≅ m1

Substitute these approximations into the two equations for the
velocities of the two masses after the collision. Then, mathemati-
cally simplify the equations.

Case 3: m1 <<< m2

Since mass 1 is much smaller than mass 2, you can ignore the
mass of the first object in your calculations. You can therefore
make the following approximations.

m1 − m2 ≅ −m2 and m1 + m2 ≅ m2 and m1 ≅ 0

Substitute these approximations into the two equations for the
velocities of the two masses after the collision. Then mathemati-
cally simplify the equations.

When one moving mass collides head on with a much larger stationary
mass, the first mass bounces backward with a velocity opposite in direction
and almost the same in magnitude as its original velocity. The motion of the
second mass is almost imperceptible.

v′2 =
(

2m1
m1 + m2

)
v1

v′2 ≅
(

0
m2

)
v1

v′2 ≅ 0

v′1 =
(

m1 − m2
m1 + m2

)
v1

v′1 ≅
(

−m2
m2

)
v1

v′1 ≅ −v1

v′2 =
(

2m1
m1 + m2

)
v1

v′2 ≅
(

2m1
m1

)
v1

v′2 ≅ 2v1

v′1 =
(

m1 − m2
m1 + m2

)
v1

v′1 ≅
(

m1
m1

)
v1

v′1 ≅ v1

v′2 =
(

2m1
m1 + m2

)
v1

v′2 =
( 2m

m + m

)
v1

v′2 =
( 2m

2m

)
v1

v′2 = v1

v′1 =
(

m1 − m2
m1 + m2

)
v1

v′1 =
( m − m

m + m

)
v1

v′1 =
( 0

m + m

)
v1

v′1 = 0
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When one moving mass collides
head on with an identical station-
ary mass, the first mass stops.
The second mass then moves
with a velocity identical to the
original velocity of the first mass.

v1

m2

m2

m2

m1

m1

m1 v2′

When one moving mass collides
head on with a much smaller sta-
tionary mass, the first mass con-
tinues at nearly the same speed.
The second mass then moves
with a velocity that is approxi-
mately twice the original velocity
of the first mass.

⇀v1

m2

m2

m2

m1

m1

m1
⇀v2′⇀v1′

⇀v1
m2

m2

m2

m1

m1

m1
⇀v2′⇀v1′



• Using the special cases of elastic collisions, qualitatively explain
what would happen in each of the following situations.

(a) A bowling ball collides head on with a single bowling pin.

(b) A golf ball hits a tree.

(c) A marble collides head on with another marble that is not
moving.

• Cars, trucks, and motorcycles do not undergo elastic collisions,
but the general trend of the motion is similar to the motion of
objects involved in elastic collisions. Describe, in very general
terms, what would happen in each of the following cases. In
each case, assume that the vehicles did not become attached to
each other.

(a) A very small car runs into the back of a parked tractor-trailer. 

(b) A mid-sized car runs into the back of another mid-sized car
that has stopped at a traffic light.

(c) A pickup truck runs into a parked motorcycle.

Inelastic Collisions
When you are working with inelastic collisions, you can apply
only the law of conservation of momentum to the motion of the
objects at the instant of the collision. Depending on the situation,
however, you might be able to apply the laws of conservation of
energy to motion just before or just after the collision. For exam-
ple, a ballistic pendulum can be used to measure the velocity of a
projectile such as a bullet, as illustrated in Figure 4.13. When the
bullet collides with the wooden block of the ballistic pendulum, it
becomes embedded in the wood, making the collision completely
inelastic. 

After the collision, you can apply the law of conservation of
mechanical energy to the motion of the pendulum. The kinetic
energy of the pendulum at the instant after the collision is con-
verted into potential energy of the pendulum bob. By measuring
the height to which the pendulum rises, you can calculate the
velocity of the bullet just before it hit the pendulum, as shown 
in the following sample problem.

mb

mPb
⇀v

h

Conceptual Problems
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A ballistic pendu-
lum is designed to have as little
friction as possible. Therefore,
you can assume that, at the top
of its swing, the gravitational
potential energy of the pendu-
lum bob is equal to the kinetic
energy of the pendulum bob at
the lowest point of its motion.

Figure 4.13

Study the effects of the variable
elasticity of a bouncing ball by
using the interactive activity in
your Electronic Learning Partner.

ELECTRONIC
LEARNING PARTNER
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Energy Conservation Before and After a Collision
1. A forensic expert needed to find the velocity of a bullet fired from a

gun in order to predict the trajectory of a bullet. He fired a 5.50 g 
bullet into a ballistic pendulum with a bob that had of mass 1.75 kg.
The pendulum swung to a height of 12.5 cm above its rest position
before dropping back down. What was the velocity of the bullet just
before it hit and became embedded in the pendulum bob?

Conceptualize the Problem
� Sketch the positions of the bullet and pendulum 

bob just before the collision, just after the colli-
sion, and with the pendulum at its highest point.

� When the bullet hit the pendulum, momentum
was conserved.

� If you can find the velocity of the combined bullet
and pendulum bob after the collision, you can use
conservation of momentum to find the velocity of
the bullet before the collision.

� The collision was completely inelastic so kinetic
energy was not conserved. 

� However, you can assume that the friction of the pendulum is
negligible, so mechanical energy of the pendulum was conserved.

� The gravitational potential energy of the combined masses at the
highest point of the pendulum is equal to the kinetic energy of the
combined masses at the lowest point of the pendulum.

� If you know the kinetic energy of the combined masses just after the 
collision, you can find the velocity of the masses just after the collision.

� Use the subscripts “b” for the bullet and “p” for the pendulum.

Identify the Goal
The velocity, vb, of the bullet just before it hit the ballistic pendulum

Identify the Variables and Constants
Known Implied Unknown
mb = 5.50 g
mp = 1.75 kg

∆h = 12.5 cm g = 9.81 m
s2

⇀vb
⇀vp

Eg

Ek

Develop a Strategy

Ek(bottom) = Eg(top)

To find the velocity of the combined masses
of the bullet and pendulum bob just after
the collision, use the relationship that
describes the conservation of mechanical
energy of the pendulum.

12.5 cm

Bullet
has initial
velocity.

Momentum
is conserved.

Kinetic energy
is not conserved.

Mechanical
energy is

conserved.

SAMPLE PROBLEMS



The velocity of the bullet just before the collision was about 500 m/s in
the positive direction.

Validate the Solution
In both calculations, the units cancelled to give metres per second, which is 
correct for velocity. The velocity of 500 m/s is a reasonable velocity for a bullet.

2. A block of wood with a mass of 0.500 kg slides across the floor toward
a 3.50 kg block of wood. Just before the collision, the small block is
travelling at 3.15 m/s. Because some nails are sticking out of the
blocks, the blocks stick together when they collide. Scratch marks on
the floor show that they slid 2.63 cm before coming to a stop. What is
the coefficient of friction between the wooden blocks and the floor?

Conceptualize the Problem
� Sketch the blocks just before,

at the moment of, and after 
the collision, when they came
to a stop.

� Momentum is conserved 
during the collision.

3.15 m
s

⇀vsb = ⇀d∆    = 2.63 cm

msb

mlb

3.50 kg
0.500 kg

Momentum 
is conserved.

Collision is
completely inelastic.

Friction

msb
mlb msb

mlb

mb
⇀vb + mp

⇀vp = mb
⇀v ′b + mp

⇀v ′p

mb
⇀vb + 0 = (mb + mp)⇀v ′b/p

⇀vb = (mb + mp)v′b/p

mb

⇀vb =

[
5.50 g

(
1 kg

1000 g

)
+ 1.75 kg

]
1.566 m

s

5.50 g
(

1 kg
1000 g

)
⇀vb =

(1.7555 kg)1.566 m
s

0.005 50 kg
⇀vb = 499.8387 m

s
⇀vb ≅ 5.00 × 102 m

s
[in positive direction]

Apply the conservation of momentum to
find the velocity of the bullet before the
collision. Convert all units to SI units.

1
2 mv2

bottom = mg∆h

v2
bottom = 2g∆h

vbottom =
√

2g∆h

vbottom =
√

2
(
9.81 m

s2

)
(12.5 cm)

( 1 m
100 cm

)

vbottom =
√

2.4525 m2

s2

vbottom = ±1.566 m
s

Substitute the expressions for kinetic 
energy and gravitational potential energy
that you learned in previous physics
courses. Solve for velocity. Convert all
units to SI units.

Define the direction of the bullet as 
positive during and immediately after 
the collision.

Chapter 4  Momentum and Impulse • MHR 173

continued



� Since the blocks stuck together, the collision was completely inelastic,
so kinetic energy was not conserved. Some kinetic energy was lost to
sound, heat, and deformation of the wood during the collision.

� Some kinetic energy remained after the collision.

� The force of friction did work on the moving blocks, converting the
remaining kinetic energy into heat.

� Due to the law of conservation of energy, you know that the work
done by the force of friction was equal to the kinetic energy of the
blocks at the instant after the collision.

� Since the motion is in one direction, use a plus sign to symbolize direction.

� Use the subscripts “sb” for the small block, “lb” for the large block, and
“cb” for connected blocks.

Identify the Goal
The coefficient of friction, µ, between the wooden blocks and the floor

Identify the Variables and Constants
Known Implied Unknown
msb = 0.500 kg

mlb = 3.50 kg

⇀vsb = 3.15 m
s

∆⇀d = 2.63 cm

g = 9.81 m
s2

⇀vlb = 0.00 m
s

µ
⇀F f

W
Ek

⇀FN
⇀v ′cb

Develop a Strategy

Ff∆d = 1
2 mv2

µFN∆d = 1
2 mv2

Friction is the force doing the work, and it
is always parallel to the direction of
motion. Substitute the formula for the
force of friction.

F||∆d = 1
2 mv2

Substitute the expressions for work and
kinetic energy into the equations.

W(to stop blocks) = Ek (after collision)

Due to the law of conservation of energy,
the work done on the blocks by the force
of friction is equal to the kinetic energy of
the connected blocks after the collision.

msb
⇀vsb + mlb

⇀vlb = msb
⇀v ′sb + mlb

⇀v ′lb

msb
⇀vsb + 0 = (msb + mlb)⇀v ′cb

⇀v ′cb = msb
⇀vsb

msb + mlb

⇀v ′cb =
(0.500 kg)(3.15 m

s )
0.500 kg + 3.50 kg

⇀v ′cb =
1.575 kgm

s
4.00 kg

⇀v ′cb = 0.393 75 m
s

[to the right]

Apply the law of conservation of energy to
find the velocity of the connected blocks of
wood after the collision.
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The coefficient of friction between the blocks and the floor is 0.300.

Validate the Solution
All of the units cancel, which is correct because the coefficient of
friction is unitless. The value of 0.300 is quite reasonable for a 
coefficient of friction between wood and another similar surface.

µmg∆d = 1
2 mv2

µ =
1
2mv2

mg∆d

µ = v2

2g∆d

µ =
(0.393 75 m

s )2

2(9.81 m
s2 )(2.63 cm)( 1 m

100 cm)

µ =
0.15 504 m2

s2

0.5160 m2

s2

µ = 0.300 46

µ ≅ 0.300

Since the blocks are moving horizontally,
the normal force is the weight of the
blocks. Substitute the weight into the
expression and solve for the coefficient of
friction.
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PRACTICE PROBLEMS

18. A 12.5 g bullet is shot into a ballistic 
pendulum that has a mass of 2.37 kg. The
pendulum rises a distance of 9.55 cm above
its resting position. What was the speed of
the bullet?

19. A student flings a 23 g ball of putty at a 225 g
cart sitting on a slanted air track that is 1.5 m
long. The track is slanted at an angle of 25˚
with the horizontal. If the putty is travelling
at 4.2 m/s when it hits the cart, will the cart
reach the end of the track before it stops and
slides back down? Support your answer with
calculations.

20. A car with a mass of 1875 kg is travelling
along a country road when the driver sees a
deer dart out onto the road. The driver slams
on the brakes and manages to stop before 
hitting the deer. The driver of a second car
(mass of 2135 kg) is driving too close and
does not see the deer. When the driver real-
izes that the car ahead is stopping, he hits
the brakes but is unable to stop. The cars

lock together and skid another 4.58 m. All 
of the motion is along a straight line. If 
the coefficient of friction between the dry
concrete and rubber tires is 0.750, what was
the speed of the second car when it hit the
stopped car?

21. You and some classmates read that the
record for the speed of a pitched baseball is
46.0 m/s. You wanted to know how fast your
school’s star baseball pitcher could throw.
Not having a radar gun, you used the con-
cepts you learned in physics class. You made
a pendulum with a rope and a small box
lined with a thick layer of soft clay, so that
the baseball would stick to the inside of the
box. You drew a large protractor on a piece
of paper and placed it at the top, so that one
student could read the maximum angle of the
rope when the pendulum swung up. The
rope was 0.955 m long, the box with clay had
a mass of 5.64 kg, and the baseball had a
mass of 0.350 kg. Your star pitcher pitched a
fastball into the box and the student reading

continued
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4.3 Section Review

1. What is the difference between an elas-
tic collision and an inelastic collision?

2. Describe an example of an elastic colli-
sion and an example of an inelastic collision
that were not discussed in the text. 

3. Given a set of data for a collision,
describe a step-by-step procedure that you
could use to determine whether the collision
was elastic.

4. The results of the head-on collision in
which the moving mass was much larger
than the stationary mass (m1 >>> m2) showed
that (a) that the velocity of mass 1 after the
collision was almost the same as it had been

before the collision and (b) that mass 2,
which was stationary before the collision,
attained a velocity nearly double that of 
mass 1 after the collision. Explain how it is 
possible for kinetic energy (1

2 mv2) to be 
conserved in such a collision, when there
was a negligible change in the velocity of
mass 1 and a large increase in the velocity 
of mass 2.

5. Imagine that you have a very powerful
water pistol. Describe in detail an experi-
ment that you could perform, including the
measurements that you would make, to
determine the velocity of the water as it
leaves the pistol.

MC

I

C

C

K/U

the angle recorded a value of 20.0˚ from the
resting, vertical position. How fast did your
star pitcher pitch the ball? 

22. A 55.6 kg boulder sat on the side of a moun-
tain beside a lake. The boulder was 14.6 m
above the surface of the lake. One winter
night, the boulder rolled down the mountain,

directly into a 204 kg ice-fishing shack that
was sitting on the frozen lake. What was the
velocity of the boulder and shack at the
instant that they began to slide across the
ice? If the coefficient of friction between the
shack and the rough ice was 0.392, how far
did the shack and boulder slide?

frozen lake

boulder

20˚
30˚
50˚

baseball

wooden box
lined with
clay

continued from previous page
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CAREERS IN PHYSICS

The Invisible Universe
Go outside on a cloudless night and look up. 
You might see the Moon, a few planets, and many
stars. The universe stretches before you, but your
eyes are not taking in the full picture. Astronomer
Dr. Samar Safi-Harb and her colleagues see a 
very different universe by using instruments that
detect X rays and several other wavelengths of
electromagnetic radiation that are invisible to the
human eye.

Dr. Safi-Harb is an
assistant professor 
with the Department of
Physics and Astronomy
at the University of
Manitoba. She uses the
instruments aboard
satellites such as 
NASA’s Chandra X-ray
Observatory to research
the death throes of
super-massive stars.
When a super-massive
star runs out of nuclear
energy, it collapses under its own weight and its
outer layers burst into space in a violent explosion
called a “supernova.” In some cases, the mass left
behind compacts into a neutron star. This astound-
ing type of star is so dense that all of its matter 
fits into a volume no larger than that of a city. A
neutron star, along with its strong magnetic field,
spins incredibly fast — up to several dozen times
per second!

A neutron star is a remarkable source of electro-
magnetic radiation. As its magnetic field spins
through space, it creates an electric field that gen-
erates powerful beams of electromagnetic waves,
ranging from radio waves to gamma rays. If the
beams sweeps past Earth, astronomers detect
them as pulses, like a lighthouse beacon flashing
past. Such neutron stars are called “pulsars.”

The Crab Nebula is one of Dr. Safi-Harb’s
favourite objects in the sky. It is the remains of a
star that went supernova in 1054 A.D. The Crab

Nebula is energized by fast-moving particles emit-
ted from its central pulsar. “It looks different at 
different wavelengths,” she explains. “The radio
image reveals a nebula a few light-years across
that harbours low-energy electrons. The diffuse
optical nebula shines by intermediate energy 
particles, showing a web of filaments that trace the
debris of the explosion. The X-ray image reveals a
smaller nebula — the central powerhouse — 
containing very energetic particles. Its jets, rings,
and wisp-like structures unveil the way pulsars
dump energy into their surroundings.”

In part, the ground-breaking work of 
Jocelyn Bell, the discoverer of pulsars, inspired 
Dr. Safi-Harb to follow this line of research.
Although an astronomer, she has a doctorate 
in physics from the University of Wisconsin,
Madison. Few universities today have astronomy
programs that stand alone from physics.

Going Further
1. Earth is orbited by a wide array of satellites that

explore the sky at high-energy and low-energy
wavelengths. Research two or more of these
satellites and describe how images taken by
them enhance our understanding of the 
universe.

2. When two objects in space approach or recede
from one another at great speed, light emitted
from either object appears altered by the time it
reaches the other object. Research and describe
what astronomers mean when they talk about 
a “red shift” or a “blue shift” in light.

Dr. Samar Safi-Harb

www.mcgrawhill.ca/links/physics12

Radio, infrared, optical, X-ray, and gamma-ray images of
our galaxy, the Milky Way, can be found on the Internet.
You can also learn more about Dr. Safi-Harb’s work and
see images of several of her favourite objects in space 
by going to the above Internet site and clicking on 
Web Links. 

WEB LINK



C H A P T E R Review4

Knowledge/Understanding
1. Write Newton’s second law in terms of momen-

tum. Show how this expression of Newton’s
law leads to the definition of impulse and to
the impulse-momentum theorem.

2. Give an example of a situation in which it is
easier to measure data that you can use to 
calculate a change in momentum than it is to
determine forces and time intervals.

3. In many professional auto races, stacks of old
tires are placed in front of walls that are close
to turns in the racetrack. Explain in detail,
using the concept of impulse, why the tires are
stacked there.

4. Define “internal force” and “external force” and
explain how these terms relate to the law of
conservation of momentum.

5. At the instant after a car crash, the force of 
friction acts on the cars, causing a change in
their momentum. Explain how you can apply
the law of conservation of momentum to car
crashes.

6. When two objects recoil, they start at rest and
then push against each other and begin to
move. Initially, since their velocities are zero,
they have no momentum. When they begin to

move, they have momentum. Explain how
momentum can be conserved during recoil,
when the objects start with no momentum and
then acquire momentum.

7. An object that is moving in a circle has angular
momentum. Explain why the amount of angu-
lar momentum depends on the object’s distance
from the centre of rotation.

8. Assume that you are provided with data for a 
collision between two masses that undergo a
collision. Describe, step by step, how you
would determine whether the collision was
elastic or inelastic.

9. Under what conditions is a collision completely
inelastic?

10. The equations v′1 =
(

m1 − m2
m1 + m2

)
v1 and 

v′2 =
(

2m1
m1 + m2

)
v1 were developed for 

perfectly elastic head-on collisions between
two masses, when mass 1 was moving and
mass 2 was stationary before the collision. Use
these equations to show that, after the collision,
the first mass will come to a complete stop 
and the second mass will move away with a
velocity identical to the original velocity of the
first mass.
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� Newton expressed his second law in terms 

of momentum: 
⇀F = ∆⇀p

∆t
.

� Rearrangement of Newton’s form of the 
second law yields the quantities of impulse,
⇀F∆t , and a change in momentum, ∆⇀p , and
shows that impulse is equal to the change 
in momentum: 

⇀F∆t = ∆⇀p . This expression is
called the “impulse-momentum theorem.”

� Momentum is mass times velocity ⇀p = m⇀v .
� The concept of impulse plays a significant role

in the design of safety systems. By extending
the time, ∆t, of a collision, you can reduce the
amount of force, 

⇀F , exerted.

� By applying Newton’s third law, you can show
that momentum is conserved in a collision.

� The momentum of an isolated system is 
conserved.

� Recoil is the interaction of two objects that are
in contact with each other and exert a force 
on each other. Momentum is conserved during
recoil.

� Kinetic energy is conserved in elastic 
collisions.

� Kinetic energy is not conserved in inelastic
collisions.

REFLECTING ON CHAPTER 4



11. Explain how a forensic expert can determine
the velocity of a bullet by using a ballistic 
pendulum.

Inquiry
12. The International Tennis Federation (ITF)

approaches you, a physics student, complain-
ing that too many games in tournaments are
being won on the strength of either player’s
serve. They ask you to examine ways to slow
down the serve and thus make the game more
interesting to watch. Devise a series of experi-
ments to test the ball, the type of racquet used,
and the surface of the courts, from which you
could make recommendations to the ITF about
how to improve the game of tennis.

13. Design a small wooden cart, with several raw
eggs as passengers. Incorporate elements into
your design to ensure that the passengers suffer
no injury if the cart was involved in a collision
while travelling at 5.0 m/s. If possible, test 
your design.

14. Design and carry out an experiment in which
an object initially had gravitational potential
energy that is then converted into kinetic 
energy. The object then collides with another
object that is stationary. Include in your design
a method for testing whether mechanical 
energy is conserved in the first part of the
experiment. If possible, test your design.

Communication
15. A car and a bicycle are travelling with the same

velocity. Which vehicle has greater momentum?
Explain your reasoning.

16. It is a calm day on a lake and you and a friend
are on a sailboat. Your friend suggests attaching
a fan to the sailboat and blowing air into the
sails to propel the sailboat ahead. Explain
whether this would work.

17. Imagine you are standing, at rest, in the middle
of a pond on perfectly frictionless ice. Explain
what will happen when you try to walk back to
shore. Describe a possible method that you
could use to start moving. Would this method
allow you to reach shore? Explain. 

18. You and a friend arrive at the scene of a car
crash. The cars were both severely mangled.
Your friend is appalled at the damage to the
cars and says that cars ought to be made to 
be sturdier. Explain to your friend why this
reaction to the crash is unwarranted.

19. Start with expressions that apply the impulse-
momentum theorem to two objects and use
Newton’s third law to derive the conservation
of momentum for a collision between the two
objects. Explain and justify every substitution
and mathematical step in detail.

20. Write the units for impulse and for momentum.
Show that these combinations of units are
equivalent and explain your reasoning in
detail.

21. Movie stunt people can fall from great heights
and land safely on giant air bags. Using the
principles of conservation of momentum and
impulse, explain how this is possible.

22. Why is a “follow-through” important in sports
in, for example, hitting, kicking, or throwing 
a ball? 

23. A boy jumps from a boat onto a dock. Explain
why he would have to jump with more energy
than he would need if he was to jump the same
distance from one dock to another. 

24. In soccer, goalkeepers need to jump slightly 
forward to avoid being knocked into the goal 
by a fast-moving soccer ball as they jump up to
catch it. If the ball and goalkeeper are momen-
tarily at rest after the catch, what must have
been the relative momenta of the goalkeeper
and ball just before the catch? 

Making Connections
25. Many automobiles are now equipped with air

bags that are designed to prevent injuries to
passengers if the vehicle is involved in a 
collision. Research the properties of air bags. 
In terms of impulse, how do they work? How
quickly do they inflate? Do they remain 
inflated? What force do they exert on the driver
or passenger? What are the safety concerns of
using air bags? 
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26. A patient lies flat on a table that is supported
by air bearings so that it is, effectively, a 
frictionless platform. As the patient lies there,
the table moves slightly, due to the pulsating
motion of the blood from her heart. By examin-
ing the subtle motion of the table, a ballistocar-
diograph is obtained, which is used to diagnose
certain potential deficiencies of the patient’s
heart. Research the details of how this device
works and the information that can be obtained
from the data.

27. Particle physicists investigate the properties of
elementary particles by examining the tracks
these particles make during collisions in “bub-
ble chambers.” Examine some bubble chamber
photographs (check the Internet) and research
the information that can be obtained. Include a
discussion of how the law of conservation of
linear momentum is applied. 

Problems for Understanding
28. Determine the momentum of a 5.0 kg bowling

ball rolling with a velocity of 3.5 m/s[N] toward
a set of bowling pins. 

29. What is the mass of a car that is travelling with
a velocity of 28 m/s[W] and a momentum of 
4.2 × 104 kg · m/s[W]?

30. The momentum of a 55.0 kg in-line skater is
66.0 kg m/s[S]. What is his velocity?

31. How fast would a 5.0 × 10−3 kg golf ball have to
travel to have the same momentum as a 5.0 kg
bowling ball that is rolling at 6.0 m/s[forward]?

32. Calculate the impulse for the following 
interactions.
(a) A person knocks at the door with an average

force of 9.1 N[E] over a time interval of 
2.5 × 10−3 s.

(b) A wooden mallet strikes a large iron gong
with an average force of 4.2 N[S] over a time
interval of 8.6 × 10−3 s.

33. A volleyball player spikes the ball with an
impulse of 8.8 kg · m/s over a duration of
2.3 × 10−3 s. What was the average applied
force? 

34. If a tennis racquet exerts an average force of 
55 N and an impulse of 2.0 N · s on a tennis
ball, what is the duration of the contact? 

35. (a) What is the impulse of a 0.300 kg hockey
puck slapshot that strikes the goal post at a
velocity of 44 m/s[N] and rebounds straight
back with a velocity of 9.2 m/s[S]? 

(b) If the average force of the interaction was
−2.5 × 103 N, what was the duration of the
interaction? 

36. A 2.5 kg curling stone is moving down the ice
at 3.5 m/s[W]. What force would be needed to
stop the stone in a time of 3.5 × 10−4 s? 

37. At an automobile test facility, a car with a 
75.0 kg crash-test dummy is travelling 
28 m/s[forward] when it hits a wall. Calculate
the force that the seat belt exerts on the dummy
on impact. Assume that the car and dummy
travel about 1.0 m as the car comes to rest 
and that the acceleration is constant during 
the crash.

38. A 0.0120 kg bullet is fired horizontally into a
stationary 5.00 kg block of wood and becomes
embedded in the wood. After the impact, the
block and bullet begin to move with an initial
velocity of 0.320 m/s[E]. What was the velocity
of the bullet just before it hit the wood? 

39. A 48.0 kg skateboarder kicks his 7.0 kg board
ahead with a velocity of 2.6 m/s[E]. If he runs
with a velocity of 3.2 m/s[E] and jumps onto
the skateboard, what is the velocity of the
skateboard and skateboarder immediately after
he jumps on the board? 

40. Astrid, who has a mass of 37.0 kg, steps off a
stationary 8.0 kg toboggan onto the snow. If her
forward velocity is 0.50 m/s, what is the recoil
velocity of the toboggan? (Assume that the
snow is level and the friction is negligible.)

41. A 60.0 t submarine, initially travelling forward
at 1.5 m/s, fires a 5.0 × 102 kg torpedo straight
ahead with a velocity of 21 m/s in relation to
the submarine. What is the velocity of the sub-
marine immediately after it fires the torpedo? 
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42. Suppose that a 75.0 kg goalkeeper catches a
0.40 kg ball that is moving at 32 m/s. With
what forward velocity must the goalkeeper
jump when she catches the ball so that the
goalkeeper and the ball have a horizontal 
velocity of zero? 

43. In billiards, the 0.165 kg cue ball is hit toward
the 0.155 kg eight ball, which is stationary. 
The cue ball travels at 6.2 m/s forward and,
after impact, rolls away at an angle of 40.0˚
counterclockwise from its initial direction, with
a velocity of 3.7 m/s. What are the velocity and
direction of the eight ball?

44. Consider a nuclear reaction in which a neutron
travelling 1.0 × 107 m/s in the +x direction 
collides with a proton travelling 5.0 × 106 m/s
in the +y direction. They combine at impact to
form a new particle called a “deuteron.” What
is the magnitude and direction of the deuteron
velocity? Assume for simplicity that the proton
and neutron have the same mass.

45. A ball of mass m1 strikes a stationary ball of
mass m2 in a head-on, elastic collision. 
(a) Show that the final velocities of the two

balls have the form

v′1 = m1 − m2
m1 + m2

v1 v′2 = 2m1
m1 + m2

v1

(b) Examine three cases for the masses
m1 <<< m2 m1 ≅ m2 m1 >>> m2

(c) Comment on the results. 

46. In a demonstration, two identical 0.0520 kg 
golf balls collide head on. If the initial velocity
of one ball is 1.25 m/s[N] and the other is 
0.860 m/s[S], what is the final velocity of 
each ball? 

47. A 750 g red ball travelling 0.30 m/s[E]
approaches a 550 g blue ball travelling 
0.50 m/s[W]. They suffer a glancing collision.
The red ball moves away at 0.15 m/s[E30.0˚S]
and the blue ball moves away in a north-
westerly direction. 
(a) What is the final velocity of the blue ball?
(b) What percentage of the total kinetic energy

is lost in the collision? 

48. You and a colleague are on a spacewalk, repair-
ing your spacecraft that has stalled in deep
space. Your 60.0 kg colleague, initially at rest,
asks you to throw her a hammer, which has a
mass of 3.0 kg. You throw it to her with a
velocity of 4.5 m/s[forward]. 
(a) What is her velocity after catching the 

hammer? 
(b) What impulse does the hammer exert on

her? 
(c) What percentage of kinetic energy is lost in

the collision?
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C H A P T E R Conservation of Energy5

With a “whump,” the fireworks shell is lofted upward into
the darkness. As the shell rises, it slows; kinetic energy

transforms into gravitational potential energy. Then, the shell
explodes and chemical potential energy rapidly converts into 
heat, light, and sound. The darkness gives way to brilliant colour
and loud bangs startle the crowd below.

There is a balance in all of these transformations and effects.
Energy gained in one form comes at the expense of another. This 
is the law of conservation of energy. 

In this chapter, you will examine these energy transformations
and balances and investigate a few of their applications.
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� Thermal energy and heat
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M U L T I

L A B

Energy Transformations 
in Springs

TARGET SKILLS

Performing and recording
Analyzing and interpreting
Communicating results

A Spring Pendulum
Hang a spring (at least 50 cm long) from a
rigid support and attach a mass to the lower
end of the spring. Ensure that the mass is
heavy enough to extend the spring noticeably 
without overstretching it. The hanging mass
should not come close to the desktop. Pull
the mass to the side and release it, allowing
the spring to swing from side to side. Observe
the motion of the mass and the spring.

Analyze and Conclude
1. What types of periodic (repeating) motion

did you observe?

2. When the amplitude of one type of vibra-
tion was at a maximum, what happened 
to the amplitude of the other type of 
vibration?

3. When the spring was stretched to a greater
length than it was when the mass was 
at rest, was the mass moving rapidly 
or slowly?

4. What was being transferred between 
(a) the different types of vibration, and 
(b) the mass and the spring?

5. The law of conservation of energy states
that the total energy of an isolated system
remains constant. How was that law illus-
trated by the action of the spring and the
mass in this case?

6. What eventually happened to the motion
of the spring and the mass? Suggest why
this occurred.

7. If the system regularly switched back 
and forth between the two patterns of
motion, was the time taken for the change
consistent?

Slinky Motion
Place a Slinky™ toy several steps up from the
bottom of a set of stairs, with the axis of the
spring vertical. Take the top coil and arc it
over and down to touch the next lower step.
Release the Slinky™ and observe its motion.

Analyze and Conclude
1. What is the condition of the coils of the

spring when energy is stored in the
spring?

2. At what stage or stages in the action of the
spring is kinetic energy being converted
into elastic potential energy in the spring?

3. At what stage or stages in the action of the
spring is elastic potential energy in the
spring being converted into kinetic 
energy?

4. Is there any instant during the motion of
the spring when both the kinetic energy
and the elastic potential energy are at a
maximum? Would you expect this to be 
possible? Give a reason for your answer.

5. Any system loses energy due to friction,
which converts mechanical energy into
thermal energy. Why then does the spring
continue going down the stairs? From
where is it getting its energy?
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In the introduction to this chapter, you read about some different
types of energy transfers and transformations. You might recall
from previous science courses that the two mechanisms by which
energy is transferred from one system to another are work and
heat. In fact, energy is often defined as the ability to do work. 
In this section, you will focus on work, extending your knowledge
and your ability to make predictions about work and solve 
problems involving work as the transfer of mechanical energy
from one system to another. 

Characterizing Work
What is work? How do you know if one object or system is doing
work on another? If work is being done, how much work is done?
In physics, these questions are easier to answer than in everyday
life. If an object or system, such as your body, exerts a force on an
object and that force causes the object’s position to change, you are
doing work on the object. 

The most direct way to express work mathematically is with 
the equation W = F∆d cos θ , where F is the magnitude of the force
doing work on an object, ∆d is the magnitude of the displacement
caused by the force, and θ is the angle between the vectors for
force and displacement. Notice that the force, F, and displacement,
∆d, do not have vector notations. The reason for the omission of
the vector symbols is that work, W, is a scalar quantity and is 
the scalar product of the vectors 

⇀F and ∆⇀d . Since the product 
of the vectors is a scalar quantity, the directions of the force and
displacement do not determine a final direction of their product.
To understand why cos θ is included in the equation, study 
Figure 5.1. 

The only component of the force acting on an object that does
work is the component that is parallel to the direction of the displacement.

Figure 5.1

y

x

⇀
F

θ

θ

Fx = F cos θ

Fy = F sin θ

Work and the
Transformation of Energy5.1
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• Define and describe concepts
and units related to energy
forms and conservation.

• Analyze and explain 
common situations using 
the work-energy theorem.

• Investigate the law of 
conservation of energy 
experimentally.

• energy

• work

• work-kinetic energy theorem

• work-energy theorem

• conservation of 
mechanical energy
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In Figure 5.1, you see a person pulling a crate with a force that
is at an angle, θ, relative to the direction of the motion. Only part
of that force is actually doing work on the crate. In the diagram
beside the sketch, you can see that the x-component (horizontal) 
of the force has a magnitude F cos θ . This component is in the
direction of the motion and is the only component that is doing
work. The y-component (vertical) is perpendicular to the direction
of the motion and does no work on the crate. 

Figure 5.2 shows four special cases that will clarify the question
of whether work is being done by a force. In part (A), a person is
pushing a cart with a force (

⇀F ) that is in the same direction as the
motion of the cart. The angle between the force and the displace-
ment is zero, so cos θ = cos 0 = 1 and the work is W = F∆d. When
the force and the displacement are in the same direction, the
entire force is doing work. In this case, the cart is speeding up, so
its kinetic energy is increasing. The work that the person is doing
on the cart is transferring energy to the cart, so positive work is
being done on the cart. 

In part (B) of Figure 5.2, the cart has kinetic energy and is 
moving forward. The person is pulling on the cart to slow it down.
Notice that the direction of the force that the person is exerting on
the cart is opposite to the direction of the motion. The angle θ is
180˚, so cos θ = −1 and, therefore, W = −F∆d. Just as the results
indicate, the person is doing negative work on the cart by slowing
it down and reducing its kinetic energy. 

In part (C) of Figure 5.2, the person is sitting on the cart, 
exerting a downward force on it. The angle θ is 90˚, so
cos θ = cos 90˚ = 0 and the work is W = F∆d(0) = 0. Even though
the cart is moving, the force that the person is exerting is not
doing work, because it is not directly affecting the horizontal
motion of the cart. Notice that if you use the equation for work
properly, the term cos θ will tell you whether the work is positive,
negative, or zero.
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In mathematics, a scalar product is
also called a “dot product” and the
equation for work is written as
W = ⇀

F · ∆⇀d The magnitude of a dot
product is always the product of the
magnitudes of the two vectors and the
cosine of the angle between them.

MATH LINK

Motion
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Motion
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No motion

A  Positive Work B  Negative Work

C  No Work D  No Work
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⇀
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∆⇀d = 0

θ = 0˚ θ = 180˚ 

θ = 90˚ 

In order to do
work, the force must be 
acting in a direction parallel
to the displacement.

Figure 5.2



Finally, in part (D), the person is pushing on the cart, but the
cart is stuck and will not move. Even though the person is exerting
a force on the cart, the person is not doing work on the cart,
because the displacement is zero. 

Quantity Symbol SI unit
work W J (joules)

force F N (newtons)

displacement ∆d m (metres)

angle between force degrees (The cosine of
and displacement θ an angle is a number 

and has no units.)

Unit Analysis
(joule) = (newton)(metre) J = N · m

A newton · metre is equivalent to a joule.

W = F∆d cos θ

DEFINING WORK
Work is the product of the force, the displacement, and the
cosine of the angle between the force and displacement 
vectors.
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Working on the Lawn
A woman pushes a lawnmower with a force 
of 150 N at an angle of 35˚ down from the
horizontal. The lawn is 10.0 m wide and
requires 15 complete trips across and back.
How much work does she do?

Conceptualize the Problem
� Draw a sketch to show the relationship between 

the force and the motion.

� A force is acting at an angle to the direction of motion.

� Since a component of the force is in the direction of the motion, 
the force is doing work on the lawnmower.

� Work done can be determined from the general work equation.

Identify the Goal
The work, W, done by the woman on the lawnmower

35˚

∆⇀d

⇀
F = 150 N

35˚150 N

SAMPLE PROBLEM 



Identify the Variables and Constants
Known Unknown
⇀F = 150 N ∆d
θ = 35˚ W
width of lawn = 10.0 m
15 trips

Develop a Strategy

The work done by the woman on the lawnmower is 3.7 × 104 J.

Validate the Solution
If the force had been horizontal, then the work done would have been
300 m × 150 N, which equals 45 000 J. Because the force is at an angle
to the direction of motion, the work done is less than this value.

1. A man pulls with a force of 100.0 N at an
angle of 25˚ up from the horizontal on a sled
that is moving horizontally. If the sled moves
a distance of 200.0 m, how much work does
the man do on the sled?

2. A tow truck does 42.0 MJ of work on a car
while pulling it with a force of 3.50 kN 
exerted upward at 10.0˚ to the horizontal. 

If the car moves horizontally, how far was 
it towed? 

3. A kite moves 14.0 m horizontally while
pulled by a string. If the string did 60.0 J of
work on the kite while exerting a force of 
8.2 N, what angle did the string make with
the vertical?

PRACTICE PROBLEMS

W = F∆d cos θ
W = (150 N)(300 m) cos 35˚

W = 36 861.8 J

W ≅ 3.7 × 104 J

Use the general work equation.

Substitute and solve.

∆d = 2(10.0 m)(15)

∆d = 300 m

Determine the total distance over which
the force acted.
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Work and Kinetic Energy
In the examples you just examined, you determined the amount 
of work that was done on several objects. Now, consider the form
of the energy that is given to an object on which work is done 
and the relationship to the work that was done. First, look at a 
situation in which all of the work done on a cart transfers only
kinetic energy to the cart. Imagine that a cart is rolling horizontal-
ly to the right with a speed of vi when a force is exerted on it in
the direction of motion, as shown in Figure 5.3. The force acts



over a displacement of ∆⇀d . Since all of the motion is horizontal,
there will be no changes in gravitational potential energy. Assume
also that friction is negligible. Study Figure 5.3 and then examine
the steps that follow the illustration.

All of the work being done on the cart is increasing the cart’s
kinetic energy.

The work done on the cart is equal to the change in the kinetic
energy of the cart. You can now generalize and state that, when
work is done on an object in which the force and displacement are
horizontal and friction is negligible, the work done is equal to the
change in the kinetic energy of the object. The expression W = ∆Ek

is often called the work-kinetic energy theorem.

W = Ekf − Eki

W = ∆Ek

� Recognize the expression 1
2 mv2 as

kinetic energy.

W = 1
2 mv2

f − 1
2 mv2

i
� Expand the equation.

W = ma
( v2

f − v2
i

2a

)
W = m(v2

f − v2
i )

2

� Substitute the expression for displace-
ment into the equation for work.
Simplify the expression.

v2
f = v2

i + 2a∆d

∆d = v2
f − v2

i
2a

� Write the kinematic equation that
relates initial velocity, final velocity,
displacement, and acceleration. 
Solve that equation for displacement.

F = ma
W = ma∆d

� Recall the expression for force from
Newton’s second law. Substitute the
expression for F into the equation for
work. Since work is a scalar quantity,
do not use vector symbols.

W = F∆d cos θ
W = F∆d cos 0˚

cos 0˚ = 1

W = F∆d

� Write the equation for work. From
Figure 5.3, you can see that the angle
between the force vector and the 
displacement vector is zero. Use this
information to simplify the equation.

Figure 5.3

∆d∆⇀d

⇀
F

⇀
F ⇀vi

⇀v f
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The Hammer and Nail
You drive a nail horizontally into a wall, using a 0.448 kg hammerhead.
If the hammerhead is moving horizontally at 5.5 m/s and in one blow
drives the nail into the wall a distance of 3.4 cm, determine the average
force acting on

(a) the hammerhead

(b) the nail

Conceptualize the Problem
� The hammer possesses kinetic energy.

� The backward force exerted by the nail on the hammer removes all
of the kinetic energy.

� The magnitude of the force exerted by the hammer on the nail equals
the magnitude of the force exerted by the nail on the hammer,
according to Newton’s third law of motion.

Identify the Goal
(a) The force acting on the hammer, 

⇀Fh, by the nail

(b) The force applied to the nail, 
⇀Fn, by the hammer

Identify the Variables and Constants
Known Implied Unknown
m = 0.448 kg
⇀vi = 5.5 m

s
[forward]

∆⇀d = 0.034 m[forward]

⇀vf = 0 m
s

⇀Fh
⇀Fn

Develop a Strategy

(a) The average force exerted on the hammer by the nail was 2.0 × 102 N[backward]. 

(b) The force exerted on the nail by the hammer was 2.0 × 102 N[forward].

⇀Fn = −⇀Fh
⇀Fn ≅ −(−2.0 × 102 N)
⇀Fn ≅ 2.0 × 102 N

Apply Newton’s third law to the forces
between the hammer and the nail.

|⇀Fh||∆⇀d| = ∆Ek

|⇀Fh||∆⇀d| = 1
2 mv2

f − 1
2 mv2

i

|⇀Fh| =
1
2mv2

f − 1
2mv2

i
∆d

|⇀Fh| =
1
2 (0.448 kg)

(
0 m

s

)2
− 1

2 (0.448 kg)
(
5.5 m

s

)2

0.034 m
⇀Fh = −199.2941 N
⇀Fh ≅ −2.0 × 102 N

With only horizontal motion, work done
equals the change in kinetic energy.

SAMPLE PROBLEM 
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continued

When solving problems involving
work and energy, be sure to
express all quantities in SI units.
For example, a speed of 80 km/h
must be converted into 22.2 m/s,
and a mass of 25 g must be
expressed as 0.025 kg.

PROBLEM TIP



Validate the Solution
Since kinetic energy must be transferred out of the hammerhead,
the force on the hammer must be in the opposite direction to 
its motion and so the force must be negative.

4. A car with a mass of 2.00 × 103 kg is travel-
ling at 22.2 m/s (80 km/h) when the driver
applies the brakes. If the force of static 
friction between the tires and the road is
8.00 × 103 N[backward], determine the stop-
ping distance of the car. Use the concepts of
work and energy in solving this problem.

5. A 1.00 × 102 g arrow is fired horizontally
from a bow. If the average applied force on

the arrow is 150.0 N and it acts over a 
displacement of 40.0 cm, with what speed
will the arrow leave the bow? Use the 
concepts of work and energy in solving 
this problem.

6. A 12.0 kg sled is sliding at 8.0 m/s over ice
when it encounters a patch of snow. If it
comes to rest in 1.5 m, determine the magni-
tude of the average force acting on the sled.

PRACTICE PROBLEMS
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Work and Gravitational Potential Energy
Consider, now, a contrasting situation — the motion of
the object on which work is being done and the force
that does the work are vertical and there is no change
in the object’s velocity. For example, imagine that you
are lifting a mass at constant speed, so there is no
change in its kinetic energy. The only energy that 
the mass will gain will be due to its position in the 
gravitational field — gravitational potential energy (Eg).
The relationship between the quantities is shown in
Figure 5.4.

Because neither the speed nor the direction of the
mass is changing, it is not accelerating. If the accelera-
tion of the mass is zero, then the net force must be zero
and therefore the magnitude of upward applied force
must equal the magnitude of the downward force of
gravity. 

Fapplied = F

Fapplied = mg

Examine the following steps to derive the relationship
between work done by a vertical force and gravitational
potential energy.

The upward force that you
apply to the mass is equal in magnitude 
and opposite in direction to the force of 
gravity. Therefore, the velocity of the mass 
is constant and only its height changes. 

Figure 5.4

v

v

∆h

Fapplied

hf

hi

m

mg
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When velocity does not change but the object’s position changes 
in height, the work done on an object is equal to the change in the
gravitational potential energy of the object.

W = Egf − Egi

W = ∆Eg

� Recognize the expression mgh as gravi-
tational potential energy and substitute
Eg into the equation for work.

W = mghf − mghi� Expand the equation.

∆d = hf − hi

W = mg(hf − hi)

� From Figure 5.4, you can see that the
displacement is the difference of the
initial and final heights. Substitute
this value into the equation for work.

W = F∆d

W = Fapplied∆d

Fapplied = mg

W = mg∆d

� To find the amount of work done by the
applied force, substitute the applied
force into the equation.

W = F∆d cos θ
W = F∆d cos 0˚

cos 0˚ = 1

W = F∆d

� Write the equation for work. From
Figure 5.4, you can see that the angle
between the force vector and the 
displacement vector is zero. Use this
information to simplify the equation.
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A Rescue at Sea
A gas-powered winch on a rescue helicopter does 
4.20 × 103 J of work while lifting a 50.0 kg swimmer 
at a constant speed up from the ocean. Through what
height was the swimmer lifted?

Conceptualize the Problem
� The speed was constant, so there was no change in 

kinetic energy.

� Assume that the work done by the winch equals the
gain in gravitational potential energy of the swimmer.

Identify the Goal
The height, ∆h, through which the swimmer was lifted

SAMPLE PROBLEM 

continued



Identify the Variables and Constants
Known Implied Unknown
W = 4.20 × 103 J
m = 50.0 kg

g = 9.81 m
s2 ∆h

Develop a Strategy

The height through which the swimmer was lifted was 8.56 m.

Validate the Solution
1 J = 1 kg · m2

s2 , so the answer has units of 
1 kg · m2

s2

kg · m
s2

= m.

7. A motorized crane did 40.4 kJ of work when
slowly lifting a pile driver to a height of 
8.00 m. What was the mass of the pile 
driver? 

8. A 4.00 × 102 kg elevator car rose at a con-
stant speed past several floors. If the motor

did 58.8 kJ of work, through what height did
the car rise? 

9. A battery-powered scoop used by a Mars 
lander lifted a 54 g rock through a height of
24 cm. If gMars = 3.8 m/s2 , how much work
was done by the scoop?

PRACTICE PROBLEMS

W = ∆Eg

W = mg∆h

∆h = W
mg

∆h = 4.20 × 103 J

(50.0 kg)
(
9.81 m

s2

)
∆h = 8.562 69 m

∆h ≅ 8.56 m

With no change in kinetic energy, work
done equals the change in gravitational
potential energy. Substitute and solve.
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The Work-Energy Theorem 
and Conservation of Energy
Very few processes are as limited as the two situations that you
have just considered — changes in kinetic energy only or in 
potential energy only. Real processes usually involve more than
one form of energy. However, you can combine the two cases that
you just considered. For example, if an applied force does work
on an object so that both its kinetic energy and its various forms 
of potential energy change, then the work done by that force
equals the total change in both the kinetic energy and the poten-
tial energies: W = ∆Ek + ∆Ep. The relationship shown in this 
equation is known as the work-energy theorem.

continued from previous page



Picture an object or a system of objects on which no work is
being done by some outside agency. In other words, no energy is
being added to the system and no energy is being removed from
the system. This is called an “isolated system.” A swinging pendu-
lum could be such a system until someone comes along and gives
it a shove. A roller coaster in which the car is running freely up
and down slopes and around curves is isolated if wind effects and
friction are ignored. The flight of an arrow away from its position
in a stretched bow can be treated as an isolated system if air 
friction effects and wind are again ignored.

Our universe is possibly the only truly isolated system.
However, in many applications, such as the ones shown here, you will work
on the assumption that no energy enters from the outside and none is lost
to the outside.

If a system is isolated in that no outside work is done on it, 
you can use the work-energy theorem to derive another important
relationship, as shown in the following steps.

Ek + Ep = E′k + E′p� Rearrange the equation so that
the initial energies are on the
left-hand side of the equals sign
and all of the final energies are
on the right-hand side.

(E′k − Ek) + (E′p − Ep) = 0� Expand the expression and use
primes to represent the energies
after the process is complete.

0 = ∆Ek + ∆Ep

∆Ek + ∆Ep = 0

� If the system is isolated, W = 0.
Substitute zero into the equation
above.

W = ∆Ek + ∆Ep� Write the work-energy theorem.

Figure 5.5

C

A
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The work-energy theorem links
two apparently different types of
quantities. On the left-hand side
is a concept that is extremely
concrete in that it deals with
readily measured quantities of
force and distance. On the 
right-hand side is the extremely
abstract concept of energy. In
fact, the right-hand side deals
only with energy changes and
never in absolute amounts of
energy.

PHYSICS FILE

B   Atwood’s machine pulley

D   Calorimeter thermometer



The last statement in the derivation is known as the law of 
conservation of mechanical energy. The equation ∆Ek + ∆Ep = 0
says that the change of total mechanical energy in an isolated 
system is zero. This does not mean, however, that no processes 
are occurring within the system. This last statement implies that
kinetic energy of an object in the system can be transformed into
potential energy, or the reverse can happen. In addition, one 
object in the system might transfer energy to another object in the
system. Many processes can occur in an isolated system.

Quantity Symbol SI unit
kinetic energy before the 
process occurred Ek J (joules)

potential energy before the 
process occurred Ep J (joules)

kinetic energy after the 
process was completed E′k J (joules)

potential energy after the 
process was completed E′p J (joules)

Ek + Ep = E′
k + E′

p

THE LAW OF CONSERVATION OF MECHANICAL ENERGY
The law of conservation of mechanical energy states that 
the sum of the kinetic and potential energies before a process
occurs in an isolated system is equal to the sum of the 
kinetic and potential energies of the system after the process 
is complete.
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Conservation of Energy on the Ski Slopes
A skier is gliding along with a speed of 2.00 m/s 
at the top of a ski hill, 40.0 m high, as shown 
in the diagram. The skier then begins to slide
down the icy (frictionless) hill. 

(a) What will be the skier’s speed at a height 
of 25.0 m? 

(b) At what height will the skier have a speed 
of 10.0 m/s?

40.0 m
25.0 m

2.00 m
s

v

SAMPLE PROBLEM 

Use the interactive pendulum 
simulation in your Electronic
Learning Partner to enhance 
your understanding of energy
transformations.

ELECTRONIC
LEARNING PARTNER

If your school has probeware
equipment, visit
www.mcgrawhill.ca/links/
physics12 and follow the links for
an in-depth activity on energy 
and momentum in collisions.

PROBEWARE



Conceptualize the Problem
� Sketch the two parts of the problem separately. 

Label the initial conditions (top of the hill) “1.” Label
the position when h = 25 m as “2.” Label the position 
at which the skier is travelling at 10.0 m/s as “3.” 

� Use subscripts 1 and 2 to indicate the initial and final
conditions in part (a) and use subscripts 1 and 3 to 
indicate the initial and final conditions in part (b).

� Define the system as the skier and the slope.

� Assume that the system of skier and slope is isolated.

� The law of conservation of energy can be applied.

Identify the Goal
(a) the speed, v2, at a height of 25.0 m

(b) the height, h3 , at which the skier’s speed will be 10.0 m/s 

Identify the Variables and Constants
Known Implied Unknown
v1 = 2.00 m

s
h1 = 40.0 m

v3 = 10.0 m
s

h2 = 25.0 m

g = 9.81 m
s2 v2

h3

Develop a Strategy

(a) The speed is 17.3 m/s at a height of 25.0 m.

v2
2 = v2

1 + 2g(h1 − h2)

v2 =
√

v2
1 + 2g(h1 − h2)

v2 =
√(

2.00 m
s

)2
+ 2

(
9.81 m

s2

)
(40.0 m − 25.0 m)

v2 =
√

298.3 m2

s2

v2 = ±17.271 m
s

v2 ≅ 17.3 m
s

Simplify and rearrange the equation to
solve for v2.

Substitute and solve.

Speed does not involve direction, so choose
the positive root since speed can never be
negative.

1
2 mv2

2 + mgh2 = 1
2 mv2

1 + mgh1

1
2 v2

2 = 1
2 v2

1 + gh1 − gh2

Expand by replacing E with the expression
that defined the type of energy.

Divide through by m.

E′k + E′p = Ek + EpState the law of conservation of mechanical
energy.

40.0 m
25.0 m

➀

➁

v = 2.00 m
s

v =?

40.0 m
?

➀

➂

v = 2.00 m
s

v = 10.0 m
s
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(b) The height must be 35.1 m when the speed is 10.0 m/s.

Validate the Solution
(a) The units for the right-hand side of the equation for v2 are [( m

s

)2
+

( m
s2

)
m

] 1
2 = m

s
.

These are the correct units for the speed. In addition, since 
the skier is going downhill, the final speed must be larger 
than the initial speed of 2.00 m/s.

(b) The units on the right-hand side of the equation for h3 are (
m
s

)2
+

(
m
s2

)
(m) −

(
m
s

)2

m
s2

= m.

Since the speed in part (b) is less than the speed in part (a), 
the skier should be higher on the hill than in part (a). 

Use the following diagram for practice problems
10, 11, and 12.

10. A car on a roller coaster is moving along a
level section 12.0 m high at 4.0 m/s when it
begins to roll down a slope, as shown in the
diagram. Determine the speed of the car at
point A. 

11. What is the height of point B in the roller
coaster track if the speed of the car at that
point is 10.0 m/s? 

12. What is the height of y if the speed of the
roller coaster at B is 12.5 m/s?

PRACTICE PROBLEMS

h3 =
1
2

(
2.00 m

s

)2
+

(
9.81 m

s2

)
(40.0 m) − 1

2

(
10.0 m

s

)2

9.81 m
s2

h3 = 35.107 m

h3 ≅ 35.1 m

Substitute numerical values and solve.

1
2 mv2

3 + mgh3 = 1
2 mv2

1 + mgh1

gh3 = 1
2 v2

1 + gh1 − 1
2 v2

3

h3 =
1
2v2

1 + gh1 − 1
2v2

3

g

Write the expanded version of the 
conservation of mechanical energy.
Rearrange and solve for height.
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Students are often tempted to
apply the equations for linear
motion to the solution of these
problems. However, the paths are
not always linear, so the equations
might not apply. One of the great
advantages of using conservation
of energy is that you generally do
not need to know the exact path
between two points or vector
directions. You need to know the
conditions at only those two points.

PROBLEM TIP

y

12.0 m

4.0 m

A

B

4.0 m
s

continued from previous page



I N V E S T I G A T I O N  5-A

Testing the Law of 
Conservation of Energy

TARGET SKILLS

Predicting
Performing and recording
Analyzing and interpreting

When scientists set out to test an hypothesis or
challenge a law, they often use the hypothesis 
or law to make a prediction and then test it. In
this investigation, you will make a prediction
based on the law of conservation of energy. 

Problem
To perform a test of the law of conservation 
of energy

Equipment
� dynamics cart
� balance capable of measuring a mass of 1 to 2 kg
� 2 pulleys 
� retort stand and clamps for the pulleys
� board (or similar material) to protect the floor from

dropped masses
� metric measuring tape
� selection of masses, including several that can be

suspended on a string
� stopwatch or photogate timers
� string about 4 m long

Procedure
1. Determine the mass of the dynamics cart.

2. Select a mass to be the rider and a mass to 
be the hanging mass. Decide on the height of
the hanging mass above the board.

3. Set up the apparatus on a long desktop, as
shown in the diagram.

4. Using the law of conservation of energy, 
calculate the expected speed of the cart and
the hanging mass just before the mass strikes
the board. If the cart is to be released from
rest, determine the average speed of the 
system and then the predicted time interval
for the hanging mass to drop to the board. 

5. With the entire apparatus in place, hold the
cart still. Release the cart and measure the
time taken for the hanging mass to reach the
board. Be sure to catch the cart before it hits
the lower pulley.

6. Repeat the measurement several times and
average the results.

7. Perform several trial runs with a different
pair of masses for the cart and the hanging
mass.

Analyze and Conclude
1. Prepare a table to show all of your data, as

well as your calculations for the final speed,
average speed, and the time interval.

2. What is the percent difference between the
time as predicted by the law of conservation
of energy and the measured average time?

3. Based on the precision of the timing devices,
what range of experimental error would you
expect in this investigation? How does this
range compare with the percent difference
determined in question 2?

4. Do the results of this investigation support
the law of conservation of energy?

Apply and Extend
5. Which part of this investigation caused the

greatest difficulty? Provide suggestions for
overcoming this difficulty.

6. List some of the sources of error in this
investigation and suggest how these errors
might be reduced.

hanging
mass

h

rider

board

dynamics
cart
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Work and Energy Change with a Variable Force
Until now, you have assumed that the force in the expression for
work was constant. Quite often, however, you must deal with 
situations in which the force varies with the position, as shown in
part (A) of Figure 5.6.

The work done, or the change in energy, is equal to the area
under the graph

Since work is defined as the product of force times the displace-
ment over which the force acts, then work must be equivalent 
to the graphical area under a graph of force versus position 
(displacement is a change in position). Such an area is illustrated
in parts (B) and (C) of Figure 5.6. In the simplest cases, the 
graphical area forms a figure for which the area can be readily
determined, as shown in the following sample problem.

Figure 5.6

F
or

ce
 (

   
)

⇀ F

Position (   )
⇀
d Position (   )

⇀
dPosition (   )

⇀
d

A

B

A  Force-versus-position graph

F
or

ce
 (

   
)

⇀ F
Area = W
Area = ∆E

A

B

B  Finding the work done

F
or

ce
 (

   
)

⇀ F

X Y

C  Finding the work and 
energy change

Area = W
Area = ∆E
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Work Done by a Variable Force
The graph shows the variation of applied force with 
position. Determine the work done by the force and 
the total energy change due to that force.

Conceptualize the Problem
� The problem involves a graph of force versus 

position.

� The graphical area under the curve provides 
the work done.

� Work is equal to the total change in energy.

F
or

ce
, (

N
)

Position, (m)

6.0

8.0

5.0 8.0 10.0

SAMPLE PROBLEM 



Identify the Goal
� The work, W, done by the applied force

� The total energy change ∆Etotal, due to the force

Identify the Variables and Constants
Known Unknown
graph of force versus position W

∆Etotal

Develop a Strategy

The work done, and therefore the total change in energy, is 59 J.

Validate the Solution
From examination of the graph, an average force would seem to be
approximately 5 N and acts over 10 m. An approximate value for the
work done would be 50 N. The answer is not far from this value.

Total area = 35 J + 18 J + 6.0 J

Total area = 59 J

W = ∆Etotal

∆Etotal = 59 J

Find the total area.

Area of triangle = 1
2 (base)(height)

A = 1
2 (2.0 m)(6.0 N)

A = 6.0 N · m

A = 6.0 J

The region from 8.0 m to 10.0 m is 
a triangle.

Area of rectangle = (base)(height)

A = (3.0 m)(6.0 N)

A = 18 N · m

A = 18 J

The region from 5.0 m to 8.0 m is 
a rectangle.

Area of trapezoid

A = (average of parallel sides)(distance between them)

A =
( 8.0 N + 6.0 N

2

)
5.0 m

A = 35 N · m

A = 35 J

The region from the origin to 5.0 m 
is a trapezoid.

Divide the graphical area under the
curve up into recognizable shapes.

Determine the area of each region.
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There are many examples in which the applied force
varies with displacement. The more an archery bow string 
is pulled back, the greater the force that the string can exert
on the arrow. Force increases with the amount of stretch in 
a trampoline. Springs are interesting in that they can exert
forces when they are stretched or compressed, and the
amount of force depends on the amount of extension or 
compression. You will study this type of relationship in 
the next section of this chapter.

PRACTICE PROBLEMS

13. Calculate the work done by the force 
depicted in part (A) of the diagram. 

14. Determine the magnitude of the energy
change produced by the force illustrated in
part (B) of the diagram. 

15. The force shown in part (C) of the diagram
acts horizontally on a 2.0 kg cart, initially at
rest on a level surface. Determine the speed
of the cart at point A and at point B.

F
or

ce
: F

 (
N

)
⇀

Position: d (m)
⇀

Position: d (m)
⇀

Position: d (m)
⇀

5.0

0
0.10

F
or

ce
: F

 (
N

)
⇀ 10

20

0
10 20

F
or

ce
: F

 (
N

)
⇀

2.0

0
4.0 6.0

A B
A C

B

5.1 Section Review

1. Give examples that were not used in 
the text to show that no work is done by an
applied force that is perpendicular to the
direction of the motion of the object.

2. If the force of friction is constant, prove
that the stopping distance of a car on a level
road varies directly with the square of the
initial speed.

3. When developing the equation for 
gravitational potential energy, why was it
necessary to assume that the mass was rising
at a constant speed?

4. Prove the expressions for gravitational
potential energy and kinetic energy 
have units that are equivalent to the
newton · metre.

5. The absolute temperature of a gas is a
measure of the average kinetic energy of the
gas atoms or molecules. What happens to the

average speed of these particles when the
absolute temperature of the gas is doubled? 

6.

(a) What is meant by the term “isolated sys-
tem”? 

(b) Describe an example of a system that
could be considered as being isolated.

(c) Explain why this system is probably not
completely isolated.

7. A variable force, 
⇀F, acts through a 

displacement, ∆d. The magnitude of the
force is proportional to the displacement, so
F = k∆d , where k is constant. 

(a) Sketch a graph of this force against 
position up to position x.

(b) According to the equation, what is the
value of the force at x?

(c) Determine an expression for the work
done by this force in terms of k and x.

MC

C

MC

I

K/U

I

K/U
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The diver approaches the end of the board, bounces a couple of
times, then arcs out into the air in a graceful dive. The diving
board plays an important role in his action. The diver uses 
chemical energy to jump, gaining kinetic energy. His kinetic 
energy transforms into gravitational potential energy and then
back into kinetic energy. When he returns to the board, slows, 
and stops, his kinetic energy does not transform into gravitational
potential energy. In what form is the energy stored?

Describing Elastic Potential Energy
The diving board in Figure 5.7 is behaving much like a spring.
When the diver lands on the board after jumping, the diving board
exerts a force on him, doing work on him that reduces his kinetic
energy to zero. At the same time, the diver is exerting a force on
the diving board, doing work on the board and causing it to bend.
It its bent condition, the diving board is storing energy called 
elastic potential energy. Because the diving board is elastic, 
it returns to its original form, and in doing so, it transfers 
its elastic potential energy back into kinetic energy.

Springs are commonly used, much like 
the diving board, to absorb energy, store it as
elastic potential energy, then release it in the
form of kinetic energy. A bicycle seat has a
spring that reduces the jarring effects on the
rider of bumps in the road. Springs in a 
mattress provide a flexible support that allows
the surface to match the contours of the sleeper.
Pressure is applied evenly over the lower 
surface of the sleeper, rather than being 
concentrated at a few points. 

In this section, you will examine elastic
potential energy in the form of stretched 
and compressed springs.

Hooke’s Law 
and Periodic Motion5.2
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• Analyze and explain common
situations using the work-
energy theorem.

• State Hooke’s law and analyze
it in quantitative terms.

• Define and describe the 
concepts and units related 
to elastic potential energy.

• Apply Hooke’s law and the 
conservation of energy to 
periodic motion.

• elastic potential energy

• Hooke’s law

• spring constant

• restoring force

• periodic motion

 T E R M S
K E Y

E X P E C T A T I O N S
S E C T I O N

In what ways do these springs behave
the same?

Figure 5.8

A diving
board transforms a form
of potential energy into
kinetic energy of the diver.

Figure 5.7



I N V E S T I G A T I O N  5-B

Testing Hooke‘s Law

TARGET SKILLS

Performing and recording
Analyzing and interpreting
Communicating results

Problem
What relationship exists between the force
applied to a spring and its extension?

Equipment  
� retort stand and C-clamp
� weight hanger and accompanying set of masses
� coil spring
� ring clamp 
� metre stick

Wear protective eye goggles during 
this investigation.

Procedure
1. Clamp the retort stand firmly to the desk. 

2. Attach the ring clamp close to the top of the
retort stand.

3. Hang the spring by one end from the ring
clamp.

4. Prepare a data table with the headings: Mass
on hanger, m(kg); Applied force, F(N); Height
of hanger above desk, h(m); and Extension of
spring, x(m).

5. Attach the weight holder and measure its
distance above the desktop. Record this
value in the first row of the table. This value
will be your equilibrium value, ho , at which
you will assign the value of zero to the 
extension of the spring, x. Put these values 
in the first line of your table.

6. To create an applied force, add a mass to the
weight holder. Wait for the spring to come 
to rest and measure the height of the weight
holder above the desk. Record these values
in the table.

7. Complete the second row in the table by 
calculating the value of the applied force
(weight of the mass) and the extension of 
the spring (x = ho − h).

8. Continue by adding more masses until you
have at least five sets of data. Make sure that
you do not overextend the spring.

Analyze and Conclude
1. Draw a graph of the applied force versus the

extension of the spring. Note: Normally, you
would put the independent variable (in this
case, the applied force) on the x-axis and the
dependent variable (in this case, the exten-
sion of the spring) on the y-axis. However,
the mathematics will be simplified in this
case by reversing the position of the 
variables.

2. Draw a smooth curve through the data
points. 

3. Describe the curve and write the equation for
the curve. 

4. State the relationship between the applied
force and the extension. This relationship 
is known as “Hooke’s law.”

5. When the spring is at rest, what is the rela-
tionship between the applied force and the
force exerted on the mass by the spring? This
force is usually referred to as the “restoring
force.” Restate the spring relationship in
terms of the restoring force of the spring.

6. By finding the area under the graph between
the origin and the point of maximum exten-
sion, determine the amount of energy stored
in the spring.

7. Write an equation for the energy stored in the
spring when the slope of the graph is k and
the extension is x.

8. Devise and carry out an experiment to deter-
mine whether a similar relationship exists
for the bending of a metre stick. Obtain your
teacher’s approval before carrying out the
experiment.

CAUTION
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Hooke’s Law
Investigation 5-B illustrated Hooke’s law, which states that the
amount of extension or compression of a spring varies directly
with the applied force. A graphical illustration of this law for an
extended spring is shown in Figure 5.9.

Since the data produce a straight line, the equation can be 
written in the form y = mx + b, where m is the slope and b is the
y-intercept. The slope of the line describing the properties of a
spring, called the spring constant, is symbolized by k and has
units of newtons/metre. Each spring has its own constant that
describes the amount of force that is necessary to stretch (or 
compress) the spring a given amount. In your investigation, you
were directed to assign the reference or zero position of your
spring as the position of the spring with no applied force. As a
result, x was zero when F was zero. This choice is the accepted
convention for working with springs, and it makes the y-intercept
equal to zero because the line on the graph passes through the 
origin. This relationship leads to the mathematical form of Hooke’s
law (which is summarized in the following box): Fa = kx, where 
Fa is the magnitude of the applied force, x is the magnitude of 
the extension or compression, and k is the spring constant.

According to Newton’s third law of motion, the force exerted 
by the object that is applying the force to the spring is equal and
opposite to the force that the spring exerts on that object. The
force exerted by the spring is called the restoring force. Often,
Hooke’s law is written in terms of the restoring force of the 

Quantity Symbol SI unit
applied force Fa N (newtons)

spring constant k N
m

(newtons per metre)

amount of extension or 
compression of the spring x m (metres)

Unit Analysis

newtons =
( newtons

metre

)
(metre) N = N

m
m = N

Fa = kx

HOOKE’S LAW
The applied force is directly proportional to the extension or
compression of a spring.
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The applied force
varies directly with the extension
of a spring.

Figure 5.9

Extension (x)

A
p

p
li

ed
 f

or
ce

 (
F

a)

Fa ∝ x
or

Fa = kx



spring: Fs = −kx. The negative sign shows that the restoring force
is always opposite to the direction of the extension or compression
of the spring.

spring
restoring force

applied force
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The restoring force
always opposes the applied force
and acts in the direction of the
equilibrium position of the spring.

Figure 5.10

Hooke’s Law in an Archery Bow
A typical compound archery bow requires a force of 133 N to hold
an arrow at “full draw” (pulled back 71 cm). Assuming that the
bow obeys Hooke’s law, what is its spring constant?

Conceptualize the Problem
� When an archer draws a bow, the applied force does work on the

bow, giving it elastic potential energy.

� Hooke’s law applies to this problem.

Identify the Goal
The spring constant, k, of the bow

Identify the Variables and Constants
Known Unknown
Fa = 133 N
x = 71 cm

k

Develop a Strategy

The spring constant of the bow is about 1.9 × 102 N
m

.

Fa = kx

k = Fa
x

k = 133 N
0.71 m

k = 187.32 N
m

k ≅ 1.9 × 102 N
m

Use Hooke’s law (applied force form).

Solve for the spring constant.

Substitute numerical values and solve.

SAMPLE PROBLEM 

The spring constant is closely
related to a quantity called the
“modulus of elasticity.” This is
defined as the stress on the
object divided by the strain.
Stress is defined as the applied
force divided by the cross-
sectional area, and the strain 
is the amount of extension or
compression per unit length. 
This quantity is used to predict
how structural components, from
aircraft wings to steel beams, will
behave when under a given load.

PHYSICS FILE
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Validate the Solution
When units are carried through the calculation, the final quantity
has units of N/m, which are correct for the spring constant.

16. A spring scale is marked from 0 to 50 N. 
The scale is 9.5 cm long. What is the spring
constant of the spring in the scale?

17. A slingshot has an elastic cord tied to a 
Y-shaped frame. The cord has a spring 
constant of 1.10 × 103 N/m. A force of 
455 N is applied to the cord.

(a) How far does the cord stretch? 

(b) What is the restoring force from the
spring? 

18. The spring in a typical Hooke’s law appara-
tus has a force constant of 1.50 N/m and a
maximum extension of 10.0 cm. What is the
largest mass that can be placed on the spring
without damaging it?

PRACTICE PROBLEMS

Calculating Elastic Potential Energy
The graph of Hooke’s law in Figure 5.9 not only gives information
about the forces and extensions for a spring (or any elastic sub-
stance), you can also use it to determine the quantity of potential
energy stored in the spring. As discussed previously, you can find
the amount of work done or energy change by calculating the 
area under a force-versus-position graph. The Hooke’s law graph 
is such a graph, since extension or compression is simply a 
displacement. The area under the graph, therefore, is equal to 
the amount of potential energy stored in the spring, as illustrated
in Figure 5.11.

The triangular area under the Hooke’s law graph gives you
the amount of elastic potential energy stored in the spring at any amount 
of extension.

Figure 5.11

Extension or compression (x)

height = F
height = kx1

A
p

p
li

ed
 f

or
ce
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F

a)

x1

A perfectly elastic material will
return precisely to its original
form after being deformed, such
as stretching a spring. No real
material is perfectly elastic. Each
material has an elastic limit, and
when stretched to that limit, will
not return to its original shape.
The graph below shows that
when something reaches its 
elastic limit, the restoring force
does not increase as rapidly as it
did in its elastic range.

x

F

elastic limit

elastic
 range

non-elastic
range

PHYSICS FILE
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As you can see in Figure 5.11, the area under the curve of
applied force versus extension of a spring is a triangle. You can
use the geometry of the graph to derive an equation for the elastic
potential energy stored in a spring. 

The equation you just derived applies to any perfectly elastic 
system and is summarized in the box below.

Quantity Symbol SI unit
elastic potential energy Ee J (joules)

spring constant k N
m

(newtons per metre)

length of extension 
or compression x m (metres)

Unit Analysis

joule = newton
metre

metre2 J =
( N

m

)
m2 = N · m = J

Ee = 1
2 kx2

ELASTIC POTENTIAL ENERGY
The elastic potential energy of a perfectly elastic material is
one half the product of the spring constant and the square of
the length of extension or compression.

Ee = 1
2 kx2� The expression is valid for any

value of x.

Ee = 1
2 (x1)(kx1)

Ee = 1
2 kx2

1

� Substitute the values into the
expression for elastic potential
energy.

height = F(x1)

F(x1) = kx1

height = kx1

� The height of the triangle is the
force at an extension of x1.

base = x1

� The base of the triangle is the
amount of extension of the
spring, x1.

Ee = A

Ee = 1
2 (base)(height)

� The elastic potential energy
stored in a spring is the area
under the curve.

A = 1
2 (base)(height)

� Write the equation for the area
of a triangle.

Robert Hooke (1635–1703) was
one of the most renowned scien-
tists of his time. His studies in
elasticity, which resulted in the
law being named after him,
allowed him to design better 
balance springs for watches. 
He also contributed to our under-
standing of optics and heat. In
1663, he was elected as a Fellow
of the Royal Society in London.
His studies ranged from the
microscopic — he observed and
named the cells in cork and
investigated the crystal structure
of snowflakes — to astronomy —
his diagrams of Mars allowed
others to measure its rate of 
rotation. He also proposed the
inverse square law for planetary
motion. Newton used this rela-
tionship in his law of universal
gravitation. Hooke felt that he had
not been given sufficient credit by
Newton for his contribution, and
the two men remained antagonis-
tic for the rest of Hooke’s life.

PHYSICS FILE
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Elastic Potential Energy of a Spring
A spring with spring constant of 75 N/m is resting on a table. 

(a) If the spring is compressed a distance of 28 cm, what is the increase
in its potential energy? 

(b) What force must be applied to hold the spring in this position?

Conceptualize the Problem
� There is no change in the gravitational potential energy of the spring.

� The elastic potential energy of the spring increases as it is compressed.

� Hooke’s law and the definition of elastic potential energy apply to
this problem.

Identify the Goal
The elastic potential energy, Ee, stored in the spring
The applied force, Fa, required to compress the spring

Identify the Variables and Constants
Known Unknown

k = 75 N
m

x = 0.28 m

Ee

Fa

Develop a Strategy

(a) The potential energy of the spring increases by 2.9 J when it is
compressed by 28 cm. 

(b) A force of 21 N is required to hold the spring in this position.

Validate the Solution
Round the given information to 80 N and 0.3 m and do mental multiplication.
The resulting estimated change in elastic potential energy is 3.6 J and the 
estimated applied force is 24 N. The exact answers are reasonably close to
these estimated values. In addition, a unit analysis of the first part yields
an answer in N · m or joules, while the second answer is in newtons.

Fa = kx

Fa =
(
75 N

m

)
(0.28 m)

Fa = 21 N

Use Hooke’s law to calculate the
force at 28 cm compression.

Ee = 1
2 kx2

Ee = 1
2

(
75 N

m

)
(0.28 m)2

Ee = 2.94 J

Ee ≅ 2.9 J

Apply the equation for elastic 
potential energy.
Substitute and solve.

SAMPLE PROBLEM 

continued
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19. An object is hung from a vertical spring,
extending it by 24 cm. If the spring constant
is 35 N/m, what is the potential energy of the
stretched spring?

20. An unruly student pulls an elastic band that
has a spring constant of 48 N/m, producing a

2.2 J increase in its potential energy. How far
did the student stretch the elastic band?

21. A force of 18 N compresses a spring by 
15 cm. By how much does the spring’s
potential energy change?

PRACTICE PROBLEMS

Gravitational potential energy is
energy that an object possesses
due to its position in a gravitation-
al field. Elastic potential energy is
a bit harder to picture. However,
when a material is stretched or
twisted, its atoms move relative
to each other. Since the atoms
are held together by electric
forces, elastic potential energy 
is related to the position of an
object, such as an atom in an
electric field.

PHYSICS FILE

continued from previous page

Restoring Force and Periodic Motion
The restoring force exerted by a spring always points toward the
equilibrium or rest position for that spring. When the spring is
extended, the restoring force pulls it back toward its equilibrium
position. When the spring is compressed, the restoring force 
pushes it outward. The nature of this force makes it possible for 
a spring to undergo a back-and-forth, or oscillating, motion called
periodic motion. If the restoring force obeys Hooke’s law precisely,
the periodic motion is called simple harmonic motion.

Periodic motion is closely associated with wave motion, a topic
that you have studied in previous physics courses. You might
recall that a vibrating or oscillating object often creates a wave.
You can make the comparison by imagining that you attached a
pen to the end of a spring and allowed it to rest on a long sheet of
paper. If you extended the spring and then released it, the pen
would oscillate back and forth, drawing a line on the paper. If you
pulled the paper under the pen at a steady rate while the pen was
in motion, you would create an image like the one in Figure 5.12.
You probably recognize the figure as having the same shape as the
waves that you studied. Many of the terms that you learned in
connection with waves also apply to periodic motion. 

This wave shows how the position of the mass at the end of
a spring changes with time. Mathematically, this graph is called a sine wave.

Figure 5.12
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I N V E S T I G A T I O N  5-C

Analyzing Periodic Motion

TARGET SKILLS

Predicting
Analyzing and interpreting
Communicating results

Imagine that a spring is lying on a frictionless
surface. One end is fastened to an immovable
object and a 4.0 kg mass is attached to the free
end, as shown in part (A) of the diagram. Then,
the 4.0 kg mass is pulled 2.0 m to the left and
held in place. You will follow the mass from 
the time it is released until it has travelled from
Point A to point E, and then back to point A
again, by determining the values of several of its
variables at each labelled point. Let the positive
direction be to the right and negative to the left.

Problem
Why does a spring continue to vibrate when
stretched and then released?

Procedure
1. Prepare a table with the headings: Point,

Extension or compression x(m), Restoring
force F(N), Acceleration a(m/s2), Elastic
potential energy Ee(J), Kinetic energy Ek(J),
Total energy Et(J), Velocity ⇀v (m/s), and dis-
placement of the mass ∆d(m). Provide nine
rows under the headings.

2. Under the heading “Point,” list the letters A
through E in the first five rows. In the follow-
ing four rows, to represent the return trip, list
D through A, with a prime on each letter. In
the column headed “Extension or compres-
sion,” write the displacement, x, between the
given point and the equilibrium position, C. 

3. Use the mathematical relationships that you
have learned in this chapter and previous
chapters to calculate all of the other values
in the table. Be sure to include positive and
negative directions in your calculations,
where appropriate. (Hint: Note that the 
mass was released from rest at point A.)

Analyze and Conclude
1. At which points in the cycle does the mass

have (a) the greatest acceleration and (b) the
greatest speed?

2. At which points in the cycle does the spring
(a) exert the greatest restoring force,  
(b) possess the greatest amount of elastic
potential energy, and (c) possess the least
amount of elastic potential energy?

3. Why does the mass reverse direction at 
point E and then at point A′?

4. If there is no friction, what will happen to
the motion of the mass and spring? Give 
reasons for your answer. 

5. Plot both of the following relationships on
one graph: acceleration versus position and
velocity versus position. Use different
colours and scales on the vertical axis for
each of the plots.

6. Explain the relationships between velocity
and acceleration at those points where 
velocity is zero and where acceleration 
is zero.

7. On one graph, again using different colours,
plot elastic potential energy versus position,
kinetic energy versus position, and total
energy versus position. Discuss the signifi-
cance of the relationships among these
graphs.

M

M

k = 10.0 N
m

4.0 kg

A B C D E

1 m 1 m 1 m 1 m

B

A

8.0 m
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Periodic motion always requires a restoring force that depends
on a displacement from a rest or equilibrium position in order to
keep on repeating. In the case of a vibrating spring, this restoring
force is provided by the attractive forces between atoms in the
spring. In a resonating air column, such as in a sounding trumpet
or clarinet, the restoring force is provided by collisions with 
other air molecules. In an oscillating pendulum, such as a mass
swinging on a length of string, the horizontal component of the
tension (T) in the string returns the mass to the centre.

The horizontal component of the tension always acts in the
direction of the equilibrium position of the pendulum. At the equilibrium
position, the horizontal component of the tension is zero.

Periodic (or nearly periodic) motion is seen everywhere.
Playground swings and teeter-totters exhibit periodic motion.
Sound waves, water waves, and earthquake waves involve 
periodic motion. The electromagnetic spectrum from the radio
waves that carry signals to our radios and televisions, to the
gamma radiation emitted from radioactive materials, all embody
periodic motion. 

Waves on the ocean involve both transverse and longitudinal
vibrations.

Figure 5.14

Figure 5.13

T

mg

swing mass
(m)

θ

T = tension in string

T

Th

Tv

mg

Tv = T sin θ
Th = T cos θ
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The previous investigation asked
you to imagine a frictionless 
surface. Physics courses are 
littered with frictionless surfaces
and massless springs, strings,
and ropes. Making these assump-
tions simplifies calculations and
helps to focus on the essential
ideas. Once the process becomes
one of engineering and design, 
however, friction and masses of
components become extremely
important and cannot be ignored.

PHYSICS FILE



I N V E S T I G A T I O N  5-D

Another Test of the Law 
of Conservation of Energy

TARGET SKILLS

Predicting
Performing and recording
Analyzing and interpreting

In Investigation 5-A, you attempted to test the
law of conservation of energy by making a 
prediction involving the transfer of energy 
from gravitational potential energy into kinetic
energy. In this investigation, you will examine
the transfer from elastic potential energy into
kinetic energy. You will then use the predicted
value of kinetic energy to determine the launch
velocity of a projectile and, therefore, its range.

Problem
Does the law of conservation of energy make
valid predictions when energy is converted from
elastic potential energy into kinetic energy?

Equipment  

Safety goggles must be worn during 
this activity.

Procedure
Work in small groups for the investigation.

1. Measure the mass of the spring.

2. Using the equipment, determine the spring
constant for the spring.

3. Set up the ramp on a desk, or make a ramp
by resting one end of the board on a stack 
of books. Measure the angle that the ramp
makes with the desktop. Make sure that there
is a long stretch of clear space in front of the
ramp.

4. Decide on the amount of extension that you
intend to use with the spring and then deter-
mine the corresponding elastic potential
energy stored in the spring at that extension.

5. Set up the spring by hooking one end over
the upper edge of the ramp. Then, pull it
backward to extend it the selected distance
and release it. Use the law of conservation 
of energy to determine the velocity with
which the spring will leave the ramp.

6. Use the velocity and the height of the end of
the ramp to determine the point at which 
the spring will hit the floor (or the wall). 

7. Place the cardboard box at that predicted
point and perform the launch.

Analyze and Conclude
1. Provide a summary of your force-extension

measurements for the spring.

2. Show your calculation of the spring constant.

3. What extension did the group choose? Show
your calculation of the elastic potential 
energy stored in the spring.

4. Show your calculation of the 

(a) velocity of the spring as it leaves the ramp

(b) range of the projectile (the spring)

5. How close did the spring come to its predict-
ed landing point?

6. Describe the energy changes that occurred
during the launch and flight of the spring.

7. Does this investigation further confirm the
law of conservation of energy?

Apply and Extend  
8. Spring-loaded dart guns with dart safety tips

are available as toys. Decide how you could
determine the spring constant and hence the
maximum range of the projectile (the dart). 
If possible, repeat this investigation using
one of these toy guns. You might recall from
earlier studies that the maximum range
occurs when the dart is launched at 45˚ to
the horizontal. 

CAUTION

� metre stick or 
metric tape measure

� utility clamp
� small spring
� small cardboard box
� masking tape

� balance
� retort stand
� ramp or small, 

smooth board
� set of masses with 

a mass holder
� protractor
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5.2 Section Review

1. Explain how each of the following
behave like a spring.

(a) a pole used in pole-vaulting

(b) the strings in a tennis racquet

(c) the string on a bow

2. Prove that the expression for elastic
potential energy has units equivalent to the
joule.

3. In what way is a spring similar to a
chemical bond?

4. List three other forms of periodic motion
not mentioned in the section.

5. A guitar string is vibrating horizontally,
as shown in the diagram. It vibrates between
positions A and B, passing through the equi-
librium or rest position C. In which positions
is the string vibrating with the following? 

(a) greatest speed

(b) least speed

(c) greatest kinetic energy

(d) greatest elastic potential energy

Give reasons for your choices.

6. There are four basic forces in our 
universe.

� the weak nuclear force (between particles
in the nucleus)

� the strong nuclear force (between particles
in the nucleus)

� electromagnetic force (between charged
particles)

� gravitational force (between masses)

Which force is responsible for the potential
energy stored in the following?

(a) a battery

(b) the water behind a dam

(c) a stretched spring

(d) a mound of snow at the top of a slope just
before an avalanche

7. Describe an investigation to determine 
the force-extension characteristics of an
archery bow.

8. Prepare a diagram to demonstrate the
relationships between the gravitational
potential energy, and the kinetic energy of
the swinging bob in a pendulum.

9. Given the following graph of applied
force against extension, describe a technique
for determining the amount of potential 
energy stored in the object between points A
and B.

Extension: x (m)

F
or

ce
: F

 (
N

)

A

B

I

C

I

MC

A

B

C

K/U

MC

MC

I

K/U

Once you understand both periodic motion
and the conditions necessary to generate it,
you will find that periodic motion frequently
appears in both natural and manufactured 
systems.
� Brainstorm to identify systems that experi-

ence periodic motion.
� Attempt to formulate an argument support-

ing an intrinsic link between understanding
the periodic transformation of energy and
environmentalism.

UNIT PROJECT PREP



The law of conservation of energy is one of the most useful tools
in physics. Since work and energy are scalar quantities, directions
are not involved, as they are in momentum. As a result, vector 
diagrams are not needed, and angles do not have to be calculated.
In any given event, the problem is usually to identify the types 
of energy involved and to ensure that the total energy in all 
its different forms at the end of the event equals the total at 
the beginning.

The analysis is often easiest when the motion occurs in a 
horizontal plane. No change in gravitational potential energy 
is involved. The following sample problem illustrates this feature.

Energy Transformations5.3

• Analyze situations involving the
concepts of mechanical energy,
thermal energy, and its transfer.

• Analyze situations involving 
the concept of conservation 
of energy.

• conservative force

• non-conservative force

 T E R M S
K E Y

E X P E C T A T I O N S
S E C T I O N

Horizontal Elastic Collisions
A low-friction cart with a mass of 0.25 kg travels 
along a horizontal track and collides head on
with a spring that has a spring constant of 
155 N/m. If the spring was compressed by 6.0 cm,
how fast was the cart initially travelling?

Conceptualize the Problem
� The cart is moving so it has kinetic energy.

� The spring does negative work on the cart, lowering its kinetic energy.

� The cart does work on the spring, giving it elastic potential energy.

� The height of the cart does not change, so there is no change in
gravitational potential energy.

� The term low friction tells you to neglect the energy lost to work
done by friction.

� The law of conservation of energy applies to this problem.

Identify the Goal
The initial speed, v, of the cart

Identify the Variables and Constants
Known Unknown
m = 0.25 kg

k = 155 N
m

x = 0.060 m v

cart

m = 0.25 kg

v spring

k = 155 N
m

SAMPLE PROBLEM 

Chapter 5  Conservation of Energy • MHR 213

continued



Develop a Strategy

The cart was travelling at approximately 1.5 m/s before the collision.

Validate the Solution
Unit analysis of the equation v =

√
kx2

m
shows that it is equivalent to m/s, 

the standard units for velocity. 

√
N
m m2

kg
=

√
kg · m

s2 m
kg

=
√

m2

s2 = m
s

. 

A velocity of 1.5 m/s is reasonable for a lab cart.

22. A 1.2 kg dynamics cart is rolling to the right
along a horizontal lab desk at 3.6 m/s, when
it collides head on with a spring bumper that
has a spring constant of 2.00 × 102 N/m. 

(a) Determine the maximum compression 
of the spring. 

(b) Determine the speed of the cart at the
moment that the spring was compressed
by 0.10 m. 

(c) Determine the acceleration of the cart 
at the moment that the spring was 
compressed 0.10 m.

23. A circus car with a clown has a total mass 
of 150 kg. It is coasting at 6.0 m/s, when it
hits a large spring head on. If it is brought to
a stop by the time the spring is compressed
2.0 m, what is the spring constant of the
spring?

PRACTICE PROBLEMS

1
2 mv2 = 1

2 kx2

v =
√

kx2

m

v =

√(
155 N

m

)
(0.060 m)2

0.25 kg

v = 1.493 99 m
s

v ≅ 1.5 m
s

Expand by substituting the expressions for
the energies.

Solve for the initial velocity.

Substitute numerical values and solve.

0 J + E′e = Ek + 0 J
Ek = E′e

Substitute the values for energy listed above.

E′k = 0 J
After the interaction, the cart stopped, so the
kinetic energy was zero.

Ee = 0 J
Initially, the spring was not compressed, so
the initial elastic potential energy was zero.

E′k + E′e = Ek + Ee

Write the law of conservation of energy,
including the energy quantities associated
with the interaction.
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The analysis becomes a bit more complicated when the 
motion is vertical, since there are now changes in gravitational
potential energy along with elastic potential energy and 
kinetic energy. 
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Vertical Elastic Collisions
A freight elevator car with a total mass of 100.0 kg is 
moving downward at 3.00 m/s, when the cable snaps. 
The car falls 4.00 m onto a huge spring with a spring 
constant of 8.000 × 103 N/m. By how much will the spring
be compressed when the car reaches zero velocity?

Conceptualize the Problem
� Initially, the car is in motion and therefore has kinetic

energy. It also has gravitational potential energy.

� As the car begins to fall, the gravitational potential energy
transforms into kinetic energy. When the elevator hits the
spring, the elevator slows, losing kinetic energy, and the
spring compresses, gaining elastic potential energy.

� When the elevator comes to a complete stop, it has no kinetic
or gravitational potential energy. All of the energy is now
stored in the spring in the form of elastic potential energy.

� Since all of the motion is in a downward direction, define
“down” as the positive direction for this problem.

Identify the Goal
The compression of the spring, x, when the car comes to rest

Identify the Variables and Constants
Known Implied Unknown
mcar = 100.0 kg

v = 3.00 m
s

[down]

k = 8.000 × 103 N
m

h(above spring) = 4.00 m

g = 9.81 m
s2 x

Develop a Strategy

E′g + E′e + E′k = Eg + Ee + Ek

Write the law of conservation of energy
for the forms of energy involved in 
the problem.

3.00 m
s

4.00 m

x

spring

elevator car
m = 100 kg

SAMPLE PROBLEM 

The energies discussed here are
commonly found in mechanical
systems with springs and pulleys.
As a result, kinetic energy, 
gravitational potential energy, 
and elastic potential energy 
are commonly referred to as
“mechanical energy.”

PHYSICS FILE
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Compression cannot be negative (or the spring would be stretching),
so choose the positive value. The spring was compressed 1.18 m.

Validate the Solution
The units on the left-hand side of the final equation are N

m
· m2 =

kg · m
s2

m
· m2 = kg · m2

s2 . 

On the right-hand side of the equation, the units are kg · m
s2 · m = kg · m2

s2 . 

Both sides of the equation have the same units, so you can have
confidence in the equation. The answer is also in a range that would
be expected with actual springs.

Note: The negative root in this problem is interesting in that it does
have meaning. If the car had somehow latched onto the spring during
the collision, the negative value would represent the maximum 
extension of the spring if the car had bounced up from the bottom 
due to the upward push of the spring.

1
2

(
8.00 × 103 N

m

)
x2 = (100.0 kg)

(
9.81 m

s2

)
(4.00 + x) m

+ 1
2 (100.0 kg)

(
3.00 m

s

)2

4.00 × 103x2 − 981x − 3924 − 450 = 0

4.00 × 103x2 − 981x − 4374 = 0

x = 981 ±
√

(−981)2 − 4(4.00 × 103)(−4374)
2(4.00 × 103)

x = 1.1756 m or − 0.930 25 m

x ≅ 1.18 m

Since the equation yields a quadratic
equation, you cannot solve for x.
Substitute in the numerical values 
and rearrange so that the right-hand
side is zero.

Use the quadratic formula to find the
value of x.

1
2 kx2 = mg(4.00 + x) + 1

2 mv2

The change in height for the gravita-
tional potential is 4.00 m, plus the
compression of the spring, x. Substitute
this expression into the equation.

1
2 kx2 = mg∆h + 1

2 mv2Expand by substituting the expressions
for the various forms of energy.

0 J + E′e + 0 J = Eg + 0 J + Ek

E′e = Eg + Ek

Substitute these initial and final condi-
tions into the equation for conservation 
of energy and simplify.

Ee = 0 JInitially, the spring is not compressed.

E′k = 0 J
The car comes to a rest at the lowest
point.

E′g = 0 J

Choose the lowest level of the elevator
(maximum compression of the spring)
as the reference level for gravitational
potential energy.
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24. A 70.0 kg person steps through the window
of a burning building and drops to a rescue
net held 8.00 m below. If the surface of the
net is 1.40 m above the ground, what must be
the value of the spring constant for the net so
that the person just touches the ground when
the net stretches downward?

25. A 6.0 kg block is falling toward a spring
located 1.80 m below. If it has a speed of 
4.0 m/s at that instant, what will be the 
maximum compression of the spring? The
spring constant is 2.000 × 103 N/m. 

26. In a “head dip” bungee jump from a bridge
over a river, the bungee cord is fastened to
the jumper’s ankles. The jumper then steps
off and falls toward the river until the cord
becomes taut. At that point, the cord begins
to slow the jumper’s descent, until his head
just touches the water. The bridge is 22.0 m
above the river. The unstretched length of 
the cord is 12.2 m. The jumper is 1.80 m tall
and has a mass of 60.0 kg. Determine the

(a) required value of the spring constant for
this jump to be successful 

(b) acceleration of the jumper at the bottom 
of the descent

PRACTICE PROBLEMS
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Conservative and Non-Conservative Forces
Until now, you have been asked to assume that objects could move
without friction. A pendulum would keep swinging repeatedly
with the same amplitude, continuously converting energy between
kinetic and gravitational potential forms of energy. A skier could
slide down a hill, converting gravitational potential energy into
kinetic energy and then, faced with an upward slope, could keep
on going, converting the kinetic energy back into potential energy
until the original height was reached. 

The forces with which you have been dealing are referred to as
conservative forces. This means that the amount of work that they
do on a moving object does not depend on the path taken by that
object. In the absence of friction, the boulder in Figure 5.15 will
reach the bottom of the hill with the same kinetic energy and
speed whether it dropped off the cliff on the left or slid down the
slope on the right.

boulder

Gravity is a conser-
vative force. If the boulder was
dropped over the edge of the cliff,
all of the gravitational potential
energy would be converted into
kinetic energy. Friction is not a
conservative force. If the boulder
slides down the hill, the kinetic
energy at the bottom will not be
as great as it would if the boulder
fell straight down.

Figure 5.15

Energy Transformations
Light energy is transformed into
stored chemical energy each
time you take a photograph. The
operation of infrared cameras,
ultrasound images, and video
cameras also relies on various
energy transformations. Refer 
to page 604 for suggestions on
relating energy transformations 
to your Course Challenge.

COURSE CHALLENGE



Friction is a non-conservative force. The amount of work done
by a non-conservative force depends on the path taken by the
force and the object. For example, the amount of energy trans-
ferred to the snow in Figure 5.16 depends on the path taken by 
the skier. The skier going straight down the slope should reach 
the bottom with a greater speed than the skier who is tracking
back and forth across the slope. 

Although friction between the skis and the snow is small,
friction nevertheless does some work on the skiers, slowing their velocity 
a little. The work done by friction is greater along the longer of the paths.

Friction causes the skier to do work on the environment. The
snow heats up slightly and is moved around. For the skier, this is
negative work — the skier is losing energy and cannot regain it as
useful kinetic or potential energy. The sum of the skier’s kinetic
and gravitational potential energy at the end of the run will be 
less than it was at the start. 

Wind pressure is another example of a non-conservative force.
If the skier had the wind coming from behind, the wind (the 
environment) could be doing work on the skier. This would be
positive work. The sum of the skier’s kinetic and gravitational
potential energies could increase beyond the initial total. However,
the amount of energy transferred by the wind would depend to 
a large extent on the path of the skier, so the wind would be a
non-conservative force.

When dealing with non-conservative forces, the law of conser-
vation of energy still applies. However, you must account for the
energy exchanged between the moving object and its environment.
One approach to this type of situation is to define the system as
the skier and the local environment; that is, the skier, wind, 
and snow become the system. The following sample problem 
illustrates this concept.

Figure 5.16
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Quite often, you might not want
your forces to be conservative.
Without friction, many of your
clothes would simply fall apart
into strands as you moved. In
addition, keep-fit programs would
have to be greatly modified. A
person who rides an exercise
bicycle to lose mass (through
chemical reactions that provide
the energy) does not want the
energy back. It simply is dissipat-
ed as sound and heat. Likewise,
the weight lifter who does work
to lift a bar bell does not expect
to receive that energy back when
the bar bell is lowered.

PHYSICS FILE

To enhance your understanding of
energy transformation, refer to
your Electronic Learning Partner.

ELECTRONIC
LEARNING PARTNER



Energy Conversions on a Roller Coaster
A roller-coaster car with a mass of 200.0 kg
(including the riders) is moving to the right at
a speed of 4.00 m/s at point A in the diagram.
This point is 15.00 m above the ground. 
The car then heads down the slope toward
point B, which is 6.00 m above the ground. 
If 3.40 × 103 J of heat energy are produced
through friction between points A and B,
determine the speed of the car at point B.

Conceptualize the Problem
� As the roller-coaster car moves down the track, most of the 

gravitational potential energy is converted into kinetic energy, 
but some is lost as heat due to friction.

� The law of conservation of total energy applies.

� Heat energy must be included as a final energy.

Identify the Goal
The speed of the car at point B, vB

Identify the Variables and Constants
Known Implied Unknown

hA = 15.00 m

hB = 6.00 m

vA = 4.00 m
s

Eheat = 3.40 × 103 J
m = 200.0 kg

g = 9.81 m
s2 vB

Develop a Strategy

vB =

√√√√ 2
[
−
(
1.1772 × 104 kg · m2

s2

)
− (3.40 × 103 J) +

(
1.6 × 103 kgm2

s2

)
+

(
2.943 × 104 kg · m2

s2

)]
200.0 kg

vB =

√
3.1716 × 104 kg · m2

s2

200.0 kg

1
2 mv2

B + mghB + Eheat = 1
2 mv2

A + mghA

1
2 mv2

B = −mghB − Eheat + 1
2 mv2

A + mghA

v2
B =

2(−mghB − Eheat + 1
2mv2

A + mghA)
m

vB =

√
2(−mghB − Eheat + 1

2m(vA)2 + mghA)
m

Expand by substituting the expressions
for the forms of energy. Solve for the
speed of the car at point B

E′k + E′g + Eheat = Ek + Eg

Write the law of conservation of energy,
including heat as a final energy form.

A

B15.0 m

6.0 m

4.00 m
s

mcar = 200 kg 

SAMPLE PROBLEM 
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In solving these problems, you have assumed that the value for
the acceleration due to gravity (g) is constant at 9.81 m/s2. You
probably recall reading that this value is valid only for a small
region close to Earth’s surface. In Chapter 3, you learned that, 
as you go to the higher altitudes, the acceleration due to gravity
decreases. You worked with forces of gravity at any distance from
Earth, other planets, and even stars. You learned how to calculate
the radii of orbits and orbital speed of satellites. 

In the next chapter, you will focus on the energy requirements
for sending a satellite into orbit and even for escaping Earth’s 
gravitational pull entirely. You will also learn the importance of
the conservation of momentum in navigating through space.
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27. Determine the speed of the roller-coaster 
car in the sample problem at point C if point
C is 8.0 m above the ground and another
4.00 × 102 J of heat energy are dissipated by
friction between points B and C. 

28. A sled at the top of a snowy hill is moving
forward at 8.0 m/s, as shown in the diagram.
The height of the hill is 12.0 m. The total
mass of the sled and rider is 70.0 kg.

Determine the speed of the sled at point X,
which is 3.0 m above the base of the hill, 
if the sled does 1.22 × 103 J of work on the
snow on the way to point X. 

29. If the sled in the previous question reaches
the base of the hill with a speed of 15.6 m/s,
how much work was done by the snow on
the sled between points X and Y?

12.0 m

3.0 m

X

Y

8.0 m
s

A

B
C

4.00 m
s

15.0 m

8.0 m6.0 m

mcar = 200 kg 

continued from previous page

The speed of the car at point B will be 12.6 m/s.

Validate the Solution
The speed at point B is expected to be larger than its speed at point A.

PRACTICE PROBLEMS

vB =
√

1.5858 × 102 m2

s2

vB = 1.2593 × 101 m
s

vB ≅ 12.6 m
s

If your school has probeware
equipment, visit
www.mcgrawhill.ca/links/
physics12 and follow the links 
for an in-depth activity on energy,
Hooke’s law, and simple harmonic
motion.

PROBEWARE



I N V E S T I G A T I O N  5-E

Mechanical and Thermal Energy

TARGET SKILLS

Performing and recording
Analyzing and interpreting
Identifying variables

Before 1800, physicists and chemists did not
know that a relationship existed between
mechanical energy and heat. Count Rumford
(Benjamin Thompson: 1753–1814) was the first
to observe such a relationship, followed by
Julius Robert Mayer (1814–1878). Rumford and
Mayer made some very important discoveries.
Mayer was unable to express himself clearly 
in writing, however, so his discoveries were
overlooked. Eventually, James Prescott Joule
(1818–1889) was credited with the determina-
tion of the mechanical equivalence of heat. In
this investigation you will perform experiments
similar to those of Mayer and Joule.

Problem
How much heat is produced when a mass of
lead pellets is repeatedly lifted and dropped
through a known distance?

Equipment
� balance
� thermometer (˚C)
� lead shot
� cardboard or plastic tube with a small hole in the

side, close to one end; the ends must be able to 
be closed

� metre stick
� small amount of masking or duct tape

Procedure
1. Determine the mass of the lead shot.

2. Place the lead shot into the tube and close up
the tube. Let the tube sit upright on a desk
for several minutes to allow the tube and its
contents to come to room temperature. Make
sure that the hole is close to the bottom of
the tube.

3. Insert the thermometer or temperature probe
through the hole in the tube and nestle the
end in the lead shot. Measure and record 
the temperature.

4. Close the hole.

5. Measure the length of the tube.

6. Repeatedly invert the tube for several 
minutes, waiting only to allow the lead 
shot to fall to the bottom on each inversion.
Keep track of the number of inversions. 

7. Finish the inversions with the hole near the
bottom of the tube. Remove the tape and
measure the temperature of the lead shot.
Record the final temperature.

Analyze and Conclude
1. What were the initial and final temperatures

of the lead shot? What was the total mass of
the lead shot?

2. Determine the quantity of heat gained by the
lead shot (the specific heat capacity of lead 
is 128 J/kg · C˚).

3. Determine the total distance through which
the lead shot was lifted by the inversions 
and calculate the total gain in gravitational
potential energy of the lead.

4. Determine the percentage of the gravitational
potential energy that was converted into
heat.

5. If the conversion into heat does not account
for all of the gravitational potential energy
gained by the lead shot, where else might
some of the energy have gone?

Apply and Extend
6. How could this investigation be improved?

Try to design a better apparatus and, if possi-
ble, carry out the investigation again. 

7. Do research and write a summary of the
work of Rumford, Mayer, and Joule on the
mechanical equivalence of heat.
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CANADIANS IN PHYSICS

Follow Your Dreams
One of the great honours in physics is to have 
a physical law or constant named after you —
Newton’s laws, Planck’s constant, the Heisenberg
uncertainty principle. Now, the name of Canadian
physicist Dr. Ian Keith Affleck can be added to this
list. “Affleck-Dine Baryogenesis” is the name given
to a physical mechanism that might have played
an important role in the early universe in creating
one of the classes of particles that now make up 
all of the matter that exists today. 

For Dr. Affleck, 
who was born in
Vancouver and grew
up both there and in
Ottawa, understanding
nature has always
been one of his great
interests. “I became
rather fascinated at 
a fairly young age 
with the idea that 
deep things about 
the universe could be 
understood by using 
mathematics,” he explains. 
At high school in Ottawa, 
he was inspired by the intellectual enthusiasm 
of his physics teachers, and in university decided
on a career in theoretical physics. Ironically, 
at the time, he “was not very optimistic about 
actually being able to make a career from 
my interests.” 

One of the great questions plaguing theoretical
physicists is nothing less than the age-old philo-
sophical question: Why are we here? It is believed
that at the time of the Big Bang, there were nearly
equal amounts of matter and antimatter. Since
matter and antimatter annihilate each other, if the
amounts of each were exactly equal, there would
be nothing left after particle annihilation. So, there
had to be some excess of matter over antimatter,
and it had to be just the right amount of excess 
to yield the universe and the physics that exist
today. Dr. Affleck, together with fellow theoretician
Michael Dine, proposed a possible explanation — 

Affleck-Dine Baryogenesis. Verifying this principle
is now an active part of physics research all over
the world. 

Dr. Affleck has since gone on to bring his 
mathematical talents to more immediate problems.
Specifically, he has been hard at work adapting the
mathematics he helped develop for an understand-
ing of the universe to problems of understanding
how and why high-temperature superconductors
work. “I saw some opportunities to apply the same
sort of mathematical ideas more directly,” he says.
Just as there is a problem with the pairing of parti-
cles and antiparticles in the early universe, there
appears to be a pairing mechanism at work in the
behaviour of high-temperature superconductors,
so that it is possible to gain a deeper understand-
ing of these materials through mathematics 
originally devised for more abstract research. 

Such creative thinking has earned the physicist
a number of awards, including the Rutherford
Medal and the Governor General’s Medal. He is
also the recipient of many honorary degrees. 
His advice to aspiring physicists is simple: “They
should follow up on what they find interesting, 
and not be afraid to follow their dreams.” 

Going Further
1. The astronomer Carl Sagan used to say, “You

never know where inspiration will come from.”
One of Dr. Affleck’s great achievements was to
adapt what seemed like very abstract and very
specific physical theory to a more concrete
problem. This is not the first time this has 
happened in the history of physics; look into 
a few of the popular books on physics and 
see if you can find some other examples. 
(Hint: You can start with Carl Sagan.) 

2. Much of Dr. Affleck’s recent work has had to do
with superconductivity. Superconductors have
applications in medicine, engineering, and 
elsewhere. Research two different present-day
applications related to superconductivity.

3. What are some of the difficulties with the
superconductors now in use? Report and 
discuss with the class. Design a poster or a
media presentation to present your findings.

Dr. Ian Affleck
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5.3 Section Review

1.

(a) Why is the application of the law of 
conservation of energy often much easier
than the application of the law of 
conservation of momentum?

(b) What conditions can increase the difficul-
ty of applying the law of conservation 
of energy?

2. Which types of energy are generally
referred to as mechanical energy?

3. Using examples not found in the text-
book, describe and explain an example in
which the forces are

(a) conservative

(b) non-conservative

4. A student is sliding down a frictionless
water slide at an amusement park.

(a) Sketch a graph of gravitational potential
energy against height for the descent. 
(No numbers are required on the axes.)

(b) On the same axes, sketch a graph of the
total energy of the student against height
for the descent.

(c) On the same axes, sketch a graph of the
kinetic energy of the student against
height for the descent.

5.

(a) In an amusement park there is a ride on
which children sit in a simulated log
while it slides rapidly down a water-
covered slope. At the bottom, the log
slams into a trough of water, which slows
it down. Why did the ride designers not
simply have the log slam into a large
spring?

(b) Steel or plastic barrels are located along
highways to cushion the impact if a car
skids into a bridge abutment. These 
barrels are often filled with energy-
absorbing material. Why are these barrels
used instead of large springs to bring the
cars to a stop?

MC

I

C

K/U

K/U

How many energy transformations are 
taking place in the photograph?

Figure 5.17

Concept Organizer

Work done

Mechanical
kinetic energy
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potential energy
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potential energy
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total energy
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initial
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energy

Work
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C H A P T E R Review5

Knowledge/Understanding
1. Explain what happens to the total mechanical

energy over a period of time for open systems,
closed systems, and isolated systems.

2. Write a general equation that relates the change
in mechanical energy in systems to the amount
of work done on it and the amount of heat lost
by it.

3. You wind up the spring of a toy car and then
release it so that it travels up a ramp. Describe
all of the energy transformations that take
place. 

4. Compare how the everyday notion of work as
“exerting energy to complete a task” differs
from the physical definition of work. 

5. Explain the sign convention for designating
whether work is being done by an object on its
environment or whether the environment is
doing work on an object.

6. (a) Explain whether work done by a frictional
force on an object can be positive.

(b) Explain when the work done by the restor-
ing force of a spring on a mass is considered
to be positive and when it is considered to
be negative with respect to the mechanical
energy of the mass. 

(c) Discuss your answers to the above questions
in terms of conservative and non-conserva-
tive forces. 

7. Define and give an example of periodic motion.

Inquiry
8. Imagine taking a spring of 10 coils and cutting

it in half. Will each smaller spring have a
smaller, larger, or the same spring constant as
the larger spring? (Hint: Consider the force
required to compress the large and small
springs by the same amount.) 
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� Work is defined as the product of force times
displacement. In general, if the force acts at an
angle (θ) to the displacement, the work done
by the force is given by W = F∆d cos θ .

� The work done by an applied force equals 
the change in energy produced by that applied
force.

� Kinetic energy is expressed as Ek = 1
2 mv2.

� Gravitational potential energy for positions
near Earth’s surface is expressed as Eg = mg∆h .

� An isolated system is one that neither gains
energy from its environment nor loses energy
to its environment.

� The law of conservation of energy states that,
in an isolated system, the total energy is 
conserved, but can be transformed from one
form to another.

� For an ideal spring, the restoring force is 
proportional to the amount of extension or
compression of the spring. This is expressed
as F = −kx, where k is the spring constant. 

The applied force that causes the spring to
stretch (or compress) is equal in magnitude
and opposite in direction to the restoring
force: Fa = kx

� The amount of elastic potential energy stored
in a spring is equal to the area under the 
force-extension (or compression) graph for the 
spring. It can be calculated from Ee = 1

2 kx2.
� Applied forces are conservative if the amount

of work that they do on an object as it moves
between two points is independent of the path
of the object between those points. 

� Applied forces are non-conservative if the
amount of work that they do on an object as it
moves between two points is dependent on
the path of the object between those points. 

� Work done by an object on its environment is
negative work and decreases the total energy
of that object. Work done on an object by its
environment is positive work and increases
the total energy of the object.

REFLECTING ON CHAPTER 5



9. A basic clock consists of an oscillator and a
mechanism that is “turned” by the oscillator 
(to count the oscillations). Design a clock based
on a simple pendulum or other oscillating
device, using readily available materials. If 
possible, construct the clock and determine 
its accuracy. Even if you are not successful in
constructing a functional clock, outline the
technological challenges that you encountered.

10. The transformation of energy between kinetic
and potential forms in an ideal simple harmon-
ic oscillator can be modelled mathematically by
writing a total mechanical energy equation for
specified points during its motion. Consider a
spring attached to a wall at floor level. A block
of wood is attached to the other end of the
spring so that the block can oscillate across the
floor in a horizontal plane. Assume that the
floor is frictionless. Set a frame of reference 
for the spring so that the equilibrium position
of the system is x = 0 and the maximum 
displacements of the block is x = −A and
x = +A. Set the block of wood in motion by
pulling it back to position +A. 
(a) Write expressions for the total energy of the

system at points –A, +A, and zero. 
(b) At which of the three above points is the

kinetic energy at its maximum and at its 
minimum?

(c) At which of the three points is the velocity
at its maximum and at its minimum?

(d) Sketch a graph of energy versus position
with individual curves for the elastic 
potential energy and the kinetic energy 
of the block as it oscillates. What is the 
geometrical shape of each curve? 

(e) Sketch a velocity-versus-position graph.
11. Bowling balls need to be returned promptly

from the end of the alley so that they can be
used again. Sketch a ball-return system that
requires no external energy source. Explain the
energy transformations involved in the opera-
tion of your system. Identify the conservative
and non-conservative forces that need to be

taken into consideration. What features does
the design include to minimize wear and tear
on the bowling balls, despite their large mass? 

Communication
12. Imagine that you are moving a negatively

charged sphere toward a Van de Graaff genera-
tor. As you bring the sphere closer, does the
energy of the system increase or decrease?
Explain your reasoning.

13. Each of three stones is displaced to a vertical
height of h. Stone R is placed on the top of a
ramp, stone P is at the end of a taut pendulum
string, and stone G is simply held above the
ground. Do each of these stones have the same
gravitational potential energy? 
(a) If frictional forces are neglected, will each

stone have the same kinetic energy at the
instant before it reaches the bottom of its
path? Explain your reasoning. 

(b) If you consider likely frictional forces, will
each stone have the same kinetic energy at
the instant before it reaches the bottom of 
its path?

(c) Use the above two examples to differentiate
between conservative and non-conservative
forces.

14. A child descends a slide in the playground.
Write expressions to show the total mechanical
energy of the child at the top, halfway down,
and at the bottom of the slide. Write a mathe-
matical expression that relates the energy total
at the three positions.

Making Connections
15. When stretched or compressed, a spring stores

potential energy. Make a list of other common
devices that store potential energy when 
temporarily deformed. 

16. Research and write a brief report about how
chemists use the concept of ideal springs to
model the action of the bonds holding atoms
together in molecules.
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17. Car bumper systems are designed to absorb 
the impact of slow-speed collisions in such 
a way that the vehicles involved sustain no 
permanent damage. Prepare a presentation on
how a bumper system works, including an
explanation of the energy transformations
involved. 

Problems for Understanding
18. A 0.80 kg block of wood has an initial velocity

of 0.25 m/s as it begins to slide across a table.
The block comes to rest over a distance of 
0.72 m.
(a) What is the average frictional force on the

block? 
(b) How much work is done on the block by

friction? 
(c) How much work is done on the table by 

the block?

19. A 1.5 kg book falls 1.12 m from a table to the
floor. 
(a) How much work did the gravitational force

do on it? 
(b) How much gravitational potential energy

did it lose? 

20. A 175 kg cart is pushed along level ground for
18 m, with a force of 425 N, and then released. 
(a) How much work did the applied force do on

the cart? 
(b) If a frictional force of 53 N was acting on the

cart while it was being pushed, how much
work did the frictional force do on the cart?

(c) Determine how fast the cart was travelling
when it was released.

(d) Determine how far the cart will travel after
it is released.

21. A man is pushing a 75 kg crate at constant
velocity a distance of 12 m across a warehouse.
He is pushing with a force of 225 N at an angle
of 15˚ down from the horizontal. The coefficient
of friction between the crate and the floor is
0.24. How much work did the man do on the
crate?

22. A boy, starting from rest, does 2750 J of work to
propel himself on a scooter across level ground.
The combined mass of the boy and scooter is
68 kg. Assume friction can be neglected.
(a) How fast is he travelling?
(b) What is his kinetic energy?
(c) If he then coasts up a hill, to what vertical

height does he rise before stopping? 

23. While coasting on level ground on a bicycle,
you notice that your speed decreased from 
12 m/s to 7.5 m/s over a distance of 50.0 m. 
If your mass combined with the bicycle’s mass
is 65 kg, calculate the average force that 
opposes your motion.

24. A 0.50 kg air puck is accelerated from rest with
a force of 12.0 N. If the force acts over 45 cm
and the surface is frictionless, how fast is the
puck going when it is released?

25. If 25 N are required to compress a spring 
5.5 cm, what is the spring constant of the
spring? 

26. (a) What is the change in elastic potential 
energy of a spring that has a spring constant
of 120 N/m if it is compressed by 8.0 cm? 

(b) What force is required to compress the
spring by 8.0 cm? 

27. A 0.500 kg mass resting on a frictionless 
surface is attached to a horizontal spring with a
spring constant of 45 N/m. When you are not
looking, your lab partner pulls the mass to one
side and then releases it. When it passes the
equilibrium position, its speed is 3.375 m/s.
How far from the equilibrium position did your
lab partner pull the mass before releasing it?

28. A mass m1 is hung on a spring and stretches
the spring by x = 10.0 cm. What is the spring
constant in terms of the variables? 

29. A dart gun has a spring with a constant of 
74 N/m. An 18 g dart is loaded into the gun,
compressing the spring from a resting length 
of 10.0 cm to a compressed length of 3.5 cm. 
If the spring transfers 75% of its energy to the
dart after the gun is fired, how fast is the dart
travelling when it leaves the gun? 
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30. A 12 g metal bullet (specific heat capacity:
c = 669 J/kg˚C) is moving at 92 m/s when it
penetrates a block of wood. If 65% of the work
done by the stopping forces goes into heating
the metal, how much will the bullet’s tempera-
ture rise in the process? 

31. Consider a waterfall that is 120 m high. How
much warmer is the water at the bottom of the
waterfall than at the top? (The specific heat of
water is 4186 J/kg ˚C.)

32. A spring with a constant of 555 N/m is attached
horizontally to a wall at floor level. A 1.50 kg
wooden block is pushed against it, compressing
the spring by 12 cm, and then released.
(a) How fast will the block be travelling at the

instant it leaves the spring? (Assume that
friction can be ignored and that the mass of
the spring is so small that its kinetic energy
can be ignored.)

(b) If the block of wood travels 75 cm after
being released and then comes to rest, what
friction force opposes its motion?

33. A simple pendulum swings freely and rises at
the end of its swing to a position 8.5 cm above
its lowest point. What is its speed at its lowest
point? 

34. A 50.0 g pen has a retractable tip controlled 
by a button on the other end and an internal
spring that has a constant of 1200 N/m.
Suppose you hold the pen vertically on a table
with the tip pointing up. Clicking the button
into the table compresses the spring 0.50 cm.
When the pen is released, how fast will it rise
from the table? To what vertical height will it
rise? (Assume for simplicity that the mass of
the pen in concentrated in the button.)

35. A spring with a spring constant of 950 N/m is
compressed 0.20 m. What speed can it give to 
a 1.5 kg ball when it is released? 

36. A basketball player dunks the ball and momen-
tarily hangs from the rim of the basket. Assume
that the player can be considered as a 95.0 kg
point mass at a height of 2.0 m above the floor.
If the basket rim has a spring constant of
7.4 × 103 N/m, by how much does the player
displace the rim from the horizontal position? 

37. A 35 kg child is jumping on a pogo stick. If the
spring has a spring constant of 4945 N/m and it
is compressed 25 cm, how high will the child
bounce? (Assume that the mass of the pogo
stick is negligible.)

38. A spring with a spring constant of 450 N/m
hangs vertically. You attach a 2.2 kg block to 
it and allow the mass to fall. What is the 
maximum distance the block will fall before 
it begins moving upward? 

39. A 48.0 kg in-line skater begins with a speed of
2.2 m/s. Friction also does –150 J of work on
her. If her final speed is 5.9 m/s, 
(a) determine the change (final − initial) 

in her gravitational potential energy. 
(b) By how much, and in which direction 

(up or down), has her height changed? 
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C H A P T E R

Energy and 
Motion in Space6

Master jugglers can keep as many as eight plates or seven
flaming torches airborne and under perfect control at the

same time. Amazing muscle and hand-eye co-ordination enables
the launching of each object with precisely the right kinetic 
energy. Opposing Earth’s gravitational attraction, this energy
allows the object to free fall for a precise interval, returning to the
height of the juggler’s hand at just the right time and location to be
caught and passed to the other hand for another toss.

Launching a missile or an Earth satellite is much like juggling.
Work done against gravitational forces partially overcomes Earth’s
attraction and allows the object to follow a planned trajectory or to
be inserted into a previously defined orbit. With even more initial
energy, a space probe can eventually escape from Earth’s orbit — or
even from the solar system entirely. Successful launches depend on
calculating, modelling, and simulating the energies needed to
attain orbits or trajectories with specific shapes and sizes.

Your investigations of impulse, momentum, work, and energy
have given you many of the mathematical tools needed to analyze
energy and motion in space. In this chapter, you will refine your
concept of gravitational potential energy, find out how much work
must be done to boost an object away from a planet’s surface, and
investigate the energy of satellites in orbit. 

Quick Lab
Escape from 
a Planetoid 229

6.1 Energy for Lift-Off 230

6.2 Energy of 
Orbiting Satellites 236

6.3 Energy and 
Momentum in Space 250

Investigation 6-A
Superball™ Boost 257

CHAPTER CONTENTS
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� Newton’s law of universal 
gravitation

� Potential energy

� Centripetal force

� Kinetic energy

PREREQUISITE

CONCEPTS AND SKILLS



Q U I C K

L A B

Escape from 
a Planetoid

TARGET SKILLS

Analyzing and interpreting
Communicating results
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Imagine that you are stationed on a spherical
planetoid (a small planet-like object) somewhere
in space. The planetoid has a mass of
1.0 × 1022 kg and a radius of 1.0 × 106 m. 
You want to send a small 6.0 kg canister off into
space so that it will escape the gravity of the
planetoid and not fall back to the surface. You
can accomplish this task by estimating the
amount of work that must be done to lift the
canister to 10 times the radius of the planet.
You cannot use the formula W = F∆d cos θ ,
because the force changes with the distance
from the centre of the planet. Therefore, you
will need to use a graphical method, such as 
the one described in the following steps.

� Prepare a table with two headings: Distance
from the centre of the planetoid (d), and
Gravitational force (N). In the first column,
write the following distances: 1.0 × 106 m,
2.0 × 106 m, 3.0 × 106 m, and so on, up to
10.0 × 106 m. (Notice that these values are
multiples of the radius of the planetoid,
where 1.0 × 106 m represents the surface 
of the planetoid.) 

� Calculate the force of gravity on the 6.0 kg
canister for each of these distances.

� Plot the graph of gravitational force (y-axis)
against distance from the centre of the plane-
toid. Since your graph is of force versus 
position, the area under the graph 
represents the amount of work required to
move the canister to a separation of 10 radii
(9 radii from the surface). Graphically 
determine the area under the curve and, 
thus, the amount of work done. 

Note: There are several ways to find the area
under the graph. One is to determine the

graphical area represented by each square and
then count the number of squares under the
curve. Where the curve actually crosses a
square, include the square if half or more of it
is under the curve. Another method is to
divide the area up into different regions and
approximate their areas by using figures such 
as trapezoids and triangles.

Analyze and Conclude
1. If the canister has been lifted a distance of 

10 radii and remains there, what type of
energy does the area under the curve 
represent?

2. To launch the canister so that it will be able
to travel straight out to a separation of 
10 radii, how much kinetic energy must it 
be given at the start? From this kinetic 
energy, determine the required speed that
would allow the canister to reach this 
separation.

3. The gravitational force that is trying to pull
the canister back is extremely small at a 
separation of 10 radii. With only slightly
more speed, the canister would never return
to the planetoid, so the speed that you found
is essentially the escape speed for the plane-
toid. What is the escape speed for this 
planetoid?

Apply and Extend
4. Considering the energies involved, does the

canister have to be thrown straight up at its
escape speed for it to be able to escape? 
Give reasons for your answer.



Did you know that it takes almost 10 t of fuel for a large passenger
jet to take off? It is hard to even imagine the amount of energy
required for a rocket or space shuttle to lift off. How do the 
engineers and scientists determine these values?

The energy to hurl this spacecraft into 
orbit comes from the chemical potential energy of the fuel.

Work for Lift-Off
One way to determine the amount of energy needed to carry out a
particular task is to determine the amount of work that you would
have to do. When a spacecraft is lifting off from Earth, the force
against which it must do work is the force of gravity. 

In Chapter 3, Planetary and Satellite Dynamics, you learned that

the equation for the gravitational force is Fg = G m1m2
r2 . When 

working with a planet and a small object, physicists often use M
for the planet and m for the small object. You can then write the 

equation as Fg = G Mm
r2 . In the Quick Lab, Escape from a Planetoid,

you used this expression for force and multiples of the radius of 

Figure 6.1

Energy for Lift-Off6.1
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• Calculate the generalized 
gravitational potential energy
for an isolated system involving
two objects, based on the law
of universal gravitation.

• Determine the escape speed
for a given celestial object.

• Develop appropriate scientific
models for natural phenomena.

• escape energy

• binding energy

• escape speed

 T E R M S
K E Y

E X P E C T A T I O N S
S E C T I O N

Gravity and Orbiting Spacecraft
Many people believe that gravity
does not act on orbiting space-
craft. In fact, a satellite such as
the International Space Station
Freedom still has about 80% of 
its initial weight. The impression
of weightlessness comes from
the fact that the weight is being
used to hold the space station in
its orbit. If there was no weight, it
would simply continue to move
off into space.

MISCONCEPTION



Wtotal =
√

F1Fb(b − r1) +
√

FbFd(d − b) +
√

FdF2(r2 − d)

Wtotal =
√

GMm
r1

2 · GMm
b2 (b − r1) +

√
GMm

b2 · GMm
d2 (d − b) +

√
GMm

d2 · GMm
r2

2 (r2 − d)

Wtotal = GMm
r1b

(b − r1) + GMm
bd

(d − b) + GMm
dr2

(r2 − d)

Wtotal = GMm
( b − r1

r1b
+ d − b

bd
+ r2 − d

dr2

)
Wtotal = GMm

( 1
r1

− 1
b

+ 1
b

− 1
d

+ 1
d

− 1
r2

)
Wtotal = GMm

( 1
r1

− 1
r2

)

� You could simplify this equation if
you could express the forces in terms
of the points on the curve at the ends
of the rectangles, instead of the centre.
For example, how can you express Fa

in terms of F1 and Fb? Clearly, Fa is
not the average or arithmetic mean of
F1 and Fb, because the curve is an
exponential curve. However, it can be
accurately expressed as the geometric
mean, which is expressed as 

√
F1Fb.

Substitute the geometric mean of each
value for force into the equation for
work. Notice that in the last step, all
intermediate terms have cancelled
each other and only the first and last
terms remain.

Wtotal = We + Wc + Wa

Wtotal = Fa(b − r1) + Fc(d − b) + Fe(r2 − d)

� A first rough estimate of the total
work done to move m from r1 to r2

will be the sum of the areas of the 
rectangles.

Position

F
or

ce
Fe

F2

Fd

Fc

Fb

Fa

F1

a b c d er1 r2

� Draw a graph of gravitational force
versus position, where the origin of
the graph lies at the centre of the
planet. 

� Choose points r1 and r2. Divide the
axis between r1 and r2 into six equal
spaces and label the end point “a”
through “e.”

� Draw three rectangles with heights Fa,
Fc, and Fe.
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the planetoid for position, and then estimated the area under the
curve of force versus position to estimate the amount of work
needed to escape from the planetoid. However, if you were an
engineer working for the space program, you would want a much
more accurate value before you launched a spacecraft. In the 
following derivation, you will develop a general expression for the
area under the curve of Fg versus r from position r1 to r2. This area
will be the amount of work needed to raise an object such as a
spacecraft of mass m from a distance r1 to a distance r2 from the
centre of a planet of mass M. 



r1 r2
Position

F
or

ce

� At first consideration, this result
would appear to be a rough estimate.
However, consider the fact that you
could make as many rectangles as 
you want. Examination of the figure
on the right shows that as the number
of rectangles increases, the sum of
their areas becomes very close to the
true area under the curve. If you drew
an infinite number of rectangles, your
result would be precise. Now, analyze
the last two mathematical steps above.
No matter how many rectangles you
drew, all of the intermediate terms
would cancel and the result would be
exactly the same as the result above.
In this case, the result above is not an
approximation but is, in fact, exact.
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The arithmetic mean of two values, m
and n, is m + n

2
. The geometric mean

is 
√

mn.

