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PREFACE

This textbook is meant to serve a first course in modern physics, including
relativity, quantum mechanics, and their applications. Such a course often follows
the standard introductory course in calculus-based classical physics. The course
addresses two different audiences: (1) Physics majors, who will later take a
more rigorous course in quantum mechanics, find an introductory modern course
helpful in providing background for the rigors of their imminent coursework
in classical mechanics, thermodynamics, and electromagnetism. (2) Nonmajors,
who may take no additional physics class, find an increasing need for concepts
from modern physics in their disciplines—a classical introductory course is not
sufficient background for chemists, computer scientists, nuclear and electrical
engineers, or molecular biologists.

Necessary prerequisites for undertaking the text include any standard calculus-
based course covering mechanics, electromagnetism, thermal physics, and optics.
Calculus is used extensively, but no previous knowledge of differential equations,
complex variables, or partial derivatives is assumed (although some familiarity
with these topics would be helpful).

Chapters 1–8 constitute the core of the text. They cover special relativity and
quantum theory through atomic structure. At that point the reader may continue
with Chapters 9–11 (molecules, quantum statistics, and solids) or branch to
Chapters 12–14 (nuclei and particles). The final chapter covers cosmology and
can be considered the capstone of modern physics as it brings together topics from
relativity (special and general) as well as from nearly all of the previous material
covered in the text.

The unifying theme of the text is the empirical basis of modern physics.
Experimental tests of derived properties are discussed throughout. These include
the latest tests of special and general relativity as well as studies of wave-particle
duality for photons and material particles. Applications of basic phenomena are
extensively presented, and data from the literature are used not only to illustrate
those phenomena but to offer insight into how “real” physics is done. Students
using the text have the opportunity to study how laboratory results and the analysis
based on quantum theory go hand-in-hand to illuminate such diverse topics as
Bose-Einstein condensation, heat capacities of solids, paramagnetism, the cosmic
microwave background radiation, X-ray spectra, dilute mixtures of 3He in 4He,
and molecular spectroscopy of the interstellar medium.

This third edition offers many changes from the previous edition. Most of the
chapters have undergone considerable or complete rewriting. New topics have
been introduced and others have been rearranged. More experimental results are
presented and recent discoveries are highlighted, such as the WMAP microwave
background data and Bose-Einstein condensation. End-of-chapter problem sets
now include problems organized according to chapter section, which offer the
student an opportunity to gain familiarity with a particular topic, as well as general
problems, which often require the student to apply a broader array of concepts or
techniques. The number of worked examples in the chapters and the number of
end-of-chapter questions and problems have each increased by about 15% from
the previous edition. The range of abilities required to solve the problems has been
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broadened, so that this edition includes both more straightforward problems that
build confidence as well as more difficult problems that will challenge students.
Each chapter now includes a brief summary of the important points. Some of
the end-of-chapter problems are available for assignment using the WebAssign
program (www.webassign.net).

A new development in physics teaching since the appearance of the 2nd edition
of this text has been the availability of a large and robust body of literature from
physics education research (PER). My own teaching style has been profoundly
influenced by PER findings, and in preparing this new edition I have tried
to incorporate PER results wherever possible. One of the major themes that
has emerged from PER in the past decade or two is that students can often
learn successful algorithms for solving problems while lacking a fundamental
understanding of the underlying concepts. Many approaches to addressing this
problem are based on pre-class conceptual exercises and in-class individual or
group activities that help students to reason through diverse problems that can’t be
resolved by plugging numbers into an equation. It is absolutely essential to devote
class time to these exercises and to follow through with exam questions that
require similar analysis and articulation of the conceptual reasoning. More details
regarding the application of PER to the teaching of modern physics, including
references to articles from the PER literature, are included in the Instructor’s
Manual for this text, which can be found at www.wiley.com/college/krane. The
Instructor’s Manual also includes examples of conceptual questions for in-class
discussion or exams that have been developed and class tested through the support
of a Course, Curriculum and Laboratory Improvement grant from the National
Science Foundation.

Specific changes to the chapters include the following:

Chapter 1: The sections on Units and Dimensions and on Significant Figures
have been removed. In their place, a more detailed review of applications
of classical energy and momentum conservation is offered. The need for
special relativity is briefly established with a discussion of the failures of
the classical concepts of space and time, and the need for quantum theory is
previewed in the failure of Maxwell-Boltzmann particle statistics to account
for the heat capacities of diatomic gases.

Chapter 2: Spacetime diagrams have been introduced to help illustrate relation-
ships in the twin paradox. The application of the relativistic conservation
laws to decay and collisions processes is now given a separate section to
help students learn to apply those laws. The section on tests of special
relativity has been updated to include recent results.

Chapter 3: The section on thermal radiation has been rewritten, and more
detailed derivations of the Rayleigh-Jeans and Planck formulas are now
given.

Chapter 4: New experimental results for particle diffraction and interference
are discussed. The sections on the classical uncertainty relationships and on
wave packet construction and motion have been rewritten.

Chapter 5: To help students understand the processes involved in applying
boundary conditions to solutions of the Schrödinger equation, a new section
on wave boundary conditions has been added. A new introductory section
on particle confinement introduces energy quantization and helps to build
the connection between the wave function and the uncertainty relationships.
Time dependence of the wave function is introduced more explicitly at an
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earlier stage in the formulism. Graphic illustrations for step and barrier
problems now show the real and imaginary parts of the wave function as
well as its squared magnitude.

Chapter 6: The derivation of the Thomson model scattering angle has been
modified, and the section on deficiencies of the Bohr model has been
rewritten.

Chapter 7: To ease the entry into the 3-dimensional Schrödinger analysis of
the hydrogen atom in spherical coordinates, a new section on the one-
dimensional hydrogen atom has been added. Angular momentum concepts
relating to the hydrogen atom are now introduced before the full solutions
to the wave equation.

Chapter 8: Much of the material has been reorganized for clarity and ease of
presentation. The screening discussion has been made more explicit.

Chapter 9: More emphasis has been given to the use of bonding and antibonding
orbitals to predict the relative stability of molecules. Sections on molecular
vibrations and rotations have been rewritten.

Chapter 10: This chapter has been extensively rewritten. A new section on
the density of states function allows statistical distributions for photons or
particles to be discussed more rigorously. New applications of quantum
statistics include Bose-Einstein condensation, white dwarf stars, and dilute
mixtures of 3He in 4He.

Chapter 11: The chapter has been rewritten to broaden the applications of the
quantum theory of solids to include not only electrical conductivity but also
the heat capacity of solids and paramagnetism.

Chapter 12: To emphasize the unity of various topics within modern physics,
this chapter now includes proton and neutron separation energies, a new
section on quantum states in nuclei, and nuclear vibrational and rotational
states, all of which have analogues in atomic or molecular structure.

Chapter 13: The discussion of the physics of fission has been expanded while
that of the properties of nuclear reactors has been reduced somewhat.
Because much current research in nuclear physics is related to astrophysics,
this chapter now features a section on nucleosynthesis.

Chapter 14: New material on quarkonium and neutrino oscillations has been
added.

Chapter 15: Chapters 15 and 16 of the 2nd edition have been collapsed into
a single chapter on cosmology. New results from COBE and WMAP are
included, along with discussions of the horizon and flatness problems (and
their inflationary solution).

Many reviewers and class-testers of the manuscript of this edition have offered
suggestions to improve both the physics and its presentation. I am particularly
grateful to:

David Bannon, Oregon State University

Gerald Crawford, Fort Lewis College

Luther Frommhold, University of Texas-Austin

Gary Goldstein, Tufts University

Leon Gunther, Tufts University

Gary Ihas, University of Florida
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Paul Lee, California State University, Northridge

Jeff Loats, Metropolitan State College of Denver

Jay Newman, Union College

Stephen Pate, New Mexico State University

David Roundy, Oregon State University

Rich Schelp, Erskine College

Weidian Shen, Eastern Michigan University

Hongtao Shi, Sonoma State University

Janet Tate, Oregon State University

Jeffrey L. Wragg, College of Charleston

Weldon Wilson, University of Central Oklahoma

I am also grateful for the many anonymous comments from students who used
the manuscript at the test sites. I am indebted to all those reviewers and users for
their contributions to the project.

Funding for the development and testing of the supplemental exercises in the
Instructor’s Manual was provided through a grant from the National Science
Foundation. I am pleased to acknowledge their support. Two graduate students
at Oregon State University helped to test and implement the curricular reforms:
K. C. Walsh and Pornrat Wattasinawich. I appreciate their assistance in this
project.

The staff at John Wiley & Sons have been especially helpful throughout the
project. I am particularly grateful to: Executive Editor Stuart Johnson for his
patience and support in bringing the new edition into reality; Assistant Production
Editor Elaine Chew for handling a myriad of complicated composition and
illustration details with efficiency and good humor; and Photo Editor Sheena
Goldstein for helping me navigate the treacherous waters of new copyright and
permission restrictions.

In my research and other professional activities, I occasionally meet physicists
who used earlier editions of this text when they were students. Some report that
their first exposure to modern physics kindled the spark that led them to careers
in physics. For many students, this course offers their first insights into what
physicists really do and what is exciting, perplexing, and challenging about our
profession. I hope students who use this new edition will continue to find those
inspirations.

Corvallis, Oregon Kenneth S. Krane
August 2011 kranek@physics.oregonstate.edu



CONTENTS

Preface v

1. The Failures of Classical Physics 1

1.1 Review of Classical Physics 3

1.2 The Failure of Classical Concepts of Space and Time 11

1.3 The Failure of the Classical Theory of Particle Statistics 13

1.4 Theory, Experiment, Law 20

Questions 21

Problems 22

2. The Special Theory of Relativity 25

2.1 Classical Relativity 26

2.2 The Michelson-Morley Experiment 29

2.3 Einstein’s Postulates 31

2.4 Consequences of Einstein’s Postulates 32

2.5 The Lorentz Transformation 40

2.6 The Twin Paradox 44

2.7 Relativistic Dynamics 47

2.8 Conservation Laws in Relativistic Decays and Collisions 53

2.9 Experimental Tests of Special Relativity 56

Questions 63

Problems 64

3. The Particlelike Properties of Electromagnetic Radiation 69

3.1 Review of Electromagnetic Waves 70

3.2 The Photoelectric Effect 75

3.3 Thermal Radiation 80

3.4 The Compton Effect 87

3.5 Other Photon Processes 91

3.6 What is a Photon? 94

Questions 97

Problems 98



x Contents

4. The Wavelike Properties of Particles 101

4.1 De Broglie’s Hypothesis 102

4.2 Experimental Evidence for De Broglie Waves 104

4.3 Uncertainty Relationships for Classical Waves 110

4.4 Heisenberg Uncertainty Relationships 113

4.5 Wave Packets 119

4.6 The Motion of a Wave Packet 123

4.7 Probability and Randomness 126

Questions 128

Problems 129

5. The Schrödinger Equation 133

5.1 Behavior of a Wave at a Boundary 134

5.2 Confining a Particle 138

5.3 The Schrödinger Equation 140

5.4 Applications of the Schrödinger Equation 144

5.5 The Simple Harmonic Oscillator 155

5.6 Steps and Barriers 158

Questions 166

Problems 166

6. The Rutherford-Bohr Model of the Atom 169

6.1 Basic Properties of Atoms 170

6.2 Scattering Experiments and the Thomson Model 171

6.3 The Rutherford Nuclear Atom 174

6.4 Line Spectra 180

6.5 The Bohr Model 183

6.6 The Franck-Hertz Experiment 189

6.7 The Correspondence Principle 190

6.8 Deficiencies of the Bohr Model 191

Questions 193

Problems 194

7. The Hydrogen Atom in Wave Mechanics 197

7.1 A One-Dimensional Atom 198

7.2 Angular Momentum in the Hydrogen Atom 200

7.3 The Hydrogen Atom Wave Functions 203

7.4 Radial Probability Densities 207



Contents xi

7.5 Angular Probability Densities 210

7.6 Intrinsic Spin 211

7.7 Energy Levels and Spectroscopic Notation 216

7.8 The Zeeman Effect 217

7.9 Fine Structure 219

Questions 222

Problems 222

8. Many-Electron Atoms 225

8.1 The Pauli Exclusion Principle 226

8.2 Electronic States in Many-Electron Atoms 228

8.3 Outer Electrons: Screening and Optical Transitions 232

8.4 Properties of the Elements 235

8.5 Inner Electrons: Absorption Edges and X Rays 240

8.6 Addition of Angular Momenta 244

8.7 Lasers 248

Questions 252

Problems 253

9. Molecular Structure 257

9.1 The Hydrogen Molecule 258

9.2 Covalent Bonding in Molecules 262

9.3 Ionic Bonding 271

9.4 Molecular Vibrations 275

9.5 Molecular Rotations 278

9.6 Molecular Spectra 281

Questions 286

Problems 286

10. Statistical Physics 289

10.1 Statistical Analysis 290

10.2 Classical and Quantum Statistics 292

10.3 The Density of States 296

10.4 The Maxwell-Boltzmann Distribution 301

10.5 Quantum Statistics 306

10.6 Applications of Bose-Einstein Statistics 309

10.7 Applications of Fermi-Dirac Statistics 314

Questions 320

Problems 321



xii Contents

11. Solid-State Physics 325

11.1 Crystal Structures 326

11.2 The Heat Capacity of Solids 334

11.3 Electrons in Metals 338

11.4 Band Theory of Solids 342

11.5 Superconductivity 346

11.6 Intrinsic and Impurity Semiconductors 350

11.7 Semiconductor Devices 353

11.8 Magnetic Materials 357

Questions 364

Problems 365

12. Nuclear Structure and Radioactivity 369

12.1 Nuclear Constituents 370

12.2 Nuclear Sizes and Shapes 372

12.3 Nuclear Masses and Binding Energies 374

12.4 The Nuclear Force 378

12.5 Quantum States in Nuclei 380

12.6 Radioactive Decay 382

12.7 Alpha Decay 387

12.8 Beta Decay 391

12.9 Gamma Decay and Nuclear Excited States 394

12.10 Natural Radioactivity 398

Questions 402

Problems 403

13. Nuclear Reactions and Applications 407

13.1 Types of Nuclear Reactions 408

13.2 Radioisotope Production in Nuclear Reactions 412

13.3 Low-Energy Reaction Kinematics 414

13.4 Fission 416

13.5 Fusion 422

13.6 Nucleosynthesis 428

13.7 Applications of Nuclear Physics 432

Questions 437

Problems 437



Contents xiii

14. Elementary Particles 441

14.1 The Four Basic Forces 442

14.2 Classifying Particles 444

14.3 Conservation Laws 448

14.4 Particle Interactions and Decays 453

14.5 Energy and Momentum in Particle Decays 458

14.6 Energy and Momentum in Particle Reactions 460

14.7 The Quark Structure of Mesons and Baryons 464

14.8 The Standard Model 470

Questions 474

Problems 474

15. Cosmology: The Origin and Fate of the Universe 477

15.1 The Expansion of the Universe 478

15.2 The Cosmic Microwave Background Radiation 482

15.3 Dark Matter 484

15.4 The General Theory of Relativity 486

15.5 Tests of General Relativity 493

15.6 Stellar Evolution and Black Holes 496

15.7 Cosmology and General Relativity 501

15.8 The Big Bang Cosmology 503

15.9 The Formation of Nuclei and Atoms 506

15.10 Experimental Cosmology 509

Questions 514

Problems 515

Appendix A: Constants and Conversion Factors 517

Appendix B: Complex Numbers 519

Appendix C: Periodic Table of the Elements 521

Appendix D: Table of Atomic Masses 523

AAnswers to Odd-Numbered Problems 533

Photo Credits 537

Index 539

Index to Tables 545





Chapter

CASSINI
INTERPLANETARY TRAJECTORY

VENUS SWINGBY
26 APR 1998

EARTH SWINGBY
18 AUG 1999 JUPITER SWINGBY

30 DEC 2000

VENUS SWINGBY
24 JUN 1999

LAUNCH
15 OCT 1997

ORBIT OF
EARTH

ORBIT OF
VENUS

DEEP SPACE
MANEUVER
3 DEC 1990

ORBIT OF
JUPITER ORBIT OF

SATURN

SATURN ARRIVAL
1 JUL 2004

1
THE FAILURES OF CLASSICAL
PHYSICS

Classical physics, as postulated by Newton, has enabled us to send space probes on
trajectories involving many complicated maneuvers, such as the Cassini mission to Saturn,
which was launched in 1997 and gained speed for its trip to Saturn by performing four
‘‘gravity-assist’’ flybys of Venus (twice), Earth, and Jupiter. The spacecraft arrived at Saturn
in 2004 and is expected to continue to send data through at least 2017. Planning and
executing such interplanetary voyages are great triumphs for Newtonian physics, but when
objects move at speeds close to the speed of light or when we examine matter on the atomic
or subatomic scale, Newtonian mechanics is not adequate to explain our observations, as
we discuss in this chapter.
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If you were a physicist living at the end of the 19th century, you probably would
have been pleased with the progress that physics had made in understanding the
laws that govern the processes of nature. Newton’s laws of mechanics, including
gravitation, had been carefully tested, and their success had provided a framework
for understanding the interactions among objects. Electricity and magnetism
had been unified by Maxwell’s theoretical work, and the electromagnetic waves
predicted by Maxwell’s equations had been discovered and investigated in the
experiments conducted by Hertz. The laws of thermodynamics and kinetic theory
had been particularly successful in providing a unified explanation of a wide
variety of phenomena involving heat and temperature. These three successful
theories—mechanics, electromagnetism, and thermodynamics—form the basis
for what we call “classical physics.”

Beyond your 19th-century physics laboratory, the world was undergoing rapid
changes. The Industrial Revolution demanded laborers for the factories and
accelerated the transition from a rural and agrarian to an urban society. These
workers formed the core of an emerging middle class and a new economic order.
The political world was changing, too—the rising tide of militarism, the forces
of nationalism and revolution, and the gathering strength of Marxism would
soon upset established governments. The fine arts were similarly in the middle
of revolutionary change, as new ideas began to dominate the fields of painting,
sculpture, and music. The understanding of even the very fundamental aspects of
human behavior was subject to serious and critical modification by the Freudian
psychologists.

In the world of physics, too, there were undercurrents that would soon cause
revolutionary changes. Even though the overwhelming majority of experimental
evidence agreed with classical physics, several experiments gave results that were
not explainable in terms of the otherwise successful classical theories. Classical
electromagnetic theory suggested that a medium is needed to propagate electro-
magnetic waves, but precise experiments failed to detect this medium. Experiments
to study the emission of electromagnetic waves by hot, glowing objects gave
results that could not be explained by the classical theories of thermodynamics
and electromagnetism. Experiments on the emission of electrons from surfaces
illuminated with light also could not be understood using classical theories.

These few experiments may not seem significant, especially when viewed
against the background of the many successful and well-understood experiments
of the 19th century. However, these experiments were to have a profound and
lasting effect, not only on the world of physics, but on all of science, on the
political structure of our world, and on the way we view ourselves and our place
in the universe. Within the short span of two decades between 1905 and 1925, the
shortcomings of classical physics would lead to the special and general theories
of relativity and the quantum theory.

The designation modern physics usually refers to the developments that began
in about 1900 and led to the relativity and quantum theories, including the
applications of those theories to understanding the atom, the atomic nucleus and
the particles of which it is composed, collections of atoms in molecules and solids,
and, on a cosmic scale, the origin and evolution of the universe. Our discussion
of modern physics in this text touches on each of these areas.

We begin our study in this chapter with a brief review of some important
principles of classical physics, and we discuss some situations in which classical
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physics offers either inadequate or incorrect conclusions. These situations are not
necessarily those that originally gave rise to the relativity and quantum theories,
but they do help us understand why classical physics fails to give us a complete
picture of nature.

1.1 REVIEW OF CLASSICAL PHYSICS

Although there are many areas in which modern physics differs radically from
classical physics, we frequently find the need to refer to concepts of classical
physics. Here is a brief review of some of the concepts of classical physics that we
may need.

Mechanics

A particle of mass m moving with velocity v has a kinetic energy defined by

K = 1
2 mv2 (1.1)

and a linear momentum �p defined by

�p = m�v (1.2)

In terms of the linear momentum, the kinetic energy can be written

K = p2

2m
(1.3)

When one particle collides with another, we analyze the collision by applying
two fundamental conservation laws:

I. Conservation of Energy. The total energy of an isolated system (on which
no net external force acts) remains constant. In the case of a collision between
particles, this means that the total energy of the particles before the collision
is equal to the total energy of the particles after the collision.

II. Conservation of Linear Momentum. The total linear momentum of an
isolated system remains constant. For the collision, the total linear momentum
of the particles before the collision is equal to the total linear momentum of the
particles after the collision. Because linear momentum is a vector, application
of this law usually gives us two equations, one for the x components and
another for the y components.

These two conservation laws are of the most basic importance to understanding
and analyzing a wide variety of problems in classical physics. Problems 1–4 and
11–14 at the end of this chapter review the use of these laws.

The importance of these conservation laws is both so great and so fundamental
that, even though in Chapter 2 we learn that the special theory of relativity modifies
Eqs. 1.1, 1.2, and 1.3, the laws of conservation of energy and linear momentum
remain valid.



4 Chapter 1 | The Failures of Classical Physics

Example 1.1

A helium atom (m = 6.6465 × 10−27 kg) moving at a speed
of vHe = 1.518 × 106 m/s collides with an atom of nitro-
gen (m = 2.3253 × 10−26 kg) at rest. After the collision,
the helium atom is found to be moving with a velocity of
v′

He = 1.199 × 106 m/s at an angle of θHe = 78.75◦ rela-
tive to the direction of the original motion of the helium
atom. (a) Find the velocity (magnitude and direction) of the
nitrogen atom after the collision. (b) Compare the kinetic
energy before the collision with the total kinetic energy of
the atoms after the collision.

Solution
(a) The law of conservation of momentum for this colli-
sion can be written in vector form as �pinitial = �pfinal, which
is equivalent to

px,initial = px,final and py,initial = py,final

The collision is shown in Figure 1.1. The initial values
of the total momentum are, choosing the x axis to be the
direction of the initial motion of the helium atom,

px,initial = mHevHe and py,initial = 0

The final total momentum can be written

px,final = mHev′
He cos θHe + mNv′

N cos θN

py,final = mHev′
He sin θHe + mNv′

N sin θN

The expression for py,final is written in general form with
a + sign even though we expect that θHe and θN are on
opposite sides of the x axis. If the equation is written in
this way, θN will come out to be negative. The law of

x

x

N

(a)

(b)

He

vHe

v′N

v′He

θHe

θN

y

y

FIGURE 1.1 Example 1.1. (a) Before collision;
(b) after collision.

conservation of momentum gives, for the x components,
mHevHe = mHev′

He cos θHe + mNv′
N cos θN, and for the y

components, 0 = mHev′
He sin θHe + mNv′

N sin θN. Solving
for the unknown terms, we find

v′
N cos θN = mHe(vHe − v′

He cos θHe)

mN

= {(6.6465 × 10−27 kg)[1.518 × 106 m/s
−(1.199 × 106 m/s)(cos 78.75◦

)]}
×(2.3253 × 10−26 kg)−1

= 3.6704 × 105 m/s

v′
N sin θN = −mHev′

He sin θHe

mN

= −(6.6465 × 10−27 kg)(1.199 × 106 m/s)
×(sin78.75◦

)(2.3253 × 10−26 kg)−1

= −3.3613 × 105 m/s

We can now solve for v′
N and θN:

v′
N =

√
(v′

N sin θN)2 + (v′
N cos θN)2

=
√

(−3.3613 × 105 m/s)2 + (3.6704 × 105 m/s)2

= 4.977 × 105 m/s

θN = tan−1 v′
N sin θN

v′
N cos θN

= tan−1

(−3.3613 × 105 m/s

3.6704 × 105 m/s

)
= −42.48◦

(b) The initial kinetic energy is

Kinitial = 1
2 mHev2

He

= 1
2 (6.6465 × 10−27 kg)(1.518 × 106 m/s)2

= 7.658 × 10−15 J

and the total final kinetic energy is

Kfinal = 1
2 mHev′2

He + 1
2 mNv′2

N

= 1
2 (6.6465 × 10−27 kg)(1.199 × 106 m/s)2

+ 1
2 (2.3253 × 10−26 kg)(4.977 × 105 m/s)2

= 7.658 × 10−15 J

Note that the initial and final kinetic energies are equal.
This is the characteristic of an elastic collision, in which
no energy is lost to, for example, internal excitation of the
particles.
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Example 1.2

An atom of uranium (m = 3.9529 × 10−25 kg) at rest
decays spontaneously into an atom of helium (m =
6.6465 × 10−27 kg) and an atom of thorium (m = 3.8864 ×
10−25 kg). The helium atom is observed to move in the
positive x direction with a velocity of 1.423 × 107 m/s
(Figure 1.2). (a) Find the velocity (magnitude and direc-
tion) of the thorium atom. (b) Find the total kinetic energy
of the two atoms after the decay.

x

x

U

(a)

(b)

Th He

v′Th v′He

y

y

FIGURE 1.2 Example 1.2. (a) Before decay; (b) after decay.

Solution
(a) Here we again use the law of conservation of momen-
tum. The initial momentum before the decay is zero, so the
total momentum of the two atoms after the decay must also
be zero:

px,initial = 0 px,final = mHev′
He + mThv′

Th

Setting px,initial = px,final and solving for v′
Th, we obtain

v′
Th = −mHev′

He

mTh

= − (6.6465 × 10−27 kg)(1.423 × 107 m/s)

3.8864 × 10−25 kg

= −2.432 × 105 m/s

The thorium atom moves in the negative x direction.
(b) The total kinetic energy after the decay is:

K = 1
2 mHev′2

He + 1
2 mThv′2

Th

= 1
2 (6.6465 × 10−27 kg)(1.423 × 107 m/s)2

+ 1
2 (3.8864 × 10−25 kg)(−2.432 × 105 m/s)2

= 6.844 × 10−13 J

Clearly kinetic energy is not conserved in this decay,
because the initial kinetic energy of the uranium atom
was zero. However total energy is conserved —if we
write the total energy as the sum of kinetic energy
and nuclear energy, then the total initial energy (kinetic
+ nuclear) is equal to the total final energy (kinetic +
nuclear). Clearly the gain in kinetic energy occurs as a
result of a loss in nuclear energy. This is an example of
the type of radioactive decay called alpha decay, which we
discuss in more detail in Chapter 12.

Another application of the principle of conservation of energy occurs when
a particle moves subject to an external force F. Corresponding to that external
force there is often a potential energy U , defined such that (for one-dimensional
motion)

F = −dU

dx
(1.4)

The total energy E is the sum of the kinetic and potential energies:

E = K + U (1.5)

As the particle moves, K and U may change, but E remains constant. (In
Chapter 2, we find that the special theory of relativity gives us a new definition of
total energy.)
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L = r × p� � �

x

O y

z

p
r ��

FIGURE 1.3 A particle of mass m,
located with respect to the origin
O by position vector �r and moving
with linear momentum �p, has angular
momentum �L about O.

When a particle moving with linear momentum �p is at a displacement �r from the
origin O, its angular momentum �L about the point O is defined (see Figure 1.3) by

�L = �r × �p (1.6)

There is a conservation law for angular momentum, just as with linear momentum.
In practice this has many important applications. For example, when a charged
particle moves near, and is deflected by, another charged particle, the total
angular momentum of the system (the two particles) remains constant if no net
external torque acts on the system. If the second particle is so much more massive
than the first that its motion is essentially unchanged by the influence of the first
particle, the angular momentum of the first particle remains constant (because
the second particle acquires no angular momentum). Another application of the
conservation of angular momentum occurs when a body such as a comet moves
in the gravitational field of the Sun—the elliptical shape of the comet’s orbit is
necessary to conserve angular momentum. In this case �r and �p of the comet must
simultaneously change so that �L remains constant.

Velocity Addition
Another important aspect of classical physics is the rule for combining velocities.
For example, suppose a jet plane is moving at a velocity of vPG = 650 m/s,
as measured by an observer on the ground. The subscripts on the velocity
mean “velocity of the plane relative to the ground.” The plane fires a missile
in the forward direction; the velocity of the missile relative to the plane is
vMP = 250 m/s. According to the observer on the ground, the velocity of the
missile is: vMG = vMP + vPG = 250 m/s + 650 m/s = 900 m/s.

We can generalize this rule as follows. Let �vAB represent the velocity of A
relative to B, and let �vBC represent the velocity of B relative to C. Then the velocity
of A relative to C is

�vAC = �vAB + �vBC (1.7)

This equation is written in vector form to allow for the possibility that the
velocities might be in different directions; for example, the missile might be fired
not in the direction of the plane’s velocity but in some other direction. This seems
to be a very “common-sense” way of combining velocities, but we will see later
in this chapter (and in more detail in Chapter 2) that this common-sense rule can
lead to contradictions with observations when we apply it to speeds close to the
speed of light.

A common application of this rule (for speeds small compared with the
speed of light) occurs in collisions, when we want to analyze conservation of
momentum and energy in a frame of reference that is different from the one
in which the collision is observed. For example, let’s analyze the collision of
Example 1.1 in a frame of reference that is moving with the center of mass.
Suppose the initial velocity of the He atom defines the positive x direction.
The velocity of the center of mass (relative to the laboratory) is then vCL =
(vHemHe + vNmN)/(mHe + mN) = 3.374 × 105 m/s. We would like to find the
initial velocity of the He and N relative to the center of mass. If we start with
vHeL = vHeC + vCL and vNL = vNC + vCL, then

vHeC = vHeL − vCL = 1.518 × 106 m/s − 3.374 × 105 m/s = 1.181 × 106 m/s

vNC = vNL − vCL = 0 − 3.374 × 105 m/s = −0.337 × 106 m/s
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In a similar fashion we can calculate the final velocities of the He and N.
The resulting collision as viewed from this frame of reference is illustrated in
Figure 1.4. There is a special symmetry in this view of the collision that is not
apparent from the same collision viewed in the laboratory frame of reference
(Figure 1.1); each velocity simply changes direction leaving its magnitude
unchanged, and the atoms move in opposite directions. The angles in this view of
the collision are different from those of Figure 1.1, because the velocity addition
in this case applies only to the x components and leaves the y components
unchanged, which means that the angles must change.

x

x

N

N

(a)

(b)

He

He

y

y

FIGURE 1.4 The collision of Figure
1.1 viewed from a frame of refer-
ence moving with the center of mass.
(a) Before collision. (b) After colli-
sion. In this frame the two particles
always move in opposite directions,
and for elastic collisions the mag-
nitude of each particle’s velocity is
unchanged.

Electricity and Magnetism
The electrostatic force (Coulomb force) exerted by a charged particle q1 on
another charge q2 has magnitude

F = 1

4πε0

|q1||q2|
r2

(1.8)

The direction of F is along the line joining the particles (Figure 1.5). In the SI
system of units, the constant 1/4πε0 has the value

1

4πε0
= 8.988 × 109 N · m2/C2

The corresponding potential energy is

U = 1

4πε0

q1q2

r
(1.9)

In all equations derived from Eq. 1.8 or 1.9 as starting points, the quantity 1/4πε0
must appear. In some texts and reference books, you may find electrostatic
quantities in which this constant does not appear. In such cases, the centimeter-
gram-second (cgs) system has probably been used, in which the constant 1/4πε0
is defined to be 1. You should always be very careful in making comparisons
of electrostatic quantities from different references and check that the units are
identical.

r

+ +
F F

FIGURE 1.5 Two charged particles
experience equal and opposite elec-
trostatic forces along the line joining
their centers. If the charges have the
same sign (both positive or both nega-
tive), the force is repulsive; if the signs
are different, the force is attractive.

An electrostatic potential difference �V can be established by a distribution of
charges. The most common example of a potential difference is that between the
two terminals of a battery. When a charge q moves through a potential difference
�V , the change in its electrical potential energy �U is

�U = q�V (1.10)

At the atomic or nuclear level, we usually measure charges in terms of the basic
charge of the electron or proton, whose magnitude is e = 1.602 × 10−19 C. If
such charges are accelerated through a potential difference �V that is a few volts,
the resulting loss in potential energy and corresponding gain in kinetic energy will
be of the order of 10−19 to 10−18 J. To avoid working with such small numbers,
it is common in the realm of atomic or nuclear physics to measure energies in
electron-volts (eV), defined to be the energy of a charge equal in magnitude to
that of the electron that passes through a potential difference of 1 volt:

�U = q�V = (1.602 × 10−19 C)(1 V) = 1.602 × 10−19 J
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and thus

1 eV = 1.602 × 10−19 J

Some convenient multiples of the electron-volt are

keV = kilo electron-volt = 103 eV

MeV = mega electron-volt = 106 eV

GeV = giga electron-volt = 109 eV

(In some older works you may find reference to the BeV, for billion electron-volts;
this is a source of confusion, for in the United States a billion is 109 while in
Europe a billion is 1012.)

Often we wish to find the potential energy of two basic charges separated by
typical atomic or nuclear dimensions, and we wish to have the result expressed
in electron-volts. Here is a convenient way of doing this. First we express the
quantity e2/4πε0 in a more convenient form:

e2

4πε0
= (8.988 × 109 N · m2/C2)(1.602 × 10−19 C)2 = 2.307 × 10−28 N · m2

= (2.307 × 10−28 N · m2)

(
1

1.602 × 10−19 J/eV

) (
109 nm

m

)
= 1.440 eV · nm

With this useful combination of constants it becomes very easy to calculate
electrostatic potential energies. For two electrons separated by a typical atomic
dimension of 1.00 nm, Eq. 1.9 gives

U = 1

4πε0

e2

r
= e2

4πε0

1

r
= (1.440 eV · nm)

(
1

1.00 nm

)
= 1.44 eV

For calculations at the nuclear level, the femtometer is a more convenient unit of
distance and MeV is a more appropriate energy unit:

e2

4πε0
= (1.440 eV · nm)

(
1 m

109 nm

) (
1015 fm

1 m

)(
1 MeV

106 eV

)
= 1.440 MeV · fm

It is remarkable (and convenient to remember) that the quantity e2/4πε0 has the
same value of 1.440 whether we use typical atomic energies and sizes (eV · nm)
or typical nuclear energies and sizes (MeV · fm).

A magnetic field �B can be produced by an electric current i. For example, the
magnitude of the magnetic field at the center of a circular current loop of radius r
is (see Figure 1.6a)

B = μ0i

2r
(1.11)

The SI unit for magnetic field is the tesla (T), which is equivalent to a newton per
ampere-meter. The constant μ0 is

μ0 = 4π× 10−7 N · s2/C2

(a)

(b)

Bext

i

i

B�

�
μ�

FIGURE 1.6 (a) A circular current
loop produces a magnetic field �B at
its center. (b) A current loop with
magnetic moment �μ in an external
magnetic field �Bext. The field exerts
a torque on the loop that will tend to
rotate it so that �μ lines up with �Bext.

Be sure to remember that i is in the direction of the conventional (positive) current,
opposite to the actual direction of travel of the negatively charged electrons that
typically produce the current in metallic wires. The direction of �B is chosen
according to the right-hand rule: if you hold the wire in the right hand with the
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thumb pointing in the direction of the current, the fingers point in the direction of
the magnetic field.

It is often convenient to define the magnetic moment �μ of a current loop:

|�μ| = iA (1.12)

where A is the geometrical area enclosed by the loop. The direction of �μ is
perpendicular to the plane of the loop, according to the right-hand rule.

When a current loop is placed in a uniform external magnetic field �Bext (as in

Figure 1.6b), there is a torque �τ on the loop that tends to line up �μ with �Bext:

�τ = �μ × �Bext (1.13)

Another way to describe this interaction is to assign a potential energy to the
magnetic moment �μ in the external field �Bext:

U = −�μ · �Bext (1.14)

When the field �Bext is applied, �μ rotates so that its energy tends to a minimum
value, which occurs when �μ and �Bext are parallel.

It is important for us to understand the properties of magnetic moments,
because particles such as electrons or protons have magnetic moments. Although
we don’t imagine these particles to be tiny current loops, their magnetic moments
do obey Eqs. 1.13 and 1.14.

A particularly important aspect of electromagnetism is electromagnetic waves.
In Chapter 3 we discuss some properties of these waves in more detail. Electro-
magnetic waves travel in free space with speed c (the speed of light), which is
related to the electromagnetic constants ε0 and μ0:

c = (ε0μ0)
−1/2 (1.15)

The speed of light has the exact value of c = 299,792,458 m/s.
Electromagnetic waves have a frequency f and wavelength λ, which are

related by

c = λf (1.16)

The wavelengths range from the very short (nuclear gamma rays) to the very
long (radio waves). Figure 1.7 shows the electromagnetic spectrum with the
conventional names assigned to the different ranges of wavelengths.

106 104 102 10−2 10−4 10−6 10−8 10−10 10−12100

Frequency (Hz)

Wavelength (m)

AM

102 104 106 108 1010 1012 1014 1016 1018 1020 1022

FM

Broadcast Visible
light

TV Microwave Infrared Ultraviolet

X raysShort-wave radioLong-wave radio

Nuclear gamma rays

FIGURE 1.7 The electromagnetic spectrum. The boundaries of the regions are not sharply defined.
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Kinetic Theory of Matter
An example of the successful application of classical physics to the structure
of matter is the understanding of the properties of gases at relatively low
pressures and high temperatures (so that the gas is far from the region of pressure
and temperature where it might begin to condense into a liquid). Under these
conditions, most real gases can be modeled as ideal gases and are well described
by the ideal gas equation of state

PV = NkT (1.17)

where P is the pressure, V is the volume occupied by the gas, N is the number of
molecules, T is the temperature, and k is the Boltzmann constant, which has the
value

k = 1.381 × 10−23 J/K

In using this equation and most of the equations in this section, the temperature
must be measured in units of kelvins (K). Be careful not to confuse the symbol K
for the unit of temperature with the symbol K for kinetic energy.

The ideal gas equation of state can also be expressed as

PV = nRT (1.18)

where n is the number of moles and R is the universal gas constant with a
value of

R = 8.315 J/mol · K

One mole of a gas is the quantity that contains a number of fundamental entities
(atoms or molecules) equal to Avogadro’s constant NA, where

NA = 6.022 × 1023 per mole

That is, one mole of helium contains NA atoms of He, one mole of nitrogen
contains NA molecules of N2 (and thus 2NA atoms of N), and one mole of
water vapor contains NA molecules of H2O (and thus 2NA atoms of H and NA
atoms of O).

Because N = nNA (number of molecules equals number of moles times
number of molecules per mole), the relationship between the Boltzmann constant
and the universal gas constant is

R = kNA (1.19)

The ideal gas model is very successful for describing the properties of many
gases. It assumes that the molecules are of negligibly small volume (that is, the
gas is mostly empty space) and move randomly throughout the volume of the
container. The molecules make occasional collisions with one another and with
the walls of the container. The collisions obey Newton’s laws and are elastic and
of very short duration. The molecules exert forces on one another only during
collisions. Under these assumptions, there is no potential energy so that kinetic
energy is the only form of energy that must be considered. Because the collisions
are elastic, there is no net loss or gain of kinetic energy during the collisions.
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Individual molecules may speed up or slow down due to collisions, but the
average kinetic energy of all the molecules in the container does not change. The
average kinetic energy of a molecule in fact depends only on the temperature:

Kav = 3
2 kT (per molecule) (1.20)

For rough estimates, the quantity kT is often used as a measure of the mean
kinetic energy per particle. For example, at room temperature (20◦C = 293 K),
the mean kinetic energy per particle is approximately 4 × 10−21 J (about 1/40 eV),
while in the interior of a star where T ∼ 107 K, the mean energy is approximately
10−16 J (about 1000 eV).

Sometimes it is also useful to discuss the average kinetic energy of a mole of
the gas:

average K per mole = average K per molecule × number of molecules per mole

Using Eq. 1.19 to relate the Boltzmann constant to the universal gas constant, we
find the average molar kinetic energy to be

Kav = 3
2 RT (per mole) (1.21)

It should be apparent from the context of the discussion whether Kav refers to the
average per molecule or the average per mole.

1.2 THE FAILURE OF CLASSICAL CONCEPTS
OF SPACE AND TIME

In 1905, Albert Einstein proposed the special theory of relativity, which is in
essence a new way of looking at space and time, replacing the “classical” space
and time that were the basis of the physical theories of Galileo and Newton.
Einstein’s proposal was based on a “thought experiment,” but in subsequent years
experimental data have clearly indicated that the classical concepts of space and
time are incorrect. In this section we examine how experimental results support
the need for a new approach to space and time.

(a)

(b)

O2

O1
A B

LABORATORY

v

O2

v

−v
O1

A B

LABORATORY

FIGURE 1.8 (a) The pion experiment
according to O1. Markers A and
B respectively show the locations
of the pion’s creation and decay.
(b) The same experiment as viewed
by O2, relative to whom the pion is
at rest and the laboratory moves with
velocity −v.

The Failure of the Classical Concept of Time

In high-energy collisions between two protons, many new particles can be
produced, one of which is a pi meson (also known as a pion). When the pions are
produced at rest in the laboratory, they are observed to have an average lifetime (the
time between the production of the pion and its decay into other particles) of 26.0 ns
(nanoseconds, or 10−9 s). On the other hand, pions in motion are observed to have
a very different lifetime. In one particular experiment, pions moving at a speed of
2.737 × 108 m/s (91.3% of the speed of light) showed a lifetime of 63.7 ns.

Let us imagine this experiment as viewed by two different observers
(Figure 1.8). Observer #1, at rest in the laboratory, sees the pion moving relative
to the laboratory at a speed of 91.3% of the speed of light and measures its
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lifetime to be 63.7 ns. Observer #2 is moving relative to the laboratory at exactly
the same velocity as the pion, so according to observer #2 the pion is at rest and
has a lifetime of 26.0 ns. The two observers measure different values for the time
interval between the same two events—the formation of the pion and its decay.

According to Newton, time is the same for all observers. Newton’s laws are
based on this assumption. The pion experiment clearly shows that time is not
the same for all observers, which indicates the need for a new theory that relates
time intervals measured by different observers who are in motion with respect to
each other.

The Failure of the Classical Concept of Space
The pion experiment also leads to a failure of the classical ideas about space.
Suppose observer #1 erects two markers in the laboratory, one where the pion
is created and another where it decays. The distance D1 between the two
markers is equal to the speed of the pion multiplied by the time interval from
its creation to its decay: D1 = (2.737 × 108 m/s)(63.7 × 10−9 s) = 17.4 m. To
observer #2, traveling at the same velocity as the pion, the laboratory appears
to be rushing by at a speed of 2.737 × 108 m/s and the time between passing
the first and second markers, showing the creation and decay of the pion in the
laboratory, is 26.0 ns. According to observer #2, the distance between the markers
is D2 = (2.737 × 108 m/s)(26.0 × 10−9 s) = 7.11 m. Once again, we have two
observers in relative motion measuring different values for the same interval, in
this case the distance between the two markers in the laboratory. The physical
theories of Galileo and Newton are based on the assumption that space is the
same for all observers, and so length measurements should not depend on relative
motion. The pion experiment again shows that this cornerstone of classical physics
is not consistent with modern experimental data.

The Failure of the Classical Concept
of Velocity
Classical physics places no limit on the maximum velocity that a particle can
reach. One of the basic equations of kinematics, v = v0 + at, shows that if a
particle experiences an acceleration a for a long enough time t, velocities as large
as desired can be achieved, perhaps even exceeding the speed of light. For another
example, when an aircraft flying at a speed of 200 m/s relative to an observer
on the ground launches a missile at a speed of 250 m/s relative to the aircraft, a
ground-based observer would measure the missile to travel at a speed of 200 m/s +
250 m/s = 450 m/s, according to the classical velocity addition rule (Eq. 1.7). We
can apply that same reasoning to a spaceship moving at a speed of 2.0 × 108 m/s
(relative to an observer on a space station), which fires a missile at a speed of
2.5 × 108 m/s relative to the spacecraft. We would expect that the observer on
the space station would measure a speed of 4.5 × 108 m/s for the missile. This
speed exceeds the speed of light (3.0 × 108 m/s). Allowing speeds greater than
the speed of light leads to a number of conceptual and logical difficulties, such as
the reversal of the normal order of cause and effect for some observers.

Here again modern experimental results disagree with the classical ideas. Let’s
go back again to our experiment with the pion, which is moving through the
laboratory at a speed of 2.737 × 108 m/s. The pion decays into another particle,
called a muon, which is emitted in the forward direction (the direction of the
pion’s velocity) with a speed of 0.813 × 108 m/s relative to the pion. According to
Eq. 1.7, an observer in the laboratory should observe the muon to be moving with
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a velocity of 2.737 × 108 m/s + 0.813 × 108 m/s = 3.550 × 108 m/s, exceeding
the speed of light. The observed velocity of the muon, however, is 2.846 ×
108 m/s, below the speed of light. Clearly the classical rule for velocity addition
fails in this experiment.

The properties of time and space and the rules for combining velocities are
essential concepts of the classical physics of Newton. These concepts are derived
from observations at low speeds, which were the only speeds available to Newton
and his contemporaries. In Chapter 2, we shall discover how the special theory
of relativity provides the correct procedure for comparing measurements of time,
distance, and velocity by different observers and thereby removes the failures of
classical physics at high speed (while reducing to the classical laws at low speed,
where we know the Newtonian framework works very well).

1.3 THE FAILURE OF THE CLASSICAL THEORY
OF PARTICLE STATISTICS

Thermodynamics and statistical mechanics were among the great triumphs of
19th-century physics. Describing the behavior of complex systems of many
particles was shown to be possible using a small number of aggregate or average
properties—for example, temperature, pressure, and heat capacity. Perhaps the
crowning achievement in this field was the development of relationships between
macroscopic properties, such as temperature, and microscopic properties, such as
the molecular kinetic energy.

Despite these great successes, this statistical approach to understanding the
behavior of gases and solids also showed a spectacular failure. Although the
classical theory gave the correct heat capacities of gases at high temperatures, it
failed miserably for many gases at low temperatures. In this section we summarize
the classical theory and explain how it fails at low temperatures. This failure
directly shows the inadequacy of classical physics and the need for an approach
based on quantum theory, the second of the great theories of modern physics.

The Distribution of Molecular Energies
In addition to the average kinetic energy, it is also important to analyze the
distribution of kinetic energies—that is, what fraction of the molecules in the
container has kinetic energies between any two values K1 and K2. For a gas in
thermal equilibrium at absolute temperature T (in kelvins), the distribution of
molecular energies is given by the Maxwell-Boltzmann distribution:

N(E) = 2N√
π

1

(kT)3/2
E1/2e−E/kT (1.22)

In this equation, N is the total number of molecules (a pure number) while N(E)

is the distribution function (with units of energy−1) defined so that N(E)dE is the
number of molecules dN in the energy interval dE at E (or, in other words, the
number of molecules with energies between E and E + dE):

dN = N(E) dE (1.23)

The distribution N(E) is shown in Figure 1.9. The number dN is represented by the
area of the narrow strip between E and E + dE. If we divide the entire horizontal
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FIGURE 1.9 The Maxwell-Boltzmann energy distribution function, shown for
one mole of gas at room temperature (300 K).

axis into an infinite number of such small intervals and add the areas of all the
resulting narrow strips, we obtain the total number of molecules in the gas:∫ ∞

0
dN =

∫ ∞

0
N(E) dE =

∫ ∞

0

2N√
π

1

(kT)3/2
E1/2e−E/kT dE = N (1.24)

The final step in this calculation involves the definite integral
∫ ∞

0 x1/2e−xdx,
which you can find in tables of integrals. Also using calculus techniques (see
Problem 8), you can show that the peak of the distribution function (the most
probable energy) is 1

2 kT .
The average energy in this distribution of molecules can also be found by

dividing the distribution into strips. To find the contribution of each strip to
the energy of the gas, we multiply the number of molecules in each strip,
dN = N(E)dE, by the energy E of the molecules in that strip, and then we add
the contributions of all the strips by integrating over all energies. This calculation
would give the total energy of the gas; to find the average we divide by the total
number of molecules N :

Eav = 1

N

∫ ∞

0
EN(E) dE =

∫ ∞

0

2√
π

1

(kT)3/2
E3/2e−E/kT dE (1.25)

Once again, the definite integral can be found in integral tables. The result of
carrying out the integration is

Eav = 3
2 kT (1.26)

Equation 1.26 gives the average energy of a molecule in the gas and agrees
precisely with the result given by Eq. 1.20 for the ideal gas in which kinetic
energy is the only kind of energy the gas can have.

Occasionally we are interested in finding the number of molecules in our
distribution with energies between any two values E1 and E2. If the interval
between E1 and E2 is very small, Eq. 1.23 can be used, with dE = E2 − E1 and with
N(E) evaluated at the midpoint of the interval. This approximation works very well
when the interval is small enough that N(E) is either approximately flat or linear
over the interval. If the interval is large enough that this approximation is not valid,
then it is necessary to integrate to find the number of molecules in the interval:

N(E1 : E2) =
∫ E2

E1

N(E) dE =
∫ E2

E1

2N√
π

1

(kT)3/2
E1/2e−E/kT dE (1.27)

This number is represented by the shaded area in Figure 1.9. This integral cannot
be evaluated directly and must be found numerically.
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Example 1.3

(a) In one mole of a gas at a temperature of 650 K (kT =
8.97 × 10−21 J = 0.0560 eV), calculate the number of
molecules with energies between 0.0105 eV and 0.0135 eV.
(b) In this gas, calculate the fraction of the molecules with
energies in the range of ±2.5% of the most probable
energy ( 1

2 kT).
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FIGURE 1.10 Example 1.3.

Solution
(a) Figure 1.10a shows the distribution N(E) in the region
between E1 = 0.0105 eV and E2 = 0.0135 eV. Because the
graph is very close to linear in this region, we can use Eq.
1.23 to find the number of molecules in this range. We
take dE to be the width of the range, dE = E2 − E1 =
0.0135 eV − 0.0105 eV = 0.0030 eV, and for E we use the
energy at the midpoint of the range (0.0120 eV):

dN = N(E) dE

= 2N√
π

1

(kT)3/2
E1/2e−E/kT dE

= 2(6.022 × 1023)(0.0120 eV)1/2 π−1/2(0.0560 eV)−3/2

×e−(0.0120 eV)/(0.0560 eV)(0.0030 eV)

= 1.36 × 1022

(b) Figure 1.10b shows the distribution in this region. To
find the fraction of the molecules in this energy range, we
want dN/N . The most probable energy is 1

2 kT or 0.0280 eV,
and ±2.5% of this value corresponds to ±0.0007 eV or
a range from 0.0273 eV to 0.0287 eV. The fraction is

dN

N
= N(E) dE

N
= 2√

π

1

(kT)3/2
E1/2e−E/kT dE

= 2(0.0280 eV)1/2 π−1/2(0.0560 eV)−3/2

×e−(0.0280 eV)/(0.0560 eV)(0.0014 eV)

= 0.0121

Note from these examples how we use a distribution function. We do not use
Eq. 1.22 to calculate the number of molecules at a particular energy. In this way
N(E) differs from many of the functions you have encountered previously in your
study of physics and mathematics. We always use the distribution function to
calculate how many events occur in a certain interval of values rather than at an
exact particular value. There are two reasons for this: (1) Asking the question in
the form of how many molecules have a certain value of the energy implies that
the energy is known exactly (to an infinite number of decimal places), and there
is zero probability to find a molecule with that exact value of the energy. (2) Any
measurement apparatus accepts a finite range of energies (or speeds) rather than
a single exact value, and thus asking about intervals is a better representation of
what can be measured in the laboratory.
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Note that N(E) has dimensions of energy−1 —it gives the number of molecules
per unit energy interval (for example, number of molecules per eV). To get an
actual number that can be compared with measurement, N(E) must be multiplied
by an energy interval. In our study of modern physics, we will encounter many
different types of distribution functions whose use and interpretation are similar
to that of N(E). These functions generally give a number or a probability per
some sort of unit interval (for example, probability per unit volume), and to use
the distribution function to calculate an outcome we must always multiply by an
appropriate interval (for example, an element of volume). Sometimes we will be
able to deal with small intervals using a relationship similar to Eq. 1.23, as we did
in Example 1.3, but in other cases we will find the need to evaluate an integral, as
we did in Eq. 1.27.

Polyatomic Molecules and the Equipartition
of Energy

So far we have been considering gases with only one atom per molecule
(monatomic gases). For “point” molecules with no internal structure, only one
form of energy is important: translational kinetic energy 1

2 mv2. (We call this
“translational” kinetic energy because it describes motion as the gas particles
move from one location to another. Soon we will also consider rotational kinetic
energy.)

Let’s rewrite Eq. 1.26 in a more instructive form by recognizing that, with
translational kinetic energy as the only form of energy, E = K = 1

2 mv2. With
v2 = v2

x + v2
y + v2

z , we can write the energy as

E = 1
2 mv2

x + 1
2 mv2

y + 1
2 mv2

z (1.28)

The average energy is then

1
2 m(v2

x)av + 1
2 m(v2

y)av + 1
2 m(v2

z )av = 3
2 kT (1.29)

For a gas molecule there is no difference between the x, y, and z directions, so
the three terms on the left are equal and each term is equal to 1

2 kT . The three
terms on the left represent three independent contributions to the energy of the
molecule—the motion in the x direction, for example, is not affected by the y or
z motions.

We define a degree of freedom of the gas as each independent contribution to
the energy of a molecule, corresponding to one quadratic term in the expression
for the energy. There are three quadratic terms in Eq. 1.28, so in this case there
are three degrees of freedom. As you can see from Eq. 1.29, each of the three
degrees of freedom of a gas molecule contributes an energy of 1

2 kT to its average
energy. The relationship we have obtained in this special case is an example of
the application of a general theorem, called the equipartition of energy theorem:

When the number of particles in a system is large and Newtonian mechanics
is obeyed, each molecular degree of freedom corresponds to an average
energy of 1

2 kT.

The average energy per molecule is then the number of degrees of freedom times
1
2 kT , and the total energy is obtained by multiplying the average energy per
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molecule by the number of molecules N : Etotal = NEav. We will refer to this total
energy as the internal energy Eint to indicate that it represents the random motions
of the gas molecules (in contrast, for example, to the energy involved with the
motion of the entire container of gas molecules).

Eint = N( 3
2 kT) = 3

2 NkT = 3
2 nRT (translation only) (1.30)

where Eq. 1.19 has been used to express Eq. 1.30 in terms of either the number
of molecules or the number of moles.

The situation is different for a diatomic gas (two atoms per molecule),
illustrated in Figure 1.11. There are still three degrees of freedom associated with
the translational motion of the molecule, but now two additional forms of energy
are permitted—rotational and vibrational.

x′

y′

z′

FIGURE 1.11 A diatomic molecule,
with the origin at the center of mass.
Rotations can occur about the x′ and y′

axes, and vibrations can occur along
the z′ axis.

First we consider the rotational motion. The molecule shown in Figure 1.11
can rotate about the x′ and y′ axes (but not about the z′ axis, because the rotational
inertia about that axis is zero for diatomic molecules in which the atoms are treated
as points). Using the general form of 1

2 Iω2 for the rotational kinetic energy, we
can write the energy of the molecule as

E = 1
2 mv2

x + 1
2 mv2

y + 1
2 mv2

z + 1
2 Ix′ω2

x′ + 1
2 Iy′ω2

y′ (1.31)

Here we have 5 quadratic terms in the energy, and thus 5 degrees of freedom.
According to the equipartition theorem, the average total energy per molecule is
5 × 1

2 kT = 5
2 kT , and the total internal energy of n moles of the gas is

Eint = 5
2 nRT (translation + rotation) (1.32)

If the molecule can also vibrate, we can imagine the rigid rod connecting the
atoms in Figure 1.11 to be replaced by a spring. The two atoms can then vibrate
in opposite directions along the z′ axis, with the center of mass of the molecule
remaining fixed. The vibrational motion adds two quadratic terms to the energy,
corresponding to the vibrational potential energy ( 1

2 kz′2) and the vibrational
kinetic energy ( 1

2 mv2
z′ ). Including the vibrational motion, there are now 7 degrees

of freedom, so that

Eint = 7
2 nRT (translation + rotation + vibration) (1.33)

Heat Capacities of an Ideal Gas
Now we examine where the classical molecular distribution theory, which gives
a very good accounting of molecular behavior under most circumstances, fails to
agree with one particular class of experiments. Suppose we have a container of
gas with a fixed volume. We transfer energy to the gas, perhaps by placing the
container in contact with a system at a higher temperature. All of this transferred
energy increases the internal energy of the gas by an amount �Eint, and there is
an accompanying increase in temperature �T .

We define the molar heat capacity for this constant-volume process as

CV = �Eint

n �T
(1.34)

(The subscript V reminds us that we are doing this measurement at constant
volume.) From Eqs. 1.30, 1.32, and 1.33, we see that the molar heat capacity
depends on the type of gas:



18 Chapter 1 | The Failures of Classical Physics

CV = 3
2 R (monatomic or nonrotating, nonvibrating diatomic ideal gas)

CV = 5
2 R (rotating diatomic ideal gas) (1.35)

CV = 7
2 R (rotating and vibrating diatomic ideal gas)

When we add energy to the gas, the equipartition theorem tells us that the added
energy will on the average be distributed uniformly among all the possible forms
of energy (corresponding to the number of degrees of freedom). However, only
the translational kinetic energy contributes to the temperature (as shown by Eqs.
1.20 and 1.21). Thus, if we add 7 units of energy to a diatomic gas with rotating
and vibrating molecules, on the average only 3 units go into translational kinetic
energy and so 3/7 of the added energy goes into increasing the temperature.
(To measure the temperature rise, the gas molecules must collide with the
thermometer, so energy in the rotational and vibrational motions is not recorded
by the thermometer.) Put another way, to obtain the same temperature increase
�T , a mole of diatomic gas requires 7/3 times the energy that is needed for a
mole of monatomic gas.

Comparison with Experiment How well do these heat capacity values
agree with experiment? For monatomic gases, the agreement is very good. The
equipartition theorem predicts a value of CV = 3R/2 = 12.5 J/mol · K, which
should be the same for all monatomic gases and the same at all temperatures (as
long as the conditions of the ideal gas model are fulfilled). The heat capacity
of He gas is 12.5 J/mol · K at 100 K, 300 K (room temperature), and 1000 K, so
in this case our calculation is in perfect agreement with experiment. Other inert
gases (Ne, Ar, Xe, etc.) have identical values, as do vapors of metals (Cu, Na, Pb,
Bi, etc.) and the monatomic (dissociated) state of elements that normally form
diatomic molecules (H, N, O, Cl, Br, etc.). So over a wide variety of different
elements and a wide range of temperatures, classical statistical mechanics is in
excellent agreement with experiment.

The situation is much less satisfactory for diatomic molecules. For a rotating
and vibrating diatomic molecule, the classical calculation gives CV = 7R/2 =
29.1 J/mol · K. Table 1.1 shows some values of the heat capacities for different
diatomic gases over a range of temperatures.

TABLE 1.1 Heat Capacities of Diatomic Gases

CV (J/mol · K)

Element 100 K 300 K 1000 K

H2 18.7 20.5 21.9

N2 20.8 20.8 24.4

O2 20.8 21.1 26.5

F2 20.8 23.0 28.8

Cl2 21.0 25.6 29.1

Br2 22.6 27.8 29.5

I2 24.8 28.6 29.7

Sb2 28.1 29.0

Te2 28.2 29.0

Bi2 28.6 29.1
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At high temperatures, many of the diatomic gases do indeed approach the
expected value of 7R/2, but at lower temperatures the values are much smaller.
For example, fluorine seems to behave as if it has 5 degrees of freedom
(CV = 20.8 J/mol · K) at 100 K and 7 degrees of freedom (CV = 29.1 J/mol · K)
at 1000 K.

Hydrogen behaves as if it has 5 degrees of freedom at room temperature,
but at high enough temperature (3000 K), the heat capacity of H2 approaches
29.1 J/mol · K, corresponding to 7 degrees of freedom, while at lower temperatures
(40 K) the heat capacity is 12.5 J/mol · K, corresponding to 3 degrees of freedom.
The temperature dependence of the heat capacity of H2 is shown in Figure 1.12.
There are three plateaus in the graph, corresponding to heat capacities for 3, 5, and
7 degrees of freedom. At the lowest temperatures, the rotational and vibrational
motions are “frozen” and do not contribute to the heat capacity. At about 100 K,
the molecules have enough energy to allow rotational motion to occur, and by
about 300 K the heat capacity is characteristic of 5 degrees of freedom. Starting
about 1000 K, the vibrational motion can occur, and by about 3000 K there are
enough molecules above the vibrational threshold to allow 7 degrees of freedom.

What’s going on here? The classical calculation demands that CV should be
constant, independent of the type of gas or the temperature. The equipartition
of energy theorem, which is very successful in predicting many thermodynamic
properties, fails miserably in accounting for the heat capacities. This theorem
requires that the energy added to a gas must on average be divided equally among
all the different forms of energy, and classical physics does not permit a threshold
energy for any particular type of motion. How is it possible for 2 degrees of
freedom, corresponding to the rotational or vibrational motions, to be “turned on”
as the temperature is increased?

The solution to this dilemma can be found in quantum mechanics, according
to which there is indeed a minimum or threshold energy for the rotational and
vibrational motions. We discuss this behavior in Chapters 5 and 9. In Chapter 11
we discuss the failure of the equipartition theorem to account for the heat capacities
of solids and the corresponding need to replace the classical Maxwell-Boltzmann
energy distribution function with a different distribution that is consistent with
quantum mechanics.
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FIGURE 1.12 The heat capacity of molecular hydrogen at different temperatures.
The data points disagree with the classical prediction.
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1.4 THEORY, EXPERIMENT, LAW

When you first began to study science, perhaps in your elementary or high school
years, you may have learned about the “scientific method,” which was supposed
to be a sort of procedure by which scientific progress was achieved. The basic
idea of the “scientific method” was that, on reflecting over some particular aspect
of nature, the scientist would invent a hypothesis or theory, which would then be
tested by experiment and if successful would be elevated to the status of law. This
procedure is meant to emphasize the importance of doing experiments as a way of
testing hypotheses and rejecting those that do not pass the tests. For example, the
ancient Greeks had some rather definite ideas about the motion of objects, such as
projectiles, in the Earth’s gravity. Yet they tested none of these by experiment, so
convinced were they that the power of logical deduction alone could be used to
discover the hidden and mysterious laws of nature and that once logic had been
applied to understanding a problem, no experiments were necessary. If theory
and experiment were to disagree, they would argue, then there must be something
wrong with the experiment! This dominance of analysis and faith was so pervasive
that it was another 2000 years before Galileo, using an inclined plane and a crude
timer (equipment surely within the abilities of the early Greeks to construct), dis-
covered the laws of motion, which were later organized and analyzed by Newton.

In the case of modern physics, none of the fundamental concepts is obvious
from reason alone. Only by doing often difficult and necessarily precise experi-
ments do we learn about these unexpected and fascinating effects associated with
such modern physics topics as relativity and quantum physics. These experiments
have been done to unprecedented levels of precision—of the order of one part
in 106 or better—and it can certainly be concluded that modern physics was
tested far better in the 20th century than classical physics was tested in all of the
preceding centuries.

Nevertheless, there is a persistent and often perplexing problem associated
with modern physics, one that stems directly from your previous acquaintance
with the “scientific method.” This concerns the use of the word “theory,” as in
“theory of relativity” or “quantum theory,” or even “atomic theory” or “theory
of evolution.” There are two contrasting and conflicting definitions of the word
“theory” in the dictionary:

1. A hypothesis or guess.
2. An organized body of facts or explanations.

The “scientific method” refers to the first kind of “theory,” while when we
speak of the “theory of relativity” we refer to the second kind. Yet there is
often confusion between the two definitions, and therefore relativity and quantum
physics are sometimes incorrectly regarded as mere hypotheses, on which evidence
is still being gathered, in the hope of someday submitting that evidence to some sort
of international (or intergalactic) tribunal, which in turn might elevate the “theory”
into a “law.” Thus the “theory of relativity” might someday become the “law of
relativity,” like the “law of gravity.” Nothing could be further from the truth!

The theory of relativity and the quantum theory, like the atomic theory or the
theory of evolution, are truly “organized bodies of facts and explanations” and
not “hypotheses.” There is no question of these “theories” becoming “laws”—the
“facts” (experiments, observations) of relativity and quantum physics, like those
of atomism or evolution, are accepted by virtually all scientists today. The
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experimental evidence for all of these processes is so compelling that no one who
approaches them in the spirit of free and open inquiry can doubt the observational
evidence or their inferences. Whether these collections of evidence are called
theories or laws is merely a question of semantics and has nothing to do with their
scientific merits. Like all scientific principles, they will continue to develop and
change as new discoveries are made; that is the essence of scientific progress.

Chapter Summary

Section

Classical kinetic
energy

K = 1
2 mv2 = p2

2m
1.1

Classical linear
momentum

�p = m�v 1.1

Classical angular
momentum

�L = �r × �p 1.1

Classical
conservation laws

In an isolated system, the
energy, linear momentum, and
angular momentum remain
constant.

1.1

Electric force and
potential energy
of two interacting
charges

F = 1

4πε0

|q1||q2|
r2

U = 1

4πε0

q1q2

r

1.1

Relationship between
electric potential
energy and potential

�U = q�V 1.1

Section

Magnetic field of
a current loop

B = μ0i

2r
1.1

Potential energy
of magnetic
dipole

U = −�μ · �Bext 1.1

Average kinetic
energy in a gas

Kav = 3
2 kT(per molecule)

= 3
2 RT(per mole)

1.1

Maxwell-Boltzmann
distribution

N(E) = 2N√
π

1

(kT)3/2
E1/2e−E/kT 1.3

Equipartition of
energy

Energy per degree of freedom
= 1

2 kT
1.3

Questions

1. Under what conditions can you apply the law of conservation
of energy? Conservation of linear momentum? Conservation
of angular momentum?

2. Which of the conserved quantities are scalars and which are
vectors? Is there a difference in how we apply conservation
laws for scalar and vector quantities?

3. What other conserved quantities (besides energy, linear
momentum, and angular momentum) can you name?

4. What is the difference between potential and potential
energy? Do they have different dimensions? Different units?

5. In Section 1.1 we defined the electric force between two
charges and the magnetic field of a current. Use these quan-
tities to define the electric field of a single charge and the
magnetic force on a moving electric charge.

6. Other than from the ranges of wavelengths shown in
Figure 1.7, can you think of a way to distinguish radio
waves from infrared waves? Visible from infrared? That is,

could you design a radio that could be tuned to infrared
waves? Could living beings “see” in the infrared region?

7. Suppose we have a mixture of an equal number N of
molecules of two different gases, whose molecular masses
are m1 and m2, in complete thermal equilibrium at tempera-
ture T . How do the distributions of molecular energies of the
two gases compare? How do their average kinetic energies
per molecule compare?

8. In most gases (as in the case of hydrogen) the rotational
motion begins to occur at a temperature well below the
temperature at which vibrational motion occurs. What does
this tell us about the properties of the gas molecules?

9. Suppose it were possible for a pitcher to throw a baseball
faster than the speed of light. Describe how the flight of the
ball from the pitcher’s hand to the catcher’s glove would
look to the umpire standing behind the catcher.
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10. At low temperatures the molar heat capacity of carbon diox-
ide (CO2) is about 5R/2, and it rises to about 7R/2 at
room temperature. However, unlike the gases discussed in
Section 1.3, the heat capacity of CO2 continues to rise as the
temperature increases, reaching 11R/2 at 1000 K. How can
you explain this behavior?

11. If we double the temperature of a gas, is the number of
molecules in a narrow interval dE around the most probable
energy about the same, double, or half what it was at the
original temperature?

Problems

1.1 Review of Classical Physics

1. A hydrogen atom (m = 1.674 × 10−27 kg) is moving with
a velocity of 1.1250 × 107 m/s. It collides elastically with
a helium atom (m = 6.646 × 10−27 kg) at rest. After the
collision, the hydrogen atom is found to be moving with
a velocity of −6.724 × 106 m/s (in a direction opposite to
its original motion). Find the velocity of the helium atom
after the collision in two different ways: (a) by applying
conservation of momentum; (b) by applying conservation
of energy.

2. A helium atom (m = 6.6465 × 10−27 kg) collides elastically
with an oxygen atom (m = 2.6560 × 10−26 kg) at rest. After
the collision, the helium atom is observed to be moving with
a velocity of 6.636 × 106 m/s in a direction at an angle of
84.7◦ relative to its original direction. The oxygen atom is
observed to move at an angle of −40.4◦. (a) Find the speed
of the oxygen atom. (b) Find the speed of the helium atom
before the collision.

3. A beam of helium-3 atoms (m = 3.016 u) is incident on a
target of nitrogen-14 atoms (m = 14.003 u) at rest. During
the collision, a proton from the helium-3 nucleus passes to
the nitrogen nucleus, so that following the collision there
are two atoms: an atom of “heavy hydrogen” (deuterium,
m = 2.014 u) and an atom of oxygen-15 (m = 15.003 u).
The incident helium atoms are moving at a velocity of
6.346 × 106 m/s. After the collision, the deuterium atoms
are observed to be moving forward (in the same direction as
the initial helium atoms) with a velocity of 1.531 × 107 m/s.
(a) What is the final velocity of the oxygen-15 atoms?
(b) Compare the total kinetic energies before and after the
collision.

4. An atom of beryllium (m = 8.00 u) splits into two atoms of
helium (m = 4.00 u) with the release of 92.2 keV of energy.
If the original beryllium atom is at rest, find the kinetic
energies and speeds of the two helium atoms.

5. A 4.15-volt battery is connected across a parallel-plate
capacitor. Illuminating the plates with ultraviolet light causes
electrons to be emitted from the plates with a speed of
1.76 × 106 m/s. (a) Suppose electrons are emitted near the
center of the negative plate and travel perpendicular to that
plate toward the opposite plate. Find the speed of the elec-
trons when they reach the positive plate. (b) Suppose instead

that electrons are emitted perpendicular to the positive plate.
Find their speed when they reach the negative plate.

1.2 The Failure of Classical Concepts of Space and Time

6. Observer A, who is at rest in the laboratory, is studying a
particle that is moving through the laboratory at a speed of
0.624c and determines its lifetime to be 159 ns. (a) Observer
A places markers in the laboratory at the locations where
the particle is produced and where it decays. How far apart
are those markers in the laboratory? (b) Observer B, who
is traveling parallel to the particle at a speed of 0.624c,
observes the particle to be at rest and measures its lifetime to
be 124 ns. According to B, how far apart are the two markers
in the laboratory?

1.3 The Failure of the Classical Theory of Particle Statistics

7. A sample of argon gas is in a container at 35.0◦ C and
1.22 atm pressure. The radius of an argon atom (assumed
spherical) is 0.710 × 10−10 m. Calculate the fraction of the
container volume actually occupied by the atoms.

8. By differentiating the expression for the Maxwell-
Boltzmann energy distribution, show that the peak of the
distribution occurs at an energy of 1

2 kT .
9. A container holds N molecules of nitrogen gas at T = 280 K.

Find the number of molecules with kinetic energies between
0.0300 eV and 0.0312 eV.

10. A sample of 2.37 moles of an ideal diatomic gas experi-
ences a temperature increase of 65.2 K at constant volume.
(a) Find the increase in internal energy if only translational
and rotational motions are possible. (b) Find the increase
in internal energy if translational, rotational, and vibrational
motions are possible. (c) How much of the energy calculated
in (a) and (b) is translational kinetic energy?

General Problems

11. An atom of mass m1 = m moving in the x direction with
speed v1 = v collides elastically with an atom of mass
m2 = 3m at rest. After the collision the first atom moves in
the y direction. Find the direction of motion of the second
atom and the speeds of both atoms (in terms of v) after the
collision.

12. An atom of mass m1 = m moves in the positive x direction
with speed v1 = v. It collides with and sticks to an atom of
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mass m2 = 2m moving in the positive y direction with speed
v2 = 2v/3. Find the resultant speed and direction of motion
of the combination, and find the kinetic energy lost in this
inelastic collision.

13. Suppose the beryllium atom of Problem 4 were not at rest,
but instead moved in the positive x direction and had a
kinetic energy of 40.0 keV. One of the helium atoms is
found to be moving in the positive x direction. Find the
direction of motion of the second helium, and find the veloc-
ity of each of the two helium atoms. Solve this problem in
two different ways: (a) by direct application of conservation
of momentum and energy; (b) by applying the results of
Problem 4 to a frame of reference moving with the original
beryllium atom and then switching to the reference frame in
which the beryllium is moving.

14. Suppose the beryllium atom of Problem 4 moves in the posi-
tive x direction and has kinetic energy 60.0 keV. One helium
atom is found to move at an angle of 30◦ with respect to the
x axis. Find the direction of motion of the second helium
atom and find the velocity of each helium atom. Work this

problem in two ways as you did the previous problem. (Hint:
Consider one helium to be emitted with velocity components
vx and vy in the beryllium rest frame. What is the relationship
between vx and vy? How do vx and vy change when we move
in the x direction at speed v?)

15. A gas cylinder contains argon atoms (m = 40.0 u). The tem-
perature is increased from 293 K (20◦C) to 373 K (100◦C).
(a) What is the change in the average kinetic energy per
atom? (b) The container is resting on a table in the Earth’s
gravity. Find the change in the vertical position of the con-
tainer that produces the same change in the average energy
per atom found in part (a).

16. Calculate the fraction of the molecules in a gas that are
moving with translational kinetic energies between 0.02kT
and 0.04kT .

17. For a molecule of O2 at room temperature (300 K), calculate
the average angular velocity for rotations about the x′ or y′
axes. The distance between the O atoms in the molecule is
0.121 nm.





Chapter 2
THE SPECIAL THEORY OF
RELATIVITY

This 12-foot tall statue of Albert Einstein is located at the headquarters of the National
Academy of Sciences in Washington DC. The page in his hand shows three equations that
he discovered: the fundamental equation of general relativity, which revolutionized our
understanding of gravity; the equation for the photoelectric effect, which opened the path to
the development of quantum mechanics; and the equation for mass-energy equivalence,
which is the cornerstone of his special theory of relativity.
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Einstein’s special theory of relativity and Planck’s quantum theory burst forth
on the physics scene almost simultaneously during the first decade of the 20th
century. Both theories caused profound changes in the way we view our universe
at its most fundamental level.

In this chapter we study the special theory of relativity.∗ This theory has
a completely undeserved reputation as being so exotic that few people can
understand it. On the contrary, special relativity is basically a system of kinematics
and dynamics, based on a set of postulates that are different from those of classical
physics. The resulting formalism is not much more complicated than Newton’s
laws, but it does lead to several predictions that seem to go against our common
sense. Even so, the special theory of relativity has been carefully and thoroughly
tested by experiment and found to be correct in all its predictions.

We first review the classical relativity of Galileo and Newton, and then we show
why Einstein proposed to replace it. We then discuss the mathematical aspects of
special relativity, the predictions of the theory, and finally the experimental tests.

2.1 CLASSICAL RELATIVITY

A “theory of relativity” is in effect a way for observers in different frames of
reference to compare the results of their observations. For example, consider
an observer in a car parked by a highway near a large rock. To this observer,
the rock is at rest. Another observer, who is moving along the highway in a car,
sees the rock rush past as the car drives by. To this observer, the rock appears
to be moving. A theory of relativity provides the conceptual framework and
mathematical tools that enable the two observers to transform a statement such
as “rock is at rest” in one frame of reference to the statement “rock is in motion”
in another frame of reference. More generally, relativity gives a means for
expressing the laws of physics in different frames of reference.

The mathematical basis for comparing the two descriptions is called a transfor-
mation. Figure 2.1 shows an abstract representation of the situation. Two observers

z

x

y

x, y, z, t
x′, y′, z′, t ′
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x′
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FIGURE 2.1 Two observers O and O′ observe the same event. O′ moves relative
to O with a constant velocity �u.

∗The general theory of relativity, which is covered briefly in Chapter 15, deals with “curved”
coordinate systems, in which gravity is responsible for the curvature. Here we discuss the special case
of the more familiar “flat” coordinate systems.
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O and O′ are each at rest in their own frames of reference but move relative to one
another with constant velocity �u. (O and O′ refer both to the observers and their
reference frames or coordinate systems.) They observe the same event, which
happens at a particular point in space and a particular time, such as a collision
between two particles. According to O, the space and time coordinates of the
event are x, y, z, t, while according to O′ the coordinates of the same event are x′,
y′, z′, t′. The two observers use calibrated meter sticks and synchronized clocks,
so any differences between the coordinates of the two events are due to their
different frames of reference and not to the measuring process. We simplify the
discussion by assuming that the relative velocity �u always lies along the common
xx′ direction, as shown in Figure 2.1, and we let �u represent the velocity of O′ as
measured by O (and thus O′ would measure velocity −�u for O).

In this discussion we make a particular choice of the kind of reference frames
inhabited by O and O′. We assume that each observer has the capacity to test
Newton’s laws and finds them to hold in that frame of reference. For example, each
observer finds that an object at rest or moving with a constant velocity remains
in that state unless acted upon by an external force (Newton’s first law, the law
of inertia). Such frames of reference are called inertial frames. An observer in
interstellar space floating in a nonrotating rocket with the engines off would be in
an inertial frame of reference. An observer at rest on the surface of the Earth is
not in an inertial frame, because the Earth is rotating about its axis and orbiting
about the Sun; however, the accelerations associated with those motions are so
small that we can usually regard our reference frame as approximately inertial.
(The noninertial reference frame at the Earth’s surface does produce important
and often spectacular effects, such as the circulation of air around centers of high
or low pressure.) An observer in an accelerating car, a rotating merry-go-round,
or a descending roller coaster is not in an inertial frame of reference!

We now derive the classical or Galilean transformation that relates the
coordinates x, y, z, t to x′, y′, z′, t′. We assume as a postulate of classical physics
that t = t′, that is, time is the same for all observers. We also assume for simplicity
that the coordinate systems are chosen so that their origins coincide at t = 0.
Consider an object in O′ at the coordinates x′, y′, z′ (Figure 2.2). According to O,
the y and z coordinates are the same as those in O′. Along the x direction, O would
observe the object at x = x′ + ut. We therefore have the Galilean coordinate
transformation

x′ = x − ut y′ = y z′ = z (2.1)

To find the velocities of the object as observed by O and O′, we take the derivatives
of these expressions with respect to t′ on the left and with respect to t on the
right (which we can do because we have assumed t′ = t). This gives the Galilean
velocity transformation

z

O x

xut

y

z′

z′
O′

P

x′
y′

x′

y′

u�

FIGURE 2.2 An object or event at
point P is at coordinates x′, y′, z′ with
respect to O′. The x coordinate mea-
sured by O is x = x′ + ut. The y and z
coordinates in O are the same as those
in O′.

v′
x = vx − u v′

y = vy v′
z = vz (2.2)

In a similar fashion, we can take the derivatives of Eq. 2.2 with respect to time
and obtain relationships between the accelerations

a′
x = ax a′

y = ay a′
z = az (2.3)

Equation 2.3 shows again that Newton’s laws hold for both observers. As long as
u is constant (du/dt = 0), the observers measure identical accelerations and agree
on the results of applying �F = m�a.
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Example 2.1

Two cars are traveling at constant speed along a road in the
same direction. Car A moves at 60 km/h and car B moves
at 40 km/h, each measured relative to an observer on the
ground (Figure 2.3a). What is the speed of car A relative
to car B?

Solution
Let O be the observer on the ground, who observes car A
to move at vx = 60 km/h. Assume O′ to be moving with
car B at u = 40 km/h. Then

v′
x = vx − u = 60 km/h − 40 km/h

= 20 km/h

Figure 2.3b shows the situation as observed by O′.

O′

A

B

O′

A

B

O

O

(a)

(b)

u�

–u�

v�

v′�

FIGURE 2.3 Example 2.1. (a) As observed by O at rest on the
ground. (b) As observed by O′ in car B.

Example 2.2

An airplane is flying due east relative to still air at a speed
of 320 km/h. There is a 65 km/h wind blowing toward
the north, as measured by an observer on the ground.
What is the velocity of the plane measured by the ground
observer?

Solution
Let O be the observer on the ground, and let O′ be an
observer who is moving with the wind, for example a
balloonist (Figure 2.4). Then u = 65 km/h, and (because
our equations are set up with �u in the xx′ direction) we
must choose the xx′ direction to be to the north. In this
case we know the velocity with respect to O′; taking the y
direction to the east, we have v′

x = 0 and v′
y = 320 km/h.

Using Eq. 2.2 we obtain

vx = v′
x + u = 0 + 65 km/h = 65 km/h

vy = v′
y = 320 km/h

Relative to the ground, the plane flies in a direction
determined by φ = tan−1(65 km/h)/(320 km/h) = 11.5◦,
or 11.5◦ north of east.

O

O′N

S

EW

u�u�
v�
v′�

FIGURE 2.4 Example 2.2. As observed by O at rest on the
ground, the balloon drifts north with the wind, while the plane
flies north of east.

Example 2.3

A swimmer capable of swimming at a speed c in still water
is swimming in a stream in which the current is u (which
we assume to be less than c). Suppose the swimmer swims
upstream a distance L and then returns downstream to the
starting point. Find the time necessary to make the round
trip, and compare it with the time to swim across the stream
a distance L and return.

Solution
Let the frame of reference of O be the ground and
the frame of reference of O′ be the water, moving at
speed u (Figure 2.5a). The swimmer always moves at
speed c relative to the water, and thus v′

x = −c for the
upstream swim. (Remember that u always defines the
positive x direction.) According to Eq. 2.2, v′

x = vx − u,
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so vx = v′
x + u = u − c. (As expected, the velocity rel-

ative to the ground has magnitude smaller than c; it
is also negative, since the swimmer is swimming in
the negative x direction, so |vx| = c − u.) Therefore,
tup = L/(c − u). For the downstream swim, v′

x = c, so
vx = u + c, tdown = L/(c + u), and the total time is

t = L

c + u
+ L

c − u
= L(c − u) + L(c + u)

c2 − u2

= 2Lc

c2 − u2
= 2L

c

1

1 − u2/c2
(2.4)

To swim directly across the stream, the swimmer’s efforts
must be directed somewhat upstream to counter the effect
of the current (Figure 2.5b). That is, in the frame of ref-
erence of O we would like to have vx = 0, which requires
v′

x = −u according to Eq. 2.2. Since the speed relative to
the water is always c,

√
v′2

x + v′2
y = c; thus v′

y =
√

c2 − v′2
x

=
√

c2 − u2, and the round-trip time is

t = 2tacross = 2L√
c2 − u2

= 2L

c

1√
1 − u2/c2

(2.5)

Notice the difference in form between this result and the
result for the upstream-downstream swim, Eq. 2.4.

O

O

O′

u – c

u + c
u

O′ u

(a)

(b)

FIGURE 2.5 Example 2.3. The motion of a swimmer as seen
by observer O at rest on the bank of the stream. Observer O′

moves with the stream at speed u.

2.2 THE MICHELSON-MORLEY EXPERIMENT

We have seen how Newton’s laws remain valid with respect to a Galilean transfor-
mation that relates the description of the motion of an object in one reference frame
to that in another reference frame. It is then interesting to ask whether the same
transformation rules apply to the motion of a light beam. According to the Galilean
transformation, a light beam moving relative to observer O′ in the x′ direction at
speed c = 299,792,458 m/s would have a speed of c + u relative to O. Direct high-
precision measurements of the speed of light beams have become possible in recent
years (as we discuss later in this chapter), but in the 19th century it was necessary
to devise a more indirect measurement of the speed of light according to different
observers in relative motion.

Suppose the swimmer in Example 2.3 is replaced by a light beam. Observer
O′ is in a frame of reference in which the speed of light is c, and the frame of
reference of observer O′ is in motion relative to observer O. What is the speed
of light as measured by observer O? If the Galilean transformation is correct, we
should expect to see a difference between the speed of the light beam according
to O and O′ and therefore a time difference between the upstream-downstream
and cross-stream times, as in Example 2.3.

Albert A. Michelson (1852–1931,
United States). He spent 50 years
doing increasingly precise experi-
ments with light, for which he became
the first U.S. citizen to win the Nobel
Prize in physics (1907).
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Physicists in the 19th century postulated just such a situation—a preferred frame
of reference in which the speed of light has the precise value of c and other frames in
relative motion in which the speed of light would differ, according to the Galilean
transformation. The preferred frame, like that of observer O′ in Example 2.3, is
one that is at rest with respect to the medium in which light propagates at c (like
the water of that example). What is the medium of propagation for light waves? It
was inconceivable to physicists of the 19th century that a wave disturbance could
propagate without a medium (consider mechanical waves such as sound or seismic
waves, for example, which propagate due to mechanical forces in the medium).
They postulated the existence of an invisible, massless medium, called the ether,
whichfilledall space,wasundetectablebyanymechanicalmeans,andexistedsolely
for the propagation of light waves. It seemed reasonable then to obtain evidence
for the ether by measuring the velocity of the Earth moving through the ether. This
could be done in the geometry of Figure 2.5 by measuring the difference between
the upstream-downstream and cross-stream times for a light wave. The calculation
based on Galilean relativity would then give the relative velocity �u between O (in
the Earth’s frame of reference) and the ether.

The first detailed and precise search for the preferred frame was performed
in 1887 by the American physicist Albert A. Michelson and his associate
E. W. Morley. Their apparatus consisted of a specially designed Michelson
interferometer, illustrated in Figure 2.6. A monochromatic beam of light is split
in two; the two beams travel different paths and are then recombined. Any
phase difference between the combining beams causes bright and dark bands or
“fringes” to appear, corresponding, respectively, to constructive and destructive
interference, as shown in Figure 2.7.

S A

B

C

FIGURE 2.6 (Top) Beam diagram of
Michelson interferometer. Light from
source S is split at A by the half-silvered
mirror; one part is reflected by the
mirror at B and the other is reflected
at C. The beams are then recom-
bined for observation of the interfer-
ence. (Bottom) Michelson’s appara-
tus. To improve sensitivity, the beams
were reflected to travel each leg of the
apparatus eight times, rather than just
twice. To reduce vibrations from the
surroundings, the interferometer was
mounted on a 1.5-m square stone slab
floating in a pool of mercury.

There are two contributions to the phase difference between the beams. The
first contribution comes from the path difference AB − AC; one of the beams may
travel a longer distance. The second contribution, which would still be present
even if the path lengths were equal, comes from the time difference between the
upstream-downstream and cross-stream paths (as in Example 2.3) and indicates
the motion of the Earth through the ether. Michelson and Morley used a clever
method to isolate this second contribution—they rotated the entire apparatus by
90◦! The rotation doesn’t change the first contribution to the phase difference
(because the lengths AB and AC don’t change), but the second contribution
changes sign, because what was an upstream-downstream path before the rotation
becomes a cross-stream path after the rotation. As the apparatus is rotated through
90◦, the fringes should change from bright to dark and back again as the phase
difference changes. Each change from bright to dark represents a phase change of
180◦ (a half cycle), which corresponds to a time difference of a half period (about
10−15 s for visible light). Counting the number of fringe changes thus gives a
measure of the time difference between the paths, which in turn gives the relative
velocity u. (See Problem 3.)

When Michelson and Morley performed their experiment, there was no
observable change in the fringe pattern—they deduced a shift of less than 0.01
fringe, corresponding to a speed of the Earth through the ether of at most 5 km/s.
As a last resort, they reasoned that perhaps the orbital motion of the Earth just
happened to cancel out the overall motion through the ether. If this were true,
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six months later (when the Earth would be moving in its orbit in the opposite
direction) the cancellation should not occur. When they repeated the experiment
six months later, they again obtained a null result. In no experiment were
Michelson and Morley able to detect the motion of the Earth through the ether.

FIGURE 2.7 Interference fringes as
observed with the Michelson inter-
ferometer of Figure 2.6. When the path
length ACA changes by one-half wave-
length relative to ABA, all light areas
turn dark and all dark areas turn light.

In summary, we have seen that there is a direct chain of reasoning that leads
from Galileo’s principle of inertia, through Newton’s laws with their implicit
assumptions about space and time, ending with the failure of the Michelson-
Morley experiment to observe the motion of the Earth relative to the ether.
Although several explanations were offered for the unobservability of the ether
and the corresponding failure of the upstream-downstream and cross-stream
velocities to add in the expected way, the most novel, revolutionary, and ultimately
successful explanation is given by Einstein’s special theory of relativity, which
requires a serious readjustment of our traditional concepts of space and time, and
therefore alters some of the very foundations of physics.

2.3 EINSTEIN’S POSTULATES

The special theory of relativity is based on two postulates proposed by Albert
Einstein in 1905:

The principle of relativity: The laws of physics are the same in all inertial
reference frames.
The principle of the constancy of the speed of light: The speed of light in
free space has the same value c in all inertial reference frames.

The first postulate declares that the laws of physics are absolute, universal, and
the same for all inertial observers. Laws that hold for one inertial observer cannot
be violated for any inertial observer.

Albert Einstein (1879–1955, Ger-
many-UnitedStates).Agentlephiloso-
pherandpacifist,hewastheintellectual
leader of two generations of theoretical
physicists and left his imprint on nearly
every field of modern physics.

The second postulate is more difficult to accept because it seems to go against
our “common sense,” which is based on the Galilean kinematics we observe in
everyday experiences. Consider three observers A, B, and C. Observer B is at rest,
while A and C move away from B in opposite directions each at a speed of c/4. B
fires a light beam in the direction of A. According to the Galilean transformation,
if B measures a speed of c for the light beam, then A measures a speed of
c − c/4 = 3c/4, while C measures a speed of c + c/4 = 5c/4. Einstein’s second
postulate, on the other hand, requires all three observers to measure the same
speed of c for the light beam! This postulate immediately explains the failure of
the Michelson-Morley experiment—the upstream-downstream and cross-stream
speeds are identical (both are equal to c), so there is no phase difference between the
two beams.

The two postulates also allow us to dispose of the ether hypothesis. The first
postulate does not permit a preferred frame of reference (all inertial frames are
equivalent), and the second postulate does not permit only a single frame of
reference in which light moves at speed c, because light moves at speed c in all
frames. The ether, as a preferred reference frame in which light has a unique
speed, is therefore unnecessary.
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2.4 CONSEQUENCES OF EINSTEIN’S POSTULATES

Among their many consequences, Einstein’s postulates require a new considera-
tion of the fundamental nature of time and space. In this section we discuss how
the postulates affect measurements of time and length intervals by observers in
different frames of reference.

L0

M

S

FIGURE 2.8 The clock ticks at inter-
vals �t0 determined by the time for
a light flash to travel the distance 2L0

from the light source S to the mirror
M and back to the source where it
is detected. (We assume the emission
and detection occur at the same loca-
tion, so the beam travels perpendicular
to the mirror).

The Relativity of Time
To demonstrate the relativity of time, we use the timing device illustrated in
Figure 2.8. It consists of a flashing light source S that is a distance L0 from a
mirror M . A flash of light from the source is reflected by the mirror, and when
the light returns to S the clock ticks and triggers another flash. The time interval
between ticks is the distance 2L0 (assuming the light travels perpendicular to the
mirror) divided by the speed c:

�t0 = 2L0/c (2.6)

This is the time interval that is measured when the clock is at rest with respect to
the observer.

We consider two observers: O is at rest on the ground, and O′ moves with speed
u. Each observer carries a timing device. Figure 2.9 shows a sequence of events that
O observes for the clock carried by O′. According to O, the flash is emitted when
the clock of O′ is at A, reflected when it is at B, and detected at C. In this interval
�t, O observes the clock to move forward a distance of u�t from the point at which
the flash was emitted, and O concludes that the light beam travels a distance 2L,
where L = √

L2
0 + (u�t/2)2 , as shown in Figure 2.9. Because O observes the light

beam to travel at speed c (as required by Einstein’s second postulate) the time
interval measured by O is

�t = 2L

c
= 2

√
L2

0 + (u�t/2)2

c
(2.7)

Substituting for L0 from Eq. 2.6 and solving Eq. 2.7 for �t, we obtain

�t = �t0√
1 − u2/c2

(2.8)
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FIGURE 2.9 In the frame of reference of O, the clock carried by O′ moves with speed
u. The dashed line, of length 2L, shows the path of the light beam according to O.
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According to Eq. 2.8, observer O measures a longer time interval than O′ measures.
This is a general result of special relativity, which is known as time dilation. An
observer O′ is at rest relative to a device that produces a time interval �t0. For this
observer, the beginning and end of the time interval occur at the same location,
and so the interval �t0 is known as the proper time. An observer O, relative to
whom O′ is in motion, measures a longer time interval �t for the same device.
The dilated time interval �t is always longer than the proper time interval �t0,
no matter what the magnitude or direction of �u.

This is a real effect that applies not only to clocks based on light beams but
also to time itself; all clocks run more slowly according to an observer in relative
motion, biological clocks included. Even the growth, aging, and decay of living
systems are slowed by the time dilation effect. However, note that under normal
circumstances (u 	 c), there is no measurable difference between �t and �t0,
so we don’t notice the effect in our everyday activities. Time dilation has been
verified experimentally with decaying elementary particles as well as with precise
atomic clocks carried aboard aircraft. Some experimental tests are discussed in
the last section of this chapter.

Example 2.4

Muons are elementary particles with a (proper) life-
time of 2.2 μs. They are produced with very high
speeds in the upper atmosphere when cosmic rays (high-
energy particles from space) collide with air molecules.
Take the height L0 of the atmosphere to be 100 km in the
reference frame of the Earth, and find the minimum speed
that enables the muons to survive the journey to the surface
of the Earth.

Solution
The birth and decay of the muon can be considered as the
“ticks” of a clock. In the frame of reference of the Earth
(observer O) this clock is moving, and therefore its ticks are
slowed by the time dilation effect. If the muon is moving at
a speed that is close to c, the time necessary for it to travel
from the top of the atmosphere to the surface of the Earth is

�t = L0

c
= 100 km

3.00 × 108 m/s
= 333 μs

If the muon is to be observed at the surface of the Earth,
it must live for at least 333 μs in the Earth’s frame of
reference. In the muon’s frame of reference, the interval
between its birth and decay is a proper time interval of
2.2 μs. The time intervals are related by Eq. 2.8:

333 μs = 2.2 μs√
1 − u2/c2

Solving, we find

u = 0.999978c

If it were not for the time dilation effect, muons would
not survive to reach the Earth’s surface. The observation
of these muons is a direct verification of the time dilation
effect of special relativity.

The Relativity of Length
For this discussion, the moving timing device of O′ is turned sideways, so that
the light travels parallel to the direction of motion of O′. Figure 2.10 shows the
sequence of events that O observes for the moving clock. According to O, the
length of the clock (distance between the light source and the mirror) is L; as we
shall see, this length is different from the length L0 measured by O′, relative to
whom the clock is at rest.

The flash of light is emitted when the clock of O′ is at A and reaches the mirror
(position B) at time �t1 later. In this time interval, the light travels a distance
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FIGURE 2.10 Here the clock carried by O′ emits its light flash in the direction of
motion.

c �t1, equal to the length L of the clock plus the additional distance u �t1 that the
mirror moves forward in this interval. That is,

c �t1 = L + u �t1 (2.9)

The flash of light travels from the mirror to the detector in a time �t2 and covers
a distance of c �t2, equal to the length L of the clock less the distance u �t2 that
the clock moves forward in this interval:

c �t2 = L − u �t2 (2.10)

Solving Eqs. 2.9 and 2.10 for �t1 and �t2, and adding to find the total time
interval, we obtain

�t = �t1 + �t2 = L

c − u
+ L

c + u
= 2L

c

1

1 − u2/c2
(2.11)

L

L0
L0

L0

L0

L0
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PHYSICS
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FIGURE 2.11 Some length-contracted objects. Notice that the shortening occurs only in the direction of motion.
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From Eq. 2.8,

�t = �t0√
1 − u2/c2

= 2L0

c

1√
1 − u2/c2

(2.12)

Setting Eqs. 2.11 and 2.12 equal to one another and solving, we obtain

L = L0

√
1 − u2/c2 (2.13)

Equation 2.13 summarizes the effect known as length contraction. Observer O′,
who is at rest with respect to the object, measures the rest length L0 (also known
as the proper length, in analogy with the proper time). All observers relative to
whom O′ is in motion measure a shorter length, but only along the direction of
motion; length measurements transverse to the direction of motion are unaffected
(Figure 2.11).

(a)

(b)

FIGURE 2.12 (a) The Earth views the
passing contracted rocket. (b) From
the rocket’s frame of reference, the
Earth appears contracted.

For ordinary speeds (u 	 c), the effects of length contraction are too small to
be observed. For example, a rocket of length 100 m traveling at the escape speed
from Earth (11.2 km/s) would appear to an observer on Earth to contract only by
about two atomic diameters!

Length contraction suggests that objects in motion are measured to have a
shorter length than they do at rest. The objects do not actually shrink; there is
merely a difference in the length measured by different observers. For example,
to observers on Earth a high-speed rocket ship would appear to be contracted
along its direction of motion (Figure 2.12a), but to an observer on the ship it is
the passing Earth that appears to be contracted (Figure 2.12b).

These representations of length-contracted objects are somewhat idealized.
The actual appearance of a rapidly moving object is determined by the time at
which light leaves the various parts of the object and enters the eye or the camera.
The result is that the object appears distorted in shape and slightly rotated.

Example 2.5

Consider the point of view of an observer who is moving
toward the Earth at the same velocity as the muon. In
this reference frame, what is the apparent thickness of the
Earth’s atmosphere?

Solution
In this observer’s reference frame, the muon is at rest and
the Earth is rushing toward it at a speed of u = 0.999978c,
as we found in Example 2.4. To an observer on the Earth,
the height of the atmosphere is its rest length L0 of 100 km.

To the observer in the muon’s rest frame, the moving Earth
has an atmosphere of height given by Eq. 2.13:

L = L0

√
1 − u2/c2

= (100 km)
√

1−(0.999978)2 = 0.66 km=660 m

This distance is small enough for the muons to reach the
Earth’s surface within their lifetime.

Note that what appears as a time dilation in one frame of reference (the observer
on Earth) can be regarded as a length contraction in another frame of reference
(the observer traveling with the muon). For another example of this effect, let’s
review again the example of the pion decay discussed in Section 1.2. A pion at
rest has a lifetime of 26.0 ns. According to observer O1 at rest in the laboratory
frame of reference, a pion moving through the laboratory at a speed of 0.913c
has a longer lifetime, which can be calculated to be 63.7 ns (using Eq. 2.8 for the
time dilation). According to observer O2, who is traveling through the laboratory
at the same velocity as the pion, the pion appears to be at rest and has its proper
lifetime of 26.0 ns. Thus O1 sees a time dilation effect.
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O1 erects two markers in the laboratory, at the locations where the pion is
created and decays. To O1, the distance between those markers is the pion’s speed
times its lifetime, which works out to be 17.4 m. Suppose O1 places a stick of
length 17.4 m in the laboratory connecting the two markers. That stick is at rest
in the laboratory reference frame and so has its proper length in that frame. In
the reference frame of O2, the stick is moving at a speed of 0.913c and has a
shorter length of 7.1 m, which we can find using the length contraction formula
(Eq. 2.13). So O2 measures a distance of 7.1 m between the locations in the
laboratory where the pion was created and where it decayed.

Note that O1 measures the proper length and the dilated time, while O2
measures the proper time and the contracted length. The proper time and proper
length must always be referred to specific observers, who might not be in the same
reference frame. The proper time is always measured by an observer according to
whom the beginning of the time interval and the end of the time interval occur at
the same location. If the time interval is the lifetime of the pion, then O2 (relative
to whom the pion does not move) sees its creation and decay at the same location
and thus measures the proper time interval. The proper length, on the other hand,
is always measured by an observer according to whom the measuring stick is at
rest (O1 in this case).

Example 2.6

An observer O is standing on a platform of length
D0 = 65 m on a space station. A rocket passes at a relative
speed of 0.80c moving parallel to the edge of the platform.
The observer O notes that the front and back of the rocket
simultaneously line up with the ends of the platform at a
particular instant (Figure 2.13a). (a) According to O, what

0.8c

65 m

108 m

39 m

0.8c
O′

O′

O

O

(a)

(b)

0.8c
O′

O

(c)

FIGURE 2.13 Example 2.6. (a) From the reference frame of O
at rest on the platform, the passing rocket lines up simultane-
ously with the front and back of the platform. (b, c) From the
reference frame O′ in the rocket, the passing platform lines up
first with the front of the rocket and later with the rear. Note
the differing effects of length contraction in the two reference
frames.

is the time necessary for the rocket to pass a particular
point on the platform? (b) What is the rest length L0 of the
rocket? (c) According to an observer O′ on the rocket, what
is the length D of the platform? (d) According to O′, how
long does it take for observer O to pass the entire length
of the rocket? (e) According to O, the ends of the rocket
simultaneously line up with the ends of the platform. Are
these events simultaneous to O′?

Solution
(a) According to O, the length L of the rocket matches the
length D0 of the platform. The time for the rocket to pass a
particular point is measured by O to be

�t0 = L

0.80c
= 65 m

2.40 × 108 m/s
= 0.27 μs

This is a proper time interval, because O measures the
interval between two events that occur at the same point in
the frame of reference of O (the front of the rocket passes
a point, and then the back of the rocket passes the same
point).

(b) O measures the contracted length L of the rocket. We
can find its proper length L0 using Eq. 2.13:

L0 = L√
1 − u2/c2

= 65 m√
1 − (0.80)2

= 108 m

(c) According to O the platform is at rest, so 65 m is its
proper length D0. According to O′, the contracted length of
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the platform is therefore

D = D0

√
1 − u2/c2 = (65 m)

√
1 − (0.80)2 = 39 m

(d) For O to pass the entire length of the rocket, O′ con-
cludes that O must move a distance equal to its rest length,
or 108 m. The time needed to do this is

�t′ = 108 m

0.80c
= 0.45 μs

Note that this is not a proper time interval for O′, who deter-
mines this time interval using one clock at the front of the
rocket to measure the time at which O passes the front of the
rocket, and another clock on the rear of the rocket to mea-
sure the time at which O passes the rear of the rocket. The
two events therefore occur at different points in O′ and so
cannot be separated by a proper time in O′. The correspond-
ing time interval measured by O for the same two events,
which we calculated in part (a), is a proper time interval for
O, because the two events do occur at the same point in O.

The time intervals measured by O and O′ should be related
by the time dilation formula, as you should verify.

(e) According to O′, the rocket has a rest length of L0 =
108 m and the platform has a contracted length of D = 39 m.
There is thus no way that O′ could observe the two ends
of both to align simultaneously. The sequence of events
according to O′ is illustrated in Figures 2.13b and c. The time
interval �t′ in O′ between the two events that are simulta-
neous in O can be calculated by noting that, according to O′,
the time interval between the situations shown in Figures
2.13b and c must be that necessary for the platform to move
a distance of 108 m − 39 m = 69 m, which takes a time

�t′ = 69 m

0.80c
= 0.29 μs

This result illustrates the relativity of simultaneity: two
events at different locations that are simultaneous to O (the
lining up of the two ends of the rocket with the two ends of
the platform) cannot be simultaneous to O′.

Particle

Light

P

D

F

L0

v′�

FIGURE 2.14 In this timing device,
a particle is emitted by P at a speed
v′. When the particle reaches F, it
triggers the emission of a flash of light
that travels to the detector D.

Relativistic Velocity Addition
The timing device is now modified as shown in Figure 2.14. A source P emits
particles that travel at speed v′ according to an observer O′ at rest with respect
to the device. The flashing bulb F is triggered to flash when a particle reaches it.
The flash of light makes the return trip to the detector D, and the clock ticks. The
time interval �t0 between ticks measured by O′ is composed of two parts: one for
the particle to travel the distance L0 at speed v′ and another for the light to travel
the same distance at speed c:

�t0 = L0/v′ + L0/c (2.14)

According to observer O, relative to whom O′ moves at speed u, the sequence of
events is similar to that shown in Figure 2.10. The emitted particle, which travels
at speed v according to O, reaches F in a time interval �t1 after traveling the
distance v �t1 equal to the (contracted) length L plus the additional distance u �t1
moved by the clock in that interval:

v �t1 = L + u �t1 (2.15)

In the interval �t2, the light beam travels a distance c �t2 equal to the length L
less the distance u �t2 moved by the clock in that interval:

c �t2 = L − u �t2 (2.16)

We now solve Eqs. 2.15 and 2.16 for �t1 and �t2, add to find the total interval
�t between ticks according to O, use the time dilation formula, Eq. 2.8, to relate
this result to �t0 from Eq. 2.14, and finally use the length contraction formula,
Eq. 2.13, to relate L to L0. After doing the algebra, we find the result

v = v′ + u

1 + v′u/c2
(2.17)
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Equation 2.17 is the relativistic velocity addition law for velocity components
that are in the direction of u. Later in this chapter we use a different method to
derive the corresponding results for motion in other directions.

We can also regard Eq. 2.17 as a velocity transformation, enabling us to convert
a velocity v′ measured by O′ to a velocity v measured by O. The corresponding
classical law was given by Eq. 2.2: v = v′ + u. The difference between the
classical and relativistic results is the denominator of Eq. 2.17, which reduces to
1 in cases when the speeds are small compared with c. Example 2.7 shows how
this factor prevents the measured speeds from exceeding c.

Equation 2.17 gives an important result when O′ observes a light beam.
For v′ = c,

v = c + u

1 + cu/c2
= c (2.18)

That is, when v′ = c, then v = c, independent of the value of u. All observers
measure the same speed c for light, exactly as required by Einstein’s second
postulate.

Example 2.7

A spaceship moving away from the Earth at a speed of
0.80c fires a missile parallel to its direction of motion
(Figure 2.15). The missile moves at a speed of 0.60c rela-
tive to the ship. What is the speed of the missile as measured
by an observer on the Earth?

O′
ν ′ = 0.60c

u = 0.80c
O

FIGURE 2.15 Example 2.7. A spaceship moves away from
Earth at a speed of 0.80c. An observer O′ on the spaceship
fires a missile and measures its speed to be 0.60c relative to
the ship.

Solution
Here O′ is on the ship and O is on Earth; O′ moves with
a speed of u = 0.80c relative to O. The missile moves at

speed v′ = 0.60c relative to O′, and we seek its speed v
relative to O. Using Eq. 2.17, we obtain

v = v′ + u

1 + v′u/c2
= 0.60c + 0.80c

1 + (0.60c)(0.80c)/c2

= 1.40c

1.48
= 0.95c

According to classical kinematics (the numerator of
Eq. 2.17), an observer on the Earth would see the mis-
sile moving at 0.60c + 0.80c = 1.40c, thereby exceeding
the maximum relative speed of c permitted by relativ-
ity. You can see how Eq. 2.17 brings about this speed
limit. Even if v′ were 0.9999 . . . c and u were 0.9999 . . . c,
the relative speed v measured by O would remain less
than c.

The Relativistic Doppler Effect
In the classical Doppler effect for sound waves, an observer moving relative to
a source of waves (sound, for example) detects a frequency different from that
emitted by the source. The frequency f ′ heard by the observer O is related to the
frequency f emitted by the source S according to

f ′ = f
v ± vO

v ∓ vS
(2.19)

where v is the speed of the waves in the medium (such as still air, in the case of
sound waves), vS is the speed of the source relative to the medium, and vO is the
speed of the observer relative to the medium. The upper signs in the numerator



2.4 | Consequences of Einstein’s Postulates 39

and denominator are chosen whenever S moves toward O or O moves toward S,
while the lower signs apply whenever O and S move away from one another.

The classical Doppler shift for motion of the source differs from that for
motion of the observer. For example, suppose the source emits sound waves at
f = 1000 Hz. If the source moves at 30 m/s toward the observer who is at rest
in the medium (which we take to be air, in which sound moves at v = 340 m/s),
then f ′ = 1097 Hz, while if the source is at rest in the medium and the observer
moves toward the source at 30 m/s, the frequency is 1088 Hz. Other possibilities
in which the relative speed between S and O is 30 m/s, such as each moving
toward the other at 15 m/s, give still different frequencies.

Here we have a situation in which it is not the relative speed of the source and
observer that determines the Doppler shift—it is the speed of each with respect
to the medium. This cannot occur for light waves, since there is no medium
(no “ether”) and no preferred reference frame by Einstein’s first postulate. We
therefore require a different approach to the Doppler effect for light waves, an
approach that does not distinguish between source motion and observer motion,
but involves only the relative motion between the source and the observer.

Consider a source of waves that is at rest in the reference frame of observer
O. Observer O′ moves relative to the source at speed u. We consider the situation
from the frame of reference of O′, as shown in Figure 2.16. Suppose O observes
the source to emit N waves at frequency f . According to O, it takes an interval
�t0 = N/f for these N waves to be emitted; this is a proper time interval in the
frame of reference of O. The corresponding time interval to O′ is �t′, during
which O moves a distance u �t′. The wavelength according to O′ is the total
length interval occupied by these waves divided by the number of waves:

λ′ = c �t′ + u �t′

N
= c �t′ + u �t′

f �t0
(2.20)

The frequency according to O′ is f ′ = c/λ′, so

f ′ = f
�t0
�t′

1

1 + u/c
(2.21)

and using the time dilation formula, Eq. 2.8, to relate �t′ and �t0, we obtain

f ′ = f

√
1 − u2/c2

1 + u/c
= f

√
1 − u/c

1 + u/c
(2.22)

This is the formula for the relativistic Doppler shift, for the case in which the
waves are observed in a direction parallel to �u. Note that, unlike the classical
formula, it does not distinguish between source motion and observer motion; the

N waves

O′OO

u Δt′ c Δt′

–u�

FIGURE 2.16 A source of waves, in the reference frame of O, moves
at speed u away from observer O′. In the time �t′ (according to O′), O
moves a distance u �t′ and emits N waves.
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relativistic Doppler effect depends only on the relative speed u between the source
and observer.

Equation 2.22 assumes that the source and observer are separating. If the
source and observer are approaching one another, replace u by −u in the formula.

Example 2.8

A distant galaxy is moving away from the Earth at such
high speed that the blue hydrogen line at a wavelength
of 434 nm is recorded at 600 nm, in the red range of the
spectrum. What is the speed of the galaxy relative to the
Earth?

Solution
Using Eq. 2.22 with f = c/λ and f ′ = c/λ′, we obtain

c

λ′ = c

λ

√
1 − u/c

1 + u/c

c

600 nm
= c

434 nm

√
1 − u/c

1 + u/c

Solving, we find

u/c = 0.31

Thus the galaxy is moving away from Earth at a speed
of 0.31c = 9.4 × 107m/s. Evidence obtained in this way
indicates that nearly all the galaxies we observe are moving
away from us. This suggests that the universe is expanding,
and is usually taken to provide evidence in favor of the Big
Bang theory of cosmology (see Chapter 15).

2.5 THE LORENTZ TRANSFORMATION

We have seen that the Galilean transformation of coordinates, time, and velocity
is not consistent with Einstein’s postulates. Although the Galilean transformation
agrees with our “common-sense” experience at low speeds, it does not agree with
experiment at high speeds. We therefore need a new set of transformation equations
that replaces the Galilean set and that is capable of predicting such relativistic effects
as time dilation, length contraction, velocity addition, and the Doppler shift.

As before, we seek a transformation that enables observers O and O′ in
relative motion to compare their measurements of the space and time coordinates
of the same event. The transformation equations relate the measurements of O
(namely, x, y, z, t) to those of O′ (namely, x′, y′, z′, t′). This new transformation
must have several properties: It must be linear (depending only on the first power
of the space and time coordinates), which follows from the homogeneity of space
and time; it must be consistent with Einstein’s postulates; and it must reduce to the
Galilean transformation when the relative speed between O and O′ is small. We
again assume that the velocity of O′ relative to O is in the positive xx′ direction.

This new transformation consistent with special relativity is called the Lorentz
transformation∗. Its equations are

x′ = x − ut√
1 − u2/c2

(2.23a)

y′ = y (2.23b)

∗H. A. Lorentz (1853–1928) was a Dutch physicist who shared the 1902 Nobel Prize for his work
on the influence of magnetic fields on light. In an unsuccessful attempt to explain the failure of the
Michelson-Morley experiment, Lorentz developed the transformation equations that are named for
him in 1904, a year before Einstein published his special theory of relativity. For a derivation of the
Lorentz transformation, see R. Resnick and D. Halliday, Basic Concepts in Relativity (New York,
Macmillan, 1992).
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z′ = z (2.23c)

t′ = t − (u/c2)x√
1 − u2/c2

(2.23d)

It is often useful to write these equations in terms of intervals of space and time
by replacing each coordinate by the corresponding interval (replace x by �x, x′
by �x′, t by �t, t′ by �t′).

These equations are written assuming that O′ moves away from O in the xx′
direction. If O′ moves toward O, replace u with −u in the equations.

The first three equations reduce directly to the Galilean transformation for
space coordinates, Eqs. 2.1, when u 	 c. The fourth equation, which links the
time coordinates, reduces to t′ = t, which is a fundamental postulate of the
Galilean-Newtonian world.

We now use the Lorentz transformation equations to derive some of the
predictions of special relativity. The problems at the end of the chapter guide you
in some other derivations. The results derived here are identical with those we
obtained previously using Einstein’s postulates, which shows that the equations of
the Lorentz transformation are consistent with the postulates of special relativity.

Length Contraction
A rod of length L0 is at rest in the reference frame of observer O′. The rod extends
along the x′ axis from x′

1 to x′
2; that is, O′ measures the proper length L0 = x′

2 − x′
1.

Observer O, relative to whom the rod is in motion, measures the ends of the rod
to be at coordinates x1 and x2. For O to determine the length of the moving rod,
O must make a simultaneous determination of x1 and x2, and then the length is
L = x2 − x1. Suppose the first event is O′ setting off a flash bulb at one end of the
rod at x′

1 and t′1, which O observes at x1 and t1, and the second event is O′ setting
off a flash bulb at the other end at x′

2 and t′2, which O observes at x2 and t2. The
equations of the Lorentz transformation relate these coordinates, specifically,

x′
1 = x1 − ut1√

1 − u2/c2
x′

2 = x2 − ut2√
1 − u2/c2

(2.24)

Subtracting these equations, we obtain

x′
2 − x′

1 = x2 − x1√
1 − u2/c2

− u(t2 − t1)√
1 − u2/c2

(2.25)

O′ must arrange to set off the flash bulbs so that the flashes appear to be
simultaneous to O. (They will not be simultaneous to O′, as we discuss later in this
section.) This enables O to make a simultaneous determination of the coordinates
of the endpoints of the rod. If O observes the flashes to be simultaneous, then
t2 = t1, and Eq. 2.25 reduces to

x′
2 − x′

1 = x2 − x1√
1 − u2/c2

(2.26)

With x′
2 − x′

1 = L0 and x2 − x1 = L, this becomes

L = L0

√
1 − u2/c2 (2.27)

which is identical with Eq. 2.13, which we derived earlier using Einstein’s
postulates.
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Velocity Transformation
If O observes a particle to travel with velocity v (components vx, vy, vz), what
velocity v′ does O′ observe for the particle? The relationship between the velocities
measured by O and O′ is given by the Lorentz velocity transformation:

v′
x = vx − u

1 − vxu/c2
(2.28a)

v′
y = vy

√
1 − u2/c2

1 − vxu/c2
(2.28b)

v′
z = vz

√
1 − u2/c2

1 − vxu/c2
(2.28c)

By solving Eq. 2.28a for vx, you can show that it is identical to Eq. 2.17, a result
we derived previously based on Einstein’s postulates. Note that, in the limit of
low speeds (u 	 c), the Lorentz velocity transformation reduces to the Galilean
velocity transformation, Eq. 2.2. Note also that v′

y �= vy, even though y′ = y. This
occurs because of the way the Lorentz transformation handles the time coordinate.

We can derive these transformation equations for velocity from the Lorentz
coordinate transformation. By way of example, we derive the velocity trans-
formation for v′

y = dy′/dt′. Differentiating the coordinate transformation y′ = y,
we obtain dy′ = dy. Similarly, differentiating the time coordinate transformation
(Eq. 2.23d), we obtain

dt′ = dt − (u/c2)dx√
1 − u2/c2

So

v′
y = dy′

dt′
= dy

[dt − (u/c2) dx]/
√

1 − u2/c2
=

√
1 − u2/c2

dy

dt − (u/c2) dx

=
√

1 − u2/c2
dy/dt

1 − (u/c2) dx/dt
= vy

√
1 − u2/c2

1 − uvx/c2

Similar methods can be used to obtain the transformation equations for v′
x and

v′
z. These derivations are left as exercises (Problem 14).

Clock 1

x = 0 x = L /2 x = L

Clock 2

O

O′

FIGURE 2.17 A flash of light, emitted
from a point midway between the two
clocks, starts the two clocks simulta-
neously according to O. Observer O′

sees clock 2 start ahead of clock 1.

Simultaneity and Clock Synchronization
Under ordinary circumstances, synchronizing one clock with another is a simple
matter. But for scientific work, where timekeeping at a precision below the
nanosecond range is routine, clock synchronization can present some significant
challenges. At very least, we need to correct for the time that it takes for the signal
showing the reading on one clock to be transmitted to the other clock. However,
for observers who are in motion with respect to each other, special relativity gives
yet another way that clocks may appear to be out of synchronization.

Consider the device shown in Figure 2.17. Two clocks are located at x = 0 and
x = L. A flash lamp is located at x = L/2, and the clocks are set running when they
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receive the flash of light from the lamp. The light takes the same interval of time
to reach the two clocks, so the clocks start together precisely at a time L/2c after
the flash is emitted, and the clocks are exactly synchronized.

Now let us examine the same situation from the point of view of the moving
observer O′. In the frame of reference of O, two events occur: the receipt of a
light signal by clock 1 at x1 = 0, t1 = L/2c and the receipt of a light signal by
clock 2 at x2 = L, t2 = L/2c. Using Eq. 2.23d, we find that O′ observes clock 1 to
receive its signal at

t′1 = t1 − (u/c2)x1√
1 − u2/c2

= L/2c√
1 − u2/c2

(2.29)

while clock 2 receives its signal at

t′2 = t2 − (u/c2)x2√
1 − u2/c2

= L/2c − (u/c2)L√
1 − u2/c2

(2.30)

Thus t′2 is smaller than t′1 and clock 2 appears to receive its signal earlier than
clock 1, so that the clocks start at times that differ by

�t′ = t′1 − t′2 = uL/c2√
1 − u2/c2

(2.31)

according to O′. Keep in mind that this is not a time dilation effect—time
dilation comes from the first term of the Lorentz transformation (Eq. 2.23d) for t′,
while the lack of synchronization arises from the second term. O′ observes both
clocks to run slow, due to time dilation; O′ also observes clock 2 to be ahead of
clock 1.

We therefore reach the following conclusion: two events that are simultaneous
in one reference frame are not simultaneous in another reference frame moving
with respect to the first, unless the two events occur at the same point in space.
(If L = 0, Eq. 2.31 shows that the clocks are synchronized in all reference
frames.) Clocks that appear to be synchronized in one frame of reference will not
necessarily be synchronized in another frame of reference in relative motion.

It is important to note that this clock synchronization effect does not depend
on the location of observer O′ but only on the velocity of O′. In Figure 2.17, the
location of O′ could have been drawn far to the left side of clock 1 or far to the
right side of clock 2, and the result would be the same. In those different locations,
the propagation time of the light signal showing clock 1 starting will differ from
the propagation time of the light signal showing clock 2 starting. However, O′
is assumed to be an “intelligent” observer who is aware of the locations where
the light signals showing the two clocks starting are received relative to the
locations of the clocks. O′ corrects for this time difference, which is due only to
the propagation time of the light signals, and even after making that correction
the clocks still do not appear to be synchronized!

Although the location of O′ does not appear in Eq. 2.31, the direction of
the velocity of O′ is important—if O′ is moving in the opposite direction, the
observed starting order of the two clocks is reversed.



44 Chapter 2 | The Special Theory of Relativity

Example 2.9

Two rockets are leaving their space station along perpen-
dicular paths, as measured by an observer on the space
station. Rocket 1 moves at 0.60c and rocket 2 moves at
0.80c, both measured relative to the space station. What is
the velocity of rocket 2 as observed by rocket 1?

Solution
Observer O is the space station, observer O′ is rocket 1
(moving at u = 0.60c), and each observes rocket 2, moving
(according to O) in a direction perpendicular to rocket 1.
We take this to be the y direction of the reference frame of
O. Thus O observes rocket 2 to have velocity components
vx = 0, vy = 0.80c, as shown in Figure 2.18a.

We can find v′
x and v′

y using the Lorentz velocity trans-
formation:

v′
x = vx − u

1 − vxu/c2
= 0 − 0.60c

1 − 0(0.60c)/c2
= −0.60c

v′
y = vy

√
1 − u2/c2

1 − vxu/c2

= 0.80c
√

1 − (0.60c)2/c2

1 − 0(0.60c)/c2
= 0.64c

Thus, according to O′, the situation looks like Figure 2.18b.
The speed of rocket 2 according to O′ is√

(0.60c)2 + (0.64c)2 = 0.88c, less than c. According to

the Galilean transformation, v′
y would be identical with vy,

and thus the speed would be
√

(0.60c)2 + (0.80c)2 = c.
Once again, the Lorentz transformation prevents relative
speeds from reaching or exceeding the speed of light.

(a)

(b)

u = –0.60c

Rocket 2
v′x = –0.60c
v′y = 0.64c

Rocket 1

O O ′

u = 0.60c

Rocket 2

Rocket 1

O

vx = 0
vy = 0.80c

O ′

FIGURE 2.18 Example 2.9. (a) As viewed from the reference
frame of O. (b) As viewed from the reference frame of O′.

Example 2.10

In Example 2.6, two events that were simultaneous to O
(the lining up of the front and back of the rocket ship with
the ends of the platform) were not simultaneous to O′. Find
the time interval between these events according to O′.

Solution
According to O, the two simultaneous events are separated
by a distance of L = 65 m. For u = 0.80c, Eq. 2.31 gives

�t′ = uL/c2√
1 − u2/c2

= (0.80)(65 m)/(3.00 × 108 m/s)√
1 − (0.80)2

= 0.29 μs

which agrees with the result calculated in part (e) of
Example 2.6.

2.6 THE TWIN PARADOX

We now turn briefly to what has become known as the twin paradox. Suppose there
is a pair of twins on Earth. One, whom we shall call Casper, remains on Earth, while
his twin sister Amelia sets off in a rocket ship on a trip to a distant planet. Casper,
based on his understanding of special relativity, knows that his sister’s clocks will
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run slow relative to his own and that therefore she should be younger than he when
she returns, as our discussion of time dilation would suggest. However, recalling
that discussion, we know that for two observers in relative motion, each thinks the
other’s clocks are running slow. We could therefore study this problem from the
point of view of Amelia, according to whom Casper and the Earth (accompanied
by the solar system and galaxy) make a round-trip journey away from her and
back again. Under such circumstances, she will think it is her brother’s clocks
(which are now in motion relative to her own) that are running slow, and will
therefore expect her brother to be younger than she when they meet again. While
it is possible to disagree over whose clocks are running slow relative to his or her
own, which is merely a problem of frames of reference, when Amelia returns to
Earth (or when the Earth returns to Amelia), all observers must agree as to which
twin has aged less rapidly. This is the paradox—each twin expects the other to be
younger.

The resolution of this paradox lies in considering the asymmetric role of the
two twins. The laws of special relativity apply only to inertial frames, those
moving relative to one another at constant velocity. We may supply Amelia’s
rockets with sufficient thrust so that they accelerate for a very short length of time,
bringing the ship to a speed at which it can coast to the planet, and thus during
her outward journey Amelia spends all but a negligible amount of time in a frame
of reference moving at constant speed relative to Casper. However, in order to
return to Earth, she must decelerate and reverse her motion. Although this also
may be done in a very short time interval, Amelia’s return journey occurs in a
completely different inertial frame than her outward journey. It is Amelia’s jump
from one inertial frame to another that causes the asymmetry in the ages of the
twins. Only Amelia has the necessity of jumping to a new inertial frame to return,
and therefore all observers will agree that it is Amelia who is “really” in motion,
and that it is her clocks that are “really” running slow; therefore she is indeed the
younger twin on her return.

Let us make this discussion more quantitative with a numerical example. We
assume, as discussed above, that the acceleration and deceleration take negligible
time intervals, so that all of Amelia’s aging is done during the coasting. For
simplicity, we assume the distant planet is at rest relative to the Earth; this does
not change the problem, but it avoids the need to introduce yet another frame of
reference. Suppose the planet to be 6 light-years distant from Earth, and suppose
Amelia travels at a speed of 0.6c. Then according to Casper it takes his sister
10 years (10 years ×0.6c = 6 light-years) to reach the planet and 10 years to
return, and therefore she is gone for a total of 20 years. (However, Casper doesn’t
know his sister has reached the planet until the light signal carrying news of her
arrival reaches Earth. Since light takes 6 years to make the journey, it is 16 years
after her departure when Casper sees his sister’s arrival at the planet. Four years
later she returns to Earth.) From the frame of reference of Amelia aboard the
rocket, the distance to the planet is contracted by a factor of

√
1 − (0.6)2 = 0.8,

and is therefore 0.8 × 6 light-years = 4.8 light-years. At a speed of 0.6c, Amelia
will measure 8 years for the trip to the planet, for a total round trip time of 16 years.
Thus Casper ages 20 years while Amelia ages only 16 years and is indeed the
younger on her return.

We can confirm this analysis by having Casper send a light signal to his sister
each year on his birthday. We know that the frequency of the signal as received
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by Amelia will be Doppler shifted. During the outward journey, she will receive
signals at the rate of

(1/year)

√
1 − u/c

1 + u/c
= 0.5/year

During the return journey, the Doppler-shifted rate will be

(1/year)

√
1 + u/c

1 − u/c
= 2/year

Thus for the first 8 years, during Amelia’s trip to the planet, she receives 4 signals,
and during the return trip of 8 years, she receives 16 signals, for a total of 20. She
receives 20 signals, indicating her brother has celebrated 20 birthdays during her
16-year journey.

Particle at rest
Light
beam

Distance

Ti
m

e

45°

v<c

FIGURE 2.19 A spacetime diagram.

Spacetime Diagrams
A particularly helpful way of visualizing the journeys of Casper and Amelia uses
a spacetime diagram. Figure 2.19 shows an example of a spacetime diagram for
motion that involves only one spatial direction.

In your introductory physics course, you probably became familiar with
plotting motion on a graph in which distance appeared on the vertical axis and
time on the horizontal axis. On such a graph, a straight line represents motion
at constant velocity; the slope of the line is equal to the velocity. Note that the
axes of the spacetime diagram are switched from the traditional graph of particle
motion, with time on the vertical axis and space on the horizontal axis.

On a spacetime diagram, the graph that represents the motion of a particle is
called its worldline. The inverse of the slope of the particle’s worldline gives its
velocity. Equivalently, the velocity is given by the tangent of the angle that the
worldline makes with the vertical axis (rather than with the horizontal axis, as
would be the case with a conventional plot of distance vs. time). Usually, the units
of x and t are chosen so that motion at the speed of light is represented by a line
with a 45◦ slope. A vertical line represents a particle that is at the same spatial
locations at all times—that is, a particle at rest. Permitted motions with constant
velocity are then represented by straight lines between the vertical and the 45◦

line representing the maximum velocity.
Let’s draw the worldlines of Casper and Amelia according to Casper’s frame

of reference. Casper’s worldline is a vertical line, because he is at rest in this frame
(Figure 2.20). In Casper’s frame of reference, 20 years pass between Amelia’s
departure and her return, so we can follow Casper’s vertical worldline for
20 years.

15

20
Casper’s
worldline

Amelia’s
worldline

Light
signals

Distance (light-years)

5

5
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m

e 
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)

10
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FIGURE 2.20 Casper’s spacetime di-
agram, showing his worldline and
Amelia’s.

Amelia is traveling at a speed of 0.6c, so her worldline makes an angle with
the vertical whose tangent is 0.6 (31◦

). In Casper’s frame of reference, the planet
visited by Amelia is 6 light-years from Earth. Amelia travels a distance of 6
light-years in a time of 10 years (according to Casper) so that v = 6 light-years/10
years = 0.6c.

The birthday signals that Casper sends to Amelia at the speed of light are
represented by the series of 45◦ lines in Figure 2.20. Amelia receives 4 birthday
signals during her outbound journey (the 4th arrives just as she reaches the planet)
and 16 birthday signals during her return journey (the 16th is sent and received
just as she returns to Earth).
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It is left as an exercise (Problems 22 and 24) to consider the situation if it is
Amelia who is sending the signals.

2.7 RELATIVISTIC DYNAMICS

We have seen how Einstein’s postulates have led to a new “relative” interpretation
of such previously absolute concepts as length and time, and that the classical
concept of absolute velocity is not valid. It is reasonable then to ask how far this
revolution is to go in changing our interpretation of physical concepts. Dynamical
quantities, such as momentum and kinetic energy, depend on length, time, and
velocity. Do classical laws of momentum and energy conservation remain valid
in Einstein’s relativity?

Let’s test the conservation laws by examining the collision shown in
Figure 2.21a. Two particles collide elastically as observed in the reference
frame of O′. Particle 1 of mass m1 = 2m is initially at rest, and particle 2 of
mass m2 = m is moving in the negative x direction with an initial velocity of
v′

2i = −0.750c. Using the classical law of momentum conservation to analyze
this collision, O′ would calculate the particles to be moving with final velocities
v′

1f = −0.500c and v′
2f = +0.250c. According to O′, the total initial and final

momenta of the particles would be:

p′
i = m1v′

1i + m2v′
2i = (2m)(0) + (m)(−0.750c) = −0.750mc

p′
f = m1v′

1f + m2v′
2f = (2m)(−0.500c) + (m)(0.250c) = −0.750mc

The initial and final momenta are equal according to O′, demonstrating that
momentum is conserved.

Suppose that the reference frame of O′ moves at a velocity of u = +0.550c in
the x direction relative to observer O, as in Figure 2.21b. How would observer
O analyze this collision? We can find the initial and final velocities of the two
particles according to O using the velocity transformation of Eq. 2.17, which gives

Initial Initial

Final Final

2m

2m

m

m

(a)

y′

x′

v′2i = −0.750c v2i = −0.340cv1i = 0.550c

u = 0.550c

v′2f v2fv1fv′1f

2m m

2m m

(b)

y

x

FIGURE 2.21 (a) A collision between two particles as observed from the reference frame of O′.
(b) The same collision observed from the reference frame of O.
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the initial velocities shown in the figure and the final velocities v1f = +0.069c
and v2f = +0.703c. Observer O can now calculate the initial and final values of
the total momentum of the two particles:

pi = m1v1i + m2v2i = (2m)(+0.550c) + (m)(−0.340c) = +0.760mc

pf = m1v1f + m2v2f = (2m)(+0.069c) + (m)(+0.703c) = +0.841mc

Momentum is therefore not conserved according to observer O.
This collision experiment has shown that that the law of conservation of linear

momentum, with momentum defined as �p = m�v, does not satisfy Einstein’s first
postulate (the law must be the same in all inertial frames). We cannot have a
law that is valid for some observers but not for others. Therefore, if we are to
retain the conservation of momentum as a general law consistent with Einstein’s
first postulate, we must find a new definition of momentum. This new definition
of momentum must have two properties: (1) It must yield a law of conservation
of momentum that satisfies the principle of relativity; that is, if momentum is
conserved according to an observer in one inertial frame, then it is conserved
according to observers in all inertial frames. (2) At low speeds, the new definition
must reduce to �p = m�v, which we know works perfectly well in the nonrelativistic
case.

These requirements are satisfied by defining the relativistic momentum for a
particle of mass m moving with velocity �v as

�p = m�v√
1 − v2/c2

(2.32)

In terms of components, we can write Eq. 2.32 as

px = mvx√
1 − v2/c2

and py = mvy√
1 − v2/c2

(2.33)

The velocity v that appears in the denominator of these expressions is always the
velocity of the particle as measured in a particular inertial frame. It is not the
velocity of an inertial frame. The velocity in the numerator can be any of the
components of the velocity vector.

We can now reanalyze the collision shown in Figure 2.21 using the relativistic
definition of momentum. The initial relativistic momentum according to O′ is

p′
i = m1v′

1i√
1 − v′2

1i/c2
+ m2v′

2i√
1 − v′2

2i/c2
= (2m)(0)√

1 − 02
+ (m)(−0.750c)√

1 − (0.750)2
= −1.134mc

The final velocities according to O′ are v′
1f = −0.585c and v′

2f = +0.294c, and
the total final momentum is

p′
f = m1v′

1f√
1 − v′2

1f/c2
+ m2v′

2f√
1 − v′2

2f/c2

= (2m)(−0.585c)√
1 − (0.585)2

+ (m)(0.294c)√
1 − (0.294)2

=−1.134mc



2.7 | Relativistic Dynamics 49

Thus p′
i = p′

f , and observer O′ concludes that momentum is conserved. According
to O, the initial relativistic momentum is

pi =
m1v1i√

1 − v2
1i/c2

+ m2v2i√
1 − v2

2i/c2
= (2m)(+0.550c)√

1 − (0.550)2
+ (m)(−0.340c)√

1 − (0.340)2
=0.956mc

Using the velocity transformation, the final velocities measured by O are v1f =
−0.051c and v2f = +0.727c, and so O calculates the final momentum to be

pf = m1v1f√
1 − v2

1f/c2
+ m2v2f√

1 − v2
2f/c2

= (2m)(−0.051c)√
1 − (0.051)2

+ (m)(+0.727c)√
1 − (0.727)2

=0.956mc

Observer O also concludes that pi = pf and that the law of conservation of
momentum is valid. Defining momentum according to Eq. 2.32 gives conservation
of momentum in all reference frames, as required by the principle of relativity.

Example 2.11

What is the momentum of a proton moving at a speed of
v = 0.86c?

Solution
Using Eq. 2.32, we obtain

p = mv√
1 − v2/c2

= (1.67 × 10−27 kg)(0.86)(3.00 × 108 m/s)√
1 − (0.86)2

= 8.44 × 10−19 kg · m/s

The units of kg · m/s are generally not convenient in solv-
ing problems of this type. Instead, we manipulate Eq. 2.32
to obtain

pc = mvc√
1 − v2/c2

= mc2(v/c)√
1 − v2/c2

= (938 MeV)(0.86)√
1 − (0.86)2

= 1580 MeV

Here we have used the proton’s rest energy mc2, which
is defined later in this section. The momentum is obtained
from this result by dividing by the symbol c (not its
numerical value), which gives

p = 1580 MeV/c

The units of MeV/c for momentum are often used in rela-
tivistic calculations because, as we show later, the quantity
pc often appears in these calculations. You should be able
to convert MeV/c to kg · m/s and show that the two results
obtained for p are equivalent.

Relativistic Kinetic Energy
Like the classical definition of momentum, the classical definition of kinetic
energy also causes difficulties when we try to compare the interpretations of
different observers. According to O′, the initial and final kinetic energies in the
collision shown in Figure 2.21a are:

K ′
i = 1

2 m1v′2
1i + 1

2 m2v′2
2i = (0.5)(2m)(0)2 + (0.5)(m)(−0.750c)2 = 0.281mc2

K ′
f = 1

2 m1v′2
1f + 1

2 m2v′2
2f = (0.5)(2m)(−0.500c)2 + (0.5)(m)(0.250c)2 = 0.281mc2
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and so energy is conserved according to O′. The initial and final kinetic energies
observed from the reference frame of O (as in Figure 2.21b) are

Ki = 1
2 m1v2

1i + 1
2 m2v2

2i = (0.5)(2m)(0.550c)2 + (0.5)(m)(−0.340c)2 = 0.360mc2

Kf = 1
2 m1v2

1f + 1
2 m2v2

2f = (0.5)(2m)(0.069c)2 + (0.5)(m)(0.703c)2 = 0.252mc2

Thus energy is not conserved in the reference frame of O if we use the classical
formula for kinetic energy. This leads to a serious inconsistency—an elastic
collision for one observer would not be elastic for another observer. As in the
case of momentum, if we want to preserve the law of conservation of energy for
all observers, we must replace the classical formula for kinetic energy with an
expression that is valid in the relativistic case (but that reduces to the classical
formula for low speeds).

We can derive the relativistic expression for the kinetic energy of a particle
using essentially the same procedure used to derive the classical expression,
starting with the particle form of the work-energy theorem (see Problem 28). The
result of this calculation is

K = mc2√
1 − v2/c2

− mc2 (2.34)

Using Eq. 2.34, you can show that both O and O′ will conclude that kinetic energy
is conserved. In fact, all observers will agree on the applicability of the energy
conservation law using the relativistic definition for kinetic energy.

Equation 2.34 looks very different from the classical result K = 1
2 mv2, but, as

you should show (see Problem 32), Eq. 2.34 reduces to the classical expression in
the limit of low speeds (v 	 c).

The classical expression for kinetic energy also violates the second relativity
postulate by allowing speeds in excess of the speed of light. There is no limit
(in either classical or relativistic dynamics) to the energy we can give to a
particle. Yet, if we allow the kinetic energy to increase without limit, the classical
expression K = 1

2 mv2 implies that the velocity must correspondingly increase
without limit, thereby violating the second postulate. You can also see from the
first term of Eq. 2.34 that K → ∞ as v → c. Thus we can increase the relativistic
kinetic energy of a particle without limit, and its speed will not exceed c.

Relativistic Total Energy and Rest Energy

We can also express Eq. 2.34 as

K = E − E0 (2.35)

where the relativistic total energy E is defined as

E = mc2√
1 − v2/c2

(2.36)
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and the rest energy E0 is defined as

E0 = mc2 (2.37)

The rest energy is in effect the relativistic total energy of a particle measured in a
frame of reference in which the particle is at rest.

Sometimes m in Eq. 2.37 is called the rest mass m0 and is distinguished from

the “relativistic mass,” which is defined as m0/
√

1 − v2/c2. We choose not to use
relativistic mass, because it can be a misleading concept. Whenever we refer to
mass, we always mean rest mass.

Equation 2.37 suggests that mass can be expressed in units of energy divided
by c2, such as MeV/c2. For example, a proton has a rest energy of 938 MeV and
thus a mass of 938 MeV/c2. Just like expressing momentum in units of MeV/c,
expressing mass in units of MeV/c2 turns out to be very useful in calculations.

The relativistic total energy is given by Eq. 2.35 as

E = K + E0 (2.38)

Collisions of particles at high energies often result in the production of new
particles, and thus the final rest energy may not be equal to the initial rest energy
(see Example 2.18). Such collisions must be analyzed using conservation of total
relativistic energy E; kinetic energy will not be conserved when the rest energy
changes in a collision. In the special example of the elastic collision considered
in this section, the identities of the particles did not change, and so kinetic energy
was conserved. In general, collisions do not conserve kinetic energy—it is the
relativistic total energy that is conserved in collisions.

Manipulation of Eqs. 2.32 and 2.36 gives a useful relationship among the total
energy, momentum, and rest energy:

E =
√

(pc)2 + (mc2)2 (2.39)

Figure 2.22 shows a useful mnemonic device for remembering this relationship,
which has the form of the Pythagorean theorem for the sides of a right triangle.

E

K

mc
2

sine = v/c

E0 = mc2

pc

FIGURE 2.22 A useful mnemonic
device for recalling the relationships
among E0, p, K, and E. Note that to
put all variables in energy units, the
quantity pc must be used.

When a particle travels at a speed close to the speed of light (say, v > 0.99c),
which often occurs in high-energy particle accelerators, the particle’s kinetic
energy is much greater than its rest energy; that is, K 
 E0. In this case, Eq. 2.39
can be written, to a very good approximation,

E ∼= pc (2.40)

This is called the extreme relativistic approximation and is often useful for
simplifying calculations. As v approaches c, the angle in Figure 2.22 between the
bottom leg of the triangle (representing mc2) and the hypotenuse (representing E)
approaches 90◦. Imagine in this case a very tall triangle, in which the vertical leg
(pc) and the hypotenuse (E) are nearly the same length.

For massless particles (such as photons), Eq. 2.39 becomes exactly

E = pc (2.41)

All massless particles travel at the speed of light; otherwise, by Eqs. 2.34 and
2.36 their kinetic and total energies would be zero.
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Example 2.12

What are the kinetic and relativistic total energies of a
proton (E0 = 938 MeV) moving at a speed of v = 0.86c?

Solution
In Example 2.11 we found the momentum of this particle
to be p = 1580 MeV/c. The total energy can be found from
Eq. 2.39:

E =
√

(pc)2 + (mc2)2 =
√

(1580 MeV)2 + (938 MeV)2

= 1837 MeV

The kinetic energy follows from Eq. 2.35:

K = E − E0

= 1837 MeV − 938 MeV

= 899 MeV

We also could have solved this problem by finding the
kinetic energy directly from Eq. 2.34.

Example 2.13

Find the velocity and momentum of an electron (E0 =
0.511 MeV) with a kinetic energy of 10.0 MeV.

Solution
The total energy is E = K + E0 = 10.0 MeV + 0.511 MeV
= 10.51 MeV. We then can find the momentum from
Eq. 2.39:

p = 1

c

√
E2 − (mc2)2 = 1

c

√
(10.51 MeV)2−(0.511 MeV)2

= 10.5 MeV/c

Note that in this problem we could have used the
extreme relativistic approximation, p ∼= E/c, from Eq. 2.40.
The error we would make in this case would be
only 0.1%.

The velocity can be found by solving Eq. 2.36 for v.

v

c
=

√
1 −

(
mc2

E

)2

=
√

1 −
(

0.511 MeV

10.51 MeV

)2

= 0.9988 (2.42)

Example 2.14

In the Stanford Linear Collider electrons are accelerated to a
kinetic energy of 50 GeV. Find the speed of such an electron
as (a) a fraction of c, and (b) a difference from c. The rest
energy of the electron is 0.511 MeV = 0.511 × 10−3GeV.

Solution
(a) First we solve Eq. 2.34 for v, obtaining

v = c

√
1 − 1

(1 + K/mc2)2
(2.43)

and thus

v = c

√
1 − 1

[1 + (50 GeV)/(0.511 × 10−3 GeV)]2

= 0.999 999 999 948c

Calculators cannot be trusted to 12 significant digits. Here
is a way to avoid this difficulty. We can write Eq. 2.43
as v = c(1 + x)1/2, where x = −1/(1 + K/mc2)2. Because
K 
 mc2, we have x 	 1, and we can use the binomial
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expansion to write v ∼= c(1 + 1
2 x), or

v ∼= c

[
1 − 1

2(1 + K/mc2)2

]

which gives

v ∼= c(1 − 5.2 × 10−11)

This leads to the same value of v given above.

(b) From the above result, we have

c − v = 5.2 × 10−11c

= 0.016 m/s

= 1.6 cm/s

Example 2.15

At a distance equal to the radius of the Earth’s orbit
(1.5 × 1011 m), the Sun’s radiation has an intensity of
about 1.4 × 103 W/m2. Find the rate at which the mass of
the Sun is decreasing.

Solution
If we assume that the Sun’s radiation is distributed uni-
formly over the surface area 4πr2 of a sphere of radius
1.5 × 1011 m, then the total radiative power emitted by the
Sun is

4π(1.5 × 1011m)2(1.4 × 103 W/m2)

= 4.0 × 1026 W = 4.0 × 1026 J/s

By conservation of energy, we know that the energy lost
by the Sun through radiation must be accounted for by
a corresponding loss in its rest energy. The change in
mass �m corresponding to a change in rest energy �E0 of
4.0 × 1026 J each second is

�m = �E0

c2
= 4.0 × 1026 J

9.0 × 1016 m2/s2
= 4.4 × 109 kg

The Sun loses mass at a rate of about 4 billion kilograms
per second! If this rate were to remain constant, the Sun
(with a present mass of 2 × 1030 kg) would shine “only”
for another 1013 years.

2.8 CONSERVATION LAWS IN RELATIVISTIC
DECAYS AND COLLISIONS

In all decays and collisions, we must apply the law of conservation of momentum.
The only difference between applying this law for collisions at low speed (as we
did in Example 1.1) and at high speed is the use of the relativistic expression for
momentum (Eq. 2.32) instead of Eq. 1.2. The law of conservation of momentum
for relativistic motion can be stated in exactly the same way as for classical motion:

In an isolated system of particles, the total linear momentum remains
constant.
In the classical case, kinetic energy is the only form of energy that is present in

elastic collisions, so conservation of energy is equivalent to conservation of kinetic
energy. In inelastic collisions or decay processes, the kinetic energy does not
remain constant. Total energy is conserved in classical inelastic collisions, but we
did not account for the other forms of energy that might be important. This missing
energy is usually stored in the particles, perhaps as atomic or nuclear energy.
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In the relativistic case, the internal stored energy contributes to the rest energy
of the particles. Usually rest energy and kinetic energy are the only two forms
of energy that we consider in atomic or nuclear processes (later we’ll add the
energy of radiation to this balance). A loss of kinetic energy in a collision is thus
accompanied by a gain in rest energy, but the total relativistic energy (kinetic
energy + rest energy) of all the particles involved in the process doesn’t change.
For example, in a reaction in which new particles are produced, the loss in kinetic
energy of the original reacting particles gives the increase in rest energy of the
product particles. On the other hand, in a nuclear decay process such as alpha
decay, the initial nucleus gives up some rest energy to account for the kinetic
energy carried by the decay products.

The law of energy conservation in the relativistic case is:

In an isolated system of particles, the relativistic total energy (kinetic energy
plus rest energy) remains constant.

In applying this law to relativistic collisions, we don’t have to worry whether the
collision is elastic or inelastic, because the inclusion of the rest energy accounts
for any loss in kinetic energy.

The following examples illustrate applications of the conservation laws for
relativistic momentum and energy.

Example 2.16

A neutral K meson (mass 497.7 MeV/c2) is moving with a
kinetic energy of 77.0 MeV. It decays into a pi meson (mass
139.6 MeV/c2) and another particle of unknown mass. The
pi meson is moving in the direction of the original K meson
with a momentum of 381.6 MeV/c. (a) Find the momen-
tum and total relativistic energy of the unknown particle.
(b) Find the mass of the unknown particle.

Solution
(a) The total energy and momentum of the K meson are

EK = KK + mKc2 = 77.0 MeV + 497.7 MeV = 574.7 MeV

pK = 1

c

√
E2

K − (mKc2)2

= 1

c

√
(574.7 MeV)2 − (497.7 MeV)2

= 287.4 MeV/c

and for the pi meson

Eπ =
√

(cpπ )2 + (mπ c2)2

=
√

(381.6 MeV)2 + (139.6 MeV)2

= 406.3 MeV

Conservation of relativistic momentum (pinitial = pfinal)

gives pK = pπ + px (where x represents the unknown par-
ticle), so

px = pK − pπ = 287.4 MeV/c − 381.6 MeV/c

= −94.2 MeV/c

and conservation of total relativistic energy (Einitial = Efinal)
gives EK = Eπ + Ex, so

Ex = EK − Eπ = 574.7 MeV − 406.3 MeV

= 168.4 MeV

(b) We can find the mass by solving Eq. 2.39 for mc2:

mxc2 =
√

E2
x − (cpx)

2

=
√

(168.4 MeV)2 − (94.2 MeV)2

= 139.6 MeV

Thus the unknown particle has a mass of 139.6 MeV/c2,
and its mass shows that it is another pi meson.
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Example 2.17

In the reaction K− + p → 	0 + π0, a charged K
meson (mass 493.7 MeV/c2) collides with a proton
(938.3 MeV/c2) at rest, producing a lambda particle
(1115.7 MeV/c2) and a neutral pi meson (135.0 MeV/c2),
as represented in Figure 2.23. The initial kinetic energy
of the K meson is 152.4 MeV. After the interaction, the
pi meson has a kinetic energy of 254.8 MeV. (a) Find the
kinetic energy of the lambda. (b) Find the directions of
motion of the lambda and the pi meson.

p

y

y

x

x

(a)

(b)

K−

π0

Λ0

θ

φ

FIGURE 2.23 Example 2.17. (a) A K− meson collides with a
proton at rest. (b) After the collision, a π0 meson and a 	0 are
produced.

Solution
(a) The initial and final total energies are

Einitial = EK + Ep = KK + mKc2 + mpc2

Efinal = E	+Eπ = K	+m	c2+Kπ +mπ c2

In these two equations, the value of every quantity is known
except the kinetic energy of the lambda. Using conserva-
tion of total relativistic energy, we set Einitial = Efinal and
solve for K	:

K	 = KK + mKc2 + mpc2 − m	c2 − Kπ − mπc2

= 152.4 MeV + 493.7 MeV + 938.3 MeV

− 1115.7 MeV − 254.8 MeV − 135.0 MeV

= 78.9 MeV

(b) To find the directional information we must apply
conservation of momentum. The initial momentum is just
that of the K meson. From its total energy, EK = KK+
mKc2 = 152.4 MeV + 493.7 MeV = 646.1 MeV, we can
find the momentum:

pinitial = pK = 1

c

√
(EK)2 − (mKc2)2

= 1

c

√
(646.1 MeV)2−(493.7 MeV)2

= 416.8 MeV/c

A similar procedure applied to the two final particles
gives p	 = 426.9 MeV/c and pπ = 365.7 MeV/c. The
total momentum of the two final particles is px,final =
p	 cos θ + pπ cos φ and py,final = p	 sin θ − pπ sin φ. Con-
servation of momentum in the x and y directions gives

p	 cos θ + pπ cos φ = pinitial and p	 sin θ − pπ sin φ = 0

Here we have two equations with two unknowns
(θ and φ). We can eliminate θ by writing the first equation as
p	 cos θ = pinitial − pπ cos φ, then squaring both equations
and adding them. The resulting equation can be solved
for φ:

φ = cos−1

(
p2

initial + p2
π − p2

	

2pπ pinitial

)

= cos−1

⎛
⎜⎜⎝

(416.8 MeV/c)2 + (365.7 MeV/c)2

−(426.9 MeV/c)2

2(365.7 MeV/c)(416.8 MeV/c)

⎞
⎟⎟⎠

= 65.7◦

From the conservation of momentum equation for the y
components, we have

θ = sin−1

(
pπ sin φ

p	

)

= sin−1

(
(365.7 MeV/c)(sin 65.7◦

)

426.9 MeV/c

)
= 51.3◦
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Example 2.18

The discovery of the antiproton p (a particle with the same
rest energy as a proton, 938 MeV, but with the opposite
electric charge) took place in 1956 through the following
reaction:

p + p → p + p + p + p

in which accelerated protons were incident on a target of
protons at rest in the laboratory. The minimum incident
kinetic energy needed to produce the reaction is called the
threshold kinetic energy, for which the final particles move
together as if they were a single unit (Figure 2.24). Find
the threshold kinetic energy to produce antiprotons in this
reaction.

y

x

(a)

v

(b)

p
pp

y

x

FIGURE 2.24 Example 2.18. (a) A proton moving with veloc-
ity v collides with another proton at rest. (b) The reaction
produces three protons and an antiproton, which move together
as a unit.

Solution
This problem can be solved by a straightforward applica-
tion of energy and momentum conservation. Let Ep and pp
represent the total energy and momentum of the incident

proton. Thus the initial total energy of the two protons is
Ep + mpc2. Let E′

p and p′
p represent the total energy and

momentum of each of the four final particles (which move
together and thus have the same energy and momentum).
We can then apply conservation of total energy:

Ep + mpc2 = 4E′
p

and conservation of momentum:

pp = 4p′
p

We can write the momentum equation as
√

E2
p − (mpc2)2 =

4
√

E′2
p − (mpc2)2, so now we have two equations in two

unknowns (Ep and E′
p). We eliminate E′

p, for example
by solving the energy conservation equation for E′

p and
substituting into the momentum equation. The result is

Ep = 7mpc2

from which we can calculate the kinetic energy of the
incident proton:

Kp = Ep − mpc2 = 6mpc2 = 6(938 MeV) = 5628 MeV

= 5.628GeV

The Bevatron accelerator at the Lawrence Berkeley Labo-
ratory was designed with this experiment in mind, so that
it could produce a beam of protons whose energy exceeded
5.6 GeV. The discovery of the antiproton in this reaction
was honored with the award of the 1959 Nobel Prize to the
experimenters, Emilio Segrè and Owen Chamberlain.

2.9 EXPERIMENTAL TESTS OF SPECIAL RELATIVITY

Because special relativity provided such a radical departure from the notions of
space and time in classical physics, it is important to perform detailed experimental
tests that can clearly distinguish between the predictions of special relativity and
those of classical physics. Many tests of increasing precision have been done
since the theory was originally presented, and in every case the predictions of
special relativity are upheld. Here we discuss a few of these tests.
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Universality of the Speed of Light

The second relativity postulate asserts that the speed of light has the same value
c for all observers. This leads to several types of experimental tests, of which we
discuss two: (1) Does the speed of light change with the direction of travel? (2)
Does the speed of light change with relative motion between source and observer?

The Michelson-Morley experiment provides a test of the first type. This
experiment compared the upstream-downstream and cross-stream speeds of light
and concluded that they were equal within the experimental error. Equivalently,
we may say that the experiment showed that there is no preferred reference frame
(no ether) relative to which the speed of light must be measured. If there is an
ether, the speed of the Earth through the ether is less than 5 km/s, which is much
smaller than the Earth’s orbital speed about the Sun, 30 km/s. We can express
their result as a difference �c between the upstream-downstream and cross-stream
speeds; the experiment showed that �c/c < 3 × 10−10.

To reconcile the result of the Michelson-Morley experiment with classical
physics, Lorentz proposed the “ether drag” hypothesis, according to which
the motion of the Earth through the ether caused an electromagnetic drag that
contracted the arm of the interferometer in the direction of motion. This contraction
was just enough to compensate for the difference in the upstream-downstream
and cross-stream times predicted by the Galilean transformation. This hypothesis
succeeds only when the two arms of the interferometer are of the same length.
To test this hypothesis, a similar experiment was done in 1932 by Kennedy and
Thorndike; in their experiment, the lengths of the interferometer arms differed by
about 16 cm, the maximum distance over which light sources available at that time
could remain coherent. The Kennedy-Thorndike experiment in effect tests the
second question, whether the speed of light changes due to relative motion. Their
result was �c/c < 3 × 10−8, which excludes the Lorentz contraction hypothesis
as an explanation for the Michelson-Morley experiment.

In recent years, these fundamental experiments have been repeated with
considerably improved precision using lasers as light sources. Experimenters
working at the Joint Institute for Laboratory Astrophysics in Boulder, Colorado,
built an apparatus that consisted of two He-Ne lasers on a rotating granite
platform. By electronically stabilizing the lasers, they improved the sensitivity
of their apparatus by several orders of magnitude. Again expressing the result
as a difference between the speeds along the two arms of the apparatus, this
experiment corresponds to �c/c < 8 × 10−15, an improvement of about 5 orders
of magnitude over the original Michelson-Morley experiment. In a similar
repetition of the Kennedy-Thorndike experiment using He-Ne lasers, they obtained
�c/c < 1 × 10−10, an improvement over the original experiment by a factor of
300. [See A. Brillet and J. L. Hall, Physical Review Letters 42, 549 (1979); D.
Hils and J. L. Hall, Physical Review Letters 64, 1697 (1990).] A considerable
improvement in the Kennedy-Thorndike type of experiment has been made
possible by comparing the oscillation frequency of a crystal with the frequency
of a hydrogen maser (a maser is similar to a laser, but it uses microwaves rather
than visible light). The experimenters measured for nearly one year, looking for a
change in the relative frequencies as the Earth’s velocity changed. No effect was
observed, leading to a limit of �c/c < 2 × 10−12. [See P. Wolf et al., Physical
Review Letters 90, 060402 (2003).]

Another way of testing the second question is to measure the speed of a light
beam emitted by a source in motion. Suppose we observe this beam along the
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direction of motion of the moving source, which might be moving toward us or
away from us. In the rest frame of the source, the emitted light travels at speed c.
We can express the speed of light in our reference frame as c′ = c + �c, where
�c is zero according to special relativity (c′ = c) or is ±u according to classical
physics (c′ = c ± u in the Galilean transformation, depending on whether the
motion is toward or away from the observer).

In one experiment of this type, the decay of pi mesons (pions) into gamma
rays (a form of electromagnetic waves traveling at c) was observed. When pions
(produced in laboratories with large accelerators) emit these gamma rays, they are
traveling at speeds close to the speed of light, relative to the laboratory. Thus if
Galilean relativity were valid, we should expect to find gamma rays emitted in the
direction of motion of the decaying pions traveling at a speed c′ in the laboratory of
nearly 2c, rather than always with c as predicted by special relativity. The observed
laboratory speed of these gamma rays in one experiment was (2.9977 ± 0.0004)
×108 m/s when the decaying pions were moving at u/c = 0.99975. These results
give �c/c < 2 × 10−4, and thus c′ = c as expected from special relativity. This
experiment shows directly that an object moving at a speed of nearly c relative to
the laboratory emits “light” that travels at a speed of c relative to both the object
and the laboratory, giving direct evidence for Einstein’s second postulate. [See T.
Alvager et al., Physics Letters 12, 260 (1964).]

Another experiment of this type is to study the X rays emitted by a binary
pulsar, a rapidly pulsating source of X rays in orbit about another star, which
would eclipse the pulsar as it rotated in its orbit. If the speed of light (in this case,
X rays) were to change as the pulsar moved first toward and later away from the
Earth in its orbit, the beginning and end of the eclipse would not be equally spaced
in time from the midpoint of the eclipse. No such effect is observed, and from
these observations it is concluded that �c/c < 2 × 10−12, in agreement with
predictions of special relativity. These experiments were done at u/c = 10−3.
[See K. Brecher, Physical Review Letters 39, 1051 (1977).]

A different type of test of the limit by which the speed of light changes with
direction of travel can be done using the clocks carried aboard the network of Earth
satellites that make up the Global Positioning System (GPS). By comparing the
readings of clocks on the GPS satellites with clocks on the ground at different times
of day (as the satellites move relative to the ground stations), it is possible to test
whether the change in the direction of travel affects the apparent synchronization
of the clocks. No effect was observed, and the experimenters were able to set a
limit of �c/c < 5 × 10−9 for the difference between the one-way and round-trip
speeds of light. [See P. Wolf and G. Petit, Physical Review A 56, 4405 (1997).]

Time Dilation
We have already discussed the time dilation effect on the decay of muons produced
by cosmic rays. Muon decay can also be studied in the laboratory. Muons can be
produced following collisions in high-energy accelerators, and the decay of the
muons can be followed by observing their decay products (ordinary electrons).
These muons can either be trapped and decay at rest, or they can be placed
in a beam and decay in flight. When muons are observed at rest, their decay
lifetime is 2.198 μs. (As we discuss in Chapter 12, decays generally follow an
exponential law. The lifetime is the time after which a fraction 1/e = 0.368 of
the original muons remain.) This is the proper lifetime, measured in a frame of
reference in which the muon is at rest. In one particular experiment, muons were
trapped in a ring and circulated at a momentum of p = 3094 MeV/c. The decays
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in flight occurred with a lifetime of 64.37 μs (measured in the laboratory frame
of reference). For muons of this momentum, Eq. 2.8 gives a dilated lifetime of
(see Problem 43) 64.38 μs, which is in excellent agreement with the measured
value and confirms the time dilation effect. [See J. Bailey et al., Nature 268, 301
(1977).]

Another similar experiment was done with pions. The proper lifetime, measured
for pions at rest, is known to be 26.0 ns. In one experiment, pions were observed
in flight at u/c = 0.913, and their lifetime was measured to be 63.7 ns. (Pions
decay to muons, so we can follow the exponential radioactive decay of the pions
by observing the muons emitted as a result of the decay.) For pions moving at
this speed, the expected dilated lifetime is in exact agreement with the measured
value, once again confirming the time dilation effect. [See D. S. Ayres et al.,
Physical Review D 3, 1051 (1971).]

The Doppler Effect
Confirmation of the relativistic Doppler effect first came from experiments done
in 1938 by Ives and Stilwell. They sent a beam of hydrogen atoms, generated
in a gas discharge, down a tube at a speed u, as shown in Figure 2.25. They
could simultaneously observe light emitted by the atoms in a direction parallel
to u (atom 1) and opposite to u (atom 2, reflected from the mirror). Using a
spectrograph, the experimenters were able to photograph the characteristic spectral
lines from these atoms and also, on the same photographic plate, from atoms at
rest. If the classical Doppler formula were valid, the wavelengths of the lines
from atoms 1 and 2 would be placed at symmetric intervals �λ1 = ±λ0(u/c) on
either side of the line from the atoms at rest (wavelength λ0), as in Figure 2.25b.
The relativistic Doppler formula, on the other hand, gives a small additional
asymmetric shift �λ2 = + 1

2λ0(u/c)2, as in Figure 2.25c (computed for u 	 c, so

(b) (c)
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FIGURE 2.25 (a) Apparatus used in the Ives-Stilwell experiment. (b) Line
spectrum expected from classical Doppler effect. (c) Line spectrum expected
from relativistic Doppler effect.
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that higher-order terms in u/c can be neglected). Figure 2.26 shows the results of
Ives and Stilwell for one of the hydrogen lines (the blue line of the Balmer series
at λ0 = 486 nm). The agreement between the observed values and those predicted
by the relativistic formula is impressive.
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FIGURE 2.26 Results of the Ives-
Stilwell experiment. According to
classical theory, �λ2 = 0, while
according to special relativity, �λ2

depends on (u/c)2. The solid line,
which represents the relativistic for-
mula, gives excellent agreement with
the data points.

Recent experiments with lasers have verified the relativistic formula at greater
accuracy. These experiments are based on the absorption of laser light by an
atom; when the radiation is absorbed, the atom changes from its lowest-energy
state (the ground state) to one of its excited states. The experiment consists
essentially of comparing the laser wavelength needed to excite atoms at rest
with that needed for atoms in motion. One experiment used a beam of hydrogen
atoms with kinetic energy 800 MeV (corresponding to u/c = 0.84) produced in a
high-energy proton accelerator. An ultraviolet laser was used to excite the atoms.
This experiment verified the relativistic Doppler effect to an accuracy of about
3 × 10−4. [See D. W. MacArthur et al., Physical Review Letters 56, 282 (1986).]
In another experiment, a beam of neon atoms moving with a speed of u = 0.0036c
was irradiated with light from a tunable dye laser. This experiment verified the
relativistic Doppler shift to a precision of 2 × 10−6. [See R. W. McGowan et al.,
Physical Review Letters 70, 251 (1993).] A more recent study used two tunable
dye lasers parallel and antiparallel to a beam of lithium atoms moving at 0.064c.
The results of this experiment agreed with the relativistic Doppler formula to
within a precision of 2 × 10−7, improving on the best previous results by an order
of magnitude. [See G. Saathoff et al., Physical Review Letters 91, 190403 (2003).]

Relativistic Momentum and Energy
The earliest direct confirmation of the relativistic relationship for energy and
momentum came just a few years after Einstein’s 1905 paper. Simultaneous
measurements were made of the momentum and velocity of high-energy electrons
emitted in certain radioactive decay processes (nuclear beta decay, which is
discussed in Chapter 12). Figure 2.27 shows the results of several different
investigations plotted as p/mv, which should have the value 1 according to
classical physics. The results agree with the relativistic formula and disagree with
the classical one. Note that the relativistic and classical formulas give the same
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FIGURE 2.27 The ratio p/mv is plotted for electrons of various speeds. The data agree
with the relativistic result and not at all with the nonrelativistic result (p/mv = 1).
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results at low speeds, and in fact the two cannot be distinguished for speeds below
0.l c, which accounts for our failure to observe these effects in experiments with
ordinary laboratory objects.

Other more recent experiments, in which the kinetic energies of fast electrons
were measured, are shown in Figure 2.28. Once again, the data at high speeds
agree with special relativity and disagree with the classical equations. In a
more extreme example, experimenters at the Stanford Linear Accelerator Center
measured the speed of 20 GeV electrons, whose speed is within 5 × 10−10 of the
speed of light (or about 0.15 m/s less than c). The measurement was not capable
of this level of precision, but it did determine that the speed of the electrons was
within 2 × 10−7 of the speed of light (60 m/s). [See Z. G. T. Guiragossian et al.,
Physical Review Letters 34, 335 (1975).]

Nearly every time the nuclear or particle physicist enters the laboratory, a direct
or indirect test of the momentum and energy relationships of special relativity
is made. Principles of special relativity must be incorporated in the design of
the high-energy accelerators used by nuclear and particle physicists, so even the
construction of these projects gives testimony to the validity of the formulas of
special relativity.

For example, consider the capture of a neutron by an atom of hydrogen to form
an atom of deuterium or “heavy hydrogen.” Energy is released in this process,
mostly in the form of electromagnetic radiation (gamma rays). The energy of the
gamma rays is measured to be 2.224 MeV. Where does this energy come from?
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FIGURE 2.28 Confirmation of relativistic kinetic energy relationships. In (a) and (b) the momentum and energy of
radioactive decay electrons were measured simultaneously. In these two independent experiments, the data were plotted in
different ways, but the results are clearly in good agreement with the relativistic relationships and in poor agreement with
the classical, nonrelativistic relationships. In (c) electrons were accelerated to a fixed energy through a large electric field
(up to 4.5 million volts, as shown) and the velocities of the electrons were determined by measuring the flight time over
8.4 m. Notice that at small kinetic energies (K 	 mc2), the relativistic and nonrelativistic relationships become identical.
[Sources: (a) K. N. Geller and R. Kollarits, Am. J. Phys. 40, 1125 (1972); (b) S. Parker, Am. J. Phys. 40, 241 (1972);
(c) W. Bertozzi, Am. J. Phys. 32, 551 (1964).].
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It comes from the difference in mass when the hydrogen and neutron combine to
form deuterium. The difference between the initial and final masses is:

�m = m(hydrogen) + m(neutron) − m(deuterium)

= 1.007825 u + 1.008665 u − 2.014102 u = 0.002388 u

The initial mass of hydrogen plus neutron is greater than the final mass of
deuterium by 0.002388 u. The energy equivalent of this change in mass is

�E = (�m)c2 = 2.224 MeV

which is equal to the energy released as gamma rays.
Similar experiments have been done to test the E = mc2 relationship by

measuring the energy released as gamma rays following the capture of neutrons
by atoms of silicon and sulfur, and comparing the gamma-ray energies with the
difference between the initial and final masses. These experiments are consistent
with E = mc2 to a precision of about 4 × 10−7. [See S. Rainville et al., Nature
438, 1096 (2006).]

Twin Paradox

Although we cannot perform the experiment to test the twin paradox as we have
described it, we can do an equivalent experiment. We take two clocks in our
laboratory and synchronize them carefully. We then place one of the clocks in an
airplane and fly it around the Earth. When we return the clock to the laboratory
and compare the two clocks, we expect to find, if special relativity is correct,
that the clock that has left the laboratory is the “younger” one—that is, it will
have ticked away fewer seconds and appear to run behind its stationary twin. In
this experiment, we must use very precise clocks based on the atomic vibrations
of cesium in order to measure the time differences between the clock readings,
which amount to only about 10−7 s. This experiment is complicated by several
factors, all of which can be computed rather precisely: the rotating Earth is not
an inertial frame (there is a centripetal acceleration), clocks on the surface of the
Earth are already moving because of the rotation of the Earth, and the general
theory of relativity predicts that a change in the gravitational field strength, which
our moving clock will experience as it changes altitude in its airplane flight, will
also change the rate at which the clock runs. In this experiment, as in the others
we have discussed, the results are entirely in agreement with the predictions of
special relativity. [See J. C. Hafele and R. E. Keating, Science 177, 166 (1972).]

In a similar experiment, a cesium atomic clock carried on the space shuttle was
compared with an identical clock on the Earth. The comparison was made through
a radio link between the shuttle and the ground station. At an orbital height of
about 328 km, the shuttle moves at a speed of about 7712 m/s, or 2.5 × 10−5c. A
clock moving at this speed runs slower than an identical clock at rest by the time
dilation factor. For every second the clock is in orbit, it loses 330 ps relative to the
clock on Earth; equivalently, it loses about 1.8 μs per orbit. These time intervals
can be measured with great precision, and the predicted asymmetric aging was
verified to a precision of about 0.1%. [See E. Sappl, Naturwissenschaften 77,
325 (1990).]
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Chapter Summary

Section

Galilean relativity x′ = x − ut, v′
x = vx − u 2.1

Einstein’s
postulates

(1) The laws of physics are the
same in all inertial frames. (2)
The speed of light has the same
value c in all inertial frames.

2.3

Time dilation �t = �t0√
1 − u2/c2

(�t0 = proper time)

2.4

Length contraction L = L0

√
1 − u2/c2

(L0 = proper length)

2.4

Velocity addition v = v′ + u

1 + v′u/c2
2.4

Doppler effect
(source and
observer separating)

f ′ = f

√
1 − u/c

1 + u/c
2.4

Lorentz
transformation

x′ = x − ut√
1 − u2/c2

,

y′ = y, z′ = z,

t′ = t − (u/c2)x√
1 − u2/c2

2.5

Section

Lorentz velocity
transformation

v′
x = vx − u

1 − vxu/c2
,

v′
y = vy

√
1 − u2/c2

1 − vxu/c2
,

v′
z = vz

√
1 − u2/c2

1 − vxu/c2

2.5

Clock
synchronization

�t′ = uL/c2√
1 − u2/c2

2.5

Relativistic
momentum

�p = m�v√
1 − v2/c2

2.7

Relativistic kinetic
energy

K = mc2√
1 − v2/c2

− mc2 2.7

Rest energy E0 = mc2 2.7

Relativistic total
energy

E = K + E0 = mc2√
1 − v2/c2

2.7

Momentum-energy
relationship

E =
√

(pc)2 + (mc2)2 2.7

Extreme relativistic
approximation

E ∼= pc 2.7

Conservation laws In an isolated system of
particles, the total momentum
and the relativistic total energy
remain constant.

2.8

Questions

1. Explain in your own words what is meant by the term
“relativity.” Are there different theories of relativity?

2. Suppose the two observers and the rock described in the
first paragraph of Section 2.1 were isolated in interstellar
space. Discuss the two observers’ differing perceptions of
the motion of the rock. Is there any experiment they can
do to determine whether the rock is moving in any absolute
sense?

3. Describe the situation of Figure 2.4 as it would appear from
the reference frame of O′.

4. Does the Michelson-Morley experiment show that the ether
does not exist or that it is merely unnecessary?

5. Suppose we made a pair of shears in which the cutting blades
were many orders of magnitude longer than the handle. Let
us in fact make them so long that, when we move the handles
at angular velocity ω, a point on the tip of the blade has a
tangential velocity v = ωr that is greater than c. Does this
contradict special relativity? Justify your answer.

6. Light travels through water at a speed of about 2.25 × 108

m/s. Is it possible for a particle to travel through water at a
speed v greater than 2.25 × 108 m/s?
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7. Is it possible to have particles that travel at the speed of
light? What does Eq. 2.36 require of such particles?

8. How does relativity combine space and time coordinates
into spacetime?

9. Einstein developed the relativity theory after trying unsuc-
cessfully to imagine how a light beam would look to an
observer traveling with the beam at speed c. Why is this so
difficult to imagine?

10. Explain in your own words the terms time dilation and
length contraction.

11. Does the Moon’s disk appear to be a different size to a
space traveler approaching it at v = 0.99c, compared with
the view of a person at rest at the same location?

12. According to the time dilation effect, would the life
expectancy of someone who lives at the equator be longer
or shorter than someone who lives at the North Pole? By
how much?

13. Criticize the following argument. “Here is a way to travel
faster than light. Suppose a star is 10 light-years away. A
radio signal sent from Earth would need 20 years to make
the round trip to the star. If I were to travel to the star in my
rocket at v = 0.8c, to me the distance to the star is contracted
by

√
1 − (0.8)2 to 6 light-years, and at that speed it would

take me 6 light-years/0.8c = 7.5 years to travel there. The

round trip takes me only 15 years, and therefore I travel
faster than light, which takes 20 years.”

14. Is it possible to synchronize clocks that are in motion rela-
tive to each other? Try to design a method to do so. Which
observers will believe the clocks to be synchronized?

15. Suppose event A causes event B. To one observer, event A
comes before event B. Is it possible that in another frame of
reference event B could come before event A? Discuss.

16. Is mass a conserved quantity in classical physics? In special
relativity?

17. “In special relativity, mass and energy are equivalent.”
Discuss this statement and give examples.

18. Which is more massive, an object at low temperature or
the same object at high temperature? A spring at its natural
length or the same spring under compression? A container of
gas at low pressure or at high pressure? A charged capacitor
or an uncharged one?

19. Could a collision be elastic in one frame of reference and
inelastic in another?

20. (a) What properties of nature would be different if there
were a relativistic transformation law for electric charge?
(b) What experiments could be done to prove that electric
charge does not change with velocity?

Problems

2.1 Classical Relativity

1. You are piloting a small airplane in which you want to reach
a destination that is 750 km due north of your starting loca-
tion. Once you are airborne, you find that (due to a strong
but steady wind) to maintain a northerly course you must
point the nose of the plane at an angle that is 22◦ west of
true north. From previous flights on this route in the absence
of wind, you know that it takes you 3.14 h to make the
journey. With the wind blowing, you find that it takes 4.32
h. A fellow pilot calls you to ask about the wind velocity
(magnitude and direction). What is your report?

2. A moving sidewalk 95 m in length carries passengers at
a speed of 0.53 m/s. One passenger has a normal walking
speed of 1.24 m/s. (a) If the passenger stands on the side-
walk without walking, how long does it take her to travel
the length of the sidewalk? (b) If she walks at her normal
walking speed on the sidewalk, how long does it take to
travel the full length? (c) When she reaches the end of the
sidewalk, she suddenly realizes that she left a package at the
opposite end. She walks rapidly back along the sidewalk at
double her normal walking speed to retrieve the package.
How long does it take her to reach the package?

2.2 The Michelson-Morley Experiment

3. A shift of one fringe in the Michelson-Morley experiment
corresponds to a change in the round-trip travel time along
one arm of the interferometer by one period of vibration
of light (about 2 × 10−15 s) when the apparatus is rotated
by 90◦. Based on the results of Example 2.3, what veloc-
ity through the ether would be deduced from a shift of
one fringe? (Take the length of the interferometer arm to
be 11 m.)

2.4 Consequences of Einstein’s Postulates

4. The distance from New York to Los Angeles is about
5000 km and should take about 50 h in a car driving at
100 km/h. (a) How much shorter than 5000 km is the dis-
tance according to the car travelers? (b) How much less than
50 h do they age during the trip?

5. How fast must an object move before its length appears to
be contracted to one-half its proper length?

6. An astronaut must journey to a distant planet, which is
200 light-years from Earth. What speed will be necessary
if the astronaut wishes to age only 10 years during the
round trip?
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7. The proper lifetime of a certain particle is 100.0 ns. (a) How
long does it live in the laboratory if it moves at v = 0.960c?
(b) How far does it travel in the laboratory during that time?
(c) What is the distance traveled in the laboratory according
to an observer moving with the particle?

8. High-energy particles are observed in laboratories by pho-
tographing the tracks they leave in certain detectors; the
length of the track depends on the speed of the parti-
cle and its lifetime. A particle moving at 0.995c leaves
a track 1.25 mm long. What is the proper lifetime of the
particle?

9. Carry out the missing steps in the derivation of Eq. 2.17.
10. Two spaceships approach the Earth from opposite directions.

According to an observer on the Earth, ship A is moving at
a speed of 0.753c and ship B at a speed of 0.851c. What is
the velocity of ship A as observed from ship B? Of ship B as
observed from ship A?

11. Rocket A leaves a space station with a speed of 0.826c.
Later, rocket B leaves in the same direction with a speed of
0.635c. What is the velocity of rocket A as observed from
rocket B?

12. One of the strongest emission lines observed from distant
galaxies comes from hydrogen and has a wavelength of
122 nm (in the ultraviolet region). (a) How fast must a
galaxy be moving away from us in order for that line to be
observed in the visible region at 366 nm? (b) What would
be the wavelength of the line if that galaxy were moving
toward us at the same speed?

13. A physics professor claims in court that the reason he
went through the red light (λ = 650 nm) was that, due to
his motion, the red color was Doppler shifted to green
(λ = 550 nm). How fast was he going?

2.5 The Lorentz Transformation

14. Derive the Lorentz velocity transformations for v′
x and v′

z.
15. Observer O fires a light beam in the y direction (vy = c).

Use the Lorentz velocity transformation to find v′
x and v′

y
and show that O′ also measures the value c for the speed of
light. Assume that O′ moves relative to O with velocity u in
the x direction.

16. A light bulb at point x in the frame of reference of O
blinks on and off at intervals �t = t2 − t1. Observer O′,
moving relative to O at speed u, measures the interval to be
�t′ = t′2 − t′1. Use the Lorentz transformation expressions
to derive the time dilation expression relating �t and �t′.

17. A neutral K meson at rest decays into two π mesons, which
travel in opposite directions along the x axis with speeds of
0.828c. If instead the K meson were moving in the positive
x direction with a velocity of 0.486c, what would be the
velocities of the two π mesons?

18. A rod in the reference frame of observer O makes an angle
of 31◦ with the x axis. According to observer O′, who is in
motion in the x direction with velocity u, the rod makes an
angle of 46◦ with the x axis. Find the velocity u.

19. According to observer O, two events occur separated by a
time interval �t = +0.465 μs and at locations separated by
�x = +53.4 m. (a) According to observer O′, who is in
motion relative to O at a speed of 0.762c in the positive x
direction, what is the time interval between the two events?
(b) What is the spatial separation between the two events,
according to O′?

20. According to observer O, a blue flash occurs at xb = 10.4 m
when tb = 0.124 μs, and a red flash occurs at xr = 23.6 m
when tr = 0.138 μs. According to observer O′, who is in
motion relative to O at velocity u, the two flashes appear to
be simultaneous. Find the velocity u.

