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In fond memory

of my parents

From the Author

This textbook on mathematical analysis is based on many years'

experience of lecturing at a higher technical college. Its aim is to

train the students in active approach to mathematical exercises,

as is done at a seminar.

Much attention is given to problems improving the theoretical

background. Therefore standard computational exercises are supple-

mented by examples and problems explaining the theory, promo-

ting its deeper understanding and stimulating precise mathema-

tical thinking. Some counter-examples explaining the need for cer-

tain conditions in the formulation of basic theorems are also in-

cluded.

The book is designed along the following lines. Each section

opens with a concise theoretical introduction containing the prin-

cipal definitions, theorems and formulas. Then follows a detailed

solution of one or more typical problems. Finally, problems with-

out solution are given, which are similar to those solved but

contain certain peculiarities. Some of them are provided with hints.

Each chapter (except Chap. IV and V) closes with a separate

section of supplementary problems and questions aimed at reviewing

and extending the material of the chapter. These sections should

prove of interest to the inquiring student, and possibly also to

lecturers in selecting material for class work or seminars.

The full solutions developed in the text pursue two aims: (1)

to provide lecturers with a time-saver, since they can refer the

students to the textbook for most of the standard exercises of a

computational character and concentrate mainly on the solution

of more sophisticated problems, thus gaining time for more rewar-
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ding work; and (2) to meet the needs of those who are working

on their own or following correspondence courses, providing a sub-

stitute for the oral explanations given to full-time students.

The student will find the book most useful if he uses it acti-

vely, that is to say, if he studies the relevant theoretical material

carefully before going on to the worked-out solutions, and finally

reinforces the newly-acquired knowledge by solving the problems

given for independent work. The best results will be obtained

when the student, having mastered the theoretical part, immedia-

tely attacks the unsolved problems without referring to the text

solutions unless in difficulty.

Isaac Maron



Chapter

INTRODUCTION
TO MATHEMATICAL ANALYSIS

§ 1.1. Real Numbers.
The Absolute Value of a Real Number

Any decimal fraction, terminating or nonterminating, is called

a real number.
Periodic decimal fractions are called rational numbers. Every

rational number may be written in the form of a ratio, , of two

integers p and q y
and vice versa.

Nonperiodic decimal fractions are called irrational numbers.
If X is a certain set of real numbers, then the notation x£X

means that the number x belongs to X, and the notation x^X
means that the number x does not belong to X.
A set of real numbers x satisfying the inequalities a < x < b

y

where a and b are fixed numbers, is called an open interval (a, b).

A set of real numbers x satisfying the inequalities a^x^b is

called a closed interval [a, b]. A set of real numbers x, satisfying

the inequalities a^x<b or a<x^.b, is called a half-open in-

terval [a, b) or (a, b]. Open, closed, and half-open intervals are

covered by a single term interval.

Any real number may be depicted as a certain point on the

coordinate axis which is called a proper point. We may also intro-

duce two more, so-called improper points, +°° and — oo infinitely

removed from the origin of coordinates in the positive and nega-

tive directions, respectively. By definition, the inequalities — oo <
< x < + oo hold true for any real number x.

The interval {a— e, a + s) is called the e-neighbourhood of the

number a.

The set of real numbers x > M is called the M -neighbourhood

of the improper point +00.
The set of real numbers x < M is called the M-neighbourhood

of t e improper point —-00.

The absolute value of a number x (denoted \x\) is a number
that satisfies the conditions

\x\ = —x if x < 0;

\x\ =x if x^O.



12 Ch. I . Introduction to Mathematical Analysis

The properties of absolute values are:

(1) the inequality
j

a;
|
^ a means that —a^x^a;

(2) the inequality |x|>a means that x^a or jc<-a;

(3)

(4)

(5)

(6)

x±y\K \x\+\y\;

x± y\>\\x\— \y\\;

xy\=\x\\y\
x

y

1.1.1. Prove that the number

0.1010010001... 1000... 01...

is irrational.

Solution, To prove this, it is necessary to ascertain that the

given decimal fraction is not a periodic one. Indeed, there are n
zeros between the nth and (n+\)th unities, which cannot occur

in a periodic fraction.

1.1.2. Prove that any number, with zeros standing in all deci-

mal places numbered 10" and only in these places, is irrational.

1.1.3. Prove that the sum of, or the difference between, a ra-

tional number a and an irrational number P is an irrational

number.
Solution. Consider the sum of a and p. Suppose a + P = y is a

rational number, then P = Y

—

a is also a rational number, since

it is the difference between two rational numbers, which contra-

dicts the condition. Hence, the supposition is wrong and the number
a + P is irrational.

1.1.4. Prove that the product a|J and the quotient a/[i of a

rational number a ^= and an irrational number P is an irrational

number.

1.1.5. (a) Find all rational values of x at which y=\/ x* + x + 3

is a rational number.

Solution, (a) Suppose x and y=\/~x<iJ
r x J

r 3 are rational num-
bers. Then the difference y

— x = q is also a rational number. Let

us now express x through q

y— x=\/
r
x2 + x-{-3— x — q,

V x2 + x+3 = q + x,

x 2+ x+ 3 = q* + 2qx + x\

x ~ \-2q
•

By a direct check it is easy to ascertain that q^ 1

/^
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Prove the reverse, namely, y = ]/ x2 + x+ 3 is a rational number

if x =
i

where q is any rational number not equal to 1
/2 .

Indeed,

g4-2?»+ 7g*-6? + 9 (^-^ + 3)2 _ ^_^+ 3 ,
_1_\

K (1-2?) 2 K (l-2^)a ~|1-2<7| \
q=*=

2J'
The latter expression is rational at any rational q not equal to 1

/2 .

(b) Prove that \/~2 is an irrational number.

1.1.6. Prove that the sum V~3 + V2 is an irrational number.

Solution. Assume the contrary, i.e. that the number [/3 + |/*2

is rational. Then the number

is also rational, since it is the quotient of two rational numbers.
Whence the number

K2 = l[(K3 + K2)-(/3-K2)l

is rational, which contradicts the irrational nature of the number

V2 (see Problem 1.1.5). Hence, the supposition is wrong, and the

number K3+ 1/2 i s irrational.

1.1.7. Prove that for every positive rational number r satisfying

the condition r
2 < 2 one can always find a larger rational number

r + h(h>0) for which (r + hf < 2.

Solution. We may assume h<\. Then h2 < h and (r + /i)
2 <

<r 2 + 2r/z + /i. That is why it is sufficient to put r 2 + 2rh+ h = 2,

i.e. ft = (2— r
2)/(2r+\).

1.1.8. Prove that for every positive rational number s satisfying

the condition s
2 > 2 one can always find a smaller rational number

s— fc(fc>0) for which (s— k) 2 > 2.

1.1.9. Solve the following inequalities:

(a)
\
2x— 3

|
< 1;

(b) (x-2) 2 >4;
(c) x2 + 2x— 8<0;
(d) \x 2— 7x+ 12

|

>x2— 7x+ 12.

Solution, (a) The inequality |2#—3|<1 is eqivalent to the

inequalities

— 1 < 2x— 3 < 1,

whence
2 < 2* < 4 and 1 < * < 2.
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(d) The given inequality is valid for those values of x at which
x2— 7x+ 12 < 0, whence 3 < x < 4.

1.1.10. Find out whether the following equations have any
solutions:

(a) \x\=x+ b] (b) |x|=x— 5?

Solution, (a) Atx^O we have x = x+ 5. Hence, there are no
solutions. At x < we have —x=-x+ 5, whence x== —5/2. This

value satisfies the initial equation.

(b) At x>0 we have x = x— 5. Hence, there are no solutions.

At x < we have —x = x— 5, whence # = 5/2, which contradicts

our supposition (#<0). Thus, the equation has no solution.

1.1.11. Determine the values of x satisfying the following equa-

lities:

(a)

(b)

x—\
x+ 1

X— 1 .

5*+ 6| =— (x2— 5*+6).

1.1.12. Determine the values of x satisfying the following equ-

alities:

(a)
|

(x2 + 4x+ 9) + (2x— 3) |

-
|
x2 + 4x+ 9 1 + |

2x— 3
|;

(b) |(x4— 4)— (x
2+ 2)| = |x 4— 4

|

— |x2 + 2|.

Solution, (a) The equality |a+ 6| = |a| + |fe| is valid if and
only if both summands have the same sign. Since

x 2 + 4*+9:=(.x:+2) 2 + 5 >

at any values of x
9
the equality is satisfied at those values of x

at which 2x— 3>0, i.e. at *>3/2.
(b) The equality \a— 6| = |a|

—

\b\ holds true if and only if a

and b have the same sign and
In our case the equality will hold true for the values of x at

which
x x— 4>jc2 + 2.

Whence
__

x2— 2>1; \x\^V$-

1.1.13. Solve the inequalities:

(a)
|
3*— 5|— |

2JC + 3
|
> 0;

(b) \x 2— 5x| > |jc
2

|

— |5x|.

1.1.14. Find the roots of the following equations.

(a)
|
sin x

|

= sin x + 1;

(b) x2— 2\x\— 3 = 0.

Solution, (a) This equation will hold true only for those values

of x at which sin*<0, that is why we may rewrite it in the
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following way:

—sinjc = sinA;+ 1, or sin a:=—1
/a ;

whence x = nk— (—l)k n/6 (k = 0, ±1, ±2, . ..).

(b) This equation can be solved in a regular way by considering

the cases x^O and x^.0. We may also solve this equation re-

writing it in the form

|a:|
2— 2|jc|— 3 = 0.

Substituting y for
|
x |, we obtain

whence #, = 3, y2
= — 1. Since y = \x\^0, the value y2

=— 1 does

not fit in. Hence

y=\x\ = 3,

i.e. = —3, x
2
^=3.

§ 1.2. Function. Domain of Definition

The independent variable x is defined by a set X of its values.

If to each value of the independent variable x(tX there corres-

ponds one definite value of another variable y y
then t) is called

the function of x with a domain of definition (or domain) X or,

in functional notation, y — y(x), or y = f(x), or y = q>(x), and so

forth. The set of values of the function y(x) is called the range
of the given function.

In particular, the functions defined by the set of natural num-
bers 1, 2, 3, are called numerical sequences. They are written
in the following way: xXi x2y ... or {xn \.

1.2.1. Given the function / (x) =(*+ \)/(x— 1). Find f(2x), 2f(x),

fix
2
), [f(x))>.

Solution.

f(20=§±i; 2fW _2£±};

/<«>-£!; tfW]'-(f±{)'.

1.2.2. (a) Given the function

Show that at xlt x2 £(— 1, 1) the following identity holds true:

/(*>+/(*)=/ (t££-).
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Solution. At 1, 1) we have (1 — x)/(l + x) > and hence

f(xl)+ fM = log^+ log = log
;; ;g .

(
i,

On the other hand,

^1 + ^2

^ ^
*l+ *2 \ __

jQg
1 ~f- XXX 2 _

jQg
1 — X x

— X2

\l-jrX1X2J
j

-^l ~l~ ^ 2 1 -\~ xix2~i~~ x i ~h x2

1 -j- XiX2

(1— *i) (\—x2 ]

log
(!+*!) (l+x2

)

'

which coincides with the right-hand member of expression (1).

(b) Given the function / (x) = (ax+ a' x
)/2 (a > 0). Show that

f{x + y) + f(x-y) = 2f(x)f{y).

1.2.3. Given the function f (x) = (x+ l)/(x»— 1). Find /(— 1);

f(a+\); f(a)+\.

1.2.4. Given the function f(x) = x3— 1. Find

/(»>-/(">
(^ a) and ^«±*.

6— a

1.2.5. Given the function

(
3-^—1, —\<Cx< 0,

= J tan(*/2), 0<*<jx,

[
x/(jc

2— 2), jt<*<6.

Find /(-l), f(ji/2), /(2ji/3), /(4) f /(6).

Solution. The point x = — 1 lies within the interval [— 1, 0).

Hence

^ (— 1) = 3- (
-

J
> — 1 = 2.

The points x = n/2, x = 2n/3 belong to the interval [0, ji).

Hence

/ (ji/2) - tan (ji/4) - 1 ; / (2n/3) = tan (jt/3) - \^3.

The points jc = 4, x = 6 belong to the interval [ji, 6]. Hence

f (
4

)
=
16^2

= T ;
=

36-2
=

17
'

1.2.6. The function f (x) is defined over the whole number scale

by the following law:

2x3 + 1. if jc<2,

f(x)-{ l/(*-2), if 2<*<3,
2*— 5, if x > 3.
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B

Find: f(V2) y /(|/8), f (/log, 1024).

1.2.7. In the square ABCD with side AB=2 a straight line

MN is drawn perpendicularly to AC. Denoting the distance from
the vertex A to the line MN as x, express through x the area S
of the triangle AMN cut off from the square by the straight

line MN. Find this area at x = ]^2/2
and at x = 2 (Fig. 1).

Solution. Note that AC = 2 V~2 \

hence 0<*<2l/T. If*<K"2,
then

S (X) — S^ AMN — X2
-

If x> V2 y
then

S(x) =4— (2 K2~— -^)
2 = — jc

2 +
+4* j/y 4.

Thus,

S(*) =

Fig. 1

0<x</2",
V2< x^2\/2.-x2 \\x\f2 —4,

Since |/T/2 < K2~ , S (V2/2) = {V~2 j2)
2 = V2 . Since 2 > J/

2~,

S (2) = — 4 + 8 V~2— 4 = 8 (K~2~— 1).

1.2.8. Bring the number a„, which is equal to the nth decimal

place in the expansion of V~2 into a decimal fraction, into cor-

respondence with each natural number n. This gives us a certain

function an = tp (ri). Calculate q)(l), cp (2), q)(3), q)(4).

Solution. Extracting a square root, we find \f2 =1.4142... .

Hence

q>(l) = 4; cp(2)-l; q>(3) = 4; cp (4) = 2.

1.2.9. Calculate f (x)= 49/x2 + x2 at the points for which 7/x + x=3.
Solution. f(x) = 49/x2 + x2 = (7/x+ x) 2 —\4,but 7/x+ x = 3, hence

/ (a') = 9— 14 = — 5.

1.2.10. Find a function of the form / (x) = ax'1 -\- bx -f c, if it is

known that /(0) = 5; / (— 1) = 10; / (1) = 6.

Solution.

f(0) = 5=a'02 + b-0+ c,

f(—l)= I0^a— b + c,

/(l)=6 = a + 6+ c.
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Determine the coefficients a, b
y
c from the above system. We have:

a = 3; b=r.—2; c= 5\ hence / (x) = 3x2— 2x+ 5.

1.2.11. Find a function of the form

f(x) = a+ bc* (c>0),

if /(0)=15; f(2) = 30; f(4) = 90.

1.2.12. Find cp [xp (a:)] and [cp (jc)] if

cp (jc) = x2 and ^(x) = 2x .

Solution.

i|)[<p(*)] = 2* <* , = 2*".

1.2.13. Given the function

f(x)~
5x2+1
2—x '

Find f(3x); f (*
3
); 3f (x); [f (x)]\

1.2.14. Let

(3*
at — 1 < x< 0,

4 at 0<*<1,
3x— 1 at l<x<3.

Find f(2), /(0), /(0.5), /(-0.5), /(3).

1.2.15. Prove that if for an exponential function y = ax (a>0;
a=£l) the values of the argument x = xn (fl=l, 2, ...) form an
arithmetic progression, then the corresponding values of the func-

tion yn = aXn (n= 1, 2, ...) form a geometric progression.

1.2.16. f + 6, q)(#) = 5*. Solve the equation / (x) =
|
q) (x)

|

.

1.2.17. Find /(*) if

/(*+l) = *a— 3jc+ 2 .

1.2.18. Evaluate the functions

/ (X) = x2 + l/x2 and (p (x) = x* + 1 /*
4

for the points at which l/x+ x = 5.

1.2.19. f (x) = x+l; y(x) = x— 2; solve the equation

\f(x) + <f(x)\ = \f(x)\ + \<t(x)\.

1.2.20. A rectangle with altitude x is inscribed in a triangle

ABC with the base b and altitude h. Express the perimeter P and
area 5 of the rectangle as functions of x.
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1.2.21. Find the domains of definition of the following functions:

(a) / (X) = \/It=l+V6=i;

(d) f(x) = Vs\nx— 1
;

(e) log^^
(0 f(x) = \ogx 5\

x'2— 5x-\-6

-4x+ 6(g) /W = log-
v

(h) /(*) = arc sin — log (4— x)\

(j) /W = logcosx;

(k)/(x)^arccos
4 + 2

3

sin;c
;

(i) y
1

Solution, (a) The domain of definition of the given function

consists of those values of x at which both items take on real

values. To ensure this the following two conditions must be satis-

fied:

1 >0,
6—x^O.

By solving the inequalities we obtain x^l; x^.6. Hence,

the domain of definition of the function will be the segment [1,6].

(e) The function is defined for the values of x for which

log^^->0.

This inequality will be satisfied if

-5^1>1, or x2 — 5x + 4<0.

Solving the latter inequality, we find 1^a:^4. Thus, the seg-

ment [1,4] is the domain of definition of the function.

(f) The function is defined for all positive x different from unity,

which means that the domain of definition of the function consists

of the intervals (0, 1) and (1, + oo).
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(k) The function is defined for the values of x for which

-1 ^ A ,

3
. < 1.^ 4+2 sin x^

Since 4+2 sin x >0 at any x, the problem is reduced to solving
the inequality

4+ 2 sin x ^
Whence

3<4+-2sinx, i.e. sinx>-— 72
.

By solving the latter inequality we obtain

_£ + 2£:ri<x<^+ 2fcn; (k = 0, ±1, ±2, ...).

(1) The function is defined for the values of x for which

|*| — *>0, whence
|

a:
|
> x. This inequality is satisfied at x < 0.

Hence, the function is defined in the interval (— oo, 0).

1.2.22. Find the domains of definition of the following functions:

(a) / (x) = j/arc sin (log
2
x)

;

(b) / (x) = log
2
log

3
log4 x;

(C) /W =l + 2a-in, +_J_.

(d) f (x) = log|4-x2
|;

(e) f (x) = V cos (sin x) +- arc sin ~£
x

.

Find the ranges of the following functions:

(f) &
=

2- cos 3*
;

(g) y=j^ •

Solution, (a) For the function /(x) to be defined the following

inequality must be satisfied

arc sin (log
2 x) ^ 0,

whence ^ log
2
x^ 1 and l^x^2.

(b) The function log2 log3
log

4 x is defined for log
3
log

4
x>0,

whence log
4
x>l and x>4. Hence, the domain of definition is

the interval 4<x< + oo.

(c) The given function is defined if the following inequalities are

satisfied simultaneously:

x=^=0; — 1 < x< 1 and x>2,

but the inequalities —l^x^l and x>2 are incompatible, that

is why the function is not defined for any value of x.
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(e) The following inequalities must be satisfied simultaneously:

1 + x2

cos (sin x)^0 and
2x < 1.

The first inequality is satisfied for all values of x, the second,

for |*|=1. Hence, the domain of definition of the given function
consists only of two points x=±\.

(f) We have

cos 3x ~——

-

Since

-1 < cos3x< 1, we have — —-< 1,

whence, taking into account that y > 0, we obtain

— y^2y— or y 1.

(g) Solving with respect to x
y
we obtain

x - Ty
'

The range of the function y will be determined from the relation

1 — 4*/
2 >0.

Whence

1.2.23. Solve the equation

arc tanVx(x + 1)+ arc sin l^x2 + x+ 1 = jx/2.

Solution. Let us investigate the domain of definition of the func-

tion on the left side of the equation. This function will be defined

for

x2 + *>0, 0< x2 + x+ 1 < 1,

whence x2
-\-x = 0.

Thus, the left member of the equation attains real values only

at x
t
=0 and #

2
= — 1. By a direct check we ascertain that they

are the roots of the given equation.

This problem shows that a study of domains of definition of a

function facilitates the solution of equations, inequalities, etc.

1.2.24. Find the domains of definition of the following functions:

,
x

2x— 3
(a) y= r « _ ;

(b) y = \og sin (a:— 3) + j/l6— x\
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(c) y = V 3— x+ arc cos—^—

;

1.2.25. The function f (x) is defined on the interval [0, 1]. What
are the domains of definition of the following functions:

(a) /(3r>); (b) f(x-5); (c) f(tan*)?

Solution. The given functions are functions of functions, or su-

perpositions of functions, i. e. composite functions.

a) Let us introduce an intermediate argument u = 3x2
. Then the

function f(3x
2
)j=f(u) is defined if 0<w<l, i.e. 0<3x2 <l,

whence — 1/]/3<*<; l/|/3.

(c) Similarly: O^tanx^l, whence

fcrt< + (k = 0, +1, ±2, ...).

1.2.26. The function f (x) is defined on the interval [0, 1]. What
are the domains of definition of the functions

(a) f (sin*); (b) f(2x+ 3)?

§ 1.3. Investigation of Functions

A function f (x) defined on the set X is said to be non-decreasing

on this set (respectively, increasing, non-increasing, decreasing), if

for any numbers x19 x2
£X, x

±
<x 2y the inequality f (xj^ f (x

2 )

(respectively, fW<f(4 f(*i)>f(*2 ). /(*i)>/(*2 )) is satisfied.

The function f (x) is said to be monotonic on the set X if it pos-

sesses one of the four indicated properties. The function f (x) is

said to be bounded above (or below) on the set X if there exists a

number M (or m) such that f(x)^M for all x£X (or m^Lf(x)
for all x£X). The function f (x) is said to be bounded on the set X
if it is bounded above and below.

The function f (x) is called periodic if there exists a number
T>0 such that / (x -f- T) — f (x) for all x belonging to the domain
of definition of the function (together with any point x the point

x-\-T must belong to the domain of definition). The least number T
possessing this property (if such a number exists) is called the

period of the, function f (x). The function f (x) takes on the maxi-

mum value at the point x $X if f(xQ)^f(x) for all x£X, and
the minimum value if f(x )^f(x) for all x£X. A function f (x)

defined on a set X which is symmetric with respect to the origin

of coordinates is called even if /(

—

x) = f(x), and odd if f (— x) =
= -/(*).

In analysing the behaviour of a function it is advisable to de-

termine the following:
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1. The domain of definition of the function.

2. Is the function even, odd, periodic?

3. The zeros of the function.

4. The sign of the function in the intervals between the zeros.

5. Is the function bounded and what are its minimum and ma-
ximum values?

The above items do not exhaust the analysis of a function, and

later on their scope will be increased.

1.3.1. Find the intervals of increase and decrease of the func-

tion / (x) = ax2
-f- bx+ c y and its minimum and maximum values.

Solution. Isolating a perfect square from the square trinomial,

we have

If a > 0, then the function f(x) will increase at those values of x
satisfying the inequality x+ b/(2a) > 0, i. e. at x >

—

b/(2a), and
decrease when x+ b/(2a) < 0, i.e. at x<— b/(2a). Thus, if a > 0,

the function f (x) decreases in the interval
(
— oo, —— ) and inc-

reases in the interval (

—

b/(2a), +oo). Obviously, at x =— b/(2a)

the function / (x) assumes the minimum value

At a > the function has no maximum value.

Similarly, at a < the function f (x) will increase in the inter-

val
^
— oo, —^ and decrease in the interval (

—

b/(2a), oo); at

x=— b/(2a) the function f (x) takes on the maximum value

£ r / b \ 4ac— b*

(b) Find the rectangle with the maximum area from among all

rectangles of a given perimeter.

Solution, (a) Apply the results of Problem 1.3.1: a — 3 > 0, b=5,
c = — 1. The minimum value is attained by the function at the

point x =— 5/6

whereas it has no minimum value.

1.3.2. (a) Find the minimum value of the function

y = 3x2 + 5x— 1.

4ac— b*

4a

37

12'

(b) We denote by 2p the length of the perimeter of the required

rectangle, and by x the length of one of its sides; then the area 5
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of the rectangle will be expressed as

S = x(p— x) or S = px— x2
.

Thus, the problem is reduced to the determination of the maximum
value of the function S (x) = — x2 + px. Apply the results of Prob-

lem 1.3.1: a =— 1 < 0, b = p, c = 0. The maximum value is attai-

ned by the function at the point x =— b/(2a)=p/2. Hence, one

of the sides of the desired rectangle is p/2, the other side being

equal to p— x = p/2, i.e. the required rectangle is a square.

1.3.3. Show that

(a) the function f (x) — x3 + 3x+ 5 increases in the entire domain
of its definition;

(b) the function g(x) = x/(l + x2
) decreases in the interval (1, +oo).

Solution. The function is defined for all points of the number
scale. Let us take arbitrary points x

x
and x29 x

x < x
2
on the number

scale and write the following difference:

Since x
2
— x

x > and the expression in the brackets is positive

at all x
1
and jc2 , then / (x2 )

—
f (xj > 0, i.e. / (*2 ) >f(Xj), which

means that the function f (x) increases for all values of x.

1.3.4. Find the intervals of increase and decrease for the follo-

wing functions:

(a) / (x) = sin #-|-cos x;

(b) tan(*+n/3).
Solution, (a) Using the familiar trigonometric formulas, we find

It is known that the function cos a: decreases in the intervals

and increases in the intervals

(2n—\)ji<^x^2nn (n=0
t ± 1, ±2, ...).

Hence, the intervals of decrease of the function / (x) are:

ji/4 + 2azji< n/A + (2n+ 1) ji (ai = 0, +1, . ..).

and the intervals of increase of the same function are:

n/A + (2n— 1) k< x< n/4+ 2nn (n= 0, ± 1, . ..).

1.3.5. Find the minimum and maximum values of the function

/ (xt)-f (x
x )
= (4 + 3x

2 + 5)- (x\ + 3x, + 5) =
= (*2— *l) (A + X

1
X2 + X\ + 3) =

f (x) — ]/^ 2 cos (x— ji/4).

2nn ^.x^(2n+\) n

j (x) = a cos x-\-b sin x (u
1

-J- b
2 > 0).
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Solution. The given function can be represented as:

f (x) = Vcl 1
-V b2 cos (x— a),

where cos a = a/)/ a2 + b2
, sin a = 6/ Ka2 + b'\ Since |cos(x—a)|^ 1,

the maximum value of f (x) equals +\/
r
a2 + t)

z
(at cos(a:— a)-=l),

the minimum value of f (x) being equal to j/a2 + fr
2 (at

cos (x—a) =— 1).

1.3.6. Find the minimum value of the function

f(x) =3<*'- 2,,+ 8
.

Solution. We denote by (p (x) the exponent, i. e.

(p(*) = (*
a— 2)

3 + 8.

The function f(x)=-3w (x) takes on the minimum value at the

same point as the function (p (#).

Hence

cp (x) =x«— 6jc
4 + 1 2x2 = x2

[(x
2— 3)

2 + 3].

Whence it is clear that the function (p (x) attains the minimum
value (equal to zero) at x = 0. That is why the minimum value of

the function f (x) is equal to 3° = 1.

1.3.7. Test the function

f (x) = tan x+ cot x, where < x < ji/2,

for increase and decrease.

1.3.8. Given: n numbers a,, a 2 ,
an . Determine the value

of x at which the function

f (x) =
(x- ai )

2 + (x-a 2 )
2 + . . . + (x-anf

takes on the minimum value.

Solution. Rewrite the function f (x) in the following way:

f(x) = nx2— 2(a, + a
2 + . . . +an)x+(a

2
l +al+ . .

.

wherefrom it is clear that f (x) is a quadratic trinomial ax2 + bx+ c,

where a = /t>0. Using the results of Problem 1.3.1, we find that

the function assumes the minimum value at x =—b/(2a)
9 i. e. at

x= (aj + a
2 + . . . +an )/n.

Thus, the sum of the squares of deviations of the value of x
from n given numbers attains the minimum value when x is the

mean arithmetic value for these numbers.

1.3.9. Which of the given functions is (are) even, odd; and
which of them is (are) neither even, nor odd?
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(a) f(x) = \og(x+V\+x*);

(b) /(x) = log^
l+x'

(c) f(x) = 2xs—x+l;

(d) /W = *S^T-
Solution, (a) It can be seen that /(+ x) + f (— x) ^=0. Indeed,

/(+ x) + f(- ^)-log(^+ KTT^2
) + log(-^+KTT^2

)
=

= log ( 1 + *2 -- x2)=0,

hence, / (x) =— / (— *) for all a:, which means that the function is odd.

(b) m_ ^ = iog = log v 1 =— iog
1

\+x) 6 1+jc'

Thus, f(—x) = — f(x) for all x from the domain of definition

(— 1, 1). Hence, the function is odd.

1.3.10. Which of the following functions is (are) even and which
is (are) odd?

(a) f(x) = 4— 2x* + sm 2
x\

(b) f(x) = V \+x+ x2— \
r\— x + x2

;

(d) f (x) = sin x+ cos x;

(e) f (x) = const.

1.3.11. Prove that if f (x) is a periodic function with period T
9

then the function / (ax+ b), where a > 0, is periodic with period T/a.

Solution. Firstly,

f[a(x+ T/a) + b]=f [(ax+ b) + T] = f (ax+ b) y

since T is the period of the function f(x). Secondly, let 7\ be a

positive number such that

f[a(x+T1 ) + b]=f(ax+ b).

Let us take an arbitrary point x from the domain of definition

of the function f (x) and put x' = (#— b)/a. Then

/ + =
/
(ai=^+ ft) =/(x) = f [a {x' + T

l ) + b] =

= f(ax' + b + aT
l )
= f(x+ aT

l ).

Whence it follows that the period T<a7\, i.e. 7\>7> and
T/a is the period of the function f(ax+ b).

Note. The periodic function / (x) = A sin (ayx+ cp), where /I, co, 9
are constants, is called a harmonic with amplitude |j4|, frequency co
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and initial phase (p. Since the function sin* has a period 2k, the

function A sin(o)A:+ (p) has a period T = 2n/(s>.

1.3.12. Indicate the amplitude \A\, frequency co, initial phase (p

and period T of the following harmonics:

(a) / (x) = 5 sin \x\

(b) /(*) = 4sin(3*+ n/4);

(c) /(x) = 3sin(jt/2) + 4cos(x/2).

1.3.13. Find the period for each of the following functions:

(a) / (a;) = tan 2x;

(b) f(x)=cot(*/2);
(c) \(x)^s\x\ 2nx.

Solution, (a) Since the function tanx has a period Jt, the function

tan 2x has a period n/2.

1.3.14. Find the period for each of the following functions:

(a) f (x) = s\n* x+ cos4 x;

(b) /(a:) = |cosa:|.

Solution, (a) sin 4 x+ cos4 x= (sin 2 x+ cos2
x)

2— 2 sin 2 x cos2 x =

= 1—y sin 2 2x = 1— cos 4x) = -| + -j-sin ^4x+ y) ;

whence T = 2n/a = 2n/4 = n/2 .

(b) /(x) = |cosjc| = Kcos2 x^K(1 + cos2x)/2; but the function

cos 2.x; has a period T = n\ hence, the given function has the same
period.

1.3.15. Prove that the function / (x) = cos x2
is not a periodic one.

Solution. Let us prove the contrary. Suppose the function has a

period T\ then the identity cos (x+ T) 2= cos x2
is valid.

By the conditions of equality of cosines for a certain integer k

we have

x2+ 2Tx+ T 2 ±x2= 2nk.

But this identity is impossible, since k may attain only integral

values, and the left member contains a linear or quadratic function

of the continuous argument x.

1.3.16. Find the greatest value of the function

f(x)= r
2 = .

1.3.17. Which of the following functions are even, and which are

odd:

(a) /W=^(l-x) 2 + 3/(l+x) 2
;



28 Ch. I. Introduction to Mathematical Analysis

(b) f(x) = x*-\x\;

(c) / (x) = x sin 2 x— x3
;

(d) /(x) = (l + 2*) 2/2*?

1.3.18. Find the period for each of the following functions:

(a) / (x) = arc tan (tan x)\

(b) f (jc)-2cos^.

1.3.19. Prove that the functions

(a) f(x) = x+ s\nx; (b) f (x) = cos Vx
are non-periodic.

§ 1.4. Inverse Functions

Let the function y = f(x) be defined on the set X and have a

range V\ If for each y£Y there exists a single value of x such that

f(x)=y y
then this correspondence defines a certain function x — g(y)

called inverse with respect to the given function y = f(x). The suf-

ficient condition for the existence of an inverse function is a strict

monotony of the original function y = f{x). If the function increases

(decreases), then the inverse function also increases (decreases).

The graph of the inverse function x = g(y) coincides with that of

the function y = f(x) if the independent variable is marked off along

the (/-axis. If the independent variable is laid off along the x-axis,

i.e. if the inverse function is written in the form y = g(x)
y
then

the graph of the inverse function will be symmetric to that of the

function y = / (x) with respect to the bisector of the first and third

quadrants.

1.4.1. Find the inverse to the function y = 3x+ 5.

Solution. The function y = Sx+ 5 is defined and increases through-

out the number scale. Hence, an inverse function exists and in-

creases. Solving the equation y = 3x+ 5 with respect to x we obtain

x = (y-5)/3.

1.4.2. Show that the function y = k/x (k=^=0) is inverse to itself.

Solution. The function is defined and monotonic throughout the

entire number scale except x = 0. Hence, an inverse function exists.

The range of the function is the entire number scale, except # = 0.

Solving the equation y = k/x with respect to x, we get x = k/y.

1.4.3. Find the inverse of the function

y = \°ga(x+ V*+l) 9
(fl>0, a¥= 1).

Solution. The function y = loga (x+ }/~x
2 + l) is defined for all x,

since ]fx2 + 1 > \x\
y
and is odd [see Problem 1.3.9 (a)]. It increases
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for positive values of x, hence, it increases everywhere and has an

inverse function. Solving the equation

y=\oga (x+ Vlfi+l)

with respect to x, we find

a? = x + V x2 + l; a-y= — x+Vx2 + 1,

whence

x =y (a^— = sinh (*/ lna).

1.4.4. Show that the functions

f(x)=x2— x + 1, x^ 1/2 and cp (*) = 1/2 + j/x— 3/4

are mutually inverse, and solve the equation

x*— x+ 1 = 1/2+ Vx— 3/4.

Solution. The function # = a;
2— x+ 1 = (x— 1/2)

2 + 3/4 increases

in the interval 1/2^a:<cx), and with x varying in the indicated

interval we have 3/4^*/<oo. Hence, defined in the interval

3/4<#<oo is the inverse function x = g(y), x^ 1/2, which is

found from the equation

x*-x+ {l-y) = 0.

Solving the equation with respect to x, we obtain

x= g (y) = 1/2 + K^T? = q) (*/).

Let us now solve the equation

x*—x+l = l/2+ Vx— 3/4.

Since the graphs of the original and inverse functions can intersect

only on the straight line y = x, solving the equation x2—x+l = x

we find x = 1

.

1.4.5. Find the inverse of y = smx.
Solution. The domain of definition of the function y = s\nx is

the entire number scale, the range of the function is the interval

[— 1, 1]. But the condition of existence of an inverse function is

not fulfilled.

Divide the x-axis into intervals tin—n/2^x^nn+ n/2. If n is

even, then the function increases on the intervals tin—n/2^x^
^nn+ n/2; if n is odd, the function decreases on the intervals

nn— ji/2^ x^nn + n/2. Hence, on each of the indicated intervals

there exists an inverse function defined on the interval [—1, 1].
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In particular, for an interyal — jt/2^ ji/2 there exists an in-

verse function jt = arcsinr/.

The inverse of the function y = s\x\x on the interval mi—
^*^wt+jt/2 is expressed through atcsin y in the following way:

x = (— l)
B arcsin#+ wr (ai = 0, +1, ±2, ...).

1.4.6. Find the inverse of the given functions:

(a) y = s\n(3x— 1) at— (jt/6+ l/3)< (jt/6+ 1/3);

(b) # = arcsin(*/3) at—3<x< 3;

(c) # = 5 loe*;

(d) y = 2xix
' 1}

.

1.4.7. Prove that the function y = (l — x)/(l+x) is inverse to

itself.

§ 1.5. Graphical Representation of Functions

1.5.1. Sketch the graph of each of the following functions:

(a) f(x)=x*— 2x2 + 3;

(*>) f(*)=TT#>
(c) f(x) = s\n 2 x— 2sinx;

(d) / (x) = arc cos (cos x);

(e) f (x) = Vsm x;

(f) f(X) = X x ' l°*x.

Solution, (a) The domain of definition of the function/^) is the
entire number scale. The function f (x) is even, hence its graph is

symmetrical about the ordinate axis and it is

sufficient to investigate the function at x^O.
Let us single out a perfect square f(x) =

= (x2— 1)
2+ 2. Since the first summand

(x2— 1)
2 ^0, the minimum value of the func-

tion, equal to 2, is attained at the points

x = ±l (see Fig. 2).

The function f (x) decreases from 3 to 2 on
the closed interval O^x^l and increases

unboundedly on the open interval 1 < x < oo.

(b) The domain of definition of the func-

tion f (x) is the entire number scale. The fun-

ction / (x) is odd, therefore its graph is symmetrical about the origin

of coordinates and it is sufficient to investigate the function at

x ^0.
Since /(0) = 0, the graph passes through the origin. It is obvious

that there are no other points of intersection with the coordinate

Fig. 2
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axes. Note that |/(jc)|<1. Indeed, (1— U|)
2 >0or l+x2 >2|*|,

whence

Since / (x) > at x > and f (1) = 1, in the interval [0, oo) the

maximum value of the function f (x) equals 1, the minimum value

being zero (see Fig. 3).

1
]

I I 1 / i i i

-3 "2 -1 / 12 3'

-/

Fig. 3

Let us prove that the function increases on the closed interval 0^
<*<1. Let 0^*,<*2 <1. Then

£ / x r / x 2a:2 2x t
2x 2

-}- 2x 2x\ — 2x x
— 2x^5

,

fl,) Ml, ~l+4 (l+*S)0 + *i)

"

^ 2 (x 2
— s t ) (1— x^)

(l+*I)(l+*f)

and f(x2 ) >f(x l ).

Similarly, we can show that on the interval (1, oo) the function

decreases. Finally,

f (x) = 2x/( 1 + x2)< 2xi'x
2 = 2/x,

whence it is clear that f (x) tends to zero with an increase in x.

(c) The domain of definition of the function / (x) is the entire

number scale. The function has a period 2n, that is why it is quite

sufficient to investigate it on the interval [0, 2jx], where it beco-

mes zero at the points x = 0; x = n\ x = 2n.

Writing the given function in the form

f (*) = (1— sin*) 2— 1,

we note that it increases with a decrease in the function sin* and
decreases as sin* increases. Hence, the function / (*) decreases on
the intervals [0, n/2] and [3ji/2, 2n]> and increases on the interval

[jx/2, 3jx/2]. Since f(n/2) = — 1, and /(3ji/2)=3, the range of the

function is -!</(*)< 3 (Fig. 4).
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(d) The domain of definition of the function is the entire number
scale. Indeed, |cosx|^l at any x

y
hence, arc cos (cos*) has a

meaning. The function f (x) is a periodic one with the period 2n
y

hence, it is sufficient to sketch its graph on the interval [0, 2jx].

But on this interval the following

equality is true:

f(x)= l
*. 0<x< n

,

\ 2n— x, n^x^ 2jt.

Indeed, the first assertion follows

x from the definition of the function
arc cos x

9
while the second one can be

proved in the following way. Let us

put x' = 2n—x
y

ji < jk< 2ji; then
O^x'^in and

/(*) = arc cos [cos (2n— x')] =arc cos (cos x') = x' = 2ji— x.

Taking all this into consideration, we draw the graph (see Fig. 5).

(e) The function y = ]/ s'mx is a periodic one with period 2n\
that is why we may confine ourselves to the interval [0, 2ji]. But

-2% -% Tt 2lt
X

Fig. 5

the function is not defined in the whole interval [0, 2ji], it is

defined only in the interval [0, ji], as in the interval (jx, 2n) the

radicand is negative. The graph is symmetrical about the straight

Fig. 6

line a: = ji/2, as well as the graph y = s'mx (see Fig. 6). Here we
have an example of a periodic function which does not exist in

the infinite set of intervals.

(f) The domain of definition of the function is

< x < 1 and 1 < x < oo.
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Reduce the formula to the form

f(x) = x xn °* x = x Xo** 10 = jo.

Hence, the graph of the given function is the half-line #=10
in the right-hand halfplane with the point x= 1 removed (see Fig. 7).

1.5.2. Sketch the graphs of functions defi-

ned by different formulas in different inter-

vals (and in those reducible to them):

sin x at — jx<x<0, 10

2 at

l/(x— 1) at

— 2 at x>0,
1/2 at x= 0,

— x3 at x < 0;

(c) y=x+ V#;
_

(d) y=2/(x+\f?).

(a) */=<

(b)0=

0< x< 1,

1 < a;< 4;

Fig. 7

Solution, (a) The domain of definition of the function is the

interval [
— it, 4]. The graph of the function consists of a portion

of the sinusoid y = s\x\x on the interval — Jt< x< 0, straight line

9,

2

1

I i .1 1—

12 3 4

-i

1/2
{

-1 O 1

-1

-2

Fig. 8 Fig. 9

i/ = 2 on the interval (0, 1] and a part of the branch of the hyper-

bola y=\l{x—\) on the interval (1,4] (see Fig. 8).

(b) The graph of the function consists of a portion of a cubic

parabola, an isolated point and a half-line (see Fig. 9).

(c) The function may be given by two formulas:

I 2*. if x>0,
y==

\ 0, if x<0.
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Thus, the graph of our function is a polygonal line (see Fig. 10).

(d) From (c) it follows that the function is defined only in the

interval (0, +oo), y being equal to l/x (x > 0). Thus, the graph
of our function is the right-hand part of an equilateral hyperbola
(see Fig. 11).

y

1

Fig. 11

1.5.3. Sketch the graphs of the following functions:

(a) ^= cosx+|cosx|;
(b) y=\x+ 2\x.

\ 2cosjc at cos* ^5 0,
Solution, (a) cosa;+

|

cos*| = < q at COSA; <o.
Doubling the non-negative ordinates of the graph for the func-

tion y = cosx (the broken line in Fig. 12) and assuming y = at

-7C SicX x—
' 2

JL
Nv % s'3n 2% Jax

2 ~T~ ~7T

Fig. 12

the points where cosx<0, we can sketch the desired graph (the

solid line in the same figure).

(b) The function |x+ 2|x may be given by two formulas:

/ (x+ 2)x at — 2,

#=
\ —(x+2)x at — 2.

Plotting separately both parabolas: y= (x+2)x = (x+l)2—l
y

and y= — [(*+ l)
2 — 1], retain only the parts corresponding to

the above indicated intervals. Drawn in a solid line in Fig. 13 is

the graph of the given function, the broken line showing the de-

leted parts of the constructed parabolas.
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1.5.4. Sketch the graph of the function

y = 2\x—2\—
\
x+ l\ + x.

Solution. At x ^2
y = 2(x—2)— (x+ l) + x = 2x— 5.

At — l<x<2
y== — 2(x— 2)— (x+ \) + x = — 2x+ 3.

19

\ 5

i

i /

\ '2/—' \ / 1 >
-1 1 V/ 3

-1

Fig. 13 Fig. 14

Finally, at x<.~ 1

y== -2(x-2) + (x+\) + x = 5.

Hence, the given function can be rewritten in the following way:

( 5, *<-l,
y=) — 2x+ 3, —1 <x<2,

[
2x—5, x> 2.

Therefore the graph is a polygonal line

(see Fig. 14).

1.5.5. Sketch the graph of the function

y^2x—2~ x
.

Solution. Draw graphs for the functions

y t
= 2x and y 2

= — 2~ x (broken lines in

Fig. 15), and add graphically their ordina-

tes. In doing so bear in mind that y2 < y <
< y19 and that y2

tends to zero with an increase in x
y
whereas y x

tends to zero with a decrease in x (the solid line in Fig. 15).

1.5.6. Sketch the graph of the function

*/= x sin x.

Fig. 15
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Solution. Being the product of two odd functions y x
= x and

*/2
= sin*, the function y is an even one, that is why we shall

analyse it for x^O.
We draw graphs for yx

=x and y2
=smx (the broken lines in

Fig. 16).

At the points where r/
2
= sin# = 0, y= y1 .y2

=
i

and at the
points where y2 = smx = ± 1, y=± yi = ±x. The latter equality

x

Fig. 16

indicates the expedience of graphing the auxiliary function y3
= — x.

Marking the indicated points and joining them into a smooth
curve, we obtain the required graph (the solid line in Fig. 16).

1.5.7. Sketch the graph of the function y = x(x 2— 1) by multi-
plying the ordinates of the graphs yt

=x and y2
z=x2— 1.

1.5.8. Graph the following functions:

(a) y= x/(x2— 4), (b) y = 1 /arc cos x.

Solution, (a) Since the function is odd, it is sufficient to inves-

tigate it for x ^ 0.

Let us consider it as the quotient of the two functions:

yx
= x and y2

= x2 —4.

Since at x = 2 the denominator y2
= 0, the function is not de-

fined at the point 2. In the interval [0, 2) the function yx
increases

from to 2, the function y2 is negative and|r/2 |
= 4

—

x2 decreases

from 4 to 0; hence, the quotient f(x)=yjy2 is negative and in-

creases in absolute value, i.e. f(x) decreases in the interval [0,2)

from to — oo.

In the interval (2, oo) both functions are positive and increasing.

Their quotient decreases since from 2^x
t
<x

2 it follows that

x2 x t (*!— x2) (a:1x2+ 4) . n



§ 1.5. Graphical Representation of Functions 37

The indicated quotient tends to zero as x — oo, since y =
1 _^X2

~^ 0-

The general outline of the graph is presented in Fig. 17 (three

solid lines).

(b) Denote y 1
= arc cos x. The domain of definition of this func-

tion
|
x At x=\ we have y l

= 0, hence, y=\/y l
—* oo at

Fig. 17 Fig. 18

x—+ 1, i. e. x= 1 is a vertical asymptote. The function y l
decreases

on the entire interval of definition [
— 1, 1), hence y=\/y l

incre-

ases. The maximum value y 1
= n is attained at *--=— 1. Accor-

dingly, the minimum value of the function is 1/jx. The solid line

in Fig. 18 represents the general outline of the graph.

Simple Transformations of Graphs

I. The graph of the function y = f(x+ a) is obtained from the

graph of the function y = f(x) by translating the latter graph along

the x-axis by
|
a

|

scale units in the direction opposite to the sign

of a (see Fig. 19).

II. The graph y = f(x) + b is obtained from the graph of the

function y = f(x) by translating the latter graph along the y-ax\s

by \b\ scale units in the direction opposite to the sign of b (see

Fig. 20).

III. The graph of the function y = f(kx)(k>0) is obtained from

the graph of the function y = f (x) by "compressing" the latter graph

against the *y-axis in the horizontal direction k times at k > 1 and

by "stretching" it in the horizontal direction from the r/-axis \\k

times at k < 1 (see Fig. 21).
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IV. The graph of the function y = kf (x) (k > 0) is obtained from

the graph of function y= f(x) by "stretching" it in the horizontal

direction k times at k > 1 and "compressing" it against the #-axis

(i. e. vertically) \/k times at k < 1 (see Fig. 21).

u>-0 / vr ,o yuf(x)

y=f(x)+l,l<0

Fig. 20

V. The graph of the function y= — f(x) is symmetrical to that

of the function y— f(x) about the x-axis, while the graph of the

function y = f(— x) is symmetrical to that of the function y = f (x)

about the y-axis.

Fig. 21 Fig. 22

VI. The graph of the function y = f(\x\) is obtained from the

graph of the function y = f(x) in the following way: for jc>0 the

graph of the function y = f(x) is retained, then this retained part

of the graph is reflected symmetrically about the #-axis, thus de-

termining the graph of the function for jc<0 (see Fig. 22).

VII. The graph of the function y = \f(x)\ is constructed from
the graph y = f (x) in the following way: the portion of the graph
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of the function y = f(x) lying above the x-axis remains unchanged,
its other portion located below the x-axis being transformed sym-
metrically about the x-axis (see Fig. 23).

VIII. The graphs of the more complicated functions

y^'kf (kx+a) + b

are drawn from the graph of y = f(x) ap-

plying consecutively transformations I to V.

1.5.9. Graph the function

» = 3J/ -2(a;+ 2.5)— 0.8

by transforming the graph y = ]fx.

Solution. Sketch the graph of the function

y=z\fx (which is the upper branch of the

parabola y
2 = x) (Fig. 24, a), and transform

it in the following sequence.

Sketch the graph of the function y = 3]/2x Fig. 23

by enlarging 3 V 2 times the ordinates of

the points on the graph of the function y= \ x and leaving their

abscissas unchanged (see Fig. 24, b).

Then sketch the graph of the function y = 3V— 2x which will

be the mirror image of the preceding graph about the (/-axis (see

Fig. 24, c).

Fig. 24

By shifting the obtained graph 2.5 scale units leftward and then
0.8 unit downward draw the desired graph of the function

y=3V— 2(jc + 2.5)— 0.8 (see Fig. 24, d).

1.5.10. Graph the function # = 3cos#— j/3sin;t by transforming
the cosine curve.
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Solution. Transform the given function

y= 3 cos x— V 3 si n x = 2 j/3~(Q
' j-cosx—y sin jc

= 2 K3 cos

Thus, we have to sketch the graph of the function

# = 2VTcos (x+ ji/6),

which is the graph of the function */= 2 K 3cosjc translated by ji/6

leftward. The function has a period of 2ji, hence it is sufficient to

draw its graph for — n ^Zx^ ji

ZVT

/ /

/ /

/'
1

1 //

\
\ \

\ \

\\ 1 >

/ fa/2
I l

>^ -2V3

f\\7t/2
%

\\

•X

Fig. 25 Fig. 26

The graph of any function of the form */ = acosx + frsin x, where
a and b are constants, is sketched in a similar way.

1.5.11. Graph the following functions:

(a) y—^i
<b > f-JTZ^
(c) ^ x2 + a:+ 1, if— l<x<0,

if < x < k,

ft < x ^ 5;

s sin 2 x

(x-l)/(x+l), if

(d) y= x+ \/x;

(e) y= x2— x3
;

(f) = sin

(g) y= 1/cos*;

(h) j/=3s in (2jc— 4);

(i) t/=2K— 3(x+ 1.5)— 1.2;
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(j) y= |x«—2x— 1|;

(k) y=\\x\-l\;

(1) j/= cos(sinjc);

(m) y=\s'mx\ + s\nx on the interval [0,3k];

f 1 at x> 0,

(n) y = x2 sign x
y
where signx = V at x= 0,

— 1 at x < 0.

1.5.12. The function y= f(x) is given graphically (Fig. 26).

Sketch the graphs of the following functions:

(a) y = f(x+ 1);

(b) y= f(x/2);

(c) y=\f(x)\;
(d) » = (|/(*)|±/(*))/2;
(e) y = \f(x)\/f(x).

§ 1.6. Number Sequences. Limit of a Sequence

The number a is called the limit of a sequence xu x2y xn ,

... as n —oo, a— lim xn if for any e>0 there exists a number
n -+ co

N(e)>0 such that the inequality |jt„

—

a\<& holds true for all

n> Af(e).

A sequence which has a finite limit is said to be convergent.

A sequence {xn } is called infinitely small if lim.*^ — 0, and infi-

nitely large if lim^^oo.

1.6.1. Given the general term of the sequence {xn }:

sin (nn/2)

Write the first five terms of this sequence.

Solution. Putting consecutively n=\
9 2, 3, 4, 5 in the general

term xni we obtain

sin (jt/2) «
#

l

»

1

3
~~

3

sin (4it/2) ~
:

4
"" U;

sin(5jt/2) _ 1

5
~~

5
*
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1.6.2. Knowing the first several terms of the sequence, write one
of the possible expressions for the general term:

(3
' I' 8 » 13 » 18 ' 23 ;

(b) 1, -g-, 2, -g- , 3, , 4, -g-.

Afofe. A knowledge of the first several terms of a sequence is not

sufficient to define this sequence. That is why this problem should

be understood as one of finding a certain simple inductive regula-

rity compatible with the given terms.

Solution, (a) Note that the numerator of each of the given terms

of the sequence equals the square of the number of this term plus

unity, i.e. n 2 +\, while the denominators form the arithmetic prog-

ression 3, 8, 13, 18, ... with the first term ^=3 and the com-
mon difference d = 5. Hence,

a„ = a1+ d(n— 1 ) = 3 H- 5 (az— l) = 5n— 2,

thus we have

_ n*+ l

*»~~5/i— 2
'

(b) Here the general term of the sequence can be written with

the aid of two formulas: one for the terms standing in odd places,

the other for those in even places:

j k at n = 2k—l
9

xn =
\ 1/(6+1) at n = 2k.

It is also possible to express the general term by one formula,

which will be more complicated, for instance,

^=^[i-(-i)i+^-
2
[i+(-i)"]-

1.6.3. Find the first several terms of the sequence if the general

term is given by one of the following formulas:

(a) jc„ = sin (nn/3)\

(b) xn = 2~ n cos nn\

(c) xn =(l + l/n)\

1.6.4. Using the definition of the limit of a sequence, prove that

(a) lim xn =l if xn = (2n— l)/(2n+ 1),

(b) limxn = 3/5 if xn = (3n 2 + l)/(5n 2— 1). Beginning with which
n is the inequality

|
— 3/5 |

< 0.01 fulfilled?

Solution, (a) For any e > let us try to find a natural number
Af(e) such that for any natural number n>N(z) the inequality

\xn— l|<e is fulfilled.
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For this purpose let us find the absolute value of the difference

2/1—1

2/1+1
-1

2/i+ 1
I

2n+

r

2
Thus, the inequality

|

jc„— 1 1 < e is satisfied if ^qrf < 8 » whence

n > 1/e— V2 - Hence the integral part of the number 1/e— V, may
be taken as jV(e), i.e. W = £(1/8— 7,).

So, for each e > we can find a number A/ such that from the

inequality n > N it will follow that \xn— 1 1 < e, which means that

lim f^ = l.

(b) Let us find the absolute value of the difference — 3/5|:

3/z2 +l 3 I 8

5/z 2— 1 5
|

5(5/i2— 1)'

Let e > be given. Choose n so that the inequality

5(5/i2 -l)

is fulfilled.

Solving this inequality, we find

_ 8 . 1 .1 t/8+ 5b

Putting

N = £ (i/?±5),

we conclude that at n> N

K-3/5|<e,

which completes the proof.

If e = 0.01, then

*-*(•{- -5.

and all terras of the sequence, beginning with the 6th, are contai-

ned in the interval (3/5—0.01; 3/5+ 0.01).

1.6.5. Given a sequence with the general term xn = 9n _^ 4
. It is

known that lim x„= 1/3. Find the number of points xn lying out-

side the open interval
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Solution. The distance from the point xn to the point 1/3 is

equal to

1

X
» 3

19 _ 19

3(9/z+ 4) 3(9/z+ 4)

Outside the interval L there will appear those terms of the se-

quence for which this distance exceeds 0.001, i.e.

19

3(9/z + 4) ^ 1 000

whence

1 <; n < 18988 ?n 7

Hence, 703 points (x lt x2 ,

val L.

. ,
x103 ) are found outside the inter-

1.6.6. Prove that the number 1 = is not the limit of a sequen-

ce with the general term xn = (n
2— 2)/(2n 2— 9).

Solution. Estimate from below the absolute value of the diffe-

rence
n 2— 2

2n 2 —9 -0
1^-2 1

|2/2
2— 9

|

At n ^ 3 the absolute value of the difference remains greater

than the constant number 1

/2 ;
hence, there exists such e > 0, say,

e= 1
/29 that the inequality

2ril— 9
— >

1

holds true for any n^3.
The obtained inequality proves that / = is not the limit of the

given sequence.

1.6.7. Prove that the sequence

112 1

1,
^

with the general term

\/n, if /2-2/e— 1,

n/(n + 2), if n = 2k,

has no limit.

Solution. It is easy to show that the points xn with odd num-
bers concentrate about the point 0, and the points xn with even
numbers, about the point 1. Hence, any neighbourhood of the point 0,

as well as any neighbourhood of the point 1, contains an infinite

set of points xn . Let a be an arbitrary real number. We can always

choose such a small e > that the e-neighbourhood of the point a will
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not contain at least a certain neighbourhood of either point or

point 1. Then an infinite set of numbers xn will be found outside

this neighbourhood, and that is why one cannot assert that all the

numbers xm beginning with a certain one, will enter the e-neigh-

bourhood of the number a. This means, by definition, that the

number a is not the limit of the given sequence. But a is an arbit-

rary number, hence no number is the limit of this sequence.

1.6.8. Prove that lim*n =l if xn = (3
n + l)/3

n
.

1.6.9. Prove that limx„ = 2 if xn = (2n + 3)/(n + 1). Find the

number of the term beginning with which the inequality

|

(2n + 3)/(/2+ 1)— 2
| < e, where 8 = 0.1; 0.01; 0.001, is fulfilled.

1.6.10. Prove that the sequence

J_
2

with the general term

1 _L i. _L L
2 ' 2 ' 4 ' 4 ' 8

I

l -^rm if n is odd
*

*»=f i .—
j77 if n is even,

{ 2
n/2

has no limit.

1.6.11. Prove that at any arbitrarily large a>0 limA;„ = if

xn = an
/nl

Solution. Let a natural number k > 2a. Then at n > k

an a a a f a a a \ ( a a a
x ^

n\~ \ 2 n \ 1 2 k ) \k+l k+ 2 n

<a.(i)--W.(^"

Since lim(l/2)" = (prove it!), then at a sufficiently large n we

have: (4-) <—— and, hence, an
/n\ < e, which means that

V 2 J (2a) k

Y\m(an/n\) = 0.

1.6.12. Test the following sequences for limits:

(a) x„=1/(2jx);

1 for an even n,i 1 for an even n,

(b) xn —
<j ^
1 nn

(C) Xn
=~ C0S ~2" I

(d) ^„ = ai [!-(-!)»].
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1.6.13. Prove that the sequence with the general term

xn =l/n* (k>0)

is an infinitely small sequence.

Solution. To prove that the sequence xn is infinitely small is to

pro\e that lim xn = 0.
n -* oo

Take an arbitrary e > 0. Since \xn \
= l/nk , we have to solve the

inequality

l/n* < e,

whence n> y^l/s. Hence N may be expressed as the integral part

of j/T/e, i. e. = E(^1/S).

1.6.14. Prove that the sequences with the general terms

(a) xn = ,
(b) xn =± sin [(2/i - 1)

are infinitely small as n—oo.
1.6.15. Show that the sequence with the general term

xn = (
— l)

n 2/(5f/n+l) is infinitely small as n—>oo. Find a num-
ber N beginning with which the points xn belong to the interval

(-1/10, 1/10).

Solution. Take an arbitrary e>0 and estimate \xn \:

I l- 2 ^ 2 ^ 2 - 1

l

JC»l""
c 3/ .

f
^ - 3/- 3/- 3/-'

That is why |xj<e a; soon as n > 1/e 3
. Hence limxn = 0, i.e.

n oo

the sequence is infinitely small.

We take now 8=1/10. Since |^n |< l/\/n
y xn will necessarily

be smaller than 1/10 if \lV~n< 1/10 or n > 1000. Hence N may
be taken equal to 1 000. But we can obtain a more accurate result

by solving the inequality

\

Xn\ = 3/- < TO
•

It holds true at n > (19/5)
3 = 3.

8

3 = 54.872. Hence N may be

taken equal to 54^1000.

1.6.16. It is known that if xn = a+ an , where an is an infinite-

simal as n—^00, then lim xn = a. Taking advantage of this rule,
n -»• oo

find the limits:

3"+! + sin (wi/4) 2*+ (— 1)"
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c < . . 3w+1 -f- sin (nn/4)
,

, sin (nn/A) .

Solution, (a) xn = "s^
— — 3+ where an

=

—

v

3„
is

an infinitesimal as — oo, hence lim xn = 3.
n -+ oo

1.6.17. Prove that lim y^n=l.
n -+ <x>

Solution. Let us prove that the variable Yn can be represented

as the sum l+a„, where an is an infinitesimal as n— oo.

Let us put \/n= 1 + an . Raising to the nth power we obtain

rc= (1 +ajn = 1 +Aia„+^=^a^+ . . . +a"ny

wherefrom we arrive at the conclusion that for any n > 1 the fol-

lowing inequality holds true:

n>l + njn^l)
a%

(since all the terms on the right are non-negative). Transposing the

unity to the left and reducing the inequality by n— 1 we obtain

whence it follows that 2/n > a 2

n or > an > 0. Since

lim V
r
2/n =

i
lim an also equals zero, i. e. an is an infinitesimal.

n -* oo n oo

Hence it follows that

lim yn=l.
n -* oo

1.6.18. Prove that the sequence with the general term

is infinitely large as n—>oo.

Solution. Let us take an arbitrary positive number M and solve

the inequality

z V n > AJ.

Taking the logarithm, we obtain

Vn> log, /W, n> (log3 M)
3

.

If we now take /V = E (log
3 A4) 3

, then for all n> N the inequa-

lity |xn |>A4 will be fulfilled, which means that the sequence is

infinitely large.

1.6.19. Prove that

lim y/a = 1 (a > 0).

n -* oo
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§ 1.7. Evaluation of Limits of Sequences

If the sequences {xn \ and {yn \ are convergent, then

(1) Km (xn ± yn ) = liin xn ± lim

(2) lim - lim xn lim

If x„^ */„ then lim xn^ lim yn .

1.7.1. Find lim x„ if

n qo

^ v
3n2+5n+ 4

,
5b»+ 2«»-3/i + 7

.W xn~ 2+n2 '
W n ~ 4n3-2n+ll '

4n2-4n+ 3
.

l»+2»+ ...+««
.—

2/i3+ 3/i+ 4' w n_ 5/i3+n+l

(e) *n=
1+2+r + "

-

3+A+l
Solution, (a)

n

S+ 1

~
2_

n*

lim (3+ 5//z+ 4//z 2 )

lim x =— 7-o x
— -3.

(d) Recall that
(2/i+l)

Hence

l* + 2 2 + 3 2 +... +n2

2+ A-f-l
/i(/i+1)(2/i+1)_ 2n 3+ 3n 2 + Ai _ ^ n^ n 2

6(5/i*+ /i+1) 6(5n3+ n+l)
30 _L^6

6»
1

n 1 u3

lim #„ = 1/15.

1.7.2. Find lim xny if

ft -+ 00

, , / 3n 2+n—

2

\ 3
. / 2n3+ 2n 2 +l \«W — ^4„2 + 2n+ 7j ' W U"3+ 7"2+ 3n + 4j •

(c) xn = ybn; (d) xn = pi*;

{t)xn =yn>; (l)xn =^6n + 3.

Solution, (a) Urn (^^r)' =

_ ,. /' 3n2+ n—

2

\ / 3n2 + n—

2

\ / 3n2+ n—

2

\ _
«i
m
« U«2+ 2n+7j U«2+ 2«+ 7j U/t2+ 2/l+ 7j

_

= lira
3+1/rt— 2//i2 \ 3

„ 4+2/rt+ 7/rc2

' 3_\
3 _27

,4 J
-64
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(c) In solving this example, and also the rest of the examples

of Problem 1.7.2, take advantage of the following equalities (see

Problems 1.6.17 and 1.6.19):

lim i/n=l and lim \/a=\. (1)

We have

lim xn = lim i/5n = lim lim \/n,
n co n -+ <x> n -* co n -* co

but from (1) it follows that limv^5=l and lim y^/i = 1 ; hence

lim xn = 1 • 1 = 1

.

1.7.3. Find
' 2ft3 . 1— 5ft2 \

Solution. Summing the fractions, we obtain

2ft
3— 13ft2+ 3

xn—
i Oft3+ 2ft2+ 15ft+ 3

*

Whence

_ r 2ft3— 13ft2+ 3 _ 1

lim xn - iirn^
10n3+ 2n 2+ i5n+ 3 - 5

•

n -+ oo

Note. If we put

_ 2ft3 _ 1— 5ft 2

—
2ft 2 + 3

; ^ — 5ft+ 1
'

then the limit of their sum \im{yn + zn ) = 1/5, though each of the

summands is an infinitely large quantity. Thus, from the conver-

gence of a sum of sequences it does not, generally speaking, follow

that the summands converge too.

1.7.4. Find lim xn if

n -* co

(a) x„ = V2n+3— Vri—l'9

(b) xn = Vn2 + n+ \ —]/
n

n 2—n+ 1;

(c) xn = n2 (n—Vn 2 + \y,

(d) xn=¥n 2— n3+ n\

_ ]Tn*+\ + Vn
.

(ej xn — 4 / ,—

,

(
, 1—2+ 3— 4+ 5—6+ ... —2ft

(h) xn =± +±+±+...+.1-2 1 2-3 1 3-4 1
' ' * 1 ft(ft+l)
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Solution, (a) xn= Vn(V2+ 3/n—Vl— l/n)-+ -f oo as n — oo

,

since the second multiplier has a positive limit.

(c) Xn
_ n*(n-VlF+\ ) _ -n* _

1 n+K/iHl
1= — n — — oo as n — oo.

(d) xn = ~ . =
(n 2— n3

)

2/3— n y n*— n*+ n*

1

It means, xn—>• 1/3.

(e) Factoring out the terms of the highest power in the numera-
tor and denominator, we have:

1.7.5. Find \\mxn if

1/4 > + oo as n— oo.

n-*<x>

(c) xn=Y l— n 3 +n; (d) *„ = -^ cos n 3—
;

I \ — 2n n+l n n(— 1)"
.

(e) — 1

C0S
2« — 1 l—2n n2+l *

(f) xn = j j j- .

1+T+T+-+*

§ 1.8. Testing Sequences for Convergence

Bolzano-Weierstrass* theorem. A monotonic bounded sequence has

a finite limit.

Theorem on passing to the limit in inequalities. If xn ^yn ^zn

and liin x^lim zn = c, then \imyn = c too (c is a number,
n -y cc n -> cc n -* cc

-{ 00 or — 00 but not oo).
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1.8.1. Prove that the sequence with the general term xn =
= (2n— l)/(3n+ 1) is an increasing one.

Solution. We have to prove that xn+1 >xn for any n, i.e. to

prove that
2/z-j-l 2n— l

3/Z+ 4
> 3rc+ 1

'

The latter inequality is equivalent to the obvious inequality

e>n
2 + 5n+\ > 6m2 + 5n— 4.

Hence, xn+l > xn .

1.8.2. Given a sequence with the general term

Xn ~
n\

'

Prove that this sequence decreases at n^lO.
Solution,

_ 10"+ 1 _ 10" 10 __ 10
Xn+1 ~~ (n+ 1)! n\

' /i+ 1 n+ 1

'

Since < 1 at ft ^10, then xn+1 <xn beginning with this

number, which means that the sequence decreases at n ^ 10.

1.8.3. Test the following sequences for boundedness:

(a )
Xn = ^j'>

(b) #„ = (-l)n ~sinft;

(c) zn = n cos nn.

Solution, (a) The sequence {xn \ is bounded, since it is obvious that

(b) The sequence {yn } is bounded:

l^l = l(-D"|-^T |sin«|<^T <2.

(c) The sequence {zn \ is not bounded, since

\zn \

= \ncosnn\ = n.

1.8.4. Prove that the sequence

Xn Xi Xo Xn i

(a > 1, x > 0) converges.

Solution. Let us prove that this sequence is monotonic and
bounded. Firstly, xn < xn _ l

as
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Hence, the given sequence is a decreasing one. Secondly, all its

terms are positive (by condition a > and x > 0), which means
that the sequence is bounded below. Thus, the given sequence is

monotonic and bounded, hence it has a limit.

1.8.5. Prove that the sequence with the general term

1 11 i

5+1 1 5 2 +l ^53 +l 1

' • • 1

5»H-1

1,1 1,1,1
^i.e. x

1 — b+{ ;
x

2 ~ 5+1 + 5a +1 ;
x

2 — 5+1+ 5H-1 ^ 5 a +l '

converges.

Solution. The sequence \xn )
increases, since xn+1 = xn + 1/(5"

4-1 + 1)

and, hence, #„ +1 > xn . Besides, it is bounded above, since 1/(5"+ 1) <
< 1/5" at any n and

1 + _L_ +_^ + +-J—

<

I *2 i 1 I ^3 l 1 I ' ' ' I Kn _L_ 1
^" 5+1 1

5 2 +l 1 5 3 +l 1

' ' ' 1 5»+l

/ iii ili 1 1/5-1/5" + * _ W, 1\ 1

^ 5 ^ 52 ^ 5 3^ ' ' ' ^ 5" 1 — 1/5 4 V 5" J
^ 4

'

Hence, the sequence converges.

1.8.6. Taking advantage of the theorem on the existence of a

limit of a monotonic bounded sequence, prove that the following

sequences are convergent:

(a) xn = —r- ;

(b) *B
= 2 +l + l+...+I.

1.8.7. Prove that the following sequences converge and find their

limits:

(a) x
x
= V~% *2

= ^2+l/"2;

n radicals

2n

(b) *„

(c) x

(/i + 2)!
'

(d) the sequence of successive decimal approximations 1; 1.4;

1.41; 1.414; ... of the irrational number j/~2;

(e) xn = n\/nn .

Solution, (a) It is obvious that x
x < x2 < x 3 < . . . < xn <

<*„ + 1
< • i.e. the sequence is increasing. It now remains to

prove that it is bounded.
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We have xn = V2 + xn _ l9 n = 2
y 3, . . . Since x

1
= V~2<2

xt
= V2 + x

1 <V2 + 2 = 2
9
x, = V~2+ x

2 <V2 + 2 = 2, .... Let it

be proved that xn _ 1 <2. Then xn = ]/

r
2 + xn _ 1 < V2+ 2 = 2. Thus,

with the aid of mathematical induction we have proved that xn < 2,

i.e. the sequence is bounded. Hence, it has a finite limit. Let us

find it. Denote

lim xn = y.
n -> oo

Then, xa= V~2 Jr xn-v raising to the second power, we obtain

Passing to the limit, we can rewrite this equality as follows

lim x\ = lim (2 + ,^), or y
2 = 2 + y.

n -* oo n -* cc

The roots of the obtained quadratic equation are:

ft = 2; y2
=— 1-

The negative root does not suit here, since x„>0. Hence, lim xn =y l
= 2.

n -* oo

(c) We have ny— 1 < E (ny) ^ ny or y—l^tL^^y. Bui the

sequences j#— -^-j and {y} converge, their limit being y, that is

why lim xn
=

(d) This sequence is non-decreasing, since each following term
xn+1 is obtained from the preceding one xn by adding one more
significant digit to the decimal fraction. The sequence is bounded
above, say, by the number 1.5. Hence, the sequence converges, its

limit being V 2.