MATH LINK

Escape speed is often referred to
as “escape velocity.” However,
since the direction in which the
escaping object is headed has 
no effect on its ability to escape
(unless it is headed into the
ground), the correct term is
“escape speed.”

PHYSICS FILE

Escape Energy and Speed
You can now use the equation that you just derived — 

Wtotal = GMm
( 1

r1
− 1

r2

)
— to determine the amount of energy 

needed by a spacecraft to escape from Earth’s gravitational pull.
Let r1 be Earth’s radius so that the spacecraft will be sitting on the
ground. Let r2 be so far out into space that the force of gravity 

is negligible. Notice that as r2 becomes exceedingly large, 1
r2

approaches zero, so the equation for the amount of work that 
must be done to free the spacecraft from the surface of the planet
is Wto escape = GMm/r1 . 

Work represents the change in energy that, in this case, is the
amount of energy that a spacecraft would need to escape Earth’s
gravity. When a spacecraft blasts off from Earth, that amount of
energy is provided as kinetic energy through the thrust of the
engines. If the spacecraft is to escape Earth, therefore, it must be
provided with at least GMm/r1 J of kinetic energy, which probably
come from GMm/r1 J of chemical potential energy in the fuel. For
this reason, the quantity GMm/r1 is known as the escape energy
for the spacecraft. If a spacecraft has any less energy, you could
say that it is bound by Earth’s gravity. Therefore, you can think of
the value GMm/r1 as the binding energy of the spacecraft to Earth.

Typically, when a spacecraft lifts off, rockets fire, the craft lifts
off, and the rockets continue to fire, accelerating the spacecraft as
it rises. However, you can often obtain important information by
considering the extreme case. For example, if all of the escape
energy must be provided as initial kinetic energy at the moment 
of lift-off, what would be the spacecraft’s initial speed?
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This equation gives the escape speed, the minimum speed at the
surface that will allow an object to leave a planet and not return.
Notice that the speed does not depend on the mass of the escaping
object.

Quantity Symbol SI unit

escape speed v m
s

(metres per second)

mass of planet M kg (kilograms)

radius of planet rp m (metres)

universal gravitational
constant G N · m2

kg2 (newton metres
squared per
kilograms
squared)

Unit Analysis

m
s

=

√
N · m2

kg2 · kg

m
=

√
kg · m

s2 · m
kg

=
√

m2

s2 = m
s

v =
√

2GM
rp

ESCAPE SPEED
The escape speed of an object from the surface of a planet 
is the square root of two times the product of the universal 
gravitational constant and the mass of the planet divided by
the radius of the planet.

v2 = 2GMm
mrp

v =

√
2GM

rp

� Solve for v.

1
2

mv2 = GMm
rp

� The initial kinetic energy of the
spacecraft would have to be equal
to the escape energy. Let rp be the
radius of the planet.

Escaping from Earth
Determine the escape energy and escape speed for a 1.60 × 104 kg
rocket leaving the surface of Earth.

SAMPLE PROBLEM 

continued
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Conceptualize the Problem
� Escape speed is the speed at which a spacecraft would have to be

lifting off Earth’s surface in order to escape Earth’s gravity with no
additional input of energy.

� You can find the radius and mass of Earth in Appendix B,
Physical Constants and Data.

Identify the Goal
The escape energy, Eescape, and escape speed, vescape, for a rocket from Earth

Identify the Variables and Constants
Known Implied Unknown
mrocket = 1.60 × 104 kg G = 6.673 × 10−11 N · m2

kg2

rEarth = 6.38 × 106 m
mEarth = 5.98 × 1024 kg

Eescape

vescape

Develop a Strategy

The escape energy for this rocket is 1.00 × 1012 J and its escape
speed is 1.12 × 104 m/s or 11.2 km/s.

Validate the Solution

A unit analysis escape energy shows 
N · m2

kg2 · kg · kg

m
= N · m2 · kg2

kg2 · m
= N · m = J

which is correct for energy. A unit analysis for escape speed shows √
N · m2

kg2 · kg

m
=

√
N · m2 · kg

m · kg2 =
√

kg · m
s2 · m

kg
=

√
m2

s2 = m
s

which is correct 

for speed. A value of a few km/s agrees with the types of speeds observed 
during rocket lift-offs.

vescape =
√

2GMEarth
rEarth

vescape =

√
2
(
6.673 × 10−11 N · m2

kg2

)
(5.98 × 1024 kg)

6.38 × 106 m

vescape = 1.1184 × 104 m
s

vescape ≅ 1.12 × 104 m
s

State the equation for escape
speed. Substitute and solve.

Eescape = GMEarthmobject

rEarth

Eescape =

(
6.673 × 10−11 N · m2

kg2

)
(5.98 × 1024 kg)(1.60 × 104 kg)

6.38 × 106 m

Eescape = 1.00 × 1012 J

State the equation for escape 
energy. Substitute and solve.

continued from previous page
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6.1 Section Review

1. State the equations for escape energy
and escape speed. Indicate the meaning of
each factor and the appropriate units for each
factor.

2. Prove from basic energy equations that
the escape speed for an object from the sur-
face of a planet is independent of the mass of
the object.

3. Explain the meaning of (a) escape ener-
gy, (b) escape speed, and (c) binding energy.

4. Sketch graphs to show how the escape
speed from a planet varies with 

(a) the mass of the planet for constant 
planetary radius

(b) the radius of the planet for constant 
planetary mass

(c) the mass of the escaping object from a
given planet

5. What factors would make the actual 
energy that must be provided in the form of

fuel greater than the escape energy? Explain
the role of each factor.

6. Look up the meaning of the term “bond
energy”as it applies to bonds between the
atoms in a diatomic molecule. How does the
concept of bond energy relate to the concept
of escape energy?

MC

C

C

K/U

I

K/U

Space-based energy schemes have for a long
time been promoted as the environmentally
friendly way to provide energy of the future.
Understanding the physics concepts of low
Earth orbit provides you with a method of
judging each scheme’s feasibility.
� List environmental factors involved in 

getting into Earth orbit.
� How do you envision space travel in the

near future? 
� Do you believe that environmental or other

factors will motivate more space-based
power initiatives?

UNIT PROJECT PREP

1. Determine the escape energy and escape
speed for an asteroid with a mass of
1.00 × 1022 kg and a radius of 1.00 × 106 m.
How closely does your answer for escape
energy compare to the value obtained by
finding the area under the force-separation
graph in the Quick Lab at the beginning of
this chapter? 

2. Calculate the escape energy and escape
speed for a 15 g stone from Mars. Such
stones have been blasted off the surface of
Mars by meteor impacts and have fallen to
Earth, where they are found preserved in the
snow and ice of the Antarctic. The mass of
Mars is 6.42 × 1023 kg and the radius of Mars
is 3.38 × 106 m.

3. The Pioneer 10 spacecraft, shown in the
photo, was the first to journey beyond Jupiter
and is now well past Pluto. To escape from
the solar system, how fast did Pioneer 10
have to be travelling as it passed the orbit of
Jupiter? Assume that the mass of the solar
system is essentially concentrated in the
Sun. The mass of the Sun is 1.99 × 1030 kg
and the radius of Jupiter’s orbit is
7.78 × 1011 m.

PRACTICE PROBLEMS



The rockets that launched Voyager 1 and Voyager 2, were designed
to escape Earth’s gravity and send them into space to search the
solar system. The Voyager craft have found such things as new
moons orbiting Jupiter, Saturn, Uranus, and Neptune. They have
also discovered volcanoes on Io and rings around Jupiter.
However, the majority of satellites are launched into Earth’s orbit
and will remain captive in Earth’s gravitational field, destined to
circle the planet year after year and perform tasks of immediate
importance to people on Earth. 

Satellites in Earth Orbit
Some of these satellites monitor the weather, the growth and
health of crops, the temperature of the oceans, the presence 
of ice floes, and the status of the ozone layer. Others actively 
scan Earth’s surface with radar to enhance our knowledge of the
geography and geology of our planet. These days, many people
routinely use satellites to tell them where they are (for example,
the Global Positioning System) and to provide them with mobile
communication and seemingly limitless television entertainment. 

Other satellites look outward, monitoring regions of the 
electromagnetic spectrum that cannot pass easily through Earth’s
atmosphere. In doing so, they tell us about our own solar system,
as well as other solar systems, stars, and galaxies located many
light-years away from us.

The largest artificial satellite in Earth’s orbit is the International
Space Station. During its construction and lifetime, it has been
serviced from other temporary satellites, the space shuttles. For
these shuttles to rendezvous successfully with the space station,
teams of scientists, engineers, and technicians must solve prob-
lems involving the orbital motions and energies that are the 
subject of this section.

Most satellites are in either a circular orbit or a near-circular
orbit. In Chapter 3, you learned how the force of gravity acts as a
centripetal force, holding each satellite in its own unique orbit.
You learned how to calculate the orbital speeds of the satellites
that orbit at specific radii. In this section, you will focus on the
energies of these satellites.

Energy of 
Orbiting Satellites6.2
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• Analyze the factors affecting
the motion of isolated celestial
objects, and calculate the 
gravitational potential energy
for such a system.

• Analyze isolated planetary and
satellite motion and describe it
in terms of the forms of energy
and energy transformations 
that occur.

• Calculate the kinetic and 
gravitational potential energy 
of a satellite that is in a stable
circular orbit around a planet.

• circular orbit

• total orbital energy

 T E R M S
K E Y

E X P E C T A T I O N S
S E C T I O N



Orbital Energies 
The orbital energy of a satellite consists of two components: its
kinetic energy and its gravitational potential energy. To a great
extent, the Earth-satellite system can be treated as an isolated 
system. Subtle effects, such as the pressure of light, the solar
wind, and collisions with the few atmospheric molecules that
exist at that distance from the surface, can change the energy of
the system. In fact, without the occasional boost from a thruster,
the orbits of all satellites will decay. However, this generally takes
decades. These effects are so tiny over the short run that you will
neglect them in the following topics.

The kinetic energy of an orbiting satellite of mass m is Ek = GMm
2r

.

Ek = GMm
2r

� Since 1
2 mv2 is the kinetic energy 

of any object of mass m, you can
substitute Ek for the expression.

1
2 mv2 = GMm

2r
� Multiply both sides of the equation

by 1
2 .

mv2r
r

= GMm
r2 r

mv2 = GMm
r

� Multiply both sides of the equation
by r.

mv2

r
= GMm

r2

� Write the relationship that 
represents a planet’s gravity 
providing a centripetal force.
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A thorough
understanding of orbital
mechanics is necessary for
a successful rendezvous
with the space station or
with any other satellite.

Figure 6.2



Gravitational Potential Energy
In Chapter 5, Conservation of Energy, you demonstrated that the
change in the gravitational potential energy of an object was equal
to the work done in raising the object from one height to another.
That relationship (W = mg∆h ) was the special case, where any
change in height was very close to Earth’s surface. Since you are
now dealing with objects being launched into space, you cannot
use the special case. You must consider the change in the force of
gravity as the distance from Earth increases. Fortunately, however,
you have already developed an expression for the amount of work
required to lift an object from a distance r1 to a distance r2 from
Earth’s centre. Therefore, the result of your derivation is equal to
the change in the gravitational potential energy between those two
positions. 

∆Eg = GMm
( 1

r1
− 1

r2

)

As you know, you must choose a reference point for all forms 
of potential energy. Earth’s surface in no longer an appropriate 
reference, because you are measuring distances from Earth’s centre
to deep into space. Physicists have accepted the convention of
assigning the reference or zero point for gravitational potential
energy as an infinite distance from the centre of the planet or other
celestial body that is exerting the gravitational force on the object
of mass m. This is appropriate because at an infinite distance, the
gravitational force goes to zero. You can now state that the gravita-
tional potential energy of an object at a distance r2 from Earth’s
centre is the amount of work required to move an object from an
infinite distance, r1, to r2. 

Eg = GMm
( 1

∞ − 1
r2

)
Eg = GMm

(
0 − 1

r2

)
Eg = − GMm

r2

Since there is only one distance (r2) in the equation, it is often
written without a subscript. Notice, also, that the value is negative.
This is simply a result of the arbitrary choice of an infinite dis-
tance for the reference position. You will discover as you work
with the concept that it is a fortunate choice.
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It might seem odd that the potential energy is always negative.
Since changes in energy are always of interest, however, these
changes will be the same, regardless of the location of the zero
level. 

To illustrate this concept, consider the houses in the Loire
Valley in France that are carved out of the face of limestone cliffs
as shown in Figure 4.3(B). To the person on the cobblestone street,
everyone on floors A, B, and C in Figure 6.3(A) would have posi-
tive gravitational energy, due to their height above the street.
However, to a person on floor B, those on floor A are at a negative
height, and so have negative gravitational potential energy relative
to them. At the same time, the person on floor B would consider

Quantity Symbol SI unit

gravitational potential
energy Eg J (joules)

universal gravitational
constant G N · m2

kg2 (newton metres
squared per
kilograms
squared)

mass of the planet or
celestial body M kg (kilograms)

mass of the object m kg (kilograms)

distance from centre of
planet or celestial body r m (metres)

Unit Analysis

joule =
newton · metre2

kilogram2 · kilogram · kilogram

metre

J =
N · m2

kg2 · kg · kg

m
= N · m = J

Note: Use of this equation implies that the reference or zero
position is an infinite distance from the planet or celestial body.

Eg = − GMm
r

GRAVITATIONAL POTENTIAL ENERGY
The gravitational potential energy of an object is the negative
of the product of the universal gravitational constant, the mass
of the planet or celestial body, and the mass of the object,
divided by the distance from the centre of the planet or 
celestial body.
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that people on floor C would have a positive gravitational potential
energy because they are higher up the cliff.

Naturally, the person standing on the roof beside the chimney
would consider that everyone in the house had negative gravita-
tional potential energy. All of the residents would agree, however,
on the amount of work that it took to carry a chair up from floor A
to floor C, so the energy change would remain the same, regardless
of the observer’s level. At the same time, a book dropped from a
window in floor B would hit the ground with the same kinetic
energy, regardless of the location of the zero level for gravitational
potential energy.

Figure 6.4 is a graph of the gravitational potential energy of 
a 1.0 kg object as it moves away from Earth’s surface. Since work
must be done on that object to increase the separation, the object
is often referred to as being in a gravitational potential energy
“well.”

Since work must be done on the 1.0 kg object to 
move it away from Earth, although the gravitational potential 
energy is always negative, it is increasing (becoming less 
negative) as it retreats farther and farther from Earth.

Figure 6.4
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In summary, the energies of orbiting objects can be expressed as 

Eg = − GMm
r

Ek = GMm
2r

Adding, you obtain

Etotal = Ek + Eg

Etotal = GMm
2r

+
(

− GMm
r

)

Etotal = − GMm
2r

The last equation, the total orbital energy, involves only the
mechanical energies — gravitational potential energy and kinetic
energy. Other forms of energy, such as thermal energy, are not 
considered unless the satellite comes down in flames through 
the atmosphere. 

You can obtain key information by determining whether the
total orbital energy of an object is positive, zero, or negative. First,
consider the conditions under which an object would have zero
total orbital energy around a central object, such as a planet or
star.

If an object is so far from Earth that gravity cannot pull it back,
its gravitational potential energy is zero. If the object is motionless
at that point, its kinetic energy is also zero, which gives a total
energy of zero. The total orbital energy could also be zero if the
magnitude of the kinetic and potential energies were equal. Under
these conditions, the kinetic energy would be just great enough to
carry the object to a distance at which gravity could no longer pull
it back. It would then have no kinetic energy left and it would be
motionless. By a similar analysis, you could draw all of the 
following conclusions.

� If the total of the kinetic and gravitational potential energies of
an object is zero, it can just escape from the central object.

� If the total of the kinetic and gravitational potential energies of
an object is greater than zero, it can escape from the central
object and keep on going. 

� If the total of the kinetic and gravitational potential energies of
an object is less than zero, it cannot escape from the central
object. It is said to be bound to the object. 

The extra energy needed to free the object is called the binding
energy. Since the object will be free with a total energy of zero, 
the binding energy is always the negative of the total energy:
Ebinding = −Etotal . 

Fire a cannon ball into space? In 
the early 1960s, Project HARP (High
Altitude Research Project) did just
that. Scientists at McGill University 
in Montréal welded two U.S. Navy
cannon barrels together into a “super-
gun” that fired 91 kg instrumentation
packages to a height of more than 
145 km from a launch site on the
Caribbean island of Barbados.

HARP cannon
Photo courtesy from the web sites:
http://www.phy6.org/stargaze/Smartlet.htm
and http://www-istp.gsfc.nasa.gov/stargaze/
Smartlet.htm taken by Peter Millman.

TECHNOLOGY LINK



The orbital energy equations also have some informative simple
relationships among themselves, as listed below.

By comparing the last two equations, you can see that the 
satellite in a circular orbit close to the planet already has half of
the energy it needs to completely escape from that planet. The 
following problems will help you to develop a deeper understand-
ing of orbital energies.

Ebinding = GMm
2r

� At the planet’s surface, the
energy needed to break free
was seen in Section 6.1 to be

Ek = GMm
2r

� If a satellite is in an orbit close
to the planet, the radius of the
orbit is essentially the same as
the radius of the planet:
rorbit ≅ rplanet ≅ r .

|Eg| = 2|Ek| = 2|Et| = 2|Ebinding|

� The magnitude of the gravita-
tional potential energy is twice
that of the other energies.

|Ek| = |Et| = |Ebinding|

� The magnitudes of the kinetic
energy, the total energy, and the
binding energy of an orbiting
object are the same 
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Space Problems
1. On March 6, 2001, the Mir space station was deliberately

crashed into Earth. At the time, its mass was 1.39 × 103 kg and
its altitude was 220 km.

(a) Prior to the crash, what was its binding energy to Earth?

(b) How much energy was released in the crash? Assume that 
its orbit was circular.

Conceptualize the Problem
� When Mir was in Earth orbit, it had kinetic and gravitational

potential energy, both of which are determined by its orbital
radius.

� Mir’s binding energy is the negative of its total energy.

� After the crash, Mir had zero kinetic energy.

SAMPLE PROBLEMS



� The law of conservation of energy applies; therefore, the energy
released in the crash is the difference between the total energy in
orbit and the total energy when resting on Earth’s surface.

Identify the Goals
The binding energy, Ebinding, of the Mir space station to Earth

The energy released during the crash of the Mir space station

Identify the Variables and Constants
Known Implied Unknown
m = 1.39 × 103 kg (Mir)

h = 2.20 × 105 m

G = 6.673 × 10−11 N · m2

kg2

M = 5.978 × 1024 kg (Earth)

rEarth = 6.378 × 106 m

Etotal in orbit

Ebinding in orbit

Eg on ground

∆Etotal

Develop a Strategy

(a) The binding energy of the Mir space station in orbit was 4.20 × 1010 J. 

Ek = 0 J

Eg = − GMm
r

Eg = −

(
6.673 × 10−11 N · m2

kg2

)(
5.978 × 1024 kg

)(
1.39 × 103 kg

)
6.378 × 106 m

Eg = −8.6938 × 1010 J

Etotal = Ek + Eg

Etotal = 0 J − 8.6938 × 1010 J

Etotal = −8.6938 × 1010 J

Calculate the mechanical energy
after the crash. Note that when
Mir was on Earth’s surface, its
kinetic energy was zero.

Ebinding = +4.2019 × 1010 J

Ebinding ≅ +4.20 × 1010 J

Binding energy is the negative
of the total energy.

Et = − GMm
2r

Et = −

(
6.673 × 10−11 N · m2

kg2

)(
5.978 × 1024 kg

)(
1.39 × 103 kg

)
2
(
6.598 × 106 m

)
Et = −4.2019 × 1010 J

Calculate the total orbital 
energy before the crash.

rorbit = rearth + hfrom Earth

rorbit = 6.378 × 106 m + 2.20 × 105 m

rorbit = 6.598 × 106 m

Determine the orbital radius.
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(b) When Mir crashed, 4.49 × 1010 J of energy were released into the 
environment.

Validate the Solution
The final answer is negative, which indicates a decrease in the energy
of the system or a loss of energy to the environment.

2. A 4025 kg spacecraft (including the astronauts) is in a circular
orbit 256 km above the lunar surface. Determine

(a) the kinetic energy of the spacecraft

(b) the total orbital energy of the spacecraft

(c) the binding energy of the spacecraft

(d) the speed required for escape

Conceptualize the Problem
� The spacecraft is in a circular orbit around the Moon, so the 

Moon is the central body.

� The spacecraft is moving, so it has kinetic energy.

� The spacecraft is in orbit, so it has gravitational potential energy.

� Binding energy is the amount of energy necessary to escape the
gravitational pull of the central body.

� To escape a central body, a spacecraft must increase its kinetic 
energy until the total energy is zero.

� If you know the kinetic energy, you can find speed.

Identify the Goals
(a) The kinetic energy of the spacecraft, Ek

(b) The total orbital energy of the spacecraft, Et

(c) The binding energy of the spacecraft, Ebinding

(d) The speed required for escape, vescape

Identify the Variables and Constants
Known Implied Unknown
m = 4025 kg G = 6.673 × 10−11 N · m2

kg2

rMoon = 1.738 × 106 m

MMoon = 7.36 × 1022 kg

rorbit

h = 256 km Ek

Et

Ebinding

vescape

∆E = E′total − Etotal

∆E = −8.6938 × 1010 J − (−4.2019 × 1010 J)

∆E = −4.4919 × 1010 J

∆E ≅ −4.49 × 1010 J

Determine the difference in
total energy before and after 
the crash.
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Develop a Strategy

(a) The kinetic energy of the spacecraft is 4.96 × 109 J.

(b) The total energy of the spacecraft is −4.96 × 109 J.

(c) The binding energy of the spacecraft is 4.96 × 109 J.

(d) The escape speed for the spacecraft is 2.22 × 103 m/s.

1
2 mv2 = Ek

v =
√

2Ek
m

v =

√
2(9.9138 × 109 J)

4025 kg

v = 2.2195 × 103 m
s

v ≅ 2.22 × 103 m
s

Find the speed from the kinetic
energy.

E′k = Ek + Ebinding

E′k = 4.9569 × 109 J + 4.9569 × 109 J

E′k = 9.9138 × 109 J

The binding energy must come
through additional kinetic energy

Ebinding = −Et

Ebinding = −(−4.952 × 109 J)

Ebinding = 4.96 × 109 J

The binding energy is the 
negative of the total energy

Et = −Ek

Et = −4.96 × 109 J

Total orbital energy is the 
negative of the kinetic energy.

Ek = GMm
2r

Ek =

(
6.673 × 10−11 N · m2

kg2

)(
7.36 × 1022 kg

)(
4025 kg

)
2
(
1.994 × 106 m

)
Ek = 4.9569 × 109 J

Ek ≅ 4.96 × 109 J

Calculate the orbital kinetic energy.

rorbit = rMoon + h

rorbit = 1.738 × 106 m + 0.256 × 106 m

rorbit = 1.994 × 106 m

Determine the orbital radius of the
spacecraft.

continued
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Validate the Solution
The escape speed for the spacecraft could have been determined from 

the equation vescape =
√

2GM
r

. Carrying out this calculation yields the 

same escape speed. Since it agrees with the results of the energy 
calculations, it acts as a check on the first three answers.

4. A 55 kg satellite is in a circular orbit around
Earth with an orbital radius of 7.4 × 106 m.
Determine the satellite’s

(a) kinetic energy

(b) gravitational potential energy

(c) total energy

(d) binding energy

5. A 125 kg satellite in a circular orbit around
Earth has a potential energy of −6.64 × 109 J.
Determine the satellite’s

(a) kinetic energy

(b) orbital speed

(c) orbital radius

6. A 562 kg satellite is in a circular orbit 
around Mars. Data: rMars = 3.375 × 106 m;
rorbit = 4.000 × 106 m; MMars = 6.420 × 1023 kg

(a) If the satellite is allowed to crash on Mars,
how much energy will be released to the
Martian environment?

(b) List several of the forms that the released
energy might take.

7. From the orbital kinetic energy of the lunar
spacecraft in the second sample problem,
determine its orbital speed. What increase
beyond that speed was required for escape
from the Moon? 

8. A 60.0 kg space probe is in a circular orbit
around Europa, a moon of Jupiter. If the
orbital radius is 2.00 × 106 m and the mass 
of Europa is 4.87 × 1022 kg, determine the

(a) kinetic energy of the probe and its orbital
speed

(b) gravitational potential energy of the probe

(c) total orbital energy of the probe

(d) binding energy of the probe

(e) additional speed that the probe must gain
in order to break free of Europa

9. A 1.00 × 102 kg space probe is in a circular
orbit, 25 km above the surface of Titan, a
moon of Saturn. If the radius of Titan is 
2575 km and its mass is 1.346 × 1023 kg,
determine the

(a) orbital kinetic energy and speed of the
space probe

(b) gravitational potential energy of the space
probe

(c) total orbital energy of the space probe

(d) binding energy of the space probe

(e) additional speed required for the space
probe to break free from Titan

10. Material has been observed in a circular orbit
around a black hole some five thousand
light-years away from Earth. Spectroscopic
analysis of the material indicates that it is
orbiting with a speed of 3.1 × 107 m/s. If the
radius of the orbit is 9.8 × 105 m, determine
the mass of the black hole.

PRACTICE PROBLEMS

continued from previous page
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6.2 Section Review

1. Explain why the determination of orbital
speed does not require knowledge of the
satellite’s mass, while determination of
orbital energies does require knowledge 
of the satellite’s mass.

2. Explain why the binding energy of a
satellite is the negative of its total orbital
energy. Why does this relationship not
depend on the satellite being in a circular
orbit?

3. Draw a concept organizer to show the
links between the general equations for work
and energy and the orbital energy equations.
Indicate in the organizer which equations are
joined together to produce the new equation.

4. A satellite with an orbital speed of vorbit

is in a circular orbit around a planet. Prove
that the speed for a satellite to escape from
orbit and completely leave the planet is
given by vescape =

√
2(vorbit).

5. The magnitude of the attractive force
between an electron and a proton is given by 

F = kqeqp

r2 , where qe is the magnitude of the 

charge on the electron, qp is the magnitude of
the charge on the proton, r is the separation
between them, and k is a constant that plays
the same role as G. If the mass of the electron
is represented by me, derive an equation for
the orbital speed of the electron.

MC

I

C

K/U

C
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Go To Mars 
With Newton
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In his well-known and universally acclaimed book,
The Principia, Sir Isaac Newton proposed a way to
launch an object into orbit. His method was to place 
a cannon on a mountaintop and fire cannon balls 
parallel to Earth’s surface. By using more gunpowder
each time, the cannon ball would fly farther before
falling to the ground. Newton imagined increasing
the gunpowder until the cannon ball took off with
such a great initial speed that it fell all the way
around Earth — the cannon ball went into orbit 
and became a cannon ball satellite. In fact, if the 
cannon ball was able to make it half-way around 
the world, it would continue to orbit.

Today, scientists do not use cannons and gunpow-
der to launch rockets, but Newton’s method and his
laws still apply. Launching a rocket into orbit simply
requires that the trajectory of its “free fall” carry it
around the globe. While the rocket continually falls
toward Earth’s surface, the surface itself continually
curves away from the rocket’s path. Orbital motion 
is much like a perpetual game of tag between the
satellite and the planet’s surface. If the speed of 
the satellite drops below the orbital speed, then 
the satellite’s trajectory will lead it to an impact 
on the surface.



The speed required for an orbit close to Earth is
around 28 000 km/h. Part of this can be provided 
by launching the rocket in an easterly direction from 
a location near the equator. As Earth revolves, its 
surface at the equator moves eastward at about 
1675 km/h, thus providing a free, although relatively
small, boost. 

Lift-off involves the ignition of fuel and oxidizer in
a reaction which is much like a controlled explosion.
Hot, high pressure gas is formed as the product of the
burning. When the high-speed molecules of the gas
collide with the walls of the combustion chamber,
they exert forces on the walls of the chamber.
Because of an opening at one end of the chamber, the
net force exerted by the gas molecules on the cham-
ber is in the forward direction. By Newton’s third law
of motion, the chamber walls exert an equal and
opposite force on the gas molecules, causing them to
stream backward out of the nozzle at the end of the
chamber. The nozzle controls the direction and rate
of flow of the exhaust gases and so provides control
of the direction and magnitude of the thrust. Once
the thrust becomes greater than the weight of the
rocket, the rocket begins to accelerate upward.

Once the fuel in the first stage has been consumed,
that stage can be separated from the rest of the rocket
and a second stage compartment is ignited. By letting
the first compartment drop away, the rocket has less
mass that needs to be propelled. Applying Newton’s
second law, which states that the acceleration is pro-
portional to the ratio of the applied force and the
mass, for the same amount of thrust, the rocket will
accelerate more quickly. 

Sending a Rocket to Mars 
Contrary to popular opinion, the best time to send a
spacecraft to Mars is not when Mars and Earth are
closest in their orbits around the Sun. Instead, the
launch opportunity occurs when the spacecraft can
be fired tangentially from Earth’s orbit, travelling
along an elliptical orbit around the Sun, and arrive 
at Mars about 259 days later travelling tangentially 
to the orbit of Mars. The elliptical orbit is called a
Hohmann transfer orbit. The Earth–Sun distance 

represents the closest point to the Sun (the perihe-
lion) and the Mars–Sun distance represents the far-
thest point from the Sun (the aphelion). Energy is
saved in two ways: The first is due to the use of
Earth’s orbital speed as the starting speed for the
spacecraft. In fact, the spacecraft only needs an addi-
tional 3 km/s above the orbital speed of Earth around
the Sun. The second comes from the fact that the
average radius of the orbit of the ellipse is less than
the orbital radius of Mars. If the spacecraft was not
captured by the gravitational field of Mars, the space-
craft would continue along the ellipse and fall back
toward its perihelion. It is thus necessary to launch
the spacecraft such that its arrival time at aphelion
coincides with the arrival of Mars at the same loca-
tion. Such launch opportunities come only every 25
to 26 months. 

In general then, the Hohmann transfer orbit only
requires a burst of thrust when the spacecraft leaves
Earth orbit and a second burst to allow it to settle
into an orbit around Mars. Further manoeuvring
would be required if the spacecraft was then going to
land on the surface of the Red Planet. On its return,
the spacecraft would drop away from Mars and fol-
low the second half of the Hohmann transfer orbit
back to Earth.

Making Connections
1. Describe how Newton’s laws apply to a rocket at

lift-off, in orbit, and landing. 

2. (a) What differences would you need to consider
to send a rocket to Venus instead of to Mars? 

(b) Draw a Hohmann transfer orbit for a rocket
travelling to Venus.

perihelion

Mars orbit

aphelion

Hohmann 
Transfer 
Orbit

Sun

Earth orbit
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Collisions in space are among the more interesting celestial events.
The collision of comet Shoemaker-Levy 9 in July of 1994 created
great excitement for both astronomers and the general public.
Other collisions in the past have greatly affected Earth. The
demise of the dinosaurs, along with about 70% of all other
species, is attributed to a collision between Earth and an asteroid
some 65 million years ago. Remains of such a collision can be seen
on the sea floor of the Gulf of Mexico near the coast of the Yucatan
Peninsula. 

More recently, on June 30, 1908, an object with a mass of about
one hundred thousand tonnes slammed into Earth’s atmosphere
above Siberia, not far from the Tunguska River. The explosion,
which occurred about eight kilometres above the ground, flattened
one hundred thousand square kilometres of forest, killing all of the
wildlife in the area. Since the region is remote, no humans are
thought to have perished.

The dark blemishes on the face of Jupiter after the collision
with the comet Shoemaker-Levy 9 mark the impact locations of fragments 
of the comet.

Not all celestial collisions are devastating. Present theories about
the formation of our solar system suggest that planets were formed
as a result of collisions of smaller rocky objects. If the collisions
were energetic enough, they would have generated enough thermal
energy to fuse the rocks together into a larger mass.

Figure 6.5

Energy and 
Momentum in Space6.3
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• Apply quantitatively the law 
of conservation of linear
momentum.

• Analyze the factors affecting
the motion of isolated celestial
objects.

• combustion chamber

• exhaust velocity

• thrust

• reaction mass

• gravitational assist or 
gravitational slingshot

 T E R M S
K E Y

E X P E C T A T I O N S
S E C T I O N
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Bend a Wall
The Reaction EngineQ U I C K

L A B

TARGET SKILLS

Hypothesizing
Performing and recording
Analyzing and interpreting

The Reaction Engine
According to Newton’s first law of motion, an
object requires a net force to push out in order
to produce a change in speed or direction. If a
rocket is out in space, what is available to pro-
vide this push? This activity should give you
some ideas.

Set up a light dynamics cart with a ramp
which could be made from Hot Wheels™ track
as shown in the diagram. The ramp should be as
high as possible and curved at the base so that
ball bearings will be ejected horizontally from
the back of the cart.

Arrange a track for the cart by clamping or
taping metre sticks to the demonstration desk or
tape them to the floor.

Place as many large ball bearings as possible
on the ramp and hold them in place. Release the

ball bearings and observe the motion of the ball
bearings and the cart.

Analyze and Conclude
1. Describe the motion of the cart and the ball

bearings. Did the last ball bearings move as
quickly along the desk or floor as the first
ones did? Did any actually end 
up moving in the direction of the cart?

2. Using Newton’s laws of motion, explain why
the cart accelerated.

3. What was the source of the energy that was
transformed into the kinetic energy of the
cart and the ball bearings?

4. The ramp with the ball bearings and a rocket
are examples of reaction engines. Explain
why the term is appropriate. What is the
reaction mass in each case? 

Apply and Extend
5. Research the topic of magnetohydrodynamic

propulsion and prepare a brief report in 
diagram form. Where is this process mainly
used?

ramp

large ball
bearings

flex track

Propulsion in Space
Newton’s third law of motion states that if you exert a backward
force on an object, that object will exert a forward force on you. In
Chapter 4, Momentum and Impulse, you learned how Newton’s
third law led to the law of conservation of momentum. This con-
cept is the basis for all motion and manoeuvring of astronauts and
rockets in space. In fact, a spacecraft could be propelled by having
an astronaut stand at the rear of the spacecraft and throw objects
backward. This process is an example of recoil. As the astronaut
pushed the objects backward, they would push just as hard 
forward on the astronaut.



Although this is the general principle on which rocket engines
operate, most rely on hot, high-pressure gas to provide the 
reaction mass. The burning of the gas takes place in a combustion
chamber, as shown in Figure 6.7. The walls of the combustion
chamber exert a backward force on the gas, causing it to stream
out backward. The gas in turn exerts a force on the walls of the
combustion chamber, pushing it and the rocket forward. 

The relationship between the motion of the gas and the forces
on the gas can be found by applying the impulse momentum 
theorem: 

⇀F∆t = m∆⇀v . When physicists and engineers apply this
theorem to rocket exhaust gases, they usually rearrange it as 
follows.

⇀F (on gas)∆t = mgas∆⇀vgas

⇀F (on gas) = mgas∆⇀vgas

∆t
⇀F (on gas) =

( mgas

∆t

)
∆⇀vgas

In rocket technology, the term 
( mgas

∆t

)
is important because it 

represents the rate of flow of a given mass of exhaust in kilograms
of gas per second. Because of the law of conservation of mass, it
also represents the burn rate of the fuel and oxidizer combined.
Since the gas is initially at rest in the combustion chamber, the
∆⇀vgas represents the backward velocity of the gas relative to the
combustion chamber of the rocket. This is also known as the

combustion chamber

hot high-pressure gas

FGR = force exerted by the gas on the rocket (thrust) [forward]
FRG = force exerted by the rocket on the gas [backward]

FGR = −FRG

FGR FRG
⇀ ⇀

⇀ ⇀

⇀

⇀
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Newton’s third law
explains how the exhaust of gases
creates thrust for a rocket.

Figure 6.7

Recoil, a result of
the conservation of momentum, is
the basis of rocket propulsion. The
concept is the same as the motion
of an ice skater throwing a rock —
a problem that you solved in
Chapter 4.

Figure 6.6



exhaust velocity. For most chemical propellants, the exhaust
velocity ranges from 2 km/s to 5 km/s. 

If you know the rate of combustion and the velocity of the
exhaust gases, you can calculate the force with which the rocket 

pushes on the gas: 
⇀F (on gas) =

( mgas

∆t

)
∆⇀vgas. According to Newton’s 

third law of motion, this also represents the force with which the
gas pushes on the rocket. This force is known as the thrust (action
force, in Newton’s third law). The gas experiences the reaction
force and its mass is referred to as reaction mass.

The idea that the rocket exerts a force on the gas might seem
strange, but when molecules of gas strike the walls, they exert a
force on the walls. At the same time, the walls exert a backward
force on the molecules of gas, causing them to recoil. The two
forces are equal in magnitude, but opposite in direction. 
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As early as 1232 A.D., the Chinese
were using gunpowder as a
propulsive agent for arrows and
incendiary bombs.

PHYSICS FILE

Rocket Propulsion
A rocket engine consumes 50.0 kg of hydrogen and 400.0 kg of 
oxygen during a 5.00 s burn. 

(a) If the exhaust speed of the gas is 3.54 km/s, determine the thrust
of the engine

(b) If the rocket has a mass of 1.5 × 104 kg, calculate the acceleration
of the rocket if no other forces are acting.

Conceptualize the Problem

Identify the Goal
(a) The thrust, 

⇀Fgas on rocket , of the engine

(b) The acceleration, ⇀arocket, of the rocket

Identify the Variables and Constants
Known Unknown
mhydrogen = 50.0 kg
moxygen = 400.0 kg
t = 5.00 s
⇀vexhaust = 3.54 × 103 m

s
[back]

mrocket = 1.5 × 104 kg

mexhaust gas
⇀Fgas on rocket
⇀arocket

� Because the hot gases move rapidly out of the
combustion chamber, they have momentum.

� The total momentum of the gases plus rocket
must be conserved; therefore, the momentum
of the rocket must be equal in magnitude and
opposite in direction to the gases. 

� If you know the change in momentum of the
rocket and the time interval over which that
change occurs, you can determine the force
on the rocket. 

� From the force and the mass of the rocket,
you can find its acceleration.

SAMPLE PROBLEM 

continued
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Develop a Strategy

(a) The thrust on the rocket is 3.19 × 105 N[forward].

(b) The acceleration of the rocket is 21.2 m
s2 [forward] .

Validate the Solution
The magnitude of the change in momentum for the rocket must
equal the magnitude of the change in momentum for the gas, so 

mrocket∆vrocket = mgas∆vgas

∆vrocket = mgas∆vgas

mrocket

The change in velocity is inversely proportional to the masses, so
you would expect that the velocity of the rocket would be much
less than the velocity of the gases. This is in agreement with the
calculated value of the acceleration. 

⇀F = m⇀a

⇀a =
⇀F
m

⇀a = 3.186 × 105 N[forward]
1.5 × 104 kg

⇀a = 21.24 m
s2 [forward]

⇀a ≅ 21.2 m
s2 [forward]

Use Newton’s second law to calculate the
acceleration of the rocket.

⇀F (gas on rocket) = −⇀F (rocket on gas)
⇀F (gas on rocket) = −(3.186 × 105 N[back]
⇀F (gas on rocket) = 3.186 × 105 N[forward]

Use Newton’s third law to determine the
force on the rocket (combustion chamber).

⇀F∆t = m∆⇀v
⇀F = m∆⇀v

∆t
⇀F =

( m
∆t

)
∆⇀v

⇀F =
(
90.0 kg

s

)(
3.54 × 103 m

s

)
[back]

⇀F = 3.186 × 105 N[back]
⇀F ≅ 3.19 × 105 N[back]

Use impulse equals change in momentum
to determine the force on the gas.

Since the gases started from rest relative 
to the combustion chamber, 

∆⇀v = ⇀vexhaust.

Flow rate of the exhaust gas = mexhaust gas

∆t

Flow rate of the exhaust gas = 450.0 kg
5.00 s

Flow rate of the exhaust gas = 90.0 kg
s

Find the flow rate of the exhaust gas.

mexhaust gas = mhydrogen + moxygen

mexhaust gas = 50.0 kg + 400.0 kg

mexhaust gas = 450.0 kg

Find the total mass of the exhaust gases.

continued from previous page



11. Determine the thrust produced if
1.50 × 103 kg of gas exit the combustion
chamber each second, with a speed of
4.00 × 103 m/s.

12. What must be the burn rate in kilograms 
per second if gas with an exhaust speed 
of 4.15 × 103 m/s is to exert a thrust of 
20.8 MN?

13. As an analogy for a reaction engine, imagine
that a 60.0 kg person is standing on a 40.0 kg
cart, as shown in the diagram. Also on the
cart are six boxes, each with a mass of 
10.0 kg. The cart is initially at rest. The 
person then throws the boxes backward, one
at a time at 5.0 m/s relative to the cart. 

(a) Determine the velocity of the cart after
each throw, until you have the final veloc-
ity of the cart. Keep in mind that the mass
on the cart decreases with each throw.

(b) Would the final velocity of the cart be 
different if the person had thrown all 
of the boxes at once with a velocity of 
5.0 m/s[backward]? If there is a difference,
give reasons for it.

PRACTICE PROBLEMS
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60.0 kg thrower 6 boxes 
(10.0 kg each)

40.0 kg cart

The process of burning fuel to provide reaction mass is not the
only way to generate a thrust. One extremely efficient method
involves an ion engine, such as the one shown in Figure 6.8. In 
an engine such as this, gas atoms are ionized and the resulting
positive ions are driven backward by electrostatic repulsion. The
thrust is quite low, but it can act steadily month after month, 
gradually increasing the velocity of the spacecraft. 

Gravitational Assist
Sometimes, free energy seems to be gained for a spacecraft through
a manoeuvre known as a gravitational assist or a gravitational
slingshot. The process involves directing a spacecraft to swing
around a planet, while keeping far from the atmosphere of the

The Deep Space 1 probe, launched on
October 15, 1998, was the first space-
craft to use an ion engine. Xenon
atoms are ionized and then repelled
electrostatically, emerging from the
spacecraft at speeds of up to 28 km/s
and producing a maximum thrust of 
90 mN. The spacecraft has enough
propellant to operate continuously 
for 605 days.

TECHNOLOGY LINK

Experimental ion engine
Figure 6.8
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planet. The interaction represents an extremely elastic collision,
even through the objects do not actually meet. Figure 6.9 
illustrates the process.

Earlier studies of elastic collisions showed that the speed 
of approach of colliding objects is equal to the speed with which
they separate. In this case, the spacecraft is approaching the planet
with a relative speed of (v + V), where v is the speed of the space-
craft and V is the orbital speed of the planet. If the collision is
elastic, the speed with which the spacecraft moves away from the
planet must also be (v + V). Since the planet itself is moving at
speed V, the spacecraft must be moving at V + (v + V) or v + 2V.
As a result, if the spacecraft arcs around the planet and returns
parallel to its initial path, it will gain a speed of 2V, which is
twice the orbital speed of the planet.

A similar effect can be seen on Earth. If a tiny Superball™ is
held just above a more massive ball (such as a lacrosse ball) and
they are dropped together, the Superball™ will rebound at high
speed from the collision. The effect is shown in Figure 6.10. 

In part (A) of the diagram, both balls are falling. Since they are
close together, their speeds are about the same. In part (B), the
large ball has hit the ground and is about to bounce upward. If
that collision is elastic, it will rebound with the same speed it had
just before hitting the ground, as shown in (C). 

The two balls are now approaching each other, closing the gap
between them at a speed of 2v. If their collision is elastic, the
speed with which they separate must also be 2v. Because of the
huge difference in their masses, the large ball is only slightly
slowed down in the collision, and so is still effectively travelling 
at speed v. The small ball will therefore rebound with a speed that
is 2v greater than the larger ball’s speed. In other words, it will
have a speed of 3v.

Because kinetic energy varies with the square of the speed,
tripling the speed of the Superball™ will multiply its kinetic ener-
gy by a factor of nine. As a result, it will bounce to a height that is
nine times its initial height.

This Superball™ discussion assumes that the collision is com-
pletely elastic. If there is some energy loss, the ball will not rise as
high as predicted. The following investigation looks at just how
elastic this collision actually is.

v

v

v
v
v

v

3v

A DCB

In elastic collisions,
the speed of approach of colliding
objects is equal to the speed 
with which they separate, as
demonstrated by this experiment
with a Superball™ and a lacrosse
ball.

Figure 6.10

A celestial slingshotFigure 6.9

V

v planet

space probe

V

v + 2V

V

A

C

B
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Superball™ Boost

TARGET SKILLS

Predicting
Performing and recording
Analyzing and interpreting

In the discussion in the text, it was predicted
that if a tiny Superball™ is held above a far
more massive ball and the two are dropped at
the same time, the Superball™ should triple 
its speed. This assumes that the collision is
completely elastic and that the large ball does
not significantly slow down during the colli-
sion. In this investigation, you will determine
how valid those assumptions are.

Problem
How does the speed with which a Superball™
leaves a collision with a more massive ball 
compare with the theoretical speed?

Equipment  
� Superball™ 
� more massive ball, such as a lacrosse ball
� metric measuring tape

Wear a face shield if you are conducting
this experiment. The other students must wear
safety goggles.

Procedure
1. Hold the Superball™ just above the larger

ball and at a height of 0.50 m from the floor.

2. Drop the two together so that the Superball™
will land on top of the larger ball. 

3. If the Superball™ bounces straight upward,
observe how close the ball comes to the 
ceiling.

4. Adjust the drop height until the upward-
bouncing Superball™ just touches the 
ceiling.

5. Measure and record the drop height, the
diameter of the lacrosse ball, and the height
of the ceiling.

Analyze and Conclude
1. Determine the actual drop distance for the

Superball™ by subtracting the diameter of
the lacrosse ball from the initial height of the
Superball™ above the floor. (This assumes
that the lacrosse ball has not risen signifi-
cantly before colliding with the Superball™.)

2. Calculate the speed of the Superball™ just
before it collided with the lacrosse ball.

3. Determine the actual height through which
the Superball™ rose to reach the ceiling.

4. From the maximum height that the
Superball™ attained, determine its actual
speed just after the collision with the
lacrosse ball.

5. What was the theoretical speed of the
Superball™ after the collision?

6. How well does the measured speed compare
with the theoretical speed? Express your
answer as a percentage. 

7. Discuss possible reasons for the difference
between the actual speed and the theoretical
speed.

8. A comparison of the actual height of the
bounce to the theoretical height gives a direct
comparison between the amount of kinetic
energy the ball received and the theoretical
amount of kinetic energy. Express the actual
kinetic energy as a percentage of the theoreti-
cal kinetic energy. How efficient was this
process in transferring energy to the
Superball™?

Apply and Extend
9. Provide several suggestions for improving the

precision of this investigation.

CAUTION
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6.3 Section Review

1. Describe how Newton’s third law of
motion relates to propulsion in space.

2. Show why the mass rate of flow and
exhaust velocity are both involved in the
development of thrust.

3.

(a) During the slingshot procedure for
increasing the speed of a space probe,
what happens to the orbital speed of the
planet? Give reasons for your answer. 

(b) Should you be concerned about this?
Justify your answer.

4. Which planet is most likely to provide
the best “slingshot” effect, Jupiter or
Mercury? Give reasons for your choice.

5. Two identical rocks with equal masses
and equal speeds collide head-on in space
and stick together.

(a) Explain why there will be no motion of
the clump after the collision.

(b) If all of the initial kinetic energy is
changed into thermal energy in the 
collision, which situation will create the
greater amount of thermal energy? 

� doubling the masses of the rocks, but
leaving the speeds the same

� doubling the speeds of the rocks, 
while leaving the masses the same 

Give reasons for your choice.

(c) Is it possible that one of those two 
situations will result in no change in the
temperature increase during the collision?
Justify your answer.

6. By means of a series of diagrams, predict
the speed at which a Superball™ would
bounce if it was falling on top of a much
more massive ball, which was in turn falling
on top of an extremely massive ball.

7. One method of propulsion that does not
involve the ejection of reaction mass is the
use of a “solar sail.” This device consists
essentially of a thin film that could cover an
area equal to the size of several football
fields. It would be stored during lift-off and
unfurled out in space. Light from the Sun 
(or from huge lasers on Earth) would exert
pressure on the sail. At the distance that
Earth is from the Sun, the pressure of 
sunlight would be about 3.5 N/km2. How
realistic is this concept for space travel?
What are its advantages and disadvantages?
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Knowledge/Understanding
1. (a) What must be true about the total orbital

energy of any planet? Give reasons for your
answer.

(b) What does it mean if some comets have total
energies less than zero and others have total
energies greater than zero? 

2. Why does it take more energy to send a satellite
into polar orbit (which follows Earth’s longitu-
dinal lines and passes over the North and
South Poles) than into an equatorial orbit
(which follows the equator eastward over
Earth)?

3. For a satellite in circular orbit above Earth,
state how the following properties depend on
radius: (a) period;  (b) kinetic energy;  (c) speed. 

Inquiry
4. Investigate the sizes of black holes by doing

some simple escape velocity calculations. 

As postulated by Einstein’s theory of general
relativity, black holes are objects with such a
strong gravitational field that their escape
velocity exceeds the speed of light. Hence,
nothing — not even light — can escape from a
black hole. They are thought to be caused by
massive stars that collapse in on themselves. 
(a) What would be the escape velocity if, with-

out losing any mass, Earth shrank to the 
following percentages of its present radius?
�

1
100

�
1

10000
�

1
1 × 106

(b) To how small a size would Earth have to
collapse for its escape velocity to equal the
speed of light?

(c) Although a full treatment of black holes
requires general relativity, the radius 
(called the “Schwarzchild radius”) can be
calculated by using Newtonian theory: by
setting vescape = c and solving for the radius.
Suppose the core of a star 8.0 times more

� The work done in moving a mass (m) from 
a separation of r1 to a separation of r2 is 
given by

W = GMm
r1

− GMm
r2

or W = GMm
( 1

r1
− 1

r2

)
where M is the mass of the larger object.

� The work that must be done to move a mass m
from a separation of r1 to infinite separation is 

given by Wto escape = GMm
r1

.

� If the escape energy from a planet is to be 
provided through kinetic energy, the kinetic 

energy can be expressed as 1
2 mv2 = GMm

rp
, 

where rp is the radius of the planet. This 

leads to the escape speed being v =
√

2GM
rp

.

� The energies associated with circular orbits 

are Ek = GMm
2r

, Eg = − GMm
r

and 

Etotal = − GMm
2r

.

� The gravitational potential energy of an object
in the vicinity of a planet is negative, since
work must be done on the object to remove 
it completely from the gravitational influence
of the planet. The object is said to be in a
gravitational potential energy well.

� For an object to be able to escape from the
gravitational field of a planet, its total energy
must be equal to or greater than zero. The
extra energy that must be added to an object to
bring its energy up to zero (thus allowing it to
escape) is called the “binding energy” and is
given by Ebinding = −Etotal .

� The magnitude of the thrust exerted by the gas
being ejected from a rocket can be determined 

from the equation Fthrust =
( mgas

∆t

)
∆vgas. This 

gas is known as “reaction mass.”
� Gravitational assist is a technique by which a

spacecraft gains kinetic energy from a planet
around which it swings.
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massive than the Sun exhausted its fuel and
collapsed. What size of black hole would
form? (The Sun’s mass is 1.99 × 1030 kg.)

(d) The centres of galaxies, including our own
Milky Way, might contain black holes with
masses of a million times the Sun’s mass, or
more. Calculate the size of a black hole with
a mass of 1.99 × 1036 kg. Compare this to
the size of the Sun’s radius (6.96 × 108 m). 

5. Consider a space shuttle in circular orbit
around Earth. If the commander briefly fires a
forward-pointing thruster so that the speed of
the shuttle abruptly decreases, what would be
the resulting effects on the kinetic energy, the
total mechanical energy, the radius of the orbit,
and the orbital period? Sketch the new orbit.
Explain whether the new orbit will take the
shuttle to the same point at which the thrusters
were fired. 

Communication
6. Explain how a satellite should be launched so

that its orbit takes it over every point on Earth
as Earth rotates. 

7. What is the reason for choosing the zero of
gravitational potential energy at infinity rather
than, for example, at Earth’s surface? 

8. If the Sun shrank to the size of a black hole
without losing any mass, what would happen
to Earth’s orbit? 

9. Discuss whether you and your friends on the
surface of Earth can be considered to be 
satellites orbiting Earth at a distance of 
1.0 Earth radii. 

10. (a) Explain whether the gravitational force of
the Sun ever does work on a planet in a 
circular orbit.

(b) Does the gravitational force of the Sun ever
do work on a comet in an elliptical orbit? 

11. Suppose you launched a projectile in Halifax
and it landed in Vancouver. If you assumed 
that the mass of Earth was concentrated at the
centre, could you consider the projectile to be
in temporary orbit around the centre of Earth?
Explain your reasoning. Sketch the trajectory 

of the projectile over Earth. What would the
complete orbit look like? 

Making Connections 
12. Investigate some of the details of rocket launch-

es for interplanetary probes. What percentage 
of the probe’s mass at lift-off is fuel? How much
of the fuel is consumed at lift-off? If an expend-
able rocket is used to launch the probe, what
options are currently available? How much
does a launch cost? Summarize your findings 
in a report.

13. The United States recently announced plans to
send an astronaut to Mars and return him or
her safely to Earth. Such space travel is very
costly compared to sending remote controlled
probes, which can often collect as much 
information. Investigate the issues involved 
in interplanetary space travel and stage a
debate in your class to examine them. 

Problems for Understanding
14. Calculate the binding energy that a 50.0 kg

classmate has while on the surface of Earth.

15. (a) What is the change in gravitational potential
energy of a 6200 kg satellite that lifts off
from Earth’s surface into a circular orbit of
altitude 2500 km?

(b) What percent error is introduced by assum-
ing a constant value of g and calculating the
change in gravitational potential energy
from mg∆h?

16. The small ellipticity of Earth’s orbit causes
Earth’s distance from the Sun to vary from
1.47 × 1011 m to 1.52 × 1011 m, with the 
average distance being 1.49 × 1011 m. The 
Sun’s mass is 1.99 × 1030 kg. What is the
change in Earth’s gravitational potential energy
as it moves from its smallest distance to its
greatest distance from the Sun?

17. The mass of Mars is 0.107 times Earth’s mass
and its radius is 0.532 times Earth’s radius.
How does the escape velocity on Mars compare
to the escape velocity on Earth?

18. The Sun’s mass is 1.99 × 1030 kg and its radius
is 6.96 × 108 m.
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(a) Calculate the escape velocity from the 
Sun’s surface.

(b) Calculate the escape velocity at the distance
of Earth’s orbit.

(c) Calculate the escape velocity at the distance
of Pluto’s orbit, 5.9 × 1012 m.

19. A rocket is launched vertically from Earth’s 
surface with a velocity of 3.4 km/s. How high
does it go (a) from Earth’s centre and  (b) from
Earth’s surface?

20. Calculate whether a major league baseball
pitcher, who can pitch a fastball at 160 km/h
(44 m/s), can pitch it right off of any of the 
following.
(a) Saturn’s moon, Mimas, which has a mass of

3.8 × 1019 kg and a radius of 195 km.
(b) Jupiter’s moon, Himalia, which has a mass

of 9.5 × 1018 kg and a radius of 93 km.
(c) Mars’ moon, Phobos, which has a mass of

1.1 × 1016 kg and a radius of 11 km.
(d) a neutron star, with 2.5 times the Sun’s mass

crammed into a radius of 8.0 km.

21. Consider an object at rest 1.00 × 102 Earth radii
from Earth. With what speed will it hit the 
surface of Earth? Compare this to Earth’s 
escape speed. 

22. To exit from the solar system, the Pioneer
spacecraft used a gravitational assist from
Jupiter, which increased its kinetic energy at
the expense of Jupiter’s kinetic energy. If the
spacecraft did not have this assist, how far out
in the solar system would it travel? When it left
Earth’s vicinity, the spacecraft’s speed, relative
to the Sun, was 38 km/s.

23. A 650 kg satellite is to be placed into synchro-
nous orbit around Earth. 
(a) Calculate the gravitational potential energy

of the satellite on Earth’s surface.
(b) Calculate the total energy of the satellite

while it is in its synchronous orbit with a
radius of 4.22 × 107 m.

(c) What amount of work must be done on the
satellite to raise it into synchronous orbit? 

(d) Suppose that from its orbit you wanted to
give the satellite enough energy to escape

from Earth. How much energy would be
required? 

24. The atmosphere can exert a small air-drag force
on satellites in low orbits and cause these
orbits to decay. 
(a) Despite an increased air-drag force as the

orbit decays, the speed of the satellite
increases. Show this by calculating the
speed of a satellite when its altitude is 
200 km (2.00 × 105 m) and when its altitude
is 100 km (1.00 × 105 m).

(b) If the satellite’s mass is 500 kg (5.00 × 102),
show that the mechanical energy decreases,
despite the increase in the satellite’s kinetic
energy.

25. One of the interesting things about a collapsed,
compact object like a neutron star or a black
hole is that, theoretically, a spacecraft could be
sent close to it without suffering the effects of
intense radiation. Consider a neutron star with
a mass of 2.0 times the Sun’s mass and a radius
of 10.0 km. (Note: Think about the density that
this implies!)
(a) Calculate the velocity of a spacecraft orbit-

ing 500.0 km above the neutron star. (Note
that at closer orbits, the effects of high 
gravity would need to be considered and 
the familiar formula used here would not
apply.) What is this speed as a fraction of
the speed of light? 

(b) What is the spacecraft’s period?
26. A rocket stands vertically on a launch pad and

fires its engines. Gas is ejected at a rate of 
1200 kg/s and the molecules have a speed of
40.0 km/s. What is the maximum weight the
rocket can have if this thrust is to lift it slowly
off the launch pad?

27. A 3.5 × 105 kg rocket stands vertically on a
launch pad. 
(a) Calculate the minimum thrust required to

cause the rocket to rise from the launch pad.
(b) The rocket engines eject fuel at a rate of 

28.0 kg/s. What is the velocity of the gas as
it leaves the engine? Neglect the small mass
change in the rocket due to the ejected fuel.
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P R O J E C T

Just a Theory?

2U N I T

Background
Evidence of the deficiencies of existing trans-
portation technologies is everywhere. Limited
and increasingly expensive fuel supplies, noise
and air pollution, and congested roads and
highways are all indications that the existing
methods of moving people and goods are less
than ideal. 

In response, more sustainable, environmen-
tally responsible transportation methods are
slowly emerging. Lightweight, low-drag body
designs are commonplace. Computerization has
improved the efficiency of gasoline engines and
has led to the development of “hybrid” vehicles
with both gasoline and electric engines. Vehicles
powered by fuel cells and improved recharge-
able batteries are in limited production. The
space shuttle provides a far more efficient
method of placing payloads in orbit than do 
single-use rockets.

Improved transportation technologies are too
important to be left to lucky guesses or inspired
tinkering. Research projects that apply basic 
scientific principles to guide and evaluate the
development of new vehicles and their compo-
nents are critically needed. Far from being “just
theory,” physics principles related to momen-
tum and energy conversion and conservation are
key to developing the environmentally friendly,
sustainable technologies of the future.

Hybrid cars combine power-generating technologies.

This is a recumbent or “reclining” bicycle.

Scooters offer a transportation alternative.

Challenge
Research the information and prepare a 
presentation that illustrates how the scientific 
theories and principles studied in this unit can
be used to develop environmentally responsible
transportation alternatives. The presentation
must include aspects of your study of momen-
tum, energy, and energy transformations. The
presentation is to be designed to provide an
intelligent adult audience of non-scientists with
an understanding of how scientific theories
impact everyday life. 
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ASSESSMENT

assess the clarity of your background 
summaries about each topic. Can others read 
your report and formulate specific questions 
about the topic?
assess the effectiveness of your argument and 
examples. How well did it persuade audience 
members of the need for responsible choices of 
transportation technology and the value of 
studying basic scientific principles?
assess the impact of your group’s presentation 
as a whole. How well were you able to link the 
separate examples into a unified, coherent 
presentation?

After you complete this project

Project Criteria
A. As a class, develop clear, specific criteria 

for the presentation. Decide on acceptable
methods of presentation, sourcing of 
information, time limits, and time lines 
for the project.

B. In small groups, brainstorm examples of
transportation technologies and related 
scientific principles. The examples can be
very specific, such as a particular type of fuel
cell, or quite general, such as an innovative
bicycle frame design. Select topics so that
your completed presentation will include
information that you studied in all three
chapters of the unit.

Action Plan
1. Decide on a theme for your presentation, so

that each of your examples contributes to the
development of your overall thesis.

2. Prepare a one- or two-page background 
outline to summarize your research, 
including properly referenced sources.

3. Develop a questionnaire, quiz, or rating scale
for your audience so that you can gather
feedback on your presentation.

4. Develop and present your project.

5. Prepare a written evaluation of your project
that includes a summary of audience 
feedback and ideas for improving the 
presentation. 

Evaluate
1. What information sources did your group

find most useful in this project? How did 
you ensure that your presentation was free 
of plagiarism?

2. To what extent has working on this project
increased your awareness of alternatives for
responsible, sustainable transportation tech-
nologies? Explain how your transportation
choices in everyday life model these values.

3. Is providing information enough to change
people’s behaviour? What else can be done
so that manufacturers and consumers are
encouraged to make responsible choices
regarding transportation technology? 

4. Suppose a friend questioned the value of
studying basic scientific principles by saying,
“They are just a bunch of generalizations and
mathematical tricks. We need to concentrate
on practical ways of solving real problems”?
What examples from this project would you
use to demonstrate the importance of study-
ing scientific theory?
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U N I T Review2

Knowledge/Understanding
Multiple Choice 
In your notebook, choose the most correct answer
for each of the following questions. Outline your
reasons for your choice.

1. A hockey puck and a curling stone are at rest
on a sheet of ice. If you apply equal impulses to
each of them with a hockey stick
(a) they will have the same acceleration
(b) the forces applied were equal
(c) they apply equal reaction forces to the 

hockey stick 
(d) they will have the same velocity, but 

different momenta
(e) they will have the same momentum but 

different velocities

2. Ball B is moving and collides with a stationary
ball A. After the collision, ball B bounces 
backwards with a velocity of nearly the same
magnitude as it had before the collision. Ball A
rolls forward very slowly. What is the relation-
ship between the masses of the ball.
(a) mA = mB/2 (d) mA = mB/4
(b) mA = 2 mB (e) mA = mB

(c) mA = 4 mB

3. You throw a rock straight up into the air. While
it rises and falls, its kinetic energy
(a) remains constant
(b) increases steadily
(c) changes direction only
(d) decreases then increases
(e) increases then decreases

4. Starting from rest at the top of a hill, a bicyclist
pedals furiously on the way down. The kinetic
energy of the bicycle and rider at the bottom
will be equal to
(a) lost potential energy
(b) work done 
(c) work done plus lost potential energy
(d) work done plus kinetic energy plus 

potential energy
(e) zero 

5. An astronaut in an orbiting spacecraft is said to
be weightless because
(a) no force of gravity is exerted on the astronaut

(b) the spacecraft exerts a force opposite to
Earth’s gravity and acts to suspend the 
astronaut 

(c) the astronaut and the spacecraft are both in
free fall

(d) the astronaut wears a special gravity-
resistant spacesuit

(e) there is no air resistance in the region where
the astronaut is orbiting 

6. A rocket launched with a velocity equal to the
escape velocity of a planet has
(a) positive total energy
(b) negative total energy
(c) zero total energy
(d) a total energy that depends on its distance

from the planet
(e) a constantly changing total energy

Short Answer
7. If you throw a ball against a wall, which of the

three impulses is the greatest: throw, bounce, 
or catch? 

8. How is it possible for an object to obtain a 
larger impulse from a smaller force than from 
a larger force? 

9. (a) Describe the differences between solving
problems for elastic and inelastic collisions. 

(b) How can you tell whether a collision is 
elastic or not? 

(c) What happens to the kinetic energy of each
object in an elastic collision? 

10. Distinguish between an open system, a closed
system, and an isolated system.

11. Explain why a water hose recoils when the
water is turned on. 

12. Explain why the first hill of a roller-coaster ride
must be the highest hill. 

13. (a) Under what conditions will a marble of
mass m1 and a rock of mass 3m1 have 
the same gravitational potential energy? 

(b) Under what conditions will a moving 
marble of mass m1 and a moving rock of
mass 3m1 have the same kinetic energy? 

14. Write a general equation for the amount of
mechanical energy in a system and include
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expressions for as many different forms of
potential energy as you can locate.

15. A physics wizard is sitting still, puzzling over 
a homework question. Provide an argument
that she is not doing work in the physics sense.
Provide a second argument that she is doing
work in the physics sense.

16. Consider two bodies, A and B, moving in the
same direction with the same kinetic energy. A
has a mass twice that of B. If the same retarding
force is applied to each, how will the stopping
distances of the bodies compare? 

17. (a) Under what circumstances does the work
done on a system equal its change in kinetic
energy only? 

(b) Under what circumstances does the work
done on a system equal the change in 
gravitational potential energy only?

(c) Under what circumstances does the change
in kinetic energy of a system equal the
change in gravitational potential energy? 

18. Use the law of conservation of energy to 
discuss how the speed of an object changes
while in an elliptical orbit. 

Inquiry
19. The total momentum vector of a projectile is

tangential to its path. This vector changes in
magnitude and direction because of the action
of an internal force (gravity). 
(a) Sketch the path of a projectile and draw

momentum vectors at several points along
the path. 

(b) The equation 
⇀F = ∆⇀p/ ∆t indicates that a

change in momentum is evidence of a net
force. Draw vectors that show the change in
momentum at several points on the path
and thus indicate the direction of the net
force. (Neglect air resistance.) Discuss your
result. 

20. The law of conservation of energy can be 
written in the form ∆E = W + Q , where ∆E
is the change in energy in a system, W is the
amount of useful work done, and Q is the
amount of heat produced. In this form, it is
called the “first law of thermodynamics.” For

centuries, crafty inventors have tried to violate
the law by designing perpetual-motion
machines. Such a machine would provide more
energy as output than was input. The Canadian
Patent Office has shown its faith in the law by
refusing to grant patents for such machines
based on design only. The inventor must 
submit a working model. Research and report
on some designs for perpetual-motion
machines. Include a sketch and use the first
law of thermodynamics to discuss why the
machine will not work. 

21. Design a pogo stick for a child. Designate the
age range of the child you hope will enjoy the
stick and calculate the required spring con-
stant. Determine other parameters, such as the
length of the stick, the size of the spring, and
the range of distances that the child will be
able to depress the spring. Include a sketch of
your design. 

22. Insight into simple harmonic motion can be
gained by contrasting it with non-simple 
harmonic motion. 
(a) Consider the simple harmonic motion of an

object oscillating on a spring. Does the
velocity of the object change smoothly or
abruptly when the object changes direction?
Sketch a graph of the displacement of the
object versus time. 

(b) On the same graph, indicate how the spring
force changes with time. Are the restoring
force and displacement ever zero at the
same time? 

(c) Now consider the motion of a highly elastic
rubber ball bouncing up and down on an
elastic steel plate, always returning to the
same height from which it fell. Set a frame
of reference so that you can describe the
ball’s motion. Does the ball’s velocity change
smoothly or abruptly at its peak altitude and
during impact? Sketch a graph of the 
displacement of the ball versus time. 

(d) Draw a free-body diagram of the forces 
acting on the ball when it is in the air. What
is the net force on the ball during contact
with the steel plate? Are the net force and
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displacement ever zero at the same time? 
On the same graph as (c), sketch how the
net force on the ball changes with time.

(e) Contrast the two graphs in terms of the
motions they represent.

23. In this question, you will use the kinetic theory
of gases to probe the compositions of the
atmospheres of four bodies in the solar system.
The kinetic theory of gases can be used to relate
the average kinetic energy of the molecules in a
gas to the temperature, T, of the gas,
Ek(average) = 1

2 mv2
average = 3

2 kT , where m is the 

mass of the molecule and k is the Boltzmann
constant. 
(a) Calculate the escape velocities of Jupiter,

Mars, Earth, and the Moon.
(b) In a table of atomic masses, look up the

masses for the following molecules: hydro-
gen (H2), helium (He), water vapour (H2O),
methane (CH4), oxygen (O2), nitrogen (N2),
and carbon dioxide (CO2). 

(c) Calculate the average speed of each of the
above gases of molecules at a temperature of
300.0 K. 

(d) Some models of velocity distributions of
gases indicate that over the lifetime of the
solar system (approximately 5 billion years),
a gas will escape from a planet unless its
average speed times 10.0 (vaverage × 100) is
less than the escape velocity of the planet.
Use this to determine which gases should 
be present in each of the atmospheres in (a).
(The velocity distribution of a gas is
described as a Maxwellian velocity 
distribution — look up this term for further
information.) 

(e) Compare your results to observations. 
(f) Summarize and discuss your results. 

24. The orbit of a satellite is often used to determine
the mass of the planet or star that it is orbiting.
How can the mass of a satellite be determined?

25. Explain whether you could put a satellite in an
orbit that kept it stationary over the North or
South Pole.

26. Imagine that you found a very unusual spring
that did not obey Hooke’s law. In fact, you 

performed experiments on the spring and 
discovered that the restoring force was propor-
tional to the square distance that the spring was
stretched or compressed from its equilibrium 
or F = −kx2.
(a) Describe an experiment that you might have

done to find the expression for the restoring
force.

Communication
27. To bunt a baseball effectively, at the instant the

ball strikes the bat, the batter moves the bat in
the same direction as the moving baseball.
Explain what effect this action has. 

28. You drop a dish from the table. Explain
whether the impulse will be less if the dish
lands on a carpet instead of a bare floor. 

29. Explain whether it is possible to exert a force
and yet not cause a change in kinetic energy. 

30. You blow up a balloon and release the open
end, causing the balloon to fly around the room
as the air is rapidly exhausted. What exerts the
force that causes the balloon to accelerate? 

31. A jet engine intakes air in the front and mixes
it with fuel. The mixture burns and is exhaust-
ed from the rear of the engine. Use the concept
of momentum to explain how this process
results in a force on the airplane that is 
directed forward. 

32. Explain the difference between g and G. 

Making Connections 
33. When Robert Goddard first proposed sending 

a rocket to the Moon early in the twentieth 
century, he was ridiculed in the newspapers.
People thought that the rocket would have
nothing to push against in the vacuum of space
and therefore could not move. 
(a) How does a rocket move? 
(b) Contrast the rocket’s motion with the motion

produced by a propeller or a wheel. 
(c) A rocket can be considered to represent a

case of the inverse of an inelastic collision.
Explain this statement.

(d) Develop three analogies that could help
explain rocket motion. 
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(e) To test his idea, Goddard set up a pistol 
in a bell jar from which the air had been
evacuated and fired a blank cartridge. What
do you think happened? 

34. Analyze any appliance or technical device in
terms of its component parts and the energy it
consumes. Trace the path of this energy in
detail backward through its various forms. How
many steps does it typically take before you get
to the Sun as the ultimate source of energy? 

35. A Foucault pendulum can be used to 
demonstrate that Earth is rotating. Explain 
how this is possible. What differences would
you notice if you used the pendulum at the
North Pole, at Earth’s equator, and at latitudes
between these two points? 

36. Before nuclear energy was postulated as the
source of energy for the Sun, other energy- 
generation processes were considered. At the
end of the nineteenth century, one promising
method was proposed by Lord Kelvin. It was
based on the perfect gas law: If a gas is 
compressed, it heats up. Heating the gas causes
it to radiate energy away, so the gas can be 
further compressed. The process, gravitational
contraction, is now thought to heat protostars
(newly forming stars) before they begin nuclear
fusion in their cores. Research this process and
describe in detail how it could heat a star. How
is gravitational potential energy converted into
heat? What lifetime did this process predict for
the Sun? Also, discuss how Darwin’s theory of
evolution led astronomers to believe that the
lifetime for the Sun predicted by this process
was too short. 

Problems for Understanding
37. A 1400 kg car travels north at 25 m/s. What is

its momentum? 

38. What impulse is needed to stop the following?
(a) 150 g baseball travelling at 44 m/s 
(b) 5.0 kg bowling ball travelling at 8.0 m/s
(c) 1200 kg car rolling forward at 2.5 m/s 

39. A 0.80 kg ball travelling at 12 m/s[N] strikes a
wall and rebounds at 9.5 m/s[S]. The impact
lasts 0.065 s.

(a) What was the initial momentum of the ball?
(b) What was the change of momentum of the

ball?
(c) What was the impulse on the wall?
(d) What was the average force acting on the wall?
(e) What was the average force acting on the ball?

40. A tennis player smashes a serve so that the 
racquet is in contact with the ball for 0.055 s,
giving it an impulse of 2.5 N · s. 
(a) What average force was applied during this

time? 
(b) Assume that the vertical motion of the ball

can be ignored. If the ball’s mass is 0.060 kg,
what will be the ball’s horizontal velocity? 

41. A hockey player gives a stationary 175 g 
hockey puck an impulse of 6.3 N · s. At what
velocity will the puck move toward the goal? 

42. A 550 kg car travelling at 24.0 m/s[E] collides
head-on with a 680 kg pickup truck. Both 
vehicles come to a complete stop on impact.
(a) What is the momentum of the car before the

collision? 
(b) What is the change in the car’s momentum?
(c) What is the change in the truck’s momentum?
(d) What is the velocity of the truck before the

collision? 
43. A rocket is travelling 160 m/s[forward] in outer

space. It has a mass of 750 kg, which includes
130 kg of fuel. Burning all of the fuel produces
an impulse of 41 600 N · s. What is the new
velocity of the rocket? 

44. A 19.0 kg curling stone for Team Ontario 
travels at 3.0 m/s[N] down the centre line of the
ice toward an opponent’s stone that is at rest. It
strikes the opponent’s stone and rolls off to the
side with a velocity of 1.8 m/s[N22˚W]. The
opponent’s stone moves in a northeasterly
direction. What is the final velocity (magnitude
and direction) of the opponent’s stone? 

45. Two balls collide on a horizontal, frictionless
table. Ball A has a mass of 0.175 kg and is 
travelling at 1.20 m/s[E40˚S]. Ball B has a mass
of 0.225 kg and is travelling at 0.68 m/s[E]. 
The velocity of ball B after the collision is 
0.93 m/s[E37˚S].
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(a) What is the velocity (magnitude and 
direction) of ball A after the collision? 

(b) What percentage of kinetic energy is lost in
the collision? 

46. An 8.0 kg stone falls off a 10.0 m cliff.
(a) How much work is done on it by the 

gravitational force?
(b) How much gravitational potential energy

does it lose? 

47. Each minute, approximately 5 × 108 kg of water
flow over Niagara Falls. The average height of
the falls is 65 m. 
(a) What is the gravitational potential energy of

the water flow? 
(b) How much power (in W or J/s) can this

water flow generate?

48. A 0.250 kg ball is thrown straight upward with
an initial velocity of 38 m/s. If air friction is
ignored, calculate the
(a) height of the ball when its speed is 12 m/s
(b) height to which the ball rises before falling
(c) How would your answers to (a) and (b)

change if you repeated the exercise with a
ball twice as massive?

49. You are in a 1400 kg car, coasting down a 
25˚ slope. When the car’s speed is 15 m/s, you
apply the brakes. If the car is to stop after 
travelling 75 m, what constant force (parallel 
to the road) must be applied?

50. An archery string has a spring constant of
1.9 × 102 N/m. By how much does its elastic
potential energy increase if it is stretched
(a) 5.0 cm and  (b) 71.0 cm?

51. You exert 72 N to compress a spring with a
spring constant of 225 N/m a certain distance. 
(a) What distance is the spring displaced? 
(b) What is the elastic potential energy of the

displaced spring? 

52. A 2.50 kg mass is attached to one end of a
spring on a horizontal, frictionless surface. The
other end of the spring is attached to one end of
a spring is attached to a solid wall. The spring
has a spring constant of 75.0 N/m. The spring is
stretched to 25.0 cm from its equilibrium point
and released.

(a) What is the total energy of the mass-spring
system?

(b) What is the velocity of the mass when it
passes the equilibrium position?

(c) What is the elastic potential energy stored in
the spring when the mass passes a point that
is 15.0 cm from its equilibrium position?

(d) What is the velocity of the spring when it
passes a point that is 15.0 cm from its equi-
librium position?

53. A 275 g ball is resting on top of a spring that is
mounted to the floor. You exert a force of 325 N
on the ball and it compresses the spring 44.5 cm.
If you release the ball from that position, how
high, above the equilibrium position of the
spring-ball system will the ball rise?

54. A 186 kg cart is released at the top of a hill. 
(a) How much gravitational potential energy is

lost after it descends through a vertical
height of 8.0 m?

(b) If the amount of friction acting on the cart is
negligible, determine the kinetic energy and
the speed of the cart after it has descended
through a vertical height of 8.0 m.

(c) Explain what variables you would need 
to know in order to calculate the kinetic 
energy and the speed of the cart for the
same conditions if the frictional forces were
significant. Assume some reasonable values
and make calculations for the kinetic energy
and the speed of the cart influenced by 
friction. 

55. A small 95 g toy consists of a piece of plastic
attached to a spring with a spring constant of
365 N/m. You compress the spring against the
floor through a displacement of 5.5 cm, then
release the toy. How fast is it travelling when it
rises to a height of 10.0 cm? 

56. Suppose a 1.5 kg block of wood is slid along a
floor and it compresses a spring that is attached
horizontally to a wall. The spring constant is
555 N/m and the block of wood is travelling 
9.0 m/s when it hits the spring. Assume that
the floor is frictionless and the spring is ideal.
(a) By how much does the block of wood 

compress the spring? 
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(b) If the block of wood attaches to the spring
so that the system then oscillates back and
forth, what will be the amplitude of the
oscillation? 

57. A spring with a spring constant of 120 N/m is
stretched 5.0 cm from its rest position.
(a) Calculate the average force applied.
(b) Calculate the work done.
(c) If the spring is then stretched from its 5.0 cm

position to 8.0 cm, calculate the work done.
(d) Sketch a graph of the applied force versus

the spring displacement to show the exten-
sion of the spring. Explain how you can
determine the amount of work done by 
analyzing the graph. 

58. A 32.0 kg child descends a slide 4.00 m high.
She reaches the bottom with a speed of 2.40 m/s.
Was the mechanical energy conserved? Explain
your reasoning and identify the energy 
transformations involved.

59. A 2.5 kg wooden block slides from rest down
an inclined plane that makes an angle of 30˚
with the horizontal.
(a) If the plane is frictionless, what is the speed

of the block after slipping a distance of 2.0 m?
(b) If the plane has a coefficient of kinetic 

friction of 0.20, what is the speed of the
block after slipping a distance of 2.0 m?

60. (a) Given Earth’s radius (6.38 × 106 m) and
mass (5.98 × 1024 kg), calculate the escape
velocity from Earth’s surface.

(b) What is the escape velocity for a satellite
orbiting Earth a distance of 2.00 Earth radii
from Earth’s centre?

(c) How far away do you have to travel from
Earth so that the escape velocity at that point
is 1% of the escape velocity at Earth’s sur-
face? Answer in metres and in Earth radii.

61. A projectile fired vertically from Earth with an
initial velocity v reaches a maximum height of
4800 km. Neglecting air friction, what was its
initial velocity? 

62. An amateur astronomer discovers two new
comets with his backyard telescope. If one
comet is moving at 38 km/s as it crosses Earth’s
orbit on its way toward the Sun and the other

at 47 km/s, calculate whether each orbit is
bound or not.

63. You want to launch a satellite into a circular
orbit at an altitude of 16 000 km (above Earth’s
surface). What orbital speed will it have? What
launch speed will be required?

64. In a joint international effort, two rockets are
launched from Earth’s surface. One has an 
initial velocity of 13 km/s and the other 
19 km/s. How fast is each moving when it
crosses the Moon’s orbit (3.84 × 108 m)?

65. A 460 kg satellite is launched into a circular
orbit and attains an orbital altitude of 850 km
above Earth’s surface. Calculate the
(a) kinetic energy of the satellite
(b) total energy of the satellite
(c) period of the satellite
(d) binding energy of the satellite
(e) additional energy and speed required for the

satellite to escape

66. (a) Calculate the gravitational potential energy
of the Earth-Moon system. (Assume that
their mean separation is 3.84 × 108 m.) 

(b) Calculate the gravitational potential energy
of the Earth-Sun system. (Assume that their
mean separation is 1.49 × 1011 m.)

67. Proposals for dealing with radioactive waste
include shooting it into the Sun. Consider a
waste container that is simply dropped from
rest in the vicinity of Earth’s orbit. With what
speed will it hit the Sun?
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Scanning Technologies: Today and Tomorrow
Consider the following as you continue to build your
Course Challenge research portfolio.
� Add important concepts, equations, interesting and 

disputed facts, and diagrams from this unit.
� Review the information you have gathered in prepara-

tion for the end-of-course presentation. Consider any
new findings to see if you want to change the focus of
your project.

� Scan magazines, newspapers, and the Internet for 
interesting information to enhance your project.

COURSE CHALLENGE
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OVERALL EXPECTATIONS

DEMONSTRATE an understanding of the principles 
and laws related to electric, gravitational, and 
magnetic forces and fields.

INVESTIGATE and analyze electric, gravitational, 
and magnetic fields.

EVALUATE the impact of technological developments 
related to the concept of fields.

UNIT CONTENTS

CHAPTER 7 Fields and Forces 

CHAPTER 8 Fields and Their 
Applications

What is it about “black holes” that stretches
the imagination to the limit? Is it that black

holes, such as the artist’s conception here, defy 
reason because both matter and energy seemingly
disappear into nothingness? 

A major part of understanding the black hole 
phenomenon lies in the characteristics of fields,
regions of space over which a force seemingly acts
at a distance. You are already familiar with everyday
forces that act in this manner — gravity, magnetism,
and electricity. Based on straightforward laboratory
studies, you can begin to answer such questions as:
“How are these fields formed? How are they related
to each other? 

Recent research indicates, for example, that 
black holes are points with almost infinite density.
The gravitational field generated by this concentra-
tion of mass is so strong that not only objects but
even light passing within range can never escape. 

This unit provides an examination of the proper-
ties of electric, gravitational, and magnetic fields. 
As our understanding of fields increases, so to do
the technological applications that use fields. You
will study the fundamental properties of fields, 
how civilization has harnessed this knowledge, 
and consider possible directions for future research.

Refer to pages 370–371. In this unit project you 
will prepare a report and a debate on particle 
accelerators and relevant research.
� How can you use electric and magnetic fields to

accelerate charged particles to very high speeds?
� What are the costs and benefits to society of 

the research into particle accelerators and the
application of the knowledge gained?

UNIT PROJECT PREP
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C H A P T E R Fields and Forces7

You cannot see electric energy, but the electric eel in the 
photograph can. It is not really an eel — it is actually a knife

fish, or Electrophorous electricus — but it is electric. This fish can
detect and generate an electric potential difference. Nearly half 
of the knife fish’s body consists of specialized muscle cells that
function like a series of electric cells. This living “battery” can
generate an electric potential difference of up to 600 V. The 
electric shock caused by the knife fish can kill some small prey
and often stuns large prey, which the knife fish then devours. 

The pits along the side of the knife fish’s head and body, called
the “lateral line system,” are specialized to detect electric fields.
The knife fish uses its ability to generate and detect electric energy
to navigate, detect enemies, kill or stun prey, and possibly even
communicate with other knife fish. If water is polluted, it modifies
the electric field generated by the knife fish. A university in
France is studying the possibility of using the knife fish to monitor
water quality. As you can see, there are even some areas of
research in biology that require a basic understanding of physics.

In this chapter, you will learn more about electric energy and
fields and compare them with gravitational and magnetic energy
and fields. 

� Magnetic fields

� Law of universal gravitation 
placement

PREREQUISITE

CONCEPTS AND SKILLS

Quick Lab
A Torsion Balance 273

7.1 Laws of Force 274

Investigation 7-A
The Nature of the 
Electrostatic Force 276

7.2 Describing Fields 285

7.3 Fields and 
Potential Energy 304

CHAPTER CONTENTS
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Q U I C K

L A B

A Torsion Balance
TARGET SKILLS

Hypothesizing
Identifying variables
Performing and recording
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The torsion balance was an important tool in
early studies of both gravitational force and 
the electrostatic force. As you know, Henry
Cavendish was able to determine the universal
gravitational constant, G, using a torsion 
balance. Charles Coulomb, unaware of
Cavendish’s balance, developed a very similar
balance, which he used to develop the law now
known as Coulomb’s law. This lab will help 
you to understand the principles of the torsion
balance, as well as to develop an appreciation 
of those who used it.

Attach a string (approximately 1.0 m long) 
to the centre of a thin wooden dowel (approxi-
mately 80 cm long) and suspend it from a retort
stand or the ceiling. Wrap four Styrofoam™
balls with aluminum foil. Push one of the balls
onto each end of the dowel. Make two probes by
pushing one ball onto the end of each of two
shorter-length wooden dowels. Charge one of
the balls on the longer dowel on the suspended
balance and also charge the balls on one of the
probes. (Use either an ebonite rod and wool or
an electrostatic generator to charge the balls.)
Now, hold the charged “probe” ball in the 
vicinity of the “balance” ball and allow the 
system to reach equilibrium, with the torsion
balance turned a small amount.

Experiment with different-sized charges by
holding a charged probe in a fixed position near
the “balance” ball, and observe the equilibrium
position of the balance. Then, touch the charged
probe ball to the uncharged probe ball to reduce
(by approximately one half) the quantity of
charge it carries. Then hold the probe ball in
exactly the same position as before and observe
the position of the balance.

Experiment with different types of string, a
heavier dowel, protection from air currents, and
any other variables that you think might affect
the performance of the balance.

Analyze and Conclude
1. Describe the performance of the torsion 

balance.

2. How did the response of the balance change
when you reduced the amount of charge on
the probe?

3. How would you calibrate your balance if 
you wanted to obtain quantitative data?

4. What type of string and weight of dowel
seemed to perform best? 

5. Comment on the use of a torsion balance as 
a precision tool by early physicists.

stringStyrofoam™
ball

Styrofoam™
ball

long dowel

short
dowel

www.mcgrawhill.ca/links/physics12

To see an illustration of Charles Coulomb’s torsion balance, 
go the the above Internet site and click on Web Links.

WEB LINK



In science courses over the past several years, you have gained
experience in applying the laws of motion of Sir Isaac Newton
(1642–1727) and analyzing the motion of many types of objects.
The two forces that you encounter most frequently are the forces
of gravity and friction. In many cases, you have also dealt with an
applied force, in which one object or person exerted a force on
another. In this unit, you will focus on the nature of the forces
themselves.

Gravity and the Inverse Square Law
Several astronomers and other scientists before Newton developed
the concept that the force of gravity obeyed an inverse square law.
In other words, the magnitude of the force of gravity between two
masses is proportional to the inverse of the square of the distance 

separating their centres: F ∝ 1
r2 . It was Newton, though, who 

verified the relationship. 

The centripetal force that keeps the Moon in its orbit is the
gravitational force between Earth and the Moon.

Newton reasoned that, since the Moon is revolving around
Earth with nearly circular motion, the gravitational force between
Earth and the Moon must be providing the centripetal force. His
reasoning was similar to the following.

Figure 7.1

Laws of Force7.1
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• Define and describe the 
concepts related to electric,
gravitational, and magnetic
fields.

• Analyze and compare
Coulomb’s law and Newton’s
law of universal gravitation.

• Apply quantitatively Coulomb’s
law and Newton’s law of 
universal gravitation.

• Collect, analyze, and interpret
data from experiments on
charged particles.

• inverse square law

• electrostatic force

• torsion balance

• Coulomb’s law

• Coulomb’s constant

 T E R M S
K E Y

E X P E C T A T I O N S
S E C T I O N

∆d = 2πr = 2π(3.84 × 108 m) = 2.41 × 109 m

T = 2.36 × 106 s

v = 2πr
T

= 2.41 × 109 m
2.36 × 106 s

= 1.02 × 103 m
s

� The Moon travels the circumference of an
orbit in one period. Therefore, its speed is

v = ∆d
∆t

� Write the equation for speed.

ac = v2

r
� Write the equation for centripetal acceleration.



ac(Moon) = gr2
E

r2
E-Moon

ac(Moon) =
(
9.81 m

s2

)
(6.38 × 106 m)2

(3.84 × 108 m)2

ac(Moon) = 2.71 × 10−3 m
s2

� In the ratio above, solve for the acceleration
due to gravity at the location of the Moon.
Insert the value of g and the distances.

ag(Moon) ∝ 1
r2
E-Moon

g ∝ 1
r2
E

ag(Moon) = GME
r2
E-Moon

g = GME
r2
E

ag(Moon)

g
=

1
r2
E-Moon

1
r2
E

= r2
E

r2
E-Moon

� If the force of gravity decreases with the
square of the distance between the centre 
of Earth and the centre of the Moon, then 
the acceleration due to gravity should also
decrease. Write the inverse square relation-
ships and divide the first by the second.

ac = v2

r
=

(
1.02 × 103 m

s

)2

3.84 × 108 m
= 2.71 × 10−3 m

s2

� The centripetal acceleration of the Moon 
is therefore
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The values of acceleration due to gravity that were calculated 
in two completely different ways are in full agreement. The 
centripetal acceleration of the Moon in orbit is exactly what you
would expect it to be if that acceleration was provided by the force
of gravity and if the force of gravity obeyed an inverse square law. 

The force of gravity exerts its influence over very long distances
and is the same in all directions, suggesting that the influence
extends outward like a spherical surface. The equation relating 
the surface area of a sphere to its radius is A = 4πr2 , or the area 
of a sphere increases as the square of the radius. You can relate 
the influence of the force of gravity with a portion of a spherical
surface, A, at a distance r, as shown in Figure 7.2. When the 
distance doubles to 2r, the area increases by 22, or four. When the
distance increases to 4r, the area of the sphere increases by 42, or
16. The influence of the force of gravity appears to be spreading
out over the surface area of a sphere. How does this property of
the force of gravity compare to the electromagnetic force?

The intensity of physical phenomena that obey inverse square
laws can be compared to the spreading out of the surface of a sphere.

Figure 7.2

4r

2r

r

Contact versus Non-Contact
Action at a distance — some-
thing that might have seemed
magical to you as a child — 
lies at the heart of several 
cutting-edge technologies. Refer
to page 604 of this textbook for
suggestions about non-contact
interactions for your Course
Challenge project.

COURSE CHALLENGE



TARGET SKILLS

Analyzing and interpreting
Modelling concepts
Communicating results

I N V E S T I G A T I O N  7-A

The Nature of the 
Electrostatic Force

TARGET SKILLS

Hypothesizing
Performing and recording
Analyzing and interpreting

In this investigation, you will use pith balls to
quantitatively analyze the electrostatic force 
of repulsion.

Problem
What is the relationship between electrostatic
force and the distance of separation between
two charged pith balls?

Equipment  

Procedure
Be careful when using any sharp 

cutting object.

1. Cut rectangular holes in the front, rear, and
side of the box and a slit on top, as shown. 

2. Mount the clear acetate in the front hole and
the acetate graph sheet in the rear. Mount 
the drinking straws on either side of the slit
on top.

3. Poke the free end of the thread attached to
pith ball B up between the drinking straws
and mount on a clamp above. Ensure that the
thread hangs vertically.

4. Place the pith ball with the wooden base (A)
inside the box. Record the rest positions of
both pith balls on the acetate grid.

5. Rub the ebonite with fur and reach in and
charge both pith balls. Adjust the height of
the mount of pith ball B so that it is level
with pith ball A. Record the position of both
pith balls.

6. Move pith ball A toward pith ball B several
times. Adjust the mount of pith ball B each
time to keep B level with A. For each trial,
read and record the positions of both pith
balls. 

7. Measure the mass of a large number of balls
and take an average to find the mass of one. 

Analyze and Conclude
1. For each trial, use the rest positions and the

final positions of the pith balls to determine
the distance between A and B.

2. For each trial, use the lateral displacement 
of B, relative to its original rest position, to
determine the electrostatic force acting on B.
(Prove for yourself that FQ = mg tan θ.)

3. Draw a graph with the electrostatic force on
the vertical axis and the distance of separa-
tion between the charges on the horizontal
axis. What does your graph suggest about 
the relationship between the electrostatic
force and the distance of separation?

4. Calculate 1/r2 for each of your trials and plot
a new graph of F versus 1/r2. Does your 
new graph provide evidence to back up 
the prediction you made in your original
analysis? Discuss.

thread

acetate
graph
paper

mounting clamp
drinking straws mounted

over slot cut in box

acetate window

suspended 
ball B

movable
ball A

access door

light bulb
(1–2 m)

FT

FT

FQ
FQ

mg mg

θ

θ

CAUTION

� electronic balance 
� clear straight 

filament lamp
� razor knife
� pith ball on thread
� pith ball mounted 

on wooden base

� acetate graph paper
� clear acetate sheet
� ebonite and fur
� cardboard shoe box
� two drinking straws
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Electromagnetic Force
The exact nature of frictional forces and applied forces that are
due to the electromagnetic force is very complex. How would 
anyone obtain fundamental information about such complex
forces? Physicists start with the simplest cases of such forces, 
analyze these cases, and then extend them to more and more 
complex situations. The simplest case of an electromagnetic force
is the electrostatic force between two stationary point charges.

Several scientists, including Daniel Bernoulli, Joseph Priestly,
and Henry Cavendish, had proposed that the electrostatic force
obeyed an inverse square relationship, based on a comparison
with Newton’s inverse square law of universal gravitation. 

Coulomb’s Experiment
French scientist Charles Augustin Coulomb (1736–1806) carried
out experiments in 1785 similar to the investigation that you have
just completed. Coulomb had previously developed a torsion 
balance for measuring the twisting forces in metal wires. He used
a similar apparatus, shown in Figure 7.3, to analyze the forces
between two charged pith balls. 

Coulomb charged the two pith balls equally, placed them at 
precisely measured distances apart. Observing the angle of deflec-
tion, he was able to determine the force acting between them for
each distance of separation. He found that the electric force, F,
varied inversely with the square of the distance between the 

centres of the pith balls 
(
FQ ∝ 1

r2

)
.

To investigate the dependence of the force on the magnitude of
the charge on the pith balls, Coulomb began with two identically
charged pith balls and measured the force between them. He then
touched a pith ball with a third identical but uncharged pith ball
to reduce the amount of charge on the ball by half. He found that

A

B
B A

charged
spheres

thin wire

deflection of A

d

A′

B
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A

Coulomb’s torsion
balance (A) is simplified in (B).
Coulomb measured the force
required to twist the thread a
given angle. He then used this
value to determine the force
between the two pith balls.

Figure 7.3



the force was now only one half the previous value. After several
similar modifications of the charges, Coulomb concluded that the
electric force varied directly with the magnitude of the charge on
each pith ball (FQ ∝ q1q2). The two proportion statements can be 

combined as one 
(
FQ ∝ q1q2

r2

)
and expressed fully as Coulomb’s

law. 

Any proportionality can be written as an equality by including
a proportionality constant. Although the value of the constant was
not known until long after Coulomb’s law was accepted, it is now
known to be 8.99 × 109 N · m2/C2, in SI units.

The value of the proportionality constant in a vacuum is denot-
ed k and known as the Coulomb constant. In fact, air is so close to
“free space” — the early expression for a vacuum — that any effect
on the value of the constant is beyond the number of significant
digits that you will be using. For practical purposes, the Coulomb
constant is often rounded to 9.00 × 109 N · m2/C2.

Coulomb’s law can now be written as FQ = k q1q2

r2 . The direction 

of the force is always along the line between the two point
charges. Between charges of like sign, the force is repulsive;
between charges of unlike sign, the force is attractive. 

Quantity Symbol SI unit
electrostatic force
between charges FQ N (newtons)

Coulomb’s constant k N · m2

C2 (newton · metres

squared per coulomb 
squared)

electric charge on object 1 q1 C (coulombs)

electric charge on object 2 q2 C (coulombs)

distance between 
object centres r m (metres)

Unit Analysis

newton = (newton)(metre)2

(coulomb)2 · (coulomb)(coulomb)
(metre)2

N · m2

C2 · C · C
m2 = N

FQ = k q1q2

r2

COULOMB’S LAW
The electrostatic force between two point charges, q1 and q2,
distance r apart, is directly proportional to the magnitudes 
of the charges and inversely proportional to the square of the
distance between their centres.
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Note that not only does the 
proportionality constant have to
validate the numerical relation-
ship, it must also make the units
match. Thus, the units for k are
obtained by rearranging the
Coulomb equation.

k = F · d2

q1 · q2

= (force)(distance)2

(charge)(charge)

= N · m2

C2

PHYSICS FILE

You can develop a sense of the
meaning of the Coulomb constant
by considering two charges that
are carrying exactly one unit of
charge, a coulomb, and located
one metre apart. Substituting
ones into Coulomb’s law, you
would discover that these 
two charges exert a force of
9.00 × 109 N on each other. This
amount of force could lift about
50 000 railroad cars or 2 million
elephants. Clearly, one coulomb
is an exceedingly large amount 
of charge. Typical laboratory
charges would be much smaller
— in the order of µC or millionths
of a coulomb.

PHYSICS FILE



Strictly speaking, the description of Coulomb’s law given on the
previous page is meant to apply to point charges. However, just 
as Newton was able to develop the mathematics (calculus) that
proved that the mass of any spherical object can be considered 
to be concentrated at a point at the centre of the sphere for all
locations outside the sphere, so it might also be proven that if
charge is uniformly distributed over the surface of a sphere, then
the value of the charge can be considered to be acting at the centre
for all locations outside the sphere.
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A uniformly charged
sphere acts as if all of its charge is
concentrated at its centre.

Figure 7.4
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Applying Coulomb’s Law
A small sphere, carrying a charge of −8.0 µ C, exerts an attractive force 
of 0.50 N on another sphere carrying a charge with a magnitude of 5.0 µ C.

(a) What is the sign of the second charge?

(b) What is the distance of separation of the centres of the spheres?

Conceptualize the Problem
� Charged spheres appear to be the same as point charges relative 

to any point outside of the sphere.

� The force, charge, and distance are related by Coulomb’s law.

Identify the Goal
The sign, ±, and separation distance, r, of the charges

Identify the Variables and Constants
Known Implied Unknown
q1 = −8.0 × 10−6 C
|q2| = 5.0 × 10−6 C

F = 0.50 N k = 9.0 × 109 N · m2

C2 r

Develop a Strategy

(a) Since the force is attractive, the second charge must be positive.

(b) The distance between the centres of the charges is 0.85 m.

F = k q1q2

r2

r2 = kq1q2

F

r = ±
√

kq1q2

F

r =

√(
9.0 × 109 N · m2

C2

)
(8.0 × 10−6 C)(5.0 × 10−6 C)

5.0 × 10−1 N
r = 0.84853 m

r ≅ 0.85 m

Since the spheres are uniformly charged,
they can be considered to be points 
and Coulomb’s law can be applied.

Only the positive root is chosen to 
represent the distance in this situation 

SAMPLE PROBLEM 

continued
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Validate the Solution
Charges in the microcoulomb range are expected to exert moderate
forces on each other.

1. Calculate the electrostatic force between
charges of −2.4 µC and +5.3 µC, placed 
58 cm apart in a vacuum.

2. The electrostatic force of attraction 
between charges of +4.0 µC and −3.0 µC is
1.7 × 10−1 N. What is the distance of 
separation of the charges?

3. Two identically charged objects exert a force
on each other of 2.0 × 10−2 N when they are
placed 34 cm apart. What is the magnitude 
of the charge on each object?

4. Two oppositely charged objects exert a force
of attraction of 8.0 N on each other. What
will be the new force of attraction if the
objects are moved to a distance four times
their original distance of separation?

5. Two identical objects have charges of +6.0 µC
and −2.0 µC, respectively. When placed a
distance d apart, their force of attraction is
2.0 N. If the objects are touched together,
then moved to a distance of separation of 2d,
what will be the new force between them?

PRACTICE PROBLEMS

continued from previous page

Graphical Analysis
of Coulomb’s Law

Q U I C K

L A B

TARGET SKILLS

Analyzing and interpreting
Communicating results

In this Quick Lab, you will use sample data to
gain practice with the inverse square depend-
ence of the electrostatic force between two point
charges on the distance between them. Two
equally charged, identical small spheres are
placed at measured distances apart and the
force between them is determined by using a
torsion balance. Prepare a table similar to the
one shown here, in which to record your data.

1. Draw a graph of force versus distance for this
data. What is the shape of this graph?

2. Rearrange the distance data (use the third
column in your table) and draw a graph that
shows the relationship as a linear one (refer
to Skill Set 4, Mathematical Modelling and
Curve Straightening).

3. Measure the slope of the straight line.

4. Using the known value of Coulomb’s 
constant (k = 9 × 109 N · m2/C2), calculate the
value of the original charge on the spheres.

Force (× 102 N)

5.63

2.50

1.30

0.791

0.383

0.225

Distance between
centres (cm)

1.2

1.8

2.5

3.2

4.6

6.0



The Nature of Electric, Magnetic, 
and Gravitational Forces
All forces, including electrostatic forces, are vector quantities 
and obey the laws of vector addition. The equation describing
Coulomb’s law uses only scalar quantities, with the understanding
that the direction of the force always lies along the line joining the
centre of the two charges. However, when one charge experiences
a force from more than one other charge, the direction must be
resolved. 
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Multiple Charges
Three charges, A (+5.0 µ C), B (−2.0 µ C), and C (+3.0 µ C), 
are arranged at the corners of a right triangle as shown. 
What is the net force on charge C?

Conceptualize the Problem
� Charges A and B both exert a force on C.

� Although A and B exert forces on each other, these forces
have no effect on the forces that they exert on C.

� The net force on charge C is the vector sum of the two forces
exerted by charges A and B.

� The forces exerted by A and B are related to the magnitude 
of the charges and the distance between the charges, according 
to Coulomb’s law.

Identify the Goal
The net force, 

⇀Fnet, on charge C

Identify the Variables and Constants
Known Implied Unknown
qA = +5.0 × 10−6 C
qB = −2.0 × 10−6 C
qC = +3.0 × 10−6 C

rAC = 5.0 × 10−2 m
rBC = 2.0 × 10−2 m

k = 9.0 × 109 N · m2

C2
⇀Fnet

Develop a Strategy

FAC = k qAqC

r2

FAC =
(
9.0 × 109 N · m2

C2

) (5.0 × 10−6 C)(3.0 × 10−6 C)
(0.050 m)2

FAC = 54 N

Use Coulomb’s law to find the magnitude of
the forces acting on C.

Let FAC represent the magnitude of the force
of charge A on charge C.

A (+5.0 µC)

B (−2.0 µC)C (+3.0 µC)

5.0 cm

2.0 cm

SAMPLE PROBLEM 

Go to your Physics 12 Electronic
Learning Partner to enhance your
knowledge of Coulomb’s law.

ELECTRONIC
LEARNING PARTNER

continued



The net force on charge C is 1.5 × 102 N at an angle of 22˚ clockwise
from the horizontal.

Validate the Solution
The magnitude and direction of the net force are consistent with the 
orientation of the three charges.

6. A single isolated proton is fixed on a surface.
Where must another proton be located in
relation to the first in order that the electro-
static force of repulsion would just support
its weight?

7. Three charged objects are located at the 
vertices of a right triangle. Charge A
(+5.0 µC) has Cartesian coordinates (0,4);
charge B (−5.0 µC) is at the origin; charge C
(+4.0 µC) has coordinates (5,0), where the
coordinates are in metres. What is the net
force on each charge?

8. The diagram shows three charges situated 
in a plane. What is the net electrostatic force
on q1?

PRACTICE PROBLEMS

tan θ = 54.0
135

tan θ = 0.40

θ = tan−1 0.40

θ = 21.8˚

θ ≅ 22˚

Use the definition of the tangent function to
find the angle, θ. 

F2
net = (135 N)2 + (54.0 N)2

F2
net = 21 141 N2

Fnet = 145.39 N

Fnet ≅ 1.5 × 102 N

Use the Pythagorean theorem to calculate
the magnitude of Fnet .

135 N
θ

Fnet
54.0 N

C

Since charges A and C are both positive, the
force will be repulsive and point directly
downward on C.

Since B and C are oppositely charged, the
force will be attractive and will point 
directly to the right of C.

Draw a diagram of the forces on charge C. 

FBC = k qBqC

r2

FBC =
(
9.0 × 109 N · m2

C2

) (2.0 × 10−6 C)(3.0 × 10−6 C)
(0.020 m)2

FBC = 135 N

Let FBC represent the magnitude of the force
of charge B on charge C (attraction).
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0.
20

 m

0.16 m

54˚

+3.0 µC

−5.0 µC

−6.0 µC

q1

q2

q3

continued from previous page



9. The diagram below shows two pith balls,
equally charged and each with a mass of 1.5 g.
While one ball is suspended by a thread, the
other is brought close to it and a state of equi-
librium is reached. In that situation, the two
balls are separated by 2.6 cm and the thread
attached to the suspended ball makes an angle
of 20˚ with the vertical. Calculate the charge
on each of the pith balls.

10. Two 2.0 g spheres are attached to each end 
of a silk thread 1.20 m long. The spheres are
given identical charges and the midpoint of
the thread is then suspended from a point 
on the ceiling. The spheres come to rest in
equilibrium, with their centres 15 cm apart.
What is the magnitude of the charge on 
each sphere?
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Although magnetic forces and electrostatic forces are related
and both fit into the category of electromagnetic forces, the
strength of a magnetic force cannot be defined in the same way as
electrostatic and gravitational forces. The reason for the difference
is that magnetic monopoles do not exist or, at least, have never
been detected, in spite of the efforts of physicists. Where there 
is a north pole, you will also find a south pole. Nevertheless,
Coulomb was able to approximate isolated magnetic monopoles by
measuring the forces between the poles of very long, thin magnets.

If one pole of a long, thin bar magnet is placed in the vicinity 
of one pole of another long, thin bar magnet, Coulomb’s magnetic
force law states: The magnetic force F between one pole of 
magnetic strength p1 and another pole of magnetic strength p2

is inversely proportional to the square of the distance r between 

them, or F ∝ p1p2

r2 . It is not possible, however, to find a propor-
tionality constant, because it is not possible to define a unit for p,
a magnetic monopole.

You have seen that the three different types of forces — electro-
static, gravitational, and magnetic — all exhibit some form of an
inverse square distance relationship. Are there any significant 
differences that you should note?

Probably the greatest difference between gravitational and 
electromagnetic forces is the strength. Gravitational forces are
much weaker than electrostatic and magnetic forces. For example,
you do not see uncharged pith balls, nor demagnetized iron bars,
moving toward each other under the action of their mutual 
gravitational attraction.

2.6 cm

20˚



In summary, the similarities and differences among electro-
static, gravitational, and magnetic forces are listed in Table 7.1.

Table 7.1 Differences among Electrostatic, Gravitational, and 
Magnetic Forces

Electrostatic force

� can be attractive or repulsive 
� demonstrates an inverse 

square relationship in terms 
of distance

� depends directly on the 
unit property (charge)

� law easily verified using 
point charges (or equivalent 
charged spheres)

� can only be attractive
� demonstrates an inverse 

square relationship in terms 
of distance

� depends directly on the 
unit property (mass)

� law easily verified using 
point masses (or solid 
spheres)

� magnitude of the force 
is much weaker than 
electrostatic or magnetic 
force

� can be attractive or repulsive
� demonstrates an inverse 

square relationship in 
terms of distance (between 
isolated poles)

� depends directly on the unit 
property (pole strength)

� law cannot be verified 
using magnetic monopoles 
as they do not exist 
independently (must be 
simulated using long, 
thin magnets or thin, 
magnetized wire)

Gravitational force Magnetic force
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7.1 Section Review

1. What is meant by the statement that
Coulomb “quantified” the electric force?

2. In what way did Coulomb determine 
the dependence of the electrostatic force on
different variables?

3. Explain the similarities and differences
between the Coulomb experiment for charge
and the Cavendish experiment on mass.

4. Explain how, in one sense, Coulomb’s law
is treated as a scalar relationship, but on the
other hand, its vector properties must always
be considered.

5. State some similarities and some differ-
ences between the gravitational force and the
electrostatic force.

6. Research the role of electrostatic charge
in technology and write a brief report on
your findings. Examples could include pho-
tocopiers and spray-painting equipment.

7. By what factor would the electrostatic
force between two charges change under the
following conditions?

(a) The distance is tripled.

(b) Each of the charges is halved.

(c) Both of the above changes are made.

I

MC

K/U

C

C

K/U

K/U



In Figure 7.5 (A), a woodcutter exerts a splitting force on a log 
by direct contact between the axe and the log. In contrast, in
Figure 7.5 (B), a charged comb is exerting a force on charged pith
balls without coming into contact with the balls. This electrostatic
force between the comb and pith balls is an example of 
an action-at-a-distance force. You have just been studying the 
characteristics of the three common action-at-a-distance forces:
gravitational, electric, and magnetic forces. The phrase action at 
a distance describes some of the characteristics of these forces, 
but does not really explain how these results are achieved. The
critical question now is: How is each mass or charge or magnet
“aware” of the other?

(A) A woodcutter chopping a log is an example of a contact
force.  (B) When a charged comb exerts a force on charged pith balls, the
force is acting at a distance and is a non-contact force.

The question of how an object can exert a force on another
object without making contact with the object was addressed by
Michael Faraday (1792–1867), who proposed the concept of a
field. This field concept became quite popular and was extended
to explain the gravitational forces between masses.

The fundamental concept is that a field is a property of space.
An object influences the space around it, setting up either an elec-
tric, gravitational, or magnetic field. The object producing the field
is called the “source” of the field. This field in turn exerts a force
on other objects located within it. This concept is consistent with
the inverse square law, which implies that an object influences the
space around it.

Figure 7.5

Describing Fields7.2
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• Define and describe the 
concepts related to electric,
gravitational, and magnetic
fields.

• Compare the properties of 
electric, gravitational, and 
magnetic fields.

• Analyze the electric field and
the electric forces produced 
by point charges.

• Sketch simple field patterns
using field lines.

• action at a distance

• field

• test charge

• electric field intensity

• electric field

• gravitational field intensity

• magnetic field intensity

• electric field line

• gravitational field line

• magnetic field line

 T E R M S
K E Y

E X P E C T A T I O N S
S E C T I O N

A B



Defining Field Intensity
Figure 7.6 illustrates the generation of an electric field by a charge,
q1. The density of the shading designates the strength of the field.
If a second charge, q2, is introduced into the field at point P, for
example, it is the field that interacts with q2. Because this is a
local interaction, it is not necessary to explain how forces can act
between objects separated by any distance. 

Charge q1 influences the space around it by generating an
electric field. The density of the shading indicates the strength of the field.

To describe the field around a charge, q, it is convenient to use
the concept of a test charge. By definition, a test charge is a point
charge with a magnitude so much smaller than the source charge
that any field generated by the test charge itself is negligible in
relation to the field generated by the source charge. You can place
the test charge, qt, at any point within the field generated by q, and
then take the following steps.

The term on the right-hand side of the equation contains only
the source charge and the distance that qt is from the source
charge. Since it is independent of anything that might be located
at qt, it provides a convenient way to describe the condition of
space at qt. Now the term on the left-hand side of this equation is
defined as the magnitude of the electric field intensity, 

⇀E , which
is commonly called the electric field.

F
qt

= k q
r2

� Divide both sides of the equation 
by qt.

F = k qqt

r2
� Write Coulomb’s law to describe the

force between the source charge, q,
and the test charge, qt.

Figure 7.6

+q1

PP

⇀
E
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In 1600, William Gilbert (1540–1603)
hypothesized that the rubbing of 
certain materials, such as amber,
removes a fluid or “humour” from the
material and releases an “effluvium”
into the surroundings. He proposed
that the effluvium made contact with
other materials and caused the force
now known as the “electrostatic
force.” As you continue to study this
section, decide whether Gilbert was
on the right track.

HISTORY LINK



Since force is a vector quantity, so also is an electric field. An 
electric force can be attractive or repulsive, so physicists have
accepted the convention that the direction of the electric field 
vector at any point is given by the direction of the force that
would be exerted on a positive charge located at that point. Using
this concept, you can illustrate an electric field by drawing force
vectors at a variety of points in the field. As shown in Figure 7.7,
the length of the vector represents the magnitude of the field at 
the tail of the vector, and the direction of the vector represents the
direction of the field at that point. 

Quantity Symbol SI unit

electric field intensity
⇀E N

C
(newtons per coulomb)

electric force
⇀FQ N (newtons)

electric charge  q C (coulombs)

Unit Analysis
newtons
coulomb

= N
C

Note: Electric field intensity has no unit of its own.

⇀E =
⇀FQ

q

DEFINITION OF ELECTRIC FIELD INTENSITY
The electric field intensity at a point is the quotient of the
electric force on a charge and the magnitude of the charge
located at the point.
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Vector arrows can
be used to represent the magni-
tude and direction of the electric
field around a charge at various
locations.

Figure 7.7

electric field

charge +

Calculating Electric Field Intensity
A positive test charge, qt = +2.0 × 10−9 C, is placed in an electric field
and experiences a force of ⇀F = 4.0 × 10−9 N[W].

(a) What is the electric field intensity at the location of the test charge?

(b) Predict the force that would be experienced by a charge of
q = +9.0 × 10−6 C if it replaced the test charge, qt.

Conceptualize the Problem
� The electric field intensity is related to the force and the test charge.

� If you know the electric field intensity at a point in space, you can
determine the force on any charge that is placed at that point
without knowing anything about the source of the field.

SAMPLE PROBLEM 

continued



Identify the Goal
The electric field, 

⇀E , at a given point in space

The force, 
⇀F , on the new charge located at the same point

Identify the Variables
Known Unknown
⇀Fqt = 4.0 × 10−9 N[W]
qt = 2.0 × 10−9 C
q = 9.0 × 10−6 C

⇀E
⇀F

Develop a Strategy

(a) The electric field intensity is 
⇀E = 2.0 N

C
[W].

(b) The force on the 9.0 × 10−6 C charge is 
⇀F = 1.8 × 10−5 N[W].

Validate the Solution
You would expect the electric field to have units N/C and be pointing
west. The magnitude of the field seems to be reasonable in relation to
the charge and force.

Since the second charge is larger than the first, you would expect the 
second force to be larger than the first. Charges in the microcoulomb range
are considered to be average charges that occur in electrostatic experiments.

11. A positive charge of 3.2 × 10−5 C experiences
a force of 4.8 N to the right when placed in
an electric field. What is the magnitude and
direction of the electric field at the location
of the charge?

12. An electric field points due east with a 
magnitude of 3.80 × 103 N/C at a particular
location. If a charge of −5.0 µC is placed at
this location, what will be the magnitude 
and the direction of the electric force that 
it experiences?

PRACTICE PROBLEMS

⇀E =
⇀F
q

⇀F = q⇀E
⇀F = (9.0 × 10−6 C)

(
2.0 N

C
[W]

)
⇀F = 18 × 10−6 N[W]
⇀F = 1.8 × 10−5 N[W]

Rearrange the equation for electric field to solve for
the new force. 

Substitute the numerical values and solve.

⇀E =
⇀F
qt

⇀E = 4.0 × 10−9 N[W]
2.0 × 10−9 C

⇀E = 2.0 N
C

[W]

Find the electric field intensity by using the 
equation that defines electric field. 
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13. A negative charge of 2.8 × 10−6 C experiences
an electrostatic force of 0.070 N to the right.
What is the magnitude and direction of the
electric field at the location of the charge?

14. A small charged sphere is placed at a point
in an electric field that points due west and
has a magnitude of 1.60 × 104 N/C. If the
sphere experiences an electrostatic force of
6.4 N east, what is the magnitude and sign of
its charge?
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A discussion similar to that for the electric field intensity can be
made for gravitational field intensity. A mass, such as Earth, can
exert a gravitational force on a test mass placed in its vicinity. 
The ratio of the gravitational force to the test mass depends only
on the source and the location in the field. This ratio is called the
gravitational field intensity, for which the symbol is ⇀g .

In the past, you have used the symbol g to represent the acceler-
ation due to gravity at Earth’s surface. If you analyze the equation
that described gravitational field intensity in the box above, you
will see that it can be rearranged to give 

⇀F = m⇀g , which is the
same as the equation for the weight of an object at Earth’s surface.
So, in fact, the g that you have been using is the same as the 
gravitational field intensity at Earth’s surface. 

• Show that the units for g, m/s2, are equivalent to the units for
gravitational field intensity, or N/kg.

Conceptual Problem

Quantity Symbol SI unit

gravitational field 
intensity ⇀g N

kg
(newtons per kilogram)

gravitational force
⇀Fg N (newtons)

mass m kg (kilograms)

Unit Analysis
newtons
kilogram

= N
kg

⇀g =
⇀Fg

m

DEFINITION OF GRAVITATIONAL FIELD INTENSITY
The gravitational field intensity at a point is the quotient of
the gravitational force and the magnitude of the test mass.
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Calculating Gravitational Field Intensity
A mass of 4.60 kg is placed 6.37 × 106 m from the centre of a planet
and experiences a gravitational force of attraction of 45.1 N.

(a) Calculate the gravitational field intensity at this location.

(b) Discuss the significance of your answer.

Conceptualize the Problem
� The definition of gravitational field intensity is the gravitational

force per unit mass.

Identify the Goal
The gravitational field intensity, ⇀g , at this location

Identify the Variables
Known Unknown
|⇀F| = 45.1 N
m = 4.60 kg
r = 6.37 × 106 m

⇀g

Develop a Strategy

(a) The gravitational field intensity at this location is 9.80 N/kg.

(b) The location seems to be at the surface of Earth, although another
alternative is that it could be above the surface of a planet with
gravitational field intensity at its surface that is greater than that
of Earth.

Validate the Solution
The units are correct for gravitational field. The values for both 
distance and field intensity provide more validation, because 
they are identical to the values for the surface of Earth. However,
this does not preclude the possibility of the object being above
another planet.

The value of the field intensity is identical to
that of Earth’s near its surface.

The distance given is actually the average 
radius of Earth.

Look for recognizable characteristics, then
investigate other data.

⇀g =
⇀F
m

|⇀g| = 45.1 N
4.60 kg

⇀g = 9.80 N
kg

[in the direction of the force]

Find the gravitational field intensity by using
the equation for field intensity and the given
variables.

SAMPLE PROBLEM 



15. What is the gravitational field intensity at the
surface of Mars if a 2.0 kg object experiences
a gravitational force of 7.5 N?

16. The gravitational field intensity on the sur-
face of Jupiter is 26 N/kg. What gravitational
force would a 2.0 kg object experience on
Jupiter?

17. The planet Saturn has a gravitational field
intensity at its surface of 10.4 N/kg. What is

the mass of an object that weighs 36.0 N on
the surface of Saturn?

18. What would be the gravitational field intensi-
ty at a location exactly one Saturn radius
above the surface of Saturn?

19. What is the centripetal acceleration of a
satellite orbiting Saturn at the location
described in the previous problem?

PRACTICE PROBLEMS
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The gravitational field can also be mapped in the region of a
source mass by drawing the gravitational field vectors at corre-
sponding points in the field. Similar to the electric field, the 
vector length represents the magnitude of the gravitational field
and the direction of the vector represents the direction in which 
a gravitational force would be exerted on a test mass placed in 
the field.

Earth’s gravitational field can be represented by vectors, with
the length of each being proportional to the field intensity at that point.

Figure 7.8
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CANADIANS IN PHYSICS

Gravity: A Matter of Time 
William George Unruh was born in Winnipeg, the
son of a high school physics teacher. “As a boy I
loved looking at the pictures in my father’s physics
textbooks,” he recalls. “They aroused my curiosity
about how the world works.” He attended the
University of Manitoba and then Princeton
University, where he received his Ph.D. Today, 
he is a professor of physics and astronomy at the
University of British Columbia and a Fellow of the
Canadian Institute for Advanced Research. 

Dr. Unruh with the beach ball that he sometimes
uses to help explain the concept of gravity.

Dr. Unruh explains that, according to Albert
Einstein, “The rate at which time flows can change
from place to place, and it is this change in the
flow of time that causes the phenomenon we 
usually refer to as gravity.” Dr. Unruh’s work
focusses on understanding aspects of Einstein’s
theories. “For example,” he says, “Since matter

can influence time and matter influences gravity,
which is just the variable flow of time, the very
measuring instruments we use to measure time
can change time. While this is not important in
most situations, it becomes very important in 
trying to decide how the universe operates; for
example, in understanding black holes.” Dr. Unruh
explains that, in black holes, the structures of
space and time collaborate, creating regions
through which even light cannot travel.

“All of physics is now described in terms of
field theories,” Dr. Unruh points out. “However, 
we also experience the world in terms of particles.
Since fields exist everywhere at all times, part 
of my work has been trying to understand the 
particulate nature of fields. Probably my best
known work is showing that the particle nature 
of fields depends on the observer’s state of motion.
If an observer is accelerated through a region that
seems to be empty of particles to an observer at
rest, that region will, to the accelerated observer,
appear to be filled with a hot bath of particles.
Thus, the existence or non-existence of particles 
in a field can depend on how the observer moves
as he or she observes that field. The effect is
extremely small, but it is there.” 

Another area in which Dr. Unruh works is gravi-
ty wave detection. A gravity wave might be called
a “vibration of space and time.” It is caused by the
acceleration of masses; for example, of black holes
around each other. The techniques that Dr. Unruh
and others have developed will be important to 
the future refinement of gravity wave detectors
now being built in the states of Louisiana and
Washington, as well as elsewhere in the world.



Since magnetic monopoles are not known to exist, it is not 
practical to try to define magnetic field intensities in a way that is
analogous to the definitions of electric and gravitational fields. 
The most practical way to describe magnetic field intensity at this
point is to relate it to the effect of a magnetic field on a current-
carrying wire, which you studied in previous science courses. 
The following steps show you how to relate the magnetic field
intensity, B, to the force, 

⇀FB, exerted by the magnetic field on 
a length, l, of wire carrying a current, I. 

The above relationship states that if each metre of a conductor
that is carrying a current of one ampere experiences a force of one
newton due to the presence of a magnetic field that is perpendicu-
lar to the direction of the current, the magnitude of the magnetic
field is one tesla.

Fields near Point Sources
The definition and accompanying equation that you learned for
electric field strength, 

⇀E = ⇀FQ/q, is a general definition. If you
know the force on a charge due to an electric field, you can 
determine the electric field intensity without knowing anything
about the source of the field. It is convenient, however, to develop
equations that describe the electric field intensity for a few 
common, special cases, such as point charges. 

∣∣⇀E∣∣ =
k qqt

r2

qt∣∣⇀E∣∣ = k q
r2

� Substitute the expression for force
into the above equation and simplify.

⇀E =
⇀FQ

qt

� Write the general definition for the
electric field intensity.

|⇀FQ| = k qqt

r2
� Write the equation describing the

magnitude of the force on a test
charge, qt, that is a distance, r, from 
a point charge, q. 

T = N
A · m

or 

tesla = newton
ampere · metre

� The SI unit of magnetic field intensity
is the tesla, T. Substitute SI units for
the symbols in the equation above.

⇀B =
⇀F
⇀Il

� Rearrange the equation to solve for
the magnetic field intensity.

⇀FB = ⇀I l⇀B

� Write the equation describing the
force on a current-carrying conductor
in a magnetic field when the direction
of the current is perpendicular to the
magnetic field. 
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Field Intensity near a Charged Sphere
1. What is the electric field intensity at a point 30.0 cm from the 

centre of a small sphere that has a positive charge of 2.0 × 10−6 C?

Conceptualize the Problem
� At any point outside of a charged sphere, the electric field is the

same as it would be if the charge was concentrated at a point at
the centre of the sphere.

� The electric field is related to the source charge and distance.

� The direction of the field is the direction in which a positive
charge would move if it was placed at that point in the field.

Identify the Goal
The electric field intensity, 

⇀E

SAMPLE PROBLEMS
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Quantity Symbol SI unit

electric field intensity
⇀E N

C
(newtons per coulomb)

Coulomb’s constant k N · m2

C2 (newton · metres

squared per coulomb squared)

source charge q C (coulombs)

distance r m (metres)

Unit Analysis
newton · metre2

coulomb2 · coulomb
metre2 = newton

coulomb
N · m2

C2 · C
m2 = N

C

Note: This equation applies only to the field surrounding an
isolated point charge.

|⇀E| = k q
r2

ELECTRIC FIELD INTENSITY NEAR A POINT CHARGE
The electric field intensity a distance away from a point
charge is the product of Coulomb’s constant and the charge,
divided by the square of the distance from the charge. The
direction of the field is radially outward from a positive point
charge and radially inward toward a negative point charge. 



Identify the Variables and Constants
Known Implied Unknown
q = +2.0 × 10−6 C
r = 0.30 m

k = 9.0 × 109 N · m2

C2
⇀E

Develop a Strategy

The electric field intensity is 2.0 × 105 N/C in a direction pointing
directly away from the source charge.

Validate the Solution
Close to a charge of “average” magnitude, the field is expected to be
quite strong. Check that the units cancel to give N/C.

N · m2

C2 · C
m2 = N

C

2. Three charges, A (+6.0 µC), B (−5.0 µC), and  
C (+6.0 µC), are located at the corners of a square
with sides that are 5.0 cm long. What is the electric
field intensity at point D?

Conceptualize the Problem
� Since field intensities are vectors they must also be 

added vectorally.

� The magnitude of the field vectors can be
determined individually.

� Draw a vector diagram showing the field intensity
vectors at point D and then superimpose an 
x-y coordinate system on the drawing, with 
the origin at point D.

Identify the Goal
The resultant electric field intensity, 

⇀E , at point D

Identify the Variables and Constants
Known Implied Unknown
dAB = dBC = 5.0 cm
qA = +6.0 µC
qB = −5.0 µC
qc = +6.0 µC

k = 9.0 × 109 N · m2

C2
⇀ED

dBD

y

x
A

+6.0 µC

C
+6.0 µC

B
−5.0 µC

D

⇀
EA at D

⇀
EB at D

⇀
EC at D

A
+6.0 µC

C
+6.0 µC

B
−5.0 µC

D5.0 cm

|⇀E| = k q
r2

|⇀E| =
(
9.0 × 109 N · m2

C2

)( 2.0 × 10−6 C
(0.30 m)2

)

|⇀E| = 2.0 × 105 N
C

Find the field intensity by using the equation for
the special case of the field near a point charge.

Substitute the numerical values for charge and
distance and solve. 

The direction is radially outward from the 
positive charge.
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Develop a Strategy

tan θ =
1.524 × 107 N

C
1.524 × 107 N

C

tan θ = 1.00

tan θ = tan−1 1.00

tan θ = 45˚

Use the definition of the tangent function to
find the direction of the electric field vector 
at point D.

