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PREFACE TO THE FOURTH EDITION

THE main change from the third edition is that the chapter on quantum
electrodynamics has been rewritten. The quantum electrodynamics
given in the third edition describes the motion of individual charged
particles moving through the electromagnetic field, in close analogy
with classical electrodynamics. It is a form of theory in which the
number of charged particles is conserved and it cannot be generalized
to allow of variation of the number of charged particles.

In present-day high-energy physics the creation and annihilation
of charged particles is a frequent occurrence. A quantum electro-
dynamics which demands conservation of the number of charged
particles is therefore dut of touch with physical reality. So I have
replaced it by a quantum electrodynamics which includes creation and
annihilation of electron-positron pairs. This involves abandoning any
close analogy with classical electron theory, but provides a closer
description of nature. Itseems that the classical concept of an electron
is no longer a useful model in physics, except possibly for elementary
theories that are restricted to low-energy phenomena.

P.A M.D.

ST. JOHN’S COLLEGE, CAMBRIDGE
11 May 1957

(‘Quantum electrodynamics’) a!
interpretation and applicatiqas
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FROM THE
PREFACE TO THE FIRST EDITION

THE methods of progress in theoretical physics have undergone a
vast change during the present century. The classical tradition
has been to consider the world to be an association of observable
objects (particles, fluids, fields, etc.) moving about according to
definite laws of force, so that one could form a mental picture in
space and time of the whole scheme. This led to a physics whose aim
was to make assumptions about the mechanism and forces connecting
these observable objects, to account for their behaviour in the
simplest possible way. It has become increasingly evident in recent
times, however, that nature works on a different plan. Her funda-
mental laws do not govern the world as it appears in our mental
picture in any very direct way, but instead they control a substra-
tum of which we cannot form a mental picture without intro-
ducing irrelevancies. The formulation of these laws requires the use
of the mathematics of transformations. The important things in
the world appear as the invariants (or more generally the nearly
invariants, or quantities with simple transformation properties)
of these transformations. The things we are immediately aware of
are the relations of these nearly invariants to a certain frame of
reference, usually one chosen so as to introduce special simplifying
features which are unimportant from the point.of view of general
theory.

The growth of the use of transformation theo
relativity and later to the quantum theory
method in theoretical physics. Furt
of making our equations invariapg
formations. This state of affai
sophical point of view, as img

ncreasing recognition of thés>
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wviil PREFACE TO FIRST EDITION

arrival into the world, the newer concepts of physics can be mastered
only by long familiarity with their properties and uses.

From the mathematical side the approach to the new theories
presents no difficulties, as the mathematics required (at any rate that
which is required for the development of physics.up to the present) -
is not essentially different from what has been current for a consider-
able time. Mathematics is the tool specially suited for dealing with
abstract concepts of any kind and there is no limit to its power in this
field. For this reason a book on the new physics, if not purely descrip-
tive of experimental work, must be essentially mathematical. All the
same the mathematics is only a tool and one should learn to hold the
physical ideas in one’s mind without reference to the mathematical
form. In this book I have tried to keep the physics to the forefront,
by beginning with an entirely physical chapter and in the later work
examining the physical meaning underlying the formalism wherever
possible. The amount of theoretical ground one has to cover before
being able to solve problems of real practical value is rather large, but
this circumstance is an inevitable consequence of the fundamental
part played by transformation theory and is likely to become more
pronounced in the theoretical physics of the future.

With regard to the mathematical form in which the theory can be
presented, an author must decide at the outset between two methods.
There is the symbolic method, which deals directly in an abstract way
with the quantities of fundamental importance (the invariants, etc.,
of the transformations) and there is the method of coordinates or
representations, which deals with sets of numbers corresponding to
these quantities. The second of these has usually been used for the
presentation of quantum mechanics (in fact it has been used practi-
cally exclusively with the exception of Weyl’s book Gruppentheorie
und Quanienmechanik). It is known under one or other of the jg
names ‘Wave Mechanics’ and ‘Matrix Mechanics’ according to wii
physical things receive emphasis in the treatment, the statgs
system or its dynamical variables. It has the advantage that t!
of mathematics required is more familiar to the average studeg
also it is the historical method.
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PREFACE TO FIRST EDITION ix

developed. For this reason I have chosen the symbolic method,
introducing the representatives later merely as an aid to practical
calculation. This has necessitated a complete break from the histori-
cal line of development, but this break is an advantage through
enabling the approach to the new ideas to-be made as direct as

possible.
P.A.M.D.

ST. JOEN’S COLLEGE, CAMBRIDGE
29 May 1930
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I
THE PRINCIPLE OF SUPERPOSITION

1. The need for a quantum theory

CLASSIOAL mechanics has been developed continuously from the time
of Newton and applied to an ever-widening range of dynamical
systems, including the electromagnetic field in interaction with
matter. The underlying ideas and the laws governing their applica-
tion form a simple and elegant scheme, which one would be inclined
to think could not be seriously modified without having all its
attractive features spoilt. Nevertheless it has been found possible to
set up a new scheme, called quantum mechanics, which is more
suitable for the description of phenomena on the atomic scale and
which is in some respects more elegant and satisfying than the
classical scheme. This possibility is due to the changes which the
new scheme involves being of a very profound character and not
clashing with the features of the classical theory that make it-so
attractive, as a result of which all these features can be incorporated
in the new scheme.

The necessity for a departure from classical mechanics is clearly
shown by experimental results. In the first place the forces known
in classical electrodynamics are inadequate for the explanation of the
remarkable stability of atoms and molecules, which is necessary in
order tha.t materials may ha.ve any definite physma.l a.nd chemlca,l

disagreement with observation.
its equilibrium disturbed in any
in oscillation and the oscillaigs
ing electromagnetic field, so 8
with a spectroscope. Now
equilibrium, one would ex
quencies in a scheme comprisj
their harmonics. This is n
is observed a new and unexpec
called Ritz’s Combination La
the frequencies can be expressed 2

then left alone, it will be sd
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2 THE PRINCIPLE OF SUPERPOSITION §1

the number of terms being much less than the number of frequencies.
This law is quite unintelligible from the classical standpoint.

One might try to get over the difficulty without departing from
classical mechanics by assuming each of the spectroscopically ob-
served frequencies to be a fundamental frequency with its own degree
of freedom, the laws of force being such that the harmonic vibrations
do not ocour. Such a theory will not do, however, even apart from
the fact that it would give no explanation of the Combination Law,
since it would immediately bring one into conflict with the experi-
mental evidence on specific heats. Classical statistical mechanics
enables one to establish a general connexion between the total number
of degrees of freedom of an assembly of vibrating systems and its
specific heat. If one assumes all the spectroscopic frequencies of an
atom to correspond to different degrees of freedom, one would get a
specific heat for any kind of matter very much greater than the
observed value. In fact the observed specific heats at ordinary
temperatures are given fairly well by a theory that takes into account
merely the motion of each atom as a whole and assigns no internal
motion to it at all.

This leads us to a new clash between classical mechanics and the
results of experiment. There must certainly be some internal motion
in an atom to account for its spectrum, but the internal degrees of
freedom, for some classically inexplicable reason, do not contribute
to the specific heat. A similar clash is found in connexion with the
energy of oscillation of the electromagnetic field ina vacuum. Classical
mechanics requires the specific heat corresponding to this energy to
be infinite, but it is observed to be quite finite. A general conclusion
from experimental results is that oscillations of high frequency do
not contribute their classical quota to the specific heat.

As another illustration of the failure of classical mechanics we g9
consider the behaviour of light. We have, on the one hand
phenomena of interference and diffraction, which can be exglg
only on the basis of a wave theory; on the other, phenomena'8
photo-electric emission and scattering by free electrons, whick
that light is composed of small particles. These particll
are called photons, have each a definite energy and moment
pending on the frequency of the light, and appear to hay
real an existence as electrons, or any other particles known in p
A fraction of a photon is never observed.
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§1 THE NEED FOR A QUANTUM THEORY 3

Experiments have shown that this anomalous behaviour is not
peculiar to light, but is quite general. All material particles have
wave properties, which can be exhibited under suitable conditions.
We have here a very striking and general example of the breakdown
of classical mechanics—not merely aninaccuracy in its laws of motion,
but an inadequacy of its concepts to supply us with & description of
atomic events.

The necessity to depart from classical ideas when one wishes to
account for the ultimate structure of matter may be seen, not only
from experimentally established facts, but also from general philo-
sophical grounds. In a classical explanation of the constitution of
matter, one would assume it to be made up of a large number of small
constituent parts and one would postulate laws for the behaviour of
these parts, from which the laws of the matter in bulk could be de-
. duced. This would not complete the explanation, however, since the
question of the structure and stability of the constituent parts is left
untouched. To go into this question, it becomes necessary to postu-
late that each constituent part is itself made up of smaller parts, in
terms of which its behaviour is to be explained. There is clearly no
end to this procedure, so that one can never arrive at the ultimate
structure of matter on these lines. So long as big and small are merely
relative concepts, it is no help to explain the big in terms of the small.
It is therefore necessary to modify classical ideas in such a way as to
give an absolute meaning to size.

At this stage it becomes important to remember that science is

of observation is thus necessarily acd

of the object observéd. We maygdeist 3T A
disturbance accompanying our J ghdh of it may be neglecteé(s\
and small when the disturbange e ne lected This definition 2

is in close agreement with the
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4 THE PRINCIPLE OF SUPERPOSITION §1

and the smallness of the dccompanying disturbance—a limit which is
inherent in the nature of things and can never be surpassed by improved
technique or increased skill on the part of the observer. If the object under
observation is such that the unavoidable limiting disturbance is negli-
gible, then the object is big in the absolute sense and we may apply
classical mechanics to it. If, on the other hand, the limiting dis-
turbance is not negligible, then the object is small in the absolute
sense and we require a new theory for dealing with it.

A consequence of the preceding discussion is that we must revise
our ideas of causality. Causality applies only to a system which is
left undisturbed. If a system is small, we cannot observe it without
producing a serious disturbance and hence we cannot expect to find
any causal connexion between the results of our observations.
Causality will still be assumed to apply to undisturbed systems and
the equations which will be set up to describe an undisturbed system
will be differential equations expressing a causal connexion between
conditions at one time and conditions at a later time. These equations
will be in close correspondence with the equations of classical
mechanics, but they will be connected only indirectly with the results
of observations. There is an unavoidable indeterminacy in the calcu-
lation of observational results, the theory enabling us to calculate in
- general only the probability of our obtaining a particular result when
we make an observation.

2. The polarization of photons

The discussion in the preceding section about the limit to the
gentleness with which observations can be made and the consequent
indeterminacy in the results of those observations does not provide
any quantitative basis for the building up of quantum mechanics.
For this purpose a new set of accurate laws of nature is requirgd
One of the most fundamental and most drastic of these is the Princi}
of Superposition of States. We shall lead up to a general formuyladd
of this principle through a consideration of some special cases, 0
first the example provided by the polarization of light.

It is known experimentally that when plane-polarized ligh¥
for ejecting photo-electrons, there is a preferential direction f§
electron emission. Thus the polarization properties of light an
connected with its corpuscular properties and one must ascr
polarization to the photons. One must consider, for instance, g
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§2 THE POLARIZATION OF PHOTONS 6

of light plane-polarized in a certain direction as consisting of photons
each of which is plane-polarized in that direction and a beam of
circularly polarized light as consisting of photons each circularly
polarized. Every photon is in a certain state of polarization, as we
shall say. The problem we must now consider is how to fit in these
ideas with the known facts about the resolution of light into polarized
components and the recombination of these components.

Let us take a definite case. Suppose we have a beam oflight passing
through a crystal of tourmaline, which has the property of letting
through only light plane-polarized perpendicular to its optic axis.
Classical electrodynamiocs tells us what will happen for any given
polarization of the incident beam. If this beam is polarized per-
pendicular to the optic axis, it will all go through the crystal; if
parallel to the axis, none of it will go through; while if polarized at
an angle « to the axis, a fraction sin?x will go through. How are we
to understand these results on a photon basis?

A beam that is plane-polarized in a certain direction is o be
pictured as made up of photons each plane-polarized in that
direction. This picture leads to no difficulty in the cases when our
incident beam is polarized perpendicular or parallel to the optic axis.
We merely have to suppose that each photon polarized perpendicular
to the axis passes unhindered and unchanged through the crystal,
while each photon polarized parallel to the axis is stopped and ab-
sorbed. A difficulty arises, however, in the case of the obliquely
polarized incident beam. Each of the incident photons is then
obliquely polarized and it is not clear what willsRappg

A question about what will happ
certain conditions is not really very
must imagine some experiment
question and inquire what will b
questions about the results
and it is only such questions ¢

In our present example ¢
beam consisting of only & sin}
on the back side of the ¢
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6 THE PRINCIPLE OF SUPERPOSITION §2

finds a whole photon, it will be polarized perpendicular to the optic
axis. One will never find only a part of a photon on the back side.
If one repeats the experiment a large number of times, one will find ~
the photon on the back side in a fraction sin?x of the total number
of times. Thus we may say that the photon has a probability sin?«
of passing through the tourmaline and appearing on the back side
polarized perpendicular to the axis and a probability cos?«x of being
absorbed. These values for the probabilities lead to the correct
classical results for an incident beam containing a large number of
photons.

In this way we preserve the individuality of the photon in all
cases. We are able to do this, however, only because we abandon the .
determinacy of the classical theory. The result of an experiment is
not determined, as it would be according to classical ideas, by the
conditions under the control of the experimenter. The most that can
be predicted is a set of possible results, with a probability of occur-
rence for each.

The foregoing discussion about the result of an experiment with a
single obliquely polarized photon incident on a crystal of tourmaline
answers all that can legitimately be asked about what happens to an
obliquely polarized photon when it reaches the tourmaline. Questions
about what decides whether the photon is to go through or not and
how it changes its direction of polarization when it does go through
cannot be investigated by experiment and should be regarded as
outside the domain of science. Nevertheless some further description
is necessary in order to correlate the results of this experiment with
the results of other experiments that might be performed with
photons and to fit them all into a general scheme. Such furthe
description should be regarded, not as an attempt to answer questiony

rules for expressing concisely the results of large numbers of ey )
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§2 THE POLARIZATION OF PHOTONS 7

a certain special kind of relationship between the various states of
polarization, a relationship similar to that between polarized beams in
classical optics, but which is now to be applied, not to beams, but to
the states of polarization of one particular photon. This relationship
allows any state of polarization to be resolved into, or expressed as a
superposition of, any two mutually perpendicular states of polari-
zation.

When we make the photon meet a tourmaline crystal, we are sub-
jecting it to an observation. We are observing whether it is polarized
parallel or perpendicular to the optic axis. The effect of making this
observation is to force the photon entirely into the state of parallel
or entirely into the state of perpendicular polarization. It has to
make a sudden jump {from being partly in each of these two states to
being entirely in one or other of them. Which of the two states it will
jump into cannot be predicted, but is governed only by probability
laws. If it jumps into the parallel state it gets absorbed and if it
jumps into the perpendicular state it passes through the crystal and
appears on the other side preserving this state of polarization.

3. Interference of photons

In this section we shall deal with another example of superposition.
We shall again take photons, but shall be concerned with their posi-
tion in space and their momentum instead of their polarization. If
we are given a beam of roughly monochromatic light, then we know
something about the location and momentum of the associated
photons We know that each of them is o cate ere in the

equals frequency multiplied by

such information about the locade® momentum of a photon wev,~2
shall say that it is in a def cm\gtatzREGIS TERED ©
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vides of the interference d btons. Let uWR@"@Npen-
ment demonstrating interferdiibe. Suppose we have a beam of light

which is passed through sq ind of interfg DS INQ gets

split up into two component§knd,the two components are subse-

quently made to interfere. 8 1WA1'TERMW s

an incident beam consisting J gle photon and inquire what



8 THE PRINCIPLE OF SUPERPOSITION §3

will happen to it as it goes through the apparatus. This will present
to us the difficulty of the conflict between the wave and corpuscular
theories of light in an acute form.

Corresponding to the description that we had in the case of the
polarization, we must now describe the photon as going partly into
each of the two components into which the incident beam is split.
The photon is then, as we may say, in a translational state givenby the
superposition of the two translational states associated with the two
components. We are thus led to a generalization of the term ‘trans-
lational state’ applied to a photon. For a photon to be in a definite
translational state it need not be associated with one single beam of
light, but may be associated with two or more beams of light which
are the components into which one original beam has been split.t In
the accurate mathematical theory each translational state is associated
with one of the wave functions of ordinary wave optics, which wave
function may describe either a single beam or two or more beams
into which one original beam has been split. Translational states are
thus superposable in a similar way to wave functions.

Let us consider now what happens when we determine the energy
in one of the components. The result of such a determination must
be either the whole photon or nothing at all. Thus the photon must
change suddenly from being partly in one beam and partly in the
other to being entirely in one of the beams. This sudden change is
due to the disturbance in the translational state of the photon which
the observation necessarily makes. It is impossible to predict in which
of the two beams the photon will be found. Only the probability of
either result can be calculated from the previous distribution of the
photon over the two beams.

One could carry out the energy measurement without destroying the
component beam by, for example, reflecting the beam from a mow:

.ponents. So long as the photon is partly in one beam and i
the other, interference can occur when the two beams are supe VE R Sl ON
ADDS NO

but this possibility disappears when the photon is forced entj

+ The circumstance that the superposition idea requires us to ger®
original meaning of translational states, but that no corresponding generalizat!
needed for the states of polarization of the preceding section, is an accidg
with no underlying theoretical significance.




§3 INTERFERENCE OF PHOTONS 9

one of the beams by an observation. The other beam then no longer
enters into the description of the photon, so that it counts as being
entirely in the one beam in the ordinary way for any experiment that
may subsequently be performed on it.

On these lines quantum mechanics is able to effect a reconciliation
of the wave and corpuscular properties of light. The essential point
is the association of each of the translational states of a photon with
one of the wave functions of ordinary wave optics. The nature of this
agsociation cannot be pictured on a basis of classical mechanics, but
is something entirely new. It would be quite wrong to picture the
photon and its associated wave as interacting in the way in which
particles and waves can interact in classical mechanics. The associa-
tion can be interpreted only statistically, the wave function giving
us information about the probability of our finding the photon in any

“particular place when we make an observation of where it is.

Some time before the discovery of quantum mechanics people
realized that the connexion between light waves and photons must
be of a statistical character. What they did not clearly realize, how-
ever, was that the wave function gives information about the proba-
bility of one photon being in a particular place and not the prebable
number of photons in that place. The importance of the distinction
can be made clear in the following way. Suppose we have.a beam
of light consisting of a large number of photons split up into two com-
ponents of equal intensity. On the assumption that the intensity of
a beam is connected with the probable number of photons in it, we
should have half the total number of photons g igl each com-

require a photon in one component
the other. Sometimes these twoghg
another and other times they
This would contradict the cgpg
which connects the wave f
gets over the difficulty by mg
the two components. Ea
Interference between two di

The association of parj
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of universal applicability.
waves in this way and conve
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10 THE PRINCIPLE OF SUPERPOSITION §3

particles. Thus all particles can be made to exhibit interference
effects and all wave motion has its energy in the férm of quanta. The
reason why these general phenomena are not more obvious is on
account of a law of proportionality between the mass or energy of the
particles and the frequency of the waves, the coefficient being such
that for waves of familiar frequencies the associated quanta are
extremely small, while for particles even as light as electrons the
associated wave frequency is so high that it is not easy to demonstrate
interference.

4. Superposition and indeterminacy

The reader may possibly feel dissatisfied with the attempt in the
two preceding sections to fit in the existence of photons with the
classical theory of light. He may argue that a very strange idea has
been introduced—the possibility of a photon being partly in each of
two states of polarization, or partly in each of two separate beams—
but even with the help of this strange idea no satisfying picture of
the fundamental single-photon processes has been given. He may say
further that this strange idea did not provide any information about
experimental results for the experiments discussed, beyond what
could have been obtained from an elementary consideration of
photons being guided in some vague way by waves. What, then, is
the use of the strange idea?

In answer to the first criticism it may be remarked that the main
object of physical science is not the provision of pictures, but is the
formulation of laws governing phenomena and the application of
these laws to the discovery of new phenomena. If a picture exists,
50 much the better; but whether a picture exists or not is a matter
of only secondary importance. In the case of atomic phenomena
no picture can be expected to exist in the usual sense of the wo
‘picture’, by which is meant a model functioning essentiall
classical lines. One may, however, extend the meaning of the
‘picture’ to include any way of looking at the fundamental laws )
makes their self-consistency obvious. With this extension, o
gradually acquire a picture of atomic phenomena by becd
familiar with the laws of the quantum theory.

With regard to the second criticism, it may be remarked tI'®
many simple experiments with light, an elementary theory of v
and photons connected in a vague statistical way would be ade¥

VERSION
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§4 SUPERPOSITION AND INDETERMINACY 1

to account for the results. In the case of such experiments quantum
mechanics bas no further information to give. In the great majority
of experiments, however, the conditions are too complex for an
elementary theory of this kind to be applicable and some more
elaborate scheme, such as is provided by quantum mechanics, is then
needed. The method of description that quantum mechanics gives
in the more complex cases is applicable also to the simple cases and
although it is then not really necessary for accounting for the experi-
mental results, its study in these simple cases is perhaps a suitable
introduction to its study in the general case.

There remains an overall criticism that one may make to the whole
scheme, namely, that in departing from the determinacy of the
classical theory a great complication is introduced into the descrip-
tion of Nature, which is a highly undesirable feature. This complica-
tion is undeniable, but it is offset by a great simplification, provided
by the general principle of superposition of states, which we shall now
go on to consider. But first it is necessary to make precise the impor-
tant concept of a ‘state’ of a general atomic system.

Let us take any atomic system, composed of particles or bodies
with specified properties (mass, moment of inertia, etc.) interacting
according to specified laws of force. There will be various possible
motions of the particles or bodies consistent with the laws of force.:
Each such motion is called a staie of the system. According to
classical ideas one could specify a state by giving numerical values
to all the coordinates and velocities of the various component parts
of the system at some instant of time, the whole :

we cannot observe a small system wi : pl

classical theory supposes. The ling power of obser
puts a limitation on the numbe a,t can be assigned t(f?
state. Thus a state of an atomgi must be specified by fewer(s‘/

or more indefinite data thaf S@RE@I@%EREB %

for all the coordinates and velg l@at some instant of time. In the

case when the system is jus ngle photon,VERﬁf@nNcom-

pletely specified by a given Jnslational state in the sense of § 3

together with a given state olarization iﬂwsowo
A state of a system may be Ofined as an undisturbed motion that
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12 THE PRINCIPLE OF SUPERPOSITION §4

the conditions could be imposed by a suitable preparation of the
system, consisting perhaps in passing it through various kinds of
sorting apparatus, such as slits and polarimeters, the system being
left undisturbed after the preparation. The word ‘state’ may be
used to mean either the state at one particular time (after the
preparation), or the state throughout the whole of time after the
preparation. - To distinguish these two meanings, the latter will be
called a ‘state of motion’ when there is liable to be ambiguity.

The general principle of superposition of quantum mechanics
applies to the states, with either of the above meanings, of any one
dynamical system. It requires us to assume that between these
states there exist peculiar relationships such that whenever the
system is definitely in one state we can consider it as being partly
in each of two or more other states. The original state must be
regarded as the result of a kind of superposition of the two or more
new states, in a way that cannot be conceived on classical ideas. Any
state may be considered as the result of a superposition of two or
more other states, and indeed in an infinite number of ways. Con-
versely any two or more states may be superposed to give a new
state. The procedure of expressing & state as the result of super-
position of a number of other states is a mathematical procedure
that is always permissible, independent of any reference to physical
conditions, like the procedure of resolving a wave into Fourier com-
ponents. Whether it is useful in any particular case, though, depends
on the special physical conditions of the problem under consideration.

In the two preceding sections examples were given of the super-
position principle applied to a system consisting of a single photon.
§ 2 dealt with states differing only with regard to the polarization and
§ 3 with states differing only with regard to the motion of the photon
as a whole. . )

The nature of the relationships which the superposition princ
requires to exist between the states of any system is of a kigs
cannot be explained in terms of familiar physical concepts
cannot in the classical sense picture a system being partly i
two states and see the equivalence of this to the system b8
pletely in some other state. There is an entirely new idea in
to which one must get accustomed and in terms of which
proceed to build up an exact mathematical theory, without !
any detailed classical picture.

VERSION
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§4 SUPERPOSITION AND INDETERMINACY 13

When a state is formed by the superposition of two other states,
it will have properties that are in some vague way intermediate
between those of the two original states and that approach more or
less closely to those of either of them according to the greater or less
‘weight’ attached to this state in the superposition process. The new
state is completely defined by the two original states when their
relative weights in the superposition process are known, together
with a certain phase difference, the exact meaning of weights and
phases being provided in the general case by the mathematical theory.
In the case of the polarization of a photon their meaning is that pro-
vided by classical optics, so that, for example, when two perpendicu-
larly plane polarized states are superposed with equal weights, the
new state may be circularly polarized in either direction, or linearly
polarized at an angle %m, or else elliptically polarized, according to
the phase difference. h '

The non-classical nature of the superposition process is brought
out clearly if we consider the superposition of two states, 4 and B,
such that there exists an observation which, when made on the
system in state 4, is certain to lead to one particular result, a say, and
when made on the system in state B is certain to lead to some different
result, b say. What will be the result of the observation when made
on the system in the superposed state? The answer is that the result
will be sometimes ¢ and sometimes b, according to a probability law
depending on the relative weights of 4 and B in the superposition
process. It will never be different from both a and b. The inter-
mediate character of the state formed by superp
ttself through the probability of a pamcu g
being intermediate between the corresy
states,T not through the result_itsg
corresponding results for the or

In this way we see that_gug
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14 THE PRINCIPLE OF SUPERPOSITION §4

in general the result will not be determinate, i.e., if the experiment
is repeated several times under identical conditions several different
results may be obtained. It is & law of nature, though, that if the
experiment is repeated a large number of times, each particular result
will be obtained in a definite fraction of the total number of times, so
that there is a definite probability of its being obtained. This proba-
bility is what the theory sets out to calculate. -Only in special cases
when the probability for some result is unity is the result of the
experiment determinate.

The assumption of superposition relationships between the states
leads to a mathematical theory in which the equations that define
a state are linear in the unknowns. In consequence of this, people
have tried to establish analogies with systems in classical mechanics,
such as vibrating strings or membranes, which are governed by linear
equations and for which, therefore, a superposition principle holds.
Such analogies have led to the name ‘Wave Mechanics’ being some-
times given to quantum mechanics. It is important to remember,
however, that the superposition that occurs in quantum mechanics is
of an essentially different nature from any occurring in the classical
theory, as is shown by the fact that the quantum superposition prin-
ciple demands indeterminacy in the results of observations in order
to be capable of a sensible physical interpretation. The analogies are
thus liable to be misleading.

5. Mathematical formulation of the principle

A profound change has taken place during the present century in
the opinions physicists have held on the mathematical foundations
of their subject. Previously they supposed that the principles of
Newtonian mechanics would provide the basis for the descriptio
of the whole of physical phenomena and that all the theoretica
physicist had to do was suitably to develop and apply these pgi
ciples. With the recognition that there is no logical reason
Newtonian and other classical principles should be valid outside
domains in which they have been experimentally verified had
the realization that departures from these principles are ind
necessary. Such departures find their expression through theg
duction of new mathematical formalisms, new schemes of axIi0
and rules of manipulation, into the methods of theoretical physig

Quantum mechanics provides a good example of the new ideas®
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§5 MATHEMATICAL FORMULATION OF THE PRINCIPLE 15

requires the states of a dynamical system and the dynamical variables
to be interconnected in quite strange ways that are unintelligible
from the classical standpoint. The states and dynamical variables
have to be represented by mathematical guantities of different

_natures from those ordinarily used in physics. The new scheme
becomes a precise physical theory when all the axioms and rules of
manipulation governing the mathematical quantities are specified
and when in addition certain laws are laid down connecting physical
facts with the mathematical formalism, so that from any given
physical conditions equations between the mathematical quantities
may be inferred and vice versa. In an application of the theory one
would be given certain physical information, which one would pro-
ceed to express by equations between the mathematical quantities.
One would then deduce new equations with the help of the axioms
and rules of manipulation and would conclude by interpreting these
new equations as physical conditions. The justification for the whole
scheme depends, apart from internal consistency, on the agreement
of the final results with experiment.

We shall begin to set up the scheme by dealing with the mathe-
matical relations between the states of a dynamical system at one
instant of time, which relations will come from the mathematical
formulation of the principle of superposition. The superposition pro-
cess is a kind of additive process and implies that states can in some
way be added to give new states. The states must therefore be con-
nected with mathematical quantities of a kind which can be added

of a finite number of dimensions,
most of the dynamical systemsgdn g
make a generalization to vecto
dimensions, and the mathegad
by questions of convergence?
merely with some general prg
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16 THE PRINCIPLE OF SUPERPOSITION §6

dimensions. We shall call them ket vectors, or simply kets, and denote
a general one of them by a special symbol |>. If we want to specify
a particular one of them by a label, 4 say, we insert it in the middle,
thus |4). The suitability of this notation will become clear as the
scheme is developed.

Ket vectors may be multiplied by complex numbers and may be
added together to give other ket vectors, e.g. from two ket vectors
|4)> and | B> we can form

¢y |4>+c, |B) = |R), (1)

say, where ¢, and ¢, are any two complex numbers. We may also
perform more general linear processes with them, such as adding an
infinite sequence of them, and if we have a ket vector |x), depending
on and labelled by a parameter 2 which can take on all values in a
certain range, we may integrate it with respect to z, to get another

ket vector
[lyda=1@>  ~

say. A ket vector which is expressible linearly in terms of certain
others is said to be dependent on them. A set of ket vectors are called
independent if no one of them is expressible linearly in terms of the
others. ’

We now assume that each state of a dynamical system at a particular
time corresponds to a ket vector, the correspondence being such that if o
state results from the superposition of certain other states, its correspond-
ing ket vector is expressible linearly in terms of the corresponding ket
vectors of the other states, and conversely. Thus the state E results from
a superposition of the states 4 and B when the corresponding ket
vectors are connected by (1).

The above assumption leads to certain properties of the super-
position process, properties which are in fact necessary for the w4
‘superposition’ to be appropriate. When two or more states
superposed, the order in which they occur in the superp8
process is unimportant, so the superposition process is symme
between the states that are superposed. Again, we see from
(1) that (excluding the case when the coefficient ¢, or ¢, is 23
the state R can be formed by superposition of the states
then the state A can be formed by superposition of B and K,
can be formed by superposition of 4 and R. The superpgg
relationship is symmetrical between all three states 4, B, and
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§5 MATHEMATICAL FORMULATION OF THE PRINCIPLE 17

A state which results from the superposition of certain other
states will be said to be dependent on those states. More generally,
a state will be said to be dependent on any set of states, finite or
infinite in number, if its corresponding ket vector is dependent on
the corresponding ket vectors of the set of states. A set of states
will be called independent if no one of them is dependent on the
others.