(e) The sequence decreases monotonically. Indeed,

(fl-f-l)! _ n\ _n\ nn __ nn
Xn+1 ~~ ~~nP ' (n+l)»

~~~
(n+\)n Xn '

Since
(n+\)* < l

>
X
» + 1 < X»*

Then, since xn > 0, the sequence is bounded below, hence lim xn
n -+ cc

exists. Let us denote it /. Obviously, /= lim xn ^0. Now let us
n -+ cd

show that / = 0. Indeed,

nn \ n J \ n J n
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Hence,
^n < -y and xn+l <-^xn .

Passing over to the limit,

we obtain

which, together with /^0, brings us to the conclusion:

/ = 0.

1.8.8. Find the limits of the sequences with the following gene-

ral terms:
n n

zn = -

1

-

1

*-...+
1

V n*+\
r
]fn*+2 Vn*+ n

Solution. Let us prove that lim#„=l. Indeed,
n -* oo

n— Vn2+ n
l*»-l| =

}Tn?+ n
1

V n2+ n(n+ V n2+ n) 2n'

We can prove similarly that

lim zn = 1.
-»• 0»

Then,

+ = 2 M .

On the other hand,

l

VrP+ n V~n*+ n Vri*+ n }^n2 + n
= x

ri

Thus,
xn<yn < zn, Urn *„ = lim z„ = 1

n -* cc n -* oo

and according to the theorem on passing to the limit in inequalities

lim yn =\.

1.8.9. Using the theorem on passing to the limit in inequalities

prove

lim JX'a=l (a>0).
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1.8.10. Prove the existence of the limit of the sequence yn = a
1/2n

(a > 1) and calculate it.

1.8.11. Taking advantage of the theorem on the limit of a

monotonic sequence, prove the existence of a finite limit of the

sequence

Xn "1"
22 32

/I
2 *

1.8.12. Taking advantage of the theorem on passing to the limit

in inequalities, prove that

lim xn =\ if xn = 2n{Vn2 +l—n).
n -* qo

1.8.13. Prove that the sequence

x
1
= Va\ x

a
=----j/ a + V a\

xs
= V<* + V

r

a+ Va; xn --= ]fa+Va+ . . . + Va
n radicals

(a>0)

has the limit b = {VAa+\ + l)/2.

1.8.14. Prove that the sequence with the general term

_ 1 1 l_
*n ~3+l + 32+ 2

+
' ' ' ^~?>n+ n

has a finite limit.

1.8.15. Prove that a sequence of lengths of perimeters of regular

2w-gons inscribed in a circle tends to a limit (called the length of

circumference).

§ 1.9. The Limit of a Function

A point a on the real axis is called the limit point of a set X
if any neighbourhood of the point a contains points belonging to X
which are different from a (a may be either a proper or an impro-
per point).

Let the point a be the limit point of the domain of definition

X of the function f(x). The number A is called the limit of the

function f (x) as x—»a, A= lim /(.*:), if for any neighbourhood V
x -* a

of the number A there exists a neighbourhood u of the number a
such that for all x£X lying in a, f(x)£V (the definition of the
limit of a function after Cauchy). The number A may be either

finite or infinite. In particular, if the numbers A and a are finite

we obtain the following definition.
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A number A is called the limit of a function f(x) as x—-+a y

A = lim f (x), if for any e > there exists a number 8(e) > such
x -+ a

that for all x satisfying the inequality 0<\x—a|<8 and belon-

ging to the domain of definition of the function f (x) the inequality

\f(x)— A\<s holds true (the "e-8 definition").

If a=+oo, the definition is as follows. A number A is called

the limit of a function f (x) as x— + «>, A = lim f (x), if for any
X -* + 00

e > there exists a number M(e) > such that for all x satisfying

the inequality M(e) and belonging to the domain of definition

of the function f (x) the inequality \f(x)— A\ <e holds true (the

"e-M definition").

The notation lim / (x) = 00 means that lim
| f (x)

\

= + 00. The
x -+ a x -* a

rest of the cases are considered similarly.

The definition of the limit of a function after Heine. The nota-

tion limf(x) = A means that for any sequence of values of x con-
x -+ a

verging to the number a

•^l> -^2> • • • * • • •

(belonging to the domain of definition of the function and differing

from a) the corresponding sequence of values of y

0i = /(*i); 0i = /(*i); 0n = /(*n). •••

has a limit, which is the number A.

1.9.1. Taking advantage of the definition of the limit after

Heine (i.e. in terms of sequences) and of the theorems on the limits

of sequences, prove that

,. 3*+l 1

Solution. Let us consider any sequence x
l9

x
2 , ... satisfying

the following two conditions: (1) the numbers xlt x2y ... belong

to the domain of definition of the function f (x) =(3x+ l)/(5*+ 4)

(i.e. xn =£— 4/5); (2) the sequence {xn }
converges to the number 2,

i.e. lim xn = 2.

n -+ 00

To the sequence {xn } there corresponds the sequence of values

of the function
3^+1 .

3;ca +l .

5*1+ 4
;

5*2+ 4 » ' ' '

proceeding from the theorem on the limits (§ 1.7),

lim fix )= Hm
3*„+l_ lim 0^l) a j±ial

„T.'W ii.5^+4- lim (5*„+ 4) 10+4- 2
•
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Thus, independently of the choice of a sequence {xn \ which
converges to the number 2(xn ^=— 4/5), the corresponding sequences

of values of the function f (xn ) converge to the number 1/2, which,

according to the definition of the limit of a function, means that

3x+l 1

5^+4= 2
•

Note. The definition of the limit after Heine is conveniently

applied when we have to prove that a function f (x) has no limit.

For this it is sufficient to show that there exist two sequences {xn }

and {xn } such that lim xn = lim x'n = a, but the corresponding
n -* qo n -* oo

sequences {f(x'n)\ and {f (x„)\ do not have identical limits.

1.9.2. Prove that the following limits do not exist:

1

Solution, (a) Choose two sequences

(a) lim sin 737; C3 ) ^m (c) lim sin x.
Y

X -+ K —* CO

1 2
xn = 1 H and xn = 1 + Ta

—j-t— (n = 1 , 2, . .
. ),n 1 nn (4n+l)ji v

» »
/»

for which
lim xn = lim a:^ = 1.

n -+ <x> n -* oo

The corresponding sequences of values of the function are:

Kxn ) = s\n
l + l/{

l

nn)_ l

=smnn =
and

f «) - sin
{ + g/[(4w^ t) n]_ {

= sin f£+i ji = sin
( 2/m + f )

= 1

.

Hence,
lim / (xn ) = and lim f (x'n) = 1

,

1.e. the sequences {/(*„)} and {/«)} have different limits, whence

it follows that lim sin — does not exist.
x -* 1

1

(c) Choose two sequences, xn = nn and x'n = 2nn + n/2 (n = 1

,

2, ...), for which lim jcn = lim a^ = oo. Since
n 00 n -* cc

lim sinx„= lim sin jt/z = 0,

and
lim sin<= lim sin (2jw + ji/2) = 1,

n -* cp n -* 00

lim sin * does not exist.
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Note. The above examples show that one cannot draw the con-

clusion about the existence of the limit of a function proceeding

from the sequence of values of x of a particular form (for example,
proceeding from xn = 1 +2/((4n+ 1) n) in the item (a) of this prob-

lem), but it is necessary to consider an arbitrary sequence x19

x2) ...,#„, ... having a given limit.

1.9.3. Proceeding from the definition of the limit of a function

after Cauchy (i.e. in the terms of
u
e-5"; "e-M", etc.), prove that

(a) Km (3x— 8)- —5;

(f) lim sin* =1/2.
x -* Jt/6

Solution, (a) According to the "e-8" definition we are to prove
that for any e > there exists 8 > such that from the inequality

I*— 1|<8 it follows that
| f (x)— (

— 5) |

=
| f (x) + 5

|
< e.

In other words, it is necessary to solve the inequality

The latter inequality shows that the required inequality
|
/(jt)-f5 |<e

is fulfilled as soon as \x—
1 1 < e/3 = 6. Hence, lim (3x— 8) = — 5.

(b) According to the "e-M" definition of the limit one has to

show that for any e > it is possible to find a number M >
such that for all x > M the inequality

will be fulfilled.

Transforming this inequality, we obtain

(e) lim arc tan x = ji/2;

|3a:— 8 + 5| = 3|a:— 1
|
< e.

5* -j-l 5

3x+ 9 3 |3*+ 9|

14
<8.

Since x > 0, it remains to solve the inequality
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whence

^ 14—9e

hence M = 14 7" 98
.

3e
14 ge

Thus, for e > we have found M =—^— such that for all

values of x > M the inequality (*) is fulfilled, and this means that

Let, for example, 8 = 0.01; then M=^=^1^- = 463 -|-.

(c) We have to prove that for any K > there exists 8 >
such that from the inequality

|x-l|<8

there always follows the inequality

I
1

(I-*) 2

1

>K.(i-*) 2

Let us choose an arbitrary number K > and solve the inequality

1

(l-*) 2

whence

K, (**)

|l_x|<-L: (K>0).

Thus, if we put 8 = -J=-, then the inequality (**) holds true as
V K

soon as \x— 1
| < 6, which means that lirn n __ . 2

= +oo.

(d) We have to prove that for any K > there exists M >
such that from the inequality x > M there always follows the ine-

quality \oga x>K. Let us choose an arbitrary number K > and

consider the inequality \oga x> K. If we put aK = M, then at

x>M the inequality \oga x>K holds true. Hence,

lim loga *= +oo.
X -»» + 0O

1.9.4. Prove that lim cosjc does not exist.
X -+ 00

1.9.5. Using the sequences of the roots of the equations sin (\/x)=l

and sin (l/x)= — 1, show that the function / (x) = sin (l/x) has no
limit as x—>0.
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1.9.6. Proceeding from Cauchy's definition of the limit of a

function prove that:

(a) lim (3a:— 2) = 1; (b) lim
x~ {

=2;
K - 1 X - 1 V X— 1

(c) lim sin.x: = 0; (d) lim cosx= 1;

x -* o x o

, v ,. 2x— 1 2
(e) .'^.s+s'tJ
(f) lim ax = +oo (a > 1);

*-* + 00

(g) lim — = 0.

§ 1.10. Calculation of Limits of Functions

I. If the limits \\mu{x) and limy (a;) exist, then the following
x -» a x-+a

theorems hold true:

(1) lim [u (x) ± v (x)} = lim u (x) ± lim v (x);

x -+ a x -* a x -+ a

(2) lim [u (x)-v(x)] = lim u (x) • lim v (x)\

x ^ a x -* a x -* a

lim U (x)

(3)^=W^) (Hm»(x)^0).

II. For all main elementary functions at any point of their do-

main of definition the equality lim / (x) = / (lim x) = f (a) holds true.
x -+ a x-+a

III. If for all values of a; in a certain neighbourhood of a point a

(except for, perhaps, x = a) the functions f(x) and q) (x) are equal

and one of them has a limit as x approaches a, then the other one

has the same limit.

IV. The following limits are frequently used:

(1) hm — =1;
x-+0 x

(2) lim(l + l/jc)* = lim(l +a) l '* = e = 2. 71828. . .;
x -* <x> a -*

(3) lim
lo^ il+x) = loga e (a>0;a^l);

x^Q x

... ,. In (1 + a:) «

(4) hm / ' = 1;

x^O x

(5) lim ^=^ = lna (a > 0).
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1.10.1. Find the limits:

i \ i;m ixb + 9x+ 7 /u\ r xs+ 3x*—9x—2W I™ 3*.-f*r+T '

(b
>

I

1™ *3_ x_ 6
••

(C) ^VeZU^' (d)
il
m
,^_J

P and q integers);

(e) Hm ^+^- 3
;

(f)lim^^;
|/*Fp7— 3 J/" 2*— 3 .

. r f\ x— 3
(g) 3/-Xft o 3/0=5

(h) l0g«
2 r/ x+6— 2 r/ 3x— 5 *-3 L*-+2 j/Ff6-2j/3^5 '

*-*3|_ VHT+6-3J'
>— x2— a:+ 1 r v r + K8a:+ 1

Solution, (a) Since there exist limits of the numerator and deno-

minator and the limit of the denominator is different from zero,

we can use the theorem on the limit of a quotient:

lim (4*5+ 9x+7)
lim 4*»+ 9* + 7 ^ J^i V t t ;

4 + 9+ 7 ,

^-13^ + ^+1 lim (3jc
6+ x3+ 1) 3+1+1

(b) The above theorem cannot be directly used here, since the

limit of the denominator equals zero as x—-»2. Here the limit of

the numerator also equals zero as x—»2. Hence, we have the

indeterminate form -jj- . For ^^2 we have

A;3+ 3x2_9A._2 _ (x—2) (x2+ 5x+ 1) = jc
2+ 5a:+ 1

x3—x— 6 ~~ (x—2) (x2+ 2x+ 3) --jca+ 2*+3"

Thus, in any domain which does not contain the point x = 2 the

functions

r, x £3+ 3x2— 9x— 2 , , . x2+ 5x+l

are equal; hence, their limits are also equal. The limit of the

function y(x) is found directly:

/vi- *2+ 5x+ 1 15
hm cp(^)^ im = n ;

x -.2 ^2- 2+ 2*+:

hence,

£/ x x3+ 3x2—9x— 2 15

X-+2 X-+2 X X O 11
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(c) Just as in (b), we remove the indeterminate form ^ by

transforming

lim = lim (*+0(^^3-3,) =

<->-! 3 (1— *) ~ i>

1.10.2. Find the limits

X3 X2

3a:
2— 4

—
3x+ 2

(a) lim
(

(b) lim (j/9je2 + l— 3x);
* -* + 00

(c) lim
2^+3^/7+5^/7

v^ + oo V 3*—2+ 3/2x—

3

(d) lim 0/2x2—3— 5x);
* -* — 00

(e) lim x(Vx 2 +l — x)\
X -* + QO

/f , ,. V2x^f3 , ]/~2x2+3

(g) lim S^** 3 *.

X -* OO

So/««on. (a) lim (^-^) .

Here we have the indeterminate form oo— oo; let us subtract the

fractions

lim f^_^)=lim 2x3+4x2 -
jc^oo \3*2— 4 3x+ 2 y ^ 9x3+ 6a:2— \2x— 8

= lim
2+ 4/x 2

^.Too 9+ 6/a:— 12/a:2— 8/a:3 9
'

Note. We see that in such examples the limit is equal to the

ratio of the coefficients at the superior power of x (provided the

polynomials are of the same degree).

/ux ,. (}^9x2+i— 3x) ,. 1 n
(b) lim —

-J-
' = lim r = 0.

+ 1 x -+ + cc J^-j- 1+3*

(c) In handling such examples bear in mind that the function

f{x)= \/pn (x), where pn (x) is a polynomial ofjdegree n, tending

to infinity in the same way as the function "j/

x

n
. This allows us

to single out the superior power of x and divide both the nume-
rator and denominator by this power of x. In the given example
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the divisor is [/ x\ then we obtain:

2J/T+3 j/T _ 2+ 3/*/T+5/ff^
+ j/3x— 2+ l/2x—3 x^ + oo |/"3— 2/x+ £/4/x— 12/x2+ 9/x3

2

(d) Since the sum of two positive infinitely large quantities is

also an infinitely large quantity, then

Urn (1/2j?^3—5*)= lim [V2x*— 3 + (—5*)] -
X -> - cc X-*-oo

(f) At a; > we have |/#2 = .x;, therefore

,
. ^*«(2+ 3/*«) _ *V~2+ 37F _

+ "","™
ao *(4+ 2/*)

~ 4
'

At a: < we have \^x2 = —x and, hence,

,im
y*a

(2+ 3/**) = Hm ^2+ 3/^ _ ]/"2~

*(4+ 2/x) *(4+ 2/*)

/Vote. From this it follows, incidentally, that lim ^ *x
\ ~t

3
does

not exist.

lim 2x/(* + 3)

(g) lim5 2^* +3
) = 5*- fl0 = 5 2 = 25.

* -*• oo

1.10.3. Find the limits:

(a) Hm^T&l ; (b) Hra _*±I ;

(c) hm
< ,^5 X

-
; (d) lim-*-— (k positive in-

x-+0

teger);

, x ,. sin (x— ji/6)

^3— 2cosx' U
*-jt/2 sin*) 2 '

, v y 2 sin 2 x-f sin x— 1

*i™/6 2sin 2 x—3sinx+l '

Solution (method of substitution), (a) Let us put 26 + x = z 3
.

Then x=^z*— 26 and 2—^3 as * 1; hence

lim 3/^Z_
2 = lim^ - lim

^-3)(^+3*+9) _

= lim2(z2+ 3z+ 9) = 54.
2^3
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(d) Let us put l+x=zk
; then x=zk— 1 and 2—^1 as x—+ 0.

Hence,

^T^~ l

-i;m _£z± *

(See Problem 1.10.1 (d)).lim
X-y 2 -* 1

(e) Let us put x— ji/6--=2; then x= z + n/S and z— () as

x— On substituting we obtain

lim y^U lim— sin2

lim

t-jT/6 l/"3— 2 cos a: 2-0 /"3— 2 cos (z -f ji/6)

sin z 2 sin (z/2) cos (2/2)= lim

= lim A_
CQS(2/2) =1.

z - o y 3 sin (2/2) + cos (z/2)

>-o J^~3— "K" 3 cos 2+ sin 2 2 - o 2 /" 3 sin 2 (z/2) + 2 sin (z/2) cos (z/2)

1.10.4. Find the limits:

, x ,. 1 — cos x /L v
i

• tan x— sin a:

(a) hm—-5— ; (b) lim
x^O x

(c) lim
cos^2)

x-0 X3

a:- 1

f /vi- 1 — cos a: 2 sin 2 (x/2)
Solution, (a) lim

5
—= lim r^'-

*-»o x *-»o x

/ux ,. tan a:— sinA; sin a: (1 —cos a:)

(b) lim - = lim ' —

l Hm /
sin(^/2)

y ==1 ,

2 J™ ^ x/2 J 2
'

*-* C0S x ' x*

= lim-
1 sin* 1 — cos a; 1

cos x x2

(c) Let us put 1

—

x= z. Then x=l— z and z—O as x— 1.

Hence,

COS -y X

lim -——= lim

/ Jl TC \

1— X
= lim

sin -7- z
2 3T

2-0 2-

Note. For a simpler method of solving similar problems see § 1.12.

1.10.5. Find the limits:

(a) lim(l + l/*)
7
*;

(c^ra.fe)* ;

(b) lim(l +x) l^\
x-»

(d) lim(l+£/A:)m*;

(e) lim
In (\+x)

t

3*— 1

1

In (a+x)— In a
t

x-+ o

(g)
x ->

... In x— 1

(0 llm -r=r •

(f) lim
*-*

(h) lim

e4*— 1
.

tan a:
*
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Solution, (a) lim H— y
x = Hni 1 +

1 \*

lim 1 + = e'\

(e) lim = lim
In (1 +x)

3* — 1

1

ln3'
x -*

u" 1 x -v

(i) Put jt/e— l=z; then x--=e(z+l); z—*0 as x—*e. On substi-

tuting we obtain

Hm lni=J = lim
ln(x/e),,-ilin, 1^1+^1— 1) e

z _ z e

1.10.6. Find

•im (1+^

Solution, lim (l+l)
x
=lim |^1 +1^*] = 1.

1.10.7. Find the limits:

(a) lim/l-MV 1-^ 1 -^.

(b) lim
x2Jr 2X— 1 \(2* + 1 >/( at— 1)

2x 2— 3a: — V

Solution, (a) Denote:

fW = (l+x)/(2 + x);

/ \ 1— ^*

Hm^(x) = Hml±^ = -|;

lim (p (x) = lim ^ ^~ x = ir .

x-*\ x->\ l
~ x 1

But at finite limits lim / (x) = A > 0, lim q) (.*:) = 5 the following

relation holds true:

lim (p (x) In / (x)

lim [/
{x) = ex

~+ a =eB\nA == j[B
t

1

Hence,

lim
°- r""'"-"-(!)"!=/!

/Vo/e. If in handling examples of the form lim [/
(x)]v {x)

it turns
x-+a

out that Vunf(x)=l and lim cp (jc) = oo, then the following

3— 31 43
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transformation may be recommended:

lim [f(x)]*<*> = lim {1 + [/ (*)— 1 }}*
{x) -

x^-a x -a

l«»n(p(x)L/U)-l]

= lim
{

[ 1 + (/ (x) — 1 )]
<*>

-

1

>}* <*> U <*> - n = e**a
. (*)

1.10.8. Find the limits:

(a) lim(
2^r +3

;
(b) li.n(4±^)

,/,m
*;

(c) lim (1 +sin :rix)
cot ™;

(d) lim
(f|^~y

/U Q)

(a¥=kn> with & an integer).

Solution, (a) Let us denote:

^^StT' <P(*) = 8*a + 3;

lim/(x) = lim§^=l;

lim q) (jc) = lim (8a:
2
-f 3) = oo.

Use the formula (*):

lim (ttt—)
8a: 2 + 3 ,im V (*> ^ (•*>-!]

/W— I=|S±4— 1
:

lira q> (x) [/(*)-!] = - lim
2

gf+
3) = - 8.

Therefore

1;
/2xH-3\8x« + 3

1.10.9. The function /(#) is given with the aid of the limit

/? -> cc
x r 1

Investigate this function and graph it.

Solution. Consider three cases:

(1) \x\> 1. Since in this case lim x2n --= 00, then

(2) |jc|<1. In this case lim Jt
a,, = 0; therefore /(*) =— !.
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(3) jt-=±l. In this case x2n =\ at any n
t
and therefore / (jc) = 0.

Thus, the function under consideration can be written in the

following way:

( 1 if M> 1

f(x)=\-l if \x\<l

{ if * = ±1

or, briefly, / (x) = sign (| x |

— 1) (see Problem 1.5.11 (n)).

The graph of this function is shown in Fig. 27.

1.10.10. The population of a cou-

ntry increases by 2% per year.

By how many times does it increase

in a century?

Solution. If we denote the ini-

tial number of inhabitants of a

given country as A, then after a

year the total population will amo-
unt to

Fig. 27

After two years the population will amount to A[ 1 + p-q) • After

100 years it will reach the total of A
(
I+j-q) » i- e - it will

1 \
100

have increased

l

\ 50

times. Taking into account that

1

e.lim —
J

=e> we can approximately consider that

Hence, after 100 years the population of the country will have
increased e'

1 « 7.39 times.

Of course, this estimation is very approximate, but it gives an

idea as to the order of the increase in the population; ^the quan-

/ 1
\ioo \

tity ^1 =7.245 to within three decimal places).
50/

1.10.11. Find the limits:

, x i- cos x-\~A tan x
(a) lim-

1

2— x— 2x*

(b)
z/__ x_ 2

i

(c) lirn^E^;

2x- — 5x+ 4 .

5a-
2— 2x— 3

*(d) lim
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(e) lini(j/>+ 1— — 0;
X - > QO

1.10.12. Find the limits:

(c) lim .

s
'".,
a

, ;
(d) lim tan 2x tan (n/4— x);

gc-»ji
1 ~~ a "' n

*-*ji/4

. .. tan 3 x— 3 tan x
(e) ™

3
cos (x+n/6)

*

1.10.13. Find the limits:

(a) lim (1 + 4/x)*
+3

;
(b) lim

*"* -1
;

(c) lim^=^; (d) lim (1 + 3 tan 2 x)cot2 *;

x->0 * *->0

(e) lim (sin2*)t- 22*; (f) lim lg-r\) ;

x-yn/4 x-y cd \ zx -r 1 /

(g) lim (tan ;c)
tan 2

*; (h) lim (sin x) ian x
\

X-+JI/2 X-yJt/2

(k) hm— .

x +0 x

1.10.14. Find the limits:

. , ,- arc cos (1—^) In tan a:

(a) inn ; (b) hm
;

(c) lim —— In (1 + a sin a:).

o
sin x

§ I. II. Infinitesimal and Infinite Functions.

Their Definition and Comparison

The function a(x) is called infinitesimal as or as .v-^ oo

if lim a (x) = or lima (*) = 0.
x-*a X-y CD

The function f (x) is called infinite as ^->a or as x-oo if

lim/(A;) = oo or lim / (a;) = oo.
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A quantity inverse to an infinite quantity is called an infinite-

simal.

Infinitesimal functions possess the following properties:

(1) The sum and the product of any definite number of infinite-

simal functions as x a are also infinitesimals as x -> a.

(2) The product of an infinitesimal function by a bounded function

is an infinitesimal.

Comparison of Infinitesimals. Let the functions a(x) and P (x) be

infinitesimal as x a. If

, . a (x)
lim q-K- =
*-*a P to

where c is a certain finite number different from zero, then the

functions a (x) and P (x) are called infinitesimals of the same order.

If c=l, then the functions a(x) and P (x) are called equivalent;

notation: a(x)~$(x).
If £ = 0, then the function a(x) is called an infinitesimal of a

/ug/ier order relative to P (*), which is written thus: a (x) = o (P (x)),

and P(jc) is called an infinitesimal of a /oayer order with respect

to a (x).

If lim R

a
/f where 0<|c|< + oo, then the function a (x)

is called an infinitesimal of the nth order as compared with the

function P(x). The concept of infinite functions of various orders

is introduced similarly.

1.11.1. Prove that the functions

5

2X 4

(
a

) f(x ) = Trrr as 2
>

(b) f(x) = (x— l)
2 sin 3 as a: 1 are infinitesimals.

Solution, (a) It is sufficient to find the limit

lim / (x) = lim
2x~\ = 0.

* 2 « -> 2 r o

(b) Firstly, the function cp(x) = (x— l)
2

is infinitesimal as x 1;

indeed, lim (a:— l)
2 — 0. Secondly, the function

X > 1

\J)(a:) - sin 3—j ; 1,

is bounded:

I
sin 3 — < 1.

Hence, the given function f (x) represents the product of the

bounded function \p(x) by the infinitesimal (p(x), which means that

f(x) is an infinitesimal function as x -+ 1.
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1.11.2. Prove that the functions

(a) /(*)= ^-yi as x -+ 4
>

(b) f (x) = as x— oo

are infinitesimal.

1.11.3. Find
lim x sin (l/x).
x - o

Solution. Since x is an infinitesimal as x— and the function

sin (l/x) is bounded, the product xs\n(\/x) is an infinitesimal, which
means that lim x sin (l/x) = 0.

* -* o

1.11.4. Compare the following infinitesimal functions (asx— ())

with the infinitesimal (p(x) = A;:

(a) /, (x) = tan x 3
; (b) / 2

(x) =
;

(c) U*) = K9+ x-3.

Solution, (a) We have

lim ifE^ = lim tan a:
3 ,1 ,. tan*3

x2
l = li

J X -

lim —^— liin a:
2 = 0.

x -> * x -

Hence, tanx3
is an infinitesimal of a higher order relative to x.

(b) We have

* - * x -*
J/

X2 3/^

Hence, jj/sin 2* is an infinitesimal of a lower order as compared
with A'.

(c) We have

lim ——— = li in r = ir.
x-> o

x x-+o + 6

Hence, the infinitesimals V~9-{-x— 3 and x are of the same order.

1.11.5. Determine the order of smallness of the quantity p with
respect to the infinitesimal a.

(a) p=rcosa— cos2a; (b) P = tana— sina.

Solution, (a) p^=cosa— cos 2a = 2 sin -| a sin

Whence

|in] J^ =lim 2sin(3a/2)sin
(
a/2) = 3_

a o
«2

a - o
« 2 2

Hence, P is an infinitesimal of the same order as a2
, i. e. of the

second one with respect to a.
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1.11.6. Assuming *— oo, compare the following infinitely large

quantities:

(a) / (*) = 3*2 + 2* + 5 and cp (x) = 2* 3 + 2x— 1

;

(b) f(x) = 2x2 + 3x and cp (*) = (*+ 2)
2

;

(c) / (x) = Y x+ a and <p(x)=l/x.

Solution, (a) The infinite function 3*2 + 2* + 5 is of a lower order

as compared with the infinite function 2*3 + 2*— 1, since

*-> oo
2*3+ 2x— 1 2+ 2/x 2— 1/x3

1.11.7. Prove that the infinitesimalsa=* and P=*cos(l/*)(as*—^0)
are not comparable, i. e. their ratio has no limit.

X cos ( 1 1x\
Solution. Indeed, lim

y-L-L= lim cos (l/x) does not exist (prove
x -> o * x -> o

it!), which means that these infinitesimal functions are not com-
parable.

1.11.8. If *— 0, then which of the following infinitesimals is

(are) of a higher order than x\ of a lower order than x; of the

same order as *?

(a) 100*; (b) *2
;

(c) 6 sin*; (d) sin 3
*; (e) j/tan 3 *.

1.11.9. Let x— O. Determine the orders of the following infini-

tesimal functions with respect to x:

(a) 2 sin 4 a;—*5
;

(b) [/sin 2 *+ *4
;

(c) Vl + x3— 1; (d) sin 2*— 2 sin*;

(e) 1— 2cos(x+£); (f) 2 |/sin*;

(g) TZTf; (
h

)
tan* + *2

;

(i) cos*

—

l/cosx; (j) — cos*.

1.11.10. Assuming the side of a cube to be an infinitesimal, de-

termine the order of smallness of the diagonal of the cube (d), of

the area of its surface (S); of its volume (V).

§ 1.12. Equivalent Infinitesimals.

Application to Finding Limits

If the functions a (*) and P (*) are infinitesimal as *— and if

a (x) ~ y (x)> P (*) ~ 6 (*), then

lim -77t4-= Hm -^y- (replacing an infinitesimal by an equivalent one).
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If

lim f(x) = k f < |*| < oo,
x -* a

then

/ (x) a (x) ~ ka (x).

If

a.(x)~y(x)
9

P(*)~Y(*),
then

a (x) ~ P (x).

For two infinitesimal functions to be equivalent it is necessary

and sufficient that their difference be an infinitesimal of a higher

order as compared with each of the two.

Listed below are infinitesimal functions:

(a(x) is an infinitesimal as x—+0)

(1) sin a (x) ~ a (x); (2) tan a (x) ~ a (x);

(3) 1— cosa(x) ~ [a(Jc)] 2
/2;

(4) arc sin a (x) ~ a (x)\ (5) arc tan a (x) ~ a (x);

(6) ln[l+a(x)] ~a(x); (7) aa{x}— 1 ~ a (x) \na

(a > 0), in particular, e*
U) — 1 ~ a (x);

(8) [l+a(x)] p— 1 - Pa(x), in particular, (V l+aW-l- a^.
1.12.1. Prove that as x-^0

< a
>

l

~YTTi~'*
x; (b) 1_TT7~* ;

(c) sin

Solution, (a) By formula (8) at P=l/2 we have

1 1 o/T+^-D^i.
X

X.

(c) By formula (1) we have

sin]/ xV~x'~y' x)/"x ' = x 3<\

y

X

2 + Vx 3 =X 3'*V 1 + X1/2 ~ X 3'\

whence siny xVx ~y x*+yx*-

1.12.2. Replace each of the following infinitesimals with an equi-

valent one:

(a) 3sina— 5a 3
; (b) (1 — cosa) 2 + 16a 8 + 5a 4

-f 6a 5
.
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Solution, (a) Note that the sum of two infinitesimals a and |3

of different orders is equivalent to the summand of the lower order,

since the replacement of an infinitesimal with one equivalent to it

is tantamount to the rejection of an infinitesimal of a higher order.

In our example the quantity 3 sin a has the order of smallness 1,

(—5a 3
)
— the order of smallness 3, hence

3 sin a + (—5a 3
) ~ 3 sin a ~ 3a.

(b) (1— cosa)2 + 16a3 + 5a 4 + 6a 5 = 4siii 4
-| + 16a 3 + 5a4 + 6a5

.

The summand 16a3
is of the lower order, therefore

(1— cosa)2 + 16a3 + 5a4 + 6a5 ~ 16a3
.

1.12.3. With the aid of the principle of substitution of equiva-

lent quantities find the limits:

/ v I- sin 5* /i\ i- 1 — cos a;

(
a
)

llm mna-.,^ (b) l"n
.0 1" 0+4*)' * ' _ ,_ cos |

•

/ \ r In cos a: ,,v 1; V^" 1 -f- a: -f- a:
2— 1

,

(c) hm
4

—
; (d) hm \ ^ ;

, x ,. sin 2*4- arc sin 2 *— arc tan 2 *
(e) hm ±- 3- ;

.pv |. 3 sin*— *2+ *3

]"n tan*+ 2sin 2 *+ 5*4 ;

(g) Hm ^sm x~ tan ^ 2 ~^ 1 ~~ cos 2x)*-r xb
.

x ^ o
7 tan 7 x-\- sin 6 x-j-2 sin 5 x

sin j/

X
* In (1 +3*)

(h) lim —
3

, ,

^°(arctan |/* ) (*
5 / * - 1

)

j. 1 — cos *+2sin x— sin 3 x— *2 + 3*4

' '
x ^ tan 3 *— 6 sin- x -}- *— 5*3

Solution, (a) We have sin5A:^5x; In (^1 + 4x) — 4x (see the list

of equivalent infinitesimals on page 72). Therefore

sin 5* ,. 5* 5

J™lF(T+W
=

,
Il

i
,1

o-4F
= T-

(c) lim *2»JL- = lim
ln " +S*-'

)1 =

„ cos*— I A ,. x2/2= 4 hm
7i

= — 4 hm —— = —2.
a: -> * x -> o

x

(d) From the list of equivalent infinitesimals we find:

V 1 +x + x2— 1 - (x -\-

x

2
)/2 ~ x/2, sin \x ~ \x.
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Therefore

vT+7+x5— l r x/2 I

lllTl r—-j — lUTl —— = —

(e) Using the list of equivalent infinitesimal functions given on
page 72 we obtain

sin 2x + arc sin 2 x— arc tan 2 x ~ sin 2x ~ 2x.

Hence,

,. sin 2x-\- arc sin 2 x— arc tan 2 x r 2x 2
hm

Yx
= Ilrn

35
= t •

<h)sin>/7~ Y~x\ In (1 + 3x) - 3x;

arc tan K7; e
5 ^*— 1 — 5 J^jc;

lim
sin^ln(l+3,_) m ^.3,_3

' (arc tan V~xY

1.12.4. Find the approximate values of the roots (/ 1.02 and

1^0.994. Estimate the absolute error.

Solution. Use the approximate formula

]/"l+x ~l+x/2 (*)

(for x sufficiently close to zero). In our case

J/1 + 0.02- 1+^= 1.01;

V 1—0.006 ~ 1 — = 0.997.

To estimate the error we note that

|_(Kr+7- 1) =! (*- 2 ^1+^+ 2) =

= j(*+i- 2K^+i) =l(^^
Hence, the absolute error of the approximate formula (*) is esti-

X2

mated by the quantity y.
Using this estimate we find that the absolute error of the root

1^1762 « 1.01 is = 0.00005, and the absolute error of

j/0994 ^ 0.997 amounts to « (-^^ « 0.000005.
o

1.12.5. Prove that, as x —- 0,

(a) f/T+x—l~jx;
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(b) arc tan mx ~ mx\

(c) 1 — cos3 .x;~ ~ sin 2
x.

1.12.6. For x-^0 determine the order of smallness, relative

to the infinitesimal $(x) = x, of the following infinitesimals:

(a) Vs\n 2 x+ x*; (b)
x'^ {

^
x2 .

1 + / *

1.12.7. For x—+2 determine the order of smallness, relative to

the infinitesimal $(x)=x— 2, of the following infinitesimals:

(a) 3(x— 2)
2 + 2(jk 2— 4); (b) j/sin~^.

1.12.8. Making use of the method of replacing an infinitesimal

with an equivalent one, find the following limits:

, , ,. sin3x /U v ,. In (1 + sin 4a:)

e'i"3*_l arc tan 3x
<C> ^ In (1 + tan 2x) '

<
d

>
J

1™ aTclI^r =

/vi- In (2— cos 2x) /fx V\-\- sin 3x—

1

l»
n

ln*(8in3x+l) ;
(
f
) J™ in 0+ tan 2.)

•'

In (1+2.-3^+ 4*3)
.

/T+^-l
g

"i o
In (1— — 7jc») '

y }

"J" 1-cosx *

3,
1.12.9. Find an approximate value of the root j/ 1042.

§ 1.13. One-Sided Limits

A number A is called the limit to the right of the function f (x)

as x —>x
()
(A= lim / (#) = / (x + 0)) if for any 8>0 there exists

x -* * +

6 (e) > such that for all x satisfying the inequality < x— x Q < 6 (e)

and belonging to the domain of definition of the function f (x) the

inequality \f(x)— 4
|
< e holds true. The limit to the left of the

function / (* — 0) as x—> x — is defined in a similar way. If * = 0,

then we write simply x—* + or -— and, respectively, /(+ 0)

and f(— 0).

1.13.1. Find the one-sided limits of the functions:

|
—2x + 3 if 1,

(a) /(*)={ q r . .
asx->l;

{ 3x— 5 if x > I

(
b
) / (*) = 77=777 as
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(c) f(x)=
r{
-r

s2x
as x 0;

as x — 1;(d) f(*) = 3+
i + 7l

'

/(] _„

(e) f (x) =cos(n/x) as x— 0;

(f) f(x) =5/(x-2)* asx-+2.

Solution, (a) Letx<l. Then / (x) = — 2x + 3. Hence, f(l—0) =
= lim f(x) = \ is the limit to the left.

*- 1 -0

If #>1, then f (x) = 3x— 5; hence,

f(l+0)= lim f(x) = — 2 is the limit
x - 1+0

to the right (see Fig. 28).

(c) /(*) =
1^1—-cos 2* Y'l sin 2 #

Fig. 28

but

|
sin x

|

=

Hence,

j
sin a:,

) —sin a:,

if

if

V 2
|
sin x|

< a: < n/2
f

-ji/2 < x < 0.

0)= Hm /(*)= Urn — |/2

f(+ 0)= Hm / (*) = lim (1/2-
AT- +0 *-> + V

(d) The expression 1/(1— a:) tends to +oo, when x tends to 1,

remaining less than 1, therefore

lim 7'/<i-*> = + oo, lim
1

_
y)
= 0, f (1-0)^3.

* -> 1 - X 1 - 1 + '

Further, as x—^1+0 we have 1/(1

—

a:)— — oo. Therefore

lim 7i/< 1 -*>=0,
x -*• 1 +0

",+0
» = !

i

t1.(
3+ H^')" 3+, = 4 -

(e) Let us choose two sequences, {xn \ and {a:;}, with the general

terms

Tn
and X"-2^TT (n=l, 2, ...)

respectively.
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Then lim xn
= lim x'n = and

lim / (#„) = lim cos 2nn = 1;

limf (*;) = limcos(2n+ l)f = 0.

Hence, the function /(*) has no limit to the right at the point 0;

taking into account that f (x) is an even function, we conclude that

it has no limit to the left either (see Fig. 29).

^^^^

1-/Iii
Fig. 29

1.13.2. Prove that, as x —^1, the function

'
W"

j
3x+ 2 at 1 <x<3

has a limit to the left equal to 2 and a limit to the right equal to 5.

1.13.3. Find the one-sided limits of the following functions as

X— 0:

(b) f{x) = ei>*;

i \ £ / \ 1 sin x I

(c) ^(^) = i-r-L.

£ Continuity of a Function.
Points of Discontinuity and Their Classification

Let the function y = f(x) be defined on the set X and let the

point x £X be the limit point of this set. The function f (x) is said

to be continuous at the point x if lim f (x) = f (x ). The latter con-

dition is equivalent to the condition lim &y(x )=^ lim [/(x + Ax) —
Ax - o a* -* o

-/(*.)] = <>.
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The function f (x) is continuous at the point x
()

if and only if

The function f (x) is continuous on the set X if it is continuous

at every point of this set.

Points of Discontinuity of the First Kind. Let the point x
(]
be the

limit point of the domain of definition X of the function f(x).

The point x is called a discontinuity of the first kind of the fun-

ction f (x) if there exist the limits to the right and to the left and
they are finite. If f (x u

— 0) = / (x
{)
-\-0) f (x ), then x

u
is called

a removable discontinuity. Further, if f (x — 0) f (# + 0), then x
u

is a non-removable discontinuity of the first kind, and the d-ifference

f(x {) + 0)— /(* — 0) is called a jump discontinuity of the function

f (x) at the point x, r

Points of Discontinuity of the Second Kind. If at least one of

the limits of f (x — 0) and f(x + 0) is non-existent and infinite,

then point x is called a discontinuity of the second kind of the fun-

ction f(x).

1.14.1. Using only the definition prove discontinuity of the fun-

ction f(x) - 3jc
4 + 5rJ + 2jc

2 + 3jc + 4 at any x.

Solution. Let x be an arbitrary point on the number scale. First

find lim f (x):

Urn f (x) = Urn (3x 4 + 5x 3 + 2x 2 + 3x+ 4) = 3jcJ + 5*„ + 24 + 3.v + 4.

Hence, the function f (x) is continuous at the point x by definition.

Since ,v is an arbitrary point on the number scale, we have proved

continuity of the function for all values of x.

1.14.2. Given the functions:

f(xo -0) = f{xo + 0) = f(x o ).

Then compute the value of the function at the point a' :

/ (*«) =- 3a 4 + 5x» + 2x1 + 3x
{) + 4.

Comparing the results thus obtained, we see that

lin f(x
()
)^=f(x

{

).

(c) / (*) =

(b) fix)

(a) f(x)

for — oo < x ^ 1,

for 1 < x < 3,

for 3 ^ x < oo;

for x<3,
for x > 3;

2x— 3
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Find the points of discontinuity (if any). Determine the jump
discontinuities of the functions at the points of discontinuity of the

first kind.

Solution, (a) The domain of definition of the function is the entire

number scale (— oo, oo). In the open intervals (
— 00, 1), (1, 3),

(3, 00) the function is continuous. Therefore discontinuities are pos-

sible only at the points x=l, x = 3, at which analytic representa-

tion of the function is changed.

Let us find the one-sided limits of the function at the point 1:

/(1_0)= lim l(2*a + 3)--= 1;

x-+ 1 -0 b

/(l+0)= lim (6— 5*)=1.
x 1 +0

The value of the function at the point x= 1 is determined by the

first analytic representation, i. e. /(l) = (2 + 3)/5 = 1. Since

/<l-0) = /(l+0)=/(l),

the function is continuous at the point x=l.
Consider the point x — 3\

/(3— 0)= lim (6— 5x) = — 9;
x-> 3-0

/(3 + 0)== lim (x— 3) = 0.
*-* 3 +

We see that the right-hand and the left-hand limits, though finite,

are not equal to each other, therefore the function has a disconti-

nuity of the first kind at the point x = 3.

The |ump of the function at the point of discontinuity is

f(3 + 0)-f(3-0)=0-(-9) = 9.

(c) The function is defined and continuous throughout the entire

number scale., except at the point #=3/2. Since 2x—3>0 for

x > 3/2 and 2x- 3 < for x < 3/2,

i 1 at x > 3/2,

\ — 1 at *<3/2.
Hence,

/ (3/2 + 0) = 1 , / (3/2-0) = -1.

Therefore, at the point x= 3/2 the function has a finite discon-

tinuity of the first kind. The jump of the function at this point

/ (3/2 + 0)— / (3/2 — 0) is equal to 1 — (— 1) = 2.

1.14.3. Test the following functions for continuity:

( sin x
f , n

(a) l(x)=\ a

[ 1 furx=-0;
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(C) /(*) =

(d) / (x) =

(b) /(*)= sin(l/x);

x sin (\/x) for x =^= 0,

for 0;

(
4-3* for x < 0,

2a + x for 0;

(e) /(x) = arctan(l/*); (f) / (x) = (** + l)/(* + 1).

Solution, (a) The function is continuous at all points ,v=^Q.

the point x = we have
At

/(0)=1; liin : = liin
sin x

x
1.

Hence, at this point the function is continuous as well, which

means that it is continuous for all values of x.

Fig. 30

(b) The function is defined and continuous for all x^0. There

3re no one-sided limits at the point x = (cf. Problem 1.13.1

(e)). Therefore, at the point x = the function suffers a disconti-

nuity of the second kind (see Fig. 30).

(d) / (—0) = 4, and / (+0) - 2a; the equality / (—0) = f (+ 0) - / (0)

will be fulfilled, i. e. the function f (x) will be continuous at the

point x = if we put 2a = 4, a = 2.

(f) f (_i_0) = /(— 1+0)= lirn (x2— *+l) = 3, i.e. both one-
x-> - 1

sided limits are finite and coincide. But at the point x = — 1 the
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function is not defined and, therefore, is not continuous. The graph

of the function is the parabola y = x2— x + 1 with the point M (— 1, 3)

removed. If we redefine the function putting / (— 1)=^3, then it

will become continuous. Thus, at x== — 1 the function has a remo-

vable discontinuity.

1.14.4. Test the following functions for continuity:

(a) / (x) = E (x). It should be borne in mind that the function

E(x) is defined as the maximum integer n contained in the num-
ber x, i. e. as a number satisfying the inequality n^x.

(b)

|
1 if a; is rational,

\ if x is irrational.

X(x) is called the Dirichlet function. For instance, X (0) = 1; h(— 1/2) = 1;

X (|/""2) = 0; *(jx) =
f

etc.

Solution, (a) The function E (x) is defined throughout the entire

number scale and takes on only integral values. This function is

discontinuous at every integral value n of the independent va-

riable, since E (n— 0) = n— 1;

E
(
n + 0) = n (see Fig. 31).

(b) Let us choose an arbitrary

point x on the x-axis; two cases

are possible: (1) the number x

is rational; (2) the number x is

irrational.

In the first case X(x )=l. In

any vicinity of a rational point

there are irrational points, where

X(x) = 0. Hence, in any vicinity

of x there are points x for which

|A*/|HM*o)-M*)Hi-
In the second case X (x ) = 0.

In any vicinity of an irrational point there are rational points

at which X(x)=l. Hence, it is possible to find the values of x for

which

\Ay\ = \X(x )-X(x)\ = 1.

Thus, in both cases the difference A*/ does not tend to zero as

Ax—>0. Therefore, x is a discontinuity. Since x is an arbitrary-

point, the Dirichlet function X(x) is discontinuous at each point.

The graph of this function consists of a set of points with irratio-

nal abscissas on the x-axis and of a set of points with rational

abscissas on the straight line y = 1, that is why it is impos-

sible to sketch it.

9>
3 r**>

2
i

! '

1

-3 -2 -1 i
i

, i i i —i—

^

! I ! o

! ! H-
12 3 4

-1

I fJ -z
i

i-*J -3

Fig. 31
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1.14.5. Using the definition of continuity of a function in terms

of "e— 6", test the following functions for continuity:

(a) f(x) = ax + b (a^=0);

|
x2

if x is rational,
(b) f (*) —

|
—x2 jj x j s i rra tional

.

Solution, (a) Choose an arbitrary point x . According to the "e— 8"

definition it is necessary to show that for any preassigned, arbitra-

rily small number e>0 it is possible to find a number S>0 such

that at
|
a:— x

|
< 6 the inequality

| / (x)— f (x
) |
< e holds true.

Consider the absolute value of the difference

J f(x)
—

f (x
) |

=
|

(ax+ b)— (ax + b)\ = \ax+ b— ax —b\ = \a\\ x—x
|

.

Let us require that \f(x)— /(* )|< e - This requirement will be

fulfilled for all x satisfying the inequality

\a
\

\x— x
\
< e or

|
a:— x

\ < e/|a| (a^=0).

Hence, if we take 8^e/|a|, then at \x— a: |<8 the inequality

\f(x )
— /(*o)l< e is fulfilled. Continuity is thus proved for any

point x = x .

(b) Choose an arbitrary point x . If {xn \ is a sequence of rational

numbers tending to x , then lim f(xn ) = xl. If {a:^} is a sequence

of irrational numbers tending to x0y then lim f(x'n ) = —x%. At x =£Q

the indicated limits are different and hence the function is discon-

tinuous at all points x=?^0.

On the other hand, let now x = 0. Find the absolute value of

the difference \f(x)— f(0)\:

\f(x)-f{0)\ = \±tf-0\=.x*.

It is obvious that x2 < e at |x| <j/"e. If e>0 is given, then,

putting 6<j/e and \x— 0| = |x]< 6, we obtain
|

A/(0)
|

= x 2 < e.

Hence, ?t the point x = the function is continuous. And so, the

point x = is the only point at which the function is continuous. Note
that the function under consideration can be expressed through the

Dirichlet function (see Problem 1.14.4 (b)): / (x) = x2 [2k (x)— 1]

.

1.14.6. Determine which kind of discontinuity the following

functions have at the point x = x :

.

\
x+2 for x<2

f

(a f (x) = <

1 x2— 1 for x>2; x = 2;

(b) / (x) = arc tan ^-5 xo = 5; (c) f (x) = j^H* x» = 0;

(d) /(A') = tanx; x = n/2'
f
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(e) f(x) = Vx—E{V x)\ x -----n\ where n is a natural number.
Solution, (a) Find the one-sided limits at the point xQ -=2\

f(2— 0)= lim (* + 2) = 4;
X-+ 2 -

f(2 + 0) = lim (x2—
1) = 3.

X* 2 +

Here the limits to the right and to the left exist, are finite but

do not coincide, therefore the function has a discontinuity of the

first kind at the point x = 2.

(e) The function E {V x) has discontinuities of the first kind at

every point x = n 2
y
where n is a natural number (see Problem

1.14.4 (a)), whereas the function |/ x is__continuous at all x^O.
Therefore the function f(x) = V x— E (V x) has discontinuities of

the first kind at the points 1, 4, 9, . . . ,
n2

, ...

1.14.7. Test the following functions for continuity

ex —\
(a) f(x) = '-

X

/ ex \

(b) /(*) = <
*

I 3 for * = 0;

K/Mor^O,
| for x = 0;

(d) /(*)-- lim (smxr; (e) f(*) = ii|££l

(f) f(x) = E(x) + E(-x).

1.14.8. For each of the following functions find the points of

discontinuity and determine the jumps of the function at these

points:

(a) /W = F=^T-
1

;

(b) /W = *+
r^!|;

(
— x for 1,

(d) f(x)=\ 2 .

(

_ for X>L

1.14.9. Redefine the following functions at the point x = so as

to make them continuous:

/ x r , v tan x
(a) /(*) =_;



84 Ch. I. Introduction to Mathematical Analysis

(b) f(x) = 5x2 3*

(c) f(x) =

id) f(x) =

2x

v~n~x—
X

sin'2 x

1 — cos x
'

§ 1.15. Arithmetical Operations on Continuous

Functions. Continuity of a Composite Function

If the functions f (x) and g(x) are continuous at the point x = x0f

then the functions

(1) f{x)±g(x); (2) f(x).g(x)\ (3) l^l(g(x )^0)

are also continuous at this point.

If the function u = (p(x) is continuous at the point x = x and
the function y= f(u) is continuous at the point u

Q
= tp(x

) f
then

the composite function y = f [<p(x)] is continuous at the point x = x .

1.15.1. Test the following functions for continuity:

2xb— 8x2 +ll
(a) f(x)-.

(b) f(x)-

(c) f(x) =

' x4+ 4x3 +8a;2+ 8a:+ 4
»

3 sin 3 #+ cos 2 x-\- 1
#

4 cos a:— 2
*

x3 cos x^r x2 sin *

cos ( 1 /sin x)

Solution, (a) A function representing a ratio of two continuous

functions (polynomials in this case) is discontinuous only at points

for which the denominator becomes zero. But in our case

x* + 4x 3 + 8x2 + 8x + 4 = (x
2 + 2x + 2)

2
,

and since x2 + 2x + 2 = (x+ 1)
2 + 1 >0 at any x, the denominator

never becomes zero. Hence, the function f (x) is continuous through-

out the entire number scale.

(b) The function f(x) suffers discontinuities only at points for

which the denominator equals zero, i.e. at points which are the

roots of the equation

4cos#— 2 = or cosa:=1/2,
whence

x = xn = ±n/3 + 2nn (n = 0, ± 1 , +2, . .
. ).

Thus, the function f (x) is continuous everywhere, except at the

point xn .
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(c) Just as in the preceding example, the numerator is continu-

ous throughout the entire number scale. As far as the denominator
is concerned, according to the theorem on continuity of a composite

function, it is continuous at points where the function u=l/s\nx
is continuous, since the function cos u is continuous everywhere.

Hence, the denominator is continuous everywhere, except at the

points x = kn (k an integer). Besides, we must exclude the points

at which cos(l/sinx) = 0, i.e. the points at which l/sinx =
= (2p+\)n/2 (pan integer), or sin x = 2/[(2p + 1) n]. Thus, the

function f (x) is continuous everywhere except at the points x = kn
2

and x = {
— 1)" arc sin

^ n + nn (&» P» n = 0» ± U ± 2, ... ).

1.15.2. Test the following composite functions for continuity:

(a) y = cosxn
y
where n is a natural number;

(b) y=^ cos log x\

(c) y = V 1/2— cos2
x.

Solution, (a) We have a composite function y = cosu, where
u = xn . The function y = cosu is continuous at any point u, and
the function u = xn

is continuous at any value of x. Therefore, the
function y = cosxn

is continuous throughout the entire number scale.

(c) Here y = V 1/2—

u

2
y
where u = cosx. The function Vl/2 —u 2

is defined and continuous on the interval [— J/ 2/2, ]/~2/2|, the

function u = cosx is continuous throughout the entire number scale.

Therefore, the function y = Vl/2— cos2 x is continuous at all values
of x for which

(
n/4 + 2nn<^x<^3ji/4 + 2nn,

|cos*|<l/ 2/2, i.e.

^ 5n/4 + 2nn^x<^7n/4 + 2nn.

1.15.3. For each of the following functions find the points of

discontinuity and determine their character:

(a) y = -TTT-
-—o » where u =—{

—7
;

( x— 1 for 0,
(b) y = u\ where u =

\ x+l fof X<Q .

(c) y= l

j-j-^-^ where w = tan*.

Solution, (a) The function

, v 1
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suffers a discontinuity at the point x=\. The function

suffers a discontinuity at points where u 2 + u— 2 = 0, i.e. u
l
= — 2

and w
2
=l. Using these values of w, find the corresponding values

of x by solving the equations:

whence x =1/2 and x = 2.

Hence, the composite function is discontinuous at three points:

Xj--=l/2, x2
=l, x3

= 2. Let us find out the character of disconti-

nuities at these points.

Jim y = lim y = 0,
X -y 1 U -* cc

therefore x2
=l is a removable discontinuity.

lim y = lim y = oo; lim */ = lim y ^ oo\

x -* \/2 u -+ — 2 x -> 2 u -* 1

hence, the points = 1/2, #, = 2 are discontinuities of the second

kind.

1.15.4. Given the function f(x) = l/(l—x). Find the points of

discontinuity of the composite function

y = f{f[f(x)]\.

Solution. The point x = 1 is a discontinuity of the function

If x^=\, then

" = f [/(*)] =
, -i/'d-v,"T1

-

Hence, the point * = is a discontinuity of the function

« = /[/(*)]•

If jc=^0, 1, then

* = /</[/<*>]Htz^^ = *

is continuous everywhere.

Thus, the points of discontinuity of this composite function are

x =
9
x=l, both of them being removable.
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§ 1.16. The Properties of a Function Continuous on a
Closed Interval. Continuity of an Inverse Function

I. The function f (x)
y
continuous on the interval [a, 6], possess-

es the following properties:

(1) f (x) is bounded on [a, b]\

(2) f (x) has the minimum and maximum values on [a, b]\

(3) If m= min f (x), M= max f(x), then for any A satisfy-

ing the inequalities A^.M there exists a point x £[a, b] for

which f(x ) = A.

In particular, if f(a)-f (b) < 0, then we can find a point

c (a <c<fr) such that f(c) = 0.

II. Continuity of an Inverse Function. If the function y = f(x) is

defined, continuous and strictly monotonic on the interval X, then

there exists a single-valued inverse function x = y(y) defined, con-

tinuous and also strictly monotonic in the range of the function

y=f(x).

1.16.1. Does the equation sin*— x+ 1 =0 have a root?

Solution. The function

/ (x) — sin x— *+ 1

is continuous over the entire number scale. Besides, this function

changes sign, since /(0)=1, and / (3ji/2) =— 3n/2. Hence, by pro-

perty (3) within the interval [0, 3jt/2] there is at least one root

of the given equation.

1.16.2. Has the equation xb— 18*-}- 2 = roots belonging to the

interval [— 1, 1]?

1.16.3. Prove that any algebraic equation of an odd power with
real coefficients

a *2w +

1

+ a,*2" + . . . + a2nx + a2n , 1
= (*)

has at Least one real root.

Solution. Consider the function

/ (*) = a x*"
* 1 + alX

*n +...+ a2nx -f a2n+v

which is continuous throughout the number scale.

Let, for determinacy sake, a > 0. Then

11 rn f(x)=-\- oo, and Urn f(x) = — oo.
X + oo x -* - crj

Hence, we can find numbers a, b
y
a<b such that /(a)<0;

/(6)>0. By property (3), between a and b there exists a number
c such that f(c) = Q, which proves that the equation (*) has at

least one real root.
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1.16.4. Let the function f (x) be continuous on [a, b\ and let

the equation f(x) = have a finite number of roots on the inter-

val [a, b\. Arrange them in the ascending order:

a < x
l < x

2 < x, < . . . < xn < b.

Prove that in each of the intervals

(a, xj, x
2 ),

(x
2 ,

a:,), ...
, (*M ,

b)

the function retains the same sign.

Solution. If the function changed its sign on a certain interval,

then we could find one more root of the function, which contradicts

the condition. To determine the sign of the function on any of the

indicated intervals it is sufficient to compute the value of the func-

tion at an arbitrary point of the appropriate interval.

1.16.5. Given a function on the interval [— 2, +2]:

/ x2 + 2 if —2 < x < 0,

f(x) =
\ —(x

2 + 2) if 0<x<C 2.

Is there a point on this closed interval at which f(x) = 0?

Solution. At the end-points of the interval [— 2, +2] the given

function has different signs:

f(_2) = +6; f(+2) = -6.

But it is easy to notice that it does not become zero at any point

of the interval [—2, +2]. Indeed, jk
2 + 2>0 and —(x2 + 2) <0

at any x; this is due to the fact that f (x) has a discontinuity at

the point x = 0.

1.16.6. Does the function

/ (x) = x3
/4— sin nx+ 3

take on the value 2y within the interval [—2, 2]?

Solution. The function f(x) = x3
/4— sin:ru;+ 3 is continuous

within the interval [—2, 2]. Furthermore, at the end-points of this

interval it attains the values

/(-2)=1.; /(2)=5.

Since 1 < 2-^- < 5, then, by property (3), withi-n the interval

[—2, 2] there exists at least one point x such that f(x) = 2-y.

1.16.7. Show that the function

( 2x +\ for-l<x<0,
f(x)= |

2X for x = 0,

[
2*— 1 for 0<*< 1,
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defined and bounded on the interval [
— 1, 1], has neither maximum,

nor minimum values.

Solution. In the interval [—1, 0) the function increases from 3/2

to 2 and in (0, 1] it increases from to 1, it does not attain either

the value 2 or 0. Therefore the function is bounded but never reaches

its upper and lower bounds. This is because there is a discontinuity

at the point x = 0.

1.16.8. Show that on any interval [a, b] of length greater than

unity the function f (x) =x— E (x) attains its minimum value but

never reaches its maximum.
Solution. In any interval \n, where n is an integer, the

given function f (x) increases from to 1, never attaining the maxi-

mum. Hence, 0^f(x)< 1 for any
x. Since on the interval [a, b] we I

can find at least one internal in-

tegral point n
y

then f(n) = and , *i , , ,

lim /(*) = !, but f{x)=£\ for any / / / / / % x
x. It means that the function reaches -2-10 12 3

its minimum value but never
p . 32

reaches its maximum. This is be-

cause there is a discontinuity at the point x = n (see Fig. 32),

1.16.9. Prove that the function y = 2n +
\/ x (n a natural number)

is continuous throughout the number scale, considering it as a function

inverse to y = x2n+1 .

Solution. The function y = x2n+i is continuous and increases from
— oo to oo over the entire number scale. Hence, the inverse function

jt = 2/ ' +
j/ y is defined for all y y

continuous and increasing. Denoting

the independent variable again as x
y
we find that the function

y = 2n+
y/ x possesses the required properties.

1.16.10. Prove that for any function of the form

y - a x2"+1 + a^2"" 1 + a
2
x*«~ 3 + . . . + anx+ an+ , , (*)

where a
,
a iy a

2 ,
an , are positive numbers, there exists

an inverse function increasing and continuous throughout the num-
ber scale.

Solution. As is known, the functions x, r1

,
x

b
, . . ., x2n+l increase

throughout the entire number scale. Then, since the coefficients

a
i

(i = 0, 1, . .., A2+1) are positive, the function f (x) =a
u
x2n+1 +

-\-a
x
x2n

~
l + . . . + anx-\- an+l also increases. Furthermore, it is con-

tinuous. Therefore, for a function of the form (*) there exists an
inverse function increasing and continuous over the entire number
scale.
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Note. This example establishes only the existence of an inverse

function x = g(y), but gives no analytic expression for it. It is not

always possible to express it in radicals. The problems of the exis-

tence of an inverse function and of expressing it analytically should

not be confused.

1.16.11. Prove that there exists only one continuous function

x = x(y) (— oo < y < oo) which satisfies the Kepler equation:

x— e$'mx = y (0<e<l).

Solution. Let us show that y(x) is an increasing function. Let

x
x
< x

2
be arbitrary points on the number scale. Then

y (* 2 )
— y (*i) = (*,— e sin — (*, — e sin x

x )
=

= (x2
—xj— e (sin x

2
— sin x

t ).

Estimate the absolute value of the difference
\

slnx^— sin x
x |:

|
sin x2

— sin x
l

<2 sin

sin

-x 1

2

<2

cos—

• \x
2

x
t \

(x
2

x
x ).

Since < e < 1,

whence
e

|
sin x2

— sin x
x \ < (x

2
— x

1 ) y

(x
2
— x

l
)
— e(s\nx

2
— smx

l
)=y(x

2 )
— y(x

l ) > 0.

Since y (x) is a continuous function in the interval (— oo, oo), the

inverse function x is a single-valued and
continuous function of y.

1.16.12. Show that the equation

has one root on the interval [1, 2]. Cal-

culate this root approximately to within

two decimal places.

1.16.13. The function f (x) is defined

on the interval [a, b\ and has values of

the same sign on its end-points. Can one

assert that there is no point on [a, b]

at which the function becomes zero?

1.16.14. Prove that the function

(
x+ 1 at — 1 <x<0,

f{x) =
\
_ x a t 0<x< 1

is discontinuous at the point x = and still has the maximum and

the minimum value on [— 1, 1] (see Fig. 33).
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§ 1.17. Additional Problems

1.17.1. Prove the inequalities:

(a) n \ < {^Y^y for a natural n > 1;

(U\ — — — 2n~ 1 l

(D)
2

'

4
'

6 ' ' ' 2n
<

y2n~TT
'

1.17.2. Prove the inequalities:

(a) 202 303 > 303202
;

(b) 200! < 100200
.

1.17.3. Solve the inequalities:

(a) ||*|-2|<1;
(b)

||
2— 3^|—J_|_> 2;

(c) (*— 2)K*2 +1 >x2 + 2.

1.17.4. Can a sum, difference, product or quotient of irrational

numbers be a rational number?

1.17.5. Do the equations

(a)
|
sin x\ =sin x+ 3, (b)

|

tanx| -=tanx-\-3

have any roots?

1.17.6. Prove the identity f^4^T + (-^4^V = *2
-

2

1.17.7. Prove the Bernoulli inequality

(\ +Xl)(\+x2 ) ... (\ + xn)^\+x}
+x, + ...+xnt

where xlt x
2 >

...
y
xn are numbers of like sign, and l+x,->0

(/ = 1, 2,

1.17.8. Find the domains of definition of the following functions:

(a) f(x)=]/"^=7*;

(b) f(x)=}/ s'mVx;

(c) / (x) =- V— sin 2 nx\

(d) /(x)=-
7
=J== and g(x)=-=L=.\

1/ |
x

|
— x V x— \x\

(e) (a:) = arc sin
(| a:

|

— 3);

(f) /(A')=arccoSin
L.

1.17.9. Are the following functions identical?

(a) / = and cp(x)= 1;

^b) / (jc) = log x2 and <p (a) = 2 log a;
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(c) f(x)=x and q) (x) = (|/ x) 2
;

(d) f(x)^l and cp (a:) == sin 2
x-\- cos2 x\

(e) f (*) = lqg(*— l) + log(x— 2) and cp(*) = log (*— 1) (*— 2).

1.17.10. In what interval are the following functions identical?

(a) f(x)=x and cp (x) = 10 lQg*;

(b) f(x)=VxVx— 1 and <p(*) = K* (*— 1).

1.17.11. An isosceles triangle of a given perimeter 2/? ^=12 revol-

ves about its base. Write the function V (x), where V is the volume
of the solid of revolution thus obtained and x is the length of the

lateral side of the triangle.

1.17.12. Investigating the domain of definition of functions,

(a) solve the inequality

K*+ 2 + Vx—5 > l/"5^;

(b) prove that the inequality

log
2-,(*-3)>-5

has no solutions.

1.17.13. The function y = s\gnx was defined in Problem 1.5.11 (n).

Show that

(a) ^^signx;

(b) x =
|
x

|

sign x\

(c) sign (sign x) = sign x.

1.17.14. Prove that if for a linear function

/ (x) = ax+ b

the values of the argument x = xn (n = 1 , 2, . .
.
) form an arithmetic

progression, then the corresponding values of the function

yn = f(x») (/i = l,2, ...)

also form an arithmetic progression.

1.17.15. Prove that the product of two even or two odd functions

is an even function, whereas the product of an even and an odd
function is an odd function.

1.17.16. Prove that if the domain of definition of the function

f(x) is symmetrical with respect to x=0
y
then f(x) + f(—x) is an

even function and f (x)— /(

—

x) is an odd one.

1.17.17. Prove that any function f (x) defined in a symmetrical

interval (— /, /) can be presented as a sum of an even and an odd
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function. Rewrite the following functions in the form of a sum of

an even and an odd function:

(a) /(*)=-£±l; (b) y=a*.

1.17.18. Extend the function f(x)=^x2 + x defined on the inter-

val [0,3] onto the interval [— 3,3] in an even and an odd way,

1.17.19. The function {x\ = x— E (x) is a fractional part of a

number x. Prove that it is a periodic function with period 1.

1.17.20. Sketch the graph of a periodic function with period

T = 1 defined on the half-open interval (0, 1] by the formula y-—x2
.

1.17.21. Let us have two periodic functions f (x) and y(x) defined

on a common set. Prove that if the periods of these functions are

commensurate, then their sum and product are also periodic functions.

1.17.22. Prove that the Dirichlet function X(x) (see Problem
1.14.4(b)) is a periodic one but has no period.

1.17.23. Prove that if the function

f (x) -=s\nx-{-coscix

is periodic, then a is a rational number.

1.17.24. Test the following functions for monotony:

(a) f{x) = \x\; (b) f(x)=\x\-x.

1.17.25. Prove that the sum of two functions increasing on a

certain open interval is a function monotonically increasing on this

interval. Will the difference of increasing functions be a monotonic
function?

1.17.26. Give an example of a non-monotonic function that has

an inverse.

1.17.27. Determine the inverse function and its domain of de-

finition if

(x if — oo < x < 1,

x'
2

if 1 <x<4,
2X if 4 < x < oo.

1.17.28. Show that the equation x2 + 2jc+ 1 == — 1 + Yx has no
real roots.

1.17.29. Construct the graph of the function

y = f(x-i) + f(x+0,
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where

|
k(\—\x\ll) at

fW =
j

at \x\ > /.

1.17.30. Knowing the graph of the function y = f(x), sketch the

graphs of the following functions:

(z)y = F(x); (b) y = VW)\ (c) y = f[f{x)].

1.17.31. Prove that the graphs of the functions y = log
fl
x and

y = \oganx can be derived from each other by changing all ordinates

in the ratio 1

:

l/n.

1.17.32. Prove that if the graph of the function y-=f(x) y
defined

throughout the number scale, is symmetrical about two vertical

axes x = a and x = b (a<fr), then this function is a periodic one.

1.17.33. Let the sequence xn converge and the sequence yn diverge.

What can be said about convergence of the sequences

(a) xn + yn \
(b) xnyn?

1.17.34. Let the sequences xn and yn diverge. Can one assert that

the sequences xn + ytn xnyn diverge too?

1.17.35. Let an be an interior angle of a regular n-gon (ai=3,

4, ...). Write the first several terms of the sequence a n . Prove

that \ima n = n.

1.17.36. Prove that from \imxn = a it follows that lim |a:w |

=|a|.
n -> oo n -* oo

Is the converse true?

1.17.37. If a sequence has an infinite limit, does it mean that this

sequence is unbounded? And if a sequence is unbounded, does it

mean that it has an infinite limit? Prove that xn = n {
- l)H

is an
unbounded but not an infinite function.

1.17.38. Prove that the sequence {a„}, where a n is the nth digit

of an arbitrarily chosen irrational number, cannot be monotonic.

1.17.39. Prove that if the sequence {ajbn }
(bn >0) is monotonic,

then the sequence

fli+ fl2+---+a«
I

will also be monotonic.

1.17.40. Prove the existence of limits of the following sequences

and find them.

(a) V2 y j/ 2 [ 2 y V 2 V 2 |/T
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(b) xn = c"lYn\ (c>0, k>0);
(c) xn

= ajn, where an is the nth digit of the number jt.

1.17.41. Prove that at an arbitrarily chosen x the sequence
j£^u)j>

is bounded.

1.17.42. Prove that the sequence

(
£(*) + £ (2*) 1- ...+E (nx)

\

has the limit x/2.

1.17.43. Prove that

lima*=l (a>0).
h ->

1.17.44. Given the function

1 + # for x 0,

for x = 0.

Prove that

li:n /(*) = 1.

x -

1.17.45. Let

Prove that

oo, if n > m,

lim P(x) =
|

a /6 , if n = m
y

0, if n < m.

1.17.46. Find the constants a and & from the condition:

(b) lim ()/>— x + 1 —ax— b) = Q.

X -> - oo

1.17.47. Sketch the graphs of the following functions:

(a) f(x)= lim ,V 1 0);
/Z -v 00

(b) /(*)= lim sin 2"*.
n -* go

1.17.48. Prove that

lim [(1 + x) (1 + x») (1 . . . ( 1 -!- a 2
")] = (| x \ < 1).

« -> GO
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1.17.49. Can one replace infinitesimal summands by equivalent

infinitesimals in computing a limit?

1.17.50. Determine the order of smallness of the chord of an

infinitely small circular arc relative to the sagitta of the same arc.

1.17.51. Determine the order of smallness of the difference of the

perimeters of an inscribed and circumscribed regular n-gons rela-

tive to an infinitely small side of the inscribed n-gon.

1.17.52. The volumetric expansion coefficient of a body is con-

sidered to be approximately equal to the triple coefficient of linear

expansion. On equivalence of what infinitesimals is it based?

1.17.53. Does the relation log(l+A;)~A hold true as x-^0?

1.17.54. Will the sum of two functions f(x) + g(x) be necessarily

discontinuous at a given point x if:

(a) the function f (x) is continuous and the function g(x) is dis-

continuous at x = x
,

(b) both functions are discontinuous at x = x ? Give some examples.

1.17.55. Is the product of two functions f(x)g(x) necessarily

discontinuous at a given point x if:

(a) the function f (x) is continuous and the function g(x) is dis-

continuous at this point;

(b) both functions f (x) and g(x) are discontinuous at x = x
()
?

Give some examples.

1.17.56. Can one assert that the square of a discontinuous func-

tion is also a discontinuous function? Give an example of a func-

tion discontinuous everywhere whose square is a continuous function.

1.17.57. Determine the points of discontinuity of the following

functions and investigate the character of these points if:

(b) / {x) = 2^ l/ii ' x)

\

(c) y(x) = x[l — 2X(x)]
y
where X(x) is the Dirichlet function (see

Problem 1.14.4 (b)).

1.17.58. Test the following functions for continuity and sketch

their graphs:

(a) y = x— E{x)\

(b) y = x* + E(x>);

(C) y={-\)^).

(d) y=
fl

1

!
n
L l + (2sin^ -
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1.17.59. Investigate the functions f[g(x)] and g[f(x)] for conti-

nuity if / (x) = sign x and g(x) = x(l—x2
).

1.17.60. Prove that the function

is discontinuous at the point x = and nonetheless has both maxi-
mum and minimum values on [— 1, 1].

1.17.61. Given the function

Ascertain that on the interval [—2, 2] the function takes on
all intermediate values from /(—2) to f (2) although it is discon-

tinuous (at what point?).

1.17.62. Prove that if the function f (x): (1) is defined and mo-
notonic on the interval [a

y
b]\ (2) traverses all intermediate values

between f (a) and f(b), then it is continuous on the interval [a, b],

1.17.63. Let the function y = f(x) be continuous on the interval

[a, b], its range being the same interval a^y^ib. Prove that on
this closed interval there exists at least one point x such that

f(x)=x. Explain this geometrically.

1.17.64. Prove that if the function f (x) is continuous on the

interval (a, b) and x19 x2 ,
xn are any values from this open

interval, then we can find among them a number £ such that

1.17.65. Prove that the equation x 2*=1 has at least one posi-

tive root which is less than unity.

1.17.66. Prove that if a polynomial of an even degree attains at

least one value the sign of which is opposite to that of the coeffi-

cient at the superior power of x of the polynomial, then the latter

has at least two real roots.

1.17.67. Prove that the inverse of the discontinuous function

y = (l-\-x2
) sign x is a continuous function.

f(x) =
2x at —1<*<0,

x+ V, at 0<x<l

f(l) = j[ U(x1 ) + f(x2)+...+f(xn)].

4-3148



Chapter

DIFFERENTIATION
OF FUNCTIONS

§ 2.1. Definition of the Derivative

The derivative f (x) of the function y — f(x) at a given point x

is defined by the equality

r/ / \ i- &y t- f (x+Ax)— f (x)

A* - A* Ax - ax

If this limit is finite, then the function f (x) is called differen-

tiable at the point x\ and it is infallibly continuous at this point.

Geometrically, the value of the derivative /' (x) represents the

slope of the line tangent to the graph of the function y = f(x) at

the point x.

The number

r / v\_ Hm f(x+Ax)—f(x)

is called the right -side derivative at the point x
The number

is called the left-side derivative at the point x.

The necessary and sufficient condition for the existence of the

derivative /' (x) is the existence of the finite right- and left-side

derivatives, and also of the equality fi (x) = f+ (x).

If f(x) = oo, the function f(x) is said to have an infinite deri-

vative at the point x. In this case the line tangent to the graph

of the function y = f(x) at the point x is perpendicular to the

x-axis.

2.1.1. Find the increment Ay and the ratio ^ for the following

functions:

(a) y = ]/"x at x = and A* = 0.0001;

(b) y = x*+
l

x_Q at x=l and A* = 0.2.
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Solution, (a) Ay = Vx+ Ax— |/"x =--V0. 0001 -=0.01;

^ =^L =10o
Ax 0.0001

2.1.2. Using the definition of the derivative, find the derivatives
of the following functions:

(a) y = cos ax\ (b) y = 5x2— 2x.

Solution, (a) Ay = cosa (x+ Ax)— cosax =

=— 2sin ^ax+ Y Ax^ sin y x\

Ax

-2sin( ax-\--^- Ax j sin ~ Ax

Ax

Aa: - 'lx

CL

sin — Ax

2 lim sm( ax + £.^ Hm — = — a sin ax.
A* -* V 2 / Ax -2 ^Vax^O A*

In particular, if a^=l, then */ = cosx and y' =— sinx.

2.1.3. Show that the following functions have no finite derivati-

ves at the indicated points:

(a) y= ]/ x
3 at the point x=0;

(b) y=\/x— 1 at the point x=l\

(c) y = 3\x\+l at the point x = 0.

Solution, (a) Ay - j/(x+ Ax) 3— j/x3
.

At x--=0we have A#=j/573 =
v 'Ax Ax

Fig. 34

=F=;
hence, ,'(0)^^ = 00,

i.e. there is no finite derivative.

(c) At Ax>0 the increment of the func-
tion Ay at* = will be: Ay = 3 (0+ Ax) + 1— 1 =3Ax. Therefore

lim g = 3.
Ax - + ax

At Ax<0 the increment of the function Ay will be

Ay =— 3(0 + Ax) + 1— 1=— 3Ax,
hence,

lim Ay
A* -> -0 aa:

=— 3.

Since the one-sided limits are different, there is no derivative at
the point x = (see Fig. 34).

4*
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2.1.4. Investigate the function y = \\nx\ for differentiability at

the point x = 1.

Solution. At x = 1

l. e.

Ay = \\n(l + Ax)\—
|
In 1 1 =

|

ln(l + Ax)|,

ln(l + A*) at Ajk>0,
Ar/=|ln(l+A^)H|^ (

ln|1 + Ax) at Ax<0.
Therefore

whence

Ax

I n (1 + Ax)

Ax
at A* > 0,

lim ^=+1 and lim ^=

Since the one-sided limits are different, there is no derivative.

Hence, the function y = \\nx\ is not differentiate at the point

x= 1 (see Fig. 35).

2.1.5. Find the average velocity of

motion specified by the formula

s = (f2— 5^ + 2) m
from t t

= 5 sec to / 2
= 15 sec.

2.1.6. Using the definition of the

derivative, find the derivatives of

the following functions:
Fig- 35 (a) y = x3

\
(b) y-^\/x\

2.1.7. Investigate the function y = \cosx\ for differentiability at

the points x = n/2 + nn (n an integer).

ln(1 + Ajc)
at Ax<0,

1.

§ 2.2. Differentiation of Explicit Functions

I. Basic Rules of Differentiation

(1) c'=0;

(2) (u±v)' = u' ±v'\

(3) (cu)'=cu'\

(4) (uv)' = u'u+ uv', the product rule;

(5) ^y = ii!E=ffHl(t,^0)
f
the quotient rule.

Here c = const, and u and v are functions of x which have deri-

vatives at a corresponding point.

(6) If the function u = y(x) is differentiate at the point x0t and

the function y= f(u) is differentiate at the point a = <p(*o)> ^en
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the composite function y = f(y(x)) is differentiate at the point *

and y'
x (x ) = y'

u (u
)
u'x (x ), the function of a function, or chain, rule.

II. Differentiation of Basic Elementary Functions

(I) (un )' = nu n ~ 1 u'\ (2) (sin u)' = cos u-u';

(3) (cosu)' =— s\nu-u';

(4) (tanw)'=-^-; (5) (cot u)' =— -X- ;V / V / cos 2 w » V / \ / sin 2 u »

(6) (lna)' = -^;

(7) (fl
B
)' = a8 lna-«'; 8) (<?")'=<?"«';

(9) (sinh */)' = cosh w';

(10) (cosh a)' = sinh h-w';

(II) (arcsin a)' = "
= =— (arccos^)';

(12) (arc tan^)'=
T-^I =— (arc cot w)'.

2.2.1. Find y\ if:

(a) */ = 5*2/3— 3* 5 / 2 +2*" 3
;

(b) y = 3

a
(a, b constants).

y x l x y x

Solution, (a) y' = 5.1 X *'*- 1— 3— x*'*- 1— 2.3*" 3 " 1 =
3 2

3 ^ a:

lo ,/-- b15

2
'

2.2.2. Find */', if:

/ \ o . o • /u\ si n at —}— cos x
(a) /y = 3cos*+ 2sin x\ (b) */ = - !

;
v ' v 1 v ' v smx— cos x

(c) y = (x2 + 1) arc tan*; (d) */=:*3 arcsin*.

Solution, (a) = 3 (cos*)' + 2 (sin *)' =— 3 sin *+ 2 cos*;

(sin x-\- cos x)' (sin a:— cos x)— (sin x— cos x)' (sin x-\- cos a:)

(b) y'
(sin a:— cos x) 2

(cos a:— sin jc) (sin x— cos x)— (cos x-{- sin a:) (sin #+cos x)

(sin x— cos a:)
2

(sin a:— cos a:)
2 *

a:
3

(d) y' = (*
3
)' arc sin *+ (arc sin *)' *3 = 3x2 arcsin *+ -^-== .

2.2.3. Find the derivative of the given function and then com-
pute the particular value of the derivative at the indicated value

of the argument:

(a) /(*) = ! — 1/72 + 16/* at x =— 8;
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(b) f(x) = (\—V
r
x)

2
/x at x = 0.01;

(c) f(t) = (cos 0/(1— sin at f=n/6.

Solution, (a) f (*) = —{r"J- 16;r a = ^7=—^.
•* 3 1/ x

x

Putting * = — 8, we obtain

(c) /'(/)
— sin / (1 — sin /)+ cos 2

/ _ 1

(1 — sin t)
2 ~~

1 — sin /

*

Whence /'(ji/6) = 2.

2.2.4. Taking advantage of the differentiation formulas, find the

derivatives of the following functions:

(a) y = 2x3+ 3x— 5; (b) y = V~7+ -^=+ 0Ax10
;

. x 2x2+ a; + 1 , x-{- V*

ex -j- sin x

-cos (p

(g) y = ex (cosx+smx)\ (h) #

2.2.5. Taking advantage of the rule for differentiation of a com-
posite function find the derivatives of the following functions:

(a) # = sin 3
#; (b) = lntanx; (c) y = 5C0SX

\

(d) # = lnsin (x3+ 1); (e) */ = arcsin [/l— a;
2

;

(f) */ = In5 (tan 3*); (g) y = sin 2 |/T/(T=7)

.

Solution, (a) Here the role of the external function is played by
the power function: sin x is raised to the third power. Differentiating

this power function with respect to the intermediate argument
(sin x), we obtain

(sin 3
a:) sin * = 3sin 2

x\

but the intermediate argument sin a: is a function of an independent

variable x\ therefore we have to multiply the obtained result by
the derivative of sin a: with respect to the independent variable x.

Thus, we obtain

yx = (sin 3
A:) Sin x (sin x)'x = 3 sin 2 x cos x\

(b) y; = (lntanx) tan ,(tanx); =J^^=
if|2I.;

(c) y'
x = (5

C0S x
)cos x (cos x)'x = 5C0S * In 5 (— sin x) =— 5C0S * sin a; In 5;
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(d) yx = [In sin (x3+ l)]'sin (JC, + 1) [sin (x3 + 1)], 3 + 1 [
x*+ l)'x =

=
sin (J*+ 1

)

'
C0S^ + 1 >

'

3x2 = 3*' C0t + ^
(e) = (arc sin Kl-xa

) K
—

7 ([/"TT7) 1 _ x2 ( 1 -x2
); =

1 1 (-2*)=-
,

*
. (x^O).

V\ — (\ — x2
) 2V~T^x* i^ii^T^j?

2.2.6. Find the derivatives of the following functions:

(a) y = (\ + 3x + 5x 2
)*; (b) y = (3— sin x) 3

;

(c) y= j/sin 2 x+ 1/cos2
jc;

(d) j/2e* + 2*+l + ln5
*;

(e) # = sin 3x + cos(x/5) + tan \f*>\

(f) # = sin(x 2— 5x+ 1) + tan (a/x);

(g) y = arc cos
;

(h) */ = arctan(lnx) + ln(arctan.x:);

(i) In2 arc tan (x/3);

(j) y= Vx + -\fx + V*-

Solution, (a) y' = 4 ( 1 + 3x+ 5x2
)

3
(1 + 3x+ 5x2)' =

= 4(l+3x+ 5x2
)
3 (3+10x:);

l 1 1

2.2.7. Find the derivative of the function

2x
# = arc sin

/e have

l 2n-
0'

1 + X*
*

We have

1
2 (1 + s2

)
— 4xa _ 2(1— a:

2
) 2(1— x2

)

v 2x~y (i+*2
)
2

y-(\-x*)*(\+x2
)

|i-*2 l(i+*2r
k

i -i- x-

i. e.

, frb at M<i.
f =

\ 2

l-TT? "t|*|>i.

At |x;| = l the derivative is non-existent.

2.2.8. Find the derivatives of the following functions:

(a) r/ = sinh5xcosh(x/3);
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(b) */ = coth (tanx)— tanh (cot x)\

(c) y = arc cos (tanh x) + sinh (sin 6x);

(d) */ = sinh 2 #3+ cosh 3 x2
;

e
s\nh ax

(e) # ~ sinh 6a;— cosh 6a;

Solution.

(a) = (sinh 5x)' cosh ~+ sinh 5x( cosh )
=

= 5 cosh 5x cosh y+y sinh 5x sinh y

;

(c) y' = —-J=
hx)

+cosh(sin6x)(sin6x)
r ^

V 1 — tanh 2 x

1/cosh 2 x

|^(cosh 2 x— sinh 2 x) /cosh 2 x

+ 6 cos 6x cosh (sin 6x) = —
cJh

+ 6 cos 6x cosh (sin 6*).

2.2.9. Find the derivatives of the following functions:

(a) y =y4/=-; (b) » = U) (u(*)>0);

K~~
l—x

x2 sin 3 * cos2
x\

(d) y^(VT^c)x+
\

Solution, (a) Apply the method of logarithmic differentiation.

Consider, instead of y, the function

z = ln|y| = Inj/"10^1 = ln\x\ +±\n(x*+ l)-^\n\5-x\.

Taking into account that (In
|

u\ )' = u'ju
y
we have

1.2*. 1 —24a;3 +125x2— 14a:+ 75
Z =

x 1

3(a:2 +1) 1 15(5— a:) \bx(x2 -\- \) {b— x)

But z' = (In
| y\Y = y'ly> whence

(a:
2 + 1) — 24x3+ 125x2— 14a:+ 75

Y^=~x 15x(x2 +1)(5-a;)

(b) Suppose the functions u (x) and v(x) have derivatives in the

given domain of definition. Then the function

z=\ny = vlnu

also has a derivative in this domain, and

z' = (v In u)' = v' In u + v — .
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Hence, the function

y = eln v==ez

also has a derivative in the indicated domain, and

Thus,

y' = ezz' = yz'

y' = u
v
{v' Inu + v^^vu"- 1^ +uv \nu-v'.

2.2.10. Show that the function y = xe~ x^ 2 satisfies the equation

xy'=(l— x2
) y.

Solution.

y> = e-x>/2— X2e -x*,2 = e -x>/2 (
1 _ X2).

Xy'= xe-x*/2(l_ x2),

Hence,

xy' = y(l—x2
).

2.2.11. Show that the function y = xe~ x satisfies the equation
xy'=-(\ — x)y.

2.2.12. Investigate the following functions for differentiability:

(a) y = arc sin (cosx); (b) y = ]/~ 1

—

Vl — x2
.

o < , . / . , (cos x)' sin x sin*
Solution, (a) y = —v — — —

V 1— cos 2 * Vsin 2 x I

sin x
\

'

Hence, y' = — 1 at points where sin^>0; y'=\ at points where
sinx<0. At points where sinx^O, i.e. at the points x^=kn
(k =

y ±1, ±2, ...) the function, though continuous, is not dif-

ferent iable.

(b) The domain of definition of this function is the interval

— 1.

y' ,r
{

-
7=^ee •

l/^—2
(-2x) at x=^0 and *=^± 1.

As X—+1—0 or x—

*

— 1+0 we have y—>+oo. Let us find

out whether the derivative y' exists at the point x = 0, i.e. whe-

ther lim - -
x exists.

Ax->0 Ax

1

Since V 1— Ax2— 1 yAx2
, then

X=- as Ax—> + 0,
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Thus, yL (0) =/= y'+ (0), which means that the function under consi-

deration has no derivative at the point x =
y
though it is conti-

nuous at this point.

Note. There are cases of failure of existence of /' (x) and even of

f'+{x) and fL (x) at a given point, i.e. when the graph of the func-

tion has neither a right-, nor a left-side tangent at the given point.

For instance, the function

f |
xs\n(\/x) at x^=0

ynx>-\ at x =

is continuous at the point x= 0> but does not have even one-sided

derivatives, since -ltl- = sin-r—

.

* Ax Ax

2.2.13. Find the derivatives of the following functions:

(a) f(x) = s\nh(x/2) + cosh{x/2);

(b) /(*) = ln[cosh*]; (c) f (x) = 2 j/"cosh x— 1;

(d) f(x)= arc sin [tanh x]\

(e) f (*) = Kl+sinh2
4.r,

(f) f(x) = eax {zoshbx+smhbx).

2.2.14. Applying logarithmic differentiation find the derivatives

of the following functions:

(a) ^(cos^'-^Jb) y= Vx^h-x <

(c)

f/(x+2)* V(x+ 3)"

2.2.15.

COS 2 X

4- sin 2
a:

'

show that

f(ji/4)-3/'(*/4) = 3.

2.2.16. Show that the function

* 2*2

satisfies the differential equation

xy' + 2y = e-**.

2.2.17. Find the derivatives of the following functions:

(a) # = IncosKarcsin 3~ 2C
(x > 0);

(b) y = ^arc tan j/ cos In 3
x.
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§ 2.3. Successive Differentiation of Explicit Functions.
Leibniz Formula

If the derivative of the (n— l)th order of a function y= f(x) is

already found, then the derivative of the nth order is determined
by the equality

y
{n)

(x) = [y
{n -» (x)]

f

.

In particular, y" (x) = [y' (*)]', y"' (x)= \y" (x)]\ and so on.

If u and v are functions differentiate n times, then for their

linear combination c