∣∣⇀E(net)
∣∣2 =

(
E(net)x

)2
+

(
E(net)y

)2

∣∣⇀E(net)
∣∣2 =

(
1.524 × 107 N

C

)2
+

(
1.524 × 107 N

C

)2

∣∣⇀E(net)
∣∣2 = 4.6452 × 1014

( N
C

)2

∣∣⇀E(net)
∣∣ = 2.1553 × 107 N

C∣∣⇀E(net)
∣∣ ≅ 2.2 × 107 N

C

Use the Pythagorean theorem to find the 
magnitude of the resultant vector.

y-components

E(A at D)y = 0

E(B at D)y = −
(
9.00 × 106 N

C

)
sin 45˚

E(B at D)y = −6.36 × 106 N
C

E(C at D)y = 2.16 × 107 N
C

E(net)y = 1.524 × 107 N
C

x-components

E(A at D)x = 2.16 × 107 N
C

E(B at D)x = −
(
9.00 × 106 N

C

)
cos 45˚

E(B at D)x = −6.36 × 106 N
C

E(C at D)x = 0

E(net)x = 1.524 × 107 N
C

Use the method of compo-
nents to find the resultant
electric field vector.

The angle between the 
x-axis and the vector for
the field at point D due to
charge B is 45˚, because it
points along the diagonal
of a square. 

∣∣⇀E∣∣ = k q
r2∣∣⇀EA at D

∣∣ =
(
9.0 × 109 N · m2

C2

)( 6.0 × 10−6 C
(0.050 m)2

)
∣∣⇀EA at D

∣∣ = 2.16 × 107 N
C∣∣⇀EB at D

∣∣ =
(
9.0 × 109 N · m2

C2

)( 5.0 × 10−6 C
(0.0707 m)2

)
∣∣⇀EB at D

∣∣ = 9.00 × 106 N
C∣∣⇀EC at D

∣∣ =
(
9.0 × 109 N · m2

C2

)( 6.0 × 10−6 C
(0.050 m)2

)
∣∣⇀EC at D

∣∣ = 2.16 × 107 N
C

Calculate the magnitude of the electric field
intensity of each of the given charges at point
D, using the equation for the special case of
the field intensity near a point charge.

d2
BC = (5.0 cm)2 + (5.0 cm)2

d2
BC = 50.0 cm2

dBC = ±
√

50.0 cm2

dBC = ±7.07 cm

dBC = 7.07 cm

Calculate the diagonal of the square by using
the Pythagorean theorem.

Since the result is a distance, the negative
root has no meaning. Use the positive root. 
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The electric field intensity at point D is 2.2 × 107 N/C at an angle 
of 45˚ counterclockwise from the positive x-axis.

Validate the Solution
Since two positive charges and one negative charge of similar
magnitudes are creating the field, you would expect that the net
field would be similar in magnitude to those created by the 
individual charges. The angle is 45˚ as predicted.

PRACTICE PROBLEMS
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20. Calculate the electric field intensity at a
point 18.0 cm from the centre of a small con-
ducting sphere that has a charge of −2.8 µ C.

21. The electric field intensity at a point 0.20 m
away from a point charge is 2.8 × 106 N/C,
directed toward the charge. What is the 
magnitude and sign of the charge?

22. The electric field intensity at a point, P, 
near a spherical charge of 4.6 × 10−5 C, is
4.0 × 106 N/C. How far is point P from the
centre of the charge?

23. How many electrons must be removed from a
spherical conductor with a radius of 4.60 cm
in order to make the electric field intensity
just outside its surface 3.95 × 103 N/C?

24. What is the electric field intensity at a point
15.2 cm from the centre of a sphere charged
uniformly at −3.8 µC?

25. A charge of +7.4 µC establishes an electric
field intensity at point M of 1.04 × 107 N/C.
How far is point M from the centre of 
the charge?

26. In the diagram, A and B represent small
spherical charges of +46 µC and +82 µC,
respectively. What is the magnitude 
and direction of the 
electric field intensity 
at point C ?

27. Determine the magnitude and direction of
the electric field intensity at point P in the
diagram.

28. The diagram shows three small charges at
three corners of a rectangle. Calculate the
magnitude and direction of the electric field
intensity at the fourth corner, D.

29. Two point charges of −40.0 µC and +50.0 µC
are placed 12.0 cm apart in air. What is the
electric field intensity at a point midway
between them?

30. Points A and B are 13.0 cm apart. A charge
of +8.0 µC is placed at A and another charge
of +5.0 µC is placed at B. Point P is located
5.0 cm from A and 12.0 cm from B. What is
the magnitude and direction of the electric
field intensity at P?

A
(−12 µC)

B
(−15 µC)

C
(+8.1 µC)

D

18 cm

24 cm

P

14 nC +12 nC

8.0 cm

6.0 cm 6.0 cm

C

B
+82 µC

A
+46 µC

4.0 cm

5.0 cm



The approach taken above for electric fields can also be applied
to gravitational fields. The following steps develop an expression
for the gravitational field intensity near a point source. As stated
previously, the field at any point outside of a spherical mass is the
same as it would be if the mass was concentrated at a point at the
centre of the sphere.

Quantity Symbol SI unit

gravitational field intensity ⇀g N
kg

(newtons per kilogram)

universal gravitation
constant G N · m2

kg2 (newton · metres

squared per kilogram 
squared)

mass of source of field ms kg (kilograms)

distance from centre 
of source r m (metres)

Unit Analysis( newton · metre2

kilogram2

)( kilogram
metre2

)
=

( newton
kilogram

)
N · m2

kg2 × kg
m2 = N

kg

|⇀g | = G ms
r2

GRAVITATIONAL FIELD INTENSITY NEAR A POINT MASS
The gravitational field intensity at a point a distance r from
the centre of an object is the product of the universal 
gravitation constant and mass, divided by the square of the
distance from the centre of the object. The direction of the
gravitational field intensity is toward the centre of the object
creating the field.

|⇀g | =
G msm

r2

m

|⇀g | = G ms
r2

� Substitute the expression for the force
of gravity into the general expression
for gravitational field intensity. 

|⇀Fg| = G msm
r2

� Write the general equation for the
gravitational force between two 
masses. Let m1 be the source of a
gravitational field and m2 be any
mass, m, in that field.

⇀g =
⇀Fg

m

� Write the equation for the general def-
inition of gravitational field intensity.
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Field Intensity near Earth
Calculate the gravitational field intensity at a height of 300.0 km
from Earth’s surface.

Conceptualize the Problem
� Since the point in question is outside of the sphere of Earth, the

gravitational field there is the same as it would be if Earth’s mass
was concentrated at a point at Earth’s centre. Therefore, the equa-
tion for the gravitational field intensity near a point mass applies. 

Identify the Goal
The gravitational field intensity, ⇀g

Identify the Variables and Constants
Known Implied Unknown
h = 300.0 km G = 6.67 × 10−11 N · m2

kg2

rE = 6.38 × 106 m

mE = 5.98 × 1024 kg

⇀g

Develop a Strategy

The gravitational field intensity 300.0 km from the surface of Earth
is 8.94 N/kg.

Validate the Solution
You would expect the gravitational field intensity to be less than
9.81 N/kg at a great distance from Earth’s surface.

|⇀g | = G ms
r2

|⇀g | =

(
6.67 × 10−11 N · m2

kg2

)
(5.98 × 1024 kg)

(6.68 × 106 m)2

|⇀g | = 8.9387 N
kg

|⇀g | ≅ 8.94 N
kg

Use the equation for the gravitational field
intensity near a point source.

Substitute numerical values and solve.

h = 300.0 km = 3.000 × 105 m

r = 3.000 × 105 m + 6.38 × 106 m

r = 6.68 × 106 m

Convert the height above Earth’s surface into 
SI units and calculate the distance, r, from the
centre of Earth.

SAMPLE PROBLEM 
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31. What is the gravitational field intensity at 
a distance of 8.4 × 107 m from the centre 
of Earth? 

32. If the gravitational field intensity at the 
surface of Saturn is 26.0 N/kg and its mass 
is 5.67 × 1026 kg, what is its radius?

33. What is the acceleration due to gravity on the
surface of Venus? (mVenus = 4.83 × 1024 kg;
rVenus = 6.31 × 106 m)

34. An astronaut drops a 3.60 kg object onto the
surface of a planet. It takes 2.60 s to fall 
1.86 m to the ground. If the planet is known
to have a radius of 8.40 × 106 m, what is 
its mass?

35. What is the gravitational field intensity at a
distance of 2.0 m from the centre of a spheri-
cal metal ball of mass 3.0 kg? (Calculate only
the field due to the ball, not to Earth.)

36. Calculate the gravitational field intensity 
at a height of 560.0 m above the surface of
the planet Venus. (See problem 33 for data.)

37. The planet Neptune has a gravitational 
field intensity of 10.3 N/kg at a height of
1.00 × 106 m above its surface. If the radius
of Neptune is 2.48 × 107 m, what is its mass?

PRACTICE PROBLEMS
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Field Lines
Electric Field Lines
You have learned that an electric field at a particular point can be
represented by a vector arrow with a length that corresponds to
the magnitude of the field intensity at a given point. The direction
of the vector arrow indicates the direction of the electric field at
that point. 

If you wanted to visualize the entire field around an electric
charge, however, you would need to draw a set of these vector
arrows at many points in the space around the charge. This
process would be very tedious and complicated, so an idea 
originally used by Michael Faraday has been adapted. Using this
method, the vectors are replaced by a series of lines that follow the
path that a tiny point charge would take if it was free to move in
the electric field. These lines are called electric field lines. In the
vicinity of a positive charge, such field lines would radiate straight
out, just as a positive test charge would be pushed straight out.

The field lines are constructed so that, at every point on the
line, the direction of the field is tangent to the line. The strength 
of the field is represented by the density of the lines. The farther
apart these lines are, the weaker the field is. Figure 7.9 shows the
electric field lines that represent the electric field in various charge
arrangements.
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Note that when more than one electric source charge is present,
the electric field vector at a point is the vector sum of the electric
field attributable to each source charge separately. Since the field
lines are often curved, this vector will be tangent to the field line
at that point.

The electric field at a point near two positive chargesFigure 7.10

E2

Enet

q1 q2

E1

++

E2

Enet

E1

++

A B

C D

+q

+q +q

−q

−q+q

E1

1 2

3

E3

E2

Chapter 7  Fields and Forces • MHR 301

(A) The electric field
lines from positive charge +q
are directed radially outward.  
(B) The electric field lines are
directed radially inward toward
negative point charge –q.  (C) The
electric field lines of an electric
dipole are curved, and extend
from the positive to the negative
charge. At any point, such as 
1, 2, or 3, the field created by 
the dipole is tangent to the line
through the point. (D) The electric
field lines for two identical posi-
tive point charges are shown. 
If both of the charges were 
negative, the directions of the
lines would be reversed.

Figure 7.9



Gravitational Field Lines
Since the force of gravity is always attractive, the shape of gravita-
tional field lines will resemble the electric field lines associated
with a negative charge. Gravitational field lines will always point
toward the centre of a spherical mass and arrive perpendicular to
the surface.

• Can there be a gravitational field diagram similar to the electric
field in Figure 7.9 (D)? Explain.

• Sketch the gravitational field lines 
due to the two identical masses
shown in the diagram here.

Magnetic Field Lines
Since there are no isolated magnetic poles (magnetic monopoles),
the magnetic field lines have to be drawn so that they are associ-
ated with both poles of the magnet (magnetic dipole). The 
direction of the magnetic field at a particular location is defined 
as the direction in which the N-pole of a compass would point
when placed at that location. The magnetic field lines leave the 
N-pole of a magnet, enter the S-pole, and continue to form a
closed loop inside the magnet. The number of magnetic field lines,
called the “magnetic flux,” passing through a particular unit 
area is directly proportional to the magnetic field intensity.
Consequently, flux lines are more concentrated at the poles of 
a magnet, where the magnetic field is greatest.

The magnetic field lines are closed loops leaving the N-pole
of the magnet and entering the S-pole.

Figure 7.12

m m

Conceptual Problems
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The field lines for
(A) like poles and  (B) unlike poles

Figure 7.13

A

B

The gravitational
field lines are directed radially
inward toward a mass, m.

Figure 7.11

m



• How does the magnetic dipole pattern compare with the electric
field pattern of two opposite charges (an electric dipole)? 

• What electrostatic evidence suggests that a water molecule is 
an electric dipole? 

• What happens if you place a small bar magnet in a uniform 
magnetic field?

• What happens if you place a water molecule in a uniform 
electric field?

Conceptual Problems
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7.2 Section Review

1. Place a strong bar magnet flat on a semi-
rough surface, with the N-pole to the right.
Place another bar magnet to the right of the
first, but with its like N-pole to the left, 
suspended directly over the other N-pole.
Adjust the top magnet until it balances. Now
slide a piece of paper over the first magnet 
to hide it. Gently tap the suspended N-pole
to start it vibrating vertically in space. What
do your observations suggest about magnetic
fields?

2. What is the general definition for the
electric field intensity at a distance r from 
a point charge q?

3. Why is it not considered useful to define
magnetic field intensity in the same way in
which you defined the electric field intensity
in question 2?

4. Explain how you might calculate the
gravitational field intensity at the various
points along the path of a communication
satellite orbiting Earth.

5. In the vicinity of several point charges,
how is the direction of the electric field
intensity vector calculated?

6. List four characteristics of electric field
lines.
C

K/U

C

I

K/U

I

A magnet held close to a refrigerator door 
is pulled toward the door. A ball rolls off a
tabletop and is pulled toward the ground. 
Your hair sticks out in all directions after you
remove a warm woollen cap. Each of these
examples involve action at a distance. Forces
are exerted without apparent contact.
� How does the use of fields help to explain

action at a distance?
� Do descriptions of electric fields relate to

descriptions of gravitational fields?
� Does an understanding of one type of field

help with questions about another?
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As a thundercloud billows, rising ice crystals collide with falling
hailstones. The hail strips electrons from the rising ice and the top
of the cloud becomes predominantly positive, while the bottom 
is mostly negative. Negative charges in the lower cloud repel 
negative charges on the ground, inducing a positive region, or
“shadow,” on Earth below. Electric fields build and a spark ignites
a cloud-to-ground lightning flash through a potential difference 
of hundreds of millions of volts. 

The lightning bolt featured in Figure 7.14 dramatically demon-
strates that when a charge is placed in an electric field, it will
move. The potential to move implies the existence of stored 
energy. In this chapter, you will focus on the energy stored in the
gravitational and electric fields.

Tremendous amounts of electric energy are “stored” in the
electric fields created by the separation of charge between thunderclouds
and the ground. This energy is often released in the “explosion” of a 
lightning bolt.

Potential Energy
In Chapter 6, Energy and Motion in Space, you derived an equa-
tion for the gravitational potential energy of one mass due to the
presence of a central mass. You started the derivation by determin-
ing the amount of work that you would have to do on the first
mass to move it from a distance r1 to a distance r2 from a central
mass. Then you learned that physicists have agreed on a reference

Figure 7.14

Fields and 
Potential Energy7.3
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• Define and describe the 
concepts and units related to
electric and gravitational fields.

• Apply the concept of electric
potential energy and compare
the characteristics of electric
potential energy with those of
gravitational potential energy.

• electric potential difference

• equipotential surface

 T E R M S
K E Y

E X P E C T A T I O N S
S E C T I O N



position that is assigned a value of zero gravitational potential
energy. That distance is infinitely far from the central mass. In this
application, an infinite distance means so far away that the magni-
tude of the force of gravity is negligible.

Physicists take the same approach in developing the concept of
electric potential energy of a charge q1 in the vicinity of another
charge q2 as shown in Figure 7.15. The change in electric potential
energy of charge q1 due to the presence of q2, in moving q1 from 
r1 to r2, is the work that you would have to do on the charge in
moving it. In Figure 7.16, note the similarities in the equations for
the force of gravity and the Coulomb force as well as the curves 
for force versus position.

The Coulomb force and the force of gravity both follow
inverse square relationships, so the curves of force versus position have
exactly the same form.

Since the two equations and the two curves have identical
mathematical forms, the result of the derivation of the change in
the electric potential energy in moving a charge will be mathemat-
ically identical to the form of the change in the gravitational
potential energy in moving a mass from position r1 to position r2.

∆Eg = GMm
r1

− GMm
r2

∆EQ = kq1q2

r1
− kq1q2

r2

The choice of a reference position for electric potential energy
is the same as that for gravitational potential energy — an infinite
distance — so far apart that the force between the two charges is 
negligible. Therefore, the equations for potential energy have the
same mathematical form, with one small difference: There is no
negative sign in the equation for the electric potential energy.

Eg = − GMm
r

EQ = kq1q2

r

Figure 7.16

r1

Fg

r2 r r1

FQ

r2 r

Fg = G Mm
r2 FQ = k q1q2

r2

−q1

A

r1
+q2

B

+q2

C

r2
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By doing
work on charge q2, you
give it potential energy.

Figure 7.15



The negative sign is absent from the equation for electric poten-
tial energy, because the energy might be negative or positive,
depending on the sign of the charges. If the charges have opposite
signs, the Coulomb force between them is attractive. Consequently,
if one charge moves from infinity to a distance r from the second
charge, it does work and therefore has less potential energy. Less
than zero is negative. If the charges have the same sign, you must
do work on one charge to move it from infinity to a distance r from
the second charge, and therefore it has positive potential energy. 
If you include the sign of the charges when using the equation for
electric potential energy, the final sign will tell you whether the
potential is positive or negative. 

A second difference between electric potential energy and 
gravitational potential energy is that the two interacting charges
might be similar in magnitude. Therefore, either charge could be
considered the stationary or central charge, or the “movable”
charge. You could therefore consider the two charges to be a 
system, and refer to the electric potential energy of the system 
that results from the proximity of the two charges.

The product q1q2 is
negative, so the charges
have negative potential
energy when they are a
distance r apart.

EQ = k(q1)(q2)
r

EQ < 0

� A positive and a 
negative charge.

Both q1 and q2 are 
negative, so the charges
have positive potential
energy when they are a
distance r apart.

EQ = k(q1)(q2)
r

EQ > 0

� Two negative charges 

Both q1 and q2 are 
positive, so the charges
have positive potential
energy when they are a
distance r apart.

EQ = k(q1)(q2)
r

EQ > 0

� Two positive charges 
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Electric Potential Energy
What is the electric potential energy stored between charges of +8.0 µC and
+5.0 µC that are separated by 20.0 cm?

Conceptualize the Problem
� Two charges are close together and therefore they exert a force on each other.

SAMPLE PROBLEM 



� Work must be done on or to the charges in order to bring them
close to each other.

� Since work was done on or by a charge, it has electric potential
energy.

Identify the Goal
The electric potential energy, EQ, stored between the charges

Identify the Variables and Constants
Known Implied Unknown
q1 = 8.0 × 10−6 C
q2 = 5.0 × 10−6 C
r = 0.200 m

k = 9.0 × 109 N · m2

C2 EQ

Develop a Strategy

The electric potential energy stored in the field between the charges
is +1.8 J.

Validate the Solution
Magnitudes seem to be consistent. The units cancel to give J: 
N · m2

C2 · C · C
m

= N · m = J . The sign is positive, indicating that the 

electric potential energy is positive. A positive sign is correct for
like charges, because work was done on the charges to put them
close each other.

38. Find the electric potential energy stored
between charges of +2.6 µC and −3.2 µC
placed 1.60 m apart.

39. Two identical charges of +2.0 µC are placed
10.0 cm apart in a vacuum. If they are
released, what will be the final kinetic energy
of each charged object (assuming that no
other objects or fields interfere)?

40. How far apart must two charges of
+4.2 × 10−4 C and −2.7 × 10−4 C be placed 
in order to have an electric potential energy
with a magnitude of 2.0 J?

41. Two charges of equal magnitude, separated
by a distance of 82.2 cm, have an electric
potential energy of 2.64 × 102 J. What are the
signs and magnitudes of the two charges?

PRACTICE PROBLEMS

EQ = k q1q2

r

EQ =

(
9.0 × 109 N · m2

C2

)
(+8.0 × 10−6 C)(+5.0 × 10−6 C)

0.200 m

EQ = +1.8 J

Write the equation for electric potential
energy between two charges.

Substitute numerical values and solve. 
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www.mcgrawhill.ca/links/physics12

The Canadian Hurricane Centre site maintained on the
Internet by Environment Canada has a wide variety of
information about hurricanes. Just go to the above Internet
site and click on Web Links.

WEB LINK

CAREERS IN PHYSICS

Seeing Inside Storms
Blizzards can cause traffic accidents. Hurricanes
can cause flooding. Tornadoes can destroy houses.
Often, advance warning of these and other severe
storms helps prevent deaths and reduce damage.
For example, radio announcements can warn
motorists to stay off roads, and municipal authori-
ties can prepare to deal with possible flooding.

Giving advance warning is part of Dr. Paul Joe’s
work. Dr. Joe, a radar scientist and cloud physicist,
is based at Environment Canada’s radar site in
King City, north of Toronto. Radar — short for radio
detection and ranging — involves transmitting
pulses of electromagnetic waves from an antenna.
When objects such as snowflakes or raindrops
interrupt these pulses, part of their electromagnetic
energy is reflected back. A receiver picks up the
reflections, converting them into a visible form and
indicating a storm’s location and intensity. 

Conventional radar cannot detect a storm’s
internal motions, however. This is why, in recent
years, Environment Canada has been improving 
its radar sites across the country by adding
Doppler capability. This improved radar technology
applies the Doppler effect: If an object is moving
toward the radar, the frequency of its reflected
energy is increased from the frequency of the 

energy that the radar is transmitting. If an object 
is moving away from the radar, the frequency of 
its reflected energy is decreased.

“This is the same effect we notice with a sub-
way train,” Dr. Joe explains. “As it approaches, we
hear a higher-pitched sound than when it leaves.”

On Dr. Joe’s radar screen, the frequency shifts
are visualized using colours. In general, blue
means an object is approaching; red means it is
receding. But it’s not that simple. Doppler images
are complex and difficult for conventional weather
forecasters to interpret, and Dr. Joe is working on
ways to make them simpler. He also specializes 
in nowcasting — forecasting weather for the near
future; for example, within an hour. As part of the
2000 Olympics, he went to Sydney, Australia, to
join other scientists in demonstrating nowcasting
technologies.

“I have it great,” says Dr. Joe. “I love using
what I’ve learned in mathematics, physics, and
meteorology to decipher what Mother Nature is
telling us and warning people about what she
might do. Using the radar network, I can be 
everywhere chasing storms and seeing inside
them in cyberspace.”

Going Further
Dr. Joe’s field, known in general as meteorology,
includes radar science, cloud physics, climatology,
and hydrometeorology. Research one of these
fields and prepare a two-page report for 
presentation to the class. 

Dr. Paul Joe, 
radar scientist and
cloud physicist



Electric Potential Difference
In previous physics courses, you learned that electric potential 
difference is the difference in the electric potential energy of a unit
charge between two points in a circuit. You can broaden this 
definition to include any type of electric field, not just a field that
is confined to an electric conductor. This concept allows you to
describe the condition of a point in an electric field, relative to a
reference point, without placing a charge at that point. 

You have just derived an equation for the electric potential 
energy of a point charge, relative to infinity, a distance r from
another point charge that can be considered as having created the
field. For this case, you can find the electric potential difference
between that point and infinity by considering the charge q1 as the
charge creating an electric field and q2 as a unit charge.

Quantity Symbol SI unit
electric potential V V (volts)
difference

Coulomb’s constant k N · m2

C2 (newton metres squared
per coulombs squared)

electric charge q C (coulombs)

distance r m (metres)

Unit Analysis
N · m2 · C

C2 · m
= N · m

C
= J

C
= V

V = k q
r

ELECTRIC POTENTIAL DIFFERENCE DUE TO A POINT CHARGE
The electric potential difference, a scalar, between any point
in the field surrounding a point charge and the reference point
at infinity charge is the product of Coulomb’s constant and the
electric charge divided by the distance from the centre of the
charge to the point.

V = kq
r

� Since only one q, the charge creating the
field, remains in the expression, there is no
need for a subscript. 

V =
kq1q2

r
q2

� Substitute the expression for the difference in
electric potential energy of charge q2 between
the reference at infinity and the distance r
from the charge q1 due to the presence of q1. 

V = EQ

q2

� The definition of electric potential difference
between a point and the reference point is
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Physicists often use the phrase,
potential at a point, when they
are referring to the potential 
difference between that point 
and the reference point an infinite 
distance away. It is not incorrect
to use the phrase as long as you
understand its meaning.

PHYSICS FILE



Problems involving electric potential difference can be extend-
ed, as can those involving electric field, to situations in which 
several source charges create an electric field. Since electric 
potential is a scalar quantity, the electric potential difference 
created by each individual charge is first calculated, being careful
to use the correct sign, and then these scalar quantities are added
algebraically.

You can go one step further and describe the electric potential
difference between two points, P1 and P2 , within a field. To avoid
confusion, this quantity is symbolized ∆V and the relationship is
written as follows. 

∆V = V2 − V1

Always keep in mind that V1 and V2 represent the electric
potential difference between point 1 and infinity, and point 2 and
infinity — a location so far away that the field is negligible. The
following sample problems will help you to clarify these concepts
in your mind.
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Calculations Involving Electric Potential Difference
1. A small sphere with a charge of −3.0 µ C creates 

an electric field.

(a) Calculate the electric potential difference at 
point A, located 2.0 cm from the source charge,
and at point B, located 5.0 cm from the same
source charge.

(b) What is the potential difference between A and B?

(c) Which point is at the higher potential?

Conceptualize the Problem
� A charged sphere creates an electric field.

� At any point in the field, you can describe an electric potential differ-
ence between that point and a location an infinite distance away.

� Electric potential difference is a scalar quantity and depends only on
the distance from the source charge and not the direction.

� The potential difference between two points is the algebraic difference
between the individual potential differences of the points.

Identify the Goal
The electric potential difference, V, at each point
The electric potential difference, ∆V, between the two points
The point at a higher potential

A

B

−3.0 µC

2.0 cm

5.0 cm

SAMPLE PROBLEMS



Identify the Variables and Constants
Known Implied Unknown

q = −3.0 × 10−6 C
dA = 2.0 × 10−2 m
dB = 5.0 × 10−2 m

k = 9.0 × 109 N · m2

C2 VA

VB

Develop a Strategy

(a) The electric potential difference is −1.4 × 106 V at point A, and
−5.4 × 105 V at point B.

(b) The electric potential difference, ∆V, between points A and B 
is 8.1 × 105 V.

(c) Point B is at the higher potential.

Validate the Solution
The more distant point has a smaller magnitude potential, but 
its negative sign makes it a higher value. The analysis with a 
positive test charge validates the statement of higher potential.

Note: The answers were obtained in this sample problem by 
taking into account whether the two points were on the same
radial line. The diagram shows two possible paths a test
charge could take in moving from B to A. If the test charge
followed the path BCA, no work would be done on it from B
to C, because the force would be perpendicular to the path. 

5 cm

2 cm
A

C

B

−3.0 µC

Algebraically, since (VB − VA) > 0, VB is at the
higher potential.

A positive test charge placed at point A
would have to be dragged against the electric
forces to get it to point B, which again places
point B at the higher potential.

Analyze the algebraic result and validate by 
considering the path of a positive test charge.

∆V = VB − VA

∆V = (−5.4 × 105 V) − (−1.35 × 106 V)

∆V = 8.1 × 105 V

Use algebraic subtraction to determine the 
potential difference between the two points.

VA = k q
dA

VA =
(
9.0 × 109 N · m

C2

)( −3.0 × 10−6 C
2.0 × 10−2 m

)
VA = −1.35 × 106 V

VA ≅ −1.4 × 106 V

VB = k q
dB

VB =
(
9.0 × 109 N · m

C2

)( −3.0 × 10−6 C
5.0 × 10−2 m

)
VB = −5.4 × 105 V

Use the equation for the electric potential differ-
ence at a point a distance r from a point charge.

Substitute numerical values and solve.
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The only segment of the path where work is done, and therefore the
electric potential energy changed, is from C to A, parallel to the
direction of the force acting.

2. The diagram shows three charges, A (+5.0 µC), 
B (−7.0 µC), and C (+2.0 µC), placed at three 
corners of a rectangle. Point D is the fourth cor-
ner. What is the electric potential difference at
point D?

Conceptualize the Problem
� There is an electric potential difference at point

D, due to each of the separate charges.

� The separate potential values can be calculated 
and then added algebraically.

Identify the Goal
The electric potential difference, V, at point D

Identify the Variables and Constants
Known Implied Unknown
qA = 5.0 µC
qB = −7.0 µC
qC = 2.0 µC
dAB = 6.0 cm
dAD = 3.0 cm

k = 9.0 × 109 N · m2

C2

dCD = 6.0 cm

Vat D

Develop a Strategy

The electric potential difference at point D is 8.6 × 105 V.

Vat D = (1.5 × 106 V) + (−9.4 × 105 V) + (3.0 × 105 V)

Vat D = 8.6 × 105 V

Calculate the net potential difference
at point D by adding the separate
potential differences algebraically.

VA at D =
(
9.0 × 109 N · m2

C2

)( +5.0 × 10−6 C
0.030 m

)
= 1.5 × 106 V

VB at D =
(
9.0 × 109 N · m2

C2

)( −7.0 × 10−6 C
0.067 m

)
= −9.4 × 105 V

VC at D =
(
9.0 × 109 N · m2

C2

)( +2.0 × 10−6 C
0.060 m

)
= 3.0 × 105 V

Calculate the contribution of each
charge to the potential difference at
point D independently.

d2
BD = (6.0 cm)2 + (3.0 cm)2

d2
BD = 45 cm2

dBD = ±
√

45 cm2

dBD = ±6.7 cm

Calculate dBD, using the Pythagorean
theorem. Choose the positive value
as a measure of the real distance.

6.0 cm

3.0 cm

BA

D C

+5.0 µC −7.0 µC

+2.0 µC
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Validate the Solution
The electric potential difference contributed by A is expected to be
stronger, due to its closer proximity and average charge.

3. A charge of +6.0 µC at point A is separated 
10.0 cm from a charge of −2.0 µC at point B.
At what locations on the line that passes
through the two charges will the total electric
potential be zero?

Conceptualize the Problem
� The total electric potential due to the combination 

of charges is the algebraic sum of the electric potential
due to each point alone.

� Draw a diagram and assess the likely position.

� Let the points be designated a distance d to the right of
point A, and set the absolute magnitudes of the potential
equal to each other. This allows for two algebraic scenarios.

Identify the Goal
The location of the point of zero total electric potential

Identify the Variables and Constants
Known Implied Unknown

qA = +6.00 × 10−6 C
qB = −2.00 × 10−6 C

dAB = 10.0 × 10−2 m

k = 9.0 × 109 N · m2

C2 d at zero total electric potential

Develop a Strategy ∣∣Vdue to A
∣∣ =

∣∣Vdue to B
∣∣

Scenario 1

k qA

d
= k qB

(0.10 − d)

qA(0.10 − d) = qB(d)

0.10qA − qAd = qBd

0.10qA = d(qA + qB)

d = 0.10qA

qA + qB

d = (0.10 m)(6.0 µC)
6.0 µC + (−2.0 µC)

d = 0.60 m · µC
4.0 µC

d = 0.15 m

For the potentials to cancel algebraically, the
point cannot be to the left of point A, which
would be closer to the larger positive charge
and could not be balanced by the potential of
the negative charge. That leaves two locations:
one between points A and B, and one to the
right of point B, where the smaller distance 
to the negative charge balances the smaller
value of that charge.

10.0 cm

P
+6.0 µC −2.0 µC

d
(10.0 − d)

BA

10.0 cm

+6.0 µC −2.0 µC

BA
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The points of zero potential are 7.5 cm to the right of point A and
5.0 cm to the right of point B. (Note: 15 cm to the right of A is the
same as 5 cm to the right of B.)

Validate the Solution
The electric potentials due to point A at the two points are

(9.0 × 109)
( +6.0 × 10−6

0.075

)
= +7.2 × 105 V and (9.0 × 109)

( +6.0 × 10−6

0.15

)
= +3.6 × 105 V

The electric potentials due to point B at the two points are

(9.0 × 109)
( −2.0 × 10−6

0.025

)
= −7.2 × 105 V and (9.0 × 109)

( −2.0 × 10−6

0.050

)
= −3.6 × 105 V

In both locations, the potentials due to points A and B add algebraically to zero.

42. Find the electric field due to a point charge
of 4.2 × 10−7 C at a point 2.8 cm from the
charge.

43. How far from a positive point source of 
8.2 C will the electric potential difference be
5.0 V? (Note: 8.2 C is a very large charge!)

44. The electric potential difference due to a
point charge is 4.8 V at a distance of 4.2 cm
from the charge. What will be the electric
potential energy of the system if a second
charge of +6.0 µC is placed at that location?

45. The electric potential difference at a distance
of 15 mm from a point charge is –2.8 V. What
is the magnitude and sign of the charge?

46. Point charges of +8.0 µC and −5.0 µC, respec-
tively, are placed 10.0 cm apart in a vacuum.
At what location along the line through them
will the electric potential difference be zero?

47. What is the potential difference at point P
situated between the charges +9.0 µC and
−2.0 µC, as shown in the diagram.

48. Point X has an electric potential difference of
+4.8 V and point Y has a potential difference
of –3.2 V. What is the electric potential 
difference, ∆V, between them?

PRACTICE PROBLEMS

Scenario 2

k qA

d
= −k qB

(0.10 − d)

qA(0.10 − d) = −qB(d)

0.10qA − qAd = −qBd

0.10qA = d(qA − qB)

d = 0.10qA

qA − qB

d = (0.10 m)(6.0 µC)
6.0 µC − (−2.0 µC)

d = 0.60 m · µC
8.0 µC

d = 0.075 m
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4.0 cm

P
+9.0 µC −2.0 µC

2.0 cm
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49. Charges of +2.0 µC, −4.0 µC, and −8.0 µC are
placed at three vertices of a square, as shown
in the diagram. Calculate the electric poten-
tial difference at M, the midpoint of the 
diagonal AC. 

50. The diagram shows three small charges 
located on the axes of a Cartesian coordinate
system. Calculate the potential difference 
difference at point P.

51. Two charges are placed at the corners of a
square. One charge, +4.0 µC, is fixed to one
corner and another, −6.0 µC, is fixed to the
opposite corner. What charge would need to
be placed at the intersection of the diagonals
of the square in order to make the potential
difference zero at each of the two unoccu-
pied corners?

52. Point A has an electric potential difference 
of +6.0 V. When a charge of 2.0 C is moved
from point B to point A, 8.0 J of work are
done on the charge. What was the electric
potential difference of point B?

53. The potential difference between points X
and Y is 12.0 V. If a charge of 1.0 C is
released from the point of higher potential
and allowed to move freely to the point of
lower potential, how many joules of kinetic
energy will it have?

54. Identical charges of +2.0 µC are placed at 
the four vertices of a square of sides 10.0 cm.
What is the potential difference between the
point at the intersection of the diagonals 
and the midpoint of one of the sides of the
square?

55. (a) If 6.2 × 10−4 J of work are required 
to move a charge of 3.2 nC (one
nanocoulomb = 10−9 coulombs) from 
point B to point A in an electric field,
what is the potential difference between 
A and B?

(b) How much work would have been
required to move a 6.4 nC charge instead?

(c) Which point is at the higher electric
potential? Explain.

56. Two different charges are placed 8.0 cm
apart, as shown in the diagram. Calculate 
the location of the two positions along a line
joining the two charges, where the electric
potential is zero.

57. A charge of +8.2 nC is 10.0 cm to the left of a
charge of –8.2 nC. Calculate the locations of
three points, all of which are at zero electric
potential.

58. A charge of −6.0 µC is located at the origin of
a set of Cartesian coordinates. A charge of
+8.0 µC. is 8.0 cm above it. What are the
coordinates of the points at which the 
potential is zero?

59. A charge of +4.0 µC is 8.0 cm to the left of 
a point that has zero potential. Calculate
three possible values for the magnitude and
location of a second charge causing the
potential to be zero.

60. Calculate the location of point B in the 
diagram below so that its electric potential 
is zero.

6.0 cm

−4.0 µC +2.0 µC
B

8.0 cm

+6.0 µC −3.0 µC

P

−18.0 µC

+4.2 µC +8.0 µC

(+2.0 cm)(−3.0 cm)

(+5.0 cm)

A

B C

D

M

+2.0 µC

−4.0 µC −8.0 µC

6.0 cm



• In practice problem 56, do you think there could be locations
(other than along a line joining the two charges) where the 
electric potential difference could be the same, but not zero?
Explain.

Equipotential Surfaces
The quantities of gravitational potential energy, electric potential
energy, and electric potential difference are all scalar quantities.
Although it is rarely used, there is also a quantity called “gravita-
tional potential difference,” which is defined as gravitational
potential energy per unit mass. It is expressed mathematically as 

Vg = Eg

m
= − GM

r
. Since these are scalar quantities, the direction 

from the charge or mass that is creating the field does not affect
the values. If you connected all of the points that are equidistant
from a point mass or an isolated point charge, they would have the
same potential difference and they would be creating a spherical
surface. Such a surface, illustrated in Figure 7.17, is called an
equipotential surface.

The spherical shells could represent equipotential surfaces
either for a gravitational field around a point mass (or spherical mass) 
or for an electric field around an isolated point charge. In cross section, 
the equipotential spherical surfaces appear as concentric circles.

You will recall that the work done per unit charge in moving 

that charge from a potential V1 to a potential V2 is W
q

= V2 − V1. 

Since, on an equipotential surface, V1 = V2, the work done must be
zero. In other words, no work is required to move a charge or 
mass around on an equipotential surface, and the electric or gravi-
tational force does no work on the charge or mass. Consequently, a
field line must have no component along the equipotential surface.
An equipotential surface must be perpendicular to the direction 
of the field lines at all points. Figure 7.18 shows the electric field
lines and equipotential surfaces for pairs of point charges.

Figure 7.17

equipotential surfaces

Conceptual Problem
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The equipotential lines around a 
system of charges could be compared
to the contour lines on topographical
maps. Since these contour lines repre-
sent identical heights above sea level,
they also represent points that have
the same gravitational energy per unit
mass, and so are equipotential lines.

Eg = mgh

Eg

m
= gh

Vg ∝ h

GEOGRAPHY LINK



The field lines for these electric dipoles are shown in red and
the cross section of the equipotential surfaces are in blue. Notice that field
lines are always perpendicular to equipotential surfaces.

• Could the barometric lines on a weather map be considered to
be equipotential lines?

Conceptual Problem

Figure 7.18

+ + ++ +−
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7.3 Section Review

1. What are the differences in the data
required to calculate the gravitational 
potential energy of a system and the electric
potential energy?

2. How does the amount of work done
relate to the electric potential difference
between two points in an electric field?

3. Research and briefly report on the use of
electric potential differences in medical diag-
nostic techniques such as electrocardio-
grams.

4. Research and report on the role played
by electric potential differences in the trans-
mission of signals in the human nervous sys-
tem.

5. Can an equipotential surface in the vicin-
ity of two like charges have a potential of
zero? Explain the reason for your answer.

6. Investigate Internet sites that use comput-
er programs to draw the electric field lines
near a variety of charge systems. Prepare a
portfolio of various patterns.

7. How could you draw in the equipoten-
tial surfaces associated with the patterns
obtained in question 6?

8.

(a) Why do you think atomic physicists tend
to speak of the electrons in atoms as 
having “binding energy”?

(b) Investigate the use of the term “potential
well” to describe the energy state of
atoms.

I

K/U

I

C

MC

MC

K/U

K/U



C H A P T E R Review7

� The gravitational force and the Coulomb force
both follow inverse square laws. 

Fg = G m1m2
r2 FQ = k q1q2

r2

� The equations for gravitational force and
Coulomb force were developed for point 
masses and point charges. However, if the
masses or charges are perfect spheres, the laws
apply at any point outside of the spheres.

� Since magnetic monopoles do not exist or
have never been detected, magnetic forces
cannot be described in the same form as 
gravitational and electrostatic forces. However,
they appear to follow an inverse square 
relationship.

� Because charges, masses, and magnets do not
have to be in contact to exert forces on each
other, early physicists classified their interac-
tions as action-at-a-distance forces.

� Michael Faraday developed the concept of a
field in which masses, charges, and magnets
influence the space around themselves in the
form of a field. When a second mass, charge,
or magnet is placed in the field created by the
first, the field exerts a force on the object.

� The strength of an electric field on a point P is
described as the electricity field intensity and
is mathematically expressed as “force per unit 

charge,” 
⇀E =

⇀FQ

qt
.

� The direction of an electric field at any point
is the direction that a positive charge would
move if it was placed at that point.

� The strength of a gravitational field at any 
point P is called the gravitational field 
intensity and is mathematically expressed 

as “force per unit mass,” ⇀g =
⇀Fg

mt
.

� The direction of a gravitational field is always
toward the mass creating the field.

� For the special case of a point charge q
creating the field, the electric field intensity 

at a point P, a distance r from the charge, is 

given by 
∣∣⇀E∣∣ = k q

r2 .

� For the special case of a point mass m creating
the field, the gravitational field intensity at a
point P, a distance r from the mass, is given 

by ⇀g = G m
r2 .

� To find the electric field intensity in the 
vicinity of several point charges, find the field
intensity due to each charge alone and then
add them vectorially.

� Field lines are used to describe a field over a
large area or volume. Field lines are drawn so
that the intensity of the field is proportional to
the density of the lines. The direction of a
field at any point is the tangent to the field
line at that point.

� A charge placed in an electric field or a mass
in a gravitational field has potential energy.

� Potential energy of any type is not absolute,
but relative to an arbitrary reference position
or condition. The reference position for gravi-
tational or electric potential energy in a field
created by a point source is often chosen to be
at an infinite distance from the point source.

� The electric potential energy of two point
charges a distance r apart is given by 

EQ = k q1q2

r
� The gravitational potential energy of two

masses a distance r apart is given by 
Eg = −G m1m2

r
� Electric potential difference is defined as the

potential energy per unit charge 

and is expressed mathematically as V = EQ

q
.

� For the special case of the electric potential
difference in an electric field created by a
point charge q, the electric potential difference 

is V = k q
r

. This is the potential difference 

between a point the distance r from the charge
and an infinite distance from the charge.

REFLECTING ON CHAPTER 7

318 MHR • Unit 3  Electric, Gravitational, and Magnetic Fields



Knowledge/Understanding
1. In your own words, define

(a) electric charge
(b) Coulomb’s law
(c) field 

2. The field of an unknown charge is first mapped
with a 1.0 × 10−8 C test charge, then repeated
with a 2.0 × 10−8 C test charge.
(a) Would the same forces be measured with

the two test charges? Explain your answer.
(b) Would the same fields be determined using

the two test charges? Explain your answer.
3. Both positive and negative charges produce

electric fields. Which direction, toward or away
from itself, does the field point for each charge? 

4. What is the difference between electric field
intensity, electric potential difference, and 
electric potential energy? 

5. What determines the magnitude and direction
of an electric field at a particular point away
from a source charge? 

6. Is electric field strength a scalar quantity or a
vector quantity? Is electric potential difference
a scalar or vector quantity? 

7. If the gravitational potential energy for an
object at height h above the ground is given by
mg∆h, what is the gravitational potential differ-
ence (similar in nature to the electric potential
difference) between the two levels? What are
the units of gravitational potential difference? 

8. Units of electric field strength can be given in
N/C or volts per metre, V/m. Show that these
units are equivalent. 

Inquiry
9. Consider a charge of +2.0 µC placed at the 

origin of an x–y-coordinate system and a charge
of −4.0 µC placed 40.0 cm to the right. Where
must a third charge be placed — between the
charges, to the left of the origin, or beyond the
second charge — to experience a net force of
zero? Argue your case qualitatively without
working out a solution. Consider both positive
and negative charges. 

10. (a) In a room, gravity exerts a downward pull
on a ball held by a string. Sketch the 
gravitational field in the room.

(b) Suppose a room has a floor that is uniformly
charged and positive and a ceiling that 
carries an equal amount of negative charge.
Neglecting gravity, how will a small, 
positively charged sphere held by a string
behave? Sketch the electric field in the
room. 

(c) Comment on any similarities and differ-
ences between the above situations. 

Communication
11. (a) Sketch the electric field lines for a positive

charge and a negative charge that are very
far apart. 

(b) Show how the field lines change if the two
charges are then brought close together. 

12. Sketch the field lines for two point charges, 
2Q and –Q, that are close together. 

13. Explain why electric field lines never cross.
14. What is the gravitational field intensity at 

the centre of Earth? 
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� Since work must be done on a charge to give 
it potential energy, the change in the potential
between two points is the amount of work
done on a unit charge that was moved 

between those two points, or ∆V = W
q

.

� In any field, there will be many points that
have the same potential. When all of the
points that are at the same potential are 
connected, an equipotential surface is formed.

� No work is done when a charge or mass
moves over an equipotential surface.



Making Connections
15. Develop a feeling for the unit of the coulomb 

by examining some everyday situations. How
much charge do you discharge by touching a
doorknob after walking on a wool rug? How
much charge does a comb accumulate when
combing dry hair? How much charge does a
lightning bolt discharge? What is the smallest
charge that can be measured in the laboratory?
The largest charge? 

16. Make a list of the magnitudes of some electric
fields found in everyday life, such as in house-
hold electric wiring, in radio waves, in the
atmosphere, in sunlight, in a lightning bolt, and 
so on. Where can you find the weakest and
greatest electric fields? 

17. In November 2001, NASA launched the Gravity
Recovery and Climate Experiment, or GRACE,
involving a pair of satellites designed to moni-
tor tiny variations in Earth’s gravitational field.
The two satellites follow the same orbit, one
220 km ahead of the other. As both satellites
are in free fall, regions of slightly stronger grav-
ity will affect the lead satellite first. By accu-
rately measuring the changes in the distance
between the satellites with microwaves, GRACE
will be able to detect minute fluctuations in the
gravitational field. Research the goals and pre-
liminary findings of GRACE. In particular,
examine how both ocean studies and meteoro-
logical studies will benefit from GRACE. 

Problems for Understanding
18. What is the force of repulsion between two

equal charges, each of 1 C, that are separated by
a distance of 1 km? 

19. Calculate the force between two free electrons
separated by 0.10 nm. 

20. The force of attraction between two charged
Ping-Pong™ balls is 2.8 × 10−4 N. If the charges
are +8.0 nC and −12.0 nC, how far apart are
their centres? 

21. Three point charges, A (+2.0 µC), B (+4.0 µC),
and C (−6.0 µC), sit consecutively in a line. If 

A and B are separated by 1.0 m and B and C are
separated by 1.0 m, what is the net force on
each charge? 

22. Three charges sit on the vertices of an 
equilateral triangle, the sides of which are 
30.0 cm long. If the charges are A = +4.0 µC,
B = +5.0 µC and C = +6.0 µC (clockwise from
the top vertex), find the force on each charge. 

23. In the Bohr model of the hydrogen atom, 
an electron orbits a proton at a radius of
approximately 5.3 × 10−11 m. Compare the grav-
itational and the electrostatic forces between
the proton and the electron.

24. Suppose the attractive force between Earth and
the Moon, keeping the Moon in its orbit, was
not gravitational but was, in fact, a Coulombic
attraction. Predict the magnitude of the possi-
ble charges on Earth and the Moon that would
cause an identical force of attraction.

25. What is the ratio of the electric force to the
gravitational force between two electrons?

26. Calculate the charge (sign and magnitude) 
on a 0.30 g pith ball if it is supported in space
by a downward field of 5.2 × 10−5 N/C.

27. A 3.0 g Ping Pong™ ball is suspended from a
thread 35 cm long. When a comb is brought 
to the same height, the Ping Pong™ ball is
repelled and the thread makes an angle of 
10.0˚ with the vertical. What is the electric
force exerted on the Ping Pong™ ball? 

28. The gravitational field intensity at a height of
150 km (1.50 × 102 km) above the surface of
Uranus is 8.71 N/kg. The radius of Uranus is
2.56 × 107 m.
(a) Calculate the mass of Uranus.
(b) Calculate the gravitational field intensity 

at the surface of Uranus.
(c) How much would a 100 kg (1.00 × 102 kg)

person weigh on the surface of Uranus? 

29. If a planet, P, has twice the mass of Earth and
three times the radius of Earth, how would 
the gravitational field intensity at its surface
compare to that of Earth? 
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30. The Bohr model of the hydrogen atom consists
of an electron (qe = −e) travelling in a circular
orbit of radius 5.29 × 10−11 m around a proton
(qp = +e). The attraction between the two gives
the electron the centripetal force required to
stay in orbit. Calculate the 
(a) force between the two particles
(b) speed of the electron
(c) electric field the electron experiences
(d) electric potential difference the electron

experiences 

31. What mass should an electron have if the 
gravitational and electric forces between two
electrons were equal in magnitude? How many
times greater than the accepted value of the
electron mass is this? 

32. A charge, q1 = +4 nC, experiences a force of
3 × 10−5 N to the east when placed in an elec-
tric field. If the charge is replaced by another,
q2 = −12 nC, what will be the magnitude and
direction of the force on the charge at that 
position? 

33. If the electric potential energy between two
charges of 1.5 µC and 6.0 µC is 0.16 J, what is
their separation? 

34. Two electric charges are located on a coordinate
system as follows: q1 = +35 µC at the origin
(0,0) and q2 = −25 µC at the point (3,0), where
the coordinates are in units of metres. What 
is the electric field at the point (1,2)? 

35. (a) What is the change in electric potential
energy of a charge of −15 nC that moves in
an electric field from an equipotential of 
+4 V to an equipotential of +9 V?

(b) Does the charge gain energy or lose energy? 
36. To move a charge of +180 nC from a position

where the electric potential difference is +24 V
to another position where the potential differ-
ence is +8 V, how much work must be done? 

37. For breakfast, you toast two slices of bread. The
toaster uses 31 000 J of energy, drawn from a
110 volt wall outlet. How much charge flows
through the toaster? 

38. A spherical Van de Graaff generator terminal
(capable of building up a high voltage) has a
radius of 15 cm. 
(a) Calculate the potential at the surface if the

total charge on the terminal is 75 nC.
(b) If you touch the generator with a hollow

steel ball of radius 6.5 cm, are the spheres
“equipotential” while in contact? 

(c) Calculate the charge on each sphere when
they are separated. 

39. Two identical charges, q1 = q2 = 6.0 µC, are 
separated by 1.0 m.
(a) Calculate the electric field and electric

potential difference at point P, midway
between them.

(b) Replace one of the charges with a charge of
the same magnitude but opposite sign and
repeat the calculation in (a).

(c) Discuss your solutions.
40. Points X and Y are 30.0 mm and 58 mm away

from a charge of +8.0 µC.
(a) How much work must be done in moving a

+2.0 µC charge from point Y to point X?
(b) What is the potential difference between

points X and Y?
(c) Which point is at the higher potential?

41. Points R and S are 5.9 cm and 9.6 cm away
from a charge of +6.8 µC.
(a) What is the potential difference between 

the points R and S?
(b) Which point is at the higher potential?
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C H A P T E R

Fields and 
Their Applications8

The photograph above is the first image ever obtained of 
auroras at both the North Pole and the South Pole at the 

same time — a reminder that Earth’s magnetic field protects all 
living organisms from frequent bombardment by high-energy,
charged particles in the solar wind. 

When the onslaught of charged particles enters Earth’s magnetic
field at an angle with the field, they curve away from Earth’s 
surface. Many of the particles become trapped in the magnetic
field and follow a helical path, circling back and forth in the field
for long periods of time. These ions form the ionosphere. Only at
the magnetic poles do the charged particles enter Earth’s magnetic
field parallel to the field lines and, therefore, are not diverted from
their path. As these particles collide with oxygen and nitrogen
molecules in the atmosphere, they excite the molecules, which
then emit light as they return to their ground state. 

Electric, magnetic, and gravitational fields exert a great influ-
ence on the structures in the universe. In this chapter, you will
study how scientists and engineers are able to construct and
manipulate some fields for practical purposes. The study of the
behaviour of electric and magnetic fields has led to great progress
in our understanding of the electromagnetic field and its enormous
significance in, for example, telecommuncations.

� Newton’s law of universal 
gravitation

� Electric potential difference

� Magnetic fields

� Moving charges in magnetic fields

PREREQUISITE

CONCEPTS AND SKILLS

Multi-Lab
Electric Fields 323

8.1 Field Structure 324

Investigation 8-A
Millikan’s Oil-Drop
Experiment 339

8.2 Conductors 
and Fields 341

8.3 Applications of 
Magnetic and 
Electric Fields 348

Investigation 8-B
Measuring a 
Magnetic Field 360
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M U L T I

L A B

Electric Fields
TARGET SKILLS

Predicting
Performing and recording
Analyzing and interpreting

Cover It Up
Rub an ebonite rod with fur. Bring the rod
close to the cap of a metal leaf electroscope,
then remove the rod. Sit a small inverted
metal can over the cap of the electroscope
and repeat the experiment.

Analyze and Conclude
1. What is the reason for the difference in 

the results of the two experiments?

2. Suggest an explanation of the role of the
metal can.

Swinging Pith Ball
Support two aluminum squares (about 10 cm
square) in grooved wooden blocks and place
them 3.0 cm apart. Charge a pith ball with an
ebonite rod rubbed with fur and suspend the
pith ball at roughly the midpoint between the
plates. Now, ask your teacher to connect a
Van de Graaff generator or other charging
device across the plates, using alligator leads.
After the plates have been charged, discon-
nect the alligator leads. Predict how changing
the separation of the plates will affect the pith
ball. Predict how changing the length of time
of charging by the generator will affect the
pith ball. Test your predictions. When moving
the plates, do not touch the plates them-
selves. Touch only the wooden supports.

Care must be exercised in the use of
charge generators. Serious heart or nerve injury
could occur through contact with large potential
differences, depending on the resulting current.

Analyze and Conclude
1. What relationship did you observe

between the separation of the plates and
the behaviour of the pith ball?

2. What relationship did you observe
between the time of charging and the
behaviour of the pith ball?

3. Propose an explanation for the behaviour
of the pith ball under the changing 
conditions.

CAUTION
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In Chapter 7, Fields and Forces, you learned about electric fields
and studied a few special cases of fields, such as the electric field
around a single point charge and the combination of two point
charges, either like or unlike. Much more complex fields exist,
however, both natural and generated in the laboratory. For 
example, Figure 8.1 shows areas of equal potential around the
human heart. 

In this section, you will be studying the electric field and the
corresponding field line patterns of a number of different-shaped,
charged conductors. Regardless of how many individual charges
are included in the configuration, the electric field vector at any
point can be determined by calculating the sum of electric field
vectors contributed by each charge influencing the field. For some
configurations, however, this method would become very tedious
and time-consuming, so physicists have developed techniques for
a few special cases of fields. In addition, computer programs have
been developed that can generate the field lines for different
arrangements of charges. The user can create the distribution of
charges and the computer will generate the associated electric
field lines. 

Electric and magnetic fields are a very real part of life. The
photo on the right shows areas of equal electric potential difference, while 
the photo on the left shows areas of equal magnetic field intensity and
direction around the human heart in varying shades of colour. The electric
activities of the heart can provide a physician with important information
about the health of a patient’s heart.

Properties of an Electric Field Near a Conductor
Until now, you have been considering fields in the region of point
charges. As you will see in the following Quick Lab, you can 
create some unusual fields with point charges. In real situations,

Figure 8.1

Field Structure8.1
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• Analyze and illustrate the 
electric field produced by 
various charge arrangements
and two oppositely charged
parallel plates.

• Describe and explain the 
electric field that exists 
inside and on the surface of 
a charged conductor.

• Analyze and explain the 
properties of electric fields.

• charge density

• gradient

• potential gradient

• Stokes’ Law

• Millikan’s oil-drop experiment

 T E R M S
K E Y

E X P E C T A T I O N S
S E C T I O N

www.mcgrawhill.ca/links/
physics12

If you would like to experiment with
creating charge distributions and 
generating field lines, go to the above
Internet site and click on Web Links.

WEB LINK
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Q U I C K

L A B

Charge Arrays
TARGET SKILLS

Predicting
Analyzing and interpreting

In this Quick Lab, you will extend your 
knowledge into new and more complex charge
arrangements. You will predict electric field
lines and equipotential lines for several charge
arrangements and then check your predictions.

For each of the following charge arrange-
ments (arrays) located on the Cartesian 
coordinate plane, predict and sketch electric
field line patterns and some equipotential lines.
Use different colours for the field lines and for
the equipotential lines. 

(a) +1.0 C at (0,0)

(b) +1.0 C at (0,0) and an identical +1.0 C at (4,0)

(c) +1.0 C at (0,0) and –1.0 C at (4,0)

(d) +2.0 C at (0,0) and –1.0 C at (4,0)

(e) +3.0 C at (0,0) and –1.0 C at (4,0)

(f) +1.0 C at (0,0), +1.0 C at (4,0), and +1.0 C 
at (2,–4)

(g) +1.0 C at (0,0), +1.0 C at (4,0), and –1.0 C 
at (2,–4)

(h) +1.0 C at (0,0), +1.0 C at (4,0), –1.0 C at 
(4,–4), and +1.0 C at (0,–4)

Visit one of the Internet sites suggested by the
Web Link on the previous page and simulate the
charge arrays listed above. Observe the actual
electric field lines and equipotentials that would
be generated. 

Analyze and Conclude
1. How well did your predicted patterns corre-

spond to those generated by the simulation
program?

2. How could you actually verify one specific
value of the electric field intensity?

however, charged conductors take on a variety of shapes, but the
same basic concepts about fields that apply to point charges also
apply to conductors of all shapes. In fact, you can think of a con-
ductor as a very large number of point charges lined up very close
together. One important concept to remember when working with
conductors is that electric field lines enter and leave a conductor
perpendicular to the surface. Figure 8.2 shows why field lines can-
not contact a conductor at any angle other than 90˚.

conductor

perpendicular component 
of electric field

parallel component
of electric field

hypothetical
non-perpendicular

field line

To indicate that an
electric field line leaves a conduc-
tor at an angle implies that there
is a component of the electric field
that is parallel to the surface of
the conductor. If this was the case,
charges in the conductor would
move until they had redistributed
themselves in the conductor in 
a way that would change the 
field until there was no longer 
a parallel component.

Figure 8.2



Consider the charged conductors in Figure 8.3 (A). Before you
start to draw electric field lines, count the number of unit charges.
Notice that the sphere has more negative charges than the plate
has positive charges. So, more field lines will be ending on the
sphere than leaving the plate. When you start to draw field lines,
decide on the number entering and leaving each conductor so that
the number of lines is proportional to the amount of charge on 
the conductor. Then, draw the beginning and end of each line 
perpendicular to the surface of the conductors, as shown in 
Figure 8.3 (B). Next, smoothly connect the lines so that those 
leaving the positive plate enter at adjacent lines ending on the
negative sphere. The remaining lines on the sphere will spread
out, but will not contact the positive plate. Finally, you can 
draw equipotential lines that are perpendicular to the electric 
field lines, as shown in Figure 8.3 (D). 

• Copy each of the following diagrams (do not write on the 
diagrams in your textbook), showing various-shaped conductors,
and draw in a representative sample of electric field lines and
equipotential lines. Note that a uniform charge distribution 
has been assumed for each object except the cylinder in (B).
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The positive plate
attracts the negative charge on
the sphere so that it is more
dense on the side near the plate
and less dense on the side away
from the plate.

Figure 8.3



Parallel Plates
Charged parallel plates are a convenient way to create an electric
field and therefore warrant in-depth examination. When two large,
oppositely charged parallel plates are placed close together, the
electric field between them is uniform, except for a certain spread-
ing or “fringing” of the field at the edges of the plates, as shown in
Figure 8.4.

The plates are too large to act like point charges, but the fact
that the total charge on each plate is the sum of a large number of
individual charges provides a way to explain the uniform field
between the plates, as illustrated in Figure 8.5.

A positive test charge placed at any point between the plates
would experience a force from every positive charge on the left
plate and every negative charge on the right plate. The magnitude
of each of these forces would be determined by Coulomb’s law,
and the direction of each force would be along the line joining 
the test charge to each charge on the plates. 

+
+
+
+
+
+
+
+
+
+
+
+

−
−
−
−
−
−
−
−
−
−
−
−

⇀
Fnet

⇀
Fnet

⇀
Fnet

B
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By symmetry,
all of the force vectors add
to produce a net force
directly to the right.

Figure 8.5

(A) When grass
seeds are placed in an electric
field between two parallel plates,
they line up to reveal the shape 
of the electric field.  (B) Using part
(A) of this illustration as a model,
a schematic diagram of an electric
field is drawn.

Figure 8.4

A

To enhance your understanding of
charges and fields, go to your
Electronic Learning Partner.

ELECTRONIC
LEARNING PARTNER



The net (resultant) force on the test charge would then be deter-
mined by the vector sum of all of the forces acting on it. Since the
system is perfectly symmetrical, for every upward force, there
would be a force of equal magnitude pointing down. The net force
on the test charge would be a constant vector perpendicular to the
plates, regardless of its location between the plates. The resulting
field between two parallel plates can be summarized as follows.

� The electric field intensity is uniform at all points between the
parallel plates, independent of position.

� The magnitude of the electric field intensity at any point
between the plates is proportional to the charge density
on the plates or, mathematically, |EQ| ∝ σ, where σ = q/A
(charge density = charge per unit area).

� The electric field intensity in the region outside the plates is
very low (close to zero), except for the fringe effects at the 
edges of the plates.
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It is important to remember that
the parallel plates are mounted
on insulators, isolated from any
circuit. If they were charged 
by a battery, the battery was 
disconnected, so the same
amount of charge would remain
on the plates. If instead the plates
remained connected to the 
battery and, for example, the area
of the plates or the distance
between them was changed, the
battery would then adjust the
charge on the plates and the field
would change as well. Parallel
plates connected within a circuit
are called “capacitors” and their
operation is beyond the scope of
this course.

PHYSICS FILE

Parallel Plates
An identical pair of metal plates is mounted parallel on insulating
stands 20 cm apart and equal amounts of opposite charges are
placed on the plates. The electric field intensity at the midpoint
between the plates is 400 N/C.

(a) What is the electric field intensity at a point 5.0 cm from the
positive plate?

(b) If the same amount of charge was placed on plates that have
twice the area and are 20 cm apart, what would be the electric
field intensity at the point 5.0 cm from the positive plate?

(c) What would be the electric field intensity of the original plates 
if the distance of separation of the plates was doubled?

Conceptualize the Problem
� The electric field between isolated parallel plates is uniform.

� The electric field between isolated parallel plates depends on the
charge density on the plates.

Identify the Goal
The magnitude of the electric field, |EQ|, under three different conditions

Identify the Variables and Constants
Known Unknown
|EQ(initial)| = 400 N/C |EQ(final)|

SAMPLE PROBLEM 



Develop a Strategy

(a) The magnitude of the electric field intensity is 400 N/C at 
a point 5 cm from the positive plate.

(b) The magnitude of the electric field intensity is 200 N/C when the
area is doubled.

(c) The magnitude of the electric field intensity is 400 N/C (unchanged)
when the distance is doubled, because electric field intensity is
independent of the distance of separation.

Validate the Solution
Only the charge density affects the field intensity between the
plates. Therefore, changing the area of the plates and consequently
reducing the charge density is the only change that will affect the
value of the field intensity.

1. A pair of metal plates, mounted 1.0 cm apart
on insulators, is charged oppositely. A test
charge of +2.0 µC placed at the midpoint, M,
between the plates experiences a force of
6.0 × 10−4 N[W].

(a) What is the electric field intensity at M?

(b) What is the electric field intensity at a
point 2.0 mm from the negative plate?

(c) What is the electric field intensity at a
point 1.0 mm from the positive plate?

(d) What are two possible ways in which 
you could double the strength of the 
electric field?

2. The electric field intensity at the midpoint,
M, between two oppositely charged (isolated)
parallel plates, 12.0 mm apart, is
5.0 × 103 N/C[E].

(a) What is the electric field intensity at a
point 3.0 mm from the negative plate?

(b) If the plate separation is changed to 
6.0 mm and the area of the plates is
changed, the electric field intensity is
found to be 2.0 × 104 N/C[E]. What was
the change made to the area of the plates?

PRACTICE PROBLEMS

|EQ1| ∝ q1

A1
and |EQ2| ∝ q2

A2

|EQ2|
|EQ1|

=
q2

A2
q1

A1

q2 = q1 and A2 = 2A1

|EQ2|
|EQ1|

=
q1

2A1
q1

A1

|EQ2| = |EQ1|
2

|EQ2| =
400N

C
2

|EQ2| = 200 N
C

The magnitude of the electric field intensity is inversely
proportional to the area of the plates.

Divide.

Substitute.

|EQ| = 400 N
C

The magnitude of the electric field intensity is uniform
between parallel plates, so it will be the same at every point.
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3. A test charge of +5.0 µC experiences a 
force of 2.0 × 103 N[S] when placed at the
midpoint of two oppositely charged parallel
plates. Assuming that the plates are electri-

cally isolated and have a distance of 
separation of 8.0 mm, what will be the force
experienced by a different charge of −2.0 µC,
located 2.0 mm from the negative plate?

Parallel Plates and Potential Difference
In Chapter 7, you learned that the potential difference between
two points in an electric field is the work required to move a unit
charge from one point to the other. What generalizations can you
make about potential difference between two parallel plates?

Consider a test charge, q, placed against the negative plate of 
a pair of parallel plates. You can derive an expression for the
potential difference between the plates by considering the work
done on a test charge when moving it from the negative plate to
the positive plate.

∣∣⇀EQ
∣∣ = ∆V

∆d

� Another useful equation results
when you divide both sides of
the equation by displacement.

∆V = W
q

∆V =
∣∣⇀EQ

∣∣∆d

� The definition of electric 
potential difference is work 
per unit charge.

W
q

=
∣∣⇀EQ

∣∣∆d
� Divide both sides of the 

equation by q.

W = q
∣∣⇀EQ

∣∣∆d

� Substitute the expression 
for force into the equation 
for work. (Note: The vector
notation and absolute value
symbol will be used with the
electric field intensity to 
avoid confusion with electric
potential energy.)

⇀F = q⇀EQ

� Write the expression for the
force on a charge in an 
electric field.

W = F∆d cos θ
W = F∆d (parallel to field)

� Write the equation for the
amount of work you would
have to do to move the charge a
displacement, ∆d. To eliminate
the cos θ, work only with the
component of displacement
that is parallel to the force and
therefore to the electric field.
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Potential Gradient
In general, a gradient is similar to a rate. While a rate is a change
in some quantity relative to a time interval, a gradient is a change
in some quantity relative to a change in position, or displacement; 

therefore, the expression ∆V
∆d

is known as the potential gradient. 

As you move from one plate to the other, the electric potential
difference changes linearly, since ∆V =

∣∣⇀E∣∣∆d and 
⇀E is constant.

So, if the potential difference across the plates is 12 V, the 
potential difference at a point one third of the distance from 
the negative plate will be 4.0 V. The potential difference is 
higher close to the positive plate. In other words, the potential 
difference increases in a direction opposite to the direction of the
electric field. 

Physicists commonly refer to the “potential at a point” in an
electric field. As you know, there are no absolute potentials, only
potential differences. Therefore, the phrase “potential at a point”
means the potential difference between that point and a reference
point. In the case of parallel plates, the reference point is always
the negatively charged plate.

Quantity Symbol SI unit

electric field intensity 
⇀EQ

N
C

(newtons per coulomb)

electric potential difference ∆V V (volts)

component of displacement
between points, parallel 
to field ∆⇀d m (metres)

Unit Analysis
V
m

= J/C
m

= N · m
C · m

= N
C

Note: When doing a unit analysis, it is very useful to 
remember that a volt per metre is equivalent to a newton 
per coulomb.

∣∣⇀EQ
∣∣ = ∆V

∆d

ELECTRIC FIELD AND POTENTIAL DIFFERENCE
The magnitude of the electric field intensity in the region
between two points in a uniform electric field is the quotient
of the electric potential difference between the points and the
component of the displacement between the points that is 
parallel to the field.
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Field and Potential
Two parallel plates 5.0 cm apart are oppositely 
charged. The electric potential difference across 
the plates is 80.0 V.

(a) What is the electric field intensity between 
the plates?

(b) What is the potential difference at point A?

(c) What is the potential difference at point B?

(d) What is the potential difference between 
points A and B?

(e) What force would be experienced by a small 
2.0 µC charge placed at point A?

Conceptualize the Problem
� The electric field between parallel plates is uniform.

� Identify the lower plate as positive.

� The electric field intensity is related to the potential difference
and the distance of separation.

Identify the Goal
The electric field intensity, 

∣∣⇀EQ
∣∣, between the plates 

The potential difference at point A, VA, and point B, VB

The potential difference between points A and B, ∆VAB

The electric force, 
⇀FQ, on a charge placed at point A

Identify the Variables and Constants
Known Unknown
∆d = 5.0 cm

⇀EQ ∆VAB

∆V = 80.0 V VA
⇀FQ

Points A and B VB

q = 2.0 µC

Develop a Strategy

(a) The electric field intensity is 1.6 × 103 N/C away from the 
positive plate.

|⇀EQ| = ∆V
∆d

|⇀EQ| = 80.0 V
5.0 × 10−2 m

⇀EQ = 1.6 × 103 N
C

directed from the positive to the negative plate

The electric field is related to the 
potential difference and the distance 
of separation.

− − − − − − − − −

+ + + + + + + + +

5.0 cm

2.0 cm

1.0 cm

B

A

SAMPLE PROBLEM 



(b) The potential difference at point A is 64 V.

(c) The potential difference at point B is 32 V.

(d) The potential difference between points A and B is 32 V.

(e) The force experienced by the small charge at point A is 3.2 × 10−3 N,
away from the positive plate.

Validate the Solution
The values are reasonable in terms of the given data. The units are logical.

4. Calculate the electric field intensity between
two parallel plates, 4.2 cm apart, which have
a potential difference across them of 60.0 V.

5. The potential difference between two points
8.0 mm apart in the field between two 
parallel plates is 24 V.

(a) What is the electric field intensity
between the plates?

(b) The plates themselves are 2.0 cm apart.
What is the electric potential difference
between them?

6. When an 80.0 V battery is connected across 
a pair of parallel plates, the electric field
intensity between the plates is 360.0 N/C.

(a) What is the distance of separation of 
the plates?

(b) What force will be experienced by a
charge of −4.0 µC placed at the midpoint
between the plates?

(c) Calculate the force experienced by the
charge in part (b) if it is located one 
quarter of the way from the positive plate.

7. What electric potential difference must be
applied across two parallel metal plates 
8.0 cm apart so that the electric field intensi-
ty between them will be 3.2 × 102 N/C?

8. The potential gradient between two parallel
plates 2.0 cm apart is 2.0 × 103 V/m.

(a) What is the potential difference between
the plates?

(b) What is the electric field intensity
between the plates?

PRACTICE PROBLEMS

⇀FQ = q⇀EQ
⇀FQ = (2.0 × 10−6 C)

(
1.6 × 103 N

C

)
⇀FQ = 3.2 × 10−3 N[away from positive plate]

The electric force is related to the field
and charge.

∆V = VA − VB

∆V = 64 V − 32 V

∆V = 32 V

Point A is at the higher potential, because
it is closer to the positive plate.

VB =
∣∣⇀EQ

∣∣∆d

VB =
(
1.6 × 103 V

m

)
(0.020 m)

VB = 32 V

Use the equation that relates the electric
potential difference to the electric field
intensity.

VA =
∣∣⇀EQ

∣∣∆d

VA =
(
1.6 × 103 V

m

)
(0.040 m)

VA = 64 V

Use the equation that relates the electric
potential difference to the electric field
intensity. (Note: Point A is 4.0 cm from
the negative plate.)
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Millikan’s Oil-Drop Experiment: 
Charge on the Electron
A very important series of experiments dependent on the uniform
electric field between a pair of parallel plates was performed 
during the years 1909 to 1913 by Millikan. The results of these
experiments, together with his contributions to research on the
photoelectric effect (see Chapter 12), led to his Nobel Prize in
Physics in 1923. Millikan was able not only to verify the existence
of a fundamental electric charge — the electron — but also to 
provide the precise value of the charge carried by the electron.
This had a tremendous impact on the further development of the
theory of the structure of matter.

The experimental procedures used by Millikan were actually 
a modification of earlier techniques used by J.J. Thomson
(1856–1940). A pair of parallel plates was very finely ground to
smoothness and a tiny hole was drilled in the top plate. An 
atomizer was mounted above the plates and used to spray tiny
droplets of oil into the region above the plates. These oil droplets
acquired an electric charge as they were sprayed, presumably from
friction. The whole apparatus was kept in a constant-temperature
enclosure, and the region between the plates was illuminated with
an arc lamp.
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Quantum PenniesQ U I C K

L A B

TARGET SKILLS

Hypothesizing
Analyzing and interpreting

This Quick Lab will give you some insight into
the approach that Robert Andrews Millikan
(1868–1953) used to determine the charge on
the electron. Instead of charge, however, you
will determine the mass of a penny.

Your teacher has prepared a class set of 
small black film canisters that contain various
numbers of identical pennies. You and your
classmates will use an electronic balance to
determine the mass of each film canister and 
its contents. Carry out this procedure and post
the class results.

Analyze and Conclude
1. Draw a bar graph, with the canister number

on the horizontal axis and the mass of that
canister on the vertical axis.

2. Calculate and record the increments between
each mass value and all other mass values. 

3. Is there any minimum increment of which 
all other increments are a multiple?

4. What do you predict to be the mass of a
penny? Check your prediction by direct
measurement.

Apply and Extend
5. As a class, open the canisters and randomly

add or remove pennies. Again, measure the
mass, and repeat the analysis.



Not shown in this simplified cross-section of Millikan’s 
apparatus is a source of X rays that could ionize the air in the electric field.

A droplet that fell through the hole and into the region between
the plates could be viewed through a short telescope. The droplet
would very quickly acquire terminal velocity as it fell under the
influence of the force of gravity and the resistance (viscosity) of
the air. This terminal velocity, v0, could be measured by timing
the drop as it fell between the lines on a graduated eyepiece. 
(In Millikan’s apparatus, the distance between the cross hairs 
was 0.010 cm). A potential difference (3000 to 8000 V) was then
applied across the plates (separated 1.600 cm) by means of a 
variable battery. 

Usually the oil drops had attained a negative charge, so the
potential difference would be applied so that the top plate was
made positive. In that way, a negatively charged oil drop could be
made to reach an upward terminal velocity under the action of the
applied electric field, its effective weight, and air friction. This
second terminal velocity, v1, was also recorded. 

Millikan then directed X rays to the region between the plates.
The X rays ionized the air molecules between the plates and
caused the charge on the oil drop to change as it either gained or
lost electrons. Again, the procedure of determining the two termi-
nal velocities, one with and one without the applied electric field,
could be repeated many times with differently charged oil drops. 

Millikan observed that the terminal velocity of the charged oil
drops, which depended on the charge itself, varied from trial to
trial. Over a very large number of trials, however, the velocity 
values could be grouped into categories, all of which represented
an integral multiple of the lowest observed value. This led him 
to conclude that the charge on the oil drops themselves could 
be quantified as integral multiples of one fundamental value.
Millikan then applied a mathematical analysis to determine that
value. The following is a simplified version of Millikan’s analysis.

Figure 8.6

battery oil drop

atomizer

charged plate

charged plate

telescope
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All of the variables in this equation for q could be measured
easily, except the mass. Millikan then turned to the work of 
Sir George Gabriel Stokes (1819–1903), a British mathematician
and physicist who had helped to develop the laws of hydrostatics.
Based on a particle’s rate of fall as it falls through a viscous 
medium, Stokes’ law can be used to calculate the particle’s mass.

Millikan measured the terminal velocity of each oil drop with
the battery turned off, that is, the rate of fall under the influence 
of gravity and the resistance of the fluid (air) only. When he 
substituted the mass of each oil drop into the equation for the
charge q, above, he found that the magnitude of the charge on each
oil drop was always an integral multiple of a fundamental value.
He assumed that this particular fundamental charge was actually
the charge on the electron, and the multiple values arose from the
oil drops having two, three, or more excess or deficit electrons. 

The electronic charge computed from many trials of Millikan’s
method is found to be e = 1.6065 × 10−19 C, which agrees well
with values determined by other methods. The currently accepted
value for the charge on the electron is e = 1.602 × 10−19 C.
Knowing the charge, e, on an electron, it has become common
practice to express the charge on an object in terms of the number,
n, of the excess or deficit of electrons on the object, or q = ne.

q = mg∆d
V

� Solve for the charge, q.

qV
∆d

= mg
� Substitute the expression for the 

electric field intensity.

EQ = ∆V
∆d

� Express the electric field intensity in
terms of the potential difference
across the plates.

q⇀EQ = m⇀g� Substitute the expressions into the
first equation.

⇀EQ =
⇀FQ

q
⇀FQ = q⇀EQ

⇀Fg = mg
� Write the expressions for the electric

force in terms of the electric field 
intensity and for the gravitational
force. 

⇀FQ = ⇀Fg

� When the oil drop travelled with a 
uniform velocity, the upward electric
force was equal in magnitude to the
downward gravitational force.
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Millikan Experiment
Two horizontal plates in a Millikan-like apparatus are placed 
16.0 mm apart. An oil drop of mass 3.00 × 10−15 kg remains at rest
between the plates when a potential difference of 420.0 V is applied
across the plates, the upper plate being positive. Calculate the

(a) net charge on the oil drop

(b) sign of the charge on the oil drop

(c) number of excess or deficit electrons on the oil drop

Conceptualize the Problem
� The oil drop is held in place by its own weight (down) and the

electric force (up).

� The electric force depends on the electric field value between 
the plates.

Identify the Goal
The magnitude of the charge, q, on the oil drop; its sign, ±; and 
electron number, n, of excess or deficit electrons

Identify the Variables and Constants
Known Implied Unknown
d = 16.0 mm

m = 3.00 × 10−15 kg

V = 420.0 V

g = 9.81 m
s2

e = 1.602 × 10−19 C

q
n

Develop a Strategy

(a) The charge on the oil drop is −1.12 × 10−18 C.

(b) The net charge was negative.

Since the electric force was in a direction opposite to the
gravitational force, it had to be “up.” The upper plate was
positive, so the charge had to be negative.

The drop was suspended.

FQ = Fg

qEQ = mg

q V
∆d

= mg

q = mg∆d
V

q =
(3.00 × 10−15 kg)

(
9.81 m

s2

)
(1.60 × 10−2 m)

420.0 V
q = 1.1211 × 10−18 C

q ≅ 1.12 × 10−18 C

The electric force will be equal in
magnitude to the force of gravity.

SAMPLE PROBLEM 
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(c) There is an excess of seven electrons on the oil drop, causing its
net negative charge.

Validate the Solution
The values are consistent with the size of the oil drop, the plate separation,
and the potential difference. The units in the calculation are consistent.

kg · N
kg · m

V
= N · m

J
C

= J
J
C

= C

9. Two large horizontal parallel plates are 
separated by 2.00 cm. An oil drop, mass
4.02 × 10−15 kg, is held balanced between the
plates when a potential difference of 820.0 V
is applied across the plates, with the upper
plate being negative.

(a) What is the charge on the drop?

(b) What is the number of excess or deficit
electrons on the oil drop?

10. A small latex sphere experiences an electric
force of 3.6 × 10−14 N when suspended
halfway between a pair of large metal plates,
which are separated by 48.0 mm. There is
just enough electric force to balance the force
of gravity on the sphere.

(a) What is the mass of the sphere?

(b) What is the potential difference between
the plates, given that the charge on the
sphere is 4.8 × 10−19 C?

11. The density of the oil used to form droplets
in the Millikan experiment is
9.20 × 102 kg/m3 and the radius of a typical
oil droplet is 2.00 µm. When the horizontal
plates are placed 18.0 mm apart, an oil drop,
later determined to have an excess of three
electrons, is held in equilibrium. What
potential difference must have been applied
across the plates?

PRACTICE PROBLEMS

n = q
e

n = 1.12 × 10−18 C
1.60 × 10−19 C

n = 7.00

The net charge is related to the
charge on the electron.
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Understanding the costs and benefits of any
issue often begins by (a) gathering useful facts
and (b) identifying personal bias.
� Identify your bias. Do you believe that 

fundamental research is worthwhile if it
does not have any obvious applications?

� Do you believe that research resulting 
in greater understanding will some day, 
perhaps decades later, be put to use in 
an application?

� How would you complete the statement
“Knowledge for the sake of knowledge ... ”?

UNIT PROJECT PREP



I N V E S T I G A T I O N  8-A

Millikan’s Oil-Drop Experiment

TARGET SKILLS

Performing and recording
Analyzing and interpreting
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In this investigation, you will demonstrate that
electric charge exists as a quantized entity,
using apparatus that allows you to apply a
potential difference across parallel plates as 
you observe the movement of latex spheres.

Problem
Does charge exist in fundamental units and can
you find evidence of differently charged objects?

Equipment  
� Millikan apparatus for use with latex spheres
� supply of latex spheres
� stopwatch

Be careful not to touch open terminals
that are connected to a high potential difference.

Procedure
1. Follow the manufacturer’s instructions to

adjust and focus the light source and also to
connect the plates to the source of potential
difference. Your aim is to make repeated
measurements of the velocity of a sphere
under the action of gravity alone (v0, down)
and also under the action of both the gravita-
tional force and the electric force (v1, up).

2. Examine the position and function of the
voltage switch. In the off position no electric
field will be applied and the sphere will fall
under the action of the force of gravity alone.
In the on position a potential difference will
be applied across the plates, with the top
plate being positive, and the sphere will rise
as the electric force is greater than the force
of gravity.

3. Place the switch in the off position and
squeeze some latex spheres into the region
between the plates. (You may need to prac-
tise observing the spheres before you actually
start timing them. They will appear as tiny
illuminated dots.) Follow the manufacturer’s 

instructions for determining direction. The
telescope usually inverts the field of view, so
the force of gravity is then “up,” although
some manufacturers have included an extra
lens to compensate.

4. Using the voltage switch, clear the field of
fast-moving dots. They carry a large charge
and are hard to measure. Choose one of the
slowly falling spheres and measure its time
of travel as it falls, under the action of the
force of gravity. Observe the motion for 
several grid marks in the field of view.
(Remember it might be falling “up” in your
apparatus.) Without losing the sphere,
change the switch so that the sphere rises
under the action of the electric field and
again measure the time of travel over the grid
marks. Before the sphere disappears from the
field of view, place the switch in the off
position and again measure the time of travel
over the grid marks. You will need a labora-
tory partner to record the results so that you
can keep your eye on the selected sphere.

5. Repeat your observations for a different
sphere from a new batch, and continue 
making observations for at least 20 different
spheres. (Alternate with your lab partner to
allow your eyes to rest!)

Analyze and Conclude
1. Calculate the velocity of the spheres for

every trial, using an arbitrary unit for 
distance. For example, if one sphere moved
8.0 gridlines in 3.1 seconds, record its 
velocity as 

v = ∆d
∆t

= 8.0 grid lines
3.1 s

= 2.6 grid lines
s

.

2. Record the velocity of the sphere in two 
different ways: v0 to represent the velocity 
of the sphere under the force of gravity
alone, and v1 to represent the velocity when 

CAUTION



the electric force up is greater than the gravi-
tational force on the sphere. Record your
data in a table similar to the one below.

3. Complete the calculations for each column in
the table.

4. Since the value of v0 + v1 represents the
strength of the electric force alone, acting 

on the sphere, it can also be considered to
represent the electric charges on the sphere.
Draw a bar graph with the quantity v0 + v1

on the vertical axis and “Trial number” 
evenly distributed on the horizontal axis.

5. Does your bar graph offer any evidence that
electric charge exists as an integral multiple
of a fundamental charge? Are you able to
state the number of fundamental charges that
are excess or deficit on your spheres? Explain
your reasoning.

Sphere v0 v1 v0 + v1
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8.1 Section Review

1.

(a) Draw the electric field pattern for a +4 µC
charge and a −4 µC charge separated by
4.0 cm. Include four equipotential lines.

(b) Repeat part (a) for a −16 µC and a −4 µC
charge.

2. If you have access to the Internet, use the
sites listed in your Electronic Learning
Partner to verify your answers.

3.

(a) List four properties of electric field lines.

(b) List two properties of equipotential 
surfaces.

4. Research and report on the use of electric
fields in technology and medicine (for 
example, laser printers, electrocardiograms).

5. With your classmates, prepare a dramatic
skit to simulate Millikan and his colleagues

preparing and performing his oil-drop 
experiment.

6. A pair of parallel plates is placed 
2.4 cm apart and a potential difference of
800.0 V is connected across them.

(a) What is the electric field intensity at the
midpoint between the plates?

(b) What is the electric potential difference 
at that point?

(c) What is the electric field intensity at a
point 1.0 cm from the positive plate?

(d) What is the electric potential difference 
at that point?

7. A pair of horizontal metal plates are 
situated in a vacuum and separated by a 
distance of 1.8 cm. What potential difference
would need to be connected across the plates
in order to hold a single electron suspended
at rest between them?

I

K/U

C

MC

K/U

I

K/U



You will now examine how conductors are used in the transport of
electric current and electromagnetic signals. An electric field can
be established not only in the spatial region around point charges
or in the air gap between parallel plates, but also in the metal 
conducting wires that enable electric current to be transmitted.
Shielded coaxial wires can also be used as a “guide” to transport
electromagnetic waves to a convenient location (such as your 
television receiver) with minimal loss of strength. You will learn
more about electromagnetic waves in Unit 4, but for now, you 
can at least gain a qualitative idea of how they can be transported
efficiently, with minimal loss of energy. 

Conducting Wires
In previous science courses, you worked with conducting wires
and circuits. You learned that if you placed an electric potential
difference across the ends of the conductor, a current would flow.
You have just learned that an electric potential difference creates
an electric field and that charges in an electric field experience
electric forces. Now you can examine conductors in more detail.

In previous studies, you learned that the copper atoms have
heavy positive nuclei and a cloud of negative electrons surround-
ing it. An isolated atom has electrons filling up the lower energy
“shells,” but there are also a few electrons outside of these com-
plete shells. These outer electrons can move relatively easily if
they are replaced with another electron from another copper atom.
The electrons are then free to move through the metal, colliding
randomly with the stationary positive nuclei. 

If a battery is connected to the ends of a metal wire, it will 
create an electric field inside the wire and parallel to its axis.
Consequently, the free electrons will move in a direction opposite
to the direction of the field, as shown in Figure 8.7.

In a conductor, electrons move opposite to the direction of the
electric field, because the direction of the field is defined as the direction in
which a positive charge would move.

Figure 8.7

⇀
E

I

v

Conductors and Fields8.2
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• Define and describe the 
concepts related to electric
fields.

• Describe and explain the 
electric field that exists inside
and on the surface of a charged
conductor.

• Demonstrate how an under-
standing of electric fields 
can be applied to control 
the electric field around 
a conductor.

• Faraday cage

 T E R M
K E Y

E X P E C T A T I O N S
S E C T I O N



Hollow Conductors: Faraday’s Ice-Pail Experiment
When you carried out the Cover It Up activity in the Multi-Lab at
the beginning of this chapter, you probably noticed that when you
placed the can over the sphere on the electroscope, it eliminated
the effect that you originally observed when you brought the
charged rod close to the electroscope sphere. You probably did not
realize that you were performing an experiment very similar to
one of the most famous experiments in the history of the study 
of electric fields — Michael Faraday’s ice-pail experiment. Faraday
devised this experiment to show that electric charge will reside
only on the outside of a hollow conductor. The experiment is 
outlined schematically in Figure 8.8 and described in the steps
that follow.

(A) The questions raised by Faraday’s ice-pail experiment;  
(B) the answers

Faraday’s Ice-Pail Experiment
� A hollow metal can (Faraday happened to use an ice pail), 

insulated from its surroundings, was connected to an uncharged
electroscope.

Figure 8.8
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� A positively charged metal ball was lowered into the pail by its
insulated handle. The electroscope leaves diverged and stayed 
at a fixed divergence. When the metal ball was moved around
inside the ice pail, the electroscope leaves stayed at a fixed
angle of divergence.

� The metal ball was allowed to touch the inside of the ice pail.
The angle of divergence of the leaves of the electroscope
remained the same.

� The metal ball was then removed from the ice pail and the ball
and the leaves were tested for charge. The ball was found to be
uncharged, and the leaves were charged positively.

From his experiment, Faraday deduced the following. 

� The positive ball had induced a negative charge on the inside
wall of the pail and a positive charge on the outside wall.

� The induced charge was of the same magnitude as the charge on
the ball, since the charges on the ball and the inside wall of the
pail cancelled each other.

� The induced charges on the inside and outside walls of the pail
were of equal magnitude, since the angle of divergence of the
leaves did not change throughout the experiment.

Two general properties were illustrated by this experiment.

1. The formation of one charge is always accompanied by the 
formation of an equal, but opposite, charge.

2. The net charge in the interior of a hollow conductor is zero; 
all excess charge is found on the outside.

The latter property led to the general conclusion that an external
electric field will not affect the inside of a hollow conductor. In
fact, it will be shielded. Faraday pursued this with a further
demonstration in which he built a very large metal cage, mounted
on insulators, and then entered the cage to perform electrostatic
experiments, while a very high electric field was generated all
around him.

This electric screening was the basis of the Cover It Up activity
in the Multi-Lab at the beginning of the chapter. If you charge an
electroscope and then place a cage (or inverted can) over the
sphere of the electroscope, you will shield it from external electric
fields. If you bring a charged rod close to the cage, the leaves of
the electroscope are unaffected. This principle has become a 
popular method for screening sensitive electric circuit elements 
by placing them in some form of metal cage. Today, anything that
is used to shield a region from an external electric field is called 
a Faraday cage.
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www.mcgrawhill.ca/links/
physics12

For more information about Michael
Faraday, both scientific and personal,
go to the above Internet site and 
click on Web Links.

WEB LINK



Coaxial Cable
When electromagnetic waves, such as television signals, are trans-
mitted to the home, either through or beyond the atmosphere, they
are captured by a receiver (antenna) and then delivered to your
television as an electric signal. 

Early antenna cables consisted of a flat, twin-lead wire, with
two braided wires (through which the signal was conducted)
mounted in a flat, plastic insulating band. This type of wire has
become less common, as it is very susceptible to interference from
unwanted electromagnetic signals, such as those arising from
sunspot activity, lightning storms, or even just local extraneous
transmissions, such as those from power tools.

An improvement on the twin-lead wire was the shielded twin
lead, in which the braided wires were each wrapped in foam insu-
lation. The pair of wires was then wrapped in foil sheathing to
provide shielding and then in an outer layer of plastic insulation.

The most efficient and popular signal-conducting wire today 
is the coaxial cable, consisting of concentric rings: an inner 
conducting wire, sometimes stranded (stereo) but usually solid
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Faraday CageQ U I C K

L A B

TARGET SKILLS

Hypothesizing and 
predicting
Analyzing and interpreting

Van de Graaff generators generate very
high potential differences that might cause harm
to some individuals. 

You can demonstrate the shielding effect of a
hollow metal cylinder by using the apparatus
shown in the diagram. Either use tape to attach
the metal base of the hollow cylinder-pith ball
apparatus to the top of the sphere on the Van 
de Graaff generator, or use an electric lead to
connect the two. Turn on the generator and
allow it to run for a few seconds.

Analyze and Conclude
1. How does the behaviour of the pith balls

inside the hollow cylinder differ from the
behaviour of the pith balls mounted outside
the hollow cylinder?

2. What does this experiment demonstrate
about the electric field inside a hollow 
conductor?

pith balls mounted
on metal stem

hollow metal
cylinder

metal stand

Van de graaff 
generator

pith balls mounted
inside cylinder

CAUTION



(television), a sheath of foam insulation, a second sheath of braid-
ed (or solid foil) conducting wire, and an outer sheath of plastic
insulation. The actual mathematics and physics of the transport 
of a signal along a coaxial cable is quite complex, but for the 
purposes of this section, it is sufficient to say that the two wires
transporting the signal are the inner core wire and the outer 
braided wire. The latter provides a form of Faraday shielding from
external interference.

• When twin-lead wire is 
used to carry the television
signal from the antenna 
to a television receiver, the
directions require that the
lead be twisted and not
installed straight. What
would be the purpose of
this instruction?

• Why must the twin-lead
wire be held away from 
the metal antenna mast, using insulating clamps?

• A homeowner knew some physics and decided to run a coaxial
cable through the house inside the metal heating ducts. 

(a) What would be one advantage of this procedure?

(b) State one disadvantage of this method.

• Before the advent of transistors, old superheterodyne “wireless”
receivers used “radio valves” in the amplification circuit. 
Why were these valves often enclosed in metal cylinders?

• When transistors became the basic component of electric 
circuits, did they also need shielding? Research your answer.

Conceptual Problems
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Common types of
signal conducting wires.

Figure 8.9

C  coaxial cable

B  shielded twin-lead wire

A  a flat twin-lead wire

8.2 Section Review

1. What evidence supports the practice of
enclosing electronic components in metal
shells?

2. Some people who felt that TV antennas
looked unsightly hid them in the attics of
their houses. Discuss how the type of roof
and siding material has relevance to this
practice.

3. Some people feel that it is relatively safe
to take shelter in a car during a lightning
storm, because the rubber tires will provide
insulation. However, a lightning strike that
has travelled several kilometres is not going
to be discouraged from jumping the last few
centimetres. In what way does a car offer
protection from lightning?

MC

MC

K/U



P H Y S I C S  M A G A Z I N E

Levitation:
How Does It Work?
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Levitating an object should be easy. All you need is a
repulsive force strong enough to counteract Earth’s
gravity. So why not use an electric charge or a magnet
to create the repulsive force? Scientists have been
thinking about this idea for years. In fact, the first
proposal to use magnetism to levitate vehicles was
made in 1912, just one year after the discovery of
superconductivity. 

Superconductors can conduct electricity with no
resistance at all. In normal conductors, moving 
electrons collide with atoms, a process that resists 
the flow of current and causes the conductor to heat
up. Superconductors can carry large currents without
heating up, which means that they can be used to 
create powerful electromagnets. Once the current is
introduced into the superconducting wire, it can flow
indefinitely, without dissipation, because there is no

resistance. So, over time, the created magnetic field
will not lose strength. 

A Surprising Effect
What is the connection between superconductors 
and levitation? Superconductors have an additional
surprising property when placed in a magnetic field.
When a normal conductor is placed in a magnetic
field, the magnetic field lines go right through the
conductor — as if it was not there. When a supercon-
ductor is placed in a magnetic field, it expels the
magnetic field from its interior and causes levitation.
You can clearly see the levitation factor at work in a
magnetically levitated (maglev) train — the train
rides (or levitates) a few centimetres above the track
(guideway).



Exciting Technology
Since the train rides above the guideway, what about
propulsion? How does that happen? One design 
for a magnetically levitated train that is currently
being built in Japan uses a push-pull system.
Electromagnets are placed in the bottom of the train
and along the track. The current is set so that the
electromagnets along the track have opposite polarity
to those on the train. It’s possible, then, to have an
unlike pole just ahead of each electromagnet on the
train and a like pole just behind. The electromagnetic
force pulls the unlike poles together and pushes the
like poles apart.

After the train has moved forward enough to line
up all of the electromagnets on the track and the
train, the track electromagnets are briefly switched
off. When they are switched on again, they have the
opposite polarity, so that each electromagnet on the
train is now pushed and pulled by those on the track.
It’s an intuitively basic design. The train’s speed can
be adjusted by timing the switches of the polarity of
the track electromagnets. Slowing or braking the train
is similarly accomplished. 

Levitation electromagnets drawn up toward the 
rail in the guideway levitate Japan’s magnetically 
levitated train.

Because the train rides a few centimetres above the
track, there is no friction due to moving parts; this
allows maglev trains to achieve much greater speeds
than conventional trains. Test models in Japan and
Germany have recorded speeds of 400 to 500 km/h.
However, maglevs are expensive to build and operate.
They have no wheels, so they cannot run on existing
tracks and conventional trains cannot run on maglev

tracks –— so entirely new tracks must be built. Still,
several countries are investigating how best to use
this exciting new technology. 

Levitation and Diamagnetic Materials
Levitation can also be achieved using certain types 
of materials, which are known as “diamagnetic” 
and are not superconductive. Diamagnetic materials
are normally non-magnetic materials that become
magnetized in a direction opposite to an applied 
magnetic field. Recently, physicists in Holland used 
a magnetic field of about 10 T to levitate a variety 
of seemingly non-magnetic materials, including a
hazelnut, a strawberry, a drop of water, and a live
frog. According to the researchers, the frog showed 
no ill effects from its adventure in levitation.

Then there’s the other obvious question: Can 
people be levitated? In principle, the answer is yes,
but in practice, the answer for now is no. Existing
magnets are capable of levitating objects a few 
centimetres in diameter. Levitating a person would
require an enormous electromagnet operating at 40 T,
with about 1 GW of continuous power consumption.
That’s the same amount of power required to light 
10 million 100 W light bulbs! Until more efficient
ways can be found to make strong electromagnets, 
or people can be turned into frogs, people will be
forced to walk with their feet on the ground. 

Making Connections 
1. Conduct a feasibility study for a maglev train to

operate between two large cities. 

2. Discuss the importance of space-based research
and how diamagnetic levitation can be used to
augment it.

Frogs helped in 
levitation experiments 
and experienced no 
ill effects.

S
N

N
S

S

guideway

guideway

rail

levitation
electromagnet

arm
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In previous science courses, you have probably read that the mass
of an electron is 9.1094 × 10−31 kg and that the mass of a proton is
1.6726 × 10−27 kg . Did you ever wonder how it was possible for
anyone to measure masses that small — especially to five signifi-
cant digits — when there are no balances that can measure masses
that small? 

Atomic masses are determined by mass spectrometers, which
are instruments that are based on the behaviour of moving charges
in magnetic fields. The same principle causes motors to turn and
prevents high-speed ions in the solar wind from bombarding 
Earth — except at the North and South Poles, as you read in the
chapter introduction. In this section, you will learn more about
moving charges in magnetic fields and many of the technologies
based on this principle.

In Grade 11 physics, you were introduced to the force acting 
on a current-carrying conductor in a magnetic field and its appli-
cation, the motor principle. The force acting on a conductor is
actually due to the flow of charge through it and, in fact, the force
acting on the charge is quite independent of the conductor through
which the charge travels.

When a beam of charged particles is fired into a magnetic field,
the following properties are observed.

� The beam will not be deflected if the direction of travel of the
charges is parallel to the magnetic field.

� Maximum deflection occurs when the beam is aimed 
perpendicular to the direction of the magnetic field.

� The magnetic deflecting force is always perpendicular to both
the direction of travel of the charge and the magnetic field.

� The magnitude of the magnetic deflecting force is directly 
proportional to the magnitude of the charge on each particle:
FM ∝ q.

� There is no magnetic force on a stationary charge.

� The magnitude of the force is directly proportional to the speed
of the charged particles: FM ∝ v .

� The magnitude of the force is directly proportional to the 
magnetic field intensity: FM ∝ B.

� The magnitude of the force depends on the sine of the angle
between the direction of motion of the charge and the applied
magnetic field: FM ∝ sin θ.

Applications of Magnetic
and Electric Fields8.3
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• Define and describe the 
concepts related to electric,
gravitational, and magnetic
fields.

• Predict the forces acting on 
a moving charge and on a 
current-carrying conductor 
in a uniform magnetic field.

• Determine the resulting motion
of charged particles by 
collecting quantitative data
from experiments or computer
simulations.

• Describe instances where
developments in technology
resulted in advancement of 
scientific theories.

• particle accelerator

• mass spectrometer

• cyclotron

• synchrocyclotron

• betatron

• linear accelerator

• synchrotron

 T E R M S
K E Y

E X P E C T A T I O N S
S E C T I O N



These proportional relationships can be summarized by one joint
proportion statement.

F ∝ qvB sin θ
F = kqvB sin θ

The definition of the unit for the magnetic field intensity, B, 
was chosen to make the value of the constant k equal to unity, so
F = qvB sin θ. If you solve the equation for B, you can see the units
that are equivalent to the unit for the magnetic field intensity.

B = F
kqv sin θ

The unit, one tesla (T), was chosen as the strength of the mag-
netic field. A charge of one coulomb, travelling with a speed of
one metre per second perpendicular to the magnetic field (θ = 90˚
and sin θ = 1) experiences a force of one newton. By substituting
units into the equation for B and letting k = 1 and sin 90˚ = 1, you
can find the equivalent of one tesla.

tesla = newton
coulomb metre

second

T = N
Cm

s
= N · s

C · m

The direction of the magnetic force on the charge q follows a
right-hand rule. If you arrange your right hand so that the fingers
are pointing in the direction of the magnetic field, 

⇀B , and the
thumb is pointing in the direction of motion of a positively
charged particle, q, then the palm of the hand points in the 
direction of the magnetic force, 

⇀FM, acting on the particle.

The direction of the magnetic force on the charge q follows 
a right-hand rule.

Figure 8.10

F

B

v

⇀

⇀

⇀
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You have probably noticed that the
equation for the force on a moving
charge in a magnetic field is the 
product of two vectors that yields
another vector. In mathematics, this
type of equation is called a “vector
product” or “cross product” and is
written 

⇀
F = q⇀v × ⇀

B . The magnitude
of a vector product is equal to the
product of the magnitudes of the two
vectors times the sine of the angle
between the vectors. The direction of
the vector product is perpendicular to
the plane defined by the vectors that
are multiplied together.

MATH LINK



Since the vectors 
⇀F , ⇀v , and 

⇀B are never in the same plane,
physicists have accepted a convention for drawing magnetic fields.
As shown in Figure 8.11, a magnetic field that is perpendicular 
to the plane of the page is drawn as crosses or dots. The crosses
represent a field directed into the page and the dots represent a
field coming out of the page.

Field into page

View:

Field out of page

View:

Quantity Symbol SI unit
magnetic force on a 
moving charged particle FM N (newtons)

electric charge on 
the particle q C (coulombs)

magnitude of the velocity 
of the particle (speed) v m

s
(metres per second)

magnetic field intensity B T (teslas)

angle between the velocity 
vector and the magnetic 
field vector θ degree (The sine of an

angle is a number and
has no units.)

Unit Analysis

newton = coulomb
( metre

second

)
tesla

N = C
( m

s

)
T = C · m· T

s
= N

⇀F is perpendicular to the plane containing ⇀v and 
⇀B . 

Since one coulomb per second is defined as an ampere 

(1 C
s

= 1 A), the tesla is often defined as T = N
A · m

.

FM = qvB sin θ

FORCE ON A MOVING CHARGE IN A MAGNETIC FIELD
The magnitude of the magnetic force exerted on a moving
charge is the product of the magnitudes of the charge, the
velocity, the magnetic field intensity, and the sine of the angle
between the velocity and magnetic field vectors.
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To remember the
convention for drawing magnetic
fields, think of the dot as the point
of an arrow coming toward you.
Think of the cross as the tail of 
the arrow going away from you.

Figure 8.11

Refer to your Electronic Learning
Partner to enhance your under-
standing of magnetic fields.

ELECTRONIC
LEARNING PARTNER



Force on a Moving Charge
A particle carrying a charge of +2.50 µC enters a magnetic field
travelling at 3.40 × 105 m/s to the right of the page. If a uniform
magnetic field is pointing directly into the page and has a strength
of 0.500 T, what is the magnitude and direction of the force acting
on the charge as it just enters the magnetic field?

Conceptualize the Problem
� Make a sketch of the problem.

� The charged particle is moving through a magnetic field;
therefore, it experiences a force.

� The force is always perpendicular to both the direction of
the velocity and of the magnetic field.

Identify the Goal
The magnetic force, FM, on the charged particle

Identify the Variables and Constants
Known Implied Unknown
q = 2.50 µC θ = 90˚ FM

v = 3.40 × 105 m
s

B = 0.500 T

Develop a Strategy

The magnetic force on the moving charge is 4.25 × 10−1 N toward
the top of the page.

Validate the Solution
A small charge combined with a high speed reasonably would 
produce the force calculated.

C · m
s

· N · s
C · m

= N

� Thumb represents travel of charge to the right.

� Fingers represent direction of magnetic field into
the page.

� Palm represents direction of magnetic force on
charge toward the top of the page.

Use the right-hand rule to determine the
direction.

FM = qvB sin θ

FM = (2.50 × 10−6 C)
(
3.40 × 105 m

s

)
(0.500 T)(sin 90˚)

FM = 0.425 N

Use the equation that relates the force on 
a charge in a magnetic field to the charge,
velocity, and magnetic field intensity.
Substitute numerical values and solve.

+ v

+ + + + +
+ + + + +
+ + + + +
+ + + + +
+ + + + +

SAMPLE PROBLEM 
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12. An alpha particle, charge +3.2 × 10−19 C,
enters a magnetic field of magnitude 0.18 T
with a velocity of 2.4 × 106 m/s to the right.
If the magnetic field is directed up out of the
page, what is the magnitude and direction of
the magnetic force on the alpha particle?

13. A proton is projected into a magnetic field of
0.5 T directed into the page. If the proton is
travelling at 3.4 × 105 m/s in a direction [up
28˚ right], what is the magnitude and direc-
tion of the magnetic force on the proton?

14. An electron travelling at 6.00 × 105 m/s
enters a magnetic field of 0.800 T. If the 
electron experiences a magnetic force of 
magnitude 3.84 × 10−14 N, what was the 

original direction of the electron’s velocity
relative to the magnetic field?

15. A particle having a mass of 0.200 g has a
positive charge of magnitude 4.00 × 10−6 C. 
If the particle is fired horizontally at
5.0 × 104 m/s[E] , what is the magnitude and
direction of the magnetic field that will keep
the particle moving in a horizontal direction
as it passes through the field?

16. A +4.0 µC charge is projected along the 
positive x-axis with a speed of 3.0 × 105 m/s.
If the charge experiences a force of
5.0 × 10−3 N in the direction of the negative
y-axis, what must be the magnitude and
direction of the magnetic field?

PRACTICE PROBLEMS

The magnetic force experienced by a charged particle moving
freely through a perpendicular magnetic field can be compared 
to the force exerted on a current-carrying conductor that also is
perpendicular to the magnetic field. The net force on a conductor
of length l will be the total of the individual forces acting on 
each charge.

When the charges that are moving through a magnetic field
are confined to a wire, the magnetic force appears to act on the wire.

If N charges, each of magnitude q, travel the distance equal to
the length of the wire l in a time interval ∆t, the velocity will be
l/∆t. The net force will be as follows.

Fnet = N · qvB sin θ

Fnet = N · q · l
∆t

· B sin θ

Fnet =
( N · q

∆t

)
· l · B sin θ

N · q
∆t

is the total charge per unit time, the current.

Figure 8.12
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q q q qv
N charges travel

the length of 
the wire l
in time ∆t

v v v

Fnet

I = N q
∆t

continued from previous page
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Although many of the quantities in the equation for the magnet-
ic force on a current-carrying wire are vectors, the equation can be
used only to determine the magnitude of the force, so the vector
notation has not been used. Directions must be determined by 
the relevant right-hand rules. 

⇀FM is perpendicular to the plane
containing ⇀v and 

⇀B . The right-hand rule for the direction of the
force is shown in Figure 8.13.

The thumb points in the direction of the current, the fingers
point in the direction of the magnetic field vector, and the palm of the hand
indicates the direction of the force on the conductor.

Figure 8.13

external magnetic field dire
cti

on
 of

cu
rre

ntforce

Quantity Symbol SI unit

magnetic force on a current-
carrying conductor FM N (newtons)

electric current in the 
conductor I A (amperes)

length of the conductor l m (metres)

magnetic field intensity B T (teslas)

angle between the conductor degree (The sine
and the magnetic field vector θ of an angle is a

number and has
no units.)

Unit Analysis

T · A · m = N · s
C · m

· C
s

· m = N

FM = IlB sin θ

FORCE ON A CURRENT-CARRYING CONDUCTOR 
IN A MAGNETIC FIELD
The magnitude of force on a conductor carrying a current in a
magnetic field is the product of the magnetic field intensity,
the length of the conductor, the current in the conductor, and
the sine of the angle that the electric current makes with the
magnetic field vector.
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Force on a Current-Carrying Conductor
A wire segment of length 40.0 cm, carrying a current of 12.0 A,
crosses a magnetic field of 0.75 T[up] at an angle of [up 40˚ right].
What magnetic force is exerted on the wire? 

Conceptualize the Problem
� Charges in the wire are moving through a magnetic field.

� Moving charges in a magnetic field experience a force.

� The magnetic force is related directly to the magnetic field intensity,
the electric current, the length of the wire segment, and the angle
between the wire and the magnetic field.

Identify the Goal
The magnetic force, FM, on the wire segment

Identify the Variables and Constants
Known Unknown
l = 40.0 cm FM

I = 12.0 A

B = 0.75 T

θ = 40˚ between B and I

Develop a Strategy

The force of the magnetic field on the conductor is 2.3 N[out of the page].

Validate the Solution
The force seems to be consistent with the magnetic field and current 
values. The direction is consistent with the right-hand rule.

T · A · m = N
A · m

· A · m = N

� Thumb of right hand points right

� Fingers point up toward top of page

� Palm will be facing up out of the page

Determine the direction using the right-hand
rule; only the [right] component of the current,
perpendicular to the magnetic field direction,
contributes to the magnetic force.

The force will be out of the page, according to
the right-hand rule.

F = IlB sin θ
F = (12.0 A)(0.40 m)(0.75 T)(sin 40˚)

F = 2.3140 N

F ≅ 2.3 N

Find the force using the relevant equation that
relates force, magnetic field, current, and length
of wire that is in the field.

SAMPLE PROBLEM 
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17. A wire 82.0 m long runs perpendicular to a
magnetic field of strength 0.20 T. If a current
of 18 A flows in the wire, what is the 
magnitude of the force of the magnetic field
on the wire?

18. A wire 65 cm long carries a current of 
20.0 A, running east through a uniform 
magnetic field. If the wire experiences a 
force of 1.2 N[N], what is the magnitude 
and direction of the magnetic field?

19. A segment of conducting wire runs perpendi-
cular to a magnetic field of 2.2 × 10−2 T.

When the wire carries a current of 15 A, it
experiences a force of 0.60 N. What is the
length of the wire segment?

20. (a) What current would need to flow east
along the equator through a wire 5.0 m
long, which weighs 0.20 N, if the magnet-
ic field of Earth is to hold the wire up
against the force of gravity? (Assume that
Earth’s horizontal magnetic field intensity
at this location is 6.2 × 10−5 T.)

(b) Discuss the practicality of this result.

PRACTICE PROBLEMS
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Circular Motion Caused by a Magnetic Field
When a charge enters a magnetic field at right angles, the resulting
magnetic force on the particle is perpendicular to both the velocity
vector and the magnetic field vector. Consequently, there is no
component of the force in the direction of motion and the speed
will not change. As the charge is deflected by the force, it still
remains perpendicular to the magnetic field. This means that it
will always experience a constant magnitude of force perpendi-
cular to its motion. This is the standard requirement for circular
motion at constant speed. The magnetic force is providing the 
centripetal force on the particle.

qvB = mv2

r

r = mv2

qvB

r = mv
qB

Motion Due to Both Electric and Magnetic Fields
You have now studied ways in which electric and magnetic fields
can exert forces on a charged particle. The following are examples
in which both types of field affect the motion of a particle.

Simple Particle Accelerator
A simple particle accelerator consists of a particle source, a pair
of parallel plates, and an accelerating potential difference. The
particle source can be simply a spark gap that causes the sur-
rounding gas molecule to become ionized, that is, separate into
positive and negative particles. These “ions” then enter the region



between the parallel plates and are accelerated by the potential
difference between the plates. A hole in the opposite plate allows
the particles to continue into the region beyond the plates. For this
reason the apparatus is sometimes called a “particle gun,” or in
the case of electrons, an “electron gun.” As a result, the kinetic
energy of the emerging particles can be expressed in terms of the
work done on them between the parallel plates: 1

2 mv2 = qV.

Velocity Selector
A velocity selector is a device quite often associated with the 
parallel plate particle accelerator. A beam of particles having 
different velocities, as a result of carrying different charges, is 
“filtered” so that only those particles with the same velocity 
continue. The apparatus consists of a crossed (perpendicular) 
electric and magnetic field. A positively charged particle, for
example, would experience an upward force due to the magnetic
field and a downward force due to the electric field. If the two
forces are equal, the particle will travel straight through the 
velocity selector.

You can determine the velocity of particles that will pass 
directly through the velocity selector by taking the following steps.

Only charged particles with a velocity that matches the
ratio of the electric field intensity to the magnetic field
intensity will continue to travel in a straight line. Particles
with other speeds will be deflected up or down and
absorbed by the surrounding material.

Mass Spectrometer
The mass spectrometer is an instrument that can separate
particles of different mass and, in fact, measure that mass.
The first stage of a mass spectrometer is a velocity selector.
Then, ions of the selected speed enter a magnetic field 
in a direction perpendicular to the field. While in the 
magnetic field, the ions experience a magnetic force that 
is always perpendicular to the direction of their motion.

v = qE
qB

v = E
B

� Solve for the velocity.

qvB = qE
� Substitute the expressions for the values

of the forces into the first equation. 

FM = qvB
FQ = qE

� Write the expressions for the two forces. 

FM = FQ

� Set the electric and magnetic forces
equal to each other. 
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Only charges having one
specific velocity will travel in a straight line.
All others will be diverted up or down.

Figure 8.14

B into
page

faster
ions

slower
ionsE

Field Energy
A book falls from your desk, 
a movie plays on a television
screen, and a homing pigeon can
find its way home, all because of
the energy within a field. Refer 
to page 604 of this textbook for
suggestions relating field energy
to your Course Challenge.

COURSE CHALLENGE



You will recognize this type of force as a centripetal force. You can
see how the mass spectrometer separates particles of different
masses by analyzing the following steps.

The velocity of the particles is known because it was selected
before the particles entered the magnetic field. The charge is
known due to the method of creating ions that entered the velocity
selector. The instrument measures the radius of the circular path.
The only unknown quantity is the mass. 

By observing the radius for particles of known charge, the mass
can be determined. This is particularly useful for determining the
relative proportions of “isotopes,” atoms that have the same num-
ber of protons but different numbers of neutrons.

m = rqvB
v2

m = rqB
v

� Solve for m.

mv2

r
= qvB

� Substitute the expressions for 
centripetal and magnetic forces.

FC = FM

� The magnetic field supplies the
centripetal force.

mass
separation

B into
page

v

faster
ions

slower
ions

velocity selectionacceleration

lower mass
higher mass

B out
of page

E

Chapter 8  Fields and Their Applications • MHR 357

Mass Spectrometer
A positive ion, having a charge of 3.20 × 10−19 C, enters at the
extreme left of the parallel plate assembly associated with the
velocity selector and mass spectrometer shown in Figure 8.15.

(a) If the potential difference across the simple accelerator is
1.20 × 103 V, what is the kinetic energy of the particle as it
leaves through the hole in the right plate?

SAMPLE PROBLEM 

continued

The path of posi-
tive ions through the acceleration,
velocity selection, and mass 
separation process

Figure 8.15

Portable mass spectrometers 
are used at airports and in other
areas where security is a priority,
in an attempt to detect particles
associated with materials used 
in manufacturing explosives.

PHYSICS FILE
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(b) The parallel plates of the velocity selector are separated by 
12.0 mm and have an electric potential difference across them 
of 360.0 V. If a magnetic field of strength 0.100 T is applied at
right angles to the electric field, what is the speed of the parti-
cles that will be “selected” to pass on to the mass spectrometer?

(c) When these particles then enter the mass spectrometer, which
shares a magnetic field with the velocity selector, the radius of
the resulting circular path followed by the particles is 6.26 cm.
What is the mass of the charged particles?

(d) What is the nature of the particles?

Conceptualize the Problem
� When the charged particles enter the electric field, the field does work

on the particles, giving them kinetic energy.

� When the moving particles pass through the crossed electric and mag-
netic fields, only those of one specific velocity pass through undeflected.

� When the selected particles enter the magnetic field, the magnetic force
provides a centripetal force.

Identify the Goal
(a) The kinetic energy, Ek , of the particle

(b) The speed, v, of the particles that will be “selected” 

(c) The mass, m, of the charged particles

(d) The nature of the particles

Identify the Variables and Constants
Known Unknown
q = 3.20 × 10−19 C ∆d = 12.0 mm Ek

V1 = 1.20 × 103 V B = 0.100 T v

VS = 360.0 V r = 6.26 cm m

Develop a Strategy

(a) The kinetic energy of the particle was 3.84 × 10−16 J.

(b) The speed of the particles was 3.00 × 105 m/s.

E = V
∆d

= 360.0 V
1.20 × 10−2 m

= 3.00 × 104 N
C

v = E
B

=
3.00 × 104 N

C
0.100 T

v = 3.00 × 105 m/s

The selected velocity is related to the electric
and magnetic fields. The electric field is related
to the potential difference and the distance of
separation of the plates.

Ek = qV

Ek = (3.20 × 10−19 C)(1.2 × 103 V)

Ek = 3.84 × 10−16 J

The energy of a charged particle is related to
the accelerating potential difference.

continued from previous page



(c) The mass of the particles was 6.68 × 10−27 kg.

(d) The particles seem to be alpha particles.

Validate the Solution.
The mass is what you would expect for a small atom.
The units cancel to give kg, which is correct.

C · T · m
m
s

= C · N · s
C · m

· m · s
m

= N · s2

m
= kg · m

s2 · s2

m
= kg

21. A proton is accelerated across parallel plates,
through a potential difference of 180.0 V. 
Calculate 

(a) the final kinetic energy of the proton

(b) the final velocity of the proton, assuming
its mass is 1.67 × 10−27 kg

22. A particle of mass 1.2 g and charge +3.0 µC
is held suspended against the force of gravity
between a parallel pair of plates that are 
15.0 mm apart.

(a) In which direction does the electric field
vector point?

(b) What is the magnitude of the electric
potential difference connected across 
the plates?

23. An isotope of hydrogen having a proton and
a neutron in its nucleus is ionized and the
resulting positive ion (deuteron) travels in a
circular path of radius 36.0 cm in a perpen-
dicular magnetic field of strength 0.80 T.

(a) Calculate the speed of the deuteron.

(b) What was the accelerating potential that
gave the deuteron this speed?

24. An electron of mass 9.11 × 10−31 kg travels
perpendicularly through a magnetic field of
strength 6.8 × 10−5 T at a speed of
3.4 × 105 m/s. What is the radius of the path
of the electron?

25. What is the speed of a beam of electrons if in
passing through a 0.80 T magnetic field they
remain undeflected, due to a balancing 
electric field of 5.4 × 103 N/C?

26. An isotope of hydrogen passes, without
deflection, through a velocity selector that
has an electric field of 2.40 × 105 N/C and 
a magnetic field of 0.400 T. It then enters a
mass spectrometer that has an applied 
magnetic field of 0.494 T and consequently
describes a circular path with a radius of
3.80 cm. 

(a) What is the mass of the particle?

(b) Which isotope of hydrogen is it?

PRACTICE PROBLEMS

The charge is two times the charge on a proton. The mass is
four times the mass of a proton. The particle seems to be an
alpha particle, which is the positive nucleus of a helium atom.

m = qBr
v

m = (3.20 × 10−19 C)(0.100 T)(6.26 × 10−2 m)
3.00 × 105 m

s

m = 6.68 × 10−27 kg

The mass of the particle is related to the charge,
magnetic field, radius of path, and speed.
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I N V E S T I G A T I O N  8-B

Measuring a Magnetic Field

TARGET SKILLS

Performing and recording
Analyzing and interpreting
Communicating results

In this investigation, you will use a current 
balance to determine the strength of the 
magnetic field at the central axis of a solenoid.

Problem
How can you measure magnetic field intensity
with a current balance?

Equipment  

Procedure
1. Set up the current balance-solenoid appara-

tus, as shown in the diagram.

2. With the power off, adjust the balance arm so
that it is horizontal.

3. Turn on the power to the coil and balance arm.
Adjust the polarity so that the conducting arm
inside the solenoid is forced downward.

The current in both the arm and sole-
noid can create enough heat to cause a burn.

4. Set and record the current in the solenoid to
the upper range of its values. Set and record
the current through the balance arm to the
high end of its range, forcing down the 
balance arm inside the solenoid.

5. Loop a length of string over the outside end
of the balance arm and, using scissors, adjust
its length until the balance arm is horizontal.

6. Without changing any settings, turn off the
current to both sources. Determine the mass
of the string. 

7. Keeping the solenoid current constant, repeat
the experiment five more times, using a
smaller balance current. Record the value 
of the balance current and the mass of the
string each time.

8. Carefully measure
(a) the lengths of the solenoid and the 

current arm

(b) the number of turns in the solenoid

(c) the distance of the suspension point of 
the current balance to each of its ends
(lever arms)

Analyze and Conclude
1. For each trial, use the mass of the string and

the principle of levers to calculate the force
acting down on the current arm. Record 
your data.

2. Draw a graph with the force acting on the
current arm versus current in the current arm.

3. Describe the relationship between I and F
when the magnetic field is kept constant?

4. Measure the slope of your graph. Use your
data to determine the magnetic field, B,
inside the solenoid.

Apply and Extend
5. Using your data and the equation below, 

calculate the strength of the magnetic field.

B = µ0
N · IS

l
µ0 = 1.257 × 10−6 T · m/A, N is the number 
of turns in the solenoid, l is the length of the
solenoid, and IS the current flowing in the
solenoid wire.

6. How did your two values for the magnetic
field in the solenoid compare? What might
cause them to differ?

CAUTION

balance arm

support point

conducting strip

A

A
current
balance

� electronic balance
� scissors
� string

� current balance and
solenoid

� 2 variable power 
supplies (12 V DC)

� 2 DC ammeters
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Particle Accelerators
In the early part of the twentieth century, the development of the
theory of the structure of the atom and its nucleus depended to a
large degree either on the spontaneous disintegration of radioac-
tive nuclei or on observations made when the products of those
spontaneous disintegrations were directed at other nuclei. The
particles emitted during natural disintegrations, however, such as
the α-particles used by Rutherford in his experiments, provided
only limited opportunity to observe nuclear reactions during bom-
bardment. The particles were limited in energy and were emitted
randomly in all directions, so they were difficult to harness in 
sufficient quantities to provide reliable results.

To overcome the difficulties of availability and reliability, 
particle accelerators were developed that were capable of emitting
high-speed, subatomic-sized particles (protons, electrons) in 
sufficient numbers. Particle accelerators today are capable of accel-
erating charged particles to energies close to one million million
electron volts, or 1000 GeV. This in turn has allowed physicists 
to investigate the fundamental composition of matter even more
deeply, with the result that more and more fundamental particles
are known to exist and complex models of the structure of matter
have been developed. You will learn more about these models 
in Unit 5.

The Cockcroft-Walton Proton Accelerator
The first particle accelerator for use in nuclear
research was built in 1932 by J.D. Cockcroft and 
E.T.S. Walton, students of Ernest Rutherford at 
the Cambridge Laboratory in England. In this 
accelerator, protons were introduced into the top 
of an evacuated glass tube and accelerated by using
a potential difference between electrically charged
metal cylinders. Since it is not possible to maintain
a potential difference much more than 200 000 V
between electrodes in an evacuated tube, Cockcroft
and Walton used special multi-stage accelerator
tubes, with each stage powered by a unique 
charging circuit. The protons accelerated by this
arrangement approached energies of 1 MeV.

At the bottom of the glass tube, they placed 
a lithium target and consequently observed the 
first nuclear transformation caused by artificially
accelerated particles. The bombardment of the 
lithium atoms with protons resulted in the forma-
tion of helium nuclei. For their work, Cockcroft 
and Walton were awarded the Nobel Prize in
Physics in 1951.
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The Cyclotron
To avoid the problems associated with very high voltages, Ernest
O. Lawrence and his colleagues at the University of California 
at Berkeley designed an accelerator based on a circular path 
that subjected the charged particles to a large number of small
increases in potential. This was achieved by the use of a pair of
evacuated hollow semicircular chambers (called “dees,” because
they are shaped like the letter D). The charged particles are 
injected into the chambers at the centre. This device is called 
a cyclotron.

A cyclotron

The dees are positioned between the poles of an electromagnet
that provides a uniform magnetic field perpendicular to the path
of the charged particle inside the chamber, thus causing its circu-
lar motion. A potential difference is applied between the two
chambers, so that as the charged particle crosses from one cham-
ber to the next, it will be accelerated by the potential difference.
The particle will speed up and, as a result, the radius of its path
will increase. In order for the particle to speed up when it crosses
the gap between the dees again, the direction of the potential 
difference must be reversed. This alternating potential difference
is kept in phase with the frequency of orbit of the charged particle
so that it will always speed up when it crosses the gap between
the chambers. Consequently the particle will spiral outward until
it reaches the outer edge of the dee, where a magnetic field is
applied to deflect the particle out through a gate and onto a target.
The first cyclotron built in 1931 produced ions of energy 80 keV,
but by the latter part of that decade, energies of 30 MeV were quite
common.

As you will learn in Unit 5, when particles reach speeds close
to the speed of light, relativistic effects become prominent. In the
case of the cyclotron, the mass of the particle increases to such an
extent that it becomes necessary to synchronize the alternating
potential difference with the time of travel of the particle.

Figure 8.17
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The Synchrocyclotron
In the synchrocyclotron, an adaptation of the cyclotron, the 
frequency of the accelerating electric field, applied between the
dees, is adjusted to allow for the relativistic increase in mass of
the particles. Since the change in frequency required takes approx-
imately 10 ms, the ions are delivered in small bursts, rather than
continuously. This results in the intensity of the ion beam being
lower than the conventional cyclotron. This is compensated for by
using larger magnets, although cost then becomes a limiting factor.

The Betatron
The principle of the cyclotron has been adapted to allow for the
acceleration of electrons. Since electrons were historically called
“beta particles,” the accelerator is called a betatron. Instead of
allowing the electrons to spiral outward, a magnetic field applied
along the central axis of an evacuated doughnut is uniformly
increased. This increasing magnetic field induces an electric field
that causes the electron to speed up but retain the same radius,
inside the doughnut.

The Linear Accelerator (LINAC)
New linear accelerators differ from earlier machines, such as 
the Cockcroft-Walton accelerator, in that they use electric fields
alternating at radio frequencies to accelerate the particles, rather
than high voltages.

Schematic of a linear accelerator

The acceleration tube consists of many individual drift tubes
that are charged alternately positive and negative. When a positive
particle enters the tube, if the first drift tube is negative, it will
attract the particle. Inside the tube, there is no electric field, so the
particle “drifts” through at constant speed. If the electric field is
reversed as the particle leaves the first tube, it will accelerate
toward the second drift tube and enter it at a higher speed. This
second tube is longer and the particle will leave it just as the
potential reverses and it will be attracted to the third drift tube.
Hence, the particle is accelerated between a long series of drift
tubes. The Stanford Linear Accelerator Centre linear accelerator is

Figure 8.18
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3.2 km long, contains 240 drift tubes, and is designed to accelerate
electrons to energies above 20 GeV.

Synchrotron
A very efficient way to accelerate protons is to combine the 
features of the cyclotron and the linear accelerator. Such a device
is the synchrotron.

A synchrotron

Since a magnetic field is required only to maintain the circular
orbit, rather than use one large central magnet, a series of ring
magnets surrounding a doughnut-shaped vacuum tank is used,
making the synchrotron much more economical. At repeated loca-
tions along the circular path, high-frequency accelerating cavities 
(much like short linear accelerators) are inserted to accelerate the
protons. This combined technique produces protons of enormous
energy that can in turn be directed at other targets and the result-
ing fundamental particles can be investigated. In 1954, Lawrence,
the designer of the cyclotron, developed a synchrotron that 
produced protons with energies in the range of 6.2 billion electron
volts. It was therefore called the “bevatron.” (Today, it is identified
as 6.2 GeV.) These protons were in turn used to discover the
antiproton.

