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1. ROTATIONAL
MECHANICS

1. INTRODUCTION

In this chapter we will be studying the kinematics and dynamics of a solid body in two kinds of motion. The first
kind of motion of a solid body is rotation about a stationary axis, also called pure rotation. The second kind of
motion of a solid is the plane motion wherein the center of mass of the solid body moves in a certain stationary
plane while the angular velocity of the body remains permanently perpendicular to that plane. Here the body
executes pure rotation about an axis passing through the center of mass and the center of mass itself translates
in a stationary plane in the given reference frame. The axis through the center of mass is always perpendicular to
the stationary plane. We will also learn about the inertia property in rotational motion, and the quantities torque
and angular momentum which are rotational analogue of force and linear momentum respectively. The law of
conservation of angular momentum is an important tool in the study of motion of solid bodies.

2. BASIC CONCEPT OF A RIGID BODY

A solid is considered to have structural rigidity and resists
change in shape, size and density. A rigid body is a solid body
which has no deformation, i.e. the shape and size of the body
remains constant during its motion and interaction with other
bodies. This means that the separation between any two points
of arigid body remains constant in time regardless of the kind of
motion it executes and the forces exerted on it by surrounding
bodies or a field of force.

A metal cylinder rolling on a surface is an example of a rigid
body as shown in Fig. 7.1.

Let velocities of points P and Q of a rigid body with respecttoa  Figure 7.1: Metal cylinder rolling on a surface is a

reference frame be V, and V, as shown in the Fig. 7.2. rigid body system. Relative distance between points

L . A and B do not change.
As the body is rigid, the length PQ should not change during

the motion of the body, i.e. the relative velocity between P and
Q along the line joining P and Q should be zero i.e. velocity of approach or separation is zero. Let x-axis be along
PQ, then

\7QP = relative velocity of Q with respect to P
\7QP = (Vg cos6,j + Vqsinb, j) - (Vp cosB, 5 - Vpsin6, 7)
Vap = (Vg cosB, - Vp cosb)) i+ (Vp sing, + Va sind,) |
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Now Vp cosB, = Vg cos,

(Since velocity of separation is 0)

\7QP = (Vp sinb, + VQ sinez)]’ (which is
perpendicular to line PQ).

Hence, we can conclude that for each and
every pair of particles in a rigid body, relative
motion between the two points in the pair will
be perpendicular to the line joining the two
points.

Figure 7.2: Relative velocity between
two points of a rigid body

PLANCESS CONCEPTS

Figure 7.3: (a) Angular velocity of A and B w.r.t. Cis o, (b) Angular velocity of A and C w.rt. B is o,

Suppose A, B, C are points of a rigid system hence during any motion the lengths of sides AB, BC, and CA
will not change, and thus the angle between them will not change, and so they all must rotate through
the same angle. Hence all the sides rotate by the same rate. Or we can say that each point is having the
same angular velocity with respect to any other point on the rigid body.

Neeraj Toshniwal (JEE 2009 AIR 21)

3. MOTION OF A RIGID BODY

We will study the dynamics of three kinds of motion of a rigid body.
(a) Pure Translational motion
(b) Pure Rotational Motion

(¢) Combined Translational and Rotational motion

Let us briefly discuss the characteristics of these three types of motion of a
rigid body.

axis of rotation
ANNNRRRRNNNNNY

3.1 Pure Translational motion Figure 7.4: Body in pure

- L . . o . tational motion.
A rigid body is said to be in pure translational motion if any straight rotational motion
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line fixed to it remains parallel to its initial orientation all the time. Eg. a car """
moving along a straight horizontal stretch of a road. In this kind of motion, the
displacement of each and every particle of the rigid body is the same during
any time interval. All the points of the rigid body have the same velocity and \
acceleration at any instant. Thus to study the translational motion of a rigid
body, it is enough to study the motion of an individual point belonging to that
rigid body i.e. the dynamics of a point.

.

~.

3.2 Pure Rotational Motion m;

.-
Semcmmmmmmm—————

Suppose a rigid body of any arbitrary shape rotates about an axis which is LRI T SO I S ‘
stationary in a given reference frame. In this kind of motion every point of the ’
body moves in a circle whose center lies on the axis of rotation at the foot of
the perpendicular from the particle to this axis, and radius of the circle is equal
to the perpendicular distance of the point from this axis. Every point of the rigid
body moves through the same angle during a particular time interval. Such a
motion is called pure rotational motion. Each particle has same instantaneous
angular velocity (since the body is rigid) and different particles move in circles of
different radii, the planes of all these circles are parallel to each other. Particles
moving in smaller circles have less linear velocity and those moving in bigger
circles have large linear velocity at the same instant.

In the Fig. 7.4 particles of mass m,, m,, m...... have linear velocities v,, v,, v,....

If o is the instantaneous angular velocity of the rigid body, then

V] = 0f,V, = 0h, V3 =063 ..., Vo = O

Figure 7.5: Body in pure
translational motion.

3.3 Combined Translational and Rotational Motion

Arigid body is said to be in combined translational and rotational motion if the body performs pure rotation about
an axis and at the same time the axis translates with respect to a reference frame. In other words there is a reference
frame K’ which is rigidly fixed to the axis of rotation, such that the body performs pure rotation in the K’ frame. The
K’ frame in turn is in pure translational motion with respect to a reference frame K. So to describe the motion of

the rigid body in the K frame, the translational motion of K’ frame is super-imposed on the pure rotational motion
of the body in the K’ frame.

lllustration 1: A body is moving down into a well through a rope passing over a fixed pulley of radius 10 cm.
Assume that there is no slipping between rope and pulley. Calculate the angular velocity and angular acceleration
of the pulley at an instant when the body is going down at a speed of 20 cm s and has an acceleration of 4.0 m
s2, (JEE MAIN)

Sol: Since the rope does not slip on the pulley, the linear speed and linear acceleration of the rim of the pulley will
be equal to the speed and acceleration of the body respectively.

Therefore, the angular velocity of the pulley is

linear velocity of ri 20cm st B
® = . y.o rim _ Ocms ~ 9 rad 5!
radius of rim 10 cm

And the angular acceleration of the pulley is

_ linear acceleration of rim _ 4.0 ms™

=40rad s?
radius of rim 10cm rads
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4. ROTATIONAL KINEMATICS

Suppose a rigid body performing pure rotational motion about an axis of rotation rotates by an angle A6 in a time
interval At. The instantaneous angular velocity , is defined as,

A0 do .
LA 0

Similarly, the instantaneous angular acceleration a is defined as,

w =

= — == (D)

The relations between linear distance s, linear velocity v and linear acceleration a, and the corresponding angular
variables describing circular motion 6, ®, and o respectively are given as:

S =10; V =rm; at =ra ..(iii)

Here the subscript t along with a in the expression for acceleration signifies that this is the tangential component
of linear acceleration.

If a body rotates with uniform angular acceleration,
=0y +at;0=ot+ %octz; o = o + 200 ..(iv)

where , is initial angular velocity.

The equations for angular displacement, angular velocity and angular acceleration are similar to the corresponding
equations of linear motion.

lllustration 2: A disc starts rotating with constant angular acceleration of ©/2 rad s about a fixed axis
perpendicular to its plane and through its center. Calculate

(a) The angular velocity of the disc after 4 s
(b) The angular displacement of the disc after 4s and

() Number of turns accomplished by the disc in 4 s. (JEE MAIN)
Sol:Use the first and second equations of angular motion with constant angular acceleration.

Herea=grads_2; oy, =0; t=4s;

@ o4s) =0+ [grad s—zj x 4s=2nrads?

() 0,40 =0+ L[ Erad 2 |x (1652) = 4n rad
(4s) ~ 2\ 2 -

(0 = nx2xrad =4rnrad =n = 2.

PLANCESS CONCEPTS

. : s . . do
For variable angular acceleration we should proceed with differential equation at - o

Akshat Kharaya (JEE 2009 AIR 235)
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5. MOMENT OF INERTIA

Before discussing the dynamics of rigid body motion let us study about an important property of a rigid body
called Moment of Inertia which is indispensable in understanding its dynamics.

Physical Significance of Moment of Inertia: As the name suggests, moment of inertia is the measure of the
rotational inertia property of a rigid body, the rotational analog of mass in translational motion. “It is the property
of the rigid body by virtue of which it opposes any change in its state of uniform rotational motion.” The moment
of inertia of a rigid body depends on its mass, on the location and orientation of the axis of rotation and on the
shape and size of the body or in other words on the distribution of the mass of the body with respect to the axis
of rotation. SI units of moment of inertia is Kg-m2. Moment of inertia about a particular axis of rotation is a scalar
positive quantity.

Definition: Moment of inertia of a system of n particles about an axis is defined as:

2 2 . 2

_ 2 - _ .
I= myf + myrs + +myrdie I= ) mr (i)

where, r, is the perpendicular distance of ith palrticlle of mass m, from the axis of rotation.

For a continuous rigid body, the moment of inertia can be calculated as:

I= [r*(dm) .. (i
where dm is the mass of an infinitesimal element of the body at a perpendicular distance r from the axis of rotation.
Moment of inertia depends on:

(a) Mass of the rigid body.

(b) Shape and size of the rigid body.

(c) Location and orientation of the axis of rotation.

PLANCESS CONCEPTS

Moment of inertia does not change if the mass:
(i) Is shifted parallel to the axis of rotation because r, does not change.
(ii) Is rotated about the axis of rotation in a circular path because r, does not change.

Chinmay S Purandare (JEE 2012 AIR 698)

lllustration 3: Two particles having masses m; & m, are situated in a plane A
perpendicular to line AB at a distance of r, and r, respectively as shown.

>
>

(i) Find the moment of inertia of the system about axis AB?

(i) Find the moment of inertia of the system about an axis passing though m;
and perpendicular to the line joining m; andm, . <

®
3@

(iii) Find the moment of inertia of the system about an axis passing through  m,

m, and m,.

(iv) Find moment of inertia about an axis passing though center of mass and
perpendicular to line joining m, and m, . (JEE MAIN)

&
<

Sol: Use the formula for moment of inertia of a system of n particles. Find the B

distance of center of mass from m..
) ) ) ) ) ) 5 Figure 7.6
(i) Moment of inertia of particle on rightis I; = m;r]
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Moment of inertia of particle on left is L, = m,r?

Moment of inertia of the system about AB is I=1 +1, = mlrl2 + m2r22

(i) Moment of inertia of particle on right is [[=0

Moment of inertia of particle on left is I, = m2(r1+r2)2

Moment of inertia of the system about axis is [=1 +1, =0+ m,(r+r, )2

(iii) Moment of inertia of particle on right is [ =0

Moment of inertia of particle of left is I,=0

Moment of inertia of the system about axis is I[=1 +1,=0+0

(iv) of system 1., = m, [ij = Distance of center mass from mass m;
m, +m,

. M+
Distance of center of mass from mass m, = m, | —+—%—
m, +m,

n+n

2 2
A ro+r
So moment of inertia about center of mass =I..y = m;|m, 22| +m,|m —~—2—
cm 1| M, 2| My
m, +m, m, +m,

m,m
Ien = —=2-(, +1,)°.
m; +m,

lllustration 4: Three particles each of mass m, are situated at the vertices of an equilateral X
triangle PQR of side a as shown in the Fig 7.7. Calculate the moment of inertia of the | ________ R
system about

(i) The line PX perpendicular to PQ in the plane of PQR.
(i) One of the sides of the triangle PQR

(iii) About an axis passing through the centroid and perpendicular to plane of the triangle P 3 Q
PQR. (JEE MAIN)
Figure 7.7

Sol: Use the formula for moment of inertia of a system of n particles.

(i) Perpendicular distance of P from PX = 0; perpendicular distance of Q from PX = a perpendicular distance of R
from PX = a/2. Thus, the moment of inertia of the particle at P is 0, that of particle Q is ma?, and of the particle at
Ris m(a/2)>.

5ma?’

The moment of inertia of the three particle system about PXis I=0 + ma? + m(a/2)2 = 2

Note that the particles on the axis do not contribute to the moment of inertia.
(i) Moment of inertia about the side PR = mass of particle Q x square of perpendicular distance of Q from side PR,

2
V3 3ma’
I = R =
PR '“{ 5 @ 2

(iii) Distance of centroid from each of the particles is

a4
3
a

2
centroid and perpendicular to the plane of triangle PQR = I~ = 3m [—J = ma’

NE)

, SO moment of inertia about an axis passing through the



Table 7.1: Formulae of MOI of symmetric bodies
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S. No. | Body, mass M Axis Figure | K(Radius of Gyration)
1. Ring or loop of Through its MR2 R
radius R center and C:)
perpendicular
to its plane
2. Disc, radius R Perpendicular
to its plane MR?2 R
through its 2 N
center
3. HoI.Iow cylinder, Axis of cylinder MR2 R
radius R
4, Solid cylinder, Axis of cylinder
radius R [ | i ; \ MR?2 R
v \J &
5. Thick walled Axis of cylinder
5 — |z
Ry
R
N
Nl
6. Solid sphere, Diameter \
radius R :
‘ EMRZ ER
(- 5
v
7. Spherical shell Diameter
radius, R 2MR? 2
R
3 3
8. Thin rod, length L Perpendicular
to rod at ML2 L
middle point 12 i




7.8 | Rotational Mechanics

9. Thin rod, length L Perpendicular
to rod at one ML2 L
end — 3 B
10. Solid cylinder, Through
length | center and MR2  MP R2 P
perpendicular R [\ [\ 2 "1 IR
to length
l
11. Rectangular sheet, | Through
length | and center and M(? +b?) R 4 p?
breadth b perpendicular 12 12
to plane b
L

PLANCESS CONCEPTS

While deriving the MOI of any rigid body the element chosen should be such that:

Either perpendicular distance of axis from each point of the element is same or the moment of inertia of
the element about the axis of rotation is known.

Nitin Chandrol (JEE 2012 AIR 134)

5.1 Theorems on Moment of Inertia

1. Theorem of Parallel Axes: This theorem is very useful in cases when the moment
of inertia about an axis z_ passing through the center of mass (C.0.M) of the rigid body /
is known, and we sought to find the moment of inertia about any other axis z which is
parallel to the axis z_ as shown in Fig. 7.8. The moment of inertia of the rigid body about
axis z is equal to the sum of the moment of inertia about axis z_ and the product of the

mass m of the body by the square of perpendicular distance between the two axes. If the d COM
moment of inertia of the rigid body about axis z_is 1., then the moment of inertia | of
this body about any parallel axis z , is given by =1 + Md? (i)

~__ |

where d is the perpendicular distance between the two axes.

lllustration 5: Find the moment of inertia of a uniform sphere of mass m and radius R
about a tangent if the sphere is (i) solid (ii) hollow (JEE MAIN) Figure 7.8: Parallel axes

Sol: We know the formula for moment of inertia of sphere about an axis passing through its center. Use the parallel
axes theorem to find the moment of inertia about the tangent.

(i) Using parallel axis theorem



Physics | 7.9

=1 +md?

For solid sphere

1C=3mR2,d=R; 1= mR?
5 5

(i) Using parallel axis theorem Solid sphere Hollow sphere

I=Ic+md2

For hollow sphere .
Figure 7.9

Ic = %mRz,d =R; I= ngz

lllustration 6: Find the moment of inertia of the two uniform joint roads having mass m each
about point P as shown in Fig 7.10. Use parallel axis theorem. (JEE MAIN)

Sol: We know the formulae for moment of inertia of rod about the axes passing through its
center and through one of its ends and perpendicular to it. Use the parallel axes theorem to

find the moment of inertia about the point P. Figure 7.10
- : m/?
Moment of inertia of rod 1 about axis P, I; = = —

12

5m/? 2
3 Figure 7.11

2 2
Moment of inertia of rod 2 about axis p, I, = mé” + m[\/ggj 56/2 " com

So moment of inertia of a system about axis p; I =

z

2. Theorem of Perpendicular Axes: This theorem is applicable only in case of
two dimensional rigid body or planar lamina as shown in Fig. 7.12. Let the lamina
lie in the x-y plane and I, and I, be the moment of inertia of the lamina about
x and y axes respectively then the moment of inertia about z-axis perpendicular
to the plane of the lamina and passing through the point of intersection of x and
y axes is given as:

.. |
L=1 + Iy ..(iD) y

Figure 7.12: Perpendicular axes
lllustration 7: Find the moment of inertia of a half-disc about an axis perpendicular to

the plane and passing through its center of mass. Mass of this disc is M and radius is R.
(JEE MAIN)

Sol: We know the formula for the moment of inertia of the half disc about a perpendicular
axis through the center A. Use the parallel axes theorem to find the moment of inertia
about a perpendicular axis through the center of mass.

The COM of half disc will be at distance 4R/3n from the center A. Let moment of inertia
of half disc about a perpendicular axis passing through A be |,.

Figure 7.13

First we fill the remaining half with same density to get a full disc of mass 2M.

The moment of inertia about center A of full disc will be 21,

2MR? _MR? 4R Y MR? 4R Y
So, IA :W:T; IA :ICM+M X (g] ’ICM: > —Mx g
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lllustration 8: Calculate the moment of inertia of a uniform disc of mass M and B
radius R about a diameter.

(JEE MAIN) Z
Sol: For a uniform disc all diameters are equivalent, i.e. moment of inertia about any K
diameter will be equal to that about any other diameter. We know the formula for C 0 D
moment of inertia of disc about axis perpendicular to its plane and passing through
its center. Use the perpendicular axes theorem to find the moment of inertia about
a diameter. A

Let AB and CD be two mutually perpendicular diameters of the disc. Take them as x
and y axes and the line perpendicular to the plane of the disc through the center as Figure 7.14

the Z — axis. The moment of inertia of the ring about the Z - axisis I = 1 MRZ. As the
disc is uniform, all of its diameters are equivalent and so I, = Iy
I,  MR?

2 4

From perpendicular an axis theoremI, =1, + 1 ; hence I, =

=

lllustration 9: In the Fig 7.15 shown find the moment of inertia of square plate having I 2
mass m and sides a about axis 2 passing through point C (center of mass) and in the
plane of plate. (JEE MAIN)

@)

Sol: For uniform square plate axes 2 and 4 along diagonals are equivalent and axes 1
and 3 are equivalent. Suppose |_is the moment of inertia about the axis perpendicular
to the plane of plate and passing through the center C. Use perpendicular axes theorem 4

to prove that the axes 1 and 2 are also equivalent. I

[ VY SYSPREIIR, " "/ RRriivn NP

Using perpendicular axes theorem I~ =1, + 1, =T'+I'=2T ()}

Fi 7.15
Using perpendicular axes theorem I~ =13 +I; =1 +1=2I (i) rgure
From (i) and (i) we get I' =1

2 2
|C:2|:E = I = ﬂ
6 12

5.2 Radius of Gyration

The radius of gyration of a rigid body about an axis z is equal to the radius of a ring whose mass is equal to
the mass of the rigid body, and the moment of inertia of the ring about an axis passing through its center and
perpendicular to its plane is equal to the moment of inertia of the rigid body about the axis z. Radius of gyration
can also be defined as the perpendicular distance from the axis of rotation where all mass of the rigid body can be
assumed to be concentrated when the rigid body is performing pure rotation to get the equation of motion of the
body. Thus, the radius of gyration is the “equivalent distance” of the rigid body from the axis of rotation.

I=MK?

| = Moment of inertia of the rigid body about an axis
M = Mass of the rigid body

K = Radius of gyration about the same axis

I
or K== (i
v (iii)
Length K is the property of the rigid body which depends upon the shape and size of the body and on the

orientation and location of the axis of rotation. S.I. Unit of K is meter.
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lllustration 10: Find the radius of gyration of a hollow uniform sphere of radius R about its tangent. (JEE MAIN)

Sol: Use the formula for radius of gyration.

Moment of inertia of a hollow sphere about a tangent = %MR2

MK2 = 2 MR? = K=\/§R
3 3

5.3 Moment of Inertia of a Body Having a Cavity

If we know the moments of inertia of different parts of a rigid body about the same axis, then the moment of inertia
of the entire body can be calculated by simply adding the moments of inertia of the different parts (about the same
axis) i.e. moment of inertia is an additive quantity. This principle can be used to calculate the moment of inertia of
a body having hollow spaces by first assuming the hollow spaces to be filled with same density as that of the body
and evaluating the moment of inertia of the whole body about the given axis and then add the moments on inertia
of the hollow spaces about the same axis considering them to have negative mass.

lllustration 11: A uniform disc of radius R has a round disc of radius R/3 cut as shown in Fig 7.16. The mass of the
disc equals M. Find the moment of inertia of such a disc relative to the axis passing through geometrical center of
original disc and perpendicular to the plane of the disc. (JEE ADVANCED)

Sol: Consider the whole disc without the cavity. The cavity can be thought of as a negative mass of same density as
disc. We know the formula for moment of inertia of uniform disc about axis perpendicular to its plane and passing
through its center. Find the moment of inertia of cavity (negative mass) about the perpendicular axis passing
through center of whole disc. The moment of inertia of disc with cavity is the sum of the moment of inertia of whole
disc and the moment of inertia of cavity (negative).

Let the mass per unit area of the material of disc be c. Now the empty space can be considered as having density
—O
Now I0 = IG + I_G

I, = (6nR?)R?/2 = Ml of & about O = MR?/2

_ 2 2
I = on(R/3)°(R/3) N
2
- MI of —o About O =-MR?/18

Ip = MR?/2-MR?/18

4

[-on(R /3)?1(2R/ 3)?

I, = ~MR?
° 9
Figure 7.16
6 TORQUE
6.1 Torque About a Point
Torque of force F relative to a point O is defined as N Line of action

LT F ) of force

where F = force applied to a point on a body

ro= position vector of the point of application of force relative to the point O in
a chosen reference frame about which we want to determine the torque (see Fig.
7.17).

Torque is a vector quantity and its direction is given by the right hand rule for cross  gigure 7.17: Torque of a force
product of vectors.
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Magnitude of torque |t|=rFsin®=rF =rF

where 0 is the angle between the force F and the position vector r of point of application.

r, =rsin 6 = perpendicular distance of line of action of force from point O.

F| = Fsin 6 = component of F perpendicular to r

Sl unit of torque is N-m.

lllustration 12: Find the torque about point O and A. (JEE MAIN)

Sol: Express the position vector of A relative to O in terms of unit vectors i and

j - Force is given in terms of unit vectors i and j.