x
u-{-c2v (c

ly c
2
constants) we have the following

formula:

(c
x
u + c2v)

(m = c
x
u (n) + c2v

(n
\

and for their product uv the Leibniz formula (or rule)

(uvya
> = u (n)v+ nu {'- l

>v' +
n(n

x^
X)
u {n

'*>xf +
n

+ ... +uv (n) = %Ck
nu

(n - k)v {k
\

k =

where u {0) =u v {0) =v and Ck = n(n~ 1) " ' {n~ k + = - arewneie u u, u u diiu o„
1 -2-3. - .As fc!(/t— £)!

binomial coefficients. Here are the basic formulas:

(1) (xm
)

(n) =m(m—\). ..(m—n+ \)xm
~ n

.

(2) (a*Y
n) = ax \n

n a(a>0). In particular, (e
x
)

{n) = ex .

(3) (In^r =(-1)"-^=^.

(4) (sinx) (n) = sin(jt+ njt/2).

(5) (cos*) (n> = cos(*+ wr/2).

2.3.1. Find the derivatives of the nth order of the following

functions:

(a) y=\nx\ (b) y = ekx
\

(c) y = s'mx\ (d) */= sin 5a: cos 2x;

(e) # = sin xcosx; (f) sin 3x cos2
a:; (g) # = In (x2 +x— 2).

(a) ^ = i = x-i; /=(-l)x-; iT'=l-2^- 3
;

y
(4) --=— 1-2-3a:" 4

; */
(/2) =(— l)"" 1 (n— 1) I jt

(c) y' =cos a;= sin (#+ n/2);

= cos (*+ n/2) = sin (a:+ 2ji/2).

In general, if we assume that for a given n=k

y
{k) =sm +

(-!)*-! (/I- 1)1
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then it will turn out that

0<* + i>=COS U+ k^ :S1I1 (k+l)-

Whence, by virtue of mathematical induction we conclude that for

any natural n

(d) y=- sin 5x cos 2x=y [Vin 7x+ sin 3.x:

j

Therefore

(g)
y'<

y
m = J. \jn sin (7x +n^+ 3" sin ^3x+ n^)

]

2x+l
x2 +a:— 2

'

To simplify the computations let us transform the obtained

function:

y
2x+ 1 (jc+2)+ (jc-1) 1

-1
1 x+ 2' x2+ x— 2 (x— l)(*+ 2)

Whence

/=-l(*-l)- 2-l(*+ 2)- 2
;

i/" = l.2(x— 1)~ 3 + 1-2(a: + 2)-

:(^_1)-i + (x+ 2)- 1
.

(*_l)-» + (*+ 2)-»] =
1 1

^») = (_i)»-i(n— 1)!

= (— l)"" 1
(AZ— 1) !

2.3.2. # = ^4^; findv cx -f «

Solution. Transform the given expression in the following way:

{x-\)» 1

(x + 2)»

=
ax -\-b be— ad be— ad

Whence
ex-\- d c c(cx-\-d)

be— ad

[CX + d)~K

y' = (-i) c (cx+ d)~

y" = (-l)(-2)
b-^C*(CX+ d)-\

y'" = (- 1) (-2) (-3) C3 (CJC+^ 4>

/
<»)== (_l)»n!*E_£^ C"(w + d)-«»+i) =
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2.3.3. y= x/(x2— 1); find y
(n)

.

Solution. Transform the given expression

_ x _ i r_j
.

i_i
y x2- 1 2 U+l"1"^— lj

•

therefore (see Problem 2.3.2):

y
{n) = (—\)n n\

+ 1 1

(x-

2.3.4. Using the Leibniz formula, find the derivatives of the

indicated orders for the following functions:

(a) y=x2 smx\ find #
(25)

;

(b) y = ex (x2 —l); find */
(24)

;

(c) y= e°
x s'm$x\ find y

(n)
.

Solution, (a) y
(2b) = (sin x-x2

Y
2b) = (sin *)<2B) x2 + 25 (sin jk)

(24)
(a:

2
)' +

+ ^^(sin #)
(23)

(jk
2
)", since the subsequent summands equal zero.

Therefore

*/
(25) = xl sin (x+ 25 y) + 50a: sin (x+ 24 ~

)
+ 600 sin + 23 y ) =

= (a:
2— 600) cos #+ 50* sin x.

2.3.5. Compute the value of the nih derivative of the function

u= .,

3*
'

2
c at the point x = 0.

Solution. By hypothesis we have y(x)(x2— 2*+ 5) = 3x+ 2. Let

us differentiate this identity n times using the Leibniz formula;

then (for n ^ 2) we obtain

y
n
(x) (x2— 2x+ 5) + ny< n ~ l) (x) (2x—2) + n(n- {) y<»-» (*). 2 = 0.

Putting # = 0, we have

W n)
(0)— 2ny{n ~ 1) (0y+ n(n—l) y

(n ~ 2)
(0) - 0.

Whence

y<»> (0)=±ny<»-» (0)-^^^~ 2
> (0).

We have obtained a recurrence relation for determining the nth
derivative at the point x = 0(n^ 2). The values y (0) and y'(0)

are found immediately: (0) = 2/5;
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>i \
-3x2 -4x-f 19 , n 19

y W= (*-2*+5)' ; ^
(0)== 25'

Then, successively putting n = 2, 3, 4, find the values of

the derivatives of higher orders with the aid of the recurrence

relation.

For example,

y 5 "
Z

' 25 5 5 125 •

"'(C)\ — L ^ 56 3»2 19 234

y 5 125 5
" 25 ~ 625'

2.3.6. Find the derivatives of the second order of the following

functions:

(a) y = xVT+7*; (b) y =^M^; (c) y=e~*.

2.3.7. Given the function

y = cfi
2x + c2

xe2x+ ex .

Show that this function satisfies the equation

y"— \y' + \y=ex
.

2.3.8. Using the Leibniz formula give the derivatives of the in-

dicated orders for the following functions:

(a) y=x*s'mx; find */
(20)

;

(b) y = e~ x smx; find y"'\

(c) y = ex (3x2— 4); find y
(n)

;

(d) y= (1— x2
) cos a:; find y

(2n)
.

2.3.9. Using the expansion into a linear combination of simpler

functions find the derivatives of the 100th order of the functions:

/ \ 1 /u\ l+#

2.3.10. Show that the function

y = xn
[c

t
cos (In x) + c

2
sin (In a-)]

(cl9 c
2 , n constants) satisfies the equation

x2y"+ ( 1 - 2n) xy' + (
1 + ai

2

) y = 0.

2.3.11. Prove that if /(a:) has a derivative of the nth order, then

[/ (ax+ b)]
(ni = a'fn

> (ax+ b).
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§ 2.4. Differentiation of Inverse, Implicit and Parametri-
cally Represented Functions

1. The Derivative of an Inverse Function. If a differentiable

function y = f(x) t
a < x < b has a single-valued continuous inverse

function x = g(y) and y'
x ¥=0 then there exists also

1

Xy , .

yx

For the derivative of the second order we have

Y" yxx

2. The Derivative of an Implicit Function. If a differentiable

function y = y(x) satisfies the equation F (x, y) = 0> then we have

to differentiate it with respect to x, considering y as a function

of x, and solve the obtained equation j^F(x
y y) = with respect

to y'
x . To find y"

xx the equation should be twice differentiated with

respect to x
y
and so on.

3. The Derivative of a Function Represented Parametrically. If

the system of equations

* = <P(0. = *(O. <*<'<P,
where <p(t) and if (t) are differentiable functions and q/(/)=^=0,

defines y as a single-valued continuous function of then there

exists a derivative and

, = q't (t) =

The derivatives of higher orders are computed successively:

y'
xx = {-^, y£=^> and so on.

xt Xf

In particular, for the second derivative the following formula is

true:

- x't ytt—x'tt y't

(xt)*

2.4.1. For the function

(a) y = 2x'
i + 3xb + x; find x'y ;

(b) y = 3x— (cos#)/2; find x"yy ;

(c) y= x+ ex ; find xyy .

Solution, (a) We have y'
x = Sx 2 + 15x 4 + 1, hence,

l 1

yx
6x2 +15x4+l *
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(c) #i=l + e*. y"xx = ex
,
hence,

1 „ ex

2.4.2. Using the rule for differentiation of an inverse function,

find the derivative yx for the following functions:

(a) y=i/x\ (b) # = arc sin/*; (c) y = In Vl + x 2
.

Solution, (a) The inverse function x = y
s has the derivative

xy= 3y2
. Hence,

, 1 1 1

(c) At x > the inverse function a:=[/^— 1 has the derivative

x
f

y= e2y/Ve2y—l. Hence,

1 Ve~iy~—i x
yx =— =^ - -

2.4.3. For each of the following functions represented paramet-

rically find the derivative of the first order of y with respect to x:

(a) x = a(t— sin/), y = a(l — cos/);

(b) x= ks'mt— sin&/, y = kcost+coskt;
(c) Jt = 21ncot/, */= tan/ + cot /;

(d) x = e
c
\ y = e~ ct

.

Solution, (a) Find the derivatives of x and y with respect to the

parameter /:

x'
t
= a (I — cos /); y\ = a sin /.

Whence
dy a sin / , / . n , x~=—i

7r= cot 17 (/ =7^ 2fcri).
dx a (1 — cos 2 v 7 7

, . — 2 cosec 2
^ 4^ ~ cot! sin~27

*

dy 9 , 9 , 4- cos 2t

-f = sec 2
/— cosec 2

/ = . 20 .
•

ctf sin 2 2/

d# 4 cos 2/ sin 2/ ^ , kn

dx 4 sin 2 2t V 2

2.4.4. The functions are defined parametrically:

jx= /
3+ ;

y = bsm*t\ \y = t*— 3t + U
(c) ( x= a (cos / + / sin /), (d)

y = a(s\n t— /cos/);

(a) (x = acos3
/, (b) fx=/ 3+ 3/+l,

\y = t*-3t + l;

fx = e* cos/,

I
t/= ^sin /.

Find for them the second derivative of y with respect to x.
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Solution, (a) First find y'
x .

y'
t
= 3b sin 2

/ cos t\ x\ —— 3a cos 2
1 sin t;

3b sin 2
/ cos / b , . / . . /rt « . . . ji \

^= -
3acos^sin/

= -a ta"^ (' =*<2*+ 1)T).

Then we shall find y"^ using the formula

u =
x̂t

where

= ~acos 2 t'

Whence
„ b b

a cos 2
1 (— 3a cos 2

/ sin /) 3a2 cos 4
1 sin T

(d) = cos t— e 1 sin / — e x (cos /— sin t);

y
f

t
= e l sin t + cos < = e' (cos / + sin /);

,
cos / + sin /

#

^* cos /— sin t
*

/ cos / + sin A'
« = = \c°s /— sin /// = 2

x\
e* (cos /— sin /) e t (cos /_ sin /)

3
'

2.4.5. Find y'
xxx :

(a) y = t
3

; (b) x = sec/; #=tan/.

Solution, (a) First find

=
y't
= 3t 2

y

whence

yx = — Wle- % =— 3eH\

Then find the second derivative

xt

6

And finally, find the third derivative

= = 3g2 ' [2(/ 2+ 2Q+ 2/ + 2] = 6g3f (/2 + 3/ +
xt —e~ t

2.4.6. Find the derivative yx of the following implicit functions:

(a) x* + tfy+ y* = 0; (b) ln*+ e-""=c;
(c) jk

2 + #
2—4x— 10*/+ 4-0;

(d) x
M
'» + tf

Solution, (a) Differentiate with respect to x
9

considering y as

a function of x; we get:

3x2 + 2xy+ x*y' +2yy
f = 0.
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Solving this equation with respect to y' find

,
3x2+ 2xy

2.4.7. Find yxx if:

(a) arc tan y
— y+ x = 0; (b) ex— ey =y— x\

(c) x+y = e*~y.

Solution, (a) Differentiate with respect to x
y

considering y as a

function of x and determine y'\

_X__^ + l =0 , whence y' = X-±£= y-> + 1.

Differentiate once again with respect to x:

Substituting the value of y' thus found, we finally get

2(l+y2
)

yXX yb

2.4.8. Find the value of y" at the point x=l if

a;
3— 2x2

*/
2 + 5.x:+ */—5-0 and y\x=x = 1.

Solution. Differentiating with respect to x
y
we find that

3* 2— Axy 2— Ax2yy' + 5 + y' = 0.

Putting x = 1 and = obtain the value of at x=\:

3_4_4^ + 5 + ^_0; ^' = 4/3.

Differentiate once again with respect to x:

6x— 4y
2— 8xyy'— 8xyy'— \x2y' 2— \x2yy"+ y" = 0.

Putting x=l; y^=l and t/' = 4/3, find the value y" at #=-. 1:

a A 64 64 „ n „ Q 22
6—4—y—T— 3^/ =0, y -— 827.

2.4.9. Find y'
x for the following implicit functions:

(a) x+Vxy+ y = a; (b) arc tan (y/x) = InV

x

2 + y
2

\

(c) e*sin#— cos * = 0;

(d) ey + xy^e; find at the point (0, 1).

2.4.10. Find yxx of the following implicit functions:

(a) y =x+ arc tan*/;

(b) x2 + 5xy+ y
2— 2x+y— 6 = 0; find at the point (1, 1).
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2.4.11. For each of the following functions represented parame-
trically find the indicated derivatives:

(a) X
(i sin / c COS /

find y'
x ;

1 +6 cos t
' y =

1 -f b cos I

'

(b) X = ln(l + f»), y = t— arc tan t; find y'
x ;

(c) X = /* + 2, y = t
3/3-t; find yxx ;

(d) X = e-*\ y=- arc tan (2/+ 1); find y'
x \

(e) X = 4tan 2
(//2), y = a sin t + b cos t; find y'

x ;

(0 X -= arc sin (t*— 1), y =- arc cos 2t; find y'
x ;

(g) X = arc sin t, y = find y"
xx .

2.4.12. Show that the function y = f(x), defined by the parametric

equations x = e t s'mt
i y = e t cost, satisfies the relation y"(x+ yf =

= 2{xy'-y).

§ 2.5. Applications of the Derivative

The equation of a line tangent to the curve of a differentiate

function y = y(x) at a point M(x0i y ), where y =y(x )> has the

form

y—yQ
=y'W (*— *<>)•

A straight line passing through the point of contact perpendicu-

larly to the tangent line is called the normal to the curve. The
equation of the normal at the

point M will be ^ i

1

y—yo = —77
y' (*o)

(x # ),

X

y' (x )¥>o.

The segments AT, AN are

called the subtangent and the

subnormal, respectively; and the o

lengths MT and MN are the

so-called segment of the tangent

and the segment of the normal,

respectively (see Fig. 36). The lengths of the four indicated segments
are expressed by the following formulas:

Fig. 36

AT = _y_
y'

AN: MT =

MN = \y\V\ + {y')
2

.

2.5.1. Write the equations of the tangent line and the normal:

(a) to the curve y=^xs— 3a; + 2 at the point (2, 4);
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(b) to the parabola y = 2x2—x+ 5 at x =— 0.5;

(c) to the curve y=x* + 3x2— 16 at the points of intersection

with the parabola y = 3x 2
.

Solution, (a) Find the derivative at the point x = 2:

y' = 3x2-3
y */'(2) = 9.

The equation of the tangent line has the following form:

0—4= 9{x—2) or 9x—y— 14 = 0.

The equation of the normal is of the form:

y— 4 =— y {x— 2) or x+ 9y—38-0.

(c) Solving the system of equations

y = x* + 3jk2— 16,

y = 3x2
y

we shall find the points of intersection of the curves

x
t
=— 2, x

2
= 2, yx

= y2
= 12.

Now we find the derivatives at the points x =— 2 and x = 2:

y' = 4a:
3 + 6x, y' (—2) =— 44, y' (2) = 44.

Therefore, the equations of the tangent lines have the form

y— 12=— 44(*+ 2), y—\2 -44(^— 2).

The equations of the normals have the form

y-\2 = ±(x+ 2), y-\2 = -±(x-2).

2.5.2. Find the points on the curve y = x'
3— 3x+ 5 at which the

tangent line:

(a) is parallel to the straight line y =— 2x;

(b) is perpendicular to the straight line y =— #/9;

(c) forms an angle of 45° with the positive direction of the x-axis.

Solution. To find the required points we take into consideration

that at the point of tangency the slope of the tangent is equal to

the derivative y' = 3x2— 3 computed at this point,

(a) By the condition of parallelism

3x2— 3 = — 2,

whence x
t
=— l/j/3, x

2
=l/\/~3. The required points are:

^(-1/^3,5 + 8^3/9), M, (1/1/3, 5-8^3/9).
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(b) By the condition of perpendicularity

3a:
2— 3-9,

whence ^ = — 2, x
2
= 2. The required points: M

x
(— 2, 3), M 2 (2, 7).

2.5.3. Find the angles at which the following lines intersect:

(a) the straight line y = 4—x and the parabola y = 4—x2
/2\

(b) the sinusoid y = s\nx and the cosine curve y = cosx.

Solution, (a) Recall that the angle between two curves at the point

of their intersection is defined as the angle formed by the lines tan-

gent to these curves and drawn at this point. Find the points of

intersection of the curves by solving the system of equations

y=4— x,

y = 4—x 2
/2.

Whence
AMO, 4); Af

2 (2, 2).

Determine then the slopes of the lines tangent to the parabola at

the points M
l
and M 2

:

0'(O)=O
f

y'{2)=-2.

The slope of a straight line is constant for all its points; in our

case it equals — 1. Finally, determine

the angle between the two straight

lines:

tanq^ — 1; ^ = 45°;

— 1 + 2 1
,

1+2 ~~
3

;
tan q) 2

=

<P 2
arc tan « 18.5°.

2.5.4. Prove that the segment of

the tangent to the hyperbola y = c/x

which is contained between the coordinate axes is bisected at the

point of tangency.

Solution. We have y' =— c/x2
\
hence, the value of the subtangent

for the tangent at the point M (x
, y ) will be

y_
y'

i.e. Ox = x T (Fig. 37), which completes the proof.

Whence follows a simple method of constructing a tangent to the

hyperbola y = c/x: lay off the ^-intercept OT = 2x . Then MT will

be the desired tangent.
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2.5.5. Prove that the ordinate of the catenary y = acosh (x/a) is

the geometric mean of the length of the normal and the quantity a.

Solution. Compute the length of the normal. Since

y' = sinh (x/a),

the length of the normal will be

MN = \y\ V l+(y') % = yV 1+sinh 2 (x/a) = y cosh (x/a) == y
2/a

t

whence y
2 =a-MN, and y — Y a- MN', which completes the proof.

2.5.6. Find the slope of the tangent to the curve

( x = t
2 + 3t— 8,

\ y = 2t 2 — 2t — 5

at the point M (2, —1).
Solution. First determine the value of t corresponding to the gi-

ven values of x and y. This value must simultaneously satisfy the

two equations

| t* + 3t—8 = 2

\ 2t
2— 2t—5-— 1.

The roots of the first equation are t
1
= 2; t

2
=— 5

y
the roots of the

second equation t
t
= 2; t

2
=— 1. Hence, to the given point there

corresponds the value t = 2. Now determine the value of the deri-

vative at the point M:

y ' '* =2
==

(il)/=2
==

(27+ 3)^2
=
T'

And so, the slope of the tangent at the point M (2, —1) is equal

to 6/7.

2.5.7. Prove that the tangent to the lemniscate p = aKcos26at
the point corresponding to the value

O
= ji/6 is parallel to the x-axis.

Solution. Write in the parametric form the equation of the lem-

niscate:

x = p cos = a j/"cos 26 cos 0,

y = p sin = a Y^os 20 sin 0.

Whence
a cos 6 sin 20 ,r 7^ . n

xq = r
~ ay cos 20 sin 0,

^cos26
a sin 6 sin 26 .

-./• ^ n
y {)
= + a V cos 20 cos 0,

V cos 26

Xu(n/6) = -aY2, 0e(jx/6)-O.
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yQ (Ji/b)

Thus, the slope k-=— = 0. Consequently, the line tangent to

*e (n/6)

the lemniscate at the point with
o
= ji/6 and p = aV cos 20

o
=

= a/V 2 is parallel to the x-axis.

2.5.8. Find the equations of the tangent and the normal to the

following curves:

(a) 4a;
3— 3xy2 + Sx2— 5xy— 8y

2 + 9x+ 14=0 at the point (—2, 3);

(b) x b + y
b— 2xy = at the point (1, 1).

Solution, (a) Differentiate the implicit function:

1 2x2— 3y
2— 6xyy' + 1 2x— 5y— 5xy '— 1 6yy' + 9 = 0.

Substitute the coordinates of the point M (—2, 3):

48— 27 + 36#'— 24— 1 5 + 1 0y'— 48*/' + 9 = 0;

whence
£' = -9/2.

Thus the equation of the tangent line is

»-3=-y(*+ 2)

and the equation of the normal

y-3-=±-(x + 2).

2.5.9. Through the point (2, 0), which does not belong to the

curve # = Jt\ draw tangents to the latter.

Solution. Let (xQy x* ) be the point of tangency; then the equation

of the tangent will be of the form:

y—4=y' (x
)
{x—x

)

y—xi = 4x3 (x—x ).

By hypothesis the desired tangent line passes through the point

(2, 0), hence, the coordinates of this point satisfy the equation of

the tangent line:

—
%t — 4xq (2

—

x )\ 3x1— = 0,

whence x = 0; x = 8/3. Thus, there are two points of tangency:

AM0, 0), 7W 2 (8/3, 4096/81).

Accordingly, the equations of the tangent lines will be

A 4096 2048 / 8 \
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2.5.10. f (x) = 3xb— I5x3 + 5x—7. Find out at which of the points x
the rate of change of the function is minimal.

Solution. The rate of change of a function at a certain point is

equal to the derivative of the function at this point

/'(*)= 15a:
4— 45a:2 + 5 = 15 [(x2— 1/2)

2 + 1/12].

The minimum value of f (x) is attained at x = ±l/j/*2. Hence the

minimum rate of change of the function f (x) is at the point

x = ± 1 /y
r
2 and equals 5/4.

2.5.11. A point is in motion along a cubic parabola I2y=x3
.

Which of its coordinates changes faster?

Solution. Differentiating both members of the given equation with

respect to t we get the relation between the rates of change of the

coordinates:

\2y't = 3x2
-x't

or

yt _x2

(1) at —2 < x < 2 the ratio y\\x\ is less than unity, i.e. the rate

of change of the ordinate is less than that of the abscissa;

(2) at x = ±2 the ratio y\\x\ is equal to unity, i.e. at these

points the rates of change of the coordinates are equal;

(3) at jc<-t-2 or x > 2 the ratio y\\x\ is greater than unity, i.e.

the rate of change of the ordinate exceeds that of the abscissa.

2.5.12. A body of mass 6g is in rectilinear motion according to

the law s =— 1 + ln(/+ l) + (t + l)
3

(s is in centimetres and /, in

seconds). Find the kinetic energy (mv2
/2) of the body one second

after it begins to move.
Solution. The velocity of motion is equal to the time derivative

of the distance:

»(0 = s;=rpr + 3 ('+ 1
)
a

-

Therefore

*<l) = 12l and ^ = |(l2i-)
2

-=4684(erg).

2.5.13. The velocity of rectilinear motion of a body is proporti-

onal to the square root of the distance covered (s), (as, for example,

in free fall of a body). Prove that the body moves under the action

of a constant force.

Solution. By hypothesis we have

v = s'i=ay s (a = const);
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whence

s"ti =v't
=a jy=- s

t
= a 1

12.

But according to Newton's law the force

F = ks tt (k = const).

Hence,

F^ka 2
/2 = const.

2.5.14. A raft is pulled to the bank by means of a rope which
is wound on a drum, at a rate of 3 m/min. Determine the speed

of the raft at the moment when it is 25 m distant from the bank
if the drum is situated on the bank 4 m above water level.

Solution. Let s denote the length of the rope between the drum
and the raft and x the distance from the raft to the bank. By
hypothesis

s
2 =x2 + 4 2

.

Differentiating this relation with respect to /, find the relation-

ship between their speeds:

2ss/ = 2xX{,

whence

s ,

xt-T St '

Taking into consideration that

s ; = 3; x= 25; s = /25 2 + 42 « 25.3,

we obtain

^;==
^25

2

a

5

+4a
.3» 3.03 (m/min).

2.5.15. (a) Find the slope of the tangent to the cubic parabola

y=x* at the point x = ]/~3/3.

(b) Write the equations of the tangents to the curve y= 1/(1 + x2
)

at the points of its intersection with the hyperbola y=l/(x+l).
(c) Write the equation of the normal to the parabola y = #2

-f-4x-f 1

perpendicular to the line joining the origin of coordinates with the

vertex of the parabola.

(d) At what angle does the curve y = ex intersect the y-ax\s?

2.5.16. The velocity of a body in rectilinear motion is determi-

ned by the formula v = 3t-\-t 2
. What acceleration will the body

have 4 seconds after the start?

2.5.17. The law of rectilinear motion of a body with a mass of

100 kg is s = 2/ 2 + 3/+ 1. Determine the kinetic energy (mv2
[2) of

the body 5 seconds after the start.
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2.5.18. Show that if the law of motion of a body is s = ae1 + be

then its acceleration is numerically equal to the distance covered.

2.5.19. A body is thrown vertically with an initial velocity of

a m/sec. What altitude will it reach in t seconds? Find the velocity

of the body. In how many seconds and at what distance from the

ground will the body reach the highest point?

2.5.20. Artificial satellites move round the Earth in elliptical

orbits. The distance r of a satellite from the centre of the Earth
as a function of time t can be approximately expressed by the fo-

llowing equation:

r = a
^

1 — e cos M—y (cos 2M — 1)

where M = ^-(t— t n )

t = time parameter
a = semi-major axis of the orbit

e = eccentricity of the orbit

P = period of orbiting

/„ = time of passing the perigee 1 ty the satellite.

Here a, 8, P and /„ are constants.

Find the rate of change in the distance r from the satellite to the

centre of the Earth (i.e. find the so-called radial velocity of the

satellite).

§ 2.6. The Differential of a Function.
Application to Approximate Computations

If the increment Ay of the function y = f(x) can be expressed as:

Ay = f (x+ Ax)— f (x) = A(x) Ax+ a (x, Ax) Ax,

where

lim a (x, Ax) = 0,
Ax -> o

then such a function is called differentiable at the point x. The
principal linear part of this increment A(x)Ax is called the diffe-

rential and is denoted df (x) or dy. By definition, dx = Ax.

For the differential of the function y = f(x) to exist it is nece-

ssary and sufficient that there exist a finite derivative y' = A(x).

The differential of a function can be written in the following way:

dy = y' dx = f {x)dx.

1 The perigee of the satellite orbit is the shortest distance from the sate-

llite to the centre of the Earth.
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For a composite function y = f(u) y
u = y(x) the differential is

retained in the form

dy = f (u) da

(the invariance of the form of the differential).

With an accuracy up to infinitesimals of a higher order than Ax
the approximate formula Ay^dy takes place. Only for a linear

function y = ax+ b do we have Ay=dy.
Differentials of higher orders of the function y = f(x) are succes-

sively determined in the following way:

d2y=d(dy); d3y=d(d2
y) y

dn
y = d(d"~^y).

If y = f(x) and x is an independent variable, then

d2y = y" {dx) 2
\
d3
y = y" (dx)\ . .

. ,
dn
y = y<» {dx)\

But if where u = cp (x), then d2y = f" (u) du 2

-\-f (u) d2u, and
so on.

2.6.1. Find the differential of the function

y = In ( 1 + e10x ) + arc tan e
bx

.

Calculate dy at x-= 0; d^^0.2.

_ r (i-fgiox)^
(e
*xy -I _ 5g5x (2g5-y—

1) ^—
[

i+«,io* l+gio*J — 1+gio*

Substituting * = and d.x: = 0.2, we get

5
dtf|x=0; djc=0.2 = y0.2=0.5.

2.6.2. Find the increment and the differential of the function

y = 3x* + x—\
at the point x= \ at Ax = 0.1.

Find the absolute and relative errors allowed when replacing the
increment of the function with its differential.

Solution.

Ay = [3 (x+ Ax) 3 + (x+ Ax)— 1 ]
— (3a:

3+ x— 1 ) =
= 9x2 Ax+ 9x Ax2 + 3Ax3+ Ax,

dy = (9x2 + I) Ax.

Whence
Ay—dy = 9* A*2 + 3Ax3

.

At a: = 1 and Ax = 0.1 we get

Ay—dy = 0.09 + 0.003 - 0.093,

dy=l; Ay = 1.093.
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The absolute error
|

Ay— dy
|

= 0.093, the relative error

°- 093
0.085 or 8.5%.

ky—dy
&y

1.093'

2.6.3. Calculate approximately the increment of the function

y = xs— 7x2 + 8

as x changes from 5 to 5.01.

2.6.4. Using the concept of the differential, find the approximate
value of the function

Solution. Notice that from Ay = y(x+Ax)— y(x) we get

y(x+ Ax) = y(x) + Ay,

or, putting Ay « dy,

y(x+Ax)^y(x) + dy.

In our problem let us put x = and A# = 0.15. Then

y 5 V \2— x) (2 + x) 2 '

y'(0)=— i, d^ =— -g-.0.15 =— 0.03.

Hence,

y (0. 15) « y (0) + dy = 1 — 0.03 - 0.97.

The true value of y (0.15) = 0.9702 (accurate to 10" 4
).

2.6.5. Find the approximate value of:

(a) cos31°; (b) log 10.21; (c) j/33; (d) cot45°10'.

Solution, (a) In solving this problem we shall use the formula (*)

of the preceding problem. Putting x = jt/6, = rc/180, we compute:

/x n V 3
^(^) = cos-g- = -g-;

y (
x) =_ Sin-g= — —

;

cos 3 1° = cos +^) « 1 iL = 0.85 1

.

(c) Put a; = 32; A#=l. By formula (*) we get

^33«^3l+ (t
/ x);=32-l=2+^= = 2H-l = 2.0125.
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2.6.6. All faces of a copper cube with 5-cm sides were uniformly

ground down. As a result the weight of the cube was reduced by

0.96 g. Knowing the specific weight of copper (8) find the reduction

in the cube size, i.e. the amount by which its side was reduced.

Solution. The volume of the cube u==x3
, where x is the length

of the side. The volume is equal to the weight divided by the den-

sity: v = p/d\ the change in cube's volume Av = 0.96/8 = 0.12 (cm 3
).

Since Av approximately equals dv and taking into consideration that

tiv = 3x2 dx we shall have 0.12 = 3x5 2 x Ax, whence

Ax =^L= 0.0016 cm.

Thus, the side of the cube was reduced by 0.0016 cm.

2.6.7. Find the expressions for determining the absolute errors in

the following functions through the absolute errors in their argu-

ments:

(a) y = lnx; (b) y = logx;

(c) y = s'mx (0 < jk < ji/2); (d) = tan* (0 < x < ji/2);

(e) = log(sin#) (0 < x < ji/2);

(f) = log(tanx) (0<x<ji/2).

Solution. If the function f (x) is differentiate at a point x and
the absolute error of the argument A* is sufficiently small, then

the absolute error in the function y can be expressed by the number

=
I y'x I

A*.

(a) A
y
= \(\nx)'

\X AX =— , i.e. the absolute error of a natural

logarithm is equal to the relative error in its argument.

(b) A
y
= {\ogx)' AX = ™AX , where M = log e = 0.43429;

(e) A
y
=

\

[log (sin x)]'
|

AX = M \cotx\ Ax ;

(f) A^lllogaan^^A^i^A,.
From (e) and (f) it follows that the absolute error in log tan x

is always more than that in log sin x (for the same x and Ax ).

2.6.8. Find the differentials dy and d2y of the function

y = 4xb— 7a:
2 + 3,

assuming that:

(1) a: is an independent variable;

(2) x is a function of another independent variable.

Solution. By virtue of the invariance of its form the differential

of the first order dy is written identically in both cases:

dy = y' dx = (20x 4— 1 4x) dx.
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But in the first case dx is understood as the increment of the

independent variable Ax (dx = Ax), and in the second, as the diffe-

rential of x as of a function (dx may not be equal to Ax).

Since differentials of higher orders do not possess the property

of invariance, to find d2y we have to consider the following two
cases.

(1) Let x be an independent variable; then

d2y = y" dx2 = (8(k 3— 14) dx2
.

(2) Let x be a function of some other variable. In this case

d*y = (8(k3— 14) dx2 + (2(k4— 14*) d2
x.

2.6.9. Find differentials of higher orders (x an independent va-

riable):

(a) */ = 4"*2

; find d2
y\

(b) y = V~\n 2 x— 4; find d2
y\

(c) y = sm 2
x\ find d3

y.

2.6.10. y = \nj^—I ; find d2
y if: (a) x is an independent variable,

(b) x is a function of another variable. Consider the particular

case when x = tant.

2.6.11. The volume V of a sphere of radius r is equal to

4
yjir 3

. Find the increment and differential of the volume and

explain their geometrical meaning.

2.6.12. The law of the free fall of a material point is s = gt 2
/2.

Find the increment and differential of the distance at a moment t

and elucidate their mechanical meaning.

§ 2.7. Additional Problems

2.7.1. Given the functions: (a) f(x) = \x\ and (b) cp (a;) =
|
x3

[.

Do derivatives of these functions exist at the point ^ = 0?

2.7.2. Show that the curve y = e\*\ cannot have a tangent line

at the point x = 0. What is the angle between the one-sided tan-

gents to this curve at the indicated point?

2.7.3. Show that the function

f(x) = \x—a\y(x),

where q(x) is a continuous function and (p(a)=^=0, has no deriva-

tive at the point x = a. Find the one-sided derivatives /1(a) and

/; (a).
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2.7.4. Given the function

f j
x2 s\n(l/x) at x^=0,

\ at * = 0.

Use this example to show that the derivative of a continuous

function is not always a continuous function.

2.7.5. Let

^^ / -^
2

>
if a:^ x

,

\ ax+ b
y

if a: > a* .

Find the coefficients a and b at which the function is continuous
and has a derivative at the point x .

2.7.6. By differentiating the formula cos 3a: = cos 3 x— 3 cos x sin 2 x
deduce the formula sin 3a: = 3 cos2 x sin x— sin 3

a:.

2.7.7. From the formula for the sum of the geometric progression

deduce the formulas for the following sums:

(a) \ + 2x+ 3x2 + . . . +nxn ~ 1 '

i

(b) \
2 + 2 2x+ 3 2x2 + . . . +n 2xn-\

2.7.8. Prove the identity

cosx+ cos3*+ . . . +cos(2tt— 1)a:=
s 'n2nx

,
x^-kn

1 v 7 2 sin x •
^

and deduce from it the formula for the sum

sin x+ 3 sin 3x+ . . . + (2n— 1) sin (2n— l)x.

2.7.9. Find y' if:

(a) #-/(sin 2
*) + /(cos 2

x); (b) y = f(e*)e'™;

(c) y = logcp {x) (x) (cp (x) > 0; (x) > 0).

2.7.10. Is it reasonable to assert that the product F (x) = f (x) g(x)
has no derivative at the point a: = a: if:

(a) the function f (x) has a derivative at the point x0l and the

function <p(x) has no derivative at this point?

(b) neither function has a derivative at the point x ?

Consider the examples: (1) f(x)=x, g(x) = \x\;

(2) /(x) = |*|. g(x)= \x\.

Is it reasonable to assert that the sum F (x) = f (x)+ g (x) has no
derivative at the point x = x if:
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F(x) =

(c) the function f (x) has a derivative at the point x , and the

function g(x) has no derivative at this point?

(d) neither function has a derivative at the point x ?

2.7.11. Prove that the derivative of a differentiate even function

is an odd function, and the derivative of an odd function is an
even function. Give a geometric explanation to these facts.

2.7.12. Prove that the derivative of a periodic function with

period T is a periodic function with period T.

2JA3. Find F' (x) if

X X* xd

1 2x 3x2

2 6x

2.7.14. Find the derivative of the function y = x\x\. Sketch the

graphs of the given function and its derivative.

2.7.15. Suppose we have a composite function y = f(u) 9
where

u^=(p(x). Among what points should we look for points at which

the composite function may have no derivative?

Does the composite function always have no derivative at these

points? Consider the function y = u2
y
u = \x\.

2.7.16. Find y" for the following functions:

x2 sin (l/x), x =7^ 0,

at * = 0.

Is there #"(0)?

2.7.17. (a) f(x)=xn
; show that

/'(l)
. /

(2) d)

(a) y = \x*\\ (b) y =

(b) f (x)=x
n ~ 1e

l/x
; show that

2.7.18. y=x2e~x/a
; show that

(—\)
nn(n-

n\
= 2n .

(n=l, 2, ...).

i)

an
~ 2

2.7.19. Show that the function y = atcs\nx satisfies the relation

(\—x2)y" = xy
f

. Find y
in)

(0) (n > 2) by applying the Leibniz for-

mula to both members of this identity.

2.7.20. Prove that the Chebyshev polynomials
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satisfy the equation

(1 -x2

) r; (x)-xT'n (x) + n2T n (x) = 0.

2.7.21. The derivative of the nth order of the function e'*
2

has

the form
(e-x

2y>»= e
- x2H n (*),

where H n (x) is a polynomial of degree n called the Chebyshev-

Hermite polynomial.

Prove that the recurrence relation

Hn+l (x)-2xH n (x) + 2nH n _ 1
(x)^0 2, ...)

is valid.

2.7.22. Show that there exists a single-valued function y=y(x)
defined by the equation y* + 3y = x

y
and find its derivative y'

x .

2.7.23. Single out the single-valued continuous branches of the

inverse function x = x(y) and find their derivatives if y = 2x2—

x

4
.

2.7.24. u = ^r\n^r^-\ check the relation ^^ = 1.
2 \—v dvdu

2.7.25. Inverse trigonometric functions are continuous at all

points of the domain of definition. Do they have a finite deriva-

tive at all points of the domain? Indicate the points at which the

following functions have no finite derivative:

(a) ^ = arccos^y?-; (b) */ = arc sin

.

2.7.26. Show that the function y = y(x), defined parametrically:

x = 2t— \t
, y = t

2 + t\t\
9

is differentiate at f = but its deriva-

tive cannot be found by the usual formula.

2.7.27. Determine the parameters a, b, c in the equation of the

parabola y = ax2 + bx+ c so that it becomes tangent to the straight

line y = x at the point 1 and passes through the point (— 1, 0).

2.7.28. Prove that the curves y 1
= f(x) (/ (x) > 0) and y2

=
= f(x)sinax, where f (x) is a differentiate function, are tan-

gent to each other at the common points.

2.7.29. Show that for any point M (x09 y ) of the equilateral

hyperbola x2— y
2 = a 2 the segment of the normal from the point

M to the point of intersection with the abscissa is equal to the

radius vector of the point M.

2.7.30. Show that for any position of the generating circle the

tangent line and the normal to the cycloid x=a(t— sin/),

y = a(l— cost) pass through the highest (at, 2a) and the lowest

[at, 0) points of the circle, respectively.

5—3148
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2.7.31. Show that two cardioids p = a (1 -f-coscp) and p =
= a (I — coscp) intersect at right angles.

2.7.32. Let y = f(u), where u = y(x). Prove the validity of the

equality

d*y = \"' (u) du 3 + 3/" (u) du d*u + f (u) d*u.

2.7.33. Let y = f(x), where x = <p(t); the functions f (x) and
cp(0 are twice differentiable and dx=^=0. Prove that

„ _ d2ydx—dyd2x
~ dx* »

where the differentials forming the right member of the relation

are differentials with respect to the variable t.

2.7.34. How will the expression

<«-*>S- 4?+ y

be transformed (where y is a twice differentiable function of x) if

we introduce a new independent variable putting x = cost?

2.7.35. In determining an electric current by means of a tangent

galvanometer use is made of the formula

/ =k tan (p,

where / = current

k = factor of proportionality (depending on the instrument)

cp = angle of pointer deflection.

Determine the relative error of the result which depends on the

inaccuracy in reading the angle cp. At what position of the pointer

can one obtain the most reliable results?



Chapter
3
APPLICATION OF DIFFERENTIAL
CALCULUS TO INVESTIGATION
OF FUNCTIONS

§ 3.1. Basic Theorems on Differentiable Functions

Fermat's Theorem. Let a function y = f(x) be defined on a cert-

ain interval and have a maximum or a minimum value at an in-

terior point xQ of the interval.

If there exists a derivative f (x ) at the point x0y then f'(x ) = 0.

Rolled Theorem. If a function f (x) is continuous in the interval

[a, 6], has a finite derivative at all interior points of this interval,

and f(a) = f(b), then inside [a, b] there exists a point b)

such that f'{l) = 0.

Lagrange's Theorem. If a function f(x) is continuous in the in-

terval [a, b] and has a finite derivative at all interior points of

the interval, then there exists a point £g(a, b) such that

f(b)-f(a) = (b-a)f®.

Test for the Constancy of a Function. If at all points of a cer-

tain interval /'(x) = 0, then the function f (x) preserves a constant

value within this interval.

Cauchy's Theorem. Let (p (x) and ip(x) be two functions continu-

ous in the interval [a, b] and have finite derivatives at all inte-

rior points of the interval. If these derivatives do not vanish si-

multaneously and (p (a) <p (b)
9
then there exists £€(a, b) such that

t|)(fr)-t|)(a) ^tK (E)

<p(&)'— <p(a) <p'(g)
'

3.1.1. Does the function f(x) = 3x2— 1 satisfy the condition of

the Fermat theorem in the interval [1, 2]?

Solution. The given function does not satisfy the condition of the

Fermat theorem, since it increases monotonically on the interval

[1, 2], and, consequently, takes on the minimum value at x = 1 and
the maximum one at x = 2, i. e. not at interior points of the in-

terval. Therefore, the Fermat theorem is not applicable; in other

words, we cannot assert that /'(l) = /'(2) = 0. Indeed, ^ (1) = 6,

/'(2)=12.

5*
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3.1.2. Do the following functions satisfy the conditions of the

Rolle theorem?

(a) f(x) = \-Vtf in [-1, 1];

(b) f(x) = In sin x'm [ji/6, 5ji/6];

(c) /(*)= 1-|*| in [-1, 1].

If they do not, explain why.
Solution, (a) The function is continuous in the interval [— 1, 1];

furthermore, / (— 1) = /(1) = 0. Thus, two conditions of the Rolle

theorem are satisfied. The derivative f'(x) = —2/(3 y/ x) exists at

all points except # = 0. Since this point is an interior one, the third

condition of the theorem is not satisfied. Therefore, the Rolle the-

orem is not applicable to the given function. Indeed, /'(jk)^0 in

[-1. !]•

3.1.3. Prove that the equation

3x6 + 15*—8-0

has only one real root.

Solution. The existence of at least one real root follows from the

fact that the polynomial f (x) = 3*5 + 15*— 8 is of an odd power.

Let us prove the uniqueness of such a root by reductio ad absur-

dum. Suppose there exist two roots x
1 < x2 . Then in the interval

[*!, x
2 ] the function f (x) = 3xb I5x— 8 satisfies all conditions of

the Rolle theorem: it is continuous, vanishes at the end-points and
has a derivative at all points. Consequently, at some point \,x

x < \ < x
2 ,

f'(t) = 0. But /'(*)= 15 (x*+ 1) > 0. This contradiction proves that

the equation in question has only one real root.

3.1.4. Does the function f(x) = 3x2— 5 satisfy the conditions of

the Lagrange theorem in the interval [— 2, 0]? If it does, then

find the point g which figures in the Lagrange formula f (b)— f(a) =
= f(E) (b-a).

Solution. The function satisfies the conditions of the Lagrange
theorem, since it is continuous in the interval [— 2, 0] and has a

finite derivative at all interior points of the interval. The point £

is found from the Lagrange formula:

f> /tx _ At _ /(Q)-/(-2) -5-7 _ __R
/ \±) — ufc 0— (—2) 2 ~" '

whence £ = — 1.

3.1.5. Apply the Lagrange formula to the function f(x)=\nx in

the interval [1, e] and find the corresponding value of £.

3.1.6. Ascertain that the functions f(x) = x 2— 2*+ 3 and g(x) =
= x3— 7x2 + 20x— 5 satisfy the conditions of the Cauchy theorem

in the interval [1, 4] and find the corresponding value of £.
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Solution. The given functions f (x) and g(x) are continuous eve-

rywhere, and hence, in the interval [1, 4] as well; their derivatives

f (x) = 2x— 2 and g' (x) = 3x2— \4x+ 20 are finite everywhere; in

addition, g' (x) does not vanish at any real value of x.

Consequently, the Cauchy formula is applicable to the given

functions:

/(4)-/(l) = nE)
S(4)-s(l) g'iQ*

i. e.

27— 9 3g2— 14g+ 20 y ^ 6 ^ ;

Solving the latter equation, we find two values of £:E
1
= 2 and

i2
=4.
Of these two values only ^ = 2 is an interior point of the interval.

X2

3.1.7. Do the functions f(x) = ex and g (x) = p-^ satisfy the con-

ditions of the Cauchy theorem in the interval [—3, 3]?

3.1.8. On the curve y = x* find the point at which the tangent

line is parallel to the chord through the points A(— 1, —1) and

fl(2, 8).

Solution. In the interval [
— 1, 2], whose end-points are the abs-

cissas of the points A and B, the function y = x3
is continuous and

has a finite derivative; therefore the Lagrange theorem is applicable.

According to this theorem there will be, on the arc AB, at least

one point M, at which the tangent is parallel to the chord AB.
Let us write the Lagrange formula for the given function:

/(2)-/(-l) = /'(g)[2-(-l)]
f

or

8 + 1 = 36 2
• 3;

whence

Ex 1. I,= l.

The obtained values of £ are the abscissas of the desired points

(as we see, there exist two such points). Substituting and S-
2

in

the equation of the curve, we find the corresponding ordinates:

yi = l'i = l; y2 = U = — l.

Thus, the required points are: M
y (\, 1) and Af

2
(— 1, —1), of which

only the former is an interior point on the arc AB.
Note. This problem can be solved without using the Lagrange the-

orem; write the equation of the chord as a straight line passing

through two given points, and then find the point on the curve at

which the tangent is parallel to the chord.
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3.1.9. Taking advantage of the test for the constancy of a func-

tion, deduce the following formulas known from elementary math-

ematics:

(a) arc sinx+arc cosx = ji/2;

(b) sin 2 x = (l— cos2x)/2;

(c) arc cos -r-,— 2 arc tan a; at O^Zx <oo;

defined in the interval f— 1, 1]. The derivative of the indicated

function inside this interval equals zero:

According to the test for the constancy of a function / (x) = const,

i. e. arcsin A:+ arccosA: = C (— 1<#<1).
To determine the constant C let us put, for instance, x=0; then

we have jx/2 = C, whence

The validity of this equality at the points a:=±1 is verified

directly.

(b) Let us take the function

defined throughout the number scale: — oo < a; < oo. The derivative

of this function is everywhere equal to zero:

To determine C put, for instance, x= 0; then we get 1/2 = C.

Wherefrom

arc sin a:+ arc cos a: = jt/2 (— 1 < x < 1).

/ (x) = sin 2 x+y cos 2a;

f (a;) = 2 sin a: cos a;— sin 2a; = 0.

According to the test for the constancy of a function

sin 2 x+ y cos 2a: = C.

sin 2 x+y cos2x = y

,
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or
. 9 1 — cos 2x

s\n 2 x = ^ •

(c) Let us introduce the function

/ (x) == arc cos l~* — 2 arc tan x,

\ — X 2 < 1.determined along the entire number scale, since
^2

The derivative of the function f (x) is zero for all x > 0:

p / x 1 —4a; 2 4x 2 ^~ ~~~j/7
^

1 ~

*

3

y
( 1

+

*a)a
~
Y+7* 2x (

i

~|- x~)
=

According to the test for the constancy of a function

arc cos t——-— 2 arc tan x = C at x > 0.

To determine C let us put, say, x = 1, which gives C = arccos0

—

— 2 arc tan 1 =0.
The validity of the proved formula at x = is verified directly.

Note, At x = the function arc cos r-j—r has no derivative. At
1 -\-x2

x < its derivative is

l — x2 \' 2
arc cos -

which enables us to derive the formula

arccos -j-p^2
= — 2 arc tan # (x < 0).

The latter formula can be obtained on the strength of the fact

that arc cos I
,

*
is an even function, and 2 arc tan x is an odd one.

3.1.10. As is known, (e*)'=e* for all x. Are there anymore
functions that coincide with their derivatives everywhere?

Solution. Let the function f (x) be such that f'(x)^f(x) every-

where.

Let us introduce the function

V(x) = 1g- = f(x)e-*-

The derivative of this function equals zero everywhere:

cp' (x) = f (x) e- x— e- x
f {x) = 0.

By the test for the constancy of a function f{x)/e
x = C, whence

f(x) = Cex
.
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And so, we have proved that the group of functions for which

f'(x)^f(x) is covered by the formula f(x)^Cex
.

3.1.11. Prove the inequality

arc tanx
2
— arc tan x

1 < x
2
— x lt

where x 2 > xr
Solution. To the function / (x) = arc ianx on the interval [x

l9
x

2 ]

apply the Lagrange formula:

arc tan x2
— arc tan x

x
— — xi)>

where x
x < £ < x

2
.

Since

°<T^F < 1 and ^2— ^i>0,

then
arc tan x

2
— arc tan x

l < x
2
— x

1
.

In particular, putting ^ = and x
2
= x, we get

arc tan x < x (x > 0).

3.1.12. Show that the square roots of two successive natural

numbers greater than N 2 differ by less than 1/(2 A/).

Solution. To the function f(x) = Vx on the interval [n, n+1]
apply the Lagrange formula:

/(n+l)-/(n) =/^-|/"n=^,
where n < | < n + 1

.

If n>/V 2
, then 1>N\ hence 1/(2 < 1/(2jV), whence

y n+ \—y n< \/(2N).

3.1.13. Using the Rolle theorem prove that the derivative f (x)

of the function

c , v ( x sin — at x > 0,
f(*) = i

*

( at a: =

vanishes on an infinite set of points of the interval (0, l).

Solution. The function f (x) vanishes at points where

sin (n/x) ^=0, n/x^kn, x—l/k,

k= 1, 2, 3, ...

Since the function f (x) has a derivative at any interior point

of the interval [0, 1], the Rolle theorem is applicable to anyone
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of the intervals [1/2, 1], [1/3, 1/2], [l/(k+\)
y

l/k], ... .

Consequently, inside each of the intervals of the sequence, there is

a point l k , 1 /(£+')< l k < 1/6. at which the derivative f'(lk)=0.
And so we have shown that the derivative vanishes on an infinite

set of points (see Fig. 38).

3.1.14. The Legendre polynomial is

a polynomial defined by the following

formula (Rodrigues' formula):

2 nn !

1)" (Al = 0,
dx»

(X

1, 2, ...).

Rolle theorem,Using the Koiie tneorem, prove
that the Legendre polynomial Pn (x)

has n different real roots, all of them
found between — 1 and -f 1.

Solution. Consider the function

f(x) = (x2— \)» = (x— l)
n (*+l)".

This function and its n— 1 successi-

ve derivatives vanish at the points

x = ±\ (use the Leibniz formula for

higher derivatives of the product of

It follows from f(l) = f(—l)

Fig. 38

two functions).

that inside the interval [.— 1, 1]

a point ^ can be found at which f
r

(l l )
=

t
i.e. x = l

1
will be the

root of the first derivative. Now apply the Rolle theorem once again

to the function f'(x) on the intervals [— 1, gj, [| x ,
1]. We find

that besides +1 and —1 the function f" (x) has two more roots

on the interval [— 1, 1]. Reasoning as before, we will show that,

apart from +1 and — 1, fhe (n~l)th derivative has (n— 1) more
roots on the interval [

— 1, 1], i.e. the function f
(n ~ v (x) has all in

all n+l roots on the interval [— 1, 1], which divide this interval

into n parts. Applying the Rolle theorem once again, we ascertain

that the function f
in)

(x), and hence, the function Pn (x)= ^j—j f
in)

(*),

has n different roots on the interval [— 1, 1].

3.1.15. Check whether the Lagrange. formula is applicable to the

following functions:

(a) f(x)--

(b) f(x)--

(c) f(x)^4x*— 5x2 + x— 2 on [0, 1];

(d) f(x)=l/x* (x-\) on [-1/2, 1/2].

If it is, find the values of £ appearing in this formula.

3.1.16. Using the Lagrange theorem estimate the value ln(l-j-t?)

x2 on [3, 4];

-\nx on [1, 3];

4r*— 5x2 + x— 2

5
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3.1.17. Using the Lagrange formula prove the inequality

Y^rx < \n(l+x)<x at jc > 0.

§ 3.2. Evaluation of Indeterminate Forms.
L'Hospital's Rule

I. Indeterminate forms of the type ^ ,
~. If the functions f (x)

and g(x) are differentiate in a certain neighbourhood of the point a,

except, may be, at the point a itself, and g
f

(x)=^0, and if

lim / (x) = lim g(x) = or lim / (x) = lim g(x) =- oo,
x -+ a x -* a x -> a x -y a

then
,. f (X) 1- f (X)
lim '-)-{= lim

'

a
g(x)

x _> a g'W

f (x)
provided the limit lim , / exists (UHospital's rule). The point a

x - a 8 w
may be either finite or improper -f oo or — oo.

II. Indeterminate forms of the type O oo or oo — oo are reduced

to forms of the type -jj- or ^ by algebraic transformations.

III. Indeterminate forms of the type l
30

,
oo° or 0° are reduced

to forms of the type 0-oo by taking logarithms or by the transfor-

mation [f(x)]
,pw = evwinfw

3.2.1. Applying the L'Hospital rule, find the limits of the follo-

wing functions:

ex_ e -x.__2x
, In (1 + a:

2
)(c) lim .

~

; (d) lim Q
* _ o

x—smx \ /
^ ^ Q Cos3a:— e~ x y

/ v sin 3a:
2

„ e
1 /* 2—

1

1171 Incns^-*! ' (f) lim 75 t
~
2 .

Solution, (a) Here both functions f(x) = eax— e~ 2ax and
«=ln(l+A:) are infinitesimals in the neighbourhood of zero, since

lim / (x) = 1 — 1 = 0; lim g (*) = In 1 = 0.
x -> x ->

Furthermore /' (x) and exist in any neighbourhood of the

point x^=0 that does not contain the point x- —1, and
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Finally, there exists a limit of the ratio of the derivatives:

,. /' (x) ,. aeax+2ae- 2ax
Q

Inn ^ttt = lim —
T~n~\—i—x— = oa.

Therefore the L'Hospital rule is applicable:

eax_ e -2ax aeax+2ae~ 2ax
lim —j—r:—:— lim —r-Tf—

—-— = 3a. (*)

x> In (\+x)
x 1/(1+*)

7

/Vote. When the limit of the ratio is computed according to the

L'Hospital rule the result is usually written directly as shown in (*).

Whether the desired derivatives and limits exist is ascertained in

the course of calculation. In case the ratio of the derivatives '
, ^

again represents an indeterminate form, the L'Hospital rule should

be applied for a second time, and so on until the indeterminacy is

removed or until it becomes clear that the required limits do not

exist. Therefore, henceforward we write only the necessary transfor-

mations, leaving to the reader the task of checking whether the

conditions of their applicability are fulfilled.

j/T+ 2^+1 2/(3 3/0+25)*) 4
(b) lim

v' = lim v
r ,

—-=ir
»'

l/2 + x+x 1/(2 J^2+ x)+l 9

. v r sin 3x 2
,. —6a: cos 3a:

2 cos (2x2— x)

v/
K ^ In cos (2x2— x)

x ^ (4a:— 1) sin (2a:
2 —x)

n t
. cos 3a:

2 cos (2a:
2— a:) i .= —6 lim -

A lim -
x - o

4a: — 1 x ^ o
sin (2a:

2 — x)
'

The limit of the first factor is computed directly, the limit of the

second one, which represents an indeterminate form of the type -jj- is

found with the aid of the L'Hospital rule:

~ «. cos 3a:
2 cos (2a:

2— x) ,.— 6 lim -= \ lim -r

x - o
4a: — 1 x ^ sin (2a:

2 — a:)

= — 6 • —j- lim —; n

—

^

,n 9
= 6 • —\—r = — 6.— 1 x _^ (4a:— 1) cos (2a:

2— x) — 1-1

3.2.2. It is known that, as x—>+oo, the functions xk (k > 0);

loga Jc; a* (a > 1) are infinitely large quantities. Applying the L'Hos-
pital rule, compare these quantities.

l0g x
jloga*

i

Solution. 1. lim -^f- = lim , k _ l
= \ogae lim — = 0;

kx*

,. xrn
, . mxrn ~ 1

, . m\ r,
2. lim — = lim —.— = . . . = lim -7-71—^ = 0-
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Hence, the power function xk (k>0) increases more rapidly than
the logarithmic function \oga x(a> 1), and the exponential function

ax with the base exceeding unity increases more rapidly than the

power function xrn
.

3.2.3. Find the limits:

<
a >

(b) Hra
o

(cotx-

(c) lim
1 1 1

e* — \

Solution, (a) We have an indeterminate form of the type oo— oo.

Let us reduce it to an indeterminate form of the type — and then

apply the L'Hospital rule:

,. / l l \ r x— 1— In* 1 — 1/*
lim i : = lim r—.— = lim ,

, , ,

,

=
^^jVlnA: x— \J x ^ j

(x— 1) In x
x ^ 1

In 1 — [/x

= IJm *T
1—r = lim

_^ !
* In *+ l ^ ^ ,

In a: -|-2 2'

3.2.4. Find the limits:

(a) lim xn \nx(n > 0);
x ->

<b) lim fin (1 + sin2
x) cot In

2 (1+ x)].

x ->

Solution, (a) We have an indeterminate form of the type 0-co.

Let us transform it to ^ , and then apply the L'Hospital rule:

In x 1 fx 1

lim xn In a: =. lim —- = lim ———-r=——\\m xn= 0, since rc>0.
at -> x -+

x
x -> " * -+

(b) We have an indeterminate form of the type 0-oo:

lim [in (1 + sin- x) cot ln> (1 + *)] = Jim =

1

sin 2x

2 {1 -{-tan 2 [In 2
(1 ln(l+x)

1

1+*
sin* ,.= hm = lim -

^ ln(l+x)
K ^ Q

1+a:

3.2.5. Find the limits:

(a) lim (l/x) sin
*; (b) lim x^^^-".

x -* + x -* i
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Solution, (a) We have an indeterminate form of the type oo°.

Let y -~=(\/xY'
mx

; then

In y = s\n x In (1/x),

lim \ny= lim sinxln(l/x) (indeterminate form of the type 0-oo).
x-^-fO x -> +

Let us transform it to ~ and apply the L'Hospital rule:

i- , t
. — In a: ,.

— \/x sin 2 x A
lim \nu = lim -;

—

:

— = lim —; = hm = 0.

x^ + o x^ + oh'smx x ^ — (cos x)/sin 2 x x _^ xcosx

Hence, lim y = e" = l.

x -> -I

3.2.6. Find the limits:

(a) lim (sin x)
tan

^; (b) lim**.
X-7C/2 x-»0

3.2.7. Compute

lim (tanx) cot *.

x -> + Jt/2-0

Solution. Let us take advantage of the identity

(tan co *
* = £co * * ' n *an x

but

lim cot X In \anx = lim
} " tan x= ylm — ]Hl =z Q m

x-*+jt/2-0 JC-+jt/2-0 tan * |/=tan * -> + oo #

Whence
lim (ianx) coix = e° = 1.

x-> +jt/2-0

3.2.8. Ascertain the existence of the following limits:

x2 sin (1/x)
m

(a) lim
* ->

sin x

v ,. 24-2aH- sin 2x
(b) lim —-—- rj—

;

v
*-*oo(2x+sin2;t)6>

s,n *

tan a:

(c) lim
X -+ 31/

Can the L'Hospital rule be applied in computing them?

Does its formal application lead to the correct answer?

Solution, (a) The limit exists and equals zero. Indeed,

lim f__smJJ_/£) _
jjm x

iim ^ s jn _L ^ i . o 0.

x-*0 smx x-+0 smx x-> x

But the limit of the ratio of the derivatives does not exist. Indeed,

i . 2x sin ( 1 fx)— cos ( 1 fx) A , . 1

lim
K—1 —- = — lim cos —

.
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but lim cos (1 /'x) does not exist, hence the L'Hospital rule is not
x - o

applicable here.

(b) The limit of the ratio of the functions does not exist:

Hm 2+ 2,4-sin2, ^ ,

{

2 v^ ,

*-> oc(2*+sin2*)<?
sin * ,.x\ '

2.v-|-sin 2xy

but lim e~ sinx does not exist, since the function e~ Anx traverses the
X -> GC

values from 1/e to e infinitely many times.

Now we will show that the limit of the ratio of derivatives exists:

r 2 -f 2 cos 2a:
lim —
x-> cc [2 + 2 cos 2a;+ (2x -|- sin 2x) cos x| e

sm A

4 cos- x= lim -
A .,

, /n . .
,

x ^ x 4 cos " #+(2x+sin 2a) cos a'

= lim
* C° S *

.

Q g -s.nx = 0>
v - x + 4 cos A' -j- si n 2x *

since the function e~*inx is bounded, and ~

—

,

4 cos A—_ —+ o.
2.V+4 cos x+ sin 2a-a:-^oo

Here cosx, which vanishes for an infinite set of values of x
y
has

been cancelled out. It is the presence of this multiplier that makes
the L'Hospital rule inapplicable in this case, sine? it simultaneously

nullifies the derivatives of the functions being compared.

7
v tan a- ,. sec 2 x ,. sec a tan a

(c) lim = lim t = urn , = Inn = ...
* -* jt/2

SeC x
*-*JT/2

SCC X tan X x-+n/2 tan x SeC x

Here application of the L'Hospital rule gives no useful result, though
there exists a limit:

tan* sin* cos a;
t

. . thm = lim = lim sin x = 1.

x->jt/2
sec x x->n/2 cosx

Jt->.-r/2

3.2.9. Using the L'Hospital rule find the limits of the following

functions:

7 v r In (a:
2— 3) /Ux a

Xnx— x^ I™ ,3 + 3*- 10
; ^

l

l™ =

(c) lim <?H1=£. (d) Hm i-4s^(^/6)
v

' . v cin v ' - 1 X
X -* '

(e) lim arc sin —^— cot (x— a)\ (f) lim (n— 2 arc tan x) In x;

(g) Hm f-M
tdn

*; (h) limfa 1/*— 1)* (a > 0);
* + V * / * ->• GO

(i) lim (cos mx)"'*
2

; (j) Mm (2——
tan (jiA-/(2a))
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X * 1

In a: In x J
1

(m) lim
x ->

(o) lim a;
2 cosh -

(q) lim (lncot^) tan
*;

(1) lim^/ |n <^- l
>;

x -

cot 2 X
) ; (n) lim

(P) lim

x— x2
In

(
1 + y
l/sin a

-.0 \2+ V~9-{-x

(r) lim
J/x*

1

2 arc tan x2— n
'

§ 3.3. Taylor's Formula. Application to Approximate
Calculations

If the function f (x) is continuous and has continuous derivatives

through order n— 1 on the interval [a, 6], and has a finite derivative

of the nth order at every interior point of the interval then at

[a, b] the following formula holds true:

f(x)=f (a) + f
f

(a) (x-a)+ f" (a)

+

+r (a)^ + . .
.

+

»

(-^^ +r ©^

.

where

l = a+ Q(x— a) and < 9 < 1.

It is called Taylor's formula of the function f (x).

If in this formula we put a = 0, we obtain Maclaurin's formula:

fw=f (0)

+

r (0) x+ r (0) J + . . . + -
» (0)

jj^L

+

+ f
ln} &)%, where g=6*, 0<6< 1.

The last term in the Taylor formula is called the remainder in

Lagrange's form and is denoted R n (x):

R.(x)=^ la+ ' ls- tt)]

ix-ar;

accordingly, the remainder in the Maclaurin formula has the form

3.3.1. Expand the polynomial P (x) =xb— 2x*+ x*—

x

2 + 2x— 1

in powers of the binomial x— 1 using the Taylor formula.

Solution. To solve the problem it is necessary to find the value

of the polynomial and its derivatives at the point x=\. The



144 Ch. III. Differential Calculus: Investigation of Fund's

relevant calculations are given below.

P(l)--0, P'(1) = 0,

P"(l)-0, P"'(l) = 18,

P (4) (l)-72, P (5) (l)=120,

P {n)
(x) = (n > 6)

at any x.

Substituting the values thus found into the Taylor formula, we get

P(x)^~(x-ir+^(x-iy + ^(x~\r;
P(x)=3(x— iy + 3(x— 1)

4 + (jc— l)
5

.

3.3.2. Applying the Maclaurin formula, expand in powers of x
(up to x 9

y
inclusive) the function

f(x) = \n(\ + x)
y

defined on the interval [0, 1], Estimate the error due to deleting

the remainder.

Solution.

/(0) = lnl=0.

The derivatives of any order of the given function (see § 2.3):

rw=(-ir i

{f^i.
^ (0 ) = (_i)"-i („_i)! (n= i

f 2, 3, ...).

Substituting the derivatives into the Maclaurin formula, we get

In (1 + *)=*—y + y— • • •+ y + ^io W,

where the remainder R 10 (x) in the Lagrange form will be written

as follows:

/
(10)

(£) 9! x U)

(*)
=

10! *
10 =—

10! (1 + g)
10

=—
10 (1 H- £)

10 (° < £ < *)•

Let us estimate the absolute value of the remainder R 1Q (x)\ keeping

in mind that O^a:^ 1 and I > 0, we have

l*io(*)h 10(1

3.3.3. How many terms in the Maclaurin formula should be taken

for the function f(x) = ex so as to get a polynomial representing

this function on the interval [— 1, 1], accurate to three decimal
place ?

Solution. The function f(x)=ex has a derivative of any order

f
(n)

(x) = ex .
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Therefore, the Maclaurin formula is applicable to this function. Let

us compute the values of the function ex and its first n— 1 deriva-

tives at the point x = 0, and the value of the Aith derivative at the

point £ = 0jc(0<6< 1). We will have

Whence

where

f(0) = r (0) = r(0) = ... =/"'- l »(0)=--l;

fin) ^ =e -

==eBx
m

/(*) = 1 +TT+ir+ • • • +(f^. + R^x^

Since, by hypothesis, and 0<9< 1, then

_3_
nl

"\Rn{x)\ =-^^<±e< 3

Hence, if the inequality

4- < 0.001 (*)

is fulfilled, then the inequality

I I
< o.ooi

will be fulfilled apriori. To this end it is sufficient to take n > 7

(7! = 5040). Hence, 7 terms in the Maclaurin formula will suffice.

3.3.4. At what values of x will the approximate formula

cos x « 1—2T + TT
have an error less than 0.00005?

Solution. The right member of the approximate equation repre-

sents the first six terms in the Maclaurin formula for the function

cos a: (the second, fourth and sixth terms are equal to zero; check it!).

Let us estimate R Q
(x). Since (cosa:) (6) = — cos x

9
then

!*.(*)!
- cos Qx R

• x 6

6!
< 1*1

6!

For the error to be less than 0.00005, choose the values of x that

satisfy the inequality

-L£J1 < 0.00005.

Solving this inequality, we get |#|< 0.575.

3.3.5. Compute the approximate values of:

(a) cos 5°; (b) sin 20°,
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accurate to five decimal places.

Solution, (a) Into the Maclaurin formula

COsx= 1— -g.+ iL— . . . +(— i)«-gL + R2n+2

substitute x=n/36\ since

lf=2^= -003808
' Tf=l(-f)

2

= 2 -410 ""'

we confine ourselves to the following terms:

cos a: « 1

—

x2
/2 y

the error being estimated at

<-L^<2.5.10- 6
.

And 50, within the required accuracy

cos 5° = cos i = 1 —0.00381 = 0.99619.
00

3.3.6. Compute the approximate value of Y83 accurate to six

decimal places.

3.3.7. Prove the inequalities:

(a) x—x2
/2 < In ( 1 + x)< x at x > 0;

(b) tanx> x+ x3
/3 at < x < jx/2;

(c) l+±x—^<]/
r

T+x<l+-jX at 0<x<oo.

Solution, (a) According to the Maclaurin formula with the rema-

inder R 2
(x) we have

In (1 +*) = *— 2(1 + 6)"
where < |< x.

According to the same formula with the remainder R s
(x) we have

In (1 +*) = *—4"

+

3(1 + ^)3 >
where

0<l x
<x.

Since YiTTW > and
an+EO 8 > at * > °> jt follows that

x—x2
/2 < In (1 +*)< a:.

3.3.8. Show that sin (a + ft) differs from sina + /icosa by not

more than h2
/2.

Solution. By Taylor's formula

sin (a + h) = sin a + h cos a— 4r- sin 6;

cos 6x

4T~
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whence

h2 h2

'sin (a + h)— (sina + /icosa)
|

=—
I

sinE
|

£ 3.4. Application of Taylor's Formula to Evaluation
of Limits

The expression

f(x) = f (a) + Lw {x_ a)+ rvi
(x_ ay + + {x_ a)n H

_

-\-o(\x— a\ n
)

is the Taylor formula with the remainder in Peano's form where

q (x) = o [ty (x)] means that, as x—>a
y
the function cp (x) has a high-

er order of smallness than the function i.e. lim ?4-t = 0.

In particular, at a = we have

fw=/(0)+m, + m,2+ ... + /^ xn+o(Uh .

Peano's form of the remainder for Taylor's formula shows that,

when substituting the Taylor polynomial of degree n for / (x) in the

neighbourhood of the point a, we introduce an error which is an
infinitesimal of a higher order than (x— a)

n as x—+a.
The following five expansions are of greatest importance in sol-

ving practical problems:

e*=l+x + -g.+ ... + J
n
r+o(x«);

sin x =x—~ + ...+(- 1 j^L. + o (**");

(1 + *)- = 1 + ax + * + - + ° {a~ l)
'

'

nl
^^ x»+o (*");

yl v-3 Yn

In (1+*) = *—-£- + -j- +...+ (-I)"" 1 ^ + o (x
n
).

3.4.1. Expand the function / (x) = sin 3 x— xle~ x in positive inte-

gral powers of x up to the terms of the fourth order of smallness

with respect to x.

Solution. We have

\-x + ^- + o(x*)/(*)= [x-^+owy-x*

= x2—

-

— + (*
6
)—

X

2 + X 3— + (X
4
) = X3—

-| X*+ (X4).
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3.4.2. Expand the following functions:

(a) f(x) = xV \
—x2— cos x In (1 + x)\

(b) f (*) = ln(l+sin*)

in positive integral powers of x up to the terms of the fifth order

of smallness with respect to x.

3.4.3. Applying the Taylor formula with the remainder in Peano's

.form, compute the limits:

, . r l — V\+x2 cosx
(*> l'i" _tan** _
<b) lira

X - X

(c) lim

- x 2/2
cosx— e

X,L

i- ex sin x— x (1 -\-x)
(d) hm ^ '»

x -» *

(e) hm —^-
2

.

x -> *

Solution, (a) Retaining the terms up to the fourth order with

respect to x in the denominator and the numerator, we get

- Y 1 + X2 COS X 1 — (1 -f-#
2
)

1/2 COS X
lim

tan4 * x - *
4

= 11m

. ,
1 -

,
1/2 (—1/2) d , ; J [, x2

,
x4

. . . 1l+y*2 + 7

2

; *4+ o(*4

)| [

1 --2"+ 24
+0(* )

J

x - *

, . 4 ' 8 24 '

V
' , . [ 1 . (x4 )hm ; = hm 1 1

x-+ L 3 3
*

3.4.4. Expand the following functions in positive integral powers

of the variable x up to the terms of the indicated order, inclusive:

(a) f (
x ) = e2x

~ x2 up to the term containing xb
\

(b) In cos a: up to the term containing x6
\

(c)
eX

x

_ x

up to the term containing x*.

§ 3.5. Testing a Function for Monotonicity

Let a continuous function f (x) be defined on the interval [a, b]

and have a finite derivative inside this segment. Then:

(1) For f (x) to be non- decreasing (non-increasing) on [a, b] it is

necessary and sufficient that /' (x) > (/' (x)^ 0) for all x in (a, b).
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(2) For f(x) to be increasing (decreasing) on [a, b] it is suffi-

cient to fulfil the condition f (x) > (/' (x) < 0) for all x in (a, b).

3.5.1. Determine the intervals of monotonicity for the following

functions:

(a) f(x) = 2x2— \nx;

(b) f(x) = 2x*— 9a;-— 24* + 7;

(c) /(*)

(d) f(x) = \n\x\-

(e) f(*) = 4x s— 21 * 2 + 18*4 20;

(f) f(x) = e* + bx.

Solution. The solution of this problem is reduced to finding the

intervals in which the derivative preserves its sign. If the function

f (x) has a continuous derivative in the interval (a, b) and has in

it a finite number of stationary points xu x2i xn (a < x
x <

< x
2 < . . . < xn < b)

y
where /' (xk ) = (& = 1 , 2, . .

. ,
n), then /' (x)

preserves its sign in each of the intervals (a, x
x ),

(jc
3 ,

xa ),

(a) The function is defined at x > 0.

Let us find the derivative

f'(x) = lx—\lx.

The function increases if 4x— l/x>0, i.e. * > 1/2.

The function decreases if Ax— l/x < 0, i.e. x < 1/2.

And so, the function decreases in the interval < x < 1/2 and
increases in the interval 1/2<a:<4°°-

(b) Evaluate the derivative

f (
X) = 6x2— 18a:— 24 = 6 (x

2— 3x— 4).

It vanishes at the points x = — 1 and x=4. Since f (x) is a

quadratic trinomial with a coefficient at its highest-power term 6 > 0,

then f (x) > in the intervals

(_ oo, —1), (4, oo), and /' (x)<0
in the interval (—1, 4). Con-
sequently, f (x) increases in the

first two intervals, whereas in

(—1, 4) it decreases.

(c) In this case the derivative

f'(x) = (2x— x2)e~ x vanishes at

the points x = and x=2. In

the intervals (— oo, 0) and (2, oo)

the derivative /' (x) < and the

function decreases; in (0, 2) the

tion increases (see Fig. 39).

3.5.2. Find the intervals of decrease and increase for the follo-

wing functions:

Fig. 39

derivative f'(x)>0 and the func-
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(a) / (x) = cos (n/x);

(b) f(x) = smx+ cosx on [0, 2jx].

Solution, (a) The function y = cos (n/x) is defined and differentiable

throughout the number scale, except at the point x = 0\

, ji . ji

tj = — sin — .

As is obvious, the sign of y' coincides with that of the multi-

plier sin (n/x).

(1) s\n(n/x) > if

2kn < n/x < (2k+ 1) n (k =
9 ±1, ±2, . ..);

(2) sin (n/x) < if

(2k -f 1) Jt < jt/* < 2(6 + 1) n.

Hence, the function increases in the intervals

1 1

,2Jfe+l ' 2k

and decreases in the intervals

26 + 2
9

2k-\-\

3.5.3. Investigate the behaviour of the function f(x) = 2s\nx +
-ftanx

—

3x in the interval (

—

ji/2, n/2).

Solution. The derivative

f/ . v ri i 1 o (1 — COS *) (1 + COS X— 2 COS 2

/ (a:) = 2 cos # H 5
3 = —]— =

'
v 7 1 COS 2 X COS 1 X

_ 4 sin 3
(jc/2) sin(3A:/2)

cos 2 x

is positive in the intervals (—n/2, 0) and (0, n/2) and vanishes

only at x = 0. Hence, in (—k/2, jx/2) the function / (a:) increases.

3.5.4. Prove that at 0<#<1 the inequalities

x— x3
/3 < arc tan a: < x— x*/6

are fulfilled.

Solution. We will prove only the right inequality (the left one

is proved analogously).

The derivative of the function

X3

f (x) = arc tan x— x+ -g-

is equal to

/'(*>=_! i
i gl = *2

(*
2 -i)

/ W 1+JC2 1 2 2(l + x2
)
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The function f(x) is continuous throughout the entire number
scale, in particular, it is continuous in the interval [0, 1], and in-

side this segment /' (x) < 0. Therefore, f (x) decreases on the interval

[0, 1] and, consequently, for any point x, 0<x^ 1, the inequality

/(x)</(0) = or

is fulfilled, whence

a:
3

arc tanx— x + ~q <

arc tanx < x— -g-.

3.5.5. Prove the inequalities

x— x3
/6 < sin* < x at x > 0.

3.5.6. Prove that for O^p^l and for any positive a and b

the inequality (a + by^.ap+ bP is valid.

Solution. By dividing both sides of the inequality by bP we get

or

where x = .

b

Let us show that the inequality (*) holds true at any positive x.

Introduce the function

f(x)= 1+xP— (\+x)P; x>0.

The derivative of this function

/' {x) = pxP' 1— p(l+x)P' l = p
1

-p (X+'xy-p

is positive everywhere, since, by hypothesis, 1

—

p^O and x > 0.

Hence, the function increases in the half-open interval [0, oo), i.e.

f(x)=l+xP— (l+x)P>f{0) =
9
whence 1 + xp >(1 +x)p, which

completes the prcof. If we put p=\/n
9
then we obtain

3.5.7. Prove that the function y = x b + 2x* + x increases everywhere,

and the function y=l — x* decreases everywhere.

3.5.8. Determine the intervals of increase and decrease for the

following functions:

(a) f(x) = x* + 2x— 5; (b) f (x) = In (1 — x2
);

(c) f(x) = cosx—x; (d) f(x) = -jx?~;
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(e)/W = H5; (0 f{x) =

3.5.9. Prove the following inequalities:

(a) tan* > x + x*/3, if (0 < x < jt/2);

(b) ex ^ l+x for all values of x\

(c) > at a: > 1.

3.5.10. At what values of the coefficient a does the function

f(x) = x 3— ax increase along the entire number scale?

?.5.11. At what value of b does the function

decrease along the entire number scale?

§ 3.6. Maxima and Minima of a Function

If a function y=f(x) is defined on the interval X
y
then an in-

terior point x of this interval is called the point of maximum of

the function f (x) [the point of minimum of the function f (x)] if

there exists a neighbourhood U£X of the point x , such that the

inequality f(x)^.f(x
fi) [f (x)^f(x )] holds true within it.

The generic terms for points of maximum and minimum of a fun-

ction are the points of extremum.
A Necessary Condition for the Existence of an Extremum. At

points of extremum the derivative /' (x) is equal to zero or does

not exist.

The points at which the derivative f (x) = or does not exist are

called critical points.

Sufficient Conditions for the Existence of an Extremum.
I. Let the function f (x) be continuous in some neighbourhood of

the point x .

1. If /'(#)> at x < x and /'(#)< at x > x (i.e. if in mo-
ving from left to right through the point x the derivative changes

sign from plus to minus), then at the point x the function reaches

a maximum.
2. If /' (x) < at x < x and /' (x) > at x > x (i.e. if in mo-

ving through the point x from left to right the derivative changes

sign from minus to plus), then at the point x the function reaches

a minimum.
3. If the derivative does not change sign in moving through the

point x , then there is no extremum.
II. Let the function f (x) be twice differentiate (that is /' (x ) = 0)

at a critical point x . If f"(x )<0, then at x the function has a

maximum; if /" (x ) > 0, then at x
{)

the function has a minimum;
but if f" (x ) = 0, then the question of the existence of an extremum
at this point remains open.

f (x) = s'mx— bx + c
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III. Let f'(xn ) = r(x o)=...=P''-»(x ) = 0, but /<»>(x )^0. H
n is even, then at f

(n)
(x

{) ) < there is a maximum at # , and at

f
{rn (x ) > 0, a minimum.

If /2 is odd, then there is no extremum at the point x .

IV. Let a function y = f(x) be represented parametrically:

* = <p(0» y = ty(t),

where the functions <p(t) and ty(t) have derivatives both of the first

and second orders within a certain interval of change of the argu-

ment t, and cp' (0=7^0. Further, let, at t = t

y (/) = o.

Then:

(a) if (/ ) < 0, the function y = f(x) has a maximum at x =
= *o = <P('o);

(b) if i|/ (/ ) > 0, the function y = f(x) has a minimum at x =
= *o = <p

(c) if i|5

/r

(/ ) = 0, the question of the existence of an extremum
remains open.

The points at which q/ (/) vanishes require a special study.

3.6.1. Using the first derivative, find the extrema of the follo-

wing functions:

(a) f(x) = -jx'—

x

3— 9x2 + 7;

(b) /(*)=**— 8x* + 22x2— 24x+ 12;

(c) = 1)
3 (*-3) 2

;

Solution, (a) The function is defined and differentiate over the
entire number scale. Therefore, only the real roots of the derivative

/' (x) = 3x*— 3x 2— I8x = 3x (x + 2) (x—3)

are critical points. Equating this expression to zero, we find the

critical points: x
x
= — 2, x

2
= 0, x 3

= 3 (they should always be ar-

ranged in an increasing order). Let us now investigate the sign of

the derivative in the neighbourhood of each of these points. Since

there are no critical points to the left of the point x= —2, the

derivative at all the points x <—2 has one and the same sign: it

is negative. Analogously, in the interval (—2, 0) the derivative is

positive, in the interval (0, 3) it is negative, at x > 3 it is posi-

tive. Hence, at the points x
x
= —2 and x3

= 3 we have minima

/(—2)^—9 and / (3) = — 40-^- , and at the point *
2
= 0, maxi-

mum / (0) = 7.
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(c) Just as in item (a), the critical points are the roots of the

derivative /'(#), since the function is defined and differentiate

throughout the number scale. Find f (x):

f' (x) = (x + l)
3
(x - 3)

2 + 3x (x + l)
2
(x— 3)

2 + 2x (x + 1
)

3 x

X (x— 3) = 3 (x + 1
)

2 (x— 3) (2x2 -3x— 1).

Equating this expression to zero, we find the critical points:

^ = -1, x
2
^(3-|/T7)/4, *, = (3 + |/T7)/4, x

4
= 3.

Let us tabulate the signs of the derivative in the intervals be-

tween the critical points:

Intervals x < X
l
< X < x2 x2 < X < x3 x

:i
< x < x

4
x

A < X

Sign of /' (x)

As is seen from the table, there is no extremum at the point

x
t
= — 1, there is a minimum at the point x2 , a maximum at the

point x
3 , and a minimum at the point #

4
.

3.6.2. Using the first derivative, find the extrema of the follo-

wing functions:

(a) / (x) = 3

(b) / (x)='t/(x-iy+V(x+iy.

Solution, (a) The function is defined and continuous throughout

the number scale.

Let us find the derivative:

From the equation f'(x) = we find the roots of the derivative:

x= ± 1.

Furthermore, the derivative goes to infinity at the point x = 0.

Thus, the critical points are *1==— 1, x2 = 0, x3
=l. The results

of investigating the sign

of the derivative in the

neighbourhood of these

points are given in Fig.

40. The investigation

shows that the function

has two maxima: /(— 1) = 2; /(1) = 2 and a minimum / (0) = 0.

3.6.3. Using the second derivative, find out the character of the

extrema of the following functions:
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(a) y = 2 sin a;-|-cos2x;

(b) f(x)^2x i— 15x2— 84* + 8.

Solution, (a) Since the function is a periodic one we may confine

ourselves to the interval [0, 2n}. Find the first and second deri-

vatives:

y' = 2 cosx— 2 sin 2x== 2 cos x (1 — 2 sin x)\

y" = —2sinx— 4 cos 2x.

From the equation 2 cos a: (1

—

2s\nx) = determine the critical

points on the interval [0, 2n}\

x
x
= jt/6, x 2

=ji/2, x 3
= 5jx/6, x4

= 3ji/2.

Now find the sign of the second derivative at each critical point:

y" (xc/6) = — 3 < 0; hence, we have a maximum y (n/6) = 3/2 at

the point x
l
= Jt/6;

(jx/2) — 2 > 0; hence, we have a minimum # (ji/2) = 1 at the

point x 2
= ji/2;

(/" (5ji/6) = — 3 < 0; hence, we have a maximum y (5ji/6) = 3/2

at the point a'
:j
= 5jx/6;

y" (3jx/2) = 6 > 0; hence, we have a minimum #(3^/2) = — 3 at

the point x
4
= 3jt/2 (see Fig. 41).

Fig. 41

3.6.4. Investigate the following functions for extrema:

^<Hr +3
^o)

)

:

Solution, (a) Though the derivative

/
_2(jr<0),

1 3(x>0)

exists at all points, except the point x = 0, and changes sign from
minus to plus when passing through the point x = 0, there is no
minimum here:

/ (0) = 5 > / (*) at —l<x<0.
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This is explained by the fact that the function is discontinuous

at the point x = 0.

(b) Here the derivative /' (x) = 4x(x 0) also exists at all points,

except at x = 0, and it changes sign from minus to plus when pass-

ing through the point x = 0. Nevertheless, we have here a maximum
but not a minimum, which can readily be checked.

It is explained by the fact that the function is discontinuous at

the point x = 0.

3.6.5. Find the extrema of the following functions:

(a) / (x) =
3^4+ 8^3_ 18a:2_|_ 6o»

(b) f(x) = Ve*—\.
Solution, (a) Here it is simpler to find the extrema of the func-

tion f1
(x) = 3x* + 8x*— 18x2 + 60. Since

f[ (
x) = 1 2x 3 + 24x2— 36jc= 1 2x (x

2 + 2x— 3)

,

fi(*) = 12(3*a + 4*— 3),

the critical points are:

x
1
= 3, x

2
= 0, x

3
= 1

,

and the character of the extrema is readily determined from the

sign of the second derivative fl(—3) > 0; hence, at the point x
x
= —3

the function f 1
(x) has a minimum, and the given function f (x)

obviously has a maximum / (—3) = — 2/3, f"x (0) < 0; hence, at

the point x
2
= the function f 1

(x) has a maximum, and f(x) a

minimum /(0) = 5/6; /

r
'

1
'(l)>0; hence, at the point x

3
=^\ the

function f 1
(x) has a minimum, and f (x) a maximum /(lj = 50/53.

(b) In this case it is easier to find the points of extremum of

the radicand

which coincide with the points of extremum of the function / (x).

Let us find the critical points of f 1
(x):

f'l (x) = 2xex2
; f[(x)=0 at the point x= 0. Determine the sign of

the second derivative at the point x = 0:

f\{x) = 2e*'{\+2x% fi(0)=2>0.

Therefore the point x = is a minimum of the function f^{x)\ it

will also be a minimum of the given function f (x): f(0)=0.