To proceed with the mathematical formulation of the superposition
principle we must introduce a further assumption, namely the assump-
tion that by superposing a state with itself we cannot form any new
state, but only the original state over again. If the original state
corresponds to the ket vector |A), when it is superposed with itself
the resulting state will correspond to

¢y |44y {A> = (c1F-co) 4D, -

where ¢, and ¢, are numbers. Now we may have ¢;+¢, = 0, in which
case the result of the superposition process would be nothing at all,
the two components having cancelled each other by an interference
effect. Our new assumption requires that, apart from this special
cage, the resulting state must be the same as the original one, so that
(¢,+¢5)|A> must correspond to the same state that |4) does. Now
¢,+¢; is an arbitrary complex number and hence we can conclude
that if the ket wector corresponding to o state is multiplied by any
complex number, not zero, the resulting ket vector will correspond to the
same state. Thus a state is specified by the direction of a ket vector
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18 THE PRINCIPLE OF SUPERPOSITION §5

amplitude of oscillation everywhere, namely the state of rest, there
does not exist any corresponding state for a quantum system, the
zero ket vector corresponding to no state at all.

Given two states corresponding to the ket vectors |4) and |B),
the general state formed by superposing them corresponds to a ket
vector |R) which is determined by two complex numbers, namely
the coefficients ¢, and ¢, of equation (1). If these two coefficients are
multiplied by the same factor (itself a complex number), the ket
vector |R) will get multiplied by this factor and the corresponding
state will be unaltered. Thus only the ratio of the two coefficients
is effective in determining the state R. Hence this state is deter-
mined by one complex number, or by two real parameters. Thus
from two given states, a twofold infinity of states may be obtained
by superposition.

This result is confirmed by the examples discussed in §§ 2 and 3.
In the example of § 2 there are just two independent states of polari-
zation for a photon, which may be taken to be the states of plane
polarization parallel and perpendicular to some fixed direction, and
from the superposition of these two a twofold infinity of states of
polarization can be obtained, namely all the states of elliptic polari-
zation, the general one of which requires two parameters to describe
it. Again, in the example of § 3, from the superposition of two given
translational states for a photon a twotold infinity of translational
states may be obtained, the general one of which is described by two
parameters, which may be taken to be the ratio of the amplitudes
of the two wave functions that are added together and their phase
relationship. This confirmation shows the need for allowing complex
coefficients in equation (1). If these coefficients were restricted to be

given, there would be only a simple infinity of states obtainablg
the superposition.

6. Bra and ket vectors VER Sl ON

Whenever we have a set of vectors in any mathematical th
= ADDS NO

call the dual vectors. The procedure will be described for the
when the original vectors are our ket vectors.
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|4, i.e. to each ket vector |4} there corresponds one number ¢,
and suppose further that the function is & linear one, which means
that the number corresponding to |4A)+|4" is the sum of the
numbers corresponding to |4> and to [4>, and the number corre-
sponding to ¢[4) is ¢ times the number corresponding to [4), ¢
being any numerical factor. Then the number ¢ corresponding to
any |4) may be looked upon as the scalar product of that |4)> with
some new vector, there being one of these new vectors for each linear
function of the ket vectors |4). The justification for this way of
looking at ¢ is that, as will be seen later (see equations (5) and (6)),
the new vectors may be added together and may be multiplied by
numbers to give other vectors of the same kind. The new vectors
are, of course, defined only to the extent that their scalar products
with the original ket vectors are given numbers, but this is suffi-
cient for one to be able to build up a mathematical theory about
thera.

We shall call the new vectors bra vectors, or simply bras, and denote
a general one of them by the symbol (|, the mirror image of the
symbol for a ket vector. If we want to specify a particular one of
them by a label, B say, we write it in the middle, thus ¢B|. The
scalar product of a bra vector (B| and a ket vector |4> will be
written (B|4), i.e. as a juxtaposition of the symbols for the bra
and ket vectors, that for the bra vector being on the left, and the
two vertical lines being contracted to one for brevity.

One may look upon the symbols { and ) as a distinetive kind of
brackets. A scalar product (B|A4) now appears as 3

bracket expression. We have the i
expression denotes a number ange az
denotes a vector, of the bra or ket
the first or second part of the bzg

The condition that the sca
function of |4) may be expreg
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scalar product with every ket vector vanishing, the bra vector itself
must be considered as vanishing. In symbols, if

then , (Pj=0.
The sum of two bra vectors (B| and ( B’| is defined by the condition

that its scalar product with any ket vector |4) is the sum of the
scalar products of (B| and {(B’| with |4},

_ {KB|+<B/[}|A> = (BIA>+{(B'|4), ()
and the product of a bra vector (B| and a number ¢ is defined by the

condition that its scalar product with any ket vector |4) is ¢ times
. the scalar product of (B} with |4},

{c(B}|4D> = c(B|4). (6)

Equations (2) and (5) show that products of bra and ket vectors
satisfy the distributive axiom of multiplication, and equations (3)
and (6) show that multiplication by numerical factors satisfies the
usual algebraic axioms.

The bra vectors, as they have been here introduced, are quite a
different kind of vector from the kets, and so far there is no connexion
between them except for the existence of a scalar product of a bra
and a ket. We now make the assumption that there is a one-one
correspondence between the bras and the kets, such that the bra corre-
sponding to |AY+|A") is the sum of the bras corresponding to |4) and
to |A">, and the bra corresponding to ¢|A) is ¢ times the bra corre-
sponding to |A), ¢ being the conjugate complex number to c. We shall
use the same label to specify a ket and the corresponding bra. Thus
the bra corresponding to |4) will be written (4|.

The relationship between a ket vector and the corresponding
makes it reasonable to call one of them the conjugate imaginar,
the other. Our bra and ket vectors are complex quantities, singe
can be multiplied by complex numbers and are then of tiN
nature as before, but they are complex quantities of a specia
which cannot be split up into real and pure imaginary pe
usual method of getting the real part of a complex quant?
taking half the sum of the quantity itself and its conjugatg
be applied since a bra and a ket vector are of different natury
cannot be added together. To call attention to this distinctig
shall use the words ‘conjugate complex’ to refer to numb
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§6 BRA AND KET VECTORS 21

other complex quantities which can be split up into real and pure
imaginary parts, and the words ‘conjugate imaginary’ for bra and
ket vectors, which cannot. With the former kind of quantity, we
shall use the notation of putting a bar over one of them to get the
conjugate complex one.
On account of the one-one correspondence between bra vectors and
ket vectors, any state of our dynamical system at a particular time may
be specified by the direction of a bra vector just as well as by the direction
of @ ket vector. In fact the whole theory will be symmetrical in its
essentials between bras and kets.
Given any two ket vectors |4) and [B), we can construct from
them a number (B|A4) by taking the scalar product of the first with
the conjugate imaginary of the second. This number deperids linearly
_on |4) and antilinearly on |B), the antilinear dependence meaning

that the number formed from |B)-+|B’) is the sum of the numbers
formed from |B) and from |B’), and the number formed from ¢|B)
is ¢ times the number formed from |B). There is a second way in
which we can construct a number which depends linearly on [4) and
antilinearly on |B), namely by forming the scalar product of |B)
with the conjugate imaginary of |4) and taking the conjugate com-
plex of this scalar product. We assume that these two numbers are

always equal, i.e. (B|4> = {A|B>. (7)-

Putting |BY> = |4) here, we find that the number (4|4} must be
real. We make the further assumption
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22 THE PRINCIPLE OF SUPERPOSITION §6

say that two states of our dynamical system are orthogonal if the
vectors corresponding to these states are orthogonal.

The length of a bra vector (4| or of the conjugate imaginary ket
vector |4) is defined as the square root of the positive number
(A|4». When we are given a state and wish to set up a bra or ket
vector to correspond to it, only the direction of the vector is given
and the vector itself is undetermined to the extent of an arbitrary
numerical factor. It is often convenient to choose this numerical
factor so that the vector is of length unity. This procedure is called
normalization and the vector so chosen is said to be normalized. The
vector is not completely determined even then, since one can still
multiply it by any number of modulus unity, i.e. any number e
where y is real, without changing its length. We shall call such a
number a phase factor.

The foregoing assumptions give the complete scheme of relations
between the states of a dynamical system at a particular time. The
relations appear in mathematical form, but they imply physical
conditions, which will lead to results expressible in terms of observa-
tions when the theory is developed further. For instance, if two states
are orthogonal, it means at present simply a certain equation in our
formalism, but this equation implies a definite physical relationship
between the states, which further developments of the theory will
enable us to interpret in terms of observational results (see the
bottom of p. 35).
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DYNAMICAL VARIABLES AND OBSERVABLES

7. Linear operators
Ix the preceding section we considered a number which is a linear
function of a ket vector, and this led to the concept of a bra vector.
We shall now consider a ket vector which is a linear function of a
ket vector, and this will lead to the concept of a linear operator.

Suppose we have a ket |F)> which is a function of a ket |4}, ie.
to each ket |A) there corresponds one ket |F), and suppose further
that the function is a linear one, which means that the |F) corre-
sponding to |A>--|4’) is the sum of the |F)’s corresponding to 14>
and to |4">, and the |F) corresponding to ¢|4) is ¢ times the |F)
corresponding to |4), ¢ being any numerical factor. Under these
conditions, we may look upon the passage from |4} to |F) as the
application of a linear operator to |4). Introducing the symbol «
for the linear operator, we may write

|[F> = a|d),
in which the result of « operating on |4) is written like a product
of a with [4>. We make the rule that in such products the ket vector
must always be put on the right of the linear operator. The above
conditions of linearity may now be expressed by the equations
o |4+ 14} = ald>+al4, } O
ofe]dd} = caldd.

A linear operator is considered to be coq
result of its application to every ke
operator is to be considered zero if the
ket vanishes, and two linear opd
they produce the same result w.

Linear operators can he 4
operators being defined to be
on any ket, produces the
separately would produce.

ed to every ket.

Mﬁﬁs“'

of what t
5 o is defi
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Linear operators can also be multiplied together, the product of
two linear operators being defined as that linear operator, the appli-
cation of which to any ket produces the same result as the application
of the two linear operators successively.. Thus the product of is
defined as the linear operator which, operating on any ket |4),
changes it into that ket which one would get by operating first on
|4> with 8, and then on the result of the first operation with . In

symbols (oB}14> = affld)).

This definition appears as the associative axiom of multiplication for
the triple product of «, B, and [4), and allows us to write this triple
product as oB|4) without brackets. However, this triple product is
in general not the same as what we should get if we operated on |4)
first with o and then with B, i.e. in general oB}4 > differs from Bx|4),
so that in general «f must differ from Bx. The commutative aziom of
multiplication does not hold for linear operators. It may happen as a
special case that two linear operators £ and % are such that {7 and
7€ are equal. In this case we say that & commutes with 7, or that &
and n commute. '

By repeated applications of the above processes of adding and
multiplying linear operators, one can form sums and products of
more than two of them, and one can proceed to build up an algebra
with them. In this algebra the commutative axiom of multiplication
does not hold, and also the product of two linear operators may
vanish without either factor vanishing. But all the other axioms of
ordinary algebra, including the associative and distributive axioms
of multiplication, are valid, as may easily be verified.

If we take a number k£ and multiply it into ket vectors, it appears
as a linear operator operating on ket vectors, the conditions (1) bejg
fulfilled with % substituted for «. A number is thus a special case
a linear operator. It has the property that it commutes with alldd
operators and this property distinguishes it from a general
operator.

So far we have considered linear operators operating onl}

VERSION
ADDS NO



§7 LINEAR OPERATORS 25

defined depends linearly on { B|, so we may look upon it as the result of
some linear operator applied to (B|. This linear operator is uniquely
determined by the original linear operator « and may reasonably be
called the same linear operator operating on a bra. In this way our
linear operators are made capable of operating on bra vectors.

A suitable notation to use for the resulting bra when « operates on
the bra (B| is (B|w, as in this notation the equation which defines

Blai
(Blats «Bla}l4) = (Bl{a]d)) 3)

for any |4, which simply expresses the associative axiom of multi-
plication for the triple product of (B|, «, and |4)>. We therefore
make the general rule that in a product of a bra and a linear operator,
the bra must always be put on the left. We can now write the triple
product of {B|, «, and |4) simply as {(B|x|4)> without brackets. It
may easily be verified that the distributive axiom of multiplication
holds for products of bras and linear operators just as well as for
products of linear operators and kets.

There is one further kind of product which has a mea,nmg in our
scheme, namely the product of a ket vector and a bra vector with
the ket on the left, such as |4>{B]. To examine this produet, let us
multiply it into an arbitrary ket | P>, putting the ket on the right,

- and assume the associative axiom of multiplication. The product is
then }4>{B|P), which is another ket, namely |4)> multiplied by the
number {B|P), and this ket depends linearly on the ket |P>. Thus
|[A>{B| appears as a linear operator that can operate on kets. It

b Qs/cheme involving three km&?/
REGISTEREDO)
3 ways dlscussed above, and the
associative and distributi kioms of mu hold,
but the commutative axiom mult1phcat1on does not hold. In this
be rules of }M@edmg

section, that any complete ex essmn containing ¢ on the
left and ) on the right, dq : s

{Q|4A>¢{B|, which is the number
product [4>{B| is to be sharply
{B|A) of the same factors in jhe
being, of course, a number.
We now have a completegs

wrder, the latter
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With regard to the physical significance of the scheme, we have
already assumed that the bra vectors and ket vectors, or rather the
directions of these vectors, correspond to the states of a dynamical
system at a particular time. We now make the further assumption
that the linear operators correspond to the dynamical variables at that
time. By dynamical variables are meant quantities such as the
coordinates and the components of velocity, momentum and angular
momentum of particles, and functions of these quantities—in fact
the variables in terms of which classical mechanics is built up. The
new assumption requires that these quantities shall occur also in
quantum mechanics, but with the striking difference that they are
now subject to an algebra in which the commutative axiom of multiplica-
tion does not hold.

This different algebra for the dynamical variables is one of the
most important ways in which quantum mechanics differs from
classical mechanics. We shall see later on that, in spite of this funda-
mental difference, the dynamical variables of quantum mechanics
still: have many properties in common with their classical counter-
parts and it will be possible to build up a theory of them closely
analogous to the classical theory and forming a beautiful generaliza-
tion of it.

It is convenient to use the same letter to denote a dynamical
variable and the corresponding linear operator. In fact, we may con-
sider a dynamical variable and the corresponding linear operator to
be both the same thing, without getting into confusion.

8. Conjugate relations
Our linear operators are complex quantities, since one can multiply
them by complex numbers and get other quantities of the same natygs
Hence they must correspond in general to complex dynamical ve
ables, i.e. to complex functions of the coordinates, velocities, etg
need some further development of the theory to see what k
linear operator corresponds to a real dynamical variable.
Consider the ket which is the conjugate imaginary of ¢
ket depends antilinearly on (P| and thus depends linearly oy
It may therefore be considered as the result of some linear
operating on |P). This linear operator is called the adjoint of o
we shall denote it by a. With this notation, the conjugate ima
of (Plux is a|P). -
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In formula (7) of Chapter I put (P|a for (4| and its conjugate
imaginary &|P) for |A>. The result is

(Bl&|P) = {P|a|B). (4)

This is a general formula holding for any ket vectors |B), |P) and

any linear operator «, and it expresses one of the most frequently

used properties of the adjoint.

Putting a for « in (4), we get

(Bl|x|P) = {P|&|B) = {(Bla| P},
by using (4) again with |P) and |B) interchanged. This holds for
any ket | P}, so we can infer from (4) of Chapter I,
(Bla = (Bl
and since this holds for any bra vector (B|, we can infer
o= o

Thus the adjoint of the adjoint of a linear operator is the original linear
operator. This property of the adjoint makes it like the conjugate
complex of a number, and it is easily verified that in the special case
when the linear operator is a number, the adjoint linear operator is
the conjugate complex number. Thus it is reasonable to'assume that
the adjoint of a linear operator corresponds to the conjugate complex of
a dynamical variable. With this physical significance for the adjoint
of a linear operator, we may call the adjoint alternatively the con-
Jugate complex linear operator, which conforms with our notation &.

A linear operator may equal its adjoint, and ds theg called self-
adjoint. It corresponds to a real dynami : : it 1 be
called alternatively a real linear opcgs
be split up into a real part and a
reason the words ‘conjugate

4| =
so that 4> = &
The result is

(QIBa| Py =
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from (4). Since this holds for any | P> and (@|, we can infer that
Ba = of. (5)

Thus the conjugate complex of the product of two linear operators equals
the product of the conjugate complexes of the factors in the reverse order.
As simple examples of this result, it should be noted that, if £ and
7 are real, in general £7 is not real. This is an important difference
from classical mechanies. However, £4-+%¢€ isreal, and so is i(én—né).
Only when £ and 7 commute is £7 itself also real. Further, if £ is real,
then so is £2 and, more generally, £» with n any positive integer.

We may get the conjugate complex of the product of three linear
operators by successive applications of the rule (5) for the conjugate
complex of the product of two of them. We have

ofy = «fBy) = Bra = B4, (6)
80 the conjugate complex of the product of three linear operators
equals the product of the conjugate complexes of the factors in the
reverse order. The rule may easily be extended to the product of any
number of linear operators.

In the preceding section we saw that the product |A)>{B]is a linear
operator. We may get its conjugate complex by referring directly to
the definition of the adjoint. Multiplying |4>{B| into a general bra
{P| we get (P|A){B], whose conjugate imaginary ket is

(P|4}|B) = (A|P}|B) = |B)A|P).
Hence [AXB| = |By<4]. (7

We now have several rules concerning conjugate complexes and
conjugate imaginaries of products, namely equation (7) of Chapter I,
equations (4), (5), (6), (7) of this chapter, and the rule that the
conjugate imaginary of (P|xis &|P). These rules can all be summed

@&S‘

is obtained by taking the conjugate complex or conjugate imagin % RE GIS TERED /()¢
' VERSION
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verified to hold quite generally, also for the cases not explici
above.

TerorEM. If § is a real linear operator and
£m[ Py = 0
Jor a particular ket | P>, m being a positive integer, then
E\PY = 0.
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To prove the theorem, take first the case when m = 2. Equation
(8) then gives (P|&2|P> = 0,

showing that the ket £|P) multiplied by the conjugate imaginary bra

(P|¢ is zero. From the assumption (8) of Chapter I with £|P) for |[4),

we see that ¢| P)> must be zero. Thus the theorem is proved for m = 2.
Now take m > 2 and put

£m-?| Py = [@).
Equation (8) now gives &> = 0.
Applying the theorem for m = 2, we get

£l@> =0
or gm-1|Py = 0. (9)
By repeating the process by which equation (9) is obtained from
(8), we obtain successively .
2Py =0, {mPP)=0, .., £|P>=0, ¢£P)=0,

and so the theorem is proved generally. :

9. Eigenvalues and eigenvectors
We must make a further development of the theory of linear
operators, consisting in studying the equation
alPy = a|P), (10)
where « is a linear operator and a is a number. This equation usually
presents itself in the form that « is a known linear operator and the
number a and the ket |P) are unknowng Wh1 we Mive to try to
choose 50 as to satisfy (10), ignoring the
Equation (10) means that the li
|P)> just multiplies this ket byga
its direction, or else multiplies
to have a direction. This s3
in general change both the
be noticed that only the dire
(10). If one multiplies | P
the question of whether (10
Together with equatio
imaginary form of equation

ed to other kets will, of co

ﬁnm&m&m@
f [P is of i orta.nce in equation
any number v affect
g satisfied or not.

we should cAs@D]s tN@juga.te
WATERMARK)E

wns are the number b and

where b is a number. Here the
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non-zero bra {|. Equations (10) and (11) are of such fundamental
importance in the theory that it is desirable to have some special
words to describe the relationships between the quantities involved.
If (10) is satisfied, we shall call @ an eigenvaluet of the linear operator
a, or of the corresponding dynamical variable, and we shall call | P)
an eigenket of the linear operator or dynamical variable. Further, we
shall say that the eigenket | P) belongs to the eigenvalue a. Similarly,
if (11) is satisfied, we shall call b an eigenvalue of o and <Q| an
eigenbra belonging to this eigenvalue. The words eigenvalue, eigen-
ket, eigenbra have a meaning, of course, only with reference to a linear
operator or dynaimical variable.

Using this terminology, we can assert that, if an eigenket of « is
multiplied by any number not zero, the resulting ket is also an
eigenket and belongs to the same eigenvalue as the original one.
It is possible to have two or more independent eigenkets of a linear
operator belonging to the same eigenvalue of that linear operator,
e.g. equation (10) may have several solutions, | P1), | P2), | P3),... say,
all holding for the same value of a, with the various eigenkets | P1),
| P2, {P3),... independent. In this case it is evident that any linear
combination of the eigenkets is another eigenket belonging to the
same eigenvalue of the linear operator, e.g.

¢ |PL)+c, |P2)+-c5 [P3Y+...
is another solution of (10), where ¢, ¢,, ¢5,... are any numbers.

In the special case when the linear operator « of equations (10) and
(11) is & number, k say, it is obvious that any ket |P) and bra <@|
will satisfy these equations provided a and b equal k. Thus a number
considered as a linear operator has just one eigenvalue, and any ket
is an eigenket and any bra is an eigenbra, belonging to this eigenvalue,

The theory of eigenvalues and eigenvectors of a linear operator
which is not real is not of much use for quantum mechanics. W,
shall therefore confine ourselves to real linear operators for the ful
development of the theory. Putting for « the real linear operato
we have instead of equations (10) and (11)

§\P) = alP),
{Ql¢ = b6{Q|.

1 The word ‘proper’ is sometimes used instead of ‘eigen’, but this is not satisfag
as the words ‘proper’ and ‘improper’ are often used with other meanings. For exd
in §§ 15 and 46 the words ‘improper function’ and ‘proper-energy’ are used.
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" Three important results can now be readily deduced.
(i) The eigenvalues are all real numbers. To prove that a satisfying
(12) is real, we multiply (12) by the bra (P| on the left, obtaining

(P[¢|P) = alP|P).

Now from equation (4) with {B| replaced by (P| and « replaced by
the real linear operator ¢, we see that the number (P|£|P) must be
real, and from (8) of § 6, (P|P) must be real and not zero. Hence o
is real. Similarly, by multiplying (13) by |@> on the right, we can
prove that b is real.

Suppose we have a solution of (12) and we form the conjugate
imaginary equation, which will read

(Pl = alP|

in view of the reality of £ and a. This conjugate imaginary equation
now provides a solution of (13), with <¢| = (P| and b6 = a. Thus
we can infer

(ii) The eigenvalues associated with eigenkets are the same as the
eigenvalues associated with eigenbras.

(iii) T'he conjugate imaginary of any eigenket is an eigenbra belonging
to the same eigenvalue, and conversely. This last result makes it reason-
able to call the state corresponding to any eigenket or to the conjugate
imaginary eigenbra an eigenstate of the real dynamical variable £.

Eigenvalues and eigenvectors of various real dynamical variables
are used very extensively in quantum mechanics, so 1t is desura.ble
to have some systematic notation for labelld
is suitable for most purposes. If £ is_a reg
call its eigenvalues &', £, £, etc.
denoting a real dynamical variojgs
same letter with primes or an 1
namely an eigenvalue of whaged
vector may now be labelled B
Thus {£") denotes an eigenke
dynamical variable £, If i

ached denoting a numb

' itgelf denotes. An ei
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the algebraic expression yx,(£). Since the ¢’s are all different, x,(c,)
cannot vanish. Consider now the expression

pa)
Z X —1. (21)

If ¢, is substituted for ¢ here, every term in the sum vanishes except
the one for which r = s, since x,(¢) contains (£—c,) as a factor when
r % s, and the term for which 7 = 3 is unity, so the whole expression
vanishes. Thus the expression (21) vanishes when ¢ is put equal to
any of the n numbers ¢,,Cy,...,¢,. Since, however, the expression
is only of degree n—1 in £, it must vanish identically. If we now
apply the linear operator (21) to an arbitrary ket |P) and equate
the result to zero, we get

1Py = Z ()x,(fn (22)

Each term in the sum on the right here is, according to (19), an
eigenket of £, if it does not vanish. Equation (22) thus expresses the
arbitrary ket |P) as a sum of eigenkets of £, and thus (B) is proved.

As a simple example we may consider a real linear operator o that
satisfies the equation o = 1. (23)

Then o has the two eigenvalues 1 and —1. Any ket |P) can be
expressed as P> = 3(1+0)|P>+(1—0)| P>
It is easily verified that the two terms on the right here are eigenkets

of o, belonging to the eigenvalues 1 and —1 respectively, when they
do not vanish.

10. Observables

states and dynamical variables are to be represented mathematicd
in the theory. These assumptions are not, by themselves, lazg
nature, but become laws of nature when we make some I8 ee RE GIS TERE D O
assumptions that provide a physical interpretation of the th 1'53 ¢
Such further assumptions must take the form of establiskt VE RS ION
nexions between the results of observations, on one hand, a1
equations of the mathematical formalism on the other. A DDS N O
When we make an observation we measure some dynamical va ’
Tt is obvious physically that the result of such a measureme
always be a real number, so we should expect that any dyn3
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variable that we can measure must be a real dynamical variable.
One might think one could measure a complex dynamical variable
by measuring separately its real and pure imaginary parts. But this
would involve two measurements or two observations, which would
be all right in classical mechanics, but would not do in quantum
mechanics, where two observations in general interfere with one
another—it is not in general permissible to consider that two observa-
tions can be made exactly simultaneously, and if they are made in
quick succession the first will usually disturb the state of the system
and infroduce an indeterminacy that will affect the second. We
therefore have to restrict the dynamical variables that we can
measure to be real, the condition for this in quantum mechanics
being as given in § 8. Not every real dynamical variable can be
measured, however. A further restriction is needed, as we shall see
later.

We now make some assumptions for the physical interpretation of
the theory. If the dynamical system is in an eigenstate of a real
dynamical variable £, belonging to the eigenvalue £, then a measurement
of € will certainly give as result the number £'. Conversely, if the system
is tn a state such that a measurement of a real dynamical variable £ is
certain to give one particular result (instead of giving one or other of
several possible results according to a probability law, as is in general
the case), then the state is an eigenstate of £ and the result of the measure-
ment 1s the eigenvalue of ¢ to which this eigenstate belongs. These
assumptions are reasonable on account of the elgenva.lues of real
linear opera,tors being a,lwa.ys real numberg

variable £ belonging to the sgmag

belonging to the eigenvalue
more states for which a meas

€', then for any state formed Jil " osmorv W
of £ will still be certain to g1¥ sight
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When we measure a real dynamical variable £, the disturbance
involved in the act of measurement causes a jump in the state of the
dynamical system. From physical continuity, if we make a second
measurement of the same dynamical variable £ immediately after
the first, the result of the second measurement must be the same as
that of the first. Thus after the first measurement has been made,
there is no indeterminacy in the result of the second. Hence, after
the first measurement has been made, the system is in an eigenstate
of the dyrtamical variable £, the eigenvalue it belongs to being equal
to the result of the first measurement. This conclusion must still hold
if the second measurement is not actually made. In this way we see
that a measurement always causes the system to jump into an eigen-
state of the dynamical variable that is being measured, the eigenvalue
this eigenstate belongs to being equal to the result of the measure-
ment.

We can infer that, with the dynamical system in any state, any
result of a measurement of a real dynamical variable is one of its eigen-
values. Conversely, every eigenvalue is a possible result of a measure-
ment of the dynamical variable for some state of the system, since it is
certainly the result if the state is an eigenstate belonging to this
eigenvalue. This gives us the physical significance of eigenvalues.
The set of eigenvalues of a real dynamical variable are just the
possible results of measurements of that dynamical variable and the
calculation of eigenvalues is for this reason an important problem.

Another assumption we make connected with the physical inter-
pretation of the theory is that, if @ certain real dynamical variable
¢ is measured with the system in a particular state, the states into which
the system may jump on account of the measurement are such that the
original state is dependent on them. Now these states into whi
the system may jump are all eigenstates of £, and hence the orig?
state is dependent on eigenstates of £. But the original state gz
any state, so we can conclude that any state is dependent o
states of £. If we define a compleie set of states to be a set suck
any state is dependent on them, then our conclusion can B
lated—the eigenstates of £ form a complete set.

Not every real dynamical variable has sufficient eigenstatq
a complete set. Those whose eigenstates do not form comple®
are not quantities that can be measured. We obtain in thig
further condition that a dynamical variable has to satisfy i
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that it shall be susceptible to measurement, in addition to the con-
dition that it shall be real. We call a real dynamical variable whose
eigenstates form a complete set an observable. Thus any quantity
that can be measured is an observable.

The question now presents itself—Can every observable be
measured? The answer theoretically is yes. In practice it may he
very awkward, or perhaps even beyond the ingenuity of the experi-
menter, to devise an apparatus which could measure some particular
observable, but the theory always allows one to imagine that the
measurement can be made.

Let us examine mathematically the condition for a real dynamical
variable ¢ to be an observable. Its eigenvalues may consist of a
(finite or infinite) discrete set of numbers, or alternatively, they
may consist of all numbers in a certain range, such as all numbers
lying between a and b. In the former case, the condition that
any state is dependent on eigenstates of ¢ is that any ket can
be expressed as a sum of eigenkets of £. In the latter case the
condition needs modification, since one may have an integral instead
of a sum, i.e. a ket |P)> may be expressible as an integral of eigen-

ets ot & Py = [ 1> d¢, | 29

{€’> being an eigenket of £ belonging to the eigenvalue £’ and the
range of integration being the range of eigenvalues, as such a ket is
dependent on eigenkets of £. Not every ket dependent on eigenkets
of ¢ can be expressed in the form of the right-hand side of (24), since
one of the eigenkets itself cannot and more ge allyy sum of

complete set must thus be formula
expressed as an integral plus a ggm

where the |£'c), [érd) are all
inserted to distinguish them w,
and where the integral is t
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discrete set of numbers lying outside the range. In this case the
condition that £ shall be an observable is still that any ket shall be
expressible in the form of the right-hand side of (25), but the sum
over 7 is now a sum over the discrete set of eigenvalues as well as a
selection of those in the range.