2.6 The Twin Paradox

21. Suppose the speed of light were 1000 mi/h. You are traveling
on a flight from Los Angeles to Boston, a distance of 3000
mi. The plane’s speed is a constant 600 mi/h. You leave Los
Angeles at 10:00 A.M., as indicated by your wristwatch and
by a clock in the airport. (a) According to your watch, what
time is it when you land in Boston? (b) In the Boston airport
is a clock that is synchronized to read exactly the same time
as the clock in the Los Angeles airport. What time does that
clock read when you land in Boston? (c) The following day
when the Boston clock that records Los Angeles time reads
10:00 A.M., you leave Boston to return to Los Angeles on
the same airplane. When you land in Los Angeles, what are
the times read on your watch and on the airport clock?

22. Suppose rocket traveler Amelia has a clock made on Earth.
Every year on her birthday she sends a light signal to brother
Casper on Earth. (a) At what rate does Casper receive
the signals during Amelia’s outward journey? (b) At what
rate does he receive the signals during her return journey?
(c) How many of Amelia’s birthday signals does Casper
receive during the journey that he measures to last 20 years?

23. Suppose Amelia traveled at a speed of 0.80c to a star that
(according to Casper on Earth) is 8.0 light-years away.
Casper ages 20 years during Amelia’s round trip. How much
younger than Casper is Amelia when she returns to Earth?

24. Make a drawing similar to Figure 2.20 showing the world-
lines of Casper and Amelia from Casper’s frame of reference.
Divide the world line for Amelia’s outward journey into 8
equal segments (for the 8 birthdays that Amelia celebrates).
For each birthday, draw a line that represents a light signal
that Amelia sends to Casper on her birthday. Do the same
for Amelia’s return journey. (a) According to Casper’s time,
when does he receive the signal showing Amelia celebrating
her 8th birthday after leaving Earth? (b) How long does
it take for Casper to receive the signals showing Amelia
celebrating birthdays 9 through 16?

2.7 Relativistic Dynamics

25. (a) Using the relativistically correct final velocities for
the collision shown in Figure 2.21a (v′

1f = −0.585c, v′
2f =

+0.294c), show that relativistic kinetic energy is conserved



66 Chapter 2 | The Special Theory of Relativity

according to observer O′. (b) Using the relativistically cor-
rect final velocities for the collision shown in Figure 2.21b
(v1f = −0.051c, v2f = +0.727c), show that relativistic
kinetic energy is conserved according to observer O.

26. Find the momentum, kinetic energy, and total energy of a
proton moving at a speed of 0.756c.

27. An electron is moving with a kinetic energy of 1.264 MeV.
What is its speed?

28. The work-energy theorem relates the change in kinetic
energy of a particle to the work done on it by an external
force: �K = W = ∫ F dx. Writing Newton’s second law
as F = dp/dt, show that W = ∫ v dp and integrate by parts
using the relativistic momentum to obtain Eq. 2.34.

29. For what range of velocities of a particle of mass m can
we use the classical expression for kinetic energy 1

2 mv2 to
within an accuracy of 1%?

30. For what range of velocities of a particle of mass m can we
use the extreme relativistic approximation E = pc to within
an accuracy of 1%?

31. Use Eqs. 2.32 and 2.36 to derive Eq. 2.39.
32. Use the binomial expansion (1 + x)n = 1 + nx +

[n(n − 1)/2!]x2 + · · · to show that Eq. 2.34 for the rel-
ativistic kinetic energy reduces to the classical expression
1
2 mv2 when v 	 c. This important result shows that our
familiar expressions are correct at low speeds. By evaluat-
ing the first term in the expansion beyond 1

2 mv2, find the
speed necessary before the classical expression is off by
0.01%.

33. (a) According to observer O, a certain particle has a
momentum of 817 MeV/c and a total relativistic energy
of 1125 MeV. What is the rest energy of this particle?
(b) An observer O′ in a different frame of reference mea-
sures the momentum of this particle to be 953 MeV/c.
What does O′ measure for the total relativistic energy of the
particle?

34. An electron is moving at a speed of 0.81c. By how much
must its kinetic energy increase to raise its speed to 0.91c?

35. What is the change in mass when 1 g of copper is heated
from 0 to 100◦C? The specific heat capacity of copper is
0.40 J/g ·K.

36. Find the kinetic energy of an electron moving at a speed of
(a) v = 1.00 × 10−4c; (b) v = 1.00 × 10−2c; (c) v =
0.300c; (d) v = 0.999c.

37. An electron and a proton are each accelerated starting from
rest through a potential difference of 10.0 million volts. Find
the momentum (in MeV/c) and the kinetic energy (in MeV)
of each, and compare with the results of using the classical
formulas.

38. In a nuclear reactor, each atom of uranium (of atomic mass
235 u) releases about 200 MeV when it fissions. What is the
change in mass when 1.00 kg of uranium-235 is fissioned?

2.8 Conservation Laws in Relativistic Decays and Collisions

39. A π meson of rest energy 139.6 MeV moving at a speed of
0.906c collides with and sticks to a proton of rest energy
938.3 MeV that is at rest. (a) Find the total relativistic
energy of the resulting composite particle. (b) Find the total
linear momentum of the composite particle. (c) Using the
results of (a) and (b), find the rest energy of the composite
particle.

40. An electron and a positron (an antielectron) make a head-on
collision, each moving at v = 0.99999c. In the collision
the electrons disappear and are replaced by two muons
(mc2 = 105.7 MeV), which move off in opposite directions.
What is the kinetic energy of each of the muons?

41. It is desired to create a particle of mass 9700 MeV/c2 in a
head-on collision between a proton and an antiproton (each
having a mass of 938.3 MeV/c2) traveling at the same speed.
What speed is necessary for this to occur?

42. A particle of rest energy mc2 is moving with speed v in the
positive x direction. The particle decays into two particles,
each of rest energy 140 MeV. One particle, with kinetic
energy 282 MeV, moves in the positive x direction, and the
other particle, with kinetic energy 25 MeV, moves in the
negative x direction. Find the rest energy of the original
particle and its speed.

2.9 Experimental Tests of Special Relativity

43. In the muon decay experiment discussed in Section 2.9 as a
verification of time dilation, the muons move in the lab with
a momentum of 3094 MeV/c. Find the dilated lifetime in
the laboratory frame. (The proper lifetime is 2.198 μs.)

44. Derive the relativistic expression p2/2K = m + K/2c2,
which is plotted in Figure 2.28a.

General Problems

45. Suppose we want to send an astronaut on a round trip to
visit a star that is 200 light-years distant and at rest with
respect to Earth. The life support systems on the spacecraft
enable the astronaut to survive at most 20 years. (a) At what
speed must the astronaut travel to make the round trip in
20 years of spacecraft time? (b) How much time passes on
Earth during the round trip?

46. A “cause” occurs at point 1 (x1, t1) and its “effect” occurs
at point 2 (x2, t2). Use the Lorentz transformation to find
t′2 − t′1, and show that t′2 − t′1 > 0; that is, O′ can never see
the “effect” coming before its “cause.”

47. Observer O sees a red flash of light at the origin at t = 0 and
a blue flash of light at x = 3.26 km at a time t = 7.63 μs.
What are the distance and the time interval between the
flashes according to observer O′, who moves relative to O
in the direction of increasing x with a speed of 0.625c?
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Assume that the origins of the two coordinate systems line
up at t = t′ = 0.

48. Several spacecraft (A, B, C, and D) leave a space station
at the same time. Relative to an observer on the station,
A travels at 0.60c in the x direction, B at 0.50c in the y
direction, C at 0.50c in the negative x direction, and D at
0.50c at 45◦ between the y and negative x directions. Find
the velocity components, directions, and speeds of B, C, and
D as observed from A.

49. Observer O sees a light turn on at x = 524 m when
t = 1.52 μs. Observer O′ is in motion at a speed of 0.563c
in the positive x direction. The two frames of reference are
synchronized so that their origins match up (x = x′ = 0) at
t = t′ = 0. (a) At what time does the light turn on according
to O′? (b) At what location does the light turn on in the
reference frame of O′?

50. Suppose an observer O measures a particle of mass m
moving in the x direction to have speed v, energy E,
and momentum p. Observer O′, moving at speed u in
the x direction, measures v′, E′, and p′ for the same object.
(a) Use the Lorentz velocity transformation to find E′ and
p′ in terms of m, u, and v. (b) Reduce E′2 − (p′c)2 to its
simplest form and interpret the result.

51. Repeat Problem 50 for the mass moving in the y direction
according to O. The velocity u of O′ is still along the x
direction.

52. Consider again the situation described in Section 2.6.
Amelia’s friend Bernice leaves Earth at the same time
as Amelia and travels in the same direction at the same
speed, but Bernice continues in the original direction when
Amelia reaches the planet and turns her ship around.
(a) From Bernice’s frame of reference, Casper is moving
at a velocity of −0.60c. Draw Casper’s worldline in Ber-
nice’s frame of reference. (b) Casper celebrates 20 birthdays
during Amelia’s journey. In Bernice’s frame of reference,
how long does it take for Casper to celebrate 20 birthdays?
(c) In Bernice’s frame of reference, draw a worldline repre-
senting Amelia’s outbound journey to the planet. (d) Calcu-
late Amelia’s velocity during her return journey as observed
from Bernice’s frame of reference, and draw a worldline
showing Amelia’s return journey. Amelia’s and Casper’s
worldlines should intersect when Amelia return to Earth.

(e) Divide Casper’s worldline into 20 segments, represent-
ing his birthdays. He sends a light signal to Amelia on each
birthday. Amelia receives a light signal from Casper just as
she arrives at the planet. On which birthday did Casper send
this signal? (f ) Amelia sends Casper a light signal on her
8th birthday. Draw a line on your diagram representing this
light signal. When does Casper receive this signal?

53. Electrons are accelerated to high speeds by a two-stage
machine. The first stage accelerates the electrons from rest
to v = 0.99c. The second stage accelerates the electrons
from 0.99c to 0.999c. (a) How much energy does the first
stage add to the electrons? (b) How much energy does the
second stage add in increasing the velocity by only 0.9%?

54. A beam of 1.35 × 1011 electrons/s moving at a speed of
0.732c strikes a block of copper that is used as a beam
stop. The copper block is a cube measuring 2.54 cm on edge.
What is the temperature increase of the block after one hour?

55. An electron moving at a speed of vi = 0.960c in the positive
x direction collides with another electron at rest. After the
collision, one electron is observed to move with a speed of
v1f = 0.956c at an angle of θ1 = 9.7◦ with the x axis. (a) Use
conservation of momentum to find the velocity (magnitude
and direction) of the second electron. (b) Based only on
the original data given in the problem, use conservation of
energy to find the speed of the second electron.

56. A pion has a rest energy of 135 MeV. It decays into two
gamma ray photons, bursts of electromagnetic radiation that
travel at the speed of light. A pion moving through the
laboratory at v = 0.98c decays into two gamma ray photons
of equal energies, making equal angles θ with the original
direction of motion. Find the angle θ and the energies of the
two gamma ray photons.

57. Consider again the decay described in Example 2.16 and
determine the energies of the two pi mesons emitted in the
decay of the K meson by first making a Lorentz transfor-
mation to a reference frame in which the initial K meson is
at rest. When a K meson at rest decays into two pi mesons,
they move in opposite directions with equal and opposite
velocities, so they share the decay energy equally. Find
the energies and velocities of the two pi mesons in the K
meson’s rest frame. Then transform back to the lab frame to
find their kinetic energies.





Chapter 3
THE PARTICLELIKE PROPERTIES OF
ELECTROMAGNETIC RADIATION

Thermal emission, the radiation emitted by all objects due to their temperatures, laid the
groundwork for the development of quantum mechanics around the beginning of the 20th

century. Today we use thermography for many applications, including the study of heat loss
by buildings, medical diagnostics, night vision and other surveillance, and monitoring
potential volcanoes.
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We now turn to a discussion of wave mechanics, the second theory on which
modern physics is based. One consequence of wave mechanics is the breakdown
of the classical distinction between particles and waves. In this chapter we consider
the three early experiments that provided evidence that light, which we usually
regard as a wave phenomenon, has properties that we normally associate with
particles. Instead of spreading its energy smoothly over a wave front, the energy
is delivered in concentrated bundles like particles; a discrete bundle (quantum) of
electromagnetic energy is known as a photon.

Before we begin to discuss the experimental evidence that supports the
existence of the photon and the particlelike properties of light, we first review
some of the properties of electromagnetic waves.

3.1 REVIEW OF ELECTROMAGNETIC WAVES

An electromagnetic field is characterized by its electric field �E and magnetic field
�B. For example, the electric field at a distance r from a point charge q at the
origin is

�E = 1

4πε0

q

r2
r̂ (3.1)

where r̂ is a unit vector in the radial direction. The magnetic field at a distance r
from a long, straight, current-carrying wire along the z axis is

�B = μ0i

2πr
φ̂ (3.2)

where φ̂ is the unit vector in the azimuthal direction (in the xy plane) in cylindrical
coordinates.

If the charges are accelerated, or if the current varies with time, an electro-
magnetic wave is produced, in which �E and �B vary not only with �r but also
with t. The mathematical expression that describes such a wave may have many
different forms, depending on the properties of the source of the wave and of the
medium through which the wave travels. One special form is the plane wave, in
which the wave fronts are planes. (A point source, on the other hand, produces
spherical waves, in which the wave fronts are spheres.) A plane electromagnetic
wave traveling in the positive z direction is described by the expressions

�E = �E0 sin(kz − ωt), �B = �B0 sin(kz − ωt) (3.3)

where the wave number k is found from the wavelength λ (k = 2π/λ) and the
angular frequency ω is found from the frequency f (ω = 2π f ). Because λ and f
are related by c = λf , k and ω are also related by c = ω/k.

The polarization of the wave is represented by the vector �E0; the plane of
polarization is determined by the direction of �E0 and the direction of propagation,
the z axis in this case. Once we specify the direction of travel and the polarization
�E0, the direction of �B0 is fixed by the requirements that �B must be perpendicular
to both �E and the direction of travel, and that the vector product �E × �B point in
the direction of travel. For example if �E0 is in the x direction (�E0 = E0 î, where î
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is a unit vector in the x direction), then �B0 must be in the y direction (�B0 = B0 ĵ).
Moreover, the magnitude of �B0 is determined by

B0 = E0

c
(3.4)

where c is the speed of light.
An electromagnetic wave transmits energy from one place to another; the

energy flux is specified by the Poynting vector �S:

�S = 1

μ0

�E × �B (3.5)

For the plane wave, this reduces to

�S = 1

μ0
E0B0 sin2(kz − ωt)k̂ (3.6)

where k̂ is a unit vector in the z direction. The Poynting vector has dimensions
of power (energy per unit time) per unit area—for example, J/s/m2 or W/m2.
Figure 3.1 shows the orientation of the vectors �E, �B, and �S for this special case.

S�

y

x

z

B�

B�

E�

E�

FIGURE 3.1 An electromagnetic wave
traveling in the z direction. The electric
field �E lies in the xz plane and the
magnetic field �B lies in the yz plane.

Let us imagine the following experiment. We place a detector of electromag-
netic radiation (a radio receiver or a human eye) at some point on the z axis,
and we determine the electromagnetic power that this plane wave delivers to the
receiver. The receiver is oriented with its sensitive area A perpendicular to the z
axis, so that the maximum signal is received; we can therefore drop the vector
representation of �S and work only with its magnitude S. The power P entering the
receiver is then

P = SA = 1

μ0
E0B0A sin2(kz − ωt) (3.7)

which we can rewrite using Eq. 3.4 as

P = 1

μ0c
E2

0A sin2(kz − ωt) (3.8)

There are two important features of this expression that you should recognize:

1. The intensity (the average power per unit area) is proportional to E2
0. This

is a general property of waves: the intensity is proportional to the square of the
amplitude. We will see later that this same property also characterizes the waves
that describe the behavior of material particles.

2. The intensity fluctuates with time, with the frequency 2f = 2(ω/2π). We
don’t usually observe this rapid fluctuation—visible light, for example, has a
frequency of about 1015 oscillations per second, and because our eye doesn’t
respond that quickly, we observe the time average of many (perhaps 1013) cycles.
If T is the observation time (perhaps 10−2 s in the case of the eye) then the average
power is

Pav = 1

T

∫ T

0
Pdt (3.9)

and using Eq. 3.8 we obtain the intensity I :

I = Pav

A
= 1

2μ0c
E2

0 (3.10)

because the average value of sin2θ is 1/2.
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Interference and Diffraction

The property that makes waves a unique physical phenomenon is the principle
of superposition, which, for example, allows two waves to meet at a point, to
cause a combined disturbance at the point that might be greater or less than the
disturbance produced by either wave alone, and finally to emerge from the point
of “collision” with all of the properties of each wave totally unchanged by the
collision. To appreciate this important distinction between material objects and
waves, imagine trying that trick with two automobiles!

This special property of waves leads to the phenomena of interference and
diffraction. The simplest and best-known example of interference is Young’s
double-slit experiment, in which a monochromatic plane wave is incident on
a barrier in which two narrow slits have been cut. (This experiment was first
done with light waves, but in fact any wave will do as well, not only other
electromagnetic waves, such as microwaves, but also mechanical waves, such as
water waves or sound waves. We assume that the experiment is being done with
light waves.)

Maxima

Double
slit

wave fronts
Plane

Screen
Minima

(a)

(b)

FIGURE 3.2 (a) Young’s double-
slit experiment. A plane wave front
passes through both slits; the wave
is diffracted at the slits, and inter-
ference occurs where the diffracted
waves overlap on the screen. (b) The
interference fringes observed on the
screen.

Figure 3.2 illustrates this experimental arrangement. The plane wave is
diffracted by each of the slits, so that the light passing through each slit covers a
much larger area on the screen than the geometric shadow of the slit. This causes
the light from the two slits to overlap on the screen, producing the interference.
If we move away from the center of the screen just the right distance, we reach
a point at which a wave crest passing through one slit arrives at exactly the
same time as the previous wave crest that passed through the other slit. When this
occurs, the intensity is a maximum, and a bright region appears on the screen. This
is constructive interference, and it occurs continually at the point on the screen
that is exactly one wavelength further from one slit than from the other. That is,
if X1 and X2 are the distances from the point on the screen to the two slits, then a
condition for maximum constructive interference is |X1 − X2| = λ. Constructive
interference occurs when any wave crest from one slit arrives simultaneously
with another from the other slit, whether it is the next, or the fourth, or the
forty-seventh. The general condition for complete constructive interference is that
the difference between X1 and X2 be an integral number of wavelengths:

|X1 − X2| = nλ n = 0, 1, 2, . . . (3.11)

It is also possible for the crest of the wave from one slit to arrive at a point on
the screen simultaneously with the trough (valley) of the wave from the other slit.
When this happens, the two waves cancel, giving a dark region on the screen. This
is known as destructive interference. (The existence of destructive interference at
intensity minima immediately shows that we must add the electric field vectors �E
of the waves from the two slits, and not their powers P, because P can never be
negative.) Destructive interference occurs whenever the distances X1 and X2 are
such that the phase of one wave differs from the other by one-half cycle, or by
one and one-half cycles, two and one-half cycles, and so forth:

|X1 − X2| = 1
2λ, 3

2λ, 5
2λ, . . . = (n + 1

2 )λ n = 0, 1, 2, . . . (3.12)

We can find the locations on the screen where the interference maxima occur in
the following way. Let d be the separation of the slits, and let D be the distance
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from the slits to the screen. If yn is the distance from the center of the screen to the
nth maximum, then from the geometry of Figure 3.3 we find (assuming X1 > X2)

X 2
1 = D2 +

(
d

2
+ yn

)2

and X 2
2 = D2 +

(
d

2
− yn

)2

(3.13)

Subtracting these equations and solving for yn, we obtain
X1 X2

D

d

yn − yn
d
2

d
2

FIGURE 3.3 The geometry of the
double-slit experiment.

yn = X 2
1 − X 2

2

2d
= (X1 + X2)(X1 − X2)

2d
(3.14)

In experiments with light, D is of order 1 m, and yn and d are typically at most
1 mm; thus X1

∼= D and X2
∼= D, so X1 + X2

∼= 2D, and to a good approximation

yn = (X1 − X2)
D

d
(3.15)

Using Eq. 3.11 for the values of (X1 − X2) at the maxima, we find

yn = n
λD

d
(3.16)

Crystal Diffraction of X Rays
Another device for observing the interference of light waves is the diffraction
grating, in which the wave fronts pass through a barrier that has many slits
(often thousands or tens of thousands) and then recombine. The operation of this
device is illustrated in Figure 3.4; interference maxima corresponding to different
wavelengths appear at different angles θ , according to

d sin θ = nλ (3.17)

where d is the slit spacing and n is the order number of the maximum
(n = 1, 2, 3, . . .).

The advantage of the diffraction grating is its superior resolution—it enables us
to get very good separation of wavelengths that are close to one another, and thus it
is a very useful device for measuring wavelengths. Notice, however, that in order
to get reasonable values of the angle θ —for example, sin θ in the range of 0.3
to 0.5—we must have d of the order of a few times the wavelength. For visible
light this is not particularly difficult, but for radiations of very short wavelength,
mechanical construction of a grating is not possible. For example, for X rays with
a wavelength of the order of 0.1 nm, we would need to construct a grating in
which the slits were less than 1 nm apart, which is roughly the same as the spacing
between the atoms of most materials.

θ

Grating

Red

Blue

Source

FIGURE 3.4 The use of a diffrac-
tion grating to analyze light into its
constituent wavelengths.

The solution to this problem has been known since the pioneering experiments
of Laue and Bragg:∗ use the atoms themselves as a diffraction grating! A beam
of X rays sees the regular spacings of the atoms in a crystal as a sort of
three-dimensional diffraction grating.

∗Max von Laue (1879–1960, Germany) developed the method of X-ray diffraction for the study of
crystal structures, for which he received the 1914 Nobel Prize. Lawrence Bragg (1890–1971, England)
developed the Bragg law for X-ray diffraction while he was a student at Cambridge University. He
shared the 1915 Nobel Prize with his father, William Bragg, for their research on the use of X rays to
determine crystal structures.



74 Chapter 3 | The Particlelike Properties of Electromagnetic Radiation

Consider the set of atoms shown in Figure 3.5, which represents a small portion
of a two-dimensional slice of the crystal. The X rays are reflected from individual
atoms in all directions, but in only one direction will the scattered “wavelets”
constructively interfere to produce a reflected beam, and in this case we can
regard the reflection as occurring from a plane drawn through the row of atoms.
(This situation is identical with the reflection of light from a mirror—only in
one direction will there be a beam of reflected light, and in that direction we can
regard the reflection as occurring on a plane with the angle of incidence equal to
the angle of reflection.)

X rays

d sin θ 

d

Reflection
planes

θ

FIGURE 3.5 A beam of X rays
reflected from a set of crystal planes
of spacing d. The beam reflected from
the second plane travels a distance 2d
sin θ greater than the beam reflected
from the first plane.

Suppose the rows of atoms are a distance d apart in the crystal. Then a portion
of the beam is reflected from the front plane, and a portion is reflected from the
second plane, and so forth. The wave fronts of the beam reflected from the second
plane lag behind those reflected from the front plane, because the wave reflected
from the second plane must travel an additional distance of 2d sin θ , where θ

is the angle of incidence as measured from the face of the crystal. (Note that
this is different from the usual procedure in optics, in which angles are defined
with respect to the normal to the surface.) If this path difference is a whole
number of wavelengths, the reflected beams interfere constructively and give an
intensity maximum; thus the basic expression for the interference maxima in
X-ray diffraction from a crystal is

2d sin θ = nλ n = 1, 2, 3, . . . (3.18)

This result is known as Bragg’s law for X-ray diffraction. Notice the factor of 2
that appears in Eq. 3.18 but does not appear in the otherwise similar expression
of Eq. 3.17 for the ordinary diffraction grating.

Example 3.1

A single crystal of table salt (NaCl) is irradiated with
a beam of X rays of wavelength 0.250 nm, and the first
Bragg reflection is observed at an angle of 26.3◦. What is
the atomic spacing of NaCl?

Solution
Solving Bragg’s law for the spacing d, we have

d = nλ

2 sin θ
= 0.250 nm

2 sin 26.3◦ = 0.282 nm

θ1

θ2

θ3

d1

d2

d3

Incident
beam

Reflected
beams

FIGURE 3.6 An incident beam of X
rays can be reflected from many dif-
ferent crystal planes.

Our drawing of Figure 3.5 was very arbitrary—we had no basis for choosing
which set of atoms to draw the reflecting planes through. Figure 3.6 shows a larger
section of the crystal. As you can see, there are many possible reflecting planes,
each with a different value of θ and d. (Of course, di and θi are related and cannot
be varied independently.) If we used a beam of X rays of a single wavelength,
it might be difficult to find the proper angle and set of planes to observe the
interference. However, if we use a beam of X rays of a continuous range of
wavelengths, for each di and θi interference will occur for a certain wavelength
λi, and so there will be a pattern of interference maxima appearing at different
angles of reflection as shown in Figure 3.6. The pattern of interference maxima
depends on the spacing and the type of arrangement of the atoms in the crystal.

Figure 3.7 shows sample patterns (called Laue patterns) that are obtained
from X-ray scattering from two different crystals. The bright dots correspond to
interference maxima for wavelengths from the range of incident wavelengths that
happen to satisfy Eq. 3.18. The three-dimensional pattern is more complicated
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(a) (b) (c)

Incident X rays
(full range of
wavelengths)

Crystal

Film

Scattered
X rays

FIGURE 3.7 (a) Apparatus for observing X-ray scattering by a crystal. An interference maximum (dot) appears on the
film whenever a set of crystal planes happens to satisfy the Bragg condition for a particular wavelength. (b) Laue pattern
of TiO2 crystal. (c) Laue pattern of a polyethylene crystal. The differences between the two Laue patterns are due to the
differences in the geometric structure of the two crystals.

than our two-dimensional drawings, but the individual dots have the same
interpretation. Figure 3.8 shows the pattern obtained from a sample that consists
of many tiny crystals, rather than one single crystal. (It looks like Figure 3.7b
or 3.7c rotated rapidly about its center.) From such pictures it is also possible to
deduce crystal structures and lattice spacing.

Film

Powder

Scattered
X rays

Incident
X rays

(a)

(b)

FIGURE 3.8 (a) Apparatus for ob-
serving X-ray scattering from a
powdered or polycrystalline sample.
Because the individual crystals have
many different orientations, each scat-
tered ray of Figure 3.7 becomes a
cone which forms a circle on the film.
(b) Diffraction pattern (known as
Debye-Scherrer pattern) of polycrys-
talline gold.

All of the examples we have discussed in this section depend on the wave
properties of electromagnetic radiation. However, as we now begin to discuss,
there are other experiments that cannot be explained if we regard electromagnetic
radiation as waves.

3.2 THE PHOTOELECTRIC EFFECT

We’ll now turn to our discussion of the first of three experiments that cannot be
explained by the wave theory of light. When a metal surface is illuminated with
light, electrons can be emitted from the surface. This phenomenon, known as the
photoelectric effect, was discovered by Heinrich Hertz in 1887 in the process
of his research into electromagnetic radiation. The emitted electrons are called
photoelectrons.

A sample experimental arrangement for observing the photoelectric effect
is illustrated in Figure 3.9. Light falling on a metal surface (the emitter) can
release electrons, which travel to the collector. The experiment must be done
in an evacuated tube, so that the electrons do not lose energy in collisions with
molecules of the air. Among the properties that can be measured are the rate of
electron emission and the maximum kinetic energy of the photoelectrons.∗

The rate of electron emission can be measured as an electric current i by an
ammeter in the external circuit. The maximum kinetic energy of the electrons

∗The electrons can be emitted with many different kinetic energies, depending on how tightly bound
they are to the metal. Here we are concerned only with the maximum kinetic energy, which depends
on the energy needed to remove the least tightly bound electron from the surface of the metal.
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can be measured by applying a negative potential to the collector that is just
enough to repel the most energetic electrons, which then do not have enough
energy to “climb” the potential energy hill. That is, if the potential difference
between the emitter and the collector is �V (a negative quantity), then electrons
traveling from the emitter to the collector would gain a potential energy of
�U = q �V = −e �V (a positive quantity) and would lose the same amount of
kinetic energy. Electrons leaving the emitter with a kinetic energy smaller than
this �U cannot reach the collector and are pushed back toward the emitter.

e
i

Emitter

Light

Collector

A
Vext

V

FIGURE 3.9 Apparatus for observing
the photoelectric effect. The flow of
electrons from the emitter to the col-
lector is measured by the ammeter A
as a current i in the external circuit.
A variable voltage source Vext estab-
lishes a potential difference between
the emitter and collector, which is
measured by the voltmeter V .

As the magnitude of the potential difference is increased, at some point even the
most energetic electrons do not have enough kinetic energy to reach the collector.
This potential, called the stopping potential Vs, is determined by increasing the
magnitude of the voltage until the ammeter current drops to zero. At this point
the maximum kinetic energy Kmax of the electrons as they leave the emitter is just
equal to the kinetic energy eVs lost by the electrons in “climbing” the hill:

Kmax = eVs (3.19)

where e is the magnitude of the electric charge of the electron. Typical values of
Vs are a few volts.∗

In the classical picture, the surface of the metal is illuminated by an electro-
magnetic wave of intensity I . The surface absorbs energy from the wave until
the energy exceeds the binding energy of the electron to the metal, at which
point the electron is released. The minimum quantity of energy needed to remove
an electron is called the work function φ of the material. Table 3.1 lists some
values of the work function of different materials. You can see that the values are
typically a few electron-volts.

TABLE 3.1 Some Photoelectric Work
Functions

Material φ (eV)

Na 2.28

Al 4.08

Co 3.90

Cu 4.70

Zn 4.31

Ag 4.73

Pt 6.35

Pb 4.14

The Classical Theory of the Photoelectric
Effect
What does the classical wave theory predict about the properties of the emitted
photoelectrons?

1. The maximum kinetic energy of the electrons should be proportional to the
intensity of the radiation. As the brightness of the light source is increased,
more energy is delivered to the surface (the electric field is greater) and
the electrons should be released with greater kinetic energies. Equivalently,
increasing the intensity of the light source increases the electric field �E of the
wave, which also increases the force �F = −e�E on the electron and its kinetic
energy when it eventually leaves the surface.

2. The photoelectric effect should occur for light of any frequency or wavelength.
According to the wave theory, as long as the light is intense enough to release
electrons, the photoelectric effect should occur no matter what the frequency
or wavelength.

3. The first electrons should be emitted in a time interval of the order of seconds
after the radiation begins to strike the surface. In the wave theory, the energy
of the wave is uniformly distributed over the wave front. If the electron
absorbs energy directly from the wave, the amount of energy delivered to any

∗The potential difference �V read by the voltmeter is not equal to the stopping potential when the
emitter and collector are made of different materials. In that case a correction must be applied to
account for the contact potential difference between the emitter and collector.
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electron is determined by how much radiant energy is incident on the surface
area in which the electron is confined. Assuming this area is about the size of
an atom, a rough calculation leads to an estimate that the time lag between
turning on the light and observing the first photoelectrons should be of the
order of seconds (see Example 3.2).

Example 3.2

A laser beam with an intensity of 120 W/m2 (roughly that
of a small helium-neon laser) is incident on a surface of
sodium. It takes a minimum energy of 2.3 eV to release
an electron from sodium (the work function φ of sodium).
Assuming the electron to be confined to an area of radius
equal to that of a sodium atom (0.10 nm), how long will it
take for the surface to absorb enough energy to release an
electron?

Solution
The average power Pav delivered by the wave of intensity
I to an area A is IA. An atom on the surface dis-
plays a “target area” of A = πr2 = π(0.10 × 10−9 m)2 =
3.1 × 10−20 m2. If the entire electromagnetic power is
delivered to the electron, energy is absorbed at the rate

�E/�t = Pav. The time interval �t necessary to absorb an
energy �E = φ can be expressed as

�t = �E

Pav
= φ

IA

= (2.3 eV)(1.6 × 10−19 J/eV)

(120 W/m2)(3.1 × 10−20 m2)
= 0.10 s

In reality, electrons in metals are not always bound to indi-
vidual atoms but instead can be free to roam throughout the
metal. However, no matter what reasonable estimate we
make for the area over which the energy is absorbed, the
characteristic time for photoelectron emission is estimated
to have a magnitude of the order of seconds, in a range
easily accessible to measurement.

Potential difference ΔV
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FIGURE 3.10 The photoelectric cur-
rent i as a function of the potential
difference �V for two different val-
ues of the intensity of the light. When
the intensity I is doubled, the current
is doubled (twice as many photoelec-
trons are emitted), but the stopping
potential Vs remains the same.

The experimental characteristics of the photoelectric effect were well known
by the year 1902. How do the predictions of the classical theory compare with the
experimental results?

1. For a fixed value of the wavelength or frequency of the light source, the
maximum kinetic energy of the emitted photoelectrons (determined from the
stopping potential) is totally independent of the intensity of the light source.
Figure 3.10 shows a representation of the experimental results. Doubling the
intensity of the source leaves the stopping potential unchanged, indicating no
change in the maximum kinetic energy of the electrons. This experimental
result disagrees with the wave theory, which predicts that the maximum
kinetic energy should depend on the intensity of the light.

2. The photoelectric effect does not occur at all if the frequency of the light
source is below a certain value. This value, which is characteristic of the
kind of metal surface used in the experiment, is called the cutoff frequency fc.
Above fc, any light source, no matter how weak, will cause the emission of
photoelectrons; below fc, no light source, no matter how strong, will cause the
emission of photoelectrons. This experimental result also disagrees with the
predictions of the wave theory.

3. The first photoelectrons are emitted virtually instantaneously (within 10−9s)
after the light source is turned on. The wave theory predicts a measurable
time delay, so this result also disagrees with the wave theory.

These three experimental results all suggest the complete failure of the wave
theory to account for the photoelectric effect.
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The Quantum Theory of the Photoelectric
Effect
A successful theory of the photoelectric effect was developed in 1905 by Albert
Einstein. Five years earlier, in 1900, the German physicist Max Planck had
developed a theory to explain the wavelength distribution of light emitted by
hot, glowing objects (called thermal radiation, which is discussed in the next
section of this chapter). Based partly on Planck’s ideas, Einstein proposed that the
energy of electromagnetic radiation is not continuously distributed over the wave
front, but instead is concentrated in localized bundles or quanta (also known as
photons). The energy of a photon associated with an electromagnetic wave of
frequency f is

E = hf (3.20)

where h is a proportionality constant known as Planck’s constant. The photon
energy can also be related to the wavelength of the electromagnetic wave by
substituting f = c/λ, which gives

E = hc

λ
(3.21)

We often speak about photons as if they were particles, and as concentrated
bundles of energy they have particlelike properties. Like the electromagnetic
waves, photons travel at the speed of light, and so they must obey the relativistic
relationship p = E/c. Combining this with Eq. 3.21, we obtain

p = h

λ
(3.22)

Photons carry linear momentum as well as energy, and thus they share this
characteristic property of particles.

Because a photon travels at the speed of light, it must have zero mass. Otherwise
its energy and momentum would be infinite. Similarly, a photon’s rest energy
E0 = mc2 must also be zero.

In Einstein’s interpretation, a photoelectron is released as a result of an
encounter with a single photon. The entire energy of the photon is delivered
instantaneously to a single photoelectron. If the photon energy hf is greater than
the work function φ of the material, the photoelectron will be released. If the
photon energy is smaller than the work function, the photoelectric effect will not
occur. This explanation thus accounts for two of the failures of the wave theory:
the existence of the cutoff frequency and the lack of any measurable time delay.

If the photon energy hf exceeds the work function, the excess energy appears
as the kinetic energy of the electron:

Kmax = hf − φ (3.23)

The intensity of the light source does not appear in this expression! For a fixed
frequency, doubling the intensity of the light means that twice as many photons
strike the surface and twice as many photoelectrons are released, but they all have
precisely the same maximum kinetic energy.
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You can think of Eq. 3.23 as giving a relationship between energy quantities in
analogy to making a purchase at a store. The quantity hf represents the payment
you hand to the cashier, the quantity φ represents the cost of the object, and Kmax
represents the change you receive. In the photoelectric effect, hf is the amount
of energy that is available to “purchase” an electron from the surface, the work
function φ is the “cost” of removing the least tightly bound electron from the
surface, and the difference between the available energy and the removal cost is
the leftover energy that appears as the kinetic energy of the emitted electron. (The
more tightly bound electrons have a greater “cost” and so emerge with smaller
kinetic energies.)

Robert A. Millikan (1868–1953,
United States). Perhaps the best exper-
imentalist of his era, his work included
the precise determination of Planck’s
constant using the photoelectric effect
(for which he received the 1923 Nobel
Prize) and the measurement of the
charge of the electron (using his
famous “oil-drop” apparatus).

A photon that supplies an energy equal to φ, exactly the minimum amount
needed to remove an electron, corresponds to light of frequency equal to the cutoff
frequency fc. At this frequency, there is no excess energy for kinetic energy, so
Eq. 3.23 becomes hfc = φ, or

fc = φ

h
(3.24)

The corresponding cutoff wavelength λc = c/fc is

λc = hc

φ
(3.25)

The cutoff wavelength represents the largest wavelength for which the photoelec-
tric effect can be observed for a surface with the work function φ.

The photon theory appears to explain all of the observed features of the
photoelectric effect. The most detailed test of the theory was done by Robert
Millikan in 1915. Millikan measured the maximum kinetic energy (stopping
potential) for different frequencies of the light and obtained a plot of Eq. 3.23. A
sample of his results is shown in Figure 3.11. From the slope of the line, Millikan
obtained a value for Planck’s constant of

h = 6.57 × 10−34 J · s
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FIGURE 3.11 Millikan’s results for
the photoelectric effect in sodium. The
slope of the line is h/e; the experimen-
tal determination of the slope gives a
way of determining Planck’s constant.
The intercept should give the cut-
off frequency; however, in Millikan’s
time the contact potentials of the elec-
trodes were not known precisely and
so the vertical scale is displaced by
a few tenths of a volt. The slope not
affected by this correction.

In part for his detailed experiments on the photoelectric effect, Millikan was
awarded the 1923 Nobel Prize in physics. Einstein was awarded the 1921 Nobel
Prize for his photon theory as applied to the photoelectric effect.

As we discuss in the next section, the wavelength distribution of thermal
radiation also yields a value for Planck’s constant, which is in good agreement
with Millikan’s value derived from the photoelectric effect. Planck’s constant is
one of the fundamental constants of nature; just as c is the characteristic constant
of relativity, h is the characteristic constant of quantum mechanics. The value of
Planck’s constant has been measured to great precision in a variety of experiments.
The presently accepted value is

h = 6.6260696 × 10−34 J · s

This is an experimentally determined value, with a relative uncertainty of about
5 × 10−8 (±3 units in the last digit).
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Example 3.3

(a) What are the energy and momentum of a photon of red
light of wavelength 650 nm? (b) What is the wavelength of
a photon of energy 2.40 eV?

Solution
(a) Using Eq. 3.21 we obtain

E = hc

λ
= (6.63 × 10−34 J · s)(3.00 × 108 m/s)

650 × 10−9 m
= 3.06 × 10−19 J

Converting to electron-volts, we have

E = 3.06 × 10−19 J

1.60 × 10−19 J/eV
= 1.91 eV

This type of problem can be simplified if we express the
combination hc in units of eV · nm:

E = hc

λ
= 1240 eV · nm

650 nm
= 1.91 eV

The momentum is found in a similar way, using
Eq. 3.22

p = h

λ
= 1

c

hc

λ
= 1

c

(
1240 eV · nm

650 nm

)
= 1.91 eV/c

The momentum could also be found directly from the
energy:

p = E

c
= 1.91 eV

c
= 1.91 eV/c

(It may be helpful to review the discussion in Example 2.11
about these units of momentum.)
(b) Solving Eq. 3.21 for λ, we find

λ = hc

E
= 1240 eV · nm

2.40 eV
= 517 nm

Example 3.4

The work function for tungsten metal is 4.52 eV. (a) What
is the cutoff wavelength λc for tungsten? (b) What is the
maximum kinetic energy of the electrons when radiation
of wavelength 198 nm is used? (c) What is the stopping
potential in this case?

Solution
(a) Equation 3.25 gives

λc = hc

φ
= 1240 eV · nm

4.52 eV
= 274 nm

in the ultraviolet region.

(b) At the shorter wavelength,

Kmax = hf − φ = hc

λ
− φ

= 1240 eV · nm

198 nm
− 4.52 eV

= 1.74 eV

(c) The stopping potential is the voltage corresponding
to Kmax:

Vs = Kmax

e
= 1.74 eV

e
= 1.74 V

3.3 THERMAL RADIATION

The second type of experiment we discuss that cannot be explained by the classical
wave theory is thermal radiation, which is the electromagnetic radiation emitted
by all objects because of their temperature. At room temperature the thermal
radiation is mostly in the infrared region of the spectrum, where our eyes are not
sensitive. As we heat objects to higher temperatures, they may emit visible light.
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A typical experimental arrangement is shown in Figure 3.12. An object is
maintained at a temperature T1. The radiation emitted by the object is detected
by an apparatus that is sensitive to the wavelength of the radiation. For example,
a dispersive medium such as a prism can be used so that different wavelengths
appear at different angles θ . By moving the radiation detector to different angles
θ we can measure the intensity∗ of the radiation at a specific wavelength. The
detector is not a geometrical point (hardly an efficient detector!) but instead
subtends a small range of angles �θ , so what we really measure is the amount of
radiation in some range �θ at θ , or, equivalently, in some range �λ at λ.

Detector

Δθθ

Prism

Object at
temperature T1

FIGURE 3.12 Measurement of the
spectrum of thermal radiation. A
device such as a prism is used to sep-
arate the wavelengths emitted by the
object.

Many experiments were done in the late 19th century to study the wavelength
spectrum of thermal radiation. These experiments, as we shall see, gave results that
totally disagreed with the predictions of the classical theories of thermodynamics
and electromagnetism; instead, the successful analysis of the experiments provided
the first evidence of the quantization of energy, which would eventually be seen
as the basis for the new quantum theory.

Let’s first review the experimental results. The goal of these experiments was
to measure the intensity of the radiation emitted by the object as a function of
wavelength. Figure 3.13 shows a typical set of experimental results when the
object is at a temperature T1 = 1000 K. If we now change the temperature of the
object to a different value T2, we obtain a different curve, as shown in Figure 3.13
for T2 = 1250 K. If we repeat the measurement for many different temperatures,
we obtain systematic results for the radiation intensity that reveal two important
characteristics:

1. The total intensity radiated over all wavelengths (that is, the area under each
curve) increases as the temperature is increased. This is not a surprising result:
we commonly observe that a glowing object glows brighter and thus radiates
more energy as we increase its temperature. From careful measurement, we
find that the total intensity increases as the fourth power of the absolute or
kelvin temperature:

I = σT4 (3.26)

where we have introduced the proportionality constant σ . Equation 3.26 is
called Stefan’s law and the constant σ is called the Stefan-Boltzmann constant.
Its value can be determined from experimental results such as those illustrated
in Figure 3.13:

σ = 5.67037 × 10−8 W/m2 · K4

2. The wavelength λmax at which the emitted intensity reaches its maximum
value decreases as the temperature is increased, in inverse proportion to the
temperature: λmax ∝ 1/T . From results such as those of Figure 3.13, we can
determine the proportionality constant, so that
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FIGURE 3.13 A possible result of the
measurement of the radiation intensity
overmanydifferentwavelengths.Each
different temperature of the emitting
body gives a different peak λmax.

λmaxT = 2.8978 × 10−3 m · K (3.27)

This result is known as Wien’s displacement law; the term “displacement”
refers to the way the peak is moved or displaced as the temperature is

∗As always, intensity means energy per unit time per unit area (or power per unit area), as in Eq. 3.10.
Previously, “unit area” referred to the wave front, such as would be measured if we recorded the waves
with an antenna of a certain area. Here, “unit area” indicates the electromagnetic radiation emitted
from each unit area of the surface of the object whose thermal emissions are being observed.
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varied. Wien’s law is qualitatively consistent with our common observation
that heated objects first begin to glow with a red color, and at higher temper-
atures the color becomes more yellow. As the temperature is increased, the
wavelength at which most of the radiation is emitted moves from the longer-
wavelength (red) part of the visible region toward medium wavelengths. The
term “white hot” refers to an object that is hot enough to produce the mixture
of all wavelengths in the visible region to make white light.

Example 3.5

(a) At what wavelength does a room-temperature (T =
20◦C) object emit the maximum thermal radiation?
(b) To what temperature must we heat it until its peak
thermal radiation is in the red region of the spectrum
(λ = 650 nm)? (c) How many times as much thermal
radiation does it emit at the higher temperature?

Solution
(a) Using the absolute temperature, T1 = 273 + 20 =
293 K, Wien’s displacement law gives

λmax = 2.8978 × 10−3 m · K

T1

= 2.8978 × 10−3 m · K

293 K
= 9.89 μm

This is in the infrared region of the electromagnetic
spectrum.

(b) For λmax = 650 nm, we again use Wien’s displacement
law to find the new temperature T2 :

T2 = 2.8978 × 10−3 m · K

λmax

= 2.8978 × 10−3 m · K

650 × 10−9 m

= 4460 K

(c) The total intensity of radiation is proportional to T4, so
the ratio of the total thermal emissions will be

I2

I1
= σT4

2

σT4
1

= (4460 K)4

(293 K)4

= 5.37 × 104

Be sure to notice the use of absolute (kelvin) temperatures
in this example.

The theoretical analysis of the emission of thermal radiation from an arbitrary
object is extremely complicated. It depends on details of the surface properties
of the object, and it also depends on how much radiation the object reflects from
its surroundings. To simplify our analysis, we consider a special type of object
called a blackbody, which absorbs all radiation incident on it and reflects none of
the incident radiation.

FIGURE 3.14 A cavity filled with
electromagnetic radiation in thermal
equilibrium with its walls at tem-
perature T . Some radiation escapes
through the hole, which represents an
ideal blackbody.

To simplify further, we consider a special type of blackbody: a hole in a
hollow metal box whose walls are in thermal equilibrium at temperature T . The
box is filled with electromagnetic radiation that is emitted and reflected by the
walls. A small hole in one wall of the box allows some of the radiation to escape
(Figure 3.14). It is the hole, and not the box itself, that is the blackbody. Radiation
from outside that is incident on the hole gets lost inside the box and has a
negligible chance of reemerging from the hole; thus no reflections occur from the
blackbody (the hole). The radiation that emerges from the hole is just a sample
of the radiation inside the box, so understanding the nature of the radiation inside
the box allows us to understand the radiation that leaves through the hole.
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Let’s consider the radiation inside the box. It has an energy density (energy
per unit volume) per unit wavelength interval u(λ). That is, if we could look into
the interior of the box and measure the energy density of the electromagnetic
radiation with wavelengths between λ and λ + dλ in a small volume element,
the result would be u(λ)dλ. For the radiation in this wavelength interval, what
is the corresponding intensity (power per unit area) emerging from the hole? At
any particular instant, half of the radiation in the box will be moving away from
the hole. The other half of the radiation is moving toward the hole at velocity
of magnitude c but directed over a range of angles. Averaging over this range
of angles to evaluate the energy flowing perpendicular to the surface of the hole
introduces another factor of 1/2, so the contribution of the radiation in this small
wavelength interval to the intensity passing through the hole is

I(λ) = c

4
u(λ) (3.28)

The quantity I(λ)dλ is the radiant intensity in the small interval dλ at the
wavelength λ. This is the quantity whose measurement gives the results displayed
in Figure 3.13. Each data point represents a measurement of the intensity in a small
wavelength interval. The goal of the theoretical analysis is to find a mathematical
function I(λ) that gives a smooth fit through the data points of Figure 3.13.

If we wish to find the total intensity emitted in the region between wavelengths
λ1 and λ2, we divide the region into narrow intervals dλ and add the intensities in
each interval, which is equivalent to the integral between those limits:

I(λ1:λ2) =
∫ λ2

λ1

I(λ) dλ (3.29)

This is similar to Eq. 1.27 for determining the number of molecules with energies
between two limits. The total emitted intensity can be found by integrating over
all wavelengths:

I =
∫ ∞

0
I(λ) dλ (3.30)

This total intensity should work out to be proportional to the 4th power of the
temperature, as required by Stefan’s law (Eq. 3.26).

Classical Theory of Thermal Radiation

Before discussing the quantum theory of thermal radiation, let’s see what the
classical theories of electromagnetism and thermodynamics can tell us about the
dependence of I on λ. The complete derivation is not given here, only a brief
outline of the theory.∗ The derivation involves first computing the amount of
radiation (number of waves) at each wavelength and then finding the contribution
of each wave to the total energy in the box.

∗For a more complete derivation, see R. Eisberg and R. Resnick, Quantum Theory of Atoms, Molecules,
Solids, Nuclei, and Particles, 2nd edition (Wiley, 1985), pp. 9–13.
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1. The box is filled with electromagnetic standing waves. If the walls of the box
are metal, radiation is reflected back and forth with a node of the electric field
at each wall (the electric field must vanish inside a conductor). This is the
same condition that applies to other standing waves, like those on a stretched
string or a column of air in an organ pipe.

2. The number of standing waves with wavelengths between λ and λ + dλ is

N(λ) dλ = 8πV

λ4
dλ (3.31)

where V is the volume of the box. For one-dimensional standing waves, as
on a stretched string of length L, the allowed wavelength are λ = 2L/n, (n =
1, 2, 3, . . .). The number of possible standing waves with wavelengths between
λ1 and λ2 is n2 − n1 = 2L(1/λ2 − 1/λ1). In the small interval from λ to
λ + dλ, the number of standing waves is N(λ)dλ = |dn/dλ|dλ = (2L/λ2)dλ.
Equation 3.31 can be obtained by extending this approach to three dimensions.

3. Each individual wave contributes an average energy of kT to the radiation
in the box. This result follows from an analysis similar to that of Section 1.3
for the statistical mechanics of gas molecules. In this case we are interested
in the statistics of the oscillating atoms in the walls of the cavity, which are
responsible for setting up the standing electromagnetic waves in the cavity.
For a one-dimensional oscillator, the energies are distributed according to the
Maxwell-Boltzmann distribution:∗

N(E) = N

kT
e−E/kT (3.32)

Recall from Section 1.3 that N(E) is defined so that the number of oscillators
with energies between E and E + dE is dN = N(E)dE, and thus the total
number of oscillators at all energies is

∫
dN = ∫ ∞

0 N(E)dE, which (as you
should show) works out to N . The average energy per oscillator is then found
in the same way as the average energy of a gas molecule (Eq. 1.25):

Eav = 1

N

∫ ∞

0
E N(E) dE = 1

kT

∫ ∞

0
E e−E/kT dE (3.33)

which does indeed work out to Eav = kT .

Putting all these ingredients together, we can find the energy density of
radiation in the wavelength interval dλ inside the cavity: energy density = (number
of standing waves per unit volume) × (average energy per standing wave) or

u(λ) dλ = N(λ) dλ

V
kT = 8π

λ4
kT dλ (3.34)

The corresponding intensity per unit wavelength interval dλ is

I(λ) = c

4
u(λ) = c

4

8π

λ4
kT = 2πc

λ4
kT (3.35)

This result is known as the Rayleigh-Jeans formula; based firmly on the classical
theories of electromagnetism and thermodynamics, it represents our best attempt

∗The exponential part of this expression is that same as that of Eq. 1.22 for gas molecules, but the rest of
the equation is different, because the statistical behavior of one-dimensional oscillators is different from
that of gas molecules moving in three dimensions. We’ll consider these calculations in greater detail in
Chapter 10.
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to apply classical physics to understanding the problem of blackbody radiation.
In Figure 3.15 the intensity calculated from the Rayleigh-Jeans formula is
compared with typical experimental results. The intensity calculated with
Eq. 3.35 approaches the data at long wavelengths, but at short wavelengths, the
classical theory (which predicts u → ∞ as λ → 0) fails miserably. The failure
of the Rayleigh-Jeans formula at short wavelengths is known as the ultraviolet
catastrophe and represents a serious problem for classical physics, because the
theories of thermodynamics and electromagnetism on which the Rayleigh-Jeans
formula is based have been carefully tested in many other circumstances and
found to give extremely good agreement with experiment. It is apparent in the
case of blackbody radiation that the classical theories do not work, and that a
new kind of physical theory is needed.
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Rayleigh-Jeans

FIGURE 3.15 The failure of the clas-
sical Rayleigh-Jeans formula to fit
the observed intensity. At long wave-
lengths the theory approaches the data,
but at short wavelengths the classical
formula fails miserably.

Quantum Theory of Thermal Radiation
The new physics that gave the correct interpretation of thermal radiation was
proposed by the German physicist Max Planck in 1900. The ultraviolet catastrophe
occurs because the Rayleigh-Jeans formula predicts too much intensity at short
wavelengths (or equivalently at high frequencies). What is needed is a way to
make u → 0 as λ → 0, or as f → ∞. Again considering the electromagnetic
standing waves to result from the oscillations of atoms in the walls of the cavity,
Planck tried to find a way to reduce the number of high-frequency standing
waves by reducing the number of high-frequency oscillators. He did this by a
bold assumption that formed the cornerstone of a new physical theory, quantum
physics. Associated with this theory is a new version of mechanics, known
as wave mechanics or quantum mechanics. We discuss the methods of wave
mechanics in Chapter 5; for now we show how Planck’s theory provided the
correct interpretation of the emission spectrum of thermal radiation.

Planck suggested that an oscillating atom can absorb or emit energy only in
discrete bundles. This bold suggestion was necessary to keep the average energy
of a low-frequency (long-wavelength) oscillator equal to kT (in agreement with
the Rayleigh-Jeans law at long wavelength), but it also made the average energy
of a high-frequency (low-wavelength) oscillator approach zero. Let’s see how
Planck managed this remarkable feat.

In Planck’s theory, each oscillator can emit or absorb energy only in quantities
that are integer multiples of a certain basic quantity of energy ε,

En = nε n = 1, 2, 3, . . . (3.36)

where n is the number of quanta. Furthermore, the energy of each of the quanta is
determined by the frequency

Max Planck (1858–1947, Germany).
His work on the spectral distribution
of radiation, which led to the quan-
tum theory, was honored with the
1918 Nobel Prize. In his later years,
he wrote extensively on religious and
philosophical topics.

ε = hf (3.37)

where h is the constant of proportionality, now known as Planck’s constant. From
the mathematical standpoint, the difference between Planck’s calculation and
the classical calculation using Maxwell-Boltzmann statistics is that the energy
of an oscillator at a certain wavelength or frequency is no longer a continuous
variable—it is a discrete variable that takes only the values given by Eq. 3.36.
The integrals in the classical calculation are then replaced by sums, and the
number of oscillators with energy En is then

Nn = N(1 − e−ε/kT )e−nε/kT (3.38)
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(Compare this result with Eq. 3.32 for the continuous case.) Here Nn represents
the number of oscillators with energy En, while N is the total number. You should

be able to show that
∞∑

n=0
Nn = N , again giving the total number of oscillators when

summed over all possible energies. Planck’s calculation then gives the average
energy:

Eav = 1

N

∞∑
n=0

NnEn = (1 − e−ε/kT )

∞∑
n=0

(nε)e−nε/kT (3.39)

which gives (see Problem 14)1 2 3 4 5 6 7 8 9 10
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FIGURE 3.16 Planck’s function fits
the observed data perfectly.

Eav = ε

eε/kT − 1
= hf

ehf /kT − 1
= hc/λ

ehc/λkT − 1
(3.40)

Note from this equation that Eav
∼= kT at small f (large λ) but that Eav → 0 at

large f (small λ). Thus the small-wavelength oscillators carry a vanishingly small
energy, and the ultraviolet catastrophe is solved!

Based on Planck’s result, the intensity of the radiation then becomes (using
Eqs. 3.28 and 3.31):

I(λ) = c

4

(
8π

λ4

) [
hc/λ

ehc/λkT − 1

]
= 2πhc2

λ5

1

ehc/λkT − 1
(3.41)

(An alternative approach to deriving this result is given in Section 10.6.) The
perfect agreement between experiment and Planck’s formula is illustrated in
Figure 3.16.

In Problems 15 and 16 at the end of this chapter you will demonstrate that
Planck’s formula can be used to deduce Stefan’s law and Wien’s displacement
law. In fact, deducing Stefan’s law from Planck’s formula results in a relationship
between the Stefan-Boltzmann constant and Planck’s constant:

σ = 2π5k4

15c2h3
(3.42)

By determining the value of the Stefan-Boltzmann constant from the intensity
data available in 1900, Planck was able to determine a value of the constant h :

h = 6.56 × 10−34 J · s
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FIGURE 3.17 Data from the COBE
satellite, launched in 1989 to deter-
mine the temperature of the cosmic
microwave background radiation from
the early universe. The data points
exactly fit the Planck function corre-
sponding to a temperature of 2.725 K.
To appreciate the remarkable precision
of this experiment, note that the sizes
of the error bars have been increased
by a factor of 400 to make them vis-
ible! (Source: NASA Office of Space
Science)

which agrees very well with the value of h that Millikan deduced 15 years later
based on the analysis of data from the photoelectric effect. The good agreement
of these two values is remarkable, because they are derived from very different
kinds of experiments—one involves the emission and the other the absorption of
electromagnetic radiation. This suggests that the quantization property is not an
accident arising from the analysis of one particular experiment, but is instead a
property of the electromagnetic field itself. Along with many other scientists of
his era, Planck was slow to accept this interpretation. However, later experimental
evidence (including the Compton effect) proved to be so compelling that it left
no doubt about Einstein’s photon theory and the particlelike structure of the
electromagnetic field.
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Planck’s formula still finds important applications today in the measurement
of temperature. By measuring the intensity of radiation emitted by an object
at a particular wavelength (or, as in actual experiments, in a small interval of
wavelengths), Eq. 3.41 can be used to deduce the temperature of the object. Note
that only one measurement, at any wavelength, is all that is required to obtain
the temperature. A radiometer is a device for measuring the intensity of thermal
radiation at selected wavelengths, enabling a determination of temperature.
Radiometers in orbiting satellites are used to measure the temperature of the land
and sea areas of the Earth and of the upper surface of clouds. Other orbiting
radiometers have been aimed toward “empty space” to measure the temperature
of the radiation from the early history of the universe (Figure 3.17).

Example 3.6

You are using a radiometer to observe the thermal radiation
from an object that is heated to maintain its temperature at
1278 K. The radiometer records radiation in a wavelength
interval of 12.6 nm. By changing the wavelength at which
you are measuring, you set the radiometer to record the
most intense radiation emission from the object. What is
the intensity of the emitted radiation in this interval?

Solution
The wavelength setting for the most intense radiation is
determined from Wien’s displacement law:

λmax = 2.8978 × 10−3 m · K

T
= 2.8978 × 10−3 m · K

1278 K

= 2.267 × 10−6 m = 2267 nm

The given temperature corresponds to kT = (8.6174 ×
10−5 eV/K)(1278 K) = 0.1101 eV. The radiation intensity
in this small wavelength interval is

I(λ)dλ = 2πhc2

λ5

1

ehc/λkT − 1
dλ

= 2π(6.626 × 10−34 J · s)(2.998 × 108 m/s)2

×(12.6 × 10−9 m)(2.267 × 10−6 m)−5

×(e(1240 eV·nm)/(2267 nm)(0.1101 eV) − 1)−1

= 552 W/m2

3.4 THE COMPTON EFFECT

Another way for radiation to interact with matter is by means of the Compton
effect, in which radiation scatters from loosely bound, nearly free electrons. Part
of the energy of the radiation is given to the electron; the remainder of the energy
is reradiated as electromagnetic radiation. According to the wave picture, the
scattered radiation is less energetic than the incident radiation (the difference
going into the kinetic energy of the electron) but has the same wavelength. As we
will see, the photon concept leads to a very different prediction for the scattered
radiation.

The scattering process is analyzed simply as an interaction (a “collision” in
the classical sense of particles) between a single photon and an electron, which
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we assume to be at rest. Figure 3.18 shows the process. Initially, the photon has
energy E and linear momentum p given by

E = hf = hc

λ
and p = E

c
(3.43)

Scattered
electron

Scat
ter

ed photo
n

Incident
photon

E, p

E′, p′

Ee,  pe

θ

φ

FIGURE 3.18 The geometry of
Compton scattering.

The electron, initially at rest, has rest energy mec2. After the scattering, the photon
has energy E′ = hc/λ′ and momentum p′ = E′/c, and it moves in a direction at an
angle θ with respect to the direction of the incident photon. The electron has total
final energy Ee and momentum pe and moves in a direction at an angle φ with
respect to the initial photon. (To allow for the possibility of high-energy incident
photons giving energetic scattered electrons, we use relativistic kinematics for the
electron.) The conservation laws for total relativistic energy and momentum are
then applied:

Einitial = Efinal : E + mec2 = E′ + Ee (3.44a)

px,initial = px,final : p = pe cos φ + p′ cos θ (3.44b)

py,initial = py,final : 0 = pe sin φ − p′ sin θ (3.44c)

We have three equations with four unknowns (θ , φ, Ee, E′; pe and p′ are not
independent unknowns) that cannot be solved uniquely, but we can eliminate any
two of the four unknowns by solving the equations simultaneously. If we choose
to measure the energy and direction of the scattered photon, we eliminate Ee and
φ. The angle φ is eliminated by first rewriting the momentum equations:

pe cos φ = p − p′ cos θ and pe sin φ = p′ sin θ (3.45)

Squaring these equations and adding the results, we obtain

p2
e = p2 − 2pp′ cos θ + p′2 (3.46)

The relativistic relationship between energy and momentum is, according to
Eq. 2.39, E2

e = c2p2
e + m2

ec4. Substituting in this equation for Ee from Eq. 3.44a
and for p2

e from Eq. 3.46, we obtain

(E + mec2 − E′)2 = c2(p2 − 2pp′ cos θ + p′2) + m2
ec4 (3.47)

and after a bit of algebra, we find

1

E′ − 1

E
= 1

mec2
(1 − cos θ) (3.48)

In terms of wavelength, this equation can also be written as

λ′ − λ = h

mec
(1 − cos θ) (3.49)

where λ is the wavelength of the incident photon and λ′ is the wavelength of the
scattered photon. The quantity h/mec is known as the Compton wavelength of the
electron and has a value of 0.002426 nm; however, keep in mind that it is not a
true wavelength but rather is a change of wavelength.

Arthur H. Compton (1892–1962,
United States). His work on X-ray scat-
teringverifiedEinstein’sphotontheory
and earned him the 1927 Nobel Prize.
He was a pioneer in research with X
rays and cosmic rays. During World
War II he directed a portion of the U.S.
atomic bomb research.

Equations 3.48 and 3.49 give the change in energy or wavelength of the photon,
as a function of the scattering angle θ . Because the quantity on the right-hand side
is never negative, E′ is always less than E, so that the scattered photon has less
energy than the original incident photon; the difference E − E′ is just the kinetic
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energy given to the electron, Ee − mec2. Similarly, λ′ is greater than λ, meaning
the scattered photon always has a longer wavelength than the incident photon; the
change in wavelength ranges from 0 at θ = 0◦ to twice the Compton wavelength
at θ = 180◦. Of course the descriptions in terms of energy and wavelength are
equivalent, and the choice of which to use is merely a matter of convenience.

Using Ee = Ke + mec2, where Ke is the kinetic energy of the electron, conser-
vation of energy (Eq. 3.44a) can also be written as E + mec2 = E′ + Ke + mec2.
Solving for Ke, we obtain

Ke = E − E′ (3.50)

That is, the kinetic energy acquired by the electron is equal to the difference
between the initial and final photon energies.

We can also find the direction of the electron’s motion by dividing the two
momentum relationships in Equation 3.45:

tan φ = pe sin φ

pe cos φ
= p′ sin θ

p − p′ cos θ
= E′ sin θ

E − E′ cos θ
(3.51)

where the last result comes from using p = E/c and p′ = E′/c.

Example 3.7

X rays of wavelength 0.2400 nm are Compton-scattered,
and the scattered beam is observed at an angle of 60.0◦

relative to the incident beam. Find: (a) the wavelength
of the scattered X rays, (b) the energy of the scattered
X-ray photons, (c) the kinetic energy of the scattered
electrons, and (d) the direction of travel of the scattered
electrons.

Solution
(a) λ′ can be found immediately from Eq. 3.49:

λ′ = λ + h

mec
(1 − cos θ)

= 0.2400 + (0.00243 nm)(1 − cos 60◦
)

= 0.2412 nm

(b) The energy E′ can be found directly from λ′ :

E′ = hc

λ′ = 1240 eV · nm

0.2412 nm
= 5141 eV

(c) The initial photon energy E is hc/λ = 5167 eV, so

Ke = E − E′ = 5167 eV − 5141 eV = 26 eV

(d) From Eq. 3.51,

φ = tan−1 E′ sin θ

E − E′ cos θ

= tan−1 (5141 eV)( sin 60◦
)

(5167 eV) − (5141 eV)(cos 60◦)
= 59.7◦

The first experimental demonstration of this type of scattering was done by
Arthur Compton in 1923. A diagram of his experimental arrangement is shown in
Figure 3.19. A beam of X rays of a single wavelength λ is incident on a scattering
target, for which Compton used carbon. (Although no scattering target contains
actual “free” electrons, the outer or valence electrons in many materials are very
weakly attached to the atom and behave like nearly free electrons. The binding
energies of these electrons in the atom are so small compared with the energies of
the incident X-ray photons that they can be regarded as nearly “free” electrons.) A
movable detector measured the energy of the scattered X rays at various angles θ .
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Detector

Target

X-ray
source

λ′

λ′

λ

λ

θ

FIGURE 3.19 Schematic diagram of Compton-scattering apparatus. The wave-
length λ′ of the scattered X rays is measured by the detector, which can be moved
to different positions θ . The wavelength difference λ′ − λ varies with θ .

λ′ = 0.0749 nmλ = 0.0709 nm

90°

135°

45°

0°

λ′ = 0.0731 nm
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FIGURE 3.20 Compton’s original re-
sults for X-ray scattering.

Compton’s original results are illustrated in Figure 3.20. At each angle,
two peaks appear, corresponding to scattered X-ray photons with two different
energies or wavelengths. The wavelength of one peak does not change as the
angle is varied; this peak corresponds to scattering that involves “inner” electrons
of the atom, which are more tightly bound to the atom so that the photon can
scatter with no loss of energy. The wavelength of the other peak, however, varies
strongly with angle; as can be seen from Figure 3.21, this variation is exactly as
the Compton formula predicts.

Similar results can be obtained for the scattering of gamma rays, which
are higher-energy (shorter wavelength) photons emitted in various radioactive
decays. Compton also measured the variation in wavelength of scattered
gamma rays, as illustrated in Figure 3.22. The change in wavelength in the
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FIGURE 3.21 The scattered X-ray
wavelengths λ′, from Figure 3.20,
for different scattering angles. The
expected slope is 2.43 × 10−12 m, in
agreement with the measured slope
of Compton’s data points.
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FIGURE 3.22 Compton’s results for
gamma-ray scattering. The wave-
lengths are much smaller than for
X-rays, but the slope is the same as
in Figure 3.21, which the Compton
formula, Eq. 3.49, predicts.
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gamma-ray measurements is identical with the change in wavelength in the X-ray
measurements, as Eq. 3.49 predicts—the change in wavelength does not depend
on the incident wavelength.

3.5 OTHER PHOTON PROCESSES

Although thermal radiation, the photoelectric effect, and Compton scattering pro-
vided the earliest experimental evidence in support of the quantization (particlelike
behavior) of electromagnetic radiation, there are numerous other experiments that
can also be interpreted correctly only if we assume the existence of photons as
discrete quanta of electromagnetic radiation. In this section we discuss some of
these processes, which cannot be understood if we consider only the wave nature
of electromagnetic radiation. As you study the descriptions of these processes,
note how photons interact with atoms or electrons by delivering energy in discrete
bundles, in contrast to the wave interpretation in which the energy can be regarded
as arriving continuously.

Interactions of Photons with Atoms

The emission of electromagnetic radiation from atoms takes place in discrete
amounts characterized by one or more photons. When an atom emits a photon
of energy E, the atom loses an equivalent amount of energy. Consider an atom
at rest that has an initial energy Ei. The atom emits a photon of energy E. After
the emission, the atom is left with a final energy Ef , which we will take as the
energy associated with the internal structure of the atom. Because of conservation
of momentum, the final atom must have a momentum that is equal and opposite
to the momentum of the emitted photon, so the atom must also have a “recoil”
kinetic energy K. (Normally this kinetic energy is very small.) Conservation of
energy then gives

Ei = Ef + K + E or E = (Ei − Ef ) − K (3.52)

The energy of the emitted photon is equal to the net energy lost by the atom,
minus a negligibly small contribution to the recoil kinetic energy of the atom.

In the reverse process, an atom can absorb a photon of energy E. If the atom
is initially at rest, it must again acquire a small recoil kinetic energy in order to
conserve momentum. Now conservation of energy gives

Ei + E = Ef + K or Ef − Ei = E − K (3.53)

The energy available to add to the atom’s internal supply of energy is the photon
energy, less a recoil kinetic energy that is usually negligible.

Photon emission and absorption experiments are among the most important
techniques for acquiring information about the internal structure of atoms, as we
discuss in Chapter 6.
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Bremsstrahlung and X-ray Production

When an electric charge, such as an electron, is accelerated or decelerated, it
radiates electromagnetic energy; according to the quantum interpretation, we
would say that it emits photons. Suppose we have a beam of electrons, which
has been accelerated through a potential difference �V , so that the electrons
experience a loss in potential energy of −e �V and thus acquire a kinetic energy
of K = e �V (Figure 3.23). When the electrons strike a target they are slowed
down and eventually come to rest, because they make collisions with the atoms
of the target material. In such a collision, momentum is transferred to the atom,
the electron slows down, and photons are emitted. The recoil kinetic energy of
the atom is small (because the atom is so massive) and can safely be neglected. If
the electron has a kinetic energy K before the encounter and if it leaves after the
collision with a smaller kinetic energy K ′, then the photon energy hf = hc/λ is

hf = hc

λ
= K − K ′ (3.54)

The amount of energy lost, and therefore the energy and wavelength of the
emitted photon, are not uniquely determined, because K is the only known energy
in Eq. 3.54. An electron usually will make many collisions, and therefore emit
many different photons, before it is brought to rest; the photons then will range
all the way from very small energies (large wavelengths) corresponding to small
energy losses, up to a maximum photon energy hfmax equal to K, corresponding
to an electron that loses all of its kinetic energy K in a single encounter (that is,
when K ′ = 0). The smallest emitted wavelength λmin is therefore determined by
the maximum possible energy loss,

λmin = hc

K
= hc

e �V
(3.55)

C

X rays
(a)

ΔV

A X-ray photon
hf

K′Target atom

(b)

Electron

K

FIGURE 3.23 (a) Apparatus for producing bremsstrahlung. Electrons from a
cathode C are accelerated to the anode A through the potential difference �V .
When an electron encounters a target atom of the anode, it can lose energy, with the
accompanying emission of an X-ray photon. (b) A schematic representation of the
bremsstrahlung process.
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For typical accelerating voltages in the range of 10,000 V, λmin is in the range of
a few tenths of nm, which corresponds to the X-ray region of the spectrum. This
continuous distribution of X rays (which is very different from the discrete X-ray
energies that are emitted in atomic transitions; more about these in Chapter 8) is
called bremsstrahlung, which is German for braking, or decelerating, radiation.
Some sample bremsstrahlung spectra are illustrated in Figure 3.24.
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FIGURE 3.24 Some typical brems-
strahlung spectra. Each spectrum is
labeled with the value of the acceler-
ating voltage �V .

Symbolically we can write the bremsstrahlung process as

electron → electron + photon

This is just the reverse process of the photoelectric effect, which is

electron + photon → electron

However, neither process occurs for free electrons. In both cases there must be a
heavy atom in the neighborhood to take care of the recoil momentum.

Pair Production and Annihilation

Another process that can occur when photons encounter atoms is pair production,
in which the photon loses all its energy and in the process two particles are
created: an electron and a positron. (A positron is a particle that is identical in
mass to the electron but has a positive electric charge; more about antiparticles
in Chapter 14.) Here we have an example of the creation of rest energy. The
electron did not exist before the encounter of the photon with the atom (it was not
an electron that was part of the atom). The photon energy hf is converted into the
relativistic total energies E+ and E− of the positron and electron:

hf = E+ + E− = (mec2 + K+) + (mec2 + K−) (3.56)

Because K+ and K− are always positive, the photon must have an energy of
at least 2mec2 = 1.02 MeV in order for this process to occur; such high-energy
photons are in the region of nuclear gamma rays. Symbolically,

photon → electron + positron

This process, like bremsstrahlung, will not occur unless there is an atom nearby
to supply the necessary recoil momentum. The reverse process,

electron + positron → photon

also occurs; this process is known as electron-positron annihilation and can occur
for free electrons and positrons as long as at least two photons are created. In
this process the electron and positron disappear and are replaced by two photons.
Conservation of energy requires that

(mec2 + K+) + (mec2 + K−) = E1 + E2 (3.57)
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where E1 and E2 are the photon energies. Usually the kinetic energies K+ and K−
are negligibly small, so we can assume the positron and electron to be essentially
at rest. Momentum conservation then requires the two photons to have equal and
opposite momenta and thus equal energies. The two annihilation photons have
equal energies of 0.511 MeV (= mec2) and move in exactly opposite directions.

3.6 WHAT IS A PHOTON?

We can describe photons by giving a few of their basic properties:

• like an electromagnetic wave, photons move with the speed of light;
• they have zero mass and rest energy;
• they carry energy and momentum, which are related to the frequency and

wavelength of the electromagnetic wave by E = hf and p = h/λ ;
• they can be created or destroyed when radiation is emitted or absorbed;
• they can have particlelike collisions with other particles such as electrons.

In this chapter we have described some experiments that favor the photon
interpretation of electromagnetic radiation, according to which the energy of the
radiation is concentrated in small bundles. Other experiments, such as interference
and diffraction, favor the wave interpretation, according to which the energy of
the radiation is spread over its entire wavefront. For example, the explanation of
the double-slit interference experiment requires that the wavefront be divided so
that some of its intensity can pass through each slit. A particle must choose to go
through one slit or the other; only a wave can go through both.

If we regard the wave and particle pictures as valid but exclusive alternatives,
we must assume that the light emitted by a source must travel either as waves or
as particles. How does the source know what kind of light (particles or waves) to
emit? Suppose we place a double-slit apparatus on one side of the source and a
photoelectric cell on the other side. Light emitted toward the double slit behaves
like a wave and light emitted toward the photocell behaves like particles. How
did the source know in which direction to aim the waves and in which direction
to aim the particles?

Perhaps nature has a sort of “secret code” in which the kind of experiment we
are doing is signaled back to the source so that it knows whether to emit particles
or waves. Let us repeat our dual experiment with light from a distant galaxy,
light that has been traveling toward us for a time roughly equal to the age of
the universe (13 × 109 years). Surely the kind of experiment we are doing could
not be signaled back to the limits of the known universe in the time it takes us
to remove the double-slit apparatus from the laboratory table and replace it with
the photoelectric apparatus. Yet we find that the starlight can produce both the
double-slit interference and also the photoelectric effect.

Interference
pattern

Detector

Mirror

Mirror

A

B

Switch

Splitter

Laser

FIGURE 3.25 Apparatus for delayed
choice experiment. Photons from the
laser strike the beam splitter and can
then travel paths A or B. The switch
in path A can deflect the beam into
a detector. If the switch is off, the
beam on path A recombines with the
beam on path B to form an interfer-
ence pattern. [Source: A. Shimony,
“The Reality of the Quantum World,”
Scientific American 258, 46 (January
1988)].

Figure 3.25 shows a recent experiment that was designed to test whether this
dual nature is an intrinsic property of light or of our apparatus. A light beam
from a laser goes through a beam splitter, which separates the beam into two
components (A and B). The mirrors reflect the two component beams so that they
can recombine to form an interference pattern. In path A there is a switch that can
deflect the beam into a detector. If the switch is off, beam A is not deflected and
will combine with beam B to produce the interference pattern. If the switch is on,
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beam A is deflected and observed in the detector, indicating that the light traveled
a definite path, as would be characteristic of a particle. To put this another way, if
the switch is off, the light beam is observed as a wave; if it is on, the light beam
is observed as particles.

If light behaves like particles, the beam splitter sends it along either path A
or path B; either path can be randomly chosen for the particle, but each particle
can travel only one path. If light behaves like a wave, on the other hand, the beam
splitter sends it along both paths, dividing its intensity between the two. Perhaps
the beam splitter can somehow sense whether the switch is open or closed, so
that it knows whether we are doing a particle-type or a wave-type experiment.
If this were true, then the beam splitter would “know” whether to send all of
the intensity down one path (so that we would observe a particle) or to split
the intensity between the paths (so that we would observe a wave). However, in
this experiment the experimenters used a very fast optical switch whose response
time was shorter than the time it takes for light to travel through the apparatus
to the switch. That is, the state of the switch could be changed after the light
had already passed through the beam splitter, and so it was impossible for the
beam splitter to “know” how the switch was set and thus whether a particle-type
or a wave-type experiment was being done. This kind of experiment is called a
“delayed choice” experiment, because the experimenter makes the choice of what
kind of experiment to do after the light is already traveling on its way to the
observation apparatus.

In this experiment, the investigators discovered that whenever they had the
switch off, they observed the interference pattern characteristic of waves. When
they had the switch on, they observed particles in the detector and no interference
pattern. That is, whenever they did a wave-type experiment they observed waves,
and whenever they did a particle-type experiment they observed particles. The
wave and particle natures are both present simultaneously in the light, and this dual
nature is clearly associated with the light and is not characteristic of the apparatus.

Many other experiments of this type have been done, and they all produce
similar results. We are therefore trapped into an uncomfortable conclusion: Light
is not either particles or waves; it is somehow both particles and waves, and
only shows one or the other aspect, depending on the kind of experiment we are
doing. A particle-type experiment shows the particle nature, while a wave-type
experiment shows the wave nature. Our failure to classify light as either particle
or wave is not so much a failure to understand the nature of light as it is a failure of
our limited vocabulary (based on experiences with ordinary particles and waves)
to describe a phenomenon that is more elegant and mysterious than either simple
particles or waves.

Wave-Particle Duality
The dilemma of the dual particle+wave nature of light, which is called wave-
particle duality, cannot be resolved with a simple explanation; physicists and
philosophers have struggled with this problem ever since the quantum theory was
introduced. The best we can do is to say that neither the wave nor the particle
picture is wholly correct all of the time, that both are needed for a complete
description of physical phenomena, and that in fact the two are complementary to
one another.

Suppose we use a photographic film to observe the double-slit interference
pattern. The film responds to individual photons. When a single photon is absorbed
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by the film, a single grain of the photographic emulsion is darkened; a complete
picture requires a large number of grains to be darkened.

Let us imagine for the moment that we could see individual grains of the film
as they absorbed photons and darkened, and let us do the double-slit experiment
with a light source that is so weak that there is a relatively long time interval
between photons. We would see first one grain darken, then another, and so forth,
until after a large number of photons we would see the interference pattern begin
to emerge. Some areas of the film (the interference maxima) show evidence for
the arrival of a large number of photons, while in other areas (the interference
minima) few photons arrive.

Alternatively, the wave picture of the double-slit experiment suggests that we
could find the net electric field of the wave that strikes the screen by superimposing
the electric fields of the portions of the incident wave fronts that pass through the
two slits; the intensity or power in that combined wave could then be found by a
procedure similar to Eqs. 3.7 through 3.10, and we would expect that the resultant
intensity should show maxima and minima just like the observed double-slit
interference pattern.

In summary, the correct explanation of the origin and appearance of the
interference pattern comes from the wave picture, and the correct interpretation
of the evolution of the pattern on the film comes from the photon picture; the
two explanations, which according to our limited vocabulary and common-sense
experience cannot simultaneously be correct, must somehow be taken together to
give a complete description of the properties of electromagnetic radiation.

Keep in mind that “photon” and “wave” represent descriptions of the behavior
of electromagnetic radiation when it encounters material objects. It is not correct
to think of light as being “composed” of photons, just as we don’t think of light as
being “composed” of waves. The explanation in terms of photons applies to some
interactions of radiation with matter, while the explanation in terms of waves
applies to other interactions. For example, when we say that an atom “emits” a
photon, we don’t mean that there is a supply of photons stored within the atom;
instead, we mean that the atom has given up a quantity of its internal energy to
create an equivalent amount of energy in the form of electromagnetic radiation.

In the case of the double-slit experiment, we might reason as follows: the
interaction between a “source” of radiation and the electromagnetic field is
quantized, so that we can think of the emission of radiation by the atoms of the
source in terms of individual photons. The interaction at the opposite end of the
experiment, the photographic film, is also quantized, and we have the similarly
useful view of atoms absorbing radiation as individual photons. In between, the
electromagnetic radiation propagates smoothly and continuously as a wave and
can show wave-type behavior (interference or diffraction) when it encounters the
double slit.

Where the wave has large intensity, the film reveals the presence of many
photons; where the wave has small intensity, few photons are observed. Recalling
that the intensity of the wave is proportional to the square of its amplitude, we
then have

probability to observe photons ∝ |electric field amplitude|2

It is this expression that provides the ultimate connection between the wave
behavior and the particle behavior, and we will see in the next two chapters that
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a similar expression connects the wave and the particle aspects of those objects,
such as electrons, which have been previously considered to behave as classical
particles.

Chapter Summary
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Questions

1. The diameter of an atomic nucleus is about 10 × 10−15 m.
Suppose you wanted to study the diffraction of photons
by nuclei. What energy of photons would you choose?
Why?

2. How is the wave nature of light unable to account for the
observed properties of the photoelectric effect?

3. In the photoelectric effect, why do some electrons have
kinetic energies smaller than Kmax ?

4. Why doesn’t the photoelectric effect work for free electrons?
5. What does the work function tell us about the properties of a

metal? Of the metals listed in Table 3.1, which has the least
tightly bound electrons? Which has the most tightly bound?

6. Electric current is charge flowing per unit time. If we increase
the kinetic energy of the photoelectrons (by increasing
the energy of the incident photons), shouldn’t the cur-
rent increase, because the charge flows more rapidly? Why
doesn’t it?

7. What might be the effects on a photoelectric effect exper-
iment if we were to double the frequency of the incident
light? If we were to double the wavelength? If we were to
double the intensity?

8. In the photoelectric effect, how can a photon moving in one
direction eject an electron moving in a different direction?
What happens to conservation of momentum?

9. In Figure 3.10, why does the photoelectric current rise
slowly to its saturation value instead of rapidly, when the
potential difference is greater than Vs ? What does this figure
indicate about the experimental difficulties that might arise
from trying to determine Vs in this way?

10. Suppose that the frequency of a certain light source is just
above the cutoff frequency of the emitter, so that the pho-
toelectric effect occurs. To an observer in relative motion,
the frequency might be Doppler shifted to a lower value
that is below the cutoff frequency. Would this moving
observer conclude that the photoelectric effect does not
occur? Explain.

11. Why do cavities that form in a wood fire seem to glow
brighter than the burning wood itself? Is the temperature
in such cavities hotter than the surface temperature of the
exposed burning wood?

12. What are the fields of classical physics on which the clas-
sical theory of blackbody radiation is based? Why don’t
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we believe that the “ultraviolet catastrophe” suggests that
something is wrong with one of those classical theories?

13. In what region of the electromagnetic spectrum do room-
temperature objects radiate? What problems would we have
if our eyes were sensitive in that region?

14. How does the total intensity of thermal radiation vary when
the temperature of an object is doubled?

15. Compton-scattered photons of wavelength λ′ are observed
at 90◦. In terms of λ′, what is the scattered wavelength
observed at 180◦ ?

16. The Compton-scattering formula suggests that objects
viewed from different angles should show scattered light
of different wavelengths. Why don’t we observe a change in
color of objects as we change the viewing angle?

17. You have a monoenergetic source of X rays of energy 84
keV, but for an experiment you need 70 keV X rays. How
would you convert the X-ray energy from 84 to 70 keV?

18. TV sets with picture tubes can be significant emitters of
X rays. What is the origin of these X rays? Estimate their
wavelengths.

19. The X-ray peaks of Figure 3.20 are not sharp but are spread
over a range of wavelengths. What reasons might account
for that spreading?

20. A beam of photons passes through a block of matter. What
are the three ways discussed in this chapter that the photons
can lose energy in interacting with the material?

21. Of the photon processes discussed in this chapter (pho-
toelectric effect, thermal radiation, Compton scattering,
bremsstrahlung, pair production, electron-positron annihila-
tion), which conserve momentum? Energy? Mass? Number
of photons? Number of electrons? Number of electrons
minus number of positrons?

Problems

3.1 Review of Electromagnetic Waves

1. A double-slit experiment is performed with sodium light
(λ = 589.0 nm). The slits are separated by 1.05 mm, and the
screen is 2.357 m from the slits. Find the separation between
adjacent maxima on the screen.

2. In Example 3.1, what angle of incidence will produce the
second-order Bragg peak?

3. Monochromatic X rays are incident on a crystal in the geom-
etry of Figure 3.5. The first-order Bragg peak is observed
when the angle of incidence is 34.0◦. The crystal spacing
is known to be 0.347 nm. (a) What is the wavelength of
the X rays? (b) Now consider a set of crystal planes that
makes an angle of 45◦ with the surface of the crystal (as
in Figure 3.6). For X rays of the same wavelength, find the
angle of incidence measured from the surface of the crystal
that produces the first-order Bragg peak. At what angle from
the surface does the emerging beam appear in this case?

4. A certain device for analyzing electromagnetic radiation is
based on the Bragg scattering of the radiation from a crystal.
For radiation of wavelength 0.149 nm, the first-order Bragg
peak appears centered at an angle of 15.15◦. The aperture of
the analyzer passes radiation in the angular range of 0.015◦.
What is the corresponding range of wavelengths passing
through the analyzer?

3.2 The Photoelectric Effect

5. Find the momentum of (a) a 10.0-MeV gamma ray; (b) a
25-keV X ray; (c) a 1.0-μm infrared photon; (d) a 150-MHz
radio-wave photon. Express the momentum in kg ·m/s and
eV/c.

6. Radio waves have a frequency of the order of 1 to 100 MHz.
What is the range of energies of these photons? Our bodies

are continuously bombarded by these photons. Why are they
not dangerous to us?

7. (a) What is the wavelength of an X-ray photon of energy
10.0 keV? (b) What is the wavelength of a gamma-ray pho-
ton of energy 1.00 MeV? (c) What is the range of energies
of photons of visible light with wavelengths 350 to 700 nm?

8. What is the cutoff wavelength for the photoelectric effect
using an aluminum surface?

9. A metal surface has a photoelectric cutoff wavelength
of 325.6 nm. It is illuminated with light of wavelength
259.8 nm. What is the stopping potential?

10. When light of wavelength λ illuminates a copper surface,
the stopping potential is V . In terms of V , what will be
the stopping potential if the same wavelength is used to
illuminate a sodium surface?

11. The cutoff wavelength for the photoelectric effect in a cer-
tain metal is 254 nm. (a) What is the work function for
that metal? (b) Will the photoelectric effect be observed for
λ > 254 nm or for λ < 254 nm?

12. A surface of zinc is illuminated and photoelectrons are
observed. (a) What is the largest wavelength that will cause
photoelectrons to be emitted? (b) What is the stopping
potential when light of wavelength 220.0 nm is used?

3.3 Blackbody Radiation

13. (a) Show that in the classical result for the energy distribu-
tion of the cavity wall oscillators (Eq. 3.32), the total number
of oscillators at all energies is N . (b) Show that Eav = kT
for the classical oscillators.

14. (a) Writing the discrete Maxwell-Boltzmann distribution
for Planck’s cavity wall oscillators as Nn = Ae−En/kT

(where A is a constant to be determined), show that the
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condition
∞∑

n=0
Nn = N gives A = N(1 − e−ε/kT ) as in Eq.

3.38. [Hint: Use
∞∑

n=0
enx = (1 − ex)−1 ]. (b) By taking the

derivative with respect to x of the equation given in the

hint, show that
∞∑

n=0
nenx = ex/(1 − ex)2. (c) Use this result

to derive Eq. 3.40 from Eq. 3.39. (d) Show that Eav
∼= kT at

large λ and Eav → 0 for small λ.
15. By differentiating Eq. 3.41 show that I(λ) has its maximum

as expected according to Wien’s displacement law, Eq. 3.27.
16. Integrate Eq. 3.41 to obtain Eq. 3.26. Use the definite inte-

gral
∫ ∞

0 x3dx/(ex − 1) = π4/15 to obtain Eq. 3.42 relating
the Stefan-Boltzmann constant to Planck’s constant.

17. Use the numerical value of the Stefan-Boltzmann constant to
find the numerical value of Planck’s constant from Eq. 3.42.

18. The surface of the Sun has a temperature of about 6000 K. At
what wavelength does the Sun emit its peak intensity? How
does this compare with the peak sensitivity of the human eye?

19. The universe is filled with thermal radiation, which has a
blackbody spectrum at an effective temperature of 2.7 K (see
Chapter 15). What is the peak wavelength of this radiation?
What is the energy (in eV) of quanta at the peak wavelength?
In what region of the electromagnetic spectrum is this peak
wavelength?

20. (a) Assuming the human body (skin temperature 34◦C)
to behave like an ideal thermal radiator, find the wave-
length where the intensity from the body is a maximum.
In what region of the electromagnetic spectrum is radiation
with this wavelength? (b) Making whatever (reasonable)
assumptions you may need, estimate the power radiated by
a typical person isolated from the surroundings. (c) Estimate
the radiation power absorbed by a person in a room in which
the temperature is 20◦C.

21. A cavity is maintained at a temperature of 1650 K. At
what rate does energy escape from the interior of the cavity
through a hole in its wall of diameter 1.00 mm?

22. An analyzer for thermal radiation is set to accept wave-
lengths in an interval of 1.55 nm. What is the intensity of the
radiation in that interval at a wavelength of 875 nm emitted
from a glowing object whose temperature is 1675 K?

23. (a) Assuming the Sun to radiate like an ideal thermal source
at a temperature of 6000 K, what is the intensity of the
solar radiation emitted in the range 550.0 nm to 552.0 nm?
(b) What fraction of the total solar radiation does this
represent?

3.4 The Compton Effect

24. Show how Eq. 3.48 follows from Eq. 3.47.
25. Incident photons of energy 10.39 keV are Compton scat-

tered, and the scattered beam is observed at 45.00◦ relative
to the incident beam. (a) What is the energy of the scattered
photons at that angle? (b) What is the kinetic energy of the
scattered electrons?

26. X-ray photons of wavelength 0.02480 nm are incident on a
target and the Compton-scattered photons are observed at
90.0◦. (a) What is the wavelength of the scattered photons?
(b) What is the momentum of the incident photons? Of the
scattered photons? (c) What is the kinetic energy of the
scattered electrons? (d) What is the momentum (magnitude
and direction) of the scattered electrons?

27. High-energy gamma rays can reach a radiation detector
by Compton scattering from the surroundings, as shown
in Figure 3.26. This effect is known as back-scattering.
Show that, when E 
 mec2, the back-scattered photon has
an energy of approximately 0.25 MeV, independent of the
energy of the original photon, when the scattering angle is
nearly 180◦.

Detector

FIGURE 3.26 Problem 27.

28. Gamma rays of energy 0.662 MeV are Compton scattered.
(a) What is the energy of the scattered photon observed at a
scattering angle of 60.0◦? (b) What is the kinetic energy of
the scattered electrons?

3.5 Other Photon Processes

29. Suppose an atom of iron at rest emits an X-ray photon
of energy 6.4 keV. Calculate the “recoil” momentum and
kinetic energy of the atom. (Hint: Do you expect to need
classical or relativistic kinetic energy for the atom? Is the
kinetic energy likely to be much smaller than the atom’s rest
energy?)

30. What is the minimum X-ray wavelength produced in
bremsstrahlung by electrons that have been accelerated
through 2.50 × 104 V?

31. An atom absorbs a photon of wavelength 375 nm and imme-
diately emits another photon of wavelength 580 nm. What
is the net energy absorbed by the atom in this process?

General Problems

32. A certain green light bulb emits at a single wavelength of
550 nm. It consumes 55 W of electrical power and is 75%
efficient in converting electrical energy into light. (a) How
many photons does the bulb emit in one hour? (b) Assuming
the emitted photons to be distributed uniformly in space,
how many photons per second strike a 10 cm by 10 cm paper
held facing the bulb at a distance of 1.0 m?

33. When sodium metal is illuminated with light of wavelength
4.20 × 102 nm, the stopping potential is found to be 0.65 V;
when the wavelength is changed to 3.10 × 102 nm, the
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stopping potential is 1.69 V. Using only these data and the
values of the speed of light and the electronic charge, find the
work function of sodium and a value of Planck’s constant.

34. A photon of wavelength 192 nm strikes an aluminum sur-
face along a line perpendicular to the surface and releases
a photoelectron traveling in the opposite direction. Assume
the recoil momentum is taken up by a single aluminum
atom on the surface. Calculate the recoil kinetic energy of
the atom. Would this recoil energy significantly affect the
kinetic energy of the photoelectron?

35. A certain cavity has a temperature of 1150 K. (a) At what
wavelength will the intensity of the radiation inside the cavity
have its maximum value? (b) As a fraction of the maximum
intensity, what is the intensity at twice the wavelength found
in part (a)?

36. In Compton scattering, calculate the maximum kinetic
energy given to the scattered electron for a given photon
energy.

37. The COBE satellite was launched in 1989 to study the
cosmic background radiation and measure its temperature.
By measuring at many different wavelengths, researchers
were able to show that the background radiation exactly
followed the spectral distribution expected for a black-
body. At a wavelength of 0.133 cm, the radiant intensity is
1.440 × 10−7 W/m2 in a wavelength interval of 0.00833 cm.
What is the temperature of the radiation that would be
deduced from these data?

38. The WMAP satellite launched in 2001 studied the cosmic
microwave background radiation and was able to chart small
fluctuations in the temperature of different regions of the
background radiation. These fluctuations in temperature cor-
respond to regions of large and small density in the early
universe. The satellite was able to measure differences in
temperature of 2 × 10−5 K at a temperature of 2.7250 K. At
the peak wavelength, what is the difference in the radiation
intensity per unit wavelength interval between the “hot” and
“cold” regions of the background radiation?

39. You have been hired as an engineer on a NASA project
to design a microwave spectrometer for an orbital mis-
sion to measure the cosmic background radiation, which
has a blackbody spectrum with an effective temperature
of 2.725 K. (a) The spectrometer is to scan the sky
between wavelengths of 0.50 mm and 5.0 mm, and at each
wavelength it accepts radiation in a wavelength range of

3.0 × 10−4 mm. What maximum and minimum radiation
intensity do you expect to find in this region? (b) The
photon detector in the spectrometer is in the form of a
disk of diameter 0.86 cm. How many photons per second
will the spectrometer record at its maximum and minimum
intensities?

40. A photon of wavelength 7.52 pm scatters from a free elec-
tron at rest. After the interaction, the electron is observed to
be moving in the direction of the original photon. Find the
momentum of the electron.

41. A hydrogen atom is moving at a speed of 125.0 m/s. It
absorbs a photon of wavelength 97 nm that is moving in the
opposite direction. By how much does the speed of the atom
change as a result of absorbing the photon?

42. Before a positron and an electron annihilate, they form a sort
of “atom” in which each orbits about their common center
of mass with identical speeds. As a result of this motion, the
photons emitted in the annihilation show a small Doppler
shift. In one experiment, the Doppler shift in energy of the
photons was observed to be 2.41 keV. (a) What would be
the speed of the electron or positron before the annihilation
to produce this Doppler shift? (b) The positrons form these
atom-like structures with the nearly “free” electrons in a
solid. Assuming the positron and electron must have about
the same speed to form this structure, find the kinetic energy
of the electron. This technique, called “Doppler broaden-
ing,” is an important method for learning about the energies
of electrons in materials.

43. Prove that it is not possible to conserve both momentum
and total relativistic energy in the following situation: A
free electron moving at velocity �v emits a photon and then
moves at a slower velocity �v′.

44. A photon of energy E interacts with an electron at rest
and undergoes pair production, producing a positive elec-
tron (positron) and an electron (in addition to the original
electron):

photon + e− → e+ + e− + e−

The two electrons and the positron move off with iden-
tical momenta in the direction of the initial photon. Find
the kinetic energy of the three final particles and find the
energy E of the photon. (Hint: Conserve momentum and
total relativistic energy.)



Chapter 4
THE WAVELIKE PROPERTIES OF
PARTICLES

Just as we produce images from light waves that scatter from objects, we can also form
images from ‘‘particle waves’’. The electron microscope produces images from electron
waves that enable us to visualize objects on a scale that is much smaller than the wavelength
of light. The ability to observe individual human cells and even sub-cellular objects such as
chromosomes has revolutionized our understanding of biological processes. It is even
possible to form images of a single atom, such as this cobalt atom on a gold surface. The
ripples on the surface show electrons from gold atoms reacting to the presence of the
intruder.
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In classical physics, the laws describing the behavior of waves and parti-
cles are fundamentally different. Projectiles obey particle-type laws, such as
Newtonian mechanics. Waves undergo interference and diffraction, which cannot
be explained by the Newtonian mechanics associated with particles. The energy
carried by a particle is confined to a small region of space; a wave, on the other
hand, distributes its energy throughout space in its wavefronts. In describing the
behavior of a particle we often want to specify its location, but this is not so easy
to do for a wave. How would you describe the exact location of a sound wave or
a water wave?

In contrast to this clear distinction found in classical physics, quantum physics
requires that particles sometimes obey the rules that we have previously established
for waves, and we shall use some of the language associated with waves to describe
particles. The system of mechanics associated with quantum systems is sometimes
called “wave mechanics” because it deals with the wavelike behavior of particles.
In this chapter we discuss the experimental evidence in support of this wavelike
behavior for particles such as electrons.

As you study this chapter, notice the frequent references to such terms as the
probability of the outcome of a measurement, the average of many repetitions
of a measurement, and the statistical behavior of a system. These terms are
fundamental to quantum mechanics, and you cannot begin to understand quantum
behavior until you feel comfortable with discarding such classical notions as fixed
trajectories and certainty of outcome, while substituting the quantum mechanical
notions of probability and statistically distributed outcomes.

4.1 DE BROGLIE’S HYPOTHESIS

Progress in physics often can be characterized by long periods of experimental
and theoretical drudgery punctuated occasionally by flashes of insight that cause
profound changes in the way we view the universe. Frequently the more profound
the insight and the bolder the initial step, the simpler it seems in historical
perspective, and the more likely we are to sit back and wonder, “Why didn’t
I think of that?” Einstein’s special theory of relativity is one example of such
insight; the hypothesis of the Frenchman Louis de Broglie is another.∗

Louis de Broglie (1892–1987,
France). A member of an aristocratic
family, his work contributed substan-
tially to the early development of the
quantum theory.

In the previous chapter we discussed the double-slit experiment (which can be
understood only if light behaves as a wave) and the photoelectric and Compton
effects (which can be understood only if light behaves as a particle). Is this dual
particle-wave nature a property only of light or of material objects as well? In
a bold and daring hypothesis in his 1924 doctoral dissertation, de Broglie chose
the latter alternative. Examining Eq. 3.20, E = hf, and Eq. 3.22, p = h/λ, we find
some difficulty in applying the first equation in the case of particles, for we cannot
be sure whether E should be the kinetic energy, total energy, or total relativistic
energy (all, of course, are identical for light). No such difficulties arise from the
second relationship. De Broglie suggested, lacking any experimental evidence in

∗De Broglie’s name should be pronounced “deh-BROY” or “deh-BROY-eh,” but it is often said as
“deh-BROH-lee.”
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support of his hypothesis, that associated with any material particle moving with
momentum p there is a wave of wavelength λ, related to p according to

λ = h

p
(4.1)

where h is Planck’s constant. The wavelength λ of a particle computed according
to Eq. 4.1 is called its de Broglie wavelength.

Example 4.1

Compute the de Broglie wavelength of the following: (a) A
1000-kg automobile traveling at 100 m/s (about 200 mi/h).
(b) A 10-g bullet traveling at 500 m/s. (c) A smoke particle
of mass 10−9 g moving at 1 cm/s. (d) An electron with
a kinetic energy of 1 eV. (e) An electron with a kinetic
energy of 100 MeV.

Solution
(a) Using the classical relation between velocity and
momentum,

λ = h

p
= h

mv
= 6.6 × 10−34 J · s

(103 kg)(100 m/s)
= 6.6 × 10−39 m

(b) As in part (a),

λ = h

mv
= 6.6 × 10−34 J · s

(10−2 kg)(500 m/s)
= 1.3 × 10−34 m

(c)

λ = h

mv
= 6.6 × 10−34 J · s

(10−12 kg)(10−2 m/s)
= 6.6 × 10−20 m

(d) The rest energy (mc2) of an electron is 5.1 × 105 eV.
Because the kinetic energy (1 eV) is much less than the rest
energy, we can use nonrelativistic kinematics.

p =
√

2mK

=
√

2(9.1 × 10−31 kg)(1 eV)(1.6 × 10−19 J/eV)

= 5.4 × 10−25 kg · m/s

Then,

λ = h

p
= 6.6 × 10−34 J · s

5.4 × 10−25 kg · m/s

= 1.2 × 10−9 m=1.2 nm

We can also find this solution in the following way, using
p = √

2mK and hc = 1240 eV · nm.

cp = c
√

2mK =
√

2(mc2)K

=
√

2(5.1 × 105 eV)(1 eV) = 1.0 × 103 eV

λ = h

p
= hc

pc
= 1240 eV · nm

1.0 × 103 eV
= 1.2 nm

This method may seem artificial at first, but with prac-
tice it becomes quite useful, especially because energies
are usually given in electron-volts in atomic and nuclear
physics.
(e) In this case, the kinetic energy is much greater than the
rest energy, and so we are in the extreme relativistic realm,
where K ∼= E ∼= pc, as in Eq. 2.40. The wavelength is

λ = hc

pc
= 1240 MeV · fm

100 MeV
= 12 fm

Note that the wavelengths computed in parts (a), (b), and (c) are far too small to be
observed in the laboratory. Only in the last two cases, in which the wavelength is
of the same order as atomic or nuclear sizes, do we have any chance of observing
the wavelength. Because of the smallness of h, only for particles of atomic or
nuclear size will the wave behavior be observable.

Two questions immediately follow. First, just what sort of wave is it that has
this de Broglie wavelength? That is, what does the amplitude of the de Broglie
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wave measure? We’ll discuss the answer to this question later in this chapter.
For now, we assume that, associated with the particle as it moves, there is a de
Broglie wave of wavelength λ, which shows itself when a wave-type experiment
(such as diffraction) is performed on it. The outcome of the wave-type experiment
depends on this wavelength. The de Broglie wavelength, which characterizes the
wave-type behavior of particles, is central to the quantum theory.

The second question then occurs: Why was this wavelength not directly
observed before de Broglie’s time? As parts (a), (b), and (c) of Example 4.1
showed, for ordinary objects the de Broglie wavelength is very small. Suppose we
tried to demonstrate the wave nature of these objects through a double-slit type
of experiment. Recall from Eq. 3.16 that the spacing between adjacent fringes
in a double-slit experiment is �y = λD/d. Putting in reasonable values for the
slit separation d and slit-to-screen distance D, you will find that there is no
achievable experimental configuration that can produce an observable separation
of the fringes (see Problem 9). There is no experiment that can be done to
reveal the wave nature of macroscopic (laboratory-sized) objects. Experimental
verification of de Broglie’s hypothesis comes only from experiments with objects
on the atomic scale, which are discussed in the next section.

4.2 EXPERIMENTAL EVIDENCE FOR
DE BROGLIE WAVES

The indications of wave behavior come mostly from interference and diffraction
experiments. Double-slit interference, which was reviewed in Section 3.1, is
perhaps the most familiar type of interference experiment, but the experimental
difficulties of constructing double slits to do interference experiments with beams
of atomic or subatomic particles were not solved until long after the time of de
Broglie’s hypothesis. We discuss these experiments later in this section. First
we’ll discuss diffraction experiments with electrons.

Light waves

(Plane wave fronts)

a

Screen

q

FIGURE 4.1 Light waves (repre-
sented as plane wave fronts) are inci-
dent on a narrow slit of width a.
Diffraction causes the waves to spread
after passing through the slit, and the
intensity varies along the screen. The
photograph shows the resulting inten-
sity pattern.

Particle Diffraction Experiments
Diffraction of light waves is discussed in most introductory physics texts and is
illustrated in Figure 4.1 for light diffracted by a single slit. For light of wavelength
λ incident on a slit of width a, the diffraction minima are located at angles given by

a sin θ = nλ n = 1, 2, 3, . . . (4.2)

on either side of the central maximum. Note that most of the light intensity falls
in the central maximum.

The experiments that first verified de Broglie’s hypothesis involve electron
diffraction, not through an artificially constructed single slit (as for the diffraction
pattern in Figure 4.1) but instead through the atoms of a crystal. The outcomes
of these experiments resemble those of the similar X-ray diffraction experiments
illustrated in Section 3.1.

In an electron diffraction experiment, a beam of electrons is accelerated from
rest through a potential difference �V , acquiring a nonrelativistic kinetic energy
K = e �V and a momentum p = √

2mK. Wave mechanics would describe
the beam of electrons as a wave of wavelength λ = h/p. The beam strikes a
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crystal, and the scattered beam is photographed (Figure 4.2). The similarity
between electron diffraction patterns (Figure 4.2) and X-ray diffraction patterns
(Figure 3.7) strongly suggests that the electrons are behaving as waves.

Crystal
Electron beam

Screen

FIGURE 4.2 (Top) Electron diffrac-
tion apparatus. (Bottom) Electron
diffraction pattern. Each bright dot is
a region of constructive interference,
as in the X-ray diffraction patterns of
Figure 3.7. The target is a crystal of
Ti2Nb10O29.

The “rings” produced in X-ray diffraction of polycrystalline materials
(Figure 3.8b) are also produced in electron diffraction, as shown in Figure 4.3,
again providing strong evidence for the similarity in the wave behavior of
electrons and X rays. Experiments of the type illustrated in Figure 4.3 were
first done in 1927 by G. P. Thomson, who shared the 1937 Nobel Prize for this
work. (Thomson’s father, J. J. Thomson, received the 1906 Nobel Prize for his
discovery of the electron and measurement of its charge-to-mass ratio. Thus
it can be said that Thomson, the father, discovered the particle nature of the
electron, while Thomson, the son, discovered its wave nature.)

An electron diffraction experiment gave the first experimental confirmation
of the wave nature of electrons (and the quantitative confirmation of the de
Broglie relationship λ = h/p) soon after de Broglie’s original hypothesis. In
1926, at the Bell Telephone Laboratories, Clinton Davisson and Lester Germer
were investigating the reflection of electron beams from the surface of nickel
crystals. A schematic view of their apparatus is shown in Figure 4.4. A beam of
electrons from a heated filament is accelerated through a potential difference �V .
After passing through a small aperture, the beam strikes a single crystal of nickel.
Electrons are scattered in all directions by the atoms of the crystal, some of them
striking a detector, which can be moved to any angle φ relative to the incident
beam and which measures the intensity of the electron beam scattered at that angle.

Figure 4.5 shows the results of one of the experiments of Davisson and Germer.
When the accelerating voltage is set at 54 V, there is an intense reflection of the
beam at the angle φ = 50◦. Let’s see how these results give confirmation of the
de Broglie wavelength.

FIGURE 4.3 Electron diffraction of
polycrystalline beryllium. Note the sim-
ilarity between this pattern and the
pattern for X-ray diffraction of a poly-
crystalline material (Figure 3.8b).

Electron
beam

Crystal

Detectorf

+V

F

FIGURE 4.4 Apparatus used by
Davisson and Germer to study
electron diffraction. Electrons
leave the filament F and are accel-
erated by the voltage V . The beam
strikes a crystal and the scattered
beam is detected at an angle φ

relative to the incident beam. The
detector can be moved in the range
0 to 90◦.

f = 50°

FIGURE 4.5 Results of Davisson
and Germer. Each point on the plot
represents the relative intensity
when the detector in Figure 4.4 is
located at the corresponding angle
φ measured from the vertical axis.
Constructive interference causes
the intensity of the reflected beam
to reach a maximum at φ = 50◦ for
V = 54 V.
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Incident
ray

Diffracted
rayd

f

d sin f

FIGURE 4.6 The crystal surface acts
like a diffraction grating with spac-
ing d.

FIGURE 4.7 Diffraction of neutrons
by a sodium chloride crystal.
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FIGURE 4.8 Diffraction of 1-GeV
protons by oxygen nuclei. The pat-
tern of maxima and minima is similar
to that of single-slit diffraction of
light waves. [Source: H. Palevsky et
al., Physical Review Letters 18, 1200
(1967).]

Each of the atoms of the crystal can act as a scatterer, so the scattered electron
waves can interfere, and we have a crystal diffraction grating for the electrons.
Figure 4.6 shows a simplified representation of the nickel crystal used in the
Davisson-Germer experiment. Because the electrons were of low energy, they did
not penetrate very far into the crystal, and it is sufficient to consider the diffraction
to take place in the plane of atoms on the surface. The situation is entirely similar
to using a reflection-type diffraction grating for light; the spacing d between the
rows of atoms on the crystal is analogous to the spacing between the slits in the
optical grating. The maxima for a diffraction grating occur at angles φ such that
the path difference between adjacent rays d sin φ is equal to a whole number of
wavelengths:

d sin φ = nλ n = 1, 2, 3, . . . (4.3)

where n is the order number of the maximum.
From independent data, it is known that the spacing between the rows of atoms

in a nickel crystal is d = 0.215 nm. The peak at φ = 50◦ must be a first-order
peak (n = 1), because no peaks were observed at smaller angles. If this is indeed
an interference maximum, the corresponding wavelength is, from Eq. 4.3,

λ = d sin φ = (0.215 nm)(sin 50◦
) = 0.165 nm

We can compare this value with that expected on the basis of the de Broglie
theory. An electron accelerated through a potential difference of 54 V has a kinetic
energy of 54 eV and therefore a momentum of

p =
√

2mK = 1

c

√
2mc2K = 1

c

√
2(511, 000 eV)(54 eV) = 1

c
(7430 eV)

The de Broglie wavelength is λ = h/p = hc/pc. Using hc = 1240 eV · nm,

λ = hc

pc
= 1240 eV · nm

7430 eV
= 0.167 nm

This is in excellent agreement with the value found from the diffraction maxi-
mum, and provides strong evidence in favor of the de Broglie theory. For this
experimental work, Davisson shared the 1937 Nobel Prize with G. P. Thomson.

The wave nature of particles is not exclusive to electrons; any particle with
momentum p has de Broglie wavelength h/p. Neutrons are produced in nuclear
reactors with kinetic energies corresponding to wavelengths of roughly 0.1 nm;
these also should be suitable for diffraction by crystals. Figure 4.7 shows that
diffraction of neutrons by a salt crystal produces the same characteristic patterns
as the diffraction of electrons or X rays. Clifford Shull shared the 1994 Nobel
Prize for the development of the neutron diffraction technique.

To study the nuclei of atoms, much smaller wavelengths are needed, of the order
of 10−15 m. Figure 4.8 shows the diffraction pattern produced by the scattering
of 1-GeV kinetic energy protons by oxygen nuclei. Maxima and minima of the
diffracted intensity appear in a pattern similar to the single-slit diffraction shown
in Figure 4.1. (The intensity at the minima does not fall to zero because nuclei
do not have a sharp boundary. The determination of nuclear sizes from such
diffraction patterns is discussed in Chapter 12.)
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Example 4.2

Protons of kinetic energy 1.00 GeV were diffracted by
oxygen nuclei, which have a radius of 3.0 fm, to produce
the data shown in Figure 4.8. Calculate the expected angles
where the first three diffraction minima should appear.

Solution
The total relativistic energy of the protons is E =
K + mc2 = 1.00 GeV + 0.94 GeV = 1.94 GeV is, so their
momentum is

p = 1

c

√
E2 − (mc2)2

= 1

c

√
(1.94 GeV)2 − (0.94 GeV)2 = 1.70 GeV/c

The corresponding de Broglie wavelength is

λ = h

p
= hc

pc
= 1240 MeV · fm

1700 MeV
= 0.73 fm

We can represent the oxygen nuclei as circular disks, for
which the diffraction formula is a bit different from Eq. 4.2:

a sin θ = 1.22nλ, where a is the diameter of the diffracting
object. Based on this formula, the first diffraction minimum
(n = 1) should appear at the angle

sin θ = 1.22nλ

a
= (1.22)(1)(0.73 fm)

6.0 fm
= 0.148

or θ = 8.5◦. Because the sine of the diffraction
angle is proportional to the index n, the n = 2
minimum should appear at the angle where sin
θ = 2 × 0.148 = 0.296 (θ = 17.2◦

), and the n = 3 minimum
where sin θ = 3 × 0.148 = 0.444 (θ = 26.4◦

).
From the data in Figure 4.8, we see the first diffraction

minimum at an angle of about 10◦, the second at about
18◦, and the third at about 27◦, all in very good agreement
with the expected values. The data don’t exactly follow
the formula for diffraction by a disk, because nuclei don’t
behave quite like disks. In particular, they have diffuse
rather than sharp edges, which prevents the intensity at
the diffraction minima from falling to zero and also alters
slightly the locations of the minima.

Double-Slit Experiments with Particles
The definitive evidence for the wave nature of light was deduced from the
double-slit experiment performed by Thomas Young in 1801 (discussed in
Section 3.1). In principle, it should be possible to do double-slit experiments
with particles and thereby directly observe their wavelike behavior. However, the
technological difficulties of producing double slits for particles are formidable,
and such experiments did not become possible until long after the time of de
Broglie. The first double-slit experiment with electrons was done in 1961. A
diagram of the apparatus is shown in Figure 4.9. The electrons from a hot filament
were accelerated through 50 kV (corresponding to λ = 5.4 pm) and then passed
through a double slit of separation 2.0 μm and width 0.5 μm. A photograph of
the resulting intensity pattern is shown in Figure 4.10. The similarity with the
double-slit pattern for light (Figure 3.2) is striking.

Electrons

Photographic
film

F

Fluorescent
screen

50 kV

FIGURE 4.9 Double-slit apparatus
for electrons. Electrons from the fila-
ment F are accelerated through 50 kV
and pass through the double slit. They
produce a visible pattern when they
strike a fluorescent screen (like a TV
screen), and the resulting pattern is
photographed. A photograph is shown
in Figure 4.10. [See C. Jonsson, Amer-
ican Journal of Physics 42, 4 (1974).]

A similar experiment can be done for neutrons. A beam of neutrons from
a nuclear reactor can be slowed to a room-temperature “thermal” energy
distribution (average K ≈ kT ≈ 0.025 eV), and a specific wavelength can be
selected by a scattering process similar to Bragg diffraction (see Eq. 3.18
and Problem 32 at the end of the present chapter). In one experiment, neu-
trons of kinetic energy 0.00024 eV and de Broglie wavelength 1.85 nm passed
through a gap of diameter 148 μm in a material that absorbs virtually all
of the neutrons incident on it (Figure 4.11). In the center of the gap was a
boron wire (also highly absorptive for neutrons) of diameter 104 μm. The neu-
trons could pass on either side of the wire through slits of width 22 μm. The
intensity of neutrons that pass through this double slit was observed by sliding
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D = 5 m

Entrance
slit

Neutron beam

Wavelength
selector

Double
slit

Scanning
slit

Detector

FIGURE 4.11 Double-slit apparatus for neutrons. Thermal neutrons from a reactor
are incident on a crystal; scattering through a particular angle selects the energy of
the neutrons. After passing through the double slit, the neutrons are counted by the
scanning slit assembly, which moves laterally.

FIGURE 4.10 Double-slit interfer-
ence pattern for electrons.

another slit across the beam and measuring the intensity of neutrons passing
through this “scanning slit.” Figure 4.12 shows the resulting pattern of intensity
maxima and minima, which leaves no doubt that interference is occurring and that
the neutrons have a corresponding wave nature. The wavelength can be deduced
from the slit separation using Eq. 3.16 to obtain the spacing between adjacent
maxima, �y = yn+1 − yn. Estimating the spacing �y from Figure 4.12 to be about
75 μm, we obtain

λ = d�y

D
= (126 μm)(75 μm)

5 m
= 1.89 nm

This result agrees very well with the de Broglie wavelength of 1.85 nm selected
for the neutron beam.

Scanning slit position

100 mm
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FIGURE 4.12 Intensity pattern ob-
served for double-slit interference
with neutrons. The spacing between
the maxima is about 75 μm. [Source:
R. Gahler and A. Zeilinger, American
Journal of Physics 59, 316 (1991).]

It is also possible to do a similar experiment with atoms. In this case, a
source of helium atoms formed a beam (of velocity corresponding to a kinetic
energy of 0.020 eV) that passed through a double slit of separation 8 μm and
width 1 μm. Again a scanning slit was used to measure the intensity of the beam
passing through the double slit. Figure 4.13 shows the resulting intensity pattern.
Although the results are not as dramatic as those for electrons and neutrons, there
is clear evidence of interference maxima and minima, and the separation of the
maxima gives a wavelength that is consistent with the de Broglie wavelength (see
Problem 8).

10 mm

Scanning slit position
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FIGURE 4.13 Intensity pattern ob-
served for double-slit interference
with helium atoms. [Source: O. Car-
nal and J. Mlynek, Physical Review
Letters 66, 2689 (1991).]

Diffraction can be observed with even larger objects. Figure 4.14 shows the
pattern produced by fullerene molecules (C60) in passing through a diffraction
grating with a spacing of d = 100 nm. The diffraction pattern was observed at
a distance of 1.2 m from the grating. Estimating the separation of the maxima
in Figure 4.14 as 50 μm, we get the angular separation of the maxima to be
θ ≈ tan θ = (50 μm)/(1.2 m) = 4.2 × 10−5 rad, and thus λ = d sin θ = 4.2 pm.
For C60 molecules with a speed of 117 m/s used in this experiment, the expected
de Broglie wavelength is 4.7 pm, in good agreement with our estimate from the
diffraction pattern.

In this chapter we have discussed several interference and diffraction
experiments using different particles—electrons, protons, neutrons, atoms,
and molecules. These experiments are not restricted to any particular type of
particle or to any particular type of observation. They are examples of a general
phenomenon, the wave nature of particles, that was unobserved before 1920
because the necessary experiments had not yet been done. Today this wave
nature is used as a basic tool by scientists. For example, neutron diffraction
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FIGURE 4.14 Diffraction grating pat-
tern produced by C60 molecules.
[Source: O. Nairz, M. Arndt, and
A. Zeilinger, American Journal of
Physics 71, 319 (2003).]

FIGURE 4.15 The atomic structure
of solid benzene as deduced from
neutron diffraction. The circles indi-
cate contours of constant density. The
black circles show the locations of the
six carbon atoms that form the familiar
benzene ring. The blue circles show
the locations of the hydrogen atoms.

gives detailed information on the structure of solid crystals and of complex
molecules (Figure 4.15). The electron microscope uses electron waves to illumi-
nate and form an image of objects; because the wavelength can be made thousands
of times smaller than that of visible light, it is possible to resolve and observe
small details that are not observable with visible light (Figure 4.16).

FIGURE 4.16 Electron microscope
image of bacteria on the surface of
a human tongue. The magnification
here is about a factor of 5000.

Through Which Slit Does the Particle Pass?
When we do a double-slit experiment with particles such as electrons, it is
tempting to try to determine through which slit the particle passes. For example,
we could surround each slit with an electromagnetic loop that causes a meter to
deflect whenever a charged particle or perhaps a particle with a magnetic moment
passes through the loop (Figure 4.17). If we fired the particles through the slits at
a slow enough rate, we could track each particle as it passed through one slit or
the other and then appeared on the screen.

If we performed this imaginary experiment, the result would no longer be an
interference pattern on the screen. Instead, we would observe a pattern similar to
that shown in Figure 4.17, with “hits” in front of each slit, but no interference
fringes. No matter what sort of device we use to determine through which slit the
particle passes, the interference pattern will be destroyed. The classical particle
must pass through one slit or the other; only a wave can reveal interference,
which depends on parts of the wavefront passing through both slits and then
recombining.

When we ask through which slit the particle passed, we are investigating only
the particle aspects of its behavior, and we cannot observe its wave nature (the
interference pattern). Conversely, when we study the wave nature, we cannot
simultaneously observe the particle nature. The electron will behave as a particle
or a wave, but we cannot observe both aspects of its behavior simultaneously.
This curious aspect of quantum mechanics was also discussed for photons in
Section 3.6, where we discovered that experiments can reveal either the particle
nature of the photon or its wave nature, but not both aspects simultaneously.
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Electron
beam

Double
slit

Screen

FIGURE 4.17 Apparatus to record passage of electrons through slits.
Each slit is surrounded by a loop with a meter that signals the passage
of an electron through the slit. No interference fringes are seen on the
screen.

This is the basis for the principle of complementarity, which asserts that the
complete description of a photon or a particle such as an electron cannot be made
in terms of only particle properties or only wave properties, but that both aspects of
its behavior must be considered. Moreover, the particle and wave natures cannot
be observed simultaneously, and the type of behavior that we observe depends
on the kind of experiment we are doing: a particle-type experiment shows only
particle like behavior, and a wave-type experiment shows only wavelike behavior.

(a)

(b)

FIGURE 4.18 (a) A pure sine wave,
which extends from −∞ to +∞.
(b) A narrow wave pulse.

4.3 UNCERTAINTY RELATIONSHIPS FOR CLASSICAL
WAVES

In quantum mechanics, we want to use de Broglie waves to describe particles. In
particular, the amplitude of the wave will tell us something about the location of
the particle. Clearly a pure sinusoidal wave, as in Figure 4.18a, is not much use
in locating a particle—the wave extends from −∞ to +∞, so the particle might
be found anywhere in that region. On the other hand, a narrow wave pulse like
Figure 4.18b does a pretty good job of locating the particle in a small region of
space, but this wave does not have an easily identifiable wavelength. In the first
case, we know the wavelength exactly but have no knowledge of the location of
the particle, while in the second case we have a good idea of the location of the
particle but a poor knowledge of its wavelength. Because wavelength is associated
with momentum by the de Broglie relationship (Eq. 4.1), a poor knowledge of the
wavelength is associated with a poor knowledge of the particle’s momentum. For
a classical particle, we would like to know both its location and its momentum as
precisely as possible. For a quantum particle, we are going to have to make some
compromises—the better we know its momentum (or wavelength), the less we
know about its location. We can improve our knowledge of its location only at
the expense of our knowledge of its momentum.



4.3 | Uncertainty Relationships for Classical Waves 111

This competition between knowledge of location and knowledge of wavelength
is not restricted to de Broglie waves—classical waves show the same effect. All
real waves can be represented as wave packets—disturbances that are localized to
a finite region of space. We will discuss more about constructing wave packets in
Section 4.5. In this section we will examine this competition between specifying
the location and the wavelength of classical waves more closely.

Figure 4.19a shows a very small wave packet. The disturbance is well localized
to a small region of space of length �x. (Imagine listening to a very short burst
of sound, of such brief duration that it is hard for you to recognize the pitch or
frequency of the wave.) Let’s try to measure the wavelength of this wave packet.
Placing a measuring stick along the wave, we have some difficulty defining exactly
where the wave starts and where it ends. Our measurement of the wavelength is
therefore subject to a small uncertainty �λ. Let’s represent this uncertainty as a
fraction ε of the wavelength λ, so that �λ ∼ ελ. The fraction ε is certainly less
than 1, but it is probably greater than 0.01, so we estimate that ε ∼ 0.1 to within
an order of magnitude. (In our discussion of uncertainty, we use the ∼ symbol
to indicate a rough order-of-magnitude estimate.) That is, the uncertainty in our
measurement of the wavelength might be roughly 10% of the wavelength.

The size of this wave disturbance is roughly one wavelength, so �x ≈ λ. For
this discussion we want to examine the product of the size of the wave packet and
the uncertainty in the wavelength, �x times �λ with �x ≈ λ and �λ ∼ ελ:

�x�λ ∼ ελ2 (4.4)

This expression shows the inverse relationship between the size of the wave
packet and the uncertainty in the wavelength: for a given wavelength, the smaller
the size of the wave packet, the greater the uncertainty in our knowledge of the
wavelength. That is, as �x gets smaller, �λ must become larger.

Making a larger wave packet doesn’t help us at all. Figure 4.19b shows a larger
wave packet with the same wavelength. Suppose this larger wave packet contains

(b)

Δx ≈ Nl

? ?

Δx ≈ l
(a)

??

FIGURE 4.19 (a) Measuring the wavelength of a wave represented by a
small wave packet of length roughly one wavelength. (b) Measuring the
wavelength of a wave represented by a large wave packet consisting of N
waves.
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N cycles of the wave, so that �x ≈ Nλ. Again using our measuring stick, we try
to measure the size of N wavelengths, and dividing this distance by N we can then
determine the wavelength. We still have the same uncertainty of ελ in locating the
start and end of this wave packet, but when we divide by N to find the wavelength,
the uncertainty in one wavelength becomes �λ ∼ ελ/N . For this larger wave
packet, the product of �x and �λ is �x�λ ∼ (Nλ)(ελ/N) = ελ2, exactly the
same as in the case of the smaller wave packet. Equation 4.4 is a fundamental
property of classical waves, independent of the type of wave or the method used
to measure its wavelength. This is the first of the uncertainty relationships for
classical waves.

Example 4.3

In a measurement of the wavelength of water waves, 10
wave cycles are counted in a distance of 196 cm. Estimate
the minimum uncertainty in the wavelength that might be
obtained from this experiment.

Solution
With 10 wave crests in a distance of 196 cm, the wavelength
is about (196 cm)/10 = 19.6 cm. We can take ε ∼ 0.1 as a
good order-of-magnitude estimate of the typical precision

that might be obtained. From Eq. 4.4, we can find the
uncertainty in wavelength:

�λ ∼ ελ2

�x
= (0.1)(19.6 cm)2

196 cm
= 0.2 cm

With an uncertainty of 0.2 cm, the “true” wavelength might
range from 19.5 cm to 19.7 cm, so we might express this
result as 19.6 ± 0.1 cm.

The Frequency-Time Uncertainty Relationship
We can take a different approach to uncertainty for classical waves by imagining a
measurement of the period rather than the wavelength of the wave that comprises
our wave packet. Suppose we have a timing device that we use to measure
the duration of the wave packet, as in Figure 4.20. Here we are plotting the
wave disturbance as a function of time rather than location. The “size” of the
wave packet is now its duration in time, which is roughly one period T for this
wave packet, so that �t ≈ T . Whatever measuring device we use, we have some
difficulty locating exactly the start and end of one cycle, so we have an uncertainty
�T in measuring the period. As before, we’ll assume this uncertainty is some
small fraction of the period: �T ∼ εT . To examine the competition between the
duration of the wave packet and our ability to measure its period, we calculate the
product of �t and �T :

�t�T ∼ εT2 (4.5)

? ?

Δt ≈ T

FIGURE 4.20 Measuring the period
of a wave represented by a small wave
packet of duration roughly one period.

This is the second of our uncertainty relationships for classical waves. It shows that
for a wave of a given period, the smaller the duration of the wave packet, the larger
is the uncertainty in our measurement of the period. Note the similarity between
Eqs. 4.4 and 4.5, one representing relationships in space and the other in time.

It will turn out to be more useful if we write Eq. 4.5 in terms of frequency
instead of period. Given that period T and frequency f are related by f = 1/T , how
is �f related to �T? The correct relationship is certainly not �f = 1/�T , which
would imply that a very small uncertainty in the period would lead to a very large
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uncertainty in the frequency. Instead, they should be directly related—the better
we know the period, the better we know the frequency. Here is how we obtain the
relationship: Beginning with f = 1/T , we take differentials on both sides:

df = − 1

T2
dT

Next we convert the infinitesimal differentials to finite intervals, and because we
are interested only in the magnitude of the uncertainties we can ignore the minus
sign:

�f = 1

T2
�T (4.6)

Combining Eqs. 4.5 and 4.6, we obtain

�f �t ∼ ε (4.7)

Equation 4.7 shows that the longer the duration of the wave packet, the more
precisely we can measure its frequency.

Example 4.4

An electronics salesman offers to sell you a frequency-
measuring device. When hooked up to a sinusoidal signal,
it automatically displays the frequency of the signal, and to
account for frequency variations, the frequency is remea-
sured once each second and the display is updated. The
salesman claims the device to be accurate to 0.01 Hz. Is
this claim valid?

Solution
Based on Eq. 4.7, and again estimating ε to be about 0.1, we
know that a measurement of frequency in a time �t = 1s

must have an associated uncertainty of about

�f ∼ ε

�t
= 0.1

1s

= 0.1 Hz

It appears that the salesman may be exaggerating the
precision of this device.

4.4 HEISENBERG UNCERTAINTY RELATIONSHIPS

The uncertainty relationships discussed in the previous section apply to all waves,
and we should therefore apply them to de Broglie waves. We can use the basic de
Broglie relationship p = h/λ to relate the uncertainty in the momentum �p to the
uncertainty in wavelength �λ, using the same procedure that we used to obtain
Eq. 4.6. Starting with p = h/λ, we take differentials on both sides and obtain
dp = (−h/λ2)dλ. Now we change the differentials into differences, ignoring the
minus sign:

�p = h

λ2
�λ (4.8)
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An uncertainty in the momentum of the particle is directly related to the uncertainty
in the wavelength associated with the particle’s de Broglie wave packet.

Combining Eq. 4.8 with Eq. 4.4, we obtain

�x�p ∼ εh (4.9)

Just like Eq. 4.4, this equation suggests an inverse relationship between �x and
�p. The smaller the size of the wave packet of the particle, the larger is the
uncertainty in its momentum (and thus in its velocity).

Quantum mechanics provides a formal procedure for calculating �x and �p
for wave packets corresponding to different physical situations and for different
schemes for confining a particle. One outcome of these calculations gives the
wave packet with the smallest possible value of the product �x�p, which turns
out to be h/4π , as we will discuss in the next chapter. Thus ε = 1/4π in this case.
All other wave packets will have larger values for �x�p.

The combination h/2π occurs frequently in quantum mechanics and is given
the special symbol −h (“h-bar”)

−h = h

2π
= 1.05 × 10−34 J · s = 6.58 × 10−16 eV · s

In terms of −h, we can write the uncertainty relationship as

�x�px � 1
2

−h (4.10)

Werner Heisenberg (1901–1976, Ger-
many). Best known for the uncertainty
principle, he also developed a com-
plete formulation of the quantum the-
ory based on matrices.

The x subscript has been added to the momentum to remind us that Eq. 4.10
applies to motion in a given direction and relates the uncertainties in position and
momentum in that direction only. Similar and independent relationships can be
applied in the other directions as necessary; thus �y�py � −h/2 or �z�pz � −h/2.

Equation 4.10 is the first of the Heisenberg uncertainty relationships. It sets the
limit of the best we can possibly do in an experiment to measure simultaneously the
location and the momentum of a particle. Another way of interpreting this equation
is to say that the more we try to confine a particle, the less we know about its
momentum.

Because the limit of −h/2 represents the minimum value of the product �x�px,
in most cases we will do worse than this limit. It is therefore quite acceptable to
take

�x�px ∼ −h (4.11)

as a rough estimate of the relationship between the uncertainties in location and
momentum.

Screen

y

x

a

q = sin–1 l
a

Δx~∞

Electrons

FIGURE 4.21 Single-slit diffraction
of electrons. A wide beam of electrons
is incident on a narrow slit. The elec-
trons that pass through the slit acquire
a component of momentum in the x
direction.

As an example, let’s consider a beam of electrons incident on a single slit, as in
Figure 4.21. We know this experiment as single-slit diffraction, which produces
the characteristic diffraction pattern illustrated in Figure 4.1. We’ll assume that
the particles are initially moving in the y direction and that we know their
momentum in that direction as precisely as possible. If the electrons initially have
no component of their momentum in the x direction, we know px exactly (it is
exactly zero), so that �px = 0; thus we know nothing about the x coordinates of
the electrons (�x = ∞). This situation represents a very wide beam of electrons,
only a small fraction of which pass through the slit.

At the instant that some of the electrons pass through the slit, we know quite
a bit more about their x location. In order to pass through the slit, the uncertainty
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in their x location is no larger than a, the width of the slit; thus �x = a. This
improvement in our knowledge of the electron’s location comes at the expense of
our knowledge of its momentum, however. According to Eq. 4.11, the uncertainty
in the x component of its momentum is now �px ∼ −h/a. Measurements beyond
the slit no longer show the particle moving precisely in the y direction (for
which px = 0); the momentum now has a small x component as well, with values
distributed about zero but now with a range of roughly ±−h/a. In passing through
the slit, a particle acquires on the average an x component of momentum of
roughly −h/a, according to the uncertainty principle.

Let us now find the angle θ that specifies where a particle with this value of px
lands on the screen. For small angles, sin θ ≈ tan θ and so

sin θ ≈ tan θ = px

py
=

−h/a

py
= λ

2πa

using λ = h/py for the de Broglie wavelength of the electrons. The first minimum
of the diffraction pattern of a single slit is located at sin θ = λ/a, which is larger
than the spread of angles into which most of the particles are diffracted. The
calculation shows that the distribution of transverse momentum given by the
uncertainty principle is roughly equivalent to the spreading of the beam into the
central diffraction peak, and it illustrates again the close connection between wave
behavior and uncertainty in particle location.

The diffraction (spreading) of a beam following passage through a slit is just
the effect of the uncertainty principle on our attempt to specify the location of the
particle. As we make the slit narrower, px increases and the beam spreads even
more. In trying to obtain more precise knowledge of the location of the particle
by making the slit narrower, we have lost knowledge of the direction of its travel.
This trade-off between observations of position and momentum is the essence of
the Heisenberg uncertainty principle.

We can also apply the second of our classical uncertainty relationships (Eq. 4.7)
to de Broglie waves. If we assume the energy-frequency relationship for light,
E = hf , can be applied to particles, then we immediately obtain �E = h�f .
Combining this with Eq. 4.7, we obtain

�E�t ∼ εh (4.12)

Once again, the minimum uncertainty wave packet gives ε = 1/4π , and so

�E�t � 1
2

−h (4.13)

This is the second of the Heisenberg uncertainty relationships. It tells us that
the more precisely we try to determine the time coordinate of a particle, the less
precisely we know its energy. For example, if a particle has a very short lifetime
between its creation and decay (�t → 0), a measurement of its rest energy (and
thus its mass) will be very imprecise (�E → ∞). Conversely, the rest energy of
a stable particle (one with an infinite lifetime, so that �t = ∞) can in principle be
measured with unlimited precision (�E = 0).

As in the case of the first Heisenberg relationship, we can take

�E�t ∼ −h (4.14)

as a reasonable estimate for most wave packets.
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The Heisenberg uncertainty relationships are the mathematical representations
of the Heisenberg uncertainty principle, which states:

It is not possible to make a simultaneous determination of the position and
the momentum of a particle with unlimited precision,

and

It is not possible to make a simultaneous determination of the energy and
the time coordinate of a particle with unlimited precision.

These relationships give an estimate of the minimum uncertainty that can result
from any experiment; measurement of the position and momentum of a particle
will give a spread of values of widths �x and �px. We may, for other reasons, do
much worse than Eqs. 4.10 and 4.13, but we can do no better.

These relationships have a profound impact on our view of nature. It is quite
acceptable to say that there is an uncertainty in locating the position of a water
wave. It is quite another matter to make the same statement about a de Broglie
wave, because there is an implied corresponding uncertainty in the position of the
particle. Equations 4.10 and 4.13 say that nature imposes a limit on the accuracy
with which we can do experiments. To emphasize this point, the Heisenberg
relationships are sometimes called “indeterminacy” rather than “uncertainty”
principles, because the idea of uncertainty may suggest an experimental limit
that can be reduced by using better equipment or technique. In actuality, these
coordinates are indeterminate to the limits provided by Eqs. 4.10 and 4.13—no
matter how hard we try, it is simply not possible to measure more precisely.

Example 4.5

An electron moves in the x direction with a speed of
3.6 × 106 m/s. We can measure its speed to a precision of
1%. With what precision can we simultaneously measure
its x coordinate?

Solution
The electron’s momentum is

px = mvx = (9.11 × 10−31 kg)(3.6 × 106 m/s)

= 3.3 × 10−24 kg · m/s

The uncertainty �px is 1% of this value, or 3.3 ×
10−26 kg · m/s. The uncertainty in position is then

�x ∼
−h

�px
= 1.05 × 10−34 J · s

3.3 × 10−26 kg · m/s

= 3.2 nm

which is roughly 10 atomic diameters.

Example 4.6

Repeat the calculations of the previous example in the case
of a pitched baseball (m = 0.145 kg) moving at a speed of
95 mi/h (42.5 m/s). Again assume that its speed can be
measured to a precision of 1%.

Solution
The baseball’s momentum is

px = mvx = (0.145 kg)(42.5 m/s) = 6.16 kg · m/s

The uncertainty in momentum is 6.16 × 10−2 kg · m/s, and
the corresponding uncertainty in position is

�x ∼
−h

�px
= 1.05 × 10−34 J · s

6.16 × 10−2 kg · m/s
= 1.7 × 10−33 m
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This uncertainty is 19 orders of magnitude smaller than the
size of an atomic nucleus. The uncertainty principle cannot
be blamed for the batter missing the pitch! Once again

we see that, because of the small magnitude of Planck’s
constant, quantum effects are not observable for ordinary
objects.

A Statistical Interpretation of Uncertainty

A diffraction pattern, such as that shown in Figure 4.21, is the result of the
passage of many particles or photons through the slit. So far, we have been
discussing the behavior of only one particle. Let’s imagine that we do an
experiment in which a large number of particles passes (one at a time) through
the slit, and we measure the transverse (x component) momentum of each
particle after it passes through the slit. We can do this experiment simply by
placing a detector at different locations on the screen where we observe the
diffraction pattern. Because the detector actually accepts particles over a finite
region on the screen, it measures in a range of deflection angles or equivalently
in a range of transverse momentum. The result of the experiment might look
something like Figure 4.22. The vertical scale shows the number of particles with
momentum in each interval corresponding to different locations of the detector
on the screen. The values are symmetrically arranged about zero, which indicates
that the mean or average value of px is zero. The width of the distribution is
characterized by �px.

Momentum
0

Δpx

Number of particles
recorded by detector

FIGURE 4.22 Results that might be
obtained from measuring the number
of electrons in a given time interval
at different locations on the screen of
Figure 4.21. The distribution is cen-
tered around px = 0 and has a width
that is characterized by �px.

Figure 4.22 resembles a statistical distribution, and in fact the precise definition
of �px is similar to that of the standard deviation σA of a quantity A that has a
mean or average value Aav:

σA =
√

(A2)av − (Aav)
2

If there are N individual measurements of A, then Aav = N−1�Ai and (A2)av =
N−1�A2

i .
By analogy, we can make a rigorous definition of the uncertainty in

momentum as

�px =
√

(p2
x)av − (px,av)

2 (4.15)

The average value of the transverse momentum for the situation shown in
Figure 4.22 is zero, so

�px =
√

(p2
x)av (4.16)

which gives in effect a root-mean-square value of px. This can be taken to be
a rough measure of the magnitude of px. Thus it is often said that �px gives a
measure of the magnitude of the momentum of the particle. As you can see from
Figure 4.22, this is indeed true.∗

∗The relationship between the value of �px calculated from Eq. 4.16 and the width of the distribution
shown in Figure 4.22 depends on the exact shape of the distribution. You should consider the value
from Eq. 4.16 as a rough order-of-magnitude estimate of the width of the distribution.
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Example 4.7

In nuclear beta decay, electrons are observed to be ejected
from the atomic nucleus. Suppose we assume that elec-
trons are somehow trapped within the nucleus, and that
occasionally one escapes and is observed in the laboratory.
Take the diameter of a typical nucleus to be 1.0 × 10−14 m,
and use the uncertainty principle to estimate the range of
kinetic energies that such an electron must have.

Solution
If the electron were trapped in a region of width �x ≈
10−14 m, the corresponding uncertainty in its momentum
would be

�px ∼
−h

�x
= 1

c

−hc

�x
= 1

c

197 MeV · fm

10 fm
= 19.7 MeV/c

Note the use of −hc = 197 MeV · fm in this calculation. This
momentum is clearly in the relativistic regime for electrons,
so we must use the relativistic formula to find the kinetic

energy for a particle of momentum 19.7 MeV/c:

K =
√

p2c2 + (mc2)2 − mc2

=
√

(19.7 MeV)2 + (0.5 MeV)2 − 0.5 MeV = 19 MeV

where we have used Eq. 4.16 to relate �px to p2
x . This

result gives the spread of kinetic energies corresponding to
a spread in momentum of 19.7 MeV/c.

Electrons emitted from the nucleus in nuclear beta
decay typically have kinetic energies of about 1 MeV,
much smaller than the typical spread in energy required by
the uncertainty principle for electrons confined inside the
nucleus. This suggests that beta-decay electrons of such low
energies cannot be confined in a region of the size of the
nucleus, and that another explanation must be found for the
electrons observed in nuclear beta decay. (As we discuss in
Chapter 12, these electrons cannot preexist in the nucleus,
which would violate the uncertainty principle, but are
“manufactured” by the nucleus at the instant of the decay.)

Example 4.8

(a) A charged pi meson has a rest energy of 140 MeV
and a lifetime of 26 ns. Find the energy uncertainty of the
pi meson, expressed in MeV and also as a fraction of its
rest energy. (b) Repeat for the uncharged pi meson, with
a rest energy of 135 MeV and a lifetime of 8.3 × 10−17 s.
(c) Repeat for the rho meson, with a rest energy of 765 MeV
and a lifetime of 4.4 × 10−24 s.

Solution
(a) If the pi meson lives for 26 ns, we have only that much
time in which to measure its rest energy, and Eq. 4.8 tells us
that any energy measurement done in a time �t is uncertain
by an amount of at least

�E =
−h

�t
= 6.58 × 10−16 eV · s

26 × 10−9 s

= 2.5 × 10−8 eV

= 2.5×10−14 MeV

�E

E
= 2.5 × 10−14 MeV

140 MeV

= 1.8 × 10−16

(b) In a similar way,

�E =
−h

�t
= 6.58 × 10−16 eV · s

8.3 × 10−17 s
= 7.9 eV

= 7.9 × 10−6 MeV

�E

E
= 7.9 × 10−6 MeV

135 MeV
= 5.9 × 10−8

(c) For the rho meson,

�E =
−h

�t
= 6.58 × 10−16 eV · s

4.4 × 10−24 s
= 1.5 × 108 eV

= 150 MeV

�E

E
= 150 MeV

765 MeV
= 0.20

In the first case, the uncertainty principle does not give
a large enough effect to be measured—particle masses
cannot be measured to a precision of 10−16 (about 10−6

is the best precision that we can obtain). In the second
example, the uncertainty principle contributes at about the
level of 10−7, which approaches the limit of our measuring
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instruments and therefore might be observable in the lab-
oratory. In the third example, we see that the uncertainty
principle can contribute substantially to the precision of our
knowledge of the rest energy of the rho meson; measure-
ments of its rest energy will show a statistical distribution
centered about 765 MeV with a spread of 150 MeV, and no
matter how precise an instrument we use to measure the
rest energy, we can never reduce that spread.

The lifetime of a very short-lived particle such as the rho
meson cannot be measured directly. In practice we reverse
the procedure of the calculation of this example—we
measure the rest energy, which gives a distribution similar
to Figure 4.22, and from the “width” �E of the distribution
we deduce the lifetime using Eq. 4.8. This procedure is
discussed in Chapter 14.

Example 4.9

Estimate the minimum velocity that would be measured
for a billiard ball (m ≈ 100 g) confined to a billiard table
of dimension 1 m.

Solution
For �x ≈ 1 m, we have

�px ∼
−h

�x
= 1.05 × 10−34 J · s

1 m
= 1 × 10−34 kg · m/s

so

�vx = �px

m
= 1 × 10−34 kg · m/s

0.1 kg
= 1 × 10−33 m/s

Thus quantum effects might result in motion of the billiard
ball with a speed distribution having a spread of about 1 ×
10−33 m/s. At this speed, the ball would move a distance
of 1% of the diameter of an atomic nucleus in a time equal
to the age of the universe! Once again, we see that quantum
effects are not observable with macroscopic objects.

4.5 WAVE PACKETS

In Section 4.3, we described measurements of the wavelength or frequency of a
wave packet, which we consider to be a finite group of oscillations of a wave.
That is, the wave amplitude is large over a finite region of space or time and is
very small outside that region.

Before we begin our discussion, it is necessary to keep in mind that we are
discussing traveling waves, which we imagine as moving in one direction with a
uniform speed. (We’ll discuss the speed of the wave packet later.) As the wave
packet moves, individual locations in space will oscillate with the frequency or
wavelength that characterizes the wave packet. When we show a static picture of
a wave packet, it doesn’t matter that some points within the packet appear to have
positive displacement, some have negative displacement, and some may even
have zero displacement. As the wave travels, those locations are in the process
of oscillating, and our drawings may “freeze” that oscillation. What is important
is the locations in space where the overall wave packet has a large oscillation
amplitude and where it has a very small amplitude.∗

In this section we will examine how to build a wave packet by adding waves
together. A pure sinusoidal wave is of no use in representing a particle—the wave

∗By analogy, think of a radio wave traveling from the station to your receiver. At a particular instant
of time, some points in space may have instantaneous electromagnetic field values of zero, but that
doesn’t affect your reception of the signal. What is important is the overall amplitude of the traveling
wave.
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extends from −∞ to +∞, so the particle could be found anywhere. We would like
the particle to be represented by a wave packet that describes how the particle is
localized to a particular region of space, such as an atom or a nucleus.

The key to the process of building a wave packet involves adding together
waves of different wavelength. We represent our waves as A cos kx, where k is the
wave number (k = 2π/λ) and A is the amplitude. For example, let’s add together
two waves:

y(x) = A1 cos k1x + A2 cos k2x = A1 cos(2πx/λ1) + A2 cos(2πx/λ2) (4.17)

This sum is illustrated in Figure 4.23a for the case A1 = A2 and λ1 = 9, λ2 = 11.
This combined wave shows the phenomenon known as beats in the case of sound
waves. So far we don’t have a result that looks anything like the wave packet we
are after, but you can see that by adding together two different waves we have
reduced the amplitude of the wave packet at some locations. This pattern repeats
endlessly from −∞ to +∞, so the particle is still not localized.

Let’s try a more detailed sum. Figure 4.23b shows the result of adding 5 waves
with wavelengths 9, 9.5, 10, 10.5, 11. Here we have been a bit more successful
in restricting the amplitude of the wave packet in some regions. By adding even
more waves with a larger range of wavelengths, we can obtain still narrower
regions of large amplitude: Figure 4.23c shows the result of adding 9 waves
with wavelengths 8, 8.5, 9, . . . , 12, and Figure 4.23d shows the result of adding
13 waves of wavelengths 7, 7.5, 8, . . . , 13. Unfortunately, all of these patterns
(including the regions of large amplitude) repeat endlessly from −∞ to +∞, so
even though we have obtained increasingly large regions where the wave packet
has small amplitude, we haven’t yet created a wave packet that might represent
a particle localized to a particular region. If these wave packets did represent
particles, then the particle would not be confined to any finite region.
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FIGURE 4.23 (a) Adding two waves of wavelengths 9 and 11 gives beats.
(b) Adding 5 waves with wavelengths ranging from 9 to 11. (c) Adding 9
waves with wavelengths ranging from 8 to 12. (d) Adding 13 waves with
wavelengths from 7 to 13. All of the patterns repeat from −∞ to +∞.



4.5 | Wave Packets 121

The regions of large amplitude in Figures 4.23b,c,d do show how adding more
waves of a greater range of wavelengths helps to restrict the size of the wave
packet. The region of large amplitude in Figure 4.23b ranges from about x = −40
to +40, while in Figure 4.23c it is from about x = −20 to +20 and in Figure 4.23d
from about x = −15 to +15. This shows again the inverse relationship between �x
and �λ expected for wave packets given by Eq. 4.4: as the range of wavelengths
increases from 2 to 4 to 6, the size of the “allowed” regions decreases from about
80 to 40 to 30. Once again we find that to restrict the size of the wave packet we
must sacrifice the precise knowledge of the wavelength.

Note that for all four of these wave patterns, the disturbance seems to have a
wavelength of about 10, equal to the central wavelength of the range of values
of the functions we constructed. We can therefore regard these functions as a
cosine wave with a wavelength of 10 that is shaped or modulated by the other
cosine waves included in the function. For example, for the case of A1 = A2 = A,
Eq. 4.17 can be rewritten after a bit of trigonometric manipulation as

y(x) = 2A cos

(
πx

λ1
− πx

λ2

)
cos

(
πx

λ1
+ πx

λ2

)
(4.18)

If λ1 and λ2 are close together (that is, if �λ = λ2 − λ1 	 λ1, λ2), this can be
approximated as

y(x) = 2A cos

(
�λπx

λ2
av

)
cos

(
2πx

λav

)
(4.19)

where λav = (λ1 + λ2)/2 ≈ λ1 or λ2. The second cosine term represents a wave
with a wavelength of 10, and the first cosine term provides the shaping envelope
that produces the beats.
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FIGURE 4.24 (a) A wave packet
in which the modulation envelope
decreases in amplitude like 1/x.
(b) A wave packet with a Gaussian
modulating function. Both curves are
drawn for λ0 = 10 and �λ = 0.58,
which corresponds approximately to
Figure 4.23b.

Any finite combination of waves with discrete wavelengths will produce
patterns that repeat between −∞ to +∞, so this method of adding waves will
not work in constructing a finite wave packet. To construct a wave packet with a
finite width, we must replace the first cosine term in Eq. 4.19 with a function that
is large in the region where we want to confine the particle but that falls to zero
as x → ±∞. For example, the simplest function that has this property is 1/x, so
we might imagine a wave packet whose mathematical form is

y(x) = 2A

x
sin

(
�λπx

λ2
0

)
cos

(
2πx

λ0

)
(4.20)

Here λ0 represents the central wavelength, replacing λav. (In going from Eq. 4.19
to Eq. 4.20, the cosine modulating term has been changed to a sine; otherwise the
function would blow up at x = 0.) This function is plotted in Figure 4.24a. It looks
more like the kind of function we are seeking—it has large amplitude only in a
small region of space, and the amplitude drops rapidly to zero outside that region.
Another function that has this property is the Gaussian modulating function:

y(x) = Ae−2(�λπx/λ2
0)2

cos

(
2πx

λ0

)
(4.21)

which is shown in Figure 4.24b.
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Both of these functions show the characteristic inverse relationship between an
arbitrarily defined size of the wave packet �x and the wavelength range parameter
�λ that is used in constructing the wave packet. For example, consider the wave
packet shown in Figure 4.24a. Let’s arbitrarily define the width of the wave packet
as the distance over which the amplitude of the central region falls by 1/2. That
occurs roughly where the argument of the sine has the value ±π/2, which gives
�x�λ ∼ λ2

0, consistent with our classical uncertainty estimate.
These wave packets can also be constructed by adding together waves of

differing amplitude and wavelength, but the wavelengths form a continuous rather
than a discrete set. It is a bit easier to illustrate this if we work with wave number
k = 2π/λ rather than wavelength. So far we have been adding waves in the form
of A cos kx, so that

y(x) =
∑

Ai cos kix (4.22)

where ki = 2π/λi. The waves plotted in Figure 4.23 represent applications of the
general formula of Eq. 4.22 carried out over different numbers of discrete waves.
If we have a continuous set of wave numbers, the sum in Eq. 4.22 becomes an
integral:

y(x) =
∫

A(k) cos kx dk (4.23)

where the integral is carried out over whatever range of wave numbers is permitted
(possibly infinite).

For example, suppose we have a range of wave numbers from k0 − �k/2 to
k0 + �k/2 that is a continuous distribution of wave numbers of width �k centered
at k0. If all of the waves have the same amplitude A0, then from Eq. 4.23 the form
of the wave packet can be shown to be (see Problem 24 at the end of the chapter)

y(x) = 2A0

x
sin

(
�k

2
x

)
cos k0x (4.24)

This is identical with Eq. 4.20 with k0 = 2π/λ0 and �k = 2π�λ/λ2
0. This

relationship between �k and �λ follows from a procedure similar to what was used
to obtain Eq. 4.6. With k = 2π/λ, taking differentials gives dk = −(2π/λ2)dλ.
Replacing the differentials with differences and ignoring the minus sign gives the
relationship between �k and �λ.

A better approximation of the shape of the wave packet can be found by letting
A(k) vary according to a Gaussian distribution A(k) = A0e−(k−k0)2/2(�k)2

. This
gives a range of wave numbers that has its largest contribution at the central
wave number k0 and falls off to zero for larger or smaller wave numbers with a
characteristic width of �k. Applying Eq. 4.23 to this case, with k ranging from
−∞ to +∞ gives (see Problem 25)

y(x) = A0�k
√

2πe−(�kx)2/2 cos k0x (4.25)

which shows how the form of Eq. 4.21 originates.
By specifying the distribution of wavelengths, we can construct a wave packet

of any desired shape. A wave packet that restricts the particle to a region in space
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of width �x will have a distribution of wavelengths characterized by a width �λ.
The smaller we try to make �x, the larger will be the spread �λ of the wavelength
distribution. The mathematics of this process gives a result that is consistent with
the uncertainty relationship for classical waves (Eq. 4.4).

4.6 THE MOTION OF A WAVE PACKET

Let’s consider again the “beats” wave packet represented by Eq. 4.17 and
illustrated in Figure 4.23a. We now want to turn our “static” waves into traveling
waves. It will again be more convenient for this discussion to work with the wave
number k instead of the wavelength. To turn a static wave y(x) = A cos kx into a
traveling wave moving in the positive x direction, we replace kx with kx − ωt, so
that the traveling wave is written as y(x, t) = A cos(kx − ωt). (For motion in the
negative x direction, we would replace kx with kx + ωt.) Here ω is the circular
frequency of the wave: ω = 2π f . The combined traveling wave then would be
represented as

y(x, t) = A1 cos(k1x − ω1t) + A2 cos(k2x − ω2t) (4.26)

For any individual wave, the wave speed is related to its frequency and wavelength
according to v = λf . In terms of the wave number and circular frequency, we can
write this as v = (2π/k)(ω/2π), so v = ω/k. This quantity is sometimes called
the phase speed and represents the speed of one particular phase or component
of the wave packet. In general, each individual component may have a different
phase speed. As a result, the shape of the wave packet may change with time.

For Figure 4.23a, we chose A1 = A2 and λ1 = 9, λ2 = 11. Let’s choose v1 = 6
units/s and v2 = 4 units/s. Figure 4.25 shows the waveform at a time of t = 1 s. In
that time, wave 1 will have moved a distance of 6 units in the positive x direction
and wave 2 will have moved a distance of 4 units in the positive x direction.
However, the combined wave moves a much greater distance in that time: the
center of the beat that was formerly at x = 0 has moved to x = 15 units. How is
it possible that the combined waveform moves faster than either of its component
waves?
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FIGURE 4.25 The solid line shows the waveform of Figure 4.23a
at t = 1 s, and the dashed line shows the same waveform at t = 0.
Note that the peak that was originally at x = 0 has moved to x = 15
at t = 1 s.
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To produce the peak at x = 0 and t = 0, the two component waves were exactly
in phase—their two maxima lined up exactly to produce the combined maximum
of the wave. At x = 15 units and t = 1 s, two individual maxima line up once
again to produce a combined maximum. They are not the same two maxima that
lined up to produce the maximum at t = 0, but it happens that two other maxima
are in phase at x = 15 units and t = 1 s to produce the combined maximum. If we
were to watch an animation of the wave, we would see the maximum originally
at x = 0 move gradually to x = 15 between t = 0 and t = 1 s.

We can understand how this occurs by writing Eq. 4.26 in a form similar to
Eq. 4.18 using trigonometric identities. The result is (again assuming A1 = A2 =
A, as we did in Eq. 4.18):

y(x, t) = 2A cos

(
�k

2
x − �ω

2
t

)
cos

(
k1 + k2

2
x − ω1 + ω2

2
t

)
(4.27)

As in Eq. 4.18, the second term in Eq. 4.27 represents the rapid variation of the
wave within the envelope given by the first term. It is the first term that dictates the
overall shape of the waveform, so it is this term that determines the speed of travel
of the waveform. For a wave that is written as cos(kx − ωt), the speed is ω/k. For
this wave envelope, the speed is (�ω/2)/(�k/2) = �ω/�k. This speed is called
the group speed of the wave packet. As we have seen, the group speed of the
wave packet can be very different from the phase speed of the component waves.
For more complicated situations than the two-component “beat” waveform, the
group speed can be generalized by turning the differences into differentials:

vgroup = dω

dk
(4.28)

The group speed depends on the relationship between frequency and wavelength
for the component waves. If the phase speed of all component waves is the same
and is independent of frequency or wavelength (as, for example, light waves
in empty space), then the group speed is identical to the phase speed and the
wave packet keeps its original shape as it travels. In general, the propagation
of a component wave depends on the properties of the medium, and different
component waves will travel with different speeds. Light waves in glass or sound
waves in most solids travel with a speed that varies with frequency or wavelength,
and so their wave packets change shape as they travel. De Broglie waves in general
have different phase speeds, so that their wave packets expand as they travel.

Example 4.10

Certain ocean waves travel with a phase velocity vphase =√
gλ/2π , where g is the acceleration due to gravity. What

is the group velocity of a “wave packet” of these waves?

Solution
With k = 2π/λ, we can write the phase velocity as a
function of k as

vphase =
√

g/k

But with vphase = ω/k, we have ω/k = √
g/k, so ω = √

gk
and Eq. 4.28 gives

vgroup = dω

dk
= d

dk

√
gk = 1

2

√
g

k
= 1

2

√
gλ

2π

Note that the group speed of the wave packet increases as
the wavelength increases.
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The Group Speed of deBroglie Waves
Suppose we have a localized particle, represented by a group of de Broglie
waves. For each component wave, the energy of the particle is related to the
frequency of the de Broglie wave by E = hf = −hω, and so dE = −hdω. Similarly,
the momentum of the particle is related to the wavelength of the de Broglie wave
by p = h/λ = −hk, so dp = −hdk. The group speed of the de Broglie wave then can
be expressed as

vgroup = dω

dk
= dE/−h

dp/−h
= dE

dp
(4.29)

For a classical particle having only kinetic energy E = K = p2/2m, we can find
dE/dp as

dE

dp
= d

dp

(
p2

2m

)
= p

m
= v (4.30)

which is the velocity of the particle.
Combining Eqs. 4.29 and 4.30 we obtain an important result:

vgroup = vparticle (4.31)

The speed of a particle is equal to the group speed of the corresponding wave
packet. The wave packet and the particle move together—wherever the particle
goes, its de Broglie wave packet moves along with it like a shadow. If we do a
wave-type experiment on the particle, the de Broglie wave packet is always there
to reveal the wave behavior of the particle. A particle can never escape its wave
nature!

The Spreading of a Moving Wave Packet
Suppose we have a wave packet that represents a confined particle at t = 0. For
example, the particle might have passed through a single-slit apparatus. Its initial
uncertainty in position is �x0 and its initial uncertainty in momentum is �px0.
The wave packet moves in the x direction with velocity vx, but that velocity is
not precisely known—the uncertainty in its momentum gives a corresponding
uncertainty in velocity: �vx0 = �px0/m. Because there is an uncertainty in the
velocity of the wave packet, we can’t be sure where it will be located at time
t. That is, its location at time t is x = vxt, with velocity vx = vx0 ± �vx0. Thus
there are two contributions to the uncertainty in its location at time t: the initial
uncertainty �x0 and an additional amount equal to �vx0t that represents the
spreading of the wave packet. We’ll assume that these two contributions add
quadratically, like experimental uncertainties, so that the total uncertainty in the
location of the particle is

�x =
√

(�x0)
2 + (�vx0t)2 =

√
(�x0)

2 + (�px0t/m)2 (4.32)

Taking �px0 = −h/�x0 according to the uncertainty principle, we have

�x =
√

(�x0)
2 + (−ht/m�x0)

2 (4.33)

If we try to make the wave packet very small at t = 0 (�x0 is small), then the second
term under the square root makes the wave packet expand rapidly, because �x0
appears in the denominator of that term. The more successful we are at confining
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a wave packet, the more quickly it spreads. This reminds us of the single-slit
experiment discussed in Section 4.4: the narrower we make the slit, the more the
waves diverge after passing through the slit. Figure 4.26 shows how the size of the
wave packet expands with time for two different initial sizes, and you can see that
the smaller initial wave packet grows more rapidly than the larger initial packet.
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FIGURE 4.26 The smaller the initial
wave packet, the more quickly it
grows.

4.7 PROBABILITY AND RANDOMNESS

Any single measurement of the position or momentum of a particle can be made
with as much precision as our experimental skill permits. How then does the
wavelike behavior of a particle become observable? How does the uncertainty in
position or momentum affect our experiment?

Suppose we prepare an atom by attaching an electron to a nucleus. (For
this example we regard the nucleus as being fixed in space.) Some time after
preparing our atom, we measure the position of the electron. We then repeat the
procedure, preparing the atom in an identical way, and find that a remeasurement
of the position of the electron yields a value different from that found in our
first measurement. In fact, each time we repeat the measurement, we may obtain
a different outcome. If we repeat the measurement a large number of times, we
find ourselves led to a conclusion that runs counter to a basic notion of classical
physics—systems that are prepared in identical ways do not show identical
subsequent behavior. What hope do we then have of constructing a mathematical
theory that has any usefulness at all in predicting the outcome of a measurement,
if that outcome is completely random?

The solution to this dilemma lies in the consideration of the probability of
obtaining any given result from an experiment whose possible results are subject
to the laws of statistics. We cannot predict the outcome of a single flip of a
coin or roll of the dice, because any single result is as likely as any other single
result. We can, however, predict the distribution of a large number of individual
measurements. For example, on a single flip of a coin, we cannot predict whether
the outcome will be “heads” or “tails”; the two are equally likely. If we make a
large number of trials, we expect that approximately 50% will turn up “heads” and
50% will yield “tails”; even though we cannot predict the result of any single toss
of the coin, we can predict reasonably well the result of a large number of tosses.

Our study of systems governed by the laws of quantum physics leads us to a
similar situation. We cannot predict the outcome of any single measurement of
the position of the electron in the atom we prepared, but if we do a large number
of measurements, we ought to find a statistical distribution of results. We cannot
develop a mathematical theory that predicts the result of a single measurement, but
we do have a mathematical theory that predicts the statistical behavior of a system
(or of a large number of identical systems). The quantum theory provides this
mathematical procedure, which enables us to calculate the average or probable
outcome of measurements and the distribution of individual outcomes about the
average. This is not such a disadvantage as it may seem, for in the realm of
quantum physics, we seldom do measurements with, for example, a single atom.
If we were studying the emission of light by a radiant system or the properties
of a solid or the scattering of nuclear particles, we would be dealing with a large
number of atoms, and so our concept of statistical averages is very useful.

In fact, such concepts are not as far removed from our daily lives as we might
think. For example, what is meant when the TV weather forecaster “predicts”
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a 50% chance of rain tomorrow? Will it rain 50% of the time, or over 50%
of the city? The proper interpretation of the forecast is that the existing set of
atmospheric conditions will, in a large number of similar cases, result in rain in
about half the cases. A surgeon who asserts that a patient has a 50% chance of
surviving an operation means exactly the same thing—experience with a large
number of similar cases suggests recovery in about half.

Quantum mechanics uses similar language. For example, if we say that the
electron in a hydrogen atom has a 50% probability of circulating in a clockwise
direction, we mean that in observing a large collection of similarly prepared atoms
we find 50% to be circulating clockwise. Of course a single measurement shows
either clockwise or counterclockwise circulation. (Similarly, it either rains or it
doesn’t; the patient either lives or dies.)

Of course, one could argue that the flip of a coin or the roll of the dice is not
a random process, but that the apparently random nature of the outcome simply
reflects our lack of knowledge of the state of the system. For example, if we knew
exactly how the dice were thrown (magnitude and direction of initial velocity,
initial orientation, rotational speed) and precisely what the laws are that govern
their bouncing on the table, we should be able to predict exactly how they would
land. (Similarly, if we knew a great deal more about atmospheric physics or
physiology, we could predict with certainty whether or not it will rain tomorrow
or an individual patient will survive.) When we instead analyze the outcomes in
terms of probabilities, we are really admitting our inability to do the analysis
exactly. There is a school of thought that asserts that the same situation exists in
quantum physics. According to this interpretation, we could predict exactly the
behavior of the electron in our atom if only we knew the nature of a set of so-called
“hidden variables” that determine its motion. However, experimental evidence
disagrees with this theory, and so we must conclude that the random behavior of
a system governed by the laws of quantum physics is a fundamental aspect of
nature and not a result of our limited knowledge of the properties of the system.

The Probability Amplitude
What does the amplitude of the de Broglie wave represent? In any wave
phenomenon, a physical quantity such as displacement or pressure varies with
location and time. What is the physical property that varies as the de Broglie wave
propagates?

A localized particle is represented by a wave packet. If a particle is confined
to a region of space of dimension �x, its wave packet has large amplitude only in
a region of space of dimension �x and has small amplitude elsewhere. That is,
the amplitude is large where the particle is likely to be found and small where the
particle is less likely to be found. The probability of finding the particle at any
point depends on the amplitude of its de Broglie wave at that point. In analogy
with classical physics, in which the intensity of any wave is proportional to the
square of its amplitude, we have

probability to observe particles ∝ | de Broglie wave amplitude |2

Compare this with the similar relationship for photons discussed in Section 3.6:

probability to observe photons ∝ | electric field amplitude |2

Just as the electric field amplitude of an electromagnetic wave indicates regions
of high and low probability for observing photons, the de Broglie wave performs
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(a) (b) (c)

FIGURE 4.27 The buildup of an electron interference pattern as increasing numbers of electrons are detected: (a) 100
electrons; (b) 3000 electrons; (c) 70,000 electrons. (Reprinted with permission from Akira Tonomura, Hitachi, Ltd,
T. Matsuda and T. Kawasaki, Advanced Research Laboratory. From American Journal of Physics 57, 117. (Copyright
1989) American Association of Physics Teachers.)

the same function for particles. Figure 4.27 illustrates this effect, as individual
electrons in a double-slit type of experiment eventually produce the characteristic
interference fringes. The path of each electron is guided by its de Broglie wave
toward the allowed regions of high probability. This statistical effect is not
apparent for a small number of electrons, but it becomes quite apparent when a
large number of electrons has been detected.

In the next chapter we discuss the mathematical framework for computing the
wave amplitudes for a particle in various situations, and we also develop a more
rigorous mathematical definition of the probability.

Chapter Summary
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De Broglie wavelength λ = h/p 4.1
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Group speed of wave
packet

vgroup = dω

dk
4.6

Questions

1. When an electron moves with a certain de Broglie wave-
length, does any aspect of the electron’s motion vary with
that wavelength?

2. Imagine a different world in which the laws of quantum
physics still apply, but which has h = 1 J · s. What might be
some of the difficulties of life in such a world? (See Mr.

Tompkins in Paperback by George Gamow for an imaginary
account of such a world.)

3. Suppose we try to measure an unknown frequency f by
listening for beats between f and a known (and controllable)
frequency f ′. (We assume f ′ is known to arbitrarily small
uncertainty.) The beat frequency is |f ′ − f |. If we hear no
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beats, then we conclude that f = f ′. (a) How long must we
listen to hear “no” beats? (b) If we hear no beats in one
second, how accurately have we determined f ? (c) If we
hear no beats in 10 s, how accurately? In 100 s? (d) How is
this experiment related to Eq. 4.7?

4. What difficulties does the uncertainty principle cause in
trying to pick up an electron with a pair of forceps?

5. Does the uncertainty principle apply to nature itself or only
to the results of experiments? That is, is it the position and
momentum that are really uncertain, or merely our knowl-
edge of them? What is the difference between these two
interpretations?

6. The uncertainty principle states in effect that the more we
try to confine an object, the faster we are likely to find it
moving. Is this why you can’t seem to keep money in your
pocket for long? Make a numerical estimate.

7. Consider a collection of gas molecules trapped in a con-
tainer. As we move the walls of the container closer together
(compressing the gas) the molecules move faster (the tem-
perature increases). Does the gas behave this way because
of the uncertainty principle? Justify your answer with some
numerical estimates.

8. Many nuclei are unstable and undergo radioactive decay to
other nuclei. The lifetimes for these decays are typically of
the order of days to years. Do you expect that the uncertainty
principle will cause a measurable effect in the precision
to which we can measure the masses of atoms of these
nuclei?

9. Just as the classical limit of relativity can be achieved by
letting c → ∞, the classical limit of quantum behavior is
achieved by letting h → 0. Consider the following in the
h → 0 limit and explain how they behave classically: the
size of the energy quantum of an electromagnetic wave,
the de Broglie wavelength of an electron, the Heisenberg
uncertainty relationships.

10. Assume the electron beam in a television tube is acceler-
ated through a potential difference of 25 kV and then passes
through a deflecting capacitor of interior width 1 cm. Are

diffraction effects important in this case? Justify your answer
with a calculation.

11. The structure of crystals can be revealed by X-ray diffrac-
tion (Figures 3.7 and 3.8), electron diffraction (Figure 4.2),
and neutron diffraction (Figure 4.7). In what ways do these
experiments reveal similar structure? In what ways are they
different?

12. Often it happens in physics that great discoveries are made
inadvertently. What would have happened if Davisson and
Germer had their accelerating voltage set below 32 V?

13. Suppose we cover one slit in the two-slit electron experiment
with a very thin sheet of fluorescent material that emits a
photon of light whenever an electron passes through. We
then fire electrons one at a time at the double slit; whether
or not we see a flash of light tells us which slit the electron
went through. What effect does this have on the interference
pattern? Why?

14. In another attempt to determine through which slit the elec-
tron passes, we suspend the double slit itself from a very
fine spring balance and measure the “recoil” momentum of
the slit as a result of the passage of the electron. Electrons
that strike the screen near the center must cause recoils
in opposite directions depending on which slit they pass
through. Sketch such an apparatus and describe its effect
on the interference pattern. (Hint: Consider the uncertainty
principle �x�px ∼ −h as applied to the motion of the slits
suspended from the spring. How precisely do we know the
position of the slit?)

15. It is possible for vphase to be greater than c? Can vgroup be
greater than c?

16. In a nondispersive medium, vgroup = vphase; this is another
way of saying that all waves travel with the same phase
velocity, no matter what their wavelengths. Is this true for
(a) de Broglie waves? (b) Light waves in glass? (c) Light
waves in vacuum? (d) Sound waves in air? What diffi-
culties would be encountered in attempting communication
(by speech or by radio signals for example) in a strongly
dispersive medium?

Problems

4.1 De Broglie’s Hypothesis

1. Find the de Broglie wavelength of (a) a 5-MeV pro-
ton; (b) a 50-GeV electron; (c) an electron moving at
v = 1.00 × 106 m/s.

2. The neutrons produced in a reactor are known as thermal
neutrons, because their kinetic energies have been reduced
(by collisions) until K = 3

2 kT , where T is room temperature
(293 K). (a) What is the kinetic energy of such neutrons?
(b) What is their de Broglie wavelength? Because this
wavelength is of the same order as the lattice spacing of

the atoms of a solid, neutron diffraction (like X-ray and
electron diffraction) is a useful means of studying solid
lattices.

3. By doing a nuclear diffraction experiment, you measure
the de Broglie wavelength of a proton to be 9.16 fm. (a)
What is the speed of the proton? (b) Through what potential
difference must it be accelerated to achieve that speed?

4. A proton is accelerated from rest through a potential
difference of −2.36 × 105 V. What is its de Broglie
wavelength?
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4.2 Experimental Evidence for de Broglie Waves

5. Find the potential difference through which electrons must
be accelerated (as in an electron microscope, for example)
if we wish to resolve: (a) a virus of diameter 12 nm; (b) an
atom of diameter 0.12 nm; (c) a proton of diameter 1.2 fm.

6. In an electron microscope we wish to study particles of diam-
eter about 0.10 μm (about 1000 times the size of a single
atom). (a) What should be the de Broglie wavelength of the
electrons? (b) Through what potential difference should the
electrons be accelerated to have that de Broglie wavelength?

7. In order to study the atomic nucleus, we would like to
observe the diffraction of particles whose de Broglie wave-
length is about the same size as the nuclear diameter, about
14 fm for a heavy nucleus such as lead. What kinetic energy
should we use if the diffracted particles are (a) electrons?
(b) Neutrons? (c) Alpha particles (m = 4 u)?

8. In the double-slit interference pattern for helium atoms
(Figure 4.13), the kinetic energy of the beam of atoms
was 0.020 eV. (a) What is the de Broglie wavelength of a
helium atom with this kinetic energy? (b) Estimate the de
Broglie wavelength of the atoms from the fringe spacing
in Figure 4.13, and compare your estimate with the value
obtained in part (a). The distance from the double slit to the
scanning slit is 64 cm.

9. Suppose we wish to do a double-slit experiment with a beam
of the smoke particles of Example 4.1c. Assume we can
construct a double slit whose separation is about the same
size as the particles. Estimate the separation between the
fringes if the double slit and the screen were on opposite
coasts of the United States.

10. In the Davisson-Germer experiment using a Ni crystal, a
second-order beam is observed at an angle of 55◦. For what
accelerating voltage does this occur?

11. A certain crystal is cut so that the rows of atoms on its
surface are separated by a distance of 0.352 nm. A beam
of electrons is accelerated through a potential difference of
175 V and is incident normally on the surface. If all possible
diffraction orders could be observed, at what angles (relative
to the incident beam) would the diffracted beams be found?

4.3 Uncertainty Relationships for Classical Waves

12. Suppose a traveling wave has a speed v (where v = λf ).
Instead of measuring waves over a distance �x, we stay in
one place and count the number of wave crests that pass in
a time �t. Show that Eq. 4.7 is equivalent to Eq. 4.4 for this
case.

13. Sound waves travel through air at a speed of 330 m/s. A
whistle blast at a frequency of about 1.0 kHz lasts for 2.0 s.
(a) Over what distance in space does the “wave train” repre-
senting the sound extend? (b) What is the wavelength of the
sound? (c) Estimate the precision with which an observer
could measure the wavelength. (d) Estimate the precision
with which an observer could measure the frequency.

14. A stone tossed into a body of water creates a disturbance at
the point of impact that lasts for 4.0 s. The wave speed is
25 cm/s. (a) Over what distance on the surface of the water
does the group of waves extend? (b) An observer counts 12
wave crests in the group. Estimate the precision with which
the wavelength can be determined.

15. A radar transmitter emits a pulse of electromagnetic radia-
tion with wavelength 0.225 m. The pulses have a duration of
1.17 μs. The receiver is set to accept a range of frequencies
about the central frequency. To what range of frequencies
should the receiver be set?

16. Estimate the signal processing time that would be necessary
if you want to design a device to measure frequencies to a
precision of no worse than 10,000 Hz.

4.4 Heisenberg Uncertainty Relationships

17. The speed of an electron is measured to within an uncertainty
of 2.0 × 104 m/s. What is the size of the smallest region of
space in which the electron can be confined?

18. An electron is confined to a region of space of the size of an
atom (0.1 nm). (a) What is the uncertainty in the momentum
of the electron? (b) What is the kinetic energy of an elec-
tron with a momentum equal to �p? (c) Does this give a
reasonable value for the kinetic energy of an electron in an
atom?

19. The �∗ particle has a rest energy of 1385 MeV and a lifetime
of 2.0 × 10−23 s. What would be a typical range of outcomes
of measurements of the �∗ rest energy?

20. A pi meson (pion) and a proton can briefly join together to
form a � particle. A measurement of the energy of the πp
system (Figure 4.28) shows a peak at 1236 MeV, correspond-
ing to the rest energy of the � particle, with an experimental
spread of 120 MeV. What is the lifetime of the �?
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FIGURE 4.28 Problem 20.

21. A nucleus emits a gamma ray of energy 1.0 MeV from a
state that has a lifetime of 1.2 ns. What is the uncertainty
in the energy of the gamma ray? The best gamma-ray
detectors can measure gamma-ray energies to a precision of
no better than a few eV. Will this uncertainty be directly
measurable?
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22. In special conditions (see Section 12.9), it is possible to
measure the energy of a gamma-ray photon to 1 part in
1015. For a photon energy of 50 keV, estimate the maximum
lifetime that could be determined by a direct measurement
of the spread of the photon energy.

23. Alpha particles are emitted in nuclear decay processes with
typical energies of 5 MeV. In analogy with Example 4.7,
deduce whether the alpha particle can exist inside the
nucleus.

4.5 Wave Packets

24. Use a distribution of wave numbers of constant amplitude
in a range �k about k0:

A(k) = A0 k0 − �k

2
� k � k0 + �k

2
= 0 otherwise

and obtain Eq. 4.24 from Eq. 4.23.
25. Use the distribution of wave numbers A(k) =

A0e−(k−k0)2/2(�k)2
for k = −∞ to +∞ to derive Eq. 4.25.

26. Do the trigonometric manipulation necessary to obtain
Eq. 4.18.

4.6 The Motion of a Wave Packet

27. Show that the data used in Figure 4.25 are consistent with
Eq. 4.27; that is, use λ1 = 9 and λ2 = 11, v1 = 6 and v2 = 4
to show that vgroup = 15.

28. (a) Show that the group velocity and phase velocity are
related by:

vgroup = vphase − λ
dvphase

dλ

(b) When white light travels through glass, the phase veloc-
ity of each wavelength depends on the wavelength. (This is
the origin of dispersion and the breaking up of white light
into its component colors—different wavelengths travel at
different speeds and have different indices of refraction.)
How does vphase depend on λ? Is dvphase/dλ positive or
negative? Therefore, is vgroup > vphase or < vphase?