3.6.6. Investigate the character of the extremum of the function

y = cosh x+ cos x at the point x= 0.

Solution. The function y is an even one and apparently has an

extremum at the point x = 0. To determine the character of the
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extremum let us evaluate the derivatives of this function at the

point x = 0:

y'^smhx— sin x, y'(0) = 0;

y" = cosh^— cos x, y"(0) = 0;

y"' = sinh x+ sinx, y"'(0)=0;

#
(4) = cosh x + cosx; y

u
> (0) = 2 > 0.

Since the first non-zero derivative at the point x = is a derivative

of an even order, which takes on a positive value, we have a mi-

nimum y(0) = 2 at this point.

3.6.7. Investigate the following functions for an extremum at

the point x = 0:

(a) y = cosx— — (b) y = cos x— 1 + -y .

a:
2

Solution, (a) = — sinx+ x ^" ;
j/'(0) = 0;

=— cosx+1

—

x; y" (0)=0;
«/

#// = sinjc— 1; y"'(0) = — 1=^0.

And so, the first non-zero derivative at the point x= is a deri-

vative of the third order, i. e. of an odd order; this means that

there is no extremum at the point x = 0.

3.6.8. Investigate the following functions for extrema:

(a) / (x) = x*e~*
2

;
(b) / (x) = sin 3x— 3 sin*.

Solution, (a) The function f (x) = x*e~ x *
is continuously differen-

tiate everywhere. Equating the derivative

/' (x) = 4x»e- x2—2xbe~ x2 = x3e~ x2
(4— 2/)

to zero, find the critical points:

= —V2\ x2
= 0; x., = V2.

Compute the values of the second derivative at the critical points:

/" (x) = Wx^-**— 8x*e~ x * —lOx'e-** + 4x«e-*
2 =
= 2x2e- x2

{6— 9x2 -\-2x A

y>

r(0) = 0; r(-K2)<0; f" (V~2 ) < 0.

Consequently, at the points x
t

=— K2 and x
3 =-f-j/2 the function

reaches a maximum f (±1^2) = 4e~ 2 = \ . As far as the critical

point x
2
= is concerned, nothing definite can be said as yet, we

have to find derivatives of f (x) of higher orders (up to the fourth

order!). But this process is cumbersome, therefore we will turn to

the first sufficient condition of an extremum: let us find the signs
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of the first derivative in the neighbourhood of the critical point

*
a
=0:

/'(-1)<0; /'(1)>0.

Hence, at the point x = the function has a minimum /(0) = 0.

3.6.9. The function y = f(x) is represented parametrically:

|
x = <p(t) = t

b— 5P— 20/ + 7,

\ y== ty(t) = 4P— 3t
2 —\8t \-3 (—2 <t <2).

Find the extrema of this function.

Solution. We have

<p'(0 = 5f 4 — 15/ 2— 20.

In the interval (—2, 2) y'(t)=£0.
Find \|/ (/) and equate it to zero:

i|/(0= 12/ 2— 6/ — 18 = 0.

Whence *, =— 1 and f
?
= 3/2.

These roots are interior points of the considered interval of va-

riation of the parameter t.

Furthermore:

f (t) = 24/ — 6; ^ (
—

1 ) = _ 30 < 0, f (3/2) = 30 > 0.

Consequently, the function y=:f(x) has a maximum #=14 at

/= — 1 (i.e. at #=31) and a minimum */
= — 17.25 at t = 3/2

(i. e. at *=— 1033/32).

3.6.10. Find the maxima and minima of the following functions:

Ax
(a) f{x) = x*e-*\ (b) f(x) =

(c) f(x) = - x- V(^W; (d) f (x) =

xa -|- 4
'

14

a:
4— 8xa+ 2'

(e) / (*) = ^/2x3 + 3jc
2— 36jc;

(f ) / (*) = x2 In *; (g) f(x) = x In
2

a:.

3.6.11. Investigate the following functions for an extremum at

the point x = 0:

(a) f (x) = s'm x—x\ (b) f(x)==s'mx—x + x*j3;

(c) f(x) = s\nx—x +^—£;
e v*, if x=£0,

<d
> '<*>=.(>.

if x =



§ 3.7. Finding the Greatest and the Least Values 0/ a Function 1 59*

§ 3.7. Finding the Greatest and the Least
Values of a Function

The greatest (least) value of a continuous function f (x) on an
interval [a, b] is attained either at the critical points, or at the
end-points of the interval. To find the greatest (least) value of the

function we have to compute its values at all the critical points

on the interval [a, b], the values f(a), f (b) of the function at the

end-points of the interval and choose the greatest (least) one out

of the numbers obtained.

If a function is defined and continuous in some interval, and if

this interval is not a closed one, then it can have neither the

greatest nor the least value.

3.7.1. Find the greatest and the least values of the following

functions on the indicated intervals:

(a) f(x) = 2x 3— 3a:
2- \2x+ 1 on [—2, 5/2];

(b) f(x) = x2 \nx on [1, e\\

(c) f (x) = xe~ x on [0, +00];

(d) f(x) = V(\-x*)(l + 2x*) on [-1. 1].

Solution, (a) Find the derivative f (x):

I' (x) = 6x2 — 6x— 12.

It vanishes at two points: x
1
= — 1 and x

2
= 2. They both lie in-

'

-2 -z
> 2

side the indicated interval consequently both of them

must be taken into consideration. To find the extreme values of

the function it is necessary to compute its values at the points

a-j and x
2 , and also at the end-points of the segment:

f(-2) = -3, f(-l) = 8; /(2) = — 19, f(A) = _16 1

/2 J 2
'

Hence, the greatest value is /(— 1) = 8 and the least f(2) = — 19.

(b) Find the critical points: f (x) = x(l + 2\nx). The derivative

f (x) does not vanish inside the given interval [1, e]. Therefore

there are no critical points inside the indicated interval. It now
remains to compute the values of the function at the end-points of

the interval [1, e]

f(l) = 0; f(e) = e\

Thus, /(1) = is the least value of the function and f(e) = e
2 the

greatest.

3.7.2. Find the greatest and the least values of the following

functions on the indicated intervals:

(a) f/ = sin a; sin 2a; on (—00, 00);
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(b) # = arc cosx2 on [— V 2/2, J/2/2];

(c) y = x+ ]/ x on [0, 4].

Solution, (a) Represent the function y = sin a: sin 2x in the form

cos x— cos 3x

y
=

2
— «

whence it is seen that the function is an even one and has a pe-

riod 2jx. Hence, it is sufficient to seek the greatest and the least

values among the extrema on the interval [0, n]. Find the deri-

vative y'\

y' = y(3sin 3x— sin x).

In [0, n] the derivative vanishes at the points

x, = 0, x2
= arc cos yL=

,
x

3 = arccos^— '
x

^
rz=zjl -

Compute the values of the function at these points:

l

y(0) = y(n) =
y y arc cos

, , r _ = 4-
3 vi

y

Hence, the least value of the function in the interval (— oo, oo)

is equal to —4/(3/3), and the greatest to 4/(3 1/3).

3.7.3. The function

f(x)=ax + ^ (a, b, x>0)

consists of two summands: one summand is proportional to the
independent variable x, the other inversely proportional to it.

Prove that this function takes on the least value at x = ]/~b/a.

Solution. Find the roots of the derivative f (x) in the interval

(0, oo):

f'(x) = a-± =

at x = V'b/a (x>0). Since f" (x) = 2b/x> > for any x > 0, the func-

tion f (x) reaches a minimum at this critical point. This is the

only extremum (minimum) in the interval (0, oo). Hence, at

x = Vb/a the function f (x) attains the least value.

3.7.4. As a result of n measurements of an unknown quantity
x the numbers xlt x

2 , . . . ,
xn are obtained.

It is required to find at what value of x the sum of the squares
of the errors

f (X ) = (
X- Xlr + (x-x

2 )* + . . . + (*-*B )

2

will be the least.
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Solution. Compute the derivative

1'
(
X )
= 2 (x—x

t ) + 2(x—xt)+...+2 (x— xn).

The only root of the derivative is

n

Then, for all x we have f" (x) ==== 2n > 0. Therefore, the function

f(x) has its minimum at the point

Being the only minimum, it coincides with the least value of

the function (cf. Problem 1.3.8).

And so, the best (in the sense of "the principle of the minimum
squares") approximate value of an unknown quantity x is the arith-

metic mean of the values x
ly

x
2 , . . . ,

xn .

3.7.5. Find the largest term in the sequence

°n
=

/i
3 +200

*

Solution. Consider the function f (x) = ^ 2QQ
in the interval

[1, oo). Since the derivative

x (400-^)
1 W ~

(x3 + 200) 2

is positive at < x < jJ/400 and negative at x> j/400, the

function f (x) increases at < x < j/^400 and decreases at # > jJ/400.

From the inequality 7<j// 400 <8 it follows that the largest term

in the sequence can be either a
7
or a

8 . Since a
7
=49/543 > a8 =8/89,

the largest term in the given sequence is

3.7.6. Find the greatest and the least values of the following

functions on the indicated intervals:

(a) f(x) = ]-x*-^x»-jX* + 2 on [-2, 4];

(b) f (*) = |/4— x2 on [—2, 2];

(c) / (x) = arc tan x—y In jt on

(d) /(jc)=2sinjc+ sin2A' on

6 -3148

0, |k ;
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(e) f(x) = x— 2 In x on [1, e]\

(i)f{x)= i
2^2 +|2

for -2<*<0; 0<*<2,
^ 1 for * = 0.

§ 3.8. Solving Problems in Geometry and Physics

3.8.1. The force of a circular electric current acting on a small

magnet with the axis perpendicular to the plane of the circle and
passing through its centre is expressed by the formula

Cx
F =

(a2+ *2
)
3/f

where a = radius of the circle

x = distance from the centre of the circle to the magnet

(0 < x < oo)

C--= constant.

At what x will the value of F be the greatest?

Solution. The derivative

F'(x) = C
a2~ 2x

l
(a2+ x2

)
v «

has a single positive root x = alV~2. This solves the problem.

Note. It often happens that reasons of purely physical or geo-

metric character make it unnecessary to resort to the differential

methods in investigating a function for the greatest or the least

value at the point under consideration.

3.8.2. Determine the most economical dimensions of an open-air

swimming pool of volume 32 m 3 with a square bottom so that the

facing of its walls and bottom require the least quantity of ma-
terial.

Solution. Let us denote the side of the bottom by x and the

height by y. Then the volume V of the pool will be

V = x2y = 32, (*)

and the surface S to be faced

S — x2 + 4xy.

Expressing y through x from the relation (*), we get

S = x2 + \x—
}
= xl +— .

X 1 1 X

Investigate the function thus obtained for a minimum in the

interval (0, oo):

S' = 2jc—^; 2*-^ = 0; x = 4.
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The single point thus found will obviously yield the least value

of the function S, since it has no greatest value (it increases un-

boundedly as x— O and x—> oo).

And so, the required dimensions of the pool are: x = 4 m, y ^2m.

3.8.3. Inscribe into a given sphere a cylinder with the greatest

lateral surface.

3.8.4. 20 m of wire is available for fencing off a flower-bed

which should have the form of a circular sector. What must the

radius of the circle be if we wish to have

a flower-bed of the greatest possible surface

area?

Solution. Let us denote the radius of the

circle by x
y
and the length of the arc by y

(see Fig. 42). Then

2O = 2jc+ 0,

whence
= 2(10-*).

The area of the circular sector S = ^xy = x (10

—

x) (0<#<10).

The derivative S'(#) = 10— 2x has a root x--=5.

is reached at the end-points of the

interval [0, 10], the obtained value

x= 5 yields the greatest surface area S.

3.8.5. It is required to construct

an open cylindrical reservoir of capa-

city V . The thickness of the material

is d. What dimensions (the base radius

and height) should the reservoir have

so as to ensure the least possible

expenditure of the material?

Solution. Figure 43 represents a lon-

gitudinal section of the reservoir,

where the radius of the base of the

inner cylinder is denoted by x and

the height of the inner cylinder,

by h. The volume of the bottom

and the wall of the reservoir

V = jx (x+ df d+ n [(x+ df— x2
] h = nd (x+ df+ nh (2xd+ da

). ( *)

On the other hand, by hypothesis we must have

V = nx2h

whence

y

Fig. 42

Since the least value S =

Fig. 43
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Substituting into (*), we get

V^nd (x + dY + ^(2xd+ d')^nd(x+dr +
2^ +^.

Now we have to investigate the obtained function V (x) for an

extremum at x > 0.

We have

V (x) = 2nd(x + d)- 2-^- 2-^ = M<«+">y-r.>

.

The only positive root of the derivative is the point x= y'Vjn.
This solves the problem:

3.8.6. A factory D is to be connected by a highway with a

straight railway on which a town A is situated. The distance DB
from the factory to the railway is

•0 equal to a
y
the segment AB of the

/ 1 railway equals /. Freight charges on

/ ! the highway are m times higher than

/ \ a on the railway (m > 1).

/ \
How should the highway DP be

/'
[

connected with the railway so as to—^ ~ A ensure the least freight charges from
A x p b factory to town?

AA Solution. First, let us make a draw-
r is 44

ing (see Fig. 44). It is absolutely

clear that the highway must also be

straight (a straight line is shorter than any curve connecting two
given points!). Furthermore, the point P cannot lie either to the

left of the point A or to the right of the point B. If we denote

the distance AP by x
y

it will mean that 0^*^/.
Let the freight charges on the railway (per ton-kilometre) be k,

then the freight charges on the highway will be km. The total

freight charge N for transporting loads from D to A amounts to

N = kx+ km Va2 + (l— x)\

Hence, we have to find the least value of the function

f

(

X ) = x+ m y a* + (x—i)\ o<*</.

Take the derivative

m (x— /)



§ 3.8. Solving Problems in Geometry and Physics 165

It vanishes only at one point:

x = l-
j/~m 2 - 1

If this point lies in the interval [0, /], i.e. if

Vtri
1

or

then it yields the least freight charge (which is easy to check).

If the indicated inequality is not observed, then f (x) increases on

[0, /] and therefore the least freight charge is obtained at x = 0.

3.8.7. In constructing an a-c transformer it is important to insert

into the coil a cross-shaped iron core of greatest possible surface

area. Fig. 45 shows the cross-section

of the core with appropriate dimen-

sions. Find the most suitable x and

y if the radius of the coil is equal

to a.

3.8.8. If the source of current is an

electric cell, then the effect P (watts)

obtained by cutting a resistance R
(ohms) in the circuit is expressed by
the formula

P = E2R
(/?+/?/)*' Fig. 45

where E is electromotive force in volts and R
{
the internal resis-

tance in ohms.
Find the greatest effect which can be obtained at given E and R {

.

3.8.9. A tin of a given volume V has the form of a cylinder.

What must be the ratio of its height h to diameter 2R so as to

use the least amount of material for its manufacture?

3.8.10. In a given cone inscribe a cylinder having the greatest

lateral surface so that the planes and centres of the base circles

of the cylinder and cone coincide.

3.8.11. Given a point (1, 2) in the orthographic coordinates.

Through this point draw a straight line so that it forms, together

with the positive semi-axes, a triangle of the least area.

3.8.12. Given a point M on the axis of the parabola y
2 = 2px

at a distance a from its vertex. Find the abscissa of the point

on the curve nearest to the given point.
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3.8.13. The expenses sustained in one hour's sailing of a ship

are expressed in roubles by an empirical formula of the form

a + bv\ where a and b are constants for a given ship, and v is the

ship's speed in knots (one knot is equal to 1.85 km/hr). In this

formula the constant part of the expenses a refers to depreciation

and crew's upkeep, and the second term (bv'
s
) to the fuel cost.

At what speed will the ship cover any required distance at the

lowest cost?

3.8.14. A trough is built from three boards of equal width. At
what slope should the lateral boards be placed to ensure the largest

cross-sectional area of the trough?

3.8.15. A tank with a vertical wall of height h is installed on
a horizontal plane. Determine the position of an orifice, at which
the range of a liquid jet will be the greatest if the velocity of

flow (according to Torricelli's law) is equal to Y2gx, where x is

the depth of the orifice.

3.8.16. Two aircraft are flying in a straight line and in the

same plane at an angle of 120° to each other and with an equal

speed of v km/hr. At a certain moment one aircraft reaches the

point of intersection of their routes, while ihe second is at a dis-

tance of a km from it. When will the distance between the

aircraft be the least and what is that distance?

£ 3.9. Convexity and Concavity of a Curve. Points of
Inflection

If f"(x)<0 (> 0) on an interval (a, b)
y
then the curve y = f(x)

on this interval is convex (concave), i.e. it is situated below (above)

any of its tangent lines.

If /"(a: ) = or does not exist but f (x ) does exist and the second

derivative f" (x) changes sign when passing through the point xQy

then the point (x0l f (x )) is the point of inflection of the curve

3.9.1. Find the intervals in which the graphs of the following

functions are concave or convex and locate the points of inflection:

(a) y = x' + x*— 18a:
2 + 24a:— 12;

(b) y---3x*— 8x 3+ 6x*+l2;

(d) y = x+ x
l
'>;

(e) (/ = 4l/>-l) 5 + 20K(x-l) 3 (x^ly,

(0 y = ]J

^r (*>°) ;
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(g) = *sin(ln*) (x > 0);

(h) = 2-|**-l|.
Solution, (a) Find the derivatives:

y' = 4x3 + 3x2 —36x+ 24,

12*2+ 6*— 36 = 12(V+-|-— 3) ,

whence y" = at x
1
= — 2, x2

= 3/2.

Hence, y" > on the intervals (—00, —2) and (3/2, 00); <
on the interval (— 2, 3/2). The sign of the second derivative deter-

mines the convexity or concavity of the curve in a given interval*

This enables us to compile the following table:

X x < — 2 ~2 < x < 1
3

Sign of y" + +

Conclusion Concavity Convexity Concavity

Since the second derivative changes its sign when passing through

the points x
1
= —2 and *

2
= 3/2, the points (—2, — 124) and

» are points of inflection.

(d) Find the derivatives:

/ 1 i ^ 2 / // 10

y = l +T x "< f=
9-i77-

The second derivative is non-zero everywhere and loses its meaning
at the point x = 0. At x < we have y" < and the curve is con-

vex, at x > we have y" > and the curve is concave.

At the point x=0 the first derivative y'=l, the second deriva-

tive changes sign when passing through the point x=0. Therefore

the point (0, 0) is a point of inflection.

(g) Find the derivatives:

y' = sin (In x) + cos (In *),

y" = y [cos (In x)— sin (In*)] = -~- sin (-4-— In .

The second derivative vanishes at the points

Xk = ^i/A + kn
9

& = 0, ±1, zh 2, ... .

The function sin(jt/4 — In*), and together with it y\ changes sign

when passing through each point xk .
Consequently, the points xh
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are the abscissas of the points of inflection. In the intervals

^>2fcjl-3Jl/4 £2&Jl + JT/4^

the curve is concave, and in the intervals

^>2fcjl + JT/4 £2&Jl+ 5JT/4^

it is convex.

(h) The given function can be written in the following way:

2 — (x b — 1), x> 1,

y =
2 + (a:

5 — 1), x< 1.

Therefore

r _ \
—5x\ *> 1,

y ~\ 5x\ x<l.

At the point x= 1 there is no derivative. Further,

/
—20a:3

,
x> 1,

20x\ x<l;

y" = at the point x = 0. Hence, we have to investigate three in-

tervals: (— oo, 0), (0, 1), (1, oo).

Compile a table of signs of y"\

X x < < x < 1 x > 1

Sign of y" +

Conclusion Convexity Concavity Convexity

The point (0, 1) is a point of inflection, the point (1, 2) being

a corner point.

3.9.2. What conditions must the coefficients a, b
9

c satisfy for

the curve y — ax* + bx 3 + cx2 -{-dx+ e to have points of inflection?

Solution. Find the second derivative:

y"= \2ax*+ Sbx+ 2c.

The curve has points of inflection if and only if the equation

e>ax2 + 3bx+ c =

has different real roots, i.e. when the discriminant 9b2 — 24ac > 0, or

3b 2 — 8ac > 0.
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3.9.3. At what values of a will the curve

y = x* + ax* + ^-x 2 + 1

be concave along the entire number scale?

Solution. Find y"\

y" ^ \2x* + 6ax + 3.

The curve will be concave along the entire number scale if y" ^0
for all values of x, i.e. when

Ax2 + 2ax + 1 >0 for all x.

For this it is necessary and sufficient that the inequality 4a2 — 16 ^
be fulfilled; whence

|a|<2.

3.9.4. Show that the curve y --=

^ {
}

has three points of inflec-

tion lying in a straight line.

Solution. Find the derivatives:

, _ —x*— 2x+ 1

y ' '
l)

2 '

2x:i
-\ 6x 2— 6x—

2

y r

" (x*-f-l) 3

The second derivative becomes zero at three points, which are the

roots of the equation

x [i + 3x 2 — 3x — 1 = 0,

whence

x
x

- — 2 — [/ 3~, x
2
- —2 + [/T, x, = 1

.

Let us compile the table of signs of y"\

X
— 00 < X <

< - 2 - J/T

-2- j/" 3 < v<

<-2r F"3

-2-l ^3 <
< x < 1

1 < x < oo

Sign of y" _L_ +

Conclusion Convexity Concavity Convexity Concavity

Hence, (- 2 - kT. —^) . (-2 + ^3. ^p-).d. D

are points of inflection. It is easy to ascertain that all of them
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lie in a straight line. Indeed, the coordinates of these points satisfy

_2— }/T— 1 (1- }/T)/4— 1

the relation
-2+/" 3 -1 (\+V 3)/4+l

3.9.5. Investigate the curves represented by the following equa-

tions for convexity (concavity) and locate the points of inflection:

(a) y = x- ^(x-3) 2
;

(b) y = e s[n x (— jx/2 < x< jt/2).

3.9.6. Show that the points of inflection of the curve y = xsmx
lie on the curve y

2
(4 + #2

) = 4x2
.

§ 3.10. Asymptotes

A straight line is called an asymptote to the curve y = f(x) if

the distance from the variable point M of the curve to the straight

line approaches zero as the point M recedes to infinity along some
branch of the curve.

We will distinguish three kinds of asymptotes: vertical, horizon-

tal and inclined.

Vertical asymptotes. If at least one of the limits of the function

f (x) (at the point a on the right or on the left) is equal to infi-

nity, then the straight line x = a \s a vertical asymptote.

Horizontal asymptotes. If lim f(x) = A, then the straight line
X -> ± 00

y=^A is a horizontal asymptote (the right one as x—> + and
the left one as x— — oo).

Inclined asymptotes. If the limits

lim — = kv lim [f (x) — k
1
x]=b

A

X -* + cc
X *-» + oo

exist, then the straight line y = k
1
x+ b

l
is an inclined (right)

asymptote.
If the limits

Urn = k
2

and lim [f (x) — k
2
x]=b

2
X -+ — CO

X X -* — 00

exist, then the straight line y — k
2x-\-b2

is an inclined (left) asymp-
tote. A horizontal asymptote may be considered as a particular

case of an inclined asymptote at k = 0.

3.10.1. Find the asymptotes of the following curves:

(a) # = -^3 ;
(b) y = ^r+3x; (c) y = -^;

(d) #= 7 + 4,v
2

; (e) y-=xe^; (f)
</=--f

In
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(g) y = Vl + x* + 2x\ (h) y=}/\ +x2 sin-L;

(i) y = 2Vtf + T.

Solution, (a) The curve has a vertical asymptote x = 3, since

5x
lim y = lim

,x — 3' oo
x^3T 0" x -+ 3 T- '

(the point x = 3 is a point of discontinuity of the second kind).

Find the horizontal asymptote:

lim y = lim = 5.

* -* ± GO X -+ ±00 X 6

And so, the curve has a vertical asymptote x = 3 and a horizon-

tal one y = 5.

(b) The curve has a vertical asymptote x= 1, since

lim # = lim (-^13^== — 00;
^ A

a: -> I - a: -> 1 - \ x ~~ 1 /

lim # = lim —
-r + 3x I = + 00.

x-+ 1 + x-1+0 \*~~ 1 /

Find the inclined asymptotes:

k= lim — == lim .
——.

r

b = lim (y—kx) =
X -* ± GO

3a:

3 =3;

3*— 3x )
= 3= lim

a; -> ± co

Thus, the straight line y=3x+3 is an
inclined asymptote (see Fig. 46).

Hg. 46

(e) The curve has a vertical asymptote x =
y since

X -* + X -> +

(see Problem 3.2.2.).

Find the inclined asymptotes:

r = + oo
x

lim */ = lim xe l/x = lim -^-=+00

& = lim 4"= lim ^ = g°=l;
X - ± CO * v . ,

~X -+ ± CO

e
l lx—

b = lim (a^ 1 /*— x) = lim —.

—

* -* ± CO X -> ±V3
: lim

'

l/x -
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Thus, the straight line y = x+\ will be an inclined asymptote
of the curve (see Fig. 47). Note that

liin y = Urn xe l/x = 0.
-V -> — x -* -

(f) The function is defined and continuous at e— ^ > 0, i.e. at

x < and x >
3e

*

Since the function is continuous at

every point of the domain of definition,

vertical asymptotes can exist only on
finite boundaries of the domain of defini-

tion.

As x —> — we have

lim y= lim ^\n(e— ~) =

liin
In (e+ z)

=

Fig 47

As x ^ + we have

lirn y = -

K-*\/(3e) +

(see Problem 3.2.2.), i. e. the straight

line a; = is not a vertical asymptote.

lim x\n[e
3x

i.e. the line x=-l/(3e) is a vertical asymptote.

Now let us find the inclined asymptotes:

k = lira

X-*±cc X

b = lira [y— kx] = -
1r lirn x

X-+±cc

lirn

x-*±<x>

3x

[n{l
-3x-e

\ 3^ 2e

2e
is an inclined asymptoteHence, the straight line y—

2

(see Fig. 48).

(g) The curve has no vertical asymptotes, since the function is

continuous everywhere. Let us look for inclined asymptotes. The
limits will be different as x—+ + oo and x— -oo, therefore we have

to consider two cases separately.
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Find the right asymptote (as x-^ + oo):

Yl
*,= [im

>" l + ', + 2« - lim
*^ + CO

X
X-* + CO

6, = lim (^1+a:2 + 2x— 3x) =

= lim [|/T+72 --;e|:

+ 1 +2
= 3;

lim
1+JC !2— 3

0.
*-* + oo j/ 1 -f *2 + *

Thus, as x—* + oo the curve has an asymptote y = 3x.

Fig. 48 Fig. 49

Find the left asymptote (as x-+ — oo):

* = Iim jClT^f^ lim iH^J

fe2
= lim + x2 + 2a;— x\ = lim = 0,

since both summands ([/l+r* and (

—

a;)) in the denominator are

positive at x < 0.

And so, the curve has an asymptote y = x as x —> — oo.

(h) The curve has no vertical asymptotes, since it is continuous

at x =^=0, and in the neighbourhood of the point x=^0 the function

is bounded.
Let us find the inclined asymptotes. We have

k = lim —= lim
£-±00 X-+ ± 00

± 1-0=0.

Then

f !
I 1 as AT

l + ^sin — =% _ 1 as v
I

1 as x — + oo,

— oo.
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Thus, the curve has two horizontal asymptotes: y + 1 and y =— 1

(see Fig. 49). The same result can be obtained proceeding from
symmetry about the origin and keeping in mind that the function

y is odd.

3.10.2. Find the inclined asymptote of the graph of the function

y = j^-^ as x— oo and show that in the interval (100, oo) this

function may be replaced by the linear function y = x— 1 with an
error not exceeding 0.01.

Solution. Find the inclined asymptote:

X2

k = lim —TT-t— = 1;

b= lim
(
t4 x) = — 1.

x+cc V1+* J

And so, the equation of the asymptote is y = x— 1.

Form the difference:

-(*-!) =

Hence, assuming

l+JC

for all x> 100, we introduce an error of not more than 0.01.

3.10.3. Find the asymptotes of the following curves:

(a) ^==
*2-6*+ 3

;
(b) y = xarctanx;

(c) y=x+(smx)/x; (d) y = In (4— x2
)\

(e) y = 2x— arc cos .

§ 3.11. General Plan for Investigating Functions and
Sketching Graphs

The analysis and graphing of functions by elementary methods
were considered in Chapter I (§§ 1.3 and 1.5). Using the methods
of differential calculus, we can now carry out a more profound and
comprehensive study of various properties of a function, and explain

the shape of its graph (rise, fall, convexity, concavity, etc.).

It is convenient to investigate a function and construct its graph
according to the following plan:

1. Find the domain of definition of the function.

2. Find out whether the function is even, odd or periodic.
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3. Test the function for continuity, find out the discontinuities

and their character.

4. Find the asymptotes of the graph of the function.

5. Find the points of extremum of the function and compute the
values of the function at these points.

6. Find the points of inflection on the graph of the function,
compute the values of the function and of its derivative at these
points. Find the intervals of convexity of the graph of the function.

7. Graph the function using the results of this investigation. If

it is necessary to specify certain regions of the curve, calculate the
coordinates of several additional points (in particular, the x- and
^/-intercepts).

This is a very tentative plan, and various alternatives are pos-

sible. For instance, we recommend the student to begin sketching
the graph as soon as he finds the asymptotes (if any), but in any
case before the points of inflection are found. It should be remem-
bered that in sketching the graph of a function the principal refe-

rence points are the points of the curve corresponding to the extremal
values of the function, points of inflection, asymptotes.

3.11.1. Investigate and graph the following functions:

(a) y = xQ— 3x* + 3x*— 5; (b) y--=\/~x— Vx+l;

(
c
) y=-£zi* (

d
) y-

1-^ ;-4 •

(e) y = x+ln (x2— 1); (f) y = -j sin 2*+ cos*;

(g) y = x*e l 'x
; (h) y = arc sin 1=^-

.

Solution, (a) The function is defined and continuous throughout
the number scale, therefore the curve has no vertical asymptote.
The function is even, since /(

—

x) = f(x). Consequently, its graph
is symmetrical about the (/-axis, and therefore it is sufficient to

investigate the function only on the interval [0, oo).

There are no inclined asymptotes, since as x-^oo the quantity

y turns out to be an infinitely large quantity of the sixth order

with respect to x.

Investigate the first derivative:

0' = 6*6— I2xs + e>x = e>x(x*— 2x2 + 1) =§x{x2— l)
2

;

the critical points are:

*i = — 1, *2 = 0> x» = 1
•

Since in the interval [0, oo) the derivative y'^0
y
the function

increases.
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Investigate the second derivative:

y
" = 3(k4— 36*2 + 6 = 6 (5x4— 6x2 + 1 ).

The positive roots of the second derivative:

*, = 1/K5, *2
=1.

For convenience and pictorialness let us compile the following

table, where all the points of interest are arranged in an ascending

order:

X
(°- 7?)

1

(f?0 1 (I. <*>) 2

y' +
25 ^5

+

y" (5 -f -t-

y 23

On the right one more additional value of the function is com-
puted to improve the graph after the point of inflection.

Using the results of the investigation and the above table and
taking into consideration the symmetry principle, we construct the

graph of the function (see Fig. 50). As is seen from the graph, the

function has roots + where a& 1.6.

(b) The function is defined and continuous over the entire number

scale and is negative everywhere, since \/ x < \/ x+ 1.

The graph has neither vertical, nor inclined asymptotes, since the

order of magnitude of y is less than unity as x—* oo. Determine
the horizontal asymptote:

lim y = lim (j/x— + l) =

Hence, the straight line y=^0 is the horizontal asymptote of the

graph.
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The first derivative

l

3^/'(FH72 3

becomes zero at the point x2
= —y and infinity at the points

*i = — 1 ,
xb = 0.

i

/

-1

Fig. 51

does not vanish and is infinite at the same points x
1
=— 1, x 3

= 0.

Compile a table:

Fig. 50

The second derivative

„_ J_/ ___2 \ _J 1_

y ~ 3 V 3 J y# 3
A) 1

X -l (--{) 1

2 K-°) (0, oo) 1

y' — 00 + 00 +

y" 00
16

1 9yj
00

y 1 ^ I
—0.26

With the aid of this table, and of the asymptote y = construct

the graph of the function (see Fig. 51).



178 Ch. III. Differential Calculus: Investigation of Fund's

(c) The function is defined and continuous over the entire axis

except at the points x=±2. The function is odd, its graph is

symmetrical about the origin, therefore it is sufficient to investigate

the function on the interval [0, oo).

The straight line x = 2 \s a vertical asymptote:

2xs _ 2*3

lim
* -+ 2 - x 2— 4

lim
x-2 +

-\- OO

.

Determine the inclined asymptote:

lim
v_w _1_ m X

lim
X -* + CD

2x2

= 2,

b = lim (y
— 2x) = lim

8x

X -* +CC X + CD

The curve has an inclined asymptote #= 2x, and

Sx j > at x > 2,

I < at x < 2
y—2x=

6x2 (x2— 4) — 4x4 2x2 (x2— 12)

The first derivative

y ~ (x2— 4)
2 ~ (x2 — 4)

2

in the interval [0, oo) vanishes at the points

* = 0, *=2]/~3«3.46

and becomes infinite at the point x = 2.

The second derivative

„_ 16a: (A:
3
-h 12)

y ~ (at
2— 4)

3

becomes zero at the point x = and infinite at x = 2.

Compile a table:

(0, 2) 2
(2, 2/" 3 ) 2 |/"3 (2V

r
3", oo)

y' — oo +

y" + o 00 + 3

2
+
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Using the results of the investigation, sketch the graph of the

function (see Fig. 52).

(e) The function is defined and continuous at all values of x for

which x2— 1>0 or |x|>l, i.e. on two intervals: (— oo, — 1)

and (1, + oo).

-A

4*

V
l I

-1\

Fig. 52

We seek the vertical asymptotes:

Fig. 53

lim y = lim [x+ In (x
2— 1)] = — oo;

- 1 - - 1 -

lim y= lim [x+ In (x2— 1)] = — oo.

Thus, the curve has two vertical asymptotes:

x= — 1 and x = f 1

.

Find inclined asymptotes:

u i- y i- In (a:
2—

1 ) ,.

£ = lim —= lim — = urn 1

In (a:
2— 1)

]-•
b = lim [y

— x] = lim In (x2— l)=+oo.
Jt -* ± 00 X-+ ± oo

Hence, the curve has neither inclined, nor horizontal asymptotes.

Since the derivative

i .

2*

y
^ 1+^r

exists and is finite at all points of the domain of definition of the

function, only the zeros of the derivative

x,= - \—V% x2
=-l + \f2

can be critical points. At the point x
2
= — 1 + the function is
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not defined; hence, there is one critical point x
A
= — l~l 2 belon-

ging to the interval (
— 00, —1). In the interval (1, 00) both the

derivative y' > and the function increase.

The second derivative

hence, the curve is convex everywhere, and at the point x
x
=

= — 1 — ^2^— 2.41 the function has a maximum

y (_ 1 — J/2) «— 1 — J/2 + In (2 + 2^2) «— 0.84.

To plot the graph in the interval (l,oo), where there are no characte-

ristic points, we choose the following additional points:

x=2\ */ = 2 + ln3^3.10 and x= 1.2; y = 1.2 + ln0.44 ^0.38.

The graph of the function is shown in Fig. 53.

(f) The function is defined and continuous throughout the num-
ber scale and has a period 2n. Therefore in investigating we may
confine ourselves to the interval [0, 2n\. The graph of the function

has no asymptote by virtue of continuity and periodicity.

Find the first derivative:

y' = cos 2x— sin x.

On the interval [0, 2k] it has three roots:

ji 5ji 3ji

*i
= "g"

» ^2 = ~Q~ *8 == ~2~

•

Evaluate the second derivative:

y" == — 2 sin 2x— cos x.

On the interval [0, 2n] it has four roots:

x, = y, x
2
= k+ arc sin (1/4), x3

= ^, x
4
= 2n— arcsin(l/4).

Let us draw up a table of the results of investigation of all cri-

tical points of the first and second derivatives (the table also in-

cludes the end-points of the interval [0, 2ji]).

Since in the interval
^0, —-^ the roots of the first and second

derivatives alternate, the signs of the second derivative in the in-

tervals between its critical points are indicated only for the last

three intervals.

The results of the investigation enable us to construct the graph

of the function (see Fig. 54).

(g) The function is defined, positive and continuous on each of

the intervals (— 00, 0) and (0, 00). The point x = is a disconti-
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X
ji

6~

Jl

T
5ji
~6~ AJ2 (*• t)

3ji

2 (¥-) x4 (*4 .2ji) 2ji

y' —2

y"
3 ]T3

z

3 ^ 3~

2
+

l

y l

nuity. Since (see Problem 3.2.2.)

lim y = lim jt
2e [ /* = Iirn ^- = oo ( t = —) ,

the straight line x=0 is a vertical asymptote. But

limy = lim x2e Ux = 0.
x-+ - *^ -

There are no inclined asymptotes, eince the function y=x2eUx

has the second order of smallness with respect to x as x—+±.oo.

1

\t/2 B
n

jc

i*
2%

-1

Fig. 54

Let us find the extrema of the function, for which purpose we
evaluate the derivative:

y' = 2xe [/x— e { ' x = 2e 1 '* {x— 1/2),

whence we find the only critical point *=y.
Since for x=^=0

y" (x) = 2*«/*- £ e*'* + 1 = 1 e u* (2x* - 2x+ 1) > 0,
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on each of the intervals of the domain of definition the graph of

the function is concave, and at the point x = 1

/2 the function has

a minimum
— — p*

4
* 1.87.

From the information obtained we can sketch the graph as in Fig. 55.

To specify the graph in the intervals (— oo, 0) and (V2 ,
oo) the

following additional points are used:

x=— 1, y = e~ l ^ 0.37; x=l
y

y = e^2J2.

(h) The function is defined and continuous

throughout the number scale, since at any x

1-f-x
2
< 1.

Fig. 55

Since the function is even, we may confine

ourselves to the investigation of the function

at *>0.
As the function is continuous, the graph has no vertical asymp-

totes, but it has a horizontal asymptote:

limy =

x -* + oo

= arc sin (- D=Hf.
The first derivative

(1-**)*
X
— 2x (\+x 2

)
— 2x(\—x2

)

(l+x2
)

2 X
4*

2 |*| ~ (1+x2
)
2

(1+x 2
)

2

is negative for x>0, therefore the function decreases

The derivative is non-existent

at the point x=0. By virtue of

the symmetry of the graph about

the y-axis there will be a maxi-

mum at the point #(0) = ^-. No-

tice that at the point x = the

right derivative is equal to — 1,

and the left one to + 1.

The second derivative is posi-

tive:

2(l+x2)2x 8x > for ay (
x

)
— 2

(l-fx 2
)
4 (i + *2)3

Hence, in the interval (0, oo) the graph of the function is concave.

Also note that the curve intersects with the x-axls at the points

x = ± 1.
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Taking into consideration the results of the investigation, con-

struct the graph of the function (see Fig. 56).

3.11.2. Investigate and graph the following functions:

(a) y=\+x2— y; (b) y =j~^\

(c) y= ~ + ^- (d) y= -^r
x

\

(e) y=y^-¥^=A-
(f) y = x*\n(x+2); (g) y =

\x arc tan— atx^O,
10 at x = 0.

§ 3./2. Approximate Solution of Algebraic
and Transcendental Equations

Approximate determination of isolated real roots of the equation

f(x) = is usually carried out in two stages:

1. Separating roots, i.e. determining the intervals [a, P] which
contain one and only one root of the equation.

2. Specifying the roots, i.e. computing them with the required

degree of accuracy.

The process of separation of roots begins with determining the

signs of the function f (x) at a number of points x = a lt a
2

whose choice takes into account the peculiarities of the function / (x).

If it turns out that / (ak ) f (ak+1 ) < 0, then, by virtue of the

property of a continuous function, there is a root of the equation

f(x) = 6 in the interval (aky ak+1 ).

Real roots of an equation can also be determined graphically as

^-intercepts of the graph of the function y = f(x). If the equation

has no roots close to each other, then its roots are easily separated

by this method. In practice, it is often advantageous to replace

a given equation by an equivalent one

*i (*) = *« (*)•

where the functions ^ (x) and i|;
2
(x) are simpler than the function

f(x). Sketch the graph of the functions y = ty 1
{x) and y = y\)2

(x)

and find the desired roots as the abscissas of the points of inter-

section of these graphs.

The Methods of Approximating a Root. 1. Method of Chords. If

the interval [a, b] contains the only real root £ of the equation

f(x) = and f (x) is continuous on the interval, then the first ap-

proximation x
1

is found by the formula
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To obtain the second approximation x
2

a similar formula is ap-

plied to that of the intervals [a, or [x19 &], at the end-points
of which the function f (x) attains values having opposite signs. The
process is continued until the required accuracy is obtained, which
is judged of by the length of the last obtained segment.

2. Method of Tangents (Newton's method). If f(a)f(b)<0, and

f (x) and F (
x) are non-zero and retain definite signs for

then, proceeding from the initial approximation x (x £[a, b]) for

which f (x
) r(*o)>0, we obtain all successive approximations of

the root g by the formulas:

10 rw 2 1 /'w "'
•

X"- Xn -* r(*«-i)'

To estimate the absolute error in the nth approximation we can
apply the general formula

where
m

1
= min \f(x)\.

Under the above conditions the method of chords and the method
of tangents approximate the sought-for root from different sides.

Therefore, it is usual practice to take advantage of their combination,

i. e. to apply both methods simultaneously. In this case one can obtain

the most precise approximation of a root more rapidly and the cal-

culations can be checked. Generally speaking, the calculation of the

approximations x l9 x2 , . . .
,
xn should be continued until the decimal

digits to be retained in the answer cease to change (in accordance

with the predetermined degree of accuracy!). For intermediate trans-

formations we have to take one or two spare digits.

3. Iteration Method. The equation f(x) = is first reduced to the

form x = cp (x) where
|
q/ (x)

| ^ q < 1 (q = const) for a^x^b. Star-

ting from any initial value x £[a
t

b]
y
successive approximations of

the root I are computed by the formulas x
1
= q) (x ), x

2
= q> (Xj), . . . ,

xn
=

^y(xn-i)' The absolute error in the nth approximation can be

estimated by the following formulas:

\t— xn\<Tz^\xn -i—Xnl

if the approximations xn _ 1
and xn lie on the same side of the root,

and

I \ Xn I

J
I

Xn-1 Xn |»

if the approximations xn _ 1
and xn lie on different sides of the root.
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3.12.1. Locate the roots of the equation

Solution. Compile a table of signs of f (x) at some chosen points

X X

— 00 1

~3 3 +— 1 + +- oo 4-

+

From this table we draw the conclusion that the equation has
three real roots lying in the intervals (—3, —1), (0, 1) and (1, 3).

3.12.2. Determine the number of real roots of the equation

f(x)==x+ e* = 0.

Solution. Since /' (x) = 1 +ex > 0; / (— oo) =— oo; f (+ oo) = + oo,

the given equation has only one real root.

3.12.3. An approximate value of the root of the equation f{x) =
= x*—x—l=0 is x=l.22. Estimate the absolute error in this

root.

Solution. We have /(*) = 2.2153— 1.22— 1 =— 0.0047. Since at

jc= 1.23

/ (x) = 2.2888— 1 .23— 1 - 0.0588,

the root £ lies in the interval (1.22, 1.23). The derivative f (x) =
= 4r*— 1 increases monotonically, therefore its least value in the
given interval is

m
1
= 4xl.22 3— 1 = 4x 1.816— 1 -6.264,

wherefrom we get an estimate of the error

I

x— 1 1
< LZiZU =^^l « 0.00075 < 0.001.

3.12.4. Solve graphically the equation

x log X— 1 = 0.

Solution. Let us rewrite the equation in the form
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Here
\f 1 (#) = log a:, i|)

2 W=j- There are tables for the values of

these functions, and this simplifies the construction of their graphs.

Constructing the graphs y = \ogx and y = -j (see Fig. 57), we find

the approximate value of the only

root 1 « 2.5.

3.12.5. Find the real root of the

equation

/ (x) = xs— 2x2 + 3x—5 =

with an accuracy up to 10~ 4
:

(a) by applying the method of

chords,

(b) by applying the method of

tangents.

Pig 57 Solution. Let us first make sure

that the given equation has only
one real root. This follows from the fact that the derivative

/' (*)=3*a— 4*+ 3>0.

Then, from /=(1) = — 3<0, (2) = 1 > it follows that the given

polynomial has a single positive root, which lies in the interval (1, 2).

(a) Using the method of chords, we obtain the first approximation:

^=1—-=^. 1=1.75.
1 4

Since

/(1.75) = — 0.5156 <0,

and / (2) = 1 > 0, then 1.75 <£< 2.

The second approximation:

x
2
= 1.75 + • 0.25 = 1 .75 + 0.0850 = 1 .8350.

Since / (1.835) = — 0.05059 < 0, then 1.835 < g < 2.

The sequence of the approximations converges very slowly. Let

us try to narrow down the interval, taking into account that the

value of the function f (x) at the point x
2
= 1.835 is considerably

less in absolute value than f (2). We have

f(1.9) = 0.339 >0.

Hence, 1.835 <£< 1.9.
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Applying the method of chords to the interval (1.835, 1.9), we
will get a new approximation:

*3= l-835- .3-;+S9

059 •
0065 = L8434 -

Further calculations by the method of chords yield

x4
= 1.8437, x

b
= 1.8438,

and since /(1.8437)<0, and / (1.8438) > 0, then 1.8438 with

the required accuracy of 10 -4 .

(b) For the method of tangents we choose x = 2 as the initial

approximation, since /(2)=1 >0 and /" (x) = 6x— 4 > in the in-

terval (1, 2). The first derivative f'(x) = 3x2— 4x+ 3 also retains its

sign in the interval (1, 2), therefore the method of tangents is ap-

plicable.

The first approximation:

^==2— 1/7= 1.857.

The second approximation:

, QC7 / (1.857) , QC- 7 0.0779 - Q/1Qft^= 1.857-^-^= 1.857- 2̂7
g= 1.8439.

The third approximation:

^= 1.8439-^^= 1.8438,

already gives the required accuracy. Here the sequence of the ap-

proximations converges much more rapidly than in the method of

chords, and in the third approximation we could obtain an accuracy

up to 10" 6
.

3.12.6. Find the least positive root of the equation tan x = x with

an accuracy up to 0.0001 applying Newton's method.

3.12.7. Find the real root of the equation 2— x— logx=0 by
combining the method of chords with the method of tangents.

Solution. Rewrite the left member of the equation in the follo-

wing way:

f(x) = (2-x) + (- log*),

whence it is seen that the function f (x) is a sum of two monoto-
nically decreasing functions, and therefore it decreases itself. Con-

sequently, the given equation has a single root £.

Direct verification shows that this root lies in the interval (1, 2).

This interval can be narrowed still further:

1.6<£< 1.8,
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since

Then
^ (1.6) = 0. 1959 > 0; / ( 1 .8) = — 0.0553 < 0.

fW = _l_l lege; /*(*) = -! log*

and
/'(*)< 0; rW>0 over the whole interval [1.6; 1 8].

Applying to this interval both the method of chords and the

method of tangents with the initial point ,v =1.6 we obtain the

first approximations:

= 1
'
6- (

V(i78 )

1

l
6)

/(i

(1

6)

) =
1
6 H 0. 1559= 1 .7559;

x[=l.6—pffi
)

= 1.6 + 0.1540= 1.7540.

Applying the same methods to the interval [1.7540, 1.7559], we
get the second approximations:

(1.7540-1.7559) / (1.7559)
jc,= 1.7559-

x'-l 7540- /(1 - 7540)
X2 ~ l./DW

(1.7540)

/ (1.7540)—/ (1.7559)

1.75557.

= 1.75558,

Since x
2
— x'2 = 0.00001, the root £ is computed with an accuracy

up to 0.00001.

3.12.8. Using the combined method find all roots of the equation

f(x)==x3— ox+ 1 = accurate to three decimal places.

3.12.9. Applying the iteration method find the real roots of the

equation x— sin x= 0.25 accurate to three decimal places.

Solution. Represent the given equation in the form x— 0.25 = sin a:.

Using the graphical method, we find that the equation has one
real root which is approximately equal
to x = 1.2 (see Fig. 58).

Since

sin 1.1 =0.8912 > 1.1 — 0.25,

sin 1.3 = 0.9636 < 1.3-0.25,

the root £ lies in the interval (1.1, 13).

Let us rewrite the equation in the

form

x = cp (x) = sin x+ 0.25.

Since the derivative q/ (x) = cos x in the interval (1.1, 1.3) does

not exceed cos 1.1 < 0.46 < 1 in absolute value, the iteration method
is applicable. Let us write successive approximations

xn = sin xn _, + 0.25 (n=l, 2, ...),
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taking x = 1.2 for the initial approximation:

= sin 1.2 +0.25 = 0.932 +0.25=1.182;
jc, = sin 1.182 +0.25 = 0.925 +0.25= 1.175;

x
3
= sin 1.175 +0.25 = 0.923 +0.25= 1.173;

x
4
= sin 1.173 +0.25 = 0.9219 + 0.25 = 1.1719;

jc
6
= sin 1.1719 + 0.25 = 0.9215 + 0.25= 1.1715;

x6
= sin 1.1715 + 0.25 = 0.9211+0.25= 1.1711.

Since ^=0.46 and hence, yzrj< 1» we have g = 1.171 within the

required accuracy.

3.12.10. Applying the iteration method, find the greatest positive

root of the equation

x* + x= 1000

accurate to four decimal places.

Solution. Rough estimation gives us the approximate value of the
root = 10.

We can rewrite the given equation in the lorm

x= 1000— a:
3

,

or in the form

1000 l_

X2 X 9

or in the form

x=jj/l000— x and so on.

The most advantageous of the indicated methods is the preceding
one, since taking [9, 10] for the main interval and putting

(p (
X ) = Y 1000— x,

we find that the derivative

<P'(*)= 3/
3 / (1000 -x) 2

does not exceed 1/300 in absolute value:

|q>' (X)
|
<C ~ 300

= 4-
3 y 990*

6W
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Compute successive approximations of xn with one spare digit by
the formula

xn+1 =y\000-xn (n = 0, 1, 2, ...),

*o= 10,

x
x
= V 1000— 10 = 9.96655,

x
2
= V 1000— 9.96655 = 9.96666,

x3
= J/ 1000— 9.96666 - 9.96667.

We may put £ = 9.9667 with an accuracy of 10~ 4
.

Note. Here, the relatively rapid convergence of the process of ite-

ration is due to the smallness of the quantity q. In general, the

smaller the q, the faster the process of iteration converges.

3.12.11. Applying the method of chords, find the positive root of

the equation

f(x) = x3 + l.Ua+ 0.9*— 1.4 =

with an accuracy of 0.0005.

3.12.12. Using the method of chords, find approximate values of

the real roots of the following equations with an accuracy up to 0.01:

(a) l)2_2sin* = 0; (b) ex—2(1— x)2 = 0.

3.12.13. Applying Newton's method, find with an accuracy up

to 0.01 the positive roots of the following equations:

(a) * 3 + 50*— 60 = 0; (b) x* + x— 32 = 0.

3.12.14. Using the combined method find the values of the root

of the equation

x3—x— 1 -0

on the interval [1, 2] with an accuracy up to 0.005.

3.12.15. Applying the iteration method, find all roots of the equa-

tion \x— 5 In x = 5 accurate to four decimal places.

§ 3.13. Additional Problems

3.13.1. Does the function

j x if x < 1

f{x)=
\\/x if *>1

satisfy the conditions of the Lagrange theorem on the interval [0, 2]?

3.13.2. Prove that for the function y = ax2+ $x + y the number £

in the Lagrange formula, used on an arbitrary interval [a, b]
y

is the

arithmetic mean of the numbers a and b: £ = (a-f fc)/2.
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3.13.3. Prove that if the equation

a xn + a
l
xn ~ 1 + . . . +an _ 1

x =

has a positive root x ot then the equation

na xn
"

L + (n—l)a
1
xn ' 2 + . . . +an _ x

=

has a positive root less than x .

3.13.4. Prove that the equation x4— 4x— 1=0 has two different

real roots.

3.13.5. Prove that the function / (x) = xn + px-\- q cannot have
more than two real roots for n even and more than three for n odd.

3.13.6. Prove that all roots of the derivative of the given poly-

nomial f(x) = (x+ l)(x— \)(x— 2){x— 3) are real.

3.13.7. Find a mistake in the following reasoning.

The function

|
x2 sin (l/x) for x =^=0,

f{x) =
\ forx =

is differentiate for any x. By Lagrange's theorem

whence

x2 sin — = x( 2| sin — cos \-
x V I I

cos 4- = 2£ sin \
— x sin— (0 < £ < x).

As x tends to zero E will also tend to zero. Passing to the limit,

we obtain limcos (1/g) = 0, whereas it is known that Tim cos (l/x) is

l -* x-+

non-existent.

3.13.8. Find a mistake in the following deduction of Cauchy's
formula. Let the functions f (x) and y(x) satisfy all the conditions

of the Cauchy theorem on the interval [a, b]. Then each of them
will satisfy the conditions of Lagrange's theorem as well. Consequ-
ently, for each function we can write the Lagrange formula:

f(b)-f{a) = f®{b-a), a<t<b,
cp(ft)— v (a) = cp' (I) (b—a), a<l<b.

Dividing the first expression by the second, we obtain:

f(b)-f(a) = f'($)(b-a) /'(E)

(p(ty-cp(a) y'(t)(b-a) (p'(g)
'

3.13.9. Prove the following inequalities:

a

J(a) —— < In -r- < —r- if < b < a,
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(b) pyP~ l (x—yX^xP— yP^pxP- 1 {x—y) if < y < x and p> 1.

3.13.10. Prove that all roots of the Chebyshev-Laguerre polynomial

are positive.

3.13.11. Prove that if the function f (x) satisfies the following

conditions:

(1) it is defined and has a continuous derivative of the (n— l)th

order f
(n ~ 1} (x) on the interval [x01 xn ]\

(2) it has a derivative of the nth order f
(n)

(x) in the interval

(*0» '0>
°(3) / (*o) = / (*l) =.-•=/ {*n) (X <X

1
<...< *„),

then inside the interval [x
,
xn ] there is at least one point I such

that f
i,l)

(l) = 0.

3.13.12. The limit of the ratio of the functions

e-'2x (cos x -f 2 sin x) ,. ,.1 + 2 tan*
lim — -p-:—— = hm ^~ x -

r
Lne-*(cosx+ sinx)

x _ ^ I -Manx

is non-existent, since the expression ^

V

8"

*

is discontinuous at
1 -j- tan x

the points xn = nn+ n/2 (rc = 0, 1, ...), but at the same time the

limit of the ratio of the derivatives does exist:

\e~ 2x (cos x~\-2 sin x)\' l; —5e~ 2x s'mx 5 _„ n
lim -— —-—nr-= lim —s

——.— = lim e-* = 0.

x^oo (cos^+ sinx)]' -2e-*sinx 2 x ^ x

Explain this seeming contradiction.

3.13.13. Prove that the number in the remainder of the Taylor

formula of the first order

fia+ h) = f(a) + hf'(a) +^ f" {a + Qh)

tends to 1/3 as h —* if /"' (x) is continuous at x — a and /"' (a)=^=0.

3.13.14. Prove that the number e is an irrational number.

3.13.15. Prove that for 0<x^n/2 the function f (x) ---(s'mx)/x

decreases. From this obtain the inequality 2x/n < sin x < x for

< x < jt/2 and give its geometric meaning.

3.13.16. Show that the function / (x) = #+ cos x— a increases;

whence deduce that the equation x+ cos x= a has no positive roots

for a < 1 and has one positive root for a > 1.

3.13.17. Show that the equation xex = 2 has only one positive

root found in the interval (0, 1).
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3.13.18. Prove that the function

f {x) = {i x+ x2sln T for x¥=0
>

{ for x =

is not monotonic in any interval containing the origin. Sketch the

graph f(x).

3.13.19. Prove the theorem if: (1) f (x) and (p (x) are continuous

in the interval [a, b] and differentiate inside it; (2) f(a) = y(a)\

and (3) f'(x)>y'(x) (a<x<b), then f(x)>y(x) (a<x<b).

3.13.20. Show that the function / (x) = ^+

^

has neither maxima,

nor minima at ad— bc=^0.

3.13.21. In the trinomial x2 + px+ q choose the coefficients p and q
so that the trinomial has a minimum at x = 3 and that the mini-

mum equals 5.

3.13.22. Test the function / (x) = (x—

x

)

n
q) (x) for extremum at

the point x--x09 where n is a natural number; the function (p (x) is

continuous at x = x and (p(# )^=0.

3.13.23. Given a continuous function

fw = j(
2— sin 7)l*l at *^=°>

\ at x= 0.

Show that /(#) has a minimum at the point x= 0, but is not

monotonic either on the left or on the right of x = 0.

3.13.24. Find the greatest and the least values of the following

functions on the indicated intervals:

(a) y = \x\ for —
(b) y = E(x) for —2<x< 1.

3.13.25. Do the following functions have the greatest and the

least values on the indicated intervals?

(a) f(x) = cosx for — ji/2^ a; < ji,

(b) / (x) = arc sin x for — 1 < x < 1

.

3.13.26. Prove that between two maxima (minima) of a continuous

function there is a minimum (maximum) of this function.

3.13.27. Prove that the function

I a:
2 sin2

(l/x) for x=£0,
fW =

\0 for x =
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has a minimum at the point # = (not a strict minimum).

3.13.28. Prove that if at the point of a minimum there exists a

right-side derivative, then it is non-negative, and if there exists a

left-side derivative, then it is non-positive.

3.13.29. Show that the function

f
I/*2 (x>0),

\3*2 (x<0)

has a minimum at the point #=^0, though its first derivative does

not change sign when passing through this point.

3.13.30. Let x be the abscissa of the point of i flection on the

curve y = f(x). Will the point x be a point of extremum for the

function y = f (x)?

3.13.31. Sketch the graph of the function y = f(x) in the neigh-

bourhood of the point x= — 1 if

f(-i>=2, r<— i)— i. /"(-i)=o, r'(*) >o.

3.13.32. For what choice of the parameter h does the "curve of

probabilities"

= -4r «-*'** (ft>0)
V Tt

have points of inflection x = zko?

3.13.33. Show that any twice continuously different iable function

has at least one abscissa of the point of inflection on the graph of

the function between two points of extremum.

3.13.34. Taking the function y = x*+ 8x*+ 18a:
2 + 8 as an example,

ascertain that there may be no points of extremum between the

abscissas of the points of inflection on the graph of a function.

3.13.35. Prove that any polynomial with positive coefficients,

which is an even function, is concave everywhere and has only one
point of minimum.

3.13.36. Prove that any polynomial of an odd degree n^3 has

at least one point of inflection.

3.13.37. Proceeding directly from the definition, ascertain that

the straight line y = 2x+l is an asymptote of the curve y =
2x4 -f-;c

3+l



Chapter

INDEFINITE INTEGRALS.
BASIC METHODS OF INTEGRATION

§ 4.1. Direct Integration and the Method of Expansion

Direct integration consists in using the following table of integrals:

(1)
^

U»du =^ + C

(2) ]^- = \n\u\ + C-

(3)
^
a a dw-=^a* + C;

(4) ^ cos a da = sin u + C;

(5) ^ cosh u du = sinh u-\-C\

(6) f;

du

J
e

tt du = en + C;

J
sin^dw = — cosw + C;

^ sinh udu = cosh w + C;

f
dl

t = — cot w + C;
J sin 2 « 1

*

(7) f-^==l arctan- +C=— iarccot-^+ C, {a > 0);

(8) [ r
du

- = arc sin —+ C= — arccos— 4-C. (a > 0);

(9) f =ln(tt + J/

r
i^±tf) + C;

J V u 1 ±a2

(10) \
-—

- = — n —— + C.

In all these formulas the variable u is either an independent
variable or a differentiable function of some variable. If

then

\f(u)du = F(u) + C
9

J/
(ax + b)dx = jF (ax + b) + C.

The method of expansion consists in expanding the integrand into

a linear combination of simpler functions and using the linearity
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property of the integral:

\ 2 a
if i
(x)dx=

l̂
a

i lf i
(x)dx f S |fl/|>0).

J 1 = 1 i = i
J \{= i /

4.1.1. Find the integral / = f
*2+5*- 1

dx.
J V x

Solution.

j =
j

x2+^i~ 1 =
j

(jc
3
/2 + 5*"',— x - v.) dx =

= }x z
i>dx + b^x li>dx—^x- li*dx==

= fi_ + C
2 + -3- x

3
/ 2 + C

2
- 2*'/. + c

3
=

=2^(^ + |-l) + C.

Note. There is no need to introduce an arbitrary constant after

calculating each integral (as is done in the above example). By com-
bining all arbitrary constants we get a single arbitrary constant,

denoted by letter C, which is added to the final answer.

a * o 1 P6*3+ *2—2*+l ,

4.1.3. /= f
, .

J sin 2 * cos 2 *

Solution. Transform the integrand in the following way:

1 sin 2 *-)- cos 2
* 1 1

sin 2 * cos 2
a; sin 2 * cos 2 * cos 2 * sin 2 *'

Hence,

/ = f-^r- + [ -£t- = tan x— cot x+ C.
J cos 2 * 1

J sin 2, x

4.1.4. I = ^tan2 xdx.

Solution. Since tan2 x = sec2 x— 1, then

/ = f tan2 xdx= [—^| I dx = tanx— jc+ C.
t/ J cos * J

4.1.5. / =
J
(x2 + 5)

3 dx.

Solution. Expanding the integrand by the binomial formula,

we find

/= j(x6 + 15jc
4 +75a;2+ 125)dx= y-+ -^ +^+ 125x+ C.

4.1.6. / =
J
(3x+ 5)

17 dx.
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Solution. Here it is not expedient to raise the binomial to the

17th power, since u = 3x-\-5 is a linear function.

Proceeding from the tabular integral

we get

_ l (3*+5)» . ri
is

rc-

4.1.7. /= r ^

4.1.8. / =
J
cos(jtx +

Solution. Proceeding from the tabular integral (4)

J
cos w du = sin w + C,

we obtain

/ = J-sin (nx+ 1) + C.

4.1.9. / =
J
cos 4a; cos 7a: d*.

Solution. When calculating such integrals it is advisable to use

the trigonometric product formulas. Here

cos 4* cos 7* = (cos 3a: + cos 1 1a;)

and therefore

IP 1 P 1 1

/ = — \ cos 3a: dx + y \ cos lU^^-g-sinSAr + ^sin 11a:+ C.

/Vote. When solving such problems it is expedient to use the

following trigonometric identities:

sin mx cos nx = -^ [sin (m— n) x+ sin (m-\-n) x];

sinmA:sin nx =^ [cos(m

—

n) x— cos (m + n) x]\
2

cosmx cosnx =Y [cos (m— n)x+ cos (m+ n) x].

4.1.10. / =
J
cos a; cos 2x cos 5a: dA;.

Solution. We have

(cos x cos 2a:) cos 5x = y (cos a:+ cos 3a:) cos 5x =

= [cos 4a:+ cos 6a:] + -j- (cos 2#+ cos 8#)»
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Thus,

= cos, 2x dx+
J
cos 4a; d# -f- ^ cos6xdx+ ^cos8xdx^ =

= -g- sin 2x+ sin 4x+~ sin 6a:+^ sin 8a: -f- C.

4.1.11. / = $sin 2
3A:dA:.

Solution. Since sin 2
3A; =—£2!?!?

f
then

l c 11
/ = Y \ (1 — cos6A:)dA; =-ja:— ^sin6^:+C

4.1.12. / = ^cosh 2 (8x+5)dx.

Solution. Since cosh2 w = cosh
, then

/=-§
J
[1+ cosh (16*+ 10)] dx = lx+l sinh(16x+10) + C.

4.1.13. / = ^2+^+5 •

C dx C dx
Solution. I =

] x*+ 4x+5 = ^
= arc tan (*+ 2

)+C

4.1.16. / = j
d*

V4— 9x2 '

Solution. /= 1-7=^=^= 4- 1-7====- = 4- arc sin ^?+ C.

4.1.17. /= r r
dx=.

5o/^to«. 7=f^J|==r-7=iL= = arcsin^+ C.
J VS— x-t-Ax J j/9-(x+2) 2 3

^

4-1.19. / =
| 4
_^_.

Solution.

1 — { dx C ch

J 4—

x

2— 4x J 8— (a;

<ta 1
t

2 =TT7^1nt+2) 2 4^2
2 j/l+ AT+2

2 /*2— (*+ 2)
+ C.
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4.1.21. Evaluate the following integrals:

, , P3— 2 cot 2 * , C 2+ 3x2
.

(
CM cos** <

d
> JiM?^^

4.1.22. Integrate:

f — at^.h-
(5) f cos 2* ^

^ ' \ y \ —x*
9

J cos*— sin* *

(c) \ ^ dx; (d) \ (sin 5*— sin 5a) dx.

§ 4.2. Integration by Substitution

The method of substitution (or change of variable) consists in sub-

stituting cp(/) for a; where q) (t) is a continuously differentiate

function. On substituting we have:

lf(x)dx=lf[<p(t))<p'(t)dt,

and after integration we return to the old variable by inverse sub-

stitution / = q)
-1

(x).

The indicated formula is also used in the reverse direction:

5 f [<P (01 <P' (0 dt = \f W dx
>
where x = y(t).

4.2.1. / =
J
xVx^dx.

Solution. Make the substitution

Whence

a:—5=t\ x = t
2+ 5, dx=2tdt.

Substituting into the integral we get

/=J(/»+ 5)*.2* dt=2 j(/
4 + 5* 2

) df =2-£+^ + C.

Now return to the initial variable x:

2(*-5) 6/
»

,

10(*-5) 3/
»

, ^

4.2.2. / = j-

' = '

5 3

d*

1 + e*
'

Solution. Let us make the substitution l+e*=t. Whence

ex = t— \, x = ln — 1), dx=dt/(t — \).



200 Ch. IV. Indefinite Integrals

Substituting into the integral, we get

dt

J \+ex Jn< (/-I)'
But

1 1 l_

t(t— \)~t—\ t
y

therefore

I = r̂-^ = ln\t-l\-\n\t\ + C.

Coming back to the variable x, we obtain

I^ln^+ C^x-lnil+e^ + C.

Note. This integral can be calculated in a simpler way by mul-
tiplying both the numerator and denominator by e~ x

:

§j^dx = -§ 7^-l

dx = -\n(e-*+l) + C =

= -ln^-tl = x-ln(^+l) + C.

4.2.3. /= \ /2+3 dx.
-5)3J V&x-

4.2.4. /=r

—

(x2- x)dx

4+ 3x2 +l)arctan^-t-J

Solution. Transform the integrand

(\ — \/x*)dx

+ l/x) 2 +l]arctan(.*:+l/;tr

Make the substitution x+ -j=t; differentiating, we get

(l-±)dx = dt.

Whence

/-f d±
J (/

2 +l)arctarW
'

Make one more substitution: arc tan t = u. Then

dt

t
2 +\'

and

du

/ = j^=ln|«| + C.
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Returning first to t
t
and then to x, we have

/ = In
|
arc tan t\ + C = In arc tan (* + 7) |

+ c#

4.2.5. / = I
V a'~ x2 rlr

x*

Solution. Make the substitution:

1 , dtx= T \ dx =— -^

Hence,

Now make one more substitution: \faH 2— 1=2. Then 2a2
/ dt

= 2zdz and

Returning to t and then to x, we obtain

^ 2 (3 / r
~~

J a2 sin 2 x+b2 cos 2
a:

"

Solution.

\ a2 sin 2
A;+ &2 cos 2

a:

-
b2 I a?

J J b2

dx
2

, 2 . , cos 2
a:

"

tan 2
a: + 1

Make the substitution ^-tanx = t; dt = -%-
dx
9 . Then

& 6 cos 2
a:

Returning to a:, we obtain

/ = ~ arc tan tan + C.

4.2.7. / =
S
£/T+ 3 sin xcosjcd*.

Solution. Make the substitution l+3sinA: = /
T 3cosjc<2a;= <#. Then

/ = ^7d^^pv. <a=i.4<v.+c= (l+3
;
n^/,

+c.

4.2.8. / = j"

cos X
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4.2.9. f ^-yr .

J (arc cos x) b
y \ — x'1

dx
Solution. Make the substitution: arccosx^/; r = dt. Then

1^ l - X*

/ = — [ Cr 5 d/-4-^" 4 + c = ^ —r + c.
J/ 5

J 4 ~ 4 arc cos x

.10. f ^^±L=dx.

4.2.11. / = j_5!^L<fr.sin 2x

1 + sin 2 x^

Solution. Make the substitution:

1 -f- sin
2 x=t; 2 sin x cos x dx = sm 2x dx ~^dt.

Then

/=Jy-
= ln/ + C = ln(l + sin 2

*) -|- C.

««
Solution. Substitute

3 + #lnA; = /, (1 + \nx)dx = dt

and get

/ =§j = \n\t\ + C = \n\3 + x\nx\ + C.

4.2.13. Evaluate the following integrals:

In x ) x

4.2.14. Find the following integrals:

In x dx
(a) ^yi-xdx; (b) f-i^

- In x

(c)

J
cos 5 x V^sin .xrck; (d)

^
y* Ax -

§ 4.3. Integration by Parts

The formula

^ udv = uv—
J
ydw

is known as the formula for integration by parts, where w and v

are differentiate functions of x.
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To use this formula the integrand should be reduced to the pro-

duct of two factors: one function and the differential of another
function. If the integrand is the product of a logarithmic or an
inverse trigonometric function and a polynomial, then u is usually

taken to be either the logarithmic or the inverse trigonometric func-

tion. But if the integrand is the product of a trigonometric or an
exponential function and an algebraic one, then u usually denotes

the algebraic function.

4.3.1. / =
J
arc tan x dx.

Solution. Let us put here

w = arc tan a;, dv = dx>

whence

* dx
^ = r+^ ;

V==X)

I = jarc tan x dx = x arc tan x— ^ iq~^2
= x arc *an *—y ^ ~^x^

4.3.2. /= ^ arc sin xdx.

4.3.3. / =
J
xcosxdx.

Solution. Let us put

u = x\ dv = cos a; <£*;,

whence

du = dx\ v = s'mx
i

1=
^ A;cosA:dA: = Arsin a:— J sinA:dA:== Arsin x-fcosx + C.

We will show now what would result from an unsuitable choice

of the multipliers u and dv.

In the integral ^xcosxdx let us put

// ^ cos x] dv = x dx,

whence

du — — sin a: dx; a = y a;
2

.

In this case

/ ~ -1 cos x+ y J
X2 sin a: <2a;.

As is obvious, the integral has become more complicated.

4.3.4. /=
J

a:
3 lnA:dA:.
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Solution. Let us put

u = In x\ dv = x 3 dx,

whence

i dx 1

du = — ; v = — .,\
X ' 4

/ = jc
4 In x— 4" J

^^ T

'

nA:— -j^x^dx = ^-x*\nx—-^x4 + C.

4.3.5. 7 =
5

(a;
2— 2*+ 5)<T*dx.

Solution. Let us put

w = x2— 2x+ 5; dv = e~ x dx
y

whence

= (2x— 2)d;c; u = — e~ x
\

1 =
^

(x2—2x+5)e- x dx =— e- x {x2— 2x+ 5) + 2
J
(x—\)e~ x dx.

We again integrate the last integral by parts. Put

x— l = u\ dv = e~ x dx>

whence

du = dx; v =—e~ x
.

7 1
= 2

J
(jc— \)e~ xdx=—2e- x (x— l) + 2

J
e-*dx= —2*g-*+ C.

Finally we get

7 = — e-*(*2— 2a;+ 5)— 2xe-*+ C = — e~ x (x2 + 5) + C.

Note. As a result of calculation of integrals of the form ^ P (x) eax dx

we obtain a function of the form Q(x)eax , where Q(x) is a poly-

nomial of the same degree as the polynomial P(x).

This circumstance allows us to calculate the integrals of the in-

dicated type using the method of indefinite coefficients, the essence

of which is explained by fhe following example.

4.3.6. Applying the method of indefinite coefficients, evaluate

1=
J

(3x3—\7)e2x dx.

Solution.
J

(3a:
3— 17) e2x dx= (Ax 3 + Bx2 + Dx+ E) e2x+ C.

Differentiating the right and the left sides, we obtain

(3a;
3— 1 7) e2x = 2 (Ax3 + Bx2 + Dx+ E) e2x+ e2x (3Ax2 + 2Bx+ D).

Cancelling e2x , we have

3x3— 17 = 2Ax3 + (2B + 3A) x2 + (2D+ 2B) x+(2E + D).
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Equating the coefficients at the equal powers of x in the left and
right sides of this identity, we get

3 = 2A\ = 2B + 3A;

0-2D + 2B; — 17=2£ + D.

Solving the system, we obtain

A— — - R — ~- D — — ' F — —

Hence,

j (3x 3— 1 7) £?
a*dx- (-| a;

3—~ a;
2 + -J

x—^ ) e2* + C.

4.3.7. Integrate:

/ =
J

(*
3 + \)cosxdx.

Solution. Let us put

a = a;
3+ 1 ; do = cos x dx,

whence

da = 3jc
2

(iA;; o = sinA:.

/ = (^3 +1) sin a:— 3 ^ a;
2 sin x dx= (x3 + 1) sin x— 3/ lf

where l
x
= ^ x2 sin x dx.

Integrating by parts again, we get

/
x
=— a;

2 cos x+ 2/
2 ,

where / 2
= ^ a: cos at^a:.

Integrating by parts again, we obtain

I
2
= xsmx+ cos x+ C.

Finally, we have:

/ =
^
(x*+ 1) cosA:(iA:=(A:3+ l)sinA;+3A:2 cosA:

—

6a: sin x— 6 cosa:+ C=
= (a;

3— 6a:+ 1) sin x+ (3a:
2— 6) cosa:+C.

Note. The method of indefinite coefficients may also be applied

to integrals of the form

J
P (x) sin ax dx, ^ P (x) cos ax dx.

4.3.8. /=
J

(a:
2 + 3a:+ 5) cos 2a: g!a:.

Solution. Let us put

jj

(a:
2 + 3a:+ 5) cos 2a:g!a:=

= (A x2 + A
x
x+ A

2 ) cos 2a:+ (B a:
2 + B

xx+ B
2 )

sin 2x+ C.
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Differentiate both sides of the identity:

(x2 + 3x+ 5) cos 2x= —2 (A x2 + A
x
x+ A 2 )

sin 2x+
+ (2A x+A

l )
cos 2a;+ 2 (B x2 + B^x+B^) cos 2x+ (2B x+B

1
)s'm2x=

= [2B x2 + (2B, + 2A ) x+(A,+ 2B
2 )} cos 2x+

+ [—2A x2 + (2B — 2A,) x -f (B l
—2A

2 )] sin 2x.

Equating the coefficients at equal powers of x in the multipliers

cos 2x and sin 2x> we get a system of equations:

2B = 1; 2(B
1 + A ) = 3; A

1 + 2B
2
= 5;

—2A = 0; 2 (B — A,) = 0; B
x
— 2A

2
= 0.

Solving the system, we find

A _A. d J_ . /I __J_. r _ A • /i _ A • R —A/i — u, /Jo — 2 ' i — 2 ' i — 2 ' 2 — 4 ' 2 — 4
•

Thus,

J
(*

2 + 3x+ 5)cos2xdx=
(
y + t) cos2jc+ (y *2+ jx+ ~) sin 2x+C.

4.3.9. /=
J

(3a:
2 + 6a:+ 5) arc tan a: dA:.

Solution. Let us put

w = arc tan a:; do = (3a:
2+ 6a:+ 5) dxy

whence

^w ^
I

"»
o = a:

3+ 3a:
2 + 5a:.

Hence,

/ = (*» + 3a:
2 + 5x) arc tanx—

j
^"^ 3

ff
5*

dx.

Single out the integral part under the last integral by dividing

the numerator by the denominator:

=J+ 3x+2j^-3.J I^1 =f + 3*+21n(x2+l)-3arctanA'+C.

Substituting the value of / lf we finally get

I = (x* + 3x2+ 5a:+ 3) arc tanx—

x

2
/2—3x— 2 In (x2+ 1) + C.

4.3.10. Find the integral

/ = ^ebx cosAxdx.

Solution. Let us put

ebx = ^; cos 4.v =. do,
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whence

Hence,

5ebx dx = du\ v = sin 4a:.

1 5 P
/ — — e

5* sin \x — \ e 5*sin4A:dA:.
4

Integrating by parts again, we obtain

r*
j 5 P

I
1
z=

j sin Axdx^ — -^-e
5*cos4.*;+ ^- \ e5*cos4A:dA:.

Thus,

1 5/1 5 P \
/ = -j ebx sin 4a: —— ( — j e5* cos \x + \ ebx cos 4xdx)

9

l. e.

/ = -L ebx ^sin 4x+ -|-cos 4a: ^

—

Whence

/ = ^ebx ^sin 4a:+ -|- cos 4a:
j
+ C.

4.3.11. / =
$
cos(lnx)dx.

Solution. Let us put

£/ = cos(lnA:); dv = dx
y

whence

= — sin (In x) ^ ; ^ = a:.

Hence,

/ =
J
cos (In A:)rfx = xcos(lnA:) + ^ sin (In a:) dx.

Integrate by parts once again

// -=sin (In x)\ dv=dx,

whence
dx

da = cos (In a:) — \ v=x.

Hence,

/i = J
s * n (lnA:)dx = xsin(ln a:)—

J
cos (ln^)dA:.

Thus

/ = cos (In a:) dv = a: cos (In a;) + x sin (In x)— /.

Hence

/ = y [cos (In a:) -f- sin (In a:)] + C.
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4.3.12. / = jxln(l +-j)dx.

Solution. Let us transform the integrand

In (
1 + 1 ) = In i±l = in (x+ 1)- In x.

Hence

/ =
J
x In (x+ \)dx— \^x\nxdx = I

i
— /

2

Let us integrate /
x
and / 2 by parts. Put

a = ln(x+ 1); dv = xdx,
whence

Hence

/
1
= Jxln(^+l)dx = -i(x«- l)ln(x+l)-l

j
(- \)dx

X2— 1

In
(
X+l)-±§(x-\)dx =£T±ln (x+l)-i*« + ±x + C.

2

Analogously,

I 2 = ^
xln xdx=Y^nx— -j" *a

Finally we have

/ = J*ln(l +^)^ = l(x2 -l)ln(x+l)-^lnv+|+C.

4.3.13. / = j
^^R[ln(^+l)-2 1n,]^

Solution. First apply the substitution

Then

Hence,

2dx dx I j,
<« =-V or ? ? <ft.

The obtained integral is easily evaluated by parts. Let us put

u = \nt; dv = \/"tdt.

Then

du = Y> v =-~t\ft

.
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Whence

-1 Jj/Tln*<tf=— -g- \jtVT\nt— =

Returning to x, we obtain

'—

T

(^+i) 1

[2—3 In (1+33)] +C9x3

4.3.14. / = sinx In tanxdx.

4.3.15. / =
J
\n{VT^x+VT+lc)dx.

Solution. Let us put

u = In + /l+x) ; dv= dx,

whence

~~
2 ' j/t^*+ i^tt*

' ]/T=i2~~ 2 ' * ^r=^
= a;.

Hence,

/ = x in {VT=Tx+ VTTi)-\ j
x^^^dx=

= ^1^/1— x + + x)— yjc+ y arc sin x-fC.

Note. In calculating a number of integrals we had to use the

method of integration by parts several times in succession. The
result could be obtained more rapidly and in a more concise form
by using the so-called generalized formula for integration by parts

(or the formula for multiple integration by parts):

^u (x) v (x) dx = u (x) v
l
(x)— u' (x) v

2
(x) + u" (x) v9 (x)— ...

. . . + (— l)"- 1^"- 1
* (x) vn (x)— (— l)"" 1

J
u {n)

(x) vn (x) dx,

where

v
1
(x)=^v (x) dx; v2 (x) =^v

x
(x) dx; . .

. ;
vn (x) =

J
vn _ x

(x) dx.

Here, of course, we assume that all derivatives and integrals appea-

ring in this formula exist.
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The use of the generalized formula for integration by parts is

especially advantageous when calculating the integral
^
Pn (x) cp (x) dx,

where Pn (x) is a polynomial of degree n
y
and the factor y(x) is

such that it can be integrated successively n+ 1 times. For example,

J
Pn (x) dx = Pn (xf£- P'n (x)

e~ + . . . +

+ (-!)» PJ» {x)£t+ C =

4.3.16. Applying the generalized formula for integration by parts,

find the following integrals:

(a) ^(x3— 2x2 + 3x—l)cos2xdx,

(b)
J
(2x3 + 3x2— 8x+ 1 ) V2x+ 6 dx.

Solution.

(a
) ^(x

3—2x2 + 3x—l) cos 2x dx= (x3— 2x2 + 3x— 1 ) 2^

—

/o 9 /« i o\ f cos 2a: \
, /c / sin 2x\ c cos 2a: . n— {3x2— 4x + 3) ^ ^

—

j+(€>x— 4)l^ — J — 6—j^— + C =

= 5!£?f (2^3_ 4x2 + 3*) + (6*
2— 8* + 3) + C

;

(b) l(2x
3 + 3x2— Sx + l)V~2x+ 6dx =

= (2x 3 + 3x2— 8x+ \)
{2x+ 6)3/2

--(e>x2 + 6jc— 8)
(2*y +

= (2* + 6) (70xa—45x2- 396* + 897) + C.

Evaluate the following integrals:

4.3.17.
J
In (x+ Vl+x*)dx.

4.3.18.
J
Yx{\nxfdx.

4 3 19
J

arc s 'n ****

4.3.20.
x cos # dx

sin 3
a:

4.3.21.
J
3* cos x dx.
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4.3.22. ^(x3— 2x2 + 5)e3x dx.

4.3.23. ^(l+x2
)

2 cosxdx.

4.3.24. ^(x2 + 2x—l)sm3xdx.

4.3.25.
J

(a:
2— 2x+ 3)\nxdx.

4.3.26.
J

jc
3 arc tan jc dx.

4.3.27.
J

arc cos jc dx.

4.3.28. Applying the formula for multiple integration by parts,

calculate the following integrals:

(a) ^(3x2 + x— 2) sin 2
(3*+ \)dx\ (b)

^

x*~*x+ *

dx.

§ 4.4. Reduction Formulas

Reduction formulas make it possible to reduce an integral depend-

ing on the index n > 0, called the order of the integral, to an
integral of the same type with a smaller index.

4.4.1. Integrating by parts, derive reduction formulas for calcu-

lating the following integrals:

(a) !
»
=
I (**+ a*)«

; (b) ~ m = I
dx;

(c) /„=
J
(a

2—x2
)

n dx.

Solution, (a) We integrate by parts. Let us put

(*
a+ aa

)
2\n dv = dx,

whence

Hence,

/

, 2n x dx
du =—r^-i

— r , v = x.
(x 1 -^a 2

)
n + i 9

(x 1+ a'
1
)

n

whence

n + 1 ~~ llna h ' {x 1
-f- a

1
)'1 2n ' a 1 n
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The obtained formula reduces the calculation of the integral In+1
to the calculation of the integral I n and, consequently, allows us

to calculate completely an integral with a natural index, since

/, = f 2
= — arc tan — + C.

J x2 + a2 a a '

For instance, putting n=l, we obtain

2
J (**+ a 2

)

2 ~~ 2a 2 '
a:
2+ a 2 2a2 1 ~~ 2a 2 x*+ a2 + 2a?

ai
*

C T an ¥ + C

;

putting m = 2, we get

/ — C
dx — 1 a: 3 , _

3 ~~
J (*

2+ a2
)
3 ~~ 4a2 " (x2+ a 2

)
2 4a2

7
2 ~~~

1 x x
. 3 i ^

\ r*
~~

4a2" (x2+ a2
)
2 + 8a* ' x^fa~2+ 8^ alX 130 "7 + C "

• «-i j sin * ,

w=sin'z 1 x; ay =——aa:,
cos OT * '

(b) Let us apply the method of integration by parts, putting

whence

da

Hence,

du = (n— 1) sin"
-2 x cos a: d^:; v = , 1X

1

m . (m ^ 1)v 7 (m— 1) cos™
-1 # v ^

/ _ sin" -1 * n— 1 C si

~~
(m— 1 ) cos"2 - 1 x~ m— 1 J ~c

sin" -2 x dx

cos 7™ -

4

#

_ sin"- 1 * — 1

(m— 1) cos*1 - 1 * m— 1 "" 2 ' a-* (
m ^=1 /-

(c) Integrate by parts, putting

u = (a2— a;
2
)"; dv = dx,

whence

=— 2nx (a
2— a:

2)"
-1

dx; v = x.

Hence

jn=zX (a*— x2

)

n+ 2n $ x
2
(tf— x2)"- 1 dx =

= x(a2—x2

)

n+ 2n
J

(a:
2— a2 + a 2

) (a 2— a;
2)"" 1 dx =

= a: (a2 —a;2
)"— 2n/ w+ 2na2

In _ v

Wherefrom, reducing the similar terms, we obtain

(\+2n) I n =x(a
2—x2

)

n + 2na2In _ 1
.

Hence,

j __ x(a
2— x2

)
n 2na2

,

7/1 ~ 2/z+l ~»2/i+l
7 »-i'
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. ax x . n
I- 1/2 = \ ^ r-n » " arC sin ~ + C

>

For instance, noting that

_ P
dx

we can find successively

= JV^"^ ^ = |(a2-x2)i/2 + ^/_ 1/2 ^

=-i[/5^i + -^arcsin| + C,

= J(a
2 ~A;2

)
3/ 2^ = -J-(a

2— *2
)
3/ 2 + -|-a 2 / 1/2 , and so on.

4.4.2. Applying integration by parts, derive the following reduc-

tion formulas:

(a) /„=
J
(\nx) n dx = x(\nx) n— nln _ x \

(b) /„ = \ x« (In x)» dx = *>"-^ /„

,

x
(a^-1);

(c) /„ =
J
xnex dx = x?

l

ex—nln - 1 ;

(d) /„= J^'sin"**^

= -n—oSin" ^(asinx— ncos^H ^-—^ /„_,.

4.4.3. Derive the reduction formula for the integration of /„=
= (-^- and use it for calculating the integral / a =f-^r-.

J sin" a:
to 3

J sin* x

4.4.4. Derive the reduction formulas for the following integrals:

(a) I n = J
tann xdx; (b) /„ =

J
cot" xdx\

J V x*-\-a



C h a p t e r

BASIC CLASSES
OF INTEGRABLE FUNCTIONS

§ 5.1. Integration of Rational Functions

P (x)
If the denominator Q (x) of the proper rational fraction pry-( can

be represented in the following way:

Q {x) = {x—a)k {x— b)
1

. . . (x
2+ ax+$) r (x2+ yx+ \i)

s
.

where the binomials and trinomials are different and, furthermore,

the trinomials have no real roots, then