Other renowned synchrotron installations include the 1.0 TeV
Tevatron at Fermilab (the Fermi National Accelerator Laboratory)
in Illinois and the 400 GeV at CERN (European Council for
Nuclear Research) near Geneva, Switzerland.

The Tokamak Fusion Test Reactor 
An international group, International Thermonuclear Experimental
Reactor (ITER), which includes Canada, is attempting to develop
efficient nuclear fusion reactors, in which two isotopes of hydro-
gen (deuterium and tritium) collide with such high energy that
they “fuse” to produce a helium nucleus, and at the same time
release enormous amounts of energy. Fusion can occur only at

Figure 8.19
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temperatures equivalent to the centre of stars, about 108˚C. At
these temperatures, the fusion reactants actually break down into
individual positive nuclei and negative electrons. This ionized gas
is called a “plasma.” It is because these ions are charged that it has
been found both possible, and necessary, to confine them within a
toroidal (doughnut-shaped) magnetic bottle, since no material 
bottle can exist at such high temperatures for its containment.

This magnetic confinement seems to have the greatest potential
and its popular design is based on the Tokamak system, developed
in the former U.S.S.R. (“Tokamak” is an acronym for the Russian
translation of “toroidal magnetic chamber.”)
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www.mcgrawhill.ca/links/
physics12

For an award-winning photograph
taken inside a Tokamak reactor, go 
to the above Internet site and click 
on Web Links.

WEB LINK

8.3 Section Review

1.

(a) Under what conditions will a charged 
particle be subject to the maximum 
possible deflecting force when entering 
a magnetic field?

(b) Under what conditions would the 
deflection be minimal?

2. In what way is the force acting on a
conductor carrying a current in a magnetic
field similar to the deflecting forces
described in question 1?

3. Prepare a report or other presentation
describing the many applications of the
deflection of a charge by a magnetic field.
Give a detailed account of the social 
significance of one of these applications.

4. Explain how a particle accelerator and
velocity selector complement the operation
of a mass spectrometer.

5. In 2001, Canada and Japan were compet-
ing for the right to build a Tokamak-style
fusion reactor. Canada’s plan is to locate the
reactor in Clarington, Ontario, adjacent to the
Darlington nuclear plant. Research Canada’s
bid and make a presentation in which you

(a) outline the reasons Canada’s ITER team
had for wanting to build the reactor

(b) explain why that particular location 
was chosen

(c) give your own opinions on the merit of
the plan

MC

K/U

C

K/U

K/U

The Tokamak 
fusion test reactor 

Figure 8.20
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� The electric field pattern for a collection of
charges can be generated by considering the
field vectors due to each individual charge.

� Electric field lines leave a positive charge
and/or enter a negative charge and are always
perpendicular to the surface of a conductor.

� The number of field lines is proportional to
the magnitude of the net charge.

� Equipotential surfaces are always perpendicu-
lar to the electric field lines

� The electric field is uniform between two
oppositely charged parallel plates placed 
close together.

� The magnitude of the electric field between
parallel plates is proportional to the charge
density on the plates.

� The magnitude of the electric field intensity
between parallel plates is given by the 

equation 
⇀E = ∆V

∆d .
� The potential gradient describes the linear

change in electric potential difference at 
positions between the plates.

� Electric fields can be used to transfer kinetic
energy to charged particles, so that
qV = 1

2 mv2.
� An electric field can also be used to balance

the force of gravity on a charged particle.
� The electron volt is an alternative unit for the

energy of a charged particle.
� The charge on the electron was determined 

by Robert Millikan by measuring the terminal
velocities of oil drops placed between a 
parallel plate apparatus.

� The drift velocity of the electrons in a conduc-
tor carrying a current is very slow, compared
with the speed of the current itself.

� The Faraday ice-pail experiment demonstrated
that the net charge inside a hollow conductor
is zero; all charge resides on the outer surface.

� Faraday shielding is a useful way of prevent-
ing external electromagnetic interference in
circuit components.

� The magnetic force on a charged particle trav-
elling in a magnetic field is FM = qvB sin θ and
its direction is described by a right-hand rule.

REFLECTING ON CHAPTER 8

Concept Organizer

Electrostatic force

Magnetic force 

Gravitational force

Test charge
q > 0 or q < 0

Test charge
q > 0 or q < 0

Test mass
mFg = G m1m2

r 2

FQ = k q1q2

r 2

FM = qvB sin θ

Solar flares are a result of the build up 
and then release of magnetic energy. 
Electrons, protons and nuclei are 
accelerated into the solar atmosphere. 
An amount of energy equivalent to 
millions of 100 Mt bombs is released.

Electric field

Magnetic field

Gravitational field



Knowledge/Understanding
1. Answer the following questions about

Millikan’s oil-drop experiment.
(a) Describe the main features of the experiment.
(b) What were the results of the experiment and

their significance? 
(c) Draw free-body diagrams of an oil drop that

is between two horizontal, parallel electri-
cally charged plates under three conditions:
the oil drop is stationary, the oil drop is
falling toward the bottom plate, the oil 
drop is drifting upward.

(d) What was the effect of Millikan’s use of 
X rays in his experiment?

(e) Explain why the plates in the experiment
need to be horizontal.

2. Imagine that you are probing the field around a
charge of unknown magnitude and sign. At a
distance r from the unknown charge, you place
a test charge of q1. You then substitute q1 with
a second test charge, q2, that has twice the
charge of q1(q2 = 2q1).
(a) Compare the forces that would act on the

two test charges.
(b) Compare the electric field that would affect

the two test charges. 

3. State mathematically and describe in words the
definition of a tesla. 

4. Can the magnetic force change the energy of a
moving charged particle? That is, can the 
magnetic force do work on the particle? 

5. (a) What is the function of the alternating
potential difference in a cyclotron? 

The potential difference is applied across
which two parts of the cyclotron? Why does
the potential difference have to alternate in
polarity?

(b) What is the function of the magnetic field in
a cyclotron? Is the magnetic field constant or
alternating in direction?

6. Mass spectrometers are used to determine 
the masses of positively charged atoms and
molecules.
(a) Draw a concept map of the physics princi-

ples on which mass spectrometers were
developed.

(b) Explain the function of a velocity selector
when it is used in conjunction with a mass
spectrometer. 

7. What types of studies were conducted to probe
atomic structure prior to the development of
particle accelerators? What were the limitations
of such studies for developing an understand-
ing of the micro-world? 

8. Contrast the designs of particle accelerators that
accelerate particles linearly and those that accel-
erate particles in circular paths. What are the
advantages and disadvantages of each design?

Inquiry
9. Research and make a model of one type of 

particle accelerator that is being used currently.
Your model should include all critical compo-
nents and show their relationship with each
other. Write a report to describe the physics
involved in the accelerator’s operation.
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� The magnetic force on a conductor carrying 
a current in a magnetic field is FM = IlB sin θ
and its direction is described by a right-hand
rule.

� A magnetic field can be used to cause the 
circular motion of a charged particle, so that 
qvB = mv2

r .
� The velocity of a charged particle can be

determined by electric and magnetic fields.

� The motion of a charged particle under the
action of electric and/or magnetic fields forms
the basis for applications such as cyclotrons,
synchrocyclotrons, and mass spectrometers,
among others.

� The containment of a plasma in a Tokamak
fusion reactor is achieved through magnetic
fields.



10. Suppose a cyclotron that normally accelerates
protons is now to be used with alpha particles.
What changes will have to be made to maintain
synchronism? 

11. Write a proposal for a new experimental facility
to study the structure of the atom. Evaluate 
different particle accelerators and make a case
for why you want to use a particular design.
Include a cost analysis in your proposal. 
What are the most expensive components? 

Communication
12. Use the rules of electric field line formation to

explain why the lines around a negatively
charged sphere are uniformly spaced and
directed radially inward.

13. Outline, using vector diagrams, why the 
electric field at any point between two parallel
plates is uniform and independent of the 
distance between the plates. 

14. Consider a large, positively charged sphere.
Two positively charged objects, A and B, are
the same distance away from the sphere. Object
A has a charge three times as large as that of
object B. Which property will be the same for
the two objects, the electric potential energy 
or the electric potential difference? Which
property will be three times as large for object
A compared to object B, the electric potential
energy or the electric potential difference? 

15. A proton passes through a magnetic field with-
out being deflected. What can be said about the
direction of the magnetic field in the region?
Draw a sketch to illustrate your reasoning. 

16. An electron is moving vertically upward when
it encounters a magnetic field directed to the
west. In what direction is the force on the 
electron? 

17. Consider two parallel current-carrying wires. 
If the currents are in the same direction, will
the force between the wires be attractive or
repulsive? If the currents are in opposite 
directions, will the force between the wires 
be attractive or repulsive? Draw sketches to
illustrate your answers.

18. A simple particle accelerator consists of three
components. Make a sketch that identifies each
component and its function. Why must ions be
used instead of neutral particles? 

Making Connections 
19. A television uses a cathode ray tube to direct 

a beam of electrons toward a screen.
(a) Draw a schematic diagram of a television 

picture tube as seen from the side and
explain how electric and magnetic fields are
used to accelerate and deflect the electrons.

(b) Although electrons do not orbit in the 
magnetic field of a television cathode ray
tube, their trajectory does follow a definable
circular arc. On your diagram, label where
this circular arc is located and explain 
how the radius of the arc can be used to
determine the size of the picture tube. 

20. The origins of naturally occurring magnetic
fields are still poorly understood. Outline 
theories that explain the origin of Earth’s 
magnetic field, the Sun’s magnetic field, and
the magnetic field of the Milky Way galaxy.
Explain how these theories can be tested. 

21. Although the cause of Earth’s magnetic field is
uncertain, it is known to be unstable. Analysis
of rock strata in Earth’s crust suggests Earth’s
magnetic field has reversed itself several times
over the past five million years. How is this
analysis done? What is the current thinking on
why this occurs? 

Problems for Understanding
22. The electric field intensity between two large,

charged parallel plates is 400 N/C. If the plates
are 5.0 cm apart, what is the electric potential
difference between them? 

23. Two parallel charged metal plates are separated
by 8.0 cm. Identify four points along a line
between the plates, A, B, C, and D, located at
the following distances from the negatively
charged plate: 0.0 cm, 2.0 cm, 4.0 cm, and 
6.0 cm. The electric potential difference at
point B, VB, is measured to be 40.0 V.
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(a) What is the electric potential difference
across the plates? 

(b) What is the electric potential difference at
points A, C, and D? 

(c) What is the potential difference between
points A and B, B and C, and A and D? 

(d) What is the electric field strength between
the plates? 

(e) A 1.0 µ C test charge is placed first at point
B, then at point C. What force does it 
experience at each point? 

(f) Repeat (e) above for a 2.0 µ C test charge. 
24. In a Millikan oil-drop experiment, an oil drop

of unknown charge is suspended motionless
when the electric field is 3500 N/C. If the upper
plate is positive and the drop weighs
2.8 × 10−15 N, determine (a) the charge on the
oil drop and  (b) the number of excess or deficit
electrons on the oil drop.

25. A pith ball has a charge of −5.0 nC. How many
excess electrons are on the pith ball? 

26. A 10.5 cm wire carries a current of 5.0 A. What
is the magnitude of the magnetic force acting
on the wire if the wire is perpendicular to a
uniform magnetic field of 1.2 T? 

27. A small body moving perpendicular to a 
magnetic field of 0.25 T carries a charge of
6.5 µ C. If it experiences a sideways force of
0.52 N, how fast is it travelling? 

28. Consider a horizontal, straight 2.0 m wire 
carrying a 22 A current that runs from west to
east. If the wire is in Earth’s magnetic field,
which points north with a magnitude of
4.0 × 10−5 T, calculate
(a) the magnetic force on the wire
(b) the maximum mass of the wire that would

be supported by Earth’s magnetic field

29. A velocity selector consists of an electric field
of 20 000 V/m (2.0 × 104 V/m) perpendicular 
to a magnetic field of magnitude 0.040 T. A
beam of ions, having passed through a velocity
selector, is passed into a mass spectrometer 
that has the same magnetic field. Under these
conditions, the radii of curvature of the path of

singly charged lithium ions is found to be 78 cm.
Calculate the mass of the lithium ions.

30. The period of a charged particle’s circular orbit
in a uniform magnetic field can be calculated
from the radius of its orbit and its tangential
velocity. Interestingly, both the period and its
inverse, the frequency, are independent of the
particle’s speed and the radius of its orbit.
Consider two electrons moving perpendicular
to a 0.40 T magnetic field. One has a speed of
1.0 × 107 m/s and the other has a speed of
2.0 × 107 m/s. 
(a) Calculate the radii of the orbits of the 

two electrons.
(b) Calculate their periods.
(c) Calculate their frequencies.
(d) Comment on the above results. 

31. Suppose an electron and a proton are each
injected perpendicularly into a uniform 
magnetic field with equal kinetic energies. 
(a) Compare the periods of their orbits.
(b) Compare the radii of their orbits. 

32. Charged particles from the Sun can be trapped
by the magnetic field that surrounds Earth. If
the particles enter the atmosphere, they 
can excite atoms in the air, resulting in the 
phenomenon of auroras. Consider a proton
with a speed of 1.2 × 107 m/s that approaches
Earth perpendicular to Earth’s magnetic field. It
is trapped and spirals down a magnetic field
line.
(a) If the magnetic field strength at the altitude

where the proton is captured is 2.0 × 10−5 T,
calculate the frequency and radius of curva-
ture of the proton’s orbital motion. 

(b) Repeat (a) for a proton that comes in at half
the speed of the first proton.

33. An electron moves with a velocity of
5.0 × 106 m/s in a horizontal plane perpend-
icular to a horizontal magnetic field. It 
experiences a magnetic force that just balances
the gravitational force on the electron. 
(a) Calculate the strength of the magnetic field.
(b) If the electron is travelling north, what is 

the magnetic field direction?
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I S S U E  A N A L Y S I S

Costs and Benefits 
of Physics Research

3U N I T

Background
Throughout history, societies have expended
tremendous amounts of money and other
resources on the accumulation of scientific
knowledge. Often, at the time of expenditure,
the direct value in monetary or other terms was
not readily evident, so the debate always arises
as to whether the costs of scientific research and
related high-tech applications outweigh their
benefits. 

This unit contained an overview of a number
of different particle accelerators. In some cases,
the device, such as a mass spectrometer, is 
used to identify the elements contained in a
substance. In other cases, such as the Conseil
Européen pour la Recherche Nucléaire and
Fermi National Accelerator Laboratory 
accelerators, the device accelerates charged 
particles to a speed at which not only do their
own properties change, but their collisions 
with other particles create the formation of yet
new and different particles. The high-energy
collisions made possible by particle accelerators
lead to new understandings of the structure of
matter.

History has shown that the more society
learns about the structure and behaviour of 
matter, the more this knowledge can be used 
to improve society’s standard of living. On the
other hand, the costs of such endeavours are 
not all monetary. Often related to research and
development are side effects that affect the 
environment and the health and freedoms of 
a society.

Challenge
Build a class consensus on the costs and 
benefits of continuing public support for using
particle accelerators in research and develop-
ment in particular, and for physics research 
in general.

The U.S. Department of Energy’s Fermi National
Accelerator Laboratory.

Plan and Present
A. As a class, research and compile a list of 

particle accelerators that are currently in use,
either for pure scientific research or for a 
particular technological application. Identify
a select list of accelerators for further study.
Divide the class into groups, assigning one
accelerator to each group. Each group is to
write a report on the accelerator’s function,
its associated costs, and its potential benefits.
While developing this report, in preparation
for the class debate described below, class
members should decide on which side of the
debate they want to participate.

B. Set up a class debate on the costs and 
benefits to society of the public funding of
research using particle accelerators in partic-
ular, and on physics research in general.
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ASSESSMENT

assess the clarity of your report in explaining 
the costs and benefits of particle accelerators 
for research and development
assess the success of your team in convincing 
the audience of your perspective during the 
debate
assess the ability of the class to come to a 
consensus on a rational position on the costs 
and benefits of physics research

After you complete this project

Action Plan
1. Establish an evaluation method by preparing

� a class rubric for evaluating individual
group reports

� a rubric for evaluating the class debate

2. Establish groups and then
� as a class, brainstorm and conduct 

preliminary research into the types of 
particle accelerators currently in use

� establish small working groups to investi-
gate a representative number of particle
accelerators

3. For the assigned accelerator, each small
group will gather data on
� the location and size of the accelerator
� the physics principles about which the

accelerator is designed to further 
knowledge

� the monetary cost of building and 
operating the accelerator

� the source of its funding 
� the type of particle accelerated
� the final energy of the particle
� the type of research that can be 

accomplished only by using these 
high-energy particles

� any monetary return (profit) from 
applications of the accelerator

� possible future (direct or indirect) benefits
derived from the knowledge gained as a
result of the research made possible by 
use of the accelerator

� the environmental and societal impact 
of the use of the accelerator or of the
knowledge gained

4. Prepare a report that summarizes the 
information gathered by the group.

5. Delegate responsibilities for publishing 
the report.

6. Prepare for the debate by
� setting up two class teams that will debate

on the costs/benefits of physics research;
the debating teams will include both
debaters and technical advisers from each
of the small working groups

� selecting a neutral person to act as 
moderator

Each debating team will
� analyze the small groups’ reports to 

determine the costs and benefits of 
accelerators

� assign roles for the debate (e.g., organizing
and compiling material, preparing notes,
developing arguments, serving as debaters)

� rehearse the debate

7. Publish and present the small group reports.

8. Conduct a class debate.

Evaluate
1. Small group publications and class debate:

Use the rubric prepared in step 1 of the
Action Plan to evaluate the publications 
and class debate.

2. After the debate, through class discussion,
attempt to establish a class position on the
costs and benefits of the public funding of
particle accelerators, and of science funding
in general.
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U N I T Review3

Knowledge/Understanding
Multiple Choice
In your notebook, choose the most correct answer
for each of the following questions. Outline your
reasons for your choice.

1. Two parallel oppositely charged metal plates
have an electric field between them. The 
magnitude is
(a) greatest near the positive plate
(b) greatest near the negative plate
(c) zero
(d) uniform throughout the region

2. The magnitude of the electric field at a point in
space is equal to the
(a) force a charge of 1 C would experience there
(b) force a negative charge would experience

there
(c) force a positive charge would experience

there
(d) potential difference there
(e) electric charge there

3. The force on a proton in an electric field of 
100 N/C (1.0 × 102 N/C) is
(a) 1.6 × 10−17 N
(b) 1.6 × 10−19 N
(c) 1.6 × 10−21 N
(d) 6.2 × 1020 N

4. Magnetic fields do not interact with 
(a) stationary permanent magnets
(b) moving permanent magnets
(c) stationary electric charges
(d) moving electric charges 
(e) none of the above 

5. An electron moves horizontally to the east
through a magnetic field that is downward. 
The force on the electron is toward the 
(a) N (c) E
(b) S (d) W

6. A current is flowing west along a power line.
Neglecting Earth’s magnetic field, the direction
of the magnetic field above it is
(a) N (c) E
(b) S (d) W

7. The electric and magnetic forces in a velocity
selector are directed
(a) at 90˚ to each other 
(b) parallel to each other, in the same direction
(c) opposite to each other 

Short Answer
8. Do electric field lines point in the direction of

increasing or decreasing electric potential? 

9. Why do electric field lines come out of positive
charges and enter negative charges? 

10. What similarities and differences are there
between electric potential energy and 
gravitational potential energy? 

11. In a 10 000 V power line, how many units of
energy is carried by each unit of charge making
up the current? 

12. How is the principle of superposition used in
problems of determining the field value due to
multiple charges? 

13. Explain why there is no parallel component to
the electric field on the surface of conductors. 

14. (a) The direction of motion of a positively
charged particle, the direction of the 
magnetic field, and the direction of the 
magnetic force on the particle are mutually
perpendicular. Draw a sketch of this 
situation and describe the right-hand rule
that models the relationship among these
directions.

(b) The direction of a current in a conductor,
the direction of the magnetic field, and the
direction of the force on the conductor are
mutually perpendicular. Draw a sketch of
this situation and describe the right-hand
rule that models the relationship among
these directions.

15. (a) Describe the characteristics of the force
required to create and maintain circular
motion at constant speed. 

(b) Discuss examples that illustrate how each of
the following fields can provide such a force
on an object or charged particle and cause
circular motion: gravitational field, electric
field, and magnetic field. 

372 MHR • Unit 3  Electric, Gravitational, and Magnetic Fields



16. Why is it more difficult to provide a simple
equation for the strength of a magnetic force
than it is for the strength of a gravitational
force, the universal law of gravitation, or the
strength of an electrostatic force, Coulomb’s
law? 

17. Consider an electric field around an irregularly
shaped, positively charged object. Draw a
sketch of this situation by placing the charged
object at the origin of a Cartesian coordinate
system. Make labelled drawings to illustrate
your written answers to the following 
questions.
(a) In which direction will the field push a

small positive test charge? 
(b) Where does the positive test charge have its

greatest electric potential energy? 
(c) In which direction will the field push a

small negative charge?
(d) Where does the negative charge have the

greatest magnitude of its electric potential
energy? 

18. (a) Describe the main features of coaxial cable.
(b) Explain why coaxial cables were designed to

replace flat, twin-lead wire.

19. Explain whether it is possible to determine the
charge and mass of a charged particle by 
separate electric or magnetic forces, that is,
individually and not simultaneously. 

Inquiry
20. Describe an experiment in which you could

determine whether the charges on a proton 
and electron were the same in magnitude. 

21. Devise an experiment that verifies Coulomb’s
law. Show that the electric force should be 
proportional to the product of the charges and
show that the electric force should be propor-
tional to the inverse square of the distance. 

22. You place a neutral object between a pair of
parallel charged plates. Will it experience a net
force? Will it rotate? 

23. The following table shows some results that
Millikan obtained during his oil-drop experi-
ment. In this trial, the distance over which the
oil drop was measured (the distance between
the cross hairs in the eyepiece) was always
1.0220 cm. The second column shows the time
of travel under the action of gravity alone, and
the third column shows the time for an oil drop
to rise when the electric field was turned on.
(a) Calculate the velocity that corresponds to

each trial.
(b) Group the common velocities.
(c) Analyze the velocities in a manner similar

to Millikan’s and show the evidence for a
fundamental charge.

24. Two identical pith balls, mass 1.26 g, have a
charge of +4.00 nC. One ball (A) is attached 
to the end of a light rod made of insulating
material; the other (B) is suspended from a
fixed point by an insulated thread 80.0 cm
long. When ball A is held at various horizontal
distances from B, the angle between the thread
and the vertical is measured. Determine
whether the results support Coulomb’s law.

Trial Fall (seconds) Rise (seconds)

1

2

3

4

5

6

7

8

9

10

51.13

51.25

51.19

51.32

51.53

51.69

51.55

51.54

51.98

51.64

30.55

21.86

50.72

148.63

147.46

50.29

50.25

50.39

49.70

146.41
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Communication
25. The two statements “like poles repel” and

“unlike poles attract” are throwbacks to the
action-at-a-distance theory, in that they imply
the two poles interact with each other directly.
Rewrite these two statements to reflect a field
theory perspective. 

26. Use the concepts of the electric field and elec-
tric field lines to convince someone that like
charges should repel each other. 

27. Explain how it would be possible to measure
Coulomb’s constant. 

28. Contrast the concepts of potential difference
and difference of potential energy. 

29. Use Newton’s law of universal gravitation to
explain why Earth is round. 

30. Determine the direction of the unknown vector
for each of the following situations. Consider
north as the top of the page and sketch the
directions of the magnetic field lines, the 
direction of the charged particle and the force
that acts on it. 
(a) an electron moving east, experiencing a

force directed into the page
(b) a proton moving north in a magnetic field

directed west
(c) an electron moving in a magnetic field

directed into the page, experiencing a force
to the south

(d) a proton experiencing a force to the east,
moving north

(e) an electron, experiencing no force, moving
in a magnetic field directed east

(f) a proton experiencing a force to the south as
it travels west

31. Describe the significance to twentieth-century
physics of the Millikan oil-drop experiment.

32. Consider a stream of protons moving parallel 
to a stream of electrons. Is the electric force
between the streams attractive or repulsive? Is
the magnetic force between the streams attrac-
tive or repulsive? What factor(s) determine
which force will dominate? 

33. (a) Sketch the electric field between two 
parallel charged plates. Label the orientation
of the charges on the plates. Show the trajec-
tory of a positive charge sent into the field
in a direction perpendicular to the field. In
which direction is the electric force on the
particle? Is work done on the particle as it
passes between the plates? 

(b) Sketch the magnetic field between the north
pole of one magnet and the south pole of a
different magnet. Both are set up in such a
way that the field will be uniform. Show the
trajectory of a positive charge sent into the
field in a direction perpendicular to the
field. In which direction is the magnetic
force on the particle? Is work done on the
particle as it passes through the field? 

34. A current runs from west to east in a horizontal
wire. If Earth’s magnetic field points due north
at this location, what is the direction of the
force on the current? 

35. Explain how a current balance can be used to
measure the intensity of the magnetic field
along the axis of a solenoid.

36. Explain how a velocity selector is able to filter
a beam of particles of different velocities so
that only particles with the same velocity 
continue in a mass spectrometer. 

Making Connections 
37. (a) Use science journals, your library, and/or

the Internet to determine how auroras are
formed.

(b) Discuss the phenomenon in terms of 
electric, gravitational, and magnetic fields. 

Horizontal distance
between A and B (cm)

Angular displacement
of thread

0.50

1.00

1.50

1.80

2.10

2.50

25.0˚

6.65˚

2.97˚

2.06˚

1.51˚

1.07˚
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(c) The photograph opening Chapter 8 shows
the aurora borealis and the aurora australis
occurring simultaneously. Explain whether
you think this is a unique occurrence or one
that will recur. 

38. The torsion balance played an essential role in
Coulomb’s work. Research the history of the
use of the torsion balance in physics. How is a
torsion pendulum different?

39. Research and report on how the concept of the
field has evolved. Discuss Faraday’s and
Maxwell’s contributions. Also, discuss the role
of Einstein’s general theory of relativity in our
present view of gravitational fields.

40. Albert Einstein spent the last several years of
his life trying to devise a unified field theory
that would show that gravity and the electric
and magnetic forces were different aspects of
the same phenomenon. He did not succeed. In
the 1960s, it was shown that electric and 
magnetic forces and the weak nuclear force are
different aspects of the same force: the unified
electroweak force. To date, no one has linked
gravity or the strong nuclear force with the 
unified electroweak force. Research the 
unification of forces and explain why the
problem is so difficult to solve. 

41. The Sun’s magnetic field is responsible for
sunspots, small regions on the surface of the
Sun that are cooler and have a much higher
magnetic field concentration than their sur-
roundings. The Sun’s magnetic field is also
responsible for producing solar flares and other
solar activity. Prepare a report that summarizes
the latest research on the Sun’s magnetic field
and the types of solar phenomena that are
being examined. Incorporate into your report
the findings provided by the orbiting solar
satellite, the Solar and Heliospheric
Observatory (SOHO). 

42. Research the principle behind the defibrilator
and the steps that have been made to ensure its
presence on all major aircraft.

43. Research the structure of an electrostatic air
cleaner and discuss the function of the charging
electrode and the grid.

44. In what way is electrostatic force used in 
the electroplating process in automobile 
manufacturing?

45. Research and explain the part played by the
electric field in
(a) the xerographic process
(b) laser printers
(c) inkjet printers

46. Prepare a cost-benefit analysis of the use of the
electric car.

47. “Electron guns” are used in television sets to
propel electrons toward the screen. What 
techniques are then used to deflect the electron
beam and “paint” a picture?

48. Discuss the role of electric potential difference
in the following medical diagnostic techniques.
(a) electroencephalography
(b) electroretinography

Problems for Understanding
49. What is the total charge on 1.0 g of electrons? 
50. What is the magnitude of the electric force

between a proton and electron in a hydrogen
atom if they are 52.9 pm apart? 

51. A nucleus of argon has a charge of +18 e and a
nucleus of krypton has a charge of +36 e, where
e is the elementary charge, 1.60 × 10−19 C. If
they are 8.0 nm apart, what force does one
exert on the other? 

52. Two small ball bearings sit 0.75 m apart on a
table and carry identical charges. If each ball
bearing experiences a force of 3.0 N, how large
is the charge on each? 

53. How many electrons must be removed from an
isolated conducting sphere 12 cm in diameter
to produce an electric field of intensity
1.5 × 10−3 N/C just outside its surface?

54. Two identical charges exert a force of 
50.0 N[repulsion] on each other. Calculate 
the new force if

Unit 3 Review • MHR 375



(a) one of the charges is changed to the exact
opposite

(b) instead, the distance between the charges is
tripled

(c) instead, one charge is doubled in magnitude
and the other is reduced to one third of its
magnitude

(d) all of the above changes are made
55. Two identical pith balls, each with a mass of

0.50 g, carry identical charges and are suspend-
ed from the same point by two threads of the
same length, 25.0 cm. In their equilibrium 
position, the angle between the two threads at
their suspension point is 60˚. What are the
charges on the balls? 

56. Suppose you wanted to replace the gravitation-
al force that holds the Moon in orbit around
Earth by an equivalent electric force. Let the
Moon have a net negative charge of −q and
Earth have a net positive charge of +10 q . What
value of q do you require to give the same 
magnitude force as gravity? 

57. Earth carries a net charge of −4.3 × 105 C. When
the force due to this charge acts on objects
above Earth’s surface, it behaves as though the
charge was located at Earth’s centre. How much
charge would you have to place on a 1.0 g mass
in order for the electric and gravitational forces
on it to balance? 

58. Suppose you want to bring two protons close
enough together that the electric force between
them will equal the weight of either at Earth’s
surface. How close must they be? 

59. Calculate the repulsive force between two 60 kg
people, 1.0 m apart, if each person were to 
have 1% more electrons than protons. (Assume
for simplicity that a neutral human body has
equal numbers of protons and neutrons.)

60. What will be the net force, considering both
gravitational and electrostatic forces, between 
a deuterium ion and a tritium ion placed 
5.0 cm apart?

61. What must be the charge on a pith ball of mass
3.2 g for it to remain suspended in space when
placed in an electric field of 2.8 × 103 N/C[up]?

62. (a) Calculate the repulsive Coulomb force
between two protons separated by
5 × 10−15 m in an atomic nucleus. 

(b) How is it possible that such a force does not
cause the nucleus to fly apart? 

63. The electric potential difference between two
large, charged parallel plates is 50 V. The plates
are 2.5 cm apart. What is the electric field
between them? 

64. How many electrons make up a charge of 
1.0 µC? 

65. A 2.0 pC charge is located at point A on an
imaginary spherical surface which is centred
on a 4.0 µC point charge 2.8 cm away. How
much work is required to move the 2.0 pC
charge to the following two points?
(a) to point B, which is located on the same

spherical surface an arc length 3.0 cm away
(b) to point C, which is located radially out-

ward from A on another imaginary spherical 
surface of radius 4.2 cm

(c) What name could be used to describe these
spherical surfaces?

66. Two horizontal plates used in an oil-drop
experiment are 12 mm apart, with the upper
plate being negative. An oil drop, with a mass
of 6.53 × 10−14 kg, is suspended between the
plates. The electric potential difference is
1.6 × 104 V. Calculate the
(a) total charge on the oil drop
(b) number of excess or deficit electrons on the

oil drop
(c) electric potential difference required to sus-

pend the oil drop if an electron is knocked
off it by an X ray

67. A current of 2.0 A runs through a wire segment
of 3.5 cm. If the wire is perpendicular to a 
uniform magnetic field and feels a magnetic
force of 7.0 × 10−3 N, what is the magnitude of
the magnetic field? 

68. A small body of unknown charge, travelling
6.1 × 105 m/s, enters a 0.40 T magnetic field
directed perpendicular to its motion.
(a) If the particle experiences a force of

9.0 × 10−4 N, what is the magnitude of 
the charge?
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(b) If the object is sent into the magnetic field
so that its velocity makes an angle of 30.0˚
with the magnetic field, by how much will
the magnetic force be reduced? 

69. Consider a proton that is travelling northward
with a velocity of 5.8 × 106 m/s in a particle
accelerator. It enters an east-directed magnetic
field of 0.25 T. 
(a) Calculate the magnetic force acting on the

proton.
(b) What is the magnitude and direction of its

acceleration? 

70. A proton travelling at 2 × 107 m/s horizontally
enters a magnetic field of strength 2.4 × 10−1 T,
which is directed vertically downward.
Calculate the consequent radius of orbit of the
proton.

71. Prove that the radius of orbit of a particle in a
mass spectrometer is equal to p/qB, where p is
its momentum.

72. (a) An electron is fired into a 0.20 T magnetic
field at right angles to the field. What will be
its period if it goes into a circular orbit?

(b) If the electron is moving at 1.0 × 107 m/s,
what is the radius of its orbit? 

73. You want to create a beam of charged particles
that have a speed of 1.5 × 106 m/s. You use a
crossed electric and magnetic field and choose
a magnet with a strength of 2.2 × 10−4 T. What
must be the magnitude of the electric field? 

74. A charged particle that is sent into a magnetic
field at an angle will follow a helical path, the
characteristics of which can be calculated from
the particle’s velocity parallel and perpendicu-
lar to the field. Consider a magnetic field of
strength 0.26 T directed toward the east. A 
proton with a speed of 6.5 × 106 m/s is shot
into the magnetic field in the direction
[E30.0˚N]. 
(a) Calculate the proton’s velocity in the 

directions parallel and perpendicular to 
the magnetic field.

(b) Calculate the radius of the proton’s orbit 
as it spirals around the magnetic field. 
(Hint: Which component of the velocity 

contributes to this motion?)
(c) How long will it take the proton to complete

a singular circular orbit? 
(d) During the time that it takes the proton to

complete one orbit, how far will the proton
travel toward the east? (Hint: Which compo-
nent of the proton’s velocity contributes to
this motion?) 

(e) Sketch the proton’s path as seen from the
side and as seen looking west into the 
magnetic field.

75. The diagram shows an electron entering the
region between the plates of a cathode ray tube
(the basic structure of a television tube). The
electron has an initial velocity of 2.7 × 107 m/s
horizontally and enters at the exact mid-axis of
the plates. The electric field intensity between
the plates is 2.80 × 104 N/C upward. How far
below the axis of the plates will the electron
strike the screen at point P?

P

15.0 cm

5.0 cm

2.0 cm
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Scanning Technologies: Today and Tomorrow
Plan for your end-of-course project by considering the 
following.
� Are you able to incorporate electric, gravitational, and

magnetic fields into your analysis?
� Consider time and equipment requirements that might

arise as you design project-related investigations.
� Examine the information that you have gathered to this

point. Produce a detailed plan, including a time line, to
guide you as you continue gathering information.

COURSE CHALLENGE
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OVERALL EXPECTATIONS

DEMONSTRATE an understanding of the wave model 
of electromagnetic radiation.

PERFORM experiments relating to the wave model of 
light and applications of electromagnetic radiation.

ANALYZE light phenomena and explain how the wave 
model provides a basis for technological devices.

UNIT CONTENTS

CHAPTER 9 Wave Properties of Light 

CHAPTER 10 Electromagnetic Waves

Is there life beyond Earth? It seems inconceivable
that life has formed only on this planet, yet there

is no direct evidence that there is life outside our
own solar system. If civilizations exist in space,
might they be discovered by electromagnetic 
radiation monitoring from here on Earth?

The Search for Extraterrestrial Intelligence (SETI)
program, a range of research projects dedicated to
the search for intelligent life beyond Earth, is inves-
tigating this possibility. Using the world’s largest
radio telescope, located in Arecibo, Puerto Rico
(shown in the photograph), the sky is scanned
around the clock for non-natural electromagnetic
signals. SETI research projects attempt to answer
questions, such as: How many stars might have
planets? And of those planets, how many have 
environments that could support life?

Developing an understanding of electromagnetic
radiation has provided modern civilization with a
powerful communication tool. This unit will intro-
duce the theoretical framework that predicted the
existence of electromagnetic waves, how these
waves (including light) are produced and detected,
their properties, and some applications in modern
society.

379

Refer to pages 454–455. In this unit project, you 
will have the opportunity to build and test an 
FM transmitter.
� How will an understanding of a wave model 

for electromagnetic radiation help you to 
understand FM transmission?

� What properties of electromagnetic waves will
be easiest to verify using your transmitter?

UNIT PROJECT PREP



C H A P T E R Wave Properties of Light9

Peering through a telescope, you can see the “Red Planet,”
Mars, and, off in the distance, Jupiter’s stripes. Earth looks

like a blue marble and the gas giant Neptune appears to be crystal
blue. This composite photograph reveals a richness of knowledge
transmitted in the form of light that reaches Earth from the
expanse of space.

What are the properties of light that allow it to travel millions
of kilometres through deep space from the Sun, to the other plan-
ets, and back to our telescope, carrying information in the form 
of colour and intensity. Careful visual observation of solar system
objects yields a great deal of knowledge. 

Galileo used a telescope that today would be considered primi-
tive to discover four of Jupiter’s moons. His discovery solidified 
in his mind that Copernicus’ concept of a Sun-centred solar 
system was correct, even though such a concept clashed with 
the scientific and religious theories of his time.

Less than 50 years later, a new debate raged, not about the solar
system, but about the very nature of light, which streams from the
Sun, illuminates Earth, and seems to light up a room instantly.
The new debate struggled to compare light to something more
common to everyday experience, attempting to classify this 
elusive form of energy as either a wave or a particle.

In this chapter, you will learn about the attempts to formulate
and verify a model for light. You will discover that the techniques
that established the wave model for light also led to some practical
applications and research tools.

� Physical properties of waves

� Reflection and refraction of waves

� Superposition of waves

� Using a ripple tank

PREREQUISITE

CONCEPTS AND SKILLS

Investigation 9-A
Properties of Waves 381

9.1 Two Models 
for Light 382

9.2 Interference and 
the Wave Model 
for Light 389

Investigation 9-B
Diffraction of Sound 390

Investigation 9-C
Young’s Double-Slit
Experiment 397

9.3 Examples and 
Applications of 
Interference Effects 403

CHAPTER CONTENTS
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I N V E S T I G A T I O N  9-A

Properties of Waves

TARGET SKILLS

Performing and recording
Analyzing and interpreting
Identifying variables

For light to be classified as a wave, it must
exhibit specific properties of waves. In this
investigation, you will analyze an important
property of water waves that must also be true
of light — if light is, in fact, a wave. 

Problem
Investigate how waves behave when they

(a) encounter a small barrier

(b) pass through a narrow slit

Equipment  
� ripple tank � wave generator
� 2 solid barriers (less than half the width of the tank)
� wooden dowel

Care must be taken with any electrical
equipment near ripple tanks. Firmly attach lights
and wave generators to the tank or lab bench, and
keep all electrical wiring away from the water.
Procedure

1. Assemble the ripple tank, light source, and
wave generator as shown in the diagram.
Add water and carefully level the tank so
that the depth of the water is approximately
1.5 cm at all points in the ripple tank.

2. Align the straight-wave generator so that 
parallel wavefronts travel perpendicularly
from the dowel. Vary the frequency of the
generator to find a wavelength that produces
the clearest image on the paper below the
tank. Use the light and dark regions cast on
the paper to view the wave properties during
the investigation.

3. Place a solid barrier in the tank that is about
half the width of the tank. Send straight
waves at the barrier and observe their behav-
iour. Sketch the appearance of the waves as
they pass the edge of the barrier.

4. Vary the wavelength of the incident waves.
Draw cases that exhibit maximum and 
minimum spreading around the edge of 
the barrier.

5. Place two solid barriers in the tank, leaving 
a narrow slit between them. Send straight
waves toward the narrow opening and
observe the nature of the waves that pass
through it. 

6. Systematically vary the width of the opening
and then the wavelength to determine a 
general relationship between the amount of
the spreading of the waves, wavelength, and
the size of the opening.

Analyze and Conclude
1. Describe what happens to waves when they

pass the edge of a solid barrier. Is the effect
altered as wavelength is changed? If so, how?

2. Describe what happens when waves pass
through a narrow opening between two solid
barriers. What relationship between the
wavelength and the width of the opening
appears to be the most significant?

Apply and Extend
3. In your experience, does light exhibit any 

of the properties of waves that you have 
just studied? Provide examples.

water
surface

bright
region

bright
region

dark
region

B  Water as a lens

light source

wave generator

straight 
source
periodic

waves
sheet of paper

A  Wave tank set-up

CAUTION

ray

ray
ray

wavefronts

ray

wavefronts
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You flip a switch as you walk into a room, flooding the room with
light that instantly reaches every corner. Objects in the path of the
light generate shadows, and yet the light reaches far enough under
your bed to illuminate an old shirt. What allows light to seemingly
be everywhere instantaneously, be blocked by objects, and yet 
be able to reflect and bounce into tiny nooks and crannies? 

Physicists have been trying to develop a complete model of
light for centuries. Is light best modelled as a particle or as a
wave? These competing models for light originated in the late
1600s, proposed by physicists who were attempting to describe
the propagation of light.

The basic properties of light that were understood in the 1600s
(and that any acceptable model must be able to explain) were
straight-line propagation, reflection, refraction, dispersion, and the
ability of light to travel undisturbed across millions of kilometres
of space. Which model — particle or wave — could best explain
and predict these properties?

Newton’s Corpuscular Model
Although scientists and philosophers had been hypothesizing
about the nature of light for centuries, Sir Isaac Newton
(1642–1727) was the first to formulate a detailed, systematic model
of light. He published his “corpuscular” theory of light in 1704.
Newton’s proposed corpuscles were particles with exceedingly
small masses that travelled in straight lines through space, 

Two Models for Light9.1
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• Define and explain the units and
concepts related to the wave
nature of light.

• dispersion 

• diffraction

• Huygens’ principle

• superposition of waves

• constructive interference

• destructive interference

• nodal point

 T E R M S
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E X P E C T A T I O N
S E C T I O N

Even though
the light casts shadows,
you can still clearly see
objects in those shadows.
A little light seems to
reach everywhere.

Figure 9.1



penetrated some media, and bounced off other solid surfaces.
Newton could explain refraction (the bending of light when it 
travels from one medium to another) if the speed of the particles
increased when entering a more-dense medium. Although speed-
ing up in a dense medium does not seem logical, Newton
explained it by proposing that an attractive interaction existed
between the light particles and the medium.

• Use the conservation of momentum to show that when a particle
such as a billiard ball collides with a solid wall, it follows the
law of reflection, which states that the angle of reflection is
equal to the angle of incidence.

The dispersion of light, which is the separation of light into the
colours of the spectrum when passing through a prism, had been
observed by scientists before Newton proposed his theory of light.
Newton himself had demonstrated that white light was actually 
a composite of all of the colours of the rainbow by showing that
the colours could be combined by a second prism and produce
white light.

According to Newton’s corpuscular model, each colour had a
different mass. Violet light was refracted the most and therefore
must have the least amount of mass, making it easiest to divert
from its original path. Blue light was more massive than violet and
therefore refracted less. Following this argument, Newton assumed
that red light particles were the most massive of all of the visible
colours.

Another question that Newton’s corpuscular theory was able to
answer was: What occupies the space between Earth and the Sun?
If light was, in fact, small particles of insignificant mass, the parti-
cles would be able to travel millions of kilometres to Earth from
the Sun. Possibly, the most important reason that Newton did 
not consider the wave model for light was the apparent lack of 

Conceptual Problem
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Using 
a refracting prism,
white light can be 
separated into a 
spectrum of colour.

Figure 9.2



diffraction — the spreading of a wave after encountering a barrier.
Italian scientist Francesco Grimaldi (1606–1680) provided evi-
dence that light does undergo diffraction by demonstrating that
light passing through a small opening in a barrier produced a spot
of light on a distant screen that was larger than strict ray diagrams
predicted. The edges of the bright spot also appeared fuzzy: The
region of light faded into dark, rather than being crisply divided
into two regions. Newton and the proponents of the corpuscular
theory of light discounted the effects, citing that the amount 
of diffraction seemed to be too small to be of consequence. 

Newton was not entirely convinced of the correctness of his
own corpuscular model for light and was surprised that some of
his proponents approved of it so strongly. Nevertheless, until
stronger evidence of wave-like properties was obtained, Newton
would not accept a wave model for light.

Huygen’s Wave Model
Christiaan Huygens (1629–1695) refined and expanded the wave
model of light, originally proposed by Robert Hooke (1635–1703).
Hooke rejected a particle model partly because two beams of light
can pass through each other without scattering each other, as 
particles do. One problem with the wave model was the ability of
light to travel through the apparently empty space of the universe. 

During early discussions about the nature of light, scientists
knew that mechanical waves required a medium through which 
to propagate. Various properties of the medium would undergo
periodic changes from a maximum, to an equilibrium, to a mini-
mum, and back through the cycle again. For example, in a water
wave, the particles of water actually move between a maximum
and minimum height. In sound waves, the pressure of the medium
increases and decreases. What medium could be carrying light
energy? Since no medium was known to exist throughout space,
scientists proposed that an as yet undetected medium called
“ether” existed to carry light waves.

Huygens developed a priniciple that is still helpful in analyzing
and predicting the behaviour of waves. He compared the propaga-
tion of light to the travelling disturbance observed when a pebble
is dropped into a pond of still water. The disturbance, or wave
pulse, moves outward in concentric circles from the pebble’s point
of impact. Huygens realized that the waves travelling outward
from the centre continue to travel even after the pebble has struck
the pond’s bottom. The waves are effectively travelling without 
a source. 

Extending this example, he postulated that disturbances 
existing at each point on a wavefront could be a source for 
disturbances along the wavefront an instant later. Figure 9.3 
illustrates Huygens’ thinking for straight and circular waves.
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Robert Hooke contributed to 
science in several fields, from
cellular biology to the physics of
light. Hooke developed the wave
theory of light, while Newton 
proposed the corpuscular or 
particle theory of light. Hooke 
and Newton had argued before,
because Hooke had developed 
an early version of Newton’s
gravitation equation and felt 
that Newton had not given him
enough credit. Both men realized,
however, that more evidence
would be necessary before 
either of their models would be
accepted.
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Huygens’ principle states: Every point on an advancing wavefront
can be considered to be a source of secondary waves called
“wavelets.” The new position of the wavefront is the envelope 
of the wavelets emitted from all points of the wavefront in its 
previous position.

Each point of a wavefront can be considered to be a source 
of a secondary wave, called a “wavelet.”

• Carefully mark a small dot every 0.5 cm over a distance of 
8.0 cm on a blank sheet of white paper. Beginning with the first
dot, use a 25 cent coin to draw semicircles on every fourth dot.
Ensure that each semicircle arc is drawn with the leading edge
always closest to the top of the page, intersecting a single dot 
as shown. Draw more arcs, one for each dot.

(a) Does the leading edge of the sum of the arcs form a more
complete wavefront?

(b) Would an infinite number of 
wavelets form a continuous
wavefront? What is happening
behind the wavefront to cause a
single wavefront to form?

Either by applying Huygens’ principle or by observing visible
waves such as water waves, you can show that waves propagate in
straight lines while moving unobstructed through a single medium,
and that they reflect off solid or opaque barriers. Huygens also
showed that if the velocity of light decreases when it passes from 
a less-dense to a more-dense medium, it will bend or refract in
such a way that the angle of refraction is smaller than the angle of
incidence. A slight difference in the speed of the various colours
of light in a given medium could also explain dispersion.

Huygens’ wave model accurately predicted the behaviour of
light as strongly or even more strongly than did Newton’s model
in terms of rectilinear propagation, reflection, refraction, and 

Conceptual Problem

Figure 9.3
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dispersion. At that time, however, there were no tests or observa-
tions that could eliminate either model, so Newton’s stature in the
scientific community (gained for his many and varied contribu-
tions, including the laws of motion) resulted in his winning the
approval of other scientists for his less eloquent corpuscular
model. What type of experiment would be necessary in order to
accept or reject one of the models? What would reveal the greatest
contrast between the properties of waves and particles?

Superposition of Waves
What happens when two particles or two waves attempt to occupy
the same point in space at the same time? Obviously, as two parti-
cles approach the same point, they will collide and move in a way
that will obey the law of conservation of momentum. Two waves,
however, can occupy the same space at the same time. When two
waves pass through one location in the medium, the medium will
oscillate in a way that resembles the sum of the effects from both
waves. Waves that reach the same point simultaneously interfere
with each other in terms of the displacement of the medium.

This result, called the superposition of waves, is formally stated
as: When two or more waves propagate through the same location
in a medium, the resultant displacement of the medium will be
the algebraic sum of the displacements caused by each wave. Each
wave behaves as though the other did not exist and, once past the
area of interest, proceeds unchanged.

(A) Constructive interference results in a wave pulse that is
larger than either individual pulse.  (B) Destructive interference results in 
a wave pulse that is smaller than the larger of the component waves. Two
identical but inverted pulses will yield a momentary amplitude of zero.

Figure 9.4

A

A

A

1

A5

2

A

4

3

A
N

N

N

N

1

2

3

4

5

N

B

386 MHR • Unit 4  The Wave Nature of Light

The superposition of waves prin-
ciple holds true for linear waves.
Linear waves are characterized
by small amplitudes. Interestingly,
the superposition principle does
not apply to non-linear waves,
characterized by large ampli-
tudes. This textbook does not
deal with non-linear waves.
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The resultant displacement of the medium caused by the 
superposition of two waves is unlike either of the individual
waves that added together to form it. Figure 9.4 (A) illustrates 
two pulses travelling toward each other. The darkened wave at
point A is the result of constructive interference of the two pulses.
Constructive interference results in a wave with larger amplitude
than any individual wave. Perfectly constructive interference
occurs when waves are completely in phase with each other.
Figure 9.4 (B) illustrates destructive interference. In this case, the
resultant wave amplitude is smaller than the largest component
wave. A nodal point exists in the medium when two waves with
identical but inverted amplitudes exist simultaneously. The result-
ant displacement at a nodal point is zero. 

The most definitive test of a phenomenon that could classify it
as a wave is to show that it undergoes interference. In the next
section, you will learn how to observe and verify that light
exhibits interference and therefore must behave like a wave.
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9.1 Section Review

1. Sound, a form of energy, can be mod-
elled by using two distinctly different
approaches. 

(a) Describe the propagation of sound energy
through air by discussing the motion of
individual particles. Include possible
mathematical equations that might apply.

(b) Describe the propagation of sound energy
through air by discussing waves. Include
possible mathematical equations that
might apply.

(c) Does one method provide a more easily
understood explanation?

(d) Does one method provide a more simple
mathematical model?

2. Describe Huygens’ concept of wavelets.

3. (a) Draw a series of Huygens wavelets so
that they produce a circular wavefront.

(b) Describe how the wavelets that form the
wavefront apparently vanish behind it.

4. (a) Do you believe that some current
accepted scientific models or theories

might be held in high regard because of
the stature of the scientists who proposed
them?

(b) Suggest one possible model or theory that
is currently accepted by a majority of 
people that you feel might be significantly
inaccurate. Explain.

MC

K/U

K/U

MC

An FM transmitter produces a carrier wave
with a specific frequency. A fixed frequency
wave of any type is produced by periodic
motion of a source.
� Hypothesize about what might experience

periodic motion in the creation of FM radio
waves.

� How is an understanding of frequency
important in the construction of a radio
transmitter?

� Apply Huygens’ wave model to various
waves with which you are familiar as you
study this unit. Can his model predict the
behaviour of all waves?

UNIT PROJECT PREP
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CANADIANS IN PHYSICS

The Light Fantastic
Even as a young girl, Dr. Geraldine Kenney-Wallace
knew that she wanted to be a scientist. She 
preferred playing with crystals, minerals, and 
fossils rather than toys and was fascinated by 
electric motors, trains, and radios. In school, art, 
math and science were her favourite classes. 

After high school, she worked as a summer
research student at the Clarendon Physics
Laboratories, part of England’s Oxford University.
Although lasers were then new, Dr. Kenney-
Wallace’s work at Clarendon brought her into daily
contact with them. There were hints that lasers
could be used in new and exciting applications to
investigate atoms, molecules and semiconductors
in particular.

Dr. Kenney-Wallace continued her research
while working on her bachelor’s degree in London.
She then came to
Canada for gradu-
ate work. While
teaching in Toronto,
she was able to
indulge her passion
for lasers, physics
and chemistry by
establishing the first
University ultrafast
laser laboratory 
in Canada.

A pulsed laser works by pumping certain kinds
of crystals or gases with so much energy that 
the electrons are pushed to a very high quantum
level. Spontaneous emission occurs. In a laser 
cavity, multiple reflections between the end mirrors
trigger stimulated emission so that the electrons all
simultaneously drop down to a lower energy level,
releasing their stored energy as photons. Then, 
the process begins building up in the cavity again.
While they are recharging, however, lasers cannot
generate any light output.

Lasers are used to investigate chemical reac-
tions by bouncing the laser photons off the atoms
and molecules. What happens, though, if the 

reaction takes place faster than the time it takes 
for the laser to recharge? Researchers realized that
conventional lasers could not be used to study
these fast reactions. They needed a laser that fired
and recharged very quickly — an ultrafast laser. 
Dr. Kenney-Wallace was in the forefront of the
design and application of these new ultra-fast
lasers.

Dr. Kenney-Wallace’s interests and talents
extended beyond the frontiers of scientific
research. In addition to her scientific research, 
she devoted part of her career to consultation on
business and public policy issues, usually related
to the areas dearest to her: Research and
Development, and science and education. 

Her ongoing work has earned her international
recognition. She has been quoted in the House 
of Commons, interviewed by Canada’s national
media, and has given dozens of professional semi-
nars throughout the world. She has 13 honorary
degrees, is the former president of McMaster
University, a Fellow of the Royal Society of
Canada, and the first woman to hold the Chair of
the Science Council of Canada. For the past few
years, she has been working in England, helping 
to set up a number of virtual universities. She is
not only at the forefront of laser research, but 
also at the cutting edge of e-learning education. 
Dr. Kenney-Wallace is living proof that, at least
intellectually, you can have it all!

Going Further
1. One of Dr. Geraldine Kenney-Wallace’s great

strengths is her multidisciplinary background.
She has interests in both chemistry and physics
and also in business. Discuss other combina-
tions of fields that might be helpful to a career
in science or how a science background can
help you in another career. For example, might
a science background help you in business?
How? Alternatively, can you think of how a
knowledge of economics, for example, might
be of help to a chemist? How about the 
combination of biology and law?

2. What do you find most interesting about 
Dr. Kenney-Wallace’s career? Why? Report 
on this to your class. 

Dr. Geraldine Kenney-Wallace



A siren pierces the serenity of a quiet evening. Although you are
unable to see the emergency vehicle generating the noise, you are
certainly able to hear it. The sound is able to bend around corners,
pass through doorways, and eventually reach your ears. The 
ability of sound energy to bend around corners and spread 
around barriers is not only a property of sound, but is also a 
property of all waves.

A Definitive Experiment
Bending around corners — a form of diffraction — is a property of
all waves. However, scientists studying light at the time of Newton
and Huygens were not able to detect any significant diffraction of
light. To determine with confidence whether light behaved like a
wave or a particle, scientists needed a carefully planned experiment
that could clearly show evidence or lack of evidence of interfer-
ence of light. To visualize the type of experiment that would be
definitive, observe the pattern of water waves in Figure 9.6, which
results from two point sources creating a periodic disturbance.

Interference and the 
Wave Model for Light9.2
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• Describe the concepts related
to diffraction and interference.

• Describe interference of light 
in qualitative and quantitative
terms.

• Collect and interpret experi-
mental data in support of a 
scientific model.

• Identify interference patterns
produced by light.

• Describe experimental 
evidence supporting the wave
model of light.

• coherent

• fringe

• Fraunhofer diffraction

• Fresnel diffraction

 T E R M S
K E Y

E X P E C T A T I O N S
S E C T I O N

You can
usually hear a siren
long before you see 
the emergency vehicle,
because sound can
“bend” around corners.

Figure 9.5

Nodal lines, 
resulting from total destructive
interference, are clearly visible,
radiating outward from between
the two sources.

Figure 9.6



I N V E S T I G A T I O N  9-B

Diffraction of Sound

TARGET SKILLS

Predicting
Performing and recording
Analyzing and interpreting

Diffraction is readily observed using mechanical
waves. In this activity, you will study some 
variables associated with diffraction of sound
waves. 

Problem
Identify some variables associated with diffrac-
tion of sound waves.

Equipment 
� audio frequency generator 
� speaker

Procedure
1. Using the wave model for sound, predict 

(a) how sound intensity will vary (e.g.,
sharply, gradually) behind the edge of a solid
barrier and (b) how changes in wavelength
will influence the results from part (a). 

2. Use an audio frequency generator connected
to a single speaker to act as a sound source.
Recall that the frequency of sound will cause 
the wavelength to vary, according to the
wave equation v = f λ. Use a relatively
sound-proof barrier, such as a wall with a
wide door, to test your predictions. A door
opening into a large open space, as shown 
in the diagram, will reduce the amount of
reflection from walls and will therefore yield
the best results. Select and maintain a single, 
relatively low intensity (volume) to reduce
effects produced by reflection of sound off
nearby objects. 

3. Carefully analyze how the intensity of the
source varies at different locations behind
the barrier, as shown in the diagram. Select
an appropriate method to illustrate how the
sound intensity varied.

4. Experiment to see how wavelength affects
the amount of diffraction.

Analyze and Conclude
1. Were your predictions about the diffraction

of sound accurate? Explain.

2. Describe and illustrate how the sound inten-
sity varied at different locations behind the
edge of the barrier.

3. Does varying the wavelength of the source
affect the amount of sound wave diffraction?
Explain and provide evidence.

4. Do your results validate the wave model of
sound? Explain.

5. Suggest why only one speaker is used in 
this activity. Include the principle of 
superposition of waves in your answer.

sound
source

barrier

Test sound
intensity
at various
locations.
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In Figure 9.6, you can see lines emanating from the sources that
show constructive interference — standing waves — and destruc-
tive interference — no movement of the water. If light behaves 
like a wave, a similar experiment should reveal bright areas —
constructive interference — and dark areas — destructive interfer-
ence — on a screen. Figure 9.7 shows how interference resulting
from two light sources would create light and dark regions.

(A) Waves from each source with a path difference of whole-
number multiples of wavelength interfere constructively.  (B) Waves from
each source with a path difference of multiples of one half wavelength 
interfere destructively.

Examination of Figure 9.7 reveals two important features that
must be designed into the experiment. First, the sources must 
produce coherent waves. Coherent sources produce waves of 
the same frequency and in phase with each other. Second, the 
distance between the sources must be of the order of magnitude 
of the wavelength of the waves. If the sources are placed too far
apart, the light and dark areas on a screen will be too close 
together to be observed. (As a rule of thumb, the sources must 
be no farther than 10 wavelengths apart.) 

These conditions were exceedingly difficult for scientists to 
create in the 1700s. Physicists could produce light of one frequen-
cy by passing it through a prism but, before the invention of the
laser, coherent light sources did not exist. The phases of light 
emanating from a source were random. Therefore, constructive 
or destructive interference would occur in a random way and 
the effects would be an average of light and dark, so that they
appeared to be uniform. In addition, since physicists did not even
know whether light behaved like a particle or a wave, they had 
no way of knowing what the wavelength might be. It took nearly
100 years after Newton and Huygens presented their models of
light for the debate to be resolved.

Figure 9.7
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Young’s Double-Slit Experiment
Thomas Young (1773–1829) devised an ingenious experiment, as
illustrated in Figure 9.8, that produced an interference pattern
with light. Using one monochromatic light source, Young allowed
the light to fall onto an opaque material with a single, narrow slit.
According to Huygens’ principle, this slit acted as a new source.
The light passing through the single slit spread as it travelled to a
second opaque barrier. The second barrier had two narrow slits
placed very closely together. 

In part (B) of Figure 9.8, you can see that two parts of the same
wavefront from the single slit reach the double slits at the same
time. Since these two parts of the same wavefront behave as new
sources at the double slits, the light leaving the double slits is
essentially coherent. Young experimented with this set-up for
more than two years before he realized that the double slits had 
to be so close together that they almost appeared to be one slit to
the unaided eye. The light that passed through the double-slit 
barrier fell on a nearby screen, producing the historic pattern of
light and dark lines caused by the interference of light waves.
Young’s results catapulted the wave model for light into centre
stage, where it would remain unchallenged for more than 
100 years.

(A) Young’s experiment used a single incandescent bulb and
two narrow slits to produce coherent sources. He successfully showed that
light could form an interference pattern similar to those produced with
mechanical waves.  (B) The wavefronts emanating from the double slits
resemble the water waves generated by two point sources.

Figure 9.8
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Young was successful where others had failed for several 
reasons.

� He used a monochromatic (single wavelength) light source.

� The double slits acted as two sources and were spaced much
more closely together than was possible if two separate light
sources were used.

� The light passing through the initial single slit acted as a point
source. When a wavefront from the point source reached the
double slits, two parts of the same wavefront became new
sources for the double slits and were therefore coherent.

Light and dark fringes result from interfering waves.Figure 9.10
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Photograph of an
interference pattern from Young’s
experiment (notice how the inten-
sity reduces toward the edges)

Figure 9.9



To understand the mathematical analysis of the pattern pro-
duced by Young’s double-slit experiment, examine Figure 9.11. 
In part (A), you see coherent light waves entering the two slits and
passing through. Light leaves the slits in all directions, but you
can study one direction at a time. Since the distance between the
slits and the screen (labelled x) is approximately a million times
larger than the distance between the slits, you can assume that the
waves leaving the slits parallel to each other will hit the screen at
the same point. Part (B) is drawn to the scale of the slit-to-screen
distance and therefore the two parallel rays appear as one line. 

The path difference between slits that light travels to reach
the screen is given by d sin θ.

Parts (C) and (D) of Figure 9.11 illustrate two special cases —
constructive interference and destructive interference. Inspection
of the right triangle in part (C) shows that the hypotenuse is the
distance, d, between the two slits. One side is formed by a line
drawn from slit 1 that is perpendicular to the ray leaving slit 2.
The third side of the triangle is the distance that ray 2 must travel
farther than ray 1 to reach the screen. When this path difference,
PD, is exactly one wavelength, the two waves continue from the
slit in phase and therefore experience constructive interference. 

When the two rays reach the screen, they will produce a bright
spot on the screen, called a bright fringe. Using trigonometry, you
can see that the path difference is equal to d sin θ. In fact, if the
path difference is any integer number of full wavelengths, the
waves will remain in phase and will create a bright fringe on the
screen. Notice that, from the geometry of the apparatus, the 
angle θ, formed by the slit separation and the perpendicular 
line between the light rays, is the same as the angle between the

Figure 9.11
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horizontal line going to the screen and the direction of the rays
going toward the screen. The result of this analysis can be
expressed mathematically as shown in the following box.

Inspection of part (D) of Figure 9.11 shows that when the path
difference is a half wavelength, the light waves that leave the slits
are out of phase and experience destructive interference. When the
waves reach the screen, they will cancel each other and the screen
will be dark. Between the bright and dark fringes, the screen will
appear to be shaded. A complete analysis shows that when the
path difference is exactly half a wavelength more than any number
of full wavelengths, the waves will destructively interfere and a
dark spot or dark fringe will appear on the screen. This condition
can be described mathematically as(

n − 1
2

)
λ = d sin θ where n = 1, 2, 3, …

In a typical experiment, you would not be able to measure the
path difference or the angle θ. Instead, you would measure the 
distance yn between the central bright fringe and another bright
fringe of your choice. You could then determine the angle θ by
applying trigonometry to part (B) of Figure 9.11, which gives

tan θ = yn

x
In this expression, the variable n has the same meaning as it does
in the previous relationships. When n = 1, the path difference is
one full wavelength and y1 describes the distance to the first
bright fringe. 

Quantity Symbol SI unit
integer number of full wavelengths n none

wavelength of light λ m (metres)

distance between slits d m (metres)

angle between slit separation and θ unitless (degrees 
line perpendicular to light rays are not a unit)

Unit Analysis
metre = metre m = m

where n = 0, 1, 2, 3, …..nλ = d sin θ

CONSTRUCTIVE INTERFERENCE
A bright fringe will appear on a screen when an integer 
number of wavelengths of light is equal to the product of 
the slit separation and the sine of the angle between the slit
separation and the line perpendicular to the light rays leaving
the slits.

Chapter 9  Wave Properties of Light • MHR 395



For very small angles, you can make an approximation that
combines the two relationships above, as shown below. 

You can set n equal to 1 by using the distance between adjacent
fringes and obtain the relationship shown in the following box.

Quantity Symbol SI unit
wavelength λ m (metres)

distance separating adjacent fringes ∆y m (metres)

distance between slits d m (metres)

distance from source to screen x m (metres)

Note 1: The distance between nodal line centres is identical 
to the distance between bright fringe centres. Therefore, this
relationship applies equally to dark fringes (nodal lines) and
bright fringes.

Note 2: This relationship is based on an approximation. 
Use it only for very small angles.

λ ≅ ∆yd
x

APPROXIMATION OF THE WAVELENGTH OF LIGHT
The wavelength of light is approximately equal to the product
of the distance between fringes and the distance between slits,
divided by the slit-to-screen distance.

tan θ = yn

x

nλ ≅ d yn

x

� Substitute the expression for tan θ
and substitute into the equation for
the wavelength.

nλ ≅ d tan θ

� Using this approximation, you can
write the expression for the wave-
length, as shown.

sin θ ≅ tan θ

� For very small angles, the sine of an
angle is approximately equal to the
tangent of the angle. 
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I N V E S T I G A T I O N  9-C

Young’s Double-Slit Experiment

TARGET SKILLS

Predicting
Identifying variables
Communicating results
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Young’s ingenious double-slit experiment is
readily duplicated with only simple equipment.
In this investigation, you will reproduce results
similar to those that Young produced — the
results that convinced the scientific community
that light was a wave. 

Problem
Is it possible to produce an interference pattern
using light? 

Prediction
� Make a prediction about the requirements of

the experimental design that will be necessary
to produce an interference pattern based on
the wavelength of light and the nature of
incandescent light sources.

� Make a second prediction about the nature of
an interference pattern produced with short
wavelength light (such as blue or green) 
compared to longer wavelength light (such as
yellow or red). Which wavelength will allow
you to make the most accurate measurements?
Explain your prediction in detail.

Equipment

Procedure
1. Using a magnifying glass and finely ruled

ruler, measure and record the centre-to-
centre width of the slit separation.

2. Cut two paper riders for the 30 cm ruler to
mark the width of the observed interference
pattern.

3. Place a transparent colour cover over the 
portion of the light bulb with the straightest
filament.

4. Place the 30 cm ruler with paper riders in
front of the bulb. With your eye exactly 1 m
from the bulb, observe the filament through
the double slits.

5. Count the number of bright or dark fringes
that you are able to clearly distinguish. Use
the paper riders to mark off the edges of the
observed fringes.

6. Repeat the experiment, varying the slit width
and the wavelength of light.

Analyze and Conclude
1. Describe the effect on the observed interfer-

ence pattern of (a) altering the slit width and
(b) altering the wavelength of light.

2. Use your data to determine the wavelength 
of light used for each trial. How well did
your calculated wavelength compare to
expected values?

3. Was it easier to obtain data on one wave-
length than on the others? If so, was your
original prediction accurate? Explain.

Apply and Extend  
Do not look directly into the laser.

4. If time permits, use a helium-neon laser to
verify the double-slit equation. Place a 
double-slit slide of known width in front 
of the laser beam. Observe the interference
pattern on a screen a known distance from
the laser. Calculate the wavelength of laser
light. Determine the percentage deviation of
the calculated value and your experimental
value. 

CAUTION
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1.0 m

transparent
colour cover

paper rider

double slit
slide

eye

long filament
blub

30 cm ruler

� metre stick
� ruler with fractions of

a millimetre markings

� 30 cm ruler

� long filament light source
� magnifying glass
� double-slit slides
� transparent colour 

light covers



Single-Slit Diffraction
Wavelets originating at two separate but closely spaced sources
produce clear interference patterns, as observed in Young’s experi-
ment. It is also possible to obtain an interference pattern from a
single slit. 

The diagrams in Figure 9.13 illustrate two types of single-slit
diffraction that might occur. The Fraunhofer diffraction pattern
results when the parallel rays of light (straight or planar wave-
fronts) are incident on the slit. Fraunhofer diffraction produces
clear interference patterns that are readily analyzed when a 
converging lens is used to bring the parallel rays into focus. When
the incident light rays are not parallel, Fresnel diffraction occurs.
Analysis of Fresnel diffraction requires mathematical processes
that are beyond the scope of this course. However, analysis of both
Fraunhofer and Fresnel diffraction is based on Huygens’ principle.

To apply Huygens’ principle to single-slit diffraction, imagine
many point sources across the single slit. Wavelets produced 
by each source will interfere with each other, generating an 
interference pattern on a screen. Wavelets passing directly through
the slit interfere constructively, producing a bright central fringe.

incoming
wave

source

slit

θ

slit
screen

screen

A

C

without
diffraction

with
diffraction
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If diffraction did
not occur, only a thin sliver of
light would appear on the screen.
In fact, an interference pattern
results from the diffraction of 
incident light through a single slit.

Figure 9.12

(A) Fraunhofer 
diffraction pattern created from
parallel rays striking a single slit.
(B) Photograph of Fraunhofer 
diffraction. Note the double-wide
central maximum and the reduc-
tion of intensity of subsequent
fringes.  (C) Fresnel diffraction
patterns are created when 
incident rays falling onto a 
single slit are not parallel.

Figure 9.13

B



To understand how the destructive interference occurs, visual-
ize the slit as two halves. Each of the infinite number of wavelets
— represented and simplified by numbers 1 to 5 — are in phase 
as they pass through the opening. The wavelets leaving the slit at
an angle θ will no longer be in phase. For example, wavelet 3,
originating at the middle of the slit, will travel farther than
wavelet 1 by a path difference of 1

2 λ. The wavelet just below 
wavelet 1 will be exactly 1

2 λ ahead of the wavelet just below 
wavelet 3. In this way, all wavelets in the top half of the slit will
interfere destructively with wavelets from the lower half of the
slit. When the wavelets reach the screen, they will interfere
destructively, as shown in Figure 9.14.

(A) The plane wave incident on the single slit is shown as
five sources for Huygens’ wavelets. The wavelets interfere constructively 
at the central midpoint, generating a large, bright central maximum.  
(B) The first nodal line (dark fringe) occurs when the Huygens’ wavelets
from each source interfere destructively.  (C) Destructive interference 
requires a path difference of 1

2
λ.

The second dark fringe measured at an angle of θ is shown in
Figure 9.15. Again, consider the single slit as two separate halves.
This second-order dark fringe results because the path difference
travelled between wavelets 1 and 2 is exactly 1

2 λ. The wavelets 

just under wavelet 1 and wavelet 2 will also strike the distant
screen exactly 1

2 λ apart. This process repeats for the entire top half 

of the slit. The wavelets in the bottom half of the slit interfere in
the same way as do those in the top half. The net result is a dark
fringe. Between the dark fringes, wavelets interfere constructively,
forming bright fringes. 

The process of destructive interference occurs repeatedly for
angles that produce a path difference that is an integral multiple 
of the wavelength of light.

sin θ = mλ
W

(m = ±1, ±2, ±3 . . .)

Figure 9.14
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fringe

first
dark
fringe

1

2

3

4

5

W

Chapter 9  Wave Properties of Light • MHR 399

The second 
nodal line occurs when the path
difference of every wavelet from
the top half of the slit interferes
with each wavelet from the 
bottom half.

Figure 9.15
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The distance to the screen is much larger than the slit width or
the separation of the dark fringes. Therefore, the perpendicular
distance to the screen, L, is approximately the same length as the
distance from the slit to the dark fringes, L1, L2, L3, ..., as shown 
in Figure 9.16.

Slit width, W, is much smaller than the distance to the
screen, L, allowing for the approximation that L1 ≈ L2 ≈ Ln ≈ L.

Because L >> y, sin θ = mλ/W (m = ±1, ±2, ±3 . . .) can be
approximated as

tan θ = mλ/W

ym/L = mλ/W

ym = mλL/W

(m = ±1, ±2, ±3 . . .)

(m = ±1, ±2, ±3 . . .)

(m = ±1, ±2, ±3 . . .)

Notice that the intensity of the bright fringes drops off dramati-
cally in higher-order fringes. Intensity is a result of the amount 
of light energy striking a unit area per second. Recall that only
wavelets interacting with the slit’s edge are diffracted. This gener-
ates a double-wide central bright fringe, created by the light 

Quantity Symbol SI unit
distance to fringe from 
the central bisector ym m (metres)

distance to screen L m (metres)

fringe order number (±1, ±2, ±3 . . .) m unitless

width of slit W m (metres)

(m = ±1, ±2, ±3 . . .) Constructiveym =
(
m + 1

2

)
λL

W

(m = ±1, ±2, ±3 . . .) Destructiveym = mλL
W

SINGLE-SLIT INTERFERENCE
Dark fringes will exist on a distinct screen at regular, whole-
numbered intervals

Figure 9.16

θ1

θ2
1st 
minimum

2nd
minimum

y1

y2L2

L1

L
W
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travelling directly through to the screen, unaffected by the slit’s
edge, plus the constructively interfering diffracted wavelets. The
intensity steadily decreases as wavelets begin to destructively
interfere, due to subtle changes in path difference. 

light
intensity 

midpoint of central bright fringe
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Bright and
twice as wide, the central
maximum appears much
more intense than subse-
quent fringes.

Figure 9.17

Single-Slit Diffraction
Viewing a 645 nm red light through a narrow slit cut into a piece 
of paper yields a series of bright and dark fringes. You estimate that 
five dark fringes appear in a space of 1.0 mm. If the paper is 32 cm
from your eye, calculate the width of the slit.

Conceptualize the Problem
� Light passing through a very narrow slit will be diffracted, 

causing an interference pattern to be visible.

� Dark fringes result from destructive interference.

� The distance, y1 , to the first dark fringe can be calculated by first
determining the space between fringes, ∆y.

Identify the Goal
The width, W, of the single slit

Identify the Variables and Constants
Known Unknown
m = 1
λ = 645 m
L = 0.32 m

∆y
ym for m = 1
W

Develop a Strategy
5 fringes in 1.0 mm = 4∆y
∆y = 0.25 mm

Determine the fringe spacing. Recall that there is always
one less space between the fringes than there are fringes.

SAMPLE PROBLEM 

continued



The slit is 0.8 mm wide.

Validate the Solution
Interference fringes resulting from a single slit cut into a piece of paper
would be very difficult to observe. The number, 5, must be taken as a 
number containing only one significant digit. The final answer is therefore
provided to only one significant digit. A width of 0.8 mm is reasonable. 

1. Determine the distance that the third bright
fringe would lie from the central bisector in a 
single-slit diffraction pattern generated with
542 nm light incident on a 1.2 × 10−4 m slit
falling onto a screen 68 cm away. 

2. A special effects creator wants to generate an
interference pattern on a screen 6.8 m away
from a single slit. She uses 445 nm light and
hopes to get the second dark fringe exactly
48 cm from the middle of the central bright

maximum. What width of slit does she
require?

3. Predict whether violet light (λ = 404 nm) or
red light (λ = 702 nm) will have a wider 
central maximum when used to generate 
a single-slit diffraction pattern. Calculate 
the difference if the light is incident on 
a 6.9 × 10−5 m wide slit falling onto a screen
85 cm away.

PRACTICE PROBLEMS

y1 = 0.25 mm, m = 1

ym = mλL
W

W = mλL
y1

W = 1(645 × 10−9 m)(0.32 m)
0.25 × 10−3 m

W = 8.256 × 10−4 m

W ≅ 8.3 × 10−4 m

The distance between dark fringes, ∆y, is also the distance
from the central bisector to the first dark fringe.
Slit width can be determined by using the single-slit
interference equation for dark fringes.
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9.2 Section Review

1. Diffraction is defined as the spreading of
light that passes by the edge of an opaque
barrier. Explain why the term “spreading” is
used rather than “bending.”

2. Suggest a property of light that posed the
greatest difficulty for physicists attempting 
to observe the diffraction of light.

3. This photograph 
is the result of illumi-
nating a penny with a
single point source of
light. Describe what
must be occurring in
order to form the

observed image both in the centre and
around the edges.

4. Describe what is meant by the term
“coherent sources.”

5. Why did the success of Young’s experi-
ment convince physicists of the time that
light was some type of wave?

6. Double-slit interference patterns form
with equal spacing between light and dark
fringes. Single-slit diffraction generates an
interference pattern containing a central
bright fringe that is twice as wide as any
other. Explain these differing results.

K/U

MC

K/U

C

I

K/U

continued from previous page



Not only did Young’s double-slit experiment demonstrate the wave
nature of light, it also paved the way for applications of interfer-
ence and explained many phenomena that had been observed but
not understood. If fact, Newton himself had observed some effects
of interference of light, but he did not know that interference
caused these effects.

Diffraction Gratings
Hold a compact disc in sunlight and a rainbow of colours will
appear. Observe an Indigo snake moving through bright light and
the full spectrum of colours will shimmer across its scales. The
colours are separated from white light by diffraction from hun-
dreds, even thousands, of tiny parallel ridges.

If two slits are good, are 2000 slits better? For many applica-
tions, 2000 slits are definitely better. Such a device, called a 
diffraction grating, can create very fine, bright fringes that are 
separated by large dark fringes. A typical diffraction grating 
has several thousand slits or lines per centimetre. For example, 
a grating with 2000 lines/cm would have a slit spacing
d = (1/2000) cm = 5 × 10−4 cm. Diffraction gratings might be 
transmission gratings (light passes through the slits) or reflective
gratings, in which light is reflected by smooth lines separated by
non-reflective surfaces.

The principle on which a diffraction grating is based is the
same as that of a double slit. The diffraction grating simply has
thousands of pairs of double slits that all work together. As shown
in Figure 9.19, constructive interference occurs when the distance
travelled by a light ray from one slit is longer than that of the 
adjacent slit by an integral multiple of the wavelength of light.
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• Describe how new technology
resulted in the advancement 
of scientific theory.

• Outline the scientific under-
standing made possible through
technological devices.

• Analyze thin films using 
diffraction, refraction, and 
wave interference.

• diffraction grating 

• line spectrum 
(emission spectrum)

• resolving power

• Rayleigh criterion

 T E R M S
K E Y

E X P E C T A T I O N S
S E C T I O N

Examples and Applications
of Interference Effects9.3

A compact
disc has a thin transparent
coating over a shiny metallic
disk. What is the source of
the rainbow colours?

Figure 9.18

At very precise
angles, the path difference 
travelled by waves passing
through any pair of slits in the
entire diffraction grating is an
integer multiple of the wavelength
of the light.

Figure 9.19

θ

θ

d

path difference

d



When m = 0 and the path lengths of all of the rays are the same,
the rays go directly through the grating, creating a central bright
fringe. The next bright fringe above or below the central fringe is
called the “first-order fringe.” The naming continues with second
order, third order, and up to the last visible fringe.

The advantage of a diffraction grating over a double slit is the
amount of destructive interference between the peaks of construc-
tive interference. At the precise angles given by the equation
mλ = d sin θ, waves from every slit interfere constructively with
each other. However, at any other angle, waves from some combi-
nation of slits interfere destructively with each other. Figure 9.20
shows a typical double-slit pattern and compares it with a pattern
obtained with five slits. With thousands of slits, the peaks become
fine vertical lines and the space between is flat.

Destructive interference from distant fringes generates very
narrow, bright fringes, compared to double-slit interference patterns.

Figure 9.20

grating (5 slits)

li
gh

t 
in

te
n

si
ty

 

m = 2 m = 1 m = 0 m = 1 m = 2

double slit

li
gh

t 
in

te
n

si
ty

 

m = 2 m = 1 m = 0 m = 1 m = 2

Quantity Symbol SI unit
wavelength of light λ m (metres)

integer number of wavelengths m none
(0, 1, 2, …)

distance between slit centres d m (metres)

angle from horizontal to the ray θ unitless (degree 
resulting from constructive is not a unit)
intererence

Note: Both transmission and reflection diffraction gratings 
can be modelled with this relationship.

(m = 0, 1, 2, …)mλ = d sin θ

DIFFRACTION GRATING BRIGHT FRINGES
Bright fringes will strike the screen when the path is an 
integer number of wavelengths of light.
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For a given diffraction grating with constant slit separation, the
angle that results in constructive interference depends on the
wavelength of the light. Since different colours have different
wavelengths, colours are separated when light passes through a
grating, as shown by the rainbow of colours in Figure 9.21 (A).
Figure 9.21 (B) shows what you would see if two colours passed
through a diffraction grating together. This property of diffraction
gratings makes them very useful in several types of instruments.

(A) A diffraction grating will separate white light into a 
rainbow of colours, because different wavelengths will be diffracted by 
different amounts. Higher-order fringes are more spread out.  (B) This 
theoretical result would occur if a two-wavelength (700 nm, 540 nm) source
was viewed through a spectroscope. 

A spectroscope uses a diffraction grating to separate light into
very narrow bands of specific colours (wavelengths) that you 
can then analyze. For example, you can identify the atoms or 
molecules in a gas discharge tube. When a gas is heated or has 
an electric discharge passed through it, it will emit light at very
specific wavelengths. The set of wavelengths emitted by a pure 
substance is called the substance’s line spectrum or emission 
spectrum. Figure 9.22 shows the line spectrum of several 
common substances.

Figure 9.21
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Line or emission
spectrum of pure (A) helium,  
(B) atomic hydrogen, and 
(C) cadium as viewed through 
a spectroscope.

Figure 9.22

A B

C



Spectroscopes can also analyze absorption spectra. For example,
the core of the Sun emits a continuous spectrum. However, atoms
and molecules in the Sun’s outer atmosphere absorb specific 
wavelengths, causing the Sun’s spectrum to have several narrow
black lines. Atoms and molecules also absorb light at the same
wavelengths at which they emit it. Therefore, by identifying 
the wavelengths of light that have been absorbed by the Sun’s
outer atmosphere, physicists are able to identify the atoms that are
present there. Careful analysis of the Sun’s absorption spectrum
reveals that at least two thirds of all elements present on Earth are
present in the Sun. In fact, this technique is used to identify the
composition of stars throughout our galaxy.

An instrument called a “spectrophotometer” is used in chemistry
and biochemistry laboratories to identify and measure compounds
in solutions. A spectrophotometer has a diffraction grating that 
separates white light into all wavelengths. You can select a specific
wavelength and send it through a sample of a solution. The spectro-
photometer then measures the amount of light of the wavelength
that is absorbed by the sample and you can then calculate the 
concentration of the compound in the solution.

Interference of Thin Films
Soap bubbles always shimmer, with colour flowing across their
surface. This interference phenomenon is a result of light reflect-
ing off both surfaces of a thin film. To understand what happens
when light strikes a thin film, review the process of reflection that
is illustrated in Figure 9.23. In the upper left-hand photograph, 
a wave is moving through a “slow” medium (a heavy spring)
toward an interface with a “fast” medium (a lightweight spring).
On reaching the interface, both the reflected and the transmitted
wave remain on the same side of the spring. In the lower left-hand
photograph, a wave is moving from the right within the “fast”
medium to the left toward the “slow” medium. When the wave
reaches the interface, the transmitted wave remains on the same
side of the medium, but the reflected wave has undergone a phase
change or inversion and is on the opposite side of the medium.
This change of phase or inversion that occurs when a wave reflects
off an interface with a “slower” medium is a property of all waves.
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(A) At a slow-to-
fast interface between two media,
the transmitted and reflected 
pulses are on the same side of 
the spring.  (B) At a fast-to-slow
interface between two media, 
the transmitted pulse is on the
same side of the spring, but the
reflected pulse is inverted.

Figure 9.23

A

B

Your Electronic Learning Partner
contains an excellent reference
source of emission and absorption
spectra for every element in the
periodic table.

ELECTRONIC
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Very Thin Films: Destructive Interference (t < < λ)
Destructive interference occurs when the film thickness, t, is much
less than the wavelength, λ, of incident light, t < < λ. Light travel-
ling through air toward the very thin film of a soap bubble will
behave in the same way that the wave in the spring behaves. 
Light incident on the surface of the soap bubble will be partially
reflected and partially transmitted. In Figure 9.24, since the 
reflected wave (1) encounters the surface of a more-dense and
therefore “slower” medium, it undergoes a phase change. When
the transmitted light reaches the far surface of the soap film, it
reflects off the interface with air, a “faster” medium, and therefore
the reflected wave does not undergo a phase change, as indicated
in Figure 9.24.

(A) Phase inversion causes destructive interference in very
thin film when the film thickness, t, is much less than the wavelength 
of light, λ.  (B) A soap bubble varies slightly in thickness, causing the
destructive interference of varying colours.

In Figure 9.24, the thickness of the soap film is exaggerated 
relative to the wavelength of the light. In reality, the distance that
wave 2 travels farther than wave 1 is negligible. The result is that
when the inverted wave 1 rejoins reflected wave 2, the two waves
are out of phase and undergo destructive interference. In the case
of a soap bubble, the thickness varies as material flows throughout
the film. The small fluctuations in thickness determine which
wavelengths of light interfere destructively. The remaining wave-
lengths provide the colour that your eye sees.

Thin Films: Constructive Interference (t = λ/4)
Thin films that have a thickness of approximately a quarter of the
incident wavelength of light cause constructive interference (see
Figure 9.25). Once again, wave 1 reflects off an interface with a
more-dense (slower) medium and therefore undergoes a phase
change or inversion. In this case, the thickness of the film is 
significant. Wave 2 travels a half wavelength farther than wave 1.
As a result, the two waves rejoin each other in phase and undergo
constructive interference. 

Figure 9.24
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A B

A total path 
difference of λ/2 combined 
with a phase inversion of one
wave results in constructive 
interference.

Figure 9.25
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Thin Films: Destructive Interference (t = λ/2)
A thin film with a thickness of one half of the wavelength of the
incident light will cause destructive interference. Once again,
wave 1 experiences a phase inversion at the top (fast-to-slow)
reflecting surface. Wave 2 does not experience a phase inversion 
at the bottom (slow-to-fast) boundary, but does travel farther by 
a distance equal to one wavelength. Transmitted waves do not
experience a phase shift; therefore, wave 1 and wave 2 proceed
exactly out of phase and interfere destructively.

Although thin films are often just an attractive novelty, they can
be useful. Eyeglass manufacturers make use of destructive interfer-
ence caused by thin films to prevent reflection from lenses. By
applying a coating of a carefully designed thickness to the outer
surface of eyeglass lenses, specific wavelengths of reflected light
can be cancelled.

Digital Videodiscs
A digital videodisc (DVD) is composed of several layers of plastic
on a reflective aluminum disc. The distinctive gold colour of a
DVD results from a semi-reflecting layer of gold used to separate
each data layer. Data is stored in the plastic layers as series of pits
or bumps that follow a spiral path from close to the centre of the
disc to the outer edge. On the reflective aluminum side of a DVD,
they are pits, but on the side from which the laser reads informa-
tion, they are actually “bumps.” Each bump has a thickness of
exactly 120 nm, which is one fourth of a wavelength of the 
640 nm laser light that reads the bumps. 

DVD players read the information by shining laser light on the
edge of the bumps and detecting the reflections. Part of the laser
beam falls on the flat surface of the disc, while the other part
strikes the bumps. Since the bumps are one fourth of a wave-
length, the part of the beam striking the bump travels a distance
that is half a wavelength shorter than the part that remains on the
flat surface. When both parts of the reflected beam rejoin each
other, destructive interference occurs in a way that is similar to
thin film interference. The detector converts the differences in the
amount of reflected laser light into the images and sound that you
observe on your DVD player.

If it was possible to lift the long spiral of data-storing bumps off
a DVD and stretch it into a straight line, the line would extend
more than 48 km. A double-sided DVD can store up to seven times
more information than a compact disc — approximately 15.9 GB.
The increased data storage results from a combination of more 
efficient techniques to digitize the data and tighter data “bump”
spacing, thanks to the use of shorter wavelength laser light. Each
lap of the spiral is spaced exactly 740 nm from the previous one.
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A total path differ-
ence of one wavelength, λ, 
combined with a phase inversion
of one wave results in destructive
interference.

Figure 9.26

1

2

Path difference is λ.

t = λ
2



The series of tracks behaves like a diffraction grating, producing
the varying colour patterns that you see when light reflects from
the surface of a DVD.

Data are stored on DVDs in the form of tiny “bumps” that are
less than the wavelength of light.

Resolving Power 
A light travels toward you from the distance. Is the object a 
motorcycle with a single headlight or a car with two separated
headlights? As the object approaches, the single light slowly 
grows into an oval shape and then finally into two individual and
distinct headlights of a car. The ability of an optical instrument,
such as the human eye or a microscope, to distinguish two objects
is called the resolving power of the instrument. An eagle has eye-
sight that is much better at resolving objects than is the human
eye. A microscope uses lenses with resolving powers that are 
even greater.

Figure 9.27

740 nanometres

120 nanometres

400 nanometres

320 nanometres
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The headlights of 
an approaching car in the distance
appear to be one bright light. The
headlights are too close together to
be resolved. As the car approaches,
the individual headlights begin to
emerge.

Figure 9.28



Light travelling through a small opening or aperture is diffract-
ed. To distinguish between two objects through a single aperture
(such as the pupil of an eye), the central bright fringes of the two
sources must not overlap. Although many factors might affect the
ability of an instrument to resolve two objects, the fundamental
factors are the size of the aperture, the distance between the two
objects, and the distance between the aperture and the objects.
Lord Rayleigh (John William Strutt: 1842–1919) suggested a 
criterion that is still practical for use today. The Rayleigh criterion
states that “Two points are just resolved when the first dark fringe
in the diffraction pattern falls directly on the central bright fringe
in the diffraction pattern of the other.” Figure 9.29 illustrates the
Rayleigh criterion.

Recall that for a single slit, the first dark fringe occurs when
λ = W sin θ. Since the Rayleigh criterion states that the central
fringe of the second object must be no closer to the first object
than its first dark fringe, you can use the same equation to describe
the spatial relationship between the two objects. Since resolution
depends on both the distance between the objects and their 
distance from the aperture, it is convenient to combine those 
distances and express them as the angle between rays coming 
from each object to the aperture. This is exactly the angle θ in the
equation above. Therefore, the Rayleigh criterion for a single slit
aperture is as follows.

sin θ = λ
W

For very small angles, the sine of the angle is numerically
almost the same as the angle itself expressed in radians. Since the
angles describing resolving power are always very small, you can
express the Rayleigh criterion as shown below.

θ = λ
W

Most optical instruments use circular apertures, rather than 
rectangular ones. Experimental evidence shows that the minimum
angle that a circular aperture is just able to resolve is as follows.

θ = 1.22λ
D

D is the diameter of the aperture and, once again, the angle θ is
expressed in radians.

intensities

object 2object 1

minθ

minθ
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The ability to
resolve two objects occurs
when the first dark fringe just
falls on the other object’s first
bright fringe. This is known 
as the Rayleigh criterion.

Figure 9.29



Quantity Symbol SI unit
minimum angle for resolution θ unitless (radian

is not a unit)
wavelength of light λ m (metres)
width of rectangular aperture W m (metres)
diameter of circular aperture D m (metres)

Note: The angle measure must be provided in radians. 
360˚ = 2π rad or 1 rad = 57.3˚

circular apertureθmin = 1.22λ
D

rectangular slit apertureθmin = λ
W

RESOLVING POWER
In order to resolve two objects, the minimum angle between
rays from the two objects passing through a rectangular 
aperture is the quotient of the wavelength and the width of
the aperture. For a circular aperture, the minimum angle is 
the quotient of 1.22 times the wavelength and the diameter 
of the aperture.

Resolving Power
A skydiver is falling toward the ground. How close to the ground will she
have to be before she is able to distinguish two yellow baseballs lying 
25.0 cm apart, reflecting 625 nm light in air? Her pupil diameter is 3.35 mm.
Assume that the speed of light inside the human eye is 2.21 × 108 m/s.

Conceptualize the Problem
� The human pupil is a circular opening; therefore, the circular aperture

equation for resolving power applies.

� The wavelength of light will be different inside the material of the eye
because the speed is less than it would be in air. The reduced speed
must be used to calculate the wavelength of the light in the eye.

Identify the Goal
The maximum height, h, at which the skydiver can resolve the two
objects that are 0.250 cm apart.

Identify the Variables and Constants 
Known Unknown
s = 25.0 cm
λair = 625 nm
D = 3.35 mm
veye = 2.21 × 108 m

s

λeye

θmin (radians)

SAMPLE PROBLEM 

continued
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Develop a Strategy

If only resolving power is considered, she will just be able to 
distinguish the baseballs when she is 1.49 km from the ground.

Validate the Solution
Resolving objects separated by 25 cm could not possibly be 
accomplished from a distance of 1.5 km. Most likely, she 
would have to be much closer, because of the effects caused 
by the high-speed descent. Owls have pupils that are as 
much as 10 times larger than human pupils. How would 
such an adaptation be helpful?

4. (a) Commercial satellites are able to resolve
objects separated by only 1.0 m. If these
satellites orbit Earth at an altitude of 
650 km, determine the size of the 
satellites’ circular imaging aperture. Use
455 nm light for the light in the lenses 
of the satellites.

(b) Describe why the value from part (a) is 
a theoretical best-case result. What other
effects would play a role in a satellite’s
ability to resolve objects on the surface 
of Earth?

PRACTICE PROBLEMS

h

0.250
2

m

θmin

2tan
( θ min

2

)
=

0.250 m
2
h

h = 0.125 m
8.3837 × 10−5

h = 1.491 × 103 m

h ≅ 1.49 km

� Divide the isosceles triangle in half, as
shown, and use the tangent function to
calculate the height. (Hint: Remember
that the equation gives the angle in
radians. Be sure that your calculator is
set to radians while performing your
calculations.) 

θ min = 1.22λ
D

θ min = (1.22)(460 × 10−9 m)
3.35 × 10−3 m

θ min = 1.6767 × 10−4 rad

� Determine the minimum angle for 
resolution, using the Raleigh criterion.

v = f λ

f = v
λ

f = vair
λair

= veye

λeye

λeye = λairveye

vair

λeye =
(625 nm)

(
2.21 × 108 m

s

)
3.00 × 108 m

s

λeye = 460 nm

� Determine the wavelength of the light
inside her eye. Use the wave equation
and the fact that the frequency of a
wave does not change when it passes
from one medium into another.
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5. Calculate the resolving power of a micro-
scope with a 1.30 cm aperture using 540 nm
light. The index of refraction of the lens
slows the light inside the glass to
1.98 × 108 m/s.

6. You are about to open a new business and
need to select a colour scheme for your 

backlighted sign. You want people to be able
to see your sign clearly from a highway some
distance away. Assuming that brightness is
not a problem for either colour, should you
use blue or red lettering? Develop an answer,
using resolving power arguments. Include
numerical examples.
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9.3 Section Review

1. Why does a diffraction grating produce
much narrower bright fringes than a double-
slit interference pattern? 

2. Describe why an astronomer would pass
light from a distant star through a diffraction
grating? Provide the name of the instrument
used and possible facts that could be learned
from its use.

3. Classify each of the following examples
as one of (a) very thin film (t < < λ) or (b) thin
film (t = λ/4) or (t = λ/2) interference.

• oil floating on water

• antireflective coating on a television screen

4. Describe how DVD technology makes
use of thin film interference and partial
reflection-partial refraction.

5. Looking through a terrestrial telescope,
you see a single light shining from a distant
farmhouse. The single image is the result of
light streaming from two identical windows
placed side by side. Describe two possible
steps you could take so that the lighted 
windows would appear individually.

6. Why is resolving power often expressed
as an angle?
K/U

MC

K/U

K/U

I

K/U

DiffractionFigure 9.30

Concept Organizer

double slit

single slit

diffraction
grating

thin films

Young’s 
experiment

interference due to path 
differences from reflection

mλ = d sin θ

ym = mλ L
W

(bright)

yn = (n + 1
2

) λ L
W

(dark)

λ = ∆y d
x

definitive wave 
property of light

diffraction gratings 
produce narrow bright 
fringes in spectroscope

resolution limit 
Rayleigh criterion

soap bubbles, 
antireflective coatings

θ = 1.22 λ
D

Diffraction



P H Y S I C S  M A G A Z I N E

New Views of 
Earth’s Surface
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It’s a dark and stormy night — perfect conditions to
study minute changes in Earth’s crust. Not from
Earth’s surface, but from radar satellites hundreds 
of kilometres away in space. Optical satellite images
are used to observe weather patterns, but the data
used to generate radar images contain more informa-
tion than is displayed in the optical images. This
additional information can be exploited to provide
precision measurements of Earth’s surface.

Radar satellites have two distinct advantages 
over optical satellites. First, they operate at longer
wavelengths, which allows them to penetrate clouds.
Second, they provide their own illumination instead
of relying on reflected sunlight, so they can obtain

images day or night and, more importantly, coherent
radiation can be used. In coherent radiation, the 
individual waves are all emitted in step or in “phase”
with one another. 

The Importance of Phase Information 
This phase information provides the basis for satellite
radar interferometry. When the satellite views a patch
of Earth’s surface at an angle, the distance from the
target point on the surface to each of the satellite’s
two antennae will be different. Coherent radiation
emitted by the satellite will be received in a particu-
lar phase by the first antenna and in a different phase



by the second antenna because of the different path
lengths. Effectively, the phase information is like a
stopwatch that indicates how long the wave has been
travelling. Since the wave travels at the speed of
light, this time is easily converted into a distance.
The phase difference between the waves in the
received signals can be used to reconstruct the height
of a point on Earth’s surface. A couple of snapshots
taken in seconds, or even in repeat satellite passes,
can provide precise topographical detail that would
take geologists and surveyors years to match. 

If positions and heights can be accurately meas-
ured, then by spacing observations over time, changes
in Earth’s surface can be detected. In two radar
images taken from the same altitude but at different
times, each of the corresponding picture elements,
(pixels) on the two images should have the same
phase. If the ground has moved toward or away from
the satellite in the time between the images, this
would be detected as a phase difference in the 
pixels. This is easily seen by constructing an 
“interferogram.” 

Displaying the Phase Information
As the name suggests, the process of constructing an
interferogram involves allowing light waves to inter-
fere with each other. When any two waves combine,
they can reinforce each other, cancel each other, or 
do something in between, depending on the relative
phases. Suppose you represent places on the result-
ant image where two corresponding pixels (from
images of the same area taken at different times) 
reinforce each other with red pixels, and places
where they cancel each other with blue pixels. 
Cases in between these extremes can be represented
by colours in the spectrum between red and blue. 
A cycle from red to blue would then indicate a 
displacement on the ground equivalent to half of 
a wavelength. A typical interferogram will show 
several complete colour cycles, or fringes, because
the phase between any two pixels can differ by 
any number of whole wavelengths (1, 2, 3,…). By
counting these fringes, the total displacement can 
be determined. 

Radar Satellites in Operation Today
Although the four radar satellites presently in 
operation — the Canadian RADARSAT, the European
ERS-1 and ERS-2, and the Japanese JERS-1 — orbit at
an altitude of several hundred kilometres, radar inter-
ferometry allows them to monitor changes in Earth’s
surface on the scale of half of a radar wavelength,
approximately 2 to 4 cm, or smaller. The method 
was first applied in 1992 to examine the deformation
of Earth’s crust after an earthquake in Landers,
California. Although the maximum displacement of
the fault was 6 m, researchers were able to detect a
tiny slip of 7 mm on a fault located 100 km away
from where the quake had struck. Since then, 
applications of the method have grown rapidly. 

Examples of present uses of radar interferometry
include the examination of a variety of geophysical
phenomena. By studying the after-effects of earth-
quakes worldwide, critical information can be gained
that someday could be used to predict earthquakes.
The subsidence of surface land due to extraction 
of coal or oil can be monitored. The advance and
recession of glaciers and ice flow velocities can be
routinely studied to improve hydrological models
and assess global climate change. 

Several recent studies have applied radar interfer-
ometry to volcanoes. As magma fills or drains 
chambers under the volcano’s surface, subtle 
deformation of the volcano, not detected by other
methods, is revealed in interferograms. Detecting
uplift and swelling of volcanoes could in some cases
provide early warning of an eruption. 

With some promising results so far, radar interfer-
ometry is destined to become an important tool for
analyzing our ever-changing Earth. 

Making Connections
1. Compare and contrast the information gained from

radar interferometry and from land surveying. 

2. Research the limitations involved in using radar
interferometry.

3. The Canadian RADARSAT has just completed an
important survey of Antarctica. Report on some of
the findings.
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� Mechanical waves are disturbances that 
transfer energy from one location to another
through a medium. All waves, under 
appropriate conditions, are known to exhibit
rectilinear propagation, reflection, refraction,
partial reflection and partial refraction, and
diffraction.

� Light energy reaches Earth after travelling
through the void of outer space. Light, under
appropriate conditions exhibits rectilinear
propagation, reflection, refraction, partial
reflection and partial refraction, and 
diffraction.

� Waves interfere with one another according 
to the superposition of waves, which states:
When two or more waves propagate through
the same location in a medium, the resultant
displacement of the medium will be the 
algebraic sum of the displacements caused 
by each individual wave. When two or more
waves propagate through the same location 
in a medium, the waves behave as though the
other waves did not exist.

� Huygens’ principle models light as a wave
that results from the superposition of an 
infinite number of wavelets. The principle
states: Every point on an advancing wavefront
can be considered as a source of secondary
waves called “wavelets.” The new position of
the wavefront is the envelope of the wavelets
emitted from all points of the wavefront in 
its previous position.

� Interference is a property exhibited by waves. 

� Young’s double-slit experiment demonstrated
that light experiences interference and forms
diffraction patterns. Young’s experiment can
be used to determine the wavelength of 
a specific colour of light by the relationship 

λ ≅ ∆yd
x

.

� Light passing through a single slit experiences
interference and forms diffraction patterns.
Single-slit interference forms distinctive 
patterns, according to the relationship 

ym ≅ mλL
W

for dark fringes and 

ym ≅
(m + 1

2 )λL
W

for bright fringes.

� A diffraction grating, composed of several
equally spaced slits, produces diffraction 
patterns with more distinct bright and dark
fringes. Diffraction from each of the slits
increases the degree of constructive and
destructive interference. 

� Spectrometers make use of the diffraction of
light, splitting the incident light into fine
bands of colour. The resulting spectrum is
used to identify the atomic composition of the
light source. Astronomers use absorption line
spectra to determine the composition of stars.

� The Rayleigh criterion states that “Two points
are just resolved when the first dark fringe in
the diffraction pattern falls directly on the
central bright fringe in the diffraction pattern
of the other.” Experimental evidence shows
that the minimum angle that a circular 
aperture is just able to resolve is given by 

θ min = 1.22λ
D

.
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Knowledge/Understanding
1. Distinguish between dispersion and diffraction.
2. What happens to the energy of light waves in

which destructive interference leads to dark
lines in an interference pattern? 

3. How did Thomas Young’s experiment support
the wave model of light? 

4. An interference maximum is produced on a
screen by two portions of a beam originally
from the same source. If the light travelled
entirely in air, what can be said about the path
difference of the two beams? 

5. The same formula is used for the positions of
light maxima produced by two slits as for a
grating with a large number of finely ruled slits
or lines. What is the justification for creating
and using many-lined gratings? 

6. (a) What is the difference between the 
first-order and the second-order spectra 
produced by a grating? 

(b) Which is wider?
(c) Does a prism produce spectra of different

orders? 

7. Why is it important that monochromatic light
be used in slit experiments? 

8. How does a thin film, such as a soap bubble 
or gasoline on water, create an interference 
pattern? 

Inquiry
9. Devise a simple experiment to demonstrate 

the interference between sound waves from 
two sources. 

10. Sketch the diffraction pattern produced by 
parallel wavefronts incident on a very wide slit.
How does the pattern change as the slit size
decreases? 

11. Describe simple experiments to determine the
following.
(a) the resolving power of a small, backyard 

telescope
(b) the wavelength of a source of monochro-

matic light

(c) the separation between the rulings in a 
diffraction grating 

12. Photographers often use small apertures to
maximize depth of focus and image sharpness.
However, at smaller apertures, diffraction
effects become more significant. If you have
access to a single-lens reflex camera, try to 
evaluate at which aperture diffraction effects
become problematic in a particular lens. Also,
try to determine the resolution of the lens. 
How does it compare to the manufacturer’s 
stated value? 

13. Suppose you have a source that emits light of
two discrete wavelengths, one red and one
blue. Assume for the sake of simplicity that
each colour is emitted with the same intensity.
Imagine allowing the light to pass through a
diffraction grating onto a screen. Draw the
appearance of the resulting line spectrum. 

14. Single-slit diffraction affects the interference
pattern of a double slit. Consider a double slit
with slits that are 0.130 mm wide and spaced
0.390 mm apart, centre to centre. 
(a) Which orders of the double-slit pattern 

will be washed out by the minima of the
single-slit pattern? 

(b) Sketch the interference pattern and demon-
strate the above solution by superimposing
the single-slit pattern on the double-slit 
pattern. 

15. An ingenious physics student wants to remove
the amount of glare reflecting from her comput-
er screen. Describe, with the aid of a diagram,
how she could make use of her knowledge of
thin films to accomplish her task.

Communication
16. Explain whether a beam of light can be made

increasingly narrow by passing it through 
narrower and narrower slits. 

17. A friend who has never taken a physics course
asks why light that passes through a slit 
produces a series of bright and dark fringes.
How would you explain this phenomenon? 

Chapter 9  Wave Properties of Light • MHR 417



18. Discuss how we know that the wavelength 
of visible light must be very much less than 
a centimetre. 

19. Both sound and light waves diffract on passing
through an open doorway. Why does a sound
wave diffract much more than a light wave? 
In other words, why can you hear around 
corners, but not see around corners?

20. Atoms have diameters of about 10−10 m. Visible
light wavelengths are about 5 × 10−7 m. Can
visible light be used to “see” an atom? Explain
why or why not.

21. Suppose that, in a double-slit experiment,
monochromatic blue light used to illuminate
the slits was replaced by monochromatic red
light. Discuss whether the fringes would be
more closely or widely spaced. 

22. Explain the source of colour seen on the 
surface of compact discs.

23. Discuss why interference fringes are not visible
from thick films. (Hint: What is the effect of
rays incident on thin films and thick films?)

24. The illustration depicts interference caused by
very thin films. 
(a) Describe the type of interference depicted by

the illustration.
(b) Use wave model arguments to explain how

the interference pattern from part (a) is
caused.

(c) Would it be possible to coat an object with a
very thin film to make it invisible in white
light? Explain.

25. (a) Analyze carefully the illustrations following
this question. Write a description tracing the
path of the incident light as it encounters
each medium interface. Describe what is
happening to the wave in each case as the
wave is (i) reflected and (ii) transmitted. 

(b) Compare the resulting interference patterns
from each illustration. What is the funda-
mental difference between the path that 
the light takes in each case?

Making Connections 
26. Bats use echolocation to detect and locate their

prey — insects. Why do they use ultrasonic
vibrations for echolocation rather than audible
sound?

27. CD and DVD players both utilize the effects of
interference to retrieve digital information.
Explain how this is done. 

28. Explain how one observer’s blue sky could 
be related to another observer’s view of a 
red sunset. 

29. Many butterflies have coloured wings due to
pigmentation. In some, however, such as the
Morpho butterfly, the colours do not result from
pigmentation and, when the wing is viewed
from different angles, the colours change.
Explain how these colours are produced. 

30. By studying the spectrum of a star (for exam-
ple, the Sun), many physical properties can 
be determined in addition to the chemical 
composition. In fact, besides the telescope, 
the spectroscope is probably an astronomer’s
most useful tool. Write an essay discussing 

1

2

Path difference is λ.

t = λ
2

1

2

t = λ
4

Path difference is     .λ
2

air
soap

1

2

0

t << λ
air
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the information obtained about stars from 
spectra, and the impact of the spectroscope on
modern astronomy. 

Problems for Understanding
31. In a ripple tank, two point sources that are 4.0

cm apart generate identical waves that inter-
fere. The frequency of the waves is 10.0 Hz. A
point on the second nodal line is located 15 cm
from one source and 18 cm from the other.
Calculate 
(a) the wavelength of the waves
(b) the speed of the waves

32. Blue light is incident on two slits separated by
1.8 × 10−5 m. A first-order line appears 21.1 mm
from the central bright line on a screen, 0.80 m
from the slits. What is the wavelength of the
blue light?

33. A sodium-vapour lamp illuminates, with 
monochromatic yellow light, two narrow slits
that are 1.00 mm apart. If the viewing screen is
1.00 m from the slits and the distance from the
central bright line to the next bright line is
0.589 mm, what is the wavelength of the light? 

34. Under ordinary illumination conditions, the
pupils of a person’s eye are 3.0 mm in diameter
and vision is generally clearest at 25 cm.
Assuming the eye is limited only by diffraction,
what is its resolving power? (Choose 550 nm,
in the middle of the visible spectrum, for your
calculation.)

35. Assuming that the eye is limited only by 
diffraction, how far away from your eye could
you place two light sources that are 50.0 cm
apart and still see them as distinct?

36. The Canada-France-Hawaii telescope has a 
concave mirror that is 3.6 m in diameter. If the
telescope was limited only by diffraction, how
many metres apart must two features on the
Moon’s surface be in order to be resolved by
this telescope? Take the Earth-Moon distance as
385 000 km and use 550 nm for the wavelength
of the light. 

37. A diffraction grating with 2000 slits per cm is
used to measure the wavelengths emitted by
hydrogen gas. If two lines are found in the 
first order at angles θ1 = 9.72 × 10−2 rad and
θ2 = 1.32 × 10−1 rad, what are the wavelengths
of these lines? 

38. The range of visible light is approximately 
from 4.0 × 10−7 m (violet light) to 7.0 × 10−7 m
(red light). 
(a) What is the angular width of the first-order

spectrum (from violet to red) produced by a
grating ruled with 8000 lines per cm? 

(b) Will this angular width increase or decrease
if the grating is replaced by one ruled with
4000 lines per cm? 

39. Show that there will be yellow light but no red
light in the third-order spectrum produced by 
a diffraction grating ruled 530 lines per mm.

40. Suppose a grating is used to examine two spec-
tral lines. What is the ratio of the wavelengths
of the lines if the second-order image of one
line coincides with the third-order image of 
the other line?

41. (a) What is the largest order image of green
light, 540 nm, that can be viewed with a 
diffraction grating ruled 4000 lines per cm? 

(b) At what angle does that order appear? 
42. Red light is incident normally onto a diffraction

grating ruled with 4000 lines per cm, and the
second-order image is diffracted 33.0˚ from the
normal. What is the wavelength of the light?

43. Suppose you shine a light on a soap bubble 
that is 2.50 × 10−7 m thick. What colour will be
missing from the light reflected from the soap
bubble? Assume the speed of light in water is
2.25 × 108 m/s.
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C H A P T E R Electromagnetic Waves10

Acamera and some rolls of film packed safely inside your
favourite sweatshirt appear clearly on a monitor as your

suitcase passes through the airport’s security X-ray system. Various
materials absorb the low-energy X rays differently, and sophisticat-
ed software analyzes the varying intensities of the X-ray signals
that are transmitted. The software then interprets these signals and
converts them into a colour picture for the security guard to see.

This entire airport security process is based on the production,
transmission, and reception of electromagnetic radiation. The
intensity of the radiation can be finely adjusted and focussed, 
producing clear pictures of the contents of opaque containers 
such as luggage without damaging even sensitive camera film.

Electromagnetic radiation and its applications provide much
more than just airport security. Global communications, radar, 
digital videodisc players, and television remote controls also use
electromagnetic radiation. This chapter explores how physicists
attempt to understand electromagnetic radiation by using a 
wave model. You will gain a better understanding of how electro-
magnetic radiation is produced, how varied forms of it behave,
including light, and how its properties are utilized in various 
communication and medical applications.

� Ampère’s law

� Coulomb’s law 

� Faraday’s law

� Vibrations and waves
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M U L T I

L A B

Properties of 
Electromagnetic Waves

TARGET SKILLS

Analyzing and interpreting
Identifying variables
Communicating results

Transmission of Ultraviolet Radiation
In this lab, you will analyze the transmission
of ultraviolet (UV) radiation through various
substances.

Tonic water, which contains quinine, emits
a blue glow when exposed to UV radiation,
while pure water does not.

Fill one clear, plastic cup with tonic water
and one with pure water. Shine UV radiation
onto the tops of both filled glasses. From the
side, observe the top centimetre of the tonic
water and the pure water. Place a dark cloth
behind the cups to add contrast. Record the
amount and depth of the blue glow. Repeat
this procedure with transparent materials
such as glass, plastic, and cellulose acetate
placed over the cups.

Analyze and Conclude
1. List the materials that you tested in the

order of their effectiveness in absorbing
UV radiation, starting with the material
that was most effective. 

2. Suggest why both the time of day and time
of year affect the amount of dangerous 
UV radiation reaching the surface of Earth.

Apply and Extend
3. If time permits, devise an experiment to

test the ability of various sunblock
strengths to absorb UV radiation. (Hint:
Smear the sunblock over a medium that 
is transparent to UV radiation.)

4. Increased amounts of UV radiation reach-
ing Earth’s surface could pose a risk to
wildlife. Devise a simple experiment to
verify if UV radiation is able to penetrate
the surface of lakes and rivers.

Polarizing Light with Sugar
Fill a transparent, rectangular container with
a supersaturated sugar solution. Using a ray
box, shine three rays of light through the
solution. Ensure that two rays of light pass
through a polarizing filter before passing
through the sugar solution. Carefully observe 

the rays of light through a second polarizing 
filter. Slowly rotate the filter closest to your
eye while observing the rays of light passing
through the solution.

Analyze and Conclude
1. Describe what you observed for (a) the 

two rays that passed through the first
polarizing filter before entering the sugar
solution and (b) the ray that did not pass
through the first polarizing filter.

2. (a) Formulate an hypothesis that could
explain your observations.

(b) Is your hypothesis based on a wave or
particle model of light?

polarizing
filter

rotate
polarizing

filter
sugar

solution
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While Huygens, Young, and others were studying the properties of
light, physicists in another sector of the scientific community were
exploring electric and magnetic fields. They were not yet aware of
the connections among these fields of study. While a student at
Cambridge, a young Scotsman, James Clerk Maxwell (1831–1879),
became interested in the work of Lord Kelvin (William Thomson:
1824–1907) and Michael Faraday (1791–1867) in electric and 
magnetic fields and lines of force. Soon after Maxwell graduated in
1854, he gathered all of the fundamental information and publica-
tions that he could find in the fields of electricity and magnetism.
After carrying out a thorough study and detailed mathematical
analysis, Maxwell synthesized the work into four fundamental
equations that are now known as Maxwell’s equations. These
equations form the foundation of classical electromagnetic field
theory in the same way that Newton’s laws form the foundation 
of classical mechanics. 

Maxwell’s Equations
Maxwell did not create the equations; he adapted and expanded
mathematical descriptions of electric and magnetic fields that had
been developed by others. The mathematical form of Maxwell’s
equations is well beyond the scope of this course, but the qualita-
tive concepts and the implications of his equations are quite 
logical. 

Maxwell’s first two equations are based on concepts and equa-
tions developed by Carl Friedrich Gauss (1777–1855) and called
“Gauss’s law for electric fields” and “Gauss’s law for magnetic
fields” — concepts with which you are already familiar. Simply
stated, Maxwell’s first equation (Gauss’s law for electric fields),
illustrated in Figure 10.1 (A), states that for any imaginary closed
surface, the number of electric field lines exiting the surface is
proportional to the amount of charge enclosed inside the surface.
Note that a field line entering the surface will cancel a line emerg-
ing from the surface. Fundamentally, this equation is based on the
concept that electric field lines start on positive charges and end
on negative charges. 

Maxwell’s second equation (Gauss’s law for magnetic fields),
illustrated in Figure 10.1 (B), states that for any imaginary closed
surface, the number of magnetic field lines exiting the surface is
zero. This equation simply describes the concept that magnetic
field lines form closed loops and do not begin or end. If a field line

The Nature of
Electromagnetic Waves10.1
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• Describe how electromagnetic
radiation is produced.

• Analyze the transmission of
electromagnetic radiation.

• Define and explain the concepts
related to the wave nature of
electromagnetic radiation.

• Explain the underlying principle
of polarizing filters.

• Identify experimental evidence
for the polarization of light.

• Describe how electromagnetic
radiation, as a form of energy,
interacts with matter.

• Maxwell’s equations

• electromagnetic wave

• electric permittivity

• magnetic permeability 

• plane polarized

• photoelastic

 T E R M S
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enters a closed surface, it will eventually leave the surface. On
first considering these equations, they do not appear to carry 
much significance. However, Maxwell and others after him were
able to use the mathematical equations to make very significant
predictions. For example, Maxwell showed that accelerating
charges radiated energy in the form of electromagnetic waves.

(A) The number of electric field lines leaving any imaginary
closed surface — also called a Gaussian surface — is proportional to the
amount of charge enclosed within the surface.  (B) The number of magnetic
field lines entering any imaginary closed surface is equal to the number of
magnetic field lines leaving the surface.

Maxwell based his third equation on Faraday’s discovery of the
generator effect. You will probably recall from previous physics
courses that when you move a magnet through a coil of wire, the
changing magnetic field induces a current to flow in the coil, as
shown in Figure 10.2 (A). 

Figure 10.1
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When Gauss was a child in primary
school, the teacher punished the class
for misbehaving by telling them to add
all of the numbers from 1 to 100. 
The teacher noticed that, while all 
of the other students were writing 
vigorously, Gauss was staring out of
the window. Then he wrote down a
number. Gauss was the only student in
the class who had the right answer.
When the teacher asked him how he
solved the problem, Gauss explained,
“When I added 1 and 100, I got 101.
When I added 2 plus 99, the answer
was again 101. There are 50 of those
combinations so the answer had to be
5050.” Gauss rapidly became known
for his mathematical abilities.

HISTORY LINK

The moving magnet causes the magnetic field in and 
around the coil of wire to change. Since the changing magnetic field 
causes a current to flow in the wire, it must be generating an electric 
field in the region of the conductor.

Figure 10.2
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Maxwell expanded the concept to describe the phenomenon
even when there was no coil present. To understand how he was
able to make the generalization, ask yourself a few questions. 

Q: What could cause the charges in the coil to move, making a
current? 

A: The charges must experience a force to start them moving and
to overcome the frictional forces in the wire to keep the charges
moving.

Q: If no visible source of a force is present, what might be provid-
ing the force? 

A: An electric field exerts a force on charges that are placed in it,
and if they are able to move, they will move. 

These questions and answers lead to the conclusion that an
electric field must exist around a changing magnetic field. If a coil
is placed in the region, a current will flow. Maxwell’s third equa-
tion states, in mathematical form, that a changing magnetic field
induces an electric field, which is always perpendicular to the
magnetic field, as illustrated in Figure 10.2 (B).

Maxwell’s fourth equation is based on an observation made by
Hans Christian Oersted (1777–1851) that André-Marie Ampère
(1775–1836) developed into a law. Oersted observed that a current
passing through a conductor produces a magnetic field around the
conductor. Once again, Maxwell generalized the phenomenon to
include the situation in which no wire was present. Ask yourself
some more questions.

Q: What condition must exist in order for a current to flow in a
wire?

A: Regardless of its origin, an electric field must exist in the wire
in order for a current to flow.

Q: Can the presence of an electric field produce a magnetic field?

A: Since the current produced a magnetic field around the wire, it
is probable that it was the electric field driving the current that
actually produced the magnetic field.

Through mathematical derivations, Maxwell showed in his
fourth equation that a changing electric field generates a magnetic
field.
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Maxwell showed
mathematically that a changing
electric field that exists in the
absence of a conductor will 
produce a magnetic field around
it, in the same way that a current
in a conductor will produce a
magnetic field.

Figure 10.3



Electromagnetic Waves
Maxwell’s four equations and his excellent mathematical skills
gave him exceptional tools for making predictions about electro-
magnetism. By applying his third and fourth equations, Maxwell
was able to predict the existence of electromagnetic waves, as 
well as many of their properties. Think about what happens 
when you combine the two concepts — a changing electric field
produces a magnetic field, and a changing magnetic field produces
an electric field. Imagine that you generate a changing electric
field. Initially, there is no magnetic field, so when the changing
electric field produces a magnetic field, it has to be changing from
zero intensity up to some maximum intensity. This changing 
magnetic field would then induce an electric field that, of course,
would be changing. You have just predicted the existence of an
electromagnetic wave.

Recall that, by applying his first equation, Maxwell showed that
an accelerating charge can radiate energy. The energy that leaves
the accelerating charge will be stored in the electric and magnetic
fields that radiate through space. A good way to visualize this
process is to envision an antenna in which electrons are oscillat-
ing up and down, as illustrated in Figure 10.4. 

In the first step, as shown in Figure 10.4, the motion of elec-
trons made the bottom of the antenna negative, leaving the top
positive. The separation of charge produced an electric field. 
As the electrons continued to oscillate, the antenna reversed its
polarity, producing another field, with the direction of the field
lines reversed from the first. Finally, the electrons moved again,
producing a third field. Keep in mind that these events occur in
three-dimensional space. Try to visualize each set of loops as
forming a doughnut shape, coming out of the page and behind 
the page.

Although the magnetic field lines are not included in Figure
10.4, the changing electric fields have produced magnetic fields in
which the direction of the field lines is always perpendicular to
the electric field lines. To visualize these lines without making the
image too complex, only one loop of electric field lines is drawn

Antenna

Electric
field

+

−

+

− +

−
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Although it is an
oversimplification of the concept,
it might help you to visualize the
formation of an electromagnetic
wave if you imagine that when
the charges in the antenna
reverse direction, the electric 
field pinches off the antenna.

Figure 10.4

Refer to your Electronic Learning
Partner for a graphic representa-
tion of an electromagnetic wave.

ELECTRONIC
LEARNING PARTNER



for each step. In Figure 10.5, you can see that the magnetic field
lines loop into adjacent electric field lines.

The field lines in the illustrations provided so far show the
direction of the electric and magnetic fields, but not their intensi-
ty. You can use a diagram, however, to estimate the relative
strengths of the fields at any point in space. For example, start
with the diagram in Figure 10.4 and draw a horizontal line from
the centre of the antenna to the right, as shown in Figure 10.6 (A).
As you move to the right of centre, the direction of the field is
down. At the point where the two sets of loops meet, there are
many field lines, so the field is at its greatest intensity. Farther to
the right, the intensity decreases until, at the centre of the loops, 
it is zero. The field then changes direction and becomes stronger.
As the wave propagates out into space, this pattern repeats itself
over and over. 

Part (B) of Figure 10.6 duplicates the electric field lines in part
(A) and adds vectors that show the magnetic field intensity. This
figure shows the typical diagram for electromagnetic waves. No
material objects are moving. The entities that are represented by
the waves are the strengths of the electric and magnetic fields. An
electromagnetic wave is a transverse wave in which electric and
magnetic fields are oscillating in directions that are perpendicular
to each other and perpendicular to the direction of propagation of
the wave.
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The length of each
of the red arrows represents the
intensity of the electric field at the
point at which the base of the
arrow meets the x-axis. The
length of each of the green arrows
represents the intensity of the
magnetic field at the point at
which the base of the arrow
meets the x-axis.

Figure 10.6

Every changing
electric field generates a chang-
ing magnetic field, and every
changing magnetic field generates
a changing electric field. The 
electric and magnetic fields 
are always perpendicular to 
each other.

Figure 10.5
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Experimental Evidence for Electromagnetic Waves
Although Maxwell correctly predicted the existence of electromag-
netic waves and many of their properties, such as speed and the
ability to reflect, refract, and undergo interference, he never saw any
experimental evidence of their existence. It was not until eight years
after Maxwell’s death that Heinrich Hertz (1857–1894) demonstrated
in his laboratory the existence of electromagnetic waves.

Hertz placed two spherical electrodes close to each other and
connected them, through conductors, to the ends of an induction
coil that provided short bursts of high voltage. When the voltage
between the two electrodes was large enough, the air between
them ionized, allowing a spark to jump from one electrode to the
other. The momentary spark was evidence of electrons moving
between the electrodes. The acceleration of the charges between
the electrodes radiated electromagnetic energy away from the
source, as predicted by Maxwell’s equations.

As illustrated in Figure 10.7, Hertz used a single conducting
loop with a second spark gap as a receiver. He verified the creation
of electromagnetic waves by observing sparks produced in the
receiver. The electromagnetic waves that Hertz produced were 
in the range of what is now called “radio waves.” 

The Speed of Electromagnetic Waves in a Vacuum
As Hertz continued to study the properties of electromagnetic
waves, he used the properties of interference and reflection to
determine the speed of these waves. 

Hertz set up a standing wave interference pattern, as illustrated
in Figure 10.8. A wave of a known frequency emitted from the
source and reflected back on itself, setting up a standing wave 
pattern. Hertz was able to detect the location of nodal points in 
the pattern by using a receiving antenna. Using the nodal point
locations, he could determine the wavelength. 

Hertz then calculated the speed of the wave, using the wave
equation v = f λ. His calculated value for the speed of electromag-
netic waves came very close to values of the speed of light that
had been estimated and measured by several physicists in the
middle 1800s.

reflecting
surface

nodal points

receiving
antenna

standing wave
interference pattern

source
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Sparks produced at
the transmitter by voltage surges
generate electromagnetic waves
that travel to the receiver, causing
a second spark to flash.

Figure 10.7

input voltage

transmitter

receiver

induction
coil

+ −

When the receiver
was at an antinode, as shown
here, it detected a strong signal.
When it was moved to a node, 
it detected nothing. 

Figure 10.8



In 1905, Albert A. Michelson (1852–1931) made the most 
accurate measurement of the speed of light of any that had made
previously. In fact, it was extremely close to the value of modern
measurements made with lasers. Michelson perfected a method
developed by Jean Foucault (1819–1868) and illustrated in 
Figure 10.9. Michelson set up an apparatus on Mount Wilson in
California and positioned a mirror 35 km away. A light source
reflected off one side of an eight-sided mirror, then off the distant
mirror, and finally off the viewing mirror. The rate of rotation (up
to 32 000 times per minute) of the eight-sided mirror had to be
precise for the reflection to be seen. By determining the exact 
rotation rate that gave a reflection and combining that with the
total distance that the light travelled, he calculated the speed of
light to be 2.997 × 108 m/s.

Until the laser was developed, Michelson’s measurements of
the speed of light using an apparatus similar to this were the best measure-
ments of the speed of light that were available.

Maxwell’s equations also provided a method for calculating the
theoretical speed of electromagnetic waves. The equations include
the speed as well as two constants that depend on the way in
which the medium through which the waves are travelling affects
electric and magnetic fields. The electric permittivity (ε) is a meas-
ure of the ability of a medium to resist the formation of an electric
field within the medium. The constant is directly related to the
Coulomb constant in Coulomb’s law. The second constant, called
the magnetic permeability (µ), is a measure of the ability of the
medium to become magnetized. When electric and magnetic fields
exist in a vacuum, often called “free space,” the constants are 
written with subscript zeros: ε0 and µ0. Their values are known 
to be as follows.