It is often very difficult to decide mathematically whether a par-
ticular real dynamical variable satisfies the condition for being an
observable or not, because the whole problem of finding eigenvalues
and eigenvectors is in géneral very difficult. However, we may have
good reason on experimental grounds for believing that the dynamical
variable can be measured and then we may reasonably assume that it
is an observable even though the mathematical proof is missing. Thisis
a thing we shall frequently do during the course of development of the
theory, e.g. we shall assume the energy of any dynamical system to be
always an observable, even though it is beyond the power of present-
day mathematical analysis to prove it so except in simple cases.

In the special case when the real dynamical variable is a number,
every state is an eigenstate and the dynamical variable is obviously
an observable. Any measurement of it always gives the same result,
8o it is just a physical constant, like the charge on an electron.
A physical constant in quantum mechanics may thus be looked upon
either as an observable with a single eigenvalue or as a mere number
appearing in the equations, the two points of view being equivalent.

If the real dynamical variable satisfies an algebraic equation, then
the result (B) of the preceding section shows that the dynamical
variable is an observable. Such an observable has a finite number
of eigenvalues. Conversely, any observable with a finite number of
eigenvalues satisfies an algebraic equation, since if the obsérvable ¢
has as its eigenvalues &,£”,..., €7, then

(=€) (E—E€")..(¢—EMIP> =0
holds for | P) any eigenket of ¢, and thus it holds for any |P

ever, because any ket can be expressed as a sum of eigenked
on account of £ being an observable. Hence

(E—ENE—E)..(§—Em) = 0.
As an example we may consider the linear operator |4

|4> is & normalized ket. This linear operator is real according
and its square is

{LAXCATE = |AX<A|AXCA| = |AXA|
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since (4]4> = 1. Thus its square equals itself and so it satisfies an
algebraic equation and is an observable. Its eigenvalues are 1 and 0,
with |4) as the eigenket belonging to the eigenvalue 1 and all kets
orthogonal to |4} as eigenkets belonging to the eigenvalue 0. A
measurement, of the observable thus certainly gives the result 1 if
the dynamical system is in the state corresponding to |4> and the
result 0 if the system is in any orthogonal state, so the observable
may be described as the quantity which determines whether the
system is in the state |4) or not.

Before concluding this section we should examine the conditions
for an integral such as occurs in (24) to be significant. Suppose [X>
and | Y) are two kets which can be expressed as integrals of elgenkets
of the observable £,

X = [lezydg,  1T>= [ 1€y de,

z and y being used as labels to distinguish the two integrands. Then
we have, taking the conjugate imaginary of the first equation and
multiplying by the second

XY = [[ wlery) agag. (28)
Consider now the single integral

[ €igryy ag”. (20)

If the integrand is finite at this point.
if this holds for all &, we get from (3
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Taking |Y) = |X) above, we get the result that in general (¢'z|¢'z)
is infinitely great. We shall assume that if [£'z) £ 0

[ €=igrey ag” >0, (30)

as the axiom corresponding to (8) of § 6 for vectors of infinite
length.

" The space of bra or ket vectors when the vectors are restricted to

be of finite length and to have finite scalar products is called by

mathematicians a Hilbert space. The bra and ket vectors that we

now use form a more general space than a Hilbert space.

We can now see that the expansion of a ket | P} in the form of the
right-hand side of (25) is unique, provided there are not two or more
terms in the sum referring to the same eigenvalue. To prove this
result, let us suppose that two different expansions of |P) are pos-
sible. Then by subtracting one from the other, we get an equation

of the form 0= f [£'a> &' + 3 1€, (31)

a and b being used as new labels for the eigenvectors, and the sum
over s including all terms left after the subtraction of one sum from
the other. If there is & term in the sum in (31) referring to an eigen-
value ¢ not in the range, we get, by multiplying (31) on the left by
{€%| and using the orthogonality theorem,

0 = (£b|é>,
which contradicts (8) of § 6. Again, if the integrand in (31) does not
vanish for some eigenvalue £” not equal to any ¢ occurring in the

sum, we get, by multiplying (31) on the left by (£"a| and using the
orthogonality theorem,

0= [ <gralgay dt,

which contradicts (30). Finally, if there is a term in the sum in (3
referring to an eigenvalue £ in the range, we get, multiplying
the left by <&},

0= [ (Ebl¢'ad d’ +<EbIEb>
and multiplying (31) on the left by <{&a|
0 = [ (Galg'a) d’ +<glaléb).

Now the integral in (33) is finite, so (£a|£b) is finite and (£b4
finite. The integral in (32) must then be zero, so (£b|£h) is zelD
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we again have a contradiction. Thus every term in (31) must vanish
and the expansion of a ket |P) in the form of the right-hand side of
(25) must be unique.

11. Functions of observables

Let ¢ be an observable. We can multiply it by any real number k&
and get another observable k¢. In order that our theory may be
self-consistent it is necessary that, when the system is in a state such
that a measurement of the observable ¢ certainly gives the result £/,
a measurement of the observable k¢ shall certainly give the result k¢’.
It is easily verified that this condition is fulfilled. The ket correspond-
ing to a state for which a measurement of £ certainly gives the result
& is an eigenket of £, [£) say, satisfying

£Ey = €18,

kElg'> = k'€,

showing that [§") is an eigenket of k¢ belonging to the eigenvalue k¢’,
and thus that a measurement of k¢ will certainly give the result k£’

More generally, we may take any real function of ¢, f(¢) say, and
consider it as a new observable which is automatically measured
whenever £ is measured, since an experimenta,l determination of the
value of ¢ also provides the value of f(£). We need not restrict f(£) to
be real, and then its real and pure imaginary parts are two observables
which are automatically measured when £ is measured. Forthe theory
to be consistent it is necessary tha.t When the system is in a state

This equation leads to

for results the real and pure 1ma,g1na .
f(£) is expressible as a power segies
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for every eigenket |£'> of £, f(£’) being a number for each eigenvalue ¢'.
Tt is easily seen that this definition is self-consistent when applied to
eigenkets |¢'> that are not independent. If we have an eigenket |£'4)
dependent on other eigenkets of £, these other eigenkets must all
belong to the same eigenvalue £’, otherwise we should have an equa-
tion of the type (31), which we have seen is impossible. Onmultiplying
the equation which expresses |[¢’4) linearly in terms of the other
eigenkets of ¢ by f(£) on the left, we merely multiply each term in it
by the number f(£'), so we obviously get a consistent equation.
Further, equation (34) is sufficient to define the linear operator f(£)
completely, since to get the result of f(¢) multiplied into an arbitrary
ket |P), we have only to expand |P) in the form of the right-hand
side of (25) and take

f) P = f FE)E'e> dE' + 3 fE)Erd>. (35)

The conjugate complex f(£) of f(£) is defined by the conjugate
imaginary equation to (34), namely

E1fE) = FEKEL
holding for any eigenbra (£'|, f(£') being the conjugate complex
function to f(¢'). Let us replace ¢ here by ¢” and multiply the
equation on the right by the arbitrary ket |P). Then we get, using
the expansion (25) for | P,

EIfENPY = g€ | Py
= [Jercenigey g + Sferweied

= f FENE €y dE" +F(E7)<E" 7> (36)

with the help of the orthogonality theorem, (£"|£"d) being und¥
stood to be zero if £” is not one of the eigenvalues to which the terg
in the sum in (25) refer. Again, putting the conjugate co¥
function f(¢’) for f(¢’) in (35) and multiplying on the left by
we get
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NPy = f FE<E1gc> dg' +-FEE €D,

The right-hand side here equals that of (36), since the int®8
vanish for £ =% £”, and hence

EFENPY = &) P).
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This holds for <{¢”| any eigenbra and {P) any ket, so

f& =f¢. (37)
Thus the conjugate complex of the linear operator f(£) is the conjugate
complex function f of €.

1t follows as a corollary that if f(£¢') is a real function of &', f(£) is
a real linear operator. f(£) is then also an observable, since its
eigenstates form a complete set, every eigenstate of £ being also an
eigenstate of f(£).

With the above definition we are able to give a meaning to any
Sfunciion f of an observable, provided only that the domain of existence
of the funciion of a real variable f(x) includes all the eigenvalues of the
observable. If the domain of existence contains other points besides
these eigenvalues, then the values of f(z) for these other points will
not affect the function of the observable. The function need not be
analytic or continuous. The eigenvalues of a function f of an observ-
able are just the function f of the eigenvalues of the.observable.

It is important to observe that the possibility of defining a function
f of an observable requires the existence of a unique number f(x) for
each value of x which is an eigenvalue of the observable. Thus the
function f(z) must be single-valued. This may be illustrated by con-
sidering the question: When we have an observable f(4) which is a
real function of the observable A4, is the observable 4 a function of
the observable f(4)? The answer to this is yes, if different eigenvalues
A’ of A always lead to different values of f(4’). If, however, there
exist two different eigenvalues of 4, 4’ and g saygmsuch that
f(4") = f{A"), then, corresponding to thd{j
observable f(A4), there will not be a
able 4 and the latter will not be a £

It may easily be verified matH

\f rom the deﬁmtlon 4D
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~ the square root. The reciprocal of an observable exists if the observ-

have the eigenvalue zero, the reciprocal observable, which we call o
or «, will satisfy o’y = o' o', : (39)
where |o’) is an eigenket of « belonging to the eigenvalue o’. Hence
ac o'y = aa'ta'> = |,

Since this holds for any eigenket |a’)>, we must have

ol = 1, (40)
Similarly, o le = 1. (41)
Either of these equations is sufficient to determine o~ completely,

provided « does not have the eigenvalue zero. To prove this in the
casge of (40), let x be any linear operator satisfying the equation

ax =1
and multiply both sides on the left by the «~! defined by (39). The
result is e 1
ol =
and hence from (41) z = oL

Equations (40) and (41) can be used to define the reciprocal, when
it exists, of a general linear operator «, which need not even be real.
" One of these equations by itself is then not necessarily sufficient. If
any two linear operators o« and B8 have reciprocals, their product «f

has the reciprocal (o)t = B-1a, (42)

obtained by taking the reciprocal of each factor and reversing their
order. We verify (42) by noting that its right-hand side gives unity
when multiplied by of, either on the right or on the left. This reci-

two factors, i.e., (By.)t = ..p-18-1a"1,

The square root of an observable « always exists, and is T
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Novale'y = Vo'oY = o' o) = ala’D,
and since this holds for any eigenket |’ we must have

‘\/05'\/06 = K.
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On account of the ambiguity of sign in (43) there will be several
square roots. To fix one of them we must specify a particular sign
in (43) for each eigenvalue. This sign may vary irregularly from one
eigenvalue to the next and equation (43) will always define & linear
operator vu satisfying (44) and forming a square-root function of «.
If there is an eigenvalue of « with two or more independent eigenkets
belonging to it, then we must, according to our definition of a func-
tion, have the same sign in (43) for each of these eigenkets. If we
took different signs, however, equation (44) would still hold, and hence
equation (44) by itself is not sufficient to define Vo, except in the
special case when there is only one independent eigenket of « belong-
ing to any eigenvalue. ‘.

_The number of different square roots of an observable is 2%, where
n is the total number of eigenvalues not zero. In practice the square-
root function is used only for observables without negative eigen-
values and the particular square root that is useful is the one for
which the positive sign is always taken in (43). This one will be called
the positive square root.

12. The general physical interpretation

The assumptions that we made at the beginning of § 10 to get a
physical interpretation of the mathematical theory are of a rather
special kind, since they can be used only in connexion with eigen-
states. We need some more general assumption which will enable us
to extract physical information from the mathematics even when we
are not dealing with eigenstates.

In classical mechanics an observable :
value’ for any particular state of thd - RE? 11
tum mechanics corresponding o e any obserw ?e
and any two states x and y, cor Pndiy to the vectors (x| an
then we can form the n
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to apply, however, if we take the two states to be identical and |y)
to be the conjugate imaginary vector to {z|. The number that we
then get, namely {(z{¢|z}, is necessarily real, and also it is uniguely
determined when (x| is normalized, since if we multiply (x| by the
numerical factor e, ¢ being some real number, we must multiply
> by e~* and {(x|¢|x) will be unaltered.

One might thus be inclined to make the tentative assumption that
the observable £ ‘has the value’ {z|f|z) for the state z, in a sense
analogous to the classical sense. This would not be satisfactory,
though, for the following reason. Let us take a second observable 1,
which would have by the above assumption the value <{z|y|x) for
this same state. We should then expect, from classical analogy, that
for this state the sum of the two observables would have a value
equal to the sum of the values of the two observables separately and
the product of the two observables would have a value equal to the
product of the values of the two observables separately. Actually, the
tentative assumption would give for the sum of the two observables
the value {(z|é+n|z>, which is, in fact, equal to the sum of {z|¢|x)
and <z|n|z), but for the product it would give the value (z|éxnlx)
or {z|n€jx), neither of which is connected in any simple way with
(xlé|e> and (aln|e). /

However, since things go wrong only with the product and not with
the sum, it would be reasonable to call (z|¢|x) the average value of
the observable ¢ for the state x. This is because the average of the
sum of two quantities must equal the sum of their averages, but the
average of their product need not equal the product of their averages.
We therefore make the general assumption that if the measurement
of the observable £ for the system in the state corresponding to |x) is
made a large number of times, the average of all the results obtained wyg
be (x|f|z), provided |z is normalized. If |x) is not normalized, as }
necessarily the case if the state = is an eigenstate of some obserg
belonging to an eigenvalue in a range, the assumption becomes
the average result of a measurement of ¢ is proportional to
This general assumption provides a basis for a general physica!
pretation of the theory.

The expression that an observable ‘has a particular valud
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It may easily be verified from the algebra that, with this restricted
meaning for an observable ‘having a value’, if two observables have
values for a particular state, then for this state the sum of the two
observables (if this sum is an observablet) has a value equal to the
sum of the values of the two observables separately and the product
of the two observables (if this product is an observable}) has a value
equal to the product of the values of the two observables separately.

In the general case we cannot speak of an observable having a value
for a particular state, but we can speak of its having an average value
for the state.” We can go further and speak of the probability of its
having any specified value for the state, meaning the probability of
this specified value being obtained when one makes a measurement of
the observable. This probability can be obtained from the general
assumption in the following way.

Let the observable be ¢ and let the state correspond to the normal-
ized ket [z). Then the general assumption tells us, not only that the
average value of £ is (z|¢[z), but also that the average value of any
function of &, f(£) say, is {z|f(£)[). Take f(£) to be that function of &
which is equal to unity when £ = a, @ being some real number, and
zero otherwise. This function of £ has a meaning according to our
general theory of functions of an observable, and it may be denoted
by 8¢, in conformity with the general notation of the symbol 3 with
two suffixes given on p. 62 (equation (17)). The average value of
this function of £ is just the probability, P, say, of £ having the value

a. Thus P, = @lSeley. (45)

If @ is not an eigenvalue of £, 3;, multiplied
zero, and hence 3z, = 0 and F, = 0.@s
of § 10, that any result of a meagurey
one of its eigenvalues. /?
If the possible results of a meag % of ¢ form a range of num-ﬁS‘/

bers, the probability of £ ha e@EbR E@!S‘TERE E O
zero in most physical problems yvofp ¢

b@;ua,ntlt ysical Importance
is then the probability of £

g a value WiVER'%, say
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equal to the average value of that function of ¢ which is equal to
unity for ¢ lying within the range a to a+-da and zero otherwise.
This function of £ has a meaning according to our general theory of
functions of an observable. Denoting it by x(£), we bave

Pla) da = <z|x(£)lx)- (46)
If the range a to a-+da does not include any eigenvalues of £, we
have as above x(£) = 0 and P(a) = 0. If |x) is not normalized, the
right-hand sides of (45) and (46) will still be proportional to the
probability of £ having the value ¢ and lying within the range a to
a-da respectively.

The assumption of § 10, that a measurement of £ is certain to give
the result ¢ if the system is in an eigenstate of ¢ belonging to the
eigenvalue &', is consistent with the general assumption for physical
interpretation and can in fact be deduced from it. Working from the
general assumption we see that, if |£') is an eigenket of £ belonging
to the eigenvalue £, then, in the case of discrete eigenvalues of ¢,

85 16> =0 wunless a=¢,
and in the case of a range of eigenvalues of £
x(E)|€> = 0 unless the range a to a-}-da includes ¢£'.

In either case, for the state corresponding to [¢'), the probability of
£ having any value other than ¢’ is zero.

An eigenstate of ¢ belonging to an eigenvalue £’ lying in a range
is a state which cannot strictly be realized in practice, since it would
need an infinite amount of precision to get ¢ to equal exactly £'.
The most that could be attained in practice would be to get £ to lie
within a narrow range about the value £’. The system would then
be in a state approximating to an eigenstate of §. Thus an eigenstate
belonging to an eigenvalue in a range is a mathematical idealizatj
of what can be attained in practice. All the same such eigenstd
play a very useful role in the theory and one could not very we
without them. Science contains many examples of theoretic
cepts which are limits of things met with in practice and are
for the precise formulation of laws of nature, although they
realizable experimentally, and this is just one more of them.
be that the infinite length of the ket vectors corresponding
eigenstates is connected with their unrealizability, and that al
able states correspond to ket vectors that can be normalized ang
form a Hilbert space.
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13. Commutability and compatibility

A state may be simultaneously an eigenstate of two observables.
If the state corresponds to the ket vector [4) and the observables are
£ and 1, we should then have the equations

4> = ¢'14),
04> = 7'|4),

where £ and %" are eigenvalues of ¢ and 5 respectively. We can now
deduce
Enldd> = &y'|A) = &' |AD> = £9|4) = nf'|4) = 7£|4),

This suggests that the chances for the existence of a simultaneous
eigenstate are most favourable if £—7é = 0 and the two observables
commute. If they do not commute a simultaneous eigenstate is not
impossible, but is rather exceptional. On the other hand, if they do
commute there exist so many simultaneous eigenstates that they form a
complete set, as will now be proved.

Let ¢ and 1 be two commuting observables. Take an eigenket of -
1, |n’> say, belonging to the eigenvalue %', and expand it in terms
of eigenkets of ¢ in the form of the right-hand side of (25), thus

"> = [ lEm'ey &g + 3 era'd). (47)

The eigenkets of £ on the right-hand side here have »' inserted in
them as an extra label, in order to remind us that they come from
the expansion of a special ket vector, namel ; a general

one as in equation (25). We can now show
( "S
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(31), is impossible unless the integrand and every term in the sum
vanishes. Hence
(—)E7e> =0,  (—n)lE'd> =0,

so that all the kets appearing on the right-hand side of (47) are
eigenkets of 7 as well as of {. Equation (47) now gives |3’) expanded
in terms of simultaneous eigenkets of £ and 7. Since any ket can be
expanded in terms of eigenkets |9") of 7, it follows that any ket can
be expanded in terms of simultaneous eigenkets of ¢ and 7, and thus
the simultaneous eigenstates form a complete set.

The above simultaneous eigenkets of £ and v, [£'9'c) and |£75'd),
are labelled by the eigenvalues £ and %', or £ and v’, to which they
belong, together with the labels ¢ and d which may also be necessary.
The procedure of using eigenvalues as labels for simultaneous eigen-
vectors will be generally followed in the future, just as it has been
followed in the past for eigenvectors of single observables.

The converse to the above theorem says that, if ¢ and y are two
observables such that their simultaneous eigensiates form a complete set,
then ¢ and 7 commute. To prove this, we note that, if [¢'9") is a
simultaneous eigenket belonging to the eigenvalues £’ and 7,

(En—nE)lEn"> = (' =& = 0. (49)
Since the simultaneous eigenstates form a complete set, an arbitrary
ket | P> can be expanded in terms of simultaneous eigenkets [§'7"),
for each of which (49) holds, and hence
(En—né)|P> =0
and so En—nf = 0.

The idea of simultaneous eigenstates may be extended to more
than two observables and the above theorem and its converse still
hold, i.e. if any set of observables commute, each with all the othezs
their simultaneous eigenstates form a complete set, and conversd
The same arguments used for the proof with two observable
adequate for the general case; e.g., if we have three comr®
observables £, 7, {, we can expand any simultaneous eigenke

REGISTERED %
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The orthogonality theorem applied to simultaneous eigenkets tells
us that two simultaneous eigenvectors of a set of commuting observ-
ables are orthogonal if the sets of eigenvalues to which they belong
differ in any way.

Owing to the simultaneous eigenstates of two or more commuting
observables forming a complete set, we can set up a theory of func-
tions of two or more commuting observables on the same lines as the
theory of functions of a single observable given in § 11. If ¢, %, ...
are commuting observables, we define a general function f of them
to be that linear operator f(£, 7, {,...) which satisfies

JE L NEY D> =FE, 7,0 )ET D, (50)
where |£'9'{’...) is any simultaneous eigenket of £, ), {,... belouging
to the eigenvalues £',%',{’,.... Here f is any function such that

f(a,b,¢,...) is defined for all values of a,b,¢,... which are eigenvalues
of £€,1,{,... respectively. As with a function of a single observable
defined by (34), we can show that f(£,7,(,...) is completely deter-
mined by (50), that

f(f: 75 C:---) = f(fa s C;

corresponding to (37), and that if f(a,b,¢,...) is a real function,
f(&, m,¢,...) is real and is an observable.

We can now proceed to generalize the results (45) and (46). Given
a set of commuting observables £, 9, {,..., we may form that function
of them which is equal to unity when ¢ = a, n = b, { = ¢,..., 4, b,¢,..
being real numbers, and is equal to zero when any of these condltlons
is not fulfilled. This function may be wri g i
fact just the product in any order of the

of (50) The av
%ﬂ probability, P, say, o
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the requirement that this observable shall have exactly one value by
the requirement that it shall have a value lying within a small range,
which involves replacing one of the & factors in (51) by a factor like
the x(£) of equation (46). On carrying out such a replacement for
each of the observables £, 7, {,..., whose corresponding numerical
value a, b, ¢,... lies in a range of eigenvalues, we shall get a proba-
bility which does not in general vanish.

If certain observables commute, there exist states for which they all
have particular values, in the sense explained at the bottom of p. 46,
namely the simultaneous eigenstates. Thus one can give @ meaning to
several commuting observables having values at the same time. Further, we
see from (51) that for any state one can give a meaning to the probability
of particular results being obiained for simulianeous measurements of
several commuting observables. This conclusion is an important new
development. In general one cannot make an observation on a
system in a definite state without disturbing that state and spoiling
it for the purposes of a second observation. One cannot then give
any meaning to the two observations being made simultaneously.
The above conclusion tells us, though, that in the special case when
the two observables commute, the observations are to be considered
as non-interfering or compatible, in such a way that one can give a
meaning to the two observations being made simultaneously and can
discuss the probability of any particular results being obtained. The
two observations may, in fact, be considered as a single observation
of a more complicated type, the result of which is expressible by two
numbers instead of a single number. From the point of view of general
theory, any two or more commuting observables may be counted as a
single observable, the result of a measurement of which consists of two or
more numbers. The states for which this measurement is certais
lead to one particular result are the simultaneous eigenstates.
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REPRESENTATIONS

14. Basic vectors
Ix the preceding chapters we set up an algebraic scheme involving
certain abstract quantities of three kinds, namely bra vectors, ket
vectors, and linear operators, and we expressed some of the funda-
mental laws of quantum mechanics in terms of them. It would be
possible to continue to develop the theory in terms of these abstract
quantities and to use them for applications to particular problems.
However, for some purposes it is more convenient to replace the
abstract quantities by sets of numbers with analogous mathematical
properties and to work in terms of these sets of numbers. The proce-
dure is similar to using coordinates in geometry, and has the advan-
tage of giving one greater mathematical power for the solving of
particular problems.

The way in which the abstract quantities are to be replaced by
numbers is not unique, there being many possible ways corresponding
to the many systems of coordinates one can have in geometry. Each
of these ways is called a representation and the set of numbers that
replace an abstract quantity is called the representative of that
abstract quantity in the representation. Thus the representative of
an abstract quantity corresponds to the coordinates of a geometrical
object. When one has a particular problem to work out in qua.ntum
mecha,mcs one can minimize the 1a.bour by usinge

ties occurring in that problem are as

To set up a representation in g
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vanishing, and hence its scalar product with any bra whatever will
vanish and [a)— |a,) itself will vanish.

We may suppose the basic bras to be labelled by one or more
parameters, A, Ay,..., A, each of which may take on certain numerical
values. The basic bras will then be written (A, A,...A, | and the repre-
sentative of |a) will be written (A1 A4, |@). This representative will
now consist of a set of numbers, one for each set. of values that
A Ag,.., A, may have in their respective domains. Such a set of
numbers just forms a function of the variables A, A,,...,A,. Thus the
representative of a ket may be looked upon either as a set of numbers
or as a function of the variables used to label the basic bras.

If the number of independent states of our dynamical system is
finite, equal to n say, it is sufficient to take n basic bras, which may
be labelled by a single parameter A taking on the values 1,2, 3,...,%.
The representative of any ket [@)> now consists of the set of n numbers
(1lay, <2|a), {3|a),..., {(n|a), which are precisely the coordinates of
the vector |a) referred to a system of coordinates in the usual way.
The idea of the representative of a ket vector is just a generalization
of the idea of the coordinates of an ordinary vector and reduces to
the latter when the number of dimensions of the space of the ket
vectors is finite.

In a general representation there is no need for the basic bras to
be all independent. In most representations used in practice, how-
ever, they are all independent, and also satisfy the more stringent
condition that any two of them are orthogonal. The representation
is then called an orthogonal representation.

Take an orthogonal representation with basic bras {A;A,..A,],
labelled by parameters A;, A,,..., A, whose domains are all real. Take
a ket |a) and form its representative (A;A,...A,la). Now form the
numbers A;{A; A,...A,|a) and consider them as the representative
a new ket |b). This is permissible since the numbers forming
representative of a ket are independent, on account of the basi
being independent. The ket |6) is defined by the equation

Agdgendy |y = A QA Ap.A,, o).
The ket |b) is evidently a linear function of the ket |a), sog

be considered as the result of a linear operator applied to |a).
this linear operator L,, we have

16> = L, |a)>
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and hence QA Ay [ Ly ) = A A A [0,
This equation holds for any ket |a)>, so we get
A Age- Ay [ Ly = A A A A, 05

Equation (1) may be looked upon as the definition of the linear
operator L. It shows that each basic bra is an eigenbra of L,, the
value of the parameter A, being the eigenvalue belonging to it.
From the condition that the basic bras are orthogonal we can
deduce that L, is real and is an observable. Let Ay, A;,..., A, and
AL Ag,e-s Ay, be two sets of values for the parameters A, A,,...
We have, putting A”’s for the A’s in (1) and multiplying on the nght
by [2]A3...A;>, the conjugate imaginary of the basic bra <A{A;...A;l,
A A A Ly AT A5 A == A QA A A, A7 Ag. A,
Interchanging A”’s and A"’s,

M2z Ay Ly |2 2200 = AT A A A g ).
On account of the basic bras being orthogonal, the right-hand sides
here vanish unless A; = A, for all r from 1 to u, in which case the
right-band sides are equal, and they are also real, A; being real. Thus,
whether the A”’s are equal to the A”’s or not,

A Xl Ly [AT A 005 = AL g Ay Ly (A g A

= QXX LA 2. 0
from equation (4) of § 8. Since the (A A;...A;|’s form a complete seb
of bras and the |A{A5..A;>’s form a complete set of kets, we can
infer that L, = L,. The further condition required for L, to be an
observable, namely that its eigenstates shall form o i
obviously satisfied since it has as eigenb
form a complete set. ’
We can similarly introduce linear g
plying <A, A;...A,|a) by the facto
the resulting sets of numbers as rg
L’s can be shown in the same
and to be real and an observa,
eigenbras of all the I’s. S
complete set, it follows from 3
L’s commute.
It will now be shown that,
observables, we can set wp an or
bras are stimultaneous eigenbra$®

A, in turn and conslilzgj@
4 tlves of kets. Each of these
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there is only one independent simultaneous eigenbra of £, &,,..., ¢,
belonging to any set of eigenvalues £,&;,...,&,. Then we may take
these simultaneous eigenbras, with arbitrary numerical coefficients, as
our basic bras. They are all orthogonal on account of the orthogonality
theorem (any two of them will have at least one eigenvalue different,
which is sufficient to make them orthogonal) and there are sufficient
of them to form a complete set, from a result of § 13. They may
conveniently be labelled by the eigenvalues £, &,..., £, to which they
belong, so that one of them is written (£ &,...&,|.

Passing now to the general case when there are several independent
simultaneous eigenbras of £, £,,..., €, belonging to some sets of eigen-
values, we must pick out from all the simultaneous eigenbras belong-
ing to a set of eigenvalues £,;,..., &, a complete subset, the members
of which are all orthogonal to one another. (The condition of com-
pleteness here means that any simultaneous eigenbra belonging to the
. eigenvalues £,£;,...,¢, can be expressed linearly in terms of the
members of the subset.) We must do this for each set of eigenvalues
&,&,..., &, and then put all the members of all the subsets together
and take them as the basic bras of the representation. These bras
are all orthogonal, two of them being orthogonal from the orthogona.-
lity theorem if they belong to different sets of eigenvalues and from
the special way in which they were chosen if they belong to the same
set of eigenvalues, and they form altogether a complete set of bras,
as any bra can be expressed linearly in terms of simultaneous eigen-
bras and each simultaneous eigenbra can then be expressed linearly
in terms of the members of & subset. There are infinitely many ways
of choosing the subsets, and each way provides one orthogonal
representation.

For labelling the basic bras in this general case, we may use
eigenvalues £, £,..., &, to which they belong, together with certd
additional real variables A, ,..., A, say, which must be introdugas
distinguish basic vectors belonging to the same set of eigen¥
from one another. A basic bra is then written (£ &...6LA2
Corresponding to the variables Ay, 2,,...,A, we can defin¥
operators Ly, Ly,..., L, by equations like (1) and can show that,
linear operators have the basic bras as eigenbras, and that
real and observables, and that they commute with one anothe;
with the ¢’s. The basic bras are now simultaneous eigenbrag
the commuting observables £,, &,,..., £, Ly, Ly,..., L.
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Let us define a complete set of commuting observables to be a set of
observables which all commute with one another and for which there
is only one simultaneous eigenstate belonging to any set of eigen-
values. Then the observables £, &,,..., £, Ly, L,..., L, form a complete
set of commuting observables, there being only one independent simul-
taneous eigenbra belonging to the eigenvalues &, £5,..e, €1 Ay Agseens Ays
namely the corresponding basic bra. Similarly the observables
L, L,,..., L, defined by equation (1) and the following work form
a complete set of commuting observables. With the help of this
definition the main results of the present section can be concisely
formulated thus:

(i) The basic bras of an orthogonal representa.tlon are sioul-
taneous eigenbras of a complete set of commuting observ-
ables.