29. Certain surface waves in a fluid travel with phase velocity√
b/λ, where b is a constant. Find the group velocity of a

packet of surface waves, in terms of the phase velocity.
30. By a calculation similar to that of Eq. 4.30, show that dE/dp

= v remains valid when E represents the relativistic kinetic
energy of the particle.

General Problems

31. A free electron bounces elastically back and forth in one
dimension between two walls that are L = 0.50 nm apart.
(a) Assuming that the electron is represented by a de Broglie
standing wave with a node at each wall, show that the permit-
ted de Broglie wavelengths are λn = 2L/n (n = 1, 2, 3, . . .).
(b) Find the values of the kinetic energy of the electron for
n = 1, 2, and 3.

32. A beam of thermal neutrons (see Problem 2) emerges from
a nuclear reactor and is incident on a crystal as shown in
Figure 4.29. The beam is Bragg scattered, as in Figure 3.5,
from a crystal whose scattering planes are separated by
0.247 nm. From the continuous energy spectrum of the
beam we wish to select neutrons of energy 0.0105 eV. Find
the Bragg-scattering angle that results in a scattered beam
of this energy. Will other energies also be present in the
scattered beam at that angle?

Shielding Graphite
Neutron
beam

Scattering
crystal

Reactor
q

q

FIGURE 4.29 Problem 32.

33. (a) Find the de Broglie wavelength of a nitrogen molecule
in air at room temperature (293 K). (b) The density of air at
room temperature and atmospheric pressure is 1.292 kg/m3.
Find the average distance between air molecules at this tem-
perature and compare with the de Broglie wavelength. What
do you conclude about the importance of quantum effects
in air at room temperature? (c) Estimate the temperature at
which quantum effects might become important.

34. In designing an experiment, you want a beam of photons and
a beam of electrons with the same wavelength of 0.281 nm,
equal to the separation of the Na and Cl ions in a crystal of
NaCl. Find the energy of the photons and the kinetic energy
of the electrons.

35. A nucleus of helium with mass 5 u breaks up from rest into
a nucleus of ordinary helium (mass = 4 u) plus a neutron
(mass = 1 u). The rest energy liberated in the break-up is
0.89 MeV, which is shared (not equally) by the products.
(a) Using energy and momentum conservation, find the
kinetic energy of the neutron. (b) The lifetime of the orig-
inal nucleus is 1.0 × 10−21 s. What range of values of the
neutron kinetic energy might we measure in the laboratory
as a result of the uncertainty relationship?

36. In a metal, the conduction electrons are not attached to any
one atom, but are relatively free to move throughout the
entire metal. Consider a cube of copper measuring 1.0 cm on
each edge. (a) What is the uncertainty in any one component
of the momentum of an electron confined to the metal?
(b) Estimate the average kinetic energy of an electron in
the metal. (Assume �p = [(�px)

2 + (�py)
2 + (�pz)

2]1/2.)
(c) Assuming the heat capacity of copper to be
24.5 J/mole ·K, would the contribution of this motion to
the internal energy of the copper be important at room
temperature? What do you conclude from this? (See also
Problem 38.)
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37. A proton or a neutron can sometimes “violate” conservation
of energy by emitting and then reabsorbing a pi meson,
which has a mass of 135 MeV/c2. This is possible as long
as the pi meson is reabsorbed within a short enough time
�t consistent with the uncertainty principle. (a) Consider
p → p + π . By what amount �E is energy conservation
violated? (Ignore any kinetic energies.) (b) For how long
a time �t can the pi meson exist? (c) Assuming the pi
meson to travel at very nearly the speed of light, how far
from the proton can it go? (This procedure, as we discuss in
Chapter 12, gives us an estimate of the range of the nuclear
force, because protons and neutrons are held together in the
nucleus by exchanging pi mesons.)

38. In a crystal, the atoms are a distance L apart; that is, each
atom must be localized to within a distance of at most L.
(a) What is the minimum uncertainty in the momentum of

the atoms of a solid that are 0.20 nm apart? (b) What is
the average kinetic energy of such an atom of mass 65 u?
(c) What would a collection of such atoms contribute to
the internal energy of a typical solid, such as copper? Is
this contribution important at room temperature? (See also
Problem 36.)

39. An apparatus is used to prepare an atomic beam by heat-
ing a collection of atoms to a temperature T and allowing
the beam to emerge through a hole of diameter d in one
side of the oven. The beam then travels through a straight
path of length L. Show that the uncertainty principle causes
the diameter of the beam at the end of the path to be
larger than d by an amount of order L−h/d

√
3mkT , where

m is the mass of an atom. Make a numerical estimate
for typical values of T = 1500 K, m = 7 u (lithium atoms),
d = 3 mm, L = 2 m.



Chapter 5
THE SCHRÖDINGER EQUATION

Quantum mechanics provides a mathematical framework in which the description of a
process often includes different and possibly contradictory outcomes. A favorite illustration
of that situation is the case of Schrödinger’s cat. The cat is confined in a chamber with a
radioactive atom, the decay of which will trigger the release of poison from a vial. Because
we don’t know exactly when that decay will occur, until an observation of the condition of
the cat is made the quantum-mechanical description of the cat must include both ‘‘cat alive’’
and ‘‘cat dead’’ components.
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The future behavior of a particle in a classical (nonrelativistic, nonquantum)
situation may be predicted with absolute certainty using Newton’s laws. If a
particle interacts with its environment through a known force �F (which might
be associated with a potential energy U), we can do the mathematics necessary
to solve Newton’s second law, �F = d�p/dt (a second-order, linear differential
equation), and find the particle’s location �r(t) and velocity �v(t) at all future times
t. The mathematics may be difficult, and in fact it may not be possible to solve the
equations in closed form (in which case an approximate solution can be obtained
with the help of a computer). Aside from any such mathematical difficulties, the
physics of the problem consists of writing down the original equation �F = d�p/dt
and interpreting its solutions �r(t) and �v(t). For example, a satellite or planet
moving under the influence of a 1/r2 gravitational force can be shown, after the
equations have been solved, to follow exactly an elliptical path.

In the case of nonrelativistic quantum physics, the basic equation to be solved
is a second-order differential equation known as the Schrödinger equation. Like
Newton’s laws, the Schrödinger equation is written for a particle interacting with
its environment, although we describe the interaction in terms of the potential
energy rather than the force. Unlike Newton’s laws, the Schrödinger equation
does not give the trajectory of the particle; instead, its solution gives the wave
function of the particle, which carries information about the particle’s wavelike
behavior. In this chapter we introduce the Schrödinger equation, obtain some of its
solutions for certain potential energies, and learn how to interpret those solutions.

5.1 BEHAVIOR OF A WAVE AT A BOUNDARY

In studying wave motion, we often must analyze what occurs when a wave
moves from one region or medium to a different region or medium in which the
properties of the wave may change. For example, when a light wave moves from
air into glass, its wavelength and the amplitude of its electric field both decrease.
At every such boundary, a portion of the incident wave intensity is transmitted
into the second medium and a portion is reflected back into the first medium.

Let’s consider the case of a light wave incident on a glass plate, as in
Figure 5.1a. At boundary A, the light wave moves from air (region 1) into glass
(region 2), while at B the light wave moves from glass into air (region 3). The
wavelength in air in region 3 is the same as the original wavelength of the incident
wave in region 1, but the amplitude in region 3 is less than the amplitude in
region 1, because some of the intensity is reflected at A and at B.

(a)

(b)

(c)

Incident
wave

Reflected
wave

Air (region 1) Air (region 3)

Region 3Region 2Region 1

Region 3

V0

Region 2Region 1

Transmitted
wave

Glass
(region 2)

A B

A B

A B

FIGURE 5.1 (a) A light wave in air is
incident on a slab of glass, showing
transmitted and reflected waves at the
two boundaries (A and B). (b) A sur-
face wave in water incident on a region
of smaller depth similarly has trans-
mitted and reflected waves. (c) The
de Broglie waves of electrons moving
from a region of constant zero poten-
tial to a region of constant negative
potential V0 also have transmitted and
reflected components.

Other types of waves show similar behavior. For example, Figure 5.1b shows
a surface water wave that moves into a region of shallower depth. In that region,
its wavelength is smaller (but its amplitude is larger) compared with the original
incident wave. When the wave enters region 3, in which the depth is the same as
in region 1, the wavelength returns to its original value, but the amplitude of the
wave is smaller in region 3 than in region 1 because some of the intensity was
reflected at the two boundaries.

The same type of behavior occurs for de Broglie waves that characterize
particles. Consider, for example, the apparatus shown in Figure 5.1c. Electrons
are incident from the left and move inside a narrow metal tube that is at ground
potential (V = 0). Another narrow tube in region 2 is connected to the negative
terminal of a battery, which maintains it at a uniform potential of −V0. Region 3
is connected to region 1 at ground potential. The gaps between the tubes can in
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principle be made so small that we can regard the changes in potential at A and B as
occurring suddenly. In region 1, the electrons have kinetic energy K, momentum
p = √

2mK, and de Broglie wavelength λ = h/p. In region 2, the potential energy
for the electrons is U = qV = (−e)(−V0) = +eV0. We assume that the original
kinetic energy of the electrons in region 1 is greater than eV0, so that the electrons
move into region 2 with a smaller kinetic energy (equal to K − eV0), a smaller
momentum, and thus a greater wavelength. When the electrons move from region
2 into region 3, they gain back the lost kinetic energy and move with their original
kinetic energy K and thus with their original wavelength. As in the case of the
light wave or the water wave, the amplitude of the de Broglie wave in region 3
is smaller than in region 1, meaning that the current of electrons in region 3 is
smaller than the incident current, because some of the electrons are reflected at
the boundaries at A and B.

We can thus identify a total of 5 waves moving in the three regions: (1) a wave
moving to the right in region 1 (the incident wave); (2) a wave moving to the left
in region 1 (representing the net combination of waves reflected from boundary A
plus waves reflected from boundary B and then transmitted through boundary A
back into region 1); (3) a wave moving to the right in region 2 (representing waves
transmitted through boundary A plus waves reflected at B and then reflected again
at A); (4) a wave moving to the left in region 2 (waves reflected at B); and (5)
a wave moving to the right in region 3 (the transmitted waves at boundary B).
Because we are assuming that waves are incident from region 1, it is not possible
to have a wave moving to the left in region 3.

Penetration of the Reflected Wave
Another property of classical waves that carries over into quantum waves is
penetration of a totally reflected wave into a forbidden region. When a light
wave is completely reflected from a boundary, an exponentially decreasing wave
called the evanescent wave penetrates into the second medium. Because 100%
of the light wave intensity is reflected, the evanescent wave carries no energy
and so cannot be directly observed in the second medium. But if we make the
second medium very thin (perhaps equal to a few wavelengths of light) the light
wave can emerge on the opposite side of the second medium. We’ll discuss this
phenomenon in more detail at the end of this chapter.

The same effect occurs with de Broglie waves. Suppose we increase the battery
voltage in Figure 5.1c so that the potential energy in region 2 (equal to eV0)
is greater than the initial kinetic energy in region 1. The electrons do not have
enough energy to enter region 2 (they would have negative kinetic there) and so
all electrons are reflected back into region 1.

Like light waves, de Broglie waves can also penetrate into the forbidden region
with exponentially decreasing amplitudes. However, because de Broglie waves
are associated with the motion of electrons, that means that electrons must also
penetrate a short distance into the forbidden region. The electrons cannot be
directly observed in that region, because they have negative kinetic energy there.
Nor can we do any experiment that would reveal their “real” existence in the
forbidden region, such as measuring the speed of their passage through that region
or detecting the magnetic field that their motion might produce.

One explanation for the penetration of the electrons into the forbidden region
relies on the uncertainty principle—because we can’t know exactly the energy of
the incident electrons, we can’t say with certainty that they don’t have enough
kinetic energy to penetrate into the forbidden region. For short enough time �t, the
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energy uncertainty �E ∼ −h/�t might allow the electron to travel a short distance
into the forbidden region, but this extra energy does not “belong to” the electron
in any permanent sense. Later in this chapter we’ll discuss a more mathematical
approach to this explanation of penetration into the forbidden region.

Continuity at the Boundaries

When a wave such as a light wave or a water wave crosses a boundary as in
Figure 5.1, the mathematical function that describes the wave must have two
properties at each boundary:

1. The wave function must be continuous.
2. The slope of the wave function must be continuous, except when the boundary

height is infinite.

Figure 5.2a shows a discontinuous wave function; the wave displacement
changes suddenly at a single location. This type of behavior is not allowed.
Figure 5.2b shows a continuous wave function (there are no gaps) with a
discontinuous slope. This type of behavior is also not allowed, unless the
boundary is of infinite height. Figures 5.2c, d show how two sine curves and an
exponential and a sine can be joined so that both the function and the slope are
continuous.

(b)

(a)

(c)

(d)

FIGURE 5.2 (a) A discontinuous
wave. (b) A continuous wave with
a discontinuous slope. (c) Two sine
waves join smoothly. (d) A sine wave
and an exponential join smoothly.

Across any non-infinite boundary, the wave must be smooth—no gaps in the
function and no sharp changes in slope. When we solve for the mathematical
form of a wave function, there are usually undetermined parameters, such as
the amplitude and phase of the wave. In order to make the wave smooth at
the boundary, we obtain the values of those coefficients by applying the two
boundary conditions to make the function and its slope continuous. For example,
at boundary A in Figure 5.1, we first evaluate the total wave function in region 1
at A and set it equal to the wave function in region 2 at A. This guarantees that the
total wave function is continuous at A. We then take the derivative of the wave
function in region 1, evaluate it at A, and set that equal to the derivative of the
wave function in region 2 evaluated at A. This step makes the slope in region 1
match the slope in region 2 at boundary A. These two steps give us two equations
relating the parameters of the waves and allow us to find relationships between
the amplitudes and phases of the waves in regions 1 and 2. The process must
be repeated at every boundary, such as at B in Figure 5.1 to match the waves in
regions 2 and 3.

We can understand the exception to the continuity of the slope for infinite
boundaries with an example from classical physics. Imagine a ball dropped from
a height y = H above a stretched rubber sheet at y = 0. The ball falls freely
under gravity until it strikes the sheet, which we assume behaves like an elastic
spring. The sheet stretches as the ball is brought to rest, after which the restoring
force propels the ball upward. The motion of the ball might be represented by
Figure 5.3. Above the sheet (y > 0) the motion is represented by parabolas, and
while the ball is in contact with the sheet (y < 0) the motion is described by sine
curves. Note how the curves join smoothly at y = 0, and note how both y(t) and
its derivative v(t) are continuous.

Sine

Parabola

t

y(t)

v(t)

H

0

0
t

FIGURE 5.3 The position and veloc-
ity of a ball dropped from a height
H above a springlike rubber sheet at
y = 0.

On the other hand, imagine a ball hitting a steel surface, which we assume to be
perfectly rigid. The ball rebounds elastically, and at the instant it is in contact with
the surface its velocity reverses direction. The motion of the ball is represented
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in Figure 5.4. At the points of contact with the surface, there is a sudden change
in the velocity, corresponding to an infinite acceleration and thus to an infinite
force. The function y(t) is continuous, but its slope is not—the function has no
gaps, but it does have sharp “points” where the slope changes suddenly.

The assumption of the perfectly rigid surface is an idealization that we make
to help us understand the situation and also to help simplify the mathematics. In
reality the steel surface will flex slightly and ultimately behave somewhat like
a much stiffer version of the rubber sheet. In quantum mechanics we will also
sometimes use an assumption of a perfectly rigid or impenetrable boundary to
help us understand and simplify the analysis of a more complicated physical
situation.

t

y(t)

v(t)

H

0

0 t

FIGURE 5.4 The position and veloc-
ity of a ball dropped from a height H
above a rigid surface.

In this section we have established several properties of classical waves that
also apply to quantum waves:

1. When a wave crosses a boundary between two regions, part of the wave
intensity is reflected and part is transmitted.

2. When a wave encounters a boundary to a region from which it is forbidden,
the wave will penetrate perhaps by a few wavelengths before reflecting.

3. At a finite boundary, the wave and its slope are continuous. At an infinite
boundary, the wave is continuous but its slope is discontinuous.

Example 5.1

In the geometry of Figure 5.1, the wave in region 1 is
given by y1(x) = C1sin(2πx/λ1 − φ1), where C1 = 11.5,
λ1 = 4.97 cm, and φ1 = −65.3◦. In region 2, the wave-
length is λ2 = 10.5 cm. The boundary A is located at x = 0,
and the boundary B is located at x = L, where L = 20.0 cm.
Find the wave functions in regions 2 and 3.

Solution
The general form of the wave in region 2 can be repre-
sented in a form similar to that of the wave in region 1:
y2(x) = C2 sin(2πx/λ2 − φ2). To find the complete wave
function in region 2, we must find the amplitude C2 and
the phase φ2 by applying the boundary conditions on
the function and its slope at boundary A (x = 0). Setting
y1(x = 0) = y2(x = 0) gives

−C1 sin φ1 = −C2 sin φ2

The slopes can be found from the derivative of the gen-
eral form dy/dx = (2π/λ)C cos(2πx/λ − φ) evaluated at
x = 0:

2π

λ1
C1 cos φ1 = 2π

λ2
C2 cos φ2

Dividing the first equation by the second eliminates C2
and allows us to solve for φ2:

φ2 = tan−1

(
λ1

λ2
tan φ1

)

= tan−1

(
4.97 cm

10.5 cm
tan(−65.3◦

)

)

= −45.8◦

We can solve for C2 using the result from applying the first
boundary condition:

C2 = C1
sin φ1

sin φ2
= 11.5

sin(−65.3◦
)

sin(−45.8◦)
= 14.6

To find the wave function in region 3, which we assume
to have the same form y3(x) = C3 sin(2πx/λ1 − φ3), we
must apply the boundary conditions on y2 and y3 at x = L.
Applying the two boundary conditions in the same way we
did at x = 0, we obtain

C2 sin

(
2πL

λ2
− φ2

)
= C3 sin

(
2πL

λ1
− φ3

)
2π

λ2
C2 cos

(
2πL

λ2
− φ2

)
= 2π

λ1
C3 cos

(
2πL

λ1
− φ3

)

Proceeding as we did before, we divide these two
equations to find φ3 = 60.9◦, and then from either
equation obtain C3 = 7.36. Our two solutions are
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then y2(x) = 14.6 sin (2πx/10.5 + 45.8◦
) and y3(x) =

7.36 sin(2πx/4.97 + 14.6◦
), with x measured in cm.

Figure 5.5 shows the wave in all three regions. Note
how the waves join smoothly at the boundaries.

How is it possible that the amplitude of y2 can be greater
than the amplitude of y1? Keep in mind that y1 represents
the total wave in region 1, which includes the incident wave
and the reflected wave. Depending on the phase difference
between them, when the incident and reflected waves are
added to obtain y1, the amplitude of the resultant can be
smaller than the amplitude of either wave.

10

10

−10

−10 20 30

FIGURE 5.5 Example 5.1.

5.2 CONFINING A PARTICLE

A free particle (that is, a particle on which no forces act anywhere) is by definition
not confined, so it can be located anywhere. It has, as we discussed in Chapter 4,
a definite wavelength, momentum, and energy (for which we can choose any
value).

A confined particle, on the other hand, is represented by a wave packet that
makes it likely to be found only in a region of space of size �x. We construct
such a wave packet by adding together different sine or cosine waves to obtain
the desired mathematical shape.

In quantum mechanics, we often want to analyze the behavior of confined
particles, for example an electron that is attached to a specific atom or molecule.
We’ll consider the properties of atomic electrons beginning in Chapter 6, but for
now let’s look at a simpler problem: an electron moving in one dimension and
confined by a series of electric fields. Figure 5.6 shows how the apparatus of
Figure 5.1c might be modified for this purpose. The center section is grounded
(so that V = 0) and the two side sections are connected to batteries so that they
are at potentials of −V0 relative to the center section. As before, we assume that
the gaps between the center section and the side sections can be made as narrow
as possible, so we can regard the potential energy as changing instantaneously at
the boundaries A and B. This arrangement is often called a potential energy well.

(a)

(b)

U = U0

U = 0

V0V0

A B

L

FIGURE 5.6 (a) Apparatus for con-
fining an electron to the center region
of length L. (b) The potential energy
of an electron in this apparatus.

The potential energy of an electron in this situation is then 0 in the center
section and U0 = qV = (−e)(−V0) = +eV0 in the two side sections as shown in
Figure 5.6. To confine the electron, we want to consider cases in which it moves
in the center section with a kinetic energy K that is less than U0. For example, the
electron might have a kinetic energy of 5 eV in the center section, and the side
sections might have potential energies of 10 eV. The electron thus does not have
enough energy to “climb” the potential energy hill between the center section and
the side sections, and (at least from the classical point of view) the electron is
confined to the center section.

We’ll discuss the full solution to this problem later in this chapter, but for now
let’s simplify even further and consider the case of an infinitely high potential
energy barrier at A and B. This is a good approximation to the situation in
which the kinetic energy of the electron in the center section is much smaller
than the potential energy supplied by the batteries. In this case the penetration
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into the forbidden region, which we discussed in Section 5.1, cannot occur. The
probability to find the electron in either of the side regions is therefore precisely
zero everywhere in those regions, and thus the wave amplitude is zero everywhere
in those regions, including at the boundaries (locations A and B). For the wave
function to be continuous, the wave function in the center section must have
values of zero at A and B.

Of all the possible waves that might be used to describe the particle in this
center section, the continuity condition restricts us to waves that have zero
amplitude at the boundaries. Some of those waves are illustrated in Figure 5.7.
Note that the wave function is continuous, but its slope is not (there are sharp
points in the function at locations A and B). This is an example of the exception
to the second boundary condition—the slope may be discontinuous at an infinite
barrier.

L = ½λ

L =    λ3 2

L = 2λ

L = λ

A B

A B

A B

A B

FIGURE 5.7 Some possible waves
that might be used to describe an elec-
tron confined by an infinite potential
energy barrier to a region of length L.

In contrast to the free particle for which the wavelength could have any value,
only certain values of the wavelength are allowed. The de Broglie relationship then
tells us that only certain values of the momentum are allowed, and consequently
only certain values of the energy are allowed. The energy is not a continuous
variable, free to take on any arbitrary value; instead, the energy is a discrete
variable that is restricted to a certain set of values. This is known as quantization
of energy.

You can see directly from Figure 5.7 that the allowed wavelengths are
2L, L, 2L/3, . . ., where L is the length of the center section. We can write these
wavelengths as

λn = 2L

n
n = 1, 2, 3, . . . (5.1)

This set of wavelengths is identical to the wavelengths of the classical problem
of standing waves on a string stretched between two points. From the de Broglie
relationship λ = h/p we obtain

pn = n
h

2L
(5.2)

The energy of the particle in the center section is only kinetic energy p2/2m,
and so

En = n2 h2

8mL2
(5.3)

These are the allowed or quantized values of the energy of the electron.
A wave packet describing the electron in this region must be a combination of

waves with the allowed values of the wavelengths. However, it is not necessary
to construct a wave packet from a combination of waves to describe this confined
particle. Even a single one of these waves represents the confined particle, because
the wave function must be zero in the forbidden regions. So the waveforms shown
in Figure 5.7 can represent wave packets of this confined electron, each wave
packet consisting of only a single wave.

The appearance of energy quantization accompanies every attempt to confine
a particle to a finite region of space. Quantization of energy is one of the principal
features of the quantum theory, and studying the quantized energy levels of
systems (such as by observing the energies of emitted photons) is an important
technique of experimental physics that gives us information about the properties
of atoms and nuclei.
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Applying the Uncertainty Principle
to a Confined Particle
In Chapter 4 we constructed wave packets and showed how the uncertainty
principle related the size of the wave packet to the range of wavelengths that
was used in its construction. Let’s now see how the Heisenberg uncertainty
relationships apply in the case of a confined particle.

In the arrangement of Figure 5.6 (with infinitely high barriers on each side),
the particle is known to be somewhere in the center section of the apparatus, and
thus �x ∼ L is a reasonable estimate of the uncertainty in its location. To find the
uncertainty in its momentum, we use the rigorous definition of uncertainty given
in Eq. 4.15: �px = √

(p2
x)av − (px,av)

2 . The particle moving in the center section
can be considered to be moving to the left or to the right with equal probability
(just as the classical standing-wave problem can be analyzed as the superposition
of identical waves moving to the left and to the right). Thus px,av = 0. If the
particle is moving with a momentum given by Eq. 5.2, p2

x = (nh/L)2 and so
�px = nh/L. Combining the uncertainties in position and momentum, we have

�x�px ∼ L
nh

L
= nh (5.4)

The product of the uncertainties is certainly greater than −h/2, and so the result
of confining the particle is entirely consistent with the Heisenberg uncertainty
relationship. Note that even the smallest possible value of the product of the
uncertainties (which is obtained for n = 1) is still much larger than the minimum
value given by the uncertainty principle.

Later in this chapter, we will use a more rigorous way to evaluate the uncertainty
in position using a formula similar to Eq. 4.15 to find the uncertainty in position,
and we will find that the result does not differ very much from the estimate
of Eq. 5.4.

5.3 THE SCHRÖDINGER EQUATION

The differential equation whose solution gives us the wave behavior of particles is
called the Schrödinger equation. It was developed in 1926 by Austrian physicist
Erwin Schrödinger. The equation cannot be derived from any previous laws
or postulates; like Newton’s equations of motion or Maxwell’s equations of
electromagnetism, it is a new and independent result whose correctness can
be determined only by comparing its predictions with experimental results.
For nonrelativistic motion, the Schrödinger equation gives results that correctly
account for observations at the atomic and subatomic level.

Erwin Schrödinger (1887–1961, Aus-
tria). Although he disagreed with the
probabilistic interpretation that was
later given to his work, he devel-
oped the mathematical theory of wave
mechanics that for the first time per-
mitted the wave behavior of physical
systems to be calculated.

We can justify the form of the Schrödinger equation by examining the solution
expected for the free particle, which should give a wave whose shape at any
particular time, specified by the wave function ψ(x), is that of a simple de
Broglie wave, such as ψ(x) = A sin kx, where A is the amplitude of the wave and
k = 2π/λ. If we are looking for a differential equation, then we need to take some
derivatives:

dψ

dx
= kA cos kx,

d2ψ

dx2
= −k2A sin kx = −k2ψ(x)
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Note that the second derivative gives the original function again. With the kinetic
energy K = p2/2m = (h/λ)2/2m = −h2k2/2m, we can then write

d2ψ

dx2
= −k2ψ(x) = −2m

−h2
Kψ(x) = −2m

−h2
(E − U)ψ(x)

where E = K + U is the nonrelativistic total energy of the particle. For a free
particle, U = 0 so E = K; however, we are using the free particle solution to try
to extend to the more general case in which there is a potential energy U(x). The
equation then becomes

−
−h2

2m

d2ψ

dx2
+ U(x)ψ(x) = Eψ(x) (5.5)

Equation 5.5 is the time-independent Schrödinger equation for one-dimensional
motion.

The solution to Eq. 5.5 gives the shape of the wave at time t = 0. The
mathematical function that describes a one-dimensional traveling wave must
involve both x and t. This wave is represented by the function 
(x,t):


(x,t) = ψ(x)e−iωt (5.6)

The time dependence is given by the complex exponential function e−iωt with
ω = E/−h. (You can find a few useful formulas involving complex numbers in
Appendix B.) We’ll discuss the time-dependent part later in this chapter. For now,
we’ll concentrate on the time-independent function ψ(x).

We assume that we know the potential energy U(x), and we wish to obtain the
wave function ψ(x) and the energy E for that potential energy. This is a general
example of a type of problem known as an eigenvalue problem; we find that it is
possible to obtain solutions to the equation only for particular values of E, which
are known as the energy eigenvalues.

The general procedure for solving the Schrödinger equation is as follows:

1. Begin by writing Eq. 5.5 with the appropriate U(x). Note that if the potential
energy changes discontinuously [U(x) may be represented by a discontinuous
function; ψ(x) may not], we may need to write different equations for different
regions of space. Examples of this sort are given in Section 5.4.

2. Using general mathematical techniques suited to the form of the equation, find
a mathematical function ψ(x) that is a solution to the differential equation.
Because there is no one specific technique for solving differential equations,
we will study several examples to learn how to find solutions.

3. In general, several solutions may be found. By applying boundary conditions
some of these may be eliminated and some arbitrary constants may be
determined. It is generally the application of the boundary conditions that
selects out the allowed energies.

4. If you are seeking solutions for a potential energy that changes discontinuously,
you must apply the continuity conditions on ψ(x) (and usually on dψ/dx) at
the boundary between different regions.

Because the Schrödinger equation is linear, any constant multiplying a solution
is also a solution. The method to determine the amplitude of the wave function is
discussed in the next section.
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|ψ (x)|2

dx

x1 x2

FIGURE 5.8 The probability to find
the particle in a small region of width
dx is equal to the area of the strip under
the |ψ(x)|2 curve. The total probability
to find the particle between x1 and x2 is
the sum of the areas of the strips, equal
to the integral between those limits.

Probabilities and Normalization
The remaining steps in the procedure for applying the Schrödinger recipe depend
on the physical interpretation of the solution to the differential equation. Our
original goal in solving the Schrödinger equation was to obtain the wave properties
of the particle. What does the amplitude of ψ(x) represent, and what is the physical
variable that is waving? It is certainly not a displacement, as in the case of a water
wave or a wave on a stretched piano wire, nor is it a pressure wave, as in the case
of sound. It is a very different kind of wave, whose squared absolute amplitude
gives the probability for finding the particle in a given region of space.

If we define P(x) as the probability density (probability per unit length, in one
dimension), then according to the Schrödinger recipe

P(x) dx = |ψ(x)|2 dx (5.7)

as indicated in Figure 5.8. In Eq. 5.7, |ψ(x)|2 dx gives the probability to find the
particle in the interval dx at x (that is, between x and x + dx).∗ Because the wave
function ψ(x) might be a complex function, it is necessary to square its absolute
magnitude to make sure that the probability is a positive real number.

The squared magnitude of the general time-dependent wave function
(Eq. 5.6) is:

|
(x,t)|2 = |ψ(x)|2|e−iωt|2 = |ψ(x)|2 (5.8)

where the last step can be taken because the magnitude of the time-dependent
factor is 1. For this reason, the probability density associated with a solution to
the Schrödinger equation (for any allowed value of E) is independent of time.
These special quantum states are called stationary states.

This interpretation of |ψ(x)|2 helps us to understand the continuity condition
of ψ(x). We must not allow the probability to change discontinuously, but, like
any well-behaved wave, the probability to locate the particle varies smoothly and
continuously.

This interpretation of ψ(x) now permits us to complete the Schrödinger recipe
and to illustrate how to use the wave function to calculate quantities that we can
measure in the laboratory. Steps 1 through 4 were given previously; the recipe
continues:

5. For a wave function describing a single particle, the probability summed over
all locations must give 100%—that is, the particle must be located somewhere
between x = −∞ and x = +∞. The probability to find the particle in a small
interval was given in Eq. 5.7. The total probability to find the particle in all
such intervals must be exactly 1:∫ +∞

−∞
|ψ(x)|2 dx = 1 (5.9)

The Schrödinger equation is linear, which means that if ψ(x) is a solution
then any constant times ψ(x) is also a solution. For the probability to be a
meaningful concept, this constant must be chosen so that Eq. 5.9 is satisfied.

∗It is not correct to speak of “the probability to find the particle at the point x.” A single point is a
mathematical abstraction with no physical dimension. The probability of finding a particle at a point
is zero, but there can be a nonzero probability of finding the particle in an interval.
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A wave function with its multiplicative constant chosen in this way is said to
be normalized, and Eq. 5.9 is known as the normalization condition.

6. Because the solution to the Schrödinger equation represents a probability,
any solution that becomes infinite must be discarded—it makes no sense
to have an infinite probability to find a particle in any interval. In practice,
we “discard” a solution by setting its multiplicative constant equal to zero.
For example, if the mathematical solution to the differential equation yields
ψ(x) = Aekx + Be−kx for the entire region x > 0, then we must require A = 0
for the solution to be physically meaningful; otherwise |ψ(x)|2 would become
infinite as x goes to infinity. On the other hand, if this solution is to be valid
in the entire region x < 0, then we must set B = 0. However, if the solution is
to be valid only in a small portion of the range of x—say, 0 < x < L—then
we cannot set either A = 0 or B = 0.

7. Suppose the interval between two points x1 and x2 is divided into a series of
infinitesimal intervals of width dx (Figure 5.8). To find the total probability for
the particle to be located between x1 and x2, which we represent as P(x1: x2),
we calculate the sum of all the probabilities P(x) dx in each interval dx. This
sum can be expressed as an integral:

P(x1: x2) =
∫ x2

x1

P(x) dx =
∫ x2

x1

|ψ(x)|2 dx (5.10)

If the wave function has been properly normalized, Eq. 5.10 will always yield
a probability that lies between 0 and 1.

8. Because we can no longer speak with certainty about the position of the
particle, we can no longer guarantee the outcome of a single measurement of
any physical quantity that depends on its position. Instead, we can find the
average outcome of a large number of measurements. For example, suppose
we wish to find the average location of a particle by measuring its coordinate
x. From a large number of measurements, we find the value x1 a certain
number of times n1, x2 a number of times n2, etc., and in the usual way we
can find the average value

xav = n1x1 + n2x2 + · · ·
n1 + n2 + · · · =

∑
nixi∑
ni

(5.11)

The number of times ni that we measure each xi is proportional to the
probability P(xi)dx to find the particle in the interval dx at xi. Making this
substitution and changing the sums to integrals, we have

xav =

∫ +∞

−∞
P(x)x dx∫ +∞

−∞
P(x) dx

=
∫ +∞

−∞
|ψ(x)|2x dx (5.12)

where the last step can be made if the wave function is normalized, in which
case the denominator of Eq. 5.12 is equal to one.

By analogy, the average value of any function of x can be found:

[f (x)]av =
∫ +∞

−∞
P(x)f (x) dx =

∫ +∞

−∞
|ψ(x)|2f (x) dx (5.13)

Average values calculated according to Eq. 5.12 or 5.13 are known as
expectation values.
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5.4 APPLICATIONS OF THE SCHRÖDINGER
EQUATION

Solutions for Constant Potential Energy
First let’s examine the solutions to the Schrödinger equation for the special case
of a constant potential energy, equal to U0. Then Eq. 5.5 becomes

−
−h2

2m

d2ψ

dx2
+ U0ψ(x) = Eψ(x) (5.14)

or (assuming for now that E > U0)

d2ψ

dx2
= −k2ψ(x) with k =

√
2m(E − U0)

−h2
(5.15)

The parameter k in this equation is equal to the wave number 2π/λ.
The solution to Eq. 5.15 is a function of x that, when differentiated twice, gives

back the original function multiplied by the negative constant −k2. The function
that has this property is sin kx or cos kx. The most general solution to the equation is

ψ(x) = A sin kx + B cos kx (5.16)

The constants A and B must be determined by applying the continuity and
normalization requirements. We can demonstrate that Eq. 5.16 satisfies Eq. 5.15
by taking two derivatives:

dψ

dx
= kA cos kx − kB sin kx

d2ψ

dx2
= −k2A sin kx − k2B cos kx = −k2(A sin kx + B cos kx) = −k2ψ(x)

so the original equation is indeed satisfied.
To analyze the penetration of a particle into a forbidden region, we must

consider the case in which the energy E of the particle is smaller than the potential
energy U0. For this case we can rewrite Eq. 5.14 as

d2ψ

dx2
= k′2ψ(x) with k′ =

√
2m(U0 − E)

−h2
(5.17)

In this case the general solution in the forbidden regions is

ψ(x) = Aek′x + Be−k′x (5.18)

Once again, we can demonstrate that Eq. 5.18 is a solution of Eq. 5.17 by taking
two derivatives:

dψ

dx
= k′Aek′x − k′Be−k′x

d2ψ

dx2
= k′2Aek′x + k′2Be−k′x = k′2(Aek′x + Be−k′x) = k′2ψ(x)

We will use Eqs. 5.16 and 5.18 as our solutions to the Schrödinger equation for
constant potential energy in the allowed (E > U0) and forbidden (E < U0) regions.
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The Free Particle
For a free particle, the force is zero and so the potential energy is constant. We
may choose any value for that constant, so for convenience we’ll choose U0 = 0.
The solution is given by Eq. 5.16, ψ(x) = A sin kx + B cos kx. The energy of the
particle is

E =
−h2k2

2m
(5.19)

Our solution has placed no restrictions on k, so the energy is permitted to have
any value (in the language of quantum physics, we say that the energy is not quan-
tized). We note that Eq. 5.19 is the kinetic energy of a particle with momentum
p = −hk or, equivalently, p = h/λ. This is as we would have expected, because
the free particle can be represented by a de Broglie wave with any wavelength.

Solving for A and B presents some difficulties because the normalization
integral, Eq. 5.9, cannot be evaluated from −∞ to +∞ for this wave function.
We therefore cannot determine probabilities for the free particle from the wave
function of Eq. 5.16.

It is also instructive to write the wave function in terms of complex exponentials,
using sin kx = (eikx − e−ikx)/2i and cos kx = (eikx + e−ikx)/2:

ψ(x) = A

(
eikx − e−ikx

2i

)
+ B

(
eikx + e−ikx

2

)
= A′eikx + B′e−ikx (5.20)

where A′ = A/2i + B/2 and B′ = −A/2i + B/2. To interpret this solution in terms
of waves we form the complete time-dependent wave function using Eq. 5.6:


(x,t) = (A′eikx + B′e−ikx)e−iωt = A′ei(kx−ωt) + B′e−i(kx+ωt) (5.21)

The dependence of the first term on kx − ωt identifies this term as representing
a wave moving to the right (in the positive x direction) with amplitude A′, and
the second term involving kx + ωt represents a wave moving to the left (in the
negative x direction) with amplitude B′.

If we want the wave to represent a beam of particles moving in the +x direction,
then we must set B′ = 0. The probability density associated with this wave is
then, according to Eq. 5.7,

P(x) = |ψ(x)|2 = |A′|2eikxe−ikx = |A′|2 (5.22)

The probability density is constant, meaning the particles are equally likely to be
found anywhere along the x axis. This is consistent with our discussion of the free-
particle de Broglie wave in Chapter 4—a wave of precisely defined wavelength
extends from x = −∞ to x = +∞ and thus gives a completely unlocalized
particle.

Infinite Potential Energy Well
Now we’ll consider the formal solution to the problem we discussed in Section 5.2:
a particle is trapped in the region between x = 0 and x = L by infinitely high
potential energy barriers. Imagine an apparatus like that of Figure 5.6, in which the
particle moves freely in this region and makes elastic collisions with the perfectly
rigid barriers that confine it. This problem is sometimes called “a particle in a
box.” For now we’ll assume that the particle moves in only one dimension; later
we’ll expand to two and three dimensions.
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The potential energy may be expressed as:

U(x) = 0 0 ≤ x ≤ L

= ∞ x < 0, x > L (5.23)

The potential energy is shown in Figure 5.9. We are free to choose any constant
value for U in the region 0 ≤ x ≤ L; we choose it to be zero for convenience.

U = ∞

To ∞ To ∞

U = ∞U = 0

x = 0 x = L

FIGURE 5.9 The potential energy of a
particle that moves freely (U = 0) in
the region 0 ≤ x ≤ L but is completely
excluded (U = ∞) from the regions
x < 0 and x > L.

Because the potential energy is different in the regions inside and outside the
well, we must find separate solutions in each region. We can analyze the outside
region in either of two ways. If we examine Eq. 5.5 for the region outside the well,
we find that the only way to keep the equation from becoming meaningless when
U → ∞ is to require ψ = 0, so that Uψ will not become infinite. Alternatively,
we can go back to the original statement of the problem. If the walls at the
boundaries of the well are perfectly rigid, the particle must always be in the well,
and the probability for finding it outside must be zero. To make the probability
zero everywhere outside the well, we must make ψ = 0 everywhere outside. Thus
we have

ψ(x) = 0 x < 0, x > L (5.24)

The Schrödinger equation for 0 ≤ x ≤ L, when U(x) = 0, is identical with Eq. 5.14
with U0 = 0 and has the same solution:

ψ(x) = A sin kx + B cos kx 0 ≤ x ≤ L (5.25)

with

k =
√

2mE
−h2

(5.26)

Our solution is not yet complete, for we have not evaluated A or B, nor have
we found the allowed values of the energy E. To do this, we must apply the
requirement that ψ(x) is continuous across any boundary. In this case, we require
that our solutions for x < 0 and x > 0 match up at x = 0; similarly, the solutions
for x > L and x < L must match at x = L.

Let us begin at x = 0. At x < 0, we have found that ψ = 0, and so we must set
ψ(x) of Eq. 5.25 to zero at x = 0.

ψ(0) = A sin 0 + B cos 0 = 0 (5.27)

which gives B = 0. Because ψ = 0 for x > L, the second boundary condition is
ψ(L) = 0, so

ψ(L) = A sin kL + B cos kL = 0 (5.28)

We have already found B = 0, so we must now have A sin kL = 0. Either
A = 0, in which case ψ = 0 everywhere, ψ2 = 0 everywhere, and there is no
particle (a meaningless solution) or else sin kL = 0, which is true only when
kL = π , 2π , 3π , . . ., or

kL = nπ n = 1, 2, 3, . . . (5.29)
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With k = 2π/λ, we have λ = 2L/n; this is identical with the result obtained in
introductory mechanics for the wavelengths of the standing waves in a string of
length L fixed at both ends, which we already obtained in Section 5.2 (Eq. 5.1).
Thus the solution to the Schrödinger equation for a particle trapped in a linear
region of length L is a series of standing de Broglie waves! Not all wavelengths
are permitted; only certain values, determined from Eq. 5.29, may occur.

n = 1

n = 2

n = 3

n = 4 E4 = 16E0

E3 = 9E0

E2 = 4E0

E1 = E0

FIGURE 5.10 The first four energy
levels in a one-dimensional infinite
potential energy well.

From Eq. 5.26 we find that, because only certain values of k are permitted by
Eq. 5.29, only certain values of E may occur— the energy is quantized! Solving
Eq. 5.29 for k and substituting into Eq. 5.26, we obtain

En =
−h2k2

2m
=

−h2π2n2

2mL2
= h2n2

8mL2
n = 1, 2, 3, . . . (5.30)

For convenience, let E0 = −h2π2/2mL2 = h2/8mL2; this unit of energy is
determined by the mass of the particle and the width of the well. Then En = n2E0,
and the only allowed energies for the particle are E0, 4E0, 9E0, 16E0, etc. All
intermediate values, such as 3E0 or 6.2E0, are forbidden. Figure 5.10 shows the
allowed energy levels. The lowest energy state, for which n = 1, is known as the
ground state, and the states with higher energies (n > 1) are known as excited
states.

Because the energy is purely kinetic in this case, our result means that only
certain speeds are permitted for the particle. This is very different from the case
of the classical trapped particle, in which the particle can be given any initial
velocity and will move forever, back and forth, at the same speed. In the quantum
case, this is not possible; only certain initial speeds can result in sustained states of
motion; these special conditions represent the “stationary states.” Average values
calculated according to Eq. 5.13 likewise do not change with time.

From one energy state, the particle can make jumps or transitions to another
energy state by absorbing or releasing an amount of energy equal to the energy
difference between the two states. By absorbing energy the particle will move to
a higher energy state, and by releasing energy it moves to a lower energy state.
A similar effect occurs for electrons in atoms, in which the absorbed or released
energy is usually in the form of a photon of visible light or other electromagnetic
radiation. For example, from the state with n = 3 (E3 = 9E0), the particle might
absorb an energy of �E = 7E0 and jump upward to the n = 4 state (E4 = 16E0)
or might release energy of �E = 5E0 and jump downward to the n = 2 state
(E2 = 4E0).

Example 5.2

An electron is trapped in a one-dimensional region of length
1.00 × 10−10 m (a typical atomic diameter). (a) Find the
energies of the ground state and first two excited states.
(b) How much energy must be supplied to excite the elec-
tron from the ground state to the second excited state?
(c) From the second excited state, the electron drops down
to the first excited state. How much energy is released in this
process?

Solution
(a) The basic quantity of energy needed for this
calculation is

E0 = h2

8mL2
= (hc)2

8mc2L2

= (1240 eV · nm)2

8(511, 000 eV)(0.100 nm)2
= 37.6 eV
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With En = n2E0, we can find the energy of the states:

n = 1 : E1 = E0 = 37.6 eV

n = 2 : E2 = 4E0 = 150.4 eV

n = 3 : E3 = 9E0 = 338.4 eV

(b) The energy difference between the ground state and
the second excited state is

�E = E3 − E1 = 338.4 eV − 37.6 eV = 300.8 eV

This is the energy that must be absorbed for the electron to
make this jump.
(c) The energy difference between the second and first
excited states is

�E = E3 − E2 = 338.4 eV − 150.4 eV = 188.0 eV

This is the energy that is released when the electron makes
this jump.

To complete the solution for ψ(x), we must determine the constant A by using
the normalization condition given in Eq. 5.9,

∫ +∞
−∞ |ψ(x)|2dx = 1. The integrand

is zero in the regions −∞ < x ≤ 0 and L ≤ x < +∞, so all that remains is∫ L

0
A2 sin2 nπx

L
dx = 1 (5.31)

from which we find A =
√

2/L. The complete wave function for 0 ≤ x ≤ L is
then

ψn(x) =
√

2

L
sin

nπx

L
n = 1, 2, 3, . . . (5.32)

In Figure 5.11, the wave functions and probability densities ψ2 are illustrated for
the lowest several states.

In the ground state, the particle has the greatest probability to be found near
the middle of the well (x = L/2), and the probability falls off to zero between
the center and the sides of the well. This is very different from the behavior
of a classical particle—a classical particle moving at constant speed would be
found with equal probability at every location inside the well. The quantum
particle also has constant speed but yet is still found with differing probability
at various locations in the well. It is the wave nature of the quantum particle that
is responsible for this very nonclassical behavior.

x = 0

n = 1 n = 3

n = 2 n = 4

x = L

x = 0 x = L x = 0 x = L

x = 0 x = L

FIGURE 5.11 The wave functions (solid lines) and probability densities (shaded regions) of the first four
states in the one-dimensional infinite potential energy well.
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Another example of nonclassical behavior occurs for the first excited state.
The probability density has a maximum at x = L/4 and another maximum at
x = 3L/4. Between the two maxima, there is zero probability to find the particle
in the center of the well at x = L/2. How can the particle travel from x = L/4 to
x = 3L/4 without ever being at x = L/2? Of course, no classical particle could
behave in such a way, but it is a common behavior for waves. For example,
the first overtone of a vibrating string has a node at its midpoint and antinodes
(vibrational maxima) at the 1/4 and 3/4 locations.

The calculation of probabilities and average values is illustrated by the
following examples.

Example 5.3

Consider again an electron trapped in a one-dimensional
region of length 1.00 × 10−10 m = 0.100 nm. (a) In the
ground state, what is the probability of finding the electron
in the region from x = 0.0090 nm to 0.0110 nm? (b) In the
first excited state, what is the probability of finding the
electron between x = 0 and x = 0.025 nm?

Solution
(a) When the interval is small, it is often simpler to
use Eq. 5.7 to find the probability, instead of using
the integration method. The width of the small inter-
val is dx = 0.0110 nm − 0.0090 nm = 0.0020 nm. Evalu-
ating the wave function at the midpoint of the interval
(x = 0.0100 nm), we can use the n = 1 wave function with
Eq. 5.7 to find

P(x) dx = |ψ1(x)|2 dx = 2

L
sin2 πx

L
dx

= 2

0.100 nm
sin2 π(0.0100 nm)

0.100 nm
(0.002 nm)

= 0.0038 = 0.38%

(b) For this wide interval, we must use the integration
method to find the probability:

P(x1: x2) =
∫ x2

x1

|ψ2(x)|2 dx

= 2

L

∫ x2

x1

sin2 2πx

L
dx

=
(

x

L
− 1

4π
sin

4πx

L

)∣∣∣∣
x2

x1

Evaluating this expression using the limits x1 = 0 and
x2 = 0.025 nm gives a probability of 0.25 or 25%. This
result is of course what we would expect by inspection of
the graph of ψ2 for n = 2 in Figure 5.11. The interval from
x = 0 to x = L/4 contains 25% of the total area under the
ψ2 curve.

Example 5.4

Show that the average value of x is L/2, independent of the
quantum state.

Solution
We use Eq. 5.12; because ψ = 0 except for 0 ≤ x ≤ L, the
limits of integration are 0 and L:

xav =
∫ L

0
|ψ(x)|2x dx = 2

L

∫ L

0
sin2 nπx

L
x dx

This can be integrated by parts or found in integral tables;
the result is

xav = L

2

Note that, as required, this result is independent of n. Thus
a measurement of the average position of the particle yields
no information about its quantum state.
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Let’s now look at how the uncertainty principle applies to the motion of this
trapped particle. By solving Problems 34 and 35, you will find that the uncertainties
in position and momentum for a particle in an infinite potential well are �x =
L
√

1/12 − 1/2π2n2 and �p = hn/2L. The product of the uncertainties is

�x�p = hn

2

√
1

12
− 1

2π2n2
= h

2

√
n2

12
− 1

2π2

Clearly the product of the uncertainties grows as n grows. The minimum value
occurs for n = 1, in which case �x�p = 0.090h = 0.57−h. The ground state
represents a fairly “compact” wave packet, but it is somewhat less compact than
the minimum possible limit of 0.50−h (Eq. 4.10). You can see from Figure 5.11
how the wave becomes less compact (spreads out more) as n increases. Even for
n = 2, the product of the uncertainties grows quickly to 1.67−h.

Finite Potential Energy Well
Because the infinite potential energy well is an idealization of a technique for
confining a particle, we should examine the solution when the barriers at the
sides of the well are finite rather than infinite. The potential energy well can be
described by

U(x) = 0 0 ≤ x ≤ L

= U0 x < 0, x > L (5.33)

and is sketched in Figure 5.12. We look for solutions in which the particle is
confined to this well, and thus the energies that we deduce for the particle must
be less than U0.

x = 0 x = L

U = U0 U = U0

U = 0

FIGURE 5.12 The potential energy of
a particle that is confined to the region
0 ≤ x ≤ L by finite barriers U0 at x =
0 and x = L.

The solution in the center region (between x = 0 and x = L) is exactly the
same as it was for the infinite well (Eq. 5.25):

ψ(x) = A sin kx + B cos kx (0 ≤ x ≤ L) (5.34)

although the values that we deduced previously for the coefficients A and B are
not valid in this calculation. The region x < 0 is an example of a situation in
which the energy E of the particle is less than the potential energy U0, and so we
must use the solution in the form of Eq. 5.18, ψ(x) = Cek′x + De−k′x with k′ given
in Eq. 5.17. This region includes x = −∞, for which the term with the coefficient
D becomes infinite. Because we cannot allow the probability to become infinite,
we must discard this term by setting D = 0. The solution for x < 0 is then

ψ(x) = Cek′x (x < 0) (5.35)

In the region x > L, the energy E is once again smaller than U0, and so the solution is
also in the form of Eq. 5.18, ψ(x) = Fek′x + Ge−k′x. Here the region now includes
x = +∞, for which the term with the coefficient F would become infinite. We
must prevent that possibility by setting F = 0, so the solution in this region is

ψ(x) = Ge−k′x (x > L) (5.36)

We now have 4 coefficients to determine (A, B, C, G) along with the energy E.
For this determination, we have 4 equations from the boundary conditions (the
continuity of both ψ and dψ/dx at both x = 0 and x = L) and one equation
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from the normalization condition. As you might imagine, solving 5 equations
in 5 unknowns presents a straightforward but very tedious algebraic challenge.
Moreover, the resulting solution for the energy values cannot be obtained in
terms of a direct equation such as Eq. 5.30, but instead must be found numerically
by solving a transcendental equation. The result is a series of increasing energy
values, but the number of energy values is finite rather than infinite, because the
energy cannot be allowed to exceed the value of U0.

n = 1

n = 2

n = 3

n = 4 E4 = 375 eV

U0 = 400 eV

E3 = 227 eV

E2 = 104 eV

E1 = 26 eV

FIGURE 5.13 The energy levels in a
potential energy well of depth 400 eV.
There are only four energy states in
this well.

As we did for the infinite potential energy well in Example 5.2, let’s consider a
well of width L = 0.100 nm. We’ll choose the depth of the well to be U0 = 400 eV.
Applying the boundary conditions at x = 0 and x = L, we can eliminate all of the
coefficients and find an equation that involves only k and k′ (both of which depend
on the energy E). Solving that equation numerically, we find four possible values
of the energy: E1 = 26 eV, E2 = 104 eV, E3 = 227 eV, E4 = 375 eV. Here the
subscript just numbers the energy values, starting at the ground state; there is no
simple functional dependence of the energies on the quantum number n as there
was for the infinite well. The allowed energy levels are shown in Figure 5.13.

The probability densities (square of the wave functions) for these four states are
shown in Figure 5.14. In some ways they are similar to the probability densities in
the infinite well—note that each state has n maxima in its probability density, just
like the infinite well (see Figure 5.11). Unlike the infinite well, these probability
densities show the property of penetration into the classically forbidden region.
Look carefully at the continuity of the wave function and its slope at x = 0 and
x = L; see how smoothly the sine and cosine function inside the well joins the
exponentials in the forbidden regions.

The energy levels of the finite well are smaller than those of the infinite well of
the same width (38 eV, 150 eV, 338 eV, 602 eV), and the differences increase as
we go to higher states. This is consistent with the uncertainty principle—because
of the penetration into the forbidden region, �x is larger for the finite well and
thus �px must be smaller. As a result, the kinetic energies are smaller for the
finite well. From Figure 5.14 we see that the penetration distance increases as we
go up in energy, so the difference between �x for the finite well and the infinite
well increases and the energy discrepancy also increases.

−0.1 0 0.1 0.2

n = 1

x (nm) x (nm)

x (nm) x (nm)
−0.1 0 0.1 0.2

n = 2

−0.1 0 0.1 0.2

n = 3

−0.1 0 0.1 0.2

n = 4

FIGURE 5.14 The probability densities of the four states in the one-dimensional potential energy well of width
0.100 nm and depth 400 eV.
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For an energy close to the top of the well such as E4, a smaller uncertainty
�E is necessary to reach the top of the well, giving a larger �t ∼ −h/�E and
thus a larger penetration distance. At the bottom of the well, the state E1 requires
much more energy to reach the top of the well and thus needs a much larger �E;
the smaller resulting �t gives a smaller penetration distance into the forbidden
region.

Two-Dimensional Infinite Potential
Energy Well

When we extend the previous calculation to two and three dimensions, the
principal features of the solution remain the same, but an important new feature
is introduced. In this section we show how this occurs; this new feature, known
as degeneracy, will turn out to be very important in our study of atomic physics.

To begin with, we need a Schrödinger equation that is valid in more than one
dimension; our previous version, Eq. 5.5, included only one spatial dimension. If
the potential energy is a function of x and y, we expect that ψ also depends on
both x and y, and the derivatives with respect to x must be replaced by derivatives
with respect to x and y. In two dimensions, we then have∗

−
−h2

2m

(
∂2ψ(x, y)

∂x2
+ ∂2ψ(x, y)

∂y2

)
+ U(x, y)ψ(x, y) = Eψ(x, y) (5.37)

The two-dimensional potential energy well is:

U(x, y) = 0 0 ≤ x ≤ L; 0 ≤ y ≤ L

= ∞ otherwise (5.38)

The particle is confined by infinitely high barriers to the square region with the
vertices (x, y) = (0, 0), (L, 0), (L, L), (0, L), as shown in Figure 5.15. A classical
analog might be a small disk sliding without friction on a tabletop and colliding
elastically with walls at x = 0, x = L, y = 0, and y = L. (For simplicity, we have
made the allowed region square; we could have made it rectangular by setting
U = 0 when 0 ≤ x ≤ a and 0 ≤ y ≤ b.)

U = ∞

U = ∞

U = 0

x
x = L

y = L

y

FIGURE 5.15 A particle moves freely
in the two-dimensional region 0 <

x < L, 0 < y < L, but encounters infi-
nite barriers beyond that region.

Solving partial differential equations requires a technique more involved than
we need to consider, so we will not give the details of the solution. We suspect
that, as in the previous case, ψ(x, y) = 0 outside the allowed region, in order to
make the probability zero there. Inside the well, we consider solutions that are
separable; that is, our function of x and y can be expressed as the product of one
function that depends only on x and another that depends only on y:

ψ(x, y) = f (x)g(y) (5.39)

where the functions f and g are similar to Eq. 5.16:

f (x) = A sin kxx + B cos kxx, g(y) = C sin kyy + D cos kyy (5.40)

∗The first two terms on the left side of this equation require partial derivatives; for well-behaved
functions, these involve taking the derivative with respect to one variable while keeping the other
constant. Thus if f (x, y) = x2 + xy + y2, then ∂f /∂x = 2x + y and ∂f /∂y = x + 2y.
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The wave number k of the one-dimensional problem has become the separate
wave numbers kx for f (x) and ky for g(y). We show later how these are related.
(See also Problem 18 at the end of this chapter.)

The continuity condition on ψ(x, y) requires that the solutions inside and
outside match at the boundary. Because ψ = 0 everywhere outside, the continuity
condition then requires that ψ = 0 everywhere on the boundary. That is,

ψ(0, y) = 0 and ψ(L, y) = 0 for all y

ψ(x, 0) = 0 and ψ(x, L) = 0 for all x

In analogy with the one-dimensional problem, the condition at x = 0 gives
f (0) = 0, which requires B = 0 in Eq. 5.40. Similarly, the condition at y = 0
gives g(0) = 0, which requires D = 0. The condition f (L) = 0 requires that
sin kxL = 0, and thus that kxL be an integer multiple of π ; the condition g(L) = 0
similarly requires that kyL be an integer multiple of π . These two integers do not
necessarily need to be the same, so we call them nx and ny. Making all these
substitutions into Eq. 5.39, we obtain

ψ(x, y) = A′ sin
nxπx

L
sin

nyπy

L
(5.41)

where we have combined A and C into A′. The coefficient A′ is once again found
by the normalization condition, which in two dimensions becomes∫∫

ψ2dx dy = 1 (5.42)

For our case this gives∫ L

0
dy

∫ L

0
A′2 sin2 nxπx

L
sin2

nyπy

L
dx = 1 (5.43)

from which follows

A′ = 2

L
(5.44)

(The solutions to this problem, which are standing de Broglie waves on a two-
dimensional surface, are similar to the solutions of the classical problem of the
vibrations of a stretched membrane such as a drumhead.)

Finally, we can substitute our solution for ψ(x, y) back into Eq. 5.41 to find the
energy:

E =
−h2π2

2mL2
(n2

x + n2
y) = h2

8mL2
(n2

x + n2
y) (5.45)

Compare this result with Eq. 5.30. Once again we let E0 = −h2π2/2mL2 = h2/8mL2

so that E = E0(n
2
x + n2

y). In Figure 5.16 the energies of the excited states are shown.
You can see how different the energies are from those of the one-dimensional
case shown in Figure 5.10.

(5,2) or (2,5)
29E0

(5,1) or (1,5)
26E0

(4,3) or (3,4)
25E0

(4,2) or (2,4)
20E0

(3,3)
18E0

(4,1) or (1,4)
17E0

(3,2) or (2,3)
13E0

(3,1) or (1,3)
10E0

(2,2)
8E0

(2,1) or (1,2)
5E0

(1,1)
2E0

(nx,ny)
E = 0

FIGURE 5.16 The lower permitted
energy levels of a particle confined to
an infinite two-dimensional potential
energy well.

Figure 5.17 shows the probability density ψ2 for several different combinations
of the quantum numbers nx and ny. The probability has maxima and minima, just
like the probability in the one-dimensional problem. For example, if we gave
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2E0 5E0 10E0

5E0 8E0 13E0

10E0 13E0 18E0

(1,1) (2,1) (3,1)

(1,2) (2,2) (3,2)

(1,3) (2,3) (3,3)

y x

FIGURE 5.17 The probability density for some of the lower energy levels of a particle confined to the infinite
two-dimensional potential energy well. The individual plots are labeled with the quantum numbers (nx, ny) and
with the value of the energy E.

the particle an energy of 8E0 and then made a large number of measurements
of its position, we would expect to find it most often near the four points
(x, y) = (L/4, L/4), (L/4, 3L/4), (3L/4, L/4) and (3L/4, 3L/4); we expect never
to find it near x = L/2 or y = L/2. The shape of the probability density tells us
something about the quantum numbers and therefore about the energy. Thus if we
measured the probability density and found six maxima, as shown in Figure 5.17,
we would deduce that the particle had an energy of 13E0 with nx = 2 and ny = 3,
or else nx = 3, ny = 2.

Recently it has become possible to photograph the probability densities of
electrons confined in a two-dimensional region. The tip of an electron microscope
was used to place 48 individual iron atoms on a metal surface in a ring or
“corral” of radius 7.13 nm that formed the walls of a potential well, as shown in
Figure 5.18. Inside the ring, the waves of probability density for electrons trapped
in the potential well are clearly visible. The potential well is circular, rather than
square, but otherwise the analysis follows the procedures described in this section;
when the Schrödinger equation is solved in cylindrical polar coordinates with the
potential energy for a circular well, the calculated probability density gives a close
match with the observed one. These beautiful results are a dramatic confirmation
of the wave functions obtained for the two-dimensional potential energy well.

FIGURE 5.18 A ring of iron atoms
on a copper surface forms a “corral”
within which the probability density
of trapped electrons is clearly visi-
ble. This image was obtained with
a scanning tunneling electron micro-
scope. (Image originally created by
IBM Corporation.)

Degeneracy Occasionally it happens that two different sets of quantum num-
bers nx and ny have exactly the same energy. This situation is known as degeneracy,
and the energy levels are said to be degenerate. For example, the energy level
at E = 13E0 is degenerate, because both nx = 2, ny = 3 and nx = 3, ny = 2 have
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50E0

50E0

(5,5)(1,7)

FIGURE 5.19 Two very different probability densities with exactly the same energy.

E = 13E0. This degeneracy arises from interchanging nx and ny (which is the
same as interchanging the x and y axes), so the probability distributions in the
two cases are not very different. However, consider the state with E = 50E0, for
which there are three sets of quantum numbers: nx = 7, ny = 1; nx = 1, ny = 7;
and nx = 5, ny = 5. The first two sets of quantum numbers result from the inter-
change of nx and ny and so have similar probability distributions, but the third
represents a very different state of motion, as shown in Figure 5.19. The level
at E = 13E0 is said to be two-fold degenerate, while the level at E = 50E0 is
three-fold degenerate; we could also say that one level has a degeneracy of 2,
while the other has a degeneracy of 3.

Degeneracy occurs in general whenever a system is labeled by two or more
quantum numbers; as we have seen in the above calculation, different combinations
of quantum numbers often can give the same value of the energy. The number
of different quantum numbers required by a given physical problem turns out
to be exactly equal to the number of dimensions in which the problem is
being solved—one-dimensional problems need only one quantum number, two-
dimensional problems need two, and so forth. When we get to three dimensions,
as in Problem 19 at the end of this chapter and especially in the hydrogen atom in
Chapter 7, we find that the effects of degeneracy become more significant; in the
case of atomic physics, the degeneracy is a major contributor to the structure and
properties of atoms.

5.5 THE SIMPLE HARMONIC OSCILLATOR

Another situation that can be analyzed using the Schrödinger equation is the
one-dimensional simple harmonic oscillator. The classical oscillator is an object
of mass m attached to a spring of force constant k. The spring exerts a restoring
force F = −kx on the object, where x is the displacement from its equilibrium
position. Using Newton’s laws, we can analyze the oscillator and show that it has
a (circular or angular) frequency ω0 = √

k/m and a period T = 2π
√

m/k. The
maximum distance of the oscillating object from its equilibrium position is x0,
the amplitude of the oscillation. The oscillator has its maximum kinetic energy at
x = 0; its kinetic energy vanishes at the turning points x = ±x0. At the turning
points the oscillator comes to rest for an instant and then reverses its direction of
motion. The motion is, of course, confined to the region −x0 ≤ x ≤ +x0.
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Why analyze the motion of such a system using quantum mechanics? Although
we never find in nature an example of a one-dimensional quantum oscillator, there
are systems that behave approximately as one—a vibrating diatomic molecule,
for example. In fact, any system in a smoothly varying potential energy well near
its minimum behaves approximately like a simple harmonic oscillator.

A force F = −kx has the associated potential energy U = 1
2 kx2, and so we

have the Schrödinger equation:

−
−h2

2m

d2ψ

dx2
+ 1

2
kx2ψ = Eψ (5.46)

(Because we are working in one dimension, U and ψ are functions only of x.)
There are no boundaries between different regions of potential energy here, so
the wave function must fall to zero for both x → +∞ and x → −∞. The simplest
function that satisfies these conditions, which turns out to be the correct ground
state wave function, is ψ(x) = Ae−ax2

. The constant a and the energy E can be
found by substituting this function into Eq. 5.46. We begin by evaluating d2ψ/dx2.

dψ

dx
= −2ax(Ae−ax2

)

d2ψ

dx2
= −2a(Ae−ax2

) − 2ax(−2ax)Ae−ax2 = (−2a + 4a2x2)Ae−ax2

Substituting into Eq. 5.46 and canceling the common factor Ae−ax2
yields

−h2a

m
− 2a2−h2

m
x2 + 1

2
kx2 = E (5.47)

Equation 5.47 is not an equation to be solved for x, because we are looking for
a solution that is valid for any x, not just for one specific value. In order for this
to hold for any x, the coefficients of x2 must cancel and the remaining constants
must be equal. (That is, consider the equation bx2 = c. It will be true for any and
all x only if both b = 0 and c = 0.) Thus

−2a2−h2

m
+ 1

2
k = 0 and

−h2a

m
= E (5.48)

which yield

a =
√

km

2−h
and E = 1

2
−h
√

k/m (5.49)

We can also write the energy in terms of the classical frequency ω0 = √
k/m as

E = 1

2
−hω0 (5.50)

The coefficient A is found from the normalization condition (see Problem 20 at the
end of the chapter). The result, which is valid only for this ground-state wave func-
tion, is A = (mω0/

−hπ)1/4. The complete wave function of the ground state is then

ψ(x) =
(mω0

−hπ

)1/4
e−(

√
km/2−h)x2

(5.51)

|ψ |2

−x0 +x0 x0

FIGURE 5.20 The probability density
for the ground state of the simple har-
monic oscillator. The classical turning
points are at x = ±x0.

The probability density for this wave function is illustrated in Figure 5.20. Note
that, as in the case of the finite potential energy well, the probability density can
penetrate into the forbidden region beyond the classical turning points at x = ±x0
(in this region the potential energy is greater than E).
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n = 1

n = 2

n = 3

n = 0 E = ħω0
1
2

U = kx21
2

E = ħω0
3
2

E = ħω0
5
2

E = ħω0
7
2

FIGURE 5.21 Energy levels of the
simple harmonic oscillator. Note that
the levels have equal spacings and
that the distance between the classical
turning points increases with energy.

The solution we have found corresponds only to the ground state of the
oscillator. The general solution is of the form ψn(x) = Afn(x)e

−ax2
, where fn(x) is

a polynomial in which the highest power of x is xn. The corresponding energies are

En =
(

n + 1

2

)
−hω0 n = 0, 1, 2, . . . (5.52)

These levels are shown in Figure 5.21. Note that they are uniformly spaced,
in contrast to the one-dimensional infinite potential energy well. Probability
densities are shown in Figure 5.22. All of the solutions have the property of
penetration of probability density into the forbidden region beyond the classical
turning points. The probability density oscillates, somewhat like a sine wave,
between the turning points, and decreases like e−ax2

to zero beyond the turning
points. Note the great similarity between the probability densities for the quantum
oscillator and those of the finite potential energy well (Figure 5.14).

A sequence of vibrational excited states similar to Figure 5.21 is commonly
found in diatomic molecules such as HCl (see Chapter 9). The spacing between
the states is typically 0.1–1 eV; the states are observed when photons (in the
infrared region of the spectrum) are emitted or absorbed as the molecule jumps
from one state to another. A similar sequence is observed in nuclei, where the
spacing is 0.1–1 MeV and the radiations are in the gamma-ray region of the
spectrum.

x0

x0

x0

x0

n = 0

n = 3

n = 2

n = 1

FIGURE 5.22 Probability densities for the simple harmonic oscillator. Note how the distance between the classical
turning points (marked by the short vertical lines) increases with energy. Compare with the probability densities for
the finite potential energy well (Figure 5.14).

Example 5.5

An electron is bound to a region of space by a springlike
force with an effective spring constant of k = 95.7 eV/nm2.
(a) What is its ground-state energy? (b) How much energy
must be absorbed for the electron to jump from the ground
state to the second excited state?

Solution
(a) The ground-state energy is

E = 1

2
−hω0 = 1

2
−h

√
k

m
= 1

2
−hc

√
k

mc2

= 1

2
(197 eV · nm)

√
95.7 eV/nm2

0.511 × 106 eV

= 1.35 eV

(b) The difference between adjacent energy levels is
−hω0 = 2.70 eV for all energy levels, so the energy that
must be absorbed to go from the ground state to the second
excited state is �E = 2 × 2.70 eV = 5.40 eV.
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Example 5.6

For the electron of Example 5.5 in its ground state, what
is the probability to find it in a narrow interval of width
0.004 nm located halfway between the equilibrium position
and the classical turning point?

Solution
First we need to find the location of the turning point. At
the classical turning points x = ±x0, the kinetic energy is
zero and so the total energy is all potential. Thus E = 1

2 kx2
0,

and so

x0 =
√

2E

k
=

√
2(1.35 eV)

95.7 eV/nm2
= 0.168 nm

Evaluating the parameters of the wave function Ae−ax2
(the

normalization constant A and the exponential coefficient
a), we have

A =
(mω0

−hπ

)1/4 =
(

mc2−hω0
−h2c2π

)1/4

=
(

(0.511 × 106 eV)(2.70 eV)

(197 eV · nm)2π

)1/4

= 1.83 nm−1/2

a =
√

km

2−h
=

√
kmc2

2−hc

=
√

(95.7 eV/nm2)(0.511 × 106 eV)

2(197 eV · nm)

= 17.74 nm−2

The probability in the interval dx = 0.004 nm at x = x0/2
= 0.084 nm is then

P(x) dx = |ψ(x)|2 dx = A2e−2ax2
dx

= (1.83 nm−1/2)2e−2(17.74 nm−2)(0.084 nm)2
(0.004 nm)

= 0.0104 = 1.04%

As we did in the case of the infinite potential energy well, let’s look at the
application of the uncertainty principle to the wave packet represented by the
harmonic oscillator. Using the results of Problems 22 and 23 for the uncertainties
in position and momentum for the ground state of the oscillator, �x = √−h/2m ω0
and �p = √−hω0m/2, the product of the uncertainties is �x�p = −h/2. This is the
minimum possible value for this product, according to Eq. 4.10. The ground state
of the oscillator thus represents the most “compact” wave packet in which the
product of the uncertainties has its smallest value. You can see from Figure 5.22
that the excited states of the oscillator are much less compact (more spread out)
than the ground state.

5.6 STEPS AND BARRIERS

In this general type of problem, we analyze what happens when a particle moving
(again in one dimension) in a region of constant potential energy suddenly moves
into a region of different, but also constant, potential energy. We will not discuss
in detail the solutions to these problems, but the methods of solution of each are
so similar that we can outline the steps to take in the solution. In this discussion,
we let E be the (fixed) total energy of the particle and U0 will be the value of
the constant potential energy. In these calculations, the particle is not confined,
so the energy is not quantized—we are free to choose any value for the particle
energy.
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Potential Energy Step, E > UO

Consider the potential energy step shown in Figure 5.23:

U(x) = 0 x < 0

= U0 x ≥ 0 (5.53)

x = 0

U0

E = K

E − U0 = K

E

FIGURE 5.23 A step of height U0.
Particles are incident from the left with
energy E. The kinetic energy is equal
to E in the region x < 0 and is reduced
to E − U0 in the region x > 0.

If the total energy E of the particle is greater than U0, then we can write the
solutions to the Schrödinger equation in the two regions based on the general
form of Eq. 5.16:

ψ0(x) = A sin k0x + B cos k0x k0 =
√

2mE
−h2

x < 0 (5.54a)

ψ1(x) = C sin k1x + D cos k1x k1 =
√

2m
−h2

(E − U0) x > 0 (5.54b)

Relationships among the four coefficients, A, B, C, and D, may be found by
applying the condition that ψ(x) and ψ ′(x) = dψ/dx must be continuous at the
boundary; thus ψ0(0) = ψ1(0) and ψ ′

0(0) = ψ ′
1(0). A typical solution might look

like Figure 5.24. Note the smooth transition between the solutions at x = 0, which
results from applying the continuity conditions.

The coefficients A, B, C, and D are in general complex, so to visualize the
complete wave we need both the real and imaginary parts of ψ . We can use the
equation eiθ = cos θ + i sin θ to transform these solutions from sines and cosines
to complex exponentials:

ψ0(x) = A′eik0x + B′e−ik0x x < 0 (5.55a)

ψ1(x) = C′eik1x + D′e−ik1x x > 0 (5.55b)

The coefficients A′, B′, C′, D′ can be found from the coefficients A, B, C, D. The
time dependent wave functions are obtained by multiplying each term by e−iωt,
which gives


0(x,t) = A′ei(k0x−ωt) + B′e−i(k0x+ωt) (5.56a)


1(x,t) = C′ei(k1x−ωt) + D′e−i(k1x+ωt) (5.56b)

(a)

Im(ψ )

Re(ψ )

Im(ψ )

Re(ψ )

(b)

|ψ |2 |ψ |2

FIGURE 5.24 Wave function for electrons incident from the left on a potential energy step for
E > U0. The probability density and the real and imaginary parts of the wavefunction are shown for
(a) t = 0 and (b) t = 1/4 period. The vertical line marks the location of the step.
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We can then make the following identification of the component waves, recalling
that (kx − ωt) is the phase of a wave moving in the positive x direction, while
(kx + ωt) is the phase of a wave moving in the negative x direction, and
assuming that the squared magnitude of each coefficient gives the intensity of
the corresponding component wave. In the region x < 0, Eq. 5.56a describes
the superposition of a wave ei(k0x−ωt) of intensity |A′|2 moving in the positive x
direction (from −∞ to 0) and a wave e−i(k0x+ωt) of intensity |B′|2 moving in the
negative x direction. Suppose we had intended our solution to describe particles
that are incident from the left on this step. Then |A′|2 gives the intensity of the
incident wave (more exactly, the de Broglie wave describing the incident beam of
particles) and |B′|2 gives the intensity of the reflected wave. The ratio |B′|2/|A′|2
tells us the reflected fraction of the incident wave intensity.

In the region x > 0, Eq. 5.56b describes the transmitted wave ei(k1x−ωt) of
intensity |C′|2 moving to the right and a wave e−i(k1x+ωt) of intensity |D′|2 moving
to the left. If particles are incident from −∞, it is not possible to have particles in
the region x > 0 moving to the left, so in this particular experimental situation we
are justified in setting D′ to zero.

Figure 5.24a shows that the probability density has the same value everywhere
in the region x > 0. You can see this immediately from Eq. 5.56b with D′ = 0;
taking the squared magnitude of the remaining term gives a constant result,
independent of x and t. This is consistent with what we expect for the de Broglie
wave of free particles; the particles can be found anywhere in the region x > 0
with equal probability.

In the region x < 0, the incident and reflected waves combine to produce a
standing wave, for which the probability density has fixed maxima and minima.
The probability density in this region does not vary with time, as suggested by the
plots for the two different times (t = 0 and t = 1/4 period) shown in Figure 5.24.

To illustrate the propagation of the de Broglie wave, it is instructive also
to plot the real and imaginary parts of the wave function, which are shown in
Figure 5.24. Here you can see the change in wavelength (corresponding to the
change in kinetic energy or momentum) in crossing the step. You can also see
something of the time dependence—the wave propagates in both regions, but it
does so in a way that the real and imaginary parts combine to give a probability
density that remains unchanged in time.

Potential Energy Step, E < UO

If the energy of the particle is less than the height of the potential energy step,
then the solution in the region x > 0 is of the form of Eq. 5.18:

ψ0(x) = A sin k0x + B cos k0x k0 =
√

2mE
−h2

x < 0 (5.57a)

ψ1(x) = Cek1x + De−k1x k1 =
√

2m
−h2

(U0 − E) x > 0 (5.57b)

We set C = 0 to keep ψ1(x) from becoming infinite as x → ∞, and we apply
the boundary conditions on ψ(x) and ψ ′(x) at x = 0. The resulting solution is
shown in Figure 5.25. The probability density for x > 0 shows penetration into the
classically forbidden region. All particles are reflected from the barrier; that is, if
we write 
0(x,t) in the form of Equation 5.56a, then we must have |A′| = |B′|,
indicating that the waves moving to the right (the incident wave) and to the left
(the reflected wave) in the region x < 0 have equal amplitudes.
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(b)(a)
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FIGURE 5.25 Wave function for electrons incident from the left on a potential energy step for
E < U0. The probability density and the real and imaginary parts of the wavefunction are shown
for (a) t = 0 and (b) t = 1/4 period. The vertical line marks the location of the step.

Figure 5.25 shows the probability density at two different times, illustrating that
the probability density does not change with time. In the region x < 0 we again
have standing waves with fixed maxima and minima. Viewing the real and imag-
inary parts at two different times (t = 0 and t = 1/4 period) shows that the wave
is propagating, even though the probability density does not change with time.

Penetration into the forbidden region is associated with the wave nature of the
particle and also with the uncertainty in the particle’s energy or location. The
probability density in the x > 0 region is |ψ1|2, which according to Eq. 5.57b is
proportional to e−2k1x. If we define a representative penetration distance �x to be
the distance over which the probability drops by 1/e, then e−2k1�x = e−1 and so

�x = 1

2k1
= 1

2

−h√
2m(U0 − E)

(5.58)

To be able to enter the region with x > 0, the particle must gain an energy
of at least U0 − E in order to get over the potential energy step; it must in
addition gain some kinetic energy if it is to move in the region x > 0. Of course,
it is a violation of conservation of energy for the particle to spontaneously gain
any amount of energy, but according to the uncertainty relationship �E�t ∼ −h
conservation of energy does not apply at times smaller than �t except to within
an amount �E ∼ −h/�t. That is, if the particle “borrows” an amount of energy
�E and “returns” the borrowed energy within a time �t ∼ −h/�E, we observers
will still believe energy is conserved. Suppose the particle borrows an energy
sufficient to give it a kinetic energy of K in the forbidden region. How far into the
forbidden region does the particle penetrate?

The “borrowed” energy is (U0 − E) + K; the energy (U0 − E) gets the particle
to the top of the step, and the extra kinetic energy K gives it its motion. The
energy must be returned within a time

�t =
−h

U0 − E + K
(5.59)

The particle moves with speed v = √
2K/m, and so the distance it can travel is

�x = 1

2
v�t = 1

2

√
2K

m

−h

U0 − E + K
(5.60)
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(The factor of 1/2 is present because in the time �t the particle must penetrate the
distance �x into the forbidden region and return through that same distance to the
allowed region.)

x = Lx = 0

U0E

FIGURE 5.26 A barrier of height U0

and width L.

In the limit K → 0, the penetration distance �x goes to 0 according to Eq. 5.60
because the particle has zero velocity; similarly, �x → 0 in the limit K → ∞,
because it moves for a vanishing time interval �t. In between those limits, there
must be a maximum value of �x for some particular K. Differentiating Eq. 5.60
with respect to K, we can find the maximum value

�xmax = 1

2

−h√
2m(U0 − E)

(5.61)

This value of �x is identical with Eq. 5.58! This demonstrates that the penetration
into the forbidden region given by the solution to the Schrödinger equation is
entirely consistent with the uncertainty relationship. (The agreement between
Eqs. 5.58 and 5.61 is really somewhat accidental, because the factor 1/e used to
obtain Eq. 5.58 was chosen arbitrarily. What we have really demonstrated is that
the estimates of uncertainty given by the Heisenberg relationships are consistent
with the wave properties of the particle obtained from the Schrödinger equation.
This should not be surprising, because the uncertainty principle can be derived as
a consequence of the Schrödinger equation.)

Potential Energy Barrier
Consider now the potential energy barrier shown in Figure 5.26:

U(x) = 0 x < 0

= U0 0 ≤ x ≤ L (5.62)

= 0 x > L

Particles with energy E less than U0 are incident from the left. Our experience
then leads us to expect solutions of the form shown in Figure 5.27—sinusoidal
oscillation in the region x < 0 (an incident wave and a reflected wave), exponen-
tials in the region 0 ≤ x ≤ L, and sinusoidal oscillations in the region x > L (the
transmitted wave). Note that the intensity of the transmitted wave (x > L) is much
smaller than the intensity of the incident + reflected waves (x < 0), which means
that most of the particles are reflected and few are transmitted through the barrier.
Also note that the wavelengths are the same on either side of the barrier (because
the kinetic energies are the same).

x = L

λ0

λ0

FIGURE 5.27 The real part of the
wave function of a particle of energy
E < U0 encountering a barrier (the
particle is incident from the left in
the figure). The wavelength λ0 is the
same on both sides of the barrier, but
the amplitude beyond the barrier is
much less than the original amplitude.

The intensity of the transmitted wave, which can be found by application of the
continuity conditions, depends on the energy of the particle and on the height and
thickness of the barrier. Classically, the particles should never appear at x > L,
because they do not have sufficient energy to overcome the barrier. This situation
is an example of barrier penetration, sometimes called quantum mechanical
tunneling. Particles can not be observed while they are in the classically forbidden
region 0 ≤ x ≤ L, but can “tunnel” through that region and be observed at x > L.

Every particle incident on the barrier of Figure 5.26 is either reflected or
transmitted; the number of incident particles is equal to the number reflected
back to x < 0 plus the number transmitted to x > L. None are “trapped” or ever
seen in the forbidden region 0 < x < L. How can the incident particle get from
x < 0 to x > L? As a classical particle, it can’t! However, the wave representing
the particle can penetrate through the barrier, which allows the particle to be
observed in the classically allowed region x > L.
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(b)(a)

Glass
Air

FIGURE 5.28 (a) Total internal reflection of light waves at a glass-air
boundary. (b) Frustrated total internal reflection. The thicker the air
gap, the smaller the probability to penetrate. Note that the light beam
does not appear in the gap.

This phenomenon of penetration of a forbidden region is a well-known property
of classical waves. Quantum physics provides a new aspect to this phenomenon by
associating a particle with the wave, and thus allowing a particle to pass through
a classically forbidden region. An example of the penetration effect for classical
waves occurs for total internal reflection∗ of light waves. Figure 5.28a shows a
light beam in glass incident on a boundary with air. The beam is totally reflected
in the glass. However, if a second piece of glass is brought close to the first, as
in Figure 5.28b, the beam can appear in the second piece of glass. This effect is
called frustrated total internal reflection. The intensity of the beam in the second
piece, represented by the widths of the arrows in Figure 5.28b, decreases rapidly
as the thickness of the gap increases.

Just like our unobservable quantum wave, which penetrates a few wavelengths
into the forbidden region, an unobservable light wave of exponentially decreasing
amplitude, the evanescent wave, penetrates into the air even when the light wave
undergoes total reflection in the glass. The evanescent wave carries no energy
away from the interface, so it cannot be directly observed in the air, but it can be
observed in another medium such as a second piece of glass placed close to the
first. Evanescent waves have applications in microscopy, where they enable the
production of images of individual molecules. (a)

Attractive
nuclear potential

Repulsive Coulomb
potential

Energy of alpha
particleE

(b)

FIGURE 5.29 (a) A nuclear poten-
tial energy barrier is penetrated by
an alpha particle of energy E. (b) A
representation of the real part of the
wave function of the alpha particle.
The probability to penetrate the bar-
rier depends strongly on the energy of
the alpha particle.

Although the potential energy barrier of Figure 5.26 is rather artificial, there
are many practical examples of quantum tunneling:

1. Alpha Decay. An atomic nucleus consists of protons and neutrons in a
constant state of motion; occasionally these particles form themselves into an
aggregate of two protons and two neutrons, called an alpha particle. In one
form of radioactive decay, the nucleus can emit an alpha particle, which can
be detected in the laboratory. However, in order to escape from the nucleus
the alpha particle must penetrate a barrier of the form shown in Figure 5.29.
The probability for the alpha particle to penetrate the barrier, and be detected
in the laboratory, can be computed based on the energy of the alpha particle

∗Total internal reflection occurs when a light beam is incident on a boundary between two substances,
such as glass and air, from the side with the higher index of refraction. If the angle of incidence inside
the glass exceeds a certain critical value, the light beam is totally reflected back into the glass.
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and the height and thickness of the barrier. The decay probability can be
measured in the laboratory, and it is found to be in excellent agreement with
the value obtained from a quantum-mechanical calculation based on barrier
penetration.

2. Ammonia Inversion. Figure 5.30 is a representation of the ammonia molecule
NH3. If we were to try to move the nitrogen atom along the axis of the molecule,
toward the plane of the hydrogen atoms, we find repulsion caused by the three
hydrogen atoms, which produces a potential energy of the form shown in
Figure 5.31. According to classical mechanics, unless we give the nitrogen
atom sufficient energy, it should not be able to surmount the barrier and appear
on the other side of the plane of hydrogens. According to quantum mechanics,
the nitrogen can tunnel through the barrier and appear on the other side of the
molecule. In fact, the nitrogen atom actually tunnels back and forth with a
frequency in excess of 1010 oscillations per second.

3. The Tunnel Diode. A tunnel diode is an electronic device that uses the
phenomenon of tunneling. Schematically, the potential energy of an electron
in a tunnel diode can be represented by Figure 5.32. The current that flows
through the device is produced by electrons tunneling through the barrier.
The rate of tunneling, and therefore the current, can be regulated merely by
changing the height of the barrier, which can be done with an applied voltage.

H

H H

N

FIGURE 5.30 A schematic dia-
gram of the ammonia molecule.
The Coulomb repulsion of the
three hydrogens establishes a bar-
rier against the nitrogen atom
moving to a symmetric position
(shown in dashed lines) on the
opposite side of the plane of
hydrogens.
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FIGURE 5.31 The potential en-
ergy seen by the nitrogen atom
in an ammonia molecule. The
nitrogen can penetrate the barrier
and move from one equilibrium
position to another.

Energy of
electrons

Barrier height
determined by
applied voltage

FIGURE 5.32 The potential
energy barrier seen by an elec-
tron in a tunnel diode. The
conductivity of the device is
determined by the electron’s
probability to penetrate the bar-
rier, which depends on the
height of the barrier.
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This can be done rapidly, so that switching frequencies in excess of 109 Hz
can be obtained. Ordinary semiconductor diodes depend on the diffusion of
electrons across a junction, and therefore operate on much longer time scales
(that is, at lower frequencies).

4. The Scanning Tunneling Microscope. Images of individual atoms on the
surface of materials (such as Figure 5.18) can be made with the scanning
tunneling microscope. Electrons are trapped in a surface by a potential energy
barrier (the work function of the material). When a needlelike probe is placed
within about 1 nm of the surface (Figure 5.33), electrons can tunnel through
the barrier between the surface and the probe and produce a current that can
be recorded in an external circuit. The current is very sensitive to the width of
the barrier (the distance from the probe to the surface). In practice, a feedback
mechanism keeps the current constant by moving the tip up and down. The
motion of the tip gives a map of the surface that reveals details smaller
than 0.01 nm, about 1/100 the diameter of an atom! For the development of
the scanning tunneling microscope, Gerd Binnig and Heinrich Rohrer were
awarded the 1986 Nobel Prize in physics.

Path of
probe tip

Probe

Electron
cloud

Atom
on

surface

FIGURE 5.33 In a scanning tunnel-
ing microscope, a needlelike probe is
scanned over a surface. The probe is
moved vertically so that the distance
between the probe and the surface
remains constant as the probe scans
laterally.
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Questions

1. Newton’s laws can be solved to give the future behavior of
a particle. In what sense does the Schrödinger equation also
do this? In what sense does it not?

2. Why is it important for a wave function to be normalized? Is
an unnormalized wave function a solution to the Schrödinger
equation?

3. What is the physical meaning of
∫ +∞
−∞ |ψ |2dx = 1 ?

4. What are the dimensions of ψ(x)? Of ψ(x, y)?
5. None of the following are permitted as solutions of the

Schrödinger equation. Give the reasons in each case.

(a) ψ(x) = A cos kx x < 0
ψ(x) = B sin kx x > 0

(b) ψ(x) = Ax−1e−kx − L ≤ x ≤ L
(c) ψ(x) = A sin−1 kx
(d) ψ(x) = A tan kx x > 0

6. What happens to the probability density in the infinite well
when n → ∞? Is this consistent with classical physics?

7. How would the solution to the infinite potential energy well
be different if the well extended from x = x0 to x = x0 + L,
where x0 is a nonzero value of x? Would any of the measur-
able properties be different?

8. How would the solution to the one-dimensional infinite
potential energy well be different if the potential energy
were not zero for 0 ≤ x ≤ L but instead had a constant value
U0? What would be the energies of the excited states? What
would be the wavelengths of the standing de Broglie waves?
Sketch the behavior of the lowest two wave functions.

9. Assuming a pendulum to behave like a quantum oscilla-
tor, what are the energy differences between the quantum

states of a pendulum of length 1 m? Are such differences
observable?

10. For the potential energy barrier (Figure 5.26), is the wave-
length for x > L the same as the wavelength for x < 0? Is
the amplitude the same?

11. Suppose particles were incident on the potential energy step
from the positive x direction. Which of the four coefficients
of Eq. 5.56 would be set to zero? Why?

12. The energies of the excited states of the systems we have dis-
cussed in this chapter have been exact—there is no energy
uncertainty. What does this suggest about the lifetime of
particles in those excited states? Left on its own, will a
particle ever make transitions from one state to another?

13. Explain how the behavior of a particle in a one-dimensional
infinite well can be considered in terms of standing de
Broglie waves.

14. How would you design an experiment to observe barrier
penetration with sound waves? What range of thicknesses
would you choose for the barrier?

15. If U0 were negative in Figure 5.26, how would the wave
functions appear for E > 0?

16. Does Eq. 5.2 imply that we know the momentum of the
particle exactly? If so, what does the uncertainty principle
indicate about our knowledge of its location? How can you
reconcile this with our knowledge that the particle must be
in the well?

17. Do sharp boundaries and discontinuous jumps of potential
energy occur in nature? If not, how would our analysis of
potential energy steps and barriers be different?

Problems

5.1 Behavior of a Wave at a Boundary

1. A ball falls from rest at a height H above a lake. Let y = 0
at the surface of the lake. As it falls, it experiences a gravi-
tational force −mg. When it enters the water, it experiences
a buoyant force B so the net force in the water is B − mg.
(a) Write expressions for v(t) and y(t) while the ball is falling
in air. (b) In the water, let v2(t) = at + b and y2(t) = 1

2 at2 +
bt + c where a = (B − mg)/m. Use the continuity condi-
tions at the surface of the water to find the constants b and c.

2. A wave has the form y = A cos(2πx/λ + π/3) when x < 0.
For x > 0, the wavelength is λ/2. By applying continuity
conditions at x = 0, find the amplitude (in terms of A) and
phase of the wave in the region x > 0. Sketch the wave,
showing both x < 0 and x > 0.

5.2 Confining a Particle

3. The lowest energy of a particle in an infinite one-dimensional
well is 4.4 eV. If the width of the well is doubled, what is its
lowest energy?

4. An electron is trapped in an infinite well of width 0.120 nm.
What are the three longest wavelengths permitted for the
electron’s de Broglie waves?

5. An electron is trapped in a one-dimensional region of width
0.050 nm. Find the three smallest possible values allowed
for the energy of the electron.

6. What is the minimum energy of a neutron (mc2 = 940 MeV)
confined to a region of space of nuclear dimensions
(1.0 × 10−14 m)?
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5.3 The Schrödinger Equation

7. In the region 0 ≤ x ≤ a, a particle is described by
the wave function ψ1(x) = −b(x2 − a2). In the region
a ≤ x ≤ w, its wave function is ψ2(x) = (x − d)2 − c. For
x ≥ w, ψ3(x) = 0. (a) By applying the continuity conditions
at x = a, find c and d in terms of a and b. (b) Find w in terms of
a and b.

8. A particle is described by the wave function
ψ(x) = b(a2 − x2) for −a ≤ x ≤ +a and ψ(x) = 0 for
x ≤ −a and x ≥ +a, where a and b are positive real con-
stants. (a) Using the normalization condition, find b in terms
of a. (b) What is the probability to find the particle at
x = +a/2 in a small interval of width 0.010a? (c) What is
the probability for the particle to be found between x = +a/2
and x = +a?

9. In a certain region of space, a particle is described by the
wave function ψ(x) = Cxe−bx where C and b are real con-
stants. By substituting into the Schrödinger equation, find
the potential energy in this region and also find the energy of
the particle. (Hint: Your solution must give an energy that
is a constant everywhere in this region, independent of x.)

10. A particle is represented by the following wave function:

ψ(x) = 0 x < −L/2

= C(2x/L + 1) − L/2 < x < 0

= C(−2x/L + 1) 0 < x < +L/2

= 0 x >+L/2

(a) Use the normalization condition to find C. (b) Eval-
uate the probability to find the particle in an interval of
width 0.010L at x = L/4 (that is, between x = 0.245L and
x = 0.255L. (No integral is necessary for this calculation.)
(c) Evaluate the probability to find the particle between
x = 0 and x = +L/4. (d) Find the average value of x and
the rms value of x: xrms = √

(x2)av.

5.4 Applications of the Schrödinger Equation

11. A particle in an infinite well is in the ground state with an
energy of 1.26 eV. How much energy must be added to the
particle to reach the second excited state (n = 3)? The third
excited state (n = 4)?

12. An electron is trapped in an infinitely deep one-dimensional
well of width 0.251 nm. Initially the electron occupies the
n = 4 state. (a) Suppose the electron jumps to the ground
state with the accompanying emission of a photon. What
is the energy of the photon? (b) Find the energies of other
photons that might be emitted if the electron takes other
paths between the n = 4 state and the ground state.

13. Show that Eq. 5.31 gives the value A =
√

2/L.
14. A particle is trapped in an infinite one-dimensional well

of width L. If the particle is in its ground state, evaluate
the probability to find the particle (a) between x = 0 and

x = L/3; (b) between x = L/3 and x = 2L/3; (c) between
x = 2L/3 and x = L.

15. A particle is confined between rigid walls separated by a
distance L = 0.189 nm. The particle is in the second excited
state (n = 3). Evaluate the probability to find the particle in
an interval of width 1.00 pm located at: (a) x = 0.188 nm;
(b) x = 0.031 nm; (c) x = 0.079 nm. (Hint: No integra-
tions are required for this problem; use Eq. 5.7 directly.)
What would be the corresponding results for a classical
particle?

16. What is the next level (above E = 50E0) of the two-
dimensional particle in a box in which the degeneracy
is greater than 2?

17. A particle is confined to a two-dimensional box of length L
and width 2L. The energy values are E = (−h2π2/2mL2)(n2

x +
n2

y/4). Find the two lowest degenerate levels.
18. Show by direct substitution that Eq. 5.39 gives a solution to

the two-dimensional Schrödinger equation, Eq. 5.37. Find
the relationship between kx, ky, and E.

19. A particle is confined to a three-dimensional region of
space of dimensions L by L by L. The energy levels
are (−h2π2/2mL2)(n2

x + n2
y + n2

z ), where nx, ny, and nz are
integers ≥ 1. Sketch an energy level diagram, showing the
energies, quantum numbers, and degeneracies for the lowest
10 energy levels.

5.5 The Simple Harmonic Oscillator

20. Using the normalization condition, show that the constant A
has the value (mω0/

−hπ)1/4 for the one-dimensional simple
harmonic oscillator in its ground state.

21. (a) At the classical turning points ±x0 of the simple harmonic
oscillator, K = 0 and so E = U . From this relationship, show
that x0 = (−hω0/k)1/2 for an oscillator in its ground state.
(b) Find the turning points in the first and second excited
states.

22. Use the ground-state wave function of the simple harmonic
oscillator to find xav, (x2)av, and �x. Use the normalization
constant A = (mω0/

−hπ)1/4.
23. (a) Using a symmetry argument rather than a calculation,

determine the value of pav for a simple harmonic oscillator.
(b) Conservation of energy for the harmonic oscillator can
be used to relate p2 to x2. Use this relation, along with
the value of (x2)av from Problem 22, to find (p2)av for the
oscillator in its ground state. (c) Using the results of parts a
and b, show that �p = √−hω0m/2.

24. The ground state energy of an oscillating electron is 1.24 eV.
How much energy must be added to the electron to move it
to the second excited state? The fourth excited state?

25. Compare the probabilities for an oscillating particle in its
ground state to be found in a small interval of width dx at
the center of the well and at the classical turning points.
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5.6 Steps and Barriers

26. Find the value of K at which Eq. 5.60 has its maximum
value, and show that Eq. 5.61 is the maximum value of �x.

27. For a particle with energy E < U0 incident on the potential
energy step, use ψ0 and ψ1 from Eqs. 5.57, and evaluate the
constants B and D in terms of A by applying the boundary
conditions at x = 0.

28. Using the wave functions of Eq. 5.55 for the potential energy
step, apply the boundary conditions of ψ and dψ/dx to find
B′ and C′ in terms of A′, for the potential step when particles
are incident from the negative x direction. Evaluate the ratios
|B′|2/|A′|2 and |C′|2/|A′|2 and interpret.

29. (a) Write down the wave functions for the three regions
of the potential energy barrier (Figure 5.26) for E < U0.
You will need six coefficients in all. Use complex expo-
nential notation. (b) Use the boundary conditions at x = 0
and at x = L to find four relationships among the six coeffi-
cients. (Do not try to solve these relationships.) (c) Suppose
particles are incident on the barrier from the left. Which
coefficient should be set to zero? Why?

30. Repeat Problem 29 for the potential energy barrier when
E > U0, and sketch a representative probability density that
shows several cycles of the wave function. In your sketch,
make sure the amplitude and wavelength in each region
accurately describe the situation.

General Problems

31. An electron is trapped in a one-dimensional well of width
0.132 nm. The electron is in the n = 10 state. (a) What
is the energy of the electron? (b) What is the uncertainty
in its momentum? (Hint: Use Eq. 4.10.) (c) What is the
uncertainty in its position? How do these results change as
n → ∞? Is this consistent with classical behavior?

32. Sketch the form of a possible solution to the Schrödinger
equation for each of the potential energies shown in
Figure 5.34. The potential energies go to infinity at the
boundaries. In each case show several cycles of the wave
function. In your sketches, pay attention to the continu-
ity conditions (where applicable) and to changes in the
wavelength and amplitude.

33. Show that the average value of x2 in the one-dimensional
infinite potential energy well is L2(1/3 − 1/2n2π2).

34. Use the result of Problem 33 to show that, for the infi-
nite one-dimensional well, defining �x = √

(x2)av − (xav)
2

gives �x = L
√

1/12 − 1/2π2n2.
35. (a) In the infinite one-dimensional well, what is

pav? (Use a symmetry argument.) (b) What is (p2)av? [Hint:

What is (p2/2m)av?] (c) Defining �p = √
(p2)av − (pav)

2,
show that �p = hn/2L.

E

E

E

FIGURE 5.34 Problem 32.

36. The first excited state of the harmonic oscillator has a wave
function of the form ψ(x) = Axe−ax2

. Follow the method
outlined in Section 5.5 to find a and the energy E. Find the
constant A from the normalization condition.

37. Using the normalization constant A from Problem 20 and
the value of a from Eq. 5.49, evaluate the probability to
find an oscillator in the ground state beyond the classical
turning points ±x0. This problem cannot be solved in closed,
analytic form. Develop an approximate, numerical method
using a graph, calculator, or computer. Assume an elec-
tron bound to an atomic-sized region (x0 = 0.1 nm) with an
effective force constant of 1.0 eV/nm2.

38. A two-dimensional harmonic oscillator has energy E =
−hω0(nx + ny + 1), where nx and ny are integers beginning
with zero. (a) Justify this result based on the energy of
the one-dimensional oscillator. (b) Sketch an energy-level
diagram similar to Figure 5.21, showing the lowest 4 energy
levels. For each level, show the value of E (in units of
−hω0), the quantum numbers nx and ny, and the degener-
acy. (c) Show that the degeneracy of each level is equal to
nx + ny + 1.



Chapter 6
THE RUTHERFORD-BOHR MODEL
OF THE ATOM

This model of the atom, based on the work of Rutherford and Bohr, shows electrons
circulating about the nucleus like planets circulating about the Sun. It can be a useful model
for some purposes, but it does not represent even approximately the structure of real atoms.
In Chapters 7 and 8 we will learn more about the behavior and properties of electrons in
atoms.
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Our goal in this chapter is to understand some of the details of atomic structure
that can be learned from experimental studies of atoms. In particular, we discuss
two types of experiments that are important in the development of our theory
of atomic structure: the scattering of charged particles by atoms, which tells us
about the distribution of electric charge in atoms, and the emission or absorption
of radiation by atoms, which tells us about their excited states.

We use the information obtained from these experiments to develop an atomic
model, which helps us understand and explain the properties of atoms. A model
is usually an oversimplified picture of a more complex system, which provides
some insight into its operation but may not be sufficiently detailed to explain all
of its properties.

In this chapter, we discuss the experiments that led to the Rutherford-Bohr
model (also known simply as the Bohr model), which is based on the familiar
“planetary” structure in which the electrons orbit about the nucleus like planets
about the Sun. Even though this model is not strictly valid from the standpoint of
wave mechanics, it does help us understand many atomic properties, especially
the excited states of the simplest atom, hydrogen. In Chapter 7, we show how
wave mechanics changes our picture of the hydrogen atom, and in Chapter 8 we
consider the structure of more complicated atoms.

6.1 BASIC PROPERTIES OF ATOMS

Before we begin to construct a model of the atom, it is helpful to summarize some
of the basic properties of atoms.

1. Atoms are very small, about 0.1 nm (0.1 × 10−9 m) in radius. Thus any
effort to “see” an atom using visible light (λ = 500 nm) is hopeless owing
to diffraction effects. We can make a crude estimate of the maximum size
of an atom in the following way. Consider a cube of elemental matter—for
example, iron. Iron has a density of about 8 g/cm3 and a molar mass of
56 g. One mole of iron (56 g) contains Avogadro’s number of atoms, about
6 × 1023. Thus 6 × 1023 atoms occupy about 7 cm3 and so 1 atom occupies
about 10−23 cm3. If we assume the atoms of a solid are packed together in the
most efficient possible way, like hard spheres in contact, then the diameter of
one atom is about

3
√

10−23 cm3 = 2 × 10−8 cm = 0.2 nm.
2. Atoms are stable—they do not spontaneously break apart into smaller pieces

or collapse; therefore the internal forces that hold the atom together must be in
equilibrium. This immediately tells us that the forces that pull the parts of an
atom together must be opposed in some way; otherwise atoms would collapse.

3. Atoms contain negatively charged electrons, but are electrically neutral. If we
disturb an atom or collection of atoms with sufficient force, electrons are emit-
ted. We learn this fact from studying the Compton effect and the photoelectric
effect. We also learned in Chapter 4 that even though electrons are emitted from
the nuclei of atoms in certain radioactive decay processes, they don’t “exist”
in those nuclei but are manufactured there by some process. Electrons were
excluded from the nucleus based on the uncertainty principle, which forbids
emitted electrons of the energies observed in the laboratory from existing in the
nucleus (see Example 4.7). The uncertainty principle places no such restriction
on the existence of electrons in a volume as large as an atom (see Problem 1).

We can also easily observe that bulk matter is electrically neutral, and we
assume that this is likewise a property of the atoms. Experiments with beams
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of individual atoms support this assumption. From these experimental facts
we deduce that an atom with Z negatively charged electrons must also contain
a net positive charge of Ze.

4. Atoms emit and absorb electromagnetic radiation. This radiation may take
many forms—visible light (λ ∼ 500 nm), X rays (λ ∼ 1 nm), ultraviolet rays
(λ ∼ 10 nm), infrared rays (λ ∼ 0.1 μm),andso forth. In fact it is fromobserva-
tion of these emitted and absorbed radiations, which can be measured with great
precision, that we learn most of what we know about atoms. In a typical emis-
sion measurement, an electric current is passed through a glass tube containing
a small sample of the gas phase of the element under study, and radiation is
emitted when an excited atom returns to its ground state. The absorption wave-
lengths can be measured by passing a beam of white light through a sample of
the gas and noting which colors are removed from the white light by absorption
in the gas. One particularly curious feature of the atomic radiations is that atoms
don’t always emit and absorb radiations at the same wavelengths—some wave-
lengths present in the emission experiment do not also appear in the absorption
experiment. Any successful theory of atomic structure must be able to account
for these emission and absorption wavelengths.

Electrons

R r

FIGURE 6.1 The Thomson model of
the atom. Z electrons are imbedded in
a uniform sphere of positive charge Ze
and radius R. An imaginary spherical
surface of radius r contains a fraction
r3/R3 of the positive charge.

6.2 SCATTERING EXPERIMENTS AND THE
THOMSON MODEL

An early model of the structure of the atom was proposed (in 1904) by J. J.
Thomson, who was known for his previous identification of the electron and
measurement of its charge-to-mass ratio e/m. The Thomson model incorporates
many of the known properties of atoms: size, mass, number of electrons, and
electrical neutrality. In this model, an atom contains Z electrons that are embedded
in a uniform sphere of positive charge (Figure 6.1). The total positive charge of the
sphere is Ze, the mass of the sphere is essentially the mass of the atom (the electrons
don’t contribute significantly to the total mass), and the radius R of the sphere is the
radius of the atom. (This model is sometimes known as the “plum-pudding” model,
because the electrons are distributed throughout the atom like raisins in a plum
pudding.) As we will see, the Thomson model gives predictions that disagree with
experiment, and so it is not the correct way of understanding the structure of atoms.

One way of studying atoms is by probing the distribution of electric charge in
their interior, which we can do by bombarding the atom with charged particles and
observing the angle by which particles are deflected from their original direction.
This type of experiment is called a scattering experiment. Ideally we would like
to do this experiment with a single atom, such as is represented in Figure 6.2.
The scattering angle θ depends on the impact parameter b, which measures the
distance from the center of the atom that a projectile would pass if it were not
deflected. Each different value of the impact parameter results in a different value
of the scattering angle.

y

x

θ

R

b

b = 0

FIGURE 6.2 A positively charged par-
ticle is deflected by an angle θ as it
passes through a positively charged
sphere, representing a Thomson model
atom. The scattering angle depends on
the value of the impact parameter b,
which varies from 0 to R.

The particle is deflected from its original trajectory by the electrical forces
exerted on the particle by the atom. For a positively charged particle, these forces
are: (1) a repulsive force due to the positive charge of the atom, and (2) an attractive
force due to the negatively charged electrons. We assume that the mass of the
deflected particle is much greater than the mass of an electron but also much less
than the mass of the atom. In the encounter between the projectile and an electron,
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the forces exerted on each by the other are equal and opposite (by Newton’s
third law), and so the principal victim of the encounter is the much less massive
electron; the effect on the projectile is negligible. (Imagine rolling a bowling ball
through a field of Ping-Pong balls!) We thus need consider only the positively
charged atom as a cause of the deflection of the particle. By the same argument,
we neglect any possible motion of the more massive atom caused by the passage
of the projectile. The basic experiment, then, is the scattering of a positively
charged projectile by the stationary positively charged massive part of the atom.

θ

θ

θ

θ

FIGURE 6.3 Scattering by a thin foil.
Some individual scatterings tend to
increase θ , while others tend to
decrease θ .

In practice we cannot do the experiment with one atom. Instead, we bombard a
thin foil, as in Figure 6.3. The scattering angle θ that we observe in the laboratory
is the result of scattering by many atoms, with impact parameters that we do
not know and cannot control. Let’s assume that for a single atom the average
scattering angle is θav, which represents an average over all possible impact
parameters from zero up to the atomic radius R. For a typical foil thickness of
1 μm (10−6 m), the projectile is scattered by about 104 atoms.

The total scattering angle θ is determined by statistical considerations, because
some of the individual scatterings move the projectile toward larger scattering
angles and some toward smaller angles, as represented in Figure 6.3. This is an
example of a “random walk” problem—for N scatterings, the most likely observed
net scattering angle θ is related to the average individual scattering angle by

θ �
√

Nθav (6.1)

According to the Thomson model, the average scattering angle for a single atom
is on the order of 0.01◦, and for a foil that is 104 atoms thick the net scattering
angle should be about 1◦. This is consistent with experimental observations.

Ernest Rutherford (1871–1937, Eng-
land). Founder of nuclear physics, he
is known for his pioneering work on
alpha-particle scattering and radioac-
tive decays. His inspiring leadership
influenced a generation of British nu-
clear and atomic scientists.

The most critical test of the Thomson model, which it fails completely, occurs
when we examine the probability for scattering at large angles. If each individual
scattering deflects the projectile through an angle of around 0.01◦, then to observe
projectiles scattered through a total angle greater than 90◦, we must have about
104 successive scatterings, all of which push the projectile toward larger angles.
Because the probabilities of individual scatterings toward either larger or smaller
angles are equal, the probability of having 104 successive scatterings toward
larger angles, like the probability of finding 104 successive heads in tossing a
coin, is about (1/2)10,000 = 10−3000.

An experiment to observe this scattering was performed by Hans Geiger and
Ernest Marsden in the laboratory of Ernest Rutherford at Manchester University
in 1910. For projectiles they used alpha particles, which are nuclei of helium (of
charge +2e) emitted in radioactive decay. Their results showed that the probability
of an alpha particle scattering at angles greater than 90◦ was about 10−4. This
remarkable discrepancy between the expected value based on the Thomson model
(10−3000) and the observed value (10−4) was described by Rutherford in this way:

It was quite the most incredible event that ever happened to me in my life.
It was as incredible as if you fired a 15-inch shell at a piece of tissue paper
and it came back and hit you.

The analysis of the results of such scattering experiments led Rutherford to propose
that the mass and positive charge of the atom are not distributed uniformly over
the volume of the atom, but instead are concentrated in an extremely small region,
about 10−14 m in diameter, at the center of the atom. In Section 6.3 we will see
how this proposal is consistent with the large-angle scattering results.



6.2 | Scattering Experiments and the Thomson Model 173

Scattering in the Thomson Model (Optional)
Let’s assume that a projectile of positive charge ze is incident on an atom of
radius R that we represent according to the Thomson model as a uniform sphere
of positive charge Ze. The force on the projectile when it is a distance r from the
center of the atom can be computed using Gauss’s law (see Problem 2):

F = zZe2

4πε0R3
r (6.2)

Before discussing the scattering, we should note that this equation can also describe
(if we put z = 1) the force on an electron embedded in the Thomson atom at a
distance r from its center. This force can be written F = kr with k = Ze2/4πε0R3.
This linear restoring force permits the electrons to oscillate about their equilibrium
positions just like a mass on a spring subject to the linear restoring force F = kx. We
therefore expect the electrons in the Thomson atom to oscillate about their equilib-
rium positions with a frequency f = (2π)−1

√
k/m , where k is the force constant.

Because an oscillating electric charge radiates electromagnetic waves whose fre-
quency is identical to the oscillation frequency, we might expect, based on the
Thomson model, that the radiation emitted by atoms would show this characteristic
frequency. This turns out not to be true (see Problem 3); the calculated frequencies
do not correspond to the frequencies observed for radiation emitted by atoms.

The exact calculation of the scattering angle for different values of the impact
parameter in the Thomson model of the atom is fairly complicated, but for our
purposes we want only an estimate of the average value of the angle. As we will
find out later, it’s not very important if our estimate is off by a small factor.

Initially the projectile moves in the x direction in the geometry of Figure 6.2,
but the atom exerts a force in the y direction that produces a small component
of momentum py in that direction. Using Newton’s second law we can find the
momentum from the impulse received by the projectile due to the electrostatic
force:

py =
∫

Fy dt (6.3)

Rather than carry out this complicated integral for a force that is changing in mag-
nitude and direction as the projectile travels, we’ll estimate the average scattering
angle by choosing an average value for the impact parameter, namely b = R/2 (rep-
resenting the middle trajectory of Figure 6.2), and we’ll assume the force acts in
the y direction for a time �t determined by the projectile’s flight along a line of
length roughly equal to R. This underestimates the amount of time during which the
force acts but overestimates the effect of the force (which doesn’t act purely in the
y direction along the entire trajectory), so to some extent these two effects should
cancel one another.

Making these approximations, we obtain

py
∼= F�t ∼= zZe2(R/2)

4πε0R3

R

v
= zZe2

8πε0Rv
(6.4)

The angle θ is small, so we can make the approximation tan θ ∼= θ , and we can
assume that px changes very little from its initial value mv, and so the average
scattering angle is

θav
∼= tan θav = py

px
= py

mv
= zZe2

8πε0Rv

1

mv
= zZe2

16πε0RK
(6.5)
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using the nonrelativistic kinetic energy K = 1
2 mv2. This gives an estimate of the

scattering angle when the impact parameter b is equal to half the radius R. Smaller
values of b will give smaller deflection angles, and larger values of b will give
larger angles, so this is a reasonable estimate for the average scattering angle for
a Thomson model atom.

Example 6.1

Using the Thomson model, estimate the average scatter-
ing angle when alpha particles (z = 2) with kinetic energy
3 MeV are scattered from gold (Z = 79). The atomic radius
of gold is 0.179 nm.

Solution
Using e2/4πε0 = 1.44 eV·nm, we have

θav
∼= zZe2

16πε0RK
= 1

4

e2

4πε0

zZ

RK

= 0.25(1.44 eV · nm)(2)(79)

(0.179 nm)(3 × 106 eV)

= 1 × 10−4 rad = 0.01◦

Even though this result represents a rough estimate of the average scattering
angle in the Thomson model of the atom, its accuracy does not affect our
conclusions about the failure of the model. Even if our estimate were too small by
as much as a factor of 10 (which is highly unlikely), we would be comparing an
expected probability of 10−300 (instead of 10−3000) with the observed 10−4, still
a spectacular disagreement. Any reasonable estimate shows the complete failure
of the Thomson model to account for these scattering experiments.

6.3 THE RUTHERFORD NUCLEAR ATOM

In analyzing the scattering of alpha particles, Rutherford concluded that the most
likely way an alpha particle (m = 4 u) can be deflected through large angles is
by a single collision with a more massive object. Rutherford therefore proposed
that the charge and mass of the atom were concentrated at its center, in a region
called the nucleus. Figure 6.4 illustrates the scattering geometry in this case. The
projectile, of charge ze, experiences a repulsive force due to the positively charged
nucleus:

b
θ

FIGURE 6.4 Scattering by a nuclear
atom. The path of the scattered particle
is a hyperbola. Smaller impact param-
eters give larger scattering angles.

F = 1

4πε0

|q1||q2|
r2

= (ze)(Ze)

4πε0r2
(6.6)

(Compare this with Eq. 6.2, which describes a projectile that is inside the sphere
of charge Ze and so feels only a portion of the positive charge. We assume now
that the projectile is always outside the nucleus, so it feels the full nuclear charge
Ze.) The atomic electrons, with their small mass, do not appreciably affect the
path of the projectile and we neglect their effect on the scattering. We also assume
that the nucleus is so much more massive than the projectile that it does not move
during the scattering process; because no recoil motion is given to the nucleus,
the initial and final kinetic energies K of the projectile are equal.
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b

b

r

q

f

FIGURE 6.5 The hyperbolic trajec-
tory of a scattered particle.

As Figure 6.4 shows, for each impact parameter b, there is a certain scattering
angle θ , and we need the relationship between b and θ . The projectile can be
shown∗ to follow a hyperbolic path; in polar coordinates r and φ, the equation of
the hyperbola is

1

r
= 1

b
sin φ + zZe2

8πε0b2K
(cos φ − 1) (6.7)

As shown in Figure 6.5, the initial position of the particle is φ = 0, r → ∞, and
the final position is φ = π − θ , r → ∞. Using the coordinates at the final position,
Eq. 6.7 reduces to

b = zZe2

8πε0K
cot 1

2θ = zZ

2K

e2

4πε0
cot 1

2θ (6.8)

(This result is written in this form so that e2/4πε0 = 1.44 eV · nm or MeV · fm can
be easily inserted.) A projectile that approaches the nucleus with impact parameter
b will be scattered at an angle θ ; projectiles approaching with smaller values of b
will be scattered through larger angles, as shown in Figure 6.4.

We divide our study of the scattering of charged projectiles by nuclei (which
is commonly called Rutherford scattering) into three parts: (1) calculation of the
fraction of projectiles scattered at angles greater than some value of θ , (2) the
Rutherford scattering formula and its experimental verification, and (3) the closest
approach of a projectile to the nucleus.

1. The Fraction of Projectiles Scattered at Angles Greater than θ. From
Figure 6.4 we see immediately that every projectile with impact parameters less
than a given value of b will be scattered at angles greater than its corresponding
θ . What is the chance of a projectile having an impact parameter less than a given
value of b? Suppose the foil were one atom thick—a single layer of atoms packed
tightly together, as in Figure 6.6. Each atom is represented by a circular disc, of
area πR2. If the foil contains N atoms, its total area is NπR2. For scattering at
angles greater than θ , the impact parameter must fall between zero and b—that
is, the projectile must approach the atom within a circular disc of area πb2. If
the projectiles are spread uniformly over the area of the disc, then the fraction of
projectiles that fall within that area is just πb2/πR2.

q

b

FIGURE 6.6 Scattering geometry for
many atoms. For impact parameter b,
the scattering angle is θ . If the particle
enters the atom within the disc of area
πb2, its scattering angle will be larger
than θ .

A real scattering foil may be thousands or tens of thousands of atoms thick.
Let t be the thickness of the foil and A its area, and let ρ and M be the density and
molar mass of the material of which the foil is made. The volume of the foil is
then At, its mass is ρAt, the number of moles is ρAt/M , and the number of atoms
or nuclei per unit volume is

n = NA
ρAt

M

1

At
= NAρ

M
(6.9)

where NA is Avogadro’s number (the number of atoms per mole). As seen by an
incident projectile, the number of nuclei per unit area is nt = NAρt/M ; that is, on
the average, each nucleus contributes an area (NAρt/M)−1 to the field of view

∗See, for example, R. M. Eisberg and R. Resnick, Quantum Physics of Atoms, Molecules, Solids,
Nuclei, and Particles, 2nd ed. (New York, Wiley, 1985).
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of the projectile. For scattering at angles greater than θ , it must once again be
true that the projectile must fall within an area πb2 of the center of an atom; the
fraction scattered at angles greater than θ is just the fraction that approaches an
atom within the area πb2:

f<b = f>θ = ntπb2 (6.10)

assuming that the incident particles are spread uniformly over the area of the foil.

Example 6.2

A gold foil (ρ = 19.3 g/cm3, M = 197 g/mole) has a thick-
ness of 2.0 × 10−4 cm. It is used to scatter alpha particles
of kinetic energy 8.0 MeV. (a) What fraction of the alpha
particles is scattered at angles greater than 90◦? (b) What
fraction of the alpha particles is scattered at angles between
90◦ and 45◦?

Solution
(a) For this case the number of nuclei per unit volume can
be computed as

n = NAρ

M
= (6.02 × 1023 atoms/mole)(19.3 g/cm3)

(197 g/mole)(1 m/102 cm)3

= 5.9 × 1028 m−3

For scattering at 90◦, the impact parameter b can be found
from Eq. 6.8:

b = zZ

2K

e2

4πε0
cot

1

2
θ

= (2)(79)

2(8.0 MeV)
(1.44 MeV·fm) cot 45◦

= 14 fm = 1.4 × 10−14 m

and using Eq. 6.10 we then have

f>90◦ = ntπb2

= (5.9 × 1028 m−3)(2.0 × 10−6 m)π(1.4 × 10−14 m)2

= 7.5 × 10−5

(b) Repeating the calculation for θ = 45◦, we find

b = zZ

2K

e2

4πε0
cot 1

2θ

= (2)(79)

2(8.0 MeV)
(1.44 MeV · fm) cot 22.5◦

= 34 fm = 3.4 × 10−14 m

f>45◦ = ntπb2

= (5.9 × 1028 m−3)(2.0 × 10−6 m)π(3.4 × 10−14 m)2

= 4.4 × 10−4

If a total fraction of 4.4 × 10−4 is scattered at angles
greater than 45◦, and of that, 7.5 × 10−5 is scattered at
angles greater than 90◦, the fraction scattered between 45◦

and 90◦ must be

4.4 × 10−4 − 7.5 × 10−5 = 3.6 × 10−4

2. The Rutherford Scattering Formula and Its Experimental Verification.
In order to find the probability that a projectile will be scattered into a small
angular range at θ (between θ and θ + dθ ), we require that the impact parameter
lie within a small range of values db at b (see Figure 6.7). The fraction, df, is then

df = nt(2πb db) (6.11)

from Eq. 6.10. Differentiating Eq. 6.8 we find db in terms of dθ :

db = zZ

2K

e2

4πε0
(− csc2 1

2θ)( 1
2 dθ) (6.12)
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r
r dθ

dθ

r sinθ

θ

FIGURE 6.7 Particles entering the
ring between b and b + db are dis-
tributed uniformly along a ring of
angular width dθ . A detector is at
a distance r from the scattering foil.

and so

|df | = πnt

(
zZ

2K

)2 (
e2

4πε0

)2

csc2 1
2θ cot 1

2θ dθ (6.13)

(This minus sign in Eq. 6.12 is not important—it just tells us that θ increases
as b decreases.) Suppose we place a detector for the scattered projectiles at the
angle θ a distance r from the nucleus. The probability for a projectile to be
scattered into the detector depends on df , which gives the probability for scattered
particles to pass through the ring of radius r sin θ and width r dθ . The area of the
ring is dA = (2πr sin θ)r dθ . In order to calculate the rate at which projectiles
are scattered into the detector we must know the probability per unit area for
scattering into the ring. This is |df |/dA, which we call N(θ ), and, after some
manipulation, we find:

N(θ) = nt

4r2

(
zZ

2K

)2 (
e2

4πε0

)2
1

sin4 1
2θ

(6.14)

This is the Rutherford scattering formula.
In Rutherford’s laboratory, Hans Geiger and Ernest Marsden tested the predic-

tions of this formula in a remarkable series of experiments involving the scattering
of alpha particles (z = 2) from a variety of thin metal foils. In those days before
electronic recording and processing equipment was available, Geiger and Marsden
observed and recorded the alpha particles by counting the scintillations (flashes of
light) produced when the alpha particles struck a zinc sulfide screen. A schematic
view of their apparatus is shown in Figure 6.8. In all, four predictions of the
Rutherford scattering formula were tested:

(a) N(θ ) ∝ t. With a source of 8-MeV alpha particles from radioactive
decay, Geiger and Marsden used scattering foils of varying thicknesses t while
keeping the scattering angle θ fixed at about 25◦. Their results are summarized
in Figure 6.9, and the linear dependence of N(θ ) on t is apparent. This is
also evidence that, even at this moderate scattering angle, single scattering is
much more important than multiple scattering. (In a random statistical theory
of multiple scattering, the probability for scattering at a large angle would
be proportional to the square root of the number of single scatterings, and
we would expect N(θ ) ∝ t1/2. Figure 6.9 shows clearly that this is not true.)

q

dq
F

M

S

FIGURE 6.8 Schematic diagram of alpha-
particle scattering experiment. A radioactive
source of alpha particles is in a shield with
a small hole. Alpha particles strike the foil
F and are scattered into the angular range
dθ . Each time a scattered particle strikes the
screen S a flash of light is emitted and ob-
served with the movable microscope M .
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FIGURE 6.9 The dependence of
scattering rate on foil thickness for
three different scattering foils.
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FIGURE 6.10 The dependence of
scattering rate on the nuclear charge
Z for foils of different materials. The
data are plotted against Z2.

This result emphasizes a significant difference between scattering by a Thomson
model atom and a Rutherford nuclear atom: In the Thomson model, the projectile
is scattered by every atom along its path as it passes through the foil (see
Figure 6.3), while in the Rutherford nuclear model the nucleus is so tiny that
the chance of even a single significant encounter is small and the chance of
encountering more than one nucleus is negligible.
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FIGURE 6.11 The dependence of
scattering rate on the kinetic energy
of the incident alpha particles for scat-
tering by a single foil. The slope
of −2 on the log-log scale shows
that N ∝ K−2, as expected from the
Rutherford formula.

(b) N(θ ) ∝ Z2. In this experiment, Geiger and Marsden used a variety
of different scattering materials, of approximately (but not exactly) the same
thickness. This proportionality is therefore much more difficult to test than the
previous one, since it involves the comparison of different thicknesses of different
materials. However, as shown in Figure 6.10, the results are consistent with the
proportionality of N(θ ) to Z2.

(c) N(θ ) ∝ K−2. In order to test this prediction of the Rutherford scattering
formula, Geiger and Marsden kept the thickness of the scattering foil constant and
varied the speed of the alpha particles. They accomplished this by slowing down
the alpha particles emitted from the radioactive source by passing them through
thin sheets of mica. From independent measurements they knew the effect of
different thicknesses of mica on the velocity of the alpha particles. The results of
the experiment are shown in Figure 6.11; once again we see excellent agreement
with the expected relationship.

(d) N(θ ) ∝ sin−4 1
2θ . This dependence of N on θ is perhaps the most important

and distinctive feature of the Rutherford scattering formula. It also produces the
largest variation in N over the range accessible by experiment. In the tests
discussed so far, N varied by perhaps an order of magnitude; in this case N varies
by about five orders of magnitude from the smaller to the larger angles. Geiger and
Marsden used a gold foil and varied θ from 5 to 150◦, to obtain the relationship
between N and θ plotted in Figure 6.12. The agreement with the Rutherford
formula is again very good.

Thus all predictions of the Rutherford scattering formula were confirmed by
experiment, and the “nuclear atom” was verified.

3. The Closest Approach of a Projectile to the Nucleus. A positively charged
projectile slows down as it approaches a nucleus, exchanging part of its initial
kinetic energy for the electrostatic potential energy due to the nuclear repulsion.
The closer the projectile gets to the nucleus, the more potential energy it gains,
because

U = 1

4πε0

q1q2

r
= 1

4πε0

zZe2

r
(6.15)

The maximum potential energy, and thus the minimum kinetic energy, occurs at
the minimum value of r. We assume that U = 0 when the projectile is far from the
nucleus, where it has total energy E = K = 1

2 mv2. As the projectile approaches
the nucleus, K decreases and U increases, but U + K remains constant. At the
distance rmin, the speed is vmin and:

E = 1

2
mv2

min + 1

4πε0

zZe2

rmin
= 1

2
mv2 (6.16)

(See Figure 6.13.)
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FIGURE 6.12 The dependence of scat-
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FIGURE 6.13 Closest approach of the
projectile to the nucleus.

Angular momentum is also conserved. Far from the nucleus, the angular
momentum L is mvb, and at rmin, the angular momentum is mvminrmin, so

mvb = mvminrmin (6.17)

which gives vmin = bv/rmin. Substituting this result into Eq. 6.16, we find

1

2
mv2 = 1

2
m

(
b2v2

r2
min

)
+ 1

4πε0

zZe2

rmin
(6.18)

This expression can be solved for the value of rmin.
Notice that the kinetic energy of the projectile is not zero at rmin, unless b = 0.

(See Figure 6.13.) In this case, the projectile would lose all of its kinetic energy,
and thus get closest to the nucleus. At this point its distance from the nucleus is
d, the distance of closest approach. We find this distance by solving Eq. 6.18 for
rmin when b = 0, and obtain

d = 1

4πε0

zZe2

K
(6.19)

Example 6.3

Find the distance of closest approach of an 8.0-MeV alpha
particle incident on a gold foil.

Solution

d = zZe2

4πε0

1

K
= (2)(79)(1.44 MeV·fm)

1

8.0 MeV
= 28 fm
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Although a distance of 28 fm is very small (much less than an atomic radius,
for example) it is larger than the nuclear radius of gold (about 7 fm). Thus the
projectile is always outside of the nuclear charge distribution, and the Rutherford
scattering law, which was derived assuming the projectile to remain outside the
nucleus, correctly describes the scattering. If we increase the kinetic energy of
the projectile, or decrease the electrostatic repulsion by using a target nucleus
with low Z, this may not be the case. Under certain circumstances, the distance
of closest approach can be less than the nuclear radius. When this happens, the
projectile no longer feels the full nuclear charge, and the Rutherford scattering law
no longer holds. In fact, as we discuss in Chapter 12, this gives us a convenient
way of measuring the size of the nucleus.

6.4 LINE SPECTRA

The radiation from atoms can be classified into continuous spectra and discrete
or line spectra. In a continuous spectrum, all wavelengths from some minimum,
perhaps 0, to some maximum, perhaps approaching ∞, are emitted. The radiation
from a hot, glowing object is an example of this category. White light is a mixture
of all of the different colors of visible light; an object that glows white hot is
emitting light at all wavelengths of the visible spectrum. If, on the other hand,
we force an electric discharge in a tube containing a small amount of the gas or
vapor of a certain element, such as mercury, sodium, or neon, light is emitted at a
few discrete wavelengths and not at any others. Examples of such emission “line”
spectra are shown in Figure 6.14. The strong 436 nm (blue) and 546 nm (green)
lines in the mercury emission spectrum give mercury-vapor street lights their
blue-green tint; the strong yellow line at 590 nm in the sodium spectrum (which
is actually a doublet—two very closely spaced lines) gives sodium-vapor street
lights a softer, yellowish color. The intense red lines of neon are responsible for
the red color of “neon signs.”

Another possible experiment is to pass a beam of white light, containing all
wavelengths, through a sample of a gas. When we do so, we find that certain

200 300

Na

Hg

400

Wavelength (nm)

500 600 700

Ultraviolet Visible

Vapor
tube

Slits

Prism

Blue
Red

Film
or

screen

V

FIGURE 6.14 Apparatus for observing emission spectra. Light is emitted when an electric discharge is created in a tube
containing a vapor of an element. The light passes through a dispersive medium, such as a prism or a diffraction grating,
which displays the individual component wavelengths at different positions. Sample line spectra are shown for mercury
and sodium in the visible and near ultraviolet.
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FIGURE 6.15 Apparatus for observing absorption spectra. A light source produces a continuous range of wavelengths,
some of which are absorbed by a gaseous element. The light is dispersed, as in Figure 6.14. The result is a continuous
“rainbow” spectrum, with dark lines at wavelengths where the light was absorbed by the gas.

wavelengths have been absorbed from the light, and again a line spectrum results.
In this case there are dark lines, superimposed on the bright continuous spectrum,
at the wavelengths where the absorption occurred. These wavelengths correspond
to many (but not all) of the wavelengths seen in the emission spectrum. Examples
of absorption spectra are shown in Figure 6.15.

In general, the interpretation of line spectra is very difficult in complex atoms,
and so we will deal for now with the line spectra of the simplest atom, hydrogen.
Regularities appear in both the emission and absorption spectra, as shown in
Figure 6.16. Notice that, as with the mercury and sodium spectra, some lines
present in the emission spectrum are missing from the absorption spectrum.

90 nm 100 nm 110 nm 120 nm

Lyman (ultraviolet) Absorption and emission

Emission only

Emission only

Emission only

Emission only

400 nm 500 nm 600 nm

Balmer (visible)

0.5 mm 1.0 mm 1.5 mm 2.0 mm

Paschen (infrared)

1.0 mm 2.0 mm 3.0 mm 4.0 mm

Brackett (infrared)

2.0 mm 4.0 mm 6.0 mm 8.0 mm

Pfund (infrared)

FIGURE 6.16 Emission and absorption spectral series of hydrogen. Note the
regularities in the spacing of the spectral lines. The lines get closer together as the
limit of each series (dashed line) is approached. Only the Lyman series appears
in the absorption spectrum; all series are present in the emission spectrum.
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In 1885 Johannes Balmer, a Swiss schoolteacher, noticed (mostly by trial and
error) that the wavelengths of the group of emission lines of hydrogen in the
visible region could be calculated very accurately from the formula

λ = (364.5 nm)
n2

n2 − 4
(n = 3, 4, 5, . . .) (6.20)

For example, for n = 3, the formula gives λ = 656.1 nm, which corresponds
exactly to the longest wavelength of the series of hydrogen lines in the visible
region (see Figure 6.16). This formula is now known as the Balmer formula and
the series of lines that it fits is called the Balmer series. The wavelength 364.5 nm,
corresponding to n → ∞, is called the series limit (which is shown as the dashed
line at the left end of the Balmer series in Figure 6.16).

It was soon discovered that all of the groupings of lines in the hydrogen
spectrum could be fit with a similar formula of the form

λ = λlimit
n2

n2 − n2
0

(n = n0 + 1, n0 + 2, n0 + 3 . . .) (6.21)

where λlimit is the wavelength of the appropriate series limit. For the Balmer series,
n0 = 2. The other series are today known as Lyman (n0 = 1), Paschen (n0 = 3),
Brackett (n0 = 4), and Pfund (n0 = 5). These series of hydrogen spectral lines are
shown in Figure 6.16.

Another interesting property of the hydrogen wavelengths is summarized in
the Ritz combination principle. If we convert the hydrogen emission wavelengths
to frequencies, we find the curious property that certain pairs of frequencies added
together give other frequencies that appear in the spectrum.

Any successful model of the hydrogen atom must be able to explain the
occurrence of these interesting arithmetic regularities in the emission spectra.

Example 6.4

The series limit of the Paschen series (n0 = 3) is 820.1 nm.
What are the three longest wavelengths of the Paschen
series?

Solution
From Eq. 6.21,

λ = (820.1 nm)
n2

n2 − 32
(n = 4, 5, 6, . . .)

The three longest wavelengths are:

n = 4 : λ = (820.1 nm)
42

42 − 32
= 1875 nm

n = 5 : λ = (820.1 nm)
52

52 − 32
= 1281 nm

n = 6 : λ = (820.1 nm)
62

62 − 32
= 1094 nm

These transitions are in the infrared region of the electro-
magnetic spectrum.



6.5 | The Bohr Model 183

Example 6.5

Show that the longest wavelength of the Balmer series
and the longest two wavelengths of the Lyman series sat-
isfy the Ritz combination principle. For the Lyman series,
λlimit = 91.13 nm.

Solution
Using Eq. 6.20 with n = 3, we find the longest wavelength
of the Balmer series to be 656.1 nm. Converting this to a
frequency, we obtain

f = c

λ
= 2.998 × 108 m/s

(656.1 nm)(10−9 m/nm)
= 4.57 × 1014 Hz

Using Eq. 6.21 for n = 2 and 3 with n0 = 1, we find the
longest two wavelengths of the Lyman series and their
corresponding frequencies to be

n = 2 : λ = (91.13 nm)
22

22 − 12
= 121.5 nm

f = c

λ
= 2.998 × 108 m/s

(121.5 nm)(10−9 m/nm)

= 24.67 × 1014 Hz

n = 3 : λ = (91.13 nm)
32

32 − 12
= 102.5 nm

f = c

λ
= 2.998 × 108 m/s

(102.5 nm)(10−9 m/nm)

= 29.24 × 1014 Hz

Adding the smallest frequency of the Lyman series to the
smallest frequency of the Balmer series gives the next
smallest Lyman frequency:

24.67 × 1014 Hz + 4.57 × 1014 Hz = 29.24 × 1014 Hz

demonstrating the Ritz combination principle.

6.5 THE BOHR MODEL

Following Rutherford’s proposal that the mass and positive charge are concen-
trated in a very small region at the center of the atom, the Danish physicist Niels
Bohr in 1913 (while working in Rutherford’s laboratory) suggested that the atom
resembled a miniature planetary system, with the electrons circulating about the
nucleus like planets circulating about the Sun. The atom thus doesn’t collapse
under the influence of the electrostatic Coulomb force of the nucleus on the elec-
trons for the same reason that the solar system doesn’t collapse under the influence
of the gravitational force of the Sun on the planets. In both cases, the attractive force
provides the centripetal acceleration necessary to maintain the orbital motion.

r

F

−en

+Ze

FIGURE 6.17 The Bohr model of the
atom (Z = 1 for hydrogen).

As we discuss later, the Bohr model does not give a correct view of the
actual structure and properties of atoms, but it represents an important first step
in achieving an understanding of atoms. The correct view requires methods of
quantum mechanics, which we discuss in Chapter 7.

We consider for simplicity the hydrogen atom, with a single electron
circulating about a nucleus that has a single positive charge, as in Figure 6.17.
The radius of the circular orbit is r, and the electron (of mass m) moves with
constant tangential speed v. The attractive Coulomb force provides the centripetal
acceleration v2/r, so

F = 1

4πε0

|q1||q2|
r2

= 1

4πε0

e2

r2
= mv2

r
(6.22)
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Manipulating this equation, we can find the kinetic energy of the electron (we are
assuming the more massive nucleus to remain at rest—more about this later):

K = 1

2
mv2 = 1

8πε0

e2

r
(6.23)

The potential energy of the electron-nucleus system is the Coulomb potential
energy:

U = 1

4πε0

q1q2

r
= − 1

4πε0

e2

r
(6.24)

The total energy E = K + U is obtained by adding Eqs. 6.23 and 6.24:

E = K + U = 1

8πε0

e2

r
+

(
− 1

4πε0

e2

r

)
= − 1

8πε0

e2

r
(6.25)

We have ignored one serious difficulty with this model thus far. Classical
physics requires that an accelerated electric charge, such as our orbiting electron,
must continuously radiate electromagnetic energy. As it radiates this energy, its
total energy would decrease, the electron would spiral in toward the nucleus,
and the atom would collapse. To overcome this difficulty, Bohr made a bold
and daring hypothesis—he proposed that there are certain special states of
motion, called stationary states, in which the electron may exist without radiating
electromagnetic energy. In these states, according to Bohr, the angular momentum
L of the electron takes values that are integer multiples of −h. In stationary states,
the angular momentum of the electron may have magnitude −h, 2−h, 3−h, . . ., but
never such values as 2.5−h or 3.1−h. This is called the quantization of angular
momentum.

Niels Bohr (1885–1962, Denmark).
He developed a successful theory
of the radiation spectrum of atomic
hydrogen and also contributed the
concepts of stationary states and com-
plementarity to quantum mechanics.
Later he developed a successful theory
of nuclear fission. The institute of the-
oretical physics he founded in Copen-
hagen attracts scholars from around
the world.

In a circular orbit, the position vector �r that locates the electron relative
to the nucleus is always perpendicular to its linear momentum �p. The angular
momentum, which is defined as �L = �r × �p, has magnitude L = rp = mvr when
�r is perpendicular to �p. Thus Bohr’s postulate is

mvr = n−h (6.26)

where n is an integer (n = 1, 2, 3, . . .). We can use this expression with Eq. 6.23
for the kinetic energy

1

2
mv2 = 1

2
m

( n−h

mr

)2 = 1

8πε0

e2

r
(6.27)

to find a series of allowed values of the radius r:

rn = 4πε0
−h2

me2
n2 = a0n2 (n = 1, 2, 3, . . .) (6.28)

where the Bohr radius a0 is defined as

a0 = 4πε0
−h2

me2
= 0.0529 nm (6.29)

This important result is very different from what we expect from classical
physics. A satellite may be placed into Earth orbit at any desired radius by
boosting it to the appropriate altitude and then supplying the proper tangential
speed. This is not true for an electron’s orbit—only certain radii are allowed by
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the Bohr model. The radius of the electron’s orbit may be a0, 4a0, 9a0, 16a0, and
so forth, but never 3a0 or 5.3a0.

Binding
energy

Excitation
energy

n = 1

n = 2

n = 3
n = 4
n = ∞ E∞ = 0 

E4 = −0.85 eV 
E3 = −1.51 eV 

E2 = −3.40 eV 

E1 = −13.60 eV 

FIGURE 6.18 The energy levels of
atomic hydrogen, showing the excita-
tion energy of the electron from n = 1
to n = 2 and the binding energy of the
n = 2 electron.

Substituting Eq. 6.28 for r into Eq. 6.25 gives the energy:

En = − me4

32π2ε2
0

−h2

1

n2
= −13.60 eV

n2
(n = 1, 2, 3, . . .) (6.30)

The energy levels calculated from Eq. 6.30 are shown in Figure 6.18. The
electron’s energy is quantized —only certain energy values are possible. In its
lowest level, with n = 1, the electron has energy E1 = −13.60 eV and orbits with
a radius of r1 = 0.0529 nm. This state is the ground state. The higher states (n = 2
with E2 = −3.40 eV, n = 3 with E3 = −1.51 eV, etc.) are the excited states.

The excitation energy of an excited state n is the energy above the ground
state, En − E1. Thus the first excited state (n = 2) has excitation energy

�E = E2 − E1 = −3.40 eV − (−13.60 eV) = 10.20 eV

the second excited state has excitation energy

�E = E3 − E1 = −1.51 eV − (−13.60 eV) = 12.09 eV

and so forth. The excitation energy can also be regarded as the amount of energy
that the atom must absorb for the electron to make an upward jump. For example,
if the atom absorbs an energy of 10.20 eV when the electron is in the ground state
(n = 1), the electron will jump upward to the first excited state (n = 2).

The magnitude of an electron’s energy |En| is sometimes called its binding
energy; for example, the binding energy of an electron in the n = 2 state is
3.40 eV. If the atom absorbs an amount of energy equal to the binding energy
of the electron, the electron will be removed from the atom and become a
free electron. The atom, minus its electron, is called an ion. The amount of
energy needed to remove an electron from an atom is also called the ionization
energy. Usually the ionization energy of an atom indicates the energy to remove
an electron from the ground state. If the atom absorbs more energy than the
minimum necessary to remove the electron, the excess energy appears as the
kinetic energy of the now free electron.

The binding energy can also be regarded as the energy that is released when the
atom is assembled from an electron and a nucleus that are initially separated by a
large distance. If we bring an electron from a large distance away (where E = 0)
and place it in orbit in the state n where its energy has the negative value En,
energy amounting to |En| is released, usually in the form of one or more photons.

The Hydrogen Wavelengths in the
Bohr Model
We previously discussed the emission and absorption spectra of atomic hydrogen,
and our discussion of the Bohr model is not complete without an understanding of
the origin of these spectra. Bohr postulated that, even though the electron doesn’t
radiate when it remains in any particular stationary state, it can emit radiation
when it moves to a lower energy level. In the lower level, the electron has less
energy than in the original level, and the energy difference appears as a quantum
of radiation whose energy hf is equal to the energy difference between the levels.
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That is, if the electron jumps from n = n1 to n = n2, as in Figure 6.19, a photon
appears with energy

hf = En1
− En2

(6.31)

or, using Eq. 6.30 for the energies,

f = me4

64π3ε2
0

−h3

(
1

n2
2

− 1

n2
1

)
(6.32)

n = n1hf

n = n2

FIGURE 6.19 An electron jumps
from the state n1 to the state n2 as a
photon is emitted.

The wavelength of the emitted radiation is

λ = c

f
= 64π3ε2

0
−h3c

me4

(
n2

1n2
2

n2
1 − n2

2

)
= 1

R∞

(
n2

1n2
2

n2
1 − n2

2

)
(6.33)

where R∞ is called the Rydberg constant

R∞ = me4

64π3ε2
0

−h3c
(6.34)

The presently accepted numerical value is

R∞ = 1.097373 × 107 m−1

Example 6.6

Find the wavelengths of the transitions from n1 = 3 to
n2 = 2 and from n1 = 4 to n2 = 2 in atomic hydrogen.

Solution
For n1 = 3 and n2 = 2, Eq. 6.33 gives

λ = 1

R∞

(
n2

1n2
2

n2
1 − n2

2

)

= 1

1.097 × 107 m−1

(
3222

32 − 22

)
= 656.1 nm

and for n1 = 4 and n2 = 2,

λ = 1

R∞

(
n2

1n2
2

n2
1 − n2

2

)

= 1

1.097 × 107 m−1

(
4222

42 − 22

)

= 486.0 nm

These wavelengths are remarkably close to the values of the two longest
wavelengths of the Balmer series (Figure 6.16). In fact, Eq. 6.33 gives

λ = (364.5 nm)

(
n2

1

n2
1 − 4

)

for the wavelength of a transition from any state n1 to n2 = 2. This is identical
with Eq. 6.21 for the Balmer series. Thus we see that the radiations identified as
the Balmer series correspond to transitions from higher levels to the n = 2 level.
Similar identifications can be made for other series of radiations, as shown in
Figure 6.20. This association between the transitions expected according to the
Bohr model and the observed wavelengths (as in Figure 6.16) represents a huge
triumph for the model.

The Bohr formulas also explain the Ritz combination principle, according to
which certain frequencies in the emission spectrum can be summed to give other
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FIGURE 6.20 The transitions of the Lyman and Balmer series in hydrogen. The
series limit is shown at the right of each group.

frequencies. Let us consider a transition from a state n3 to a state n2, that is followed
by a transition from n2 to n1. Equation 6.32 can be used for this case to give

fn3→n2
= cR∞

(
1

n2
3

− 1

n2
2

)

fn2→n1
= cR∞

(
1

n2
2

− 1

n2
1

)

Thus

fn3→n2
+ fn2→n1

= cR∞

(
1

n2
3

− 1

n2
2

)
+ cR∞

(
1

n2
2

− 1

n2
1

)
= cR∞

(
1

n2
3

− 1

n2
1

)

which is equal to the frequency of the single photon emitted in a direct transition
from n3 to n1, so

fn3→n2
+ fn2→n1

= fn3→n1
(6.35)

The Bohr model is thus entirely consistent with the Ritz combination principle.
The frequency of an emitted photon is related to its energy by E = hf , so the
summing of frequencies is equivalent to the summing of energies. We may thus
restate the Ritz combination principle in terms of energy: The energy of a photon
emitted in a transition that skips or crosses over one or more states is equal to the
step-by-step sum of the energies of the transitions connecting all of the individual
states. (See Problem 25.)
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The Bohr model also helps us understand why the atom doesn’t absorb and
emit radiation at all the same wavelengths. Isolated atoms are normally found
only in the ground state; the excited states live for a very short time (less than
10−9 s) before decaying to the ground state. The absorption spectrum therefore
contains only transitions from the ground state. From Figure 6.20, we see that
only the radiations of the Lyman series can be found in the absorption spectrum of
hydrogen. A hydrogen atom in its ground state can absorb radiation of 10.20 eV
and reach the first excited state, or of 12.09 eV and reach the second excited state,
and so forth. A hydrogen atom cannot absorb a photon of energy 1.89 eV (the first
line of the Balmer series), because the atom is originally not in the n = 2 level.
The Balmer series is therefore not found in the absorption spectrum.

Atoms with Z > 1
The Bohr theory for hydrogen can be used for any atom with a single electron,
even if the nuclear charge Z is greater than 1. For example, we can calculate
the energy levels of singly ionized helium (helium with one electron removed),
doubly ionized lithium, and so on. The nuclear electric charge enters the Bohr
theory in only one place—in the expression for the electrostatic force between
nucleus and electron, Eq. 6.22. For a nucleus of charge Ze, the Coulomb force
acting on the electron is

F = 1

4πε0

|q1||q2|
r2

= 1

4πε0

Ze2

r2
(6.36)

That is, where we had e2 previously, we now have Ze2. Making the same
substitution in the final results, we can find the allowed radii:

rn = 4πε0
−h2

Ze2m
n2 = a0n2

Z
(6.37)

and the energies become

En = − m(Ze2)2

32π2ε2
0

−h2

1

n2
= −(13.60 eV)

Z2

n2
(6.38)

The orbits in the higher-Z atoms are closer to the nucleus and have larger
(negative) energies; that is, the electron is more tightly bound to the nucleus.

Example 6.7

Calculate the two longest wavelengths of the Balmer series
of triply ionized beryllium (Z = 4).

Solution
The radiations of the Balmer series end with the n = 2
level, and so the two longest wavelengths are the radiations
corresponding to n = 3 → n = 2 and n = 4 → n = 2. The

energies of the radiations and their corresponding wave-
lengths are

E3 − E2 = −(13.60 eV)(42)

(
1

32
− 1

22

)
= 30.2 eV

λ = hc

E
= 1240 eV·nm

30.2 eV
= 41.0 nm
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E4 − E2 = −(13.60 eV)(42)

(
1

42
− 1

22

)
= 40.8 eV

λ = hc

E
= 1240 eV·nm

40.8 eV
=30.4 nm

These radiations are in the ultraviolet region.
Note that we cannot use Eq. 6.33 to find the wavelengths,

because that equation applies only to hydrogen (Z = 1).

6.6 THE FRANCK-HERTZ EXPERIMENT

Let us imagine the following experiment, performed with the apparatus shown
schematically in Figure 6.21. A filament heats the cathode, which then emits
electrons. These electrons are accelerated toward the grid by the potential
difference V , which we control. Electrons pass through the grid and reach the
plate if V exceeds V0, a small retarding voltage between the grid and the plate.
The current of electrons reaching the plate is measured using the ammeter A.

A

P

G
C

F

V
V0

FIGURE 6.21 Franck-Hertz appara-
tus. Electrons leave the cathode C, are
accelerated by the voltage V toward
the grid G, and reach the plate P where
they are recorded on the ammeter A.

Now suppose the tube is filled with atomic hydrogen gas at a low pressure. As
the voltage is increased from zero, more and more electrons reach the plate, and
the current rises accordingly. The electrons inside the tube may make collisions
with atoms of hydrogen, but lose no energy in these collisions—the collisions are
perfectly elastic. The only way the electron can give up energy in a collision is if
the electron has enough energy to cause the hydrogen atom to make a transition to
an excited state. Thus, when the energy of the electrons reaches and barely exceeds
10.2 eV (or when the voltage reaches 10.2 V), the electrons can make inelastic
collisions, leaving 10.2 eV of energy with the atom (now in the n = 2 level), and
the original electron moves off with very little energy. If it should pass through the
grid, the electron might not have sufficient energy to overcome the small retarding
potential and reach the plate. Thus when V = 10.2 V, a drop in the current
is observed. As V is increased further, we begin to see the effects of multiple
collisions. That is, when V = 20.4 V, an electron can make an inelastic collision,
leaving the atom in the n = 2 state. The electron loses 10.2 eV of energy in this
process, and so it moves off after the collision with a remaining 10.2 eV of energy,
which is sufficient to excite a second hydrogen atom in an inelastic collision. Thus,
if a drop in the current is observed at V , similar drops are observed at 2V , 3V , . . . .

C
ur

re
nt

Voltage
5

4.9 V

9.8 V

14.7 V

10 15

FIGURE 6.22 Result of Franck-Hertz
experiment using mercury vapor. The
current drops at voltages of 4.9 V,
9.8 V (= 2 × 4.9 V), 14.7 V (= 3 ×
4.9 V).

This experiment should thus give rather direct evidence for the existence of
atomic excited states. Unfortunately, it is not easy to do this experiment with
hydrogen, because hydrogen occurs naturally in the molecular form H2, rather
than in atomic form. The molecules can absorb energy in a variety of ways, which
would confuse the interpretation of the experiment. A similar experiment was
done in 1914 by James Franck and Gustav Hertz, using a tube filled with mercury
vapor. Their results are shown in Figure 6.22, which gives clear evidence for an
excited state at 4.9 eV; whenever the voltage is a multiple of 4.9 V, a drop in
the current appears. Coincidentally, the emission spectrum of mercury shows an
intense ultraviolet line of wavelength 254 nm, which corresponds to an energy
of 4.9 eV; this results from a transition between the same 4.9-eV excited state
and the ground state. The Franck-Hertz experiment showed that an electron must
have a certain minimum energy to make an inelastic collision with an atom; we
now interpret that minimum energy as the energy of an excited state of the atom.
Franck and Hertz were awarded the 1925 Nobel Prize in physics for this work.
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∗6.7 THE CORRESPONDENCE PRINCIPLE

We have seen how Bohr’s model permits calculations of transition wavelengths in
atomic hydrogen that are in excellent agreement with the wavelengths observed in
the emission and absorption spectra. However, in order to obtain this agreement,
Bohr had to introduce postulates that were radical departures from classical
physics. In particular, according to classical physics an accelerated charged
particle radiates electromagnetic energy, but an electron in Bohr’s atomic model,
accelerated as it moves in a circular orbit, does not radiate (unless it jumps to
another orbit). Here we have a very different case than we did in our study
of special relativity. You will recall, for example, that relativity gives us one
expression for the kinetic energy, K = E − E0, and classical physics gives us
another, K = 1

2 mv2; however, we showed that E − E0 reduces to 1
2 mv2 when

v 	 c. Thus these two expressions are really not very different—one is merely
a special case of the other. The dilemma associated with the accelerated electron
is not simply a matter of atomic physics (as an example of quantum physics)
being a special case of classical physics. Either the accelerated charge radiates,
or it doesn’t! Bohr’s solution to this serious dilemma was to propose the
correspondence principle, which states that

Quantum theory must agree with classical theory in the limit in which
classical theory is known to agree with experiment,

or equivalently,

Quantum theory must agree with classical theory in the limit of large
quantum numbers.

Let us see how we can apply this principle to the Bohr atom. According to
classical physics, an electric charge moving in a circle radiates at a frequency
equal to its frequency of rotation. For an atomic orbit, the period of revolution is
the distance traveled in one orbit, 2πr, divided by the orbital speed v =

√
2K/m ,

where K is the kinetic energy:

T = 2πr√
2K/m

=
√

16π3ε0mr3

e
(6.39)

where we use Eq. 6.23 for the kinetic energy. The frequency f is the inverse of
the period:

f = 1

T
= e√

16π3ε0mr3
(6.40)

Using Eq. 6.28 for the radii of the allowed orbits, we find

fn = me4

32π3ε2
0

−h3

1

n3
(6.41)

A “classical” electron moving in an orbit of radius rn would radiate at this
frequency fn.

∗This is an optional section that may be skipped without loss of continuity.
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If we made the radius of the Bohr atom so large that it went from a quantum-
sized object (10−10 m) to a laboratory-sized object (10−3 m), the atom should
behave classically. The radius increases with increasing n like n2, so this classical
behavior should occur for n in the range 103 –104. Let us then calculate the
frequency of the radiation emitted by such an atom when the electron drops from
the orbit n to the orbit n − 1. According to Eq. 6.32, the frequency is

f = me4

64π3ε2
0

−h3

(
1

(n − 1)2
− 1

n2

)
= me4

64π3ε2
0

−h3

2n − 1

n2(n − 1)2
(6.42)

If n is very large, then we can approximate n − 1 by n and 2n − 1 by 2n, which
gives

f ∼= me4

64π3ε2
0

−h3

2n

n4
= me4

32π3ε2
0

−h3

1

n3
(6.43)

This is identical with Eq. 6.41 for the “classical” frequency. The “classical”
electron spirals slowly in toward the nucleus, radiating at the frequency given by
Eq. 6.41, while the “quantum” electron jumps from the orbit n to the orbit n − 1
and then to the orbit n − 2, and so forth, radiating at the frequency given by the
identical Eq. 6.43. (When the circular orbits are very large, this jumping from
one circular orbit to the next smaller one looks very much like a spiral, as in
Figure 6.23.)

FIGURE 6.23 (Top) A large quantum
atom. Photons are emitted in discrete
transitions as the electron jumps to
lower states. (Bottom) A classical
atom. Photons are emitted continu-
ously by the accelerated electron.

In the region of large n, where classical and quantum physics overlap, the
classical and quantum expressions for the radiation frequencies are identical.
This is an example of an application of Bohr’s correspondence principle. The
applications of the correspondence principle go far beyond the Bohr atom, and
this principle is important in understanding how we get from the domain in which
the laws of classical physics are valid to the domain in which the laws of quantum
physics are valid.

6.8 DEFICIENCIES OF THE BOHR MODEL

The Bohr model gives us a picture of how electrons move about the nucleus,
and many of our attempts to explain the behavior of atoms refer to this picture,
even though it is not strictly correct. Our presentation ignored two effects that
must be included to improve the accuracy of the model. Other deficiencies in the
model cannot be so easily fixed, because they are inconsistent with the correct
quantum-mechanical picture, which is presented in the next chapter.

1. Motion of the Proton. Our model was based on an electron orbiting around
a fixed proton, but actually the electron and proton both orbit about their center
of mass (just as the Earth and Sun orbit around their center of mass). The kinetic
energy should thus include a term describing the motion of the proton. We can
account for this effect if the mass that appears in the equation for the energy
levels (Eq. 6.30) is not the electron mass but instead is the reduced mass of the
proton-electron system, calculated from the electron mass me and proton mass mp
according to

m = memp

me + mp
(6.44)
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The reduced mass is just slightly smaller than the electron mass and has the
effect of decreasing the energy and frequency or increasing the wavelength by
about 0.05%. Equivalently, in Eq. 6.33 for the wavelengths we can replace the
Rydberg constant R∞ (so called because it would be correct if the proton mass
were infinite) with the value R = R∞(1 + me/mp).

2. Wavelengths in Air. Another small but easily fixable error occurs when we
convert the frequencies (Eq. 6.32) calculated directly from the Bohr energy levels
to wavelengths (Eq. 6.33). The wavelength measurements are normally done in
air, so we should calculate the wavelength as λ = vair/f , where vair is the speed of
light in air. This has the effect of decreasing the calculated wavelengths by about
0.03% (to some extent offsetting the error we made by ignoring the motion of the
proton).

3. Angular Momentum. A serious failure of the Bohr model is that it gives
incorrect predictions for the angular momentum of the electron. In Bohr’s theory,
the orbital angular momentum is quantized in integer multiples of −h, which is
correct. However, for the ground state of hydrogen (n = 1), the Bohr theory gives
L = −h, while experiment clearly shows L = 0.

4. Uncertainty. Another deficiency of the model is that it violates the uncer-
tainty relationship. (In Bohr’s defense, remember that the model was developed a
decade before the introduction of wave mechanics, with its accompanying ideas
of uncertainty.) Suppose the electron orbits in the xy plane. In this case we know
exactly its z coordinate (in the xy plane, z = 0 and so �z = 0) and the z component
of its momentum (also precisely zero, so �pz = 0). Such an atom would therefore
violate the uncertainty relationship �z�pz ≥ −h. In fact, as we discuss in the next
chapter, quantum mechanics introduces a degree of “fuzziness” to the behavior
of electrons in atoms that is not consistent with any orbit in a single plane.

In spite of its successes, the Bohr model is at best an incomplete model. It is
useful only for atoms that contain one electron (hydrogen, singly ionized helium,
doubly ionized lithium, and so forth), but not for atoms with two or more electrons,
because we have considered only the force between electron and nucleus, and
not the force between the electrons themselves. Furthermore, if we look very
carefully at the emission spectrum, we find that many lines are in fact not single
lines, but very closely spaced combinations of two or more lines; the Bohr model
is unable to account for these doublets of spectral lines. The model is also limited
in its usefulness as a basis from which to calculate other properties of the atom;
although we can accurately calculate the energies of the spectral lines, we cannot
calculate their intensities. For example, how often will an electron in the n = 3
state jump directly to the n = 1 state, emitting the corresponding photon, and how
often will it jump first to the n = 2 state and then to the n = 1 state, emitting two
photons? A complete theory should provide a way to calculate this property.

We do not wish, however, to discard the model completely. The Bohr model
provides a useful starting point in our study of atoms, and Bohr introduced several
ideas (stationary states, quantization of angular momentum, correspondence
principle) that carry over into the correct quantum-mechanical calculation. There
are many atomic properties, especially those associated with magnetism, that can
be simply modeled on the basis of Bohr orbits. Most remarkably, when we treat
the hydrogen atom correctly in the next chapter using quantum mechanics, we
find that the energy levels calculated by solving the Schrödinger equation are in
fact identical with those of the Bohr model.
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Chapter Summary

Section

Scattering impact
parameter

b = zZ

2K

e2

4πε0
cot

1

2
θ 6.3

Fraction scattered
at angles > θ

f>θ = ntπb2 6.3

Rutherford
scattering formula

N(θ) =
nt

4r2

(
zZ

2K

)2 (
e2

4πε0

)2
1

sin4 1
2θ

6.3

Distance of
closest approach

d = 1

4πε0

zZe2

K
6.3

Balmer formula λ = (364.5 nm)
n2

n2 − 4
(n = 3, 4, 5, . . .)

6.4

Radii of Bohr
orbits in hydrogen

rn = 4πε0
−h2

me2
n2 = a0n2

(n = 1, 2, 3, . . .)

6.5

Energies of Bohr
orbits in hydrogen

En = − me4

32π2ε2
0

−h2

1

n2

= −13.60 eV

n2
(n = 1, 2, 3, . . .)

6.5

Section

Excitation energy
of level n

En − E1 6.5

Binding (or
ionization) energy
of level n

|En| 6.5

Hydrogen
wavelengths in
Bohr model

λ = 64π3ε2
0

−h3c

me4

(
n2

1n2
2

n2
1 − n2

2

)

= 1

R∞

(
n2

1n2
2

n2
1 − n2

2

)
6.5

Single-electron
atoms with Z > 1

rn = a0n2

Z
, En = −(13.60 eV)

Z2

n2
6.5

Reduced mass of
proton-electron
system

m = memp

me + mp
6.8

Questions

1. Does the Thomson model fail at large scattering angles or at
small scattering angles? Why?

2. What principles of physics would be violated if we scattered
a beam of alpha particles with a single impact parameter
from a single target atom at rest?

3. Could we use the Rutherford scattering formula to analyze
the scattering of (a) protons incident on iron? (b) Alpha par-
ticles incident on lithium (Z = 3)? (c) Silver nuclei incident
on gold? (d) Hydrogen atoms incident on gold? (e) Electrons
incident on gold?

4. What determines the angular range dθ in the alpha-particle
scattering experiment (Figure 6.8)?

5. Why didn’t Bohr use the concept of de Broglie waves in his
theory?

6. In which Bohr orbit does the electron have the largest
velocity? Are we justified in treating the electron nonrela-
tivistically in that case?

7. How does an electron in hydrogen get from r = 4a0 to
r = a0 without being anywhere in between?

8. How is the quantization of the energy in the hydrogen
atom similar to the quantization of the systems discussed

in Chapter 5? How is it different? Do the quantizations
originate from similar causes?

9. In a Bohr atom, an electron jumps from state n1, with angular
momentum n1

−h, to state n2, with angular momentum n2
−h.

How can an isolated system change its angular momentum?
(In classical physics, a change in angular momentum requires
an external torque.) Can the photon carry away the differ-
ence in angular momentum? Estimate the maximum angular
momentum, relative to the center of the atom, that the pho-
ton can have. Does this suggest another failure of the Bohr
model?

10. The product Enrn for the hydrogen atom is (1) independent
of Planck’s constant and (2) independent of the quantum
number n. Does this observation have any significance? Is
this a classical or a quantum effect?

11. (a) How does a Bohr atom violate the position-momentum
uncertainty relationship? (b) How does a Bohr atom vio-
late the energy-time uncertainty relationship? (What is �E?
What does this imply about �t? What do you conclude
about transitions between levels?)
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12. List the assumptions made in deriving the Bohr theory.
Which of these are a result of neglecting small quantities?
Which of these violate basic principles of relativity or
quantum physics?

13. List the assumptions made in deriving the Rutherford scat-
tering formula. Which of these are a result of neglecting
small quantities? Which of these violate basic principles of
relativity or quantum physics?

14. In both the Rutherford theory and the Bohr theory, we used
the classical expression for the kinetic energy. Estimate the
velocity of an electron in the Bohr atom and of an alpha par-
ticle in a typical scattering experiment, and decide whether
the use of the classical formula is justified.

15. In both the Rutherford theory and the Bohr theory, we
neglected any wave properties of the particles. Estimate the
de Broglie wavelength of an electron in a Bohr atom and
compare it with the size of the atom. Estimate the de Broglie
wavelength of an alpha particle and compare it with the

size of the nucleus. Is the wave behavior expected to be
important in either case?

16. What is the distinction between binding energy and ioniza-
tion energy? Between binding energy and excitation energy?
If you were given the value of the binding energy of a level
in hydrogen, could you find its excitation energy without
knowing which level it is?

17. Why are the decreases in current in the Franck-Hertz exper-
iment not sharp?

18. As indicated by the Franck-Hertz experiment, the first
excited state of mercury is at an energy of 4.9 eV. Do
you expect mercury to show absorption lines in the visible
spectrum?

19. Is the correspondence principle a necessary part of quan-
tum physics or is it merely an accidental agreement of two
formulas? Where do we draw the line between the world
of quantum physics and the world of classical, nonquantum
physics?

Problems

6.1 Basic Properties of Atoms

1. Electrons in atoms are known to have kinetic energies in
the range of a few eV. Show that the uncertainty principle
allows electrons of this energy to be confined in a region the
size of an atom (0.1 nm).

6.2 Scattering Experiments and the Thomson Model

2. Consider an electron in Figure 6.1 embedded in a sphere of
positive charge Ze at a distance r from its center. (a) Using
Gauss’s law, show that the electric field on the electron due
to the positive charge is

E = 1

4πε0

Ze

R3
r

(b) For this electric field, show that the force on the electron
is given by Eq. 6.2.

3. (a) Compute the oscillation frequency of the electron and the
expected absorption or emission wavelength in a Thomson-
model hydrogen atom. Use R = 0.053 nm. Compare with
the observed wavelength of the strongest emission and
absorption line in hydrogen, 122 nm. (b) Repeat for sodium
(Z = 11). Use R = 0.18 nm. Compare with the observed
wavelength, 590 nm.

4. Consider the Thomson model for an atom with 2 electrons.
Let the electrons be located along a diameter on opposite
sides of the center of the sphere, each a distance x from the
center. (a) Show that the configuration is stable if x = R/2.
(b) Try to construct similar stable configurations for atoms
with 3, 4, 5, and 6 electrons.

6.3 The Rutherford Nuclear Atom

5. Alpha particles of kinetic energy 5.00 MeV are scattered
at 90◦ by a gold foil. (a) What is the impact parameter?
(b) What is the minimum distance between alpha particles
and gold nucleus? (c) Find the kinetic and potential energies
at that minimum distance.

6. How much kinetic energy must an alpha particle have before
its distance of closest approach to a gold nucleus is equal to
the nuclear radius (7.0 × 10−15 m)?

7. What is the distance of closest approach when alpha particles
of kinetic energy 6.0 MeV are scattered by a thin copper foil?

8. Protons of energy 5.0 MeV are incident on a silver foil of
thickness 4.0 × 10−6 m. What fraction of the incident pro-
tons is scattered at angles: (a) Greater than 90◦? (b) Greater
than 10◦? (c) Between 5◦ and 10◦? (d) Less than 5◦?

9. Protons are incident on a copper foil 12 μm thick. (a) What
should the proton kinetic energy be in order that the dis-
tance of closest approach equal the nuclear radius (5.0 fm)?
(b) If the proton energy were 7.5 MeV, what is the impact
parameter for scattering at 120◦? (c) What is the minimum
distance between proton and nucleus for this case? (d) What
fraction of the protons is scattered beyond 120◦?

10. Alpha particles of kinetic energy K are scattered either from
a gold foil or a silver foil of identical thickness. What is the
ratio of the number of particles scattered at angles greater
than 90◦ by the gold foil to the same number for the silver
foil?

11. The maximum kinetic energy given to the target nucleus will
occur in a head-on collision with b = 0. (Why?) Estimate
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the maximum kinetic energy given to the target nucleus
when 8.0 MeV alpha particles are incident on a gold foil.
Are we justified in neglecting this energy?

12. The maximum kinetic energy that an alpha particle can
transmit to an electron occurs during a head-on collision.
Compute the kinetic energy lost by an alpha particle of
kinetic energy 8.0 MeV in a head-on collision with an elec-
tron at rest. Are we justified in neglecting this energy in the
Rutherford theory?

13. Alpha particles of energy 9.6 MeV are incident on a silver
foil of thickness 7.0 μm. For a certain value of the impact
parameter, the alpha particles lose exactly half their incident
kinetic energy when they reach their minimum separation
from the nucleus. Find the minimum separation, the impact
parameter, and the scattering angle.

14. Alpha particles of kinetic energy 6.0 MeV are incident at
a rate of 3.0 × 107 per second on a gold foil of thickness
3.0 × 10−6 m. A circular detector of diameter 1.0 cm is
placed 12 cm from the foil at an angle of 30◦ with the
direction of the incident alpha particles. At what rate does
the detector measure scattered alpha particles?

6.4 Line Spectra

15. The shortest wavelength of the hydrogen Lyman series is
91.13 nm. Find the three longest wavelengths in this series.

16. One of the lines in the Brackett series (series limit = 1458 nm)
has a wavelength of 1944 nm. Find the next higher and next
lower wavelengths in this series.

17. The longest wavelength in the Pfund series is 7459 nm. Find
the series limit.

6.5 The Bohr Model

18. In the n = 3 state of hydrogen, find the electron’s velocity,
kinetic energy, and potential energy.

19. Use the Bohr theory to find the series wavelength limits of
the Lyman and Paschen series of hydrogen.

20. (a) Show that the speed of an electron in the nth Bohr
orbit of hydrogen is αc/n, where α is the fine structure
constant, equal to e2/4πε0

−hc. (b) What would be the speed
in a hydrogenlike atom with a nuclear charge of Ze?

21. An electron is in the n = 5 state of hydrogen. To what states
can the electron make transitions, and what are the energies
of the emitted radiations?

22. Continue Figure 6.20, showing the transitions of the Paschen
series and computing their energies and wavelengths.

23. A collection of hydrogen atoms in the ground state is illu-
minated with ultraviolet light of wavelength 59.0 nm. Find
the kinetic energy of the emitted electrons.

24. Find the ionization energy of: (a) the n = 3 level of hydro-
gen; (b) the n = 2 level of He+ (singly ionized helium); (c)
the n = 4 level of Li++ (doubly ionized lithium).

25. Use the Bohr formula to find the energy differences
E(n1 → n2) = En1

− En2
and show that (a) E(4 → 2) =

E(4 → 3) + E(3 → 2); (b) E(4 → 1) = E(4 → 2) +
E(2 → 1). (c) Interpret these results based on the Ritz com-
bination principle.

26. Find the shortest and the longest wavelengths of the Lyman
series of singly ionized helium.

27. Draw an energy-level diagram showing the lowest four lev-
els of singly ionized helium. Show all possible transitions
from the levels and label each transition with its wavelength.

28. A long time ago, in a galaxy far, far away, electric charge
had not yet been invented, and atoms were held together
by gravitational forces. Compute the Bohr radius and the
n = 2 to n = 1 transition energy in a gravitationally bound
hydrogen atom.

29. An alternative development of the Bohr theory begins by
assuming that the stationary states are those for which the
circumference of the orbit is an integral number of de Broglie
wavelengths. (a) Show that this condition leads to standing
de Broglie waves around the orbit. (b) Show that this condi-
tion gives the angular momentum condition, Eq. 6.26, used
in the Bohr theory.

6.6 The Franck-Hertz Experiment

30. A hypothetical atom has only two excited states, at 4.0 and
7.0 eV, and has a ground-state ionization energy of 9.0 eV.
If we used a vapor of such atoms for the Franck-Hertz exper-
iment, for what voltages would we expect to see decreases
in the current? List all voltages up to 20 V.

31. The first excited state of sodium decays to the ground state
by emitting a photon of wavelength 590 nm. If sodium vapor
is used for the Franck-Hertz experiment, at what voltage will
the first current drop be recorded?

6.7 The Correspondence Principle

32. Suppose all of the excited levels of hydrogen had lifetimes
of 10−8 s. As we go to higher and higher excited states, they
get closer and closer together, and soon they are so close
in energy that the energy uncertainty of each state becomes
as large as the energy spacing between states, and we can
no longer resolve individual states. Find the value of n for
which this occurs. What is the radius of such an atom?

33. Compare the frequency of revolution of an electron with
the frequency of the photons emitted in transitions from
n to n − 1 for (a) n = 10; (b) n = 100; (c) n = 1000;
(d) n = 10,000.

6.8 Deficiencies of the Bohr Model

34. What is the difference in wavelength between the first line of
the Balmer series in ordinary hydrogen (M = 1.007825 u)
and in “heavy” hydrogen (M = 2.014102 u)?
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General Problems

35. A hydrogen atom is in the n = 6 state. (a) Counting all
possible paths, how many different photon energies can be
emitted if the atom ends up in the ground state? (b) Suppose
only �n = 1 transitions were allowed. How many different
photon energies would be emitted? (c) How many different
photon energies would occur in a Thomson-model hydrogen
atom?

36. An electron is in the n = 8 level of ionized helium.
(a) Find the three longest wavelengths that are emitted
when the electron makes a transition from the n = 8 level to
a lower level. (b) Find the shortest wavelength that can be
emitted. (c) Find the three longest wavelengths at which the
electron in the n = 8 level will absorb a photon and move
to a higher state, if we could somehow keep it in that level
long enough to absorb. (d) Find the shortest wavelength that
can be absorbed.

37. The lifetimes of the levels in a hydrogen atom are of the
order of 10−8 s. Find the energy uncertainty of the first
excited state and compare it with the energy of the state.

38. The following wavelengths are found among the many radia-
tions emitted by singly ionized helium: 24.30 nm, 25.63 nm,
102.5 nm, 320.4 nm. If we group the transitions in helium
as we did in hydrogen by identifying the final state n0 and
initial state n, to which series does each transition belong?

39. Adjacent wavelengths 72.90 nm and 54.00 nm are found in
one series of transitions among the radiations emitted by
doubly-ionized lithium. Find the value of n0 for this series
and find the next wavelength in the series.

40. When an atom emits a photon in a transition from a
state of energy E1 to a state of energy E2, the photon
energy is not precisely equal to E1 − E2. Conservation of
momentum requires that the atom must recoil, and so some
energy must go into recoil kinetic energy KR. Show that
KR

∼= (E1 − E2)
2/2Mc2 where M is the mass of the atom.

Evaluate this recoil energy for the n = 2 to n = 1 transition
of hydrogen.

41. In a muonic atom, the electron is replaced by a negatively
charged particle called the muon. The muon mass is 207
times the electron mass. (a) Ignoring the correction for finite
nuclear mass, what is the shortest wavelength of the Lyman
series in a muonic hydrogen atom? In what region of the
electromagnetic spectrum does this belong? (b) How large
is the correction for the finite nuclear mass in this case? (See
the discussion at the beginning of Section 6.8.)

42. Consider an atom in which the single electron is replaced
by a negatively charged muon (mμ = 207me). What is the
radius of the first Bohr orbit of a muonic lead atom (Z = 82)?
Compare with the nuclear radius of about 7 fm.
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These computer-generated distributions represent the probability to locate the electron in
the n = 8 state of hydrogen for angular momentum quantum number l = 2 (top) and l = 6
(bottom). The nucleus is at the center, and the height at any point gives the probability to find
the electron in a small volume element at that location in the xz plane. This way of describing
the motion of an electron in hydrogen is very different from the circular orbits of the Bohr
model.
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In this chapter we study the solutions of the Schrödinger equation for the
hydrogen atom. We will see that these solutions, which lead to the same energy
levels calculated in the Bohr model, differ from the Bohr model by allowing for
the uncertainty in localizing the electron.

Other deficiencies of the Bohr model are not so easily eliminated by solving
the Schrödinger equation. First, the so-called “fine structure” of the spectral lines
(the splitting of the lines into close-lying doublets) cannot be explained by our
solutions; the proper explanation of this effect requires the introduction of a new
property of the electron, the intrinsic spin. Second, the mathematical difficulties
of solving the Schrödinger equation for atoms containing two or more electrons
are formidable, so we restrict our discussion in this chapter to one-electron atoms,
in order to see how wave mechanics enables us to understand some basic atomic
properties. In the next chapter we discuss the structure of many-electron atoms.

7.1 A ONE-DIMENSIONAL ATOM

Quantum mechanics gives us a view of the structure of the hydrogen atom that
is very different from the Bohr model. In the Bohr model, the electron moves
about the proton in a circular orbit. Quantum mechanics, on the other hand, does
not allow a fixed radius or a fixed orbital plane but instead describes the electron
in terms of a probability density, which leads to an uncertainty in locating the
electron.

To analyze the hydrogen atom according to quantum mechanics, we must
solve the Schrödinger equation for the Coulomb potential energy of the proton
and the electron:

U(r) = − e2

4πε0r
(7.1)

Eventually we will discuss the solutions to this three-dimensional problem for
the hydrogen atom using spherical polar coordinates, but for now let’s look at the
simpler one-dimensional problem, in which a proton is fixed at the origin (x = 0)
and an electron moves along the positive x axis. (This doesn’t represent a real
atom, but it does show how some properties of electron wave functions in atoms
emerge from solving the Schrödinger equation.)

In one dimension, the Schrödinger equation for an electron with potential
energy U(x) = −e2/4πε0x would then be

−
−h2

2m

d2ψ

dx2
− e2

4πε0x
ψ(x) = Eψ(x) (7.2)

For a bound state, the wave function must fall to zero as x → ∞. Moreover, in order
for the second term on the left side to remain finite at x = 0, the wave function must
be zero at x = 0. The simplest function that satisfies both of these requirements is
ψ(x) = Axe−bx, where A is the normalization constant. By substituting this trial
wave function into Eq. 7.2, we find a solution when b = me2/4πε0

−h2 = 1/a0
(where a0 is the Bohr radius defined in Eq. 6.29). The energy corresponding
to this wave function is E = −−h2b2/2m = −me4/32π2ε2

0
−h2, which happens by

chance to be identical to the energy of the ground state in the Bohr model
(Eq. 6.30 for n = 1).
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FIGURE 7.1 Wave functions and probability densities (shaded areas) for an electron bound in a one-dimensional
Coulomb potential energy. The horizontal axis represents the distance between the proton and electron in units of a0.
(a) Ground state. (b) First excited state. (c) Second excited state.

Figure 7.1a shows this wave function and its corresponding probability density
|ψ(x)|2. There is clearly an uncertainty in specifying the location of the electron.
The most probable region to find the electron is near x = a0, but there is a nonzero
probability for the electron to be anywhere in the range 0 < x < ∞. This is very
different from the Bohr model, in which the distance between the proton and
electron is fixed at the value a0.