ε0 = 8.854 187 82 × 10−12 C2/N · m2 and  µ0 = 4π × 10−7 N/A2

Maxwell’s equations show that the speed of electromagnetic
waves in a vacuum or free space should be given by the equation
in the following box.

Figure 10.9
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Coulomb’s law is sometimes 

written FQ = 1
4πε

q1q2
r2 ,

where 1
4πε

= k.
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Bend a Wall

Producing 
Electromagnetic 
Waves

Q U I C K

L A B

TARGET SKILLS

Predicting
Identifying variables
Analyzing and interpreting

Predict whether the visible sparks between a
Van de Graaff generator (set up by your teacher)
and a grounded object will produce electromag-
netic radiation other than light. Use a portable
radio to test for electromagnetic radiation with
wavelengths similar to radio waves. Clearly tune
in an AM radio station before generating the
sparks. Predict how the portable radio will react
if the sparks generate radio waves. Generate
spark discharges and observe. Repeat for an FM
station. Test how the distance between the spark
source and the receiver (the radio) affects
observed results. If the radio has a movable
antenna, test different orientations of the anten-
na to find out if one orientation has any greater
effect than the others.

Analyze and Conclude
1. What theoretical basis exists to suggest that

the sparks will produce electromagnetic 
radiation in the form of both light and 
radio waves?

2. Does the presence of small electric sparks
suggest the acceleration of charged particles?
Explain.

3. (a) Describe what happened to the portable
radio when sparks were produced.

(b) How do your results verify the production
of electromagnetic radiation?

4. In terms of frequency and wavelength, how
are AM and FM radio signals different?

Quantity Symbol SI unit
speed of light c m

s
(metres per second)

permeability of (newtons per 
free space µ0

N
A2 ampere squared)

permittivity of (coulombs squared perC2

N · m2free space ε0 newton metre squared)

Unit Analysis
1√( N

A2

)( C2

N · m2

) = 1√( N
C2

s2

)( C2

N · m2

) = 1√
s2

m2

= m
s

Note: The symbol c, by definition, represents the speed of
light in a vacuum. Since all electromagnetic waves travel at
the same speed in a vacuum and light is an electromagnetic
wave, it is appropriate to use c for electromagnetic waves 
in general.

c = 1√µ0ε0

SPEED OF ELECTROMAGNETIC RADIATION
The speed of all electromagnetic radiation is the inverse of the
square root of the product of the electric permittivity of free
space and the magnetic permeability of free space.
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Speed of Electromagnetic Waves
Use the solution to Maxwell’s equations for the velocity of light in
free space to determine a numerical value for the speed.

Conceptualize the Problem
� Maxwell’s theory predicts the velocity of light to have a theoretical 

speed, given by c = 1√µ0ε0
.

� Free space has a constant value for electric field permittivity.

� Free space has a constant value for magnetic field permeability.

Identify the Goal
The numerical value for the theoretical speed of electromagnetic
waves, including light

Identify the Variables and Constants
Known Unknown
µ0 = 4π × 10−7 N

A2

ε0 = 8.854 187 82 × 10−12 C2

N · m2

c

Develop a Strategy

The numerical value for the theoretical speed of electromagnetic
waves, including light, is 299 792 458 m/s.

Validate the Solution
The speed should be exceptionally fast, which it is. As shown on the
previous page, the units cancel to give m/s which is correct for speed.

1. News media often conduct live interviews
from locations halfway around the world.
There is obviously a time-lag between when
a signal is sent and when it is received.

(a) Calculate how long the time-lag should be
for a signal sent from locations on Earth
separated by 2.00 × 104 km.

(b) Suggest reasons why the actual time-lag
differs from the value in (a).

2. What is the speed of light in water if, in
water, ε = 7.10 × 10−10 C2/N · m2 and
µ = 2.77 × 10−8 N/A2?

PRACTICE PROBLEMS

c = 1√µ0ε0

c = 1√(
4π × 10−7 N

A2

)(
8.854 187 82 × 10−12 C2

N · m2

)
c = 299 792 458 m

s

Use Maxwell’s theoretical speed equation
for free space.

Substitute in the values and compute 
the result.

SAMPLE PROBLEM 

430 MHR • Unit 4  The Wave Nature of Light



Bend a Wall
Calcite CrystalsQ U I C K

L A B

TARGET SKILLS

Predicting
Identifying variables
Analyzing and interpreting

TARGET SKILLS

Performing and recording
Analyzing and interpreting
Communicating results

Since light and electromagnetic waves all exhibit the properties 
of reflection, refraction, and interference, and have identical 
theoretical and experimental speeds in a vacuum, there is no
doubt that light is no more than a form of electromagnetic waves
that is detected by the human eye.

Polarization of Electromagnetic Waves
Polarized sunglasses eliminate the glare of reflected light from the
highway and the hood of a car, while other sunglasses do not.
What is unique about polarized lenses? The answer is based on 
a specific property of electromagnetic radiation including light.
Evidence for this property was first reported by Danish scientist
Erasmus Bartholinus (1625–1692) in 1669. Although he could not
explain what he saw, Bartholinus observed that a single ray of
light separated into two distinct rays while passing through a
piece of naturally occurring calcite crystal. Figure 10.10 illustrates
how a light entering a crystal from only one source (a single hole)
splits while travelling through the crystal. Check it out yourself 
in the Quick Lab that follows.
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A single ray is
split into two as it passes through
the calcite crystal.

Figure 10.10

Obtain a piece of calcite crystal and a piece of
cardboard. Poke a small hole in the centre of 
the cardboard with the tip of a pencil. Place the
calcite crystal tightly against the cardboard,
with the hole at the crystal’s centre. Hold the
cardboard-crystal apparatus in front of a light
source, with the crystal on the side facing you.
Observe the light passing through the small hole
into the crystal. Repeat the procedure, placing a
single polarizing filter on the back of the card-
board, over the hole. Rotate the filter while
viewing the light passing into the crystal.

Analyze and Conclude
1. How many dots of light were visible exiting

the crystal when the light source was viewed
without the polarizing filter?

2. Describe what happened to the light passing
through the crystal when the polarizing filter
was being rotated.

3. What might cause a ray of light to change
path?

(a) What would happen if the electric field 
of an electromagnetic wave oriented 
vertically was able to pass through a 
substance at a different speed than if it
was oriented horizontally?

(b) Could your results suggest that calcite
crystals have a different refractive index
for light, depending on the alignment of
the electric field of the wave? Explain.
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To understand the principles behind polarized lenses and the
splitting of a ray of light by calcite crystals, you first need to grasp
the concept of polarization. As you know, electromagnetic waves
are transverse waves in which both the electric and magnetic fields
are perpendicular to the direction of propagation of the wave.
However, the electric field might be pointing in any direction
within a plane that is perpendicular to the direction of propaga-
tion, as illustrated on the left side of Figure 10.11. Make a mental
note that, when examining illustrations such this, only the electric
field vector is drawn, so a magnetic field exists perpendicular to
the electric field. 

Polarizing filters, developed in the 1920s, have the ability to
selectively absorb all but one orientation of the electric fields in
electromagnetic waves, as shown in Figure 10.11. After light or
any electromagnetic wave has passed through such a filter, all of
the electric fields lie in one plane and the wave is said to be plane
polarized. The following Quick Lab will help you to understand
polarization. 

Natural light has waves with electric vectors pointing in all
possible directions perpendicular to the direction of propagation of the
wave. Polarizing filters absorb the energy of the waves that have electric
fields in all but one orientation. 

Figure 10.11

Horizontally 
oriented 
electric field 
is transmitted.

polarizing filterincident 
unpolarized light

Vertically 
oriented electric field 

is absorbed.



Bend a Wall
PolarizationQ U I C K

L A B

TARGET SKILLS

Performing and recording
Analyzing and interpreting
Communicating results

Part A: Modelling Polarization with Rope

Working in groups of three, practise generating
randomly polarized pulses in a length of rope
held at both ends. Only one person in each
group should generate the pulses. Have the
third person insert a board with a horizontal slit
cut into it. Observe how the pulses change after
passing through the slit in the board. Rotate 
the board so that the slit is oriented vertically.
Again, observe how the pulse changes after pass-
ing through the board. Repeat the process again,
this time inserting a second board. Observe the
pulses when the slits in the boards are both
aligned (a) vertically and (b) at 90˚ to each other.

Analyze and Conclude
1. Explain the meaning of “randomly polarized

pulses.”

2. How do the pulses change as they pass
through the (a) horizontally and (b) vertically
oriented slit in the board?

3. What happens to the energy contained in
pulses that are not aligned with the slit in
the board?

4. Could this experiment be repeated using a
spring and longitudinal pulses?

Part B: Polarization of Light

1. Obtain two polarizing filters. Design a simple
procedure using both filters to determine
whether light can be polarized.

2. Design a simple procedure to determine if
reflected light (such as sunlight reflecting off
a desktop) is polarized.

3. Observe the sky, preferably on a day with a
bright blue sky and some fluffy white clouds.
Rotate a single polarizing filter while viewing
the sky to determine if the blue light from
the sky is polarized.

Analyze and Conclude
1. Hypothesize what is occurring when two

polarizing filters are aligned so that they 
(a) allow light through and (b) block all of 
the light.

2. Did you find any evidence for the polariza-
tion of reflected light? Explain.

3. (a) Describe how the image of the blue sky
and white clouds changes as the 
polarizing filter is rotated.

(b) Based on your observations, determine 
whether the blue light of the sky 
polarized.

B polarizing filters
with axes parallel

A polarizing filters with
axes perpendicular

A

B
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You now know how polarized lenses affect light, but how do
they exclusively absorb glare from the light that is reflected from a
road surface or the hood of a car? When light strikes a surface
such as a street or pool of water, the electric fields that are perpen-
dicular to that surface are absorbed and the parallel or horizontal
electric fields are reflected. Therefore, reflected light is polarized. 

As illustrated in Figure 10.12, polarized lenses in sunglasses 
are oriented so that they allow only vertical electric fields to pass
through and thus absorb most of the horizontally polarized reflect-
ed light. Figure 10.13 shows photos taken with and without a
polarizing filter. The fish beneath the water’s surface is clearly 
visible when the bright glare, consisting mainly of horizontally
polarized light, is removed. 

Since glare is caused by reflected light that is horizontally
polarized, sunglasses with polarized lenses can eliminate glare by allowing
only vertically polarized light to pass through.

How can the phenomenon of polarization explain the ability of
calcite crystals to split a beam of light into two beams? Again, ask
yourself some questions.

Q: What happens to light when it passes from one medium, such
as air, into another medium, such as a calcite crystal?

A: Light appears to bend or refract, because the speed of light is
different in the two different media.

Q: What determines the extent of bending or refraction of the
light?

A: The ratio of the indices of refraction of the two media deter-
mines the angle of refraction of light. The speed of light in 
a medium determines its index of refraction.

Q: How can a single crystal refract a single beam of light at two
different angles?

A: The crystal must have two different indices of refraction for 
different properties of light.

Q: How can a beam of light have different properties?

A: Natural light has electric fields pointing in different directions.

Crystals, in general, are very orderly structures. The compounds
in calcite are uniquely oriented so that the speed of light polarized

Figure 10.12

unpolarized
 light

horizontal surface

Horizontally
polarized light
is absorbed.
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Bright sunlight
reflecting off the surface of water
creates a lot of glare, preventing
you from seeing objects below the
surface. Polarized filters allow you
to clearly see the fish swimming
in this pond.

Figure 10.13



in one direction is different than the speed of the light polarized
perpendicular to the first. As a result, a beam of light is split into
two beams, because light polarized in different planes refracts to
different extents. Substances such as calcite, which have a differ-
ent refractive indices depending on the polarization of the light, 
is said to be doubly refractive. 

Certain materials, such as Lucite™, exhibit double refractive
properties when under mechanical stress. The stress causes 
molecules in the material to align and behave similar to the 
orderly compounds in calcite crystals. Such materials are said to
be photoelastic. Figure 10.14 demonstrates stress patterns that
become visible in the Lucite™ when it is placed between polariz-
ing and analyzing filters. 

Mechanical stress changes the refractive index of Lucite™. As
the level of stress varies in a sample, so does the amount of refrac-
tion. The plane of polarization of incident plane polarized light
will be rotated it travels. A changing refractive index also means
that the speed of propagation will be different for each electric
field orientation. Light reaching an analyzer — a second polarizing
filter — will be polarized in a different plane and form a pattern
highlighting the stresses in the sample.

It is possible to produce reflective photoelastic coatings that are
painted onto solid objects, allowing engineers to monitor mechani-
cal stress and potential areas of failure. This technique is used to
analyze materials for otherwise undetectable cracks and flaws.

photoelastic
material

under stress

difference in
transmission time

source

polarizer (   )

analyzer (   )
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Lucite™
sandwiched between
polarizing and analyzing
filters yields an interfer-
ence pattern showing
the distribution of
mechanical stress.

Figure 10.14

The refractive
indices of doubly refractive photo-
elastic material varies under
mechanical stress, producing
interference patterns used to
detect flaws.

Figure 10.15



Reflection and Absorption of 
Electromagnetic Waves
Light reflecting from a mirror is a common experience. So is 
the presence of satellite dishes used for satellite television. The 
satellite dishes are often a grey colour and are not nearly as
smooth to the touch as a mirror. It might seem strange that the
satellite dishes are not made of shiny, highly reflective material to
help capture and reflect the radio waves for the receiver. In fact,
although the grey coloured dishes are not highly reflective to light,
they are highly reflective to radio waves. The amount of energy
that is reflected depends on the wavelength of the incident wave
and the material it is striking.

Light reflects off a mirror. Is the wavelength of light smaller or
larger than the atoms that make up a mirror? The atoms need to be
much smaller than the wavelength of light; otherwise, the mirror
surface would appear bumpy. A tiny scratch in the mirror is easily
visible, because it is much larger than the wavelength of light.
Theoretically, if atoms were larger than the wavelength of light,
it would be impossible to make a mirror that acted as a good
reflector.

• Would a mirror designed to reflect longer wavelength infrared
radiation need to be smoother than a mirror designed to reflect
shorter wavelength ultraviolet radiation?

Radio telescopes work by reflecting radio waves to a central
receiver. The radio waves have wavelengths in the order of several
metres. Therefore, the reflecting dishes can be constructed of 
conducting material, such as metallic fencing. To the long wave-
lengths, the fencing would act as a smooth surface. In general, 
the shorter the wavelength, the smoother the reflecting surface
must be.

A mirror is a smooth reflector for light in the same way 
that wire mesh is a smooth reflector for long wavelength radio waves.

Figure 10.16
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10.1 Section Review

1. Qualitatively explain the meaning of
Maxwell’s third and fourth equations.

2. What did Maxwell predict would be
necessary to generate an electromagnetic
wave?

3. How did Hertz verify Maxwell’s theory
of electromagnetic waves?

4. What is relationship in space between
the electric and magnetic fields in an electro-
magnetic wave?

5. Describe the process that allows an 
electromagnetic wave to exist as it radiates
away from the source that created it.

6. Describe the meaning of the terms 
“electric permittivity” and “magnetic 
permeability.”

7. Describe the apparatus that Michelson
used to measure the speed of light.

8. Describe one mechanism by which light
is polarized in nature.

9. Assume that you are wearing polarized
sunglasses while driving a car. You come to a
traffic light and stop behind another car. You
see that the rear window of the car ahead has
a distinct pattern of light and dark areas.
Explain. 

10. Define the term “photoelastic.” Explain
how light interacts with a photoelastic 
material.

11. As illustrated in the diagram, describe the
process involved as light travels from the
source to the analyzing filter.

polarizer

analyzing
filter

unpolarized
light

unpolarized
light

polarizer

source

source

analyzing
filter
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Radio frequencies of the electromagnetic
spectrum spread information around the
globe at the speed of light.
� Investigate the relationship between a 

signal’s wavelength and the length of 
transmitting and receiving antennas.

� Is there a relationship between the 
frequency of a radio signal and the range
over which it might be received?

� If you could select the frequency at which
your transmitter will operate, what 
frequency would you chose? Explain.
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When Hertz designed and carried out his experiments, his only
intention was to test Maxwell’s theories of electromagnetism. He
had no idea that his success in generating and detecting electro-
magnetic waves would influence technology and the daily lives of
the average citizen. Today, with electromagnetic radiation, people
talk on cellphones, watch television that is receiving signals from
satellites, and diagnose and treat disease.

There is literally no limit to the possible wavelengths and, 
consequently, the frequencies that an electromagnetic wave could
have. Wavelengths of electromagnetic waves as long as hundreds
of kilometres (103 Hz) to less than 10−13 m (3 × 1021 Hz) have been
generated or detected. The electromagnetic spectrum has arbitrari-
ly been divided into seven categories, based in some cases on 
historical situations or by their method of generation. In fact, 
some of the categories overlap. The following is a summary of the
generation and applications of these seven categories of electro-
magnetic waves.

Radio Waves
By far the broadest electromagnetic wave category comprises radio
waves, ranging from the longest possible wavelength or lowest 
frequency to about a 0.3 m wavelength or a frequency of 109 Hz.
Radio wave frequencies are easily generated by oscillating electric
circuits. They are broadcast by antennas made of electric conduc-
tors in which charges oscillate, as illustrated in Figure 10.4 on
page 425. Radio waves are divided into subcategories by govern-
ments to restrict the use of certain ranges of waves to specific 
purposes. 

Extremely low-frequency communication — 3 to 3000 Hz — is
reserved for military and navigational purposes. Submarine-to-
shore communications use the lowest of these frequencies when
deeply submerged. Electromagnetic signals travelling through 
salt-water are absorbed, making communication with a deeply 
submerged vessel difficult. The very low frequencies are better
able to penetrate the salt-water than are higher frequencies.
However, such low frequencies have extremely long wavelengths
that require very long antennas. In order to use these frequencies,
submarines drag behind the ship a cable that can be as long 
as several hundred metres, to act as an antenna. Above ground, 
the transmission antenna consists of more than 140 km of 
suspended cabling.

The Electromagnetic
Spectrum10.2
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• Define and explain the concepts
and units related to the 
electromagnetic spectrum.

• Describe technological applica-
tions of the electromagnetic
spectrum.

• Describe and explain the design
and operation of technologies
related to the electromagnetic
spectrum.

• Describe the development of
new technologies resulting from
revision of scientific theories.

• electromagnetic spectrum

• triangulation

 T E R M S
K E Y

E X P E C T A T I O N S
S E C T I O N



Amplitude modulated (AM) radio — 535 to 1700 kHz — was the
first widely used type of radio communication in the early part of
the twentieth century. The range of frequencies that constitute the
AM band was chosen arbitrarily, based primarily on the ability of
the technology to generate the signals.

An AM radio station is assigned a specific “carrier” frequency
on which to transmit signals. The information is carried by
increasing and decreasing (modulating) the amplitude of the wave.
For example, if the information is in the form of a voice or music,
a microphone converts the sound waves into electric signals that
are then combined or mixed with the carrier wave, as shown in
Figure 10.17. A radio receiver picks up the signals by tuning an
oscillating circuit in the instrument to the same frequency as the
carrier frequency and then amplifies that wave. The electronic 
circuitry filters out the carrier wave and the “envelope” wave
drives a speaker, converting the electric signal back into sound.

The greatest problem with AM reception is that many machines
and instruments emit random electromagnetic waves over a broad
range of radio frequencies. For example, electric motors, automo-
bile ignitions, and lightning bolts emit random “noise” signals that
add to the amplitude of many AM waves. On a nearby AM radio,
the signals will be picked up as static.

Short–wave radio is a range of frequencies — 5.9 MHz to 
26.1 MHz — reserved for individual communication. Before 
satellite communications and cellular telephones, many people,
called “ham operators,” built their own transmitters and receivers
and communicated with other ham operators around the world.
Novice operators were licensed to transmit only Morse code, but
they usually advanced quite rapidly and obtained licences to
transmit voice. Occasionally, ham operators were the only people
listening for signals when a boat or downed airplane was sending
SOS calls. Ham operators were responsible for saving many lives. 

Citizens’ band (CB) radio frequencies — 29.96 MHz to 27.41 MHz
— are reserved for communication between individuals over very
short distances. The range of frequencies is divided into 40 sepa-
rate channels. Because licences restrict the power of CB radios,
they cannot transmit over long distances, so many people can use

sound wave
pressure profile radio wave

amplitude
modulation (AM) signal

=

+
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Your calculator might be a radio
wave transmitter. Turn your AM
radio dial to a very low frequency
and make sure that it is between
stations so that there is very little
sound. Turn on your electronic
calculator, hold it very close to
the radio, and press various 
calculator buttons. You might be
able to play a tune on your radio.

PHYSICS FILE

The radio wave in
this figure is the carrier wave that
is broadcast by the radio station.
The term “modulation” refers to
the changes in the amplitude of
the carrier wave to match the
sound wave, which contains 
information such as music, 
spoken words, and special effects.

Figure 10.17



the same band at the same time, because the ranges do not over-
lap. Before the advent of cellphones and other more sophisticated
wireless communication systems, CB and walkie-talkie communi-
cation provided a link between homes, businesses, and people
travelling in vehicles. CB radio almost created a subculture and 
a language among truck drivers and other long-distance travellers,
who used CB radios to pass the time. 

Cordless telephones use a range of frequencies between 40 and 
50 MHz. The range of a cordless telephone is designed for use in a
home, and is shared with garage door openers and home security
systems close to 40 MHz and baby monitors close to 49 MHz. The
possibility of receiving a telephone conversion from a cordless
telephone over a baby monitor exists, although it is unlikely, due
to the very low power of both a telephone and a baby monitor.
Some cordless telephones are also designed to operate close to 
900 MHz.

Television channels 2 through 6 are broadcast in the 54 to 88 MHz
frequency range, which lies just below FM radio. Channels 7
through 13 are broadcast over a frequency band between 174 to
220 MHz, which lies just above FM radio. These TV signals are
broadcast signals that can be received only with a TV aerial. 
Cable and satellite signals are quite different. The method of 
transmission and reception are essentially the same as radio. The
television picture is transmitted as an AM signal and the sound is
transmitted as an FM signal.

Wildlife tracking collars use some of the same frequencies that are
used by television. Understanding complex ecological interactions
sometimes involves tracking wild animal populations over long
distances. Canada has become a world leader in the design and
manufacturing of wildlife tagging and tracking technology.

The animal in Figure 10.18 is a cheetah, a member of an 
endangered species. It is wearing a tracking collar that emits an
electromagnetic signal of a specific frequency, allowing researchers
to follow the animal’s day-to-day movements. Similar systems
have been developed for various climates and conditions, 
including cold Arctic climates and underwater environments.
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Wildlife
researchers track individual 
animals belonging to endangered
species to learn about their
behaviour, in an attempt to find
ways to prevent extinction of 
their species.

Figure 10.18



In the past, animals were tagged with identification bands. If 
the same animal was captured again, migration patterns could be
deduced. The process required tagging a very large sample of 
animals and data accumulation was slow, since the recapture of
tagged animals could not be guaranteed. Microchip tags on the
tracking collars have dramatically increased wildlife tracking
research capabilities, providing sample and log data such as 
ambient temperature, light, and underwater depth, as well as
transmitting a tracking signal. Similar, although less sophisticated,
tags are used by pet owners to identify their animals. Pet identifi-
cation tags store information about the pet and its owners. The tag
is inserted under the animal’s skin, where it will remain for life.
Placing a receiving antenna near the tag retrieves the data.

Frequency modulated (FM) radio transmits frequencies from 
88 MHz to 108 MHz. FM radio was introduced in the 1940s to
improve the sound quality by reducing the static that is common
on AM radio. FM radio eliminates static, because a change in the
amplitude of the wave has no effect on the signal. An FM carrier
wave has a single frequency, as does the AM carrier. However, as
shown in Figure 10.19, information is carried in the form of slight
increases and decreases in the frequency of the carrier. FM 
frequencies are absorbed more easily by the atmosphere than 
are AM frequencies, so the range of an FM station is shorter 
than an AM station.

The amplitude of a carrier wave from an FM radio station
never changes. In fact, if external noise from a nearby machine increases
the amplitude, the radio receiver crops off the waves, accepting only a 
constant amplitude. The sound signal modulates, or varies, the frequency 
of the carrier wave.

The transmission of all radio wave frequencies is called a “line
of sight” transmission, because radio waves are absorbed by the
ground. Radio waves do of course penetrate walls and objects that
are not extremely thick and dense, but cannot penetrate large
amounts of matter. Sometimes, however, you might pick up a
radio station at a distance greater than line of sight. The explana-
tion for this phenomenon is the ability of the ionosphere to reflect
radio waves, as shown in Figure 10.20. The ionosphere is a layer
of charged atoms and molecules in the upper atmosphere that is

Figure 10.19
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created by high-energy radiation from the Sun stripping electrons
from the gases. At night, the altitude of the ionosphere increases
and allows signals to travel farther than during the day. You might
have noticed that you can pick up radio stations at night that you
cannot receive during the day.

The longer wavelength radio waves reflect from the iono-
sphere, and most of the waves return to Earth. Although radio waves cannot
be used for satellite communications, they can travel farther around Earth’s
surface than can the shorter microwaves. In contrast, shorter microwaves
are unaffected by the ionosphere and can therefore be used in satellite 
communications.

The ionosphere is most effective in reflecting short-wave radio
signals. Multiple reflections of short-wave radio signals between
the ground and the ionosphere allow signals to travel over 
incredibly long distances. Ham operators are often able to 
communicate with others halfway around the world.

Magnetic resonance imaging (MRI) is a unique application of
radio waves that is used to diagnose certain types of illnesses and
injuries. MRI provides incredible detail in the study of nerves,
muscles, ligaments, bones, and other body tissues by using electro-
magnetic signals to create image “slices” of the human body. 

The largest component of an MRI system is a powerful magnet,
with a tube called the “bore” running horizontally through 
the magnet. The patient slides on a special table into the bore. 
The magnetic field interacts with the nucleus of atoms of hydro-
gen, because these nuclei behave like tiny magnets that align
themselves in the field. A pulse of radio waves is absorbed 
by the hydrogen, causing the hydrogen atoms to “flip” and 
become aligned against the external magnetic field. When the 

Figure 10.20
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electromagnetic pulse stops, the atoms relax back to their original
alignment and release absorbed energy in the form of electromag-
netic waves. Sensors detect the emitted waves and send signals to
a computer system that converts the electrical signals into a digital
image that can be put on film.

Microwaves
Microwaves ranging from 1.0 × 1010 Hz to 3.0 × 1011 Hz have such
high frequencies that there is no electronic circuitry capable of
oscillating this fast. Research into the development of a device
able to generate microwaves was stimulated by the development 
of radar. Physicist Henry Boot and biophysicist John T. Randall,
both British scientists, invented an electron tube called the 
“resonant-cavity magnetron” that could produce microwaves.
Similar tubes, called Klystron™ tubes, are the two main devices
that generate microwaves today. The first application of micro-
wave was, of course, radar, which has revolutionized safety in 
aviation as well as detecting weather data around the world. 

Soon after the technology to generate microwaves was devel-
oped, the number of applications grew rapidly. Microwave ovens
generate microwaves that have a frequency of 2450 MHz, which is
close to the natural frequency of vibration of water molecules. As
a result, these microwaves are efficiently absorbed by the water
molecules in food, causing a dramatic increase in temperature,
which cooks the food.

Microwaves have revolutionized communications for one 
fundamental reason — in contrast to radio waves, microwaves
penetrate the ionosphere, making them useful for space-based
communication. Any location, anywhere on Earth, can be reached
by satellite communication. 

The Global Positioning System (GPS), for example,
makes it possible to determine your location and alti-
tude anywhere on Earth through the use of geostationary
satellites. Global positioning satellites, originally part of
the military infrastructure, provide businesses, rescue
workers, and outdoor enthusiasts with instantaneous
position and tracking data. The global positioning satel-
lite network consists of 24 geostationary satellites that
are in constant communication with each other and with
several ground stations.

Triangulation is the basis of the GPS. Figure 10.21
demonstrates how you could locate your exact position
if you knew how far you were from three points. For
example, if you knew you were exactly 65 km from
Toronto, you could be anywhere in a circle with a 65 km
radius around Toronto. If you also knew that you were
194 km from Windsor, you could now determine your
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Invented by the British and
shared with the U.S. military
while the World War II Battle of
Britain raged in 1940, the reso-
nant-cavity magnetron was
described as being capable of
generating “ten kilowatts of
power at ten centimetres, roughly
a thousand times the output of
the best U.S. [vacuum] tube on
the same wavelength.” From this
realization flowed numerous
developments, including gun-
laying radar, radar-bombing 
systems, and air-intercept radar,
as well as the first blind-landing
system. As most veterans of the
“Rad Lab” came to believe: “The
atomic bomb only ended the war.
Radar won it.”

PHYSICS FILE

Circles generated from three 
known distances intersect at only one point.

Figure 10.21
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location as being one of two sites where the two circles intersect.
Knowing a third measure, such as that you were 79 km from
Niagara Falls, you could pin-point your exact location. All three
circles intersect at only one point, revealing your location to be
downtown Cambridge. Global positioning technology takes this
process one step further, using four spheres instead of three cir-
cles. This allows a location to be determined in three-dimensional
space, including altitude.

GPS satellites continually send radio signals between each other
and to Earth. The network of 24 satellites ensures that no matter
where you are on Earth, at least four satellites will have a direct
line of sight to your position. Hand-held GPS receivers measure
the amount of time required for a microwave signal to travel from
each satellite. The receivers are then able to calculate the distance
from each satellite, knowing the speed of the signal
(c = 3.00 × 108 m/s). GPS hand-held systems are effective because
they are an inexpensive and accurate method to determine the
time the signal took to travel from the satellite to the receiver.

GPS technology has been made possible only through the 
merging of several branches of science and engineering. For 
example, complex mathematical models are used to calculate the
speed of electromagnetic signals through our continually changing
atmosphere and ionosphere. Atomic clocks on board each satellite
are a product of research in atomic physics. Aerospace and rock-
etry advances rely on chemistry and physics.

Infrared Radiation
Infrared radiation with frequencies from 3.0 × 1011 Hz to
3.85 × 1014 Hz lies between microwaves and visible light. Infrared
radiation was accidentally discovered in 1800 by Sir William
Herschel (1738–1822). He was separating the colours of the visible
spectrum and measuring the ability of different colours to heat the
objects that were absorbing the light. He was very surprised when
he placed his thermometer just beside the red light, where no 
visible light was falling, and discovered that the thermometer

exact location 
determined where 

four spheres intersect
line of sight

horizon
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GPS receivers
determine exact location by 
computing a single point at 
which imaginary spheres from
each satellite intersect.

Figure 10.22



showed the greatest increase in temperature. He rightly concluded
that there was some form of invisible radiant energy just beyond
red light.

Any warm object, including your body, emits infrared radiation.
The natural frequency of vibration and rotation of many different
types of molecules lies in the infrared region. For this reason,
these molecules can efficiently absorb and emit infrared radiation.

The ability to detect infrared radiation has led to several varied
applications, from electronic night-scopes, which convert the heat
of an animal or person into a visible image, to satellite imaging
able to “see” through clouds to gather information related to the
health of vegetation or the hot spots of a forest fire.

Visible Light
Visible light encompassing frequencies between about
3.85 × 1014 Hz and 7.7 × 1014 Hz is defined as light, simply
because the human eye is sensitive to electromagnetic waves 
within this range. In some applications, it is more common to refer
to the wavelength than the frequency, so you might see the range
of light waves reported as encompassing wavelengths between 
400 and 700 nm.

Light technologies are too numerous to mention. You probably
know more about light than any other range of the electromagnetic
spectrum, because entire units in your previous science courses
were based on the properties of light. Visible light is emitted from
all very hot objects, due to excited electrons in molecules drop-
ping down to lower energy levels and emitting light energy.

Ultraviolet Radiation
Ultraviolet (UV) radiation, with frequencies between 7.7 × 1014 Hz
and 2.4 × 1016 Hz, has the ability to knock valence electrons free
from their neutral atoms — a process known as “ionization.”
When electrons drop from very high energy levels in atoms to
much lower levels, UV radiation is emitted. Ionization is 
responsible for creating the ionosphere around the globe. UV 
radiation activates the synthesis of vitamin D in the skin, which 
is very important to your health. However, large quantities of 
UV radiation can cause skin cancer and cataracts. Ultraviolet
wavelengths are used extensively in radio astronomy. 

UV radiation was discovered just one year after infrared radia-
tion was discovered and also by “accident.” J. Ritter was studying
the ability of light to turn silver chloride black by releasing 
metallic silver. He discovered that when silver chloride was
placed just beyond the violet light in a spectrum of sunlight 
created by a prism, it was blackened even more efficiently than
when exposed to the blue or violet light.
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How Far Can It Go?
Scientific discoveries breed new
applications with capabilities
once unimagined. Page 604 of
this text provides suggestions 
for you to consider for your
Course Challenge.

COURSE CHALLENGE



X Rays
X rays with frequencies between 2.4 × 1016 Hz and 5.0 × 1019 Hz
have great penetrating power and are very effective in ionizing
atoms and molecules. X rays can be produced when electrons 
in outer shells of an atom fall down to a very low, empty level.
Commercial generators produce X rays by directing very high
energy electrons that have been accelerated by a high voltage 
onto a solid metal surface inside a vacuum tube as shown in
Figure 10.23. When the electrons are abruptly stopped by the 
target electrode, X rays are emitted. Such X ray generators are 
used extensively in medical applications and in industry for 
material inspection. 

X-ray images of the Sun can yield important clues about solar
flares and other changes on the Sun that can affect space weather.

Gamma Rays
Gamma rays are the highest frequency, naturally occurring electro-
magnetic waves, with frequencies ranging from 2.4 × 1018 Hz to
2.4 × 1021 Hz. Gamma rays are distinguished from X rays only by
their source: Whereas X rays are produced by the acceleration 
and action of electrons, gamma rays are produced by the nuclei 
of certain atoms. Just as electrons in atoms can become excited 
by the absorption of energy, the nucleus of an atom can also be
excited. An atom with an excited nucleus is said to be “radio-
active.” When an excited or radioactive nucleus releases energy 
to drop down to a more stable state, it releases gamma rays. 

high voltage
cathode

X rays

metal target
anode

electrons

−

+
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An X-ray tube
must be evacuated so that
the high-energy electrons 
are not scattered by gas 
molecules. The X rays 
produced when the electrons
collide with the target 
and are suddenly stopped 
are sometimes called
“Bremsstrahlung,” which
means “braking radiation.”

Figure 10.23

Cosmic Rays Are Not Rays!
Cosmic rays are not rays at all,
but rather are high-energy parti-
cles ejected from stars, including
the Sun, during solar flares.
These particles, although they
travel at very high speeds, do not
travel at the speed of electromag-
netic radiation. A gamma ray
emitted by the Sun will arrive at
Earth in approximately 8 min,
whereas high-energy particles
referred to as “cosmic rays” can
take between several hours to
several days to travel from the
Sun to Earth.

MISCONCEPTION



Due to their great penetrating and ionizing power, gamma rays
are sometimes used to destroy malignant tumors deep inside the
body. Radioactive atoms are also used extensively in research to
track and identify specific elements. Gamma ray images of our 
universe provide information on the life and death of stars and on
other violent processes in the universe. Gamma rays are extremely 
energetic and can be very harmful to life.
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The electromagnetic spectrum is continuous throughout a
range of frequencies covering more than 18 orders of magnitude (powers 
of 10). The subdivisions are artificial, but give scientists a way to quickly
communicate the range of electromagnetic waves and the general proper-
ties of the waves of interest.

Figure 10.24



• Describe which frequency range is best for long-distance 
communication. Explain.

• Suggest why gamma rays penetrate farther into matter than UV,
despite the generalization that longer wavelengths have greater
penetration power.

Electromagnetic Waves and the Wave Equation
The wave equation that you learned while studying mechanical
waves, v = f λ, also applies to electromagnetic waves. Since 
electromagnetic waves always travel with the same speed in a 
vacuum, the wave equation can be expressed in terms of c instead
of v. Since the speed of electromagnetic waves in air is almost
identical to their speed in a vacuum, this equation can be used 
for air as well as for a vacuum or free space.

Quantity Symbol SI unit
speed of electro-
magnetic radiation m

s
(metres per

in a vacuum c = 3.00 × 108 m/s second)

frequency f Hz (hertz or 1
s

)

wavelength λ m (metres)

Unit Analysis

(hertz)(metre) =
( 1

s

)
(m) = m

s
Note: The velocity of all electromagnetic radiation in a 
vacuum is denoted as c. However, electromagnetic radiation
travelling through air is slowed only slightly, and therefore 
the value of c is often used to approximate velocity values 
in air as well.

c = f λ

ELECTROMAGNETIC WAVE EQUATION
The speed of electromagnetic waves is the product of their 
frequency and wavelength.

Conceptual Problems
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Radio Waves
An FM radio station broadcasts at a frequency of 2.3 × 108 Hz.
Determine the wavelength of the FM radio waves from this station.

Conceptualize the Problem
� Radio wave transmission is a form of electromagnetic radiation.

� The speed of electromagnetic radiation in air is approximated as c.

� Electromagnetic waves can be described by using the wave equation.

Identify the Goal
The wavelength of 2.3 × 108 Hz electromagnetic waves

Identify the Variables and Constants
Known Implied Unknown
f = 2.3 × 108 Hz c = 3.00 × 108 m

s
λ

Develop a Strategy

The wavelength of 2.3 × 108 Hz electromagnetic radiation is 1.3 m.

Validate the Solution
Both the speed and the frequency were in the order of 108, which
would suggest that the answer should be near unity, which it is.

3. (a) Determine the wavelength of an AM radio
signal with a frequency of 6.40 × 106 Hz.

(b) Suggest why AM radio transmitting 
antennas are hundreds of metres tall.

4. Microwave oven doors have metallic screens
embedded in them. Light is able to pass
through these screens, but the microwaves 

are not. Assume that the microwave radiation
is in the order of 1010 Hz and the light in the
order of 1014 Hz.

(a) Calculate the wavelengths of both the
microwave radiation and visible radiation.

(b) Suggest why a metallic screen is used in
microwave oven doors.

PRACTICE PROBLEMS

λ = 3.00 × 108

2.3 × 108 Hz

λ = 1.3043
m
s

s−1

λ ≅ 1.3 m

Substitute and solve.

λ = c
f

Manipulate the equation, solving for wavelength.

c = f λUse the wave equation.

SAMPLE PROBLEM 
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10.2 Section Review

1. What is the basis for naming the 
categories within radio waves?

2. Explain the difference between frequency
modulation (FM) and amplitude modulation
(AM).

3. Why does AM radio exhibit much more
static than FM radio?

4. Why are microwaves used for satellite
communications rather than radio waves?

5. How do microwaves “cook” food?

6. Describe the difference between 
ionizing and non-ionizing electromagnetic
radiation.

7. In many spectra, you will see an 
overlap of X rays and gamma rays. What 
distinguishes X rays from gamma rays? 

8. Explain how GPS can help you to locate
your position.

9. How has the application of radio track-
ing collars impacted wildlife research?

10. Magnetic resonance imaging (MRI) is 
not always a safe option for some patients.
Suggest possible reasons that might make an
MRI scan unsafe for a patient. Support your
suggestions with Internet research.

Your FM transmitter will transform your words
into electromagnetic radiation to be received
and heard on a typical portable radio.
� How are electromagnetic waves produced?
� Investigate the factors that determine the

quality of a transmitting antenna.
� Think about the differences and similarities

between the electromagnetic signal Hertz
first sent and received to those used today.
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C H A P T E R Review10

Knowledge/Understanding
1. A magnetic field in an electromagnetic wave

travelling south oscillates in an east-west plane.
What is the direction of the electric field vector
in this wave? 

2. Describe how an antenna works for transmit-
ting and receiving radiation. 

3. If you could see the electric fields in light, how
would the electric fields appear if you were
looking straight toward a light source?

4. How can unpolarized light be transformed into
polarized light?

5. (a) What is the cause of glare? 
(b) How do Polaroid sunglasses reduce glare? 
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� Maxwell unified concepts from electricity and
magnetism into a new field called “electro-
magnetism.” He presented his ideas in the
form of four equations. 

� Maxwell’s equations show that a changing
electric field generates a magnetic field and a
changing magnetic field generates an electric
field.

� Hertz produced electromagnetic waves in the
laboratory, verifying Maxwell’s predictions.

� Electromagnetic waves are produced when
charges are accelerated. An electromagnetic
wave consists of an oscillating electric field
and magnetic field at right angles to each 
other that propagate in a direction that is 
perpendicular to both fields.

� Electromagnetic waves travel with a speed of
c = 3.00 × 108 m/s through empty space.

� Electromagnetic radiation exhibits wave
behaviour, undergoing diffraction and forming
interference patterns. 

� Electromagnetic radiation can be polarized.
The electric field of plane polarized light
oscillates in only one plane. 

� Since the magnetic field in an electromagnetic
wave is always perpendicular to the electric
field, when the electric field is polarized, the
magnetic field must also be polarized.

� Electromagnetic radiation can have frequen-
cies ranging from below 1 Hz to above
1022 Hz, called the “electromagnetic 
spectrum.”

� Light is one narrow section of the electro-
magnetic spectrum. Colour is identified by 
frequency or wavelength.

� Radio waves are produced by oscillating
charge in an antenna.

� Microwaves can be produced by Klystron™
and magnetron tubes.

� Infrared radiation and light can be produced
when high-energy electrons in very hot objects
drop to lower energy levels.

� Ultraviolet radiation can be produced when
electrons in excited atoms drop to lower 
energy levels.

� X rays are produced by rapidly stopping very
energetic electrons that have been accelerated
by a large potential difference.

� Gamma rays are emitted by unstable nuclei
when they return to a more stable state.

� A deeper understanding of electromagnetic
radiation has led to several applications,
including television and radio broadcasts,
global positioning systems, wildlife tracking
systems, and magnetic resonance imaging.

REFLECTING ON CHAPTER 10

Colour

violet

blue

green

yellow

orange

red

Wavelength (nm)

400 – 450

450 – 500

500 – 570

570 – 590

590 – 610

610 – 750



6. What happens if sunglasses polarized to allow
vertical vibrations through are turned 90˚?

7. Sketch an electromagnetic wave and label the
appropriate parts.

8. Television antennas that receive broadcast 
stations (not cable or satellite) have the conduc-
tors oriented horizontally. What does this imply
about the way signals are broadcast by the
stations?

9. Why cannot a radio station transmit
microwaves?

10. Why do you not see interference effects from
light entering a room from two different 
windows? 

11. Does the speed of an electromagnetic wave
depend on either the frequency or wavelength? 

12. Is light a longitudinal or transverse wave? How
do you know? 

13. Is it possible to get a sunburn through a closed
window? 

Inquiry
14. Before cable and satellite television were avail-

able, most people had indoor antennas called
“rabbit ears” that they could manually move
around to get the best reception. Often, when
someone would be touching the antenna while
moving it, the reception would be good. When
the person walked away from the antenna, 
the reception became poor again. Suggest a 
possible reason for this phenomenon.

15. Devise one or more situations involving an
electron, a proton, or a neutron in constant
motion, accelerated motion, or at rest, to 
produce the following. 
(a) an electric field only
(b) both electric and magnetic fields
(c) an electromagnetic wave
(d) none of these

16. Suppose two pairs of identical polarizing 
sunglasses are placed in front of each other.
Explain clearly your answers to the following. 
(a) What would you observe through them? 
(b) If one pair is rotated 90˚ in relation to the

other, what would you observe? 

(c) If a third pair, oriented randomly, is inserted
between the two pairs, what would you
observe? 

17. All objects, including human beings, emit 
electromagnetic radiation according to their
temperatures. Through thought experiments,
predict whether hotter objects would emit
longer or shorter wavelength radiation than
cooler objects. 

Communication
18. Make sketches to demonstrate that a mirror’s

surface appears to be smooth if its atoms are
smaller than the wavelength of light and that it
would appear to be bumpy if its atoms were
larger than a wavelength of light. 

19. Find the approximate frequency and wave-
length of the waves associated with the 
following.
(a) your favourite AM radio station
(b) your favourite FM radio station
(c) a microwave oven
(d) a conventional oven
(e) green light
(f) dental X rays

20. How can you test the light of the blue sky to
determine its direction of polarization? 

21. Describe how you can determine whether 
your sunglasses are polarizing material or 
tinted glass. 

22. Explain why a flashlight using old batteries
gives off reddish light, while light from a 
flashlight using new batteries is white. 

23. A doctor shows a patient an X ray of a 
fractured bone. Explain how the image is 
produced. What kinds of materials can and 
cannot X rays penetrate? 

24. At night, you can often pick up more distant
radio stations than in the daytime. Explain why
this is so.

Making Connections 
25. Ultraviolet rays, X rays, and gamma rays can be

very harmful to living things. What is unique
about these forms of electromagnetic waves that
could cause damage to living cells?
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26. (a) Discuss methods to measure the speed of a
race car and the speed of a bullet. 

(b) What are the largest sources of error? 
(c) What difficulties do you encounter if you 

try to apply these methods to measure the
speed of light? 

27. Some species of snakes, called “pit vipers,”
have sensors that can detect infrared radiation.
What do you think is the function of these 
sensors?

28. Reflectors left on the Moon’s surface by the
Apollo astronauts can be used to accurately
measure the Earth-Moon distance with lasers.
To achieve an accuracy of 10 m, what must be
the accuracy of the timing device? 

29. Investigate the relationship between coloured
light and coloured cloth. Make different
coloured lights (with coloured glass or trans-
parent plastic film). Explain why the colours of
coloured cloths change as they are viewed
under different-coloured light sources. 

30. Suppose your eyes were sensitive to radio
waves instead of visible light. 
(a) What size of radio dish would you need on

your face to achieve the same resolution? 
(b) What things would look bright? 
(c) What things would look faint? 

31. You see a lightning flash and simultaneously
hear static on an AM radio. Explain why.

32. (a) Why does an ordinary glass dish become 
hot in a conventional oven but not in a
microwave oven? 

(b) Why should metal not be used in a
microwave oven? 

(c) Microwave ovens often have “dead spots”
where food does not cook properly. Why
might this occur? 

33. Research the basic components required for a
radio transmitter and receiver. Describe how 
a signal is transmitted and received. 

34. Film used for modern medical and dental 
X rays is far more sensitive to X rays than film
that was used when these forms of X rays were
first developed. Why do you think it was
important to increase the sensitivity of the film?

Problems for Understanding
35. If a gamma ray has a frequency of

1.21 × 1021 Hz, what is its wavelength?

36. Radio waves 300 m long have been observed on
Earth from deep space. What is the frequency
of these waves?

37. The announcer on an FM radio station in
Toronto identifies the station as “The Edge
102.1,” where the number 102.1 is the 
frequency in some units. What is the wave-
length and frequency of the waves emitted 
by the radio station? 

38. A 100 kW (1.00 × 105 W) radio station emits
electromagnetic waves uniformly in all 
directions. 
(a) How much energy per second crosses a

1.0 m2 area receiver that is 100.0 m from 
the transmitting antenna? (Hint: The surface
area of a sphere is 4πr2.)

(b) Repeat the above calculation for a distance
of 10.0 km from the antenna. 

(c) If you double the distance between the
transmitter and the receiver, by what factor
will the energy per second crossing the 
area decrease? 

39. A light-minute is the distance light travels in
one minute. Calculate how many light minutes
the Sun is from Earth. 

40. Airplanes have radar altimeters that bounce
radio waves off the ground and measure the
round-trip travel time. If the measured time is
75 µs, what is the airplane’s altitude? 

41. If you make an intercontinental telephone call,
your voice is transformed into electromagnetic
waves and routed via a satellite in geosynchro-
nous orbit at an altitude of 36 000 km. About
how long does it take before your voice is heard
at the other end? 

42. You charge a comb by running it through 
your hair.
(a) If you then shake the comb up and down,

are you producing electromagnetic waves?
(b) With what frequency would you have to

shake the comb to produce visible light?
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P R O J E C T

Constructing Your 
Own FM Transmitter

4U N I T

Background
Radio waves, a form of electromagnetic radiation,
play a major role in communication technology,
including radio and television program trans-
mission, cellphone service, wireless computer
connections, and satellite operations. In this
activity, you will construct an FM transmitter
that is capable of broadcasting your voice to any
nearby portable radio. You will then use the
transmitter to investigate the variables that
affect it.

Challenge
Construct and test an FM transmitter, using the
kit provided. To accomplish this task, you will
need to learn how to identify and then solder
circuit components.

Design and conduct experiments to investi-
gate relationships between the signals emitted
by your transmitter and predictions made by the
wave model for electromagnetic radiation.

Materials
� FM transmitter kit
� portable radio
� soldering pencil
� solder
� small wire cutters
� small screw driver
� battery
� wet sponge

Safety Precautions  
� Ensure that all electrical equipment is 

properly grounded.

� Be extremely careful when working with a
soldering pencil. The heated iron tip can
cause serious burns in an instant.

� Ensure that you are wearing eye protection.
Solder might splatter when you are cleaning
the soldering pencil with the wet sponge.

� Avoid inhaling fumes generated by the solder.
Work in a well-ventilated area.

Design Criteria
A. As a class, develop assessment criteria to

address the operation of each transmitter.
You might want to include some or all of the
following categories.

� ability to transmit your voice from the
transmitter to a portable radio

� range of reliable signal transmission

� construction quality of transmitter 

� manufacture of a peaking circuit to test
transmitter; a peaking circuit is a very 
simple circuit that allows you to tune your
transmitter to its maximum output by 
simply measuring the potential difference
across an element in the peaking circuit

� technical statistics, such as maximum out-
put voltage radiated by your transmitter,
detected using a peaking circuit

B. Develop experiment procedures that will
allow you to test predictions made by the
wave model for electromagnetic radiation.
You might want to design and conduct
experiments to investigate the relationship
between 

� aerial length and transmitting frequency

� range of the transmitter and the amount of
input energy

� amount of signal absorption and the
amount of input energy

� environmental factors and reflection or
interference effects

As a class, develop criteria to assess both the
experiment design and the validity of the
obtained results.
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ASSESSMENT

assess the development of your technical skills 
during the construction phase
assess the quality of your transmitter based on 
established criteria
assess the ability of your experiment design to 
test specified theoretical predictions

After you complete this project

Action Plan
Part 1: Build the Transmitter

1. Investigate the proper soldering technique,
referring to the Internet or other resources.
Before you open your transmitter kit, 
practise soldering on an old circuit board
and components. Place a hot, clean soldering
pencil against both the conducting surface of
the circuit board and the component for 1 or
2 s. Carefully dab and remove the solder at
the point where the pencil is touching both
the component and the circuit board. The
solder must come into contact only with 
the component (for example, the resistor or
capacitor) and the metal conducting surface
of the board. Adjacent soldered connections
must not touch. Always test each soldered
joint by gently pushing on the component.
The component should not move. Always
clean excess solder from the iron by using 
a wet sponge between soldering attempts.
Attach an alligator clip to the board to 
radiate away excess heat.

2. Open the FM transmitter kit. Using the kit’s
instructions, identify each component and 
its proper location on the circuit board.
Begin construction by carefully soldering 
the shortest components first.

3. Once each component is in place, inspect
each soldered joint. Ensure that they are
secure and that each soldered joint is free
from contact with adjacent joints.

4. Test your transmitter using a portable radio.
(This might involve the construction and use
of a simple peaking circuit.)

(A) Robotically soldered circuit board.  (B) Improperly
soldered connections that connect two different 
components.

5. Test your transmitter based on the criteria
decided on by your class.

Part 2: Testing the Wave Theory
6. Design and conduct investigations relating 

to criteria decided on by your class. Ensure
that your experiment design clearly identifies
the conditions that you will control and the
variables that you are testing. Record your
theoretical predictions, based on the wave
model, before conducting the experiment. 
To ensure that the appropriate safety 
measures are being taken, check with your
teacher before conducting any experiments,.

7. Prepare a report of your findings.

Evaluate
1. Assess the success of your FM transmitter,

based on your class’s previously determined
criteria. Compare your results with your
classmates, taking careful note of differences
in the construction of the device.

2. Assess your experiment design and the
results you generated, based on the class’s
previously determined criteria. Recommend
ideas for further experimentation.
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U N I T Review4

Knowledge/Understanding
Multiple Choice
In your notebook, write the letter of the best
answer for each of the following questions.
Outline your reasons for your choice. 

1. Two objects are just able to be resolved when
the
(a) central maximum of one falls on the first

minimum of the other
(b) central maxima of the objects do not overlap
(c) angle separating them is greater than the

wavelength of light
(d) distance from the objects to your eyes is 

sufficiently reduced

2. Digital videodiscs (DVDs) use 
(a) thin-film principles
(b) interference effects
(c) shorter laser light than compact disc players
(d) All of the above.

3. An electron falling through a potential difference
generates
(a) a magnetic field only
(b) an electric field only
(c) stationary electric and magnetic fields
(d) no fields
(e) an electromagnetic wave

4. Electromagnetic waves propagate in a direction
(a) parallel to the oscillation of the electric field
(b) parallel to the oscillation of the magnetic

field
(c) perpendicular to the oscillations of both the

magnetic and electric fields
(d) independent of the oscillations of either the

magnetic or electric field

5. Which of the following phenomena leads to the
interpretation that electromagnetic radiation is
a transverse wave?
(a) diffraction
(b) partial reflection, partial refraction
(c) linear propagation
(d) polarization

6. Which of the following is not a result of the
superposition of waves?
(a) destructive interference
(b) diffraction

(c) refraction
(d) constructive interference

7. Electromagnetic waves differ from mechanical
waves because
(a) they undergo diffraction
(b) they do not require a medium in which to

travel
(c) they are transverse waves
(d) their speed is determined by the medium

through which they are travelling

8. Which of the following statements is not true
about the properties of electromagnetic waves?
(a) X rays are emitted by unstable nuclei of

atoms.
(b) Extremely low frequency radio waves 

penetrate salt-water better than higher 
frequencies.

(c) Ultraviolet light was discovered by accident.
(d) Satellites that detect infrared radiation can

see through clouds.

9. Maxwell’s first law, known as Gauss’s law,
(a) relates a changing magnetic field and the

induced emf
(b) relates electric field lines to the charges that

create them 
(c) relates magnetic field lines to the charges

that create them
(d) predicts the existence of electromagnetic

waves

Short Answer
10. Explain why you do not see interference effects

from light entering a room from two different
windows. 

11. Explain the effect of turning polarized 
sunglasses through an angle of 90˚. What 
happens if sunglasses polarized to allow 
vertical vibrations through are turned 90˚?

12. The equation, λ ≅ ∆yd
x

, relates the wavelength 

of light to the distance between slits in a dif-
fraction grating, the distance from the grating 
to a screen, and the distance between fringes on
the screen. What approximation was made in
deriving this relationship and under what 
conditions is the approximation valid? 
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13. What does the Maxwell’s 4th equation predict?
14. Do research on “cosmic rays” anthem. Compare

the differences between cosmic rays and 
electromagnetic radiation. 

15. (a) In single-slit diffraction, how does the width
of the central maximum compare to the
width of the other maxima?

(b) How does the width of the maxima pro-
duced by a diffraction grating compare to
those produced by a double slit? 

16. Describe the necessary conditions for two light
waves incident at a single location to produce 
a dark fringe.

17. How is it possible to determine how thick a
coating should be on a pair of glasses to reduce
the amount of reflection? How thick should the
coating be? 

18. (a) Define electromagnetic radiation.
(b) What evidence is there that light is 

electromagnetic radiation?
(c) What evidence is there that sound is not

electromagnetic radiation? 

19. Consider an electromagnetic wave propagating
in the positive x-direction. At a time, t0, the
electric field points in the positive y-direction.
In what direction does the magnetic field point
at this time? Sketch the electromagnetic wave.
In what directions will the electric and 
magnetic fields point half a period later? 

Inquiry
20. How do magnetic resonance imaging systems

make use of hydrogen atoms? 

21. Two friends are hired by a telemarketing firm
for the summer. Each friend has a desk that is
separated from the other workers by only a thin
half-wall. One friend notices a continuous
humming sound when she is sitting at her
desk. The other notices that there is no 
humming noise audible at his desk. Some
investigation finds that the company has two
speakers placed at one end of the working floor,
8.0 m apart. A continuous, low-frequency hum
is generated to mask conversations from nearby
desks. The two students conduct a survey and

find that several people do not hear the hum-
ming noise at their desks. For each of these
people, they measure the distance from each
speaker to the desk. The table below is the data
they collected.

The friends also sample the air temperature and
find that it is always 23˚C. 
(a) Provide an explanation, based on the 

characteristics of waves, for why some
workers will hear the hum while others 
will not.

(b) Use the data provided in the table to 
determine the frequency of the 
low-frequency hum.

(c) The company is unhappy to learn that five
people are unable to hear the low-frequency
hum intended to mask nearby conversations.
Suggest how the company could mask 
conversations more effectively.

22. You notice that a telephone pole casts a clear
shadow of the light from a distant source. Why
is there no such effect for the sound of a distant
car horn? 

23. Design and make a simple model of a laser.
Identify and explain the function of the 
principal components. Discuss why a laser
beam is so narrow. 

24. Suppose white light is used in a Young’s 
experiment. Describe the characteristics of the
resulting fringe pattern and sketch it. 

25. Challenge: Many experiments and optical
instruments exploit the property of rectilinear
propagation of light by reflecting a light beam
many times for a desired effect. In this 
challenge, use your knowledge of physics to

Person
Distance from
speaker A (m)

Distance from
speaker B (m)

1

2

3

4

5

14

10

12

10

6

8

4

10

12

12
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control a television or VCR from outside a 
room or around a corner. Construct several
10 cm × 10 cm reflector cards by covering the
cards with aluminum foil and see how many
times you can reflect a remote control beam
and still turn on the television or VCR. Test
long distances (out in the hall, down another
hall) as well. 

26. Triangulation is a basic geometrical method
that has been used since the time of the ancient
Greeks. Surveyors use it to determine the 
distance to an object by sighting it from two
different positions a known distance apart.
With two angles and a side, or a side and two
angles, the dimensions of the triangle can be
determined. How could you use the method to
determine the altitude of a global positioning
system satellite or the distance to a planet or
nearby star? What effect will a 1% error in the
measured angle have on the calculated distance
in each case? 

Communication
27. Although the wavelengths of optical radiation

are very small, they can be measured with high
accuracy. Explain how this is possible. 

28. You see a lightning flash and simultaneously
hear static on an AM radio. Explain how these
occurrences are related. 

29. Explain why an optical telescope must have a
smooth surface, while the surface of a radio 
telescope is not as highly machined. 

30. The wave model of light predicted that the
speed of light would slow down when travel-
ling from one medium into another of greater
optical density. Use Huygens’ principle to
demonstrate this prediction. Include a diagram.

31. Make a list of the characteristics of light that a
model should explain: rectilinear propagation,
reflection, refraction, partial reflection, partial
refraction, dispersion, and diffraction. Briefly
discuss how the wave model of light and the
particle model of light explain these phenomena.

32. Compare the collision between two oppositely
directed particles with the collision between

two oppositely directed water waves. What are
the similarities and differences between these
interactions? 

33. (a) Test light diffraction with the shadow of
your hand. How can you cast the sharpest
and fuzziest shadows? 

(b) Describe other examples of light diffraction.
34. (a) With a sketch that shows individual waves

of light, demonstrate how Young used 
diffraction to create a two-point light source
that was exactly in phase. 

(b) Show how these two sources interfered to
produce a series of light and dark bands on
a screen. 

35. Due to the popularity of Newton’s particle
model of light, Young’s work on light interfer-
ence was received with scepticism by British
scientists. Explain how the evidence of wave
behaviour that you observed in ripple tanks
models the results of Young’s experiment and
his conclusion that light behaves like a wave. 

36. Select one of the following statements about 
the competing models of light and develop an 
argument to refute it.
(a) Both models found support because neither

model could adequately describe every
observed property of light.

(b) Both models found support because each
model adequately described every observed
property of light at the time.

(c) Newton’s model for light found support 
primarily because of his fame and respected
stature.

37. (a) Explain how the definition of “one metre”
was redefined in 1961.

(b) In 1983, the metre was redefined 
again to be the distance light travels in 
1/299 752 458 s. Why do you think this 
was done? 

38. Thin films, such as soap bubbles or gasoline on
water, often have a multicoloured appearance
that sometimes changes while you are watcing.
Explain the multicoloured appearance of these
films and why their appearance changes with
time.
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Making Connections 
39. In the seventeenth century, it was not known

whether light travelled instantaneously or with
finite speed. 
(a) Early in that century, Galileo attempted to

measure the speed of light by stationing one
helper one kilometre away and timing how
long it took a pulse of light to travel the 
distance. Explain why that attempt was
unsuccessful.

(b) Ole Roemer made the first successful
attempt to measure the speed of light
around 1675. He made a long series of
observations to accurately determine the
period of one of Jupiter’s moons, Io, around
Jupiter. When he later used this information
to predict when Io would be eclipsed by
Jupiter, he found that his predictions were
too early or too late, compared to the obser-
vations, depending on Earth’s position in its
orbit. Investigate Roemer’s method and
clearly explain, with the aid of a diagram,
how he was able to successfully measure the
speed of light. What factor(s) limited the
accuracy of Roemer’s method? 

(c) An elegant and much more accurate 
measurement of the speed of light was 
made by Albert Michelson in 1880. He 
used a rotating octagonal mirror and sent 
a beam of light to a stationary mirror 
on a mountaintop 35 km away. Sketch
Michelson’s experiment set-up. He refined
this experiment over many years. Discuss
how he was able to measure the speed of
light so accurately.

40. Cochlear implants are sometimes used to assist
the hearing of deaf people. Their operation
relies on the broadcasting and receiving of elec-
tromagnetic waves and the ultimate stimulation
of the auditory nerve. If the auditory nerve is
intact, the deaf person can learn to recognize
sounds. Sketch the components of a cochlear
implant and describe how it works. 

41. In an interferometer, light following different
paths is allowed to interfere. By measuring the

interference fringes, the different path lengths
can be precisely determined. Gravitational
wave detectors use interferometers to search for
ripples in the fabric of space and time. These
ripples were predicted by Einstein’s theory 
of general relativity and are thought to be 
produced by collisions of two black holes or
the collapse of massive stars in supernova
explosions. Research the operations of the
Laser Interferometer Gravity-Wave Observatory
and the proposed Laser Interferometer Space
Antenna or other gravitational wave observato-
ries. Why are the interferometers used in these
observatories so long? What sensitivity do the
scientists hope to achieve? What are the goals
of these projects? How will detection of 
gravitational waves change our view of the 
universe?

42. Investigate and explain in detail why glass is
transparent to visible light, but opaque to 
ultraviolet and infrared light. 

43. For more than a century, photographic plates
and film have been used to record light in 
various detectors. Now these are being replaced
by devices that record light digitally, such as
charged coupled devices. Contrast these two
technologies in terms of sensitivity (the ability
to detect faint objects) and resolution. 

44. (a) Investigate different methods of using 
polarized glasses to produce 3-D films. 
How does the IMAX technology (see
Chapter 2, The Big Motion Picture) differ
from virtual reality technology? 

(b) Some viewers complain of feeling nauseated
during 3-D films. Why does this occur? How
can it be avoided or minimized? 

45. Astronomy is described as an observational 
science, not an experimental science such as
physics, biology, and chemistry. Stars cannot 
be reproduced in the lab, so starlight and 
light from other sources must be studied as 
thoroughly as possible. Research and write 
an essay on how astronomers maximize the
information obtained from light through the 
use of detectors that measure light’s intensity,
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wavelength, direction, and polarization.
Include a discussion of how astronomy has
benefited from the space age by the launching
of satellite observatories that observe wave-
length ranges blocked by the atmosphere. What
kinds of astrophysical phenomena are best
studied in each wavelength range of the 
electromagnetic spectrum? 

46. In the Search for Extraterrestrial Intelligence
(SETI) program, signals in the radio wavelength
region of the electromagnetic spectrum are
being examined for unusual patterns that might
indicate an intelligent (instead of natural)
source. 
(a) Why has the radio wavelength region of the

spectrum been chosen?
(b) Are there frequencies within the radio

region for which a detection might be more
likely than others? 

(c) What might an intelligent signal look like? 
(d) The SETI@home program asks participants

to use their home computers to scan data
currently being obtained from the Arecibo
radio telescope. What progress has been
made in SETI’s search to date? 

47. The coherence of a laser beam allows it to be
broken up into extremely short pulses called
“bits.” These bits allow information to be
stored in digital form. Investigate the role of the
laser in the storage, transmission, and retrieval
of information in various media. Evaluate the
efficiency of this process and discuss how 
consumers might expect it to evolve in the
future. Summarize your findings in a report. 

48. What is the limit of resolution of an optical
microscope? How does this affect the types of
things that can be studied with this instrument?
To study finer detail, scanning electron micro-
scopes are used (see Chapter 12, Quantum
Mechanics and the Atom). What is the limit of
resolution for these instruments?

49. Different physical processes are responsible 
for producing electromagnetic radiation of 
different wavelengths. For each wavelength
region of the electromagnetic spectrum (radio,

infrared, visible, ultraviolet, X ray, gamma ray),
identify at least one physical process that 
produces radiation in that wavelength range. 

Problems for Understanding
50. A detector tuned to microwave wavelengths

registers 2500 wave crests in 1.0 µs. What is the
wavelength, frequency, and period of the
incoming wave? 

51. If an electromagnetic wave has a period of 
4.8 µs, what is its frequency and wavelength? 

52. Calculate the wavelength of a 1021 Hz gamma
ray.

53. How many cycles of a 5.5 × 10−9 m ultraviolet
wave are registered in 1.0 s? 

54. What is the colour of light that has a frequency
of 7.0 × 1014 Hz? 

55. The most efficient antennas have a size of 
half the wavelength of the radiation they are
emitting. How long should an antenna be to
broadcast at 980 kHz? 

56. How long should a microwave antenna be for
use on a frequency of 4400 MHz? 

57. A light-year is the distance light travels in one
year. How far is this in metres? (There are
365.25 days in one year.) 

58. A concert in Halifax is simultaneously broad-
cast to Vancouver on FM radio. Determine
whether people listening in Vancouver, 
approximately 5.0 × 103 km away, will hear the
music just before or just after someone sitting
in the back of the 82 m concert hall in Halifax.
Assume that the speed of sound in the concert
hall is 342 m/s.

59. Yellow light is incident on a single slit 
0.0315 mm wide. On a screen 70.0 cm away, a
dark band appears 13.0 mm from the centre of
the bright central band. Calculate the wave-
length of the light. 

60. (a) The beam of a helium-neon laser
(λ = 632.8 nm) is incident on a slit of width
0.085 mm. A screen is placed 95.0 cm away
from the slit. How far from the central band
is the first dark band? 
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(b) If the slit was two times wider, would the
first dark band be closer or farther from the
central band? 

61. If a spectrum is to have no second order for any
visible wavelength, how many lines per cm
must the grating have? 

62. A certain beetle has wings with a series of
bands across them. When 600 nm light is 
incident normally and reflects off the wings,
the wings appear to be bright when viewed at
an angle of 49˚. How far apart are the lines in
the bands? 

63. Radio astronomers utilize interferometry to
build large arrays of radio dishes and thereby
achieve much greater resolution. In fact, when
the signals from two small dishes 1 km apart
are properly combined, the two dishes have the
same resolving power as one giant dish that is 
1 km across. 
(a) The Very Large Array, in New Mexico, has a

maximum dish separation of 36 km. What
resolution can be obtained at a wavelength
of 6.0 cm? 

(b) New interferometers are proposed, which
would stretch across entire continents. What
is the resolution of a very long baseline
interferometer at this wavelength if the 
dishes are separated by 3600 km? 

(c) What minimum separation between two
radio sources at the centre of the Milky Way
galaxy, 24 000 light-years away, could this
interferometer distinguish? Compare this to
the radius of Pluto’s orbit, 5.9 × 1012 m.

(d) Would the resolution of these telescopes
become better or worse if they operated at
shorter radio wavelengths? 

64. What size of orbiting optical space telescope
would you require to measure the diameter of 
a star that has the same diameter as the Sun
and is 10.0 light-years away? (Use a wavelength
of 550 nm, and take the Sun’s diameter as
1.40 × 109 m.)

65. A diffraction grating has 5000(5.000 × 103) lines
per cm. Monochromatic light with a wave-
length of 486 nm is incident normally on the
grating. At what angles from the normal will
the first, second, and fourth order maxima exit
the grating? Do the angles increase linearly
with the order or the maxima? Explain.

66. Cherenkov radiation is light emitted by a 
particle moving through a medium with a
speed greater than the speed of light in the
medium. (Note: The speed of the particle is not
greater than the speed of light in a vacuum.)
Consider a beam of electrons passing through
water with an index of refraction of 1.33. If
Cherenkov light is emitted, what is the 
minimum speed of the electrons? 

67. If the first order maximum of He-Ne light
(λ = 632.8 nm) exits a diffraction grating at an
angle of 40.7˚, at what angle will the first order
maximum of violet light with a wavelength of
418 nm exit?
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Scanning Technologies: Today and Tomorrow
Continue to plan for your end-of-course project by 
considering the following.
� How do the wave properties of electromagnetic 

radiation relate to your project?
� Are you able to incorporate newly learned skills from

this unit into your project?
� Analyze the information contained in your research 

portfolio to identify knowledge or skills gaps that should
be filled during the last unit of the course.

COURSE CHALLENGE
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The turn of the twentieth century was a time of
excitement and turmoil in science. In 1888,

Heinrich Hertz demonstrated the existence of radio
waves and then, in 1895, Wilhelm Conrad Röntgen
discovered X rays. The following year, Antoine
Henri Becquerel discovered radioactivity and, a 
year later, J.J. Thomson discovered the electron.
Then, Philipp Lenard observed the photoelectric
effect in which light ejected electrons from metals.

Along with these discoveries came a number of
puzzles. How could radioactive substances emit
radiation without any apparent source of energy?
Why could only certain colours of light eject 
electrons from metals? For nearly 50 years, spectro-
scopists wondered why each element gave off a
unique spectrum of light. Since light crossed the
vacuum of space between Earth and the stars, physi-
cists assumed that a substance called “luminiferous
ether” must exist to carry light waves. However, all
attempts to detect Earth’s motion through it failed.

In this unit, not only will you learn more about
the discoveries of some of the most outstanding 
scientists who ever lived, but also you will learn the
answers to some of the questions that baffled them.

OVERALL EXPECTATIONS

DEMONSTRATE an understanding of the basic concepts of 
Einstein’s special theory of relativity and of the development 
of models of matter that involve an interface between matter 
and energy, based on classical and early quantum mechanics.
INTERPRET data to support scientific models of matter and conduct 
thought experiments as a way of exploring abstract scientific ideas.
DESCRIBE how the introduction of new conceptual models and 
theories can influence and change scientific thought and lead 
to the development of new technologies.

UNIT CONTENTS

CHAPTER 11 Special Theory of Relativity 

CHAPTER 12 Quantum Mechanics 
and the Atom

CHAPTER 13 The Nucleus and 
Elementary Particles

Refer to pages 590–591 before beginning this unit.
In this unit project, you will examine the parallels
between scientists and their theories with societal
pressures and realities.
� Revisit the time line on page xiv and try to

remember some significant societal events that
took place during the years represented.

� How closely tied do you think scientific research
is to societal pressures?

UNIT PROJECT PREP
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C H A P T E R Special Theory of Relativity11
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The name of Albert Einstein has towered over the field of
physics during the twentieth century and on into the twenty-

first century. In the space of a few years, Einstein not only changed
the world’s way of thinking about electromagnetic radiation such
as light, he also radically changed the commonly accepted picture
of the universe with his two relativity theories — the special 
theory of relativity and the general theory of relativity.

The special theory of relativity, which you will be studying 
in this chapter, was not well received at first. The idea that funda-
mental measurements such as time, distance, and mass depended
on the relative motion of the observer seemed absurd to many. 
In fact, Einstein was awarded the 1921 Nobel Prize for physics 
for his development of the concept of photons and the resulting
explanation of the photoelectric effect, not for his theories of 
relativity.

With the advent of high-energy physics, however, Einstein’s 
theory of special relativity became essential to the understanding
of the behaviours of all high-speed subatomic particles.

� Interaction of electric and 
magnetic fields

� vector addition

� frames of reference

� relative velocity

PREREQUISITE

CONCEPTS AND SKILLS

Quick Lab
Generating 
Electromagnetic 
Fields 465

11.1 Troubles with the 
Speed of Light 466

11.2 The Basics of the 
Special Theory 
of Relativity 473

11.3 Mass and Energy 486
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Q U I C K

L A B

Generating 
Electromagnetic Fields

TARGET SKILLS

Predicting
Performing and recording
Analyzing and interpreting

One of the problems that led to Einstein’s spe-
cial theory of relativity came from an analysis 
of the way in which electric and magnetic fields
spread out through space as electromagnetic
waves. In previous science courses, you have
studied various characteristics of magnetic and
electric fields; now, examine carefully the two
diagrams and try to answer the questions that
follow each of them. Discuss the answers with
your classmates. Then, carry out the activity
that follows these questions.

� Under what condition 
does a magnetic field
generate an electric
current?

� What determines 
the magnitude of 
the current?

� What determines 
the direction of 
the current?

� How do you know that
an electric field must have been generated
across the coil?

� What evidence is there that an electric current
can generate a magnetic field?

� What affects the strength of the magnetic
field?

� What affects the direction of the magnetic
field?

� What kind of field is needed to produce an
electric current?

Lab
Obtain a radio with a movable antenna. Turn 
on the radio and set it in the AM range. (“AM”
refers to amplitude modulation, a process in
which a signal is impressed on a radio carrier
frequency by varying its amplitude, as shown 
in the diagram.) Turn on an induction coil and
allow an arc (or spark) to pass between the
points of the electrodes. Listen for the effect 
on the radio. Find the antenna orientation for
which the effect is (a) greatest and (b) least.
Repeat these steps with the radio tuned to an
FM station. (“FM” stands for frequency modula-
tion, in which the signal is impressed on the
carrier wave through variations in its frequency,
as shown.)

Analyze and Conclude
1. What evidence is there that radio waves

(electromagnetic radiation) are travelling
from the arc to the radio?

2. Is there any relationship between the orienta-
tion of the arc and the orientation of the
antenna for maximum and minimum effects?

3. If there is a relationship in question 2, what
does that indicate about the nature of the
waves produced from the arc?

4. (a) What difference do you notice with the
FM station?  (b) Try to explain this difference.

AM signal FM signal

wire

ammeter

variable power supply

alligator clips

cardboard

compass
above wire

compass below wire

direction of
motion of magnet

galvanometer

N

S



Toward the end of the nineteenth century, many scientists felt 
that they were close to a complete understanding of the physical
world. Newton’s laws described motion. Maxwell’s laws described
radiant energy. The chemists were learning more and more about
the behaviour of atoms. No one realized that their fundamental
concepts of space, time, matter, and energy were seriously limited.

The Michelson-Morley Experiment
The first indication of a difficulty came from a critical experiment
performed in 1881 by Albert Michelson (1852–1931), using an
interferometer, an instrument he had devised for measuring 
wavelengths of light. In this experiment, he unsuccessfully
attempted to detect the motion of Earth through the luminiferous
ether, the substance that was then believed to be the medium
through which light waves could travel through space. The 
apparent failure of Michelson’s first experiment to find any such
motion prompted many physicists to drop the ether concept.

Later, in 1887, Michelson and Edward Williams Morley
(1838–1923) performed a refined version of the experiment, using
an improved version of the interferometer. They reasoned that if
light behaved like a sound wave or a wave on water, if you moved
toward an oncoming beam of light, it would seem to approach 
you at a higher speed than if you were moving away from it. 
These different speeds would affect the interference pattern in the
interferometer. By comparing interference patterns for light beams
travelling perpendicular to each other, Michelson and Morley
hoped to detect and measure the speed with which Earth passed
through the ether.

Troubles with 
the Speed of Light11.1
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• State Einstein’s two postulates
for the special theory of 
relativity.

• Conduct thought experiments
as a way of developing an
abstract understanding of 
the physical world.

• Outline the historical develop-
ment of scientific views and
models of matter and energy.

• interferometer

• Lorentz-Fitzgerald contraction

 T E R M S
K E Y

E X P E C T A T I O N S
S E C T I O N

Albert Michelson
(left) and Edward Morley used
Michelson’s interferometer 
(see Figure 11.2) to conduct 
an experiment that later became
the foundation of Einstein’s 
special theory of relativity.

Figure 11.1



To understand the basis of this experiment, consider the follow-
ing scenario involving relative velocities. Two identical boats, 
X and Y, are about to travel in a stream. Boat Y will go straight
across the stream and straight back. Boat X will travel the same
distance downstream and then return to its starting point. Which
boat will make the trip in the shortest time? Examine Figure 11.3
and then follow the steps below to determine the time required for
boat Y to travel across the stream and back.

Since boat Y must go directly across the stream, the driver
must angle the boat upstream while crossing either way perpendicular to
the current.

∆tY = 2L√(
vbw

)2 −
(
vwg

)2

� Substitute the total length of
the trip (2L) and the magnitude
of the velocity into the expres-
sion for the time interval to
find the time required for 
boat Y to make the round trip.

(vbw)2 = (vbg)2 + (vwg)2

(vbg)2 = (vbw)2 − (vwg)2

vbg =
√

(vbw)2 − (vwg)2

� Use vector addition to find the 
magnitude of the velocity of
the boat relative to the ground.
Notice in Figure 11.3 that this
velocity is the same for both
legs of the trip.

⇀v = ∆⇀d
∆t

∆t = ∆⇀d
⇀v

� Write the definition for veloci-
ty and solve it for the time
interval.

⇀vbw : velocity of the boat 
relative to the water

⇀vwg : velocity of the water 
relative to the ground

⇀vbg : velocity of the boat 
relative to the ground

L : distance travelled along
each leg of the trip

∆t : total time for the trip

� Define the symbols.

Figure 11.3

direction of currentdirection of current

vbgvbwvbgvbw

vwg

vwg

Boat Y crossing the river Boat Y’s return trip

⇀ ⇀
⇀ ⇀

⇀

⇀
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Michelson’s first
interferometer was designed to
determine wavelengths of light. It
should also be able to determine
whether light travelling in direc-
tions perpendicular to each other
travelled at different speeds.

Figure 11.2

light source

mirrors



Study Figure 11.4 to determine the velocities of boat X as it
makes its trip downstream and back. Then, follow the steps below
that determine the time for boat X to make the trip.

So, did boat Y or boat X complete the trip more quickly? You
can find this out by dividing ∆tX by ∆tY.

Since the denominator is less than one, the ratio is greater than
one; thus, ∆tX is greater than ∆tY — boat Y was faster.

∆tX
∆tY

= 1√
1 − (vwg)2

(vbw)2

� Divide the numerator and
denominator by vbw and
simplify.

∆tX
∆tY

= vbw√(
vbw

)2 −
(
vwg

)2

� Simplify.

∆tX
∆tY

=

2vbwL(
vbw

)2
−
(

vwg

)2

2L√(
vbw

)2
−
(

vwg

)2

� Divide ∆tX by ∆tY.

∆tX = 2Lvbw(
vbw

)2 −
(
vwg

)2
� The time required for 

boat X to travel down-
stream and return is 

∆tX = L(vbw − vwg) + L(vbw + vwg)
(vbw + vwg)(vbw − vwg)

∆tX = Lvbw − Lvwg + Lvbw + Lvwg(
vbw

)2 −
(
vwg

)2

� Find a common denomi-
nator and simplify.

∆tX = L
vbw + vwg

+ L
vbw − vwg

� To find the total time for
boat X to make the round
trip, add the time intervals
for the two directions. 

∆tup = L
vbw − vwg

� Write the time interval 
for boat X to travel back
upstream.

∆tdown = L
vbw + vwg

� Use the equation for the
time interval in terms of
displacement and velocity
to write the time interval
for boat X to travel 
downstream.

Trip downstream: vbg = vbw + vwg

Trip upstream: vbg = vbw − vwg

� Since the direction of the
velocities of boat X and 
of the stream are in one
dimension, the magni-
tudes can be added 
algebraically.
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Boat X travels 
with the current when it is going
downstream and against the 
current on its return trip.

Figure 11.4

direction of current

direction of current

Boat X’s return trip

vbg

vbw vwg

vbw

vwg vbg

Boat X’s trip downstream
⇀

⇀ ⇀

⇀

⇀ ⇀

Normally, taking a square root results
in both positive and negative roots.
However, since both time intervals
were measured forward from a 
common starting point, they must 
both be positive, so the ratio must 
also be positive.

MATH LINK



In the Michelson-Morley experiment, the speed of light through
the luminiferous ether, usually represented by c, is equivalent to
the speed of a boat through water. The speed of the water relative
to the ground is equivalent to the speed of the ether relative to
Earth. Because motion is relative, it is also the speed of Earth 
relative to the ether. If this speed is represented by v, the time
ratio can be written as

∆tX
∆tY

= 1√
1 − v2

c2

This means that light that is moving back and forth parallel to 
the motion of Earth should take longer to complete the trip than
light that is moving back and forth perpendicular to the motion 
of Earth.

• As you study the Michelson-Morley experiment, you will find
similarities to this problem. Keep your answers in mind as you
read further. Suppose two identical boats can travel at 5.0 m/s
relative to the water. A river is flowing at 3.0 m/s. Boat Y travels
1.00 × 102 m straight across the river and then the same distance
back. Boat X travels 1.00 × 102 m upstream and then returns the
same distance. 

(a) Which boat makes the trip in the shortest time?

(b) How much sooner does it arrive than the other boat?

• Imagine that both of the two identical boats in the previous
problem headed out from the same point at the same time. The
river flows due east. Boat Y travelled 1.00 × 102 m[NW] relative
to its starting point on shore and then returned straight to its
starting point. Boat X travelled 1.00 × 102 m[NE] relative to its
starting point on shore and then returned straight to its starting
point. Which boat will make the trip in the shortest time? 
Hint: Sketch the vector diagrams for each case. You might not
have to do any calculations. 

Michelson’s Interferometer
In Michelson’s interferometer, a light beam is split into two beams
as it passes through the beam splitter, such as a half-silvered 
mirror. Beam X continues straight on, while beam Y reflects at
right angles to its original path. The beams reflect from mirrors
and recombine as they once again pass through the beam splitter.
Since the two beams do not travel precisely the same distance
before they recombine, they interfere with each other as they head
toward the telescope. This combination produces an interference
pattern that can be observed with the telescope. Anything that

Conceptual Problems
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The “ether” to which the text refers 
is not the chemical form of ether. It
stems from the Latin word aether and
was thought to be a highly rarefied
medium through which light and other
electromagnetic waves travelled. 
The word “ethereal” comes from 
this concept.

LANGUAGE LINK



changes the time of travel of the two beams, such as
moving the adjustable mirror even a small distance,
produces obvious changes in the interference pattern.

When Michelson and Morley used the interfero-
meter, they assumed that if beam X was parallel to
the direction in which the planet was travelling, then
that beam would take longer to reach the telescope
than beam Y. This would produce a certain interfer-
ence pattern. However, if the apparatus was rotated
through 90˚, beam Y would lag behind. During the
rotation, the interference pattern should change as
the arrival time for each beam changed. Their hope
was to measure this change and use it to measure the
speed of Earth through the ether. The relationship
between the motion of Earth and two perpendicular
interferometer positions is shown in Figure 11.6.

It was an elegant experiment, and yet it seemed 
to be a disaster. The interference pattern refused to
change. This lack of change, or nul result, greatly 
discouraged the two experimenters and was a source
of puzzlement for other physicists. Could it be that
Earth really did not move at all relative to the ether?
This did not make sense, since Earth obviously 
orbited the Sun. Did Earth drag the luminiferous
ether along with it? This did not seem likely, since
that would affect the appearance of stars as seen 
from Earth.

One guess, which in a sense paved the way for the relativity
answer, was that objects that moved through the ether were 
compressed, just as a spring could be compressed if it was pushed
lengthwise through oil. This contraction would cause a shortening
of lengths in the direction 
of motion, thus reducing 
the time required for the 
light to make the round 
trip. In this way, both 
light beam X and light 
beam Y would always 
arrive at the telescope 
at the same time. 
This hypothesis was 
known as the Lorentz-
Fitzgerald contraction.
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If the two beams (X and Y) are 
not in phase, they will interfere with each other,
producing a pattern that can be seen in the 
telescope.

Figure 11.5
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Arrival times

for the light beams were
expected to change when
the interferometer was
rotated by 90˚, but this 
did not happen.

Figure 11.6



The Theoretical Speed of Light
The strange results of the Michelson-Morley experiment remained
a mystery for nearly two decades. Then, in 1905, the explanation
came with Albert Einstein’s publication of his special theory of
relativity. He had developed this theory while considering the
propagation of electromagnetic waves, as described by James Clerk
Maxwell. Maxwell’s equations showed how electromagnetic waves
would spread out from accelerated charges.

In the early 1870s, Maxwell realized that a changing magnetic
field could induce a changing electric field and that the changing
electric field could in turn induce a changing magnetic field. 
Most importantly, he realized that these mutually inducing fields 

could spread out through space with a speed given by c = 1√ε0µ0
, 

where c represents the speed at which the fields spread out
through space (the speed of light in a vacuum), ε0 represents the
electric permittivity of free space (ε0 = 8.85 × 10−12 C2/N · m2), 
and µ0 represents the magnetic permeability of free space
(µ0 = 4π × 10−7 T · m/A).

This formula yields a speed for electromagnetic radiation
through space of 3.00 × 108 m/s. This was a major triumph in the
field of theoretical physics, since it predicted the speed of light in
terms of basic properties involving the behaviour of electric and
magnetic fields in space. In addition, there was now no necessity
for assuming the existence of luminiferous ether — magnetic and
electric fields can exist in space without such a medium.

In this diagram, 
⇀
E represents the electric field, while 

⇀
B

represents the magnetic field.

Einstein, however, was puzzled by an apparent inconsistency in
this equation. It did not indicate any particular frame of reference. 
The laws of physics are expected to be valid in any inertial frame
of reference. However, quantities such as speed and velocity could
appear to be different from different frames of reference. For 
example, a race car can be seen to travel at a high speed relative 
to spectators in the stands. However, it might have zero velocity
relative to another race car.

Figure 11.7

direction of
wave travel

vibrating
electron

y

z

x

⇀
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⇀
E
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Toward the end of Michelson’s
life, Einstein praised him publicly
for his ground-breaking experi-
ments, which provided the first
experimental confirmation for the
special theory of relativity.

PHYSICS FILE

Electric permittivity is related to the 
Coulomb constant (k): εo = 1

4πk
. 

Magnetic permeability comes
from the expression for the
strength of the magnetic field in
the vicinity of a current-carrying
conductor. The equation for the 
magnetic field, 

⇀
B , is 

⇀
B = µoI

2πr
, 

where I is the current in the wire
in amperes and r is the radial 
distance from the wire.

PHYSICS FILE
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11.1 Section Review

1. Make sketches of the velocity vectors
identical to those in Figures 11.3 and 11.4 
on pages 467 and 468. Label the vectors as
though they represented the velocities of
light through the ether, the ether relative to
Earth, and light relative to Earth. 

2. Show that the units used in Maxwell’s
equation for the speed of light simplify to
metres per second. Note that 1 T = 1 N/A · m. 

3. In the interferometer shown in Figure
11.5, how far in wavelengths would the
adjustable mirror have to move so that the
interference pattern would return to its 

initial appearance? Hint: Review the inter-
ference relationships found in Chapter 9.

4. What caused physicists to assume that
space was filled with a medium that they
called the “luminiferous ether”? 

5.

(a) State the two basic postulates of the 
special theory of relativity.

(b) Explain why the constancy of the speed 
of a light beam, as seen from different
inertial frames of reference, seems to be
wrong. Try to use commonplace examples
to make your point.

MC

K/U

I

MC

K/U

Apparently, there was no specified frame of reference for the
speed of light in Maxwell’s equation. This implied that the speed
of light (and, in fact, of all members of the electromagnetic spec-
trum) through a vacuum should be seen as being the same in any
inertial frame of reference. Einstein realized that this was indeed
the case and announced his special theory of relativity.

The Special Theory of Relativity
Einstein based his special theory of relativity on two postulates.

1. All physical laws must be equally valid in all inertial frames 
of reference.

2. The speed of light through a vacuum will be measured to be
the same in all inertial frames of reference.

The first statement had been accepted since the time of Galileo
and Newton. The second one was a radical departure from the
common understanding of the basics of physics, so it took scien-
tists a long time to accept it. Eventually it was accepted, though,
and the special theory of relativity is now considered to be one 
of the principal scientific triumphs of the twentieth century.

In any race, relative
velocity is all that counts.

Figure 11.8



Einstein’s special theory of relativity changed our fundamental
understanding of distance, time, and mass. He used his famous
thought experiments to illustrate these new concepts. This 
section contains several thought experiments similar to the ones
Einstein used.

Thought Experiment 1: Simultaneity
Imagine that you are sitting high on a hill on Canada Day and you
can see two different celebrations going on in the distance. You are
startled when two sets of fireworks ignite at exactly the same time
— one off to your left and the other far to your right. About 100 m
behind you, a car is travelling along a highway at 95 km/h. Do the
passengers in the car see the fireworks igniting simultaneously or
do they think that one set ignited before the other? Your immedi-
ate reaction is probably, “Of course they saw the fireworks igniting
simultaneously — they were simultaneous!” 

According to Einstein’s special theory of relativity, however, 
the answer is not quite so simple. To restate the question more
precisely, are two events that are simultaneous for an observer in
one inertial reference frame simultaneous for observers in all 
inertial reference frames? The answer is no. The constancy of the
speed of light creates problems with the simultaneity of events, 
as the situation in Figure 11.9 illustrates.

In Figure 11.9 (A), observers A and B are seated equidistant
from a light source (S). The light source flashes. Since the light
must travel an equal distance to both observers, they would 
say that they received the flash at exact-
ly the same time, that the arrival of the
flash was simultaneous for both of them.

Now imagine that these two observers
are actually sitting on a railway flatcar
that is moving to the right with velocity
⇀v relative to the ground and to observer
C in Figure 11.9 (B). Observer C makes
two observations. 

1. B is moving away from the point
from which the light was emitted.

2. A is moving toward the point 
from which the light was emitted.

The Basics of the 
Special Theory of Relativity11.2
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• Describe Einstein’s thought
experiments relating to the 
constancy of the speed of 
light in all inertial frames of 
reference, time dilation, and
length contraction.

• simultaneity

• time dilation

• proper time

• dilated time

• length contraction

• proper length

• relativistic speeds

• gamma

 T E R M S
K E Y

E X P E C T A T I O N S
S E C T I O N

Do events that appear to be simultaneous 
to observers A and B also appear to be simultaneous to 
observers C and D?

Figure 11.9
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Observer C concludes that it takes longer for light to reach B
than it does to reach A. Thus, according to observer C, observer A
received the flash first and B received it second. The arrivals are
not simultaneous in C’s frame of reference, and yet it is an inertial
reference just as much as is the frame of reference of the flatcar.

In the frame of reference for observer D, who is moving to the
right with a velocity of 2⇀v , the flatcar is moving toward the left
with a velocity of ⇀v . Now, it is A who is moving away from the
point from which the flash was emitted and B is moving toward
that emission point. The light would take longer to reach A, so the
light would arrive at observer B first.

As you can see from this example, the whole concept of simul-
taneity, of past, present, and future, is fuzzy in relativity. What 
is a future event in one frame of reference becomes a past event in
another. This is due entirely to the fact that the speed of light is
the same in all inertial frames of reference, regardless of their 
relative velocities.

Thought Experiment 2: Time Dilation
Imagine yourself back on the hilltop, watching fireworks. You look
at your watch at the moment that the fireworks ignite and it says
11:23 P.M. What do the watches of the passengers in the car read?
If they saw the fireworks ignite at different times, their watches
cannot possibly agree with yours. 

The constancy of the speed of
light creates problems with time
intervals. The term time dilation
applies to situations in which 
time intervals appear different 
to observers in different inertial
frames of reference. To understand
the implications of this constant
speed of light for time measure-
ment, assume that an experimenter
has devised a light clock. In it, a
pulse of light reflects back and forth
between two mirrors, A and B. The
time that it takes for the pulse to
travel between the mirrors is the
basic tick of this clock. Figure 11.10
(A) shows such a “tick.”

Now, picture this clock in a
spacecraft that is speeding past
Earth. An observer in the spacecraft
sees the light as reflecting back and
forth as it was before, so the basic
tick of the clock has not changed.
However, an observer on Earth
would see that the mirrors moved

If the speed of light is the same to all observers, 
then light takes longer to travel from A to B′ than it does to travel 
from A to B.

Figure 11.10
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while the light pulse travelled from A to B, as shown in Figure
11.10 (B). Since the pulse actually has to travel from A to B′ , it
must take longer, as indicated in Figure 11.10 (C). The tick of the
clock therefore takes longer to occur in the Earth frame of refer-
ence than in the spacecraft observer’s frame of reference. In fact, 
if the spacecraft observer was wearing a watch, the Earth observer
would say that the watch was counting out the seconds too slowly.
The spacecraft observer, however, would say that the watch and
the light clock were working properly.

The relationship between times as measured in the spacecraft
and on Earth can be deduced from Figure 11.10 (D). Assume that

� c is the speed of light, which is the same for all observers

� ∆t is the time that the Earth observer says it takes for the pulse
to travel between the mirrors

� ∆to is the time that the spacecraft observer says it takes for the
pulse to travel between the mirrors

The distance from A to B would be c∆to. The distance travelled by
the spacecraft would be v∆t, since this involves a distance, speed,
and time observed by the Earth observer. 

The Earth observer claims that the light pulse actually travelled
a distance of c∆t. These distances represent the lengths of the
sides of a right-angled triangle, as seen in Figure 11.10 (D). Notice
how similar this result is to the arrival-time equation in the 
boat X-boat Y scenario on pages 467 and 468.

In any question involving relativistic times, it is important to
carefully identify the times. 

� ∆to is the time as measured by a person at rest relative to the
object or the event. It is called the proper time. You could think
of it as the “rest time,” although this term is not generally used.
Another way to picture it is as the “one-point” time, the time for
an observer who sees the clock as staying at only one point.

∆t = ∆to√
1 − v2

c2

� Solve for ∆t.

∆t2
o = ∆t2

(
1 − v2

c2

)

∆to = ∆t

√
1 − v2

c2

� Simplify, then take the
square root of both sides
of the equation.

∆t2
o = ∆t2(c2 − v2)

c2
� Divide by c2.

c2∆t2
o = ∆t2(c2 − v2)� Factor out a ∆t2.

c2∆t2
o = c2∆t2 − v2∆t2� Solve for c2∆t2

o.

(c∆t)2 = (c∆to)2 + (v∆t)2

c2∆t2 = c2∆t2
o + v2∆t2

� Apply the Pythagorean
theorem and expand.
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Note that the negative square root 
has no meaning in this situation. Both
times will be seen as positive. In addi-
tion, v must be less than c. If it was
greater than c, the denominator would
become the square root of a negative
number. Although such a square root
can be expressed using complex 
numbers, it is not expected that a time
measurement would involve anything
other than the set of real numbers.

MATH LINK

Relativity
Experiment with near-light speeds
and time dilation by using your
Electronic Learning Partner.

ELECTRONIC
LEARNING PARTNER



� ∆t is the expanded or dilated time. Since the denominator √
1 − v2

c2 is less than one, ∆t is always greater than ∆to. It 

can also be thought of as the “two-point” time, the time as 
measured by an observer who sees the clock as moving between
two points.

Quantity Symbol SI unit
dilated time ∆t s (seconds)

proper time ∆to s (seconds)

velocity of the moving v m
s

(metres per second)
reference frame 

speed of light c m
s

(metres per second)

Unit Analysis

seconds = seconds√
1 −

(
metres
second

)2(
metres

seconds

)2

= seconds s = s√
1 −

(
m
s

)2(
m
s

)2

= s

∆t = ∆to√
1 − v2

c2

DILATED TIME
The dilated time is the quotient of the proper time and the
expression: square root of one minus the velocity of the 
moving reference frame squared divided by the speed of 
light squared. 
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Relative Times
A rocket speeds past an asteroid at 0.800 c. If an observer in
the rocket sees 10.0 s pass on her watch, how long would that
time interval be as seen by an observer on the asteroid?

Conceptualize the Problem
� Proper time, ∆to, and dilated time, ∆t, are not the same. Time

intervals appear to be shorter to the observer who is moving
at a velocity close to the speed of light.

� Proper time, ∆to, and dilated time, ∆t, are related by the speed of light, c.

Identify the Goal
The amount of time, ∆t, that passes for the observer on the asteroid while
10.0 s passes for the observer on the rocket

SAMPLE PROBLEM 

Since v
2

c2 is a ratio, the speeds can 

have any units as long as they are
the same for both the numerator
and the denominator. It is often
useful to express v in terms of c.

PROBLEM TIP



Identify the Variables and Constants
Known Implied Unknown
vrocket = 0.800 c
∆to = 10.0 s

c = 3.00 × 108 m
s

∆t

Develop a Strategy

The time as seen by an observer on the asteroid would be 16.7 s.

Validate the Solution
The dilated time is expected to be longer than the proper time, and it is.

1. A tau (τ) particle has a lifetime measured at
rest in the laboratory of 1.5 × 10−13 s. If it 
is accelerated to 0.950 c , what will be its 
lifetime as measured in (a) the laboratory
frame of reference, and  (b) the τ particle’s
frame of reference?

2. A rocket passes by Earth at a speed of
0.300 c . If a person on the rocket takes 

245 s to drink a cup of coffee, according to
his watch, how long would that same event
take according to an observer on Earth?

3. A kaon particle (κ) has a lifetime at rest in 
a laboratory of 1.2 × 10−8 s. At what speed
must it travel to have its lifetime measured
as 3.6 × 10−8 s?

PRACTICE PROBLEMS

∆t = 10.0 s
0.600

∆t = 16.67 s

∆t ≅ 16.7 s

Solve.

∆t = 10.0 s√
1 − (0.800 c)2

c2

Substitute into the equation.

∆t = ∆to√
1 − v2

c2

Select the equation that relates dilated
time to proper time.
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Thought Experiment 3: Length Contraction
Imagine the following situation. Captain Quick is a comic book
hero who can run at nearly the speed of light. In her hand, she 
is carrying a flare with a lit fuse set to explode in 1.50 µs
(1.50 × 10−6 s). The flare must be placed into its bracket before 
this happens. The distance (L) between the flare and the bracket 
is 402 m.

As you will discover in Chapter
13, The Nucleus and Elementary
Particles, many subatomic 
particles come into existence and
decay into some other particles 
in very short periods of time. The
tau and kaon particles are exam-
ples of these subatomic particles.

PHYSICS FILE



A race against time

L = Lo

√
1 − v2

c2

L = (402 m)

√
1 −

( 2
3 c

)2

c2

L = (402 m)(0.7454)

L = 300 m

� Since Captain Quick and the
fuse are in the same frame of
reference, however, Captain
Quick should observe the fuse
burning in 1.50 µs. How did 
she make it in time? Then she
realized that the only way she
could have arrived in time was
if the distance to the bracket in
her moving frame of reference
was less than the 402 m in the
stationary frame. The distance
must have been multiplied by
the same factor by which the
time was divided in the
observer’s frame of reference.

∆t = ∆to√
1 − v2

c2

∆t = 1.50 × 10−6 s√
1 −

( 2
3 c

)2

c2

∆t = 1.50 × 10−6 s
0.7454

∆t = 2.01 × 10−6 s

� However, to an observer in the
stationary frame of reference,
the time for the fuse to burn
will be dilated in relation to
his own frame of reference. It
will take 2.01 µs for the fuse to
burn and therefore, Captain
Quick will reach the bracket 
in time.

∆t = L
v

∆t = 402 m
2.00 × 108 m

s

∆t = 2.01 × 10−6 s or 2.01 µs

� Captain Quick runs at 2
3 c

(2.00 × 108 m/s) and arrives at
the bracket in time. According
to classical mechanics, this
would not be possible because
it should take 2.01 µs as
shown on the right.

Figure 11.11
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This thought experiment illustrates that two ideas go hand in
hand. If two observers are moving relative to each other, then a
time dilation from one observer’s point of view will be balanced
by a corresponding length contraction from the other observer’s
point of view. 

In the box below, Lo represents the proper length, which is the
length as measured by an observer at rest relative to the object or
event and L is the contracted length seen by the moving observer. 

Quantity Symbol SI unit
contracted length L m (metres)

proper length Lo m (metres)

velocity of the moving v m
s

(metres per second)
reference frame 

speed of light c m
s

(metres per second)

Unit Analysis
metres = metres√

1 −
(

metres
second

)2(
metres

seconds

)2

= metres

m = m√
1 −

(
m
s

)2(
m
s

)2

= m

Note: Length contraction applies only to lengths measured
parallel to the direction of the velocity. Lengths measured 
perpendicular to the velocity are not affected.

L = Lo

√
1 − v2

c2

LENGTH CONTRACTION
The contracted length is the product of the proper length and
the expression, square root of one minus the velocity of the
moving reference frame squared divided by the speed of 
light squared. 

∆t = L
v

∆t = 300 m
2.00 × 108 m

s

∆t = 1.50 × 10−6 s or 1.50 µs

� If the distance was smaller,
then Captain Quick could
make it to the bracket before
the fuse burned out.
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This thought experiment seems to yield strange results that 
go against common experience. However, the results explain a
phenomenon involving a tiny particle called the “mu meson” (or
muon). This particle has a lifetime of 2.2 × 10−6 s and is formed
about 1.0 × 104 m above the surface of Earth, speeding downward
at about 0.998 c. At that speed (according to classical mechanics),
it should travel only about 660 m before decaying into other 
particles, but it is observed in great numbers at Earth’s surface.
The relativistic explanation is that the muon’s lifetime as meas-
ured by Earth-based observers has been dilated as follows.

∆t = ∆to√
1 − v2

c2

∆t = 2.2 × 10−6 s√
1 − (0.998 c)2

c2

∆t = 2.2 × 10−6 s
0.0632

∆t = 3.5 × 10−5 s

The distance travelled becomes

∆d = v∆t

∆d = (0.998)
(
3.00 × 108 m

s

)
(3.5 × 10−5 s)

∆d = 1.0 × 104 m

At that speed, the muon’s lifetime is so expanded (according to
the observers on Earth) that the particle can reach the surface. On
the other hand, the muon sees its own lifetime as unchanged, and
from its frame of reference, Earth’s surface is rushing toward it at
0.998 c. The distance it sees to Earth’s surface is given by

L = Lo

√
1 − v2

c2

L = (1.0 × 104 m)

√
1 − (0.998 c)2

c2

L = (1.0 × 104 m)(0.0632)

L = 632 m

This reduced distance would take a shorter time, given by

∆t = ∆x
v

∆t = 632 m
(0.998)

(
3.0 × 108 m

s

)
∆t = 2.1 × 10−6 s

The muon therefore can reach Earth’s surface before decaying.
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Which Is Correct?
The physicist standing on the surface of Earth claims that the 
lifetime of the muon is 3.5 × 10−5 s and its height above Earth’s
surface is 1.0 × 104 m. From the muon’s point of view, however, its
lifetime is 2.2 × 10−6 s and its height is 632 m. Which is correct?

Both statements are correct. The value of any measurement is
tied to the frame of reference in which that measurement is taken.
Going from one inertial frame of reference to another will involve
differences in the measurement of lengths and times. Normally,
these differences are too small to be observed, but as relative
speeds approach the speed of light, these differences become 
quite apparent.

Gamma Saves Time
When solving problems involving relativistic speeds (speeds
approaching the speed of light), you will often need to calculate 

the value of 1√
1 − v2

c2

. Physicists have assigned the symbol 

gamma (γ ) to this value, or γ = 1√
1 − v2

c2

. Using the γ notation, 

the length and time equations become ∆t = γ ∆to and L = Lo
γ .
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Relativistic Lengths
A spacecraft passes Earth at a speed of 2.00 × 108 m/s. If observers on
Earth measure the length of the spacecraft to be 554 m, how long would
it be according to its passengers?

Conceptualize the Problem
� Length appears to be shorter, or contracted, to the observer who is

moving relative to the object being measured. 

� The amount of length contraction that occurs is determined by the 
relative speeds of the reference frames of the two observers. 

Identify the Goal
The length of the spacecraft, Lo, as seen by its passengers

Identify the Variables and Constants
Known Implied Unknown
v = 2.00 × 108 m

s
L = 554 m

c = 3.00 × 108 m
s

Lo

SAMPLE PROBLEM 

continued



Develop a Strategy

The length of the spacecraft as seen by its passengers is 743 m.

Validate the Solution
The proper length is expected to be longer than the contracted
length, and it is.

4. An asteroid has a long axis of 725 km. A
rocket passes by parallel to the long axis at a
speed of 0.250 c. What will be the length of
the long axis as measured by observers in the
rocket?

5. An electron is moving at 0.95 c parallel to a
metre stick. How long will the metre stick be
in the electron’s frame of reference?

6. A spacecraft passes a spherical space station.
Observers in the spacecraft see the station’s
minimum diameter as 265 m and the 
maximum diameter as 325 m.

(a) How fast is the spacecraft travelling 
relative to the space station?

(b) Why does the station not look like a
sphere to the observers in the spacecraft?

PRACTICE PROBLEMS

Lo = (554 m)(1.342)

Lo = 743.2 m

Lo ≅ 743 m

Solve.

L = Lo
γ

Lo = Lγ

Use the equation that describes 
length contraction.

γ =
√

1 − v2

c2

γ =

√
1 −

(2.00 × 108 m
s )2

(3.00 × 108 m
s )2

γ = 1.342

Calculate gamma.
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Einstein’s equations allow a 
particle to travel faster than light
if it was already travelling faster
than light when it was created.
For such particles (called
“tachyons”), the speed of light
represents the slowest speed
limit. Although the equations say
that tachyons can exist, there is
no evidence that they do. In fact,
no one knows how they would
interact with normal matter.

PHYSICS FILE The Universal Speed Limit
Calculation of expanded times and contracted lengths involve the 

expression 

√
1 − v2

c2 . Since times and lengths are measurements, 

they must be represented by real numbers, so the value under the
square root must be a positive real number. For this to be true, 
v2

c2 < 1. This implies that v < c . If v approaches c, the value of 

gamma approaches infinity. Consider what happens to ∆t when v

approaches c in ∆t = ∆to√
1 − v2

c2

. The denominator approaches zero.

continued from previous page



11.2 Section Review

1.

(a) Explain what is meant by an inertial
frame of reference.

(b) Would a rotating merry-go-round be an
inertial frame of reference? Give reasons
for your answer.

2. Explain the meaning of the terms 
“proper length” and “proper time.”

3. An arrow and a pipe have exactly the
same length when lying side by side on a
table. The arrow is then fired at a relativistic 

speed through the pipe, which is still lying
on the table. Determine whether there is a
frame of reference in which the arrow can 

(a) be completely inside the pipe with extra
pipe at each end

(b) overhang the pipe at each end

Give reasons for your answers.

4. Explain the meaning of the terms
“length contraction” and “time dilation.”

5. Explain why the results of the Michelson-
Morley experiment were so important.
C

K/U

I

K/U

K/U

Division of a non-zero real number by zero is undefined so an
object’s speed must be less than the speed of light.

This speed limit applies only to material objects. Obviously,
light can travel at the speed of light. Also, once a light pulse has
been slowed down by passing into a medium such as water,
objects can travel faster through that medium than can the pulse.
The blue glow (called “Cerenkov radiation”) emanating from water
in which radioactive material is being stored is created by high-
speed electrons (beta particles) that are travelling through 
the water faster than the speed of light through water. This 
phenomenon is sometimes compared to sonic boom, in which 
particles (in the form of a jet airplane) are travelling faster than 
the speed of sound in air.

The blue glow from this storage pool in a nuclear generat-
ing station comes from particles that are travelling through the water faster
than the speed of light through water.

Figure 11.12
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6.

(a) In the diagram, two stars (A and B) are
equidistant from a planet (P) and are at
rest relative to that planet. They both
explode into novas at the same time,
according to an observer on the planet.
From the point of view of passengers in a
rocket ship travelling past at relativistic
speeds, however, which star went nova
first? Give reasons for your answer.

(b) Where could the observer stand on the
planet in order to see both stars at the
same time?

7. Part (A) of the diagram shows a star (S)
located at the midpoint between two planets
(A) and (B), which are at rest relative to the
star. The star explodes into a supernova.

(a) In the frame of reference of the planets,
which planet saw the supernova first?
Give reasons for your answer.

(b) A spacecraft is passing by as shown in
part (B). In its frame of reference, the star
and planets are moving as shown in part
(C). In the spacecraft frame of reference,
which planet saw the supernova first?
Give reasons for your answer.

8.

(a) Imagine that you are riding along on 
a motorcycle at 22 m/s and throw a ball

ahead of you with a speed of 35 m/s.
What will be the speed of that ball 
relative to the ground?

(b) If the velocity of the motorcycle relative to
the ground is vmg, the velocity of the ball
relative to the motorcycle is vbm, and the
velocity of the ball relative to the ground
is vbg, state the vector equation for calcu-
lating the velocity of the ball relative to
the ground.

(c) Apply this formula to a situation in which
the motorcycle is travelling at 0.60 c and
the ball is thrown forward with a speed 
of 0.80 c. What is the speed of the ball 
relative to the ground? What is wrong
with this answer?

(d) In the special theory of relativity, the 
formula for adding these velocities is

vbg = vbm + vmg

1 + vbm · vmg

c2

• What does this formula predict for the
answer to (c)?

• What does this formula predict for the
answer to (a)?

• Imagine that you are travelling in your
car at a speed of 0.60 c and you shine 
a light beam ahead of you that travels
away from you at a speed of c.
According to this formula, what would
be the speed of that light beam relative
to the ground?

I

SA

S

x x

v

v v v

A

SA

B

B

B

A

B

C

K/U

A BP

A BP

x x

v

K/U

How would the general public have received
the new information in Einstein’s special 
theory of relativity?
� Do you believe that at the turn of the 

twentieth century society had more or less
faith in science than people do today? Why
or why not?

� Dramatic events often steer thinking into
new directions. Do you believe that Einstein
was affected by any one particular event as
he developed his theories?

� Are you able to link recent societal events
with current changes in the direction of 
scientific research?

UNIT PROJECT PREP
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CAREERS IN PHYSICS

Not Even the Sky’s the Limit!
When a signal leaves a satellite or interplanetary
space probe, a special code is embedded in it to
give it a time-stamp. When the signal is picked up
on Earth, that time-stamp is compared to a terres-
trial clock. Subtracting the two gives the travel time
between the satellite or space probe and the
ground station. Since the signal travels at the
speed of light, all you should need to do then is
multiply the time by c to determine the distance —
but it’s not that simple.

Gravity is part of the problem. According to
Einstein’s general theory of relativity, clocks run
more slowly in a gravitational field. The stronger
the field is, the slower the clocks run. Clocks on
board spacecraft and satellites run slightly faster 
in interplanetary space than they do near Earth.
These timing differences result in distance 
measurement differences between what is
observed from a ground station and from a 
spacecraft. The situation becomes even more 
complicated as the spacecraft dips into and 
out of the gravitational fields of planets that it
encounters on its voyage. 

A second problem results from the relative
velocity between the spacecraft and the ground
station. Einstein’s special theory of relativity, 
discussed in detail in this chapter, describes how
time intervals and distance measurements vary
between inertial frames of reference that are in
motion relative to each other. This relative velocity
is continually changing as a result of the gravity of
the Sun and planets and due to Earth’s orbital and
rotational velocities. Relativistic corrections —
numerical adjustments based on the theory of 
relativity — are an ongoing challenge in spacecraft
instrument design.

There are “a whole suite of careers that utilize
these things,” Steve Lichten, manager of the
Tracking Systems and Applications Section of
NASA’s Jet Propulsion Laboratory, says of 
relativity. Einsteinian physics is no longer the sole
property of university researchers. Commercial
satellite manufacturers must have an understand-
ing of relativity in order for their products to work. 

Theoreticians, engineers, and computer 
scientists must work together to help a spacecraft 
communicate with its ground station, so the 
companies that manufacture spacecraft and 
commercial satellites are always on the lookout for
people with the necessary knowledge. Generally,
an advanced graduate degree in engineering,
physics, or mathematics is preferred, although a
bachelor’s degree in science with a demonstrated
understanding of the concepts and techniques
involved will go a long way. 

So brush up your math skills and keep doing
those thought experiments. Some day, they might
take you to the stars!

Going Further
1. Describe some examples of satellites that

require extremely precise distance and time
measurements. Explain why such precision 
is necessary for those satellites.

2. Many companies that manufacture satellites or
equipment for use on satellites (including space
stations) offer summer internship programs for
interested students. Find out if any of these
companies are located near you and call them.
You might be able to get a head start on a 
great career!

3. Research the space probes, such as the one
shown in the photograph, that are currently
active. Explain why precise knowledge of 
time intervals and distances is of extreme
importance to the operation of space probes.

www.mcgrawhill.ca/links/physics12

For information about the NASA Jet Propulsion
Laboratory’s past, current, and planned space missions,
go to the above Internet site and click on Web Links.

WEB LINK



In the last section, you read a discussion based on mathematical
equations that explained why no object with mass can travel at or
above the speed of light. The discussion probably left you wonder-
ing why. If, for example, a spacecraft is travelling at 0.999 c, what
would prevent it from burning more fuel, exerting more reaction
force, and increasing its speed up to c?

The fact that no amount of extra force will provide that last
change in velocity is explained when you discover that the mass
of the spacecraft is also increasing. Einstein showed that, just as
time dilates and length contracts when an object approaches the
speed of light, its mass increases according to the equation 

m = mo√
1 − v2

c2

. In the equation, m is the mass as measured by an 

observer who sees the object moving with speed v, and mo is the
mass as measured by an observer at rest relative to the object. 
The mass, m, is sometimes called the relativistic mass and mo is
known as the rest mass.

As the speed of the object increases, the value of the denominator√
1 − v2

c2 decreases. As v approaches c, the denominator approaches

zero and the mass increases enormously. If v could equal c, the 

mass would become mo
0

, which is undefined. The speed of an 

object, measured from any inertial frame of reference, therefore
must be less than the speed of light through space.

Quantity Symbol SI unit
relativistic mass m kg (kilograms)

rest mass mo kg (kilograms)

speed of the mass v m
s

(metres per second)
relative to observer

speed of light c m
s

(metres per second)

Unit Analysis

kilograms = kilograms√
1 −

(
metres
second

)2(
metres

seconds

)2

= kilograms kg = kg√
1 −

(
m
s

)2(
m
s

)2

= kg

m = mo√
1 − v2

c2

RELATIVISTIC MASS
Relativistic mass is the quotient of rest mass and gamma.

Mass and Energy11.3
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• Conduct thought experiments
as a way of developing an
abstract understanding of the
physical world as it relates to
mass increase when an object
approaches the speed of light.

• Apply quantitatively the laws 
of conservation of mass and
energy, using Einstein’s mass-
energy equivalence.

• rest mass

• relativistic mass

• total energy

• rest energy

 T E R M S
K E Y

E X P E C T A T I O N S
S E C T I O N



Relativistic Masses
An electron has a rest mass of 9.11 × 10−31 kg. In a detector, it
behaves as if it has a mass of 12.55 × 10−31 kg . How fast is that
electron moving relative to the detector?

Conceptualize the Problem
� The mass of the object appears to be much greater to an observer

in a frame of reference that is moving at relativistic speeds than
it does to an observer in the frame of reference of the object.

� The amount of the increase in mass is determined by the ratio of
the object’s speed and the speed of light.

Identify the Goal
Determine the speed, v, of the electron relative to the detector

Identify the Variables and Constants
Known Implied Unknown
mo = 9.11 × 10−31 kg
m = 12.55 × 10−31 kg

c = 3.00 × 108 m
s

v

Develop a Strategy

v =
(
3.00 × 108 m

s

)√
1 −

( 9.11 × 10−31 kg
12.55 × 10−31 kg

)2

v =
(
3.00 × 108 m

s

)√
1 − 0.52692

v = ±
(
3.00 × 108 m

s

)
(0.68780)

v = ±2.0634 × 108 m
s

v ≅ ±2.06 × 108 m
s

Substitute numerical values and solve.

m = mo√
1 − v2

c2√
1 − v2

c2 = mo
m

1 − v2

c2 =
( mo

m

)2

v2

c2 = 1 −
( mo

m

)2

v2 = c2
(
1 −

( mo
m

)2)

v = c

√
1 −

( mo
m

)2

Use the equation that relates the relativistic
mass, rest mass, and speed.

Solve the equation for speed.

SAMPLE PROBLEM 
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In questions involving masses, the
masses form a ratio. It does not
matter, therefore, what the actual
mass units are, as long as they are
the same for both the rest mass
(mo) and the moving (relativistic)
mass (m).

PROBLEM TIP

continued



Since the problem is asking only for relative speed, the negative root
has no meaning. Choose the positive value.

The speed of the electron relative to the detector is 2.06 × 108 m
s

or 0.688c.

Validate the Solution
Since there is an appreciable mass increase, the object must be moving
at a relativistic speed.

7. A speck of dust in space has a rest mass of
463 µg. If it is approaching Earth with a 
relative speed of 0.100c, what will be its
mass as measured in the Earth frame of 
reference? Remember, in questions involving
masses, the masses form a ratio, so it does
not matter what the actual mass units are, 
as long as they are the same for both the rest
mass and the moving, or relativistic, mass.

8. A neutron is measured to have a mass 
of 1.71 × 10−27 kg when travelling at
6.00 × 107 m/s. Determine its rest mass. 

9. How fast should a particle be travelling 
relative to an experimenter in order to 
have a measured mass that is 20.00 times 
its rest mass?

PRACTICE PROBLEMS

488 MHR • Unit 5  Matter-Energy Interface

Where Is the Energy?
At the start of this section, you examined the relativistic effects
that occur when a spacecraft is approaching the speed of light.
The conclusion was that its increasing mass must prevent it from
accelerating up to the speed of light. However, while the thrusters
on the spacecraft are firing, force is being exerted over a displace-
ment, indicating that work was being done on the spacecraft. 
You know that, at non-relativistic speeds, the work would increase
the spacecraft’s kinetic energy. At relativistic speeds, however, the
speed and thus the kinetic energy increase can only be very small.
What, then, is happening to the energy that the work is transfer-
ring to the spacecraft?

Einstein deduced that the increased mass represented the
increased energy. He expressed it in the formula Ek = mc2 − moc2

or Ek = (∆m)c2. As before, m is the mass of the particle travelling 
at speed v, and mo is its rest mass. The expression mc2 is known
as the total energy of the particle, while moc2 is the rest energy
of the particle. Rearranging the previous equation leads to
mc2 = moc2 + Ek. The total energy of the particle equals the rest
energy of the particle plus its kinetic energy. 

continued from previous page



No wonder physicists had difficulty
accepting Einstein’s theory! In these 
equations, he is saying that mass and 
energy are basically the same thing and
that the conversion factor relating them 
is c2, the square of the speed of light. 
At the time that Einstein published his
work, such changes in mass could not 
be measured. Eventually, with the 
advent of high-energy physics, these
measurements have become possible.

Quantity Symbol SI unit
relativistic mass m kg (kilograms)

rest mass mo kg (kilograms)

speed of light c m
s

(metres per second)

kinetic energy Ek J (joules)

Unit Analysis

kilogram
( metres

second

)2
= kilogram

( metres
second

)2
+ joule = joule

kg
( m

s

)2
= kg

( m
s

)2
+ J = J

mc2 = moc2 + Ek

TOTAL ENERGY
The total energy (relativistic mass times the square of the
speed of light) of an object is the sum of the rest energy 
(rest mass times the square of the speed of light) and its 
kinetic energy.
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Kinetic Energy in a Rocket and in a Test Tube
1. A rocket car with a mass of 2.00 × 103 kg is accelerated to

1.00 × 108 m/s. Calculate its kinetic energy

(a) using the classical or general equation for kinetic energy

(b) using the relativistic equation for kinetic energy

Conceptualize the Problem
� The classical equation for kinetic energy is directly related to the

object’s mass and the square of its velocity. 

SAMPLE PROBLEMS

continued

In particle acceler-
ators, such as this one at the
Stanford Linear Accelerator 
Center in California, particles are
accelerated to speeds very close
to the speed of light. Their masses
are measured and are found to
agree with Einstein’s prediction.

Figure 11.13



� The relativistic equation for kinetic energy takes into account the concept that the
object’s mass changes with its velocity and accounts for this relativistic mass. 

Identify the Goal
The kinetic energy, Ek , of the rocket car, using the classical expression for
kinetic energy and then the relativistic expression for kinetic energy

Identify the Variables and Constants
Known Implied Unknown
mo = 2.00 × 103 kg

v = 1.00 × 108 m
s

c = 3.00 × 108 m
s

m
Ek

Develop a Strategy

(a) The classical expression for kinetic energy yields 1.00 × 1019 J.

(b) The relativistic expression for kinetic energy yields 1.09 × 1019 J.

Validate the Solution
Since gamma is not far from unity, a speed of 1.00 × 108 m/s does not provide
a high degree of relativistic difference, so the two kinetic energies should 
not be too far apart.

2. A certain chemical reaction requires 13.8 J of thermal energy. 

(a) What mass gain does this represent?

(b) Why would the chemist still believe in the law of conservation of mass?

Conceptualize the Problem
� Thermal energy is the kinetic energy of molecules. 

Ek = mc2 − moc2

Ek = c2
(
moγ − mo

)
Ek = moc2

(
γ − 1

)
Ek =

(
2.00 × 103 kg

)(
3.00 × 108 m

s

)2(
1.061 − 1

)
Ek = 1.09 × 1019 J

Select the relativistic equation for Ek .
Rearrange in terms of gamma.

Substitute into the equation.

Solve the equation.

(b) γ =
√

1 − v2

c2

γ =

√
1 −

(1.00 × 108 m
s )2

(3.00 × 108 m
s )2

γ = 1.061

Calculate gamma.

(a) Ek = 1
2 mv2

Ek = 1
2 (2.00 × 103 kg)

(
1.00 × 108 m

s

)2

Ek = 1.00 × 1019 J

Select the classical equation for kinetic
energy. Substitute into the equation. Solve.
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� Einstein’s equation for relativistic kinetic energy, which represents the
difference between the total energy and the rest energy, applies to the
motion of molecules as well as to rockets.

� If thermal energy seems to disappear during a chemical reaction, it
must have been converted into mass.

Identify the Goal
The mass gain, ∆m , during an absorption of 13.8 J of energy

Identify the Variables and Constants
Known Implied Unknown
Ek = 13.8 J c = 3.00 × 108 m

s
∆m

Develop a Strategy

(a) The gain in mass is 1.53 × 10−16 kg.

(b) This mass change is too small for a chemist to measure with a balance,
so the total mass of the products would appear to be the same as the
total mass of the reactants.

Validate the Solution
The mass change at non-relativistic speeds should be extremely small.
Note: The source of the energy that is released during a chemical reaction
is a loss of mass.

10. A physicist measures the mass of a speeding
proton as being 2.20 × 10−27 kg. If its rest
mass is 1.68 × 10−27 kg, how much kinetic
energy does the proton possess?

11. A neutron has a rest mass of 1.68 × 10−27 kg.
How much kinetic energy would it possess 
if it was travelling at 0.800c?

12. How fast must a neutron be travelling rela-
tive to a detector in order to have a measured
kinetic energy that is equal to its rest energy?
Express your answer to two significant digits.

13. How much energy would be required to 
produce a kaon particle (κ) at rest with a 
rest mass of 8.79 × 10−28 kg?

14. If an electron and a positron (antielectron),
each with a rest mass of 9.11 × 10−31 kg, 
met and annihilated each other, how much
radiant energy would be produced? (In such
a reaction involving matter and antimatter,
the mass is completely converted into energy
in the form of gamma rays.) Assume that 
the particles were barely moving before 
the reaction.

15. If the mass loss during a nuclear reaction is
14 µg, how much energy is released?

16. The Sun radiates away energy at the rate of
3.9 × 1026 W. At what rate is it losing mass
due to this radiation?

PRACTICE PROBLEMS

Ek = ∆mc2

∆m = Ek
c2

∆m = 13.8 J(
3.00 × 108 m

s

)2

∆m = 1.533 × 10−16 kg

∆m ≅ 1.53 × 10−16 kg

Select the equation linking kinetic energy and mass.

Rearrange to give the mass change.

Solve.
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Relativistic and Classical Kinetic Energy
It might seem odd that there are two apparently different 

equations for kinetic energy. 

� At relativistic speeds, Ek = mc2 − moc2.

� At low (classical) speeds, Ek = 1
2 mv2 .

These equations are not as different as they appear, however.
The first equation expands as follows.

Ek = mc2 − moc2

Ek = c2(m − mo)

Ek = c2
( mo√

1 − v2

c2

− mo

)

Ek = moc2
[(

1 − v2

c2

)− 1
2 − 1

]
This expression can be simplified by using an advanced mathe-

matical approximation that reduces to the following when v << c.

Ek = c2mo

[
1 − (− 1

2 ) v2

c2 − 1
]

Ek = 1
2 mov2

The relativistic expression for kinetic energy therefore becomes
the classical expression for kinetic energy at normal speeds.

You have now examined the basics of the special theory of 
relativity and have seen how the measurement of time, length, 
and mass depends on the inertial frame of reference of the 
observer. You have also seen that mass and energy are equivalent,
that matter could be considered as a condensed form of energy.
What happens, though, when the frame of reference is not inertial? 
Such considerations are the subject of Einstein’s general theory 
of relativity, which deals with gravitation and curved space —
concepts that are beyond the scope of this course.

11.3 Section Review

1. What do the terms “total energy” and
“rest energy” mean?

2. What term represents the lowest 
possible mass for an object?

3. Using the equations involved in relativity,
give two reasons why the speed of light is an
unattainable speed for any material object.

4. Imagine that the speed of light was about
400 m/s. Describe three effects that would be
seen in everyday life due to relativistic
effects.

5. How might an experimenter demonstrate
that high-speed (relativistic) particles have
greater mass than when they are travelling 
at a slower speed? Assume that the experi-
menter has some way of measuring the
speeds of these particles.

6.

(a) What must be true about the masses of the
reactants and products for a combustion
reaction? Why?

(b) Why would a chemist never notice the
effect in part (a)?

MC

I

C

C

K/U

K/U
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C H A P T E R Review11

Knowledge/Understanding
1. Briefly describe the Michelson-Morley 

experiment.
(a) What were the predicted results?
(b) What did Michelson and Morley actually

observe?
(c) Why did the observed results cause a com-

plete rethinking of their basic postulates?

2. (a) In the Michelson-Morley experiment, 
what was the purpose of rotating the 
apparatus 90˚?

(b) What were the results and implications 
of this procedural step?

3. While riding in a streetcar in Bern,
Switzerland, Einstein realized that moving
clocks might not run at the same rate as 
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� The Michelson-Morley experiment indicated
that the speed of light was the same for
observers in any inertial frame of reference.

� The special theory of relativity is based on
two postulates.