(ii) Given a complete set of commuting observables, we can set
up an orthogonal representation in which the basic bras are
simultaneous eigenbras of this complete set.

(iii) Any set of commuting observables can be made into a com-
plete commuting set by adding certain observables to it.

(iv) A convenient way of labelling the basic bras of an orthogonal
representation is by means of the eigenvalues of the complete
set of commuting observables of which the basic bras are
simultaneous eigenbras.

The conjugate imaginaries of the basic bras of a representation we
call the basic kets of the representation. Thus, if the basic bras are
denoted by (A;A,...A, |, the basic kets will Je :
The representative of a bra (b| is
each of the basic kets, i.e. by (b|A;
sentative of a ket, be looked upgs
function of the variables A;, A,,..

<blA;L A

showing that the representats
representative of the conjug
sentation, where the basic b
plete set of commuting o
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the basic vectors, rather than leave their lengths arbitrary, and so
introduce a further stage of simplification into the representation.
However, it is possible to normalize them only if the parameters
which label them all take on discrete values. If any of these para-
meters are continuous variables that can take on all values in a range,
the basic vectors are eigenvectors of some observable belonging to
eigenvalues in a range and are of infinite length, from the discussion
in § 10 (see p. 39 and top of p. 40). Some.other procedure is then
needed to fix the numerical factors by which the basic vectors may
be multiplied. To get a convenient method of handling this question
a new mathematical notation is required, which will be given in the
next section. ‘

15. The & function

Our work in § 10 led us to consider quantities involving a certain
kind of infinity. To get a precise notation for dealing with these
infinities, we introduce & quantity 8(x) depending on & parameter x
satisfying the conditions

_£ S(x)dx =1 @)

8(x) = 0forxz £ 0.

To get a picture of §(x), take a function of the real variable x which
vanishes everywhere except inside a small domain, of length ¢ say,
surrounding the origin # = 0, and which is so large inside this domain
. that its integral over this domain is unity. The exact shape of the
function inside this domain does not matter, provided there are no
unnecessarily wild variations (for example provided the function
is always of order ¢~1). Then in the limit € - 0 this function will
over into 8(z).

8(x) is not a funetion of z according to the usual mathemati
definition of a function, which requires a function to have a d8
value for each point in its domain, but is something more gegy
which we may call an ‘improper function’ to show up its d
from a function defined by the usual definition. Thus 3(z) is
quantity which can be generally used in mathematical anal
an ordinary function, but its use must be confined to certain sN
types of expression for which it is obvious that no inconsis
can arise.
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The most important property of §(z) is exemplified by the follow-
ing equation,

[ f@)3(@) dz = (0), 3)

where f(z) is any continuous function of z. We can easily see the
validity of this equation from the above picture of §(z). The left-
hand side of (3) can depend only on the values of f(x) very close
to the origin, so that we may replace f(x) by its value at the origin,
f(0), without essential error. Equation (3) then follows from the
first of equations (2). By making a change of origin in (3), we can
deduce the formula

[ fap@—a) do = f), @)

where a is any real number. Thus the process of multiplying a function
of = by 8(x—a) and integrating over all z is equivalent to the process of
substituting a for . This general result holds also if the function of z is
not a numerical one, but is a vector or linear operator depending on z.

The range of integration in (3) and (4) need not be from —co to oo,
but may be over any domain surrounding the critical point at which
the 8 function does not vanish. In future the limits of integration
will usually be omitted in such equations, it being understood that
the domain of integration is a suitable one.

Equations (3) and (4) show that, although an improper function
does not itself have a well-defined value, when it occurs as a factor
in an integrand the mtegra.l has a well defined va.lue In quantum

possible to rewrite the theory in a ff
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We may verify that this is equivalent to the previous definition by
substituting '(z) for 8(z) in the left-hand side of (3) and integrating
by parts. We find, for g, and g, two positive numbers,

g1
f f@)e' (@) da = [f@)e@)2,— [ f(@)elz) dz

bt L] -0
= flg)— f f'@)do
= f(0),

in agreement with (3). The 8 function appears whenever one differen-
tiates a discontinuous function.

There are a number of elementary equations which one can write
down about 8 functions. These equations are essentially rules of
manipulation for algebraic work involving & functions. The meaning
of any of these equations is that its two sides give equivalent results
as factors in an integrand.

Examples of such equations are

8(—z) = d(x) ’ (6)

zd(z) = 0, (7)

8(az) = a~*3(z) (a > 0), (8)

d(a2—a?) = Ja-{8(z—a)+d(x+a)} (a > 0), (9

f S(a—=) dz $(z—b) = S(a—b), (10)
f(@)3(x—a) = fla)d(z—a). (11)

Equation (6), which merely states that (z) is an even function of its
variable # is trivial. To venfy (7) take any continuous function of
z, f(z). Then

f f(z)zd(z) do = 0,

from (3). Thus z3(x) as a factor in an integrand is eqmvalent
zero, which is just the meaning of (7). (8) and (9) may be vq
by similar elementary arguments. To verify (10) take any contin
function of a, f(a). Then

f f(a) da f S(a—z) da S(x—b) = f S(z—b) d f f(a) da 8(a—=z)
= [ 8(e—b) dv f(z) = [ f(@) da 3

Thus the two sides of (10) are equivalent as factors in an integ
with @ as variable of integration. It may be shown in the same wa
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that they are equivalent also as factors in an integrand with b as
variable of integration, so that equation (10) is justified from either
of these points of view. Equation (11) is also easily justified, with
the help of (4), from two points of view.

Equation (10) would be given by an application of (4) with
f(x) = 8(x—b). We have here an illustration of the fact that we may
often use an improper function as though it were an ordinary con-
tinuous function, without getting a wrong result.

Equation (7) shows that, whenever one divides both sides of an
equation by a variable # which can take on the value zero, one
should add on to one side an arbitrary multiple of 8(x), i.e. from an

equation A4=RB (12)
one cannot infer Az = Bz,
but only Ajx = Blz+cd(z), (13)

where ¢ is unknown.
As an illustration of work with the § function, we may consider the
differentiation of log #. The usual formula

;—xlogw = % (14)
requires examination for the neighbourhood of z = 0. In order to
make the reciprocal function 1/z well defined in the neighbourhood
of z = 0 (in the sense of an improper function) we must impose on
it an extra condition, such as that its integral fromge—e tq
With this extra condition, the integral of i

from —e to e vanishes, while that of igae le

log (—1), so that (14) is not a correct &
remember that, taking principa
term ¢m for negative values of .
this pure imaginary term w
tiation of this pure imagina:
that (14) should read

VERSION
= i 8(x). (15)
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16. Properties of the basic vectors

Using the notation of the 8 function, we can proceed with the theory
of representations. Let us suppose first that we have a single observ-
able £ forming by itself a complete commuting set, the condition for
this being that there is only one eigenstate of £ belonging to any
eigenvalue £, and let us set up an orthogonal representation in which
the basic vectors are eigenvectors of ¢ and are written (¢'{, {€').

In the case when the eigenvalues of ¢ are discrete, we can normalize
the basic vectors, and we then have

Kl =0 (¢ #£)

E'ED = 1.
These equations can be combined into the single equation
CE'E7 = Bggn, (16)

where the symbol 8 with two suffixes, which we shall often use in the
future, has the meaning
8,,=0 when rss } (17)
=1 when 7r=s.

In the case when the eigenvalues of £ are continuous we cannot
normalize the basic vectors. If we now consider the quantity (£'|¢")"
with ¢ fixed and ¢” varying, we see from the work connected with
expression (29) of § 10 that this quantity vanishes for ¢” # £’ and
that its integral over a range of £” extending through the value &
is finite, equal to ¢ say. Thus

ElE = cd(E'—£")
From (30) of § 10, ¢ is a positive number. It may vary with £, so
we should write it ¢(£’) or ¢’ for brevity, and thus we have
CEIE = c'8(§—£").
Alternatively, we have
* KENE"> = c"3("—¢"),
where ¢” is short for ¢(¢”), the right-hand sides of (18) and (19)
equal on account of (11).

Let us pass to another representation whose basic vectd
eigenvectors of £, the new basic vectors being numerical m
the previous ones. Calling the new basic vectors <£'*|, [£'*),%
- additional label * to distinguish them from the previous ones, wg

EH =K, =K,

&5
s
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where %’ is short for k(¢’) and is a number depending on &. We get
EHE*y = K| = kE"e 8§ —¢")

with the help of (18). This may be written
CEXIE) = Ko 3(E —¢")

from (11). By choosing %’ so that its modulus is ¢'~-*, which is possible
since ¢’ is positive, we arrange to have

K| E"*) = 8(¢'—¢"). (20)
The lengths of the new basic vectors are now fixed so as to make the
representation as simple as possible. The way these lengths were
fixed is in some respects analogous to the normalizing of the basic
vectors in the case of discrete £, equation (20) being of the form of
(16) with the & function 8(¢'—¢") replacing the & symbol 8y of
equation (16). We shall continue to work with the new representation
and shall drop the * labels in it to save writing. Thus (20) will now

be written ENE = §(&—¢"). (21)

We can develop the theory on closely parallel lines for the discrete
and continuous cases. For the discrete case we have, using (16),

%' I€5<€"1E" = fZ 1§58 = 1€,

the sum being taken over all eigenvalues. This equation holds for
any basic ket |£”) and hence, since the basic kets form a complete set,

g €€ = L.

This is a useful equation expressing
basic vectors, namely, if (£ 48 mul]
resulting linear operator, summed
Equations (16) and (22) give the fi
vectors for the discrete case.

Similarly, for the continuous

[ &> ag <g1en
from (4) applied with a ket g

being the range of eigenvalli®
and hence

LDequals the unit operale
tal properties of the basic
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This is of the same form as (22) with an integral replacing the sum.
Equations (21) and (24) give the fundamental properties of the basic
vectors for the continuous case.

Equations (22) and (24) enable one to expand any bra or ket in
terms of the basic vectors. For example, we get for the ket | P) in the
discrete case, by multiplying (22) on the right by |P),

|P) = g 1€<E'| P>, ' (25)

which gives |P) expanded in terms of the |£')’s and shows that the
coefficients in the expansion are {¢'|P), which are just the numbers
forming the representative of |P). Similarly, in the continuous case,

1Py = [ 1&g at' <€'1P», (26)

giving |P) as an integral over the |£')’s, with the coefficient in the
integrand again just the representative (¢'|P) of |P). The conjugate
imaginary equations to (25) and (26) would give the bra vector {(P|
expanded in terms of the basic bras.

QOur present mathematical methods enable us in the continuous
case to expand any ket as an integral of eigenkets of £. If we do not
use the 8 function notation, the expansion of.a general ket will consist
of an integral plus a sum, as in equation (25) of § 10, but the 8 function
enables us to replace the sum by an integral in which the integrand
consists of terms each containing a § function as a factor. For
example, the eigenket |¢”) may be replaced by an integral of eigen-
kets, as is shown by the second of equations (23).

If (Q| is any bra and |P) any ket we get, by further applications

of (22) and (24),  (g|Py = 3, <QIEXE 1Py (27)

for discrete ¢’ and

\61 ERED ,/é\
QIP> = [ <QIE" d¢' &'\ P> '?’@

for continuous £’. These equations express the scalar product; 8
and |P) in terms of their representatives {@|£> and {¢'{P)._J&
tion (27) is just the usual formula for the scalar produc
vectors in terms of the coordinates of the vectors, and (28)
natural modification of this formula for the case of conti
with an integral instead of a sum.

The generalization of the foregoing work to the case whe
both discrete and continuous eigenvalues is quite straightforws
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Using £ and £8 to denote discrete eigenvalues and £ and ¢” to denote
continuous eigenvalues, we have the set of equations

D =8y, (LD =0, <EIED=8¢E—¢) (29)
as the generalization of (16) or (21). These equations express that
the basic vectors are all orthogonal, that those belonging to discrete
eigenvalues are normalized and those belonging to continuous eigen-

values have their lengths fixed by the same rule as led to (20). From
(29) 1%? can derive, as the generalization of (22) or (24),

T e+ e @l=1 (30)

the range of integra.tlon being the range of continuous eigenvalues.
With the help of (30), we get immediately

1By = S|P+ [ 1> ¢ €1P (31)
as the generalization of (25) or (26), and
QIP) = gE (QIE<E| P>+ f Q1€ dE’ €| P> - (32)

as the generalization of (27) or (28).

- Let us now pass to the general case when we have several commuting
observables £, &,,..., £, forming a complete commuting set and set up
an orthogonal representation in which the basic vectors are simul-
taneous eigenvectors of all of them, and are written <£,...£,|, |1.--£L>-
Let us suppose £,,&,,...,&, (v < u) have discrete eigenvalues and
£pi15--» €y have continuous eigenvalues.

Consider the quantity <(£;..&, &,
orthogonality theorem, it must va
s =v-+1,..,u. By extending t}
(29) of §10 to simultaneous ef

observables and extending § %ﬁ%ﬁ

(u—v)-fold integral of this q wﬁé&c‘go

a range extending through jldiialte £, is a % gl ber.
denoting th § m&l
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B our results b4 Q(S
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make ¢’ unity, by a procedure similar to that which led to (20). By
a further use of the orthogonality theorem, we get finally

(o Eulbl > = Bggr- B 8(Epn—Epua)-B(Eu—E),  (34)

with a two-suffix § symbol on the right-hand side for each £ with
discrete eigenvalues and a 8 function for each ¢ with continuous
eigenvalues. This is the generalization of (16) or (21) to the case when
there are several commuting observables in the complete set.

From (34) we can derive, as the generalization of (22) or (24)

2 [] Vit Ao Gl =1, (35)

the integral being a (w—v)-fold one over all the £”’s with continuous
eigenvalues and the summation being over all the £”’s with discrete
eigenvalues. Equations (34) and (35) give the fundamental properties
of the basic vectors in the present case. From (35) we can imme-
diately write down the generalization of (25) or (26) and of (27) or (28).

The case we have just considered can be further generalized by
allowing some of the £’s to have both discrete and continuous eigen-
values. The modifications required in the equations are quite straight-
forward, but will not be given here as they are rather cumbersome to
write down in general form.

There are some problems in which it is convenient not to make the
¢’ of equation (33) equal unity, but to make it equal to some definite
function of the £”s instead. Calling this function of the £”’s p'-* we
then have, instead of (34)

CGre bl > = P Bgie1-Og10: (12— Eusa)-B(Eu— &),
and instead of (35) we get

S jj &> o A8y dEy <Epbyl = 1.
ot

(36)

p' is called the weight funciion of the representation, p’df, )
being the ‘weight’ attached to a small volume element of theg
of the variables &,,4,.., &,
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the basic bras <£...£,| of the corresponding representation with the
weight function unity by

Crbu*l = o KEL L, (38)
as is eagily verified. An example of a useful representation with
non-unit weight function occurs when one has two £s which are
the polar and azimuthal angles 6 and ¢ giving a direction in three-
dimensional space and one takes p’ = sin §’. One then has the element
of solid angle sin 8’ df'd¢’ occurring in (37).

17. The representation of linear operators
In § 14 we saw how to represent ket and bra vectors by sets of
numbers. We now have to do the same for linear operators, in order
to have a complete scheme for representing all our abstract quantities
by sets of numbers. The same basic vectors that we had in § 14 can
be used again for this purpose.
Let us suppose the basic vectors are simultaneous eigenvectors of
a complete set of commuting observables £,¢,,...,¢,. If « is any
linear operator, we take a general basic bra <£;...£,| and a general
basic ket |£;...£,> and form the numbers
AT (39)
These numbers are sufficient to determine « completely, since in the
* first place they determine the ket «|f]...£,> (as they provide the
representative of this ket), and the value of this ket for all the basic
kets |§1’..'. > determines «. The numbers (39) are called the repre-
sentative of the linear operator « or of the dynamical variable «. They
are more complicated than the representative of gl
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where £1,£2, £3,.. are all the eigenvalues of ¢. Such an array is called
a matriz and the numbers are called the elements of the matrix. We
make the convention that the elements must always be arranged so
that those in the same row refer to the same basic bra vector and
those in the same column refer to the same basic ket vector.

An element {¢’|x|¢") referring to two basic vectors with the same
label is called a diagonal element of the matrix, as all such elements
lie on a diagonal. If we put « equal to unity, we have from (16) all
the diagonal elements equal to unity and all the other elements equal
to zero. The matrix is then called the unit matriz.

If « is real, we have

' |el€™> = (&"|al€D. (41)
The effect of these conditions on the matrix (40) is to make the
diagonal elements all real and each of the other elements equal the
conjugate complex of its mirror reflection in the diagonal. The matrix
is then called a Hermitian matriz.
If we put « equal to £, we get for a general element of the matrix
CEIEIE" = E'CE'IE") = & gy, (42)
Thus all the elements not on the diagonal are zero. The matrix is
then called a diagonal matriz. Its diagonal elements are just equal
to the eigenvalues of £. More generally, if we put « equal to f(¢), a
function of ¢, we get
CENENE™ = fE) e, (43)
and the matrix is again a diagonal matrix.
Let us determine the representative of a product of of two linear
operators o and B in terms of the representatives of the factors.
From equation (22) with £” substituted for ¢’ we obtain

EloplE”> = <§’|a§2m I€75<E" IBIE™S
= g, & |lEH<E"IBIE™,

which gives us the required result. Equation (44) shows thg
matrix formed by the elements ¢(&'[«B|£")> equals the prod
matrices formed by the elements (£'|«|£”) and {(£'|B}€") resped
according to the usual mathematical rule for multiplying
This rule gives for the element in the rth row and sth colum
product matrix the sum of the product of each element in
row of the first factor matrix with the corresponding element in

K
¢
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column of the second factor matrix. The multiplication of matrices
is non-commutative, like the multiplication of linear operators.

We can summarize our results for the case when there is only one
¢ and it has discrete eigenvalues as follows:

(i} Any linear operator is represented by a matriz.

(ii) The unit operator is represented by the unit mairix.

(i) A real linear operator is represenied by a Hermitian matrix.

(iv) ¢ and functions of £ are represented by diagonal matrices.

(v) The matriz representing the product of two linear operators s the

product of the matrices representing the two factors.

Let us now consider the case when there is only one ¢ and it has
continuous eigenvalues. The representative of o is now {£'|«|{"), a
function of two variables ¢’ and £” which can vary continuously. It
is convenient to call such a function a ‘matrix’, using this word in
a generalized sense, in order that we may be able to use the same
terminology for the discrete and continuous cases. One of these
generalized matrices cannot, of course, be written out as a two-
dimensional array like an ordinary matrix, since the number of its
rows and columns is an infinity equal to the number of points on &
line, and the number of its elements is an infinity equal to the
number of points in an area.

We arrange our definitions concerning these generalized matrices
so that the rules (i)-(v) which we had above for the discrete case
hold also for the continuous-case. The unit operator is represented
by 8(¢'—¢") and the generalized matrix formed by these elements
we define to be the wnit matriz. We still have eggati d
condition for « to be real and we define the 4
by the elements {£'|«x|¢") to be Hemd
condition. £ is represented by

KEIEIE
and f(¢) by EIfOE
and the generalized matrices
diagonal matrices. From (11
as the coefficients of 8(&'—
respectively. Corresponding

E'leBIE™

with an integral instead of g

matrix formed by the eleme
" '3506.57

oodlld oqually well have & and (&)

the right-hal/ ERG QM (50

pquation (44) we now have, from (24)

‘el d€” <AIQD SN O (47)
N WATERIARE &
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product of the matrices formed by <(£'|«|¢”)> and (¢&'|B[£">. With
these definitions we secure complete parallelism between the discrete
and continuous cases and we have the rules (i)-(v) holding for both.

The question arises how a general diagonal matrix is to be defined
in the continuous case, as so far we have only defined the right-hand
sides of (45) and (46) to be examples of diagonal matrices. One
might.be inclined to define as diagonal any matrix whose (£',£")
elements all vanish except when ¢ differs infinitely little from £7,
but this would not be satisfactory, because an important property
of diagonal matrices in the discrete case is that they always commute
with one another and we want this property to hold also in the
continuous case. In order that the matrix formed by the elements
{¢'|w|€"> in the continuous case may commute with that formed by
the elements on the right-hand side of (45) we must have, using the
multiplication rule (47),

[ <€ lolems dg gmsEn—¢r) = [ &5(¢'—¢") dg" ¢ lwlg".
With the help of formula (4), this reduces to
Elow[€DE" = £ |w]E (48)
or (§'—&")(E wl€") = 0.
This gives, according to the rule by which (13) follows from (12),
Elolé” = ' 8(¢'—£")
where ¢’ is a number that may depend on ¢. Thus (&'|w|€") is of the
form of the right-hand side of (46). For this reason we define only
matrices whose ebements are of the form of the right-hand side of (46) to
be diagonal matrices. It is easily verified that these matrices all

commute with one another. One can form other matrices whose
(€', ¢") elements all vanish when ¢ differs appreciably from ¢” a

introduce the derivative &§’(z) of the & function and &(§' —£”
then be an example, see § 22 equation (19)], but these other mat
are not diagonal according to the definition.

Let us now pass on to the case when there is only one ¢ and
both discrete and continuous eigenvalues. Using £,£¢ to g
discrete eigenvalues and £',£” to denote continuous eigenval®®
now have the representative of « consisting of four kinds of qua

ties, (& |x|€%), (&"|a|€"D, € |a]E™>, <€'||¢”>. These quantities c
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be put together and considered to form a more general kind of matrix
having some discrete rows and columns and also a continuous range
of rows and columns. We define unit matrix, Hermitian matrix,
diagonal matrix, and the product of two matrices also for this more
general kind of matrix so as to make the rules (i)-(v) still hold. The
details are a straightforward generalization of what has gone before
and need not be given explicitly.

Let us now go back to the general case of several ¢’s, £, &,,..., £,
The representative of «, expression (39), may still be looked upon as
forming a matrix, with rows corresponding to different values of
¢,...,&, and columns corresponding to different values of £i,..., £,
Unless all the £’s have discrete eigenvalues, this matrix will be of the
generalized kind with continuous ranges of rows and columns. We
again arrange our definitions so that the rules (i)-(v) hold, with rule
(iv) generalized to:

(iv') Bach &, (m = 1,2,...,u) and any function of them is repre-
sented by a diagonal matriz.

A diagonal matrix is now defined as one whose general element
&byl €. £ is of the form

o bulwlél £0> = ¢ 3gp1.86:8(E001— E0 1) B(EL—E1)  (49)

in the case when §,,.., £, have discrete eigenvalues and £,,,,.., £, have
continuous eigenvalues, ¢’ being any function of the ¢”’s. This defini-
tion is the generalization of what we had with one ¢ and makes
diagonal matrices always commute with one another. The other
definitions are straightforward and need not be gi X citly.

* We now have a linear operator always : ’
The sum of two linear operators is e
matrices representing the operators a ' detiier Ep; ie/
means that the matrices are subj8 ( Gﬁme algebraic relations
the linear operators. 1f any algebyg Stion holds between certam@

linear operators, the same eq s REGISTERED O
representing those operators. Q ¢
be extended VER S’@ pre-

The scheme of matrices
s. The matrices representing linear

sentatives of ket and bra vec
y with the sa,m Pﬂ?f'nd
p-onje correspondence between their

operators are-all square ma
%by settmgﬁWnumbers

columns, and with, in fact, 2
rows and columns. We may
|P) as a matrix with a sing®
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(&...€,| P> which form this representative one below the other. The
number of rows in this matrix will be the same as the number of
rows or columns in the square matrices representing linear operators.
Such a single-column matrix can be multiplied on the left by a square
matrix (&...&,|x|é1...£,> representing a linear operator, by a rule
similar to that for the multiplication of two square matrices. The
product is another single-column matrix with elements given by

] Gl 80D A8l 0L P

From (35) this is just equal to <(£;...£,]a|P)>, the. representative of
«|P). Similarly we may look upon the representative of a bra (@|
as a matriz with a single row by setting all the numbers {@|£;...&,>
side by side. Such a single-row matrix may be multiplied on the
right by a square matrix <&;...&, |«}é7...£,>, the product being another
single-row matrix, which is just the representative of <{Q|x. The
single-row matrix representing <¢| may be multiplied on the right
by the single-column matrix representing |P), the product being a
matrix with just a single element, which is equal to <@[P). Finally,
the single-row matrix representing <{Q| may be multiplied on the left
by the single-eolumn matrix representing |P), the product being a
square matrix, which is just the representative of [P><{@|. In this
way all our abstract symbols, linear operators, bra vectors, and ket
vectors, can be represented by matrices, which are subject to the
same algebraic relations as the abstract symbols themselves.

18. Probability amplitudes

Representations are of great importance in the physical interpreta-
tion of quantum mechanics as they provide a convenient method for
obtaining the probabilities of observables having given values.
§ 12 we obtained the probability of an observable having any spe
fied value for a given state and in § 13 we generalized this
and obtained the probability of a set of commuting observj
simultaneously having specified values for a given state. Le
apply this result to a complete set of commuting observables, s3
set of £’s which we have been dealing with already. Accoy
formula (51) of § 13, the probability of each £, having the Vo
for the state corresponding to the normalized ket vector {x) is

" VERSION
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If the ¢’s all have discrete eigenvalues, we can use (35) with v = %
and no integrals, and get

Fy.6,= g,zf, 18,4 8,41+ S5 Eud <1 £ul®d
) O 773

= > #0484 -Sg il Eud<ErLul®d

= (@|éy- Eud{rLuld
= [ Lul@d | (51)

We thus get the simple result that the probability of the £'s having the
values & is just the square of the modulus of the appropriate coordinate
of the normalized ket vector corresponding to the state concerned.

If the ¢'s do not all have discrete eigenvalues, but if, say, &,..,&,
have discrete eigenvalues and £,,,,.., £, have continuous eigenvalues,,
then to get something physically significant we must obtain the
probability of each ¢, (r = 1,..,v) having a specified value ¢, and each
¢, (s = v+1,..,u) lying in a specified small range &; to {,+dé,. For
this purpose we must replace each factor 8;,¢; in (50) by a factor x,,
which is that function of the observable £, which is equal to unity
for &, within the range &; to £,+d&; and zero otherwise. Proceeding
as before with the help of (35), we obtain for this probability ’

By, 08,008, = K& £ul0) |2 Ay Ay (52)

Thus in every case the probability distribution of values for the £'s is
given by the square of the modulus of the representative of the norma-
lized ket vector corresponding to the state congg

The numbers which form the repregents

probability, or a probability per
have continuous ranges of va

We may be interested in a st
be normalized. This occurs
of some observable belong
eigenvalues. The formula (5
the relative probability of
values lying in specified sma
ratios of the probabilities for,
may then be called relative proba¥

e state is an eigenstate
D an elgenval ‘f e of

br (52) can thep still be used to give
'S ha,vmg spAb
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The representation for which the above results hold is characterized
by the basic vectors being simultaneous eigenvectors of all the ¢’s.
It may also be characterized by the requirement that each of the £’s
shall be represented by a diagonal matrix, this condition being easily
seen to be equivalent to the previous one. The latter characterization
is usually the more convenient one. For brevity, we shall formulate
it as each of the £’s ‘being diagonal in the representation’.

Provided the ¢’s form a complete set of commuting observables,
the representation is completely determined by the characterization,
apart from arbitrary phase factors in the basic vectors. Each basic bra
<§;...£,| may be multiplied by e, where 9’ is any real function of
the variables £;,..., £,, without changing any of the conditions which
the representation has to satisfy, i.e. the condition that the £s are
diagonal or that the basic vectors are simultaneous eigenvectors of
the ¢’s, and the fundamental properties of the basic vectors (34) and
(35). With the basic bras changed in this way, the representative
(€Ul Py of a ket |P) gets multiplied by e, the representative
(Ql¢;...£,> of a bra (Q| gets multiplied by e~# and the representa-
tive (§;...8,|a|é]...€,> of a linear operator o gets multiplied by e,
The probabilities or relative probabilities (51), (52) are, of course,
unaltered.

The probabilities that one calculates in practical problems in
quantum mechanics are nearly always obtained from the squares
of the moduli of probability amplitudes or relative probability ampli-
tudes. Even when one is interested only in the probability of an
incomplete set of commuting observables having specified values, it
is usually necessary first to make the set a complete one by the
introduction of some extra commuting observables and to obtain
the probability of the complete set having specified values (as thg
square of the modulus of a probability amplitude), and then to sul
or integrate over all possible values of the extra observable
more direct application of formula (51) of §13 is usuall
practicable.

To introduce a representation in practice

(i) We look for observables which we would like to have diag,
either because we are interested in their probabilities
reasons of mathematical simplicity ;

(ii) We must see that they all commute—a necessary condj
since diagonal matrices always commute;
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(iii) We then see that they form a complete commuting set, and
if not we add some more commuting observables to them to
make them into a complete commuting set ;

(iv) We set up an orthogonal representation with this complete
commuting set diagonal.

The representation is then completely determined except for the
arbitrary phase factors. For most purposes the arbitrary phase
factors are unimportant and trivial, so that we may count the
representation as being completely determined by the observables
that are diagonal in it. This fact is already implied in our notation,
since the only indication in a representative of the representation to
which it belongs are the letters denoting the observables that are
diagonal.

It may be that we are interested in two representations for the
same dynamical system. Suppose that in one of them the complete
set of commuting observables §,,...,£, are diagonal and the basic
bras are <{¢;...§,| and in the other the complete set of commuting
observables 7,,...,7,, are diagonal and the basic bras are (n}...n}].
A ket |P) will now have the two representatives (£;...£,|P> and
Nyl Py, If &4,.., €, have discrete eigenvalues and £,,;,.., £, have
continuous eigenvalues and if #,,.., 7, have discrete eigenvalues and
Nz+10-: My DaVe continuous eigenvalues, we get from (35)

ool Py = 3, o[ ool B 86 8P, (59)
and interchanging £’s and #’s |

bl Py = 3 [ bl

.. QRE “' §
@h ive one representa
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transformation functions is the conjugate complex of the other, and
they satisfy the conditions

P2 f SR B ACREAY AN LRI AL o

= Smm 817,1),8("73:+1 TNz+1)- 8( — M) (56)
and the corresponding conditions with ¢’s and 7’s interchanged, as
may be verified from (35) and (34) and the corresponding equations
for the 7’s.