Torqueaboutpointo,;:% x F, 6:?+j,|3: 530+ 5]
1= (+)) x (5431 + 5)) = 51 -B)k

Torque about point A, T= r, x For =], F=5/31+ 5]
T=] x (5430 + 5)) = -54/3k

lllustration 13: A particle of mass m is released in vertical plane from a point on the

x — axis, it falls vertically along the y — axis. Find the torque t about origin?

(JEE MAIN)

Sol: Torque is produced by the force of gravity. This will be equal to the product of
force of gravity and the perpendicular distance between the line of action of force of

gravity and the origin O.

(1' 1) 300
i 60°

o —X
A

Figure 7.18

X
0< 0 >
0
.
0
N

v

RS
T=rFsin0k Or t=rF=xmg mg
. mngO _ mgXOIE Figure 7.19

6.2 Torque About An Axis

The torque of a force F about an axis AB is the component of the torque of F A

about point A along the axis AB. P

Alternatively to find torque of force F about axis AB we choose any point O on T

the axis AB and find the torque of F about O as Ty =Trx F. Then we calculate ©

the component of 7, along AB to get 7,; (see Fig. 7.20).

There are a few special cases of torque of a force about anﬁaxii Figure 7.20: Torque aboEt

Case I: Applied force is parallel to the axis of rotation, i.e. F || AB an axis

Therefore torque r x F about any point on the axis will be perpendicular to F and hence F A

perpendicular to AB. Therefore the component of rxF along AB will be zero. \‘P\

Case II: The line of action of the applied force intersects the axis of rotation ' 0

(E intersects 7@)

If we choose the point of intersection of line of action of F and AB as the origin O then

the position vector r and applied force F will be collinear (see Fig. 7.21). Therefore the B

torque about O is r x F =0 and thus the component of this torque along line AB will Figure 7.21: Force

also be zero.

intersects axis
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Case IlI: Line of action of F and axis AB are skew and F L AB A
Let O be the origin on the axis AB and P be the point of application
of force F such that OP is perpendicular to the axis AB (see Fig. 7.22).
Then torque 7 = OP xF will be parallel to axis AB and the component
of 7 along AB will be equal to its magnitude i.e.

T,5 = FX(OP)sin® = FxI

where ¢ = (OP)sin® is the length of the common perpendicular to
the line of action of force and the axis called the lever arm or moment
arm of this force.

B

Figure 7.22: Force and axis are skew

lllustration 14: Find the torque of
weight about the axis passing through
point P (JEE MAIN)

Sol: Required torque is equal to the
product of force of gravity and the
perpendicular distance between the
line of action of force of gravity and
the point P. 0

F= mg Downwards

t=Fxr = Frsin® Figure 7.23

lllustration 15: A bob of mass m is suspended at point O by string of length ¢ . Bob is moving in a horizontal circle
find out. (i) Torque of gravity and tension about point O and O’ (ii) Net torque about axis OO". (JEE ADVANCED)

Sol: Torque of a force about an origin is equal to the product of force and the perpendicular distance between the
line of action of force and the origin.

(i) Torque about point O

Torque of tension (T), T, = O (tension is passing through point O)
Torque of gravity Tmg = Mg/ sin 0 (along negative]')

Torque about point O

Torque of gravity Tmg = Mgr =mg ¢ sin 0 (along negative]' )

Torque of tension 11 = Trsin (90 + 0) (T cos 6= mQ)
Tr = Trcosf = m—ge(ﬁsine)cose =mg/sin® (along positivej )
cos

(i) Torque about axis OO’
Torque of gravity about axis OO’ Ty = 0 (force mg is parallel to axis OO’)

Torque of tension about axis OO" Ty = 0 (force T intersects the axis OO')

Net torque about axis OO’ Thet =0

6.3 Force Couple Figure 7.25

A pair of forces each of same magnitude and acting in opposite directions is called a force couple.
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Torque due to couple = magnitude of one force x distance
between their lines of action.

4
d >~
Magnitude of torque = © = F (d) \/—

M F

A couple does not exert a net force on an object even though Rigid body Y -
it exerts a torque. N g
Net torque due to a force couple is the same about any point
. B
(see Fig. 7.26). \_%
Total t bout A = x,F + x.F =F(x, + =Fd
otal torque abou xF+x, (X, +X,) N o omeemeeens >

Total torque about B = y,F - y,F = F(y; —y,) = Fd
Figure 7.26: Force couple

6.4 Torque on a Rigid Body Executing Pure Rotation

Suppose | is the moment of inertia of a rigid body about the axis of rotation
which is stationary in a given reference frame. The body is executing pure
rotational motion about this fixed axis.

t_. = resultant torque about the axis of rotation due to all the external forces

ext

acting on the body
o = instantaneous angular acceleration of the body.

o = instantaneous angular velocity of the body. T ed axis of
ixed axis o

Consider one particle of the body say i* particle of mass m, at perpendicular Rotation

distance r, from the axis.
Figure 7.27: Rigid body executing

Radial force on the particle F, = mo’r towards the center of its circular path. pure rotation

Tangential force on the particle F, = ma, = mar,

Torque of the radial force about the axis of rotation is zero as it intersects the axis. Torque of tangential force about
the axis will be,

e _ 2
T =R = mrfa

To find the total torque on the rigid body about the axis we take summation of torques acting on all the particles
of the body. The total torque comes out to be equal to the resultant torque due to external forces only as the
torques due to internal forces cancel each other in pairs when summation is taken on all the particles of the body
(By Newton'’s third law of motion internal forces form pairs of equal and opposite collinear forces. So the lever arms
of the forces of a pair with respect to the axis will be equal so their torques will have equal magnitude but opposite
directions and cancel each other in the summation). So

Tyt = Zti = (Zmiriz) a=la (1)

Remember: This formula is applicable only for pure rotational motion of a rigid body about a fixed axis.

7. KINETIC ENERGY OF BODY IN PURE ROTATION

When a rigid body performs pure rotational motion about a given axis, all of its constituent particles move in

circular paths with centers on the axis and radii r; , 1, ... and 1, (say), and with linear velocitiesv; = o I,
Vo) S @F) e, and vy = r,. If m;,m,,...and m, are the masses of the particles then the total kinetic
energy of the rigid body is given by

-1 mvi + 1 m,v3 + ... +Em V3 ()

2 2
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1 22, 1 2.2 2.2
=§m103r1 +§mzo)r2 o += m ors
—l(mr2+mr2+ + mor2)e?
1 1 2 2 ---------- n n O)
Now as we have learnt the term mlrl2 + m2r22 + o + mnrﬁ is the moment of inertia of the rigid body.

Hence, the rotational kinetic energy of a body is given by

K =%Ic02 ..(ii)

PLANCESS CONCEPTS

Most of the problems involving incline and a rigid body, can be solved by using the conservation of
energy. Care has to be taken in writing down the total Kinetic energy. Rotational Kinetic Energy term has
to be taken into consideration along with translational kinetic energy. And while writing the rotational
energy, the axis about which the moment of inertia is taken should be carefully chosen.

The point about which the conservation is done should be inertial to avoid calculating the work done
by pseudo forces or the point itself should be the COM so that the work done by the torque of pseudo
forces would be 0.

Shrikant Nagori (JEE 2009 AIR 30)

lllustration 16: A uniform circular disc has radius R and mass m. A particle, A
also of mass m, is fixed at a point A on the edge of the disc as shown in Fig
7.28. The disc can freely rotate about a fixed horizontal chord PQ that is at a R
distance R/4 from the center C of the disc. The line CAis L to PQ Initially the

disc is held vertical with point A at its highest point. It is then allowed to fall C =
so that it starts rotating about PQ. Find the linear speed of the particle as it / | R4

reaches lowest point. (JEE ADVANCED) P v Q

Sol: Find the moment of inertia of circular disc and the particle at point A

about the chord PQ The loss in potential energy of the system comprising the Figure 7.28
disc and the particle will be equal to the gain in its rotational kinetic energy.
I=l><mR2+m E2+m$2:15mR2 A
2 2 4 4 8
Energy equation oC
O
5R mgR 1., 5R mgR o /;\
2= = Zlw? — >2r_ 90
mg 7 + i 5 o —mg 7 7 \_/ o
9
=4 |=
® 77 \5R
N
V = SRa _ 5gR
4 Figure 7.29

lllustrations 17: A pulley having radius r and moment of inertia | about its axis is fixed at the top of an inclined
plane of inclination 6 as shown in Fig 7.30. A string is wrapped round the pulley and its free end supports a block
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of mass m which can slide on the plane initially. The pulley is rotated at a w’
speed @y in a direction such that the block slides up the plane. Calculate the A
distance moved by the block before stopping? (JEE ADVANCED)

Sol: Apply Newton'’s second law of motion for block M along the inclined
plane. Find the torque (about its axis) of force of tension acting on pulley.
This will be equal to the product of moment of inertia | and the angular
acceleration of pulley. 0

Suppose the deceleration of the block is a. The linear deceleration of the rim
of the pulley is also a. The angular deceleration of the pulley is o = a/r. If the Figure 7.30
tension in the string is T, the equations of motion are as follows:

mgsind —T = ma and Tr =la= Ia/r.
Eliminating T from these equations,

mgr? sin®

mg sinf — I%: ma; Giving, a = 5

r I+mr

The initial velocity of the block up the incline is v = @yr Thus, the distance moved by the block before stopping is
LV @ mr)ep
~2a  2mgsin©

lllustration 18: A uniform rod of mass m and length ¢ can rotate in vertical plane . Y .
about a smooth horizontal axis hinged at point H. H ) “
y > A
(i) Find angular acceleration o of the rod just after it is released from initial 72 mg
horizontal position from rest?
Figure 7.31
(i) Calculate the acceleration (tangential and radial) of point A at this moment.
(iii) Calculate net hinge force acting at this moment.
(iv) Find o and ® when rod becomes vertical.
(v) Find hinge force when rod become vertical. (JEE ADVANCED)

Sol: The axis of rotation passing through H is fixed. So the torque of force of gravity about axis through H is equal
to the product of moment of inertia about axis through H and angular acceleration of rod. Angular acceleration at
an instant can be found if the torque of force of gravity at the instant is known.

mgé = m_g2a = o= 39 )? . >‘
3 2/¢ o A
(i) ap= ol = z—?.f = 379 -
Figure 7.32
acp= or =0.0=0 (o = 0just after release)
(iii) Suppose hinge exerts normal reaction in component form as shown N
In vertical direction
Fext = Macm
= mg - N, = m.%Tg N,
(We get the value of ac), from previous example) Figure 7.33

:>N1:T
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In horizontal direction

F

ext = Macy = N, =0 (- acyy in horizontal = 0 as @ = 0 just after release)

(iv) Torque = 0 when rod becomes vertical so a =0

2
Using energy conservation mgt = l]®2 1:%
2 2 3
(Work done by gravity when COM moves down by (¥2) ¢ = change in K.E.)
o= [
l

(v) When rod becomes vertical

a=0 0= 1/379 (Using Fet =Magy,)

2
Fy -mg = Mo~ (acy = centripetal acceleration of COM)
5mg
Ans.F, = —=
Ho 2
. : : , . Bar
lllustration 19: A bar of mass m is held as shown between 4 disks each of mass m" and radius [_
r = 75 mm. Determine the acceleration of the bar immediately after it has been released 4
from rest, knowing that the normal forces exerted on the disks are sufficient to prevent any
- . ~ e A
slipping and assuming that. (@) m =5 kg and m' = 2 kg.
(b) The mass m’ of the disks is negligible.
(c) The mass m of the bar is negligible (JEE ADVANCED) B

Sol: Apply Newton's second law of motion in vertical direction for the motion of center
of mass of bar. Write the equation of torque due to force of friction acting on disc, for
rotational motion about fixed axis through center of disk. Acceleration of rod will be equal to Figure 7.34
the tangential acceleration of the disc in the case of no slipping.
(a) Equation of center of mass of rod,
mg — 4f = ma (D)
(where fis frictional force from one disk)
Torque acting on each disk due to frictional force is

m'r’ a

fr = 5 T (i)

From (i) and (ii) we get

mg—-2m’a = ma (1)

5 =(5+2 x 2)a; az%g

(b) Putting m'=0 in eqgn. (iii) we geta =g
(c) Putting m = 0 in egn. (iii) we geta =0

59
wwgi

b) gy o0
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7.1 Work Done and Power Delivered by Torque

If a torque 7 rotates a body through an angle d6, the work, dW done by it is given by

dw = tdo
The total work done W in rotating a body from the initial angle 0, to the final angle 0, , is
0, ®, ,
_ _ do _ _ 1 2 1 2
W-é[r.d@ = u_!.Iamdt = (:)[Icodm =3 Icoz—E (0%
1 1 1

So the work done by torque is equal to the change in the rotational kinetic energy.

W = AK ot = A(%Imzj ()

This is called the Work-Energy Theorem for rotation of rigid body.

The rate at which work is done is called power P, given by
=1~ =10 ...(ii)

Also, the power P delivered by the torque on the rigid body is equal to the rate of change of kinetic energy

1.5 dK d (1.5
K==1 = = — | =
2 TR (21(’)]

P = %xlx de—w:Id—mm:tw

dt dt

8. EQUILIBRIUM OF RIGID BODIES

A rigid body can be in linear equilibrium as well as in rotational equilibrium. If a rigid body is in linear equilibrium,
then the vector sum of all the forces acting on it should be zero.

ie. T Py = 0
Taking scalar components along the three axes x, y and z we get XF =0, ZFy =0,2F, =0

If a rigid body is in rotational equilibrium then the vector sum of all the external torques acting on it with respect
to an axis in a given reference frame must be zero.

It = 0 =2t = 0, Zry =0, 2T, = 0

lllustrations 20: Two boys weighing 20 kg and 25 kg are trying to balance a seesaw of total length 4 m, with the
fulcrum at the center. If one of the boys is sitting at an end, where should the other sit? (JEE MAIN)

A I

. )\

Figure 7.35

Sol: For rotational equilibrium, the net torque about the fulcrum of all the forces acting on the boys and the seesaw
should be zero.

It is clear that the 20 kg kid should sit at the end and the 25 kg kid should sit closer to the center. Suppose his
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distance from the center is x. As the boys are in equilibrium, the normal force between a boy and the seesaw equals
the weight of that boy. Considering the rotational equilibrium of the seesaw, the torque of the forces acting on it

should add to zero. The forces are

(a) (25kg) g downward by the 25 kg boy
(b) (20kg) g downward by the 20 kg boy
(c) Weight of the seesaw and

(d) The normal force by the fulcrum.
Taking torques about the fulcrum.

(25kg)gx=(0kg)g(@2m)orx=16m

9. ANGULAR MOMENTUM

9.1 Angular Momentum of a Particle About a Point

If p is the linear momentum of a particle in a given reference frame, then angular momentum of the particle about

an origin O in this reference frame is defined as

L=rxp

where T is the position vector of the particle with respect to origin O (see Fig. 7.36).
Magnitude of angular momentum is L = rpsin®

or L=r por L=p,r

0 = angle between vectors r and p

r, = component of position vector r perpendicular to vector p.

p, = component of vector p perpendicular to position vector r.

SI unit angular momentum is kgm? s,

Relation between Torque and Angular Momentum
L=rxp

Differentiating with respect to time we get

d _d - - do_ - = - = - =

— == Xxp+rx ——=vxmv)+rxF=0+rxF=r1

gt ~at P dt (mv)

L d
dt

For a single particle moving in a circle of radius r with angular velocity ® we have

=T

v =orand p = mor

So angular momentum comes out to be L = r p= mr’m

()

=)
o
v,
=]
)

v

(0]

Figure 7.36: Angular
momentum about a point

(i)

-~
-
-
L
-

Y
lllustration 21: A particle of mass m is projected at time t = 0 from a
point O with a speed u at an angle of 45° to the horizontal. Calculate the
magnitude and direction of the angular momentum of the particle about Py
the point O at time t = u/g. (JEE ADVANCED)
Sol: Express the position and velocity of particle in Cartesian coordinates o

in terms of unit vectors i and j and then calculate the cross product in

Figure 7.37
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Cartesian coordinates.
Let us take the origin at O, X —horizontal axis and

Y — Axis along the vertical upward direction as shown in Fig 7.37 for horizontal during the time O to t.

Y —ucos45°—u/\/§andx— Vyt= —— = —
" V2'9 V29

For vertical motion,

. u 1-+2)
v, =usin45°-gt= —— u-= u
y NG N
. 1 u? u? u?
and y=(Usind5°) t—=gt2 = — —— = —(\2-1)
2% T g 29 2g

The angular momentum of the particle at time t about the origin is
L=r x P=mr x v = m(ix + Jy) x (fvx +]'vy) = m(lzxvy—lzyvx)

3

H@,J(“ )-SR - o

3

Thus, the angular momentum of the particle is

in the negative z — direction i.e., perpendicular to the plane
of motion, going into the plane. 2\/59

lllustration 22: A cylinder is given angular velocity o,and kept on a horizontal rough surface the initial velocity is
zero. Find out distance travelled by the cylinder before it performs pure rolling and work by frictional force.
(JEE ADVANCED)

Sol: Due to backward slipping force of friction will act forwards. The cylinder is accelerated forwards. The torque
due to friction and hence the angular acceleration is opposite to the initial angular velocity. So the angular velocity
will decrease and the linear velocity of center of mass of cylinder will increase in the forward direction, till the
slipping stops and pure rolling starts. The work done by frictional force is equal to change in the kinetic energy of
the cylinder. The kinetic energy includes both rotational kinetic energy and translational kinetic energy.

2
uMg R = MR“a
v
o= 2ug () % -~/ R
R

Initial velocity u = 0 @-) a G-) \%
2 2 S

VS = u° + 2as

2 = 2as .. (i) fi < >
fc =ma;, uMg = Ma; a=pg .. (iii) 5
® = oy — ot Figure 7.38
2pug

From equation (i) ® = @y —Tt; V = u + at

From equation (i) v=p gt
2v ®
W= —— [ O=0y—20; ® = —
0 R 0 3

From equation (ii)

2 2p2
ogR o, R
_— = 2 = M =
( 3 ] (2as) = 2u gs; S (18;19]
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Work done by the frictional force

2p2
W = (—fdeG + kaS) = —ungAO + M
18ug

2
o,R |1 2 ®,R 2 2 2
A0 = oy xt—1 af? = o, x [L]_xﬂ(LJ _[oR_ofR] _ 20fR
2 3pg )2 R 3ug 3ug  9ug 9ug

2 ZR ZRZ 2R2
W = {1 —umg x R P | umg x ) =M%
ug 18ug 6

lllustration 23: A hollow sphere is projected horizontally along a rough surface with speed v and angular velocity

1

@, . Find out the ratio L, so that the sphere stops moving after some time. (JEE ADVANCED)
®
0
Sol: For the sphere to stop after sometime, the acceleration should be opposite to velocity, i.e. the force of friction
should be backwards (forward slipping). Also, the torque due to friction should be opposite to angular velocity, i.e.
if the torque due to friction is clockwise (see Fig. 7.39), then the initial angular velocity should be anti-clockwise.

Torque about lowest point of sphere

f¢ x R=Ia; pumgxR zngza; o= 32%9 (Angular acceleration in opposite direction of angular velocity)

O = oy —ot (Final angular velocity @ = 0)

Ope—~
a=0
2R A< % v=0
0 = 30)gxt; t = ®g %
f —_—>V

2R 3ig

Acceleration a = pg t

Vi =V — at (Final velocity vy = 0); @R

V = ugxt; t= v Figure 7.39
Hg

To stop the sphere, time at which v and ® are zero, should be same.

v _20R v 2R

ng 3ig’ oy 3

lllustration 24: A rod AB of mass 2m and length ¢ is lying
on a horizontal frictionless surface. A particle of mass m eo—>
travelling along the surface hits the end of the rod with a

velocity v, in a direction perpendicular to AB. The collision 072 0/2
is elastic. After the collision the particle comes to rest. Find

out after collision A
2m || com COM [o-r-mrr> v
(a) Velocity of center of mass of rod A

(b) Angular velocity. (JEE ADVANCED) 0/2 0/2

Sol: Conserve linear momentum and angular momentum of

AT 1 = =
the system constituting “the rod and the particle” before and B B
after collision. Here the linear and angular momentum of the Before collision After collision
rod before collision is zero. Angular momenta of the rod and

particle are calculated about the center of the rod. Figure 7.40



7.22 | Rotational Mechanics

(a) Let just after collision the speed of COM of rod is v and angular velocity about COM is.

External force on the system (rod + mass) in horizontal plane is zero.

Apply conservation of linear momentum in x direction;

mv, = 2mv e (D
(b) Net torque on the system about any point is zero

Apply conservation of angular momentum about COM of rod.

mvglolo = mvg L= 2, 0
2 2 12
From equation (i) velocity of center of mass v = V—O
S . _3v,
From equation (ii) angular velocity ® = 7

9.2 Angular Momentum of a Rigid Body Rotating About Fixed Axis

For a system of particles the total angular momentum about an origin is the sum of the angular momenta of all the
particles calculated about the same origin.

L=y

Differentiating with respect to time we get,

.- ~

..........

L dL,
% = zd_t' =2 H AT =2 [y w =04 S
i ik ik Y 2 L1 P3 o

The double summation term corresponds to the sum of torques due to
internal forces and as explained earlier, according to Newton's third law
of motion these internal torques cancel out in pairs.

- h

---------

So for a system of particles . .
Axis of rotation

dL e ) 8

r =7 ...(xvii) AN VAN

Impulse of a torque is defined as J = J'd[: I%eXtdt Figure 7.41: Angular momentum
of rigid body

Angular momentum of a rigid body rotating about a fixed axis can be
calculated as below:

Angular momenta of its individual particles about the axis are
— 2 — 2 — 2 _ 2 . . .
L, = Mo, L, = myn o, Ly = myo, ... L, = myry“o where o is the instantaneous angular velocity of the
rigid body
Total angular momentum of the body
- 2 2 2
L=mn“o+ mno+ Mo ... + Myl o

L=Ym@E o=1o

SoL=1lw
Remember: This formula is applicable only for rotation of the rigid body about a fixed axis.

Again differentiating this relation with respect to time we get,
dL O do
dt  dt et
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lllustration 25: Two small balls of mass m each are attached to a light rod of length ¢, one at its center and the
other at its free end. The rod is fixed at the other end and is rotated in horizontal plane at an angular speed ®.
Calculate the angular momentum of the ball at the end with respect to the ball at the center. (JEE MAIN)

Sol:Both the balls A and B have same angular velocity but different linear velocities.