Also shown in the figure are wave functions and probability densities cor-
responding to the first and second excited states. The wave functions have the
oscillatory or wavelike property that we expect for quantum wave functions. As
we go to higher excited states, there are more peaks in the probability density and
the region of maximum probability moves to larger distances. These same features
emerge from the solution to the three-dimensional problem. From this simple
one-dimensional calculation (which does not in any way physically represent
the real three-dimensional hydrogen atom) you can already see how quantum
mechanics will resolve some of the difficulties associated with the Bohr model.

Example 7.1

Find the normalization constant of the ground state wave
function for a particle trapped in the one-dimensional
Coulomb potential energy.

Solution
The normalization integral (with b = 1/a0) is∫ ∞

0
|ψ(x)|2 dx = A2

∫ ∞

0
x2e−2x/a0 dx = 1

The integration is in a standard form that is found in integral
tables and that we will have occasion to use frequently in

analyzing the hydrogen wave functions:∫ ∞

0
xne−cx dx = n!

cn+1
(7.3)

Using this standard form with n = 2 and c = 2/a0, the
normalization integral becomes

A2 2!

(2/a0)
3

= 1 or A = 2a−3/2
0
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Example 7.2

In the ground state of an electron bound in a one-dimen-
sional Coulomb potential energy, what is the probability
to find the electron located between x = 0 and x = a0?

Solution
The probability can be found using Eq. 5.10:

P(0 : a0) =
∫ a0

0
|ψ(x)|2 dx = 4

a3
0

∫ a0

0
x2e−2x/a0 dx

with the normalization constant from Example 7.1. The
integral is a standard form that we will later find useful for

analyzing the hydrogen wave functions:∫
xne−cx dx = −e−cx

c

×
(

xn + nxn−1

c
+ n(n − 1)xn−2

c2
+ · · · + n!

cn

)
(7.4)

The probability is then

P(0 : a0) = 4

a3
0

[
−e−2x/a0

2/a0

(
x2 + 2x

2/a0
+ 2

(2/a0)
2

)]a0

0

= 0.323

7.2 ANGULAR MOMENTUM IN THE
HYDROGEN ATOM

Angular momentum played a significant role in Bohr’s analysis of the structure of
the hydrogen atom. Bohr was able to obtain the correct energy levels by assuming
that in the orbit with quantum number n, the angular momentum of the electron
is equal to n−h. Bohr’s idea about the “quantization of angular momentum” turned
out to have some correct features, but his analysis is not consistent with the actual
quantum mechanical nature of angular momentum.

Angular Momentum of Classical Orbits
Before considering the angular momentum of an orbiting electron, it is helpful to
review how angular momentum affects classical orbits, such as those of planets
or comets about the Sun. Classically, the angular momentum of a particle is
represented by the vector �L = �r × �p, where �r is the position vector that locates
the particle and �p is its linear momentum. The direction of �L is perpendicular
to the plane of the orbit. Along with the energy, the angular momentum remains
constant as the planet orbits.

L = maximum

L = 0

FIGURE 7.2 Planetary orbits of the
same energy but different angular
momentum L. As L decreases, the
elliptical orbits become longer and
thinner.

The total energy of the orbital motion determines the average distance of the
planet from the Sun. For a given total energy, many different orbits are possible,
from the nearly circular orbit of the Earth to the highly elongated elliptical orbits
of the comets. These orbits differ in their angular momentum L, which is largest
for the circular orbit and smallest for the elongated ellipse. Figure 7.2 shows
a variety of planetary orbits having the same total energy but different angular
momentum. The complete specification of the orbit requires that we give not
only the magnitude of the angular momentum vector but also its direction; this
direction identifies the plane of the orbit. To completely describe the angular
momentum vector requires three numbers; for example, we might give the three
components of �L (Lx, Ly, Lz). Equivalently, we might give the magnitude L of the
vector and two angular coordinates that give its direction (similar to latitude and
longitude on a sphere).
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Angular Momentum in Quantum Mechanics
Quantum mechanics gives us a very different view of angular momentum. The
angular momentum properties of a three-dimensional wave function are described
by two quantum numbers. The first is the angular momentum quantum number l.
This quantum number determines the length of the angular momentum vector:

|�L| =
√

l(l + 1)−h (l = 0, 1, 2, . . .) (7.5)

Note that this is very different from the Bohr condition |�L| = n−h. In particular, it
is possible for the quantum vector to have a length of zero, but in the Bohr model
the minimum length is −h.

The second number that we use to describe angular momentum in quantum
mechanics is the magnetic quantum number ml. This quantum number tells
us about one component of the angular momentum vector, which we usually
choose to be the z component. The relationship between the z component of
�L and the magnetic quantum number is

Lz = ml
−h (ml = 0, ±1, ±2, . . . , ±l) (7.6)

Note that for each value of l there are 2l + 1 possible values of ml.
Unlike the classical angular momentum vector, for which we provide an

exact specification by giving three numbers, the quantum angular momentum is
described by only two numbers. Clearly two numbers cannot completely identify
a vector in three-dimensional space, so something is missing from our description
of the quantum angular momentum. As we discuss later, this missing part of the
description of the quantum angular momentum vector is directly related to the
application of the uncertainty principle to angular momentum.

Example 7.3

Compute the length of the angular momentum vectors that
represent the orbital motion of an electron in a quantum
state with l = 1 and in another state with l = 2.

Solution
Equation 7.5 gives the relationship between the length of
the vector and the angular momentum quantum number l.

For l = 1,

|�L| =
√

1(1 + 1)−h =
√

2−h

and for l = 2,

|�L| =
√

2(2 + 1)−h =
√

6−h

Example 7.4

What are the possible z components of the vector �L that
represents the orbital angular momentum of a state with
l = 2?

Solution
The possible ml values for l = 2 are +2, +1, 0, −1,
−2, and so the �L vector can have any of five possible

z components: Lz = 2−h, −h, 0, −−h, or − 2−h. The length of the
vector �L, as we found previously, is

√
6−h.
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The components of the vector �L for l = 2 are illustrated in Figure 7.3. Each
orientation in space of the vector �L corresponds to a different ml value. The polar
angle θ that the vector �L makes with the z axis can be found by referring to the
figure. With Lz = |�L| cos θ , we have

cos θ = Lz

|�L|
= ml√

l(l + 1)
(7.7)

using Eq. 7.6 for Lz and Eq. 7.5 for |�L|.

z

θ

Lz = 0

ml = +1

ml = +2

ml = 0

⎪L⎪ = √6h

ml = −1

ml = −2

� −

Lz = +h−

Lz = −h−

Lz = +2h−

Lz = −2h−

FIGURE 7.3 The orientations in space
and z components of a vector with
l = 2. There are five different possible
orientations.

This behavior represents a curious aspect of quantum mechanics called spa-
tial quantization—only certain orientations of angular momentum vectors are
allowed. The number of these orientations is equal to 2l + 1 (the number of
different possible ml values) and the magnitudes of their successive z components
always differ by −h. For example, an angular momentum state with l = 1 can have
ml values of +1, 0, or −1 (corresponding to z components Lz = +−h, 0, −−h) and
thus cos θ = +1/

√
2, 0, or − 1/

√
2. The �L vector in this case can have one of

only three possible orientations relative to the z axis, corresponding to angles of
45◦, 90◦, or 135◦. This is in contrast to a classical angular momentum vector, which
can have any possible orientation in space; that is, the angle between a classical
angular momentum vector and the z axis can take any value between 0 and 180◦.

The Angular Momentum Uncertainty
Relationship

In quantum mechanics, the maximum amount of permitted information about the
angular momentum vector is its length (given by Eq. 7.5) and its z component
(given by Eq. 7.6). Because the complete description of a vector requires three
numbers, we are always missing some information about the angular momentum
of a quantum state. If we specify |�L| and Lz exactly, then we have no information
about the other components of �L (Lx and Ly). Any possible outcome of a
measurement of Lx or Ly can therefore occur (as long as |�L|2 = L2

x + L2
y + L2

z ).
In graphic terms, we can imagine that the tip of the �L vector rotates or precesses
about the z axis so that Lz remains fixed but Lx and Ly are undetermined, as in
Figure 7.4. This rotation cannot be directly measured; all we can observe is the
“smeared out” distribution of values of Lx and Ly.

L

φ

x
y

z

Lz

LxLy

�

FIGURE 7.4 The vector �L precesses
rapidly about the z axis, so that Lz

stays constant, but Lx and Ly are
indeterminate.

There is thus an uncertainty or indeterminacy in specifying �L that is summarized
by another form of the uncertainty principle:

�Lz�φ ≥ −h (7.8)

where φ is the azimuthal angle shown in Figure 7.4. If we know Lz exactly
(�Lz = 0), then we have no knowledge at all of the angle φ—all values are
equally probable. This is equivalent to saying that we know nothing at all about
Lx and Ly; whenever one component of �L is determined, the other components
are completely undetermined.

On the other hand, if we try to construct an angular momentum state in which a
different component—for example, Lx —is completely specified (so that φ would
be known), the state becomes a mixture or superposition of different Lz values. In
effect, we can reduce the uncertainty in φ only at the expense of increasing the
uncertainty in Lz. This is exactly the same type of behavior that was described by
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the other forms of the uncertainty principle; for example, reducing the uncertainty
in x is always accompanied by an increase in the uncertainty in px.

From this discussion you can see why the length of the angular momentum is
defined according to Eq. 7.5 and why, for example, we could not have simply
defined the length as |�L| = l−h. If this were possible, then when ml had its
maximum value (ml = +l), we would have Lz = ml

−h = l−h; the length of the
vector would then be equal to its z component, and so it must lie along the
z axis with Lx = Ly = 0. However, this simultaneous exact knowledge of all
three components of �L violates the angular momentum form of the uncertainty
principle, and therefore this situation is not permitted to occur. It is therefore
necessary for the length of �L to be greater than l−h.

7.3 THE HYDROGEN ATOM WAVE FUNCTIONS

To find the complete spatial description of the electron in a hydrogen atom,
we must obtain three-dimensional wave functions. The Schrödinger equation in
three-dimensional Cartesian coordinates has the following form:

−
−h2

2m

(
∂2ψ

∂x2
+ ∂2ψ

∂y2
+ ∂2ψ

∂z2

)
+ U(x, y, z)ψ(x, y, z) = Eψ(x, y, z) (7.9)

where ψ is a function of x, y, and z. The usual procedure for solving a partial
differential equation of this type is to separate the variables by replacing a function
of three variables with the product of three functions of one variable—for example,
ψ(x, y, z) = X (x)Y (y)Z(z). However, the Coulomb potential energy (Eq. 7.1)
written in Cartesian coordinates, U(x, y, z) = −e2/4πε0

√
x2 + y2 + z2 , does not

lead to a separable solution.

θ

φ
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z

z

r

y
x

y

FIGURE 7.5 Spherical polar coordi-
nates for the hydrogen atom. The pro-
ton is at the origin and the electron is
at a radius r, in a direction determined
by the polar angle θ and the azimuthal
angle φ.

For this calculation, it is more convenient to work in spherical polar coordinates
(r, θ , φ) instead of Cartesian coordinates (x, y, z). The variables of spherical
polar coordinates are illustrated in Figure 7.5. This simplification in the solution
is at the expense of an increased complexity of the Schrödinger equation, which
becomes:

−
−h2

2m

[
∂2ψ

∂r2
+ 2

r

∂ψ

∂r
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+ 1

r2 sin2 θ

∂2ψ

∂φ2

]
(7.10)

+U(r)ψ(r, θ , φ) = Eψ(r, θ , φ)

where now ψ is a function of the spherical polar coordinates r, θ , and φ. When
the potential energy depends only on r (and not on θ or φ), as is the case for the
Coulomb potential energy, we can find solutions that are separable and can be
factored as

ψ(r, θ , φ) = R(r)�(θ)�(φ) (7.11)

where the radial function R(r), the polar function �(θ), and the azimuthal
function �(φ) are each functions of a single variable. This procedure gives three
differential equations, each of a single variable (r, θ , φ).

The quantum state of a particle that moves in a potential energy that depends
only on r can be described by angular momentum quantum numbers l and ml.
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The polar and azimuthal solutions are given by combinations of standard trigono-
metric functions. The remaining radial function is then obtained from solving the
radial equation:

−
−h2

2m

(
d2R

dr2
+ 2

r

dR

dr

)
+

(
− e2

4πε0r
+ l(l + 1)−h2

2mr2

)
R(r) = ER(r) (7.12)

The mass that appears in this equation is the reduced mass of the proton-electron
system defined in Eq. 6.44.

Quantum Numbers and Wave Functions
When we solve a three-dimensional equation such as the Schrödinger equation,
three parameters emerge in a natural way as indices or labels for the solutions, just
as the single index n emerged from our solution of the one-dimensional infinite
well in Section 5.4. These indices are the three quantum numbers that label the
solutions. The three quantum numbers that emerge from the solutions and their
allowed values are:

n principal quantum number 1, 2, 3, . . .

l angular momentum quantum number 0, 1, 2, . . . , n − 1

ml magnetic quantum number 0, ±1, ±2, . . . , ±l

The principal quantum number n is identical to the quantum number n that we
obtained in the Bohr model. It determines the quantized energy levels:

En = − me4

32π2ε2
0

−h2

1

n2
(7.13)

which is identical to Eq. 6.30. Note that the energy depends only on n and not
on the other quantum numbers l or ml. The permitted values of the angular
momentum quantum number l are limited by n (l ranges from 0 to n − 1) and
those of the magnetic quantum number ml are limited by l.

Complete with quantum numbers, the separated solutions of Eq. 7.10 can be
written

ψn,l,ml
(r, θ , φ) = Rn,l(r)�l,ml

(θ)�ml
(φ) (7.14)

The indices (n, l, ml) are the three quantum numbers that are necessary to describe
the solutions. Wave functions corresponding to some values of the quantum
numbers are shown in Table 7.1. The wave functions are written in terms of the
Bohr radius a0 defined in Eq. 6.29.

For the ground state (n = 1), only l = 0 and ml = 0 are allowed. The complete
set of quantum numbers for the ground state is then (n, l, ml) = (1, 0, 0), and the
wave function for this state is given in the first line of Table 7.1. The first excited
state (n = 2) can have l = 0 or l = 1. For l = 0, only ml = 0 is allowed. This state
has quantum numbers (2, 0, 0), and its wave function is given in the second line
of Table 7.1. For l = 1, we can have ml = 0 or ±1. There are thus three possible
sets of quantum numbers: (2, 1, 0) and (2, 1, ±1). The wave functions for these
states are given in the third and fourth lines of Table 7.1. The second excited state
(n = 3) can have l = 0 (ml = 0), l = 1 (ml = 0, ±1), or l = 2 (ml = 0, ±1, ±2).

For the n = 2 level, there are four different possible sets of quantum numbers
and correspondingly four different wave functions. All of these wave functions
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TABLE 7.1 Some Hydrogen Atom Wave Functions

n l ml R(r) �(θ ) �(φ)

1 0 0
2

a3/2
0

e−r/a0
1√
2

1√
2π

2 0 0
1

(2a0)
3/2

(
2 − r

a0

)
e−r/2a0

1√
2

1√
2π

2 1 0
1√

3(2a0)
3/2

r

a0
e−r/2a0

√
3

2
cos θ

1√
2π

2 1 ±1
1√

3(2a0)
3/2

r

a0
e−r/2a0 ∓

√
3

2
sin θ

1√
2π

e±iφ

3 0 0
2

(3a0)
3/2

(
1 − 2r

3a0
+ 2r2

27a2
0

)
e−r/3a0

1√
2

1√
2π

3 1 0
8

9
√

2(3a0)
3/2

(
r

a0
− r2

6a2
0

)
e−r/3a0

√
3

2
cos θ

1√
2π

3 1 ±1
8

9
√

2(3a0)
3/2

(
r

a0
− r2

6a2
0

)
e−r/3a0 ∓

√
3

2
sin θ

1√
2π

e±iφ

3 2 0
4

27
√

10(3a0)
3/2

r2

a2
0

e−r/3a0

√
5

8
(3 cos2 θ − 1)

1√
2π

3 2 ±1
4

27
√

10(3a0)
3/2

r2

a2
0

e−r/3a0 ∓
√

15

4
sin θ cos θ

1√
2π

e±iφ

3 2 ±2
4

27
√

10(3a0)
3/2

r2

a2
0

e−r/3a0

√
15

4
sin2 θ

1√
2π

e±2iφ

correspond to the same energy, so the n = 2 level is degenerate. (Degeneracy was
introduced in Section 5.4.) The n = 3 level is degenerate with nine possible sets
of quantum numbers. In general, the level with principal quantum number n has a
degeneracy equal to n2. Figure 7.6 illustrates the labeling of the first three levels.

If different combinations of quantum numbers have exactly the same energy,
what is the purpose of listing them separately? First, as we discuss in the last
section of this chapter, the levels are not precisely degenerate, but are separated

(3, 0, 0) (3, 1, 1) (3, 1, 0) (3, 1, –1) (3, 2, –1) (3, 2, –2)(3, 2, 2) (3, 2, 1) (3, 2, 0)
−1.5 eV

(2, 0, 0) (2, 1, 1) (2, 1, 0) (2, 1, –1)
−3.4 eV

(1, 0, 0)
−13.6 eV

FIGURE 7.6 The lower energy levels of hydrogen, labeled with the quantum numbers (n, l, ml). The first excited state is
four-fold degenerate and the second excited state is nine-fold degenerate.
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FIGURE 7.7 The radial wave functions of the n = 1, n = 2, and n = 3 states of hydrogen. The radius coordinate is measured
in units of a0.

by a very small energy (about 10−5 eV). Second, in the study of the transitions
between the levels, we find that the intensities of the individual transitions
depend on the quantum numbers of the particular level from which the transition
originates. Third, and perhaps most important, each of these sets of quantum
numbers corresponds to a very different wave function, and therefore represents
a very different state of motion of the electron. These states have different spatial
probability distributions for locating the electron, and thus can affect many atomic
properties—for example, the way two atoms can form molecular bonds.

The radial wave functions for the states listed in Table 7.1 are plotted in
Figure 7.7. You can readily see the differences in the motion of the electron for
the different states. For example, in the n = 2 level, the l = 0 and l = 1 wave
functions have the same energy but their behavior is very different: the l = 1 wave
function falls to zero at r = 0, but the l = 0 wave function remains nonzero at
r = 0. The l = 0 electron thus has a much greater probability of being found close
to (or even inside) the nucleus, which turns out to play a large role in determining
the rates for certain radioactive decay processes.

r sin θ

r sinθ dφx

y

z

dφ

dθ

r dθdr

FIGURE 7.8 The volume element in
spherical polar coordinates.

Probability Densities

As we learned in Chapter 5, the probability of finding the electron in any spatial
interval is determined by the square of the wave function. For the hydrogen atom,
|ψ(r, θ , φ)|2 gives the volume probability density (probability per unit volume) at
the location (r, θ , φ). To compute the actual probability of finding the electron,
we multiply the probability per unit volume by the volume element dV located at
(r, θ , φ). In spherical polar coordinates (see Figure 7.8) the volume element is

dV = r2 sin θdr dθ dφ (7.15)

and therefore the probability to find the electron in the volume element at that
location is

|ψn,l,ml
(r, θ , φ)|2 dV = |Rn,l(r)|2|�l,ml

(θ)|2|�ml
(φ)|2r2 sin θdr dθ dφ (7.16)
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l = 0, ml = 0 l = 1, ml = 0 l = 1, ml = 1

l = 2, ml = 0 l = 2, ml = 1 l = 2, ml = 2

FIGURE 7.9 Representations of |ψ |2 for different sets of quantum numbers. The z axis
is the vertical direction. The diagrams represent surfaces on which the probability has
the same value.

Some representations of the probability density |ψ(r, θ , φ)|2 are shown in
Figure 7.9. We can regard these illustrations as representing the “smeared out”
distribution of electronic charge in the atom, which results from the uncertainty
in the electron’s location. They also represent the statistical outcomes of a large
number of measurements of the location of the electron in the atom. These spatial
distributions have important consequences for the structure of atoms with many
electrons, which is discussed in Chapter 8, and also for the joining of atoms into
molecules, which is discussed in Chapter 9.

In the next two sections, we will separately examine how the probability
density depends on the radial coordinate and on the angular coordinates.

7.4 RADIAL PROBABILITY DENSITIES

Instead of asking about the complete probability density to locate the electron,
we might want to know the probability to find the electron at a particular distance
from the nucleus, no matter what the values of θ and φ might be. That is, imagine
a thin spherical shell of radius r and thickness dr. What is the probability to find
the electron in the shell between spheres of radius r and r + dr? We define the
radial probability density P(r) so that the probability to find the electron within
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that shell is P(r)dr. We can determine the radial probability from the complete
probability (Eq. 7.16) by integrating over the θ and φ coordinates. In effect, this
adds up the probabilities for the volume elements at a given r for all θ and φ.

P(r) dr = |Rn,l(r)|2r2 dr

∫ π

0
|�l,ml

(θ)|2 sin θ dθ

∫ 2π

0
|�ml

(φ)|2 dφ (7.17)

The θ and φ integrals are each equal to unity, because each of the functions R, �,
and � is individually normalized. Thus the radial probability density is

P(r) = r2|Rn,l(r)|2 (7.18)

Figure 7.10 shows this function for several of the lowest levels of hydrogen.
Note that, because of the r2 factor, P(r) must be zero at r = 0 even though

R(r) might not. That is, the probability to locate the electron in a spherical shell
always goes to zero as r → 0 because the volume of the shell goes to zero, but
the probability density |ψ |2 may be nonzero at r = 0. Moreover, P(r) and |R(r)|2
convey different information about the electron’s behavior, as you can see by
comparing Figures 7.7 and 7.10. For example, the radial wave function R(r) for
n = 1, l = 0 has its maximum at r = 0, but the radial probability density for that
state has its maximum at r = a0.

Using the radial probability densities, it is possible to find the average value
of the radial coordinate, that is, the average distance between the proton and
the electron (see Problems 30 and 31). These values are indicated by markers
in Figure 7.10. Notice that the average radial coordinate is about 1.5a0 for the
n = 1 wave function and is much greater, about 5a0, for both of the n = 2 wave
functions. The average radius is greater still, about 12a0, for the n = 3 states.
It appears from these graphs that the average radius depends mostly on n and
not very much on l. The principal quantum number n thus determines not only
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FIGURE 7.10 The radial probability density P(r) for the n = 1, n = 2, and n = 3 states of hydrogen. The radius coordinate
is measured in units of a0. The markers on the horizontal axis show the values of the average radius rav labeled with the
value of l.



7.4 | Radial Probability Densities 209

the energy level of the electron, it also determines to a great extent the average
distance of the electron from the nucleus. As in the Bohr model, this average
radius varies roughly as n2, so that an n = 2 electron is on the average about 4
times farther from the nucleus than an n = 1 electron, an n = 3 electron is about
9 times farther from the nucleus than an n = 1 electron, and so forth.

Another measure of the location of the electron is its most probable radius,
determined from the location at which P(r) has its maximum value. For each
n, P(r) for the state with l = n − 1 has only a single maximum, which occurs at
the location of the Bohr orbit, r = n2a0. The following example illustrates this for
the n = 2 state.

Example 7.5

Prove that the most likely distance from the origin of an
electron in the n = 2, l = 1 state is 4a0.

Solution
In the n = 2, l = 1 level, the radial probability density is

P(r) = r2|R2,1(r)|2 = r2 1

24a3
0

r2

a2
0

e−r/a0

We wish to find where this function has its maximum; in
the usual fashion, we take the first derivative of P(r) and
set it equal to zero:

dP(r)

dr
= 1

24a5
0

d

dr
(r4e−r/a0)

= 1

24a5
0

[
4r3e−r/a0 + r4

(
− 1

a0

)
e−r/a0

]
= 0

or

1

24a5
0

e−r/a0

(
4r3 − r4

a0

)
= 0

The only solution that yields a maximum is r = 4a0.

Example 7.6

For the n = 2 states (l = 0 and l = 1), compare the proba-
bilities of the electron being found inside the Bohr radius.

Solution
For the n = 2, l = 0 level, P(r)dr = r2|R2,0(r)|2dr

= r2 1
8a3

0

(
2 − r

a0

)2
e−r/a0dr. The total probability of find-

ing the electron between r = 0 and r = a0 is

P(0 : a0) =
∫ a0

0
P(r) dr

= 1

8a3
0

∫ a0

0

(
4r2 − 4r3

a0
+ r4

a2
0

)
e−r/a0 dr

Evaluating the integrals using Eq. 7.4, we obtain

P(0 : a0) = 0.034

For the n = 2, l = 1 level P(r)dr = r2|R2,1(r)|2dr

= r2 1
24a3

0

r2

a2
0
e−r/a0dr. The total probability between r = 0

and r = a0 is

P(0 : a0) =
∫ a0

0
P(r) dr

= 1

24a3
0

∫ a0

0

r4

a2
0

e−r/a0 dr = 0.0037
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The results of Example 7.6 are consistent with the radial probability densities
shown in Figure 7.10—in the l = 0 state, the probability of finding the electron
inside a0 is about 10 times larger than in the l = 1 state, as suggested by the small
peak in the radial probability density for n = 2, l = 0 at small r. There is clearly
more area under the P(r) curve between r = 0 and r = a0 for n = 2, l = 0 than
there is for n = 2, l = 1.

Curiously, Figure 7.10 also shows that for n = 2 the l = 0 radial probability
density is also greater than the l = 1 probability density at large r. Thus the l = 0
electron spends more time close to the nucleus than the l = 1 electron and it also
spends more time farther away. This is a general result that holds for any value
of n: the smaller the l value, the larger is the probability to find the electron both
close to the nucleus and far from the nucleus. The classical planetary orbits of
Figure 7.2 show the same type of behavior—the orbit with L = 0 spends more
time close to the central body and also more time far away from the central body,
compared with the orbits that have larger L.

7.5 ANGULAR PROBABILITY DENSITIES

In this section, we consider the angular part of the probability density, which is
obtained from the squared magnitudes of the angular parts of the wave function:

P(θ , φ) = |�l,ml
(θ)�ml

(φ)|2 (7.19)

Figure 7.11 shows the angular probablity densities for the l = 0 and l = 1 wave
functions listed in Table 7.1.

Note that all of the probability densities are cylindrically symmetric—there
is no dependence on the azimuthal angle φ. The l = 0 wave function is also
spherically symmetric—that is, the probability density is independent of direction.

The l = 1 probability densities have two distinct shapes. For ml = 0, the
electron is found primarily in two regions of maximum probability along the
positive and negative z axis, while for ml = ±1, the electron is found primarily
near the xy plane. For ml = 0, the electron’s angular momentum vector lies in the
xy plane (Figure 7.3). Classically, the angular momentum vector is perpendicular
to the orbital plane, so it should not be surprising that the electron is most likely
to be found in a location away from the xy plane—that is, along the z axis. For

z z

l = 0
ml = 0

l = 1
ml = 0

l = 1
ml = ±1

x

x
x

y y y

z

FIGURE 7.11 The angular dependence of the l = 0 and l = 1 prob-
ability densities.
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ml = ±1, the angular momentum vector has its maximum projection along the z
axis; the electron, again orbiting perpendicular to �L, spends most of its time near
the xy plane. These probability densities for locating the electron are consistent
with the information given by the orientation of the angular momentum vector,
and the cylindrical symmetry of the probability densities is consistent with the
uncertainty in the knowledge of the orientation of �L represented in Figure 7.4.

Example 7.7

For the n = 2, l = 1 wave functions, find the direction
in space at which the maximum probability occurs when
ml = 0 and when ml = ±1.

Solution
For l = 1, ml = 0 we have P(θ , φ) = |�2,0(θ)�0(φ)|2 =

3
4π

cos2 θ . To find the location of the maximum, we set
dP/dθ equal to zero:

dP

dθ
= 3

4π
(−2 cos θ sin θ) = 0

There are two solutions to this equation: one for cos θ = 0,
for which θ = π/2, and another for sin θ = 0, which gives
θ = 0 or π . By taking the second derivative, we find that

θ = π/2 leads to a minimum while θ = 0 or π gives the
maximum. There are thus two regions of maximum prob-
ability, one along the positive z axis (θ = 0) and another
along the negative z axis (θ = π ), as in Figure 7.11.

For l = 1, ml = ±1 the angular probability density is
P(θ , φ) = |�2,±1(θ)�±1(φ)|2 = 3

8π
sin2 θ . We can then

find the location of the maximum:

dP

dθ
= 3

4π
(sin θ cos θ) = 0

Once again there are two solutions: θ = 0, π or θ = π/2.
However, in this case the maximum occurs for θ = π/2
and the probability maximum occurs in the xy plane, as in
Figure 7.11.

7.6 INTRINSIC SPIN

One way of observing spatial quantization is to place the atom in an externally
applied magnetic field. From the interaction between the magnetic field and the
magnetic dipole moment of the atom (which is related to the electron’s orbital
angular momentum), it is possible both to observe the separate components of
�L and also to determine l by counting the number of z components (which, as
we have seen, is equal to 2l + 1). However, when this experiment is done, a
surprising result emerges that indicates an unexpected property of the electron,
known as intrinsic spin.

μ

i

L

r

−

�

�

FIGURE 7.12 A circulating negative
charge is represented as a current loop.
Because the charge is negative, �L and
�μ point in opposite directions.

Orbital Magnetic Dipole Moments
Figure 7.12 shows a classical magnetic dipole moment, which might be produced
by a current loop or the orbital motion of a charged object. The classical magnetic
dipole moment �μ is defined as a vector whose magnitude is equal to the product
of the circulating current and the area enclosed by the orbital loop. The direction
of �μ is perpendicular to the plane of the orbit, determined by the right-hand
rule—with the fingers in the direction of the conventional (positive) current, the
thumb indicates the direction of �μ, as shown in Figure 7.12 for a circulating
negative charge like an electron.
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As we have seen, quantum mechanics forbids exact knowledge of the direction
of �L and therefore of �μ. Figure 7.13 suggests the relationship between �L and
�μ that is consistent with quantum mechanics. Only the z components of these
vectors can be specified. Because the electron has a negative charge, �L and �μ
have z components of opposite signs.

z

L
ml �

−ml μB
μL

�

�

FIGURE 7.13 According to quantum
mechanics, the vectors can be consid-
ered to precess around the z axis, and
so we can specify only the z compo-
nents of �L and �μ.

We can use the Bohr model with a circular orbit to obtain the relationship
between �L and �μ, which turns out to be identical with the correct quantum
mechanical result. We regard the circulating electron as a circular loop of current
i = dq/dt = q/T , where q is the charge of the electron (−e) and T is the time for
one circuit around the loop. If the electron moves with speed v = p/m around
a loop of radius r, then T = 2πr/v = 2πrm/p. The magnitude of the magnetic
moment is

μ = iA = q

2πrm/p
πr2 = q

2m
rp = q

2m
|�L| (7.20)

with |�L| = rp. Writing Eq. 7.20 in terms of vectors and putting −e for the
electronic charge, we obtain

�μL = − e

2m
�L (7.21)

The negative sign, which is present because the electron has a negative charge,
indicates that the vectors �L and �μL point in opposite directions. The subscript
L on �μL reminds us that this magnetic moment arises from the orbital angular
momentum �L of the electron.

The z component of the magnetic moment is

μL,z = − e

2m
Lz = − e

2m
ml

−h = − e−h

2m
ml = −mlμB (7.22)

The quantity e−h/2m is defined to be the Bohr magneton

μB = e−h

2m
(7.23)

The value of μB is

μB= 9.274 × 10−24 J/T

The Bohr magneton is a convenient unit for expressing atomic magnetic moments,
which typically have values of the order of μB.

A Dipole in an External Field
Before we consider further the behavior of �μL, we discuss the similar behavior of
an electric dipole, which consists of two equal and opposite charges q separated
by a distance r. The electric dipole moment �p has magnitude qr and points from
the negative charge to the positive charge. As shown in Figure 7.14a, in a uniform
electric field, the vertical forces �F+ on the positive charge and �F− on the negative
charge are of equal magnitude. The dipole experiences a torque that tends to rotate
it into alignment with �E, but the net force on the dipole is zero. Suppose now
that the field is not uniform—for example, the field strength decreases from the
bottom of the figure to the top, as in Figure 7.14b. Now the downward force �F−
acting on the negative charge is greater than the upward force �F+ on the positive
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(a) (b) (c)
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FIGURE 7.14 (a) An electric dipole in a uniform electric field �E experiences no net force. (b) In a nonuniform
electric field (decreasing from the bottom of the figure to the top), the force �F− is greater than the force �F+.
There is a net downward force on the dipole. (c) If the dipole moment is reversed, the net force is in the opposite
direction.

charge. There is still a net torque that tends to rotate the dipole, but there is also a
net force that tends to move the dipole, in this case downward. On the other hand,
if we reverse the locations of the two charges (Figure 7.14c), which is equivalent
to reversing the electric dipole moment �p, the upward force �F+ on the positive
charge is now greater than the downward force �F− on the negative charge, so the
net force on the dipole is upward.

We can state this result in another way that will be more applicable to our
discussion of magnetic dipole moments. Let the field direction define the z axis.
Then dipoles with pz > 0 (as in Figure 7.14b) experience a net negative force and
move in the negative z direction, while dipoles with pz < 0 (as in Figure 7.14c)
experience a net positive force and move in the positive z direction.

A magnetic dipole moment �μ behaves in an identical way. (In fact, if we
imagine fictitious N and S poles, the behavior of a magnetic moment would
be described by illustrations similar to Figure 7.14.) A nonuniform magnetic
field acting on the magnetic moments gives an unbalanced force that causes a
displacement. Figure 7.15 illustrates the behavior of magnetic dipole moments
having different orientations in a nonuniform magnetic field. The two different
orientations give net forces in opposite directions: if μz is positive the force on
the dipole is negative, and if μz is negative the force on the dipole is positive.

Fnet

μ

B�

�

� Fnet

μ

B�

�

�

FIGURE 7.15 Two magnetic dipoles
in a nonuniform magnetic field. Oppo-
sitely directed dipoles experience net
forces in opposite directions.

The Stern-Gerlach Experiment
Imagine the following experiment, illustrated schematically in Figure 7.16. A
beam of hydrogen atoms is prepared in the n = 2, l = 1 state. The beam consists
of equal numbers of atoms in the ml = −1, 0, and +1 states. (We assume we can
do the experiment so quickly that the n = 2 state doesn’t decay to the n = 1 state.
In practice this may not be possible.) The beam passes through a region in which
there is a nonuniform magnetic field. The atoms with ml = +1 (μL,z = −μB)
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Magnet Screen
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0

0–1
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FIGURE 7.16 Schematic diagram of the Stern-Gerlach experiment. A beam of atoms
passes through a region where there is a nonuniform magnetic field. Atoms with their
magnetic dipole moments in opposite directions experience forces in opposite directions.

experience a net upward force and are deflected upward, while the atoms with
ml = −1 (μL,z = +μB) are deflected downward. The atoms with ml = 0 are
undeflected.

After passing through the field, the beam strikes a screen where it makes a
visible image. When the field is off, we expect to see one image of the slit in the
center of the screen, because there is no deflection at all. When the field is on, we
expect three images of the slit on the screen—one in the center (corresponding to
ml = 0), one above the center (ml = +1), and one below the center (ml = −1).
If the atom were in the ground state (l = 0), we expect to see one image in the
screen whether the field was off or on (recall that a ml = 0 atom is not deflected).
If we had prepared the beam in a state with l = 2, we would see five images with
the field on. The number of images that appears is just the number of different ml
values, which is equal to 2l + 1. With the possible values for l of 0, 1, 2, 3, . . .,
it follows that 2l + 1 has the values 1, 3, 5, 7, . . .; that is, we should always see
an odd number of images on the screen. However, if we were actually to perform
the experiment with hydrogen in the l = 1 state, we would find not three but
six images on the screen! Even more confusing, if we did the experiment with
hydrogen in the l = 0 state, we would find not one but two images on the screen,
one representing an upward deflection and one a downward deflection! In the
l = 0 state, the vector �L has length zero, and so we expect that there is no magnetic
moment for the magnetic field to deflect. We observe this not to be true—even
when l = 0, the atom still has a magnetic moment, in contradiction to Eq. 7.21.

(a)

(b)

FIGURE 7.17 The results of the
Stern-Gerlach experiment. (a) The
image of the slit with the field turned
off. (b) With the field on, two images
of the slit appear. The small divi-
sions in the scale at the left represent
0.05 mm. [Source: W. Gerlach and
O. Stern, Zeitschrift für Physik 9, 349
(1922)]

The first experiment of this type was done by O. Stern and W. Gerlach in 1921.
They used a beam of silver atoms; although the electronic structure of silver is
more complicated than that of hydrogen (as we discuss in Chapter 8), the same
basic principle applies—the silver atom must have l = 0, 1, 2, 3, . . ., and so an odd
number of images is expected to appear on the screen. In fact, they observed the
beam to split into two components, producing two images of the slits on the screen
(see Figure 7.17).

The observation of separated images was the first conclusive evidence of spatial
quantization; classical magnetic moments would have all possible orientations and
would make a continuous smeared-out pattern on the screen, but the observation
of a number of discrete images on the screen means that the atomic magnetic
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moments can take only certain discrete orientations in space. These correspond to
the discrete orientations of the magnetic moment (or, equivalently, of the angular
momentum).

Sz = + �

2

Sz = − �

2

S

S 3/4 �= √�
�

FIGURE 7.18 The spin angular mo-
mentum of an electron and the spatial
orientation of the spin angular momen-
tum vector.

However, the number of discrete images on the screen does not agree with
our expectations that it be an odd number. We expect 2l + 1 images, so for
two images we should have l = 1/2, which is not permitted by the Schrödinger
equation. We can resolve this dilemma if there is another contribution to the
angular momentum of the atom, the intrinsic angular momentum of the electron.
An electron in an atom has two kinds of angular momentum, somewhat like the
Earth as it both orbits the Sun and rotates on its axis. The electron has an orbital
angular momentum �L, which characterizes the motion of the electron about the
nucleus, and an intrinsic angular momentum �S, which behaves as if the electron
were spinning about its axis. For this reason, �S is usually called the intrinsic spin.
(However, it is not correct to use the classical analogy to think of the electron as a
tiny ball of charge spinning about an axis, because the electron is a point particle
with no physical size.) The idea of electron spin was proposed by S. A. Goudsmit
and G. E. Uhlenbeck in 1925, and P. A. M. Dirac showed in 1928 that relativistic
quantum theory for the electron gives the electron spin directly as an additional
quantum number.

In order to explain the result of the Stern-Gerlach experiment, we must assign
to the electron an intrinsic spin quantum number s of 1/2. The intrinsic spin
behaves much like the orbital angular momentum; there is the quantum number
s (which we can regard as a label arising from the mathematics), the angular
momentum vector �S, a z component Sz, an associated magnetic moment �μS, and a
spin magnetic quantum number ms. Figure 7.18 illustrates the vector properties of
�S, and Table 7.2 compares the properties of orbital and spin angular momentum
for electrons in atoms.

The inclusion of spin gives a direct explanation for the Stern-Gerlach exper-
iment. The outermost electron in a silver atom occupies a state with l = 0.
(The other electrons do not contribute to the magnetic properties of the atom.)
The magnetic behavior is therefore due entirely to the spin magnetic moment,
which has only two possible orientations in the magnetic field (corresponding to
ms = ±1/2) and thus gives the two beams observed emerging from the magnet.

Every fundamental particle has a characteristic intrinsic spin and a correspond-
ing spin magnetic moment. For example, the proton and neutron also have a spin
quantum number of 1/2. The photon has a spin quantum number of 1, while the pi
meson (pion) has s = 0.

TABLE 7.2 Orbital and Spin Angular Momentum of Electrons in Atoms

Orbital Spin

Quantum number l = 0, 1, 2, . . . s = 1/2

Length of vector |�L| = √
l(l + 1)−h |�S| = √

s(s + 1)−h = √
3/4−h

z component Lz = ml
−h Sz = ms

−h

Magnetic quantum number ml = 0, ±1, ±2, . . ., ±l ms = ±1/2

Magnetic moment �μL = −(e/2m)�L �μS = −(e/m)�S
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Example 7.8

In a Stern-Gerlach type of experiment, the magnetic
field varies with distance in the z direction according
to dBz/dz = 1.4 T/mm. The silver atoms travel a distance
x = 3.5 cm through the magnet. The most probable speed
of the atoms emerging from the oven is v = 750 m/s. Find
the separation of the two beams as they leave the mag-
net. The mass of a silver atom is 1.8 × 10−25 kg, and its
magnetic moment is about 1 Bohr magneton.

Solution
The potential energy of the magnetic moment in the mag-
netic field is

U = −�μ · �B = −μzBz

because the field along the central axis of the magnet has
only a z component. The force on the atom can be found
from the potential energy according to

Fz = −dU

dz
= μz

dBz

dz

The acceleration of a silver atom of mass m as it passes
through the magnet is

a = Fz

m
= μz(dBz/dz)

m

The vertical deflection �z of either beam can be found
from �z = 1

2 at2, where t, the time to traverse the magnet,
equals x/v. Each beam is deflected by this amount, so the
net separation d is 2�z, or

d = μz(dBz/dz)x2

mv2

= (9.27 × 10−24 J/T)(1.4 × 103 T/m)(3.5 × 10−2 m)2

(1.8 × 10−25 kg)(750 m/s)2

= 1.6 × 10−4 m = 0.16 mm

This is consistent with the separation that can be read from
the scale in Figure 7.17.

7.7 ENERGY LEVELS AND SPECTROSCOPIC
NOTATION

We previously described all of the possible electronic states in hydrogen by three
quantum numbers (n, l, ml), but as we have seen, a fourth property of the electron,
the intrinsic angular momentum or spin, requires the introduction of a fourth
quantum number. We don’t need to specify the spin s, because it is always 1/2

(we regard it as a fundamental property of the electron, like its electric charge or
its mass), but we must specify the value of the quantum number ms (+1/2 or −1/2),
which tells us about the z component of the spin. Thus the complete description of
the state of an electron in an atom requires the four quantum numbers (n, l, ml, ms).

For example, the ground state of hydrogen was previously labeled as (n, l, ml) =
(1, 0, 0). With the addition of ms, this would become either (1, 0, 0, +1/2)

or (1, 0, 0, −1/2). The degeneracy of the ground state is now 2. The first
excited state would have eight possible labels: (2, 0, 0, +1/2), (2, 0, 0, −1/2),
(2, 1, +1, +1/2), (2, 1, +1, −1/2), (2, 1, 0, +1/2), (2, 1, 0, −1/2), (2, 1, −1, +1/2),
and (2, 1, −1, −1/2). There are now two possible labels for each previous single
label (each n, l, ml becomes n, l, ml, −1/2 and n, l, ml, −1/2, so the degeneracy of
each level is 2n2 instead of n2.

It is important to know the direction (z component) of the angular momentum
vectors when an atom is in a magnetic field, but for most other applications the
values of ml and ms are of no significance, and it is cumbersome to write them
each time we wish to refer to a certain level of an atom. We therefore use a
different notation, known as spectroscopic notation, to label the levels. In this
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system we use letters to stand for the different l values: for l = 0, we use the letter
s (do not confuse this with the quantum number s), for l = 1, we use the letter p,
and so on. The complete notation is as follows:

Value of l 0 1 2 3 4 5 6

Designation s p d f g h i

(The first four letters stand for sharp, principal, diffuse, and fundamental, which
were terms used to describe atomic spectra before atomic theory was developed.)
In spectroscopic notation, the ground state of hydrogen is labeled 1s, where the
value n = 1 is specified before the s. Figure 7.19 illustrates the labeling of the
hydrogen atom levels in this notation.

−0.8 eV 4s 4p 4d

3d3p

2p

4f

3s

2s

1s

−1.5 eV

−3.4 eV

−13.6 eV

FIGURE 7.19 A partial energy level
diagram of hydrogen, showing the
spectroscopic notation of the levels
and some of the transitions that satisfy
the �l = ±1 selection rule.

Also shown in Figure 7.19 are arrows representing some different photons that
can be emitted when the atom makes a transition from one state to a lower state.
Some of the missing arrows (such as 4d to 3s) would represent transitions that are
not allowed to occur. By solving the Schrödinger equation and using the solutions
to compute transition probabilities, we find that the transitions most likely to
occur are those that change l by one unit. This restriction is called a selection rule,
and for atomic transitions the selection rule is

�l = ±1 (7.24)

For example, the 3s level cannot emit a photon in a transition to the 2s level
(�l = 0), but rather must go to the 2p level (�l = 1). There is no selection rule
for n, so the 3p level can go to 2s or 1s (but not to 2p).

∗7.8 THE ZEEMAN EFFECT

Consider for the moment a hypothetical (and less interesting) world in which
the electron has no spin, and therefore no spin magnetic moment. Suppose we
prepared a hydrogen atom in a 2p (l = 1) level and placed it in an external
uniform magnetic field �B (supplied by a laboratory electromagnet, for example).
The magnetic moment �μL associated with the orbital angular momentum then
interacts with the field, and the energy associated with this interaction is

U = −�μL · �B (7.25)

Field on

l = 1, ml = 0, ±1

Field off

μBB

μBB
ml = −1

ml = +1

ml = 0

FIGURE 7.20 The splitting of an l =
1 level in an external magnetic field.
(The effects of the electron’s spin
angular momentum are ignored.) The
energy in a magnetic field is different
for different values of ml.

That is, magnetic moments aligned in the direction of the field have less energy
than those aligned oppositely to the field. Using Eq. 7.22 for the z component of
the magnetic moment (assuming that the field is in the z direction), we have

U = −μL,zB = mlμBB (7.26)

in terms of the Bohr magneton μB defined in Eq. 7.23. In the absence of a
magnetic field, the 2p level has a certain energy E0 (−3.4 eV). When the field
is turned on, the energy becomes E0 + U = E0 + mlμBB; that is, there are now
three different possible energies for the level, depending on the value of ml.
Figure 7.20 illustrates this situation.

∗This is an optional section that may be skipped without loss of continuity.
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Field off Field on

E 

E
 

2p

1s

λ λ λ + Δλλ − Δλ

ml = 0

ml = 0

E
 +

 μ
B
B

E
 −

 μ
B
B

ml = −1

ml = +1

FIGURE 7.21 The normal Zeeman
effect. When the field is turned on, the
original wavelength λ becomes three
separate wavelengths.

Now suppose the atom emits a photon in a transition from the 2p state to the
1s ground state. In the absence of the magnetic field, a single photon is emitted
with an energy of 10.2 eV and a corresponding wavelength of 122 nm. When
the magnetic field is present, three photons can be emitted, with energies of
10.2 eV + μBB, 10.2 eV, and 10.2 eV − μBB. To determine how a small change
in energy �E affects the wavelength, we differentiate the expression E = hc/λ
and obtain

dE = −hc

λ2
dλ (7.27)

Replacing the differentials with small differences, taking absolute magnitudes,
and solving for �λ gives

�λ = λ2

hc
�E (7.28)

where �E is the energy splitting between the levels when the field is on
(�E = μBB). Figure 7.21 illustrates the three transitions, and shows an example
of the result of a measurement of the emitted wavelengths.

In analyzing transitions between different ml states, often we need to use a
second selection rule: the only transitions that occur are those that change ml by
0, +1, or −1:

�ml = 0, ±1 (7.29)

Changes in ml of two or more are not permitted.

Example 7.9

Compute the change in wavelength of the 2p → 1s photon
when a hydrogen atom is placed in a magnetic field of
2.00 T.

Solution
The energy of the photon from n = 2 to n = 1 is
E = −13.6 eV( 1

22 − 1
12 ) = 10.2 eV, and its wavelength

is λ = hc/E = (1240 eV · nm)/(10.2 eV) = 122 nm. The
energy change �E of the levels is

�E = μBB = (9.27 × 10−24 J/T)(2.00 T)

= 18.5 × 10−24 J = 11.6 × 10−5 eV

and so, from Eq. 7.28,

�λ = λ2

hc
�E

= (122 nm)2

1240 eV · nm
11.6 × 10−5 eV

= 0.00139 nm

Even for a fairly large magnetic field of 2 T, the change in
wavelength is very small, but it is easily measurable using
an optical spectrometer.

The experiment we have just considered is an example of the Zeeman
effect—the splitting of a spectral line with a single wavelength into lines with
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several different wavelengths when the emitting atoms are in an externally applied
magnetic field. In the normal Zeeman effect a single spectral line splits into three
components; this occurs only in atoms without spin. (All electrons of course have
spin, unlike the hypothetical spinless electrons we considered; however, in certain
atoms with several electrons, the spins can pair off and cancel, so that the atom
behaves like a spinless one.) When spin is present, we must consider not only
the effect of the orbital magnetic moment but also the spin magnetic moment.
The resulting pattern of level splittings is more complicated, and spectral lines
may split into more than three components. This case is known as the anomalous
Zeeman effect, an example of which is shown in Figure 7.22.

D1 D2

FIGURE 7.22 The anomalous Zee-
man effect in sodium. (Top) The
so-called sodium D-lines, a close-
lying doublet of wavelengths 589.0
and 589.6 nm in the absence of a
magnetic field. (Bottom) Splitting of
the lines into six and four components
in a magnetic field. This image was
photographed by Peter Zeeman in
1897.

∗7.9 FINE STRUCTURE

A careful inspection of the emission lines of atomic hydrogen shows that many
of them are in fact not single lines but very closely spaced combinations of two
lines. In this section we examine the origin of that effect, known as fine structure.

In this calculation it is more convenient for us to examine the hydrogen atom
from the electron’s frame of reference, in which the proton appears to travel
around the electron, just as the Sun appears to travel around the Earth. For
convenience, we treat this problem in the context of the Bohr model to obtain an
estimate of the effect.

Figure 7.23a shows the atom viewed from the ordinary frame of reference of
the proton. We assume the electron to orbit counterclockwise so that the orbital
angular momentum �L is in the z direction, and we also assume that the spin �S
(which could point either up or down) is also in the z direction. The same situation
is shown in Figure 7.23b from the viewpoint of the electron, with the proton now
appearing to move in a circular orbit around the electron.

In the electron reference frame the motion of the proton in a circular orbit of
radius r can be considered to be a current loop, which causes a magnetic field �B
at the electron, as shown in Figure 7.23c. This magnetic field interacts with the
spin magnetic moment of the electron, �μS = −(e/m)�S. The interaction energy of
the magnetic moment �μS in a magnetic field is

U = −�μS · �B (7.30)

We choose the z direction to be the direction of �B; with �μS = −(e/m)�S, we have

U = e

m
�S · �B = e

m
SzB (7.31)

With Sz = ± 1
2

−h, the energy is

U = ± e−h

2m
B = ±μBB (7.32)

∗This is an optional section that may be skipped without loss of continuity.
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(a) (b) (c)

L

r
+

S r

+ i

μs

B� �

�

S� �

FIGURE 7.23 An electron circulates about the proton in a hydrogen atom. (b)
From the point of view of the electron, the proton circulates about the electron.
(c) The apparently circulating proton is represented by the current i and causes a
magnetic field �B at the location of the electron.

The situation shown in Figure 7.23 has Sz = + 1
2

−h, and thus U = +μBB. When �S
has the opposite orientation, U = −μBB. The effect is to split each level into two,
a higher state with �L and �S parallel and a lower state with �L and �S antiparallel, as
shown in Figure 7.24. The energy difference between the states is �E = 2μBB.

At this point, the result looks rather similar to that of our previous discussion
of the Zeeman effect, but it is important to note one significant difference: the
magnetic field B in this case is not a field in the laboratory that can be turned on
or off; it is, instead, a field that is always present, produced by the relative motion
between the proton and the electron.

L S

μBB

μBB

ΔE � �

FIGURE 7.24 The fine-structure split-
ting in hydrogen. The state with �L and
�S parallel is slightly higher in energy
than the state with �L and�S antiparallel. We can use the Bohr model to make a rough estimate of the magnitude of this

energy splitting. A circular loop of radius r carrying current i establishes at its
center a magnetic field B = μ0i/2r.The current i is the charge carried around the
loop (+e in this case) divided by the time T for one orbit. The time for one orbit
is the distance traveled (2πr) divided by the speed v.

B = μ0i

2r
= μ0

2r

e

T
= μ0

2r

ev

2πr
(7.33)

The energy difference between the states is then

�E = 2μBB = μ0 ev

2πr2
μB = μ0e2−h2n

4πm2r3
(7.34)

where the last result is obtained by substituting v = n−h/mr from Bohr’s angu-
lar momentum condition (Eq. 6.26) and μB = e−h/2m from Eq. 7.23. Finally,
substituting from Eq. 6.28 for the radius of the orbits in the Bohr atom, we obtain

�E = μ0e2−h2n

4πm2

(
me2

4πε0
−h2

1

n2

)3

= μ0me8

256π4ε3
0

−h4

1

n5
(7.35)

We can rewrite this in a somewhat simpler form by recalling that c2 = 1/ε0μ0
and using the dimensionless constant α, known as the fine structure constant,

α = e2

4πε0
−hc

(7.36)
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which gives

�E = mc2α4 1

n5
(7.37)

The value of the fine structure constant is approximately 1/137. For hydrogen in
the n = 2 level, we expect the energy difference between the state with �L and �S
parallel and the state with �L and �S antiparallel to be

�E = (0.511 MeV)

(
1

137

)4 1

25
= 4.53 × 10−5 eV

We can compare this estimate with the experimental value, based on the observed
splitting of the first line of the Lyman series, which gives 4.54 × 10−5 eV. We see
that in spite of the assumptions we have made, our use of the Bohr model, and our
failure to use the hydrogen wave functions to do this calculation, the agreement
with the experimental value is remarkably good. (In fact, the agreement is so good
as to be embarrassing, for we neglected to consider the important relativistic effect
of the motion of the electron, which contributes to the fine structure about equally
to the spin-orbit interaction discussed in this section. We really should regard this
calculation as an order-of-magnitude estimate, which happens by chance to give
a numerical result close to the observed value.)

Chapter Summary
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Questions

1. How does the quantum-mechanical interpretation of the
hydrogen atom differ from the Bohr model?

2. How does a quantized angular momentum vector differ from
a classical angular momentum vector?

3. What are the meanings of the quantum numbers n, l, ml
according to (a) the quantum-mechanical calculation;
(b) the vector model; (c) the Bohr (orbital) model?

4. List the dynamical quantities that are constant for a specific
choice of n and l. List the dynamical quantities that are not
constant. Compare these lists with the Bohr model.

5. How does the orbital angular momentum differ between the
Bohr model and the quantum-mechanical calculation?

6. What does it mean that �L precesses about the z axis? Can
we observe the precession?

7. In the Bohr model, we calculated the total energy from
the potential energy and kinetic energy for each orbit. In
the quantum-mechanical calculation, is the potential energy
constant for any set of quantum numbers? Is the kinetic
energy? Is the total energy?

8. What is meant by the term spatial quantization? Is space
really quantized?

9. A deficiency of the Bohr model is the problem of angu-
lar momentum conservation in transitions between levels.
Discuss this problem in relation to the quantum-mechanical
angular momentum properties of the atom, especially the
selection rule Eq. 7.24. The photon can be considered to
carry angular momentum −h.

10. The 2s electron has a greater probability to be close to the
nucleus than the 2p electron and also a greater probability
to be farther away (see Figure 7.10). How is this possible?

11. The probability density ψ*ψ does not depend on φ for the
wave functions listed in Table 7.1. What is the significance
of this?

12. How would the wave functions of Table 7.1 change if the
nuclear charge were Ze instead of e? (Recall how we made
the same change in the Bohr model in Section 6.5.) What
effect would this have on the radial probability densities
P(r)?

13. Can a hydrogen atom in its ground state absorb a photon (of
the proper energy) and end up in the 3d state?

14. Is it correct to think of the electron as a tiny ball of charge
spinning on its axis? Is it useful? Is this situation similar
to using the Bohr model to represent the electron’s orbital
motion?

15. The photon has a spin quantum number of 1, but its spin
magnetic moment is zero. Explain.

16. What are the similarities and differences between Zeeman
splitting and fine-structure splitting?

17. How would the calculated fine structure be different in an
atom with a single electron and a nuclear charge of Ze?

18. Does the fine structure, as we have calculated it, have any
effect on the n = 1 level?

19. How would (a) the Zeeman effect and (b) the fine structure
be different in a muonic hydrogen atom? (See Problems 41
and 42 in Chapter 6.) The muon has the same spin as the
electron, but is 207 times as massive.

20. Even though our calculation of the fine structure was based
on a very simplified model, it does yield a result similar
to the more correct calculation: the fine-structure splitting
decreases as we go to higher excited states. Give at least two
qualitative reasons for this.

Problems

7.1 A One-Dimensional Atom

1. By substituting the wave function ψ(x) = Axe−bx into
Eq. 7.2, show that a solution can be obtained only for
b = 1/a0, and find the ground-state energy.

2. Show that the probability density for the ground-state solu-
tion of the one-dimensional Coulomb potential energy has
its maximum at x = a0.

3. An electron in its ground state is trapped in the one-
dimensional Coulomb potential energy. What is the prob-
ability to find it in the region between x = 0.99a0 and
x = 1.01a0?

7.2 Angular Momentum in the Hydrogen Atom

4. An electron is in an angular momentum state with l = 3.
(a) What is the length of the electron’s angular momentum

vector? (b) How many different possible z components can
the angular momentum vector have? List the possible z
components. (c) What are the values of the angle that the
�L vector makes with the z axis?

5. What angles does the �L vector make with the z axis when
l = 2?

7.3 The Hydrogen Atom Wave Functions

6. List the 16 possible sets of quantum numbers n, l, ml of the
n = 4 level of hydrogen (as in Figure 7.6).

7. (a) What are the possible values of l for n = 6? (b) What are
the possible values of ml for l = 6? (c) What is the smallest
possible value of n for which l can be 4? (d) What is the
smallest possible l that can have a z component of 4−h?
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8. Show that the (1, 0, 0) and (2, 0, 0) wave functions listed in
Table 7.1 are properly normalized.

9. Show by direct substitution that the n = 2, l = 0, ml = 0 and
n = 2, l = 1, ml = 0 wave functions of Table 7.1 are both
solutions of Eq. 7.10 corresponding to the energy of the first
excited state of hydrogen.

10. Show by direct substitution that the wave function corre-
sponding to n = 1, l = 0, ml = 0 is a solution of Eq. 7.10
corresponding to the ground-state energy of hydrogen.

11. Consider a thin spherical shell located between r = 0.49a0
and 0.51a0. For the n = 2, l = 1 state of hydrogen, find
the probability for the electron to be found in a small vol-
ume element that subtends a polar angle of 0.11◦ and an
azimuthal angle of 0.25◦ if the center of the volume ele-
ment is located at: (a) θ = 0, φ = 0; (b) θ = 90◦, φ = 0;
(c) θ = 90◦, φ = 90◦; (d) θ = 45◦, φ = 0. Do the calculation
for all possible ml values.

7.4 Radial Probability Densities

12. Show that the radial probability density of the 1s level has
its maximum value at r = a0.

13. Find the values of the radius where the n = 2, l = 0 radial
probability density has its maximum values.

14. What is the probability of finding a n = 2, l = 1 electron
between a0 and 2a0?

15. For a hydrogen atom in the ground state, what is the proba-
bility to find the electron between 1.00a0 and 1.01a0? (Hint:
It is not necessary to evaluate any integrals to solve this
problem.)

7.5 Angular Probability Densities

16. Find the directions in space where the angular probability
density for the l = 2, ml = ±1 electron in hydrogen has its
maxima and minima.

17. Find the directions in space where the angular probability
density for the l = 2, ml = 0 electron in hydrogen has its
maxima and minima.

7.6 Intrinsic Spin

18. (a) Including the electron spin, what is the degeneracy
of the n = 5 energy level of hydrogen? (b) By adding
up the number of states for each value of l permitted
for n = 5, show that the same degeneracy as part (a) is
obtained.

19. For each l value, the number of possible states is 2(2l + 1).
Show explicitly that the total number of states for each prin-

cipal quantum number is
n−1∑
l=0

2(2l + 1) = 2n2. This gives the

degeneracy of each energy level.
20. Explain why each of the following sets of quantum

numbers (n, l, ml, ms) is not permitted for hydrogen.
(a) (2, 2, −1, +1/2) (b) (3, 1, +2, −1/2) (c) (4, 1, +1, −3/2)

(d) (2, −1, +1, +1/2)

7.7 Energy Levels and Spectroscopic Notation

21. List the excited states (in spectroscopic notation) to which
the 4p state can make downward transitions.

22. (a) A hydrogen atom is in an excited 5g state, from which it
makes a series of transitions by emitting photons, ending in
the 1s state. Show, on a diagram similar to Figure 7.19, the
sequence of transitions that can occur. (b) Repeat part (a) if
the atom begins in the 5d state.

23. (a) List in spectroscopic notation all levels with n = 7.
(b) An electron is initially in the state with n = 7, l = 2. List
in spectroscopic notation all lower states to which transitions
are allowed.

7.8 The Zeeman Effect

24. Consider the normal Zeeman effect applied to the 3d to 2p
transition. (a) Sketch an energy-level diagram that shows
the splitting of the 3d and 2p levels in an external mag-
netic field. Indicate all possible transitions from each ml
state of the 3d level to each ml state of the 2p level. (b)
Which transitions satisfy the �ml = ±1 or 0 selection rule?
(c) Show that there are only three different transition energies
emitted.

25. A collection of hydrogen atoms is placed in a magnetic field
of 3.50 T. Ignoring the effects of electron spin, find the
wavelengths of the three normal Zeeman components (a) of
the 3d to 2p transition; (b) of the 3s to 2p transition.

7.9 Fine Structure

26. Calculate the wavelengths of the components of the first line
of the Lyman series, taking the fine structure of the 2p level
into account.

27. Calculate the energies and wavelengths of the 3d to 2p tran-
sition, taking into account the fine structure of both levels.
How many component wavelengths might there be in the
transition?

General Problems

28. Show that the wave function ψ(x) = A(x + cx2)e−bx gives a
solution to the Schrödinger equation for the one-dimensional
Coulomb potential energy. Evaluate the constants A, b, c, and
find the energy corresponding to this solution.

29. Find the probabilities for the n = 2, l = 0 and n = 2, l = 1
electron states in hydrogen to be further than r = 5a0 from
the nucleus. Which has the greater probability to be far from
the nucleus?

30. The mean or average value of the radius r can be found
according to rav = ∫ ∞

0 rP(r)dr. Show that the mean value
of r for the 1s state of hydrogen is 3

2 a0. Why is this greater
than the Bohr radius?

31. Find the value of rav (see Problem 30) for the 2s and 2p
levels.

32. The mean or average value of the potential energy of
the electron in a hydrogen atom can be found from
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Uav = ∫ ∞
0 U(r)P(r)dr. Find Uav in the 1s state and compare

with the potential energy computed with the Bohr model
when n = 1.

33. Suppose the source of atoms in a Stern-Gerlach experiment
were an oven of temperature 1000 K. Assume the magnetic
field gradient to be 10 T/m, and take the length of the mag-
netic field region and the field-free region between magnet
and screen to be 1 m each. Make any other assumptions

you may need and estimate the separation of the images
observed on the screen.

34. For the 1s, 2s, and 2p states of hydrogen, show that
(r−1)av = 1/n2a0. This turns out to be a general result
for any state of hydrogen. Based on this result, explain why
the Bohr model gives such a good estimate for the fine-
structure splitting as well as for other magnetic effects due
to the circulating electron.
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MANY-ELECTRON ATOMS

This computer-generated drawing shows the structure of an atom of neon, with the electron
probability distributions surrounding the central nucleus. The bright inner sphere represents
the 1s electrons, the dark outer sphere is the 2s electrons, and the lobes are the 2p electrons.
This is a more realistic picture of an atom than the ‘‘planetary’’ view developed in Chapter 6.
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Physicists often attack complex problems by trying to separate the more important
parts from the less important. For example, in analyzing the motion of the Earth
in the Solar System, we can start by ignoring all bodies other than the Sun. With
this simplification, we find that the Earth moves about the Sun in an elliptical
orbit. Now we can account for the effect of the Moon, which introduces a slight
“wobble” about the ellipse. Finally, we can introduce the much weaker effect of
the gravitational pull of the other planets.

It is tempting to try to use a similar approach to understand the motion of
electrons in atoms with more than one electron. Unfortunately, we can’t analyze
the motion of an electron in an atom with more than one electron by separating out
the more and less influential forces. For example, in a neutral atom with atomic
number Z, each electron experiences an electrostatic force due to the nucleus with
a charge of +Ze, but it also experiences an electrostatic force due to all the other
electrons with a total charge of −(Z − 1)e. The effect of the nucleus is comparable
to the effect of the other electrons, which can’t be analyzed as a small correction.

We are thus required to consider simultaneously the effect of the nucleus
and each of the other electrons. The problem of the mutual interactions of three
or more objects is an example of what physicists call the many-body problem.
Exact, closed-form solutions to the Schrödinger equation cannot be found for such
problems. The solutions must be obtained numerically using a computer. In this
chapter, we consider an approximate set of energy levels for many-electron atoms,
and we try to understand some of the properties of atoms (chemical, electrical,
magnetic, optical, etc.) based on those energy levels.

8.1 THE PAULI EXCLUSION PRINCIPLE

Let’s begin by considering how the Z electrons in an atom might occupy the atomic
energy levels. As a first guess, we might expect that all Z electrons will eventually
cascade down to the lowest energy level, the 1s state. If this were correct, we
would expect the properties of the atom to vary rather smoothly compared with its
neighbors having Z ± 1 electrons. Indeed, certain of the properties of atoms, such
as the energies of the emitted X rays, show this smooth variation. However, other
properties do not vary in this way and thus are not consistent with this model of
all electrons in the same level. For example, neon (with Z = 10) is an inert gas;
it is practically unreactive and does not form chemical compounds under most
conditions. Its neighbors, fluorine (Z = 9) and sodium (Z = 11), are among the
most reactive of the elements and under most conditions will combine with other
substances, sometimes violently. As another example, nickel (Z = 28) is strongly
magnetic (ferromagnetic) and, for a metal, does not have a particularly large
electrical conductivity. Copper (Z = 29) is an excellent electrical conductor but
is not magnetic. Such wide variations in properties between neighboring elements
suggest that it is not correct to assume that all electrons occupy the same energy
level.

Wolfgang Pauli (1900–1958, Switzer-
land). His exclusion principle gave
the basis for understanding atomic
structure. He also contributed to the
development of quantum theory, to
the theory of nuclear beta decay, and
to the understanding of symmetry in
physical laws.

The rule that prevents all of the electrons in an atom from falling into the 1s
level was proposed by Wolfgang Pauli in 1925, based on a study of the transitions
that are present, and those that are expected but not present, in the emission
spectra of atoms. Simply stated, the Pauli exclusion principle is as follows:

No two electrons in a single atom can have the same set of quantum numbers
(n, l, ml, ms).
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The Pauli principle is the most important rule governing the structure of atoms,
and no study of the properties of atoms can be attempted without a thorough
understanding of this principle.

To illustrate how the Pauli principle works, consider the structure of helium
(Z = 2). The first electron in helium, in the 1s ground state, has quantum numbers
n = 1, l = 0, ml = 0, ms = +1/2 or −1/2. The second electron can have the same
n, l, and ml, but it cannot have the same ms, because the exclusion principle would
be violated. Thus if the first 1s electron has ms = +1/2, the second 1s electron must
have ms = −1/2. Now consider an atom of lithium (Z = 3). Just as with helium,
the first two electrons will have quantum numbers (n, l, ml, ms) = (1, 0, 0, +1/2)

and (1, 0, 0, −1/2). According to the exclusion principle, the third electron cannot
have the same set of quantum numbers as the first two, so it cannot go into the n =
1 level, because there are only two different sets of quantum numbers available in
the n = 1 level, and both of those sets have already been used. The third electron
must therefore go into one of the n = 2 levels, and experiments indicate that the
2s level is the next available. Without the Pauli principle, lithium would have
three electrons in the 1s level; with the Pauli principle, we expect that lithium has
two electrons in the 1s level and one electron in the 2s level. These two different
possible structures for lithium would give very different physical properties, and
the physical properties of lithium indicate that the structure with one electron in
the 2s level is the correct one.

We can continue this process with beryllium (Z = 4). The fourth electron can
join the third electron in the 2s level, but that now completes the capacity of
the 2s level—one of the electrons might have quantum numbers (n, l, ml, ms) =
(2, 0, 0, +1/2) and the other might have (2, 0, 0, −1/2). There are no other sets of
quantum numbers that an additional electron could have in the 2s level without
duplicating one of the sets that has already been assigned and thus violating the
Pauli principle. When we reach boron, with Z = 5, the fifth electron must go
into a different level—one of the 2p levels. We might therefore expect that the
properties of boron, with a 2p electron, would be different from the properties of
lithium or beryllium, which have only 2s electrons.

It is this process of first using up all of the possible quantum numbers for one
level, and then placing electrons in the next level, that accounts for the variations
in the chemical and physical properties of the elements.

Example 8.1

A certain atom has six electrons in the 3d level. (a) What
is the maximum possible total ml for the six electrons, and
what is the total ms in that configuration? (b) What is the
maximum possible total ms for the six electrons, and what
would be the largest possible total ml in that configuration?

Solution
(a) For a d state l = 2, so the possible ml values are
+2, +1, 0, −1, and −2. At most two electrons can be
assigned ml of +2 according to the Pauli principle (one
with ms = +1/2 and one with ms = −1/2). Similarly, two
electrons can be assigned ml of +1 (again, with ms = +1/2

and ms = −1/2), and the remaining two electrons can be

assigned to ml of 0. That gives a total ml of +6, with a total
ms of 0.
(b) To maximize ms, we can assign at most five electrons to
ms = +1/2 (with corresponding ml values of +2, +1, 0, −1,
and −2). The sixth electron cannot also have ms = +1/2,
because its ml value would be the same as one already
assigned, which would violate the Pauli principle by hav-
ing two electrons with the same ml and ms labels. The sixth
electron must therefore have ms = −1/2, giving a total ms of
+2. The first five electrons give a total ml of 0, so the largest
total ml would be obtained by assigning the sixth electron to
ml of +2, giving a total ml of +2.
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8.2 ELECTRONIC STATES IN MANY-ELECTRON
ATOMS

Figure 8.1 illustrates the result of an approximate calculation of the order of the
filling of energy levels in many-electron atoms as the atomic number Z increases.
The 1s level is always the lowest energy level to be filled, and the 2s and 2p levels
are fairly close in energy. The 2s level always lies a bit lower in energy than the
2p level, and so the 2s level is filled before the 2p. (The fine-structure splitting
is very small on the scale of this diagram.) We can understand why the 2s level
lies lower in energy if we recall Example 7.6 and Figure 7.10. An electron in the
2s level has a greater probability to be found at small radii compared with an
electron in the 2p level. (Penetrating close to the nucleus, the 2s electron also is
attracted by the full nuclear charge +Ze, while the 2p electron spends most of
its time beyond the orbits of the 1s electrons where it is attracted by an effective
charge that is less than the full charge of the nucleus. We’ll discuss this effect,
which is called electron screening, in Section 8.3.) These two effects—closer
penetration to the nucleus and screening—are responsible for the tighter binding
of the 2s electrons compared with the 2p electrons.
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3d
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FIGURE 8.1 Atomic subshells, in or-
der of increasing energy. The energy
groupings are not to scale, but rep-
resent the relative energies of the
subshells.

A more extreme example of the tighter binding of the penetrating orbits occurs
for the n = 3 levels. The 3s electron penetrates the inner orbits (it has a large
probability density at small r; see Figure 7.10), and the 3p electron penetrates
almost as much. The 3d electron has negligible penetration of the inner orbits. As
a result, the 3s and 3p levels are more tightly bound and therefore lower in energy
than the 3d level. A similar effect occurs for the n = 4 levels—the tighter binding
of the 4s and 4p electrons pulls their energy levels down so low that they almost
coincide with the 3d level, as shown in Figure 8.1. The 3d and 4s levels are very
close in energy—for some atoms the 3d level is lower and for some atoms the
4s is lower. This small energy difference is an important factor that contributes to
the large electrical conductivity of copper, as we discuss later in this chapter.

The tighter binding of the penetrating s and p orbits also pulls the 5s and 5p
levels down close to the 4d level, and similarly causes the 6s and 6p levels to
appear at roughly the same energy as the 5d and 4f levels.

As we learned in the case of the hydrogen atom, orbits with the same value
of n all lie at about the same average distance from the nucleus. (The electrons
in the penetrating orbits spend some of their time closer to the nucleus than the
nonpenetrating orbits, but also some of their time further from the nucleus; the
average distance from the nucleus of the penetrating orbits is then about the same
as the average distance from the nucleus of the nonpenetrating orbits with the
same value of n. See Problem 31 in Chapter 7 for a verification of this property
for the hydrogen atom.) The set of orbits with a certain value of n, with about the
same average distance from the nucleus, is known as an atomic shell. The atomic
shells are designated by letter, as follows:

n 1 2 3 4 5

Shell K L M N O

The levels with a certain value of n and l (for instance, 2s or 3d) are known
as subshells. According to the Pauli principle, the maximum number of electrons
that can be placed in each subshell is 2(2l + 1). The (2l + 1) factor comes from
the number of different ml values for each l, because ml can take the values
0, ±1, ±2, ±3, . . . , ±l. The extra factor of 2 comes from the two different ms
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values; for each ml, we can have ms = +1/2 or ms = −1/2. According to this
scheme, the 1s subshell has a capacity of 2(2 × 0 + 1) = 2 electrons; the 3d
subshell has a capacity of 2(2 × 2 + 1) = 10 electrons. (Note that this capacity
doesn’t depend on n; any d subshell has a capacity of 10 electrons.) Table 8.1
shows the ordering and capacity of the subshells.

It is important to keep in mind exactly what is represented by Figure 8.1
and Table 8.1. They give the order of filling of the energy levels, and so they
represent only the “outer” or valence electrons. For example, the first 18 electrons
fill the levels up through 3p, and the energy levels (subshells) available to the
19th electron in potassium (Z = 19) or calcium (Z = 20) are well described by
Figure 8.1. However, the energy levels appropriate to the 19th electron in a heavy
element such as lead (Z = 82) would be very different. In this case it is more
correct to describe the atom in terms of shells—all of the n = 3 states (the M
shell) are grouped together, as are all of the n = 4 states (the N shell), and so
forth. When we discuss the inner structure of the atom, as in the case of X rays,
the ordering of Figure 8.1 is not appropriate, and it is more appropriate to group
the levels by shells, as we do in Section 8.5.

TABLE 8.1 Filling of Atomic Subshells

n l Subshell Capacity
2(2l+1)

1 0 1s 2

2 0 2s 2

2 1 2p 6

3 0 3s 2

3 1 3p 6

4 0 4s 2

3 2 3d 10

4 1 4p 6

5 0 5s 2

4 2 4d 10

5 1 5p 6

6 0 6s 2

4 3 4f 14

5 2 5d 10

6 1 6p 6

7 0 7s 2

5 3 5f 14

6 2 6d 10

The Periodic Table

Figure 8.2 shows the periodic table, which is an orderly array of the chemical
elements, listed in order of increasing atomic number Z and arranged in such a
way that the vertical columns, called groups, contain elements with rather similar
physical and chemical properties. In this section we discuss the way in which the
filling of electronic subshells helps us understand the arrangement of the periodic
table. In later sections we examine some of the physical and chemical properties
of the elements.
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FIGURE 8.2 The periodic table of the elements.
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In attempting to understand the ordering of subshells and the periodic table,
we must follow two rules for filling the electronic subshells:

1. The capacity of each subshell is 2(2l+1). (This is of course just another way
of stating the Pauli exclusion principle.)

2. The electrons occupy the lowest energy states available.

To indicate the electron configuration of each element, we use a notation in
which the identity of the subshell and the number of electrons in it are listed. The
identity of the subshell is indicated in the usual way, and the number of electrons
in that subshell is indicated by a superscript. Thus hydrogen has the configuration
1s1, for one electron in the 1s shell, and helium has the configuration 1s2. Helium
has both a filled subshell (the 1s) and a closed major shell (the K shell) and
thus is an extraordinarily stable and inert element. With lithium (Z = 3), we
begin to fill the 2s subshell; lithium has the configuration 1s22s1. With beryllium
(Z = 4, 1s22s2) the 2s subshell is full, and the next element must begin filling
the 2p subshell (boron, Z = 5, 1s22s22p1). The 2p subshell has a capacity of six
electrons, and with neon (Z = 10, 1s22s22p6) both the 2p subshell and the L shell
(n = 2) are complete.

The next row (or period) begins with sodium (Z = 11, 1s22s22p63s1), and the
3s and 3p subshells are filled in much the same way as the 2s and 2p subshells,
ending with the inert gas argon (Z = 18, 1s22s22p63s23p6). The elements of the
third row (period) are chemically similar to the corresponding elements of the
second row (period), and so are written directly under them. The next electron
might be expected to go into the 3d level. However, the highly penetrating orbit
of the 4s electron causes the 4s level to appear at a slightly lower energy than the
3d level, so the 4s subshell normally fills first. The configurations of potassium
(Z = 19) and calcium (Z = 20) are therefore respectively 1s22s22p63s23p64s1

and 1s22s22p63s23p64s2. These elements have properties similar to, and therefore
appear directly under, the corresponding elements with one and two s-subshell
electrons in the second and third periods.

We now begin to fill the 3d subshell. Because there is no 1d or 2d subshell,
we would expect the first element with a d-subshell configuration to have rather
different chemical properties from the elements we have placed previously;
thus it should not appear in any of our previously occupied groups (columns),
and so we begin a new group with scandium (Z = 21, 1s22s22p63s23p64s23d1).
The 3d subshell eventually closes with zinc (Z = 30, 1s22s22p63s23p64s23d10).
Along the way there are some minor variations; the most important is copper,
with Z = 29. For this case the 3d level lies slightly lower than the 4s level,
and so the 3d subshell fills before the 4s, resulting in the configuration
1s22s22p63s23p63d104s1. As we discuss later, this configuration is responsible
for the large electrical conductivity of copper.

In the next series of elements, the 4p subshell is filled, from gallium (Z = 31)
to the inert gas krypton (Z = 36). When we move to the next period, we fill the 5s
subshell before the 4d subshell, and the series of 10 elements corresponding to the
filling of the 4d subshell is written directly under the series that had unfilled config-
urations in the 3d subshell. (Silver, with Z = 47, corresponds exactly to copper in
the fourth period, with the 4d subshell filling before the 5s.) After the completion of
the 4d subshell, the 5p subshell is filled, ending with the inert gas xenon (Z = 54).

The next period begins with cesium and barium filling the 6s subshell. As was
the case in the previous periods, the 5d and 6s lie at almost the same energy. How-
ever, there is yet another subshell at about the same energy as the 6s and 5d —the
4f subshell, which now begins to fill, from lanthanum to ytterbium. This series of
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TABLE 8.2 Electronic Configurations of Some Elements

H 1s1 Mn [Ar]4s23d5 La [Xe]6s25d1

He 1s2 Cu [Ar]4s13d10 Ce [Xe]6s25d14f 1

Li 1s22s1 Zn [Ar]4s23d10 Pr [Xe]6s24f 3

Be 1s22s2 Ga [Ar]4s23d104p1 Gd [Xe]6s25d14f 7

B 1s22s22p1 Kr [Ar]4s23d104p6 Dy [Xe]6s24f 10

Ne 1s22s22p6 Rb [Kr]5s1 Yb [Xe]6s24f 14

Na [Ne]3s1 Y [Kr]5s24d1 Lu [Xe]6s25d14f 14

Al [Ne]3s23p1 Mo [Kr]5s14d5 Re [Xe]6s25d54f 14

Ar [Ne]3s23p6 Ag [Kr]5s14d10 Au [Xe]6s15d104f 14

K [Ar]4s1 In [Kr]5s24d105p1 Hg [Xe]6s25d104f 14

Sc [Ar]4s23d1 Xe [Kr]5s24d105p6 Tl [Xe]6s25d104f 146p1

Cr [Ar]4s13d5 Cs [Xe]6s1 Rn [Xe]6s25d104f 146p6

A symbol in brackets [ ] means that the atom has the configuration of the previous inert gas plus the additional
electrons listed.

elements, called the lanthanides or rare earths, is usually written separately in the
periodic table, because there have been no other f -subshell elements under which
to write them. The 4f subshell has a capacity of 14 electrons, and so there are 14
elements in the lanthanide series. Once the 4f subshell is complete, we return to
filling the 5d subshell, writing those elements in the groups under the corresponding
3d and 4d elements, and then complete the period with the filling of the 6p sub-
shell, ending with the inert gas radon (Z = 86). The seventh period is filled much
like the sixth, with a series known as the actinides, written under the lanthanides,
corresponding to the filling of the 5f subshell.

What is most remarkable about this scheme is that the arrangement of the
periodic table was known well before the introduction of atomic theory. The
elements were organized into groups and periods based on their physical and
chemical properties by Dmitri Mendeleev in 1859; understanding that organization
in terms of atomic levels is a great triumph for the atomic theory. This way of
organizing the elements gives us great insight into their physical and chemical
properties, as we discuss in the next sections.

Table 8.2 lists the electronic configurations of some of the elements.

Example 8.2

Copper has the electronic configuration [Ar]4s13d10 in its
ground state. By adding a small amount of energy (about
1 eV) to a copper atom, it is possible to move one of the
3d electrons to the 4s level and change the configuration
to [Ar]4s23d9. By adding still more energy (about 5 eV),
one of the 3d electrons can be moved to the 4p level so
that the configuration becomes [Ar]4s13d94p1. For each of

these configurations, determine the maximum value of the
total ms of the electrons.

Solution
The electrons in the filled shells (Ar core) have a total ms of
zero. In fact, any filled subshell has equal numbers of elec-
trons in ms = +1/2 and ms = −1/2 states, which also gives
a total of zero. In the 4s13d10 configuration, only the single



232 Chapter 8 | Many-Electron Atoms

4s electron contributes to ms, and its maximum value is
+1/2. In the 4s23d9 configuration, the two 4s electrons give
a total ms of zero. In the 3d subshell, there are 5 different ml
values, so we can have at most 5 electrons with ms = +1/2.
The remaining 4 electrons must have ms = −1/2, so we

have a total ms of 5 × (+1/2) + 4 × (−1/2) = +1/2. In the

4s13d94p1 configuration, each of the three subshells con-

tributes a maximum ms of +1/2, so the maximum total ms

is +3/2.

8.3 OUTER ELECTRONS: SCREENING AND
OPTICAL TRANSITIONS

The electronic configurations of the alkali elements (those in the first column of
the periodic table) all show a single s electron outside an inert gas core. These
elements are very reactive, meaning they can easily give up the s electron to
another element to form a chemical bond. For example, lithium (1s22s1) readily
gives up its 2s electron to form the positive ion Li+.

It may at first seem somewhat surprising that Li gives up its electron so easily.
The ionization energy of Li is 5.39 eV. This is smaller than the ionization energy
of hydrogen (13.6 eV), even though from Eq. 6.38 we might expect that the
energies of electrons in atoms should increase in proportion to Z2.

We can understand this effect from the diagram of Figure 8.3. The lithium
atom can be roughly characterized by an inner atomic shell consisting of two 1s
electrons and a single electron in the 2s subshell. As was the case in the one-
electron atoms we considered in Chapters 6 and 7, the principal quantum number
n determines the average distance of an electron from the nucleus. Although there
is no simple formula that allows us to calculate the average orbital radius in atoms
with more than one electron, it is certainly reasonable to expect that the 2s electron
is most likely to be found much farther from the nucleus than the 1s electrons.

Nucleus (+3e)

1s electrons 
(−2e)

FIGURE 8.3 Electron structure in
lithium, as might be seen from the
average location of an outer (2s)
electron. The dashed line represents
a spherical Gaussian surface at that
location.

The net electric force on the 2s electron can be estimated using Gauss’s law.
Imagine a spherical surface centered at the nucleus having a radius equal to the
average orbital radius of the 2s electron. The electric field at that distance is
determined, according to Gauss’s law, by the net charge contained within the
sphere. The electrons in the n = 1 orbit have nearly a 100% probability of being
found within the sphere. Thus the net charge inside the sphere must include the
nucleus (+3e) and the two n = 1 electrons (−2e) for a total net charge of +e. To
a good approximation, for some applications a lithium atom looks very much like
a one-electron atom with the electron in the n = 2 orbit about a nucleus with an
effective charge of +e. (Recall from electrostatics that if the charge distribution is
spherically symmetric, we can replace an extended charge distribution with a point
charge at the center of the sphere.) Equation 6.38 gives the energy of such an elec-
tron in the n = 2 orbit in an atom with an effective nuclear charge of Zeff e = +e as

En = (−13.6 eV)
Z2

eff

n2
= −3.40 eV (8.1)

This simple model predicts that the ionization energy of a neutral lithium atom
is 3.40 eV. The measured value is 5.39 eV. The agreement is not extremely
good, but the estimated value is off by much less than a factor of Z2 = 9, so the
calculation is probably on the right track.

The difference between the measured and estimated values can be accounted
for by an effect that we have already discussed: the penetration of the s electrons
through the inner shells to be occasionally found close to the nucleus. The 2s
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electron sometimes finds itself much closer to the nucleus than its average orbital
radius, and may occasionally be inside the n = 1 shell. In this case Gauss’s law
tells us that the electron feels the full +3e charge of the nucleus, which results in
an increase in the binding energy.

Let’s instead consider an excited state of lithium, in which the 2s electron
moves to the 2p state. The 2p electron penetrates the inner shell hardly at all. The
energy of the 2p electron in lithium is −3.54 eV, in almost exact agreement with
the prediction of our simple model. The small discrepancy might indicate a small
degree of penetration of the 2p electron inside some of the 1s probability distribu-
tion, which gives a small increase to the binding energy. If we instead move the
outer electron to the 3d state, the measured energy is −1.51 eV, in exact agreement
with the prediction of Eq. 8.1 for n = 3. The 3d electron has almost no penetration
inside the 1s shell, and so that electron is very well described by Zeff = 1.

This effect is called electron screening. To an outer electron, the charge of the
nucleus can be screened or shielded by the electrons in the inner shells. This is
one case in which the formulas we derived for the energies of a one-electron atom
can be used to determine approximately the energy of an electron in an atom with
more than one electron. For the outer electron in lithium, the 3 positive charges
in the nucleus are screened by the negative charges of the two inner electrons,
giving a net charge of one unit. The less penetrating is the orbit of the outer
electron, the more accurate is the prediction of Eq. 8.1. In lithium, for example,
the 3d orbit has almost no penetration of the inner shells and so the formula gives
a very accurate representation of the binding of that electron. The 2p orbit in
lithium has relatively little penetration, so again the approximate formula gives a
good prediction. It is less accurate for the 2s electron, which does occasionally
penetrate through the inner 1s orbits.

Electron screening can also be used in a qualitative way to help understand the
ionization energies of atoms. Consider helium, for example. In ionized helium, the
single electron has an energy of −54.4 eV in its ground state. If we add a second
electron to make neutral helium (with both electrons in the 1s state), the ionization
energy is 24.6 eV. The screening of one electron by a portion of the probability dis-
tribution of the other is responsible for reducing the ionization energy from 54.4 eV
when no second electron is present to 24.6 eV when the second electron is present.

Example 8.3

The ground state of helium has the configuration 1s2.
Use the electron screening model to predict the energies
of the following excited states of helium: (a) 1s12s1 (mea-
sured value −4.0 eV); (b) 1s12p1 (−3.4 eV); (c) 1s13d1

(−1.5 eV).

Solution
(a) For the outer electron in helium, the nuclear charge of
+2e is screened by the single 1s electron, so the effective
charge seen by the outer electron is +e. From Eq. 8.1, we
have

En = (−13.6 eV)
Z2

eff

n2
= (−13.6 eV)

12

22
= −3.4 eV

The measured value is -4.0 eV, suggesting that the 2s
electron has a small penetration through the 1s distribution

and thus experiences a somewhat tighter binding than this
simple model predicts.
(b) Because Eq. 8.1 depends on n but not l, the calculation
for the 2p excited state gives the same result as the calcula-
tion for the 2s excited state (−3.4 eV). Now the agreement
is almost exact, because the 2p has less penetration than
the 2s.
(c) For the 3d excited state, Eq. 8.1 gives

En = (−13.6 eV)
Z2

eff

n2
= (−13.6 eV)

12

32
= −1.5 eV

The agreement is again very good, suggesting little pen-
etration of the 3d electron inside the 1s probability
distribution.
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Optical Transitions

When we excite one of the outer electrons to a higher energy level or remove
it completely from the atom, the resulting vacancy can be filled by electrons
dropping into the empty state. The energy lost by these electrons usually appears
as emitted photons, which are in the visible range of the spectrum and are thus
known as optical transitions. The binding energies of the outer electrons in a
typical atom are of the order of several electron-volts, and so it takes relatively
little energy to move an outer electron and produce an optical transition. In
fact, it is the absorption and reemission of light by these outer electrons that
are responsible for the colors of material objects (although in solids the electron
energy levels are usually very different from those in isolated atoms). In contrast
with X-ray spectra, which vary slowly and smoothly from one element to the
next, optical spectra can show large variations between neighboring elements,
especially those that correspond to filled subshells.

E = 0

−24.5 eV
1s2

1s12s1 1s12p1

1s13d11s13p11s13s1

FIGURE 8.5 A small portion of the
energy level diagram for helium. Note
the �l = ±1 transitions.

Beyond hydrogen, the simplest energy-level diagrams to understand are those
of the alkali metals, which have a single s electron outside an inert core. Many of
the excited states then correspond to the excitation of this single electron, and the
resulting spectra are very similar to the spectrum of hydrogen, because the nuclear
charge of +Ze is screened by the other (Z − 1) electrons. Figure 8.4 shows the
energy levels of Li and Na along with some of the emitted transitions, which follow
the same �l = ±1 selection rule as the transitions in hydrogen (see Figure 7.19).

The ground-state configuration of lithium is 1s22s1 and the ground-state
configuration of sodium is 1s22s22p63s1. The excited states in both cases can be
obtained by moving the outer electron to a higher state. For example, the first
excited state of Li is 1s22p1, with the 2s electron moving to the 2p level. (The
energy necessary to accomplish this can be provided by various means, such as
by absorption of a photon or by passage of an electric current through the material
as in a gas discharge tube.) The excited electron in the 2p state rapidly drops back
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to the 2s state, with the emission of a photon of wavelength 670.8 nm. The inert
core doesn’t participate in this excitation or emission, so to a good approximation
we can ignore all but the outer electron in studying the levels and transitions in
the alkali elements.
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FIGURE 8.6 Excited states of a hypo-
thetical atom. Only excited states 1 and
2 can be easily reached by exposure to
sunlight; exposure to ultraviolet light
populates state 4, which in turn popu-
lates state 3. Under ultraviolet light, a
stronger blue or violet (413 nm) color
is revealed than under sunlight.

The ground-state configuration of helium is 1s2. We can produce an excited
state by moving one of these electrons up to a higher level, and so some possible
excited-state configurations might be 1s12s1, 1s12p1, 1s13s1, and so forth. Photons
are emitted when the excited electron drops back to the 1s level. The �l = ±1
selection rule for transitions once again limits those that can occur. Figure 8.5
shows a portion of the energy level diagram for helium.

The phenomenon of fluorescence is responsible for the appearance of objects
under so-called “black light,” which is a source of ultraviolet radiation. Photons
in the ultraviolet region, invisible to the human eye, have higher energies than
those in the visible region, and hence if an ultraviolet photon is absorbed by an
atom, the outer electron (which is responsible for the optical transitions) can be
excited to high levels. These electrons make transitions back to their ground state,
accompanied by the emission of photons in the visible region. Objects seen in
ultraviolet light often show colors in the blue or violet end of the spectrum that
are not present when the objects are viewed in sunlight. We can understand this
effect by considering the composition of sunlight and the optical excited states of
a hypothetical atom shown in Figure 8.6. The intensity of sunlight is concentrated
in the center of the visible spectrum, in the yellow region; very little intensity
is present in the red or blue ends of the visible spectrum. The “yellow” photons
have enough energy to excite the hypothetical atom to levels 1 and 2 shown in
Figure 8.6, but not enough to reach level 3 or 4. However, the higher-energy
ultraviolet photons have sufficient energy to reach the higher levels, so the light
emitted by the atom has a stronger blue component when that atom is excited by
ultraviolet light than when excited by sunlight.

Example 8.4

Calculate the energy difference between the 3d and 2p
states in lithium, and compare with the corresponding
energy difference in hydrogen.

Solution
From Figure 8.4, the wavelength of the photon emitted in
the 3d to 2p transition is 610.4 nm. The energy difference
is then

�E = hc

λ
= 1240 eV · nm

610.4 nm
= 2.03 eV

The energy difference between corresponding levels
in hydrogen (Figure 6.20) is E3 − E2 = −1.51 eV −
(−3.40 eV) = 1.89 eV. Due to electron screening, we
expect the outer electron in lithium to behave similarly
to the electron in hydrogen, so the energy differences are
in rough agreement.

8.4 PROPERTIES OF THE ELEMENTS

In this section we briefly study the way our knowledge of atomic structure helps us
to understand the physical and chemical properties of the elements. Our discussion
is based on the following two principles:

1. Filled subshells are normally very stable configurations. An atom with one
electron beyond a filled shell will readily give up that electron to another atom
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to form a chemical bond. Similarly, an atom lacking one electron from a filled
shell will readily accept an additional electron from another atom in forming
a chemical bond.

2. Filled subshells do not normally contribute to the chemical or physical
properties of an atom. Only the electrons in the unfilled subshells need be
considered. (X-ray energies, discussed in the next section, are an exception
to this rule.) Sometimes only a single outer electron is the primary factor
influencing the physical properties of an element.

TABLE 8.3 Ionization Energies (in eV)
of Neutral Atoms of Some Elements

H 13.60 Ar 15.76

He 24.59 K 4.34

Li 5.39 Cu 7.72

Be 9.32 Kr 14.00

Ne 21.56 Rb 4.18

Na 5.14 Au 9.22

We consider a number of different physical properties of the elements, and try to
understand those properties based on atomic theory.

1. Atomic Radii. The radius of an atom is not a precisely defined quantity,
because the electron probability density determines the “size” of an atom. The
radii are also difficult to define experimentally, and in fact different kinds of
experiments may give different values for the radii. One way of defining the
radius is by means of the spacing between the atoms in a crystal containing
that element. Figure 8.7 shows how such typical atomic radii vary with Z.

2. lonization Energy. Table 8.3 gives the ionization energies of some of the
elements, and Figure 8.8 shows the variation of ionization energy with atomic
number Z.

3. Electrical Resistivity. In bulk materials, an electric current flows when a
potential difference (voltage) is applied across the material. The current i and
voltage V are related according to the expression V = iR, where R is the
electrical resistance of the material. If the material is uniform with length L
and cross-sectional area A, then the resistance is

R = ρ
L

A
(8.2)

The resistivity ρ is characteristic of the kind of material and is measured
in units of � · m (ohm · meter). A good electrical conductor has a small
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resistivity (ρ = 1.7 × 10−8 � · m for copper); a poor conductor has a large
resistivity (ρ = 2 × 1015 � · m for sulfur). From the atomic point of view,
current depends on the movement of relatively loosely bound electrons, which
can be removed from their atoms by the applied potential difference, and also
on the ability of the electrons to travel from one atom to another. Thus
elements with s electrons, which are the least tightly bound and which also
travel farthest from the nucleus, are expected to have small resistivities.

Figure 8.9 shows the variation of electrical resistivity with atomic number.
4. Magnetic Susceptibility. When a material is placed in a magnetic field of

intensity B, the material becomes “magnetized” and acquires a magnetization
M , which for many materials is proportional to B:

μ0M = χB (8.3)

where χ is a dimensionless constant called the magnetic susceptibility.
(Materials for which χ > 0 are known as paramagnetic, and those for which
χ < 0 are called diamagnetic; materials that remain permanently magnetized
even when B is removed are known as ferromagnetic, and χ is undefined for
such materials.)

From the atomic point of view, the magnetism of atoms depends on the
�L and �S of the electrons in unfilled subshells, because the atomic magnetic
moments �μL and �μS are proportional to �L and �S (recall Table 7.2). This
effect is responsible for paramagnetic susceptibilities and occurs in all atoms
in which �L or �S is nonzero. Diamagnetism is caused by the following effect:
when a varying magnetic field occurs in an area bounded by an electric
circuit, an induced current flows in the circuit; the induced current sets up a
magnetic field which tends to oppose the changes in the applied field (Lenz’s
law). In the atomic physics case, the electric circuit is the circulating electron,
and the induced current consists of a slight speeding up or slowing down of
the electron in its orbit when a magnetic field is applied. This produces a

10

10

102

R
es

is
ti

vi
ty

 (
1

0
–8

 Ω
. m

)

103

20 30 40 50
Z

60 70 80 90 1000
1

Re

Ag

Tc

4d 5d
4f3d

AuCu

Mn

FIGURE 8.9 Electrical resistivities of the elements.



238 Chapter 8 | Many-Electron Atoms

5d

Z

5p 6p4p

2p
3p

4d

4f

6s2s 3s 5s4s

10

10

–103

103

104

105

106

–102

102

–10
–1
1

20 30 40 50 60 70 80 90 1000

Ferromagnetic

M
ag

ne
ti

c 
su

sc
ep

ti
bi

lit
y 

(u
ni

ts
 o

f 
1

0
–6

)

5f3d

FIGURE 8.10 Magnetic susceptibilities of the elements.

contribution to the magnetization of the material that is opposite to the applied
field �B, and so the diamagnetic contribution to χ is negative.

Figure 8.10 shows the magnetic susceptibilities of the elements.

Just by examining Figures 8.7 to 8.10, you can see the remarkable regularities
in the properties of the elements. Notice especially how similar the properties of
the different sequences of elements are—for example, the electrical resistivity of
the d-subshell elements or the magnetic susceptibility of the p-subshell elements.
We now look at how the atomic structure is responsible for these properties.

Inert Gases

The inert gases occupy the last column of the periodic table. Because they have
only filled subshells, the inert gases do not generally combine with other elements
to form compounds; these elements are very reluctant to give up or to accept
an electron. At room temperature they are monatomic gases. Their atoms don’t
easily join together, so the boiling points are very low (typically −200◦C). Their
ionization energies are much larger than those of neighboring elements, because
of the extra energy needed to break open a filled subshell.

p-Subshell Elements

The elements of the column (group) next to the inert gases are the halogens
(F, Cl, Br, I, At). These atoms lack one electron from a closed shell and have
the configuration np5. A filled p subshell is a very stable configuration, so
these elements readily form compounds with other atoms that can provide an
extra electron to complete the p subshell. The halogens are therefore extremely
reactive.

As we move across the series of six elements in which the p subshell is being
filled, the atomic radius decreases. This “shrinking” occurs because the nuclear
charge is increasing and pulling all of the orbits closer to the nucleus. Notice from
Figure 8.7 that the halogens have the smallest radii within each p subshell series.
(The ionic crystal radii of the inert gases are not known.)
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As we increase the nuclear charge, the p electrons also become more tightly
bound; Figure 8.8 shows how the ionization energy increases systematically as
the p subshell is filled.

From Figure 8.10 we see that each p subshell series is diamagnetic, with a
characteristic negative magnetic susceptibility.

s-Subshell Elements

The elements of the first two columns (groups) are known as the alkalis (configu-
ration ns1) and alkaline earths (ns2). The single s electron makes the alkalis quite
reactive. The alkaline earths are similarly reactive, in spite of the filled s subshell.
This occurs because the s electron wave functions can extend rather far from the
nucleus, where the electrons are screened (by Z − 2 other electrons) from the
nuclear charge and therefore not tightly bound. (Notice from Figure 8.7 that the
ns1 and ns2 configurations give the largest atomic radii, and from Figure 8.8 that
they have the smallest ionization energies.) For the same reasons, the ns1 and ns2

elements are relatively good electrical conductors. From Figure 8.10 we see that
these elements are paramagnetic; for l = 0, there is no diamagnetic contribution
to the magnetism.

Transition Metals

The three rows of elements in which the d subshell is filling (Sc to Zn, Y to Cd, Lu
to Hg) are known as the transition metals. Many of their chemical properties are
determined by the outer electrons—those whose wave functions extend furthest
from the nucleus. For the transition metals, these are always s electrons, which have
a larger mean radius than the d electrons. (Remember that the mean radius depends
mostly on n; the s electrons of the transition metals have a larger n than the d
electrons. For example, in the first row of transition metals, the 3d subshell is filling
but the 4s subshell is already filled.) As the atomic number increases across the
transition metal series, we add one d electron and one unit of nuclear charge; the net
effect on the s electron is very small, because the additional d electron screens the
s electron from the additional nuclear charge. Properties of the transition metals,
which are in large part determined by the outermost electrons, can therefore be
very similar, as the small variation in radius and ionization energy shows.

The electrical resistivity of the transition metals shows two interesting features:
a sharp rise at the center of the sequence, and a sharp drop near the end (Figure 8.9).
The sharp drop near the end of the sequence indicates the small resistivity (large
conductivity) of copper, silver, and gold. If we filled the d subshell in the expected
sequence, copper would have the configuration 4s23d9; however, the filled d
subshell is more stable than a filled s subshell, and so one of the s electrons
transfers to the d subshell, resulting in the configuration 4sl3d10. This relatively
free, single s electron makes copper an excellent conductor. Silver (5s14d10) and
gold (6s15d10) behave similarly.

At the center of the sequence of transition metals there is a sharp rise in the
resistivity; apparently a half-filled shell is also a stable configuration, and so Mn
(3d5), Tc (4d5), and Re (5d5) have larger resistivities than their neighbors. A
similar rise in resistivity is seen at the center of the 4f sequence.

The transition metals have similar paramagnetic susceptibilities, due to the
large orbital angular momentum of the d electrons and also to the large number
of d-subshell electrons that can couple their spin magnetic moments. These two
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effects are large enough to overcome the diamagnetism of the orbital motion. It is
the d electrons that are also responsible for the ferromagnetism of iron, nickel, and
cobalt. As soon as the d subshell is filled, however, the orbital and spin magnetic
moments no longer contribute to the magnetic properties (all of the ml and ms
values, positive as well as negative, are taken); for this reason, copper and zinc
are diamagnetic, not paramagnetic like their transition metal neighbors.

Lanthanides (Rare Earths)

The lanthanide (or rare earth) elements are contained in the series of 14 elements
from La to Yb; this series is usually drawn at the bottom of the periodic chart
of the elements. The rare earths are rather similar to the transition metals in that
an “inner” subshell (the 4f ) is being filled after an “outer” subshell (the 6s) is
already filled. For the same reasons discussed above, the chemical properties of
the rare earths should be rather similar, because they are determined mainly by
the 6s electrons; the radii and ionization energies show that this is true.

Because of the larger orbital angular momentum of f -subshell electrons (l = 3)
and also because of the larger number of f -subshell electrons (up to 14) that can
align their spin magnetic moments, the paramagnetic susceptibilities of the rare
earths are even larger than those of the transition metals. Even the ferromagnetism
of the rare earths is substantially stronger than that of the iron group. Generally,
we think of iron as the most magnetic of the elements. The internal magnetic field
within a magnetized piece of iron is about 28 T. Magnetized holmium metal, a
rare earth, has an internal magnetic field of 800 T, roughly 30 times that of iron!
Most of the other rare earths have similar magnetic properties. (The rare earth
metals do not reveal their ferromagnetic properties at room temperature, but must
be cooled to lower temperatures. Holmium must be cooled to 20 K to reveal its
ferromagnetic properties.)

Actinides

The actinide series of elements, which corresponds to the filling of the 5f subshell,
is usually shown in the periodic table directly under the lanthanide series. These
elements should have chemical and physical properties similar to those of the rare
earths. Unfortunately, most of the actinide elements (those beyond uranium) are
radioactive and do not occur in nature. They are artificially produced elements
and are available only in microscopic quantities. We are thus unable to determine
many of their bulk properties.

8.5 INNER ELECTRONS: ABSORPTION EDGES
AND X RAYS

Let’s imagine doing the Franck-Hertz experiment (see Section 6.6), in which we
accelerate a beam of electrons that then passes through a chamber filled with
mercury vapor. However, instead of using accelerating voltages in the range of
10 V, we’ll use voltages in the range of 105 V. Figure 8.11 shows the current
passing through the tube as a function of the accelerating voltage. A sudden
drop in the current occurs at 83.1 kV. Low accelerating voltages correspond to
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interactions that push the outer electrons in the mercury atoms to higher excited
states (or ionize the atom). The drop in the current at 83.1 kV occurs when the
mercury atom absorbs energy from the electron beam that ionizes the atom by
knocking loose one of the tightly bound inner electrons. The binding energy of
the inner electron in this case is 83.1 keV.
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FIGURE 8.11 Electron current pass-
ing through mercury vapor as a func-
tion of accelerating voltage.

A similar experiment can be done by passing a beam of X rays through a
thin film of mercury and measuring the absorption of the photon intensity. If we
are able to vary the wavelength of the X rays, the absorption as a function of
wavelength might look like Figure 8.12. Photons are absorbed from the beam by
the photoelectric effect, in which electrons are knocked loose from mercury atoms.
As the photon wavelength is increased (or as the photon energy is decreased),
we reach a point at which the photons do not have enough energy to produce at
least one component of photoelectrons, and thus there is a sudden decrease in the
photon absorption. The wavelength at which this occurs, 0.0149 nm, corresponds
to an energy of 83.1 keV, in agreement with the value deduced from electron
scattering (Figure 8.11).
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FIGURE 8.12 Absorption of photons
by a thin film of mercury as a function
of the photon wavelength.

The sudden drop in the electron current or in the photoelectron emission is
called the absorption edge. It corresponds to the release of an inner electron from
the atom. In the case of mercury, the most tightly bound (1s) electrons have
a binding energy of 83.1 keV. In the electron scattering experiment, when the
energy of the electrons in the beam exceeds 83.1 keV, the collision of an electron
with a mercury atom can transfer an energy of 83.1 keV to the atom and result in
the ejection of one of the 1s electrons. Similarly, when the photon energy exceeds
83.1 keV (or when its wavelength is below 0.0149 nm), the photons can eject a
photoelectron from the 1s level, but when the photon energy is below 83.1 keV
that is not possible.

As discussed in Section 8.3, the n = 1 level is also known as the K shell. So far
we have been discussing the K absorption edge in mercury, which corresponds
to the release of an electron from the K shell. It is also possible to release a less
tightly bound electron from the L shell (n = 2), in which case we would speak
of the L absorption edge. In mercury, the L absorption edge is about 14 keV.
(Because of the fine-structure splitting, there are actually three different states in
the L shell with slightly different energies.)

Figure 8.13 shows the K absorption edges of the elements. There is a very
noticeable difference between the data shown in Figure 8.13 and those shown in
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Figures 8.7–8.10: the K absorption edges show no evidence for any shell effects.
Instead, there is a smooth dependence on the atomic number over the entire range
of elements. As the nuclear charge increases, the 1s electrons are pulled into
smaller and more tightly bound orbits, but this is a gradual process that is largely
unaffected by the stacking of electrons into higher energy shells. There are no
sudden changes in the 1s properties as a higher shell is filled and a still higher
shell begins filling.

X-Ray Transitions
X rays, as we discussed in Chapter 3, are electromagnetic radiations with
wavelengths from approximately 0.01 to 10 nm (energies from 100 eV to 100 keV).
In Chapter 3 we discussed the continuous X-ray spectrum emitted by accelerated
electrons. In this section we are concerned with the discrete X-ray line spectra
emitted by atoms.

X rays are emitted in transitions between the more tightly bound inner electron
energy levels of an atom. Under normal conditions all of the inner shells of an
atom are filled, so X-ray transitions do not occur between these levels. However,
when we remove one of the inner electrons, such as by ejecting a K electron
following electron scattering or a photoelectric process, an electron from a higher
subshell will rapidly make a transition to fill that vacancy, emitting an X-ray
photon in the process. The energy of the photon is equal to the energy difference
of the initial and final atomic levels of the electron that makes the transition.

When we remove a 1s electron, we are creating a vacancy in the K shell. The X
rays that are emitted in the process of filling this vacancy are known as K-shell X
rays, or simply K X rays. (These X rays are emitted in transitions that come from
the L, M , N , . . . shells, but they are known by the vacancy that they fill, not by the
shell from which they originate.) The K X ray that originates with the n = 2 shell
(L shell) is known as the Kα X ray, and the K X rays originating from the M shell
are known as Kβ X rays. Figure 8.14 illustrates these transitions.
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FIGURE 8.14 X-ray series.

If the bombarding electrons or photons knock loose an electron from the L
shell, electrons from higher levels will drop down to fill this vacancy. The photons
emitted in these transitions are known as L X rays. The lowest-energy X ray of the
L series is known as Lα , and the other L X rays are labeled in order of increasing
energy as shown in Figure 8.14.

It is possible to have an L X ray emitted directly following the Kα X ray. A
vacancy in the K shell can be filled by a transition from the L shell, with the
emission of the Kα X ray. However, the electron that made the jump from the L
shell left a vacancy there, which can be filled by an electron from a higher shell,
with the accompanying emission of an L X ray.

In a similar manner, we label the other X-ray series by M , N , and so forth.
Figure 8.15 shows a sample X-ray spectrum emitted by silver.

Moseley’s Law
Let us consider in more detail the Kα X ray, which (as shown in Figure 8.14) is
emitted when an electron from the L shell drops down to fill a vacancy in the
K shell. An electron in the L shell is normally screened by the two 1s electrons,
and so it sees an effective nuclear charge of Zeff = Z − 2. When one of those
1s electrons is removed in the creation of a K-shell vacancy, only the remaining
single 1s electron shields the L shell, and so Zeff = Z − 1. (In this calculation, we
neglect the small screening effect of the outer electrons; their probability densities
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FIGURE 8.15 Characteristic X-ray spectrum of silver, such as might
be produced by 30 keV electrons striking a silver target. The conti-
nuous distribution is a bremsstrahlung spectrum.

are not zero within the L-shell orbits, but they are sufficiently small that their
effect on Zeff can be neglected.) To a very good approximation, the Kα X ray
can thus be analyzed as a transition from the n = 2 level to the n = 1 level in a
one-electron atom with Zeff = Z − 1. Using Eq. 6.38 for the Bohr atom, we can
find the energy of the Kα transition in an atom of atomic number Z:
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FIGURE 8.16 Moseley plot of square
root of Kα X-ray energy as a function
of atomic number.

�E = E2 − E1 = (−13.6 eV)(Z − 1)2

(
1

22
− 1

12

)
= (10.2 eV)(Z − 1)2 (8.4)

Just as was the case for the K absorption edge, the energies of the Kα X
rays vary smoothly with atomic number and show no effects of atomic shells. If
we plot

√
�E as a function of Z, we expect to obtain a straight line with slope

(10.2 eV)
1/2 = 3.19 eV

1/2. Figure 8.16 is an example of such a plot. The measured
slope is 3.22 eV

1/2, in excellent agreement with what is expected from Eq. 8.4. The
straight line intersects the x axis at a value very close to 1, as we expect from Eq. 8.4.

This method gives us a powerful and direct way to determine the atomic
number Z of an atom, as was first demonstrated in 1913 by the British physicist H.
G. J. Moseley, who measured the Kα (and other) X-ray energies of the elements
and thus determined their atomic numbers. The dependence of the X-ray energies
on Z given by Eq. 8.4 is known as Moseley’s law. Moseley was the first to
demonstrate the type of linear relationship shown in Figure 8.16; such graphs
are now known as Moseley plots. His discovery provided the first direct means
of measuring the atomic numbers of the elements. Previously, the elements had
been ordered in the periodic table according to increasing mass. Moseley found
certain elements listed out of order, in which the element of higher Z happened to
have the smaller mass (for example, cobalt and nickel or iodine and tellurium).
He also found gaps corresponding to yet undiscovered elements; for example, the
naturally radioactive element technetium (Z = 43) does not exist in nature and
was not known at the time of Moseley’s work, but Moseley showed the existence
of such a gap at Z = 43.

HenryG.J.Moseley(1887–1915,Eng-
land). His work on X-ray spectra pro-
vided the first link between the chem-
ical periodic table and atomic physics,
but his brilliant career was cut short
when he died on a World War I bat-
tlefield.

The straight-line plot of Figure 8.16 is independent of our assumption regarding
the exact value of the screening correction. That is, we could have written
Zeff = Z − k, where k is some unknown number, probably close to 1. The only
change in our plot would be in the intercept. We would still have a straight line
with the same slope.

Moseley’s work was of great importance in the development of atomic physics.
Working in the same year as Rutherford and Bohr, Moseley not only provided
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confirmation of the Rutherford-Bohr model, he also demonstrated a direct link
between atomic structure and the periodic table, which was previously a rather
arbitrary ordering scheme of the elements but subsequently became a classification
based on their electronic configurations.

Example 8.5

Compute the energy of the Kα X ray of sodium (Z = 11).

Solution
The energy can be found with the help of Eq. 8.4,

�E = (10.2 eV)(Z − 1)2 = (10.2 eV)(10)2 = 1.02 keV

The measured value is 1.04 keV. The small discrepancy
may be due to the screening correction in Zeff , which is not
exactly equal to 1.

Example 8.6

Some measured X-ray energies in silver (Z = 47) are
�E(Kα) = 21.990 keV and �E(Kβ) = 25.145 keV. The
binding energy of the K electron in silver is E(K) =
25.514 keV. From these data, find: (a) the energy of the Lα

X ray, and (b) the binding energy of the L electron.

Solution
(a) From Figure 8.14, we see that the energies are
related by:

�E(Lα) + �E(Kα) = �E(Kβ)

or

�E(Lα) = �E(Kβ) − �E(Kα)

= 25.145 keV − 21.990 keV = 3.155 keV

(b) Again from Figure 8.14, we see that

�E(Kα) = E(L) − E(K)

or

E(L) = E(K) + �E(Kα)

= −25.514 keV + 21.990 keV = −3.524 keV

The binding energy of the L electron is therefore
3.524 keV.

∗8.6 ADDITION OF ANGULAR MOMENTA

The properties of an alkali atom such as sodium are determined primarily by the
single outer electron; if that electron has quantum numbers (n, l, ml, ms) then the
entire atom behaves as if it had those same quantum numbers. In atoms with
several electrons outside of filled subshells, this is not the case. For example,
the electronic configuration of carbon (Z = 6) is 1s22s22p2. To find the angular
momentum of carbon, we must combine the angular momenta of the two 2p
electrons to find the total orbital angular momentum quantum number L and total
magnetic quantum number ML that characterize the entire atom.

∗This is an optional section that may be skipped without loss of continuity.
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Suppose we have an atom with two electrons outside of filled subshells. These
electrons have quantum numbers (n1, l1, ml1, ms1) and (n2, l2, ml2, ms2). The total
orbital angular momentum of the atom is determined by the vector sum of the
orbital angular momenta of the two electrons:

�L = �L1 + �L2 (8.5)

Each vector is related to its corresponding angular momentum quantum
number by

|�L| =
√

L(L + 1)−h |�L1| =
√

l1(l1 + 1)−h |�L2| =
√

l2(l2 + 1)−h (8.6)

These vectors do not add like ordinary vectors, but have special addition rules
associated with quantized angular momentum. These rules enable us to find L and
its associated magnetic quantum number ML.

1. The maximum value of the total orbital angular momentum quantum
number is

Lmax = l1 + l2 (8.7)

2. The minimum value of the total orbital angular momentum quantum
number is

Lmin = |l1 − l2| (8.8)

3. The permitted values of L range from Lmin to Lmax in integer steps:

L = Lmin, Lmin + 1, Lmin + 2, . . . , Lmax (8.9)

4. The z component of the total angular momentum vector is found from the sum
of the z components of the individual vectors:

Lz = L1z + L2z (8.10)

or, in terms of the magnetic quantum numbers,

ML = ml1 + ml2 (8.11)

The permitted values of the total magnetic quantum number ML range from
−L to +L in integer steps:

ML = −L, −L + 1, . . . , −1, 0, +1, . . . , L − 1, L (8.12)

An identical set of rules holds for coupling the spin angular momentum vectors
to give the total spin angular momentum �S. For two electrons, each of which has
s = 1/2, the total spin quantum number S can be 0 or 1.

All filled subshells have L = 0 and S = 0, so we don’t need to consider filled
subshells in analyzing the angular momentum of an atom. For this reason, filled
subshells ordinarily do not contribute to the magnetic properties of atoms.

For coupling more than two electrons, the procedure is first to couple the
angular momenta of two electrons to give the maximum and minimum values of
L. Then couple each allowed L to the angular momentum of the third electron to
find the largest maximum and smallest minimum. This continues for all of the
electrons in the unfilled subshell.
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Example 8.7

Find the total orbital and spin quantum numbers for
carbon.

Solution
Carbon has two 2p electrons outside filled subshells. Each
of these electrons has l = 1. According to the rules for
adding angular momenta, we have

Lmax = 1 + 1 = 2, Lmin = |1 − 1| = 0

Thus L = 0, 1, or 2. For the spin angular momentum, we
have

Smax = 1
2 + 1

2 = 1, Smin = | 1
2 − 1

2 | = 0

and so S = 0 or 1. Some combinations of L and S might
be forbidden by the Pauli principle. For example, to obtain
L = 2, the two electrons must both have ml = +1. The two
electrons must therefore have different values of ms, so
S = 1 is not allowed when L = 2.

Example 8.8

Find the total orbital and spin quantum numbers for
nitrogen.

Solution
Nitrogen has three 2p electrons, each with l = 1, outside
filled subshells. If we add the first two, we get Lmax = 2 and
Lmin = 0, as in Example 8.7, so that L = 0, 1, or 2. We now
couple the third l = 1 electron to each of these values to find
the largest maximum and smallest minimum, which give

Lmax = 2 + 1 = 3, Lmin = |1 − 1| = 0

and so L = 0, 1, 2, or 3. For the spin vectors, we again
couple the first two to give Smax = 1 and Smin = 0. Adding
the third s = 1/2 electron, we have

Smax = 1 + 1
2 = 3

2 , Smin = |0 − 1
2 | = 1

2

The resulting values of S are 1/2 and 3/2 (from the min-
imum to the maximum in integer steps). Once again, the
Pauli principle may forbid certain combinations of L and
S. The state with L = 3 cannot exist at all, because all three
electrons must have ml = +1, and assigning ms quantum
numbers will then result in two electrons with the same ml
and ms, which is forbidden by the Pauli principle.

The two 2p electrons of carbon can combine to give L = 0, 1, or 2 and S = 0 or
1. The ground state of carbon will be identified by only one particular choice of L
and S. How do we know which of these combinations will be the ground state? The
rules for finding the ground state quantum numbers are known as Hund’s rules:

1. First find the maximum value of the total spin magnetic quantum number MS
consistent with the Pauli principle. Then

S = MS,max (8.13)

2. Next, for that MS , find the maximum value of ML consistent with the Pauli
principle. Then

L = ML,max (8.14)

In the case of carbon, the maximum value of MS is +1, obtained when the two
valence electrons both have ms = +1/2. Thus S = 1. With only two electrons in
the 2p shell, the Pauli principle places no restrictions on S; in fact, three electrons
in the 2p shell can be assigned ms = +1/2. Our next task is to find the maximum
value of ML. The maximum value of ml for the first p electron is +1. The second
p electron cannot also have ml = +1, because that would give both electrons the
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same set of quantum numbers, in violation of the Pauli principle. The maximum
value of ml for the second electron is 0, so ML,max = +1 and L = 1. The ground
state of carbon is therefore characterized by S = 1 and L = 1.

Example 8.9

Use Hund’s rules to find the ground-state quantum numbers
of nitrogen.

Solution
The electronic configuration of nitrogen is 1s22s22p3. We
begin by maximizing the total MS for the three 2p elec-
trons. Three electrons in the p subshell are permitted by
the Pauli principle to have ms = +1/2, so the maximum

value of MS is 3/2, and therefore S is 3/2. Each of the three
electrons has quantum numbers (2, 1, ml, +1/2). To maxi-
mize ML we assign the first electron the maximum value
of ml —namely, +1. The maximum value of ml left for
the second electron is 0, and the third electron must there-
fore have ml = −1. The total ML is 1 + 0 + (−1) = 0, so
L = 0. Thus L = 0, S = 3/2 are the ground-state quantum
numbers for nitrogen.

Example 8.10

Find the ground-state L and S of oxygen (Z = 8).

Solution
The electronic configuration of oxygen is 1s22s22p4.
Because only three electrons in the p subshell can
have ms = +1/2, the fourth must have ms = −1/2, so

MS,max = 1/2 + 1/2 + 1/2 + (−1/2) = +1, and it follows
that S = 1. To find L, we note that, as for nitrogen, the three
electrons with ms = +1/2 have ml = +1, 0, and −1, and
we maximize ML by giving the fourth electron ml = +1.
Thus ML,max = +1, and L = 1.

Let us look now at the energy levels of helium. The ground-state configuration
of helium is 1s2. Both electrons are s electrons, with l = 0, and so the only possible
value of L is zero. Because both electrons have ml = 0, the Pauli principle requires
that the spin of the two electrons be opposite, so that one has ms = +1/2 and the
other has ms = −1/2. The only possible total MS is therefore zero, so the ground
state of helium has L = 0 and S = 0. The first excited state has configuration
1s12s1. Both electrons still have l = 0, so we must again have L = 0. However,
the total spin S can now be 0 or 1, because the Pauli principle does not restrict ms
in this case—the two electrons already have different principal quantum numbers
n, and so there is nothing to prevent them from having the same ms. There are,
therefore, two “first excited states” of helium, one with L = 0 and S = 0, and
another with L = 0 and S = 1. (Both of these states have configuration 1s12s1.)
A state with S = 0 is called a singlet state (because there is only a single possible
MS value), and a state with S = 1 is called a triplet state (because there are three
possible MS values: +1, 0, −1).

The classification of states into singlet and triplet is important when we
consider the selection rules for transitions between states; these selection rules
tell us which transitions are allowed (and therefore likely) to occur and which are
not. The selection rules, which involve both L and S, are

�L = 0, ±1 (8.15)

�S = 0 (8.16)

(There are no selection rules for n.) Of course, the selection rule �l = ±1 for the
single electron that makes the transition still applies. For the two 1s12s1 states



248 Chapter 8 | Many-Electron Atoms

1s12s1

1s12p1
1s12s1

1s2

1s14s1

1s13s1

1s14s1
1s14p1

1s13p1

S = 0
0

–1

–2

–3

E
ne

rg
y 

(e
V)

–4

–5

–6

–24

–25

S = 1

1s13p1

1s14p1
1s14d1

1s13d1
1s13d1

1s14d1

1s12p1

1s13s1

471.3

44
7.

1
58

7.
6

31
8.

8
38

8.
9

50
1.

6

39
6.

5

49
2.

2 705.5

58
.4

504.8
728.1

66
7.

8
FIGURE 8.17 Energy-level diagram for helium. The states are grouped
into singlets (S = 0) and triplets (S = 1). Some of the transitions in
the optical and ultraviolet regions are shown. Transitions marked with
an X would violate the �l = ±1 selection rule.

of helium, the �l rule does not permit either state to make transitions to the 1s2

ground state (2s to 1s would be �l = 0), and in addition, the �S rule forbids the
triplet (S = 1) states from decaying to the S = 0 ground state. These transitions
can thus occur only by violating these selection rules. Because that is a very
unlikely event, the transitions occur with very low probability. Energy levels that
have a low probability of decay must “live” for a long time before they decay;
such states are known as metastable states.

Figure 8.17 shows the energy levels and transitions in helium. The singlet
and triplet levels are grouped separately, because transitions between singlet and
triplet levels would violate the �S = 0 selection rule.

Figure 8.18 shows the energy-level diagram of carbon. Notice the increasing
complexity of the diagram, compared with the alkali metals and even with
helium. This follows from the coupling of two electrons, both of whose l values
may be different from zero. We have already discussed how the 2p2 configuration
can give L = 0, 1, or 2 and S = 0 or 1. Only one of these (L = 1, S = 1) is
the ground state of carbon; the others are excited states. More excited states
can be obtained by promoting one of the 2p electrons to a higher level, giving
configurations of 2p13s1 (L = 1, S = 0 or 1), 2p13p1 (L = 0, 1, or 2; S = 0 or
1), 2p13d1 (L = 1, 2, or 3; S = 0 or 1), and so forth. Imagine the difficulty of
analyzing the energy level diagram of the rare earths or actinides, which have f
subshells (l = 3) with as many as 14 electrons!
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FIGURE 8.18 Energy-level diagram
for carbon. Each group of levels is
labeled with the electron configura-
tion. Each individual level is labeled
with the total L and S.

8.7 LASERS

There are three means by which radiation can interact with the energy levels of
atoms (depicted in Figure 8.19). The first two we have already discussed. In the
first kind of interaction, an atom in an excited state makes a transition to a lower
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state, with the emission of a photon. (In all the examples we consider here, the
photon energy is equal to the energy difference of the two atomic states.) This is
spontaneous emission, which we represent as

atom∗ → atom + photon

where the asterisk indicates an excited state.
The second interaction, induced absorption, is responsible for absorption

spectra and resonance absorption. An atom in the ground state absorbs a photon
(of the proper energy) and makes a transition to an excited state. Symbolically:

atom + photon → atom∗ Induced
absorption

Induced
emission

Spontaneous
emission

FIGURE 8.19 Interactions of radia-
tion with atomic energy levels.

The third interaction, which is responsible for the operation of the laser, is
induced (or stimulated) emission. In this process, an atom is initially in an excited
state. A passing photon of just the right energy (again, equal to the energy
difference of the two levels) induces the atom to emit a photon and make a
transition to the lower, or ground, state. (Of course, it would eventually have
made that transition left on its own, but it makes it sooner after being prodded by
the passing photon.) Symbolically,

atom∗ + photon → atom + 2 photons

The significant detail is that the two photons that emerge are traveling in exactly the
same direction with exactly the same energy, and the associated electromagnetic
waves are perfectly in phase (coherent).

Suppose we have a collection of atoms, all in the same excited state, as shown
in Figure 8.20. A photon passes the first atom, causing induced emission and
resulting in two photons. Each of these two photons causes an induced emission
process, resulting in four photons. This process continues, doubling the number
of photons at each step, until we build up an intense beam of photons, all coherent
and moving in the same direction. In its simplest interpretation, this is the basis
of operation of the laser. (The word laser is an acronym for Light Amplification
by Stimulated Emission of Radiation.)

This simple model for a laser will not work, for several reasons. First, it
is difficult to keep a collection of atoms in their excited states until they are
stimulated to emit the photon (we don’t want any spontaneous emission). A

FIGURE 8.20 Buildup of intense beam in a laser. Each emitted
photon interacts with an excited atom and produces two photons.
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second reason is that atoms that happen to be in their ground state undergo
absorption and thus remove photons from the beam as it builds up.

Pumping

Metastable
state

Short-lived
state

Ground
state

Lasing
transition

FIGURE 8.21 A three-level atom.

To solve these problems, we must achieve a population inversion—in a
collection of atoms, there must be more atoms in the upper state than in the lower
state. This is called an “inversion” because under normal conditions at thermal
equilibrium, the lower state always has the greater population. The “inversion” is
thus an unnatural situation that must be achieved by artificial means, because it is
essential for the operation of the laser.

The first laser, which was constructed by T. H. Maiman in 1960, was based on a
three-level atom (Figure 8.21). The laser medium is a solid ruby rod, in which the
chromium atoms are responsible for the action of the laser. The atoms, originally
in the ground state, are “pumped” into the excited state by an external source
of energy (a burst of light from a flash lamp that surrounds the ruby rod). The
excited state decays very rapidly (by spontaneous emission) to a lower excited
state, which is a metastable state—the atom remains in that level for a relatively
long time, perhaps 10−3 s, compared with 10−8 s for the short-lived states. The
transition from the metastable state to the ground state is the “lasing” transition,
resulting from stimulated emission by a passing photon.

If the pumping action is successful, there are more atoms in the metastable
state than in the ground state, and we have achieved a population inversion.
However, as the lasing transition occurs, the population of the ground state is
increased, thereby upsetting the population inversion. This excess of population
in the ground state allows absorption of the lasing transition, thereby removing
photons that might contribute to the lasing action.

The four-level laser illustrated in Figure 8.22 relieves this remaining difficulty.
The ground state is pumped to an excited state that decays rapidly to the
metastable state, as with the three-level laser. The lasing transition proceeds from
the metastable state to yet another excited state, which in turn decays rapidly to
the ground state. The atom in its ground state thus cannot absorb at the energy of
the lasing transition, and we have a workable laser. Because the lower short-lived
state decays rapidly, its population is always smaller than that of the metastable
state, which maintains the population inversion.

Pumping

Ground
state

Metastable
state

Short-lived
state

Short-lived
state

Lasing
transition

FIGURE 8.22 A four-level atom.

A common example of the four-level laser is the familiar helium-neon laser,
which operates with a mixture of helium and neon gas (about 90% helium). The
important energy levels of He and Ne are shown in Figure 8.23. An electrical
current in the gas “pumps” the helium from its ground state to the excited state
at an energy of about 20.6 eV. This is a metastable state of helium—the atom
remains in that state for a relatively long time because a 2s electron is not permitted
to return to the 1s level by photon emission. Occasionally, an excited helium
atom collides with a ground-state neon atom. When this occurs, the 20.6 eV of
excitation energy may be transferred to the neon atom, because neon happens to
have an excited state at 20.6 eV, and the helium atom returns to its ground state.
Symbolically,

helium∗ + neon → helium + neon∗

where the excited state is indicated by the asterisk. The excited state of neon
corresponds to removing one electron from the filled 2p subshell and promoting
it to the 5s subshell. From there it decays to the 3p level and eventually returns to
the 2p ground state. Figure 8.23 illustrates this sequence of events and the level
schemes. (The level shown with a dashed line, the neon 3s level, is not important



8.7 | Lasers 251

2p55s1

2p53p1

1s12s1

Collision

632.8 nm

20.66 eV20.61 eV

18.70 eV

2p53s1

2p61s2
He Ne

00

FIGURE 8.23 Sequence of transitions in a He-Ne laser.

for the basic operation of the laser, but it is necessary as an intermediate step in
the return to the neon ground state, because the �l = 0 transition 3p → 2p is not
allowed, but the sequence 3p → 3s → 2p is permitted.)

At any given time, there are more neon atoms in the 5s state than in the 3p
state, because the good energy matchup of the 5s state with the helium excited
state gives a high probability of the 5s state in neon being excited. The 3p state,
on the other hand, decays rapidly. This provides the population inversion that is
needed for the laser.

In the helium-neon laser, the gases are enclosed in a narrow tube (Figure 8.24).
Occasionally a neon atom in the 5s state spontaneously emits a photon (at a
wavelength of 632.8 nm) parallel to the axis of the tube. This photon causes
stimulated emission by other atoms, and a beam of coherent (in-phase) radiation
eventually builds up traveling along the tube axis. Mirrors are carefully aligned at
the ends of the tube to help in the formation of the coherent wave, as it bounces

Laser
beam

Fully
silvered
mirror

Partially
silvered
mirror

V

FIGURE 8.24 Schematic diagram of a He-Ne laser.
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back and forth between the two ends of the tube, causing additional stimulated
emission. One of the mirrors is only partially silvered, allowing a portion of the
beam to escape through one end.

The laser is not a particularly efficient device; the small helium-neon lasers
you have probably seen used for laboratory or demonstration experiments have
a light output of perhaps a few milliwatts; the electric power required to operate
such a device may be of the order of 10 to 100 W, and thus the efficiency
(power out ÷ power in) of such a device is only about 10−4 to 10−5. It is the
coherence and directionality of the laser beam and its energy density that make
the laser such a useful device—its power can be concentrated in a beam only
a few millimeters in diameter, and thus even a small laser can deliver 100 to
1000 W/m2. Larger lasers in the megawatt (106 W) range are presently readily
available, and research laboratories are using lasers in the 100 terawatt (1014 W)
range for special applications. These powerful lasers do not operate continuously,
but are instead pulsed, producing short (perhaps 10−9 s) pulses at rates of order
100 Hz. (Such a pulse is, in fact, an excellent example of a wave packet.)

Chapter Summary

Section

Pauli exclusion
principle

No two electrons in a single
atom can have the same
set of quantum numbers
(n, l, ml, ms).

8.1

Filling order of
atomic subshells

1s, 2s, 2p, 3s, 3d, 4s, 3d,
4p, 5s, 4d, 5p, 6s, 4f , 5d,
6p, 7s, 5f , 6d

8.2

Capacity of
subshell nl

2(2l + 1) 8.2

Section

Energy of
screened electron

En = (−13.6 eV)
Z2

eff

n2
8.3

Moseley’s law
for Kα X rays

�E = (10.2 eV)(Z − 1)2 8.5

Adding angular
momenta l1, ml1
and l2, ml2

Lmax = l1 + l2,
Lmin = |l1 − l2|,
ML = ml1 + ml2

8.6

Hund’s rules for
ground state

First S = MS,max, then
L = ML,max

8.6

Questions

1. Continue Figure 8.1 upward, showing the next two major
groups. What will be the atomic number of the next inert
gas below Rn? What will be the structure of the eighth row
(period) of the periodic table? Where do you expect the
first g subshell to begin filling? What properties would you
expect the g-subshell elements to have? What will be the
atomic number of the second inert gas below radon?

2. Why do the 4s and 3d subshells appear so close in energy,
when they belong to different principal quantum numbers n?

3. Would you expect element 107 to be a good conductor or
a poor conductor? How about element 111? Do you expect
element 112 to be paramagnetic or diamagnetic?

4. Zirconium frequently is present as an impurity in hafnium
metal. Why?

5. Do you expect ytterbium (Yb) to become ferromagnetic
at sufficiently low temperatures? What type of magnetic
behavior would be expected at ordinary temperatures for
polonium (Po)? For francium (Fr)?

6. As we move across the series of transition metal or rare
earth elements, we add electrons to the d or f subshells.
In chemical compounds, these elements often show valence
states of +2, which correspond to removing two s electrons.
Explain this apparent paradox.
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7. Why do the rare earth (lanthanide) elements have such sim-
ilar chemical properties? What property might you use to
distinguish lanthanide atoms from one another?

8. Explain why the Bohr theory gives a poor accounting of
optical transitions but does well in predicting the energies
of X-ray transitions.

9. What can you conclude about the electronic configuration of
an atom that has both L = 0 and S = 0 in the ground state?

10. Suppose we do a Stern-Gerlach experiment using an atom
that has angular momentum quantum numbers L and S in
its ground state. Into how many components will the beam
split? Do you expect them to be equally spaced?

11. What is the degeneracy of a state of total orbital angular
momentum L that has S = 0? What is the degeneracy of
a state of total spin angular momentum S that has L = 0?
What is the total degeneracy of a state in which both L and
S are nonzero?

12. What L and S values must an atom have in order to show the
normal Zeeman effect? Does this apply only to the ground
state or to excited states also? Can an atom show the normal
Zeeman effect in some transitions and the anomalous Zee-
man effect in other transitions? Could the same atom even
show no Zeeman effect at all in some transitions?

13. Based on the rules for coupling electron l and s values to
give the total L and S, explain why filled subshells don’t
contribute to the magnetic properties of an atom.

14. If an atom in its ground state has S = 0, can you infer
whether it has an even or an odd number of electrons? What
if L = 0?

15. The L atomic shell actually contains three distinct levels:
a 2s level and two 2p levels (a fine-structure doublet). If

we look carefully at the Kα X ray under high resolution,
we see two, not three, different components. Explain this
discrepancy.

16. The Kα energies computed using Eq. 8.4 are about 0.1%
low for Z = 20, 1% low for Z = 40, and 10% low for
Z = 80. Why does the simple theory fail for large Z? Could
it be because the screening effect has not been handled
correctly and that Zeff is not Z − 1? If not, can you suggest
an alternative reason?

17. The first excited state in sodium is a fine-structure dou-
blet; the wavelengths emitted in the decay of these states
are 589.59 nm and 589.00 nm, a difference of 0.59 nm.
The excited 4s1 state in sodium (see Figure 8.4) decays
to the 3p doublet with the emission of radiation at the
wavelengths 1138.15 nm and 1140.38 nm, a difference of
2.23 nm. Explain how the 3p fine structure can give a wave-
length difference of 0.59 nm in one case and 2.23 nm in the
other case.

18. Suppose we had a three-level atom, like that of Figure 8.21,
in which the metastable state were the higher excited state;
the lasing transition would then be the upper transition.
Does this atom solve the problem of absorption of the lasing
transition? Would such an atom make a good laser?

19. How does a laser beam differ from a point source of light?
Contrast the change in beam intensity with distance from
the source for a laser and a point source.

20. Explain what is meant by a population inversion and why it
is necessary for the operation of a laser.

21. How could you demonstrate that laser light is coherent?
What would be the result of the same experiment using an
ordinary monochromatic source? A white light source?

Problems

8.1 The Pauli Exclusion Principle

1. (a) List the six possible sets of quantum numbers (n, l, ml, ms)
of a 2p electron. (b) Suppose we have an atom such as carbon,
which has two 2p electrons. Ignoring the Pauli principle,
how many different possible combinations of quantum num-
bers of the two electrons are there? (c) How many of the
possible combinations of part (b) are eliminated by applying
the Pauli principle? (d) Suppose carbon is in an excited state
with configuration 2p13p1. Does the Pauli principle restrict
the choice of quantum numbers for the electrons? How many
different sets of quantum numbers are possible for the two
electrons?

2. Nitrogen (Z = 7) has three electrons in the 2p level (in
addition to two electrons each in the 1s and 2s levels).
(a) Consistent with the Pauli principle, what is the maxi-
mum possible value of the total ms of all seven electrons?
(b) List the quantum numbers of the three 2p electrons that
result in the largest total ms. (c) If the electrons in the 2p

level occupy states that maximize ms, what would be the
maximum possible value for the total ml? (d) What would
be the maximum possible total ml if the three 2p electrons
were in states that did not maximize ms?

3. (a) How many different sets of quantum numbers
(n, l, ml, ms) are possible for an electron in the 4f level?
(b) Suppose a certain atom has three electrons in the 4f
level. What is the maximum possible value of the total ms
of the three electrons? (c) What is the maximum possible
total ml of three 4f electrons? (d) Suppose an atom has ten
electrons in the 4f level. What is the maximum possible
value of the total ms of the ten 4f electrons? (e) What is the
maximum possible total ml of ten 4f electrons?

8.2 Electronic States in Many-Electron Atoms

4. (a) Suppose a beryllium atom (Z = 4) absorbs energy (such
as from a beam of photons) that pushes one of the elec-
trons to an excited state. If the photon energy is set at the
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minimum necessary for this to occur, from which subshell
does the electron make the transition and to which subshell
does it jump? (b) Suppose the same experiment is done with
neon (Z = 10). At the minimum energy for absorption, from
which subshell does the electron make the transition and
to which subshell does it jump? (c) Would you expect the
minimum absorption energy for beryllium to be larger or
smaller than the minimum energy for neon? Explain.

5. (a) List all elements with a p3 configuration. (b) List all
elements with a d7 configuration.

6. Give the electronic configuration of (a) P; (b) V; (c) Sb;
(d) Pb.

7. (a) What is the electronic configuration of Fe? (b) In its
ground state, what is the maximum possible total ms of its
electrons? (c) When the electrons have their maximum pos-
sible total ms, what is the maximum total ml? (d) Suppose
one of the d electrons is excited to the next highest level.
What is the maximum possible total ms, and when ms has its
maximum total what is the maximum total ml?

8.3 Outer Electrons: Screening and Optical Transitions

8. The ground state of singly ionized lithium (Z = 3) is 1s2.
Use the electron screening model to predict the energies
of the 1s12p1 and 1s13d1 excited states in singly ion-
ized lithium. Compare your predictions with the measured
energies (respectively −13.4 eV and −6.0 eV).

9. The ground state of neutral beryllium (Z = 4) is 1s22s2. Use
the electron screening model to predict the energies of the
following excited states: 1s22s13p1 (measured −2.02 eV)
and 1s22s14d1(−0.90 eV).

10. Using the wavelengths given in Figure 8.4, compute the
energy difference between the 3d and 4d states in lithium;
do the same for sodium. Compare those values with the cor-
responding n = 4 to n = 3 energy difference in hydrogen.
Why is the agreement so good, considering the different
values of Z?

11. (a) Using the information for lithium given in Figure 8.4,
compute the energy difference of the 3p and 3d states.
(b) Compute the energy of the 3s, 4s, and 5s states above
the ground state. (c) The ionization energy of lithium in its
ground state is 5.39 eV. What is the ionization energy of the
2p state? Of the 3s state?

8.5 Inner Electrons: Absorption Edges and X Rays

12. A certain element emits a Kα X ray of wavelength 0.1940 nm.
Identify the element.

13. Compute the Kα X ray energies of calcium (Z = 20), zir-
conium (Z = 40), and mercury (Z = 80). Compare with the
measured values of 3.69 keV, 15.8 keV, and 70.8 keV. (See
Question 16).

8.6 Addition of Angular Momenta

14. Chromium has the electron configuration 4s13d5 beyond the
inert argon core. What are the ground-state L and S values?

15. Use Hund’s rules to find the ground-state L and S of
(a) Ce, configuration [Xe]6s24f 15d1; (b) Gd, configuration
[Xe]6s24f 75d1; (c) Pt, configuration [Xe]6s14f 145d9.

16. Using Hund’s rules, find the ground-state L and S of
(a) fluorine (Z = 9); (b) magnesium (Z = 12); (c) titanium
(Z = 22); (d) iron (Z = 26).

17. A certain excited state of an atom has the configuration
4d15d1. What are the possible L and S values?

18. Use the degeneracies of the states with all possible total L
and S to find how many different levels the 2p13p1 excited
state of carbon includes. (See Figure 8.18.) Compare this
result with the result of counting the individual ml and ms
values from Problem 1(d). (See also Question 11.)

8.7 Lasers

19. A small helium-neon laser produces a light beam with
an average power of 3.5 mW and a diameter of 2.4 mm.
(a) How many photons per second are emitted by the laser?
(b) What is the amplitude of the electric field of the light
wave? Compare this result with the electric field at a distance
of 1 m from an incandescent light bulb that emits 100 W of
visible light.

General Problems

20. (a) How many different possible ways are there to assign the
sets of quantum numbers to the four 2p electrons in oxygen
(Z = 8)? (b) List all possible values of the total ms for the
four electrons. (c) List all possible values of the total ml of
the four electrons. (d) If the total ms has its largest possible
value, what are the possible values of the total ml? (e) If the
total ml has its largest possible value, what are the possible
values of the total ms?

21. (a) The ionization energy of sodium is 5.14 eV. What is
the effective charge seen by the outer electron? (b) If the
3s electron of a sodium atom is moved to the 4f state, the
measured binding energy is 0.85 eV. What is the effective
charge seen by an electron in this state?

22. Draw a Moseley plot, similar to Figure 8.16, for the Kβ X
rays using the following energies in keV:

Ne 0.858 Mn 6.51 Zr 17.7

P 2.14 Zn 9.57 Rh 22.8

Ca 4.02 Br 13.3 Sn 28.4

Determine the slope and compare with the expected value.
(Equation 8.4 applies only to Kα X rays; you will need to
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derive a similar equation for the Kβ X rays.) Determine the
z-axis intercept and give its interpretation.

23. Draw a Moseley plot, similar to Figure 8.16, for the Lα X
rays using the following energies in keV:

Mn 0.721 Rh 2.89

Zn 1.11 Sn 3.71

Br 1.60 Cs 4.65

Zr 2.06 Nd 5.72

Give interpretations of the slope and intercept.
24. Because of the fine-structure splitting of the 3p state, the

3p → 3s transition in sodium actually consists of two closely
spaced lines of wavelengths 589.00 nm and 589.59 nm.
Assuming a magnetic moment of one Bohr magneton, find

the effective magnetic field that produces the fine-structure
splitting of the 3p state of sodium.

25. (a) What is the longest wavelength of the absorption spec-
trum of lithium? (b) What is the longest wavelength of the
absorption spectrum of helium? In what region of the spec-
trum does this occur? (c) What are the shortest wavelengths
in the absorption spectra of helium and lithium? In what
region of the electromagnetic spectrum are these?

26. Using the wavelengths given in Figure 8.17, compute the
energy difference between the 1s14p1 and 1s13p1 singlet
(S = 0) states in helium. Compare this energy difference
with the value expected using the Bohr model, assuming
that the p electron is screened by the s electron. Repeat the
calculation for the 3d and 4d triplet (S = 1) states.





Chapter 9
MOLECULAR STRUCTURE

Molecules range from the simple with only two atoms to very complex organic molecules
such as DNA. The photo shows a computer model of C60, a spherical arrangement of 60
carbon atoms in pentagons and hexagons, known as a ‘‘buckyball.’’
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In this chapter we consider the combination of atoms into molecules, the excited
states of molecules, and the ways that molecules can absorb and emit radiation.
From a variety of experiments we learn that the spacing of atoms in molecules is
of the order of 0.1 nm, and that the binding energy of an atom in a molecule is
of the order of electron-volts. This spacing and binding energy are characteristic
of electronic orbits, which suggests that the forces that bind molecules together
originate with the electrons. The negatively charged electrons provide the binding
that overcomes the Coulomb repulsion of the positively charged nuclei of the
atoms in the molecule.

When atoms are brought together to form molecules, the atomic states of the
electrons change into molecular states. These states are filled in the order of
increasing energy by the valence electrons of the atoms of the molecule. The
probability densities of the occupied molecular states determine the nature of
molecular bonds and the structure and properties of molecules, including their
geometrical shapes.

Just as we began to study atomic physics by looking at the simplest atom, we
begin our study of molecular physics with the simplest molecule, H+

2 , the singly
ionized hydrogen molecule. We next turn to other simple molecules, such as H2
and NaCl, and finally we look at how our previous knowledge of atomic wave
functions can help us to understand the molecular states that form the basis of
organic chemistry.

We will also study ways other than electronic excitations that molecules can
absorb and emit electromagnetic radiation. These radiations give a distinctive
signature of the molecule and its structure. Molecular spectroscopy, the study
of these radiations, finds application in such diverse areas as identification of
atmospheric pollutants and the search for life in outer space.

9.1 THE HYDROGEN MOLECULE

Let’s first look at how the wave functions of the atomic electrons can lead to
the binding together of atoms into stable molecules. Even though the negatively
charged electrons provide the attractive force that overcomes the Coulomb
repulsion of the positively charged atomic nuclei, it is perhaps not immediately
obvious how stable molecules form at all because there is also a Coulomb repulsion
of the electrons of one atom for those of another. The key to understanding this
problem is the existence of the spatial probability densities of atomic orbits, such
as we calculated for hydrogen and illustrated in Chapter 7. These probability
densities are frequently not spherically symmetric, and very often may show
overwhelming preferences for one spatial direction over another.

A complete understanding of the effect of the electrons on molecular binding
is in general made difficult by what also complicates atomic structure—there are
too many electrons present for us to be able to write down and solve the equations
that govern the structure of the atom or molecule. We therefore use the same
tactic to study molecular structure that we used for atomic structure: we begin
with a molecule that has only one electron. Such a molecule is H+

2 , the hydrogen
molecule ion, which results when we remove an electron from a molecule of
ordinary hydrogen, H2.

Before we discuss the wave mechanical properties of H+
2 , let’s try to guess

what holds this molecule together. We first realize that it is not correct to think
of H+

2 as an atom of hydrogen (proton plus electron) joined to a second proton.
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ψ1 ψ2

+ +

FIGURE 9.1 The electron wave functions for two hydrogen atoms
separated by a large distance.

The atom of hydrogen in such a combination is electrically neutral, so there is
no electrostatic Coulomb force to hold the two pieces together. In this kind of
molecule, at least, it is apparently not correct to identify the electron as belonging
exclusively to one or the other of the components. The electron must somehow be
shared between the two parts. The electron must spend a significant part of its time
in the region between the two protons. In the language of quantum mechanics, the
electron’s probability density must have a large value in that region.

(a)

(b)

+

ψ1 + ψ2

ψ1 − ψ2

ψ1

ψ1

ψ2

−ψ2

+

+ +

FIGURE 9.2 The overlap of two
hydrogenic wave functions. The wave
functions are indicated by the dashed
lines, and their sum by the solid line.
In (a), the two wave functions have
the same sign, while in (b) they have
opposite signs.

As we learned in Chapter 7, an electron in the ground state of hydrogen
has an energy of −13.6 eV, a wave function ψ = (πa3

0)
−1/2e−r/a0 , where a0 is

the Bohr radius, and a probability density proportional to ψ2. Figure 9.1 shows
the wave function for an electron that could be bound to either of two protons
separated by a large distance. As we bring the two protons closer together, the
wave functions begin to overlap, and we must combine them according to the
rules of quantum mechanics—first add the wave functions, then square the result
to find the combined probability density. (Note that this gives a very different
result from first squaring, then adding.)

We can combine these two wave functions in two different ways, depending on
whether they have the same signs or opposite signs. The absolute sign of a wave
function is arbitrary. When we calculate the normalization constant of a wave
function, we actually compute its square. We could choose either the positive or
the negative root; for convenience we usually choose the positive one. When we
calculate probability densities ψ2 for a single wave function, the choice of sign
becomes irrelevant. However, when we combine different wave functions, their
relative signs determine whether the two functions add or subtract, which can
result in very different probability densities.

(a)

(b)

+ +
|ψ1 + ψ2|2

|ψ1 − ψ2|2

+ +

FIGURE 9.3 The probability densities
corresponding to the two combined
wave functions of Figure 9.2.

Consider the two different combinations of wave functions shown in Figure 9.2.
In one case (Figure 9.2a), the two wave functions have the same sign, and in the
other case (Figure 9.2b) they have opposite signs. This has a substantial effect
on the probability distributions, which are shown in Figure 9.3. The probability
density obtained from squaring ψ1 + ψ2 (Figure 9.3a) has relatively large values
in the region between the two protons. This suggests a concentration of negative
charge between the protons, which can supply the Coulomb attraction to pull
the two protons together and form a stable molecule. The square of ψ1 − ψ2
(Figure 9.3b), however, gives a vanishing probability density midway between
the protons and thus a small density of negative charge in the region between the
protons. There is not enough negative charge to overcome the Coulomb repulsion
of the protons, and as a result this combination of wave functions does not lead to
the formation of a stable molecule.

Binding Energy of H+
2

There are two contributions to the energy of the H+
2 molecule: the Coulomb

repulsion of the two positively charged protons for each other, and the attraction
of the combination of the two protons for the negatively charged electron.
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The Coulomb repulsion energy of the protons is positive, and the energy of
the attraction of the electron by the protons is negative. For a stable molecule
to form, the total energy must be negative, so the critical question is whether
the electrons can provide enough negative energy of attraction to overcome the
positive repulsion energy of the protons.

To find the conditions necessary for a stable H+
2 ion to form, let’s look at how

the various contributions to the energy of the ion depend on the separation distance
R between the two protons. The Coulomb potential energy that characterizes the
repulsion of the bare protons is Up = e2/4πε0R; this function is plotted in
Figure 9.4. To find the electron energy as a function of R, we first consider the
case when the two protons are very far apart. In this case the electron is in the
ground state orbit about one of the protons, for which E = −13.6 eV. As we
bring the protons together, the electron becomes more tightly bound (because it
is attracted by both protons) and its energy becomes more negative. As R → 0,
the system approaches a single atom with Z = 2. For the wave function ψ1 + ψ2
(Figure 9.2a), the combined wave function has a maximum at R = 0 and resembles
the ground-state wave function of an atom with Z = 2. Recalling the result from
Chapter 6 for the electron energy in a hydrogen-like atom,

En = (−13.6 eV)
Z2

n2
(9.1)

where n is the principal quantum number, we find the energy of a ground-state
electron for Z = 2 to be −54.4 eV. The energy corresponding to the sum of the
two wave functions, which we label E+, therefore has the value −13.6 eV at large
R and approaches the value −54.4 eV at small R. The result of an exact calculation
of E+ is shown in Figure 9.4.
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FIGURE 9.4 Dependence of energy
on separation distance R for H+

2 .

For the combination corresponding to the difference between the two wave
functions, the energy is once again −13.6 eV for large R. As R → 0, the
combined wave function approaches 0 (Figure 9.2b). The lowest energy level
with a wave function that vanishes at R = 0 is the 2p state, for which the energy
in a Z = 2 hydrogenlike atom is −13.6 eV. The energy E− corresponding to the
wave function ψ1 − ψ2 therefore has the value −13.6 eV for both large R and
small R. Its exact form is shown in Figure 9.4.

The total energy of the hydrogen molecule ion is the sum of the proton
energy Up and the electron energy E+ or E−. These two sums are also plotted
in Figure 9.4. You can see that the combination Up + E− has no minimum and
therefore no stable bound state. The wave function ψ1 − ψ2 does not lead to a
stable configuration for the hydrogen molecule ion, just as we originally suspected.

The sum Up + E+ gives the stable configuration of the ion, for which the
equilibrium condition occurs at the point where Up + E+ has its minimum value.
The minimum occurs at a separation Req = 0.106 nm and an energy of −16.3 eV.
The binding energy B of H+

2 is the energy necessary to take apart the ion into H
and H+ and corresponds to the depth of the potential energy minimum of Up + E+
in Figure 9.4:

B = E(H + H+) − E(H+
2 ) = −13.6 eV − (−16.3 eV) = 2.7 eV (9.2)

Note that we have defined molecular binding energy as the energy difference
between the separate components (H and H+) and the combined system (H+

2 ).
It is interesting to note that the stability is achieved at Req = 2a0. In Chapter 7

we learned that the radial probability density for the 1s state of hydrogen has its
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maximum value at r = a0. Thus the stable configuration of the H+
2 ion is such

that the maximum in the radial probability density for a single H atom would
fall exactly in the middle of the molecule! This is once again consistent with our
expectations for the structure of H+

2 —the electron must spend most of its time
between the two protons.

R = ∞
−27.2 eV

E
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rg
y

Antibonding

Bonding

ψ1 − ψ2

ψ1 + ψ2

FIGURE 9.5 Energy of different com-
binations of wave functions in H2.

In summary, from our study of this simple molecule we have learned that an
important feature of molecular bonding concerns the sharing of a single electron
by two atoms of the molecule. This sharing is responsible for the stability of the
molecule. With this in mind we can now add a second electron and consider the
H2 molecule.

The H2 Molecule
Suppose we have two hydrogen atoms separated by a very large distance.
Associated with each atom there is a 1s electronic state, at an energy of −13.6 eV,
because the atoms are so far apart that there is no interaction between the electrons.
As we bring the atoms closer together to form a H2 molecule, the electron wave
functions begin to overlap, so that the electrons are “shared” between the two
atoms. As we have seen in the previous discussion, this can occur in such a way
that the two electron wave functions add in the region between the two protons,
giving a stable molecule, or subtract, leading to no stable molecule. The separate,
individual electronic states of the atoms now become molecular states.

Notice that, as shown in Figure 9.5, the number of states does not change as
the separation R is reduced. When the atoms are separated by a large distance,
there are two states, each at −13.6 eV, so the total energy at R = ∞ is −27.2 eV.
When the separation is reduced, there are still two states, but now at different
energies. One state corresponds to the sum of the two wave functions and leads
to a stable H2 molecule; the other state corresponds to the difference of the two
wave functions and does not give a stable molecule. The molecular state that
leads to a stable molecule is known as a bonding state, and the one that does not
lead to a stable molecule is an antibonding state.

As we found previously for H+
2 , in order to form a molecule, the electron

probability distribution must be large in the region between the two protons. In the
case of H2, this is true for both electrons, and it is certainly our expectation, based
on the Pauli principle, that for the two electrons both to occupy the molecular state
leading to the large probability in the central region, their spins must be oppositely
directed; that is, one must have ms = +1/2 and the other ms = −1/2 . As long as
the two electrons have opposite spins, they can both occupy the bonding state,
leading to a stable molecule.

The energy of the bonding state for H2 is shown in Figure 9.6; as you can see,
there is a minimum with E = −31.7 eV at R = 0.074 nm. The molecular binding
energy of H2 is the difference between the energy of the separated neutral H
atoms and the energy of the combined system:

B = E(H + H) − E(H2) = 2(−13.6 eV) − (−31.7 eV) = 4.5 eV (9.3)
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FIGURE 9.6 Bonding and antibond-
ing in H2.

Comparing Figures 9.4 and 9.6, you can immediately see the effect of adding
an additional electron to H+

2 : the binding energy is greater (the molecule is more
tightly bound), and the protons are drawn closer together. Both of these effects
are due to the presence of the increased electron density in the region between the
two protons.
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We can also understand why He does not form the molecule He2 —as two
He atoms are brought together, the bonding and antibonding states are formed in
much the same way as with H2. The He2 molecule would have four electrons; at
most two can be in the bonding state, so the other two must be in the antibonding
state. The net effect is that no stable molecule forms. (However, He+

2 is stable,
with two bonding electrons and only one antibonding electron. The binding
energy of He+

2 is 3.1 eV and the separation is 0.108 nm, remarkably close to the
corresponding values of H+

2 . )

9.2 COVALENT BONDING IN MOLECULES

The sharing of electrons in a molecule such as H2 is the origin of the covalent
bond; this type of bonding occurs commonly in molecules containing two identical
atoms, in which case it is called homopolar or homonuclear bonding.

The essential features of covalent bonding are:

1. As two atoms are brought together, the electrons interact and the separate
atomic states and energy levels are transformed into molecular states.

2. In one of the molecular states, the electron wave functions overlap in such
a way as to give a lower energy than the separated atoms had; this is the
bonding state that leads to the formation of stable molecules.

3. The other molecular state (the antibonding state) has an increased energy
relative to the separated atoms and does not lead to the formation of stable
molecules.

4. The restrictions of the Pauli principle apply to molecular states just as they
do to atomic states; each molecular state has a maximum occupancy of two
electrons, corresponding to the two different orientations of electron spin.

Other hydrogenlike atoms with a single s electron can also form stable
molecules through covalent bonding. For example, two Li atoms (Z = 3, con-
figuration 1s22s1) can form a molecule of Li2. The four 1s electrons (two from
each atom) fill the 1s bonding and antibonding states, and the remaining two 2s
electrons can both occupy the 2s bonding state. The binding energy of Li2 is
1.10 eV, which is considerably smaller than the binding energy of H2 (4.52 eV),
and the equilibrium separation distance of the atoms in the molecule is 0.267 nm,
much larger than that of H2 (0.074 nm).

Other homonuclear molecules formed from s-state bonds are listed in Table 9.1.
It is customary to characterize the molecular bond strength in terms of the
dissociation energy rather than the binding energy; the two terms are usually
equivalent and indicate the energy needed to break the molecule into neutral atoms.
The dissociation energy is weakly temperature dependent. Some tabulations list
the values at room temperature (as in Table 9.1), while others list values at 0 K.
The room-temperature values are higher than the 0 K values by about 1.5kT =
0.04 eV.

As Z increases, meaning that the s electrons are associated with increasing
principal quantum numbers n, the dissociation energy decreases and the equilib-
rium separation increases. This is consistent with the behavior of the s electron
in atoms as n increases—as Figure 8.7 shows, the radius of the orbit of the s
electron increases with increasing n for the alkali elements.
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TABLE 9.1 Properties of s-Bonded Molecules*

Molecule Dissociation Energy (eV) Equilibrium Separation (nm)

H2 4.52 0.074

Li2 1.10 0.267

Na2 0.80 0.308

K2 0.59 0.392

Rb2 0.47 0.422

Cs2 0.43 0.450

LiH 2.43 0.160

LiNa 0.91 0.281

NaH 2.09 0.189

KNa 0.66 0.347

NaRb 0.61 0.359

∗Values taken from the Handbook of Chemistry and Physics and the American Institute of
Physics Handbook.

We can also form molecular bonds with two different alkali elements. Some of
these are listed in Table 9.1. The dissociation energies and equilibrium separations
are consistent with those of the corresponding homonuclear molecules. For
example, the dissociation energy and equilibrium separation of LiH are midway
between those of H2 and Li2.

Atoms with valence electrons in p states can also form diatomic molecules
through covalent bonds—oxygen and nitrogen, for example. There are three
atomic p states, so there will be six molecular p states, and the classification of
levels can become quite tedious, but we can understand the structure of molecules
composed of atoms with p electrons based on the geometry of atomic p states.

In Chapter 7 we solved the Schrödinger equation for the H atom and showed
the spatial probability distributions for the various possible electronic wave
functions. Of course, these solutions for hydrogen will not be correct for other
atoms, but the essential features of the geometry of the atomic states remains
correct. We identified three different p states, corresponding to ml = −1, 0, and
+1. The probability distributions corresponding to these ml values were shown in
Figure 7.11.

We can imagine these distributions to have a sort of “figure-eight” shape with
two distinct lobes of large probability. In the ml = 0 case, the figure eight has
its long axis along the z axis, and the two lobes of maximum probability occur
in the +z and −z directions. In the ml = ±1 cases, the probability distribution
can be regarded as occurring from a figure eight probability distribution in the
xy plane that is rotating about the z axis, counterclockwise for ml = +1 and
clockwise for ml = −1. Because of the uncertainty principle, we can’t observe
the two probability lobes in the xy plane; all we can observe is the smeared-out
“donut-shaped” distribution shown in Figure 7.11.

For our purposes here, it is not as convenient to use the ml notation as it is to
use a different representation in which we assign each of the three possible p states
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a label that gives the direction in space corresponding to the lobes of maximum
probability. Thus pz is the state with regions of large electron probability along
the z axis, and similarly for px and py. Figure 9.7 shows a schematic representation
of these probability distributions. (The pz state corresponds exactly to ml = 0; px
and py correspond to mixtures of ml = +1 and ml = −1.) Just as the uncertainty
principle does not allow us to observe the two lobes of probability in the xy plane,
it also forbids us from observing the separate px and py probability distributions.
However, the distributions do exist (even through we can’t observe them), and
two atoms can interact with one another by means of these electron clouds.

y

z

xpxpz

py

FIGURE 9.7 Probability distributions
of three different p electrons.

We consider the structure of molecules containing p electrons based on this
model of the three mutually perpendicular p states px, py, and pz. We discuss three
applications of this type of covalent bonding: pp bonds, sp directed bonds, and sp
hybrid states.

pp Covalent Bonds
Consider what happens when we bring together two p-shell atoms, whose
probability distributions are each similar to Figure 9.7. We assume that the atoms
approach along the x axis, as in Figure 9.8. As the atoms are brought together,
the px states overlap (Figure 9.9a), giving (if the two wave functions add) an
increased electron charge density between the two nuclei and contributing to the
bonding of the atoms in the molecule. There is a much weaker overlap between
the py states (Figure 9.9b) and also between the pz states (which are not shown in
the figure). Because the overlap of the py states is not along the line connecting
the nuclei, there are components to the binding force that oppose one another,
and only a much smaller resultant force acts along the line connecting the nuclei
(Figure 9.9b). In addition, there is less overlap of the py states. The net result is
that the py states (and also the pz states) are less effective in binding the molecule
than the px states.

(a)

(b)

py py

pxpx

FIGURE 9.9 (a) Overlap of px proba-
bility distributions. The vectors indi-
cate the force on the nuclei due to the
overlap. (b) Overlap of py probability
distributions. The off-axis forces give
a smaller resultant force along the axis.

This somewhat oversimplified model suggests that the px state should have a
much greater bonding effect (and also a greater antibonding effect) than the py
and pz states. It also suggests that the bonding and antibonding effects of py states
should be the same as those of pz states.

Now we can consider the energies of the molecular states as a function of the
nuclear separation distance R. We assume that we are dealing with two atoms

py py

px px

FIGURE 9.8 Two atoms with p electrons. The pz probability dis-
tribution, which extends perpendicular to the page, is not shown.
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having filled 1s and 2s states and valence electrons in the 2p shell. When the 1s
states of the two atoms overlap, the result is 1s bonding and antibonding molecular
states, just as in the case of H2. There are altogether four 1s electrons in the
molecule, and with two in each state the 1s bonding and antibonding molecular
states are filled to capacity. The same is true of the 2s states. The atomic 2s levels
form bonding and antibonding molecular states; because each atom has a filled 2s
shell, the four 2s electrons fill both the bonding and antibonding molecular states.
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FIGURE 9.10 Bonding and antibond-
ing 2p states.

The atoms have partially filled 2p shells, so the final molecular bonding
depends critically on the molecular 2p states. For each atomic p state (px, py, pz)
there are corresponding bonding and antibonding molecular states. However, the
bonding and antibonding effects of these states are not equivalent, as Figure 9.9
illustrates. The p state that happens to lie along the line of approach (px) has an
effect that is significantly greater than the p states that lie off the line of approach
(py, pz). The px bonding state must therefore lie lower in energy than the py and
pz bonding states, and the px antibonding state must lie higher in energy than the
py and pz antibonding states. Figure 9.10 illustrates the energies of the molecular
states. The relative stability of a molecule can be determined based on the filling
of the bonding and antibonding states with electrons (two per state, corresponding
to spin up and spin down electrons). The following example illustrates how these
states are filled.

Example 9.1

Based on the filling of the bonding and antibonding states,
predict the relative stability of the molecules (a) N2,
(b) O2, and (c) F2.

Solution
(a) Nitrogen (1s22s22p3) has seven electrons: two each in
the filled 1s and 2s shells, and three electrons in the 2p shell.
In the N2 molecule, there are therefore 14 electrons. We
start in Figure 9.10 with two in the bonding 1s state, then
two in the antibonding 1s, then two more in the bonding
2s, followed by two in the antibonding 2s for a total of
eight electrons in the s states. That leaves six 2p electrons
for the 2p molecular states. We can place two each in the
three lowest 2p bonding molecular states, thus filling those
states. No electrons go into the 2p antibonding states. With

only bonding 2p electrons, N2 forms a very stable diatomic
molecule.
(b) Oxygen (1s22s22p4) has eight electrons, so the O2

molecule has a total of 16 electrons. As in N2, the first eight
electrons fill the 1s and 2s states, leaving eight additional
electrons for the 2p states. The first six of those fill the three
bonding states, and so the remaining two must go into 2p
antibonding states. With six bonding and two antibonding
valence electrons, we would expect that O2 is less stable
than N2, which has only bonding valence electrons.
(c) Fluorine (1s22s22p5) has nine electrons, so of the 18
electrons in the F2 molecule 10 must be placed in the 2p
states: six in the bonding states and four in the antibonding
states. Thus F2 should be less stable than O2.

How well do the properties of these molecules agree with our predictions? N2
has a dissociation energy of 9.8 eV and is not reactive under most circumstances.
O2 has a smaller dissociation energy (5.1 eV); the O2 molecular bonds can be
broken by relatively modest chemical reactions, as, for example, the oxidation
of metals exposed to air. F2 has an even smaller dissociation energy (1.6 eV);
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fluorine gas reacts quite violently with many substances, and the F2 molecule
can be broken apart by exposure to visible light (which has photon energies of
2–4 eV) in a process known as photodissociation. The properties of these 2p
molecules are thus quite consistent with expectations based on the filling of the
bonding and antibonding states. Similar relationships occur for the 3p, 4p, 5p, and
6p homonuclear molecules.

sp Molecular Bonds

It is often the case that a stable molecule is formed from two atoms, one with an
s-state valence electron and the other with one or more p-state valence electrons.
Consider, for example, the HF molecule. The F atom has five electrons in the
p shell, so of the three 2p atomic states, two will each have their capacity of
two electrons, and the third will have a single electron. We ignore the four
paired p electrons, which do not significantly affect the molecular bonding, and
concentrate instead on the single unpaired p electron. The two-lobed probability
distribution corresponds to a two-lobed p−state wave function, in which the signs
of ψ are opposite for the two lobes. The 1s wave function of H has only one sign
(Figure 9.11). As the H and F atoms approach each other from a large distance,
the H wave function and the F wave function can combine to give an increased
electron probability in the region between the nuclei, and hence a bonding sp state
is formed. It is also possible to have antibonding sp states, which result from the
H and F wave functions having opposite signs and producing a reduced electron
probability density between the nuclei.

F

ψF
ψH

+

H

−

+

+

FIGURE 9.11 Overlap of s and p
wave functions. Table 9.2 gives dissociation energies and nuclear separation distances for some

sp-bonded diatomic molecules.
Consider now the structure of the water molecule, H2O. Oxygen has eight

electrons, four of which occupy the 2p shell. When we place these electrons in the
2p atomic states, we begin with one electron each in the px, py, and pz states, and
then the fourth 2p electron must pair with one of the first three. An oxygen atom
therefore has two unpaired 2p electrons, each of which can form a bond with the

TABLE 9.2 Properties of sp-Bonded Molecules

Molecule Dissociation Energy (eV) Equilibrium Separation (nm)

HF 5.90 0.092

HCl 4.48 0.128

HBr 3.79 0.141

HI 3.10 0.160

LiF 5.98 0.156

LiCl 4.86 0.202

NaF 4.99 0.193

NaCl 4.26 0.236

KF 5.15 0.217

KCl 4.43 0.267
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1s electron of H to form a molecule of H2O. Figure 9.12 shows a representation
of the electron probability distributions we might expect for an oxygen atom and
for a molecule of H2O. Such a molecule has directed bonds, which have a fixed,
measurable relative direction in space. The expected angle between the two bonds
is 90◦; this angle can be measured experimentally by, for example, measuring the
electric dipole moment of the atom, and the result, 104.5◦, is somewhat larger
than we expect. This discrepancy can be interpreted as arising from the Coulomb
repulsion of the two H atoms, which tends to spread the bond angle somewhat.
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FIGURE 9.12 Overlap of electronic
wave functions in H2O.
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FIGURE 9.13 Overlap of electronic
wave functions in NH3.

As another example, consider the NH3 (ammonia) molecule. With Z = 7, the
nitrogen atom has three unpaired p electrons, one each in the px, py, and pz atomic
states. Each of these can form a bond with a H atom to form the NH3 molecule,
and we expect to find three mutually perpendicular sp bonds (Figure 9.13). The
measured bond angle is 107.3◦, again indicating some repulsion between the
H atoms.

TABLE 9.3 Bond Angles of sp Direct-
ed Bonds

Bond
Molecule Angle

H2O 104.5◦

H2S 93.3◦

H2Se 91.0◦

H2Te 89.5◦

NH3 107.3◦

PH3 93.3◦

AsH3 91.8◦

SbH3 91.3◦

Table 9.3 lists some bond angles measured for other molecules that have sp
directed bonds. As you can see, the bond angle does indeed approach 90◦ in many
cases. Based on the discussion given above, you should be able to explain why
this happens as the Z of the central atom increases.

sp Hybrid States
One example of a 2p atom we have so far not considered is carbon, and for a
special reason: carbon forms a great variety of molecular bonds, with a resulting
diversity in the type and complexity of molecules containing carbon. It is this
diversity that is the basis for the many kinds of organic molecules that can form,
based on various kinds of carbon molecular bonds, and so an understanding of
the physics of carbon molecular bonds is essential to the understanding of many
fundamental questions of structure and processes in molecular biology.

Carbon, with six electrons, has the configuration 1s22s22p2, so we expect
carbon under ordinary circumstances to show a valence of 2, with the two 2p
electrons contributing to the structure, and we might therefore expect to form
stable molecules such as CH2, with directed sp bonding (similar to H2O) and a
bond angle of roughly 90◦. Instead, what forms is CH4 (methane) in a tetrahedral
structure (Figure 9.14), with four equivalent bonds. For another example, the
elements of the third column of the periodic table (boron, aluminum, gallium, . . .)
have the outer configuration ns2np (n = 2 for boron, n = 3 for aluminum, etc.),
and we expect these elements to form compounds as if they had a single valence
p electron. We therefore expect halides such as BCl or GaF, oxides such as B2O
or Al2O, nitrides such as B3N or Al3N, hydrides such as BH or GaH, and so
forth. Instead we find that boron, aluminum, and gallium generally behave as if
they had three valence electrons, and form compounds such as BCl3, Al2O3, AlN,
and B2H6. Furthermore, the three valence electrons seem to be equivalent; there
seems to be no way, for example, to associate two of the valence electrons with
s states and one with a p state. The bonds formed by the three electrons make
equivalent angles of 120◦ with one another.

It is the effect of sp hybridization that is responsible for the valence of three
(rather than one) in boron and four (rather than two) in carbon. The four bonds in
CH4 are equivalent and identical, which would not be expected if we had two ss
bonds and two sp bonds; similarly, in BF3 or BCl3, the three bonds are identical
and are clearly not identified with two sp bonds and one pp bond.
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H
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C

FIGURE 9.14 Tetrahedral arrange-
ment of molecular bonds in CH4.

The normal meaning of hybrid is an offspring resulting from the union of
parents of different types, in which the offspring is not exactly like either parent,
but retains some of the attributes of each. In the case of molecules, hybridization
refers to a process by which the states can no longer be identified as either s or
p states, but rather are mixtures of s and p states. The formation of sp hybrids is
normally as follows:

1. In an atom with the configuration 2s22pn, one of the 2s electrons is excited to
the 2p shell, giving a configuration 2s12pn+1.

2. The hybrid states are formed by taking equal mixtures of the wave functions
representing the 2s state and each of the 2p states. For example, in the case of
boron, the configuration of 2s22p1 is converted to 2s12p2. Assuming the 2p
states to be 2px and 2py, the resultant hybrid wave functions can be represented
as different combinations of ψ2s, ψ2px

, andψ2py
, such as

ψ = ψ2s+ψ2px
+ψ2py

or ψ = ψ2s − ψ2px
+ψ2py

or ψ = ψ2s+ψ2px
− ψ2py

Illustrations of the probability distributions expected for sp, sp2, and sp3 hybrids
are shown in Figure 9.15. Keep in mind that these do not yet represent molecular
states—they are merely the contribution of one of the atoms to the bonding
electronic distributions of the molecule.

The tetrahedral structure of CH4 is therefore merely the result of the symmet-
rical spatial arrangement of the four sp3 hybrid states of C, with each hybrid state
bonded to one H. The bond angle of such a symmetrical tetrahedron is 109.5◦,
in good agreement with the measured bond angles of CH4 and other sp3 hybrids,
shown in Table 9.4.
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FIGURE 9.15 Probability distributions in sp, sp2, and sp3 hybrids.
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FIGURE 9.16 Molecular bonding in C2H4. For clarity the pz overlap is not shown;
the dashed arrows indicate the bond formed by the unhybridized pz states.

TABLE 9.4 Bond Angles of sp3

Hybrids

Bond
Molecule Angle

CCl4 109.5◦

C2H6 109.3◦

C2Cl6 109.3◦

CClF3 108.6◦

CH3Cl 110.5◦

SiHF3 108.2◦

SiH3Cl 110.2◦

GeHCl3 108.3◦

GeH3Cl 110.9◦

It is also possible for only two 2p electrons in the 2s12p3 configuration of
carbon to become involved in hybrid states; the third 2p electron then is available,
for example, to form ordinary pp molecular states. The ethylene molecule C2H4 is
an example of such a structure. The three sp2 hybrids form bond angles of 120◦;
each carbon atom has two of its three sp2 hybrid states joined to a H atom, and
the third is joined to the other carbon. The unhybridized p electron also forms a
bond between the two carbons, in a manner similar to that shown in Figure 9.9b
for the “off-axis” pp molecular states. Figure 9.16 shows a representation of the
bonding in C2H4. There are two bonds between the pair of carbons, one from the
sp2 hybrid and the other from the unhybridized pz state. Another example of sp2

hybrids in carbon is benzene (C6H6), in which each carbon is joined to one H
and two other carbons by the sp2 hybrids, with again one unhybridized p orbital
available to bond the carbons. The basic structure of benzene is a ring of carbon
atoms, as shown in Figure 9.17, with the expected angle of 120◦ between the
hybrid states, which gives the molecule its characteristic hexagonal shape.

H

H

H

H

HH

(a) (b)

FIGURE 9.17 (a) Molecular bonding in benzene. As in Figure 9.16, the overlap of the unhybridized pz states is not shown,
but the dashed arrows indicate the pz bonds. (b) Scanning electron microscope image showing electron distribution of the
benzene molecular structure on a copper surface.
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FIGURE 9.18 Molecular bonding in C2H2. The carbons are joined by three
bonds, one from the px hybrid and two from the unhybridized py and pz states
(dashed arrows).

Finally, it is also possible for carbon to form sp hybrids, leaving two unhy-
bridized p states. Acetylene (C2H2) is an example of such a molecule, with the
two carbons now joined by three bonds, one from the sp hybrid and two from the
unhybridized p states. Figure 9.18 shows the bonding arrangement in C2H2.

This variety of bonds entered into by carbon is the basis for the varied properties
of organic molecules, from the simple ones we have studied here, to the complex
ones that form the basis of living things. However, it is not only carbon that shows
sp hybridization, but other atoms as well. (Indeed, the failure of NH3 to show the
expected 90◦ bond angle could be blamed on sp hybridization rather than on the
repulsion of the H atoms.) It is also possible to have 3s−3p hybrids (silicon) and
4s−4p hybrids (germanium). It is this hybridization that gives these materials,
like carbon, a valence of 4 and a symmetrical bonding arrangement, which are
partly responsible for the usefulness of Si and Ge as semiconducting materials, as
we will discuss in Chapter 11. It is also interesting to speculate on the possibility
of a new type of organic chemistry, including new life forms, based on Si or Ge,
rather than C (Figure 9.19).