1. All physical laws hold true in any inertial
frame of reference.

2. The speed of light is the same for observers
in any inertial frame of reference.

� The special theory of relativity predicts that
events that are simultaneous for observers in
one inertial frame of reference are not neces-
sarily simultaneous for observers in a different
inertial frame of reference.

� The special theory of relativity predicts that 
if you are observing events in an inertial frame
of reference that is moving rapidly relative to
you, times in that observed frame of reference
will appear to slow down. This is known as
“time dilation.” The effect is expressed in 
the formula 

∆t = ∆to√
1 − v2

c2

� The special theory of relativity predicts that 
if you are observing objects in an inertial
frame of reference that is moving rapidly 
relative to you, lengths in that observed frame
of reference in the direction of the motion will
appear to be shorter. This is known as “length 
contraction.” The effect is expressed in 
the formula

L = Lo

√
1 − v2

c2

� The special theory of relativity predicts that
objects moving at a high rate of speed relative
to a given inertial frame of reference will have
greater mass than when they are at rest in that
frame of reference. This is known as “mass
increase.” The effect is expressed in the 
formula

m = mo√
1 − v2

c2

� The previous equations are shortened by the
use of the quantity called “gamma.”

γ = 1√
1 − v2

c2

Using gamma, the equations become

∆t = γ ∆to

L = Lo
γ

m = moγ

� Relativistic kinetic energy is given by
Ek = mc2 − moc2

or Ek = (∆m)c2

� The speed of light through a vacuum is the
fastest speed possible. Objects with mass must
travel slower than this speed. Massless objects
such as photons must travel at this speed.

� mc2 represents the total energy of the particle.

REFLECTING ON CHAPTER 11



stationary clocks. He looked at a clock on a
tower and realized that if the streetcar moved
away from the clock at the speed of light, it
would appear to him as if the clock had
stopped. Describe a thought experiment to
illustrate his thinking. 

4. Explain, using examples, why seemingly simul-
taneous events might occur at different times
and different places, depending on your frame
of reference. 

5. The speed of light in water is 2.25 × 108 m/s.
Using Einstein’s thinking, explain whether it is
possible for a particle to travel through water at
a speed greater than 2.25 × 108 m/s.

6. Explain how the behaviour of muons is used as
evidence for the concepts of time dilation and
length contraction.

7. Why is it postulated that electrons, protons,
and other forms of matter can never travel at
the speed of light? 

8. A photon can be considered as a particle with a
specific energy that travels at the speed of light. 
(a) According to the special theory of relativity,

what is the rest mass of the photon? 
(b) If a photon has energy, does that mean it

also has momentum? 

9. Explain how the equation E = mc2 is consistent
with the law of conservation of energy. 

Inquiry
10. Examine the question of when relativistic

effects become important by plotting graphs 
of 1/γ versus velocity and γ versus velocity for
speeds of 0 to 1.0c. 
(a) At what speed would an observer 

experience a 1.0% time dilation effect 
or a 1.0% length contraction effect?

(b) Repeat part (a) for 10%, 50%, 90%, and
99.99%.

11. Explain the first postulate of the theory of 
special relativity by describing how the laws 
of classical physics hold in an inertial frame 
of reference, but do not hold in a non-inertial
frame of reference.

12. Describe a thought experiment to consider the
effect on your everyday life if the speed of light
was 3.0 × 102 m/s, rather than 3.0 × 108 m/s.
Assume appropriate rates of speed and consid-
er how much younger you would be if you flew
from Toronto to Vancouver and back than if
you stayed home. If the distance from Toronto
to Vancouver is 2.8 × 103 km, measured at a
walking pace, what distance will you have 
covered from the airplane’s frame of reference?
Assume that the airplane is flying at approxi-
mately 800 km/h.

13. Estimate the number of lights in the city of
Toronto or Ottawa. Make reasonable assump-
tions. Suppose all of the light energy used in
the city in 1 h in the evening could be captured
and put into a box. Approximately how much
heavier would the box become? 

Communication
14. Sketch the appearance of a baseball as it flies

past an observer at low speeds and at speeds
that approach the speed of light. 

15. A friend states that, according to Einstein,
“Everything is relative.” Disprove this popular
statement by making a list of quantities that
according to special relativity are (a) relative,
that is, their value depends on the frame of 
reference, and (b) invariant, that is, their value
is the same for all inertial observers. 

16. Your lab partner is trying to convince you that
a spaceship, which can travel at 0.9 c, can fit
into a garage shorter than the spaceship’s actual
length. He suggests that if the spaceship is
backed into the garage at full speed, it will
undergo length contraction and thus fit into 
the garage. Explain to him the flaws in his
thinking. 

Making Connections 
17. Until recently, the neutrino was thought to be

massless and, therefore, to travel at the speed 
of light. Evidence from the Sudbury Neutrino
Observatory (see the Physics Magazine in
Chapter 13, The Nucleus and Elementary

494 MHR • Unit 5  Matter-Energy Interface



Particles), published in June 2001, suggests 
that the neutrino has a tiny mass. Research the
latest developments. 
(a) What is the neutrino’s mass now considered

to be? 
(b) Why has it been so difficult to measure? 
(c) If the premise that neutrinos have mass is

accepted, what are the implications in rela-
tion to setting an upper limit on their speed? 

Problems for Understanding
18. How fast must a spaceship be moving for you

to measure its length to be half its rest length?

19. You are speeding along in your sports car when
your friend passes you on a relativistic motor-
cycle at 0.60c. You see your own car as being
4.0 m long and your friend’s motorcycle as
being 1.5 m long. You also notice that your
friend’s watch indicates that 8.5 × 10−8 s
elapsed as she passed you. (It is a very 
large watch!)
(a) How long is your car as seen by your friend?
(b) How long is the motorcycle as seen by your

friend?
(c) How much time passed on your watch

while 8.5 × 10−8 s passed on your friend’s
watch?

20. A proton has a rest mass in a laboratory of 
1.67 × 10−27 kg. 
(a) What would its mass be relative to the 

laboratory if it was accelerated up to a 
speed of 0.75c?

(b) While the experimenter was determining the
proton’s mass in (a), what would be the 
proton’s mass in its own frame of reference?

21. Create a graph showing the observed mass of an
object that has a 1.0 kg rest mass as its speed
goes from rest to 0.99c.

22. If a clock in an airplane is found to slow down
by 5 parts in 1013, (i.e., ∆t/∆to = 1.0 + 5.0 × 10−13),
at what speed is the airplane travelling? (Hint:
You might need to use an expansion for γ .)

23. A spaceship travelling at 0.9 c fires a beam of
light straight ahead. 

(a) How fast would the crew on the spaceship
measure the light beam’s speed to be? 

(b) How fast would a stationary observer on a
spacewalk measure the light beam’s speed 
to be? 

(c) How fast would the crew on another space-
ship travelling parallel to the first at the
same speed of 0.9c measure the light beam’s
speed to be? 

24. A pion is an unstable elementary particle that
has a lifetime of 1.8 × 10−8 s. Assume that a
beam of pions produced in a lab has a velocity
of 0.95c.
(a) By what factor is the pions’ lifetime

increased? 
(b) What will be their measured lifetimes?
(c) How far will they travel in this time? 

25. What is the mass of an electron travelling at
two thirds of the speed of light? Compare this
to its rest mass. 

26. What is the kinetic energy of an electron with
the following speeds?
(a) 0.0010c;  (b) 0.10c;  (c) 0.50c;  (d) 0.99c
(e) For which, if any, of these speeds, can you

use the non-relativistic expression 1
2 mv2

and have an error of less than 10%?
27. If an object has a mass that is 1.0% larger than

its rest mass, how fast must it be moving? 
28. How many 100 W light bulbs could be powered

for one year by the direct conversion of 1 g of
matter into energy?

29. An electron is accelerated from rest through 
a potential difference of 2.2 MV, so that it
acquires an energy of 2.2 MeV. Calculate its
mass, the ratio of its mass to its rest mass, and
its speed. 

30. An object at rest explodes into two fragments,
each of which has a rest mass of 0.50 g.
(a) If the fragments move apart at speeds of 

0.70c relative to the original object, what 
is the rest mass of the original object? 

(b) How much of the object’s original mass
became kinetic energy of the fragments in
the explosion?
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C H A P T E R

Quantum Mechanics 
and the Atom12

In the photograph above, a white blood cell is engulfing and
destroying a parasite. This process, called “phagocytosis,” is

one way in which your immune system protects you from disease.
The image of the white blood cell was formed not by light waves,
but by electrons. In previous courses, you learned in detail how
light waves form images. You discovered that the wave properties
of light made image formation possible. It would seem logical
then, that in order for electrons to form images, they must behave
like waves.

The idea that electrons, and all forms of matter, have wavelike
properties was one of the concepts that shook the world of physics
in the early 1900s. This discovery, along with the observation that
light behaves like particles, helped form the basis of quantum 
theory — a theory that has permanently changed scientists’ 
perception of the physical world. The early observations and 
concepts seemed so theoretical and distant from the everyday
world that it was difficult to see any potential impact on the daily
lives of non-scientists. However, out of quantum theory grew such
technologies as electron microscopes, lasers, semiconductor elec-
tronics, light meters, and many other practical tools. In this chap-
ter, you will follow, step by step, how and why quantum theory
developed and how it influenced scientists’ concept of the atom.

Investigation 12-A
Discharging an 
Electroscope 497

12.1 The Particle Nature 
of Light 498

12.2 Light Particles and 
Matter Waves 510

12.3 The Bohr Atom 
and Beyond 519

Investigation 12-B
Identifying Elements
by Their Emission 
Spectra 537

CHAPTER CONTENTS
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� J.J. Thomson’s discovery of the
electron

� Rutherford’s scattering experiment

PREREQUISITE

CONCEPTS AND SKILLS



I N V E S T I G A T I O N  12-A

Discharging an Electroscope

TARGET SKILLS

Hypothesizing
Performing and recording
Analyzing and interpreting

In this investigation, you will use an electro-
scope to analyze the interaction between 
ultraviolet light and a zinc plate.

Problem
How can you discharge an electroscope when 
it is isolated from any source of electric 
grounding?

Equipment  
� metal leaf electroscope
� carbon arc lamp (or source of intense ultraviolet light)
� insulating stand
� conducting wire with alligator clips
� zinc plate
� ebonite rod
� glass rod
� emery paper
� fur
� silk

Procedure
1. Polish the zinc plate with the emery paper

until the plate shines.

2. Assemble the apparatus as shown in the 
diagram, leaving the lamp turned off. Ensure
that the shiny side of the zinc plate faces 
the lamp. 

3. Rub the ebonite rod with the fur to give the
rod a negative charge.

4. Touch the ebonite rod to the sphere of the
electroscope. Record the appearance of the
electroscope.

5. Observe and record any changes in the 
electroscope over a period of 2 to 3 min.

6. Turn on the carbon arc lamp and observe and
record any changes in the electroscope over 
a 2 to 3 min period.

When the carbon arc lamp is on, do not
look directly at the light or any reflected light.
Ultraviolet light could damage your eyes.

7. Turn the lamp off. Touch the sphere of the
electroscope with your hand to fully 
discharge the leaves. 

8. Rub the glass rod with the silk to give it a
positive charge. Touch the rod to the sphere
of the electroscope.

9. Turn on the carbon arc lamp and observe and
record any changes in the electroscope over 
a period of 2 to 3 min.

10. Turn the lamp off and discharge the 
electroscope.

Analyze and Conclude
1. Describe the exact conditions under which

the electroscope discharged. For example,
did it discharge when it was carrying a net
negative charge or net positive charge? Was
the carbon arc lamp on or off when this
occurred?

2. Describe the conditions under which the
electroscope did not discharge.

3. What entity had to escape from the electro-
scope in order for it to discharge?

4. Formulate a hypothesis about a mechanism
that would have allowed the entity in 
question 3 to escape.

5. As you study this chapter, compare your
hypothesis with the explanation given by
physicists.

CAUTION

carbon
arc
lamp

electroscopezinc plate
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In Unit 4, The Wave Nature of Light, you studied light and 
electromagnetic radiation. You learned that Christiaan Huygens
(1629–1695) revived the wave theory of light in 1678. In 1801,
Thomas Young (1773–1829) demonstrated conclusively with his
famous double-slit experiment that light consisted of waves. 

For more than 200 years, physicists studied electromagnetism
and accumulated evidence for the wave nature of light and all
forms of electromagnetic radiation. In fact, in 1873, James Clerk
Maxwell (1831–1879) published his Treatise on Electricity and
Magnetism, in which he summarized in four equations everything
that was known about electromagnetism and electromagnetic
waves. Maxwell’s equations form the basis of electromagnetism 
in much the same way that Newton’s laws form the basis of
mechanics. 

These areas of study, Newtonian mechanics and electricity 
and magnetism, along with thermodynamics, constitute classical
physics. By the late 1800s, classical physics was well established.
Many years of experiments and observations supported the 
theories of Newton and Maxwell. However, the scientific 
community was about to be shaken by events to come with the
turn of the century.

How could observations on something as seemingly simple as a
blackbody expose a flaw in these well-established theories? What,
exactly, is a blackbody?

Blackbody Radiation
Based on his studies on the emission and absorption spectra of
gases, Gustav Kirchhoff (1824–1887) defined the properties of a
blackbody. While working with Robert Bunsen (1811–1899),
Kirchhoff observed that, when heated to incandescence, gases emit
certain, characteristic frequencies of light. When white light shines
through the gases, they absorb the same frequencies of light that
they emit, so Kirchhoff proposed that all objects absorb the same
frequencies of radiation that they emit. He further reasoned that
since black objects absorb all frequencies of light, they should emit
all frequencies when heated to incandescence. Thus, the term
blackbody was defined as a “perfect radiator,” a body that emits 
a complete spectrum of electromagnetic radiation.

Fortunately for experimenters, blackbodies are not difficult to
simulate in the laboratory. Any cavity with the inner walls heated
to a very high temperature and with a very small hole to allow
radiation to escape (see Figure 12.1) will emit a spectrum of 
radiation nearly identical to that of a blackbody.

The Particle Nature of Light12.1
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• Describe the photoelectric
effect and outline the experi-
mental evidence that supports 
a particle model of light.

• Describe how the development
of the quantum theory has led
to technological advances such
as the light meter.

• classical physics

• blackbody 

• ultraviolet catastrophe

• empirical equation

• quantized

• quantum

• photoelectric effect

• stopping potential

• photon

• work function

• threshold frequency

• electron volt

 T E R M S
K E Y

E X P E C T A T I O N S
S E C T I O N



(A) When the temperature of a kiln surpasses 1000 K, the
radiation is independent of the nature of the material in the kiln and
depends only on the temperature. (B) A tiny hole in a very hot cavity 
“samples” the radiation that is being emitted and absorbed by the 
walls inside. 

Figure 12.2 shows graphs of the blackbody radiation distribu-
tion at several different temperatures. The frequency of the 
radiation is plotted on the horizontal axis and the intensity of the
radiation emitted at each frequency is plotted on the vertical axis.
The area under the curve represents the total amount of energy
emitted by a blackbody in a given time interval.

Using data such as those in Figure 12.2, Kirchhoff was able 
to show that the power radiated by a blackbody depends on the
blackbody’s temperature. He also showed that the intensity of the
radiation was related to the frequency in a complex way and 
that the distribution of intensities was different at different 
temperatures. Kirchhoff was unable to find the exact form of 
the mathematical relationships, so he challenged the scientific
community to do so.
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As the
temperature of an incan-
descent body increases,
the frequency that is
emitted with the highest
intensity (the peak of the
curve) becomes higher.

Figure 12.2
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According to electromagnetic theory, accelerating charges emit
electromagnetic radiation. Maxwell’s equations describe the nature
of these oscillations and the associated radiation. A blackbody
therefore must have vibrating, or oscillating, charges on the 
surface that are emitting (or absorbing) electromagnetic energy.

Josef Stefan (1835–1893) showed experimentally in 1879 that
the power (energy per unit time) emitted by a blackbody is related
to the fourth power of the temperature (P ∝ T4). In other words, 
if the temperature of a blackbody doubles, the power emitted will
increase by 24, or 16 times. Five years later, Ludwig Boltzmann
(1844–1906) used Maxwell’s electromagnetic theory, as well as
methods Boltzmann himself had developed for thermodynamics,
to provide a theoretical basis for the fourth-power relationship. 

The exact mathematical relationship between frequency and
intensity of radiation emitted by a blackbody is much more 
complex than the relationship between temperature and power.
Nevertheless, Lord Rayleigh (John William Strutt, 1842–1919) and

Sir James Hopwood Jeans (1877–1946)
attempted to apply the same principles
that Boltzmann had used for the energy-
temperature relationship. When they
applied these theories to blackbody 
radiation, they obtained the upper curve
shown in Figure 12.4. The lower curve
represents experimental data for the
same temperature.

(A) While an object such as a crowbar emits no visible 
radiation at room temperature, it is actually emitting infrared radiation. 
(B) When a stove coil reaches 600 K, it emits mostly invisible, infrared 
radiation. The radiation appears to be red, because it emits a little visible
radiation in the red end of the spectrum. (C) At 2000 K, a light bulb filament
looks white, because it emits all frequencies in the visible range.

Figure 12.3
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At low frequencies, predictions
based on classical theory agree with observed
data for the intensity of radiation from a black-
body. At high frequencies, however, theory
and observation diverge quite drastically.
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As you can see in Figure 12.4, classical theory applied to black-
body radiation agrees with observed data at low frequencies, but
predicts that energy radiated from incandescent objects should
continue to increase as the frequency increases. This discrepancy
between theory and observation shocked the physicists of the day
so much that they called it the ultraviolet catastrophe. How could
a theory that had explained all of the data collected for 200 years
fail to predict the emission spectrum of a blackbody? Little did
they realize what was in store.

The Birth of Quantum Theory
Max Planck (1858–1947), a student of Kirchhoff, developed an
empirical mathematical relationship between intensity and 
frequency of blackbody radiation. (An empirical equation is one
that fits the observed data but is not based on any theory.) To
develop the theory behind his empirical relationship, Planck
turned to a statistical technique that Boltzmann had developed 
to solve certain thermodynamic problems. Planck had to make a
“minor adjustment” to apply this method to energies of oscillators
in the walls of a blackbody, however.

Boltzmann’s statistical method required the use of discrete
units, such as individual molecules of a gas. Although the energies
of oscillators had always been considered to be continuous, for the
sake of the mathematical method, Planck assigned discrete energy
levels to the oscillators. He set the value of the allowed energies of
the oscillators equal to a constant times the frequency, or E = hf,
where h is the proportionality constant.

According to this hypothetical system, an oscillator could exist
with an energy of zero or any integral multiple of hf, but not at
energy levels in between, as illustrated in Figure 12.5. When the
blackbody emitted radiation, it had to drop down one or more 
levels and emit a unit of energy equal to the difference between
the allowed energy levels of the oscillator. A system such as this 
is said to be quantized, meaning that there is a minimum amount
of energy, or a quantum of energy, that can be exchanged in any
interaction.
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The
“allowed” energy levels
of the oscillators in the
walls of a blackbody can
be described as E = nhf,
where n is any positive
integer — 0, 1, 2, and up.

Figure 12.5



With discrete units of energy defined, Planck could now apply
Boltzmann’s statistical methods to his analysis of blackbodies. 
His plan was to develop an equation and then apply another math-
ematical technique that would allow the separation of energy 
levels to become smaller and smaller, until the energies were once
again continuous. Planck developed the equation, but when he
performed the mathematical operation to make oscillator energies
continuous, the prediction reverted to the Rayleigh-Jeans curve.
However, his equation fit the experimental data perfectly if the
allowed energies of the oscillators remained discrete instead of
continuous. 

Planck was quite surprised, but he continued to analyze the
equation. By matching his theoretical equation to experimental
data, he was able to determine that the value of h, the proportion-
ality constant, was approximately 6.55 × 10−34 J · s. Today, h is
known as Planck’s constant and its value is measured to be
6.626 075 5 × 10−34 J · s .

With a theory in hand that could precisely predict the observed
data for blackbody radiation, Planck presented his findings to the
German Physical Society on December 14, 1900, and modern
physics was born. Planck’s revolutionary theory created quite a
stir at the meeting, but the ideas were so new and radical that
physicists — Planck included — could not readily accept them.
More evidence would be needed before the scientific community
would embrace the theory of the quantization of energy.

The Photoelectric Effect
The photoelectric effect, which would eventually confirm the 
theory of the quantization of energy, was discovered quite by 
accident. In 1887, Heinrich Hertz (1857–1894) was attempting to
verify experimentally Maxwell’s theories of electromagnetism. He
assembled an electric circuit that generated an oscillating current,
causing sparks to jump back and forth across a gap between elec-
trodes, as illustrated in Figure 12.6. He showed that the sparks
were generating electromagnetic waves by placing, on the far 
side of the room, a small coil or wire with a tiny gap. When the
“transmitter” generated sparks, he observed that sparks were also
forming in the gap of the “receiver” coil on the far side of the
room. The electromagnetic energy had been transmitted across 
the room.

Hertz was able to show that these electromagnetic waves trav-
elled with the speed of light and could be reflected and refracted,
verifying Maxwell’s theories. Ironically, however, Hertz made an
observation that set the stage for experiments that would support
the particle nature of electromagnetic radiation — the sparks were
enhanced when the metal electrodes were exposed to ultraviolet
light. At the time of Hertz’s experiments, this phenomenon was
difficult to explain.
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Shortly after Planck presented his
paper on blackbody radiation,
Einstein corrected one small error
in the mathematics. He showed
that the energy levels of the oscil-
lators had to be E = (n + 1

2
)hf . 

The addition of 1
2

did not affect 
the difference between energy
levels and thus did not change
the prediction of the spectrum of
blackbody radiation. However, 
it did show that the minimum 
possible energy of an oscillator 
is not zero, but 1

2
hf .
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It was not until 10 years after Hertz carried out his experiments
that Joseph John Thomson (1856–1940) discovered the electron.
With this new knowledge, physicists suggested that the ultraviolet
light had ejected electrons from Hertz’s metal electrodes, thus 
creating a “conducting path” for the sparks to follow. The ejection
of electrons by ultraviolet light became known as the photoelectric
effect.

Early Photoelectric Effect Experiments
In 1902, physicist Philipp Lenard (1862–1947) performed more
detailed experiments on the photoelectric effect. He designed an
apparatus like the one shown in Figure 12.7. Electrodes are sealed
in an evacuated glass tube that has a quartz window. (Ultraviolet
light will not penetrate glass.) A very sensitive galvanometer
detects any current passing through the circuit. Notice that the
variable power supply can be connected so that it can make either
electrode positive or negative.

To determine whether photoelectrons were, in fact, ejected from
the “emitter,” Lenard made the emitter negative and the collector
positive. When he exposed the emitter to ultraviolet light, the 
galvanometer registered a current. The ultraviolet light had ejected
electrons, which were attracted to the collector and then passed
through the circuit. When Lenard increased the intensity of 
the ultraviolet light, he observed an increase in the current. 

power
source

oscillator circuit
(transmitter)

(receiver)
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The electromag-
netic waves that Hertz generated
with his spark gap were in the 
frequency range that is now 
called “radio waves.” Although
Hertz’s only intention was to 
verify Maxwell’s theories, his
experiments led to invention 
of the wireless telegraph, radio, 
television, microwave communi-
cations, and radar.

Figure 12.6

These glass tubes for exper-
iments on the photoelectric effect had to be
sealed in a vacuum so that the electrons
would not collide with molecules of gas.

Figure 12.7
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To learn more about the relative kinetic energies of photoelec-
trons, Lenard reversed the polarity of the power supply so that the
electric field between the electrodes would oppose the motion of
the photoelectrons. Starting each experiment with a very small
potential difference opposing the motion of the electrons, he grad-
ually increased the voltage and observed the effect on the current.
The photoelectrons would leave the emitter with kinetic energy.
He theorized that if the kinetic energy was great enough to 
overcome the potential difference between the plates, the electron
would strike the collector. Any electrons that reached the collector
would pass through the circuit, registering a current in the gal-
vanometer. Electrons that did not have enough kinetic energy 
to overcome the potential difference would be forced back to 
the emitter. 

Lenard discovered that as he increased the potential difference,
the current gradually decreased until it finally stopped flowing
entirely. The opposing potential had turned back even the most
energetic electrons. The potential difference that stopped all 
photoelectrons is now called the stopping potential. Lenard’s data
indicated that ultraviolet light with a constant intensity ejected
electrons with a variety of energies but that there was always a
maximum kinetic energy.

In a critical study, Lenard used a prism to direct narrow ranges
of frequencies of light onto the emitter. He observed that the stop-
ping potential for higher frequencies of light was greater than it
was for lower frequencies. This result means that, regardless of its
intensity, light of higher frequency ejects electrons with greater
kinetic energies than does light with lower frequencies. Once
again, a greater intensity of any given frequency of light increased
only the flowing current, or number of electrons, and had no effect
on the electrons’ stopping potential and, thus, no effect on their
maximum kinetic energy. In summary, Lenard’s investigations
demonstrated the following.

� When the intensity of the light striking the emitter increases, the
number of electrons ejected increases.

� The maximum kinetic energy of the electrons ejected from the
metal emitter is determined only by the frequency of the light
and is not affected by its intensity.

Lenard’s first result is in agreement with the classical wave the-
ory of light: As the intensity of the light increases, the amount of
energy absorbed by the surface per unit time increases, so the
number of photoelectrons should increase. However, classical 
theory also predicts that the kinetic energy of the photoelectrons
should increase with an increase in the intensity of the light.
Lenard’s second finding — that the kinetic energy of the photo-
electrons is determined only by the frequency of the light — 
cannot be explained by the classical wave theory of light.
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Einstein and the Photoelectric Effect
Just a few years after Planck’s quantum theory raised questions
about the nature of electromagnetic radiation, the photoelectric
effect raised even more questions. After publication, Planck’s 
theory had been, for the most part, neglected. Now, however,
because of the new evidence pointing to a flaw in the wave theory
of light, Planck’s ideas were revisited. 

It was Albert Einstein (1879–1955) who saw the link between
Planck’s quantum of energy and the photoelectric effect. In 1905,
Einstein published a paper in which he proposed that light must
not only be emitted as quanta, or packets of energy, but it must
also be absorbed as quanta. By treating light as quanta or photons,
as they were named later, Einstein could explain Lenard’s results
for the photoelectric effect. 

Einstein suggested that Planck’s unit of energy, E = hf, is the
energy of a photon. He proposed that when a photon strikes a
metal surface, all of its energy is absorbed by one electron in one
event. Since the energy of a photon is related to the frequency of
the light, a photon with a higher frequency would have more 
energy to give an electron than would a photon with a lower 
frequency. This concept immediately explains why the maximum
kinetic energy of photoelectrons depends only on frequency.
Increasing the intensity of light of a given frequency increases 
only the number of photons and has no effect on the energy of 
a single photon. 

Since the kinetic energy of the photoelectrons varied, some of
the energy of the photons was being converted into a form of 
energy other than kinetic. Einstein proposed that some energy
must be used to overcome the attractive forces that hold the 
electron onto the surface of the metal. Since some electrons are
buried “deeper” in the metal, a larger amount of energy is needed
to eject them from the surface. These electrons leave the emitter
with less kinetic energy. The electrons with maximum kinetic
energy must be the most loosely bound. Einstein gave the name
work function (W) to this minimum amount of energy necessary 
to remove an electron from the metal surface. He predicted that
the value would depend on the type of metal. The following 
mathematical expression describes the
division of photon energy into the
work function of the metal and the
kinetic energy of the photoelectron.

hf = W + Ek(max)
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The energy of the photon
must first extract the electron from the
metal surface. The remainder of the energy
becomes the kinetic energy of the electron.

Figure 12.8
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While Einstein’s explanation could account for all of the obser-
vations of the photoelectric effect, very few physicists, including
Planck, accepted Einstein’s arguments regarding the quantum 
(or particle) nature of light. It was very difficult to put aside 
the 200 years of observations that supported the wave theory.
Unfortunately, when Einstein wrote his paper on the photoelectric
effect, the charge on the electron was not yet known, so there was
no way to prove him right or wrong.

Millikan and the Photoelectric Effect
By 1916, Robert Millikan (1868–1953) had established that the
magnitude of the charge on an electron was 1.60 × 10−19 C. 
With this “ammunition” in hand, Millikan set out to prove that
Einstein’s assumptions regarding the quantum nature of light were
incorrect. Like others, Millikan felt that the evidence for the wave
nature of light was overwhelming.

Millikan improved on Lenard’s design and built photoelectric
tubes with emitters composed of various metals. For each metal,
he measured the stopping potential for a variety of frequencies.
Using his experimentally determined value for the charge on an
electron, he calculated the values for the maximum kinetic energy
for each frequency, using the familiar relation E = qV. In this
application, E is the energy of a charge, q, that has fallen through 
a potential difference, V. In Millikan’s case, E was the maximum
kinetic energy of the photoelectrons and q was the charge on an
electron. The equation becomes Ek(max) = eVstop. Millikan then 
plotted graphs of kinetic energy versus frequency for each type of
metal emitter.

To relate graphs of Ek(max) versus f to Einstein’s equation, it is
convenient to solve for Ek(max), resulting in the following equation.

Ek(max) = hf − W

Ek(max) is the dependent variable, f is the independent variable,
and h and W are constants for a given experiment. Notice that 
the equation has the form of the slope-intercept equation of a
straight line. 

y = mx + b

Comparing the equations, you can see that Planck’s constant (h) is
the slope (m), and the negative of the work function (−W) is the 
y-intercept (b).

When Millikan plotted his data, they resulted in straight lines,
as shown in Figure 12.9. The slopes of the lines from all experi-
ments were the same and were equal to Planck’s constant. When
Millikan extrapolated the lines to cross the vertical axis, the 
value gave the negative of the work function of the metal. Much 
to Millikan’s disappointment, he had proven that Einstein’s 
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Albert Einstein never actually 
carried out any laboratory 
experiments. He was a genius,
however, at interpreting and
explaining the results of others. 
In addition, the technology need-
ed to test many of his theories did
not exist until many years after he
published them. Einstein was truly
a theoretical physicist.
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equations perfectly predicted all of his results. He begrudgingly
had to concede that Einstein’s assumptions about the quantum
nature of light were probably correct.

Another critical feature of a graph of maximum kinetic energy
versus frequency is the point at which each line intersects the 
horizontal axis. On this axis, the maximum kinetic energy of the
photoelectrons is zero. The frequency at this horizontal intercept
is called threshold frequency (fo), because it is the lowest frequency
(smallest photon energy) that can eject a photoelectron from the
metal. When photons with threshold frequency strike the emitter,

Quantity Symbol SI unit
maximum kinetic energy 
of a photoelectron Ek(max) J (joules)

Planck’s constant h J · s (joule · seconds)

frequency of Hz (hertz: equivalent 
electromagnetic radiation f to s−1)

work function of metal W J (joules)

Unit Analysis
(joule · second)(hertz) − joule = (J · s)(s−1) = J

Ek(max) = hf − W

PHOTOELECTRIC EFFECT
The maximum kinetic energy of a photoelectron is the differ-
ence of the energy of the photon and the work function of the
metal emitter.
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The graphs
of Millikan’s data were
straight lines with equal
slopes. The only differ-
ences were the points at
which the extrapolated
lines crossed the axes.

Figure 12.9



they have just enough energy to raise the most loosely bound 
electrons to the surface of the emitter, but they have no energy 
left with which to give the photoelectrons kinetic energy. These
photoelectrons are drawn back into the emitter.

• At threshold frequency (fo), the maximum kinetic energy of 
the photoelectrons is zero (Ek(max) = 0). Substitute these terms 
(fo and 0) into Einstein’s equation for the photoelectric effect
and solve for the work function (W). Explain the meaning of the
relationship that you found and how you can use it to find the
work function of a metal.

You might have noticed that the unit for energy on the vertical
axis in Figure 12.9 was symbolized as “eV,” which in this case
stands for “electron volt.” The need for this new unit will become
apparent when you start to use the photoelectric equation. You
will find that the kinetic energy of even the most energetic 
electrons is an extremely small fraction of a joule. Since working
with numbers such as 1.23 × 10−17 J becomes tedious and it is 
difficult to compare values, physicists working with subatomic
particles developed the electron volt as the energy unit suitable for
such particles and for photons. The electron volt is defined as the
energy gained by one electron as it falls through the potential 
difference of one volt. The following calculation shows the 
relationship between electron volts and joules.

E = qV
1 eV = (1 e)(1 V)
1 eV = (1.60 × 10−19 C)(1 V)
1 eV = 1.60 × 10−19 J

Table 12.1 lists the work functions, in units of electron volts, 
of several common metals that have been studied as emitters in
photoelectric experiments.

Like many other theoretical developments in physics, scientists
soon found some practical applications for the photoelectric effect.
The first light meters used the photoelectric effect to measure the
intensity of light. Light meters have specialized metal emitters that
are sensitive to visible light. When light strikes the metal, elec-
trons are released and then collected by a positive electrode. The
amount of current produced is proportional to the intensity of the
light. The photon that physicists once had difficulty accepting is
now almost a household word.

Conceptual Problem
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1. Explain how a very hot oven can simu-
late a blackbody.

2. Why was Planck’s theory of blackbody
radiation considered to be revolutionary?

3. (a) Describe how the Hertz experiment, in 
which he used spark gaps to transmit and
receive electromagnetic radiation, also
provided early evidence for the photo-
electric effect.

(b) Name one modern technology that has 
its origin in the Hertz experiment. Briefly
describe how it is related to this 
experiment.

4. Describe how Einstein used Planck’s 
concept of quanta of energy to explain the
photoelectric effect.

5. Define the terms “work function” and
“threshold frequency.”

6. Describe how the quantum (photon)
model for light better explains the 

photoelectric effect than does the classical
wave theory.

7. What instruments have you used that
rely on the photoelectric effect?

8. Plot a graph of the following data from a
photoelectric effect experiment and use the
graph to determine Planck’s constant, the
threshold frequency, and the work function
of the metal. Consult Table 12.1 and deter-
mine what metal was probably used as the
target for electrons in the phototube.

Stopping potential
(V)

0.91

1.62

2.35

3.50

4.21

Frequency of light
(Hz)

9.0 × 1014

10.7 × 1014

12.4 × 1014

15.0 × 1014

16.5 × 1014

I

MC

C

K/U

C

C

K/U

K/U

Chapter 12  Quantum Mechanics and the Atom • MHR 509

12.1 Section Review

Table 12.1 Work Functions of Some Common Metals

Metal

aluminum

calcium

cesium

copper

iron

lead

lithium

nickel

platinum

potassium

tin

tungsten

zinc

Work function
(eV)

4.28

2.87

2.14

4.65

4.50

4.25

2.90

5.15

5.65

2.30

4.42

4.55

4.33



When Millikan’s experimental results verified Einstein’s interpre-
tation of the photoelectric effect, the scientific community began
to accept the particle nature of light. Physicists started to ask more
questions about the extent to which particles of light, or photons,
resembled particles of matter. U.S. physicist Arthur Compton
(1892–1962) decided to study elastic collisions between photons
and electrons. Would the law of conservation of momentum 
apply to such collisions? How could physicists determine the
momentum (mv) of a particle that has no mass?

The Compton Effect
The ideal way to study collisions between particles is to start with
free particles. Preferably, the only force acting on either particle at
the moment of the collision is the impact of the other particle.
However, electrons rarely exist free of atoms. So, Compton rea-
soned that if the photon’s energy was significantly greater than the
work function of the metal, the energy required to free an electron
from the metal would be negligible when compared to the energy
of the interaction. He needed a source of highly energetic photons.

About 30 years prior to Compton’s work, Wilhelm Conrad
Röntgen (1845–1923) discovered X rays and demonstrated that
they are high-frequency electromagnetic waves. Thus, X-ray 
photons would have the amount of energy that Compton needed
for his studies. In 1923, Compton carried out some very sophisti-
cated experiments on collisions between X-ray photons and 
electrons. The phenomenon that he discovered is now known as
the Compton effect and is illustrated in Figure 12.10. When a very
high-energy X-ray photon collides with a “free” electron, it gives

some of its energy to the electron and 
a lower-energy photon scatters off the
electron. 

You can describe mathematically the
conservation of energy in a photon-
electron collision as follows, where hf
is the energy of the photon before the 
collision, hf ′ is the energy of the photon 
after the collision, and 1

2 mev′2 is the 
kinetic energy of the electron after 
the collision.

hf = hf ′ + 1
2 mev′2

Light Particles 
and Matter Waves12.2
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• Define and describe the 
concepts related to the under-
standing of matter waves.

• Describe how the development
of quantum theory has led to
technological advances such as
the electron microscope.

• Compton effect

• de Broglie wavelength

• wave-particle duality

 T E R M S
K E Y

E X P E C T A T I O N S
S E C T I O N

incident
photon

electron
at rest

scattered
electron

scattered
photon

When a high-energy photon collides with a
“free” electron, both energy and momentum are conserved.

Figure 12.10



Since the scattered photon has a lower energy, it must have a
lower frequency and a longer wavelength than the original photon.
Compton’s measurements showed that the scattered photon had a
lower frequency, and that kinetic energy gained by an electron in a
collision with a photon was equal to the energy lost by the photon.

The more difficult task for Compton was finding a way to deter-
mine whether momentum had been conserved in the collision.
The familiar expression for momentum, p = mv, contains the
object’s mass, but photons have no mass. So Compton turned 
to Einstein’s now famous equation, E = mc2, to find the mass
equivalence of a photon. The following steps show how Compton
used Einstein’s relationship to derive an expression for the
momentum of a photon. Since the goal is to find the magnitude 
of the momentum, vector notations are omitted.

When Compton calculated the momentum of a photon using 

p = h
λ , he was able to show that momentum is conserved in 

collisions between photons and electrons. These collisions 
obey all of the laws for collisions between two masses. The line
between matter and energy was becoming more and more faint.

E = mc2

m = E
c2

p = mv

p = E
c2 v

P = E
c2 c = E

c

p = hf
c

f λ = v

f λ = c

f = c
λ

p =
h c

λ
c

p = h
λ

� Write Einstein’s equation that describes
the energy equivalent of mass. 

� Divide both sides of the equation by c2

to solve for mass.

� Write the equation for momentum.

� Substitute the energy equivalent of mass
into the equation for momentum.

� Since the velocity of a photon is c, 
substitute c for v and simplify.

� Substitute the expression for the energy
of a photon (hf) for E in the equation for
momentum.

� The momentum of a photon is usually
expressed in terms of wavelength, rather
than frequency. Use the equation for the
velocity of a wave to find the expression
for f in terms of v. Note that the velocity
of a light wave is c.

� Substitute the expression for frequency
into the momentum equation and 
simplify.
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The following problem will help you to develop a feeling for
the amount of momentum that is carried by photons.

Quantity Symbol SI unit

momentum p kg · m
s

(kilogram metres 
per seconds)

Planck’s constant h J · s (joule seconds)

wavelength λ m (metres)

Unit Analysis
kilogram · metre

second
= joule · second

metre

kg · m
s

= J · s
m

=
kg · m2

s2 · s
m

= kg · m
s

p = h
λ

MOMENTUM OF A PHOTON
The momentum of a photon is the quotient of Planck’s 
constant and the wavelength of the photon.

Momentum of a Photon
Calculate the momentum of a photon of light that has a frequency of 5.09 × 1014 Hz.

Conceptualize the Problem
� The momentum of a photon is related to its wavelength.

� A photon’s wavelength is related to its frequency and the speed of light.

Identify the Goal
The momentum, p, of the photon

Identify the Variables and Constants
Known Implied Unknown
f = 5.09 × 1014 Hz c = 3.00 × 108 m

s
λ
p

Develop a Strategy
v = f λ
λ = v

f

λ =
3.00 × 108 m

s
5.09 × 1014 s−1

λ = 5.8939 × 10−7 m

Find the wavelength by using the equation for
the speed of waves and the value for the speed
of light.

SAMPLE PROBLEM 
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The momentum of a photon with a frequency of 5.09 × 1014 Hz is 1.12 × 10−27 kg · m
s

.

Validate the Solution
You would expect the momentum of a photon to be exceedingly 

small, and it is. Check to see if the units cancel to give kg · m
s

.

J · s
m

=
kg · m2

s2 · s
m

= kg · m
s

1. Find the momentum of a photon with a
wavelength of 1.55 m (radio wave).

2. Find the momentum of a gamma ray photon
with a frequency of 4.27 × 1020 Hz.

3. What would be the wavelength of a photon
that had the same momentum as a neutron
travelling at 8.26 × 107 m/s?

4. How many photons with a wavelength of
5.89 × 10−7 m would it take to equal the
momentum of a 5.00 g Ping-Pong™ ball 
moving at 8.25 m/s?

5. What would be the frequency of a photon
with a momentum of 2.45 × 10−32 kg · m/s? 
In what part of the electromagnetic spectrum
would this photon be?

PRACTICE PROBLEMS

p = h
λ

p = 6.63 × 10−34 J · s
5.8939 × 10−7 m

p = 1.1249 × 10−27 kg · m
s

p ≅ 1.12 × 10−27 kg · m
s

Use the equation that relates the momentum of a
photon to its wavelength.

Matter Waves
By the 1920s, physicists had accepted the quantum theory of light
and continued to refine the concepts. Once again, however, the
scientific community was startled by the revolutionary theory 
proposed by a young French graduate student, who was studying
at the Sorbonne. As part of his doctoral dissertation, Louis de
Broglie (1892–1987) proposed that not only do light waves behave
as particles, but also that particulate matter has wave properties. 

De Broglie’s professors at the Sorbonne thought that the concept
was rather bizarre, so they sent the manuscript to Einstein and
asked for his response to the proposal. Einstein read the disserta-
tion with excitement and strongly supported de Broglie’s proposal.
De Broglie was promptly granted his Ph.D., and six years later, he
was honoured with the Nobel Award in Physics for his theory of
matter waves. The following steps lead to what is now called the
de Broglie wavelength of matter waves.
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Quantity Symbol SI unit

wavelength (of a matter wave) λ m (metres)

Planck’s constant h J · s (joule seconds)

mass m kg (kilograms)

velocity v m
s

(metres per second)

Unit Analysis

joule · second
kilogram metre

second
= J · s

kgm
s

= J · s
kg

· s
m

=
kg · m2

s2 s2

kg · m
= m

Note: Since wavelength is a scalar quantity, vector notations
are not used for velocity.

λ = h
mv

DE BROGLIE WAVELENGTH OF MATTER WAVES
The de Broglie wavelength of matter waves is the quotient of
Planck’s constant and the momentum of the mass.

p = h
λ

λ = h
p

λ = h
mv

� Write Compton’s equation for the
momentum of a photon.

� Solve the equation for wavelength.

� Substitute the value for the momentum
of a particle for p.
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Matter Waves
Calculate the wavelength of an electron moving with a velocity of 6.39 × 106 m/s.

Conceptualize the Problem
� Moving particles have wave properties.

� The wavelength of particle waves depends on Planck’s constant
and the momentum of the particle.

Identify the Goal
The wavelength, λ, of the electron

SAMPLE PROBLEM 



Identify the Variables and Constants
Known Implied Unknown
v = 6.39 × 106 m

s
h = 6.63 × 10−34 J · s λ
me = 9.11 × 10−31 kg

Develop a Strategy

The de Broglie wavelength of an electron travelling at 6.39 × 106 m/s is 1.14 × 10−10 m.

Validate the Solution
Since Planck’s constant is in the numerator, you would expect that
the value would be very small. Check the units to ensure that the
final answer has the unit of metres.

J · s
kgm

s
=

kg · m2

s2 · s
kg

· s
m

= m

6. Calculate the wavelength of a proton that is
moving at 3.79 × 106 m/s.

7. Calculate the wavelength of an alpha particle
that is moving at 1.28 × 107 m/s.

8. What is the wavelength of a 5.00 g 
Ping-Pong™ ball moving at 12.7 m/s?

9. Find the wavelength of a jet airplane with a
mass of 1.12 × 105 kg that is cruising at 
891 km/h.

10. Calculate the wavelength of a beta particle
(electron) that has an energy of 4.35 × 104 eV. 

11. What is the speed of an electron that has a
wavelength of 3.32 × 10−10 m?

PRACTICE PROBLEMS

λ = h
mv

λ = 6.63 × 10−34 J · s(
9.11 × 10−31 kg

)(
6.39 × 106 m

s

)
λ = 1.1389 × 10−10 m

λ ≅ 1.14 × 10−10 m

Use the equation for the de Broglie wavelength.

To verify de Broglie’s hypothesis that particles have wavelike
properties, an experimenter would need to show that electrons
exhibit interference. A technique such as Young’s double-slit
experiment would be ideal. This technique is not feasible for 
particles such as electrons, however, because the electrons have
wavelengths in the range of 10−10 m. It simply is not possible to
mechanically cut slits this small and close together. Fortunately, a
new technique for observing interference of waves with very small
wavelengths had recently been devised.
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X rays

crystal

During the 10 years prior to de Broglie’s proposal, physicists
Max von Laue (1879–1960) and Sir Lawrence Bragg (1890–1971)
were developing the theory and technique for diffraction of X rays
by crystals. The spacing between atoms in crystals is in the same
order of magnitude as both the wavelength of X rays and electrons,
about 10−10 m. As illustrated in Figure 12.11, when X rays scatter
from the atoms in a crystal, they form diffraction patterns in much
the same way that light forms diffraction patterns when it passes
through a double slit or a diffraction grating. If electrons have
wave properties, then the same crystals that diffract X rays should
diffract electrons and create a pattern.

X rays scattered from regularly spaced atoms in a crystal
will remain in phase only at certain scattering angles.

Within three years after de Broglie published his theory of 
matter waves, Clinton J. Davisson (1881–1958) and Lester H.
Germer (1896–1971) of the United States and, working separately,
George P. Thomson (1892–1975) of England carried out electron
diffraction experiments. Both teams obtained patterns very similar
to those formed by X rays. The wave nature of electrons was 
confirmed. In the years since, physicists have produced diffraction
patterns with neutrons and other subatomic particles. Figure 12.12
shows diffraction patterns from aluminum foil formed by a beam
of (A) X rays and (B) electrons.

Figure 12.11
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As you know, in 1897, J.J.
Thomson provided solid evidence
for the existence of the electron,
a subatomic particle that is 
contained in all atoms. Ironically,
just 30 years later, his son George
P. Thomson demonstrated that
electrons behave like waves.

PHYSICS FILE

These patterns
were created by diffraction of 
(A) X rays and  (B) electrons 
by aluminum foil. Diffraction
occurs as a result of the interfer-
ence of waves. The similarity of
these patterns verifies that 
electrons behave like waves.

Figure 12.12

A B



CANADIANS IN PHYSICS
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University of Toronto 
Graduate Students Make History
Although many research groups around the world
were attempting to design and build electron
microscopes in the 1930s, the first high-resolution
electron microscope that was practical and there-
fore became the prototype for the first commercial
instrument was designed, built, and tested by two
graduate students at the University of Toronto.
James Hillier and Albert Prebus are shown in the
photograph with the electron microscope that they
built in 1938. Hillier continued to perfect and use
the electron microscope while he completed his
Ph.D. degree. In 1940, Hillier joined the staff of the
Radio Corporation of America (RCA) in Camden,
New Jersey, where he continued to improve the
electron micro-
scope. In 1969,
Hillier became 
the executive 
vice president in
charge of research
and engineering
for RCA. In this
position, he was
responsible for 
all of the research,
development, 
and engineering
programs.

The race to build electron microscopes was
based on Davisson and Germer’s verification of the
wave properties of electrons. Electron microscopes
have much greater resolving power than light
microscopes, due to their very short wavelengths.
Resolving power is the ability to distinguish two 
or more objects as separate entities, rather than 
as one large object. If the distance between two
objects is much less than the wavelength, a micro-
scope “sees” them as one particle, rather than as
two. You can magnify the image to any size, but all
that you will see is one large, blurred object. Since
the shortest wavelength of visible light is about
400 nm and electrons can have wavelengths of
0.005 nm, electron microscopes could theoretically

have a resolving power more than 10 000 times
greater than light microscopes. In practice, 
however, electron microscopes have resolving
powers about 1000 times greater than light 
microscopes.

The diagram shows the typical design of a
transmission electron microscope. The barrel of
the microscope must be evacuated, because 
electrons would be scattered by molecules in the
air. Electrons would not penetrate glass lenses, of
course, so focussing is accomplished by magnetic
fields created by electromagnets. These magnetic
“lenses” do not have to be moved or changed,
because their focal lengths can be changed simply
by adjusting the magnetic field strength of the
electromagnets. Since electrons cannot penetrate
glass, the extremely thin electron microscope 
specimens are placed on a wire mesh so that the
electrons can penetrate the areas between the 
tiny wires. 

The photograph at the beginning of this chapter
was produced by a scanning electron microscope.
These instruments function on a very different
principle than do transmission electron micro-
scopes. A very tiny beam of electrons sweeps back
and forth across the specimen, and electrons that
bounce back up from the sample are detected.
Scanning electron microscopes were first devel-
oped in 1942, but they were not commercially
available until 1965.

power source
anode

hot filament

condenser
“lens”

first image

final image

objective “lens”

specimen

projector (ocular)
“lens”

electro-
magnets



1. Explain how Compton determined the
momentum of a photon — a particle that 
has no mass.

2. Describe the Compton effect.

3. What was the most important result of
Compton’s experiments with the collisions
between photons and electrons?

4. Compton was able to ignore the work
function of the metal in which the electrons
were embedded in his momentum calcula-
tions. How was he able to justify this?

5. Describe the reasoning that de Broglie
used to come up with the idea that matter
might have wave properties.

6. When you walk through a doorway, you 
represent a particle having momentum and,
therefore, having a wavelength. Why is it

improbable that you will be “diffracted” as
you pass through the doorway?

7. Attempts to demonstrate the existence
of de Broglie matter waves by using a beam
of electrons incident on Young’s double-
slit apparatus proved unsuccessful. Give 
one possible explanation.

8. Explain the technique that Davisson,
Germer, and George P. Thomson used to 
verify the wave nature of electrons.

9. Research the production of X rays and 
prepare a display poster. In your display,
include a diagram of the general structure 
of the X-ray tube, an explanation of how
electrons cause the production of X rays, 
and an indication of the societal importance
of the technology.

MC

C

K/U

C

C

K/U

K/U

C

C
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12.2 Section Review

The Wave-Particle Duality
Within 30 years after Planck presented his revolutionary theory to
the German Physical Society, physicists had come to accept the
particle nature of light and the wave nature of subatomic particles.
They did not, however, forsake Maxwellian electromagnetism or
Newtonian mechanics. Newton’s concepts have made it possible
for astronauts to travel to the Moon and back and to put satellites
into orbit. Maxwell’s electromagnetism permits engineers to devel-
op the technology to send microwaves to and from these satellites.
Physicists accept the dual nature of radiant energy that propagates
through space as waves and interacts with matter as particles or
discrete packets of energy. 

Matter also has a dual nature, but only the subatomic particles
have a small enough mass, and thus a large enough wavelength, to
exhibit their wave nature. In 1924, Albert Einstein wrote, “There
are therefore now two theories of light, both indispensable, and —
as one must admit today despite twenty years of tremendous effort
on the part of theoretical physicists — without any logical connec-
tion.” Some physicists hope that in the future we will have a
clearer picture of matter waves and quanta of energy. For now, we
accept the wave-particle duality: Both matter and electromagnetic
energy exhibit some properties of waves and some properties 
of particles.

www.mcgrawhill.ca/links/
physics12

For more information about Hillier and
Prebus and the history of the electron
microscope, including diagrams and
photographs, go to the above Internet
site and click on Web Links.

WEB LINK



The new discoveries in quantum theory revealed phenomena that
can be observed on the scale of subatomic particles, but are unde-
tectable on a larger scale. These discoveries gave physicists the
tools they needed to probe the structure of atoms in much more
detail than ever before. The refinement of atomic theory grew side
by side with the development of quantum theory.

Atomic Theory before Bohr
As you have learned in previous science courses, the first signifi-
cant theory of the atom was proposed by John Dalton (1766–1844)
in 1808. Dalton’s model could be called the “billiard ball model”
because he pictured atoms as solid, indivisible spheres. According
to Dalton’s model, atoms of each element are identical to each
other in mass and all other properties, while atoms of one element
differed from atoms of each other element. Dalton’s model could
explain most of what was known about the chemistry of atoms
and molecules for nearly a hundred years.

Dalton proposed that atoms were the smallest particles that
make up matter and that they were indestructible. With his model, Dalton
could predict most of what was known about chemistry at the time.

The Dalton model of the atom was replaced when J.J. Thomson
established in 1897 that the atom was divisible. He discovered that
the “cathode rays” in gas discharge tubes (see Figure 12.14) were
negatively charged particles with a mass nearly 2000 times smaller
than a hydrogen atom, the smallest known atom. These negatively
charged particles, later named “electrons,” appeared to have come
off the metal atoms in one of the electrodes in the gas discharge
tubes. Based on this new information, Thomson developed another
model of the atom, which consisted of a positively charged sphere
with the negatively charged electrons imbedded in it, as illustrated
in Figure 12.15. 

Figure 12.13

The Bohr Atom and Beyond12.3
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• Describe and explain the Bohr
model of the hydrogen atom.

• Collect and interpret experi-
mental data in support of 
Bohr’s model of the atom.

• Outline the historical develop-
ment of scientific models from
Bohr’s model of the hydrogen
atom to present-day theories of
atomic structure.

• Describe how the development
of quantum theory has led to
technological advances such 
as lasers.

• nuclear model

• Balmer series

• Rydberg constant

• Bohr radius

• principal quantum number

• Zeeman effect

• Schrödinger wave equation

• wave function

• orbital

• orbital quantum number

• magnetic quantum number

• spin quantum number

• Pauli exclusion principle

• ground state

 T E R M S
K E Y

E X P E C T A T I O N S
S E C T I O N



Metal electrodes were sealed in a glass tube that had been
evacuated of all but a trace of a gas. A potential difference was created
between the two electrodes. “Cathode rays” emanated from the negative
electrode and a few passed through a hole in the positive electrode.
Thomson showed that these “cathode rays” carried a negative charge by
placing another set of electrodes outside the tube. The positive plate 
attracted the “rays.”

Even as Thomson was developing his model of the atom, Ernest
Rutherford (1871–1937) was beginning a series of experiments that
would lead to replacement of Thomson’s model. Rutherford was
born and educated in New Zealand. In 1895, he went to England
to continue his studies in the laboratory of J.J. Thomson. While
there, he became interested in radioactivity and characterized the
“rays” emitted by uranium, naming them “alpha rays” and “beta
rays.” He discovered that alpha rays were actually positively
charged particles. 

In 1898, Rutherford accepted a position in physics at McGill
University in Montréal, where he continued his studies of alpha
particles and published 80 scientific papers. Nine years later,
Rutherford returned to England, where he accepted a position at
the University of Manchester.

While in Manchester, Rutherford and his research assistant
Hans Geiger (1882–1945) designed an apparatus (see Figure 12.16)
to study the bombardment of very thin gold foils by highly ener-
getic alpha particles. If Thomson’s model of the atom was correct,
the alpha particles would pass straight through, with little or no
deflection. In their preliminary observations, most of the alpha
particles did, in fact, pass straight through the gold foil. However,
in a matter of days, Geiger excitedly went to Rutherford with the
news that they had observed some alpha particles scatter at an
angle greater than 90˚. Rutherford’s famous response was, “It 
was quite the most incredible event that has ever happened to me
in my life. It was almost as incredible as if you fired a 15 inch
shell at a piece of tissue paper and it come back and hit you!” 
The observations were consistent: Approximately 1 in every 
20 000 alpha particles was deflected more than 90˚. These results
could not be explained by Thomson’s model of the atom.

Figure 12.14
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Thomson named
his model the “plum pudding
model” because it resembled a
pudding with raisins distributed
throughout.

Figure 12.15
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alpha particles

gold foilC

What force could possibly be strong enough to repel such a
highly energetic alpha particle? Rutherford searched his mind 
and performed many calculations. He concluded that the only
force great enough to repel the alpha particles would be an
extremely strong electrostatic field. The only way that a field this
strong could exist was if all of the positive charge was confined 
in an extremely small space at the centre of the atom. Thus,
Rutherford proposed his nuclear model
of the atom. All of the positive charge
and nearly all of the mass of an atom is
concentrated in a very small area at 
the centre of the atom, while the 
negatively charged electrons circulate
around this “nucleus,” somewhat like
planets around the Sun, as illustrated
in Figure 12.17.

In the following Quick Lab, you will
apply some of the same concepts that
Rutherford used to estimate the size of
the atomic nucleus.
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1. polonium source
(emits alpha particles)

2. fluorescent screen
(lights up when struck
by an alpha particle)

3. very thin 
gold foil 4. Most alpha 

particles went 
straight through 
the foil.

5. Some alpha 
particles were 
deflected off 
course.

6. A few alpha particles
bounced backward.

A

Rutherford’s nuclear model resembles a solar
system in which the positively charged nucleus could be likened
to the Sun and the electrons are like planets orbiting the Sun.

Figure 12.17
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alpha particles

gold foilB

(A) A fine beam of alpha particles was
directed at a very thin gold foil. The circular screen
around the foil was coated with zinc sulfide, which
emitted a flash of light when hit by an alpha particle.
(B) If positive and negative charges were equally 
distributed throughout the foil, they would have little

effect on the direction of the alpha particles. (C) If all 
of the positive charge in each atom was concentrated
in a very tiny point, it would create a large electric 
field close to the point. The field would deflect alpha
particles that are moving directly toward or very close
to the tiny area where the positive charge is located.

Figure 12.16



Q U I C K

L A B

Estimating the 
Size of the Nucleus

TARGET SKILLS

Hypothesizing
Analyzing and interpreting

Method 1
At the time that Rutherford was performing his
experiments, physicists knew that the diameter
of the entire atom was about 10−10 m. 

� Calculate the cross-sectional area of the atom,
assuming that its diameter is 10−10 m.

Rutherford’s students observed that about 
1 in every 20 000 alpha particles scattered 
backward from the foil. If they were all headed
toward the atom but only 1 in 20 000 was 
headed directly toward the nucleus, what must
be the cross-sectional area of the nucleus?

� Calculate the cross-sectional area of the 
nucleus based on the above information.

� Using your cross-sectional area of the nucleus,
calculate the diameter of the nucleus.

Method 2
Make a second estimate of the size of the 
nucleus based on the conservation of mech-
anical energy of the alpha particle. As shown 
in the diagram, at a large distance from the
nucleus, the energy of the alpha particle is all
kinetic energy. As it approaches the nucleus, 
its kinetic energy is converted into electric
potential energy. When all of its kinetic energy
is converted into electric potential energy, the
alpha particle will stop. At this point, called 
the “distance of closest approach,” the repulsive
Coulomb forces will drive the alpha particle 

directly backward. If the alpha particle 
penetrated the nucleus, it would be trapped 
and would not scatter backward.

� The equation below states that the kinetic
energy of the alpha particle at a large distance
from the nucleus is equal to the electric
potential energy of the alpha particle at the
distance of closest approach. Substitute into
the equality the mathematical expressions for
kinetic energy and electric potential energy
between two point charges a distance, r, apart.

Ek (very far from nucleus)
= EQ (distance of closest approach)

� The mass of an alpha particle is about
6.6 × 10−27 kg and those that Rutherford 
used had an initial velocity of 1.5 × 107 m/s.
Calculate the kinetic energy of the alpha 
particle.

� An alpha particle has 2 positive charges and 
a gold nucleus has 79 positive charges. Using
the magnitude of one elementary charge
(1.6 × 10−19 C), calculate the magnitude of the
charges needed for the determination of the
electric potential energy.

� Substitute all of the known values into the
equation above. You will find that r is the
only unknown variable. Solve the equation 
for r, the distance of closest approach.

Analyze and Conclude
1. Comment on the validity of each of the two

methods. What types of errors might affect 
the results?

2. How well do your two methods agree?

3. The accepted size of an average nucleus is in
the order of magnitude of 10−14 m. How well
do your calculations agree with the accepted
value?

all potential
energy

gold
nucleus

r: distance of
closest approach

kinetic and
potential energy

all kinetic
energy

alpha
particle
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The Bohr Model of the Atom
Rutherford’s model of the atom was based on solid experimental
data, but it had one nagging problem that he did not address.
According to classical electromagnetism, an accelerating charge
should radiate electromagnetic waves and lose energy. If electrons
are orbiting around a nucleus, then they are accelerating and they
should be radiating electromagnetic waves. If the electrons lost
energy through radiation, they would spiral into the nucleus.
According to Rutherford’s model, electrons remain permanently 
in orbit.

Niels Henrik David Bohr (1885–1962) addressed the problem of
electrons that do not obey classical electromagnetic theory. Bohr
was born and educated in Denmark, and in 1912, went to study in
Rutherford’s laboratory in Manchester. (Rutherford said of Bohr,
“This young Dane is the most intelligent chap I’ve ever met.”)
Convinced that Rutherford was on the right track with the nuclear
atom, Bohr returned home to Copenhagen, where he continued his
search for an explanation for the inconsistency of the nuclear atom
with classical theory. 

Bohr was very aware of the recent publications of Planck and
Einstein on blackbody radiation and the photoelectric effect, and
that these phenomena did not appear to obey the laws of classical
physics. He realized that some phenomena that are unobservable
on the macroscopic level become apparent on the level of the
atom. Thus, he did not hesitate to propose characteristics for the
atom that appeared to contradict classical laws. 

Bohr had another, very significant piece of evidence available 
to him — atomic spectra. When Kirchhoff defined blackbodies, 
he was studying very low-pressure gases in gas discharge tubes.
Kirchhoff discovered that when gases of individual elements were
sealed in gas discharge tubes and bombarded with “cathode rays,”
each element produced a unique spectrum of light. The spectrum
of hydrogen is shown in Figure 12.18. 

When bombarded by high-energy electrons, hydrogen
atoms emit a very precise set of frequencies of electromagnetic radiation,
extending from the infrared region, through the visible region, and well into
the ultraviolet region of the spectrum.

Figure 12.18

ultravioletvisibleinfrared

wavelength (nm)

frequency (Hz)

1875 nm

1.60 × 1014 Hz
3.66 × 1014 Hz

4.57 × 1014 Hz
8.22 × 1014 Hz

2.46 × 1014 Hz

820 nm 656 nm
365 nm

122 nm
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Since emission spectra did not have an immediately obvious
pattern, Bohr thought them too complex to be useful. However, a
friend who had studied spectroscopy directed Bohr to a pattern
that had been determined in 1885 by Swiss secondary school
teacher Johann Jakob Balmer (1825–1898). Balmer had studied the
visible range of the hydrogen spectrum and found an empirical
expression that could produce the wavelength of any line in 
that region of the spectrum. Balmer’s formula is given below.
Remember that empirical equations are developed from experi-
mental data and are not associated with any theory. Balmer could
not explain why his formula had the form that it did. He could
demonstrate only that it worked.

1
λ

= R
[ 1

22 − 1
n2

]
, where n = 3, 4, 5, . . . and

R = 1.097 373 15 × 107 m−1

The spectral lines of hydrogen that lie in the visible range are
now known as the Balmer series. As spectroscopists developed
methods to observe lines in the infrared and ultraviolet regions of
the spectrum, they found more series of lines. Swedish physicist
Johannes Robert Rydberg (1854–1919) modified Balmer’s formula,
as shown below, to incorporate all possible lines in the hydrogen
spectrum. The constant R is known as the Rydberg constant. 

1
λ

= R
[ 1

m2 − 1
n2

]
, where m and n are integers; 1, 2, 3, 4, … 

and n > m

Bohr Postulates
When Bohr saw these mathematical patterns, he said, “As soon as
I saw Balmer’s formula, the whole thing was immediately clear to
me.” Bohr was ready to develop his model of the atom. Bohr’s
model, illustrated in Figure 12.19, was based on the following 
postulates.

� Electrons exist in circular orbits, much like planetary orbits.
However, the central force that holds them in orbit is the 
electrostatic force between the positive nucleus and the negative
charge on the electrons, rather than a gravitational force.

� Electrons can exist only in a series of “allowed” orbits.
Electrons, much like planets, have different amounts of total
energy (kinetic plus potential) in each orbit, so these orbits can
also be described as “energy levels.” Since only certain orbits
are allowed, then only certain energy levels are allowed, 
meaning that the energy of electrons in atoms is quantized. 

� Contrary to classical theory, while an electron remains in one
orbit, it does not radiate energy. 

� Electrons can “jump” between orbits, or energy levels, by
absorbing or emitting an amount of energy that is equal to the
difference in the energy levels.
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According to
Bohr’s model of the atom, elec-
trons can exist in specific, allowed
energy levels and can jump from
one level to another by absorbing
or emitting energy.

Figure 12.19
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Electrons can “jump” to higher energy levels by absorbing 
thermal energy (collision with an energetic atom or molecule), 
by bombardment with an energetic electron (as in gas discharge
tubes), or by absorbing photons of radiant energy with energies
that exactly match the difference in energy levels of the electrons
in the atom. Likewise, electrons can “drop” to a lower energy level
by emitting a photon that has an energy equal to the difference
between the energy levels. Since the energy of a photon is directly
related to the frequency of the electromagnetic waves, you could
express this relationship between energy levels and photons 
as follows.

|Ef − Ei| = hf

Ef is the energy of the final energy level, Ei is the energy of the 
initial energy level, and hf is the photon energy. This concept
gives meaning to the “2” and the “n” in Balmer’s formula, because
the “2” represents the second energy level and “n” is any energy
level above the second one. In Rydberg’s more general formula, 
m is the final energy level, which can be any level. Likewise, n is
the initial level and must therefore be higher than the final level.

To find the exact energies of these “allowed energy levels,” 
Bohr had to determine exactly what property of the electron was
quantized. An important clue comes from the units of Planck’s
constant — joule · seconds. First, simplify joules to base units.

J · s = N · m · s = kg · m
s2 ·m · s = kg · m

s
· m

The final units, kg · m
s

· m, are the units for the quantities of 

mass, speed, and distance, or mvd. At one time in physics, this
combination was called “action.” In fact, Planck called his con-
stant, h, the “quantum of action.” If you apply these quantities to
the electron in an orbit of radius r, you will get mevn2πr, where 2πr
is the distance that the electron travels during one orbit around
the nucleus. If this value is quantized, you would have 
the following.

2πmevnrn = nh

You might recognize the expression mevnrn as the angular
momentum of the electron in the nth orbit. Following a similar
logic, Bohr proposed that the angular momentum was quantized
and then tested that hypothesis. The angular momentum of the 
nth orbit can be written as follows. 

mevnrn = n h
2π

You can test the theory by using the equation for the quantized
angular momentum to find allowed radii and allowed energies 
of electrons. Then, you can compare these differences between
energy levels to Balmer’s formula and the Rydberg constant. Since
you have two unknown quantities, r and v, you will need more
relationships to find values for either r or v in terms of known 
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spectrum of hydrogen.
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constants. Because Bohr based his concept on circular orbits, you
can use the fact that the electrostatic force between the electron
and the nucleus provides the centripetal force that keeps the 
electron in a circular orbit. The following steps will lead you
through the procedure.

Deriving the Bohr Radius

The expression, h
2π , occurs so frequently in quantum theory 

that the symbol h is often used in place of h
2π . The final expres-

sion is usually written as follows.

rn = n2 h2

mekZe2

For the first allowed radius of the electron in a hydrogen atom,
Z = 1 and n = 1. All of the other values in the equation are con-
stants and if you substitute them into the equation and simplify,
you will obtain r1 = 0.052 917 7 nm. This value is known as the
Bohr radius. 

F = k q1q2

r2

F = k Ze2

rn
2

k Ze2

r2
n

= mev2
n

rn

kZe2 = mev2
nrn

rn = kZe2

mev2
n

mevnrn = n h
2π

vn = nh
2πmern

rn = kZe2

me
( nh

2πmern

)2

rn = kZe2

me
· 4π2m2

er
2
n

n2h2

1 =
( 4π2kZe2m2

e
men2h2

)
rn

rn = n2h2

4π2kZe2me

� Write Coulomb’s law.

� Let Z be the number of positive charges
in the nucleus. Therefore, Ze is the
charge of the nucleus. The charge on
an electron is, of course, e. Let rn be
the radius of the nth orbit. Substitute
these values into Coulomb’s law.

� Set the coulomb force equal to the 
centripetal force.

� Multiply both sides by r2
n.

� Divide both sides by mev2
n .

� Write Bohr’s condition for quantization
of angular momentum.

� Solve for vn.

� Substitute this expression for vn into
the equation for rn.

� Start the simplification by inverting the
fraction in the denominator in brackets
and then multiplying by the inverted
fraction.

� Divide both sides of the equation by rn.

� Invert and multiply by the expression
in brackets.
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Deriving Allowed Energy Levels
You can use the equation for the radius of the nth orbit of an 
electron to find the energy for an electron in the nth energy level in
an atom as shown in the following steps.

Once again, you can write a general formula for the total energy
of an electron in the nth level of a hydrogen atom (Z = 1) by substi-
tuting the correct values for the constants. You will discover that 

En = − 13.6 eV
n2 . The integer, n, is now known as the principal 

quantum number. 
Recalling Bohr’s hypothesis that the difference in the energy

levels would be the energies of the photons emitted from an atom,
you can now use this formula to compare Bohr’s model of the
atom with the observed frequencies of the spectral lines for 
hydrogen atoms. For example, you should be able to calculate 
the frequency of the first line in the Balmer series by doing the 
following.

E = 1
2 mv2 − k q1q2

r

En = 1
2 mev2

n − k Ze2

rn

k Ze2

r2
n

= mev2

rn(
k Ze2

r2
n

)( rn
2

)
=

( mev2

rn

)( rn
2

)
kZe2

2rn
= 1

2 mev2
n

En = kZe2

2rn
− k Ze2

rn

En = − kZe2

2rn

En = − kZe2

2
(
n2 h2

mekZe2

)
En = − kZe2

2(n2)
· mekZe2

h2

En = − k2e4me
2h2 · Z2

n2

� Write the expression for the
total energy (kinetic plus
potential) of a charge a 
distance, r, from another
charge.

� Substitute in the values for 
an electron at a distance, rn,
from a nucleus.

� To eliminate the variable, v,
from the equation, go back 
to the expression you wrote
when you set the Coulomb
force equal to the centripetal
force.

� Multiply both sides of the 

expression by rn
2

and simplify.

� Substitute this value found in
the last step for kinetic energy,
1
2 mev2

n, in the second 

equation and then simplify.

� Substitute the value for rn into
the expression for energy. 

� To simplify, invert the fraction
in the denominator and 
multiply.
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hf = E3 − E2

hf = −13.6 eV
32 −

(
− 13.6 eV

22

)
hf = −1.511 eV + 3.40 eV

hf = 1.89 eV

f =
( 1.89 eV

h

)(
1.6 × 10−19 J

eV

)

f = 3.0222 × 10−19 J
6.63 × 10−34 J · s

f = 4.56 × 1014 Hz

This value is in excellent agreement with the observed frequency
of the first line in the Balmer series. If you performed similar 
calculations for the other lines in the Balmer series, you would
find the same excellent agreement with observations.

Spectroscopists continued to find series of lines that were
matched with electrons falling from higher levels of the hydrogen
atom down into the first five energy levels. These series are named
and illustrated in Figure 12.20.

Photons from transitions that end at the same energy level
have energies (and therefore frequencies) that are relatively close together.
When inspecting a particular range of frequencies emitted by an element,
therefore, an observer would find a set of spectral lines quite close together.
Each set of lines is named after the person who observed and described
them.

You could perform calculations such as the sample calculation
of the frequency of the first line in the Balmer series for any 
combination of energy levels and find agreement with the corre-
sponding line in the hydrogen spectrum. Bohr’s model of the 
atom was thoroughly tested and was found to be in agreement
with most of the data available at the time. 

Figure 12.20
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• Start with the expression hf = |Ef − Ei|, then substitute the equa-
tion for the energy of the nth level of an electron into Ef and Ei

into the first expression. Finally, use the relationship c = f λ to
derive the following expression. 

1
λ

=
∣∣∣∣ 2π2k2e4meZ2

h3c

[
1

nf
2 − 1

ni
2

]∣∣∣∣
• The equation above would be identical to the Rydberg equation 

if the combination of constants 2π2k2e4me
h3c

was equal to the 

Rydberg constant for hydrogen atoms (Z = 1). Calculate the
value of the constants and compare your answer with the
Rydberg constant. What does this result tell you about Bohr’s
model of the atom?

The Quantum Mechanical Atom
Bohr’s model of the atom very successfully explained many of the
confusing properties of the atom — it marked a monumental first
step into the quantum nature of the atom. Nevertheless, the model
was incomplete. For example, a very precise examination of the
spectrum of hydrogen showed that what had at first appeared to be
individual lines in the spectrum were actually several lines that
were extremely close together. As illustrated in Figure 12.21, this
“fine structure,” as it is sometimes called, could best be explained
if one or more energy levels was broken up into several very 
closely spaced energy levels.

Very close examination of the lines in the hydrogen spec-
trum showed that some of the lines were made up of several fine lines that
were very close together.

Another feature of emission spectra that the Bohr atom could
not explain was observed in 1896 by Dutch physicist Pieter
Zeeman (1865–1943). He placed a sodium flame in a strong mag-
netic field and then examined the emission spectrum of the flame
with a very fine diffraction grating. He observed that the magnetic
field caused certain spectral lines to “split” — what had been one
line in the spectrum became two or more lines when a magnetic

Figure 12.21
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field was present. This phenomenon, illustrated in Figure 12.22, 
is now called the Zeeman effect. 

Several physicists attempted with some success to modify the
Bohr model to account for the fine structure and the Zeeman
effect. The greatest success, however, came from an entirely differ-
ent approach to modelling the atom: De Broglie’s concept of matter
waves paved the way to the new quantum mechanics or, as it is
often called, “wave mechanics.” 

When de Broglie proposed his hypothesis about matter waves
(about 10 years after Bohr had developed his model of the atom),
he applied the ideas to the Bohr model. De Broglie suggested that
when electrons were moving in circular orbits around the nucleus,
the associated “pilot waves,” as de Broglie named them, must 
form standing waves. Otherwise, destructive interference would
eliminate the waves. To form a standing wave on a circular path,
the length of the path would have to be an integral number of
wavelengths, as shown in Figure 12.23. The procedure that 
follows the illustration will guide you through the first few steps
of de Broglie’s method for determining the radius of the orbit of
the electron matter waves around the nucleus.

2πrn = nλ, where
n = 1, 2, 3, …

λ = h
mv

2πrn = n h
mevn

rn = nh
2πmevn

mevnrn = nh
2π

� Write the formula for the circumference
of a circle and set it equal to any 
integer (n) times the wavelength.

� Write de Broglie’s formula for the
wavelength of a matter wave.

� Substitute de Broglie’s wavelength of
an electron into the first equation.

� Divide both sides of the equation by
2π .

� Multiply both sides of the equation 
by mevn

n = 2

λ

λ

n = 3 n = 4

λ
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When a sample is
placed in a magnetic field, some
individual spectral lines become 
a set of closely spaced lines.

Figure 12.22

no
magnetic

field

external
magnetic

field

spectral
lines

The number of
wavelengths of matter waves that
lie on the radius of an electron
orbit is equal to the value of n for
that energy level. No other wave-
lengths are allowed because they
would interfere destructively with 
themselves.

Figure 12.23



Notice that the last equation is the same as Bohr’s expression for
the quantization of angular momentum. From this point on, the
derivation of the equation for the radius of allowed orbits would
be exactly the same as Bohr’s derivation. Using two entirely differ-
ent approaches to the quantization of electron orbits, Bohr’s and
de Broglie’s results were identical.

In 1925, Viennese physicist Erwin Schrödinger (1887–1961)
read de Broglie’s thesis with fascination. Within a matter of weeks,
Schrödinger had developed a very complex mathematical equation
that can be solved to produce detailed information about matter
waves and the atom. The now-famous equation, called the
Schrödinger wave equation, forms the foundation of quantum
mechanics. When you insert data describing the potential energy
of an electron or electrons in an atom into the wave equation and
solve the equation, you obtain mathematical expressions called
“wave functions.” These wave functions, represented by the Greek
letter ψ (psi), provide information about the allowed orbits and
energy levels of electrons in the atom. 

Wave functions account for most of the details of the hydrogen
spectra that the original Bohr model could not explain. However,
Schrödinger’s wave functions could not predict one small, 
magnetic “splitting” of energy levels. British physicist Paul Adrien
Maurice Dirac (1902–1984) realized that electrons travelling in the
lower orbits in an atom would be travelling at excessively high
speeds, high enough to exhibit relativistic effects. In 1928, Dirac
modified Schrödinger’s equation to account for relativistic effects.
The equation could then account for all observed properties 
of electrons in atomic orbits. In addition, it predicted many 
phenomena that had not yet been discovered when the equation
was developed.

You are probably wondering, “What are wave functions and
what do the amplitude and velocity of a matter wave describe?”
Many physicists in the early 1900s asked the same question.

Wave functions do not describe such properties as the changing
pressure of air in a sound wave or the changing electric field strength
in an electromagnetic wave. In fact, wave functions cannot describe
any real property, because they contain the imaginary number i
(i =

√
−1, which does not exist). You must carry out a mathematical

operation on the wave functions to eliminate the imaginary number
in order to describe anything real about the atom.

The result of this operation, symbolized ψ∗ψ, represents the
probability that the electron will occupy a certain position in the
atom at a certain time. You could call the wave function a “wave
of probability.” You can no longer think of the electron as a solid
particle that is moving in a specific path around the nucleus of an
atom, but rather must try to envision a cloud such as the one
shown in Figure 12.24 (A) and interpret the density of the cloud as
the probability that the electron is in that location. These “regions
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in space” occupied by an electron are often called orbitals. If the
orbital of the electron is pictured as solid in appearance, as shown
in Figure 12.24 (B), it means that there is a 95% probability that
the electron is within the enclosed space. 

When you plot ψ∗ψ, you obtain orbitals such as these. 
(A) Orbitals drawn in this manner show the probability of finding the 
electron.  (B) Often orbitals are drawn with solid outlines. The probability
that the electron is within the enclosed space is 95%.

You might also wonder if the Bohr model was wrong and
should be discarded. The answer to that question is a resounding
no. The wave functions — that is, the solutions to the Schrödinger
wave equation — give the same energy levels and the same princi-
pal quantum number (n) that the Bohr model gave. Also, the 
distance from the nucleus for which the probability of finding the
electron is greatest is exactly the same as the Bohr radius. These
results show that the general features of the Bohr model are 
correct and that it is a very useful model for general properties of
the atom. The wave equation is necessary only in the finer details
of structure. 

Quantum Numbers
The wave functions obtained from Schrödinger’s wave equation
include two more quantum numbers in addition to the principal
quantum number, n. Dirac’s relativistic modification of the
Schrödinger equation adds another quantum number, making a
total of four quantum numbers that specify the characteristics of
each electron in an atom. Each quantum number represents one
property of the electron that is quantized.

The principal quantum number, n, represents exactly the same
property of the atom in both the Bohr model and the Schrödinger
model and specifies the energy level of the electron. The value of
n can be any positive integer: 1, 2, 3, 4, ... . These energy levels are
sometimes referred to as “shells.”

The orbital quantum number, �, specifies the shape of the
orbital. The value of � can be any non-negative integer less than n.
For example, when n = 1, � = 0. When n = 2, � can be 0 or 1. In
chemistry, orbitals with different values of � (0, 1, 2, 3, ...) are
assigned the letters s, p, d, f, … . Figure 12.25 shows the shapes 
of orbitals for the first three values of �. 

Figure 12.24
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Orbitals for which � = 0 (s orbitals) are always spherical.
When � = 1 (p orbitals), each orbital has two lobes. Four of the � = 2 (d)
orbitals have four lobes and the fifth � = 2 orbital has two lobes plus a disk.

The orbital quantum number is sometimes called the “angular
momentum quantum number,” because it determines the angular
momentum of the electron. If an electron was to move along a
curved path, it would have angular momentum. Although it is not
accurate to think of the electron as a tiny, solid piece of matter
orbiting around the nucleus, some properties of the electron
clouds of orbitals with � greater than zero give angular momentum
to the electron cloud. Electrons that have the same value of n but
have different values of � possess slightly different energies. As
illustrated in Figure 12.26, these closely spaced energy levels
account for the fine structure in an emission spectrum of the 
element.

For any energy level (shell) for which n > 0, there is more
than one value of the orbital quantum number, �. The orbitals for each value
of � have slightly different energies. These closely spaced energies account
for the fine structure, that is, the presence of more than one spectral line
very close together.

Figure 12.26
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The magnetic quantum number, m� , determines the orientation
of the orbitals when the atom is placed in an external magnetic
field. To develop a sense of what this quantum number means, it
is once again helpful, although not entirely accurate, to think of
the electron in its cloud as an electric current flowing around the
nucleus. As you know, a current flowing in a loop creates a mag-
netic field. The magnetic quantum number determines how this
internal field is oriented if the atom is placed in an external 
magnetic field. In Figure 12.27, the electron’s magnetic field is 
represented by a small bar magnet with different orientations in 
an external magnetic field. 

The spin quantum number, ms, results from the relativistic form
of the wave equation. The term “spin” is used because the effect 
is the same as it would be if the electron was a spherical charged
object that was spinning. A spinning charge creates its own 
magnetic field in much the same way that a circular current does. 
The value of ms can be only + 1

2 or − 1
2 . Similar to the magnetic

quantum number, the spin quantum number has an effect on the
energy of the electron only when the atom is placed in an external
magnetic field. The two orientations in the external magnetic 
field are often called “spin up” and “spin down.” Figure 12.28
illustrates the two possible orientations of the electron spin and 
its effect on the electron’s energy and spectrum in an external
magnetic field.

The electron spin can assume any orientation in the
absence of an external magnetic field, but can take only two orientations
when placed in a magnetic field — spin up or spin down.

These four quantum numbers and the associated wave functions
can explain and predict essentially all of the observed characteris-
tics of atoms. Two questions might arise, however: If almost all 
of the mass of an atom is confined to a very tiny nucleus and 
electrons, with very little mass, are in “clouds” that are enormous
compared to the nucleus, why does matter seem so “solid”? Why
cannot atoms be compressed into much smaller volumes? 

Austrian physicist Wolfgang Pauli (1900–1958) answered those
questions in 1925. According to the Pauli exclusion principle, no
two electrons in the same atom can occupy the same state. An 
easier way of saying the same thing is that no two electrons in the
same atom can have the same four quantum numbers. Electron
clouds of atoms cannot overlap. 

Figure 12.28
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In the absence 
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orientation in space. When a 
sample is placed in a magnetic
field, the � orbitals take on specific
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The Pauli exclusion principle also tells us how many electrons
can fit into each energy level of an atom. The tree diagrams in
Figure 12.29 show how many electrons can fit into the first three
energy levels, n = 1, n = 2, and n = 3.

These tree diagrams show the energy levels, both in the
absence and the presence of an external magnetic field, for the first three
values of the principal quantum number, n.

Figure 12.29
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• Study Figure 12.29 and then draw a tree diagram for the next
energy level, n = 4. How many electrons will fit into the fourth
energy level?

Hydrogen has only one proton in the nucleus, and thus one
electron in an orbital. When a hydrogen atom is not excited, the
electron is in the n = 1, � = 0 energy level. However, the atom can
absorb energy and become excited and the electron can “jump” 
up to any allowed orbital. All elements other than hydrogen have
more than one electron. When atoms are not excited, the electrons
are in the lowest possible energy levels that do not conflict with
the Pauli exclusion principle. Figure 12.30 gives examples of three
different elements with their electrons in the lowest possible 
energy levels. This condition is called the ground state of the
atom. Similar to the electron in hydrogen, the electrons of other
elements can absorb energy and rise to higher energy levels.

Electrons “fill” the energy levels from the lowest upward
until there are as many electrons in orbitals as there are protons in the
nucleus.

Figure 12.30

n = 2, � = 1

n = 2, � = 0

n = 1, � = 0

ms = + 1
2

Carbon (6 electrons) 

m� = 0 m� = 1m� = −1

n = 3, � = 0

n = 2, � = 1

n = 2, � = 0

n = 1, � = 0

Sodium (11 electrons) 

m� = 0 m� = 1m� = −1

n = 3, � = 1

n = 3, � = 0

n = 2, � = 1

n = 2, � = 0

n = 1, � = 0

Chlorine (17 electrons) 

electron with spin up (             )

ms = − 1
2electron with spin down (             )

m� = 0 m� = 1m� = −1

Conceptual Problem
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I N V E S T I G A T I O N  12-B

Identifying Elements by
Their Emission Spectra

TARGET SKILLS

Predicting
Performing and recording
Analyzing and interpreting
Communicating results

The emission spectra of atomic hydrogen gas
obtained using gas discharge tubes provided
Bohr with critical information that helped him
to develop his model of the atom. These spectra
also gave him experimental data with which to
compare predictions based on his model. In this
investigation, you will identify gases from
observation of their emission spectra.

Problem
Identify gases from observation of their emission
spectra.

Equipment  
� hand-held spectroscope
� lighted incandescent bulb
� gas discharge tubes

Procedure
1. Practise using the spectroscope by observing

a small incandescent light bulb. Point the slit
of the spectroscope toward the bulb and
move the spectroscope until you can clearly
see the spectrum.

2. Record the appearance of the spectrum from
the incandescent bulb.

3. Several numbered gas discharge tubes will be
assembled and ready to view. Observe each
tube with the spectroscope.

A very high voltage is required to 
operate the gas discharge tubes. Do not come into
contact with the source while viewing the tubes.

4. Make a sketch of each spectrum. Draw the
relative distances between the lines as accu-
rately as possible. Label each of the lines in
each sketch with colour and wavelength to
two significant figures. 

5. Observe a fluorescent bulb with the 
spectroscope. 

6. Record the appearance of the spectrum from
the fluorescent bulb.

Analyze and Conclude
1. In a phrase, describe the spectrum of the

incandescent bulb. Explain why the incan-
descent bulb emits the type of spectrum that
you described.

2. Your teacher will provide you with spectra 
of a variety of types of gases. Compare your
sketches with the spectra and attempt to
identify each gas in the discharge tubes. 

3. Compare your observations of the fluorescent
bulb with the spectra from both the incan-
descent bulb and the gas discharge tubes.
Which type of spectrum does the spectrum
from the fluorescent bulb most resemble?

4. A fluorescent bulb is a type of gas discharge
tube. However, the emissions of the gas are
absorbed by a coating on the inside of the
bulb and the atoms in the coating are excited
and emit light. Based on this description,
explain the features of the spectrum of the
fluorescent bulb. 

5. Is it possible to identify the gas in the fluo-
rescent bulb? Explain why or why not.

Apply and Extend
6. Select one of the central lines in the spec-

trum of atomic hydrogen. Predict which 
transition (from which energy level to which
energy level) created this line.

7. Check your prediction by using Balmer’s 
formula to calculate the wavelength that the
transition would have caused. Compare the
calculated wavelength with the wavelength
of the spectral line that you selected.

CAUTION
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Atoms and Lasers
A thorough understanding of the energy levels 
of electrons in atoms and of transitions between
these states was necessary before anyone could
even imagine that a laser could be developed.
Another critical property of electrons that was 
necessary in order to develop lasers was predicted
by Einstein in 1917 — the stimulation of emission
of a photon. As shown in the diagram, if an elec-
tron is in an excited state (that is, in a higher 
energy level), a photon with an energy level 
equal to the difference in allowed energy levels will
stimulate the electron to drop to the lower energy
level and emit another identical photon. In addi-
tion, the two photons are perfectly in phase. 

If more electrons exist in the excited state than
in the ground state, it is more probable that a pho-
ton will stimulate an emission instead of being
absorbed. Two conditions are necessary in order to
create and maintain this condition. Normally, most
electrons are in the ground state at room tempera-
ture, so a stimulus is needed to excite the elec-
trons. This stimulus can be provided by a high
voltage that will accelerate free electrons, and then
collisions with atoms will excite their electrons.
The process is called “optical pumping.”

If the excited electrons spend a longer than nor-
mal time in the excited state, stimulated emission
will be more probable than spontaneous emission.
This condition is met by selecting atoms of ele-
ments that have specific energy levels called the
“metastable state.” Electrons remain in metastable
states for about 10−3 s, rather than the normal
10−8 s.

A typical gas laser tube is shown in the dia-
gram. A high voltage excites the electrons in the
gas, maintaining more atoms in an excited state
than the ground state. As some photons are emit-
ted spontaneously, they stimulate the emission 
of other photons. The ends of the laser tube are 
silvered to reflect the photons. This reflection 
causes more photons to stimulate the emission of
a very large number of photons. Any photons that
are not travelling parallel to the sides of the tube
exit the tube and do not contribute to the beam.
One end of the tube is only partially reflecting, and
a fraction of the photons escape. These escaping
photons have the same wavelength and frequency
and are all in phase, creating a beam of what is
called “coherent light.”

Analyze
1. The word “laser” is an acronym for “light

amplification by stimulated emission of 
radiation.” Explain the significance of each term
in the name.

2. Laser beams remain small and do not spread
out, as does light from other sources. Based on
the unique characteristics of laser light, try to
explain why the beams do not spread out.

3. List as many applications of laser as you can.

PHYSICS & TECHNOLOGY
TARGET SKILLS

Hypothesizing
Analyzing and interpreting

high voltage

partially
silvered mirror

completely
silvered mirror



1. Discuss the similarities and differences
between Dalton’s model of the atom and 
J.J. Thomson’s model of the atom.

2. What surprising observation did
Rutherford and Geiger make that motivated
Rutherford to define a totally new model of
the atom? 

3. In what way did Rutherford’s nuclear
model of the atom conflict with classical 
theory?

4. Explain how experimentally observed
spectra of atomic hydrogen helped Bohr
develop his model of the atom.

5. According to Bohr’s model of the atom,
what property of electrons in atoms must be
quantized?

6. List the four postulates on which Bohr
based his model of the atom.

7. Explain how Coulomb’s law played a role
in the determination of the Bohr radius.

8. Describe the two features of the emission
spectrum of atomic hydrogen that revealed a
flaw in Bohr’s model of the atom.

9. How did Dirac improve Schrödinger’s
wave equation?

10. What is a wave function and what type
of information does a wave function provide
about atoms?

11. List and define the four quantum 
numbers.

12. Balmer’s work on the spectrum of hydro-
gen helped Bohr to modify Rutherford’s
model of the atom. Explain how he did this.

13. Write down Rydberg’s modification of
Balmer’s formula and define the terms.

14. What can cause an electron in the Bohr
model to “jump” to a higher energy level?

15. Explain the term “principal quantum
number.”
K/U

K/U

K/U

C

K/U

K/U

K/U

C

C

K/U

K/U

C

K/U

K/U

C
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12.3 Section Review

The years from 1900 to 1930 were exciting ones in physics. No
longer could physicists speak of waves and particles as separate
entities — the boundary between the two became blurred. The
long-standing Dalton model of the atom gave way to the Thomson
model, which was soon usurped by the Rutherford model and,
soon thereafter, by the Bohr model. Eventually, all models that
represented electrons as discrete particles yielded to the quantum
mechanical model described by the Schrödinger wave equation. 

Today, the wave equation is still considered to be the most
acceptable model. In fact, physicists have been able to show that
the wave equation can give information about the nucleus and 
particles that was not known to exist when Schrödinger presented
his equation. In the next chapter, you will learn about properties
of the nucleus and particles that exist for time intervals as small 
as 10−20 s.

Inquisitive minds following unexpected results
often lead to advances in our scientific under-
standing of the universe.
� Do you believe, and can you support, 

the idea that unexpected experimental
results have contributed more to scientific
discovery than any other means?

� Which theory, special relativity or quantum
mechanics, was received with more skepti-
cism by the general public of the time?
Suggest reasons.

UNIT PROJECT PREP



C H A P T E R Review12

� Oscillators on the surface of a blackbody can
oscillate only with specific frequencies. When
they emit electromagnetic radiation, they drop
from one allowed frequency to a lower
allowed frequency.

� The photoelectric effect demonstrated that
electromagnetic energy can be absorbed only
in discrete quanta of energy. Electromagnetic
energy travels like a wave, but interacts with
matter like a particle.

� When a photon ejects an electron from a metal
surface, the maximum kinetic energy of the
electron can be calculated from the equation
Ek(max) = hf − W, where W is the work function
of the metal.

� The Compton effect shows that both energy
and momentum are conserved when a quan-
tum of light energy, or a photon, collides with
a free electron.

� The energy of a photon is E = hf.
� The momentum of a photon is p = h

λ .

� The diffraction of electrons by crystals 
demonstrated that electrons have wave 
properties. The wavelength of a particle of 

matter is λ = h
mv

.

� Physicists accept the dual properties of matter
and electromagnetic energy. Electromagnetic
energy behaves like particles and particles of
matter have wave properties. These concepts
are called the “wave-particle duality.”

� Dalton believed that atoms were the smallest,
indivisible particles in nature. J.J. Thomson
demonstrated that electrons could be removed
from atoms and, therefore, that atoms were
made up of smaller particles. 

� By observing the scattering of alpha particles
by a thin gold foil, Rutherford demonstrated
that the positive charge in an atom must be

condensed into an extremely small area at the
centre of the atom.

� Bohr proposed that electrons in atoms could
exist only in specific allowed energy levels.
Electrons in these energy levels are in orbits
with specific allowed radii.

� The energies of the photons in the observed
spectra of atomic hydrogen have amounts of
energy that are exactly equal to the difference
in Bohr’s allowed energy levels. This fact sup-
ports Bohr’s concept that electrons can drop
from a high energy level to a lower level by
emitting a photon.

� Detailed inspection of emission spectra of
gases showed that some of the spectral lines
are actually made up of two or more lines that
are very close together. Also, when placed in
an external magnetic field, some single spec-
tral lines split into two or more lines. These
data show that Bohr’s model of the atom is
incomplete. 

� Schrödinger’s wave equation forms the foun-
dation of quantum mechanics, or wave
mechanics. Solutions to the wave equation,
called “wave functions,” provide information
about the properties of electrons in an atom.
The operation, ψ∗ψ on the wave function gives
the probability that an electron will be found
at a specific point in space.

� Dirac modified Schrödinger’s wave equation to
account for relativistic effects of electrons in
atoms travelling close to the speed of light.
Wave functions obtained by solving this wave
equation contain four quantum numbers. Each
quantum number describes one property of
electrons that is quantized.

� The Pauli exclusion principle states that no
two electrons in the same atom can have the
same four quantum numbers. 

REFLECTING ON CHAPTER 12
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Knowledge/Understanding
1. Describe how a negatively charged electroscope

can be used to provide evidence for the photo-
electric effect.

2. (a) Describe the properties of a blackbody 
and explain how it is simulated in the 
laboratory.

(b) How did the actual radiation spectrum 
emitted by a heated blackbody differ from
the predictions of the classical wave theory?

3. The ultraviolet catastrophe was considered to
be a flaw in the explanation of the blackbody
emission spectra by the classical wave theory.
In what way was it unexplained?

4. (a) The results of Lenard’s photoelectric experi-
ment partly correlated with the classical
wave theory of light. Explain how it agreed.

(b) In what way did Lenard’s results differ from
the predictions of the classical wave theory
of light?

5. (a) Einstein saw a connection between the 
photoelectric effect and the Planck proposal
that energy be quantized. Explain how
Einstein developed an equation to describe
the photoelectric effect.

(b) Einstein’s photoelectric equation is actually
another example of conservation of energy.
Explain how this applies.

6. A lithium surface in a photoelectric cell will
emit electrons when the incident light is blue.
Platinum, however, requires ultraviolet light to
eject electrons from its surface.

(a) Which of the two metals has a larger value
for its work function? Explain your answer.

(b) Which of the two metals has a higher
threshold frequency? Explain your answer.

7. (a) How did a knowledge of the charge on an
electron make it possible to calculate the
numerical values of the kinetic energies of
electrons emitted from a metal surface?

(b) How did the data from Millikan’s photoelec-
tric experiments support Einstein’s theory of
the photoelectric effect?

8. (a) Explain the sequence by which Compton
derived an expression for the momentum of
a photon, considering that it has no mass.

(b) In what way does a photon change “colour”
after it has collided with an electron. Is
“colour” always a suitable term to use?

9. Based on his premise regarding the momentum
of a photon, Compton showed that momentum
was conserved in collisions between photons
and electrons. As a result, what can be con-
cluded from this experiment?

10. (a) Explain the sequence that de Broglie used 
in taking Compton’s expression for the
momentum of a light photon and proposing
that particles of matter have a corresponding
matter wave and wavelength.

(b) How can the matter wavelength of a particle
be increased to make it more easily
detectable?

(c) Compare (through calculations) the de
Broglie wavelength of an electron of mass
9.11 × 10−31 kg, travelling at 3.60 km/h, with
that of a hockey puck of mass 0.15 kg, 
travelling at the same speed.

11. (a) What property of electromagnetic radiation
represented a flaw in the Rutherford model
of the atom?

(b) Balmer’s equation represents an “empirical
expression.” What is the significance of this
term?

12. In what way did Rydberg modify Balmer’s
equation?

13. (a) Describe the key features of the Bohr model
of the atom, and indicate how this model
contradicts classical theory.

(b) When electrons occupy a higher energy
level, what are they likely to do? What
options do they have?

14. (a) Write the equation linking the energy of a
photon emitted from the Bohr atom to the
energy levels of the atom.

(b) How does this manifest itself in the emis-
sion spectrum of an atom?

15. (a) According to Bohr, what property of the
electron in its orbit is quantized?
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(b) In general terms, explain how Bohr used 
the equations for Coulomb’s law, circular
motion, and angular momentum to deter-
mine the “Bohr radius.”

16. (a) Describe how Bohr used the equations for
kinetic energy, Coulomb’s law, and the Bohr
radius to determine the general formula 
for the total energy of an electron in a
hydrogen atom.

(b) Explain how the Bohr equation for the total
energy of an electron in orbit in a hydrogen
atom relates to the observed emission 
spectrum.

17. (a) Show that the speed of an electron as it
moves in an “allowed” orbit can be 
represented by the equation

vn = 2πke2

nh
(b) Calculate the de Broglie wavelength associ-

ated with an electron in the first orbit of the
Bohr atom.

18. Schrödinger responded to de Broglie’s thesis by
developing the Schrödinger wave equation. In
what general way did this equation account for
the discrepancies in the emission spectra?

19. (a) Do you feel Schrödinger’s wave equation is
just an abstract model, or is there a “real”
significance?

(b) Discuss whether you believe that the
Schrödinger wave functions made the 
Bohr model obsolete.

Inquiry
20. Schrödinger’s wave equation was a famous 

contribution to what is now called “quantum
mechanics.” At your library or through the
Internet, find and record the exact text of the
equation and describe, in general terms, the
mathematical operations it incorporated.

21. (a) Research and describe the principle of 
complementarity.

(b) Under what conditions does light tend to
show its wave properties, and under what
conditions does the particle (photon) nature
of light predominate?

22. Design and sketch a simple door opener that
will open electrically when a person passes
through a light beam.

Communication
23. Explain how Lenard was able to determine the

maximum kinetic energy of the electrons 
coming from the emitter of his photoelectric
apparatus.

24. (a) Explain how Einstein was able to include
the properties of different types of emitter
metals in his photoelectric equation.

(b) Initially, very few physicists accepted
Einstein’s claim for the quantum nature of
light. Why did this opposition exist?

25. Briefly outline the key features of the model of
the atom proposed by John Dalton, J.J. Thomson,
and Ernest Rutherford.

26. Based on the results of the scattering experi-
ments, Rutherford was led to believe that the
atom was mainly empty space with a small
charged core. Explain why he deduced this.

27. Some science fiction writers use a large sail to
enable a space vehicle to move through space.
It is argued that sunlight will exert a pressure
on the sail, causing it to move away from the
Sun. Prepare a report and/or display in which
you indicate
(a) whether the proposal has merit
(b) what type of surface should be used for 

the sail

28. “Wave-particle duality” is a term used to
describe the dual properties of both light and
particles in motion. Has this meant that
Maxwell’s equations for electromagnetic wave
propagation and Newton’s classical mechanics
have been discarded? Discuss your opinion.

Making Connections
29. A light meter is used by a photographer to

ensure correct exposure for photographs. If the
photocell in the meter is to operate satisfac-
torily up to the red light wavelength of 650 nm,
what should be the work function of the emit-
ter material?
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30. Some television picture tubes emit electrons
from the rear cathode and accelerate them 
forward through an electric potential difference
of 15 000 V.

(a) What is the de Broglie wavelength of the
electron just before it hits the screen?

(b) Discuss whether you think diffraction of the
electron beam might pose a problem with
the resulting picture.

31. Prepare a report on laser technology, including
reference to the terms “spontaneous emission,”
“stimulated emission,” “population inversion,”
and “metastable.” In your report, include a ref-
erence to the medical applications of lasers.

Problems for Understanding
32. (a) The work function for a nickel surface is

5.15 eV. What is the minimum frequency of
the radiation that will just eject an electron
from the surface?

(b) What is the general name given to this 
minimum frequency?

33. (a) The longest wavelength of light that will
just eject electrons from a particular surface
is 428.7 nm. What is the work function of
this surface?

(b) Use Table 12.1 to identify the material used
in the surface.

34. When ultraviolet radiation was used to eject
electrons from a lead surface, the maximum
kinetic energy of the electrons emitted was 
2.0 eV. What was the frequency of the radiation
used?

35. The electrons emitted from a surface illumi-
nated by light of wavelength 460 nm have a 
maximum speed of 4.2 × 105 m/s. Given that 
an electron has a mass of 9.11 × 10−31 kg, 
calculate the work function (in eV) of the 
surface material.

36. Assume that a particular 40.0 W light bulb
emits only monochromatic light of wavelength
582 nm. If the light bulb is 5.0% efficient in
converting electric energy into light, how many
photons per second leave the light bulb?

37. (a) Calculate the momentum of a photon of
light with a wavelength of 560 nm.

(b) Calculate the momentum of the photons of
light with a frequency of 6.0 × 1014 Hz.

(c) A photon has an energy of 186 eV. What is
its momentum?

38. An electron is moving at a speed of
4.2 × 105 m/s. What is the frequency of a 
photon that has an identical momentum?

39. What is the momentum of a microwave photon
if the average wavelength of the microwaves is
approximately 12 cm?

40. A particle has a de Broglie wavelength of
6.8 × 10−14 m. Calculate the mass of the particle
if it is travelling at a speed of 1.4 × 106 m/s.

41. (a) Calculate the wavelength of a 4.0 eV photon.
(b) What is the de Broglie wavelength of a 

4.0 eV electron?
(c) What is the momentum of an electron if its

de Broglie wavelength is 1.4 × 10−10 m?

42. (a) Calculate the radius of the third orbit of an
electron in the hydrogen atom.

(b) What is the energy level of the electron in
the above orbit?

43. Calculate the wavelength of the second line in
the Balmer series.

44. A photon of light is absorbed by a hydrogen
atom in which the electron is already in the
second energy level. The electron is lifted to
the fifth energy level.
(a) What was the frequency of the absorbed

photon?
(b) What was its wavelength?
(c) What is the total energy of the electron in

the fifth energy level?
(d) Calculate the radius of the orbit representing

the fifth energy orbit.
(e) If the electron subsequently returns to the

first energy level in one “jump,” calculate
the wavelength of the corresponding photon
to be emitted.
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C H A P T E R

The Nucleus and 
Elementary Particles13

Twentieth-century physics was ruled to a large extent by a
quest for ultra-high energies. It might seem strange that such

energies are required in order to investigate the tiniest, most subtle
particles of matter. However, probing inside the nucleus and then
inside the particles of that nucleus requires instruments capable 
of accelerating electrons and protons into the mega-electron volt
(106 eV) and giga-electron volt (109 eV) ranges of kinetic energy.

Such instruments, called “particle accelerators,” are located in
university and government laboratories around the world. The
above photograph shows an accelerator used at Conseil Européen
pour la Recherche Nucléaire (CERN) located near Geneva,
Switzerland. Along with other high-energy physics laboratories,
CERN searches for new particles formed during energetic 
collisions between subatomic particles.

This chapter begins with the structure and properties of the
nucleus and then examines the field of elementary particles, 
such as the ones created at CERN.

� Electric force and Coulomb’s law

� Equivalence of mass and energy

� Conservation of mass-energy

� Potential and kinetic energy

PREREQUISITE

CONCEPTS AND SKILLS
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M U L T I

L A B

Radioactive Decay
TARGET SKILLS

Performing and recording
Analyzing and interpreting

Penetrating Ability of 
Radioactive Emissions 
Obtain an end-window Geiger counter,
sources of beta and gamma radiation, and
shielding materials such as sheets of lead 
and cardboard. 

Handle the sources using tongs. 

Position the tube of the Geiger counter so that
either source (beta or gamma) can be placed
close to the end window and so that sheets of
cardboard or lead can be placed between the
source and the Geiger tube. Turn on the
Geiger counter and slide the beta source
under it. Note the reading on the counter.
Insert a sheet of cardboard between the beta
source and the tube and take the reading
again. Continue adding sheets until the read-
ing is close to zero. Determine the thickness
of an individual sheet and calculate the 
thickness of cardboard between the tube and
the beta source for each radiation reading.

Repeat the process with the gamma source.
If the cardboard does not provide much
change to the reading, add sheets of lead
instead. Continue adding sheets until the
reading is close to zero (or as close as you can
get). Determine the thickness of an individual
sheet and calculate the total thickness of 
the barrier. 

Analyze and Conclude
1. Plot a graph of the radioactivity reading 

(y-axis) against the thickness of cardboard
for the beta source. 

2. Plot a graph of the radioactivity reading 
(y-axis) against the thickness of cardboard
or lead for the gamma source. 

3. Which type of radioactive emission is the
more penetrating?

4. Try to determine from the graphs the thick-
ness of material that would reduce the
reading to half of the unshielded value.

CAUTION

Half-Life
Perform this investigation as a class activity.
Start with each member of the class holding a
coin heads-up. Count and record the number
of heads. Next, everyone should flip their
coins. Count and record the number of heads.
One minute later, each person who got heads
on the first flip should flip again. Those who
got tails are “out.” Again, count and record
the number of heads. Repeat the process
every minute until only one or two heads
remain.

Analyze and Conclude
1. Draw a graph of the number of heads

remaining versus the number of flips.

2. Draw a graph of the number of heads 
that changed to tails versus the number 
of flips.

3. What are the chances that a coin will
change from head to tail during a flip?

4. Why would a minute be known as the
“half-life” of the coin?

5. The number of changes during each flip
represents the activity. How does the
activity change as time passes?

6. If you start with 160 heads, how many
flips should you expect it to take to reduce
the number of heads to 5? Explain your
reasoning.
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Excitement was high in the scientific community in the early
1900s when Ernest Rutherford (1871–1937) proposed his model of
the nucleus and Niels Bohr (1885–1962) developed a model of the
atom that explained the spectrum of hydrogen. As is the case with
many scientific breakthroughs, however, the answers to a few
questions gave rise to many more.

The most obvious question arose from the realization that a
great amount of positive charge was concentrated in a very small
space inside the nucleus. The strength of the Coulomb repulsive
force between like charges had long been established. Two positive
charges located as close together as they would have to be in
Rutherford’s model of the nucleus would exert a mutual repulsive
force of about 50 N on each other. For such tiny particles, this is a
tremendous force. There had to be another, as yet unidentified,
attractive force that was strong enough to overcome the repulsive
Coulomb force. What is the nature of the particles that make up
the nucleus and what force holds them together?

Protons and Neutrons
Again, it was Rutherford who discovered — and eventually 
named — the proton. When he was bombarding nitrogen gas with
alpha particles, Rutherford detected the emission of positively
charged particles with the same properties as the hydrogen nucle-
us. As evidence accumulated, it became apparent to physicists
that the proton was identical to the hydrogen nucleus and was 
the fundamental particle that carried a positive charge, equal in
magnitude to the charge on the electron and with a mass 1836
times as great as the mass of an electron. The positive charge of 
all nuclei consisted of enough protons to account for the charge. 

Using the principle on which the mass spectrometer is based
(refer to Chapter 8, Fields and Their Applications), several physi-
cists discovered that the mass of most nuclei was roughly twice
the size of the number of protons that would account for the
charge. Rutherford encouraged the young physicists in his labora-
tory to search for a neutrally charged particle that could account
for the excess mass of the nucleus. Finally, in 1932, English 
physicist James Chadwick (1891–1974) discovered such a particle.
That particle, now called the neutron, has a mass that is nearly the
same as that of a proton. The proton, neutron, and electron now
account for all of the mass and charge of the atom. Since protons
and neutrons have many characteristics in common, other than the
charge, physicists call them nucleons.

Structure of the Nucleus13.1
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• Define and describe the con-
cepts and units related to the
present-day understanding of
the nature of elementary 
particles (e.g., mass-energy
equivalence).

• Apply quantitatively the laws 
of conservation of mass and
energy, using Einstein’s 
mass-energy equivalence.

• proton

• neutron

• nucleon

• chemical symbol

• atomic number

• atomic mass number

• nucleon number

• strong nuclear force

• nuclide

• isotope

• mass defect

• atomic mass unit

 T E R M S
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E X P E C T A T I O N S
S E C T I O N
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Table 13.1 Properties of Particles in the Atom

Representing the Atom
As physicists and chemists learned more about the nucleus and
atoms, they needed a way to symbolically describe them. The 
following symbol convention communicates much information
about the particles in the atom.

A
ZX

X is the chemical symbol for the element to which the atom
belongs. For example, the symbol for carbon is C, while the 
symbol for krypton is Kr.

Z is the atomic number, which represents the number of protons
in the nucleus and is also the charge of the nucleus. 

A is the atomic mass number, the total number of protons and
neutrons in the nucleus. Since the particles in the nucleus are
called “nucleons,” the atomic mass number is sometimes called
the nucleon number. 

If N represents the number of neutrons in a nucleus, then

A = Z + N

The atomic number (Z) also indicates the number of electrons
in the neutral atom, since one electron must be in orbit outside 
the nucleus for each proton inside the nucleus. In addition, the
manner in which atoms chemically interact with each other
depends on the arrangement of their outer electrons. This is 
influenced in turn by the atomic number. Since all atoms of an 
element behave the same chemically, all atoms of a given element
must have the same atomic number. For example, all carbon atoms
have an atomic number of 6 and all uranium atoms have an atomic
number of 92.

The Strong Nuclear Force
By the end of the 1930s, physicists were beginning to accumulate
data about the elusive force that holds the nucleus together. They
discovered that any two protons (p↔p), two neutrons (n↔n), or 
a proton and a neutron (p↔n) attract each other with the most
potent force known to physicists — the strong nuclear force. 

Particle Mass (kg) Charge (C)

proton

neutron

electron

1.672 614 × 10 kg

kg

kg

−27

1.674 920 × 10−27

9.109 56 × 10−31

+1.602 × 10 C−19

C−1.602 × 10−19

0 C
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When two protons are about 2 fm (femtometres: 2 × 10−15 m)
apart, the nuclear force is roughly 100 times stronger than the
repulsive Coulomb force. However, at 3 fm of separation, the
nuclear force is almost non-existent. Whereas the gravitational and
electrostatic forces have an unlimited range — both follow a 1/r2

law — the nuclear force has an exceptionally short range, which is
roughly the diameter of a nucleon. Therefore, inside the nucleus,
the nuclear force acts only between adjacent nucleons. When the
separation distance between nucleons decreases to about 0.5 fm,
the nuclear force becomes repulsive. This repulsion possibly
occurs because nucleons cannot overlap. Estimates of the radius 
of a nucleon range from 0.3 fm to 1 fm. Figure 13.1 shows a graph
of an approximated net force between two protons, relative to their
separation distance.

Stability of the Nucleus
If the nuclear force is so strong, why cannot nucleons come togeth-
er to form nuclei of ever-increasing size? The short range of the
nuclear force accounts for this. When a nucleus contains more
than approximately 20 nucleons, the nucleons on one side of the
nucleus are so far from those on the opposite side that they no
longer attract each other. However, the repulsive Coulomb force
between protons is still very strong. Figure 13.2 shows the number
of protons (Z) and neutrons (N) in all stable nuclei. 

As you can see in Figure 13.2, the number of neutrons and 
protons is approximately equal up to a total of 40 nucleons. For
example, oxygen has 8 protons and 8 neutrons and calcium has 
20 protons and 20 neutrons 

(
40
20Ca

)
. Beyond 40 nucleons, the 

ratio of neutrons to protons increases gradually up to the largest
element. One form of uranium has 92 protons and 146 neutrons(

238
92U

)
. This unbalanced ratio results in more nucleons experienc-

ing the attractive force for each pair of protons experiencing the
repulsive Coulomb forces. This combination appears to stabilize
larger nuclei. Nuclei that do not lie in the range of stability will
disintegrate.

r (fm)
1 2 3 4 5

repulsive

Force

attractive

Assume that one 
proton is at the origin of the 
co-ordinate system and another 
proton approaches it. As the second
proton approaches, it experiences 
a repulsive Coulomb force. If the
second proton has enough energy
to overcome the repulsion, it will
reach a point where the net force is
zero. Beyond that point, the strong
nuclear force attracts it strongly.

Figure 13.1



Each dot represents a stable nucleus, with 
the number of neutrons shown on the vertical axis and the 
number of protons on the horizontal axis.

Nuclides and Isotopes
Each dot in Figure 13.2 represents a unique stable nucleus with 
a different combination of protons and neutrons. Physicists call
these unique combinations nuclides. The many columns of 
vertical dots indicate that several nuclides have the same number
of protons. Since the number of protons determines the identity of
the element, all of the nuclides in a vertical column are different
forms of the same element, differing only in the number of 
neutrons. These sets of nuclides are called isotopes. For example,
nitrogen, with 7 protons, might have 7 neutrons 

(
14
7N

)
or 

8 neutrons 
(

15
7N

)
. Figure 13.3 illustrates isotopes of hydrogen 

and helium.

Figure 13.2
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The isotopes of hydrogen are the only isotopes to which
physicists have given different names: 21H is called “deuterium” and 31H is 
called “tritium.” For most isotopes, physicists simply use the atomic mass
number to describe the isotope: 32He is called “helium-3” and 42He is called
“helium-4.”

Nuclear Binding Energy and Mass Defect
When you consider the strength of the nuclear force, you realize
that it would take a tremendous amount of energy to remove a
nucleon from a nucleus. For the sake of comparison, recall that it
takes 13.6 eV to ionize a hydrogen atom, which is the removal of
the electron. To remove a neutron from 42He would require more
than 20 million eV (20 MeV). The amount of energy required to
separate all of the nucleons in a nucleus is called the binding
energy of the nucleus. Figure 13.4 shows the average binding 
energy per nucleon plotted against atomic mass number A. 

The average binding energy per nucleon is calculated by
determining the total binding energy of the nucleus and dividing by the
number of nuclides.

Imagine that you were able to remove a neutron from 42He. What
would happen to the 20 MeV of energy that you had to add in
order to remove the neutron? The answer lies in Einstein’s special
theory of relativity: Energy is equivalent to mass. If you look up
the masses of the nuclides, you would find that the mass of 42He is

Figure 13.4
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www.mcgrawhill.ca/links/
physics12

You can find many properties, includ-
ing the mass, of all stable nuclides and
many unstable nuclides in charts of
the nuclides on the Internet. Just go 
to the above Internet site and click on
Web Links.

WEB LINK



smaller than the sum of the masses of 32He plus a neutron 
(

1
0n

)
.

The energy that was added to remove a neutron from 42He became
mass. This difference between the mass of a nuclide and the 
sum of the masses of its constituents is called the mass defect.
Einstein’s equation E = ∆mc2 allows you to calculate the energy
equivalent of the mass defect, ∆m .

When dealing with reactions involving atoms or nuclei,
expressing masses in kilograms can be cumbersome. Consequently,
physicists defined a new unit — the atomic mass unit (u). One
atomic mass unit is defined as 1

12 the mass of the most common 
isotope of carbon 

(
12
6C

)
. This gives a value for the atomic mass 

unit of 1 u = 1.6605 × 10−27 kg. Table 13.2 lists the masses of the
particles in atoms.

Table 13.2 Masses of Common Elementary Particles

Particle Mass (kg) Mass (u)

electron

proton

neutron

0.000 549 u

1.007 276 u

1.008 665 u1.674 920 × 10−27 kg

1.672 614 × 10−27 kg

9.109 56 × 10 kg−31
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continued

Calculate the Binding Energy of a Nucleus
Determine the binding energy in electron volts and joules for an
iron nucleus of 

(
56
26Fe

)
, given that the nuclear mass is 55.9206 u.

Conceptualize the Problem
� The energy equivalent of the mass defect is the binding energy for

the nucleus.

� The mass defect is the difference of the mass of the nucleus and
the sum of the masses of the individual particles.

Identify the Goal
The binding energy, E, of 56

26Fe

Identify the Variables and Constants
Known Implied Unknown
mnucleus = 55.9206 u c = 2.998 × 108 m

s
N

A = 56 mp = 1.007 276 u ∆m

Z = 26 mn = 1.008 665 u E

SAMPLE PROBLEM 



Develop a Strategy

The binding energy of the nucleus is 4.924 × 108 eV, or 7.888 × 10−11 J .

Validate the Solution
The binding energy of a nucleus should be extremely small.
You would expect the binding energy per nucleon to be about 8 MeV.
4.93 × 108 eV

56
= 8.79 × 106 eV = 8.79 MeV

1. Determine the mass defect for 84Be with a
nuclear mass of 8.003 104 u.

2. Determine the binding energy for 32He with 
a nuclear mass of 3.014 932 u.

3. Determine the binding energy for 235
92U with 

a nuclear mass of 234.9934 u.

PRACTICE PROBLEMS

∆E =
(
8.7762 × 10−28 kg

)(
2.998 × 108 m

s

)2

∆E = 7.888 × 10−11 J

∆E = 7.888 × 10−11 J
1.602 × 10−19 J

eV

∆E = 4.9239 × 108 eV

Find the energy in electron volts.

E = ∆mc2Find the energy equivalent of the mass defect.

∆m = (0.528 526 u)
(
1.6605 × 10−27 kg

u

)
∆m = 8.7762 × 10−28 kg

Convert this mass into kilograms.

mn(total) = (30)(1.008 665 u)

mn(total) = 30.259 95 u

mtotal = 26.189 176 u + 30.259 95 u

mtotal = 56.449 126 u

∆m = 56.449 126 u − 55.9206 u

∆m = 0.528 526 u

Find the mass defect by subtracting the mass
of the nucleus from the total nucleon mass.

mp(total) = (26)(1.007 276 u)

mp(total) = 26.189 176 u

Determine the total mass of the separate
nucleons by finding the masses of the protons
and neutrons and adding them together.

N = A − Z
N = 56 − 26
N = 30

Calculate the number of neutrons.
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13.1 Section Review

1. List the contribution of each of the 
following physicists to the study of the
nucleus.

(a) Ernest Rutherford

(b) James Chadwick 

2. Why did physicists believe that a neutral
particle must exist, even before the neutron
was discovered?

3. State the meaning of the following
terms.

(a) nucleon

(b) atomic mass number

(c) atomic number

4. For the atom symbolized by 200
80Hg, state

the number of

(a) nucleons

(b) protons

(c) neutrons

(d) electrons, if the atom is electrically 
neutral

(e) electrons, if the atom is a doubly charged
positive ion

5. How did scientists know that some
force other than the electromagnetic force
had to exist within the nucleus?

6. Describe the characteristics of the nuclear
force.

7. Describe the general trend of stable nuclei
in relation to the proton number and neutron
number.

8. Explain the concept of binding energy.

9. Define the term “mass defect” and explain
how to determine it for a given nucleus.

10. The structure of the atom is often 
compared to a solar system, with the nucleus
as the Sun and the electrons as orbiting 
planets. If you were going to use this analogy,
which planet should you use to represent an
electron, based on its comparative distance
from the Sun?

Atom

radius of nucleus ≈ 
1 × 10−15 m 

radius of typical 
electron orbit ≈ 
1 × 10−10 m

radius of Sun ≈ 
6.96 × 108 m

radii of 
planetary orbits

rMercury ≈ 6 × 1010 m
rEarth ≈ 1.49 × 1011 m
rJupiter ≈ 8 × 1011 m
rPluto ≈ 6 × 1012 m

Solar system

MC

C

C

C

C

K/U

K/U

K/U

C

K/U
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Not Your 
Average Observatory
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When you think of an observatory, you probably
think of a large telescope on a remote mountaintop
that collects light from stars and galaxies. You’re not
likely to think of 1000 t of heavy water at the bottom
of a mine shaft, 2 km below Earth’s surface. But that’s
exactly what you will find at the Sudbury Neutrino
Observatory — also known as SNO — where scien-
tists are trying to detect a wily, elusive particle called
the “neutrino.” 

The existence of the neutrino was first predicted 
in 1931 by Wolfgang Pauli, when certain nuclear
reactions appeared to be violating the laws of 
conservation of energy and momentum. Rather than
modify or discard the law, Pauli suggested that an
unseen, chargeless and probably massless particle
was carrying away some of the energy and momen-
tum. Italian physicist Enrico Fermi later named this 

mysterious particle the “neutrino,” which means 
“little neutral one” in Italian. 

Not Your Average Particle 
Like the photon, the neutrino is produced in 
enormous quantities by nuclear reactions in the 
centres of stars, such as the Sun. They travel at close
to the speed of light and carry away substantial
amounts of energy from the star’s hot core. Just as
photons are collected by telescopes to analyze the
processes that create them, neutrinos are observed in
order to understand what’s happening in the centres
of stars. By counting neutrinos, physicists learn about
the rate of fusion reactions in stellar cores. Although
there are now known to be three types of neutrinos,
stars produce the type known as the “electron-
neutrino.” 



Unlike the photon, which interacts strongly with
matter, the neutrino scarcely interacts with matter at
all. Some 60 billion neutrinos pass unhindered
through each square centimetre of your body each
second. A beam of neutrinos could sail through a
shield of lead 1 light-year (10 thousand billion 
kilometres) thick without being reflected or absorbed.
This is why it took physicists almost 30 years after
Pauli’s prediction to verify the neutrino’s existence.

Detecting a Neutrino 
Detecting a neutrino is tricky, because it passes right
through photographic film and electronic detectors,
the devices that register photons. This is where heavy
water is useful. Heavy water is made up of oxygen
and deuterium, which is a hydrogen nucleus with an
added neutron. It’s about 10% heavier than “light”
water, and its symbol is D2O. Occasionally, 
in one of several possible reactions, neutrinos will
transform a deuterium nucleus into a pair of protons
and an electron. Neutrinos enter the tank with super-
high energies and, because energy is conserved, the
electron produced in the reaction will be jettisoned 
at speeds faster than the speed of light in water. It’s
like a high-speed crash, where even the debris of the
collision flies out at high speed. As the energetic 
electron slows down in the water, it emits a flash 
of light, or a shock wave — the optical equivalent 
of a sonic boom. About 500 to 800 photons will be
generated in the flash, with a total energy proportio-
nal to that of the incident neutrino. 

Outside the tank of heavy water, several of the 
10 thousand photomultiplier tubes will detect this
tiny light flash. These photomultipliers comprise the
main part of the detector. Together, they are about 
200 000 times more sensitive than the human eye.
This sensitivity is required because the flash of light
is only as bright as the flash of a camera seen from
the distance of the Moon! So, even though the 
neutrino is not detected directly, the product of its
interaction is. Despite the 1000 t of heavy water, 
only about 10 neutrinos are detected per day. 

One Mystery Solved
One longstanding problem that the Sudbury Neutrino
Observatory investigated was the significant differ-
ence between the number of predicted neutrinos
based on solar models and the number of neutrinos
that were actually observed. Was the difference due
to observation errors in the experiments and detec-
tors, which were begun in the 1970s, or to errors in
the scientific model calculations? Despite refinements
in both over nearly 30 years, the difference persisted.
Why?

The unexpected answer, which SNO helped 
provide in June 2001, was due to the neutrinos 
themselves. Because the Sun generates only electron-
neutrinos, the earlier experiments were designed to
detect only this type of neutrino, and not the other
two types. Recent results from SNO, together with
those of another detector in Japan, indicate that after
neutrinos are generated in the Sun, they oscillate
between the three types while they travel. Because of
its ability to detect different types of neutrino reac-
tions, SNO is sensitive to all three types of neutrinos,
and it was able to show that earlier experiments sim-
ply missed the transformed neutrinos — but they
were there all along. 

For such transformations to take place, the 
neutrino must have a tiny mass, contrary to what was
originally thought. SNO has measured this mass to be
roughly 60 000 times less than that of an electron.
What this new result means for elementary particle
theory remains to be seen. How the neutrinos change
type is also still not understood, but with continued
monitoring of incoming neutrinos, SNO hopes to
shed light on that too.

Making Connections 
1. Could neutrinos enter the Sudbury Neutrino

Observatory after passing through the far side of
Earth, that is, on their way back out into space? 

2. How do the laws of conservation of energy and
momentum apply to reactions between particles? 

3. How does the SNO differ from other neutrino
observatories worldwide? 
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Radioactivity and 
Nuclear Reactions

Observation of the effects of cathode ray tubes carried out by 
J.J. Thomson and others stimulated many other scientists to 
perform related studies in which a material was bombarded 
with “rays” of various types. When Wilhelm Conrad Röntgen
(1845–1923) was using a cathode ray tube, he was surprised to see
a fluorescent screen glowing on the far side of the room. Because
he did not know the nature of these rays, he called them “X rays.”
French physicist Henri Becquerel (1852–1908) became curious
about the emission of these X rays and wondered if luminescent
materials, when exposed to light, might also emit X rays.

At first, Becquerel’s experiment seemed to confirm his hypothe-
sis. He wrapped photographic film to shield it from natural light
and placed it under phosphorescent uranium salts. When he
exposed the phosphorescent salts to sunlight, silhouettes of the
crystals appeared when he developed the film. The salts appeared
to absorb sunlight and reemit the energy as X rays that then passed
through the film’s wrapping. However, during a cloudy period,
Becquerel stored the uranium salts and wrapped film in a drawer.
When he later developed the film, he discovered that it had been
exposed while in the drawer. This is the first recorded observation
of the effects of radioactivity.

Radioactive Isotopes
Physicists discovered, studied, and used radioactive materials
(materials that emit high-energy particles and rays) long before
they learned the reason for these emissions. As you know,
Rutherford discovered alpha particles (α) and used them in many
of his famous experiments. He examined the nature of alpha 
particles by passing some through an evacuated glass tube and
then performing a spectral analysis of the tube’s contents. The
trapped alpha particles displayed the characteristic spectrum of
helium; alpha particles are simply helium nuclei. 

Rutherford also discovered beta particles, and other scientists
studied their charge-to-mass ratio and showed that beta (β )
particles were identical to electrons. French physicist Paul Villard
discovered that, in addition to beta particles, radium emitted
another form of very penetrating radiation, which was given the
name “gamma (γ ) rays.” Gamma rays are a very high-frequency
electromagnetic wave. Figure 13.5 shows the separation of these
radioactive emissions as they pass between oppositely charged
plates.

• Define and describe the 
concepts and units related to
radioactivity.

• Describe the principal forms of
nuclear decay.

• Compare the properties of alpha
particles, beta particles, and
gamma rays in terms of mass,
charge, speed, penetrating
power, and ionizing ability.

