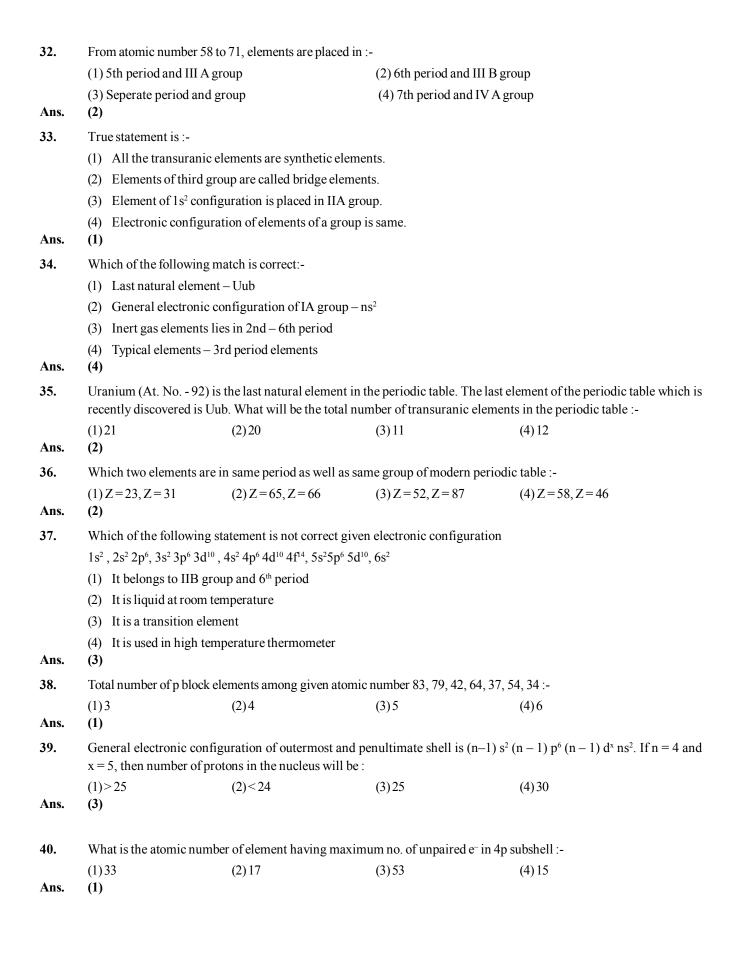
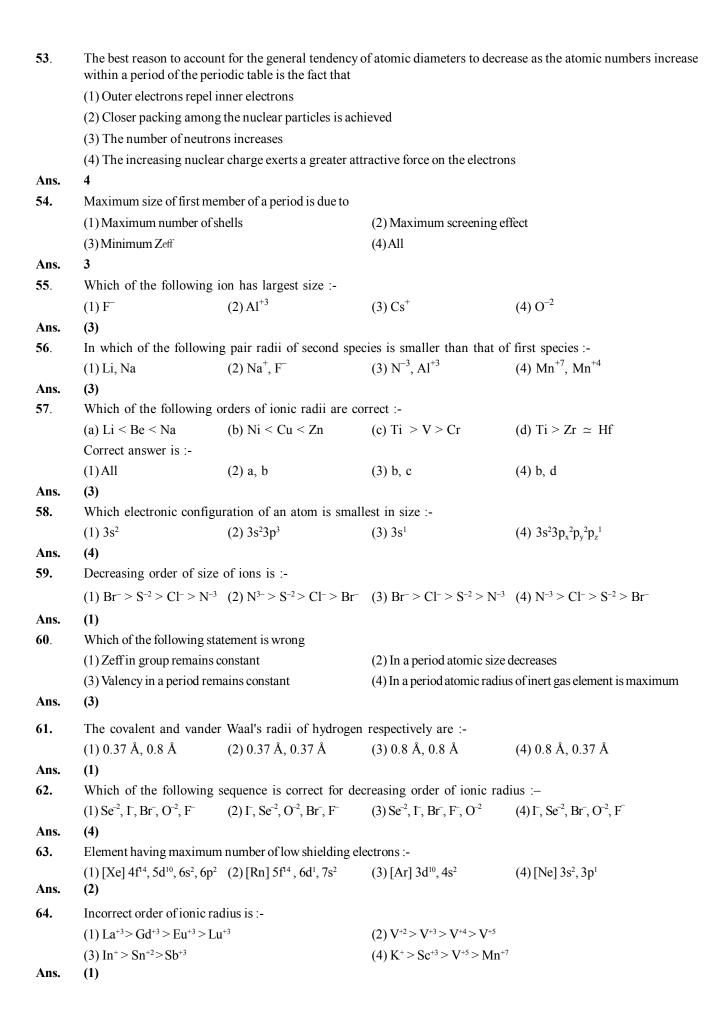
BASIC EXERCISE


Development of periodic table Mendeleev's periodic table is based on :-(2) Increasing order of number of protons (1) Atomic number (3) Electronic configuration (4) None of the above 4 Ans. 2. Which of the following is/are Dobereiners triad:-(a) P, As, Sb (b) Cu, Ag, Au (c) Fe, Co, Ni (d) S, Se, Te Correct answer is:-(1) a and b (2) b and c (3) a and d (4) All Ans. 3. Which of the following sets of elements follows Newland's octave rule :-(2) Na, K, Rb (3) F, Cl, Br (4) B, Al, Ga (1) Be, Mg, Ca Ans. 4 Which are correct match:-(a) Eka silicon – Be (b) Eka aluminium – Ga (d) Eka scandium – B (c) Eka mangenese – Tc (1) b, c(2) a, b, d (3) a, d(4) All Ans. 1 5. Atomic wt. of P is 31 and Sb is 120. What will be the atomic wt. of As, as per dobereiner triad rule:-(1)151(2)75.5(3)89.5(4) Unpredictable 2 Ans. 6. The places that were left empty by Mendeleev's were, for:-(1) Aluminium & Silicon (2) Gallium and Germanium (3) Arsenic and Antimony (4) Molybdenum and Tungsten Ans. 7. Which is not anomalous pair of elements in the Medeleeves periodic table:-(1) Ar and K (2) Co and Ni (3) Te and I (4) Al and Si 4 Ans. 8. The law of triads is applicable to:-(1) Os Ir Pt (2) Ca Sr Ba (3) Fe Co Ni (4) Ru Rh Pt Ans. 9. Elements which occupied position in the Lother Meyer curve, on the peaks, were :-(1) Alkali metals (2) Highly electro positive elements (3) Elements having large atomic volume (4) All Ans. 10. In a period the elements are arranged in :-(1) Decreasing order of nuclear charge (2) Decreasing order of No. of electrons (3) Increasing order of nuclear charge (4) In order of same nuclear charge

3

Ans.