The situation is shown in Fig 7.42. The velocity of the ball A with respect to
the fixed end O is v, = o (¢/2) and that of B with respect to O is v, = w/ IA I
. Hence the velocity of B with respect to Ais v~ v, = ®(¢/2). The angular 8 < 7 > B
momentum of B with respect to A is, therefore,
Lo = mm(£J£ ) lmméz Figure 7.42
2)2 4

along the direction perpendicular to the plane of rotation.

9.3 Conservation of Angular Momentum
In the previous article we have proved the relation
dl
dt

From the above equation we see that if 7' =0 then L of the system of particles remains constant.

t

= 7t where L and " are evaluated about the same origin.

In some situations the component of external torque about an axis is zero even if the net external torque is not
zero. So in these cases the component of the total angular momentum, about the particular axis, remains constant.

lllustration 26: A uniform rod of mass m and length ¢ can rotate freely on a smooth horizontal plane about a

vertical axis hinged at point H. A point mass having same mass m coming with an initial speed u perpendicular to

the rod strikes the rod in-elastically at its free end. Find out the angular velocity of the rod just after collision?
(JEE MAIN)

Sol: After collision the rod and the particle execute pure rotational motion about vertical axis ml

through fixed point H. (-|_l-|) ]

Angular momentum is conserved about H because no external force is present in horizontal u
plane which is producing torque about H. g
m

mfz 2 3u
mul = T+m€ 0 = o= m
Figure 7.43

lllustration 27: A uniform rod of mass m; and length ¢ lies on a frictionless horizontal plane. A particle of mass
m, moving at a speed Vv, perpendicular to the length of the rod strikes it at a distance ¢/3 from the center and
stops after the collision. Calculate (a) the velocity of the center of the rod and (b) the angular velocity of the rod
about its center just after the collision. (JEE ADVANCED)

mEy
\W

Sol: Conserve the linear momentum of the system comprising

“the rod and the particle” before and after the collision. Conserve (Fi)
the angular momentum, about the center of the rod, of the system Ale| | ¢ A Y
comprising “the rod and the particle” before and after the collision. IK/B

~—> )

The situation is shown in the Fig 7.44. Consider the rod and the
particle together as the system. As there is no external resultant force, —=
the linear momentum of the system will remain constant. Also there (A) (B)
is no resultant external torque on the system and so the resultant

Fi 7.44
external torque on the system and the angular momentum of the 'gure
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system about the line will remains constant. Suppose the velocity of the center of the rod is V and the angular
velocity about the centerisw .

(a) The linear momentum before the collision is m_v, and that after the collision is M, V.

m,
Thus myvy = mV, or V= | —=%|v,
my

(b) Let A be the center of the rod when at rest. Let AB be the line perpendicular to the plane of the Fig 7.44.
Consider the angular momentum of N “the rod plus the particle” system about AB.

Initially the rod is at rest. The angular momentum of the particle about AB is
L =m,vy(¢/3)
After collision the particle comes to rest. The angular momentum of the rod about a is
L=Lcm + myry x V

AS%”V,%XV =0 thus, L = Lcm

Hence the angular momentum of the rod about AB is

2

my ¢ myve m, (2 or o= 4m,v,

Thus,
@ Ty ET O m,/

L = lo=

10. RIGID BODY IN COMBINED TRANSLATIONAL AND ROTATIONAL
MOTION

As discussed earlier, in this type of motion the rigid body is performing pure rotational motion about an axis and
the axis itself is performing pure translational motion relative to a given reference frame.

Consider a car moving over a straight horizontal road with some instantaneous velocity v with respect to a reference
frame K fixed to the road. Now let us observe the motion of a wheel of the car from the K frame. This motion of the
wheel in K frame is an example of combined translational and rotational motion. Let us suppose a reference frame
K’ which is translating with respect to frame K with same instantaneous velocity v. In other words frame K' is rigidly
fixed to the body of the car. In this frame the wheel of the car performs pure rotational motion. The body of the car
itself is performing pure translational motion.

Take another example of motion of a fan fixed inside the car.

If the fan is switched off while the car is moving on the road, the motion of fan is pure translational with respect
to K frame.

If the fan is switched on while the car is at rest, the motion of fan is pure rotational about its axis, as the axis is at
rest in the K frame.

If the fan is switched on while the car is moving on the road, the motion of the fan with respect to K frame is neither
pure translational nor pure rotational but a combination of both. Now if an observer A is sitting inside the car, as
the car moves, the motion of fan will appear to him as pure rotational while the motion of the observer A with
respect to K frame is pure translational. Hence in this case we can see that the motion of the fan can be resolved
into two components, pure rotational motion relative to observer A and pure translational motion of observer A
relative to K frame.

Such a resolution of motion of a rigid body into components of pure rotational and pure translational motion is an
important tool used in the study of their dynamics.

10.1 Kinematics of a General Rigid Body Motion

For a rigid body the value of angular displacement 8, angular velocity ®, and angular acceleration a is same for
all points on the rigid body. Also, if we choose any point of the rigid body as origin O and any other point, say A,
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of the body has a position vector r relative to O, and during any
time interval the vector T rotates by an angle 0 relative to its initial
direction, then position vector of any other point, say B, relative to
any other origin, say O, inside the rigid body will also rotate by the
same angle 0. This means the angular variables 6, ®, and a do not
depend on the choice of origin in the rigid body.

The above concept is very important as it enables us to calculate
the velocity of each point of the rigid body if we know the velocity
of any one point (say A) in the rigid body with respect to a reference
frame K and angular velocity of any point in the rigid body relative
to any other point in the rigid body.

Suppose we want to calculate the velocity of a point B in the rigid
body which has a position vector rga relative to A (see Fig. 7.45).

Figure 7.45: Kinematics of rigid body

The velocity of point Ais v, , so we have velocity of B as

V=V, +Vga = Vot @ X Ty

Direction of 1 is given by right hand thumb rule. If we curl the fingers of the right hand in the direction of rotation
of the body, thumb gives the direction of @ .

Similarly the acceleration of point Bis: ag = aa + o x Isa

lllustration 28: Consider the general motion of a wheel (radius r) which can be viewed as pure translation of its
center O (with the velocity v) and pure rotation about O (with angular velocityu )

Find out Vo, Veo, Vco, Voo and Va, Ve, Vc,Vp (JEE MAIN)
Sol: Express the angular velocity, linear velocity of point O and C

position vectors of points A, B and C relative to O in Cartesian \w:m(—k)
coordinates.

Vao = ((:)XFAO) = (oa(—lz)xOK) D B i
= (o(-k)xr(=])) = -ori

Similarly  Veo = or (-)) ; Vco = or(i) ; Voo = or(j)

VA=VO+VA0=V?—QF?; A
Figure 7.46

VB= Vo + Vo = Vi +orj

Vc = Vo + Vco = Vi +ori ; Vb = Vo + Vpo = Vi +oIj

10.2 Dynamics of a General Rigid Body Motion

Combined rotation and translation of a rigid body is considered as combination of pure rotation in C frame about
an axis passing through the center of mass and translation of center of mass in a reference frame K. Dynamics of
combined rotational and translational motion of a rigid body in K frame is defined by two vector equations. One
of them describes the dynamics of the center of mass of the rigid body in the K frame, and the other the equation
of dynamics of pure rotation of the body about center of mass in the C frame.

So if the total mass of the rigid body is M and the net external force acting on it is ?ext then we have in the K frame,

Md\7C =F (i)
dt ~ lext

If I is the moment of inertia of the rigid body about the axis passing through center of mass and T is the net
torque of all external forces about the axis passing through the center of mass, then we have in the C frame,
do

o =legr

T =1.a (i)
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If Protal is the total linear momentum of the rigid body in the K frame, Lc is angular momentum of the body in C
frame about center of mass and rc is the position vector of center of mass relative to some origin in K frame, then
we have,

ﬁtotal = MVC
Total Kinetic energy

1 1
K= EMvc2 +EIC032 ...(iif)
=1 o (V)

Angular momentum in K frame = Lc about COM + L of the C.O.M about some origin in K frame

L =Ic o+ rcx MV, (V)

10.3 Pure Rolling (Rolling Without Slipping)

Pure rolling is a special case of combined translational and rotational motion of a rigid body with circular cross
section (e.g. wheel, disc, ring, cylinder, sphere etc.) moving on a surface. Here,
there is no slipping between the rolling body and the surface at the point of
contact.

Suppose a sphere rolls on a stationary surface and the point of contact between
the sphere and the surface is A (see Fig. 7.47). Let the velocity of the center of
sphere be v, radius be R and its angular velocity be . For pure rolling the relative
velocity between the point A of the sphere and the surface must be zero. As the

surface is at rest, the velocity of point A is also zero. Figure 7.47: Sphere rolling on a
stationary surface.
A=V-oR=0

S.v=0R

R

If sphere is rolling on a plank moving velocity v,, then for pure rolling, v, =v - oR = v, (see Fig. 7.48)

Same is true for the tangential acceleration of the point of contact in case ®
of pure rolling.

Now let’s discuss the case where a rolling cylinder of mass m moves forward
on a rough plate of same mass with acceleration “a” and the rough plate
moves forward with an acceleration “a," under action of force F on a smooth

surface.

\

[ 32

As the cylinder accelerates in the forward direction, so by Newton’s second | _|'>V0
law, the friction on the cylinder at the point of contact will be in forward

direction and on the plate in backward direction by Newton'’s third law (see Figure 7.48: Sphere rolling on a
Fig. 7.50). moving surface.

Equation of torque about center of cylinder:

T.=fR= m§2 (0
2f .
= o= R e 0]
Equation of motion of center of cylinder:
f=ma . (ii)
From (i) and (ii) we get Figure 7.49: Cylinder rolling on an accelerating plate.

_oR
2
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At contact point —> a
p f < 0
o =a+oR= R -3, (i)
0 ST e a —>a m —T1—>F
Equation of motion of plate: f
F-f=ma,

Figure 7.50: (a) FBD of Cylinder. (b) FBD of Plate.
F=m(a+a)

F=4ma ;a= —;
4m

lllustration 29: A wheel of radius r rolls (rolling without slipping) on a level
road as shown in fig 7.51.

Find out velocity of point A and B. (JEE MAIN)
Sol: Linear velocity of any point on the rim of the wheel has magnitude wr in

the reference frame of center of wheel (C-frame). Velocity in ground frame is
the vector sum of velocity in C-frame and the velocity of center of wheel.

Figure 7.51
Contact point at surface is in rest for pure rolling

Velocity of point is A zero.
Sov=or

Velocity of pointB=v + @r =2v

lllustration 30: A uniform sphere of mass 200 g rolls without slipping on a plane surface so that its center moves
at a speed of 2.00 cm s™. Find its kinetic energy. (JEE MAIN)

Sol: The kinetic energy of sphere is the sum of the translational kinetic energy and the rotational kinetic energy.

As the sphere rolls without slipping on the plane surface its angular speed about center is

v L o1 , 1 , 12 5,51 5
® —%.The kinetic energy is K = > Imo” + EMch = E.EMr © +EMVCm
=%Mvcm2 + %Mvcmz = % Mv, 2 = %(0.200 kg)(0.02 ms*)? =56 x 107}

lllustration 31: A constant force F acts tangentially at the highest point of a uniform disc of mass m kept on a
rough horizontal surface as shown in Fig 7.52. If the disc rolls without slipping, calculate the acceleration of the

Center C and point A and B of the disc. (JEE ADVANCED)
Sol: Apply Newton’s second law for the motion of center of mass of the disc. B F

Find the torque of the force F and the force of friction acting on the disc at point r

A about the center of mass of the disc and thus obtain the equation relating C

the angular acceleration in the C-frame to the torques of all the external forces.

The situation is shown in Fig 7.52. As the force F rotates the disc, the point of a

contact has a tendency to slip towards left so that the static friction on the A rough surface
disc will act towards right. Let r be the radius of the disc and be the linear

acceleration of the center of the disc. The angular acceleration about the center Figure 7.52

of the disc is

o = a/r, as there is no slipping.
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For the linear motion of the center,
F+f=ma

And for the rotation motion about the center,

Fr—fr=la=F - fr = 1= lmr2 21 or F—fzima
2 r 2

From (i) and (ii),

2F = Ema or a= AF
2 3m
Acceleration of point A is zero

Acceleration of point B is 2a = 2 AP _(8F .
3m 3m

lllustration 32: A circular rigid body of mass m, radius R and radius of gyration (k) rolls without slipping on an
inclined plane of an inclination 0. Find the linear acceleration of the rigid body and force of friction on it. What must
be the minimum value of coefficient of friction so that rigid body may roll without sliding?

Sol: Apply Newton's second law for the motion of center of mass of the rigid
body. Find the torque of the force F and the force of friction acting on the rigid
body about the center of mass of the disc and thus obtain the equation relating
the angular acceleration in the C-frame to the torques of all the external forces.

If a is the acceleration of the center of mass of the rigid body and f the force of
friction between sphere and the plane, the equation of translational and rotational

motion of the rigid body will be
Mg sin@— f = ma (Translational motion)

fR = Ia (Rotational motion)

f= %a | = mk?, due to pure rolling a = aR
. o o mk?o. R? +k?
mg sin6—— = moR = maR +— = ma + =a
R R R R2
a - gsind  _ gsin® f:IE _ mk?a . mg k?sin6
R? +k2 k) R R? R2 + k2
R2 Y
2
f<uN; n;{l; a <p <mgcos 6
2 .
Rzk_ x M < ug Cos 0; u> tanb : ”minzﬂ
R? (k2 +R?) R? R?
1+— 1+—
k? k?

(JEE ADVANCED)

a/R

f

mgcoso
mg mgsind

Figure 7.53
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PLANCESS CONCEPTS

e From above example if rigid bodies are solid cylinder, hollow cylinder, solid sphere and hollow sphere
(having radius 'r" and mass ‘'m’)

Increasing order of acceleration

%5olid sphere ” hollow sphere ” 3olid cylinder > @hollow cylinder

e Increasing order of required friction force for pure rolling

fhollow cylinder g fhollow sphere g fsoIid cylinder g fsolid sphere

Increasing order of required minimum friction coefficient for pure rolling

Hhollow cylinder ” Mhollow sphere ” Msolid cylinder ” Msolid sphere

| would advise you to derive these, verify and remember!
Anand K (JEE 2011 AIR 47)

10.4 Instantaneous Axis of Rotation

The combined translational and rotational motion of a rigid body can be reduced to a purely rotational motion.
When we know the velocity V_ of the center of mass and the instantaneous angular velocity o of the body then
we can find a point whose velocity comes out to be zero at a given moment of time. The axis passing through this
point at the given moment is called instantaneous axis of rotation and the rigid body performs pure rotation about
this axis with same angular velocity at that moment.

The position of the instantaneous axis of rotation changes with time. E.g. in pure rolling the point of contact with
the surface is the instantaneous axis of rotation (see Fig. 7.54).

© [LA.R))
V+or=2v
v
VZV
p_Instantaneous axis :
Ly,

Figure 7.54: IAR (a) pure rolling; (b) Rod slipping down a wall

Geometrical construction of instantaneous axis of rotation (I.A.R). If we know the velocity vectors of any two
points in the rigid body then the LLAR. is the axis passing through the point of intersection of the perpendiculars
drawn to the velocity vectors at those points.

Once location of I.A.R is known, we find the moment of inertia of the body about this axis, and then the equations
of rotation about fixed axis can be used for this axis.

S
lllustration 33: Prove that kinetic energy = 1/2 IPco2 (JEE MAIN)
v
Sol: Kinetic energy is the sum of the translational kinetic energy and the rotational kinetic v=mR
energy.

Figure 7.55
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1 1
|<.E.=Elcmmz+E

MV 2 =.%an£ ' %

,\/l(A)ZR2 :%(Icm + MRz)(’)z = l

2
2 (Icontact point )“)

Notice that in pure rolling of uniform object, equation of torque can also be applied about the contact point.

lllustration 34: A uniform bar of length ¢ and mass m stands vertically A
touching a vertical wall (y — axis). When slightly displaced, its lower end
begins to slide along the floor (x — axis). Obtain an expression for the angular
velocity (o) of the bar as a function of 6. Neglect friction everywhere.

(JEE ADVANCED)

Sol: As the rod falls, it executes pure rotational motion about the instantaneous
axis of rotation. The loss in gravitational potential energy is equal to the gain
in the rotational kinetic energy.

0

The position of instantaneous axis of rotation (IAOR) is shown in Fig 7.57. uuuiéuiuii
Figure 7.56

C= (écose, gsineJ; r = — = half of the diagonal

N~

All surfaces are smooth, therefore, mechanical energy will remain conserved.

. Decrease in gravitational potential energy of bar = increase in rotational T

kinetic energy of bar about IAOR.
mgg (1=-sinB) = %Im2 @A

2
Here, | = % +mr? (about IAOR) or |

me?>  me?  me? o ,
=13 + 7 "3 Substituting in Eq. (i) Figure 7.57
5 —
We have mgﬁ (1 — sin6) = 1f mes o of @ = 3g(1-sin6)
2 20 3 4

PLANCESS CONCEPTS

Nature of friction for rigid bodies:

e A rigid body rolling with a speed of v and angular velocity of ® at an instant. Then it falls under one of the
following cases.

Cases Rough/Smooth | Diagram Inference

V<ro Rough Surface '\ 1. There is relative motion at point of contact.

o With respect to the body the surface moves

v slower than itself. So the surface tries to

R decrease its angular velocity by a frictional force

Rough surface > fi in forward direction. And this friction is kinetic
friction.

2. It increases v and decreases wSo, after
sometime, v =r @ and pure rolling will resume.
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Cases

Rough/Smooth

Diagram

Inference

Smooth Surface

/

Smooth surface

No friction is possible and it is not pure rolling.

Rough surface

/

With respect to the COM of the cylinder, the
surface moves at a higher speed than itself. So

/

Smooth surface

V>ro @ . . 4 .
\ the surface tries to increase its angular velocity
by exerting a frictional force in backward
Rough surface direction. And this friction would be kinetic
friction.
2. The friction tries to reduce V and increase ®
V>roe Smooth Surface '\ No friction and no pure rolling.
®
\
Smooth surface
V=ro Rough Surface This is pure rolling. However there might be

static friction acting on the body.

Smooth Surface

/

Smooth surface

No friction is possible and it is pure rolling
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Rohit Kumar (JEE 2012 AIR 79)

lllustration 35: A rigid body of mass m and radius r rolls without slipping on a surface. A force is acting on the rigid
body at x distance from the center as shown in Fig 7.58. Find the value of x so that static friction is zero.

Sol: For static friction to be zero, the linear and angular accelerations a and o

caused by the force F should be related as a = a R, for rolling without slipping.

Torque about center of mass Fx = I, a

From equation (i) & (ii)

I

—cm
mR

F=ma

max = I

cm®

(@a= aR);

(JEE MAIN)
/\a
P F
X
0 o /8
a=oR

L) f<

) Rough surface

Figure 7.58
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lllustration 36: There are two cylinders of radii Ry and R, having moments of /‘ \
inertia I and [, about their respective axes as shown in Fig 7.59. Initially, the =~ @, ®,
cylinders rotate about their axes with angular speed w, and , as shown in the 1 1,

Fig 7.59. The cylinders are moved close to touch each other keeping the axes
parallel. The cylinders first slip over each other at the contact but the slipping
finally ceases due to the friction between them. Calculate the angular speeds Figure 7.59
of the cylinders after the slipping ceases. (JEE ADVANCED)

Sol: The force of friction acting on the cylinder moving faster will be such that its angular velocity decreases. The
force of friction acting on the cylinder moving slower will be such that its angular velocity increases. When slipping
ceases, the linear speeds of the points of contact of the two cylinders will be equal.

If o', and o', be the respective angular speeds at the instant slipping ceases, we have
o R =0 R (i)

The change in the angular speed is brought about by the frictional force which acts as long as the slipping exists. If
this force f acts for a time t. the torque on the first cylinder is fR, and that on the second is fR,. Assuming ©, > ..
The corresponding angular impulses are - fR, t and R, t,

We therefore, have

-fR;t= I (0;-»;) and fR,t = (0", ~0,)

L . L . ..
or —R—(u) 1—0) = R—(co 5—,) .. (i)
1 2
ILo.R, +I,o,R
Solving (i) and (i) o' =MR2 and o', =
LRZ +LR3

LoR, + hoR, R
2 2 1=
Ile +IlR2

10.5 Energy Method in Solving Problems of Rolling Body

We can conserve energy in case of pure rolling of a rigid body because the point of
contact between the surfaces remains at rest and so the frictional forces acting at
the point of contact do not do any work. Thus only conservative force do work on
the body. >

h
Thus Potential energy + total K.E. = constant
As shown in the Fig. 7.60, a disc is rolling down on an inclined plane. Then we can 0
conserve total mechanical energy. If the disc falls a height h then loss in potential
energy is equal to gain in kinetic energy. Figure 7.60
1. o> 1 2 .
Mgh = ZIp® + =MV - (1)
=3 2 C
I 1.2 1 o _ 1,2 K y
Its total kinetic energy = ~Mv_* + = Io* = MY 1+— (i)
2 C 2 2 R2

where K is the radius of gyration of the disc and V_ the velocity of center of mass.

1.5 K? 5
So EMVC 1+R—2 = Mgh; VC =

Thus the velocity of center of mass of a body rolling down an inclined plane is given by
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W7

c K2 1/2
1+R7

If a_is linear acceleration of center of mass down this plane, and distance covered on the plane is s, then if the body
starts from rest we have

V.2 2 ah ino
VC2 = ZaCS aC :2—(:S = { K2 ]g h or ac — g S|nK2
1+ —|x2x 1+ —
R? sin 0 R?
PLANCESS CONCEPTS

Rather than going in a conventional way, using this method greatly simplifies our effort. But take care
while writing the kinetic energy!

Nitin Chandrol (JEE 2012 AIR 134)

lllustration 37: A solid sphere is released from rest from the top of an incline of inclination 6 and length ¢ . If the
sphere rolls without slipping. What will be its speed when it reaches the bottom? (JEE MAIN)

Sol: The loss in the gravitational potential energy of the solid sphere is equal to the gain in the kinetic energy.
The kinetic energy of the sphere comprises the rotational kinetic energy as well as the translational kinetic energy.

Let the mass of the sphere be m and its radius be r. Suppose the linear speed of the sphere when it reaches the
bottom is v. As the sphere rolls without slipping, its angular speed ® about its axis is v/r. The kinetic energy at the
bottom will be

K= %Ico2 + % mv? = %(%mr2]m2+%mv2 = % mv? + % mv? = -—mv?