FIGURE 9.19 Artist’s image of an alien landscape populated by life forms
based on silicon. Because silicon is similar to carbon in its chemical behavior,
it can bond with hydrogen and oxygen to form complex molecules. Creatures
based on silicon would look crystalline in appearance and be able to survive
in high-temperature environments.
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9.3 IONIC BONDING

In covalent bonding, as we have seen, the bonding electrons do not belong to
any particular atom in the molecule, but rather are shared among the atoms. It
is also possible to form a molecule that results from the extreme opposite case
in which valence electrons are not shared but instead spend all of their time in
the neighborhood of only one of the atoms of the molecule. Consider the ionic
molecule NaCl. Suppose we have a neutral sodium atom (1s22s22p63s1), with one
3s electron outside of a filled shell, and a neutral chlorine atom (1s22s22p63s23p5),
which lacks one electron from a filled 3p shell. To remove the outer electron
from Na requires 5.14 eV, the ionization energy of Na, and we are left with a
positively charged Na+ ion. If we then attach that electron to the Cl atom, creating
a negatively charged Cl− ion, the energy released is 3.61 eV, the electron affinity
of Cl. The energy is released because the filled 3p shell is an especially stable
configuration, which is energetically very favorable. Thus, if we borrow 5.14 eV
to ionize the Na, we get back immediately 3.61 eV by attaching the electron to
the Cl. We can get back the remaining 1.53 eV (= 5.14 eV − 3.61 eV) by moving
the Na+ and Cl− close enough together that their Coulomb potential energy is
−1.53 eV. The separation distance corresponding to this potential energy is found
from the potential energy equation, U = q1q2/4πε0R:

R = − e2

4πε0

1

U
= 1.44 eV · nm

1.53 eV
= 0.941 nm

That is, as long as the Cl− and Na+ are closer together than 0.941 nm, the Coulomb
attraction will supply enough energy to overcome the difference between the
ionization energy of Na and the electron affinity of Cl. Put another way, Na+ and
Cl− ions separated by less than 0.941 nm have a more stable configuration than
neutral Na and Cl atoms.
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FIGURE 9.20 Molecular energy of
NaCl. The zero of the energy scale
represents neutral Na and Cl atoms.
The solid curve is the sum of the three
contributions to the molecular energy.

However, we cannot push the Na+ and Cl− ions too close together, because
eventually the filled p shells begin to overlap, which causes the ions to repel one
another. The Pauli principle forbids additional electrons in either filled p shell.
Forcing the two ions closer together therefore requires that some of the electrons
be pushed from the 2p or 3p shells into a higher shell, in order to “make room”
for the overlapping electrons. Because this takes energy, we must therefore add
energy to the Na+ + Cl− system in order to reduce the separation of the ions
beyond a certain point. We can imagine this energy as a sort of “potential
energy” of repulsion, which increases rapidly as we try to force the ions close
together.

In summary, when the ions are far apart, they attract one another, and when
they are too close together, they repel one another; in between there must be an
equilibrium position where the attractive and repulsive forces are balanced. It is
this equilibrium position that determines the size of an ionic molecule.

Figure 9.20 shows the energy of the NaCl molecule as a function of the
separation distance between the nuclei. Taking the energy zero point to refer to
the neutral atoms, we can separate the molecular energy into three terms: the
constant �E = 1.53 eV, which represents the difference in energy between the
ions and the neutral atoms; the Coulomb attraction UC between the ions; and the
Pauli “repulsion” UR, which is represented in Figure 9.20 as a potential energy
that rises rapidly for small R and falls to 0 for values of R that exceed the sum of
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TABLE 9.5 Properties of Some Ionic Diatomic Molecules

Molecule Dissociation Energy (eV) Equilibrium Separation (nm)

NaCl 4.26 0.236

NaF 4.99 0.193

NaH 2.08 0.189

LiCl 4.86 0.202

LiH 2.47 0.239

KCl 4.43 0.267

KBr 3.97 0.282

RbF 5.12 0.227

RbCl 4.64 0.279

the ionic radii, at which point the electron shells no longer overlap and the Pauli
repulsion does not occur. The sum of these three terms gives the molecular energy
of NaCl, which shows a minimum at an equilibrium separation Req of 0.236 nm.
At that distance the energy is −4.26 eV, so the binding energy or dissociation
energy (the energy needed to split the molecule into neutral atoms) is 4.26 eV.

Table 9.5 shows the equilibrium separation and dissociation energy of several
ionic molecules.

Remember that we are concerned here with isolated molecules and not with
collections of molecules in solids. When we speak of NaCl in this section, we
mean not the solid salt but rather a gas of NaCl molecules. The spacing between
atoms in a solid can be very different from the spacing in a molecule.

Example 9.2

(a) What is the value of the Pauli repulsion energy of NaCl
at the equilibrium separation? (b) Estimate the value of the
Pauli repulsion energy at a separation of 0.1 nm.

Solution
(a) At the equilibrium separation distance, the Coulomb
energy is

UC = − 1

4πε0

e2

Req
= −1.44 eV · nm

0.236 nm
= −6.10 eV

and the Pauli repulsion energy can be found from the
molecular energy E:

UR = E − UC − �E

= −4.26 eV − (−6.10 eV) − 1.53 eV = 0.31 eV

(b) From Figure 9.20 we estimate E = +4.0 eV at R =
0.1 nm. The Coulomb energy at R = 0.1 nm is −14.4 eV,
and the repulsion energy is

UR = E − UC − �E

= +4.0 eV − (−14.4 eV) − 1.53 eV = 16.9 eV

Note how rapidly the repulsion energy increases at
small R.
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Covalent and ionic bonding represent two opposite extreme cases, one in which
electrons are shared between two atoms and the other in which the electrons always
are associated with one of the atoms. How can we decide whether two atoms
will join by covalent or ionic bonding? The answer depends on the willingness of
the atoms to share their electrons, or equivalently the degree to which one atom
dominates the other in its desire to have the valence electrons all to itself.

Linus Pauling (1901–1994, United
States). Known mostly as a chemist,
his work on molecular bonds tran-
scends the traditional chemistry-
physics boundary. He is the only recip-
ient of two unshared Nobel Prizes, the
chemistry prize in 1954 for his work
on molecular bonds and the peace
prize in 1963 for his efforts toward a
ban on the testing of nuclear weapons.

For homonuclear diatomic molecules, we expect a purely covalent bond;
because the two atoms are exactly alike, neither can dominate and the electron
is completely shared between them. For heteronuclear molecules, however, the
situation is quite different. There can be no purely ionic or purely covalent
bond. The two atoms have different atomic numbers and different electronic
configurations, so the wave function of a valence or bonding electron, even if
shared, will not be exactly the same near one atom as it is near the other. The
electron must therefore spend more time near one atom than near the other; this
means that one atom may have a slight excess of negative charge and the bond,
even if we think of it as being covalent, will also have a small ionic character.
Conversely, a “pure” ionic bond has a small covalent character; we learned in
Chapter 7 that electron wave functions do not suddenly drop off to zero amplitude,
but instead fall exponentially to zero. Therefore, even in an ionic molecule like
NaCl, the wave function of the electron that was transferred to the Cl− ion is not
zero at the location of the Na+ ion; the wave function may indeed have a very
small amplitude at the Na+ ion, but it is not zero. The electron thus spends some
of its time, even if very little, being shared between the atoms, and the bonding,
while mostly ionic, has a small covalent character as well.

An empirical way to characterize the relative ionic character of a molecule
is based on the electric dipole moment of the molecule. An electric dipole, as
illustrated in Figure 9.21, consists of two charges +q and −q separated by a
distance r. The electric dipole moment of this arrangement is defined as

p = qr (9.4)

In a purely covalent molecule, there is no excess charge on either atom, so in
effect q = 0 and the dipole moment is expected to be zero. In an ionic molecule,
on the other hand, a net positive charge resides on one atom and a net negative
charge on the other, so the dipole moment is not zero.

r

+q

−q

FIGURE 9.21 An electric dipole.

If NaCl were a purely ionic molecule, we would expect a dipole moment of

p = qReq = (1.60 × 10−19 C)(0.236 × 10−9 m) = 3.78 × 10−29 C · m

The measured electric dipole moment of NaCl is 3.00 × 10−29 C · m, which is
0.79 or 79% of the maximum value corresponding to a purely ionic bond. Because
NaCl is only partially ionic, the measured dipole moment is smaller than the full
ionic value. By taking the ratio between the measured electric dipole moment and
the maximum value calculated from Eq. 9.4, we can determine a measure of the
fractional ionic character of the molecular bond:

fractional ionic character = pmeasured

qReq
(9.5)
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TABLE 9.6 Electronegativities of Some Elements

H 2.20

Li 0.98 Be 1.57 C 2.55 N 3.04 O 3.44 F 3.98

Na 0.93 Mg 1.31 Si 1.90 P 2.19 S 2.58 Cl 3.16

K 0.82 Ca 1.00 Ge 2.01 As 2.18 Se 2.55 Br 2.96

Rb 0.82 Sr 0.95 Sn 1.96 Sb 2.05 Te 2.10 I 2.66

Cs 0.79 Ba 0.89

Is there a property of atoms that allows us to predict whether they will join with
one another in ionic or covalent bonds? One property that has some predictive
value is the electronegativity, which can be roughly defined as the capability of an
atom to attract electrons when it forms chemical bonds. The electronegativity of
an atom can be computed from the sum of the energy cost of removing an electron
(the ionization energy) and the energy gain in adding an electron (the electron
affinity). Table 9.6 shows the electronegativity values for some elements.

If the two atoms in a molecule have equal electronegativities, they have equal
tendencies to attract electrons and should therefore form covalent bonds. If the
two electronegativities are very different, one atom will have a greater tendency
to attract electrons; as a result, there will be a net negative charge on one atom
and a net positive charge of equal magnitude on the other. The molecular bonding
will then have at least a partial ionic character.

We therefore expect a rough relationship between the fractional ionic character
(determined by comparing the measured electric dipole moment with its maximum
expected value) and the magnitude of the difference between the electronegativity
values. Figure 9.22 shows the fractional ionic characters plotted against the
electronegativity differences. Although the points are scattered, you can see that
there is indeed a direct relationship between the quantities: molecules with small
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electronegativity differences have only a small ionic character and therefore form
covalent bonds, while molecules with large electronegativity differences form
mostly ionic bonds.

9.4 MOLECULAR VIBRATIONS

So far we have considered the properties of molecules based on the configurations
of their electrons. The electrons largely determine the strength of the molecular
bonds and their geometry. Molecules can absorb or emit energy by changing
the configuration of their electrons, just as atoms can do. However, molecules
can also absorb or emit energy, generally in much smaller quantities, in other
ways. One way is for the atoms in a molecule to vibrate about their equilibrium
positions, just like a mass on a spring. Another way is for the atoms to rotate
about the center of mass of the molecule. We consider molecular vibrations in this
section and rotations in the next section. The vibrational and rotational energies
are often unique to particular molecules and can serve as a kind of “fingerprint”
in identifying simple molecules.

Vibrations in Quantum Mechanics

A classical vibrating system such as a mass m on a spring of force constant k
has an oscillation frequency ω = √

k/m . (Here we are dealing with the angular
or circular frequency ω = 2π f , measured in radians/second.) The oscillator has
potential energy U = 1

2 kx2, and with maximum amplitude xm its (constant) total
energy is E = 1

2 kx2
m. For the classical oscillator, there are no restrictions on the

total energy or the oscillator frequency—any value of the energy is allowed, and
the frequency and energy can be varied independently.

As we learned in Chapter 5, the quantum oscillator behaves very differently.
Only certain values of the energy are allowed. The allowed energy values, for an
oscillator that can move in only one dimension, are

EN = (N + 1
2 )−hω = (N + 1

2 )hf N = 0, 1, 2, 3, · · · (9.6)

where ω is the classical oscillator frequency. The ground-state energy is 1
2

−hω =
1
2 hf , and the excited states are equally spaced with energy differences of −hω = hf .
Figure 9.23 shows the excited states of a one-dimensional quantum oscillator.
Note that the ground state does not have E = 0; this is a consequence of the
uncertainty principle—an oscillator with E = 0 would have a displacement of
exactly zero and also a momentum of exactly zero, which would violate the
position-momentum form of the uncertainty principle. The minimum energy of
1
2 hf is often called the zero-point energy, and it can have observable consequences
(see Problem 31).

Ground state

N = 5

N = 4

N = 3

N = 2

N = 1

N = 0

E = 0

E = — hf11
2

E = — hf3
2

E = — hf1
2

E = — hf5
2

E = — hf7
2

E = — hf9
2

FIGURE 9.23 Some energy levels
and transitions in a one-dimensional
quantum oscillator.

The oscillator can emit electromagnetic radiation in jumps to lower states, or it
can absorb radiation in jumps to higher states. However, the jumps cannot occur
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in arbitrary steps. The allowed transitions are those that change N by one unit.
This restriction is called a selection rule and applies only to transitions that occur
through the emission or absorption of electromagnetic radiation.

Vibrational selection rule: �N = ±1 (9.7)

Other causes of jumps, such as collisions, are not subject to this restriction.
Although this model of a quantum oscillator is oversimplified, we do find in

nature many systems that do exhibit this type of behavior. In a molecule, the
individual atoms can vibrate relative to the center of mass. A nucleus, as we
discuss in Chapter 12, is sometimes modeled as a vibrating liquid drop. Both
of these systems have some properties in common with the quantum oscillator,
although the effective force constant k is not quite constant in those systems,
which can lose stiffness as the excitation energy increases. In a solid, the atoms
can often behave like three-dimensional oscillators, the properties of which are
different from the one-dimensional oscillator we are considering here. We will
discuss the oscillations of the atoms in a three-dimensional solid from a statistical
viewpoint in Chapter 11.

Vibrating Diatomic Molecules
A molecule with more than two atoms can vibrate in many different ways, so for
simplicity we’ll consider only molecules with two atoms. Figure 9.24 shows a
representation of the two atoms in a diatomic molecule, which oscillate so that
the center of mass remains fixed.

z

y

x

x1 x2

m1 m2

FIGURE 9.24 The two atoms in a vi-
brating diatomic molecule. The center
of mass of the molecule remains fixed
at the origin of the coordinate system.

To calculate the frequencies of the emitted transitions, we must know the mass
m and the effective force constant k. Because both atoms in the molecule are
participating in the vibration, the vibrating mass is not the mass of either atom
alone but instead is a combination of both masses. Let the masses of the two
atoms be m1 and m2. As they both pass through their equilibrium positions, the
total energy of the molecule is only kinetic energy, so

ET = 1

2
m1v2

1 + 1

2
m2v2

2 = p2
1

2m1
+ p2

2

2m2
(9.8)

In a frame of reference in which the center of mass of the molecule is fixed,
the total momentum is zero, so p1 = p2 and the energy can be written (with
p = p1 = p2) as

ET = 1

2
p2

(
1

m1
+ 1

m2

)
= 1

2
p2

(
m1 + m2

m1m2

)
= p2

2m
(9.9)

where

m = m1m2

m1 + m2
(9.10)

That is, the energy of the system is the same as if it were a single mass m, moving
with momentum p. This m is a sort of effective mass of the whole molecule and
is known as the reduced mass. It is the mass we should use in calculating the
vibrational frequency. (Previously we used the reduced mass of the electron and
proton in our analysis of the hydrogen atom—see Section 6.8.)
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Notice that m = m1/2 when m1 = m2, as in a homonuclear molecule—the
effective mass is half the mass of an individual atom. Whenever one mass is much
greater than the other, the reduced mass has a value nearly equal to that of the
lighter mass. This is consistent with our expectation, because the inertia of the
heavier mass reduces its tendency to move, and most of the vibrational motion is
done by the lighter mass.

The calculation of the effective force constant for vibrational motion is
illustrated in the following example.

Example 9.3

Find the vibrational frequency and photon energy for H2.

Solution
To find the frequency, we must know the force constant k.
To estimate k, we consider the molecule to behave like a
simple harmonic oscillator in the vicinity of its equilibrium
separation Req, and we fit a parabolic oscillator potential
energy U = 1

2 kx2 to the molecular energy in that region.
Figure 9.25 shows the region of the energy minimum and
a parabola that approximates the curve near the minimum.
The equation of the parabola is

E − Emin = 1
2 k(R − Req)

2 (9.11)

The constant k can be estimated from the graph by finding
the value of R − Req that is necessary for a certain value
of E − Emin. As shown in the figure, when E − Emin =
0.50 eV, the value of R − Req is 1/2(0.034 nm) = 0.017 nm.
Solving for k, we obtain

k = 2(E − Emin)

(R − Req)
2

= 2(0.50 eV)

(0.017 nm)2

= 3.5 × 103 eV/nm2 = 3.5 × 1021 eV/m2

The reduced mass of molecular hydrogen is half the mass
of a hydrogen atom. We can now calculate the vibrational
frequency:

f = 1

2π

√
k

m
= 1

2π

√
kc2

mc2

= 1

2π

√
(3.5 × 1021 eV/m2)(3.00 × 108 m/s)2

(0.5)(1.008 u)(931.5 × 106 eV/u)

= 1.3 × 1014 Hz

The corresponding photon energy is

E = hf = (4.14 × 10−15 eV · s)(1.3 × 1014 Hz) = 0.54 eV

The wavelength of this radiation is 2.3 μm, which is in
the infrared region of the spectrum. Molecular vibrations
typically give photons in the infrared.

Note that the parabola gives a reasonable approximation
to the actual energy curve only for energies up to about
1 eV above the minimum, which corresponds to the excited
state with N = 2. If we were to excite the H2 molecule to
energies greater than 1 eV above its ground state, we would
expect to see deviations from the behavior predicted by
the simple harmonic oscillator. In particular, all the transi-
tions would no longer have the same energy, and changes
other than �N = ±1 may occur. In other molecules, the
harmonic oscillator approximation may remain valid for
larger vibrational quantum numbers, but eventually it will
fail in all cases at sufficiently large N .

Vibrational energies can often be found in tabulations
of molecular properties. Often these tabulations give the
energy in units of cm−1. To convert to eV, multiply by the
conversion factor hc = 1.24 × 10−4 eV · cm.
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FIGURE 9.25 Fitting a parabola (dashed line) to the energy
minimum of H2.
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Summarizing our conclusions from this section for the vibrational motion
of molecules, we expect the simple harmonic oscillator to give a reasonable
description of the motion near the energy minimum, with a sequence of emission
or absorption photons all of energy hf corresponding to changes of one unit in the
vibrational quantum number. The emitted or absorbed radiations are generally in
the infrared region of the spectrum.

The result of Example 9.3 shows that in a gas of hydrogen molecules at
room temperature, where the mean translational kinetic energy is about 0.025 eV,
it is highly unlikely that a collision between molecules can deliver 0.54 eV to
one molecule and set it vibrating. This explains why the vibrational degrees of
freedom are “frozen out” at room temperature and thus why the heat capacity
of H2 does not agree with the value expected for 7 degrees of freedom, as we
discussed in Chapter 1.

The vibrational energy of F2 is 0.11 eV, so even at room temperature (see
Table 1.1) the heat capacity of fluorine gas is starting to increase above the
value that is characteristic of 5 degrees of freedom (which would include only
translational and rotational motions). By 1000 K, where the mean thermal energy
is around 0.075 eV, the vibrational states of F2 can be easily excited and so the
heat capacity of F2 at 1000 K is characteristic of 7 degrees of freedom. Oxygen
has a larger vibrational energy (0.20 eV); it is difficult to add this much energy
in a gas in which the mean energy is only 0.025 eV, and so at 300 K its heat
capacity remains at the value characteristic of 5 degrees of freedom (translation
+ rotation); the heat capacity for oxygen increases at 1000 K but not quite to the
value for 7 degrees of freedom. Nitrogen has an even greater vibrational energy
(0.29 eV), and so its heat capacity is smaller than that of F2 or O2 at 1000 K.

9.5 MOLECULAR ROTATIONS

A second way that a molecule can absorb or emit energy is through rotations
about its center of mass. The state of the rotational motion of the molecule is
described by specifying its angular momentum. In this section we discuss the
special treatment of angular momentum in quantum mechanics and the resulting
rotational states in diatomic molecules.

Rotations in Quantum Mechanics
A classical rigid rotor with rotational inertia I has a rotational kinetic energy
given by K = 1

2 Iω2 = L2/2I where L = Iω is the rotational angular momentum.
(Compare this formula with the more familiar expression for translational kinetic
energy, K = 1

2 mv2 = p2/2m, and note that we can get from the translational
expression to the rotational expression by replacing the linear momentum p with
the angular momentum L and the mass m with the rotational inertia I .)

There is no general result for the quantization of linear momentum or transla-
tional kinetic energy in quantum mechanics, so we have no obvious clues about
how to quantize the rotational motion. We can imagine a rotor to be a particle of
mass m rotating on the end of a “massless” rod of length r, but we know that in
quantum mechanics it is not possible to have rotations in a fixed plane (see the
discussion in Section 7.2 about the rotational form of the uncertainty relationship).
The quantum version of the rigid rotor is thus more properly described as a particle
confined to move in three dimensions on a sphere of radius r rather than in two
dimensions in a circle of radius r.
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E = 0 L = 0
L = 1

L = 2

L = 3

L = 4E = 20(h2/2I)−

E = 2(h2/2I)−

E = 6(h2/2I)−

E = 12(h2/2I)−

FIGURE 9.26 Some energy levels
and transitions of a quantum rotor.

The general mathematical solutions for the wave functions of a three-
dimensional rotor are beyond the level of this text (some of the solutions
can be obtained from the angular parts of the wave functions of the hydrogen
atom), but the resulting energy levels have a particularly simple form:

EL = L(L + 1)−h2

2I
L = 0, 1, 2, 3, · · · (9.12)

where L is the angular momentum quantum number. The rotational levels
have energies of 0, 2(−h2/2I), 6(−h2/2I), 12(−h2/2I), 20(−h2/2I), . . . , as shown in
Figure 9.26. Note that, in contrast to the vibrational energy levels, the rotational
energy levels are not equally spaced—the spacing increases as the energy
increases.

We can obtain Eq. 9.12 from the classical expression for the rotational kinetic
energy by replacing the classical angular momentum with the quantum result
given by Eq. 7.5, |�L| =

√
L(L + 1) −h. (Here we are using an upper-case L to

represent the angular momentum quantum number of a system such as a molecule
instead of the lower-case l, which represents the angular momentum quantum
number of a particle.)

Molecules and nuclei are again good examples of quantum rotors. Because
molecules and nuclei don’t have rigidly fixed bond lengths, they don’t quite
follow the rigid rotor spacing exactly. As the angular momentum increases and
the system rotates at a greater rate, the bonds can stretch somewhat, increasing
the rotational inertia and slightly decreasing the rotational spacing. Nevertheless,
the rotational spacing is followed very closely.

The quantum state of the rotor can be changed through the emission or absorp-
tion of electromagnetic radiation. As with the vibrational states, there is a selection
rule that limits the jumps that can occur when radiation is emitted or absorbed:

Rotational selection rule: �L = ±1 (9.13)

The permitted rotational jumps can occur only through a change of one unit in
the angular momentum quantum number. In practice, we find that this selection
rule is not absolute, but that electromagnetic transitions that change the angular
momentum quantum number by one unit are often several orders of magnitude
more probable than those that change L by other amounts. Some of the transitions
that change L by one unit are shown in Figure 9.26. Note that the photons emitted
in these transitions all have different energies, in contrast to the vibrational
excitations in which all emitted photons have the same energy.
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FIGURE 9.27 A rotating diatomic
molecule.

Rotating Diatomic Molecules
Consider the diatomic molecule shown in Figure 9.27. The origin of the
coordinate system is at the center of mass of the molecule, so that x1m1 = x2m2.
The rotational inertia of the molecule is I = m1x2

1 + m2x2
2. We can write this in

terms of the reduced mass m = m1m2/(m1 + m2) and the equilibrium separation
Req = x1 + x2 as

I = mR2
eq (9.14)

and the energies of the rotational states are

EL = L(L + 1)−h2

2mR2
eq

= BL(L + 1) (9.15)
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where the rotational parameter B is defined for diatomic molecules as

B =
−h2

2mR2
eq

(9.16)

The emitted or absorbed photons must follow the rotational selection rule �L =
±1, so the energy of an emitted photon is the energy difference between two
adjacent levels:

�E = EL+1 − EL = B(L + 1)(L + 2) − BL(L + 1) = 2B(L + 1) (9.17)

In contrast to the transitions among the vibrational excitations, which all had the
same energy, the energies of the rotational transitions depend on L, as you can
see in Figure 9.26. The emitted photons have energies 2B, 4B, 6B, . . . .

Example 9.4

Calculate the energies and wavelengths of the three lowest
radiations emitted by molecular H2.

Solution
The photon energy equals the energy difference between
the levels, which is given by Eq. 9.17. To evaluate this
energy, we must first determine the rotational quantity B.
For H2, the reduced mass m is half the mass of a hydrogen
atom. Then

B =
−h2

2mR2
eq

=
−h2c2

2mc2R2
eq

= (197.3 eV · nm)2

2(0.5 × 1.008 u × 931.5 MeV/u)(0.074 nm)2

= 0.0076 eV

Equation 9.17 now gives the energies directly, and the
corresponding wavelengths are found from λ = hc/�E.

L = l to L = 0: �E = 2B = 0.0152 eV λ = 81.6 μm

L = 2 to L = 1: �E = 4B = 0.0304 eV λ = 40.8 μm

L = 3 to L = 2: �E = 6B = 0.0456 eV λ = 27.2 μm

The energies of the emitted photons form an arithmetic
sequence with relative values 1, 2, 3, . . . , and the emitted
wavelengths have the inverse sequence 1, 1/2, 1/3, . . . .

The emitted rotational transitions are (like the vibrational transitions) in the
infrared region, but the wavelengths are 1–2 orders of magnitude larger than
those of the vibrational transitions. This region of the spectrum corresponds to
the far infrared and microwave radiations.

In contrast to the vibrational motion, for which the minimum energy was
0.54 eV, the minimum energy for the rotational motion in H2 is only 0.015 eV. In
hydrogen gas at room temperature, where the mean translational kinetic energy is
0.025 eV, it is easily possible for a collision between two molecules to cause one
of them to start rotating. Thus the rotational motion can occur at room temperature,
and H2 behaves as if it has 2 rotational degrees of freedom (see Section 1.3).
Gases whose molecules have greater mass than hydrogen have smaller rotational
energies and their rotational states are even more easily excited in collisions, so for
most gases the rotational degrees of freedom are present at ordinary temperatures.
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Example 9.5

Figure 9.28 shows a portion of the rotational absorption
spectrum of a molecule. Determine the rotational inertia of
the molecule.

Solution
Each peak in the absorption spectrum corresponds to the
molecule moving from one level of Figure 9.26 to the
next higher level after absorbing a photon of the proper
energy or frequency. The frequencies can be found from
Eq. 9.17:

f = �E

h
= (L + 1)

−h

2πI

where Eq. 9.14 has been used to replace mR2
eq with the

rotational inertia I . This gives the frequency of each peak
in Figure 9.28, but doesn’t allow us to find I because
we don’t know the L value for the peaks. We can avoid
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FIGURE 9.28 A molecular absorption spectrum.

this problem by calculating the difference in frequency �f
between adjacent peaks L and L + 1:

�f = (L + 2)
−h

2π I
− (L + 1)

−h

2π I
=

−h

2π I

or, estimating the spacing �f between the peaks of
Figure 9.28 as 6.2 × 1011 Hz,

I =
−h

2π�f
= 1.05 × 10−34 J · s

2π(6.2 × 1011 Hz)

= 2.7 × 10−47 kg · m2 = 0.016 u · nm2

This value would correspond to, for example, a molecule
with a reduced mass of 1 u (such as one consisting of
hydrogen combined with a much heavier atom) and an
equilibrium separation of 0.13 nm.

Summarizing this section, we have seen that the rotational motion of a
molecule results in a sequence of energy levels that are not equally spaced.
The rotational energy levels are spaced 1–2 orders of magnitude closer than the
vibrational levels. The emitted radiations form an ascending series of energies (or
a descending series of wavelengths) in the far infrared or microwave region of
the spectrum. The radiations are restricted by the selection rule that permits the
rotational quantum number L to change by only one unit.

9.6 MOLECULAR SPECTRA

A complex molecule can absorb or emit energy in a variety of ways, as indicated
schematically by the energy-level diagram of Figure 9.29. The emitted or absorbed
energy can change the electronic state (in analogy with the change of energy
levels of electrons in atoms). The energy necessary to make this change is of the
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order of eV, corresponding to photons in the visible range of the spectrum. Within
the energy minimum of any electronic state, there are vibrational and rotational
states. The vibrational states are equally spaced and have energy separations of
typically 0.1–1 eV. The rotational states are not equally spaced, and they have
a smaller energy separation of typically 0.01–0.1 eV. Because the rotational
spacing is much smaller than the vibrational spacing, it is convenient to consider
each vibrational state as providing the basis on which a sequence of rotational
states is built. We discuss here only the vibrational and rotational structure, not
the electronic excited states.

Electronic
ground state

Electronic
excited state

FIGURE 9.29 Electronic, vibrational,
and rotational energy levels of a
molecule.

Figure 9.30 shows a detail of the rotational and vibrational structure. The states
are labeled with the vibrational quantum number N and the rotational quantum
number L. Depending on their properties, some molecules can show a purely
vibrational structure (such as Figure 9.23) and others can show a purely rotational
structure (such as in Figure 9.26). In many molecules, however, the transitions
between the levels must simultaneously satisfy both the rotational and vibrational
selection rules:

|�N | = 1 and |�L| = 1 (9.18)

Consider the state with quantum numbers N = 1 and L = 4, as shown in
Figure 9.30. The molecule cannot make a transition to the next lowest rota-
tional state (N = 1, L = 3), because it would violate the vibrational selection rule
|�N | = 1. All transitions must simultaneously satisfy both selection rules. The
molecule can make a transition to the state with N = 0 and L = 3 or to the state with
N = 0 and L = 5. Absorption transitions must also satisfy these selection rules.

5

4

3

2
1

1

1

1

1
1
10

0

0

0

0
0
0
NL

5

4

3

2
1
0

FIGURE 9.30 Combined rotational
and vibrational energy levels of a
molecule. Transitions marked with an
X violate the selection rules and so are
forbidden or strongly suppressed.

Let’s now obtain a general expression for the energies of the transitions that
satisfy both selection rules. The energy of the state with quantum numbers N and
L can be written as the sum of the vibrational and rotational terms:

ENL = (N + 1
2 )hf + BL(L + 1) (9.19)

where

N = 0, 1, 2, . . . and L = 0, 1, 2, . . .

The vibrational term is usually much larger than the rotational term, so the
emission wavelengths in the spectrum will usually correspond to N → N − 1
with L → L ± 1; the absorption wavelengths will be those for transitions in
which N increases by one unit.

For absorption from initial state N , L to a final state N + 1, L ± 1 the possible
photon energies are

�E = EN+1,L±1 − ENL

= [(N + 3
2 )hf + B(L ± 1)(L ± 1 + 1)] − [(N + 1

2 )hf + BL(L + 1)]

�E = hf + 2B(L + 1) for L → L + 1 (9.20)

�E = hf − 2BL for L → L − 1 (9.21)

Figure 9.31 shows the expected spectrum of absorption photons. Starting from
the center and increasing to the right is a series of photons whose energies are
given by Eq. 9.20

hf + 2B, hf + 4B, hf + 6B, . . .
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Photon energyL = 3

L = 2
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L = 2
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L = 1

L = 2
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hf

FIGURE 9.31 Expected sequences of absorption transitions between com-
bined rotational and vibrational states. Each vertical line represents the
absorption of a photon with a sharply defined energy.

Also starting from the center but decreasing to the left is a series of photons whose
energies are given by Eq. 9.21:

hf − 2B, hf − 4B, hf − 6B, . . .

Note that the photon of energy hf is missing at the center of the spectrum; such a
photon would correspond to a “pure” vibrational transition, which would violate
the rotational selection rule.

We can compare this ideal spectrum with the real spectrum of Figure 9.32,
which shows the absorption transitions of the molecule HCl. Although the basic
structure of Figure 9.31 is present, including the missing pure vibrational transition
at the center of the spectrum, there are a number of differences, which we can
explain based on the structure of the HCl molecule.

1. The transitions are not equally spaced. We expect all of the transitions of
the spectrum to be separated by a constant energy 2B but, as you can see, this is
not the case. The spacing of the lines appears to decrease as we move away from
the center to the right and to increase as we move to the left. The explanation
for this effect lies with our assumption that the molecule is a rigid structure with
a constant rotational inertia. As the angular velocity and angular momentum of
the rotating molecule increase, the somewhat nonrigid bond can stretch slightly,
increasing the value of Req. As Eq. 9.20 shows, the photon energies increase less
rapidly if Req grows, as the L → L + 1 branch in Figure 9.32 illustrates. On the
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FIGURE 9.32 The absorption spectrum of molecular HCl.
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other hand, an increasing Req causes the L → L − 1 energies to increase more
rapidly, as required by Eq. 9.21 and as shown by the increasing spacing of the
lines of the left-hand branch in Figure 9.32. Both effects grow with increasing L.

2. The heights of the peaks are quite different. The heights of the peaks give
the intensity of the transitions, and the intensity of any transition is proportional
to the population of the particular level from which that transition originates.
The populations of the levels decrease as the energy increases, according to the
Maxwell-Boltzmann distribution factor e−E/kT . The populations also increase with
increasing L according to the factor 2L + 1, which gives the angular momentum
degeneracy of each level; in effect, the more substates there are in each level, the
greater its population. We can therefore write the population of a level of energy
ENL as

p(ENL) = (2L + 1)e−ENL/kT = (2L + 1)e−[(N+1/2)hf +BL(L+1)]/kT (9.22)

where we have used ENL from Eq. 9.19.
For the first few levels, the populations increase as L increases, because the

exponential factor does not differ much from 1. However, as the energy continues
to increase, the rapidly decreasing exponential factor begins to dominate and the
populations decrease accordingly, becoming negligible for L >10.

The level with maximum population, which corresponds to the most intense
peak in the spectrum, can be found from Eq. 9.22 by locating its maximum, where
dp/dL = 0. The result is

2L + 1 =
√

2kT

B
(9.23)

For a measurement at room temperature (kT ∼= 0.025 eV) and for 2B ∼= 0.0026 eV
(estimated from the peak spacing in Figure 9.32), we obtain L = 3 for the peak of
maximum intensity, in agreement with Figure 9.32.

3. Each peak appears to be two very closely spaced peaks. Chlorine consists
of two types of atoms (isotopes) whose masses are approximately 35 u and
37 u. The differing masses result in slightly different vibrational and rotational
energies for the two isotopes, with the heavier atom having the smaller energies.
Thus the peaks for the Cl atoms with mass 37 u appear at slightly lower energies
than the peaks for the Cl atoms with mass 35 u. The lighter atom occurs with
about three times the abundance of the heavier atom, so the peaks for the lighter
atom have the greater intensity.

Just as atomic spectroscopy gives us a way to identify atoms from their
characteristic emission or absorption spectrum, molecular spectroscopy enables
us to identify molecules by the radiation they absorb or emit. Each molecule has its
own characteristic “fingerprint” that can be easily recognized. It is important that
this technique tells us exactly the composition of the molecule—the number of
atoms of each type, the isotopic ratios, even the state of ionization of the molecule.
Thus we could easily distinguish CO from CO2, H35Cl from H37Cl, H+

2 from H2.
As you might imagine, such a precise identification technique has many

applications to areas where it is necessary to identify trace amounts of molecules.
Two applications in particular are of interest. The absorption spectra of our
atmosphere can be used to identify trace amounts of various pollutants, and
thus molecular spectroscopy helps to measure the purity of our air. Similarly,
the absorption spectra of interstellar dust are used to identify the molecules that
are present in interstellar space. This is the only technique we have (so far) for
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learning about the formation of complex molecules in our galaxy, because stars
are too hot to permit molecules to exist.

Unfortunately, our atmosphere absorbs much of the infrared and microwave
radiation that characterizes the spectra of these molecules, but spectrometers car-
ried on satellites beyond the atmosphere permit the observation of those radiations
and the identification of many varieties of molecules, including some relatively
complex organic molecules. As an added benefit, when those spectrometers are
aimed toward the Earth, they can measure how the infrared radiation emitted by
the Earth is absorbed in its atmosphere, and thus detect the presence of various
atmospheric pollutants.

Example 9.6

(a) From the absorption spectrum of HCl (Figure 9.32),
determine the vibrational force constant. (b) Determine the
rotational energy spacing of the peaks and compare with
the expected value for HCl.

Solution
(a) The vibrational frequency can be found from the energy
of the “missing” central transition in Figure 9.32. This
energy can be read from the figure to be about 0.358 eV,
and so

f = �E

h
= 0.358 eV

4.14 × 10−15 eV · s
= 8.65 × 1013 Hz

The reduced mass of HCl can be found from Eq. 9.10 to be
m = 0.98 u. We can now find the force constant:

k = 4π2mf 2 = 4π2(0.98 u)(8.65 × 1013 Hz)2

= 2.89 × 1029 u · Hz2 = 2.99 × 1021 eV/m2

(b) From the figure, the energy spacing of the peaks is
estimated to be 0.0026 eV. The expected spacing (see
Figure 9.31) is 2B, or

2B =
−h2

mR2
eq

= (hc)2/4π2

(mc2)R2
eq

= (1240 eV · nm)2/4π2

(0.98 u × 931.5 MeV/u)(0.127 nm)2
= 0.00265 u

This calculation gives excellent agreement with the value
estimated from the spectrum.
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Questions

1. Why does H2 have a smaller radius and a greater binding
energy than H+

2 ?
2. The molecule LiH has a simple electronic structure. The H

atom would like to gain an electron to fill its 1s subshell, but
the Li atom would similarly like to fill its 2s subshell. Based
on the atomic structure of H and Li, which would you expect
to dominate in the desire for an additional electron? Are the
electronegativity values of Table 9.6 consistent with this?

3. Consider molecules in which an alkali element X (X = Li,
Na, K, Rb) is paired with either F or Cl to make XF or XCl.
The molecule XF always has a greater dissociation energy
and a smaller separation distance than the molecule XCl.
Explain.

4. H+
2 has a greater bond length (equilibrium separation) than

H2, but O+
2 has a smaller bond length than O2. Explain.

5. In general, would you expect ss bonds or pp bonds to be
stronger? Why?

6. Explain why the bond angles of the sp directed bonds
(Table 9.3) approach 90◦ as the atomic number of the
central atom increases.

7. How do the molecular force constants k compare with
those of ordinary springs? What do you conclude from this
comparison?

8. Why is it unnecessary to consider rotations of the diatomic
molecule of Figure 9.27 about the x axis? Estimate the
rotational inertia for rotations about the x axis; compare
the typical rotational energies with corresponding values for
rotations about the y or z axis.

9. Explain how the equilibrium separation in a molecule can be
determined by measuring the absorption or emission lines
for rotational states.

10. How would the rotational energy spacing of D2 (a form of
“heavy hydrogen”; the mass of D is twice the mass of H)
compare with the rotational spacing of H2? How would their
vibrational energy spacings compare? Their equilibrium
separation distances?

11. For a molecule like HCl, estimate the number of rotational
levels between the first two vibrational levels.

12. Why does an atom generally absorb radiation only from
the ground state, while a molecule can absorb from many
excited rotational or vibrational states?

13. If a collection of molecules were all in the N = 0, L = 0
ground state, how many lines would there be in the absorp-
tion spectrum?

Problems

9.1 The Hydrogen Molecule

1. Calculate the ionization energy of H2.
2. Suppose a spherically symmetric negative charge of diam-

eter Req were centered between two protons at the H+
2

equilibrium configuration, so that the two protons just touch
the surface of the sphere. What charge on the sphere is
required to give the system a binding energy of 2.7 eV?

9.2 Covalent Bonding in Molecules

3. Bond strengths are frequently given in units of kilojoules
per mole. Find the molecular dissociation energy (in eV)
from the following bond strengths: (a) NaCl, 410 kJ/mole;
(b) Li2, 106 kJ/mole; (c) N2, 945 kJ/mole.

4. Following the method of Example 9.1, predict the relative
dissociation energies of the molecules NO, NF, and OF.
Check your prediction by obtaining the bond strengths from
tabulations.

5. For each of the following pairs of molecules, predict which
will have the larger dissociation energy: (a) Li2 and Be2;
(b) B2 and C2; (c) CO and O2. Check your prediction
against tabulated values of the bond strengths or dissociation
energies.

6. (a) Which molecule would you expect to have the greater
dissociation energy, F2 or F+

2 ? (b) N2 or N+
2 ? (c) NO or

NO+ ? (d) CN or CN+ ? Check your predictions against
tabulated dissociation energies.

9.3 Ionic Bonding

7. Calculate the Coulomb energy of KBr at the equilibrium
separation distance.

8. The ionization energy of potassium is 4.34 eV; the electron
affinity of iodine is 3.06 eV. At what separation distance will
the KI molecule gain enough Coulomb energy to overcome
the energy needed to form the K+ and I− ions?

9. (a) Assuming a separation of 0.193 nm, compute the
expected electric dipole moment of NaF. (b) The mea-
sured dipole moment is 27.2 × 10−30 C ·m. What is the
fractional ionic character of NaF?

10. The equilibrium separation of HI is 0.160 nm and its mea-
sured electric dipole moment is 1.47 × 10−30 C ·m. Find the
fractional ionic character of HI.

11. The equilibrium separation of BaO is 0.194 nm and the
measured electric dipole moment is 26.5 × 10−30 C ·m. Cal-
culate the fractional ionic character, assuming two valence
electrons.
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9.4 Molecular Vibrations

12. The effective vibrational force constant of CN is 1.017 ×
104 eV/nm2. (a) Relative to the ground state, find the ener-
gies of the first and second excited vibrational states. (b) In
ionized CN+ the force constant is weaker by 3.42%. What
would be the energies of the first and second excited states
in CN+?

13. The vibrational transition in BeO is observed at a wave-
length of 6.724 μm. What is the effective force constant of
BeO?

14. Figure 9.33 shows the energy minimum of molecular NaCl,
through which a parabola has been drawn. Following the
methods of Example 9.3, find the effective vibrational force
constant, the vibrational frequency and wavelength, and
the vibrational photon energy for NaCl. In what range
of the electromagnetic spectrum would such radiations be
found? What is the maximum vibrational quantum num-
ber for which the parabolic approximation remains valid
for NaCl?
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FIGURE 9.33 Problem 14.

15. The vibrational energy of CO is 0.2691 eV when the
constituents of the molecule are the most abundant iso-
topes of carbon (m = 12.00 u) and oxygen (m = 16.00 u).
(a) What would be the vibrational energy if the oxygen were
replaced by the less abundant isotope with m = 18.00 u?
(b) What would be the vibrational energy if the carbon in
the original CO were replaced with radioactive carbon (used
in radiocarbon dating) with mass 14.00 u?

9.5 Molecular Rotations

16. Derive Eq. 9.14 from the definition of the rotational inertia
of a particle.

17. Following the method of Example 9.4, calculate the energies
and wavelengths of the three lowest rotational transitions
emitted by molecular NaCl. In what region of the electro-
magnetic spectrum would these radiations be found?

18. The atoms of a carbon dioxide molecule (CO2) are arranged
in a line, with the carbon in the center and the oxygens

on either side at a distance of 0.116 nm. In the absence of
vibrations, calculate the energies of the first five rotational
states of CO2 for rotations about an axis through the center
of mass of the molecule.

19. Find the difference in the rotational parameter B of HCl for
the two different masses of Cl (35 u and 37 u).

20. In observing the rotational transitions of a certain molecule,
two photons are observed at wavelengths of 526.6 μm and
658.3 μm. There are no photons emitted with wavelengths
between these two values. (a) Determine the rotational
parameter B for this molecule, and find where these wave-
lengths occur in the sequence of rotational transitions.
(b) From other experiments with this molecule, it is known
that the equilibrium separation is 0.1172 nm. It is also known
that this molecule contains carbon. Determine the identity
of the other atom.

9.6 Molecular Spectra

21. Figure 9.30 illustrates the combined rotational-vibrational
structure when the vibrational energy is much larger than
the rotational energy. Make a sketch showing the reverse
situation, in which the rotational energy is much larger than
the vibrational energy. Use a scale in which B = 10 units
and hf = 2 units; show rotational levels up to L = 3 and
vibrational levels to N = 3.

22. (a) Sketch a diagram, similar to Figure 9.30, showing all
possible absorption transitions from the N = 0 to the N = 1
states. Include rotational states up to L = 5. (b) Using the
values hf = 10 units and B = 0.25 unit, show the energy
spectrum of the absorption, including all transitions from
part (a). Label each transition with the initial and final
quantum numbers.

23. Based on the energy levels given by Eq. 9.19, calculate the
energies of the emitted photons.

24. (a) What is the reduced mass of the KCl molecule?
(b) With an equilibrium separation of 0.267 nm, find the
spacing of the transitions in the combined rotational-
vibrational spectrum.

25. Derive Eq. 9.23 from Eq. 9.22.
26. In a collection of HCl molecules, at what temperature would

the number in the first excited vibrational state be 1/3 the
number in the ground state? (Ignore the rotational structure.)

27. The most intense absorption line in the rotational-vibrational
spectrum of CO at room temperature occurs for L = 7. Jus-
tify this value with a calculation. (The equilibrium separation
of CO is 0.113 nm.)

General Problems

28. The energy of a diatomic molecule can be represented by
the empirical function

E = A

R9
− B

R

where A and B are positive constants. Find A and B in terms
of the equilibrium separation Req and the dissociation energy
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E0. Sketch the resulting function, choosing values for the
constants appropriate for H2.

29. Show that the angle between bonds in the tetrahedral carbon
structure (Figure 9.14) is 109.5◦.

30. Complete the following table, which compares properties of
H2 molecules when one or both of the H is replaced with an
atom of deuterium (D), which is a “heavy hydrogen” atom
with twice the mass of ordinary hydrogen.

Vibrational
Molecule frequency Req B

H2 1.32 × 1014 Hz 0.074 nm 0.0076 eV

HD

D2

31. Because of the “zero-point” energy (see Figures 9.23 and
9.29), the ground state of a molecule is not at the minimum
of the molecular energy curve but at an energy of hf /2 above
the minimum. The dissociation energy is the energy needed
from that state to break apart the molecule. (a) Given that
the vibrational energy of H2 is 0.54 eV, find the “zero-point”
energies of H2, HD, and D2. Assume the mass of deuterium
(“heavy hydrogen”) is twice the mass of hydrogen. (b) Given
that the dissociation energy of H2 is 4.52 eV, find the dis-
sociation energies of HD and D2. Assume that the added
neutron does not change the molecular energy curve or the
equilibrium separation.

32. Estimate the number of rotational states between the vibra-
tional states for (a) H2 (see Example 9.3); (b) HCl (see
Example 9.6); (c) NaCl (see Problems 14 and 17).

33. Figure 9.34 shows the absorption spectrum of the molecule
HBr. Following the basic procedures of Section 9.6, find:
(a) the energy of the “missing” transition; (b) the effective
force constant k; (c) the rotational spacing 2B. Estimate
the value of the rotational spacing expected for HBr and
compare with the value deduced from the spectrum. Why
are there only single lines and not double lines as in the case
of HCl?

34. (a) In a collection of H2 molecules at room temperature,
what is the ratio of the number of molecules in the N = 1

Energy (eV)
0.300 0.310 0.320 0.330 0.340

FIGURE 9.34 Problem 33.

vibrational state to the number in the N = 0 vibrational
state? (Ignore the rotational structure for this problem.)
(b) What is the ratio of the number in the N = 2 state to the
number in the ground state?

35. Repeat Problem 34 for NaCl molecules.
36. (a) In a collection of H2 molecules at room temperature

in the N = 0 vibrational state, find the relative number of
molecules in the first three rotational excited states compared
with the number in the ground state. (b) Repeat part (a) if
the temperature is 30 K. (Hint: Don’t forget the degeneracy
of the levels.)

37. Repeat Problem 36 for NaCl.
38. (a) Predict the fractional ionic content of KBr based on

Figure 9.22. (b) Calculate the fractional ionic content and
compare with your prediction.

39. In a 1987 study of emissions from molecules in the inter-
stellar medium, the following frequencies were reported:
93.98 GHz, 140.97 GHz, and 234.94 GHz. (a) Assuming
these radiations to be emitted in transitions between rota-
tional states of a diatomic molecule (but not necessarily to
be consecutive in sequence), what is the largest possible
value of the rotational spacing 2B that would be consistent
with these emissions? (b) Where do these transitions fit in
the sequence of rotational emissions from this molecule?
Give the corresponding angular momentum quantum num-
bers. (c) The paper that reported these emissions claimed
them to be the first identification of phosphorus in the inter-
stellar medium and that the molecule observed was PN.
Verify that the observed rotational emissions are consistent
with PN.

40. The star known as IRC +10216 or CW Leonis is a red
giant in the late stages of its evolution. It is surrounded by a
dust cloud that is rich in a variety of chemical elements that
have been produced in fusion reactions in the star. Among
the molecules observed in the dust cloud is AlCl, which
has been identified through two close-lying strong rotational
emissions with frequencies 160.312 GHz and 156.547 GHz.
(a) Locate these transitions among the rotational states of
AlCl. (b) What temperature is necessary to excite AlCl in
order to produce these rotations?



Chapter 10
STATISTICAL PHYSICS

Some processes in nature are determined by the statistical distribution of random events.
When the number of particles in a system is very large, the range of likely outcomes
becomes very narrow, and the processes may seem deterministic. Other processes may
result from deterministic laws but seem chaotic in their outcomes. Such processes can be
represented by apparently irregular geometric patterns called fractals.
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Many physics experiments are analyzed as if the interactions take place in single,
isolated events. The emission of light from a gas at low density, Rutherford
scattering, and Compton scattering are examples of experiments that can be
analyzed in this way. On the other hand, consider the addition of energy to a gas
in a container by raising its temperature. We know how the average energy of the
atoms will change, but we can’t analyze the behavior of individual atoms.

This sharing of energy among the many parts of a system cannot be simply
discussed in terms of single isolated events. The analysis of such cooperative
phenomena requires the techniques of statistical physics, in which we are con-
cerned not with calculating the exact outcome of single, isolated events, but
with predicting the average outcome of many cooperative events, based on the
statistical distribution of the possible outcomes.

In this chapter we discuss the laws of statistical physics, and we illustrate some
systems that are governed by classical statistics and some others that require
quantum statistics. These statistical concepts are necessary to understand the
bulk properties of matter, which are discussed briefly in this chapter and more
extensively in Chapter 11.

10.1 STATISTICAL ANALYSIS

When we pass an electric current through a tube containing a low-density gas,
such as mercury vapor, light is emitted. An electron pushed to an excited state of
an atom returns to the ground state with the emission of one or more photons.
In the case of mercury vapor, we see individual photons corresponding to green
light, blue light, orange light, and so forth. Each photon has a definite wavelength
and corresponds to a transition between two levels of definite energies. Aside
from the effect of the uncertainty principle, the wavelengths are “sharp.” If we
analyze the light with a high-resolution device such as a diffraction grating, the
resulting spectrum (Figure 10.1) shows the sharpness of the spectral lines. We can
understand this spectrum based on our knowledge of the excited states of a single
mercury atom; as long as the density of the gas is low, the number of atoms in
the tube does not affect the observed spectrum. We treat the light emitted by this
collection of atoms as if the individual emissions occur singly and in isolation.
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FIGURE 10.1 (top) The line spectrum
of mercury in the visible region as it
might be analyzed using a diffraction
grating. (bottom) The intensity spec-
trum of the transitions.

Consider now the contrasting case of the tungsten filament of an ordinary
incandescent light bulb. Figure 10.2 shows the spectrum in this case, which has the
continuous distribution of wavelengths that we call “white” light. All wavelengths
are present, not just a finite number. Isolated tungsten atoms, like those of mercury,
emit light at a finite number of discrete, well-defined wavelengths, but in a solid
tungsten filament the cooperative effect of other nearby atoms changes the energy
levels and makes the spectrum continuous. Even though the mercury vapor and
the tungsten filament may contain roughly the same number of atoms, in one case
we can ignore the presence of the other atoms, while in the other case we must
consider the mutual influence of many or all of the atoms in the sample.
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FIGURE 10.2 The continuous spec-
trum of an incandescent source in the
visible region.

There are two ways to approach the analysis of a complex system. The first
is to specify a set of microscopic properties, such as the position and velocity
of each atom. For even a small system containing perhaps 1015 atoms, this is
obviously a hopeless task. The second way is to recognize that such a description
is not only impossibly complex, it is also unnecessary because it provides far
more detail than is useful. We can understand and predict the behavior of systems
containing many particles in terms of a few macroscopic properties, such as the
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temperature or the pressure of a gas. The development of relationships between
microscopic and macroscopic properties was one of the great triumphs of 19th-
century physics. In the case of a gas confined to a container, for example, kinetic
theory gives the relationship between the microscopic motion of the molecules
and the macroscopic temperature and pressure.

More generally, we can make a statistical analysis by counting the number of
different arrangements of the microscopic properties of a system. For example,
consider the distribution of 2 units of energy to a “gas” of four identical but
distinguishable particles. Each particle can acquire energy only in integral units
(in analogy with the simple harmonic oscillator). How can these four particles
share the 2 units of energy? One way is for one particle to have the entire 2 units.
There are four different ways to accomplish this distribution, corresponding
to choosing each of the four particles to take the 2 units of energy. Another
way to distribute the energy is to give two different particles 1 unit each. There
are six ways to accomplish this distribution (Table 10.1). Each possible energy
distribution is called a macrostate—a state of the system that can be observed
through the measurement of a macroscopic property such as the temperature. In
our simple system, there are two macrostates: macrostate A in which one particle
has 2 units of energy, and macrostate B in which two particles each have 1 unit of
energy. The different arrangements of microscopic variables corresponding to a
single macrostate are called microstates. In our system, there are four microstates
corresponding to macrostate A and six microstates corresponding to macrostate
B. The number of microstates corresponding to a given macrostate is called the
multiplicity W . For our system, WA = 4 and WB = 6.

One application of these statistical principles is to determine the direction of the
natural evolution of a system. The second law of thermodynamics says, in effect,
that isolated systems evolve in a direction such that the multiplicity increases.∗

TABLE 10.1 Macrostates of a Simple System

Microstate (Energy of Particle)

Macrostate Particle 1 Particle 2 Particle 3 Particle 4

A 2 0 0 0

0 2 0 0

0 0 2 0

0 0 0 2

B 1 1 0 0

1 0 1 0

1 0 0 1

0 1 1 0

0 1 0 1

0 0 1 1

∗The second law is often expressed in terms of the entropy S by saying that an isolated system must
evolve such that �S ≥ 0. The Austrian physicist Ludwig Boltzmann (1844–1906) developed the
relationship between the entropy of a system and the multiplicity of its macrostate: S = k ln W , where
k is the Boltzmann constant. The increase in the entropy of a system as it changes from one macrostate
to another is thus equivalent to an increase in the multiplicity.
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That is, if we started our system in macrostate A and allowed the four particles
to interact with one another, later we might find it in macrostate B; however,
if the system began in macrostate B, we would be less likely to find it later in
macrostate A, because a change from B to A involves a less probable decrease
in multiplicity. As the number of particles in the system increases, differences
in multiplicity become greater, and changes involving decreases in multiplicity
become so improbable as to be unobservable.

Implicit in this statistical analysis is the following postulate:

All microstates of a system are equally probable.

Our system can be found with equal probability in any of the 10 microstates
listed in Table 10.1. It is this postulate that allows us to assign a greater statistical
weight to macrostate B; the system can be found with equal probability in any of
the six microstates of B or the four microstates of A, so the relative weight of B
is 6/4 = 3/2. In a large number of identical systems, we expect to find 40% in
macrostate A and 60% in macrostate B.

For another example, in the card game of poker a royal flush consisting of the
A , K , Q , J , 10 is just as probable as the particular worthless hand 10♠,
8♣, 5 , 4 , 2♠. What makes a royal flush so special is that there are only four
possible royal flushes among the 2,598,960 possible poker hands, most of which
are worthless. Even though a royal flush is just as likely as a particular worthless
hand, it is much less likely than any worthless hand. In the language of statistical
physics, the macrostate “royal flush” has fewer microstates (and is therefore less
probable) than the macrostate “worthless hand” or the macrostate “one pair.”

The assumption of equal probabilities of the microstates allows us to do
calculations on the system. For example, suppose we have a large number
of identical systems like that of Table 10.1 whose microstates are distributed
randomly. Let us reach into each system and measure the energy of a particle.
What is the probability that the particle will have 2 units of energy? Among the
10 equally probable microstates consisting of a total of 40 particles, there are four
particles with 2 units of energy. Thus p(2) = 4/40 = 0.10, and we expect that 10%
of our measurements would find E = 2. Similarly, p(1) = 0.30 and p(0) = 0.60.

The statistical analysis of a complex system gives us a way of describing the
state of the system, its average properties, and its evolution in time. Physics is
often concerned with exactly these details, so the statistical analysis is very useful
indeed. It can be applied to systems in which the number of particles is very small,
such as a nucleus with the order of 102 particles, or very large, such as a star
like the Sun with 1057 particles. Our next task is to determine whether there are
differences between the statistical behaviors of classical and quantum systems.

10.2 CLASSICAL AND QUANTUM STATISTICS

To illustrate the differences between classical and quantum statistics, we first
consider another example similar to the one of the previous section: the distribution
of a total of 6 energy units to a collection of five identical but distinguishable
oscillator-like particles, each of which can absorb energy in equal increments of
1 unit. Instead of a tabulation similar to Table 10.1, the energy distribution is
illustrated in Figure 10.3. There are ten macrostates, labeled A through J . Each
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FIGURE 10.3 The macrostates of a system in which five identical particles share 6 units of energy.

dot indicates a particle with a certain energy; for instance, in macrostate B there
are three particles with energy E = 0, one with E = 1, and one with E = 5. The
multiplicity of each macrostate (the number of microstates) can be worked out
in tabular form, or it can be calculated directly using standard methods from
permutation theory:

W = N!

N0!N1!N2!N3!N4!N5!N6!
(10.1)

where N is the total number of particles and NE is the number with energy E.
The results of this calculation are an example of a more general approach that

gives the total number of microstates when N distinguishable particles share Q
integral units of energy:

Wtotal = (N + Q − 1)!

Q!(N − 1)!
(10.2)

so for our case we expect the total number of microstates to be 10!/6!4! = 210,
in agreement with the total of the values of W given in Figure 10.3.

As we did previously, let us calculate the probability to measure any particular
value of the energy of a particle. This can be done by considering a collection of
all 210 possible microstates and counting the number of times each value of the
energy appears. Symbolically,

p(E) =
∑

i
NiWi

N
∑

i
Wi

(10.3)

where Ni represents the number of particles with energy E in each particular
macrostate. The sums are carried out over all of the macrostates (10 in the case of
Figure 10.3).

0.5

0.4

0.3

0.2

0.1

0
0 1 2 3 4 5 6

p(
E

)

E

FIGURE 10.4 The probabilities from
Table 10.2. The curve is an expo-
nential function that closely fits the
points.

Table 10.2 gives the probabilities associated with measuring each of the
possible energies. Note that the probability decreases with increasing energy. The
probabilities are plotted in Figure 10.4. The smooth curve is an exponential of the

TABLE 10.2 Energy Probabilities for
the System of Figure 10.3

Energy Probability

0 0.400

1 0.267

2 0.167

3 0.095

4 0.048

5 0.019

6 0.005
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form p ∝ e−βE, where β is a constant chosen to fit the data. You can see that the
decrease of p with increasing E is approximately exponential.

This example represents the application of classical statistics. Although real
systems composed of many particles have too many macrostates and microstates to
tabulate, we can analyze their properties by determining the distribution function
that describes how the energy is shared among the parts of a system. Later in
this chapter we discuss the application of classical statistics to the distribution
of energies of the molecules of a gas. Our experience with this simple example
serves as a useful guide: The true classical distribution function turns out to be an
exponential of the form e−βE. However, there are other phenomena, such as the
electrical conductivity and heat capacity of metals, the behavior of liquid helium,
and thermal radiation, which cannot be successfully analyzed using classical
statistics. For these phenomena, we must use the methods of quantum statistics.

TABLE 10.3 Energy Probabilities for
Quantum Particles

Probability

Energy Integral Spin Spin 1/2

0 0.420 0.333

1 0.260 0.333

2 0.160 0.200

3 0.080 0.067

4 0.040 0.067

5 0.020 0.000

6 0.020 0.000
Why should classical statistics differ from quantum statistics? Two of the

assumptions made in the example of this section are inconsistent with basic
principles of quantum physics:

1. In quantum physics, identical particles must be treated as indistinguishable.
In calculating the multiplicity of the macrostates, we assumed the classical
particles to be identical but distinguishable. That is, the particles are numbered 1
through 5 (or carry other distinguishing marks). In macrostate A, for instance, it
is possible to distinguish the microstate in which particle 1 has E = 6 from the
microstate in which particle 2 has E = 6, so we count each of these as separate
microstates in determining the multiplicity of 5. If we regard the particles as
indistinguishable quantum particles (such as electrons or photons), we can’t tell
the difference between these microstates. If we can’t observe the five microstates
of A as separate arrangements, we can’t count them as separate arrangements.
For identical quantum particles, the multiplicity of each macrostate becomes
exactly 1.
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FIGURE 10.5 The probabilities from
Table 10.3 for particles with inte-
gral spin. The curve that characterizes
the points rises more steeply than the
exponential at low energy.

2. Quantum mechanics can impose limits on the maximum number of particles
that can be assigned to any particular state. For example, suppose the particles in
our example are electrons. The Pauli principle forbids two electrons in a system
from being in the same state of motion (or having the same set of quantum
numbers). Electrons can have spin up or spin down, so if there are no other
quantum numbers associated with these energy states, there can be no more than
two electrons in any energy state. For electrons, macrostates A, B, C, F, G, H , and
J are forbidden, because in each one there are more than two particles in the same
energy state.0.4
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FIGURE 10.6 The probabilities from
Table 10.3 for spin 1/2. The curve
that characterizes the points becomes
approximately flat at low energies.

We can repeat the calculation of the probability p(E) for two cases of quantum
particles: photons or alpha particles, which have integral spins and are not
restricted by the Pauli principle, and electrons or protons, which have a spin of 1/2
and are restricted by the Pauli principle to no more than two per energy state. In
the first case, we have ten macrostates with equal multiplicities of 1, and in the
second case we have three macrostates (D, E, I) again with equal multiplicities
of 1. Table 10.3 gives the resulting values of p(E). The probabilities for the
particles with integral spins are plotted in Figure 10.5; the curve is approximately
exponential but rises a bit more steeply at low energies. The values for the
particles with s = 1/2 are plotted in Figure 10.6; the behavior is no longer even
approximately exponential; instead, it is rather flat near E = 0 and then drops
rapidly to 0 for the higher energies.
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The example we have analyzed in this section should be regarded only as
indicating some differences between classical and quantum statistics. The true
energy distribution functions for many-particle systems look different from the
ones obtained for this simple five-particle system.

Particles with integral spin are described by a quantum distribution function
that is approximately exponential but that rises more sharply at low energies;
this difference is responsible for a number of interesting cooperative effects.
Particles that obey the Pauli principle are described by a very different quantum
distribution that becomes flat at low energies, like Figure 10.6. The quantum
distribution functions for these two cases are discussed later in this chapter.

Example 10.1

For the case in which five particles share 6 units of
energy, calculate the probability to observe a particle with
2 units of energy for (a) distinguishable classical particles,
(b) indistinguishable quantum particles with integral spin,
and (c) indistinguishable quantum particles with half-
integral spin.

Solution
(a) For distinguishable classical particles, we can use
Equation 10.3 with the multiplicities for the 10 macrostates
given in Figure 10.3 to sum the probabilities to find 2
units of energy in all of the macrostates. The numerator of
Eq. 10.3 evaluates to:∑

NiWi = 0 × 5 + 0 × 20 + 1 × 20 + 0 × 30 + 1 × 60

+ 0 × 10 + 3 × 10 + 0 × 20 + 2 × 30 + 1 × 5

= 175

and so

p(2) =
∑

NiWi

N
∑

Wi
= 175

5 × 210
= 0.167

(b) For indistinguishable quantum particles with integral
spin, each of the macrostates has multiplicity 1, so the
numerator of Eq. 3 becomes

∑
NiWi = 0 × 1 + 0 × 1 + 1 × 1 + 0 × 1 + 1 × 1

+ 0 × 1 + 3 × 1 + 0 × 1 + 2 × 1 + 1 × 1 = 8

and

p(2) =
∑

NiWi

N
∑

Wi
= 8

5 × 10
= 0.160

(c) For indistinguishable quantum particles with half-
integral spin, the states with more than 2 particles having
the same value of the energy are not permitted and so
have multiplicity 0 (states A, B, C, F, G, H , and J ). The
remaining allowed states have multiplicity 1. The sum is
now

p(2) = 0 × 1 + 1 × 1 + 2 × 1

5 × 3
= 0.200

Example 10.2

A system consists of two particles, each of which has a spin
of 1. What are the possible values of the z component of
the total spin and what is the multiplicity associated with
each value, assuming the particles to be (a) distinguishable
and (b) indistinguishable?

Solution
For each particle, we can have ms = +1, 0, −1 and for
their combination we have MS = ms1 + ms2 where MS

−h
gives the z component of the total spin S. Clearly MS runs

from a maximum of +2 to a minimum of −2. (a) For
distinguishable particles, there are 3 possible ms values for
each particle and so a total of 3 × 3 = 9 combinations.
None of these combinations is prohibited. (b) For indis-
tinguishable particles, we cannot count ms1 = +1, ms2 = 0
and ms1 = 0, ms2 = +1 as separate microstates, because we
cannot distinguish particle 1 from particle 2. So there are 3
fewer microstates when the particles are indistinguishable.
The multiplicities are:
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Macrostate Microstates

MS ms1, ms2 Distinguishable Indistinguishable

+2 +1, +1 1 1

+1
+1, 0

0, +1
2 1

0

+1, −1

−1, +1

0, 0

3 2

−1
0, −1

−1, 0
2 1

−2 −1, −1 1 1

For distinguishable particles, the possible total spins
are S = 2 (MS = +2, +1, 0, −1, −2 for a multiplicity of
5), S = 1 (MS = +1, 0, −1 for multiplicity 3), and S = 0
(MS = 0, multiplicity 1). The total multiplicity is 5 + 3 +
1 = 9.

For indistinguishable particles, because we have states
with MS = ±2 we clearly must have S = 2. Assigning
5 of the microstates (MS = +2, +1, 0, −1, −2) to S = 2,

there is only 1 microstate left, with MS = 0, which must be
assigned to S = 0. Note that for distinguishable particles we
can have S = 2, 1, or 0, while the indistinguishable quantum
particles with integral spin can combine only to S = 2 or
0. This suggests another important difference between the
statistics of classical and quantum systems—for quantum
systems, the statistics will allow some spin combinations
and forbid others.

10.3 THE DENSITY OF STATES

We have seen in the previous sections how the multiplicity of a state determines
the probability to find a system in that state. We are now going to extend that
concept to more complicated systems.

Let’s consider a system (classical or quantum) composed of a large number of
particles that can exist in many different energy states. The relative probability
for the particles to have energy E is given by the distribution function f(E). This
function might tell us, for example, that it is less likely to find a particle in the
system with larger amounts of energy than with smaller amounts. For example,
if our system is a gas at temperature T , it is increasingly less probable to find
molecules with energy far above kT (where k is the Boltzmann constant).

Our ultimate goal is to calculate the number of particles with any given value of
the energy E. This number is in part determined by the distribution function f (E).
However, the calculation must also take into account that there may be many states
available at the energy E. This additional factor is related to the multiplicity of
microstates that we have considered in systems with small numbers of particles. In
effect, to find the number of occupied states we combine the number of available
states with the probability that each state is occupied.

There are two different ways of calculating the number of available states at
the energy E. If the energy states are discrete and individually observable, the
number of states available at the energy E is just the degeneracy of the state at that
energy. For example, if our system is a dilute gas of hydrogen atoms, the number
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of states available at the energy En for a state with principal quantum number n
is the degeneracy of that state, which is 2n2. As we go to higher excited states,
the number of atoms in each state might decrease due to the distribution function
f (E) and might increase due to the degeneracy factor 2n2. The actual number of
atoms that might be found in the excited state with a particular energy represents
the combined effect of both factors.

For another example, consider the rotational excited states in a molecule such
as HCl. The degeneracy of each level of energy EL with angular momentum
quantum number L is 2L + 1. As we go to higher energies corresponding to larger
values of the angular momentum, the distribution function decreases and the
degeneracy factor increases, so that the net population of any level is determined
by the combined effect of both factors. In Section 9.6, we saw an example of how
these two factors produced a maximum intensity in the absorption spectrum for
the state with a certain value of L.

The degeneracy factor and the distribution function can be combined to enable
us to calculate the number of particles in the system having a certain value of the
discrete energy En:

Nn = dn f (En) (10.4)

where dn is the degeneracy of the level at energy En. The distribution function
f (En) is properly normalized to ensure that the total number of particles in our
system is N :

N =
∑

Nn =
∑

dn f (En) (10.5)

where the sum is carried out over all the states (although often in practice the
distribution function f decreases so rapidly for increasing E that it is sufficiently
accurate to include only a few terms in the summation).

On the other hand, we might be analyzing a system in which the energy states
are so numerous and spaced so closely together that we cannot observe them as
separate and individual states. As a result, we may consider only the number of
states in a small interval dE at the energy E, or equivalently the number of states
between energies E and E + dE. This method brings to mind the analysis of the
kinetic energy of the molecules in a gas (see Section 1.3) and the analysis of the
probability distribution corresponding to solutions of the Schrödinger equation
(see Section 5.3).

For this analysis we treat E as a continuous variable. (Of course, we know the
states are discrete, but there are so many of them and they are so close together
that this is really a very good approximation.) We define the density of states g(E)

so that g(E)dE is the number of available states per unit volume in the interval dE
at energy E (or between E and E + dE). The number of populated states in that
interval is determined by the density of states factor and the distribution function:

dN = N(E) dE = Vg(E) f (E) dE (10.6)

where V is the volume of the system (which must be included because the density
of states is the number of states per unit volume). Again we’ll assume that the
distribution function is properly normalized so that the total number of particles
in the system is fixed at N :

N =
∫

dN =
∫ ∞

0
N(E) dE = V

∫ ∞

0
g(E) f(E) dE (10.7)
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Be sure to remember the difference between N and N(E). The symbol N represents
the total number of particles in the system, while N(E) represents the number per
unit energy interval at energy E. That is, N is a pure number, while N(E) is a
function of E and has units of (energy)−1.

In this chapter we discuss the application of classical statistics to the molecules
of a gas and the application of quantum statistics to the electrons in a metal, which
we can consider to be a “gas” of electrons. We also discuss the application of
quantum statistics to the problem of cavity radiation that we first introduced in
Chapter 3, so we’ll need to understand the density of states of a gas of photons.

Density of States in a Gas of Particles

We’ll first discuss the density of states in a “gas” of particles, such as electrons
or molecules. This turns out to be a useful concept in numerous applications. For
example, the space around a hot metal filament is filled with a cloud of emitted
electrons. In a solid metal conductor such as copper, each atom contributes one
loosely bound electron to the electric current; because these electrons belong to
the material as a whole rather than to individual atoms, it is appropriate to treat
the electrons as a gas in the metal. The same calculation applies, as we shall see,
to an ordinary molecular gas such as nitrogen.

The basis of our calculation is the particle trapped in a three-dimensional region
of space, which we assume to be a cubical box in which each side has length L.
The cubical box represents a three-dimensional potential energy well. (See, for
example, the analysis of the two-dimensional potential energy well in Section
5.4.) By an obvious extension of Eqs. 5.41 and 5.45, the wave function and energy
levels for the infinite three-dimensional potential energy well can be written as

ψ(x, y, z) = A′ sin
nxπx

L
sin

nyπy

L
sin

nzπz

L
(10.8)

and

E = p2

2m
= 1

2m
(p2

x + p2
y + p2

z ) = h2

8mL2
(n2

x + n2
y + n2

z ) = h2

8mL2
n2 (10.9)

where n2 = n2
x + n2

y + n2
z .

So now the problem that confronts us in finding the density of states is: how
many different combinations of the quantum numbers nx, ny, and nz give us a
particular value of the energy E? If the energy levels were well separated and
could be observed individually, we could find their degeneracy and thus obtain
the density of states. However, in our case the cube is so large compared with
the typical de Broglie wavelength of the electrons that there is a huge number of
energy levels in any interval dE, certainly far too many for us to attempt to count.

nz

dn

n

ny

nx

FIGURE 10.7 One-eighth of a spher-
ical shell of radius n and thickness dn
in the nx, ny, nz coordinate system.

One way to find the number of energy states is to imagine a coordinate system
in which the axes are labeled nx, ny, and nz (Figure 10.7). The points with a

common value of E lie on a spherical surface of radius n =
√

n2
x + n2

y + n2
z , and

the points with energies between E and E + dE lie within a spherical shell between
radius n and radius n + dn. Only positive values of nx, ny, and nz may occur, and
thus we have only one-eighth of the complete shell. The entire shell has surface
area 4πn2 and thickness dn, so the number of points (each point representing a
different combination of nx, ny, nz leading to the same value of E) in this portion
of the shell is 1

8 × 4πn2dn.
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Finally, if the particles have spin s, each point in this coordinate system
is really 2s + 1 points, which represent each of the different possible spin
orientations (because, in the absence of a magnetic field, each of these different
spin orientations represents a different state having the same energy E). For
example, if the particles are electrons, there are two spin orientations (one with
ms = +1/2 and one with ms = −1/2), and for electrons 2s + 1 = 2. The density of
states must include an additional factor of 2s + 1. Thus the number of states per
unit volume is

g(n) dn = 1

8

2s + 1

V
4πn2 dn (10.10)

The number of states contained in this interval is the same whether we count the
states in terms of n or E. That is, g(n)dn = g(E)dE. With E = h2n2/8mL2, we
have dE = 2h2n dn/8mL2 and so

g(E) dE = g(n) dn = 4π(2s + 1)
√

2m3/2

h3
E1/2 dE (10.11)

using V = L3 for the volume of the cube. The density of states for the gas of
particles is then

g(E) = 4π(2s + 1)
√

2m3/2

h3
E1/2 = 4π(2s + 1)

√
2(mc2)3/2

(hc)3
E1/2 (10.12)

Density of States in a Gas of Photons

Let’s consider now a gas of photons. Imagine a cavity such as we discussed in
Section 3.3: a hollow metal box of volume V with walls at temperature T . The
box (in the form of a cube with each side of length L) is filled with photons
having a range of energies from 0 to ∞ (with an equivalent range of frequencies
or wavelengths).

Let’s imagine the box to be filled with electromagnetic standing waves.
Any particular wave has energy E = pc = c

√
p2

x + p2
y + p2

z . Each momentum
component must obey the standing wave condition for that particular wavelength,
and applying the boundary conditions that the electric field must vanish at the
locations of the walls gives exactly the same restrictions on the wavelengths or
wave numbers as the analysis of the three-dimensional infinite potential energy
well (for which ψ = 0 at x = 0 and x = L, and similarly for y and z). Thus, for
example, for the x direction we have the wave number kx subject to the condition
kxL = nxπ , and so px = −hkx = −hπnx/L, with analogous results for the y and z
directions. The indices nx, ny, and nz are independent of one another and take
positive values from 1 to ∞. We can therefore write the energy as

E = c
√

p2
x + p2

y + p2
z = c

√( −hπnx

L

)2 +
( −hπny

L

)2

+
( −hπnz

L

)2

=
−hcπ

L

√
n2

x + n2
y + n2

z (10.13)

We now have exactly the same situation that we encountered for the electron gas
shown in Figure 10.7. The number of points in the portion of the spherical shell
is again proportional to its volume 1

8 × 4πn2dn.
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Finally, we must account for the possible spin states of the photon. Because
a photon has s = 1, we might expect that the density of states should include
the factor 2s + 1 = 3. However, the sz = 0 state is not permitted for photons.
This is equivalent to requiring that an electromagnetic wave have only one of
two possible polarizations, either right circular or left circular. The factor that
accounts for the spin multiplicity in the density of states is thus 2, and the number
of states per unit volume is given by Eq. 10.10 with 2s + 1 replaced by 2. With
E = −hcn/L, we obtain dE = −hc dn/L and finally

g(E) dE = g(n) dn = 1

π2(−hc)3
E2 dE (10.14)

with again V = L3 for the volume of the cavity. The density of states for the
photon gas is then

g(E) = 1

π2(−hc)3
E2 = 8π

(hc)3
E2 (10.15)

Note that, in contrast to the gas of particles, in which the density of states depends
on E1/2, the density of states for a photon gas depends on E2.

Example 10.3

What is the number of available states per cubic meter
in helium gas within a narrow interval of 0.0002 eV at
the most probable molecular energy of 0.0086 eV at a
temperature of 200 K?

Solution
The density of available states is g(E)dE, with g(E) for par-
ticles given by Eq. 10.12, using s = 0 and mc2 = 3727 MeV
for helium atoms and dE = 0.0002 eV for the energy
interval:

g(E) dE = 4π
√

2(mc2)3/2

(hc)3
E1/2 dE

= 4π
√

2(3727 × 106 eV)3/2

(1240 eV · nm)3(1m/109 nm)3

× (0.0086 eV)1/2(0.0002 eV)

= 3.9 × 1028 m−3

There are about 1025 gas atoms per m3, which suggests
that only a very small fraction of the available states is
populated in an ordinary gas.

Example 10.4

The interior of a star can be considered to be filled with
photons of energies in the range of 1 MeV. What is the
density of available states for a container of photons of
energies in an interval of 10 keV at 1 MeV?

Solution
From Eq. 10.15 we have

g(E) dE = 8π

(hc)3
E2 dE = 8π(109 nm/m)3

(1240 eV · nm)3
(106 eV)2(104 eV)

= 1.3 × 1035 m−3

Such a large number of available states can accommodate
a large number of photons. Note that this result depends
critically on the energy of the photons. For visible light
(photons of order 1 eV), a similarly narrow interval could
accommodate about 1019 energy states per m3.
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10.4 THE MAXWELL-BOLTZMANN DISTRIBUTION

Next we must consider the possible forms of the distribution function f (E), which
describes how the available states at energy E are populated. We’ll begin by
considering a classical system, in which the density is relatively low. In practice
this means that the average spacing between the particles is large compared with
their de Broglie wavelength. The individual particles may have quantized energy
levels, such as the excited states of atoms or molecules, but the overall system
does not show quantum behavior. This limit works perfectly well to describe
gases under ordinary conditions of temperature and pressure.

The distribution function that applies in this case is the Maxwell-Boltzmann
distribution, which is given by

fMB(E) = A−1e−E/kT (10.16)

for a system in thermal equilibrium at temperature T . (Here k is the Boltzmann
constant.) As the energy increases, the occupation probability drops off exponen-
tially. We have included a normalization constant A−1, which helps to ensure that
the total number of particles in the system is fixed at N . (The reason for writing
the normalization constant as A−1 rather than simply A will become apparent later
in this chapter.)

Let’s apply the Maxwell-Boltzmann distribution to find the number of
molecules having energy between E and E + dE in a gas at temperature T
that fills a container of volume V with a total of N molecules. From Eq. 10.5 we
have (using the density of states from Eq. 10.12)

dN = N(E) dE = Vg(E)fMB(E) dE = A−1 4πV(2s + 1)
√

2(mc2)3/2

(hc)3
E1/2e−E/kT dE

(10.17)

The normalization constant is determined by the condition that the total number
of molecules, obtained as in Eq. 10.7 by integrating over all energies, must be N :

N =
∫

dN =
∫ ∞

0
N(E) dE = A−1 4πV(2s + 1)

√
2(mc2)3/2

(hc)3

∫ ∞

0
E1/2e−E/kT dE

(10.18)

The definite integral is a standard form, and carrying out the integration gives
A−1 = N(hc)3/V(2s + 1)(2πmc2kT)3/2. We obtain for the energy distribution of
gas molecules

N(E) = Vg(E)fMB(E) = 2N√
π(kT)3/2

E1/2e−E/kT (10.19)

which is identical to Eq. 1.22. This equation is the Maxwell-Boltzmann energy
distribution.

dN

E

dE

Em0

N
(E

)

Ep

FIGURE 10.8 The Maxwell-
Boltzmann energy distribution for
molecules, showing the most proba-
ble energy Ep = 1

2 kT and the mean

energy Em = 3
2 kT . The shaded strip

represents the number of molecules dN
with energies between E and E + dE.

This distribution is shown in Figure 10.8. Note that it rises to a maximum
at the most probable energy Ep = 1

2 kT and then falls gradually to zero as the
energy increases, which suggests that it is increasingly rare to find a molecule
with energy much larger than kT . The shaded strip of width dE represents the
number dN = N(E)dE given by Eq. 10.17, the number of molecules between E
and E + dE. The mean or average energy is Em = 3

2 kT , as we showed in Eq. 1.26.
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In normalizing Eq. 10.19, Planck’s constant has disappeared. We can therefore
regard the Maxwell-Boltzmann energy distribution as describing the behavior of
classical particles, such as an ordinary molecular gas, in which quantum effects
do not contribute.

Example 10.5

A container holds one mole of argon gas at a temperature
of 375 K. Calculate the fraction of the molecules in the
container with energies between 0.025 eV and 0.026 eV.

Solution
We’ll assume that N(E) is varying sufficiently smoothly
between 0.025 and 0.026 eV that we can use dN = N(E)dE
to find dN . This avoids having to use an integral to
find the number. From Eq. 10.19 we then have, with

kT = (8.617 × 10−5 eV)(375 K) = 0.0323 eV,

dN

N
= N(E) dE

N
= 2√

π(kT)3/2
E1/2e−E/kT dE

= 2√
π(0.0323 eV)3/2

(0.0255 eV)1/2

× e−0.0255 eV/0.0323 eV(0.001 eV)

= 0.014 = 1.4%

Example 10.6

(a) In a gas of atomic hydrogen at room temperature,
what is the number of atoms in the first excited state at
E = 10.2 eV, expressed as a ratio to the number in the
ground state? (b) At what temperature would we expect to
find 1/10 as many atoms in the first excited state as in the
ground state?

Solution
(a) For this case we use the discrete form of the expression
for the number of atoms given by Eq. 10.4. The degeneracy
factor dn is 2n2 for the state with principal quantum num-
ber n. At room temperature (T = 293 K), kT = 0.0252 eV.
The ratio of the number in the excited state (n = 2) to the
number in the ground state (n = 1) is then

N2

N1
= d2e−E2/kT

d1e−E1/kT
= 8

2
e−(E2−E1)/kT = 4e−10.2 eV/0.0252 eV

= 4e−405 = 0.6 × 10−175

In order to have one atom in the excited state, we there-
fore require about 1.7 × 10175 atoms of hydrogen, about
3 × 10148 kg, a quantity greater than the mass of the uni-
verse!
(b) We now require N2/N1 = 0.1 and solve for T :

0.1 = 4e−10.2 eV/kT

This gives kT = 2.77 eV or T = 3.21 × 104 K.

Example 10.7

A certain atom with total atomic spin 1/2 has a magnetic
moment μ = 1.2 μB. A collection of such atoms is placed
in a magnetic field of strength B = 7.5 T. What is the ratio,
at T = 77 K (the temperature of liquid nitrogen), of the
number of atoms with their spins aligned parallel to the
field to those with their spins aligned opposite to the field?

Solution
The energy of interaction with the magnetic field is

E = −�μ · �B, so the energy of those aligned parallel to
the field is E1 = −μB while those aligned antiparal-
lel have energy E2 = +μB. The degeneracies of the

states with ms = +1/2 and ms = −1/2 are identical,
so d1 = d2. With μB = 1.2(9.27 × 10−24 J/T)(7.5 T) =
8.34 × 10−23 J = 5.21 × 10−4 eV and kT = 0.00664 eV,
we have:

N1

N2
= d1e−E1/kT

d2e−E2/kT
= e−(E1−E2)/kT = e2μB/kT

= e2(5.21×10−4 eV)/0.00664 eV = 1.17

That is, about 54% of the atoms are aligned parallel to
the magnetic field and 46% are aligned antiparallel to the
field.
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dv
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dN

vp0

N
(v
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FIGURE 10.9 The Maxwell speed
distribution for gas molecules. The
shaded strip represents the number of
molecules with speeds between v and
v + dv.

The Distribution of Molecular Speeds

From an experimental standpoint, it is often easier to measure the distribution
of speeds than the distribution of energies. So let’s use the Maxwell-Boltzmann
distribution for the distribution of kinetic energies in a gas to obtain the distribution
of molecular speeds, which then can be tested in the laboratory. That is, we wish
to obtain an expression for the number of molecules with speeds in the interval
dv at v (between v and v + dv), represented by dN = N(v)dv. The number of
molecules dN in the interval is the same, whether we count them in terms of
energy or speed, and so dN = N(E)dE = N(v)dv, or N(v) = N(E)dE/dv. With
E = 1

2 mv2 and dE/dv = mv, we have

N(v) = N(E)
dE

dv
= 2N√

π(kT)3/2

√
mv2

2
e−mv2/2kT mv = N

√
2

π

( m

kT

)3/2
v2e−mv2/2kT

(10.20)

This equation, which is known as the Maxwell speed distribution, is graphed in
Figure 10.9. The shaded strip shows the number dN in the interval dv at v. The
most probable speed occurs at the value vp = (2kT/m)1/2.

An example of an experiment to measure the distribution of molecular speeds
is shown in Figure 10.10. A small hole in the side of an oven allows a stream
of molecules to escape; we assume the hole to be small enough so that the
distribution of speeds inside the oven is not changed. The beam of molecules
is made to pass through a slot in a disc attached to an axle rotating at angular
velocity ω. At the other end of the axle is a second slotted disc, but the slot is
displaced from the first by an angle θ . In order for a molecule to pass through both
slots and strike the detector, it must travel the length L of the axle in the same
time that it takes the axle to rotate by the angle θ , and thus L/v = θ/ω. Keeping
L and θ fixed, we can vary ω; measuring the number of molecules striking the
detector for each different value of ω enables us to measure the Maxwell speed
distribution. A set of such experimental results is shown in Figure 10.11, and the
agreement between the measured speed distribution and that predicted according
to Eq. 10.20 is very impressive.
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y

FIGURE 10.11 Result of measure-
ment of the distribution of atomic
speeds in thallium vapor. The solid
line is obtained from the Maxwell
speed distribution for an oven tem-
perature of 870 K.

From this example you can also see the importance of the interval dv. What we
measure is always the product N(v) dv, and in this case the range of velocities is
determined primarily by the width of the slots in the discs. To make dv very small,

Oven

Molecular beam

Detector

FIGURE 10.10 Apparatus to measure the distribution of molecular speeds.
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and thereby measure v “exactly,” we would need to make the slots very small,
so that very few molecules could get through. For the “perfect” experiment, we
make dv → 0 by making the slot width equal to 0, and no molecules get through
the apparatus!

Doppler Broadening of Spectral Lines

Atoms at rest are expected to emit very sharp, narrow spectral lines; this “natural
line width” is usually determined by the uncertainty principle �E�t ∼ −h, which
makes the energy of the atomic excited states somewhat uncertain due to their
finite lifetimes. Because the atoms of a gas are in motion, the frequency or
wavelength of the light emitted by the atoms often can be Doppler shifted (see
Eq. 2.22). Even if the container of gas is at rest relative to the observer, some
of the molecules are moving toward the observer and will show an increased
frequency, while others are moving away and will show a decreased frequency.
As a result of the thermal motion, the spectral lines are broadened and show a
width that can be much larger than the natural width.

For thermal motion, which involves velocities much smaller than the velocity
of light, we can ignore motion transverse to the line of sight and consider only
motion parallel to the line of sight from the observer to the source. Instead of the
speed distribution, for this purpose we need to know how one component of the
velocity of the gas atoms, let’s assume it to be vx, is distributed as a function of the
temperature.

0

dnx
nx

FIGURE 10.12 In one dimension, the
velocity component is restricted to
the interval between vx and vx + dvx,
which corresponds to the interval dnx

on the nx axis.

To find the velocity distribution, let’s start with the density of states appropriate
for a one-dimensional gas of particles. In Figure 10.7 we constructed a three-
dimensional coordinate system with the axes labeled nx, ny, and nz. To obtain the
distribution function for vx, we need only a one-dimensional coordinate system
with the nx axis (Figure 10.12). The “volume” available in one dimension for
particles with energies in the range from E to E + dE is just the range dnx at nx.
The density of states (per unit length) in one dimension is then

g(nx)dnx = 2s + 1

L
dnx (10.21)

With E = p2
x/2m = n2

xh2/8mL2 we can find vx = nxh/2mL and dvx =
(h/2mL) dnx, so

g(vx) dvx = g(nx) dnx = 2s + 1

L

2mL

h
dvx = 2m(2s + 1)

h
dvx (10.22)

The number of particles with velocities between vx and vx + dvx is

dN = N(vx) dvx = Lg(vx) f (vx) dvx = A−1 2mL(2s + 1)

h
e−mv2

x/2kT dvx (10.23)

where we have used the Maxwell-Boltzmann distribution function f (E) =
A−1e−E/kT with E = 1

2 mv2
x . To find the normalization constant A−1, we again

require that the total number of atoms is N :

N =
∫

dN =
∫ +∞

−∞
N(vx)dvx = A−1 2mL(2s + 1)

h

∫ +∞

−∞
e−mv2

x/2kT dvx (10.24)
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Note that the integration limits are now −∞ to +∞, in contrast to the speed
distribution in which the limits were 0 to ∞. We must include all atoms in the
integral—those that are moving toward the observer as well as those that are
moving away. Evaluating the integral, we find A−1 = Nh

√
m/2πkT/2mL(2s + 1)

and thus we have the Maxwell velocity distribution
dvx

vx0

N
(v

x) dN

FIGURE 10.13 The Maxwell veloc-
ity distribution for gas molecules. The
distribution is centered on vx = 0. The
shaded strip represents the number of
molecules with velocity components
between vx and vx + dvx.

N(vx) = N
( m

2πkT

)1/2
e−mv2

x/2kT (10.25)

This function is plotted in Figure 10.13. The shaded strip shows the number
dN = N(vx)dvx having velocity components between vx and vx + dvx. This is a
familiar curve known as the Gaussian distribution or the normal distribution
(also called the “bell-shaped curve”), which has applications in many areas of
probability and statistics.

To complete the analysis of the Doppler broadening, we must change the
distribution function so it describes frequency or wavelength. That is, let’s find
out how many atoms will emit frequencies in the range from f to f + df , which
we can write as dN = N(f )df . The relationship between frequency and velocity
is given by Eq. 2.22. We’ll change notation somewhat and let f0 represent the
unshifted frequency while f represents the observed (Doppler-shifted) frequency.
We then have

f = f0

√
1 − vx/c

1 + vx/c
= f0

1 − vx/c√
1 − v2

x/c2
∼= f0(1 − vx/c) (10.26)

where we have replaced the square root in the denominator with 1 because
vx 	 c for thermal motions. Solving for vx, we obtain vx = c(1 − f /f0) and
taking the magnitude of the differentials we then have |dvx| = c df /f0. With these
substitutions the number of atoms in the small interval becomes

dN = N(f ) df = N(vx)dvx = N
( m

2πkT

)1/2
e−mc2(1−f /f0)2/2kT c df

f0
(10.27)

and so the frequency distribution function is

N(f ) = Nc

f0

( m

2πkT

)1/2
e−mc2(1−f /f0)2/2kT (10.28)

Natural
line width

Δf

ff0

N
(f

)

FIGURE 10.14 Doppler-broadened
spectral line. The natural linewidth has
been exaggerated for the drawing—
typically the natural linewidth is no
more than 10−5 to 10−4 of the broad-
ened linewidth.

The frequency distribution function is shown in Figure 10.14. The broadening
is usually characterized by giving the width of the spectral line �f , defined as
the range over which the intensity falls to half the maximum value on either
side. (This is known as the “full width at half maximum” or FWHM.) The only
factor in Eq. 10.28 that depends on frequency is the exponential, and so the width
is determined by the frequencies at which the exponential (which is equal to 1
at f = f0) falls by half: e−mc2(1−f /f0)2/2kT = 1/2 or, taking the logarithm of both
sides,

−mc2

2kT

(
1 − f

f0

)2

= ln(1/2) (10.29)
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which can be solved to give f = f0(1 ±
√

(2 ln 2)kT/mc2). The two solutions
(corresponding to the + and − signs) give the two points at which the distribution
falls to half its maximum. The interval between those two points is

�f = 2f0
√

(2 ln 2)kT/mc2 (10.30)

We can write a similar expression for the wavelength broadening because
�f /f0 = �λ/λ0. The Doppler broadening is directly related to the temperature,
and so a measurement of the width of spectral lines provides a way to determine
the temperature of the emitting atoms. This is a powerful means of determining
the temperatures of stars from observing the widths of their spectral lines.

10.5 QUANTUM STATISTICS

As we discussed in Section 10.2, the distribution functions for the indistinguishable
particles of quantum physics are different from those of classical physics. Because
of the unusual behavior of quantum systems, we must have separate distribution
functions for particles that obey the Pauli exclusion principle (such as electrons)
and particles that do not obey the Pauli principle (such as photons). We will not
derive these distribution functions, but merely state them and discuss some of
their properties and their applications.

Particles that do not obey the Pauli principle are those with integral spins
(0, 1, 2, . . . , in units of −h). Their statistical properties are determined by the
Bose-Einstein distribution function:

fBE(E) = 1

ABEeE/kT − 1
(10.31)

Particles described by this distribution are known collectively as bosons. The
constant ABE serves as a kind of normalization constant, in analogy with the factor
A in the Maxwell-Boltzmann distribution (and the comparison shows why we
included this factor as A−1 in Eq. 10.16).

Particles of half-integral spin ( 1
2 , 3

2 , . . .) that obey the Pauli principle, such as
electrons or nucleons, are described by the Fermi-Dirac distribution function:

fFD(E) = 1

AFDeE/kT + 1
(10.32)

These particles are known collectively as fermions.
How the minor change in sign in the denominator between fBE and fFD

gives such a radical change in the form of the distribution function is not
immediately obvious, and to show the differences we need to know more about
the normalization coefficient AFD, which is not a constant but depends on T .
For the Bose-Einstein distribution, in most cases of practical interest ABE is
either independent of T or depends so weakly on T that the exponential term
eE/kT dominates the temperature dependence. However, for the Fermi-Dirac
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distribution, AFD is strongly dependent on T , and the dependence is usually
approximately exponential, so AFD is written as

AFD = e−EF/kT (10.33)

and the Fermi-Dirac distribution becomes

fFD(E) = 1

e(E−EF)/kT + 1
(10.34)

where EF is called the Fermi energy.
Let us look qualitatively at the differences between fBE and fFD at low

temperatures. For the Bose-Einstein distribution, assuming for the moment ABE =
1, in the limit of small T the exponential factor becomes large for large E, and so
fBE → 0 for states with large energies. The only energy levels that have any real
chance of being populated are those with E = 0, for which the exponential factor
approaches 1, the denominator becomes very small, and fBE → ∞. Thus when T
is small, all of the particles in the system try to occupy the lowest energy state.
This effect is known as “Bose-Einstein condensation,” and we will see that it has
some rather startling consequences.

ƒMB(Ε)

Ε
0

FIGURE 10.15 The Maxwell-
Boltzmann distribution function.

This effect is not possible for fermions, such as electrons. We know that the
electrons in an atom, for example, do not all occupy the lowest energy state, no
matter what the temperature. Let us see how the Fermi-Dirac distribution function
prevents this. The exponential factor in the denominator of fFD is e(E−EF)/kT . For
values of E > EF, when T is small the exponential factor becomes large and fFD
goes to zero, just like fBE. When E < EF, however, the story is very different, for
then E − EF is negative, and e(E−EF)/kT goes to zero for small T , so fFD = 1. The
occupation probability is therefore only one per quantum state, just as required by
the Pauli principle. Even at very low temperatures, fermions do not “condense”
into the lowest energy level.

Ε
0

ƒBE(Ε )

FIGURE 10.16 The Bose-Einstein
distribution function.

In Figures 10.15 to 10.17, the three distributions fMB, fBE, and fFD are plotted
as functions of the energy E. (Note the qualitative similarity with Figures 10.4 to
10.6.) You can see, by comparing these figures, that all of the distribution functions
fall to zero at large values of E; when E 
 kT , the occupation probability is
very small, as we calculated for fMB in the case of the first excited state of the
hydrogen atom in Example 10.3. Notice also that, even though fMB becomes large
for small E, it remains finite. The Bose-Einstein distribution, fBE, on the other
hand, becomes infinite as E → 0; this is the “condensation” effect referred to
earlier, in which all of the particles try to occupy the lowest quantum state.

1.0 T = 0

T > 0

0
ΕF Ε

ƒFD(Ε )

FIGURE 10.17 The Fermi-Dirac dis-
tribution function.

You can see that fFD never becomes larger than 1.0, just as we expect for
particles that obey the Pauli principle. The function fFD has the value 1.0 for states
with low energy (all states are filled), and it falls quickly to zero at high energy (all
states are empty). The Fermi energy EF gives the point at which the distribution
function has the value 1/2. At absolute zero, all states below EF are filled and all
states above EF are empty.

The normalization constant ultimately depends on the number of particles
in the system, determined by integrating the distribution function f (E) after
multiplying it by the density of states g(E). Note how changing the number
of particles changes the normalizations of the different distributions. For the
Maxwell-Boltzmann distribution, increasing N increases the area under the curve
by raising the intercept, thus raising the entire curve. For the Fermi-Dirac
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distribution, on the other hand, increasing N increases the area by widening the
curve to the right (increasing EF) while keeping the intercept at 1.0.

Let’s consider a gas of electrons described by the density of states function
g(E) given in Eq. 10.12 and thus with N(E) = Vg(E)fFD(E). Figure 10.18a shows
a hypothetical set of energy levels and how they would be populated at T = 0
(with 2 electrons in each quantum state). As T increases, some levels above EF
are partially occupied (fFD > 0), while some levels below EF are partially empty
(fFD < 1). Figure 10.18b shows how the energy levels of a system might be
populated at T > 0. The higher the temperature, the more the distribution spreads,
but notice that only states in the vicinity of EF are affected. The states at much
lower energies remain filled, and those at much higher energies remain empty.

T = 0

ΕF

Ε

N(Ε )

(a)

ΕF

(b)

T > 0

Ε

N(Ε )

FIGURE 10.18 The occupation prob-
ability of electrons in an electron gas
(a) at T = 0 and (b) at T > 0. The
solid dots represent filled states and
the open dots represent empty states.
Each energy level can hold a maxi-
mum of 2 electrons (spin up and spin
down).

The Fermi energy varies only slightly with temperature for most materials, and
we can regard it as constant for many applications. As we will see in Section 10.7,
for electrons in a metal EF depends on the electron density of the material,
which doesn’t change much with temperature. For some materials, notably
semiconductors, the density of conduction electrons can change significantly with
temperature, and thus EF in these materials is temperature dependent.

Limit of Classical Statistics

Under what circumstances can we treat a system classically rather then according
to the laws of quantum mechanics? The quantum behavior can be neglected if the
de Broglie wavelength of a particle is much smaller than the physical separation
between the particles. That is, no particle lies within the wave packet of its
neighbors. If we take kT as a representative measure of the kinetic energy of a
particle in a collection of particles at temperature T , then with p2/2m = kT we
obtain the de Broglie wavelength as

λ = h

p
= h√

2mkT
= hc√

2mc2kT
(10.35)

The density N/V gives the number of particles per unit volume, and so the
average spacing d between particles is about (N/V)−1/3. The condition for the
applicability of classical physics is then λ 	 d or λ/d 	 1, which gives

λ

d
= hc/

√
2mc2kT

(N/V)−1/3
= hc(N/V)1/3

√
2mc2kT

	 1 (10.36)

The normalization constant we found from Eq. 10.18 for the Maxwell-Boltzmann
distribution can be written

A−1 = N(hc)3

V(2s + 1)(2πmc2kT)3/2
= 1

(2s + 1)π3/2

[
hc(N/V)1/3

√
2mc2kT

]3

(10.37)

The quantity in brackets on the right is just λ/d from Eq. 10.36. Apart from
some small factors of order unity, Eq. 10.36 is equivalent to requiring that the
normalization constant of the Maxwell-Boltzmann distribution is small: A−1 	 1,
or that the number of occupied states in the gas is much smaller than the number
of available states.
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10.6 APPLICATIONS OF BOSE-EINSTEIN
STATISTICS

Thermal Radiation

As we did in our discussion of thermal radiation in Chapter 3, we consider a
cavity filled with electromagnetic radiation. For this calculation, we assume the
box to be filled with a “gas” of photons. Photons have spin 1, so they are bosons
and obey Bose-Einstein statistics.

The normalization parameter ABE of the Bose-Einstein distribution, Eq. 10.34,
depends on the total number of particles described by the distribution. Because
photons are continuously created and destroyed as radiation is emitted or absorbed
by the walls of the cavity, the total number of particles is not constant, and the
parameter ABE loses its significance. We can eliminate this factor from the
Bose-Einstein distribution by setting ABE = 1 in Eq. 10.34.

The number of photons having energy in the range E to E + dE is, according
to the Bose-Einstein distribution and using the density states for the photon gas
from Eq. 10.15,

dN = N(E) dE = Vg(E)fBE(E) dE = V
8π

(hc)3
E2 1

eE/kT − 1
dE (10.38)

The radiant energy carried by photons with energy between E and E + dE is
E dN = EN(E)dE, and the contribution to the energy density (energy per unit
volume) of photons with energy E is

u(E) dE = EN(E) dE

V
= 8πE3

(hc)3

1

eE/kT − 1
dE (10.39)

The total energy density over all photon energies is

U =
∫ ∞

0
u(E) dE = 8π

(hc)3

∫ ∞

0

E3 dE

eE/kT − 1
= 8π(kT)4

(hc)3

∫ ∞

0

x3 dx

ex − 1
(10.40)

where x = E/kT . The integral is a standard form and has the value π4/15, so

U = 8π5k4

15(hc)3
T4 (10.41)

This is identical with Stefan’s law (Eq. 3.26) using the Stefan-Boltzmann constant
from Eq. 3.42 and accounting for the factor c/4 that takes us from energy density
of the radiation to radiant intensity I .

We can show that our expression for the energy density leads to Planck’s
equation for the intensity of cavity radiation by changing variables from E to λ.
Substituting E = hc/λ and |dE| = (hc/λ2)dλ, we find

u(λ) dλ = u(E) dE = 8πhc

λ5

1

ehc/λkT − 1
dλ (10.42)

Multiplying by c/4 to convert from the energy density of the radiation to the
intensity, we obtain the result that was given in Eq. 3.41.
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Thus the Planck theory of blackbody radiation, which was so successful
in accounting for experimental results, can be derived from the Bose-Einstein
distribution for photons (but Planck’s original work was done two decades before
the development of Bose-Einstein statistics).
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FIGURE 10.19 The specific heat of
liquid helium. The discontinuity at
2.17 K is called the lambda point.

Liquid Helium

One of the most remarkable substances we can study in the laboratory is liquid
helium. Here are some of its properties:

1. Helium gas is the most inert of the inert gases. Under normal conditions,
it forms no compounds, and it has the lowest boiling point, 4.18 K, of any
material.

2. Just below its boiling point of 4.18 K, helium behaves much like an ordinary
liquid. As the helium boils, the escaping gas forms bubbles, like a boiling
pot of water. As the liquid is cooled further, a sudden transition occurs at
a temperature of 2.17 K: the violent boiling stops, and the liquid becomes
absolutely still. (Evaporation continues, but only from the surface.)

3. As the liquid is cooled below 2.17 K, the specific heat and the thermal
conductivity both increase suddenly and discontinuously. Figure 10.19 shows
the specific heat as a function of temperature. The form of the figure looks
rather like the Greek letter λ, and so the transition point at 2.17 K has become
known as the lambda point. The thermal conductivity rises at the λ point by a
factor of perhaps 106.

4. Above 2.17 K, liquid helium can be held in a vessel with a porous plug in
the bottom. As soon as the liquid is cooled below 2.17 K, the liquid begins to
flow easily through the plug.

5. Below the lambda point, liquid helium has the power to seemingly defy
gravity, flowing up and over the walls of its container. The helium forms a
thin film, which lines the walls of the container; the remaining liquid is then
drawn up by the film like a siphon, and the helium can be seen dripping from
the bottom of the container, as in the photograph of Figure 10.20.

FIGURE 10.20 Liquid helium can be
seen dripping from the bottom of this
container, as a result of a thin film
flowing up and over the walls from
the liquid inside the container.

All of these strange properties occur because liquid helium obeys Bose-Einstein
statistics. Ordinary helium has two electrons filling the 1s shell, so the total angular
momentum of the electrons is zero. It happens that the helium nucleus (alpha
particle) also has a spin of zero. Therefore the total spin of the atom (electron
spin + nuclear spin) is zero, and a helium atom behaves like a boson. At 2.17 K,
a change of phase occurs in the helium liquid. Above the lambda point, helium
behaves like an ordinary liquid; below the lambda point, liquid helium begins
to become a superfluid. As the temperature is decreased from the lambda point
toward absolute zero, the relative concentration of the normal fluid decreases and
that of the superfluid increases. The unusual properties of liquid helium are all
caused by the superfluid component, which is also known as a quantum liquid.
Because the helium atoms obey Bose-Einstein statistics, the Pauli principle does
not prevent all of the atoms from being in the same quantum state. This begins
to happen at the lambda point. We can think of the superfluid as being a single
quantum state made up of a very large number of atoms; the atoms behave in a
cooperative way, giving the superfluid its unusual properties.

By way of comparison, if we try the same kinds of experiments with the
rarer isotope of helium, 3He, the behavior is very different. Although 3He has
zero electronic spin, just like 4He, it has only three particles rather than four in
its nucleus, and its nuclear spin is 1/2. The total atomic (electronic + nuclear)
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spin is therefore 1/2, and 3He behaves like a fermion and obeys the Fermi-Dirac
distribution. Because the Pauli principle prevents more than one fermion from
occupying any quantum state, no superfluidity is expected for 3He, and indeed
none is observed until 3He is cooled to about 0.002 K. At this point the weak
coupling of two 3He to form a boson occurs, and the 3He pairs can display
the effects of Bose-Einstein statistics. (A related effect involving the pairing of
electrons is responsible for superconductivity; see Section 11.5.)

Bose-Einstein Condensation

Let’s consider the expression for the total number of particles of a system of
bosons in a volume V . We can treat the bosons as a quantum system similar to
the electron gas—particles with wave functions that vanish at the boundaries of
the volume. The density of states is then given by Eq. 10.12 and the total number
of particles in the volume V is then

N =
∫

dN =
∫ ∞

0
N(E) dE =

∫ ∞

0
Vg(E)fBE(E) dE

= (2s + 1)4π
√

2Vm3/2

h3

∫ ∞

0

E1/2

ABEeE/kT − 1
dE (10.43)

Previously our approach to an equation of this type was to evaluate the integral
and solve the resulting equation for the constant A, which provides the normal-
ization to make the total number of particles equal to N . That procedure poses
some difficulties for this integral, so we’ll try a different approach: we’ll see
what Eq. 10.43 tells us about the maximum number of particles that can be
accommodated in the volume V . Because ABE is a pure number that is always
≥ +1 (otherwise the denominator of fBE could become negative, which makes no
sense for a distribution function), we can find this maximum value by making the
denominator in the integral as small as possible, that is, by putting ABE = 1. The
resulting integral has the value 1.306π1/2(kT)3/2, and the maximum number of
particles is then

N = 2.612V(2s + 1)

(
2πmkT

h2

)3/2

(10.44)

It appears that we can violate this maximum limit by either (1) putting more parti-
cles into the volume V than Eq. 10.44 permits, or (2) lowering the temperature (and
thus reducing the maximum N) so that the actual number of particles in the system
becomes greater than the maximum limit given by Eq. 10.44 for that temperature.
How can we still refer to a “maximum” number of particles in these cases?

To resolve this apparent difficulty, we must look more carefully at what happens
for E = 0. Clearly the Bose-Einstein distribution function fBE(E) becomes infinite
for E = 0 when ABE = 1. The integral in Eq. 10.43 doesn’t blow up at E = 0
because the numerator E1/2 is zero at E = 0. But there is something very wrong
with that restriction, which requires that the density of states (Eq. 10.12) be zero
at E = 0. Our system must have a ground state, so there is at least one state at
E = 0. This contradicts the calculation which puts g(0) = 0.

If we try to put more particles into the system than the maximum given by
Eq. 10.44 (or equivalently if we try to reduce the temperature below its limit for a
given N), the additional particles all can go into the E = 0 ground state, which is
not subject to the restriction on the maximum value of N . This is Bose-Einstein
condensation—all excess particles are “condensing” into the ground state. Note
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that the use of the word “condensation” to describe this effect does not refer
to a gas condensing into a liquid. The particles are “condensed” into the same
quantum state, where they are all described by the same wave function, but they
are all still in the gaseous state.

What we are thus actually calculating in Eq. 10.44 is the number of particles
in all states except the ground state, that is, the number in all the excited states.
Let’s call that value Nex. It is this value that is limited by the restriction on the
maximum number of particles that can be accommodated by the Bose-Einstein
distribution. The number of particles in the ground state, N0, has no restriction.
The total number of particles is Ntotal = N0 + Nex.

Let’s solve Eq. 10.44 for the critical temperature at which we expect this
condensation to occur:

TBEC =
(

Ntotal/V

2.612(2s + 1)

)2/3 h2

2πmk
(10.45)

Above this temperature, all of the particles can be in excited states of the system
without restriction. When the temperature is reduced to TBEC, the excited states
are all fully populated, and any further reduction of the temperature below this
value means that particles must be transforming from excited states into the
ground state. With Nex as the number of particles calculated in Eq. 10.44, we can
combine that equation with Eq. 10.45 to give Nex/Ntotal = (T/TBEC)3/2, or

N0

Ntotal
= 1 −

(
T

TBEC

)3/2

(10.46)

This applies only to temperatures at or below TBEC. At T = TBEC, N0 = 0—all
of the particles are in the excited states. As T is reduced below TBEC, the fraction
N0/Ntotal increases, approaching 1 (all particles in the ground state) as T → 0.
This is the Bose-Einstein condensation.

Einstein first predicted this effect in dilute gases in 1925, but it took 70 years
until the first experiments were done in 1995. The reason for this is apparent from
considering the temperature necessary to observe the condensation. If we start
with an ordinary gas at room temperature (with a density of around 2.4 × 1025

molecules/m3), then Eq. 10.45 gives a temperature of around 0.001 K = 1 mK.
This is the temperature at which the condensate begins to form, and to have a
significant number of particles in the condensate we must be well below this
temperature. It is clear that very low temperatures are required to observe the
condensate. However, even if the gas molecules were only weakly interacting,
a gas at ordinary densities would become a liquid at these temperatures. It is
therefore necessary to work with gases at extremely low densities, and from
Eq. 10.45 you can see that as we reduce the density, the temperature necessary to
observe the Bose-Einstein condensation becomes even smaller.

To avoid the gas condensing into a liquid, we want to molecules to be very
far apart (corresponding to a very low density). How far apart must they be?
In an ordinary gas, the mean free path (average distance between collisions) is
the order of 100 molecular diameters. To avoid molecules from colliding and
therefore sticking together (which might trigger the formation of the liquid), let’s
assume the spacing between molecules must be the order of 100 times larger than
it is in an ordinary gas, which means the density must be smaller by a factor of
(10−2)3 = 10−6. From Eq. 10.45 we see that if the density is smaller by 10−6,
then TBEC will be smaller by a factor of (10−6)2/3 = 10−4. Thus instead of a
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temperature of 1 mK, the observation of a Bose-Einstein condensation requires
temperatures of the order of 100 nK.

Such incredibly low temperatures require extraordinary means to produce,
and that is why it took 70 years to observe the first Bose-Einstein condensate.
Several successful experiments have been done since 1995, and the experiments
generally use a combination of laser cooling and magnetic cooling to achieve
these temperatures. In laser cooling, a collection of gas atoms is illuminated with
a laser beam that is tuned to one of the atomic absorption frequencies. A gas atom
that happens to be moving toward the laser will absorb a photon and slow down.
However, a gas atom that is moving away from the laser will absorb a photon and
speed up. How can this result in an overall slowing of the gas atoms?

The trick in laser cooling is to take advantage of the Doppler broadening of the
absorption due to the distribution in the velocities of the gas atoms. The laser beam
is tuned so that its frequency is a bit below the central frequency of the broadened
peak. Frequencies smaller than the central frequency correspond to atoms moving
toward the laser beam; such atoms can absorb at the frequency of the laser and
thus slow down. Atoms moving in the opposite direction cannot absorb at that
frequency (because their Doppler shifts are opposite) and so are not affected. If a
second laser beam, also tuned below the central frequency, illuminates the atoms
from the opposite side, then atoms moving in either direction will be slowed and
therefore cooled. In practice, the gas is illuminated by lasers in all six directions
to achieve cooling by slowing the atoms in three dimensions. The excited state
formed by absorbing the photon will decay back to the ground state by emitting a
photon, but the emission occurs in random directions and so doesn’t change the
velocity distribution of the atoms.

Laser cooling by itself is insufficient to achieve the temperatures necessary for
Bose-Einstein condensation. It is also necessary to use some form of magnetic
cooling. For example, suppose we confine the atoms in a region in which there
is a magnetic field that is produced by a set of coils. The atoms are moving very
slowly and do not have enough energy to escape the potential energy barrier that
is established by the magnetic field. If the magnetic field strength is then reduced
slightly, the more energetic atoms can escape. The remaining atoms still confined
by the (weaker) magnetic field are the ones with smaller kinetic energies, and thus
they have a lower temperature. With each lowering of the field strength, the more
energetic atoms escape and the remaining gas cools. This is similar to evaporative
cooling of a cup of hot coffee—the faster-moving atoms are the most likely to
leave the liquid, and the remaining atoms have a smaller average kinetic energy
and thus a lower temperature.

The first observations of a Bose-Einstein condensation were reported in 1995
by Eric Cornell and Carl Wieman using Rb vapor and by Wolfgang Ketterle using
Na vapor. Figure 10.21 shows the velocity distribution illustrating the formation
of the condensate in Rb vapor from the original work of Cornell and Wieman.
At a temperature of 400 nK, the distribution shows a broad peak corresponding
to a Maxwell velocity distribution centered at v = 0. At 200 nK, a narrow peak
is superimposed on top of the Maxwell distribution at v = 0. This represents the
atoms all moving with the same speed, as would be expected for a condensate with
a large number of atoms in the same state of motion. At still lower temperatures
(50 nK), the Maxwell distribution has disappeared, so that nearly all of the atoms
are in the condensed ground state, consistent with Eq. 10.45.
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FIGURE 10.21 Bose-Einstein condensation in Rb atoms. The graphs show a repre-
sentation of the velocity distribution at 400 nK (left), 200 nK (center), and 50 nK
(right). At 400 nK, there is a broad Maxwellian distribution, but as the temperature is
reduced, the molecules condense into a single quantum state characterized by a much
narrower velocity profile.

For the experimental observations of the Bose-Einstein condensation, Cornell,
Wieman, and Ketterle shared the 2001 Nobel Prize in physics.

10.7 APPLICATIONS OF FERMI-DIRAC STATISTICS

Now let’s consider some applications of Fermi-Dirac statistics. We’ll discuss
several different systems consisting of spin-1/2 particles: electrons in metals,
electrons and neutrons in stars, and 3He in liquid 4He.

The Free Electron Model of Metals

In a metal, the valence electrons are not very strongly bound to individual atoms,
and consequently they travel rather freely throughout the volume of the metal.
We can treat these electrons as a “gas” that obeys the Fermi-Dirac distribution,
with a density of states given by Eq. 10.12. The number of electrons with energies
between E and E + dE is then

dN = N(E) dE = Vg(E)fFD(E) dE = V
8π

√
2m3/2

h3
E1/2 1

e(E−EF)/kT + 1
dE

(10.47)

Figure 10.22 shows a graph of N(E). Note that the energy kT is only a small
interval compared with the range of occupied energy states. When the temperature
of the metal is increased from 0 K to 300 K (room temperature), only a very small
fraction of the electrons is affected—a small number move from filled states just
below EF to formerly empty states just above EF.

Ε (eV)
0 1 2 3

T = 0

kTN
(E

) T = 300 K

FIGURE 10.22 The number of occu-
pied energy levels for electrons at T =
0 and T = 300 K, according to the
Fermi-Dirac distribution. The Fermi
energy EF is chosen to be 3.0 eV.

We can find a numerical value for EF at T = 0 by normalizing Eq. 10.47 so
that the sample contains a total number N of these free electrons:

N =
∫

dN =
∫ ∞

0
N(E) dE = 8πV

√
2m3/2

h3

∫ ∞

0

E1/2

e(E−EF)/kT + 1
dE (10.48)
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At T = 0, the Fermi-Dirac distribution function has the value 1 for E < EF and 0
for E > EF, so the integral reduces to

N = 8πV
√

2m3/2

h3

∫ EF

0
E1/2 dE = 8πV

√
2m3/2

h3

2

3
E3/2

F (10.49)

Solving for EF, we obtain

EF = h2

2m

(
3N

8πV

)2/3

(10.50)

We can also find the mean or average energy of the electrons

Em = 1

N

∫ ∞

0
EN(E) dE (10.51)

and it is left as an exercise to show that

Em = 3
5 EF (10.52)

Example 10.8

Compute the Fermi energy EF for sodium.

Solution
Each sodium atom contributes one valence electron to the
metal, and so the number of electrons per unit volume,
N/V , is equal to the number of sodium atoms per unit
volume. This in turn can be found from the density ρ and
the molar mass M of sodium:

N

V
=ρNA

M
= (0.971 × 103 kg/m3)(6.02 × 1023 atoms/mole)

0.023 kg/mole

= 2.54 × 1028 m−3

The Fermi energy now can be found from Eq. 10.50:

EF = h2

2m

(
3

8π

N

V

)2/3

= h2c2

2mc2

(
3

8π

N

V

)2/3

= (1240 eV · nm)2

2(0.511 × 106 eV)

(
3

8π
2.54 × 1028 m−3

)2/3

= 3.15 eV

The average energy of the valence electrons is 3
5 EF or

1.89 eV. Even at the absolute zero of temperature, the
electrons still have quite a large average energy.

From Figure 10.22 we see that the change in N(E) between T = 0 and
T = 300 K (room temperature) is relatively small, and so these values for EF and
Em are approximately correct at room temperature.

The meaning of these numbers is as follows. Instead of isolated atoms with
individual energy levels, we consider the metal to be a single system with a
very large number of energy levels (at least as far as the valence electrons
are concerned). Electrons fill these energy levels, in accordance with the Pauli
principle, beginning at E = 0. By the time we add 2.54 × 1022 valence electrons
to 1 cm3 of sodium, we have filled energy levels up to EF = 3.15 eV; all levels
below EF are filled and all levels above EF are empty. Electrons have an almost
continuous energy distribution (the levels are discrete, but they are very close
together) from E = 0 to E = EF, with an average energy of 1.89 eV. At T = 300 K,
a relatively small number of electrons is excited from below EF to above EF;
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the range over which electrons are excited is of order kT ∼= 0.025 eV, so that only
electrons within about 0.025 eV of EF are affected by the change from T = 0 to
T = 300 K.

In a similar fashion, if we apply a modest electric field to a metal, the only
effect is to change the state of motion of a relatively small number of electrons
near the Fermi energy. Most of the electrons can’t be affected by the electric field,
because all of the nearby states are already filled. In Chapter 11, we’ll discuss the
heat capacity and the electrical conductivity of metals based on the Fermi-Dirac
distribution of the electrons.

White Dwarf Stars

A star like the Sun has a constant radius because the outward pressure due to
the radiation traveling from the center (where the fusion reactions take place)
balances the inward gravitational force that tends toward collapse. Eventually
the hydrogen fuel will be converted to helium, the rate of fusion reactions will
decrease, and gravity will take over. The Sun will collapse to a smaller and smaller
radius, until further contraction is stopped by the Pauli principle. This is the white
dwarf stage of stellar evolution.

Let’s consider a star of mass M to be composed originally of hydrogen, with
equal numbers of protons (hydrogen nuclei) and electrons. (The star is too hot for
atomic hydrogen to form, so we consider the star to be a “gas” of protons and
a “gas” of electrons occupying the same spherical volume.) After the hydrogen
has been converted into helium, the star will contain N electrons and N/2 helium
nuclei (alpha particles). The helium nuclei are bosons, so the Pauli principle does
not apply to them during the collapse. The collapse ends when the electrons
cannot be forced closer together because the Pauli principle would be violated. At
that point, all of the electron energy levels are filled from 0 to the Fermi energy.
The average energy Em of the electrons is 3

5 EF, as given by Eq. 10.52, and so the
total energy of N electrons is

Eelec = NEm = 3

5
NEF = 3

5
N

h2

2me

(
3N

8πV

)2/3

= 3Nh2

10me

1

R2

(
9N

32π2

)2/3

(10.53)

assuming the electrons to be distributed uniformly throughout a sphere of radius
R and volume V = 4

3πR3.
The total gravitational energy of the star can be found from the mass distribution

of the helium (the electron mass is negligible in comparison with the helium
mass). For simplicity, we assume the star to be of uniform density. The result (see
Problem 38) is

Egrav = −3

5

GM2

R
= −3

5

GN2m2
α

4R
(10.54)

with M = (N/2)mα . The total energy is

E = Eelec + Egrav = 3Nh2

10me

1

R2

(
9N

32π2

)2/3

− 3GN2m2
α

20R
(10.55)

The star collapses until its energy reaches a minimum value, at which point we
can find its radius by setting dE/dR equal to 0 and solving the resulting equation,
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which gives

R = h2

GN1/3mem2
α

(
9

4π2

)2/3

(10.56)

Let’s consider the white dwarf star Sirius B, which has a mass of 2.09 × 1030 kg
(about 5% greater than the mass of the Sun). Equation 10.56 gives a radius
of 7.2 × 106 m for Sirius B. The measured radius is about 5.6 × 106 m. The
difference between the calculated and observed values is probably due mostly
to the relativistic motion of the electrons. Our calculation of the Fermi energy
assumed the electrons to move nonrelativistically. The Fermi energy of Sirius
B is about 200 keV, which means that the kinetic energy of electrons near
the Fermi energy is not small compared with the rest energy (511 keV). We
also oversimplified the structure of the star by assuming it to be of uniform
density (which was necessary to obtain Eq. 10.54 for the gravitational energy).
Nevertheless, even this very rough calculation gives us a good approximation to
the properties of white dwarf stars and demonstrates another system in which
Fermi-Dirac statistics can be applied.

Note that the radius of the white dwarf is comparable to the radius of the Earth;
that is, the white dwarf has the mass of the Sun but the radius of the Earth. The
average density of Sirius B is about 109 kg/m3, which is about one million times
the average density of objects on Earth. The white dwarf is indeed an extreme
state of matter!

If we treat the electrons relativistically, we can obtain an estimate for the mass
of the star at which the Pauli principle applied to the electrons is not able to prevent
gravitational collapse. This value, which is called the Chandrasekhar limit, is
about 1.4 solar masses. For stars with greater masses, the extreme density forces
the protons and electrons to combine into neutrons until the star collapses into
a neutron star, composed entirely of neutrons. Because neutrons obey the Pauli
principle, we can apply Fermi-Dirac statistics to analyze the properties of neutron
stars (see Problem 27). From a calculation similar to that for the white dwarf, we
can find the radius at which the energy of a neutron star is at a minimum:

R = h2

GN1/3m3
n

(
9

32π2

)2/3

(10.57)

In this equation, N refers to the number of neutrons in the star. For a star of 1.5 solar
masses, the radius would be about 11 km with a density of about 5 × 1017 kg/m3.

Neutron stars are commonly observed as pulsars in which the magnetic field
of the neutrons traps electrons outside the neutron star, and the rapid rotation of
the neutron star causes a beam of electromagnetic radiation from the accelerated
electrons to sweep past the Earth somewhat like the rotating light in a lighthouse.
For stars heavier than about 6 solar masses, not even the Pauli principle applied
to the neutrons can prevent further gravitational collapse, and the star will either
explode as a supernova or collapse to a black hole.

The Heat Capacity of Dilute Solutions of
3He in 4He

Helium has two stable isotopes, 3He and 4He. The isotope 3He is very rare
(about 10−6 in abundance relative to 4He) in natural He gas. The two isotopes
are chemically identical and have the same electronic structure, but differ in their
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atomic masses (3He has a mass of about 3 u and 4He is about 4 u). The difference
comes about as a result of their nuclei: the nucleus of 3He contains 2 protons and
1 neutron, while the nucleus of 4He contains 2 protons and 2 neutrons. Protons,
neutrons, and electrons all have a spin of 1/2. In 4He, the 2 electrons combine to
a total spin of 0, as do the 2 protons and the 2 neutrons. The total spin of 4He is
therefore 0. In 3He, the 2 electrons combine to give a spin of 0 as do the 2 protons,
but with only 1 neutron the total spin of 3He is 1/2. As a result, 4He behaves like a
boson and 3He like a fermion.

As discussed above, 4He becomes a superfluid at temperatures below 2.17 K,
while 3He does not. In a dilute mixture of liquid 3He and 4He below 2.17 K,
the 4He serves as a mostly inert background medium for the 3He, and so we can
treat the 3He as a dilute “gas” of fermions, just as we treated the electron gas in
analyzing metals.

The heat capacity of a dilute mixture of 3He in 4He is relatively straightforward
to measure, so let’s try to calculate the heat capacity using the Fermi-Dirac
distribution to describe the 3He. Starting with fermions at T = 0, we add energy
until the collection is at temperature T . Because all of the energy states below
EF are filled at T = 0, most of the particles are not able to absorb any additional
energy. A particle with energy far below EF cannot absorb energy of the order of
kT and move to an empty state, because there are no empty states nearby. The only
particles that can change their state are those within a small energy range of about
kT at EF, as shown in Figure 10.22. In going from temperature 0 to temperature
T , only a relatively small number of particles moves from just below EF to just
above EF, with the rest of the particles remaining in their same energy states.

Nex

EF

N(E) at T = 0

N(E) at TdN

ε

ε

FIGURE 10.23 The region near EF,
showing N(E) at T = 0 and at tem-
perature T . When the temperature is
raised from 0 to T , the dN particles in
the shaded region move to the corre-
sponding region above EF, increasing
their energy by 2ε in the process.

Figure 10.23 shows a greatly magnified view of the region around EF. As the
temperature is raised from 0 to T , the particles in the region just below EF move to
fill states just above EF. In particular, consider the small number of particles dN in
the narrow region of width dE located a small energy −ε = E − EF below EF. The
particles fill states in that region at T = 0, but when the temperature is raised to T
they move to fill states in the corresponding region at an energy ε above EF. Each
particle in that narrow interval thus gains an energy of 2ε, and the total energy
gained by all the particles in that narrow strip is dEex = 2εdN . The strip has height
Nex given by the difference between N(E) at T = 0 and N(E) at temperature T :

Nex = N(E, T = 0) − N(E, T) = Vg(E)[1 − fFD(E)] (10.58)

where we have used N(E) = Vg(E)fFD(E) and fFD = 1 for T = 0. The width
of the strip is dE, so the number of particles in the strip is dN = NexdE. With
−ε = E − EF and |dε| = |dE|, we obtain the energy gained by the particles in
the narrow strip:

dEex = 2ε dN = 2εNex dε = 2εVg(EF − ε)

(
1 − 1

e−ε/kT + 1

)
dε (10.59)

The energy difference ε, which we defined as the energy of the strip below EF,
runs from EF (where E = 0) to 0 (where E = EF). The total excitation energy of
all of the particles that are excited from below EF to above EF is

Eex =
∫

dEex = 2V

∫ 0

EF

εg(EF − ε)

(
1 − 1

e−ε/kT + 1

)
dε (10.60)

We can simplify the calculation by noting that g(E) is a very slowly varying
function compared with fFD in the region near EF, and even though we are
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integrating from EF to 0 the integral is nonzero only in a region very close to EF.
We can therefore take g(EF − ε) ∼= g(EF) and bring it out of the integral. Again
because the integrand is nonzero only in a very small region, we can replace the
lower limit on the integral by ∞.

Eex = 2Vg(EF)

∫ 0

∞
ε

(
1 − 1

e−ε/kT + 1

)
dε (10.61)

The heat capacity is defined as C = dEex/dT . The derivative with respect to T
can be moved inside the integral, and so

C = dEex

dT
= 2Vg(EF)

∫ 0

∞
ε

[ −e−ε/kT

(e−ε/kT + 1)2

( ε

kT2

)]
dε

= 2Vg(EF)

kT2
(kT)3

∫ ∞

0

x2ex

(ex + 1)2
dx (10.62)

where x = ε/kT . The integral is a standard form that has the value π2/6. Putting
in the value for g(EF) from Eqs. 10.12 and 10.50, we finally obtain

C = π2k2NT

2EF
(10.63)

This equation predicts that the heat capacity of a dilute gas of fermions at low
temperature should be proportional to T . Figure 10.24 shows the low-temperature
heat capacity of a dilute mixture of 5% 3He in 4He, and you can see how
well the data agree with the prediction. The relationship is indeed linear in
T at low temperature. This same behavior also describes the low-temperature
heat capacity of metals, in which the electrons can also be treated as a dilute
gas of fermions, but as we will see in the next chapter the contribution of the
atoms to the heat capacity can often be much larger than the contribution of the
electrons.

Equation 10.63 predicts that the slope of the plot of C against T should be
π2k2N/2EF, which works out to be 1.24 J/K2 for the experiment that obtained
the results shown in Figure 10.24 (a 5% mixture of 3He in 4He and a total of 0.5
mole of liquid). The measured slope is 3.11 J/K2, which differs from the expected
slope by a factor of 2.5. The discrepancy comes about because we treated the 3He
atoms like those of a gas, in which the particles move freely. However, when 3He
moves through 4He, there are viscous and other forces that act on the atoms. We
can account for the difference by assigning the 3He an “effective mass,” which is
greater than its actual mass; the greater mass simulates the sluggish behavior of
the 3He atoms as they move through 4He. This same factor of about 2.5 appears in
experiments with very different concentrations of 3He, so it is not related to any
interaction of 3He atoms with other 3He atoms. It also arises in other experiments,
such as the study of heat conduction in 3He-4He mixtures, so it does indeed
seem to describe the properties of the mixture itself rather than any particular
experiment.
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FIGURE 10.24 The heat capacity of
0.5 mole of a dilute (5%) mixture of
3He in 4He. The straight line is a fit
to the linear portion of the plot below
about 40 mK.

The success of the Fermi-Dirac distribution function in accounting for the
properties of such a diverse array of systems—metals, white dwarf stars, and
dilute mixtures of 3He in 4He—is truly impressive. In the next chapter, we shall
explore in more detail how both Bose-Einstein and Fermi-Dirac statistics can be
used to help us understand various properties of solids.
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Chapter Summary

Section

Probability of
energy
observation

p(E) =
∑

NiWi

N
∑

Wi

10.2

Number of
particles with
discrete energy

Nn = dn f (En) 10.3

Density of
states in gas
of particles

g(E) = 4π(2s + 1)
√

2(mc2)3/2

(hc)3
E1/2 10.3

Density of
states in gas
of photons

g(E) = 1

π2(−hc)3
E2 = 8π

(hc)3
E2 10.3

Maxwell-
Boltzmann
energy
distribution

N(E) = 2N√
π(kT)3/2

E1/2e−E/kT 10.4

Maxwell speed
distribution

N(v) = N

√
2

π

( m

kT

)3/2
v2e−mv2/2kT 10.4

Section

Maxwell
velocity
distribution

N(vx) = N
( m

2πkT

)1/2
e−mv2

x/2kT 10.4

Doppler
broadening of
spectral line

�f = 2 f0
√

(2 ln 2)kT/mc2 10.4

Bose-Einstein
distribution
function

fBE(E) = 1

ABEeE/kT − 1
10.5

Fermi-Dirac
distribution
function

fFD(E) = 1

e(E−EF)/kT + 1
10.5

Fermi energy EF = h2

2m

(
3N

8πV

)2/3

10.7

Radius of white
dwarf star

R = h2

GN1/3mem2
α

(
9

4π2

)2/3

10.7

Questions

1. Suppose a container filled with a gas moves with constant
velocity v. How is the Maxwell velocity distribution differ-
ent for such a gas, compared with the same container of gas
at rest?

2. The population inversion necessary for the operation of a
laser is sometimes called a “negative temperature.” What
is the meaning of a negative temperature? Does it have a
physical interpretation?

3. Figure 10.25 shows two different experimental arrangements
used to measure the distribution of molecular speeds. Based
on the figures, explain how each apparatus might operate,
and try to guess how the observed distribution of molecules
might appear. Where do the fastest molecules land? The
slowest?

4. How would Figure 10.13 change if the temperature of the
gas were increased?

5. How is the speed distribution of a gas at temperature T
different from that at temperature 2T? The energy distribu-
tion? Sketch the speed and energy distributions at the two
temperatures.

(a)

(b)
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Slit Screen
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FIGURE 10.25 Question 3.
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6. Consider a mixture of two gases of molecular masses m1 and
m2 = 2m1 in thermal equilibrium at temperature T . How
do their speed distributions differ? How do their energy
distributions differ?

7. It is generally more convenient, wherever possible, to use
Maxwell-Boltzmann statistics rather than quantum statis-
tics. Under what circumstances can a quantum system be
described by Maxwell-Boltzmann statistics?

8. Suppose we had a gas of hydrogen atoms at relatively high
density. Do the atoms behave as fermions or as bosons?
Would a gas of deuterium (heavy hydrogen) atoms behave

any differently? (Hint: The nuclear spin is 1/2 for hydrogen
and 1 for deuterium.)

9. The early universe contained a large density of neutrinos
(massless spin-1/2 particles that travel at the speed of light).
Which statistical distribution would be needed to describe
the properties of the neutrinos?

10. Would you expect the photoelectric effect to depend on the
temperature of the surface of the metal? Explain.

11. Estimate the mean kinetic energy of the “free” electrons in
a metal if they obeyed Maxwell-Boltzmann statistics. How
does this compare with the result of applying Fermi-Dirac
statistics? Why is there such a difference?

Problems

10.1 Statistical Analysis

1. A collection of three noninteracting particles shares 3 units
of energy. Each particle is restricted to having an integral
number of units of energy. (a) How many macrostates are
there? (b) How many microstates are there in each of the
macrostates? (c) What is the probability of finding one of
the particles with 2 units of energy? With 0 units of energy?

2. (a) Considering the numbers of heads and tails, how many
macrostates are there when 5 coins are tossed? (b) What is
the total number of possible microstates in tossing 5 coins?
(c) Find the number of microstates for each macrostate, and
be sure the total agrees with your answer to part (b).

3. Consider a system consisting of two particles, one with
spin s = 1 and another with spin s = 1/2. (a) Considering
a microstate to be an assignment of the z component of
the spins of each of the particles, what is the total num-
ber of microstates of the two-particle system? (b) How
many macrostates are there for the total spin of the two-
particle system? (c) Find the number of microstates for each
macrostate, and be sure the total number agrees with your
answer to part (a).

10.2 Classical and Quantum Statistics

4. Calculate the probabilities for E = 0, 3 and 5 listed in Table
10.2.

5. Calculate the probabilities given in Table 10.3 for E = 0
and E = 3 for (a) integral spin and (b) spin 1/2.

6. A system of four oscillator-like particles shares 8 units
of energy. (That is, the particles can accept energy only
in equal units, in which the oscillator spacing is 1 unit.)
(a) List the macrostates, and for each macrostate give the
number of microstates for distinguishable classical particles,
indistinguishable quantum particles with integral spin, and
indistinguishable quantum particles with half-integral spin.
(b) Calculate the probability to find a particle with exactly
2 units of energy for each of the three different types of
particles.

7. A system consists of two particles, each of which has a spin
of 3/2. (a) Assuming the particles to be distinguishable, what
are the macrostates of the z component of the total spin, and
what is the multiplicity of each? (b) What are the possible
values of the total spin S and what is the multiplicity of
each value? Verify that the total multiplicity matches that
of part (a). (c) Now suppose the particles behave like indis-
tinguishable quantum particles. What is the multiplicity of
each of the macrostates of the z component of the total spin?
(d) Show that for these quantum particles it is possible to
have only combinations with total spin S = 3 or 1.

10.3 The Density of States

8. The universe is filled with photons left over from the
Big Bang that today have an average energy of about
2 × 10−4 eV (corresponding to a temperature of 2.7 K).
What is the number of available energy states per unit
volume for these photons in an interval of 10−5 eV?

9. In certain semiconductors, the conducting regions are
grown in very thin layers, which can be regarded as two-
dimensional regions holding an electron gas. Calculate the
density of states (per unit area) for a gas of particles of mass
m and spin s confined to move in two dimensions in a square
region of length L on each side.

10. Calculate the density of states (per unit area) for a collection
of photons confined to a two-dimensional region in the shape
of a square a length L on each side.

11. In a conductor like copper, each atom provides one electron
that is available to conduct electric currents. If we assume
that the electrons behave like a gas of particles at room tem-
perature with a most probable energy of 0.0252 eV, what
is the density of states in an interval of 1% about the most
probable energy?

10.4 The Maxwell-Boltzmann Distribution

12. A system consists of N particles that can occupy two
energy levels: a nondegenerate ground state and a three-fold
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degenerate excited state, which is at an energy of 0.25 eV
above the ground state. At a temperature of 960 K, find the
number of particles in the ground state and in the excited
state.

13. A system with nondegenerate energy levels has three energy
states: a ground state at E = 0 and excited states at energies
of 0.045 eV and 0.135 eV. At a temperature of 650 K, find
the relative numbers of particles in the three states.

14. Show that the most probable speed vp of the Maxwell speed
distribution is (2kT/m)1/2.

15. A container holds one mole of helium gas at a temperature of
293 K. (a) Show that the mean energy Em of the molecules
is 0.0379 eV. (b) How many molecules have energies in an
interval of width 0.01Em centered on Em?

16. A cubic container holds one mole of argon gas at a tem-
perature of 293 K. (a) How many molecules have speeds
between 500 and 510 m/s? (b) How many molecules have
velocities between 500 and 510 m/s in one particular direc-
tion? Explain any differences between the answers to (a)
and (b).

17. The photosphere of the Sun has a temperature of 5800 K.
(a) Calculate the energy linewidth of the first transition in
the Lyman series of hydrogen in the Sun’s photosphere.
(b) For comparison, calculate the natural linewidth, assum-
ing a lifetime of 10−8 s.

10.5 Quantum Statistics

18. Do we expect to be able to use Maxwell-Boltzmann statis-
tics to analyze (a) nitrogen gas at standard conditions (room
temperature, 1 atmosphere pressure); (b) liquid water at
room temperature; (c) liquid helium at 4 K; (d) conduction
electrons in copper at room temperature?

19. (a) What pressure must be applied to nitrogen gas at room
temperature before Maxwell-Boltzmann statistics begins to
fail? (b) To what temperature must we cool nitrogen gas at 1
atmosphere before Maxwell-Boltzmann statistics begins to
fail?

10.6 Applications of Bose-Einstein Statistics

20. (a) Show that the total number of photons per unit volume at
temperature T is N/V = 8π(kT/hc)3

∫ ∞
0 x2dx/(ex − 1). (b)

The value of the integral is about 2.404. How many photons
per cubic centimeter are there in a cavity filled with radiation
at T = 300 K? At T = 3 K?

21. A blackbody is radiating at a temperature of 2.50 × 103 K.
(a) What is the total energy density of the radiation? (b) What
fraction of the energy is emitted in the interval between 1.00
and 1.05 eV? (c) What fraction is emitted between 10.00 and
10.05 eV?

22. Find the photon energy at which the blackbody energy
spectrum u(E) is a maximum. Compare this result with
Wien’s displacement law (see Chapter 3) and account for
any differences.

10.7 Applications of Fermi-Dirac Statistics

23. Compute the Fermi energy and the average electron energy
for copper.

24. Calculate the Fermi energy for magnesium, assuming two
free electrons per atom.

25. A certain metal has a Fermi energy of 3.00 eV. Find the
number of electrons per unit volume with energy between
5.00 eV and 5.10 eV for (a) T = 295 K; (b) T = 2500 K.

26. Derive Eq. 10.52 from Eq. 10.51.
27. Assume a neutron star consists of N neutrons (fermions with

spin 1/2) in a sphere of radius R and uniform density. The
star is in equilibrium because the inward gravitational force,
which tends to collapse the star, is opposed by a repulsion
due to the Pauli principle, which prevents the neutrons from
moving closer together. (a) Find an expression for the radius
of a neutron star. (b) Evaluate the radius for a star of mass
equal to 3 solar masses. (c) What is the density of the star?

28. Consider a neutron star of mass equal to twice the mass
of the Sun. (a) Evaluate the Fermi energy and determine
whether classical or relativistic kinematics should be used in
the analysis. (b) Find the de Broglie wavelength of a neutron
at the Fermi energy and compare with the average distance
between neutrons.

29. For a 5.0% mixture of 3He in 0.50 mole of 4He, calculate
the heat capacity in J/K at a temperature of 0.025 mK and
compare with the data shown in Figure 10.24. The density
of liquid 4He at this temperature is 2.2 × 1028 atoms/m3.
Assume an effective mass of 3He that is 2.5 times its ordinary
mass.

General Problems

30. Show that a system of 2 indistinguishable quantum particles
with spin 2 can combine only to a total spin of 0, 2, or 4.

31. Consider a collection of N noninteracting atoms with a single
excited state at energy E. Assume the atoms obey Maxwell-
Boltzmann statistics, and take both the ground state and the
excited state to be nondegenerate. (a) At temperature T ,
what is the ratio of the number of atoms in the excited state
to the number in the ground state? (b) What is the average
energy of an atom in this system? (c) What is the total
energy of the system? (d) What is the heat capacity of this
system?

32. Suppose we have a gas in thermal equilibrium at temperature
T . Each molecule of the gas has mass m. (a) What is the
ratio of the number of molecules at the Earth’s surface to the
number at height h (with potential energy mgh)? (b) What is
the ratio of the density of the gas at height h to the density
ρ0 at the surface? (c) Would you expect this simple model
to give an adequate description of the Earth’s atmosphere?

33. A collection of noninteracting hydrogen atoms is maintained
in the 2p state in a magnetic field of strength 5.0 T. (a) At
room temperature (293 K), find the fraction of the atoms in
the ml = +1, 0, and −1 states. (b) If the 2p state made a
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transition to the 1s state, what would be the relative inten-
sites of the three normal Zeeman components? Ignore any
effects of electron spin.

34. The following method is used to measure the molecular
weight of very heavy molecules. A liquid containing the
molecules is spun rapidly in a centrifuge, which estab-
lishes a variation in the density of the liquid. The density
is measured, such as by absorption of light, to determine
the molecular weight. Assign a fictitious “centrifugal” force
to act on the molecules and show that the density varies
as ρ = ρ0emω2x2/2kT where ω is the angular velocity of the
centrifuge and x measures the distance along the centrifuge
tube.

35. In sodium metal at room temperature, compute the energy
difference between the points at which the Fermi-Dirac dis-
tribution function has the values 0.1 and 0.9. What do you
conclude about the “sharpness” of the distribution?

36. In sodium metal (see Example 10.8), calculate the number of
electrons per unit volume at room temperature in an interval
of width 0.01EF at the mean energy Em.

37. Protons and neutrons are spin-1/2 particles in the nucleus.
Find the average energy of the protons and neutrons in the
nucleus of a uranium atom, which contains 92 protons and
143 neutrons and has the shape of a sphere of radius of
7.4 × 10−15 m.

38. Consider a uniform spherical distribution of matter of radius
r and density ρ. (a) Imagine that a small increment of mass
dm is brought from infinity to radius r. What is the change
in the gravitational potential energy of the system consisting
of the sphere and this mass increment? (b) Suppose we
bring in from infinity a series of small mass increments
that eventually form a thin spherical shell of radius r and
thickness dr about the central sphere. What is the change
in the potential energy of the system? (c) What is the total
change in potential energy involved with creating a sphere
of mass M and radius R?

39. (a) For a white dwarf star of mass equal to the mass
of the Sun, find the de Broglie wavelength for electrons
at the Fermi energy. Use nonrelativistic kinematics and

assume the star to be composed of helium nuclei (alpha
particles) and of uniform density. (b) Estimate the aver-
age distance between the electrons and compare with their
de Broglie wavelength. What can you conclude from this
comparison?

40. Measuring the relative population of magnetic substates of
nuclei provides a direct way of determining the temperature
for very cold systems, using a thermometer that is absolute
and needs no calibration. The nucleus 60Co behaves as if it
has a spin of 5 and a magnetic moment of �μ = γ�S, where
�S represents the nuclear spin and γ is a constant equal to
3.64 × 107 T−1s−1. When Co atoms are imbedded in a piece
of magnetized iron, the Co nuclei experience a magnetic field
of �B = −Bk̂, where B = 29.0 T and k̂ is the unit vector in
the z direction. (a) In a certain experiment using a Co in
Fe thermometer, the ratio r of the population of the second
lowest substate to that population of the lowest substate
was observed to be r = 0.419. What is the corresponding
temperature? (b) At that temperature, what is the ratio of
the population of the m = 0 substate to that of the lowest
substate?

41. The molecule cyanogen (CN), which is commonly found in
interstellar gas clouds, has rotational excited states that can
absorb visible light. These rotational states are populated by
the warming effect of the cosmic background radiation that
is a remnant of the creation of the universe. The energy of the
first excited rotational state (L = 1) is 4.71 × 10−4 eV above
the ground state. (a) The ratio of the intensity of the radiation
absorbed in the first excited rotational state to the intensity
of the radiation absorbed in the rotational ground state is
0.421 ± 0.017. Assuming this factor represents the relative
populations of the two states, calculate the temperature of
the cyanogen molecules and its uncertainty. (b) Based on
your deduced temperature, calculate the expected ratio of
the absorption intensity from the second rotational state to
that of the ground state and compare with the observed rela-
tive intensity (0.0121 ± 0.0014). Direct observation of this
background radiation shows it to have the expected thermal
radiation spectrum at this temperature (see Chapter 15).
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This scanning electron microscope image shows crystals of the metallic element tungsten.
The shape of the crystal is determined by the geometrical arrangement of tungsten atoms,
which are bound together in the body-centered cubic structure.
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In this chapter we study the way atoms or molecules combine to make solids. In
particular, we discuss how the principles of quantum mechanics are essential in
understanding the properties of solids.

At first thought, there seem to be so many different solids that to classify them
and form some general rules for their properties would appear to be a hopeless
task. The book you are reading is made of paper and cloth, held together by a glue
made from resins, once liquid and now solid. Your desk might be made of wood,
metal, or plastic; your chair might be made of similar materials, and might perhaps
be covered with cloth, leather, or plastic fabric and contain fiber or synthetic foam
padding. Around you, there might be many books and papers, pencils made of
wood and metal and graphite, rubber erasers, pens of metal and plastic. A plastic
body and a liquid crystal display surround the semiconductors that lie at the heart
of your calculator or computer, your cell phone, and your portable multimedia
player. Looking out through a glass window, you see structures made of wood,
bricks, concrete, or metal, selected for strength, utility, or attractiveness. Each of
these solids has a characteristic color, texture, strength, hardness, or ductility; it has
a certain measurable electrical conductivity, heat capacity, thermal conductivity,
magnetic susceptibility, and melting point; it has certain characteristic emission
or absorption spectra in the visible, infrared, ultraviolet, or other regions of the
electromagnetic spectrum.

It is a fair generalization to say that all of these properties depend on two
features of the structure of the material: the type of atoms or molecules of which
the substance is made, and the way those atoms or molecules are joined or
stacked together to make the solid. It is the formidable task of the solid-state (or
condensed-matter) physicist or physical chemist to try to relate the structure of
materials to their observed physical or chemical properties.

Quantum mechanics plays a fundamental role in determining properties of
the solid: mechanical, electrical, thermal, magnetic, optical, and so forth. In this
chapter we illustrate the application of quantum mechanics to the study of solids
by studying some of their thermal, electrical, and magnetic properties.

11.1 CRYSTAL STRUCTURES

Our discussion will concentrate on materials in which the atoms or molecules
occupy regular or periodic sites; this structure is called a lattice, and materials
with this structure are called crystals. Crystalline materials include many metals,
chemical salts, and semiconductors. One property that distinguishes crystals is
their long-range order—once we begin constructing the lattice in one location,
we determine the placement of atoms that are quite far away. In this respect, the
crystal is like a brick wall, in which the bricks are stacked in a periodic array and
the placement of a brick is predetermined by the original arrangement of bricks
far away compared with the size of a brick. (By contrast, amorphous materials
such as glass or paper have no long-range order, and their structure is more
similar to a pile of bricks than to a brick wall.)

Solid crystals can be classified by the cohesive forces that are responsible for
holding the lattice together, as well as by the shape of the arrangement of the
atoms in the lattice. We’ll look at a few different ways that atoms can be bound
together in solids.
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Ionic Solids
As we learned in Chapter 9, the cohesive forces in ionic molecules originate
from the electrostatic attraction between a closed-shell ion, such as Na+, and
another closed-shell ion, such as Cl−. Ionic materials can also form solids readily,
because a Na+ ion can simultaneously attract many Cl− ions to itself, thereby
building up a solid structure. The ions are held together by electrostatic forces,
so we might suppose that the more negative ions there are around a positive ion,
the more stable and strong the solid will be. (Covalent bonds, on the other hand,
involve specific electron wave functions and so are limited in the number of near
neighbors that can participate in the bonding.)

Ionic solids are crystalline, rather than amorphous, because we can pack ions
together more efficiently in a regular array than in a random arrangement. (The
same is true for bricks: In a regular array, there are more bricks per unit volume
than in a random pile, and their average separation is smaller.)

The simplest type of crystal lattice is the cubic lattice, in which we imagine the
atoms to be placed at the corners of a succession of cubes that cover the volume
of the crystal. Figure 11.1 shows the basic cubic structure. This type of stacking
is not the most efficient, because there are large gaps at the center of each face
of the cube, and also in the middle of the cube itself. We get a better stacking
arrangement, which has more atoms per unit volume, if we place another atom
either at the center of each face of the cube or at the center of the body of the
cube. These two lattices are known as face-centered cubic (fcc) and body-centered
cubic (bcc) and are illustrated in Figures 11.2 and 11.3.

The fcc lattice gives a slightly more efficient packing (more atoms per unit
volume) and so it is usually the most stable structure. However, atoms do not stack
like hard spheres, and often the bcc structure is preferred. These two crystal types,
fcc and bcc, also occur for materials other than ionic solids, such as certain metals.

A common material that has the fcc lattice structure is NaCl, and for that reason
the fcc lattice is often called the NaCl structure. In order to have the atoms attract
one another, we must alternate Na+ and Cl− ions, as is shown in Figure 11.4.

FIGURE 11.1 The simple
cubic crystal. The atoms are
shown as small spheres for
clarity; in an actual solid, the
atoms should be imagined as
spheres in contact in this cubic
geometry.

FIGURE 11.2 The face-centered
cubic structure.

FIGURE 11.3 The body-centered
cubic structure.
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In this illustration you can see how the atoms pack together just like hard spheres
in contact. Notice that a given Na+ ion is attracted by 6 close Cl− neighbors, and
does not “belong to” any single Cl− ion. It is therefore wrong to consider ionic
solids as being composed of molecules.

A typical bcc structure is CsCl, as shown in Figure 11.5, and so the bcc lattice
is often known as the CsCl structure. In this case each ion is surrounded by 8
neighbors of the opposite charge.

FIGURE 11.4 Packing of Na (small
spheres) and Cl (large spheres) in a
fcc crystal of NaCl.

FIGURE 11.5 Packing of Cs (large
spheres) and Cl (small spheres) in a
bcc crystal of CsCl.

Each Na+ ion in the NaCl structure is surrounded at a distance R by 6 Cl− ions
exerting attractive electrostatic forces. At the slightly larger distance of R

√
2 from

each Na+ ion are 12 Na+ ions exerting repulsive forces, and at the still greater
distance of R

√
3 there are 8 Cl− ions exerting attractive forces. To find the total

Coulomb potential energy UC, we can continue in this way to add the alternating
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where α, called the Madelung constant, is the factor in parentheses in Eq. 11.1:

α = 6 − 12√
2

+ 8√
3

− · · · (11.2)

This quantity depends only on the geometry of the lattice and is evaluated by
summing the slowly converging series of alternating positive and negative terms.
The result is

α = 1.7476 (fcc or NaCl lattice)

For the bcc lattice, a similar calculation gives

α = 1.7627 (bcc or CsCl lattice)

As in the case of ionic molecules, the net attractive electrostatic force is opposed
by a repulsive force due to the Pauli principle, which keeps the filled subshells
from overlapping. The repulsive potential energy can be approximated as

UR = AR−n (11.3)

where A gives the strength of the potential energy and n determines how rapidly
it increases at small R. For most ionic crystals, n is in the 8–10 range. The total
potential energy of an ion in the lattice is the sum of the Coulomb and repulsive
potential energies:

U = UC + UR = −α
e2

4πε0

1

R
+ A

Rn
(11.4)

The energies are illustrated in Figure 11.6. There is a stable minimum in the
energy, that determines both the equilibrium separation R0 and the binding
energy. To find this minimum, we set dU /dR to zero, which gives

A = αe2Rn−1
0

4πε0n
(11.5)
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TABLE 11.1 Properties of Ionic Crystals

Nearest-Neighbor Cohesive Energy
Separation (kJ/mol) n Structure

LiF 0.201 1030 6 fcc

LiCl 0.257 834 7 fcc

NaCl 0.281 769 9 fcc

NaI 0.324 682 9.5 fcc

KCl 0.315 701 9 fcc

KBr 0.330 671 9.5 fcc

RbF 0.282 774 8.5 fcc

RbCl 0.329 680 9.5 fcc

CsCl 0.356 657 10.5 bcc

CsI 0.395 600 12 bcc

MgO 0.210 3795 7 fcc

BaO 0.275 3029 9.5 fcc

The binding energy B of an ion in the crystal is the depth of the energy well at
R = R0, the equilibrium separation between nearest-neighbor ions. Substituting
Eq. 11.5 into Eq. 11.4 and evaluating the resulting equation at R = R0, we obtain

B = −U(R0) = αe2

4πε0R0

(
1 − 1

n

)
(11.6)

From thermodynamic measurements, it is possible to determine the bulk
cohesive energy of a solid. In effect, the cohesive energy of an ionic solid is
defined as the energy necessary to dismantle the solid into individual ions. Some
measured values of the cohesive energies and nearest-neighbor spacings are given
in Table 11.1. The value of the exponent n is determined from compressibility
data.
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FIGURE 11.6 Contributions to the
energy of an ionic crystal. Numerical
values are for NaCl.

The cohesive energy of a bulk sample can be calculated by multiplying the
binding energy for a single ion, determined from Eq. 11.6, by the number of ions
in the sample, except that such a calculation would count each ion twice.∗ In one
mole of an ionic solid, there are Avogadro’s number NA of positive ions and also
NA negative ions, for a total of 2NA ions per mole. The relationship between the
molar cohesive energy Ecoh and the ionic binding energy B is then

Ecoh = 1
2 (B)(2NA) = BNA (11.7)

∗Consider ions A and B. If we use Eq. 11.6 to compute the binding energy of ion A, the result includes
the interaction of ion A with all the ions of the solid, including ion B. Similarly, the binding energy of
ion B calculated from Eq. 11.6 includes the interaction of B with A. If we calculated the total binding
energy of the solid by adding together the binding energies of all ions A and B, we would be including
the interaction between A and B twice.
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where the factor of 1/2 corrects for the problem of double counting of the ions.
The following examples illustrate the relationship between cohesive energy of

the bulk solid and the binding energy per ion pair.

Example 11.1

(a) Determine the experimental value of the binding energy
of an ion pair in the NaCl lattice from the cohesive energy.
(b) Find the expected value of the binding energy based on
the lattice parameters.

Solution
(a) From Eq. 11.7, we have

B = Ecoh

NA
= 769 × 103 J/mol

(6.02 × 1023 ions/mol)(1.60 × 10−19 J/eV)

= 7.98 eV

(b) The calculated value of the ionic binding energy is
obtained from Eq. 11.6:

B = αe2

4πε0R0

(
1 − 1

n

)

= (1.7476)(1.44 eV · nm)

0.281 nm
(0.889) = 7.96 eV

The agreement between the experimental and calculated
values is very good.

Example 11.2

How much energy per neutral atom would be needed to
take apart a crystal of NaCl?

Solution
If we supply an energy of Ecoh to a mole of NaCl, we
obtain NA Na+ ions and NA Cl− ions. To convert these to
neutral atoms, we must remove an electron from each Cl−,
which costs us the electron affinity of Cl (3.61 eV), and

then we must attach that electron to the Na+, which returns
the ionization energy of Na (5.14 eV). The net cost per pair
of Na and Cl atoms is

7.98 eV + 3.61 eV − 5.14 eV = 6.45 eV

Expending this much energy gives two neutral atoms (Na
and Cl), so the net cost per atom is half that amount, or
3.23 eV.

The large cohesive energies of ionic solids such as NaCl gives them a common
set of properties: They are hard, with high melting and vaporization temperatures
(because it takes a lot of thermal energy to break the bonds). They are soluble in
polar liquids such as water, in which the dipole moment of the water molecule
can supply the electrostatic force necessary to break the ionic bonds. There are no
free or valence electrons, so they are poor electrical conductors and not strongly
magnetic. They are transparent to visible light (because light rays have too little
energy to excite electrons from the filled shells), but absorb strongly in the infrared
(corresponding to the vibrational frequencies of the atoms in their lattice sites).

FIGURE 11.7 The tetrahedral struc-
ture of carbon.

Covalent Solids
As we discussed in Chapter 9, carbon forms molecules by covalent bonding of
its four outer electrons in sp3 hybrid orbits. Such bonds are highly directional,
and we have seen how it is possible to calculate the angle between the bonds
based on the symmetry of the bonding configuration. Solid carbon, in the form of
diamond, is an example of a solid in which the interatomic forces are also of a
covalent nature. As in a molecule, the four equivalent sp3 hybrid states participate
in covalent bonds, and because they are equivalent they must make equal angles
with one another. The manner in which this is done is shown in Figure 11.7. A
central carbon atom is covalently bound to four other carbons that occupy four
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TABLE 11.2 Some Covalent Solids

Crystal Nearest-Neighbor Distance (nm) Cohesive Energy (kJ/mol)

ZnS 0.235 609

C (diamond) 0.154 710

Si 0.234 447

Ge 0.244 372

Sn 0.280 303

CuCl 0.236 921

GaSb 0.265 580

InAs 0.262 549

SiC 0.189 1185

corners of a cube as shown. The angle between the bonds is 109.5◦, as it was in
the covalently bonded molecules.

Figure 11.8 illustrates how the solid structure characteristic of diamond is
constructed of such bonds. Each carbon has four close neighbors with which it
shares electrons in covalent bonds. The basic structure is known as tetrahedral,
and many compounds have a similar structure as a result of covalent bonding.
Table 11.2 shows some of these compounds. The cohesive energy is the energy
required to dismantle the solid into individual atoms. The structure is also known
as the zinc sulfide or zinc blende structure.

FIGURE 11.8 The lattice structure of
diamond.

Some of the covalent solids listed in Table 11.2 have bond energies larger
than those of ionic solids. Substances such as diamond and silicon carbide are
particularly hard. Other covalent solids with structures similar to carbon are silicon
and germanium; the structure of these solids is responsible for their behavior as
semiconductors.

The covalent solids do not have the same similarity of characteristics that ionic
solids do, and so we cannot make the same generalizations. Carbon, in the diamond
structure, has a large bond energy and is therefore very hard and transparent to
visible light; germanium and tin have similar structures, but are metallic in
appearance and highly reflective. Carbon (as diamond) has an extremely high
melting point (4000 K); germanium and tin melt at much lower temperatures
more characteristic of ordinary metals. Some (like diamond) are extremely poor
electrical conductors, while others (like Si, Ge, and Sn) can conduct electricity but
not nearly as well as most metals. Of course, these differences depend on the actual
bond energy in the solid, which in turn depends on the type of atoms of which the
solid is made. Those solids with large bond energies are hard, have high melting
points, are poor electrical and thermal conductors, and are transparent to visible
light. Those solids with small bond energies may have very different properties.

Metallic Bonds
The valence electrons in a metal are usually rather loosely bound, and frequently
the electronic shells are only partially filled, so that metals tend not to form
covalent bonds. The basic structure of metals is a “sea” or “gas” of approximately
free electrons surrounding a lattice of positive ions. The metal is held together by
the attractive force between each individual metal ion and the electron gas.
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TABLE 11.3 Structure of Metallic Crystals

Metal Crystal Type Nearest-Neighbor Distance (nm) Cohesive Energy (kJ/mol)

Fe bcc 0.248 418

Li bcc 0.304 158

Na bcc 0.372 107

Cu fcc 0.256 337

Ag fcc 0.289 285

Pb fcc 0.350 196

Co hcp 0.251 424

Zn hcp 0.266 130

Cd hcp 0.298 112

The most common crystal structures of metallic solids are fcc, bcc, or a third
type known as hexagonal close-packed (hcp). The hcp structure is shown in
Figure 11.9; like the fcc structure, it is a particularly efficient way of packing
atoms together. Some metals and their characteristics are shown in Table 11.3.
The cohesive energy of metal bonds tends to fall in the range 100–400 kJ/mol
(1–4 eV/atom), making the metals less strongly bound than ionic or covalent
solids. As a result, many metals have relatively low melting points (some below
a few hundred ◦C). The relatively free electrons in the metal interact readily with
photons of visible light, so metals are not transparent. The free electrons are
responsible for the high electrical and thermal conductivity of metals. Because
metallic bonds don’t depend on any particular sharing or exchange of electrons
between specific atoms, the exact nature of the atoms of the metal is not as
important as it is in the case of ionic or covalent solids; as a result we can make
many kinds of metallic alloys by mixing together different metals in varying
proportions.

FIGURE 11.9 Arrangement of atoms
in a hexagonal close-packed crystal.

Molecular Solids
None of the solids we have discussed so far can be considered as composed of
individual molecules. It is, however, possible for molecules to exert forces on one
another and to bind together in solids. The electrons in a molecule are already
shared in molecular bonds, so there are no available electrons to participate in
ionic, covalent, or metallic bonds with other molecules. Moreover, molecules are
electrically neutral, so there are no Coulomb forces involved. Molecular solids
are held together by much weaker forces, which generally depend on the electric
dipole moments of the molecules. Because these forces are much weaker than the
internal forces that hold a molecule together, a molecule can retain its identity in
a molecular solid.

The electric dipole moment of one molecule can exert an attractive force on
the dipole moment of another. The dipole cohesive force (which is proportional
to 1/R3) in molecular solids is generally weaker than the 1/R2 Coulomb force
that is responsible for the cohesive energies of other solids. Molecular solids are
therefore more weakly bound and have lower melting points than ionic, covalent,
or metallic solids, because it takes less thermal energy to break the bonds of a
molecular solid.
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Some molecules (called polar molecules) have permanent electric dipole
moments consisting of a positive charge on one end of the molecule and an
equal negative charge on the opposite end. For example, in a water molecule, the
oxygen atom tends to attract all of the electrons of the molecule and so looks
like the negative end of the dipole; the two “bare” protons are the positive ends
of the dipole. The dipole forces between water molecules are responsible for the
beautiful hexagonal patterns of snowflakes. When bonding of this sort involves
hydrogen atoms, as it does in water, it is known as hydrogen bonding.

It is also possible to have dipole forces exerted between atoms or molecules
that have no permanent dipole moments. Quantum mechanical fluctuations∗ can
produce an instantaneous electric dipole moment in one atom, which then induces a
dipole moment by polarizing a neighboring atom. The result is an attractive dipole-
dipole force known as the van der Waals force, which is responsible for the bonding
in certain molecular solids (as well as for such physical effects as surface tension
and friction). Examples of solids that are bound by the van der Waals force include
those composed of the inert gases (Ne, Ar, Kr, and Xe), symmetric molecules
such as CH4 and GeCl4, halogens, and other gases such as H2, N2, and O2.

The van der Waals force is extremely weak; it falls off with separation distance
like R−7. In inert gas crystals, the nearest neighbor distance is 0.3–0.4 nm, but
the cohesive energies are typically only 10 kJ/mol or 0.1 eV/atom. Solids bound
by these weak forces have low melting points, because little thermal energy is
required to break the bonds. In fact, because the induced dipole moment of an atom
or molecule should be approximately proportional to its total number of electrons,
we might expect that the melting points of nonpolar molecular solids should be
roughly proportional to the number of electrons in each molecule. Figure 11.10
shows this relationship; although the properties of the individual solids cause
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FIGURE 11.10 The melting points of molecular solids depend approximately on
the number of electrons per molecule.

∗These fluctuations are too rapid to be observed in the laboratory. Measurements give only the average
value of this fluctuating dipole moment, which is zero.
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considerable scatter of the points, the relationship is roughly as we expect it
should be.

11.2 THE HEAT CAPACITY OF SOLIDS

Just as we discussed in Chapter 1 for the heat capacity of gases, the heat capacity
of solids provides another example of the breakdown of classical statistical
mechanics and the need for a more detailed theory based on quantum mechanics.
(You might find it helpful to review the classical calculation of the heat capacity
for gases in Section 1.3.)

Let’s first consider what classical thermodynamics predicts for the heat capacity
of a solid. In contrast to a gas, an atom in a solid occupies a specific position in
the lattice, so no translational motion is possible. Thus there are no degrees of
freedom corresponding to the translational motion. The atom can move only by
vibrating about its equilibrium position in the lattice. We can imagine the atom
to behave as if it were connected to all of its closest neighbors by springs. It
can vibrate in any of the three coordinate directions independently of the other
two—the initial displacements of the springs in the x, y, and z directions can
be chosen independently, and the initial velocities in each direction can be set
independently of one another. Consequently there are 6 degrees of freedom in this
situation—2 degrees of freedom (corresponding to the vibrational potential and
kinetic energies) for each of the three directions. According to the equipartition
theorem, the average energy for each degree of freedom is 1

2 kT , so the average
energy per atom is 6 × 1

2 kT = 3kT . The total internal energy of one mole (NA
atoms) would then be Eint = 3NAkT = 3RT (where R = NAk is the universal gas
constant), and the corresponding molar heat capacity is

C = �Eint

�T
= 3R = 24.9 J/mol · K (11.8)

This is the expected value of the molar heat capacity of solids based on classical
statistical mechanics and is known as the law of Dulong and Petit.

How well does this prediction compare with experiment? Table 11.4 shows
some values of the molar heat capacities at room temperature (approximately
300 K) and at 100 K and 25 K for some metallic elements. There is good
agreement with the Dulong and Petit prediction at room temperature, but
poor agreement as the temperature is reduced. (Note that the classical value is
independent of temperature.)

Figure 11.11 shows the temperature dependence of the heat capacities of Pb,
Cu, and Cr at temperatures between 1 K and 100 K. It appears that the heat
capacity approaches 0 at the lowest temperatures. As the temperature is increased,
the heat capacity rises, eventually reaching the Dulong and Petit value at high
enough temperature. However, the rate of increase is very different for these
metals: Pb rises quickly (approaching the Dulong and Petit value by 100 K), Cu
rises more slowly, and Cr rises even more slowly.
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FIGURE 11.11 Molar heat capacity
of Pb (diamonds), Cu (squares), and
Cr (triangles) at temperatures below
100 K. The room temperature values
are shown at the right.

Clearly the classical calculation fails to account for the heat capacities of
these solids. One possible resolution of this problem would be to consider the
application of quantum statistics to the electrons in these metals. In Chapter 10,
we discussed the heat capacity of a gas of fermions. We applied the model to
a dilute solution of 3He in 4He, but the result can apply equally as well to any
system of particles governed by Fermi-Dirac statistics.
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TABLE 11.4 Heat Capacities of Common Metals*

T = 300 K T = 100 K T = 25 K

Metal J/kg · K J/mole · K J/mole · K J/mole · K

Al 0.904 23.4 12.8 0.420

Ag 0.235 24.3 20.0 3.05

Au 0.129 23.4 21.1 5.11

Cr 0.461 23.8 10.0 0.199

Cu 0.387 23.9 16.0 0.971

Fe 0.450 24.6 12.0 0.398

Pb 0.128 24.7 23.8 14.0

Sn 0.222 23.8 22.0 6.80

*The value of the heat capacity depends on the circumstances under which it is
determined. Usually measured values are observed at constant pressure (CP), while
calculated values are more easily obtained for constant volume (CV ). The first data
column in this table is the experimental specific heat (heat capacity per unit mass) at
constant pressure, and the remaining columns all give the molar heat capacity at constant
volume. In most cases CP is just a few percent larger than CV .

We can treat the electrons in a metal as a Fermi gas. In deriving Eq. 10.63
for the heat capacity, the only assumption we made was that kT 	 EF. For most
metals, EF is a few eV and even at room temperature kT is only 0.025 eV, so the
approximation should be pretty good. Let’s rewrite Eq. 10.63 for one mole of a
substance (N = NA) as follows:

C = π2k2NAT

2EF
= π2

2

RkT

EF
(11.9)

where R = 8.31 J/mole · K. Equation 11.9 is written as if each atom of the lattice
contributes one electron to the electron gas, so that N (the number of electrons) is
equal to NA (for one mole of atoms). If, for example, the metal had a valence of
2, then we would have N = 2NA.

For copper EF = 7.03 eV and Eq. 11.9 gives C = 0.146 J/mole · K at room
temperature. This value is far smaller than the experimental value, indicating that
the electrons provide only a small contribution to the heat capacity, at least at
room temperature. So the correct explanation for the behavior of the heat capacity
must lie elsewhere than the electrons.

Einstein Theory of Heat Capacity
In an ordinary solid, most of the physical properties originate either with the
valence electrons or with the latticework of atoms. Electrical conductivity,
for example, originates with the valence electrons, while the propagation of
mechanical waves is due to the lattice of atoms. The heat capacities of solids have
contributions from both lattice and conduction electrons; at all but the lowest
temperatures, the lattice contribution is dominant.

The explanation for the failure of classical physics to account for the heat
capacity of solids was first given by Einstein, who assumed that the oscillations
(not the atoms) of the solid obeyed Bose-Einstein statistics. Just as electromagnetic
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waves are analyzed as “particles” (quanta of electromagnetic energy, or photons)
that obey Bose-Einstein statistics, so are mechanical or acoustic waves analyzed
as “particles” (quanta of vibrational energy, called phonons) that also obey
Bose-Einstein statistics. Einstein made the simplifying assumption that all of the
phonons (oscillations) have the same frequency.

We have seen in Chapter 5 that a quantized oscillator has an energy of
−hω(n + 1

2 ). Each additional value of n represents an additional phonon; to go
from a vibrational energy of 5

2
−hω to 7

2
−hω we must “create” a phonon of energy −hω.

One mole of the solid contains NA atoms and thus 3NA oscillators. The density
of states (number of states per unit volume) is thus 3NA/V , and the integral of
Eq. 10.7 is evaluated only at the single energy E = −hω (because all phonons have
energy −hω). Using the Bose-Einstein distribution, the number of phonons is then
N = 3NA/(e

−hω/kT − 1), and the total internal energy of the solid is the number of
phonons times the energy of each phonon:

Eint = N−hω = 3NA
−hω

1

e
−hω/kT − 1

(11.10)

The heat capacity can be found from dEint/dT :

C = dEint

dT
= 3NA

−hω
(e

−hω/kT )(−hω/kT2)

(e
−hω/kT − 1)2

= 3R
( −hω

kT

)2 e
−hω/kT

(e
−hω/kT − 1)2

= 3R

(
TE

T

)2 eTE/T

(eTE/T − 1)2
(11.11)

where we have replaced −hω/k with the parameter TE, called the Einstein temper-
ature. The vibrational energy −hω (or the Einstein temperature TE) is an adjustable
parameter of the theory and takes different values for different materials. Typically,
TE is of the order of several hundred kelvins.

When T is small, the exponential term in the denominator dominates, and
C ∝ e−TE/T , so indeed C approaches 0 for small T , in agreement with experiment.
Figure 11.12 shows the molar heat capacity of Cu compared with the behavior
predicted by Eq. 11.11, with TE = 225 K giving the best fit to the data. As you
can see, the agreement is reasonably good. However, even though the shape of
the theoretical curve matches the overall trend of the data, it fails to do a good job
at accounting for the behavior at the lowest temperatures (the data approach zero
more slowly than the theory predicts).
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FIGURE 11.12 Molar heat capacity
of Cu. The solid curve gives the tem-
perature dependence expected accord-
ing to the Einstein theory (Eq. 11.11).

In this calculation we have oversimplified by assuming all of the oscillations
to have the same frequency. A better calculation, which was first done in 1912
by Peter Debye∗, assumes a distribution of frequencies with a density of states
given by an expression of the same form as that for the “photon gas” of blackbody
radiation; the predicted low temperature behavior is then

C = 12π4

5
R

(
T

TD

)3

(11.12)

where TD is a parameter of the theory known as the Debye temperature, which is
different for different materials.

∗Peter Debye (1884–1966) was born in the Netherlands but spent most of his academic career in
German universities (where at one point he served as Schrödinger’s professor) and finally moved to
the U.S. in 1940. He is perhaps best known for his analysis of X-ray diffraction patterns (such as
Figure 3.8), for which he received the 1936 Nobel Prize in chemistry.
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At the lowest temperatures, we therefore can identify two terms in the heat
capacity: a term due to the electrons, which is linear in the temperature (Eq. 11.9),
and another term due to the lattice vibrations of the atoms, which is proportional to
T3. Combining these two terms, we then expect the low-temperature heat capacity
to be of the form C = aT + bT3, where a is the coefficient of T in Eq. 11.9 and
b is the coefficient of T3 in Eq. 11.12. As T approaches 0, the T3 term drops off
more rapidly than the linear term, so at the very lowest temperatures we expect
the electrons to have a more significant contribution. We can turn this equation
into a linear graph and identify both contributions by writing C/T = a + bT2 and
plotting C/T as a function of T2, which should give a straight line of slope b and
y-intercept a. Figure 11.13 shows the results for copper. The data do indeed fall
on a straight line, in excellent agreement with the Debye theory. If the electronic
part if the heat capacity were not present (that is, if there were only the lattice
contribution from Eq. 11.12), then the line would go through the origin and the
intercept would be zero. So the intercept tells us about the electronic contribution
to the heat capacity. The slope of the line tells us about the lattice contribution
and depends on the Debye temperature.

Example 11.3

(a) From the slope of the line in Figure 11.13, determine the
Debye temperature of copper. (b) Using the Fermi energy
of copper (7.03 eV), determine the expected value of the
intercept.

Solution
(a) The slope b is equal to the coefficient of T3 in Eq. 11.12,
so b = 12π4R/5T3

D and

TD =
(

12π4R

5b

)1/3

=
[

12π4(8.31 J/mole · K)

5(4.80 × 10−5 J/mole · K4)

]1/3

= 343 K

(b) The intercept a is the coefficient of T in the electronic
contribution to the heat capacity (Eq. 11.9):

a = π2kR

2EF

= π2(8.617 × 10−5 eV/K)(8.31 J/mole · K)

2(7.03 eV)

= 5.03 × 10−4 J/mole · K2

The expected value of the intercept based on the free-electron model doesn’t quite
agree with the experimental value from Figure 11.13 for exactly the same reason
that our analysis of the 3He data in Chapter 10 didn’t agree with the predictions:
an electron moving through a copper lattice doesn’t behave as a free electron
would in an electron gas. We can account for the forces exerted by the lattice on
the electrons by assigning the electrons an “effective mass” that is larger than the
mass of a free electron. The additional mass accounts for the “sluggish” behavior
of the electrons in moving through the lattice. The mass enters the calculation
through the Fermi energy (Eq. 10.50); making the mass larger results in a smaller
value of EF and thus a larger value of the intercept a. For copper, the effective
mass of the electrons is about 1.4 times their free mass.

The Debye theory also gives good agreement with the experimental data at
higher temperatures. Except at room temperature, the data of Table 11.4 seem to
have little in common. At 100 K the heat capacities vary by more than a factor of 2,
and they vary by two orders of magnitude at 25 K. In the Debye theory, the heat
capacity for any substance can be written as a function of T/TD. If we plot the heat
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capacities of the eight metals listed in Table 11.4 against T/TD, the large variation
among the values for different metals disappears, as shown in Figure 11.14.
The data for all substances fall along the same curve calculated from the Debye
theory. Understanding these widely different materials in a common basis is a
great triumph for the quantum theory and for the application of Bose-Einstein
statistics.
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11.3 ELECTRONS IN METALS

In metals, each atom contributes one or more loosely bound electrons to an
“electron gas” of nearly free electrons that can easily move throughout the metal.
In analogy with an ordinary molecular gas, these electrons move freely and
experience forces only when they scatter from the ion cores in the lattice. For
now, we’ll assume the distribution of occupied electron states is determined by
the density of states for the electron gas and the Fermi-Dirac distribution function.
In the next section, we will see that a more detailed analysis of the properties
of the interaction of the electrons with the atoms of the lattice forbids certain
ranges of energy values, but we’ll ignore that effect for this discussion. With these
assumptions, we can use the electron gas model to study many of the properties
of metals, such as electrical conduction, heat capacity, and heat conduction.