11.	Which of the following statement is wrong:-					
	(1) No inert gas is present in 7 th period		(2) 3 rd period contains 18 elements			
	(3) 1 st period contains two non metals		(4) In p-block, metal, non	metal and metalloids are present		
Ans.	2					
12.	Which of the following e	lement was absent in the M	Iendeleev's periodic table :-			
	(1) Tc	(2) Si	(3)B	(4) F		
Ans.	1					
13.	IUPAC name of the eleme	ent placed just after actinide	series:-			
	(1) Unniltrium	(2) Unnilpentium	(3) Unnilquadium	(4) Ununbium		
Ans.	3					
14.	Which statement is wron	g for the long form of period	dic table :-			
	(1) Number of periods are	e 7 and groups 18				
	(2) No. of valence shell el	ectrons in a period are same	e			
	(3) III rd B group contains	32 elements				
	(4) Lanthanides and actir	nides are placed in same gro	up			
Ans.	2					
15 .	The elements which are o	eited as an example to prove	the validity of Mendeleev's	s periodic law are		
	(1) H, He	(2) Ga, Sc	(3) Co, Ni	(4) Zr, Hf		
Ans.	2					
16.	Which pair of successive	elements follows increasin	g order of atomic weight in	Mendeleev's periodic table		
	(1) Argon and Potassium	(2) Lithium and Berylium	(3) Cobalt and Nickel	(4) Tellurium and Iodine		
Ans.	2					
17.	Which of the following	statement is false :-				
	(1) Elements of ns ² np ⁶ electronic configuration lies in 1 st to 6 th period					
	(2) Typical elements lies in 3 rd period					
	(3) The seventh period will accommodate thirty two elements					
	(4) Boron and silicon are diagonally related					
Ans.	1	·g				
18.	Among the Lanthanides	the one obtained by synt	hetic method is :-			
100	(1) Lu	(2) Pm	(3) Pr	(4) Ce		
Ans.	2	(2)1111	(3)11	(1) 66		
1 222.54	_					
Period	l, Group and Block					
19 .	Which of the following se	et of elements belongs to sa	me period :-			
	(1) Zn, Cd, Hg	(2) Fr, Ra, U	(3) K, Ca, Ag	(4) None		
Ans.	2		, , , , , , <u>, , , , , , , , , , , , , </u>			
20.	Elements upto atomic no. possessing atomic no. 10		ill now. What will be the ele	extronic configuration of the element		
	(1) $[Rn]5f^{14} 6d^6 7s^2$	(2) $6f^{14} 7d^8 7s^2$	(3) [Rn] $5f^{14} 6d^8 7s^0$	(4) [Xe] $4f^{14} 5d^8 6s^2$		
Ans.	1		. /			

21 .	In 6th period of the modern periodic table, electronic energy levels is in the order:-					
	(1) 6s, 4f, 5d, 6p	(2) 6s, 6p, 4f, 5d	(3) 4f, 5d, 6s, 6p	(4) None		
Ans.	1					
22.	Out of first 100 elements no. of elements having electrons in 3d orbitals (in their complete electronic configuratio are :-					
	(1)80	(2) 100	(3) 40	(4) 60		
Ans.	1					
23.	The IUPAC name of the	element which is placed after	103	le, will be :-		
	(1) Un nil pentium	(2) Un un nilium	(3) Un nil hexium	(4) Un nil quadium		
Ans.	3					
24.	The element with the ele	ectronic configuration ns ² (n-	$-1)s^2p^6d^0(n-2)s^2p^6d^{10}f^7$ lies	in the :-		
	(1) s - block	(2) p - block	(3) d - block	(4) f-block		
Ans.	4					
25.	The element with atomic	number Z=118 will be :-				
	(1) Noble gas	(2) Transition metal	(3) Alkali metal	(4) Alkaline earth metal		
Ans.	1					
26 .	The atom having the val	ence shell electronic config	curation 4s ² 4p ² would be in	n:-		
	(1) Group II A and period 3		(2) Group II B and perio	od 4		
	(3) Group IVA and period 4		(4) Group IVA and period	od 3		
Ans.	3					
27.	The electronic configura	tion of the element with atom	mic number 109 if discove	ered will be:-		
	$(1)(n-1)d^7ns^2$	$(2)(n-1)d^9ns^2$	(3) nd^7ns^2 (4) (1)	$(n-1)d^5ns^2np^2$		
Ans.	1					
28.	The element having elec	etronic configuration 4f ¹⁴ 56	d ⁰ 6s ² belongs to :-			
	(1) d–block, 12 th group	(2) f-block, III B group	(3) f–block, 14 th group	(4) s-block, 2 nd group		
Ans.	4					
29 .	Element with the electron $4s^24p^64d^{10}$, $5s^25p^3$	nic configuration given below	v, belong to which group in	the periodic table $1s^2, 2s^22p^6, 3s^23p^63d^{10},$		
	$(1)3^{rd}$	(2) 5 th	(3) 15 th	(4) 17 th		
Ans.	3					
30.	Which of the following g (1) $(n+1) s^{1-2} n d^{1-10}$ (2) $n s^{1-2} (n-1) d^{1-10}$ (Whomas g) g (3) $n s^{0,1,2} (n-1) s^2 p^6 d^{1-10}$ (4) $(n-1) d^{1-10} n s^{0-2}$		tion for transition elemen	ts is not correct		
Ans.	2					
31.	Which of the following $(1) \operatorname{ns}^2(n-1)d^{10}$	electronic configuration bel (2) $ns^2(n-1)s^26$	ongs to inert gas elements (3) ns ² np ⁶	s:- (4) None		
Ans.	3					

Zeff, Screening Constant & Atomic Radius

41. The formula for effective nuclear charge is (if σ is screening constant)						
	(1)Z-σ	$(2)Z+\sigma$	$(3) Z \sigma^{-1}$	$(4)Z\sigma$		
Ans.	1					
42.	Effective nuclear char	ge in group generally:-				
	(1) Increases down th	e group	(2) Decreases down to	he group		
	(3) Remains constant		(4) First increases that	an decreases		
Ans.	3					
43.	In sodium atom the so	creening is due to :-				
	$(1) 3s^2, 3p^6$	$(2) 2s^1$	$(3) 1s^2, 2s^2, 2p^6$	$(4) 1s^2, 2s^2$		
Ans.	3					
44 .	If the difference in ato	omic size of:				
	Na-Li=x Rb	-K = y $Fr - Cs = z$				
	Then correct order wi	ll be:-				
	(1) x = y = z	(2) x > y > z	(3) x < y < z	(4) x < y << z		
Ans.	2					
45 .	The correct order of s	ize would be:-				
	$(1) \operatorname{Ni} < \operatorname{Pd} \underline{\sim} \operatorname{Pt}$	(2) Pd < Pt < Ni	(3) Pt > Ni > Pd	(4) Pd > Pt > Ni		
Ans.	1					
46.		ig is not isoelectronic series				
	$(1) \operatorname{Cl}^-, \operatorname{P}^{3-}, \operatorname{Ar}$	(2) N^{3-} , Ne, Mg^{+2}	$(3) B^{+3}, He, Li^{+}$	$(4) N^{3-}, S^{2-}, Cl^{-}$		
Ans.	4		1.			
47 .		s have nearly same atomic ra	dius:-			
	(1) Na, K, Rb, Cs	(2)Li, Be, B, C	(3) Fe, Co, Ni	(4) F, Cl, Br, I		
Ans.	3					
48 .	Atomic radii of Fluorine and Neon in Angstrom units are given by:-					
	(1) 0.72, 1.60	(2) 1.60, 1.60	(3) 0.72, 0.72	(4) None of these		
Ans.	1					
49.		g order of atomic/ionic radio				
	$(1) I^{-} > I > I^{+}$	(2) $Mg^{+2} > Na^{+} > F^{-}$	$(3) P^{+5} < P^{+3}$	(4) Li > Be > B		
Ans.	2					
50.		In the lithium atom screening effect of valence shell electron is caused by-				
	(1) Electrons of K and		(2) Electrons of K she	ell		
	(3) Two electrons of 1	st and one of 2 nd shell	(4) None			
Ans.	2					
51.	The radius of potassiu	im atom is 0.203 nm. The rac	dius of the potassium ion i	n nanometer will be :-		
	(1) 0.133	(2) 0.231	(3) 0.234	(4) 0.251		
Ans.	1					
52 .	S ⁻² is not isoelectronic	e with :-				
	(1)Ar	(2) Cl ⁻	(3) HS ⁻	$(4) \mathrm{Ti}^{+3}$		
Ans.	4	\		、 /		