• Compile, organize, and display
data or simulations to determine
and display the half-lives for
radioactive decay of isotopes.

• radioactive material

• alpha particle

• beta particle

• gamma ray

• radioactive isotope 
(radioisotope)

• parent nucleus

• daughter nucleus

• transmutation

• ionizing radiation

• neutrino

• antineutrino

• positron

• half-life

• nuclear fission

• nuclear fusion

 T E R M S
K E Y

E X P E C T A T I O N S
S E C T I O N
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In Section 13.1, you learned about the nuclei of atoms and
about many of the characteristics that made them stable. Did you
wonder what would happen to a nucleus if it was not stable? The
answer is that it would disintegrate by emitting some form of radi-
ation and transform into a more stable nucleus. Unstable nuclei
are called radioactive isotopes (or “radioisotopes”). When a nucle-
us disintegrates or decays, the process obeys several conservation
laws — conservation of mass-energy, conservation of momentum,
conservation of nucleon number, and conservation of charge. The
following subsections summarize the important characteristics of
alpha, beta, and gamma radiation.

Alpha Decay
When a radioactive isotope emits an alpha particle, it loses two
protons and two neutrons. As a result, the atomic number (Z)
decreases by two and the atomic mass number (A) decreases by
four. Physicists describe this form of decay as shown below, 
where P represents the original nucleus or parent nucleus and 
D represents the resulting nucleus or daughter nucleus.

A
ZP → 4

2He + A−4
Z−2D

Only very large nuclei emit alpha particles. One such reaction
would be the alpha emission from radium-223 (223

88Ra). To deter-
mine the identity of the daughter nucleus, write as much as you
know about the reaction.

223
88Ra → 4

2He + 219
86?

Then look up the identity of an element with an atomic number of
86, and you will find that it is radon. The final equation becomes

223
88Ra → 4

2He + 219
86Rn

α

β

γ

+
+
+
+
+
+
+
+

−
−
−
−
−
−
−
−

radioactive
source
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Pierre and Marie Curie once gave
Henri Becquerel a sample of 
radium that they had prepared.
When Becquerel carried the
sample in his vest pocket, it
burned his skin slightly. This
observation triggered interest
among physicians and eventually
led to the use of radioactivity for
medical purposes. Becquerel
shared the 1903 Nobel Prize in
Physics with the Curies.

PHYSICS FILE

Positive alpha 
particles are attracted to the 
negative plate, while negatively
charged beta particles are attracted
to the positive plate. Gamma rays
are not attracted to either plate,
indicating that they do not carry 
a charge.

Figure 13.5



During this reaction, one element is converted into a different
element. Such a change is called transmutation. Why would such
a transmutation result in a more stable nucleus? You can find the
answer by studying the simplified representation of stable nuclei
in Figure 13.6. The point labelled “A” represents a nuclide that
lies outside of the range of stability. The arrow shows the location
of the daughter nucleus when the unstable parent loses two neu-
trons and two protons. As you can see, the daughter nucleus lies
within the range of stability. In addition, the helium nucleus —
alpha particle — is one of the most stable nuclei of all. Since you
now have two nuclei that are more stable than the parent nucleus,
the total binding energy increased. The mass defect becomes kinet-
ic energy of the alpha particle and daughter nucleus. Typical alpha
particle energies are between 4 MeV and 10 MeV. 

• Write the nuclear reaction for the alpha decay of the following
nuclei.

(a) 222
86Rn (c) 214

83Bi

(b) 210
84Po (d) 230

90Th

Alpha particles do not penetrate materials very well. A thick
sheet of paper or about 5 cm of air can stop an alpha particle. In
stopping, it severely affects the atoms and molecules that are in its
way. With the alpha particle’s positive charge, relatively large
mass, and very high speed (possibly close to 2 × 107 m/s), it gives
some of the electrons in the atoms enough energy to break free,
leaving a charged ion behind. For this reason, alpha particles are
classified as ionizing radiation. These ions can disrupt biological
molecules. Because of its low penetrating ability, alpha radiation is
not usually harmful, unless the radioactive material is inhaled or
ingested.

Beta Decay
When a radioactive isotope emits a beta particle, it appears to lose
an electron from within the nucleus. However, electrons as such
do not exist in the nucleus — a transformation of a nucleon had to
take place to create the electron. In fact, in the process, a neutron
becomes a proton, so the total nucleon number (A) remains the
same, but the atomic number (Z) increases by one. You can write
the general reaction for beta decay as follows, where 0

−1e represents
the beta particle, which is a high-energy electron. The superscript
zero does not mean zero mass, because an electron has mass. The
zero means that there are no nucleons.

A
ZP → 0

−1e + A
Z+1D

Conceptual Problem
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The emission of an
alpha particle is represented here
as a diagonal arrow going down
and to the left. This process
brings the tip of the arrow to a
nucleus that has two fewer neu-
trons and two fewer protons than
the nucleus at the tail of the
arrow.

Figure 13.6
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Many common elements such as carbon have isotopes that are
beta emitters. 

14
6C → 0

−1e + 14
7 ?

When you look up the identity of an element with an atomic 
number of 7, you will find that it is nitrogen. The final equation
becomes

14
6C → 0

−1e + 14
7N

When physicists were doing some of the original research on
beta decay, they made some very puzzling observations. Linear
momentum of the beta particle and daughter nucleus was not 
conserved. As well, they determined the spin of each particle 
and observed that angular momentum was not conserved. To 
add to the puzzle, the physicists calculated the mass defect and
discovered that mass-energy was not conserved. 

Some physicists were ready to accept that these subatomic 
particles did not follow the conservation laws. However, 
Wolfgang Pauli (1900–1958) proposed an explanation for these
apparent violations of the fundamental laws of physics. He pro-
posed the existence of an as yet unknown, undiscovered particle
that would account for all of the missing momentum and energy. 
It was more than 25 years before this elusive particle, the neutrino
(νe), was discovered. 

In reality, the particle that is emitted with a beta particle is an
antineutrino, a form of antimatter. The antineutrino has a very
small or zero rest mass and so can travel at or near the speed of
light. It accounts for all of the “missing pieces” of beta decay. 
The correct reaction for beta decay should be written as follows.
The bar above the symbol νe for the neutrino indicates that it is an
antiparticle. 

A
ZP → 0

−1e + A
Z+1D + νe

Physicists soon discovered a different form of beta decay — the
emission of a “positive electron” that is, in fact, an antielectron. It
has properties identical to those of electrons, except that it has a
positive charge. The more common name for the antielectron is
positron. Since the parent nucleus loses a positive charge but does
not lose any nucleons, the value of A does not change, but Z
decreases by one. A proton in the parent nucleus is transformed
into a neutron. As you might suspect, the emission of a neutrino
accompanies the positron. The reaction for positive electron or
positron emission is written as follows.

A
ZP → 0

+1e + A
Z−1D + νe

You can understand why beta emission produces a more stable
nucleus by examining Figure 13.7. The emission of an electron
changes a neutron to a proton; in the chart, this is represented 
by an arrow going diagonally down to the right. Emission of a
positron changes a proton into a neutron and the arrow in the
chart goes diagonally upward and to the left. 
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If a nucleus lies
above the range of stability, it 
can transform into a more stable
nucleus by beta emission. If it lies
below the range of stability, it can
transform into a more stable ion
by emitting a positron. (Arrows
are not drawn to scale.)

Figure 13.7
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Beta particles penetrate matter to a far greater extent than do
alpha particles, mainly due to their much smaller mass, size, and
charge. They can penetrate about 0.1 mm of lead or about 10 m of
air. Although they can penetrate better than alpha particles, they
are only about 5% to 10% as biologically destructive. Like alpha
particles, they do their damage by ionizing atoms and molecules,
and so are classified as ionizing radiation. 

• Free neutrons 
(

1
0n

)
decay by beta minus emission. Write the

reaction.

• Free protons 
(

1
1p

)
can decay by beta plus emission. Write the

reaction.

• Tritium, the isotope of hydrogen that consists of a proton and
two neutrons, decays by beta minus emission. Write the reaction.

• Carbon-10 decays by positron emission. Write the reaction.

• Calcium-39 
(

39
20Ca

)
decays into potassium-39 

(
39
19K

)
. Write the

equation and identify the emitted particle.

• Plutonium-240 
(

240
94Pu

)
decays into uranium-236 

(
236
92U

)
. Write

the equation and identify the emitted particle.

• Lead-109 
(

109
46Pb

)
decays into silver-109 

(
109
47Ag

)
. Write the 

equation and identify the emitted particle.

• Write the equation for the alpha decay of fermium-252 
(

252
100Fm

)
.

• Write the equation for the beta positive decay of vanadium-48(
48
23V

)
.

• Write the equation for the beta negative decay of gold-198(
198
79Au

)
.

Gamma Decay
When a nucleus decays by alpha or beta emission, the daughter
nucleus is often left in an excited state. The nucleus then emits a
gamma ray to drop down to its ground state. This process can be
compared to an electron in an atom that is in a high-energy level.
When it drops to its ground state, it emits a photon. However, a
gamma ray photon has much more energy than a photon emitted
by an atom. The decay process can be expressed as follows, where
the star indicates that the nucleus is in an excited state. 

A
ZP∗ → A

ZP + 0
0γ

The following is an example of gamma decay: 

192
77Ir

∗ → 192
77Ir + 0

0γ .

Gamma radiation is the most penetrating of all. It can pass
through about 10 cm of lead or about 2 km of air. The penetrating
ability of gamma radiation is due to two factors. First, it carries no

Conceptual Problems
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The positron is the antimatter
particle for the electron. When
they meet, they annihilate each
other and release their mass-
energy as a gamma photon.

0
1e + 0

−1e → γ

The collision of a particle with its
own antimatter particle results in
the annihilation of the particles
and the creation of two gamma 
ray photons.

photons

 0
+1e

 0
−1e

PHYSICS FILE



electric charge and therefore does not tend to disrupt electrons as
it passes by. Second, its photon energy is far beyond any electron
energy level in the atoms. Consequently, it cannot be absorbed
through electron jumps between energy levels.

However, when gamma radiation is absorbed, it frees an elec-
tron from an atom, leaving behind a positive ion and producing an
electron with the same range of kinetic energy as a beta particle —
often called “secondary electron emission.” For this reason,
gamma radiation is found to be just as biologically damaging as
beta radiation. As in the case of alpha and beta radiation, gamma
is classified as ionizing radiation.

Decay Series
When a large nucleus decays by the emission of an alpha or beta
particle, the daughter nucleus is more stable than the parent is;
however, the daughter nucleus might still be unstable.
Consequently, a nucleus can tumble through numerous transmuta-
tions before it reaches stability. Figure 13.8 shows one such decay
sequence for uranium-238. Notice that the end product is lead-82,
then go back to Figure 13.4 on page 550. You will find lead at the
peak of the curve of binding energy per nucleon. Lead is one of
the most stable nuclei of all of the elements.

Notice that during the progress of the transmutations the 
following occurs.

� An alpha decay decreases the atomic number by 2 and decreases
the atomic mass number by 4.

� A beta negative decay increases the atomic number 
by 1, while leaving the atomic mass number
unchanged.

Knowledge of decay sequences such as the one 
in Figure 13.8 gives scientists information about 
the history of materials that contain lead. For 
example, if a rock contains traces of lead-82, that
isotope of lead probably came from the decay 
of uranium-238 that was trapped in crystals as
molten rock solidified in the past. A geologist can
determine the original amount of uranium-238 
in the rock and compare it to the amount of urani-
um-238 that remains. Knowing the disintegration
rate of the isotopes in the series, a geologist can
determine the age of the rock. This method was
used to determine that the Canadian Shield 
contains some of the most ancient rock in the
world, aged close to 4 billion years. 
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This series represents only one 
of several possible pathways of decay for 
uranium-238.

Figure 13.8
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Rate of Radioactive Decay 
You cannot predict exactly when a specific nucleus will disinte-
grate. You can only state the probability that it will disintegrate
within a given time interval. Using probabilities might seem to be
very imprecise, but if you have an exceedingly large number of
atoms of the same isotope, you can state very precisely when half
of them will have disintegrated. Physicists use the term half-life, 
symbolized by T 1

2
, to describe the decay rate of radioactive 

isotopes. One half-life is the time during which the nucleus has a
50% probability of decaying. The half-life is also the time interval
over which half of the nuclei in a large sample will disintegrate. 

Imagine that you had a sample of polonium-218 
(

218
84Po

)
. 

It decays by alpha emission with a half-life of 3.0 min. If you 
started with 160.0 µg of the pure substance, it would decay as
shown in Table 13.3.

Table 13.3 Decay of Polonium-218 

From Figure 13.9 we can estimate the following.

� After 7.0 min, there should be about 32 µg of polonium-218
remaining.

� It would take about 13 min to reduce the mass of polonium-218
to 8.0 µg.

You can obtain more accurate values by using a mathematical
equation that relates the mass of the isotope and time interval. You
can derive such an equation as follows. 

� Let N represent the amount of the original sample remaining
after any given time interval. 

� Let No represent the original amount in the sample; must be
given in the same units as N.

� Let ∆t represent the time interval, and T 1
2

represent the 
half-life.

� After 1 half-life, N = 1
2

No .

� After 2 half-lives, N = 1
2

( 1
2

No

)
=

( 1
2

)2
No.

Time (min)

0

3.0

6.0

9.0

12.0

15.0

Mass of Po-218
remaining (     )

160.0

80.0

40.0

20.0

10.0

5.0

µg
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A graph of the
decay of polonium and all other
radioactive isotopes is an 
exponential curve.

Figure 13.9
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� After 3 half-lives, N = 1
2

(
1
2

)2
No =

(
1
2

)3
No .

� After 4 half-lives, N = 1
2

(
1
2

)3
No =

(
1
2

)4
No .

The amount of sample, N, can be expressed as the number of
nuclei, the number of moles of the isotope, the mass in grams, the
decay rate, or any measurement that describes an amount of a
sample. The unit for decay rate in disintegrations per second is 
the becquerel, symbolized as Bq in honour of Henri Becquerel.

Quantity Symbol SI unit
amount of sample N kilograms, moles, or Bq (might 
remaining also be in number of atoms)

amount in original No kilograms, moles, or Bq (might 
sample also be in number of atoms)

elapsed time ∆t s (often reported in min, days, 
years, etc.)

half life T 1
2

s (often reported in min, days, 
years, etc.)

Unit Analysis
kilograms = kilograms kg = kg

Note: The elapsed time and the half-life must be given in the
same units so that they will cancel, making the exponent of
one half a pure number. Also, the amount of the sample
remaining and in the original sample at time zero must be
given in the same units.

N = No

( 1
2

) ∆t
T 1

2

RADIOACTIVE DECAY 
The amount of a sample remaining is one half to the exponent
time interval divided by the half-life, all times the amount of
the original sample.

N =
(

1
2

) ∆t
T 1

2 No

� Substituting the value for n, you obtain the
final equation.

n = ∆t
T 1

2

� However, the number, n, of half-lives is
equal to the time interval divided by the
time for 1 half-life.

N =
(

1
2

)n
No

� You can now see a pattern emerging and
can state the general expression in which
“n” is the number of half-lives. 
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Decay of Polonium-218
You have a 160.0 µ g sample of polonium-218 that has a half-life of 3.0 min.

(a) How much will remain after 7.0 min?

(b) How long will it take to decrease the mass of the polonium-218 to
8.0 micrograms?

Conceptualize the Problem
� The half-life of a radioactive isotope determines the amount of a

sample at any given time.

Identify the Goal
Amount of polonium-218 remaining after 7.0 min

Length of time required for the mass of the sample to 
decrease to 8.0 µg

Identify the Variables and Constants
Known Unknown
mo = 160.0 µg m (at 7.0 min)

T 1
2

= 3.0 min ∆t (at 8.0 µg)

∆t = 7.0 min

m = 8.0 µg

Develop a Strategy

(a) The mass remaining after 7.0 min will be 32 µg.

( 1
2

) ∆t
3.0 min = 8.0 µg

160.0 µg

Substitute numerical values.

N
No

=
( 1

2

) ∆t
T 1

2

Rearrange the equation to solve for the ratio 
N to No.

N = No

( 1
2

) ∆t
T 1

2

Write the decay equation.

N = 160.0 µg
( 1

2

) 7.0 min
3.0 min

N = 160.0 µg(0.198 425)

N = 31.748 µg

N ≅ 32 µg

Substitute and solve.

N = No

( 1
2

) ∆t
T 1

2

Write the decay relationship

SAMPLE PROBLEM 
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The data for amounts of a sample,
time intervals, and half-lives in
decay rate problems can be given
in a variety of units. Always be
sure that, in your calculations, the
amounts of a sample, N and No,
are in the same units and that the
time interval and the half-life are 
in the same units.

PROBLEM TIPS



(b) The time interval after which only 8.0 µg of polonium-218 will
remain is 13 min.

Validate the Solution
These answers are the same as the answers estimated from the graph
in Figure 13.9.

4. When a sample of lava solidified, it con-
tained 27.4 mg of uranium-238, which has 
a half-life of 4.5 × 109 a (annum or year). If
that lava sample was later found to contain
only 18.3 mg of U-238, how many years had
passed since the lava solidified?

5. Carbon-14 has a half-life of 5730 a. Every
gram of living plant or animal tissue absorbs
enough radioactive C-14 to provide an 
activity of 0.23 Bq. Once the plant or animal

dies, no more C-14 is taken in. If ashes from
a fire (equivalent to 1 g of tissue) have an
activity of 0.15 Bq, how old are they?
Assume that all of the radiation comes 
from the remaining C-14.

6. Radioactive iodine-128, with a half-life of
24.99 min,  is sometimes used to treat 
thyroid problems. If 40.0 mg of I-128 is
injected into a patient, how much will
remain after 12.0 h?

PRACTICE PROBLEMS

log
(

1
2

) ∆t
3.0 min = log 8.0

160.0
∆t

3.0 min
log

(
1
2

)
= log 0.050

∆t = (3.0 min) log 0.050
log

( 1
2

)
∆t = (3.0 min)

( −1.301 003
−0.301 03

)
∆t = 12.965 78 min

∆t ≅ 13 min

Solve by taking logarithms on both sides.
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Nuclear Reactions
When you were solving the problems above, you encountered
radioactive isotopes that have half-lives of 3.0 min and 25 min.
Did you wonder how any such isotopes could exist and why they
had not decayed entirely? Most of the radioactive isotopes that are
used in medicine and research are produced artificially. One of the
first observations of artificial production of a radioisotope was
accomplished by bombarding aluminum-27 with alpha particles 
as follows.

4
2He + 27

13Al → 31
15P

∗ → 30
15P + 1

0n

The star on the phosphorus-31 indicates that it is very unstable
and decays into phosphorus-30 and a neutron. Phosphorus-30 
is a radioisotope that emits a positron. Today, many artificial 



isotopes are produced by bombarding stable isotopes with 
neutrons in nuclear reactors. For example, stable sodium-23 can
absorb a neutron and become radioactive sodium-24. 

Nuclear Fission
One of the most important reactions that is stimulated by absorb-
ing a neutron is nuclear fission, the reaction in which a very large
nucleus splits into two large nuclei plus two or more neutrons.
The two most common isotopes that can undergo fission are 235

92U
and 239

94Pu. When a nucleus fissions, or splits, a tremendous
amount of energy is released in the form of kinetic energy of the
fission products — the resulting smaller nuclei. Since the kinetic
energy of atoms and molecules is thermal energy, the temperature
of the material rises dramatically. You can understand why such
large amounts of energy are released by examining the graph of
binding energy per nucleon in Figure 13.10. 

The binding energy of mid-range nuclei is greater than that
of either very large or very small nuclei. 

As you can see in Figure 13.10, when a large nucleus fissions,
the smaller nuclei have much larger binding energies than the
original nucleus did. Consequently, the sum of the masses of the
fission products is much smaller than the mass of the original
nucleus. This large mass defect yields the large amount of energy.

Nuclear fission is the reaction that occurs in nuclear reactors.
The thermal energy that is released is then used to produce steam
to drive electric generators. In this reaction, uranium-235 captures
a slow neutron, producing a nucleus of uranium-236. This nucleus
is quite unstable and will rapidly split apart. One possible result
of this splitting or fission is shown in Figure 13.11. Notice that
several neutrons are ejected during the fission. These neutrons can
then cause further fissions, causing a chain reaction. However, the
neutrons must be slowed down, or the uranium-235 nuclei cannot
absorb them. In most Canadian reactors, heavy water is used, since
neutrons are slowed down when they collide with the deuterium(

2
1H or 2

1D
)

nuclei in the water. The reaction portrayed in 

Figure 13.10
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Figure 13.11, 235
92U + 1

0n → 141
56Ba + 92

36Kr + 31
0n, is only one of a 

large number of possibilities. Many different fission products 
are formed.

The neutrons given off by this nuclear fission reaction must
be slowed down before they can be captured by other uranium-235 nuclei
and produce further fission.

You have probably heard about the hazards of nuclear energy
and the problems with the disposal of the products. Uranium-235
is an alpha emitter with a very long half-life, so it is not a serious
danger itself. Alpha radiation is not very penetrating and the long
half-life implies a low activity. The fission products cause the 
hazards. The reason becomes obvious when you examine Figure
13.12, which represents the stable nuclides. Fission products have
about the same neutron-to-proton ratio as does the parent uranium
nucleus. The fission products therefore lie far outside of the range
of stability and so are highly radioactive. 

Nuclear Fusion
Nuclear fusion is the opposite reaction to nuclear fission. In this
process, small nuclei combine together to create larger nuclei. One
such fusion reaction involves the combining of two isotopes of
hydrogen, deuterium 

(
2
1H

)
and tritium 

(
3
1H

)
. During the process, 

a neutron is released. The equation for the fusion reaction illustra-
tion in Figure 13.13 is 21H + 3

1H → 4
2He + 1

0n.

Figure 13.11
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Fission products
lie above the range of stability
and are therefore mostly beta
emitters. 

Figure 13.12
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The helium nucleus has a much larger binding energy than
either deuterium or tritium, so large amounts of energy are released in this
nuclear fusion reaction.

Since nuclei repel each other due to their positive charges, they
must be travelling at an extremely high speed for them to get close
enough for the nuclear force to pull them together. An extremely
high temperature can produce such speeds. As long as the product
comes before iron in the periodic table, this reaction releases 
energy (is exothermic). After iron, the reaction requires an input 
of energy (is endothermic).

Fusion reactions occur in the cores of stars and in hydrogen
bombs. Eventually it might be possible to control the fusion 
reaction so that it can be used to provide reasonably safe energy
on Earth for many centuries to come. After all, the oceans contain
vast amounts of hydrogen isotopes. Unfortunately, controlled
fusion reactions have yet to provide a net output of energy. 

Figure 13.13

2
1H

4
2He

3
1H 1

0n

+
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Most stars generate energy
through a process often called
“hydrogen burning.” This is not 
a good term, since no combustion
is involved. Instead, single pro-
tons or hydrogen nuclei are fused
together through a sequence of
steps to form helium. Once the
amount of hydrogen has dimin-
ished to the point where it no
longer emits enough radiation to
support the outer layers of the
star against the inward pull of
gravity, the star begins to col-
lapse. This compression of the
core causes its temperature to
rise to the point at which helium
begins to fuse. The star now
swells up to become a Red Giant.
This process of successive partial
collapses and new fusion can
continue until the core tries to
fuse iron. At this point, the fusion
reaction requires energy to 
continue, rather than releasing
energy. The collapse is now 
catastrophic and the star blazes
into a supernova.

PHYSICS FILE

Energy from Nuclear Reactions
Determine the mass defect in the fission reaction given in the text
and the amount of energy released due to each fission.

Data
Particle Nuclear mass (u)
235
92U 234.993

1
0n 1.008

141
56Ba 140.883
92
36Kr 91.905

Conceptualize the Problem
� Mass defect is the difference between the total mass of the reactants

and the total mass of the fission products. 

� The energy released is the energy equivalent of the mass defect.

SAMPLE PROBLEM 



Identify the Goal
The mass defect, ∆m , and the energy, E, released during each 
fission reaction

Identify the Variables and Constants
Known Implied Unknown
A, Z and m for all c = 2.998 × 108 m

s ∆m
particles E

Develop a Strategy

The mass defect is 0.1877 u or 3.116 × 10−28 kg. This is equivalent
to an energy of 2.801 × 10−11 J .

Validate the Solution
The mass defect is positive, indicating an energy release.

PRACTICE PROBLEMS

∆E = ∆mc2

∆E = (3.1163 × 10−28 kg)
(
2.998 × 108 m

s

)2

∆E = 2.8009 × 10−11 J

Convert the mass into energy, using
∆E = ∆mc2.

∆m = (0.18767 u)
(
1.6605 × 10−27 kg

u
)

∆m = 3.1163 × 10−28 kg

Convert the mass defect into kilograms.

∆m = 236.002 u − 235.814 u
∆m = 0.18767 u

Find the mass defect by subtraction.

mproducts = 140.883 u + 91.905 u + 3.026 u
mproducts = 235.814 u

Find the total mass of the products.

mneutron = 1.008 665 u

m
(

235
92U

)
= 234.993 u

mreactants = 1.008 665 u + 234.993 u

mreactants = 236.002 u

m
(

141
56Ba

)
= 140.883 u

m
(

92
36Kr

)
= 91.905 u

m3 neutrons = 3 × 1.008 665 u

m3 neutrons = 3.025 995 u

Find the total mass of reactants.

7. Another possible fission reaction involving
uranium-235 would proceed as follows.

1
0n + 235

92U → 90
38Sr + 135

54Xe + 111
0n

Determine the mass loss and the amount of
energy released in this reaction.

Particle Mass (u)

1.008 665

234.993

89.886

134.879

1
0n

235
92U

90
38Sr

135
54Xe
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continued
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Detecting Radiation 
Most people have heard of a Geiger counter, which is used to
detect ionizing radiation; however, it is only one of a wide variety
of instruments used for measuring radiation. Each is designed for a
specific purpose, but they all function in the way that alpha, beta,
and gamma radiation interacts with matter — by ionizing or excit-
ing atoms or molecules in the object. Some possible interactions,
summarized in Figure 13.14, are exposing film, ionizing atoms, or
exciting atoms or molecules and causing them to fluoresce or 
phosphoresce. 

Radioactivity was discovered because it darkened film that was
wrapped to protect it from light. For many years, people who
worked in the nuclear industry or in laboratories where radioiso-
topes were used wore film badges. Technicians would develop the
film, determine the degree of darkening, and calculate the amount
of radiation to which the wearer of the badge had been exposed.
Currently, many personnel badges contain lithium fluoride, a 
compound that enters an excited state when it absorbs energy from

+ or −

Expose film.

Ionize.

Fluoresce or
phosphoresce.photon

radioactive
source

continued from previous page

Radiation 
detectors commonly use one of
three effects of radiation — the
exposing of film, the ionization 
of matter, or the fluorescence 
of matter.

Figure 13.14

8. Determine the energy that would be released
by the fusion of the nuclei of deuterium and
tritium as indicated by the equation
2
1H + 3

1H → 4
2He + 1

0n.

9. In the Sun, four hydrogen nuclei are 
combined into a single helium nucleus by 
a series of reactions. The overall effect is
given by the following equation.

41
1H → 4

2He + 20
1e

(a) Calculate the mass defect for the reaction
and the energy produced by this fusion. 

(b) If 4.00 g of helium contain 6.02 × 1023

nuclei, determine how much energy is
released by the production of 1.00 g of 
helium.

Particle Mass (u)

1.007 276

4.001 506

0.000 549

1
1H

4
2He

0
1e

Particle Mass (u)

2.013 553

3.015 500

4.001 506

1.008 665

2
1H

3
1H

4
2He

1
0n



radiation. The material is thermoluminescent, meaning that when
it becomes excited, it cannot return to the ground state unless it is
heated. When heated, it emits light as it returns to its stable state.
The technician collects the badges, puts the lithium fluoride in 
a device that heats it, and reads the amount of light emitted.

Geiger counters and other similar instruments detect the ions
created by radiation as it passes through a probe that contains a
gas at low pressure. When ionizing radiation passes through the
gas, it ionizes some of the atoms in the gas. A high voltage
between the wire and the cylinder accelerates the ions, giving
them enough kinetic energy to collide with other gas molecules
and ionize them. The process continues until an avalanche of 
electrons arrives at the central wire. The electronic circuitry 
registers the current pulse. 

Geiger counters work well for low levels of radiation, but
become saturated by higher levels. Ionization chambers are similar
to Geiger counters, but they do not accelerate the ions formed by
the radiation. They simply collect the primary ions formed by the
radiation, which creates a current in the detector that is propor-
tional to the amount of radiation present in the vicinity of the
instrument. One such detector for high levels of radiation is called
a “cutie pie.”

The passage of ionizing radiation through this tube creates
an avalanche of electrons.

For accurately counting very small amounts of radioactivity,
you would probably choose a scintillation counter. A crystal or a
liquid consists of a material that, when excited by the absorption
of radiation, will emit a pulse of light. Photomultiplier tubes that
function on the principle of the photoelectric effect will detect the
light and generate an electrical signal that is registered by electron-
ic circuitry.

Figure 13.16
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This badge indi-
cates the amount of radiation
received by its wearer.

Figure 13.15

www.mcgrawhill.ca/links/
physics12

For in-depth information about 
radiation detection and protection,
visit the TRIUMF Internet site. TRIUMF
is Canada’s national laboratory for 
particle and nuclear physics, located
at the University of British Columbia 
in Vancouver. Just go to the above
Internet site and click on Web Links.

WEB LINK



I N V E S T I G A T I O N  13-A

Half-Life of a Radioactive Isotope

TARGET SKILLS

Performing and recording
Analyzing and interpreting
Communicating results

In the second Multi-Lab at the start of this 
chapter (Half-Life), you investigated the concept
of half-life by flipping coins. This investigation
will allow you to actually determine the half-
life of a radioactive isotope. A common type of
generator for a half-life investigation contains
cesium-137, which slowly decays into an 
excited nucleus, barium-137m. This in turn
emits gamma radiation as it drops to its ground
state, barium-137. The excited nucleus is
leached from the system to provide a slightly
radioactive solution.

Problem 
The object of this investigation is to determine
the half-life of barium-137m.

Equipment
� barium-137m
� Geiger counter
� small test tube and holder
� gloves
� tongs

This investigation should be performed
as a class demonstration. The experimenter
should wear gloves and wash up at the end of 
the demonstration. All radioactive materials must
be safely secured and locked up at the end of 
the demonstration. 

Dispose of the barium solution according to
WHMIS procedures.

Procedure
1. Prepare a table with the following headings:

Time (min), Measured activity (Bq),
Background radiation (Bq), and Net activity
(Bq). Note: 1 Bq is one count per second.

2. Turn on the Geiger counter and place the
tube of the counter close to the test tube
holder. Measure an average value for the
background radiation.

3. Prepare the barium solution and pour it into
the test tube.

4. Take activity readings every half minute until
the activity of the source is close to zero.

5. Subtract the background radiation from each
reading in order to obtain the activity from
the source.

Analyze and Conclude
1. Draw a graph of actual activity against time

with the activity on the y-axis.

2. From the graph, determine the time interval
during which the actual activity decreases 
by 50%. Repeat this determination in several
regions of the graph. How constant is this
time interval?

3. What is the half-life of this radioisotope?

Apply and Extend
4. From your graph, how would you determine

the rate at which the activity is changing?
Perform this determination at two different
locations along the curve.

5. Brainstorm a number of possible uses for
knowledge of the half-life of a radioisotope.

CAUTION
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Applications of Radioactive Isotopes
Exposure to radiation can cause cancer, but it also can destroy
cancerous tumours. How can radiation do both? 

As you have learned, alpha, beta, and gamma radiation ionize
atoms and molecules in their paths. In living cells, the resulting
ions cause chemical reactions that can damage critical biological
molecules. If that damage occurs in a few very precise regions of
the genetic material, the result can be a mutation that destroys the
cell’s ability to control growth and cell division. Then, the cell
divides over and over, out of control, and becomes a cancerous
tumour. 

On the other hand, if the amount of radiation is much higher,
the damage to the molecules that maintain the cell functions will
be too great, and the cell will die. If a few healthy cells die, they
can usually be replaced, so little or no harm is caused to the 
individual. If cancerous cells die, the tumour could be destroyed
and the person would be free of the cancer. 

Great care must be taken when treating tumours with radiation,
since healthy cells in the area are exposed to radiation and might
themselves become cancerous. If the amount of irradiation is
excessive (in a nuclear accident, for example) and the entire body
is exposed, too many cells could die at the same time, seriously
affecting the ability of the organs to function. Death would result.

Irradiating tumours with gamma radiation is sometimes the
only feasible way to treat a tumour, however, and it can be very
successful. Figure 13.17 shows one method of treating a tumour
with radiation from the radioisotope cobalt-60. A thin beam of
gamma rays is aimed at the tumour and then the unit rotates so
that the beam is constantly aimed at the tumour. In this way the
tumour is highly irradiated, while the surrounding tissue receives
much less radiation. 
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Gamma radiation
from cobalt-60 is used to destroy
tumours.

Figure 13.17



Radioactive Tracers
Because traces of radioactivity can be detected and identified, 
scientists can use very small quantities of radioactive substances
to follow the chemical or physical activity of specific compounds.
For example, iodine-131 is useful for investigating the heart and
the thyroid gland. Phosphorus-32 accumulates in cancerous
tumours, identifying their location. Technetium-99 portrays the
structure of organs. Other applications include the following.

� Slight amounts of a radioisotope added to a fluid passing
through an underground pipe allows technicians to locate leaks.

� Gamma radiation is used to sterilize food so that it will stay
fresh longer. 

� Exposing plants to radioactive carbon dioxide allows researchers
to determine the long series of chemical reactions that convert
carbon dioxide and water into glucose. 

� Radioisotopes are a common tool in biochemistry research.

Smoke Detectors
Many smoke detectors contain a small amount of a radioisotope
that emits alpha radiation. Because the gas in the detector is ion-
ized, a current can pass through and be measured. When soot and
ash particles in smoke enter the detector, they tend to collect these
ions and neutralize them. The resulting drop in current triggers
the smoke detector alarm. 

When alpha particles ionize molecules in the air, the positive
ions are attracted to the negative electrode and the electrons are attracted to
the positive electrode and a current passes through the circuit. Soot particles
absorb and neutralizes some of the ions and the current decreases.

Figure 13.18
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“Seeing” with Radioisotopes
Techniques exist by which
radioisotopes, injected into 
living bodies, will accumulate in
infected areas or other diseased
tissues. Observing the location of
the radioisotopes provides critical
information. Refer to page 605 
for ideas to help you include
these scanning techniques in
your Course Challenge.

COURSE CHALLENGE
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13.2 Section Review

1. Explain why beta negative radiation
tends to do less biological damage than an
equal amount of alpha radiation.

2. Which type of particle would you
expect to penetrate best through lead, a beta
positive particle (positron) or a beta negative
particle? Give a reason for your choice.

3. Why is gamma radiation much more
penetrating than beta negative radiation?

4. State the conservation laws used in
writing nuclear reactions.

5. Prepare a table for alpha radiation, beta
negative radiation, and gamma radiation, 
comparing them with respect to mass,
charge, relative penetrating ability, and 
relative biological damage.

6. Draw a graph to illustrate the decay of
carbon-14 in a wooden relic. Assume that 
the initial mass of the isotope in the wood
was 240 mg.

7. Draw a decay sequence similar to the one
shown in Figure 13.8 on page 561. Begin
with 

(
255
101Md

)
. It emits four alpha particles in

succession, then a beta negative particle, 
followed by two alpha particles and then a
beta negative particle. Another alpha emis-
sion is followed by another beta emission.
(There are more, but this is enough for this
question.)

8. Fission is a process in which a nucleus
splits into two parts that are roughly half the
size of the original nucleus. In fusion, two

nuclei fuse, or combine, to form one nucleus.
These reactions seem to be opposite to each
other, yet they both release large amounts of
energy. Explain why this is not really a con-
tradiction. Use the graph of binding energy
per nucleon versus atomic mass number in
your explanation.

9. Give a possible reason why a smoke
detector uses an alpha source rather than a
beta or gamma emitter.

10. Suggest an equation to represent the
transformation of nitrogen-14 into carbon-14.

11. Research the use of radioisotopes for
medical or non-medical purposes and 
prepare a poster to illustrate your findings.

I

MC

MC

C

C

C

C

K/U

K/U

K/U

K/U

The eventual identification of radioactivity
began as a “mysterious” laboratory result 
at the turn of the nineteenth century.
� While working on your unit project, have

you found information about people who
could be called “visionaries” because of
their belief that radioactivity would 
eventually play a role in everyone’s 
daily life?

� Can you identify emerging scientific 
discoveries that you believe will result in
wide-ranging applications by the end of the
twenty-first century, as radioactivity has
over the past 100 years?

UNIT PROJECT PREP



By the 1930s, scientists believed that they knew the particles on
which all matter was built — the proton, the neutron, and the 
electron. These were the “elementary” particles, in that nothing
was more basic. Nature, however, was not that simple. The first
hint of a greater complexity came with the missing energy and
momentum in beta decay and Pauli’s proposal of the neutrino.

Today, even the proposition that these particles are massless is
being challenged. Several difficulties with our understanding of
the nuclear reactions in the Sun would be cleared up if neutrinos
actually had mass. Neutrinos are extremely tiny and neutral, so
they barely interact with matter. Consequently, during the day,
neutrinos rain down through us from the Sun. At night, they pour
through the planet and stream upward through us.

In 1935, Japanese physicist, Hideki Yukawa (1907–1981) 
proposed that the strong nuclear force that bound the nuclei
together was carried by a particle with a mass between that of 
the electron and the proton. This particle came to be known as a
“meson,” because of its intermediate mass. Eventually, it was 
discovered in 1947, when it was termed the “π meson” (or simply,
the “pion”). In fact, though, these particles are not the ones that
hold the nuclei together — they never interact with other particles
or nuclei by means of the strong force. Elementary particle physics
is one of the most active fields in theoretical physics.

The Search for New Particles
In Section 13.2, you learned that research into beta decay revealed
the existence of neutrinos and positrons. Physicists discovered
that positrons were, in fact, antielectrons. When a particle
(positron) and its antiparticle (electron) interact, they annihilate
each other and transform into two gamma rays. With the realiza-
tion that the proton, neutron, and electron were not the only 
subatomic particles, physicists began to search in earnest 
for more elementary particles. 

In Chapter 8, Fields and Their Applications, you learned how
electric and magnetic fields are used in powerful instruments to
accelerate protons and electrons to close to the speed of light.
When these extremely high-energy particles collide with other 
particles and nuclei, new, very short-lived particles are produced.
For example, when a very high-energy proton collides with 
another proton, a neutral particle called a “neutral pion” (πo) is
produced. The particle exists for only about 0.8 × 10−16 s, and then
decays into two gamma rays. 

Elementary Particles13.3
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• Define and describe the 
concepts and units related to
the present-day understanding
of elementary particles.

• Analyze images of the trajecto-
ries of elementary particles to
determine the mass-versus-
charge ratio

• Describe the standard model 
of elementary particles in terms
of the characteristic properties
of quarks, leptons, and bosons.

• Identify the quarks that form
familiar particles such as the
proton and the neutron.

• lepton

• hadron

• quark

• standard model

 T E R M S
K E Y

E X P E C T A T I O N S
S E C T I O N



You are probably wondering how physicists can study a particle
that disappears within 10−16 s after it is produced. One instrument
that physicists use is called a “cloud chamber,” which was invent-
ed in 1894 by C.T.R. Wilson (1869–1959). A cloud chamber 
contains a cold, supersaturated gas. When any form of ionizing
radiation passes through, the ions formed in the path of the parti-
cle form condensation nuclei and the cold gas liquefies, creating a
visible droplet. If the cloud chamber is placed in a magnetic field,
charged particles will follow curved paths. Physicists analyze 
photographs of the “tracks” in the cloud chamber and can deter-
mine their size and speed. In the following investigation, you will
make observations using a cloud chamber.

During the 1930s and 1940s, several more particles were discov-
ered, and physicists also realized that every elementary particle
has an antiparticle. U.S. physicists S.H. Neddermeyer and C. D.
Anderson discovered positive and negative muons (µ+ and µ−) that
have a mass about 207 times that of an electron. Muons have a
lifetime of 2.2 × 10−6 s and decay as shown below.

µ− → e− + νµ + νe

µ+ → e+ + νµ + νe

These discoveries also revealed the existence of muon neutrinos
(νµ) and muon antineutrinos (νµ). The subscript e must now be
used to indicate electron neutrinos. 

In the 1940s, two more pions were discovered, one having a
positive charge and the other a negative charge. These pions have
a lifetime of 2.6 × 10−8 s and decay as shown below.

π− → µ− + νµ

π+ → µ+ + νµ

Since these early discoveries, physicists have continued to
identify many more extraordinary particles. Eventually, a pattern
evolved and physicists were able to start classifying these elemen-
tary particles according to the types of forces through which they
interact with other particles. For example, protons and neutrons
interact through the strong nuclear force, whereas electrons do not
experience the strong nuclear force. Particles might be affected 
by one or more of the four fundamental forces — gravitational,
electromagnetic, strong nuclear, and weak nuclear forces. 

Families of Particles
The smallest family of particles is the photon family, consisting
only of the photon itself. Photons interact only through the elec-
tromagnetic force and interact only with charged particles. The
photon is its own antiparticle.

The lepton family of particles interacts by means of the weak
nuclear force. Leptons can interact through the gravitational force,
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I N V E S T I G A T I O N  13-B

The Wilson Cloud Chamber 

TARGET SKILLS

Performing and recording
Analyzing and interpreting

The cloud chamber that you will use consists of
a short, transparent cylinder with a glass top
and a metal base. The sides are lined with blot-
ting paper, except for a section through which
you will shine an intense light beam, as shown
in the diagram. The light will make the liquid
drops visible against the dark background.

The next diagram shows the general appear-
ance of some tracks that you might see. Alpha
radiation appears as a short (1 cm to 2 cm long),
thick puff of white “cloud.” Beta particles (high-
speed electrons) appear as long, thin strands
that bend gradually or zigzag from collisions
with atoms.

Because the muon is much more massive
than the beta particle, it appears as a thin,
extremely straight strand that goes across the
chamber. Many muons angle downward and are 
difficult to observe. 

Since Earth is constantly bombarded by 
cosmic rays (which are really high-energy 
particles), you can nearly always observe tracks
in a cloud chamber.

Equipment
� cloud chamber
� radioactive source (optional)
� light source
� alcohol
� dry ice

Do not touch dry ice unless you are
wearing thick gloves.

Procedure
1. Place the cloud chamber on the block of dry

ice and pour in the alcohol to a depth of
about 1 cm. Put on the glass cover and let the
chamber stand for a few minutes, until the
alcohol has a chance to reach equilibrium.

2. Working in groups of three or four, take turns
watching the cloud chamber carefully for a
total of at least 15 min. Make a sketch of
every track that you see. 

3. Obtain similar data from all of the groups
that are performing the observations.

4. (Optional) If your cloud chamber has a small
access hole in the side and if you have a
small radioactive source on the end of a pin,
insert it into the hole.

5. Make a sketch of the tracks that you observe
emanating from the source.

Analyze and Conclude
1. Try to identify the tracks that you observed. 

2. List the types of radiation observed in this
investigation, from the most common to the
least common.

3. What type of radioactive source did you use?
Were the tracks consistent with the nature of
the radiation emitted by the source? Explain.

CAUTION

light
source

illuminated region

beta
(β)

alpha
(α)

muon
(µ)

clear region

light
source

blotting paper

dry ice

metal base
with alcohol
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and if they are charged, through the electromagnetic force, but are
immune to the strong nuclear force. Once called the “beta decay
interaction,” the weak nuclear force is involved in beta decay. 

As you would probably expect, electrons and electron neutrinos
are leptons. Muons and their neutrinos are also leptons. A more
recently discovered particle, the tau (τ) particle and its neutrino,
also fit into the lepton family. As previously stated, for every 
particle, there is an antiparticle. The antiparticles always have 
the same mass as the particle, and if the particle has a charge, 
the antiparticle has the opposite charge. When the particles are
neutrally charged, the antiparticle is also neutral but opposite in
some other property. In such cases, the antiparticles are denoted
with a bar over the symbol. Leptons and their antiparticles appear
to be true elementary particles. There is no indication that they
consist of any more fundamental particles.

Particles of the hadron family interact through the strong and
weak nuclear forces. Hadrons can also interact through the gravita-
tional force, and if they are charged, through the electromagnetic
force. The hadron family is the largest family and is subdivided
into the groups, mesons and baryons. The common proton and
neutron and their antiparticles are baryons, while pions are
mesons. Pions were at one time called “pi mesons.” As larger and
more powerful particle accelerators were built, more and more
hadrons were discovered. 

Table 13.4 summarizes the properties of most of the subatomic
particles that have been discovered. However, the list of hadrons 
is incomplete and will certainly continue to grow as physicists
continue their search. Since most of the particles are very short-
lived and are eventually transformed back into energy, Table 13.4
reports the energy equivalent of the rest masses of the particles 
in units of MeV, rather than reporting in units of mass. If you 
calculated the energy equivalent of 1 u, you would find that it 
is about 931.5 MeV.

Quarks
As the number of hadrons that had been discovered grew, 
physicists became suspicious that hadrons might not really be 
elementary particles. Some physicists were studying the scattering
of electrons off protons and neutrons and saw evidence that there
were three “centres” of some type within the nucleons. At the
same time, theoretical physicists Murray Gell-Mann (1929–  ) and
George Zweig (1937–  ), working independently, proposed the
existence of truly elementary particles that made up hadrons. 
Gell-Mann somewhat jokingly called these particles quarks, from 
a line in Finnegan’s Wake by James Joyce — “Three quarks for
Muster Mark.” The name stuck. Today, physicists accept that
quarks are the elementary particles of which all hadrons consist. 
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Table 13.4 Some Particles and Their Properties

At the time that quarks were proposed, three quarks and their
antiquarks could account for all known hadrons. Mesons consisted
of two quarks, and baryons consisted of three quarks, given the
names “up” (u), “down” (d), and “strange” (s). Uniquely, quarks 
have fractional charges of + 2

3 e, − 1
3 e, − 1

3 e, respectively, while the 

antiquarks have charges of the same size but opposite charge.
Figure 13.19 gives examples of the quarks that make up the 
common neutron, proton, and positive and negative pions. 
Notice that the baryons consist of three quarks and the mesons 
consist of two.

Family

Photon

Lepton

Hadron

Mesons

                

Baryons

photon

electron

muon

tau

electron neutrino

muon neutrino

tau neutrino

pion

kaon

eta

proton

neutron

lambda

sigma

omega

Particle

stable

stable

stable

stable

stable

Particle
Symbol

Antiparticle
symbol

Rest energy
(MeV) Lifetime (s)

0

0.511

105.7

1784

≈0

≈0

≈0

139.6

135.0

493.7

497.7

497.7

548.8

938.8

939.6

1116

1189

1192

1197

1672

*The particle is its own antiparticle.

γ

e+

µ− µ+

τ− τ+

νe νe

νµ ν µ

ντ ντ

2.2 × 10−6

2.6 × 10−8

1.2 × 10−8

5.2 × 10−8

10−13

e−

self*

stable

900

self*

self*

K+ K−

K0
S K0

S

K0
L K0

L

π+ π−

π0

η0

pp

nn

Λ0 Λ0

Σ+

Σ0

Σ−

Σ−

Σ0

Σ+

Ω+Ω− 0.8 × 10−10

0.8 × 10−10

0.8 × 10−16

0.9 × 10−10

6 × 10−20

<10−18

1.5 × 10−10

2.6 × 10−10
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The combination of quarks in hadrons always results in a
neutral charge or in a unit charge.

The quark model worked very well in explaining the properties
of hadrons until about 1974, when more hadrons were discovered.
Eventually, physicists discovered that six quarks were necessary 
in order to account for all of the newly discovered hadrons. The
three new quarks were given the names “charmed” (c), “top” (t),
and “bottom” (b), although some physicists, particularly in
Europe, prefer to call the last two quarks, “truth” and “beauty.”
The quarks and some of their properties are summarized in 
Table 13.5.

Table 13.5 The Quarks

As physicists collected more and more details about hadrons
and their quarks, they discovered that quarks have more properties
than just charge. A property that physicists call “colour” explains
many of their observations, as well as placing the quark in agree-
ment with the Pauli exclusion principle.

Exchange Particles
Physicists’ current view of the structure of matter is summarized
in Figure 13.20, but this summary does not present the complete
picture. You have read many times about the four fundamental
forces of nature, the properties of these forces, and how elemen-
tary particles are even categorized according to the forces that they

Quark name
Rest energy

(GeV) Symbol Charge Symbol Charge

Quark Antiquark

up

down

strange

charm

top (or truth)

bottom (or
beauty) 

0.004

0.008

0.15

1.5

176

4.7

+ 2
3 e

+ 2
3 e

+ 2
3 e − 2

3 e

− 1
3 e

− 1
3 e + 1

3 e

− 1
3 e

− 2
3 e

− 2
3 e

+ 1
3 e

+ 1
3 e

u

d

s

c

t

b

u

d

s

c

t

b

Figure 13.19
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proton (p) neutron (n)

baryons mesons

pion (π+)

u

u

u d
+ 2

3 e

+ 2
3 e

+ 2
3 e

+ 2
3 e

+ 1
3 e

pion (π−)

u d
− 2

3 e − 1
3 e− 1

3 e
− 1

3 e− 1
3 e
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experience. The question remains: How do these forces work?
While studying elementary particles, physicists also discovered
some basic information about the fundamental forces of nature.
The standard model refers to the currently accepted mechanisms
of the strong, weak, and electromagnetic forces. Physicists hope 
to bring the gravitational force into the model, but so far, it has
been elusive.

Physicists have found particles that are exchanged by the 
elementary particles that account for the interactions between
them. Some of the properties of these exchange particles are listed
in Table 13.6. 

When charged particles interact through the electromagnetic
force, they exchange a photon. Because photons have no mass 
and travel at the speed of light, the range of the force is unlimited.
In the opposite extreme, the weak nuclear force is mediated by
bosons that have a large mass and such a short lifetime that the
range of the interaction is extremely short. 

Table 13.6 Force Carriers

The exchange of gluons holds quarks together in hadrons. The
theory is that when quarks exchange gluons, they change colour.
Physicists have proposed the existence of a graviton as an
exchange particle for the gravitational force and have determined
some of the properties that such a particle would have to have.
However, they have never observed any indication that gravitons
exist. As you can see, the story is far from complete and there are
many more challenges ahead for elementary particle physicists.

Force

electromagnetic

weak nuclear

strong nuclear

gravitational

Name of Particle

photon

weak boson

gluon

graviton*

unlimited

10−17

10−15

unlimited

Symbol Mass (GeV) Charge Range (m)

γ

W+

W−

Zo

g

G

0

80.2
80.2
91.2

0

0

0

+e
−e
0

0

0

*The graviton has been proposed as a carrier of gravitational force. However, its existence has yet to be confirmed.

molecule atom nucleus neutron
(or proton)

quark

Less than
10−18 m10−18 m10−15 – 10−14 m10−10 m10−9 m
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Scientists’ view of
the smallest indivisible piece of
matter has changed greatly over
the past century — going from
Dalton’s model of the atom to the
current view of the quark.

Figure 13.20
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CANADIANS IN PHYSICS

“Not the Brightest Student” — 
But Wins Nobel Prize
There is no greater prize for a scientist than the
Nobel Prize, and in 1990, Dr. Richard Taylor
became the first Canadian to win the prestigious
award in physics. He and two U.S. colleagues
shared the award for proving the existence of
quarks. The team used a powerful linear accelera-
tor, operating at 21 GeV, to bombard protons and
neutrons with electrons. They discovered that 
protons and neutrons, once thought to be 
indivisible, are made of these quarks, the existence
of which had been theorized but never proven.

Born and raised in Medicine Hat, Alberta, 
Dr. Taylor was interested in experimental science
from an early age, and this interest resulted in an
accident that could have prematurely ended his
science career. Several older boys showed him a
formula for a better type of gunpowder than was
available at that time. His attempt to follow the 
formula resulted in a powerful explosion that
amputated three fingers of his left hand.

Dr. Taylor has said in interviews that he wasn’t
the brightest student in high school. “I did 
reasonably well in mathematics and science,
thanks to some talented and dedicated teachers,”
he commented, “but I wasn’t an outstanding 
student, although I did read quite a bit and high

school mathematics came quite easily to me. You
don’t necessarily have to be a great student to do
well later in life, although it is always important to 
work hard.”

After completing his undergraduate work at the
University of Alberta, Dr. Taylor was accepted into
the graduate program at Stanford University in
California, where he has spent much of his work-
ing life. “I found I had to work hard to keep up with
my fellow students,” said Dr. Taylor, “but learning
physics was great fun in those surroundings.”

Dr. Taylor stresses the importance of an 
inquiring mind. “It’s fun to understand things and
you should learn all you can. Reading gives you
independence and a sense of freedom,” he said,
adding that he believes it is important to be 
educated in a broad range of subjects. Curiosity
and a love of experimentation drive Dr. Taylor.
While he has a great respect for theoretical 
physicists, calling them “smarter” than experimen-
tal physicists, he feels that “in experimental 
science, you can make contributions more easily.”

Still a resident of California, Dr. Taylor works 
at the Stanford Linear Accelerator Center, also 
spending time in Europe at the HERA laboratories
in Germany. After his prize-winning work to discov-
er the quark, he is now interested in searching for
gravitational waves and is involved with a new
satellite experiment to detect high-energy gamma
rays from sources in outer space.

Although at age 71 Dr. Taylor considers most of
his scientific contributions to be behind him, much
more work lies ahead in the field of particle
physics. To the next generation of physicists, he
says, “What the young people have to deal with is
the fact that there are three generations of quarks.
There are the quarks that everything we know of 
is made of, and then there are two more sets of
quarks. The question is: Why are they there?” 
Dr. Taylor expects this question to occupy the
physicists of tomorrow “for the next 50 years.”

Dr. Richard Taylor
Courtesy Stanford Linear
Accelerator Center
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Identifying Elements by
Their Emission Spectra
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Communicating results

I N V E S T I G A T I O N  13-C

Measuring the 
Mass-to-Charge Ratio for Electrons

TARGET SKILLS

Identifying variables
Performing and recording
Conducting research
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In this investigation, you will perform an 
experiment very similar to the one in which 
J.J. Thomson discovered and characterized the
electron. You will accelerate electrons by means
of a large potential difference and then deflect
them in a cathode ray tube by means of a known
magnetic field.

Problem
(1) Determine the speed of electrons that pass
through a cathode ray tube and (2) measure the
ratio of the mass to the charge for the electron.

Equipment 
� DC power supply for heated cathode tubes
� Helmholtz coils
� DC power supply for Helmholtz coils
� ammeter
� Thomson deflection tube

Avoid touching the high voltage 
connections.

A cathode ray tube emits a small amount of X rays,
so stay in front of it very briefly.

Procedure
1. With all power supplies turned off, set the

anode voltage to zero.

2. Connect the Thomson deflection tube to the
power supply according to the instructions
in the manual for the tube. Check that all
connections are secure and correct.

3. Set the power supply for the Helmholtz coils
to zero. Connect the ammeter in series with
the power supply and the coils.

4. Measure the radius of the Helmholtz coils 
(or record the value provided with the coils).

5. Turn on the deflection tube power supply.
Make sure that the filament voltage is set 
correctly, according the manual (probably 
6.3 V).

6. Increase the anode voltage to 5000 V and
observe the glowing trace of the cathode rays
across the screen.

7. Gradually increase the voltage of the
Helmholtz coils until the electron beam has
been strongly deflected by the time the beam
leaves the screen. Ensure that the maximum
current for the coils is not exceeded. Record
the value of the current.

8. Record the coordinates for two grid points
along the trajectory of the beam. 

9. Reduce all voltages to zero and turn off the
power supplies. 

Calculating the Radius of the Circular Trajectory
In general, the distance between any two points
with known coordinates is given by

d =
√

(x1 − x2)2 + (y1 − y2)2

For the circular trajectory, the distance
between any point on the circle and the 
centre is the radius, r.

Since the deflection begins when the beam
passes throught the origin of the graph, the 
centre of the circle must be at (0, r)

Thus, r =
√

(x − 0)2 + (y − r)2 (3)

y

x
path of electrons

r
(0, r)

(x, y)

CAUTION
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Analyze and Conclude
1. (a) State the coordinates for the two observed

points on the electron beam’s trajectory.

(b) Write an expression for r based on the
equation given above.

(c) Calculate the value of r for each point and
find the average. Use this average in your
further calculations.

2. The magnetic field between the two
Helmholtz coils is given by the equation 

B = 32πnI
5
√

5(Rc)
× 10−7 T,

where n is the number of turns in the coils
(as indicated on the coils), I is the current in
amperes, and Rc is the radius of the coils.
Calculate the magnetic field (B) between 
the coils. 

3. Use the equation v = 2V
Br

to determine the 

speed of the electrons. Substitute the value 

for v into an expression, m
e

= 2V
v2 , to find 

the charge-to-mass ratio.

4. Review the information in Chapter 8, Fields
and Their Applications, about the motion of
charged particles moving through a magnetic
field and derive the equations above.

13.3 Section Review

1. How do physicists know of the exis-
tence of particles with lifetimes that are as
short as 10−10 s, and how can they determine
any properties of these particles?

2. Why are the electrons in the lowest
energy level of an atom not affected by the
strong nuclear force?

3.

(a) State two ways in which leptons 
differ from hadrons.

(b) In what ways are mesons similar to
baryons?

(c) How are mesons different from baryons? 

4. Using quark notation, how could you
represent (a) a negative pion and (b) an anti-
proton? 

5. An antineutron must be neutral and 
have exactly the same mass as the neutron.
What should its quark composition be?

6. If neutrinos barely interact with matter,
how can they be detected? Research the
question and provide a diagram to explain
the process.

I

MC

MC

K/U

K/U

K/U
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� The neutron was discovered by James
Chadwick.

� The particles in the nucleus are called “nucle-
ons” and consist of protons and neutrons.
Their number is indicated as the atomic mass
number (A).

� The number of protons in the nucleus is 
indicated by the atomic number (Z).

� In a neutral atom, the number of electrons
orbiting the nucleus equals the number of 
protons in the nucleus.

� A common mass unit for atoms and nuclei is
the atomic mass unit (u).

1 u = 1.6605 × 10−27 kg
� The mass defect is the difference between the

separate total mass of the nucleons and the
mass of the nucleus. It represents the binding
energy for that nucleus.

� Nuclear fission is the splitting apart of a very
large nucleus to produce two smaller nuclei
plus several neutrons and energy.

� Nuclear fusion is the joining of two low-mass
nuclei to form a larger nucleus.

� Henri Becquerel discovered radioactivity.
� Radioactivity consists of the emission of 

alpha particles (helium nuclei), beta negative
particles (high-speed electrons), beta positive
particles (high-speed positrons), and gamma
rays (photons).

� Alpha, beta, and gamma radiation vary in
their mass, charge, penetrating ability, and
possible biological damage. The passage of
any of these rays through matter leaves ions
behind, so the radiation is called “ionizing
radiation.”

� Radiation can be detected by exposing film;
causing ionization in matter by using, for
example, the Geiger counter; and identifying
the fluorescence or phosphorescence that 
radiation creates in some substances.

� Radioactivity has many uses, both medical
and non-medical. For example, it is commonly
used in smoke detectors.

� During any nuclear reaction the total atomic
mass number (A) and the total atomic number
(Z) remain unchanged.

� Transmutation is the conversion of one 
element into another.

� The rate of radioactive decay is indicated by
the half-life of the radioisotope.

� Radioactive decay rates can be used to 
determine the age of ancient materials.

� The amount of a radioactive isotope remaining
after a given time interval can be determined
by using the following equation.

N = No

(
1
2

) ∆t
T 1

2

� A common unit in the field of radioactivity
and radiation is the becquerel.

� Exposure to radiation can lead to various 
levels of sickness and, if severe enough, to
death.

� Subatomic particles are grouped into three
families — photons, leptons and hadrons.
Hadrons consist of particles that are built 
from quarks.

� According to the standard model, forces are
the result of the exchange of particles. 

� The model of matter that involves particles as
force carriers and the concept that all hadrons,
such as protons and neutrons, are composed
of quarks is known as the standard model.

REFLECTING ON CHAPTER 13



Knowledge/Understanding
1. Use Einstein’s theory to explain how the term

“mass defect” refers to an amount of energy.

2. Outline the rationale for postulating the 
existence of a strong nuclear force as one of 
the fundamental forces of nature.

3. Compare the range of the field of influence of a
strong nuclear force with that of an electromag-
netic force when considering the effect of each
on a proton near or in the nucleus of an atom.

4. Explain, with the aid of a series of sketches, 
the relative effects of an electromagnetic force
and a strong nuclear force at several stages as 
a proton is propelled toward a nucleus in a
fusion reaction. 

5. Describe the characteristics of the three 
common forms of radioactivity.

6. Explain, based on our scientific understanding
of radiation, why it is now useful to use the
concept of a nucleon rather than a proton as 
a basic particle located in an atom’s nucleus.

7. Explain why the daughter nuclei from fission
reactions are likely to be radioactive.

8. Describe the concept of a force carrier. Outline
how this concept is an explanatory device for
outlining a scientific model in which mass 
and energy are simply different forms of the
same phenomena.

Inquiry
9. The concept of antimatter has stimulated the

imagination of many science fiction writers.
Research and prepare a report of the scientific
discoveries that led to the inclusion of anti-
matter particles in scientific models of matter.

10. Insight into nuclear structure can be gained by
considering the binding energy per nucleon,
∆E/A, for different elements.  (a) Describe how
the calculation of ∆E/A is used to indicate
nucleons in a specific nucleus are tightly bound
or loosely bound.  (b) Calculate the binding 
energy, in both joules and MeV, for the follow-

ing 12 elements: helium, carbon, neon, oxygen, 
chlorine, manganese, iron, cobalt, silver, gold,
cesium, and uranium. In each case, divide the
binding energy by the mass number, A. 
(c) Write the equation for a common fusion
reaction. Locate the position of the initial
nuclei, by their nucleon number, on the graph
on page 550. Locate the position of the fused
nuclei on the graph. Describe the effect of
fusion on the binding-energy-per-nucleon ratio.
(d) Write the equation for a common fission
reaction. Locate on the graph on page 550 the
position of the initial nuclei, by their nucleon
number. Locate the position of the daughter
nuclei on the graph. Describe the effect of fis-
sion on the binding energy per nucleon ratio.
(e) Locate on the graph the range of nucleon
numbers of those elements that are more likely
to undergo fusion and the range of nucleon
numbers for those that are more likely to
undergo fission. 

11. Suppose an experiment is designed to allow
continuous observation of a single atom of a
certain radioactive material. If the half-life is
1.5 h, can the observer predict when the atom
will decay? 

12. Use conservation laws to determine which of
the following reactions are possible. Explain
your reasoning in each case.
(a) p + p → p + n + π+

(b) p + p → p + p + n
(c) p + p → p + π+

(d) p + p → p + p + π0

Communication
13. Explain why neutrons are said to make better

“nuclear bullets” than either protons or 
electrons. 

14. Use the concepts of fission, fusion, and binding
energies to provide a scientific explanation of
what limits the size a stable nucleus.
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Making Connections
15. Explain why, to date, nuclear reactors have

been constructed to use fission, but none have
been constructed to use fusion.

16. Food and surgical supplies are sometimes 
sterilized by radiation. What are the advantages
and disadvantages of using this procedure
rather than sterilization by heating? 

17. In 1989, two scientists at the University of 
Utah announced to the public that they had
produced excess energy in a fusion-like experi-
ment at room temperatures. The experiment
was dubbed “cold fusion” and the scientists
thought they had identified a new, cheap 
energy source. However, other experimenters
failed to reproduce the results of this 
experiment, so even today, most of the 
scientific community does not consider cold
fusion as a real possibility. Research this
episode of physics history and use it to discuss
the roles of peer review and reproducing results
in scientific methodology. 

18. Prepare a report on how radioactive tracers are
used to either (a) follow the path of rainwater
through groundwater reservoirs to lakes,
streams, and wells or  (b) map ocean currents. 

19. The word “radiation” strikes fear into the
hearts of many people. In fact, many would not
live anywhere near a nuclear power station.
Gather information about common concerns
and misconceptions about “radiation” by inter-
viewing people and generating a file of 
newspaper articles. Identify four or five of the
common issues. Write a scientific perspective
on each. Make a recommendation of the safety
features that you consider essential for operat-
ing a nuclear power station in such a way that
you would feel comfortable living within a one
kilometre radius of it. 

Problems for Understanding
20. Determine the number of protons, neutrons and

electrons in (a) a doubly ionized calcium ion
40
20Ca++ (b) an iron atom 56

26Fe (c) a singly
charged chlorine ion 35

17Cl−.

21. Calculate the binding energy for (a) 12
6C with a

atomic mass of 12.000 000 u  (b) 133
55Cs with a

atomic mass of 132.905 429 u.

22. Write the equation for the alpha decay of 
thorium: 230

90Th. 

23. What fraction of the original number of nuclei
in a sample are left after (a) two half-lives,  
(b) four half-lives, and  (c) 12 half-lives?

24. (a) How much energy is released when 
radium-226 (nuclear mass 225.977 09 u)
alpha decays and becomes radon-222
(nuclear mass 221.970 356 u)? Answer 
in MeV.

(b) If the nucleus was initially at rest, calculate
the velocities of the alpha particle and the
radon-222 nucleus in part (a).

(c) What percentage of the total kinetic energy
does the alpha particle carry away?

25. Hafnium-173 has a half-life of 24.0 h. If you
begin with 0.25 g, how much will be left after
21 days? 

26. How long will it take a 125 mg sample of 
krypton-89, which has a half-life of 3.16 min, 
to decrease to 10.0 µg?

27. A scientist at an archeological dig finds a bone
that has a carbon-14 activity of 5.70 × 10−2 Bq.
If the half-life of carbon-14 is 5.73 × 103 a, what
is the age of the bone? (Assume that the initial
activity was 0.23 Bq.)

28. Suppose you began with a sample of 
800 radioactive atoms with a half-life of 
5 min. 
(a) How many atoms of the parent nucleus

would be left after 10 min? 
(b) How many atoms of the daughter nucleus

would be present after 10 min? 
(c) How many atoms of the parent nucleus

would be left after 25 min? 
(d) How many atoms of the daughter nucleus

would be left after 25 min?
(e) Write an equation to determine the number

of daughter nuclei present at any time.
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29. In radioactive dating, ratios of the numbers of
parent and daughter nuclei from the same
decay chain, such as uranium-238 and 
lead-206, are determined. Assume that when
the sample formed, it contained no daughter
nuclei. Consider the analyses of three different
rock samples that have been determined to
have ratios of uranium-238 to lead-206 of
1.08:1, 1.22:1, and 1.75:1.
(a) Using the results of the previous question,

write an equation for the ratio of the number
of uranium-238 atoms to lead-206 atoms
present at any time. (Hint: the initial num-
ber of uranium-238 atoms will divide out.)

(b) Solve the above equation for time, and
determine the ages of the three samples.
(The half-life of uranium-238 is 4.5 × 109 a.)

(c) Explain whether these samples could have
been taken from an area where the rock
solidified all at once. 

(d) Intuitively, what conclusion can you draw 
if you measure a ratio of less than one? 

30. What is the wavelength of each of the two 
photons produced in electron-positron 
annihilation? 

31. Heavy water used in the Sudbury Neutrino
Observatory is made up of oxygen and
deuterium, a radioactive isotope of hydrogen
(see Not Your Average Observatory, page 554).
One of the reactions that physicists at the
observatory are trying to detect is
νe + 2

1H → p + p + e−, where νe is an electron-
neutrino. For this reaction to be observed, 
the neutrino’s energy must be greater than the
binding energy of a deuterium atom.
(a) Given that the nuclear mass of deuterium 

is 2.013 553 u, calculate the minimum 
neutrino energy for this reaction to occur. 

(b) If 95.0% of the neutrino’s kinetic energy
goes into the kinetic energy of the produced 
electron, calculate the speed of the electron.
(Hint: The electron’s speed is relativistic.)

(c) Compare the electron’s speed with the speed
of light in water. 

32. Analyze the following reactions in terms of
their constituent quarks.
(a) n → p + e− + νe

(b) γ + n → π− + p
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P R O J E C T

Decades of 
Triumph and Turmoil

5U N I T

Background
From the late 1800s to the mid-1900s, the world
saw change at a rate it had never experienced
before. Science progressed rapidly as under-
standing of the atom deepened. Molecules 
were mapped, and from that mapping came new
products — plastics, pharmaceuticals, stronger
alloys. Harnessing the nucleus gave promise 
of bountiful energy in peacetime and mass
destruction in time of war. Through study of 
the electromagnetic spectrum came an ever-
increasing ability to probe inward to understand
the workings of our body cells and outward to
observe the workings of the universe. Some
parts of the spectrum became crowded with use
as radio and television stations staked their
claims to frequencies.

Along with scientific and technological
change came societal change. Two world wars
left their legacy of broken lives, shattered 
countries and economies, and radical changes 
in social outlooks and value systems. Warriors
returned to very different homelands. Changes
in production techniques also had a huge
impact on society. Augmented by new 
technologies, the assembly line became the
backbone of many huge industries, and the 
need for unskilled workers plummeted.

A World War I battle scene

It is easy to forget that the scientists 
whose contributions you have studied during
this course lived and worked in the midst of

these changes. They, too, were affected, and
sometimes even caused or influenced these
changes. The goal of this project is to 
examine the parallel between these scientists’
professional lives and what their lives were like
when they stepped outside of their offices and
laboratories.

Plan and Present
1. As a class, establish clear guidelines for 

evaluating the finished project. Discuss
specifics such as
� deadlines
� expectations for the diary or letter: Will

there be a minimum length, a minimum
number of societal factors to be included, 
a specified presentation format?

� expectations for the poster: Will 
presentation attractiveness and 
organization be assessed, as well as the
content? Will there be a minimum amount
of biographical and scientific material that
must be included?

� expectations for the time line: How do you
intend to assess a group’s contribution to
the overall historical time line?

2. As a class, prepare an initial time line for the
period of 1881–1950, listing major scientific
advances and discoveries alongside major
events in society, such as World Wars I and
II, the Depression, the birth of jazz, the first
automobiles, the introduction of radio and
then television shows, and aviation, from the
Wright brothers’ first experiment on a North
Carolina seashore to space exploration.

3. Divide the study up into six time spans: the
two-decade period of 1881 to 1900 and the
five individual decades between 1901 and
1950. Assign a team to each era. (You could
perhaps allocate the number of members per
team according to the number of events in
each era.)
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ASSESSMENT

assess your ability to conduct research: Did 
you find relevant information?
assess your teamwork skills: How effectively 
were you able to share your ideas with other 
members of your group and contribute to the 
group effort?
assess your communication skills: How 
effectively did you communicate your ideas 
in the poster and written portions of this task?

After you complete this project

4. Each team is to research three major 
scientific or technological events that
occurred during its designated time period
and prepare a poster on each event. This
presentation must include biographical data
for the people involved and an outline of 
the nature and importance of the event. The
team is then to research the major societal
events and changes that might have affected
those scientists.

5. As a class, construct an overall time line.
This could perhaps be a horizontal version of
the time line shown on page xiv, and could
be posted around the classroom near the top
of two or three of the walls. The names of the
scientists along with brief outlines of their
contributions or applications of these contri-
butions could be placed on one side of the
line, with a listing of the corresponding
major societal and world events on the other
side of the line. The posters could also be 
displayed.

6. Working individually or in pairs, you will
write letters or diaries that represent what
one or more of the featured scientists might
have written about their everyday lives. 
� What type of transportation did the 

scientist probably use, locally and for 
long-distance travel? 

� What type of lighting was available in that
scientist’s time? 

� What were the major newspaper stories at
the time the scientist did his or her most
notable work?

� What type of medical treatment was 
available at that time?

Evaluate
1. Evaluate the extent to which your group met

the expectations for the project in relation 
to the 
� posters � written material
� timeline

2. (a) Which items prepared by your group do
you feel were most effective? Explain.

(b) Which items prepared by your group do
you feel were least effective? How might
they have been improved?
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The famous reconnaissance aircraft SR71 Blackbird is a descendent of the Wright brothers’ Wright Flyer, which
made history on December 17, 1903, when Orville Wright piloted the first powered, manned, controlled flight.
For its debut, the Wright Flyer was in the air for 12 s and covered a distance of 37 m. By contrast, the Blackbird
flew 3500 missions and was so fast that a missile had to be fired 48 km ahead of the plane to reach it in time.



Knowledge/Understanding
Multiple Choice
In your notebook, choose the most correct answer
for each of the following questions. Outline your
reasons for your choice.

1. Of the following quantities, which, if any, have
the same value to all observers?
(a) mass of the muon
(b) average lifetime of the muon
(c) charge of the muon
(d) energy of a photon
(e) speed of light

2. The kinetic energy of a particle travelling near
the speed of light is
(a) always less than the rest energy
(b) equal to mc2

(c) equal to 1
2 mv2

(d) equal to (m − m0)c2

(e) equal to (m0 − m)c2

3. When an object with a rest mass of 2.0 kg
approaches the speed of light, its mass
approaches 
(a) 0 (c) 1.0 kg (e) ∞
(b) 0.5 kg (d) c2

4. If you direct light at a metal surface, the 
energies of the emitted electrons
(a) are random
(b) vary with the speed of light
(c) vary with the intensity of light
(d) vary with the frequency of light
(e) are constant 

5. In the Bohr model of the atom, an electron
emits energy when it
(a) accelerates in its orbit
(b) decelerates in its orbit
(c) jumps from a higher energy level to a lower

energy level
(d) jumps from a lower energy level to a higher

energy level
(e) is in the ground state 

6. The strong nuclear force has a limited range. 
A consequence of this is the
(a) magnitude of nuclear binding energies

(b) instability of large nuclei
(c) ratio of atomic size to nuclear size
(d) existence of isotopes 
(e) existence of neutrinos

7. The number of elementary charge units in a
nucleus determine the atomic
(a) size (c) mass (e) density
(b) weight (d) number

8. The half-life of 28Ni is six days. What fraction
of a sample of this nuclide will remain after 
30 days?
(a) 1

4 (c) 1
16 (e) 1

64

(b) 1
8 (d) 1

32

9. After 4 h, 1
16 of the initial amount of a certain

radioactive isotope remains undecayed. The
half-life of the isotope is
(a) 15 min (c) 45 min (e) 2 h
(b) 30 min (d) 1 h

10. A particle that will not leave a curved track in
a bubble chamber is the 
(a) proton (c) electron (e) alpha
(b) positron (d) neutron particle

Short Answer
11. If you were travelling in a spaceship at 0.9 c,

would you notice any time dilation effects for
clocks in the spaceship? Explain your 
reasoning. 

12. A clock on a flying carpet streaks past an
Earthling who is looking at her watch. What
does the Earthling notice about the passage of
time on the moving clock, compared with her
watch? What would a wizard on the flying 
carpet notice about the passage of time on the
Earthling’s watch, compared to the clock on 
the carpet? Does it matter which timepiece 
is considered to be in motion and which is 
considered to be at rest? 

13. Explain the following statement: The speed of
light is a constant. 

14. Max Planck introduced an hypothesis regarding
the energy of vibration of the molecules in
order to satisfy the observed spectrum emitted
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from a hot body. What was this hypothesis and
on whose work did he reportedly base his idea?

15. (a) Describe the relationship Phillip Lenard
found between the energy of photoelectrons
and the frequency of the incident light.

(b) Describe how increasing the light intensity
affects the electron flow. 

16. (a) Use the photon theory of light to explain
why a photographer might use a red safety
light in a darkroom for black and white 
photography.

(b) Sunburn is caused by the ultraviolet 
component of sunlight, not by the infrared
component. How does the photon theory
account for this?

17. Does it take more or less energy to remove a
photoelectron from lead than from aluminum?
(See Table 12.1 on page 509.) Explain your 
reasons.

18. Describe the technique that was used success-
fully to demonstrate the existence of de Broglie
matter waves.

19. (a) Some features of the emission spectrum
could still not properly be explained by the
Bohr model. Name two such features.

(b) Paul Dirac modified Erwin Schrödinger’s
equation. What was he seeking to include
and how successful was he?

20. Differentiate between a transmutation and a
radioactive decay.

21. Describe how a knowledge of electromagnetism
has been used to develop technologies to probe
matter for indirect evidence of its elementary
particles.

22. Explain, with the aid of a series of sketches, the
relative effects of an electromagnetic force and
a strong nuclear force at several stages as a 
proton is propelled toward a nucleus in a
fusion reaction. Build on your explanation to
suggest why “cold fusion” is not considered 
to be scientifically possible.

Inquiry
23. Suppose you had a rod of length L aligned 

parallel to the y-axis of an x-y reference frame
labelled S and an identical rod of length L′
aligned parallel to the y′-axis of an x′-y′
reference frame labelled S′ When the two
frames are aligned, it is seen that the rods are
the same length. Allow the frames to be offset
in the x-direction and then set one of them in
motion so that the rods move past each other.
Argue that the length of either rod will not be
seen to change. What would be the physical
implications if one of the rods was observed to
change? 

24. Some people thought that they had disproved
Einstein’s special theory of relativity by
describing the twin paradox. According to this
thought experiment, identical twins Al and
Bert grow up on Earth. Al rides a rocket, which
travels close the speed of light, to Alpha
Centauri and then returns. Consider the 
following points.
� From Bert’s point of view of Earth, Al has

been travelling at a high rate of speed, so his
clock would have slowed down. When Al
returns, he should be younger than Bert.

� However, from Al’s point of view, it was Bert
who was travelling at a high rate of speed. It
was Bert’s clock that slowed down, so Bert
would be younger than Al. Since these two
results are contradictory, the special theory 
of relativity must be wrong.

Explain why the special theory of relativity
does not fully describe what is happening in
this example. (Hint: Are both frames of 
reference equivalent?)

25. The phototube shown in the diagram was used
to determine the stopping potential (also called
“cut-off voltage”) for electrons emitted from the
cathode (emitter) when different wavelengths 
of light were incident on its surface. The table
that follows the diagram records the values of
the wavelengths used and the corresponding
stopping potential.
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(a) Prepare a table similar to the one above and
complete the remaining two columns by 
calculating the maximum kinetic energy of
the emitted electrons (using E = qV) and the
frequency of the light.

(b) Draw a graph with maximum Ek on the 
vertical axis and frequency on the horizontal
axis.

(c) From your graph, determine the work func-
tion for the particular emitter material used.

(d) Identify the metal used in the emitter 
(see Table 12.1 on page 509).

(e) Calculate the slope of the graph and 
compare it with Planck’s constant.

(f) Explain how you feel that the graph would
or would not be different if 
• the emitter had been made from a 

different material
• the intensity of the light was doubled in

each case

26. When a charged particle passes through a mag-
netic field that is perpendicular to its motion,

its path is deflected into a circular path. If the
strength of the field (B) is known and you
assume that the particles are singly charged,
prove that the radius of the path indicates the
momentum of the particle. 

27. Assume that a pure sample of a radioisotope
contains exactly 1.6 × 104 nuclei with a 
half-life of 10.0 s. 
(a) Determine the expected number of nuclei

remaining after time intervals of 10 s, 20 s,
30 s, 40 s, 50 s, and 60 s. 

(b) Draw an accurate graph of the data with the
time interval (t) on the x-axis and the num-
ber of nuclei remaining (N) on the y-axis.

(c) The activity at any given time is given by
A = ∆N/∆t. What property of the graph does
this ratio represent?

(d) Determine the activity of the sample at 10 s,
20 s, 30 s, 40 s, and 50 s.

(e) Draw an accurate graph of the data with 
the time interval (t) on the x-axis and the
activity (A) on the y-axis. 

(f) Compare the two graphs.
28. In the initial form of the quark model in the

1960s, three quarks were proposed: up, down,
and strange. 
(a) Make a table to show the charges on these

quark-antiquark combinations.. 
Include a column of “strangeness,” 
determined as follows: If the particle 
contains a “strange” quark, assign it a
strangeness of −1. If the particle contains an
“anti-strange” quark, assign it a strangeness
of +1. Sum strangeness the same way in
which charge is summed. 

(b) Evidence for an underlying simplicity in
matter was shown by plotting strangeness
versus charge. Why are there apparent holes
in the graph? 

(c) Repeat (a) for all three quark combinations.
Include columns for charge and strangeness. 

(d) Plot strangeness versus charge for the three
quark particles. Comment on the symmetry
of the plot. 

Colour

green

green

blue

violet

530.0

500.0

460.0

410.0

0.045

0.244

0.402

0.731

Maximum Ek of
photoelectrons

(J)

Wave-
length
(nm)

Frequency
(Hz)

Stopping
potential

(V)

light source

radiation

anode

photocell

cathode

potentiometer

−
−

+−
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29. Use conservation laws to determine which of
the following reactions are possible. Explain
your reasoning in each case.
(a) p + p → p + n + π+

(b) p + p → p + p + n
(c) p + p → p + π+

(d) p + p → p + p + π0

Communication
30. In your own words, explain the term 

“relativity.” 
31. (a) Several golfers are out on a golf course 

when two trees are struck by lightning. 
The arrangement is as shown in the 
diagram. Golfer 1 is at rest relative to the
two trees and observes that both trees were
struck simultaneously. Golfer 2 is driving a
relativistic golf cart. In the golf cart frame of
reference, which tree was struck first? Give
reasons for your answer.

(b) During a storm, a passenger in a stretch 
limousine, travelling close to the speed of
light (the ultimate speed limit), noticed that
two large hailstones struck the limousine
simultaneously, one on the hood of the car
and one on the trunk. According to a pedes-
trian who was standing on the sidewalk as
the car sped past, which hailstone struck
first? Give reasons for your answer.

32. Explain what it means to say that a certain
quantity is quantized. 

33. Describe the evidence that matter behaves as a
wave. 

34. Explain what limits the size of a stable nucleus. 
35. Develop a graphic organizer to show how the

elementary particles are related to other groups
of subatomic particles.

Making Connections 
36. Find examples in this textbook where the study

of a particular area of physics was advanced by
new experimental results that led to a new 
theory, and vice versa. Express your thoughts 
in writing about the manner in which science
advances, using these examples. 

37. Despite the complexity of some observed 
phenomena and some equations, the following
statement is true: The basic ideas underlying all
science are simple. Prove this to yourself by
examining the chapters in this textbook. For
each chapter, write down at least three simple
but scientifically correct statements that 
summarize one or more of the concepts in the
chapter. For example, one of the sentences for
Chapter 11, Special Theory of Relativity, could
be “Energy and matter are equivalent” or
“Energy and matter are interchangeable.” Make
some of your statements general (to apply to an
entire unit, for example) and relate some to
specific concepts. 

38. The Cavendish Laboratory for experimental
physics at the University of Cambridge,
England, has been responsible for many signifi-
cant discoveries and inventions in the history
of physics. These include the discoveries of the
electron and neutron and the inventions of the
mass spectrometer, cloud chamber, and the
Cockcroft-Walton proton accelerator. Between
1879 and 1937, the chair of the laboratory was
occupied by James Clerk Maxwell, Lord
Rayleigh, J.J. Thomson, and Ernest Rutherford.
Write an essay that examines the research done
in this famous laboratory. Identify and discuss
some of the factors that have enabled members
of the Cavendish Laboratory to be so 
productive. 

39. Draw a circuit diagram for a smoke detector
and explain how it works. What determines its
sensitivity? 

40. Distinguish between fission and fusion.
Research and prepare a report on why some
elements are most likely to be involved in 

Tree X Tree YGolfer 1

Golfer 2
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nuclear fission reactions while others are most
likely to be involved in nuclear fusion 
reactions.

41. Although physics has come a long way in its
understanding of matter and energy, much
work remains and it is uncertain that a full
understanding is even possible. Write an essay
to discuss the status of the standard model.
What are its present weaknesses? Express your
own views on whether a full understanding of
the interactions between matter and energy is
possible. Popular books that explore this topic
have been written by Stephen Weinberg,
Murray Gell-Mann, and Leon Lederman, and
will help you to frame your argument. 

Problems for Understanding
42. Relativistic speeds are speeds at which 

relativistic effects become noticeable. Just how
fast is this? To answer the question, determine
the following.
(a) At what speed relative to your frame of 

reference would a particle have to travel so
that you would see that its length in the
direction of motion had decreased by 1.0%?

(b) At what speed relative to your frame of 
reference would a particle have to travel for
you to detect that its mass had increased by
0.10%?

43. (a) How much energy would be released if a 
1.0 kg brick was converted directly into 
energy? 

(b) For how long could this amount of energy
power a 100 W light bulb? 

44. The star Alpha Centauri is 4.2 light-years away
(a light-year is the distance light travels in one
year: 365.25 days). 
(a) If you travelled in a spaceship at a speed of

2.0 × 108 m/s, how long would this distance
appear to be? 

(b) How long would a one-way trip take you? 
(c) How much time would pass for someone

back on Earth? 

45. (a) Calculate the energy required to give an
electron a speed of 0.90c, starting from rest. 

(b) Compare this to its rest mass energy.
(c) In terms of its rest mass, what is the mass 

of an electron travelling at this speed? 

46. Suppose you allowed a 100 W light bulb to
burn continuously for one year. 
(a) How much energy would it radiate in 

this time?
(b) To what change in mass does this 

correspond? 
47. Radiation of wavelength 362 nm is incident 

on a potassium surface. What will be the 
maximum kinetic energy of the electrons 
emitted from this surface? (Refer to Table 12.1
on page 509.)

48. Calculate the maximum kinetic energy of the
electrons emitted from the cathode emitter of 
a photocell if the stopping potential is 4.7 V.

49. (a) A zinc surface is used on the emitter of a
photocell. What will be the threshold 
frequency necessary for a photocurrent to
flow? (See Table 12.1 on page 509)

(b) What is the threshold wavelength for zinc?
50. (a) Calculate the de Broglie wavelength of an

electron moving with a speed of
5.82 × 105 m/s.

(b) An electron is accelerated across an electric
potential difference of 64.0 V. Calculate the
de Broglie wavelength of this electron.

51. An electron drops from the second energy level
of the hydrogen atom to the first energy level.
(a) Calculate the frequency of the photon 

emitted.
(b) Calculate the wavelength of the photon.
(c) In which series does the spectral line

belong?

52. Calculate the wavelength of the second line in
the Balmer series.

53. A typical classroom helium-neon laser has a
power of 0.80 mW and emits a monochromatic
beam of red light of wavelength 670 nm.
(a) Calculate the energy (in J) of each photon in

the beam.
(b) If the laser is left on for 5.0 min, how many

photons will be emitted?
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54. A photon of light is absorbed by a hydrogen
atom in which the electron is already in the
second energy level. The electron is lifted to
the fifth energy level.
(a) What was the frequency of the absorbed

photon?
(b) What was its wavelength?
(c) What is the total energy of the electron in

the fifth energy level?
(d) Calculate the radius of the orbit representing

the fifth energy orbit.
(e) If the electron subsequently returns to the

first energy level in one “jump,” calculate
the wavelength of the corresponding photon
to be emitted.

(f) In which region of the electromagnetic 
spectrum would the radiation be found?

55. A prediction of the lifetime of the Sun can 
be calculated by analyzing its observed rate 
of energy emission, 3.90 × 1026 J/s . (Hint: In 
making the following calculations, pay close
attention to unit analysis.)
(a) Calculate the amount of energy released in

the conversion of four protons to one 
helium nucleus: 41

1H → 4
2He + 20

1e.
(b) If the above is considered as one reaction,

how many reactions must occur each second
to produce the observed rate of energy 
emission? 

(c) How much helium is produced during each
reaction? 

(d) How much helium is produced per second? 
(e) Let the lifetime of the Sun be defined as the

time it takes 10.0% of the Sun’s total mass to
be converted into helium. (You can make
this assumption, since it is accepted that
only the reactions in the Sun’s core need 
be considered.) Calculate the Sun’s lifetime
in years.

56. The Sun’s lifetime can also be determined by
calculating the total energy available and 
dividing by the energy radiated per second. 
(a) Calculate the mass defect for converting 

four protons into one helium nucleus.

(b) What fraction of the mass of the initial four
protons does this mass defect represent?
This is the fraction of the mass of each 
proton that is converted into energy.

(c) Suppose the Sun’s entire mass
(1.99 × 1030 kg) was composed of protons.
What is the total energy available?

(d) Assume that only 10.0% of the Sun’s mass of
protons are available to undergo fusion and
calculate the lifetime of the Sun in years.
(The Sun radiates 3.90 × 1026 J/s .) 

57. Consider a sample of rock that solidified with
Earth 4.55 × 109 years ago. If it contains N
atoms of uranium-235 (half-life: 7.04 × 108 a),
how many atoms were in the rock when it
solidified? 

58. In the very early universe, protons and 
antiprotons existed with gamma rays. What is
the minimum gamma ray energy required to
create a proton-antiproton pair? To what wave-
length does this amount of energy correspond?
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Scanning Technologies: Today and Tomorrow
Consider the following as you complete the final informa-
tion-gathering stage for your end-of-course project.
� Attempt to combine concepts from this unit with 

relevant topics from previous units.
� Verify that you have a variety of information items,

including concept organizers, useful Internet sites,
experimental data, and unanswered questions to help
you create an effective final presentation.

� Scan magazines, scientific journals, and the Internet for
interesting information to validate previously identified
content and to enhance your project.

COURSE CHALLENGE



Physics Course Challenge

Scanning Technologies: Today and Tomorrow
An X-ray image of a tooth or broken bone is commonplace, 
and ultrasound images of a developing fetus are a regular part of 
prenatal care. Without the need for a single incision, various forms
of non-invasive imaging technology provide clear images of 
the soft tissues of our bodies. Imaging technology also exposes 
the contents of locked luggage during airport security checks.
Satellites circle Earth, relaying data about geological changes, 
volcanoes, hurricanes, and crop and vegetation densities.

Understanding the fundamental properties of matter, fields,
waves, and energy has opened the door to hundreds of scanning
technologies, and continuing research results in yet more 
scanning methods and continues to push the capabilities of these
technologies to new heights. Research costs money, however, and
is very time-consuming. Are these new scanning techniques worth
the expense and time involved?
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These magnetic resonance imag-
ing (MRI) scans reveal four profile
views at different depths of a
healthy human brain. The folded
cerebral cortex — associated 
with thought processes — is 
highlighted in red.



ASSESSMENT

the quality of your research
the accuracy and depth of your understanding
your presentation
other criteria you decide on as a class

After you complete this Course Challenge, you 
will be assessed on

This Course Challenge prompts you to examine
the costs and benefits of imaging technologies 
to both the scientific community and society. 
To help you get started, three fields of scanning
technology and some associated issues are 
presented here. 

Medical Issues
Doctors and politicians are often criticized when professional 
athletes gain access to magnetic resonance imaging (MRI) 
diagnosis immediately after sustaining an injury, while the general
public must often wait months. Questions arise about the real
expense of MRI equipment, its availability, and the value of the
results as compared to other methods. How does an MRI machine
work? What fundamental principles of nature does it exploit? 
Why is MRI scanning so expensive? Will the costs reduce with
time? Will the technology improve with time? Are there better,
less expensive options that should be pursued? Will this 
technology ever be made available to citizens of developing
nations? To develop an argument supporting continued use of and
research into MRI technology, you need to be able to answer these
and other questions.

Motion, such as a beating heart or breathing, causes a 
blurring of conventional computerized tomography (CT) 
scan images. New computer technology, involving 
millions of frames of reference calculations, is able to 
remove the blur and produce much clearer images.
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Security Issues
Border-crossing and airport security often rely on technology to
solve problems associated with screening large numbers of people
and baggage in an efficient way. Some debate the effectiveness of
the technological solutions compared to the enormous costs
required to install and maintain the equipment. Opponents suggest
that a human work force could do a more thorough and efficient
job. Developing an argument supporting either side of this debate
requires an in-depth understanding of the technology and its 
capabilities, and perhaps even a sense of its future potential. 

Space Issues
Earth-orbiting, satellite-scanning technologies are used for 
environmental data collection, which is required for the 
development of sustainable agricultural, industrial, and even 
population-settlement plans. Weather satellites have allowed 
meteorologists to dramatically improve their forecasts.
Surveillance satellites provide governments with information
about covert operations. 

A wealth of information comes from space, but the launching
and maintaining of satellites is extremely expensive. World 
citizens need to be convinced that the economic costs associated
with space-based research and related technologies are worth the
rewards. 

The Canadian Space Agency (CSA) and the U.S. National
Aeronautics and Space Agency (NASA) devote a substantial
amount of effort to global education, providing evidence of the
benefits of space-related research. These agencies also work 
diligently to include other nations in large projects, such as the
International Space Station. The CSA and NASA also recognize
that projects must offer the global business community financial
opportunities, as well as knowledge, to be successful in the long
term. Does the commercialization of space fit with your vision of
the future?

A security imaging system
can be set to detect the 
presence of explosives, 
narcotics, currency, or gold.
In this case, the computer
analyzed the contents of a
laptop computer case and
identified explosive material,
indicated by the bright red
area in this scan image.
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A remote mountaintop in western
North America rose 10 cm in four
years, from 1996 to 2000. The 
10 cm bulge is at the centre of a
circle with a 12 km radius, and 
is only a few kilometres from 
the South Sister, a volcano that
erupted 2000 years ago. The
bulge is believed to be the 
result of growing pressure in an 
enormous chamber of magma
beneath the mountain, and a 
telltale sign of potential volcanic
activity. The 10 cm shift is a very
small indicator of the tremendous
amount of energy behind it, and
would never have been detected
without the remote-sensing ability
of Earth-orbiting satellites. 
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Debating which technologies are worth the investment of 
monetary and human resources can be accomplished only when
all of the facts are known. Think about these questions as you
undertake this Course Challenge.

Challenge
Develop and present a case either for or against the use of a 
particular scanning technology. You will use the knowledge and
concepts you have acquired throughout this course, along with
additional research, to develop your presentation about the 
economic, social, or environmental viability of a medical, 
industrial, or environmental scanning technology. Your class will
decide together whether the presentations will be made through

� a formal debate

� research report presentations (either as a written report, an
audiovisual presentation, or an information billboard)

� another format of your choice

Materials
All presentations are to be supported by your portfolio of research
findings, the results of supporting experiments conducted, and 
a complete bibliography of references used. 

Design Criteria
A. You need to develop a system to collect and organize 

information that will include data, useful mathematical 
relationships, and even questions that you use to formulate
your final presentation near the end of the course. You can 
collect your own rough notes in a research portfolio.

B. Building a Research Portfolio
Your individual creativity will shape the amount, type, and
organization of the material that will eventually fill your 
portfolio. Do not limit yourself to the items mentioned in the
Course Challenge cues scattered throughout textbook; if 
something seems to fit, include it. The following are suggested
items for your research portfolio.

� experiments you have
designed yourself, and their
findings

� useful equations
� specific facts
� interesting facts
� disputed facts
� conceptual explanations

� diagrams
� graphical organizers
� useful Internet site URLs
� experimental data
� unanswered questions
� pertinent economic or

social statistics (Canadian
or global)
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C. As a class, decide on the type(s) of assessment you will use 
for your portfolio and for its presentation. Working with your
teacher and classmates, select which type of presentation you
will use to present your scanning technology arguments.

Action Plan
1. As a class, have a brainstorming session to establish what you

already know and to raise questions about various scanning
technologies that are currently being used or researched today.
For example, what medical value does an MRI offer over other
diagnostic methods, and is that difference worth the economic
price? How widely available is MRI technology in (a) Canada or
(b) other parts of the developed or underdeveloped world?

2. As a class, design an evaluation scheme, such as a rubric or
rubrics for assessing the task. You could decide to assess 
specific components leading up to the final presentation, 
as well as the presentation itself.

3. Decide on the grouping, or assessment categories, for this task.

4. Familiarize yourself with what you need to know about the
task that you choose. For example, if you choose a debate, it is
important to research the proper rules of debating in order to
carry out the debate effectively.

5. Develop a plan to find, collect, and organize in your research
portfolio the information that is critical to your presentation.

6. Carry out the Course Challenge recommendations that are 
interspersed throughout the textbook wherever the Course
Challenge logo and heading appear, and keep an accurate
record of these in your portfolio.

7. When researching concepts, designing experiments or surveys,
or following a Course Challenge suggestion in the textbook, you
might find that the McGraw-Hill Ryerson Internet site is a good
place to begin: www.mcgrawhill.ca/links/physics12

8. Carry out your plan, making necessary modifications 
throughout the course.

9. Present your arguments to your class. Review each presentation
against the assessment criteria that you decided on as a class.

Evaluate Your Challenge
1. Using the assessment criteria you have prepared, evaluate your

work and presentation. How effectively did your portfolio and
presentation support your arguments? Were others able to 
follow your line of reasoning, based on the evidence, results,
and conclusions you presented? How would you revise your
presentation?

602 MHR • Physics Course Challenge



2. Evaluate your classmates’ Course Challenge presentations.

3. After analyzing the presentations of your classmates, what
changes would you make to your own project if you had the
opportunity to do it again? Provide reasons for your proposed
changes.

4. How did the process required to complete this challenge help
you to think about what you have learned in this course?

Background Information
The following sections provide ideas to consider. They are linked
to topics covered in the course and relate to the Course Challenge
cues in your textbook. Your arguments will be both strengthened
and redirected as you gain knowledge from each unit in this
course. 

Unit 1  Forces and Motion: Dynamics
Frames of Reference 
Chapter 1, page 11

Describing motion in two and three dimensions requires the use 
of vector quantities. Consider the scanning technology that you
have selected for investigation. How is an image obtained? Does
the scanning machinery move, or does the item that is being
scanned move? Does the technology detect motion or the change
in orientation of atomic and subatomic particles? Analyze the
scanning technology you are investigating from the perspective 
of frames of reference. Develop a comprehensive description
detailing how an image is formed based on the location of 
particles in a two- or three-dimensional space.

Unit 2  Energy and Momentum
Momentum 
Chapter 4, page 150

The conservation of momentum is the principle that allows 
navigation in space. Conservation of momentum is a fundamental
property of our universe. Conservation of momentum applies to
planetary, human, and subatomic levels. Investigate possible 
applications of momentum conservation used in the scanning
technology that you are investigating. If the conservation of
momentum applies only to atomic and subatomic interactions, 
you might want to complete your analysis during your study of
Unit 5, Matter-Energy Interface, in the textbook.
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Energy Transformations
Chapter 5, page 217

Producing scanned images requires very controlled energy 
transformations. Investigate the energy path used by the
technology you have chosen to investigate. Answer questions 
such as: What energy is directed at the item to be scanned? 
Is energy absorbed, transmitted, or both? What energy 
transformations occur within the scanned item? What energy
transformations occur at the scanning receiver? Support your 
presentation with quantitative energy transformation analysis. 
Is there an economic, social, or safety aspect relating your 
technology to energy transformation issues?

Unit 3  Electric, Gravitational, and Magnetic Fields
Contact versus Non-Contact
Chapter 7, page 275

You might want to compare contact versus non-contact forces. 
A century ago, a medical examination conducted to identify an
abnormal growth would have involved physical contact, because
the doctor used touch to assess the patient. Current medical 
examinations are able to obtain a much clearer picture of an
abnormal growth inside the body without ever coming into direct
contact with the patient. Consider the scanning technology you
have chosen in these terms.

Field Energy
Chapter 8, page 356

Ultimately, the energy stored in fields will be the basis for the
operation of any scanning technology. Satellite-based technologies
orbit Earth, held in position by the gravitational field. Medical
scans employ powerful magnetic fields to obtain diagnostic
imagery. Investigate how fields play a role in the production of
images in the technology that you are investigating. You might
want to consider your technology in terms of a quantitative 
application of Coulomb’s law.

Unit 4  The Wave Nature of Light
How Far Can It Go?
Chapter 10, page 445

Energy transported in the form of oscillating electric and 
magnetic fields is the fundamental method used in most scanning
technologies. This textbook provides an introduction to some 
of these applications in Chapter 10, Section 10.2, The Electro-
magnetic Spectrum. Consider those discussions while you 
complete your analysis. You might want to direct your arguments
in terms of past and future scientific developments. What has been
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accomplished? What new research is taking place? Are you able 
to predict how scanning technology might change in the next 
five years? Monetary and social arguments fit naturally into 
discussions based on possible changes in the field.

Unit 5  Matter-Energy Interface
Waves and Particles
Chapter 12, page 531

Scientific models evolve when theories are modified and 
validated by new experimental results. Physicists realize that 
electromagnetic radiation can be fully described only by using 
two completely different scientific models. Models are made by
humans and therefore change as more knowledge is acquired. You
might be able to demonstrate that a complete description of your
chosen scanning technology requires both the wave and particle
nature of electromagnetic radiation.

Nuclear Energy
Chapter 13, page 574

Nuclear energy provides electrical power not only to our homes,
but also to most of the satellites orbiting overhead. Nuclear energy
is used to probe living tissue in a variety of medical scanning 
technologies. Investigate nuclear decay rates of various materials
and how they relate to your scanning technology. You might want
to introduce safety and societal issues related to the use of nuclear
material in the technology that you are investigating.

Wrap-Up
These ideas and questions are provided to help you develop your
arguments related to a specific scanning technology. The ultimate
shape of your presentation will be determined by the technology
you choose to investigate, the issues you choose to address, and
your own creativity. In order to prepare a high-quality, in-depth
presentation, you will need to limit the amount of information that
you attempt to present, focussing on the key points. Attempt to
support your ideas with experimental evidence, mathematical 
verification, and comparisons to accepted scientific models. Give
your project added relevance by relating your topic to key societal
issues, such as economic or safety considerations.

Use your Course Challenge presentation to assist your learning
by drawing together topics from each unit of study. As is often the
case with any issue, the quality of discussion improves when
knowledgeable links are made between topics.
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A major component of the scientific inquiry
process is the comparison of experimental results
with predicted or accepted theoretical values. In 
conducting experiments, you must realize that all
measurements have a maximum degree of 
certainty, beyond which there is uncertainty. The
uncertainty, often referred to as “error,” is not a
result of a mistake, but rather, it is caused by the
limitations of the equipment or the experimenter.
The best scientist, using all possible care, could
not measure the height of a doorway to a fraction
of a millimetre accuracy using a metre stick. The
uncertainty introduced through measurement
must be communicated using specific vocabulary.
Experimental results can be characterized by both
their accuracy and their precision.

Precision describes the exactness and repeat-
abilty of a value or set of values. A set of data
could be grouped very tightly, demonstrating
good precision, but not necessarily be accurate.
The darts in illustration (A) missed the bull’s-eye
and yet are tightly grouped, demonstrating preci-
sion without accuracy.

Differentiating between accuracy and precision

Accuracy describes the degree to which the result
of an experiment or calculation approximates 
the true value. The darts in illustration (B) missed
the bull’s-eye in different directions, but are all 
relatively the same distance away from the centre.
The darts demonstrate three throws that share
approximately the same accuracy, with limited
precision.

The darts in illustration (C) demonstrate accuracy
and precision. 

Random Error 
� Random error results from small variations in

measurements due to randomly changing 
conditions (weather, humidity, quality of 
equipment, level of care, etc.).

� Repeating trials will reduce but never eliminate
random error.

� Random error is unbiased.

� Random error affects precision.

Systematic Error
� Systematic error results from consistent bias in

observation.
� Repeating trials will not reduce systematic

error.
� Three types of systematic error are natural

error, instrument-calibration error, and 
personal error.

� Systematic error affects accuracy.

Error Analysis
Error exists in every measured or experimentally
obtained value. The error could deal with
extremely tiny values, such as wavelengths of
light, or with large values, such as the distances
between stars. A practical way to illustrate the
error is to compare it to the specific data as a 
percentage.

Relative Uncertainty
Relative uncertainty calculations are used to
determine the error introduced by the natural 
limitations of the equipment used to collect the
data. For instance, measuring the width of your
textbook will have a certain degree of error due to
the quality of the equipment used. This error,
called “estimated uncertainty,” has been deemed
by the scientific community to be half of the
smallest division of the measuring device. A
metre stick with only centimetres marked would
have an error of ±0.5 cm. A ruler that includes
millimetre divisions would have a smaller error
of ±0.5 mm. The measure should be recorded
showing the estimated uncertainty, such as 
21.00 ± 0.5 cm. Use the relative uncertainty 
equation to convert the estimated uncertainty into
a percentage of the actual measured value.

Estimated uncertainty is accepted to be half of the small-
est visible division. In this case, the estimated uncertainty
is ±0.5 mm for the top ruler and ±0.5 cm for the bottom
ruler.

0 mm 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 cm 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A B C
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relative uncertainty = estimated uncertainty
actual measurement × 100%

Example: 
Converting the error represented by 
21.00 ± 0.5 cm to a percentage

relative uncertainty = 0.05 cm
21.00 cm × 100%

relative uncertainty = 0.2%

Percent Deviation
In conducting experiments, it frequently is 
unreasonable to expect that accepted theoretical
values can be verified, because of the limitations
of available equipment. In such cases, percent
deviation calculations are made. For instance, the
standard value for acceleration due to gravity on
Earth is 9.81 m/s2 toward the centre of Earth in a
vacuum. Conducting a crude experiment to verify
this value might yield a value of 9.6 m/s2. This
result deviates from the accepted standard value.
It is not necessarily due to error. The deviation, 
as with most high school experiments, might be
due to physical differences in the actual lab (for
example, the experiment might not have been
conducted in a vacuum). Therefore, deviation is
not necessarily due to error, but could be the
result of experimental conditions that should be
explained as part of the error analysis. Use the
percent deviation equation to determine how
close the experimental results are to the accepted
or theoretical value.

percent deviation =∣∣∣ experimental value − theoretical value
theoretical value

∣∣∣ × 100%

Example:

percent deviation =
|9.6 m

s2 − 9.8 m
s2 |

9.8 m
s2

× 100%

percent deviation = 2%

Percent Difference
Experimental inquiry does not always involve 
an attempt at verifying a theoretical value. For
instance, measurements made in determining the
width of your textbook do not have a theoretical
value based on a scientific theory. You still might
want to know, however, how precise your meas-
urements were. Suppose you measured the width
100 times and found that the smallest width
measurement was 20.6 cm, the largest was 
21.4 cm, and the average measurement of all 
100 trials was 21.0 cm. The error contained in
your ability to measure the width of the textbook
can be estimated using the percent difference
equation.

percent difference =
maximum difference in measurements

average measurement × 100%

Example:

percent difference = (21.4 cm − 20.6 cm)
21.0 cm × 100%

percent difference = 4%
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1. In Sèvres, France, a platinum–iridium 
cylinder is kept in a vacuum under lock and
key. It is the standard kilogram with mass
1.0000 kg. Imagine you were granted the
opportunity to experiment with this special
mass, and obtained the following data: 
1.32 kg, 1.33 kg, and 1.31 kg. Describe your
results in terms of precision and accuracy.

2. You found that an improperly zeroed triple-
beam balance affected the results obtained in
question 1. If you used this balance for each
measure, what type of error did it introduce?

3. Describe a fictitious experiment with 
obvious random error.

4. Describe a fictitious experiment with 
obvious systematic error.

5. (a) Using common scientific practice, find 
the estimated uncertainty of a stopwatch 
that displays up to a hundredth of a 
second.

(b) If you were to use the stopwatch in
part (a) to time repeated events that lasted
less than 2.0 s, could you argue that the
estimated uncertainty from part (a) is not
sufficient? Explain.
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When working with experimental data, follow
basic rules to ensure that accuracy and precision
are not either overstated or compromised.
Consider the 100 m sprint race. Several people
using different equipment could have timed the
winner of the race. The times might not agree, but
would all be accurate within the capability of the
equipment used.

Sprinter’s Time with Different Devices

Using the example of the 100 m race, you will
solidify ideas you need to know about exact 
numbers, number precision, number accuracy,
and significant digits.
Exact Numbers If there were eight competitors in
the race, then the number 8 is considered to be an
exact number. Whenever objects are counted,
number accuracy and significant digits are not
involved.
Number Precision If our race winner wants a
very precise value of her time, she would want 
to see the photogate result. The electronic 
equipment is able to provide a time value accu-
rate to 1/1000th of a second. The time recorded
using the second hand on a dial watch is not able
to provide nearly as precise a value.
Number Accuracy and Significant Digits The
race winner goes home to share the good news.
She decides to share the fastest time with her

family. What timing method does she share? She
would share the 11 s time recorded using the sec-
ond hand of a dial watch. All of the other meth-
ods provide data that has her taking a longer time
to cross the finish line. Is the 11 s value accurate?

The 11 s value is accurate to within ±0.5 s, 
following common scientific practice of estimat-
ing error. The 11.356 s time is accurate to within
0.0005 s. The photogate time is simply more 
precise. It would be inaccurate to write the photo-
gate time as 11.356 00 s. In that case, you would
be adding precision that goes beyond the ability
of the equipment used to collect the data, as the
photogate method can measure time only to the
thousandths of a second. Scientists have devised
a system to help ensure that number accuracy and
number precision are maintained. It is a system 
of significant digits, which requires that the 
precision of a value does not exceed either (a) the
precision of the equipment used to obtain it or 
(b) the least precise number used in a calculation
to determine the value. The table on the left 
provides the number of significant digits for each
measurement of the sprinter’s times.

There are strict rules used to determine the 
number of significant digits in a given value.

When Digits Are Significant ✔ 

1. All non-zero digits are significant (159 — three
significant digits).

2. Any zeros between two non-zero digits are 
significant (109 — three significant digits).

3. Any zeros to the right of both the decimal
point and a non-zero digit are significant
(1.900 — four significant digits).

4. All digits (zero or non-zero) used in scientific
notation are significant.

When Digits Are Not Significant ✘

1. Any zeros to the right of the decimal point but
preceding a non-zero digit are not significant;
they are placeholders. For example, 
0.000 19 kg = 0.19 g (two significant digits).

2. Ambiguous case: Any zeros to the right of a
non-zero digit are not significant; they are
placeholders (2500 — two significant digits). 
If the zeros are intended to be significant, then
scientific notation must be used. For example,
2.5 × 103 (two significant digits) and
2.500 × 103 (four significant digits).

Time (s)

11.356

11.36

11.4

11

Estimated error
of device (s)

±0.000 5

±0.005

±0.05

±0.5

Device

photogate timer

digital stopwatch

digital stopwatch

second hand of a dial 
watch
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Calculations and Accuracy As a general rule,
accuracy is maintained though mathematical cal-
culations by ensuring that the final answer has
the same number of significant digits as the least
precise number used during the calculations.
Example:
Find the product of these lengths. 
12.5 m     16 m     15.88 m
Product = 12.5 m × 16 m × 15.88 m
Product = 3176 m3

Considering each data point, notice that 16 has
only two significant digits; therefore the answer
must be shown with only two significant digits.
Total length = 3.2 × 103 m (two significant digits)
Rounding to Maintain Accuracy It would seem
that rounding numbers would introduce error, but
in fact, proper rounding is required to help main-
tain accuracy. This point can be illustrated by
multiplying two values with differing numbers of
significant digits. As you know, the right-most
digit in any data point contains some uncertainty.
It follows that any calculations using these uncer-
tain digits will yield uncertain results.

Notice that this value contains two significant
digits, which follows the general rule.
Showing results of calculations with every digit
obtained actually introduces inaccuracy. The
number would be represented as having 
significantly more precision than it really has. It
is necessary to round numbers to the appropriate
number of significant digits.
Rounding Rules When extra significant digits
exist in a result, rounding is required to maintain
accuracy. Rounding is not simply removing 
the extra digits. There are three distinct 
rounding rules.

1. Rounding Down
When the digits dropped are less than 
5, 50, 500, etc., the remaining digit is 
left unchanged.

Example:
4.123 becomes
4.12 rounding based on the “3”
4.1 rounding based on the “23”

2. Rounding Up
When the digits dropped are greater than 5,
50, 500, etc., the remaining digit is increased
or rounded up.
Example:
4.756 becomes
4.76 rounding based on the “6”
4.8 rounding based on the “56”

3. Rounding with 5, 50, 500, etc.
When the digits dropped are exactly equal to
5, 50, 500, etc., the remaining digit is rounded
to the closest even number.
Example:
4.850 becomes
4.8 rounding based on “50”
4.750 becomes
4.8 rounding based on “50”

Always carry extra digits throughout a 
calculation, rounding only the final answer.
Scientific Notation Numbers in science are some-
times very large or very small. For example, the
distance from Earth to the Sun is approximated as
150 000 000 000 m and the wavelength of red
light is 0.000 000 65 m. Scientific notation allows
a more efficient method of writing these types of
numbers.
� Scientific notation requires that a single digit

between 1 and 9 be followed by the decimal
and all remaining significant digits.

� The number of places the decimal must move
determines the exponent.

� Numbers greater than 1 require a positive 
exponent.

� Numbers less than 1 require a negative 
exponent.

� Only significant digits are represented in 
scientific notation.

Example:

becomes 1.5 × 1011 m

becomes 6.5 × 10−7 m0.0 0 0 0 0 0 6.5

1 5 0 0 0 0 0 0 0 0 0 0 .

Multiply 32 and 13.55. The last digit, being the most uncertain, 
is highlighted.
  13.55
    × 32
   2710 Each digit in this line is obtained using an uncertain digit.
 4065   In this line only the 5 is obtained using uncertain digits.
433.60
The product 433.60 should be rounded so that the last digit 
shown is the only one with uncertainty. Therefore, 4.3 × 102.
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1. There are a dozen apples in a bowl. In this
case, what type of number is 12?

2. Put the following numbers in order from
most precise to least precise.
(a) 3.2, 5.88, 8, 8.965, 1.000 08
(b) 6.22, 8.5, 4.005, 1.2000 × 10−8

3. How many significant digits are 
represented by each value?
(a) 215 (g) 0.006 04
(b) 31 (h) 1.250 000
(c) 3.25 ( i ) 1 × 106

(d) 0.56 ( j ) 3.8 × 104

(e) 1.06 (k) 6.807 × 1058

(f ) 0.002 ( l ) 3.000 × 108

4. Round the following values to two 
significant digits.
(a) 1.23 (e) 6.250
(b) 2.348 (f ) 4.500
(c) 5.86 (g) 5.500
(d) 6.851 (h) 9.950

5. Complete the following calculations. 
Provide the final answer to the 
correct number of significant digits.
(a) 2.358 × 4.1
(b) 102 ÷ 0.35
(c) 2.1 + 5.88 + 6.0 + 8.526
(d) 12.1 − 4.2 − 3

6. Write each of the following in scientific
notation.
(a) 2.5597 (c) 0.256
(b) 1000 (d) 0.000 050 8

7. Write each value from question 6 in 
scientific notation accurate to three 
significant digits.
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Graphical analysis of scientific data is used to
determine trends. Good communication requires
that graphs be produced using a standard method.
Careful analysis of a graph could reveal more 
information than the data alone.

Standards for Drawing a Graph
� Independent variable is plotted along the 

horizontal axis (include units).
� Dependent variable is plotted along the vertical

axis (include units).
� Decide whether the origin (0,0) is a valid data

point.
� Select convenient scaling on the graph paper

that will spread the data out as much as 
possible.

� A small circle is drawn around each data point
to represent possible error.

� Determine a trend in the data — draw a best-fit
line or best-fit smooth curve. Data points
should never be connected directly when 
finding a trend.

� Select a title that clearly identifies what the
graph represents.

Constructing a linear graph

Constructing a non-linear graph

Interpolation and Extrapolation
A best-fit line or best-fit smooth curve that is
extended beyond the size of the data set should
be shown as a dashed line. You are extrapolating
values when you read them from the dashed-line
region of the graph. You are interpolating values
when you read them from the solid-line region of
the graph.

Find a Trend
The best-fit line or smooth curve provides insight
into the type of relationship between the variables
represented in a graph. 
A best-fit line is drawn so that it matches the 
general trend of the data. You should try to have
as many points above the line as are below it. Do
not cause the line to change slope dramatically to
include only one data point that does not seem to
be in line with all of the others.
A best-fit smooth curve should be drawn so that it
matches the general trend of the data. You should
try to have as many points above the line as are
below it, but ensure that the curve changes
smoothly. Do not cause the curve to change 
direction dramatically to include only one data
point that does not seem to be in line with all 
of the others.

Definition of a Linear Relationship
A data set that is most accurately represented
with a straight line is said to be linear. Data 
related by a linear relationship can be written 
in the form

y = mx + b

Quantity Symbol SI unit
y value 
(dependent variable) y obtained from the vertical axis
x value 
(independent variable) x obtained from the horizontal axis
slope of the line m rise/run
y-intercept b obtained from the vertical axis

when x is zero

D
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d
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t 
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Never “force” a line through the origin.

circle around point 
represents error

potential error in data set 
independent variable

best-fit 
smooth curve

extrapolated region

Never “force” a line through the origin.

circle around point 
represents error

potential error in data set
independent variable

best-fit line extrapolated region
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en
d
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t 
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Slope (m)
Calculating the slope of a line

slope (m) = vertical change (rise)
horizontal change (run)

m = ∆y
∆x

m = y2 − y1

x2 − x1
, x2 ≠ x1

Mathematically, slope provides a measure of the
steepness of a line by dividing the vertical change
(rise) by the horizontal change (run). In scientific
situations, it is also very important to include
units of the slope. The units will provide physical
significance to the slope value.

For example:

Including the units throughout the calculation helps verify
the physical quantity that the slope represents.

m = rise (N)
run (m/s2)

m = kg · m/s2

m/s2

m = kg

Recall : 1 N = 1 kg · m/s2

In this example, the slope of the line represents
the physical quantity of mass.

Definition of a Non-Linear Relationship
A data set that is most accurately represented
with a smooth curve is said to be non-linear. 
Data related by a non-linear relationship can take 
several different forms. Two common non-linear
relationships are as follows.
(a) parabolic y = ax2 + k

(b) inverse y = 1
x

Area Under a Curve
Mathematically, the area under a curve can be
obtained without the use of calculus by finding
the area using geometric shapes.

Always include units in area calculations. 
The units will provide physical significance 
to the area value. For example, see below.

Including the units throughout the calculation helps 
verify the physical quantity that the area represents.

Area = (length)(width)
Area = (velocity)(time)
Area = (m/s)(s)
Area = m (base unit for displacement)

The units verify that the area under a speed- 
versus-time curve represents displacement (m).

Time (s)

V
el

oc
it

y 
   

  m s

t

d

Total area = 
area 1 + area 2 + area 3 …

0
0

Total area = 
area of the rectangle +

 area of the triangle

t

d

0
0

0
0 t

d

Total area = length × width

y

0

rise (N)

run (m/s2)

Acceleration (m/s2)

F
or

ce
 (

N
)

x

y

x0

P(x1, y1)

Q(x2, y2)

vertical 
change (rise)
y2 – y1 or ∆y

horizontal change (run)
x2 – x1 or ∆x
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1. (a) Plot the data in Table 1 by hand, ensuring
that it fills at least two thirds of the page
and has clearly labelled axes that include
the units.

(b) Draw a best-fit line through the plotted
data.

(c) Based on the data trend and the best-fit
line, which data point seems to be most
in error?

(d) Interpolate the time it would take to 
travel 14 m.

(e) Extrapolate to find how far the object
would travel in 20 s.

Table 1

2. (a) Plot the data in Table 2 by hand, 
ensuring that it fills at least two thirds 
of the page and has clearly labelled axes
that include the units.

(b) Draw a best-fit smooth curve through 
the plotted data.

(c) Does this smooth curve represent a 
linear or non-linear relationship?

(d) At what force is the position at the 
greatest value?

Table 2

3. Find the area of the shaded regions under
the following graphs. Use the units to 
determine the physical quantity that the 
area represents.

(a)

(b)

(c)

V
el

oc
it

y 
(m

/s
)

−2

−4

0

2

4

2 4 6 8 10 12

Time (s)
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N
)
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8

0 20 40 60 80
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(m
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2 )
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0 5 10 15
Time (s)

Position (m)Force (N) Position (m)Force (N)

0.0

0.5

0.9

1.3

1.6

1.9

2.1

2.3

2.4

2.5

2.6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
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1.7
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0.7

0.2
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2
Time (s) Distance (m) Time (s) Distance (m)
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Patterns in quantitative data can be expressed 
in the form of mathematical equations. These
relationships form a type of mathematical model
of the phenomenon being studied. You can use
the model to examine trends and to make testable
numerical predictions. 

Identifying Types of Relationships
Graphing data is a common way of revealing 
patterns. Simply by drawing a best-fit curve
through the data points, it might be possible to
identify a general type of mathematical relation-
ship expressed in the observations. Four common
patterns are illustrated below. Each pattern can be
expressed algebraically as a proportionality state-
ment (a ∝ b) or as an equation. In mathematics
courses, you might also have studied the graphs
and equations of logarithmic, sinusoidal, or other
types of relationships.

Basic mathematical relationships

Linear Relationships
In previous studies, you have used the straight-
line graph of a linear relationship to produce a

specific mathematical equation that represents the
graph. The equation is completely determined by
the slope, m, of the graph and its y-intercept, b. 

The equation of a straight-line graph

slope (m) = vertical change (rise)
horizontal change (run) = ∆y

∆x

m = y2 − y1

x2 − x1
, x2 ≠ x1

Equation of the line: y = mx + b

Straightening Non-Linear Graphs
You can often produce a straight-line graph from
a non-linear relationship by making an appropri-
ate choice of independent variables for the graph.
By analyzing the resulting straight line, you can
obtain an equation that fits the data. This proce-
dure, which is called “curve straightening,” 
produces equations of the form 

(quantity on the vertical axis =
m (quantity on the horizontal axis) + b

You can straighten a curve by selecting the
quantity graphed on the horizontal axis to match
the general type of variation shown by the data. 
If the independent variable is x and you suspect
� inverse variation: plot 1

x or 1
x2 or 1

x3 on the 
horizontal axis

� exponential variation: plot x2 or x3 on the 
horizontal axis

� root variation: plot x
1
2 or x

1
3 on the horizontal

axis

There is no mathematical reason why other
exponents could not be used. Most phenomena
examined in this course, however, are best 
modelled using integer exponents or roots no
greater than three. 

y

x0

P1(x1, y1)

P2(x2, y2)

vertical 
change (rise)
y2 – y1 or ∆y

horizontal change (run)
x2 – x1 or ∆x

y

x
Independent

variable
A  linear B  inverse
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x
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y

x
Independent

variable
C  exponential D  root
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x
Independent

variable
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y ∝ x
y = kx y = kx−n

y ∝ xn

y = kxn
y ∝ n

√
x or y ∝ x

1
n

y = kx
1
n

y ∝ 1
xn or y ∝ x−n
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Procedure

1. From a table of raw data for two variables, x
and y, produce an initial graph of y versus x. 

2. Identify the general type of relationship shown
by the graph.

3. Modify the independent variable to suit the
proposed type of relationship. Add the new
quantity to your data table and then draw a
new graph of y against this quantity derived
from x.

4. If the new graph is a straight line, calculate its
slope and y-intercept. Use these values to
write and simplify an equation to represent
the data.

5. If the new graph is not a straight line, repeat
steps 3 and 4, using a different modification of
the independent variable until you obtain a
straight-line graph.

Example

A force of 1.96 N was used to accelerate a lab cart
with mass 0.225 kg. The mass of the cart was then
systematically increased, producing the accelera-
tions shown below. Find an equation that repre-
sents this data.

1. Graph the raw data.
Acceleration against mass

2. Identify the type of variation. This graph
shows inverse variation.

3. Modify the independent variable, extend the
data table, and regraph the data. Choose the
most simple possibility, 1

mass , to investigate.

Acceleration against 1
mass

4. Since the graph is a straight line, use its slope
and y-intercept to obtain its equation. 

slope (m) = 1.96

y-intercept (b) 0.0500 

Equation of the line

(quantity on the vertical axis) =
m (quantity on the horizontal axis) + b

acceleration = 1.96
( 1

mass

)
+ 0.0500

acceleration = 1.96
m + 0.0500

5. If the graph had not been a straight line, the
next most simple variation of the independent
variable would have been considered: 1

(mass)2 .

6. The equation determined from the data is 
reasonable, because the situation is an 
example of Newton’s second law, F = ma.
Solved for acceleration, this becomes a = F

m , 
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m
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2 )

1
mass

(kg−1)

2.0

4.0
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8.0

0 1.0 2.0 3.0 4.0 5.0
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Acceleration m
s2
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2.35

1.90
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1.38
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Mass (kg)

0.225

0.325

0.425

0.525

0.625

0.725

8.71
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4.70

3.73

3.09

2.81

Acceleration ( m
s2 )
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or a = F
( 1

m

)
, which has the same form as the 

equation for the graph. The slope of the graph
represents the force applied to the cart. 
The y-intercept, 0.0500, is probably due to 
experimental error, as the graph should pass
through the origin.

Points to Remember

Make sure that the scales on your graph axes start
at zero. Otherwise, you will see a magnified view
of only a small portion of the graph. The overall
shape of the graph might not be shown, so it will
be difficult to identify the type of variation in the
data. Part of a gentle curve, for example, can
appear to be a straight line.

Sometimes it is a good idea to look at only part
of a data set. The relationship between force
applied to a spring and its extension (Hooke’s
law), for example, is linear, as long as the force
does not exceed a certain value. Rather than try-
ing to find a relationship that fits the entire graph,
only the linear portion is usually considered. An
initial graph of your data will show parts that are
easy to model and will also reveal data points

that are far from the best-fit line. Obvious errors
are often excluded when developing equations to
fit data.

Some computer programs are capable of auto-
matic curve fitting. The resulting equations might
fit experimental data well, without being very
helpful. If you suspect that a certain phenomenon
follows an inverse square law, for example, it 
would be sensible to choose 1

(dependent variable)2 as 

the quantity to graph. Then you can determine
how closely your observations approach an ideal
model.

You might want to investigate other aspects of
mathematical modelling. If you are familiar with
logarithms, for example, consider the advantages
and disadvantages of curve straightening by
graphing, or the use of log or semi-log graph
paper. You might also look into correlation 
coefficients, statistical measures that can express
how well a given equation models a set of data.
Finally, you might explore the use of power 
series to produce approximations of complex 
relationships.
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1. Name the type of relationship represented
by each graph below and write the relation-
ship as a proportion and as a general 
equation.

2. The graph in the next column shows the
force of static friction when you push 

different masses placed on a horizontal 
carpet and they start to move.

(a) Determine the slope and intercept of the
graph below.

(b) Write an equation that represents the
data.

(c) Explain the physical meaning of each
numerical coefficient in the equation.

Static friction between 
leather-soled shoes and a carpet

Mass (kg)
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3. For each of the following relationships, use
curve-straightening techniques to determine
an equation that represents the data. If 
possible, validate your solution by giving
physical reasons why the relationship must
have the form it does.
(a) The gravitational attraction between two

lead spheres in a Cavendish apparatus
depends on the separation between their
centres.

(b) The buoyant force on a spherical weather
balloon depends on how much the balloon
is inflated (the volume of the balloon).

(c) The power dissipated by a light bulb is
related to the electric current flowing
through the light bulb.

(d) The kinetic energy of a moving car
depends on the car’s velocity.