P(x) A x . A 2 . . Ak
,

Q (x) x—a 1 (x—a)* ~ ' ' ' ~ (x—a)*
~

1 x— b
1 (x—b)* 1

* " * M*— b) 1 1

* '
#

x2+ ax+ p (*
2+ cu;+p) 2 (jca+ ouc+ P)'

1

*a+ V^+M- (*
2+ Y*+M0 2

(*
a+ Y*+H) 5

where

i4 lf i4„ . .
. ,
B 19 B„ . .

. ,
M lf N 19 7W 2 ,

N 2y . . . ,
/? lf Llf /? 2 ,

L
2 ,

. . .

are some real constants to be determined. They are determined by

reducing both sides of the above identity to integral form and

then equating the coefficients at equal powers of x, which gives

a system of linear equations with respect to the coefficients. (This

method is called the method of comparison of coefficients.) A system

of equations for the coefficients can also be obtained by substitu-

ting suitably chosen numerical values of x into both sides of the

identity. (This method is called the method of particular values.)

A successful combination of the indicated methods, prompted by

experience, often allows us to simplify the process of finding the

coefficients.

If the rational fraction is improper, the integral part should

first be singled out.
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5.1.1.

*— 4x— 81

c+ 4) (*-l)
, f* \5x2— <ix— oi

Solution. The integrand is a proper rational fraction. Since all

roots of the denominator are real and simple, the integral will

appear in the form of the sum of three simple fractions of the form

15a:2— Ax— 81 A . B . D
(x— 3) (x+4) (x— 1) X— 3 1 a+4 1 x— 1»

where A, B, D are the coefficients to be determined. Reducing the

fractions to a common denominator and then rejecting it, we obtain

the identity

15x2 - 4x— 81 = A(x+ 4) (x— l) + B {x—3) (x— 1) +
+ D(x-3)(x+ 4). (*)

Comparing the coefficients at equal powers of x in both sides of

the identity, we get a system of equations for determining the

coefficients

A + B + D - 15; 3A— 4B + D = —4; — 4A + 3B— 12D = —8 1

.

Solving the system of equations we find A = 3, B = 5, D-— 7.

Hence,

= 31n|x— 3
|

+ 5 In
|
x+ 4

|
+ 7 In |*— 1

|
+ C =

= In
|
(x—3) 3

(x +• 4)
fi (x— I)

7

1 -f C.

AWe. Let us use the same example to demonstrate the applica-

tion of the method of particular values.

The identity (*) is true for any value of x. Therefore, setting

three arbitrary particular values, we obtain three equations for

determining the three undetermined coefficients. It is most conve-

nient to choose the roots of the denominator as the values of x
t

since they nullify some factors. Putting x = 3 in the identity (*),

we get A =3; putting x =—4, we obtain B^=5; and putting x-=l,
we get D = 7.

5-1.2. / =j
(2+ x)(S-ir

5.1.3. I =
$

Xi

-<Z7X
2
dx -

Solution. Since the power of the numerator is higher than that

of the denominator, i.e. the fraction is improper, we have to single

out the integral part. Dividing the numerator by the denominator,
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we obtain

x*— 3x2—3*— 2 , t
x+ 2

x3— x2— 2x 1

x(a:2— x— 2)"

Hence,

, rx*—3x*—3x—2, p, . 1W p (x+ 2)d*

Expand the remaining proper fraction into simple ones:

x+2 _ A B D
*(*— 2)(x+l)~~ x — 2

+ a:+1*

Hence

x+ 2 = A(x—2) (x+ l) + Bx (x+ l) + Dx (x—2).

Substituting in turn the values ^ = 0, x2
= 2, x3

= — 1 (the roots

of the denominator) into both sides of the equality, we obtain

/4= _l; fi= |; D=|.

And so

=^+ *+ ln|*|— -|ln|x—2|—yln|x+l| + C.

5,4 I =) ^-23fl+x
dx -

Solution. Here the integrand is a proper rational fraction, whose
denominator roots are real but some of them are multiple:

x3— 2x2 + x=x(x—l)2
.

Hence, the expansion into partial fractions has the form

2x*— 3*-f3 _ A B D
x*— 2x'2>+x~~~ x

~" (x— l)
2 + x— 1

'

whence we get the identity:

2x2— 3*+ 3 == A (x— l)
2 + Bx+Dx(x—l) =
^(A + D)x2 + (—2A— D+ B)x+ A. (*)

Equating the coefficients at equal powers of x we get a system

of equations for determining the coefficients A
y 6, D:

A + D = 2; —2A — D+B=—3\ A=3.

Whence A=3; B = 2; D =— 1.

Thus,

/=3j?+ 2j 7^-J^T
=31n|,|-^T-ln|,-H + C.
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Note. The coefficients can be determined in a somewhat simpler
way if in the identity (*) we put ^=0; x

2
= 1 (the denominator

roots), and x
3
equal to any arbitrary value.

At x=0 we get 3=A\ at #=1 we will have 2-=B; at x = 2

we obtain 5-4 + 2B + 2D; 5 = 3 + 4 + 2D; whence D =— 1.

5.1.6.

Solution. Since x 3 + 1 = (x + 1) (a:
2—x+ 1) (the second factor is

not expanded into real multipliers of the first power), the expan-
sion of the given fraction will have the form

x _ A Bx-{-D

X3+ 1 X+\ X2— # + 1

'

Hence,

x = A(x2— x + l) + (Bx + D) (x+l) =
= (A + B)x2 + (—A + B + D)x+ (A + D).

Equating the coefficients at equal powers of x, we get

A = -T> fi = T' D= T-
Thus,

To calculate the integral

let us take the perfect square out of the denominator:

3

and make the substitution x—\ = t. Then

j t * ^ x tdt
,

3 V d/

lln(/*+4) + K3 arctan^L+ C.

Returning to x, we obtain

/
1
= jln(x2—x+l) + K3" arctan^i + C.
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Thus,

= — y ln|* + 1
| + -g- ln(x2—*+l) + X^-arctan

2
-y~ +C.

Solution. The denominator has two pairs of different conjugate

complex roots, therefore

l _ Ax+ B Dx+ E
(jc*+1)(jc2+ 4)~~ + *a+4 '

hence

l=(Ax+ B) {x2 + 4) + (Dx+E) (x 2 + 1).

Here it is convenient to apply the method of particular values for

determining the coefficients, since the complex roots of the deno-

minator (# = ±i and x = ±2i) are sufficiently simple.

Putting x = i, we obtain

3fl+3>U = l,

whence ,4=0, B = ^ - Putting x = 2i
9
we obtain —3E— 6Di = 1,

whence D = 0, E =— . Thus,

r dx l r i_ c dx _
J (x2 +1)(a:2+ 4)~~ 3 J x 2 +l 3 J x2+ 4

""

5.1.8. / ~ i (*
2

= y arc tan x— -g- arc tan + C.

(x+ 1 ) dx

+ x+ 2) (** + 4*+ 5)'

' x4+ 4x3 +llx2 +12x-f-8

J (*
2+ 2x+ 3)

2 (x+l)

Solution, Here we already have multiple complex roots. Expand
the fraction into partial fractions:

^4+ 4a:3_|_ 11 ^2 + 1 2^+ 8 _ Ax+B Dx+ E f_
(x2+ 2x+ 3)

2 (x+ 1 )
*~

(a;
2+ 2x+ 3)

2
' x2 + 2*+ 3 + *+ 1

'

Find the coefficients:

-4=1; B =—U D = 0; £ = 0; f=L
Hence,

^4+ 4a:
3+1U2 +12a;+ 8

-dx-
(jt

2+ 2x+ 3)
2 (x+\)
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Calculate /, =
j (

,2/2^ 3)2
dx.

Since x2 + 2x+ 3 = (x+ l)
2 + 2, let us make the substitution

x-\- 1 Then we obtain

Ii=\ (/2+ 2 )
2
dt =

^
dt~ 2

I V
2 + 2)

2
=

2 (/a+ 2)

~~ 2/ 2'

The integral

2
J(/

2 +2) 2

is calculated by the reduction formula (see Problem 4.4.1):

. _ l / l r dt _ l t l , t r

Thus

/ } L_ ! o rn for,
*

i r
7 i- 2(/

2 +2) 2(/>+2) 2}A2 f2
^

Returning to x, we obtain

/ ! £±J !_arctan^tl-J Cl i~ 2(x2+ 2a;+3) 2(a:2+ 2a;+3) 2 V 2 ^2
We finally obtain

J (*2+ 2*+3) 2 (a:+1)

= ln|x+ 11— 0/ o*,"^
2

i ox U^ arc tan^y+ C.
1 1 2 (a:

2+ 2a:+ 3) 2 Y 2 V^2

Find the following integrals:

5#1 . 10 .

j
^"^

3̂r;;— ^>

5.1.11.

5.1.12.

5.1.13.

5x3 -j-9x2— 22a;— 8

-4a

dx

(jc+1)(a:+2) 2
(jc+ 3)»'

4a:+4) (a:
2 — 4a: +5)

dx

(1+*)(1+*>)(1+*8)'

x3+ 3
5 'U4

' IcT+W+T)^'

£ 5.2. Integration of Certain Irrational Expressions

Certain types of integrals of algebraic irrational expressions can

be reduced to integrals of rational functions by an appropriate change

of the variable. Such transformation of an integral is called its ra-

tionalization.
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I. If the integrand is a rational function of fractional powers of

( p-± 2l\
an independent variable x, i.e. the function R\x

9
x«*, x^j

,

then the integral can be rationalized by the substitution x=tm
,

where m is the least common multiple of the numbers q lf q 2 , . . ., qk .

II. If the integrand is a rational function of x and fractional

powers of a linear fractional function of the form then ra-

tionalization of the integral is effected by the substitution
ax

~t
b
,
= t

m
, where m has the same sense as above.

cx-\-d
'

5.2.1. l=\ x+ Y*+¥~x dx.

Solution. The least common multiple of the numbers 3 and 6 is 6,

therefore we make the substitution:

x = t*, dx^Wdt,
whence

= 6p 3 d/ + 6
J^^7

= y/ 4 + 6arctan/ + C.

Returning to x, we obtain

2

# 3 +6 arc tan 1/x+C.

5.2.2. 7 = 1 f*+K* dx.

5.2.3. / = t j

(2x— 3)
3 +1

Solution. The integrand is a rational function of £/2x— 3, the-

refore we put 2x— 3 = t
Q

y
whence

_L —
dx = 3t b dt; (2x— 3)

T = t
3

\
(2x— 3)

3 =/ 2
.

Hence,

1+/ 2

«3-y~
3-J-+ 3-^— 3^ + 3 arc tan / + C.
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Returning to x, we get

11 - l - l
-

/ = 3 I

-J-
(2x— 3) 6 — -i- (2x— 3)

6

y (2x— 3)
2 —

— (2x— 3) 6"+ arc tan (2x— 3)
T

] + C *

5.2.4. /= f-
3

/•"

Solution. The integrand is a rational function of x and the ex-

2qr^» therefore let us introduce the substitution

K 2+ x 2+ x
1 '

whence

Hence

j
P 2(l+/ 3

)
2 />12/ 2 , ___3_ A i r7 ~~

J 16/
6

(1 + '
3
)
2

ai ~~ 2j^""4/ 2
"

t
" U#

Returning to x
9
we get

'=4K(W+C-

5.2.6. /= (*__=£_.

Solution. Since

/(x-lH*+ 2)
5 = (x-l)(x+ 2) ]/£±2,

jZTj
-

; therefore let

us introduce the substitution:

K %-l x-\
~ l 9

whence

_ /
4+2

. 1 _ 3
.

i _ 3/4
.a:— tj— a:— 1 —

, 4 ,* #-f-z —
, _ -12/ a ^—

(/4 1)2
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Hence,

_ p
(/4-l)(/4— 1) \2t*dt 4 C dt__±_

i_ rl ~
J 3.3^(^ 4-D2 "~ 3 J /2-3/ + Lt

Returning to x> we obtain

5.2.7. f
dx

J (1- x) V1— *2

J 7^=
5.2.8

d*

t+1)2 (x— l)
4

5.2.9. j (,-2) /}±£x dx.
x

§ 5.3. Euler's Substitutions

Integrals of the form \ R(x y
[/ ax2

-\- bx+ c) dx are calculated with

the aid of one of the three Euler substitutions:

(1) V ax* + bx+ c = t±xVa if a > 0;

(2) V~ax2 + bx+c=tx± ]/"c if c> 0;

(3) V~ax2 + bx-\-c = (x— a)t if

ax2 + bx+ c = a(x— a) (x— f$),

i.e. if a is a real root of the trinomial ax2 -\-bx-\-c.

5.3.1. /=f /x

Solution. Here a=l > 0, therefore we make the substitution

Vx2 + 2x-\-2 = t— x.

Squaring both sides of this equality and reducing the similar terms,

we get

2x+ 2tx = t
2— 2,

whence
_ t

2— 2 , _ /
2+ 2/+ 2

*~~2(1 +/)
; 2(l + 2 '

1 +^ + 2*+ 2 = 1 +<-^=%T7F *

Substituting into the integral, we obtain

. P 2(l+<)(< 2 + 2/+ 2) _ f
(<

2+ 2<+2)rf<

J « 2+ 4i+ 4)2(l+02
J (l+0(<+2)3

'
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Now let us expand the obtained proper rational fraction into par-

tial fractions:

/
2+ 2/ + 2 _ A B D

(t+ 1 ) (/ + 2)
2 ~~

t + I
+

/ + 2+ (t + 2)
2 '

Applying the method of undetermined coefficients we find: i4=l,
B = 0, D =— 2.

Hence,

p r2+ 2/ -f-

2

Ai _ p d/ Q p d/ _
1 i y i iii 2

, ^>

Returning to x, we get

/ = In (x+ 1 + j/> + 2x+ 2) H _
2 + C.

x+ 2+ y
r
x* + 2x+ 2

5.3.2. /= f *
c+ V *2 — x-\- 1

Solution. Since here c=l>0, we can apply the second Euler

substitution

Vx2—x+ 1 = tx— 1,

whence

(2/-l)x = (/
2 -l)x2

; *= ^rr;

^=-2^^^; x+ Kx'-x+^y^y.

Substituting into /, we obtain an integral of a rational fraction:

r — 2; 2+ 2/—

2

J /(/ — !)(/ + I)
2 '

-2/ 2+ 2/— 2 i4 . B . D . E
t(t—\)(t+\) 2

t
1

/ — 1
1

(t + \)
2 1

* +

By the method of undetermined coefficients we find

A = 2; B = -y; Z> = -3; £ =- |.

Hence

/ + r

= 21n|/|—[ln|/-l
I
+ In + l

\ + C
9

)/"xa—x+l + l

, 9 Cdt_ 1_ C dt o C dl 3 P
7 - Z

J / 2 J/-1 ^J(/+l) 2 2 Ji

where / =

x

5.3.3. /=f
d*

(1+x) ^l + x— a;
2
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5.3.4. / = f-
x dx

(]ffx—\0— x*) 3
'

Solution. In this case a < and c < therefore neither the first,

nor the second Euler substitution is applicable. But the quadratic

trinomial 7x— 10

—

x2 has real roots a= 2, P = 5, therefore we
use the third Euler substitution:

y'7x—\0—x2 = V(x— 2) (5— *) = (x—2)t.

Whence
5— 2) t

%
\

_ 5+ 2/ 2
, _ 6/ dt

X — .
i v2 » ax

1 + /
2

' ™ (1 + /
2
)
2 •

Hence

, = .«^--»fl| +2)*--»(-f+a ) + C .

, . 1/"7jc— 10— jc
2

where /- ^ .

Calculate the following integrals with the aid of one of the Euler

substitutions:

dx
5.3.5. f j±

J x— Vx

5.3.6.
J

2+ 2jc+ 4

dx

Y 1 — AT
2— 1

5.3.7. j
dx

5.3.8.
f
^+.GI?"^
]/"(2x—

x

2
)
3

yT+x2

§ O^ter Methods of Integrating Irrational Expressions

The Euler substitutions often lead to rather cumbersome calcu-

lations, therefore they should be applied only when it is difficult

to find another method for calculating a given integral. For calcu-

lating many integrals of the form

J
R(x, Vax1 + bx + c) dx,

simpler methods are used.

I. Integrals of the form

I=f dx
J Vax2+ bx+c
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are reduced by the substitution x+ -^ = t to the form

*J Vat'+K *J Vat*+ K
%

where M l9
N

ly K are new coefficients.

The first integral is reduced to the integral of a power function,

while the second, being a tabular one, is reduced to a logarithm

(for a > 0) or to an arc sine (for a < 0, K > 0).

II. Integrals of the form

P- W
dx,

J Vax2 + bx+ c

where Pm (*) is a polynomial of degree m, are calculated by the

reduction formula:

L p

:?Tl- =v 1 (x)^Hw/([-7^r=-, (i)

J KaA: 2+^+ c J V ax z+ bx+ c

where Pm _ 1
(x) is a polynomial of degree m— 1, and K is some

constant number.
The coefficients of the polynomial Pm ^. 1

(x) and the constant

number K are determined by the method of undetermined coeffici-

ents.

III. Integrals of the form

dx

(x—ai)"1 Vax 1 -\-bx-\~c

are reduced to the preceding type by the substitution

1x-a
x
=T .

IV. For trigonometric and hyperbolic substitutions see § 5.7.

5.4.1. 7 = f .

J V4a:2 + 4*—

3

Solution. Make the substitution 2#+l = /, whence

/ — 1

Hence,

1 CiLh
4

J

2
, dx— -^dt.

5)dt_ 1 ./-tj—2 i 1^-4 + 4ln|/ +^ 2 -4| + C.

Returning to x, we get

I=ly^ + 4x—3 + ^\n\2x+l + [
r4xi + 4x—3\ + C.
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5.4.2. /= f
5X+ - H*.

J ^x2+ 2x+5

5.4.3. /== f f-x-zjL^dx.
2 +2x+2

Solution. Here Pm (x) = x3—x— 1. Hence,

Pm - 1
(x) = Ax2 + Bx+ D.

We seek the integral in the form

/ =
(
Ax> + Bx+ D) Vx2 + 2x+ 2 + K f -=

j y *2+ 2*+

2

Differentiating this equality, we obtain

— x— l

dx

/'

V
r
x2+ 2x+ 2

= (2Ax+ B) V
r
x* + 2x+ 2 + (Ax2 + Bx + D) 4

y x' ~\~ 2x ~j 2

+ *

Vx'1 + 2x+2
#

Reduce to a common denominator and equate the numerators

x*—x— 1 = (2Ax+ B) (x2 + 2*+ 2) + (/l*2 + + D) (* -f 1) + K.

Equating the coefficients at equal powers of x, we get the following

system of equations:

2A + A=1, B + 4A + B + A=0;
2B + 4A + D+ B = —l\ 2B + D+K=— 1.

Solving the system, we obtain

Thus,
dx

*+ 2x+ 2

where

1

J Vx2+ 2x+2 J 1)2+1
v ^ -r /-r

5.4.4. /= JjAx2— 4x+ 3dA:.

Solution. Transform the integral to the form

/=[ Jf-
4*±^ dx = (Ax+ B)V4x2-4x + 3 +K f A

^
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Applying the method of undetermined coefficients, we get

V2 4f J V(2x-\\> + 2

=
)
]/4x2—4x+3 +y In (2x— 1 -|- j/4j^— 4x+3) + C.

5.4.5. f
9'3-3'2+ 2

rf
-

J K3x2— 2x+l

5.4.6. 1 dx.

= r (f±
J (a:— 1) (a:+2) 2 +

5.4.7. /- 1
(*+4)dx

Solution. Represent the given integral as follows:

(x-{-4)dx C x+4 dx

(x-l)(x+ 2)
2 j7> + jc+1 J

(at— 1) (a:+2) 2 yx2+ x+{

Expand the fraction
?

. T
9 2

into partial fractions
\X 1 ) \X -\- Z)

x+4 A . B . D
(x— l)(*+ 2)

2 x—\ 1

(x+ 2)
2 1 x+ 2

Find the coefficients

Hence,

5 2 5 1 dx
1 =

9(x-\) 3(x+2) 2 9 (a:+2)J yxt+ x+ \

dx 2 f dx

(x— 1) + 1
3

J (x+2) 2 |A^-f-x-fl

_ 5_ f dx
"

9
J + 2) /x 2 + x-H

The first integral is calculated by the substitution x— 1 ==— , the

second and the third by the substitution x+ 2 = -j-'

We leave the solution to the reader.

5.4.8. f *3- 6**+H*- 6^
J W+4x+3

5.4.9. f 3^+ 5^-7,+ 9
Wt,

J |^2a;2+ 5a:+ 7
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5.4.11
1

xdx

5.4.12.

I (x2— 3x+ 2) Vx2 — 4*+ 3

r dx

J (^+l) 3/^+ 37+2
"

5.4.13. r
{

f-
l)dx

.

J x V l+3x2+ ;c
4

§ 5.5. Integration of a Binomial Differential

The integral ^ x
m

(a + bxny dx, where m, n, p are rational num-

bers, is expressed through elementary functions only in the follow-

ing three cases:

Case I. p is an integer. Then, if p > 0, the integrand is expanded
by the formula of the Newton binomial; but if p < 0, then we
put x=tk

y
where k is the common denominator of the fractions m

and n.

Case II. is an integer. We put a+ bxn = t
a

, where a is

the denominator of the fraction p.

Case III. ^-^-+ p is an integer. We put a+ bxn = t«xn , where a

is the denominator of the fraction p.

5.5.1. / =
$
j/x(2+j/"x) 2 dx.

r -( -V
Solution. I =

J
x 3 \2+x 2

y dx. Here /? = 2, i.e. an integer; hence,

we have Case I.

/ =
J

*3"
(jc+ 4xT +4) dx =

J
(xT+ 4xT+4xT ) dx=

3 - 24 ii -

2 \ -1

5.5.2. / = J*
3 G+* 3

) dx.

C-/T+V*
J

5.5.3. / = \
*

, J_ dx.

Solution. I =
J ( 1 + xT )

T
d.*:.

2 . 1 1 m+l (-4+0
Here m= — j ; n= j\ p = -^ ;

=
{

= 1, i.e. an

3"

integer.
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We have Case II. Let us make the substitution

l+x* =f« ;

± x 3 dx = 2tdt.

Hence,

/ = 6 § t
2 dt = 2t 3 + C = 2(1 +xT )

T+ C.

5.5.4. / =
J*~(2 + JK

T
)
Tdx.

5.5.5. [ = i

\

j

xb
{\ + x2 )~ dx.

5.5.6. / = jV 11
(\ + x*)~dx.

Solution. Here p = — -j is a fraction, = +

1

= — y also

a fraction, but + p = y = ---3 is an integer, i.e. we have

Case III. We put 1 + x* = xH 2
. Hence

tdt
x — 1 , dx —

(t
2— l)

4
2(f 2— I)

4

Substituting these expressions into the integral, we obtain

=_^ (
^_i)M/=-^+|-4+c.

Returning to x, we get

3 r~

5.5.7. \ jj- dx.

5.5.8. j-
dx.

5.5.9.
J*»

(!+**) 2 dx.
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5.5.11. \Vx Y^ +Vx* dx-

§ 5.6. Integration of Trigonometric and Hyperbolic
Functions

1. Integrals of the form

I = ^ s'mm xcosn xdx,

where m and n are rational numbers, are reduced to the integral

of the binomial differential

n- 1

/=$/*(l— /*) 2 dt 9 t = smx

and are, therefore, integrated in elementary functions only in the

following three cases:

(1) n is odd {j-^- an integer^,

(2) m is odd (^rp an integer^,

(3) m+ n is even ^^y-^ +^p an integer^.

If is an odd number, the substitution sin#=/ is applied.

If m is an odd number, the substitution cosa;=/ is applied.

If the sum m + n is an even number, use the substitution

tan#=/ (or cot^=/).
In particular, this kind of substitution is convenient for integrals

of the form

^tann xdx (or ^cot n xdx^>

where n is a positive integer. But the last substitution is inconve-

nient if both m and n are positive numbers. If m and n are non-

negative even numbers, then it appears more convenient to use the

method of reducing the power with the aid of trigonometric trans-

formations:

cos2 x=y(l + cos 2x) t
sin 2

A; = y (1

—

cos2jc)

or sin x cos x =y sin 2x.

5.6.1. 1= f
,

s
iilli- dx.

J j/cos**
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Solution. Here m = 3 is an odd number. We put cosa: = /,

sin xdx= — dt, which gives

= 3 j/cos a:

(
y cos2 jc—

1 ) + C .

5.6.2. / =f
c-^d*.

J sin 6 x

5.6.3. / — ^ sin 4 x cos6
a: c(a:.

Solution. Here both m and n are positive even numbers. Let us

use the method of reducing the power:

/ = ~
J

(2 sin a: cos a:)
4 cos2 xdx = —

J
sin 4 2jc(1 + cos 2x) dx = l

x + / 2 .

The second of the obtained integrals is calculated by the substitu-

tion:

sin 2x =t, cos 2a: dx= -^dt,

/, =
gg Jsin

4
2a: cos 2x dx t* dt ==^ + C ==^sm* 2x+ Q.

We again apply to the first integral the method of reducing the

power:

Ii = 52§ sin4 2x dx =
y§§ J (

1 —cos 4a:)
2 dx=

x—y sin 4#j +2§6 J
+ cos 8a:)c(a: =J_

128

:A*-i sin4*+^ sin8*+ c -

And so, finally,

/__L
256 ^ 256

0111 ™^ 2048
^"" 1 320

*—^ sin 4a:+^ sin 8a:+^ sin 5
2a:+ 0.

r r sin 2 x «

5.6.4. / = \ —g-dA:.
J cos 6 *

Solution. Here both m and n are even numbers, but one of them
is negative. Therefore, we put

tan a:= /; —^—= 1 + 1
2

; T~ti==dt.
cos 2

a;
1 cos 2

a;

Hence,
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5.6.5. /= [
Q^dx.

J sin 2 x

Solution. Here we can put cotx=t, but it is simpler to integrate

by expansion:

J sin2 * J Vsin2 x 1

J

= — cot*

—

2a; -f y j" (1
— cos2x)dx =

. . sin 2x . 3x\
,
~

cotx+—r- + -j\ + C.

5.6.6. / =
J

d*

5.6.7. /

-J

cos 4
a:'

jj/sin11 x cos a:

Solution. Here both exponents (~ y and — y) are negative

numbers and their sum — ~—y =— 4 is an even number, there-

fore we put

tan x=t;
dx

?
= dt.

J cos 4 * j/tan 11 * J j//
11

3 (1 + 4 tan2 x)

8 tan 2
a: ^/tan^Sc

5.6.8. Find the integrals of tanx and cot x.

Solution.

\ tanxdx= \ dx = — In
|
cos x

|

-)- C;
J J COS AT

\ cot x dx — \ dx = In
|
sin x

|
+ C.

J <J
sin at

5.6.9. /=$ ian 1 xdx.

Solution. We put tanx=tf, x= arctan?; dx = We get

•C.

/ =I
/5

TT7-. = K'
,-' ,

+ '-TTT.)*
=

= -jr tan6 a:— tan4 x + y tan 2 x+ In
|
cos x

\
+ C.
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5.6.10. (a) /= ^cot«xdx; (b) / = $ tan3 xdx.

5.6.11. / = C£2^fdjc.
J sin 3 *

Solution. Here sin a; is raised to an odd power. Let us put

cosa: = t
y
— sin xdx = dt.

We obtain an integral of a rational function.

/
4

-dt.

Here, it is simpler to integrate by parts than to use the general

methods of integration of rational functions (cf. Problem 4.4.1 (b)).

Let us put

Then

Hence,

/ =

du = 3t 2 dt\ v— 1

2(1—

/

2
)

t*

2(1—

/

2
)

r t
2 dt _

t* i + i

2(1— P) 1

2 J 1— t*

t
3 3,3.

I

l_±i
"2(1—

r

2
) 2

1 +
4

ln
|
\—t

cos 3 x 3

dt:

2
-cosx+T ln

1 + cos *
I

1 — COS X
+c.

5.6.12. /= f
— dx.

J COS*

II. Integrals of the form
J

i?(sin.x:, cos x) dx where /? is a rational

function of sin x and cos x are transformed into integrals of a rational

function by the substitution:

tan l^-jj =t (— ji < x < n).

This is so-called universal substitution. In this case

2t l— t
2

sin x
IT/*'

x = 2arc tanf;

cos x-

dx =

1 + /
2 '

2dt

i+t 2
'
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Sometimes instead of the substitution tany= / it is more advan-

tageous to make the substitution cot-|- = / (0 < x < 2n).

Universal substitution often leads to very cumbersome calculations.

Indicated below are the cases when the aim can be achieved with
the aid of simpler substitutions:

(a) if the equality

R (—sin a;, cosjc) =— R(s'mx
t
cos x)

or

R(s\nx, — cos x)==— R(s\nx
y
cosx)

is satisfied, then it is more advantageous to apply the substitution

cosx = t to the former equality, and s'mx = t to the latter;

(b) if the equality

R(— sin x, — cos x) = R (sin x, cosx)

is fulfilled, then a better effect is gained by substituting tanx = t

or cot x= t.

The latter case is encountered, for example, in integrals of the

form
J
R (tanx)dx.

5.6.13. /= —
/0 .

dx
sj^—r .

J sin x (2+ cos x—2 sin x)

Solution. Let us put tan~= t; then we have

2dt

Expand into simple fractions

l + /
2 A . B D

t(t— 3)(t—\) t
1

/— 3
1 t—\

Find the coefficients

A=b B =ih D =- 1 -

Hence

Jt_ f
d£

, _5_ f dt C dt
J ~ 3 J t + 3 J t-3 J

= -iln|/| + |ln|/— 3 1— ln| /— 1
\
+ C =

X

T ln
|

tanT + |-ln|tan|— 3|— In tan-
2

+ C.
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5.6.14. /:

5.6.15. /:

dx

5+ sin x+ 3 cos x

dx

sin a; (2 cos 2 £— 1)
*

Solution. If in the expression
1

we substitute
sin x (2 cos 2 x— 1)

—sin x for sinx, then the fraction will change its sign. Hence, we
take advantage of the substitution / = cosa;; dt =— sinxdx. This

gives

dl

J (
2/2_ 1}

'

Since

1 (2— 2/ 2
)— (1— 2/ 2

) 2 1

(1— 1
2)(\— 2t 2)'

then

dt

1— 2/ 2

dt

(1— <
2)(1— 2< 2) 1— 2/ 2 1—

/

2

In
2

In

i + VT COS JC

1-^2

1-/1^2

,
1 , II — COS X

"•"T
I

1 + COS X

l — t

+c=

1= -£=ln
1+^2
1— Y^2 cos #

+ ln tan I

5.6.16. /
_ C sin 2

J sin #

2 # cos #
dx.

:+ cos #

Solution. Since the integrand does not change sign when sin*

and cos x do change their signs, we take advantage of the substi-

tution

t = tan*; dt = dx

Hence,

" COS 2 X
'

r
_ C tan2 X m cos 4 x dx _ C t

2 dt
7

J (tanx+l) cos 2 * J (/o_iw/2_(*+l)(/ 2 +l) 2

Expand into partial fractions

/* A Bt+ D Et + F
(/+l)(/a + 1)

2-

Find the coefficients

1

t+\ ^ t
2+\ M/ 2 +l) 2 *

B=— D-- =
1- F=-±
2 ' 2

Hence,

=11 '+1 4 lt 2 +\
dt+

2

<— 1
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/ » In-J±L-4 •^+ C=
4 ^ 1 + ^2 4 1 + /

2

= In
I
sin a; 4- cos x |

—
-|- cos x(smx+ cos + C.

2 tan ^+ 3
^

sin 2
a:+2 cos 2

a:

Solution. Dividing the numerator and denominator by cos2
jc and

dx
substituting tanx=/; —— = dt. we obtain

5.6.17. /= f t
J si

cos 2
AT

r 2tan*+3 ^ _ C
'

J sin 2 x+ 2 cos 2
a: j

. (2 tan x+ 3)
cos 2 x

tan 2 x+2

=j|J|^ = ln(^ + 2) + -^arctan
T
i=+ C =

= In (tan2 *+ 2) + -2= arc tan
tan *

5.6.18. /= [j^-dx.
J 1 + sin x

Solution. This integral, of course, can be evaluated with the aid

of the universal substitution tany= /, but it is easier to get the

desired result by resorting to the following transformation of the

integrand:

sin x sin#(l — sin x) sin — sin x)

1-J-sin* (1 -j- sin a:) (1 — sin x) cos 2 x

sin x sin'2 x sin x
-tan 2

x.
COS 2 X COS 2 X COS 2 X

Whence

/ = C
S1 "

9

*
dx— [ sec2 x dx+ f dx =—? tan a: + # + C.

J COS 2 X J
1

J COS AT
1 1

5.6.19. /= f
4

1

.
2

dx.
J cos x sin 2

a:

Solution. Here the substitution tanx^/ can be applied, but it

is simpler to transform the integrand. Replacing, in the numerator,
unity by the trigonometric identity raised to the second power, we
get

r C (sin2 cos 2 x) 2 C sin 4
#-f- 2 sin 2 x cos 2 x-f cos4 x

^—
J cos 4 x sin'2 x ~~ J cl.s 4 * sin 2 x

~~

= [
Sm
/ dx-\-2 C— —h C -

d
f = ftan 2 x ^ + 2 tan a: — cot x =

J cos 4 x 1

J cos 2 * 1

J sin 2 * J cos 2
a:

1

= y tan3
a: + 2 tanx— cot x-\-C.
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III. Integration of hyperbolic functions. Functions rationally de-

pending on hyperbolic functions are integrated in the same way as

trigonometric functions.

Keep in mind the following basic formulas:

cosh 2 x— sinh2 x = 1 ; sinh 2 x =y (cosh 2x — 1 );

cosh 2 x = y (cosh 2x+ 1); sinh x cosh x =y sinh 2x.

X 2t 1
1 ,^2

If tanh ~2=ty then sinh x=
] _ (2

; cosh x= ^_ t2
\

x = 2 Artanh/ = ln({-±j) (-1< * < 1); dx =

5.6.20. /=
J
cosh 2 xck.

Solution.

I =
j y (cosh2*+ 1) d*=|-sinh2*+ y.x:+ C.

5.6.21. /=
J
cosh 3 ^d^.

Solution. Since cosh x is raised to an odd power, we put sinhjc = /;

co$hxdx = dt. We obtain

/ = j cosh 2 * cosh xdx - j(l +/ 2
) d/ = * +y+ C =

= sinh x+ y sinh 3
a:+ C.

5.6.22. Find the integrals:

(a) f sinh 2 # cosh 2 x dx; (b) C-r-r—^—r—

.

v ' J » v / J sinh x+2 cosh a;

£ 5.7. Integration of Certain Irrational Functions with the
Aid of Trigonometric or Hyperbolic Substitutions

Integration of functions rationally depending on x and \^ax2 + bx+ c

can be reduced to finding integrals of one of the following forms:

I. $/? (tyPH* + q*)dt-

II. \R(t, ]fpH*— q*) dt;

III. J'/?(f, dt
9
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where t = x+ ^\ ax2+ bx+ c= ± p
2
t
2 ± q

2 (singling out a perfect

square).

Integrals of the forms I to III can be reduced to integrals of

expressions rational with respect to sine or cosine (ordinary or hy-

perbolic) by means of the following substitutions:

I. / = — tan 2 or t-= — sinh2.
P P

II. t =— sec2 or t = — cosh 2.
p p

III. t =— sin2 or t = — tanhz.
p P

dx
5.7.1. I=[-r .

Solution. 5 + 2x+ x2 = 4+ (x+ 1)
2

. Let us put x+l=t. Then

/_
1 7(1+2^+^)3 - j"(4+/ 2)3

We have obtained an integral of the form I. Let us introduce
the substitution:

* = 2tan2; d*=-^-; /4+7~2 = 2/1 + tan2
z

cos z

We get

cos zdz =

t

1 • ^ , ^ 1 tan z . ^ 1 2 . ^

x+ 1

5.7.2. /=f dx

J (*+l)» V*a+2*+2

Solution. x2 + 2x+ 2 = (x+l) 2 + L

Let us put #+1=/; then

dt

4 y5 + 2*+ jc
a

-C.

Again we have an integral of the form I. Make the substitution
tf = sinhz. Then

dt = cosh z dz\ Vt 2 +\ = Kl+sinh 2
2 = cosh z.
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Hence,

, C cosh z dz C dz
, ^

/ = \ r— = \ . U9 = — C0th Z + C =
J sinh- z cosh z J sinh 2 z

V l+sinh2 2 VT+Zi/- — ^2 + 2jc+ 2
, ^>

5.7.3. I = ^x 2 Vx^-ldx.

5.7.4. /-j^d*.

5.7.5. / = $K(*2— l)
3 d*.

Solution. Perform the substitution:

x = cosh?; dx = sinh/d^.

Hence

/ = $j/"(cQsh*/— l)
3 sinh t dt=\ sinh4

/ =

= -i
j cosh 2 2/ df—i j cosh 2/ df +

-J- J
d/ =

=y j(cosh«+ l)df—
-J-

sinh 2/ +
-J-

^ =

=± sinh At —\ sinh 2t + 1- 1 + C.

Let us return to x:

t = Arcosh x = In (x + Vx* — 1 );

sinh 2t = 2 sinh t cosh / = 2x V'x2 — l;

sinh 4/ = 2 sinh 2* cosh 2t = 4* Vx2—\ (2x2— 1).

Hence

5.7.6. /=f *
_

J (1+ V x)Vx-x*

Solution. We make the substitution:

x = sin2
/; dx = 2sin*cos/df
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and get

j f 2 sin / cos t dt f 2 dt_ r 2 sin / cos t dt f

J (1 + sinO Vsin 2
^— sin4

^ J 1 + sin /

= 2 [tz™lidt =2 tan t ^- + C =

J cos 2
^ COS t

'

7i=+c- 2(lCLi1) +c.

5.7.7. / = [VZ—2x—

x

2 dx.

r ~> o / r
5,.s. ,=j 3

(x2— 2*+5) 2

£ 5.5. Integration of Other Transcendental Functions

5.8.1. / = Ji2£djc.

Solution. We integrate by parts, putting

w = In x\ dv = ^;
* x2 *

, dx 1

a: a:
•

, _ In *
, C dx In x 1 ^

7 - T+ J"^- a:

—T+
5.8.2. /=fi^.

Solution. Let us put: = e*dx = dt. We get:

j (i +<*)*

Apply the reduction formula (see Problem 4.4.1):

' = YiJ^T)+T arctan t + C= 2(1$^+T arctan + c-

5.8.4. / = $e-*ln(e*+l)dx:.
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Solution. We integrate by parts:

u = \n(ex + 1); dv = e~ x dx;

du=
t f* Y dx; v =

—

e~ x
\

1 + ex '
*

/ =- e-ln(l+^) +
J T^=- e-Mn(l+^) + j

e-^±i^^ =

=—e
-
* In (1 +ex

) + x— ln(l + e*) + C.

~aarc tan *

5.8.5. / = l- — dx.

J
(1 + *2

)

2

g g g ^
Pa: arc tan x dx

J jn~+T2

Solution. Integrating by parts, we get

u = arc tan x; dv = xdx

V i +**
'

= |/T+x2 arc tan x— In (x + |/*a + l) + C.
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§ 5.9. Methods of Integration
(List of Basic Forms of Integrals)

No. Integral Method of integration

1
[ ^[(pMlfW dx Substitution (p (x) = t

2
J

/ W <p' M dx Integration by parts

J
/ W 9' W d*= / (x) (p (x)— 9 (x) /' (x) dx.

This method is applied, for example, to

integrals of the form
^ p (x) f (x) dx> where

p (x) is a polynomial, and f (x) is one of the

following functions:

e^'y cos ax; sina#; In x\

arc tan x\ arc sin x, etc.

and also to integrals of products of an expo-

nential function by cosine or sine.

3
^ / W <f

(n) W d* Reduced to integration of the product

f
{n) (x)q*(x) by the formula for multiple in-

tegration by parts

J
/ (

x) (p
(w) (x) dx= f (x) q><»

-
1) (x)—

— f'(x) q>
("- 2

> (x)+ /" (x) (p
("- 3

> (*)—...

... + (-_l)i.-i/(i.-D
(X)q, w+

+ (-l)»
J
fi»)(x)q>(x)dx

4
J

pn (x) dx,

where pn (x) is a polyno-
mial of degree n.

Applying the formula for multiple integra-

tion by parts (see above), we get

^
e**pn (x) dx=

~
L a a2 1 a3

*
* '

~
t
~

+ ( »'<
P" j? +c

5
C Mx + N ^
J x 2+px+q

X>

p
2— 4q <

Substitution
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No. Integral Method of integration

a.o r dx
Reduction formula is used

x 2n— 3
n ~(2n— 2)(x2 + l)"- 1 1

2/1 — 2

7 fPW , . P(x)
\ ttH where 7r^-

J-

is a proper rational frac-

tion

Q (x) = (x— x1 )
1 (x-

-x2)" ... (x2+ px+
+ ...

Integrand is expressed in the form of a

sum of partial fractions

P(x) A ± A 2 A
t

Q(x) (x—xx )
1 (x— x t )

2 1 ••• 1

(X— Xl
)l~T~

1 (x-x2 )

1 (*-*2 )
2 1 1 (*-*2

)'«
1

*a+p*+ <7
1

(x*+ px+ q)*
1

{x*+ px+ q)
k

8
a:
1")^,

where is a rational func-

tion of its arguments.

Reduced to the integral of a rational frac-

tion by the substitution x= t
k

, where k is a

common denominator of the fractions

m r

~~n
' T

9

)
H

[

X
' [cx+d) \

dx >

where R is a rational

function of its arguments.

Reduced to the integral of a rational frac-

tion by the substitution

cx-\~d

10 f Mx+W
I

—j dx
J |/a^2+^+c

By the substitution x-\--^= t the integral

is reduced to a sum of two integrals:

f ,

Mx+N *-mS
t

m +

J N 2 -f/n

The first integral is reduced to the integral

of a power function and the second one is a

tabular integral.
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No. Integral Method ot integration

R (x, \^ax2 -\-bx-\-c) dx
y

where is a rat ion a

function of x and

l^ax'1 -|- bx+ c

Reduced to an integral of rational fraction

by the Euler substitutions:

Vax*+ bx+ c= t ± x V~a {a > 0),

Vax2+ bx+ c=tx ± V^~c (c > 0),

Vax2 -\~bx+c=t (x—xx )
(Aac— b2 < 0).

where x± is the root of the trinomial ax2 -\-

+bx+ c.

The indicated integral can also be evalua-

ted by the trigonometric substitutions:

X+2a=<

X+
Ta

=

V

b

2- 4ac

2a

V b 2— 4ac

2a

V b 2- 4ac

2a

y

b

2— Aac

2a

y 4ac--b 2

2a

V 4ac--b2

sin /

cos t (a < 0,

\ac— b 2 < 0)

sec /

cosec / (a > 0,

Aac— b2 < 0)

tan t

2a
cot / (a > 0,

4ac- -6 2 > 0)

12
Pn W

}/"ax2+ toc+ c

dx t

where P„ (*) is a polyno-

mial of degree n.

Write the equality

P„ (x) dx w _

dx
1 j/~a#2 + 6#+ c

|/~ax2 -j-kx;-j-c

where Qn -i(x) is a polynomial of degree

n— 1. Differentiating both parts of this equa-

lity and multiplying by Vax2 -\-bx-\-c
t
we

get the identity

Pn (x)s i (*) (<u2+ bx+ c) +

+|qb . 1 W(2(w+ 6) + A
i

which gives a system of n-\-\ linear equa-
tions for determining the coefficients of the

polynomial Qn - 1 (x) and factor k.
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No. Integral Method of integration

And the integral

dx

V ax'2 + bx+ c

is taken by the method considered in No. 10

(M = 0; N=l).

13
dx

(x— Xi)
m Vax2+ bx+ c

This integral is reduced to the above-con-
sidered integral by the substitution

14
^
xm (a+ bxn)Pdx,

where m, n, p are rational

numbers (an integral of a

binomial differential).

This integral is expressed through elemen-
tary functions only if one of the following
conditions is fulfilled:

(1) if p is an

.m+ 1

(2) if

(3) if

n

m+\

nteger,

is an integer,

-p is an integer.

1st case

(a) if p is a positive integer, remove the

brackets (a+ bxn)P according to the Newton
binomial and calculate the integrals of powers;

(b) if p is a negative integer, then the
substitution x= t

k
, where k is the common

denominator of the fractions m and n
y

leads
to the integral of a rational fraction;

2nd case

if

*

is an integer, then the substitu-
n

tion a-\-bxn — t
k is applied, where k is the

denominator of the fraction p;

3rd case

if ~~~ JrP ls an integer, then the substi-

tution a-\-bxn — xn tk is applied, where k is

the denominator of the fraction p.

15 ^ R (sin x
t
cos x) dx Universal substitution tan -?r=t.

If R(— s'mx
y cosx)=

—

R(slnx
t

cos x),

then the substitution cosa:= / is applied.
If R (sin x y — cosx)=

—

R (sin x
y

cos a:),

then the substitution smx=^t is applied.

If R(— s\nx, — cos x) = R (sin x
}

cos*),
then the substitution tanx= / is applied.
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No. Integral Method of Integration

16 ^ R (sinh x, cosh x) dx The substitution tanh-^- = t is used. In

this case

sinhx=—-; cosh*^^; d* =1 __ /2
.

17 ^ sin ax sin bxdx

^ sin ax cos bxdx

^ cos ax cos bx dx

Transform the product of trigonometric
functions into a sum or difference, using one
of the following formulas:

sin ax sin bx —

= -^- [cos (a— b) a;— cos (a-\-b) x]

cos ax cos 6*=
— -i- [cos (a— fr) x-j-cos (a-\-b) x]

sin ax cos bx=

=-^- [sin (a

—

b) x-j-sin (a+b) x)

18 ^ sinm x cos" x dx,

where m and n are inte-

gers.

If m is an odd positive number, then apply
the substitution cosa:= /.

If n is an odd positive number, apply the

substitution sin#= /.

If m-j-n is an even negative number, apply
the substitution tan# = /.

If m and n are even non-negative numbers,
use the formulas

. n 1 — cos 2x 1+cos2x
sin 2 x— ; cos 2 x =——

19 ^ sin^ x cos^

(0 < x < ji/2),

p and #— rational num-
bers.

Reduce to the integral of the binomial

differential by the substitution sin#= /

J
sinP xcos? xdx=^ tP(\— t*)**-

1 dt

(see No. 14).

20 Transform into an integral of a rational

function by the substitution eax = t



Chapter
6
THE DEFINITE INTEGRAL

§ 6.1. Statement of the Problem.
The Lower and Upper Integral Sums

Let a function f (x) be defined in the closed interval [a, b]. The
following is called the integral sum:

i-

where a = x < x
A < x2 < . . . < xn _ x < xn = b,

hXi = xi+1—

x

t \ li£[xh xi+l ]
(J = 0, 1, . . . ,

/2— 1).

n- i

The sum S„ = 2 M,. Aa:,- is called the upper (integral) sum, and
/ =

A2 — 1

sn = ^ niikXi is called the lower (integral) sum, where M
(
=

i =

= supf(x) [m^mlfix)] iovx£ [xh xi+1 ].

The definite integral of the function f {x) on the interval [a, fr] is

the limit of the integral sums

\ / (*) = lim 2 f (£/) Aa;,- when max
|

Aa:,-
|

—> 0.

If this limit exists, the function is called integrable on the inter-

val [a, b]. Any continuous function is integrable.

6.1.1. For the integral

JX

J
sin xdx

find the upper and lower integral sums corresponding to the division

of the closed interval [0, n] into 3 and 6 equal subintervals.
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Solution. Divide the closed interval [0, n] into 3 equal parts by

the points:

_ n n _ 2ji _
%o — = ^ » -^2 — ~3~ »

xs — *^ •

The function sin* increases monotonically on the interval 0, yj t

and therefore for this interval we have rao = sin0 = 0, M =

= sin^- = -?y-. The least value of the function on the interval

[iT' T"j
* s m

i
= s in

=

»
and the greatest value is M

x
=

= sin-^-=l. On the interval Jtj the function sin* decreases

monotonically and therefore

n AA . 2ji V3m
2
= sin n = 0, M

2
= sin -y= -^y-

.

Since all Axk are equal to -y

,

s3 =Z Ax, = iL (o + + o) = ^p- ~0.907,

k=0

When subdividing the closed interval [0, k] into 6 equal intervals

ill . i rv JX Jl Jl 2jl

by the points x = y *t=-g-, x2 = ^-> x3 = -y > ^^T* Xb =
5ji

== —
f

x6
= jt, we find by analogy:

m = 0, 7W = sin-^- = l

2
»

m
x

. ji

= sm
TT

1

~~
2

'
M

1
== sin =

2

m
2

Jl= sinT "~
2 »

M
2
= sin -y = 1,

m3
= smT 2

9
7W

3
= sin-y = 1,

m4

. 5ji= sin-^-
6

1

"~
2

'

. 2ji
7W 4

= sin -y = /3
2

m5
= sin ji == o, M 5

= sin —= 1

2
'
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For this division we obtain

s,=}K + «i+... +m5)=^-(l+K3)~ 1.43,

S«=£ (Af +M 1 + . . . + M 5 )
=£ (3 + /3 ) « 2.48.

As would be expected, the inequalities

ji

s 3 ^ s
6 ^ ^ sin x dx^ S

6 ^ S3

hold true (the exact value of the integral is equal to 2).

6.1.2. At what 8>0 does the relation

n-i

J
sin xdx— 2 sm %k &xk < 0.001

follow from the inequality max hXi < 8.

Solution. Since sn < /„ < S„, then for the required inequality to

hold true it is sufficient that the upper and the lower integral sums
differ by less than 0.001:

0<S„-s„< 0.001.

But
n-i n-i

Sn-sn = 2 (Mi—m,) A*, < 5 2 (M,— /n
f),

i = o i= o

where M
f
and m

{
are the greatest and the least values of the func-

tion sinx on the interval [xh xi+1 ]
(i = 0, 1, — 1). Assuming

for simplicity that the point ^- is chosen as one of the points of

division and taking advantage of monotonicity of the function s'mx

on the intervals 0, -^-j and , nj , we obtain

X(M f
—m

f )
= 2 (sin-|— sin0) = 2.

Consequently, the required inequality is satisfied if 26 < 0.001,

i.e. 5 < 0.0005.

6.1.3. Show that the Dirichlet function [see Problem 1.14.4 (b)]

is not integrable in the interval [0, 1].

Solution. In dividing the closed interval [0, 1] into a fixed num-
ber of parts we must take into consideration, in particular, two
possible cases: (1) all points are rational; (2) all points are
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irrational. In the first case the integral sum is equal to unity, in

the second to zero. Hence, no matter how we reduce the maximum
length of subintervals, we always get integral sums equal to unity
and integral sums equal to zero. Therefore, the limit of integral

sums is non-existent, which means that the Dirichlet function is

not integrable on the interval [0, 1].

6.1.4. Find the distance covered by a body in a free fall within
the time interval from t = a sec to t = b sec.

Solution. A body moves in a free fall with constant acceleration g
and initial velocity v = 0. Consequently, the velocity at the instant t

is equal to the velocity increment within the time interval from
to /, i.e. v(t) = kv. For a short time period A^ the velocity incre-

ment is approximately equal to the acceleration at the instant t

multiplied by A/. But in our case acceleration is constant, there-

fore Au = g"A/, and hence, v(t) = gt
y
since At = t— = /.

Let us subdivide the time interval from t=a to t = b into n
equal parts; then the duration A/ of each subinterval will be equal

to A/^^1^. We assume that during each subinterval of time the
n to

body moves uniformly with a velocity equal to its velocity at the

beginning of this interval, i.e.

v =ga,

( . , b— a

vn -i = g[<*+ (n— J
)

Whence we find the distance covered by the body during the ith

subinterval:
Vi

. The entire distance covered by the body is

approximately equal to

^^sn =^(v + v
1 + . . . +vn _ 1 )

=
b— a

-7T8 na+ 1 \-2 \- . . . 1)
« n. n 1 1 v ' n

z i \ T ,
b— anin— 1)1= (b—a)g [a +—2

2~~"J

With n increasing the distance covered can be evaluated more accu-
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rately. The exact value of s is found as the limit sn as n—> oo:

s= Urn sn = lim^g(b—a) [a+y (b— a) (l —
-^-)J

=

= g(b-a)
[
fl+ l(ft_fl)] = !(&2__ a2) .

Since s„ is an integral sum
n- l

t = o

the distance s is an integral:

b b

s = ^ vdt = ^gtdt = j- (b
2— a2

) .

a a

6.1.5. Proceeding from the definition, compute the integral

i

o

Solution. By definition,

\ xdx= \\m 2 S/Ax; as max Ax, — 0,
t =

where

= * <*i<--. <*„=!. UK
A#; = a^^+j x^-.

1. Subdivide the closed interval [0, 1] into n equal parts by the

points x.= -L(i = 0, 1, 2, . ...n).

The length of each subinterval is equal to Ax
t
= ^ , and -i- —*

as n —> oo.

Let us take the right-hand end-points of the subintervals as the

points l t
\ g. = *. +1 ==^(/ = 0, 1, — 1).

Form an integral sum:

',=s,="f '±1.1=1 (1+2+ ... +(l) = iii±i>.
i = o

As az— oo the limit of this sum is equal to

lhn
1

«... 2n ~2-
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Hence,
i

J
x dx = y .

o

2. Using this example, we will show that for any other choice

of points l f
the limit of the integral sum will be the same.

Take, for instance, the mid-points of the subintervals as £ t
- =

f+T
= -}T (t

'

==0
*

1 n~V-
Form an integral sum

, ^'2t'+l 1 1 |~
i i o i c i i/o ixl 2n 2

l

/
» = S-sr •T=2^L 1+3+5 + --- +(2n_1)

J
==
4^
= ^-

i =

Hence

lim /n = i-

n -+ cc
*

6.1.6. Proceeding from the definition, compute the integral:

b

\xm dx (m=^— 1, 0<a<b).
a

Solution. In this example the following points can be conveniently

chosen as points of division:

_L JL A
x = a\ Xi=a(±-\ ,

x^ai^A ,...,*„ = a
.
a J \ a J \ a

.

They form a geometric progression with the common ratio

The length of the ith subinterval is equal to

Sx— aqi+1— aqt^aq 1 (q—l).

Therefore the maximum length of the subintervals equals max Ax
t
=

n-l J_

= aqn " 1 (q— l) = a — 1 and tends to zero with

increasing n, since lim^ = l.

Now let us choose the right-hand end-points of the subintervals

as I,-: £,. = xf+1 = a<7''
+l (i=0, 1, 2, .... n— 1).
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Form an integral sum:

n- 1 n- 1

In = 2 8^*,= 2flY + 1!/B ^(?-l) =
i=0 t =

= fl
i«+l(

9 _l) 9*[l+ 9
*+l+. .. 0»+ l>] =

n (m + l)n 1 ,o 1

= a^{q-\)q- q
qm+l_

{

1 ^(b^-a^)q-

Let us calculate the limit of the integral sum as max Ax
{
— 0,

t. e. as q—+ 1:

Hm /„H^ +1 -a" +1)H^
Thus,

d* =
7h~T\ (

bm+1— am+1
)-

a

6.1.7. Proceeding from the definition, compute the integral:

it-
i

Solution. Subdivide the interval [1, 2] into n parts so that the

points of division x
t
(i'=0, 1, 2, n) form the geometric pro-

gression:

* =1; x
1 =q; x2

= q
2

\
x3
= q

3
\ . ..; xn = q

n = 2,

whence q= j/2.
The length of the ith subinterval is equal to

Ax, = <7'
+1—f'^'fa-l),

and so max Ax
t
= q

n ~ x (q— 1) —>0 as n—- oo, i. e. as g — 1.

Now let us choose the right-hand end-points of the sub intervals

as the points \h i.e., li = xi+^=q
i+1

.

Form an integral sum:

i=0 fe
' i=0 9

2
T

lim /„= lim
"( 2 "-0

=ln2>
n -* cc n -* <x>

—
2"

1—
J

since 2 — 1 ~— In 2 as n—oo.
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And SO,

* dx= ln2.

6.1.8. Evaluate the integral

5

/=$ J/25—x2 dx
9

o

proceeding from its geometric meaning.

Solution. The curve y=V2h—x2
is the upper half of the circle

x* + y
2 = 25. The portion of the curve corresponding to the variation

of x from to 5 lies in the first quadrant. Hence, we conclude

that the curvilinear trapezoid bounded by the lines x = 0\ x= 5;

y = y
and y = V25—x2

is a quarter of the circle x2 -\-y2 = 25\ and
., . i j. 25ji
its area is equal to —

Hence,

I = ^V25-x2 dx=^.

6.1.9. Evaluate the integral, proceeding from its geometric

meaning:

/ = $ (4x— l)dx.

6.1.10. Prove that

X

^-arcsin-J (0<x<a).

3 l

4
J1

H y \

V

u 1

x la.

Solution. The integral

,27

a:
2 dx

expresses the area S0AMx of the por-

tion of a circle of radius a lying in

the first quadrant (see Fig. 59).

This area equals the sum of the

areas of the triangle OMx and the

sector OAM.

Fig. 59
>OMx
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The area of the sector

where sin/ = -

Hence,

and consequently,

c a2
. x

^OAM — ~Y
arC Sin

"J '

I =~ya2— #2 + 4r arc sin— .

2 2 a

6.1.11. Proceeding from the geometric meaning of the integral,

show that

2ji 1 1

(a)
J

s\n 3 xdx = 0; (b) [ e~*
2 dx^2 \e~*

2

dx.

Solution, (a) The graph of the function y = s\n 3 x is shown in

Fig. 60. Let us show that the area situated above the x-axis is

equal to that lying below this axis. Indeed, let n^x^.2n, then
x=n + x

1
where O^x^rc and sin 3 x = sin 3 (n + xj =— sin 3 ^.

Therefore, the second half of the

graph is obtained from the first one
by shifting it to the right by n
and using the symmetry about the

x-axis. Hence,
2jx

^ s'm 3 xdx= 0.

o Fig. 60

6.1.12. Given the function f(x) = x3 on the interval [—2, 3],
find the lower (sn ) and the upper (Sn )

integral sums for the given
interval by subdividing it into n equal parts.

6.1.13. Proceeding from the geometric meaning of the definite
integral, prove that:

2jx

(a) $ s\n2xdx= 0\ (b) \cos 3 xdx = 0;
o o

2 3

(c) §(2x+\)dx = 6; (d) jK9=]?dx= 9jt

2
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6.1.14. Passing to the limit from the integral sums, compute the

integral

by subdividing the interval [1, 4]:

(a) into equal parts;

(b) by points forming a geometric progression. In both cases

choose as:

(1) left-hand end-points of the subintervals;

(2) right-hand end-points of the subintervals;

(3) mid-points of the subintervals [xh xi+1 ].

§ 6.2. Evaluating Definite Integrals by the
Newton-Leibniz Formula

The following is known as the Newton-Leibniz formula:

where F (x) is one of the antideri vatives of the function f(x), i.e.

F'(x) = f(x) (a

6.2.1. Evaluate the integral

Solution. Since the function F (x) = arc tan x is one of the anti-

derivatives of the function f (x)—
{

_^V
2 ,

using the Newton-Leibniz

formula we get

b

\f{x)dx=F(x)
\

b = F(b)-F(a),

/— f
dx —

J l+*2 ~~

6.2.2. Compute the integrals:

ji

2 2

6
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6.2.3. Given the function

I
x2 for < x < 1

,

f (
x) =

\ for 1 <x<2.
2

Evaluate
J f (x)dx.

6

Solution. By the additivity property of the integral

2 12 12
\f(x)dx=^f (x) dx+ ^f(x)dx=^ x2 dx+ \ V~xdx =

1 o I

I 3 2

_ X*_
I , 2^

~2

~
3

I

^ 3
X

1

6.2.4. Evaluate the integral

2

/ = Sl l—x\dx.

Solution. Since

,
| 1— x for 0<*< 1,

1 ^ 1

1 x— 1 for 1 <*<2,
we obtain, taking advantage of the additivity property of the integral,

2 1 2

J |

1— x\dx=
5
(1— J

(x— l)d;c =

(1 -*) 2

2

6.2.5. Evaluate the integral

a

where a < b.

,

(*- l)
2 =1+1=12^2 l#

Solution. If 0^a<6, then / (*) = 1~- == 1 , therefore

a

b

= b— a. If a<b<0, then /(*) = — 1 and $ f(x)dx = —b—(—a)=

= a— 6. Finally, if a < < ft, then divide the integral
^ /
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into two integrals:

b b

\f{x)dx = \f{x)dx+\f (x) dx=b— {—a).
a a

The above three cases may be represented by a single formula:

b

§l±\-dx = \b\-\a\.

a

Note. When evaluating integrals with the aid of the Newton-Leib-
niz formula attention should be paid to the conditions of its legi-

timate use. This formula may be applied to compute the definite

integral of a function continuous on the interval [a, b] only when
the equality F' (x) = f (x) is fulfilled in the whole interval [a, b]

[F (x) is an antiderivative of the function f(x)]. In particular, the

antiderivative must be a function continuous on the whole interval

[a, b], A discontinuous function used as an antiderivative will lead

to the wrong result.

6.2.6. Find a mistake in the following evaluation:

V3
dx 1 , 2x— — ct rr tan

o 2

dx 1 , 2x
T-i

—

t = -77 arc tan
2 \—x

Vs
[arctan(

—

V 3)— arc tan 0] =

—

^ ,

where (± arc tan y^r) = yq^(*=?M).

Solution, The result is a priori wrong: the integral of a function

positive everywhere turns out to be negative. The mistake is due
l 2x

to the fact that the function -y arc tan
{
_ x2

has a discontinuity

of the first kind at the point x=l:

1 , 2x n 1 , 2x TC

lim -rr arc tan t= -t\ urn — arc tan -= r .

The correct value of the integral under consideration is equal to

V3

o

dx ,

arc tan x
V3 = arc tan ]/"3— arc tan = -?-

.

o

Here the Newton-Leibniz formula is applicable, since the function

F (x) = arc tan x is continuous on the interval 0, and the equality

F'(x) = f(x) is fulfilled on the whole interval.
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6.2.7. Find a mistake in the following evaluation of the integral:

jt

dx

J 1 + 2 sin H J cos'2 x-j- 3 sin 2 x

71

-f

dx

1

I +3 tan 2 * j/"3~
arc tan (V 3tanx) = 0.

(The integral of a function positive everywhere turns out to be

zero!)

Solution. The Newton-Leibniz formula is not applicable here,

since the antiderivative Z7 (x) =-pLr arc tan (K 3 tan#) has a discon-

tinuity at the point x= -S-. Indeed,

lim F(x)= lim —

=

arc tan ([/" 3 tan x) =

—F=-arc tan(+oo) =—— ,

lim F (x) = lim
X— arc tan (K 3 tan x) =

1

arc tan (—oo)=-
n

V 3 ' 2V~3

The correct result can be obtained in the following way:

C dx __ C 1 dx

J cos 2 #+ 3 sin 2 # J cot 2 #+ 3 sin 2 *

= 7rr=- arc tan (V 3 cot x)
1/3 1^3

It can also be found with the aid of the function F (x) =
arc tan (K3 tan a:). For this purpose divide the interval of

/3

0, yj and j~y
,
jij , andintegration [0, ji] into two subintervals,

take into consideration the above-indicated limit values of the func-

tion F (x) as x—y=F0. Then the antiderivative becomes a conti-

nuous function on each of the subintervals, and the Newton-Leibniz
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formula becomes applicable:

o _JT_

2

arc tan ([/ 3 tan a:) arc tan (|/~3 tan a;)

^"3

6.2.8. Compute the integral

, , . »/ I + cos 2a: , / 2 cos 2 x
Solution, y

dx.

:

I

cos a:
I

=

cos x, O^Zx^-j
,

— cos X, y < x < Jl.

Therefore

1 -j- cos 2x
dx = j cosxdx+

J
(

—

cosx)c(a: =

= sin x 7 + (—sin*) ^ =(l_0) + (0— (— 1)) = 2.

Note. If we ignore the fact that cos* is negative in y , ji

j

and put

f 1 4-cos 2x

V 2
— cos a;,

we get the wrong result:

^ cos x dx = sin x^ = 0.
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6.2.9. Evaluate the integral

IOOji

/ =
J
Kl— cos 2xdx.

Solution. We have

Vl— cos2a:= [/~2
|
sin jc |.

Since
|
sin a: |

has a period ji, then

IOOji IOOji

jj \
r\—cos2xdx=\r2

J |
sin a:

|
rfA: =

o o

ji

= 100 J/T
J
sinxdA;=200|/2 .

o

6.2.10. Evaluate the integrals:

<»>' = }' 7ITW ;
(b)/ = I x2— 1

'

-2 -3

2

(c) /=
j

sin a ydx; (d) / =
J ^qry^;

-ji o

_2_

JT I

£ f
sin -

i_

n
1

3

(g) Htt^' (h)

3

i+*8 »

3

xdx

JI

T
(j) 7=5 Kcos*— cos3 Jed*;

jt

2

" 3
~
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§ 6.3. Estimating an Integral.
The Definite Integral as a Function of Its Limits

1. If f(x)^q>(x) for a^x^b, then
b b

In particular,

2. m

J f (x)dx<^ J
q>(x)dx.

a a

b b

\f(x)dx < \\f{x)\dx.
a a

b

(b—a) ^lf{x)dx<^M (b— a)
9

where m is the least value, and M the greatest value of the func-

tion f(x) on the interval [a, b] (estimation of an integral).

3. If the function f (x) is continuous on the interval [a
y
b], then

b

\f(x)dx=f(&)(b—a), a<l<b
a

(mean-value theorem).

4. If the functions f(x) and y(x) are continuous on [a, b]
t
and

<p(x), in addition, retains its sign on this interval, then

b b

\f{x)y{x)dx= f{l)\y(x)dx, a<l<b
a a

(generalized mean-value theorem).

x a

5.
J

/ (/) dt = / (*); -gj-j /(*)# =— /(*) at each point x of

continuity of the function f(x).

6.3.1. Estimate the following integrals:

JT

~3~

(a) / = j K3 + dx; (b) / =
j

2+ 2

Solution, (a) Since the function / (x) = )/3 + x2 increases mono-

tonically on the interval [1, 3], then m = 2, M = /30, b—a = 2.
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Hence, the estimation of the integral has the form

3

2-2 < Jl/T+l?dA:<|/"30-2,

l. e.

4 < $ ^ 3 + *3 dx:<2|/"30^ 10.95.

(b) The integrand f(x) = —j— decreases on the interval

since its derivative

j, ^ x cos x— sin x (x— tan x) cos x ^ q

Hence, the least value of the function:

3 V3

r ji jt

L"4
'

3"

m-

its greatest value being

M =

Therefore

2ji

2 V'2

3 /*3 / ji Jt

2ji

i. e.

6.3.2. Estimate the absolute value of the integral

19

C sin;

J
~>

10

dx.

Solution. Since |sin*|<l, for x>10 the inequality

Therefore

[-\-x9

19

C sin

J TT
10

X8

< 10" 8
is fulfilled.

<(19— 10)10" 8 < 10"?

(the true value of the integral ^— 10 8
).
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6.3.3. Which of the two integrals

1 i

x3 dx

is the greater?

Solution. As is known, Y* > x 3 for 0<x< 1. Therefore

i i

^ Y xdx > ^ x3 dx.

6.3.4. Prove the inequalities:

i i

(a) 0<
\ 3

/l^_ < j\ (b) 1 < [e*
2

dx<e.

b ^ 1+ *8

b

Solution, (a) Since < ~ < for 0<x<^l,
V l + %8

then
i i

o < (-
s *M=< [*dx=± 1

(b) Since for < x < 1 there exists the inequality 1 < ex* < e,

then
i ) i

^dx < ^e*
2 dx< ^ edx.

Hence the inequality under consideration holds true.

6.3.5. Prove the inequality

ji

T
^e-R*tox dx< JL(i_e-«) (R>0).
o

si n x ^ jx \
Solution. Since the function f(x) = —— decreases on

^0, J
[see

Problem 6.3.1 (b)], then for 0<x<j
c . x sin x . £ ( ji \ 2/(*)=— >^t] = «-

2
Hence, on this interval sin#>— x, therefore

sin * <^ g n
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and

2 2 2R

^ e~ R sin *dx < ^
e

~
n * dx -

r 2^
ji

-—

6.3.6. Prove that for any functions f (x) and g(x), integrable on
the interval (a, b), the Schwarz-Bunyakovsky inequality takes place:

^f(x)g(x)dx <:

Solution. Consider the function

F(x) = [f (x)-kg(x)}>,

where k is any real number. Since F (x) 0, then

or
& /; b

X2

J
g

2 (x) dx—Tk
J

/ (x) g (x)dx+
J

/* (x) dx> 0.

a a a

The expression in the left side of the latter inequality is a quad-
ratic trinomial with respect to X. It follows from the inequality that

at any X this trinomial is non-negative. Hence, its discriminant is

non-positive, i. e.

J
/ (x) g (x) dx

j

2

-
J
f
2
(x) dx

J
g

2
(x) d* < 0.

Hence

r?
/~b 1

y(x)g(x)dx <j/ ^f*(x)dx ^g
2 (x)dx,

which completes the proof.

6.3.7. Estimate the integral from above

i

, (' sin x i

o

Solution. By the generalized mean-value theorem we have

I
sin x

dx = sin l\ —~—t = sin \ arc tan x
J l+x' b

J l+* 2
= -J-sin6(0<6< 1).
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Since the function sin a: increases on the interval [0, 1] then

sin £< sin 1. Whence we get an upper estimate of the integral:

i

C sin x , . « A aA
\
-7-

—

T dx < —r sin 1 « 0.64.

It is possible to get a better estimation if we apply the same
theorem in the form

j

P sin x
dx

i + S
!j J

sin x dx = y^|2 (1
— cos ') < 1

—

cos 1 0.46.

6.3.8. Proceeding from geometric reasoning, prove that:

(a) if the function f (x) increases and has a concave graph in the

interval [a, b]
y
then

f(a) + Hb)
.

2

u

(b—a)f(a) <^f(x)dx<(b—a)-

(b) if the function f (x) increases and has a convex graph in the

interval [a, b]
9
then

b

(b-a) f(a)+f(b) < §f(x)dx<(b—a)f(b).

Solution, (a) Without limitation of generality we may assume

f(x)>0. Concavity of the graph of a function means, in particu-

lar, that the curve lies below the chord
through the points A(a,f(a)) and
B(b, f(b)) (see Fig. 61). Therefore the

area of trapezoid aABb is greater than
that of the curvilinear trapezoid boun-
ded above by the graph of the func-

tion, i. e.

b

^f ix)dx< SaABb = (b-a).L^+m,

(b-a)f(a)< \f(x)dx
a

is obvious.
i

6.3.9. Estimate the integral ^\fl-\-x*dx using
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(a) the mean-value theorem for a definite integral,

(b) the result of the preceding problem,

(e) the inequality ]f 1 + x* < 1 +
(d) the Schwarz-Bunyakovsky inequality (see Problem 6.3.6).

Solution, (a) By the mean-value theorem

i

/ =
J
\fl+xi dx = V'T+V, where 0<£< 1.

But

i < VT+T* < V%
whence

1< / < K2 » 1.414.

(b) The function f(x) = VY+ is concave on the interval [0, 1],

since

rw=f^±|>o, o<,o.
On the basis of the preceding problem we get

i
,

—

1 < ^\f\T7*dx<
l

-±f-l& 1.207.

1 1

(c) l<I = frl+T1 dx< j(l !+-!.= 1.1.

(d) Put f(x) = \/
r

\ +x*,g(x) = 1 and take advantage of the Schwarz-

Bunyakovsky inequality

i i r~\ i

\V\+#dx =^Vl+x*dx =I<y 5(i+^)dx.J l*dx =

= l/T2T« 1.095.

6.3.10. Find the derivative with respect to x of the following

functions:

(a) F(x)=\\ntdt (x > 0),

X 2

Vx

(b) F(x)= ) cos (t
2 )dt (x>0).
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Solution, (a) Write the given integral in the following way:

C XZ *3
X'

1

F (x) = \ In MM- \ In tdt = \ \nt dt— $ In tdt,

K 2 C C C

where c > is an arbitrary constant.

Now let us find the derivative F' (x) using the rule for differen-

tiating a composite function and the theorem on the derivative of

an integral with respect to the upper limit:

F'x (x) =
/ ~ X 2

$ \ntdt 5 \ntdt
_C Xs

C Vic

(x%= In x3 3x>— In a;
2 2x=

= (9x*— 4x)lnx.

<b) F(x) = \ cos (t*)dt-\- $cos(* 3)d* =

-J
cos (t*)dt +

J
cos (t*)dt;

F'(x) = -
J
cos (t

2
) di

i ( x )*
+

J
cos (P)dt

1/ 1 , 1 1 1,1=— COS-o 5 + COS* Trrr == -.cos -
2 ^cosa;.

6.3.11. Find the derivative with respect to x of the following

functions:

23

(a) f(x) = ji!lii«; (b) F (x)=^T+T*dt.
X

X

6.3.12. Find the points of extremum of the function F (x) =
^
^^-dt

in the domain x > 0.

Solution. Find the derivative

sin x

x

The critical points are:

x=nn 2, ...), where sinjc = 0.
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Find the second derivative at these points:

cv, , x x cos x— sin X
t M =

;

F" (nn) =— cos (nn) =— (
— 1 )

n ¥= 0.v 7 nn v ' nn v 7

Since the second derivative is non-zero at the points x = nn
(n = 1, 2, . . .), these points are points of extremum of the function,

namely: maxima if n is odd, and minima if n is even.

6.3.13. Find the derivative of y, with respect to x
y

of the func-

tion represented parametrically:

x=
^ i/ z\n zdz\ y =

J
z 2 \nzdz.

yt

Solution. As is known, =
xt

Find x
t
and y\\

x'
t
= [^Y~z\n zdz) (t

3
yt = t\nt».3t 2 = 9t 3 \nt'

y

. (
yt

whence

\VT 'YT 2Yt

y'
x = f

31n

l =- 36/ 2
J/7 (f > 0).

-\Vt \nt

6.3.14. Find the limits:

^ sin I^a: ^
(arc tan x) 2 dx

(a) lim 2 -5
; (b) lim

^ '
x-+ + a> Vx2+ 1

N
2

(c) lim
"°

+ oo

o

x2

Solution, (a) At x^-=0 the integral
^
sin equals zero; it is

o

easy to check the fulfilment of the remaining conditions that ensure
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the legitimacy of using the L'Hospital rule. Therefore

^ sin V".x dx

lim = lim
x-+0

J
sin V^xdx (*

2h

3x2
= lim

2x sin x 2

3x 2 3
'

(c) We have an indeterminate form of the type—. Use the

L'Hospital rule:

lim
X—*- + CD

/ * \ 2

^e*
2
dx

o = lim
*-* + 00

2 ^
<?*

2
dx-?*

2

: lim
X-> + CO

2
J
e*

2

o

e*
2

= lim 2-^— = 0.

6.3.15. Find the derivative ^ of the following implicit functions:

(a) ^e~ t2 dt+
^
sin 2 tdt=0\

o o

y *

(b) ^e 1dt+
J
sin/d* = 0;

o o

*

(c)
^

|/"3— 2sin 2 ede+ ^cos/d/=0.

Solution, (a) Differentiate the left side of the equation with
respect to x, putting y=y(x):

r y 1 dy
,

-x2

J
sin"

.0 _o

e-'
2

^ + sin a *2
- 2x = 0.

Hence, solving the equation with respect to j- , we get

^^_2A;/? +^
2

sin 2
A:

2
.

dx
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(c) Differentiate the left side of the equation with respect to x,

putting y= y(x):

2 sin 2 z dz +
' y

^ cos / dt

X
-0

dy

dx
= 0.

Whence

/3— 2 s i

n

2 x+ cos y^ = 0; ^
dx

'

V3— 2 sin 2 x

cos y

6.3.16. Find: (a) the points of extremum and the points of

inflection on the graph of the function

X

/ = l)(f— 2)
a df;

o

(b) curvature of the line defined by the parametric equations:

x = aVn
J

(

o

.— r»

y = ay sir

cos %- dt,

t

sin -77- dt

(the Cornu spiral).

Solution, (a) The function is defined and continuously differen-

tiate throughout the entire number scale. Its derivative

/; = (*-l)(*-2)2

equals zero at the points x
1
= l, x

2
= 2

y
and when passing through

the point x
1

it changes sign from minus to plus, whereas in the

neighbourhood of the point x
2

the sign remains unchanged. Conse-

quently, there is a minimum at the point ^ = 1, and there is no
extremum at the point x2

= 2.

The second derivative

rx = 3x2— lOx+ 8

4
vanishes at the points x

1 -~y* x
2
= 2 and changes sign when pas-

sing through these points. Hence, these points are the abscissas of

the points of inflection,

(b) We have
.— Ttf^

1 r— Tit
2

x'
t
= a y n cos , y\ = a y n sin ,
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hence,

*7 */ ^ cos 3 -g-

whence the curvature

K _ \y"\ __ Vnt
3 a

U + (y')
2

l

'

6.3.17. Prove that the function L(*), defined in the interval

(0, oo) by the integral

l

is an inverse of the function ex .

Solution. Let us take the derivative

= 7 (*>0).

Since the derivative is positive, the function y^--L(x) increases

and, hence, has an inverse function

x=L~ 1
(y).

The derivative of this inverse function is equal to

dx 1 __

Ty~L r{x)~
X

'

whence it follows (see Problem 3.1.10) that

x= Cey.

To find C, substitute x = l. Since

L(1) = 0, i.e. y\Xssl = 9

then

1 =C^°-C,

which proves our assertion:

x=L' l (y)=ey.

6.3.18. Given the graph of the function y=f(x) (Fig. 62), find
X

the shape of the graph of the antiderivative I='^f(t)dt.

o

Solution. On the interval [0, a], the given function is posi-

tive; consequently, the antiderivative increases. On the interval
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0, yj the derivative of the given function is positive; hence, the

curve / = / (x) is concave. On the interval y , a the derivative

of the given function is negative; consequently, the curve / = / (x)

is convex, the point *^y being a point of inflection. The inter-

val [a, 2a] is considered in a similar way. The point x
1
= is a

point of minimum, since the derivative I'(x)=f(x) changes its

sign from minus to plus; the point x2
= a is a point of maximum,

since the sign of the derivative changes from plus to minus.

A
2

3a 2a.

2

Fig. 62 Fig. 63

The antiderivative I (x) is a periodic function with period 2a,

since the areas lying above and below the x-axis are mutually
cancelled over intervals of length 2a. Taking all this into account,
we can sketch the graph of the antiderivative (see Fig. 63).

6.3.19. Find the polynomial P (x) of the least degree that has

a maximum equal to 6 at x=l, and a minimum equal to 2 at

x = 3.

Solution. The polynomial is an everywhere-differentiable function.

Therefore, the points of extremum can only be roots of the deriva-

tive. Furthermore, the derivative of a polynomial is a polynomial.
The polynomial of the least degree with roots = 1 and x

2
= 3

has the form a(x— l)(x— 3). Hence,

P\x) = a (x— 1) (x— 3) = a (x2— Ax+ 3).

Since at the point x= 1 there must be P(l) = 6, we have

X x

P(x)=l P' {x)dx-\-& = a^(x*— 4x+ 3)dx + 6 =
i i

= a
(
y— 2*2+ llx— 1 1 ) -!- 6

.

The coefficient a is determined from the condition P(3)=2, whence
a = 3. Hence,

P(x) = x 3— 6x2 + 9jc-| 2.
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6.3.20. Find the polynomial P (x) of the least degree whose graph

has three points of inflection: (—1, — 1), (1, 1) and a point with

abscissa at which the curve is inclined to the axis of abscissas

at an angle of 60°.

Solution. Since the required function is a polynomial, the abscis-

sas of the points of inflection can only be among the roots of the

second derivative. The polynomial of the least degree with roots

— 1, 0, 1 has the form ax(x2— 1). Consequently,

P"(x)=a{x 3— x).

Since at the point x = the derivative P' (0) = tan60° = j/3, we
have

X

P' (x)=§P"(x)dx+ V3 =a^-^) + VZ.

Then, since P(l) = l, we get

X

P(x)=^P'(x)dx+\ = a(£-£+l)+V3(x-l)+l.
1

The coefficient a is determined Jrom the last remaining condition

/>(_!) =— 1, whence a = ^(T/a-i)
. Hence,

P(x)-
]/

"

3

7

~"
1

(3a:
5— 1 Ojc

3
) + x J/3.

6.3.21. Taking advantage of the mean-value theorem for the

definite integral, prove that

i

(a) 3< \ Vq + x*dx< 10,

o

JT

2 ,

(b) ]/ 1 + ysin 2 *d*<^ y |,

2Jt

/ \
?n P dx 2jt

(C)
13 ^ J 10 —|— 3 cos x 7

*

o

6.3.22. Using the Schwarz-Bunyakovsky inequality, prove that

^ V 1 + x3 dx < -Xp- . Make sure that the application of the mean-

o

value theorem yields a rougher estimate.
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6.3.23. Find the derivatives of the following functions:

X x 2

(a) F(x) = ^lntdt(x>0); (b) F(x) = §y.
1 _2_

x

6.3.24. Find the derivative ^ of functions represented paramet-

rically:

In /

(a) x =
j
^dz, =

j ez dz\

2 5

sin / VT
C C sin z 2

(b) x= \ arc sin zdz, # = \
—-

—

dz.

6.3.25. Find the points of extremum of the following functions:

(a) F(x) = )e 2 (l— t
2)dt;

i

X2

(b) /7W =f!!=g±id/.
J 2+ e<

£ Changing the Variable In a Definite Integral

If a function ^ = cp(/) satisfies the following conditions:

(1) q)(/) is a continuous single-valued function defined in [a, p]
and has in this interval a continuous derivative q/(/);

(2) with / varying on [a, P] the values of the function x = y(t)

do not leave the limits of [a, b]\

(3) q)(a)=a and y($) = b,

then the formula for changing the variable (or substitution) in the

definite integral is valid for any function f (x) which is continuous

on the interval [a
f

b]:

b

lf(x)dx=\f[<p(t)] y'(t)dt.

a a

Instead of the substitution x = y(t) the inverse substitution

t = yp(x) is frequently used. In this case the limits of integration

a and p are determined directly from the equalities a = ^(a) and

p = x|;(fr). In practice, the substitution is usually performed with

the aid of monotonic, continuously differentiate functions. The
change in the limits of integration is conveniently expressed in
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the tabular form:

X t

a a

b p

6.4.1. Compute the integral
J \

r\—x*dx.

Solution. Make the substitution je = 2sin/, assuming that

3~— ^T-^^C-y. The function # = (p (/) = 2 sin t on the interval

[""IT' "t]
sa^ s fies a" ^e conditions of the theorem on changing

the variable in a definite integral, since it is continuously differen-

tiable, monotonic and

<p(-t) =-^. <p(t) = ^3 -

And so,

a: = 2 sin = 2 cos / dt\ V^— x* = 2
|
cos / 1

= 2 cos /,

since cos/>0 on the interval

Thus,

Tl Jl 1

3"
* ~3~J

sJ
M—

x

a dx= 4 $ cos2 tdt=2
J

(l + cos20d/=»
JT Jl

"
3 "a

i

= 2 [/ + lsin2<]y
iL
=^ + )/3.

3

4 .

p 1/^2 4
6.4.2. Compute the integral \ —

;

Solution. Make the substitution

= 2 sec/; *l /

d* = 2^df;
cos 2

/

2

4
ji

T
On the interval

fore the substitution is valid.

0, ~J
the function 2 sec t is monotonic, there-
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Hence,

f ~4
_/ f J^sec 2

/ — 4 ^ sin/

16 sec4
/ ^cos 2 /^

=4i si

6.4.3. Compute the integrals:

a VI

(a) §x*Vtf=^dx; (b) j ^=
1

6.4.4. Compute the integrals:

sin2
/ cos tdt =j2 s 'n3 ^

dx

H
3 Vz
o
~ 32

*

(a) f
"8

*f .

, ; (b) fv 7
J 6—5 sin x-\- sin 2 * v 7

J

dx

2+ cos x
'

Solution, (a) Apply the substitution

sinje= /; X /

cos x dx = dt\

ji

1~2~

The inverse function x= arc sin t[Q < -y for < t < 1) satisfies

•all conditions of the theorem on changing the variable. Hence,

/
cos xdx

6—5 sin x-\- sin 2 x J 6-5/-j-/ 2
"

o o

:ln-

(b) Make the substitution / = tan-^

jc = 2arctanf, dx =

X

2

2dt

l + t*'

— 3 i

— 2

X t

ji

1~2

_4_

3
'

which is valid due to monotonicity of the function tan 4" on the
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interval —

J 2+ cos.v J

1

2+
\+t*

2dt _ 9 f df

2 . /= -7=- arc tan -=
j/3 j/3

2
''arc tan —U — arc tan 0^ = 71

J/3

6.4.5. Compute the integral

dx
2 cos 2 x-\-b 2 sin 2

a:

Solution. Make the substitution

tan# = /,

dx
dt,

Hence,

^3

(o>0, b>0).

3 1^3
'

<4

dx

cos 2 x-\-b2 sin
_ — f

dt \ C dt _
x J cP+ bH 2 ~ b*J a 2

.

~

= • — arc tan— = -r arc tan —
b2 a a \o ab a

ji

If #,= 6=1, then arc tan— = arc tan 1 — ,

' ab a 4
, which exactly coin-

cides with the result of the substitution a = 6=1 into the initial

integral

n jt

4

dx [* ji

dx -

I a 1 cos 2 x-j-fr2 sin 2 # 4
"

6.4.6. Compute the integrals:

dx; (b) f-
J X

dx

l^l + ln *
'

(0 j
dx.
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.1

C x sin x
6.4.7. Compute the integral /=\ ^ cos i x

dx -

Solution. Reduce this integral to the sum of two integrals:

ji

2 3T

~2~

To the integral

x sin x
' 2

J 1 -j-cos 2 x
dx

apply the substitution

x = n— /, X t

dx =— d/, ji n

T T
ji

Then
JI

2

' 2
J 1

— Q sin (ji— t) r (n

l+cos 2 (Jt-0 J 1

— /) sin /

1-j-cos 2
/

d/

C smt C t sin I
' n

) 1-f-cos 2 /"*
J 1 + cos 2

/

df.

Hence

. _ . . _ C x sin x . P sin / rf/ f*

/ =/i + /
s - J 1 + cos 2 x^ 71

) 1 + cos 2
/ J

/ sin /

1 + cos 2
/

Since the first and the third integrals differ only in the notation

of the variable of integration, we have

n
) 1 + cos 2

*
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To this integral apply the substitution

a = cos t
y

du = — sin t dt,

/ = du

t a

u i

l

ji

T
du Jl'

2

1+M a

r* x sin x
/Vote. The indefinite integral \ t- — is not expressed in

d 1 -j- COS X

elementary functions. But the given definite integral, as we have

shown, can be computed with the aid of an artificial method.

6.4.8. Evaluate the integral

\n(\+x)

1-f-x
2

dx.

Solution. Make the substitution

x = tan/,

dt
dx -=

cos 2
/

Hence,

X /

1

Jl

T

Jl

4

In (1+ tan/) sec 2
/

sec 2
/

<tf = Jln(l +tan/)^.

Transform the sum 1 + tan/:

/2~sin ( / -|

1 + tan / = tan -f- tan / =
cos /

Substituting into the integral, we obtain
jt n_ n_

~T 4 4

/ - j lln2d/ + Jlnsin(/ + -J-)df— Jlncos/<//-- =

(I

T 4

= 1/1112 T + jlnsin(/ + -5-)d/— Jlncos/d/ =
°

JT Jt

T T
= -y ln2 + jlnsin^/ + dt— j In cos t dt - ln2 + /

2
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Now let us show that I^=I
2

. To this end apply the substitution

dt = — dz
y

t

jt

JT
T

T

to the integral /
2
=
J

In cos t dt.

Then

/ 2
= — ^ In cos^— = ^ In sin

ji

i 2

Therefore

= j" lnsin ^-+ 2^ dz = I
t.

/=T ln2 -

Note that in this problem, as well as in the preceding one, the

indefinite integral ^~~jz^r ^x ls no * expressed in elementary fun-

ctions.

6.4.9. Prove that for any given integral with finite limits a and b

one can always choose the linear substitution x = pt + q (p, q con-

stants) so as to transform this integral into a new one with limits

and 1.

Solution. We notice that the substitution x = pt + q satisfies

explicitly the conditions of the theorem on changing the variable.

Since t must equal zero at x = a and / must equal unity at x = b

we have for p and q the following system of equations

a = p-0 + q,

b = p.\+q,

whence p = b— a, q = a. Hence,

b l

lf(x)dx = (b— a)$f [(b— a) t + a] dt.
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6.4.10. Compute the sum of two integrals

_2_

3-5

$e<* +5 >
2 dx+3 .•(-*)' dx.

Solution. Let us transform each of the given integrals into an
integral with limits and 1 (see the preceding problem).

To this end apply the substitution x = — t— 4 to the first inte-

gral. Then dx =— dt and
-5 1 1

li== ^
e(x+ v 2 dx=-le<- t + ^ 2

dt = -
J
e«

-
1

>

2

dt

.

-4

Apply the substitution x = -^-\-~- to the second integral. Then

dx =^ and

_2_

3o / 2 \ 2 1

/
2 =3$ e*\

x~) dx = \ev-^dt.

Hence

+ = - je (
'- 1)2 dt+

J
= 0.

Note that neither of the integrals ^ eu+5)2 and $£
9
^* 3 ^ rfx is

evaluated separately in elementary functions.

6.4.11. Prove that the integral

p sin 2kx .

\
: dX

i sin y

equals zero if k is an integer.

Solution. Make the substitution

x = tc— /,

dx = — dt,

x
1

t

n

Jt

Then at k an integral number we get:

Ji n
P sin 2kx ^ _ P sin 2fe (ji— /) ^ _ P sin 2&/ ^
J sin a:

~"
J sin(Jt— /) J sin/
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Since the definite integral does not depend on notation of the vari-

able of integration, we have

/ = — /, whence 7 = 0.

6.4.12. Compute the integral

2

dx

VT-

Solution. Apply the substitution x = s\nt (the given function is

not monotonic), dx = cost dt. The new limits of integration t
1
and

t 2 are found from the equa-

i . .
y~3

. ,tions y = sin /;
2

= sin

We may put = y and t 2
=

= y , but other values may

also be chosen, for instance,
2jt

3
'

In both cases the variable

x = s\nt runs throughout the

entire interval'
1 ^ 3

Fig. 64

2 » 2

monotonic both on

J
(see Fig. 64), the function sin/ being

|_<r> tJ
and

2jt

3

5ji
~6~

Let us show that the results of the two integrations will coincide.

Indeed,

V 3

2

r
dx — r

c° s * di _ r _
jn

J a: 1^1 — x2
J sin / cos / ,1 sin /

tan —
2

= lntan- -In tan — = In
1

/-
12 V^3

On the other hand, taking into consideration that cost is negative

on the interval
j^-y; -yj , we obtain
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V 3

2

2n
3

5jt

6

i

* dx _ r cos t dt _ r dt __

J xVl—x 2
J sin cos t) J sin/
5jt

6

2jx

3

= In tan -In

, 5
tan

tan^
ln

2-f ^"3

^"3

Note. Do not take t
1
=^ 9

/
a =y f

since, with / varying oo

the interval |y , -yj , the values of the function x = sin t lie beyond

the limits of the interval
2 ' 2

6.4.13. Prove that the function L(x) defined on the interval

X

(0, oo) by the integral L (x) =
J
— possesses the following properties:

i

L(x
l
x

2 )
= L(x

l ) + L(x
2 ),

L^j=L(Xl)-L(x2 ).

Solution. By the additivity property

1 1 X,

Let us change the variable in the second integral

t = x
l
z

y

dt = x
x
dz

y

t z

1

*•

Then

L(x,x2 )
= §j +^ = L(x

l )+ L(x2 ).

i i

x3
Putting here x

1
x

2
= x3 ]

x
2
= — , we obtain

x
1

L(x3
)^L(Xl ) +L^, i.e. L(^)=L(x3)-L(Xl ).
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It is also easy to obtain the other corollary L\x n )=— L(x) for
m
n

any integral m and n.

Indeed, for positive m and n this follows from the relations

L{x n
J =^mL\x n \ L(x)=nL(x n

) ,

and for a negative exponent, from

L(1) = 0, L(x- l
) = L(±)=L(l)-L(x) = -L(x).

Now, taking advantage of the continuity of the integral as a fun-

ction of the upper limit, we get the general property L(xa
) = aL(x).

Note. As is known, L(x) = \nx. Here we have obtained the prin-

cipal properties of the logarithm proceeding only from its determi-

nation with the aid of the integral.

3

6.4.14. Transform the integral ^(x— 2fdx by the substitution

{x— 2f--^t.

Solution. A formal application of the substitution throughout the

interval [0, 3] would lead to the wrong result, since the inverse

function x = y(t) is double-valued: x = 2±Y~i> i.e. the function x

has two branches: x
1
= 2— [/" t\ x

2
-=2 + Y t. The former branch can-

not attain values x > 2, the latter values x < 2. To obtain a cor-

rect result we have to break up the given integral in the following

way:

3 2 3

J
(x — 2)

2 dx =
J
(x— 2)

2 dx+ J
(x— 2)

2 dx,

2

and to put x = 2—Y t in the first integral, and x = 2 + V t in the

second. Then we get

2 4

4

3 1 1

/ 2 =j(^-2)Mx=j/
2
-^r =i-Ji/rd/=i.

2

8 1

Hence, / = — -(- — = 3, which is a correct result. It can be easily
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verified by directly computing the initial integral:

§{x-2)* dx -

(x-2f = i +T = 3 -

6.4.15. Compute the integrals:

Jt

4

Jt

4

, , _ C sin #+ cos x i

(e )
7 =j 3+ sin2*

dx
>

a

(f) /=jV ]/j^-d*. a>0;
b

2a 1

(g) / = ^2ax-x*dx; (h)/ =
j fr^J

6.4.16, Applying a suitable change of the variable, find the fol-

lowing definite integrals:

dx

.1 ^+1+^+1)3
o

; <b>J;
dx

+ /

a

2— x2 '

V(a* + b*)/2

(c).fmf^) ; (d)
.f yV2 —a2

)(&
2—*2

)

V'(3a* + fc
2 )/2

6.4.17. Consider the integral
j 4 _^2

. It is easy to conclude

that it is equal to -j . Indeed,

d# 1 , #—2-= -7T arc tan
4+ a;

2 2 2
-2

2

-2~~ 2 [t-(-t)
Jl

T
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On the other hand, making the substitution #--=y, we have

, dt
d* =—

,

X *

1— 2
2

2
1

2

[ dx r # r 1

2 +l arc tan 2t

This result is obviously wrong, since the integrand
4+ * s

2 _ _JX

'

2

> 0, and,

consequently, the definite integral of this function cannot be equal

to a negative number — ^- . Find the mistake.

2n
P dx

6.4.18. Consider the integral /= \
=—

. Making the substi-
to

J 5— 2 cos x &

tut ion tan -^ = t we have

2ji ,

dx

j
5-2 cos*

j (1+<1)

2<ft

) 5-2 1 —

/

2
= 0.

The result is obviously wrong, since the integrand is positive,

and, consequently, the integral of this function cannot be equal to

zero. Find the mistake.
_2

6.4.19. Make sure that a formal change of the variable t — x h

2

leads to the wrong result in the integral
J Y

x

2 dx. Find the
-2

mistake and explain it.

6.4.20. Is it possible to make the substitution x=sec/ in the
i

integral / =
J
J/V+l dx?

o
i

6.4.21. Given the integral —x2 dx. Make the substitution
o n

jc= sin*. Is it possible to take the numbers n and as the limits

for /?
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6.4.22. Prove the equality

a a

J
f(x)dx=l[f(x) + f(-x)]dx

-a

for any continuous function f (x).

2ji

6.4.23. Transform the definite integral §f(x)cosxdx by the sub-

o

stitution sin^ =

§ 6.5. Simplification of Integrals Based on the

Properties of Symmetry of Integrands

1. If the function f (x) is even on [
— a, a], then

a a

J
f(x)dx = 2^f(x)dx.

-a

2. If the function f (x) is odd on [
— a, a], then

a

J
f(x)dx--=0.

-a

3. If the function f (x) is periodic with period 7\ then

b + nT

\
j

f{x)dx^
J / (*)

a a+ nT

where /i is an integer.

i

6.5.1. Compute the integral
J

|*|d#.
—l

Solution. Since the integrand /(a:) = |a:| is an even function, we
have

i i i

^\x\dx = 2
i

\
)

\x\dx = 2^ xdx = x2

i

6.5.2. Compute the integral

7

f a:
4 sin # ,

-7

Solution. Since the integrand is odd, we conclude at once that

the integral equals zero.
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6.5.3. Evaluate the integrals

ji

(a)
J /(*) cosnxdx;
— jr

jt

(b) ^ / (x) sin nxdx,
-71

if: (1) f (x) is an even function; (2) f(x) is an odd function.

5

6.5.4. Calculate the integral
J ^4+ 2*2+ t

dx.

*

6.5.5. Compute the integral
J

sin 2a:

cos4 x-\- sin 4
a:

Solution. The integrand is a periodic function with period jt, since

sin 2 (x-\- ji) sin 2a
/(*+ jt) =

cos 4 (#4- n) + sin 4 (x+ ^) cos 4 x-f sin4
a:

" :/(*).

Therefore it is possible to subtract the number n from the upper
and lower limits:

5

T 37

sin 2a:

J cos 4
a: -4- sin 4 x

JT

Make the substitution

C sin 2a: _ 2 f

J cos 4
a:+ sin4 x J

tan xdx
cos 2 x (1 +tan4

a:)

dt

t = tan a:,

' cos2 x 9

X /

ji

T 1

JT

T 1

r tan x dx C 2t dt

J cos 2 #0 4" tan4 x) J \+t*''
arc tan t

2
JT

—

T

6.5.6. Prove the equality

J
cos xf (x2)dx = 2 ^ cos xf (x2

) dx.

Solution. It is sufficient to show that the integrand is even:

cos(— x)f [(

—

x)2
\
= cosxf (x2

).
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6.5.7. Compute the integral

2s7+ 3*6— 10a:5— 7a;3— 1 2a:2+ x+ 1C ~~
,
— >^ — — ---r^-ri .

J a;
2+ 2

-K~2

Solution.

V~2

-V~2

C 2x7+ 3a;6— 10xb— 7x*— 1 2a;2+ x+ 1 ,

J a;
2+ 2

dX ~~

r 2xi—\0xb—7x*+X j ,
C 3a;2 (a;

4- 4)+ 1 A
J *2+ 2

aX_t"
J ^+2

-K~2 -K~2

V~2

= + 2

J
[3(^-2x2)+ 1?

iT]^ =

J _ 4^3 + 2
arc tan

x I v-2= _ 16

K~2 |/" 2 |o 5 2 l/"2
"

Tn calculating we expanded the given integral into the sum of

two integrals so as to obtain an odd integrand in the first integral

and an even integrand in the second.

6.5.8. Compute the integral

2

cos* In dx.
1 —x

Solution. The function f(x) = cosx is even. Let us prove that the

1 + X
function q>(x) = lny^ is odd:

cp <_*) = in {=£_ In ({±f)- = -In {±f- _„W .

Thus, the integrand is the product of an even function by an odd
one, i.e. an odd function, therefore

cos* ln\^dx = 0.
1
—X

"
2

6.5.9. Prove the validity of the following equalities:
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(a)
J

xs s'm d xdx -=0; (b) $ ecosxdx= 2 ^ecosx dx\

ji 1 o

~T "T
ji

(c)
J

sinrnxcostt^djc — O (m and n natural numbers);
— JT

Q

(d) [ s'mxf (cosx)dx = 0.

-a

6.5.10. Prove the equality

h b

^f(x)dx^^f(a + b— x) dx.

a a

Solution. In the right-hand integral make the substitution

X t

x^=a+ b— /, dx=^ — dt
y a b

b a

Then we obtain

b a

j f (a+ b—x) dx=—lf(t)dt^lf(t)dt = \f (x) dx.

a baa
Note. The relation established between the integrals can be explai-

ned geometrically.

The graph of the function f(x), considered on the interval [a, b]
y

is symmetrical to that of the function f(a+ b— x)
y
considered on

the same interval, about the straight line x = ^-^-. Indeed, if the

point A lies on the x-axis and has the abscissa x, then the point A\
which is symmetrical to it about the indicated straight line, has
the abscissa x' =a + b— x. Therefore, f (a + b— x') = f [a + b— (a+
+b— x)] = f(x). But symmetrical figures have equal areas which are

expressed by definite integrals. And so, the proved equality is an
equality of areas of two symmetrical curvilinear trapezoids.

6.5.11. Prove the equality

\f{x)g{t— x)dx=\g(x)f(t— x)dx.
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Solution. Apply the substitution t—x=z in the right-hand integral;

then we have
o /

-lg(t-z)f(z)dz~lf(z)g(t- z) dz.

Jl Jl

2 T
6.5.12. Prove the equality

J
sinm xdx=^ cosm xdx and apply the

o o

obtained result in computing the following integrals:

Jl JX

T 2

J
cosa #dx and ^ sin2

**!*:,

o o

Solution. On the basis of Problem 6.5.10 we have

Jl 71

2 , v 2

J
sin"2 xdx =

J
sinm (y— =

J
cosmxdx.

Hence, in particular,

71 71

2 2

/^=^ sin2 xdx=^ cos 2 xdx;

o o

add these integrals:

71 7l_

2 2

2/ =
^

(sin 2
jc+ cos2 x) dx=

J
dx = ~\

hence, / = -j

6.5.13. Prove the equality

ji 2

f (sin jc) dx= 2
^ f (sin x) dx.

o

Solution. Since

^ / (sin x) =
jj

/ (sin x) dx + ^ / (sinx) dx,
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it is sufficient to prove that

ji

ji T
^
f(s'mx)dx=

J
/ (sin x) dx.

_jx_

2

In the left integral make the substitution

x = n— /,

dx= —dt,

X t

71 JT

T
n

Then

JT

J
f(s\nx)dx =— ^ f [sin (n— t)] dt

=
J

/ (
sin * =

J
/ (sin x) dx-

o o

6.5.14. Prove the equality

ji n

^ xf (s\n x) dx= ^- J
/ (sin a:) dx.

Solution. In the left integral make the substitution

x=n— t,

dx=—dt,

Then we obtain

X t

JT

ji

J
a:/ (sin x)dx = —

{[
(ji— [sin (ji— /)]d/ =

Jt

JT Jt

= 5"/ (sin/)*— S'/
(smt)dt.

Whence

%\xf (s\x\x)dx= n
J
f(sin x)dx,

which is equivalent to the given equality.
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6.5.15. Using the equality

s\n[n + j]x
j= -x- + cos^-|-cos2a;+ . . . -j-cosnx,

2 im-

prove that

ji sin
^
^H- "^") x

dx — n.
. x

sin T

6.5.16. Prove that if q>(x) = y a + a
i
^osx+ b

1
sin x+a

2
cos2x+

-\-b
2
sin 2.x:+ . . . +an cos nx+ bn sin fix, then

2ji 2ji

(a)
J

cp (jc) = Jta
;

(b)
J <P (x) cos kx dx = nak \

o o

2ji

(c)
J (p (x) sin kxdx = nbk (k=l, 2, tt).

§ Integration by Parts. Reduction Formulas

If u and t; are functions of x and have continuous derivatives,

then
b b

J
u (#) u' (a:) dx = u (x) v (x)

j

&— (x) u' (x) dx
a a

or, more briefly,
b b

^udv = uv
â
— ^vdu.

a a

I

6.6.1. Compute the integral ^xex dx.
o

Solution. Let us put

x = u, ex dx — dv\

du = dx\ v = ex >

which is quite legitimate, since the functions u = x and v = ex are

continuous and have continuous derivatives on the interval [0, 1].

Using the formula for integration by parts, we obtain

i i

\ xex dx = xex \
— \ ex dx = e— ex L = 1

.
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6.6.2. Compute the integral I= \ eax sin bxdx.
o

Solution. Let us put

u = s'mbx, dv= e°x dx;

du = b cos bx dx, v= — e°x

Since the functions u = smbx, v = — eax together with their deri-

vatives are continuous on the interval [0, jt], the formula for in-

tegration by parts is applicable:

/=— eax smbx
a a J

eax cos bx dx -

= — — [ eax cos bx dx =—- L.
a J a 1

Now let us integrate by parts the integral /
t

. Put

u = cos bx, dv = eax dx,

du = — b sin bx dx, v = — eax .

a

Then

eax s\n bxdx =/ =—- —eax cos bx
a \ a

Hence

—
,

b r

b f e~ \\ b* b GT +l) b*_
f

a \ a a J a 2 ~ a2 a2

a?+ b* b{eT +\) , b{eT+\)

In particular, at a = b= \ we get

^ex s'mxdx = -j(en +1).
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6.6.3. Compute the integral ^\n3 xdx.

jt
2

4

6.6.4. Compute the integral ^s'mVx dx.

Solution. First make the substitution

Vx=t,
x = t\

dx = 2t dt
y

Whence

4

X

ji
2

ji

4

.n

T

J
sin J/* dx: = 2

J
/ sin / dt.

Integrate by parts the latter integral.

Put

t = u; sin tdt = dw,

du = dt\ v = — cost.

Then

2
I

t sin tdt = 2
171 ^
~z +) cos / dt = 2 sinH 2 =2.

lo

6.6.5. Compute the integral /= ^-^y==^- dx.

o

6.6.6. Compute the integral
J
x2 s\nxdx.

6.6.7. Compute the integral In =^(a2—x2
)

n dx> where n is a na-

o

tural number.

Solution. The integral can be computed by expanding the integrand

(a2— x2
)

n according to the formula of the Newton binomial, but it

involves cumbersome calculations. It is simpler to deduce a formula

for reducing the integral /„ to the integral I n _ l
. To this end let
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us expand the integral In in the following way:

a a

/„ =
I
(a2— a;

2)"" 1 (a2— x 2
) dx= a2

ln _ x
—

\ x(a
2— a:

2)"" 1 xdx

and integrate the latter integral by parts:

u = x; (a2—x2
)

n ~ x xdx = dv,

1

' 2n

We obtain

du = dx\ v = —^-(a2 —x2
)

n (n=£0).

in = *in -i +i x («
2-*r

| o -~k I^~ x2Y' dx = a2/« -

»

~i 7«-

Whence

/ =a2
2n

Il
»

U
2/1+1 '"-I*

This formula is valid at any real n other than and —~.

In particular, at natural n, taking into account that

a

I o =
l
dx = a>

o

we get

2n (2/1-2) (2/1-4) . . .
6-4-2 _ aw + 1

(2/z)H
/ *~~ U

(2/i+ 1) (2/i— 1) (2/1— 3) . . . 5-3 (2/1+1)!!'

where

(2/i)!! =2-4-6 ... (2/i),

(2/i+l)!! = 1-3-5 ... (2/1+1).

6.6.8. Using the result of the preceding problem obtain the fol-

lowing formula:

1
3 ^ 5 7 "I- • • • -r V U

2/1 + l (2/2+ 1)!!
'

where are binomial coefficients.

Solution. Consider the integral
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Expanding the integrand by the formula of the Newton binomial

and integrating within the limits from to 1, we get:

i

In = \(\—x*)n dx =
o

i

= J(1— C}
t

x2 + C 2*4- C*x« + ...+(— 1 )

n Cn
nx

2n
) dx =

x o ~T~ c 7 i • • • ~T
2/7 + 1

^1 ^2 ^3

3^5 7
"
t
"

which completes the proof.

6.6.9. Compute the integral

(-1)"

2n+l »

// w ==5 sin^jcrfA;^^ cosmxdx

(m a natural number).

Solution. The substitution

sin x = f,

cosjcd.x: = d/,

t

31

1"2

reduces the second integral to the integral

Hm = \ (1— sin 2
*)

2 cosxdx=\{\—t*) 2 dt t

considered in Problem 6.6.7 with a=^\ and n =
the reduction formula

Therefore,

m— 1

(m=^0, m^= 1)

is valid here, since
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If m is an odd number, the obtained reduction formula reduces
tim to

2

=
J
cos#djc= 1,

therefore

_ (m-l)ll
* ml!

•

If m is an even number then the reduction formula transforms
Hm into

2

o

therefore

„ (m— 1) !! ji

6.6.10. Compute the integral

ji

I = ^xsm m xdx
o

(ra a natural number).

Solution. Taking advantage of the results of Problems 6.5.14 and
6.5.13, we get

ji

ji ji 2

/ = §xsmm xdx = j J
smm xdx = n

J
s\nm xdx,

o oo
which, taking into consideration the result of Problem 6.6.9, gives

(ji2 (m— 1)!!

-2 '
L
-7^fT

L- lf ™ 15 even '

ji rr
1— u m is odd.

mil

i

6.6.11. Compute the integral / n = ^ xm (\n x)
n dx\ m > 0, n is a

o

natural number.

Solution. First of all note that, though the integrand f (x) ^= xm (\n x) n

has no meaning at # = it can be made continuous on the interval



300 Ch. VI. The Definite Integral

[0, 1] for any m > and n > 0, by putting f (0) ^=0. Indeed,

lim xm (\nx) n = lim \x n \nx) =
X-+ + Q X-+ +

by virtue of Problem 3.2.4.

Hence, in particular, it follows that the integral ln exists at

m > 0, n > 0. To compute it we integrate by parts, putting

u =(\nx)n
y dv = xm dx,

Hence,

i

, n(\nx)n - 1
, xm + l

du = — — ax, a =—— .

# m+

1

The formula obtained reduces /„ to In _v In particular, with a na-

tural n, taking into account that

i

we get

/„ = (-!)"
" !

(m+l)" + 1 '

l

6.6.12. Compute the integral /Wt „= $ xw ( 1 — x)n dx,

o

where m and n are non-negative integers.

Solution. Let us put

( l —x )

n = a; dx = dv;

du= — n(l —x)n ~ l dx; v = .

Then

o

The obtained formula is valid for all n > 0, and — 1. If n

is a positive integer, then, applying this formula successively n

times, we get

/
n

/
l)

7 ==— m+ i

1 m + i.»-i""(
/0 +l)(m+ 2) + • •

•

_ n (n— I). . .[n— (n— \)] ,

* * '
~~ (m+l)(m+ 2)...(m+ /i)

m+n
*
°'
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But
l

1f» xm + n + l

u0 =\xm+n dx:
' m+ n+ 1

o

Hence,
. /i (/i— l) (/i— 2) 3-2-

1

o m+ /i+

1

J «. n
(m+ J) (m+ 2). ..(m+ /i) (m + n+ I)

'

The obtained result, with m a non-negative integer, can be written

in the form
. _ m\n\
m

*
n ~ (m+n+ 1)!

"

6.6.13. Compute the integrals:

i i

(a)
J
arc tan V x dx\ (b) ^(x— \)e~ x dx\

o o

~3~
i

. . C Xdx r>

\c )
j iiH^' (d) j a: arc tan a: g(a:;

(e) J*ln(l + x2)dx\ (f)
J

ln(l + tanx)dx;
o o

ji

T 16

(g) ^ sin 2a: arc tan (sin x)dx\ (h)
J
arc tan j/"V^x—ldx.

o 1

6.6.14. Prove that

i i

^(arccosArJ^dAr^Ai^y
1— (/t— 1) J

(arc cos a;)"
~ 2

dA; (n> 1).

o o

6.6.15. Prove that if f" (x) is continuous on [a, &], then the fol-

lowing formula is valid
b

S *r (x) = [bf (b)-f(b)]- [af (a)-f (a)].

a

§ 6.7. Approximating Definite Integrals

1. Trapezoidal formula. Divide the interval [a, b] into n equal

parts by points xk = a-\~kh, where h = b-^
y
k = 0, 1, n, and

apply the formula
b

j / (jc)dx *^ [I / (* ) + / + . . . + /(*„_,) + y f (*„)] .
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The error R in this formula is estimated as follows:

|R|<^, where Ma = sup \f (x)\

(assuming that the second derivative is bounded).
2. Simpson's formula. Divide the interval [a, b] into 2n equal

parts by points xk= a+ kh
9
where ^=~^» and apply the formula

^f(x)dx^
b
-^.{f(x <) ) + f(xin )+ 4[f(x

l ) + f(x3)+...

+f (*,„ - 1)] +2[f(xt )+ f (*4 ) +...+f (x2n _,)]}.

Assuming that f
iv

{x) exists and is bounded, the error in this formula

is estimated in the following way:

i

C dx
6.7.1. Approximate the integral I=\y^r£ using the trapezoidal

o

formula at n = 10.

Solution. Let us tabulate the values of the integrand, the ordi-

nates y {
= / (x

t) (i = 0, 1, 10) being calculated within four de-

cimal places.

1 +*i yi=TTT„
Xi 1 +Xi M=TT7t

0.0000 1.0000 1.0000 0.6000 1.6000 0.6250

0.1000 1.1000 0.9091 0.7000 1.7000 0.5882

0.2000 1.2000 0.8333 0.8000 1.8000 0.5556

0.3000 1.3000 0.7692 0.9000 1.9000 0.5263

0.4000 1.4000 0.7143 1.0000 2.0000 0.5000

0.5000 1.5000 0.6667

Using the trapezoidal formula, we obtain

, r dx 1 / 1.0000+0.5000 . Aftnn1 . n qoqq ,

/=3T+7~Tol ? + 0.9091+0.8333 +

+ 0.7692+ 0.7143 + 0.6667 + 0.6250+ 0.5882 + 0.5556+

+ 0.5263 ) = 1 • 6.9377 = 0.6937 1 « 0.6938.
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Estimate the error in the result obtained. We have f" (x) = ^_^ 3
.

Since 0<jc<1, then |f (x)|<2. Consequently, we may take the

number 2 as M 2
and estimate the error:

l«l<72^ = 6^0< -0017 -

We calculated the ordinates accurate to four decimal places, and

the round-off error does not exceed ° Q

^
Q5

(l +9xl) = 0.00005 ^more

precisely,
Q,Q

^
Q5

. 9 = 0.000045, since the ordinates y and */10 are

exact numbers^ . Thus, the total error due to using the trapezoidal

formula and rounding off the ordinates does not exceed 0.0018.

Note that when computing the given integral by the Newton-
Leibniz formula we obtain

dx
ln(l+x)

l+JC
' = In 2^0.69315.
o

Thus, the error in the result obtained does not exceed 0.0007, i. e.

we have obtained a result accurate to three decimal places.

1.5

C e°'lx

6.7.2. Evaluate by Simpson's formula the integral \ —^-dx
0.5

accurate to four decimal places.

Solution. To give a value of 2n which ensures the required accu-

racy, we find /
iv

(a;). Successively differentiating f(x) — e
-^-, we get

fiv (A;)
=^ (0.0001a;*— 0.004a;3 + 0.1 2a;

2— 2.4x+ 24) = ^g°- 1*,

where P (x) is the polynomial in parentheses. On the interval

[0.5, 1.5] the function cp (a;) =e°- lx increases and therefore reaches

its greatest value at x =1.5: (p (1.5) = e°-
lb < 1.2. The upper estimate

of the absolute value of the polynomial P (x) divided by x b can be

obtained as the sum of moduli of its separate terms. The greatest

value of each summand is attained at a:=0.5, therefore

\P(X) 0.0001 0.004 0.12 2.4 24
^ x

+
x2 *3 + x* xb^
< 0.0002 + 0.0 1 6+ 0.96 + 38.4+ 768 < 808.

And so, |/
iv

(a;)| < 1.2x808 < 1000. Hence, the number 1000 may
be taken as Mv
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We have to compute the integral accurate to four decimal places.

To ensure such accuracy it is necessary that the sum of errors of

the method, operations and final rounding off should not exceed

0.0001. For this purpose we choose a value of 2n (which will de-

termine the step of integration h) so that the inequality

|i?|<{ -0.0001 = 5- 10" 6

is satisfied.

Solving the inequality

l
5 xl 000 <5xl0"
180 (2/2)

4

we obtain

2n > 19.

Let us take 2n = 20; then the step of integration h will be equal to

A more accurate calculation shows that at 2n = 20

|Z?|<3.5xl0- 5
.

If we calculate yt
within five decimal places, i. e. with an error

not exceeding 10" 5
, then the error of the final rounding off will

also be not greater than 10~ 6
. Thus, the total error will be less

than 4.5xl0" 5 < 0.0001.

Now compile a table of values of the function y=—^~ f°r ^e va '

lues of x from 0.5 to 1.5 with the step h = 0.05. The calculations

are carried out within five decimal places.

i xi OAxi e o. IX,
yi

0.50 0.050 1.05127 2. 10254

1 0.55 0.055 1.05654 1.92098

2 0.60 0.060 1.06184 1.76973

3 0.65 0.065 1.06716 1.64178

4 0.70 0.070 1.07251 1.53216

5 0.75 0.075 1.07788 1.43717

6 0.80 0.080 1.08329 1.35411

7 0.85 0.085 1.08872 1.28085

8 0.90 0.090 1.09417 1.21574

9 0.95 0.095 1.09966 1.15754

10 1.00 0.100 1.10517 1.10517

11 1.05 0.105 1.11071 1.05782
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i %i 0. l*j e0.lXi y\

12 1.10 0.110 1.11628 1.01480

13 1.15 0.115 1.12187 0.97554

14 1.20 0.120 1.12750 0.93958

15 1.25 0.125 1.13315 0.90652

16 1.30 0.130 1 . 13883 0.87602

17 1 .00 0. loo 1 . 14454 f\ OA *70 1U.o47ol

18 1.40 0.140 1.15027 0.82162

19 1.45 0.145 1.15604 0.79727

20 1.50 0.150 1.16183 0.77455

For pictorialness sake we use the tabular data to compile the

following calculation chart:

i x\ at 1= and
at an odd t at an even i

i = 20

0.50 2.10254
1 0.55 1.92098
2 0.60 1.76973

3 0.65 1.64178
4 0.70 1.53216

5 0.75 1.43717
6 0.80 1.35411

7 0.85 1.28085

8 0.90 1.21574

9 0.95 1.15754

10 1.00 1.10517

11 1.05 1.05782

12 1.10 1.01480

13 1.15 0.97554
14 1.20 0.93958
15 1.25 0.90652
16 1.30 0.87602

17 1.35 0.84781

18 1.40 0.82162

19 1.45 0.79727

20 1.50 0.77455
Sums 2.87709 12.02328 10.62893

Using Simpson's formula, we get

I .5

j
^^^^(2.87709 + 4x 12.02328 +

0.5

+ 2x 10.62893)==^. 72.22807- 1.2038.
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6.7.3. The river is 26 m wide. The table below shows the succes-

sive depths of the river measured across its section at steps of 2 m:

X 2 4 6 8 10 12 14 16 18 20 22 24 26

y 0.3 0.9 1.7 2.1 2.8 3.4 3.3 3.0 3.5 2.9 1.7 1.2 0.8 0.6

Here x denotes the distance from one bank and y y
the correspond-

ing depth (in metres). Knowing that the mean rate of flow is

1.3 m/sec, determine the flowrate per second Q of the water in the

river.

Solution. By the trapezoidal formula the area 5 of the cross-sec-

tion

26

S = J#dx«2 y (0.3 + 0.6) + 0.9+ 1.7 + 2.1+2.8+ 3.4 +
o

+ 3.3 + 3.0+ 3.5 + 2.9 + 1.7+1.2 + 0.8

Hence,

Q = 55.5 x 1.3 « 72 (m 3/sec).

= 55.5 (m 2
).

It is impossible to estimate the error accurately in this case. Some
indirect methods of estimation enable us to indicate approximately

the order of the error. The error in 5 is about 3 m2
,

hence, the

error in Q is about 4 m 3/sec.

6.7.4. Compute the following integrals:

2

(a)
j
^y?-dx accurate to three decimal places, using Simpson's

n
4

formula;

i

(b) ^e-*
2

dx accurate to three decimal places, by the trapezoidal

o

formula.

6.7.5. By Simpson's formula, approximate the integral

1 .36

/ = ^ / (*) Ax*

1.05
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if the integrand is defined by the following table:

X 1.05 1.10 1.15 1.20 1.25 1.30 1.35

fix) 2.36 2.50 2.74 3.04 3.46 3.98 4.6

§ 6.8. Additional Problems

6.8.1. Given the function

( l—x at 0<*<1,
f(x) = \

at l<x<2,
(
(2—xf at 2<x<£3.

Check directly that the function

X

F(x) = \f(t)dt

is continuous on the interval [0, 3] and that its derivative at each

interior point of this interval exists and is equal to f(x).

6.8.2. Show that the function

/ x In x , r\ . . ,

f(x) = \ at x=
^ — 1 at x=\

is integrable on the interval [0, 1].

6.8.3. Can one assert that if a function is absolutely integrable

on the interval [a, b]
y
then it is integrable on this interval?

6.8.4. A line tangent to the graph of the function = / (x) at the

point x=a forms an angle -j with the axis of abscissas and an

angle ~ at the point x = b.

b

Evaluate
J f" (x) dx

y
if f" {x) is a continuous function.

a

6.8.5. Prove that

[ E (x) dx = E(x) {E M~ {) + E (x) [x— E (x)].
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ji

f* dx
6.8.6. Given the integral \

=-
. Make sure that the fun-

te
J 1+ COS 2 X
o

ct ions

c i \ 1 }^2cosx i z? / \ 1 j. tan ^
f . (xy = —7r=-arc cos r = and r 9m = -7=^ arc tan—^

1
' V 2 V l + cos 2 x

2 V 7

>^2 1^2

are antiderivatives for the integrand. Is it possible to use both an-

tiderivatives for computing the definite integral by the Newton-

Leibniz formula? If not, which of the antiderivatives can be used?

6.8.7. For f (x) find such an antiderivative which attains the given

magnitude y= y at x = x (Cauchy's problem).

6.8.8. At what value of £ is the equality ^e2x dx=e2^(b—a) ful-

filled? Show that

6.8.9. Investigate the function defined by the definite integral
X

6.8.10. Show that the inequalities

1

0.692 < 1

are valid.

6.8.1L With the aid af the inequality x^s'm x^ ^ x (q^Lx^L

<£) show that \<^dx<$

6.8.12. Using the inequality smx^x— ^-(x^O) and theSchwarz-

Bunyakovsky inequality, show that

1.096 < \ V
rxs\nxdx< 1.111.

6.8.13. Assume that integrable functions px
(x), p 2

(x)
y p 3

(x), pA (x)

are given on the interval [a, b], the function p ±
(x) is non-negative,
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and the functions p2
(x), p 3 (x), p4 {x) satisfy the inequality

Ps (x)<Pt (x)<P4 (*)•

Prove that

b b b

$ p 3
(x) p x

(x) dx^\p 2
(x) p x

(x) dx^
I p, (x) pi (x) dx.

a a a

6.8.14. Let the function f (x) be positive on the interval [a, b].

Prove that the expression

b h

a a

reaches the least value only if f (x) is constant on this interval.

6.8.15. Prove that

ji

farctanx^l
f

/

^
J x 2 J sin /

o o

6.8.16. Prove that one of the antiderivatives of an even function

is an odd function, and any antiderivative of an odd function is

an even function.

6.8.17. Prove that if f (x) is a continuous periodic function with
a+T

period 7\ then the integral /=
J

f(x)dx does not depend on a.

a

6.8.18. Prove that if u = u(x), v= v(x) and their derivatives

through order n are continuous on the interval [a, b], then

b

$
UV{n) dx=[uVKn - 1)— U

,

V{n - 2>+. . . +(—l)n - 1 Uin - l) v] \a+
a

b

+ (— 1)"
I
u {n>vdx.



Chapter
7
APPLICATIONS
OF THE DEFINITE INTEGRAL

§ 7.1. Computing the Limits of Sums with
the Aid of Definite Integrals

It is often necessary to compute the limit of a sum when the

number of summands increases unlimitedly. In some cases such li-

mits can be found with the aid of the definite integral if it is pos-

sible to transform the given sum into an integral sum.
1 2 n

For instance, considering the points — , — , . . . ,
— as points of

division of the interval [0, 1] into n equal parts of length A*=—

,

for each continuous function f(x) y
we have

7.1.1. Compute
jt I . ji . . 2ji

, ,
(n— 1) Jil

im — sin—h sin h . . . + sin
v }— .UI1J n

\ n n 1 n
n -* Co

Solution. The numbers in brackets represent the values of the

function f{x) = s\nx at the points

ji 2ji
t #

{n— 1)ji

subdividing the interval [0, ji] intorc equal parts of length \x = ^.

Therefore, if we add the summand sin^ = to our sum, the lat-

ter will be the integral sum for the function f(x) = s\nx on the

interval [0, ji].

By definition, the limit of such an integral sum as n —> oo is the

definite integral of the function / (x) = sin x from to n:

lim
n f . ji . . 2ji (n—l)n. . nn\— sin—\- sin — 4- . . . sin —hsin— =
n \ n 1 n 1

' n 1 n )

7\

=
j sin xdx =— cos a:

o

= 2.
o
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7.1.2. Compute the limit

lim ( r
1 + * + . . . + -

1 V

Solution. Transform the sum in parentheses in the following way:

1 + ! + . .+-=1
V~4n2 -l ' V~4n2-2 2 \

r
4n i -

1 + ..-+•

'W-± V4-(4)'

The obtained sum is the integral sum for the function f (x) =
=
Y==^

on the interval [0, 1] subdivided into n equal parts.

The limit of this sum as n— oo is equal to the definite integral

of this function from to 1:

lim ( r
1 + r— .- + . . . + r

1

) =

1

=1

7.1.3. Compute

, = arc sin -77

1 - il

lim JL
AZ -* CD

1 +/^+/HT5+/5T5+--- + /»-+3fcr,]

Solution. Transform the given expression in the following way:

3 1

The obtained sum is the integral sum for the function / (x) =

= Y 011 ^e interval [0, 3]; therefore, by definition,

A™ H l+^ +^+ + /--+s5j=d)
-

3 3
,

=
J VT̂ c

dx= ^(l + x)~
Y
dx= 2VT+x = 4—2 = 2.
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7.1.4. Using the definite integral, compute the following limits:

(C) lim
^V*+V}±:.+V'n.

(d)Kra^(l + cosg + cosg+ ...+coseLzi)»

i/n!
7.1.5. Compute the limit 4= lim—

—

n-.cc

Solution. Let us take logarithms

In A = lim In J^JiL ^ lim — In — + ln —+ . . . + In
n 1 n 1 1

The expression in brackets is the integral sum for the integral

J
In #dA; = (A;ln x— x)

{

i

Consequently, In A =— 1 and lim = g" 1
.

n->-cc
n

§ 7.2. Finding Average Values of a Function

The average value of / (x) over the interval [a, b] is the number

u

li=~§f(x)dx.

i
i

% \
2

The square root
j
b __ a j [/ (x)] 2 of the average value of the

a

square ol the function is called the root mean square (rms) of the

function f (x) over [a, b].

7.2.1. Find the average value jli of the function f(x)=i/ x over

the interval [0, 1].

Solution. In this case

j/ xax = -

c

1 — A
o~~ 4



§7.2. Finding Average Values of a Function 313

7.2.2. Find the average values of the functions:

(a) / (x) = sin 2 x over [0, 2n]\

(b) /(*)=?qrr over [0. 2 ]-

7.2.3. Determine the average length of all vertical chords of the

a 2 b2
hyperbola ^— j^ = l over the interval a^x^2a.

Solution. The problem consists in finding the average value of

the function f (x) = 2y = 2 — V~x2—

a

2 over the interval [a, 2a]:

2a

1 C b

a

K^^-f ln(* + Vx^a^ =b[2\^3-\n(2 + V3)].

a

2b
' a 2

7.2 .4. Find the average ordinate of the sinusoid y = sinx over

the interval [0, ji].

Solution:

ji jt

u =— [ sin xdx =—- cos x^ jt J ji

- « 0.637.
ji

o

Rewrite the obtained result in the following way:

2 C .

\i- n = — • ji = \ sin x dx.

Using the geometric meaning of the definite integral, we can say
2

that the area of the rectangle with the altitude ii = — and the base& ^ ji

ji equals the area of a figure bounded by a half-wave of the sinu-

soid y=smx, O^ix^n, and by the #-axis.

7.2.5. Find the average length of all positive ordinates of the

circle x2 + y
2 = 1.

7.2.6. Show that the average value of the function f (x)> conti-

nuous on the interval [a, b], is the limit of the arithmetic mean
of the values of this function taken over equal intervals of the

argument x.

Solution. Subdivide the interval [a, b] into n equal parts by the

points x
(
^a-\-i

b—- (/=0, 1, 2, n).
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Form the arithmetic mean of the values of the function f(x) at

n points of division x
,
xly . .., xn _ ±

:

„ /(*o)+ /(*i)+-..

+

1 Vf/r)
/ =

This mean may be represented in the following form:

l

n ~ l

Vn=—a ^f(X
i)
Ax

i>

t=

where
b—

a

AX:-
n

The latter sum is the integral sum for the function f(x), the-

refore

l

n ~ l

l

b

lim V>n =~a Hm X f (*d Ax i ~b~^a \ f (
x)dx = \l,

which completes the solution.

7.2.7. Find the average value of pressure (pm ) varying from 2

to 10 atm if the pressure p and the volume v are related as follows:

_3_

pv 2 = 160.

Solution. As p varies from 2 to 10 atm, v traverses the interval

[4j/4, 4 j/T00]; hence

4 j/7oo
3

pm = '

3
f

160u" 2 do =
4(j/l00-j/4) J

3

320

4
3/4

3

— U
4(^/100-^4)

v = —3—- « 4.32 atm.
4 J/ 4 ^20(^/10+^/2)

7.2.8. In hydraulics there is Bazin's formula expressing the velo-

city v of water flowing in a wide rectangular channel as a function

of the depth h at which the point under consideration is situated

below the open surface,

v = v -20VHL (A) 2

,

where v is the velocity on the open surface, H is the depth of

the channel, L its slope.

Find the average velocity vm of flow in the cross-section of the

channel.
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Solution. We have

H

7.2.9. Determine the average value of the electromotive force

Em over one period, i.e. over the time from £=0 to t = T 9 if

electromotive force is computed by the formula

£ = £ sin-^-

,

where T is the duration of the period in seconds, £ the amplitude
(the maximum value) of the electromotive force corresponding to

2nt— is called the phase.the value / =0.257. The fraction

Solution.

e*=t) s,n—*=ra - cos
"f-Jo

=0 -

o

Thus, the average value of the electromotive force over one pe-

riod equals zero.

7.2.10. Each of the two vertical poles OA and CD is equipped
with an electric lamp of luminous intensity i fixed at a height h.

The distance between the poles is d. Find the average illumination

of the straight line OC connecting the bases of the poles.

7.2.11. Find the average value of the square of the electromotive
T

force (E 2
)m over the interval from / = to t = ~2 (

see Prob-

lem 7.2.9).

Solution. Since

we have

j ^ o
J

sin'

E = E sin ~y~

2nt 2 C
{
- Q0S—

™dt=±rEl \ Y^-dt^

t-

\i= lim ~
\
f(x)dx 9

T . 4nt
-T- Sin -TfT-
4jt T

7.2.12. If a function f (x) is defined on an

[0, oo), then its average value will be

b

~ _ £o
o"
~

2
'

infinite interval
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if this limit exists. Find the average power consumption of an
alternating-current circuit if the current intensity / and voltage u
are expressed by the following formulas, respectively:

/ = / O cos (cot + a);

u = u cos (cot + a + cp),

where cp is the constant phase shift of the voltage as compared
with the current intensity (the parameters co and a will not enter

into the expression for the average power).

Solution. The average power consumption

T

wm = lim ~ C/ cos((o/-f a) u cos (cot + a -\- w) dt

.

Taking into consideration that

cos a cos P = y [cos (a+ P) + cos (a— P)]

,

we will get

T

wm = lim ^ f [cos (2a>/ + 2a + cp) + cos cp] dt =

= Iim
|^o. sin(2cor+ 2a+ cp)-sin

(2a+ cp)

+^ cos ^|
=^

Hence, it is clear why so much importance is attached to the

quantity coscp in electrical engineering.

7.2.13. Find the average value jli of the function f (x) over the

indicated intervals:

(a) f(x)=2x2 + 1 over [0, 1];

(b) /(*)=-7 over
f

1
'

2
3 ;

(c) f(x) = 3*— 2x+ 3 over [0, 2].

7.2.14. A body fa lling to the ground from a state of rest acqui-

res a velocity v
l
= \^2gs^ on covering a vertical path s=sv Show

that the average velocity vm over this path is equal to -y-

.

7.2.15. The cross-section of the trough has the form of a para-

bolic segment with a base a and depth h. Find the average depth

of the trough.

7.2.16. Find the average value lm of alternating current intensity

over time interval from to — (see Problem 7.2.12).



§7.3. Computing Areas in Rectangular Coordinates 317

7.2.17. Prove that the average value of the focal radius of an

ellipse p: , where p=—\ a, b are the semi-axes and e is
1 — 8 COS (p

eccentricity, is equal to b.

7.2.18. On the segment AB of length a a point P is taken at a

distance x from the end-point A. Show that the average value of

the areas of the rectangles constructed on the segments AP and
a2

PB is equal to -g-

.

7.2.19. Find the average value of the function

f(X)=
cos2 *

' 1 ' sin2 #+ 4 cos 2 x

over the interval
^0, yj. Check directly that this average, equal

to ~, is the value of the function f (x) for a certain x = l lying

within the indicated interval.

§ 7.3. Computing Areas in Rectangular Coordinates

If a plane figure is bounded by the straight lines x=a, x =
= b(a<b) and the curves y=y1

{x)
i y=y2 {x), provided y 1

{x) ẑ

^y2 (
x) (a^x^b), then its area is computed by the formula

b

s = 5 [ftW- yi (x)] dx.

In certain cases the left boundary x = a (or the right boundary

x = b) can degenerate into a point of intersection of the curves

(a)

Fig. 65

y = y l
(x) and y = y2 (x). Then a and b are found as the abscissas

of the points of intersection of the indicated curves (Fig. 65, a, b).

7.3.1. Compute the area of the figure bounded by the straight

lines x= 0, x= 2 and the curves y = 2x
, y = 2x—x2 (Fig. 66).
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Solution. Since the maximum of the function r/ = 2x— x2
is at-

tained at the point x=l and is equal to 1, and the function
y=2x ^l on the interval [0, 2], we have

s-ii 2"-<2*-*°>i«-£i:-("-?)i:-^-f
o

7.3.2. Compute the area of the figure bounded by the parabolas
x = —2y\ x=l — 3y2 (Fig. 67).

x

Fig. 66 Fig. 67

Solution. Solving the system of equations

I x = 2y2
;

\ x =l—3y\

find the ordinates of the points of intersection of the curves yx
=— 1,

y2
= 1 . Since 1

—

3y2 ^— 2y2 for — then we have

S=
f [(l-m-(-W)]dy=2(y-^)\l = l

7.3.3. Find the area of the

figure contained between the

parabola x2 =\y and the witch
g

of Agnesi y = -p-^ (see Fig.

68).

Solution. Find the abscis-

sas of the points A and C of

intersection of the curves. For
this purpose eliminate y from

\ 2

x 2^y

<Z£f i

U =J-

-z 2

Fig. 68
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the system of equations

whence
8

x2

y=— .

-= or x* + 4x2— 32=0.
a:
2 + 4 4

The real roots of this equation are the points x
t
= —2 and

#2
= 2. As is seen from the figure,

8 A.

x2+ 4
on the interval

[—2, 2]. (It is also possible to ascertain this by directly computing
the values of these functions at any point inside the interval, for

instance, at jc= 0.)

Consequently,

2

+ 4
dx = ^4 arc tan-|-—

\2J -V

7.3.4. Find the area of the figure bounded by the parabola

y = x2 +l and the straight line x+ y= 3.

7.3.5. Compute the area of the figure which lies in the first qua-

drant inside the circle x2 + y
2 = 3a2 and is bounded by the parabo-

las x2 = 2ay and y
2 = 2ax(a > 0) (Fig.

69).

Solution. Find the abscissa of the po-

int A of intersection of the parabola

y
2 =2ax and the circle x2 + y

2 -3a2
.

Eliminating y from the system of equa-

tions

\ y
2 = 2ax,

Fig. 69we obtain x2 + 2ax— 3a2 = 0, whence we
get the only positive root: xA = a. Analo-

gously, we find the abscissa of the point D of intersection of the

circle x2 + y
2 = 3a2 and the parabola x2 = 2ay\ xD = a\r 2^.

Thus, the sought-for area is equal to

aVl
Sr=

J
[y*(x)—yi(x)]dx 9

where yx
(x) =^ = \V2,ax for 0<x<a,

\ V
r

3a2—

x

2 for a<x^aV2.
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By the additivity property of the integral

a aV2

V 2a • it x 2 — s- + V 3a2 — x2 +— arc sin—-f——7t
3 6a

J o
1

L
2 2 a |^3 6aJo

2 ^~2 3a2 ^~2
1

a2
( arcsin —f=— arcsm —

3
a 6^2 \^

drLMn }A 3 |A 3

arcsin -tt a\
3

1

2

Here we make use of the trigonometric formula:

arc sin a— arc sin p = arc sin (a K 1 —

p

2— p Vl—a2
) (aP > 0)

for transforming

arcsin |/^y— arcsin = arcsin
^ 3 V 3 V 3

= arcsin y .

7.3.6. Compute the area of the figure lying in the first quadrant

and bounded by the curves y
2 = 4x

y

x2 = \y and x2 + y
2 = 5.

7.3.7. Compute the area of the

figure bounded by the lines y =
x+l, y = cosx and the A:-axis

(Fig. 70).

Solution. The function
-7 1 Tt/2

Fig. 70

y=f(x)-.
(
x+ 1 if —1 <x<0,

I
cos a: if 0<x<-|

is continuous on the interval — 1, y . The area of the curvili-

near trapezoid is equal to

5=
j

f(x)dx= ^ {x+ l)dx + ^cosxdx = + sinx 2 = -

7.3.8. Find the area of the segment of the curve y
l = x6~xl

if

the line x = 2 is the chord determining the segment.
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Solution. From the equality y
2 = x2 (x-

*2 (;e— 1)>0, therefore either x = or

-1) it follows that

In other words, the

domain of definition of the implicit function y
2 = x3—

x

2 consists

of the point x= and the interval [1, oo). In computing the area

the isolated point (0, 0) does not play any role, therefore, the

interval of integration is [1, 2] (see Fig. 71).

Passing over to explicit representation y = ±.xVx— 1, we see

that the segment is bounded above by the curve y= xVx— 1 and

below by the curve y = —xVx—l. Hence,

2 2

S_
J
[x\fjT^l — (—x\fl^l)]dx = 2lx)/'x—\dx.

Make the substitution

x— l-/ 2
,

dx=2t dt,

Then

X

1

2 1

1

S = 4j(/'+l)/«<tf = 4[£ + f);-M5.

7.3.9. Determine the area of the figure

bounded by two branches of the curve

(y— x)
2 = x3 and the straight line x=l.

Solution. Note first of all that y, as an Fig. 71

implicit function of x, is defined only for

x^O; the left side of the equation is always non-negative. Now

we find the equations of two branches of the curve y = x—xVx,

y = x + x V x. Since x^O, we have x+xVx^x—xV x, and
therefore

S=^(x+ xV~x—x +xV~x)dx = 2 §*V~x dx-

7.3.10. Compute the area enclosed by the loop of the curve

y*=x(x-\) 2
.

Solution. The domain of definition of the implicit function y is

the interval 0^jc< + oo. Since the equation of the curve conta-

ins y to the second power, the curve is symmetrical about the
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x-axis. The positive branch y x
(x) is given by the equation

y (X) _ V x \x- 1 1
-

<j
y-{x_ l)f x > L

The common points of the symmetrical branches y l
(x) and y 2

{x) =
= —

-

yx
(x) must lie on the x-axis. But y A

(x) = V *
\
x— 1 1

= only

at x
l
= and at x2

= 1. _
Consequently, the loop is formed by the curves y = \f x(\— x)

and y =— Y x(l—x), 0<*<1 (see Fig. 72), the area enclosed

being

S=2jV*(l— x)dx = 2 ^x 2 —x 2 )dx = ^.

7.3.11. Find the area enclosed by the loop of the curve

y* = {x-\)(x-2)K

y
2
=x(x-1)

Fig. 72 Fig.73

7.3.12. Find the area of the figure bounded by the parabola

y= — x2— 2x+ 3, the line tangent to it at the point /W(2, —5)
and the y-axls.

Solution. The equation of the tangent at the point M(2 9
—5)

has the form y + 5 = —6(x— 2) or y = 7— €>x. Since the branches

of the parabola are directed downward, the parabola lies below the

tangent, i. e. 7—6a:>— x2— 2x+ 3 on the interval [0,2] (Fig. 73).

Hence,

2 2

S= j*[7—6x— (—xl— 2x+ 3)] dx= J(x
2— 4x+ 4)dx = -|

.
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7.3.13. Find the area bounded by the parabola y=x2— 2x+2,
the line tangent to it at the point 7W(3, 5) and the axis of ordi-

nates.

7.3.14. We take on the ellipse

£+ £-1 (a>b)

a point M(x, y) lying in the first quadrant.

Show that the sector of the ellipse bounded by its semi-major
axis and the focal radius drawn to the point M has an area

o ab x
S = -77- arc cos — .

2 a

With the aid of this result deduce a formula for computing the

area of the entire ellipse.

1

y

M(x,y)

Fig. 74

Solution. We have (Fig. 74):

Sqmao — ^aom#+ SMABM ;
S^ 0MB — y

Fig. 75

a a

Smabm = §ydx =§± V~¥=T* dt = ~[t |/^=7~2+ «2 arc sin |
X X

= £ [-xVtf^Z+cP (y- arc sin
j

Since — arc sin — = arc cos— , we obtain
2 a a 1

>MABM — 2a
-xVa2— x2 + a2 arc cos ~

j

Hence

Sqmao — $aomb+ Smabm+ ~y arc cos •
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At x= 0, the sector becomes a quarter of the ellipse, i.e.

— 9
4 ^ellipse

"

ab A ab n ab-
2
-arccos0 =— • y=T

and consequently, Sellipse
= nab. At a = b we get the area of a circle

^circle
= •

7.3.15. Find the area bounded by the parabolas y = 4x2
, #=g-

and the straight line y = 2.

Solution. In this case it is advisable to integrate with respect

to y and take advantage of the symmetry of the figure (see Fig. 75).

Therefore, solving the equations of the parabolas for x, we have:

x=±
By symmetry of the figure about the (/-axis the area sought is

equal to the doubled area S0AB0 :

2 ?

S= 2S0AB0 = 2
j (3 V~y-\ V~y ) dy= 5

J
Vy dy =^p-

.

7.3.16. From an arbitrary point M(x, y) of the curve y = xm

(m > 0) perpendiculars MN and ML(x>0) are dropped onto the

coordinate axes. What part of the area of the rectangle ONML does

the area ONMO (Fig. 76) constitute?

Fig. 77

7.3.17. Prove that the areas S
,
5

X ,
S2 ,

53 , bounded by the

x-axis and half-waves of the curve y = e~«x s\n$x, x^0 y form a

geometric progression with the common ratio q = e P.

Solution. The curve of Fig. 77 intersects the positive semi-axis

Ox at the points where sinpx=0, whence
nil /-v « qXn — ^ i n — u, l, z, ... .
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The function y= e" ax sin fix is positive in the intervals (x2ki x2k+1 )

and negative in (x2k+l >
x2k+2 ) y

i.e. the sign of the function in the

interval (xn ,
xn+1 ) coincides with that of the number (— 1)". Therefore

(n+ 1) jt (n+ l)jt

Sn = ^ \ y \dx={—\)
n

\ e-«x s\nfixdx.

3

nn

But the indefinite integral is equal to

e~ ax sin fix dx =— aa
+fl

a ^
a s * n + P cos P*) + ^-

Consequently,
(n+ 1) ji

= [^^(asinpx + pcosPx)
13

:
[g-a(«+l)«/pp (_l)»+i_ga«JV3p (—1)"] =

a tP

Hence

*«2+ P

-a(/z + I ) jt/3

which completes the proof.

7.3.18. Find the areas enclosed between the circle x2 + y
2-

+4(/— 11=0 and the parabola y= — x* + 2x+l—2\/
r

~3.

Solution. Rewriting the equations of the curves, we have:

(x-l)2 + (*/+2)
2 =_t6,

y = -{x-\f-2 V 3 + 2.

Consequently, the centre of the

circle lies at the point C(l, —2)

and the radius of the circle equals

4. The axis of the parabola coin-

cides with the straight linex=l
and its vertex lies at the point

fl(l, 2, -2J/T) (Fig. 78).

The area SABDFA of the smaller

figure is found by the formula

2x+

u

SaBDFA = S (*/par— i/circle) dXf

Fig. 78
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where xA and xD are determined from the system of equations

j
(*-l)« + (»+ 2)« = 16,_

\ y+ 2 = -(x-\) 2-2V3 +4,

whence xA =— 1, xD = 3.

Hence,

3

Sabdfa = J t(-^
2 + 2x+ 1-2,/T

>+ (
2 + VT6-(*-l)*)] =

- 1

= [-j + x* + (3-2V3) x+ x~V 16— (at— 1)* +

+ y arc sin
~1J

* = — 8 |/T+ 2 J/"T2+ 16 arc sin 1=
32 .

,
8

The area of the second figure is easy to determine.

Note. The computation of the integral can be simplified by using

the shift x— 1 = 2 and taking advantage of the evenness of the

integrand.

7.3.19. Compute the area bounded by the curves y = (x— 4)
2

,

r/ = 1 6

—

x2 and the #-axis.

7.3.20. Compute the area enclosed between the parabolas

x = y
2

\
x=^y2 +l.

7.3.21. Compute the area of the portions cut off by the hyper-

bola x1— 3y2 =\ from the ellipse x2 + 4y
2 = 8.

7.3.22. Compute the area enclosed by the curve y
2 =(\ —x2

)

3
.

7.3.23. Compute the area enclosed by the loop of the curve

4 (y
2 ~~x 2

) + x3 == 0.

7.3.24. Compute the area of the figure bounded by the curve

Yx +]/'
r

y = \ and the straight line x-\-y=l.

7.3.25. Compute the area of the figure enclosed by the curve

y
2 = x2 (l—x2

).

7.3.26. Compute the area enclosed by the loop of the curve

x 3 + x2—
y

2 = 0.

7.3.27. Compute the area bounded by the axis of ordinates and
the curve x = y

2
(l— y).

7.3.28. Compute the area bounded by the curve y = x*— 2x 3+
+ #2+ 3, the axis of abscissas and two ordinates corresponding to

the points of minimum of the function y(x).
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§ 7.4. Computing Areas with Parametrically Represented
Boundaries

If the boundary of a figure is represented by parametric equations

x = x(t), y=y(t)
9

then the area of the figure is evaluated by one of the three for

mulas:Art
S = -^y(t)x'(t)dt; S=§x(t)y'(t)dt; S= | J

(xy' -yx') dt,

u a a

where a and P are the values of the parameter / corresponding

respectively to the beginning and the end of the traversal of the

contour in the positive direction (the figure remains on the left).

7.4.1. Compute the area enclosed by the ellipse

x = acos/, y=bs'mt (0^t^2n).

Solution. Here it is convenient first to compute

xy' ~—yx'=a cos txb cos / + b sin / x a sin t = ab.

Hence
2,1 2ji

S = y j ixy'— yx')dt = -j^ abdt = nab.

o o

2 _2_

7.4.2. Find the area enclosed by the astroid
(^)

T
+("f)

3 =1-

Solution. Let us write the equation of the astroid in parametric

form: a; = a cos3
/, */ = asin 3

/, 0^/^2k. Here it is also conve-

nient to evaluate first

xy' —yx' = a2 (cos3
1 • 3 sin 2

/ cos / + sin 3
/ • 3 cos2

/ sin t) =
= 3a2 cos2 /sin 2

/.

Hence,
2jt 2ji

S = -i
j
(xy'—yx')dt=ja*§ sin 2 2tdt = \a2n.

o o

7.4.3. Find the area of the region bounded by an arc of the

cycloid x = a(t— sin/), y = a(l — cos/) and the #-axis.

Solution. Here the contour consists of an arc of the cycloid

(0</<2ji) and a segment of the #-axis (0^x^2na). Let us

apply the formula S =— ^yx'dt.
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Since on the segment of the x-axis we have r/ = 0, it only re-

mains to compute the integral (taking into account the direction

of a boundary traversal):

2ji

^ a (I— cos*)a(l— cost)dt=a2

$ (1— cos t)
2 dt =

2n

= a2
j 2cos/ + 4"0+ cos2')] dt = 3na2

.

o

7.4.4. Compute the area of the region enclosed by the curve

jc = asin/, y = bs\n2t.

Solution. When constructing the curve one should bear in mind
that it is symmetrical about the axes of coordinates. Indeed, if we
substitute ji— t for t

y
the variable x remains unchanged, while y

only changes its sign; consequently, the curve is symmetrical about

the ;t-axis. When substituting n+ t for / the variable y remains

unchanged, and x only changes its sign, which means that the

curve is symmetrical about the y-axis.

x=asint

Fig. 79

Furthermore, since the functions x = a sin/; y = bsm2t have a

common period 2jt, it is sufficient to confine ourselves to the fol-

lowing interval of variation of the parameter: 0^.t^l2n.
From the equations of the curve it readily follows that the va-

riables x and y simultaneously retain non-negative values only

when the parameter t varies on the interval -u
' 2

therefore at

0</<y we obtain the portion of the curve situated in the first

quadrant. The curve is shown in Fig. 79.

As is seen from the figure, it is sufficient to evaluate the area

enclosed by one loop of the curve corresponding to the variation
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of the parameter t from to n and then to double the result

ji ji ji

5=2
J
yx' dt = 2 ^ b sin 2t x a cos / dt = \ab ^ cos2

t smt dt =oo o

7.4.5. Find the area of the region enclosed by the loop of the

curve

%=4(6-0; 0=4(6-0-

Solution. Locate the points of self-intersection of the curve. Both
functions x(t) and y(t) are defined throughout the entire number
scale — oo < t <oo.

At the point of self-intersection the values of the abscissa (and

ordinate) coincide at different values of the parameter. Since x=
= 3—y(/— 3)

2
, the abscissas coincide at t = 3±1 'k. For the func-

tion y (t) to take on one and the same value at the same values

of the parameter /, the equality iid^(3^X) = (-^^(3 + X) must

be fulfilled for X=^=0, whence X = ±3.

Fig. 80 Fig. 81

Thus, at ^ = and at t
2
= €> we have x(t

x )
= x(t^) = 0, and

y(t
l )
= y(t 2 )

= 0, i.e. the point (0, 0) is the only point of self-

intersection. When t changes from to 6, the points of the curve

are found in the first quadrant. As / varies from to 3, the

point M(x, y) describes the lower part of the loop, since in the
3t x

indicated interval x(t) and y(t) = -^- increase, and then the func-

tion x(t) begins to decrease, while y (t) still keeps increasing. Fi-

gure 80 shows the traversal of the curve corresponding to increas-

ing t (the figure remains on the left).
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In computing the area enclosed by the loop sought it is conve-

nient to use the formula

(6-0^ 27

24
Ul

5
'

7.4.6. Find the area enclosed by the loop of the curve: x = t
2

\

y = t—J-

7.4.7. Compute the area enclosed by the cardioid: x=
= a cos t (1 +cos /); y = as\n t (1 + cos /).

Solution. Since a;(/) and */(/) are periodic functions, it is suffi-

cient to consider the interval [

—

ji, ji]. The curve is symmetrical

about the x-axis, since on substituting — t for / the value of the

variable x remains unchanged, while y only changes its sign, and

i/>0 as / varies from to ji.

As / changes from to jt the function u = cost decreases from

1 to — 1, and the abscissa x= au (1 + u) =a
^

—
j + (^u -f y)

2

J

first decreases from x = 2a to x\ i
= —

4

and then increases

to a:|u= _ 1
= 0. We can show that the ordinate y increases on the

interval and decreases on the interval ^y</^Ji^.
The curve is shown in Fig. 81, the arrow indicating the direc-

tion of its traversal as t increases.

Consequently,

ji ji

S=y §(xy'— yx') dt = a2

J
( 1 + cos t)

2 dt = j na\
-JT

7.4.8. Compute the area of the region enclosed by the curve

x — cos/, y = bs\n 3
1.

7.4.9. Compute the areas enclosed by the loops of the curves:

(a) x=t 2 —\, y = t
3— t;

(b) x = 2t— t
2

\ y = 2t 2—P\
(c) x=t 2

;

y=L (3-n .

7.4.10. Compute the area of the region enclosed by the curve
x = a cos/; y = b sin / cos2

/.

7.4.11. Compute the area enclosed by the evolute of the ellipse

x = — cos 3
/; y~ — ^-sin a

/; c2 =a*—b2
.
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§ 7.5. The Area of a Curvilinear Sector in Polar
Coordinates

In polar coordinates the area of a sector bounded by the curve

p = p(cp) and the rays q) x
=a and (p 2

= P is expressed by the integral

S = -j jp
2
(<P)d<P-

7.5.1. Find the area of the region situated in the first quadrant
and bounded by the parabola y

2 = 4ax and the straight lines

y = x— a and x = a.

Solution. Let us introduce a polar system of coordinates by
placing the pole at the focus F of the parabola and directing the

polar axis in the positive direction

along the #-axis. Then the equation of

the parabola will be p^ —-— , whe-
1 — coscp

re p is the parameter of the parabola.

In this case p = 2a, and the focus F has

the coordinates (a, 0). Hence, the equa-

tion of the parabola will acquire the

form p =i

—

zzz^z , and those of the
l — cos cp

'

straight lines will become cp =

cp = (Fig. 82). Therefore,

SpARP "

4a2

FABF 2 \ (f— COS(p) 2

and

dcp = 2d

Changing the variable:

cot tt = z,
2 sin 2 (cp/2)

dz,

Jl

2 r dcp

.
4sin^"

JT

4

Z

ji/4 cot (k/8)

k/2 1

cot (Jt/8)

we obtain

SFABF= a*
|

(i +z.) dz=aBfl.(cot-J + lcot»i-l-l)

or, taking into account that cot ~ = 1

"t^fj"/
4 * = 1 +K 2

,
sin (jx/4)

>FABF = 2fl"(l+y^2
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7.5.2. Compute the area of the region enclosed by

(a) the cardioid p = l+cos(p;
(b) the curve p = acosq).

7.5.3. Find the area of the regions bounded by the curve

p = 2acos3(p and the arcs of the circle p = a and situated outside

the circle.

2ji
Solution. Since the function p = 2acos3q) has a period r = -y»

the radius vector describes three equal loops of the curve as q) va-

ries between —n and jx. Permissible values for q) are those at

which cos3(p^0, whence

_£+^ <(p< * + {k = 0i ±lf ±2 , ...)•

Consequently, one of the loops is described as q) varies between

— and and the other two loops as cp varies between y and

5ji i v a 7ji j 3ji ,

-g- , and between -g- and respect-

ively (Fig. 83). Cutting out the parts,

belonging to the circle p=a, we get

the figure whose area is sought. Cle-

arly, it is equal to the triple area

Smlnm*
Let us find the polar coordinates of

the points of intersection M and N.
For this purpose solve the equation

2a cos 3cp = a, i . e . cos 3(p = . Between

Fig. 83
— ~ and y only the roots — and

~q" (k=0) are found. Thus, the point N

is specified by the polar angle q) x
=—y , and the point M by q)2

=y .

As is seen from the figure,

&MLNM ~ SoMLNO ^OMNO
~

JT/9 JT/9

= | j 4a2 cos2 3(pdq) L
J

a2 dcp = a2 ^+ iLij
.

-!t/9 -Jt/9

7.5.4. Compute the area of the figure bounded by the circle

p=3|/"2 acoscp and p = 3asincp.

Solution. The first circle lies in the right half-plane and passes

through the pole p = 0, touching the vertical line. The second circle
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is situated in the upper half-plane and passes through the pole

p = 0, touching the horizontal line. Consequently, the pole is a point

of intersection of the circles. The other point of intersection of the

circles B is found from the equation 3|/2 acoscp = 3a sin q), whence

B (arc tan 1^2
,
a|/6). As is seen from Fig. 84, the sought-for area

V3'

f A

Fig. 84 Fig. 85

S is equal to the sum cf the areas of the circular segments_CMBO

and OCBO adjoining each other along the ray (p=arctan^2 . The
arc BAO is described by the end-point of the polar radius p of

the first circle for arctan}/2 <(p^y, and the arc OCB by the

end-point of the polar radius p of the second circle for O^cp^
^arctan^2 . Therefore

J
cos2

cp dq> =4 a2 (t
— arctan^2

>

arc tan V 2

arc tan V 2

S0CB0 -=Y a2
J

sin 2
q)dq) = -|-a2 ^arc tan|/2 —^p) •

o

Hence,

Soaho+ Socbo = 2.25a2 (ji— arc tan ]/Y—VT).

7.5.5. Find the area of the figure cut out by the circle p = ]f3 sin cp

from the cardioid p = l-f-cos(p (Fig. 85).

Solution. Let us first find the points of intersection of these cur-

ves. To this end solve the system

I p = |/~3 sin cp, O^cp^rc,

\ p == 1 + cos q),

whence <Pi =y > ^2 = n -
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The sought-for area is the sum of two areas: one is a circular

segment, the other a segment of the cardioid; the segments adjoin

each other along the ray <P
=y . The arc BAO is described by the

end-point of the polar radius p of the cardioid as the polar angle cp

changes from y to ji, and the arc OGB by the end-point of the

polar radius p of the circle for O^cp^y.
Therefore

S = -I

J
3 sin 2

cp dcp +-I
J

(1 + cos cp)
2 dcp =

=4(<P-^)|f + |(cp + 2sincp + f
sin 2<f

= T (lt

by

]/T).

the cardioid7.5.6. Find the area of the figure bounded

p = a(l— coscp) and the circle p = a.

7.5.7. Find the area of the region enclosed by the loop of the

folium of Dtscartes x9 + y* = 3axy.

Solution. Let us pass over tj polar coordinates using the usual

. « . formulas x = p cosq), # = psincp. Then
^ the equation of the curve is:

p
3 (cos3

cp + sin 3
cp) = 3ap2 sin cp cos cp,

or
3a sin (p cos cp

cos3 cp+ sin3
cp

3a sin 2cp

Fig. 86

(sincp+ cos(p) (2— sin 2cp)

It follows from this equation that,

firstly, p = at cp = and at cp =
,

3ji .

r and

latter means that

the folium of Descartes has an asymptote, whose equation y =
=

—

x— a can be found in the usual way in rectangular coordinates.

Consequently, the loop of the folium of Descartes is described

as cp changes from to y and is situated in the first quadrant

(see Fig, 86).

and secondly, p — oo as cp

cp — — y . The
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Thus, the sought-for area is equal to

>OAO
1 C 9a 2 cos 2

cp sin 2
cp ,

J (cos 3
(\ + sin 3

cp) 2 ^

Taking advantage of the curve's symmetry about the bisector

y = x, i.e. about the ray cp = ~, we can compute the area of half

of the loop ^from cp = to (P=-j) an(J then double it. This enab-

les us to apply the substitution

tan cp = 2,

dcp

cos 2
(p

9 z

1T
which gives

^oao ~* y"

4 1

C cos 2 cp sin 2 cp
, _ q 2 f 2

'

2
tfz

J (cos3 cp+sin 3 cp)
2a(p ~"" ya

Jd + z3)
2

Still new substitution

1 + 2
3 = v,

3z2 dz = da,

leads to the integral

z V

1

1 2

dv 3
a2

.~ 2

7.5.8. Compute the area of the region enclosed by one loop of

the curves:

(a) p=acos2cp; (b) p=<2sin2(p.

7.5.9. Compute the area enclosed by the portion of the cardioid

p =a (1 —cos cp) lying inside the circle p=acoscp.

7.5.10. Compute the area of the region enclosed by the curve

p =osin(pcos2
(p, a > 0.

7.5.11. Compute the area of the region enclosed by the curve

p =a cos3
(| (a > 0).
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7.5.12. Compute the area of the portion flying inside the circle

p = yL=^ of the figure bounded by the Bernoulli's lemniscate p=

=aVcos 2cp.

7.5.13. Passing over to polar coordinates, compute the area of

the region enclosed by the curve (x2 + y
2
)
3 = Aa2x2

y
2

.

7.5.14. Passing over to polar coordinates, evaluate the area of

the region enclosed by the curve x* + y* = a2 (x2 + y
2
).

§ 7.6. Computing the Volume of a Solid

The volume of a solid is expressed by the integral

b

V = \S{x)dx
a

where S(x) is the area of the section of the solid by a plane per-

pendicular to the x-axis at the point with abscissa x\ a and b are

the left and right boundaries of variation of x. The function S(x)
is supposed to be known and continuously changing as x varies

between a and b.

The volume Vx of a solid generated by revolution about the

x-axis of the curvilinear trapezoid bounded by the curve y = f(x)

(f(x)^0) y
the x-axis and the straight lines x = a and x = b (a<b)

is expressed by the integral
b

Vx = ji \y
2 dx.

a

The volume Vx of a solid obtained by revolving about the x-axis

the figure bounded by the curves y = y1
(x) and y = y2

(x) [0 < y x
(x) <

^^W] and the straight lines x = a
y x = b is expressed by the

integral

Vx = n\{y\—y\)dx.
a

If the curve is represented parametrically or in polar coordinates,

the appropriate change of the variable should be made in the above
formulas.

7.6.1. Find the volume of the ellipsoid
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Solution. The section of the ellipsoid by the plane #= const is

an ellipse (Fig. 87)

+ = i

with semi-axes b y 1 — ; cy 1 — . Hence the area of the

section (see Problem 7.4.1)

S(x)=TLbJ/
ri— r̂ xc ^ = nbc[\— (—a:

Therefore the volume V of the ellipsoid is

V = ^ nbc
^

1—^ dx = nbc x— x3

3 a2

a 4 u= n abc.
-a o

In the particular case a = b = c the ellipsoid turns into a sphere,
4

and we have Inhere =• na*

Fig. 87 Fig. 88

7.6.2. Compute the volume of the solid spherical segment of two
bases cut out by the planes x = 2 and x = 3 from the sphere

x2 + y
2 + z2 = 16.

7.6.3. The axes of two identical cylinders with bases of radius a
intersect at right angles. Find the volume of the solid constituting

the common portion of the two cylinders.

Solution. Take the axes of the cylinders to be the y- and e-axis

(Fig. 88). The solid OABCD constitutes one-eighth of the sought-

for solid.

Let us cut this solid by a plane perpendicular to the #-axis at

a distance x from 0. In the section we get a square EFKL with
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side EF = Va2—

x

2
, therefore 5 (x) = a2— x2 and V = 8 (a2— **) dx =

7.6.4. On all chords (parallel to one and the same direction) of

a circle of radius R symmetrical parabolic segments of the same

altitude h are constructed. The planes of the segments are perpen-

dicular to the plane of the circle.

Find the volume of the solid thus obtained (Fig. 89).

Fig. 89 Fig.

Solution. First compute the area of the parabolic segment with

base a and altitude h. If we arrange the axes of coordinates as

indicated in Fig. 90, then the equation of the parabola will be

y = ax2 + h.

Determine the parameter a. Substituting the coordinates of the

point b(Jj, 0^, we get = aj-M, whence a= — ^; hence the

equation of the parabola is y=—-
a
^x'1 + h> and the desired area

a_ o_

2 2

S = 2 §ydx = 2^—^x2+h}dx=jah.

Now find the volume of the solid. If the axes of coordinates are

arranged as indicated in Fig. 89, then in the section of the solid

by a plane perpendicular to the x-axis at the point with abscissa x

we obtain a parabolic segment of area S^~ah
y
where a = 2y =

= 2/R 2 — x2
. Hence,

R R

S(x) = j\^W^2 handV=[S(x)dx^jh^W^2 dx = ^ nhR\
-R
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7.6.5. The plane of a moving triangle remains perpendicular lo

the fixed diameter of a circle of radius a: the base of the triangle

is a chord of the circle, and its vertex lies on a straight line pa-

rallel to the fixed diameter at a distance h from the plane of the

circle. Find the volume of the solid generated by the movement
of this triangle from one end of the diameter to the other.

7.6.6. Compute the volume of the solid generated by revolving

about the x-axis the area bounded by the axes of coordinates and
_L _L _L

the parabola x 2 -\-y 2 =a 2 '

Solution. Let us find the points of intersection of the curve and
the axes of coordinates: at x = y= a, at y = x = a. Thus, we
have the interval of integration [0, a],

( - -Y
From the equation of the parabola we get y= \a 2 — x 2

J ; there-

fore

a a
_1_ _1

4 a _3_ _1_

V = n
J y

2 dx = n
J
\a

2 —x 2

J
dx = n

j
^a2 —4a 2

x
2 + 6ax-

— Aa 2 x 2 +x2 jdx= ^ na*.

7.6.7. The figure bounded by an arc of the sinusoid y = s\nx
y

the axis of ordinates and the straight line y^ \ revolves about
the y-ax\s (Fig. 91).

1 1

I 1

1
1

1/2 2
>

Fie. 91 Fig. 92

Compute the volume V of the solid of revolution thus generated.

Solution. The inverse function x = arcsinj/ is considered on the

interval [0, 1]. Therefore

V = j\^ x2 dy = n^ (arc sin y)
2 dy.
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Apply the substitution arc smy = t. Hence

*/ = sin t
t

dy = cost dt,

y

1 n/2

2

And so, V = jt \ t
2 cost dt. Integrating by parts, we get y = n (n2 —&)

i
4

7.6.8. Compute the volume of the solid generated by revolving

about the .xr-axis the figure bounded by the parabola */ = 0.25x2 + 2

and the straight line 5x— 8^/+ 14 = 0.

Solution. The solid is obtained by revolving the area ABCA
(Fig. 92) about the #-axis. To find the abscissas of the points A
and B solve the system of equations:

y = ±-x2 + 2,

5x—8y+H== 0.

Whence x
i4 =y; xB =2. In our case yx

(x) = ^

x

2 + 2 and y2 (x) =
= (5/8)jc+ 7/4. Hence,

lra(T*+ 7
)

,

-(T JC,+ 2)']^'
1/2

891

1 280
Jl.

7.6.9. Compute the volume of the solid generated by revolving

about the (/-axis the figure bounded by the parabolas y = x2 and
8x= y*.

Solution It is obvious that x2 (y) = \^y^x
l (y) = ^- on the in-

terval from the origin of the coordinates to the point of intersec-

tion of the parabolas (Fig. 93). Let us find the ordinates of the

points of intersection of the parabolas by excluding x from the

stem of equations

y = x\

y
2 = 8x.

sy-

{

We obtain y1
= 0, #2

= 4. Hence, V = n
J [y— fj)

dy=*
24

- jt.

7.6.10. Compute the volume of the solid torus. The torus is a

solid generated by revolving a circle of radius a about an axis

lying in its plane at a distance b from the centre (b^a). (A tire,

for example, has the form of the torus.)
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7.6.11. Compute the volume of the solid obtained by revolving

about the x-axis the figure bounded by two branches of the curve

(y—x) 2 = x3 and the straight line x=l.

7.6.12. Find the volume of the solid generated by revolving

about the line y = — 2a the figure bounded by the parabola y
2 = 4ax

and the straight line x = a (Fig. 94).

B

a

-2a C\ B
0'

-x

-x

Fig. 93 Fig. 94

Solution. If we transfer the origin of coordinates into the point

O'(0, — 2a) retaining the direction of the axes, then in the new
system of coordinates the equation

of the parabola will be

(y'— 2a) 2 = 4ax.

Hence y2
= 2a+ \Z~4ax (for the cur-

ve OAB), and y1
= 2a— ]^4ax (for

the curve OCD). The sought-for vo-

lume is equal to

V = n§(yl— yl)dx = n§[(2a +
o o

+2^) 2~ (2a—2 V^f] dx = fna\

B

X

Fig. 95

7.6.13. Find the volume of the solid generated by revolving about
the x-axis the figure enclosed by the astroid: x = a cos3

1\ y = as\n 3
t.

Solution. The sought-for volume V is equal to double the volume
obtained by revolving the figure OAB (Fig. 95). Therefore,

' = 2n ^ y
2 dx.
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Change the variable

x= a cos3
/,

dx = — 3a cos2
/ sin t dt,

y = a sin 3
1 9

Hence,

V = 2n^ a 2 sin 6
/ (— 3a cos2 ts'mt) dt =

it

IT

= 6jxa 3

Using the formula from Problem 6.6.9 for computing the above
integrals, we get

t, c o / 6 4 2 8 6 4 2 \ 32 ,

7.6.14. Compute the volume of the solid generated by revolving

one arc of the cycloid x= a(t — sin/), y = a(l — cos/) about the

Ar-axis

7.6.15. Compute the volume of the solid obtained by revolving

about the polar axis the cardioid p = a (1 +cos cp) shown in Fig. 81.

Solution. The sought-for volume represents the difference between
the volumes generated by revolving the figures MNKLO and OKLO
about the x-axis (which is the polar axis at the same time).

As in the preceding problem, let us pass over to the parametric

representation of the curve with the polar angle cp as the parameter:

x — p cos cp = a cos (p ( 1 + cos cp),

y = p sin (p =a sin cp (1 + coscp).

It is obvious that the abscissa of the point M equals 2a (the value

of x at cp=0), the abscissa of the point K being the minimum of

the function x = a(\ +cos cp)cosq).

Let us find this minimum:

dx
^ = — a sin cp (1 +2 coscp) =0,

<p, =0; (p2
= — ji.

At ^=0 we obtain xM = 2a
t

at (p2
= |n, xK =

a

t

jx/2

J
sin 7 /d/ - j sin 9

/

- o o

dt
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Hence, the sought-for volume is equal to

2a

V z=n
^ y\dx— tc

J
y\ dx.

Changing the variable x= acosq)(l + coscp), we get

X 9 X
1

*

— a/4 2jx/3 > —a/4 2n/3

2a ji

r/
2 = a2

( 1 + cos (p)
2 sin 2

q),

dx = — a sin cp (1 +2 cos cp) dcp,

Thus,
o

V = ji ^ a 2
(1 +cosqp) 2 sin 2

qp [— a sin cp (1 + 2 coscp)] dcp—
2

— jt

J
a2

(l +coscp)2 sin 2
(p [
— a sin (p (1 + 2 cos (p)] d(p ==

2

= jia
3

^ sin 3
q) (1 +coscp)2

(l + 2cosq))d(p =
o

i

= jia
3 +w)2 (l +2u)du = ^ na3 (w = cosqp).

-

1

7.6.16. Compute the volume of the solid bounded by:

(a) the hyperboloid of one sheet + ^r—^ = 1 and the pla-

nes 2 =— 1 and z=l;

(b) the parabolic cylinder 2=4—
*/

2
, the planes of coordinates

and the plane x = a\

(c) the elliptic paraboloid z = ^ +^ and the plane z = k (k > 0).

7.6.17. A wedge is cut off from a right circular cylinder of radius

a by a plane passing through the diameter of the cylinder base and

inclined at an angle a to the base. Find the volume of the wedge.

7.6.18. Compute the volume of the solid generated by revolving

the figure bounded by the following lines:

(a) xy = 4, x= \, x = 4, */ = about the x-axis;

(b) y = 2x— x'\ y = about the #-axis;
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(c) y = x3
, y = 0, x=2 about the (/-axis;

(d) y = s\nx (one wave), y = about the #-axis;

(e) x2— #
2 = 4, y=±2 about the (/-axis;

(0 (y
— a)2 = ax

y
x= 0, y = 2a about the x-axis.

7.6.19. Find the volume of the solid obtained by revolving the

curve u2 = ax ~7*
about the x-axis.y a 1

7.6.20. Compute the volume of the solid generated by revolving

about the #-axis the figure bounded by the lines y^s'wiX and
2

y = — x.

7.6.21. Compute the volume of the solid generated by revolving

about the x-axis the curvilinear trapezoid bounded by the catenary

y= ^-(^e a -\-e a
) = acosh-^ and the straight lines x

t
= — c

y
x

2
=

= c (c> 0).

7.6.22. Compute the volume of the solid generated by revolving

about the #-axis the figure bounded by the cosine line (/ = cosxand

the parabola y^^*2
-

7.6.23. Compute the volume of the solid generated by revolving

about the #-axis the figure bounded by the circle x2 + y
2 =l and

the parabola y
2 = ^x.

7.6.24. On the curve y = x3 take two points A and B, whose
abscissas are a= 1 and b = 2

)
respectively.

Find the volume of the solid generated by revolving the curvi-

linear trapezoid aABb about the #-axis.

7.6.25. An arc of the evolute of the ellipse x = acost\ y = bs\nt

situated in the first quadrant revolves about the x-axis

Find the volume of the solid thus generated.

7.6.26. Compute the volume of the solid generated by revolving

the region enclosed by the loop of the curve x= at 2
> y = a[t—^j

about the #-axis.

7.6.27. Compute the volumes of the solids generated by revolv-

ing the region enclosed by the lemniscate (x2 + y
2
)

2 = a2 (x2—

y

2
)

about the x- and (/-axes.

7.6.28. Compute the volume of the solid generated by revolving

the region enclosed by the curve p = acos2
cp about the polar axis.
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§ 7.7. The Arc Length of a Plane Curve in Rectangular
Coordinates

If a plane curve is given by the equation y = y(x) and the

derivative y' (x) is continuous, then the length of an arc of this

curve is expressed by the integral

l=lVl+y' 2 dx
a

where a and b are the abscissas of the end-points of the given arc.

7.7.1. Compute the length of the arc of the

semicubical parabola y
2 = x3 between the points

(0, 0) and (4, 8) (Fig. 96).

Solution. The function y(x) is defined for

x^O. Since the given points lie in the first qu-
_3_

adrant, y = x 2
. Hence,

3

y
f = ~Vx and l/l+*/' 2 = j/ 1+-

Consequently,

3 4

2

Fig. 96

=A (10 KTo-i).

7.7.2. Compute the length of the arc cut off from the curve

4
y

2 = x3 by the straight line *= -g.

7.7.3. Compute the arc length of the curve y=\ncos>x between

the points with the abscissas x=0, x=^.

Solution. Since y' = — tan x, then |/l + y' 2 = \f\ -f tan2 x = sec x.

Hence,

'

J
sec xdx= In tan + \

n
4

. . 3n= lntan-g

7.7.4. Compute the arc length of the curve y= In
e

Jx |

x
1
= a to x2

= b (b > a).

from



346 Ch. VII. Applications of the Definite Integral

7.7.5. Find the arc length of the curve x=-^y2—y \ny between

the points with the ordinates y=l and y = 2.

Solution. Here it is convenient to adopt y as the independent

variable; then

*'-U-w and ^T+ 7
'
1 - /(T^+i7=^+i-

Hence,

2 2

/ =
J
^jqp^i dy = I (i y + 4) dy=T + T ln 2 -

1 1

_2_ _2_ _2_

7.7.6. Find the length of the astroid x 3 + y
3 = a 3

.

Solution. As is known, the astroid is symmetrical about the axes

of coordinates and the bisectors of the coordinate angles. Therefore,

it is sufficient to compute the arc length of the astroid between
the bisector y = x and the x-axis and multiply the result by 8.

3

( ~ ~\T
In the first quadrant y =\a 3 — x 3

J and y = at x = a, y=x

at * =

Further,

y
' = ±

( a^-jcT )

2

( -|) x~^~ =— x~~* [aJ-x^)
'

and

Consequently,
a

c
.L _J_

/ = 8 ) a 3 x 3 Jx = 6a.

a

3/
2

/f

jVo/e. If we compute the arc length of an astroid situated in

the first quadrant, we get the integral

a
j i

^ a 3 x 3 dx
y

o

whose integrand increases infinitely as x— ().
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7.7.7. Compute the length of the path OABCO consisting of por-
tions of the curves y

2 = 2x 3 and x2 + y
2 = 20 (Fig. 97).

Solution. It is sufficient to compute the arc lengths and

since by symmetry of the figure about the

x-axis

Solving the system of equations

x2 + y
2 = 20,

y
2 = 2x\

we find the point A (2, 4).

Find
lfa. Here

J/2*, V\+y'*= )/ i+ J*.

*ab xs *'ie len§th of an arc cor-

responding to the central angle arc tan 2,

2

Hence,
2

b

Since on the circle of radius ^20 /;

i arc ta

lXB = ]/20arc tan 2.

Finally we have

I = A(ioi/TO— l)+4/5 arc tan 2.

7.7.8. Compute the arc length of the curve:

(a) = y— 1 cut off by the x-axis;

(b) */ = ln(2cosx) between the adjacent points of intersection with

the x-axis.

(c) 3y
2 =x(x— l)

2 between the adjacent points of intersection

with the j-axis (half the loop length).

7.7.9. Compute the arc length of the curve

y =Ux V~#-\ — In (x + KF=T)]

between

x = 1 and x = a+l.
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7.7.10. Find the arc length of the path consisting of portions of

the curves x2 = (y+\y and y = 4.

§ 7.8. The Arc Length of a Curve Represented
Parametrically

If a curve is given by the equations in the parametric form x= x(t),

y = y(t) and the derivatives x' (t), y' (t) are continuous on the in-

terval [t lt t
2 ],

then the arc length of the curve is expressed by the

integral

l = [Vx,2
{t)+ y' 2 {t)dt,

where t
x
and t 2

are the values of the parameter t corresponding to

the end-points of the arc (t
1 < t 2 ).

7.8.1. Compute the arc length of the involute of a circle x =
= a(cos/ + /sinO. y = a(sini— tcost) from / = to t=2n.

Solution. Differentiating with respect to /, we obtain

x\ = at cos t, y'
t
= at sin t,

whence Vx't
2 + y'

t

2 = at. Hence,

2jt

/ =
J
at dt =

o

7.8.2. Find the length of one arc of the cycloid:

x= a(t— sin t), y = a(l — cos/).

7.8.3. Compute the length of the astroid: x = acos3
t

y y = asm*t.

Solution. Differentiating with respect to t, we obtain

x'
t
= —3a cos2 ts'mt;

y'
t
= 3a sin2

1 cost.

Hence

J/"*;* + ^;« = \f9a2 sin2
/ cos2

/ = 3a
\
sin / cos / 1 = ^ |

sin 2t |.

2n
=2an2

.

o

Since the function |sin2/| has a period

2

2

/ = 4xy jsin2/df =6a.
o

Note. If we forget that we have to take the arithmetic value of

the root and put Yx 2
-\- y' 2 = 3asmt cos t , we shall obtain the wrong
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result, since

2ji

sin/cos/d/ = ySin 2
/

2ji

-0.

7.8.4. Compute the length of the loop of the curve x=V3t 2
,

y = t-t*.

Solution. Let us find the limits of integration. Both functions

x(t) and y(t) are defined for all values of Since the function

x= V 3/ 2 ^0, the curve lies in the right half-plane. Since with a

change in sign of the parameter x(t) remains unchanged, while
y(t) changes sign, the curve is symmetrical about the #-axis. Furth-

ermore, the function x(t) takes

on one and the same value not

more than twice. Hence, it follows

that the points of self-intersection

of the curve lie on the x-axis, i.e.,

at y = (Fig. 98).

The direction in which the mo-
ving point M (x, y) runs along the

curve as / changes from — oo to oo

is indicated by the arrows.

But y = at /
t
= 0, t

2 , 3
= ±1. Since x (t 2 )

= x (t 3 )
= J^3, the point

(^3, 0) is the only point of self-intersection of the curve. Conse-

quently, we must integrate within the limits t
2
= —-1 and / 8

=1.
Differentiating the parametric equations of the curve with respect

to f, we get x'
t
= 2V~3t, y't=\—3t\ whence

Fig. 98

Consequently,

i(l+3t*)dt = 4.

t
Q t*

7.8.5. Compute the arc length of the curve #=-g-
f y = 2— -j

between the points of intersection with the axes of coordinates.

7.8.6. Compute the arc length of the ellipse ^ + ^=1.
Solution. Let us pass over to the parametric representation of the

ellipse

x=acost, y = bs'mt i O^t ^ 2n.

Differentiating with respect to t
y
we obtain

xt
= — a sin t\ y'

t
= b cos t.
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whence

Vxt

2 + y'
t

2 = Va2 sin 2
/ + b 2 cos2

/ = a V\—e2 cos2
/

where e is the eccentrici-ty of the ellipse,

c V a*— b*
6 = —= -

.

a a

Thus

2ji T
l = a \V1—

e

2 zos2 tdt = Aa[\f\ — e2 cos2
/ df.

The integral —

e

2 cos2 tdt is not taken in elementary func-

o

tions; it is called the elliptic integral of the second kind. Putting

/ = Y— x, we reduce the integral to the standard form:

ji ji

T 2

\ V\— e2 cos2 /d/ = $ Kl—

8

2 sin2 xdT=£(e),

where E (e) is the notation for the so-called complete elliptic inte-

gral of the second kind.