65.	According to Slater's rule, order of effective nuclear for last electron in case of Li, Na and K:-					
	(1)Li $>$ Na $>$ K	(2) K > Na > Li	(3) Na > Li > K	(4) Li < Na = K		
Ans.	(4)					
66.	Rank the 4p, 4d and 4f orbitals of increasing order to which the electrons present in them are shielded by inner electrons					
	(1) 4d < 4f < 4p	(2) 4f < 4d < 4p	(3)4p < 4d < 4f	(4) 4d < 4p < 4f		
Ans.	(3) ation Potential					
	Correct orders of Ist I.P.					
67 .			(-) D- < N < N-			
	(a) Li <b <="" be="" c<="" th=""><th>(b) O < N < F</th><th>(c) Be < N < Ne</th><th>(0.1</th>	(b) O < N < F	(c) Be < N < Ne	(0.1		
A	(1) a, b	(2) b, c	(3) a, c	(4) a, b, c		
Ans.	The ionisation notantic	1 of icotomos of an alament	will be .			
68 .	•	l of isotopes of an element				
	(1) Same		(2) Different	6		
Ans	(3) Depends on atomic 1	masses	(4) Depends on number	or neutrons		
Ans. 69.		notantials in alastron volts	of overgen and fluoring at	oms are respectively given by :-		
07.	(1) 35.1, 38.3	(2) 38.3, 38.3	(3) 38.3, 35.1	(4) 35.1, 35.1		
Ans.	3	(2) 38.3, 38.3	(3) 38.3, 33.1	(4)33.1,33.1		
70.		etween the values of 2 nd and	d 3 rd IP of an element wou	ald be associated with the electronic		
70.	configuration :-	tiveen the values of 2 and	a 5 II of all element wou	nd be associated with the electronic		
	$(1) 1s^2, 2s^2 2p^6, 3s^1$	(2) $1s^2$, $2s^2$ $2p^6$, $3s^2$ $3p^5$	(3) $1s^2$, $2s^2$ $2p^6$, $3s^2$ $3p^2$	$(4) 1s^2, 2s^2 2p^6 3s^2$		
Ans.	4					
71.	In which of the following	pairs, the ionisation energy of	the first species is less than the	nat of the second:-		
	$(1) O^{-}, O^{2-}$	(2) S, P	(3) N, P	$(4) Be^+, Be$		
Ans.	2					
72.	The correct order of stab	pility of Al ⁺ , Al ⁺² , Al ⁺³ is :-				
	$(1) Al^{+3} > Al^{+2} > Al^{+}$	$(2) Al^{+2} > Al^{+3} > Al^{+}$	$(3) Al^{+2} < Al^{+} > Al^{+3}$	$(4) A l^{+3} > A l^{+} > A l^{+2}$		
Ans.	4					
73.	Mg forms Mg(II) because					
	(1) The oxidation state of	•	0.11			
		$.P_1$ and $I.P_2$ is greater than 16				
	(3) There are only two el	ectrons in the outermost ener	gy level of Mg			
	(4) Difference between I.F	P ₁ and I.P ₂ is less than 11 eV				
Ans.	4					
74 .	Minimum first ionisatio	n energy is shown by which e	electronic configuration:-			
	$(1) 1s^2, 2s^2, 2p^5$	$(2)\ 1s^2, 2s^2, 2p^6, 3s^2, 3p^2$	$(3) 1s^2, 2s^2, 2p^6, 3s^1$	$(4) 1s^2, 2s^2, 2p^6$		
Ans.	3					

75.	Succe	Successive ionisation energies of an element 'X' are given below (in K. Cal)					
	$IP_{_1}$	IP_2	IP_3	IP_4			
	165	195	556	595			
	Electr	onic confi	iguration	of the element 'X' is:-			
	$(1) 1s^2$	2 , $2s^{2}2p^{6}$,	$3s^23p^2$	$(2) 1s^2, 2s^1$	$(3) 1s^2, 2s^22p^2$	$(4) 1s^2, 2s^22p^6, 3s^2$	
Ans.	4						
76.	$\Pi^{nd} \Pi^{p}$	of which o	of the elen	nent is maximum-			
	(1)Lit	hium		(2) Oxygen	(3) Nitrogen	(4) Fluorine	
Ans.	1						
77.	The en	nergy nee	ded to rea	nove one electron from un	ipositive ion is abbreviated a	S:-	
	$(1)I^{st}I$.P.		(2) 3rd I.P.	$(3) 2^{nd} I.P.$	$(4) 1^{st} E.A.$	
Ans.	3						
78 .	Among the following elements (Whose electronic configuration is given below) the one having the highest ionisat energy is					the one having the highest ionisation	
	(1)(N	e) $3s^2 3p^3$		(2) (Ne) $3s^2 3p^4$	(3) (Ne) $3s^23p^5$	$(4) (Ar) 3d^{10}4s^24p^2$	
Ans.	3						
79 .	The co	orrect ord	er of decr	easing first ionization ener	gy is :-		
	(1)Si>	>Al>Mg	>Na	(2) Si $>$ Mg $>$ Al $>$ Na	(3)Al>Si>Mg>Na	(4) Mg > Li > Al > Si	
Ans.	2						
80.	Out of	'Na ⁺ , Mg ⁺	$^{-2}$, O^{-2} and	$1 \mathrm{N}^{-3}$, the pair of species sho	wing minimum and maximum	m IP would be.	
	(1) Na	$^{+}, Mg^{+2}$		$(2) Mg^{+2}, N^{-3}$	$(3) N^{-3}, Mg^{+2}$	$(4) O^{-2}, N^{-3}$	
Ans.	3						
81.	The el	lement ha	ving hig	hest I.P. in the two series C	C, N, O and Si, P, S:-		
	(1) P			(2) N	(3) S	(4)O	
Ans.	2						
82.	Lowes	st IP will	be shown	by the element having the	e configuration :-		
	(1)[H	e] 2s²		$(2) 1s^2$	(3) [He] $2s^2 2p^2$	(4) [He] $2s^2 2p^5$	
Ans.	1						
83 .	Which	n ionisati	on poten	tial (IP) in the following	equations involves the gre	eatest ammount of energy:-	
	(1) K	$\rightarrow K^{+2}$	+ e ⁻	$(2) Li^{+} \rightarrow Li^{+2} + e^{-}$	(3) Fe \rightarrow Fe ⁺ + e ⁻	$(4) Ca^+ \rightarrow Ca^{+2} + e^-$	
Ans.	2						
84.		s of first		•	ments are 68, 370, 400, 485	. It belongs to which of the following	
	(1) 1s	$^{2} 2s^{1}$		(2) $1s^2 2s^2 2p^1$	$(3) 1s^2 2s^2 2p^6 3s^1$	(4) (1) and (3) both	
Ans.	3						
85 .	(a) M	$_{(g)}^{-} \rightarrow M$	$\mathbf{I}_{(\mathrm{g})}$	(b) $M_{(g)} \rightarrow M^{+}_{(g)}$	$(c) M^{\scriptscriptstyle +}_{\scriptscriptstyle (g)} \to M^{\scriptscriptstyle +2}_{\scriptscriptstyle (g)}$	(d) $M^{+2}_{(g)} \to M^{+3}_{(g)}$	
				m I.P. would be of :-			
	(1) a,	d		(2) b, c	(3) c, d	(4) d, a	
Ans.	1						