This should be equal to the loss of potential energy mg ¢ sin6. Thus

%mv2 = mg/sin® Or vs= 1f?gfsine.

11. TOPPLING

When an external force is applied to the upper edge of a body Q R
with a flat base to cause it to slide along a surface, the body may F
topple before sliding starts. Toppling is more likely to happen
when the width of the base of the body is small.

Toppling occurs due to the turning effect of torques of applied
force at the upper edge and frictional force at the base. mg

Let the surface be quite rough and the force F is applied at f p S &
height h above the base of the block as shown in Fig. 7.61. Width ~ [§ :
of the base is b. The static friction at the base is f = F. The normal ' i Rough surface
reaction is N = mg. The couple of forces F and f try to topple >i

the block about point S. To cancel the effect of this unbalanced

torque the normal reaction N shifts towards S by a distance x so

that torque of N counter balances torques of F and f. Figure 7.61: Block toppling on rough surface

..;.\.
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Fh = (mg)x or x =i
mg

If F or h or both increase, distance x also increases, but it cannot go beyond the maximum value of x__ = b/2i.ein

extreme case N passes through edge S. If F is further increased block will topple.

ax

mgb
S0, I:topple = 7

Here we assumed that the surface is sufficiently rough so that sliding starts only when

F=1 . =umg>F or u> % (toppling before sliding)

opple

If surface is not sufficiently rough, the body slides before F is increased to F___ i.e. the body will slide before

toppling. This is the case when

pl

b
opple oru< %

F=f . =umg<F
lllustration 38: A uniform cube of side ‘a’ and mass m rests on a rough horizontal table. A horizontal force F is
applied normal to one of the faces at a point directly below the center of the face, at a height % above the base.
(i)  What is the minimum value of F for which the cube begins to tip about an edge?

(i) What is the minimum value of p_ so that toppling occurs?

(iii) If f1= upin . find minimum force for toppling.

(iv) Minimum p sothat F . can cause toppling. (JEE ADVANCED)

n

Sol: For part (i) we consider toppling before sliding. The normal reaction will pass through the edge. In part (ii) it
is not mentioned whether the toppling occurs before sliding or sliding occurs before toppling. So the toppling will
occur for any value of p_, sliding or no sliding. Part (iii) is same as part (i). Part (iv) is the case of toppling before
sliding.

(i) In the limiting case normal reaction will pass through O. The cube will tip about O if torque of F about O
exceeds the torque of mg.

a a
Hence, F|—| >mg|=| or F>2m
Therefore, minimum value of F is 2 mg.

(i) Inthis case since it is not acting at COM, toppling can occur even after body started sliding even if there is no
friction by increasing the torque of F about COM. Hence Wi, = 0.

(iii) Now body is sliding before toppling. O is not AR, torque equation cannot be applied across it. It can be
applied about COM.

Fx%:Nx% - () TN
N = mg .. (i) ®
From (i) and (ii) -> F = 2 mg F
(iv) F>2MQg i, (i) (From sol. (i) i a/2 a/4
N = mg ()] L 0 |
F=pN=pn mg ... (i) J
mg

From (i) and (iii) p, =2 Figure 7.62
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lllustration 39: Find minimum value of ¢ so that truck can avoid the dead end, without toppling the block kept

on it. (JEE ADVANCED)
& v
. hl|m >
Sufficiently —~yy BN y;
rough surface | «—>
@) power breaks
LT111777777777717771 1771717777 17777777777777777777717

Figure 7.63
Sol: The block kept on truck will experience pseudo force in forward direction and friction b
force due to the floor of the truck in backward direction. We assume the case of toppling
before sliding. In extreme case the normal reaction N = mg will pass through the edge.
h_ b b " >
ma-<mg- = a<—
2 =M93 h9 5
b ! v T N
Final velocity of truck is zero. So that 0 = v? —Z(Fg)é mg
B Lﬁ Figure 7.64
2b g

PROBLEM-SOLVING TACTICS

e Most of the problems involving incline and a rigid body can be solved by using conservation of energy during
pure rolling. In case of non-conservative forces, work done by them also has to be taken into consideration in
the equation. Care has to be taken in writing down the Kinetic energy. Rotational Kinetic Energy term has to be
taken into consideration. And while writing the rotational energy, the axis about which the moment of inertia
is taken should pass through the COM.

e The motion of a body in pure rolling can be viewed as pure rotation about the bottommost point of the body
or the point of contact with the ground. Hence an axis passing through the point of contact and tangential
to the point would be the Instantaneous axis of rotation. So problems on pure rolling can be solved easily by
using the concept of instantaneous axis of rotation.

e Problems on toppling can be easily solved by writing the moments on the body and visualizing them as forces
acting on the body. If the net moment is tending to stabilize the body, then the body doesn’t topple. For any
condition else it may get toppled.

e Problems which include the concept of sliding and rolling can be solved easily by using the concept of
conservation of angular momentum. But care has to be taken in selecting the proper axis so that net moment
about that axis vanishes.
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FORMULAE SHEET

related to direction of motion.

Linear acceleration is categorized as

- Average acceleration= Av / At

- Instantaneous acceleration = dv/dt.

S. Term Description Linear Motion Rotational motion &
No relation
1 Displacement Displacement (linear or angular) is the physical | s 0
change in the position of the body when a body
moves linearly or angular in position. (s = re)
(a) The linear displacement As is difference
between final and initial position measured in
linear direction.
S.L. unit: meter m
(b) The angular displacement of the body while
rotating about a fixed axis is the displacement
AD it swept out with respect to its initial
position in sense of rotation. It can be positive
(anti clockwise) or negative (clockwise)
S.l. unit: radians rad,
2 Velocity Velocity of any moving object is the time
rate of change of position. The velocity is the ds do
vector quantity. Linear velocity is in the plane | V = at ® = dt (V = ro)
of motion. Angular velocity can be positive or
negative & its direction is perpendicular to the
plane of rotation
Linear velocity is categorized as
- Average velocity= As / At
- Instantaneous velocity= ds/dt.
S.l. unit: m/s
Angular velocity is categorized as
- Average angular velocity A8 / At
- Instantaneous angular velocity @ = d6 / dt
S.I. unit: rad/s
3 Acceleration Acceleration is the time rate change of
velocity of a body. It's a vector quantity. Linear dv do
acceleration can be positive or negative and = dat a = at (@ =ra)




No

Term

Description

Linear Motion

Rotational motion &

relation

S.I. unit: m/s>

Angular acceleration is categorized as

- Average angular acceleration Aw / At

- Instantaneous angular acceleration
o =don/dt

S.l. unit: rad/s™

Mass

Mass is the basic entity of any body by virtue of
which the body gains weight.

In linear kinematics the mass of whole body is
constant. S.I. unit: kilogram kg

In angular kinematics mass of body is
distributed among various tiny rigid points
so mass is measured about inertia of rotating
body- moment of inertia |

[ (I =Xmrd)

Momentum

Momentum of body is product of mass and its
velocity of motion. It's a vector quantity.

Linear momentum= mv
S.l. unit: kg m/s

Angular momentum of body is a vector in
direction perpendicular to plane of rotation

given by L
S.I. unit: kg m?/s

Impulse

Impulse is the product of force and time period
And it is categorized as
-Linear impulse

-Angular impulse

det

Irdt

Force

(Newton'’s
second law of
motion)

From the newton second law of motion, force is
time rate of change of momentum. It's a vector
quantity.

. d

Linear force F= —p= ma
dt

S.I. unit: Newton N

Angular force T =1x a

Laws of conservation of momentum

- Linear momentum is said to be conserved if
d .

aP = 0, than P remains constant

dt

- Angular momentum is said to be conserved if

% = 0 than L remains constant

F=ma

If = 0 the body is in
equilibrium with its
surrounding

T=rxF =Ixa

d
dt

If = 0 the body is in

equilibrium with its

surrounding
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S. Term Description Linear Motion Rotational motion &
No relation
8 Work Work is the product of displacement of body
under action of external applied force. W = IF ds W = J.tde
9 Power Power is the time rate change of work done P =F P=tw
10 Kinetic energy | The phenomenon associated with the moving 1, 1.5
bodies KE.,,, = Emv KE. = flm
1 Kinematics of Kinematical equation are the interrelation of | v =u + at ©® = o + ot
Motion displacement, velocity, acceleration and time s = ut+ latz 0
and are categorized as follows: 2 0 = ot + t2
vZ = u? + 2as - @t T ¢
-Linear kinematical equation
-Angular kinematical equation o = (og + 200
12 Parallel Axis 2
Iyy =I-c+Md Iec i
Theorem Xx = ec where lec is the moment of
inertia about the center of mass
13 Perpendicular Too+ Lo =1 . . .
= It lid f [ |
Axis Theorem xx ¥ lyy = lzz is valid for plane laminas
only.
14 Work energy Work energy principle is used to determine the 1 1 1 1
. . . . . W== 2 _ -+ 2 W=21 2__I 2
principle change in the kinetic energy of moving body > mv > mu > Y > o5

JEE Main/Boards

The first five Examples discussed below show us the
strategy to tackle down any problem in the rigid body
motion. Hence follow them up properly! They may be
lengthy but are very learner friendly!!

Example 1: A person of mass M is standing on a railroad
car, which is rounding an unbanked turn of radius at
speed v. His center of mass is at a height of L above
the car midway between his feet, which are separated
by a distance of d. The man is facing the direction of
motion. What is the magnitude of the normal force on
each foot?

Sol: The frictional forces acting on the feet of man will
provide the necessary centripetal acceleration to move
in a circular path. Apply the Newton's second law of
motion at the center of mass of the man to get the
equation of motion along the circular path. In the
vertical plane the man is in rotational and translational
equilibrium under the action of its weight acting
vertically downwards and the normal reactions at its
feet acting vertically upwards. Get one equation each



for rotational and translational equilibrium in vertical
plane.

We draw the free body diagram of the man, as shown
in figure.

Static friction f1 and a normal reaction Ny is acting on
the inner foot. Static friction f2 and normal reaction

N2 is acting on the outer foot. We do not assume the
limiting value of frictional forces. The weight of the man
acts at its center of mass.

As the man is moving in a circular path with speed, by
Newton'’s Second Law the forces of friction should act
towards the center of the circular path.

cm)
N, /
ch |_
F1< ll'
o d
,<—2—>
2
v .
fi+f, =m— (3
 +f=me ()

For vertical equilibrium we should have
N, +N, -mg=0
(i)

For rotational equilibrium of the man about its center

or N;+N, =mg

of mass we have %Z?Tfa' =0

The gravitational force does not contribute to the
torque about center of mass because it is acting at the
center of mass itself. We draw a torque diagram in the
figure showing the line of action of the forces at the
inner foot.

The torque on the inner foot about COM is given by

d

T = ENl +Lf,  (clockwise)

cml

We draw a similar torque diagram for the forces at the
outer foot.

The torque on the outer foot about COM is given by
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Temp = —%N2+Lf2 (clockwise)

Both these torques about the center of mass must add
up to zero.

Therefore

(gN1 +Lf)+ (—%N2 +Lf,)=0

g(N1 -N,)+L(f, +f,)=0 (1))
Putting (i) in (iii) we get,
V2

d
E(Nl—N2)+Lm R =0

2
or N2—N1:2Lﬂ
Rd

Solving (ii) and (iv) we get

2
N :l(mg—ZLmV ] (V)

..(iv)

v (V)

Example 2: A Yo-Yo of mass m has an axle of radius b
and a spool of radius R. Moment of inertia about the
center can be taken to be I, = (1/2) MR? and the
thickness of the string can be neglected. The Yo-Yo is
released from rest. You will need to assume that the
center of mass of the Yo-Yo descends vertically, and
that the string is vertical as it unwinds.
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(@) What is the tension in the cord as the Yo-Yo
descends?

(b) What is the magnitude of the angular acceleration
as the Yo-Yo descends and the magnitude of the linear
acceleration?

(c) Find the angular velocity of the Yo-Yo when it
reaches the bottom of the string when a length L of the
string has unwound.

Sol: Apply the Newton's second law of motion at the
center of mass of Yo-Yo to get the equation of motion
along the vertical direction. Get the relation between
net torque, of all the external forces acting on Yo-
Yo, and its moment of inertia, both these quantities
calculated about the axis passing through the center of
mass of Yo-Yo. As the Yo-Yo descends, the loss in the
gravitational potential energy is equal to the gain in the
translational and rotational kinetic energy.

(a) The torque of tension in the cord about the center of
mass of the Yo-Yo is in the clockwise direction. So as the
Yo-Yo descends with linear acceleration a_, it rotates in
the clockwise direction with angular acceleration a.

Tem = bT =10 (clockwise) ()
Applying Newton's Second Law for the motion of COM
in the vertical direction,

Mg -T=Ma_ (D)

As the string is stationary, and the Yo-Yo does not slip
on the string, the angular acceleration and the linear
acceleration of COM are related by the constraint
condition,

acm- ba=0=a.,= ba (i)
From (ii) and (iii) we get,

Mg - T = Mba (iv)

Eliminating o from (i) and (iv) we get
_MbT
I

cm

Mg - T

or

r-_Mg ___ Mg _ Mg

2 2
1+w 1+ sz 1+&
Im (1/2)MR? R2

(b) Substitute Eq. (v) into Eq. (i) to determine the angular
acceleration

bT _  2bg
Icm (R2+2b2)

(V)

(Vi)

o =

From (iii) and (vi) we get

2b’g _ g
R?+2b%)  1+(R?/2b?)
For a typical Yo-Yo, the acceleration is much less than
that of an object in free fall.

acm = ba = ....(vii)

(c) Use conservation of energy to determine the angular
velocity of the Yo-Yo when it reaches the bottom of
the string (Tension force does not perform any work
because point of contact between string and Yo-Yo is
always at rest).

Loss in gravitational potential energy = Gain in kinetic
energy Mgl

1 1 1 1
= MglL = EMvgm +§Icmm2 = EM(me +ER2®2) ...(viii)
Linear velocity of COM and angular velocity are related
by the constraint condition,

()

Ve bo =0 = v = bo

4glL

Solving (viii) and (ix) for o, we get ©= |—=——
(2b% +R?)

Example 3: A uniform cylinder of radius R and mass
M with moment of inertia about the center of mass
I, = (1/2) MR? starts rolling due to the mass of the
cylinder, and has dropped a vertical distance h when
it reaches the bottom of the incline. Let g denote the
gravitational constant. The coefficient of static friction
between the cylinder and the surface is . The cylinder
rolls without slipping down the incline. The goal of this
problem is to find the magnitude of the velocity of
the center of mass of the cylinder when it reaches the
bottom of the incline.



Sol: This problem can be solved either by applying law
of conservation of mechanical energy, or by applying
Newton'’s laws of motion.

We shall solve this problem in three different ways.

1. Applying the torque equation about the center of
mass and the force equation for the center of mass
motion.

2. Applying the energy equation.

3. Using torque about a fixed point that lies along the
line of contact between the cylinder and the surface.

Applying the torque equation about the center of mass
and the force equation for the center of mass motion.

We will find the acceleration and hence the speed at
the bottom of the incline using kinematics. A figure
showing the force is shown below.

Choose x = 0 as the point where the cylinder just
starts to roll. With the unit vectors shown in the figure
above, Newton's second Law, applied in the x —and y —
directions in turn, yields

Mg sin B—f. = Ma, (0)
—N + Mg cosp=0 (1))

Choose the center of the cylinder to compute the
torque about (see figure below).
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Then the only force exerting a torque about the center of
mass is the friction force, and so we have fR =1 o,

(i)
Use I.,= (1/2) M R? and the kinematic constraint
for the no-slipping condition o, = a,/Rin Eq. (xxxiv)
to solve for the magnitude of the static friction force
yielding
f, =(1/2)May (V)
Substituting Eq. (iv) into Eq. (v)
Mgsin® = (1/2) May, =Ma, (V)

Which we can solve for the acceleration

(Vi)

ang sinp

The displacement of the cylinder is Xg = h/ sin B in
the time it takes the bottom, tf. The x — component
of the velocity v, at the bottom is Vyf = Ay The
displacement in the time interval tf satisfies X¢ = (1/2)
axtf. After eliminatingt;, we have x; = vx.fz/ZaX,
so the magnitude of the velocity when the cylinder

reaches the bottom of the inclined plane is

Vyef = yJlaxe

=2(2/3)g sin B)(h/sinB) = /(4 /3)gh

..(viii)
Note that if we substitute Eqg. (vi) into Eq. (iv) the
magnitude of the friction force is
fs = (1/3) Mg sinf3 ...(Ix)

In order for the cylinder to roll without slipping.
f. <uMg cos B (X)

So combining Eq. (ix) and Eq. (x) we have the condition
that

(1/3) Mg sin B <u, Mg cosp ..(xi)
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Thus in order to roll without slipping the coefficient of
static friction must satisfy

Ko zltanB ...(xii)

3

Applying the energy equation

We shall use the fact that the energy of the cylinder-
earth system is constant since the static frictional
force does no work. Choose a zero reference point
for potential energy at the center of mass when the
cylinder reaches the bottom of the incline plane.

Then the initial potential energy is U, = Mgh ...(xiii)
Mg - N = 0

For the given moment of inertia, the final kinetic energy
is

_1 2,1 2
Ki = 5 MY+ TemO; f

_ 1 2 1 2 2
=3 va.f +§(1/2)MR (vx'f/R)

... (xiv)
_3 2
=MV s

Setting the final kinetic energy equal to the initial
gravitational potential energy leads to

Mghz%MvX.f2 ..(xv)

The magnitude of the velocity of the center of mass of
the cylinder when it reaches the bottom of the incline

is Vyf = \J(4/3)gh

In agreement with Eq. (viii)

..(xvi)

Using torque about a fixed point that lies along the line
of contact between the cylinder and the surface

Choose a fixed point that lies along the line of contact
between the cylinder and the surface. Then the torque
diagram, is shown below.

The gravitational force Mg = Mg sin [3] acts at the
center of mass. The vector_from the point P to the
center of mass is given by rp.mg = dp i —Rj, so the
torque due to the gravitational force about the point
P is given by

Tpmg = p.mg xMg = (dbi —Rj)x (Mg sin B i +Mg cosp))

= (d,MgcosB +RMgsinp)k ...(xvii)

The normal force acts at the point of contact between
the cylinder and the surface and is given by

N = —N]. The vector from the point P to the point of
contact between the cylinder and the surfaceis TPN =
dpi . So the torque due to the normal force about the
point P is given by

ToN = TpN xN = (dy i) x (-N]) = ~d k ...(xviii)

Substituting Eq. (xxxiii) for the normal force into Eq.
(xviii) yields

?p.N =-d,Mg cospk (Xix)

Therefore the sum of the torques about the point P is

Tp = ¥ng +¥p.N = (Mg cosB+ RMg sinf) k - d,
Mg cosp k = Rmg sinf k . (XX)
The angular momentum about the point P is given by
Lp = Lem + Fp.cm xMVem

= Im@,K +(dyi —Rj)x (Mv,)i

= (Iey®, +RMv, )k ()

The time derivative of the angular momentum about
the point P is then

dstF’ = Iy, +RMa k . (i)
Therefore the torque equation
-de ..(xxiii)

C o dt



Becomes RMg sin BIQ = (Icmocz+RMax)l2 ...(Xxiv)
Using the fact that I = (1/2) MR®* and o, =
a, /R, we can concludethat RM a, = (3/2) MR a,

. (Xxv)

We can now solve Eg. (xxv) for the x — component of
the acceleration

a, = (2/3) gsin B L (xxvi)

In agreement with Eq. (vi).

Example 4: A bowling ball of mass m and radius R is
initially thrown down an alley with an initial speed v,
and it slides without rolling but due to friction it begins
to roll. The moment of inertia of the ball about its
center of mass is Icm = (2/5) mR2. Using conservation
of angular momentum about a point (you need to find
that point), find the speed v, of the bowling ball when
it just start to roll without slipping?

V. V;

Sol: The angular momentum of any rigid body about
a fixed point in ground reference frame is the sum of
the angular momentum in the C-frame and the angular
momentum corresponding to the translation of the
center of mass relative to the fixed point in ground
frame.

At t = 0, when the ball is released v ;= v, towards

cm,i
right and o, =0, so the ball slips towards right on the
surface and hence the frictional force on the ball, will
be towards left.

The frictional force will pass through the point of
contact S with the surface.

The weight of the ball as well as the normal reaction
from the surface are equal in magnitude and opposite
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in direction and have same line of action and will also
pass through the point of contact S. (Point of contact is
vertically below the COM of the ball).

Thus we choose the initial point of contact S as the
origin and the net torque of all the forces about the
origin S comes out to be zero at all times. So we can
conserve the angular momentum of the ball about the
initial point of contact (origin S).

The initial angular momentum about the origin S is
only due to the translation of the center of mass.

Li: vaR

The final angular momentum about the origin S has
both translational and rotational contribution.

L=mv_ R+l o
cm,f cm

Finally the ball rolls without slipping, so we have v__ =
Ro

Now Iy, = (2/5)mR?

Therefore the final angular momentum about the origin
Sis

L, =(mR + (/MR ; = (7/5)mRv,,

cm,f
Now equating L, = L, we get
mR v, = (7/5) m vamf

or ch,f = (5/7)v0

Example 5: A long narrow uniform stick of length ¢
and mass m lies motionless on ice (assume the ice
provides a frictionless surface). The center of mass of
the stick is the same as the geometric center (at the
midpoint of the stick). The moment of inertia of the
stick about its center of mass is Icm- A puck (with
putty on one side) has same mass m as the stick. The
puck slides without spinning on the ice with a speed
of v towards the stick, hits one end of the stick, and
attaches to it. You may assume that the radius of the
puck is much less than the length of the stick so that
moment of inertia of the puck about its center of mass
is negligible compared to I, .
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%_)Vc 18% G)
before after

(a) How far from the midpoint of the stick is the center of
mass of the stick—puck combination after the collision?

(b) What is the linear velocity of the stick plus puck after
the collision?

(c) Is mechanical energy conserved during the collision?
Explain your reasoning.

(d) What is the angular velocity of the stick plus puck
after the collision?

(e) How far does the stick’s center of mass move during
one rotation of the stick?

Sol: Apply the law of conservation of linear momentum
and law of conservation of angular momentum before
and after collision. The angular momentum is to be
calculated about the center of mass of “stick-puck
system”.