Consequently, for the arc length ot an ellipse the formula

/ = 4a£(e) holds good.

It is usual practice to put e = sina and to use the tables of va-

lues for the function

E
l
(a) = E

1
(arc sin e) = E (e).

For instance, if a = 10 and 6 = 6, then

V l0 2— 62
A Q . r Q0

8 = -—^ = 0.8 = sin 53°.

Using the table of values of elliptic integrals of the second kind,

we find / = 40£
l
(53°) = 40xl.2776 «51.1.

7.8.7. Compute the arc length of the curve

* = </=y(' 2 -3)

between the points of intersection with the x-axis.

7.8.8. Find the arc length of the cardioid:

x = a (2 cos t — cos 2t),

y = a(2s\n t— sin 2t).
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7.8.9. Find the length of the closed curve

x = 4 \^2as\nt; y = asm2t.

7.8.10. Find the arc length of the evolute of the ellipse

x = — cos3
/, —^-sin 3

/, c2 =a2— b2
.

7.8.11. Compute the arc length of the curve

x=(t 2— 2)sin/ + 2/ cos/,

y = (2— /
2)cos/ + 2/ sin/

between /, = and / 2
= ji.

7.8.12. On the cycloid x= a (/— sin /); y = a(\— cos/) find the

point which divides the length of the first arc of the cycloid in

the ratio 1 :3.

§ 7.9. The Arc Length of a Curve in Polar Coordinates

If a smooth curve is given by the equation p = p((p) in polar

coordinates, then the arc length of the curve is expressed by the

integral:

*pi

where cp
t
and cp2 are the values of the polar angle rp at the end-

points of the arc (cp, < cp2 ).

7.9.1. Find the length of the first turn of the spiral ot Archi-

medes p = aq).

Solution. The first turn of the spiral is formed as the polai angle

cp changes from to 2n. Therefore

2ji 2ji

/ = \ \fa2
y

2 + a2 dy = a\ Vy 2+ 1 dcp

-

o o

= a [n |/"4ji
2 + 1 -f1 In (2n+ + 1 ) .

7.9.2. Find the length of the logarithmic spiral p=aemv between

a certain point (p , (p ) and a moving point (p, cp).
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Solution. In this case (no matter which of the magnitudes, p or

p , is greater!)

<p

<Po

= a|/l + m2

^ e
m
'*dq) = a

V 1 +m 2
.

IP— Po Ap|,

i.e. the length of the logarithmic spiral is proportional to the

increment of the polar radius of the arc.

7.9.3. Find the arc length of the cardioid p = a(l+coscp)

(a>0, 0<q)<2ji).

Solution. Here p^= — asincp,

VV^+V^- K2a2 (l+cos (p) - K4a2 cos2 (cp/2) -

= 2a I cos

(

> W^J I

^ _ 2a Cos (cp/2), jx< cp < 2k.

Hence, by virtue of symmetry

2jt

/ = 2a
J |

cos y d(p = 4a ^ cos dcp = 8a.

o o

7.9.4. Find the length of the lemniscate p
2 = 2a2 cos2cp between

the right-hand vertex corresponding to cp = and any point with a

polar angle (p < ~ .

Solution. If 0<(p<~, then cos2q)>0. Therefore

p = a j/*2 cos 2cp; pjp
= a V 2 sin 2(p

#

j^cos 2cp

sin 2 2cp \ _ a /"2

Hence,

t V
Y cos2(p 7 ]^Cos2(p

V 1 — 2sin 2
cp

o o

The latter integral is called the elliptic integral of the first kind.

It can be reduced to a form convenient for computing with the

did of special tables.
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7.9.5. Find the arc length of the curve p = asin 3 y.

7.9.6. Compute the length of the segment of the straight line

p = asec ^q)—y^ between (p = and cp = y

.

Solution. p^ = asec^q)—y^ tan ^(p—y j ;

K*P
2+ p; = «sec((p-y) ]/ l+tan2

((p-f)=asec
2

((p-f

(The sign of the modulus in the function sec(q)— -^-j is omitted,

since on the interval

is positive.)

[o.f this function

p=asln 4-£

l = a j* sec2

^ q)—y ^
dq)

4 V 3
a.

Fig. 99

7.9.7. Find the length of the closed

curve p = asin 4

y.

Solution. Since the function p = asin 4
r

4

is even, the given curve is symmetrical about

the polar axis. Since the function sin4y has

a period 4jx, during half the period from to 2n the polar radius
increases from to a, and will describe half the curve by virtue
of its symmetry (Fig. 99).

Further, p^--=asin 3 (q)/4)cos(q)/4) and

Kp 2 + P^
2 = Va? sin8

(cp/4) + a2 sin 6
(cp/4) cos2 (cp/4) - a sin 3

(cp/4),

if 0<(p<2jT.

Hence,
'271 JT/2

/ = 2a
^

sin 3
(cp/4) d(p = 8a j sin 3 /d/ = ya ((p = 4f).

b o

7.9.8. Find the length of the curve (p = y(p+l/p) between p=2
and p = 4.

Solution. The differential of the arc dl is equal to

d/ = Kp a + p;
f

dq) = Kp 2 d(p» + dp a =
|/ P

2

(-^)
2

^ 1*.
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From the equation of the curve we find ^ =y —^2") • Hence,

4 4

/ =
I V P

2 4( 1 -^)
2

+ ldP=j V|(p
2-2+^ + 4)dp =

2

;-.(/Kf*=i(f+'"'

2

4 = 3 +^.
2 ^

7.9.9. Find the length of the hyperbolic spiral p(p=l between
3 1 4

<Pi = t and ^ = y •

7.9.10. Compute the length of the closed curve p = 2a(sinq) + cos(p).

7.9.11. Compute the arc length of the curve p = 1+ c0S(p
*rom

<Pi =—2 t0 ^^y-

§ 7.10. Area of Surface of Revolution

The area of the surface generated by revolving about the x-axis

the arc L of the curve y = y(x) (a^x^b) is expressed by the

integral
b

P = 2n\y VT+V2 dx.

a

It is more convenient to write this integral in the form P = 2n
^
ydl

9

L

where dl is the differential of the arc length.

If a curve is represented parametrically or in polar coordinates,

then it is sufficient to change the variable in the above formula,

expressing appropriately the differential of the arc length (see §§ 7.8

and 7.9).

7.10.1. Find the area of the surface formed by revolving the
_2_ 2 _2_

astroid x 3 + y
3 = a 3 about the #-axis.

Solution. Differentiating the equation of the astroid we get

fx 3 +4*/ 3 y' = 0,

whence

y'=- y-
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Then, Vl+y'* =
3

Since the astroid is sym-

X" \x\
3

metrical about the (/-axis, in computing the area of the surface we
may first assume x^0 y and then double the result. In other words,
the desired area P is equal to

u u

P = 2x2n §yV\ + y' 2 dx = 4n
J

Make the substitution

a 3 —x 3 =t\

—4" x 3 dx = 2tdt,

2

a 3 — X 3

X

1

a 3

a

12
y_ fl

l/3

Then P=\2na 3

J
t*dt=^n<&

o

7.10.2. Find the area of the surface generated by revolving about
the x-axis a closed contour OABCO formed
by the curves #= A;

2 and x = y
2 (Fig. 100).

Solution. It is easy to check that the 1

given parabolas intersect at the points

(0, 0) and B (1, 1). The sought-for area

P = P
1 + P

2 , where the area P
x

is formed
by revolving the arc OCB

y
and P 2 by revol-

ving the arc OAB.
Compute the area Pv From the equation

x = y
2 we get y = V* and #' = ^y=f.

Hence,
i i

P
1
= 2n§V~x }/~ 1 + ±dx = 2n [

^4*+ ! ^ =

Fig. 100

4(4* + !)" |(5K5-1).

Now compute the area P
2

. We have y~x2
,

y' = 2x and

P
2
= 2n

I
x2 Vl + Ax2 dx.
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The substitution #= ysinh£, dx= ~ cosh t dt gives

Arsinh 2

Arsinh 2P^JI
J

sinh2 /cosh 2 /d/ = ^^sinh4^— t
o

= 9

-TL-3> ln (2+^).
Thus, _

p=p1+ p
2
= (5 1^5-0^ + _qg£L_^ Jtln(2+|/-5 )

^

7.10.3. Compute the area of the surface generated by revolving:
X2

(a) the portion of the curve y = -^, cut off by the straight line

3
y = — , about the (/-axis;

(b) the portion of the curve y
2 = 4 + x, cut off by the straight

line x=2
y
about the x-axis.

7.10.4. Find the surface area of the ellipsoid formed by revolving

the ellipse -^--j--p-=l about the #-axis (a>b).

Solution. Solving the equation of the ellipse with respect to y
for y^ 0, we get

b , r , b x

Va*— x2
'

Hence

-a

where the quantity e= j/
a ~ b =~ is the eccentricity of the

ellipse.

When b—+a the eccentricity e tends to zero and

t
. arc sin e ,

lim = I,

e - o
8

since the ellipse turns into a circle, in the limit we get the surface

area of the sphere:

P = 4jiaa
.
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7.10.5. Compute the area of the surface obtained by revolving

the ellipse 4x2Jry2 = 4 about the (/-axis.

7.10.6. An arc of the catenary

y = ~{e a +e" a
) = a cosh

whose end-points have abscissas and x, respectively, revolves about
the x-axis.

Show that the surface area P and the volume V of the solid thus
2V

generated are related by the formula P =— m

Solution. Since y' = sinh — , we have V\ + y' 2 = cosh — . Therefore

hence, P =— .

a

7.10.7. Find the area of the surface obtained by revolving a loop

of the curve 9ax2 = y(3a— y)
2 about the (/-axis.

Solution. The loop is described by a moving point as y changes

from to 3a. Differentiate with respect to y both sides of the

equation of the curve:

1 8axx' = (3a— y)
2— 2y(3a—y) = 3(3a— y)(a— y) y

whence xx' = ^a~ y

^
a~ y^

. Using the formula for computing the

area of the surface of a solid of revolution about the (/-axis, we have

P = 2n j xV~l+x' 2 dy=2n j Vx
2 + (xx') 2 dy =

3a 3a

b o

— y
2)dy = 3na2

.

7.10.8. Compute the area of the surface generated by revolving

the curve 8y
2 = x2— x* about the x-axis.

7.10.9. Compute the area of a surface generated by revolving

about the x-axis an arc of the curve x = t
2

\ y=-^(t 2— 3) between

the points of intersection of the curve and the x-axis.
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Solution. Putting y = 0, find ^ = and / 2t3 = ±K3, and, hence,

^ = and jc2>3 = 3. Whence it follows that the curve intersects

with the x-axis at two points: (0, 0) and (3, 0). When the para-

meter t changes sign, the sign of the function (x)t remains unchan-
ged, and the function y (t) changes
its sign, which means that the curve

is symmetrical about the #-axis

(Fig. 101).

To find the area of the surface it

is sufficient to confine ourselves to

the lower portion of the curve OnB
that corresponds to the variation

of the parameter between and

+ 1^3. Differentiating with respect

to t
y
we find

-.2t; y t
= t*-l

y,

1 m

-1 n

X

Fig. 101

and the linear element

dl = Vx?+ y? dt

Hence,
(l + t

2)dt.

P = 2n\\y(t)\Vx't
2+ y'

t

2 dt =

= 2n$ (t*—3)(l + t
2)dt =— ^-n j (t*— 2t*— 3t)dt=3n.

VT vT

3 \
L " °j I 1 i" =—

y

7.10.10. Compute the surface area of the torus generated by re-

volving the circle x2 + (y— b)
2 = r

2
(0 < r < b) about the *-axis.

Solution. Let us represent the equation of the circle in parametric
form: x = rzost\ y = b+ rs'mt.

Hence
x't =— r sin t\ y't=r cos t.

The desired area is

2JT

P-2jiJ (b+ r sin t) )/*(— r sin tf + (r cos tf dt =

= 2nr\ (b+ r sin t) dt = 4n2
br.

7.10.11. Compute the area of the surface formed by revolving

the lemniscate p = a}/cos2q) about the polar axis.

Solution. Real values for p are obtained for cos2(p>0, i. e. for

—X^^^T^^ right-hand branch of the lemniscate), or for

3 5
-j-ft^ ty^-j n (the left-hand branch of the lemniscate).
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The linear element of the lemniscate is equal to

d/ = Kp» + p^dcp= ifa2 cos2y+(
a^lY dip =-

' \ V cos 2(p

/

,"|Acos2(p/ |^cos2(p

Besides, # = psincp=asin(p}/cos2q).
The sought-for surface area P is equal to double the area of the

surface generated by revolving the right-hand branch. Therefore

4

P = 2 x 2n f y dl = 4«o« f
^^^P^ = 2«a« (2- j/2 ).

J J K cos 2cp

7.10.12. Compute the area of the surface formed by revolving

about the straight line x+ y = a the quarter of the circle x2 + y
2 = a2

between A (a, 0) and B (0, a).

Solution. Find the distance MN from the moving point M (x, y),

lying on the circle x2 + y
2 = a2

, to the straight line x+ y = a:

MN = \x+ ya2—x2— a\

V2
:+ Va?— x*— c

V2

since for the points of the circle that lie in the first quadrant

x-\-y^a. Further,

dl = yi + y'2 dx= if i + (
x Ydx=-^=

Hence,

P= 2n
' x+ Va*— x 2 - a dx

V~2 V^— x l

V2na [- V'c x2 + x— aarcsin- = (*-*)•

7.10.13. Compute the area of

the surface formed by revolving

one branch of the lemniscate p =
=a\rcos2q> about the straight line _

it

Fig. 102
Solution. From the triangle OMN

(Fig. 102) we find the distance MN
of an arbitrary point M of the right-hand branch from the

axis of revolution q) = x :

MN = p sin —
(p^

=a|/cos2cpsin —
qp^ ;
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then
j 1 a dw
dl = r - .

V cos 2cp

Jl/4

Therefore P = 2n j aKcos2q5 sin q>) y=?= = 2na2
.

-Jt/4

7.10.14. Compute the area of the surface formed by revolving
x3

about the x-ax\s the arc of the curve # = y between x =— 2 and

x = 2.

7.10.15. Compute the area of the surface generated by revolving

one half-wave of the curve y = s\nx about the x-axis.

7.10.16. Compute the area of the surface generated by revolving

about the (/-axis the arc of the parabola x2 = 4ay between the points

of intersection of the curve and the straight line y = 3a.

7.10.17. Find the area cf the surface formed by revolving about

the ;t-axis the arc of the curve x = e'sin/; y^^cost between

*=0 and *=y

.

7.10.18. Compute the area of the surface obtained by revolving
t
3

t
1

about the #-axis the arc of the curve x = -^-\ y = 4—^ between

the points of its intersection with the axes of coordinates.

7.10.19. Compute the area of the surface generated by revolving

the curve p = 2asinq) about the polar axis.

7.10.20. Compute the area of the surface formed by revolving

about the x-axis the cardioid

x = a (2 cos t— cos 2t),

y = a(2s'mt— sin 2t).

§ 7.11. Geometrical Applications of the Definite Integral

7.11.1. Given: the cycloid (Fig. 103)

x = a{t— sin t)\ y^a(l — cos/); 0< / ^ 2n.

Compute:
(a) the areas of the surfaces formed by revolving the arc OBA

about the x- and (/-axes;

(b) the volumes of the solids generated by revolving the figure OBAO
about the */-axis and the axis BC\

(c) the area of the surface generated by revolving the arc BA
about the axis BC\
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(d) the volume of the solid generated by revolving the figure

ODBEABO about the tangent line DE touching the figure at the

vertex B\

(e) the area of the surface formed by jj

revolving the arc of the cycloid [see

item (d)J.

Solution, (a) When revolving about —
the jc-axis the arc OBA generates a sur-

face of area
231

c

Fig. 103

Px = 2n
J
y dl = 2n j a ( 1 — cos t) 2a sin y dt =

8a 'ji

J
sin 3

y dt
64jta3

When revolving about the (/-axis the arc OBA generates a sur-

face of area
TT

P
y
= 2n xdl = 4na2

J
(t— sin t) sin y dt +

+ 4to2 — sin0sinyd/ = 4jia2

| (/— sin siny dt = 16jt 2 2
.

Jl

(b) When revolving about the y-axis the figure OBAO generates

a solid of volume
2a 2a 2a

V
y
= n^ (x\— x\)dy = n

J
jc| rf^— Jt

J
x2

dj/,

o oo
where x= x

1 (y) is the equation of the curve BA, and x = x
2 (y) is

the equation of the curve OB.
Making the substitution y = a(l — cos/), take into consideration

that for the first integral t varies between 2k and ji, and for the

second integral between and n. Consequently,
TT Jt

Vy = n
J
a2

(t— sin t)
2 asm tdt— n

J
a2

(t— sin t)
2 asm tdt =

2jt

= na3

J
(/— sin t)

2 sin tdt =
2n

- -

= jia
3

J
/
2 sin/d/ —

J
t{\— cos2t)dt+ $ sin 3 /d/ =6ji 3a3

.

_2t 2jt 2ji

For computing the volume of the solid obtained by revolving

the figure OBAO about the axis BC it is convenient first to trans-
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fer the origin into the point C, which yields the following equa-

tions in the new system of coordinates

x' = a(t— n— sin t)\ y' = a(l — cos/).

Taking into account only the arc BA, we get

2a jt,

V = n ^ x' 2 dy' = na 3
^ (t— ji— sin t)

2 sin t dt.

2ji

Putting t— n = z> we obtain

JT

V =— na 3 \(z+ sin z)
2 sin zdz — na3

\ (z + sin z)
2 sin z dz =

n

=^ (9jx*— 16).

(c) Making the above-indicated shift of the origin, we get

dl = 2a sin y |
dt

\

=— 2a sin y dt.

Therefore
2a

P= ^2nxdl =— 4na2 j* (/— jt— sin/) sin y dt =
2n

ji

= 4na2

J*

(z+ sin z) cos y dz = 4 (^2n—^
b

(d) Transferring the origin into the point B and changing the

direction of the r/-axis, we get

x' = a(t— ji— sin /), y
f =a (1 +cos /).

Putting /— n = z, we have

x' = a (z + sin 2), y' = a ( 1 — cos 2),

z changing from — ji to ji for the arc OB A. Hence
ji

V = n ^ a3 {l— cos z)
2
(\ + cos z) dz = rila3

.

-ji
ji ji

(e) P = 2n
J

ydl = 4na2

j (1—cosz)cosyd2 =y jta
2

.

-jt -ji

7.11.2. Find the volume of the solid bounded by the surfaces

Z2 = 8(2— x) and x2 + y
2 = 2x.

Solution. The first surface is a parabolic cylinder with generat-

rices parallel to the r/-axis and the directrix z2 = 8(2— a:) in the

plane xOz, and the second is a circular cylinder with generatrices
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parallel to the z-axis and the directrix x2 + y
2 = 2x in the plane xOy.

2

The volume V is computed by the formula V =^ S(x)dx. S(x) re-

o

presents the area of a triangle whose base is equal to 2y and alti-

tude to 2z\

S(x) = 2yx2z = 4 V2x—x2 1/8(2—*).
Hence,

2 2

V= 5 4 Vx (2

—

x) 8 (
2

—

x) dx = 4 \/"8
$ (2— *) Vx dx =

= 4/8 (|2 J/*
3 --?-!/**)

256
:

15
'

7.11.3. Prove that if the figure S is bounded by a simple con-

vex contour and is situated between the ordinates yx
and y2

(Fig. 104),

then the volume of the solid ge- .y
nerated by revolving this figure

about the #-axis can be expressed

by the formula
y*

V = 2n
^
yh dy y

yt

where
h=x

2
{y)—x

1 (y) 9

Si

t b/
&y 1 \

Fig. 104

x = x
1 (y) being the equation of the

left portion of the contour and
x = x

2 (y) that of the right portion.

Solution. Let the generating fig-

ure S be bounded by a simple

convex contour and contained between the ordinates yt
and y2 .

Subdivide the interval [yly y2 ] into parts and pass through the

points of division straight lines parallel to the axis of revolution,

thus cutting the figure 5 into horizontal strips. Single out one
strip and replace it by the rectangle ABCD, whose lower base is

equal to the chord AD = h specified by the ordinate y y
its altitude

AB being equal to Ay. The solid generated by revolving the rectangle

ABCD about the #-axis is a hollow cylinder whose volume may
be approximately taken for the element of volume

AV « n (y+ Ay) 2 h— ny 2h = 2nyAyh+ nh (Ay)2
.

Rejecting the infinitesimal of the second order with respect to Ay,
we get the principal part or the differential of volume

dV = 2n yh dy.

Knowing the differential of the volume, we get the volume proper
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through integration:

V = 2n
J
yhdy.

Thus, we obtain one more formula for computing the volume of

the solid of revolution.

7.11.4. The planar region bounded by the parabola y = 2x2 -\-3,

the *-axis and the verticals x=0 and x=\ revolves about the

(/-axis. Compute the volume of the solid of revolution thus generated.

Solution. Divide the area of the figure into elementary strips by

straight lines parallel to the (/-axis. The volume AV of the elemen-

tary cylinder generated by revolving one strip is

AV = n (x+ Ax)2
y— nx2

y = 2n xy Ax+ ny (Ax)2
y

where Ax is the width of the strip.

Neglecting the infinitesimal of the second order with respect to Ax,

we get the differential of the desired volume

dV = 2n xydx.

Hence
i i

V=
I
2n xydx = 2n \ x (2x2 + 3) dx = 4n.

o

7.11.5. Compute the area of the portion of the cylinder surface

x2
-f- y

2 =t ax situated inside the

sphere

x2 + y
2 + z2 =a2

.

Solution. The generatrices of the

cylinder are parallel to the 2-axis,

the circle
^
x—jY+y

2 = ^
serving as directrix (Fig. 105

^ shows a quarter of the sought-
a for surface).

Subdivide the portion of the

circle shown in Fig. 105 into

small arcs AL The generatrices

y passing through the points of di-

Fig. 105 vision cut the cylinder surface

into strips. If infinitesimals of

higher order are neglected, the area of the strip ABCD is equal to

CD- AL
If p and cp are the polar coordinates of the point D, then

p = acoscp and CD = ]/ a 2— p
2 = asinq), and A/ = a.A(p, whence we
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find the element of area:

Hence,
dP = a2 sin cpdcp.

P = 4
J
a2 sin cp dcp == 4a2

.

C/

7.11.6. Find the area of the surface cut off from a right circular

cylinder by a plane passing through the diameter of the base and
inclined at an angle of 45° to

the base.

Solution. Let the cylinder axis

be the e-axis, and the given dia-

meter the x-axis. Then the equa-

tion of the cylindrical surface q
will be x2 + y

2 =a\ and that of

the plane forming an angle of 45° y^^^?
with the coordinate plane xOy n ^
will be y = z.

The area of the infinitely nar- x
row strip ABCD (see Fig. 106) will Fig. 106

be dP = zdl (accurate to infinite-

simals of a higher order), where dl is the length of the elemen-
tary arc of the circumference of the base.

Introducing polar coordinates, we get

z = y = a sin (p; dl = a dqp.

Hence dP = a2 s\nq)dq) and
jt

P = a2

J
sin qp dy = a 2

[
— cos cp]* = 2a2

.

7.11.7. The axes of two circular cylinders with equal bases inter-

sect at right angles. Compute the surface area of the solid constitu-

ting the part common to both cylinders.

7.11.8. Compute the volume of the solid generated by revolving

about the y-axis the figure bounded by the parabola x2 = y— 1, the

axis of abscissas and the straight lines x~0 and x=l.

7.11.9. Find the area 5 of the ellipse given by the equation
Ax2 + 2Bxy+Cy 2 = l(8 = AC—

B

2 > 0; C> 0).

Solution. Solving the equation with respect to y, we get

_ — Bx— VC—dx 1
. _ — Bx+ VC— bx*

where the values of x must satisfy the inequality

C— 6jk
2 >0.
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Solving this inequality, we obtain the limits of integration:

Consequently, the sought-for area is equal to

/? Vt

C_

6

7.11.10. Find the areas of the figures bounded by the curves rep-

resented parametrically:

(a) x=2t— t
2

; y = 2t 2— t
3

;

7.11.11. Find the areas of the figures bounded by the curves given

in polar coordinates:

(a) p = asin3(p (a three-leaved rose);

(b) p =

1 — cos cp

(c) p = 3sinq) and p = K3cosq).

IP riirvp /y 2 =
^

4
7.11.12. Find the arc length of the curve y

2 = — (2— x) 3 cut off

where (0, 0); Al±, a In
4

by the straight line x =— 1.

7.11.13. Find the length of the arc OA of the curve

i
^

2
,
.In-i

2
7.11.14. Compute the arc length of the curve y

2 = — (x— l)
3 con-

tained inside the parabola y
2 = -^.

7.11.15. Prove that the length of the ellipse

x = V^2sin/; y = cost

is equal to the wavelength of the sinusoid y = s\nx.

7.11.16. Prove that the arc of the parabola y = ^ x2 correspon-

ding to the interval O^x^a has the same length as the arc of

the spiral p = Pcp corresponding to the interval O^p^a.
7.11.17. Find the ratio of the area enclosed by the loop of the

curve y=± -o-— *Wx to the area of a circle the circumference

of which is equal to the length of the contour of this curve.
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7.11.18. Find the volume of the segment cut off from the ellipti-

cal paraboloid ^+^ = x by the plane x= a.

7.11.19. Compute the volume of the solid bounded by the hyper-

boloid ^t+ ^t—4-= — 1 and the planes z = c and 2 = />c.
a o c

r

7.11.20. Find the volume of the right elliptical cone whose base

is an ellipse with semi-axes a and fr, its altitude being equal to h.

7.11.21. Find the volume of the solid generated by revolving

about the x-axis the figure bounded by the straight lines y = x+l;
y = 2x+l and x = 2.

7.11.22. Find the volume of the solid generated by revolving

about the #-axis the figure bounded by the hyperbola — = 1,

the straight line 2ay— bx = and the axis of abscissas.

7.11.23. Find the volume of the solid generated by revolving the

curve p = acos2
q) about the polar axis.

7.11.24. Find the areas of the surfaces generated by revolving the

following curves:

(a) y = tan x ^0<jc<^-^ about the #-axis;

(b) y = x \f-^-(O^xO) about the #-axis;

(c) x2 + y
2— 2rx = about the x-axis between and h.

§ 7.12. Computing Pressure, Work and Other Physical
Quantities by the Definite Integrals

I. To compute the force of liquid pressure we use Pascal's

law, which states that the force of pressure of a liquid P on
an area 5 at a depth of immersion h is P = yhS

y
where y is the

specific weight of the liquid.

II. If a variable force X = f(x) acts in the direction of the *-axis,

then the work of this force over an interval [xlt x
2 ] is expressed

by the integral
x 2

A = ^f(x) dx.

III. The kinetic energy of a material point of mass m and velo-

city v is defined as
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IV. Electric charges repulse each other with a force F =
,

where e
x
and e2

are the values of the charges, and r is the distance

between them.

Note. When solving practical problems we assume that all the

data are expressed in one and the same system of units and omit
the dimensions of the corresponding quantities.

7.12.1. Compute the force of pressure experienced by a vertical

triangle with base b and altitude h submerged base downwards in

water so that its vertex touches the surface of the water.

Solution. Introduce a system of coordinates as indicated in Fig. 107

and consider a horizontal strip of thickness dx located at an arbi-

trary depth x.

Assuming this strip to be a rectangle, find the differential of area

dS = MN dx. From the similarity of the triangles BMN and ABC
we have -^ = 4-, whence MN = ^- and dS = ^dx>

b h h h

B

Fig. 107 Fig. 108

The force of pressure experienced by this strip is equal to dP —xdS
accurate to infinitesimals of higher order (taking into consideration

that the specific weight of water is unity). Consequently, the entire

force of water pressure experienced by the triangle is equal to

h h

P =
J

xdS = -^ |
x*dx = -jbh*.

n

7.12.2. Find the force of pressure experienced by a semicircle of

radius R submerged vertically in a liquid so that its diameter is

flush with the liquid surface (the specific weight of the liquid is y).

7.12.3. A vertical dam has the form of a trapezoid whose upper

base is 70 m long, the lower one 50 m, and the altitude 20 m.
Find the force of water pressure experienced by the dam (Fig. 108).

Solution. The differential (dS) of area of the hatched figure is

approximately equal to dS = MNdx. Taking into consideration the
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similarity of the triangles OML and OAE, we find ~ = 2°

2Q

x
;

whence ML = 20—

x

y
MN = 20— x + 50 = 70— x. Thus, dS = MNx

xdx=(70— x)dx and the differential of the force of water pressure is

equal to

dP = xdS = x (70— x) dx.

Integrating with respect to x from to 20, we get

P=
\
(70x— x2)dx= 11 333-

7.12.4. Calculate the work performed in pumping the water out

of a semispherical boiler of radius R.

7.12.5. A rectangular vessel is filled with equal volumes of water
and oil; water is twice as heavy as oil. Show that the force of pres-

sure of the mixture on the wall will

reduce by one fifth if the water is

replaced by oil.

Solution. Let h be the depth of

the vessel and / the length of the

wall. Let us introduce a system of

coordinates as shown in Fig. 109.

Since the oil is situated above the

water and occupies the upper half of

the vessel, the force of the oil pres-

sure experienced by the upper half

of the wall is equal to

jl
2

h_

2

x

h

a

I

n

Fig. 1(

The pressure at a depth x > y is made up of the pressure of the

A
2

, and therefore

oil column of height — and that of the water column of height

h

dP.= h I
f

h

2
Xy+U-

y

ldx=[ x ~)idx.

Consequently, the force of pressure of the mixture on the lower half

of the wall is
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The entire pressure of the mixture on the wall is equal to

P—P 4- P —— 4-— — — lh 2r-^ + fi -
4 +i6 - i6

m
'

If the vessel were filled only with oil, the force of pressure P on

the same wall would be
h

=4.f
IK1

xl dx = -r .

Hence,

P— P = l:lh* = i-P.
16 5

7.12.6. The electric charge E concentrated at the origin of coor-

dinates repulses the charge e from the point (a, 0) to the point (ft, 0).

Find the work A of the repulsive force F.

Solution. The differential of the work of the force over displace-

eE
ment dx is dA =F dx= -^-dx.

Hence

a

eE
As b—* oo the work A tends to —

.

a

7.12.7. Calculate the work performed in launching a rocket of

weight P from the ground vertically upwards to a height h.

Solution. Let us denote the force of attraction of the rocket by

the Earth by F, the mass of the rocket by mRi and the mass of

the Earth by mE . According to Newton's law

F = k
X'

where x is the distance between the rocket and the centre of the

Earth. Putting kmRmE
==K> we Set F

(
x

) = -^> +
R being the radius of the Earth. At x=R the force F (R) will be

the weight of the rocket P, i.e. F(R) = P = - 2̂y whence K = PR*

and F (x) = .

Thus, the differential of the work is

dA = F(x) dx = ^-dx.
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Integrating, we obtain
R + h R+fi

PRh

PR is equal to the work performedThe limit lim A (h) = lim
h —* h —> <n ^ l~

by the rocket engine to achieve complete escape of the rocket from
the Earth's gravity field (the Earth's motion is neglected).

7.12.8. Calculate the work that has to be done to stop an iron

sphere of radius R rotating about its diameter with an angular ve-

locity (0.

Solution. The amount of required work is equal to the kinetic

energy of the sphere. To calculate this energy divide the sphere

into concentric hollow cylinders of thickness dx; the velocity of the

points of such a cylinder of radius x is cox.

The element of volume of such a cylinder is dV = 4nx]^R 2— x2 dx y

the element of mass dM = ydV, where y is the density of iron, and

the differential of kinetic energy dK = 2nya)2x3 VR2— x2 dx.

Hence,
R

AnyR* co 2 /?
2 Mco2 /?

2

5
o

7.12.9. Calculate the kinetic energy of a disk of mass M and ra-

dius R rotating with an angular velocity co about an axis passing,

through its centre perpendicular to its plane.

7.12.10. Find the amount of heat released by an alternating si-

nusoidal current

K = 2nya2

j x3 VR 2— x2 dx=

I = /„ sin
2ji ,

during a cycle T in a conductor with resistance R.
Solution. For direct current the amount of heat released during

a unit time is determined by the Joule-Lenz law

Q = 0.24 I 2 R.

For alternating current the differential of amount of heat is

dQ = 0.24

/

a (t)Rdt, whence

Q=0.24/? [l*dt.

In this case

Q -0.24 RIl j sin 2 {^t—^dt^

-0.12 RI 2 T_
v

2ji

'

2jc

0.12/? 77*.
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7.12.11. Find the pressure of a liquid of specific weight d on a

vertical ellipse with axes 2a and 2b whose centre is submerged in

the liquid to a level h(h^b).

7.12.12. Find the pressure of a liquid of specific weight d on the

wall of a circular cylinder of base radius r and altitude h if the

cylinder is full of liquid.

7.12.13. Calculate the work performed to overcome the force of

gravity in pumping the water out of a conical vessel with the vertex

downwards; the radius of the cone base is R and its altitude is H.

7.12.14. Compute the work required to stretch a spring by 6 cm,
if a force of one kilogram is required to stretch it by 1 cm.

§ 7J 3. Computing Static Moments and Moments of
Inertia. Determining Coordinates of the
Centre of Gravity

In all problems of this paragraph we will assume that the mass
is distributed uniformly in a body (linear, two- and three-dimensional)

and that its density is equal to unity.

1. For a plane curve L the static moments M x and My
about

the x- and (/-axis are expressed by the formulas

M x = J y dl, M
y
=

J
x dl.

L L

The moment of inertia about the origin of coordinates

/o=S(^ + »
f)d/.

L

If the curve L is given by the explicit equation y= y(x) (a^x^b) y

then dl has to be replaced by Vl+y' 2 dx in the above formulas.

If the curve L is given by the parametric equations x = x(t),

y = y(t)(ti<: U)> then dl should be replaced by Vx' 2 + y' 2 dt in

these formulas.

2. For the plane figure bounded by the curves y = y 1
{x), y = y2

(x),

y 1
(x)^y

2
(x) and the straight lines x = a, x = b (a^x^b) the

static moments are expressed by the formulas

b b

M*=\ \ (yl— yl)dx; M
y
= §x(y

t
— y 1

)dx.

a a

3. The centre of gravity of a plane curve has the following coor-

M v
M x

dinates: xc
=~

t y c
= —j-

i
where / is the length of the curve L.
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The centre of gravity of a plane figure has the coordinates: xc
= -^-,

yc =^Y> where S is the area of the figure.

7.13.1. Find the static moment of the upper portion of the ellipse

a* ^ b*

about the #-axis.

Solution. For the ellipse

ydi dx = Vy 2 + (yy'ydx;

since y
2 =b2— ^-x2 and yy

f =— ~i x * we have

ydl = ]/

r
b2 —^x2+^x2 dx =^Va 2— e2x2 dx

y

where e is the eccentricity of the ellipse, e = .

Integrating from —a to a, we find

a a

M x = — [ Vet 1— £2*2 dx = —[ V

a

2— e 2x2 dx =
-a

Z==:

~a{
K

a ^r

a

*—
~T

ar° s ^n 8
)
= ^ ^+ arc sln p )«

In the case of a circle, i. e. at a = b, we shall have Mx = 2a2
,

~ 11. arc sin e .

since 8 = and urn = 1

.

e - 8

7.13.2. Find the moment of inertia of a rectangle with base b and
altitude h about its base.

Solution. Let us consider an elementary strip of width dy cut

out from the rectangle and parallel to the base and situated at

a distance y from it. The mass of the strip is equal to its area

dS = bdy, the distances from all its points to the base being equal

to y accurate to dy. Therefore, dlx = by2 dy and
h

Ix
= i

\

j

by 2 dy = -^-.

7.13.3. Find the moment of inertia of an arc of the circle x* + y
2 = R 2

lying in the first quadrant about the #-axis.

7.13.4. Calculate the moment of inertia about the #-axis of the

figure bounded by the parabola y
2 =--Aax and the straight line x- a.

Solution. We have dIx = x'
2 dS, where dS is the area of a vertical

strip situated at a distance x from the y-ax\s (Fig. 110):

dS = 2\y\dx = 2\/4axdx.
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Hence,
a a 5

Ix = J
4x2 Vaxdx = 4V~a ^xT dx =

-f
a*-

o b

7.13.5. In designing wooden girder bridges we often have to deal

with logs flattened on two opposite sides. Figure 111 shows the

cross-section of such a log. Determine the

moment of inertia of this cross-section

about the horizontal centre line.

-— -z-^x

*~x

Fig. 110 Fig. Ill

Solution. Arrange the system of coordinates as is shown in the

accompanying drawing. Then

dIx = y
2 dS, where dS = MN dy = 2xdy = 2 VR 2— y

2 dy.

Whence
h h

lx = l\ y
2VW^2 dy = \\y2VW^2 dy.

-h

Substituting y = Rs\nt; dy =R cos / dt; ^=0; t
2
= arc sin (h/R),

we <;et

h arc sin (h/R)

l x = 4
J y

2 VR 2— y
2 dy = 4 [ R 2 sin 2

/ . R cos tR cos t dt =

arc sin (h/R) arc sin (h/R)

= 4R*
J

sin 2
/ cos2 /d/ =^ f

(1— cos4/)df =

=^ arc sin A +A (2h2— R 2
) VR 2— h2

.

When = we obtain the moment of inertia of the circle

about one of its diameters: L
4

'
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7.13.6. Find the moment of inertia about the *-axis of the figure

bounded by two parabolas with dimensions indicated in Fig. 112.

Solution. Arrange the system of coordinates as shown in Fig. 112

and write the equations of the para-

bolas.

The equation of the left parabola is:

b2 ( ,
a

*

y
2

^Ya[ X+2 the equation of the

right parabola, #
2 =^(y—

For the hatched strip the moment
of inertia is

dIx = y*dS = y*\MN\dy,
where

\MN
\

= x
2
— x

1

Hence,

. 2 f
— — f-

2y =

6/2 b/ 2

i,2
u

. ab*

and x,=-2 •

/,=
j
y*(a-%tf)dy = 2 j>

-b/2

7.13.7. Find the static moments about the x- and (/-axis of the

arc of the parabola y
2 = 2x between x= and x = 2 (y>0).

7.13.8. Find the static moments about the axes of coordinates

of the line segment -^--|--|-=1 whose end-points lie on the coordi-

nate axes.

7.13.9. Find the static moment about the #-axis of the arc of

the curve y = cosx between x
l
=—

y

7.13.10. Find the static moment about the x-axis of the figure

bounded by the lines y = x2
\ y = \/

r
x.

7.13.11. Find the moments of inertia about the x- and (/-axis of

the triangle bounded by the lines x = 0, y = andy+ -|-= 1 (a> 0,

b>0).
7.13.12. Find the moment of inertia of the trapezoid ABCD about

its base AD if AD = a, BC=b and the altitude of the trapezoid

is equal to h.

7.13.13. Find the centre of gravity of the semicircle x2 -\-y2 --=a
2

situated above the x-ax\s.

Solution. Since the arc of the semicircle is symmetrical about the

(/-axis, the centre of gravity of the arc lies on the */-axis, i. e. xc
= 0.
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To find the ordinate y c , take advantage of the result of Problem

7.13.1: M x —2a
2

; therefore yc
=— = Thus, xc = 0, yc

= -.

7.13.14. Find the coordinates of the centre of gravity of the ca-

tenary y = y + = cosh x between /I (0, 1) and B(a, cosh a).

Solution. We have

dl=\/ 1 + */'
2 dx= V\ + sinh 2 xrfx = cosh xdx

whence we find

/ = ^ d/ = ^ cosh xdx = sinh a.

l o

Then
a a

M
y
=^xdl=^ x cosh x dx= x sinh x\

a

Q
—

J
sinh =

L

= a sinh a— cosh a+ 1.

Hence,
a sinh a— (cosh a— 1)

sinh a
= a-

cosh a-

sinh a
- = a— tanh-£-

.

Analogously,
a a

Mx = ^ydl= ^ cosh
2 x dx = y J

( 1 + cosh 2*) djc =

I / . sinh 2x

=t[ x+-t-
sinh 2a

a sinh 2a

T H
4 cosh a

sinh a 2 sinh a

7.13.15. Find the centre of gravity of the first arc of the cycloid:

x = a (t— sin /), y = a ( 1 — cos /) (0 < t < 2n).

Solution. The first arc of the cycloid is symmetrical about the

straight line x = na, therefore the centre of gravity of the arc of

the cycloid lies on this straight line and xc
= na. Since the length

of the first arc of the cycloid l = Sa
9
we have

2ji 2ji

ye =-j §ydl=--±2a2

J
(1— cos t)sm±dt=-j§ sin 3

~2 dt = Y a '

7.13.16. Determine the coordinates of the centre of gravity of the
2 2 2

portion of the arc of the astroid x
'

6 +y 3 =a* situated in the first

quadrant.
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7.13.17. Find the Cartesian coordinates of the centre of gravity of

the arc of the cardioid p=a(l + cosq)) between q) = and y = n.

Solution. Let us represent the equation of the cardioid in para-

metric form:

x = p cos q) = a ( 1 + cos (p) cos (p;

y = p sin q) = a (1 +cos cp) sin (p.

As the parameter qp varies between and ji the running point describes

the upper portion of the curve. Since the length of the entire car-

dioid equals 8a and

dl = V + (y'^f d(p - 2a cos ^ d(p (see Problem 7.9.3), we have
9/

JT

xc =\ \y ^ ^Va [ asin W + cos <P) ^a cos-|- dcp =

: 2a ^ cos 4 y sin -|- dcp =— 4- a cos 5 y
i 4

5

Analogously,

JT

yc=z
Ta \

xdl =^«cosq)(l + cos(p) 2acos^d(p =
L

ji n

= a
j
cos cp cos 3 yd(p = a

J
^2cos6

-|- — cos 3
dep.

Putting y = / we get (see Problem 6.6.9)

_JT_

T
yc
= 2a \ (2 cos b

t— cos* t)dt =4ftg^— 2ay = -^-a.

And so, xc
= y c =^.

It is interesting to note that the centre of gravity of the above-
considered half of the arc of the cardioid lies on the bisector of

the first coordinate angle, though the arc itself is not symmetrical
about this bisector.

7.13.18. Find the centre of gravity of the figure bounded by the

ellipse 4a:
2 + 9y2 = 36 and the circle x2 + y

2 = 9 and situated in the

first quadrant (Fig. 113).
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Solution. Let us first calculate the static moments

3 3

2
dx =

3

= y I

x V~9— x2 dx = 3\

b

3 3

x

Fig. 113

5— x2
) dx =5.

The area of a quarter of a circle of

radius 3 is equal to ~ , and the area of a

quarter of an ellipse with semi-axes a = 3
3ji

and b= 2 equals y , therefore the area

of the figure under consideration is

q 9jx 3jt 3ji

Thus,
My 4 M x _ 20

~S"~ 3n'

7.13.19. Find the centre of gravity of the figure bounded by the

_L _L _L
parabola x 2 + y

2 = a 2 and the axes of coordinates.

7.13.20. Find the Cartesian coordinates of the centre of gravity

of the figure enclosed by the curve p = acos3
q) (a > 0).

Solution. Since p^O in all cases, the given curve is traced

when q) changes from —y to y . By virtue of evenness of the fun-

ction coscp it is symmetrical about the polar axis and passes through

the origin of coordinates at (p = ±y.
Compute the area S of the figure obtained:

S = 2xy j p
2dy = a2

Jcos6 (pd(p= a 2
iX3x5 ji

2x4x6 X 2 '32
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Now arrange the axes of coordinates as shown in Fig. 114. Then
the parametric equations of the curve are

x — p cos (p = a cos4
cp;

y= p sin (p = a sin cp cos3
(p.

The centre of gravity of the figure lies on the x-axis, i.e. yc
=

by virtue of symmetry about the #-axis. Finally, determine xc \

_ r* , jt ji

2 \ xy ax — -y

: -JL_— = ~-
J
cos10

(p sin 2
(p dtp = ~-

J
(cos10 cp— cos12

(p) d(p =

8fl3 / 1X3X5X7X9 1x3x5x7x9x11 \ ji 21
:

(5/32)jia2 ^2x4x6x8x10 2x4x6x8x10x12; 2 ~~40 fl "

Fig. 114 Fig. 115

7.13.21. Find the coordinates of the centre of gravity of the
2

figure bounded by the straight line y=—x and the sinusoid

*/ = sinx (*>0) (Fig. 115).
2

Solution. The straight line y =— x and the sine line y = s\nx inter-

sect at the points (0, 0) and
, 1^ . The area of the figure

bounded by these lines is

5=
J

^sin jc —— x dx-
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Hence,

yj( sin2 *-^*2

)
d*

4— jt

4— ji

J_ r
sin 2x 4

2
X

4 3jx2- "6(4— ji)
•

^x(^sinx— ^-x^dx —

Jt (4-
dx

12— ji
2

3(4— ji) 12— 3ji"

7.13.22. Prove the following theorems (Guldin's theorems).

Theorem 1. The area of a surface obtained by revolving an arc

of a plane curve about some axis lying in the plane of the curve and
not intersecting it is equal to the product of the length of the curve

by the circumference of the circle described by the centre of gravity

of the arc of the curve.

Theorem 2. The volume of a solid obtained by revolving a plane

figure about some axis lying in the plane of the figure and not

intersecting it is equal to the product of the area of this -figure by

the circumference of the circle described by the centre of gravity of

the figure.

Proof. (1) Compare the formula for the area of the surface of

revolution of the curve L about the x-axis (see § 7.10)

P=2n\
}

ydl
L

with that for the ordinate of the centre of gravity of this curve

MX I f Ai
yc = -f=T)ydi.

L

Hence we conclude that

P = 2n lyc = l-2nyct

where / is the length of the revolving arc, and 2nyc is the length

of a circle of radius yc9 i.e. the length of the circle described by
the centre of gravity when revolving about the x-axis.
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(2) Compare the formula for the volume of a solid generated

by revolving a plane figure about the x-axis (see § 7.6)

-yl) dx
a

with that for the ordinate of the centre of gravity of this figure

b

M x

yc = -j

Hence we conclude that

V = ji • 2S yc
= S • 2nyc

where S is the area of the revolving figure, and 2ny
c is the length

of the circumference described by the centre of gravity when revol-

ving about the x-axis.

7.13.23. Using the first Guldin theorem, find the centre of gra-

vity of a semicircle of radius a.

Solution. Arrange the coordinate axes as shown in Fig. 116. By
virtue of symmetry ^ = 0. Now it remains to find yc . If the semi-

circle revolves about the *-axis, then

the surface P of the solid of revo-

lution is equal to Ana 1
, and the

arc length l = na. Therefore, accor-

ding to the first Guldin theorem,

Ana2 = na • 2nyc \ yc
— 2—. Y

-a a
X

7.13.24. Using the second Gul-

din theorem, find the coordinates Fig- 116

of the centre of gravity of the

figure bounded by the x-axis and one arc of the cycloid: r =
=a (t— sin/); y = a ( 1 — cos t).

Solution. By virtue of the symmetry of the figure about the

straight line x~na its centre of gravity lies on this straight line;

hence, xc
= na.

The volume V obtained by revolving this figure about the x-axis

is equal to 5n2a 3 (see Problem 7.6.14), the area S of the figure

being equal to 3na2 (see Problem 7.4.3). Using the second Guldin
theorem, we get

_ V 5ji 2a3 _5a
y° ~~

2nS ~ 2jt-3jia2 ~~ ~6 '

7.13.25. An equilateral triangle with side a revolves about an
axis parallel to the base and situated at a distance b > a from the base.

Find the volume of the solid of revolution.
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Solution. There are two possible ways of arranging the triangle

with respect to the axis of revolution which are shown in Fig. 117,

a and b.

The altitude of the equilateral triangle is h--

a2 |/"3

aV 3
the area

The centre of gravity 0' is situated at the point of

intersection of the medians and at a distance of b-
a }A3

from the

axis of revolution in the first cas.j

, and b+ Q ^"3
in the second.

Fig. 117

By the second Guldin theorem

2na2 V3

v9 =
2na*V~3

aY3_
6

a]/"3

n

= ji

a*bV3
2

a*bV3
4 V ^ 6 J "*\ 2

1 4

7.13.26. Find the centre of gravity of the arc of a circle of radius

R subtending a central angle 2a.

7.13.27. Find the centre of gravity of the figure bounded by

the arc of the cosine line y = cosx between x= —y and x= ^ and

the straight line # = y.

7.13.28. Find the coordinates of the centre of gravity of the

figure enclosed by line y
2 = ax3— x4

.

7.13.29. Find the Cartesian coordinates of the centre of gravity

of the arc of the logarithmic spiral p = aev from (p, = y to (p 2
= ji.

7.13.30. A regular hexagon with side a revolves about one of

its sides. Find the volume of the solid of revolution thus generated.

7.13.31. Using Guldin's theorem, find the centre of gravity of

a semicircle of radius R.
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§ 7.14. Additional Problems

7.14.1. Find the area of the portion of the figure bounded by
the curves y

m = xn and y
n = xm (m and n positive integers) situated

in the first quadrant. Consider the area of the entire figure depen-
ding on whether the numbers m and n are even or odd.

7.14.2. (a) Prove that the area of the curvilinear trapezoid

bounded by the x-axis, straight lines x = a, x = b and parabola

y = Ax*+ Bx2 + Cx+ D can be computed using Chebyshev's formula

' (a-\-b I b— a\
,

fa+ b\
,

fa+ b . 1 b— a\~]

(b) Prove that an analogous area for a parabola of the fifth order

y = f(x) = Axb + Bx" + Cx3+ Dx2 + Ex+ F

can be computed using the Gauss formula

S =^[5,(£±»-/F?) +8f(^) +

7.14.3. Show that the area of a figure bounded by any two ra-

dius vectors of the logarithmic spiral p = aem '+ and its arc is pro-

portional to the difference of the squares of these radii.

7.14.4. Prove that if two solids contained between parallel pla-

nes P and Q possess the property that on being cut by any plane

R parallel to these planes equivalent figures are obtained in

their section, then the volumes of these solids are equal (Cava-

lien's principle).

7.14.5. Prove that if the function 5 (x) (O^x^h) expressing

the area of the section of a solid by a plane perpendicular to the

x-axis is a polynomial of a degree not higher than three, then the

volume of this solid is equal toV = ^ S (0)+ 4S^ +S (h) .

Using this formula, deduce formulas for computing the volume of

a sphere, spherical segments of two and one bases, cone, frustrum

of a cone, ellipsoid, and paraboloid of revolution.

7.14.6. Prove that the volume of a solid generated by revolving

about the (/-axis the figure a^x^b
y
O^y^y(x), where y(x) is

a single-valued continuous function, is equal to

b

V = 2ji
J
xy (x) dx.
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7.14.7. Prove that the volume of the solid formed by revolving,

about the polar axis, a figure O^a^cp^fJ^rc, O^p^p(q)),
is equal to

P
2ji r

V ==— l p
3
((p) sin q)d(p.

a

7.14.8. Prove that the arc length of the curve given by the pa-

rametric equations

jc = nOcos/ + nOsin*,

y =— f"(t)sint + f'(t)cost

is equal to [f (t)+ f (t)]l\.

7.14.9. Find the arc length of the curve represented parametri-

cally

C cos z , C sin z ,

x = \ —^— dz, y = \
— dz

between the origin and the nearest point from the vertical tan-

gent line.

7.14.10. Deduce the formula for the arc length in polar coor-

dinates proceeding from the definition without passing over from

Cartesian coordinates to polar ones.

7.14.11. Prove that the arc length l(x) of the catenary y —
= cosh x measured from the point (0, 1) is expressed by the for-

mula / (#) =sinh a; and find parametric equations of this line,

using the arc length as the parameter.

7.14.12. A flexible thread is suspended at the points A and B
located at one and the same height. The distance between the

points is AB =2fr, the deflection of the thread is /. Assuming the sus-

pended thread to be a parabola, show that the length of the thread

at a sufficiently small y.

7.14.13. Find the ratio of the area enclosed by the loop of the

curve y = ± — x Vx to the area of the circle, whose circum-
.
3

ference is equal in length to the contour of the curve.

7.14.14. Compute the length of the arc formed by the intersection

of the parabolic cylinder
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and the elliptic cone

between the origin and the point M (x, y y
z).

7.14.15. Prove that the area of the ellipse

Ax1 + 2Bxy + Cy* + 2Dx + 2Ey + F = (AC— B 2 > 0)

is equal to

S =
(AC—B-

where A -=

A B D
B C E
D E F

7.14.16. Find: (a) the area S of the figure bounded by the hy-

perbola x1— y'1 U the positive part of the x-axis and the radius

vector connecting the origin of coordinates and the point M(x, y)
lying on this hyperbola.

(b) The area of the circular sector Q bounded by the x-axls and
the radius drawn from the centre to the point N (x, y) lying on
the circle x2 + y*— 1. Prove that the coordinates of the points M
and N are expressed respectively through the areas S and Q by
the formulas

a;^ =cosh 2S, yM = s'mh2S, xN = cos2Q, yN = s')n2Q.

7.14.17. Using Guldin's theorem, prove that the centre of gra-

vity of a triangle is one third of the altitude distant from its base.

7.14.18. Let £ be the abscissa of the centre of gravity of a cur-

vilinear trapezoid bounded by the continuous curve y = f(x), the

x-axis and the straight lines x--^-a and x — b. Prove the validity

of the following equality:

b b

\
(ax+ b) f (x) dx - (a% + b)

\ f (x)dx

a a

(Vereshchagin's rule).

7.14.19. Let a curvilinear sector be bounded by two radius vec-

tors and a continuous curve p^/((p). Prove that the coordinates

of the centre of gravity of this sector are expressed by the follow-

ing formulas:

<p 2 <p 2

X = 2 cp

3"

^ p
y cos (p dcp

N-' 2

p
3 sin cp dcp

H 2

^ P
2
*P
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7.14.20. Prove that the Cartesian coordinates of the centre of

gravity of an arc of the curve p = /((p) are expressed by the fol-

lowing formulas:

<p 2

^
pcoscp |/"p 2

-|- p"2 rfqp
^ p sin cp ^~p 2+ p' 2

cfcp

= 2i
; « =JBi-



Chapter
8
IMPROPER INTEGRALS

§ 8.1. Improper Integrals with Infinite Limits

Let the function f (x) be defined for all x^a and integrable on
A

any interval [a, A], Then lim \ f (x) dx is called the improper

integral of the function f (x) in the interval [a, +00] and is de-
+ 00

noted by the symbol ^ f(x)dx. We similarly define the integrals

a
B +00

^ f (x)dx and
^ f (x)dx.

— GO — 00

Thus,

+ GO A

f / (x) = lim
^ f (x) dx;

a A-> + v a

B B

^f(x)dx= lim ^f(x)dx\
-oo A-*-a> A

+ 00 C B

\ f{x)dx= lim \f(x)dx+ lim [f(x)dx.
-oo A -~™ A fl-* + co£

If the above limits exist and are finite, the appropriate integ-

rals are called convergent; otherwise, they are called divergent.

Comparison test. Let f (x) and g(x) be defined for all x^a and
integrable on each interval [a, A], A^a. If 0^/ (x) ^g (x) for

00

f»

all x^a, then from convergence of the integral \
j

g(x)dx it fol-

a

CO GO

lows that the integral ^f(x)dx is also convergent, and ^((xjdx^.
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< ^ g (x) dx; from divergence of the integral ^f(x)dx it follows that

a a
OO

the integral ^g(x)dx is also divergent.

a

Special comparison test. If as x—oo the function f(x)^0 is an

infinitesimal of order X > as compared with -~
» then the integral

+ X

J
f(x)dx converges for X > 1 and diverges for X^l.

a

Absolute and conditional convergence. Let the function f(x) be
00

defined for all x^a. If the integral
J | / (x)

\
dx converges, then the

a
00

integral [f(x)dx also converges and is called absolutely convergent.

a

In this case
00 CO

\f{x)dx <^\\f(x)\dx.
a a

If the integral \
j

f(x)dx converges, and [
)

\f(x)\dx diverges, then
a a

x

the integral ^f(x)dx is called conditionally convergent.

a

The change of the variable in an improper integral is based on
the following theorem.

Theorem. Let the function f (x) be defined and continuous for

x^a. If the function x = y(t)
y defined on the interval a</<|3

(a and P may also be improper numbers — oo and oo), is monoto-

nic, has a continuous derivative q/(/)^0 and limq) (t) = a,
t-> a + O

lim cp (t) = + °°» then
t > p - o

oo
(

J
,

[f {x)dx= \f(y(t))v' (t)dt.

a a

Integration by parts involves no difficulties.

8.1.1. Evaluate the following improper integrals with infinite

limits or prove their divergence taking advantage of their defini-

tion.

w]lW-x> W L+t + 5
; (c)J*sin*d*.

e 2 -co
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Solution, (a) By definition,

A

jxln 3 * ^ J x In 3 x aI™ x { 2 In 2 *
e2 e 2

= lim

(b) By definition,

oo o A

2+ 2x + 5

(instead of the point x = any other finite point of the #-axis may
be taken as an intermediate limit of integration).

Compute each of the limits standing in the right side of the

above equality:

o

B

1 , 1 . Jl

s
=y arctanT +T ,

1™ f o
,

1*
i c = 'im 4- arc tan

*+ 1

2

o

Hence,

^ ji l , l

=T—

2

arctan -2'

+ 2*+ 5 2
"

— X

(c) By definition,

qo A

^xs\nxdx= lim [xs'mxdx.

o ^ + 00
o

Putting w = cfo = sin xdx and integrating by parts, we get

A / A x
14

lim ^xsinxdx^ lim f

—

a;cosa;|^ +
J
cosArdA; j==

o

= lim (

—

A cos A + sin ^4).
j4 -+ + CO

But the last limit does not exist. Consequently, the integral
QO

J
a: sin at^a; diverges.
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8.1.2. Evaluate the following improper integrals with infinite

limits on the basis of their definition:

dx

x+x*

dx

(! + *)'
(e)

]

dx

x2—6x+10

(O
j
QO

;
(f)

J

V"(4x
2 +l) 3 '

Solution, (a) By definition

OD A
C x dx j. C xdx

lim
/4 —>• + GO

_l_ (x2— 3)~ 1/2

2

=— lim
y4 -> + GO

-\I2

\

V <4
2-3

— 1 = 1.

8.1.3. Prove that the integrals of the form

J
e"px dx and

J
g^dx

converge for any constant p > and diverge for /? < 0.

8.1.4. Test the integral
00

f
dx

J l+2x2+ 3x4

for convergence.

Solution. The integrand

l + 2x2+ 3x4

is positive and is an infinitesimal of order A, = 4 as compared with

•j as a;—oo. Since 4 > 1, the integral converges according to the

special comparison test.

8.1.5. Test the integral

C dx

J x+sin 2

x+sin 2 x
is continuous and posi-

for convergence.

Solution. The integrand f(x)-

tive for x ^ 1.

As jc—* oo the function f(x) is an infinitesimal of order X=l
as compared with

;
according to the special comparison test the

integral diverges.
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8.1.6. Test the following integrals for convergence:
cc co

i

1 1

1 r

3+arc sin — f .

, x i 2+ cosa: , ,n x , . x V arc tan x ,

J J i j/ x
i

8.1.7. Test the integral

(*+ + 1) dx

l

for convergence.

Solution. The integrand is continuous and positive for x^\.
Determine its order of smallness X with respect to as x— oo;

since

x+ Vx+\ 1

1 + 1^ * +
*2+ 2 ^+l * 1+2 l/_L.±

the order of smallness According to the special comparison
00

test the integral (
*+ — Hy diverges.

i

8.1.8. Test the integral
GO

r dx

J Vx (x-\)(x-2)
3

for convergence.

Solution. Since the function

f(x)= r_r
_-±—-

/

—=~ x

3 1

is an infinitesimal of order ^ = y with respect to — as #— +oo,

according to the special comparison test the integral converges.

8.1.9. Test the integral

for convergence.
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Solution. The integrand is continuous and positive for x^2.

Determine its order of smallness with respect to — as x— + oo:

= -TT X
v-35

V

Since the second multiplier has the limit \/2 as x— + <*), we

have 1 = -^- < 1. Consequently, the given integral diverges.

8.1.10. Test the integral

1 —cos— dx
x

for convergence.

Solution. The integrand

f(x)= 1 — cos- = 2sin 2-
'

v
' X X

1

is positive and continuous for x^l. Since 2 sin 2 y ~2 f —
J

= -p-,

the given integral converges (by the special comparison test).

8.1.11. Test the integral

i

In
e
"

dx. n>0

for convergence.

Solution. Transform the integrand:

1 + -

Since the function

f(x)<

is an infinitesimal as x—«>, then

/(*) l

. In other words, lim According to

the special comparison test the given integral diverges.

8.1.12. Test the integral

1 — 4 sin 2x ,

dx

for convergence.
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j ^ sin 2x
Solution. The function f(x) = TT^" chan2es its sign together

x3 -\- y x

with the change in sign of the numerator. Test the integral

| 1 — 4 sin 2x|

for convergence. Since

dx

1 — 4 sin 2a:
| ^ 5

'[/ x

3 < — , and the integral

j
COnV/erges, the integral f —

—

^-^^-dx converges as well (ac-
J x*+y x

cording to the comparison test). Thus, the given integral converges

absolutely.

8.1.13. Prove that the Dirichlet integral

J x

converges conditionally.

Solution. Let us represent the given integral as the sum of two
integrals:

C slnx . C sinx . P sin* ,=\— dx=
\

— dx+ \— dx -

The first is a proper integral (since lim = 1 ) . Applying the
\ x-> o

x J

method of integration by parts to the second integral, we have

oo A
smx

dx = \\m
J

dx'-

= lim
A -> co

A C cos x dx

IL J x*
2 Jl

T J

P cos*

But the improper integral
j
-^^dx converges absolutely, since

71

2
co

^ ^ ^

, and the integral [ ^ converges.
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Therefore, the integral ^-^~dx converges.

o

Reasoning in a similar way it is easy to prove that the integral
CO

[
c°sx

dx also converges. Now let us prove that the integral
X

n
2

J
J_5!2_LL dx diverges. Indeed,

sin x
| ^ sin 2 x 1 — cos 2x

x x 2x

but the integral

PI— cos2x , 1 fdx 1 pcos2x ,

T

=4 lim In 4-1 In£-1 j^ <te

/I -»• CO
31 Jl

T 2 2

00

It ji 1 C cos 2x

X

2

f* cos 2x
diverges, since lim In A =oo, and the integral \ converges.

JX

T
8.1.14. Prove that the following integrals converge

Ot 00 00

(a) ^ s\n (x2
) dx; J

cos (a;
2
) dx; (b)

J
2x cos (jc

4
) dx.

Solution, (a) Putting % = K*, we find

00 00

jVin (x 2)dx = -^
^
-y^dt.

b o

Let us represent the integral on the right side as the sum of two
integrals:

V' J V i J V i

The first summand is a proper integral, since lim -^£i-= 0. Let
/- + o V t
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us apply to the second summand the method of integration by
parts, putting

u= \jV U sin t dt = dv,

C sin / , , cos I 00

_L f
CQS t dt _ 1 C cos I

Jt/2 Jt/2 jt/2

I
COS / I

dt.

The last integral converges absolutely, since
f3/2

^"^yr » an^

QO

the integral ^"^72 converges. We can prove analogously that the

Jl

T
QO

integral
J
cos(x2)dx is convergent. The integrals considered are cal-

led FresneVs integrals. They are used in explaining the phenome-
non of light diffraction,

(b) By the substitution x2 = t this integral is reduced to the
QO

integral Jcos(/ 2)d/. The latter integral converges as has just been

proved.

Note. Fresnel's integrals show that an improper integral can con-

verge even when the integrand does not vanish as x—oo. The last

convergent integral considered in item (b) shows that an improper
integral can converge even if the integrand is not bounded. Indeed,

at x = l/nn (n = 9 1, 2, ...) the integrand attains the values

=h \/tin, i.e. it is unbounded.

8.1.15. Evaluate the improper integral

QO

?
dx

n natural number.
J (l+*2)"'

Solution. Make the substitution x = tan t, where 0^£<y. Then

jt 1x=0 at /=0, x— + 00 as t —>—— and x't^—^^Q. Conse-

quently, by the theorem on changing a variable in an improper

integral
jt ji

oo 2
~2~

I(TW«I« xsec2M/=
I

cos2,,
"
2/d/ -

On changing the variable we obtain the proper integral which
was computed in Problem 6.6.9.
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Therefore,

? dx f

n/2
>
n = l

>

\

aX = ) 1.3.5. ..(2/i— 3) ji ^ ,

J<
l +*a

>"
\ 2.4.6. ..(2.-2) 'T- *> L

X

8.1.16. Compute the integral / = j-j-p^d*.

Solution. Apply the substitution

*=l/f; dx = — (l/t 2)dt\ ^ = 00, f 2
= 0;

/ ? *2

//y _? (^ 4)^ _?
J l+*4

J l + l// 4
J /

4 + l

•00
If another integral / is added to the right and left sides then we

r2
-f \/t

2
dt.

Make the substitution z = t— l/t, (I + l/t 2)dt = dz. Then, as
* —H-O, z — — 00 and as t — + 00, z —»- + oo. Hence,

00 r a
. 1 C dz 1 f dz

,
.. f dZ

-00 lb
1

lim arc tan—^L-H !—=- lim arc tan—

^

2 )/" 2 B -* - CD V 2 2^2 ,4 - + ^2
I / JI Jl \ Jl

+

8.1.17. Evaluate the following improper integrals:

X 00

(a) l~Y^dx\ (b) §e-*
2

x2m+1 dx.

8.1.18. Compute the integral

1

accurate to two decimal places.

Solution. Represent the given integral in the form of a sum of

two integrals

x5+ *2 +l
1 7v
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Compute the former with the required accuracy, using Simpson's
formula, and estimate the latter. Since for x^ 1 we have

then

0< / 2
= ^x-T*dx= ^N-*'*.

N

At N = 7 we get the estimate L < ^ X —1-= < 0.0031.

Computation of the integral

i

by Simpson's formula for a step = l gives

5^0.2155,

and for a step -^- = 0.5

S
. 5
=0.2079.

Since the difference between the values is 0.0076, the integral I
t

gives a more accurate value S 5
= 0.2079 with an error of the order

°^L6 - 0.0005.

Consequently, the sought-for integral is approximately equal to

/ & 0.208

with an error not exceeding 0.004, or / = 0.21 with all true deci-

mal places.

§ 8.2. Improper Integrals of Unbounded Functions

If the function f (x) is defined for a^x<b> integrable on any
interval [a, b —e], 0<e<b— a and unbounded to the left of the

point b, then, by definition, we put
b b-v

\ f (x)dx= lim \ f (x)dx.

If this limit is existent and finite, then the improper integral is

said to be convergent. Otherwise it is called divergent.

Analogously, if the function f (x) is unbounded to the right from
the point a, then

b b

\ f (x) dx= lim \ f(x)dx.
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Finally, if the function is unbounded in the neighbourhood of an
interior point c of the interval fa, 6], then, by definition,

b c b

J f {x)dx = $ f (x)dx + J f (x) dx.

a a r

Let the function f (x) be continuous on the interval [a, b] except

at a finite number of points. If there exists a function F (x) conti-

nuous on [a, b] for which F' (x) = f (x) except at a finite number
of points, then the Newton-Leibniz formula

b

]f(x)dx=F(b)— F(a)
a

holds good.

Sometimes the function F (x) is called a generalized ant [derivative

for the function f (x) on the interval [a, b}.

For the functions defined and positive on the interval a^x<b
convergence tests (comparison tests) analogous to the comparison
tests for improper integrals with infinite limits are valid.

Comparison test. Let the functions f (x) and g(x) be defined on
the interval a^x<b and integrable on each interval [a, b— e],

< e <b —a. If ^f(x)^g(x), then from the convergence of the
b b

integral \^g(x)dx follows the convergence of the integral ^f(x)dx,
a a

h b

and ^ f (x)dx^^ g(x)dx; from the divergence of the integral

a a
b b

^f(x)dx follows the divergence of the integral ^g(x)dx.
a

Special comparison test. If the function f(x)^0 is defined and
continuous on the interval a^x<b and is an infinitely large

quantity of the order X as compared with jzr^ as x—>b— 0, then

b

the integral ^f(x)dx converges for X< 1 and diverges for X^\.
a

In particular, the integral

b

C dx

(b— xf

converges for X < 1 and diverges for % ^ 1.

Absolute and conditional convergence. Let the function f (x) be
defined on the interval a?Cx<b and integrable on each interval
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[a, b— e]; then from the convergence of the integral ^\f(x)\dx
a

b

follows the convergence of the integral ^f(x)dx.
a

b

In this case the integral ^f(x)dx is called absolutely convergent.
a

b b

But if the integral ^f(x)dx converges, and the integral ^\f(x)\dx
a a

b

diverges, then the integral ^ f(x)dx is called conditionally convergent.
a

b

Analogous tests are also valid for improper integrals ^f(x)dx,
a

where f(x) is unbounded to the right from the point a.

8.2.1. Proceeding from the definition, evaluate the following

improper integrals (or prove their divergence):

2

dx
(a) l4^T : (b)

I cos,-

3 2

(c ) J f4x-x>-3
; ^ J FTT^f

1

P*3 + ?/*— 2 f dx

V

Solution, (a) The integrand / (x) =—.. \ is unbounded in the
x y \wx

neighbourhood of the point jt = l. It is integrable on any interval

[1+e, e]
9
since it is a continuous function.

Therefore

f^== lim \-J* = lim [i
3/lH^|

e

1 =
J xr/\nx S-++Q J xW\nx e^+o |l +-ej
\

V 1+8 V

lim
8^+0

!* 3/ln»(l+e) 3_

2
'

2 2

(b) The integrand !(k) = —— is unbounded in the neighbourhood

of the point * = y and integrable on any interval y as
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a continuous function. Therefore

-t

dx

cos x
= lim

fJ cos*
e ^ + J

= lim In tan f 4+ ^1 T

~

e = Hm In tan (£—

4

e-> + o W 4
/ o b-> + o \ 1 1

Hence, the given integral diverges.

(c) The integrand is unbounded in the neighbourhood of the points

x = 1 and x = 3. Therefore, by definition,

dxc dx r dx r

J V~4x— x'
2— 3

~~
J V~4x— x2— 3 J VT? -a;

2— 3

{instead of the point x= 2 we can take any other interior point of

the interval [1, 3]). Let us now compute each summand separately:

2

1 + tr

f ^ ^ = lim ( r

dx = = lim arc sin — 2)

1 1 + <?

= lim [0— arc sin (e— 1)] ;

3 3-t

f -
d* = = lim ( -7=^== lim arc sin (x— 2) ' =

J ^-^-3 6-. + J \
r\-(x—2)* 8-. + 2

2 2

=^[3^ sin (l-e) -0]=f
Hence,

(d) The integrand f (x) = r is unbounded in the neigh-

bourhood of the point x=l, which is an interior point of the

interval of integration. Therefore, by definition,

2 I l

r dx ~ r
dx

i r —
JC
2

|



§8.2. Improper Integrals of Unbounded Functions 401

Evaluate each summand separately. If 0^*< 1, then

1 -e
r dx _ r dx _ Hm P dx _

= lim [arc sin (1 — e)—-0] =~
8- + 1

lim arc sin x
8 -* +

If 1 < x<2, then

J V^l 1 —x2
\ J ^2_! p _ + J

j/-

1 1 1 +e

dx

x2 —\

lim lnU+ K*2—
1)

8-> +

: lim [ln(2 + K3)— ln(l + e + +e) 2- l)] = In '2 + j/"3 ).

8 -> +

Hence,

=|+ ln(2 + |/3).

(e) Represent the given integral as a sum of three items, divid-

ing each term of the numerator by £/x3
,

dx

„3/5
"

The first summand is a proper integral evaluated by the Newton-
Leibniz formula:

i

17'
lo

17'

The second and third summands are unbounded to the right of the

point x = 0. Therefore,

i i

dx

* 4/15 8-> +
lim ^ x 11 / 15

1 _ !^

analogously,

f-^L = ii tn f JL = iim A ^2/6
1 __5_~ 2
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Hence,
i

dx = T7 +T- 2 'Y
= 625

"187*

(f) Represent the integrand f(x) = -

of partial fractions;

1 1

/(*) =

1
—

a:
3 (1— x)(l + x+ x2

)

in the form of a sum

x+2

TU P djc 1 C dx
,

1 f x+ 2 , c .

Then j
_ = - j_+- J Since

o

dx
1-8

: lim
J I-*

E _
lim In (1

—

x)
8-> +

l-e

the given integral diverges. There is no need to compute the second

summand representing a proper integral.

Note. Evaluation of the improper integrals from Problem 8.2.1

(a to f) can be considerably simplified by using a generalized anti-

derivative and applying the Newton-Leibniz formula. For instance,
3 3 s

in Problem 8.2.1 (a) the function F (x) = -^ / In2 * is continuous on

the interval [1, e] and differentiate at each point of the interval

1 <x^ie, and F' (x) = f (x) on this interval. Therefore

dx = \\/\tfx _3

2
*

8.2.2. Proceeding from the definition, compute the following

improper integrals (or prove their divergence):

(a)
(' 2x dx

2/JT

(b) fsinl.§;
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8.2.3. Evaluate the following improper integrals:

3

-3 b

Solution, (a) Find the indefinite integral

JTCT= J"
(9 arc sin i-, ^9=^) + C.

The function

/

r
(x) = y^9 arc siny—xK9

—

x2
^j is a generalized anti-

derivative for f(x) = y==== on the interval [—3, 3], since it is

continuous on this interval and F'(x)=f(x) at each point of the

interval (—3, 3). Therefore, applying the Newton-Leibniz formula,

we get

-7= = Tr 9 arc sin —x y 9

—

x- =-r n.

-3

(b) Transform the integrand

f (x)=s
\/~*±x== 2 + * = 2 + X

The indefinite integral is equal to

j ]/|^dx^2arcsin|-l/4^7
2 + C.

The function f (x) =2 arc sin -|-— ]/~^— x2
is a generalized antideri-

vative for f (x) on the interval [0, 2], since it is continuous on
this interval and F'(x)=--f(x) on the interval [0, 2).

Therefore, applying the Newton-Leibniz formula, we get

2

f
^/2^ dx==

^
2arcsin ^_ |

/4ZI72

j|o

2 = Jl+ 2.

b

8.2.4. Test the integral
1

dx

x 3/x
-1

for convergence.

Solution. At the point x = the integrand goes to infinity. Both
i^

integrals f 3* and ( 3* diverge, since ^ = -g- > 1. Gorisequent-
J X */ X J X / X
-\ v y
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ly, the given integral diverges. If this were ignored, and the New-
ton-Leibniz formula formally applied to this integral, we would
obtain the wrong result:

1

dx f 3

1:
= —6.

i

- i

And this is because the integrand is positive.

8.2.5. Test the following improper integrals for convergence:

i i

/ \ P e* j u\ Psin#-{-cos# ,

(a) \—F==dx\ b) w ^ - dx.

v

Solution, (a) The integrand is infinitely large as x—+ + 0. Since

V 1— cosx = J/2 sin ~ -J^p x as + (),

the integrand has the order h=l as compared with ~. According

to the special comparison test the given integral diverges.

(b) Rewrite the integrand in the following way:

r . , sin #-|-cos x 1

/(*)= 5
~

l/\ +x +x* y\~x

This function is infinitely large as x—+ 1, its order is equal

to h = -^r as compared with y~^, since the first multiplier tends

to 1 as x—>0. Therefore, by the special comparison test, the given

integral converges.

8.2.6. Test the following improper integrals for convergence:

(a)
\

e5in ,_, dx; (b)

b T
K

i

, x i cos a: d#
(c) —

—

J v/ x — sin

.

In (l 4- i/x?)
Solution, (a) The integrand f (x)=

n

J,;
^

is positive in the

interval (0, 2) and is not defined at x = 0. Let us show that

lim f(x) = oo. Indeed, since

esmx_i _ s'mx~ x, In (1 + l/'x*) as x-*0,
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we have

lim — .

v = hni -— = lim . = oo.
*-+ o 1 x -> * * - o ^/*2

At the same time we have shown that /(x)~y-L= as x

—

> 0, i.e.

2
that /(a;) is an infinitely large quantity of order k = — < 1 as com-

pared with — . Consequently, by the special comparison test, the

given integral converges.

(b) Determine the order of the infinitely large function f (x) =
— in the neighbourhood of the point x = 2 with respect

j/16-x4

l

2— x'
to ^4^- T° this end transform the expression for f (x):

j/l6-A:4~ y4+x*l/
r
2+ x 1/2— x

'

Hence it is obvious that the function f (x) is an infinitely large

quantity of order A, =y<l as x—*2. According to the special

comparison test the given integral converges.

(c) The integrand / (x) = . /

CQS x— is unbounded in the neigh-
y x — sin x

bourhood of the point x = 0. Since

tt x
cos a: cos* 1 A

V x — smx yx i/*

as jc—> + the function / (*) is an infinitely large quantity of order

k=-j < 1 as compared with and, by the special comparison test,

the integral converges.

8.2.7. Investigate the following improper integrals for conver-

gence:

ex dx ,i x f x l dx
(a)

.1 Tct ;
(b)

j yu=ji? *

K

b o

1 2 _

fe) r ^ /n r in ( +

o

V
'

J x-sinx ' W
J gtanx_

1
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8.2.8. Prove that the integral

converges.

Solution. For < x < 1

f •
1

sin 7
1 Vx

sin —
x

dx

Vx

C dx
But the integral

j
y= converges, therefore, by the comparison

b
i

sin(i/*)
^x a jsQ convergeS) an(j consequentlytest, the integral

[

the given integral converges absolutely.

8.2.9. Prove the convergence of the integral

/ =
^

In sin xdx

and evaluate it.

Solution. Integrate by parts, putting u = \n(s\nx), dx = dv:

lnsinxdx=x\ns\n x
C COS X j C X ,—
\ x -— dx= — \ t dx.
J

sin x
J

tan x

Since lim
tan x

1, lim i^^— Q' ^e 'as * integral is a proper

one. Consequently, the initial integral converges.

Now make the substitution x = 2t in integral /. Then dx = 2dt;

x = at / 1==0; x = j at t 2
= ^. On substituting we get:

n/2 JT/4 Jl/4

5 In sin xdA: = 2
J
lnsin2^=2

J
(In 2 + In sin t + In cos f)df =

JT/4 JT/4

= 2Hn2f
4

+ 2
J

lnsin/<« + 2
J

lncos/df =
o o

JT/4 jt/4

= yln2 + 2
J

lnsin /df + 2 j In cos /d/.
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In the last integral make the substitution £ = jt/2— z. Then
dt = — dz\ t = at 2,=ji/2; t-=n/4 at 2 2

= jx/4. Hence,

JT/4 JT./4 77/2

2^ In cos tdt — —2^ In cos —z^dz = 2 ^ \n sin zdz.

JT/ 2 jt/4

Thus,

JT./2 JT/4 JT./2

In sin xdx = j In 2 + 2
J

In sin tdt + 2
J

In sin 2 =
Jt/4

Ji/2

= J ln2 + 2
J

lnsinfd* = -jln2 + 2/.

Whence

^=
J

\ns\nxdx=- — In 2.

8.2.10. Compute the integral

1

fx
n dxyr==z(n a natural number).

Solution. The integrand is an infinitely large quantity of order

A, =y with respect to -j-^ as x—>1 — 0. Therefore, the integral con-

verges.

Make the substitution x = sin / in the integral. Then dx = costdt,
x = at ^ = 0, x=l at t = n/2. On substituting we get

1 Jl/ 2 JT/ 2

xn dx C s\nn /-cos tdt f . „ ,—
r = = s\n n tdt.

J 1^
l
-*2

J
cos/

J00
The last integral is evaluated in Problem 6.6.9:

n— 1 n— 3 1 jxyy, ft even,

— - —^ . . .
~

» n odd.
n n— 2 3

1

Consequently, the given integral is also computed by the same
formula.

8.2.11. Evaluate the following improper integrals (or prove their

divergence):

f dx r dx f 3a:
2+ 2

(a)
J
Tun; (b) (c)

J
y^rdx.

1
k
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8.2.12. Compute the improper integral

i

In = § xm \nn xdx (n natural, m> — 1).

Solution. At n = the integral is evaluated directly:

i

l =^xm dx= :

-

m+ 1

o

o m+ 1

"

For n > integrate I n by parts, putting

u = In" x\ do = xm dx\

J 1 n-i <lX Xm+ldu=n\nn x x — ; u = -

x m+
We get

" m + 1

1

XT f ^In^^dx- ^ /„-,.
o m+ 1 J m-f- 1

n 1

This gives a formula by means of which one can reduce /„ to / for

any natural n:

I =— n
I = n ^n— x

)
i = __ (— 1 )" /z!

/

And finally,

w (m+l)» + 1
"

8.2.13. Compute the integral

2.0

j _ C e~x dx
~

J ^/ 2-\-x— x2

0.3

accurate to 0.03.

Solution. The integral has a singularity at the point x=2, since

2 + x—

x

2 = (2

—

x)(l+x). Let us represent it as the sum of two in-

tegrals:
2 -e 2

2 -e

Now compute the first integral to the required accuracy, and estimate

the second one. For e^O.l we have

0</ - < ^lp==r - n5x^'= (u53s
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Putting e = 0.1, we get the estimate /
2 < 0.028. Evaluation of the

integral
1.9

e~ x dx

V*-

by Simpson's formula with a step h = 0.8 gives

S
. 8
= 0.519,

and with a step ft/2 = 0.4,

S
. 4
= 0.513.

And so, integral /j gives the more accurate value, 0.513, with an

error not exceeding 0.001. Taking into consideration that integral

/

2

is positive, we round off the obtained value to

/ ^0.52

with an error not exceeding 0.03.

Note. By putting e = 0.01, we get the estimate /
2 < 0.005, but the

computation of the integral
1.99

f e-*dx
4

0.3

would involve much more cumbersome calculations.

8.2.14. Investigate the following integrals for convergence:

i i

dx /i x f dx
(a) f-£=; (b)

fJ V sin* J
ex -

o

. x Ccos 2 xdx f tanxdx . , f sin#dx
<c) Jo^gr: (d)

j F=; (e)

j^
_1_

2

$ 8.3. Geometric and Physical Applications of Improper
Integrals

l

8.3.1. Find the area of the figure bounded by the curve y--
l +x*

(the witch of Agnesi) and its asymptote.

Solution. The function y =
} _^2

is continuous throughout the en-

tire number scale, and lim y = 0. Consequently, the x-axis is the asymp-
X-+ CO

tote of the given curve which is shown in Fig. 118. It is required

to find the area 5 of the figure that extends without bound along the
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x-axis. In other words, it is required to evaluate the improper integ-
CO

C dx
ral S= \ -t-t—r . By virtue of the symmetry of the figure about the

J \ -\- X"
— oo

y-ax\s we have
CO GO

S=f -4^- = 2[ T^ = 2 lim arctanx
A

9
31 „= Z'-tt = Jl.
^

8.3.2. Find the surface area generated by revolving about the

Solution. The area of the sur-