86. Which of the following electronic configuration belongs to least and most metallic character respectively:-(d) $1s^2 2s^2 2p^5$ (a) $1s^2 2s^1$ (b) $5s^2 5p^5$ (c) $3s^2 3p^6 4s^1$ (4) c, d(1) a, b(2) d, c(3) b, a2 Ans. **87.** Triad - I [N³⁻, O⁻², Na⁺] Triad - II $[N^+, C^+, O^+]$ Choose the species of lowest IP from triad-I and highest IP from triad-II respectively (1) N^{3-} , O^+ (2) Na⁺, C⁺ $(3) N^{3-}, N^{+}$ $(4) O^{-}, C^{+}$ 1 Ans. 88. The correct values of ionization energies (in kJ mol⁻¹) of Be, Ne, He and N respectively are (1) 786, 1012, 999, 1256 (2) 1012, 786, 999, 1256 (3) 786, 1012, 1256, 999 (4) 786, 999, 1012, 1256 3 Ans. 89. Following graph shows variation of I.P. with atomic number in second period (Li – Ne). Value of I.P. of Na (11) will be :-(1) Above Ne (4) Between N and O (2) Below Ne but above O (3) Below Li Ans. 90. In which of the following pairs, the ionization energy of the first species is less than that of the second (1) N, P (2) Be⁺, Be (3) N, N⁻ (4) Ne, Ne⁺ Ans. 91. Consider the following ionisation reactions $A(g) \rightarrow A^+(g) + e^-$ IE in (KJ/molP) is A, $A^{+}(g) \rightarrow A^{+2}(g) + e^{-}$ IE in (KJ/molP) is A, $A^{+2}(g) \rightarrow A^{+3}(g) + e^{-}$ IE in (KJ/molP) is A, then correct order of IE is - $(1) A_1 > A_2 > A_3 \qquad (2) A_1 = A_2 = A_3 \qquad (3) A_1 < A_2 < A_3 \qquad (4) A_3 = A_2 < A_3$ Ans. 92. IE, IE, and IE, of an element are 10 eV, 15 ev, 45 eV respectively, the most stable oxidation state of the element will be:-(1)+1(2)+2(3)+3(4)+4Ans. 2 **Electron Affinity 93**. In which case the energy released is minimum:- $(2) B \rightarrow B^{-}$ $(3) N \rightarrow N^{-} \qquad (4) C \rightarrow C^{-}$ $(1) Cl \rightarrow Cl^{-}$ 3 Ans. 94. In the formation of a chloride ion, from an isolated gaseous chlorine atom, 3.8 eV energy is released, which would be equal to :-(1) Electron affinity of Cl (2) Ionisation potential of Cl (4) Ionisation potential of Cl (3) Electronegativity of Cl

4

Ans.

95 . Process in which maximum energy is released:-				
	$(1) O \rightarrow O^{-2}$	$(2) Mg^+ \rightarrow Mg^{+2}$	$(3) Cl \rightarrow Cl^{-}$	$(4) F \rightarrow F^{-}$
Ans.	3			
96.	Which of the following i	s energy releasing process		
Ans.	(1) $X^- \to X(g) + e^-$ (4)	(2) $O^{-}(g) + e^{-} \rightarrow O^{2-}$	(3) $O(g) \to O^+(g) + e^-$	$(4) O(g) + e^{-} \rightarrow O^{-}(g)$
97.	Which of the following e	lement will form most stable	e bivalent anion.	
Ans.	(1) Fluorine (2)	(2) Oxygen	(3) Chlorine	(4) Nitrogen
98.	Which of the following e	electronic configuration is ex	xpected to have highest elec	ctron affinity :-
	$(1) 2s^2 2p^0$	(2) $2s^2 2p^2$	$(3) 2s^2 2p^3$	$(4) 2s^2 2p^1$
Ans.	(2)	. , ,	. , ,	. , .
99.	Consider the following of	conversions		
	(i) $O(g) + e^- \rightarrow O^-$	(g) ; ΔH_1		
	(ii) $F(g) + e^- \rightarrow F^-$	(g) ; ΔH_2		
	(iii) $Cl(g) + e^{-} \rightarrow Cl$	$^{-}(g)$; ΔH_3		
	(iv) $Na(g) \rightarrow Na^+($	(g) ; ΔH_4		
	incorrect statement is			
	(1) ΔH_1 and ΔH_2 is less	negative than ΔH_3	(2) ΔH_2 is more negative	than $\Delta H_{_1}$
A		ve while ΔH_1 is positive	(4) ΔH_1 , ΔH_2 and ΔH_3 are	e negative while ΔH_4 is positive
Ans.				
100.	In which of the following process, least energy is required			
	$(1) F_{(g)}^{-} \longrightarrow F_{(g)} + e^{-}$	$(2) P_{(g)}^{-} \longrightarrow P_{(g)} + e^{-}$	$(3) S_{(g)}^{-} \longrightarrow S_{(g)} + e^{-}$	$(4) \operatorname{Cl}_{(g)}^{-} \longrightarrow \operatorname{Cl}_{(g)} + e^{-}$
Ans.	(2)			
Electr	ronegativity			
101.	The correct set of decrea	sing order of electronegativ	rity is :-	
	(1) Li, H, Na	(2) Na, H, Li	(3) H, Li, Na	(4) Li, Na, H
Ans.	3			
102.	Polarity of a bond can	be explained by :-		
	(1) Electron affinity	(2) Ionisation potential	(3) Electronegativity	(4) All of the above
Ans.	3			
103 .	Electronegativity values	for elements are useful in	predicting :-	
	(1) Bond energy of a m	olecule	(2) Polarity of a bond	
	(3) Nature of an oxide		(4) All	
Ans.	4			
104 .	Mulliken scale of electr	onegativity uses the conce	ept of :-	
	(1) E. A. and EN of pau	ling	(2) E. A. and atomic size	e
	(3) E.A. and I.P.		(4) E.A. and bond energ	gy
Ans.	3			
105.	The pair with minimum of	lifference in electronegativit	y is :-	
	(1) F, Cl	(2) C,H	(3) P, H	(4) Na, Cs
Ans.	3			

106.	6. In which of the following pairs of elements the electronegativity of first element is less than that of second element:-					
	(1) Zr, Hf	(2) K, Rb	(3) Cl, S	(4) None of the above		
Ans.	1					
107 .	The nomenclature of IC	l is iodine chloride because	e			
	(1) Size of $I < Size of C$		(2) Atomic number of I	> Atomic number of Cl		
	(3) E.N. of $I \le E.N.$ of C	1	(4) E. A. of I < E. A. of Cl			
Ans.	3					
108 .	Among the following lea	st and most polar bonds are	e respectively:-			
	(a) C – I	(b) N - O	(c) C - F	(d) P - F		
	(1) d and c	(2) a and d	(3) b and d	(4) b and c		
Ans.	2					
109.	If the ionisation potential is IP, electron affinity is EA and electronegativity is x then which of the following relation is correct:-					
	(1) 2X - EA - IP = 0	(2) $2EA - X - IP = 0$	(3) 2IP - X - EA = 0	(4) All of the above		
Ans.	1					
110.	The properties which ar	e not common to both gro	oups 1 and 17 elements in	the periodic table are :-		
	(1) Electropositive chara	acter increases down the g	roups			
	(2) Reactivity decreases	from top to bottom in the	ese groups			
	(3) Atomic radii increase	es as the atomic number in	ncreases			
	(4) Electronegativity dec	creases on moving down a	group			
Ans.	2					
111.	Electronegativity of an e	element can be measured u	ising :-			
	(1) Pauling's scale	(2) Mulliken's scale	(3) Both	(4) None		
Ans.	3					
112.	Which compound strong	ly absorb CO ₂ ?				
	(1)BeO	$(2)K_2O$	(3) H ₃ PO ₄	$(4) P_4 O_6$		
Ans.	(2)					
113.	The electronegativities of	the following elements: H,	O, F, S and Cl increase in the	he order :-		
Ans.	(1)H <o<f<s<c1 (4)</o<f<s<c1 	(2)Cl < H < O < F < S	(3) H < S < O < Cl < F	(4) H < S < Cl < O < F		
114.	Which of the following is	different from other three of	oxides:-			
Ans.	(1)MgO (1)	(2) SnO	(3) PbO	(4) ZnO		