Figure 11.15 reviews the main details of the Fermi-Dirac energy distribution,
which we discussed in Chapter 10, as it might be applied to electrons in metals.
The distribution of occupied electron states is determined by the product of the
density of states factor, Eq. 10.12, and the Fermi-Dirac distribution function, Eq.
10.34. At T = 0, all states above the Fermi energy EF are empty and all states
below EF are occupied. For temperatures greater than 0, EF identifies the point
at which the Fermi-Dirac factor has the value 1/2. The difference between N(E)

at T = 0 and at room temperature was illustrated in Figure 10.22; only a small
number of electrons near EF are affected by the temperature change.
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FIGURE 11.15 (a) The density of
states factor for electrons (Eq. 10.12).
(b) The Fermi-Dirac distribution func-
tion (Eq. 10.34). (c) The number of
occupied states per unit energy inter-
val, determined from the product of
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We calculated the Fermi energy at T = 0 by using Eq. 10.49, in which the
integral of N(E) over all energies gives the total number of electrons N . The same
procedure can be used to find EF at any temperature:

N =
∫ ∞

0
N(E) dE = 8

√
2πVm3/2

h3

∫ ∞

0

E1/2 dE

e(E−EF)/kT + 1
(11.13)

In principle, we can evaluate the integral and solve for EF, as we did to obtain
Eq. 10.50. However, the integral cannot be evaluated in closed form. The solution
can be approximated as

EF(T) ≈ EF(0)

[
1 − π2

12

(
kT

EF(0)

)2
]

(11.14)

Here EF(T) represents the Fermi energy at temperature T and EF(0) represents
the Fermi energy at T = 0 (Eq. 10.50). At room temperature, kT = 0.025 eV, and
for most metals the Fermi energy is a few eV, so the change in the Fermi energy
between 0 K and room temperature is only about 1 part in 104. We can therefore
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regard the Fermi energy as a constant for our applications, and we will represent
it simply as EF. Table 11.5 shows the Fermi energies of some metals.

TABLE 11.5 Fermi Energies of Some
Metals

Metal EF (eV)

Ag 5.50

Au 5.53

Ba 3.65

Ca 4.72

Cs 1.52

Cu 7.03

Li 4.70

Mg 7.11

Na 3.15

Electrical Conduction
When an electric field �E is applied to a metal, a current flows in the direction of
the field. The flow of charges is described in terms of a current density �j , the
current per unit cross-sectional area. In an ordinary metal, the current density is
proportional to the applied electric field:

�j = σ �E (11.15)

where the proportionality constant σ is the electrical conductivity of the material.
We would like to understand the conductivity in terms of the properties of the
metal.

The free electrons in our electron gas experience a force �F = −e�E and a
corresponding acceleration −e�E/m. We observe that in a conductor the current
is constant in time, so the increase in velocity from the electric field must be
opposed, in this case by collisions with the lattice. This model of conduction in
metals views the electrons as accelerated by the field only for short intervals,
following which they are slowed by collisions. The net result is that the electrons
acquire on the average a steady drift velocity �vd, given by the acceleration times
the average time τ between collisions:

�vd = −e�E
m

τ (11.16)

The magnitude of the current density is determined by the number of charge
carriers and their average speed:

�j = −ne�vd (11.17)

where n is the density of electrons available for conduction. Substituting for the
drift velocity, we obtain

�j = ne2τ

m
�E (11.18)

and the conductivity is therefore

σ = ne2τ

m
(11.19)

The unknown factor in Eq. 11.19 is the time between collisions, which we can
express as

τ = l

vav
(11.20)

where l is the mean free path of the electrons, the average distance the electrons
travel between collisions, and vav is their average speed through the lattice. (Note
that this speed is not the same as the drift speed, which is the small increment of
speed that comes about from applying the electric field.)

Let’s see how this theory compares with experimentally observed
conductivities.
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Example 11.4

Assuming the average distance traveled between colli-
sions is roughly the distance between atoms, estimate the
electrical conductivity of copper at room temperature.

Solution
The nearest neighbor spacing between atoms in a copper
lattice is 0.256 nm. If we treat the electron gas semi-
classically, the average kinetic energy of an electron is
3
2 kT , and so the average speed of an electron at room
temperature (kT = 0.0252 eV) is

vav =
√

3kT

m

=
√

3(0.0252 eV)

0.511 × 106 eV/c2

= 1.15 × 105 m/s

The average time between collisions is then

τ = l/vav = (0.256 × 10−9 m)/(1.15 × 105 m/s)

= 2.22 × 10−15 s

The density of copper atoms is

n = ρNA

M
= (8.96 × 103 kg/m3)(6.02 × 1023 atoms/mole)

0.0635 kg/mole

= 8.49 × 1028 atoms/m3

and the conductivity is

σ = ne2τ

m

= (8.49 × 1028 m−3)(1.60 × 10−19 C)2(2.22 × 10−15 s)

9.11 × 10−31 kg

= 5.30 × 106 �−1 m−1

The measured conductivity of copper at room temperature is
5.96 × 107 �−1m−1, so our calculation is off by more than an order of
magnitude. Moreover, the temperature dependence is wrong: this calculation
predicts that the conductivity should decrease as T−1/2 in this temperature region,
while the measured conductivity decreases like T−1.

We have actually made a couple of errors in this calculation, both of which
have to do with ignoring the effects of quantum mechanics in the conduction
process. Let’s see how we can remedy these defects.

Quantum Theory of Electrical Conduction

Figure 11.16a represents the Fermi distribution of electron velocities in the metal.
Like the Fermi energy distribution, it is flat at v = 0 and it falls to zero near the
Fermi velocity vF, but (unlike the energy distribution) it has positive and negative
branches because the electrons can move in either direction. When an electric field
is applied, all electrons acquire on the average an additional velocity component
equal to the drift velocity vd, which shifts the entire velocity distribution to the
left (opposite the field direction), as shown in Figure 11.16b. Even though the
entire distribution shifts, the net effect of applying the electric field is centered on
a small number of electrons in the vicinity of vF. The electric field causes some
electron states near vF in the direction of �E to become unoccupied, while an equal
number of states near vF in a direction opposite to �E become occupied.
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FIGURE 11.16 (a) The Fermi-
Dirac velocity distribution function.
(b) When an electric field is applied,
the distribution shifts as the electrons
are accelerated in a direction opposite
to the field.

The only electrons affected by the field are those in a narrow interval near the
Fermi energy. These electrons are moving with a speed vF = √

2EF/m, which
for copper with EF = 7.03 eV works out to be 1.57 × 106 m/s. This speed is



11.3 | Electrons in Metals 341

about an order of magnitude larger than the speed we found in Example 11.4,
which would give us a shorter average time between collisions and hence a
smaller conductivity. This seems to make the disagreement between theory and
experiment even worse! Moreover, the Fermi energy is nearly independent of
temperature, so the speed of electrons near the Fermi energy should likewise not
change with temperature, nor should the conductivity.
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FIGURE 11.17 The electrical resis-
tivity of sodium metal as a function of
the temperature.

That leaves the mean free path l as our last resort in fixing the calculation.
However, in a perfectly arranged lattice, the mean free path should be infinite!
Because atoms are mostly empty space, an electron should have a clear path
through the material without scattering from the lattice ions. A perfect lattice
should have an infinite conductivity! In practice, we find that the mean free path
of an electron may be many hundreds of times the spacing between atoms, so that
an encounter of an electron with a lattice ion is not very common.

In a real metallic lattice, two effects contribute to the scattering of electrons:
(1) the atoms are in random thermal motion (oscillating about their equilibrium
positions) and therefore do not occupy exactly the positions of a perfectly
arranged lattice, and (2) lattice imperfections and impurities cause deviations
from the ideal lattice. The first effect is temperature dependent and dominates at
high temperatures; the second effect is independent of temperature and dominates
at the lowest temperatures. In fact, because the average vibrational potential
energy (which depends on the square of the vibrational amplitude) is proportional
to the temperature, the average area that a vibrating atom presents to an electron
moving through the lattice is also proportional to T . Therefore the conductivity
decreases like T−1, in agreement with observations.

Figure 11.17 shows the resistivity (the inverse of conductivity) of sodium metal
as a function of the temperature. You can see the temperature-independent part
at low temperature and the temperature-dependent part at higher temperatures
(which increases linearly with T).

The same principles that govern electrical conductivity in a metal also govern
thermal conductivity. Heat entering the material causes electrons in a small interval
(of width kT) near the Fermi energy to move more rapidly, and those electrons can
transfer their energy to the lattice in collisions with the ions. Assuming the mean
free paths for electrical conduction and thermal conduction are the same, the ratio
of the thermal conductivity to the electrical conductivity should be independent
of the material but should depend only on the temperature (because the interval
kT determines the number of electrons available for thermal conduction).
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The ratio K/σT (where K is the thermal conductivity) should be the same for
all materials and all temperatures. The proportionality of the thermal and electrical
conductivities is known as the Wiedemann-Franz law. The ratio K/σT can be
calculated from the parameters of the electron gas model to be

L = π2k2/3e2 = 2.44 × 10−8 W ·�/K2 (11.21)

which is called the Lorenz number. Figure 11.18 shows the ratio K/σT for a
variety of metals at room temperature. In this region the thermal and electrical
conductivities vary by nearly two orders of magnitude, but the ratio remains fairly
constant and agrees with the Lorenz value. This agreement is another successful
application of Fermi-Dirac statistics to the properties of electrons in solids.
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11.4 BAND THEORY OF SOLIDS

The model of treating a conductor as a gas of free electrons has taken us a
long way toward understanding the properties of materials, but to gain a deeper
understanding we must consider the interaction of the electrons with the atoms of
the lattice. We’ll see that this interaction leads to a profound difference between
the electron energies of the free electron gas (continuous from zero up to the
Fermi energy) and the electron energies in an interacting system (an alternating
series of allowed and forbidden energy regions).

When two identical atoms, such as sodium, are very far apart, the electronic
levels in one are not affected by the presence of the other. The 3s electron of each
atom has a single energy with respect to its nucleus. As we bring the atoms closer
together, the electron wave functions begin to overlap, and two different 3s levels
form, depending on whether the two wave functions add or subtract. This effect
is responsible for molecular binding, as discussed in Section 9.2. Figure 11.19
shows a representation of the energy levels.

As we bring together more atoms, the same sort of effect occurs. When the
sodium atoms are far apart, all 3s electrons have the same energy, and as we begin
to move them together, the energy levels begin to “split.” The situation for five
atoms is shown in Figure 11.20. There are now five energy levels that result from
the five overlapping electron wave functions. As the number of atoms is increased
to the very large numbers that characterize an ordinary piece of metal (perhaps
1022 atoms), the levels become so numerous and so close together that we can no
longer distinguish the individual levels, as shown in Figure 11.21. We can regard
the N atoms as forming an almost continuous band of energy levels. Because those
levels were identified with the 3s atomic levels of sodium, we refer to the 3s band.

Each energy band in a solid with N atoms has a total of N individual levels.
Each level can hold 2(2l + 1) electrons (corresponding to the two different
orientations of the electron spin and the 2l+1 orientations of the electron orbital
angular momentum) so that the capacity of each band is 2(2l + 1)N electrons.

Figure 11.22 shows a more complete representation of the energy bands in
sodium metal. The 1s, 2s, and 2p bands are each full; the 1s and 2s bands each
contain 2N electrons and the 2p band contains 6N electrons. The 3s band could
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accommodate 2N electrons as well; however, each of the N atoms contributes
only one 3s electron to the solid, and so there is a total of only N 3s electrons
available. The 3s band is therefore half full. Above the 3s band is a 3p band,
which could hold 6N electrons, but which is completely empty.

The situation we have described is the ground state of sodium metal. When
we add energy to the system (thermal or electrical energy, for example), the
electrons can move from the filled states to any of the empty states. In this case,
electrons from the partially full 3s band can absorb a small amount of energy and
move to empty 3s states within the 3s band, or they can absorb a larger amount
of energy and move to the 3p band.

We can describe this situation in a more correct way using the Fermi-Dirac
distribution. At a temperature of T = 0 K, all electron levels below the Fermi
energy EF are filled and all levels above the Fermi energy are empty. In the case
of sodium, the Fermi energy is in the middle of the 3s band, because all electron
levels below that energy are occupied (Figure 11.23). At higher temperatures
the Fermi energy gives the level at which the occupation probability is 0.5; the
Fermi energy does not change significantly as we increase the temperature, but
the occupation probability of the levels above EF is no longer zero. Figure 11.24
shows a situation in which the thermal excitation of electrons leads to a small
population of the 3p band and some vacant states in the 2p band.

Sodium is an example of a substance that is a good electrical conductor. When
we apply a very modest potential difference, of the order of 1 V, electrons can
easily absorb energy because there are N unoccupied states within the 3s band, all
within an energy of about 1 eV. Electrons absorb energy as they are accelerated
by the applied voltage, and they are therefore free to move as long as there are
many unoccupied states within the accessible energy range. In sodium there are
N relatively free electrons that can easily move to N unoccupied energy states,
and sodium is therefore a good conductor.
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FIGURE 11.22 Energy bands in so-
dium metal.
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FIGURE 11.23 Energy bands in
sodium at T = 0 (the filled 1s
and 2s bands are not shown).
The Fermi energy is at the center
of the half-filled 3s band. Note
that the Fermi-Dirac distribution
function is drawn with the energy
axis vertical.
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FIGURE 11.24 Energy bands in
sodium at T > 0. The 2p band is
no longer completely full (there
are a few vacant states near the
top), and the 3p band is no longer
completely empty.
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FIGURE 11.25 When Eg 
 kT ,
there are no electrons in the conduc-
tion band. This situation characterizes
an insulator.

The band structure of sodium, in which the Fermi level lies in the middle of a
band, is characteristic of many good electrical conductors. A completely different
situation occurs when the Fermi level lies in the gap between two bands, so that
the band below EF is completely full and the band above is completely empty. If
the gap energy Eg is large compared with kT , then even though the Fermi-Dirac
distribution spreads as the temperature is raised, it doesn’t spread enough to result
in a significant population of states in the upper band (called the conduction band)
or a significant number of empty states in the lower band, called the valence band.
This situation is shown in Figure 11.25. There are many electrons in the valence
band available for electrical conduction, but there are few empty states for them to
move through, so they do not contribute to the electrical conductivity. There are
many empty states in the conduction band, but at ordinary temperatures there are
so few electrons in that band that their contribution to the electrical conductivity
is also very small. These substances are classified as insulators and in general
they have two properties: a large energy gap (a few electron-volts) between the
valence and conduction bands, and a Fermi level that is in the gap between the
bands (i.e., a filled valence band and an empty conduction band).

Conduction band

Valence band

0 1

fFD(E)

EFEg

FIGURE 11.26 Band structure of a
semiconductor. The gap is much
smaller than in an insulator, so there
is now a small population of the con-
duction band.

A material with the same basic structure but a much smaller energy gap
(1 eV or less) shows quite a different behavior. These materials are known as
semiconductors. Figure 11.26 shows a representation of such a substance at
ordinary temperatures. There are now many electrons in the conduction band, and
of course many empty states accessible to them, so that they can conduct relatively
easily. There are also many empty states in the valence band, so that some of the
electrons in the valence band can also contribute to the electrical conductivity
by moving about through those states. We consider these two mechanisms of
electrical conduction in detail in Section 11.6. For now we note two characteristic
properties of semiconductors that relate directly to the band structure as shown
in Figure 11.26. (1) Because thermal excitation across the gap is relatively
probable, the electrical conductivity of semiconductors depends more strongly
on temperature than the electrical conductivity of insulators or conductors. (2) It
is possible to alter the structure of these materials, by adding impurities in very
low concentration, in such a way that the Fermi energy changes and may move
up toward the conduction band or down toward the valence band. This process,
known as doping, can have a great effect on the conductivity of a semiconductor.
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FIGURE 11.27 Band structure in
magnesium. The filled 3s and empty
3p bands overlap, forming a single
partially filled band.

In the examples we have discussed so far, it is not apparent why the band theory
is so useful in understanding the properties of a solid. Sodium, for example, is
expected to be a good conductor based on its atomic properties alone (a relatively
loosely bound 3s electron); on the other hand, solid xenon has only filled atomic
shells and should be a poor conductor. These conclusions follow either from
simple atomic theory or from band theory. However, there are many cases in
which atomic theory leads to wrong predictions while band theory gives correct
results. We consider two examples. (1) Magnesium has a filled 3s shell, and on
the basis of atomic theory alone we expect it to be a poor electrical conductor.
It is, however, a very good electrical conductor. (2) The 2p shell of carbon has
only two electrons of the maximum number of six. Carbon should therefore be a
relatively good conductor; instead it is an extremely poor conductor.

We can understand both of these materials based on the unusual way the bands
of these solids behave when the atoms are close enough so that the band gap
disappears and the bands overlap. In magnesium (Figure 11.27), for example, the
(filled) 3s and (empty) 3p bands overlap, and the result is a single band with a
capacity of 2N + 6N = 8N levels. Only 2N of those are filled, and so magnesium
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behaves like a material with a single band filled only to one-fourth its capacity.
Magnesium is therefore a very good conductor.

In carbon, the overlap of the electronic wave functions at close range first
causes mixing of the 2s and 2p bands, in a way similar to magnesium; a single band
is created with a capacity of 8N electrons (Figure 11.28). The 2s states contribute
2N electrons, and the 2p states contribute another 2N (out of a maximum capacity
of 6N). As the atoms approach still closer, the band divides into two separate
bands, each with a capacity of 4N electrons. Because carbon has four valence
electrons (two 2s and two 2p), the lower 4N states are completely filled and the
upper 4N states of the conduction band are completely empty. Carbon is therefore
an insulator. Germanium and silicon have the same type of structure as carbon,
but their equilibrium separation is greater, so the gap between the valence and
conduction bands is smaller, about 1 eV; it is this feature that causes Ge and Si to
be semiconductors.
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FIGURE 11.28 Band structure of car-
bon (n = 2), silicon (n = 3), and
germanium (n = 4). The combined
ns + np band splits into two bands,
each of which can hold 4N electrons.
The atomic separation of carbon gives
it a gap of about 7 eV and makes it an
insulator, while the larger separation
of silicon and germanium results in a
smaller gap of about 1 eV and makes
them semiconductors.

∗Justification of Band Theory
The band theory of solids has had great success in accounting for the properties
of metals, insulators, and semiconductors. In this section we consider a different
approach to band theory that is based on the quantum mechanics of an electron
moving through a lattice of ions. In analogy with solutions to the Schrödinger
equation discussed in Chapter 5, in which an electron in a potential energy well
shows discrete energy levels, we will see that an electron in a periodic potential
energy provided by a lattice of ions can show energy bands.

a

Ions
+ + + +

FIGURE 11.29 One-dimensional
Bragg scattering. The only possible
scattering is a reflection back in the op-
posite direction.

To simplify the problem we consider only a one-dimensional lattice of ions
(Figure 11.29). The electron is represented by a de Broglie wave traveling through
the lattice. The interaction between the electron and the lattice can be represented
as a scattering problem, similar to Bragg scattering (Section 3.1). The Bragg
condition for scattering is

2d sin θ = nλ (n = 1, 2, 3, . . .) (11.22)

where d is the atomic spacing and θ is the angle of incidence measured from the
plane of atoms (not from the normal). In a two-dimensional lattice, the incident
wave can be scattered in many different directions, depending on the plane where
we imagine the reflection to occur (recall Figure 3.6); in one dimension, however,
only one possible reflection can occur—the incident wave can be reflected back
in the opposite direction. We can use the Bragg condition for this case, with d = a
(the spacing between the ions or atoms of the lattice) and θ = 90◦ (the angle
between the “reflecting plane” and the incident wave). With 2a sin 90◦ = nλ and
λ = 2π/k (where k is the wave number), we find

k = n
π

a
(11.23)

For wave numbers that do not satisfy this condition, the electron propagates
freely through the lattice and behaves like a free particle whose energy is only
kinetic:

E = p2

2m
=

−h2k2

2m
(11.24)

∗This is an optional section that may be skipped without loss of continuity.
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There are no restrictions on k, so all values of E are allowed. This relationship
between E and k for free electrons defines a parabola, as shown in Figure 11.30.
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FIGURE 11.30 The parabolic rela-
tionship between energy and wave
number for a free particle.

For wave numbers that satisfy the Bragg condition, the reflected and incident
waves add to produce standing waves, which always result when we superpose
two waves of equal wavelengths traveling in opposite directions. Depending on
the phase difference between the waves, their amplitudes can add or subtract, so
two different possible standing waves can result. Their probability densities are
shown in Figure 11.31. For one of the waves (ψ1), the electrons are more likely
to be found close to the positive ions; these electrons are more tightly bound to
the lattice—the energy of the electron is a bit lower than that of the free electron,
due to the negative potential energy between the electron and the ions. Electrons
represented by the other wave (ψ2) are most likely to be found in the region
between the ions; they are less tightly bound, so their energies are a bit above
those of the unscattered electrons (for which the probability density is flat, so they
are equally likely to be found at any location).

Ions+++++

ψ2
2 ψ1

2

FIGURE 11.31 Probability densities
for two different standing waves in the
one-dimensional lattice.

The resulting dependence of the energy of the electrons on the wave number k
is illustrated by the S-shaped curve segments in Figure 11.32. For wave numbers
that are far from satisfying the Bragg condition (that is, values of k that are not
close to nπ/a), the curve segments overlap the dashed parabola representing the
free particle. Close to the wave numbers that satisfy the Bragg condition, however,
the energy deviates from that of the free particle, a bit below the parabola for
the more tightly bound electrons that spend more time near the ions and a bit
above the parabola for the less tightly bound electrons that are more likely found
between the ions.
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FIGURE 11.32 The relationship be-
tween energy and wave number for
a one-dimensional lattice. The dashed
curve is the parabola that represents
the free particles. The solid curves rep-
resent waves scattered by the lattice.

Notice from Figure 11.32 that, even though all values of k are permitted,
there are certain allowed bands of energy values separated by forbidden gaps. An
electron traveling in this lattice is permitted to have energies only in the regions
corresponding to the allowed bands. This indicates how a periodic array of atoms
results in energy bands.

A more detailed calculation in three dimensions gives a better representation
of the allowed and forbidden bands, but you can see that even this basic one-
dimensional model shows how the bands can arise from the interactions of the
electrons with a periodic lattice.

11.5 SUPERCONDUCTIVITY

At low temperatures, the resistivity of a metal (the inverse of its conductivity) is
nearly constant. As the temperature of a material is lowered, the lattice contribution
to the resistivity decreases while the impurity contribution remains approximately
constant, and as we approach T = 0 K the resistivity should approach a constant
value. Many metals, known as normal metals, behave in this way, as illustrated
in Figure 11.17.

The behavior of another class of metals is quite different. These metals behave
normally as the temperature is decreased, but at some critical temperature Tc
(which depends on the properties of the metal), the resistivity drops suddenly to
zero, as shown in Figure 11.33. These materials are known as superconductors.
The resistivity of a superconductor is not merely very small at temperatures below
Tc; it vanishes! Such materials can conduct electric currents even in the absence of
an applied voltage, and the conduction occurs with no i2R (joule heating) losses.
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FIGURE 11.33 Resistivity of a
superconductor.

Superconductivity has been observed in 28 elements at ordinary pressures, in
several additional elements at high pressure, and in hundreds of compounds and
alloys. Since the original discovery of superconductivity in Hg in 1911, the focus
of research has been to search for materials with the highest possible critical
temperature, because many possible large-scale applications of superconductivity
are presently impractical owing to the high cost of keeping materials below their
critical temperatures. Table 11.6 summarizes some superconducting materials and
their critical temperatures. You can see that before 1986, progress in raising the
critical temperature was very slow, but since 1986 dramatic and rapid increases
in Tc have been achieved.

Conspicuously absent from the list of superconductors are the best metallic
conductors (Cu, Ag, Au), which suggests that superconductivity is not caused
by a good conductor getting better but instead must involve some fundamental
change in the material. In fact, superconductivity results from a kind of paradox:
ordinary materials can be good conductors if the electrons have a relatively weak
interaction with the lattice, but superconductivity results from a strong interaction
between the electrons and the lattice.

Consider an electron moving through the lattice. As it moves, it attracts the
positive ions and disturbs the lattice, much as a boat moving through water creates
a wake. These disturbances propagate as lattice vibrations, which can then interact
with another electron. In effect, two electrons interact with one another through
the intermediary of the lattice; the electrons move in correlated pairs that do
not lose energy by interacting with the lattice. (These pairs are not necessarily
traveling together through the lattice; they may be separated by a large distance.)
In the absence of a net current, the members of a pair have opposite momenta;
when a net current is established, both members of the pair acquire a slight
increase in momentum in the same direction, and this motion is responsible for
the current.

TABLE 11.6 Some Superconducting Materials

Material Tc (K) Gap (meV) Year

Zn 0.85 0.24 1933

Al 1.18 0.34 1937

Sn 3.72 1.15 1913

Hg 4.15 1.65 1911

Pb 7.19 2.73 1913

Nb 9.25 3.05 1930

Nb3Sn 18.1 1954

Nb3Ge 23.2 1973

LaxBa2−xCuO4 36 1986

LaxSr2−xCuO5 40 1986

YBa2Cu3O7 93 1987

Tl2Ba2Ca2Cu3O10 125 1988

Hg12Tl3Ba30Ca30Cu45O127 138 1994



348 Chapter 11 | Solid-State Physics

(a)

(c)

(b)

(d)

Normal
conductor

Super-
conductor

EF
E

N
(E

)

T > 0T = 0

EF
E

N
(E

)

T = 0

Eg
E

N
(E

)

Eg
E

N
(E

)

Tc > T > 0

FIGURE 11.34 The number of filled electron states in (a) a normal conductor at
T = 0; (b) a normal conductor at T > 0; (c) a superconductor at T = 0; (d) a
superconductor at T > 0 but less than Tc. In (c), there is an energy gap of width Eg,
and states displaced from within the gap pile up on either side of the gap. At higher
temperatures, as in (d), the gap is narrower and there are empty states below the gap
and filled states above the gap. As the temperature is increased to Tc, the gap width
becomes 0 and the distribution of occupied states of the superconductor approaches
that of the normal conductor. The gap width is exaggerated in the figure; generally,
Eg ∼ 10−3 eV.

According to the successful BCS theory of superconductivity,∗ below the
critical temperature there is a small energy gap Eg in the occupation probability of
electrons in a superconductor (Figure 11.34). Below the gap, the electrons form
pairs, which are known as Cooper pairs. Once a single Cooper pair forms, it is
energetically favorable for other pairs to form, so the change from the normal
state above Tc to the superconducting state below Tc is quite sudden. (As shown in
Figure 11.34c, the population can exceed the limits imposed by the Fermi-Dirac
distribution of at most one electron per quantum state. When the electrons are
paired, they no longer behave like fermions and so it is possible to have more
than one in each quantum state.)

When a superconductor is cooled below Tc, the gap opens and Cooper pairs
begin to form. As the material is cooled further, the gap widens. Values of the
energy gap listed in Table 11.6 correspond to the limiting case as T → 0. The
energy gaps, which can be regarded as representing the binding energy of a
Cooper pair, are very small, of the order of 10−3 eV. At T = 0, all states below the
gap are occupied. When 0 < T < Tc, there are some unoccupied states below the
gap, and some states above the gap are occupied by normal (unpaired) electrons.

It seems reasonable that there should be a direct relationship between the critical
temperature and the energy gap: the larger the energy gap, the more thermal energy
is required to break the Cooper pairs to destroy the superconductivity. The BCS
theory gives this relationship:

Eg = 3.53kTc (11.25)

∗The theory of superconductivity was developed in 1957 by John Bardeen, Leon N. Cooper, and J.
Robert Schrieffer, who were awarded the 1972 Nobel Prize in physics for their work. Bardeen also
shared the 1956 Nobel Prize for his research on semiconductors and his development of the transistor.
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As the temperature is raised to Tc, the gap width decreases, and the superconduc-
tivity disappears above Tc where the gap width becomes zero.

Beginning in 1986, a new class of superconductors was discovered with unusu-
ally high values of Tc. In the 75 years from the discovery of superconductivity in
1911 until 1986, the highest Tc had gone from 4 K to about 23 K. In 1986, several
materials were discovered with Tc in the range 30–40 K. By 1987 it was up to 93 K,
and it rose to 138 K in 1994. Crossing the boundary at 77 K is important, because
it means that cooling can be accomplished with liquid nitrogen instead of liquid
helium, which costs nearly an order of magnitude more than liquid nitrogen. The
rapid increase in Tc has led to the hope that it might be possible to develop mate-
rials that are superconductors at room temperature. Such materials could enable
the transmission of electric power over long distances without resistive losses.

The high-Tc superconductors are oxides of copper in combination with other
elements. They are ceramics, which means that they are rather brittle and not
easily formed into wires to carry current. The crystal structure is characterized
by planes of copper and oxygen between planes of the other elements. It seems
likely that the superconductivity occurs in the copper oxide planes, but it is not
yet clear that the complete explanation for these new superconductors is given by
the BCS theory.

Superconducting materials have many applications that take advantage of their
abilities to carry electrical currents without resistive losses. Electromagnets can
be constructed that carry large currents and therefore produce large magnetic
fields (of order 5 to 10 T). Currents as large as 100 A can be carried by very fine
superconducting wires, of order 0.1 mm diameter, and thus such magnets can be
constructed in a smaller space, using less material, than would be possible with
ordinary conductors. Once started, a current in a superconducting loop of wire
can circulate for years with no external source to drive it. Superconducting wires
are also used to produce magnetic fields in magnetically levitated trains and in
magnetic resonance imaging, and also to bend beams of particles in high-energy
accelerators, such as the Large Hadron Collider, which began operation in 2008.

Josephson Effect
Imagine a thin layer of insulating material sandwiched between two identical
superconductors. The insulating layer is thin enough that the electron pairs can
tunnel through from one superconductor to another. This is a typical case of
one-dimensional barrier penetration, such as we discussed in Chapter 5.
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FIGURE 11.35 (a) A thin insulator
sandwiched between two supercon-
ductors provides a potential energy
barrier of height U0 to the flow of cur-
rent. (b) There is a phase difference of
φ1 − φ3 between the wave functions
ψ1 and ψ3 in the superconductors.

Figure 11.35 represents the arrangement. In the superconductors (regions 1
and 3), the electron pairs move freely, so the wave functions are of the form of
the free particle: ψ1(x) = Aei(kx+α1) and ψ3(x) = Aei(kx+α3), where α1 and α3 are
arbitrary phase angles (the amplitude A is taken to be real). At the two boundaries
on either side of the barrier, the waves are ψ1 = Aeiφ1 and ψ3 = Aeiφ3 , where φ1
and φ3 represent the values of the exponents at the boundaries. Inside the barrier
of height U0, the wave function is of the form ψ2(x) = Bek′x + Ce−k′x, where
k′ = √

2mU0/
−h2. Applying the two boundary conditions on ψ , we ultimately

obtain a current of the form

i = i0 sin(φ1 − φ3) (11.26)

The existence of this “supercurrent” through the junction was first predicted by
British physicist Brian Josephson in 1969, and it is now known as the Josephson
effect. Josephson shared the 1973 Nobel Prize in physics for this discovery.
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FIGURE 11.36 Two Josephson junc-
tions can be combined to form a
quantum interference device.

One important application of the Josephson effect is in the measurement of
very weak magnetic fields. Consider a device with two Josephson junctions, as
shown in Figure 11.36. Under ordinary circumstances the current divides equally
in the two branches, and the phase difference is the same across both junctions.
Now suppose a magnetic field is applied perpendicular to the plane of the loop.
An additional current is induced around the loop. This additional current, either
clockwise or counterclockwise depending on the direction of the magnetic field,
will add to the current in one of the Josephson junctions and subtract from the
current in the other, causing a relative change in the phase differences across the
two junctions. When the currents combine, this phase difference causes maxima
and minima in the net current leaving the loop in a manner that is very similar
to the maxima and minima in double-slit interference. Observing the maxima
and minima serves as a sensitive measurement of the magnetic field in the loop.
This device is called a SQUID (Superconducting QUantum Interference Device)
and allows measurements of magnetic fields of less than 10−17 T. Such sensitive
devices allow precise mapping of the magnetic fields inside the brain and also find
use in other medical procedures including magnetic resonance imaging (MRI).

In another application, a DC voltage �V is applied across a single Josephson
junction. This voltage changes the energy of an electron pair on one side of the
junction by 2e�V . For example, if region 1 is made more positive than region 3,
the wave function at the boundary in region 1 would become ψ1 = Aei(ϕ1+2e�Vt/−h)

using the usual procedure (see Eq. 5.6) for including the time dependence of the
wave function (the factor e−iωt with ω = E/−h = −2e�V/−h). The current through
the junction then becomes

i = i0 sin

(
φ1 − φ3 + 2e�V

−h
t

)
(11.27)

Applying a DC voltage to the junction produces an AC current! Because frequen-
cies can be measured very precisely, a measurement of the frequency of this AC
current can be used to determine �V . As a result, since 1990 the AC Josephson
effect has been accepted by the General Conference on Weights and Measures as
the international standard for the volt.

11.6 INTRINSIC AND IMPURITY
SEMICONDUCTORS

A semiconductor is a material with an energy gap Eg of order 1 eV between the
valence band and the conduction band. At T = 0, all states in the valence band are
full and all states in the conduction band are empty; recall that the Fermi-Dirac
distribution is a step function at T = 0 and gives an occupation probability of
exactly 1 for all states below EF and exactly 0 for all states above EF. As the
temperature is raised, however, some states above EF are occupied and some states
below EF are empty. At room temperature, the relationship between the Fermi
energy, the valence and conduction bands, and the electron energy distribution
might be as shown in Figure 11.26.

Although the value of the room-temperature Fermi-Dirac distribution function
is nearly zero in the conduction band, it is not exactly zero; Figure 11.37 shows
a greatly magnified view of fFD(E) near the bottom of the conduction band. The
value of E − EF is about 0.5 eV if EF lies near the middle of the 1 eV energy
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gap, and therefore E − EF 
 kT , because at room temperature kT ∼ 0.025 eV.
The 1 in the denominator of the Fermi-Dirac distribution is therefore negligible,
and fFD(E) is approximately exponential, as shown in Figure 11.37.

Bottom of
conduction band

∼10−9

fFD(E)

FIGURE 11.37 The tail of the Fermi-
Dirac distribution function near the
bottom of the conduction band. On the
scale of this greatly magnified draw-
ing, the 1 of fFD(E) would be about
1000 km off to the right, and EF is
about 1 m below the edge of this page.

Assuming the Fermi energy to lie near the middle of the gap, the occupation
probability near the bottom of the conduction band is of order e−Eg/2kT ∼= 10−9.
Thus one atom in 109 contributes an electron to the electrical conductivity;
compare this with a metal in which essentially every atom contributes an electron
to the conductivity. (On the other hand, consider an insulator, which has a band
structure very similar to that of a semiconductor, except the energy gap is perhaps
5 eV instead of 1 eV. This small difference in the size of the energy gap has an
enormous effect on the occupation probability of the conduction band at room
temperature: e−Eg/2kT ∼= 10−44. Thus in a sample containing of order 1020 atoms,
there may be 1011 conduction electrons in a semiconductor, 1020 in a conductor,
and none in an insulator.)

Figure 11.38 shows the corresponding region near the top of the valence
band. If there are a few filled states in the conduction band, there must be a
few empty states in the valence band, and the Fermi-Dirac distribution is just a
tiny bit smaller than 1; in fact it is approximately 1 − e(E−EF)/kT . This number
is about 1–10−9, based on our discussion for the electrons in the conduction
band. (Because all the electrons in the conduction band came originally from the
valence band, the number of electrons in the conduction band is exactly equal
to the number of vacancies in the valence band. The Fermi-Dirac distribution is
therefore symmetric in the conduction and valence bands, so the Fermi energy
must lie at the center of the gap.)

Top of valence band

fFD(E)

10−9

1

FIGURE 11.38 The Fermi-Dirac dis-
tribution function near the top of the
valence band, showing the small frac-
tion of empty states.

In practice it is much easier to analyze the behavior of a relatively small number
of vacancies in the valence band rather than the large number of electrons in that
band. When we apply an electric field to the semiconductor, the electrons in the
conduction band can move easily, because there are many empty states to move
into. There are few vacancies in the valence band, however. Under the influence
of the electric field, an electron in the valence band can move only if there is a
vacancy nearby for it to move into. When that electron moves into the vacancy,
it creates another vacancy, which can in turn be filled by another electron. In this
way, electrons moving in one direction cause an apparent motion of the vacancy
in the opposite direction. The situation is similar to the motion of cars in a parking
lot with one vacancy (Figure 11.39).

FIGURE 11.39 One car moves to the
left, filling the vacancy but creating
a new vacancy, which is then filled
by the next car moving to the left.
The motion of cars to the left, each
filling a vacant space, is equivalent to
the motion of the vacant space to the
right.

These vacancies in the valence band are known as holes, and they behave
as if they have positive charges. In an electric field, electrons in the conduction
band acquire a drift velocity in a direction opposite to the field (see Eq. 11.16)
but (because electrons carry negative charge) they give a current opposite to the
velocity and thus in the same direction as the field (see Eq. 11.17). The holes in
the valence band acquire a velocity in the same direction as the field and give a
current in the same direction as their velocity (that is, in the direction of the field).
The current due to the electrons in the conduction band is therefore in the same
direction as the current due to the holes in the valence band.

The current in a semiconductor therefore consists of two parts: the negatively
charged electrons in the conduction band and the positively charged holes in the
valence band. Although the number of electrons in the conduction band is equal to
the number of holes in the valence band, the two contributions to the current are in
general not equal, because the electrons in the conduction band move more easily
than the electrons in the valence band. Typically, the contribution of the electrons
to the current at room temperature is about two to four times the contribution of
the holes.
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The material we have been describing thus far is an intrinsic semiconductor and
is characterized by several features: (1) the number of electrons in the conduction
band is equal to the number of holes in the valence band; (2) the Fermi energy lies
at the middle of the gap; (3) the electrons contribute most to the current, but the
holes are important also; (4) about 1 electron in 109 contributes to the conduction.

Because only 1 electron in 109 contributes to the conductivity of an intrinsic
semiconductor, the presence of impurities can significantly alter the conductivity
of the semiconductor in a way that might not be easily controllable. However,
if impurities with known properties are deliberately introduced into the semi-
conductor in carefully controlled amounts, their contribution to the conductivity
can be precisely determined. At impurity levels of only 1 part in 106 or 107, the
impurity contribution to the conductivity dominates the intrinsic contribution.

Such materials are known as impurity semiconductors, and the process of
introducing the impurity is known as doping. Impurity semiconductors can be of
two varieties: those in which the impurity contributes additional electrons to the
conduction band and those in which the impurity contributes additional holes to
the valence band.

Let us consider a material such as silicon or germanium, in which there are four
valence electrons in hybrid orbitals. In the band theory view, these fill the 4N states
of the valence band; in the atomic view the lattice is constructed so that each Ge
or Si atom has four neighbors with which it shares an electron, and so all electrons
participate in covalent bonding (Figure 11.40a). Now suppose we replace one of
the Si or Ge atoms with an atom that has five valence electrons, such as phosphorus,
arsenic, or antimony. Four of the five electrons form covalent bonds with the
neighboring Si or Ge atoms, but the fifth electron is relatively weakly bound to
the impurity atom and can be easily detached to contribute to the conductivity
(Figure 11.40b). Alternatively, we could replace one of the Si or Ge atoms with
an atom that has three valence electrons, such as boron, aluminum, gallium, or
indium. Its three valence electrons form covalent bonds with the neighboring Si
or Ge (Figure 11.40c), but one of the surrounding atoms has an unpaired electron.
Completing the four pairs of covalent bonds is energetically very favorable, so an
electron is easily captured to complete the symmetry of the lattice. This creates a
hole in the valence band and therefore contributes to the conductivity.

(b)

(c)

(a)

FIGURE 11.40 (a) Covalent bonding
in Si or Ge. Each atom provides four
electrons for covalent bonds with its
neighbors. (b) When a Si or Ge atom
is replaced with a valence-5 atom
(shaded), there is an extra electron that
does not participate in covalent bonds.
(c) If a Si or Ge atom is replaced by a
valence-3 atom (shaded), one electron
from a neighboring atom is not paired
in a covalent bond.

On an energy-level diagram, the electron energies of these impurity atoms
appear as discrete levels in the energy gap, either just below the conduction band
(as in Figure 11.41a), or just above the valence band (as in Figure 11.41b). The
energy needed for these electrons to enter the conduction band, or for electrons
from the valence band to fill the low-lying empty states, is relatively small, about
0.01 eV in Ge and 0.05 eV in Si. As a result, even at room temperature (kT
∼ 0.025 eV) these excitations can occur easily.

The energy levels formed by valence-5 impurities are known as donor states
and the impurity is known as a donor, because electrons are “donated” to the
conduction band. A semiconductor that has been doped with donor impurities is
known as an n-type semiconductor, because the conductivity is due mostly to the
negative electrons.

The energy levels formed by valence-3 impurities are known as acceptor states,
because they can “accept” electrons from the valence band. A material that has
been doped with acceptor impurities is known as a p-type semiconductor, because
the conductivity is due mostly to the positively charged holes. (Remember that
n-type and p-type materials are both electrically neutral because they are made
from neutral atoms. The designations n and p refer only to the charge carriers, not
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FIGURE 11.41 (a) Energy lev-
els of donor states. (b) Energy
levels of acceptor states.
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FIGURE 11.42 In a semiconductor,
the Fermi energy moves toward the
middle of the gap as the temperature
increases.

to the material itself. Depending on whether we add or remove electrons, n-type
and p-type materials can become either negatively or positively charged).

At T = 0 the Fermi energy in n-type semiconductors lies between the donor
states and the conduction band (remember, all states below EF are full and all
above EF are empty; at T = 0 the donor states are all occupied). In p-type
semiconductors, the Fermi energy at T = 0 lies between the valence band and the
acceptor states. As the temperature is raised, the thermal excitation of electrons
from the valence band to the conduction band (as in an intrinsic semiconductor)
causes the Fermi energy to move toward the center of the energy gap, as shown
in Figure 11.42. For low doping levels and at a high enough temperature, the
material may behave like an intrinsic semiconductor.

11.7 SEMICONDUCTOR DEVICES

The p-n Junction
When a p-type semiconductor is placed in contact with an n-type semiconductor
(Figure 11.43) electrons flow from the n-type material into the p-type material,
until equilibrium is established. This equilibrium occurs when the Fermi energies
in the two substances become identical.

The resulting energy level diagram is shown in Figure 11.44. The region
between the two materials is known as the depletion region, because it has been
somewhat depleted of charge carriers. Electrons from the donor states of the
n-type material fill the holes of the acceptor states of the p-type material. In this
region the donor states do not provide electrons for the conduction band and the
acceptor states do not provide holes in the valence band.

p type n type

Acceptors

Donors

Conduction
band

Conduction
band

Valence
band

Valence
band

EF

EF

FIGURE 11.43 n-type and p-type
semiconductors before contact.

Actually, these devices are not made by bringing two different materials into
contact, but rather by doping one side of a material so that it becomes n type and
the other side so that it becomes p type. The doping is carefully controlled, and
typically depletion layers have a thickness of the order of 1 μm.

The excess electrons that have entered the p-type material give that side of the
depletion region a negative charge, which tends to repel additional electrons from
the n region. There is a corresponding positive charge in the n region (because
it has lost electrons to the p region). These charges are associated with the fixed
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ions in those regions; the acceptor atoms in the p region acquire an electron and
become fixed sites of negative charge, while the donor atoms in the n region lose
an electron and become fixed sites of positive charge.

(a)

(b)
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FIGURE 11.44 (a) A p-n junction.
The electric field in the depletion
region inhibits the additional flow of
electrons. (b) Energy levels in p-n
junction. Energetic electrons in the tail
of the Fermi-Dirac distribution con-
tribute to the diffusion current, while
thermal excitation gives an equal and
opposite drift current.

In equilibrium, enough negative charge builds up to stop the flow of electrons
completely. There is a net electric field �E0 in the depletion region that results in a
force (in the opposite direction) on the electrons, preventing any further flow of
charge. Equivalently, there is a potential difference �V0 between the n-type and
p-type regions; for electrons to flow from the n region to the p region, they must
climb the energy barrier of height e�V0.

In the tail of the Fermi distribution of electrons in the conduction band of the n
region, there will be a small number of electrons with enough energy to climb the
energy barrier and enter the p region, where they recombine with holes (that is,
they “fall” from the conduction band of the p region into the valence band). This
gives the diffusion or recombination contribution to the current, which is directed
from the p region to the n region (the current direction always being opposite to
the direction of electron flow).

Even though holes provide the dominant contribution to the conduction in
the p region, there are also electrons that provide a smaller contribution to the
current. Electrons are thermally excited from the valence band in the p region to
the conduction band, where they are accelerated by the electric field and travel
into the n region. This gives the drift or thermal contribution to the current. At
equilibrium, the two contributions to the current cancel one another, so that the
net current is zero, as shown in Figure 11.44.

Let us now apply an external voltage �Vext across the junction so that the
p-type material is made more positive than the n material; that is, we connect
the + terminal of a battery to the p side of the junction and the – terminal of
the battery to the n side (Figure 11.45). The effect of the battery is to lower
the energy hill by an amount e�Vext. (The vertical axis shows electron energy,
and a potential difference of �Vext gives an electron energy of −e�Vext.) This
situation is called a forward voltage or forward biasing. The forward bias causes
the depletion region to become narrower, because the battery pulls electrons out
of the p region and injects them back into the n region. Because the energy hill
is lower, more electrons can diffuse from the n region into the p region, so the
diffusion current is considerably increased. (That is, there are more electrons in
the n region in the tail of the Fermi distribution with energies above the bottom
of the conduction band of the p region.) The drift current, however, is unaffected
by the presence of the battery or the height of the hill. There is now a net current
through the junction in the forward direction.

Now we reverse the battery connections (Figure 11.46), a situation known as
reverse voltage or reverse biasing. This raises the hill by the amount e�Vext,
widens the depletion region (because the battery pulls more electrons from the n
region and injects them into the p region), and decreases the diffusion current.
The drift current is again unchanged, so now there is a relatively small net current
in the reverse direction.

Figure 11.47 shows the upper tail of the Fermi-Dirac distribution of the
electrons extending into the conduction band of the n-type region. Only those
electrons in the portion of the tail above the energy Ec of the bottom of the
conduction band of the p-type region can flow back across into the p-type region
and it is these electrons that produce the diffusion current. The number of electrons
in that tail above the energy Ec is approximately

N1 = ne−(Ec−EF)/kT (11.28)
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FIGURE 11.47 The diffusion current
depends on the number of electron
states in the tail of the Fermi-Dirac
distribution above the energy Ec of
the bottom of the conduction band in
the p-type material.

where n is some proportionality factor, and where we have approximated the
Fermi-Dirac function as an exponential by neglecting the 1 in the denominator.
(Because Ec − EF � 1eV and kT = 0.025 eV, this is an excellent approximation.)
The diffusion current is proportional to N1, and because the drift and diffusion
currents are equal, the drift current is also proportional to N1. Applying �Vext
changes the level Ec to Ec − e�Vext, and the number of electrons in the tail above
Ec − e�Vext is

N2 = ne−(Ec−e�Vext−EF)/kT (11.29)

The diffusion current is now proportional to N2; applying the bias did not change
the drift current, so it is still proportional to N1. The net current is given by the
difference:

i ∝ N2 − N1 = ne−(Ec−EF)/kT (ee�Vext/kT − 1) (11.30)

We can rewrite this expression as

i = i0(e
e�Vext/kT − 1) (11.31)

ΔVext

i

FIGURE 11.48 Current-voltage char-
acteristics of an ideal p-n junction.

This function is plotted in Figure 11.48, and it is immediately obvious why such
p-n junctions, also known as diodes, have the property of rectifying varying
currents. When the applied voltage is such that the junction is forward biased, a
large forward current can flow. (When �Vext = 1V, i = 2 × 1017i0.) When the
applied voltage is such that the junction is reverse biased, only a very small current
can flow. (When �Vext = −1V, i ∼= −i0.) Even very small forward voltages can
produce large forward currents; even very large reverse voltages can produce only
small reverse currents.
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The Tunnel Diode
When the p and n regions are very heavily doped, the depletion layer becomes much
narrower, perhaps 10 nm, and the energy diagram might look like Figure 11.49.
When a small forward bias is applied, there is now a third contribution to the
current—an electron from the conduction band of the n region can “tunnel”
through the forbidden region directly into the valence band of the p region. This
process of course depends on the wave nature of the electron and is an example of
the type of barrier penetration we have discussed previously, in Section 5.6. The
narrow depletion layer makes the process possible. The wavelength of an electron
near the Fermi surface is about 1 nm, and if the thickness of the depletion layer were
many orders of magnitude larger than this, tunneling would be unlikely to occur.

Valence band

Conduction band

p type n type

e−

EF

FIGURE 11.49 Energy level diagram
of a p-n junction under heavy doping.
Electrons can tunnel across the narrow
gap.

As the forward voltage is increased, the potential hill is lowered, and soon it no
longer becomes possible for an electron to tunnel directly through the forbidden
region. For a voltage of a few tenths of a volt, the tunneling current becomes
zero. At this point the tunnel diode behaves like an ordinary diode. Figure 11.50
illustrates the characteristic current-voltage relationship for a tunnel diode.

i

ΔVext

FIGURE 11.50 Current-voltage char-
acteristics of a tunnel diode. The
dashed curve shows the characteristics
of an ordinary p-n junction diode.

Tunnel diodes are useful in electric circuits as high-speed elements, because
the characteristics of the device can change as rapidly as the bias voltage can be
changed. They can also be used as switches. If we were to pass current through the
tunnel diode so that we were on the peak of the characteristic curve, a small increase
in the current would cause the voltage to jump suddenly to a much larger value.

Photodiodes
A photodiode is a p-n junction whose operation involves the emission or absorption
of light. These devices operate on principles similar to ordinary atoms. An electron
in the valence band can absorb a photon and make a transition to the conduction
band. Photons of visible light have energies of order 2 to 3 eV, so a semiconductor
with its gap of order 1 eV is just right for such a transition. Conversely, an excited
electron from the conduction band can drop back down to the valence band,
emitting a photon in the process.

A common device that emits visible light is the LED, or light-emitting diode.
An external current supplies the energy necessary to excite electrons to the
conduction band, and when the electrons fall back down to recombine with holes,
a photon is emitted. The energy is of course equal to the difference in energy of the
electronic states. By varying the chemical composition, it is possible to produce
LEDs emitting any color of visible light. LEDs find wide use as indicator lights and
in video displays, including televisions and computer monitors. Broad-spectrum
LEDs emitting white light are used in environmental lighting.

Active
region
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p typen type
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Valence band

Conduction band

FIGURE 11.51 Energy bands in a
diode laser. The active region has a
smaller gap than the n-type and p-type
regions on either side.

It is possible for photodiodes to operate in reverse, in which an incoming
photon is absorbed in the depletion region and produces an electron-hole pair. An
electric field sweeps up the electron-hole pairs and produces an electric signal.
Such devices are used to produce electric current (as in a silicon solar cell) or to
count photons (as in light meters for cameras or detectors of X rays or gamma
rays in space probes).

Figure 11.51 shows another application of the emission of light by a semi-
conductor, in this case a diode laser or semiconductor laser. A thin layer of
semiconducting material is sandwiched between n-type and p-type regions having
a slightly larger energy gap. Electrons are injected from an external circuit into the
n-type material, from which they diffuse into the middle layer. The electrons are
prevented from diffusing into the p-type layer by a potential barrier, so they tend
to concentrate in the middle layer. In a similar fashion, holes are injected into the
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p-type layer and again concentrate in the middle layer. This creates a population
inversion similar to that described in our discussion of the laser in Section 8.7. An
electron drops into the valence band accompanied by the emission of a photon;
that photon then induces other transitions leading to the avalanche of photons that
gives the lasing action.

The physical construction of a typical diode laser is illustrated in Figure 11.52.
The lasing material is a narrow (0.2 μm) layer of GaAs, and the p-type and n-type
layers are GaAlAs a few μm in thickness. The ends of the material are cleaved
to create mirrorlike surfaces that reflect a portion of the light wave, enhancing
stimulated emission in the active region. This device emits at a wavelength of
840 nm, in the near infrared region. Diode lasers at this wavelength are commonly
used in communication to send signals along optical fibers. By varying the
materials of the laser, it is possible to obtain visible radiation in almost any color.
Diode lasers find common use in bar-code scanners and in players for CDs and
DVDs. There are also many medical uses, for example in laser surgery.

Cleaved
mirror
face

Cleaved
mirror
face

GaAs
active
layer

Laser
output

i

0.2 μm

6 μm

FIGURE 11.52 A diode laser. The
lasing action occurs in the thin GaAs
layer.

Diode lasers are of small size, and they consume very little power (typically
10 mW, compared with the standard HeNe laser that may consume several watts).
As a result, diode lasers can be powered by ordinary batteries. The light signal can
be turned on or off in switching times that are characteristic of semiconductors
(< 100 ps), and thus we have a device that can rapidly modulate the beam. Even
though conventional lasers are capable of performing many of the same functions
as diode lasers, the small size, low cost, low power consumption, and rapid switch-
ing times make diode lasers the superior choice for most low-power applications.

11.8 MAGNETIC MATERIALS

Our final example of the application of quantum physics to solids concerns
the magnetic behavior of materials. The magnetic susceptibility of atoms was
discussed briefly in Section 8.4 (see Figure 8.10). Most atoms have permanent
magnetic dipole moments, due either to the spin or orbital angular momentum
of the electrons (or both). Ordinarily, these magnetic moments point in random
directions, so the net total magnetic dipole moment of a sample of the material
is zero. However, when a magnetic field is applied, the magnetic moments rotate
into partial or full alignment with the applied field, and the vector sum of the
dipole moments gives the material a net magnetization. Specifically, the total
magnetization �M is defined as the sum of all the individual atomic magnetic
dipole moments �μi per unit volume:

�M =

N∑
i=1

�μi

V
(11.32)

where the sum is carried out over all the N individual particles (atoms, for
example) in the material.

Over a fairly wide range of applied magnetic fields, in many materials we
find that the net magnetization is directly proportional to the applied field �Bapp.
That is, the stronger the applied field, the more the individual magnetic moments
rotate into alignment with the field. (Clearly this proportionality cannot continue
indefinitely as the field strength increases, because eventually all dipoles will be
aligned with the field and further increases in the field will have little or no effect.)
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The proportionality constant between the magnetization and the applied field
is called the magnetic susceptibility χ :

μ0 �M = χ �Bapp (11.33)

For many materials, χ is small (10−5 to 10−1) and positive. These materials are
called paramagnetic. In other materials, χ is observed to be negative (that is,
the direction of the net magnetization is opposite to the direction of the applied
field). These materials, which are called diamagnetic, usually have no permanent
atomic magnetic moments, often because they have only paired electrons (as
for example the inert gases); their magnetic behavior is due to a slight change
in the orbital motion of the atomic electrons in response to the applied field.
Diamagnetism is ordinarily a very weak effect, with susceptibilities in the range
of −10−5 to −10−4. (The effect responsible for diamagnetism, the alteration of the
orbital motion of the electrons, can also occur in paramagnetic materials, but it is
generally much weaker than the paramagnetism. However in some materials, such
as copper, the paramagnetism is so weak that the diamagnetism is dominant.) In
yet other materials, the magnetization remains after the applied field is removed.
These include the ferromagnetic substances, and the susceptibility is undefined
for ferromagnets.

Magnetic effects are often strongly temperature dependent. In fact materials
can change from ferromagnetic to paramagnetic as the temperature is increased.

Paramagnetism of Electron Gas
Let’s begin by investigating the magnetic behavior of an electron gas. When
we apply a magnetic field to an electron gas, the energy of an electron in the
field is E = −�μs · �Bapp, where �μs = −(e/m)�s is the spin magnetic moment of
the electron. The energy of the interaction of an electron with the field is then
(assuming the field is in the z direction)

E = −�μs · �Bapp = e

m
�s · �Bapp = e

m
szBapp = e

m
ms

−hBapp = ±μBBapp (11.34)

with ms = ±1/2. The symbol μB represents the Bohr magneton e−h/2m (see
Eq. 7.23). The electrons with ms = +1/2 gain energy μBBapp and those with
ms = −1/2 lose an equal amount of energy.
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FIGURE 11.53 The dashed lines
show the number of electrons in the
Fermi-Dirac distribution drawn sepa-
rately for spin up (top) and spin down
(bottom). In an applied magnetic field,
the energies of the spin-up electrons
increase and the energies of the spin-
down electrons decrease. To maintain
the same Fermi energy with the field
on, the spin-up electrons in the shaded
strip flip their spins and move into the
equivalent area with spin down.

Figure 11.53 shows the Fermi-Dirac distribution of populated electron states
separately for the spin-up and spin-down electrons (half of the electrons are in
each group). All of the spin-up electrons move up in energy by μBBapp and all of
the spin-down electrons move down. Because the two groups of electrons are in
contact, the higher-energy electrons in the shaded region with spin up flip their
spins and fill the vacant energy states in the spin-down group until the two groups
equalize their Fermi energies. As a result, there is an excess of electrons with spin
down in a strip of width �E = 2μBBapp. The number of electrons in the strip
is �N = 1

2 Vg(E)fFD(E)�E, where the factor of 1/2 comes from the fact that the
spin-up and spin-down distributions each have 1/2 of the total number of electrons.
The drawing of Figure 11.53 has been exaggerated; the strips are very narrow
compared with EF, and we assume that we are at a reasonably low temperature in
which the Fermi-Dirac distribution is fairly sharp, so we can evaluate the density
of states at E = EF and take fFD = 1:

�N = N(↓) − N(↑) = Vg(EF)μBBapp (11.35)
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From Eq. 11.32, the z component of the magnetization is V−1 ∑
μiz = V−1μB�N ,

so

χ = μ0M

Bapp
= μ0μ

2
B g(EF) = 3μ0μ

2
B

2EF

N

V
(11.36)

using g(EF) = 3N/2VEF. This calculation was first done by Wolfgang Pauli, and
the result is often called the Pauli paramagnetic susceptibility. Note that N/V in
this equation is the number of free electrons per unit volume, which might differ
from the number of atoms per unit volume in materials in which there is more
than one valence electron per atom.

Equation 11.36 can be used to calculate values for the susceptibility of
materials in which the electrons behave like a gas of fermions. However,
comparing calculated susceptibility values with experimental values can often be
challenging because of the many different units that are used. On the surface,
it appears that the susceptibility is a dimensionless quantity, but in fact it can
be calculated in many different ways: susceptibility per unit volume (as in
Eq. 11.36) or per unit mass or per mole. Furthermore, it can be expressed in
either cgs units or SI units (our choice). The tabulated values in the literature are
often given as the molar susceptibility in cgs units. The conversion procedure is
χSI

volume = 4πχ
cgs
volume = 4π(ρ/M)χ

cgs
molar, where ρ is the density of the solid and M

is its molar mass (don’t confuse this with the magnetization!). With the conversion
written in this way, ρ and M must be in cgs units.

With that warning in mind, let’s look at how Eq. 11.36 compares with
experiment. Table 11.7 shows a few calculated and measured values. The
agreement is surprisingly good, particularly in view of our omitting a number of
important effects from the calculation, including a diamagnetic correction. For
many metals, the diamagnetic contribution is larger than the Pauli paramagnetism,
and as a result their susceptibility is negative (copper and gold are examples).
The diamagnetic contribution is important because the Pauli susceptibility is so
small (only a small fraction of the electrons near the Fermi energy contribute).
Metal ions in salts typically have paramagnetic susceptibilities that can be several
orders of magnitude larger, as we discuss next.

It is also interesting to note that Eq. 11.36 predicts that the susceptibility of
these substances should be independent of temperature. Raising the temperature
should broaden the distribution of both the spin-up and spin-down distributions
(Figure 11.53) by about the same amount, making a negligible contribution to
the susceptibility. Indeed, the susceptibility of these metals has only a very weak
dependence on temperature. In sodium, for example, the susceptibility changes
by only a few percent between room temperature (300 K) and liquid helium
temperature (4 K).

TABLE 11.7 Pauli Magnetic Susceptibility of Some Solids

Experimental susceptibility (×10−6)

Element cgs, per mole SI, per volume Calculated susceptibility (×10−6)

Al 16.5 20.7 15.7

K 20.8 5.8 6.2

Mg 13.1 11.8 12.2

Na 16 8.5 8.2
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Example 11.5

(a) Compute the Pauli paramagnetic susceptibility of Mg.
(b) The experimental value of the molar susceptibility is
13.1 × 10−6 in cgs units. What is the value of the volume
susceptibility in SI units?

Solution
(a) For Mg (which has valence 2),

N

V
= 2ρNA

M

= 2(1.74 × 103 kg/m3)(6.02 × 1023 atoms/mole)

0.0243 kg/mole

= 8.62 × 1028 m−3

The susceptibility is

χ = 3μ0μ
2
B

2EF

N

V

= 3(4π× 10−7 T · m/A)(9.27 × 10−24 J/T)2(8.62 × 1028 m−3)

2(7.13 eV)(1.602 × 10−19 J/eV)

= 12.2 × 10−6

To see how the units cancel, it is helpful to realize that
the magnetic moment has units of either J/T or A · m2 (the
latter coming from the definition μ = iA for the magnetic
moment of a current i in a loop of area A).
(b)

χSI
volume = 4π

ρ

M
χ

cgs
molar

= 4π
1.74 g/cm3

24.3 g/mole
(13.1 × 10−6)

= 11.8 × 10−6

Note that the density and molar mass are in cgs units for
the conversion.

Paramagnetism of Atoms and Ions

Instead of the free electrons, let’s consider the contribution of the atoms or ions
to the paramagnetism. We’ll represent the effective electronic spin of each atom
by J , which might represent the total intrinsic spin S of the electrons in the atom,
their total orbital angular momentum L, or a combination of both (the nuclear
spin is excluded, because nuclear magnetic effects are negligible compared with
electronic magnetic effects). Depending on the number of electrons in the atom,
J might be integral or half-integral.

The angular momentum J has all of the usual properties of quantum angular
momentum. It has z component Jz = mJ

−h, where mJ runs from −J to +J in integer
steps. For any J , there are 2J + 1 possible values of mJ . For example, if J = 3/2,
then mJ = −3/2, −1/2, +1/2, +3/2. Associated with this angular momentum there
is an effective magnetic moment �μ = −gJμB�J, where gJ is a dimensionless factor
of order unity that describes how the spin and orbital angular momenta combine
to give J . (The minus sign is present because electrons have negative charge.)
Assuming the magnetic field defines the z direction, the energy of interaction of
this magnetic moment with the applied field is E = −�μ · �Bapp = gJμBmJ Bapp.

We’ll treat the atoms or ions as if they are independent of one another, so that
they can be described by Maxwell-Boltzmann statistics. Because the magnetic
substates mJ are nondegenerate, we can write the number of atoms in each mag-
netic substate in the form of Eq. 10.4: NmJ

= A−1e−E/kT = A−1e−gJ μBmJ Bapp/kT ,
where A−1 is the normalization constant for the Maxwell-Boltzmann distribution.
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The normalization condition requires that N be the total number of atoms in all

substates: N =
+J∑

mJ =−J
NmJ

= A−1
+J∑

mJ =−J
e−gJ μBmJ Bapp/kT . We therefore have:

NmJ
= Ne−gJ μBmJ Bapp/kT

+J∑
mJ =−J

e−gJ μBmJ Bapp/kT
(11.37)

The z component of the magnetization is then

M = V−1
∑

all atoms

μz = −V−1
+J∑

mJ =−J

NmJ
gJμBmJ

= −
NV−1gJμB

+J∑
mJ =−J

mJ e−gJ μBmJ Bapp/kT

+J∑
mJ =−J

e−gJ μBmJ Bapp/kT
(11.38)

The magnetic susceptibility is

χ = μ0M

Bapp
= −

μ0NV−1gJμB

+J∑
mJ =−J

mJ e−gJ μBmJ Bapp/kT

Bapp

+J∑
mJ =−J

e−gJ μBmJ Bapp/kT
(11.39)
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FIGURE 11.54 Magnetic susceptibil-
ity as a function of inverse temperature
for a spin-1/2 material. Note the linear
behavior at high temperature.

Let’s examine the form of χ for the simplest case in which J = 1/2, so that
we have only two terms in the sums (mJ = −1/2 and + 1/2). Equation 11.39
becomes

χ = −μ0NgJμB[(−1/2)egJ μBBapp/2kT + (+1/2)e−gJ μBBapp/2kT ]

VBapp(e
gJ μBBapp/2kT + e−gJ μBBapp/2kT

)

= μ0NgJμB

2VBapp
tanh(gJμBBapp/kT) (11.40)

Figure 11.54 shows the susceptibility of a spin-1/2 atom as a function of 1/T , so the
high-temperature region is on the left side of the graph and the low-temperature
region is on the right side. In the low-temperature region, the magnetic moments
become fully aligned, and neither additional cooling nor an increase in the applied
field can change the magnetization. In the high-temperature region, the graph is
nearly a straight line, indicating that the susceptibility is linear in 1/T . (How high
must the temperature be to observe this linear behavior? For a fairly large field of
1 T the quantity μBBapp is about 0.060 meV. When T is 10 K, kT is 0.862 meV.
Thus even with moderately large fields, “high temperature” for this discussion
means anything above about 10 K. At low fields the “high temperature region”
might reach all the way down to 1 K.)

In the high-temperature region, the exponents in Eq. 11.39 are small and we
can use the approximation ex ∼= 1 + x for small x (with x = gJμBmJ Bapp/kT):

χ = −
μ0NV−1gJμB

+J∑
mJ =−J

mJ (1 − gJμBmJ Bapp/kT)

Bapp

+J∑
mJ =−J

(1 − gJμBmJ Bapp/kT)

(11.41)
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All quantities other than mJ come out of the sums, leaving us three summations
to evaluate:

+J∑
mJ =−J

1 = 2J + 1
+J∑

mJ =−J

mJ = 0
+J∑

mJ =−J

m2
J = 1

3 J(J + 1)(2J + 1) (11.42)

After making these substitutions and clearing terms, the result is

χ = μ0 Ng2
Jμ

2
BJ(J + 1)

3VkT
(11.43)
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FIGURE 11.55 Susceptibility of
paramagnetic copper sulfate (CuSO4 ·
5H2O) between room temperature and
14 K.

This shows the linear dependence of the susceptibility on 1/T , as we observed
in the high-temperature region of Figure 11.54. This result is known as Curie’s
law∗, which is often expressed in the form χ = C/T where C (the combination
of factors in Eq. 11.43) is called the Curie constant. (It is not a true constant, as
it takes different values for different substances, but it is constant for any single
substance.) Figure 11.55 shows the susceptibility of the paramagnetic salt copper
sulfate, which clearly shows the expected linear behavior down to a temperature
of about 14 K.

Example 11.6

The slope of the graph in Figure 11.55 is 0.0499 K. Assum-
ing the paramagnetism resides with the copper ions, find
the value of the quantity g2

J J(J + 1) for copper sulfate.

Solution
We first need the value of N/V , which requires the den-
sity (2.28 × 103 kg/m3) and molar mass (0.250 kg/mole)
of copper sulfate:

N

V
= ρNA

M

= (2.28 × 103 kg/m3)(6.02 × 1023 atoms/mole)

0.250 kg/mole

= 5.49 × 1027 atoms/m3

Because each molecule of copper sulfate has only one Cu
ion, this number also gives us the density of Cu ions. We

then have

C = μ0Nμ2
B

3Vk
g2

J J(J + 1)

= (4π× 10−7 T · m/A)(5.49 × 1027 m−3)

×(9.27 × 10−24 J/T)2g2
J J(J + 1)

×[3(1.38 × 10−23 J/K)]−1

= (0.0143 K) g2
J J(J + 1) = 0.0499 K

As a result, g2
J J(J + 1) = 3.49. Such experiments give us

important information about the behavior of ions in crystals
that is otherwise difficult to obtain. In this case we can learn
about the value of the effective spin J that describes the
copper ion.

In copper sulfate, the divalent copper ion Cu++ has the outer electronic
configuration 3d9 (recall that neutral Cu atoms have the configuration 3d104s1).
According to the rules for finding the total S and L for atoms (see Section 8.6), the
nine 3d electrons in Cu++ have S = 1/2 (the maximum possible value of the total
MS) and L = 2 (the maximum possible resulting value of the total ML). However,
the measured value of g2

J J(J + 1) of 3.49 from Example 11.6 is more consistent
with the configuration S = 1/2, L = 0 (for which its value would be 3.00), than

∗Physicist Pierre Curie (1859–1906) was the husband of Marie Curie. Together they shared the 1903
Nobel Prize in physics for their research on radioactivity. Pierre Curie also contributed to the study of
magnetism.
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it is with any configuration involving S = 1/2 and L = 2 (which give values of
either 2.40 or 12.60).

This is a common observation for paramagnetic crystals involving the transition
metals (those in which the 3d shell is filling). In a magnetic field, which has a
single preferred direction (usually taken to be the z direction), the component of
the orbital angular momentum Lz along that direction is fixed, while the other
components (Lx and Ly) average to zero. In a crystal, however, there is a strong
electric field that may have three equivalent directions, and all three components
of �L might average to zero. As a result, the ion behaves as if it has L = 0 (we
say that the orbital angular momentum is “quenched”), and so only the total S
contributes to the magnetic moment. In contrast, the rare earth elements also form
many paramagnetic crystals, but both L and S contribute to J . In the rare earths,
the electrons in the unfilled 4f shell are shielded by the filled 5s and 5p shells,
which have the strongest interactions with the electric field of the crystal (because
the average radii of their orbits are larger). The “inner” 4f electrons are not much
affected by the electric field of the crystal and so they contribute their large orbital
angular momentum to the total J of the ion.

Ferromagnetism
In some materials, the individual magnetic dipoles of the ions can align with
one another even in the absence of an external magnetic field. In this case a
net magnetization M is present when Bapp is zero, so clearly the susceptibility
is undefined for these materials. The most familiar example of this behavior is
ferromagnetism, in which the neighboring dipoles all align in the same direction.
(It is also possible to have antiferromagnetic materials, in which the neighboring
dipoles orient in opposite directions.)

It is perhaps tempting at first to think of the interaction responsible for
ferromagnetism as a result of the magnetic field due to one dipole exerting
a magnetic force to align the neighboring dipole. However, this dipole-dipole
interaction is far too weak to account for the strong coupling between neighbors
that produces ferromagnetic alignment. Instead, the effect results from the overlap
of the wave functions of the electrons in neighboring atoms, in a manner similar
to covalent bonding but depending on the spins of the electrons. This effect is very
sensitive to the interaction between the spins and also to the distance between the
neighboring ions.

In Fe, Co, and Ni the value of the atomic spacing results in an energy minimum
for the parallel orientation of neighboring spins, and so these materials are
ferromagnetic at room temperature (but they become paramagnetic at a sufficiently
high temperature, where the thermal energy kT exceeds the interaction energy).
In other materials (such as some of the rare earth elements) the interaction is
weaker, so they may not exhibit their ferromagnetic behavior until they are cooled
to a point where the thermal energy kT is smaller than the interaction energy.
In still other cases, the atomic spacing of the pure element may not permit
ferromagnetism, but a different atomic spacing in certain compounds containing
that element may allow the overlap interaction that causes the spins to align. For
example, Cr is weakly paramagnetic at room temperature, but CrO2 (which is
used to make magnetic recording tape) is ferromagnetic.

(a)

EF

EF

(b)

Spin down Spin up

FIGURE 11.56 The 3d band in Fe.
(a) In the absence of the interac-
tion, there are 3 electrons per atom in
the spin-up and spin-down subbands.
(b) The interaction lowers the relative
energy of the spin-up band, so there
are now 4 electrons per atom with spin
up and 2 with spin down.

The band theory provides a framework for understanding ferromagnetic behav-
ior. Consider iron, which has the electronic configuration 3d64s2. The partially
filled 3d band can be split into two subbands, one with spin up and one with
spin down. In the absence of the overlap interaction, the bands are at the same
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energy and each band has 3 electrons per atom (out of its maximum capacity of 5)
as in Figure 11.56a. The effect of the overlap interaction is to raise the energy
of one band relative to the Fermi energy and lower the energy of the other (as
in Figure 11.56b). Now there are roughly 4 electrons per atom in the spin-up
subband and 2 in the spin-down subband, and this difference of approximately 2
electrons per atom in the 3d band is responsible for the net magnetization of iron.

Chapter Summary

Section

Binding energy
of ion in crystal

B = αe2

4πε0R0

(
1 − 1

n

)
11.1

Cohesive energy
of crystal

Ecoh = BNA 11.1

Electron
contribution to
heat capacity

C = π2k2NAT

2EF
= π2

2

RkT

EF
11.2

Einstein heat
capacity

C = 3R

(
TE

T

)2 eTE/T

(eTE/T − 1)2
11.2

Debye heat
capacity

C = 12π4

5
R

(
T

TD

)3

11.2

Conductivity of
free electron gas

σ = ne2τ/m 11.3

Lorenz number L = π2k2/3e2

= 2.44 × 10−8 W ·�/K2
11.3

Section

BCS gap energy
in superconductor

Eg = 3.53kTc 11.5

Current in p-n
junction diode

i = i0(e
e�Vext/kT − 1) 11.7

Pauli paramag-
netic susceptibility

χ = 3μ0μ
2
B

2EF

N

V
11.8

Paramagnetic
susceptibility of
atoms

χ = −μ0NV−1gJμB

×
+J∑

mJ =−J
mJ e−gJ μBmJ Bapp/kT

×
(

Bapp

+J∑
mJ =−J

e−gJ μBmJ BappkT

)−1

11.8

Curie’s law χ = μ0 Ng2
J μ2

BJ(J + 1)

3VkT
= C

T
11.8

Questions

1. Compare the equilibrium separations and binding energies
of ionic solids (Table 11.1) with those of the corresponding
ionic molecules (Table 9.5). Account for any systematic
differences.

2. How should Eq. 11.7 be modified to be valid for MgO and
BaO?

3. From Figure 11.11, estimate the Einstein temperature for
lead. (Hint: Consider Eq. 11.11 when T = TE.)

4. A graph of C/T vs. T2 for solid argon (similar to
Figure 11.13) goes through the origin; that is, its y-intercept
is zero. Explain.

5. Assuming that its other properties don’t also change with
temperature, at what temperature would you expect carbon
to begin to behave like a semiconductor?

6. Would you expect the Wiedemann-Franz law to apply to
semiconductors? To insulators?

7. (a) Why does the electrical conductivity of a metal decrease
as the temperature is increased? (b) How would you expect

the conductivity of a semiconductor to change with temper-
ature?

8. Why is it that only the electrons near EF contribute to the
electrical conductivity?

9. Would you expect silicon to behave like an insulator at a
low enough temperature? Would it behave like a conductor
at a high enough temperature?

10. What determines the drift speed of an electron in a metal?
What determines the Fermi speed?

11. Do the superconducting elements have any particular elec-
tronic structure or configuration in common?

12. Three different materials have filled valence bands and
empty conduction bands, and the Fermi energy lies in the
middle of the gap. The gap energies are 10 eV, 1 eV, and
0.01 eV. Classify the electrical properties of these materials
at room temperature and at 3 K.

13. In what way does a p-n junction behave as a capacitor?
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14. Semiconductors are sometimes called “nonohmic” materi-
als. Why?

15. If a semiconductor is doped at a level of one impurity atom
per 109 host atoms, what is the average spacing between the
impurity atoms?

16. Explain the processes that contribute to the current in a
forward-biased p-n junction. Do the same for a reverse-
biased junction.

17. What limits the response time of a p-n junction when the
external voltage is varied? Why does a tunnel diode not have
the same limits?

18. The energy gap Eg is 0.72 eV for Ge and 1.10 eV for Si. At
what wavelengths will Ge and Si be transparent to radiation?
At what wavelengths will they begin to absorb significantly?

19. Why is a semiconductor better than a conductor for applica-
tions as a solar cell or photon detector? Would an insulator
be even better?

20. Why is the magnetic susceptibility of an electron gas almost
independent of temperature?

21. Would a sample of paramagnetic material be attracted or
repelled by the N pole of a magnet? By the S pole? How
would a sample of diamagnetic material behave? How would
ferromagnetic material behave?

22. Is it possible for a material that has a positive magnetic
susceptibility at room temperature to have a negative sus-
ceptibility at higher temperature?

Problems

11.1 Crystal Structures

1. Consider the packing of hard spheres in the simple cubic
geometry of Figure 11.1. Imagine eight spheres in contact
with their nearest neighbors, with their centers at the corners
of the basic cube. (a) What fraction of the volume of each
sphere is inside the volume of the basic cube? (b) Let r be
the radius of each sphere and let a be the length of a side
of the cube. Express a in terms of r. (c) What fraction of
the volume of the cube is taken up by the portions of the
spheres? This fraction is called the packing fraction.

2. Compute the packing fractions (see Problem 1) of
(a) the fcc structure (Figure 11.2) and (b) the bcc struc-
ture (Figure 11.3). Which structure fills the space most
efficiently?

3. Derive Eqs. 11.5 and 11.6.
4. Calculate the first three contributions to the electrostatic

potential energy of an ion in the CsCl lattice.
5. (a) Find the binding energy per ion pair in CsCl from the

cohesive energy. (b) Find the binding energy per ion pair in
CsCl from Eq. 11.7. (c) Find the binding energy per atom
for CsCl. The ionization energy of Cs is 3.89 eV.

6. (a) Find the binding energy per ion pair in LiF from the
cohesive energy. (b) Find the binding energy per ion pair in
LiF from Eq. 11.7. (c) Find the binding energy per atom for
LiF. The ionization energy of Li is 5.39 eV, and the electron
affinity of F is 3.45 eV.

7. Calculate the Coulomb energy and the repulsion energy for
NaCl at its equilibrium separation.

8. The density of sodium is 0.971 g/cm3 and its molar mass
is 23.0 g. In the bcc structure, what is the distance between
sodium atoms?

9. Copper has a density of 8.96 g/cm3 and molar mass of
63.5 g. Calculate the center-to-center distance between cop-
per atoms in the fcc structure.

10. Calculate the binding energy per atom for metallic Na
and Cu.

11.2 The Heat Capacity of Solids

11. At what temperature do the lattice and electronic heat capaci-
ties of copper become equal to each other? Take TD = 343 K
and EF = 7.03 eV. Which contribution is larger above this
temperature? Below this temperature?

12. (a) The heat capacity of solid argon at a temperature
of 2.00 K is 2.00 × 10−2 J/mole ·K. What is the Debye
temperature of solid argon? (See Question 4.) (b) What
value do you expect for the heat capacity at a temperature
of 3.00 K?

13. When C/T is plotted against T2 for potassium, the graph
gives a straight line with a slope of 2.57 × 10−3 J/mole ·K4.
What is the Debye temperature for potassium?

14. At a temperature of 4 K, the heat capacity of silver is
0.0134 J/mole ·K. The Debye temperature of silver is 225 K.
(a) What is the electronic contribution to the heat capacity
at 4 K? (b) What are the lattice and electronic contributions
and the total heat capacity at 2 K?

11.3 Electrons in Metals

15. (a) In copper at room temperature, what is the electron
energy at which the Fermi-Dirac distribution function has
the value 0.1? (b) Over what energy range does the Fermi-
Dirac distribution function for copper drop from 0.9 to
0.1?

16. Calculate the de Broglie wavelength of an electron with
energy EF in copper, and compare the value with the atomic
separation in copper.

17. What is the number of occupied energy states per unit
volume in sodium for electrons with energies between 0.10
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and 0.11 eV above the Fermi energy at room temperature
(293 K)?

18. The electrical conductivity of copper at room temperature is
5.96 × 107 �−1m−1. Evaluate the average distance between
electron scatterings. How many lattice spacings does this
amount to?

19. At what temperature would the Fermi energy of Au be
reduced by 1%? Compare this temperature with the melting
point of Au (1337 K). Is it reasonable to assume the Fermi
energy is a constant, independent of temperature?

20. A copper wire of diameter 0.50 mm carries a current of
2.5 mA. What fraction of the copper electrons contributes to
the electrical conduction?

21. Use the Wiedemann-Franz ratio to calculate the thermal
conductivity of copper at room temperature. The electrical
conductivity is 5.96 × 107 �−1 ·m−1.

11.4 Band Theory of Solids

22. Estimate the ratio of the concentration of electrons in the
conduction band of carbon (an insulator) and silicon (a semi-
conductor) at room temperature (293 K). The energy gaps
are 5.5 eV for carbon and 1.1 eV for silicon. Assume the
Fermi energy lies at the center of the gap.

23. Estimate the ratio of the number of electrons in the con-
duction bands of germanium (Eg = 0.66 eV) and silicon
(Eg = 1.12 eV) at a temperature of 400 K. Assume the Fermi
energy is at the center of the gap.

24. The valence band in Si has a width of 12 eV. In a cube
of Si that measures 1.0 mm on each side, calculate (a) the
total number of states in the valence band, and (b) the aver-
age spacing between the states. The density of sodium is
2.33 g/cm3.

11.5 Superconductivity

25. (a) Zirconium metal has a superconducting transition tem-
perature of 0.61 K. Assuming the validity of the BCS theory,
what is the energy gap for Zr? (b) If a beam of photons were
incident on superconducting Zr, what wavelength of photons
would be sufficient to break up the Cooper pairs? In what
region of the electromagnetic spectrum are these photons?

26. When superconducting tantalum metal is illuminated with
a beam of photons, it is found that photon wavelengths of
up to 0.91 mm are sufficient to destroy the superconducting
state. According to the BCS theory, find the energy gap and
critical temperature for Ta.

27. Find the frequency of the current that results when a voltage
difference of 1.25 μV is applied across a Josephson junction.

11.6 Intrinsic and Impurity Semiconductors

28. The temperature of a sample of intrinsic silicon is increased
by 100 K over room temperature (293 K). Estimate the
increase in conductivity that we would expect from this
increase in temperature. The gap energy in silicon is 1.1 eV.

29. (a) Estimate the fraction of the electrons in the valence band
of intrinsic silicon that can be excited to the conduction band
at a temperature of 100 K and at room temperature. Take
the energy gap in silicon to be 1.1 eV. (b) By what factor
would the conductivity of a metal change over this same
temperature interval?

30. Estimate the temperature at which the density of conduc-
tion electrons in intrinsic germanium equals that of intrinsic
silicon at room temperature (293 K). The gap energies are
1.12 eV for Si and 0.66 eV for Ge.

31. (a) When we replace an atom of silicon with an atom of
phosphorus, the outer electron of phosphorus is screened
so that the atom behaves like a single-electron atom with
Zeff

∼= 1. Compute the energy of the electron, assuming
that silicon has a dielectric constant of 12 that effec-
tively reduces the electric field experienced by the electron.
(b) The additional electron in Si has an effective mass that is
0.43 times the free electron mass. How does this correction
factor change the electron energy?

32. Assuming the energy gap in intrinsic silicon is 1.1 eV and
that the Fermi energy lies at the middle of the gap, calculate
the occupation probability at 293 K of (a) a state at the
bottom of the conduction band and (b) a state at the top of
the valence band.

33. In a sample of germanium at room temperature (293 K),
what fraction of the Ge atoms must be replaced with donor
atoms in order to increase the population of the conduction
band by a factor of 3? Assume all donor atoms are ionized,
and take the energy gap in Ge to be 0.66 eV.

11.7 Semiconductor Devices

34. (a) In a p-n junction at room temperature, what is the ratio
between the current with a forward bias of 2.00 V to the
current with a forward bias of 1.00 V? (b) Evaluate the same
ratio at a temperature of 400 K.

35. Under certain conditions, the current in a p-n junction at
room temperature is observed to be 1.5 mA when a forward
bias of 0.25 V is applied. If the same voltage were used to
reverse bias the junction, what would be the current?

36. Gallium phosphide (Eg = 2.26 eV) and zinc selenide (Eg =
2.87 eV) are commonly used to make LEDs. What is the
most prominent emission wavelength of these devices, and
what color is the corresponding light?

37. LEDs of varying colors can be made by mixing GaN
(Eg = 3.4 eV) and InN (Eg = 0.7 eV) in different propor-
tions. Calculate the relative amounts of GaN and InN needed
to produce an LED that emits (a) green light (550 nm) and
(b) violet light (400 nm).

11.8 Magnetic Materials

38. Estimate the fraction of spin-up electrons in sodium that flip
their spins (as in Figure 11.53) and thus contribute to the
Pauli paramagnetism. Assume a magnetic field of 1 T.
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39. In copper sulfate, the Cu++ ions behave as if they have
J = 1/2, for which gJ = 2. In a magnetic field of 0.25 T, cal-
culate the relative numbers of copper ions in the mJ = +1/2

and mJ = −1/2 states at (a) 300 K and (b) 4.2 K.
40. Compute the Pauli paramagnetic susceptibilities for (a) Li

and (b) Ba. Compare with the experimental values, which
are respectively 14.2 × 10−6 and 20.6 × 10−6 (in cgs units
per mole).

41. (a) Calculate the expected paramagnetic susceptibility for
gold, assuming it to behave like a free electron gas.
(b) The observed cgs molar susceptibility at room tempera-
ture is −28.0 × 10−6. Assuming the susceptibility consists
only of the diamagnetic and paramagnetic parts, find the
diamagnetic contribution to the susceptibility of gold.

42. (a) The experimental paramagnetic susceptibility of MnCl2
at room temperature (293 K) in cgs units per mole is
14350 × 10−6. What is the value of g2

J J(J + 1) for the
Mn++ ion? (b) What is the electronic configuration expected
for the Mn++ ion? For this configuration, and assuming that
the electronic S corresponds to maximizing the total MS ,
what is the value of S for Mn++? For the arrangement
with that S, what is the corresponding total L? (c) With
J = L + S, what is the value of gJ that follows from the
experimental susceptibility?

General Problems

43. By summing the contributions for the attractive and repul-
sive Coulomb potential energies, show that the Madelung
constant has the value 2 ln 2 for a one-dimensional “lattice”
of alternating positive and negative ions.

44. Plot the cohesive energies of ionic crystals (see Table 11.1
and other data that you may find) against their melting points
(see, for example, the Handbook of Chemistry and Physics).
Is there a correlation between cohesive energies and melting
points?

45. Plot the cohesive energies of metallic crystals (see Table 11.3
and other data that you may find) against their melting points
(see, for example, the Handbook of Chemistry and Physics).
Is there a correlation between cohesive energies and melting
points?

46. (a) By taking the derivative of the total potential energy of
an ion in a lattice, find an expression for the force on the
ion. (b) Suppose an ion is displaced from its equilibrium
position by a small distance x, so that R = R0 + x. Show that
for small values of x, the force can be written as F = −kx.
Express k in terms of the other parameters of the crystal.
(c) Find the value of k for NaCl and evaluate the oscillation
frequency for a sodium ion. (d) Suppose a sodium ion in
the lattice absorbed a photon of this frequency and began to
oscillate. Find the wavelength of the photon. In what region
of the electromagnetic spectrum is this photon?

47. The electric field of a dipole is proportional to 1/r3. Assum-
ing that the induced dipole moment of molecule B is
proportional to the electric dipole field of molecule A,

show that the van der Waals force is proportional to r−7.
(Hint: Show that the potential energy of dipole B in the
electric field caused by dipole A is proportional to r−6.)

48. (a) Obtain the data for the heat capacity of aluminum
between 1 K and 100 K (see, for example, the Handbook
of Chemistry and Physics). Plot the data, and by trial and
error find the value of the Einstein temperature that gives the
best fit to the data. (b) Plot the data for temperatures below
10 K as C/T vs. T2, determine the slope and intercept, and
deduce the Debye temperature and effective mass for Al
(using EF = 11.7 eV).

49. (a) Obtain the data for the heat capacity of gold between 1 K
and 100 K (see, for example, the Handbook of Chemistry
and Physics). Plot the data, and by trial and error find the
value of the Einstein temperature that gives the best fit to
the data. (b) Plot the data for temperatures below 10 K as
C/T vs. T2, determine the slope and intercept, and deduce
the Debye temperature and effective mass for Au (using
EF = 5.53 eV).

50. (a) A Cooper pair in a superconductor can be considered
to be a bound state with an energy uncertainty that is of
the order of the gap energy Eg. Assuming these pairs exist
close to the Fermi energy, find the uncertainty in the loca-
tion of a Cooper pair, which is a good estimate of its size.
(b) Estimate the size of a Cooper pair for aluminum (EF =
11.7 eV) and compare with the lattice spacing in aluminum
(0.286 nm).

51. When a material such as germanium is used as a photon
detector, an incoming photon makes many interactions and
excites many electrons across the gap between the valence
and the conduction band. (a)137Cs emits a 662-keV gamma
ray. How many electrons are excited across the 0.66-eV
gap of germanium by the absorption of this gamma ray?
(b) The number N calculated in part (a) is subject to sta-
tistical fluctuations of

√
N . Compute the variation in N and

the fractional variation in N . (c) What is the corresponding
variation in the measured energy of the gamma ray? This
result is the experimental resolution of the detector.

52. On a single graph, sketch the atomic paramagnetic suscep-
tibility as a function of inverse temperature for J = 1/2, 1,
and 3/2. Assume all other coefficients (N/V , gJ , Bapp) to be
the same for these three cases. Plot the ratio of the suscepti-
bility to its maximum for that spin, so you can compare the
variation in the approach to saturation for these three spins.

53. The magnetic field at a distance r from a magnetic dipole
μ is B = μ0μ/2πr3. Show that the dipole-dipole interaction
energy is too small to account for the ferromagnetism of
iron at all but the lowest temperatures. Assume an effective
magnetic dipole moment of 2.2 μB per atom.

54. (a) Oxygen gas is observed to be paramagnetic at room tem-
perature, but nitrogen gas is diamagnetic. Explain this based
on the filling of the bonding and antibonding 2p orbitals in
O2 and N2. (Hint: See Example 9.1.) (b) Would you expect
NO gas to be paramagnetic or diamagnetic?





Chapter 12
NUCLEAR STRUCTURE AND
RADIOACTIVITY

Radioactive isotopes have proven to be valuable tools for medical diagnosis. The photo
shows gamma-ray emission from a man who has been treated with a radioactive element.
The radioactivity concentrates in locations where there are active cancer tumors, which
show as bright areas in the gamma-ray scan. This patient’s cancer has spread from his
prostate gland to several other locations in his body.
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The nucleus lies at the center of the atom, occupying only 10−15 of its volume
but providing the electrical force that holds the atom together. Within the nucleus
there are Z positive charges. To keep these charges from flying apart, the nuclear
force must supply an attraction that overcomes their electrical repulsion. This
nuclear force is the strongest of the known forces; it provides nuclear binding
energies that are millions of times stronger than atomic binding energies.

There are many similarities between atomic structure and nuclear structure,
which will make our study of the properties of the nucleus somewhat easier.
Nuclei are subject to the laws of quantum physics. They have ground and excited
states and emit photons in transitions between the excited states. Just like atomic
states, nuclear states can be labeled by their angular momentum.

There are, however, two major differences between the study of atomic and
nuclear properties. In atomic physics, the electrons experience the force provided
by an external agent, the nucleus; in nuclear physics, there is no such external
agent. In contrast to atomic physics, in which we can often consider the interactions
among the electrons as a perturbation to the primary interaction between electrons
and nucleus, in nuclear physics the mutual interaction of the nuclear constituents
is just what provides the nuclear force, so we cannot treat this complicated many-
body problem as a correction to a single-body problem. We therefore cannot avoid
the mathematical difficulties in the nuclear case, as we did in the atomic case.

The second difference between atomic and nuclear physics is that we cannot
write the nuclear force in a simple form like the Coulomb force. There is no
closed-form analytical expression that can be written to describe the mutual forces
of the nuclear constituents.

In spite of these difficulties, we can learn a great deal about the properties of
the nucleus by studying the interactions between different nuclei, the radioactive
decay of nuclei, and the properties of some nuclear constituents. In this chapter and
the next we describe these studies and how we learn about the nucleus from them.

Enrico Fermi (1901–1954, Italy-
United States). There is hardly a field
of modern physics to which he did
not make contributions in theory or
experiment. He developed the statis-
tical laws for spin-1/2 particles, and
in the 1930s he proposed a theory
of beta decay that is still used today.
He was the first to demonstrate the
transmutation of elements by neutron
bombardment (for which he received
the 1938 Nobel Prize), and he directed
the construction of the first nuclear
reactor.

12.1 NUCLEAR CONSTITUENTS

The work of Rutherford, Bohr, and their contemporaries in the years between
1911 and 1920 showed that the positive charge of the atom is confined in a very
small nuclear region at the center of the atom, that the nucleus in an atom of
atomic number Z has a charge of +Ze, and that the nucleus provides most (99.9%)
of the atomic mass. It was also known that the masses of the atoms (measured in
atomic mass units) were very nearly integers; a glance at Appendix D confirms
this observation, usually to within about 0.1%. We call this integer A the mass
number. It was therefore reasonable to suppose that nuclei are composed of a
number A of more fundamental units whose mass is very close to 1 u. Because
the only particle known at that time with a mass close to 1 u was the proton
(the nucleus of hydrogen, with a mass of 1.0073 u and a charge of +e), it was
postulated (incorrectly, as we shall see) that the nucleus of an atom of mass
number A contained A protons.

Such a nucleus would have a nuclear charge of Ae rather than Ze; because
A > Z for all atoms heavier than hydrogen, this model gives too much positive
charge to the nucleus. This difficulty was removed by the proton-electron model,
in which it was postulated (again incorrectly) that the nucleus also contained
(A − Z) electrons. Under these assumptions, the nuclear mass would be about
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A times the mass of the proton (because the mass of the electrons is negligible)
and the nuclear electric charge would be A(+e) + (A − Z)(−e) = Ze, in
agreement with experiment. However, this model leads to several difficulties.
First, as we discovered in Chapter 4 (see Example 4.7), the presence of electrons
in the nucleus is not consistent with the uncertainty principle, which would
require those electrons to have unreasonably large (∼ 19 MeV) kinetic energies.

A more serious problem concerns the total intrinsic spin of the nucleus. From
measurements of the very small effect of the nuclear magnetic moment on the
atomic transitions (called the hyperfine splitting), we know that the proton has
an intrinsic spin of 1/2, just like the electron. Consider an atom of deuterium,
sometimes known as “heavy hydrogen.” It has a nuclear charge of +e, just like
ordinary hydrogen, but a mass of two units, twice that of ordinary hydrogen.
The proton-electron nuclear model would then require that the deuterium nucleus
contain two protons and one electron, giving a net mass of two units and a net
charge of one. Each of these three particles has a spin of 1/2, and the rules for adding
angular momenta in quantum mechanics would lead to a spin of deuterium of either
1/2 or 3/2. However, the measured total spin of deuterium is 1. For these and other
reasons, the hypothesis that electrons are a nuclear constituent must be discarded.

The resolution of this dilemma came in 1932 with the discovery of the neutron,
a particle of roughly the same mass as the proton (actually about 0.1% more
massive) but having no electric charge. According to the proton-neutron model,
a nucleus consists of Z protons and (A − Z) neutrons, giving a total charge of Ze
and a total mass of roughly A times the mass of the proton, because the proton
and neutron masses are roughly the same.

The proton and neutron are, except for their electric charges, very similar to
one another, and so they are classified together as nucleons. Some properties of
the two nucleons are listed in Table 12.1.

The chemical properties of any element depend on its atomic number Z, but
not on its mass number A. It is possible to have two different nuclei with the same
Z but with different A (that is, with the same number of protons but different
numbers of neutrons). Atoms of these nuclei are identical in all their chemical
properties, differing only in mass and in those properties that depend on mass.
Nuclei with the same Z but different A are called isotopes. Hydrogen, for example,
has three isotopes: ordinary hydrogen (Z = 1, A = 1), deuterium (Z = 1, A = 2),
and tritium (Z = 1, A = 3). All of these are indicated by the chemical symbol
H. When we discuss nuclear properties it is important to distinguish among the
different isotopes. We do this by indicating, along with the chemical symbol, the
atomic number Z, the mass number A, and the neutron number N = A − Z in the
following format:

A
ZXN

where X is any chemical symbol. The chemical symbol and the atomic number Z
give the same information, so it is not necessary to include both of them in the
isotope label. Also, if we specify Z then we don’t need to specify both N and

TABLE 12.1 Properties of the Nucleons

Name Symbol Charge Mass Rest Energy Spin

Proton p +e 1.007276 u 938.28 MeV 1/2

Neutron n 0 1.008665 u 939.57 MeV 1/2
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A. It is sufficient to give only the chemical symbol and A. The three isotopes of
hydrogen would be indicated as 1

1H0, 2
1H1, and 3

1H2, or more compactly as 1H,
2H, and 3H. In Appendix D you will find a list of isotopes and some of their
properties.

Example 12.1

Give the symbol for the following: (a) the isotope of helium
with mass number 4; (b) the isotope of tin with 66 neu-
trons; (c) an isotope with mass number 235 that contains
143 neutrons.

Solution
(a) From the periodic table, we find that helium has Z = 2.
With A = 4, we have N = A − Z = 2. Thus the symbol
would be 4

2He2 or 4He.

(b) Again from the periodic table, we know that for tin
(Sn), Z = 50. We are given N = 66, so A = Z + N = 116.
The symbol is 116

50Sn66 or 116Sn.
(c) Given that A = 235 and N = 143, we know that
Z = A − N = 92. From the periodic table, we find that
this element is uranium, and so the proper symbol for this
isotope is 235

92U143 or 235U.

12.2 NUCLEAR SIZES AND SHAPES

Like atoms, nuclei lack a hard surface or an easily definable radius. In fact,
different types of experiments can often reveal different values of the radius for
the same nucleus.

From a variety of experiments, we know some general features of the nuclear
density. Its variation with the nuclear radius is shown in Figure 12.1. Because
the nuclear force is the strongest of the forces, we might expect that this strong
force would cause the protons and neutrons to congregate at the center of the
nucleus, giving an increasing density in the central region. However, Figure 12.1
shows that this is not the case—the density remains quite uniform. This gives
some important clues about the short range of the nuclear force, as we discuss in
Section 12.4.

Another interesting feature of Figure 12.1 is that the density of a nucleus seems
not to depend on the mass number A; very light nuclei, such as 12C, have roughly
the same central density as very heavy nuclei, such as 209Bi. Stated another way,
the number of protons and neutrons per unit volume is approximately constant
over the entire range of nuclei:

number of neutrons and protons

volume of nucleus
= A

4
3πR3

∼= constant

assuming the nucleus to be a sphere of radius R. Thus A ∝ R3, which suggests
a proportionality between the nuclear radius R and the cube root of the mass
number: R ∝ A1/3or, defining a constant of proportionality R0,
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FIGURE 12.1 The radial dependence
of the nuclear charge density.

R = R0A1/3 (12.1)

The constant R0 must be determined by experiment, and a typical experiment
might be to scatter charged particles (alpha particles or electrons, for example)
from the nucleus and to infer the radius of the nucleus from the distribution
of scattered particles. From such experiments, we know the value of R0 is
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approximately 1.2 × 10−15 m. (The exact value depends, as in the case of atomic
physics, on exactly how we define the radius, and values of R0 usually range from
1.0 × 10−15 m to 1.5 × 10−15 m.) The length 10−15 m is 1 femtometer (fm), but
physicists often refer to this length as one fermi, in honor of the Italian-American
physicist Enrico Fermi.

Example 12.2

Compute the approximate nuclear radius of carbon (A =
12), germanium (A = 70), and bismuth (A = 209).

Solution
Using Eq. 12.1, we obtain:

Carbon: R = R0A1/3 = (1.2 fm)(12)1/3 = 2.7 fm

Germanium: R = R0A1/3 = (1.2 fm)(70)1/3 = 4.9 fm

Bismuth: R = R0A1/3 = (1.2 fm)(209)1/3 = 7.1 fm

As you can see from Figure 12.1, these values define the
mean radius, the point at which the density falls to half the
central value.

Example 12.3

Compute the density of a typical nucleus, and find the
resultant mass if we could produce a nucleus with a radius
of 1 cm.

Solution
Making a rough estimate of the nuclear mass m as A times
the proton mass, we have

ρ = m

V
= Amp

4
3πR3

= Amp
4
3πR3

0A

= 1.67 × 10−27 kg
4
3π(1.2 × 10−15 m)3

= 2 × 1017 kg/m3

The mass of a hypothetical nucleus with a 1-cm radius
would be

m = ρV = ρ( 4
3πR3)

= (2 × 1017 kg/m3)( 4
3π)(0.01 m)3

= 8 × 1011 kg

about the mass of a 1-km sphere of ordinary matter!

The result of Example 12.3 shows the great density of what physicists call
nuclear matter. Although examples of such nuclear matter in bulk are not found
on Earth (a sample of nuclear matter the size of a large building would have a
mass as great as that of the entire Earth), they are found in certain massive stars, in
which the gravitational force causes protons and electrons to merge into neutrons,
creating a neutron star (see Section 10.7) that is in effect a giant atomic nucleus!

One way of measuring the size of a nucleus is to scatter charged particles, such
as alpha particles, as in Rutherford scattering experiments. As long as the alpha
particle is outside the nucleus, the Rutherford scattering formula holds, but when
the distance of closest approach is less than the nuclear radius, deviations from the
Rutherford formula occur. Figure 12.2 shows the results of a Rutherford scattering
experiment in which such deviations are observed. (Problem 33 suggests how a
value for the nuclear radius can be inferred from these data.)
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Other scattering experiments can also be used to measure the nuclear radius.
Figure 12.3 shows a sort of “diffraction pattern” that results from the scattering
of energetic electrons by a nucleus. In each case the first diffraction minimum
is clearly visible. (The intensity at the minimum doesn’t fall to zero because
the nuclear density doesn’t have a sharp edge, as illustrated in Figure 12.1.) For
scattering of radiation of wavelength λ by a circular disc of diameter D, the first
diffraction minimum should appear at an angle of θ = sin−1 (1.22λ/D). (Review
Example 4.2 for another example of this calculation.) At an electron energy of
420 MeV, the observed minima for 16O and 12C give a radius of 2.6 fm for 16O
and 2.3 fm for 12C (see Problem 34), in agreement with the values 3.0 fm and 2.7
fm computed from Equation 12.1.

12.3 NUCLEAR MASSES AND BINDING ENERGIES

Suppose we have a proton and an electron at rest separated by a large distance.
The total energy of this system is the total rest energy of the two particles,
mpc2 + mec2. Now we let the two particles come together to form a hydrogen
atom in its ground state. In the process, several photons are emitted, the total
energy of which is 13.6 eV. The total energy of this system is the rest energy of
the hydrogen atom, m(H)c2, plus the total photon energy, 13.6 eV. Conservation
of energy demands that the total energy of the system of isolated particles must
equal the total energy of atom plus photons: mec2 + mpc2 = m(H)c2 + 13.6 eV,
which we write as

mec2 + mpc2 − m(H)c2 = 13.6 eV
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That is, the rest energy of the combined system (the hydrogen atom) is less than
the rest energy of its constituents (an electron and a proton) by 13.6 eV. This
energy difference is the binding energy of the atom. We can regard the binding
energy as either the “extra” energy we obtain when we assemble an atom from its
components or else the energy we must supply to disassemble the atom into its
components.

Nuclear binding energies are calculated in a similar way. Consider, for example,
the nucleus of deuterium, 2

1H1, which is composed of one proton and one neutron.
The nuclear binding energy of deuterium is the difference between the total rest
energy of the constituents and the rest energy of their combination:

B = mnc2 + mpc2 − mDc2 (12.2)

where mD is the mass of the deuterium nucleus. To finish the calculation, we
replace the nuclear masses mp and mD with the corresponding atomic masses:
m(1H)c2 = mpc2 + mec2 − 13.6 eV and m(2H)c2 = mDc2 + mec2 − 13.6 eV.
Substituting into Eq. 12.2, we obtain

B = mnc2 + [m(1H)c2 − mec2 + 13.6 eV] − [m(2H)c2 − mec2 + 13.6 eV]

= [mn + m(1H) − m(2H)]c2

Notice that the electron mass cancels in this calculation. For deuterium, we then
have

B = (1.008665 u + 1.007825 u − 2.014102 u)(931.5 MeV/u) = 2.224 MeV

Here we use c2 = 931.5 MeV/u to convert mass units to energy units.
Let’s generalize this process to calculate the binding energy of a nucleus X

of mass number A with Z protons and N neutrons. Let mX represent the mass of
this nucleus. Then the binding energy of the nucleus is, by analogy with Eq. 12.2,
the difference between the nuclear rest energy and the total rest energy of its
constituents (N neutrons and Z protons):

B = Nmnc2 + Zmpc2 − mXc2 (12.3)

In order to use tabulated atomic masses to do this calculation, we must replace
the nuclear mass mX with its corresponding atomic mass: m(A

ZXN )c2 = mXc2 +
Zmec2 − Be, where Be represents the total binding energy of all the electrons
in this atom. Nuclear rest energies are of the order of 109 to 1011 eV, total
electron rest energies are of the order of 106 to 108 eV, and electron binding
energies are of the order of 1 to 105 eV. Thus Be is very small compared with the
other two terms, and we can safely neglect it to the accuracy we need for these
calculations.

Substituting atomic masses for the nuclear masses mp and mX, we obtain an
expression for the total binding energy of any nucleus A

ZXN :

B = [Nmn + Zm(1
1H0) − m(A

ZXN )]c2 (12.4)

The electron masses cancel in this equation, because on the right side we have
the difference between the mass of Z hydrogen atoms (with a total of Z electrons)
and the atom of atomic number Z (also with Z electrons). The masses that appear
in Eq. 12.4 are atomic masses.



376 Chapter 12 | Nuclear Structure and Radioactivity

Example 12.4

Find the total binding energy B and also the average binding
energy per nucleon B/A for 56

26Fe30 and 238
92U146.

Solution
From Eq. 12.4, for 56

26Fe30 with N = 30 and Z = 26,

B = [30(1.008665 u) + 26(1.007825 u)

− 55.934937 u](931.5 MeV/u)

= 492.3 MeV

B

A
= 492.3 MeV

56
= 8.790 MeV per nucleon

For 238
92U146,

B = [146(1.008665 u) + 92(1.007825 u)

−238.050788 u](931.5 MeV/u)

= 1802 MeV

B

A
= 1802 MeV

238
= 7.570 MeV per nucleon

Example 12.4 gives us insight into an important aspect of nuclear structure.
The values of B/A show that the nucleus 56Fe is relatively more tightly bound than
the nucleus 238U; the average binding energy per nucleon is greater for 56Fe than
for 238U. Alternatively, this calculation shows that, given a large supply of protons
and neutrons, we would release more energy by assembling those nucleons into
nuclei of 56Fe than we would by assembling them into nuclei of 238U.

Repeating this calculation for the entire range of nuclei, we obtain the results
shown in Figure 12.4. The binding energy per nucleon starts at small values
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(0 for the proton and neutron, 1.11 MeV for deuterium), rises to a maximum of
8.795 MeV for 62Ni, and then falls to values of around 7.5 MeV for the heavy
nuclei.

The binding energy per nucleon is roughly constant over a fairly wide range of
nuclei. From the region around A = 60 there is a sharp decrease for light nuclei,
which is caused by their having an increasing relative fraction of loosely bound
protons and neutrons on the surface. There is a gradual decrease for the more
massive nuclei, due to the increasing Coulomb repulsion of the protons.

Figure 12.4 suggests that we can liberate energy from the nucleus in two
different ways. If we split a massive nucleus (say, A > 200) into two lighter
nuclei, energy is released, because the binding energy per nucleon is greater for
the two lighter fragments than it is for the original nucleus. This process is known
as nuclear fission. Alternatively, we could combine two light nuclei (A < 10, for
example) into a more massive nucleus; again, energy is released when the binding
energy per nucleon is greater in the final nucleus than it is in the two original
nuclei. This process is known as nuclear fusion. We consider fission and fusion
in greater detail in Chapter 13.

Proton and Neutron Separation Energies
If we add the ionization energy Ei (13.6 eV) to a hydrogen atom, we obtain a
hydrogen ion H+ and a free electron. In terms of the rest energies of the particles,
we can write this process as Ei + m(H)c2 = m(H+)c2 + mec2. If we generalize to
an arbitrary element X, this becomes Ei + m(X)c2 = m(X+)c2 + mec2, or

X → X+ + e−: Ei = m(X+)c2 + mec2 − m(X)c2 = [m(X+) + me − m(X)]c2

In the case of element X, the ionization energy gives the smallest amount of
energy necessary to remove an electron from an atom, and we saw in Figure 8.8
how the ionization energy provides important information about the properties of
atoms.

For nuclei, a process similar to ionization consists of removing the least tightly
bound proton or neutron from the nucleus. The energy required to remove the
least tightly bound proton is called the proton separation energy Sp. If we add
energy Sp to a nucleus A

ZXN , we obtain the nucleus A−1
Z−1X′

N and a free proton. In
analogy with the atomic case, we can write the separation energy as

A
ZXN → A−1

Z−1X′
N + p: Sp = [m(A−1

Z−1X′
N ) + m(1H) − m(A

ZXN )]c2 (12.5)

using atomic masses. Similarly, if we add the neutron separation energy Sn to
nucleus A

ZXN , we obtain the nucleus A−1
ZXN−1 and a free neutron:

A
ZXN → A−1

ZXN−1 + n: Sn = [m(A−1
ZXN−1) + mn − m(A

ZXN )]c2 (12.6)

Proton and neutron separation energies are typically in the range of 5–10 MeV.
It is no coincidence that this energy is about the same as the average binding
energy per nucleon. The total binding energy B of a nucleus is the energy needed
to take it apart into Z free protons and N free neutrons. This energy is the sum of
A proton and neutron separation energies.
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Example 12.5

Find the proton separation energy and the neutron separa-
tion energy of 125Te.

Solution
To separate a proton, 125Te → 124Sb + p. Using Eq. 12.5,
the proton separation energy is

Sp = [m(124Sb) + m(1H) − m(125Te)]c2

= (123.905936 u + 1.007825 u

−124.904431 u)(931.50 MeV/u)

= 8.691 MeV

For neutron separation, 125Te → 124Te + n. The neutron
separation energy is (from Eq. 12.6)

Sn = [m(124Te) + mn − m(125Te)]c2

= (123.902818 u + 1.008665 u

−124.904431 u)(931.50 MeV/u)

= 6.569 MeV

The proton and neutron separation energies play a role in nuclei similar to
that of the ionization energy in atoms. Figure 12.5 shows a plot of the neutron
separation energies of nuclei with a “valence” neutron (and no valence proton)
from Z = 36 to Z = 62. As we add neutrons, the neutron separation energy
decreases smoothly except near N = 50 and N = 82, where there are more
sudden decreases in the separation energy. In analogy with atomic physics (see
Figure 8.8), these sudden decreases are associated with the filling of shells. The
motions of neutrons and protons in the nucleus are described in terms of a shell
structure that is similar to that of atomic shells, and when a neutron or proton is
placed into a new shell it is less tightly bound and its separation energy decreases.
The neutron separation data indicate that there are closed neutron shells at N = 50
and N = 82. Relationships such as Figure 12.5 provide important information
about the shell structure of nuclei.
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FIGURE 12.5 The neutron separation energy. The lines connect isotopes
of the same element that have an odd neutron, starting on the left at
Z = 36 and ending on the right at Z = 62.

12.4 THE NUCLEAR FORCE

Our successful experience with using the simplest atom, hydrogen, to gain insights
into atomic structure suggests that we should begin our study of the nuclear force
by looking at the simplest system in which that force operates—the deuterium
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nucleus, which consists of one proton and one neutron. For example, we might
hope to learn something about the nuclear force from the photons emitted in
transitions between the excited states of this nucleus. Unfortunately, this strategy
does not work—deuterium has no nuclear excited states. When we bring a proton
and an electron together to form a hydrogen atom, many photons may be emitted
as the electron drops into its ground state; from this spectrum we learn the energies
of the excited states. When we bring a proton and a neutron together to form
a deuterium nucleus, only one photon (of energy 2.224 MeV) is emitted as the
system drops directly into its ground state.

Even though we can’t use the excited states of deuterium, we can learn about the
nuclear force in the proton-neutron system by scattering neutrons from protons as
well as by doing a variety of different experiments with heavier nuclei. From these
experiments we have learned the following characteristics of the nuclear force:

1. The nuclear force is the strongest of the known forces, and so it is sometimes
called the strong force. For two adjacent protons in a nucleus, the nuclear
interaction is 10–100 times stronger than the electromagnetic interaction.

2. The strong nuclear force has a very short range—the distance over which
the force acts is limited to about 10−15 m. This conclusion follows from the
constant central density of nuclear matter (Figure 12.1). As we add nucleons
to a nucleus, each added nucleon feels a force only from its nearest neighbors,
and not from all the other nucleons in the nucleus. In this respect, a nucleus
behaves somewhat like a crystal, in which each atom interacts primarily with
its nearest neighbors, and additional atoms make the crystal larger but don’t
change its density. Another piece of evidence for the short range comes from
Figure 12.4. Because the binding energy per nucleon is roughly constant, total
nuclear binding energies are roughly proportional to A. For a force with long
range (such as the gravitational and electrostatic forces, which have infinite
range) the binding energy is roughly proportional to the square of the number of
interacting particles. (For example, because each of the Z protons in a nucleus
feels the repulsion of the other Z − 1 protons, the total electrostatic energy of
the nucleus is proportional to Z(Z − 1), which is roughly Z2 for large Z.)

Figure 12.6 illustrates the dependence of the nuclear binding energy on the
separation distance between the nucleons. The binding energy is relatively
constant for separation distances less than about 1 fm, and it is zero for
separation distances much greater than 1 fm.
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FIGURE 12.6 Dependence of nuclear
binding energy on the separation dis-
tance of nucleons.3. The nuclear force between any two nucleons does not depend on whether the

nucleons are protons or neutron—the n-p nuclear force is the same as the n-n
nuclear force, which is in turn the same as the nuclear portion of the p-p force.

A successful model for the origin of this short-range force is the exchange
force. Suppose we have a neutron and a proton next to one another in the nucleus.
The neutron emits a particle, on which it exerts a strong attractive force. The
proton also exerts a strong force on the particle, perhaps strong enough to absorb
the particle. The proton then emits a particle that can be absorbed by the neutron.
The proton and neutron each exert a strong force on the exchanged particle, and
thus they appear to exert a strong force on each other. The situation is similar to
that shown in Figure 12.7, in which two people play catch with a ball to which
each is attached by a spring. Each player exerts a force on the ball, and the effect
is as if each exerted a force on the other.

FIGURE 12.7 An attractive exchange
force.

How can a neutron of rest energy mnc2 emit a particle of rest energy
mc2 and still remain a neutron, without violating conservation of energy? The
answer to this question can be found from the uncertainty principle, �E�t ∼ −h.
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We don’t know that energy has been conserved unless we measure it, and we can’t
measure it more accurately than the uncertainty �E in a time interval �t. We
can therefore “violate” energy conservation by an amount �E for a time interval
of at most �t = −h/�E. The amount by which energy conservation is violated in
our exchange force model is mc2, the rest energy of the exchanged particle. This
particle can thus exist only for a time interval (in the laboratory frame) of at most

�t =
−h

mc2
(12.7)

The longest distance this particle can possibly travel in the time �t is x = c�t,
since it can’t move faster than the speed of light. With x = c�t = c−h/mc2, we
then have a relationship between the maximum range of the exchange force and
the rest energy of the exchanged particle:

mc2 =
−hc

x
(12.8)

Inserting into this expression an estimate for the range of the nuclear force of
10−15 m or 1 fm, we can estimate the rest energy of the exchanged particle:

mc2 =
−hc

x
= 200 MeV · fm

1 fm
= 200 MeV

The exchanged particle cannot be observed in the laboratory during the exchange,
for to do so would violate energy conservation. However, if we provide energy to
the nucleons from an external source (for example, by causing a nucleus to absorb
a photon), the “borrowed” energy can be repaid and the particle can be observed.
When we carry out this experiment, the nucleus is found to emit pi mesons
(pions), which have a rest energy of 140 MeV, remarkably close to our estimate of
200 MeV. Many observable properties of the nuclear force have been successfully
explained by a model based on the exchange of pions. We discuss the properties
of pions in Chapter 14. Other exchanged particles contribute to different aspects
of the nuclear force. For example, an exchanged particle is responsible for the
repulsive part of the force at very short range, which keeps the nucleons from all
collapsing toward the center of the nucleus (see Problem 10).

12.5 QUANTUM STATES IN NUCLEI

Ideally we would like to solve the Schrödinger equation using the nuclear potential
energy. This process, if it were possible, would give us a set of energy levels for
the protons and neutrons that we could then compare with experiment (just as we
did for the energy levels of electrons in atoms). Unfortunately, we cannot carry
through with this program for several reasons: the nuclear potential energy cannot
be expressed in a convenient analytical form, and it is not possible to solve the
nuclear many-body problem except by approximation.

Nevertheless, we can make some simplifications that allow us to analyze the
structure and properties of nuclei by using techniques already introduced in this
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book. We’ll represent the nuclear potential energy as a finite potential well of
radius R equal to the nuclear radius. That confines the nucleons to a nucleus-sized
region and allows them to move freely inside that region.

Let’s consider 125Te (a nucleus very close to the center of the range of nuclei),
which we analyzed in Example 12.5. The width of the potential energy well is equal
to the nuclear radius, which we find from Eq. 12.1: R = (1.2 fm)(125)1/3 = 6.0 fm.
The second quantity we need to know is the depth of the potential energy well.
We’ll consider the neutrons and protons separately. The 73 neutrons in 125Te will
fill a series of energy levels in the potential energy well. The top of the well is at
E = 0 (above which the neutrons would become free). The bottom of the well is
at a negative energy −U0. The neutrons fill the levels in the well starting at −U0
and ending not at energy zero but at energy −6.6 MeV, as we found in Example
12.5. That is, we must add a minimum of 6.6 MeV to raise the least tightly bound
neutron out of the well and turn it into a free neutron.

To find the energy difference between the bottom of the well and the highest
filled state, we can consider the nucleus to be a “gas” of neutrons and protons
whose energies are described by the Fermi-Dirac distribution (Chapter 10). A
statistical distribution is intended to describe systems with large numbers of
particles, but it should be a reasonable rough approximation for our “gas” of 73
neutrons. To find the energy of the highest filled state, we need the Fermi energy
of the neutrons (using Eq. 10.50 with V = 4

3πR3 = 900 fm3 as the volume of the
125Te nucleus):

EF = h2

2m

(
3N

8πV

)2/3

= h2c2

2mc2

(
3N

8πV

)2/3

= (1240 MeV · fm)2

2(940 MeV)

[
3(73)

8π(900 fm3)

]2/3

= 37.0 MeV

Figure 12.8 shows the resulting potential energy well for neutrons. The depth of
the well is the sum of the neutron separation energy Sn and the Fermi energy:
U0 = Sn + EF = 6.6 MeV + 37.0 MeV = 43.6 MeV.

Empty
states

Filled
states

E = 0

EF

Sn

−6.6 MeV

−43.6 MeV

FIGURE 12.8 Neutron states in a
potential energy well for the 73 neu-
trons of 125Te.

A similar calculation for the 52 protons in 125Te gives EF = 29.5 MeV. For the
protons, Sp + EF = 8.7 MeV + 29.5 MeV = 38.2 MeV, much less than the depth
we determined for the neutron well. The difference between the depths of the
neutron and proton wells is due to the Coulomb repulsion energy of the protons,
which makes the protons less tightly bound than the neutrons. Figure 12.9 gives
a representation of the proton states in their potential energy well.
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FIGURE 12.9 Proton states in a poten-
tial energy well for the 52 protons of
125Te.

Quantum States and Radioactive Decay

Figure 12.10 shows the protons and neutrons near the top of their potential energy
wells. Note that we can add energy to the nucleus that is less than the proton or
neutron separation energies. In the region between E = −Sn or −Sp and E = 0
are the nuclear excited states in which a proton or a neutron can absorb energy
and move from its ground state to one of the unoccupied higher states. As was
the case with atoms, the nucleus can make transitions from excited states to lower
excited states or to the ground state by photon emission. In the case of nuclei,
those photons are called gamma rays and have typical energies of 0.1 MeV to a
few MeV.
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Gamma

Alpha

Beta

Protons Neutrons

FIGURE 12.10 Proton and neu-
tron states near the top of the well
for 125Te. Alpha decay is repre-
sented by two protons and two
neutrons being boosted from nega-
tive energy bound states to positive
energy free states and forming an
alpha particle. Beta decay is rep-
resented by a neutron transform-
ing into a proton. Gamma decay
can occur among the empty states
above the highest occupied proton
and neutron states.

It is also possible to have other nuclear transformations that can be represented
in Figure 12.10. It is clearly not possible for this nucleus spontaneously to emit
a proton or a neutron—we have seen that it takes many MeV to boost a bound
proton or neutron to a free state. However, it is possible simultaneously to boost
two protons and two neutrons and form them into an alpha particle (4

2He2). If the
energy gained in the formation of the alpha particle (its binding energy, 28.3 MeV)
is greater than the sum of the four separation energies, there will be a net energy
gain in the process; this energy can appear as the kinetic energy of the alpha
particle that is emitted by the nucleus. This process is called nuclear alpha decay.
You can see from the neutron and proton separation energies that this process
does not occur for 125Te.

Another type of transformation occurs under certain circumstances when a
neutron changes into a proton and drops into one of the empty proton states at
lower energy. Under other circumstances, in which the proton levels are higher
and the neutron levels are lower, a proton can transform into a neutron and drop
into one of the empty neutron states. This process is called nuclear beta decay. It
is not always obvious from diagrams such as Figure 12.10 whether this type of
transformation will occur, because changing a neutron to a proton increases the net
Coulomb energy of the nucleus and thus increases the energy of all of the proton
states. Neither the neutron-to-proton nor the proton-to-neutron transformation can
occur for 125Te.

12.6 RADIOACTIVE DECAY

Figure 12.11 shows a plot of all the known nuclei, with stable nuclei indicated by
dark shading. For the lighter stable nuclei, the neutron and proton numbers are
roughly equal. However, for the heavy stable nuclei, the factor Z(Z − 1) in the
Coulomb repulsion energy grows rapidly, so extra neutrons are required to supply
the additional binding energy needed for stability. For this reason, all heavy stable
nuclei have N > Z.
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FIGURE 12.11 Stable nuclei are shown in color; known radioactive nuclei are in light
shading.

Most of the nuclei represented in Figure 12.11 are unstable, which means that
they transform themselves into more stable nuclei by changing their Z and N
through alpha decay (emission of 4He) or beta decay (changing a neutron to a
proton or a proton to a neutron). Nuclei are unstable in excited states, which
can transition to ground states through gamma decay (emission of photons). The
three decay processes (alpha, beta, and gamma decay) are examples of the general
subject of radioactive decay. In the remainder of this section, we establish some
of the basic properties of radioactive decay, and in the following sections we treat
alpha, beta, and gamma decay separately.

The rate at which unstable radioactive nuclei decay in a sample of material is
called the activity of the sample. The greater the activity, the more nuclear decays
per second. (The activity has nothing to do with the kind of decays or of radiations
emitted by the sample, or with the energy of the emitted radiations. The activity
is determined only by the number of decays per second.)

The basic unit for measuring activity is the curie.∗ Originally, the curie was
defined as the activity of one gram of radium; that definition has since been
replaced by a more convenient one:

1 curie (Ci) = 3.7 × 1010 decays/s

One curie is quite a large activity, and so we work more often with units of
millicurie (mCi), equal to 10−3 Ci, and microcurie (μCi), equal to 10−6 Ci.

∗The SI unit of activity is the becquerel (Bq), named for Henri Becquerel, the French scientist who
discovered radioactivity in 1896. One becquerel equals one decay/s, so 1 Ci = 3.7 × 1010Bq.
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Consider a sample with a mass of a few grams, containing the order of 1023 atoms.
If the activity were as large as 1 Ci, about 1010 of the nuclei in the sample would
decay every second. We could also say that for any one nucleus, the probability of
decaying during each second is about 1010/1023 or 10−13. This quantity, the decay
probability per nucleus per second, is called the decay constant (represented by
the symbol λ). We assume that λ is a small number, and that it is constant in time
for any particular material—the probability of any one nucleus decaying doesn’t
depend on the age of the sample. The activity a depends on the number N of
radioactive nuclei in the sample and also on the probability λ for each nucleus to
decay:

a = λN (12.9)

which is equivalent to decays/s = decays/s per nucleus × number of nuclei.

Marie Curie (1867–1934, Poland-
France). Her pioneering studies of the
natural radioactivity of radium and
other elements earned her two Nobel
Prizes, the physics prize in 1903 for
the discovery of radioactivity (shared
with Henri Becquerel and with her
husband, Pierre) and the unshared
chemistry prize in 1911 for the iso-
lation of pure radium. She established
the Institute of Radium at the Univer-
sity of Paris, where she continued to
pursue research in the medical appli-
cations of radioactive materials. Her
daughter Irene was awarded the 1935
Nobel Prize in chemistry for the dis-
covery of artificial radioactivity.

Both a and N are functions of the time t. As our sample decays, N certainly
decreases—there are fewer radioactive nuclei left. If N decreases and λ is
constant, then a must also decrease with time, and so the number of decays per
second becomes smaller with increasing time.

We can regard a as the change in the number of radioactive nuclei per unit
time—the more nuclei decay per second, the larger is a.

a = −dN

dt
(12.10)

A minus sign must be present because dN /dt is negative (N is decreasing with
time), and we want a to be a positive number.) Combining Eqs. 12.9 and 12.10
we have dN/dt = −λN , or

dN

N
= −λ dt (12.11)

This equation can be integrated directly to yield

N = N0e−λt (12.12)

where N0 represents the number of radioactive nuclei originally present at t = 0.
Equation 12.12 is the exponential law of radioactive decay, which tells us how
the number of radioactive nuclei in a sample decreases with time. We can’t easily
measure N , but we can put this equation in a more useful form by multiplying on
both sides by λ, which gives

a = a0e−λt (12.13)

where a0 is the original activity (a0 = λN0).
Suppose we count the number of decays of our sample in one second (by

counting for one second the radiations resulting from the decays). Repeating the
measurement, we could then plot the activity a as a function of time, as shown in
Figure 12.12. This plot shows the exponential dependence expected on the basis
of Eq. 12.13.

It is often more useful to plot a as a function of t on a semilogarithmic scale,
as shown in Figure 12.13. On this kind of plot, Eq. 12.13 gives a straight line of
slope −λ.
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FIGURE 12.12 Activity of a radioac-
tive sample as a function of time.
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FIGURE 12.13 Semilog plot of ac-
tivity versus time.

The half-life, t1/2, of the decay is the time that it takes for the activity to be
reduced by half, as shown in Figure 12.12. That is, when t = t1/2, a = 1

2 a0 =
a0e−λt1/2 , from which we find

t1/2 = 1

λ
ln 2 = 0.693

λ
(12.14)

Another useful parameter is the mean lifetime τ (see Problem 37):

τ = 1

λ
(12.15)

When t = τ , a = a0e−1 = 0.37a0.

Example 12.6

The half-life of 198Au is 2.70 days. (a) What is the decay
constant of 198Au? (b) What is the probability that any
198Au nucleus will decay in one second? (c) Suppose
we had a 1.00-μg sample of 198Au. What is its activity?
(d) How many decays per second occur when the sample
is one week old?

Solution
(a)

λ = 0.693

t1/2

= 0.693

2.70 d

1 d

24 h

1 h

3600 s

= 2.97 × 10−6 s−1

(b) The decay probability per second is just the decay
constant, so the probability of any 198Au nucleus decaying
in one second is 2.97 × 10−6.

(c) The number of atoms in the sample is determined from
the Avogadro constant NA and the molar mass M :

N = mNA

M

= (1.00 × 10−6 g)(6.02 × 1023 atoms/mole)

198 g/mole

= 3.04 × 1015 atoms

a = λN = (2.97 × 10−6 s−1)(3.04 × 1015)

= 9.03 × 109 Bq = 0.244 Ci

(d) The activity decays according to Eq. 12.13:

a = a0e−λt

= (9.03 × 109 Bq)e−(2.97×10−6 s−1)(7 d)(3600 s/d)

= 1.50 × 109 Bq
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Example 12.7

The half-life of 235U is 7.04 × 108 y. A sample of rock,
which solidified with the Earth 4.55 × 109 years ago, con-
tains N atoms of 235U. How many 235U atoms did the same
rock have at the time it solidified?

Solution
The age of the rock corresponds to

4.55 × 109 y

7.04 × 108 y
= 6.46 half-lives

Each half-life reduces N by a factor of 2, so the overall
reduction in N has been 26.46 = 88.2. The original rock
therefore contained 88.2N atoms of 235U.

Conservation Laws in Radioactive Decays

Our study of radioactive decays and nuclear reactions reveals that nature is not
arbitrary in selecting the outcome of decays or reactions, but rather that certain
laws limit the possible outcomes. We call these laws conservation laws, and
we believe these laws give us important insight into the fundamental workings
of nature. Several of these conservation laws are applied to radioactive decay
processes.

1. Conservation of Energy Perhaps the most important of the conservation
laws, conservation of energy tells us which decays are energetically possible and
enables us to calculate rest energies or kinetic energies of decay products. A
nucleus X will decay into a lighter nucleus X′, with the emission of one or more
particles we call collectively x only if the rest energy of X is greater than the total
rest energy of X′ + x The excess rest energy is known as the Q value of the decay
X → X′ + x:

Q = [mX − (mX′ + mx)]c
2 (12.16)

where the m’s represent the nuclear masses. The decay is possible only if this
Q value is positive. The excess energy Q appears as kinetic energy of the decay
products (assuming X is initially at rest):

Q = KX′ + Kx (12.17)

2. Conservation of Linear Momentum If the initially decaying nucleus is
at rest, then the total linear momentum of all of the decay products must sum to
zero:

�pX′ + �px = 0 (12.18)
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Usually the emitted particle or particles x are much less massive than the residual
nucleus X′, and the recoil momentum pX′ yields a very small kinetic energy KX′ .

If there is only one emitted particle x, Eqs. 12.17 and 12.18 can be solved
simultaneously for KX′ and Kx. If x represents two or more particles, we have
more unknowns than we have equations, and no unique solution is possible. In
this case, a range of values from some minimum to some maximum is permitted
for the decay products.

3. Conservation of Angular Momentum The total spin angular momentum
of the initial particle before the decay must equal the total angular momentum
(spin plus orbital) of all of the product particles after the decay. For example, the
decay of a neutron (spin angular momentum = 1/2) into a proton plus an electron is
forbidden by conservation of angular momentum, because the spins of the proton
and electron, each equal to 1/2, can be combined to give a total of either 0 or 1,
neither of which is equal to the initial angular momentum of the neutron. Adding
integer units of orbital angular momentum to the electron does not restore angular
momentum conservation in this decay process.

4. Conservation of Electric Charge This is such a fundamental part of all
decay and reaction processes that it hardly needs elaborating. The total net electric
charge before the decay must equal the net electric charge after the decay.

5. Conservation of Nucleon Number In some decay processes, we can
create particles (photons or electrons, for example) which did not exist before the
decay occurred. (This of course must be done out of the available energy—that
is, it takes 0.511 MeV of energy to create an electron.) However, nature does not
permit us to create or destroy protons and neutrons, although in certain decay
processes we can convert neutrons into protons or protons into neutrons. The total
nucleon number A does not change in decay or reaction processes. In some decay
processes, A remains constant because both Z and N remain unchanged; in other
processes Z and N both change in such a way as to keep their sum constant.

12.7 ALPHA DECAY

In alpha decay, an unstable nucleus disintegrates into a lighter nucleus and an
alpha particle (a nucleus of 4He), according to

A
ZXN → A−4

Z−2X′
N−2 + 4

2He2 (12.19)

where X and X′ represent different nuclei. For example, 226
88Ra138 → 222

86Rn136 +
4
2He2.

Decay processes release energy, because the decay products are more tightly
bound than the initial nucleus. The energy released, which appears as the kinetic
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energy of the alpha particle and the “daughter” nucleus X′, can be found from the
masses of the nuclei involved according to Eq. 12.16:

Q = [m(X) − m(X′) − m(4He)]c2 (12.20)

As we did in our calculations of binding energy, we can show that the electron
masses cancel in Eq. 12.20, and so we can use atomic masses. This energy Q
appears as kinetic energy of the decay products:

Q = KX′ + Kα (12.21)

assuming we choose a reference frame in which the original atom X is at
rest. Linear momentum is also conserved in the decay process, as shown in
Figure 12.14, so that

pα = pX′ (12.22)

From Eqs. 12.21 and 12.22 we eliminate pX′ and KX′ , because we normally don’t
observe the daughter nucleus in the laboratory. Typical alpha decay energies are a
few MeV; thus the kinetic energies of the alpha particle and the nucleus are much
smaller than their corresponding rest energies, and so we can use nonrelativistic
mechanics to find

Kα
∼= A − 4

A
Q (12.23)

X

X′
pX′ pα

Before
decay

After
decay α

FIGURE 12.14 A nucleus X alpha
decays, resulting in a nucleus X′ and
an alpha particle.

Example 12.8

Find the kinetic energy of the alpha particle emitted in the
alpha decay process 226Ra → 222Rn + 4He.

Solution
From Eq. 12.20 the Q value is

Q = [m(226Ra) − m(222Rn) − m(4He)]c2

= (226.025410 u − 222.017578 u

−4.002603 u)(931.5 MeV/u)

= 4.871 MeV

The kinetic energy is given by Eq. 12.23:

Kα = A − 4

4
Q =

(
222

226

)
(4.871 MeV)

= 4.785 MeV

Table 12.2 shows some sample alpha decays and their half-lives. You can see
from the table that small changes in the decay energy (about a factor of 2) result in
enormous changes in the half-life (24 orders of magnitude)! For example, for the
isotopes 232Th and 230Th (which have the same Z and therefore the same Coulomb
interaction between the alpha particle and the product nucleus) the kinetic energy
changes by only 0.68 MeV (about 15%), while the half-life changes by about five
orders of magnitude. Any successful calculation of the alpha decay probabilities
must account for this sensitivity to the decay energy.
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TABLE 12.2 Some Alpha Decay Energies and Half-Lives

Isotope Kα (MeV) t1/2 λ (s−1)
232Th 4.01 1.4 × 1010 y 1.6 × 10−18

238U 4.19 4.5 × 109 y 4.9 × 10−18

230Th 4.69 7.5 × 104 y 2.9 × 10−13

241Am 5.64 432 y 5.1 × 10−11

230U 5.89 20.8 d 3.9 × 10−7

210Rn 6.16 2.4 h 8.0 × 10−5

220Rn 6.29 56 s 1.2 × 10−2

222Ac 7.01 5 s 0.14
215Po 7.53 1.8 ms 3.9 × 102

218Th 9.85 0.11 μs 6.3 × 106

Quantum Theory of Alpha Decay

Alpha decay is an example of quantum-mechanical barrier penetration, as we
discussed in Chapter 5. Suppose it is energetically possible for two neutrons and
two protons to form an alpha particle, as represented in Figure 12.10. The alpha
particle is trapped inside the nucleus by a barrier due to the Coulomb energy. The
height of this barrier UB is the Coulomb potential energy of the alpha particle and
daughter nucleus at the radius R:

UB = 1

4πε0

q1q2

r
= 2(Z − 2)e2

4πε0R
(12.24)

which gives 30 to 40 MeV for a typical heavy nucleus. Here q1 = 2e is the electric
charge of the alpha particle, and q2 = (Z − 2)e is the electric charge of the nucleus
after the decay, which is responsible for the Coulomb force.

Figure 12.15 shows the potential energy barrier encountered by the alpha
particle as it tries to leave the interior of the nucleus (r < R). The energy of the
alpha particle is typically in the range of 4–8 MeV, and so it is impossible for the
alpha particle to surmount the barrier; the only way the alpha particle can escape
is to “tunnel” through the barrier. A representation of the alpha particle wave
function as it tunnels through the barrier is shown in Figure 12.15b.

UB

–U0

Eα

(a)

(b)

RO R'

R R'

r

r

FIGURE 12.15 (a) The potential
energy barrier for an alpha particle. (b)
A representation of the wave function
of the alpha particle.

The probability per unit time λ for the alpha particle to appear in the laboratory
is the probability of its penetrating the barrier multiplied by the number of times
per second the alpha particle strikes the barrier in its attempt to escape. If the
alpha particle is moving at speed v inside a nucleus of radius R, it will strike the
barrier as it bounces back and forth inside the nucleus at time intervals of 2R/v.
In a heavy nucleus with R ∼ 6 fm, the α particle strikes the “wall” of the nucleus
about 1022 times per second!
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The probability for the alpha particle to penetrate the barrier can be found by
solving the Schrödinger equation for the potential energy shown in Figure 12.15.
To simplify this calculation, we can replace the Coulomb barrier with a “flat”
barrier, as shown in Figure 12.16. As we discussed in Chapter 5, the probability to
penetrate a potential energy barrier is determined by the exponential factor e−2kL,
where L is the thickness of the barrier and where k = √

(2m/−h2)(U0 − E) for a
barrier of height U0 and a particle of energy E. The decay probability can then be
estimated as

λ = v

2R
e−2kL (12.25)

which includes both the rate at which the particle strikes the barrier and its
probability to penetrate it. By making suitable rough estimates for the thickness
and height of the barrier (see Problem 41), you should be able roughly to reproduce
the range of values for the decay probabilities given in Table 12.2.

UB

UR

–U0

O R R'

L

r

FIGURE 12.16 Replacing the Cou-
lomb barrier for alpha decay with a
flat barrier of height UR.

An exact calculation of the decay probability can be done by replacing the
Coulomb barrier with a series of thin, flat barriers that are chosen to fit the
Coulomb barrier as closely as possible. This calculation was first done in 1928 by
George Gamow and was one of the first successful applications of the quantum
theory.

Some nuclei can be unstable to the emission of other particles or collections
of particles. Nuclei that have a large abundance of protons (those at the left-hand
boundary of the light shaded region of Figure 12.11) may emit protons in a rare
process similar to alpha decay. In this way they reduce their proton excess and
move closer to stability. An example of this process is 151

71Lu80 → 150
70Yb80 + p.

Other nuclei have recently been shown to emit clusters of particles such as
12C, 14C, or 20Ne. The following example illustrates this process.

Example 12.9

The nucleus 226Ra decays by alpha emission with a half-life
of 1600 y. It also decays by emitting 14C. Find the Q value
for 14C emission and compare with that for alpha emission
(see Example 12.8).

Solution
If 226Ra emits 14C, which contains 6 protons and 8 neu-
trons, the resulting nucleus is 212Pb, so the decay process
is 226Ra → 212Pb + 14C. The Q value can be found from
Eq. 12.16, where we can again use atomic masses because
the electron masses cancel.

Q = [m(226Ra) − m(212Pb) − m(14C)]c2

= (226.025410 u − 211.991898 u

−14.003242 u)(931.5 MeV/u)

= 28.197 MeV

Even though the Q value far exceeds the Q value for alpha
decay (4.871 MeV), the Coulomb barrier for 14C decay is
roughly 3 times higher and thicker than it is for alpha decay
[change q1q2 to 6(Z − 6)e2 in Eq. 12.24]. As a result, the
probability for 14C decay turns out to be only about 10−9

of the probability for alpha decay; that is, 226Ra emits one
14C for every 109 alpha particles. See Problem 42 for a
calculation of the relative decay probabilities.
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12.8 BETA DECAY

In beta decay a neutron in the nucleus changes into a proton (or a proton into a
neutron); Z and N each change by one unit, but A doesn’t change. The emitted
particles, which were called beta particles when first observed in 1898, were soon
identified as electrons. In the most basic beta decay process, a free neutron decays
into a proton and an electron: n → p + e (plus a third particle, as we discuss later).

The emitted electron is not one of the orbital electrons of the atom. It also is
not an electron that was previously present within the nucleus, for as we have seen
(Example 4.7) the uncertainty principle forbids electrons of the observed energies
to exist inside the nucleus. The electron is “manufactured” by the nucleus out of
the available energy. If the rest energy difference between the nuclei is at least
mec2, this will be possible.

In the 1910s and 1920s, beta decay experiments revealed two difficulties.
First, the decay n → p + e− appears to violate the law of conservation of
angular momentum, as we discussed in Section 12.6. Second, measurements
of the energy of the emitted electrons showed that the energy spectrum of the
electrons is continuous, from zero up to some maximum value Kmax, as shown
in Figure 12.17. This implies an apparent violation of conservation of energy,
because all electrons should emerge from the decay n → p + e− with precisely
the same energy. Instead, all electrons emerge with less energy, but in varying
amounts.
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FIGURE 12.17 Spectrum of electrons
emitted in beta decay.

For example, in the decay n → p + e−, the Q value is

Q = (mn − mp − me)c
2 = 0.782 MeV (12.26)

Except for a very small correction, which accounts for the recoil energy of the
proton, all of this energy should appear as kinetic energy of the electron, and all
emitted electrons should have exactly this energy. However, experiments in the
1920s showed that all the emitted electrons have less than this energy—they have
a continuous range of energies from 0 to 0.782 MeV.

The problem of this “missing” energy was very puzzling until 1930 when
Wolfgang Pauli found the ingenious solution to both the apparent violations of
conservation of angular momentum and energy—he suggested that there is a
third particle emitted in beta decay. Electric charge is already conserved by the
proton and electron, so this new particle cannot have electric charge. If it has spin
1/2, it will satisfy conservation of angular momentum, because we can combine
the spins of the three decay particles to give 1/2, which matches the spin of the
original decaying neutron. The “missing” energy is the energy carried away by
this third particle, and the observed fact that the energy spectrum extends all the
way to the value 0.782 MeV suggests that this particle has a very small mass.

This new particle is called the neutrino (“little neutral one” in Italian) and has
the symbol ν. As we discuss in Chapter 14, every particle has an antiparticle, and
the antiparticle of the neutrino is the antineutrino ν. It is, in fact, the antineutrino
that is emitted in neutron beta decay. The complete decay process is thus

n → p + e− + ν (12.27)
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Neutron decay can also occur in a nucleus, in which a nucleus with Z protons
and N neutrons decays to a nucleus with Z + 1 protons and N − 1 neutrons:

A
ZXN → A

Z+1X′
N−1 + e− + ν (12.28)

The Q value for this decay is

Q = [m(AX) − m(AX′)]c2 (12.29)

It can be shown (Problem 23) that the electron masses cancel in calculating Q, so
it is atomic masses that appear in Eq. 12.29. The antineutrino does not appear in
the calculation of the Q value because its mass is negligibly small (of the order of
eV/c2, compared with the atomic masses measured in units of 103 MeV/c2).

The energy released in the decay (the Q value) appears as the energy Eν of the
antineutrino, the kinetic energy Ke of the electron, and a small (usually negligible)
recoil kinetic energy of the nucleus X′:

Q = Eν + Ke + KX′ ∼= Eν + Ke (12.30)

The electron (which must be treated relativistically, because its kinetic energy is
not small compared with its rest energy) has its maximum kinetic energy when
the antineutrino has a negligibly small energy. Figure 12.17 shows the energy
distribution of electrons emitted in a typical negative beta decay. The electron
and neutrino share the decay energy Q; the kinetic energy of the electron (equal
to Q − Ke) ranges from 0 (when the neutrino has its maximum energy, Eν = Q)
to Q (when Eν = 0).

Another beta decay process is

p → n + e+ + ν (12.31)

in which a positive electron, or positron, is emitted. The positron is the antiparticle
of the electron; it has the same mass as the electron but the opposite electric
charge. The neutrino emitted in this process is similarly the antiparticle of the
antineutrino that is emitted in neutron beta decay.

Proton beta decay has a negative Q value, and so it is never observed in nature
for free protons. (This is indeed fortunate—if the free proton were unstable to
beta decay, stable hydrogen atoms, the basic material of the universe, could not
exist!) However, protons in some nuclei can undergo this decay process:

A
ZXN → A

Z−1X′
N+1 + e+ + ν (12.32)

The Q value for this process is (Problem 23)

Q = [m(AX) − m(AX′) − 2me]c2 (12.33)
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in which the masses are atomic masses. In this case, the positron and neutrino
share the decay energy Q (again neglecting the small recoil energy of the nucleus
X′). Figure 12.18 shows the energy distribution of positrons emitted in a typical
positive beta decay.
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FIGURE 12.18 Spectrum of posi-
trons emitted in beta decay.

A nuclear decay process that competes with positron emission is electron
capture; the basic electron capture process is

p + e− → n + ν (12.34)

in which a proton captures an atomic electron from its orbit and converts into a
neutron plus a neutrino. The electron necessary for this process is one of the inner
orbital electrons in an atom, and we identify the capture process by the shell from
which the captured electron comes: K-shell capture, L-shell capture, and so forth.
(The electronic orbits that come closest to, or even penetrate, the nucleus have the
higher probability to be captured.) In nuclei the process is

A
ZXN + e− → A

Z−1X′
N+1 + ν (12.35)

and the Q value, using atomic masses, is

Q = [m(AX) − m(AX′)]c2 (12.36)

In this case, neglecting the small initial kinetic energy of the electron and the
recoil energy of the nucleus, the neutrino takes all of the available final energy:

Eν = Q (12.37)

In contrast to other beta-decay processes, a monoenergetic neutrino is emitted in
electron capture.

Table 12.3 gives some typical beta decay processes, along with their Q values
and half-lives.

TABLE 12.3 Typical Beta Decay Processes

Decay Type Q (MeV) t1/2

19O → 19F + e− + ν β− 4.82 27 s
176Lu → 176Hf + e− + ν β− 1.19 3.6 × 1010 y
25Al → 25 Mg + e+ + ν β+ 3.26 7.2 s
124I → 124Te + e+ + ν β+ 2.14 4.2 d
15O + e− → 15N + ν EC 2.75 122 s
170Tm + e− → 170Er + ν EC 0.31 129 d
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Example 12.10

23Ne decays to 23Na by negative beta emission. What is
the maximum kinetic energy of the emitted electrons?

Solution
This decay is of the form given by Eq. 12.28, 23Ne →
23Na + e− + ν, and the Q value is found from Eq. 12.29,
using atomic masses:

Q = [m(23Ne) − m(23Na)]c2

= (22.994467 u − 22.989769 u)(931.5 MeV/u)

= 4.376 MeV

Neglecting the small correction for the kinetic energy of
the recoiling nucleus, the maximum kinetic energy of the
electrons is equal to this value (which occurs when the
neutrino has a negligible energy).

Example 12.11

40K is an unusual isotope, in that it decays by negative
beta emission, positive beta emission, and electron capture.
Find the Q values for these decays.

Solution
The process for negative beta decay is given by Eq. 12.28,
40K → 40Ca + e− + ν, and the Q value is found from
Eq. 12.29 using atomic masses:

Qβ− = [m(40K) − m(40Ca)]c2

= (39.963998 u − 39.962591 u)(931.5 MeV/u)

= 1.311 MeV

Equation 12.32 gives the decay process for positive beta
emission, 40K → 40Ar + e+ + ν, and the Q value is given

by Eq. 12.33:

Qβ+ = [m(40K) − m(40Ar) − 2me]c2

= [39.963998 u − 39.962383 u − 2(0.000549 u)]

×(931.5 MeV/u)

= 0.482 MeV

For electron capture, 40K + e− → 40Ar + ν, and from
Eq. 12.36:

Qec = [m(40K) − m(40Ar)]c2

= (39.963998 u − 39.962383 u)(931.5 MeV/u)

= 1.504 MeV

12.9 GAMMA DECAY AND NUCLEAR
EXCITED STATES

Following alpha or beta decay, the final nucleus may be left in an excited state.
Just as an atom does, the nucleus will reach its ground state after emitting one
or more photons, known as nuclear gamma rays. The energy of each photon is
the energy difference between the initial and final nuclear states, less a negligibly
small correction for the recoil kinetic energy of the nucleus. The energies of
emitted gamma rays are typically in the range of 100 keV to a few MeV. Nuclei
can likewise be excited from the ground state to an excited state by absorbing a
photon of the appropriate energy, in a process similar to the resonant absorption
by atomic states.
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Figure 12.19 shows a typical energy-level diagram of excited nuclear states
and some of the gamma-ray transitions that can be emitted. Typical values for the
half-lives of the excited states are 10−9 to 10−12 s, although there are occasional
cases of excited states with half-lives of hours, days, or even years.
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1.088 MeV
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β−

γ2
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γ3

FIGURE 12.19 Some gamma rays
emitted following beta decay.

When a gamma-ray photon is emitted, the nucleus must recoil to conserve
momentum. The photon has energy Eγ and momentum pγ = Eγ /c. The nucleus
recoils with momentum pR. If the nucleus is initially at rest, then momentum
conservation requires that pR = pγ in magnitude (and that the nucleus recoil in
a direction opposite to that of the gamma ray). The recoil kinetic energy KR is
small, so that nonrelativistic equations can be used for the nucleus (of mass M):

KR = p2
R

2M
= p2

γ

2M
= E2

γ

2Mc2
(12.38)

For a medium-mass nucleus of A = 100 and a large gamma-ray energy of 1 MeV,
the recoil kinetic energy is only 5 eV. Suppose the gamma ray is emitted when
the nucleus jumps from an initial state with energy Ei to a final state with energy
Ef . Conservation of energy then gives Ei = Ef + Eγ + KR, so the energy of the
emitted gamma ray is

Eγ = Ei − Ef − KR
∼= Ei − Ef (12.39)

The gamma-ray energy is equal to the difference between the initial and final
energy states, because the recoil kinetic energy of the nucleus is negligibly small.

In calculating the energies of alpha and beta particles emitted in radioactive
decays, we have assumed that no gamma rays are emitted. If there are gamma
rays emitted, the available energy (Q value) must be shared between the other
particles and the gamma ray, as the following example shows.

Example 12.12

12N beta decays to an excited state of 12C, which subse-
quently decays to the ground state with the emission of
a 4.43-MeV gamma ray. What is the maximum kinetic
energy of the emitted beta particle?

Solution
To determine the Q value for this decay, we first need to
find the mass of the product nucleus 12C in its excited state.
In the ground state, 12C has a mass of 12.000000 u, so its
mass in the excited state (indicated by 12C*) is

m(12C∗) = 12.000000 u + 4.43 MeV

931.5 MeV/u
= 12.004756 u

In this decay, a proton is converted to a neutron, so it must
be an example of positron decay. The Q value is, according
to Eq. 12.33,

Q = [m(12N) − m(12C∗) − 2me]c2

= [12.018613 u − 12.004756 u − 2(0.000549 u)]

×(931.5 MeV/u)

= 11.89 MeV

(Notice that we could have just as easily found the Q value
by first finding the Q value for decay to the ground state,
16.32 MeV, and then subtracting the excitation energy of
4.43 MeV, because the decay to the excited state has that
much less available energy.)

Neglecting the small correction for the recoil kinetic
energy of the 12C nucleus, the maximum electron kinetic
energy is 11.89 MeV.



396 Chapter 12 | Nuclear Structure and Radioactivity

Nuclear Excited States
The study of nuclear gamma emission is an important tool of the nuclear physicist;
the energies of the gamma rays can be measured with great precision, and they
provide a powerful means of deducing the energies of the excited states of nuclei.
This type of nuclear spectroscopy is very similar to the methods of molecular
spectroscopy discussed in Chapter 9. In fact, the nuclear excited states can be
formed in ways that are similar to molecular excited states:

N = 3 1776

N = 2 1161

N = 1 560

N = 0 0
E (keV)

FIGURE 12.20 Nuclear vibrational
states in the nucleus 120Te. The states
are labeled with the vibrational quan-
tum number N . Note that the states are
nearly equally spaced, as is expected
for vibrations.

1. Proton or Neutron Excitation Nuclear excited states can be formed when
a proton or a neutron is excited from a filled state to one of the empty states
shown in Figure 12.8 or 12.9, just as in molecules we can form an excited state
by promoting an electron from a lower state to one of the empty molecular
orbitals. When a proton or neutron drops from an excited state to a lower state,
a gamma-ray photon is emitted. The energy of the photon is equal to the energy
difference between the states (neglecting the small recoil kinetic energy of the
nucleus). To estimate the average energy for this type of excitation, we note
from Figure 12.8 that 73 neutrons occupy an energy of 37.0 MeV, so the average
spacing of the filled levels is (37.0 MeV)/73 = 0.5 MeV. The spacing between the
empty states, among which gamma rays are emitted, should be about the same.

2. Nuclear Vibrations The nucleus can vibrate like a jiggling water droplet.
The vibrational excited states are equally spaced, just like the molecular vibrational
states shown in Figure 9.22. Unlike a molecule, a nucleus vibrates like an
incompressible fluid—for example, if the “equator” bulges outward, the “poles”
must move inward to keep the density constant. The separation of the equally
spaced vibrational states is about 0.5–1 MeV. Figure 12.20 shows an example of
some vibrational nuclear excited states. Although the selection rules for photon
emission in nuclei are not as strongly restrictive as they are in molecules, nuclei
in higher vibrating states usually jump to lower vibrating states by changing the
vibrational quantum number by one unit and emitting a gamma-ray photon in the
process.

3. Nuclear Rotations The nucleus can rotate, showing the same L(L+1)
spacing as a molecule (see Figure 9.25). Figure 12.21 shows an example of
rotational nuclear excited states. The spacing between the rotational ground state
and the first rotational excited state is typically 0.05–0.1 MeV. (Note that in
nuclei, as in molecules, the rotational spacing is generally much smaller than the
vibrational spacing.) Nuclei in higher rotational states can jump to lower rotational
states by emitting gamma-ray photons; in the case of nuclei, the selection rule
restricting the change in the rotational quantum number to one unit, which was
strongly followed by molecules, does not strongly apply to nuclei. In nuclei,
the rotational quantum number generally changes by one or two units when
gamma-ray photons are emitted in transitions between the nuclear rotational
states.

∗Nuclear Resonance
One way of studying atomic systems is to do resonance experiments. In such
experiments, radiation from a collection of atoms in an excited state is incident

∗This is an optional section that may be skipped without loss of continuity.
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on a collection of identical atoms in their ground state. The ground-state atoms
can absorb the photons and jump to the corresponding excited state. However,
as we have seen, the emitted photon energy is less than the transition energy
by the recoil kinetic energy KR; moreover, it is less than the photon energy
required for resonance by 2KR, because the absorbing atom must recoil also.
The absorption experiment is still possible, because the excited states don’t have
“exact” energies—a state with a mean lifetime τ has an energy uncertainty �E
that is given by the uncertainty relationship: �Eτ ∼ −h. That is, the state lives on
the average for a time τ , and during that time we can’t determine its energy to an
accuracy less than �E. For typical atomic states, τ ∼ 10−8 s, so �E ∼ 10−7 eV.
Because KR, which is of the order of 10−10 eV, is much less than the width �E,
the “shift” caused by the recoil is not large, and the widths of the emitting and
absorbing atomic states cause sufficient overlap for the absorption process to
occur. Figure 12.22 illustrates this case.
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FIGURE 12.21 An example of
nuclear rotational states in the nucleus
165Ho. The states are labeled with
the rotational quantum number L. The
energies closely follow the expected
L(L + 1) spacing.

The situation is different for nuclear gamma rays. A typical lifetime might be
10−10 s, and so the widths are the order of �E ∼ 10−5 eV. The photon energies
are typically 100 keV = 105 eV, and so KR is of order 1 eV. This situation is
depicted in Figure 12.23, and you can immediately see that because KR is so
much larger than the width �E, no overlap of emitter and absorber is possible, so
resonance absorption cannot occur.

In 1958, it was discovered that the overlap of the emitter and absorber can be
restored by placing the radioactive nuclei and the absorbing nuclei in crystals.
The crystalline binding energies are large compared with KR, so the individual
atoms are held tightly to their positions in the crystal lattice and are not free to
recoil; if any recoil is to occur, it must be the whole crystal that recoils. This
effect is to make the mass M that appears in Eq. 12.38 not the mass of an atom,
but the mass of the entire crystal, perhaps 1020 times larger than an atomic mass.
(As an analogy, imagine the difference between striking a brick with a baseball
bat, and striking a brick wall!) Once again the recoil kinetic energy is made small,
and resonant absorption can occur (Figure 12.24). For this discovery, Rudolf
Mössbauer was awarded the 1961 Nobel Prize in physics, and the process of
achieving nuclear resonance by embedding the emitting and absorbing nuclei in
crystal lattices is now known as the Mössbauer effect.

Emission

Energy

Absorption

2KR

ΔE

FIGURE 12.22 Representative
emission and absorption energies
in an atomic system.
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FIGURE 12.23 Representative
emission and absorption energies
in a nuclear system.
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FIGURE 12.24 Emission and
absorption energies for nuclei
bound in a crystal lattice.
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Source

v
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Detector

FIGURE 12.25 Mössbauer effect
apparatus. A source of gamma rays
is made movable, in order to Doppler-
shift the photon energies. The intensity
of radiations transmitted through the
absorber is measured as a function of
the speed of the source.

The small remaining difference between the emission and absorption energies
can be eliminated to obtain complete overlap by Doppler-shifting either the
emission or absorption energies. The Doppler-shifted frequency when a source
moves toward the observer at speed v is given by Eq. 2.22, f ′ = f (1 + v/c),
where we ignore the

√
1 − v2/c2 term because v 	 c. Using E = hf for the

photon energy, we have

E′ = E(1 + v/c) (12.40)

If we take the width �E as a representative estimate of how far we would
like to Doppler-shift the photon energy, then E′ ∼= E + �E, and so E + �E ∼=
E + E(v/c). Solving for v, we find

v ∼= c
�E

E
(12.41)

Estimating �E ∼ 10−5 eV (the width of the state) and E ∼ 100 keV (the energy
of the photon), we have

v ∼= (3 × 108 m/s)
10−5 eV

105 eV
= 3 cm/s

Such low speeds can be easily and accurately produced in the laboratory.
Figure 12.25 shows a diagram of the apparatus to measure the Mössbauer

effect. The resonant absorption is observed by looking for decreases in the
number of gamma rays that are transmitted through the absorber. At resonance,
more gamma rays are absorbed and so the transmitted intensity decreases. Typical
results are shown in Figure 12.26.
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FIGURE 12.26 Typical results in a
Mössbauer effect experiment. A
velocity of 2 cm/s Doppler shifts the
gamma rays enough to move the
emission and absorption energies off
resonance.

The Mössbauer effect is an extremely precise method for measuring small
changes in the energies of photons. In one particular application, the Zeeman
splitting of nuclear (not atomic) states can be observed. When a nucleus is placed
in a magnetic field, the Zeeman effect causes an energy splitting of the nuclear m
states, similar to the atomic case. However, nuclear magnetic moments are about
2000 times smaller than atomic magnetic moments, and a typical energy splitting
would be about 10−6 eV. To observe such an effect directly we would need to
measure photon energies to 1 part in 1011 (a photon energy of 105 eV is shifted
by 10−6 eV), but using the Mössbauer effect, this is not difficult.

In Chapter 15 we discuss another application of this extremely precise tech-
nique, in which the energy gained when a photon “falls” through several meters
of the Earth’s gravitational field is measured in order to test one prediction of
Einstein’s general theory of relativity.

12.10 NATURAL RADIOACTIVITY

All of the elements beyond the very lightest (hydrogen and helium) were produced
by nuclear reactions in the interiors of stars. These reactions produce not only
stable elements, but radioactive ones as well. Most radioactive elements have
half-lives that are much smaller than the age of the Earth (about 4.5 × 109 y), so
those radioactive elements that may have been present when the Earth was formed
have decayed to stable elements. However, a few of the radioactive elements
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created long ago have half-lives that are as large as or even greater than the age of
the Earth. These elements can still be observed to undergo radioactive decay and
account for part of the background of natural radioactivity that surrounds us.
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FIGURE 12.27 An example of a
hypothetical radioactive decay chain.

Radioactive decay processes either change the mass number A of a nucleus
by four units (alpha decay) or don’t change A at all (beta or gamma decay).
A radioactive decay process can be part of a sequence or series of decays if a
radioactive element of mass number A decays to another radioactive element
of mass number A or A − 4. Such a series of processes will continue until a
stable element is reached. A hypothetical such series is illustrated in Figure 12.27.
Because gamma decays don’t change Z or A, they are not shown; however, most
of the alpha and beta decays are accompanied by gamma-ray emissions.

The A values of the members of such decay chains differ by a multiple of
4 (including zero as a possible multiple) and so we expect four possible decay
chains, with A values that can be expressed as 4n, 4n + 1, 4n + 2, and 4n + 3,
where n is an integer. One of the four naturally occurring radioactive series is
illustrated in Figure 12.28. Each series begins with a relatively long-lived member,
proceeds through many α and β decays, which may have very short half-lives,
and finally ends with a stable isotope. Three of these series begin with isotopes
having half-lives comparable to the age of the Earth, and so are still observed
today. The neptunium series (4n + 1) begins with 237Np, which has a half-life of
“only” 2.1 × 106 y, much less than the 4.5 × 109 y since the formation of the
Earth. Thus all of the 237Np that was originally present has long since decayed to
209Bi.
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FIGURE 12.28 The 235U decay chain. The diagonal lines represent α

decays, and the horizontal lines show β decays.
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Example 12.13

Compute the Q value for the 238U → 206Pb decay chain,
and find the rate of energy production per gram of uranium.

Solution
Because A changes by 32, there must be 8 alpha decays in
the chain. These 8 alpha decays would decrease Z by 16
units, from 92 to 76. However, the final Z must be 82, so
there must also be 6 beta decays in the chain. We recall
that for β− decays, the electron masses combine with the
nuclear masses in the computation of the Q value and we
can therefore use atomic masses. Thus for the entire decay
chain,

Q = [m(238U) − m(206Pb) − 8m(4He)]c2

= [238.050788 u − 205.974465 u—8(4.002603 u)]

×(931.5 MeV/u)

= 51.7 MeV

The half-life of the decay is 4.5 × 109 y, so λ, the decay
probability per atom, is

λ = ln 2

t1/2
= 0.693

(4.5 × 109 y)(3.16 × 107 s/y)

= 4.9 × 10−18 s−1

One gram of 238U is 1
238 mole and therefore contains

1
238 × 6 × 1023 atoms. The decay rate (activity) of the 238U
is given by the decay probability per atom per unit time
multiplied by the number of atoms:

a = λN

=
(

4.9 × 10−18 decays

atom · s

) (
1

238
× 6 × 1023 atoms

)
= 12,000 decays/s

Each decay releases 51.7 MeV, and so the rate of energy
production is

12,000
decays

s
× 51.7

MeV

decay
× 106 eV

MeV
× 1.6 × 10−19 J

eV

= 1.0 × 10−7 W

This may seem like a very small rate of energy release, but if the energy were
to appear as thermal energy and were not dissipated by some means (radiation or
conduction to other matter, for example), the 1-g sample of 238U would increase
in temperature by 25◦C per year and would be melted and vaporized in the order
of one century! This calculation suggests that we can perhaps account for some
of the internal heat of planets through natural radioactive processes.

If we examine a sample of uranium-bearing rock, we can find the ratio of
238U atoms to 206Pb atoms. If we assume that all of the 206Pb was produced
by the uranium decay and that none was present when the rock was originally
formed (assumptions that must be examined with care both theoretically and
experimentally), then this ratio can be used to find the age of the sample, as shown
in the following example.

Example 12.14

Three different rock samples have ratios of numbers of
238U atoms to 206Pb atoms of 0.5, 1.0, and 2.0. Compute
the ages of the three rocks.

Solution
Because all of the other members of the uranium series
have half-lives that are much shorter than the half-life of
238U (4.5 × 109 y), we ignore the intervening decays and
consider only the 238U decay. Let N0 be the original number
of 238U atoms, so that N0e−λt is the number that are still

present today, and N0 − N0e−λt is the number that have
decayed and are presently observed as 206Pb. The ratio R
of 238U to 206Pb is thus

R = number of 238U

number of 206Pb

= N0e−λt

N0 − N0e−λt

= 1

eλt − 1
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Solving for t and recalling that λ = 0.693/t1/2, we find:

t = t1/2

0.693
ln

(
1

R
+ 1

)
(12.42)

We can then obtain the values of t corresponding to the
three values of R,

R = 0.5 t = 7.1 × 109 y

R = 1.0 t = 4.5 × 109 y

R = 2.0 t = 2.6 × 109 y

The oldest rocks on Earth, dated by similar means, have
ages of about 4.5 × 109 y. The age of the first rock ana-
lyzed above, 7.1 × 109 y, suggests either that the rock had
an extraterrestrial origin, or else that our assumption of
no initial 206Pb was incorrect. The age of the third rock
suggests that it solidified only 2.6 × 109 y ago; previous to
that time it was molten and the decay product 206Pb may
have “boiled away” from the 238U.

There are a number of other naturally occurring radioactive isotopes that are
not part of the decay chain of the heavy elements. A partial list is given in
Table 12.4; some of these can also be used for radioactive dating.

Other radioactive elements are being produced continuously in the Earth’s
atmosphere as a result of nuclear reactions between air molecules and the
high-energy particles known as “cosmic rays.” The most notable and useful of
these is 14C, which beta decays with a half-life of 5730 y. When a living plant
absorbs CO2 from the atmosphere, a small fraction (about 1 in 1012) of the carbon
atoms is 14C, and the remainder is stable 12C (99%), and 13C (1%). When the plant
dies, its intake of 14C stops, and the 14C decays. If we assume that the composition
of the Earth’s atmosphere and the flux of cosmic rays have not changed
significantly in the last few thousand years, we can find the age of specimens of
organic material by comparing their 14C/12C ratios to those of living plants. The
following example shows how this radiocarbon dating technique is used.

TABLE 12.4 Some Naturally Occur-
ring Radioactive Isotopes

Isotope t1/2

40K 1.25 × 109 y
87Rb 4.8 × 1010 y
92Nb 3.2 × 107 y
113Cd 9 × 1015 y
115In 5.1 × 1014 y
138La 1.1 × 1011 y
176Lu 3.6 × 1010 y
187Re 4 × 1010 y
232Th 1.41 × 1010 y

Example 12.15

(a) A sample of carbon dioxide gas from the atmosphere fills
a vessel of volume 200.0 cm3 to a pressure of 2.00 × 104 Pa
(1 Pa = 1 N/m2, about 10−5 atm) at a temperature of 295
K. Assuming that all of the 14C beta decays were counted,
how many counts would be accumulated in one week?
(b) An old sample of wood is burned, and the resulting
carbon dioxide is placed in an identical vessel at the same
pressure and temperature. After one week, 1420 counts
have been accumulated. What is the age of the sample?

Solution
(a) We first find the number of atoms present in the vessel,
using the ideal gas law:

N = PV

kT
= (2.00 × 104 N/m2)(2.00 × 10−4 m3)

(1.38 × 10−23 J/K)(295 K)

= 9.82 × 1020 atoms

If the fraction of 14C atoms is 10−12, there are 9.82 × 108

atoms of 14C present. The activity is

a = λN = 0.693

(5730 y)(3.16 × 107 s/y)
9.82 × 108

= 3.76 × 10−3 decays/s

In one week the number of decays is 2280.
(b) An identical sample that gives only 1420 counts must
be old enough for only 1420/2280 of its original activity to
remain. With 1420 = 2280e−λt, we have

t = 1

λ
ln

(
2280

1420

)
= 5730 y

0.693
ln

(
2280

1420

)
= 3920 y
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Chapter Summary

Section

Nuclear radius R = R0A1/3, R0 = 1.2 fm 12.2

Nuclear
binding energy

B = [Nmn + Zm(1
1H0) − m(A

ZXN )]c2 12.3

Proton
separation
energy

Sp = [m(A−1
Z−1X′

N ) + m(1H) − m(A
ZXN )]c2 12.3

Neutron
separation
energy

Sn = [m(A−1
Z XN−1) + mn − m(A

ZXN )]c2 12.3

Range of
exchanged
particle

mc2 = −hc/x 12.4

Activity a = λN , λ = ln 2/t1/2 = 0.693/t1/2 12.5

Radioactive
decay law

N = N0e−λt, a = a0e−λt 12.5

Section

Q value of
decay
X → X′ + x

Q = [mX − (mX′ + mx)]c
2 12.6

Q value of
alpha decay

Q = [m(X) − m(X′) − m(4He)]c2 12.7

Kinetic energy
of alpha
particle

Kα
∼= Q(A − 4)/A 12.7

Q values of
beta decay

Qβ− = [m(AX) − m(AX′)]c2,

Qβ+ = [m(AX) − m(AX′) − 2me]c2

12.8

Recoil in
gamma decay

KR = E2
γ /2Mc2 12.9

Questions

1. The magnetic dipole moment of a deuterium nucleus is about
0.0005 Bohr magneton. What does this imply about the pres-
ence of an electron in the nucleus, as the proton-electron
model requires?

2. Suppose we have a supply of 20 protons and 20 neutrons. Do
we liberate more energy if we assemble them into a single
40Ca nucleus or into two 20Ne nuclei?

3. Atomic masses are usually given to a precision of about the
sixth decimal place in atomic mass units (u). This is true for
both stable and radioactive nuclei, even though the uncer-
tainty principle requires that an atom with a lifetime �t has
a rest energy uncertain by −h/�t. Based on the typical life-
times given for nuclear decays, are we justified in expressing
atomic masses to such precision? At what lifetimes would
such precision not be justified?

4. Only two stable nuclei have Z > N . (a) What are these
nuclei? (b) Why don’t more nuclei have Z > N?

5. In a deuterium nucleus, the proton and neutron spins can be
either parallel or antiparallel. What are the possible values of
the total spin of the deuterium nucleus? (It is not necessary
to consider any orbital angular momentum.) The magnetic
dipole moment of the deuterium nucleus is measured to be
nonzero. Which of the possible spins is eliminated by this
measured value?

6. Why is the binding energy per nucleon relatively constant?
Why does it deviate from a constant value for low mass
numbers? For high mass numbers?

7. A neutron, which has no electric charge, has a magnetic
dipole moment. How is this possible?

8. The electromagnetic interaction can be interpreted as an
exchange force, in which photons are the exchanged parti-
cle. What does Eq. 12.8 imply about the range of such a
force? Is this consistent with the conventional interpretation
of the electromagnetic force? What would you expect for
the rest energy of the exchanged particle that carries the
gravitational force?

9. What is meant by assuming that the decay constant λ is
a constant, independent of time? Is this a requirement of
theory, an axiom, or an experimental conclusion? Under
what circumstances might λ change with time?

10. If we focus our attention on a specific nucleus in a radioac-
tive sample, can we know exactly how long that nucleus
will live before it decays? Can we predict which half of the
nuclei in a sample will decay during one half-life? What part
of quantum physics is responsible for this?

11. A certain radioactive sample is observed to undergo 10,000
decays in 10 s. Can we conclude that a = 1000 decays/s if
(a) t1/2 
 10 s; (b) t1/2 = 10 s; (c) t1/2 	 10 s?

12. Suppose we wish to do radioactive dating of a sample whose
age we guess to be t. Should we choose an isotope whose
half-life is (a) 
 t; (b) ∼ t; or (c) 	 t?

13. The alpha particle is a particularly tightly bound nucleus.
Based on this fact, explain why heavy nuclei alpha decay
and light nuclei don’t.
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14. Can you suggest a possible origin for the helium gas that is
part of the Earth’s atmosphere?

15. Estimate the recoil kinetic energy of the residual nucleus
following alpha decay. (This energy is large enough to drive
the residual nucleus out of certain radioactive sources; if
the residual nucleus is itself radioactive, there is the chance
of spread of radioactive material. A thin coating over the
source is necessary to prevent this.)

16. Why does the electron energy spectrum (Figure 12.17) look
different from the positron energy spectrum (Figure 12.18)
at low energies?

17. Will electron capture always be energetically possible when
positron beta decay is possible? Will positron beta decay
always be energetically possible when electron capture is
possible?

18. All three beta decay processes involve the emission of neu-
trinos (or antineutrinos). In which processes do the neutrinos
have a continuous energy spectrum? In which is the neutrino
monoenergetic?

19. Neutrinos always accompany electron capture decays. What
other kind of radiation always accompanies electron cap-
ture? (Hint: It is not nuclear radiation.) What other kind of
nonnuclear radiation might accompany β− or β+ decays in
bulk samples?

20. The positron decay of 15O goes directly to the ground state
of 15N; no excited states of 15N are populated and no γ rays

follow the beta decay. Yet a source of 15O is found to emit γ

rays of energy 0.51 MeV. Explain the origin of these y rays.
21. Would 92Nb be a convenient isotope to use for determining

the age of the Earth by radioactive dating? (See Table 12.4.)
What about 113Cd?

22. The natural decay chain 238
92U → 206

82Pb consists of several
alpha decays, which decrease A by 4 and Z by 2, and neg-
ative beta decays, which increase Z by 1. (See Example
12.13.) As shown in Figures 12.27 and 12.28, sometimes a
decay chain can proceed through different branches. Does
the number of alpha decays and beta decays in the chain
depend on this branching?

23. It has been observed that there is an increased level of radon
gas (Z = 86) in the air just before an earthquake. Where
does the radon come from? How is it produced? How is it
released? How is it detected?

24. Which of the decay processes discussed in this chapter
would you expect to be most sensitive to the chemical state
of the radioactive sample?

25. In Figure 12.26, only 1% of the gamma intensity is absor-
ped, even at resonance. For complete resonance, we would
expect 100% absorption. What factors might contribute to
this small absorption?

Problems

12.1 Nuclear Constituents

1. Give the proper isotopic symbols for: (a) the isotope of
fluorine with mass number 19; (b) an isotope of gold with
120 neutrons; (c) an isotope of mass number 107 with 60
neutrons.

2. Tin has more stable isotopes than any other element; they
have mass numbers 114, 115, 116, 117, 118, 119, 120, 122,
124. Give the symbols for these isotopes.

12.2 Nuclear Sizes and Shapes

3. (a) Compute the Coulomb repulsion energy between two
nuclei of 16O that just touch at their surfaces. (b) Do the
same for two nuclei of 238U.

4. Find the nuclear radius of (a) 197Au; (b) 4He; (c) 20Ne.

12.3 Nuclear Masses and Binding Energies

5. Find the total binding energy, and the binding energy per
nucleon, for (a) 208Pb; (b) 133Cs; (c) 90Zr; (d) 59Co.

6. Find the total binding energy, and the binding energy per
nucleon, for (a) 4He; (b) 20Ne; (c) 40Ca; (d) 55Mn.

7. Calculate the total nuclear binding energy of 3He and 3H.
Account for any difference by considering the Coulomb
interaction of the extra proton of 3He.

8. Find the neutron separation energy of: (a) 17O; (b) 7Li;
(c) 57Fe.

9. Find the proton separation energy of: (a) 4He; (b) 12C;
(c) 40Ca.

12.4 The Nuclear Force

10. The nuclear attractive force must turn into a repulsion at very
small distances to keep the nucleons from crowding too close
together. What is the mass of an exchanged particle that will
contribute to the repulsion at separations of 0.25 fm?

11. The weak interaction (the force responsible for beta decay)
is produced by an exchanged particle with a mass of roughly
80 GeV. What is the range of this force?

12.5 Quantum States in Nuclei

12. Determine the depth of the proton and neutron potential
energy wells for (a) 16O; (b) 235U.

13. The two-neutron separation energies of 160Dy and 164Dy are,
respectively, 15.4 MeV and 13.9 MeV, and the two-proton
separation energies of 158Dy and 162Dy are, respectively,
12.4 MeV and 14.8 MeV. From these data alone, determine
whether alpha decay is energetically allowed for 160Dy and
164Dy.
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12.6 Radioactive Decay

14. What fraction of the original number of nuclei present in a
sample will remain after (a) 2 half-lives; (b) 4 half-lives;
(c) 10 half-lives?

15. A certain sample of a radioactive material decays at a rate
of 548 per second at t = 0. At t = 48 minutes, the counting
rate has fallen to 213 per second. (a) What is the half-life of
the radioactivity? (b) What is its decay constant? (c) What
will be the decay rate at t = 125 minutes?

16. What is the decay probability per second per nucleus of a
substance with a half-life of 5.0 hours?

17. Tritium, the hydrogen isotope of mass 3, has a half-life
of 12.3 y. What fraction of the tritium atoms remains in a
sample after 50.0 y?

18. Suppose we have a sample containing 2.00 mCi of radioac-
tive 131I (t1/2 = 8.04 d). (a) How many decays per second
occur in the sample? (b) How many decays per second will
occur in the sample after four weeks?

19. Ordinary potassium contains 0.012 percent of the naturally
occurring radioactive isotope 40K, which has a half-life of
1.3 × 109 y. (a) What is the activity of 1.0 kg of potassium?
(b) What would have been the fraction of 40K in natural
potassium 4.5 × 109 y ago?

12.7 Alpha Decay

20. Derive Eq. 12.23 from Eqs. 12.21 and 12.22.
21. For which of the following nuclei is alpha decay permitted?

(a) 210Bi; (b) 203Hg; (c) 211At.
22. Find the kinetic energy of the alpha particle emitted in the

decay of 234U.

12.8 Beta Decay

23. Derive Eqs. 12.29, 12.33, and 12.36.
24. Find the maximum kinetic energy of the electrons emitted

in the negative beta decay of 11Be.
25. 75Se decays by electron capture to 75As. Find the energy of

the emitted neutrino.
26. 15O decays to 15N by positron beta decay. (a) What is the

Q value for this decay? (b) What is the maximum kinetic
energy of the positrons?

12.9 Gamma Decay and Nuclear Excited States

27. The nucleus 198Hg has excited states at 0.412 and
1.088 MeV. Following the beta decay of 198Au to 198Hg,
three gamma rays are emitted. Find the energies of these
three gamma rays.

28. Compare the recoil energy of a nucleus of mass 200 that
emits (a) a 5.0-MeV alpha particle, and (b) a 5.0-MeV
gamma ray.

29. A certain nucleus has the following sequence of rotational
states EL (energies in keV): E0 = 0, E1 = 100.1, E2 =
300.9, E3 = 603.6, and E4 = 1010.0. Assuming that the

emitted gamma rays occur only from changes of one or
two units in the rotational quantum number, find all possible
photon energies that can be emitted from these states. Sketch
the excited states, showing the allowed transitions.

12.10 Natural Radioactivity

30. The radioactive decay of 232Th leads eventually to stable
208Pb. A certain rock is examined and found to contain 3.65
g of 232Th and 0.75 g of 208Pb. Assuming all of the Pb was
produced in the decay of Th, what is the age of the rock?

31. The 4n radioactive decay series begins with 232
90Th and

ends with 208
82Pb. (a) How many alpha decays are in the

chain? (See Question 22.) (b) How many beta decays?
(c) How much energy is released in the complete chain?
(d) What is the radioactive power produced by 1.00 kg of
232Th (t1/2 = 1.40 × 1010 y)?