face is equal to the improper in-

tegral

x-axis the arc of the curve y

y\

i

1

i

-7 / X
Making the substitution e~ x = /,

= — e~* dx, we get x^=0 at
Fig. 118

t = 1 , x = oo at £ = 0; hence
i

S = 2ji [\fT^dt = 2n-±[tVT^+ \n(t + VT+T*)]\ =

= ji[J/'l+ln(l+j/~2)].

8.3.3. Compute the area enclosed by the loop of the folium of Des-

cartes

x3
-f if— 3axy = 0.

Solution. The folium of Descartes is shown in Fig. 86. Let us re-

present the curve in polar coordinates:

x^pcoscp; y = psincp.

Then p
3 cos 3

cp -f-

p

3 sin 3
cp— 3a p

2 cos cp sin cp = 0, whence, cancelling p
2
^

we get
3a cos cp sin cp

^ ~~
cos 3 (p+ sin 3 cp

*

Since the loop of the curve corresponds to the variation of cp between

and y the sought-for area is equal to

jt

2
9a2

r sin2
cp cos 2

cpi r* o j ^ n sin'cpcos'cp ,
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To evaluate the obtained proper integral make the substitution

tan cp = t\
COgf

= dt\ cp = at t = 0, cp = y at t = oo. Thus we get

c 9a2
f t

2 dt 9a 2
,. C i

2 df 3a2
,. 1 1

<4

2
"

8.3.4. Find the volume of the solid generated by revolving the cis-

soid y
1 = 2a—

x

a k° u * ^ s asYmptote x=2a.

Solution. The cissoid is shown in Fig. 119. Transfer the origin of

coordinates to the point 0' (2a, 0) without changing the direction of

the axes. In the new system of coordinates

X = x— 2a, Y = y the equation of the cissoid

has the following form:

(X + 2a)*
Y2

-X

The volume of the solid of revolution about

the axis X = 0, i.e. about the asymptote, is

expressed by the integral

V = Ji$ X 2 dF = 2jcJX
2 dY.

Let us pass over to the variable X. For this

purpose we find dY= Y' dX. Differentiating the

equation of the cissoid in the new coordinates

as an identity with respect to X, we get

2VT' = -

3(X+ 2a) 2 X— (X+ 2a)3

X 2

Fig. 119

2 (X~^~2a) 2 (X— a)

X 1

whence for Y > we have

(X+ 2a)*(X-a)

Hence,

X 2Y

V = —2n C(X±
J V-

(X+ 2a) (X-a)

X 2 }f-(X+ 2a)/X
'

2a) (X— a)

(X+ 2a)/X
:dX.

Make the substitution (X + 2a)/X =—

*

2
; X = —2a at t = 0, X=0at

/ = oo. Then:

X 2a

1+/ 2
dX:

\at
:

(1 + /
2
)
2
dt\ X + 2a- 2at*

1 + /
2

X-a = 3o+ fl/
2

(

1 + /
2 5
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whence

v 9 f 2at 2 (3a + at 2
) 4at dt _

V ~ ) t(\ + t*)(\ + t'*)(\ + t*)*
~

JT/2

= 48™ 3

J (trw dt + 16™3

j (ttf¥ dt -

n

Putting t = tanz, dt = sec 2 zdz, we get ^ = at z = 0, ^=oo at

z = n/2. Hence,

JT/2 JT/2

V = A8na's [ sin 2
z cos 4 zdz + 16jta3

^ cos2 z sin 4 z dz =

JT,/ 2 JT/2

= 48jia 3
^ cos4 zdz— 48na3

J
cos6 zdz +

JT/2 JT/2

+ 16jta 3
^ sin 4 zdz— 16jia 3

^ sin 6 zdz.

JT/2

Using the known formulas for the integrals
J

s\n n xdx,

^cos^xdx (see Problem 6.6.9), we get

V = 64jca3— •—— 64ra 3— .

1x3x5 - 2

8.3.5. Prove that the area of the region bounded by the curve

t/=-7=L=, the axis of abscissas, the axis of ordinates and the
V 1 — *2

asymptote x — 1 is finite and equals -y

.

8.3.6. Prove that the area of the region bounded by the curve

y = y^=t » ^e axis of abscissas and the straight lines x=±:l is

finite and equals 6, and the area of the region contained between

the curve # = ~2> the axis of abscissas and the straight lines x=±:l

is infinite.

8.3.7. Find the volumes of the solids enclosed by the surfaces

generated by revolving the lines y = e~ x
, x = 0, y = (0 < -(- oo):

(a) about the x-axis,

(b) about the y-axis.
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8.3.8. Compute the area contained between the cissoid y
2 =

2a_ x

and its asymptote.

8.3.9. Compute the area bounded by the curve y = e~ 2x (at x > 0)

and the axes of coordinates.

8.3.10. Find the volume of the solid generated by revolving, about

the x-axis, the infinite branch of the curve y =2^—^j for x> 1.

8.3.11. Let a mass m be located at the origin and attract a

material point M found on the x-axis at a distance x from and

having a mass of 1, with a force F = -£r (according to Newton's

law). Find the work performed by the force F as the point M moves
along the x-axls from x=r to infinity.

Solution. The work will be negative, since the direction of the

force is opposite to the direction of motion, hence

oo N

A=\ — T̂ dx= lim \

—

^rdx= ——

.

J x 2

n - oo J *
2 r

r t

During the reverse displacement of the point M from infinity to

the point x = r the force of Newtonian attraction will perform posi-

tive work ^- . This quantity is called the potential of the force

under consideration at the point x=r and serves as the measure of

potential energy accumulated at a point.

8.3.12. In studying a decaying current resulting from a discharge

"ballistic" instruments are sometimes used whose readings are pro-
00

portional to the "integral current intensity" g= J
/ dt or the "inte-

00

gral square of current intensity" S=^I 2 dt and not to the instan-

taneous value of the current intensity / or to its square / 2
. Here t

is time measured from the beginning of the discharge; / is alterna-

ting-current intensity depending on time. Theoretically, the process

continues indefinitely, though, practically, the current intensity be-

comes imperceptible already after a finite time interval. To simplify

the formulas we usually assume the time interval to be infinite in

all calculations involved.

Compute g and S for the following processes:

(a) I = / e~ kt (a simple aperiodic process); k is a constant coeffi-

cient, which is greater than zero.
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(b) / = I e~ kt sin cot (simple oscillating process); coefficients k and a>

are constant.

Solution.

(a) g=
\

l e~ k1 dt= lim f V"*' dt = / lin

oo

s
=
J /;*-•*«<«=

-'J-
;

oo A

(b) g= \ I
()
e~ kt s\n cot dt = lim ^ V"*' sin cot dt =

o A - 00
n

= -^f7T2 !™ [(cocosorf + ftsinwOe-"]^-^^;
o)

2+ /2
2
^ _ n

LV
'

7 J o or-f-& 2 *

oo ^4

5- f sin 2 (o/d/= lim I li e
-* kt l

~ co * 2<ot
dt =

J A - co J ^

= —A lim
46 /l - 00

I

co
2+ 6 ;

(A 2 cos 2cot + (o& sin 2a)t) 9 -2kt

4k (k* + co
2
)

8.3.13. Let an infinitely extended (in both directions) beam lying

on an elastic foundation be bent by a concentrated force P. If the
x-axis is brought to coincidence with the initial position of the axis

of the beam (before the latter is bent) and the y-axis is drawn
through the point (at which the force is applied) and directed

downwards, then, on bending, the beam axis will have the follo-

wing equation

y = ^ e~ a 1x1 (cos ax+ sin a
\
x

|),

where a and k are certain constants. Compute the potential energy
of elastic deformation by the formula

oc

W = Ee
J (y"f dx (E, e const).

Solution. Find y"\

Pol4

y" = -£-e~ ax [(cos ax+ sin ax)— 2 (— sin ax+cosax) +

-j-(— sin ax— cos ax)] = —-e~ ax (sin ax— cos ax).
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w

Hence,

P 2a6Ee f

k 2

o

J
e~ 2ax (1 — 2 sin ax cos ocx) dx =

P 2aQEe f 1 2a

2a 4a 2 + 4a2

P 2a*Ee

4fc
2

8.3.14. What work has to be performed to move a body of mass m
from the Earth's surface to infinity?

8.3.15. Determine the work which has to be done to bring an

electric charge e2 =l from infinity to a unit distance from a

charge e
1

.

§ 8.4. Additional Problems

8.4.1. Prove that the integral

dx

1 xP In* x
i

converges for p > 1 and q < 1.

8.4.2. Prove that the integral

00

converges absolutely for — l<(/?+l)/g<0 and converges condi-

tionally for 0<(p+ l)/</ < 1.

8.4.3. Prove that the Euler integral of the first kind (beta func-

tion)
i

B(p, q)=\
j

xP- 1 (l — x)"- 1 dx

converges for p > and q > 0.

8.4.4. Prove that

lim \ sinax-sinP^dx^O,
7 -> a>

7 J

if |a|=HP|.

8.4.5. Prove that

oo

I = ^e- xi
-x* n + 1 dx=Y (n natural).
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8.4.6. Prove that if the integral J-^— converges for any posi-

a

tive a and if f(x) tends to A as x—> 0, then the integral

00

r /(ax)-/(N
<fa . (a>0( p>0)

J *

converges and equals /4ln(P/a).

8.4.7. Prove that

00 cc

f
g"

^x __ f cos ax — cosfk
dx — \n

^

J * J x
X ~ n

"cT
'

o

JT/2

I

J cos X
8.4.8. At what values of m does the integral ——

—

dx con-

verge?
ji

P dx
8.4.9. Prove that the integral

J
j^^k converges if k < 1, and

diverges if k^\.
00

8.4.10. Prove that the integral
J

sin *(*^~ CQS *)
<jx converges if

< s < 4, and converges absolutely if 1 < s < 4.

8.4.11. Suppose the integral

+ 00

lf(x)dx (1)
a

converges and the function y(x) is bounded.
Does the integral

lf(x)<p(x)dx (2)

necessarily converge?
What can be said about the convergence of integral (2), if integ-

ral (1) converges absolutely?

8.4.12. Prove the validity of the relation

/ (x) = 2/ (ji/4+ x/2)

—

2/ (n/4

—

jc/2)— x In 2

,

where f(x) = — ^ In cos y dy.
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Compute with the aid of the relation obtained

JT

2

/ (-^) = — j
In cos ydy.

8.4.13. Deduce the reduction formula for the integral

JT

2

I n =^\ncosx-cos2nxdx (n natural)

and evaluate this integral.



ANSWERS AND HINTS

Chapter I

p2

1.1.5. (b) Hint. Prove by the rule of contraries, putting 2=— , where/? and q

are positive integers without common multipliers.

1.1.8. Hint. You may take k= -

2s
*

1.1.9. (b) x^?4, *<0; (c) —4<x<2.
1.1.11. (a) x < — 1 or x^sl. ////i/. The equality is valid for those values

x— 1

of x for which
^

^ 0; (b) 2^x<:3. //m/. The equality holds true for those

values of x for which x2— 5x-\-6^0.
2

1.1.13. (a) x < -g- or a: > 8; (b) x < or < x < 5. //m/. The inequality

\a— b\ > — 16| holds good when a and 6 are opposite in sign or when
\a\<\b\.

'• 2 -3
' °= [aV+ ta+W <«•+«>«"-»>

1.2.4. &'-+a&+a2
;

(a+ /t
)
3 _ L 1-2 .6. 4 V'l+l; ^

g

4" '

; 2 ^10-5.

1.2.11. /(*)= 10+ 5x2*.

,,,,

1 .2. 14. / (2) = 5; / (0) = 4; / (0.5)= 4; / (-0.5) = -I—
; / (3) = 8.

1.2.15. tfm/. From + != + it follows that i/n + 1
= aXn+i = aXn

+ d = aXn aa .

1.2.16. x=±2; ±3. 1.2.17. / (x) = x 1— 5x+6. 1.2.18. / (*) = 23; <p (x) = 527.

1.2.19. x^— 1 or x> 2. 1.2.20. P = 26+ 2
^

1
- a:; S= &^1--^x.

1.2.21. (b) (2, 3); (c) (— oo, —1) and (2, oo); (d) x=^ + 2kn(k = 0, ±1,

±2, ...). Hint. Since sin#^l, the function is defined only when sinx=l;

(g) (-^, 2) and (3, oo); (h) [1, 4); (i) (-2, 0) and (0, 1); (j)
-iL + 2tot<*<

< j+2kn(k=
f ±1, ±2, ...).
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1.2.22. (d) The function is defined over the entire number scale, except the

points x= ±2.
1.2.24. (a) (~oo, oo); (b) (3— 2jt, 3— ji) and (3, 4); (c) [—1, 3];

(d) (—1, 0) and (0, oo). 1.2.25. (b) 5<x<6.
1.2.26. (a) 2£ji<a:<(2£+1) ji (*= 0, ±1, ±2, ...); (b) — y, —1 .

1.3.3. (b) Hint. Consider the difference
*2

B
^—

-

.

\+x\ \+x\

1.3.4. (b) It increases for — —.-ffcri < x < ^+ kn (k=
9 ±1, ±2, ...)

and decreases on the other intervals.

JI

1.3.7. The function decreases on the interval < x^—- from 4-oo to 2 and
4

ji ji

increases on the interval < y frorn 2 to +°°-

1.3.9. (c) The function is neither even, nor odd, (d) even.

1.3.10. (a) Even; (b) odd; (c) odd; (d) neither even, nor odd; (e) even.

1.3.12. (a) \A |==5, co= 4, cp= 0, ^=y; (b)
|
A

|
= 4, (0= 3, q>= -5-,

2ji 14 a: a:

T =— ; (c) |/1 1 = 5, (o =—
,

cp= arc tan y , r = 4ji. //m/. 3 sin y + 4cos y =

= 5sin ^y+cp^, where cos q^^, sincp= y. 1.3.13. (b) T= 2n\ (c) T= 1.

1.3.16. The greatest value /(1) = 2. ////if. The function reaches the greatest

value at the point where the quadratic trinomial 2x2—4#+3 reaches the least

value.

1.3.17. (a) Even; (b) even; (c) odd; (d) even.

1.3.18. (a) T= n; (b) r= 6ji.

1.3.19. Hint, (a) Assume the contrary. Then

#+r+sin (x-\-T) = x-\-s'm x,

( T \ T
whence cos f x-\——

J

= = , which is impossible for any constant 7\

^ 1 2sin "^-

since the left side is not constant; (b) suppose the contrary. Then
>Y

cos \^x+T = cos V x, whence either Vx+ T4- V~lc=2nk, or—7= = =

= 2nk (k= t ±\ t ±2, ...), which is impossible, since the left-hand members
of these equalities are functions of a continuous argument x.

1.4.6. (a) x=
1+arcslnj/

; (b)x= 3sin*/; (c) x= y
lo8 5

(y > 0); (d)* =
log 2 ^ ==

lQgj/

1°g2^ 1

.og|

3

(0 < y < 2 or 2 < y < 00).

1.6.3. (a)— , — ,
0, —

,
(b) —y , T>

- y, ,

(c) 2;2.25;2g; 2±{g

1.6.9. Hint. The inequality |^±^~2 < e is satisfied lor n > N =
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= Ey-— lj. At 8 = 0.1 the inequality is fulfilled beginning with /z=10, at

e= 0.01 beginning with /z=100, at 8 = 0.001 beginning with /z= 1000.

1.6.10. Hint. Verify that the sequence {x2n -\} tends to 1 as n— oo,

and the sequence {x2n \ tends to as n — oo.

1.6.12. (a) It has; (b) it does not have; (c) it has; (d) it does not have.

1.6.14. Hint. <a)|*J<-|; (b) \xn \<±.

1.6.19. Hint. For a > 1 put y/~a= 1 + an (an > 0) and, with the aid of the

inequality a = (\-\-an )
n > nan ,

prove that an is an infinitesimal. For a < 1 put

n /— 1 1

V/ a =-—

—

(an > 0) and make use of the inequality —= ([ -\- an )
n > nan .

I -)- <xn a

1.7.1. (b) A; (c) 0; (e) 1. 1.7.2. (b) 1; (e) 1; (f) 1.

1.7.4. (b) 1; (f) 0. Hint. Multiply and divide by imperfect of a sum, square

±
1

and then divide by n 3
; (g) —— ; (h) 1. Hint. Represent each summand

of xn in the form of the difference

1

J_
111 1 11

1X2 2' 2x3 2 3 '
' /i(/i+l)~ n n -f

1'

which will bring xn to the form xn = 1 —
^

^

.

1.7.5. (a) y ;
(b) 1; (c) 0, (d) --i. Hint. The quantity — is an in-

4
finitesimal, and cos n3

is a bounded quantity; (e) 0; (f) y .

1.8.6. (b) Hint. The sequence is bounded due to the fact that n\=^\x2x
X3x...X/?^2w - 1 and therefore

^H4)'+-.+(^n=3-(±)-'<,
1.8.7. (b) 0. Hint. Take advantage of the fact that 2«±!=— < i.

xn n -f- o

1.8.9. //t/i/. For all /z, beginning with a certain value, the inequalities

— < a < n are fulfilled; therefore —J=- < ,"/ a < {!/ n, and lim iV /i=
i

iy n *

i

= lim -

1.8.10. Hint. The sequence {yn \
decreases, since yn ±i = a

2 'l + 1 = a
2flX2 =

= J^G/« > 0-
The boundedness of the sequence from below follows from a > 1. Denote

lim yn by & and from the relation yn + i= Vyn b=\.
fl -> oo

1.8.11. //m/. Ascertain that the sequence increases. Establish the bounded-
ness from the inequalities

n n(n—\) n — i n v 7

*<'+('-±)+(T-T)+-+(.-±r-7)-»-f
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1.8.12. Hint. Transform xn into the form xn =

tage of the inequalities

2n

2n
<

2n

2i + 1 Y& + I + n

yn 2 + 1 -j- n

< 1.

and take advan-

1.8.13. ////i/. See Problem 1.8.7 (a).

1.8.14. //m/. Establish the boundedness of the sequence by comparing xn
with the sum of some geometric progression.

1.9.2. (b) Hint. Choose the sequences

and xn= - </i=l, 2, ...)

and ascertain that the sequences of appropriate values of the function have
different limits:

i

— x'n
lim 2

Xn = + oo, lim 2 =0.

1.9.3. (e) Hint. Take advantage of the inequality

71 — arc tan x < tan (
— arc tan =

2 V 2

(f) Hint. Transform the difference

(x > 0).

1 . jx

sin x——= sin x— sin -g-

into a product and apply the inequality |sina|^|a|.

1.10.1. (d) £-\ (e) ~; (f)—~. Hint. Multiply the numerator and de-
q o \Z

nominator by imperfect trinomial square (jj/ 10— x-f-2); (g) ~~ ; (h) log
fl
6.

(*-3)(^*+ 6 + 3)

'

x—3 = loga 6;(i)
3

*
Hint, lim loga

— = loga lim
at-v3L V x+ 6— 3J L*-3

<j)^.

1.10.2. (e) — . ////i/. On removing the irrationality to the denominator divide

the numerator and denominator by x.

1.10.3. (b) 32. (c) -5-. Hint. Put x=z 15
; (f) oo. Hint. Put x =z;

1.10.5. (b) e
J

1.10.7. (b) 1

1.10.11. (a)

1.10.12. (a)

as x

i

2
' (g) —3. //m/. Put s\nx = y.

(c) *" (d) (f) 4; (g)

1

(h) 2.

_1_

2
'

j_
20

;

1.10.8. (b) 1;

1

(c)

(d)

e

2

cot a

(cl)

5
' (e) 0; (f) - 1.

n
(b) -2; (c) y> (d) y ; (e)

~ 24 -
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1.10.13. (a) e4 ;
(b) -1; (c) 2 In a; (d) e3

; (e) e
2

; (f)e-J; (g) 1;

(h) 1; (i) 9; (j) 1; (k) a— p. Hint.

oiX $X
rj e (at -fax 1

lim —= lim e?*i - L=a— 0.
X-* X X ~* Q X

1.10.14. (a) j/lT. Hint. Replace arc cos (1— x) by arc sin }/~2a;— x2
\
(b) l;(c)a.

1.11.5. (b) It is of the third order of smallness. Hint.

|.m tan a— sin a 1

a - n a3 ~~T'

1.11.6. (b) They are of the same order; (c) they are equivalent.
1.11.8. (a) 100* is an infinitesimal of the same order as x\ (b) x2

is an
infinitesimal ot an order higher than x\ (c) 6 sin a: is an infinitesimal of the
same order as x\ (d) sin 3 x is an infinitesimal of an order higher than x\

(e) \/ tan 2 x is an infinitesimal of an order of smallness lower than x.

1.11.9. (a) It is of the fourth order of smallness; (b) of the first order of

smallness; (c) of the third order of smallness; (d) of the third order of

smallness; (e) of the first order of smallness; (f) of the order of smallness

A
; (g) of the first order of smallness; (h) of the first order of smallness;

(i) of the second order oi smallness. Hint. Multiply and divide the difference

cos x— jj/cos x by imperfect trinomial square; (j) of the first order of smallness.
1.11.10. The diagonal d is of the first order of smallness; the area S is of

the second order of smallness; the volume V is of the third order of smallness.

1.12.3. (b) 4; (f) 3; (g) ~; (i) 2. 1.12.6. (a) 1; (b) 2.

1.12.7. (a) 1; (b) A . 1.12.8. (a) A
; (b) A

;
(c) A

;
(d) A

; (e) A
;

(f) A ; (g) _2; (h) 1. 1.12.9. 10.14. Hint. 1042= 103 x (1+0.042).

1.13.1. (b) Ml— 0) =—2, /(l+0) = 2; (f) /(2-0) = -oo;
/(2+ 0)=+co.

1.13.3. (a) /(-0) =A f /(
_
f
.

) = 0; (b) /(-0) = 0, /( + 0)=+oo;

(c) /(—0) 1. /(+ 0)=1.
1.14.2. (b) The function has a discontinuity of the first kind at the point

x= 3. The jump is equal to 27.

1.14.3. (c) The function is continuous everywhere; (e) the function has

a discontinuity of the first kind at the point #= 0; the jump equals ji. Hint.

arc tan (— oo)= —^- , arc tan (+ oo) = -]--^-

.

1.14.6. (b) At the point # = 5 there is a discontinuity of the first kind:

JI JX

/(5_0)= — y , /(5+ 0) =— ; (c) at the point a: = 0, a discontinuity of the

JT

first kind: /(—0)=1, / ( ~H 0) = 0; (d) at the point ^ =y , an infinite dis-

continuity of the second kind:

1.14.7. (a) At the point x~0 there is a removable discontinuity. To remove
the discontinuity it is sufficient to redefine the function, putting / (0)= 1; (b) at
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the point x= there is a removable discontinuity. To remove the discontinuity

it is sufficient to extend the function putting /(0)=1; (c) at the point #=
there is a discontinuity of the second kind: /(—0) = 0, / ( -|-0) = -j- oo; (d) at

the points x— (2k hO-j (^ = 0« ±1» ±2, • ••). removable discontinuities, since

f
if I sin x

| < 1,

flx)=UmJs\nx)*»=\
{ jf | sin^ |

= 1;

(e) at the points x = kn (k~ 0. ±1, ±2, ...), discontinuities of the 1st kind,

since

- . . _ |
sin x

|
j 1 if sin x > 0,

sin a: ) —1 if sin a: < 0;

(f) at the points x= n — 0, ±1, ±2, ... removable discontinuities, since

(
. .

I
— 1 if x=n

t

1.14.8. (a) At the point x= 1 there is an infinite discontinuity of the second
kind; (b) at the point x—— 2, a discontinuity of the first kind (the jump
being equal to 2); (c) at the point #= 0, an infinite discontinuity of the second
kind, at the point x=\

t
a discontinuity of the first kind (the jump being equal

to —4); (d) at the point x—\, an infinite discontinuity of the second kind.

1.14.9. (a) /(0)=1; (b) /(0) = --|; (c) /(0)=^; (d)/(0) = 2.

1.15.2. (b) The function is continuous on the interval (0, +oo).
1.15.3. (b) The function is continuous everywhere. At the only possible point

of discontinuity x= we have

lim y—\\mu 1 =\\ lim y= lim u 2 =l\ y \ x_ = y | B= _ t
= 1

;

(c) at the points x= + (n = 0, ±1, ±2, ...) there are removable dis-

continuities, since \imy= lim y—— 1.

Jl U-*±cc
X ~>

2

1.16.2. Yes. 1.16.12. 1.53. 1.16.13. No. For instance, the function y= x2

on the interval [
— 1, 1].

1.17.1. (a) Hint. Multiply the obvious inequalities:

n <
n-

V2(n-\) <

2
'

n -4- 1

/(S=T^<=±1;

.f. rr* j t i a 1 3 5 2n— 1

b) Hint. Let ^-o-X T X T X...X —> .

2 4 6 2n

D 2 4 6 2n

3 5 7 '
' 2n f- 1

'

2/7—12/t i

Then A < B since —— < n
——. and A'1 < AB^--—

r
-
r .

2n 2n-\-\ 2n -f

1
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1.17.2. (a) Hint. Extract the 101st root from both sides of the inequality

and reduce both sides by 1 1
2

.

(b) Multiply the obvious inequalities:

99 X 101 < 100 2
,

98 X 102 < 1002
,

2 x 198 < 1002
,

1 X 100 X 199 X 200 < 1004
.

1 5
1.17.3. (a) —3 < a < — 1 or 1 < x < 3; (b) x < —— or x > y ; (c) the

inequality has no solutions, since it is equivalent to the contradictory system
x— 2 > 0, a:(4a: 2—*+4) < 0. 1.17.4. Yes. 1.17.5. (a) No; (b) Yes.

1.17.7. Hint. Apply the method of mathematical induction. At /i=l the

relation is obvious. Supposing that the inequality

(l+*i)(l+*2 ) ... (l+*„-i)^l+*iH-*a+---+*«-i

holds true, multiply both its sides by \-\-xn and take into consideration the

conditions \-\-xn >0, Xi>xn > (i=l, 2, n— 1).

1.17.8. (a) [1, +oo); (b) (2/zjt) 2 < x< (2/i+ 1)
2

jx
2

(/i= 0, 1,2, ...);

(c) a:=0, ±1, ±2, (d) (— oo, 0) for f (x); g (x) is nowhere defined;

(e) [-4, -2] or [2, 4]; (f) *=(2/i+l)y (/i = 0, ±1, ±2, ...).

1.17.9. (a) No: cp (0) = 1 , and / (0) is not defined; (b) No: f (x) is defined

for all a: 7= 0, and cp (x) only for x > 0; (c) No: f (x) is defined for all x, and
cp (a:) only for x^0; (d) Yes; (e) No: f (x) is defined only for x > 2, and cp (*)

for x > 2 and for x < 1.

1.17.10. (a) (0, oo); (b) [1, oo). 1.17.11. V= 8xt (x— 3)
i (6— x), 3 < x < 6.

1.17.12. (a) x= 5. ////i/. The domain of definition is specified by the inequa-

lities x-f-2^0, x—5^0, 5— x^O, which are fulfilled only at the point

#= 5. Verify that the number x = 5 satisfies the given inequality, (b) Hint.

The domain of definition is specified by the contradictory inequalities x— 3 > 0;

2— x > 0.

9 y nX _J_ n — X fiX r, — X
1.17.17. (a) f (x) = T

±
7l+T

±
1?

;
(b) a*= + "

/ (see Pro-

blem 1.17.16).

1.17.18, An even extension defines the function

, , / f(x) = x2= x2 -{-x for 0< a:<3,

x for —3 < x < 0.

An odd extension defines the function

I f(x)=x 2+ x for 0<*<3,

1.17.21. ////if. If the function / (x) has a period 7\, and the function cp (a;)

has a period 7\>, and T
l
= n 1d, T 2 ~ n 2d (n lt n 2 positive integers), then the pe-

riod of the sum and the product of these functions will be T = nd, where n is

the least common multiple ot the numbers n
x
and n 2 .

1.17.22. Hint. For any rational number r

>=m*)={
;

i / . * * , ^ , i for rational x,

'
n for irrational x.

But there is no least number in the set of positive rational numbers.
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1.17.23. Hint. II wc denote the period of the function f (x) by T, then from

f(T) = f{0) = f(-T) we get

sin T-\~ cos aT= 1 = sin (— 7)-]- cos ( — aT),

whence sin 7 = 0,
2n

cos^r^l, and hence T= kn
y
aT— 2nn

i
a—— is rational.

k

1.17.25. The difference of two increasing functions is not necessarily a mono-
tonic function. For example, the functions f(x) = x and g(x) = x 1 increase for

x^O, but their difference / (*)—g (x) ==x— x2 is not monotonic for x^O: it

^ and decreases onincreases on 0,

1.17.26. Example:

1.17.27. (a) x= -j\n
J

(b)

-{-
1+0

a: if a: is rational,

x if x is irrational.

-y
(-1 < y < 1);

^
y for — oo < y < 1,

x=< V~y lor 16,

I log 2 y for 16 < y < oo.

1.17.28. Hint. The functions y=x2
-\-_

+2x+l (x 1) and y=— X+V*
(x^O) are mutually inverse, but the

equation y= x, i. e. x2 + 2x-f- 1 = x has

no real roots (see Problem 1.4.4).

1.17.30. (c) Hint . If £ is the domain
of definition of the function / (x),

then the function y= f[f(x)\ is defi-

ned only for those x£E for which

f(x)£E. How the points of the desired

graph are plotted is shown in Fig. 120.

1.17.32. Hint. The quantity T= 2 (b

symmetry f (a -\-x) = f (a

a) is a period: from the conditions of

x) and f(b+ x)= f(b— x) it follows that

/ [x+ 2 (b-a)] = f[b+ (b+ x—2a)]=f(2a-x) = f[a+ {a--x)] = f(x).

1.17.33. (a) It diverges; (b) it may either converge or diverge. Examples:

yn
--

L + (-I)»].

xn =—
n

yn = n z

lim (xnyn ) = 0,
£ n -* oo

lim (xnyn ) = oo.

n -+• oo

yn = —n-{-\; (b) No.

x
1.17.36. Hint. Take into account

that
1

1

xn |

—
|
a

1

1 ^
|
xn— a |. The converse is incorrect. Example: = 1)" + 1

.

1.17.38. Hint. The sequence a„ may attain only the following values:

0,1, 9. If this sequence turned out to be monotonic, then the irrational

number would be represented by a periodic decimal fraction.

1.17.39. Hint. If the sequence ~ increases, then
On

1.17.34. (a) No. Example: xn

1.17.35. a„ =
n{n~ 2)

(n= 3, 4, ...).

i. e 6„ +la (
- < an + l

bj (/= 1, 2, «)>
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whence it follows that

t>n + i(<*i+ a2+...+an ) < an + l
(b 1+ b 2 +...+bn ) t

and hence

"1+ ^2+ •• + 0/1 + 1 ^1+ 02+ "-+fl/l
==

&1+ &2+ ... + ^w + l &1+ &2+...+&*

==
gW + 1 ft + ^8+ + + + fl2+ +

(bi+ b i+...+bn + 1)(b l + b i +...+bn )

>
'

1.17.40. (a) 2; (b) 0; (c) 0. 1.17.41. Hint. From the inequalities

nx— 1 < E (nx) ^ nx it follows that x— 1 < x < ^ ^nX ^^ x.
v

' n n

1.17.42. Hint. From the inequalities

n n n

2 ix 2 £ ^ 2
^=1 /z=i fe=i

it follows that

/i+l 1

2/i n n l 2n

i

1.17.43. Hint. Take advantage of the fact that lim a
n = lim yfa = 1 (see

« -* go n cc

1

Problem 1.6.19), lim a " = =1, and for a > 1, | /i
|
< — the ine-

rt * 00 lim V a
n

n -> co

1_ 1

qualities a rt — 1 < ah— 1 < a
n — 1 take place.

1.17.45. Hint. Divide the numerator and denominator by xm .

1.17.46. (a) a=l; b= —l; (b) a=l; b=-^ . Hint. To find the coefficient

a divide the expression by x and pass over to the limit.

1.17.47. (a)

1 for 0<x< 1,

/ W = <

(b)

f M-{
x for x > 1.

JX

for x ?= — +/2JI,

/(*)H ^ (/i= 0, ± 1, ±2, ...).

1 for x=— -{-nji

1.17.48. Hint. Take advantage of the identity

(1 — x)(\+x) (1+x2)...(1+a:2") = 1— x*
n

.

1.17.49. Generally speaking, one can't. For example,

lim
ln(l + *)+ ln(l-*)= ]ijn

ln_0-f2)=_ 1

X -> X2
X -* X2

and if we replace In ( 1 + a:) by x and In (1 — x) by — x we will get the wrong

result: lim
X~ X=Q.
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1.17.50. — . Hint. If a is a central angle subtended by the arc under con-

sideration, then the chord is equal to 2R sin ~ Ra, and the sagitta to

a2

R(\— cosa) ~ R-.

1.17.51. 2. Hint. The difference of the perimeters of a circumscribed and
inscribed regular /z-gons is equal to

on /. jt . jr \ ..tana— sin a n .,

2tf/z tan sin — =2nR ~ tiRcc2
,

\ n n J a

where a——, and the side of an inscribed rc-gon is
n

2Rs\n—= 2R sina~ 2Ra.
n

1.17.52. On the equivalence of (1-j-a) 3— 1 and 3a as a—>0.

1.17.53. No, logd+^l!^-^ as*-+0.

1.17.54. (a) Yes. Hint. If the function cp (x) = / (x) -\-g (x) is continuous at

the point x= x , then the function g (x) = cp (x)— f (x) is also continuous at this

point; (b) No. Example: / (x) = —g(x) = sign x (see Problem 1.5.11 (p)); both
functions are discontinuous at the point x— 0, and their sum is identically

equal to zero, and is, hence, continuous.

1.17.55. (a) No. Example: / (x) = x is continuous everywhere, and g(x)~ sin-^-

for Xf:0, g(0) = being discontinuous at the point #= 0. The product of these

functions is a function continuous at #= since lim x sin —= 0; (b) No. Exam-
x— o x

pie: /(#) =— g (x) = <
, r

°r X'' ^ * both functions are discontinuous at ther
J
—1 for x < 0;

point x= 0, their product f (x) =— 1 being continuous everywhere.

t 1-r ec m i- i f / \ I 1 if ^ is rational, .,
1.17.56. No. Example: f(x) = < . . We may writeK v

' \ — 1 if a: is irrational.
3

f (x) = 2\ (x)— 1, where X (x) is the Dirichlet function (see Problem 1.14.4 (b)).

1.17.57. (a) #= is a discontinuity of the second kind, x— \ is a disconti-

nuity of the first kind; (b) x=\ is a discontinuity of the first kind: f(\ — 0) = 0,

/ ( 1 H— 0) = 1 ;
(c) cp (x) is discontinuous at all points except x= 0.

1.17.58. (a) x= n= 0, ±1, ±2, ... are discontinuities of the first kind:

lim y=\, lim y = y \
x==n= 0. The function has a period of 1; (b) x= ± n

x-+ n-0 x-> n +
(n—±\ t ±2, ...) are points of discontinuity of the first kind:

lim y= 2n— 1; lim y= y\ _y—= 2n

.

x -* Vn-0 x Vn-rO
X~

The function is even; (c) x=±V'n (/i=±1, ±2, ...) are the points of

discontinuity of the first kind; at these points the function passes over from the

value 1 to — 1 and returns to 1. The function is even;



428 Answers and Hints

(d)

x if
|
sin x

| < y , i.e. —^-\-nn < x < -^-f-ji/z,

-75- if
|
sin a:

I

= , i.e. x= ± ^--f-jx/z,y=] y 1

s
1

=
~2 •

111 6~

if
I

sin x
I
> — , i.e. —+ J1/1 < x < —

—

|-jw.

JIx=± — -\-nn are discontinuities of the first kind.

1.17.59. The function f[g{x)\ has discontinuities of the first kind at the

points x= — 1; 0; +1. The function g[f(x)] is continuous everywhere. Hint.

The function f (u) is discontinuous at u = 0, and the function g (x) changes sign

at the points #= 0, ±1. The function g[/(#)|==0, since f (x) attains only the

values 0, ±1.
1.17.61. Hint. Write the function in the form

x+ 1 for —2<x < 0,

f(x) = { 2
° for *= '

(*+l)2 x
tor < x<2.

Make sure that the function increases from — 1 to 1 on the interval
f— 2, 0)

3
and from to — on the interval [0, 2]. Apply the intermediate value theorem

to the intervals [—2, — 1] and [0, 2]. The function is discontinuous at the point

*= 0: /(-0)=1, /(+0) = 0.

1.17.62. Hint. Suppose e > is given and the point x £[a, b\ is chosen. We
may consider that

e<min[/(x )-/(a), /(&)-/ (*„)].

Choose the points x x and x2 ,
x1 < x < x2 so that

/(*i) = /(*o)— c, / (*2 ) = /(*o)+ e.

and put 6 = min(^ — *i> *2— *o)-
1.17.63. Hint. Apply the intermediate value theorem to the function

g(x) = f(x)— x.

1.17.64. Hint. Apply the intermediate value theorem to the function f (x) on

the interval [xlt xn ], noting that

min [/ to), . . . , / (xn )] <1 [/ to)+ / to) +...+/ to)] < max [/ to), • . , / (x„)].

1.17.65. Hint. Apply the intermediate value theorem to the function g (x) =
= 2X —~ on the interval lj .

1.17.66. Hint. At sufficiently large values of the independent variable the

values of the polynomial of an even degree have the same sign as the coefficient

at the superior power of x; therefore the polynomial changes sign at least twice.

1.17.67. Hint. The inverse function

Y—y—\ for y <-l,
for y= 0,

Vy—\ for y > 1

is continuous in the intervals (—00, —1) and (1, 00) and has one isolated point

y= 0.
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Chapter II

20
2.1.1. (b) -— . 2.1.2. (b) 10a;— 2. 2.1.5. vav = 25 m/sec.

2
2.1.6. (a) y'= 3x2

\ (b) y' =— . 2.1.7. The function is non-differentiable at

2 — -—
the indicated points. 2.2.1. (b) y' =— -j ax 3 3

• 2.2.2. (c) y' =

= 2*arctan*+l. 2.2.3. (b) —9000. 2.2.4. (a) i/' = 6a:
2
-f- 3; (b) */' = -

1

"2^

«._ +, : (0^7y+^+ 2
;

(d) ,__3^+8^+ 2^./x
;

~2x l^x
r

'

(

' D 2 w
* 6(*-2

fe'»'=T5r ; (0 *'= 2e*+y; (g) *'= 2e*cos*; (h) j,'

=

a; (cos a:— sin a;)— sin a:—?*
~ x2ex

2.2.5. (f) 301nMtan3*)^; (g)s\ny^= l—^ m

2(1— a:)
2

„ ~ „ / o /o x9 / 2 cos a: . 2 sin a:

2.2.6. (b) */' = -3(3-sinA:) 2 cosA:; (c) — 3^==+—5—;
3 sin x y sin 2 x cos *

2e*+ 2* In 2 . 5 In 4
a; . . , 1 . *

,

(d) u'——— ;
(e) */'= 3 cos 3a; =- sin +K)

3 3/(2e*-2* + l)
a * 5 5^

-j

l— sec'2 VI; (f) ^' = (2a:— 5)cos(a:2—5A:-H)-Asec2 — ; (h )
=

2M a: a:

= 1

H 7 h-ri—5; (i) (/' = 21narc tan-^- •
• tti
—

x/l + ln** arc tanx^\+x* 3
arc tan

9+^
3

2.2.8. (b) »' =-
sinh ,

\taax)
^2 *+

cosh 2{^ cosec* x; (d) </'= 3*x

X(Jtsinh2x» + coshjt*.sinh2x*); (e) y' = e
sinh«

e
ta<acosh«+6>_

I X / 2 1 2a; \
2.2.9. (c) j/^y-p^sinSArcos 2

^^ ;

(x+\)

(d) y' = (tan*)
2 — lntanA:-[

^
sin 2a:

2.2.13. (a) /' (*)=y (coshy+ sinh-0
; (b) /' (x) = tanhx; (c) /' (x) =

j/cosh *+l; (d) /'(x)= -Jj—
; (e) /' (a;) = 4 sinh 4a;; (i) f

f

(x) = (a+b)eax X

X (cosh fo+ sinh ^) = (a+ fr) e(a + b)x
.

cos a:)
s,y

cos 3a:

2.2.14. (a) j/' = (cos a:)
51"* (cos x In cos a;— tan x sin *);

(b) y'=-
j/ sin 2 3a: (1 — sin 3a:)

4

5a:2 -}- x— 24
(c)

j_ jl—r-

3(x-l) 2 U+2) 3
(*-j-3)

2
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/ In 3 tan ^arc sin3" 2*
2.2.17. (a) y =—r. —

;

^81*— 1 J^arcsin3- 2*

... , sin In 3 #-ln 2 x
(b) y = c / — . r , v o r

—
•

5x j/cos4 In3 x cos 2 In3 *) j/

(

arc tan 5/ cos In3 ^2

2.3.1. (b) kne**\ (e) 2"" 1 sin f 2x+ n ^) ;
(f) -1- sin (x+ ny ) +

+ y sin ^3*+ n-y)+^sin ^5x+ /iy

2.3.4. (b) e* (a:
2+ 48a:+ 551); (c) e

ax
j sin $x j^a"-

71 ^~ 1)
a«- 2

p
2+ ...

| +
T . n (n— IH/i-^ 1 \

+ COS p* --"-
"ix'.'gr

8 --^-]}-
2.3.6. (a)

2*2

+ 3' (b)
'

1 +^» are

3

sinx

+7r\,; (c)2r-"x
(1+a:2

) )^1 +a:2 A '(1—

*

2
)
2

(1— a:
2
)

2

X (2x2 -l).

2.3.8. (a) *3 sin x— 60 x2 cos x— 1140 X sin x-j-8640 cos x\ (b) 2e~* x
X (sin x+ cos x)\ (c) [3*2+ 6/™:+ 3rt (n— 1)— 4]; (d) (— 1)" [(4/z

2+ 2/z +
+ 1— a:

2
) cos a:— 4n^sinA:].

b
lx3x5x...X l97x(399— x)

2.3.9. (a) .00! [_^__^_] : 201

22ioo (l—^)
1_ _1_

Hint. y= 2 (1— x)
2 — (1 — x)

2
.

~ s - /, " 4 cos a:

2.4.1. (b) Xyy= —7^-
i

—:

rr-
(6+ sin a:)

3

2.4.3. (b) y'
x= -cot^f; (d) *,;=- 2£>- 2 ''.

2.4.4. (b)^=_*L_
; (C) 1^=57^7 •

2.4.5. (b) y'£
x
=— 3 sin/ sec2

/.

2.4.6. (b) y'
x
=JL+

e
"T-

(c) ifi=^=|; (d) £=- jA.

2 4 7 (b) tr
(ex-ey)V-*x+y ) .

(c)
„~ _ ^ _

«.» « JtjJ, W £J. 2.4,,. ,.,

^2_|_i ^2 (a cos/— 6 sin /) cos 3 y
{c) ~W l (d) ~~

2t (2/
2+ 2/+l) ; (e)

;

1

4 sin —

(
f
) - Yt=F • fe) ~ ^l^-

2.5.1. (b) 6a:+ 2*/— 9= 0; 2a:— 6y+ 37 = 0.
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2.5.3. (b) cp = arctan2|^2. 2.5.8. (b) *+ — 2 = 0; y= x.

2.5.15. (a)
-J;

(b) y=l, *+ 2</-2 = 0; (c) 0+^= —3 (*+|-
J

!

(d)
-J.

2.5.16. 11.

2.5.17. 26,450. 2.5.19. s= at-^; v= a-gt; smax= s[
_ q
~ T

2.5.20. y = r;=^^sinM(l+2ecosM). 2.6.3. Ay « dy= 0.05.

2.6.5. (b) log 10.21 » 1.009; (d) cot45°10' « 0.9942.

2.6.7. (c) =
I

cos*
I

Ax ;
(d) Ay = ( 1 + tan 2

a:) A*.

2.6.9. (a) d*i/= 4-* 2
21n4(2A:2 ln4— l)dA:2

;
(b) d2^ 4 ln *

~ 4~ ln * *

a:
2 y (In 2

a:— 4)
3

(c) d3y = —4 s'm2xdx :i
.

oaift M . 4(1+3a:4), 2
. . 2

4(1+3a:4), 2
4a:

, 2
2.6.10. (a)d 2

y= ^^4)2 dx *'> —(TZ^r ^ -
f="p^ 1

4
in particular at #= tan /, d 2y= ~

CQS 2 2/

4
2.6.11. AV = 4nr 2 Ar-\-4nr Ar 2 +— jxAr3 is the volume contained between

o

two spheres of radii r and r+ Ar; dV= 4nr 2 Ar is the volume of a thin layer

with a base area equal to the sphere's surface area 4:xr 2 and a height Ar.

2.6.12. As= g/A/-|—i- g At 2
is the distance covered by a body within the

time At; ds=gt At = vdt is the distance covered by a body which would move at

a velocity v= gt during the entire interval of time.

2.7.1. (a) It does not exist; (b) it exists and equals zero.

2.7.2. 90°. Hint. Since
(e*, x^0

y~
\ e-*

% x < 0,

/1(0) = -I, /;(0)=1.

2.7.3. r_(A)=-<p(fl); /;

2.7.4. Hint. For x ^ the derivative

n*) = -cos(l)+2xsin(l

At a:= the derivative equals zero:

a 9 1

Aa:- sin —
/'(0)= lim XT-^^ '

Thus, the derivative /' (a:) exists for all x, but has a discontinuity of the

second kind at the point x= 0.

2.7.5. a = 2x , b = — x\. 2.7.7. Hint. The formula for the sum of a geo-

metric progression represents an identity with respect to x. Equating the deri-

vatives of both sides of the identity, we get

1 + 2r+3*+ . . . +^- 1= "'" +1^+;>'"+ 1

;
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multiplying both sides of this equality by x and differentiating again, we get

l»+ 2»*+...+i»V-=
\+x-{n+ \)* X° + Un^+*i-\) X»+>-nx>> +

^

2.7.8. sin x+ 3 sin 3x+ . . . + (2/i — 1) sin (2«— 1) * —
_ (2/i-|- 1) sin (2/i— 1 ) jc— (2/i — 1 ) sin (2/1+1)*

4 sin 2 x

//m/. To prove the identity multiply its left side by 2 sin* and apply the

formula 2 sin a sin P = cos (a— P)— cos(a+ p). To deduce the desired formula
differentiate both sides of the identity and equate the derivatives.

2.7.9. (a) sin 2x [/'(sin 2
*)— /' (cos 2

*)]; (b) <*> [exf (ex
)+ /'(*)/ (ex )\;

(C ) ^11?} .
1 <P' (*)

.

ln ^ (*)

* '
\|) (#) ln cp (a:) (p (x)

"
In 2 cp (*)

'

2.7.10. (a) No; (b) No; (c) Yes; (d) No.
2.7.11. Hint. Differentiate the identity /(—*) = /(*) or f(—x ) = —f(x).

This fact is easily illustrated geometrically if we take into consideration that

the graph of the even function is symmetrical about the y-axis, and the graph
of the odd function about the origin.

2.7.12. Hint. Differentiate the identity / (*+ T) = f (x).

2.7.13. F'(x) = 6x2
. 2.7.14. y' = 2\x\. 2.7.15. The composite function

/ [cp (x)] may be non-differentiable only at points where cp' (x) does not exist

and where cp (#) attains such values of q>(x) = u at which f (u) does not exist.

But the function y= u 2 = \x\ 2 has a derivative y'= Q at the point #=0,
though at this point the function u = \x\ has no derivative.

2.7.16. (a) y"= 6\x\; (b) 2 sin -—— cos-! j sin i- at x £ 0,XX X x
y" (0) does not exist, since y' (x) is discontinuous at x = 0.

2.7.17. Hint, (a) Verify that = C£ (k= 0, 1, .... /i) and take advan-

tage of the property of the binomial coefficients. (b) Designate: f(x) = un \

show that u'
n
= (n— 1) u n -^— w„_ 2 and use the method of mathematical

induction.

2.7.18. Hint. Apply the Leibniz formula for the /ith derivative of the pro-
X

duct of the functions u = e
a and v= x2

.

I at n = 2k
2.7.19. yM(0)={ [1x3x...X(2/j— l)]

2 at n = 2k+\
I (k=\, 2, ...).

Hint. Differentiate the identity n— 2 times and, putting #= 0, obtain

y(n)
(0)= (/i— 2)

2 \fn - 2
> (0) (/i^ 2)

.

2.7.21. Hint. Take advantage of the definition

e-* 2 H n + 1
(x) = (e-x 2 )<n + l

) = (—2xe-**Yn >

and the Leibniz formula for the nth derivative of the product u~e~ x2 and

V=-2X . 2.7.22. yx=j^jy
2.7.23. x12 = ±V \ + Y\- y (_oo <{/<l),

*3,4=±Kl-l/7=^ (0<y<l),

4x/(l-jtf)
(t=l, 2, 3, 4) for Xi ^ 0, ±1.
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Hint. Solve the biquadratic equation x*— 2x2 -{-y — and find the domains
of definition of the obtained functions x

( (y).

2.7.25. (a) x x
=—3; *2 =1; (b) x= ±\.

2.7.26. Hint. Note that the function x=-2t—
\

t
|

==

<J
^ /^q' haS n° deri "

vative at / = 0. But / =
^ x <0 therefore we can ex P ress y ~t 2+ * V 1

=

f 2/ 2
/ > [ 2x2

= < ^ ' ^ through x: y=< „ ' ' This function is differentiate eve-
|
0, t < * y

j 0, x < 0.

rywhere. 2.7.27. a= c= -!-
; 2.7.28. Hint. The curves intersect at the

4 2

points where sinaA:=l. Since at these points cosa#=0,

y'
2
= f' (x) sin ax-\-f (x)acosax= f (x) = y'

v

i.e. the curves are tangent.

2.7.30. Hint. For / y= nn the equations of the tangent and the normal are

reduced to the form:

y= co\^-{x— at)-\-2a\ y—— tan y (x— at),

respectively. For l = n(2k— 1) (k=\, 2, ...) the tangent line (y= 2a) touches

the circle at the highest point, and the normal (x— at) passes through the high-

est and lowest points; for t = 2kn (k= 0, 1, . . .) the tangent line (x— at) pas-

ses through both points, and the normal (y= 0) touches the circle at the lowest

point. 2.7.34. ^-+ y. 2.7.35. The relative error 6=^^ . The mostv
dt l 1 y

I sin 2cp

reliable result, i.e. the result with the least relative error, corresponds to the

value cp = 45°.

Chapter III

3.1.2. (b) Yes; (c) No, since the derivative is non-existent at the point 0.

3.1.5. l= e—\. 3.1.7. No, since g(—3) =g(3). 3.1.9. (d) Hint. Consider
Ihe functions

2x
f(x) = arc sin

^

-j-2 arc tan x for
|
a:

| > 1,

2x
g(x) = arc sin y-j— — 2 arc tan x for

|
x

|
< 1

.

3.1.15. (a) £= y; (b) a-^; (c) £= 10
; (d) it is not appli-

cable, since the function has no derivative at the point #= 0.

3.1.16. 1.26 < ln(t+£?) < 1.37. Hint. Write the Lagrange formula for the

function f(x)~\nx on the interval [e, e-\-\] and estimate the right-hand side

in the obtained relation: In (1 -\-c) = 1 (e < £ < e-\- 1).

3.1.17. Hint. Apply the Lagrange formula to the function f (x) = \n x on the

interval [1, l+*]> x > 0, and estimate the right-hand side in the obtained re-

lation ln(l+x) =y (1 < £ < 3.2.1. (c) 2; (d) 0; (f) —1

.

3.2.3. (b) 0. Hint. Represent cot x -—=— JI!iLf
; (c )

JL 3.2.5. (b) gi = e.
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3.2.6. (a) 1; (b) 1. 3.2.9. (a) -i
I (b) lna-1; (c) 2; (d) ; (e) - ;

/ b a

rr.2
n

(f) 0; (g) 1; (h) In a; (i) e
2

; (j) — ;
(k) -1; (1) e; (m) 4":

(n)i-; (o) ^; (p) e~™; (q) 1; (r) -1 . 3.3.5. (b) 0.34201.

1

3.3.6. V 83 ^ 3.018350. tfm/. ^83 = V81+2 =3 (l+gy) *
- Apply the bi-

nomial formula and retain four terms.
'

3.3.7. Hints, (b) Write the Maclaurin formula for the function /(A:) = tan*
with the remainder R 4 (x); (c) write the Maclaurin formula for the function

j_

/ (#) = (1 +*) 2 with remainders R 2 (x) and R 3 (x).

3.4.2. (a) / (x) =1 ^ _i. xs _^ x, + (jcB); (b) /w = x _^+f!_fl +

+ g+o(*5
).

3.4.3. (b) —i; (c) -1; (d) 1; (e) 1.

3.4.4. (a) 1+2,+,2-4,3_|,4 __L,5; (b)-^-g+g; (c) 1-f +

+
12 720*

3.5.1. (d) The function decreases on the interval (— oo, 0) and increases on

(0, oo); (e) the function increases on the intervals ^— oo,
y^j

and (3,-j-oo)

and decreases on (^-^ , 3 (f) the function increases over the entire number

scale.

( JT \ ( 5t
3.5.2. (b) The function increases on the intervals ( 0, —

J

and ( ^- , 2jt

and decreases on , ^
3.5.8. (a) The function increases throughout the number scale; (b) the func-

tion increases on the interval (—1, 0) and decreases on (0, 1); (c) the function

decreases throughout the number scale; (d) the function increases on both

intervals (— oo, 0) and (0, oo) where it is defined; (e) the function decreases

on the intervals (0, 1) and (1, e) and increases on (e, -j-oc); (f) the function

decreases on the intervals (— oo, 1) and '(I, oo), increases on (— 1, 1).

3.5.10. a<0. 3.5.11. b^{. 3.6.1. (b) The minimum is / (1)-=/ (3) = 3, the
' 7 \ 1

maximum f(2) = 4; (d) the minimum / j=— — . 3.6.2. (b) The minima

are f (±\)=V~3; the maximum /(0) = 2.

3.6.3. (b) The maximum is / (—2)= 160; the minimum /(0) = 2.

3.6.7. (b) The minimum is /(0) = 0.

3.6.8. (b) On the interval [0, 2jt]: the minimum is /
^-^-j=r— 4; the maxi-

mum f 4 - 3 -6 -10- (a) The minimum is / (0) = 0, the maximum / (2) =^4e~ 2
;

(b) the minimum is /(—2) =— 1, the maximum / (2)= 1; (c) the maximum is
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/ 5 \ 25 s f 1

/(0) = 0, the minimum f i — \ =— — y —
; (d) the maximum is / (±2) ==— 1,

the minimum /(0) = 7; (e) the maximum is / (

—

3) = 3, the minimum

/(2)=-j/44.
3.6.11. (a) There is no extremum; (b) there is no extremum; (c) the ma-

ximum is /(0) = 0; (d) the minimum is /(0) = 0.

3.7.1. (c) The greatest value is the least value /(0) = 0; (d) the

greatest value is / ^
± = ^L_ - , the least value f(±\) — 0.

3.7.2. (b) The greatest value is j/(0) =y, the least value ^i^y^^lh
(c) the greatest value is y(4) — 6, the least value y(0) = 0.

3.7.6. (a) The greatest value is /(—2)=— the least value /(3) =— ^

;

o 4

(b) the greatest value is /(0) = 2, the least value /(±2) = 0; (c) the greatest

value is f(—
l— ) = -£-(-0.25 In 3, the least value /( V 3) = ^-0.25 In 3; (d) the
Yl) 6

1

*
' 3

greatest value is / j
= ^

if"

^
» the least value / ^-^j=—2; (e) the great-

est value is /(l)=l, the least value / (2) = 2 (1 — In 2); (f) there is no great-

est value, the least value is /(0)=1.
3.8.3. H= R V 2, where H is the height of the cylinder, R is the radius of

the sphere. 3.8.7. x= a sin a, i/= acos a, where a = 0.5 arc tan 2.

Hint. The problem is reduced to finding the greatest value of the function

S= 4xy-\-4x (y
— x) = 4a2 (sin 2a— sin 2 a)

in the interval < a < ~ . 3.8.8. Pmax =^r at W =W
£

. 3.8.9. A= 2/?=
4 max 4Wi 1

3u~ R-—
. 3.8.10. The radius of the cylinder base is r=— , where R

2tl
j

2

is the radius of the cone base. 3.8.11. The equation of the desired straight

. . x
,
y .

e 15 T+T
3.8.12. x= a— p for a > p and x= for a^p.

3
1

3.8.13. v= 1/ -ttt • //in/. It will take — hours to cover one knot. The
V 2b v

appropriate expenses are expressed by the formula T = ^~^-=~-\-bv 2
.

TL

3.8.14. cp—— . Hint. At the board width a the cross-sectional area of the
u

trough is equal to a 1
(1 +cos cp) sin cp. where cp is the angle of inclination of the

walls to the bottom.

3.8.15. . Hint. The point of fall of the jet is at a distance of
V ^ ^ from

2 g
the tank base, where H — h— x is the height at which the orifice should be
located, v is the rate of flow; therefore the length of the jet is determined by
the expression

V2gx y ^—^=2 Vx(h-x).
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3.8.16. After hours the least distance will be equal to ^- km.
2v 2

3.9.1. (b) The intervals of concavity are
^
— oo, and (1, oo), of conve-

xity
, 1^; the points of inflection are , , (1, 13); (c) the in-

tervals of concavity are (— )/~~3, 0) and (|^~3, oo), of convexity (— oo, — >^3)

and (0, V"s); the points of inflection are
^
— V~3, _

"7(^)> < ' °)> ( ^>
——

J
;

(e) the curve is concave everywhere; (f) the intervals of concavity are

3 -V~5 3 + VI

(0, x x ) and (x2) oo), of convexity (x lt x2 ) t
where xx

= e
2

, x2= e
2

; the

points of inflection are (x lt y x ), (x2 , y 2 ) t
where

3.9.5. (a) The point of inflection is (3, 3); the curve is convex for x < 3 and

l/~~5— i

concave for x > 3; (b) the abscissa of the point of inflection #=arc sin -
;

• f n • V"5-A , • { • V^—\
the curve is concave in I

—— , arc sin -
I , and convex in ( arc sin -—-

,

2~

3.10.1. (c) y= 0; (d) x= 0; (i) y= 2x as x—>+oo and y=—2x as

JTX
x—>— oo . 3.10.3. (a) * = 3, y = x— 3; (b) y= ± — 1; (c)y= x;

(d) x=±2; (e)y= 2x-^.
3.11.2. (a) The function is defined everywhere, it is even. The graph is sym-

metrical about the (/-axis and has no asymptotes. The minimum is y(0)-=l
t

3 / V"3 23 \
maxima y (1) ==y (— 1) =y . The points of inflection are ( ± —g— ,

J;
(b) the

function is defined in (— oo, — 1) and (— 1, +oo). The graph has a vertical

asymptote x=— 1 and an inclined asymptote y=x— 3. The minimum is y (0)^0,
256 / 3296

\

maximum y (— 4) = — . The points of inflection are f — 6, ——J and

1 6 \
2, —

J;
(c) the function is defined in (— oo, 0) and (0, +oo). The graph

has a vertical asymptote x= 0. The minimum is y (^-^-^=3. The point of inflec-

( V~* \
tion is (

--
g

,
)

;
(d) the function is defined in the intervals (— oo, — 1),

(—1, 1) and (1, oo); it is odd. The graph is symmetrical about the origin, has

two vertical asymptotes x— ±1 and an inclined asymptote y= x. The minimum

is y (V 3) = +3 —— , the maximum y{—V 3)--= 2~ ' point of

inflection is (0, 0); (e) the function is defined everywhere, it is even. The
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Ae

graph is symmetrical about the (/-axis and has a horizontal asymptote y = 0. The

minimum is y (0) = j[/ 4, the maxima y (± }^ 2) = 2 jj/ 2. The points of inflec-

tion are (±2, \/ A)\ (f) the function is defined in (— 2, +oo). The vertical

asymptote is x= — 2. The minimum is i/ (0) = 0, the maximum y (— 0.73)^0.12.
The point of inflection is (— 0.37; 0.075); (g) the function is defined everywhere.

/ 3 \ / 3 \ 3

The horizontal asymptote is y= as x—+ oo. The maximum is y f

The points of inflection are (0, 0),

-v~$
t

(tzVjy
e
vi-sy (*±_o, (ttfiy e

-z-vi

(h) the function is defined and continuous everywhere. The horizontal asymptote
is y—\. The minimum is i/(0) = 0, the point (0, 0) being a corner point on the

graph: y_ (0) = -i , y
f

+{0) = +~.
3.12.6. 4.4934. 3.12.8. ^=—2.330; x2 = 0.202; jc3

= 2.128. 3.12.11. 0.6705.

3.12.12. (a) 0.27; 2.25; (b) 0.21. 3.12.13. (a) 1.17; (b) 3.07. 3.12.14. 1.325.

3.12.15. 0.5896 and 2.2805. Hint. To approximate the smaller root more precisely

write the equation in the form x= e°- 8x
- 1

i
to find a more accurate value of the

larger root represent it in the form x= 1 .25 (1 + In x).

3.13.1. No. Hint. Show that at the point x~\ the derivative is non-exis-

tent: /'-(1)=1; Ml)=-1.
3.13.2. Hint. Check the equality / (b)— f (a) = (b— a) f 1 a+ b

2

3.13.3. Hint. Apply the Rolle theorem to the function / (x) = a^n
-f-

.

,..-\-an - x (x) on the interval [0, x ].

3.13.4. Hint. Make sure that the derivative f
f

(x) = A(x5— 1) has only one
real root, #=1, and apply the Rolle theorem.

3.13.5. Hint. The derivative /' (x) — nxn ~ l + p has only one real root at an
even n and not more than two real roots at an odd n.

3.13.6. Hint. The derivative is a polynomial of the third degree and has
three roots. Take advantage of the fact that between the roots of the polyno-
mial lies the root of its derivative.

3.13.7. Hint. From the correct equality limcos-r=0 (0 < £ < x), where g is

x ~> o s

determined from the mean value theorem, it does not follow that lim cos—= 0,

x ~> x

since it cannot be asserted that the variable £ attains all intermediate values

in the neighbourhood of zero as x— 0. Moreover, g takes on only such a sequ-

ence of values E for which lim cos —=0 (£££).

3.13.8. Hint. The mistake is that in the Lagrange formula one and the same
point £ is taken for / (x) and cp (x).

3.13.9. Hint. Apply the Lagrange formula to the function \nx on the interval

[by a]; (b) apply the Lagrange formula to the function zP on the interval [y, x].

3.13.10. Hint. With the aid of the Leibniz formula ascertain that the

coefficients of the Chebyshev-Laguerrc polynomial alternate in sign, the odd
powers of x having negative coefficients. Whence deduce that Ln (x) > for

x < 0.

3.13.11. Hint. Using the Rolle theorem, show that inside the interval \x
,
xn \

there are at least n roots of the first derivative, n— 1 roots of the second deri-

vative, and so on.

3.13.12. Hint. The L'Hospital rule is not applicable here, since the deriva-

tives, of both the numerator and denominator vanish at all points where the
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factor sin* (which we cancelled in computing the limit ol the ratio of deriva-

tives) vanishes.

3.13.13. Hint. Write the Taylor formula with the remainder R 2 :

h2 h'6

f (a+ h) = f(a)+ hf' (a) + f" (a)+-^ /"' (a +6^).

Comparing it with the expansion given in the problem, get the equality

f" (a+ Qh)— f" (a)= }_f,„ (
a+ ^ n ) and pass over to the limit as h—> 0.

h 6

3.13.14. Hint. Prove by using the rule of contraries. Suppose that e== "~»

where p and q are natural numbers, p > q > 1, and, using the Taylor formula,

get for n > p

i=1+ _L+Jr+ ...+Jr+_^r
(£)«,„ <9< ,,

Multiply both sides of this equality by n\, and noting, that ~ n\ and

1 . ..4—\- \ n\ are positive integers and —r-r(— < —77 • — < 1,
1

1!
1 1

n\ J
r b

/i+ 1 \ q J n-\-\ q
obtain a contradictory result.

3.13.15. Hint. Verify that the function

i sin*
q x< n

f(x) = } x ' 2 ' is continuous on the interval

\ 1, x=--0

Ascertain that the derivative f (x) < is inside the interval.

3.13.16. Hint. Show that /' (*) ^ 0. Ascertain that

( /m 1 / > for a < 1,

/(0) = l-a<[
<Qfora>1>

and take advantage of the fact that the function increases.

3.13.17. Hint. Show that the function f(x)=xex— 2 increases and has oppo-

site signs at the end-points of the interval (0, 1).

3.13.18. Hint. Show that the derivative

/' W=-^+ 2xsin T — C0S T {x * 0)

3 1 1

is equal to — at the points *=
,9

— (n = 0, ±1, ±2, ...), and to at

the points a:= 2~~» i- e - the derivative changes sign in any vicinity of the

origin.

3.13.19. Hint. Ascertain that the auxiliary function \p (x) = / (*)— cp (x) in-

creases.

3.13.20. Hint. Make sure that at all points of the domain of definition of the

function the derivative retains its sign if ad— bc^O. But if ad— bc= 0, i.e.

—— then the function is constant. 3.13.21. p — —6, #=14.
c d

3.13.22. A minimum /(* ) = if cp (x ) >0 and n is even; a maximum
f(x ) = if (p (* ) < and n is even; the point x is not an extremum if n
is odd. Hint. At an even n, in a certain neighbourhood of the point x the func-

tion retains its sign and is either rigorously greater than zero or rigorously less

than zero, depending on the sign of cp (x ). At an odd n t lie function changes
sign in a certain neighbourhood of the point x .
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3.13.23. Hint. For x ^ f (x) > 0, hence / (0) is a minimum. For x >

the derivative /' (#) = 2— sin—+— cos — is positive at the points x= -^—xx x ZiTin

and negative at the points x= ——/ . The case x < is investigated ana-
(2/i+1)ji

logously. 3.13.24. (a) 1 and 0; (b) 1 and —2.
3.13.25. (a) The least value is non-existent, the greatest value equals 1; (b)

the function has neither the greatest, nor the least value.

3.13.30. Yes. Hint. Since /" (x) changes sign when passing through the point x
,

the latter is a point of extremum for the function /' (x).

3.13.31. The graph passes through the point M (— 1, 2) and has a tangent

line y— 2= — M is a point of inflection, the curve being concave down-
ward to the left of the point M, and upward to the right of it. Hint. The func-

tion f" (x) increases and changes sign when passing through x=— 1.

3.13.32. h=—L=.

3.13.33. Hint. According to the Rolle theorem, between the roots of the first

derivative there is at least one root of the second derivative. When passing

through one of these roots the second derivative must change sign.

3.13.35. Hint. The polynomial has the form a x'2n -\-aiX^"- 2 -\- . . . -{-an - xx
2 -{-an .

Polynomials of this form with positive coefficients have no real roots.

3.13.36. Hint. Take advantage of the fact that a polynomial of an odd degree
(and, hence, also its second derivative) has at least one real root and changes
sign at least once.

3.13.37. Hint. Find lim (
2
*L
+ **+

!

Chapter IV

4.1.2. /=A:3+ A:
2 + 0.51n| 2x— 1 |+C.

2 -2- 2 -
3-

4.1.7. /=— (*+l) 2 + ^-* 2 +C. Hint. Eliminate the irrationality from the

denominator.

4.1.14. / = ~arctan~+ C.

4.1.15. /=-!=arctan-^±J+C.
^3

^
4.1.18. / = ln|*+ 3-

4.1.20. I =—U= In

2 ^70

4.1.21. (a) —arc tan

Vx*+ iyx+_\
|
+ C.

V\Qx-V7 +c
V 10*+ V~7
x— 3

C; (b) T (*-4) y X +C; (c) 3tanx-f

+2cotA:+ C; (d) l-arc tan x-\- C.
x

(c)

4.1.22. (a)

2

In (x-\- V 1 -f-*
2 )-farc sin x-f-C; (b) sin x— cos x-\-C\

In 5

4.2.3. / =
5-l^

2"*+ C; (d) —0.2 cos 5*— xsin5a+ C.

37

4 Y~2x— 5
+ C.
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4.2.8. t=— 2 Vcosx+C. 4.2.10. / =— (a:
3+ 3a:+ 1)

3 +C.

4.2.13. (a) 0.75 + In a:)
4 + C; (b) ln|ln*| + C; (c) arc sin -^-{-C;

(d) ^arctan^+ C; (e) —2 cos yV+C; (f) i- In 2 x+ In
|
In a:

|

+C.

4.2.14. (a) __(35-40x+ 14*2)(1-a:) 3 + C;

(b) |-(ln*-5)^l + lnx+C;

/ 2 2 2 \
(c) f y —y sin 2 a:-|-— sin 4

a:

J
j/sin 3 *+C;

2

4.3.2. a: arc sinA:+ a:
2 + C.

(d) — .1(8+ 4a:
2+ 3a:4 ) ^T^72+C.

4.3.14. — cos a: In tan x+ In tan |

-J
+ C.

4.3.17. xln(x+ J^l + rO— |/"i+x4+ C.

4.3.18. ^xf/x [(ln*)*-|ln*+|
4.3.19. 2 |Ar+Iarcsin*+ 4 J/T^t+C,

+ C.

3* (sin *+ cos sin 3)
, ^4 -3 "21

- l+(ln 3)* + C -

4.3.22. (±x»-x*+ lx+!fje**+ C.

4.3.23. (x*— 10x2+ 21) sinA:+ A;(4A:
2— 20) cos a:+ C.

4.3.24. — cos 3*-) ^— sin3x+ C.

4.3.25. ^j-xt+ix^J \nx—£^+^_3*+C.

4.3.26. i^arctanx-^+-J+ C.

4.3.27. y arc cos * —-H±^ j/T^F+C.

4.3.28. (a) _ 18^+g-13
s

.

n(6x+2)_6^tl cos(fa+2)+^,3+
2 5

_|_i_ x2_^+C; (b) .|_ (jc
2__ 7jc+1)

(2x-f-l)3
-A

(
2a:-7)(2a:+1) 3 +

27 -i-

+ 320 (
2*+!) 3 + C '

4.4.2. (d) Hint. Apply the generalized formula for integration by parts and

express I n from the relation thus obtained

e™ • „ i , •
x

n (n—\)
,

n 1

i n --— sin"" 1 x (a sin x— n cos x)-\ 3— /„-•> r ' n-
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4.4.3. /„ = -

(n—\) sin"- 1 x n—l (nS* 2);

cos x ,
I , cos a; . 1

,

4.4.4. (a) /„ =

(b) '„ =
-'

2 sin 2 x ' 2

_L_tan"-iA:-/„_
2

tan + C.

1

v"- 1 Vx

2 sin 2 x 1

2

/i =— ln
|
cos x |+C; / = a;-|-C;

/i = In| sinx|+C; / = a:+ C; (c) /„ =

a/„_ 2 ; j/> + a+ C; / = In
|
x+ Vx*+~a

|+ C.

Chapter V

5.1.2. *-2*+| In
1

(Jt+1)»

5.1.5. 2 ln |
x— 1

|

— In |*

+y ln|*+2| + C.

+ C.
(x- I)

2

2 9x4-1 I

5.1.8. t^t- arc tan —^ arc tan (x+ 2)+ C.
3 V 7 >^7 3

5.1.10. 5x+ ln xa + |
^— 2

|

3+ C

5.1.11.
9*a + 50x+ 68 1

ln
(x+\) (*+ 2)

16

4 (x+ 2) (x+ 3)
2

5.1.12. ~— arc tan (x— 2)+ C,

5.1.13. —

5.1.14.

6(1+*)^ 6

x+2

1

Jn
(1+,).

(*+ 3)H

1

+ C.

arc tanx-
1 — x + x l 1 2

arc tan — + C.
3 V 3 1^3

2 arc tan x + In
^+1

2(jc. + l) • _"V?+T _
5.2.2. 4 £/*+6 y x+24 1

$/' x+24\n
\ ^ x—\\+ C.

5.2.4. L^arc tan ?4±+ln
V"3

5.2.7. j/^1

+ C, where

+

+ C. 5.2.8. -
x 2

5.2.9.
f
\--x

) V 1 — arc sin *+ C.

5.3.3. -2 arc tan + 1
) + C -

5.3.5. 2 ln
|
j/V-f- 2* -[-4— *|

2(/* 2+ 2*-r-4—x— l)
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5.3.6.
1+l^-**+2arc tan |/j±^+C.

5.3.7. |- 5.3.8.
(*+/T+?)" +e .

^2x ~ X
'

L 15

5.4.2. 5 Yx*+ 2x 1-5— ln(x+l + yX
'

i + 2x+5)+ C.

5.4.5.
3*a+ *--l

y 3x2_ 2x+ \ + c.
o

5.4.6. Hiii j/x2 + a:+1 + |- In
|
2a:+ 1 -f- 2 J/V-j-x+l

| + C.

5.4.8. -1- (jc
2— 14x + 111) Vx*-\-4x-r3- 66 In |

*+ 2+ -f- 4jc+ 3 |+C.
o

5.4.9. — (32a-2— 20*— 373) Vw+ bx+7 -\

329 '

In
1
4x+5+-

64 128 /2
+ 2 V\x*+ 10a:+14| + C.

5.4.10. +

5 .4. 1
..-^- 4

,

X+ 3 -2arcsin-L+ C.
1

2

5.4.12. — y j-p- + C -

+ C. ////i/. First make the substitution5.4.13. nh
2+ 1 +^4

+ 3^+ 1

I

X

x2= t.

5

5.5.2. 3arctan V x-{-C. 5.5.4. —\2+ x* J
4 -y \2+ x 3

J
4 +C.

1

1

8 5

5.5.5. A(l+xV -|-(I+*V + jg
(«+**) s +C.

5.5.7. ^ |/(l + ^/^)
7 _3 ^(i + C.

5.5.8. 3 In
,

V
a/ -+ - 77=+ c -

5.5... C+^f-^+C.
5.5.10.

^+^^--11 +C .

5.5.11. | V
A

(' + 3/ T4
)

8 + C -

5.6.2. —L _L—f_c. 5.6.6. tan*+ 4-tan**-|-C.
3 sin^ # 5 sin 5 x 3

5.6.10. (a) —cot x+y cot 3 x— cot 5 x—x+C\

(b) JL tan 2 a:—-1 In ( 1 + tan 2 x) + C ----\ tan 2 x+ In
|
cos a-

| + C.
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1+ sin a: I

^
1 — sin x\

5.6.12. — sinx—]r- sin3 x-\--^ In

5.6.14. —^arc tan V 7= 7+C

x sinh4* 2
^tanh-^+r

5.6.22. (a) -£+5!|^+ C; (b)— arctan^ j^— J + C.

5.7.3. l n (x+ }^?^)+ ^a:(2*2—
1) j/'^T+C.

o o

5.7.4. In (s+ V^TT)--^+ 1

+C-

5.7.7. / = arc sin ^^in-C.

5.7.8. /== *~ 1

-\-C.

4 ]/>— 2a: +5
5.8.2. / = 4 ^ 1 —x+ 2 In (2—x— 2 V 1 —a:)— 2 (l + V \ —x) In x+ C.

.- o , * cc cos / + sin /
, „ ,

5.8.5. I'-'-e^ r^—t
\-C

t
where / = arc tan x.

a 2
-f-l

Chapter VI

6.1.9. / = 4» ^~^
^ = 44 as the area of a trapezoid whose height is 5— 1=4

and bases 4x1 — 1=3 and 4x5—1 = 19.

« i io it:
1 175

i

125 ? ift
1 ,175 ,125

6.1.12. sn =16— —r"T~9 = 16-——- \-——t .

" 4 2/i
1

4/i
2 * 4

1

2/z
1

4/z
2

6.2.2. (a) 1; (b) A ;
(c)

-J
. 6.2.10. (a) 1; (b) i- In ~

; (c) jx;

(d ) -J- arc tan
-J;

(e) In 2; (f) 1; (g) arc tan e~; (h) i; (i)
j|

;

(J)4- ; (
k )
J^lziO. 6.3.1. (c) 3 < / < 5. Hint. M = /(0)=A m =

= /(2)=A. 6.3.11. (a)^HL^; (b) - V 1-f-x4 . 6.3.14. (b)^ . 6 3. 15. (b) ^ =

= -e-»smx. 6.3.23. (a) In x; (b)~. 6.3.24. (a) ^ = jjL
; (b) yi=

6.3.25. (a) The maximum is at *=1, the minimum at #=— 1; (b) the

minima are at x=— 2; 0; 2, the maxima at x= ± 1.

6.4.3. (a) -— (substitution x= a sin 0; (b) o (substitution *= tan 0-
lb I

6.4.6. (a) ^2 ^U+ln 2+]
^

3
;

(b) 2(y
r3-l); (C ) 8+ ?-^ji.

]A 3 1 + K 2 2

. n
Sm

24
6.4.J5. (a) 2— 2 1n2; (b) 0.2 In 112; (c) ; (d)V3—0.5 In (2+

sin | sin^
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+ V^3); (e)0.251n3 (substitution sin x— cos x = t)\ (i) a3 —^
(substitution x= acos/); (g)— (substitution x= 2a sin2

/); (h) -^-^-j •

6.4.16. (a) -g-; (b) -5-; (c) -j- In (substitution a:
4 = t)\ (d) -^(substi-

tution x2 = a2 cos 2
/+ 62 sin2

/).

6.4.17. The substitution x= -j~ wiH n°t do, since this function is disconti-

nuous at / = 0.

x
6.4.18. The substitution / = tan — will not do, since this function is discon-

tinuous at x= 7i.

6.4.19. Hint. The inverse function x=± V~ t
b

is double-valued. To obtain

the correct result it is necessary to divide the initial interval of integration into

two parts:
2 _ o _ 2 _
^ \/ x2 dx=

^ ]/ x2 dx+ ^ \/ x2 dx

-2 -2 _
and apply the substitutions x—— Y~t b in —2 < x < and x=-f V~t b in <
< x < 2.

6.4.20. It is impossible, since sec 1 and the interval of integration is

[0, 1].

6.4.21. It is possible; see Problem 6.4.12.
a a

G.4.22. Hint. On writing ^ / (x) dx ==
^ / (*) d* +

J
/ (*) dx, make the sub-

-a -a
stitution x—— / in the first integral.

l —l o

6.4.23.
J

/ (arc sin 0^+
J

/ (n— arc sin /) dt+
J

/ (2ji+ arc sin /)

o l -l
Hint. Represent the given integral as the sum of three integrals for the in-

tervals: y) ' (t' "IT") '

2jT
)

and substitute tne variable: x =
= arc sin t, x= n— arc sin/, x= 2ji+ arc sin / respectively.

6.5.3. (1) If f (x) is an even function, then
31 31 71

[ f (x) cos nxdx— 2^ f (x) cos nx dx, and
^ / (x) sin X dx — 0.

-JT — JT

Jl JT

(2) If / (a:) is an odd function, then
J

/ (x) cos nx dx == 0, and
^ / (x) sin nxdx—

-JT — JT

JT

= 2
^ / (x) sin /i dx.

o

6.5.4.0. 6.6.3. 6— 2e. 6.6.5. jt }/" 2— 4. 6.6.6. jt— 2. 6.6.13. (a) -5- —
1

;

(b) -|; (c) (d) 1; (e) In 2-± ;
(f) In |

;

<g)f-l; (h)i|l-2^3.
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6.6.14. Hint. Integrate by parts twice, putting u = (arc cos x) n the first

time and u = (arc cos x)n
~ l the second time.

6.6.15. Hint. Integrate by parts, putting u = x.

6.7.4. (a) 0.601. Hint. Estimate
| /

1V (x)
\
on the interval yj and put

2/z = 6; (b) 0.7462. 6.7.5. 0.96

6.8.1.

F(x)--

for 0<x<l,

-i for 1 < *<2,

Continuity is checked directly. The assertion concerning the derivative re-

quires checking only at the points *=1, x— 2.

6.8.2. Hint. Make sure that the function / (x) is continuous both inside the

interval (0, 1) and at the end-points ( lim f(x) = f(0) and lim f(x) = f{\)).
X-> + *->l-0

6.8.3. No. Hint. Consider the function

| 1 if x is rational,
cp (x) == 1

1 if x is irrational on the interval [0, 1].

b

6.8.4. 1 — ]/"3. Hint.
J

/" (x) dx = f* (b)— f (a).

a

6.8.5. Hint. Putting for definiteness x > and

E (x) =n^ x < /z+1,

take advantage of the additivity of the integral

x \ 2 n x

E (x) dx= ^ E (x) dx+ ^ E (x) dx+ ... + [ E (x) dx-\-
^ E (x) dx.

1 n-l n

6.8.6. The antiderivative F
1
(x) will lead to the correct result and F 2 (x) to

the wrong one, since this function is discontinuous in the interval [0, jc].

X

6.8.7. F {x) = y +
J

/ (0 dt. Hint. Any antiderivative F (x) can be represen-

ted in the form F (x) ^ f (t) dt + C. Putting *= x0t find C = yo-

x

6.8.8. l=-^\n
2 2b— 2a

'

6.8.9. The function is defined on the interval [
— 1, 1), it is odd, and in-

creasing; convex on the interval [—1, 0] and concave on the interval [0, 1];

the point [0, 0] is a point of inflection.

6.8.10. Hint. The function

i xx at < a:^ 1

'<H I at,=
1_

is continuous on the interval, it reaches the least value m = e
e ^0.692 at

=— and the greatest value M — 1 at x= and at x—l.
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2 sin x
6.8.11. Hint. Integrate the inequality

6.8.12. Hint. Integrate the inequality

and write Schwarz-Bunyakovsky inequality

J
Vx sin x dx ^

"J/ J
x dx

J
sin # dx— -=

8"
2 VIo

6.8.14. //i/i*. Apply the Schwarz-Bunyakovsky inequality in the form

b
b

~|2 b b

a -I a a

6.8.15. Hint. Make the substitution arc tan *= -y-

X

6.8.16. Hint. If f (x) is an even function, then F(x) = ^f(t)dt is an odd

o

function, since

— X X

F(-x) =
^

f(t)dt = —^f(—z)dz= —F(x) (/ =— z).

X

And if f (x) is an odd function, then F(x)—^f(t)dt is an even function,

n

since
— X X

F(—x)= ^f(i)dt = -^f{-z)dz = F(x) (t = -z);

n o

all the remaining antiderivatives have the form F {x)-\~C and, therefore, are
also even functions.

6.8.17. Hint. The derivative of the integral / with respect to a equals zero:

~= /(a+ 7W(fl) = 0.

Chapter VII

7.1.4. (a) In 2; (b) -| (2 l/"~2- l); (c) A; (d) 1; (e) ±.

7.2.2. (a) ~ i

(
b

) 4-4-4- !n -t-t^ °-283
-

7 * 2 ' 5
- X- 7 - 2 - 10 ^

2 '
v

' 2^2 e-j-1 4 '
'

'

'

h V&+ h*

7.2.13.(a) (i=y; (b) (1=10 2; (c) (1=^+ 2. 7.2.15. y. 7.2.16. ^
7.3.4. ~. 7.3.6. ~+4- arc sin A- 7.3.11. A. 7.3.13.9. 7.3.16. —i-r

6 3 1 2 5 15 m-\-l
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7.3.19. y. 7.3.20. y. 7.3.21. 2ji— (2 V
r

3)ln(2+V
n

3). 7.3.22. 0.75jt.

1 98 1 4 R 1 Q

1

7.3.23. -i-
. 7.3.24. — . 7.3.25. . 7.3.26. — . 7.3.27. -i-

. 7.3.28. — .

15 o 6 15 lz oU

7.4.6. — . 7.4.8. 0.75jtafr. Hint. The curve is symmetrical about the coordinate
5

axes and intersects them at the points x= ±a, y= ±b.

7.4.9. (a) — . Hint. The curve is symmetrical about the #-axis, intersecting

it twice at the origin at / = ± 1. The loop is situated in the second and third

quadrants; (b) — . Hint. The points of self-intersection ot the curve are found

in the following way: y — tx (/), therefore y (t x ) = t xx {t x ) — t 2x (t 2 ) at t 1 ^zt 2 and

x(t 1 ) = x(t 2 ), only if x (t^ = x (t 2 ) = 0, i.e. ^ = 0; t 2 = 2\ (c)
8^ .

D

7.4.10. 0.25nab. Hint. The curve is symmetrical with respect to both axes of

coordinates and passes twice through the origin forming two loops. Therefore, it

is sufficient to compute a quarter of the desired area corresponding to the variation

of / from to y and multiply the obtained result by 4.

7.4.11. ^-J-. Hint. The curve resembles an astroid extended in the vertical
Sab

direction.

7.5.2. (a) 5^.; (b) . Hint. The curve is a circle of radius y passing

XI JX

through the pole and symmetrical about the polar axis, —^"^(p^y.

7.5.6.2^(^1-.). 7.5.8.(a)^; (b) f£ . 7.5.9.^(^-^3").
Tia

'

7.5.10. -575- . Hint. The curve passes through the pole forming two loops located
oZ

symmetrically about the (/-axis in the first and fourth quadrants. It is sufficient

to calculate the area enclosed by one loop corresponding to variation of cp from
ji

to y and double the result thus obtained.

5
7.5.11. — jt<2

2
. Hint. The curve passes through the pole, it is symmetrical

about the polar axis and situated in the first and fourth quadrants. It is sufficient

to calculate the area of the upper portion of the figure which corresponds to

ji

variation of cp from to — and double the result thus obtained.

(,+_£).
zia^1

7.5.13. — . Hint. The curve is symmetrical about the coordinate axes and

intersects them only at the origin, forming four loops— one in each quadrant
(a four-leaved rose). Therefore, it is sufficient to find the area of one loop corres-

ponding to the variation of cp from to y and multiply the result by 4.

7.5.14. Y~2 na 2
. Hint. The curve is symmetrical about the axes of coordi-

nates and the bisectors of the coordinate angles; it cuts off equal intercepts on
the axes. The origin is an isolated point. It is sufficient to compute the area of
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one-eighth of the figure corresponding to variation of cp from to and mul-

tiply the result by 8.

2
7.6.2. 9— ji. Hint. A plane perpendicular to the *-axis at the point x will

cut the sphere along a circle of radius r= j/"l6— x2
, therefore the cross-sectio-

nal area S(#) = ji(16— x2
).

7.6.5. 0.5na2h. Hint. The area of a triangle situated at a distance x from

the centre of the circle is equal to h Y^a 2— x2
.

7.6.10. 2n2a 2
b. 7.6.11. y (see Problem 7.3.9). 7.6.14. 5jx

2a3
.

7.6.16. (a) 2nab(^\+^j\ (b) |a; (c) ^ abk2
7i. 7.6.17. |-a3 tana.

16 64 64 4
7.6.18. (a) 12ji; (b) — jx; (c) -=-ji; (d) ji

2
; (e) ~ji; (f) -r- no*.

10 O O o

3 2 1 / 11 _ 2£A 3 9
7.6.19. 5jL. 7.6.20. 2L. 7.6.21. \na*\ e « - e

a
) +na 2c=^ sinh ^ +

-f jra 2
c. 7.6.22. ^(6ji-|-5 }/" 3). Hint. The abscissas of the points of intersex

tt tt 1Q 127 Ifinr6

tion are: x x
= —~

;
*2 = . 7.6.23. —ji. 7.6.24.^ ji. 7.6.25.-^^

1

3
2

3 48 7 105a/? 2

c2

//t/i/. Represent the evolute of the ellipse parametrically as follows: x—— cos 3
/

y=— ^-s\n 3
t, where c= y a 2— b2 . 7.6.26. ^-naA

. 7.6.27. -^L
jra3

2 In ( 1 -f- |^ 2)—|-j . Hint. Pass over to polar coordinates,

7.6.28. 1 Jta3 . 7.7.2.^. 7.7.4. In
J^—
^ . 7.7.8. (a) f 6+ In ( ^2+ V 3)

(b)2ln(2-^3). //W. ^=-i;x, = -2-; (c) . 7.7.9. ^+
2 '

2
3 '

v 7
3 2

7.7.10. 10^+^5^. 7.8.2. 8a. 7.8.5. y. Hint. The curve intersects the

axes at t x
= and * 2 =iV 8. 7.8.7. 4 j/~3. 7.8.8. 16a. 7.8.9. 8na. Hint.

See Fig. 79. 7.8.10. ii^Z^l . 7.8.11. y . 7.8.12. At * = ~L the point

2jt j/"3\ 3a
al

3 2
7.9.5. 1.5jxa. 7.9.9. In -|- . 7.9,10. 2 ^2 jia.

//m/. The curve p = 2 ^ 2 a cos
^

cp—
~J

is a circle.

7.9.11. p[|^2+ln(l + r2)]. 7.10.3. (a) Jii
;

(b)^.

7.10.5. 2jt ( l +-i^V 7.10.8. -. 7.10.14. (34 V~\j-2)?-.
V 3 V 3/ 2 9

7.10.15. 2jx
[ ^24-^(1+ 1^2)]. 7.10.16. y^2

- 7.10.17. --y-^ jx (<?*— 2).

7.10.18. 29.6ji. 7.10.19. 4n 2a 2
. 7.10.20. jta2 . 7.11.7. 16a 2 where a is

o
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the radius of the cylinders base. 7.11.8. 1.5jx.

(a)
<
b

> ^~T arctan T-
71,n '

(0 l(53i + 6 V 3). 7.11.13. (2 In 3— 1). 7.11.14.
o £

7.11.10. (a) -;

(b) £(3+ 4 Y~2)\

V2
(5 J/5-2 V 2).

7.11.17. 2jx
^3
15

7.11.18. na2 /"p?. 7.11.19.

7.11.20.
nabh

7.11.21. I2ji. 7.U.22.
l

/
4 ^- 6

')^fl. 7.11.23. — jta3 .

7.11.24. (a) jx (^5-0) + (^2+l)
^5—1

+ 21n^±fL3) ;
(c)2n,fc 7.12.2. -f^. 7.12.4. =f\ 7.12.9.^.

7.12.11. nabhd.

1

7.12.12. nrdh'K 7.12.13.
j2
nR *H '

7.13.7. M
ft

3
(5^ 5-1); M

y
=^V 5+lln(2+^ 5).

7.13.3. 0.25:rc/? 3 .

7.13.8. M x =

V
r

fl
2+ ^2

;
M

y =-j V'a2Jt-b^ 7.13.9. /"2+ ln(l+

>

/"2). 7.13.10.0.15.

„ « rt « , . aft
3

. a3b
7.13.11. /*=

f2 ; /jf
12

7.13.12.
(a + 3b) /i

3

12
7.13.16. xc = f/r = 0.4a.

7.13.19. Xc= yc= -j. 7.13.26. =
; yc = 0. 7.13.28.^ = ^; yr= 0.

7.13.29. * r

7.13.31. x,

m— n

0.2 (2e 2«—

e

71

) .

n
4/?

0r =
0.2a (e

2*— 2e*)

7.14.1.
m— n

; 4
m— n

m-\-n m-\-n

7.13.30. 4.5na y
.

if both m and n are

even; 2
m-\-n

if both m and /z are odd;
m-\-n

if m and n are of different

evenness. Hint. The curves y
m =xn and y

n = xm have two common points (0, 0)

and (1, 1) in the first quadrant. The area of the figure situated in the first

quadrant is equal to dx . Depending on evenness and oddness

of m and n this figure is mapped symmetrically either about the coordinate

axes (m, n even) or about the origin (m, n odd). If m and n are of different

evenness, then the curves enclose only the area lying in the first quadrant.
7.14.3. Hint. Take advantage of the formula for computing the area in

polar coordinates.

7.14.4. Hint. Since the figures are of equal area, the function S(x) appear-
b

ing in the formula for the volume V= ^ S (x) dx is the same and, consequently,

a

the values of the integrals are also equal.

7.14.5. Hint. The formula follows directly from Simpson's formula
h

J
/ (x) dx= ±[f(0) + *i(j^+f(h)].
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nr 2x2

for a sphere S(x) = n(r 2— x2
)\ for a cone 5 (x)—

^2
; for a paraboloid of

revolution S (#) = 2jip# and so on.

7.14.6. Hint. Divide the curvilinear trapezoid into strips A# wide and write

an expression for the element of volume AV = 2n xy Ax.
7.14.8. Hint. Use the formula for calculating the length of a curve represen-

ted parametrically.

7.14.9. In — . Hint. The point nearest to the origin with a vertical

tangent corresponds to /—y.

7.14.13. 7.14.14. V2-z. 7.14.16. (a) 0.5 In (x+y);

JX

(b) -— 0.5 arc sin x.

Chapter VIII

8.1.2. (b) y ln2; (c) 1; (d) 1 — In 2; (e) ji; (f) 1.

8.1.6. (a) It diverges. Hint.
* n ^* ^ > y for X > Y'e—l; (b) converges;

(c) diverges. Hint.
2 ^ *

> _J__ . converges; (e) diverges.M V x
8.1.17. (a) 0. Hint. Represent the integral as the sum of two items:

CO 1 cc

f
t

^ n X dx—[ }
nX

iy dx-\- f }
nX

dx . Make the substitution *— 4" in the se-

J 1 + *2
J l + x> J 1 -r ^ '

o o i

CO 1

cond summand and show that \ .

" X
dx=- — \ .

" X
, dx; (b) ^

.

1 o

_2_ _
8.2.2. (a) 9a

3
; (b) it diverges; (c) diverges; (d) 6^2; (e) y;

(f) converges for p < 1 and diverges for 1.

8.2.7. (a) It converges; (b) diverges; (c) converges; (d) converges;

(e) diverges; (f) converges. 8.2.11. (a) It diverges; (b) 2 V^ln 2; (c) y.
8.2.14. (a) It converges; (b) diverges; (c) diverges; (d) converges;

(e) converges. 8.3.7. (a) y ;
(a) 2ji. 8.3.8. 3jw 2

. 8.3.9. -1
. 8.3.10. ^p.

8.3.14. mgR. Hint. The law of attraction of a body by the Earth is deter-

niP R 2

mined by the formula f= -^y
2
—

, where m is the mass of the body, r is the

distance between the body and the centre of the Earth, R is the radius of the

Earth.

8.3.15. ev Hint. Electric charges interact with a force -jf- , where e x and e2

are the magnitudes of the charges and r is the distance between them.
8.4.1. Hint. Represent the integral in the form of the sum

+ oo a +co

f
dx _C dx C dx

J xp \n9 x~ j xp \n^x J x?M x
{a > l)

1 1 a
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and apply special tests for convergence, taking into consideration that in the

first integral In a:= ln[l + — 1)] — a:— 1 as x— 1, and in the second integral

the logarithmic function increases slower for q < than any power function.

8.4.2. Hint. Making the substitution xQ=t, reduce the given integral to the

I y £+l y p±i
form ± — \ t

q
~

x smtdt. Represent the integral \ t
q
~

l sin / dt as the sum

o o

1 + GO

f —— dt + C —

—

dt, where a = 1 — , and show that the integral conver-
J t* J t* q
o i

ges absolutely for 1 <a<2 and conditionally for 0<a^l. Note that at

^ii_L— the integral is reduced to the conditionally converging integral

-f CC + X

J
^jl-dt, and at — — 1 to the diverging integral

J
~^-dt.

o o

1/2

8.4.3. Hint. Represent the given integral as the sum
J

xp- l(\—x) (i- vdx-3r

o
l

-}- xP~ l
(1 — x)*!- 1 dx and apply the special comparison test.

1/2
T

8.4.4. Hint. If
|
a

|
7=

| p |, then sin ax- sin fix dx is bounded.

8.4.5. Hint. By substituting t = x2 the integral is reduced to the Euler
gamma-function.

8.4.6. Hint. hM-fMdxJ fJ&dx-[ L&dxJU!!^
J % J x J x J X
a aa a& aa

= -4 In h \ dx. Applying the generalized mean value theorem, show
OC J X

aa

that the last integral tends to zero as a — 0.

8.4.7. Hint. Take the function f(x) = e~ x for the first integral, the function

f(x) = cosx for the second and take advantage of the results of Problem 8.4.6.

8.4.8. It converges for m < 3 and diverges for m ^ 3. Hint. Take advantage

of the equivalence of 1 — cos a: and — as x— 0.

ji 2

P dx C dx
8.4.9. Hint. Represent \ —as the sum of two integrals \ -f-

J (sin x)*
5

J (sin x)k

n
P dx+ \ ; reduce the second integral to the first one by making the substi-
J (sin*)*
ji

tution x= tl— t and take advantage of the equivalence of sin* and x as x— 0.
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8 .4 .,o. mni .

]

sinx{[ - cosx)
dx=

§
™*(i-™x)

dx +

CC

4 ^
X

^'^s

C0S ^ dx '
The inte&rand of tne first summand on the right side is

y
an infinitely large quantity of order s— 3 as x—>0. By the special comparison
test the first integral converges absolutely for s— 3 < 1, i.e. s < 4, and diverges

for s^4. The second integral in the right side converges absolutely for s > 1,

since the function sin#(l — cos a:) is bounded. But if < s< 1 , the second in-

tegral converges conditionally as the difference of two conditionally converging

00 cc

integrals
^
*-^dx and

^s\nx-josx
dx (§ee Pro5 iem 8>I j 3 ).

TT JT

2 T
8.4.11. Hint. Integral (2) can diverge. For example, let

( 1, 2/ux<A:<(2/z4-i)ji,
cp (x) — <YV 1—1, (2/i H- 1)ji < x < (2/z4-2) jt.

CD CO

The integral
J

S
-^^- dx converges (see Problem 8.1.13). But ^^-^^(x)dx =

o o

00 CO

= ^
S*" X

I

<2a: diverges (see the same problem). But if the integral ^ / (x) dx con-

o a

cc

verges absolutely, then the integral
J

f (x) cp (#) dx also converges absolutely: if

a

|

cp (#) | < C, then
| / (a:) cp (a:)

|
< C

\ f (x) |, and it remains to use the comparison

theorem.
ji

T" x

8.4.12 //m*. Transform the integral f (x) into f (x)= ^ In sin z dz by the

JT

2

Jl Z Z
substitution — z. Taking into account that sin z — 2 sin — • cos — , reduce

the above to the sum ol three integrals.

8.4.13. Hint. Putting w=ln cos x\ cos 2nx dx= dv, integrate by parts and get

T
1 p sin x

the equality /,, =— \ sin 2/?a dx, n ^ 0. SinceJ
' 2/2 J cos*

sin 2/2* = sin (2n— 2) x-cos 2a, 4- sin 2a -cos (2/z— 2) a:,
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r n_

2

ln ~2n
f . /0 nx sin a: ,

,

- \ sin (2n— 2) ^—
cos #

L
n

2 2

+ jsin(2n-2>*.sin 2^ + 2 U^ cos (2/z — 2) a:

J

Check by direct calculation that for n ^ 2 the second and the third summands
equal zero. Therefore, for n^2

\ sin (2/z— 2) A' dx= /„_,.
J

v 7
cos x n

n 1
2/i

Since /,---— \ sin 2jt 4*=^ we have / 2
== — — / 3

=.-.-.

2 J cos a: 4 2 4 * <j

2 1 n n

2
' T~^3^4

and by induction, /„= (— 1)"- 1 ^ .