Transformation functions are examples of probability amplitudes
or relative probability amplitudes. Let us take the case when all the
&s and all the %’s have discrete eigenvalues. Then the basic ket
|n1.--mi> is normalized, so that its representative in the £-representa-
tion, <&;...£|m1.-. M, is a probability amplitude for each set of values
for the £”’s. The state to which these probability amplitudes refer,
namely the state corresponding to [7;...15,p, is characterized by the
condition that a simultaneous measurement of 7,..., n,, is certain to
lead to the results 7,..., 75, Thus [<{&1...E, 01 nwy|? I8 the proba-
bility of the &’s having the values ¢;...£, for the state for which the
n’s certainly have the values 7...n,,. Since

[<€1-+ Eulmeemod 1P = K ool Eud 1%
we have the theorem of reciprocity—the probability of the £'s having
the values &' for the state for which the n’s certainly have the values »'
18 equal fo the probability of the v’s having the values 7' for the state for
which the £s certamly have the values &'.

If all the %’s have discrete eigenvalues and some of the f s have
continuous eigenvalues, |<&;...&,|n1... 7, |2 still gives the probability
distribution of values for the £'s for the state for which the n’s cer-
tainly have the values 5’. If some of the »’s have continuous eigen-
values, |7;...1,) is not normalized and [<&]...&,|n1... 7> |% then give
only the relative probability distribution of values for the ¢’s for th
state for which the %’s certainly have the values %’

REGISTERED © 2
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19. Theorems about functions of observables
We shall illustrate the mathematical value of representatio
using them to prove some theorems.
TauoreM 1. A linear operator that commutes with an observd®
commutes also with any function of €.

The theorem is obviously true when the function is expressibIc #
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a power series. To prove it generally, let w be the linear operator,
so that we have the equation

(w—wé = 0. (57)
Let us introduce a represeﬁtation in which £ is diagonal. If £ by
itself does not form a complete commuting set of observables, we must
make it into a complete commuting set by adding certain observables,
B say, to it, and then take the representation in which £ and the 8’s
are diagonal. (The case when £ does form a complete commuting set
by itself can be looked upon as a special case of the preceding one
with the number of 8 variables zero.) In this representation equation

(57) becomes (B [fo—wtlg8" = 0,
which reduces to
§<EB w[€"B")—<EB [w|¢"BHE" = 0.
In the case when the eigenvalues of ¢ are discrete, this equation
shows that all the matrix elements (¢'8'|w|¢"B"> of w vanish except

those for which §' = £”. In the case when the eigenvalues of ¢ are
continuous it shows, like equation (48), that (£'8’'|w|¢”"8"> is of the

form EBwlEB" = oB( —¢"),

where ¢ is some function of £’ and the f”s and f”’s. In either case
we may say that the matrix representing w ‘ts diagonal with respect
to £, If f(£) denotes any function of £ in accordance with the general
theory of § 11, which requires f(£”) to be defined for £” any eigenvalue
of £, we can deduce in either case

JEKER |w|E"B">— (B |wlé"
This gives CEBfE) w—w
so that

and the theorem is proved.

As a special case of the
observable that commutes w
any function of £. This resu
we identify, as in §13, 4
observables with the conditi
ing observations. Any o
measurement of an observab
measurement of f(£), since s
a measurement of f(£).
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THEOREM 2. A linear operator that commutes with each of a complete
set of commuting observables is a function of those observables.

Let » be the linear operator and £, §,,..., ¢, the complete set of
commuting observables, and set up a representation with these
observables diagonal. Since w commutes with each of the £s, the
matrix representing it is diagonal with respect to each of the £’s,
by the argument we had above. This matrix is therefore a diagonal
matrix and is of the form (49), involving a number ¢’ which is a
function of the ¢”s. It thus represents the function of the £’s that
¢’ is of the £”’s, and hence w equals this function of the £’s.

THEOREM 3. If an observable £ and a linear operator g are such thai
any linear operator that commutes with ¢ also commutes with g, then g
18 a function of .

This is the converse of Theorem 1. To prove it, we use the same
representation with ¢ diagonal as we had for Theorem 1. In the first
place, we see that g must commute with ¢ itself, and hence the
representative of ¢ must be diagonal with respect to £, i.e. it must
be of the form

KEB'NgIE"B"> = al¢'BB")8¢e or al'BB)S(E'—E"),
according to whether ¢ has discrete or continuous eigenvalues. Now
let w be any linear operator that commutes with £, so that its
representative is of the form

ERwIE"B™> = bE'B BB or B(EBB)B(E—E")

By hypothesis w must also commute with g, so that

E'B lgo—wg|E"B"> = 0. (58)
If we suppose for definiteness that the 8’s have discrete eigenvalues,
(58) leads, with the help of the law of matrix multiplication, to

ﬁZ{a(f'ﬁ’ﬁ”')b(f'ﬁ”’ﬁ")-—b(f'ﬁ’ﬁ”’)a(f'ﬁ”’ﬁ")} =0,
the left-hand side of (58) being equal to the left-hand side
multiplied by 8g¢ or 8(¢'—¢”). Equation (59) must hold id
functions b(£'8'B"). We can deduce that
a¢'Bp") =0 for B'#p,
_a(EBB) = ale'B'B)-
The first of these results shows that the matrix representing

diagonal and the second shows that a(¢'8'8’) is a function of y
We can now infer that ¢ is that function of ¢ which a(¢'8'8") iSO
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so the theorem is proved. The proof is analogous if some of the 8’s
have continuous eigenvalues.

Theorems 1 and 3 are still valid if we replace the observable £ by
any set of commuting observables £;,&,,..,£,, only formal changes
being needed in the proofs.

20. Developments in notation

The theory of representations that we have developed provides a
general system for labelling kets and bras. Ina representation in which
the complete set of commuting observables &,,..., £, are diagonal any
ket | P) will have a representative <{£;...£,| P>, or (£'{P) for brevity.
This representative is a definite function of the variables ¢’, say $({’)
The function ¢ then determines the ket | P> completely, so it may be
used to label this ket, to replace the arbitrary label P. In symbols,
if 1Py = $iE) } 0
we put [P = [(£)>-
We must put |P) equal to [¢(£)> and not |(£')), since it does not
depend on a particular set of eigenvalues for the £’s, but only on the

form of the function 3.
With f(¢) any function of the observables §,,...,£,, f(§)|P> will
have as its representative

CEIfENPY = fIEW(E).
Thus according to (60) we put

FEIP> = [f(E)(6)>
With the help of the second of equations (g8

FEW(E)> = |k
@'&?—B@Q the

This is a general result holding for aj \
and it shows that the vertical &) necessary with the 9@
may be written simply ad$)

notation for a ket—either side

FEW(€)>. Thus the rule for ¢ ab tR)EGTSTERED %
. ; o2
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expressed as a function of the &’s multiplied into the standard ket.
For example, taking |P) in (62) to be the basic ket |£"), we find

€7 = Bg,g1--8¢, £ 3(Eprr—Evsa)--8(Eu—Eul> (63)
in the case when £,,.., £, have discrete eigenvalues and £,,;,.., §, have
continuous eigenvalues. The standard ket is characterized by the
condition that its representative (¢'[) is unity over the whole domain
of the variable &, as may be seen by putting s = 1 in (62).

A further contraction may be made in the notation, namely to
leave the symbol > for the standard ket understood. A ket is then
written simply as $:(¢), a function of the observables {. A function
of the £'s used in this way to denote a ket is called a wave funciion.t
The system of notation provided by wave functions is the one usually
used by most authors for calculations in quantum mechanics. In
using it one should remember that each wave function is understood
to have the standard ket multiplied into it on the right, which
prevents one from multiplying the wave function by any operator
on the right. Wave functions can be multiplied by operators only on
the left. This distinguishes them from ordinary functions of the £’s,
which are operators and can be multiplied by operators on either the
left or the right. A wave function is just the representative of a ket
expressed as a function of the observables ¢, instead of eigenvalues ¢’
for those observables. The square of its modulus gives the proba-
bility (or the relative probability, if it is not normalized) of the £’s
having specified values, or lying in specified small ranges, for the
corresponding state.

The new notation for bras may be developed in the same way as
for kets. A bra <Q| whose representative (@£ is $(£') we write
{$(¢)]. With this notation the conjugate imaginary to [B(E) is
(J(¢)|. Thus the rule that we have used hitherto, that a ket 3
its conjugate imaginary bra are both specified by the same labg
must be extended to read—if the labels of a ket involve cd
numbers or complex functions, the labels of the conjugate imagy
bra involve the comjugate complex numbers or functions. Ag
case of kets we can show that ($(£)|f(£) and {$(¢)f(£)] are the
so that the vertical line can be omitted. We can consider (g
the product of the linear operator $(£) into the standard bra &

+ The reason for this name is that in the early days of quantum mechanics

examples of these functions were of the form of waves. The name is not & des
one from the point of view of the modern general theory.
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is the conjugate imaginary of the standard ket . We may leave
the standard bra understood, so that a general bra is written as ¢(¢),
the conjugate complex of a wave function. The conjugate complex
of a wave function can be multiplied by any linear operator on the
right, but cannot be multiplied by a linear operator on the left. We
can construet triple products of the form (f(£)). Such a triple product
is a number, equal to f(¢) summed or integrated over the whole
domain of eigenvalues for the £’s,

Sy = T [-[ 1) 8- (64)

in the case when ¢,,.., &, have discrete eigenvalues and £,.;,..., £, have
continuous eigenvalues.
The standard ket and bra are defined with respect to a representa-
_tion. If we carried through the above work with a different repre-
sentation in which the complete set of commuting observables 7 are
diagonal, or if we merely changed the phase factors in the representa-
tion with the ¢’s diagonal, we should get a different standard ket and
bra. In a piece of work in which more than one standard ket or bra
appears one must, of course, distinguish them by giving them labels.
A further development of the notation which is of great importance
for dealing with complicated dynamical systems will now be discussed.
Suppose we have a dynamical gystem describable in terms of dynami-
cal variables which can all be divided into two sets, set 4 and set B
say, such that any member of set 4 commutes with any member of
set B. A general dynamical variable must be expregsible gga function
of the A-variables and B-variables togqfiae ; -
another dynamical system in which jgae
A-variables only—let us call it the
consider a third dynamical syst ; 4
are the B-variables only—the J % The original system ca

th’en be looked upon as a
ne A-system Q&: the
B-gystem. We assume thal\lley have a prdd hich

B-gystem in accordance with
the commutative and distripdve axioms of A‘ﬁﬁSON@ ie.

Let us take any ket |a)
= Jb>la),
{erla>+calas) 4y
[a>{c,1b,>+calbe> b>-+calad by,
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the ¢’s being numbers. We can give a meaning to any A-variable
operating on the product [a>|b> by assuming that it operates only
on the |a) factor and commutes with the |b) factor, and similarly
we can give a meaning to any B-variable operating on this product
by assuming that it operates only on the [b) factor and commutes
with the |a) factor. (This makes every A4-variable commute with
every B-variable.) Thus any dynamical variable of the original
system can operate on the product |a)>|b), so this product can be
looked upon as a ket for the original system, and may then be
written |ab), the two labels @ and & being sufficient to specify it.
In this way we get the fundamental equations

la>[6> = [b>]a> = |ab). (65)

The multiplication here is of quite a different kind from any that
occurs earlier in the theory. The ket vectors |a) and |b) are in two
different vector spaces and their product is in a third vector space,
which may be called the produet of the two previous vector spaces.
The number of dimensions of the product space is equal to the
product of the number of dimensions of each of the factor spaces.
A general ket vector of the product space is not of the form (65), but
is a sum or integral of kets of this form.

Let us take a representation for the A-system in which a complete
set of commuting observables ¢, of the 4-system are diagonal. We
shall then have the basicbras (¢/| for the A-system. Similarly,taking
a representation for the B-system with the observables £5 diagonal,
we shall have the basic bras (¢z| for the B-system. The products

€45l = <Eutsl (66)
will then provide the basic bras for a representation for the original
system, in which representation the £ ,’s and the £5’s will be diagong

The £,’s and £5’s will together form a complete set of commuti
observables for the original system. From (65) and (66) we gq

Ealad<éplby = (&4 Eplab),
showing that the representative of |#b> equals the produc
representatives of [a) and of |b) in their respective represental
We can introduce the standard ket, ), say, for the A-g
with respect to the representation with the £,’s diagonal, and
the standard ket D>p for the B-system, with respect to the g
sentation with the £z’s diagonal. Their product >, >y is the
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standard ket for the original system, with respect to the representa-
tion with the £ ,’s and £5’s diagonal. Any ket for the original system

may be expressed as WELERD> 4 Dn- (68)

It may be that in a certain calculation we wish to use a particular
representation for the B-system, say the above representation with
the £5’s diagonal, but do not wish to introduce any particular
representation for the A-system. It would then be convenient to
use the standard ket 5 for the B-system and no standard ket for
the A-system. Under these circumstances we could write any ket
for the original system as TR (69)

in which [£5) is a ket for the A-system and is also & function of the
&', ie. it is a ket for the A-system for each set of values for the
&p’s—in fact (69) equals (68) if we take

, 1€p> = $(€4€RD 4
We may leave the standard ket )z in (69) understood, and then we
have the general ket for the original system appearing as |{5), a ket
for the A-system and a wave function in the variables £p of the
B-system. An example of this notation will be used in § 66.

The above work can be immediately extended to a dynamical
system describable in terms of dynamical variables which can be
divided into three or more sets 4, B, C,... such that any member of
one set commutes with any member of another. Equation (65) gets

generalized to lay|byle)... = |abe...>,
the factors on the left being kets for the g

the ket on the right being a ket for
(66), (67), and (68) get generalized to
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THE QUANTUM CONDITIONS

21. Poisson brackets
Ovur work so far has consisted in setting up a general mathematical
scheme connecting states and observables in quantum mechanics.
One of the dominant features of this scheme is that observables, and
dynamical variables in general, appear in it as quantities which do
not obey the commutative law of multiplication. It now becomes
necessary for us to obtain equations to replace the commutative law
of multiplication, equations that will tell us the value of én—»¢ when
£ and » are any two observables or dynamical variables. Only when
such equations are known shall we have a complete scheme of
mechanics with which to replace classical mechanics. These new
equations are called quantum conditions or commutation relations.

The problem of finding quantum conditions is not of such a general
character as those we have been concerned with up to the present. It
is instead a special problem which presents itself with each particular
dynamical system one is called upon to study. There is, however,

a fairly general method of obtaining quantum conditions, applicable
to a very large class of dynamical systems. This is the method of
classical analogy and will form the main theme of the present chapter.
Those dynamical systems to which this method is not applicable
must be treated individually and special considerations used in each '
case. ’

The value of classical analogy in the development of quantum
mechanics depends on the fact that classical mechanics provides a
valid description of dynamical systems under certain conditig
when the particles and bodies composing the systems are sufficieX
massive for the disturbance accompanying an observation
negligible. Classical mechanics must therefore be a limiting
quantum mechanics. We should thus expect to find that impg
concepts in classical mechanics correspond to important co
quantum mechanics, and, from an understanding of the g
nature of the analogy between classical and quantum meec
may hope to get laws and theorems in quantum mechanies app
as simple generalizations of well-known results in classical mecy
in particular we may hope to get the quantum conditions appea

1 VERSION
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as a simple generalization of the classical law that all dynamical
variables commute.

Let us take a dynamical system composed of a number of particles
in interaction. As independent dynamical variables for dealing with
the system we may use the Cartesian coordinates of all the particles
and the corresponding Cartesian components of velocity of the par-
ticles. It is, however, more convenient to work with the momentum
components instead of the velocity components. Let us call the
coordinates g,, r going from 1 to three times the number of pa.rblcles
and the corresponding momentum components p,. The ¢’s and p s
are called canonical coordinates and momenta.

The method of Lagrange’s equations of motion involves introdu-
cing coordinates ¢, and momenta p, in & more general way, applicable

_also for a system not composed of partlcles (e.g. a system containing
rigid bodies). These more general ¢’s and p’s are also called canonical
coordinates and momenta. Any dynamical variable is expressible in
terms of a set of canonical coordinates and momenta.

An important concept in general dynamical theory is the Poisson
Bracket. Any two dynamical variables » and v have a P.B. (Poisson
Bracket) which we shall denote by [u,v], defined by

ouw ov du v
[v] Z {3% dp, op, ﬁq,}’ M
u and v being regarded as functions of a set of canonical coordinates
and momenta ¢, and p, for the purpose of the differentiations. The
right-hand side of (1) is independent ofgarhiclEet canggical
coordinates and momenta are used, &i :
general definition of canonical coo:
P.B. [u,v] is well defined.
The main properties of P.B.
detinition (1), are

. REGISTERER, Q)
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. Oty 6u2) v (6u, auz) ’dv}
Uy Ug, V] = =gt Uy 2 ) —— | LUy 1y —2)—
L2z 7] Z {(6% *" g, Jep, \op, T op,)oq,
= [y, v]ug+u [ Uy, v], } (5)
[%,v1%5] = [, v,Jva+ve[u, v,].

Also the identity .
[t [0, 1)+ [ [0, w1+ 10, [, o] = 0 (6)
is easily verified. Equations (4) express that the P.B. [u,v] involves
u and v linearly, while equations (5) correspond to the ordinary rules
for differentiating a product.

Let us try to introduee a quantum P.B. which shall be the analogtie
of the classical one. We assume the quantum P.B. to satisfy all the
conditions (2) to (6), it being now necessary that the order of the
factors u, and wu, in the first of equations (5) should be preserved
throughout the equation, as in the way we have here written it, and
similarly for the v; and v, in the second of equations (5). These condi-
tions are already sufficient to determine the form of the quantum
P.B. uniquely, as may be seen from the following argument. We can
evaluate the P.B. [u, u,, v, v,] in two different ways, since we can use
either of the two formulas (5) first, thus,

[y 49, vy v5] = [y, 04 Vg Uy %s[ U, V1 V5]
= {[%g, v1 Jva+-v vy, valtus+-uy {[1tg, 01 0o 404 1g, vo]}

d = [ug, V10 Up+0,[ 1y, Vo gt Uy [Ug, vy [0+ 10y v, [0,, v,
an

[ %5, 01 V5] = [0 U, 03 J00 03[t 209, 0]
= [, v Jutp Vg s [, vy Jog 03[0, vp g+ s, 5]
Equating these two results, we obtain
(3, 01 ) (g vy — vy U5} = (1 0,—0; %;)[w,, v,].
Since this condition holds with «, and v, quite independent of
vy, we must have

Uy Vy— Uy Uy = Uy, vy],
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U VgV Uy = TH[Uy, Vy),
where % must not depend on u; and v, nor on u, and v,, ang
must commute with (u; v;—v, u;). It follows that # must bd
a number. We want the P.B. of two real variables to be real,
the classical theory, which requires . from the work at the top of
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coefficient . We are thus led to the following definition for the
quanium P.B. [u,v] of any two variables u and v,

uww—ou = ififu, v}, (7N
in which % is a new universal constant. It has the dimensions of
action. In order that the theory may agree with experiment, we
must take % equal to &/27, where % is the universal constant that
was introduced by Planck, known as Planck’s constant. It is easily
verified that the quantum P.B. satisfies all the conditions (2), (3), (4),
(), and (6).

The problem of finding quantum conditions now reduces to the
problem of determining P.B.s in quantum mechanics. The strong
analogy between the quantum P.B. defined by (7) and the classical
P.B. defined by (1) leads us to make the assumption that the quantum
P.B.s, or at any rate the simpler ones of them, have the same values
as the corresponding classical P.B.s. The simplest P.B.s are those
involving the canomical coordinates and momenta themselves and
have the following values in the classical theory:

[9-,9,] = 0, [2:.20:] =0, } (8)
[9,,25] == Oy

We therefore assume that the corresponding quantum P.B.s also

have the values given by (8). By eliminating the quantum P.B.s

with the help of (7), we obtain the equations

9%—9:9 = 0, PrPs—Ps Py = 0,

4 Ps—DPs Gy = Hidyg

which are the fundamental quantum L

the lack of commutability among {

momenta lies. They also providd

mutation relations between other

if £ and 7 are any two fund
power series, we may express

ta.ry

tions of the laws (2), (3), nd (5), in twmﬂ

P.B.s given in (8) and sp eviillhte it. The resulf is offen, In simple

cases, the same as the clasgdlresult, or de xp swal
pecial ordergr ctors in a product

result only through requirin?™®
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value of én—nf, as will become clear from the following work.
Equations (9) thus give the solution of the problem of finding the
quantum conditions, for all those dynamical systems which have a
classical analogue and which are describable in terms of canonical
coordinates and momenta. This does not include all possible systems
in quantum mechanics. :
Equations (7) and (9) provide the foundation for the analogy
between quantum mechanics and classical mechanics. They show
that classical mechanics may be regarded as the limiting case of quantum
mechanics when # tends to zero. A P.B. in quantum mechanics is a
purely algebraic notion and is thus a rather more fundamental con-
cept than a classical P.B., which can be defined only with reference to
a set of canonical coordinates and momenta. For thisreason canonical
coordinates and momenta are oflessimportance in quantum mechanics
than in classical mechanics; in fact, we may have a system in quan-
tum mechanics for which canonical coordinates and momenta do
not exist and we can still give a meaning to P.B.s. Such a system
would be one without a classical analogue and we should not be able
to obtain its quantum conditions by the method here described.
From equations (9) we see that two variables with different suffixes
r and s always commute. It follows that any function of ¢, and p,
will commute with any function of ¢, and p, when s differs from r.
Different values of  correspond to different degrees of freedom of the
dynamical system, so we get the result that dynamical variables
referring to different degrees of freedom commute. This law, as we have
derived it from (9), is proved only for dynamical systems with
classical analogues, but we assume it to hold generally. In this way
we can make a start on the problem of finding quantum conditions
for dynamical systems for which canonical coordinates and mome
do not exist, provided we can give a meaning to different degrees
freedom, as we may be able to do with the help of physical ing
We can now see the physical meaning of the division, whicl
discussed in the preceding section, of the dynamical varialle
sets, any member of one set commuting with any member of 3
Each set corresponds to certain degrees of freedom, or possib
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interaction with one another to produce the original system. Alterna-
tively the division may be merely a mathematical procediire of
resolving the dynamical system into degrees of freedom which cannot
be separated physically, e.g. the system consisting of a particle with
internal structure may be divided into the degrees of freedom deserib-
ing the motion of the centre of the particle and those describing the
internal structure.

22. Schridinger’s representation

Let us consider & dynamical system with n degrees of freedom
having a classical analogue, and thus describable in terms of canonical
coordinates and momenta g¢,,p, (r = 1,2,...,n). We assume that the
coordinates g, are all observables and have continuous ranges of eigen-
values, these assumptions being reasonable from the physical signifi-
cance of the ¢’s. Let us set up a representation with the ¢’s diagonal.
The question arises whether the ¢’s form a complete commuting set
for this dynamical system. It seems pretty obvious from inspection
that they do. We shall here assume that they do, and the assumption
will be justified later (see top of p. 92). With the ¢’s forming a
complete commuting set, the representation is fixed except for the
arbitrary phase factors in it.

Let us consider first the case of n = 1, so that there is only one ¢

and p, satisfying gp—pg = i, (10)

Any ket may be written in the standard ket notation ¢(g)>. From it
we can form another ket dif/dg), whose representgtive ig the deriva-
tive of the original one. This new ket igaa lig on gk the
original one and is thus the result ofgomg

the original one. Calling this linear ] NIE-Wo Baks ,/@
. Y

S SR‘E@ISTEREB“/%
=%  VERSION ™

Let us treat the linear opeggibr d/dq accordi e ge heory
of linear operators of § 7. 1 a bra

Equation (11) holding for a
d/dg. We have
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for all functions ¢/(g). Taking representatives, we get

, d
[ @z a0 v@) = [ g1 oy 20, (14
We can transform the right-hand side by partial 1ntegration and get
d 1] ’ r d¢(q’) ’ ' )
LEWNS - f 9 , 15
| @z ) o ag yg) (15)
provided the contributions from the limits of integration vanish.
This gives (4,1}4’) _ddlq)
dg Tdg
. d dé
showing that - {p— = —(=L (16)
g b2 dq

Thus d|dg operating to the left on the conjugate complex of a wave
Junction has the meaning of minus differentiation with respect to q.

The validity of this result depends on our being able to make the
passage from (14) to (15), which requires that we must restrict our-
selves to bras and kets corresponding to wave functions that satisfy
suitable boundary conditions. The conditions usually holding in
practice are that they vanish at the boundaries. (Somewhat more
general conditions will be given in the next section.) These conditions
do not limit the physical applicability of the theory, but, on the con-
trary, are usually required also on physical grounds. For example,
if ¢ is a Cartesian coordinate of a particle, its eigenvalues run from
—00 t0 00, and the physical requirement that the particle has zero
probability of being at infinity leads to the condition that the wave
function vanishes for ¢ = J-c0.

The conjugate complex of the linear operator d/dg can be evaluated 6’( ERE D ,/
by noting that the conjugate imaginary of djdg.4> or di/dg> O\ @,?
{df/dg, or —(Jd/dg from (16). Thus the conjugate complex of d/g

is —d/dg, so d/dq is a pure imaginary linear operator. % R E G IS TE R E D ¢
(S

To get the representative of d/dg we note that, from an applic3
VERSION

of formula (63) of § 20,
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g0 that —|¢"> = =8(g—q"),

’ v d 7 n
and hence {q ld—qlq > = d?a(!l —q").



§22 SCHRODINGER'S REPRESENTATION 91

Let us work out the commutation relation connecting d/dg with ¢.

We have
d dgi d
= AN =g . 20
=3 qdq¢>+¢> (20)
Since thls holds for any ket >, we have
d
5= (21)

Comparing this result W1th (10), we see that —i#d/dg satisfies the
same commutation relation with q that p does.

To extend the foregoing work to the case of arbitrary n, we write
the general ket as ¢(g;...q,)> = ) and introduce the » linear opera-
tors 9/0q, (r = 1,...,n), which can operate on it in accordance with
the formula

o, _ o
3_%¢> = 6—q;>, (22)
corresponding to (11). We have
a_q,> =0 (23)

corresponding to (12). Provided we restrict ourselves to bras and
kets corresponding to wave functions satisfying suitable boundary
conditions, these linear operators can operate also on bras, in accor-

dance with the formula ) 3 n 24
Yo = Gy )

corresponding to (16). Thus &/dq, can operate to the left on the

conjugate complex of a wave function, when it jaas thamneaning of

that each 0/éq, is a pure imaginary
to (21) we have the commutation re

v,
o)

@)
s @EaGISTEREgﬁ) )
,648 3%VERSION
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We have further
o 0

. 9g, 5q,

showing that

—1fi 8/oq, satisfy the same co
each other that the p’s do.
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It would be possible to take
p, = —"zha/a%' (28)

mthout gettmg any inconsistency. This possibility enables us to see
that the ¢’s must form a complete commuting set of observables,
since it means that any function of the ¢’s and p’s could be taken
to be a function of the ¢’s and —i% 9/9¢’s and then could not commute
‘with all the ¢’s unless it is a function of the ¢’s only.
The equations (28) do not necessarily hold. But in any case the
quantities p,{i7% 0/9q, each commute with all the ¢’s, so each of them
is a function of the ¢’s, from Theorem 2 of § 19. Thus

b= —fi a/aQr"'fr(Q)' (29)
Since p, and —i%3/dq, are both real, f,(¢) must be real. For any
function f of the ¢’s we have

210 —f—¢>+ 7 g,

oq,
showing that f f__ = a_f (30)
oq, g,
With the help of (29) we can now deduce the general formula
Prf—fp, = —ifiof]oq,. (31)
This formula may be written in P.B. notation
[f:_pr] = af/aq” (32)

when it is the same as in the classical theory, as follows from (1).
Multiplying (27) by (—1#)2 and substituting for —i#% 8/d¢, and —i% 8/8q,
their values given by (29), we get

(pr fr)(Ps fs) = (.ps fs (27 fr
which reduces, with the help of the quantum condition p, p, = p, p,, to

PrfsHfeps = pofrtfopr
This reduces further, with the help of (31), to

O\
of./oa, = /o, § REGISTERE D 2
showing that the functions f. are all of the form

fr = oF|ag, 34) VERSION

with F independent of r. Equation (29) now becomes A D D S N O
», = —i#id/eq,+oF og,.

We have been working with a representation which is fixed
extent that the ¢’s must be diagonal in it, but which contains arbr

4)
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phase factors. If the phase factors are changed, the operators 8/ag,
get changed. It will now be shown that, by a suitable change in the
phase factors, the function F in (35) can be made to vanish, so that
equations (28) are made to hold.

Using stars to distinguish quantities referring to the new repre-
sentation with the new phase factors, we shall have the new basic
bras connected with the previous ones by

(i G| = 7l (36)
where y* = y(¢’) is a real function of the ¢”’s. The new representa-
tive of a ket is ¢ times the old one, showing that e¥f>* = >, so

we get Sk — givy (37)
as the connexion between the new standard ket and the original one.
The new linear operator (9/dg,)* satisfies, corresponding to (22),
o ., O
>* [
(9%) v r> aqr>
with the help of (37). Using (22), this gives

(2) = v > = or o,

showing that (f—) * = e~i7~a_ e, (38)
o, o,
or, with the help of (30),
(@)~ )
By choosing y so that F =
(35) becomes P, =

Equation (40) fixes y except fq
sentation is fixed except for an

; . ; consta.nt 80 t
, {@y constant phase factor
In this way we see that
the ¢’s are diagonal and eq

lon.c hlc
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g’s and p’s of the form of a power series in the p’s as an operator of
differentiation, e.g. if f(gy,-.-» @us P1,---» D) i such a function, we have

f(QI"",Q-mpl’"w.'pn) =f(Q1="': ns _Hi’a/3QI""’ _iﬁa/aq“,)s (42)

provided we preserve the order of the factors in a product on substi-
tuting the —i#%/ag’s for the p’s.
From (23) and (28), we have

P> =0, @)

Thus the standard ket in Schrodinger’s representation is characterized
by the condition that it is a simultaneous eigenket of all the momenta
belonging to the eigenvalues zero. Some properties of the basic
vectors of Schrédinger’s representation may also be noted. Equation
(22) gives '

0 7

’ , ’ ! allb 3¢(q;"q’) ! !
m S == (g 22 = SLn) T ot
Gir-Gul 5 ¥ = G-l 5> o o Tl
Hence {44 'Ia—a<' ] (44)
q1---9n a_qr - 5&—; Q1--Gnls
r r . a ’ r
so that g1 Gnlpr = —zﬁa—q,@l...qnl. (45)
Similarly, equation (24) leads to
! ! iy A4 a ’ ’ >
prlQlQn> = 17&5&7 IQIQn> (46)

23. The momentum representation
Let us take a system with one degree of freedom, describable in
terms of a g and p with the eigenvalues of ¢ running from —oo to o,
and let us take an eigenket |p"> of p. Its representative in the Schrgs
dinger representation, <g'|p"), satisfies
L
dql
with the help of (45) applied to the case of one degree of f
The solution of this differential equation for <g'|p") is

{'|p"y = ¢ e®'dlh,

where ¢’ = ¢(p’) is independent of ¢’, but may involve p'.