ANALYTICAL EXERCISE

1.	In which of the following arrangements the order is NOT according to the property indicated against it?				
	$(1) A l^{3+} < M g^{2+} < N a^+$	< F - increasing ionic size			
	(2) $B < C < N < O - inc$	reasing first ionization energ	gy		
	(3) I < Br < F < Cl - inc	creasing electron gain entha	lpy (with negative sign)		
	(4) $Li < Na < K < Rb - 1$	increasing metallic radius			
Ans.	2				
2.	Which one of the following orders presents the correct sequence of the increasing basic nature of the given oxide				
	$(1) Na_2O < K_2O < Mg$	$gO < Al_2O_3$	(2) $K_2O < Na_2O < Al_2O_3$	< MgO	
	(3) Al2O3 < MgO < N	$a_2O < K_2O$	$(4) MgO < K_2O < Al_2O$	$_3$ < Na $_2$ O	
Ans.	3				
3.	The outer electron con	nfiguration of Gd (Atomic 1	No. : 64) is :-		
	$(1) 4f^4 5d^4 6s^2$	$(2) 4f^7 5d^1 6s^2$	$(3) 4f^3 5d^5 6s^2$	$(4) 4f^8 5d^0 6s^2$	
Ans.	2				
4.	The correct order of el 53 respectively, is:-	ectron gain enthalpy with n	egative sign of F, Cl, Br and I,	having atomic number 9, 17, 35 and	
	(1) $I > Br > Cl > F$	(2) $F > C1 > Br > I$	(3) $C1 > F > Br > I$	(4) $Br > Cl > I > F$	
Ans.	3				
5.	Atomic number of Ag is	47. In the same group the a	tomic number of elements pla	ced above and below Ag will be :-	
	(1) 37, 67	(2) 29, 79	(3) 39, 69	(4) 29, 65	
Ans.	2				
6.	In the general electronic	configuration -			
	$(n-2)f^{l-14}(n-1)d^{0-1}ns^2$,	if value of $n = 7$ the configu	ration will be of -		
	(1) Lanthenides	(2) Actinides	(3) Transition elements	(4) None	
Ans.	2				
7.	Which of the following	ng statements is wrong:-			
	(1) Van der Waal's ra	dius of iodine is more than	n its covalent radius		
	(2) All isoelectronic	ons belong to same period	I of the periodic table		
	(3) IE ₁ of N is higher	than that of O while IE ₂	of O is higher than that of N	1	
		ity of N is less than that of	f P		
Ans.	2				
8.	be (EN of $H = 2.1 \text{ C}$	= =		tively. The bond length of HCl may	
	(1) 136 pm	(2) 272 pm	(3) 135.919 pm	(4) 271.919 pm	
Ans.	3				
9.				nic percentage of compound XY is:-	
	(1) 50	(2) 46	(3) 64	(4) 25	
Ans.	2				

10. Which of the following is correct match

_			
	Atomic	Group	Periodic
	number	number	number
(A)	46	10	6
(B)	58	3	6
(C)	56	2	6
(D)	42	6	5

(1) Only B, C, D

(2) Only A, B, C

(3) Only B, C

(4) Only A, C, D

Ans.

11. $_{92}$ U(IIIB) chamges to $_{90}$ Th by emission of α -particle. Daughter element will be in -

(1) IB

(1)

(2) IIA

(3) IIIB

(4) VB

Ans. **(3)**

39 12. D E В

On the basis of given part of periodic table, incorrect statement is :-

- (1) A is an alkaline earth metal
- (2) Atomic number of B is 103 which belongs to III B group.
- (3) Atomic number, group no. and period number of D are 72 IVB and 6th respectively.
- (4) C is a transuranic element

(2) Ans.

13. If total 110 elements are present in periodic table than how many of them contain e in f subshell:

(1)28

(2)57

(3)58

(4)53

(4) Ans.

These are 3 elements A, B and C. Their atomic number are Z_1 , Z_2 , Z_3 respectively. If $Z_3 - Z_1 = 2$ and $\frac{Z_1 + Z_3}{2} = Z_2$ and 14.

the electronic configuration of element C is [Ar] 3d² 4s² then correct order of atomic radius is:-

(1) $A^{+2} < B^{+3} < C^{+4}$

(2) $A^{+2} = B^{+3} = C^{+4}$ (3) $A^{+2} > B^{+3} > C^{+4}$ (4) $B^{+3} < A^{+2} = C^{+4}$

Ans.

Successive ionisation energies of an element A are 100 eV, 150 eV, 181 eV, 2000 eV, 2200 eV correct statement regarding 15. A is:-

(1) Element 'A' may be metal

(2) Formula of oxide of A may be A₂O₃

(3) Oxide of element A may be amphoteric

(4) All are correct

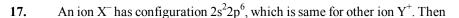
Ans. **(4)**

 $K \xrightarrow{a} K^+ \xrightarrow{b} K^{+2}$ **16.**

$$Ca \xrightarrow{c} Ca^+ \xrightarrow{d} Ca^{+2}$$

If a, b, c, d are ionisation energies, in the which of the following order is not correct –

(1) c > a


(2) b > a

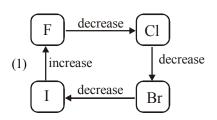
(3) d > c

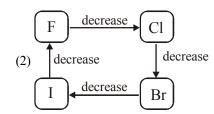
(4) b < d

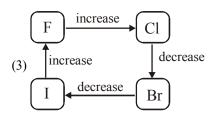
Ans.

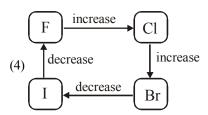
(4)

(1) IP of X = IP of Y


(2) EA of X = EA = Y


(3) IP of X > EA of Y^+


(4) IP of $X^- > IP$ of Y^+


Ans. (3)

18. Which of the following diagrams is correct related to electron affinity of halogens:-

Ans. (3)

- 19. Elements of which group from anions most readily:-
 - (1) Oxygen family
- (2) Nitrogen group
- (3) Halogens
- (4) Alkali metals

Ans. (3)

- **20.** Which is the weakest base among NaOH, Ca(OH)₂, KOH and Zn(OH)₂:-
 - (1) NaOH
- (2) KOH
- $(3) Ca(OH)_{2}$
- $(4) Zn(OH)_2$

Ans. (4)

- 21. If electron affinity of an element M is x kJ/mol than ionisation potential of this element:
 - (1) More than x
- (2) Less than x
- (3) Equal to x
- (4) More than 2x

Ans. (1)

- 22. Identify the incorrect are
 - (1) Shielding constant (σ) : Li \leq Na \leq K \leq Rb
- (2) Z_{eff} : Li > Na > K > Rb
- (3) Ionic radius $O^{2-} > F^{-} > Na^{+} > Mg^{2+}$
- (4) Atomic size : Li < Na < K < Rb

Ans. (2)