15

25

35

45

55

65

15.4

42.7

83.8

139.4

208.9

289.8

Kinetic energy (kJ)Velocity km
h( )

Electrical current (A)

16.0

20.6

26.3

32.0

35.7

41.2

15

25

40

60

75

100

Power (W)

Radius of balloon (m)

2.285

2.616

2.879

3.102

3.296

3.470

3.628

569

855

1135

1422

1709

1993

2281

Force (N)

Separation (cm)

55

70

85

100

115

130

3.13

1.93

1.31

0.946

0.715

0.560

Gravitational force (N × 10−9)



Trigonometric Ratios
The ratios of side lengths from a right-angle trian-
gle can be used to define the basic trigonometric
function sine (sin), cosine (cos), and tangent (tan).

sin θ = opposite
hypotenuse

sin θ = a
c

cos θ = adjacent
hypotenuse

cos θ = b
c

tan θ = opposite
adjacent

tan θ = a
b

The angle selected determines which side will be
called the opposite side and which the adjacent
side. The hypotenuse is always the side across
from the 90˚ angle. Picture yourself standing on
top of the angle you select. The side that is direct-
ly across from your position is called the opposite
side. The side that you could touch and is not the
hypotenuse is the adjacent side.

A scientific calculator or trigonometry tables can
be used to obtain an angle value from the ratio
result. Your calculator performs a complex 
calculation (Maclaurin series summation) when
the sin−1, or cos−1, or tan−1 operation is used to
determine the angle value. Sin−1 is not simply a
1/sin operation.

α

adjacent

θ

opposite

C B

A

θ

a

cb
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A Math Toolbox

Circumference/
perimeter Area Surface area Volume

SA = 4πr2

SA = 6s2

V = πr2h

V = πr3

V = s3

SA = 2πrh + 2πr2

P = 4s

P = 2l + 2w

A = πr2

A = s2

A = lw

A = 1
2 bh

4
3

C = 2πr

s
ss

h

r

r

r

s
s

w
l

h

b



Definition of the Pythagorean Theorem
The Pythagorean theorem is used to determine
side lengths of a right-angle (90˚) triangle. Given 
a right-angle triangle ABC, the Pythagorean 
theorem states

c2 = a2 + b2

Quantity Symbol SI unit
hypotenuse side is 
opposite the 90˚angle c m (metres)
side a a m (metres)
side b b m (metres)

Note: The hypotenuse is always the side across
from the right (90˚) angle. The Pythagorean 
theorem is a special case of a more general 
mathematical law called the “cosine law.” The
cosine law works for all triangles. 

Definition of the Cosine Law
The cosine law is useful when
� determining the length of an unknown side

given two side lengths and the contained angle
between them 

� determining an unknown angle given all side
lengths

Angle θ is contained 
between sides a and b.

The cosine law states c2 = a2 + b2 − 2ab cosθ .

Quantity Symbol SI unit
unknown length side c
opposite angle θ c m (metres)
length side a a m (metres)
length side b b m (metres)
angle θ opposite unknown side c θ (radians)

Note: Applying the cosine law to a right angle 
triangle, setting θ = 90˚, yields the special case of
the Pythagorean theorem.

Definition of the Sine Law
The sine law is useful when
� two angles and any one side length are 

known 
� two side lengths and any one angle are 

known

Given any triangle ABC the sine law states

sin A
a = sin B

b = sin C
c

Quantity Symbol SI unit
length side a opposite angle A a m (metres)
length side b opposite angle B b m (metres)
length side c opposite angle C c m (metres)
angle A opposite side a A (radians)
angle B opposite side b B (radians)
angle C opposite side c C (radians)

Note: The sine law generates ambiguous results in
some situations because it does not discriminate
between obtuse and acute triangles. An example
of the ambiguous case is shown below.

Example
Use the sine law to solve for θ.

Sine law: 
ambiguous case

sinθ
8.2 = sin11.5˚

3.3

sin θ = 0.5

θ = 30˚

Clearly, angle θ is much greater than 30˚. In this
case, the supplementary angle is required
(180˚ − 30˚ = 150˚). It is important to recognize
when dealing with obtuse angles (> 90˚) that the
supplementary angle might be required.
Application of the cosine law in these situations
will help reduce the potential for error.

Algebra
In some situations, it might be preferable to use
algebraic manipulation of equations to solve for a
specific variable before substituting numbers.
Algebraic manipulation of variables follows the
same rules that are used to solve equations after
substituting values. In both cases, to maintain
equality, whatever is done to one side must be
done to the other.

3.3 cm

8.2 cm

11.5˚

θ

b

c a

A C

B

a

θ

c
b
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Definition of the Quadratic Formula
The quadratic equation is used to solve for the
roots of a quadratic function. Given a quadratic
equation in the form ax2 + bx + c = 0, where a, b,
and c are real numbers and a ≠ 0, the roots of it
can be found using

x = −b ±
√

b2 − 4ac
2a

Statistical Analysis
In science, data are collected until a trend is
observed. Three statistical tools that assist in
determining if a trend is developing are mean,
median, and mode.

Mean: The sum of the numbers divided by the
number of values. It is also called the
“average.”

Median: When a set of numbers is organized in
order of size, the median is the middle
number. When the data set contains an
even number of values, the median is
the average of the two middle numbers.

Mode: The number that occurs most often in a
set of numbers. Some data sets will have
more than one mode. 

See examples of these on the following page.
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Solving for “x” before 
Numerical Substitution
(a) A = kx

A
k = kx

k
A
k = x

x = A
k

x is multiplied by k, so
divide by k to isolate x.
Divide both sides of the equation
by k.
Simplify. 
Rewrite with x on the left side.

(b) B = x
g

Bg = xg
g

Bg = x
x = Bg

x is divided by g, so
multiply by g to isolate x. 
Multiply both sides of the 
equation by g.
Simplify. 
Rewrite with x on the left side.

(c) W = x + f
W − f = x + f − f

W − f = x
x = W − f

x is added to f, so
subtract f to isolate x.
Subtract f on both sides 
of the equation. 
Simplify. 
Rearrange for x.

(d) W =
√

x
W2 = (

√
x)2

W2 = x
x = W2

x is under a square root, 
so square both sides of 
the equation. 
Simplify. 
Rearrange for x.

Solving for “x” after 
Numerical Substitution
(a) 8 = 2x

8
2 = 2x

2

4 = x

x = 4

x is multiplied by 2, so
divide by 2 to isolate x.
Divide both sides of the 
equation by 2. 
Simplify.
Rewrite with x on the left
side.

(b) 8 = x
4

(10)(4) = 4x
4

40 = x

x = 40

x is divided by 4, so
multiply by 4 to isolate x. 
Multiply both sides of the 
equation by 4. 
Simplify. 
Rewrite with x on the 
left-hand side.

(c) 25 = x + 13

25 − 13 = x + 13 − 13

12 = x

x = 12

x is added to 13, so
subtract 13 to 
isolate x. 
Subtract 13 from
both sides of the
equation. 
Simplify. 
Rewrite with x on 
the left-hand side.

(d) 6 =
√

x

62 = (
√

x)2

36 = x
x = 36

x is under a 
square root, so
square both sides of the 
equation.
Simplify. 
Rewrite with x on the 
left-hand side.



Example 1: 
Odd number of data points

Data Set 1: 12, 11, 15, 14, 11, 16, 13

mean = 12 + 11 + 15 + 14 + 11 + 16 + 13
7

mean = 13
reorganized data = 11, 11, 12, 13, 14, 15, 16

median = 13
mode = 11

Example 2:
Even number of data points
Data Set 2: 87, 95, 85, 63, 74, 76, 87, 64, 87, 64,
92, 64

mean = (87 + 95 + 85 + 63 + 74 + 76 + 87 + 64 + 87 + 64 + 92 + 64)
12

mean = 78

reorganized data = 63, 64, 64, 64, 74, 76, 85, 87, 87, 87, 92, 95

median = (76 + 85)
2

median = 80

An even number of data points requires that the
middle two numbers be averaged.

mode = 64, 87

In this example, the data set is bimodal (contains
two modes).
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1. Calculate the area of a circle with radius 
6.5 m.

2. By how much does the surface area of 
a sphere increase when the radius is 
doubled?

3. By how much does the volume of a sphere
increase when the radius is doubled?

4. Find all unknown angles and side lengths.
(a) (b)

(c)

5. Use the cosine law
to solve for the
unknown side.

6. Use the sine law 
to solve for the
unknown sides.

7. Solve for x in each 
of the following.
(a) 42 = 7x
(b) 30 = x/5
(c) 12 = x sin 30˚
(d) 8 = 2x − 124

8. Solve for x in each of the following.
(a) F = kx (d) b = d cos x
(b) G = hk + x (e) a = bc + x2

(c) a = bx cosθ (f) T = 2π
√

1
x

9. Use the quadratic equation to find the roots
of the function.
4x2 + 15x + 13 = 0

10. Find the mean, median, and mode of each
data set.
(a) 25, 38, 55, 58, 60, 61, 61, 65, 70, 74, 74, 

74, 78, 79, 82, 85, 90
(b) 13, 14, 16, 17, 18, 20, 20, 22, 26, 30, 31,

32, 32, 35

CB
49˚ 56˚

83 m

A

S T

R

10 m

20 m
40˚

17 kmN S

O

54˚

29 cm 

G

F B

65˚
22 m

DE

C

33˚
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Fundamental Physical Quantities 
Metric System Prefixes and Their SI Units

Derived SI Units

Quantity
Quantity
symbol

Unit
symbol

Equivalent
unit(s)Unit

kg m/s2

N m, kg m2/s2

N m, kg m2/s2

N/m2, kg
s−1

s−1

kg m2/(C2 s)

T ˚C = (T + 273.15) K
1u = 1.660 566 × 10−27 kg
1 eV = 1.602 × 10−19 J

kg m2/s3J/s,

W/A, J/C,

V/A,

N s/(C m), N/(A m)
V s,  

A s  

T

J/kg m2/s2

kgm2 /(C s)

area
volume
velocity
acceleration

force
work
energy
power
density
pressure
frequency
period
wavelength
electric charge
electric potential

resistance

magnetic field intensity
magnetic flux
radioactivity
radiation dose
temperature (Celsius)

A
V
v
a

F
W
E
P
ρ
p
f
T
λ
Q
V

R

B
Φ

∆N/∆t

T

square metre
cubic metre
metre per second
metre per second
 per second
newton
joule
joule
watt
kilogram per cubic metre
pascal
hertz
second
metre
coulomb
volt

ohm

tesla
weber
becquerel
gray
degree Celsius
atomic mass unit
electron volt

m2

m3

m/s

m/s2

N
J
J

W
kg/m3

Pa
Hz
s
m
C
V

Ω

T
Wb
Bq
Gy
˚C
u

eV

kg m2

m2,

/(C s2)

/(m s2)

Quantity Unit Symbol

metre
kilogram
second
Kelvin
ampère
(amp)
mole

m
kg
s
K
A

mol

Symbol

l
m
t
T
I

mol

length
mass
time
absolute temperature
electric current

amount of substance

Prefix Symbol Factor

1 000 000 000 000 = 1012  

 1 000 000 000 = 109    

 1 000 000 = 106    

 1000 = 103    

 100 = 102    

 10 = 101    

 1 = 100    

0.1 = 10−1  

0.01 = 10−2  

0.001 = 10−3  

0.000 001 = 10−6  

0.000 000 001 = 10−9  

0.000 000 000 001 = 10−12

0.000 000 000 000 001 = 10−15

0.000 000 000 000 000 001 = 10−18

tera
giga
mega
kilo
hecto
deca

deci
centi
milli
micro
nano
pico
femto
atto

T
G
M
k
h
da

d
c
m
µ
n
p
f
a
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Fundamental Physical Constants Electric Circuit Symbols

Other Physical Data

Resistor Colour Codes

Colour
Digit

represented Multiplier Tolerance

× 1
× 1.0 × 101

× 1.0 × 102

× 1.0 × 103

× 1.0 × 104

× 1.0 × 105

× 1.0 × 106

× 1.0 × 107

× 1.0 × 108

× 1.0 × 109

× 1.0 × 10−1

× 1.0 × 10−2

black
brown
red
orange
yellow
green
blue
violet
gray
white
gold
silver
no colour

0
1
2
3
4
5
6
7
8
9

5%
10%
20%

Quantity Symbol Accepted value

1.013 × 105 Pa

1.000 × 103 kg/m3

3.34 × 105 J/kg
2.26 × 106 J/kg

3.6 × 106 J
9.81 m/s2 (standard value; at sea level)
5.98 × 1024 kg
6.38 × 106 m
1.49 × 1011 m
365.25 days or 3.16 × 107 s
7.36 × 1022 kg
1.74 × 106 m

83.84 × 10 m
27.3 days or 2.36 × 106 s

301.99 × 10 kg
6.96 × 108 m

343 m/s (at 20˚C)

4186 J/(kg˚C)

standard atmospheric pressure
speed of sound in air 
water: density (4˚C)

latent heat of fusion
latent heat of vaporization
specific heat capacity (15˚C)

kilowatt hour
acceleration due to Earth’s gravity 
mass of Earth
mean radius of Earth
mean radius of Earth’s orbit
period of Earth’s orbit
mass of Moon
mean radius of Moon
mean radius of Moon’s orbit
period of Moon’s orbit
mass of Sun
radius of Sun

P

E
g

mE

rE

RE

TE

mM

rM

RM

TM

ms

rs

A

M conductors crossing
(with contact)

conductors crossing 
(no contact)

switch (open) ammeter

ground

V

voltmeter DC generator

AC generatormotorcell

switch (closed)

resistance

variable resistance
or

battery (PC power 
supply)

variable power 
supply

light bulb

+−

+− +−

Quantity Symbol Accepted value

2.998 × 108 m/s
6.673 × 10−11 N m2/kg2

8.988 × 109 N m2/C2

1.602 × 10−19 C
9.109 × 10−31 kg
1.673 × 10−27 kg
1.675 × 10−27 kg
6.626 × 10−34 J s

speed of light in a vacuum
gravitational constant
Coulomb’s constant
charge on an electron
rest mass of an electron
rest mass of a proton
rest mass of a neutron
Planck’s constant

c
G
k
e

me

mp

mn

h
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multiplier

tolerance
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Appendix C

Equation Variable Name

∆d = v∆t
v2 = v1 + a∆t
∆d = v1∆t + 1

2 a∆t2

v2
2 = v2

1 + 2 a∆d

∆d = displacement motion equations
(constant acceleration)v = velocity

v = velocity
r = radius

v = velocity
r = radius

k = constant

R = range

T = period of planet

G = universal gravitational constant

r = average distance from planet to Sun

r = distance between the centres of 
the masses

v1 = initial velocity

vi = initial velocity

v2 = final velocity
a = acceleration
∆t = time interval

Newton’s second law

F = force of gravity at Earth’s surface weight

projectile range

centripetal acceleration  

centripetal force

Kepler’s third law

Newton’s law of universal
gravitation

projectile maximum height

m = mass

m = mass

g = acceleration due to gravity (on Earth)

g = acceleration due to gravity

Ff = force of friction friction
µs = coefficient of static friction
µk = coefficient of   kinetic friction

FN = normal force

= net force

= acceleration

Equations in Unit 1 — Forces and Motion: Dynamics

⇀

⇀

⇀

⇀

F

⇀

⇀a
⇀
F f = µs

⇀
FN

⇀
F f = µk

⇀
FN

⇀
F = m⇀a

Fg = mg⇀ ⇀

R = v2
i sin 2θ

g

Hmax = vi sin2 θ
2g

Hmax = maximum height

θ = launch angle

ac = v2

r

Fc = mv2

r

T2

r3 = k

T2
A

r3
A

=
T2

B

r3
B

Fg = G m1m2

r2

ac = centripetal acceleration

Fc = centripetal force

TA = period of planet A
TB = period of planet B
rA = average distance of planet A to Sun
rB = average distance of planet B to Sun

Fg = force of gravity between 2 point 
masses

m1 = first mass
m2 = second mass
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Equations in Unit 2 — Energy and Momentum
⇀p = m

⇀
J = ⇀

F∆t = m⇀v2 − m⇀v1 = ∆⇀p

v′1 = m1 − m2

m1 + m2
v1

mA
⇀vA + mB

⇀vB = mA
⇀v ′A + mB

⇀v ′B

v′2 = 2m1

m1 + m2
v1

Ek + Eg + Ee = E′k + E′g + E′e

W = F∆d cos θ

Ek = 1
2 mv 2

Eg = mg∆h

Fa = kx

Ee = 1
2 kx2

v =

√
2GMp

rp

⇀p = momentum
m = mass

m = mass

⇀v

⇀v

= velocity
⇀
J = impulse
⇀
F = force
∆t = time interval

∆d = displacement

W = work

G = universal  gravitational constant

F = applied force

⇀v1 = initial velocity

⇀vA = velocity of object A before collision
⇀vB = velocity of object B before collision
⇀v ′A= velocity of object A after collision
⇀v ′B = velocity of object B after collision

⇀v2 = final velocity
∆⇀p = change in momentum

momentum

impulse

conservation of momentum

perfectly elastic, head-on
collision, using a frame of
reference such that 

work

conservation of mechanical
energy

mechanical kinetic energy

gravitational potential energy

Hooke’s law

elastic potential energy

escape speed

mA = mass of object A

m1 = mass of object 1
m2 = mass of object 2
v1 = velocity of object 1 before collision

v2 = 0

mB = mass of object B

= velocity of object 1 after collisionv′1
= velocity of object 2 after collisionv′2

θ = angle between force and displacement

Ek = mechanical kinetic energy

Ek = initial kinetic energy
Eg = initial gravitational energy
Ee = initial elastic energy

v = velocity

v = escape speed

x = extension or compression of spring

m = mass

m = mass
Eg = gravitational potential energy

k = spring constant
Fa = applied force

x = extension or compression of spring
k = spring constant
Ee = elastic potential energy

∆h = change in height

= final kinetic energyE′k
= final gravitational energyE′g
= final elastic energyE′e

Mp = mass of planet
rp = radius of planet
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Fc = mv2

r
= 4π2rm

T2

v =
√

GM
r

a rc = v2

r
= 4π2

T2

√
T = 4π2r3

GM

Eg = GMm
r

Ek = GMm
2r

Etotal = − GMm
2r

Ebinding = GMm
r

Fc = centripetal force
m = mass of object

m = mass

v = speed of object

v = speed of orbiting object

T = period of orbit
r = radius of orbit

T = period of orbit

T = period of orbit

r = radius of orbit

r = radius of orbit

r = distance between object centres

r = distance from centre of object

r = distance from centre of charge

q = electric charge

q = source charge

k = Coulomb’s constant

k = Coulomb’s constant

r = radius of orbit

G = universal gravitational constant

G = universal gravitational constant

G = universal gravitational constant

M = mass of planet or star

M = mass of planet or star

v = speed of orbiting object

centripetal force

speed of satellite

centripetal acceleration

orbital period (squared)

orbital energies

rocket thrust

Coulomb’s law

electric field intensity

gravitational field intensity

Coulombic electrostatic field

ac = centripetal acceleration

q1 = electric charge on object 1
q2 = electric charge on object 2

Eg = gravitational potential energy

Ek = kinetic energy

Etotal = total orbital energy

Ebinding = binding energy

Fthrust = mgas

∆t
∆vgas

Fthrust = thrust force
m1 = mass of expelled gas
∆vgas = speed of expelled gas
∆t = time interval

Equations in Unit 3 — Electric, Gravitational, and Magnetic Fields

⇀
E = electric field intensity

⇀
E = electric field intensity

⇀g =
⇀
Fg

m

g = Gm
r2

⇀g = gravitational field intensity

= k q
r2

FQ = k q1q2

r2

⇀
E =

⇀
FQ

q
⇀
FQ = electric force

⇀
Fg = force of gravity

FQ = electrostatic force between charges

−

⇀
E



Equations in Unit 4 — The Wave Nature of Light

V = EQ

q
V = electric potential difference

V = k q
r

∆V = W
q

∆V = electric potential difference

∆V = electric potential difference

FM = qvB sinθ FM = magnitude of the magnetic force on 
   moving charged particle

FM = magnitude of the magnetic force on 
   moving charged particle

FM = IlB sinθ

⇀
E =

∆d
∆V ⇀

EQ = electric field intensity

EQ = electric potential energy

r = distance

f = frequency

q = electric charge

q = electric charge

q = electric charge on particle

l = length of conductor in magnetic field

k = Coulomb’s constant

electric potential

electric potential due 
to a point charge

electric potential difference

electric field and potential
difference

force on a moving charge in
a magnetic field

force on a current-carrying
conductor in a magnetic field

period and frequency

path difference

dark fringes

light fringes

Young’s double-slit experiment

W = work done

∆d = component of displacement between
points, parallel to field

v = speed of particle

θ = angle between velocity vector and 
magnetic field vector

θ = angle between conductor and 
magnetic field

B = magnetic field intensity

B = magnetic field intensity
I = electric current in conductor

λ d
n − 1

2

yn

x

λ ≅

≅

≅

d
n

yn

x

T = ∆t
N

f = 1
T

f = N
∆t

PD = (n − 1
2 )λ = d sin θ

PD = nλ = d sin θ

λ ∆yd
x

n = 0, 1, 2, 3, … for light 
      fringes

n = 1, 2, 3, … for dark fringes

T = period

∆t = time interval
N = number of cycles

PD = path difference
n = nodal line number

∆y = space between fringes

yn = distance from central 
        maximum fringe to fringe n

d = slit separation

d = slit separation

x = distance from slits to screen

x = distance from slits to screen

λ = wavelength

λ = wavelength

θ = angle between central bisector and
      line formed from slit to nodal point
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Equations in Unit 5 — Matter-Energy Interface

ym ≅ mλL
w

ym = distance from fringe m to central
   bisector

ym ≅
m + 1

2 λL
w

θmin = λ
w

θmin = 1.22λ
D

mλ = d sin θ

c = fλ

E = hf

(m = 0, 1, 2, …)

(m = ±1, ±2, ±3 …)

(m = ±1, ±2, 
  ±3 …)

m = fringe order number

E = energy of photon

f = frequency of wave

f = frequency of wave

h = Planck’s constant

c = speed of light

c = speed of light

∆t = dilated time
∆t0 = proper time

h = Planck’s constant
f = frequency of electromagnetic radiation

c = speed of light

d = distance between slit centres 

m = fringe order number

c = 1√µ0ε0 µ0 = permeability of free space
ε0 = permittivity of free space

w = width of slit

v = speed of object
c = speed of light

w = width of rectangular aperture

L = distance to screen

L = relativistic length

W = work function of metal

L0 = proper length

m = relativistic mass

m = relativistic mass

m0 = proper mass

m0 = proper mass

Ek = relativistic kinetic energy

Ek(max) = maximum kinetic energy of
              photoelectron

D = diameter of circular aperture

λ = wavelength of light

θ = angle from central bisector

λ = wavelength of light

λ = wavelength

γ  = gamma

single-slit interference
destructive

resolution slit aperture

constructive

diffraction grating
bright fringes

circular aperture

speed of electromagnetic
radiation

energy of photon

wave equation

time dilation

variable substitution for
simplicity

length contraction

mass increase

photoelectric effect

kinetic energy at relativistic
speeds

θmin = minimum angle for resolution

∆t = ∆to√
1 − v2

c2

L = Lo

√
1 − v2

c2

m = mo√
1 − v2

c2

= 1√
1 − v2

c2

γ

Ek = mc2 − moc2

Ek(max) = hf − W
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p = h
λ

λ = h
mv

N = No
∆t
T1

2

A = Z + N

v = 2V
Br

m
e

= 2V
v2

p = momentum

A = atomic mass number

N = number of neutrons
Z = atomic number

h = Planck’s constant

h = Planck’s constant

r = radius of trajectory

λ = wavelength

λ = wavelength

∆t = time interval
T1

2
= half life

momentum of a photon

de Broglie wavelength

atomic mass number

amount of radioactive material
remaining

speed of electrons

electron mass to charge ratio

m = mass

m = mass of electron
e = charge of electron

v = velocity

v = speed of electron
V = accelerating voltage
B = magnetic field strength

N0 = original amount of radioactive 
material

N = amount of radioactive material
remaining after ∆t

1
2
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The following Achievement Chart identifies the four categories
of knowledge and skills in science that will be used in all 
science courses to assess and evaluate your achievement. The
chart is provided to help you in assessing your own learning
and in planning strategies for improvement with the help of
your teacher. 

You will find that all written text, problems, investigations, 
activities, and questions throughout this textbook have been 
developed to encompass the curriculum expectations of your
course. The expectations are encompassed by these general 
categories: Knowledge/Understanding , Inquiry ,
Communication , and Making Connections . You will find,
for example, that questions in the textbook have been designated
under these categories so that you can determine if you are 
able to achieve well in each category. Some questions could 
easily fall under a different category; for each question, the 
category chosen is the one with which it best complies. (In 
addition, problems that involve calculation have been 
designated either as practice problems or, in chapter and unit
reviews, as Problems for Understanding.) Keep a copy of this
chart in your notebook as a reminder of the expectations of you
as you proceed through the course. 

MCC

IK/U
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Achieving in Physics

Appendix D

Achievement Chart

Knowledge/
Understanding Inquiry Communication

Making
Connections

� Understanding of
concepts, principles,
laws, and theories

� Knowledge of facts
and terms

� Transfer of concepts
to new contexts

� Understanding
of relationships
between concepts

� Application of the
skills and strategies
of scientific inquiry 

� Application of
technical skills
and procedures

� Use of tools,
equipment,
and materials

� Communication of
information and
ideas

� Use of scientific
terminology, symbols,
conventions, and
standard (SI) units

� Communication for
different audiences
and purposes

� Use of various forms
of communication

� Use of information
technology for
scientific purposes

� Understanding of
connections among
science, technology,
society, and the
environment

� Analysis of social
and economic issues
involving science
and technology

� Assessment of
impacts of science
and technology on
the environment

� Proposing courses
of practical action
in relation to
science- and
technology-based
problems

www.mcgrawhill.ca/links/
physics12

This feature directs you to interesting
and informative Internet sites. Access
is easy when you use the Physics 12
Internet page links.

WEB LINK

This logo indicates where electronic
probes could be used as part of the
procedure or as a separate lab.

PROBEWARE
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Appendix E

The following safety symbols are used in 
Physics 12 to alert you to possible dangers. 
Make sure that you understand each symbol that
appears in a lab or investigation before you begin.

Safety symbols used in Physics 12

Look carefully at the WHMIS (Workplace
Hazardous Materials Information System) 
safety symbols shown below. These symbols are
used throughout Canada to identify dangerous
materials in all workplaces, including schools.
Make sure that you understand what these 
symbols mean. When you see these symbols on
containers in your classroom, at home, or in a
workplace, use safety precautions.

WHMIS symbols

Compressed Gas Flammable and
Combustible Material

Corrosive Material

Poisonous and Infectious
Material Causing Other

Toxic Effects

Dangerously
Reactive Material

Oxidizing Material

Poisonous and Infectious
Material Causing Immediate

and Serious Toxic Effects

Biohazardous
Infectious Material

Thermal Safety
This symbol appears as a reminder to be careful when 
handling hot objects.

Sharp Object Safety
This symbol appears when there is danger of cuts or 
punctures caused by the use of sharp objects.

Fume Safety
This symbol appears when chemicals or chemical reactions 
could cause dangerous fumes.

Electrical Safety
This symbol appears as a reminder to be careful when using 
electrical equipment.

Skin Protection Safety
This symbol appears when the use of caustic chemicals 
might irritate the skin or when contact with micro-organisms 
might transmit infection.

Clothing Protection Safety
A lab apron should be worn when this symbol appears.

Fire Safety
This symbol appears as a reminder to be careful around 
open flames.

Eye Safety
This symbol appears when there is danger to the eyes and 
safety glasses should be worn.

Chemical Safety
This symbol appears when chemicals could cause burns or 
are poisonous if absorbed through the skin.



Chapter 1 
Practice Problems

1. 9.6 × 10−13 N

2. 9.3 m/s

3. 0.61 m/s2

4. (a) 0.249 N (b) 0.00127

5. 78 N

6. (a) 58 N (b) 16 m/s−2

7. 6.7 m

8. 1.6 × 103 N, 9.1 × 102 N

9. (a) 21 N (b) 15 N

10. (a) 74 N (b) 34 N

11. negative; 5.9 × 102 N

12. down (negative); 6.9 × 102 N

13. up (positive); 5.9 × 102 N

14. −1.9 m/s2

15. No, the climber must limit his
descent to a = −2.5 m/s2.

16. (a) downward (c) 87 N
(b) −1.1 m/s2

17. 1.7 × 102 N

18. 1.8 m/s2

19. 0.49 m/s2; 39 N

20. 14 kg; 75 N

21. 62 kg; 1.6 m/s2

22. 17 N

23. Both of them will rise, with
a = +1.0 m/s2.

24. (a) 3.88 N (b) 2.04 m/s2

25. 0.67 s

26. 15 m/s

27. (a) 1.2 m/s2 (c) 12 s
(b) 0.16 m/s2

28. 0.061

29. 0.34 m

30. 0.37

Chapter 1 Review
Problems for Understanding
16. 3.0 m/s[N]

17. 11 kg

18. (a) v = 0; a = −9.8 m/s2

(b) 3.5 m/s; −9.8 m/s2

19. (a) 1.34 m/s2 (b) 334 N

20. 1.1 m/s2[W]

21. 1.2 N

22. (a) 0.062 m/s2

(b) 0.40 m/s2

(c) A friction force of magnitude
3.4 N operates to reduce the
ideal acceleration (a = F/m)

23. 5.4 m

24. 11 m

25. (a) 5.4 m/s[down]
(b) 3.8 × 104 N[up]

26. 49 N

27. 1.3 m/s2

28. (a) a2 = 2.5a1 (b) d2 = 2.5d1

29. (a) 9.00 N (c) 293 N
(b) 132 N (d) 0.451

30. 3.3 m/s2 ; 13 N

31. (a) 4.6 m/s2 (b) 0.70 N

Chapter 2 
Practice Problems 

1. −677 m

2. 4.67 m/s

3. 89.6 m, 45.2 m/s [60.3˚ below the 
horizontal]

4. 0.156 m

5. 3.05 m/s

6. 0.55 m 

7. 74 m

8. (a) 153 m (b) 5.00 m/s

9. 85 m

10. 4.0 × 101 m

11. 18 m/s [52˚ below the horizontal]

12. 2.8 m/s

13. (a) 58.9 m (c) 4.14 s
(b) 21.0 m

14. 33.2˚; 2.39 m; 1.40 s

15. 47.0 m/s

16. 8.3 × 10−8 N

17. (a) 48.6 N (c) 9.62 m/s
(b) 54.2 N

18. 5.9 × 103 N

19. 84 m

20. 103 m

21. 13 m/s (47 km/h)

22. 19.1 m/s (68.8 km/h)

23. 20.1˚

Chapter 2 Review
Problems for Understanding
20. (a) 3.0 × 101 m (b) 3.7 s

21. (a) 0.78 s
(b) at the same position
(c) 4.7 m (d) 9.7 m/s

22. (a) 42 m (b) 62 m

23. 2.7 × 102 m

24. (a) 2.1 s (b) 34 m 

(c) 8.5 m 
(d) vx = 16 m/s; vy = +3.8 m/s or

–3.8 m/s
(e) 38.2˚

25. 52 m/s

26. Yes. It travels 330 m. 

27. (a) 7.4 s
(b) 67 m 
(c) 1.2 × 102 m
(d) x: 34 m, y: 53 m
(e) vx = 17 m/s; vy = −23 m/s

28. (a) 193 m/s
(b) 843 m 
(c) vx = 162 m/s, vy = 156.3 m/s
(d) 44.0˚

29. (a) 2.0 m/s (b) 1.2 m/s2

30. 7.1 × 102 N

31. (a) 1.33 × 1014 m/s2

(b) 1.21 × 10−16 N

32. 0.33

33. 8.9 m/s

34. 33˚

35. (a) 9.90 m/s
(b) A factor of 

√
2

36. 0.62

37. (a) 4.6 × 102 m/s
(b) 2.0 N (for m = 60.0 kg)
(c) Toward the centre of Earth;

gravity 
(d) mg = 589 N (for m = 60.0 kg) 
(e) N = mg − mv2/r = 587 N
(f) mg − N = mac; because mg > N,

there is a net acceleration
toward the centre of Earth. 

Chapter 3
Practice Problems 

1. 3.57 × 1022 N

2. 1.99 × 1020 N

3. 5.1 × 10−3 m. This is much smaller
than the radii of the bowling balls. 

4. 3.61 × 10−47 N

5. 5.0 × 1024 kg

6. 0.25 m

7. FUranus = 0.80 × FEarth

8. 0.9 × Earth-Moon distance

9. 1.899 × 1027 kg

10. 1.472 × 1022 kg

11. 2.74 × 105 m

12. 1.02 × 103 m/s

13. (a) 6.18 × 104 s (17.2 h)
(b) 7.93 × 102 m/s

14. 4 × 1041 kg = 2 × 1011 × MSun
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15. 7.42 × 103 m/s; 8.59 × 105 m

16. 7.77 × 103 m/s; 5.34 × 103 s
(89.0 min)

17. (a) 5.21 × 109 s (165 years);
5.43 × 103 m/s

(b) It will complete one orbit, after
its discovery, in the year 2011.

Chapter 3 Review
Problems for Understanding 
22. 1/8

23. (c) F

24. (b) a/3

25. (a) 3.0 × 104 m/s
(b) 6.0 × 10−3 m/s2

26. 1.8 × 10−8 m/s−2

27. 9.03 m/s2 = 92% of acceleration 
due to gravity at Earth’s surface

28. 4.1 × 1036 kg = 2.0 × 106 × mSun

29. 2.67 × 10−10 N

30. (a) 5.3 × 105 m
(b) 5.7 × 103 s = 95 min

31. 1.02 × 103 m/s; 2.37 × 106 s
= 27.4 days

32. (a) Yes. 
(b) 5.69 × 1026 kg

33. (a) 4 × 1015 kg
(b) 4 × 1027 kg
(c) mOort = 700mEarth = 2mJupiter

Unit 1 Review 
Problems for Understanding
29. 1.4 m/s2

30. (a) 2.00 (b) 2.00

31. 1.6 × 104 N. The acceleration
remains constant.

32. (a) 3.1 × 103 N (b) 4.5 m

33. 1.1 × 104 N

34. (a) 7.00 × 103 N (b) 9.16 × true

35. (a) 1.5 × 104 N
(b) 3.8 × 103 N
(c) 2.5 m/s2

(d) 22 m/s = 81 km/h
(e) 9.0 s

36. 17˚

37. (a) 9.8 × 102 N (b) 13 km

38. 3.3 m/s2 ; 23 N

39. (a) 1.4 s (c) 5.0 × 101 m
(b) 1.8 s

40. (a) 21.3 m/s (c) down
(b) 1.54 m

41. 2.40 m 

42. 0.084 m

43. (a) 4.4 × 102 N; 1.0 × her weight

(b) 2.0 × 102 N; 0.45 × her weight
(c) same as (a) 
(d) 6.8 × 102 N; 1.6 × her weight

44. 2.0 × 102 N

45. (a) 6.9 × 103 N (b) 64 km/h

46. (a) 612 N (c) 786 N
(b) 437 N (d) 612 N

47. 29 m/s2

48. (a) 5.1 × 102 N (b) 5.6 × 102 N

49. (a) 1.7 × 102 N (b) 29 m/s

50. (a) 8.0 m/s2

(b) 6.9 m/s2

(c) 6.0 × 101 m/s[down]; 
52 m/s[down]

51. (a) 0 m/s2; 2.0 × 101 N
(b) 2.0 m/s2 ; 16 N
(c) 0.50

52. 2.4 m/s2 ; 0.61 m/s2

53. Swift-Tuttle: (a) 51.69 AU; 
(b) 26.32 AU; (c) 135.5 a
Hale-Bopp: (a) 369.2 AU; 
(b) 185.1 AU; (c) 2511 a
Encke: (a) 4.096 AU; (b) 2.218 AU;
(c) 3.303 a
Kopff: (a) 5.351 AU; (b) 3.467 AU;
(c) 6.456 a
Hyakutake: (a) 1918 AU; 
(b) 959.1 AU; (c) 2.970 × 104 a
(d) student sketch
(e) Swift-Tuttle, Hale-Bopp, and

Hyakutake

54. (a) 4.6 × 102 m/s
(b) 7.9 × 103 m/s

55. (a) 0.7445 AU (c) 1.732 a
(b) 1.442 AU

56. 2 × 1042 kg; 1 × 1012 mSun

Chapter 4 
Practice Problems

1. (a) 11.5 kg m/s[E]
(b) 2.6 × 108 kg m/s[W]
(c) 8.39 × 107 kg m/s[S]
(d) 5.88 × 10−24 kg m/s[N]

2. 43.6 N s[down]

3. 2.58 × 105 N · s[S]

4. 4.52 × 106 N[S]

5. 2.6 kg m/s[horizontal]

6. −38 kg m/s

7. 8.8 kg m/s[up]

8. 2.7 m/s[in the original direction]

9. 0.11 m/s[in the direction that car
A was travelling]

10. 2.10 m/s[S]

11. 0.11 m/s[E]

12. −2.43 × 102 m/s

13. 6.4 m/s[40.0˚ counterclockwise]

14. 1.16 m/s[6.1˚ clockwise from 
original direction]

15. vA = 34.3 km/h[S];
vB = 67.3 km/h[E]

16. v2 = 6.32 m/s[41.5˚ counterclock-
wise from the original direction of
the first ball]; the collision is not
elastic: Ek = 12.1 J; Ek′ = 10.2 J .

17. 1.24 × 105 kg km/h =
3.44 × 104 kg m/s[N39.5˚W]; the
collision was not elastic:
Ek = 3.60 × 106 kg km2/h2;
Ek′ = 1.80 × 106 kg km2/h2

18. 261 m/s

19. The cart will stop at 0.018 m;
therefore, it will not reach the end
of the track.

20. 55.5 km/h = 15.4 m/s

21. 18.2 m/s

22. 3.62 m/s; 1.71 m

Chapter 4 Review
Problems for Understanding
28. 18 kg m/s[N]

29. 1.5 × 103 kg

30. 1.20 m/s[S]

31. 6.0 × 103 m/s[forward]

32. (a) 0.023 N · s[E]
(b) 0.036 N · s[S]

33. 3.8 × 103 N

34. 3.6 × 10−2 s

35. (a) −16 kg m/s
(b) 6.4 × 10−3 s

36. 2.5 × 104 N[E]

37. 2.9 × 104 N

38. 134 m/s[E]

39. 3.1 m/s[E]

40. −2.3 m/s 

41. 1.3 m/s[forward]

42. 0.17 m/s[forward]

43. 4.4 m/s[35.2˚ clockwise]

44. 5.6 × 106 m/s[26.6˚ with respect to
the +x direction]

45. (b) (i) v′1 = −v1; v′2 ≈ 0;
(ii) v′1 ≈ 0; v′2 = v1 ;

(iii) v′1 = v1 ; v′2 = 2v1

(c) (i) is the limiting case of a
small object hitting a wall: it
bounces back with the same
speed and opposite direction.
In (ii), all of the momentum is
transferred to the other particle.
In (iii), the massive object con-
tinues as if the light object had
not been there, while the light
object flies off with twice the
speed of the massive object. 
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46. v′1 = 0.86 m/s[S]; v′2 = 1.25 m/s[N].
In a perfectly elastic head-on colli-
sion between identical masses, the
two bodies simply exchange 
velocities. 

47. (a) 0.29 m/s[W21˚N]
(b) 70%

48. (a) 0.21 m/s (c) 95%
(b) 13 kg m/s

Chapter 5
Practice Problems 

1. 1.810 × 104 J

2. 1.22 × 104 m

3. 31.5˚

4. 61.6 m

5. 34.6 m/s

6. −2.6 × 102 N

7. 515 kg

8. 15.0 m

9. 4.9 × 10−2 J

10. 13 m/s

11. 7.7 m

12. 4.8 m

13. 0.25 J

14. 250 J

15. vA = 2.0 m/s; vB = 2.8 m/s

16. 5 × 102 N/m

17. (a) 0.414 m (b) −455 N

18. 0.0153 kg

19. 1.0 J

20. 0.30 m

21. 1.4 J

22. (a) 0.28 m (b) 1.3 m/s
(c) 17m/s2

23. 1.4 × 103 N/m

24. 6.59 × 103 N/m

25. 0.42 m

26. (a) 405 N/m (b) 44.1 m/s2

27. 11 m/s

28. 14 m/s

29. 7.4 × 102 J

Chapter 5 Review
Problems for Understanding
18. (a) 0.035 N (c) 0.025 J

(b) −0.025 J

19. (a) 16 J (b) 16 J

20. (a) 7.7 × 103 J
(b) 6.7 × 103 J
(c) 9.4 m/s; 8.7 m/s
(d) infinity (no friction);

1.3 × 102 m

21. 3.2 × 102 N · m

22. (a) 9.0 m/s
(b) Ek = W = 2750 J (2.8 × 103 J)
(c) 4.1 m

23. 57 N

24. 4.6 m/s

25. 4.5 × 102 N/m

26. (a) 0.38 J (b) 9.6 N

27. 0.19 m

28. k = m1g/x

29. 3.6 m/s

30. 4.1˚C

31. 0.28˚C

32. (a) 2.3 m/s (b) 5.3 N

33. 1.3 m/s

34. 0.77 m/s; 0.031 m

35. 5.0 m/s

36. 0.15 m

37. 0.45 m

38. 0.096 m

39. (a) −8.7 × 102 J (b) −1.8 m

Chapter 6
Practice Problems 

1. 4.0 × 106 J; 1.16 × 103 m/s

2. 1.9 × 105 J; 5.0 × 103 m/s

3. 1.85 × 104 m/s

4. (a) 1.5 × 109 J (c) −1.5 × 109 J
(b) −3.0 × 109 J (d) 1.5 × 109 J

5. (a) 3.32 × 109 J (c) 7.51 × 106 m
(b) 7.29 × 103 m/s

6. (a) 4.12 × 109 J
(b) thermal energy, acoustic energy

7. 1.57 × 103 m/s; 649 m/s

8. (a) 4.87 × 107 J; 1.27 × 103 m/s
(b) −9.74 × 107 J (d) 4.87 × 107 J
(c) −4.87 × 107 J (e) 528 m/s 

9. (a) 1.7 × 108 J; 1.8 × 103 m/s
(b) −3.4 × 108 J (d) 1.7 × 108 J
(c) −1.7 × 108 J (e) 7.7 × 102 m/s

10. 1.4 × 1031 kg, or 7.1 times the
mass of the Sun

11. 6.00 × 106 N[forward]

12. 5.01 × 103 kg/s

13. (a) 0.33 m/s; 0.69 m/s; 1.1 m/s; 
1.5 m/s; 1.9 m/s; 2.4 m/s

(b) 3.0 m/s, a difference of 0.6 m/s.
Throwing all of the boxes at
once contributes more to the
momentum of the cart, because
the cart is lighter without the
boxes on it. 

Chapter 6 Review
Problems for Understanding
14. 3.13 × 109 J

15. (a) 1.1 × 1011 J (b) 39%
16. –1.78 × 1032 J

17. 0.488 × vEarth

18. (a) 6.18 × 105 m/s
(b) 4.22 × 104 m/s
(c) 6.71 × 103 m/s

19. (a) 7.0 × 107 m (b) 650 km 

20. (a) 1.6 × 102 m/s. No.
(b) 1.2 × 102 m/s. No.
(c) 12 m/s. Yes.
(d) 2.9 × 108 m/s. No — in fact, the

poor pitcher would be crushed
by the strong gravity before he
could even wind up for the
throw!

21. 11.1 km/s; 99.4% of Earth’s escape
speed 

22. 7.9 × 1011 m. This is just past
Jupiter’s orbit. 

23. (a) −4.1 × 1010 J (c) 3.7 × 1010 J
(b) −3.1 × 109 J (d) 3.1 × 109 J

24. (a) v200 = 7.78 × 103 m/s;
v100 = 7.84 × 103 m/s

(b) E(r = 200 km) = −1.52 × 1010 J;
E(r = 100 km) = −1.54 × 1010 J

25. (a) 2.3 × 107 m/s; 0.077c
(b) 0.14 s

26. 4.89 × 106 kg

27. (a) 3.4 × 106 N (b) 1.2 × 105 m/s

Unit 2 Review
Problems for Understanding
37. 3.5 × 104 kg m/s[N]

38. (a) 6.6 kg m/s
(b) 4.0 × 101 kg m/s
(c) 3.0 × 103 kg m/s

39. (a) 9.6 kg m/s[N]
(b) −17 kg m/s[N]
(c) 17 kg m/s[S]
(d) 2.6 × 102 N[N]
(e) 2.6 × 102 N[S]

40. (a) 45 N (b) 42 m/s

41. 36 m/s

42. (a) 1.3 × 104 kg m/s
(b) −1.3 × 104 kg m/s
(c) −1.3 × 104 kg m/s
(d) 19 m/s

43. 2.6 × 102 m/s[forward]

44. 1.5 m/s[N27˚E]

45. (a) 0.76 m/s[E24˚N]
(b) 17%
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46. (a) 780 J
(b) It loses 780 J.

47. (a) 3 × 1011 J (b) 5 GW

48. (a) 66 m
(b) 74 m
(c) No change; the result is 

independent of mass.

49. −7.9 × 103 N

50. (a) 0.24 J (b) 48 J

51. (a) 0.32 m (b) 12 J

52. 15 kg

53. 60.0 m

54. (a) 1.46 × 104 J
(b) 1.46 × 104 J; 12.5 m/s
(c) Needed: coefficient of friction,

µ, and slope of hill, θ:
Ek = mgh(1 − µ/ tan θ) ; 
v =

√
2gh(1 − µ/ tan θ). 

For µ = 0.45 and θ = 30.0˚,
Ek = 3.2 × 103 J, v = 5.9 m/s.

55. 3.1 m/s

56. (a) 0.47 m (b) 0.47 m 

57. (a) 6.0 N (c) 0.023 J
(b) 0.15 J

58. 1.16 × 103 J. No, work is done by
friction forces.

59. (a) 4.4 m/s (b) 3.5 m/s

60. (a) 11.2 km/s
(b) 7.91 km/s
(c) 6 × 1010 m or 10 000 Earth radii

61. 7.3 × 103 m/s

62. At Earth’s distance from the Sun,
the escape velocity is 42 km/s.
Thus, the first comet is bound (it
has negative total energy) and the
second one is not bound (it has
positive total energy).

63. 4.2 × 103 m/s; 1.0 × 104 m/s

64. 6.8 km/s; 15 km/s

65. (a) 1.3 × 1010 J
(b) −1.3 × 1010 J
(c) 6.1 × 103 J
(d) 1.3 × 1010 J
(e) 2.2 × 109 J; 3.1 km/s

66. (a) −7.64 × 1028 J
(b) −5.33 × 1033 J

67. 6.2 × 105 m/s

68. 2.6 × 102 m/s[forward]

Chapter 7 
Practice Problems

1. 0.34 N

2. 0.80 m

3. 5.1 × 10−7 C

4. 0.50 N

5. 0.17 N (repulsive)

6. 0.12 m (directly above the first
proton)

7. FA = 1.2 × 10−2 N[W73˚S];
FB = 1.6 × 10−2 N[E63˚N];
FC = 4.6 × 10−3 N[W36˚S]

8. 8.74 N[E18.2˚N]

9. 2.0 × 10−8 C

10. 7.9 × 10−8 C

11. 1.5 × 105 N/C (to the right)

12. 0.019 N[W]

13. 2.5 × 104 N/C (to the left)

14. −4.0 × 10−4 C

15. 3.8 N/kg

16. 52 N

17. 3.46 kg

18. 2.60 N/kg

19. 2.60 m/s2

20. −7.8 × 105 N/C (toward the sphere)

21. −1.2 × 10−5 C

22. 0.32 m

23. 5.80 × 109 electrons

24. −1.5 × 106 N/C (toward the sphere)

25. 0.080 m

26. 5.3 × 108 N/C[81.4˚ above the 
+x-axis]

27. 1.9 × 104 N/C[86.7˚ above the 
+x-axis]

28. 3.4 × 106 N/C[23.7˚ above the 
−x-axis]

29. 2.25 × 1014 N/C (toward the 
negative charge)

30. 2.9 × 107 N/C[73.6˚ above the 
+x-axis]

31. 5.7 × 10−2 N/kg

32. 3.81 × 107 m

33. 8.09 N/kg

34. 5.82 × 1023 kg

35. 5.0 × 10−11 N/kg

36. 8.09 N/kg

37. 1.03 × 1026 kg

38. −4.7 × 10−2 J

39. 0.18 J

40. 5.1 × 102 m

41. 1.55 × 10−4 C. The signs of the two
charges must be the same, either
both positive or both negative.

42. 4.8 × 106 N/C

43. 1.5 × 1010 m

44. 2.9 × 10−5 J

45. −4.7 × 10−12 C

46. If the positive charge is placed at
0.0 cm and the negative charge is
placed at 10.0 cm, there are two
locations where the electric 

potential will be zero: 6.2 cm 
and 27 cm. 

47. 1.1 × 106 V

48. 8.0 V

49. −2.1 × 106 V

50. 1.6 × 106 V

51. 1.4 × 10−6 C

52. 2.0 V

53. 12 J

54. −2.4 × 104 V

55. (a) 1.9 × 105 V
(b) 1.2 × 10−3 J
(c) A. It takes positive work to

move a positive test charge to a
higher potential. Since in this
case, you invest positive work
to move your positive test
charge from B to A, A must be
at a higher potential.

56. 5.3 cm and 16 cm to the right of
the positive charge. 

57. any point lying on a line midway
between the two charges and 
perpendicular to the line that
connects them 

58. The potential is zero 3.4 cm above
the origin and 24 cm below the
origin. 

59. If the distances of the first and 
second charges, q1 and q2, from
the point of zero potential are d1

and d2 , then d2 must satisfy
d2 = (−q2/q1)d1 , with q2 < 0. For
example, if q2 = −8.0 µC, then
d2 = 16 cm and the charge would
be located either 24 cm to the
right of q1 or 8.0 cm to the left 
of q1. Other solutions can be 
similarly determined. 

60. 4.0 cm to the right of the −4.0 µC
charge

Chapter 7 Review
Problems for Understanding
18. 9 × 103 N

19. 2.3 × 108 N

20. 5.6 cm

21. FA = 4.5 × 10−2 N to the left;
FB = 0.29 N to the right;
FC = 0.24 N to the left

22. FA = 3.8 N[N3.0˚E];
FB = 4.4 N[E23˚S];
FC = 4.7 N[W26˚S]

23. FQ = 8.2 × 10−8 N;
Fg = 3.6 × 10−47 N

24. The charges on Earth (QE) and 
the Moon (QMoon) must satisfy
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|QE| × |QM| = 3.3 × 1027 C2, and
they must have opposite signs. 

25. 4.2 × 1042

26. −57 C

27. 5.2 × 10−3 N

28. (a) 8.65 × 1025 kg
(b) 8.81 N/kg
(c) 881 N

29. 2/9 gEarth = 2.18 N/kg

30. (a) 8.24 × 10−8 N
(b) 2.19 × 106 m/s
(c) 5.14 × 1011 N/C
(d) 27.2 V

31. 1.86 × 10−9 kg = 2.04 × 1021 × mactual

32. 9 × 10−5 N[W]

33. 0.51 m

34. 6.0 × 104 N/C[E37˚N]

35. (a) −7.5 × 10−8 J
(b) It loses energy. 

36. –2.9 × 10−6 J

37. 2.8 × 102 C

38. (a) 4.5 × 103 V
(b) Yes; the spheres have to be at

equal potential, because the
same point cannot have two
different potentials. 

(c) big sphere: 52 nC; small sphere:
23 nC

39. (a) E = 0; V = 2.2 × 105 V
(b) E = 4.3 × 105 N/C; V = 0
(c) When the two charges have the

same sign, the electric fields at
the midpoint have the same
magnitude but opposite direc-
tions, so they cancel. The
potential is the algebraic sum
of the potentials due to the
individual charges; it is a scalar
and, in this case, adds to be
greater than zero. When the
signs are different, the electric
fields point in the same direc-
tion and the magnitudes add.
However, the potentials have
opposite signs and cancel.

40. (a) 2.3 J (c) X
(b) 1.2 × 106 V

41. (a) 4.0 × 105 V (b) R

Chapter 8 
Practice Problems 

1. (a) 3.0 × 102 N/C[W]
(b) 3.0 × 102 N/C[W]
(c) 3.0 × 102 N/C[W]
(d) double the charge on each

plate; halve the area of each
plate

2. (a) 5.0 × 103 N/C[E]
(b) The area of the plates was

decreased by a factor of 4.

3. 8.0 × 102 N[N]

4. 1.4 × 103 N/C

5. (a) 3.0 × 103 N/C
(b) 60.0 V

6. (a) 0.222 m
(b) 1.44 × 10−3 N[toward + plate]
(c) 1.44 × 10−3 N[toward + plate]

7. 26 V

8. (a) 4.0 × 101 V (b) 2.0 × 103 N/C

9. (a) 9.62 × 10−19 C (b) 6.00

10. (a) 3.7 × 10−15 kg (b) 3.6 × 103 V

11. 1.13 × 104 V

12. 1.4 × 10−13 N[toward the bottom of
the page]

13. 2.7 × 10−14 N[left 28˚ up]

14. 30˚

15. 9.8 × 10−3 T[N]

16. 4.2 × 10−3 T[up out of page]

17. 3.0 × 102 N

18. 9.2 × 10−2 T[into the page]

19. 1.8 m

20. (a) 6.4 × 102 A
(b) If such a large current could be

passed through the wire,
Earth’s magnetic field could be
used to levitate the wire.
However, this is such a large
current that it is probably not
practical to do so. 

21. (a) 2.884 × 10−17 J
(b) 1.86 × 105 m/s

22. (a) up (that is, opposite to gravity)
(b) 59 V

23. (a) 1.4 × 107 m/s
(b) 2.0 × 106 V

24. 2.8 × 10−2 m

25. 6.8 × 103 m/s

26. (a) 5.01 × 10−27 kg
(b) tritium

Chapter 8 Review
Problems for Understanding
22. 20 V

23. (a) 1.60 × 102 V
(b) VA = 0.0 V; VC = 8.0 × 101 V;

VD = 1.2 × 102 V
(c) VB − VA = 4.0 × 101 V;

VC − VB = 4.0 × 101 V;
VD − VA = 1.2 × 102 V

(d) 2.0 × 103 N/C
(e) 2.0 × 10−3 N in both cases

[toward negative plate]

(f) 4.0 × 10−3 N[toward negative
plate]

24. (a) −8.0 × 10−19 C
(b) five electrons

25. 3.1 × 1010 electrons

26. 0.63 N

27. 3.2 × 105 m/s

28. (a) 1.8 × 10−3 N[up]
(b) 0.18 g 

29. 1.0 × 10−26 kg

30. (a) r(slow) = 1.4 × 10−4 m;
r(fast) = 2.8 × 10−4 m

(b) T(slow) = T(fast) = 8.9 × 10−11 s
(c) f (slow) = f (fast) = 1.1 × 1010 Hz
(d) The period and frequency is

independent of the particle’s
velocity and the radius of its
orbit. The faster electron com-
pletes an orbit of larger radius
in the same time in which the
slower electron completes an
orbit of smaller radius. 

31. (a) Te/Tp = me/mp = 5.4 × 10−4

(b) re/rp =
√

me

mp
= 0.023

32. (a) 3.0 × 102 Hz; 6.3 × 103 m
(b) 3.0 × 102 Hz; 3.1 × 103 m

33. (a) 1.1 × 10−17 T
(b) [E]

Unit 3 Review
Problems for Understanding
49. 1.8 × 108 C

50. 8.23 × 10−8 N

51. 2.3 × 10−9 N

52. ±14 µC

53. 1.5 × 104 electrons

54. (a) −50.0 N (c) 3.33 N
(b) 5.56 N (d) −3.70 N

55. ±0.14 µC

56. 1.8 × 1013 C

57. −1.0 × 104 C

58. 0.12 m

59. 8 × 1027 N

60. 9.2 × 10−26 N

61. 1.1 × 10−5 C

62. (a) 9 N
(b) An additional nuclear force —

the strong force — holds the
nucleus together.

63. 2000 N/C

64. 6.2 × 1012 electrons

65. (a) 0 J
(b) 8.6 × 10−10 J
(c) equipotential surfaces
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66. (a) 4.8 × 10−19 C
(b) three electrons (deficit) 
(c) 1.2 × 104 V

67. 0.10 T

68. (a) 3.7 nC
(b) It will be reduced by one half. 

69. (a) 2.2 × 10−13 N
(b) 1.3 × 1014 m/s2[up]

70. 0.9 m 

72. (a) 1.8 × 10−10 s (b) 2.8 × 10−4 m

73. 330 N/C

74. (a) v‖ = 5.6 × 106 m/s;
v⊥ = 3.2 × 106 m/s

(b) 0.13 m
(c) 2.2 × 10−7 s
(d) 1.4 m
(e) From the side, a helical path

will be seen; two places on
consecutive orbits of the proton
will be separated by 1.4 m.
Face on, the orbit will appear
to be circular, with a radius of
0.13 m.

75. 2.5 cm

Chapter 9
Practice Problems

1. 0.011 m

2. 1.3 × 10−5 m

3. red light will have a wider 
maximum; 7.3 × 10−3 m

4. (a) 0.36 m
(b) The value ignores changes in

the speed of light due to the
lenses of the imaging system
and changes in the density of
the atmosphere.

5. 0.00192˚

6. Angular resolution improves with
shorter wavelengths, so you
should use blue lettering. 

Chapter 9 Review
Problems for Understanding
31. (a) 0.020 m (b) 0.20 m/s

32. 4.8 × 102 nm

33. 589 nm

34. 2.1 × 10−5 m

35. 3.0 km

36. 72 m

37. 485 nm; 658 nm

38. (a) 15˚ (b) decrease

39. sin θ will be greater than 1 for
λ > 629 nm.

40. λ1/λ2 = 3/2

41. (a) 4th (b) 60˚

42. 681 nm

43. 667 nm; red light

Chapter 10
Practice Problems

1. (a) 0.0667 s
(b) The distance that the signal

passes is usually larger than the
geographic separation between
the two points (due to satellite
networks); also, the speed of
light depends on the medium.

2. 2.25 × 108 m/s

3. (a) 46.8 m
(b) The antenna must be larger

than the wavelength of the
radiation.

4. (a) λmicro = 0.03 m;
λlight = 3 × 10−6 m

(b) The metallic screen is used to
stop the microwave radiation
by working as an antenna for
microwave wavelengths.

Chapter 10 Review
Problems for Understanding
35. 2.48 × 10−13 m

36. 1 × 106 Hz or 1 MHz 

37. 2.938 m; 102.1 MHz

38. (a) 0.80 J/s (c) 1/4
(b) 8.0 × 10−5 J/s

39. 8.3 light-minutes

40. 1.1 × 104 m

41. 0.24 s

42. (a) Yes, but with very low 
frequency. 

(b) Greater than 4 × 1014 Hz

Unit 4 Review 
Problems for Understanding
50. 0.12 m; 2.5 × 109 Hz; 4.0 × 10−10 s

51. 2.1 × 105 Hz; 1.4 × 103 m

52. 3 × 10−13 m

53. 5.4 × 1016

54. 4.3 × 10−7 m = violet

55. 1.5 × 102 m

56. 3.4 × 10−2 m

57. 9.4610 × 1015 m

58. Listeners in Vancouver will hear a
particular sound after 1.7 × 10−2 s,
while listeners in the back of the
concert hall will hear the same
sound after 0.24 s, so listeners in
Vancouver will hear it first. 

59. 585 nm

60. (a) 7.1 mm (b) closer

61. 1.2 × 104 lines/cm

62. 8 × 10−7 m

63. (a) 0.42′′ = 2.0 × 10−6 rad
(b) 0.0042′′ = 2.0 × 10−8 rad
(c) 4.6 × 1012 m apart, or, it could

distinguish objects that are
0.77 × Pluto’s distance from 
the Sun apart

(d) better (resolution is proportion-
al to wavelength)

64. 45 m

65. (a) 5.8 × 10−19 J (c) 9.0 × 10−20 J
(b) 1.3 × 10−17 J (d) 4.0 × 10−26 J

66. 2.26 × 108 m/s

67. (a) 5.0 × 10−9 m (b) X ray

Chapter 11 
Practice Problems

1. (a) 4.8 × 10−13 s (b) 1.5 × 10−13 s

2. 257 s

3. 0.94c = 2.8 × 108 m/s

4. 702 km

5. 0.31 m

6. (a) 1.74 × 108 m/s
(b) The sphere’s diameter appears

contracted only in the direction
parallel to the spacecraft’s
motion. Therefore, the sphere
appears to be distorted.

7. 465 µg

8. 1.68 × 10−27 kg

9. 0.9987c = 2.994 × 108 m/s

10. 4.68 × 10−11 J

11. 1.01 × 10−10 J

12. 2.6 × 108 m/s

13. 7.91 × 10−11 J

14. 1.64 × 10−13 J

15. 1.3 × 109 J

16. 4.3 × 109 kg/s

Chapter 11 Review
Problems for Understanding
18. 0.87c

19. (a) 3.2 m (c) 6.8 × 10−8 s
(b) 1.9 m

20. (a) 2.5 × 10−27 kg (b) 1.7 × 10−27 kg

21. plot

22. 3.0 × 102 m/s

23. (a) c (c) c
(b) c

24. (a) 3.2 (c) 16 m
(b) 5.8 × 10−8 s
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25. 1.2 × 10−30 kg, which is 1.3 times
its rest mass

26. (a) 4.1 × 10−20 J (d) 5.0 × 10−13 J
(b) 4.1 × 10−16 J (e) (a) and (b)
(c) 1.3 × 10−14 J

27. 0.14c = 4.2 × 107 m/s

28. 3 × 104 light bulbs

29. 4.8 × 10−30 kg; m/mo = 5.3;
0.98c = 2.9 × 108 m/s

30. (a) 1.4 g (b) 29% or 0.40 g

Chapter 12
Practice Problems

1. 4.28 × 10−34 kg m/s

2. 9.44 × 10−22 kg m/s

3. 4.59 × 10−15 m

4. 3.66 × 1025 photons

5. 1.11 × 1010 Hz; radio 

6. 1.05 × 10−13 m

7. 7.80 × 10−15 m

8. 1.04 × 10−32 m

9. 2.39 × 10−41 m

10. 5.77 × 10−12 m

11. 2.19 × 106 m/s

Chapter 12 Review
Problems for Understanding
32. (a) 1.24 × 1015 Hz

(b) threshold frequency

33. (a) 2.900 eV (b) lithium

34. 1.5 × 1015 Hz

35. 2.2 eV

36. 5.8 × 1018 photons/s

37. (a) 1.2 × 10−27 kg m/s
(b) 1.3 × 10−27 kg m/s
(c) 9.92 × 10−26 kg m/s

38. 1.7 × 1017 Hz

39. 5.5 × 10−33 kg m/s

40. 7.0 × 10−27 kg

41. (a) 3.1 × 10−7 m
(b) 6.14 × 10−10 m
(c) 4.7 × 10−24 kg m/s

42. (a) 4.8 × 10−10 m (b) −1.5 eV

43. 486 nm

44. (a) 3.08 × 1015 Hz
(b) 97.3 nm
(c) −0.850 eV = −1.36 × 10−19 J
(d) 0.847 nm
(e) 487 nm 

Chapter 13
Practice Problems

1. 0.060 660 00 u = 1.0073 × 10−28 kg

2. 1.237 × 10−12 J

3. 2.858 × 10−10 J

4. 2.6 × 109 a

5. 3.5 × 103 a

6. 8.49 × 10−8 mg

7. 0.141 68 u = 2.3527 × 10−28 kg;
2.114 × 10−11 J

8. 2.818 × 10−12 J

9. (a) 0.0265 u = 4.40 × 10−29 kg;
3.96 × 10−12 J

(b) 5.96 × 1011 J

Chapter 13 Review
Problems for Understanding
20. (a) 20p, 20n, 18e

(b) 26p, 30n, 26e
(c) 16p, 18n, 17e

21. (a) 1.477 × 10−11 J
(b) 1.793 × 10−10 J

22. 230
90Th → 4

2He + 226
88Ra

23. (a) 1/4 (c) 1/4096
(b) 1/16

24. (a) 4.876 MeV 
(b) vHe = 1.520 × 107 m/s;

vRn = 2.740 × 105 m/s

(c) 98%
25. 1.2 × 10−7 kg

26. 11.5 min

27. 1.2 × 103 a

28. (a) 200
(b) 600
(c) 25
(d) 775
(e) DN(t) = PN(0)(1 −

( 1
2

)t/T1/2) ,
where DN(t) is the number of
daughter nuclei at any time, t,
PN(0) is the number of parent
nuclei at time, t = 0, and T 1

2
is

the half-life of the parent 
nucleus. 

29. (a) R = 1/[2t/T1/2 − 1] where R is the
ratio of parent to daughter
nuclei at any time.

(b) 4.25 × 109 a; 3.89 × 109 a;
2.93 × 109 a

(c) Assuming that the samples
were not polluted by having
daughter nuclei present in the
beginning, considering the
large differences in ages, it is
unlikely that these samples
came from the same place. 

(d) More than one half-life has
elapsed.

30. 2.4 × 10−12 m (assuming the 
electron and positron are at rest
initially)

31. (a) 3.56 × 10−13 J = 2.23 MeV
(b) 0.981c = 2.94 × 108 m/s
(c) The electron travels faster than

the speed of light in water,
which is 2.25 × 108 m/s, and
consequently emits Cherenkov
radiation, a phenomenon 
analogous to a sonic boom. 

32. (a) udd → uud + e− + νe or
d → u + e− + νe

(b) γ + udd → ud + uud

Unit 5 Review
Problems for Understanding
42. (a) 0.14c (b) 0.045c

43. (a) 9 × 1016 J (b) 3 × 107 a

44. (a) 3.1 light-year (c) 6.3 a
(b) 4.7 a

45. (a) 1.1 × 10−13 J
(b) 1.3 × rest mass energy
(c) 2.1 × 10−30 kg or 2.3 × rest mass

46. (a) 3 × 109 J (b) 4 × 10−8 kg

47. 1.12eV = 1.80 × 10−19 J

48. 4.7eV = 7.5 × 10−19 J

49. (a) 1.05 × 1015 Hz
(b) 287 nm

50. (a) 1.25 nm (b) 0.153 nm
51. (a) 2.47 × 1015 Hz

(b) 1.22 × 10−7 m
(c) Lyman

52. 486 nm

53. (a) 3.0 × 10−19 J
(b) 8.1 × 1017 photons

54. (a) 6.91 × 1014 Hz
(b) 4.34 × 10−7 m
(c) −0.544 eV = −8.70 × 10−20 J
(d) 1.32 nm
(e) 9.49 × 10−8 m
(f) UV

55. (a) 3.96 × 10−12J/reaction 
(b) 9.68 × 1037 reactions/s 
(c) 6.64 × 10−27 kg/reaction 
(d) 6.43 × 1011 kg/s 
(e) 9.82 × 109 a

56. (a) 4.40 × 10−29 kg
(b) 0.658%
(c) 1.18 × 1045 J
(d) 9.59 × 109 a

57. 88.2 N

58. 1.9 GeV, 6.6 × 10−16 m
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action at a distance the force between two objects
not in contact (7.2) 

air resistance friction due to the motion of an object
through air; proportional to the object’s velocity
(1.3)

alpha particle one or more helium nuclei ejected
from a radioactive nucleus (13.2) 

antimatter matter composed of antiparticles, which
have the same mass but opposite charge, and/or
other properties, compared to particles (13.2) 

antineutrino a chargeless, very low-mass particle
involved in weak interactions (13.2) 

apparent weight the weight measured by a scale;
same as true weight, unless the object is
accelerating (1.3) 

atomic mass number the number (A) that represents
the total number of protons and neutrons in an
atomic nucleus (13.1) 

atomic mass unit the value of mass equal to mass 
of the most common carbon isotope (12

6C) divided
by 12; 1 u = 1.6605 × 10−27 kg (13.1)

atomic number the number (Z) that represents the
number of protons in the nucleus; also represents
the charge of the nucleus in units of e (13.1) 

Balmer series spectral lines of hydrogen that lie in
the visible wavelength range (12.3) 

baryon a subset of the hadron family, such as the
proton and neutron, that are composed of
combinations of three quarks (13.3)

beta particle high-speed electrons or positrons
ejected from a radioactive nucleus (13.2) 

betatron a cyclotron modified to accelerate
electrons through magnetic induction, instead of
using electric fields (8.3) 

binding energy 1. the amount of additional energy
an object needs to escape from a planet or star
(6.1)  2. the amount of energy that must be
supplied to nuclear particles in order to separate
them (13.1)

blackbody an object that absorbs and emits all
radiation of all possible frequencies (12.1) 

Bohr radius the distance from the nucleus of the
lowest allowed energy level in the hydrogen
atom: r = 0.0529177 nm (12.3)

centripetal acceleration the centre-directed
acceleration of a body moving continuously along
a circular path; the quotient of the square of the
object’s velocity and the radius of the circle (2.2)  

centripetal force the centre-directed force required
for an object to move in a circular path (2.2)  

charge density the charge per unit area (8.1) 

chemical symbol a shorthand symbol for an element
(13.1) 

circular orbit an orbit produced by a centripetal
force (6.2) 

classical physics the long-established parts of
physics, including Newtonian mechanics
electricity and magnetism, and thermodynamics,
studied before the twentieth century (12.1) 

closed system a system that can exchange energy
with its surroundings, but not with matter (4.2) 

coefficient of kinetic friction for two specific
materials in contact, the ratio of the frictional
force to the normal force between the surfaces
when they are in relative motion (1.2) 

coefficient of static friction for two specific
materials in contact, the ratio of the frictional
force to the normal force between the surfaces
when they are not moving relative to each other
(1.2) 

coherent light that is in phase (the maxima and
minima occur at the same time and place) (9.2) 

combustion chamber the part of an engine where
gases are burned (e.g., a jet engine) (6.3) 

Compton effect a phenomenon involving the
scattering of an X-ray photon with a “free”
electron, in which, through conservation of
energy and momentum, some of the photon’s
energy is transferred to the electron (12.2) 

conservation of mechanical energy the change in
the total mechanical energy (kinetic plus
potential) of an isolated system is zero (5.1) 

conservation of momentum the total momentum
of two objects before a collision is the same as the
total momentum of the same two objects after
they collide (4.2) 

C

B

A
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conservative force a force that does work on an
object in such a way that the amount of work
done is independent of the path taken (5.3)

constructive interference a situation in which 
a combined or resultant wave has a larger
amplitude than either of its component waves
(9.1) 

coordinate system consists of perpendicular axes
that define an origin or zero position and
dimensions (1.1) 

Coulomb’s constant the proportionality constant in
Coulomb’s law: k = 9 × 109 N • m2/C2 (7.1)

Coulomb’s law the force between charges at rest,
proportional to the magnitudes of the charges 
and inversely proportional to the square of the
distance between their centres (7.1)

counterweight a heavy, movable mass that balances
another mass (1.3) 

cyclotron a particle accelerator that subjects
particles in a circular path to a large number of
small increases in potential in order to accelerate
them (8.3) 

daughter nucleus the nucleus remaining after a
transmutation reaction (13.2) 

de Broglie wavelength the wavelength associated
with a particle; the quotient of Planck’s constant
and the momentum of the particle (12.2) 

destructive interference a situation in which a
combined or resultant wave has a smaller
amplitude than at least one of its component
waves (9.1) 

deuterium an isotope of hydrogen, consisting of a
proton and neutron in the nucleus (13.1)

diffraction the bending of waves around a barrier
(9.1) 

diffraction grating a device for producing spectra by
diffraction and for the measurement of
wavelength (9.3)

dilated time the time measured by an observer who
sees a clock that is in a frame of reference that is
moving relative to the observer (11.2)

dispersion the separation of light into its range of
colours (9.1)

doubly refractive having a different refractive
index, depending on the polarization of the light
(10.1) 

dynamics the study of the motions of bodies while
considering their masses and the responsible
forces; simply, the study of why objects move the
way they do  (1.2)

elastic collision a collision in which both
momentum and kinetic energy are conserved (4.3)  

elastic potential energy a form of energy that
accumulates when an elastic object is bent,
stretched, or compressed (5.2) 

electric field intensity the quotient of the electric
force on a unit charge located at that point (7.2) 

electric field a region in space that influences
electric charges in that region (7.2)

electric field lines imaginary directed lines that
indicate the direction a tiny point charge with
zero mass would follow if free to move in the
electric field; these lines radiate away from
positive charges and toward negative charges (7.2) 

electric permittivity a number that characterizes a
material’s ability to resist the formation of an
electric field in it (10.1) 

electric potential difference the work done per unit
charge between two locations (7.3) 

electromagnetic force an infinite range force that
operates between all charged particles (13.3) 

electromagnetic spectrum the range of frequencies
of electromagnetic waves (10.3) 

electromagnetic wave a wave consisting of
changing electric and magnetic fields (10.1) 

electron an elementary particle with negative
charge and a mass of 9.11 × 10−31 kg (13.1) 

electron volt the energy gained by one electron as it
falls through a potential difference of one volt:
1 eV = 1.60 × 10−19 J (12.1) 

electrostatic force the force between charges at rest;
see also: Coulomb’s law (7.1) 

electroweak force the fundamental force from
which the electromagnetic and weak nuclear
forces are derived (13.3) 

elementary charge the basic unit of charge:
e = ±1.602 × 10−19 C (13.1) 

elementary particle a stable particle that cannot be
subdivided into smaller particles (13.3) 

empirical equation an equation based on observed
data and not on any theory (12.1) 

energy the ability to do work (5.1) 
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equipotential surface a surface in which all points
have the same electric or gravitational potential
(7.3)

escape energy the amount of energy required for an
object to escape from the gravitational force of a
planet or star and not return (6.1) 

escape speed the minimum speed at the surface of a
planet that will allow an object to leave the
planet (6.1) 

exhaust velocity the backward velocity of the gas
ejected from the combustion chamber of a rocket
relative to the combustion chamber (6.3) 

external force any force exerted by an object that is
not part of the system on an object within the
system (4.2) 

Faraday cage a metal screen that is used to shield a
region from an external electric field (8.2) 

fictitious force a force that must be invoked to
explain motion in a  non-inertial frame of
reference (1.1)

field a region in space that influences a mass,
charge, or magnet placed in the region (7.2)

frame of reference a subset of the physical world
defined by an observer in which positions or
motions can be discussed or compared (1.1)

Fraunhofer diffraction diffraction produced by
plane wavefronts of a parallel beam of light (9.2) 

free-body diagram a diagram in which all of the
forces acting on an object are shown as acting on
a point representing the object (1.2)

free fall a situation in which gravity is the only
force acting on an object (1.3) 

Fresnel diffraction diffraction produced by curved
wavefronts, such as that produced by a point
source of light (9.2)

frictional forces forces that oppose motion between
two surfaces in contact (1.2)

fringe a bright or dark band produced by
interference of light (9.2) 

gamma (γ ) an abbreviation of an expression that is
used in equations for length contraction and time

dilation: γ =
√

1 − v2

c2 (11.2) 

gamma ray high-frequency radiation emitted from a
radioactive nucleus (13.2) 

geostationary orbit the orbit of a satellite around
Earth’s equator, which gives the satellite the
appearance of hovering over the same spot on
Earth’s surface at all times (3.2)

gluons exchange particles responsible for holding
quarks together (13.3) 

gradient a change in a quantity relative to a change
in position, or displacement (8.1)

gravitational assist or gravitational slingshot
interaction typically between a spacecraft and a
planet in which the planet loses a small amount
of energy and the spacecraft gains a large amount
of energy (6.3) 

gravitational field intensity the quotient of the
gravitational force and the magnitude of the test
mass at a given point in a field; the product of the
universal gravitation constant and mass, divided
by the square of the distance of a given location
from the centre of the object (7.2) 

gravitational field lines imaginary directed lines
that indicate the direction a tiny test mass would
follow if free to move in the gravitational field;
these lines radiate inward toward the mass that
generates them (7.2)

gravitational force infinite range force that operates
between all massive particles (13.3) 

gravitational mass the property of matter that
determines the strength of the gravitational force;
compare to: inertial mass (1.1) 

gravitational potential the gravitational potential
energy per unit mass (7.3) 

graviton exchange particle postulated to be
responsible for the gravitational force (13.3) 

ground state the lowest possible state that an
electron can occupy in an atom (13.3) 

hadron particles that contain quarks (13.3) 

half-life the time in which the amount of a
radioactive nuclide decays to half its original
amount (13.2) 

heat the transfer of thermal energy from one system
to another due to their different temperatures
(5.3) 

heavy water water composed of molecules of
oxygen and deuterium instead of oxygen and
hydrogen (13.2) 

Hooke’s law states that the applied force is directly
proportional to the amount of extension or
compression of a spring (5.2) 
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Huygens’ principle each point on a wavefront can
be considered to be a source of a secondary wave,
called a “wavelet,” that spreads out in front of the
wave at the same speed as the wave itself (9.1) 

impulse the product of the force exerted on an
object and the time interval over which the force
acts (4.1) 

impulse-momentum theorem states that the impulse
is equal to the change in momentum of an object
involved in an interaction (4.1) 

inelastic collision a collision in which momentum
is conserved, but kinetic energy is not conserved
(4.3) 

inertia the natural tendency of an object to stay at
rest or in uniform motion in the absence of
outside forces; proportional to an object’s mass
(1.1)

inertial frame of reference a frame of reference 
in which the law of inertia is valid; it is a non-
accelerating frame of reference (1.1)

inertial mass the property of matter that resists a
change in motion; compare to: gravitational mass
(1.1)

interferometer an instrument for measuring
wavelengths of light by allowing light beams to
interfere with each other (11.1) 

internal force any force exerted on an object in the
system due to another object in the system (4.2) 

inverse square law the relationship in which 
the force between two objects is inversely
proportional to the square of the distance that
separates the centres of the objects; for example,
the gravitational and electrostatic forces (7.1) 

ion an electrically charged atom or molecule (13.1)

ionizing radiation radiation of sufficient energy to
liberate the electrons from the atoms or molecules
(13.2) 

isolated system a system that does not exchange
either matter or energy with its surroundings (4.2) 

isotope two or more atoms of an element that have
the same number of protons but a different
number of neutrons in their nuclei (13.1) 

Kepler’s laws three empirical relationships that
describe the motion of planets (3.1) 

kinematics the study of the motions of bodies
without reference to mass or force; the study of
how objects move in terms of displacement,
velocity, and acceleration (1.2)

law of universal gravitation the force of gravity
between any two objects is proportional to 
the product of their masses and inversely
proportional  to the square of the distance
between their centres (3.1) 

length contraction a consequence of special
relativity, in which an object at rest in one frame
of reference will appear to be shorter in the
direction parallel to its motion in another frame
of reference (11.2) 

lepton particles, such as electrons and neutrinos,
that do not contain quarks and do not take part in
strong nuclear force interactions (13.3) 

line spectrum (emission spectrum) a spectrum
consisting of bright lines at specific wavelengths,
produced by atoms of heated elements (9.3) 

linear accelerator a particle accelerator that uses
alternating electric fields to accelerate particles in
stages (8.3) 

Lorentz-Fitzgerald contraction contraction of an
object in the direction of its motion (11.1) 

magnetic field intensity the magnetic force acting
on a unit length of a current-carrying wire placed
at right angles to the magnetic field, measured in
tesla (T) (7.2) 

magnetic field lines imaginary directed lines that
indicate the direction in which the N-pole of 
a compass would point when placed at that
location; these lines radiate out of the magnet’s 
N-pole and into its S-pole and form closed loops
in the magnet (7.2)

magnetic permeability a number that characterizes
a material’s ability to become magnetized (10.1) 

magnetic quantum number determines the
orientation of the electron orbitals when the atom
is placed in an external magnetic field (13.3) 

magnetic resonance imaging a medical imaging
technique for obtaining pictures of internal parts
of the body in a non-invasive manner (10.2)

mass defect the difference between the mass of a
nucleus and the sum of the masses of its
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constituent particles; the mass equivalent of the
binding energy of a nucleus (13.1)

mass spectrometer an instrument that can separate
streams of particles by mass and measure that
mass by application of electric and magnetic
deflecting fields (8.3) 

mass-to-charge ratio the quotient of a particle’s
mass to its charge, which is easier to measure
than either quantity individually (13.3) 

Maxwell’s equations a series of four related
equations that summarize the behaviour of
electric and magnetic fields and their interactions
(10.1) 

meson a particle composed of a quark and an
antiquark (13.3)

microgravity the condition of apparent
weightlessness (3.2)

modulation a process of adding data to an
electromagnetic wave by changing the amplitude
or frequency (10.2)

momentum the product of an object’s mass and
velocity (4.1) 

neutrino a chargeless, very low-mass particle
involved in weak interactions (13.2) 

neutron a particle with zero charge, found in the
nucleus of all atoms except the hydrogen atom
(13.1) 

nodal point a stationary point in a medium
produced by destructive interference of two
waves travelling in opposite directions (9.1) 

non-conservative force a force that does work on 
an object in such a way that the amount of work
done is dependent on the path taken (5.3) 

non-elastic or plastic the description of a material
that does not return precisely to its original form
after the applied force is removed (5.2) 

non-inertial frame of reference an accelerating
frame of reference (1.1)

nuclear fission the splitting of a large nucleus into
two or more lighter nuclei; usually caused by the
impact of a neutron and accompanied by the
release of energy (13.2) 

nuclear fusion the formation of a larger nucleus
from two or more lighter nuclei, accompanied by
the release of energy (13.2) 

nuclear model a model for the atom in which all of
the positive charge and most of the mass are

concentrated in the centre of the atom, while
negatively charged electrons circulate well
beyond this “nucleus” (12.3) 

nucleon the collective term for a particle (proton
and/or neutron) in the atomic nucleus (13.1)

nucleon number the total number of nucleons
(protons and neutrons) in the nucleus; also called
the “atomic mass number” (13.1)

nuclide the nucleus of a particular atom, as
characterized by its atomic number and atomic
mass number (13.1) 

open system a system that can exchange both matter
and energy with its surroundings (4.2) 

orbital quantum number specifies the shape of an
electron’s orbital or energy level; has integer
values of one less than the principal quantum
number (12.3) 

parabola a geometric figure formed by slicing a
cone with a plane that is parallel to the axis of
the cone (2.1) 

parent nucleus the initial nucleus involved in a
transmutation reaction (13.2) 

particle accelerator an instrument capable of
emitting beams of high-speed, subatomic-sized
particles, such as protons and electrons (8.3) 

Pauli exclusion principle states that no two
electrons in the same atom can occupy the same
state; alternatively, no two electrons in the same
atom can have the same four quantum numbers
(13.3) 

periodic motion the motion of an object in a
repeated pattern over regular time intervals (5.2) 

perturbation deviation of a body in orbit from its
regular path, caused by the presence of one or
more other bodies (3.2) 

photoelastic materials that exhibit doubly refractive
properties while under mechanical stress (10.1)

photoelectric effect the emission of electrons from
matter by radiation of certain frequencies (12.1) 

photon a quantum of light or electromagnetic
radiation (12.1)

pion a type of meson (13.3) 

plane polarized light or an electromagnetic wave in
which the vibrations of the electric field lie in
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one plane and are perpendicular to the direction
of travel (10.1)

polarization the orientation of the oscillations in a
transverse wave (10.1) 

positron a particle with the same mass as the
electron, but with a positive charge; an
antielectron (13.2) 

potential gradient the quotient of the electric
potential difference between two points and the
component of the displacement between the
points that is parallel to the field (8.1) 

principal quantum number describes the orbital or
energy level of an electron in an atom (12.3) 

projectile an object that is given an initial thrust
and allowed to move through space under the
force of gravity only (2.1)

proper length the length of an object measured by
an observer at rest relative to the object (11.2) 

proper time the duration of an event measured by
an observer at rest relative to the event (11.2)

proton a positively charged particle found in the
nucleus of all atoms (13.1)

quantized a property of a system that occurs only in
multiples of a minimum amount (12.1) 

quantum a discrete amount of energy, given by the
product of Planck’s constant (h) and the
frequency of the radiation (f ): hf (12.1) 

quark the family of six types of particles with
charges of 1

3 or 2
3 of the elementary charge, which 

comprise all hadrons (13.3) 

radioactive isotope (radioisotope) an isotope of 
an element that has an unstable nucleus and
therefore disintegrates, emitting alpha, beta, 
or gamma radiation (13.2) 

radioactive material material that contains
radioactive nuclei (13.2) 

radioactivity the spontaneous disintegration of the
nuclei of certain elements, accompanied by the
emission of alpha, beta, or gamma radiation (13.2) 

range the horizontal distance a projectile travels
(2.1)

Rayleigh criterion the criterion for resolution of two
point sources, which states that the inner dark
ring of one diffraction pattern should coincide
with the centre of the second bright fringe (9.3) 

reaction mass matter ejected backward from a
rocket in order to propel it forward (6.3) 

recoil the interaction that occurs when two
stationary objects push against each other and
then move apart (4.2) 

relativistic speeds speeds close to the speed of light
(11.2)

resolving power the ability of a telescope or
microscope to distinguish objects that are close
together (9.3) 

rest mass the mass of an object measured by an
observer at rest relative to the object (11.3)

restoring force the force exerted by a spring on an
object; proportional to the amount of extension or
compression of the spring (5.2) 

Rydberg constant the constant of proportionality
that relates the wavelength of a spectral line in
the hydrogen atom and the difference of energy
level numbers that produce it:
R = 1.09737315 × 107m−1 (12.3)

Schrödinger wave equation the basic quantum
mechanical equation used to determine the
properties of a particle (13.3) 

simultaneity a concept that describes events that
occur at the same time and in the same inertial
reference frame (11.2) 

spin quantum number specifies the orientation, up
or down, of the electron’s “spin”; has values + 1

2
or − 1

2 when placed in a magnetic field (13.3) 

spring constant the amount of force a spring 
can exert per unit distance of extension or
compression (5.2) 

standard model a comprehensive model that
describes subatomic particles, their properties,
and the force particles that govern their
interactions (13.3) 

Stoke’s law states that the drag force on a sphere
moving through a liquid is proportional to the
radius of the sphere and its velocity (8.1)

stopping potential in the photoelectric effect, the
potential difference required to stop the emission
of photoelectrons from the surface of a metal
(12.1)

strong nuclear force the fundamental force that
holds the parts of the nucleus together (13.1) 

superposition of waves when two or more waves
propagate through the same location in a
medium, the resultant displacement of the
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medium will be the algebraic sum of the
displacements caused by each wave (9.1) 

synchrocyclotron a modified cyclotron, in which
the frequency of the accelerating electric field is
adjusted to allow for the relativistic mass increase
of the particles (8.3) 

synchrotron a cyclic particle accelerator that uses a
series of magnets around the circular path and
several high-frequency accelerating cavities (8.3) 

system of particles an arbitrarily assigned group of
objects (4.2) 

tension the magnitude of the force exerted on and
by a cable, rope, or string (1.3)

terminal velocity the velocity of a falling object at
which the force of friction is equal in magnitude
to the force of gravity (1.3) 

test charge a charge of a magnitude that is small
enough that it will not affect the field being
measured; it is used to determine the strength of
an electric field (7.2)

threshold frequency the lowest frequency of light
(smallest photon energy) that can eject a
photoelectron from a particular metal (12.1) 

thrust the force with which gases ejected from a
rocket push back on the rocket (6.3) 

time dilation a consequence of special relativity in
which two observers moving at constant velocity
relative to each other will each observe the other’s
clock to have slowed down (11.2)

torsion balance a sensitive instrument for
measuring the twisting forces in metal wires,
consisting of an arm suspended from a fibre (7.1) 

total energy the sum of the rest mass energy of a
particle and its kinetic energy (11.3)

total orbital energy the sum of the mechanical
(gravitational potential and kinetic) energies of an
orbiting body (6.2) 

trajectory the path described by an object moving
due to a force or forces (2.1)

transmutation the conversion of one element into
another, usually as a result of radioactive decay
(13.2) 

triangulation a geometrical method for determining
distances through the measurement of one side
and two angles of a right triangle (10.4) 

tritium an isotope of hydrogen, consisting of a
proton and two neutrons in the nucleus (13.1) 

Tychonic system a planetary model in which the
Sun and Moon revolve around Earth, but the
other planets revolve around the Sun (3.1) 

ultraviolet catastrophe the significant discrepancy
at ultraviolet and higher frequencies between the
predictions based on classical physics and
observations of blackbody radiation (12.1) 

uniform circular motion motion with constant
speed in a circle (2.2) 

uniform motion motion at a constant velocity (1.2) 

uniformly accelerated motion motion under
constant acceleration (1.2)

W+, W−, Z˚ bosons exchange particles responsible
for the behaviour of the weak nuclear force (13.3)

wave function a mathematical expression that is a
solution of the Schrödinger wave equation;
describes the behaviour of a particle (13.3) 

wave-particle duality both matter and radiation
have wave-like properties and particle-like
properties (12.2) 

weak nuclear force a short-range interaction
between elementary particles that is much weaker
than the strong nuclear force and governs the
process of beta decay; one of the four
fundamental forces (13.3) 

work the transfer of mechanical energy from one
system to another; equivalent to a force acting
through a distance (5.1) 

work function in the photoelectric effect, the
minimum amount of energy necessary to remove
an electron from a metal surface (12.1)

work-kinetic energy theorem the relationship
between the work done by a force on an object
and the resulting change in kinetic energy:
W = ∆Ek (5.1) 

work-energy theorem the relationship between 
the work done on an object by a force and the
resulting change in the object’s potential and
kinetic energy: W = ∆Ek + ∆Ep (5.1) 

Zeeman effect the splitting of the spectral lines of
an atom when it is placed in a magnetic field
(12.3) 
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Absorption of electromagnetic
waves,  436

Absorption spectra,  406
Acceleration

centripetal,  78–80
dynamics,  17–18SP
force,  7, 56
gravity,  19, 33, 34–35inv,
36–38inv, 220, 275
horizontal motion,  40–41SP
mass,  7
projectile,  58
tension in a cable,  31–32SP

Acceleration due to gravity,  220
Action at a distance,  285
Action-reaction forces,  9, 105
Adams, John Couch,  122
Affleck, Dr. Ian Keith,  222
Affleck-Dine Baryogenesis,  222
Air friction,  43, 58
Air resistance,  43
Alouette I,  44
Alpha decay,  557
Alpha particles,  556
Alpha rays,  520
Altitude of geostationary orbits,

117–119SP
Ampère, André-Marie,  424
Amplitude modulated radio,  439
Anderson, C.D.,  577
Angular momentum,  160
Angular momentum quantum

number,  533
Anik I,  44
Antenna cable,  344–345
Antimatter,  222
Antineutrino,  259, 577
Apollo 13,  114
Apparent weight,  27, 28–29SP, 30

free fall,  42
Astronomical unit,  101
Atomic mass number,  547
Atomic mass unit,  551
Atomic number,  547
Atomic theory,  519, 520
Atoms,  496

energy levels,  527
ground state,  536

lasers,  538
quantum mechanical,  529

Atwood’s machine,  34–35inv,
36–38SP, 193

Atwood, George,  33, 34
Auto safety and impulse,

145–147
Average force,  142, 143

tennis ball, on a,  143–144SP
Axes in Cartesian coordinate

system,  11

Ballista,  126–127
Balmer series,  524, 525

energy levels,  528
principal quantum number,
527, 528

Balmer, Johann Jakob,  524
Bartholinus, Erasmus,  431
Baryon,  580
Becquerel, Henri,  463, 556, 557
Bell, Jocelyn,  177
Bernoulli, Daniel,  277
Beta decay,  558–560
Beta particle,  556
Beta rays,  520
Betatron,  363
Bevatron,  364
Big Bang,  222
Billiard ball model,  519
Binding energy,  232, 241

determining,  242–246SP
nucleus,  551–552SP

Black holes,  271, 292
Blackbody,  498

frequency of radiation,  501
intensity of radiation,  501
Planck’s constant,  502

Blackbody radiation,  498–501
electromagnetic energy,  500
emission spectrum,  500–501
graphs of,  499, 500
power,  499, 500
temperature,  499

Bohr radius,  526
Bohr, Niels Henrik David,  523,

530, 546
Boltzmann, Ludwig,  500

Boot, Henry,  443
Bragg, Sir Lawrence,  516
Brahe, Tycho,  102, 103, 105
Bunsen, Robert,  498

Calorimeter thermometer,  193
Careers

astronomer,  177
cloud physicist,  308
mechanical engineer,  87
radar scientist,  308

Cartesian coordinate system,  11
axes,  11
origin,  11
vectors,  80

Catapult machine,  126–127
Cathode ray tubes,  17
Cathode rays,  519, 523
Cavendish, Henry,  112, 273, 277
Celestial spheres,  104
Centrifugal force,  86
Centripetal acceleration,  78–80,

275
uniform circular motion,  88

Centripetal force,  81, 82, 274
banked curves,  91–92,
93–94SP
centrifugal force,  86
free-body diagrams,  84–86SP
friction,  83SP
geostationary orbits,  118SP
gravity,  84–86SP, 111
horizontal plane,  82–83SP
uniform circular motion,  88
vertical plane,  82–83SP

CERN,  364, 370
Chadwick, James,  546
Chan, Matthew,  87
Chandra X-ray Observatory,  177
Chapman, John Herbert,  44
Charge arrays,  325QL

electric field lines,  325QL
equipotential lines,  325QL

Charge density,  328
Chemical symbol,  547
Cherenkov radiation,  483
Chisov, I.M.,  43
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Circular motion
planetary motion,  115–122
satellite motion,  115–122
verifying the equation,
89–90inv

Circular orbit,  236
Citizens’ band radio,  439
Clarke orbits,  117
Clarke, Arthur C.,  117
Closed system,  150
Cloud chamber,  577, 578inv
Coaxial cable,  344–345
Cockcroft, J.D.,  361
Cockcroft-Walton proton

accelerator,  361
Coefficient of kinetic friction,  19,

20–21SP
inclined plane,  49QL,
50–51SP

Coefficient of static friction,  19,
22QL
inclined plane,  49QL

Coherent,  391
Coherent radiation,  414
Collisions

analyzing,  163
boxcars, between,  151–152SP
classifying,  167–168SP
completely inelastic,  168
elastic,  163, 168
energy conservation,
172–173SP
examining,  164–166inv
friction,  173–175SP
horizontal elastic,  213–214SP
inelastic,  163, 171
kinetic energy,  163,
164–166inv
mass,  170
one dimension,  151
two dimensions,  155
vertical elastic,  215–216SP

Combustion chamber,  252
Compton effect,  510
Compton, Arthur,  510
Conductors,  341

magnetic field,  353
Conservation of angular

momentum,  160, 162
Conservation of energy

ski slope, on,  194–196SP
test of,  197inv, 211inv
work-energy theorem,
192–194

Conservation of mass,
490–491SP

Conservation of mechanical
energy,  194

Conservation of momentum,  148,
149, 150–162
automobiles, of,  158–159SP
golf ball, of a,  156SP
tennis ball, of a,  156SP
two dimensions,  156–159SP

Conservative force,  217
Constructive interference,  387,

395
thin films,  407
waves,  391

Coordinate system,  11
Cartesian,  11
incline, along a,  46

Copernicus, Nicholas,  102, 380
Corpuscular model of light,  382
Cosmic rays,  446
Coulomb constant,  278, 428, 471
Coulomb repulsive force,  546
Coulomb’s law,  273, 278, 327,

428
applying,  279–280SP
graphical analysis,  280QL
multiple charges,  281–282SP

Coulomb, Charles Augustin,  273,
277

Counterweight,  33
Crab Nebula,  177
Cross-product,  349
Crumple zones,  145

designing,  146QL
Curie, Marie,  557
Curie, Pierre,  557
Cyclotron,  362

Dalton, John,  519
Daughter nucleus,  557
Davisson, Clinton J.,  516
de Broglie wavelength,  513, 514
de Broglie, Louis,  513, 530
Decay series,  561
Deep Space 1,  255
Destructive interference,  387,

530
single-slit diffraction,
401–402SP
thin films,  407, 408
waves,  391

Deuterium,  550
Diamagnetic,  347

Diffraction,  384
Fraunhofer,  398
Fresnel,  398
fringe,  399
light,  384
single-slit,  398
sound,  390inv
waves,  389

Diffraction grating,  403, 405
bright fringes,  404

Diffraction patterns of X-rays,
516

Digital videodiscs (DVDs),
408–409

Dilated time,  476
Dine, Michael,  222
Dione,  125
Dirac, Paul Adrien Maurice,  531
Dispersion,  383

light,  383, 386
Doppler capability,  308
Doppler effect,  308
Dot product,  185
Double-slit experiment,  392,

397inv, 498
Dynamics,  15

acceleration,  17–18SP
gravity,  17–18SP
kinematics,  16–18
velocity,  17–18SP

Dynamics of motion,  4

Earth,  236, 380
orbital period,  101
orbital radius,  101

Effluvium,  286
Einstein, Albert,  12, 114, 292,

464, 471, 472, 488, 502, 505,
506, 518, 538

Elastic,  163, 168
Elastic potential energy,  201,

205, 206, 213–214SP
spring, of a,  207–208SP

Electric energy,  272
Electric field,  271, 286, 323ML,

341
application,  348
charged parallel plates,
327–328
magnetic field,  355–357
potential differences,  330–331
properties, near a conductor,
324–326
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Electric field intensity,  286, 287
calculating,  287–288
charged sphere,  294SP
multiple charges,  295–297SP
parallel plates,  328–329SP
point source,  293–294
potential difference,
332–333SP

Electric field lines,  300, 301
charge arrays,  325QL

Electric force, nature of,  281
Electric permittivity,  428, 471
Electric potential difference,  309

calculations involving,
310–314SP
point charge,  309

Electric potential energy,  305,
306
between charges,  306–307SP

Electromagnetic energy and
blackbody radiation,  500

Electromagnetic fields,
generating,  465QL

Electromagnetic force,  277, 582
Electromagnetic radiation,  420

particle nature of,  502
speed of,  429
wave theory,  454

Electromagnetic spectrum,  438
Electromagnetic waves,  425

absorption,  436
experimental evidence,  427
nature of,  422
polarization,  431
producing,  429QL
properties of,  421ML
reflection,  436
speed of,  427, 430SP
wave equation,  448

Electron gun,  356
Electron microscopes,  496, 517
Electron neutrino,  580
Electron volts,  361, 508

joules,  508
Electron-neutrino,  554–555
Electrons,  334, 519, 576, 580

atomic number,  547
discovery of,  503
energy,  524–525
energy levels,  527
jumping orbits,  524–525
law of conservation of
momentum,  510

magnitude of charge on,
506–507
measuring mass to charge
ratio,  584–585inv
orbitals,  532–534
orbits,  524
relativistic mass,  487–488SP

Electroscope
discharging,  297inv
grounding,  497inv

Electrostatic force,  277
nature of,  276inv

Elementary particles,  576
Ellipse,  103–105
Emission spectrum,  405,

523–524, 529
blackbody radiation,  500–501
identifying elements,  537inv

Empirical equations,  101QL, 501
Encke,  133
Energy,  184

binding,  232
electrons,  524–525
escape,  232
lift-off,  230
mass,  486–492
matter,  511
momentum,  134–135
nuclear reactions,  568–569SP
orbiting satellites,  236
photons,  524–525
transformation of,  184

Energy conservation of collision,
172–173SP

Energy conversions and roller
coaster,  219–220SP

ENIAC,  58
Equipotential lines in charge

arrays,  325QL
Equipotential surface,  316
Escape energy,  232

determining,  233–234SP
Escape speed,  232, 233

determining,  233–234SP
Escape velocity,  232
Eta,  580
Ether,  384
Exchange particle,  581
Exponential relationship,  101
External force,  150
Extremely low-frequency

communication,  438

Faraday cage,  343, 344QL
Faraday shielding,  345
Faraday’s Ice-Pail Experiment,

342–343
Faraday, Michael,  285, 300,

342–343, 422, 423
Fermi, Enrico,  554–555
Fermilab,  364, 370
Fictitious forces,  13
Field structure,  324
Fields,  285, 341

describing,  285
intensity,  286
inverse square law,  285
potential energy,  304

Flux lines,  302
FM radio transmitter,  454
Force

acceleration,  7, 56
action-reaction,  9
apparent weight,  28–29SP
centripetal,  81, 82
components of,  47–48SP
dynamics,  2–3
horizontal,  39
law of inertia,  57
magnitude,  30
mass,  7
net, determining,  18–20

Foucault, Jean,  428
Frames of reference,  4, 6, 11, 471

inertial,  12, 13
non-inertial,  12, 13

Fraunhofer diffraction,  398
Free fall,  42

air resistance,  43
apparent weight,  42
terminal velocity,  43

Free space,  428
Free-body diagrams,  18

applying,  23–25SP
centripetal force,  84–86SP
friction,  39
inclined plane,  47–48SP

Frequency and kinetic energy,
506

Frequency modulated radio,  441
Fresnel diffraction,  398
Friction,  18, 20–21SP

banked curves,  91–92
centripetal force,  83SP
coefficient of kinetic,  19
coefficient of static,  19

648 MHR • Index



collisions,  173–175SP
free-body diagrams,  39
horizontal force,  39
non-conservative force,  218

Fringe,  394
bright,  404
diffraction,  399
first-order,  403
higher-order,  400

Galilei, Galileo,  6, 102
Galle, J.G.,  122
Gamma,  481
Gamma decay,  560
Gamma radiation, penetrating

ability,  545ML
Gamma rays,  446, 447, 556
Gauss’s law for electric fields,

422
Gauss’s law for magnetic fields,

422
Gauss, Carl Friedrich,  422, 423
Geiger counter,  570–571
Geiger, Hans,  520
Gell-Mann, Murray,  579
General theory of relativity,  12,

485
Generator effect,  423
Geocentric,  102
Geostationary orbits,  117

altitude,  117–119SP
altitude and velocity,
117–119SP
centripetal force,  118SP
velocity,  117–119SP

Germer, Lester H.,  516
Gilbert, Sir William,  286
Global Positioning System,  236,

443, 444
Gluon,  582
Governor General’s Medal,  222
Gradient,  331
Gravitational assist,  255
Gravitational field,  271
Gravitational field intensity,  289

calculating,  290SP
Earth, near,  299SP
point mass,  298

Gravitational field lines,  302
Gravitational force,  582

nature of,  281
Gravitational mass,  7

Gravitational potential energy,
33, 208, 238–242, 305
determining,  242–246SP
kinetic energy,  182
orbital energy,  237
roller coaster,  219–220SP
sea rescue,  191–192SP
work,  190–191

Gravitational slingshot,  255
Graviton,  582
Gravity,  18, 102, 274, 485, 577

acceleration,  19, 33, 34–35inv,
36–38inv, 220, 275
centripetal force,  84–86SP,
111
conservative force,  217
dynamics,  17–18SP
inclined plane,  47–48SP
Kepler’s laws,  108
Newton’s universal law of,  102
projectile,  59
tension in a cable,  31–32SP

Gravity wave detection,  292
Grimaldi, Francesco,  384
Ground state,  536
Gyroscope,  7

Hadron,  579, 580
Hale-Bopp,  133
Half-life,  545, 562

radioactive isotope,  572inv
Halley, Sir Edmund,  105
Hang time,  73
Heisenberg uncertainty principle,

222
Heliocentric,  102
Hermes,  44
Herschel, Sir William,  444
Hertz, Heinrich,  463, 502
Hillier, James,  517
Hohmann Transfer Orbit,  249
Hollow conductors,  342–343
Hooke’s Law,  201, 203, 205, 206

archery bow,  204–205SP
Newton’s Third Law,  203
restoring force,  203
spring constant,  203
spring, of a,  207–208SP
testing,  202inv

Hooke, Robert,  206, 384
Horizontal elastic collisions,

213–214SP

Horizontal motion of projectile,
59, 60–62SP

Humour,  286
Huygens’ principle,  385
Huygens, Christiaan,  384, 498
Hyakutake,  133
Hydrogen burning,  568

Iapetus,  125
Imax Corporation,  76–77
Impulse,  140, 141

auto safety,  145–147
golf ball, on a,  141–142SP
tennis ball, on a,  143–144SP

Impulse-momentum theorem,
142, 143, 149

Inclined plane
coefficient of kinetic friction,
49QL, 50–51SP
coefficients of static friction,
49QL
free-body diagrams,  47–48SP
kinematic equations,  47–48SP

Inelastic,  163, 168
Inertia,  6, 249

law of,  6
Inertial frame of reference,  12,

13, 471
Inertial guidance system,  7
Inertial mass,  7

measuring,  8inv
Infrared radiation,  444
Interference, thin films,  406–408
Interference patterns,  392
Interferogram,  415
Interferometer,  466, 469, 470
Internal force,  150
International Space Station,  230,

236
International Thermonuclear

Experimental Reactor,  364
Inverse relationship,  101
Inverse square law,  274

field,  285
Ion engine,  135
Ionization,  445
Ionizing radiation,  558
Isolated system,  150, 193
Isotopes,  357, 549

Jeans, Sir James Hopwood,  500
Joe, Dr. Paul,  308
Joule, James Prescott,  221
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Joules and electron volts,  508
Jupiter,  236, 380

orbital period/radius,  101

Kaon particles,  477, 580
Kelvin, Lord,  422
Kenney-Wallace, Dr. Geraldine,

388
Kepler’s empirical equations,

101QL
Kepler’s laws,  103, 104–114

gravity,  108
Kepler’s Second Law,  162
Kepler, Johannes,  101, 103–114
Kinematic equations,  20–21SP

applying,  23–25SP
inclined plane,  47–48SP
parabolic trajectory,  65–67SP,
68–69SP
projectile,  60–62SP

Kinematics,  15
dynamics,  16–18

Kinetic energy,  489–490SP
classical,  492
collisions,  163, 164–166inv
determining,  242–246SP
direction of work,  185
frequency,  506
gravitational potential energy,
182
orbital energy,  237
photoelectric effect,  507
photoelectrons,  505
relativistic,  492
work,  187–188, 189–190SP

Kirchhoff, Gustav,  498, 499
Klystron tubes,  443
Kopff,  133

Lambda,  580
Laser,  388
Lasers,  496, 538
Law of action-reaction forces,  9
Law of conservation of energy,

135, 213
test of,  197inv, 211inv

Law of conservation of mass,
490–491SP

Law of conservation of
momentum,  135, 148–162
electrons/photons,  510

Law of inertia,  6
force,  57

Law of universal gravitation,
103–104, 105, 106–114
planetary motion,  115–122
satellite motion,  115–122
weight of astronaut,  107SP

Lawrence, Ernest O.,  362Le
Verrier, John Joseph,  122

Lenard, Phillip,  463, 503, 504
Length contraction,  477–478,

479, 480
Lepton,  577, 580
Levitation,  346–347
Lichten, Steve,  485
Lift-off energy,  230
Light,  380, 382, 396

See also Waves
corpuscular model of,  382
diffraction,  384
dispersion,  383, 386
particle nature of,  498
polarization,  433QL
polarizing,  421
properties of,  381inv
rectilinear propagation,  385
reflection,  385
refraction,  383, 385
speed of,  466, 471
theoretical speed of,  471
visible,  445
wave model of,  384
wave properties of,  381inv
wavelength of,  396

Light meters,  496, 508
LINAC,  363
Line spectrum,  405
Linear accelerator,  363
Logarithmic relationship,  101
Lorentz-Fitzgerald contraction,

470
Lowell, Percival,  122
Luminiferous ether,  463

Maglev trains,  346–347
Magnetic field,  271

application,  348
charged particle,  352
circular motion,  355
conductor,  353
direction,  349
electric field,  355–357
force on a moving charge,
350, 351SP
force on current-carrying
conductor,  354SP

measuring,  360inv
right-hand rule,  349, 353

Magnetic field intensity,  293
Magnetic field lines,  302
Magnetic flux,  302
Magnetic force, nature of,  281
Magnetic monopoles,  283, 293
Magnetic permeability,  428, 471
Magnetic quantum number,  534
Magnetic resonance imaging,

442–443
Mars,  248–249, 380

orbital period/radius,  101
Mass

acceleration,  7
collisions,  170
energy,  486–492
force,  7
gravitational,  7
inertial,  7
planets,  112
sun,  112, 113inv
weight of astronaut,  107SP

Mass defect,  550, 551, 559
Mass spectrometer,  356

motion of charge particles,
357–359SP

Matter,  222
energy,  511
waves,  513

Matter waves,  513
de Broglie wavelength,  513,
514
velocity,  514–515SP

Maximum height, symmetrical
trajectory,  72, 74SP

Maxwell’s equations,  422,
423–426, 498

Maxwell, James Clerk,  422, 471,
498

Mayer, Julius Robert,  221
Mechanical energy,  215, 221inv
Mercury, orbital period/radius,

101
Meson,  576, 580
Metastable state,  538
Michelson’s interferometer,  469
Michelson, Albert A.,  428, 466
Michelson-Morley experiment,

466–469, 471
Microgravity,  120

simulating,  121
Microwaves,  443–444
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Millikan’s Oil-Drop Experiment,
334–336, 337–338SP,
339–340inv

Millikan, Robert Andrews,  334,
506

Modulus of elasticity,  204
Momentum,  136, 138, 139, 150

energy,  134–135
hockey puck, of a,  139–140SP
photon,  512
rate of change of,  140

Morley, Edward Williams,  466
Motion,  4, 5ML

analyzing,  15–26
bending a wall,  10QL
connected objects,  36
dynamics,  2–3, 4, 15
horizontal,  59
incline, along a,  46
kinematics,  15
periodic,  208
planetary,  115–122
projectile,  58
rotational,  88
satellite,  115–122
two dimensions, in,  57ML
uniform,  6, 15, 16
uniform circular,  78–95
uniformly accelerated,  15, 16
vertical,  27–45

Mu meson,  480
Muon,  480, 577, 580
Muon neutrino,  580

Neddermayer, S.H.,  577
Neptune,  122, 236
Neutral pion,  576
Neutrino,  259, 554–555, 576, 577

detecting,  555
Neutron,  546, 580
Neutron star,  177
Newton’s Cradle,  137inv
Newton’s First Law,  6, 249

relativity,  12
Newton’s law of universal

gravitation,  102–105, 106,
107–114

Newton’s laws,  222
Newton’s mountain,  116
Newton’s Second Law,  7, 138,

140, 249
apparent weight,  28–29SP
free-body diagrams,  18,
23–25SP

friction,  39
horizontal motion,  40–41SP
kinematic equations,  23–25SP
tension in a cable,  31–32SP
work,  187–188

Newton’s Third Law,  9, 148–162,
249, 251
apparent weight,  28–29SP
applying,  23–25SP
free-body diagrams,  23–25SP
Hooke’s law,  203
kinematic equations,  23–25SP

Newton, Sir Isaac,  6, 103–114,
116, 136, 248–249, 274, 279,
382

Newtonian demonstrator,  137inv
Nobel Prize,  334, 361, 464, 504,

557, 583
Nodal point,  387
Non-conservative force,  218
Non-inertial frame of reference,

12, 13
Nova,  103
Nuclear binding energy,  550
Nuclear fission,  566
Nuclear fusion,  567–568
Nuclear fusion reactors,  364
Nuclear model,  521
Nuclear radiation, detecting,

570–571
Nuclear reactions,  565

energy,  568–569SP
Nucleon number,  547
Nucleons,  546
Nucleus,  521

binding energy,  551–552SP
daughter,  557
estimating size of,  522QL
parent,  557
stability of,  548
structure of,  546

Nuclides,  549

Oersted, Hans Christian,  424
Omega,  580
Open system,  150
Optical pumping,  538
Orbital energy

gravitational potential energy,
237
kinetic energy,  237
satellite,  237

Orbital period,  101

Orbital quantum number,  532,
533

Orbital radius,  101
Orbital speed of planets,

109–110inv
Orbitals,  532

electrons,  532–534
Orbits

perturbing,  121–122
satellite,  117

Origin in Cartesian coordinate
system,  11

Parabola,  63, 73–75SP
symmetrical,  73–75SP
trajectory,  64inv, 65–67SP

Parabolic trajectory
components of,  64inv
kinematic equation,  65–67SP,
68–69SP

Parallel plates
electric field intensity,
328–329SP
potential differences,  330–331

Parent nucleus,  557
Particle accelerators,  355, 361,

370, 544
cost benefit analysis,  370

Particle gun,  356
Particle nature of light,  498
Pauli exclusion principle,  534,

535
Pauli, Wolfgang,  534, 554–555,

559
Pendulum,  183ML
Perihelion,  109
Periodic motion,  183ML, 201,

208
analyzing,  209inv
restoring force,  208, 210

Perturbations,  122
Phagocytosis,  496
Phase differences,  415
Phase interferometry,  414
Photoelastic,  435
Photoelectric effect,  463, 464,

502, 503
early experiments,  503–504
kinetic energy,  507
magnitude of charge on
electron,  506–507
photons,  505
quantum,  505
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Photoelectrons, kinetic energy,
505

Photons,  505, 508, 538, 554–555,
580, 582
calculating momentum of,
512–513SP
energy,  524–525
law of conservation of
momentum,  510
momentum,  512
photoelectric effect,  505

Physics of a car crash,  161
Physics research,  370
Pilot waves,  530
Pion,  576, 577, 580
Planck’s constant,  222, 502, 506
Planck, Max,  501
Plane polarized,  432
Planetary motion

circular motion,  115–122
law of universal gravitation,
115–122

Planetoid, escape from,  229QL
Planets

mass,  112
orbital speed,  109–110inv

Plasma,  365
Plastic,  168
Plum pudding model,  520
Pluto,  122
Polarization,  434–435

calcite crystals,  431QL
electromagnetic waves,  431
light,  433QL
modelling,  433QL

Polarizing filters,  432
Positron,  259, 560, 576
Potential differences

electric field,  330–331
electric field intensity,
332–333SP
parallel plates,  330–331

Potential energy,  33
fields,  304
potential,  33

Potential gradient,  331
Prebus, Albert,  517
Priestly, Joseph,  277
Principal quantum number,  527

Balmer series,  527, 528
Principle of equivalence,  12
Project HARP,  241
Projectile,  58

gravity,  59
horizontal motion,  59,
60–62SP
kinematic equation,  60–62SP
maximum range,  70QL
parabola,  63
range,  58
trajectory,  58

Projectile motion,  58
components of,  64inv

Proper length,  479
Proper time,  475
Propulsion in space,  252–253

process of,  255–256
rockets,  253–254SP

Proton,  546, 580
Ptolemy,  102
Pulsars,  177

Quantity of motion,  136
Quantized,  501
Quantum,  501

photoelectric effect,  505
principal number,  527

Quantum mechanical atom,  529
Quantum mechanics,  496
Quantum numbers,  532, 533

magnetic,  534
spin,  534

Quantum pennies,  334QL
Quark,  583

properties,  581
Quarks,  579

Radar,  308
Radar satellites,  414–415
Radioactive emissions,

penetrating ability,  545ML
Radiation, detecting,  570–571
Radio telescopes,  379, 436
Radio waves,  427, 438, 449SP
Radioactive decay

half-life,  562, 564–565SP
rate of,  562–563

Radioactive isotopes,  556, 557
applications of,  573–574
half-life,  572inv
medicine,  573
smoke detectors,  574
tracers,  574

Radioactive materials,  556
Radioactivity, detecting,  570–571
Radioisotopes,  557, 565

Randall, John T.,  443
Range,  58

symmetrical trajectory,  72,
74SP

Rayleigh criterion,  410
Rayleigh, Lord,  410, 500
Reaction engine,  251QL
Recoil,  153, 251

canoe, of a,  154–155SP
Rectilinear propagation of light,

385
Reflection

electromagnetic waves,  436
light,  385

Refraction of light,  383, 385
Relative time,  476–477SP
Relativistic lengths,  481–482SP
Relativistic mass,  486,

487–488SP
electron,  487–488SP

Relativistic speeds,  481
Relativity

general theory of,  12, 485
special theory of,  464,
471–483, 485

Resolving power,  409, 410,
411–412SP

Resonant-cavity magnetron,  443
Rest energy,  488
Rest mass,  486
Restoring force,  203

periodic motion,  208, 210
Retrograde rocket burner,  249
Rhea,  125
Right-hand rule for magnetic

field,  349, 353
Röntgen, Wilhelm Conrad,  463,

510, 556
Rotational motion, describing,  88
Rumford, Count,  221
Rutherford Medal,  222
Rutherford, Ernest,  361, 520,

521, 523, 546, 556
Rydberg constant,  524, 525
Rydberg, Johannes Robert,  524

Safi-Harb, Dr. Samar,  177
Satellite motion

circular motion,  115–122
law of universal gravitation,
115–122
orbiting,  236
orbits,  117
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Saturn,  236
orbital period/radius,  101

Scanning electron microscope,
517

Schrödinger wave equation,  531,
532

Schrödinger, Erwin,  531
Search for Extra-Terrestrial

Intelligence,  379
Semiconductor electronics,  496
SETI,  379
Shielded twin lead,  344–345
Shoemaker-Levy 9,  250
Short-wave radio,  439
Sigma,  580
Simultaneity,  473
Single-slit diffraction,  398

destructive interference,
401–402SP

Single-slit experiment,  410
Single-slit interference,  400
Slinky,  183
Smoke detectors,  574
Sound, diffraction of,  390inv
Spacecraft,  236
Special theory of relativity,  464,

471–483, 485
dilated time,  476
length contraction,  477–480
proper length,  479
proper time,  475
rest time,  475
simultaneity,  473
time dilation,  474–476

Spectrometer,  406
Spectroscopes,  405, 406
Speed of light,  466
Spin quantum number,  534
Spring,  5ML
Spring constant,  203
Spring pendulum,  183ML
Standard model,  582
Stanford Linear Accelerator

Centre,  363
Stanford University,  583
Stefan, Josef,  500
Stoke’s law,  336
Stokes, Sir George Gabriel,  336
Stopping potential,  504
Strong nuclear force,  547–548,

577, 582
Strutt, John William,  410, 500
Sudbury Neutrino Observatory,

554–555

Sun, mass of,  112, 113inv
Superball Boost,  257inv
Superconductivity,  346–347
Supernovae,  103, 177
Superposition of waves,  386
Swift-Tuttle,  133
Swigert, Jack,  100
Symmetrical trajectory,  73–75SP

maximum height,  72SP, 74SP
range,  72, 74SP
time of flight,  71, 74SP

Synchrocyclotron,  363
Synchrotron,  364
System of particles,  150

Tachyons,  482
Tau neutrino,  580
Tau particles,  477, 577, 580
Taylor, Dr. Richard,  583
Technical Standards and Safety

Authority,  87
Television frequencies,  440
Tension,  30

cable, in a,  31–32SP
Terminal velocity,  43, 45QL
Tesla (T),  349
Test charge,  286
Tethys,  125
Theoretical physics,  222
Thermal energy,  221inv,

490–491SP
Thermoluminescent,  571
Thompson, Benjamin,  221
Thomson, George P.,  516
Thomson, J.J.,  334, 463, 516,

519, 520, 556, 584
Thomson, William,  422
Threshold frequency,  507
Time dilation,  474
Time of flight of symmetrical

trajectory,  74SP
Titan,  125
Tokamak system,  364–365
Tombaugh, Clyde,  122
Toroidal magnetic bottle,  365
Torsion balance,  273QL, 277
Total energy,  488, 489
Total orbital energy,  241

determining,  242–246SP
Tracy, Paul,  93
Trajectory,  58

parabola,  64inv, 65–67SP
symmetrical,  71

Transformation of energy,  184

Transmission electron
microscope,  517

Transmutation,  558
Transportation technology,  262
Trebuchet,  126–127
Triangulation,  443
Tritium,  550
Twin-lead wire,  344–345
Tychonic system,  102

Ultrafast laser,  388
Ultraviolet catastrophe,  501
Ultraviolet radiation,  445

transmission of,  421ML
Uniform circular motion,  78, 79,

80–95
centripetal acceleration/force,
88
vectors,  79
velocity,  79

Uniform motion,  6, 15, 16
Uniformly accelerated motion,

15, 16
Atwood’s machine,  33

Universal gravitational constant,
108, 273

Universal speed limit,  482–483
Unruh, Dr. William George,  292
Uranus,  122, 236

Vacuum,  428
Van de Graaff generator,  323, 429
Variable force,  198–200SP
Vector product,  349
Vector sum,  7
Vectors

Cartesian coordinate system,
80
radial component,  80
tangential component,  80
uniform circular motion,  79

Velocity
dynamics,  17–18SP
geostationary orbits,
117–119SP
matter waves,  514–515SP
uniform circular motion,  79

Velocity selector,  356
Venus, orbital period/radius,  101
Vertical elastic collisions,

215–216SP
Vertical motion,  27–45

linear,  27
Visible light,  445
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von Laue, Max,  516
Voyager 1,  236
Voyager 2,  236

Walton, E.T.S.,  361
Wave equation for

electromagnetic waves,  448
Wave functions,  531, 532
Wave model of light,  384
Wave of probability,  531
Wave theory of electromagnetic

radiation,  454
Wave theory of light,  379
Wave-particle duality,  518
Wavelength of light,  396
Waves

coherent,  391
constructive interference,  387,
391
destructive interference,  387,
391
diffraction,  389
double-slit experiment,  392,
397inv

electromagnetic,  425–426
interference patterns,  392
matter,  513
nodal point,  387
properties of,  381inv
superposition of,  386
wavelength of light,  396

Weak boson,  582
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Slope (m)
Calculating the slope of a line

slope (m) = vertical change (rise)
horizontal change (run)

m = ∆y/∆x

m = y2 − y1

x2 − x1
, x2 ≠ x1

Trigonometric Ratios
sin θ = opposite

hypotenuse

= a
c

cos θ = adjacent
hypotenuse

= b
c

tan θ = opposite
adjacent

= a
b

C B

A

θ

a

cb
y

x0

P(x1, y1)

Q(x2, y2)

vertical 
change (rise)
y2 − y1 or ∆y

horizontal change (run)
x2 − x1 or ∆x

Circumference/
perimeter Area Surface area Volume

SA = 4πr2

SA = 6s2

V = πr2h

V = πr3

V = s3

SA = 2πrh + 2πr2

P = 4s

P = 2l + 2w

A = πr2

A =s2

A = lw

A = 1
2 bh

4
3

C = 2πr

s
ss

h

r

r

r

s
s

w
l

h

b

The Greek Alphabet

alpha
beta
gamma
delta
epsilon
zeta
eta
theta

Α
Β
Γ
∆
Ε
Ζ
Η
Θ

α
β
γ
δ
ε
ζ
η
θ

iota
kappa
lambda
mu
nu
xi
omicron
pi

Ι
Κ
Λ
Μ
Ν
Ξ
Ο
Π

ι
κ
λ
µ
ν
ξ
ο
π

rho
sigma
tau
upsilon
phi
chi
psi
omega

Ρ
Σ
Τ
Υ
Φ
Χ
Ψ
Ω

ρ
σ
τ
υ
φ
χ
ψ
ω



Fundamental Physical Constants

Metric System Prefixes

Other Physical Data

Quantity Symbol Accepted value

1.013 × 105 Pa

1.000 × 103 kg/m3

3.34 × 105 J/kg
2.26 × 106 J/kg

3.6 × 106 J
9.81 m/s2 (standard value; at sea level)
5.98 × 1024 kg
6.38 × 106 m
1.49 × 1011 m
365.25 days or 3.16 × 107 s
7.36 × 1022 kg
1.74 × 106 m

83.84 × 10 m
27.3 days or 2.36 × 106 s

301.99 × 10 kg
6.96 × 108 m

343 m/s (at 20˚C)

4186 J/(kg˚C)

standard atmospheric pressure
speed of sound in air 
water: density (4˚C)

latent heat of fusion
latent heat of vaporization
specific heat capacity (15˚C)

kilowatt hour
acceleration due to Earth’s gravity 
mass of Earth
mean radius of Earth
mean radius of Earth’s orbit
period of Earth’s orbit
mass of Moon
mean radius of Moon
mean radius of Moon’s orbit
period of Moon’s orbit
mass of Sun
radius of Sun

P

E
g

mE

rE

RE

TE

mM

rM

RM

TM

ms

rs

Prefix Symbol Factor

1 000 000 000 000 = 1012  

 1 000 000 000 = 109    

 1 000 000 = 106    

 1000 = 103    

 100 = 102    

 10 = 101    

 1 = 100    

0.1 = 10−1  

0.01 = 10−2  

0.001 = 10−3  

0.000 001 = 10−6  

0.000 000 001 = 10−9  

0.000 000 000 001 = 10−12

0.000 000 000 000 001 = 10−15

0.000 000 000 000 000 001 = 10−18

tera
giga
mega
kilo
hecto
deca

deci
centi
milli
micro
nano
pico
femto
atto

T
G
M
k
h
da

d
c
m
µ
n
p
f
a

Quantity Symbol Accepted value

2.998 × 108 m/s
6.673 × 10−11 N m2/kg2

8.988 × 109 N m2/C2

1.602 × 10−19 C
9.109 × 10−31 kg
1.673 × 10−27 kg
1.675 × 10−27 kg
1.661 × 10−27 kg
6.626 × 10−34 J s

speed of light in a vacuum
gravitational constant
Coulomb’s constant
charge on an electron
rest mass of an electron
rest mass of a proton
rest mass of a neutron
atomic mass unit
Planck’s constant

c
G
k
e

me

mp

mn

u
h



Derived Units

Electromagnetic Spectrum

AM FM

micro-
waves

frequency (Hz)
1024

10−1610−1210−810−4

X raysinfrared ultra-
violet

radio waves gamma rays

104 1

10201016

4.3 × 1014 7.5 × 1014

violetred
visible light

frequency (Hz)

1012108104

wavelength (m)

Quantity
Quantity
symbol

Unit
symbol

Equivalent
unit(s)Unit

kg m/s2

N m, kg m2/s2

N m, kg m2/s2

N/m2, kg/s2

s−1

s−1

kg m2/(C2 s)

T ˚C = (T + 273.15) K
1u = 1.660 566 × 10−27 kg
1 eV = 1.602 × 10−19 J

kg m2/s3J/s,

W/A, J/C,

V/A,

N s/(C m),
V s,  T

J/kg m2/s2

J/kg m2/s2

N/A m
kgm2 /(C s)

area
volume
velocity
acceleration

force
work
energy
power
density
pressure
frequency
period
wavelength
electric charge
electric potential difference

resistance

magnetic field strength
magnetic flux
radioactivity
radiation dose
radiation dose equivalent
temperature (Celsius)

A
V
v
a

F
W
E
P
ρ
p
f
T
λ
Q
V

R

B
Φ

∆N/∆t

T

square metre
cubic metre
metre per second
metre per second
 per second
newton
joule
joule
watt
kilogram per cubic metre
pascal
hertz
second
metre
coulomb
volt

ohm

tesla
weber
becquerel
gray
sievert
degree Celsius
atomic mass unit
electron volt

m2

m3

m/s

m/s2

N
J
J

W
kg/m3

Pa
Hz
s
m
C
V

Ω

T
Wb
Bq
Gy
Sv
˚C
u

eV

kg m2

m2,

/(C s2)

A s  
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