PP =g plp"> = —ihi— < |p">
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shows itself up most directly in the failure of the orthogonality
theorem. If we take a second eigenket |p”) of p with representative

q'|p"> = " e®'Ih,
belonging to a different eigenvalue p”, we shall have

@

@lp"> = [ <0l> dg "> = " [ el PHRdg.  (48)

This integral does not converge according to the usual definition of
convergence. To bring the theory into order, we adopt a new defini-
tion of convergence of an integral whose domain extends to infinity,
analogous to the Cesaro definition of the sum of an infinite series.
With this new definition, an integral whose value to the upper limit
¢ is of the form cosag’ or sinag’, with a a real number not zero, is
counted as zero when ¢’ tends to infinity, i.e. we take the mean value
of the oscillations, and similarly for the lower limit of ¢’ tending to
minus infinity. This makes the right-hand side of (48) vanish for
p” = p', so that the orthogonality theorem is restored. Also it makes
the right-hand sides of (13) and (14) equal when {¢ and i) are eigen-
vectors of p, so that eigenvectors of p become permissible vectors to
use with the operator d/dg. Thus the boundary conditions that the
representative of a permissible bra or ket has to satisfy become
extended to allow the representative to oscillate like cosag’ or sinag’
as ¢’ goes to infinity or minus infinity.

For p" very close to p’, the right-hand side of (48) involves a &
function. To evaluate it, we need the formula,

o\ ERED %
@ The formula evidsdydy
KAides are then zero. Furtheg
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With the help of (49), (48) becomes
p'|p"y = c'e" 2a 8[(p'—p")) = ¢'¢" h(p'—p")
= |¢'|2h3(p"—p"). (50)

w3
|34
w

We have obtained an eigenket of p belonging to any real eigenvalue
p’, its representative being given by (47). Any ket [X) can be ex-
panded in terms of these eigenkets of p, since its representative
{¢'|X> can be expanded in terms of the representatives (47) by
_Fourier analysis. It follows that the momentum p is an observable,
in agreement with the experimental result that momenta can be
observed.

A symmetry now appears between ¢ and p. Each of them is an
observable with eigenvalues extending from —oo to co, and the
commutation relation connecting ¢ and p, equation (10), remains
invariant if we interchange ¢ and p and write —¢ for . We have set
up a representation in which g is diagonal and p = —ifid/dg. It
follows from the symmetry that we can also set up a representation
in which p is diagonal and

q = ihd/dp, (51)

the operator d/dp being defined by a procedure similar to that used
for d/dg. This representation will be called the momentum represenia-
tion. It is less useful than the previous Schrédinger representation
because, while the Schridinger representation enables one to express
as an operator of differentiation any function of ¢ and p that is a
power series in p, the momentum representation enables one so to
express any function of ¢ and p that is a power series in ¢, and the
important quantities in dynamics are almost always power series in
p but are often not power series in q. All the same the moment
representation is of value for certain problems (see § 50).

Let us calculate the transformation function {g’|p") connect;
two representations. The basic kets|p”) of the momentum repres?
tion are eigenkets of p and their Schridinger representativeg
are given by (47) with the coefficients ¢’ suitably chosen. Th3
factors of these basic kets must be chosen so as to make (51
The easiest way to bring in this condition is to use the s
between g and p referred to above, according to which {g'|p"> 1
go over into {p’lg’) if we interchange ¢’ and p’' and write —4
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conjugate complex expression, and hence ¢’ must be independent of
p'. Thus ¢’ is just a number ¢. Further, we must have

P'lp"> = 8(p'—p"),
which shows, on comparison with (50), that |¢| = A~*. We can choose
the arbitrary constant phase factor in either representation so as to
make ¢ = k%, and we then get

{g'lp"> = h-dewdlh (52)
for the transformation function. ‘

The foregoing work may easily be generalized to a system with

n degrees of freedom, describable in terms of » ¢’s and p’s, with the
eigenvalues of each ¢ running from —co to c0. Each p will then be
an observable with eigenvalues running from —oo to 0, and there
will be symmetry between the set of ¢’s and the set of p’s, the
" commutation relations rema.mmg invariant if we interchange each g,
with the corresponding p, and write —¢ for ¢. A momentum repre-
sentation can be set up in which the p’s are diagonal and each

== 1% 8/dp,. (53)
The transformation function connecting it with the Schrédinger
representation will be given by the product of the transformation
functions for each degree of freedom separately, as is shown by
formula (67) of § 20, and will thus be

Gy Goo-Gn| D) D D> = LGL1PDLGID5Y - Ldn 0>
= h—nl2ei(11;q;+p;q;+...+p;q,’,)[ﬁ. (54)

24. Heisenberg’s principle of uncertai
For a system with one degree of fr
momentum representatives of adee

(p'|1Xy = hizk g '|X

RE GISTER B)
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These formulas ha,vel an eleg that
either of the representatives Ddg &O_gents,
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whose value is very small everywhere outside a certain domain, of
width Ag’ say, and inside this domain is approximately periodic with
a definite frequency.t If a Fourier analysis is made of such a wave
packet, the amplitude of all the Fourier components will be small,
except those in the neighbourhood of the definite frequency. The
components whose amplitudes are not small will fill up a frequencyt
band whose width is of the order 1/A¢’, since two components whose
frequencies differ by this amount, if in phase in the middle of the
domain Ag’, will be just out of phase and interfering at the ends of
this domain. Now in the first of equations (55) the variable
(27)~1p'/% = p'[h plays the part of frequency. Thus with {¢’| X of the
form of a wave packet, the function (p’'|X), being composed of the
amplitudes of the Fourier components of the wave packet, will be
small everywhere in the p’-space outside a certain domain of width
Ap' = h/Aq'.

Let us now apply the physical interpretation of the square of the
modulus of the representative of a ket as a probability. We find that
our wave packet represents a state for which a measurement of ¢ is
almost certain to lead to a result lying in a domain of width Aq’ and
a measurement of p is almost certain to lead to a result lying in a
domain of width Ap’. We may say that for this state ¢ has a definite
value with an error of order A¢’ and p has a definite value with an
error of order Ap’. The product of these two errors is

Ag'Ap' = h. (56)
Thus the more accurately one of the variables ¢,p has a definite
value, the less accurately the other has a definite value. For a system
with several degrees of freedom, equation (56) applies to each degree
of freedom separately.

Equation (56) is known as Heisenberg’s Principle of Uncertai
It shows clearly the limitations in the possibility of simultaneoys
assigning numerical values, for any particular state, to twd
commuting observables, when those observables are a canonicg
ordinate and momentum, and provides a plain illustration
observations in quantum mechanics may be incompatible.
shows how classical mechanies, which assumes that numerica
can.be assigned simultaneously to all observables, may be a
approximation when k can be considered as small enough 4
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1 Frequency here means reciprocal of wave-length.
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negligible. Equation (56) holds only in the most favourable case,
which occurs when the representative of the state is of the form of a
wave packet. Other forms of representative would lead to a Ag" and
Ap’ whose product is larger than A.

Heisenberg’s principle of uncertainty shows that, in the limit when
either ¢ or p is completely determined, the other is completely
undetermined. This result can also be obtained directly from the
transformation funection <{¢'|p’>. According to the end of §18,
[<q'|p">|2dq’ is proportional to the probability of ¢ having a value in
the small range from ¢’ to ¢'+dg’ for the state for which p certainly
has the value p’, and from (52) this probability is independent of ¢’
for a given dg’. Thus if p certainly has a definite value p’, all values
of q are equally probable. Similarly, if ¢ certainly has a definite value
g’, all values of p are equally probable.

It is evident physically that a state for which all values of q are
equally probable, or one for which all values of p are equally probable,
cannot be attained in practice, in the first case because of limitations
of size and in the second because of limitations of energy. Thus an
eigenstate of p or an eigenstate of ¢ cannot be attained in practice.
The argument at the end of § 12 already showed that such eigenstates
are unattainable, because of the infinite precision that would be
needed to set them up, and we now have another argument leading
to the same conclusion.

25. Displacement operators

We get a new insight into the meaning of
ditions by making a study of displaceme
in the theory when we take into cd
relations between states and dypaood
is essentially a physical scheme,
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apparatus required to measure the observable, through the distance
8z in the direction of the z-axis, and the displaced apparatus would
define the displaced state or observable. The displacement of a
dynamical variable must be just as definite as the displacement of
an observable, because of the close mathematical connexion between
dynamical variables and observables. A displaced state or dynamical
variable is uniquely determined by the undisplaced state or dynami-
cal variable together with the direction and magnitude of the dis-
placement.

The displacement of a ket vector is not such a definite thing though.
If we take a certain ket vector, it will represent a certain state and we
may displace this state and get a perfectly definite new state, but this
new state will not determine our displaced ket, but only the direction
of our displaced ket. We help to fix our displaced ket by requiring
that it shall have the same length as the undisplaced ket, but even
then it is not completely determined, but can still be multiplied by
an arbitrary phase factor. One would think at first sight that each
ket one displaces would have a different arbitrary phase factor,
but with the help of the following argument, we see that it must be
the same for them all. We make use of the law that superposition
relationships between states remain invariant under the displace-
ment. A superposition relationship between states is expressed
mathematically by a linear equation between the kets corresponding
to those states, for example )

|B> = ¢1]4>+¢,| B, (87)
where ¢, and ¢, are numbers, and the invariance of the superposition
relationship requires that the displaced states correspond to kets

with the same linear equation between them—in our example they
would correspond to |Rd), |Ad), |Bd) say, satisfying

|Rd) == c;|Ad}+-c,| Bd).
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kets would satisfy a linear equation with different coefficie
The only arbitrariness now left in the displaced kets is that of 3
arbitrary phase factor to be multiplied into all of them.
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placed kets are linear functions of the undisplaced kets and thus each
displaced ket | Pd) is the result of some linear operator applied to the
corresponding undisplaced ket |P). In symbols,
|Pdy = D|P), (59)

where D is a linear operator independent of | P} and depending only
on the displacement. The arbitrary phase factor by which all the
displaced kets may be multiplied results in D being undetermined
to the extent of an arbitrary numerical factor of modulus unity.

With the displacement of kets made definite in the above manner
and the displacement of bras, of course, made equally definite,
through their being the conjugate imaginaries of the kets, we can
now assert that any symbolic equation between kets, bras, and
dynamical variables must remain invariant under the displacement
of every symbol occurring in it, on account of such an equation
having some physical significance which will not get changed by the
displacement.

Take as an example the equation

Q1P =¢,
¢ being a number. Then we must have
(Qd|Pd) = ¢ = {Q|P). (60)
From the conjugate imaginary of (59) with ¢ instead of P,
<Qd] = <Q|D. (61)
Hence (60) gives {Q|DD|P) = (Q|P).
Since this holds for arbitrary {@| and |P), w

W.here v is any d)‘rna,mic.al va A mtTEIREB ¢
VERSION

vy|Pd) = D[R
Since |Pd) can be any ket, we

3595.57
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which shows that the linear operator ) determines the displacement
of dynamical variables as well as that of kets and bras. Note that
the arbitrary numerical factor of modulus unity in D does not affect
v, and also it does not affect the validity of (62).

Let us now pass to an infinitesimal displacement, i.e. taking the
displacement through the distance 8z in the direction of the z-axis,
let us make 8x — 0. From physical continuity we should expect
a displaced ket |Pd) to tend to the original |P) and we may further
expect the limit .

lim PRI _ iy 21 py

Sz—0 8(17 dz—0 8(17
to exist. This requires that the limit
8]im (D—1)/8z (64)
z—0 !

shall exist. This limit is a linear operator which we shall call the
displacement operator for the z-direction and denote by d,. The
arbitrary numerical factor e with y real which we may multiply
into D must be made to tend to unity as 8z — 0 and then introduces
an arbitrariness in d_, namely, d, may be replaced by

lim (De#”—1)[8z = 8lim (D—14iy)/x = d +ia,,
z--+0

dz—>0

where a, is the limit of y/8z. Thus d, contains an arbitrary additive
pure imaginary number. -
For 8z small D = 146zd,. : (65)

Substituting this into (62), we get
(1+82d,)(1+82d,) = 1,
which reduces, with neglect of 822, to
Sz(d,+d,) = 0.

Thus d, is a pure imaginary linear operator. Substituting (65)
(63) we get, with neglect of 822 again,

vy = (1+3zd w(1—8zd,) = v+8z(dv—v d,),

showing that 8lim (vg—2) [0z = d, v—vd,.
z—0

VERSION
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internal degrees of freedom of the system. If we suppose a piece
of apparatus which has been set up to measure z, to be displaced a
distance 8z in the direction of the z-axis, it will measure x— 38z, hence

25 = x—ox.
Comparing this with (66) for v = x, we obtain
d,x—zxd, = —1. (68)

This is the quantum condition connecting d, with z. From similar
arguments we find that y,2, p,, p,, p, and the internal dynamical vari-
ables, which are unaffected by the displacement, must commute with
d,. Comparing these results with (9), we see that i%d, satisfies just
the same quantum conditions as p,. Their difference, p,—i%d;,
commutes with all the dynamical variables and must therefore be a
number. This number, which is necessarily real since p, and % d,, are
both real, may be made zero by a suitable choice of the arbitrary,
pure imaginary number that can be added to d,. We then have the

result p, = ihd,, (69)

or the x-component of the total momentum of the system is ifi times the
displacement operator d,.

This is a fundamental result, which gives a new significance to
displacement operators. There is a corresponding result, of course,
also for the y and z displacement operators d, and d,. The quantum
conditions which state that p,, p, and p, commute with each other
are now seen to be connected with the fact that displacements in
different directions are commutable operations.

26. Unitary transformations
Let U be any linear operator tha
sider the equation

properties. In the first place
same eigenvalues as the corrgg

inding «; sine ]bD ﬁm&lue
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showing that Ulja") is an eigenket of o* belonging to the same eigen-
value o, and similarly any eigenvalue of «* may be shown to be also
an eigenvalue of . Further, if we take several o’s that are connected
by algebraic equations and transform them all according to (70), the
corresponding o*’s will be connected by the same algebraic equations.
This result follows from the fact that the fundamental algebraic pro-
cesses of addition and multiplication are left invariant by the trans-
formation (70), as is shown by the following equations:
(g Fog)* = Ul +o) Ut = Uy U-14-Uqy U1 = off o,
(ayo)* = Uoyay Ut = Uy U WUty U1 = off .
Let us now see what condition would be imposed on U by the
requirement that any real « transforms into a real a*. Equation
(70) may be written U = Ua (71)

Taking the conjugate complex of both sides in accordance with
(8) of § 8 we find, if x and «* are both real,
Tot = oT. (12)

Equation (71) gives us  Uo*U = UUx
and equation (72) gives us

Uo*U = aUU.
Hence UUx = aUU.
Thus UU commutes with any real linear operator and therefore also
with any linear operator whatever, since any linear operator can be
expressed as one real one plus 4 times another. Hence UU is'a
number. It is obviously real, its conjugate complex according to (5)
of § 8 being the same as itself, and further it must be a positive
number, since for any ket |P), (P|UU|P) is positive as wel|gs

in the transformation (70). We then have
UU = 1.
Equation (73) is equivalent to any of the following
U=10-, U="U", U-10-1 = 1.
A matrix or linear operator U that satisfies (73) and (7
to be unitary and a transformation (70) with unitary U is ca

unstory transformation. A unitary transformation transfory
linear operators into real linear operators and leaves invariant 3
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algebraic equation between linear operators. It may be considered
as applying also to kets and bras, in accordance with the equations

|P*y = U|Py, (P* =<(P|U=<(P|IU, (75)
and then it leaves invariant any algebraic equation between linear
operators, kets, and bras. It transforms eigenvectors of « into eigen-
vectors of «*. From this one can easily deduce that it transforms an
observable into an observable and that it leaves invariant any func-
tional relation between observables based on the general definition
of a function given in § 11.

The inverse of a unitary transformation is also a unitary trans-
formation, since from (74), if U is unitary, U-! is also unitary.
Further, if two unitary transformations are applied in succession,
the result is a third unitary transformation, as may be verified in
the following way. Let the two unitary transformations be (7 0) and -

= Va*V-1,
The connexion between of a,nd o is then
of = VU«U-V
= (VU)(VU)? (76)
from (42) of § 11. Now VU is unitary since
VOVU = TUVVvU =TUU =1,
and hence (76) is a unitary transformation.

The transformation given in the preceding section from undisplaced
to displaced quantities is an example of a unitary transformation, as
is shown by equations (62), (63), correspondmg to equations (’73)

canonical coordinates and momenta 4 g
variables ¢¥, p¥ (r = 1,..,n) sati me P B relations
¢’s and p’s, i.e. equations (8) of § P Lo q*’s and p¥*’s replacing t.
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new coordinates ¢ may not be a set of Lagrangian coordinates but
n'm;y be functions of the Lagrangian coordinates and velocities.

It will now be shown that, for a quantum dynamical system that
has a classical analogue, unitary transformations in the quantum theory
are the analogue of comtact transformations in the classical theory.
Unitary transformations are more general than contact transforma-
tions, since the former can be applied to systems in quantum
mechanios that have no classical analogue, but for those systems in
quantum mechanics which are describable in terms of canonical
coordinates and momenta, the analogy between the two kinds of
transformation holds. To establish it, we note that a unitary trans-
formation applied to the quantum variables g,, p, gives new variables -
g, p¥ satisfying the same P.B. relations, since the P.B. relations are
equivalent to the algebraic relations (9) of § 21 and algebraic relations
are left invariant by a unitary transformation. Conversely, any real
variables ¢¥, pfF satisfying the P.B. relations for canonical coordinates
and momenta are connected with the ¢,, p, by a unitary transforma-
tion, as is shown by the following argument.

We use the Schridinger representation, and write the basic ket
Ig5---0> as |g’> for brevity. Since we are assuming that the ¢, p}
satisfy the P.B. relations for canonical coordinates and momenta,
we can set up a Schrodinger representation referring to them, with
the ¢g* diagonal and each p} equal to —i%8/og*. The basic kets in
this second Schrédinger representation will be |gF'...g*>, which we
write |g*"> for brevity. Now introduce the linear operator U defined by

g*|Ulg"> = 8(¢*' —q'), (77)
where 8(g*'—¢') is short for
3(g*" —q') = 3(gi" —¢1)8(¢3" —2)--3(gn"—n)-
The conjugate complex of (77) is

@'101g*> = (g% —q"),
and hencet

@|0UIg" = [ <q1T1g*> dg* <q*|Ula">

= [ 8(¢*—q) dg* 8g*'—7") VERSION
= 8(¢'—¢"), ADDS NO

so that UU = 1.

+ We use the notation of & single integral sign and dg*’ to denote an inted
all the variables ¢f’, ¢3/,..., g*’. This abbreviation will be used also in future wo:
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Thus U is a unitary operator. We have further

{g*lgrUlg> = ¢7'8(g* —¢')
and {g*|Ug,lg"> = 3(¢*' —9')g;-
The right-hand sides of these two equations are equal on account of -
the property of the & function (11) of § 15, and hence

U = Ug,
or gf = Uq, UL
Again, from (45) and (46),

, ' . @
g¥|pfUle"> = —if

oqy’

(¥ —4q'),

1 '3 . a ’ !
{g¥|Up,lq"> = zﬁgb—, 3(q* —q').

The rigﬁt-hand sides of these two equations are obviously equal, and

hence prU = Up,

or ¥ = Up, UL
Thus all the conditions for a unitary transformation are verified.

We get an infinitesimal unitary transformation by taking U in (70)
to differ by an infinitesimal from unity. Put

U = 1+ieF,
where ¢ is infinitesimal, so that its square can be neglected. Then
U-1l= 1—ieF. '

@mentﬁm, this is formally the same

tact tra.nsfoerERS l ON
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THE EQUATIONS OF MOTION

27. Schrédinger’s form for the equations of motion
Our work from § 5 onwards has all been concerned with orne instant
of time. It gave the general scheme of relations between states and
dynamical variables for a dynamical system at one instant of time.
To get a complete theory of dynamics we must consider also the
connexion between different instants of time. When one makes an
observation on the dynamical system, the state of the system gets
changed in an unpredictable way, but in between observations
causality applies, in quantum mechanics as in classical mechanics,
and the system is governed by equations of motion which make the
state at one time determine the state at a later time. These equations
of motion we now proceed to study. They will apply so long as the
dynamical system is left undisturbed by any observation or similar
process.} Their general form can be deduced from the principle of
superposition of Chapter 1.

Let us consider a particular state of motion throughout the time
during which the system is left undisturbed. We shall have the state
__at any time ¢ corresponding to a certain ket which depends on ¢ and
which may be written |t). If we deal with several of these states of
notion we distinguish them by giving them labels such as 4, and we
then write the ket which corresponds to the state at time ¢ for one
of them |At). The requirement that the state at one time determines
the state at another time means that [4#,> determines |Af) except
for a numerical factor. The principle of superposition applies to these
states of motion throughout the time during which the system i
undisturbed, and means that if we take a superposition relatio
holding for certain states at time t, and giving rise to a linear equg
between the corresponding kets, e.g. the equation

| Bto) = ClIAto_>+cleto>,
the same superposition relation must hold between the state]

motion throughout the time during which the system is undis
and must lead to the same equation between the kets corresponc
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+ The preparation of a state is a process of this kind. It often takes the fo
making an observation and selecting the system when the result of the observa
turns out to be a certain pre-assigned number.
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to these states at any time ¢ (in the undisturbed time interval), i.e.
he equation Rty = oy Aty+c,|BE,

provided the arbitrary numerical factors by which these kets may be
multiplied are suitably chosen. It follows that the |Pt)’s are linear
functions of the |Pfy)’s and each [Pty is the result of some linear
operator applied to |Pt,>. In symbols
|Pt> = T|Pty), 1)
where T is a linear operator independent of I and depending only
on ¢ (and £g).

We now assume that each |Pt) has the same length as the corre-
sponding |Pty». It is not necessarily possible to choose the arbitrary
numerical factors by which the |Pt)’s may be multiplied so as to
make this so without destroying the linear dependence of the |Pt)’s
on the |Pt,>’s, so the new assumption is a physical one and not just
a question of notation. It involves a kind of sharpening of the
principle of superposition. The arbitrariness in {Pt) now becomes
merely a phase factor, which must be independent of P in order that
the linear dependence of the |.Pf)’s on the |Pt,)>’s may be preserved.
From the condition that the length of ¢,|Pt)¢,| @ty equals that of
¢, | Ptyy+¢5|Qto> for any complex numbers ¢, ¢;, we can deduce that

CQUIPEY = <Qty|Pty). e

The connexion between the |Pi)’s and |Pty)’s is formally similar
to the connexion we had in § 25 between the displaced and undisplaced
kets, with a process of time displacement instead of the space displace-
ment of § 25. Equations (1) and (2) play iong
and (60) of § 25. We can develop the gonsg

corresponding to (62) of § 25,
mal case by making ¢ — f, and
the limit

( o
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The limit operator occurring here is, like (64) of § 25, a pure imaginary
linear operator and is undetermined to the extent of an arbitrary
additive pure imaginary number. Putting this limit operator multi-
plied by % equal to H, or rather H(f,) since it may depend on ¢,
equation (4) becomes, when written for a general ¢,

d\ Pty
dt

Equation (5) gives the general law for the variation with time of
the ket corresponding to the state at any time. It is Schrodinger’s
form for the equations of motion. It involves just one real linear
operator H(t), which must be characteristic of the dynamical system
under consideration. We assume that H(t) is the total energy of
the system. There are two justifications for this assumption, (i) the
analogy with classical mechanics, which will be developed in the
next section, and (ii) we have H(t) appearing as 7% times an operator
of displacement in time similar to the operators of displacement in
the «, y, and z directions of § 25, so corresponding to (69) of § 25
we should have H(t) equal to the total energy, since the theory of
relativity puts energy in the same relation to time as momentum to
distance.

We assume on physical grounds that the total energy of a system
is always an observable. For an isolated system it is a constant, and
may then be written H. Even when it is not a constant we shall often
write it simply H, leaving its dependence on ¢ understood. If the
energy depends on {, it means the system is acted on by external
forces. An action of this kind is to be distinguished from a distur-
bance caused by a process of observation, as the former is compatible
with causality and equations of motion while the latter is not.

We can get a connexion between H(¢) and the T' of equation
by substituting for | Pt) in (5) its value given by equation (1),
gives

ik

= H()|Pt>. ' (5)

iﬁ‘% |Pte> = H(t)T|Pty.
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Since | Pt,> may be any ket, we have

L 4T

i = .

h— HHT
Equation (5) is very important for practical problems, whe

usually used in conjunction with a representation. Introducind
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representation with a complete set of commuting observables ¢
diagonal and putting {(¢'|Pt) equal to (&%), t we have, passing to the
standard ket notation, | Pty = g(&t)).

Equation (5) now becomes
in 2> = H(E). ")

Equation (7) is known as Schridinger’s wave equation and its solutions
(L) are time-dependent wave functions. Each solution corresponds to
a state of motion of the system and the square of its modulus gives
the probability of thie £'s having specified values at any time ¢ For
a system describable in terms of canonical coordinates and momenta
we may use Schridinger’s representation and can then take H to be
an operator of differentiation in accordance with (42) of § 22.

28. Heisenberg’s form for the equations of motion

In the preceding section we set up a picture of the states of
undisturbed motion by making each of them correspond to a moving
ket, the state at any time corresponding to the ket at that time. We
shall call this the Schrédinger picture. Let us apply to our kets the
unitary transformation which makes each ket |a)> go over into

la*y = T |ap. : (8)
This transformation is of the form given by (75) of § 26 with 7' for

U, but it depends on the time £ since T' depends on £. It is thus to be
p1ctured as the a,pphca.tlon of a continuous motion (consmtmg of

given by (8)7 with |e@> independent
which is originally moving to gasg
motion, i.e. in accordance with 3

S DRO
1), becomes fixed, smce’§
substituting |Pt) for |a) in
the transformation brings the

élf Ri mdeiendent of ¢. _Thus
motion to rest

The unitary transforma Sgmust be a.ppliy ER&ON linear
operators, in order that equajiilins between the v s may
remain invariant. The tra mation app&ﬁﬁag éy the

> WATERMARRK §

7/

EL. O)




112 THE EQUATIOKNS OF MOTION § 28

A linear operator which is originally fixed transforms into a moving
linear operator in general. Now a dynamical variable corresponds to
a linear operator which is originally fixed (because it does not refer
to ¢ at all), so after the transformation it corresponds to a moving
linear operator. The transformation thus leads us to a new picture
of the motion, in which the states correspond to fixed vectors and
the dynamical variables to moving linear operators. We shall call
this the Heisenberg picture.

The physical condition of the dynamical system at any time
inyolves the relation of the dynamical variables to the state, and
the change of the physical condition with time may be ascribed
either to a change in the state, with the dynamical variables kept
fixed, which gives us the Schridinger picture, or to a change in the
dynamical variables, with the state kept fixed, which gives us the
Heisenberg picture.

In the Heisenberg picture there are equations of motion for the
dynamical variables. Take a dynamical variable corresponding to
the fixed linear operator » in the Schrodinger picture. In the Heisen-
berg picture it corresponds to a moving linear operator, which we
write as v, instead of v*, to bring out its dependence on ¢, and which

is given by v, = T-WT (10)
or : Tv, = oT.
Differentiating with respect to ¢, we get
' ar dv,  dT
ﬂv,—l- T =@
With the help of (6), this gives

HTv,-[—iﬁT%% — oHT

or % ‘(il_? = T-WHT—T-1HTv,
= v H—Hy,
where H, = T-*HT.
Equation (11) may be written in P.B. notation
dy,

dt = [‘vt’ 'Ht]'
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§28 HEISENBERG'S FORM FOR THE EQUATIONS OF MOTION 113

Equation (11) or (13) shows how any dynamical variable varies
with time in the Heisenberg picture and gives us Heisenberg’s form
Jor the equations of motion. These equations of motion are determined
by the one linear operator Hj, which is just the transform of the linear
operator H occurring in Schridinger’s form for the equations of
motion and corresponds to the energy in the Heisenberg picture. We
shall call the dynamical variables in the Heisenberg picture, where
they vary with the time, Heisenberg dynamical variables, to distinguish
them from the fixed dynamical variables of the Schrédinger picture,
which we shall call Schrddinger dynamical variables. Each Heisenberg
dynamical variable is connected with the corresponding Schrédinger
dynamical variable by equation (10). Since this connexion isa unitary
transformation, all algebraic and functional relationships are the
same for both kinds of dynamical variable. We have 7 =1 for
t = ty, so that v, = v and any Heisenberg dyna,mma.l variable at time
t, equals the corresponding Schrodinger dynamical variable.

Equation (13) can be compared with classical mechanics, where we
also have dynamical variables varying with the time. The equations
of motion of classical mechanics can be written in the Hamiltonian

form d, _oH  dp,_ _oH a4)
dt — ap,’ dt &g’

where the ¢’s and p’s are a set of canonical coordinates and momenta

and H is the energy expressed as a function of them and possibly also

of t. The energy expressed in this way is called the Hamiltonian.
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114 THE EQUATIONS OF MOTION §28

that the linear operator H introduced in the preceding section is the
energy of the system in quantum mechanics.

In classical mechanics a dynamical system is defined mathemati-
cally when the Hamiltonian is given, i.e. when the energy is given
in terms of a set of canonical coordinates and momenta, as this is
sufficient to fix the equations of motion. In quantum mechanics &

- dynamical system is defined mathematically when the energy is
given in terms of dynamical variables whose commutation relations
are known, as this is then sufficient to fix the equations of motion,
in both Schrodinger’s and Heisenberg’s form. We need to have
either H expressed in terms of the Schrddinger dynamical variables .
or H, expressed in terms of the corresponding Heisenberg dynamical
variables, the functional relationship being, of course, the same in
both cases. We call the energy expressed in this way the Hamiltonian
of the dynamical system in quantum mechanics, to keep up the
analogy with the classical theory.

A system in' quantum mechanics always has a Hamiltonian, whether
the system is one that has a classical analogue and is describable in
terms of canonical coordinates and momenta or not. However, if the
system does have a classical analogue, its connexion with classical
mechanics is specially close and one can usually assume that the
Hamiltonian is the same function of the canonical coordinates and
momenta in the quantum theory as in the classical theory.t There
would be a difficulty in this, of course, if the classical Hamiltonian
involved a product of factors whose quantum analogues do not com-
mute, as one would not know in which order to put these factors in
the quantum Hamiltonian, but this does not happen for most of the
elementary dynamical systems whose study is important for atomic
physics. In consequence we are able also largely to use the say
language for describing dynamical systems in the quantum theory 2
in the classical theory (e.g. to talk about particles with given
moving through given fields of force), and when given a syste
classical mechanics, can usually give a meaning to ‘the same’
in quantum mechanics.