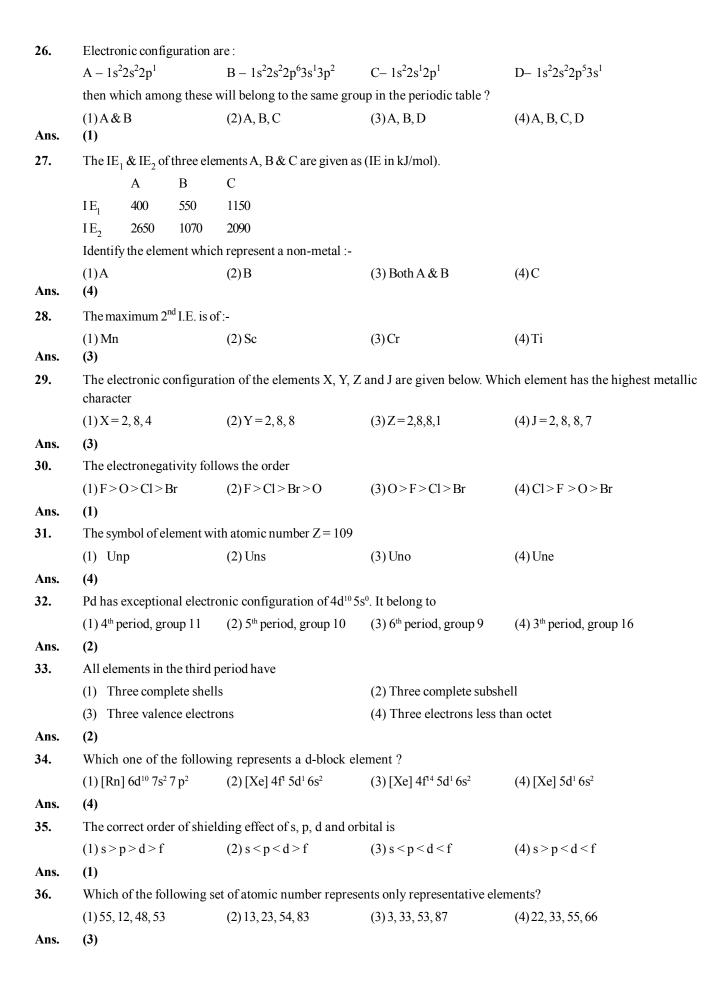
- 23. Compare magnetic moment of Mn, Mn⁺, Mn²⁺, Mn³⁺
 - (1) $Mn^{3+} > Mn > Mn^{2+} > Mn^+$

(2) $Mn^+ > Mn^{2+} > M^{3+} > Mn$

(3) $Mn = Mn^{2+} > Mn^{3+} > Mn^{+}$

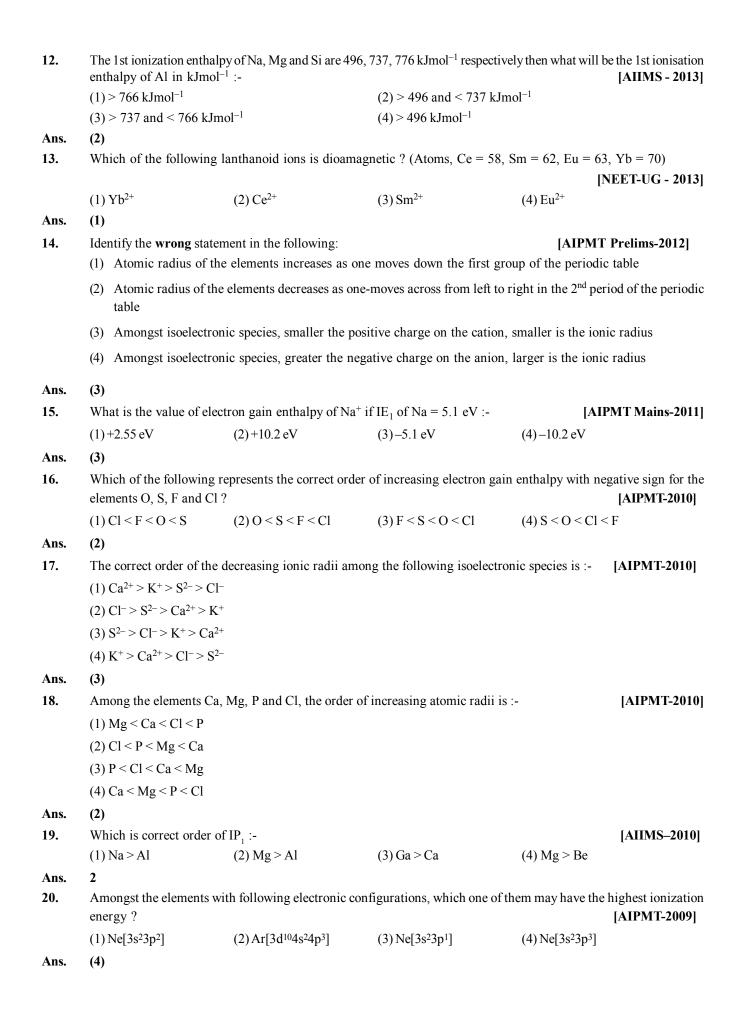
(4) $Mn^+ > Mn = Mn^{2+} > Mn^{3+}$

Ans. (4)


- 24. Arrange Cl, F, F⁻, Cl⁻ in increasing order of ionisation potential?
 - $(1) F^{-} < Cl^{-} < Cl < F$
- $(2) Cl^{-} < F^{-} < Cl < F$
- $(3) Cl^- < F^- < F < Cl$
- $(4) F^{-} < Cl^{-} < F < Cl$

Ans. (1)

(3)


- 25. The order of ionisation potential between He⁺ ion and H-atom (both species are in gaseous state) is:-
 - (1) I.P. $(He^+) = I.P. (H)$
- (2) I.P. $(He^+) < I.P. (H)$
- (3) I.P. $(He^+) > I.P. (H)$
- (4) Cannot be compared

Ans.

37.	Which of the following pairs of atomic numbers represents elements belonging to the same group?			
	(1) 11 and 20	(2) 12 and 30	(3) 13 and 31	(4) 14 and 33
Ans.	(3)			
38.	Total number of eler	ments present in 5th period	d of modern periodic table is	
	(1)2	(2)8	(3) 18	(4) 32
Ans.	(3)			
39.	In which of the follo	owing pairs the radii of sec	cond species is greater than the	hat of first?
	(1) K, Ca	(2) H, He	$(3) Mg^+, Mg^{2+}$	$(4) O^{2-}, O^{-}$
Ans.	(2)			
40.	The successive ioniz	zation energies for elemen	t X is given below	
	${\rm IE}_{\scriptscriptstyle 1}$:	$250kJmol^{-1}$		
	${\rm IE}_2$:	$820kJmol^{-1}$		
	\mathbb{E}_{3} :	$1100\mathrm{kJ}\mathrm{mol}^{-1}$		
	${\rm IE}_{\scriptscriptstyle 4}$:	$1400kJmol^{-1}$		
	Find out the number	r of valence electrons for the	ne element X.	
	(1)3	(2)4	(3)2	(4) 1
Ans.	(4)			
41.	If you are given Avo	ogadro's number of atoms	of a gas 'X'. If half of the ato	ms are converted into $X_{(g)}^{+}$ by energy ΔH .
	$(1) \frac{2\Delta H}{N_A}$	$(2) \frac{2N_A}{\Delta H}$	$(3) \frac{\Delta H}{2N_A}$	$(4) \frac{N_A}{\Delta H}$
Ans.	(1)			
42.	Find the formula of	halide of a metal whose suc	ecessive ionization enthalpies	are x, 2x, 5x, 100x kJ mol ⁻¹ respectively
	(1)MX	$(2) MX_{2}$	(3) MX ₃	$(4) \mathrm{M_2X}$
Ans.	(3)			
43.	Which of the follow	ring equation represents fir	rst enthalpy of ionization?	
	$(1) \operatorname{Hg}_{(S)} \longrightarrow \operatorname{Hg}^{+}_{(g)}$) + e ⁻	$(2) \operatorname{Hg}_{(l)} \longrightarrow \operatorname{Hg}^{+}_{(g)}$	+ e ⁻
	$(3) \operatorname{Hg}_{(g)} \longrightarrow \operatorname{Hg}^{+}_{(g)}$) + e ⁻	$(4) Hg^{+}_{(g)} \longrightarrow Hg_{(g)}$	$^{2+} + e^{-}$
Ans.	(3)			
44.	The energy required kJ mol ⁻¹ and 240 kJ		nt in 1.2 g magnesium to Mg ²	$^{+}$ ions if IE, and IE $_{2}$ of magnesium are 120
	$(1)18\mathrm{kJ}$	$(2)36 \mathrm{kJ}$	$(3)360\mathrm{kJ}$	$(4)24\mathrm{kJ}$
Ans.	(1)			
45.	Which of the follow	ing is correct order of meta	allic character for Si, Be, Mg,	Na and P?
	(1) P < Si < Be < Na	<mg< th=""><th>(2) P < Si < Be < Mg</th><th>< Na</th></mg<>	(2) P < Si < Be < Mg	< Na
	(3) Na > Be > Mg >	Be > P	(4) Na > Si > Mg > B	e > P
Ans.	(2)			