(@) From the midpoint of the stick the center of mass
of the stick—puck combination after the collision is at a
distance d_ .

mstickdstick + mpuckdpuck _ mx0+m(¢/2) £

d = =
(b) o mstick +m

puck m+m 4

There are no external forces acting on this system
comprising “stick and puck” so the momentum of the
system before and after the collision is conserved.

m i .
. i
k

after

O-V,
m
before

After the collision, suppose the center of mass of the
system is moving with speed v
Equating initial and final linear momentum we get,

v
mv, = 2m)v; = v, = 70

The direction of the velocity is the same as the initial
direction of the puck’s velocity.

(c) As the collision is perfectly inelastic the mechanical
energy of the system is not conserved.

(d) Choose the center of mass of the stick-puck
combination, as found in part (a) as the point about
which we find the angular momentum before and after
the collision. This choice is advantageous as there will
be no angular momentum due to the translation of
the center of mass just after the collision about the
center of mass itself. Before the collision, the angular
momentum was entirely due to the motion of the puck,

Lo = (¢ / 4)(mv,)

After the collision, the angular momentumis L, =1 o

where I, is the moment of inertia about the center of
mass of the stick-puck combination.

This moment of inertia of the stick about the new center
of mass is found from the parallel axis theorem, and the
moment of inertia of the puck is m (¢ / 4)? and so

I, =m(¢? /12)+m(¢ /47 +m(¢ / 4)* =5me? / 24

Equating L, = L, we get  (£/4)(mv,) =5m/’w, / 24

6
This gives o = %

(e) Time taken by stick-puck system for one rotation is
T =2n/o,

Distance travelled by COM during this time is

2n 2n
X =V l===v =——(v,/2
cm cm wf cm 6V0 /56( 0 )
This gives Xcm = S%K

Example 6: Two small kids of masses 10 kg and 15 kg
are trying to balance a seesaw of total length 5.0 m with
the fulcrum at the center. If one of the kids is sitting at
ends, where should the other sit?

Sol: For rotational equilibrium, the net torque about
the fulcrum of all the forces acting on the boys and the
seesaw should be zero.

It is clear that the 10 kg kid should sit at the end and
the 15 kg kid should sit closer to the center. Suppose
this distance from the center is X. As the kids are in
equilibrium, the normal force between a kid and the
see-saw equals the weight of that kid. Considering the
rotational equilibrium of the seesaw, the torques of the
forces acting on it should add to zero. The forces are.
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A A

(AL )\

(a) (15kg) g downward by the 15kg kid,
(b) (10 kg) g downward by the 10kg kid,
(c) Weight of the seesaw and

(d) The normal force by the fulcrum.
Taking torques about by the fulcrum

(15kg) g x = (10 kg) g (2.5m) or x = 1.7 m.

Example 7: The ladder shown in figure has negligible
mass and rests on a frictionless floor. The crossbar
connects the two legs of the ladder at the middle. The
angle between the two legs is 60°.

The fat person sitting on the ladder has a mass of 80 kg.
Find the contact force exerted by the floor on each leg
and the tension in the crossbar.

Sol: The forces of normal reaction at the feet of the
ladders balance the weight of the person. For rotational
equilibrium of ladder the toque due to normal reaction
at the foot is balanced by the torque due to tension in
the crossbar. Both the torques are calculated about the
upper end of the ladder.

The forces acting on the different parts are shown in
figure. Consider the vertical equilibrium of “the ladder
plus the person” system. The forces acting on this
system are its weight (80kg)g and the contact force N +
N = 2N due to the floor. Thus

2N = (80kg) g or N = (40 kg) (9.8m/s?) = 392 N

w
Im
60°
N N
N
Im s T T
30
U OTITITIT TTD

Next consider the equilibrium of the left leg of the
ladder. Taking torque of the forces acting on it about
the upper end.

N (2 m)tan 30°=T (1 m) or

T= N2 = (392N) x-2 = 450 N.

\E] 3

Example 8: A solid cylinder of mass m and radius r
starts rolling down an inclined plane of inclination®.
Friction is enough to prevent slipping. Find the speed
of its center of mass when, its center of mass has fallen
a height h.

0

Sol: Loss in the gravitational potential energy of
the cylinder is equal to the gain in rotational plus
translational kinetic energy.

Consider the two shown positions of the cylinder. As it
does not slip, total mechanical energy will be conserved.

Energy at position 1is E; =mgh

Energy at position 2 is E2 = %mv§m+ %Icmm2
2
v mr 3
Crm =wand I, = - = E, =M em

FromCOE E, = E, vy, = ggh

Example 9: A uniform disc of radius R and mass M is
rotated to an angular speed w, in its own plane about
its center and then placed on a rough horizontal surface
such that plane of the disc is parallel to the horizontal
surface. If co-efficient of friction between the disc and
the surface is p then how long will it take for the disc
to come to stop.
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Sol: The disc can be thought of made-up of elementary
rings of infinitesimal thickness. The torque about the
center of disk due to friction force on each ring will be
different from the other rings in the disc as the radii
of rings are different, varying from 0 to R. So use the
method of integration to find the torque on the entire
disc.

Consider a differential circular strip of the disc of radius
x and thickness dx. Mass of this strip is dm =2p nx dx,

M . . .
where p =—. Frictional force on this strip is along
nR

the tangent and is equal to dF = 2uprgxdx

Torque on the strip due to frictional force is equal to
dt = ppg2nx3dx

The disc is supposed to be the combination of Number
of such strips hence torque on the disc is given by

R 3
T= jdr = pup anxszdx = p.ngnR—
0 3

— 1 = uMg(2/3)R
_ 2uMgR _4yug
2) 3R
3{MR J
2

The a is opposite to the u

4ng

o) o, +at = 0=0n,—t

() - o 0o
3m,R
=t= “o .
4ng

Example 10: A sphere of mass M and radius r shown
in figure slips on a rough horizontal plane. At some
instant it has translational velocity v, and rotational
v
2—0 . Find the translational
;

velocity after the sphere starts pure rolling.

velocity about the center is

o=Vy/2r
—>V,

F< |

Sol: Due to forward slipping the friction will act
backwards. So the sphere will decelerate. The torque
due to friction will be in the direction of initial angular
velocity. So the angular velocity will increase.

The slipping will stop when the condition of pure rolling
is satisfied.

Velocity about the center =\;—°. Thus v, >a,r. The

r

sphere slips forward and thus the friction by the plane
on the sphere will act backward. As the friction is kinetic
its value of N is given by uN = uMg and sphere will be
decelerated by a.,, = f/M. Hence.

This friction will also have a torque T = fr about the
center. This torque is clockwise and in the direction of
o, . Hence the angular acceleration about the center

will be
r 5f

f j—
(2 /5)Mr?

~ 2Mr

and the clockwise angular velocity at time t will be

v
oft) = 0)0+5—ft _Yo, S
2Mr 2r 2Mr

Pure rolling starts when
Eliminating t from (i) and (ii)

5 5 Vo
—v(it)+v(t)==v,+— Or
2() (t) SVots

Thus the sphere rolls with translational velocity 6v, /7
in the forward direction.

JEE Advanced/Boards

Example 1: A carpet of mass M made of inextensible
material is rolled along its length in the form of a
cylinder of radius R and is kept on a rough floor. The
carpet starts unrolling without sliding on the floor
when a negligibly small push is given to it. Calculate
the horizontal velocity of the axis of the cylindrical part
of the carpet when its radius decreases to (R/2).

50N
P

o
N

Sol: As the carpet unrolls, the radius and mass of
cylindrical part decreases and center of mass descends.
Thus loss in the gravitational potential energy is equal
to gain in rotational plus translational kinetic energy.

If p is the density of material of the carpet, initial mass
of the carpet (cylinder) M will be nRsz .When its radius
becomes half, the mass of cylindrical part will be

M, = 1R /2)°Lp = M/4



So initial PE of the carpet is MgR while final
(M/4) g(R/2) = MgR/8

So loss in potential energy when due to unrolling radius
changes from R to R/2

MgR (1-(1/8)) = (7/8)MgR . ()

~
éR g?/z
(A) (B)

This loss in potential energy is equal to increase in
rotation KE which is

K=K +K; = % Mv2+%lm2

If v is the velocity when half the carpet has unrolled,
then as

2
V= Bo), M—)M and I = E{MHB}

2 4 214 |2
- 1[M] 2, 1[MR? |[2v g
= | e+ || 22
214" 2132 || R
i.e, K= 1MV2+in2=in2 . (i)

8 16 16

So from equation (i) and (ii)

e

i.e., v= 4/(14gR)/3

Example 2: A uniform solid cylinder of radius R = 15
cm rolls over a horizontal plane passing into an inclined
plane forming an angle o = 30° with the horizontal.
Find the maximum value of the velocity v, which still
permits the cylinder to roll onto the inclined plane
section without a jump. The sliding is assumed to be
absent.

Vo

\%
Sol: As the cylinder rolls into the inclined plane section,

its center of mass descends, thus loss in gravitational
potential energy will be equal to increase in kinetic
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energy. At the edge the COM moves in circulararc during
the time interval when the vertical radius through the
point of contact turns by angle o to become normal to
the inclined plane. During this interval normal reaction
from edge should always be greater than zero.

Initial energy E; :%mvé+%lc.mm2+ng

)
For rolling —=0o

1 2 11 \
= E1=§mvo+§.§mR2R—(2J + mgR
=§mv2+ng
4 0

2 + mgR cosa

1 5,1 .
E2=§mv +§Ic.m‘°

= %mv2+ mgR cosa
From COE

%mv2+ mgR cosa = %mvg+ mgR

mv? = mv(2)+§ mgR(1l —cosa) (D)

F.B.D. of the cylinder when it is at the edge.

Center of mass of the cylinder describes circular motion
about P

Hence mg cosa - N = mv? /R

= N-= mgcosa—mvz/R

=mg cos o -

mvé m +4m cos
-— - o
R 3 J 3 I

For no jumping, N > 0

7 4 mv)
= gmgcosa—gmg——z 0

= Vp < \/%cosa—gg

Example 3: Two thin circular disc of the mass 2 kg each
and radius 10 cm each are joined by a rigid massless
rod of length 20 cm. The axis of the rod is perpendicular
to the plane of the disc through their centers as
shown in the figure. The object is kept at the center
as shown in the figure. The object is kept on a truck in
such a way that the axis of the object is horizontal and
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perpendicular to the direction of motion of the truck.
Its friction with the floor of the truck is large enough
to prevent slipping. If the truck has an acceleration of
9 m/s? calculate.

(a) The force of friction on each disc.

(b) The magnitude and direction of the frictional torque
acting on each disc about the center of mass ‘O’ of the
object. Take x-axis along the direction of the motion of
the truck, and z-axis along vertically upwards direction.
Express the torque in the vector form in terms of unit

vectors i, ] and k in the x, y and z directions.

(c) Find the minimum value of the co- efficient of
friction p between the object and the floor of the truck
which makes rolling of the object possible.

Sol: This problem is best solved in the reference frame
of truck. Each disc will experience pseudo force as well
as frictional force. Get two equations, one by applying
Newton's second law at the center of mass of the object,
and the other relating the torques of forces about the
center of mass and the moment of inertia about axis
passing through the center of mass.

F.B.D. of the object with respect to truck.
N

N
2 L
v f X

Mg  Side view

2ma

In the reference frame of truck it experiences a pseudo
force F = -2ma i

where a = acceleration of the truck.

Pseudo force does not provide torque about the center
of the disc. Because of this force object has tendency
to slide along - Ve x —axis, hence frictional force will act
along + Ve x — axis. For translational motion.

2ma-f=ma’

Here a' = acceleration of the center of mass of the
object.

For rotational motion
fR =l

mR2

=2. T% for no slipping a = a/R

From (i) and (ii) we get

F= % mai = Force of friction on each disc is

f_mai_gin
3
1 2
20
z
r O
r y

— ma/\
f1 = —i
173
I =¢j-Rk

v, = hxh :4@+Rb><2??

maR~ ma/-~
= ——J + —k

3 3
=6x0.1i +6x0.1k
=-06] + 0.6k

r(fz) =-0.6j - 0.6k
(c) Maximum value of frictional force is 2 n mg

= >i
h>3g

2
= Ema < 2umg
Example 4: A uniform disc of mass m and radius r
is projected horizontal with velocity v, on a rough
horizontal floor so that it starts of with a purely sliding
motion at t = 0. At t = t; second it acquires a purely
rolling motion.

(a) Calculate the velocity of the center of mass of the
discatt =t;.

P

(b) Assuming coefficient of friction to be p calculatet,.



(c) The work done by the frictional force as a function
of time.

(d) Total work done by the friction over a time t much
longer thent,.

Sol: This problem can be solved either by applying
Newton'’s laws of motion or by law of conservation of
angular momentum about the point of contact of the
disc with the floor. The force of friction will act opposite
to the direction of motion, and the work done by friction
will be equal to loss in kinetic energy. The friction will
stop doing any work once pure rolling starts.

F.B.D. of the disc.

When the disc is projected it starts sliding and hence
there is a relative motion between the points of
contact. Therefore frictional force acts on the disc in
the direction opposite to the motion.

(a) Now for translational motion

f

m
f = uN (as it slides) = umg

cm

Q

= Ay = Mg, negative sign indicates that

ac m is opposite to V¢
= Vem(t) = Vo "M%

=1, = %Y )
hg

where Vc.m(to) =V

For rotational motion about center

B B mr?
UtTpg = I @ = umgr = Toc

219 (i)

2pg
Therefore ‘”(to) =0+ ==t

r

Using oy = oy + at
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_ 2(vy—V)

=0 ... (iii)

r

(Using (i)) V¢ = or

= v=2 (Vo—V) (using (iii))

:>V=—V0

Alternative method: Since frictional force passes
through the point of contact, hence about this point no
external torque is acting.

Therefore angular momentum of the disc about point
of contact does not change.

Initial angular momentum about p is given by

L, =0 + mvyr (Usingly=L. oy, +1 x P )

When it starts pure rolling its angular momentum
about P is given by

L=Lcy + ©+ mvr

For rolling v = or
2

mr< v 3
= L,= —— + mvr ==mvr
2 r 2
From COAM

2
L=L = V=§v0

(b) Putting the value of v in equation (i)

We get t, = Yo
0 3ug
(c) Work done by the frictional force is equal to change

in K.E.

= Wfriction

2 2
m(v, ~ ugt)’ l(m](—zugtj —imv2

N

+
2002 Lr ) 20

- m[%uzgztz - vougtj, Fort<t,
(d) Fortime t > t, work done by the friction is zero.

For longer time total work done is same as that in part

2

3 2 2.2 Vo Vo
A=W=m| = t° — | —vugt——
(0) 2“ 9 (BHQ oHg 3ug

2
mv,

6
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Example 5: In the shown figure a mass m slides down
a frictionless surface from height h and collides with
a uniform vertical rod of length L and mass M. After
collision the mass m sticks to the rod. The rod is free
to rotate in a vertical plane about fixed axis through O.
find the maximum angular deflection of the rod from
its initial position.

Sol: During the collision between rod and the mass,
the linear momentum is not conserved because of the
reaction force acting on the rod due to the hinge at
the fixed point O. The torque of reaction force at the
hinge will be zero about the hinge itself, i.e. about point
O. So we can conserve the angular momentum of the
“rod and mass system” before and after collision. As the
rod rotates, the gain in gravitational potential energy is
equal to the loss in the kinetic energy.

Just before collision, velocity of the mass m is along the
horizontal and is equal to v, =/2gh . In the process of

collision only angular momentum of the system will be
conserved about the point O.

If L, and L, are the angular momentum of the system
Just before and just after the collision then L, = mv L

2
And L, =lo = (%mﬁ}»

From Conservation of Angular Momentum

Let the rod deflect through an angle 6.

Initial energy of rod and mass system = %Imz

Where I= [—+mL2J

Gain in potential energy of the system

"+ From conservation of energy

1., M

—In“= | m+— |gL( —cosO
L me ot -cony

2 2.,2

:>l ML 2 [x—MVo
2 M 22
—+m] L

(5]

[Z

= (m+ > JgL(l—cose)

2.,2
m?v
1 Mve _ m+M gL(1-cos0)
2 M+m 2
3
2.2
m
cosez1 Vo

5l

Example 6: A billiard ball, initially at rest, is given a
sharp impulse by a cue. The cue is held horizontally
a distance h above the center line as shown in figure.
The ball leaves the cue with a speed v, and because
of its forward rotation (backward slipping) eventually

show that.

. . 9
acquires a final speed 7vo

h= g R where R is the radius of the ball.

Sol: Initial linear and angular velocity of ball is found
by calculating the linear and angular impulse delivered
by the cue. The angular momentum of the ball about
the point of contact with ground surface, during its
combined translational and rotational motion remains
conserved.

h} v=2v,




Let w, be the angular speed of the ball just after it
leaves the cue. The maximum friction acts in forward
direction till the slipping continues. Let v be linear
speed and o the speed when slipping is ceased.

~V=Ro or o=~
R
Given, v :% v 0

o==-" ()}

Applying Linear impulse = change in linear momentum
Fdt=V, ooo. (i)
Applying Angular impulse = change in angular
momentum

. (iv)

or Fh dtzng2 oN
5

Angular momentum about bottommost point will
remain conserved.

e, L =L
or Imo,+ mRv, =Io + mRv

", émRsz + mRv,

v
- EmR2 9o |, 9 MRV . (v)
5 7 R

Solving Egs. (iii), (iv) and (v), we get h= %R

Example 7: Determine the maximum horizontal force F
that may be applied to the plank of mass m for which
the solid does not slip as it begins to roll on the plank.
The sphere has a mass M and radius R (see figure). The
coefficient of static and kinetic friction between the
sphere and the plank are pg and p, respectively.

M

4

(@] (@]

Sol: As the plank moves forward, the sphere, due to its
inertia, has a tendency to slip backwards relative to the
plank. So the force of friction acts on the sphere in the
forward direction. For maximum force F, the friction will
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be limiting. Write the equations of Newton’s second
law and torque about center of mass for the sphere
and the equation of Newton'’s second law for the plank.

The free body diagram of the sphere and the plank are
as shown below:

Writing equation of motion:

. . HsMg .
For sphere: Linear acceleration a, = TzHSQ ...(0)

MR _ 5K

Angular acceleration: a =

wrz 2R
5
For plank: Linear acceleration
f(l
—> B,
K, Mg
}’Es Mg —>a2
—> F
(@) (@)
| ]
=F—uSMg

2 m

For no slipping a,=a; + Ra

Solving the above four equations, we get
F=ung (M+%m}

Thus, maximum value of F can be p.g [M+%m]

Example 8: A uniform disc of radius ry lies on a
smooth horizontal plane. A similar disc spinning with
the angular velocity ®, is carefully lowered onto the
first disc. How soon do both discs spin with the same
angular velocity if the friction coefficient between them
isequaltop?

Sol: The initial angular momentum about its center of
the disc being lowered will be equal to the combined
angular momentum of both the discs about their
centers once they start rotating together. Each disc
can be thought of made-up of elementary rings of
infinitesimal thickness. The torque about the center of
disk due to friction force on each ring will be different
from that on the other rings in the disc as the radii
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of rings are different, varying from 0 to r,. So use the
method of integration to find the torque on the entire
disc.

From the law of conservation of angular momentum.
oy = 2o

Here, | = moment of inertia of each disc relative to
common rotation axis

0)0 .
o= 5 steady state angular velocity

The angular velocity of each disc varies due to the
torque t of the frictional forces. To calculate t, let us
take an elementary ring with inner and outer radii r and
r + dr. The torque of the friction acting on the given is
equal to.

dr= ur[m—g}nr dr = [—szng]rz dr

T o

where m is the mass each disc. Integrating this respect
to r between 0 and r,, we get

_ 2
T= ZHMgr

The angular velocity of the lower disc increases by d ®
over the time interval

3
_ (i}dm
4ug

Integrating this equation with respect to ® between 0

3,0,

and 20 , we find the desired time t =

2 8ug
Example 9: A solid sphere of radius r is gently placed
on a rough horizontal ground with an initial angular
speed ®, and no linear velocity. If the coefficient of
friction is u, find the time when the slipping stops. In
addition, state the linear velocity v and angular velocity
o at the end of slipping.

)

Sol: Due to backward slipping the force of friction
will act forwards and torque due to friction will be
anti-clockwise. This problem can be solved either by
Newton's second law and torque about center of mass
method or by applying the law of conservation of
angular momentum about the point of contact of the
sphere with the ground.

Let m be the mass of the sphere.

Since, it is a case of backward slipping, force of friction
is in forward direction. Limiting friction will act in this
case.

fmax
L ]
Linear acceleration a= Al = K9 =ug
m m
Angular retardation o= I fr = EH_Q
I 2 2 2r
gmr

Slipping ceases when v =r®

Or (at) = r (o, —at)

Or pgt= r[(oo —guTg]

2r®
Zugt=roo0; t=2—0
2 7 ug
2

v 2
Ando=—==ro,
@ r 7 9

Alternative solution: Net torque on the sphere about
the bottommost point is zero. Therefore, angular
momentum of the sphere will remain conserved about
the bottommost point.

Lt :Lf

= log =lo+mrv

Or %mrzmo :émrzowmr(mr)
2

And v=ro= %rwo

Example 10: A thin massless thread is wound on reel
of mass 3 kg and moment of inertia 0.6 kg-m?. The hub
radius is R = 10 cm and peripheral radius is 2R = 20 cm.
The reel is placed on a rough table and the friction is
enough to prevent slipping. Find the acceleration of the
center of reel and of hanging mass of 1 kg (see figure).



Sol: Apply Newton's second law at the center of mass
of reel in horizontal direction. Find relation between net
torque about center of mass of reel and moment of
inertia about axis passing through the center of mass.
Apply Newton’s second law for hanging mass in vertical
direction.

Let, a; = acceleration of center of mass of reel
a, = acceleration of 1 kg block

o = angular acceleration of reel (clockwise)

T = tension in the string

and f = force of friction

Free body diagram of reel is as shown below; (only
horizontal forces are shown.).

Equations of motion are: T —f = 3a; (D)

Exercise 1

Q.1 What are the units and dimensions of moment of
inertia? Is it a vector?

Q.2 What is rotational analogue of force?