Equation (13) holds for v, any function of the Heisenberg dyna
variables not involving the time explicitly, i.e. for v any cA
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+ This assumption is found in practice to be successful only when applied wk
dynamical coordinates and momenta referring to a Cartesian system of axes 8
to more general curvilinear coordinates.
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linear operator in the Schrédinger picture. It shows that such a
function v, is constant if it commutes with H, or if v commutes with H.
We then have =1, =,

and we call v, or v a constant of the motion. It is necessary that » shall
commute with H at all times, which is usually possible only if H is
constant. In this case we can substitute H for v in (13) and deduce
that H, is constant, showing that H itself is then a constant of the
motion. Thus if the Hamilbonian is constant in the Schrodinger
picture, it is also constant in the Heisenberg picture.

For an isolated system, a system not acted on by any external
forces, there are always certain constants of the motion. One of these
is the total energy or Hamiltonian. Others are provided by the
displacement theory of § 25. It is evident physically that the total
energy must remain unchanged if all the dynamical variables are
displaced in a certain way, so equation (63) of § 25 must hold with
vg=v=H. Thus D commutes with H and is a constant of the
motion. Passing to the case of an infinitesimal displacement, we see
that the displacement operators d,, d,, and d, are constants of the
motion and hence, from (69) of § 25, the total momentum is a constant
of the motion. Again, the total energy must remain unchanged if all
the dynamical variables are subjected to a certain rotation. This
leads, as will be shown in § 35, to the result that the total angular
momentum is & constant of the motion. The laws of conservation of
energy, momentum and angular momentum hold for an isolated system
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116 THE EQUATIONS OF MOTION § 28

as the conservation laws referred to above, are translated into quan-
tum theory.

29, Stationary states

We shall here deal with a dynamical system whose energy is con-
stant. Certain specially simple relations hold for this case. Equation
(6) can be integratedt to give ’

T = g—iHC—oh,
with the help of the initial condition that 7' = 1 for ¢ = to This
result substituted into (1) gives .
| Pty = e—tHEANR] P (16)

which is the integral of Schrddinger’s equation of motion (5), and
substituted into (10) it gives

vy = eiH(t—(o)lﬁve-iH(l—lo)/ﬁ, (17)

which is the integral of Heisenberg’s equation of motion (11), H, being
now equal to H. Thus we have solutions of the equations of motion
in a simple form. However, these solutions are not of much practical
value, because of the difficulty involved in evaluating the operator
e~Ht-Wh ynless H is particularly simple, and for practical purposes
one usually has to fall back on Schrédinger’s wave equation.

Let us consider a state of motion such that at time {, it is an eigen-
state of the energy. The ket |Pt,> corresponding to it at this time
must be an eigenket of H. If H' is the eigenvalue to which it belongs,

equation (16) gives |Pty = e~iHiR| Pty

showing that |Pt) differs from |Pfy> only by a phase factor. Thus
the state always remains an eigenstate of the energy, and further, it
does not vary with the time at all, since the direction of the ket |Pt)>
does not vary with the time. Such a state is called a stationary siq

independent of the time when the observation is made. Fro .
assumption that the energy is an observable, there are su: b RE GIS TERED %
stationary states for an arbitrary state to be dependent on th IO N
The time-dependent wave function (£t) representing a sta VE R S
ADDS NO

state of energy H' will vary with time according to the law
P(€t) = ho(§)e~*HUR,

t The integration can be carried out as though H were an ordinary alg
variable instead of a linear operator, because there is no quantity that d
commute with H in the work.
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and Schrédinger’s wave equation (7) for it reduces to

H'ipoy = Hipo). (19)
This equation merely asserts that the state represented by i, is an
eigenstate-of H. We call a function i, satisfying (19) an eigenfunction
of H, belonging to the eigenvalue H'.

In the Heisenberg picture the stationary states correspond to fixed
eigenvectors of the energy. We can set up a representation in which
all the basic vectors are eigenvectors of the energy and so correspond
to stationary states in the Heisenberg picture. We call such a repre-
sentation a Heisenberg representation. The first form of quantum
mechanics, discovered by Heisenberg in 1925, was in terms of a
representation of this kind. The energy is diagonal in the representa-
tion. Any other diagonal dynamical variable must commute with the
energy and is therefore a constant of the motion. The problem of
setting up a Heisenberg representation thus reduces to the problem
of finding a complete set of commuting observables, each of which
is a constant of the motion, and then making these observables
diagonal. The energy must be a function of these observables, from
Theorem 2 of § 19. It is sometimes convenient to take the energy
itself as one of them.,

Let « denote the complete set of commuting observables in a
Heisenberg representation, so that the basic vectors are written <{«'|,
|a">. The energy is a function of these observables «, say H = H(«).
From (17) we get

(o ple”y = (o |eiBt—olye—iHU— ol

— giH'—H"Xi-ig

where H' = H(«') and H" = H(«"). ; ct\@@%o%m

hand side here is independent o %Qn element of the mabr
representing the fixed linear operz ormula (20) shows how the(S}
Heisenberg maitrix elements ;%Qf- ?&Eq ?TE R O
vary with time, and it makes g A ly the e ion o 1on%g ¢
as is easily verified. The v
with the frequency
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Condition, according to which (21) is the frequency of the electro-
magnetic radiation emitted or absorbed when the system makes a
transition under the influence of radiation between the stationary
states o' and o, the eigenvalues of H being Bohr’s energy levels.
These matters will be dealt with in § 45.

30. The free particle

The most fundamental and elementary application of quantum
mechanics is to the system consisting merely of a free particle, or
particle not acted on by any forces. For dealing with it we use as
dynamical variables the three Cartesian coordinates #, y, z and their
conjugate momenta p,, p,, p,- The Hamiltonian is equal to the
kinetic energy of the particle, namely

1
H= %(p§+p%+p§) (22)

according to Newtonian mechanics, m being the mass. This formula
is valid only if the velocity of the particle is small compared with c,
the velocity of light. For a rapidly moving particle, such as we often
have to deal with in atomic theory, (22) must be replaced by the
relativistic formula

H = o(m?c®+pi+p+27)*- (23)
For small values of p,, p,, and p, (23) goes over into (22), except for
the constant term mc? which corresponds to the rest-energy of the
particle in the theory of relativity and which has no influence on the
equations of motion. Formulas (22) and (23) can be taken over
directly into the quantum theory, the square root in (23) being now
understood as the positive square root defined at the end of § 11.

the extent of an arbitrary additive real constant.

We shall here work with the more accurate formula (23).
first solve the Heisenberg equations of motion. From the'%
conditions (9) of § 21, p, commutes with p, and p,, and heng
Theorem 1 of § 19 extended to a set of commuting obse
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§30 THE FREE PARTICLE 119

theory. Again, the equation of motion for a coordinate, ; say, is,
according to (11),

Y . d -
ifid, = it = @, c(mPe-pi+-ph+-pH)—o(m?*+ pi+p+pd)a,

The right-hand side here can be evaluated by means of formula
(31) of § 22 with the roles of coordinates and momenta interchanged,

s that it reads 0.f—fa, = it fjop,, (24)
J now being any function of the p’s. This gives

; 9 202 1 p2 1 2 1 2 *p,
&y = s—c(m*c+pi+pit+pi)t = ==
op,, H
. . (25)
Similarly, U= %" , 3= %’
The magnitude of the velocity is
v = (@+yi+e)t = (pi+p)+pd)H. (26)

Equations (25) and (26) are just the same as in the classical theory.
Let us consider a state that is an eigenstate of the momenta,
belonging to the eigenvalues p., p;, p;. This state must be an eigen-
state of the Hamiltonian, belonging to the eigenvalue
H' = ¢(m?c+p,*+p, +p.)}, (27)
and must therefore be a stationary state. The possible values for H’
are all numbers from mc? to oo, as in the classical theory. The wave
function ¢(xyz) representing this state at any time in Schridinger’s
representation must satisfy

PePlayz)) = pf(ayz)) = —i

with similar equations for p, and p
P(xyz) is of the form
U(zyz) = ael

where a is independent of z, ¥,
time-dependent wave function
Playzt) =

where a, is independent of x,
The function (29) of x, v,

s YERSIONGo
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120 THE EQUATIONS OF MOTION §30
their wavelength is
A = hf(pz*+p*+p*) = B[P, (31)

P’ being the length of the vector (p,p,,,), and their motion is in
the direction specified by the vector (py, p,, p;) with the velocity

= H'|P' = 2, ' (32)

v’ being the velocity of the particle corresponding to the momentum
(pg Py, P3) 88 given by formula (26). Equations (30), (31), and (32)
are easily seen to hold in all Lorentz frames of reference, the expres-
sion on the right-hand side of (29) being, in fact, relativistically
invariant with pg,p,,p, and H' as the components of a 4-vector.
These properties of relativistic invariance led de Broglie, before the
discovery of quantum mechanies, to postulate the existence of waves
of the form (29) associated with the motion of any particle. They
are therefore known as de Broglie waves.

In the limiting case when the mass m is made to tend to zero, the
classical velocity of the particle v bécomes equal to ¢ and hence, from
(32), the wave velocity also becomes c. The waves are then like the
light-waves associated with a photon, with the difference that they
contain no reference to the polarization and involve a complex ex-
ponential instead of sines and cosines. Formulas (30) and (31) are
still valid, connecting the frequency of the light-waves with the
energy of the photon and the wavelength of the light-waves with
the momentum of the photon.

For the state represented by (29), the probability of the particle
being found in any specified small volume when an observation of its
position is made is independent of where the volume is. This provides
an example of Heisenberg’s principle of uncertainty, the state bei
one for which the momentum is accurately given and for whick
consequence, the position is completely unknown. Such a g3
of course, & limiting case which never occurs in practice. TH
usually met with in practice are those represented by wave g
which may be formed by superposing a number of waves o
(29) belonging to slightly different values of (pz, p,, p;), s
in § 24. The ordinary formula in hydrodynamics for the y
such a wave packet, i.e. the group velocity of the waves, is

dv
d(1/a)
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§30 THE FREE PARTICLE 121

which gives, from (30) and (31)
dH’
aP' = dP’
This is just the velocity-of the particle. The wave packet moves in
the same direction and with the same velocity as the particle moves
in classical mechanics.

e (B P = T =y, (34)

31. The motion of wave packets

The result just deduced for a free particle is an example of a general
principle. For any dynamical system with a classical analogue, a state
for which the classical description is valid as an approximation is
represented in quantum mechanics by a wave packet, all the co-
ordinates and momenta having approximate numerical values, whose
accuracy is limited by Heisenberg’s principle of uncertainty. Now
Schrédinger’s wave equation fixes how such a wave packet varies with
time, 80 in order that the classical description may remain valid, the
wave packet should remain a wave packet and should move according
to the laws of classical dynamics. We shall verify that this is so.

We take a dynamical system having a classical analogue and let
its Hamiltonian be H{(g,,p,) (r = 1,2,...,n). The corresponding classi-
cal dynamical system will have as Hamiltonian H,(q,, p,) say, obtained
by putting ordinary algebraic variables for the ¢, and p, in H(g,, p,)
and making £ — 0 if it occurs in H(g,,p,). The classical Hamiltonian
H, is, of course, a real function of its variables. It is usually a
quadratic function of the momenta p,, but not always 80, the
relativistic theory of a free particle being g g iighe
The following argument is valid for

We suppose that the time-depé
dinger’s representation is of th
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Now e8I ig evidently a unitary linear operator and may be used for
U in equation (70) of § 26 to give us a unitary transformation. The
g’s remain unchanged by this transformation, each p, goes over into

e~ St et = p.+08/0g,,
with the help of (31) of § 22, and H goes over into
e_iSIﬂH(qr’ pr)eislﬁ = H(Qr’ pr+aS/aQr)’
since algebraic relations are preserved by the transformation. Thus
(36) becomes

(122 — a2 — {4, 0,+ 2)>. (37

Let us now suppose that £ can be counted as small and let us neglect
terms involving # in (37). This involves neglecting the p,’s that occur
in H in (87), since each p, is equivalent to the operator —i#% 8/dq,
operating on the functions of the ¢’s to the right of it. The surviving
terms give 28 28
This is a differential equation which the phase function 8 has to
satisfy. The equation is determined by the classical Hamiltonian
function H, and is known as the Hamilton-Jacobt equation in classical
dynamics. It allows S to be real and so shows that the assumption
of the wave form (35) does not lead to an inconsistency.

To obtain an equation for 4, we must retain the terms in (37)
which are linear in # and see what they give. A direct evaluation of
these terms is rather awkward in the case of a general function H,
and we can get the result we require more easily by first multiplying
both sides of (37) by the bra vector {Af, where f is an arbitrary real
function of the ¢’s. This gives

., 84 o8 0
caflinfg—a Sl — <AfH(q,,p,+5q§;)A>.
The conjugate complex equation is

aA 38’
caf{—n%g—a ) = A(g.p+5)1>
Subtracting and dividing out by ¢, we obtain

X% = A18{g.o+ )| 4

(38)
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§ 31 THE MOTION OF WAVE PACKETS 123

We now have to evaluate the P.B.

[f, H(g,.p.+28/og,)]-
Our assumption that £ can be counted as small enables us to expand
H(g,,p,+08/éq,) as a power series in the p’s. The terms of zero degree
will contribute nothing to the P.B. The terms of the first degree in
the p’s give a contribution to the P.B. which can be evaluated most
easily with the help of the classical formula (1) of § 21 (this formula
being valid also in the quantum theory if « is independent of the p’s
and v is linear in the p’s). The amount of this contribution is
o [33 (qr,Pr)]
3 aQs 3_’ps p,=as/aq,,
the notation meaning that we must substitute 25/0g, for each p, in
the function [ ] of the ¢’s and p’s, so as to obtain a function of the ¢’s
only. The terms of higher degree in the p’s give contributions to the
P.B. which vanish when % — 0. Thus (39) becomes, with neglect of
terms involving #i, which is equivalent to the neglect of #% in (37),

of [oH,(q,, D,
2y —<a }:f[ ord] . (40)
Ds Pr=0S[0gr
Now if a(g) and b(g) are any two functions of the ¢’s, formula

(64) Of§ 20 gives <a(q)b(q)> _ fa(qr) dqr b(q’),

and so (a (q)a”‘% - <3‘;+;9’b(q>>, (41)

provided a(g) and b(g) sa.t1sfy suitable boundaryggondi
cussed in §§ 22 and 23. Hence (40) may b i

wns, as dis-

> =D
Since this holds for an arbitrary ction f, we must have
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Equation (42) is then just the equation of conservation for such a
fluid. The motion of the fluid is determined by the function S
satisfying (38), there being one possible motion for each solution
of (38).

For a given §, let us take a solution of (42) for which at some
definite time the density A? vanishes everywhere outside a certain
small region. We may suppose this region to move with the fluid,
its velocity at each point being given by (43), and then the equation
of conservation (42) will require the density always to vanish outside
the region. There is a limit to how small the region may be, imposed
by the approximation we made in neglecting % in (39). This approxi-
mation is valid only provided

el 28
ﬁaqrA < aqu’

lo4 1358

4 g, ~tog,’
which requires that A4 shall vary by an appreciable fraction of itself
only through a range of the ¢’s in which § varies by many times £,
i.e. a range consisting of many wavelengths of the wave function (35).
Our solution is then a wave packet of the type discussed in § 24 and
remains so for all time.

We thus get a wave function representing a state of motion for
which the coordinates and momenta have approximate numerical
values throughout all time. Such a state of motion in quantum
theory corresponds to the states with which classical theory deals.

The motion of our wave packet is determined by equations (38) and
(43). From these we get, defining p, as 88/dg,,

dp, 43S _ 28 28 dg,

dt — didg,  atdg, £0g,0q, db
S c( i)t 2o QS REGISTERED %
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We see in this way how the classical equations of motion are derivable
from the quantum theory as a limiting case.

.By a more accurate solution of the wave equation one can show
that the accuracy with which the coordinates and momenta simul-
taneously have numerical values cannot remain permanently as
favourable as the limit allowed by Heisenberg’s principle of un-
certainty, equation (56) of § 24, but if it is initially so it will become
less favourable, the wave packet undergoing a spreading.t

32. The action principlef

Equation (10) shows that the Heisenberg dynamical variables at
time £, v;, are connected with their values at time ¢, v,, or v, by a
unitary transformation. The Heisenberg variables at time ¢3¢ are
connected with their values at time ¢ by an infinitesimal unitary
transformation, as is shown by the equation of motion (11) or (13),
which gives the connexion between v, and v, of the form of (79) or
(80) of § 26 with H, for F and 8t/% for . The variation with time of
the Heisenberg dynamical variables may thus be looked upon as the
continuous unfolding of a wunitary transformation. In classical
mechanics the dynamical variables at time ¢4-8¢ are connected with
their values at time ¢ by an infinitesimal contact transformation and
the whole motion may be looked upon as the continuous unfolding of a
contact transformation. We have here the mathematical foundation
of the analogy between the classical and quantum equations of
motion, and can develop it to bring out the quantum analogue of all
the main features of the classical theory of d
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variables v, in the same way in which the original basic vectors are
connected with the Schrodinger dynamical variables ». In particular,
each (£'*| must be an eigenvector of the £’s belonging to the eigen-
values €. It may therefore be written <£&;|, with the understanding
that the numbers £ are the same eigenvalues of the §’s that the £'’s

are of the &’s. From (45) we get

KGlE> = <EITIED, (46)
showing that the transformation function is just the representative
of T in the original representation.

Differentia,ting (45) with respect to ¢ and using (6), we get

zﬁ (ftl = ﬁ(f'l-—- = '|HT = (&|H,

with the help of (12). Multiplying on the right by any ket |a)
independent of ¢, we get

5 Gila> = G = [ GIHIED d ey, WD)

if we take for definiteness the case of continuous eigenvalues for the
&s. Now equation (5), written in terms of representatives, reads

i 5 \Poy = [ <V a2 1P, (48)

Since (&;|H,\&p is the same function of the variables & and £ that
KE'|H|E™ is of ¢ and ¢, equations (47) and (48) are of precisely the
same form, with the variables £, £ in (47) playing the role of the
variables &' and £” in (48) and the function {§;je) playing the role
of the funetion <{¢'|Pt). We can thus look upon (47) as a form of
Schridinger’s wave equation, with the function (£j|a> of the variablg
&; as the wave function. In this way Schridinger’s wave equatil
appears 1 a new light, as the condition on the representative, i
moving representation with the Heisenberg variables ¢ diagonal, %
JSiwed ket corresponding to a state in the Heisenberg picture. The fung
(ilay owes its variation with time to its left factor (£, in
distinction to the funetion {(¢'|Pt), which owes its variation with
to its right factor | Pt).

If we put |a) = |£" in (47), we get

RGN = [ GIRIED a2 e,

O\
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showing that the transformation function (&|¢") satisfies Schro-
dinger’s wave equation. Now £, = £, so we must have

C€ulé™> = 8(6,—¢"), (50)
the & function here being understood as the product of a number of
factors, one for each £-variable, such as occurs for the variables
£pi1se-r &, On the right-hand side of equation (34) of § 16. Thus the
transformation function {&|£") is that solution of Schrédinger’s wave
equation for which the £’s certainly have the values £ at time £,
The square of its modulus, [(£;|£"|?, is the relative probability of the
£s having the values §; at time ¢ > ¢, if they certainly have the values
¢ at time t,. We may write (£|€") as (£/€,> and consider it as
depending on £, as well as on . To get its dependence on i, we take
the conjugate complex of equation (49), interchange ¢ and ¢, and also
interchange single primes and double primes.” This gives

<st|§:.,> — f CENEDS AED (LN H, L. (51)

The foregoing dlscussmn of the transformation function <(&|£") is
valid with the §’s any complete set of commuting observables. The
equations were written down for the case of the §’s having continuous
eigenvalues, but they would still be valid if any of the £’s have
discrete eigenvalues, provided the necessary formal changes are made
in them. Let us now take a dynamical system having a classical
analogue and let us take the £’s to be the coordinates g. Put

gilg" = e
and so define the function S of the variablg

depends explicitly on ¢. (52) is a
equation and, if # can be countge ag

L&
same way as (35) was. The § 0 &%rg from the § of (35) i
account of there being no 4 ja ch makes the S of (52) com-"~
plex, but the real part of thY ~ﬁa,lR)E(;ls5TE
imaginary part is of the orde us, in the limit # - 0, the § of
will therefor Q dmg

(52) will equal that of (35
oo - 2 q”’p"’ADDS NO &
/ QN s
s, O

where
and H, is the Hamiltonian o
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which is the conjugate complex of Schrédinger’s wave equation in the
variables ¢" or ¢},. This causes S to satisfy alsot
88/oty = Hqy pr), (55)
where py = —a8/oqg,. (56)
The solution of the Hamilton-Jacobi equations (53), (65) is the
action function of classical mechanics for the time interval ¢, to ¢,
i.e. it is the time integral of the Lagrangian L,

¢

8= f L(t') dt'. (57)

o

Thus the S defined by (52) is the quantum analogue of the classical action
function and equals it in the limit % — 0. To get the quantum analogue
of the classical Lagrangian, we pass to the case of an infinitesimal -
time interval by putting ¢t = ,-+8¢ and we then have (g;,,5I¢;,> as the
analogue of e*l¢wd% For the sake of the analogy, one should consider
L(t,) as a function of the coordinates ¢’ at time t,+38t and the co-
ordinates ¢” at time f,, rather than as a function of the coordinates
and velocities at time ¢,, as one usually does.

The principle of least action in classical mechanics says that the
action function (57) remains stationary for small variations of the tra-
jectory of the system which do not alter the end points, i.e. for small
variations of the ¢’s at all intermediate times between #, and ¢ with g,
and ¢, fixed. Let us see what it corresponds to in the quantum theory.

Ly
Put exp{i [ Loy dt/ﬁ} — expliSlt, t)/H) = Bl t), (58)
s

so that B(t,,t,) corresponds to {g;,|g;,> in the quantum theory. (We
here allow g;, and ¢;, to denote different eigenvalues of g, and g, to
save having to introduce a large number of primes into the analysis
Now suppose the time interval #, - ¢ to be divided up into a lary
number of small time intervals £, — ¢;, {; = fg,..., Lpg = bps t
the introduction of a sequence of intermediate times #;, £,,..., f,-

B(t,t) = B(t, t) B(tp, tys)- - Blta, 1) Bty to)-
The corresponding quantum equation, which follows from ¢
perty of basie vectors (35) of § 16, is

CATARS | B RCAVAT "R IR MY AR AT VT Ak,

t For a more accurate comparison of transformation funections with
theory, see Van Vleck, Proc. Nat. Acad. 14, 178.
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¢;, being written for g;, for brevity. At first sight there does not seem
to be any close correspondence between (59) and (60). We must,
however, analyse the meaning of (59) rather more carefully. We must
regard each factor B as a function of the ¢’s at the two ends of the
time interval to which it refers. This makes the right-hand side of
(69) a function, not only of ¢, and g,, but also of all the intermediate
¢’s. Equation (59) is valid only when we substitute for the inter-
mediate ¢’s in its right-hand side their values for the real trajectory,
small variations in which values leave S stationary and therefore also,
from (58), leave B(t,¢,) stationary. It is the process of substituting
these values for the intermediate ¢’s which corresponds to the inte-
grations over all values for the intermediate ¢”’s in (60). The quantum
analogue of the action principle is thus absorbed in the composition
law (60) and the classical requirement that the values of the inter-
mediate ¢’s shall make S stationary corresponds to the condition
in quantum mechanics that all values of the intermediate ¢”’s
are important in proportion to their contribution to the integral
n (60).

Let us see how (59) can be a limiting case of (60) for # small. We
must suppose the integrand in (60) to be of the form eiF® where F is
a function of ¢g, g1, ¢5,---» ¢, ¢; Which remains continuous as % tends
to zero, so that the integrand is a rapidly osecillating function when
#i is small. The integral of such a rapidly oscillating function will be
extremely small, except for the contribution arising from a region in
the domain of integration where compa.ra.tlvel large variations in
the g}, produce only very small variationg i
be the nelghbourhood of a point where #
tions of the g;. Thus the mtegra.l il

the value of the integrand at a Vo is sta t$
for small variations of the inOledgte ¢’s, and so (60) goes%
into (59). é‘ /O
~ Equations (54) and (56) Y § thR’EG’SISEBEDon-¢
nected with the variablegg 2 contam nd are
one of the standard forms iting the eq M trans-
formation. There is an angous form for ns of a
unitary transformation i ptum mechaﬁm&ﬁﬂ ), with
the help of (45) of § 22,

(Gilpalg"> = %@WAJEB MA ngb
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‘ Sumlarly, w1th the help of (46) of § 22,

aS 3 s N
R R e .
From the general definition of functions of commuting observables,
h "
o aave @lf@e@e> = flgela'Kgilg", . (69)

where f(g,) and g(g) are functions of the g,’s and ¢’s respectively. Let
G(g;,q) be any function of the g/s and ¢’s consisting of a sum or
integral of terms each of the form f(g,)g(g), so that all the ¢,s in @
occur to the left of all the ¢’s. Such a function we call well ordered.
Applying (63) to each of the terms in G and adding or integrating,

o get (@169l = Fgha)la">-
Now let us suppose each p,, and p, can be expressed as a well-ordered
function of the ¢,’s and ¢’s and write these functions p,(q, ), (%, 9)-
Putting these functions for @, we get

gi1Pale"> = Prldt ¢')<aild",

<gilp,lg"> = pr(ge9"Kelg">-
Comparing these equations with (61) and (62) respectively, we see

that .
ron (Qt: Q”) o aS(qt’ q”)
prt(Qh ) aq o pr(%’q ) aq/;'
This means that
28(q,, a8(q,
_ %49 p, = — 9.9) (64)
aQrt agr

provided the right-hand sides of (64) are written as well-ordered
functions.

These equations are of the same form as (54) and (56), but refer to
the non-commuting quantum variables g, ¢ instead of the ordinary
algebraic variables ¢;,¢”. They show how the conditions for a unita
transformation between quantum variables are analogous to the condi
tions for a contact transformation between classical variables.
analogy is not complete, however, because the classical S must be 1
and there is no simple condition corresponding to this for the S ¢

33. The Gibbs ensemble

In our work up to the present we have been assuming all alod
our dynamical system at each instant of time is in a definite st
that is to say, its motion is specified as completely and accuratg
is possible without conflicting with the general principles of the theor,
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In the classical theory this would mean, of course, that all the coordi-
nates and momenta have specified values. Now we may be interested
in a motion which is specified to a lesser extent than this maximum
possible. The present section will be devoted to the methods to be
used in such a case.

The procedure in classical mechanics is to introduce what is called
a Gibbs ensemble, the idea of which is as follows. We consider all the
dynamical coordinates and momenta as Cartesian coordinates in a
certain space, the phase space, whose number of dimensions is twice
the number of degrees of freedom of the system. Any state of the
system can then be represented by a point in this space. This point
will move according to the classical equations of motion (14). Sup-
pose, now, that we are not given that the system is in a definite state
at any time, but only that it is in one or other of a number of possible
states according to a definite probability law. We should then be
able to represent it by a fluid in the phase space, the mass of fluid in
any volume of the phase space being the total probability of the
system being in any state whose representative point lies in that
volume. Kach particle of the fluid will be moving according to the
equations of motion (14). If we introduce the density p of the fluid
at any point, equal to the probability per unit volume of phase space
of the system being in the neighbourhood of the corresponding state,
we shall have the equation of conservation

t--3leh) -3

=—2{5—;

= —[p, H].

it determines the density p

function of the ¢’s and p’s.

same form as the ordinary,

variable.

- The requirement that the
any state shall be unity gi

al probability, fdﬁg & \ng in
E & normallz

the integration being over the W




132 THE EQUATIONS OF MOTION §33

differential dgq or dp being written to denote the product of all the
dg’s or dp’s. If B denotes any function of the dynamical variables,
the average value of 8 will be

[[ 8o dadp. (67)

It makes only a trivial alteration in the theory, but often facilitates
discussion, if we work with a density p differing from the above one
by a positive constant factor, k say, so that we have instead of (66)

”pdgdp=k.

With this density we can picture the fluid as representing a number
k of similar dynamical systems, all following through their motions
independently in the same place, without any mutual disturbance or
interaction. The density at any point would then be the probable or
average number of systems in the neighbourhood of any state per unit
volume of phase space, and expression (67) would give the average
total value of B for all the systems. Such a set of dynamical systems,
which is the ensemble introduced by Gibbs, is usually not realizable
in practice, except as a rough approximation, but it forms all the
same & useful theoretical abstraction.

We shall now see that there exists a corresponding density p
in quantum mechanics, having properties analogous to the above.
It was first introduced by von Neumann. Its existence is rather
surprising in view of the fact that phase space has no meaning in
quantum mechanics, there being no possibility of assigning numerical
values simultaneously to the ¢’s and p’s.

We consider a dynamical system which is at a certain time in one
or other of a number of possible states according to some given
probability law. These states may be either a discrete set or a con-
tinuous range, or both together. We shall here take for definite
the case of a discrete set and suppose them labelled by a parameter
Let the normalized ket vectors corresponding to them be |m)
the probability of the system being in the mth state be F,,. W¢
define the quantum density p by

p =2 Im)Eyim|.

Let p’ be any eigenvalue of p and |p’) an eigenket belongi
eigenvalue. Then .

% Im> P, (m|p"> = plp'> = p'|p">
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so that 2 <p'ImyEn(mlp’> = p'<p'lp">
or % B, Km|p">[® = p’{p'|p"-

Now P, being a probability, can never be negative. It follows that
p’ cannot be negative. Thus p has no negative eigenvalues, in analogy
with the fact that the classical density p is never negative.

Let us now obtain the equation of motion for bur quantum p. In
Schriodinger’s picture the kets and bras in (68) will vary with the time
in accordance with Schrédinger’s equation (5) and the conjugate
imaginary of this equation, while the F,,’s will remain constant, since
the system, so long as it is left undisturbed, cannot change over from
a state corresponding to one ket satisfying Schrédinger’s equation to
a state corresponding to another. We thus have

dp o [d|m) d<m|
B ;zﬁ{—d—t—P m|+ myP, X7

= Z {H{m>Pp(m|— |m)F,(m|H}

= Hp—pH. (69)

This is the quantum analogue of the classical equation of motion

(65). Our quantum p, like the classical one, is determined for all time
if it is given initially.