1.	The element $Z = 114$ has configuration:	been discovered recently. It	will belong to which of the f		and electronic NEET - 2017]
	(1) Halogen family, [Rn	$1] 5f^{14}6d^{10}7s^27p^5$			
	(2) Carbon family, [Rn]	$5f^{14}6d^{10}7s^27p^2$			
	(3) Oxygen family, [Rn]	$5f^{14}6d^{10}7s^27p^4$			
	(3) Nitrogen family, [Rr	$1 \int f^{14} 6 d^{10} 7 s^2 7 p^6$			
Ans.	(2)	, ,			
2.	Smallest ionic radius is:	; -		Ĺ	AIIMS - 2015]
	(1) La ⁺	$(2) U^{3+}$	$(3) \text{ Yb}^{3+}$	$(4) Cf^{3+}$,
Ans.	(4)			()	
3.	* *	likely to second IP of wh	nich element :-	L	AIIMS - 2015]
	(1) Be	(2) Ba	(3) Ca	(4) Zn	•
Ans.	(3)		(-)		
4.		ofAl with excluding bond	ed electron in aluminate ic	on [.	AIIMS - 2015]
	(1) [Ne]	(2) [Ar]	$(3) [Ne] 3s^2$	$(4) [Ar] 4s^2$	
Ans.	(1)	(=) [- 1]	(5) [1.0]55	(1)[12]	
5.		series It's atomic number is	s 64. Which of the following	is the correct electroni	c configuration
.	of Gadolinium?	series. It's atomic mamoer is	or it which of the following		AIPMT 2015]
	(1) [Xe] $4f^75d^16s^2$	(2) [Xe] $4f^65d^26s^2$	(3) [Xe] $4f^86d^2$	(4) [Xe] $4f^95s^1$	•
Ans.	(1)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		. ,	
6.	Because of lanthanoid contraction, which of the following pairs of elements have nearly same atomic radii? (Nu				ndii ? (Numbers AIPMT - 2015]
	(1) Zr (40) and Nb (41)	(2) Zr (40) and Hf (72)	(3) Zr (40) and Ta (73)	(4) Ti (22) and Zr ((40)
Ans.	(2)				
7.	The species Ar, K ⁺ and C	Ca ⁺ contain the same numb	per of electrons. In which o		crease ? AIPMT - 2015
	(1) $K^+ < Ar < Ca^{2+}$	(2) $Ar < K^+ < Ca^{2+}$	(3) $Ca^{2+} < Ar < K^+$	(4) $Ca^{2+} < K^+ < Ar$,
Ans.	(4)				
8.	Correct order of atomic	radius is :-0		[.	AIIMS - 2014]
	(1) V > Ti	(2) $C1 > S$	(3) Rb > Cs	(4) Ne > Be	
Ans.	(4)				
9.	Incorrect order of acidic	strength is:		Ĺ	AIIMS - 2014]
	(1) $H_2S > H_2Se$	(2) HI > HBr	(3) HBr > HCl	(4) $H_2 Te > H_2 S$,
Ans.	(1)			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
10.	Reason of lanthanoid co	ontraction is :-		Ĺ	AIPMT - 2014]
	(1) Negligible screening		(2) Increasing nuclear ch	•	,
	(3) Decreasing nuclear		(4) Decreasing screening	•	
Ans.	(1)	· <i>U</i> -	()	J	
11.		orders of ionic radii is corr	ectly represented 9	r	AIPMT - 2014]
11.	(1) $H^- > H^+ > H$	(2) $Na^+ > F^- > O^{2-}$	(3) $O^{2-} > F^{-} > Na^{+}$	$(4) Al^{3+} > Mg^{2+} > N$	_
Ans	(1) n > n > n (3)	(2) Na / I / U	(3) O / T / Na	(4) AI / IVIg / IV	

21.	[AIPMT-2007]				
	$(1) Ca^{2+} < Ar < K^{+} < Cl^{-} <$	S2-	$(2) Ca^{2+} < K^{+} < Ar < S^{2-} < Cl^{-}$		
	(3) $Ca^{2+} < K^+ < Ar < Cl^- <$	S ² -	$(4) Ar < Ca^{2+} < K^{+} < Cl^{-} < S^{2-}$		
Ans.	(3)				
22.	Which one of the following arrangements represents the correct order of electron gain enthalpy (with negative sign) of the given atomic species:- [AIPMT 2005]				
	(1) Cl < F < S < O	(2) O < S < F < Cl	(3) S < O < Cl < F	(4) F < C1 < O < S	
Ans.	(2)				
23.	The pair of amphoteric h	ydroxide is		[AIIMS-2005]	
	(1) Al $(OH)_3$, LiOH	$(2) \operatorname{Be(OH)}_{2}, \operatorname{Mg(OH)}_{2}$	$(3) B(OH)_3, Be(OH)_2$	$(4) \operatorname{Be(OH)}_{2}, \operatorname{Zn(OH)}_{2}$	
Ans.	4				
Quest	ion asked Prior to M	edical Ent. Exams. 200	05		
24.	Which one of the following arrangements represents the correct order of least negative to most negative electric gain enthalpy for C, Ca, Al, F and O?				
	(1) Ca < Al < C < O < F		(2) Al $<$ Ca $<$ O $<$ C $<$ F		
	(3) A1 < O < C < Ca < F		(4) $C < F < O < Al < Ca$		
Ans.	(1)	2 2	6 2 6 2 10 2		
25.	The electronic configuration of an element is $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^2$. What is the atomic number of the element, which is just below the above element in the periodic table?				
	(1) 36	(2) 49	(3) 50	(4) 54	
Ans.	(3)				
26.	Which of the following	ion is the largest in size?			
	$(1)K^{+}$	$(2) \operatorname{Ca}^{2+}$	(3) Cl ⁻	$(4) S^{2-}$	
Ans.	4				
27.	The ions O ²⁻ , F , Na ⁺ ,	Mg ²⁺ and Al ³⁺ are isoelec	tronic. Their ionic radii sh	ow [AIPMT 2003]	
	(1) an increase from O^2	to F— and then decrease	from Na ⁺ to Al ³⁺		
	(2) a decrease from O ² -	to F ⁻ and then increase t	from Na ⁺ to Al ³⁺		
	(3) a significant increas	e from O ²⁻ to Al ³⁺			
	(4) a significant decreas	se from O^{2-} to Al^{3+}			
Ans.	4				
28.	The liquidified metal exp	anding on solidification is		[AIIMS-2004]	
	(1) Ga	(2)Al	(3) Zn	(4) Cu	
Ans.	1				
29.	=	tion of inner transition eler			
	$(1) \text{ ns}^{1}$	14	(2) $ns^2np^5nd^{10}$		
A	(3) $ns^{0-2}(n-1)d^{1-10}(n-2)f^{1}$	-14	(4) $ns^2(n-1)d^{0-1}(n-2) f^{1-1}$	4	
Ans.	(4) Which of the following	has the smallest size 9			
30.	Which of the following (1) Al ³⁺		(3) Na ⁺	(4) $M\alpha^{2+}$	
Ana		$(2) F^{-}$	(3) Na	$(4) \mathrm{Mg}^{2^{+}}$	
Ans.	(1)				