Q.3 What is rotational analogue of mass of a body?
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_ fR)-TR _ 0.2f-01T
I 0.6

1

W=+ —|Aa
|

ol

T

|

10N

Free body diagram of mass is
Equation of motion is,
10-T=a, ..(iii)
For no slipping condition,
a; = 2Ra or a; = 0.2a .(iv)
And a, =a, -Ra or a, =a, -0.1a .. (v)

Solving the above five equations, we get

a, = 0.27 m/s%a, = 0.135 m/s’

Q.4 What are two theorems of moment of inertia?

Q.5 What is moment of inertia of a solid sphere about
its diameter?

Q.6 What is moment of inertia of a hollow sphere about
an axis passing through its center.
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Q.7 What are the factors on which moment of inertia of
a body depends?

Q.8 Is radius of gyration of a body a constant quantity?

Q.9 There are two spheres of same mass and same
radius, one is solid and other is hollow. Which of them
has a larger moment of inertia about its diameter?

Q.10 Two circular discs A and B of the same mass and
same thickness are made of two different metals whose
densities are d, and dg(d, >dg). Their moments of
inertia about the axes passing through their centers of
gravity and perpendicular to their planes are I, and ;.
Which is greater, 1, or I;?

Q.11 The moments of inertia of two rotating bodies
A and B are I, and I; (I, >I;) and their angular
moments are equal. Which one has a greater kinetic
energy?

Q.12 Explain the physical significance of moment of
inertia and radius of gyration.

Q.13 Obtain expression of K.E. for rolling motion.
Q.14 State the laws of rotational motion.

Q.15 Establish a relation between torque and moment
of inertia of a rigid body.

Q.16 State and explain the principle of conservation of
angular momentum. Give at least two examples.

Q.17 Derive an expression for moment of inertia of
a thin circular ring about an axis passing through its
center and perpendicular to the plane of the ring.

Q.18 The moment of inertia of a circular ring about an
axis passing through the center and perpendicular to
its plane is 200 g cm?. If radius of ring is 5 cm, calculate
the mass of the ring.

Q.19 Calculate moment of inertia of a circular disc
about a transverse axis through the center of the disc.
Given, diameter of disc is 40 cm, thickness = 7 cm and

density of material of disc = 9 g cm™3

Q.20 A uniform circular disc and a uniform circular ring
each has mass 10kg and diameter Tm. Calculate their
moment of inertia about a transverse axis through their
center.

Q.21 Calculate moment of inertia of earth about its
diameter, taking it to be a sphere of radius 6400 km
and mass 6 x10** kg.

Q.22 Calculate moment of inertia of a uniform circular
disc of mass 700 g and diameter 20 cm about

(i) An axis through the center of disc and perpendicular
to its plane,.

(i) A diameter of disc
(iii) A tangent in the plane of the disc,
(iv) A tangent perpendicular to the plane of the disc.

Q.23 Three particles, each of mass m, are situated at
the vertices of an equilateral triangle ABC of side L. Find
the moment of inertia of the system about the line AX
perpendicular to AB in the plane of ABC, in the given figure.

/\X C
A L B
———

Q.24 Calculate K.E. of rotation of a circular disc of mass
1 kg and radius 0.2 m rotating about an axis passing
through its center and perpendicular to its plane. The
disc is making 30/m rpm.

Q.25 A circular disc of mass M and radius r is set into
pure rolling on a table. If ® be its angular velocity,
show that it's total K.E. is given by (3/4) Mv?, where
v is its linear velocity. M.Il. of circular disc = (1/2)
mass x (radius)?.

Q.26 The sun rotates around itself once in 27 days. If
it were to expand to twice its present diameter, what
would be its new period of revolution?

Q.27 A 40 kg flywheel in the form of a uniform circular
disc 1 meter in radius is making 120 r.p..m. Calculate
its angular momentum about transverse axis passing
through center of fly wheel.



Q.28 A body is seated in a revolving chair revolving at
an angular speed of 120 r.p.m. By some arrangement,
the body decreases the moment of inertia of the system
from 6 kg m? to 2 kg m?. What will be the new angular
speed?

Exercise 2

Single Correct Choice Type

Q.1 Thee bodies have equal masses m. Body A is solid
cylinder of radius R, body B is square lamina of side
R, and body C is a solid sphere of radius R. Which
body has the smallest moment of inertia about an axis
passing through their center of mass and perpendicular
to the plane (in case of lamina)

(VA (B)B ©C (D) A and C both

Q.2 For the same total mass which of the following
will have the largest moment of inertia about an axis
passing through its center of mass and perpendicular
to the plane of the body.

(A) A disc of radius a
(B) A ring of radius a
(C) A square lamina of side 2a

(D) Four rods forming a square of side 2a

Q.3 A thin uniform rod of mass M and length L has its
moment of inertia I, about its perpendicular bisector.
The rod is bend in the form of semicircular arc. Now its
moment of inertia perpendicular to its plane isl,. The
ratio of I : I, will be

(A <1 (B)>1 © =1 (D) Can't be said

Q.4 Moment of inertia of a thin semicircular disc (mass
= M & radius = R) about an axis through point O and
perpendicular to plane of disc, is given by:

A\

2
(A) 4MR (B)

Ivrz © IMR? (D) MR?
5 ()8 (D)
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Q.5 A rigid body can be hinged about any point on the
x-axis. When it is hinged such that the hinge is at x, the
moment of inertia is given by | = 2x* - 12x + 27

The x-coordinate of center of mass is

(A)x=2 B)x=0 O x=1 D)x=3

Q6. A weightless rod is acted upon by upward parallel
forces of 2N and 4N at ends A and B respectively. The
total length of the rod AB=3m. To keep the rod in
equilibrium, a force of 6N should act in the following
manner:

(A) Downwards at any point between A and B.
(B) Downwards at mid-point of AB

(C) Downwards at a point C such that AC=1m
(D) Downwards at a point D such that BD= 1m.

Q.7 A heavy rod of length L and weight W is suspended
horizontally by two vertical ropes as shown. The first
rope is attached to the left end of rod while the second
rope is attached a distance L/4 from right end. The
tension in the second rope is:

1 2
L/4
(/ \)
~ L Cd
(A) (1/2) W (B) (174 W
© (/3w (D) (2/3) W By W

Q.8 A right triangular plate ABC of mass m is free to
rotate in the vertical plane about a fixed horizontal
axis though A. It is supported by a string such that the
side AB is horizontal. The reaction at the support A in
equilibrium is:

Fereer ooy

v

(A)% ®) 2 9 © M9

(D) mg
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Q.9 Arod is hinged at its center and rotated by applying
a constant torque from rest. The power developed by
the external torque as a function of time is:

Pext/\ PextA
(A / (B) R
time ti,me
Pext/\ Pext/\
Q ( (D)
5 : —
time time

Q.10 Two uniform spheres of mass M have radii R and
2R. Each sphere is rotating about a fixed axis through its
diameter. The rotational kinetic energies of the spheres
are identical. What is the ratio of the angular moments

°2R

of these sphere? That is,
R

A4 B22 ©2 ON2 ®1

Q.11 A spinning ice skater can increase his rate of
rotation by bringing his arms and free leg closer to
his body. How does this procedure affect the skater’s
momentum and kinetic energy?

(A) Angular momentum remains the same while kinetic
energy increases.

(B) Angular momentum remains the same while kinetic
energy decreases

(C) Both angular momentum and kinetic energy remains
the same.

(D) Both angular momentum and kinetic energy
increase.

Q.12 A child with mass m is standing at the edge of
a disc with moment of inertia |, radius R, and initial
angular velocity o. See figure given below. The child
jumps off the edge of the disc with tangential velocity
v with respect to the ground. The new angular velocity
of the disc is

\Y

(A) I(,l)2 —mv
I

2y 2 2
B)\/(I+mR )I(o -mv

© Io—mvR
I
(I+mR?)®—mvR

(D) T

Q.13 A uniform rod of length [ and mass M is rotating
about a fixed vertical axis on a smooth horizontal table.
It elastically strikes a particle placed at a distance (/3
from its axis and stops. Mass of the particle is

1/3$‘H l

C I

3M
(A) 3M ®) = (0) ==

Q.14 a disc of radius R is rolling purely on a flat
horizontal surface, with a constant angular velocity. The
angle between the velocity and acceleration vectors of

point P is
[
p<
(A) Zero (B) 45°
(C) 135° (D) tan"1(1/2)

Q.15 A particle starts from the point (Om, 8m) and
moves with uniform velocity of 3m/s. After 5 second,
the angular velocity of the particle about the origin will
be:

y
3m/s
SmI
0 X

8 3
(A)@rad/s (B)grad/s

24 8
(C)Erad/s (D)Erad/s



Q.16 Two points of a rigid body are moving as shown.
The angular velocity of the body is:

02 o2

\% \'%
Wawr Or R 3R

Q.17 A yo-yo is released from hand with the string
wrapped around your finger. If you hold your hand still,
the acceleration of the yo-yo is

(A) Downward, much greater than g
(B) Downward much greater than g
(C) Upward, much less than g

(D) Upward, much greater than g
(E) Downward, at g

Q.18 Inner and outer radii of N a spool are r and R
respectively. A thread is wound over its inner surface
and placed over a rough horizontal surface. Thread is
pulled by a force F as shown in figure. Then in case of

pure rolling.
@
/ F
(A) Thread unwinds, spool rotates anticlockwise and
friction acts leftwards

v

(B) Thread unwinds, spool rotates clockwise and friction
acts leftwards

(C) Thread wind, spool moves to the right and friction
acts rightwards.

(D) Thread winds, spool moves to the right and friction
does not come into existence.

Q.19 A sphere is placed rotating with its center initially
at rest in a corner as shown in figure (a) & figure (b).
Coefficient of friction between all surfaces and the

f
sphere is % Find the ratio of the frictional force fi by

b
ground in situations (a) & (b).
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©

(a) (b)

S

9 10
(A) 1 (B) 0 (@) 5 (D) None

Q.20 A body kept on a smooth horizontal surface is
pulled by a constant horizontal force applied at the
top point of the body. If the body rolls purely on the

surface, its shape can be:
(A) Thin pipe (B) Uniform cylinder

(C) Uniform sphere (D) Thin spherical shell

Q.21 A uniform rod AB of mass m and length | is at rest
on a smooth horizontal surface. An impulse j is applied
to the end B, perpendicular to the rod in the horizontal

direction. Speed of point P at A distance % from the

center towards a of the rod after time t = T{ijl is
J J
(A) 2= (B) —
m 2m
© L (D) V22
m m

Q.22 The moment of inertia of a solid cylinder about its
axis is given by (1/2) MR2 If this cylinder rolls without
slipping, the ratio of its rotational kinetic energy to its
translational kinetic energy is

(A) 1:1 (B) 2: 2 @12 (D) 1:3

Q.23 A force F is applied to a dumbbell for a time
interval t, first as in (i) and then as in (ii). In which case
does the dumbbell acquire the greater center-of-mass
speed?

(A) (i)
(B) (ii)
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(C) There is no difference

(D) The answer depends on the rotation inertia of the
dumbbell

Q.24 A hoop and a solid cylinder have the same
mass and radius. They both roll, without slipping on a
horizontal surface. If their kinetic energies are equal

(A) The hoop has a greater translational speed then the
cylinder

(B) The cylinder has a greater translational speed then
the hoop

(C) The hoop and the cylinder have the same
translational speed

(D) The hoop has a greater rotational speed then the
cylinder.

Q.25 A ball rolls down an inclined plane, as shown in
figure. The ball is first released from rest from P and
then later from Q Which of the following statement
is /are correct?

/

N

2h

0]

(i) The ball takes twice as much time to roll from Q to O
as it does to roll from P to O.

(i) The acceleration of the ball at Q is twice as large as
the acceleration at P.

(iii) The ball has twice as much K.E.at O when rolling
from Q as it does when rolling from P.

(A) i, ii only

(C)ionly (D) iii only

Q.26 If a person is sitting on a rotating stool with his
hands outstretched, suddenly lowers his hands, then
his

(A) Kinetic energy will decrease

(B) Moment of inertia will decrease

(C) Angular momentum will increase

(D) Angular velocity will remain constant

Q.27 Choose the correct statement(s)
(A) The momentum of the ring is conserved

(B) The angular momentum of the ring is conserved
about its center of mass

(C) The angular momentum of the ring is conserved
about a point on the horizontal surface.

(D) The mechanical energy of the ring is conserved.

Previous Years’' Questions

Q.1 Let | be moment of inertia of a uniform square plate
about an axis AB that passes through its center and is
parallel to two of its sides. CD is a line in the plane of
the plate that passes through the center of the plate
and makes an angle ¢ with AB. The moment of inertia
of the plate about the axis CD is then equal to. (7998)

A1 (B) Isin%0
() | cos?0 (D) | cos2(0/2)

Q.2 A smooth sphere is moving on a frictionless
horizontal plane with angular velocity ® and center
of mass velocity v. It collides elastically and head on
with an identical sphere B at rest, Neglect friction
everywhere. After the collision their angular speeds are

o, and o, respectively. Then, (1999)
(A) o, < o, (B)w, = o,
Qo,=o D) o, =

Q.3 A particle of mass m is projected with a velocity
v making an angle of 45° with the horizontal. The
magnitude of the angular momentum of the projectile
about the point of projection when the particle is at its
maximum height h is (1990)

(A) Zero (8) mv3/(4+2g)

(© mv3/(2g) (D) my2gh?

Q.4 Consider a body, shown in figure, consisting of two
identical balls, each of mass M connected by a light rigid
rod. If an impulse J = Mv is imparted to the body at one
of its end, what would be its angular velocity?  (2003)

::O L

M M

(A) v/L (B) 2v/L (C) v/3L (D) v/4L



Q.5 A tube of length L is filled completely with an
incompressible liquid of mass M and closed at both the
ends. The tube is then rotated in a horizontal plane about
one of its ends with a uniform angular velocity ®. The

force exerted by the liquid at the other end is (1992)
Ma?L Ma?L Mo?L?
W =S= B ML Q= (D) =

Q.6 A cylinder rolls up an inclined plane, reaches some
height and then rolls down (without slipping throughout
these motions.) The directions of the frictional force
acting on the cylinder are (2002)

(A) Up the incline while ascending and down the incline
while descending.

(B) Up the incline while ascending as well as descending

(C) Down the incline while ascending and up the inline
while descending.

(D) Down the incline while ascending as well as
descending.

Q.7 Two point masses of 0.3 kg and 0.7 kg fixed at the
ends of a rod of length 1.4 m and of negligible mass.
The rod is set rotating about an axis perpendicular to
its length with a uniform angular speed. The point on
the rod through which rotation of the rod is minimum,
is located at a distance of (1995)

(A) 0.42 m from mass of 0.3kg
(B) 0.70 m from mass of 0.7 kg
(C) 0.98 m form mass of 0.3 kg
(D) 0.98 m form mass of 0.7 kg

Q.8 A disc of mass M and radius R is rolling with
angular speed ® on a horizontal plane as shown. The
magnitude of angular momentum of the about the

origin O is (1999)

y

N

/\(D
M
O X

(A) [%)MRZCO (B) MR?w
(@) [%]MR% (D) 2MR%o»
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Q.9 A cubical block of side L rests on a rough horizontal
surface with coefficient of friction p. A horizontal force
F is applied sufficient high, so that the block does not
slide before toppling, the minimum force required to

topple the block is (2000)
N
F—> Y
G
L
P
-
2
f1 J' h 4
mg
(A) Infinitesimal (B) mg/4
(C) mg/2 (D) mg (1 -p)

Q.10 An equilateral triangle ABC formed from a uniform
wire has two small identical beads initially located at A.
The triangle is set rotating about the vertical axis AO.
Then the beads are released from rest simultaneously
and allowed to slide down, one along AB and other
along AC as shown. Neglecting frictional effects, the
quantities that are conserved as beads slide down are

(2000)

(A) Angular velocity and total energy (kinetic and
potential)

(B) Total angular momentum and total energy

(C) Angular velocity and moment of inertia about the
axis of rotation

(D) Total angular momentum and moment of inertia
about the axis of rotation.

Q.11 One quarter section is cut from a O uniform
circular disc of radius R. This section has a mass M. It is
made to rotate about a line perpendicular to its plane
and passing through the center of the original disc. Its
moment of inertia about the axis of rotation is (2001)
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1

1
A —M {2

12
(B) 4MR

1\1R2
0 =MR
@3

(D) v2MR?

Q.12 A circular platform is free to rotate in a horizontal
plane about a vertical axis passing through its center. A
tortoise is sitting at the edge of the platform. Now the
platform is given an angular velocity o,

When the tortoise moves along a chord of the platform
with a constant velocity (with respect to the platform).
The angular velocity of the platform w (t) will vary with
time t as (2002)

o(t) o(t)
(A) o @,
> |/—\\
t t
o(t) o(t)
m()l—
t

Q.13 A thin circular ring of mass M and radius r is
rotating about its axis with a constant angular velocity
o . Two objects, each of mass m, are attached gently
to the opposite ends of a diameter of the ring. The
wheel now rotates with an angular velocity (2006)

(A) ©M/(M + m)

(B) ®(M = 2m)/(M + 2m)
Q) ®M/(M + 2m)

(D) ®(M + 2m)/M

(B)
(OIS (D)

t
(A)

Q.14 A cubical block of side a moving with velocity v on
a horizontal smooth plane as shown. It hits at point O.
The angular speed of the block after it hits O is  (7999)

KLN
Vv
M
[ J m
0
(A) 3v/4a (B)3v/2a
© 3 /~2a (D) Zero

Q.15 A thin wire of length L and uniform linear mass
density p is bent into a circular loop with center at O
as shown. The moment of inertia of the loop about the

axis XX' is (2000)
X X'
3 3 5pL3 3pL3
w= e 02X 0%
8 16w 167w 81

Q.16 A diatomic molecule is made of two masses m;
and m, which are separated by a distance r. If we
calculate its rotational energy by applying Bohr’ s rule
of angular momentum quantization, its energy will be

given by (n is an integer) (2012)
(ml +m, )2 n® i’ n® i’
A —> 75 B
me mg r2 2(m1+m2)r2
2n® ? (my +m, )n? #?
© ( 2 O ———5—
m1+m2)r 2m1 m, r

Q.17 A hoop of radius r and mass m rotating with an
angular velocity o, is placed on a rough horizontal
surface. The initial velocity of the centre of the hoop is
zero. What will be the velocity of the centre of thehoop
when it ceases to slip? (2013)
r oy, ro,
(A) 3 (B) 5

Qro, ("2
0 4

Q.18 A bob of mass m attached to an inextensible
string of length ¢ is suspended from a vertical support.
The bob rotates in a horizontal circle with an angular
speed o rad/s about the vertical. About the point of
suspension: (2014)



(A) Angular momentum changes in direction but not in
magnitude.

(B) Angular momentum changes both in direction and
magnitude.

(C) Angular momentum is conserved.

(D) Angular momentum changes in magnitude but not
in direction.

Q.19 The current voltage relation of diode is given
by I:(elooov/T —1)mA, where the applied voltage V

is in volts and the temperature T is in degree Kelvin.
If a student makes an error measuring +0.01V while
measuring the current of 5 mA at 300 K, what will be

the error in the value of current in mA? (2014)
(A) 0.5 mA (B) 0.05 mA
(©) 0.2 mA (D) 0.02 mA

Q.20 From a solid sphere of mass M and radius R a
cube of maximum possible volume is cut. Moment of
inertia of cube about an axis passing through its center

and perpendicular to one of its faces is: (2015)
MR? 4MR? 4MR? MR?
(A) (B) © D)
16\/§n 9\/575 3\/575 32\/511

Q.21 A particle of mass m is moving along the side of
a square of side ‘a’, with a uniform speed v in the x-y
plane as shown in the figure:

y a
A D < C
\%
ayv VAQ
Al Y
a
> R
45°
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Which of the following statements is false for the

angular momentum L about the origin? (2016)

(A) L =mv i—a k when the particle is moving from
2

CtoD.

(B) L=mv %+ a|k when the particle is moving from
N2

B to C.

© [ =Rk when the particle is moving from D to A.

2

(D) L= —mRIE when the particle is moving from
NG

A to B.

Q.22 A roller is made by joining together two cones
at their vertices O. It is kept on two rails AB and CD
which are placed asymmetrically (see figure), with its
axis perpendicular to CD and its centre O at the centre
of line joining AB and CD (see figure). It is given a light
push so that it starts rolling with its centre O moving
parallel to CD in the direction shown. As it moves, the
roller will tend to: (2016)

(A) Turn right

(B) Go straight

(C) Turn left and right alternately
(D) Turn left
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Exercise 1

Q.1 A thin uniform rod of mass M and length L is
hinged at its upper end, and released from rest in a
horizontal position. Find the tension at a point located
at a distance L/3 from the hinge point, when the rod
becomes vertical.

Q.2 A rigid body in shape of a triangle has V, = 5 m/s
downwords, V, = 10 m/s downwords. Find velocity of
point C.

Q.3 A rigid horizontal smooth rod AB of mass 0.75 kg
and length 40 cm can rotate freely about a fixed vertical
axis through its mid-point O. Two rings each of mass 1
kg are initially at rest at a distance of 10 cm from O on
either side of the rod. The rod is set in rotation with an
angular velocity of 30 rad per second. Find the velocity
of each ring along the length of the rod in m/s when
they reach the ends of the rod.

—1>

Q.4 A straight rod AB of mass M and length L is placed
on a frictionless horizontal surface. A horizontal force
having constant magnitude F and a fixed direction starts
acting at the end A. The rod is initially perpendicular to
the force. Find the initial acceleration of end B.

Q.5 A wheel is made to roll without slipping, towards
right, by pulling a string wrapped around a coaxial
spool as shown in figure. With what velocity the string
should be pulled so that the center of wheel moves
with a velocity of 3 m/s?

Q.6 A uniform wood door has mass m, height h, and
width w. It is hanging from two hinges attached to one
side; the hinges are located h/3 and 2h/3 from the
bottom of the door.

w
i

Hinges< [ com |:| h

Suppose that m = 20.0 kg, h = 2.20m, and W = 1.00 m
and the bottom smooth hinge is not screwed into the
door frame, find the forces acting on the door.

Q.7 A thin rod AB of length a has variable mass per unit
length pg [1+§j where x is the distance measured

from a and p, is a constant
(a) Find the mass M of the rod.
(b) Find the position of center of mass of the rod.

(c) Find moment of inertia of the rod about an axis
passing through A and perpendicular to AB. Rod is
freely pivoted at A and is hanging in equilibrium when
it is struck by a horizontal impulse of magnitude P at
the point B.