32. A piece of wood from a recently cut tree shows 12.4 14C
decays per minute. A sample of the same size from a tree cut
thousands of years ago shows 3.5 decays per minute. What
is the age of this sample?

General Problems

33. Figure 12.2 suggests that the Rutherford scattering formula
fails for 60◦ scattering when K is about 28 MeV. Use the
results derived in Chapter 6 to find the closest distance
between alpha particle and nucleus for this case, and com-
pare with the nuclear radius of 208Pb. Suggest a possible
reason for any discrepancy.

34. Assuming the nucleus to diffract like a circular disk, use
the data shown in Figure 12.3 to find the nuclear radius
for 12C and 16O. How does changing the electron energy
from 360 MeV to 420 MeV affect the deduced radius for
16O? (Hint: Use the extreme relativistic approximation from
Chapter 2 to relate the electron’s energy and momentum to
find its de Broglie wavelength.)

35. A radiation detector is in the form of a circular disc of
diameter 3.0 cm. It is held 25 cm from a source of radiation,
where it records 1250 counts per second. Assuming that the
detector records every radiation incident upon it, find the
activity of the sample (in curies).

36. What is the activity of a container holding 125 cm3 of tri-
tium (3H, t1/2 = 12.3 y) at a pressure of 5.0 × 105 Pa (about
5 atm) at T = 300 K?

37. With a radioactive sample originally of N0 atoms, we could
measure the mean, or average, lifetime τ of a nucleus by
measuring the number N1 that live for a time t1 and then
decay, the number N2 that decay after t2 and so on:

τ = 1

N0
(N1t1 + N2t2 + · · ·)

(a) Show that this is equivalent to τ = λ
∫ ∞

0 e−λtt dt.
(b) Show that τ = 1/λ. (c) Is τ longer or shorter than t1/2?
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38. Complete the following decays:
(a) 27Si → 27Al +
(b) 74As → 74Se +
(c) 228U → α +
(d) 93Mo + e− →
(e) 131I → 131Xe +

39. 239Pu decays by alpha emission with a half-life of
2.41 × 104 y. Compute the power output, in watts, that
could be obtained from 1.00 gram of 239Pu.

40. 228Th alpha decays to an excited state of 224Ra, which in turn
decays to the ground state with the emission of a 217-keV
photon. Find the kinetic energy of the alpha particle.

41. By replacing the Coulomb barrier in alpha decay with a
flat barrier (see Figure 12.16) of thickness L = 1

2 (R′ − R),
equal to half the thickness of the Coulomb barrier that the
alpha particle must penetrate, and height U0 = 1

2 (UB + Kα),
equal to half the height of the Coulomb barrier above the
energy of the alpha particle, estimate the decay half-lives
for 232Th and 218Th and compare with the measured values
given in Table 12.2. (Hint: In calculating the speed of the
alpha particle inside the nucleus, assume that the well depth
is 30 MeV.) Although the results of this rough calculation
do not agree well with the measured values, the calculation
does indicate how barrier penetration is responsible for the
enormous range of observed half-lives. How would you
refine the calculation to obtain better agreement with the
measured values?

42. (a) Using the same replacements described in Problem 41,
estimate the decay probability of 226Ra for alpha emis-
sion and for 14C emission. (See Examples 12.8 and 12.9.)
(b) Using the results of part (a), estimate the number of 14C
emitted relative to the number of alpha particles emitted by
a source of 226Ra.

43. Compute the recoil proton kinetic energy in neutron beta
decay (a) when the electron has its maximum energy;
(b) when the neutrino has its maximum energy.

44. In the beta decay of 24Na, an electron is observed with
a kinetic energy of 2.15 MeV. What is the energy of the
accompanying neutrino?

45. The first excited state of 57Fe decays to the ground state
with the emission of a 14.4-keV photon in a mean lifetime
of 141 ns. (a) What is the width �E of the state? (b) What
is the recoil kinetic energy of an atom of 57Fe that emits
a 14.4-keV photon? (c) If the kinetic energy of recoil is
made negligible by placing the atoms in a solid lattice, res-
onant absorptions will occur. What velocity is required to
Doppler-shift the emitted photon so that resonance does not
occur?

46. What is the probability of a 14C atom in atmospheric CO2
decaying in your lungs during a single breath? The atmo-
sphere is about 0.03% CO2. Assume you take in about 0.5
L of air in each breath and exhale it 3.5 s later.





Chapter 13
NUCLEAR REACTIONS AND
APPLICATIONS

Nuclear reactors produce intense beams of neutrons that can be used to measure how
radiation exposure affects various materials. They also produce rare radioisotopes that can
be used for medicine and applications in industry. The photo shows the core of a nuclear
reactor, which is submerged in water that acts as a neutron moderator. The glow comes
from Cerenkov radiation, which is emitted when electrons from radioactive decays move at
speeds greater than the speed of light in water.
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The knowledge of the nucleus that we can obtain from studying radioactive
decays is limited, because only certain radioactive processes occur in nature, only
certain isotopes are made in those processes, and only certain excited states of
nuclei (those that happen to follow radioactive decays) can be studied. Nuclear
reactions, however, give us a controllable way to study any nuclear species, and
to select any excited states of that species.

In this chapter we discuss some of the different nuclear reactions that can
occur, and we study the properties of those reactions. Two nuclear reactions are
of particular importance: fission and fusion. We pay special attention to those
processes and we discuss how they are useful as sources of energy (or, more
correctly, as converters of nuclear energy into thermal or electrical energy).

We conclude our study of nuclear physics with an introduction to some of the
ways that methods of nuclear physics can be applied to problems in a variety of
different areas.

13.1 TYPES OF NUCLEAR REACTIONS

In a typical nuclear reaction laboratory experiment, a beam of particles of type x
is incident on a target containing nuclei of type X . After the reaction, an outgoing
particle y is observed in the laboratory, leaving a residual nucleus Y . Symbolically,
we write the reaction as

x + X → y + Y

For example,

2
1H1 + 63

29Cu34 → n + 64
30Zn34

Like a chemical reaction, a nuclear reaction must be balanced—the total number
of protons must be the same before and after the reaction, and also the total
number of neutrons must remain the same. In the example above, there are 30
protons on each side and 35 neutrons on each side. (The forces responsible for
nuclear beta decay can change neutrons into protons or protons into neutrons,
but these forces act on a typical time scale of at least 10−10 s. The projectile and
target nuclei are within the range of one another’s nuclear forces for an interval
of at most 10−20 s, so there is not enough time for this type of proton-neutron
conversion to take place.) The protons and neutrons can be rearranged among the
reacting nuclei, but their numbers cannot change.

A nuclear reaction takes place under the influence of forces internal to the
system of projectile and target. The absence of external forces means that the
reaction conserves energy, linear momentum, and angular momentum.

In most experiments, we observe only the outgoing light particle y; the heavy
residual nucleus Y usually loses all its kinetic energy (by collisions with other
atoms) and therefore stops within the target.

We assume that we produce the reaction by bombarding target nuclei X ,
initially at rest, with projectiles x of kinetic energy Kx. The product particles then
share this kinetic energy, plus or minus any additional energy from the rest energy
difference of the initial and final nuclei. (We consider energy in nuclear reactions
in Section 13.3.)
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The bombarding particles x can be either charged particles, supplied by a
suitable nuclear accelerator, or neutrons, whose source may be a nuclear reactor.
Accelerators for charged particles, illustrated in Figures 13.1 and 13.2, are of two
basic types. In a cyclotron, a particle is held in a circular orbit by a magnetic
field and receives a small “kick” by an electric field twice each time it travels
around the circle; a particle may make perhaps 100 orbits before finally emerging
with a kinetic energy of the order of 10 to 20 MeV per unit of electric charge. In
the Van de Graaff accelerator, a particle is accelerated only once from a single
high-voltage terminal, which may be at a potential of as much as 25 million volts;
the kinetic energy of the particle is then about 25 MeV per unit of charge.

(a)
(b)

Electromagnet

∼

Electromagnet

FIGURE 13.1 (a) Schematic diagram of a cyclotron accelerator. Charged particles
are bent in a circular path by a magnetic field and are accelerated by an electric field
each time they cross the gap. (b) A cyclotron accelerator. The magnets are in the large
cylinders at the top and the bottom. The beam of particles is visible as it collides with
air molecules after leaving the cyclotron.

Pressure tank

Charging belt

High-voltage
terminal (+V )

Beam
tube

Ion
source

(a) (b)

FIGURE 13.2 (a) Diagram of a Van de Graaff accelerator. Particles from the ion
source are accelerated from the high-voltage terminal to ground. (b) A typical Van de
Graaff accelerator laboratory. The ion source and high-voltage terminal are inside the
large pressure tank.
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In nuclear reaction experiments, we usually measure two basic properties of
the particle y: its energy, and its probability to emerge at a certain angle with a
certain energy. We look briefly at these two types of measurements.

1. Measuring the particle energy If neither the residual nucleus Y nor the
outgoing particle y had excited states, then by using conservation of energy and
momentum, we could calculate exactly the energy of y when measured at a certain
angle. If the nucleus Y is left in an excited state, then the kinetic energy of y is
reduced by (approximately) the energy of the excited state above the ground state,
because the two particles Y and y must still share the same amount of total energy.
Each higher excited state of the nucleus Y corresponds to a certain reduced energy
of the particle y, and a measurement of the different energies of the particle y
tells us about the excited states of the nucleus Y . Figure 13.3 shows an example
of a typical set of experimental results and the corresponding deduced excited
states of the residual nucleus. Each peak in Figure 13.3 corresponds to a specific
energy of y, and therefore to a specific excited state of Y ; that is, when particles
with energy 9.0 MeV are observed, the nucleus Y is left in the excited state with
energy 1.0 MeV.

2. Measuring the reaction probability Notice that the different peaks in
Figure 13.3 have different heights. This feature of the results of our experiment
tells us that it is more probable for the reaction to lead to one excited state
than to another. This is an example of the reaction probability, the second
of the properties of y that we can determine. For example, Figure 13.3 shows that
the probability of leaving Y in its second excited state (1.0 MeV) is about twice
the probability of leaving Y in its first excited state. If it were possible to solve the
Schrödinger equation with the nuclear potential energy, we could calculate these
reaction probabilities and compare them with experiment. Unfortunately we can’t
solve this many-body problem, so we must work backward by measuring the
reaction probabilities and then trying to infer some properties of the nuclear force.

E = 2.0 MeV

E = 1.3 MeV

E = 1.0 MeV

E = 0.6 MeV

E = 0

Energy states
of nucleus Y

Ground
state

Excited
states

8.0
Energy of emitted particles, Ey (MeV)

N
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FIGURE 13.3 A sample spectrum of energies of the outgoing particle y, and the
corresponding excited states of Y .
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The Reaction Cross Section
Reaction probabilities are usually expressed in terms of the cross section, which
is a sort of effective area presented by the target nucleus to that projectile for a
specific reaction, for all possible energies and directions of travel of the outgoing
particle y. The larger the reaction probability, the larger is the corresponding
cross section. In general, the cross section depends on the energy of the incident
particle, Kx.

The cross section σ is expressed in units of area, but the area is a very small
one, of the order of 10−28 m2. Nuclear physicists use this as a convenient unit of
measure for cross sections, and it is known as one barn (b): 1 barn = 10−28 m2.
Notice that the area of the disc of a single nucleus of medium weight is about 1
barn; however, reaction cross sections often can be very much greater or less than
one barn. For example, consider the cross section for these reactions involving
certain isotopes of the neighboring elements iodine and xenon:

I + n → I + n (inelastic scattering) σ = 4 b

Xe + n → Xe + n (inelastic scattering) σ = 4 b

I + n → I + γ (neutron capture) σ = 7 b

Xe + n → Xe + γ (neutron capture) σ = 106 b

You can see that, although the neutron inelastic scattering cross sections of I
and Xe are similar, the neutron capture cross sections are very different. These
measurements are therefore telling us something interesting and unusual about
the properties of the nucleus Xe.

Suppose a beam of particles is incident on a thin target of area S, which contains
a total of N nuclei. The effective area of each nucleus is the cross section σ , and
so the total effective area of all the nuclei in the target is (ignoring shadowing
effects) σN . The fraction of the target area that this represents is σN/S, and as
long as this ratio is small, shadowing effects are negligible. This fraction is the
probability for the reaction to occur.

Suppose the incident particles strike the target at a rate of I0 particles per second,
and suppose the outgoing particles y are emitted at a rate of R per second. (This is
also the rate at which the product nucleus Y is formed.) Then the reaction probabil-
ity can also be expressed as the rate of y divided by the rate of x, or R/I0. Setting
the two expressions for the reaction probability equal to each other, we obtain
σN/S = R/I0, or

R = σN

S
I0 (13.1)

This gives a relationship between the reaction cross section and the rate of
emission of y.

In a reactor, the intensity of neutrons is usually expressed in terms of the rate
at which neutrons cross a unit area perpendicular to the beam, or neutron flux
φ (neutrons/cm2/s). The cross section is σ (square centimeter per nucleus per
incident neutron). The rate R also depends on the number of target nuclei. Suppose
the mass of the target is m; the number of target nuclei is then N = (m/M)NA,
where M is the molar mass, and NA is Avogadro’s constant (6.02 × 1023 atoms
per mole). Thus, for neutron-induced reactions, using Eq. 13.1 we obtain

R = φσN = φσ
m

M
NA (13.2)
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Example 13.1

For a certain incident proton energy the reaction p +
56Fe → n + 56Co has a cross section of 0.40 b. If we bom-
bard a target in the form of a 1.0-cm-square, 1.0-μm-thick
iron foil with a beam of protons equivalent to a current
of 3.0 μA, and if the beam is spread uniformly over the
entire surface of the target, at what rate are the neutrons
produced?

Solution
We first calculate the number of nuclei in the target. The
volume of the target is V = (1.0 cm)2(1.0 μm) = 1.0 ×
10−4 cm3, and (using the density of iron of 7.9 g/cm3)
its mass is m = ρV = (7.9 g/cm3)(1.0 × 10−4 cm3) =
7.9 × 10−4 g. The number of atoms (or nuclei) is then

N = mNA

M
= (7.9 × 10−4 g)(6.02 × 1023 atoms/mole)

56 g/mole

= 8.5 × 1018 atoms

Next we need to find the number of particles per sec-
ond in the incident beam. We are given that the current
is 3.0 × 10−6 A = 3.0 × 10−6 C/s, and with each proton
having a charge of 1.6 × 10−19 C, the beam intensity is

I0 = 3.0 × 10−6 C/s

1.6 × 10−19 C/particle
= 1.9 × 1013 particles/s

From Eq. 13.1 we can now find R:

R = Nσ I0

S
= (8.5 × 1018 nuclei)(0.40 × 10−24 cm2/nucleus)

×(1.9 × 1013 particles/s) (1 cm2)
−1

= 6.5 × 107 particles/s

About 108 neutrons per second are emitted from the target.

13.2 RADIOISOTOPE PRODUCTION IN NUCLEAR
REACTIONS

Often we use nuclear reactions to produce radioactive isotopes. In this procedure,
a stable (nonradioactive) isotope X is irradiated with the particle x to form
the radioactive isotope Y ; the outgoing particle y is of no interest and is not
observed. In this case we don’t observe the individual particles Y as they are
produced in the reaction; instead, we irradiate the target to produce some number
of radioactive Y nuclei that remain within the target. After the irradiation we
observe the radioactive decay of the nuclei Y .

We would like now to calculate the activity of the isotope Y that is produced
from a given exposure to a certain quantity of the particle x for a certain time t.
Let R represent the constant rate at which Y is produced; this quantity is related
to the cross section and to the intensity of the beam of x, as given in Eq. 13.1.
In a time interval dt, the number of Y nuclei produced is R dt. The isotope Y is
radioactive, so the number of nuclei of Y that decay in the interval dt is λN dt,
where λ is the decay constant (λ = 0.693/t1/2) and N is the number of Y nuclei
present. The net change dN in the number of Y nuclei is

dN = R dt − λN dt (13.3)

or
dN

dt
= R − λN (13.4)

The solution to this differential equation is

N(t) = R

λ
(1 − e−λt) (13.5)
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and the activity is

a(t) = λN = R(1 − e−λt) (13.6)

Notice that, as expected, a = 0 at t = 0 (there are no nuclei of type Y present
at the start). For large irradiation times t 
 t1/2, this expression approaches the
constant value R. When t is small compared with the half-life t1/2, the activity
increases linearly with time:

a(t) = R[1 − (1 − λt + · · ·)] ∼= Rλt (t 	 t1/2) (13.7)

Figure 13.4 shows the relationship between a(t) and t. As you can see, not much
activity is gained by irradiating for more than about two half-lives.
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FIGURE 13.4 Formation of activity in
a nuclear reaction.

Example 13.2

Thirty milligrams of gold are exposed to a neutron flux
of 3.0 × 1012 neutrons/cm2/s for 1.0 minute. The neutron
capture cross section of gold is 99 b. Find the resultant
activity of 198Au.

Solution
From Appendix D we find that the stable isotope of gold has
a mass number of A = 197, and that radioactive 198Au has a
half-life of 2.70 d = 3.88 × 103 min. Thus, using Eq. 13.2,

R = φσ
m

M
NA

=
(

3.0 × 1012 neutrons

cm2 · s

)(
99 × 10−24 cm2

neutron · nucleus

)

×
(

0.030 g

197 g/mole

)
(6.02 × 1023 atoms/mole)

= 2.7 × 1010 s−1

In this case t 	 t1/2, so we can use Eq. 13.7:

a = Rλt = (2.7 × 1010 s−1)

(
0.693

3.88 × 103 min

)
(1.0 min)

= 4.8 × 106 s−1 = 130 μCi

Example 13.3

The radioactive isotope 61Cu (t1/2 = 3.41 h) is to be pro-
duced by alpha particle reactions on a target of 59Co. A foil
of cobalt, measuring 1.5 cm × 1.5 cm in area and 2.5 μm in
thickness, is placed in a 12.0-μA beam of alpha particles;
the beam uniformly covers the target. For the alpha energy
selected, the reaction has a cross section of 0.640 b. (a) At
what rate is the 61Cu produced? (b) What is the resulting
activity of 61Cu after 2.0 h of irradiation?

Solution
(a) The reaction is 59Co + 4He → 61Cu + 2n. The mass
of the target is m = ρV = (8.9 g/cm3)(1.5 cm)2(2.5 ×
10−4 cm) = 5.0 × 10−3 g and the number of target
atoms is

N = mNA

M

= (5.0 × 10−3 g)(6.02 × 1023 atoms/mole)

58.9 g/mole

= 5.12 × 1019 atoms

The rate at which the beam strikes the target is

I0 = 12.0 × 10−6 A

2 × 1.60 × 10−19 C/particle

= 3.75 × 1013 particles/s
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The rate at which the 61Cu is produced is, using Eq. 13.1,

R = Nσ I0

S

= (5.12 × 1019 atoms)(0.640 × 10−24 cm2)(3.75 × 1013 s−1)

(1.5 cm)2

= 5.5 × 108 s−1

(b) The activity is determined from Eq. 13.6:

a = R(1 − e−λt)

= (5.5 × 108 s−1) (1 − e−(0.693)(2.0 h)/(3.41h))

= 1.8 × 108 s−1 = 4.9 mCi

13.3 LOW-ENERGY REACTION KINEMATICS

We assume for this discussion that the velocities of the nuclear particles are
sufficiently small that we can use nonrelativistic kinematics. We consider a
projectile x moving with momentum �px and kinetic energy Kx. The target is at
rest, and the reaction products have momenta �py and �pY and kinetic energies Ky
and KY . The particles y and Y are emitted at angles θy and θY with respect to the
direction of the incident beam. Figure 13.5 illustrates this reaction. We assume
that the resultant nucleus Y is not observed in the laboratory (if it is a heavy
nucleus, moving relatively slowly, it generally stops within the target).

X

Y

x

y

px

Before

After

py

pY

θy

θY

FIGURE 13.5 Momenta of particles
before (top) and after (bottom) the
reaction.

As we did in the case of radioactive decay, we use energy conservation to
compute the Q value for this reaction (assuming X is initially at rest):

initial energy = final energy

mN (x)c2 + Kx + mN (X )c2 = mN (y)c2 + Ky + mN (Y )c2 + KY (13.8)

The m’s in Eq. 13.8 represent the nuclear masses of the reacting particles.
However, as we have discussed, the number of protons must be balanced in a
nuclear reaction:

Zx + ZX = Zy + ZY (13.9)

We can therefore add equal numbers of electron masses to each side of Eq. 13.8
and, neglecting as usual the electron binding energy, the nuclear masses become
atomic masses with no additional corrections needed. Rewriting Eq. 13.8, we
obtain

[m(x) + m(X ) − m(y) − m(Y )]c2 = Ky + KY − Kx (13.10)

The rest energy difference between the initial particles and final particles is defined
to be the Q value of the reaction

Q = (mi − mf )c
2 = [m(x) + m(X ) − m(y) − m(Y )]c2 (13.11)

and, combining Eqs. 13.10 and 13.11, we see that the Q value is equal to the
difference in kinetic energy between the final particles and initial particle:

Q = Ky + KY − Kx (13.12)
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Example 13.4

(a) Compute the Q value for the reaction 2H + 63Cu →
n + 64Zn. (b) Deuterons of energy 12.00 MeV are incident
on a 63Cu target, and neutrons are observed with 16.85 MeV
of kinetic energy. Find the kinetic energy of the 64Zn.

Solution
(a) The Q value can be found using Eq. 13.11 with masses
from Appendix D:

Q = [m(2H) + m(63Cu) − m(n) − m(64Zn)]c2

= (2.014102 u + 62.929597 u − 1.008665 u

− 63.929142 u)(931.5 MeV/u)

= 5.488 MeV

(b) From Eq. 13.12, we find

KY = Q + Kx − Ky

= 5.488 MeV+12.00 MeV−16.85 MeV

= 0.64 MeV

Reactions for which Q > 0 convert nuclear energy to kinetic energy of y and Y .
They are called exothermic or exoergic reactions. Reactions with Q < 0 require
energy input, in the form of the kinetic energy of x, to be converted into nuclear
binding energy. These are known as endothermic or endoergic reactions.

In an endoergic reaction, we must supply at least enough kinetic energy to
provide the additional rest energy of the reaction products. There is thus some
minimum, or threshold, kinetic energy of x, below which the reaction will not take
place. This threshold kinetic energy not only must supply the additional rest energy
of the products, but also must supply some kinetic energy of the products; even at
the minimum energy, the products cannot be at rest, for that would violate conser-
vation of linear momentum—the momentum px before the collision would not be
equal to the momentum of the final products after the collision if they were formed
at rest.

This problem is most easily analyzed in the center-of-mass reference frame.
In the lab frame before the reaction, the center of mass moves with velocity
v = m(x)vx/[m(x) + m(X )]. If we travel with that velocity and observe the
reaction, we would see x moving with velocity vx − v and X moving with velocity
−v, as shown in Figure 13.6. If x has exactly the threshold kinetic energy, in this
reference frame the reaction products y and Y would be at rest.

Y

Before

After

y

x
vx − v v

X

FIGURE 13.6 Reaction at threshold
in center-of-mass reference frame.

We must conserve total relativistic energy K + mc2 in the reaction, and
we restrict our discussion to small velocities v 	 c so that the nonrelativistic
expression for the kinetic energy can be used. Energy conservation in the
center-of-mass frame gives:

1

2
m(x)(vx − v)2 + 1

2
m(X )(−v)2 + m(x)c2 + m(X )c2 = m(y)c2 + m(Y )c2

(13.13)

where vx represents the threshold velocity in the lab frame. Substituting the value
of v and doing a bit of algebra, we can find the threshold kinetic energy (in the
laboratory reference frame):

Kth = −Q

(
1 + m(x)

m(X )

)
(13.14)
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Example 13.5

Calculate the threshold kinetic energy for the reaction
p + 3H → 2H + 2H (a) if protons are incident on 3H at
rest; (b) if 3H (tritons) are incident on protons at rest.

Solution
The Q value is

Q = [m(1H) + m(3H) − 2m(2H)]c2

= (1.007825 u + 3.016049 u − 2 × 2.014102 u)

× (931.5 MeV/u)

= −4.033 MeV

(a) When protons are incident on 3H, the identification is
x = 1H, X = 3H, so

Kth = −Q

(
1 + m(1H)

m(3H)

)

= (4.033 MeV)

(
1 + 1.007825 u

3.016049 u

)
= 5.381 MeV

(b) When 3H is incident on protons, the identification of x
and X is reversed, so

Kth = −Q

(
1 + m(3H)

m(1H)

)

= (4.033 MeV)

(
1 + 3.016049 u

1.007825 u

)
= 16.10 MeV

This calculation illustrates a general result: Less energy is
required for a nuclear reaction if a light particle is incident
on a heavy target than if a heavy particle is incident on a
light target.

13.4 FISSION

The massive nucleus 254Cf (Z = 98) can be produced in accelerators by collisions
between suitably chosen projectiles and targets. This nucleus is of special interest
because it is also produced in supernova explosions, and knowledge of its
properties provides a key to understanding the formation of the elements in
stars, as we discuss later in this chapter. 254Cf is radioactive, decaying with
a half-life of 60.5 d. The Q values for positive and negative beta decay of
254Cf are both negative, so that mode of decay is not available. Alpha decay is
energetically possible but the Coulomb barrier is very high, making that decay
mode improbable. Instead, 254Cf decays by splitting into two pieces of much
smaller masses—for example,

254
98Cf156 → 140

54Xe86 + 110
44Ru66 + 4n

This mode of decay is known as nuclear fission. Fission can occur as a spontaneous
radioactive decay process for a relatively small number of massive nuclei, and it
can also be induced in other nuclei by adding energy to make the nucleus less
stable. In addition to the two fission fragments, some neutrons are usually emitted
in the fission process.

Lise Meitner (1878–1968, Germany-
Sweden). Known for her research
into radioactivity, Meitner discovered
the radioactive element protactinium
(Z = 91) and was among the first to
study the properties of beta decay.
Her most important discovery was the
explanation for the puzzling results
that were observed when uranium was
bombarded with neutrons. She sug-
gested that the uranium could split into
two pieces, and she proposed the name
“fission” for this process. Element 109
is named in her honor.

We can consider the nucleus to be a mixture of protons and neutrons moving
about under the mutual attraction of their nuclear forces and (in the case of the
protons) the repulsion of their Coulomb forces. For many nuclei, the result of
these interactions is a spherical shape that has often been compared to a drop of
liquid floating freely in a region where no external forces act. The equilibrium
shape will be close to spherical, and if the nucleus is distorted (for example,
by stretching it in one direction) it can vibrate about its equilibrium shape and
eventually return to its spherical shape somewhat like a stretched spring or other
elastic system returns to its original configuration. Figure 13.7 shows a schematic
representation of the energy of the drop as a function of the distortion.
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Energy

Equilibrium shape

Distortion

FIGURE 13.7 The energy of a nucleus
with a spherical equilibrium shape in-
creases as the distortion increases.

For other nuclei, the equilibrium shape is not spherical but is already distorted;
their surfaces are like an ellipse rotated about its long axis. For these nuclei,
the major axis might be 30–50% longer than the minor axis. If these nuclei are
stretched by a small amount and released, they will usually revert to their distorted
equilibrium shape. But if the stretching is sufficiently large, they may not return
to equilibrium but instead may split in two, as represented in Figure 13.8.

Energy

Fission
barrier

Equilibrium shape

Distortion

FIGURE 13.8 The energy of a nu-
cleus with a nonspherical equilibrium
shape. If enough energy is added, the
nucleus can tunnel through the fission
barrier and split into two pieces.

This occurs because of the rather delicate balance between the nuclear force
that keeps the nucleus together and the Coulomb repulsion force, which makes the
nucleus less stable. When the stretching is sufficiently large, the total attractive
nuclear force is reduced (because on the average the protons and neutrons have
fewer “near neighbors” with which to interact), but the Coulomb force, because
it has a long range, is not reduced significantly. The center of the distorted shape
can be “pinched off” and the delicate balance between the nuclear and Coulomb
forces is upset. The Coulomb force can then drive the two fragments apart.

Figure 13.8 shows a kind of “barrier” between the distorted equilibrium shape
and the fissioned nucleus. This fission barrier has a height of roughly 6 MeV,
but as we know it is possible to “tunnel” through the barrier. Thus nuclei can
undergo fission with smaller amounts of excitation energy. It is very unlikely for
a nucleus to tunnel through the barrier at its thickest, but as the excitation energy
is increased the barrier becomes less thick and fission becomes more probable.
For the radioactive decay of 254Cf, the probability to penetrate the fission barrier
(99.7%) is greater than the probability to penetrate the barrier to alpha decay
(0.3%).

The splitting of a nucleus such as 254Cf into two fragments does not always
produce the same set of final nuclei. Many different processes are possible, with
the actual outcome determined according to statistical probability. For 254Cf it
is most likely that one fragment will have a mass near A = 110 and the other
near A = 140, but other mass distributions can occur. Figure 13.9 shows the mass
distribution of the fragments in the fission of 254Cf and 235U.
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FIGURE 13.9 The mass distribution
of fission fragments from 254Cf (solid
line) and 235U (dashed line).

The number of neutrons emitted in fission can also vary. For 254Cf , the average
is about 3.9 neutrons per fission.

Energy Released in Fission
According to Figure 12.4, the binding energy per nucleon of 254Cf is about 7 MeV.
If a nucleus of 254Cf splits into two nuclei with A = 127, the binding energy per
nucleon of the final nuclei would be about 8 MeV. Thus the binding energy of
each of those 254 nucleons increases from about 7 MeV to about 8 MeV, which
gives an increase in the total binding energy of the nucleus of about 250 MeV. If
the final nucleons are more tightly bound, that means that an equivalent amount
of energy has been released to some other form.

This energy release from a single nucleus is an enormous quantity. For
comparison, chemical processes such as combustion usually release a few eV per
atom. In fission we have an energy release at the atomic level that is 108 times
larger than the energy released in chemical processes!

Where does this energy go? Let’s imagine that 254Cf suddenly breaks in half to
form two nuclei with Z = 49 and A = 127 that are just touching at their surfaces.
The radius of each of these nuclei is 1.2(127)1/3 = 6.0 fm, and the Coulomb
repulsion of these two nuclei would be U = (49e)2/4πε0(2R) = 286 MeV, which
is quite close to our estimate of the nuclear binding energy released. These two
charged objects repel one another, so that the Coulomb energy quickly becomes
kinetic energy. Most of the energy released in fission is thus produced as
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Nuclear binding energy
↓

Coulomb potential energy of nuclear fragments
↓

Kinetic energy of fragments

About 80% of the fission energy is released in this form. The fragments do not
travel very far before dissipating their kinetic energy through atomic collisions,
which are usually observed as a temperature increase of the material. In a power
reactor, this temperature increase can be used to produce steam, which can drive a
turbine to produce electricity. The remaining 20% of the energy released appears
as decay products (betas and gammas) of the highly radioactive fragments and
kinetic energies of the neutrons that may also be emitted during fission.

Induced Fission
The radioactive decay of 254Cf is an example of the spontaneous fission of a
nucleus that is sufficiently unstable that it can tunnel through the fission barrier
with no additional energy needed. However, 254Cf is an artificially produced
nucleus that does not occur in nature and in which the energy released in fission is
essentially stored in the nucleus by the nuclear reaction that was used to produce
the 254Cf . There are other examples of fissionable nuclei that may occur naturally
or are produced artificially but that do not fission spontaneously. These nuclei can
be made to fission by the addition of some energy, which might be in the form
of an absorbed photon but more often occurs with the absorption of a neutron. In
these cases the energy input is very small compared with the energy released in
the fission process. One such nucleus is 235U, which might absorb a neutron to
make 236U and then fission according to

235
92 U143 + n → 93

37Rb56 + 141
55 Cs86 + 2n

As in the case of spontaneous fission, many different outcomes are possible,
with a statistical distribution of the masses of the fragments. In the fission of
235U, the most probable outcome has fragments of mass numbers near A = 90
and A = 140 (as in Figure 13.9), and the average number of neutrons is about
2.5. Examples of easily produced fissionable nuclei include 239Pu (obtained from
the beta decay of 239U, which is made when 238U absorbs a neutron) and 233U
(obtained in a similar manner from 232Th).

In a bulk sample of uranium, each of the neutrons emitted in fission can be
absorbed by another nucleus of 235U and thus induce another fission process,
resulting in the emission of still more neutrons, followed by more fissions, and
so forth. As long as the average number of neutrons available to produce new
fissions is greater than 1 per reaction, the number of fissions grows with time.
This avalanche or chain reaction of fission events, each with the release of about
200 MeV of energy, can either occur under very rapid and uncontrolled conditions,
as in a nuclear weapon, or else under slower and carefully controlled conditions,
as in a nuclear reactor.

Electrical Power from Fission
Electrical power can be generated using the thermal energy released in fission
to boil water. Ordinary uranium by itself cannot serve as fuel for the reactor for
several reasons, of which three in particular stand out: enrichment, moderation,
and control.
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Enrichment To maintain a steady energy production from fission reactions,
we would like for one neutron from each fission to be available to produce another
fission. Generally the average number of neutrons produced is greater than one, but
neutrons can be lost from the reaction in a variety of ways (for example, by non-
fission absorption by 238U in uranium fuel). Natural uranium consists of only about
0.7% of 235U and 99.3% 238U, which means that most of the available uranium
nuclei generally do not participate in the fission process but instead remove
neutrons from being able to produce other fissions. To overcome this problem it
is necessary to use enriched uranium, in which the abundance of 235U is increased
beyond its natural value of 0.7%. Most power reactors use uranium enriched to
3–5% 235U. Enrichment is a difficult process because 235U and 238U are chemically
identical. It is achieved only by taking into account the small mass difference
between the two isotopes (for example, by forcing gaseous uranium through a
porous barrier in which the more massive 238U atoms diffuse more slowly).

Moderation The neutrons produced in fission typically have kinetic energies of
a few MeV. Such energetic neutrons have a relatively low probability of inducing
new fissions, because the fission cross section generally decreases rapidly with
increasing neutron energy. We therefore must slow down, or moderate, these
neutrons in order to increase their chances of initiating fission events. The
fissionable material is surrounded by a moderator, and the neutrons lose energy
in collisions with the atoms of the moderator. When a neutron is scattered from a
heavy nucleus like uranium, the energy of the neutron is changed hardly at all, but
in a collision with a very light nucleus, the neutron can lose substantial energy.
The most effective moderator is one whose atoms have about the same mass as a
neutron; hydrogen is therefore the first choice. Ordinary water is frequently used
as a moderator, because collisions with the protons are very effective in slowing
the neutrons; however, neutrons have a relatively high probability of being
absorbed by the water according to the reaction p + n → 2

1H1 + γ . So-called
“heavy water,” in which the hydrogen is replaced by deuterium, is more useful as
a moderator, because it has virtually no neutron absorption cross section. A heavy-
water reactor, which has more available neutrons, can use ordinary (nonenriched)
uranium as fuel; a reactor using ordinary water as moderator has fewer neutrons
available to produce fission, and must therefore have more 235U in its core.

Carbon is a light material that is solid, stable, and abundant, and that has a
relatively small neutron absorption cross section. Enrico Fermi and his co-workers
built the first nuclear reactor in 1942 at the University of Chicago; this reactor
used carbon, in the form of graphite blocks, as moderator.

Control To produce a stable nuclear reactor, the average number of neutrons
in each fission reaction that is available to produce the next set of fission
reactions must be exactly equal to 1. If it is even slightly greater than 1, the
reaction rate will grow exponentially out of control. Control of the reaction rate is
usually accomplished by inserting into the core of the reactor control rods made
of cadmium, which has a very large cross section for absorbing neutrons and
thus removing them from the fission process. However, small fluctuations in the
reaction rate occur much too rapidly for any mechanical system to move the control
rods in and out to control the number of neutrons emitted in the fission reaction.

Fortunately, nature has provided us with the solution to this problem. About
1% of the neutrons emitted in fission are delayed neutrons, produced not at the
instant of fission but somewhat later, following the radioactive decays of the
fission fragments. For example 93Rb, which might be produced in the fission of
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FIGURE 13.10 A typical sequence of processes in fission. A nucleus of 235U
absorbs a neutron and fissions; two prompt neutrons and one delayed neutron are
emitted. Following moderation, two neutrons cause new fissions and the third is
captured by 238U, resulting finally in 239Pu.

235U, beta decays with a half-life of 6 s to 93Sr, which is occasionally (in about
1% of decays) produced in a very high excited state that is unstable to neutron
emission. The neutron appears to emerge with the 6-s half-life of the beta decay.
This short delay time is enough to allow the control rods to be adjusted to maintain
a constant reaction rate. The reactor is designed so that the neutron replication
rate is just less than 1 for the prompt neutrons and exactly equal to 1 for prompt
+ delayed neutrons, which allows the control rods to work effectively.

Figure 13.10 summarizes some of the processes that can occur in fission. A
nucleus of 235U captures a neutron and fissions into two heavy fragments and two
prompt neutrons; one of the fragments emits a delayed neutron. The three neutrons
are slowed by passage through the moderator. Two of the neutrons cause new fis-
sions, and the third is captured by 238U, eventually to form fissionable 239Pu, which
can be recovered from the fuel by chemical means. Not shown in this diagram are
other processes that can occur: escape of neutrons through the surface of the reac-
tor, capture in the moderator, and fission of 238U by fast (unmoderated) neutrons.
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FIGURE 13.11 The components of a
pressurized-water reactor.

Fission Reactors
In a fission reactor, the heat produced in the fuel must be extracted to generate
electrical power. It must also be extracted for reasons of safety, because enough
heat is produced to melt the core and cause a serious accident. For this reason,
reactors contain an emergency core cooling system that is designed to prevent the
core from overheating if the heat extraction system should fail.

Extracting the fission energy from the reactor core can be accomplished through
several different techniques. In one design, called the pressurized water reactor
and illustrated in Figure 13.11, the heat is extracted in a two-step process. Water
circulates through the core under great pressure, to prevent its turning to steam.
This hot water then in turn heats a second water system, which actually delivers
steam to the turbine. The steam never enters the reactor core, so it does not become
radioactive, and thus there is no radioactive material in the vicinity of the turbine.

The power reactors in the United States are mostly the pressurized-water type
using enriched uranium as fuel and ordinary water as moderator. Canada also
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uses pressurized water reactors, but heavy water and natural uranium are used. In
a variation on this design, the pressurized water is replaced with a liquid metal
such as sodium, which has the advantages of remaining liquid at much higher
temperatures than water and of having a larger thermal conductivity than water.
Yet another design uses gas flow through the core to extract the heat; the hot
gas is then used to produce steam. Reactors in Great Britain are gas-cooled and
graphite-moderated.

There are yet other technological problems associated with nuclear power
that are the subjects of active debate and investigation. Some of the radioactive
isotopes among the fission fragments have very long half-lives, of the order of
many years. The radioactive waste from reactors must be stored in a manner that
prevents leakage of radioactive material into the biological environment. Many
people are concerned about the safety of nuclear reactors, not only regarding
proper design and operation, but also about their resistance to natural disasters
such as earthquakes or to acts of terrorism or sabotage.

In 1986, a graphite-moderated power reactor at Chernobyl in the former
U.S.S.R. suffered a serious accident due to the disabling of the core cooling
system, which is designed to extract the intense heat generated in the reactor
core. The resulting temperature rise ignited the graphite moderator and caused an
explosion of the reactor containment vessel, releasing radioactive fission products
and exposing the inhabitants of the region to life-threatening radiation doses. The
water-moderated power reactors used in the United States cannot suffer this kind
of accident.

The vulnerability of reactors to natural disasters was dramatically revealed by
the earthquake-triggered tsunami that struck Japan’s Fukushima reactor complex
in 2011. The flooding of the reactor buildings caused the pumps supplying cooling
water to fail. As a result, the reactor core overheated due to the radioactive decay of
the fission products, and a partial meltdown of the fuel rods occurred. The ensuing
release of radioactivity contaminated a wide region of the Japanese countryside.

Finally, as in all heat engines, the disposal of the exhaust or waste heat
(primarily from the steam recondensing to water) generates considerable thermal
pollution. Nuclear power plants are generally less efficient at converting fuel
to electrical power compared with plants that burn fossil fuels, because nuclear
plants operate at lower temperatures; while fossil-fuel plants can have efficiencies
as large as 40%, nuclear plants are generally in the range of 30 to 35%. A plant
operating at 30% efficiency produces 50% more thermal pollution than one that
generates the same amount of power at 40% efficiency.

A Naturally Occurring Fission Reactor
We conclude this section with a fascinating example of nature at work—the first
sustained nuclear fission reactor on Earth was not the one constructed by Fermi
in Chicago in 1942, but a natural fission reactor in Africa, which is believed
to have operated two billion years ago for a period of perhaps several hundred
thousand years. This reactor of course used naturally occurring uranium as a fuel
and naturally occurring water as a moderator.

It would not be possible to build such a reactor today, because the capture of
neutrons by the protons in water results in too few neutrons remaining to sustain
a chain reaction in uranium with only 0.7% of 235U. However, two billion years
ago, naturally occurring uranium contained a much larger fraction of 235U than
does present-day uranium. Both 235U and 238U are radioactive, but the half-life
of 235U is only about one-sixth as great as the half-life of 238U. If we go back in
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time about 2 × 109 y, which is half of one half-life of 238U, there was about 40%
more 238U than there is today, but there was 23 = 8 times as much 235U. Naturally
occurring uranium was then about 3% 235U, and, at such enrichments, ordinary
water can serve as an effective moderator.

A deposit of such uranium, in a large enough mass and with ground water
present to act as moderator, could have “gone critical” and begun to react. The
reaction could have been controlled by the boiling of the water—when enough
heat had been generated to evaporate some of the water, the reaction would slow
down and perhaps stop, because of the lack of a moderator. When the uranium
had cooled sufficiently to allow more liquid water to collect, the reactor would
have started up again. This cycle could in principle have continued indefinitely,
until enough 235U was used up or until geological changes resulted in the removal
of the water.

The discovery of this reactor followed the observation that the uranium that was
being mined from that region in Africa contained too little 235U. The discrepancy
was a very small one—the samples contained 0.7171% 235U, compared with the
usual 0.7202%—but it was enough to stimulate the curiosity of the researchers.
They guessed that the only mechanism that could result in the consumption of
235U was the nuclear fission process, and this guess was tested by searching in the
ore for stable isotopes that result from the radioactive decay of fission products.
When such isotopes were found, and in particular when they were found in
abundances very different from what would be expected from “natural” mineral
deposits, the existence of the natural reactor was confirmed.

13.5 FUSION

Energy may also be released in nuclear reactions in the process of fusion, in
which two light nuclei combine to form a heavier nucleus. The energy released
in this process is the excess binding energy of the heavy nucleus compared with
the lighter nuclei; from Figure 12.4, we see that this process can release energy as
long as the final nucleus is less massive than about A = 60.

For example, consider the reaction

2
1H1 + 2

1H1 → 3
1H2 + 1

1H0

The Q value is 4.0 MeV, and so this nuclear reaction liberates about 1 MeV per
nucleon, roughly the same as the fission reaction. This reaction can occur when
a beam of deuterons is accelerated on to a deuterium target. In order to observe
the reaction, we must get the incident and target deuterons close enough that the
nuclear force can produce the reaction; that is, we must overcome the mutual
Coulomb repulsion of the two particles. We can estimate this Coulomb repulsion
by calculating the electrostatic repulsion of two deuterons when they are just
touching. The radius of a deuteron is about 1.5 fm, and the electrostatic potential
energy of the two charges separated by about 3 fm is about 0.5 MeV. A deuteron
with 0.5 MeV of kinetic energy can overcome the Coulomb repulsion and initiate
a reaction in which 4.5 MeV of energy (0.5 MeV of incident kinetic energy plus
the 4-MeV Q value) is released.

Doing this reaction in a typical accelerator, in which the beam currents are
typically in the microampere range, would produce only a small amount of energy
(of the order of a few watts). To obtain significant amounts of energy from fusion,
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it is necessary to work with much larger quantities of deuterium. For example,
the fusion energy from the deuterium in a liter of ordinary water (which contains
0.015% D2O) would be equivalent to the chemical energy obtained from burning
about 300 liters of gasoline.

A more promising approach consists of heating deuterium gas to a high enough
temperature so that each atom of deuterium has about 0.25 MeV of thermal kinetic
energy (hence the name thermonuclear fusion). Then in a collision between two
deuterium atoms, the total of 0.5 MeV of kinetic energy would be sufficient to
overcome the Coulomb repulsion.

The difficulty with this approach is in heating the deuterium gas to a sufficient
temperature; from the expression 1

2 kT for the thermal kinetic energy of a
gas molecule, we can calculate that an energy of 0.25 MeV corresponds to a
temperature of the order of 109 K. Even assuming that barrier penetration (Section
5.6) would allow a reasonable probability to penetrate the Coulomb barrier at
lower kinetic energies (perhaps corresponding to one-tenth of the calculated
temperature), it is hard to imagine conditions under which these temperatures
can be created. However, such conditions do exist in the interiors of stars, which
produce their energy through fusion reactions. Fusion processes thus support all
life on Earth. Scientists and engineers who are seeking to develop fusion processes
for electrical power generation face the challenge of duplicating, for a brief instant
of time and on a much smaller scale, the conditions in the interior of stars.

Fusion Processes in Stars
In the basic fusion process that occurs in stars (including our Sun), four protons
combine to make one 4He. Stars are composed of ordinary hydrogen rather than
deuterium, so it is first necessary to convert the hydrogen to deuterium. This is
done according to the reaction

1
1H0 + 1

1H0 → 2
1H1 + e+ + ν

This process involves converting a proton to a neutron and is analogous to
the beta-decay processes discussed in Chapter 12. Once we have obtained 2H
(deuterium), the next reaction that can occur is

2
1H1 + 1

1H0 → 3
2He1 + γ

followed by

3
2He1 + 3

2He1 → 4
2He2 + 21

1H0

Note that the first two reactions must occur twice in order to produce the two 3He
we need for the third reaction; see the schematic diagram of Figure 13.12. We can
write the net process as

41
1H0 → 4

2He2 + 2e+ + 2ν + 2γ

3He

4He

3He

p
e+ ν

e+ ν

γ

γ
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FIGURE 13.12 Schematic diagram of
processes in the fusion of protons to
form helium.

For the calculation of the Q value in terms of atomic masses, four electrons
must be added to the left side to make four neutral hydrogen atoms. To balance
the reaction we must also add four electrons to the right side; two of these are
associated with the 4He atom, and the other two can be combined with the two
positrons according to the reaction e+ + e− → 2γ , so that the additional gamma
rays are available as energy from the reaction. The two positrons disappear in this
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process; the only masses remaining are four hydrogen atoms and the one helium
atom, and so

Q = (mi − mf )c
2 = [4m(1H) − m(4He)]c2

= (4 × 1.007825 u − 4.002603 u)(931.5 MeV/u) = 26.7 MeV

Each fusion reaction liberates about 26.7 MeV of energy.
At what rate do these reactions occur in the Sun? About 1.4 × 103 W of

solar power is incident on each square meter of the Earth’s surface. At our
distance of about 1.5 × 1011 m from the Sun, its energy is spread over a sphere
of area 4πr2 = 28 × 1022 m2, and thus the power output from the Sun is about
4 × 1026 W, which corresponds to about 2 × 1039 MeV/s. Each fusion reaction
liberates about 26 MeV, and thus there must be about 1038 fusion reactions
per second, consuming about 4 × 1038 protons per second. (Don’t worry about
running out of protons—the Sun’s mass is about 2 × 1030 kg, which corresponds
to about 1057 protons, enough to burn for the next few billion years.)

The sequence of reactions described above is called the proton-proton cycle
and probably represents the source of the Sun’s energy. However, it is probably
not the primary source of fusion energy in many stars, because the first reaction
(in which two protons combine to form a deuteron), which is similar to beta decay,
takes place only on a very long time scale (as we discuss in the next chapter),
and is therefore very unlikely to occur. A more likely sequence of reactions is the
carbon cycle:

12C + 1H → 13N + γ

13N → 13C + e+ + ν

13C + 1H → 14N + γ

14N + 1H → 15O + γ

15O → 15N + e+ + ν

15N + 1H → 12C + 4He

A symbolic diagram of the process is shown in Figure 13.13. Notice that the
12C plays the role of catalyst; we neither produce nor consume any 12C in these
reactions, but the presence of the carbon permits this sequence of reactions to take
place at a much greater rate than the previously discussed proton-proton cycle.
The net process is still described by 41H → 4He, and of course the Q value is
the same. The Coulomb repulsion between H and C is larger than the Coulomb
repulsion between two H nuclei, so more thermal energy and a correspondingly
higher temperature are needed for the carbon cycle. The carbon cycle probably
becomes important at a temperature of about 20 × 106 K, while the Sun’s interior
temperature is “only” 15 × 106 K.

12C 13N

p p p p

e+ e+

13C 14N 15O 15N 12C

4Heγ γ γν ν

FIGURE 13.13 Sequence of events in the carbon cycle.
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Fusion Reactors

For a controlled thermonuclear reactor, several reactions could be used, such as

2H + 2H → 3H + 1H Q = 4.0 MeV
2H + 2H → 3He + n Q = 3.3 MeV
2H + 3H → 4He + n Q = 17.6 MeV

The third reaction, known as the D-T (deuterium-tritium) reaction, has the largest
energy release and is perhaps the best candidate for a fusion reactor. When
deuterium gas (or a deuterium-tritium mixture) is heated to a high temperature,
the atoms become ionized; the resulting gas of hot, ionized particles is called
a plasma. To increase the probability of collisions between the ions that would
result in fusion, there are three requirements for the plasma: (1) a high density n,
so that the particles have a high probability of collision; (2) a high temperature T ,
in the range of 108 K, which increases the probability for the particles to penetrate
their mutual Coulomb barrier; and (3) a long confinement time τ , during which
the high temperature and density must be maintained. The first and third of these
parameters can be combined using some fairly general considerations based on
the power needed to heat the plasma (which is proportional to the density n) and
the power derived from fusions in the plasma (which is proportional to n2τ ). For
the fusion power to exceed the input power, the product nτ must exceed a certain
minimum value; this condition is

nτ ≥ 1020 s · m−3 (13.15)

which is known as Lawson’s criterion. The capability of a plasma to produce
energy through fusion can be characterized by the value of its Lawson’s parameter
nτ and its temperature T .

The electrical repulsion of the ionized particles in a plasma tends to force the
ions away from one another and toward the walls of their container, where they
would lose energy in collisions with the cooler atoms of the walls. To maintain
the density and temperature, two techniques are under development. In magnetic
confinement, intense magnetic fields are used to trap the motion of the particles,
and in inertial confinement, the plasma is heated and compressed so quickly that
fusion occurs before the fuel can expand and cool.

Field
coils

Magnetic
field lines

FIGURE 13.14 The toroidal geome-
try of plasma confinement. The ion-
ized atoms circulate around the ring,
trapped by the magnetic field lines. The
coilsproduceamagneticfieldalong the
axisof thetoroid(dashedline).Another
field component is produced by a cur-
rent along the axis in the plasma. The
two components of the field produce
the helical field lines shown.

Magnetic confinement A magnetic field can confine a plasma because the
charged particles spiral around the magnetic field lines. Figure 13.14 shows
a toroidal magnetic confinement geometry. There are two contributions to the
magnetic field: One is along the toroid axis and another is around the axis. The
combination of these two fields gives a helical field along the toroid axis, and
the charged particles are confined as they spiral about the field lines. This type of
device is a called a tokamak (from the Russian acronym for “toroidal magnetic
chamber”). A current passed through the plasma serves both to heat the plasma
and to create one of the magnetic field components. Figure 13.15 shows the
Tokamak Fusion Test Reactor at Princeton University, which operated from
1982 to 1997 and achieved an ion temperature of 5.1 × 108 K and a fusion power
level of 10.7 MW. This device came very close to reaching Lawson’s criterion
with a plasma density of n = 1020 particles/m3 (five orders of magnitude smaller
than an ordinary gas) and a confinement time of τ = 0.2 s.
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FIGURE 13.15 The inside of the Tokamak Fusion Test Reactor. The technician
at the left gives a measure of the size of the toroidal chamber. (Dietmar
Krause/Princeton Plasma Physics Laboratory.)

The development of magnetic confinement devices has produced a steady
march toward achieving a self-sustaining fusion reactor by increasing the values
of both Lawson’s parameter nτ and the temperature, as illustrated in Figure 13.16.
Devices have closely approached “breakeven,” where the power produced by
fusion reactions equals the power necessary to heat the plasma. A true self-
sustaining reactor requires the attainment of “ignition,” where the power produced
by fusion reactions can maintain the reactor with no external source of energy.
The next generation of fusion reactor development is the ITER (originally, the
International Thermonuclear Experimental Reactor), currently under construction
in France as a collaboration among many nations and expected to be operational in
the year 2016. The ITER is planned to produce fusion power levels that are 5–10
times what is necessary to heat the plasma (that is, 5–10 times the “breakeven”
condition).
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FIGURE 13.16 The approach to
breakeven and ignition in fusion reac-
tors, shown as a plot of Lawson’s
parameter against temperature.

Inertial confinement Inertial confinement takes the opposite approach by
compressing the fuel to high densities for very short confinement times. In one
method, which is illustrated in Figure 13.17, a small pellet of D-T fuel is struck
simultaneously from many directions by intense laser beams that first vaporize
the pellet and convert it to a plasma, and then heat and compress it to the point
at which fusion can occur. The laser pulses are very short, typically lasting only
about 1 ns, and thus according to Lawson’s criterion the density must exceed 1029

particles/m3. However, because of inefficiencies of the lasers and other losses a
self-sustaining laser fusion reactor must exceed this minimum by perhaps 2–3
orders of magnitude. Figure 13.18 shows the target chamber of the National
Ignition Facility at the Lawrence Livermore National Laboratory. Operating for
the first time in 2010, it is designed so that a 2-mm diameter pellet of D-T is
struck simultaneously by 192 laser beams that deliver an energy of 1 MJ in a pulse
lasting a few ns, which is expected to compress the pellet to a central density that
is 100 times that of lead.
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Mirrors

FIGURE 13.17 Inertial confinement fusion initiated by a laser.

FIGURE 13.18 Workers inside the 10-m-diameter target chamber where
192 laser beams (which enter the chamber through the circular ports) strike
the target that is held by the positioning arm at the right. (Courtesy Lawrence
Livermore National Laboratory.)

In the D-T fusion reaction, most of the energy is carried by the neutrons
(recall that in the fission reaction only a small fraction of the energy went to the
neutrons). This presents some difficult problems for the recovery of the energy and
its conversion into electrical power. One possibility for a fusion reactor design is
shown in Figure 13.19. The reaction area is surrounded by lithium, which captures
neutrons by the reaction

6
3Li3 + n → 4

2He2 + 3
1H2

The kinetic energies of the reaction products are rapidly dissipated as heat, and
the thermal energy of the liquid lithium can be used to convert water to steam in
order to generate electricity. This reaction has the added advantage of producing
tritium (3H), which is needed as a fuel for the fusion reactor.

One difficulty with the D-T fusion process is the large number of neutrons
released in the reactions. Although fusion reactors will not produce the radioactive
wastes that fission reactors do, the neutrons are sure to make radioactive the
immediate area surrounding the reactor, and the structural damage to materials
resulting from exposure to large fluxes of neutrons may weaken critical parts of
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FIGURE 13.19 Design of a fusion reactor.

the reactor vessel. Here once again the lithium is helpful, because a 1-m thickness
of lithium should be sufficient to stop essentially all of the neutrons.

Fusion energy is the subject of vigorous research in many laboratories in the
United States and around the world; the technological problems are being attacked
with a variety of methods, and researchers are hopeful that solutions can be found
during the next 20 years so that fusion can help to supply our electrical power needs.

13.6 NUCLEOSYNTHESIS

After a star’s hydrogen has been converted to helium through fusion reactions,
gravitational collapse can occur that raises the temperature of the core of the star
from about 107 K to about 108 K. At this point there is enough thermal kinetic
energy to overcome the Coulomb repulsion of the helium nuclei, and helium fusion
can begin. In this process three 4He are converted into 12C by the two-step process

4He + 4He → 8Be
8Be + 4He → 12C

The first reaction is endothermic, with a Q value of 92 keV. The nucleus 8Be
is unstable and decays back into two alpha particles in a time of the order of
10−16 s. Even so, the Boltzmann factor e−�E/kT suggests that at 108 K there will
be a small concentration of 8Be. The second reaction has a particularly large
cross section; in spite of the rapid breakup of 8Be, there is still a good chance
to form 12C. The net Q value for the process is 7.3 MeV, or about 0.6 MeV per
nucleon, much less than the 6.7 MeV per nucleon produced by hydrogen burning.

Once enough 12C has formed in the core, other alpha particle reactions become
possible, such as

12C + 4He → 16O
16O + 4He → 20Ne

20Ne + 4He → 24 Mg
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Each of these reactions is exothermic, releasing a few MeV of energy and
contributing to the star’s energy production. At still higher temperatures (109 K)
carbon burning and oxygen burning begin:

12C + 12C → 20Ne + 4He
16O + 16O → 28Si + 4He

Eventually 56Fe is reached, at which point no further energy is gained by fusion
(Figure 12.4).

If this explanation of the formation of elements is correct, we expect the
abundances of the elements to have the following properties:

1. Large relative abundances of the light, even-Z elements; small relative
abundances of odd-Z elements.

2. Little or none of the elements between He and C (Li, Be, B), which are not
produced in these reactions.

3. Large relative abundance of Fe, the end product of the fusion cycle.

Figure 13.20 shows the relative abundances of the light elements in the solar
system, and they are in agreement with all of the three above expectations. Each
even-Z element is 10 to 100 times more abundant than its odd-Z neighbors; there
is a prominent peak at Fe; the heavy elements with Z > 30 combined are less
abundant than every element but one in the range C to Zn; and the three elements
Li, Be, B are far less abundant than the elements in the range C to Zn.

The light odd-Z elements can be produced by alternative reactions among the
fusion products, for example:

12C + 12C → 23Na + 1H
16O + 16O → 31P + 1H

The abundance of nitrogen is nearly equal to that of its neighbors C and O,
which are the most abundant of elements beyond H and He; nitrogen has a greater
abundance than any other odd-Z element shown, and greater than all even-Z
elements with Z > 8. The formation of nitrogen must therefore be a relatively
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FIGURE 13.20 Relative abundances (by weight) of the elements beyond helium in the
solar system.
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common process in stars. The element B is rare, so alpha particle reactions are of
no help in forming nitrogen. The most likely sources of N are

12C + 1H → 13N + γ 16O + 1H → 17F + γ

13N → 13C + e+ + ν and 17F → 17O + e+ + ν

13C + 1H → 14N + γ 17O + 1H → 14N + 4He

The stable isotopes 13C and 17O are found in natural carbon and oxygen with
abundances of 1.1% and 0.04%, which suggests that these reactions do indeed
take place.

The production of the elements beyond iron requires the presence of neutrons,
which are not produced in the reactions we have listed so far, because neutrons
are likely to be emitted only in reactions with nuclei that have an excess of
neutrons. If enough of the heavier isotopes, such as 13C, 17O, or 21Ne, are formed,
the following reactions can produce neutrons:

13C + 4He → 16O + n
17O + 4He → 20Ne + n

21Ne + 4He → 24 Mg + n

How are the heavy elements built up by neutron capture? Consider the effect
of neutron capture on 56Fe:

56Fe + n → 57Fe (stable)
57Fe + n → 58Fe (stable)
58Fe + n → 59Fe (t1/2 = 45 d)

What happens next depends on the number of available neutrons. If that number
is small, the chances of 59Fe encountering a neutron before it decays to 59Co are
small, and the process might continue as follows:

59Fe → 59Co + e− + ν

59Co + n → 60Co (t1/2 = 5 y)

60Co → 60Ni + e− + ν

On the other hand, if the number of neutrons is very large, a different sequence
might result:

59Fe + n → 60Fe (t1/2 = 3 × 105 y)

60Fe + n → 61Fe (t1/2 = 6 m)

61Fe → 61Co + e− + ν

61Co → 61Ni + e− + ν

If the density of neutrons is so low that the chance of encountering a neutron is,
on the average, less than once every 45 days, the first process ought to dominate,
with the production of 60Ni. If the chance of encountering a neutron is more
like once every few minutes, the second process should dominate, and no 60Ni is
produced.

The first type of process, which occurs slowly and allows the nuclei time to
beta decay, is known as the s process (s for slow); the second process occurs very
rapidly and is known as the r process (r for rapid).
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Figure 13.21 illustrates how the r and s processes can proceed from 56Fe. The
s process never strays very far from the region of the stable nuclei, while the r
process can produce many nuclei that have a large excess of neutrons. The larger
the excess of neutrons, the shorter is the half-life of these nuclei. Eventually the
half-life becomes so short that no neutron is captured before the beta decay occurs
to the next higher Z. All nuclei produced in the r process will eventually decay
toward the stable nuclei, generally moving by beta decays along the diagonal line
of constant mass number A.

Some stable nuclei are produced only through the s process, others are produced
only through the r process, and some may be produced through both processes.
Often the natural abundance of the isotopes of an element can suggest the relative
roles of these two processes. In Figure 13.21, you can see that the stable isotope
70Zn cannot be produced in the s process, because the half-life of 69Zn is too short
(56 min). Other isotopes for which the r process is important are 76Ge, 82Se, 86Kr,
96Zr, and 122Sn. The isotope 64Ni can be produced either through the s process
(as shown in Figure 13.21) or through the r process (such as through beta decays
beginning with 64Fe). On the other hand, 64Zn (the most abundant isotope of zinc)
is produced only through the s process, because r-process beta decays proceeding
along the A = 64 line are stopped at stable 64Ni and cannot reach 64Zn.

The heaviest element that can be built up out of s-process neutron captures
is 209Bi; the half-lives of the isotopes beyond 209Bi are too short to allow the s
process to continue. The presence in nature of heavier elements such as thorium
or uranium suggests that the r process must operate in this region as well.

The r process most likely occurs during supernova explosions, following the
breakdown and implosion of a star that has used up its fusion reserves. In a
very short time, lasting of the order of seconds, the star implodes, produces an
enormous flux of neutrons (perhaps 1032 n/cm2/s), and builds up all elements to
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about A = 260. When the final explosion occurs, these elements are hurled out
into space, to become part of new star systems. The heavy atoms of which the
Earth is made may have been produced in such an explosion.

13.7 APPLICATIONS OF NUCLEAR PHYSICS

In this chapter, we have discussed how fission and fusion reactions can be used
to generate electrical power, and in the previous chapter we discussed how the
radioactive decay of various isotopes can be used to date the historical origin of
material containing those isotopes. These are but a few of the many ways that
nuclear decays and reactions can be applied to the solution of practical problems.
In this section we discuss briefly some other applications of the techniques of
nuclear physics.

Neutron Activation Analysis

Nearly every radioactive isotope emits characteristic gamma rays, and many
chemical elements can be identified by their gamma ray spectra. For example,
when 59Co (the only stable isotope of cobalt) is placed in a flux of neutrons (such
as is found near the core of a reactor), neutron absorption results in the production
of the radioactive isotope 60Co, which beta decays with a half-life of 5.27 years.
Following the beta decay, 60Ni emits two gamma rays of energies 1.17 MeV and
1.33 MeV and of equal intensity. If we place in a flux of neutrons a material of
unknown composition, and if we observe, following the neutron bombardment,
two gamma rays of equal intensity and energies 1.17 MeV and 1.33 MeV, it is
a safe bet that the unknown sample contained cobalt. In fact, from the rate of
gamma emission we could deduce exactly how much cobalt the material contains,
assuming that we know the neutron flux and the neutron capture cross section of
59Co. This technique is known as neutron activation analysis, and has been used
in many applications in which the elements are present in such small quantities
that chemical identification is not practical. Typically, neutron activation analysis
can be used to identify elements in quantities of the order of 10−9 g, and sensitivity
down to 10−12 g is often possible.
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FIGURE 13.22 Gamma-ray spectrum
following neutron activation of a sam-
ple of human hair. The sample shows
traces of mercury, gold, zinc, cop-
per,arsenic,antimony,andmanganese.
[From D. DeSoete et al., Neutron Acti-
vation Analysis (Wiley Interscience,
1972).]

Such a sensitive and precise technique finds application in a variety of areas, in
which the chemical composition must be determined for samples that are available
only in microscopic quantities or that must be analyzed in a nondestructive manner.
For example, the chemical composition of various types of pottery can help us
trace the geographical origin of the clay from which they were made; such
analyses of pottery shards can trace the trading routes of prehistoric people.
Art forgeries can be detected by a knowledge of the chemical composition of
paints, because techniques for producing pigments have changed over the last
four centuries with corresponding changes in the level of impurities in paints. The
chemical analysis of tiny quantities of material such as paint, gunshot residues,
soil, or hair can provide important evidence in criminal investigations. Neutron
activation analysis of samples of the hair of such historical figures as Napoleon
or Newton has revealed the chemicals to which they were exposed centuries ago.
An example of a neutron activation analysis study of a sample of hair is shown in
Figure 13.22.
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Medical Radiation Physics
One of the most important applications of nuclear physics has been in medicine,
for both diagnostic and therapeutic purposes. The use of X rays for producing
images for medical diagnosis is well known, but X rays are of limited value. They
show distinct and detailed images of bones, but they are generally less useful
in making images of soft tissue. Radioactive isotopes can be introduced into the
body in chemical forms that have an affinity for certain organs, such as bone
or the thyroid gland. A sensitive detector (called a “gamma-ray camera”) can
observe the radiations from the isotopes that are concentrated in the organ and can
produce an image that shows how the activity is distributed in the patient. These
detectors are capable of determining where each gamma-ray photon originates
in the patient. Figure 13.23 shows an image of the brain, taken after the patient
was injected with the radioactive isotope 99Tc (t1/2 = 6 h). The images clearly
show an area of the brain where the activity has concentrated. Ordinarily the brain
does not absorb impurities from the blood, so such concentrations often indicate
a tumor or other abnormality.

(a)

(b)

FIGURE 13.23 Scintillation camera
image of the brain, following intra-
venous injection of 20 mCi of 99mTc.
(a) Side view, with the patient’s face
to the left. (b) Back view. The bright
circular spot shows concentration of
blood in a lesion, possibly a tumor.
Other bright areas show the scalp and
the major veins.

Another technique that reveals a wealth of information is positron emission
tomography (PET), in which the patient is injected with a positron-emitting isotope
that is readily absorbed by the body. Examples of isotopes used are 15O (t1/2 =
2 min), 13N (t1/2 = 10 min), 11C (t1/2 = 20 min), and 18F (t1/2 = 110 min). These
isotopes are produced with a cyclotron, and because of the short half-lives the
cyclotron must be present at the site of the diagnostic facility. When a positron
emitter decays, the positron quickly annihilates with an electron and produces
two 511-keV gamma rays that travel in opposite directions. By surrounding the
patient with a ring of detectors, it is possible to determine exactly where the decay
occurred, and from a large number of such events, the physician can produce an
image that reconstructs the distribution of the radioisotope in the patient. One
advantage of the PET scan over X-ray techniques such as the CAT (computerized
axial tomography) scan is that it can produce a dynamic image—changes in the
patient during the measuring time can be observed. Figure 13.24 shows a brain
scan of a patient who was injected with glucose labeled with 18F. Active areas of
the brain metabolize glucose more rapidly, and so they become more concentrated
with 18F, allowing medical workers to observe regions of the brain associated
with different mental activities.

Radiation therapy takes advantage of the effect of radiations in destroying
unwanted tissue in the body, such as a cancerous growth or an overactive thyroid
gland. The effect of the passage of radiation through matter is often to ionize the

FIGURE 13.24 PET scan showing different areas of the brain that are active
when either hearing words or seeing words.
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atoms. The ionized atoms can then participate in chemical reactions that lead to
their incorporation into molecules and subsequent alteration of their biological
function, possibly the destruction of a cell or the modification of its genetic
material. For example, an overactive thyroid gland is often treated by giving the
patient radioactive 131I, which collects in the thyroid. The beta emissions from
this isotope damage the thyroid cells and ultimately lead to their destruction.
Certain cancers are treated by implanting needles or wires containing radium or
other radioactive substances. The decays of these radioisotopes cause localized
damage to the cancerous cells.

Rosalyn Yalow (1921–2011, United
States). After receiving her Ph.D. in
nuclear physics, she researched the
medical applications of radioactive
isotopes. Yalow developed the tech-
nique of radioimmunoassay, which
uses radioactive tracers to measure
small amounts of substances in the
blood or other fluids. Her develop-
ment of this technique was recognized
with the award of the Nobel Prize in
medicine in 1977.

Other cancers can be treated using beams of particles that cause nuclear
reactions within the body at the location of the tumor. Pions and neutrons are
used for this purpose. The absorption of a pion or a neutron by a nucleus causes
a nuclear reaction, and the subsequent emission of particles or decays by the
reaction products again causes local damage that is concentrated at the site of the
tumor, inflicting maximum damage to the tumor and minimum damage to the
surrounding healthy tissue.

Alpha-Scattering Applications
Radioactive sources emitting alpha particles have been used in a variety of
applications. Most of these take advantage of the persistence of radioactive
decay—the decays can be depended upon to occur at a fixed rate in any location.

Alpha particles from radioactive decay can be absorbed and their energy
converted into another form, such as electrical power obtained through
thermoelectric conversion. The power levels are not large (of the order of 1 W per
gram of material; see Problem 31), but they are sufficient to power many devices,
from cardiac pacemakers to the Voyager spacecraft, which photographed Jupiter,
Saturn, and Uranus.

Scattering of alpha particles emitted by a radioactive source is the basis of
operation of ionization-type smoke detectors; alpha particles from the decay of
241Am are scattered by the ionized atoms that result from combustion. When the
smoke detector senses a decrease in the rate at which alphas are counted (due to
some of them being scattered away from the detector), the alarm is triggered.

Other applications of alpha-particle scattering are used for materials analysis.
In Rutherford backscattering, the analysis uses the reduction in energy of an alpha
particle that is scattered through an angle of 180◦. Although our discussion of
Rutherford scattering in Chapter 6 assumed that the target nucleus was infinitely
heavy and thus acquired no energy in the scattering, in practice a small amount of
energy is given even to a heavy nucleus. By allowing the target nucleus to recoil,
we can find the loss in energy �K of an alpha particle of kinetic energy K that
scatters through 180◦ (see Problem 29):

�K = K

[
4m/M

(1 + m/M)2

]
(13.16)

where m is the mass of the alpha particle and M is the mass of the target nucleus.
For a heavy nucleus (m/M = 0.02), the loss in energy is of order 0.5 MeV,
which is easily measurable. Figure 13.25 shows a sample of the spectrum of
alpha particles backscattered from a thin foil containing copper, silver, and gold.
Note the Z2 dependence of the scattering probability that characterizes Rutherford
scattering (see Eq. 6.14), and also note the sensitivity of the technique even to the
two naturally occurring isotopes of copper. (However, the two isotopes of silver
cannot be resolved.) The Surveyor spacecraft that landed on the Moon and the
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FIGURE 13.25 Backscattering spectrum of 2.5-MeV α particles from a thin
film of copper, silver, and gold. The dashed line shows the Z2 behavior of the
cross section expected from the Rutherford formula. Note the appearance of the
two isotopes of copper. [From M.-A. Nicolet, J. W. Mayer, and I. V. Mitchell,
Science 177, 841 (1972). Copyright ©1972 by the AAAS.]

Viking landers on Mars carried Rutherford backscattering experiments to analyze
the chemical composition of the surface of those bodies.

Superheavy Elements
The known atoms beyond uranium (Z = 92) are all radioactive, with half-lives
short compared with the age of the Earth. They are therefore not present in
terrestrial matter, but they can be produced in the laboratory. The production
process for the series of elements beginning with neptunium (Z = 93), called
transuranic elements, follows the same process outlined in Section 13.6: neutron
capture followed by beta decay. Using similar techniques researchers have
produced elements up to Z = 100 (fermium). Beyond this point, too few atoms
are produced for neutron capture to reveal the presence of the next element.
Instead, reactions with accelerated charged particles are used.

Many of the elements in this series have half-lives of only minutes or seconds,
and thus the production and identification of these elements requires painstaking
experimental efforts—the isotopes are often produced in quantities of a few
atoms! Although most of these elements have not been produced in sufficient
quantity to study their chemical properties, it is expected that their place in the
periodic table will be as shown in Figure 13.26, up to the inert gas with Z = 118.
All elements up to 118 have been observed (although names for elements beyond
Z = 112 have not yet been chosen—the symbols shown in Figure 13.26 represent
placeholder names).

The extreme instability of these transuranic elements results from the increased
Coulomb repulsion of the nuclear protons as Z increases; these elements decay
by alpha decay or by spontaneous fission. However, strong theoretical evidence
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FIGURE 13.26 New massive elements in the periodic table.

suggests that elements around Z = 114, N = 184 should be stable against alpha
decay, beta decay, and spontaneous fission. This region around element 114 is
often called the “island of stability.”

Although the production and observation of nuclei of such superheavy elements
are not likely to have any immediate applications, their study would be of great
interest to test our understanding of the ordering of the periodic table, and the
comparison of their chemical and physical properties with those of the 5d and 6p
elements would be a test of our ordering of the elements. Many of the artificially
produced transuranic elements have already found applications in research and
technology. The alpha decays of 238Pu and 239Pu have been used as power sources
for spacecraft, and 241Am serves as an alpha source for smoke detectors. The
radioisotope 254Cf decays by spontaneous fission; the neutrons released in the
decay have many applications, including medical treatment and materials analysis.

Chapter Summary

Section

Reaction rate R = σNI0/S or
R = φσN = φσmNA/M

13.1

Production of
activity in
reaction

a(t) = λN = R(1 − e−λt)
∼= Rλt (t 	 t1/2)

13.2

Reaction
Q value
(x + X →
y + Y )

Q = (mi − mf )c
2

= [m(x) + m(X ) − m(y) − m(Y )]c2

= Ky + KY − Kx

13.3

Threshold
kinetic energy

Kth = −Q[1 + m(x)/m(X )] 13.3

Section
235U fission
reaction
(sample)

235
92U143 + n →

93
37Rb56 + 141

55Cs86 + 2n

13.4

D-T fusion
reaction

2H + 3H → 4He + n 13.5

Lawson’s
criterion

nτ ≥ 1020 s ·m−3 13.5

Alpha
backscattering

�K = K

[
4m/M

(1 + m/M)2

]
13.7



Problems 437

Questions

1. The cross sections for reactions induced by protons gener-
ally increase as the kinetic energy of the proton increases,
while cross sections for neutron-induced reactions gener-
ally decrease with increasing neutron energy. Explain this
behavior.

2. Cross sections for reactions induced by thermal neutrons
(K ∼ kT , where T is room temperature) are often several
orders of magnitude larger than cross sections for the same
reaction induced by fast neutrons (K ∼ MeV). Justify this
difference by comparing the time spent in the vicinity of a
target nucleus by a thermal neutron and a fast neutron.

3. When two nuclei approach one another in a nuclear reac-
tion, there is a Coulomb repulsion between them. Does this
potential energy affect the kinematics of the reaction? Does
it affect the cross section?

4. The most abundant component of our atmosphere is 14N.
Assuming that cosmic rays supply sufficient high-energy
protons and neutrons, explain how the radioactive isotopes
14C and 3H can be formed.

5. Consider the photodisintegration reaction A + γ → B + C.
In terms of the binding energies of A, B, and C, what are the
requirements for this reaction? Would you expect to observe
photodisintegration more readily for light nuclei (A < 56)

or heavy nuclei (A > 56)?
6. Would you expect to observe the radiative capture of an

alpha particle X + α → X ′ + γ for heavy nuclei?
7. In what sense is photodisintegration (see Question 5) the

inverse of radiative capture (see Question 6)? How are the
photon energies related?

8. Comment on the following statement: The fission reaction
is useful for energy production because of the large kinetic
energies given to the neutrons emitted following fission.

9. 238U is fissionable, but only with neutrons in the MeV range.
Explain why 238U is not a suitable reactor fuel.

10. What is the difference between a slow neutron and a delayed
neutron? Between a fast neutron and a prompt neutron?

11. In a typical fission reaction, which fragment (heavier or
lighter) has the larger kinetic energy? The larger momen-
tum? The larger speed?

12. When charged particles travel in a medium faster than light
travels in that medium, Cerenkov radiation is emitted. This
is the origin of the blue glow of the water that surrounds a
reactor core. What might be the identity of these charged

particles from a reactor? What velocities and kinetic energies
do they need to produce Cerenkov radiation? (The index of
refraction of water is 1.33.)

13. In general, would you expect fission fragments to decay by
positive or negative beta decay? Why?

14. Among the fission products that build up in reactor fuel
elements is xenon, which has an extremely large neutron
capture cross section (see Section 13.1). What effect does
this buildup have on the operation of the reactor?

15. Helium has virtually no neutron absorption cross section.
Would helium be a better reactor moderator than carbon,
which has a small but nonzero cross section?

16. Estimate the number of fissions per second that must occur
in a 1000-MW power plant, assuming a 30% efficiency of
energy conversion.

17. The fission cross section for 235U for slow neutrons is about
106 times the fission cross section of 238U for slow neutrons,
yet for fast neutrons the fission cross sections of 235U and
238U are roughly the same. Explain this effect.

18. Consider two fragments of uranium fission with atomic
numbers Z and 92 − Z. Estimating their mass numbers as
2.5 times their atomic numbers, find an expression for the
Coulomb potential energy of the two fragments when they
are just touching, and show that this expression is maxi-
mized when the two fragments are identical. Why then is
the fission fragment mass distribution, Figure 13.9, not a
maximum at A = 118?

19. Assume that 235U splits into two fragments with mass num-
bers of 90 and 145, with each fragment having roughly
the same ratio of Z/A as 235U. On this basis, explain why
neutrons are emitted in fission.

20. Why is it necessary to convert a proton to a neutron in the
first step of the proton-proton fusion cycle? Why can’t two
protons fuse directly?

21. Explain why a fusion reactor requires a high particle density,
a high temperature, and a long confinement time.

22. In the argument leading to Lawson’s criterion, Eq. 13.15, it
was mentioned that the power necessary to heat the plasma
is proportional to the particle density n, while the power
obtained from fusion is proportional to n2. Explain these
two proportionalities.

23. Why do radioactive decay power sources use alpha emitters
rather than beta emitters?

Problems

13.1 Types of Nuclear Reactions

1. Fill in the missing particle in these reactions:

(a) 4He + 14N → 17O +
(b) 9Be + 4He → 12C +

(c) 27Al + 4He → n +
(d) 12C + → 13N + n

2. In a certain nuclear reaction, outgoing protons are observed
with energies 16.2 MeV, 14.8 MeV, 11.6 MeV, 8.9 MeV, and
6.7 MeV. No energies higher than 16.2 MeV are observed.
Construct a level scheme of the product nucleus.
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3. In order to determine the cross section for neutron capture,
you are irradiating a thin gold foil, in the form of a circular
disk of diameter 3.0 mm and thickness 1.81 μm, with neu-
trons to produce the reaction n + 197Au → 198Au + γ . By
observing the outgoing gamma-ray photons in a detector,
you determine that the gold decays at a rate of 5.37 × 106 per
second. From an independent measurement, you have deter-
mined the neutron flux to be 7.25 × 1010 neutrons/cm2/s.
What value do you deduce for the cross section for this
reaction?

4. The element cobalt is commonly used for measuring the
intensity of neutron beams through the reaction n + 59Co →
60Co + γ . By observing the radioactive decay of 60Co, it is
possible to deduce the rate at which it is produced in the
reaction. The cross section for this reaction is 37.0 b. A
thin disk of Co-Al alloy has a diameter of 1.00 cm and a
mass of 46 mg; the alloy contains 0.44% Co by weight. With
neutrons spread uniformly over the surface of the foil, it is
concluded that 60Co is produced at the rate of 1.07 × 1012

per second. What is the rate at which neutrons strike the
target?

5. A beam of 20.0 μA of protons is incident on 2.0 cm2 of a
target of 107Ag of thickness 4.5 μm producing the reaction
p + 107Ag → 105Cd + 3n. Neutrons are observed at a rate
of 8.5 × 106 per second. What is the cross section for this
reaction at this proton energy?

6. A beam of alpha particles is incident on a target of 63Cu,
resulting in the reaction α + 63Cu → 66 Ga + n. Assume the
cross section for the particular alpha energy to be 1.25 b.
The target is in the form of a foil, 2.5 μm thick. The beam
has a circular cross section of diameter 0.50 cm and a current
of 7.5 μA. Find the rate of neutron emission.

13.2 Radioisotope Production in Nuclear Reactions

7. A radioactive isotope of half-life t1/2 is produced in a nuclear
reaction. What fraction of the maximum possible activity
is produced in an irradiation time of (a) t1/2; (b) 2t1/2;
(c) 4t1/2?

8. List five nuclear reactions, consisting of a light stable projec-
tile nucleus (mass 4 or less) incident on a heavy stable target
nucleus, that can produce the radioactive nucleus 56Co.

9. Show that Eq. 13.5 is a solution to Eq. 13.4.
10. The radioisotope 15O (t1/2 = 122 s) is used to measure res-

piratory function. Patients inhale the gas, which is made
by irradiating nitrogen gas with deuterons (2H). Consider a
cubical cell measuring 1.24 cm on each edge, which holds
nitrogen gas at a pressure of 2.25 atm and a temperature of
293 K. One face of the cube is uniformly irradiated with a
deuteron beam having a current of 2.05 A. At the chosen
deuteron energy, the reaction cross section is 0.21 b. (a) At
what rate is 15O produced in the cell? (b) After an irradiation
lasting for 60.0 s, what is the activity of 15O in the cell?

11. Neutron capture in sodium occurs with a cross section of
0.53 b and leads to radioactive 24Na (t1/2 = 15 h). What is

the activity that results when 1.0 μg of Na is placed in a
neutron flux of 2.5 × 1013 neutrons/cm2/s for 4.0 h?

13.3 Low-Energy Reaction Kinematics

12. Derive Eq. 13.14 from Eq. 13.13.
13. Find the Q value of the reactions:

(a) p + 55Mn → 54Fe + 2n
(b) 3He + 40Ar → 41K + 2H

14. Find the Q value of the reactions:
(a) 6Li + n → 3H + 4He
(b) p + 2H → 2p + n
(c) 7Li + 2H → 8Be + n

15. In the reaction 2H + 3He → p + 4He, deuterons of energy
5.000 MeV are incident on 3He at rest. Both the proton and
the alpha particle are observed to travel along the same
direction as the incident deuteron. Find the kinetic energies
of the proton and the alpha particle.

16. (a) What is the Q value of the reaction p + 4He →
2H + 3He? (b) What is the threshold energy for protons
incident on 4He at rest? (c) What is the threshold energy if
4He are incident on protons at rest?

13.4 Fission

17. (a) Find the Q value of the fission decay
254Cf → 127In +127In, in which 254Cf splits in half.
(b) Find the Q value for the more probable fission
process 254

98Cf156 → 140
54Xe86 + 110

44Ru66 + 4n. Masses are:
m(127In) = 126.917353 u, m(140Xe) = 139.921641 u,
m(110Ru) = 109.914136 u.

18. Find the energy released in the fission of 1.00 kg of uranium
that has been enriched to 3.0% in the isotope 235U.

19. We can understand why 235U is readily fissionable, and 238U
is not, with the following calculation. (a) Find the energy
difference between 235U + n and 236U. We can regard this as
the “excitation energy” of 236U. (b) Repeat for 238U + n and
239U. (c) Comparing your results for (a) and (b), explain why
235U will fission with very low energy neutrons, while 238U
requires fast neutrons of 1 to 2 MeV of energy to fission.
(d) From a similar calculation, predict whether 239Pu requires
low-energy or higher-energy neutrons to fission.

20. Find the Q value (and therefore the energy released) in
the fission reaction 235U + n → 93Rb + 141Cs + 2n. Use
m(93Rb) = 92.922042 u and m(141Cs) = 140.920046 u.

13.5 Fusion

21. (a) Calculate the Q value for the six reactions or decays of
the carbon cycle of fusion. (b) By accounting for the electron
masses, show that the total Q value for the carbon cycle is
identical with that of the proton-proton cycle.

22. Show that the D-T fusion reaction releases 17.6 MeV of
energy.

23. In the D-T fusion reaction, the kinetic energies of 2H and 3H
are small, compared with typical nuclear binding energies.
(Why?) Find the kinetic energy of the emitted neutron.
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24. (a) If a tokamak fusion reactor were able to achieve a con-
finement time of 0.60 s, what minimum particle density is
required? (b) If the reactor were able to achieve 10 times
the density found in part (a), what is the minimum plasma
temperature required for ignition of a self-sustaining fusion
reaction?

13.6 Nucleosynthesis

25. Find the energy released when three alpha particles combine
to form 12C.

26. To what temperature must helium gas be heated before the
Coulomb barrier is overcome and fusion reactions begin?

27. Trace the path of the s process from the stable isotope 63Cu
to the stable isotope 75As, showing the neutron capture and
beta decay processes.

28. Show how the s process proceeds from stable 81Br to stable
95Mo.

13.7 Applications of Nuclear Physics

29. An alpha particle of mass m makes an elastic head-on colli-
sion with an atom of mass M at rest. Show that the loss in
kinetic energy of the alpha particle is given by Eq. 13.16.

30. (a) Calculate the energy loss of a 2.50-MeV alpha particle
after backscattering from an atom of copper, silver, and gold.
Compare your calculated values with the peak energies in
Figure 13.25. (b) Calculate the expected energy difference
between the peaks for the two isotopes of copper and also
for the two isotopes of silver. Explain why the silver peaks
are closer together than the copper peaks. Can you estimate
the relative abundances of the two isotopes of copper from
the figure?

31. A radioactive source is to be used to produce electrical
power from the alpha decay of 238Pu (t1/2 = 88 y). (a) What
is the Q value for the decay? (b) Assuming 100% conver-
sion efficiency, how much power could be obtained from
the decay of 1.0 g of 238Pu?

General Problems

32. A small sample of paint is placed in a neutron flux of
3.0 × 1012 neutrons/cm2/s for a period of 2.5 min. At the
end of that period the activity of the sample is found
to include 105 decays/s of 51Ti (t1/2 = 5.8 min) and 12
decays/s 60Co (t1/2 = 5.27 y). Find the amount, in grams, of
titanium and cobalt in the original sample. Use the following
information: Cobalt is pure 59Co, which has a cross section
of 19 b; titanium is 5.25 percent 50Ti, which has a cross
section of 0.14 b.

33. A 2.0-mg sample of copper (69% 63Cu, 31% 65Cu) is
placed in a reactor where it is exposed to a neutron flux

of 5.0 × 1012 neutrons/cm2/s. After 10.0 min the resulting
activities are 72 μCi of 64Cu (t1/2 = 12.7 h) and 1.30 mCi
of 66Cu (t1/2 = 5.1 min). Find the cross sections of 63Cu
and 65Cu.

34. A beam of neutrons of intensity I is incident on a thin
slab of material of area A, thickness dx, density ρ, and
atomic weight M . The neutron absorption cross section is σ .
(a) What is the loss in intensity dI of this beam in passing
through the material? (b) A beam of original intensity I0
passes through a thickness x of the material. Show that the
intensity of the emerging beam is I = I0e−nσx, where n is
the number of absorber nuclei per unit volume. (c) Assume
that the total cross section for neutrons incident on copper
is 5.0 b. What fraction of the intensity of a neutron beam
is lost after traveling through copper of thickness 1.0 mm?
1.0 cm? 1.0 m?

35. A reaction in which two particles join to form a single
excited nucleus, which then decays to its ground state by
photon emission, is known as radiative capture. Find the
energy of the gamma ray emitted in the radiative capture
of an alpha particle by 7Li. Assume alpha particles of very
small kinetic energy are incident on 7Li at rest.

36. How much energy is required (in the form of gamma-ray
photons) to break up 7Li into 3H + 4He? This reaction is
known as photodisintegration.

37. The nucleus 113Cd captures a thermal neutron (K =
0.025 eV), producing 114Cd in an excited state; the excited
state of 114Cd decays to the ground state by emitting a
photon. Find the energy of the photon.

38. When a neutron collides head-on with an atom at rest, the
loss in its kinetic energy is given by Eq. 13.16. (a) What
fraction of its energy will a neutron lose in a head-on col-
lision with an atom of hydrogen, deuterium, or carbon?
(b) Consider a neutron with an initial energy of 2.0 MeV.
How many head-on collisions must it make with carbon
atoms for its energy to be reduced to the thermal range
(0.025 eV)? (c) Is the result of part (b) an underestimate or
an overestimate of the actual number of collisions necessary
to “thermalize” the neutrons? Explain.

39. Suppose we have 100.0 cm3 of water, which is 0.015%
D2O. (a) Compute the energy that could be obtained if all
the deuterium were consumed in the 2H + 2H → 3H + p
reaction. (b) As an alternative, compute the energy released
if two-thirds of the deuterium were fused to form 3H, which
is then combined with the remaining one-third in the D-T
reaction.

40. (a) Find the Q value of the reaction 4He + 4He → 8Be.
(b) In a gas of 4He at a temperature of 108 K, estimate the
relative amount of 8Be present.
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Particle tracks from a head-on collision of two lead ions at the Large Hadron Collider at
CERN. Thousands of product particles are produced in each collision. As they travel outward
from the collision site at the center, their energy loss and the curvature of their path in a
magnetic field help to identify the particles. The goal of this experiment is to produce a
‘‘soup’’ of quarks and gluons, which is believed to characterize the universe just
microseconds after the Big Bang.
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The search for the basic building blocks of nature has occupied the thoughts of
scientific investigators since the Greeks introduced the idea of atomism 2500 years
ago. As we look carefully at complex structures, we find underlying symmetries
and regularities, that help us to understand the laws that determine how they
are put together. The regularities of crystal structure, for example, suggest to us
that the atoms of which the crystal is composed must follow certain rules for
arranging themselves and joining together. As we look more deeply, we find that
although nature has constructed all material objects out of roughly 100 different
kinds of atoms, we can understand these atoms in terms of only three particles:
the electron, proton, and neutron. Our attempts to look further within the electron
have been unsuccessful—the electron seems to be a fundamental particle, with
no internal structure. However, when nucleons collide at high energy, the result
is more complexity rather than simplicity; hundreds of new particles can emerge
as products of these reactions. If there are hundreds of basic building blocks, it
seems unlikely that we could ever uncover any fundamental dynamic laws of their
behavior. However, experiments show a new, underlying regularity that can be
explained in terms of a small number of truly fundamental particles called quarks.

In this chapter, we examine the properties of many of the particles of physics, the
laws that govern their behavior, and the classifications of these particles. We also
show how the quark model helps us to understand some properties of the particles.

14.1 THE FOUR BASIC FORCES

All of the known forces in the universe can be grouped into four basic types.
In order of increasing strength, these are: gravitation, the weak interaction,
electromagnetism, and the strong interaction.

1. The Gravitational Interaction Gravity is of course exceedingly important
in our daily lives, but on the scale of fundamental interactions between particles
in the subatomic realm, it is of no importance at all. To give a relative figure,
the gravitational force between two protons just touching at their surfaces is
about 10−38 of the strong force between them. The principal difference between
gravitation and the other interactions is that, on the practical scale, gravity is
cumulative and infinite in range. Tiny gravitational interactions, such as the force
exerted by one atom of the Earth on one atom of your body, combine to produce
observable effects. The other forces, while much stronger than gravity at the
microscopic level, do not affect objects on the large scale, either because they
have a short range (the strong and weak forces) or their effect is negated by
shielding (electromagnetism).

2. The Weak Interaction The weak interaction is responsible for nuclear beta
decay (see Section 12.8) and other similar decay processes involving fundamental
particles. It does not play a major role in the binding of nuclei. The weak force
between two neighboring protons is about 10−7 of the strong force between them,
and the range of the weak force is on the scale of 0.001 fm. Nevertheless, the
weak force is important in understanding the behavior of fundamental particles,
and it is critical in understanding the evolution of the universe.

3. The Electromagnetic Interaction Electromagnetism is important in the
structure and the interactions of the fundamental particles. For example, some
particles interact or decay primarily through this mechanism. Electromagnetic
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forces are of infinite range, but the shielding effect generally diminishes their
effect for ordinary objects. Many common macroscopic forces (such as friction,
air resistance, drag, and tension) are ultimately due to electromagnetic forces at the
atomic level. Within the atom, electromagnetic forces dominate. The electromag-
netic force between neighboring protons in a nucleus is about 10−2 of the strong
force, but within the nucleus the electromagnetic forces can act cumulatively
because there is no shielding. As a result, the electromagnetic force can compete
with the strong force in determining the stability and the structure of nuclei.

4. The Strong Force The strong force, which is responsible for the binding of
nuclei, is the dominant one in the reactions and decays of most of the fundamental
particles. However, as we shall see, some particles (such as the electron) do not
feel this force at all. It has a relatively short range, on the order of 1 fm.

The relative strength of a force determines the time scale over which it acts. If
we bring two particles close enough together for any of these forces to act, then
a longer time is required for the weak force to cause a decay or reaction than for
the strong force. As we shall see, the mean lifetime of a decay process is often
a signal of the type of interaction responsible for the process, with strong forces
being at the shortest end of the time scale (often down to 10−23 s). Table 14.1
summarizes the four forces and some of their properties.

Particles can interact with one another in decays and reactions through any
of the basic forces. Table 14.1 indicates which particles can interact through
each of the four forces. All particles can interact through the gravitational and
weak forces. A subset of those can interact through the electromagnetic force (for
example, the neutrinos are excluded from this category), and a still smaller subset
can interact through the strong force. When two strongly interacting particles are
within the range of each other’s strong force, we can often neglect the effects
of the weak and electromagnetic forces in decay and reaction processes; because
their relative strengths are so much smaller than that of the strong force, their
effects are much smaller than those of the strong force. (However, these forces
are not always negligible—the weak interaction between protons is responsible
for a critical step in one of the fusion processes that occurs in stars.)

Even though the proton is a strongly interacting particle, a proton and an
electron will never interact through the strong force. The electron is able to ignore
the strong force of the proton and respond only to its weak or electromagnetic
force.

Each of the four forces can be represented in terms of the emission or
absorption of particles that carry the interaction, just as we represent the
force between nucleons in the nucleus in terms of the exchange of pions (see
Section 12.4). Associated with each type of force is a field that is carried by its
characteristic particle, as shown in Table 14.2.

TABLE 14.1 The Four Basic Forces

Type Range Relative Strength Characteristic Time Typical Particles

Strong 1 fm 1 < 10−22 s π , K, n, p

Electromagnetic ∞ 10−2 10−14 − 10−20 s e, μ, π , K, n, p

Weak 10−3 fm 10−7 10−8 − 10−13 s All

Gravitational ∞ 10−38 Years All
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TABLE 14.2 The Field Particles

Force Field Particle Symbol Charge (e) Spin (−h) Rest Energy (GeV)

Strong Gluon g 0 1 0

Electromagnetic Photon γ 0 1 0

Weak Weak boson W+, W−
Z0

±1
0

1
1

80.4
91.2

Gravitational Graviton 0 2 0

• The strong force between quarks is carried by particles called gluons,
which have been observed through indirect techniques.

• The electromagnetic force between particles can be represented in terms
of the emission and absorption of photons.

• The weak force is carried by the weak bosons W± and Z0, which are
responsible for processes such as nuclear beta decay. For example, the
beta decay of the neutron (a weak interaction) can be represented as

n → p + W− followed by W− → e− + νe

Because the decay n → p + W− would violate energy conservation, the
existence of the W− is restricted by the uncertainty principle, and its range
can be determined in a manner similar to that of the pion (see Eq. 12.8).

• The gravitational force is carried by the graviton, which is expected to
exist based on theories of gravitation but has not yet been observed.

14.2 CLASSIFYING PARTICLES

One way of studying the elementary particles is to classify them into different
categories based on certain behaviors or properties and then to look for similarities
or common characteristics among the classifications. We have already classified
some particles in Table 14.1 according to the types of forces through which they
interact. Another way of classifying them might be according to their masses.
In the early days of particle physics, it was observed that the lightest particles
(including electrons, muons, and neutrinos) showed one type of behavior, the
heaviest group (including protons and neutrons) showed a different behavior, and
a middle group (such as pions and kaons) showed a still different behavior. The
names originally given to these groups are based on the Greek words for light,
middle, and heavy: leptons for the light particles, mesons for the middle group,
and baryons for the heavier particles. Even though the classification by mass is
now obsolete (leptons and mesons have been discovered that are more massive
than protons or neutrons), we keep the original names, which now describe instead
a group or family of particles with similar properties. When we compare our first
two ways of classifying particles, we find an interesting result: The leptons do not
interact through the strong force, but the mesons and baryons do.

We can also classify particles by their intrinsic spins. Every particle has an
intrinsic spin; you will recall that the electron has a spin of 1/2, as do the proton and
neutron. We find that the leptons all have spins of 1/2, the mesons all have integral
spins (0, 1, 2, . . .), and the baryons all have half-integral spins (1/2, 3/2, 5/2, . . .).
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Antiparticles
One additional property that is used to classify a particle is the nature of its
antiparticle.∗ Every particle has an antiparticle, which is identical to the particle
in such properties as mass and lifetime, but differs from the particle in the sign of
its electric charge (and in the sign of certain other properties, as we discuss later).
The antiparticle of the electron is the positron e+, which was discovered in the
1930s through reactions initiated by cosmic rays. The positron has a charge of +e
(opposite to that of the electron) and a rest energy of 0.511 MeV (identical to that
of the electron). The antiproton p was discovered in 1956 (see Example 2.18); it
has a charge of −e and a rest energy of 938 MeV. A stable atom of antihydrogen
could be constructed from a positron and an antiproton; the properties of this atom
would be identical to those of ordinary hydrogen.

Antiparticles of stable particles (such as the positron and the antiproton)
are themselves stable. However, when a particle and its antiparticle meet, the
annihilation reaction can occur: the particle and antiparticle both vanish, and
instead two or more photons can be produced. Conservation of energy and
momentum requires that, neglecting the kinetic energies of the particles, when
two photons are emitted each must have an energy equal to the rest energy of the
particle. Examples of annihilation reactions are:

e− + e+ → γ1 + γ2 (Eγ1
= Eγ2

= 0.511 MeV)

p + p → γ1 + γ2 (Eγ1
= Eγ2

= 938 MeV)

We call the kind of stuff of which we are made matter and the other kind of
stuff antimatter. There may indeed be galaxies composed of antimatter, but we
cannot tell by the ordinary techniques of astronomy, because light and antilight
are identical! To put it another way, the photon and antiphoton are the same
particle, so matter and antimatter emit the same photons. The only way to tell the
difference is by sending a chunk of our matter to the distant galaxy and seeing
whether or not it is annihilated with the corresponding emission of a burst of
photons. (It is indeed possible, but highly unlikely, that the first astronaut to travel
to another galaxy may suffer such a fate! The first intergalactic handshake would
indeed be quite an event!)

In our classification scheme it is usually easy to distinguish particles from
antiparticles. We begin by defining particles to be the stuff of which ordinary mat-
ter is made—electrons, protons, and neutrons. Ordinary matter is not composed of
neutrinos, so we have no basis for distinguishing a neutrino from an antineutrino,
but the conservation laws in the beta decay process can be understood most easily
if we define the antineutrino to be the particle that accompanies negative beta
decay and the neutrino to be the particle that accompanies positron decay and
electron capture. For a heavy baryon, such as the 	 (lambda), we take advantage
of its radioactive decay, which leads eventually to ordinary protons and neutrons;
that is, the 	 is the particle that decays to n, and the 	 (“anti-lambda”) therefore
decays to n. Similarly, in the case of the leptons, the μ− and the μ+ are antiparti-
cles of one another; because μ− decays to ordinary e− (and has many properties
in common with the electron) it is the particle, while μ+ is the antiparticle.

∗We use two systems to indicate antiparticles. Sometimes the symbol for the particle will be written
along with the electric charge to indicate particle or antiparticle, as, for example, e+ and e−, or μ+
and μ−. Other times the antiparticle will be written with a bar over the symbol—for example, ν and
ν or p and p.
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Three Families of Particles

Table 14.3 summarizes the three families of material particles.

Leptons The leptons interact only through the weak or electromagnetic inter-
actions. No experiment has yet been able to reveal any internal structure for the
leptons; they appear to be truly fundamental particles that cannot be split into still
smaller particles. All known leptons have spin 1/2.

Table 14.4 shows the six known leptons, grouped as three pairs of particles.
Each pair includes a charged particle (e−, μ−, τ−) and an uncharged neutrino
(νe, νμ, ντ ). Each lepton has a corresponding antiparticle. We have already
discussed the electron neutrino and antineutrino in connection with beta decay
(Section 12.8), and the decay of cosmic-ray muons was discussed as confirming
the time dilation effect in special relativity (Section 2.4). The neutrino masses
are very small but nonzero. The rest-energy limits shown in Table 14.4 come
from attempts at direct measurement, but indirect evidence from astrophysics and
cosmology suggests that the rest energies of all three neutrinos are less than 1 eV.

Mesons Mesons are strongly interacting particles having integral spin. A partial
list of some mesons is given in Table 14.5. Mesons can be produced in reactions
through the strong interaction; they decay to other mesons or leptons through the
strong, electromagnetic, or weak interactions. For example, pions can be produced
in reaction of nucleons, such as

p + n → p + p + π− or p + n → p + n + π0

TABLE 14.3 Families of Particles

Family Structure Interactions Spin Examples

Leptons Fundamental Weak, electromagnetic Half integral e, ν

Mesons Composite Weak, electromagnetic, strong Integral π , K

Baryons Composite Weak, electromagnetic, strong Half integral p, n

TABLE 14.4 The Lepton Family

Particle Spin Rest Energy Mean Life Typical Decay
Particle Antiparticle Charge (e) (−h) (MeV) (s) Products

e− e+ −1 1
2 0.511 ∞

νe νe 0 1
2 < 2 eV ∞

μ− μ+ −1 1
2 105.7 2.2 × 10−6 e− + νe + νμ

νμ νμ 0 1
2 < 0.19 ∞

τ− τ+ −1 1
2 1777 2.9 × 10−13 μ− + νμ + ντ

ντ ντ 0 1
2 < 18 ∞
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TABLE 14.5 Some Selected Mesons

Charge* Spin Rest Energy Mean Life Typical Decay
Particle Antiparticle (e) (−h) Strangeness* (MeV) (s) Products

π+ π− +1 0 0 140 2.6 × 10−8 μ+ + νμ

π0 π0 0 0 0 135 8.4 × 10−17 γ + γ

K+ K− +1 0 +1 494 1.2 × 10−8 μ+ + νμ

K0 K
0

0 0 +1 498 0.9 × 10−10 π+ + π−

η η 0 0 0 548 5.1 × 10−19 γ + γ

ρ+ ρ− +1 1 0 775 4.4 × 10−24 π+ + π0

η′ η′ 0 0 0 958 3.2 × 10−21 η + π+ + π−

D+ D− +1 0 0 1869 1.0 × 10−12 K− + π+ + π+

J/ψ J/ψ 0 1 0 3097 7.1 × 10−21 e+ + e−

B+ B− +1 0 0 5279 1.6 × 10−12 D− + π+ + π−

ϒ ϒ 0 1 0 9460 1.2 × 10−20 e+ + e−

*The charge and strangeness are those of the particle. Values for the antiparticle have the opposite sign. The spin, rest energy, and
mean life are the same for a particle and its antiparticle.

and the pions can decay according to

π− → μ− + νμ (mean life = 2.6 × 10−8 s)

π0 → γ + γ (mean life = 8.4 × 10−17 s)

The first decay is caused by the weak interaction (indicated by the lifetime and by
the presence of a neutrino among the decay products) and the second is caused by
the electromagnetic interaction (indicated by the lifetime and the photons).

Because mesons are not observed in ordinary matter, the classification into
particles and antiparticles is somewhat arbitrary. For the charged mesons such as
π+ and π− or K+ and K−, which are not part of ordinary matter, the positive and
negative particles are antiparticles of one another but there is no way to choose
which is matter and which is antimatter. For some uncharged mesons (such as π0

and η) the particle and antiparticle are identical, while for others (such as K0 and
K

0
) they may be distinct.

Baryons The baryons are strongly interacting particles with half-integral spins
(1/2, 3/2, . . .). A partial listing of some baryons is given in Table 14.6. Like the
leptons, the baryons have distinct antiparticles. Like the mesons, the baryons
can be produced in reactions with nucleons through the strong interaction; for
example, the 	0 baryon can be produced in the following reaction:

p + p → p + 	0 + K+

The 	0 then decays through the weak interaction according to

	0 → p + π− (mean life = 2.6 × 10−10 s)



448 Chapter 14 | Elementary Particles

TABLE 14.6 Some Selected Baryons

Charge* Spin Rest Energy Mean Life Typical Decay
Particle Antiparticle (e) (−h) Strangeness* (MeV) (s) Products

p p +1 1
2 0 938 ∞

n n 0 1
2 0 940 886 p + e− + νe

	0 	
0

0 1
2 −1 1116 2.6 × 10−10 p + π−

�+ �
+ +1 1

2 −1 1189 8.0 × 10−11 p + π0

�0 �
0

0 1
2 −1 1193 7.4 × 10−20 	0 + γ

�− �
− −1 1

2 −1 1197 1.5 × 10−10 n + π−

�0 �
0

0 1
2 −2 1315 2.9 × 10−10 	0 + π0

�− �
− −1 1

2 −2 1322 1.6 × 10−10 	0 + π−

�∗ �
∗ +2, +1, 0, −1 3

2 0 1232 5.6 × 10−24 p + π

�∗ �
∗ +1, 0, −1 3

2 −1 1385 1.8 × 10−23 	0 + π

�∗ �
∗ −1, 0 3

2 −2 1533 7.2 × 10−23 � + π

�− �
− −1 3

2 −3 1672 8.2 × 10−11 	0 + K−

*The charge and strangeness are those of the particle. Values for the antiparticle have the opposite sign. The spin, rest energy, and
mean life are the same for a particle and its antiparticle.

Even though neutrinos are not produced in this decay process, the lifetime
indicates that the decay proceeds through the weak interaction. Other baryons
can be identified in Table 14.6 that decay through the strong, electromagnetic, or
weak interactions.

14.3 CONSERVATION LAWS

In the decays and reactions of elementary particles, conservation laws provide a
way to understand why some processes occur and others are not observed, even
though they are expected on the basis of other considerations. We frequently
use the conservation of energy, linear momentum, and angular momentum in our
analysis of physical phenomena. These conservation laws are closely connected
with the fundamental properties of space and time; we believe those laws to be
absolute and inviolable.

We also use other kinds of conservation laws in analyzing various processes.
For example, when we combine two elements in a chemical reaction, such as
hydrogen + oxygen → water, we must balance the reaction in the following way:

2H2 + O2 → 2H2O

The process of balancing a reaction can also be regarded as a way of accounting for
the electrons that participate in the process: A molecule of water contains 10 elec-
trons, and so the atoms that combine to make up the molecule must likewise include
10 electrons.



14.3 | Conservation Laws 449

In nuclear processes, we are concerned not with electrons but with protons and
neutrons. In the alpha decay of a nucleus, such as

235
92U143 → 231

90Th141 + 4
2He2

or in a reaction such as

p + 63
29Cu34 → 63

30Zn33 + n

we balance the number of protons and also the number of neutrons. We might
be tempted to conclude that nuclear processes conserve both proton number
and neutron number, but the separate conservation laws are not satisfied in beta
decays, for example

n → p + e− + νe

which does not conserve either neutron number or proton number. However, it
does conserve the total neutron number plus proton number, which is equal to 1
both before and after the decay. (This conservation law of total nucleon number
includes the separate laws of conservation of proton number and neutron number
as a special case.)

Emmy Noether (1882–1935, Ger-
many-United States). Known both
as a mathematician and a theoreti-
cal physicist, she explored the role
of conservation laws in physics. In
an important result now known as
Noether’s theorem, she discovered
that each symmetry of the mathe-
matical equations describing a phe-
nomenon gives a conserved quan-
tity. For example, the symmetry
of equations to translations in time
leads to conservation of energy,
and the invariance to translations in
space leads to conservation of linear
momentum.

Lepton Number Conservation
In negative beta decay we always find an antineutrino emitted, never a neutrino.
Conversely, in positron beta decay, it is the neutrino that is always emitted. We
account for these processes by assigning each particle a lepton number L. The
electron and neutrino are assigned lepton numbers of +1, and the positron and
antineutrino are assigned lepton numbers of −1; all mesons and baryons are
assigned lepton numbers of zero. Lepton number conservation in positive and
negative beta decay then works as follows:

n → p + e− + νe
L : 0 → 0 + 1 + (−1)

p → n + e+ + νe
L : 0 → 0 + (−1) + 1

You can see that the total lepton number is 0 both before and after these decays,
which accounts for the appearance of the antineutrino in negative beta decay and
the neutrino in positron decay.

According to the lepton conservation law, these processes are forbidden:

e− + p → n + νe
L : 1 + 0 → 0 + (−1)

p → e+ + γ

L : 0 → −1 + 0

In keeping track of leptons, we must count each type of lepton (e, μ, τ )
separately. Evidence for this comes from a variety of experiments. For example,
the distinction between electron-type and muon-type leptons is clear from an
experiment in which a beam of muon-type antineutrinos is incident on a target of
protons:

νμ + p → n + μ+
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If there were no difference between electron-type and muon-type leptons, the
following reaction would be possible: νμ + p → n + e+. However, this outcome
is never observed, which indicates the distinction between the two types of leptons
and the need to account separately for each type.

Another example of the difference between the types of leptons comes from
the failure to observe the decay μ− → e− + γ . If there were only one common
type of lepton number, this decay would be possible. The failure to observe this
decay (in comparison with the commonly observed decay μ− → e− + νe + νμ,
which conserves both muon-type and electron-type lepton number) suggests the
need for the different kinds of lepton numbers. We call these lepton numbers
Le, Lμ, and Lτ , and we have the following conservation law for leptons:

In any process, the lepton numbers for electron-type leptons, muon-type
leptons, and tau-type leptons must each remain constant.

The following examples illustrate the conservation of these lepton numbers.

νe + p → e+ + n
Le : −1 + 0 → −1 + 0

νμ + n → μ− + p
Lμ : 1 + 0 → 1 + 0

μ− → e− + νe + νμ

Le : 0 → 1 + (−1) + 0
Lμ : 1 → 0 + 0 + 1

π− → μ− + νμ

Lμ : 0 → 1 + (−1)

Studying these examples, we can understand why sometimes neutrinos appear
and sometimes antineutrinos appear.

Baryon Number Conservation
Baryons are subject to a similar conservation law. All baryons are assigned a
baryon number B = +1, and all antibaryons are assigned B = −1. All nonbaryons
(mesons and leptons) have B = 0. We then have the law of conservation of baryon
number:

In any process, the total baryon number must remain constant.

(The conservation of nucleon number A is a special case of conservation of
baryon number, in which all the baryons are nucleons. In particle physics, it is
customary to use B instead of A to represent all baryons, including the nucleons.)
No violation of the law of baryon conservation has ever been observed, although
the Grand Unified Theories (see Section 14.8) suggest that the proton can decay
in a way that would violate conservation of baryon number.

As an example of conservation of baryon number, consider the reaction that
was responsible for the discovery of the antiproton:

p + p → p + p + p + p

On the left side, the total baryon number is B = +2. On the right side, we
have three baryons with B = +1 and one antibaryon with B = −1, so the
total baryon number is B = +2 on the right side also. On the other hand, the
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reaction p + p → p + p + n violates baryon number conservation and is therefore
forbidden.

Strangeness Conservation

The number of mesons that can be created or destroyed in decays or reactions
is not subject to a conservation law like the number of leptons or baryons. For
example, the following reactions can be used to produce pions:

p + p → p + n + π+ p + p → p + n + π+ + π0

p + p → p + p + π0 p + p → p + p + π+ + π−

As long as enough energy is available, any number of pions can be produced in
these reactions.

If we try the same type of reaction to produce K mesons, a different type of
behavior is observed. The reactions p + p → p + n + K+ and p + p → p + p + K0

never occur, even though the incident proton is given enough energy to produce this
particle. We do, however, observe reactions such as p + p → p + n + K+ + K

0
and

p + p → p + p + K+ + K−, which are very similar to the reactions that produce
two pions. Why do reactions producing π mesons give any number (odd or even)
but reactions producing K mesons give them only in pairs?

Here’s another example of this unusual behavior. The reaction π− + p →
π+ + �− conserves electric charge and baryon number and so would be expected
to occur, but it does not. Instead, the following reaction is easily observed:
π− + p → K+ + �−. Usually when we fail to observe a reaction or decay
process that is expected to occur, we look for the violation of some conservation
law such as electric charge or baryon number. Is there a new conserved quantity
whose violation prohibits the reaction from occurring?

There are also decay processes that suggest that our labeling of the particles is
incomplete. The uncharged η and π0 mesons decay very rapidly (10−16 − 10−18 s)
into two photons; on the basis of the systematic behavior of mesons, we would
expect the K0 to decay similarly to two photons in a comparable time. The
observed decay of the K0 takes place much more slowly (10−10 s); moreover, the
decay products are not photons, but π mesons and leptons. Is a new conservation
law responsible for restricting the decay of the K0?

As a final example of the need for a new conservation law, the heavy charged
mesons are all strongly interacting particles, and we expect them to decay into
the lighter mesons through the strong interaction with very short lifetimes. For
example, the decay ρ+ → π+ + π0 occurs in a lifetime of about 10−23 s. But
the decay K+ → π+ + π0 occurs very slowly, in a time of the order of 10−8 s,
and in fact the different decay mode K+ → μ+ + νμ is more probable. What is
responsible for slowing the decay of the K meson by 15 orders of magnitude?

These unusual behaviors are explained by the introduction of a new conserved
quantity. This quantity is called the strangeness S, and we can use it to explain
the properties of the K-meson decays. The K0 and K+ are assigned strangeness of
S = +1; the π mesons and leptons are nonstrange particles (S = 0). The decay
K0 → γ + γ , which is an electromagnetic decay (as indicated by the photons), is
forbidden because the electromagnetic interaction conserves strangeness (S = +1
on the left, S = 0 on the right). The decay K+ → π+ + π0 does not occur in the
typical strong interaction time of 10−23 s because the strong interaction cannot
change strangeness. It occurs in the typical weak interaction time of 10−8 s (and the
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corresponding weak interaction decay K+ → μ+ + νμ occurs as often) because
the weak interaction does not conserve strangeness; decays that are caused by the
weak interaction can change the strangeness by one unit.

We can summarize these results in the law of conservation of strangeness:

In processes governed by the strong or electromagnetic interactions, the
total strangeness must remain constant. In processes governed by the weak
interaction, the strangeness either remains constant or changes by one unit.

The strangeness quantum numbers of the mesons and baryons are given in
Tables 14.5 and 14.6. The strangeness of an antiparticle has the opposite sign to
that of the corresponding particle.

Conservation of strangeness in the strong interaction explains why the K
mesons are always produced in pairs in proton-proton collisions. The protons
and neutrons are non-strange particles (S = 0), so the only way to conserve
strangeness in the collisions that produce K mesons is to produce them in pairs,
always one with S = +1 and the other with S = −1.

The baryons also come in strange and nonstrange varieties. Looking at the
lifetimes in Table 14.6, we see that the 	0 decays into p + π− with a lifetime
of about 10−10 s, while we would expect a strongly interacting particle to decay
to other strongly interacting particles with a lifetime of about 10−23 s. If the
strangeness of the 	0 is assigned as −1, these decays change S and are forbidden
to go by the strong interaction, and so must be due to the weak interaction,
with the characteristic 10−10 s lifetime. The strangeness violation also tells us
why the electromagnetic decay 	0 → n + γ does not occur (while the decay
�0 → 	0 + γ does occur, with a typical electromagnetic lifetime of 10−19 s). It
also explains why the reaction π− + p → π+ + �−, which is permitted by all
other conservation laws. is never observed—the initial state has S = 0 and the
final state has S = −1, so it violates strangeness conservation.

The weak interaction can change the strangeness by at most one unit. As
a result, processes such as �0 → n + π0 (S = −2 → S = 0) are absolutely
forbidden, even by the weak interaction.

Example 14.1

The �− baryon has S = −3. (a) It is desired to produce the
�− using a beam of K− incident on protons. What other
particles are produced in this reaction? (b) How might the
�− decay?

Solution
(a) Reactions usually proceed only through the strong
interaction, which conserves strangeness. We consider the
reaction

K− + p → �−+ ?

On the left side, we have S = −1, B = +1, and electric
charge Q = 0. On the right side, we have S = −3, B = +1,
and Q = −1. We must therefore add to the right side

particles with S = +2, B = 0, and Q = +1. Scanning
through the tables of mesons and baryons, we find that we
can satisfy these criteria with K+ and K0, so one possible
reaction is

K− + p → �− + K+ + K0

(b) The �− cannot decay by the strong interaction, because
no S = −3 final states are available. It must therefore decay
to particles having S = −2 through the weak interaction,
which can change S by one unit. One of the product parti-
cles must be a baryon in order to conserve baryon number.
Two possibilities are

�− → 	0 + K− and �− → �0 + π−
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14.4 PARTICLE INTERACTIONS AND DECAYS

In this section we briefly summarize the properties of the elementary particles and
how they are measured.

Atoms and molecules can be taken apart relatively easily and nonviolently,
enabling us to study their structure. However, the elementary particles, most
of which are unstable and do not exist in nature, must be created in violent
collisions. (The particle theorist Richard Feynman once compared this process
with studying fine Swiss watches by smashing them together and looking at the
pieces that emerge from the collision.) For this purpose we need a high-energy
beam of particles and a suitable target of elementary particles. The only strongly
interacting, stable elementary particle is the proton, and thus a hydrogen target is
a logical choice. To get a reasonable density of target atoms, researchers often
use liquid, rather than gaseous, hydrogen.

Richard P. Feynman (1918–1988,
United States). Seldom is one person
known for both exceptional insights
into theoretical physics and excep-
tional methods of teaching first-year
physics. He received the Nobel Prize
for his work on the theory that couples
quantum mechanics to electromag-
netism, and his text and film Lectures
on Physics give unusual perspectives
to many areas of basic physics for
undergraduates.

For a suitable beam, we must be able to accelerate a particle to very high
energies (so that the energy of the particle may be hundreds of times its rest
energy mc2). A stable charged particle is the logical choice for the beam; stability
is required because of the relatively long time necessary to accelerate the particle
to high energies, and a charged particle is required so that electromagnetic fields
may be used to accelerate the particle. Once again the proton is a convenient
choice, and thus many particle physics reactions are produced using beams of
high-energy protons. For example, at the Fermi National Accelerator Laboratory
(Fermilab) near Chicago protons are accelerated to 1000 GeV (v/c = 0.9999996)
around a track of radius 1000 m (Figure 14.1).

One type of particle physics reaction can thus be represented as

p + p → product particles

FIGURE 14.1 An aerial view of the Tevatron at the Fermi National Accelerator
Laboratory. Beams of protons and antiprotons circulate in opposite directions
around the 1-km ring and collide at two locations, at the upper center and lower
left. (Courtesy Fermi National Accelerator Laboratory.)
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Among the product particles may be a variety of mesons or even heavier particles
of the baryon family, of which the nucleons are the lightest members. The study
of the nature and properties of these particles is the goal of particle physics.

Target

p

Magnet

π+

p

K

V0

Proton
beam

–

FIGURE 14.2 The production of sec-
ondary particle beams. The magnet
helps to select the mass and momen-
tum of the desired particle.

In many cases, conservation laws restrict the nature of the product particles,
and it would be desirable to have other types of beams available. One possibility
is indicated in Figure 14.2. A proton beam is incident on a target—the nature of
the target is not important. Like Feynman’s Swiss watch parts, many different
particles emerge. By suitable focusing and selection of the momentum, we can
extract a beam of the secondary particles created in the reactions. The particle
must live long enough to be delivered to a second target, which might be tens of
meters away; even if the particle were traveling at the speed of light, it would
need about 10−7 s to make its journey. Although this is a very short time interval
by ordinary standards, on the time scale of elementary particles, it is a very long
time—in fact, none of the unstable mesons or baryons (except the neutron) lives
that long.

Although our efforts to make a secondary beam would seem to be in vain, we
have forgotten one very important detail. The lifetime of the particle is measured
in its rest frame, while we are observing its flight in the laboratory frame, in
which the particle is moving at speeds extremely close to the speed of light.
The time dilation factor results in a lifetime, observed in our frame of reference,
which might be hundreds of times longer than the proper lifetime. This factor
extends the range of available secondary beams to those particles with lifetimes
as short as 10−10 s, and makes it possible to obtain secondary beams to study such
reactions as

π + p → particles

and

K + p → particles

even though the proper lifetimes of the π and K are in the range of 10−10 to
10−8 s.

Detecting Particles
Observing the products of these reactions, which may involve dozens of high-
energy charged and uncharged particles, poses a great technological problem
for the experimenter. The detector must completely surround the reaction area,
so that particles are recorded no matter what direction they travel after the
reaction. The particles must produce visible tracks in the detector, so that their
identity and direction of travel can be determined. The detector must provide
sufficient mass to stop the particles and measure their energy. A magnetic field
must be present, so that the resulting curved trajectory of a charged particle
can be used to determine its momentum and the sign of its charge. Figure 14.3
shows tracks left in a bubble chamber, a large tank filled with liquid hydrogen
in which the passage of a charged particle causes microscopic bubbles resulting
from the ionization of the hydrogen atoms. The bubbles can be illuminated and
photographed to reveal the tracks. Figure 14.4 shows a large detector system
that is used both to display the tracks of particles and to measure their energies;
Figure 14.5 shows a sample of the results that are obtained with this type
of detector.
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π–

V0

FIGURE 14.3 A bubble chamber photograph of a reaction between particles.
At right is shown a diagram indicating the particles that participate in the
reaction. An incident pion collides with a proton in the liquid hydrogen,
producing a K0 and a 	0, both of which subsequently decay. (Photo Courtesy
Lawrence Berkeley National Laboratory.)

FIGURE 14.4 A large detector at the Tevatron at Fer-
milab. The proton and antiproton beams travel along
the central axis of the detector and collide in its interior.
The arches that have been removed on either side are
the calorimeter detectors that in operation are pushed
together so they can record the energies of all parti-
cles that leave the reaction. The inner detectors record
the tracks of the particles. (Courtesy Fermi National
Accelerator Laboratory.)

FIGURE 14.5 A sample of the tracks left by a multitude
of particles from a single proton-antiproton collision
recorded with the detector of Figure 14.4. A magnetic
field causes the tracks to curve; the radius of curvature
determines the momentum of the particle, and the
direction of curvature determines the sign of the charge
of the particle. The jets are showers of particles resulting
from a quark or antiquark that is produced in the
reaction. In this case the jets come from the top and
antitop quarks. (Courtesy Fermi National Accelerator
Laboratory.)
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From a careful analysis of the paths of particles, such as those of Figures 14.3
or 14.5, we can deduce the desired quantities of mass, linear momentum, and
energy. The other important property we would like to know is the lifetime of the
decay of the product particles, because many of the products are often unstable. If
we know the speed of a particle, we can find its lifetime by simply observing the
length of its track in a bubble chamber photograph. (Even for uncharged particles,
which leave no tracks, we can use this method to deduce the lifetime, because the
subsequent decay of the uncharged particle into two charged particles defines the
length of its path rather clearly, as shown in Figure 14.3.)

This method works well if the lifetime is of the order of 10−10 s or so, such
that the particle leaves a track long enough to be measured (millimeters to
centimeters). With careful experimental technique and clever data analysis, this
can be extended to track lengths of the order of 10−6 m, and so lifetimes down
to about 10−16 s can be measured in this way (with a little help from the time
dilation factor). But many of our particles have lifetimes of only 10−23 s, and a
particle moving at even the speed of light travels only the diameter of a nucleus
in that time! How can we measure such a lifetime? Furthermore, how do we even
know such a particle exists at all? Consider the reaction

π + p → π + p + x

where x is an unknown particle with a lifetime of about 10−23 s, which decays
into two π mesons according to x → π + π . How do we distinguish the above
reaction from the reaction

π + p → π + p + π + π

which leads to the same particles as actually observed in the laboratory?
Experimental evidence suggests that the two π mesons in this type of reaction

may combine for an instant (10−23 s) to form an entity with all of the usual
properties of a particle—a definite mass, charge, spin, lifetime, etc. These states
are known as resonance particles, and we now look at the indirect evidence from
which we infer their existence.
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FIGURE 14.6 Three possible decays
of an unknown particle into two π

mesons. The direction and momentum
of each π meson are indicated.

Suppose you receive a package in the mail from a friend. When you open
it, you find it contains many small, irregular pieces of broken glass. How do
you learn whether your friend sent you a beautiful glass vase that was broken in
shipment or a package of broken glass as a practical joke? You try to put the pieces
together! If the pieces fit together, it is a good assumption that the vase was once
whole, although the mere fact that they fit together doesn’t prove that it was once
whole. It’s just the simplest possible assumption consistent with our experience.
(An alternative assumption that the pieces were manufactured separately and just
happen by chance to fit together is highly improbable.)

How then do we detect a “particle” that lives for only 10−23 s? We look at its
decay products (which live long enough to be seen in the laboratory), and putting
the pieces back together, we infer that they once may have been a whole particle.

For example, suppose in the laboratory we observe two π mesons emitted
as shown in Figure 14.6. We measure the direction of travel and the linear
momentum of the π mesons as shown. A second and a third event each produces
two π mesons as also shown in the figure. Are these three events consistent with
the existence of the same resonance particle?
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Let us assume that in each case, a particle moving at an unknown speed decayed
into the two particles as shown, one with energy E1 and momentum �p1 and the
other with energy E2 and momentum �p2. Each decay must conserve energy and
momentum, so we can use the decay information to find the energy E = E1 + E2
and momentum �p = �p1 + �p2 of the decaying particle, and then we can find
its rest energy according to mc2 =

√
E2 − c2�p2 =

√
(E1 + E2)

2 − c2(�p1 + �p2)
2.

Carrying out the calculation, we find that, for the decay shown in part (a) of
Figure 14.6, mc2 = 764 MeV, while for part (b), mc2 = 775 MeV. It is therefore
possible that these two events result from the decays of identical particles. Part
(c) of the figure gives mc2 = 498 MeV, which differs considerably from parts
(a) and (b).

Of course, these two events are not sufficient to identify conclusively the
existence of a resonance particle with a rest energy in the range of 770 MeV. It
could be a mere accident, just like the chance fitting together of two pieces of
broken glass. What is needed is a large (statistically significant) number of events,
in which we can combine the energy and momenta of the two emitted π mesons
in such a way that the deduced mass of the resonance particle is always the same.
Figure 14.7 is an example of such a result. There is a background of events with
a continuous distribution of energies, like beta decay electrons; these come from
events like part (c) of Figure 14.6. There is also present a very prominent peak
at 775 MeV. We identify this energy as the rest energy of the resonance particle,
which is known as the ρ (rho) meson. (How do we know it is a meson? It must
be a strongly interacting particle, because it decays so rapidly. Therefore the only
possibilities are mesons, with integral spin, or baryons, with half-integral spin.
Pi mesons have integral spin, and two integral spins can combine to give only
another integral spin, so it must be a meson.)

π + p + π + π π + p
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FIGURE 14.7 The resonance identified as the ρ meson. The horizontal axis shows the
energy and momentum of the two decay π mesons, combined to be equivalent to the mass
of the resonance particle.
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We can also infer the lifetime of the particle from Figure 14.7. The particle
lives only for about 10−23 s, and so if we are to measure its rest energy we
have only 10−23 s in which to do it. But the uncertainty principle requires that
an energy measurement made in a time interval �t be uncertain by an amount
roughly �E ∼= −h/�t. This energy uncertainty �E is observed as the width of the
peak in Figure 14.7. We don’t always deduce the same value 775 MeV for the rest
energy of the ρ meson; sometimes our value is a bit larger and sometimes a bit
smaller. The width of the resonance peak tells us the lifetime of the particle. (The
width is not really precisely defined, but physicists usually take as the width the
interval between the two points where the height of the resonance is one-half its
maximum value above the background, as shown in Figure 14.7.) The width of
�E = 150 MeV leads to a value of �t = −h/�E = 4.4 × 10−24 s for the lifetime
of the ρ meson.

14.5 ENERGY AND MOMENTUM IN
PARTICLE DECAYS

In analyzing the decays and reactions of elementary particles, we apply many
of the same laws that we used for nuclear decays and reactions: energy, linear
momentum, and total angular momentum must be conserved, and the total value
of the quantum numbers associated with electric charge, lepton number, and
baryon number (which we previously called nucleon number) must be the same
before and after the decay or reaction. In reactions of elementary particles, we
are often concerned with the production of new varieties of particles. The energy
necessary to manufacture these particles comes from the kinetic energy of the
reaction constituents (usually the incident particle); this energy is usually quite
large (hence the name high-energy physics for this type of research), so relativistic
equations must be used for energy and momentum.

The decays of elementary particles can be analyzed in a way similar to the
decays of nuclei, following the same two basic rules:

1. The energy available for the decay is the difference in rest energy between
the initial decaying particle and the particles that are produced in the decay.
By analogy with our study of nuclear decays, we call this the Q value:

Q = (mi − mf )c
2 (14.1)

where mic
2 is the rest energy of the initial particle and mf c2 is the total rest

energy of all the final product particles. (Of course, the decay will occur only
if Q is positive.)

2. The available energy Q is shared as kinetic energy of the decay products in
such a way as to conserve linear momentum. As in the case of nuclear decays,
for a decay of a particle at rest into two final particles, the particles have equal
and opposite momenta, and we can find unique values for the energies of the
two final particles. For decays into three or more particles, each particle has
a spectrum or distribution of energies from zero up to some maximum value
(as was the case with nuclear beta decay).
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Example 14.2

Compute the energies of the proton and π meson that result
from the decay of a 	0 at rest.

Solution
The decay process is 	0 → p + π−. Using the rest energies
from Tables 14.5 and 14.6, we have:

Q = (m	0 − mp − mπ−)c2

= 1116 MeV − 938 MeV − 140 MeV

= 38 MeV

and so the total kinetic energy of the decay products
must be:

Kp + Kπ = 38 MeV

Using the relativistic formula for kinetic energy, we can
write this as

Kp + Kπ =
(√

c2p2
p + m2

pc4 − mpc2
)

+
(√

c2p2
π + m2

π c4 − mπc2

)
= 38 MeV

Conservation of momentum requires pp = pπ . Substituting
for one of the unknown momenta in the above equation
and solving algebraically for the other, we obtain

pπ = pp = 101 MeV/c

The kinetic energies can be found by substituting these
momenta into the relativistic formula:

Kπ = 33 MeV and Kp = 5 MeV

Example 14.3

What is the maximum kinetic energy of the electron emitted
in the decay μ− → e− + νe + νμ?

Solution
The Q value for this decay is Q = mμc2 − mec2 =
105.2 MeV, because the neutrinos have negligible rest
energy. If the μ− is at rest, this energy is shared by the
electron and the neutrinos: Q = Ke + Eνe

+ Eνμ
. When the

electron has its maximum kinetic energy, the two neutrinos
carry away the minimum energy. This minimum cannot be
zero, because that would violate momentum conservation:
the electron would be carrying momentum that would not
be balanced by the neutrino momenta to give a net of zero
(the μ− is at rest, so

∑ �pi = ∑ �pf = 0). We assume that
the electron has its maximum energy when the neutrinos
are emitted in exactly the opposite direction to the elec-
tron; otherwise some of the decay energy is “wasted” by
providing transverse momentum components for the neu-
trinos, and not as much energy will be available for the
electron. It does not matter which of the neutrinos carry
the energy and momentum (they may even share it in any
proportion), so we let Eν and pν be the total neutrino energy
and momentum; these are of course related by Eν

∼= cpν ,

because neutrinos are presumed to be of negligible mass
and thus to travel at nearly the speed of light. If we let Ee
and pe represent the energy and momentum of the electron,
then linear momentum conservation gives

pe − pν = 0

For the electron, Ee = √
c2p2

e + m2
ec4. Together, these

equations give:

Q = Ke + Eν = Ee − mec2 + cpν = Ee − mec2 + cpe

= Ee − mec2 +
√

E2
e − m2

ec4

Solving, we find Ee = Q/2mμc2 + mec2 and so

Ke = Ee − mec2 = Q2/2mμc2 = 52.3 MeV

The original rest energy of the μ− is shared essentially
equally by the electron and the two neutrinos in this case:
(Ke)max = (Eν)max

∼= Q/2. Note how different this is from
the case of the beta decay of the neutron, where the heavy
proton resulting from the decay could absorb considerable
recoil momentum at a cost of very little energy, so nearly
all of the available energy could be given to the electron,
and in that case (Ke)max

∼= Q.
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Example 14.4

Find the maximum energy of the positrons and of the π

mesons produced in the decay K+ → π0 + e+ + νe.

Solution
The Q value for this decay is

Q = (mK−mπ − me)c
2 = 494 MeV−135 MeV−0.5 MeV

= 358.5 MeV

This energy must be shared among the three products:

Q = Kπ + Ke + Eν

The electron and π meson have their maximum energies
when the neutrino has negligible energy: Q = Kπ + Ke,
and conservation of momentum in this case (if the neu-
trino has negligible momentum) requires pπ = pe. Using
relativistic kinetic energy, we have

Q = Kπ + Ke =
√

(pc)2 + (mπc2)2 − mπc2

+
√

(pc)2 + (mec2)2 − mec2

where p = pe = pv. Inserting the numbers, we obtain

494 MeV =
√

(pc)2 + (135 MeV)2 +
√

(pc)2 + (0.5 MeV)2

Clearing the two radicals involves quite a bit of alge-
bra, but we can simplify the problem if we inspect this
expression and notice that the solution must have a large
value of pc, certainly greater than 100 MeV. (Otherwise
the two terms could not sum to nearly 500 MeV.) Thus
(pc)2 
 (0.5 MeV)2, and we can neglect the electron rest
energy term in the second radical, which simplifies the
equation somewhat:

494 MeV =
√

(pc)2 + (135 MeV)2 + pc

Solving, we find pc = 229 MeV, which gives (Ee)max =
229 MeV and (Eπ )max = 266 MeV. Figure 14.8 shows the
observed energy spectra of e+ and π0 from the K+ decay,
and the energy maxima are in agreement with the calcu-
lated values. (The shapes of the energy distributions are
determined by statistical factors, as in the case of nuclear
beta decay. The statistical factors are different for e+ and
π0, because the π0 also has its maximum energy when the
e+ appears at rest and the ν carries the recoil momentum.)

You should repeat this calculation and convince your-
self that (1) the π0 has its maximum energy also when
Ke = 0 (Ee = mec2) and (2) the e+ does not have its
maximum energy when Kπ = 0.
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FIGURE 14.8 The spectrum of positrons and π mesons from
the decay of the K+ meson.

14.6 ENERGY AND MOMENTUM IN PARTICLE
REACTIONS

The basic experimental technique of particle physics consists of studying the prod-
uct particles that result from a collision between an incident particle (accelerated
to high energies) and a target particle (often at rest). The kinematics of the reaction
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process must be analyzed using relativistic formulas, because the kinetic energies
of the particles are usually comparable to or greater than their rest energies. In
this section we derive some of the relationships that are needed to analyze these
reactions, using the formulas for relativistic kinematics we obtained in Chapter 2.
An important purpose of these reactions is the production of new varieties of
particles, so we concentrate on calculating the threshold energy needed to produce
these particles. (You might find it helpful to review the discussion in Chapter 13
on nonrelativistic reaction thresholds.)

E1

v1

E2 = m2c2

m1 m2

m3

m4

m5

Before

After

FIGURE 14.9 A reaction between
particles in the laboratory reference
frame.

Consider the following reaction:

m1 + m2 → m3 + m4 + m5 + · · ·
where the m’s represent both the particles and their masses. Any number of
particles can be produced in the final state. Here m1 is the incident particle,
which has total energy E1, kinetic energy K1 = E1 − m1c2, and momentum
cp1 = √

E2
1 − m2

1c4 in the laboratory frame of reference. The target particle m2
is at rest in the laboratory. Figure 14.9 illustrates this reaction in the laboratory
frame of reference.

Just as we did for nuclear reactions, we define the Q value to be the difference
between the initial and final rest energies:

Q = (mi − mf )c
2 = [m1 + m2 − (m3 + m4 + m5 + · · ·)]c2 (14.2)

If Q is positive, rest energy is turned into kinetic energy, so that the product
particles m3, m4, m5, . . . have more combined kinetic energy than the initial
particles m1 and m2. If Q is negative, some of the initial kinetic energy of m1 is
turned into rest energy.

Example 14.5

Compute the Q values for the reactions (a) π− + p →
K0 + 	0; (b) K− + p → 	0 + π0.

Solution
(a) Using rest energies from Tables 14.5 and 14.6,

Q = [mπ− + mp − (mK0 + m	0)]c2

= 140 MeV + 938 MeV − 498 MeV − 1116 MeV

= −536 MeV

This reaction has a negative Q value, and energy must be
supplied in the form of initial kinetic energy to produce the
additional rest energy of the products.

(b)

Q = [mK− + mp − (m	0 + mπ0)]c2

= 494 MeV + 938 MeV − 1116 MeV − 135 MeV

= 181 MeV

A positive Q value indicates that there is enough rest energy
in the initial particles to produce the final particles; in fact
there is 181 MeV of energy (plus the kinetic energy of the
incident particle) left over for kinetic energy of the 	0 and
π0.

Threshold Energy
When the Q value is negative, there is a minimum kinetic energy that m1 must
have in order to initiate the reaction. As in the non-relativistic nuclear physics
case, this threshold kinetic energy Kth is larger than the magnitude of Q. The Q
value is the energy necessary to create the additional mass of the product particles,
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but to conserve momentum the product particles cannot be formed at rest, so
the threshold energy must not only create the additional particles but must also
give them sufficient kinetic energy so that linear momentum is conserved in the
reaction.
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E2 = m2c2

m1 m2

m5

Before

After

m3 m4

FIGURE 14.10 The reaction of
Figure 14.9 when m1 has the threshold
kinetic energy. The product particles
move together as a unit in the direction
of the original momentum.

If Figure 14.9 represents a reaction with a negative Q value, clearly the reaction
is not being done at the threshold kinetic energy. In the reaction as it is drawn,
not only have the new particles been created, they have been given both forward
momentum (to the right in the figure), which is necessary to conserve the initial
momentum of m1, as well as transverse momentum. This transverse momentum,
which must sum to zero in order to conserve momentum, is not necessary either
to create the particles or to satisfy conservation of momentum. At the minimum
or threshold condition, this transverse momentum is zero.

Also at threshold, the most efficient way to provide momentum to the final
particles is to have them all moving together with the same speed, as in
Figure 14.10. (This is equivalent to creating the particles at rest if we examine
the collision from a reference frame in which the total initial momentum is zero,
such as in a head-on collision of two particles.) Let’s represent the bundle of
final particles, all moving as a unit, as a total mass M . Then conservation of
momentum (pinitial = pfinal) gives p1 = pM and conservation of total relativistic
energy (Einitial = Efinal) gives E1 + E2 = EM , where pM and EM represent the
momentum and total relativistic energy of the final bundle of particles. Then

√
(p1c)2 + (m1c2)2 + m2c2 =

√
(pM c)2 + (mM c2)2 =

√
(p1c)2 + (mM c2)2

(14.3)

Squaring both sides and solving, we obtain

√
(p1c)2 + (m1c2)2 = (Mc2)2 − (m1c2)2 − (m2c2)2

2m2c2
(14.4)

The threshold kinetic energy of m1 is then

Kth = E1−m1c2 =
√

(p1c)2 + (m1c2)2−m1c2

= (Mc2)2−(m1c2)2−(m2c2)2

2m2c2
−m1c2 (14.5)

= (Mc2 − m1c2 − m2c2)(Mc2 + m1c2 + m2c2)

2m2c2

With Q = m1c2 + m2c2 − Mc2 and M = m3 + m4 + m5 + · · ·, this becomes

Kth = (−Q)
m1 + m2 + m3 + m4 + m5 + · · ·

2m2
(14.6)

This can also be written as

Kth = (−Q)
total mass of all particles involved in reaction

2 × mass of target particle
(14.7)

In the limit of low speeds, the relativistic threshold formula reduces to the non-
relativistic formula for nuclear reactions derived in Chapter 13 (see Problem 20).
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Example 14.6

Calculate the threshold kinetic energy to produce π mesons
from the reaction p + p → p + p + π0.

Solution
The Q value is

Q = mpc2 + mpc2 − (mpc2 + mpc2 + mπ c2)

= −mπ c2 = −135 MeV

Using Eq. 14.7 we can find the threshold kinetic energy:

Kth = (−Q)
4mp + mπ

2mp

= (135 MeV)
4(938 MeV) + 135 MeV

2(938 MeV)
= 280 MeV

Such energetic protons are produced at many accelerators
throughout the world, and as a result the properties of the
π mesons can be carefully investigated.

Example 14.7

In 1956 an experiment was performed at Berkeley to search
for the antiproton, which could be produced in the reaction
p + p → p + p + p + p. What is the threshold energy for
this reaction?

Solution
The rest energy of the antiproton is identical to the rest
energy of the proton (938 MeV), so the Q value is

Q = mpc2 + mpc2 − 4(mpc2) = −2mpc2

Thus

Kth = (2mpc2)
6mpc2

2mpc2
= 6mpc2 = 5628 MeV

= 5.628 GeV

For the discovery of the antiproton produced in this reac-
tion, Owen Chamberlain and Emilio Segrè were awarded
the Nobel Prize in physics in 1959.

It is interesting to compute the “efficiency” of these reactions—that is, how
much of the initial kinetic energy we supply actually goes into producing the
final particles, and how much is “wasted” in the laboratory kinetic energies of the
reaction products. In the first example, we supply 280 MeV of kinetic energy to
produce 135 MeV of rest energy, for an efficiency of about 50%. In the second
example, 6mpc2 of kinetic energy produces only 2mpc2 of rest energy, for an
efficiency of only 33%. As the rest energies of the product particles become
larger, the efficiency decreases, and relatively more energy must be supplied. For
example, to produce a particle with a rest energy of 50 GeV in a proton-proton
collision, we need to supply about 1250 GeV of initial kinetic energy. Only 4% of
the energy supplied actually goes into producing the new particles; the remaining
96% must go to kinetic energy of the products in order to balance the large initial
momentum of the incident particle. To produce a 100-GeV particle requires not
twice as much energy, but four times as much. This is obviously not a pleasant
situation for particle physicists, who must build increasingly more powerful
accelerators to accomplish their goals of producing more massive particles.

One way out of this difficulty would be to do an experiment in which two
particles with equal and opposite momentum collide head-on. In effect, we would
be doing this experiment in the center-of-mass (CM) frame, where at threshold the
production of new particles is 100% efficient—none of the initial kinetic energy
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goes into kinetic energy of the products, which are produced at rest in the CM
frame. Thus a 50-GeV particle could be produced by a head-on collision between
two protons with as little as 25 GeV of kinetic energy. Of course, this great gain in
efficiency is at a cost of the technological difficulty of making such collisions occur.
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FIGURE 14.11 The relationship be-
tween electric charge and strangeness
for the spin-0 mesons.

There are now colliding beam accelerators in operation, in which beams of
particles (such as electrons or protons) can occasionally be made to collide.
For example, in the Fermilab accelerator (Figure 14.1), beams of protons and
antiprotons (each of energy 1 TeV = 1000 GeV) circulate around the ring in
opposite directions and collide twice during each revolution. The Large Hadron
Collider (hadron meaning strongly interacting particles), which is on the border
between Switzerland and France, became operational in 2009; it collides two
beams of protons each at an energy of 7 GeV in order to search for new particles
in an even higher range of rest energies. Other colliding beam accelerators bring
together electrons and positrons at energies of 50 to 100 GeV. In each case, all of
the available energy can go into the production of new particles.
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14.7 THE QUARK STRUCTURE OF MESONS
AND BARYONS

Although the classifications and properties of the elementary particles seem like a
complicated and disordered collection, there is an underlying order that suggests
that a scheme of remarkable simplicity is at work. We can illustrate this order
if we plot a diagram that has strangeness along the y axis and electric charge
along the x axis. If the families of particles are placed in their proper locations on
the graphs, regular geometrical patterns begin to emerge. Figures 14.11 to 14.13
show such plots for the lower mass spin-0 mesons, the spin- 1

2 baryons, and the
spin- 3

2 baryons. In 1964, Murray Gell-Mann and George Zweig independently
and simultaneously recognized that such regular patterns are evidence of an
underlying structure in the particles. They showed that they could duplicate these
patterns if the mesons and baryons were composed of three fundamental particles,
which soon became known as quarks. These three quarks, known as up (u), down
(d), and strange (s), have the properties listed in Table 14.7. We will shortly see
that we now believe that six quarks are necessary to account for all known mesons
and baryons.
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FIGURE 14.13 The relationship be-
tween electric charge and strangeness
for the spin- 3

2 baryons.

Let us see how the quark model works in the case of the spin-0 mesons. The
quarks have spin 1

2 , so the simplest scheme to form a spin-0 meson would be to
combine two quarks, with their spins directed oppositely. However the mesons
have baryon number B = 0, while a combination of two quarks would have
B = 1

3 + 1
3 = 2

3 . A combination of a quark and an antiquark, on the other hand,
would have B = 0, because the antiquark has B = − 1

3 .
For example, suppose we combine a u quark with a d (“antidown”) quark,

obtaining the combination ud. This combination has spin zero and electric charge
2
3 e + 1

3 e = +e. (A d quark has charge − 1
3 e, so d has charge + 1

3 e.) The properties
of this combination are identical with the π+ meson, and so we identify the π+ with
the combination ud. Continuing in this way, we find nine possible combinations
of one of the three original quarks from Table 14.7 with an antiquark, as listed in
Table 14.8, and plotting those nine combinations on a graph of strangeness against
electric charge, we obtain Figure 14.14, which looks identical to Figure 14.11.



14.7 | The Quark Structure of Mesons and Baryons 465

TABLE 14.7 Properties of the Three Original Quarks

Charge Spin Baryon
Name Symbol (e) (−h) Number Strangeness Antiquark

Up u + 2
3

1
2 + 1

3 0 u

Down d − 1
3

1
2 + 1

3 0 d

Strange s − 1
3

1
2 + 1

3 −1 s

Values shown for the charge, baryon number, and strangeness are those for the quark;
values for the antiquark have the opposite sign.

TABLE 14.8 Possible Quark-Antiquark Combinations

Combination Charge (e) Spin (−h) Baryon Number Strangeness

uu 0 0, 1 0 0

ud +1 0, 1 0 0

us +1 0, 1 0 +1

du −1 0, 1 0 0

dd 0 0, 1 0 0

ds 0 0, 1 0 +1

su −1 0, 1 0 −1

sd 0 0, 1 0 −1

ss 0 0, 1 0 0
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FIGURE 14.14 Spin-0 quark-anti-
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The baryons have B = +1 and spin 1
2 or 3

2 , which suggests immediately that
three quarks make a baryon. The 10 possible combinations of the three original
quarks are listed in Table 14.9, and we can arrange them into two patterns as
shown in Figures 14.15 and 14.16, which are identical to those for the spin- 1

2 and
spin- 3

2 baryons.
Using the quark model, we can analyze the decays and reactions of the

elementary particles, based on two rules:

1. Quark-antiquark pairs can be created from energy quanta, and conversely can
annihilate into energy quanta. For example,

energy → u + u or d + d → energy

This energy can be in the form of gamma rays (as in electron-positron
annihilation), or else it can be transferred to or from other particles in the
decay or reaction.

2. The weak interaction can change one type of quark into another through
emission or absorption of a W+ or W−, for example s → u + W−. The W
then decays by the weak interaction, such as W− → μ− + νμ or W− → d + u.
The strong and electromagnetic interactions cannot change one type of quark
into another.
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TABLE 14.9 Possible Three-Quark Combinations

Combination Charge (e) Spin (−h) Baryon Number Strangeness

uuu +2 3
2 +1 0

uud +1 1
2 , 3

2 +1 0

udd 0 1
2 , 3

2 +1 0

uus +1 1
2 , 3

2 +1 −1

uss 0 1
2 , 3

2 +1 −2

uds 0 1
2 , 3

2 +1 −1

ddd −1 3
2 +1 0

dds −1 1
2 , 3

2 +1 −1

dss −1 1
2 , 3

2 +1 −2

sss −1 3
2 +1 −3

Example 14.8

Analyze (a) the reaction π− + p → 	0 + K0 and (b) the
decay π+ → μ+ + νμ in terms of the constituent quarks.

Solution
(a) The reaction π− + p → 	0 + K0 can be rewritten as
follows:

du + uud → uds + ds

Each side contains one u quark and two d quarks, which
don’t change in the reaction. Removing these “spectator”
quarks from each side of the reaction, we are left with the
remaining transformation:

u + u → s + s

The u and u annihilate, and from the resulting energy s and
s are created.
(b) The π+ has the quark composition ud. There are no
quarks in the final state (μ+ + νμ), so we must find a way
to get rid of the quarks. One possible way is to change the
u quark into a d quark: u → d + W+. The net process can
thus be written as

ud → d + d + W+

with the products then undergoing the following processes
to produce the final observed particles:

d + d → energy and W+ → μ+ + νμ

You may have noticed that some of the heavier mesons listed in Table 14.5
were not included in Figure 14.11, and they cannot be accounted for among the
quark-antiquark combinations listed in Table 14.8. Where do these particles fit in
our scheme?

In 1974, a new meson called J/ψ was discovered at a rest energy of 3.1 GeV.
(It was given different names J and ψ by the two competing experimental groups
that first reported its discovery.) This new meson was expected to decay to lighter
mesons in a characteristic strong interaction time of around 10−23 s. Instead, its
lifetime was stretched by 3 orders of magnitude to about 10−20 s, and its decay
products were e+ and e−, which are more characteristic of an electromagnetic
process. Why is the rapid, strong interaction decay path blocked for this particle?
This was soon explained by assuming the J/ψ to be composed of a new quark c,
called the charm quark, and its antiquark c. The existence of the c quark had
been predicted 4 years earlier as a way to explain the failure to observe the decay
K0 → μ+ + μ−, which violates no previously known law but is nevertheless not
observed.
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The c quark, which carries a charge of + 2
3 e, has a property, charm, that operates

somewhat like strangeness. We assign a charm quantum number C = +1 to the
c quark (and assign C = −1 to its antiquark c). All other quarks are assigned
C = 0. We can now construct a new set of mesons by combining the c quark with
the u, d, and s antiquarks and by combining the c antiquark with the u, d, and s
quarks. Instead of nine spin-0 mesons, there are now 16, and the two-dimensional
graphs of Figures 14.11 and 14.14 must be extended to a third dimension to show
the C axis (Figure 14.17). All of these new mesons, called D, have been observed
in high-energy collision experiments. Baryons containing this new quark have
also been discovered, analogous to the 	, �, �, and � particles but with an s
quark replaced by a c quark.

In 1977, the same sequence of events was repeated with another meson, ϒ

(upsilon). The rest energy was determined to be about 9.5 GeV, and again its
decay was slowed to about 10−20 s and occurred into e+ + e− rather than into
mesons. Once again, a new quark was postulated: the b (bottom) quark with a new
quantum “bottomness” number B = −1 and a charge of − 1

3 e. (The letter B is used
to represent baryon number as well as bottomness. It should always be apparent
from the discussion which one is meant.) The ϒ is assigned as the combination
bb. Many new particles containing the b quark have been discovered, including
B mesons (in which a b quark is paired with a different antiquark) and baryons
similar to 	, �, and � with a b quark replacing one of the s quarks.

A sixth quark was discovered in 1994 in proton-antiproton collisions at
Fermilab. These collisions created this new quark and its antiquark, both of which
decayed into a shower of secondary particles (as in Figure 14.5). By measuring
the energy and momentum of the secondary particles, the experimenters were
able to determine the mass of the new quark to be 172 GeV (roughly the mass of
a tungsten atom). This new quark is known as t (top) and has a new associated
property of “topness” with a quantum number T = +1.

It may now seem that we are losing sight of our goal to achieve simplicity
(to add the “bottomness” axis to Figure 14.17 we would need to depict a four-
dimensional space!) and that we are moving toward replacing a complicated array
of particles with an equivalently complicated array of quarks. However, there is
good reason to believe that there are no more than six fundamental quarks. In the
next section, we discuss how we are indeed on the path to a simple explanation of
the fundamental particles.
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TABLE 14.10 Properties of the Quarks

Charge Spin Baryon Rest Energy Properties
Type Symbol Antiparticle (e) (−h) Number (MeV) C S T B

Up u u + 2
3

1
2 + 1

3 330 0 0 0 0

Down d d − 1
3

1
2 + 1

3 330 0 0 0 0

Charm c c + 2
3

1
2 + 1

3 1500 +1 0 0 0

Strange s s − 1
3

1
2 + 1

3 500 0 −1 0 0

Top t t + 2
3

1
2 + 1

3 172,000 0 0 +1 0

Bottom b b − 1
3

1
2 + 1

3 4700 0 0 0 −1

Table 14.10 shows the six quarks and their properties. The masses of the quarks
cannot be directly determined, because a free quark has yet to be observed. The
rest energies shown in Table 14.10 are estimates based on the “apparent” masses
that quarks have when bound in various particles. For example, the observed rest
energy of the proton is the sum of the rest energies of its three quark constituents
less the binding energy of the quarks. Since we don’t know the binding energy,
we can’t determine the rest energy of a free quark. The rest energies shown in
Table 14.10 are often called those of constituent quarks.

The quark model does a great deal more than allow us to make geometrical
arrangements of particles such as Figure 14.17. It can be used to explain many
observed properties of the particles, such as their masses and magnetic moments,
and to account for their decay lifetimes and reaction probabilities. Nevertheless,
a free quark has never been observed, despite heroic experiments to search for
them. How can we be sure that they exist? In experiments that scatter high-energy
electrons from protons, we observe more particles scattered at large angles than
we would expect if the electric charge of the proton were uniformly distributed
throughout its volume, and from the analysis of the distribution of the scattered
electrons we conclude that inside the proton are three point-like objects that are
responsible for the scattering. This experiment is exactly analogous to Rutherford
scattering, in which the presence of the nucleus as a compact object inside the atom
was revealed by the distribution of scattered alpha particles at angles larger than
expected. Like Rutherford’s experiment, the observed cross section depends on
the electric charge of the object doing the scattering, and from these experiments
we can deduce charges of magnitude 1

3 e and 2
3 e for these point-like objects. These

experiments give clear evidence for the presence of quarks inside the proton.
We don’t yet know why free quarks have not been observed. Perhaps they

are so massive that no accelerator yet built has enough energy to liberate one.
Perhaps the force between quarks increases with distance (in contrast with
electromagnetism or gravitation, which decrease with separation distance), so
that an infinite amount of energy would be required to separate a quark from
a nucleon. Or (as is now widely believed) perhaps the basic theory of quark
structure forbids the existence of free quarks.

Quarkonium
The theoretical analysis of the structure of baryons poses mathematical difficulties
that are characteristic of all three-body mechanical or quantum-mechanical
systems. Instead, we can learn a bit about the interactions of quarks from
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examining the properties of two-body systems, especially the quark-antiquark
combinations in mesons.

We’ll look briefly at the combination of a quark with its own antiquark. The
binding energies of quarks in mesons are very large (hundreds of MeV), so the
quark-antiquark pairs of the light quarks (u, d, s) must be treated relativistically,
because the binding energies and thus the kinetic energies in the bound state are
roughly the same as the rest energies. However, for the more massive quarks (c,
b, t), the binding energies are small compared with the rest energies and we can
use nonrelativistic methods (such as the Schrödinger equation) for the analysis.

There is a well-studied analogy for the properties of a quark-antiquark combina-
tion. When a positron travels through matter, before it annihilates it forms an atom-
like bound state with an electron. This bound electron-positron system is called
positronium. The positron and the electron each orbit about their center of mass, in
states that are similar to atomic states in hydrogen. We can label these states by the
values of their total spin angular momentum S and orbital angular momentum L, as
we did for atomic states in Chapter 8. (Don’t confuse these labels with strangeness
and lepton number.) The spins of the two particles can be parallel (hence with
total spin S = 1) or antiparallel (S = 0). The total orbital angular momentum of
the two particles about the center of mass can be L = 0 for s states, L = 1 for p
states, etc. Finally, the system can exist with different radial wave functions that
we can label with principal quantum number n = 1, 2, 3, . . ., exactly as we did in
the hydrogen atom. Figure 14.18a shows some of the bound states in positronium.

The positronium structure is very similar to the bound states in a quark-
antiquark system, which is correspondingly known as quarkonium. Figure 14.18b
shows the quarkonium excited states for the cc system, and the states for the bb
system are shown in Figure 14.18c. There is a great similarity between the excited
states of the two quarkonium systems. Note in particular the states with S = 1
and L = 0 in cc and bb. (These would be equivalent to the 1s, 2s, 3s, and 4s states
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in a hydrogenic system. The lowest S = 1, L = 0 cc state is the J/ψ meson, and
the corresponding bb state is the ϒ meson.) Moreover, the overall structure of the
excited states of the quarkonium systems is very similar to that of positronium
(especially the n = 2 states of positronium and cc).

Knowledge of the excited states of quarkonium allows us to guess at an
effective potential energy for which we can solve the Schrödinger equation
to try to calculate the energies of the states. The similarity with positronium
certainly suggests that we try a Coulomb-like potential energy that depends on
1/r. However, it cannot be an electromagnetic interaction—the electromagnetic
interaction between two quarks separated by a distance on 0.5 fm (a typical size of
a meson) is at most about 1 MeV, which is less than 1% of the energy differences
of the quarkonium excited states shown in Figure 14.18. (Moreover, the cc
electromagnetic interaction should be 4 times stronger than the bb electromagnetic
interaction, but there is no evidence of this in Figure 14.18.) The 1/r interaction
grows weaker with increasing separation, so we must add another term that grows
stronger with separation, which accounts for the failure to produce a free quark.
Several different potential energies have been tried for this additional term, the
simplest being a term that is linear in the separation r. The net effective potential
energy is then of the form

U(r) = −a

r
+ br (14.8)

The Schrödinger equation can be solved numerically for this potential energy,
with the constants a and b adjusted to give best agreement with experiment. The
constant b turns out to have a value of about 1 GeV/fm. This large value is
consistent with the failure to observe a free quark—to separate the quarks in a
meson even to an atom-sized distance would require about 105 GeV, far greater
than the beam energy of any accelerator.

One of the especially interesting features of the quarkonium excited states
shown in Figure 14.18 is the rough agreement between the energies of the cc and
bb states. (See especially the four states with S = 1 and L = 0.) This is surprising,
because in a simple two-body hydrogen-like system, the energies should depend
on the masses of the orbiting particles, and the b quark is three times as massive
as the c quark. It would be interesting to continue this comparison for the bound
states of the tt system involving the top quark, but the difficulty of producing this
particle in significant quantities (owing to its large mass) has so far prevented a
study of the excited states of the tt system.

14.8 THE STANDARD MODEL

Ordinary matter is composed of protons and neutrons, which are in turn composed
of u and d quarks. Ordinary matter is also composed of electrons. In the radioactive
decay of ordinary matter, electron-type neutrinos are emitted. Our entire world
can thus be regarded as composed of four spin- 1

2 particles (and their antiparticles),
which can be grouped into a pair of leptons and a pair of quarks:

(e, νe) and (u, d)

Within each pair, the charges of the two particles differ by one unit: −1 and 0,
+ 2

3 and − 1
3 .
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When we do experiments with high-energy accelerators, we find new types
of particles: muons and muon neutrinos, plus mesons and baryons with the new
properties of strangeness and charm. We can account for the structure of these
particles with another pair of leptons and another pair of quarks:

(μ, νμ) and (c, s)

Once again, the particles come in pairs differing by one unit of charge.
At even higher energies, we find a new generation of particles consisting

of another pair of leptons (tau and its neutrino) and a new pair of quarks (top
and bottom), which permits us to continue the symmetric arrangement of the
fundamental particles in pairs:

(τ , ντ ) and (t, b)

Is it possible that there are more pairs of leptons and quarks that have not
yet been discovered? At this point, we strongly believe the answer to be “No.”
Every particle so far discovered can be fit into this scheme of 6 leptons and
6 quarks. Furthermore, the number of lepton generations can be determined by
the decay rates of the heaviest particles, and a limit of 3 emerges from these
experiments. Finally, according to present theories the evolution of the universe
itself would have proceeded differently if there had been more than three types of
neutrinos. For these reasons, it is generally believed that there are no more than
three generations of particles.

The strong force between quarks is carried by an exchanged particle, called
the gluon, which provides the “glue” that binds quarks together in mesons and
baryons. (There are actually eight different gluons in the model.) A theory known
as quantum chromodynamics describes the interactions of quarks and the exchange
of gluons. In this theory, the internal structure of the proton consists of three
quarks “swimming in a sea” of exchanged gluons. Like the quarks, the gluons
cannot be observed directly, but there is indirect evidence of their existence from
a variety of experiments.

The theory of the structure of the elementary particles we have described so far
is known as the Standard Model. It consists of 6 leptons and 6 quarks (and their
antiparticles), plus the field particles (photon, 3 weak bosons, 8 gluons) that carry
the various forces. It is remarkably successful in accounting for the properties of
the fundamental particles, but it lacks the unified treatment of forces we would
expect from a complete theory.

The first step toward unification was taken in 1967 with the development of
the electroweak theory by Stephen Weinberg and Abdus Salam. In this theory,
the weak and electromagnetic interactions are regarded as separate aspects of the
same basic force (the electroweak force), just as electric and magnetic forces are
distinct but part of a single phenomenon, electromagnetism. The theory predicted
the existence of the W and Z particles; their discovery in 1983 provided a
dramatic confirmation of the theory.

The next-higher level of unification would be to combine the strong and
electroweak forces into a single interaction. Theories that attempt to do this are
called Grand Unified Theories (GUTs). By incorporating leptons and quarks into
a single theory, the GUTs explain many observed phenomena: the fractional
electric charge of the quarks and the difference of one unit of charge between the
members of the quark and lepton pairs within each generation. The GUTs also
predict new phenomena, such as the conversion of quarks into leptons, which
would permit the proton (which we have so far assumed to be an absolutely stable
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particle) to decay into lighter particles with a lifetime of at least 1031 y. Searches
for photon decay (by looking for evidence of decays in a large volume of matter;
see Figure 14.19) have so far been unsuccessful and have placed lower limits on
the proton lifetime of at least 1032 y.

A missing part of the Standard Model is an explanation of why the particles
have the masses that we observe. A complete theory ought to be able to calculate
the masses of the particles. It has been proposed that there is a field pervading
the entire universe and that particles acquire their particular masses as a result
of the strength of their interactions with this field, somewhat like a particle
moving through a viscous medium seems to have more inertia and thus a greater
“effective” mass. This field is known as the Higgs field and the particle that carries
the field interaction is called the Higgs boson. This particle has been searched for
but not yet found; estimates of its expected mass are in excess of 100 GeV/c2.
The Large Hadron Collider, the world’s most powerful particle accelerator, is
currently searching for evidence of the Higgs boson by colliding beams of protons
at an energy of 7000 GeV.

Another shortcoming of the Standard Model is that it is based on massless
neutrinos. Although the upper limit (see Table 14.4) on the mass of the electron
neutrino is very small (2 eV), the limits on the other neutrino masses are much
larger. Measurements of the flux of neutrinos reaching Earth from the Sun,
produced in the fusion reactions discussed in Chapter 13, have consistently
revealed a large deficit—the intensity of electron neutrinos observed on Earth
is only about 1/3 of what is predicted based on models of how fusion reactions
occur in the Sun’s interior. Recent measurements at the Sudbury Neutrino
Observatory in Canada have revealed that, although the intensity of electron
neutrinos from the Sun is only 1/3 of the expected value, the total intensity

FIGURE 14.19 The Superkamiokande detector system in Japan was
designed to search for proton decay. The water tank, 40 m in diameter
and located 1000 m underground, holds 50,000 tons of water. The tank
is lined with more than 10,000 photomultiplier detectors that respond to
flashes of light that would be emitted when one of the protons in the water
decayed. Here the tank has been partly emptied so that the technicians (in
the boat) can service the photomultipliers.
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of all neutrinos (including muon and tau neutrinos) reaching us from the Sun
agrees with the predicted rate. This is very puzzling, because the fusion reactions
in the Sun should produce only electron neutrinos; the reacting particles in the
solar interior are not sufficiently energetic to produce mu and tau leptons. This
mystery has been explained by proposing that the electron neutrinos are produced
in the solar interior at the expected rate, but that during their journey from the
Sun to Earth, the purely electron neutrinos become a mixture of roughly equal
parts electron, muon, and tau neutrinos. This nicely explains why the rate of
electron neutrinos from the Sun appears to be only about 1/3 of what is expected
(the other 2/3 of the electron neutrinos having been converted into muon or tau
neutrinos). This phenomenon of neutrino oscillation (which refers to neutrinos
oscillating from one type to another) can occur only if the neutrinos have mass.
The required masses are very small, well within the experimental limits, but the
neutrino masses are definitely not zero. The Standard Model must be extended to
include nonzero neutrino masses, and the rules for conservation of lepton number
must be modified to allow one type of neutrino to transform into another.

The search for a consistent explanation of the elementary particles has led
physicists to work with exotic theories. In string theory the particles are replaced
by tiny (10−33 cm) strings, whose vibrations give rise to the properties we observe
as particles. These theories exist in spacetimes with 10 or more dimensions, and at
present seem to be far beyond any possible experimental test. Another extension
of the Standard Model is called supersymmetry; this theory proposes that there is
a higher symmetry between the spin- 1

2 particles (such as the quarks and leptons)
and particles with integral spin, so that under this theory there would be electrons
and quarks with a spin of 0 and W and Z particles and photons with a spin of
1
2 . The masses of these supersymmetric particles are estimated to be very much
larger than their ordinary partners, perhaps in the range of 100 GeV/c2, but even
in this range they should be observable through experiments currently planned at
the Large Hadron Collider.

There is so far no conclusive verification for any of the GUTs, nor is there
a successful theory that incorporates the remaining force, gravity, into a unified
theory. The quest for unification and its experimental tests remains an active area
of research in particle physics.

Chapter Summary

Section

Forces Strong, electromagnetic, weak,
gravitational
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Field particles Gluon (g), photon (γ ), weak
boson (W±, Z0), graviton

14.1

Leptons e−, νe, μ−, νμ, τ−, ντ 14.2
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Conservation of
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In strong and electromagnetic
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Kth = −Q(m1 + m2 + m3 +
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14.6

Quarks u, d, c, s, t, b 14.7
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Questions

1. Some conservation laws are based on fundamental properties
of nature, while others are based on systematics of decays
and reactions and have as yet no fundamental basis. Give
the basis for the following conservation laws: energy, lin-
ear momentum, angular momentum, electric charge, baryon
number, lepton number, strangeness.

2. Does the presence of neutrinos among the decay products
of a particle always indicate that the weak interaction is
responsible for the decay? Do all weak interaction decays
have neutrinos among the decay products? Which decay
product indicates an electromagnetic decay?

3. Do all strongly interacting particles also feel the weak
interaction?

4. In what ways would physics be different if there were
another member of the lepton family less massive than the
electron? What if there were another lepton more massive
than the tau?

5. Suppose a proton is moving with high speed, so that
E 
 mc2. Is it possible for the proton to decay, such as
into n + π+ or p + π0?

6. On planet anti-Earth, antineutrons beta decay into antipro-
tons. Is a neutrino or an antineutrino emitted in this decay?

7. List some experiments that might distinguish antineutrons
from neutrons. Among others, you might consider (a) neu-
tron capture by a nucleus; (b) beta decay; (c) the effect of a
magnetic field on a beam of neutrons.

8. The �0 can decay to 	0 without changing strangeness, so
it goes by the electromagnetic interaction; the charged �±

decay to p or n by the weak interaction in characteristic
lifetimes of 10−10 s. Why can’t �± decay to 	0 by the
strong interaction in a much shorter time?

9. The �− particle decays to 	0 + K−. Why doesn’t it also
decay to 	0 + π−?

10. Explain why we do not account for the number of mesons in
decays or reactions with a “meson number” in analogy with
lepton number or baryon number.

11. Consider that leptons and baryons both obey conservation
laws and are both fermions; mesons do not obey a conser-
vation law and are bosons. Can you think of another particle
(other than a meson) that has integral spin and can be emitted
or absorbed in unlimited numbers?

12. Can antibaryons be produced in reactions between baryons
and mesons?

13. List some similarities and differences between the properties
of photons and neutrinos.

14. Is it reasonable to describe a resonance as a definite particle,
when its mass is uncertain (and therefore variable) by 20%?

15. Why are most particle physics reactions endothermic
(Q < 0)?

16. Although doubly charged baryons have been found, no dou-
bly charged mesons have yet been found. What would be
the effect on the quark model if a meson with charge +2e
were found? How could such a meson be interpreted within
the quark model?

17. All direct quark transformations must involve a change of
charge; for example, u → d is allowed (accompanied by the
emission of a W−), but s → d is not. Can you suggest a
two-step process that might permit the transformation of an
s quark into a d?

18. The decay K+ → π+ + e+ + e− is at least five orders of
magnitude less probable than the decay K+ → π0 + e+ +
νe. Based on Question 17, can you explain why?

19. The D mesons decay to π and K mesons with a lifetime
of 10−13 s. (a) Why is the lifetime so much slower than a
typical strong interaction lifetime? Is a quantum number not
conserved in the decay? (b) What interaction is responsible
for the decay?

20. The �∗ baryons are found with electric charges +2, +1, 0,
and −1. Based on the quark model, why do we expect no
�∗ with charge −2?

21. Although we cannot observe quarks directly, indirect evi-
dence for quarks in nucleons comes from the scattering
of high-energy particles, such as electrons. When the de
Broglie wavelength of the electrons is small compared with
the size of a nucleon (∼ 1 fm), the electrons appear to be
scattered from massive, compact objects much smaller than
a nucleon. To which phenomenon discussed previously in
this text is this similar? Can the scattering be used to deduce
the mass of the struck object? How does the scattering
depend on the electric charge of the struck object? What
would be the difference between scattering from a particle
of charge e and one of charge 2

3 e?

Problems

14.1 The Four Basic Forces

1. Identify the interaction responsible for the following decays
(approximate half-lives are given in parentheses):

(a) �∗ → p + π (10−23 s)
(b) η → γ + γ (10−18 s)

(c) K+ → μ+ + νμ (10−8 s)
(d) 	0 → p + π− (10−10 s)
(e) η′ → η + 2π (10−21 s)
(f ) K0 → π+ + π− (10−10 s)

2. What is the range of the W− particle that is responsible for
the weak interaction of a proton and a neutron?
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14.2 Classifying Particles

3. Give one possible decay mode of the following mesons:
(a) π− (b) ρ− (c) D− (d) K

0

4. Give one possible decay mode of the following antibaryons:

(a) n (b) 	
0

(c) �
−

(d) �
0

5. Suggest a possible decay mode for the K0 meson that
involves the emission of:
(a) νe (b) νe (c) νμ (d) νμ

Is it possible to have a decay mode of the K0 that involves
the emission of ντ or ντ ?

14.3 Conservation Laws

6. Name the conservation law that would be violated in each
of the following decays:
(a) π+ → e+ + γ

(b) 	0 → p + K−

(c) �− → �− + π0

(d) 	0 → π− + π+

(e) 	0 → n + γ

(f ) �− → �0 + K−
(g) �0 → �0 + π0

(h) μ− → e− + γ

7. Each of the following reactions violates one (or more) of
the conservation laws. Name the conservation law violated
in each case:

(a) νe + p → n + e+

(b) p + p → p + n + K+
(c) p + p → p + p + 	0 + K0

(d) π− + n → K− + 	0

(e) K− + p → n + 	0

8. Supply the missing particle in each of the following decays:

(a) K− → π0 + e− +
(b) K0 → π0 + π0 +
(c) η → π+ + π− +

9. Each of the reactions below is missing a single particle.
Supply the missing particle in each case.

(a) p + p → p + 	0+
(b) p + p → n +
(c) π− + p → �0 + K0 +

(d) K− + n → 	0 +
(e) νμ + p → n +
(f ) K− + p → K+ +

14.4 Particle Interactions and Decays

10. Carry out the calculations of mc2 for the three decays of
Figure 14.6.

11. Determine the energy uncertainty or width of (a) η; (b) η′;
(c) �0; (d) �∗.

14.5 Energy and Momentum in Particle Decays

12. A �− baryon is produced in a certain reaction with a kinetic
energy of 3642 MeV. If the particle decays after one mean
lifetime, what is the longest possible track this particle could
leave in a detector?

13. Repeat the calculation of Example 14.4 for the case in
which the π meson has zero kinetic energy, and show that
the electron energy in this case is less than the maximum
value.

14. Find the Q values of the following decays:
(a) π0 → γ + γ

(b) �+ → p + π0
(c) D+ → K− + π+ + π+

15. Find the Q values of the following decays:
(a) π− → μ− + νμ

(b) K0 → π+ + π−
(c) �0 → 	0 + γ

16. Find the kinetic energies of each of the two product particles
in the following decays (assume the decaying particle is at
rest):
(a) K0 → π+ + π− (b) �− → n + π−

17. Find the kinetic energies of each of the two product particles
in the following decays (assume the decaying particle is at
rest):
(a) �− → 	0 + K− (b) π+ → μ+ + νμ

18. A �− with a kinetic energy of 0.250 GeV decays into
π− + n. The π− moves at 90◦ to the original direction of
travel of the �−. Find the kinetic energies of π− and n and
the direction of travel of n.

19. A K0 with a kinetic energy of 276 MeV decays in flight
into π+ and π−, which move off at equal angles with the
original direction of the K0. Find the energies and directions
of motion of the π+ and π−.

14.6 Energy and Momentum in Particle Reactions

20. Show Eq. 14.6 reduces to Eq. 13.14 in the nonrelativistic
limit.

21. Determine the Q values of the following reactions:
(a) K− + p → 	0 + π0

(b) π+ + p → �+ + K+
(c) p + p → p + π+ + 	0 + K0

22. Determine the Q values of the following reactions:
(a) γ + n → π− + p
(b) K− + p → �− + K+ + K0

(c) p + p → p + �+ + K0

23. Find the threshold kinetic energy for the following reactions.
In each case the first particle is in motion and the second is
at rest.
(a) p + p → n + �+ + K0 + π+

(b) π− + p → �0 + K0

24. Find the threshold kinetic energy for the following reactions.
In each case the first particle is in motion and the second is
at rest.
(a) p + n → p + �− + K+
(b) π+ + p → p + p + n

14.7 The Quark Structure of Mesons and Baryons

25. Analyze the following reactions in terms of the quark content
of the particles and reduce them to fundamental processes
involving the quarks:
(a) K− + p → �− + K+ + K0

(b) π+ + p → �+ + K+
(c) γ + n → π− + p
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26. Analyze the following reactions in terms of the quark content
of the particles and reduce them to fundamental processes
involving the quarks:
(a) K− + p → 	0 + π0

(b) p + p → p + π+ + 	0 + K0

(c) γ + p → D+ + D
0 + n

27. Analyze the following decays in terms of the quark content
of the particles and reduce them to fundamental processes
involving the quarks:

(a) �− → 	0 + K−
(b) n → p + e− + νe

(c) π0 → γ + γ

(d) D+ → K− + π+ + π+
28. Analyze the following decays in terms of the quark content

of the particles and reduce them to fundamental processes
involving the quarks:

(a) K0 → π+ + π−
(b) �∗++ → p + π+

(c) �− → n + π−

(d) D
0 → K+ + π−

29. Based on Figure 14.17, give the quark content of the six D
mesons.

General Problems

30. Table 14.5 lists the most likely decay mode of the K+ meson;
Example 14.4 gives another possible decay. List four other
possible decays that are allowed by the conservation laws.

31. It is desired to form a beam of 	0 particles to use for the
study of reactions with protons. The 	0 are produced by
reactions at one target and must be transported to another
target 2.0 m away so that at least half of the original 	0

remain in the beam. Find the speed and the kinetic energy
of the 	0 for this to occur.

32. Find a decay mode, other than that listed in Table 14.6,
for (a) �−; (b) 	0; (c) �+ that satisfies the applicable
conservation laws.

33. Consider the reaction p + p → p + p + π0 discussed in
Example 14.6, but viewed instead from a frame of reference
in which the two protons collide head-on with equal veloc-
ities. (a) At threshold in this frame of reference, the product
particles are formed at rest. Find the proton velocities in this
case. (b) Use the Lorentz velocity transformation to switch to
the laboratory frame of reference in which one of the protons
is at rest, and find the velocity of the other proton. (c) Find
the kinetic energy of the incident proton in the laboratory
frame and compare with the value found in Example 14.6.

34. The D+
s meson (rest energy = 1969 MeV, S = +1, C = +1;

see Figure 14.17) has a lifetime of 0.5 × 10−12 s. (a) Which
interaction is responsible for the decay? (b) Among the
possible decay modes are φ + π+, μ+ + νμ, and K+ + K

0
.

How do the S and C quantum numbers change in these
three decays? (The φ meson has a spin of 1, a rest energy
of 1020 MeV, and a quark content of ss.) (c) Analyze the
three decay modes according to the quark content of the
initial and final particles. (d) Why is the decay into K+ +
π+ + π− allowed, while the decay into K− + π+ + π+ is
forbidden?

35. In the decay K+ → π+ + π+ + π− with the initial K meson
at rest, what is the maximum kinetic energy of the pi mesons?