From the assumption of § 12, the average value of any observable

B when the system is in the state m is {m|8|m)>. Hence if the system

is distributed over the various states m according

a rep.resenta,tion with a discrete set of
equals

3 Bl Blmy = ;

f’
with the laW/AEREG I NPlica-

expressions (70) are the analo g e of

al theory. VABB&IN sical

and take the integral of the

oW/ TERMARK

the last step being easily vé
tion, equation (44) of § 17. T
the expression (67) of the q
theory we have to multiply ?
product over all phase space
multiply B by p, with the I

3595.57

4

either order, and take the O
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diagonal sum of the product in a representation. If the representa-
tion involves a continuous range of basic vectors |£"), we get instead

f (70
or ) [ <&1Bole> dg = [ ceopie> de, )

so that we must carry through a process of ‘integrating along the
diagonal’ instead of summing the diagonal elements. We'shall define
(71) to be the diagonal sum of 8p in the continuous case. It can easily
be verified, from the properties of transformation functions (56) of
§ 18, that the diagonal sum is the same for all representations.
From the condition that the |m)’s are normalized we get, with

discrete £’s

3Pl = 3B =SBy =1, (12)

& &m m
since the total probability of the system being in any state is unity.
This is the analogue of equation (66). The probability of the system
being in the state £’, or the probability of the observables £ which
are diagonal in the representation having the values £', is, according
to the rule for interpreting representatives of kets (51) of § 18,

3 KE >Ry = <& 10187, (73)

which gives us a meaning for each term in the sum on the left-hand
side of (72). For continuous £’s, the right-hand side of (73) gives the
probability of the £’s having values in the neighbourhood of ¢ per
unit range of variation of the values £&'.

As in the classical theory, we may take a density equal to % timez
the above p and consider it as representing a Gibbs ensemble of %
similar dynamical systems, between which there is no mutual dis-
turbance or interaction. We shall then have k on the right-hand side
of (72), and (70) or (71) will give the total average B for all
members of the ensemble, while (73) will give the total probabi
of a member of the ensemble having values for its £’s equ
or in the neighbourhood of £ per unit range of variation {
values £'.

An important application of the Gibbs ensemble is to a dy VERSION
system in thermodynamic equilibrium with its surroundipdilat a
given temperature 7. Gibbs showed that such a system'™ ADDS NO
sented in classical mechanics by the density

p = ce~HIT,
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H being the Hamiltonian, which is now independent of the time, &
being Boltzmann’s constant, and ¢ being a number chosen to make
the normalizing condition (66) hold. This formula may be taken over
unchanged into the quantum theory. At high temperatures, (74)
becomes p = ¢, which gives, on being substituted into the right-hand
side of (73), ¢(¢'|£'Y = c in the case of discrete £”’s. This shows that
at high temperatures all discrete states aré equally probable.

VERSION
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ELEMENTARY APPLICATIONS

34. The harmonic oscillator

A stvpLE and interesting example of a dynamical system in quantum
mechanics is the harmonic oscillator. This example is of importance
for general theory, because it forms a corner-stone in the theory of
radiation. The dynamical variables needed for describing the system
are just one coordinate ¢ and its conjugate momentum p. The
Hamiltonian in classical mechanies is

1
H = o "+ m'e?), 1)

where m is the mass of the oscillating particle and w is 27 times the
frequency. We assume the same Hamiltonian in quantum mechanies.
This Hamiltonian, together with the quantum condition (10) of § 22,
define the system completely.
The Heisenberg equations of motion are
q‘t = [Qb H] = pl/m’ } (2)
B = [p, H] = —muw’q,.
It is convenient to introduce the dimensionless complex dynamical
variable 7 = (2mAiw)Hp+imwg). (3)
The equations of motion (2) give
7y = (2mfiew) H—mw’q+iwp) = oy,

This equation can be integrated to give

= Te eiwt,
where 7, is a linear operator independent of £, and is equal to ghs

@&S‘

classical theory.
We can express ¢ and p in terms of 5 and its conjugate com}
and may thus work entirely in terms of » and 7. We have
Ramij = (2m)~Hp-+imaq)(p—imeg)
= (2m)~[p*+mPwie®+imw(gp—pg)]
= H—}w
and similarly fiwin = H+Hiow.
Thus fn—n7 = L.
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Equation (5) or (6) gives H in terms of % and 7 and (7) gives the
commutation relation connecting n and 7. From (5)

hwiin = 7H— ooy

and from (6) ﬁwﬁﬂﬁ = Hij+ 7.
Thus FH—HF = fwd. (8)
Also, (7) leads to y—nni = nyn-1 9)

for any positive integer n, as may be verified by induction, since, by
multiplying (9) by 7 on the left, we can deduce (9) with n-1 for ».
Let H’ be an eigenvalue of H and [H") an eigenket belonging to it.
From (5)
o H Inf|H> = (H'|H—$fiw|H") = (H'—$fio)H'[H').
Now (H'|n7|H’) is the square of the length of the ket 7|H">, and

hence CH' |97 H'S =0
the case of equality occurring only if 5j|H’) = 0. Also (H'|H') > 0.
Thus H > Yo, (10)

the case of equality occurring only if 7|H"Y = 0. From the form (1)
of H as a sum of squares, we should expect its eigenvalues to be all
positive or zero (since the average value of H for any state must be
positive or zero). We now have the more stringent condition (10).
From (8)

Hij|H" = (jH—Awq) | H") = (H'—fiw)j|H'). (11)
Now if H' +# }fw, 4|H') is not zero and is then a 0
eigenket of H belonging to the eigenval
any eigenvalue of H not equal to 3%
of H. We can repeat the argument ;

which cannot extend to infi
values contradicting (10), and
Again, from the conjugate
HylH") = (nH+
showing that H'--fw is a
eigenket belonging to it,
can be ruled out, since it wq

0 = fiwijn | H'y =

lex of equaVE%
MHA) = (' +7w n§!ON
br elgenva,lueAfBB's NIQas an

= 0. The latter alternative

«WATERMARK OS

> = H,—l_%ﬁw)lﬂ >:
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which contradicts (10). Thus H'+%w is always another eigenvalue
of H, and so are H'+2fiw, H'+ 3#iw and so on. Hence the eigenvalues
of H are the series of numbers
o, (w, e, Ho, ... (12)
extending to infinity. These are the possible energy values for the
harmonic oscillator.
Let |0> be an eigenket of H belonging to the lowest eigenvalue

$fiw, so that 705> = o, (13)
and form the sequence of kets
0>, 7]0>, 7%[0>, 730>, - (14)

These kets are all eigenkets of H, belonging to the sequence of eigen-
values (12) respectively. From (9) and (13)

7|0y = nn=1[0) (15)
for any non-negative integer n. Thus the set of kets (14) is such that
n or 7 applied to any one of the set gives a ket dependent on the set.
Now all the dynamical variables in our problem are expressible in terms
of n and 7, so the kets (14) must form a complete set (otherwise there
would be some more dynamical variables). There is just one of these
kets for each eigenvalue (12) of H, so H by itself forms a complete
commuting set of observables. The kets (14) correspond to the various
stationary states of the oscillator. The stationary state with energy
(n+%)fiw, corresponding to 4™|0), is called the nth quantum state.

The square of the length of the ket %”|0) is

COIF{0y = nO| 7110
with the help of (15). By induction, we find that

Ol7*n*|0> = n! (16)
provided [0) is normalized. Thus the kets (14) multiplied by f
coefficients n!-* with n = 0, 1, 2,..., respectively form the basic

of a representation, namely the representation with H diagona,
ket |#> can be expanded in the form

lz) = g z, "0,

where the z,’s are numbers. In this way the ket |z is §
correspondence with a power series Y x, %™ in the variable
various terms in the power series corresponding to the v,
stationary states. If |z is normalized, it defines a state for W
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the probability of the oscillator being in the nth quantum state,
i.e. the probability of H having the value (n+4)iw, is

P, = nllz,, (18)
as follows from the same argument which led to (51) of § 18.

We may consider the ket |0 as a standard ket and the power series
in 7 as a wave function, since any ket can be expressed as such a
wave function multiplied into this standard ket. We get a kind of
wave function differing from the usual kind, introduced by equations
(62) of § 20, in that it is a function of the complex dynamical variable
7 instead of observables. It was first introduced by V. Fock, so we
shall call the representation Fock’s representation. It is for many
purposes the most convenient representation for describing states of
the harmonic oscillator. The standard ket |0) satisfies the condition
(13), which replaces the conditions (43) of § 22 for the standard ket
in Schrodinger’s representation. i

Let us introduce Schrodinger’s representation with ¢ diagonal and
obtain the representatives of the stationary states. From (13) and (3)

(p—imwq)|0) = 0,

S0 {q' | p—imwq|0> = 0.
With the help of (45) of § 22, this gives
a ’ ! !
ﬁgg@ 10> +mwq’(q'|0> = 0. (19)
The solution of this differential equation is

(q'10) = (me/[nh)te-med, (20)
the numerical coefficient being chosen so gg to ik :

We have here the representative of the
lowest energy is called. The represd
states can be obtained from it.

(g’ [9™0) = (2mAiw)—"*(q'|(p

e

A S
s "REGISTERED )
{5 VERSION e
for small V&Hﬁ@ ShWt is of

er,series of degree n in ¢'. A further
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se factor 1* may be discarded()
9

= *(2mAiw)-"

This may easily be worked
the form of e-m®?*/2% times a
factor »!—* must be inserted j
tive of the nth quantum stat®
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35. Angular momentum

Let us consider a particle described by the three Cartesian coordi-
nates z, y, z and their conjugate momenta p,, p,, p,. Its angular
momentum about the origin is defined as in the classical theory, by

My = YP,—2Py My = 2P;— TP, m, == x.py"'y'pxi (22)
or by the vector equation ‘
m = XXp.
We must evaluate the P.B.s of the angular momentum components
with the dynamical variables z, p,, etc., and with each other. This
we can do most conveniently with the help of the laws (4) and (5) of
§ 21, thus
[mZ’ x] = [x.pll_ypz’x] = _y[px’ :E] == y’

[mz’ y] = [xpy“‘ypan y] = x[Py, ?/] = —,
[mz’ Z] = [xpy—ypa:: Z] = O: (24)

(23)

and similarly,
[m’z’px] = Py [mz’py] = — Py (25)

[mz’ pz] =0, (26)

with corresponding relations for m, and m,. Again
[my’mz] = [zpa:_xpz’mz] = z[p:c’ mz]—[x’mz]pz
= —2PytYP, = My,

(27)
[mz=mz] = My, [mz’my] = 1,.

These results are all the same as in the classical theory. The sign in
the results (23), (25), and (27) may easily be remembered from the
rule that the -4~ sign occurs when the three dynamical variables, con-
sisting of the two in the P.B. on the left-hand side‘and the opg
forming the result on the right, are in the cyclic order (zyz) and ti
— sign occurs otherwise. Equations (27) may be put in the ve
form

mxXm = ifim.

Now suppose we have several particles with angular m
m,,m,,.... Bach of these angular momentum vectors will sa
(28), thus

VERSION
ADDS NO

m, X m, = fim,
and any one of them will commute with any other, so that

m,Xmg+mxXm, =0 (r#s).
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Hence if M = > m, is the total angular momentum,
MXxM =3 m, xXm, = > m,Xm,+ > (m,X m,+m,x m,)
T8 r r<s
= % > m, = iiM. (29)
r

This result is of the same form as (28), so that the components of the
total angular momentum M of any number of particles satisfy the
same commutation relations as those of the angular momentum of
a single particle.

Let 4,, 4,, A, denote the three coordinates of any one of the
particles, or else the three components of momentum of one of
the particles. The 4’s will commute with the angular momenta of
the other particles, and hence from (23), (24), (25), and (26)

[‘Z’Jm Aa:] = All’ [JM;:’ A‘ll] = —4,, [wa Az] = 0. (30)

If B, B,, B, are a second set of three quantities denoting the
coordinates or momentum components of one of the particles, they
will satisfy similar relations to (30). We shall then have :

[‘Zu:z’ Az Bm+Ay y'l"Az Bz]
= (M, 4,18+ A,[M, B,]+[M, A,)B,+ A}, B,]
— A,B,+A4,B,—A,B,—4,B,
= 0.

Thus the scalar product 4 «Bz+4,B,+A4, B, commutes with 3,
and smrnla.rly with M, and M,. Introduce the veg

or
4,B,—A4,B,=C, A

We have [M,C,] = —2

and stmilarly - [M, G,] UREGI’S TERED
These equations are again g m (30), with C for A, We can

conclude from this work tS{@llquations of tVER@'@Nor the

three components of any vjlitor that we can construct from our
dynamical variables, and Mst

We can introduce linear of
the origin in the same way i
D in § 25 referring to displatt
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angle 8¢ about the z-axis and making 8¢ infinitesimal, we can obtain
the limit operator corresponding to (64) of § 25,

lIim (R—1)/34,
895-‘30( )/o¢

which we shall call the rotation operator about the z-axis and denote
by r,. Like the displacement operators, 7, is a pure imaginary linear
operator and is undetermined to the extent of an arbitrary additive
pure imaginary number. Corresponding to (66) of § 25, the change
in any dynamical variable » caused by a rotation through a small
angle 8¢ about the z-axis is ‘

8d(r,v—or,), (31)
to the first order in 8¢. Now the changes produced in the three
components 4,, 4,, 4, of a vector by a (right-handed) rotation 5¢
about the z-axis applied to all measuring apparatus are 34,
—38¢A,, and 0 respectively, and any scalar quantity is unchanged by
the rotation. Equating these changes to (31), we find that

r,A,—A, 1, = A4, r,A,—A,r,= —A4,
r,4,—~A,r, =0,

and r, commutes with any scalar. Comparing these results with (30),
we see that ifir, satisfies the same commutation relations as M.
Their difference, M,—i#r,, commutes with all the dynamical variables
and must therefore be a number. This number, which is necessarily
real since M, and ¢%r, are real, may be made zero by a suitable choice

of the arbitrary pure imaginary number that can be added to r,, We
then have the result M, = ifir,. . (32)

Similar equations hold for M, and M,. They are the analogues of (69)
of § 25. Thus the fotal angular momentum is connected with the roig
tion operators as the total momentum is connected with the displaceme
operators. This conclusion is valid for any point as origin.

The above argument applies to the angular momentum a
from the motion of particles, defined by (22) for each particle.
is another kind of angular momentum occurring in atomic
spin angular momentum. The former kind of angular momentu
be called orbital angular momentum, to distinguish it. The spj
lar momentum of a particle should be pictured as due to some intd
motion of the particle, so that it is associated with different dg
of freedom from those describing the motion of the particle as a v

VERSION
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and hence the dynamical variables that describe the spin must com-
mute with z, y, 2, p,, p,, and p,. The spin does not correspond very
closely to anything in classical mechanics, so the method of classical
analogy is not suitable for studying it. However, we can build up a
theory of the spin simply from the assumption that the components
of the spin angular momentum are connected with the rotation opera-
tors in the same way as we had above for orbital angular momentum,
i.e. equation (32) holds with 3, as the z component of the spin angular
momentum of a particle and 7, as the rotation operator about the
z-axis referring to states of spin of that particle. With this assump-
tion, the commutation relations connecting the components of the
spin angular momentum M with any vector A referring to the spin
must be of the standard form (30), and hence, taking A to be the
spin angular momentum itself, we have equation (29) holding also
for the spin. We now have (29) holding quite generally, for any sum
of spin and orbital angular momenta, and also (30) will hold generally,
for M the total spin and orbital angular momentum and A any vector
dynamical variable, and the connexion between angular momentum
and rotation operators will be always valid.

As an immediate consequence of this connexion, we can deduce the
law of conservation of angular momentum. For an isolated system, the
Hamiltonian must be unchanged by any rotation about the origin, in
other words it must be a scalar, so it must commute with the angular
momentum about the origin. Thus the angular momentum is a
constant of the motion. For this a.rgument the origin may be any
point.

As a second immediate consequence, W,
with zero total angular momentum is sp
will correspond to a ket |8, sa

and hence r,|8) =

This shows that the ket |§
and it must therefore be un?

<REGIS TERED O 2

itered by infinitesimal rotations,
ed by finite rME leGNatter
can be built up from infinitesj

al ones. Thus A state is s herlcally
symmetrical. The convers prem, a sph state .
has zero total angular momentuil isdylso W ﬂﬁ its roof ig not
quite so simple. A sphericall  1f1%ric RM s
| 8> whose direction is unaltered rotation. Thus the cha.ngec)

.qeY
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in |§) produced by a rotation operator r,, r,,, or r, must be a numerical
multiple of |8), say

TxlS> = cz|S>: 7‘1/|S> = cylS>’ rz|S> == 0215'),
where the ¢’s are numbers. This gives
M\S) = ific,|S>. (33)
These equations are not consistent with the commutation relations
(29) for M,, M,, M, unless c, = ¢, = ¢, = 0, in which case the state
has zero total angular momentum. We have in (33) an example of
a ket which is simultaneously an eigenket of the three non-commuting

Linear operators M,, M,, M, and this is possible only if all three
eigenvalues are zero.

36. Properties of angular momentum

There are some general properties of angular momentum, deducible
simply from the commutation relations between the three compo-
nents. These properties must hold equally for spin and orbital angular
momentum. Let m,, m,, m, be the three components of an angular
momentum, and introduce the quantity p defined by

B = mi4-m2-4-m3.
Since B is a scalar it must commute with m,, m,, and m,. Let us
suppose we have a dynamical system for which m,, m,, m, are the
only dynamical variables. Then B8 commutes with everything and

must be & number. We can study this dynamical system on much
the same lines as we used for the harmonic oscillator in § 34.

Put My—im, = 7.
From the commutation relations (27) we get

am = (my~+-imy)(m,—im,) = mi-+-mi—i(m,m,—m,m,)

— B—m2-him,
and similarly 7% = B—mi—Him,.
Thus m—nn = 2fm,,.
Also m, —nm, = ifim,—fm, = —7n. VERSION
We assume that the components of an angular moment; : A D D S NO

observables and thus m, has eigenvalues. Let m_ be one o
and |m,)> an eigenket belonging to it. From (34)

{mylinimgy = <my|B—mZ+Fim,|my = (B—mg2+Fimy)(m;|my).
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The left-hand side here is the square of the length of the ket lm.>
and is thus greater than or equal to zero, the case of equality occur-
ring if and only if n|m,) = 0. Hence

B—m24-Timl, > 0,

or B+ > (mi— )2, (38)
Thus B+1%4% = 0.
Defining the number & by

k-3 = (B3R = (m2m3+m3+ 32), (39)

so that £ > —37, the inequality (38) becomes

k+3 > [l — 3|
or k+A =m, > —k. (40)
An equality occurs if and only if njm;> = 0. Similarly from (35)

oyl iy = (B—m2—Fm)(m|m),
showing that B—m2—fm, > 0
or k>=m, > —k—h,
with an equality oceurring if and only if 7|m;> = 0. This result
combined with (40) shows that £ > 0 and
k>=my > —k, (41)
with m, = k if §|m;> = 0 and m, = —k if y|m_> = 0.
From (37)
myq|mgy = (qm,—7in)|mz) = (my—Hh)y|my).

is another eigenvalue of m,, and A
of eigenvalues m,, m;—%, m,
and can terminate only with t
complex of equation (37)

m, ';]—Im;> = (ﬁ
showing that m 7 is a
which case m;, = k. Con
values m, m,+%, m,+ 2§
can terminate only with
integral multiple of # and

k, k—#%,"%

A
£ Q/—k. Again, from the confuga(8

s REGISTERED ©)

br eigenvalue ER:S m’, =0, in
ing in this Wg Wo ge a.’series of eigen-
which must j fi 1), and
value k. We can conclude that 2k is an
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The eigenvalues of m, and m, are the same, from symmetry. These
eigenvalues are all integral or half odd integral multiples of #, accord-
ing to whether 2% is an even or odd multiple of #.

Let [max) be an eigenket of m, belonging to the maximum eigen-

value k, so that 7jmax) = 0, (43)

and form the sequence of kets
jmax), =n|max), n?lmax), .., 75 max}. (44)

These kets are all eigenkets of m,, belonging to the sequence of eigen-
values (42) respectively. The set of kets (44) is such that the operator
n applied to any one of them gives a ket dependent on the set (7
applied to the last gives zero), and from (36) and (43) one sees
that 7 applied to any one of the set also gives a ket dependent on the
set. All the dynamical variables for the system we are now dealing
with are expressible in terms of % and 7, so the set of kets (44) is a
complete set. There is just one of these kets for each eigenvalue (42)
of m,, so m, by itself forms a complete commuting set of observables.

It is convenient to define the magnitude of the angular momentum
vector m to be k, given by (39), rather than B}, because the possible

values for k are 0, 3%, %, 3, 2%, ..., (45)

extending to infinity, while the possible values for g are a more
complicated set of numbers.

Fora dynamical system involving other dynamical variables besides
mg, m,, and m,, there may be variables that do not commute with B.
Then B is no longer a number, but a general linear operator. This

happens for any orbital angular momentum (22), as , y, 2, p,, p,, and
p, do not commute with 8. We shall assume that 8 is always an

m, is still valid if we replace |m.;» by a simultaneous eigenket
of the commuting observables k and m,, and leads to the resul
the possible eigenvalues for k are the numbers (45), and fo
eigenvalue k' of k the eigenvalues of m, are the numbers (42) W%
substituted for k. We have here an example of & phenomenon wj
we have not met with previously, namely that with two comm3¥
observables, the eigenvalues of one depend on what eigenvalue w

VERSION
ADDS NO
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assign to the other. This phenomenon may be understood as the two
observables being not altogether independent, but partially functions
of one another. The number of independent simultaneous eigenkets
of k and m, belonging to the eigenvalues k¥’ and m; must be indepen-
dent of m,, since for each independent |k'm.> we can obtain an
independent |k'm;y, for any m; in the sequence (42), by multiplying
|&'m,> by a suitable power of 7 or 7.

As an example let us consider a dynamical system with two angular
moments m, and m,, which commute with one another. If there are
no other dynamical variables, then all the dynamical variables com-
mute with the magnitudes k; and k, of m, and m,, so %, and &, are
numbers. However, the magnitude K of the resultant angular
momentum M = m,-m, is not a number (it does not commute
with the components of m, and m,) and it is interesting to work out
the eigenvalues of K. This can be done most simply by a method
of counting independent kets. There is one independent simultaneous
eigenket of m,, and m,, belonging to any eigenvalue m;, having one of
the values &y, k,—#, k;— 2%,..., —k, and any eigenvalue m,, having one
of the values ky, ky—7#, k,—2%,..., —k,, and this ket is an eigenket
of M, belonging to the eigenvalue M, = m;,+ms;,. The possible
values of M, are thus k,-+k,, by +ko—%, by +k,—2A,...,—ky— Ky, and
the number of times each of them occurs is given by the following
scheme (if we assume for definiteness that &y = k,),

by Ty, oy oy, Tyt ey — 25, .o, oy — g, ey —Teg—Fi, ..
1 2 3 .. 2l 2+l

Now each eigenvalue K’ of K w gesedlated with the eigenv
K ,K'—#,K'—2,,...,—K' for i e same number of indepen(.S}

dent simultaneous eigenkets g MﬂE@I?IFERE 1'O
elonging to any eigenvalue

number of independent eigen]
M, must be the same, w r we take © R)ﬁeweous
eigenkets of m,, and m,, or SYllultaneous eigenkets ot K and M, i.e.
it is always given by the scil (46). It foﬂﬂmsb N@'alues

for K are
k1+k2’ kl"'kz—
and that for each of these eiger
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M, going with it there is just one independent simultaneous eigenket
of K and M,.

The effect of rotations on eigenkets of angular momentum variables
should be noted. Take any eigenket | M, of the z component of total
angular momentum for any dynamical system, and apply to it & small
rotation through an angle 8¢ about the z-axis. It will change into

(1+8¢r,) | M) = (L—idp I [%)| M)
with the help of (32). This equals
(L—iSG I /)| MLy = e-B430n D)

to the first order in 8¢. Thus | M, gets multiplied by the numerical
factor e-3¢MJ%, By applying a succession of these small rotations, we
find that the application of a finite rotation through an angle ¢ about
the z-axis causes | ML) to get multiplied by e-i#M/A, Putting ¢ = 2,
we find that an application of one revolution about the z-axis leaves
| M.> unchanged if the eigenvalue M, is an integral multiple of % and
causes | M.) to change sign if J is half an odd integral multiple of %.
Now consider an eigenket |K’) of the magnitude K of the total angu-
lar momentum. If the eigenvalue K’ is an integral multiple of #, the
possible eigenvalues of M, are all integral multiples of # and the applica-
tion of one revolution about the z-axis must leave |K') unchanged.
Conversely, if K’ is half an odd integral multiple of 7, the possible eigen-
values of M, are all half odd integral multiples of 7 and the revolution
must change the sign of |K’>. From symmetry, the application of a
revolution about any other axis must have the same effect on |[K")
as one about the z-axis. We thus get the general result, the application
of one revolution about any axis leaves a ket unchanged or changes its
sign according to whether it belongs to eigenvalues of the magnitude of
the total angular momentum which are inlegral or half odd integral
multiples of i. A state, of course, is always unaffected by the rev
tion, since a state is unaffected by a change of sign of the ke
sponding to it.
For a dynamical system involving only orbital angular mog
a ket must be unchanged by & revolution about an axis, sin
set up Schrédinger’s representation, with the coordinates o
particles diagonal, and the Schrédinger representative of
get brought back to its original value by the revolution.
that the eigenvalues of the magnitude of an orbital angular moy
are always integral multiples of . The eigenvalues of a coriPo®

lw»  VERSION
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of an orbital angular momentum are also always integral multiples
of #. For a spin angular momentum, Schrédinger’s representation
does not exist and both kinds of eigenvalue are possible.

37. The spin of the electron

Electrons, and also some of the other fundamental particles (pro-
tons, neutrons) have a spin whose magnitude is 3#. This is found
from experimental evidence, and also there are theoretical reasons
showing that this spin value is more elementary than any other, even
spin zero (see Chapter XI). The study of this particular spin is there-
fore of special importance.

For dealing with an angular momentum m whose magnitude is }%,
it is convenient to put m = 3. (48)

The components of the vector ¢ then satisfy, from (27),

0,0,—0,0, = 2io,
0,0,—0,0, = 2ig,, (49)
G5 0y—0y
The eigenvalues of m, are 4% and —3#%, so the eigenvalues of o, are 1
and —1, and o? has just the one eigenvalue 1. It follows that of must
equal 1, and similarly for o2 and o2, i.e.

oA=o0cf =02=1. (50)

We can get equations (49) and (50) into a simpler form by means of

some straightforward non-commutative algebra. From (50)
o30,—0,05 =0

or a0, 0,—0,0,)+(0,0,—0,

o, = 2io0,.

TERED L

or
with the help of the first of equati _ @\semea.ns 00y = —
Two dynamical variables or lineallfoard#ors like these which satis

metry each of the three dj
commute with any other.

P bl -
ons (49) GVERSIQZT "
= ADDS N

— 0, O,

and also from (50)

35695.57
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Equations (50), (51), (52) are the fundamental equations satisfied by
the spin variables o describing a spin whose magnitude is 17%.

Let us set up a matrix representation for the ¢’s and let us take o,
to be diagonal. If there are no other independent dynamical variables
besides the m’s or o’s in our dynamical system, then o, by itself forms
a complete set of commuting observables, since the form of equations
(50) and (1) is such that we cannot construct out of o, oy, and o,
any new dynamical variable that commutes with o,. The diagonal
elements of the matrix representing o, being the eigenvalues 1 and
—1 of g,, the matrix itself will be

(1 0
0 —1)
L Gy Oy
et o, be represented by .
3 Oy

This matrix must be Hermitian, so that @, and @, must be real and
a, and ay conjugate complex numbers. The equation o,0, = —o,0,

gives us
ay Qo) _ _ [ —C
—a; —a ay —a,/

so that a; = a, = 0. Hence o, is represented by a matrix of the form

0 a,

a; 0/
The equation 02 = 1 now shows that @,a; = 1. Thus a, and a,, being
conjugate complex numbers, must be of the form ef® and e~ re-

spectively, where « is a real number, so that o, is represented by a
matrix of the form ( 0 ei“)

e~ix o)
Similarly it may be shown that o, is also represented by a matri
this form. By suitably choosing the phase factors in the represe
tion, which is not completely determined by the condition

shall be diagonal, we can arrange that o, shall be represented b
matrix (O 1)

0 1 VERSION

The representative of ¢, is then determined by the ion ADDS N O

a, = to,0,. We thus obtain finally the three matrices

0o o o i)
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to represent o, o, and o, respectively, which matrices satisfy all the
algebraic relations (49), (50), (51), (52). The component of the vector
o in an arbitrary direction specified by the direction cosines I, m, n,
namely lo,4-ma,+no,, is represented by
n [—im
(l+im —n ) (54)
The representative of a ket vector will consist of just two numbers,
corresponding to the two values +1 and —1 for o,. These two num-
bers form a function of the variable o, whose domain consists of only
the two points +1 and —1. The state for which o, has the value unity
will be represented by the function, f (o,) say, consisting of the pair
of numbers 1, 0 and that for which o, has the value —1 will be
represented by the function, fg(o;) say, consisting of the pair 0, 1.
Any function of the variable o}, i.e. any pair of numbers, can be
expressed as a linear combination of these two. Thus any state can
be obtained by superposition of the two states for which o, equals +1 and
—1 respectively. For example, the state for which the component of
¢ in the direction [, m, n, represented hy (54), has the value 1 is
represented by the pair of numbers ¢, & which satisfy

n l—im\fa\ fa

(e ) = ()
or na-++(I—im)b = a,
(I4+im)a—nb = b.

a
Thus 7=

This state can be regarded as a suj
which o, equals 1 and —1, thoskels
process being as

af?: [6]? = [I—

e e ‘Q%RE 1l
For the complete descriptiflf ofNdn ele gl'so eE
particle with spin $%) wq hire the spin ms les a',
whose connexion with the s\l angular mome gl
together with the Cartesiajpdibrdinates x, y qwmm, py,
ples commute W1 Se cooltlinates
I?! b!‘]e ka:i yE, zi aﬁlzairgrg S

p,- The spin dynamical V8
and momenta. Thus a comp
%e representative of any sta,@
*
e .y ©
ZInt-driV

system consisting of a singl!
sentation in which these are diag
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will be a function of four variables «', ¥, 2/, o,. Since o, has a domain
consisting of only two points, namely 1 and —1, this function of four
variables is the same as two functions of three variables, namely the
two functions

&'y'?' D, = &'y, 2,+1), (e'y'?' |y = <&y, 7', —1]). (56)
Thus the presence of the spin may be considered either as introd<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>