(d) Find the angular velocity with which the rod begins
to rotate.

(e) Find minimum value of impulse P if B passes through
a point vertically above A.



Q.8 Two separate cylinders of masses m (=1 kg) and 4m
and radii R (=10cm) and 2R are rotating in clockwise
direction with ®, = 100rad/sec and ®, = 200 rad/
sec. Now they are held in contact with each other as
in figure Determine their angular velocity after the
slipping between the cylinders stops.

(=

Q.9 A spool of inner radius R and outer radius 3R
has a moment of inertia = MR? about an axis passing
through its geometric center, where M is the mass of
the spool. A thread wound on the inner surface of the
spool is pulled horizontally with a constant force =
Mg. Find the acceleration of the point on the thread
which is being pulled assuming that the spool rolls
purely on the floor.

Q.10 A sphere of mass m and radius r is pushed onto
a fixed horizontal surface such that it rolls without
slipping from the beginning. Determine the minimum
speed v of its mass center at the bottom so that it rolls
completely around the loop of radius (R + r) without
leaving the track in between.

(R+r)
Sphere

Q.11 Two uniform cylinders each of mass m = 10 kg
and radius r = 150 mm, are connected by a rough belt
as shown. If the system is released from rest, determine

(a) The tension in the portion of the belt connecting the
two cylinder.

(b) The velocity of the center of cylinder a after it has
moved through 1.2 m.
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Q.12 A thin wire of length L and uniform linear mass
density p is bent into a circular loop with center at O as
shown in the figure. The moment of inertia of the loop
about the axis XX is

X X

Q.13 A block X of mass 0.5 kg is held by a long massless
string on a frictionless inclined plane of inclination 30°
to the horizontal. The string is wound on a uniform
solid cylindrical drum Y of mass 2 kg and of radius
0.2 m as shown in the figure. The drum is given an initial
angular velocity such that the block X stands moving
up the plane. (g = 9.8 m/s?)

(i) Find the tension in the string during the motion.

(i) At a certain instant of time the magnitude of the
angular velocity of Y is 10rad/sec. Calculate the distance
travelled by X form that instant of time unit it comes to
rest.

Q.14 A uniform rod AB of length L and mass M is lying
on a smooth table. A small particle of mass m strikes
the rod with a velocity v, at point at distance from the
center O. The particle comes to rest after collision. Find
the value of x, so that of the rod remains stationary just
after collision.
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Q.15 A uniform plate of mass mis suspended in each of
the ways shown. For each case determine immediately
after the connection at B has been released:

Pin support
[/ [/ i
1 1A Bl I
(1/2)C
3 c M

(@) The angular acceleration of the plate.

(b) The acceleration of its mass center.

Q.16 A carpet of mass ‘M’ made of inextensible
material is rolled along its length in the form of cylinder
of radius 'R" and is kept on a rough floor. The carpet
starts unrolling without standing on the floor when
a negligibly small push is given to it. The horizontal
velocity of the axis of the cylindrical parts of the carpet
when its radius decreases to R/2 will be:

&

Q.17 A uniform disk of mass m and radius R is projected
horizontally with velocity v, on a rough horizontal floor
so that it starts off with a purely sliding motion att = 0.
After t, seconds it acquires a purely rolling motion as
shown in figure.

(i) Calculate the velocity of the center of mass of the
disk at t

(i) Assuming the coefficient of friction to be p calculate
t,. Also calculate the work done by the frictional force
as a function of time and the total work done by it over
a time t much longer thent,.

Q.18 A circular disc of mass 300 gm and radius 20 cm
can rotate freely about a vertical axis passing through
its center of mass 0. A small insect of mass 100 gm
is initially at a point A on the disc (which is initially
stationary). The insect starts walking from rest along the
rim of the disc with such a time varying relative velocity
that the disc rotates in the opposite direction with a
constant angular acceleration = 2t rad/s” After some
time T, the insect is back at the point A. By what angle
has the disc rotated till now, as seen by a stationary
earth observer? Also find the time T.

Q.19 A uniform disc of mass m and radius R rotates
about a fixed vertical axis passing through its center
with angular velocity o . A particle of same mass m and
having velocity 2 o R towards center of the disc collides
with the disc moving horizontally and stick to its rim.
Find

(a) The angular velocity of the disc
(b) The impulse on the particle due to disc.

(c) The impulse on the disc due to hinge.

Q.20 The door of an automobile is open and
perpendicular to the body. The automobile starts with
an acceleration of 2 ft/sec? and the width of the door
is 30 inches. Treat the door as a uniform rectangle, and
neglect friction to find the speed of its outside edge as
seen by the driver when the door closes.

Q.21 A 20 kg cabinet is mounted on small casters that
allow it to move freely (n = 0) on the floor. If a 100 N
force is applied as shown, determine.



<>
0.6m
(a) The acceleration of the cabinet,

(b) The range of values of h for which the cabinet will
not tip.

Q.22 Two thin circular disks of mass 2 kg and radius
10 cm each are joined by a rigid massless rod of length
20 cm. The axis of the rod is along the perpendicular to
the planes of the disk through their center. The object
is kept on a truck in such a way that the axis of the
object is horizontal and perpendicular to the direction
of motion of the truck. Its friction with the floor of the
truck is large enough so that the object can roll on
the truck without slipping. Take x-axis as the vertically
upwards direction. If the truck has an acceleration of
9m/s? calculate.

o)

20cm

(a) The force of friction on each disk.

(b) The magnitude and the direction of the frictional
torque acting on each disk about the center of mass O
of the object. Express the torque in the vector form of
unit vectors in the x-y and z direction.

Q.23 Three particles A, B, C of mass m each are joined
to each other by mass less rigid rods to form an
equilateral triangle of side a. Another particle of mass
m hits B with a velocity v, directed along BC as shown.
The colliding particle stops immediately after impact.

(i) Calculate the time required by the triangle ABC to
complete half-revolution in its subsequent motion. (ii)
What is the net displacement of point B during this
interval?
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Exercise 2

Single Correct Choice Type

Q.1 Let I, and I, be the moment of inertia of a uniform
square plate about axes APC and OPO’ respectively as

I
shown in the figure. P is center of square. The ratio Ii

of moment of inertia is 2
A 2 B
P
C
D o
1 1
(A) —= (B) 2 (O (D)1
2 2

Q.2 Moment of inertia of a rectangular plate about an
axis passing through P and perpendicular to the plate
is . Then moment of PQR about an axis perpendicular
to the plane.

R Q

S R

(A) About P = 1/2
(C) About P > /2

(B) About R = 1/2
(D) About R > 1/2

Q.3 Find the moment of inertia of a plate cut in shape
of a right angled triangle of mass M, AC=BC=a about
an axis perpendicular to plane, side the plane of the
plate and passing through the mid-point of side AB.

A
O
C B
Ma?’ Ma? Ma? 2Ma?
A) — B) — C D
(A) 12 (B) e (@) 3 (D) 3

Q.4 Let | be the moment of inertia of a uniform square
plate about an axis AB that passes through its center
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and is parallel to two of its sides. CD is a line in the
plane of the plate that passes through the center of the
plate and makes an angle 6 with AB. The moment of
inertia of the plate about the axis CD is then equal to

(A) 1 (B) Isin> ©
(Q) 1 cos® O (D) 1 cos? (0/2)

Q.5 A heavy seesaw (i.e., not mass less) is out of balance.
A light girl sits on the end that is tilted downward, and
a heavy body sits on the other side so that the seesaw
now balances. If they both move forward so that they
are one-half of their original distance from the pivot
point (the fulcrum) what will happen to the seesaw?

(A) The side the body is sitting on will tilt downward

(B) The side the girl is sitting on will once again tilt
downward

(C) Nothing; the seesaw will still be balanced

(D) It is impossible to say without knowing the masses
and the distances.

Q.6 A pulley is hinged at the center and a mass less
thread is wrapped around it. The thread is pulled with
a constant force F starting from rest,. As the time
increases,

(A) Its angular velocity increases, but force on hinge
remains constant

(B) Its angular velocity remains same, but force on
hinge increases

(C) Its angular velocity increases and force of hinge
increases

(D) Its angular velocity remains same and force on
hinge is constant

Q.7 A uniform flag pole of length L and mass M is
pivoted on the ground with a frictionless hinge. The
flag pole makes an angle 0 with the horizontal. The
moment of inertia of the flag pole about one end is
(1/3) ML2 If it starts falling from the position shown in
the accompanying figure, the linear acceleration of the
free end of the flag pole — labeled P — would be:

p
L
0
(A) (2/3) gcos @ B)(2/3)g
3
Qg (D) (E)gcos 0
() 3/2)g

Q.8 A mass m is moving at speed v perpendicular to a
rod of length d and mass M = 6m which pivots around
a frictionless axle running through its center. It strikes
and sticks to the end of the rod. The moment of inertia
of the rod about its center is Md? /12. Then the angular
speed of the system right after the collision is.

(A) 2v/d (B) 2v /(3d)
© v/d (D) 3v/(2d)

Q.9 A sphere of mass M and radius R is attached by a
light rod of length | to a point P. The sphere rolls without
slipping on a circular track as shown. It is released from
the horizontal position. The angular momentum of the
system about P when the rod becomes vertical is:

[

10 [10 2
(A) M 7gI[I+R] (B) M 7gI[I+ER]

M ggl[H%R] (D) None of the above

Q.10 A ladder of length L is slipping with its ends
against a vertical wall and a horizontal floor. At a
certain moment, the speed of the end in contact with
the horizontal floor is v and the ladder makes an angle
a = 30° with the horizontal. Then the speed of ladder’s
center must be

(A) 2v \/§ (B) v/2 Qv (D) None



Q.11 In the previous question, if dv/dt = 0, then the
angular acceleration of the ladder when o = 45° is

(A) 2v2 /12 (B)v2 /212

©) V2[v2 1] (D) None

Q.12 Auniform circular disc placed on arough horizontal
surface has initially a velocity v, and an angular velocity
®, as shown in the figure. The disc comes to rest after
moving some distance in the direction of motion.
Then Yo is

rey

Vo

(A)1/2  (B)1 32 (D)2

Q.13 An ice skater of mass m moves with speed 2v to
the right, while another of the same mass m moves
with speed v toward the left, as shown in figure I. Their
paths are separated by a distance b. At t = 0, when they
are both at x = 0, they grasp a pole of length

y

b and negligible mass. For r > 0 consider the system
as a rigid body of two masses m separated by distance
b, as shown in figure Il. Which of the following is the
correct formula for motion after t = 0 of the skater
initially aty = b/2?

o]
t=0

(A) x=2vt,y=b/2
(B) x =vt+0.5 b sin(3vt/b), y=0.5b cos(3vt/b)
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(CO)x = 0.5c =vt+ 0.5b sin(3vt / b), y= 0.5b cos(3vt / b)
(D)x = 0.5vt + 0.5b sin(3vt / b), y=0.5b cos(3vt / b)

Q.14 A yo-yo is resting on a perfectly rough horizontal
table. Forces F, F, and F are applied separately as
shown. The correct statement is

Fs F,

(A) When F, is applied the center of mass will move to
the right.

(B) When F, is applied the center of mass will move to
the right.

(C) When F, is applied the center of mass will move to
the right.

(D) When F, is applied the center of mass will move to
the right.

Multiple Correct Choice Type

Q.15 A rod of weight w is supported by two parallel
knife edges and B and is in equilibrium in a horizontal
position. The knives are at a distance d from each other.
The center of mass of the rod is at a distance x from A.

(A) The normal reaction at a is %

w(d—x)
d

(B) The normal reaction at a is

(C) The normal reaction at B is %

w(d—x)
d

(D) The normal reaction at B is

Q.16 A block with a square base measuring and height
h, is placed on an inclined plane. The coefficient of
friction is u. The angle of inclination (a) of the plane is
gradually increased. The block will

(A) Topple before sliding if u > E

(B) Topple before sliding if p < E
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(C) Slide before toppling if u > %

(D) Slide before toppling if p < E

Q.17 A particle falls freely near the surface of the earth.
Consider a fixed point O (not vertically below the
particle) on the ground.

(A) Angular momentum of the particle about O is
increasing.

(B) Torque of the gravitational force on the particle
about O is decreasing.

(C) The moment of inertia of the particle about O is
decreasing.

(D) The angular velocity of the particle about O is
increasing.

Q.18 The torque t on a body about a given point is
found to be equal to a x L where a constant vector is
and L is the angular momentum of the body about that
point. From this it follows that

(A) dL/dt is perpendicular to L at all instants of time

(B) The components of | in the direction of a does not
change with time.

(C) The magnitude of | does not change with time.

(D) L does not change with time.

Q.19 In the given figure. a ball strikes a uniform rod of
same mass elastically and rod is hinged at point A. Then
which of the statement (S) is /are correct?

A

_u

O

(A) Linear momentum of system (ball + rod) is
conserved.

(B) Angular momentum of system (ball + rod) about
the hinged point A is conserved.

(C) Kinetic energy of system (ball + rod) before the
collision is equal to kinetic energy of system just after
the collision

(D) Linear momentum of ball is conserved.

Q.20 A hollow sphere of radius R and mass m is fully
filled with non-viscous liquid of mass m. It is rolled
down a horizontal plane such that its center of mass
moves with a velocity v. If it purely rolls

(A) Kinetic energy of the sphere is %mv2

(B) Kinetic energy of the sphere is gmv2

(C) Angular momentum of the sphere about a fixed

point on ground is gva

(D) Angular momentum of the sphere about a fixed

point on ground is 1?4va

Q.21 In the figure shown, the plank is being pulled to
the right with a constant speed v. If the cylinder does
not slip then:

sV

(A) The speed of the center of mass of the cylinder is 2v.

(B) The speed of the center of mass of the cylinder is
zero.

(C) The angular velocity of the cylinder is v/R.

(D) The angular velocity of the cylinder is zero.

Q.22 A disc of circumference s is at rest at a point A on
a horizontal surface when a constant horizontal force
begins to act on its center. Between A and B there is
sufficient friction to prevent slipping and the surface is
smooth to the right of B. AB = s. The disc moves from A
to B in time T. To the right of B,

(A) The angular acceleration of disc will disappear,
linear acceleration will remain unchanged

(B) Linear acceleration of the disc will increase



(C) The disc will make one rotation in time T/2.

(D) The disc will cover a distance greater then s in
further time T.

Q.23 A rigid object is rotating in a counterclockwise
sense around a fixed axis. If the rigid object rotates
though more than180° but less than 360°, which of
the following pairs of quantities can represent an initial
angular position and a final angular position of the
rigid object.

(A) 3 rad, 6 rad
(©) 1rad, 5 rad

(B) -1 rad, 1 rad
(D -1rad, 2.5 rad

Q.24 ABCD is a square plate with center O. The moments
of inertia of the plate about the perpendicular axis
through O'is | and about the axes 1,2,3 & 4 are [, L,
I;, & I, respectively. If follows that:

N

2

//@

O\\
e G

D 4
B)1=1+]1,

(D) L= I,

\4
w

A) L =1,
Ql=1+1,

Q.25 A body is in equilibrium under the influence of
a number of forces. Each force has a different line of
action. The minimum number of forces required is

(A) 2, if their lines of action pass through the center of
mass of the body.

(B) 3, if their lines of action are not parallel.
(Q) 3, if their lines of action are parallel.

(D) 4, if their lines of action are parallel and all the forces
have the same magnitude.

Q.26 A block of mass m moves on a horizontal rough
surface with initial velocity v. The height of the center
of mass of the block is h from the surface. Consider a
point a on the surface in line with the center of mass.

(A) Angular momentum about a is mvh initially
(B) The velocity of the block decreases as time passes.
(C) Torque of the forces acting on block is zero about a.

(D) Angular momentum is not conserved about A.
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Q.27 A man spinning in free space changes the shape
of his body, eg. By spreading his arms or curling up. By
doing this, he can change his

(A) Moment of inertia
(B) Angular momentum
(C) Angular velocity

(D) Rotational kinetic energy

Q.28 A ring rolls without slipping on the ground. Its
center C moves with a constant speed u. P is any point
on the ring. The speed of P with respect to the ground
is V.

(A)O < v £ 2u
(B) v = u, if CP is horizontal

(C) v = uis CP makes an angle of 30 ° with the horizontal
and P is below the horizontal level of c.

(D)v = ﬁu, if CP is horizontal

Q.29 A small ball of mass m suspended from the ceiling
at a point O by a thread of length ¢ moves along a
horizontal circle with a constant angular velocity .

(A) Angular momentum is constant about O
(B) Angular momentum is constant about C

(C) Vertical component of angular momentum about O
is constant

(D) Magnitude of angular momentum about O is
constant.

Q. 30 If a cylinder is rolling down the incline with sliding.
(A) After some time it may start pure rolling

(B) After sometime it will start pure rolling

(Q) It may be possible that it will never start pure rolling

(D) None of these.

Q.31 Which of the following statements are correct.

(A) Friction acting on a cylinder without sliding on an
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inclined surface is always upward along the incline
irrespective of any external force acting on it

(B) Friction acting on a cylinder without sliding on an
inclined surface may be upward may be downwards
depending on the external force acting on it

(C) Friction acting on a cylinder rolling without sliding
may be zero depending on the external force acting
on it

(D) Nothing can be said exactly about it as it depends
on the frictional coefficient on inclined plane.

Q. 32 A plank with a uniform sphere placed on it rests
on a smooth horizontal plane. Plank is pulled to right
by a constant force F. If sphere does not slip over the
plank. Which of the following is correct?

@,

(A) Acceleration of the center of sphere is less than that
of the plank

(B) Work done by friction acting on the sphere is equal
to its total kinetic energy

(C) Total kinetic energy of the system is equal to work
done by the force F

(D) None of the above.

Q. 33 a uniform disc is rolling on a horizontal surface.
At a certain instant B is the point of contact and A is at
height 2R from ground, where R is radius of disc.

B
17777777777

(A) The magnitude of the angular momentum of the
disc about B is thrice that about A

(B) The angular momentum of the disc about A is
anticlockwise

(C) The angular momentum of the disc about B is
clockwise

(D) The angular momentum of the disc about A is equal
to that about B.

Q. 34 A wheel of radius r is rolling on a straight line,
the velocity of its center being v. At a certain instant
the point of contact of the wheel with the grounds is M
and N is the highest point on the wheel (diametrically
opposite to M). The incorrect statement is:

(A) The velocity of any point P of the wheel is
proportional to MP

(B) Points of the wheel moving with velocity greater
than v form a larger area of the wheel than points
moving with velocity less than v

(C) The point of contact M is instantaneously at rest

(D) The velocities of any two parts of the wheel which
are equidistant from center are equal.

Q.35 A ring of mass M and radius R sliding with a
velocity v, suddenly enters into a rough surface where
the coefficient of friction isp, as shown in figure.

Q i VO
Wt —1
Rough (w)

Choose the correct statement(s)

(A) As the ring enters on the rough surface, the limiting
frictional force acts on it

(B) The direction of friction is opposite to the direction
of motion.

(C) The frictional force accelerates the ring in the
clockwise sense about its center of mass

(D) As the ring enters on the rough surface it starts
rolling.

Q.36 Choose the correct statement (s)

(A) The ring starts its rolling motion when the center of
mass is stationary

(B) The ring starts rolling motion when the point of
contact becomes stationary

(C) The time after which the ring starts rolling is 2\/—0
ug

(D) The rolling velocity is V70

Q.37 Choose the correct alternative (s)

(A) The linear distance moved by the center of mass
2
Y
before the ring starts rolling is —2
8ug



(B) The net work done by friction force is —% mv(z)

2
(C) The loss is kinetic energy of the ring is Yo

2
mv
(D) The gain in rotational kinetic energy is +TO

Q.38 A tightrope walker in a circus holds a long flexible
pole to help stay balanced on the rope. Holding the
pole horizontally and perpendicular to the rope helps
the performer.

(A) By lowering the overall center-of- gravity
(B) By increasing the rotation inertia

(C) In the ability to adjust the center- of -gravity to be
over the rope.

(D) In achieving the center of gravity to be under the
rope.

Assertion Reasoning Type

(A) Statement-l is true, statement-ll is true and
statement-Il is correct explanation for statement-I.

(B) Statement-listrue, statement-Ilistrue and statement-
[I'is NOT the correct explanation for statement-I.

(C) Statement-| is true, statement-Il is false.

(D) Statement-1 is false, statement-Il is true.

Q.39 Consider the following statements

Statement-I: a cyclist always bends inwards while
negotiating a curve

Statement-Il: By bending he lowers his center of
gravity of these statements.

Q.40 Statement-l A disc A moves on a smooth
horizontal plane and rebounds elastically from a
smooth vertical wall (Top view is shown in Fig 7.166),
in this case about any point on line XY the angular
momentum of the disc remains conserved.
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Statement-II: About any point in the plane, the torque
of gravity force and normal contact force by ground
balance each other

Q.41 Statement-I: The angular velocity of all the points
on the laminar rigid body lying in the plane of a body
as seen from any other point on it is the same.

Statement-ll: The distance between any 2 points on
the rigid body remains constant.

Q.42 Consider the following statements:-

Statement-I: The moment of inertia of a rigid body
reduces to its minimum value as compared to any other
parallel axis when the axis of rotation passes through its
center of mass.

Statement-1I: The weight of a rigid body always acts
through its center of mass in uniform gravitational field.

Q.43 Statement-I: The moment of inertia of any rigid
body is minimum about axis which passes through its
center of mass as compared to any other parallel axis.

Statement-ll: The entire mass of a body can be
assumed to be concentrated at its center of mass for
applying Newton'’s force Law.

Q.44 A uniform thin rod of length L is hinged about
one of its ends and is free to rotate about the hinge
without friction, Neglect the effect of gravity. A force
F is applied at a distance x from the hinge on the rod
such that force is always perpendicular to rod. As the
value of x is increased from zero to L,

Statement-I: The component of reaction force by hinge
on the rod perpendicular to length of rod increases.

Statement-Il: The angular acceleration of rod increases.

Q.45 Statement-I: For a round shape body of radius R
rolling on a fixed ground, the magnitude of velocity of
its center is given by R, where o is its angular speed.

Statement-1I: When distribution of mass is symmetrical
then center of round shape body is its center of mass.
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=

Q.46 Statement-l: a body cannot roll on a smooth
horizontal Surface.

Statement-Il: when a body rolls purely, the point of
contact should be at rest with respect to surface.