31.	Which one of the following	ch one of the following is correct order of the size of aluminium species?						
	$(1) Al > Al^{+} > Al^{2+}$	$(2) Al^{2+} > Al^{+} > Al$	$(3) A l^{2+} = A l^{+} = A l$	(4) All of these				
Ans.	(1)	(1)						
32.	The first ionization potentials (eV) of N and O respectively are							
	(1) 8.29, 8.29	(2) 11.32, 11.32	(3) 8.29, 11.32	(4) 11.32, 8.21				
Ans.	(4)							
33.	Correct order of 1st ionization potential among elements Be, B, C, N, O is							
	(1) B < Be < C < O < N	(2) $B < Be < C < N < O$	(3) Be \leq B \leq C \leq N \leq O	(4) Be $<$ B $<$ C $<$ O $<$ N				
Ans.	(1)							
34.	An atom has electronic configuration $1s^2 2s^2 2p^6 3s^2 3p^6 3d^3 4s^2$, you will place it in which group of periodic table							
	(1) Fifth	(2) Fifteenth	(3) Second	(4) Third				
Ans.	(1)							
35.	Ionic radii are							
	(1) Inversely proportional to effective nuclear charge							
	(2) Inversely proportional to square of effective nuclear charge							
	(3) Directly proportional to effective nuclear charge							
A	(4) Directly proportional to square of effective nuclear charge							
Ans. 36.	(1)							
30.	Four successive members of the first row transition elements are listed below with their atomic numbers. Which one of them is expected to have the highest third ionisation enthalpy?							
	(1) Vanadium ($Z = 23$)	(2) Chromium ($Z = 24$)	(3) Manganese ($Z = 25$)	(4) Iron $(Z = 26)$				
Ans.	(3)							
37.	The element with highes	The element with highest electronegativity will belong to						
	(1) Period 2, group 17	(2) Period 3, group 17	(3) Period 2, group 18	(4) Period 2, group 1				
Ans.	(1)	(1)						
38.	The first, second and third ionisation energies of Al are 578, 1817 and 2745 kJ mol ⁻¹ respectively. Calculate the en required to convert all the atoms of Al to Al ⁺³ present in 270 mg of Al vapours.							
	(1) 5140 kJ	(2) 51.40 kJ	(3) 2745 kJ	(4) 514.0 kJ				
Ans.	(2)							
39.	The size of ionic species is correctly given in the order							
	$(1) Na^{+} > Mg^{2+} > Cl^{+7} > Si$		(2) $Na^{+} > Mg^{2+} > Si^{4+} > Cl$					
	(3) $Cl^{+7} > Si^{4+} > Mg^{2+} > 1$	Na ⁺	(4) $Cl^+ > Na^+ > Mg^{2+} > S$	i ⁴⁺				
Ans.	(2)							
40.		arding nature of the oxides						
	Column-I	Column-II						
	a. H ₂ O	(i) Basic						
	b. Na ₂ O	(ii) Amphoteric						
	c. ZnO d. SO ₃	(iii) Acidic (iv) Neutral						
	(1) a(ii), b(i), c(iii), d(iv)	(2) a(iv), b(i), c(iii), d(ii)	(3) a(iv), b(i), c(ii), d(iii)	(4) a(ii), b(i), c(iv), d(iii)				
Ans.	(3)	(2) u(11), v(1), v(11), u(11)	(5) u(11), b(1), b(11), u(111)	(1) w(11), O(1), O(11), U(111)				
41.	Be ²⁺ is isoelectronic with which of the following ions?							
	(1) H ⁺	(2) Li ⁺	(3) Na ⁺	$(4) \mathrm{Mg}^{2+}$				
Ans.	(2)	· /	· /	· , · •				

ASSERTION & REASON QUESTIONS

These questions consist of two statements each, printed as *Assertion* and *Reason*. While answering these Questions you are required to choose any one of the following four responses.

- A. If both Assertion & Reason are True & the Reason is a correct explanation of the Assertion.
- B. If both Assertion & Reason are True but Reason is not a correct explanation of the Assertion.
- C. If Assertion is True but the Reason is False.
- D. If both Assertion & Reason are False.
- **1. Assertion**: Hydrogen is called notorious element.

Reason: Hydrogen contains one electron in its valence shell.

Ans. E

2. Assertion: Atomic size of Cs and Fr is almost same.

Reason: Cs and Fr belongs to same group.

Ans. B

3. Assertion: Electronegativity of inert gas element is 'zero'.

Reason: Inert gas elements have stable electronic configuration.

Ans. B

4. Assertion : Properties of Beryllium is similar to that of Aluminium

Reason: Both the elements belongs to same group

Ans. C

5. **Assertion**: I.P. of first element in a period is minimum.

Reason: Effective nuclear charge of first element in a period is minimum

Ans. A

6. Assertion: Size of anion is larger than their parent atom.

Reason: Zeff of anion is greater than that of their parent atom.

Ans. C

7. Assertion: Stable electronic configuration do not affects electronegativity.

Reason: EN is tendency to attract shared electrons, not to gain electrons.

Ans. A

8. Assertion: In the Lothar Meyer curve alkali metal occupied Peak position on the curve.

Reason: Density of alkali metals is more.

Ans. C

9. Assertion: Atomic radius, down the group increases.

Reason: Effective nuclear charge down the group increases.

Ans. C

10. Assertion: Atomic radius of inert gases is largest in the period

Reason: Effective nuclear charge of inert gases is minimum

Ans. C

11. Assertion: Second IP of oxygen is greater than that of fluorine Reason: Oxygen aquires stable half filled electronic configuration after loosing one electron Ans. 12. Assertion: Electronegativity of nitrogen is greater than carbon. **Reason:** Nitrogen has stable half filled electronic configuration. Ans. В 13. Assertion: Alkali metals have least Ist I.P. in the respective period **Reason:** Alkali metals have only one electron in the valence shell. Ans. 14. Assertion: Ionisation potential of Li⁺ is greater than He. **Reason**: Zeff of Li⁺ is greater than He. Ans. A **Assertion**: 2nd IP of alkali metals is maximum in the period. 15. **Reason:** Alkali metals has smallest atomic size in the period. \mathbf{C} Ans. 16. Assertion: Combining capacity of zero group element is zero. **Reason:** Their valence shell is completely filled. A Ans. 17. Assertion: Atomic size along a period decreases. Reason: Zeff. in a period decreases. \mathbf{C} Ans. 18. Assertion: The Ist IP of Be is greater than that of B. **Reason**: 2p orbital is lower in energy than 2s. Ans. \mathbf{C} **19**. Assertion: First ionization energy of nitrogen is lower than oxygen. [AIIMS-2005] **Reason:** Across the period effective nuclear charge decreases. Ans. 20. Assertion: - H,S is less acidic than H,Te **Reason:** Te has larger radius than S [AIIMS-2011] В Ans. 21. **Assertion :-** La(OH), is more basic than Al(OH), **Reason :-** Al has no d-electron. [AIIMS-2012] Ans. 22. **Assertion :-** H₂Se is less acidic than H₂S. [AIIMS-2012] **Reason:** S is less electronegative than Se. D Ans. **23**. Assertion: Atomic radii decreases in a period upto halogen. Reason: van der Waal radii of Cl is larger than its covalent radii. В Ans.

24.

Ans.

 \mathbf{C}

Assertion: Na₂O is more basic than Al₂O₃.

Reason: Sodium is less electropositive than Aluminium.