36. A beam of π− mesons with a speed of 0.9980c is incident
on a target of protons at rest. The reaction produces two par-
ticles, one of which is a K0 meson that is observed to travel
with momentum 1561 MeV/c in a direction that makes an
angle of 20.6◦ with the direction of the incident pions.
(a) Find the momentum and the direction of the second
product particle. (b) Find the energy of that particle. (c) Find
the rest energy of the second particle and deduce its identity.



Chapter 15
COSMOLOGY: THE ORIGIN AND
FATE OF THE UNIVERSE

Today we scan the skies at all wavelengths from the very short (X rays and gamma rays) to
the very long (radio waves). New and unexpected discoveries have occurred at these
wavelengths: quasars, pulsars, supernovas, black holes—all of which suggest that the
universe is not at all static and eternal, as was once believed, but instead is active, evolving,
and teeming with radiation. Van Gogh’s painting The Starry Night suggests exactly that view,
even though it was painted in 1889, long before any of these discoveries were made.
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In the short time of a few hundred years, developments in astronomy have taken
us from the belief that the Earth and its human population were the center of the
universe, to a role that approaches insignificance. Before the 16th century, it was
widely believed that the planets, Sun, Moon, and stars revolved about a central
Earth. By the early 20th century, astronomers had discovered that we inhabit
one minor star of a vast number in our galaxy, and that the universe contains an
equally vast number of other galaxies.

Gravity is the dominant force that determines the structure of the present
universe, but Newton’s theory is insufficient to explain a number of observations
of the motion of celestial objects. For this purpose we need a different theory,
the general theory of relativity, which was proposed by Albert Einstein in 1916.
Although the mathematics of this theory is beyond the level of this text, we can
summarize some of its features and discuss its experimental predictions and their
verification. Like the special theory, the general theory of relativity offers us a
new way of thinking about space and time.

In this chapter, we briefly survey the field of cosmology, the study of the
universe on the large scale, including its origin, evolution, and future. For this
study we must rely not only on relativity (special and general) and quantum theory,
but also on fundamental results from atomic and molecular physics, statistical
physics, thermodynamics, nuclear physics, and particle physics.

We begin with three discoveries that fundamentally altered our concept of the
universe: it is expanding, it is filled with electromagnetic radiation, and most of
its mass is mysteriously hidden from our view. We show how these discoveries
have been incorporated, using results from general relativity, into a theory of
the origin of the universe known as the Big Bang theory. We then consider other
measurements that support this theory, and we conclude with some speculations
on the future of the universe.

15.1 THE EXPANSION OF THE UNIVERSE

The evidence for the expansion of the universe comes from the change in
wavelength of the light emitted by distant galaxies. In Chapter 2, we analyzed
a similar effect as the relativistic Doppler shift (Eq. 2.22), which we can write
in terms of wavelength as

λ′ = λ

√
1 + v/c

1 − v/c
= λ

1 + v/c√
1 − v2/c2

(15.1)

where v represents the relative velocity between the source of the light and the
observer. Here λ′ is the wavelength we measure on Earth and λ is the wavelength
emitted by the moving star or galaxy in its own rest frame.

The light emitted by a star such as the Sun has a continuous spectrum. As light
passes through the star’s atmosphere, some of it is absorbed by the gases in the
atmosphere, so the continuous emission spectrum has a few dark absorption lines
superimposed (see Figure 6.15). Comparison between the known wavelengths of
these lines (measured on Earth for sources at rest relative to the observer) and
the Doppler-shifted wavelengths allows the speed of the star to be deduced from
Eq. 15.1.

Of the stars in our galaxy, some are found to be moving toward us, with
their light shifted toward the shorter wavelengths (blue), and others are moving



15.1 | The Expansion of the Universe 479

away from us, with their light shifted toward the longer wavelengths (red). The
average speed of these stars relative to us is about 30 km/s (10−4c). The change
in wavelength for these stars is very small. Light from nearby galaxies, those of
our “local” group, again shows either small blue shifts or small red shifts.

However, when we look at the light from distant galaxies, we find it to
be systematically red shifted, and by a large amount. Some examples of these
measurements are shown in Figure 15.1. We do not see a comparable number of
red and blue shifts, as we would expect if the galaxies were in random motion.
All of the galaxies beyond our local group seem to be moving away from us.

(a)

(b)

(c)

FIGURE 15.1 Red shifts of galaxies.
(a) The horizontal band in the cen-
ter shows a continuous spectrum with
two dark lines superimposed (vertical
arrow near left side), which repre-
sent absorption by calcium. Above
and below the absorption spectrum
are emission spectra for calibration.
The recessional speed of this galaxy
(which is in our local group) is
1200 km/s, so the red shift is very
small. (b) The absorption spectrum of
a galaxy with a recessional speed of
15,000 km/s. The red shift of the two
calcium lines (indicated by the hor-
izontal arrow) is significant. (c) The
red shift of a galaxy with a recessional
speed of 22,000 km/s. (Data courtesy
Hale Observatories.)

The cosmological principle asserts that the universe must look the same from
any vantage point, and so we must conclude that any other observer in the universe
would draw the same conclusion: The galaxies would be observed to recede from
every point in the universe.

Hubble’s Law
In the 1920s, astronomer Edwin Hubble was using the 100-inch telescope on
Mount Wilson in California to study the wispy nebulae. By resolving individual
stars in the nebulae, Hubble was able to show that they are galaxies like the
Milky Way, composed of hundreds of billions of stars. When Hubble measured
the wavelength shifts of the light from the galaxies and deduced their speeds, he
made two remarkable conclusions: the galaxies are moving away from us, and
the farther away a galaxy is from us, the faster it is moving. This proportionality
between the speed of the galaxy and its distance d is known as Hubble’s law:

v = H0d (15.2)

The proportionality constant H0 is known as the Hubble parameter.
Figure 15.2a shows a plot of Hubble’s data for the deduced speeds against the

distance. Although the points scatter quite a bit (due primarily to uncertainties in
the distance measurements), there is a definite indication of a linear relationship.
(Hubble’s distance calibration was incorrect, so the labels on the horizontal axis
do not correspond to the actual distances to the galaxies.) More modern data
based on observing supernovas in distant galaxies are shown in Figure 15.2b.
There is again clear evidence for a linear relationship, and the slope of the line
gives a value of the Hubble parameter of about 72 km/s/Mpc∗, within a range
of about ±10%. The Hubble parameter can also be determined from a variety of
other cosmological experiments. These agree with the supernova data, and the
best current value is

H0 = 72
km/s

Mpc

The uncertainty in this value is on the order of ±4%.
The Hubble parameter has the dimension of inverse time. As we show later,

H−1
0 is a rough measure of the age of the universe. The best value of H0 gives an

age of 14 × 109 y. If the speed of recession has been changing, the true age can
be less than H−1

0 .

∗A parsec, pc, is a measure of distance on the cosmic scale; it is the distance that corresponds to one
angular second of parallax. Because parallax is due to the Earth’s motion around the Sun, the parallax
angle 2α is the diameter 2R of the Earth’s orbit divided by the distance d to the star or galaxy. Thus
α = R/d radians, which gives 1 pc = 3.26 light-years = 3.084 × 1013 km. One megaparsec, Mpc, is
106 pc.
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FIGURE 15.2 (a) Hubble’s original data showing the linear relationship between the recessional speed of a
galaxy and its distance from Earth. (b) Modern data showing Hubble’s law. Data are based on observations of
supernovas in distant galaxies using the Hubble Space Telescope. The solid line represents a Hubble parameter
of 72 km/s/Mpc, and the dashed lines show the limits corresponding to ±7 km/s/Mpc. [Data from W. L.
Freedman et al., Astrophysical Journal 553, 47 (2001).]

How does the Hubble law show that the universe is expanding? Consider the
unusual universe represented by the three-dimensional coordinate system shown
in Figure 15.3a, where each point represents a galaxy. With the Earth at the origin,
we can determine the distance d to each galaxy. If this universe were to expand,
with all the points becoming further apart, as in Figure 15.3b, the distance to each
galaxy would be increased to d′. Suppose the expansion were such that every
dimension increased by a constant ratio k in a time t; that is, x′ = kx, and so forth.
Then d′ = kd, and a given galaxy moves away from us by a distance d′ − d in a
time t, so its apparent recessional speed is

Edwin Hubble (1889–1953, United
States). His observational work with
large telescopes revealed the existence
of galaxies, and he was the first to mea-
sure their size and distance. Hubble’s
discovery of the recessional motion
of the galaxies was one of the most
exciting and important in the history
of astronomy.

v = d′ − d

t
= d

k − 1

t
(15.3)

If we compare two galaxies 1 and 2,

v1

v2
= d1

d2
(15.4)

a relationship identical with Hubble’s law, Eq. 15.2. Thus, in an expanding
universe, it is perfectly natural that the further away from us a galaxy might be,
the faster we observe it to be receding.

Notice also from Figure 15.3 that this is true no matter which point we happen
to choose as our origin. From any point in the “universe” of Figure 15.3, the other
points would be observed to satisfy Eq. 15.4 and thus also Hubble’s law. We can
further demonstrate this with two analogies. If we glue some spots to a balloon
(Figure 15.4) and then inflate it, every spot observes all other spots to be moving
away from it, and the farther away a spot is from any point, the faster its separation
grows. For a three-dimensional analogy, consider the loaf of raisin bread shown
in Figure 15.5 rising in an oven. As the bread rises, every raisin observes all the
others to be moving away from it, and the speed of recession increases with the
separation.
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(a)

(b)

0

0

Time t′

Time

d1

d1

d2

kd2

kd1

d2

FIGURE 15.3 The expansion of a
coordinate space, showing that the
apparent speed of recession depends
on the distance; d2 is greater than d1,
and d2 increases faster than d1.

(a)

(b)

FIGURE 15.4 As a balloon is
inflated, every observer on the
surface experiences a velocity-
distance relationship of the
form of the Hubble law.

(a)

(b)

FIGURE 15.5 Another system in
which the Hubble law is valid.

The correct interpretation of the cosmological redshifts requires the techniques
of general relativity, which we discuss later in this chapter. According to general
relativity, the shift in wavelength is caused by a stretching of the entire fabric of
spacetime. Imagine small photos of galaxies glued to a rubber sheet. As the sheet is
stretched, the distance between the galaxies increases, but they are not “in motion”
according to the terms we usually use in physics to describe motion. However,
the stretching of the space between the galaxies causes the wavelength of a light
signal from one galaxy to increase by the total amount of the stretching before it
is received at another galaxy. This is very different from the usual interpretation
of the Doppler formula (Eq. 15.1). (In fact, for some galaxies the wavelength
shift is so large that the special relativity formula would imply a recessional
speed greater than the speed of light!) At low speeds, the Doppler interpretation
of the redshift (that is, calculating a speed from the Doppler formula and using
that speed in Hubble’s law) gives results that correspond with those based on an
expansion of spacetime. However, for very large cosmological redshifts, a more
correct analysis must be based on the stretching model:

λ′

λ
= R0

R
(15.5)

where R0 represents a “size” or distance scale factor of the universe at the present
time and R represents a similar factor at the time the light was emitted.
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The expansion of the universe has been widely accepted since Hubble’s
discoveries in the 1920s. There are, however, two interpretations of this expansion.
(1) If the galaxies are separating, long ago they must have been closer together.
The universe was much denser in its past history, and if we look back far enough
we find a single point of infinite density. This is the “Big Bang” hypothesis,
developed in 1948 by George Gamow and his colleagues. (2) The universe has
always had about the same density it does now. As the galaxies separate, additional
matter is continuously created in the empty space between the galaxies, to keep
the density more or less constant. This is the “Steady State” hypothesis, proposed
also in 1948 by astronomer Fred Hoyle and others. New galaxies created from
this new matter would make the universe look the same not only from all vantage
points, but also at all times in the present and future. (To keep the density constant,
the rate of creation need be only about one hydrogen atom per cubic meter every
billion years.)

George Gamow (1904–1969, United
States). His significant contributions
to nuclear physics (theories of alpha
decay, beta decay, and nuclear
structure), astrophysics (nucleo-
synthesis, stellar structure), and cos-
mology (the Big Bang theory) place
him among the first rank of scientists.
Gamow was also one of the most suc-
cessful writers of popular science, to
which he brought unusual and amus-
ing perspectives.

Both hypotheses had their supporters, and during the 1940s and 1950s the
experimental evidence did not seem to favor either one over the other. In the 1960s,
the new field of radio astronomy revealed the presence of a universal background
radiation in the microwave region, which is believed to be the remnant radiation
from the Big Bang. This single observation has propelled the Big Bang theory to
the forefront of cosmological models.

15.2 THE COSMIC MICROWAVE BACKGROUND
RADIATION

When a gas expands adiabatically, it cools. The same is true for the universe: the
expansion is accompanied by cooling. As we go back in time, we find a hotter,
denser universe. Far enough back in time, the universe would have been too
hot for stable matter to form. Its composition was then a “gas” of particles and
photons. The unstable particles eventually decayed to stable ones, and the stable
particles eventually clumped together to form matter. The photons that filled
the universe remained, but their wavelengths were stretched by the continuing
expansion. Today those photons have a much lower temperature, but they still
uniformly fill the universe.

The wavelength spectrum of those photons is that of an isolated object
(blackbody) emitting thermal radiation at the temperature T that characterizes the
universe at a particular time. The wavelengths change as the universe expands,
but the radiation retains an ideal thermal spectrum at a temperature that decreases
with time. In the 1940s, the Big Bang cosmologists (Gamow and others) predicted
that this “fireball” would today be at a temperature of the order of 5 to 10 K; such
photons would have a typical energy kT of the order of 10−3 eV or a wavelength
of order 1 mm, in the microwave region of the spectrum.

The properties of this background radiation can be described using the
formulas for thermal radiation we developed in Section 10.6. The number of
photons dN in the energy interval dE at E (that is, with energies between E and
E + dE) was given by Eq. 10.38. Writing that equation as the number per unit
volume (number density), we get

N(E) dE

V
= 8πE2

(hc)3

1

eE/kT − 1
dE (15.6)
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To find the total number of photons of all energies per unit volume we integrate
Eq. 15.6 over energy:

N

V
= 1

V

∫ ∞

0
N(E) dE = 8π

(hc)3

∫ ∞

0

E2 dE

eE/kT − 1
= 8π

(hc)3
(kT)3

∫ ∞

0

x2 dx

ex − 1
(15.7)

where we have substituted x = E/kT . The definite integral is a standard form with
a value approximately equal to 2.404. Equation 15.7 shows that the total number
of photons per unit volume is proportional to the cube of the temperature, and
evaluating the constants we find

N/V = (2.03 × 107 photons/m3· K3)T3 (15.8)

We can write Eq. 10.41 for the energy density (energy per unit volume) in the
same form by evaluating the constants:

U = 8π5k4

15(hc)3
T4 = (4.72 × 103 eV/m3 · K4)T4 (15.9)

and the mean (average) energy per photon at temperature T is obtained from the
ratio of Eqs. 15.9 and 15.8:

Em = U

N/V
= (2.33 × 10−4 eV/K)T (15.10)

We now look at the experimental evidence for the existence of this microwave
radiation and the determination of its temperature. From Eq. 10.42 we see that
the measurement of the radiant energy density at any wavelength is enough for
a determination of the temperature T , although to demonstrate that the radiation
actually has an ideal thermal spectrum requires measurement over a range of
wavelengths.

The first experimental evidence for this radiation was obtained in a 1965
experiment by Arno Penzias and Robert Wilson, who used a microwave antenna
tuned to a wavelength of 7.35 cm. At this wavelength they recorded an annoying
“hiss” from their antenna that could not be eliminated, no matter how much care
they took in refining the measurement. After painstaking efforts to eliminate the
“noise,” they concluded that it was coming from no identifiable source and was
striking their antenna from all directions, day and night, summer and winter. From
the radiant energy at that wavelength they deduced a temperature of 3.1 ± 1.0 K,
and it was later concluded that the radiation was the present remnant of the Big
Bang “fireball.” For this experiment, Penzias and Wilson shared the 1978 Nobel
Prize in physics.

Since that original experiment there have been many additional studies, at
various wavelengths in the range 0.05 to 100 cm, all giving about the same tem-
perature. The most recent measurements were made with the Cosmic Background
Explorer (COBE) satellite, which was launched into Earth orbit 1989, and the
Wilkinson Microwave Anisotropy Probe (WMAP) satellite, which was launched
into solar orbit in 2001. Previously, no precise data from Earth-bound observations
were available below a wavelength of 1 cm because of atmospheric absorption.
The COBE and WMAP satellites were able to obtain very precise data on the
intensity of the background radiation in the wavelength range between 1 cm and
0.05 cm (0.0001 eV and 0.0025 eV).
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The results from the COBE satellite are summarized in Figure 15.6. The data
points fall precisely on the solid line, which is calculated from Eq. 10.39 for a
temperature T = 2.725 K. For these spectacularly beautiful data, experimenters
John Mather and George Smoot were awarded the 2006 Nobel Prize in physics.
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FIGURE 15.6 Energy density of the
microwave background. The data
points are from the COBE satellite,
and the error bars have been mul-
tiplied by a factor of 400 to make
them visible. The solid curve is the
expected thermal radiation spectrum
(Eq. 10.39) for a temperature of 2.725
K. (Data from Legacy Archive for
Microwave Background Data Analy-
sis, NASA Office of Space Science.)

Other experiments show that the radiation has a uniform intensity in all
directions. It comes from no particular source, but instead fills the universe today
as it did in the early times just after the Big Bang.

Using the deduced temperature of 2.7 K, we can calculate from Eqs. 15.8 to
15.10 that there are about 4.0 × 108 of these photons in every cubic meter of space,
that they contribute to the universe an energy density of about 2.5 × 105 eV/m3

(about half the rest energy of an electron), and that each photon has an average
energy of about 0.00063 eV. The number of photons is particularly important,
because for nearly all of the last 14 × 109 y the ratio of the number of nucleons
(protons and neutrons) to photons has been almost constant. This has important
consequences for the Big Bang cosmology.

15.3 DARK MATTER

Figure 15.7 shows spiral galaxies that are similar to our Milky Way galaxy, in
which about 1011 stars are bound together by the gravitational force. The diameter
of a typical galaxy might be 10–50 kpc (0.3−1.5 × 1018 km). Many galaxies
have this spiral structure, with a bright central region (containing most of the
galaxy’s mass) and several spiral arms in a flat disk. The entire structure rotates
about an axis perpendicular to the plane of the disk. The Sun, which is in one of
the spiral arms of our galaxy at a distance of 8.5 kpc from the center (about 2/3
of the radius of the disk), has a tangential velocity of 220 km/s. At this speed, it
takes about 240 million years for a complete rotation; during the lifetime of the
solar system of about 4.5 billion years, the Sun has made about 20 revolutions.

Because the stars in the galaxy are bound by the gravitational force, we can use
Kepler’s laws to analyze the motion. We assume that the gravitational force on
the Sun is due primarily to the dense region at the center of the galaxy; the total

FIGURE 15.7 Spiral galaxies similar to the Milky Way, viewed from two different perspectives—one normal to the plane
and one along the plane.
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mass of the other stars in the spiral arm is much smaller than the central mass, so
they make a negligible contribution to the force on the Sun. Kepler’s third law
relates the period T of the orbit to the radius:

T2 =
(

4π2

GM

)
r3 (15.11)

With T = 2πr/v, where v is the tangential velocity, we obtain

v =
√

GM

r
(15.12)

Here M refers to the mass contained within the region of radius r. The Sun’s
tangential velocity suggests that a mass equivalent to 1011 solar masses lies within
the Sun’s orbit.
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FIGURE 15.8 Tangential velocities
of stars in our galaxy, determined from
the Doppler shift of their light. The
solid line is the prediction based on
Kepler’s third law, Eq. 15.12.

According to this model, we expect stars beyond the Sun to have tangential
velocities that decrease with increasing radius like r−1/2. (The planets in the solar
system follow this expectation to very high precision.) However, we observe that
for the rotation of the galaxy v is constant or perhaps increases slightly for stars
beyond the Sun (Figure 15.8).

Other spiral galaxies show the same effect. The tangential speeds of stars in
distant galaxies can be measured by the Doppler shift of their light. If we are
viewing a galaxy along the plane of the disk, then one side will always be moving
toward us and the other will always be moving away from us. The difference
between the Doppler shifts of the light from the two sides of the galaxy then tells
us about its rotational speed, independently of the net motion of the entire galaxy.
From this measurement, we can determine how the tangential velocity of the
galaxy depends on the distance from its center. A typical set of results is shown
in Figure 15.9. Once again, the velocity fails to follow the expected relationship
and instead remains constant throughout the visible part of the galaxy.

0

Ta
ng

en
ti

al
 v

el
oc

it
y 

(k
m

/s
)

0

50

100

150

10
Distance from center (kpc)

20 30

FIGURE 15.9 The tangential rota-
tional velocity of a distant galaxy as
a function of the distance from its
center. The solid line is the expected
r−1/2 dependence at distances beyond
the central concentration of stars.

These results are not consistent with Kepler’s law, which is based on a large
central mass attracting each star toward the center of the galaxy. On the contrary,
to explain a velocity that is constant as a function of radius we must have a
mass M that increases linearly with r (see Eq. 15.12). However, this explanation
is inconsistent with visual observations of the galaxies, which clearly show that
most of the light, and therefore presumably most of the mass, is concentrated in
the central region.

To resolve this dilemma, it has been concluded that there is a large quantity
of invisible matter in galaxies—matter that must be present in the galaxy to
supply the gravitational force, but that does not give off any light (or other
electromagnetic radiation). To supply the required gravitational force, this dark
matter must have a mass at least 10 times the mass of the visible matter in the
galaxy. That is, more than 90% of the matter in the galaxy is in some unknown
and invisible form. This dark matter permeates the region of space occupied by
the galaxy and may surround it in the form of a halo.

Galaxies are observed in gravitationally bound clusters of typically 100
members. The size of a cluster is perhaps 1 Mpc, about 100 times as large as a
typical galaxy. Because these clusters rotate about their common center, we can
perform similar measurements to compare the rotational speed of a galaxy with
its distance from the center. As with individual galaxies, the clusters follow the
dependence shown in Figure 15.9, suggesting that there is more matter in the
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clusters than we can account for from the galaxies alone. We conclude that dark
matter also surrounds clusters of galaxies.

Support for the existence of dark matter comes from the observation of light
from distant galaxies that passes by a cluster of galaxies on its way to Earth. This
light is deflected by the gravitational field of the cluster in a process known as
“gravitational lensing.” From the amount of the deflection of the light, it is possible
to deduce the quantity of matter in the cluster. The results of these observations
show that there is much more matter in the cluster than we would deduce from
the luminous matter alone, suggesting the presence of relatively large amounts of
dark matter. A dramatic illustration of this effect occurs in the colliding galaxies
of the “Bullet Cluster,” first analyzed in 2006, in which the distribution of ordinary
matter (revealed by the glowing interstellar gas) is different from the distribution
of dark matter (revealed by the gravitational lensing effect).

Vera Rubin (1928–, United States).
An observational astronomer, she has
made pioneering discoveries about
the motion of stars and galaxies. By
observing the Doppler shifts of stars in
galaxies, she deduced that their rota-
tional velocities are not consistent with
attraction only by a large concentra-
tion of mass at the galactic center.
Rubin’s work has been among the
leading contributions to understanding
the existence and amount of dark mat-
ter in the universe. She was awarded
the National Medal of Science in 1993.

What kinds of objects make up this dark matter? Speculations about its
nature are divided loosely into two categories: MACHOs (Massive Compact Halo
Objects) and WIMPs (Weakly Interacting Massive Particles). Possible MACHOs
include massive black holes, neutron stars, burnt-out white dwarf stars, or brown
dwarf stars (Jupiter-sized objects of too small a mass to become a star). The
WIMPs include neutrinos, magnetic monopoles, and other exotic types of stable
elementary particles produced during the Big Bang. The major difference between
the two types of objects is that MACHOs are made from baryons (protons and
neutrons, like ordinary matter), while WIMPs are made from some other, more
exotic type of non-baryonic matter. Current theories suggest that most of the dark
matter is of the non-baryonic form, but (aside from neutrinos) no examples of this
type of matter have yet been produced in any laboratory on Earth.

15.4 THE GENERAL THEORY OF RELATIVITY

The interpretation of the observational data describing our universe must be
done using methods from the general theory of relativity, which is in essence a
theory of gravitation developed by Albert Einstein between 1911 and 1915. The
mathematical level of this theory is beyond the level of this text, but we will try
to appreciate how the theory helps us to understand the structure and evolution of
the universe.

The special theory of relativity arose from a thought experiment of Einstein’s
in which he imagined trying to catch up with a light beam. The general theory
also arose from a thought experiment. Here are Einstein’s words:

I was sitting in a chair in the patent office at Bern when all of a sudden
a thought occurred to me: If a person falls freely he will not feel his own
weight. This simple thought made a deep impression on me. It impelled me
toward a theory of gravitation.

Figure 15.10 illustrates a freely falling person in two situations: in the Earth’s
gravity and in interstellar space where the gravitational field is negligibly weak.
In both cases the person is in an isolated chamber and therefore unable to use
outside objects to deduce the motion of the chamber. From within the chamber
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(a) (b)

FIGURE 15.10 The effects of freely falling appear identi-
cal from within the chamber in (a) the Earth’s gravity and
(b) interstellar space.
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(b)
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FIGURE 15.11 The effects appear identical when the
chamber is (a) at rest in a uniform gravitational field and
(b) accelerating in interstellar space.

the two cases look exactly equivalent; no measuring instrument operating entirely
within the chamber can distinguish between the two cases. An acceleration �a = �g
in a gravitational field �g is equivalent to an acceleration of 0 in a negligible
gravitational field.

It appears that an acceleration is able to “cancel out” the effects of a gravitational
field. Let us go one step further and ask whether an acceleration can produce the
effects of a gravitational field. Consider the situations illustrated in Figure 15.11.
In one case the observer is at rest near the Earth, where the gravitational field
is �g. In the other case, the observer is in empty space where the gravitational
field is negligibly small, but the rocket engines are firing so that the chamber has
an acceleration �a = −�g. There are various experiments in the chamber: a scale
displays the weight of the observer (actually, the normal force exerted on the
observer by the scale), a ball drops to the floor, a mass stretches a spring, and
a pendulum oscillates. All of these experiments give identical results in the two
chambers. Once again, there is no experiment that can be done within the chamber
to distinguish the two cases.

This leads us to the principle of equivalence:

There is no local experiment that can be done to distinguish between the
effects of a uniform gravitational field in a nonaccelerating inertial frame
and the effects of a uniformly accelerating (noninertial) reference frame.

By “local” we mean that the experiments must be done within the chamber, and
also that the chamber must be sufficiently small that the gravitational field is
uniform. Near the surface of the Earth, for example, not all �g vectors inside the
chamber would be parallel; they point toward the center of the Earth, so there
would be a slight angle between the �g vectors on opposite sides of the chamber. If
we make the chamber small, this effect is negligible and the �g vectors everywhere
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in the chamber, like the �a vectors in the accelerating chamber, are parallel to one
another.

The principle of equivalence appears in a slightly different (and weaker)
form in introductory physics, where it is stated in terms of the equivalence of
inertial and gravitational mass. That is, the mass m that appears in the expression
F = ma (inertial mass) is identical to the mass m that appears in the expression
F = GMm/r2 (gravitational mass). It follows from this form of the principle
of equivalence that all objects, regardless of their masses, fall with the same
acceleration in the Earth’s gravity. This was first tested by Galileo in the famous
(and perhaps apocryphal) experiment in which he dropped two different masses
from the top of the leaning tower of Pisa and observed them to fall at the same rate.
In recent years other more precise experiments have established the equivalence
of gravitational and inertial mass to about 1 part in 1011.

Einstein realized that the principle of equivalence applied not only to mechan-
ical experiments but to all experiments, even ones based on electromagnetic
radiation. Consider the arrangement shown in Figure 15.12. At the top of the
chamber is a light source that emits a wave of frequency f . At the bottom of the
chamber and a distance H away is a detector that observes the wave and measures
its frequency. When the light wave is emitted in the accelerating chamber, the
source has speed v, which we assume to be small compared with the speed of
light c. When it is detected, after a time of flight t ≈ H/c, the floor is moving with
a speed v + at. In effect there is a relative speed �v = at between the source and
the detector, so there is a Doppler shift in the frequency given by Eq. 2.22:

f ′ = f

√
1 + �v/c

1 − �v/c
≈ f (1 + �v/c) (15.13)

or, in terms of the frequency difference �f = f ′ − f ,

�f

f
= �v

c
= at

c
= aH

c2
(15.14)

Now let us compare the result of this experiment with a similar one done in
a chamber at rest in a uniform gravitational field g. If the results of the two
experiments are to be identical (as required by the principle of equivalence), there
must be a frequency shift given by Eq. 15.14 with a = g:

�f

f
= gH

c2
(15.15)

The principle of equivalence thus predicts a change in frequency of a light wave
falling in the Earth’s gravity.

S

H

D

a�

FIGURE 15.12 A source S emits a
light wave that is recorded by a detec-
tor D in a chamber that is accelerating
upward.

In 1959, R. V. Pound and G. A. Rebka allowed 14.4-keV photons from the
radioactive decay of 57Co to fall down the Harvard tower, a distance of 22.6 m. The
expected fractional change in frequency, �f /f = gH/c2, was 2.46 × 10−15; that
is, to detect the effect, they had to measure the frequency or energy of the photon
at the bottom of the tower to a precision of about 1 part in 1015! The Mössbauer
effect (Section 12.9) makes it possible to achieve such a level of precision,
and the measured result was �f /f = (2.57 ± 0.26) × 10−15, consistent with the
equivalence principle. Similar experiments based on comparisons between the
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frequency of radiation emitted by satellites and received by ground stations have
confirmed the predictions of the principle of equivalence to a precision of about
1 part in 104.

Because the Global Positioning System (GPS) relies on frequency measure-
ments on the surface of the Earth from transmitters in orbiting satellites, its
accuracy depends on applying a correction due to the gravitational frequency shift
predicted by general relativity. Without this correction, errors in the GPS locating
system of roughly 10 km per day would accumulate.

Note that in Eq. 15.15 the frequency shift depends on the difference in
gravitational potential �V (potential energy per unit mass) between the source
and the detector:

�V = �U

m
= (mgH − 0)

m
= gH (15.16)

For the satellite, even though the gravitational field through which the radiation
travels is not uniform, the same conclusion holds: the frequency shift depends
on the difference in gravitational potential between the source and the observer.
Consider, for example, light leaving the surface of a star of mass M and radius R.
The gravitational potential at the surface is V = −GM/R. If the light is observed
on the Earth, where the gravitational potential is negligible compared with that of
the star, the frequency shift is

�f

f
= �V

c2
= −GM

Rc2
(15.17)

Photons climbing out of a star’s gravitational field lose energy and are therefore
shifted to smaller frequencies or longer wavelengths (red shifted). This effect is
difficult to observe for two reasons: (1) the motion of the star causes a Doppler
shift that is generally greater than the gravitational shift, and (2) the spectral lines
are Doppler broadened by the thermal motion of the atoms near the surface of a
star (see Section 10.4). Nevertheless, the effect has been confirmed for a few stars
including the Sun.

Example 15.1

The Lyman α line in the hydrogen spectrum has a wave-
length of 121.5 nm. Find the change in wavelength of this
line in the solar spectrum due to the gravitational shift.

Solution
From Eq. 15.17, we have

�λ

λ
= −�f

f
= GM

Rc2

= (6.67 × 10−11 N · m2/kg2)(1.99 × 1030 kg)

(6.96 × 108 m)(3.00 × 108 m/s)2

= 2.12 × 10−6

The shift in wavelength is

�λ = (2.12 × 10−6)(121.5 nm)

= 0.257 pm

This shift in wavelength is small in comparison with the
Doppler shifts due to the Sun’s rotation and the thermal
broadening of its spectral lines (see Problem 6).
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Space and Time in General Relativity

From special relativity we learn that the laws of physics must be the same in
all inertial frames, and that there is no preferred inertial frame relative to which
it is possible to determine the absolute velocity of an observer. From this point
of view, it seems that an accelerated (noninertial) frame is a preferred frame,
because it is possible to determine the absolute acceleration. In the general theory,
Einstein sought to remove this restriction, so that motion would be relative for
all observers, even accelerated ones. The principle of equivalence, which tells us
that we can’t distinguish between acceleration and a gravitational field, removes
acceleration from its privileged role.

Ultimately, general relativity is a theory of geometry. The motion of a particle
is determined by the properties of the space and time coordinates through which
it moves. Because space and time are intimately coupled in relativity (see,
for example, the Lorentz transformation in Section 2.5), we regard them as
components of a combined coordinate system called spacetime.

The equivalence between accelerated motion and gravity suggests a relationship
between spacetime coordinates and gravity. In the classical description, we would
say that the presence of matter sets up a gravitational field, which then determines
how objects move in response to that field. According to general relativity, we
say that the presence of matter (and energy) causes spacetime to warp or curve;
the motion of particles is then determined by the shape of the coordinate system.
It is sometimes said that “Geometry tells matter how to move, and matter tells
geometry how to curve.” From the configuration of mass and energy, general
relativity gives us a procedure for calculating the curvature of spacetime, and the
motion of a particle or a light beam then follows directly.

Let’s consider the simple case of a particle that moves in only one
dimension—for example, a bead sliding without friction on a straight wire. We
can plot the motion of the bead on an xt coordinate system, which is the two-
dimensional spacetime of the bead. For example, if the bead moves with constant
velocity along the wire from position xA at time tA to position xB at time tB, the
motion in spacetime is represented by the straight line shown in Figure 15.13a.
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FIGURE 15.13 (a) The path through
flat spacetime of a particle moving at
constant velocity. (b) The path through
flat spacetime of an accelerating parti-
cle. (c) The path of a particle through
spacetime curved by matter.

Now suppose the wire is mounted vertically in an accelerating chamber in a
gravity-free environment. To an observer in the chamber, the bead will appear to
accelerate downward as the chamber is accelerated upward. The path in spacetime
is now curved, as suggested by Figure 15.13b.

If the acceleration is replaced by the equivalent gravitational field, the motion
of the bead, as observed from inside the chamber, is exactly the same—the bead
appears to accelerate downward. General relativity describes this situation as a
change in the shape of spacetime; the presence of matter (which classically we
would describe as the source of the gravitational field) distorts the xt spacetime as
indicated in Figure 15.13c. If we imagine the spacetime coordinate system as a
grid laid out on a rubber sheet, the gravitating matter stretches the sheet, and the
particle moves from A to B along the most direct path in the curved spacetime.

It is convenient to define the spacetime interval ds, in effect the separation
between two events (such as the particle passing through successive points) in
two-dimensional spacetime, as

(ds)2 = (c dt)2 − (dx)2 (15.18)
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This quantity is invariant under the Lorentz transformation, as you can prove by
substituting dx′ and dt′ from Eq. 2.23. The trajectory of the particle in spacetime
can be regarded as a collection of infinitesimal intervals. The particle is merely
following the contour of spacetime, so the interval serves both to define the
trajectory and to represent the shape of spacetime. The extension to three spatial
dimensions gives an interval

A

B

FIGURE 15.14 A flat space and its
Euclidian geometrical properties.

(ds)2 = (c dt)2 − (dx)2 − (dy)2 − (dz)2 (15.19)

To characterize a “curved” four-dimensional spacetime, we might write the
interval as

(ds)2 = g0(c dt)2 − g1(dx)2 − g2(dy)2 − g3(dz)2 (15.20)

where the four coefficients gi describe the curvature of the spacetime and its
deviation from a Euclidian nature (for which all gi = 1).

The interval of Eq. 15.19 is characteristic of our familiar Euclidian space,
which we call “flat.” Figure 15.14 summarizes some of the characteristics of
that space: a straight line is the shortest distance between two points, the sum of
the angles of a triangle is 180◦, parallel lines never meet, the ratio between the
circumference and the diameter of a circle is π , and so forth.

Figure 15.15 shows a curved non-Euclidian geometry, the surface of a sphere.
Here the shortest distance between points is an arc of a great circle, the sum
of the angles of a triangle is greater than 180◦, parallel lines can meet, and the
ratio between the circumference and the diameter of a circle is less than π . The
saddle-shaped geometry shown in Figure 15.16 has a different kind of curvature,
in which the ratio between the circumference and the diameter of a circle is greater
than π .

A

B

FIGURE 15.15 A curved space and
its non-Euclidian geometrical prop-
erties.

FIGURE 15.16 Another non-
Euclidian curved space.

To appreciate the importance of curved spacetime, consider the experiment
illustrated in Figure 15.17. A light beam is emitted by a source in the chamber and
travels across the chamber to the opposite wall. If the chamber is in an inertial
frame and free from gravitational fields, the beam travels horizontally across the
chamber and strikes the opposite wall at the same height above the floor as the
source. (This holds even if the chamber moves at constant velocity, as you can
prove using special relativity.) Observers inside and outside the chamber agree
on this conclusion.

If the chamber accelerates, the situation is different. Suppose the light is
emitted when the chamber is at rest, relative to a particular inertial frame.
The light beam then has no transverse component of velocity in this frame
and moves horizontally. As the chamber accelerates, the light beam acquires
no transverse velocity component, but the chamber’s velocity increases. To the
inertial observer, the beam travels along a horizontal straight line, but the chamber
accelerates forward so that the beam strikes the opposite wall at a lower height
than the source. To an observer in the chamber, the beam appears to follow the
curved path shown in Figure 15.17a and strikes the wall at a lower height than
the source.

According to the principle of equivalence, the observer in the chamber should
record the same outcome if the chamber is at rest in a uniform gravitational field
(Figure 15.17b). General relativity explains this observation through the curvature
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FIGURE 15.17 (a) According to an observer in an accelerating
chamber, the light beam follows a curved path. (b) An observer at
rest in a uniform gravitational field finds the same outcome.

of spacetime in the vicinity of the mass that is responsible for the gravitational
field. The light beam is merely seeking out the shortest possible path in the
curved spacetime, just like an ant crawling along a line on the spherical surface
of Figure 15.15. All paths in the curved spacetime are curved.

It is tempting to seek an alternative explanation for the outcome shown in
Figure 15.17b. For instance, we can assume each photon in the light beam to have
an effective mass m = E/c2 and then calculate its trajectory in the gravitational
field as we would that of any classical particle of mass m. However, as we discuss
in the next section, this method gives results that do not agree with observations
for the path of photons in a gravitational field. The curvature of spacetime, which
provides the correct explanation, is an inescapable consequence of the principle
of equivalence.

General relativity gives a relationship between curvature and the density of
mass and energy in space, which can be written symbolically as

curvature of space = 8πG

c4
(mass-energy density) (15.21)

Note that this expression incorporates gravitation (Newton’s constant G) and
special relativity (the speed of light c). If no matter or energy is present, the
right-hand side is zero; as a result, the curvature is zero and space is flat. In the
limit of classical kinematics (c → ∞) and in the limit of weak gravitational fields
(G → 0), space is nearly flat and we can safely use the Newtonian gravitational
theory. This is equivalent to saying that if we take a small enough region of the
sphere of Figure 15.15, or if we increase its radius to a sufficiently large value,
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the geometry is approximately Euclidian. Just as classical kinematics can be
regarded as the limiting case of special relativity (for low speeds), so can classical
gravitation be regarded as the limiting case of general relativity (for weak fields).
In calculating the orbit of an Earth satellite or the trajectory of a space probe to
Mars, Newton’s theory gives entirely satisfactory results. Close to the Sun and to
compact or massive stars, the curving of space can lead to observable effects, as
we discuss in the next section.

Sun

A

θ

B

Earth

FIGURE 15.18 A light beam pass-
ing near the Sun is deflected. To an
observer on Earth, the star at A appears
to be at B.

15.5 TESTS OF GENERAL RELATIVITY

Newtonian gravitation and Einstein’s general relativity each give predictions that
can be tested against experiment, but under most circumstances the differences
between the two predictions are extremely small. At the surface of the Earth,
space is curved by only about 1 part in 109; even at the surface of the Sun, the
curvature is only about 1 part in 106.

Nevertheless, there are experiments we can do that are precise enough to detect
the difference between flat spacetime and curved spacetime. In this section we
discuss several of these experiments.

Deflection of Starlight
When a beam of light from a star passes close to the Sun, it is deflected from
its original direction, as shown in Figure 15.18. The star appears to be displaced
from its true position by an angle θ .

It is possible to analyze this situation using Newtonian gravitation and special
relativity by assigning the photons in the beam an effective mass m = E/c2

and assuming them to be deflected by the Newtonian gravitational force. The
experiment then looks very much like Rutherford scattering, and by analogy with
the Rutherford scattering formula (see Problem 9) it is possible to calculate the
deflection angle (in radians):

θ = 2GM

Rc2
(15.22)

where M is the mass of the Sun and R is its radius. Substituting the numbers gives
θ = 0.87′′ as the prediction of special relativity and Newtonian gravitation.

General relativity gives a different view. Spacetime in the vicinity of the Sun
is curved, and the light beam is simply following the most direct path along
the curved spacetime (Figure 15.19 is a two-dimensional representation of this
effect). According to general relativity, the expected deflection is 1.74′′, exactly
twice the value predicted by the Newtonian formula.

FIGURE 15.19 The path of a light
beam from a star through curved
spacetime.

Measuring this effect requires the observation of a beam of light, such as from
a star, that passes near the edge of the Sun. Starlight near the Sun can be observed
only during a total solar eclipse. In 1919, just a few years after Einstein completed
his general theory, two expeditions of British astronomers traveled to Africa and
to South America to observe the solar eclipse and to measure the apparent changes
in positions of stars whose light grazed the Sun. Their results for the deflection
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angles, 1.98′′ ± 0.18′′ and 1.69′′ ± 0.45′′, gave strong support for the new general
theory. In the years since those early results, this experiment has been repeated at
nearly every total solar eclipse, and the overall agreement with general relativity
is within 10%. Radio emission from quasars has also been used to confirm this
effect, and here the agreement with general relativity is within 2%.

Sun

Venus

Earth

FIGURE 15.20 An electromagnetic
signal travels between Earth and
Venus at superior conjunction.

Earth

Venus

FIGURE 15.21 Path of signal be-
tween Earth and Venus in curved
spacetime.

These experimental results give a clear distinction between Newtonian gravity
(even with special relativity included) and general relativity.

Delay of Radar Echoes
When a line joining Earth and another planet (Venus, for example) passes through
the Sun, the situation is known as “superior conjunction” and is illustrated in
Figure 15.20. Based on the orbits of Earth and Venus, we can calculate how long
it takes a radar signal sent from Earth to be reflected from Venus and return to
Earth (about 20 minutes). Near superior conjunction, the signal passes close to the
Sun, and therefore, according to general relativity, it does not travel in a Euclidian
straight line, but instead follows a path through curved spacetime (Figure 15.21).
It therefore takes the signal a bit longer than the expected time to make the round
trip (think of the time intervals as extended as the beam passes close to the Sun,
thus lengthening the time to travel the path). This time delay is expected to be
about 10−4 s, and it has been confirmed to within a few percent (the limit on
precision being uncertainties in the surface of Venus, since we don’t know if the
signal is being reflected from a mountain or a valley). More precise experiments
were done in the late 1970s using a signal sent between Earth and the Viking
landers on Mars. In this case, the result was consistent with general relativity to
within about 0.1%. Signals from NASA’s Cassini spacecraft, which entered orbit
around Saturn in 2004, have provided the most sensitive test of the time delay,
agreeing with the predictions of general relativity to within 0.002%.

φ
rmin

Perihelion

r

FIGURE 15.22 The elliptical orbit of
a planet about a star.

Δφ

FIGURE 15.23 Precession of the per-
ihelion (greatly exaggerated). After
each orbit, the perihelion advances by
an angle �φ.

Precession of Perihelion of Mercury
Consider a simple planetary system, shown in Figure 15.22, consisting of a single
planet in orbit about a star of mass M such as the Sun. According to Newtonian
gravitation, the orbit is a perfect ellipse with the star at one focus. The equation
of the ellipse is

r = rmin
1 + e

1 + e cos φ
(15.23)

where rmin is the minimum distance between planet and star and e is the
eccentricity of the orbit (the degree to which the ellipse is noncircular; e = 0 for a
circle). When r = rmin, the planet is said to be at perihelion; this occurs regularly,
at exactly the same point in space, whenever φ = 0, 2π , 4π , . . .. According to
general relativity, the orbit is not quite a closed ellipse; the curved spacetime
near the star causes the perihelion direction to precess somewhat, as shown in
Figure 15.23. After completing one orbit, the planet returns to rmin, but at a
slightly different φ. The difference �φ can be computed from general relativity,
according to which the orbit is

r = rmin
1 + e

1 + e cos(φ − �φ)
(15.24)
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where

�φ = 6πGM

c2rmin(1 + e)
(15.25)

For the Sun, 6πGM/c2 = 27.80 km, and thus even for the smallest value of rmin
(for Mercury, 46 × 106 km) �φ is of order 10−6 rad, an extremely small quantity.
However, this effect is cumulative; that is, it builds up orbit after orbit, and after N
orbits, the perihelion has advanced by N�φ. We usually express this precession
in terms of the total precession per century (per 100 Earth years), and some
representative values are shown in Table 15.1.

The expected precessions are very small, of the order of seconds of arc per
century, but nevertheless have been measured with great accuracy; for the three
planets closest to the Sun, and for the asteroid Icarus, the measured values are
in agreement with the predictions of general relativity. In the best case, the
agreement is within about 1%.

These experiments are very difficult to do because (except for Mercury and
Icarus) the eccentricities are small and locating the perihelion is difficult. A
more serious problem is that other effects, not associated with general relativity,
also cause an apparent precession of the perihelion. In the case of Mercury, the
observed precession is actually about 5601′′ per century; of that, 5026′′ are due to
the precession of the Earth’s equinox (a classical Newtonian effect of the spinning
Earth) and 532′′ are due to the gravitational pull of the other planets on Mercury
(also a classical Newtonian effect). Only the difference of 43′′ is due to general
relativity.

Gravitational Radiation

Just as an accelerated charge emits electromagnetic radiation that travels with the
speed of light, an accelerated mass emits gravitational radiation that also travels
with the speed of light. In effect, gravity waves are ripples that travel through
spacetime. Waves produced by such motions as the planets around the Sun are
exceedingly weak and beyond any hope of detection. Cataclysmic events in the
universe, such as supernova explosions, and highly accelerated systems, such as
compact binary objects, may produce observable gravitational waves. Detection

TABLE 15.1 Precession of Perihelia

N�φ (arc seconds per century)

Planet N (orbits per century) e rmin (106km) General Relativity Observed

Mercury 415.2 0.206 46.0 43.0 43.1 ± 0.5

Venus 162.5 0.0068 107.5 8.6 8.4 ± 4.8

Earth 100.0 0.017 147.1 3.8 5.0 ± 1.2

Mars 53.2 0.093 206.7 1.4

Jupiter 8.43 0.048 740.9 0.06

Icarus 89.3 0.827 27.9 10.0 9.8 ± 0.8
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of these waves would provide another important confirmation of the general
relativity theory.

In analogy with the effect of a passing electromagnetic wave on a charge, a
passing gravitational wave could be detected by its effect on matter. Several anten-
nas have been built to search for gravity waves, but no conclusive experimental
evidence has yet been obtained. Indirect evidence has come from the observations
of the change in the orbital period of a binary pulsar (see next section). Interfer-
ometric techniques are being used to build new detectors to search for gravity
waves. The Laser Interferometer Gravitational-wave Observatory (LIGO), which
began operation in 2001, consists of two installations (located in the states of
Washington and Louisiana) whose interferometer arms are 4 km in length. A
passing gravitational wave would cause a small change in the length of one arm
relative to the other, which would be detected through a change in the fringe
pattern similar to that of the Michelson interferometer (Section 2.2).

15.6 STELLAR EVOLUTION AND BLACK HOLES

Although the large gravitational field of the Sun has provided several good tests
of general relativity, the most stringent tests will come from measurements in
even larger gravitational fields, where the curvature of spacetime is significantly
greater. Such large gravitational fields can occur following the collapse of a star
into a more compact object: a white dwarf, a neutron star, or a black hole.

We considered the collapse of an ordinary star like the Sun to a white dwarf star
as an example of the application of Fermi-Dirac statistics in Section 10.7. As the
supply of hydrogen fuel in a star begins to be used up, the star will contract because
the radiation pressure that opposes gravitational collapse is reduced. Eventually
the stable white dwarf stage can be reached, at which the Pauli principle applied
to the electrons prevents further collapse. The average density of a white dwarf
star such as Sirius B is about 109 kg/m3, which is about 106 times the average
density of the Sun.

1.34 s

0.714 s
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FIGURE 15.24 The radio signals
from two different pulsars. The top
signal is the record of the first pulsar
discovered.

If the star has a mass greater than about 1.4 solar masses (the Chandrasekhar
limit), the gravitational force is sufficient to overcome the Pauli repulsion of the
electrons, and further collapse can occur. For a star of this mass, the Fermi energy
of the electrons (Eq. 10.50) is 0.30 MeV. Higher-energy electrons in the tail of
the Fermi-Dirac distribution will have sufficient energy to produce the inverse
beta-decay reaction:

e− + p → n + νe

for which the threshold energy is 0.782 MeV, not too far above EF. This reaction
removes some electrons from the star, reducing the effects of Pauli repulsion, and
allowing the star to collapse a bit. The Fermi energy increases, pushing more
electrons above the 0.782-MeV threshold, resulting in more electrons being lost,
and so on, until all (or very nearly all) of the electrons vanish. The star is now
composed of neutrons, instead of protons and electrons. The Pauli repulsion of the
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electrons no longer can oppose gravitational collapse, and so the star contracts until
the Pauli principle applied to the neutrons (which also obey Fermi-Dirac statistics)
prevents further collapse. As we calculated in Section 10.7, a neutron star of 1.5
solar masses would have a radius of 11 km and a density of about 5 × 1017 kg/m3.

Rotation
axis Magnetic

field axis

Magnetic
field lines

Radiation

FIGURE 15.25 Charged particles
trapped by the magnetic field lines of
a neutron star are given large acceler-
ations near the magnetic poles, from
which a directional radiation beam
emerges. If this radiation beam inter-
cepts the Earth as the neutron star
rotates, we see it as a pulse of radiation.

Are these neutron stars merely figments of the physicist’s imagination or do
they really exist? In 1967, radio astronomers at Cambridge University discovered
an unusual signal among their observations—a regular pulsation, such as is shown
in Figure 15.24, with a period of 1.34 s. No previously known astronomical object
could produce such sharp and regular pulses, and at first the Cambridge group
suspected that they might have discovered signals from an extraterrestrial intelli-
gent civilization. (The object emitting the pulses was at first called LGM-1; LGM
stands for “Little Green Men.”) This notion was later discarded (unfortunately)
and the object became known as a pulsar. Since 1967, hundreds of other pulsars
have been discovered; all have extremely regular periods typically in the range
0.01–1 s.

The connection between pulsars and neutron stars was made soon after their
discovery. The collapse of a rotating star to a neutron star causes the neutron star
to rotate much more rapidly. Angular momentum is conserved during the collapse
(see Problem 11), so the rotational angular velocity increases as the rotational
inertia decreases. A relatively slow rotation rate of the original star can become a
very rapid rotation rate for the neutron star.

The intense magnetic field of such a rapidly rotating object traps any emitted
charged particles and accelerates them to high speeds, especially near the magnetic
poles, where they give off radiation (Figure 15.25). As the star rotates, this beam
of emitted radiation sweeps around like a searchlight or a lighthouse, and we see
a pulse of radiation whenever the beam sweeps through the Earth. The observed
interval between the pulses is, according to this interpretation, the rotational
period of the neutron star.

If this explanation of a pulsar as a rotating neutron star is correct, we ought to
see the pulsars slowing down somewhat, as the radiated energy is compensated
by a decrease in the neutron star’s rotational kinetic energy. This effect has been
seen for nearly all pulsars, and amounts to about 1 part in 109 per day.

Pulsars have now been observed at many different wavelengths (optical, X
ray, γ ray, radio) and with such great precision of timing that the slowing down
of 10−9 per day is easily observable.

FIGURE 15.26 The Crab Nebula,
remnant of a supernova observed in
the year 1054.

Although the exact mechanism of the collapse of a star to a neutron star is not
yet understood, we suspect that the violent explosions known as supernovas leave
a neutron star as a remnant. In 1054, Chinese astronomers observed a supernova
explosion (which they called a “guest star”) that was visible in the daytime over
many days. Today we see the expanding shell of that explosion as the Crab
Nebula (Figure 15.26). At the center of the Crab Nebula is a pulsar, rotating with
a frequency of 30 Hz. It is remarkable that none of the many photographs of the
Crab that were taken before 1967 revealed this pulsar blinking on and off every
0.033 s; all of these photographs were taken over long exposure times, and so
the pulsations were not observable. When careful measures are taken, however,
the blinking effect can be seen quite clearly (Figure 15.27). This suggests that, at
least in this instance, pulsars may be identified as supernova remnants.
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FIGURE 15.27 The visible pulsar of the Crab Nebula. The two exposures show the pulsar blinking on and off relative to the
other stars in the photograph.

A Binary Pulsar

In 1974, an unusual pulsar was discovered. The period of the pulsar was measured
to be 59 ms, making it among the fastest observed up to that time. More surprising,
the pulse rate appeared to be slowing down by about 0.1% per hour, but later was
observed to be increasing by about the same amount. It was quickly realized that
the decrease and increase of the pulse rate could be explained as a Doppler shift
if the neutron star were moving first away from and later toward the Earth. To
move in this way, the pulsar must be in orbit around an unseen companion. Thus
we have a pulsar as part of a binary star system, or a “binary pulsar.”

The orbital period of the binary system was determined to be about 8 hours.
This is an extremely short period; for example, it is more than 250 times shorter
than the orbital period of Mercury, the fastest moving planet in our solar system.
To have such a short orbital period, the pulsar must be orbiting very close to its
companion (which is believed to be another neutron star). At such close distances,
the curvature of spacetime is large and the effects of general relativity should
be measurable. In effect, the binary pulsar provides us with a “general relativity
laboratory.”

Among the general relativity effects that have been observed in the binary
pulsar system is the delay of the pulses due to the curvature of spacetime. This
situation is similar to Figures 15.20 and 15.21, except that the pulsar (instead of
Venus) is the origin of the signals and the curvature is due to the companion
star (instead of the Sun). An effect analogous to the precession of Mercury’s
perihelion has also been observed (except that, in the case of a star, the point of
closest approach is called periastron rather than perihelion). The periastron of the
binary pulsar changes by 4.23◦ per year, about 35,000 times more rapidly than
that of Mercury; the change of the periastron is known to an accuracy of about 1
part in 105, three orders of magnitude more precisely than Mercury’s.

The most remarkable observation from the binary pulsar is the slowing of
its orbital period, which general relativity explains as caused by the emission of
gravitational radiation. Because of its large centripetal acceleration (its orbital
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speed is about 0.001c), the binary pulsar should emit gravity waves, and the
energy radiated away is compensated by a loss in the orbital energy. This loss
amounts of 76 μs per year or 67 ns per orbit, and the measured change in the
orbital rate confirmed the prediction of general relativity to within 1%. In the
absence of direct observation, this is the strongest evidence yet obtained for the
existence of gravitational radiation. For the discovery of the binary pulsar and its
contributions to the study of gravitation, Joseph Taylor and Russell Hulse were
awarded the 1993 Nobel Prize in physics.

Black Holes

A neutron star is not the ultimate fate of the collapse of massive stars. Stars with
masses less than two or three solar masses probably do end up as white dwarf
stars or neutron stars. For more massive stars, the gravitational force is strong
enough to overcome even the Pauli principle applied to the neutrons, and there
is nothing to prevent the material in the star from suffering complete collapse
down to a single point in space. To understand gravitational collapse, we must
turn again to general relativity.

Within a year after Einstein’s 1916 publication of the general theory, Karl
Schwarzschild worked out the solutions to the equations for the curvature of
spacetime near a spherically symmetric mass M . In spherical coordinates (r, θ , φ),
the spacetime interval for this solution is

(ds)2 = c2

[
1 − 2GM

c2r

]
(dt)2 − (dr)2[

1 − 2GM

c2r

] − r2(dθ)2 − r2 sin2 θ(dφ)2

(15.26)

(Note that in the classical and zero-gravity limits c → ∞ and G → 0, the two
factors in square brackets disappear, leaving us with an interval in spherical
coordinates that is the exact analog of the three-dimensional interval expressed in
Cartesian coordinates, Eq. 15.19.) The radial part of this solution (the dr term) has
what appears to be a serious problem: the factor in the denominator can become
zero for a particular r, causing that term in the equation to “blow up.” This occurs
when r has the value

rS = 2GM

c2
(15.27)

which is known as the Schwarzschild radius. None of the physical coordinates
actually “blows up” at r = rS, and an object falling toward M would notice no
change in its motion as it crossed the Schwarzschild radius.

For external observers watching the falling object, the situation is very different.
As the object falls, general relativity predicts that its clocks would appear to run
ever more slowly, stopping completely when the object reaches rS. The object
appears to be frozen forever at that location! While the object is falling, the light
it emits becomes increasingly red shifted, and the red shift becomes infinite at
r = rS, so the object disappears from view! The outside observer can obtain no
information about the object once it passes through the Schwarzschild radius. For
that reason, the Schwarzschild radius is often called the event horizon; no external
observer can see into that horizon.
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The falling object does encounter one crisis at rS. At any time before crossing
rS, the object could reverse its fall and escape from the gravitational pull of M —for
example, by firing its rockets. Once it passes rS, no escape is possible. Inside rS, the
escape speed exceeds the speed of light, and nothing (not even light) can escape.
No travel or communication is permitted from inside rS to the outside world.
However, the object inside rS can continue to exert a gravitational force on external
objects or, in the language of general relativity, to curve spacetime beyond rS.

An object whose mass M lies totally within the corresponding radius rS is said
to be a black hole. To form such an object requires that matter be compressed
to exceptional densities. Table 15.2 shows some values of rS for representative
objects. For the Earth to become a black hole, we would need to compress it into
a sphere of radius less than 1 cm, and the Sun would become a black hole only if
compressed to a 3-km radius! Nevertheless, it has been speculated that black holes
are the end products of the collapse of massive stars, and that tiny (atom-sized)
black holes may have been formed by the extreme densities and pressures in the
early universe.

Far from a black hole, the gravitational field is Newtonian in character; the
effects of curved spacetime are small, and the black hole cannot be distinguished
from any other gravitating object. Close to a black hole (or close to any massive,
compact object), the effects of curved spacetime can become significant. The
discovery of a massive black hole could therefore provide another “laboratory” for
testing the predictions of general relativity where the effects may be substantially
larger than in the vicinity of the Sun.

Many stars are members of binary systems, in which two stars orbit about their
common center of mass. In many cases, a visible star appears to orbit with an
invisible companion, and gases from the visible star emit intense X rays as they
are accelerated toward the invisible companion. It is believed that these invisible
companions in binary systems are black holes. Many such systems have been
observed in our galaxy.

By observing the rotational motion of galaxies, it is possible to deduce the
mass at the galactic center. For some galaxies, this mass turns out to be greater
than 109 times the mass of the Sun. No known phenomenon other than a black
hole permits so much mass to be concentrated in so small a region. Similar
evidence derived from rotational motions suggests that even our near neighbor,

TABLE 15.2 Black Hole Event Horizons

Object Mass (kg) Ordinary Radius (m) rS (m)
238U nucleus 4 × 10−25 7 × 10−15 6 × 10−52

Physics book 1 0.1 1.5 × 10−27

Earth 6 × 1024 6 × 106 8.9 × 10−3

Sun 2 × 1030 7 × 108 3 × 103

Galaxy ∼2 × 1041 ∼1020 3 × 1014

Universe ∼1051 1026(?) ∼1024
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the Andromeda galaxy, has a black hole of a few million solar masses at its center.
Radio emissions from the center of our own Milky Way galaxy also suggest a
black hole of a few million solar masses.

A surprising development in black hole theory occurred in 1974, when Steven
Hawking showed that black holes could be sources of particle emission. According
to quantum mechanics, particle-antiparticle pairs can spontaneously appear, as
long as they exist for a short enough time that the uncertainty principle is not
violated. That is, the particles can “borrow” an energy of 2mc2 as long as the
loan is repaid (the particles vanish) within a time of at most �t ∼ −h/2mc2. If
a particle-antiparticle pair arises outside the event horizon of a black hole, its
gravitational field can provide the energy necessary to repay the loan so that the
particle and antiparticle can become real. Usually the particle and antiparticle
fall back into the black hole, restoring the energy balance. However, one of the
members of the pair may have enough energy to escape into the outside world.
The black hole thus appears to be emitting particles. In the process, the black hole
loses mass. The rate of mass loss is inversely proportional to the mass of the black
hole; massive black holes that result from the collapse of stars emit particles at
too low a rate to be observed. However, tiny black holes of atomic or nuclear size,
which may have been formed in the early evolution of the universe, could be very
bright sources of radiation.

Black holes provide both a fertile area for theoretical speculation and a
challenge for the skill of experimenters. It has been suggested that material that
falls into a black hole reappears at another time and place in the universe, or
perhaps in another universe. Thus a black hole, if this speculation is correct, could
be used for time travel or to travel between different universes. Other proposals
suggest harnessing a black hole as an energy source. It has been estimated that, if
black holes are indeed the end products of the evolution of massive stars, there
could be as many as 109 massive black holes in our galaxy, which makes it likely
that many black holes are within our observational reach. Or, perhaps we will
someday observe a minihole ending its existence with a burst of radiation. As
we continue to refine our ability to study the skies at visible, X-ray, and γ -ray
wavelengths, black holes will figure prominently in our investigations.

15.7 COSMOLOGY AND GENERAL RELATIVITY

General relativity can be applied to calculate the properties of the universe as a
whole. For this case, the mass-energy density term in Eq. 15.21 must describe the
entire universe. We are not interested in the “local” variations in density on a scale
of galactic size, but rather in the average density of the entire universe, evaluated
over a distance that is large compared with the spacing between galaxies. (In
a similar way, when we speak of the density of a solid we are interested not
in the variations on the atomic scale but rather in the average density of the
entire material, evaluated over a distance that is large compared with the spacing
between atoms.) The density of the universe is not a constant; it changes with
time as the universe expands.
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Solving the equations of general relativity for the large-scale structure of the
universe gives the following result, which is known as the Friedmann equation:(

dR

dt

)2

= 8π

3
GρR2 − kc2 (15.28)

Here R(t) represents the size or distance scale factor of the universe at time t,
and ρ represents the total mass-energy density at the same time. (The density is
expressed in mass units, such as kg/m3, even if it represents radiation.)

The constant k that appears in Eq. 15.28 specifies the overall geometrical
structure of the universe: k = 0 if the universe is flat, like Figure 15.14; k = +1
if the universe is curved and closed, like Figure 15.15; k = −1 if the universe
is curved and open, like Figure 15.16. When k = +1, the distance factor R(t) is
directly related to the size or “radius” of the universe, but its meaning is not so
apparent when k = 0 or k = −1, because in both of the latter cases the universe
is infinite in extent. In these cases R(t) should be regarded as a scale factor that
represents the expansion of space; the absolute magnitude of R in this case is not
significant, and only its variation with time is of interest, because any particular
length (such as the distance between two galaxies) will vary with time just as R
does.

To solve Eq. 15.28, we must therefore specify the constant k. On the large
scale, our universe seems quite close to being flat (as we discuss in Section 15.10),
and we therefore take k = 0. This simplifies the mathematics and gives results
that are not too far different from what we obtain with k = ±1, so for rough
estimates our calculation should be acceptable.

The density ρ in Eq. 15.28 must include both the matter and the radiation present
in the universe. The present universe is dominated by matter; the contribution of
radiation to the total density is negligible. As the universe expands, the amount of
matter remains constant but the volume increases like R3. Thus the matter density
ρm decreases with increasing R according to ρm ∝ R−3. Putting this result into
Eq. 15.28 and integrating, we find

R(t) = At2/3 (15.29)

where A is a constant. Using this result to eliminate R from Eq. 15.28, we obtain

t = 1√
6πGρm

(15.30)

In contrast, the early universe was dominated by radiation; the mass density of
the matter was negligible. From Eq. 10.42 we see that the energy density of the
radiation depends on dλ/λ5. All wavelengths scale with R, so we have dλ ∝ R
and λ5 ∝ R5. Thus the energy density of radiation ρr decreases with increasing
R according to ρr ∝ R−4. Inserting this result into Eq. 15.28 and integrating, we
obtain

R(t) = A′t1/2 (15.31)

where A′ is a constant, and so

t =
√

3

32πGρr
(15.32)
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The Hubble parameter can be defined in terms of the time variation of the scale
factor:

H = 1

R

dR

dt
(15.33)

As the universe evolves, the value of H changes. Its present value H0 is revealed
in experiments with Hubble’s law (Eq. 15.2).

If the universe has been expanding at a constant rate (R ∝ t), then H−1 is the
age of the universe. In the two cases we derived above, the age is less than H−1.
A matter-dominated universe expanding since t = 0 has an age of 2

3 H−1, while a
radiation-dominated universe has an age of 1

2 H−1. In either case we can take H−1

as a rough measure of the age at any time.
We can therefore characterize the universe by several parameters: a shape

parameter k, which describes whether it is flat or curved, open or closed; a radius
or scale parameter R(t), which measures the size of the universe as a function
of time; the density ρ, which represents both matter and energy, and which is
also a function of time; the Hubble parameter H , which is proportional to the
rate of expansion; and also a deceleration parameter q, which tells us the rate
at which the expansion is slowing down (see Problem 12). The challenge to the
observational astronomer is to obtain data on the distribution and motion of the
stars and galaxies that can be analyzed to obtain values for these parameters.

15.8 THE BIG BANG COSMOLOGY

The present universe is characterized by a relatively low temperature and a low
density of particles. Its structure and evolution are dominated by the gravitational
force. Because the universe has been expanding and cooling, in the distant past
it must have been characterized by a higher temperature and a greater density of
particles. Let us imagine we could run the cosmic clock backward and examine
the universe at earlier times, even before the formation of stars and galaxies. At
some point in its history, the temperature of the universe must have been high
enough to ionize atoms; at that time the universe consisted of a plasma of electrons
and positive ions, and the electromagnetic force was important in determining the
structure of the universe. At still earlier times, the temperature was hot enough
that collisions between the ions would have knocked loose individual nucleons,
so the universe consisted of electrons, protons, and neutrons, along with radiation.
In this era the strong nuclear force was important in determining the evolution of
the universe. At still earlier times the weak interaction played a significant role.

If we try to go back still further, we reach a time when the matter of the
universe consisted only of quarks and leptons. Because we have never observed
a free quark, we don’t know much about their individual interactions, and so we
can’t describe this very early state of the universe. If someday we are able to
understand the interactions of free quarks, we can penetrate this barrier and look
to still earlier times. Eventually we reach a fundamental barrier when the universe
had an age of only 10−43 s, which is known as the Planck time (see Problem 26).
Before this time, quantum theory and gravity are hopelessly intertwined, and none
of our present theories gives us any clue about the structure of the universe.

Later than the Planck time, but still before the condensation of bulk matter, the
universe consisted of particles, antiparticles, and radiation in approximate thermal
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equilibrium at temperature T . The universe at this time was radiation-dominated:
the energy density of the radiation exceeded the energy density of the matter.
In a radiation-dominated universe, we can use Eq. 15.32 to find a relationship
between the temperature and the age. Inserting the radiation density from Eq. 15.9,
remembering to convert to mass units such that ρr = U/c2, and evaluating all
numerical factors, we obtain

T = 1.5 × 1010 s1/2 · K

t1/2
(15.34)

where the temperature T is in K and the time t is in seconds. This equation relates
the age of the early universe to its temperature.

The radiation of the early universe consisted of high-energy photons, whose
average energy at the temperature T can be roughly estimated as kT , where k is
the Boltzmann constant. The interactions between the radiation and the matter
can be represented by two processes:

photons → particle + antiparticle

particle + antiparticle → photons

That is, photons can engage in pair production, in which their energy becomes
the rest energy of a particle-antiparticle pair, or a particle and antiparticle can
annihilate into photons. In each case, the energy of the photons must be at least as
large as the rest energy of the particle and antiparticle.

Example 15.2

(a) At what temperature is the thermal radiation in the
universe energetic enough to produce nucleons and anti-
nucleons? (b) What is the age of the universe when it cools
to that temperature?

Solution
(a) Let us consider the formation of proton-antiproton or
neutron-antineutron pairs by photons:

γ + γ → p + p and γ + γ → n + n

To produce these reactions, the photons must have an
energy at least as great as the nucleon rest energy, or about
940 MeV. The temperature of the photons must then be

T = E

k
= mc2

k

= 940 MeV

8.6 × 10−5 eV/K
= 1.1 × 1013 K

(b) From Eq. 15.34 we can find the age of the universe
when the photons have this temperature:

t =
(

1.5 × 1010 s1/2 · K

T

)2

=
(

1.5 × 1010 s1/2 · K

1.1 × 1013 K

)2

= 2 × 10−6 s

That is, at times earlier than 2 μs, the universe was hot
enough for the photons to produce nucleon-antinucleon
pairs, but after 2 μs the photons were not energetic enough
to produce nucleon-antinucleon pairs. The annihilation
reaction continues to occur, but after this time nucleon-
antinucleon pair production ceases.

In this calculation we are using average photon energies
as estimates. Photons in the tail of the thermal spectrum are
sufficiently energetic to produce nucleon-antinucleon pairs
even after 2 μs, but on the average the photons have too
little energy. More precisely, we could state that the rate
of nucleon-antinucleon pair production drops rapidly at
around 2 μs and becomes negligible at times much greater
than 2 μs.
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Let us now look at some of the major developments in the evolution of the
universe.

t = 10-6 s We begin the story at a time of 1 μs. From Eq. 15.34 we find
T = 1.5 × 1013 K or kT = 1300 MeV. The scale factor is smaller than that of
the present universe by the red shift, 2.7 K/1.5 × 1013 K = 1.8 × 10−13. If the
universe were closed and finite, its radius would be smaller than the present
observable radius (1026 m) by this factor, so the universe at that time is about
the present size of the solar system (1013 m). At 1 μs, the universe consists of p,
p, n, n, e−, e+, μ−, μ+, π0, π−, π+, and perhaps other particles, plus photons,
neutrinos, and antineutrinos. Because both pair production and annihilation can
occur, the number of particles is roughly equal to the number of antiparticles
for each species. Furthermore, the number of photons is roughly equal to the
number of nucleons, which is in turn roughly equal to the number of electrons.
The relative number of neutrons and protons is determined by three factors:

1. The Boltzmann factor e−�ElkT . Protons have less rest energy than neutrons, so
there are more of them at any given temperature. The energy difference �E
is (mn − mp)c

2 = 1.3 MeV, so the neutron-to-proton ratio can be expressed

as e−1.5×1010/T with T in Kelvins. For T ∼ 1013 K, this ratio is very nearly 1,
but it becomes different from 1 as T approaches 1010 K.

2. Nuclear reactions. Reactions such as n + νe � p + e− and n + e+ � p + νe
can go in either direction and tend to make it easy for protons to turn into
neutrons or neutrons into protons, as long as there are plenty of e−, e+, νe,
and νe around.

3. Neutron decay. The neutron half-life is about 10 min, which is going to be
important only at later times. For t < 1 s, there has not yet been enough time
for an appreciable number of neutrons to decay.

At t = 1 μs, all three of these factors keep the neutron-to-proton ratio very close
to 1.

t = 10-2 s Between 10−6 s and 10−2 s, the temperature drops from 1.5 ×
1013 K (kT = 1300 MeV) to 1.5 × 1011 K (kT = 13 MeV), and the distance scale
factor increases by a factor of 100. The photons have on the average too little
energy (13 MeV) to produce pions and muons, and because the pion and muon
lifetimes are much shorter than 10−2 s, they have decayed into electrons, positrons,
and neutrinos. Pair production of nucleons and antinucleons no longer occurs,
but nucleon-antinucleon annihilation continues. As we discuss later, there is very
slight imbalance of matter over antimatter of perhaps 1 part in 109. During this
interval, all of the antimatter and most (99.9999999%) of the matter is annihilated.
Pair production of electrons and positrons can still occur, so the universe consists of
p, n, e−, e+, photons, and neutrinos. The neutron-to-proton ratio remains about 1.

t = 1 s Between 10−2 s and 1 s, the temperature drops to 1.5 × 1010 K (kT =
1.3 MeV). In this interval, the Boltzmann factor, which determines the neutron-
to-proton ratio, becomes different from 1; by t = 1 s, the nucleons consist of about
73% protons and 27% neutrons. During this period, the influence of the neutrinos
has been decreasing; to convert a proton to a neutron by capturing an antineutrino
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(νe + p → n + e+) requires an antineutrino of at least 1.8 MeV, above the mean
neutrino energy (1.3 MeV) at this temperature. This begins the time of “neutrino
decoupling,” when the interactions of matter and primordial neutrinos no longer
occur. From this time on, the neutrinos continue to fill the universe, cooling
along with the expansion of the universe. These primordial neutrinos presently
have roughly the same density as the microwave photons, but a slightly lower
temperature (about 2 K).

t = 6 s Between 1 s and 6 s (T = 6 × 109 K or kT = 0.5 MeV), the average
photon energy decreases and becomes insufficient to produce electron-positron
pairs. Electron-positron annihilation continues, and as a result all of the positrons
and nearly all (99.9999999%) of the electrons are annihilated. The electrons
have too little energy to convert protons to neutrons (e− + p → n + νe no longer
occurs), and so the only remaining weak interaction process that influences the
relative number of protons and neutrons is the radioactive decay of the neutron,
which has a half-life of 10 minutes and so has not appreciably occurred by this
time. The nucleons are now about 84% protons and 16% neutrons, or about 5
times as many protons as neutrons.

The composition of the universe after t = 6 s consists of some number N
protons, the same number N electrons, and about 0.2N neutrons. There are no
remaining positrons or antinucleons. Because particle-antiparticle annihilation
has substantially reduced the number of nucleons while the number of photons
remained stable, there are about 109N photons (and about the same number of
neutrinos).

Example 15.3

Estimate the relative number of neutrons and protons
among the nucleons at t = 1 s.

Solution
At this time, the temperature is 1.5 × 1010 K. The neutron-
to-proton ratio is determined by the Boltzmann factor,
e−�E/kT , where �E is the neutron-proton rest energy dif-
ference. The exponent in the Boltzmann factor is

�E

kT
= 1.3 MeV

(8.62 × 10−5 eV/K)(1.5 × 1010 K)
= 1.0

so the ratio of neutrons to protons is

Nn

Np
= e−�E/kT = e−1.0 = 0.37

The relative number of protons is then

Np

Np + Nn
= 1

1 + Nn/Np
= 1

1 + 0.37
= 0.73

The nucleons consist of 73% protons and 27% neutrons.

15.9 THE FORMATION OF NUCLEI AND ATOMS

Let’s review developments in the Big Bang cosmology up to t = 6 s. (1) A hot,
dense universe, full of photons and elementary particles of all varieties, has cooled
to below 1010 K. (2) Most of the unstable particles have decayed away. (3) All
of the original antimatter and most of the original matter annihilated one another,
leaving a small number of protons, an equal number of electrons, and about
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one-fifth as many neutrons. (4) Neutrinos, which have about the same density
as photons, decoupled at about 1 s and will continue cooling as the universe
expands.

Energy
E0

N
(E

)

FIGURE 15.28 The thermal radiation
spectrum. The photons above E0 =
2.22 MeV are sufficiently energetic to
break apart deuterium nuclei.

As the neutrons and protons collide with one another, it is possible to form a
deuteron (2H nucleus):

n + p → 2H + γ

but the high density of photons can also produce the inverse reaction:

γ + 2H → n + p

We recall from Chapter 12 that the deuteron binding energy is 2.22 MeV. In order
to have any appreciable buildup of deuterons, the photons present must first cool
until their energies are below 2.22 MeV; otherwise the deuterons will be broken
up as quickly as they can be formed. The energy 2.22 MeV corresponds to a
temperature T = 2.5 × 1010 K, and we therefore might expect deuterons to be
formed as soon as the temperature drops below 2.5 × 1010 K. However, this does
not happen. The radiation does not have a single energy, but rather has a thermal
spectrum. A small fraction of the photons has energies above 2.22 MeV, and these
photons continue to break apart the deuterons (Figure 15.28).

Before matter-antimatter annihilation occurred, there were about as many
photons as nucleons and antinucleons, but after t = 0.01 s, the ratio of nucleons
to photons is about 10−9; about 1

6 of the nucleons are neutrons. If the fraction
of photons above 2.22 MeV is greater than 1

6 × 10−9, there will be at least one
energetic photon per neutron, which effectively prevents deuteron formation. Our
next job is to calculate to what temperature the photons must cool before fewer
than 1

6 × 10−9 of them are above 2.22 MeV.
The number density of thermal photons was given by Eq. 15.6. We expect that

the temperature must be much less than 2.5 × 1010 K, and so we are interested in
the distribution where E 
 kT , for which it is approximately

N(E) dE

V
= 8πE2

(hc)3
e−E/kT dE (15.35)

and the total number density above some energy E0 is determined by integrating
the number density from E0 to ∞: NE > E0

/V = ∫ ∞
E0

N(E)dE/V , which can be
shown to be

NE > E0

V
= 8π

(hc)3
(kT)3e−E0/kT

[(
E0

kT

)2

+ 2

(
E0

kT

)
+ 2

]
(15.36)

Equation 15.8 gives the total number density of photons, and thus the fraction f
above E0 is (NE > E0

/V)/(N/V), which can be evaluated to be

f = NE > E0
/V

N/V
= 0.42e−E0/kT

[(
E0

kT

)2

+ 2

(
E0

kT

)
+ 2

]
(15.37)

For f = 1
6 × 10−9, corresponding to the number needed to prevent deuteron

formation, Eq. 15.37 gives E0/kT = 28. With E0 = 2.22 MeV, the required
temperature is thus about 9 × 108 K; when T > 9 × 108 K, the number of photons
with E > 2.22 MeV is greater than the number of neutrons, and deuteron (2H)
formation is prevented. When T drops below 9 × 108 K (which occurs at about
t = 250 s), deuterons can be produced.
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From 6 s to 250 s, very little (except expansion and the corresponding
temperature decrease) happens in the universe, but after t = 250 s things happen
very quickly. Deuterons form and then react with the many protons and neutrons
available to give

2H + p → 3He + γ and 2H + n → 3H + γ

The energies of formation of these nuclei are, respectively, 5.49 MeV and
6.26 MeV, well above the 2.22 MeV threshold of the deuteron formation. If the
photons are not energetic enough to break apart the deuterons, they are certainly
not energetic enough to break apart 3He and 3H. The final steps in the formation
of the heavier nuclei are

3He + n → 4He + γ and 3H + p → 4He + γ

There are no stable nuclei with A = 5, so no further reactions of this sort are
possible. Nor is it possible to have 4He +4He reactions because 8Be is highly
unstable. (It would be possible to form stable 6Li and 7Li, but these are made in
very small quantities relative to H and He; from Li further reactions are possible,
such as 7Li +4He →11B, and so forth, but these occur in still smaller quantities.
The end products 2H and He, along with the leftover original protons, make up
about 99.9999% of the nuclei after the era of nuclear reactions.)

By t = 250 s, the original 16% neutrons present at t = 6 s had beta-decayed to
about 12%, leaving 88% protons. Most of the 2H, 3H, and 3He were “cooked”
into heavier nuclei, so we can assume the universe to be composed mostly of
1H and 4He nuclei. Of the N nucleons present at t = 250 s, 12% (0.12N) were
neutrons and 0.88N were protons. The 0.12N neutrons combined with 0.12N
protons, forming 0.06N 4He, and leaving 0.88N − 0.12N = 0.76N protons. The
universe then consisted of 0.82N nuclei, of which 0.06N (7.3%) were 4He and
0.76N (92.7%) were protons. Helium is about four times as massive as hydrogen,
so by mass the universe is about 24% helium.

At this point the universe began a long and uneventful period of cooling, during
which the strong interactions ceased to be of importance.

The final step in the evolution of the primitive universe is the formation of
neutral hydrogen and helium atoms from the 1H, 2H, 3He, and 4He nuclei and the
free electrons. In the case of hydrogen, this takes place when the photon energy
drops below 13.6 eV; otherwise any atoms that might happen to form will be
immediately ionized by the radiation. There are still about 109 photons for every
proton, and so we must wait for the radiation to cool until the fraction of photons
above 13.6 eV is less than about 10−9. We can solve Eq. 15.37 for f = 10−9

to obtain E0/kT = 26. With E0 = 13.6 eV, the corresponding temperature is
T = 6070 K, which occurs at time t = 6.1 × 1012 s = 190, 000 y. These final
estimates are actually not quite correct. We have been considering only the energy
density of radiation present in the universe. As the universe cools, the contribution
of the matter to the total energy density becomes more significant, and so the
temperature drops more slowly than we would estimate. This contribution may
increase this time by about a factor of 2 to about 380,000 y, and the radiation
temperature is decreased by about a factor of

√
2, to T = 4300 K.

After neutral atoms have formed, there are virtually no charged particles left
in the universe, and the radiation field is not energetic enough to ionize the atoms.
This is the time of the decoupling of the radiation field from the matter, and now
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FIGURE 15.29 Evolution of the universe according to the Big Bang cosmology. The blue line shows the temperature and time
in the radiation-dominated era before decoupling. The most important reactions in each era are shown.

electromagnetism, the third of the four basic forces, is no longer important in
shaping the evolution of the universe. The large-scale development of the universe
is from this point governed only by gravity.

The time after t = 380,000 y has been comparatively uneventful, at least from
the point of view of cosmology. Density fluctuations of the hydrogen and helium
triggered the condensation of galaxies, and then first-generation stars were born.
Supernova explosions of the material from these stars permitted the formation of
second generation systems, among which planets formed from the rocky debris.

Meanwhile, the decoupled radiation field, unaffected by the gravitational
coming and going of matter, began the long journey that eventually took it, cooled
again by a factor of 1600, to the radio telescopes of 20th-century Earth.

The details of the Big Bang cosmology are summarized in Figure 15.29. It
is a remarkable story, all the more so because we can understand most of its
details—with the possible exception of the first instant—with nothing more than
some basic theories of modern physics, most of which we can study (on a much
smaller scale!) in our laboratories on Earth.

15.10 EXPERIMENTAL COSMOLOGY

Far from being a science that involves only speculations about the distant past or the
indefinite future, cosmology has in recent decades become a precise experimental
science, involving observational results from high-resolution observatories on
Earth and in space, as well as laboratory measurements of nuclear and particle
properties that provide insight into cosmological phenomena. Here are a few of
the observations and their implications.
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Matter and Antimatter
In the early universe, there was roughly one nucleon and one antinucleon for each
photon. If the numbers of nucleons and antinucleons had been exactly equal, there
would have been either complete annihilation of both (in which case we would
not be around to comment on the outcome) or else the clumping of matter and
antimatter into galaxies and antigalaxies. Our telescopes can’t tell the difference
between galaxies made of matter and antimatter (because both emit the same
light), but if there were large quantities of antimatter in the universe we should
occasionally find a galaxy and an antigalaxy colliding, and their annihilation
would light up the sky. We observe many galaxies in the process of colliding with
their neighbors, but none show the intense annihilation radiation that would signal
a matter-antimatter collision. Our conclusion is that the universe is made of matter
and contains no significant concentrations of antimatter. For every 1,000,000,000
nucleons in the early universe there were 999,999,999 antinucleons; following
the annihilation all of the antinucleons disappeared, leaving 1 out of the original
109 nucleons to make up the current universe.

After the matter-antimatter annihilation in the early universe, the ratio of the
number of remaining nucleons to photons was about 10−9. This number, which
has remained constant since the annihilation era, is deduced from the measurement
of the relative density of 2H and 3He in sites such as “first-generation” stars or
interstellar gas, where no significant additional amounts of those atoms have
been subsequently produced by fusion. The observed relative abundances of these
atoms gives a nucleon to photon ratio in the range of 5−7 × 10−10.

Where did the 10−9 excess of matter over antimatter in the early universe
come from? We don’t yet know the answer to this question, but evidence gathered
in particle physics experiments may provide a clue. The first indication of an
asymmetry between matter and antimatter was a 1964 experiment studying the
decay of the neutral K meson, which shows a difference in behavior between K0

and K
0

only at the very low level of 1 part in 103 in the weak interaction or
thus at a level of 10−10 relative to the strong interaction. (J. W. Cronin and V. L.
Fitch received the 1980 Nobel Prize in physics for their work on this experiment.)
Following the discovery of the b quark, it was hypothesized that the B0 meson
would show a similar effect, and so accelerators were built in the U. S. and Japan
that produced the B0 in large enough quantities to verify the asymmetry. Beginning
in about 2001, scientists at these accelerators announced results that verified the
matter-antimatter asymmetry previously observed only in the K0 decay.

The distinction between matter and antimatter occurred at an early stage in
the evolution of the universe, during the quark-antiquark era. The Grand Unified
Theories (GUTs) include this asymmetry between quarks and antiquarks in a
natural way, although there is as yet no accepted version of the GUTs that yields
a convincing explanation for the K0 and B0 experiments.

Helium Abundance
Much of the matter in the universe has been formed and reformed, and so has
lost its “memory” of the Big Bang. There is, however, “first generation” matter
in stars and galaxies, that should show the roughly 24% helium abundance that
characterized the formation of matter.

A variety of experiments suggests that the abundance of helium in the universe
is 23 to 27% by mass, in excellent agreement with our rough estimate of 24%.
These experiments include the emission of visible light from gas clouds near stars
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and the emission of radio waves by interstellar gas, both of which permit us to
compare the amounts of hydrogen and helium present. In addition, the dynamics
of stellar formation depends on the initial hydrogen and helium concentrations;
present theories permit us to estimate their ratio from the observed properties of
stars. The 24% abundance seems to be rather constant throughout the universe, as
we would expect if it were predetermined by the Big Bang. (Not enough helium
has been produced by nuclear fusion in stars in the last 14 × 109 y to change this
ratio significantly.)

In fact (and here physics comes nearly full circle, from the very old and large to
the very new and small), the early helium abundance is a function of the conditions
before 10−6 s, when quarks and leptons filled the universe. The evolutionary rate
in this era depends on the number of different kinds of quarks and leptons that
can participate in reactions. It has been calculated that the helium abundance
is probably not consistent with the existence of more than three generations of
quarks and leptons. It is remarkable that extrapolations to an unobservable state
of the universe can yield such insight into the fundamental structure of matter.

The Horizon Problem
Our telescopes permit us to look outward by about 10 billion light-years in any
direction. No matter in what direction we look, the universe (which we are
viewing as it looked 10 billion years ago) appears pretty much the same—the
same types of galaxies and the same temperature of the background radiation.
This is surprising, because regions that we observe in opposite directions are
separated by 20 billion light years, while the universe is only 14 billion years old.
If the universe had been expanding throughout its history at a uniform rate, those
opposite regions of the sky could never have been connected by any signal and
thus had no way to achieve the common characteristics that we now observe.
(Imagine finding a block of copper that had been assembled from a random
collection of copper atoms. If all parts of the block were at the same temperature,
you would conclude that the block had been in existence for a long enough time
for thermal energy to propagate throughout its volume. If we learned that the time
since the block’s assembly was less than that propagation time, it would be very
puzzling to explain the achievement of thermal equilibrium in so short a time.)

This paradox is solved by a hypothesis called “inflation,” which proposes that
in the early universe rather than a constant expansion rate there was a sudden
rapid growth (by perhaps 50 orders of magnitude) in a short interval of time
between 10−35 s and 10−32 s. Before the time of inflation, the size of the universe
was less than the distance through which distant parts could exchange energy
since the time of the Big Bang. Thus all parts of the universe were able to
achieve a common set of characteristics. After inflation, the size of the universe
exceeded the maximum range of communication signals, but the homogeneous
characteristics had already been achieved. The inflationary hypothesis thus neatly
solves the horizon problem.

The Flatness Problem
For a flat universe (k = 0), we can combine Eqs. 15.28 and 15.33 to give

ρcr = 3H2

8πG
= 0.97 × 10−26 kg/m3 (15.38)

This is the critical density corresponding to a flat universe. If the density is greater
than this critical value, the universe is closed, and if it is less than this value, the
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universe is open. In discussing the density of the universe, it is useful to define
the ratio between the actual density and this critical value:

� = ρ

ρcr
(15.39)

As the universe expands, the gravitational interaction among its components slows
the expansion rate. If � > 1, the gravitational interaction will eventually halt and
reverse the expansion. If � < 1, the expansion will continue until the components
are separated by infinite distances. If � is exactly equal to one, the expansion will
also continue forever, but the components will arrive at their infinite separation
just as they lose the last bit of kinetic energy.

By carefully measuring the variations in the temperature of regions of the
microwave background, the WMAP satellite and other experiments have con-
cluded that � is very close to 1, probably within 1%. It is of considerable interest
to know whether � is exactly equal to 1 (for a flat universe), or just happens to be
very close to 1 (for an open or closed universe).

By way of analogy, consider a projectile that is thrown upward from the surface
of the Earth (ignore the gravity of the Sun and all other objects). The parameter
� in effect measures the ratio between the gravitational potential energy and
the kinetic energy: � = |Ugrav|/K. If the initial value of � is greater than 1, the
gravitational energy exceeds the kinetic energy, so the projectile will rise to a
maximum height and then fall back to Earth. When it reaches its maximum height,
K = 0 and � becomes infinite. During the entire ascent, the value of � increases
because the kinetic energy decreases more rapidly than the magnitude of the
gravitational energy. If the projectile is launched so that � < 1, there is more than
enough kinetic energy to overcome the Earth’s gravity, and the projectile will
escape the pull of the Earth. When it reaches infinite separation, � = 0 because
Ugrav = 0. During its entire outward journey, � decreases from its initial value
and approaches zero. If we choose the initial velocity such that � = 1, there is
just enough energy to escape, and the projectile reaches infinite separation with
K = 0. Throughout the entire journey, � remains exactly 1.

For the projectile as well as for the evolution of the universe, the conclusions
are identical: If � = 1 initially, it remains exactly 1 always, but if either �> 1
or � < 1, it grows further away from 1. If the early universe had � = 1.000001,
after the passage of 14 billion years � would have grown very large; similarly, if
the initial value of � were 0.999999, by now it would be very close to 0. It has
been calculated that for � to be within 1% of 1 today, it must have originally been
in the range 1 ± 10−62. Here again the inflation hypothesis is essential. Prior to
the inflation era, the universe may have been open, flat, or closed, with any value
of �. During inflation, the universe grew by so many orders of magnitude that the
curvature became flat, much as the surface of a balloon becomes nearly flat when it
is inflated by many orders of magnitude. As a result, � was indeed very close to 1
just after inflation, and we continue today to observe an � that remains close to 1.

The Composition and Age of the Universe
During the past 10 years, researchers have made enormous strides in determining
the composition of the universe and its age. These determinations are based mostly
on measurements of the properties of the cosmic microwave background radiation,
in particular its geometrical distribution and its polarization properties. Among
the most detailed experiments are those of the WMAP satellite (2001) and the
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Boomerang balloon flights over Antarctica (1998 and 2003). These experiments,
along with others, indicate that the universe is very nearly flat; that is, � = 1.00
(so that ρ = ρcr) to within about 1%. They are also able to measure the relative
densities of the various components of the mass-energy content of the universe.
Ordinary baryonic matter contributes about 4.6% of the critical density, and dark
(nonbaryonic) matter contributes 23%. Together, the two kinds of matter make
up 28% of the critical density. If the density of the universe is equal to the critical
density, what makes up the other 72%?

Beginning in about 1998, two teams of researchers were investigating the
Hubble law by studying the exploding stars known as supernovas in the most
distant galaxies (corresponding to large redshifts, with �λ/λ close to 0.9). Both
teams found systematic and consistent departures from the Hubble law. The
supernovas in these distant galaxies were fainter than expected, indicating that
the galaxies were 10 to 15% farther from us than the Hubble law predicts. The
research groups concluded that a mysterious force is accelerating the expansion
of the universe. Generally we would expect that the expansion would be slowing
down, owing to the gravitational interactions of its components. What could be
responsible for increasing the rate of the expansion?

This unknown interaction is called “dark energy,” and it represents the missing
72% of the composition of the universe. Although there are several theories about
the nature of the dark energy, there is no convincing explanation of its origin or
its role in the physical world. It has been suggested that the dark energy density
does not diminish as the universe expands, so that as the densities of matter (both
baryonic and non-baryonic) decrease with the expansion, eventually the dark
energy begins to dominate and accelerates the expansion. We live at a time when
this acceleration is dominant (which has occurred for about the past 5 billion years).

Another finding based on the observation of the background radiation is the age
of the universe. There is general agreement that the age is 13.7 × 109years, with an
uncertainty of about 1%. The accelerated expansion solves a problem associated
with the Hubble age. In a matter-dominated universe (which our universe has been
for most of its existence), the present Hubble age should be 2

3 H−1
0 , which works

out to be about 9 × 109 years. If the expansion has been accelerating, then the
actual age can be greater than the Hubble age, which certainly seems to be the case.

It is fitting that this story ends where it began, with Einstein. When Einstein
produced the general relativity theory in 1916 (a decade before Hubble’s work),
it was widely believed that the universe was static. In order for the equations of
general relativity to allow a static solution, Einstein introduced into his equations
an additional term, called the cosmological constant. After learning of Hubble’s
discovery of the expansion of the universe, Einstein called the introduction of the
cosmological constant his “greatest blunder.” It now appears that the cosmological
constant is one possible explanation for the dark energy, and the term has been
restored to the equations.

The increasing role of the dark energy suggests a sad fate for the universe.
An open universe will expand forever, but in an accelerating open universe each
observer’s horizon will shrink increasingly rapidly. The most distant galaxies will
separate from us at speeds greater than the speed of light (which is not a violation
of special relativity, because no signals are being exchanged). The light from
these distant galaxies will not be able to reach us, and the galaxies will gradually
disappear. Future astronomers might be able to observe only local galaxies and
might learn nothing of the expansion or the properties of the universe!
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Chapter Summary

Section

Hubble’s law v = H0d 15.1

Number density
of photons

N/V =
(2.03 × 107photons/m3 ·K3)T3

15.2

Energy density
of photons

U = (4.72 × 103 eV/m3 ·K4)T4 15.2

Gravitational
frequency change

�f /f = gH/c2 15.4

Deflection of
starlight

θ = 2GM/Rc2 15.5

Perihelion
precession

�φ = 6πGM

c2rmin(1 + e)
15.5

Schwarzschild
radius

rS = 2GM/c2 15.6

Section

Age of matter-
dominated
universe

t = 1/
√

6πGρm 15.7

Age of radiation-
dominated
universe

t = √
3/32πGρr 15.7

Temperature
of universe at
age t

T = 1.5 × 1010 s1/2 ·K

t1/2
15.8

Fraction of
photons above
E0

f = 0.42e−E0/kT

×
[(

E0
kT

)2 + 2
(

E0
kT

)
+ 2

]
15.9

Critical density
of universe

ρcr = 3H2

8πG
= 0.97 × 10−26 kg/m3 15.10

Questions

1. If we were to measure the equivalence of gravitational and
inertial mass, would we show that minertial = mgravitational or
merely that minertial ∝ mgravitational?

2. Do tidal effects distinguish between Newtonian gravity and
curved spacetime? What would be the shape of a drop of
liquid following a path in a curved spacetime? Can such a
drop distinguish between a uniform gravitational field and a
uniform acceleration?

3. Suppose that the first measurement of deflection of starlight
during a solar eclipse had been done after 1905, when the
special theory of relativity was introduced, but before 1916,
when the general theory was introduced. What would have
been the effect of this measurement on the special theory?

4. If we could make a precise comparison of light from the
Sun with light from the Moon, would the moonlight be red
shifted, blue shifted, or unshifted relative to sunlight?

5. What difficulties might arise in the Pound and Rebka exper-
iment on the gravitational red shift if the temperature of the
source or the absorber varied?

6. Why are the abundances of Li, Be, and B so small?
7. Can we look out into the distant universe without also

looking back into time?
8. Is Hubble’s parameter a constant? Does it vary over large

distances of space? Over long intervals of time?

9. Explain why the age of the universe must be less than H−1.
10. Why is it difficult to obtain precise values for the Hubble

parameter?
11. All natural processes are governed by the rule that the

entropy must increase; the increase of entropy, as the uni-
verse “runs down,” defines for us a direction of time. If the
universe begins to contract and therefore to heat up, will
the entropy of natural processes therefore decrease? Will
the inhabitants of that universe observe time to be running
backward?

12. The hydrogen in the universe contains a small fraction of
deuterium. Assuming the deuterium originated in the Big
Bang, what era of the Big Bang would we learn about by
measuring the deuterium abundance? Can we accomplish
this measurement using terrestrial hydrogen? What proper-
ties of deuterium could we use to determine its presence in
distant regions of the galaxy?

13. Between t = 1 s and t = 6 s, the neutron fraction should
drop from 27 to 8%; instead it drops only to about 16%.
Why don’t more neutrons turn into protons during this era?
Is it as difficult for protons to turn into neutrons?

14. If we were able to observe the neutrinos from the early
universe, would they have a spectrum determined by the
Planck distribution?
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Problems

15.1 The Expansion of the Universe

1. Use Hubble’s law to estimate the wavelength of the 590.0 nm
sodium line as observed emitted from galaxies whose dis-
tance from us is (a) 1.0 × 106 light-years; (b) 1.0 × 109

light-years.
2. The light from a certain galaxy is red-shifted so that the

wavelength of one of its characteristic spectral lines is dou-
bled. Assuming the validity of Hubble’s law, calculate the
distance to this galaxy.

15.2 The Cosmic Microwave Background Radiation

3. (a) Taking u(E) = EN(E) as the energy density of the ther-
mal radiation, with N(E) given in Eq. 15.6, differentiate
to find the energy at which the maximum of the radiation
energy spectrum occurs. (b) Evaluate the peak photon energy
of the 2.7-K microwave background.

4. Starting with Eqs. 15.7 and 10.41, show how to evaluate the
numerical constants that appear in Eqs. 15.8 and 15.9.

15.3 Dark Matter

5. Suppose an observer in a distant galaxy were observing
the light from our Sun as the Sun moves directly toward
the observer. Neglecting any net relative motion of the two
galaxies, calculate the change in wavelength of the 121.5-nm
Lyman series line due to the rotation of our galaxy.

15.4 The General Theory of Relativity

6. In Example 15.1 we calculated the change in wavelength of
the Lyman α line due to the gravitational red shift. Compare
this value with (a) the special relativistic Doppler shift due
to the rotation of the Sun and (b) the thermal Doppler broad-
ening (see Eq. 10.30). The Sun’s radius is 6.96 × 108 m, its
rotational period is 26 days, and it surface temperature is
6000 K.

7. A satellite is in orbit at an altitude of 150 km. We wish to
communicate with it using a radio signal of frequency
109 Hz. What is the gravitational change in frequency
between a ground station and the satellite? (Assume g
doesn’t change appreciably.)

8. According to the uncertainty principle, what is the min-
imum time interval necessary to measure a change in
frequency of the magnitude observed in the Pound and Rebka
experiment?

15.5 Tests of General Relativity

9. By drawing analogies between the Coulomb force law and
the gravitational force law, use Eq. 6.8 for the deflection in
Rutherford scattering to obtain Eq. 15.22 for the deflection
of photons. Assume the photon behaves as if it has a mass
m = E/c2. (Hint: Write Eq. 6.8 in terms of the velocity of
the particle instead of kinetic energy.)

10. In the binary star system known as PSR 1913 + 16, two
neutron stars move about their common center of mass in
highly elliptical orbits. Locate the orbital parameters for this
motion, and add a row to Table 15.1 showing the precession
angle expected from general relativity. (Hint: In Eq. 15.25,
M is the total mass of the orbiting body and the central body.)

15.6 Stellar Evolution and Black Holes

11. (a) Show that Eq. 10.57 for the radius of a neutron star of
mass M can be written R = (12.3 km)(M/M�)−1/3 where
M� is the mass of the Sun. (b) Consider a star 1.5 times
as massive as the Sun with a radius of 7 × 105 km (equal
to the present radius of the Sun), rotating on its axis about
once per year. (This is quite a slow rate of rotation—our
Sun rotates about once per month.) If angular momentum
is conserved in the collapse, what will be the final angular
velocity? Assume the star can be represented as a sphere of
uniform density, with rotational inertia I = 2

5 MR2.

15.7 Cosmology and General Relativity

12. The rate of change of the cosmic expansion can be
described in terms of a deceleration parameter q =
−R(d2R/dt2)/(dR/dt)2. (a) Evaluate q for the matter-
dominated universe (Eq. 15.29) and the radiation-dominated
universe (Eq. 15.31). (b) By differentiating Eq. 15.28,
show that in a matter-dominated universe q = 4πGρm/3H2.
(Hint: Use ρm ∝ R−3 to relate dρm/dt to dR/dt.)

15.8 The Big Bang Cosmology

13. Derive Eq. 15.34.
14. At what age did the universe cool below the threshold

temperature for (a) nucleon production; (b) pi meson pro-
duction?

15. (a) At what temperature was the universe hot enough to per-
mit the photons to produce K mesons (mc2 = 500 MeV)?
(b) At what age did the universe have this temperature?

15.9 The Formation of Nuclei and Atoms

16. Derive Eqs. 15.36 and 15.37.
17. Suppose the difference between matter and antimatter in the

early universe were 1 part in 108 instead of 1 part in 109.
(a) Evaluate the temperature at which deuterium begins to
form. (b) At what age does this occur? (c) Evaluate the tem-
perature and the corresponding time of radiation decoupling
(when hydrogen atoms form).

18. What was the age of the universe when the nucleons con-
sisted of 60% protons and 40% neutrons?

15.10 Experimental Cosmology

19. Assuming that the density of the universe is equal to its
critical value and that 4.6% of the universe is baryonic
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matter, calculate the average number of baryons (nucleons)
per cubic meter in the universe.

20. (a) Suppose the baryonic matter in the universe were com-
posed of uniformly distributed stars of the mass of the
Sun (2.0 × 1030 kg). What would be the average spac-
ing between the stars? Express your answer in light-years.
(b) Suppose instead that the baryonic matter were composed
of uniformly distributed galaxies of the mass of the Milky
Way (1.2 × 1042 kg). Expressed in light-years, what would
be the average distance between the galaxies?

21. Suppose the non-baryonic dark matter consists entirely of
neutrinos. What is the average rest energy of the neutrinos
that could account for this part of the mass of the universe?
As a rough estimate, assume that the neutrino density is the
same as the present photon density.

General Problems

22. Photons of visible light have energies between about 2 and
3 eV. (a) Compute the number density of photons from
the 2.73-K background radiation in that interval. (It is
sufficient to characterize the visible region as E = 2.5 eV
with dE = 1.0 eV.) (b) Assume the eye can detect about
100 photons/cm3. At what temperature would the back-
ground radiation be visible? At what age of the universe
would this have occurred?

23. Consider the universe at a temperature of 5000 K. (a) At
what age did this occur, and during which stage of the
evolution of the universe? (b) Evaluate the average photon
energy at that time. (c) If there are 109 photons per nucleon,
evaluate the ratio between the radiation density and the mass
density at that time.

24. The early universe was radiation dominated, and the present
universe is matter dominated. (a) At what temperature were
the radiation and matter densities equal? (b) What was the
age of the universe when this occurred?

25. A neutron star of 2.00 solar masses is rotating at a rate
of 1.00 revolutions per second. (a) What is the radius of
the neutron star? (See Problem 11.) (b) Find its rotational
kinetic energy. (c) If its rotational speed slows by 1 part
in 109 per day, find the loss in rotational kinetic energy
per day. (d) Assuming that the entire energy loss goes into
radiation, find the radiative power. (e) If the star is 104

light-years from Earth, what would be the average power
received by an antenna of area 10 m2 if the star’s energy
were distributed uniformly in space instead of concentrated
in a narrow beam?

26. Because we don’t yet have a quantum theory of gravity,
we cannot analyze the properties of the universe before the
Planck time, about 10−43 s. If we assume that the properties

of the universe during that era were determined by quantum
theory, relativity, and gravity, the Planck time should be
characterized by the fundamental constants of those three
theories: h, c, and G. We can therefore write t ∝ hicjGk ,
where i, j, and k are exponents to be determined. (a) Using
a dimensional analysis, determine i, j, and k. (b) Assuming
the proportionality parameter is of order unity, evaluate t.
(c) What was the size of the observable universe at the
Planck time?

27. Show that the spacetime interval given by Eq. 15.18 is
invariant with respect to the Lorentz transformation. That is,
show that (ds)2 = (ds′)2, where (ds′)2 = (c dt′)2 − (dx′)2.

28. Light from star S in Figure 15.30 passes a distance b
from a galaxy L, where it is deflected by an angle α and
then reaches the observer O, who sees an image of the
star at I . (For simplicity, assume the gravitational deflec-
tion takes place at a single point, and assume all angles
in the figure are very small.) The galaxy (of mass M) is
a distance dL from the observer, and the star is a dis-
tance dS from the observer. (a) For small angles, show
that θdS = βdS + (4GM/θdLc2)(dS − dL). (Hint: Use Eq.
15.22 for the deflection angle α when the impact parameter
is b instead of R, but double the value to account for the
difference between the special and general relativity predic-
tions.) (b) Solve the resulting quadratic equation for θ and
show that there are two image positions whose locations
differ by �θ = √

β2 + 4θ2
E, where the Einstein angle θE

is
√

4GM(dS − dL)/c2dSdL. This is an example of gravita-
tional lensing, an effect of general relativity that has been
observed for distant objects that appear in multiple images
when their light travels a path through spacetime that is
curved by an intervening galaxy. (c) When the star, lensing
galaxy, and observer lie along a single line, something other
than two images appears. Given the symmetry of the figure
when β = 0, what do you expect to be observed in this case?

β
θ

α

I

S

b

OL

dS

dL

FIGURE 15.30 Problem 28.



Appendix A
CONSTANTS AND
CONVERSION FACTORS∗

CONSTANTS

Speed of light c 2.99792458 × 108 m/s

Charge of electron e 1.60217657 × 10−19 C

Boltzmann constant k 1.380649 × 10−23 J/K = 8.617332 × 10−5 eV/K

Planck’s constant h 6.62606957 × 10−34 J · s = 4.13566752 × 10−15 eV · s
−h = h/2π 1.054571726 × 10−34 J · s = 6.58211928 × 10−16 eV · s

hc 1239.8419 eV · nm (or MeV · fm)
−hc 197.326972 eV · nm (or MeV · fm)

Gravitational constant G 6.67384 × 10−11 N · m2/ kg2

Avogadro’s constant NA 6.0221413 × 1023 mole−1

Universal gas constant R 8.314462 J/mole · K

Stefan-Boltzmann constant σ 5.67037 × 10−8 W/m2 · K4

Rydberg constant R∞ 1.097373156854 × 107 m−1

Hydrogen ionization energy |E1| 13.6056925 eV

Bohr radius a0 5.291772109 × 10−11 m

Bohr magneton μB 9.2740097 × 10−24 J/T = 5.78838181 × 10−5 eV/T

Nuclear magneton μN 5.0507835 × 10−27 J/T = 3.15245126 × 10−8 eV/T

Fine structure constant α 1/137.03599907

Electric constant e2/4πε0 1.4399645 eV · nm (or MeV · fm)

∗The number of significant figures given for the numerical constants indicates the precision to which
they have been determined; there is an experimental uncertainty, typically of a few parts in the last or
next-to-last digit, except for the speed of light (which is exact).
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SOME PARTICLE MASSES

kg u MeV/c2

Electron 9.1093829 × 10−31 5.485799095 × 10−4 0.51099893

Proton 1.67262178 × 10−27 1.0072764668 938.27205

Neutron 1.67492735 × 10−27 1.0086649160 939.56538

Deuteron 3.3435835 × 10−27 2.0135532127 1875.61286

Alpha 6.6446568 × 10−27 4.001506179 3727.3792

CONVERSION FACTORS

1 eV = 1.60217657 × 10−19 J 1 barn (b) = 10−28 m2

1 u = 931.49406 MeV/c2 1 curie (Ci) = 3.7 × 1010 decays/s

= 1.66053892 × 10−27 kg 1 light-year = 9.46 × 1015 m

1 y = 3.156 × 107 s ∼= π × 107 s 1 parsec = 3.26 light-year



Appendix B
COMPLEX NUMBERS

The imaginary number i is defined as
√−1. A complex number or function can be

represented as having a real part, which does not depend on i, and an imaginary
part, which depends on i. We can write a complex variable as z = x + iy, where
the real part x and the imaginary part y are both real numbers or real functions. A
complex wave function ψ can be written in terms of its real and imaginary parts
as ψ = Re(ψ) + iIm(ψ).

The complex conjugate of a complex number is obtained by substituting −i
for i, as in z∗ = x − iy or ψ∗ = Re(ψ) − iIm(ψ).

The squared magnitude of a complex number is defined as the product of the
number and its complex conjugate, as in |z|2 = zz∗ or |ψ |2 = ψψ∗, and is equal
to the sum of the squares of its real and imaginary parts:

|z|2 = x2 + y2 or |ψ |2 = [Re(ψ)]2 + [Im(ψ)]2

The complex exponential eiθ can be represented in terms of real trigonometric
functions as

eiθ = cos θ + i sin θ and e−iθ = cos θ − i sin θ

The squared magnitude of the complex exponential is equal to 1:

|eiθ |2 = eiθ e−iθ = (cos θ + i sin θ)(cos θ − i sin θ) = cos2 θ + sin2 θ = 1

We can write the ordinary trigonometric functions in terms of these complex
functions:

sin θ = 1

2i
(eiθ − e−iθ ) and cos θ = 1

2
(eiθ + e−iθ )

It is sometimes convenient to write the wave function in terms of a complex
exponential as:

ψ = |ψ |eiα

where |ψ | gives the magnitude of the wave function and α is its phase.
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Appendix D
TABLE OF ATOMIC MASSES

The table gives the atomic masses of some isotopes of each element. All naturally
occurring stable isotopes are included (with their natural abundances shown in
italics in the last column). Some of the longer-lived radioactive isotopes of each
element are also included, with their half-lives. Each element has many other
radioactive isotopes that are not included in this table. More complete listings
can be found in the sources from which this table was derived: Table of Isotopes
(8th Edition), edited by R. B. Firestone and V. S. Shirley (Wiley, 1999); G. Audi,
A. H. Wapstra, and C. Thibault, “The 2003 Atomic Mass Evaluation,” Nuclear
Physics A729, 129 (2003).

In the half-life column, My = 106 y.
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Atomic Abundance
Z A mass (u) or Half-life

H 1 1 1.0078250 99.985%
2 2.014102 0.015%
3 3.016049 12.3 y

He 2 3 3.016029 0.000137%
4 4.002603 99.999863%

Li 3 6 6.015123 7.59%
7 7.016005 92.41%
8 8.022487 0.84 s

Be 4 7 7.016930 53.2 d
8 8.005305 0.07 fs
9 9.012182 100%

10 10.013534 1.5 My
11 11.021658 13.8 s

B 5 8 8.024607 0.77 s
9 9.013329 0.85 as

10 10.012937 19.8%
11 11.009305 80.2%
12 12.014352 20.2 ms

C 6 10 10.016853 19.3 s
11 11.011434 20.3 m
12 12.000000 98.89%
13 13.003355 1.11%
14 14.003242 5730 y
15 15.010599 2.45 s

N 7 13 13.005739 9.96 m
14 14.003074 99.63%
15 15.000109 0.37%
16 16.006102 7.1 s
17 17.008450 4.2 s

O 8 14 14.008596 70.6 s
15 15.003066 122 s
16 15.994915 99.76%
17 16.999132 0. 038%
18 17.999161 0.200%
19 19.003580 26.9 s
20 20.004077 13.5 s

F 9 17 17.002095 64.5 s
18 18.000938 1.83 h
19 18.998403 100%
20 19.999981 11 s
21 20.999949 4.2 s

Ne 10 18 18.005708 1.7 s
19 19.001880 17.2 s
20 19.992440 90.48%
21 20.993847 0.27%
22 21.991385 9.25%
23 22.994467 37.2 s
24 23.993611 3.4 m

Atomic Abundance
Z A mass (u) or Half-life

Na 11 21 20.997655 22.5 s
22 21.994436 2.60 y
23 22.989769 100%
24 23.990963 15.0 h
25 24.989954 59 s
26 25.992633 1.1 s

Mg 12 22 21.999574 3.88 s
23 22.994124 11.3 s
24 23.985042 78.99%
25 24.985837 10.00%
26 25.982593 11.01%
27 26.984341 9.46 m
28 27.983877 20.9 h

Al 13 25 24.990428 7.18 s
26 25.986892 0.72 My
27 26.981539 100%
28 27.981910 2.24 m
29 28.980445 6.56 m

Si 14 26 25.992330 2.23 s
27 26.986705 4.16 s
28 27.976927 92.23%
29 28.976495 4.68%
30 29.973770 3.09%
31 30.975363 2.62 h
32 31.974148 132 y

P 15 29 28.981801 4.14 s
30 29.978314 2.50 m
31 30.973762 100%
32 31.973907 14.3 d
33 32.971726 25.3 d

S 16 30 29.984903 1.18 s
31 30.979555 2.57 s
32 31.972071 95.02%
33 32.971459 0.75%
34 33.967867 4.21%
35 34.969032 87.5 d
36 35.967081 0.02%
37 36.971126 5.05 m

Cl 17 33 32.977452 2.51 s
34 33.973763 1.53 s
35 34.968853 75.77%
36 35.968307 0.30 My
37 36.965903 24.23%
38 37.968010 37.2 m
39 38.968008 55.6 m
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Atomic Abundance
Z A mass (u) or Half-life

Ar 18 34 33.980271 0.844 s
35 34.975258 1.78 s
36 35.967545 0.337%
37 36.966776 35.0 d
38 37.962732 0.063%
39 38.964313 269 y
40 39.962383 99.60%
41 40.964501 1.82 h
42 41.963046 32.9 y

K 19 37 36.973376 1.23 s
38 37.969081 7.64 m
39 38.963707 93.26%
40 39.963998 1.25 Gy
41 40.961826 6.73%
42 41.962403 12.3 h
43 42.960716 22.3 h

Ca 20 38 37.976318 0.44 s
39 38.970720 0.86 s
40 39.962591 96.94%
41 40.962278 0.103 My
42 41.958618 0.647%
43 42.958767 0.135%
44 43.955482 2.09%
45 44.956187 163 d
46 45.953693 0. 0035%
47 46.954546 4.54 d
48 47.952534 0.187%
49 48.955674 8.72 m

Sc 21 43 42.961151 3.89 h
44 43.959403 3.97 h
45 44.955912 100%
46 45.955172 83.8 d
47 46.952408 3.35 d
48 47.952231 43.7 h

Ti 22 44 43.959690 60 y
45 44.958126 3.08 h
46 45.952632 8.25%
47 46.951763 7.44%
48 47.947946 73.72%
49 48.947870 5.41%
50 49.944791 5.18%
51 50.946615 5.76 m
52 51.946897 1.7 m

V 23 48 47.952254 16.0 d
49 48.948516 329 d
50 49.947158 0.250%
51 50.943960 99.750%
52 51.944775 3.74 m
53 52.944338 1.60 m

Atomic Abundance
Z A mass (u) or Half-life

Cr 24 48 47.954032 21.6 h
49 48.951336 42.3 m
50 49.946044 4.35%
51 50.944767 27.7 d
52 51.940507 83.79%
53 52.940649 9.50%
54 53.938880 2.36%
55 54.940840 3.50 m
56 55.940653 5.94 m

Mn 25 52 51.945565 5.59 d
53 52.941290 3.7 My
54 53.940359 312 d
55 54.938045 100%
56 55.938905 2.58 h
57 56.938285 85.4 s

Fe 26 52 51.948114 8.27 h
53 52.945308 8.51 m
54 53.939611 5.85%
55 54.938293 2.74 y
56 55.934937 91.75%
57 56.935394 2.12%
58 57.933276 0.28%
59 58.934875 44.5 d
60 59.934072 1.5 My
61 60.936745 6.0 m

Co 27 57 56.936291 272 d
58 57.935753 70.8 d
59 58.933195 100%
60 59.933817 5.27 y
61 60.932476 1.65 h

Ni 28 56 55.942132 6.08 d
57 56.939794 35.6 h
58 57.935343 68.08%
59 58.934347 0.076 My
60 59.930786 26.22%
61 60.931056 1.14%
62 61.928345 3.63%
63 62.929669 100 y
64 63.927966 0.93%
65 64.930084 2.52 h

Cu 29 61 60.933458 3.33 h
62 61.932584 9.67 m
63 62.929597 69.17%
64 63.929764 12.7 h
65 64.927789 30.83%
66 65.928869 5.12 m
67 66.927730 61.8 h
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Atomic Abundance
Z A mass (u) or Half-life

Zn 30 62 61.934330 9.19 h
63 62.933212 38.5 m
64 63.929142 48.6%
65 64.929241 244 d
66 65.926033 27.9%
67 66.927127 4.1%
68 67.924844 18.8%
69 68.926550 56 m
70 69.925319 0.62%
71 70.927722 2.45 m

Ga 31 67 66.928202 3.26 d
68 67.927980 67.7 m
69 68.925574 60.11%
70 69.926022 21.1 m
71 70.924701 39.89%
72 71.926366 14.1 h
73 72.925175 4.86 h

Ge 32 68 67.928094 271 d
69 68.927965 39.0 h
70 69.924247 20.4%
71 70.924951 11.4 d
72 71.922076 27.3%
73 72.923459 7.8%
74 73.921178 36.7%
75 74.922859 82.8 m
76 75.921403 7.8%
77 76.923549 11.3 h

As 33 73 72.923825 80.3 d
74 73.923929 17.8 d
75 74.921596 100%
76 75.922394 26.3 h
77 76.920647 38.8 h

Se 34 72 71.927112 8.4 d
73 72.926765 7.1 h
74 73.922476 0.89%
75 74.922523 120 d
76 75.919214 9.4%
77 76.919914 7.6%
78 77.917309 23.8%
79 78.918499 0.30 My
80 79.916521 49.6%
81 80.917992 18.5 m
82 81.916699 8.7%
83 82.919118 22.3 m

Atomic Abundance
Z A mass (u) or Half-life

Br 35 77 76.921379 57.0 h
78 77.921146 6.46 m
79 78.918337 50.69%
80 79.918529 17.7 m
81 80.916291 49.31%
82 81.916804 35.3 h
83 82.915180 2.40 h

Kr 36 76 75.925910 14.8 h
77 76.924670 74.4 m
78 77.920365 0.35%
79 78.920082 35.0 h
80 79.916379 2.28%
81 80.916592 0.229 My
82 81.913484 11.58%
83 82.914136 11.49%
84 83.911507 57.00%
85 84.912527 10.8 y
86 85.910611 17.30%
87 86.913355 76.3 m

Rb 37 83 82.915110 86.2 d
84 83.914385 33.1 d
85 84.911790 72.17%
86 85.911167 18.6 d
87 86.909181 27.83%
88 87.911316 17.8 m

Sr 38 82 81.918402 25.6 d
83 82.917557 32.4 h
84 83.913425 0.56%
85 84.912933 64.8 d
86 85.909260 9.86%
87 86.908877 7.00%
88 87.905612 82.58%
89 88.907451 50.6 d
90 89.907738 28.9 y

Y 39 87 86.910876 79.8 h
88 87.909501 106.6 d
89 88.905848 100%
90 89.907152 64.1 h
91 90.907305 58.5 d

Zr 40 88 87.910227 83.4 d
89 88.908890 78.4 h
90 89.904704 51.45%
91 90.905646 11.22%
92 91.905041 17.15%
93 92.906476 1.53 My
94 93.906315 17.38%
95 94.908043 64.0 d
96 95.908273 2.80%
97 96.910953 16.7 h
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Atomic Abundance
Z A mass (u) or Half-life

Nb 41 91 90.906996 680 y

92 91.907194 35 My

93 92.906378 100%

94 93.907284 20,300 y

95 94.906836 35.0 d

Mo 42 90 89.913937 5.56 h

91 90.911750 15.5 m

92 91.906811 14.8%

93 92.906813 4000 y

94 93.905088 9.3%

95 94.905842 15.9%

96 95.904679 16.7%

97 96.906021 9.6%

98 97.905408 24.1%

99 98.907712 65.9 h

100 99.907477 9.6%

101 100.910347 14.6 m

Tc 43 95 94.907657 20.0 h

96 95.907871 4.3 d

97 96.906365 4.2 My

98 97.907216 4.2 My

99 98.906255 0.211 My

100 99.907658 15.8 s

Ru 44 94 93.911360 51.8 m

95 94.910413 1.64 h

96 95.907598 5.5%

97 96.907555 2.79 d

98 97.905287 1.86%

99 98.905939 12.8%

100 99.904219 12.6%

101 100.905582 17.1%

102 101.904349 31.6%

103 102.906324 39.3 d

104 103.905433 18.6%

105 104.907753 4.44 h

Rh 45 101 100.906164 3.3 y

102 101.906843 207 d

103 102.905504 100%

104 103.906656 42.3 s

105 104.905694 35.4 h

Atomic Abundance
Z A mass (u) or Half-life

Pd 46 100 99.908506 3.63 d

101 100.908289 8.47 h

102 101.905609 1.02%

103 102.906087 17.0 d

104 103.904036 11.14%

105 104.905085 22.33%

106 105.903486 27.33%

107 106.905133 6.5 My

108 107.903892 26.46%

109 108.905950 13.7 h

110 109.905153 11.72%

111 110.907671 23.4 m

Ag 47 105 104.906529 41.3 d

106 105.906669 24.0 m

107 106.905097 51.84%

108 107.905956 2.37 m

109 108.904752 48.16%

110 109.906107 24.6 s

Cd 48 104 103.909849 57.7 m

105 104.909468 55.5 m

106 105.906459 1.25%

107 106.906618 6.50 h

108 107.904184 0.89%

109 108.904982 461 d

110 109.903002 12.5%

111 110.904178 12.8%

112 111.902758 24.1%

113 112.904402 12.2%

114 113.903359 28.7%

115 114.905431 53.5 h

116 115.904756 7.5%

117 116.907219 2.49 h

In 49 111 110.905103 2.80 d

112 111.905532 15.0 m

113 112.904058 4.29%

114 113.904914 71.9 s

115 114.903878 95.71%

116 115.905260 14.1 s
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Atomic Abundance
Z A mass (u) or Half-life

Sn 50 110 109.907843 4.11 h
111 110.907734 35.3 m
112 111.904818 0.97%
113 112.905171 115.1 d
114 113.902779 0.66%
115 114.903342 0.34%
116 115.901741 14.54%
117 116.902952 7.68%
118 117.901603 24.22%
119 118.903308 8.59%
120 119.902195 32.58%
121 120.904235 27.0 h
122 121.903439 4.63%
123 122.905721 129 d
124 123.905274 5.79%
125 124.907784 9.64 d
126 125.907653 0.23 My

Sb 51 119 118.903942 38.2 h
120 119.905072 15.9 m
121 120.903816 57.21%
122 121.905174 2.72 d
123 122.904214 42.79%
124 123.905936 60.1 d
125 124.905254 2.76 y

Te 52 118 117.905828 6.00 d
119 118.906404 16.1 h
120 119.904020 0.09%
121 120.904936 19.2 d
122 121.903044 2.55%
123 122.904270 0.89%
124 123.902818 4.74%
125 124.904431 7.07%
126 125.903312 18.84%
127 126.905226 9.35 h
128 127.904463 31.74%
129 128.906598 69.6 m
130 129.906224 34.08%
131 130.908524 25.0 m

I 53 125 124.904630 59.4 d
126 125.905624 12.9 d
127 126.904473 100%
128 127.905809 25.0 m
129 128.904988 15.7 My
130 129.906674 12.4 h

Atomic Abundance
Z A mass (u) or Half-life

Xe 54 122 121.908368 20.1 h

123 122.908482 2.08 h

124 123.905893 0.095%

125 124.906395 16.9 h

126 125.904274 0.089%

127 126.905184 36.4 d

128 127.903531 1.91%

129 128.904779 26.40%

130 129.903508 4.07%

131 130.905082 21.23%

132 131.904153 26.91%

133 132.905911 5.24 d

134 133.905394 10.44%

135 134.907227 9.14 h

136 135.907219 8.86%

137 136.911562 3.82 m

Cs 55 131 130.905464 9.69 d

132 131.906434 6.48 d

133 132.905452 100%

134 133.906718 2.06 y

135 134.905977 2.3 My

136 135.907312 13.0 d

Ba 56 128 127.908318 2.43 d

129 128.908679 2.23 h

130 129.906321 0.106%

131 130.906941 11.5 d

132 131.905061 0.101%

133 132.906007 10.5 y

134 133.904508 2.42%

135 134.905689 6.59%

136 135.904576 7.85%

137 136.905827 11.23%

138 137.905247 71.70%

139 138.908841 83.1 m

La 57 136 135.907636 9.87 m

137 136.906494 60,000 y

138 137.907112 0.090%

139 138.906353 99.910%

140 139.909478 1.68 d

141 140.910962 3.92 h
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Atomic Abundance
Z A mass (u) or Half-life

Ce 58 134 133.908925 76 h
135 134.909151 17.7 h
136 135.907172 0.185%
137 136.907806 9.0 h
138 137.905991 0.251%
139 138.906653 137.6 d
140 139.905439 88.45%
141 140.908276 32.5 d
142 141.909244 11.11%
143 142.912386 33.0 h
144 143.913647 285 d

Pr 59 139 138.908938 4.41 h
140 139.909076 3.39 m
141 140.907653 100%
142 141.910045 19.1 h
143 142.910817 13.6 d

Nd 60 140 139.909552 3.37 d
141 140.909610 2.49 h
142 141.907723 27.2%
143 142.909814 12.2%
144 143.910087 23.8%
145 144.912574 8.3%
146 145.913117 17.2%
147 146.916100 11.0 d
148 147.916893 5.7%
149 148.920149 1.73 h
150 149.920891 5.6%
151 150.923829 12.4 m

Pm 61 143 142.910933 265 d
144 143.912591 363 d
145 144.912749 17.7 y
146 145.914696 5.53 y
147 146.915139 2.62 y
148 147.917475 5.37 d
149 148.918334 53.1 h

Sm 62 142 141.915198 72.5 m
143 142.914628 8.75 m
144 143.911999 3.1%
145 144.913410 340 d
146 145.913041 103 My
147 146.914898 15.0%
148 147.914823 11.2%
149 148.917185 13.8%
150 149.917276 7.4%
151 150.919932 90 y
152 151.919732 26.7%
153 152.922097 46.3 h
154 153.922209 22.7%
155 154.924640 22.3 m

Atomic Abundance
Z A mass (u) or Half-life

Eu 63 149 148.917931 93.1 d
150 149.919702 36.9 y
151 150.919850 47.81%
152 151.921745 13.5 y
153 152.921230 52.19%
154 153.922979 8.59 y
155 154.922893 4.75 y
156 155.924752 15.2 d

Gd 64 150 149.918659 1.79 My
151 150.920348 124 d
152 151.919791 0.20%
153 152.921750 240 d
154 153.920866 2.18%
155 154.922622 14.80%
156 155.922123 20.47%
157 156.923960 15.65%
158 157.924104 24.84%
159 158.926389 18.5 h
160 159.927054 21.9%
161 160.929669 3.66 m

Tb 65 157 156.924025 71 y
158 157.925413 180 y
159 158.925347 100%
160 159.927168 72.3 d
161 160.927570 6.91 d

Dy 66 154 153.924424 3.0 My
155 154.925754 9.9 h
156 155.924283 0.06%
157 156.925466 8.1 h
158 157.924409 0.10%
159 158.925739 144.4 d
160 159.925198 2.3%
161 160.926933 18.9%
162 161.926798 25.5%
163 162.928731 24.9%
164 163.929175 28.2%
165 164.931703 2.33 h

Ho 67 163 162.928734 4570 y
164 163.930234 29 m
165 164.930322 100%
166 165.932284 26.8 h
167 166.933133 3.0 h
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Atomic Abundance
Z A mass (u) or Half-life

Er 68 160 159.929083 28.6 h
161 160.929995 3.21 h
162 161.928778 0.14%
163 162.930033 75.0 m
164 163.929200 1.60%
165 164.930726 10.4 h
166 165.930293 33.50%
167 166.932048 22.87%
168 167.932370 26.98%
169 168.934590 9.39 d
170 169.935464 14.91%
171 170.938030 7.52 h

Tm 69 167 166.932852 9.25 d
168 167.934173 93.1 d
169 168.934213 100%
170 169.935801 128.6 d
171 170.936429 1.92 y

Yb 70 166 165.933882 56.7 h
167 166.934950 17.5 m
168 167.933897 0.13%
169 168.935190 32.0 d
170 169.934762 3.0%
171 170.936326 14.3%
172 171.936381 21.8%
173 172.938211 16.1%
174 173.938862 31.8%
175 174.941276 4.19 d
176 175.942572 12.8%
177 176.945261 1.9 h

Lu 71 173 172.938931 1.37 y
174 173.940337 3.3 y
175 174.940772 97.41%
176 175.942686 2.59%
177 176.943758 6.65 d

Hf 72 172 171.939448 1.87 y
173 172.940513 23.6 h
174 173.940046 0.16%
175 174.941509 70 d
176 175.941409 5.26%
177 176.943221 18.60%
178 177.943699 27.28%
179 178.945816 13.62%
180 179.946550 35.08%
181 180.949101 42.4 d

Ta 73 179 178.945930 1.82 y
180 179.947465 0.012%
181 180.947996 99.988%
182 181.950152 114 d

Atomic Abundance
Z A mass (u) or Half-life

W 74 178 177.945876 21.6 d
179 178.947070 37.0 m
180 179.946704 0.12%
181 180.948197 121 d
182 181.948204 26.5%
183 182.950223 14.3%
184 183.950931 30.6%
185 184.953419 75.1 d
186 185.954364 28.4%
187 186.957160 23.7 h

Re 75 183 182.950820 70.0 d
184 183.952521 38.0 d
185 184.952955 37.40%
186 185.954986 3.72 d
187 186.955753 62.60%
188 187.958114 17.0 h

Os 76 182 181.952110 22.1 h
183 182.953126 13.0 h
184 183.952489 0.02%
185 184.954042 93.6 d
186 185.953838 1.6%
187 186.955750 1.6%
188 187.955838 13.3%
189 188.958147 16.2%
190 189.958447 26.4%
191 190.960930 15.4 d
192 191.961481 40.9%
193 192.964152 30.1 h

Ir 77 189 188.958719 13.2 d
190 189.960546 11.8 d
191 190.960594 37.3%
192 191.962605 73.8 d
193 192.962926 62.7%
194 193.965078 19.3 h

Pt 78 188 187.959395 10.2 d
189 188.960834 10.9 h
190 189.959932 0.014%
191 190.961677 2.86 d
192 191.961038 0.78%
193 192.962987 50 y
194 193.962680 32.97%
195 194.964791 33.83%
196 195.964952 25.24%
197 196.967340 19.9 h
198 197.967893 7.16%
199 198.970593 30.8 m
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Atomic Abundance
Z A mass (u) or Half-life

Au 79 195 194.965035 186 d
196 195.966570 6.17 d
197 196.966569 100%
198 197.968242 2.696 d
199 198.968765 3.14 d

Hg 80 194 193.965439 444 y
195 194.966720 10.5 h
196 195.965833 0.15%
197 196.967213 64.1 h
198 197.966769 10.0%
199 198.968280 16.9%
200 199.968326 23.1%
201 200.970302 13.2%
202 201.970643 29.9%
203 202.972872 46.6 d
204 203.973494 6.9%
205 204.976073 5.1 m

Tl 81 201 200.970819 72.9 h
202 201.972106 12.2 d
203 202.972344 29.52%
204 203.973864 3.78 y
205 204.974428 70.48%
206 205.976110 4.20 m

Pb 82 202 201.972159 53,000 y
203 202.973391 51.9 h
204 203.973044 1.4%
205 204.974482 17.3 My
206 205.974465 24.1%
207 206.975897 22.1%
208 207.976652 52.4%
209 208.981090 3.25 h

Bi 83 207 206.978471 32.9 y
208 207.979742 0.368 My
209 208.980399 100%
210 209.984120 5.01 d
211 210.987269 2.14 m

Po 84 207 206.981593 5.80 h
208 207.981246 2.90 y
209 208.982430 102 y
210 209.982874 138.4 d

At 85 209 208.986173 5.41 h
210 209.987148 8.1 h
211 210.987496 7.21 h

Rn 86 211 210.990601 14.6 h
222 222.017578 3.82 d

Atomic Abundance
Z A mass (u) or Half-life

Fr 87 212 211.996202 20.0 m
223 223.019736 22.0 m

Ra 88 223 223.018502 11.43 d
224 224.020212 3.63 d
225 225.023612 14.9 d
226 226.025410 1600 y

Ac 89 225 225.023230 10.0 d
226 226.026098 29.4 h
227 227.027752 21.77 y

Th 90 228 228.028741 1.91 y
229 229.031762 7340 y
230 230.033134 75,400 y
231 231.036304 25.52 h
232 232.038055 100%
233 233.041582 21.8 m

Pa 91 230 230.034541 17.4 d
231 231.035884 32,800 y
232 232.038592 1.31 d
234 234.043308 6.70 h

U 92 233 233.039635 0.1592 My
234 234.040952 0.2455 My
235 235.043930 0.720%
236 236.045568 23.42 My
237 237.048730 6.75 d
238 238.050788 99.274%
239 239.054293 23.5 m

Np 93 236 236.046570 0.154 My
237 237.048173 2.14 My
238 238.050946 2.117 d

Pu 94 238 238.049560 87.74 y
239 239.052163 24,100 y
240 240.053814 6561 y
241 241.056851 14.3 y
242 242.058743 0.375 My

Am 95 241 241.056829 432 y
242 242.059549 16.0 h
243 243.061381 7370 y

Cm 96 246 246.067224 4760 y
247 247.070354 15.6 My
248 248.072349 0.348 My

Bk 97 247 247.070307 1380 y

Cf 98 251 251.079587 898 y
254 254.087323 60.5 d
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Atomic Abundance
Z A mass (u) or Half-life

Es 99 252 252.082979 472 d

Fm 100 257 257.095105 100.5 d

Md 101 258 258.098431 51.5 d

No 102 259 259.101031 58 m

Lr 103 260 260.105504 3.0 m

Rf 104 261 261.108767 65 s

Db 105 262 262.114084 35 s

Atomic Abundance
Z A mass (u) or Half-life

Sg 106 261 261.116117 0.23 s

Bh 107 262 262.122892 0.10 s

Hs 108 264 264.128395 0.8 ms

Mt 109 266 266.137299 1.7 ms

Ds 110 270 270.144720 0.5 ms

Rg 111 272 272.153615 4 ms



A
ANSWERS TO ODD-NUMBERED
PROBLEMS

Chapter 1

1. 4.527 × 106 m/s
3. (a) −7.79 × 105 m/s

(b) 1.008 × 10−13 J, 3.995 × 10−13 J
5. (a) 2.13 × 106 m/s

(b) 1.28 × 106 m/s
7. 4.34 × 10−5

9. 6.1 × 10−6N
11. 35.3◦, v/

√
2, v/

√
6

13. 2.47 × 106 m/s, −0.508 × 106 m/s
15. (a) 0.0104 eV (b) 2550 m
17. 4.61 × 1012 rad/s

Chapter 2

1. 101 km/h at 62◦ east of south
3. 7 × 104 m/s
5. 2.6 × 108 m/s
7. (a) 357.1 ns (b) 103 m (c) 28.8 m

11. 0.402c
13. 5.0 × 107 m/s
17. +0.937c, −0.572c
19. (a) +0.508μs (b) −81.5 m
21. (a) 2:00 P.M. (b) 3:00 P.M.

(c) 1:00 P.M. and 3:00 P.M.

23. 8 y
25. (a) K ′

i = K ′
f = 0.512mc2

(b) Ki = Kf = 0.458mc2

27. 0.958c
29. v < 0.115c
33. (a) 773 MeV/c2 (b) 1227 MeV
35. 4.4 × 10−16 kg
37. pe = 10.5 MeV/c, Ke = 10.0 MeV

pp = 137.4 MeV/c, Kp = 10.0 MeV
39. (a) 1268.1 MeV (b) 298.8 MeV/c

(c) 1232 MeV
41. 0.981c

43. 64.38 μs
45. (a) 0.99875c (b) 400.5 y
47. 2.34 km, 1.07 μs
49. (a) 0.648 μs (b) 335 m

51. (a) E′ = mc2/
√

(1 − u2/c2)(1 − v2/c2)

p′ = m
√

u2 + v2 − u2v2/c2√
(1 − u2/c2)(1 − v2/c2)

(b) m2c4

53. (a) 3.1 MeV (b) 7.8 MeV
55. 0.508c
57. 267.0 MeV, 28.9 MeV

Chapter 3

1. 1.32 mm
3. (a) 0.388 nm (b) 7.2◦

5. (a) 1.00 × 107 eV/c, 5.33 × 10−21 kg · m/s
(b) 2.5 × 104 eV/c, 1.3 × 10−23 kg · m/s
(c) 1.2 eV/c, 6.6 × 10−28 kg · m/s
(d) 6.2 × 10−7 eV/c, 3.3 × 10−34 kg · m/s

7. (a) 0.124 nm (b) 1.24 × 10−3 nm
(c) 1.8 eV to 3.5 eV

9. 0.964 V
11. (a) 4.88 eV
19. 1.1 mm, 1.1 × 10−3 eV
21. 0.33 W
23. (a) 1.9 × 105 W/m2 (b) 0.26%
25. (a) 10.33 keV (b) 0.06 keV
29. 3.9 × 10−4 eV
31. 1.17 eV
33. 2.28 eV, 4.10 × 10−15 eV/s
35. (a) 2.52 μm (b) 0.405
37. 2.724 K
39. (a) 5.79 × 10−10 W/m2, 1.91 × 10−11 W/m2

(b) 1.81 × 108/s, 2.97 × 107/s
41. 4.1 m/s
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Chapter 4

1. (a) 13 fm (b) 0.025 fm (c) 0.73 nm
3. (a) 0.143c (b) −9.72 MV
5. (a) +0.010 V (b) +100 V (c) +1.0 × 109 V
7. (a) 88 MeV (b) 4.2 MeV (c) 1.1 MeV
9. 33 nm

11. 15.2◦
(n = 1), 31.8◦

(n = 2), 52.2◦
(n = 3)

13. (a) 660 m (b) 0.33 m
(c) 0.017 mm (d) 0.050 Hz

15. 8.4 × 104 Hz
17. 5.8 nm
19. 33 MeV
21. 5.5 × 10−7 eV
23. 0.052 MeV
29. vgroup = 1.5vphase
31. (b) 1.50 eV, 6.00 eV, 13.5 eV
33. (a) 0.0279 eV (b) 3.3 nm (c) 2.1 K
35. (a) 0.71 MeV (b) 0.66 MeV
37. (a) 135 MeV (b) 4.87 × 10−24 s (c) 1.46 fm
39. 3 × 10−9 m

Chapter 5

1. (b) −(B/m)
√

2H/g, H(1 + B/mg)

3. 1.1 eV
5. 150 eV, 600 eV, 1350 eV
7. (a) c = a2b2, d = a(b + 1)

(b) w = a(2b + 1)

9. U(x) = −−h2b/mx, E = −−h2b2/2m
11. 10.1 eV, 18.9 eV
15. (a) 2.63 × 10−5 (b) 0.0106 (c) 5.42 × 10−3

17. 5.00E0, 10.00E0
19. 3E0, 6E0, 9E0, 11E0, 12E0, . . .
21. (b)

√
3−hω0/k,

√
5−hω0/k

23. (a) 0 (b) −hω0m/2
25. A2dx, 0.368A2dx
27. B = D = −A

√
E/(U0 − E)

31. (a) 2160 eV (b) 4.70 × 104 eV/c
(c) 4.2 × 10−3 nm

35. (b) h2n2/4L2

37. 0.157

Chapter 6

3. (a) 6.57 × 1015 Hz, 45.7 nm
(b) 3.48 × 1015 Hz, 86.2 nm

5. (a) 22.8 fm (b) 55.0 fm
(c) 4.14 MeV, 0.86 MeV

7. 14 fm
9. (a) 8.4 MeV (b) 1.61 fm

(c) 6.00 fm (d) 8.3 × 10−6

11. 0.63 MeV
13. 28.2 fm, 19.9 fm, 38.9◦

15. 121.51 nm, 102.52 nm, 97.21 nm
17. 2279 nm
19. 91.13 nm, 820.1 nm
21. �E = 0.306 eV, 0.97 eV, 2.86 eV, 13.1 eV
23. 7.4 eV
27. −54.40 eV, −13.60 eV, −6.04 eV, −3.40 eV
31. 2.10 eV
33. (a) 6.58 × 1012 Hz, 7.72 × 1012 Hz

(b) 6.58 × 109 Hz, 6.68 × 109 Hz
35. (a) 15 (b) 5 (c) 1
37. 7 × 10−8 eV
39. 48.23 nm
41. (a) 0.440 nm (b) 11.3%

Chapter 7

1. −me4/32π2ε2
0

−h2

3. 0.0108
5. 35◦, 66◦, 90◦, 114◦, 145◦

7. (a) 0, 1, 2, 3, 4, 5 (b) +6 to −6 in integer steps
(c) 5 (d) 4

11. (a) 0, 0 (b) 0, 3.2 × 10−11

(c) 0, 3.2 × 10−11

(d) 1.1 × 10−11, 2.2 × 10−11

13. (3 ± √
5)a0

15. 0.0054
17. Minima: 55◦, 125◦ Maxima: 0◦, 90◦, 180◦

21. 3s, 2s, 1s, 3d
23. (a) 7s, 7p, 7d, 7f , 7g, 7h, 7i

(b) 6p, 6f , 5p, 5f , 4p, 4f , 3p, 2p
25. (a) 656.112 nm, 656.182 nm, 656.042 nm
27. 1.89 eV ± 2.55 × 10−5 eV,

1.89 eV ± 1.95 × 10−5 eV
29. 0.651, 0.440
31. 6a0, 5a0
33. 3.3 mm

Chapter 8

1. (a) (2, 1, +1, +1/2), (2, 1, +1, −1/2), . . .
(b) 36 (c) 30 (d) 36

3. (a) 14 (b) +3/2 (c) +8
(d) +2 (e) +10

5. (a) N, P, As, Sb, Bi
(b) Co, Rh, Ir, Mt

7. (a) [Ar]4s23d6 (b) +2
(c) +2 (d) +3, +1

9. −1.51 eV, —0.85 eV
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11. (a) 0.045 eV (b) 3.374 eV, 4.373 eV, 4.750 eV
(c) 3.54 eV, 2.02 eV

13. 3.68 eV, 15.5 eV, 63.7 eV
15. (a) 5, 1 (b) 2, 4 (c) 2, 1
17. 0, 1, 2, 3, 4; 0,1
19. (a) 1.12 × 1016 photons/s (b) 763 V/m
21. (a) 1.84 (b) 1.00
23. 1.40 eV1/2, 6.4
25. (a) 670.8 nm (b) 58.4 nm

(c) 230 nm, 50.6 nm

Chapter 9

1. 15.4 eV
3. (a) 4.25 eV/molecule

(c) 9.80 eV/molecule
5. (a) Li2 (c) CO
7. 5.11 eV
9. (a) 30.9 × 10−30 C · m (b) 88%

11. 42.7%
13. 4.689 × 103 eV/nm2

15. (a) 0.2626 eV (b) 0.2579 eV
17. 23.1 mm, 11.6 mm, 7.71 mm
19. 2.00 × 10−6 eV
23. hf − 2B(L + 1), hf + 2BL
31. (a) 0.27 eV, 0.23 eV, 0.19 eV

(b) 4.56 eV, 4.60 eV
33. (a) 0.317 eV (b) 2.37 × 1021 eV/m2

(c) 2.1 × 10−3 eV
35. (a) 8.2 × 10−2 (b) 6.8 × 10−3

37. (a) 2.99, 4.97, 6.91
(b) 2.94, 4.70, 6.18

39. (a) 194.4 μeV

Chapter 10

1. (a) 3 (b) 3, 6, 1 (c) 20%, 40%
3. (a) 6 (b) 2 (c) 4, 2
7. (a) +3 (1), +2 (2), +1 (3), 0 (4), . . .

(b) 3 (7), 2 (5), 1 (3), 0 (1)
(c) +3 (1), +2 (1), +1 (2), 0 (2), . . .

9. 2π(2s + 1)m/−h2

11. 2.7 × 1023 m−3

13. 0.65, 0.29, 0.06
15. (a) 0.0379 eV (b) 2.78 × 1021

17. (a) 554 μeV (b) 0.066 μeV
19. (a) 103 atm (b) 2.9 K
21. (a) 1.84 × 107 eV/m3

(b) 0.035 (c) 2.3 × 10−17

23. 7.04 eV, 4.22 eV
25. (a) 4.37 × 10−36 m−3 (b) 6.00 × 10−6 m−3

27. (b) 8.6 km (c) 2.2 × 1018 kg/m3

29. 0.078 J/K
31. (a) e−E/kT (b) E/(eE/kT + 1)

(c) NE/(eE/kT + 1)

(d) R(E/kT)2eE/kT/(eE/kT + 1)2

33. (a) 0.3295, 0.3333, 0.3372
35. 0.12 eV
37. 17.1 MeV, 22.9 MeV
39. (a) 2.83 × 10−3 nm (b) 1.39 × 10−3 nm
41. (a) 2.78 ± 0.06 K (b) 0.0137 ± 0.0017

Chapter 11

1. (a) 1/8 (b) a = 2r (c) 0.5236
5. (a) 6.82 eV (b) 6.45 eV (c) 3.27 eV
7. −8.96 eV, 1.00 eV
9. 0.255 nm

11. 3.23 K
13. 91.1 K
15. (a) 7.09 eV (b) 0.11 eV
17. 2.3 × 1024 m−3

19. 7080 K
21. 426 W/K · m
23. 790
25. (a) 0.20 MeV (b) 6.3 mm
27. 603 MHz
29. (a) 1.9 × 10−28, 3.5 × 10−10

31. (a) −0.094 eV (b) −0.040 eV
33. 4.2 × 10−6

35. 6.8 × 10−5 mA
37. (a) 57% and 43% (b) 89% and 11%
39. (a) 0.4997, 0.5003 (b) 0.480, 0.520
41. (a) 10.8 × 10−6 (b) −45.3 × 10−6

49. (a) 135 K (b) 165 K, 1.40me
51. (a) 1.00 × 106 (b) 1.00 × 103, 1.00 × 10−3

(c) 0.662 keV

Chapter 12

1. (a) 19
9F10 (b) 199

79Au120 (c) 107
47Ag60

3. (a) 15 MeV (b) 824 MeV
5. (a) 1636.4 MeV, 7.868 MeV

(b) 1118.5 MeV, 8.410 MeV
7. 7.718 MeV, 8.482 MeV
9. (a) 19.814 MeV (b) 15.958 MeV

11. 2.5 × 10−3 fm
13. 160Dy: yes,164 Dy: no
15. (a) 35 min (b) 0.020 min−1 (c) 46 s−1

17. 0.0598
19. (a) 0.85 μCi (b) 0.13%
21. (a) Yes (b) No (c) Yes
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25. 0.864 MeV
27. 0.412 MeV, 1.088 MeV, 0.676 MeV
29. 100.1 keV, 300.9 keV, 200.8 keV, . . .

31. (a) 6 (b) 4 (c) 42.659 MeV (d) 27.8 μW
33. 12.6 fm
35. 37.5 μCi
39. 1.93 mW
41. 1.04 × 10−20 s−1, 9.0 × 108 s−1

43. (a) 7.52 × 10−4 MeV (b) 3.26 × 10−4 MeV
45. (a) 4.67 × 10−9 eV (b) 1.95 × 10−3 eV

(c) 0.097 mm/s

Chapter 13

1. (a) 1
1H0 (c) 30

15P15
3. 98 b
5. 8.6 × 10−4 b
7. (a) 0.5 (b) 0.75 (c) 0.9325

11. 1.58 μCi
13. (a) −10.313 MeV (b) 2.314 MeV
15. 12.201 MeV, 11.152 MeV or

22.706 MeV, 0.647 MeV
17. (a) 235.3 MeV (b) 202.0 MeV
19. (a) 6.546 MeV (b) 4.807 MeV
21. (a) 1.943 MeV, 1.199 MeV, 7.551 MeV, . . .
23. 14.1 MeV
25. 7.274 MeV
31. (a) 5.594 MeV (b) 0.56 W
33. 4.49 b, 2.20 b
35. 8.662 MeV
37. 9.043 MeV
39. (a) 3.2 × 108 J (b) 6.8 × 108 J

Chapter 14

1. (a) Strong (b) Electromagnetic (c) Weak
7. (a) Le (b) S

11. (a) 1.29 keV (b) 0.21 MeV
13. 179.4 MeV
15. (a) 34 MeV (b) 218 MeV
17. (a) 43 MeV, 19 MeV (b) 30 MeV, 4 MeV
19. 387 MeV, 34.9◦

21. (a) 181 MeV (b) −605 MeV
23. (a) 2205 MeV (b) 903 MeV
25. (a) uu annihilation, creation of 2 ss pairs
27. (a) s → u + W− and W− → d + u
29. cu, etc.
31. 0.999635c, 40.2 GeV
33. (a) 0.360c (b) 0.637c (c) 279 MeV
35. 47 MeV

Chapter 15

1. (a) 590.0 nm (b) 637.1 nm
3. (b) 6.64 × 10−4 eV
5. 0.089 nm
7. 1.6 × 10−2 Hz

11. (b) 128 rev/s
15. (a) 5.8 × 1012 K (b) 6.7 × 10−6 s
17. (a) 1.0 × 109 K (b) 225 s (c) 6600 K, 1.6 × 105 y
19. 0.27 m−3

21. 3.0 eV
23. (a) 2.9 × 105 y (b) 1.17 eV (c) 1.24
25. (a) 9.79 km (b) 3.01 × 1039 J

(c) 6.02 × 1030 J (d) 6.98 × 1025 W
(e) 6.21 × 10−14 W
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A
Absorption edge, 241
Absorption spectra, 181
Abundances, light elements, 429
Acceptor states, 352
Actinides, 240
Activity, 383–385
Alpha decay, 163–164, 382, 383,

387–390
kinetic energy, 388
Q value, 388
quantum theory, 389–390

Ammonia inversion, 164
Angular frequency, 70
Angular momentum, 6

classical orbits, 200
conservation of, 6
intrinsic (spin), 211, 215
quantization of, 184
quantum number, 201, 204
rules for addition, 245
uncertainty relationship, 202–203

Angular probability density, hydrogen,
201–211

Annihilation, electron-positron, 93–94
Antibonding state, 261, 265
Antimatter, 445, 510
Antineutrino, 391–392, 445
Antiparticles, 445
Atoms, basic properties, 170–171
Avogadro’s constant, 10
Azimuthal wave function, 203

B
Balmer, Johannes, 182
Balmer formula, 182
Balmer series, 181–182, 186, 187
Band theory of solids, 342–346
Bardeen, John, 348
Barn (unit), 411
Barrier penetration, 162
Baryon number, 450–451
Baryons, 444, 447–448, 464–466

quark structure, 464–466
BCS theory of superconductivity, 348
Becquerel (unit), 383
Beta decay, 382, 383, 391–394

electron capture, 393
Q value, 391–393

Big Bang theory, 482, 503–513
Binary pulsar, 498–499

Binding energy, 185
nuclear, 374–377

Binnig, Gerd, 165
Black holes, 499–501
Blackbody, 82
Body-centered cubic (bcc) lattice,

327–329
Bohr, Niels, 184
Bohr magneton, 212
Bohr model, 183–188

allowed radii, 184, 188
deficiencies, 191–192
energy levels, 185, 188
hydrogen wavelengths, 185–186

Bohr radius, 184
Boltzmann constant, 10
Bonding state, 261, 265
Bose-Einstein condensation, 311–314
Bose-Einstein distribution, 306, 307,

309–314, 336
Boson, 306
Bottom quark, 467–468
Boundary conditions, wave, 136
Boundary, wave continuity at, 136

wave incident on, 134
Bragg, Lawrence, 73
Bragg scattering, 345–346
Bragg’s law, 74
Bremsstrahlung, 92–93
Bubble chamber, 454–455

C
Carbon, energy levels, 246–248
Carbon cycle, 424
Chamberlain, Owen, 56
Chandrasekhar limit, 496
Charm quark, 466–468
Chernobyl reactor, 421
Clock synchronization, 43
COBE satellite, 483–484
Cohesive energy, 329
Colliding beam accelerators, 464
Complementarity principle, 110
Compton, Arthur H., 88–90
Compton effect, 87–91
Compton scattering formula, 88
Compton wavelength, 88
Conduction band, 344
Conductivity, electrical, 339
Conservation of angular momentum, 6
Conservation of energy, classical, 3

Conservation of energy, relativistic, 54
Conservation of linear momentum,

classical, 3
Conservation of linear momentum,

relativistic, 53
Constituent quarks, 468
Contact potential difference, 76
Continuity of wave at boundary, 136
Cooper, Leon N., 348
Cooper pairs, 348
Cornell, Eric, 313
Correspondence principle, 190–191
Cosmological principle, 479
Cosmology, 478–513

Big Bang theory, 482, 503–513
critical density, 511–512
dark matter, 484–486, 513
expansion of universe, 478–482
flatness problem, 511–512
general relativity and, 501–503
horizon problem, 511
Hubble’s law, 479–482
inflation, 511–512
microwave background radiation,

482–484
Coulomb force, 7
Coulomb potential energy, 7, 198
Covalent bonding, 262
Covalent solids, 330–331
Critical density, 511–512
Cronin, J. W., 510
Cross section, nuclear reaction, 411–412
Crystals, 326–334

cubic, 327–330
ionic, 327–330

Cubic lattice, 327
Curie, Marie, 362, 384
Curie, Pierre, 362
Curie (unit), 383
Curie constant, 362
Curie’s law, 362
Cutoff frequency, 77
Cutoff wavelength, 79
Cyclotron, 409

D
Dark energy, 513
Dark matter, 484–486, 513
Davisson, Clinton, 105
Davisson-Germer experiment, 105–106
De Broglie, Louis, 102
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De Broglie wavelength, 103
De Broglie waves, group speed, 125
Debye, Peter, 336
Debye temperature, 336–338
Debye theory of heat capacity of solids,

336–338
Debye-Scherrer pattern, 75
Deflection of starlight, 493–494
Degeneracy, 154–155, 297
Degree of freedom, 16
Delayed choice experiment, 95
Delayed neutrons, 419–420
Density of states, 297–300

particles, 298–299
photons, 299–300

Depletion region, 353–355
Deuterium-tritium (D-T) reaction, 425
Diamagnetism, 358
Diatomic gases, heat capacity, 18
Diatomic molecules, 271–281

ionic, 271–275
rotating, 279–281
vibrating, 276–277

Diffraction, 72, 104
electron, 104, 374
neutron, 106, 109
nuclear, 106, 109
X rays, 73–75

Diode laser, 356–357
Diodes, 355, 356–357
Dipole moment, electric, 273
Dissociation energy, 262
Distance of closest approach to nucleus,

178–179
Distribution function, 296
Donor states, 352
Doping, 344, 352
Doppler broadening, 304–306
Doppler effect

classical, 38
relativistic, 38–40

experimental test, 59–60
Double slit interference

atoms, 108
electrons, 107–108, 128
molecules, 108–09
neutrons, 107–108
Young’s experiment, 72–73

Drift velocity, 339
Dulong and Petit law, 334

E
Effective mass, 319, 337
Einstein, Albert, 31, 486

postulates of special theory of
relativity, 31

theory of photoelectric effect, 78
Einstein temperature, 336
Einstein theory of heat capacity of solids,

335–336
Electric dipole moment, 273
Electric field of point charge, 70
Electric field, plane wave, 70
Electrical conduction, 339–341

quantum theory of, 340–341
Electrical conductivity, 339
Electrical resistivity, 236–237
Electromagnetic interaction, 442–444
Electromagnetic spectrum, 9
Electromagnetic wave

intensity of, 71
plane, 70

Electron affinity, 271
Electron capture, 393
Electron configuration, 230–231
Electron diffraction, 104, 374
Electron double slit interference,

107–108, 128
Electron microscope, 109
Electron screening, 228, 232–233
Electronegativity, 274
Electron-positron annihilation, 93–94
Electron-volt, 7
Electroweak theory, 471
Elementary particles, 442–473

antiparticles, 445
baryon number conservation, 450–451
baryons, 444, 447–448, 464–466
decays, 458–460
families, 446–448
field particles, 443–444
interactions, 442–444
lepton number conservation, 449–450
leptons, 444, 446, 470–471
mesons, 444, 446–447, 464–465
quark structure, 464–471
reactions, 460–464
resonance particles, 456–458
standard model, 470–473
strangeness concervation, 451–452

Emission spectra, 180
Endothermic (endoergic) reactions, 415
Energy

binding, 185
conservation of

classical, 3
relativistic, 54

dissociation, 262
equipartition of, theorem, 16–17
internal, of gas, 17
ionization, 185
kinetic (classical), 3

kinetic (relativistic), 49–50
photon, 78
potential, 5
quantization of, 139
total (classical), 5
total (relativistic), 50–51
zero-point, 275

Energy eigenvalues, 141
Energy levels

Bohr model, 185
Z > 1, 188

carbon, 246–248
finite potential energy well, 151
helium, 234, 247–248
hydrogen atom, 185, 187, 217
infinite potential energy well, 147
lithium, 234
rotational, 278–279
simple harmonic oscillator, 157
sodium, 234
two-dimensional infinite potential

energy well, 153
vibrational, 275–276

Enrichment, 419
Equation of state, ideal gas, 10
Equivalence principle, 487–488
Equipartition of energy theorem, 16–17
Ether, 30
Evanescent wave, 135, 163
Event horizon, 499–500
Exchange force, 378–380
Excitation energy, 185
Excited states, 147

nuclear, 396
Exothermic (exoergic)

reactions, 415
Expectation value, 143
Extreme relativistic approximation, 51

F
Face-centered cubic (fcc) lattice,

327–329
Fermi, Enrico, 370
Fermi (unit), 373
Fermi energy, 307–308, 315, 338–339
Fermi National Accelerator Laboratory

(Fermilab), 453, 455
Fermi-Dirac distribution, 306–308,

314–319, 338
Fermion, 306
Ferromagnetism, 358, 363–364
Feynman, Richard, 453
Field particles, 443–444
Fine structure, 219–221

constant, 220, 221
Fission, 416–422
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barrier to, 417
chain reaction, 418
energy release, 417–418
fragment mass distribution, 417
induced, 416, 418
natural reactor, 421–422
reactors, 420–422
spontaneous, 416

Fitch, V. L., 510
Flatness problem, 511–512
Fluorescence, 235
Fractional ionic character, 273
Frame, inertial, 27
Franck, James, 189
Franck-Hertz experiment, 189–190
Free electron theory of metals, 314–316
Free particle, wave function of, 145
Frequency

angular, 70
cutoff, 77

Friedman equation, 502
Fukushima reactor, 421
Fusion, 422–428

carbon cycle, 424
proton-proton cycle, 424
reactors, 425–428

inertial confinement, 426–427
magnetic confinement, 425–426
tokamak, 425–426

stellar, 423–424
thermonuclear, 423

G
Galaxies, 484–486
Galilean transformation, 27
Gamma decay, 381, 383, 394–395
Gamow, George, 482
Gaussian distribution, 305
Geiger, Hans, 172, 177
Gell-Mann, Murray, 464
General theory of relativity, 486–496

cosmology and, 501–503
curved spacetime, 490–493, 499
deflection of starlight, 493–494
delay of radar echoes, 494
experimental tests, 493–496
frequency shift, 488–489
Friedman equation, 502
gravitational radiation, 495–496,

498–499
precession of perihelion, 494–495, 498
space and time in, 490–493

Gerlach, Walter, 214
Germer, Lester, 105
Global Positioning System (GPS), 58, 489
Gluon, 444

Grand unified theories (GUTs), 471–472
Gravitational interaction, 442–444
Gravitational radiation, 495–496,

498–499
Graviton, 444
Ground state, 147
Group speed, 124

H
Half-life, 385
Hawking, Steven, 501
Heat capacity

diatomic gas, 18
hydrogen, 19
ideal gas, 17–19
molar, 17
solids, 334–338

Debye theory, 336–338
Einstein theory, 335–336

Heisenberg, Werner, 114
Heisenberg uncertainty principle, 116
Heisenberg uncertainty relationships,

113–116
Helium

energy levels of, 234
formation in Big Bang, 506–509,

510–511
liquid, 310–311, 317–319
mixtures of 3He-4He, 317–319

Helium-neon laser, 250–252
Hertz, Gustav, 189
Hertz, Heinrich, 75
Higgs boson, 472
Holes, 351, 352
Homopolar (homonuclear) bonding, 262
Horizon problem, 511
Hoyle, Fred, 482
Hubble, Edwin, 480
Hubble parameter, 479–480
Hubble’s law, 479–482
Hulse, Russell, 499
Hund’s rules, 246
Hybrid states, 267–270
Hydrogen

atomic wave function, 204–206
energy levels, 185, 187, 217
formation in Big Bang, 506–509
heat capacity, 19
molecule, 261–262
molecule ion, 258–261
radial probability density, 207–209
radii, 184

I
Ideal gas

equation of state, 10
heat capacity, 17–19

Impact parameter, 171, 174–175
Impurity semiconductors, 352
Induced emission, 249
Inert gases, 238
Inertial confinement, 426–427
Inertial frame, 27
Inflation, 511–512
Insulators, 344
Interference, 72

constructive, 72
destructive, 72
double slit, 72–73

Interferometer, Michelson, 30
Internal energy of gas, 17
Intrinsic angular momentum (spin), 211,

215
Intrinsic semiconductors, 351–352
Ionic bonding, 271–275
Ionic character, fractional, 273
Ionization energy, 185, 236, 271
Isotopes, 371–372
Ives-Stilwell experiment, 59–60

J
Josephson effect, 349–350

K
Kennedy-Thorndike experiment, 57
Kinetic energy

average, of gas molecule, 11
classical, 3
relativistic, 49–50, 60–61

Kinetic theory, 10

L
Lambda point, 310
Lanthanides (rare earths), 240
Lasers, 248–252

diode, 356–357
helium-neon, 250–252

Laue, Max von, 73
Laue pattern, 74–75
Lawson’s criterion, 425
Length, contraction of, 34–35, 41
Leptons, 444, 446, 470–471
Lepton number, 449–450
Light, speed of, 9

constancy principle (second
postulate), 31

Light-emitting diode (LED), 356
Line spectra, 180–182
Linear momentum

classical, 3
conservation of, classical, 3
conservation of, relativistic, 53
photon, 78

Lithium, energy levels of, 234
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Lorentz, H. A., 40
Lorentz transformation, 40–43

velocity, 42
Lorenz number, 341
Lyman series, 181, 187

M
MACHOs (Massive Compact Halo

Objects), 486
Macrostate, 291
Madelung constant, 328
Magnetic confinement, 425–426
Magnetic dipole moment, orbital,

211–212
Magnetic field

current loop, 8
plane wave, 70
straight wire, 70

Magnetic materials, 357–364
Magnetic moment

current loop, 9
orbital, 211–212
potential energy in magnetic field, 9
spin, 215, 219–220
torque in magnetic field, 9

Magnetic quantum number, 201, 204
Magnetic susceptibility, 237–238, 358

paramagnetic atom, 361
Magnetization, 357–358
Marsden, Ernest, 172, 177
Mass, relativistic, 51
Maxwell speed distribution, 303–304
Maxwell velocity distribution, 304–305
Maxwell-Boltzmann distribution, 13–14,

84, 284, 301–306, 360–361
Meitner, Lise, 416
Mendeleev, Dmitri, 231
Mesons, 444, 446–447, 464–465

quark structure, 464–465
Metallic bonds, 331–332
Metastable state, 248
Michelson, Albert A., 29–31
Michelson interferometer, 30
Michelson-Morley experiment, 29–31
Microstate, 291
Microwave background radiation,

482–484
Millikan, Robert A., 79
Moderator, 419
Molar heat capacity, 17
Molecular solids, 332–334
Molecular spectroscopy, 281–285
Molecular structure, 258–285

covalent bonding, 262–270
hydrogen molecule, 261–262
hydrogen molecule ion, 258–261

ionic bonding, 271–275
pp covalent bonds, 264–266
rotations, 278–285
sp covalent bonds, 266–270
sp hybridization, 267–270
vibrations, 275–285

Momentum
angular, 6
linear, classical, 3
linear, conservation of classical, 3
relativistic, 46, 60–61

Moseley, Henry G. J., 243
Moseley plot, 243
Moseley’s law, 242–244
Mössbauer effect, 397–398
Multiplicity, 291
Muon, 12–13, 35, 58–59

N
Natural radioactivity, 398–401
Neutrino, 391–393
Neutron

activation analysis, 432
delayed, 419–420
diffraction, 106
separation energy, 377–378
star, 317, 496–497

Noether, Emmy, 449
Normalization, 142–143
n-type semiconductor, 352
Nuclear diffraction, 106
Nuclear matter, 373
Nuclear radius, 372–373
Nuclear reactions, 408–432

cross section, 411–412
fission, 416–422
fusion, 422–428
low-energy kinematics, 414–416
Q value, 414–416
radioisotope production in, 412–414
threshold energy, 415–416

Nuclear structure, 370–382
exchange force, 378–380
excited states, 396
isotopes, 371–372
masses and binding energies, 374–377
proton and neutron separation energies,

377–378
proton-electron model, 370–371
proton-neutron model, 371
quantum states, 380–382
radii, 372–373
sizes and shapes, 372–374

Nucleon, 371
Nucleosynthesis, 428–432

r process, 430–431

s process, 430–431
Nucleus, 174

closest approach to, 178–179

O
Optical transitions, 234–235
Orbital magnetic moment, 211–212
Orbits, penetrating, 228

P
Pair production, 93
Paramagnetism, 358–363

atoms and ions, 360–363
electron gas, 358–360

Pauli, Wolfgang, 226
Pauli exclusion principle, 226–227
Pauli paramagnetic susceptibility, 359
Pauling, Linus, 273
Penetrating orbits, 228
Penzias, Arno, 483
Perihelion precession, 494–495
Periodic table, 229–231
Phase speed, 123
Photodiodes, 356–357
Photoelectric effect, 75–79

classical theory, 76–77
quantum theory, 78–79

Photoelectron, 75
Photon, 78, 94–97, 444

energy, 78
linear momentum, 78

Pion (pi meson), 11–12, 59
Planck, Max, 78, 85
Planck time, 503, 509
Planck’s constant, 78, 79, 85
p-n junction, 353–355

depletion region, 353–355
forward biasing, 354–355
reverse biasing, 354–355

Polar wave function, 203
Population inversion, 250
Positron, 392
Positron emission tomography, 433
Potential difference, contact, 76
Potential difference, electrostatic, 7
Potential energy, 5, 7

barrier, 162–165
Coulomb, 7, 198
magnetic moment in magnetic field, 9
step, 159–162
well, 138

finite, 150–152
infinite, 145–147
two-dimensional infinite, 152–155

Pound, R. V., 488
Poynting vector, 70
pp-bonded molecules, 264–266
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Precession of perihelion, 494–495, 498
Principal quantum number, 204
Principle of equivalence, 487–488
Probability density, 142

finite potential energy well, 151
hydrogen atom, 206–207
infinite potential energy well, 148
one-dimensional atom, 199
potential energy step, 159, 161
simple harmonic oscillator, 157
two-dimensional infinite potential

energy well, 154
volume, 206

Proper length, 35
Proper time, 33
Proton separation energy, 377–378
Proton-electron model of nucleus,

370–371
Proton-neutron model of nucleus, 371
Proton-proton cycle, 424
p-subshell elements, 238–239
p-type semiconductor, 352
Pulsars, 497–499

Q
Q value

nuclear reactions, 414–416
particle decays, 458–460
particle reactions, 461–463
radioactive decay, 386

Quantization of angular momentum, 184
Quantization of energy, 139
Quantum chromodynamics, 471
Quantum liquid, 310
Quantum mechanics, 85
Quantum number

angular momentum, 203
hydrogen atom, 204–205
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Quarks, 464–471

mass, 468

R
r process, 430–431
Radar echoes, delay of, 494
Radial probability density, hydrogen
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Radial wave function, 203

hydrogen, 205, 206
Radii, atomic, 236
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activity, 383–385
alpha decay, 382, 383, 387–390
beta decay, 382, 383, 391–394
conservation laws, 386–387

decay constant, 384–385
exponential decay law, 384–385
gamma decay, 381, 383, 394–395
half-life, 385
mean lifetime, 385
natural, 398–401

Radiocarbon dating, 401
Radiometer, 87
Rare earths (lanthanides), 240
Rayleigh-Jeans formula, 84
Rebka, G. A., 488
Recoil energy, gamma emission, 395
Red shift, cosmological, 478–479
Reduced mass, 191, 276
Relativity, general theory of: See general

theory of relativity
Relativity, special theory of: See special

theory of relativity
Resistivity, electrical, 236–237, 341
Resonance, nuclear, 396–398
Resonance particles, 456–458
Rho meson, 457–458
Ritz combination principle, 182, 186–187
Rohrer, Heinrich, 165
Rotational selection rule, 279, 282
Rotations

molecular, 279–281
nuclear, 396–397

Rubin, Vera, 486
Rutherford, Ernest, 172
Rutherford backscattering, 434–435
Rutherford scattering, 175–179

deviations, 374
Rydberg constant, 186

S
s process, 430–431
Salam, Abdus, 471
Scanning tunneling microscope, 165
Scattering, Rutherford, 175–179
Scattering, Thomson model, 171–174
Scattering angle, 88
Schrieffer, J. Robert, 348
Schrödinger, Erwin, 140
Schrödinger equation, 140–141

one-dimensional atom, 198
spherical polar coordinates, 203
time dependence, 141
time independent, 141

Schwarzschild radius, 499–500
Segrè, Emilio, 56
Selection rule

atomic transitions, 217
rotational, 279, 282
vibrational, 276, 282

Semiconductors, 344, 350–357

acceptor states, 352
donor states, 352
impurity, 352
intrinsic, 351–352
n-type, 352
photodiodes, 356–357
p-n junction, 353–355
p-type, 352
tunnel diode, 356

Series limit, 181–182
Simple harmonic oscillator, 155–158
Simultaneity, 42–43
Sodium, energy levels of, 234
Solid-state physics, 326–364

band theory, 342–346
covalent solids, 330–331
electrical conduction, 339–341
electrons in metals, 338–341
heat capacity, 334–338
ionic solids, 327–330
cohesive energy, 329
magnetic materials, 357–364
metallic bonds, 331–332
molecular solids, 332–334
semiconductors, 350–357
superconductors, 346–350
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curved, 490–493
diagram, 46
interval, 490–491, 499

Spatial quantization, 202, 214–215
sp-bonded molecules, 266–267
Special theory of relativity, 26–62

clock synchronization, 43
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Einstein’s postulates, 31
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length, 33–36, 41
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time, 32–33
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Spectroscopic notation, 216–217
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Spectrum, electromagnetic, 9
Speed of light, 9
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SOME MILESTONES IN THE HISTORY OF MODERN PHYSICS

1887 Albert A. Michelson and Edward W. Morley fail to detect ether.

1896 Henri Becquerel discovers radioactivity.

1900 Max Planck introduces quantum theory to explain thermal radiation.

1905 Albert Einstein proposes the special theory of relativity.

1905 Albert Einstein introduces the concept of the photon to explain the photoelectric effect.

1911 Heike Kamerlingh-Onnes discovers superconductivity.

1911 Ernest Rutherford proposes the nuclear atom, based on experiments of Hans Geiger and Ernest Marsden.

1913 Niels Bohr introduces theory of atomic structure.

1913 William H. Bragg and William L. Bragg (father and son) study X-ray diffraction from crystals.

1914 James Franck and Gustav Hertz show evidence for quantized energy states of atoms.

1914 Henry G. J. Moseley shows relationship between X-ray frequency and atomic number.

1915 Albert Einstein proposes the general theory of relativity.

1916 Robert A. Millikan measures photoelectric effect to confirm Einstein’s photon theory.

1919 Ernest Rutherford produces first nuclear reaction that transmutes one element into another.

1919 Sir Arthur Eddington and other British astronomers measure gravitational deflection of starlight and confirm
predictions of Einstein’s general theory of relativity.

1921 Otto Stern and Walter Gerlach demonstrate spatial quantization and show necessity to introduce intrinsic
magnetic moment of electron.

1923 Arthur H. Compton demonstrates change in X-ray wavelength following scattering from electrons.

1924 Louis de Broglie postulates wave behavior of particles.

1925 Wolfgang Pauli proposes the exclusion principle.

1925 Samuel Goudsmit and George Uhlenbeck introduce the concept of intrinsic angular momentum (spin).

1926 Erwin Schrödinger introduces wave mechanics (quantum mechanics).

1926 Max Born establishes statistical, probabilistic interpretation of Schrodinger’s wave functions.

1927 Werner Heisenberg develops principle of uncertainty.

1927 Clinton Davisson and Lester Germer demonstrate wave behavior of electrons; G. P. Thomson independently
does the same.

1928 Paul A. M. Dirac proposes a relativistic quantum theory.

1929 Edwin Hubble reports evidence for the expansion of the universe.

1931 Carl Anderson discovers the positron (antielectron).

1931 Wolfgang Pauli suggests existence of neutral particle (neutrino) emitted in beta decay.



1932 James Chadwick discovers the neutron.

1932 John Cockcroft and Ernest Walton produce the first nuclear reaction using a high-voltage accelerator.

1932 Ernest Lawrence produces first cyclotron for studying nuclear reactions.

1934 Irène and Frédéric Joliot-Curie discover artificially induced radioactivity.

1935 Hideki Yukawa proposes existence of medium-mass particles (mesons).

1938 Otto Hahn, Fritz Strassmann, Lise Meitner, and Otto Frisch discover nuclear fission.

1938 Hans Bethe proposes thermonuclear fusion reactions as the source of energy in stars.

1940 Edwin McMillan, Glenn Seaborg, and colleagues produce first synthetic transuranic elements.

1942 Enrico Fermi and colleagues build first nuclear fission reactor.

1945 Detonation of first fission bomb in New Mexico desert.

1946 George Gamow proposes big-bang cosmology.

1948 John Bardeen, Walter Brattain, and William Shockley demonstrate first transistor.

1952 Detonation of first thermonuclear fusion bomb at Eniwetok atoll.

1956 Frederick Reines and Clyde Cowan demonstrate experimental evidence for existence of neutrino.

1958 Rudolf L. Mössbauer demonstrates recoilless emission of gamma rays.

1960 Theodore Maiman constructs first ruby laser; Ali Javan constructs first helium-neon laser.

1964 Allan R. Sandage discovers first quasar.

1964 Murray Gell-Mann and George Zweig independently introduce three-quark model of elementary particles.

1965 Arno Penzias and Robert Wilson discover cosmic microwave background radiation.

1967 Jocelyn Bell and Anthony Hewish discover first pulsar.

1967 Steven Weinberg and Abdus Salam independently propose a unified theory linking the weak and
electromagnetic interactions.

1974 Burton Richter and Samuel Ting and co-workers independently discover first evidence of fourth quark
(charm).

1974 Joseph Taylor and Russell Hulse discover first binary pulsar.

1977 Leon Lederman and colleagues discover new particle showing evidence for fifth quark (bottom).

1981 Gerd Binnig and Heinrich Rohrer invent scanning-tunneling electron microscope.

1983 Carlo Rubbia and co-workers at CERN discover W and Z particles.

1986 J. Georg Bednorz and Karl Alex Müller produce first high-temperature superconductors.

1994 Investigators at Fermilab discover evidence for sixth quark (top).

1995 Eric Cornell and Carl Wieman produce first Bose-Einstein condensation.

1998 Discovery of neutrino oscillations shows that neutrinos have small but nonzero mass.

2003 WMAP satellite data reveal age and composition of universe.



Units
Quantity Quantity

Unit Abbreviation Measured Unit Abbreviation Measured

gram g mass coulomb C electric charge
meter m length ampere A electric current
second s time volt V electric potential
newton N force ohm � electric resistance
joule J energy tesla T magnetic field
watt W power atomic mass unit u mass
electron-volt eV energy curie Ci activity
hertz Hz frequency barn b cross section
kelvin K temperature

Prefixes of Units
Prefix Abbreviation Value Prefix Abbreviation Value

atto a 10−18 centi c 10−2

femto f 10−15 kilo K 103

pico p 10−12 mega M 106

nano n 10−9 giga G 109

micro μ 10−6 tera T 1012

milli m 10−3 peta P 1015

Some Commonly Used
Constants and Conversion Factors

(see Appendix A for a more complete list)

Speed of light c = 2.998 × 108 m/s
Electronic charge e = 1.602 × 10−19 C
Boltzmann constant k = 1.381 × 10−23 J/K = 8.617 × 10−5 eV/K
Planck’s constant h = 6.626 × 10−34 J · s = 4.136 × 10−15 eV· s
Avogadro’s constant NA = 6.022 × 1023 mole −1

Electron mass me = 5.49 × 10−4 u = 0.511 MeV/c2

Proton mass mp = 1.007276 u = 938.3 MeV/c2

Neutron mass mn = 1.008665 u = 939.6 MeV/c2

Bohr radius a0 = 0.0529 nm
Hydrogen ionization energy 13.6 eV
Thermal energy kT = 0.02525 eV ∼= 1

40 eV (T = 293 K)

hc = 1240 eV· nm (MeV· fm) −hc = 197 eV· nm (MeV · fm)

e2

4πε0
= 1.440 eV· nm (MeV · fm)

1 u = 931.5 MeV/c2

1 eV = 1.602 × 10−19 J
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