Comprehension Type

Paragraph 1:

The figure shows an isosceles triangular plate of mass
M and base L. The angle at the apex is 90°. The apex lies
at the origin and base is parallel to X — axis

AN/

N\

N
7

Q.47 The moment of inertia of the plate about the z -

axis is

ML ML? ML?
A) — B) — ) — D) None of these
(A) B (B) 2 © 5 (D)

Q.48 The moment of inertia of the plate about the x

axis is

ML ML ML? ML
A) — B) — Q) — D) —
()8 ()32 ()24 ()6

Q.49 The moment of inertia of the plate about its base
parallel to the x — axis is

ML? ML ML

(A) 18 (B) 36 (@) a (D) None of these

Q.50 The moment of inertia of the plate about the y —
axis is

,20°
4
—
(A) M—Lz (B) M—L2 (@) M—L2 (D) None of these
6 8 24

Paragraph 2:

A uniform rod is fixed to a rotating turntable so that its
lower end is on the axis of the turntable and it makes
an angle of N20°to the vertical. (The rod is thus rotating
with uniform angular velocity about a vertical axis
passing through one end.) If the turntable is rotating
clockwise as seen from above.

Q.51 What is the direction of the rod's angular
momentum vector (calculated about its lower end)?

(A) Vertically downwards

(B) Down at 20°to the horizontal
(C) Up at 20° to the horizontal
(D) Vertically upwards

Q.52 Is there torque acting on it, and if so in what
direction?

(A) Yes, vertically

(B) Yes, horizontal

(C) Yes at 20°to the horizontal
(D) No

Paragraph 3:

In the following problems, indicate the correct direction
of friction force acting on the cylinder, which is pulled
on a rough surface by a constant force F.

Q.53 A cylinder of mass M and radius R is pulled
horizontal by a force F. The frictional force can be given
by which of the following diagrams

“@:F
o

F
f

Nou
f
© @_)F (D) Cannot be interpret
/=0
Q.54 A cylinder is pulled horizontally by a force F acting
at a point below the center of mass of the cylinder, as

shown in figure. The frictional force can be given by
which of the following diagrams?
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L
0@
f

(D) Cannot be interpret

" G
f
0 @—)F
f=0

Q.55 A cylinder is pulled horizontally by a force F acting
at a point above the center of mass of the cylinder, as
shown in figure. The frictional force can be given by
which of the following diagrams

L
o E
f

=0
N
f

Q.56 A cylinder is placed on a rough plank which in
turn is placed on a smooth surface. The plank is pulled
with a constant force F. The frictional force can be given
by which of the following diagrams.

L.
Y @)f

(D) Cannot be interpreted.

(D) Cannot be interpret

Previous Years' Questions

Q.1 A thin uniform angular disc (See figure) of mass
M has outer radius 4R and inner radius 3R. The work
required to take a unit mass from point P on its axis to
infinity is (2010)

A) @MI 5 (8) —@(4f 5)

© @ (D) @(I 1)

Q.2 A solid sphere of radius R has moment of inertia
| about its geometrical axis. If it's moment of inertia
about the tangential axis (which is perpendicular to
plane of the disc), is also equal to |, then the value of r
is equal to (2006)

[

2 2 3 3
(A) —R (B) —=R (€00 —=R (D) —
J15

V15 V5 V15

R

Q.3 A block of base 10 cm x 10 cm and height 15 cm
is kept on an inclined plane. The coefficient of friction

between them is+/3 . The inclination 0 of this inclined
plane from the horizontal plane is gradually increased
from 0°. Then, (2009)

(A) At 6 = 30°, the block will start sliding down the plane

(B) The block will remains at rest on the plane up to
certain 6 and then it will topple

(C) At 6 = 60°, the block will start sliding down the plane
and continue to do so at higher angles

(D) At 6 = 60°, the block will start sliding down the plane
and on further increasing 6, it will topple at certain 6.
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Q.4 From a circular disc of radius R and mass 9M, a
small disc of radius R/3 is removed from the disc. The
moment of inertia of the remaining disc about axis
perpendicular to the plane of the disc and passing

through O is (2010)
R/3
0
R
(A) 4 MR? (B)%MRZ (C) 1T0MR? (D)%MRZ

Q.5 Let | be moment of inertia of a uniform square plate
about an axis AB that passes through its center and is
parallel to two of its sides. CD is a line in the plane and
makes an angle 6 with AB. The moment of inertia of the

plate about the axis CD is then equal to (1998)
(A1 (B)Isin*@
(C)Icos?6 (D) I cos? (6/2)

Q.6 A solid sphere is in pure rolling motion on an
inclined surface having inclination 6 (2006)

(A) Frictional force acting on sphereis f=p
(B) f Is dissipative force

(C) Friction will increase its angular velocity and
decrease its linear velocity

(D) If 6 decreases, friction will decrease

Q.7 A ball moves over a fixed track as shown in figure.
From A to B the ball rolls without slipping. If surface BC
is frictionless and K, , Kz and K are kinetic energies
of the ball at A, B and C respectively, then (2006)

(A) hy >he; Kg >K¢
(B) hy >he ; Ke >Ky

Q.8 A child is standing with folded hands at the center
of platform rotating about its central axis. The kinetic
energy of the system is K. The child now stretches
his arms so that the moment of inertia of the system
doubles. The kinetic energy of system now is  (2004)
(A) 2K (D)4 K

K K
(B) 5 © 2

Q.9 Consider a body, shown in figure, consisting of two
identical balls, each of mass M connected by a light rigid
rod. If an impulse J = Mv is imparted to the body at one

of its end, what would be its angular velocity?  (2003)
< L .
@, (T)M
J=Mv
(A) v/L ®2v/L ©v/3L (D) v/4L

Q.10 A discis rolling (without slipping)
on a horizontal surface. C is its center
and Q and P are two points equidistant
from C. Let vp, vy and vc be the

magnitude of velocity of points P Q

and C respectively, then (2004)

(A) Vq >Vc> Vp
(B) Vq <Vc< Vp
© Vq =Vp. V¢ = EVP

(D) Vq <Vc > Vp

Paragraph 1: Two discs A and B are mounted coaxially
on a vertical axle. The discs have moments of inertia |
and 2l respectively about the common axis. Disc A is
imparted an initial angular velocity 2 ® using the entire
potential energy of a spring compressed by a distance
x,. Disc B is imparted an angular velocity w by a spring
having the same spring constant and compressed by
a distance x,. Both the discs rotate in the clockwise
direction. (2007)

X
Q.11 The ratio =L is
W)

D) =

© V2 5

1
(A) 2 (B) >



Q.12 When disc B is brought in contact with disc A,
they acquire a common angular velocity in time t. The
average frictional torque on one disc by the other
during this period is.

2lo 9w 9w 3lo

B3 P 9% P

Q.13 The loss of kinetic energy during the above
process is

Io’ o’

o’ o’
W7 O

O O

Q.14 Asmallobjectofuniform
density rolls up a curved
surface with an initial velocity
v. If reaches up to a maximum
height of 3v?/4g with respect
to the initial position. The object is

(A) Ring (B) Solid sphere
(D) Disc

(C) Hollow sphere

Paragraph 2: A uniform thin cylindrical disk of mass
M and radius R is attached to two identical mass less
springs of spring constant k which are fixed to the wall
as shown in the figure. The springs are attached to the
disk diametrically on either side at a distance d from its
center. The axle is mass less and both the springs and the
axle are in a horizontal plane. The un-stretched length
of each spring is L. The disk is initially at its equilibrium
position with its center of mass (CM) at a distance L from
the wall. The disk rolls without slipping with velocity

Vo = Vo i. The coefficient of friction is . (2008)

Q.15 The net external force acting on the disk when its
center of mass is at displacement x with respect to its
equilibrium position is

2kx 4kx

Q-—— O -—

A_
(A) —kx 3 3

(B) —2kx
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Q.16 The center of mass of the disk undergoes simple
harmonic motion with angular frequency » equal to

k 2k 2k 4k
(A)\/g (B) \/% © ™ (D) ™M

Q.17 The maximum value of v, for which the disk will
roll without slipping is

M M I3M /SM
(A) ug\/% (B) ug\/% © ng S (D) ng Sk

Q.18 A thin uniform rod, pivoted at O, is rotating in
the horizontal plane with constant angular speed w, as
shown in the figure. At time t = 0, a small insect starts
from O and moves with constant speed v, with respect
to the rod towards the other end. It reaches the end
of the rod at t = T and stops. The angular speed of
the system remains o throughout. The magnitude of

the torque (|%|) about O, as a function of time is best

represented by which plot? (2012)
@ M @

o T ' o 1 '
© 101 D) 141

0 T ' 0 T '

Q.19 A small mass m is attached to a massless string
whose other end is fixed at P as shown in the figure.
The mass is undergoing circular motion in the x-y
planewith centre at O and constant angular speed o.
If the angular momentum of the system, calculated

about O and P are denoted by [o and [P respectively,
then (2012)

(A) L, and L, do not vary with time.
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(B) L, varies with time while L, remains constant.
(@) [o remains constant while [P varies with time.

(D) Ly and L, both vary with time.

Q.20 A lamina is made by removing a small disc of
diameter 2R from a bigger disc of uniform mass density
and radius 2R, as shown in the figure. The moment of
inertia of this lamina about axes passing though O
and P is I, and I, respectively. Both these axes are
perpendicular to the plane of the lamina. The ratio
I, /1, to the the nearest integer is (2012)

Q.21 Two identical discs of same radius R are rotating
abouttheir axes in opposite directions with the same
constant angular speed ®. The discs are in the same
horizontal plane. At time t = 0, the points P and

WY

/ /

R R

Q are facing each other as shown in the figure. The
relative speed between the two points P and Q is v,
In one time period (T) of rotation of the discs, v, as a
function of time is best represented by - (2012)

(A)

(B)
t WT t

o

f

© (D)

YYY

o

Q.22 Consider a disc rotating in the horizontal plane
with a constant angular speed o about its centre O. The
disc has a shaded region on one side of the diameter
and an unshaded region on the other side as shown in
the figure. When the disc is in the orientation as shown,
two pebbles P and Q are simultaneously projected at an
angle towards R. The velocity of projection is in the y-z
plane and is same for both pebbles with respect to the
disc. Assume that (i) they land back on the disc before

the disc has completed % rotation (ii) their range is less

than half the disc radius and (iii) ®remains constant
throughout. Then (2012)

(A) P lands in the shaded region and Q in the unshaded
region.

(B) P lands in the unshaded region and Q in the shaded
region.

(C) Both P and Q land in the unshaded region.
(D) Both P and Q land in the shaded region.

Paragraph for Questions 23 and 24

The general motion of a rigid body can be considered
to be a combination of (i) a motion of its centre of mass
about an axis, and (ii) its motion about an instantaneous
axis passing through the centre of mass. These axes
need not be stationary. Consider, for example, a thin
uniform disc welded (rigidly fixed) horizontally at its
rim to a massless stick, as shown in the figure. When
the disc-stick system is rotated about the origin on a
horizontal frictionless plane with angular speed o, the
motion at any instant can be taken as a combination of

(i) a rotation of the centre of mass of the disc about
the z-axis, and (ii) a rotation of the disc through an
instantaneous vertical axis passing through its centre of
mass (as is seen from the changed orientation of points
P and Q). Both these motions have the same angular
speed win this chase.



Now consider two similar systems as shown in the
figure: Case (a) the disc with its face vertical and parallel
to x-y plane; Case (b) the disc with its face making an
angle of 45°with x-y plane and its horizontal diameter
parallel to x-axis. In both the cases, the disc is welded
at point P and the systems are rotated with constant
angular speed oabout the z-axis.

z
% Q
)
/ P
X X
Case (a)

z

g
/

p

Case (b)

Q.23 Which of the following statements about the
instantaneous axis (passing through the centre of mass)
is correct? (2012)

(A) It is vertical for both the cases (a) and (b) (B) It is
vertical for case (a); and is at 45° to the x-z plane and
lies in the plane of the disc for case (b)

(Q) It is horizontal for case (a); and is at 45°to the x-z
plane and is normal to the plane of the disc for case (b)

(D) It is vertical for case (a); and is at 45° to the x-z
plane and is normal to the plane of the disc for case (b)

Q.24 Which of the following statements regarding the
angular speed about the instantaneous axis (passing
through the centre of mass) is correct? (2012)

(A) Itis \/503 for both the cases
o
2

(Q) Itis o for case (a); and \/Eco for case (b)

(B) It is o for case (a); and for case (b)

(D) It is o for both the cases

Q.25 The figure shows a system consisting of (i) a ring
of outer radius 3R rolling clockwise without slipping
on a horizontal surface with angular speed o and (ii)
an inner disc of radius 2R rotating anti-clockwise with
angular speed /2. The ring and disc are separated
by frictionless ball bearings. The system is in the x-z
plane. The point P on the inner disc is at a distance
R from the origin, where OP makes an angle of 30°
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with the horizontal. Then with respect to the horizontal
surface, (2012)

(A) The point O has a linear velocity 3Roi

3

(B) The point P has a linear velocity %Rm? +TRwI2

3

(C) The point P has a linear velocity %Rofi—Tlez

(D) The pointPhasalinearvelocity [3 - g] Rcoi+%Rwl2

Q.26 Two solid cylinders P and Q of same mass and
same radius start rolling down a flixed inclined plane
from the same height at the same time. Cylinder P has
most of its mass concentrated near its surface, while Q
has most of its mass concentrated near the axis. Which
statement(s) is (are) correct? (2012)

(A) Both cylinders P and Q reach the ground at the
same time.

(B) Cylinder P has larger linear acceleration than
cylinder Q

(C) Both cylinders reach the ground with same
translational kinetic energy

(D) Cylinder Q reaches the ground with larger angular
speed

Q.27 A uniform circular disc of mass 50 kg and radius
0.4 m is rotating with an angular velocity of 10 rad
s about its own axis, which is vertical. Two uniform
circular rings, each of mass 6.25 kg and radius 0.2 m,
are gently placed symmetrically on the disc in such a
manner that they are touching each other along the
axis of the disc and are horizontal. Assume that the
friction is large enough such that the rings are at rest
relative to the disc and the system rotates about the
original axis. The new angular velocity (in rad s) of the
system is (2013)
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Q.28 In the figure, a ladder of mass m is shown leaning
against a wall. It is in static equilibrium making an angle
0 with the horizontal floor. The coefficient of friction
between the wall and the ladder is u; and that between
the floor and the ladder is p,. The normal reaction of
the wall on the ladder is N, and that of the flooris N, .
If the ladder is about to slip, then (2014)

H

)
1,

(A) p; =0, #0 and N, tanez%

(B) uy #0p,=0 and N; tane:%

_mg
Tpgp,

(D) uy =0 p,# 0 and Nltanez%

(Q py #0p,#0 and N, =

Q.29 A uniform circular disc of mass 1.5 kg and radius 0.5
m is initially at rest on a horizontal frictionless surface.
Three forces of equal magnitude F = 0.5 N are applied
simultaneously along the three sides of an equilateral
triangle XYZ with its vertices on the perimeter of the
disc (see figure). One second after applying the forces,
the angular speed of the disc in rad s is (2014)

Q.30 A horizontal circular platform of radius 0.5 m
and mass 0.45 kg is free to rotate about its axis. Two
massless spring toy -guns, each carrying a steel ball of
mass 0.05 kg are attached to the platform at a distance
0.25 m from the centre on its either sides along its
diameter (see figure).Each gun simultaneously fires the
balls horizontally and perpendicular to the diameter
in opposite directions. After leaving the platform, the
balls have horizontal speed of 9ms™ with with respect
to the ground. The rotational speed of the platform in
rad s after the balls leave the platform is (2014)

Q.31 Two identical uniform discs roll without slipping on
two different surfaces AB and CD (see figure) starting at
A and C with linear speeds v, and v,, respectively ,and
always remain in contact with the surfaces. If they reach
B and D with the same linear speed and v; =3 m/s,
then v, inm/sis (g = 10 m/s?) (2015)

A:!_>v1:3m/s

30m 27m

Q.32 A ring of mass M and radius R is rotating with
angular speed w®about a fixed vertical axis passing
through its centre O with two point masses each of

mass % at rest at O. These masses can move radially
outwards along two massless rods fixed on the ring
as shown in the figure. At some instant the angular
speed of the system is %m and one of the masses is at

a distance of %R from O. At this instant the distance of

the other mass from O is (2015)
(Y]
)
"\Oi/’
2 1 3 4
A) —R B) =R C) =R D) —R
()3 ()3 ()5 ()5

Q.33 The densities of two solid spheres A and B of the

same radii R vary with radial distance ras p, (r) = k(%}
5

and pg (r) = k{%) , respectively, where k is a constant.

The moments of inertia of the individual spheres about



axes passing through their centres are 1, and I,

I
respectively. If I_B = % the value of n is (2015)

A

Q.34 A uniform wooden stick of mass 1.6 kg and length
¢ rests in an inclined manner on a smooth, vertical
wall of height h (< f) such that a small portion of the
stick extends beyond the wall. The reaction force of the
wall on the stick is perpendicular to the stick. The stick
makes an angle of 30° with the wall and the bottom of
the stick is on a rough floor. The reaction of the wall on
the stick is equal in magnitude to the reaction of the
floor on the stick. The ratio h/ ¢ and the frictional force
fat the bottom of the stick are (g =10 ms‘z) (2016)

h_V3, 1643

Wi=16""3

@ N_3 ¢ 163
¢ 16 3

€2 3B 8B
V4 16 3

h_3J3 . 16V3

D) — N

©) ¢ 16 3

Q.35 The position vector ¥ of a particle of mass m is
given by the following equation F(t) = at}i+pt? ), where
a=10/3ms>3, B=5 ms? and m=0.1 kg. Att=1s,
which of the following statement(s) is(are) true about

the particle? (2016)

(A) The velocity V is given v :(10 i+1oj) ms

(B) The angular momentum L with respect to the origin

is given by L = —(5/3) k Nms
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(C) The force F is given by F = (f +2 ]) N

(D) The torque T = —(20/3) kN m

Q.36 Two thin circular discs of mass m and 4m, having
radii of a and 2a, respectively, are rigidly fixed by a

massless, rigid rod of length /¢ =24 a through their
centers. This assembly is laid on a firm and flat surface,
and set rolling without slipping on the surface so that
the angular speed about the axis of the rod is . The
angular momentum of the entire assembly about the

point ‘O’ is L (see the figure). Which of the following
statement(s) is(are) true? (2016)

(A) The magnitude of angular momentum of the
assembly about its center of mass is 17 ma® o/ 2

(B) The magnitude of the z-component of Lis55ma’ o

(C) The magnitude of angular momentum of center of
mass of the assembly about the point O is 81 ma’ ®

(D) The center of mass of the assembly rotates about
the z-axis with an angular speed of ® /5
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PlancEssential Questions

JEE Main/Boards

Exercise 1

Q.19
Q27

Q22
Q28

Q.23

Exercise 2
Q12 Q.25

Previous Years’ Questions

Q4 Q7 Q9
Q12

JEE Advanced/Boards

Exercise 1

Q5 Q7 Q8
Q10 Q11 Q21
Q.24

Exercise 2

Q7 Q9 Q21
Q.22 Q.28 Q41
Q.54

Previous Years’ Questions
Q1 Q3

JEE Main/Boards
Exercise 1
Q.1 kg m?, [M'L2T°], No

Q.2 Torque
Q.3 Inertia

Q4 Theorem of parallel axes and theorem of

perpendicular axes

Q51 =§MR2, M = mass & R = radius

Q6 I =§MR2, M = mass & R = radius

Q.8 No
Q.9 Hollow sphere
Q10 ;> I,

Q11 K> K,

Q.188g

Q.19 1.584 x 10" g cm?
Q.20 1.25 kg m?

Q.21 9.83 x 10*” kg m?

Q.22 35 x 10* g cm?; 1.75 x 10* g cm?; 8.75 x 10* g
cm?; 10.5% 10* g cm?

5 2
Q.23 >ml:
2 m
Q.24 0.01)
Q.26 108 days
Q.27 80n kg m? s

Q.28 360 r.p.m
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Exercise 2

Single Correct Choice Type

Q18 Q28 Q3A Q48 Q5D Q6D
Q7D Q88 Q9B Q.10 C Q11 A Q12D
Q138 Q148 Q15C Q16 B Q17 8B Q.18 8B
Q.19 B Q.20 A Q21D Q22C Q23C Q.24 8B
Q25D Q.26 B Q.27 C

Previous Years’ Questions

Q1. A Q2cC Q3B Q4 A Q5 A Q68
Q7C Qs8cC Q9cC Q.10 B Q11 A Q12C
Q.13 C Q.14 A Q15D Q.16 D Q178 Q.18 A
Q.19C Q.20 B Q.21A,C Q22D
JEE Advanced/Boards 312p

Q12 —-
Exercise 1 8n

Q.13 165N, 1.224 m
Q.1 2Mg

Q.14 1/6
Q2 55 m/s
Q33 Q.15 (i) (a) 129 (clockwise) (b) —0.3g(i + 2])

C
Q.4 2F/M (ii) (a) 2'ﬂ(clockwise) (b) 0.5g
C

Q.5 2m/s

Q16 v = YR
3

g A N g A
Q6 F, =(-133641+ 196 j)Nand F, = 133641

. v, . v
7p,2° 12 Q17 () v=""0 (i) t=—0
2 d) 3 3ug
12 7p,a°

3ap,

Q.7 (a) 5

; (b) %a; (@)
. wW =%[3H2m92t2 —2“ mg t Vo](t < to)r
(e) pr,ga3
w = —%mvg(t > 1)

Q.8 300 rad/sec, 150 rad/sec
Q18t =245 sec, g = 4m/5 rad

V37 V37

—— moR, () — moR
3 3

Q.9 16 m/s>

Q10v = 4/ 27—79R
Q.20 /15 ft/sec

200 3
Q11 (a) —=N; (b) 4(7 m/s Q.21 (a) 5m/s% () 03 <h < 1.5m

Q19 (@)w/3, (b)
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Q.22 6N, -0.6) + 0.6k

Exercise 2

Single Correct Choice Type

Q1D Q2C
Q7D Q8B
Q13C Q14 C

Multiple Correct Choice Type

Q.15.8B, C Q16 A, D

Q.218,C Q228,C D
Q27A,CD Q28A,CD
Q33ABC Q34 A, 8B,C

Assertion Reasoning Type
Q398 Q408
Q458 Q46D

Comprehension Type
Q.47 C Q48 A
Q.53 A Q.54 A

Previous Years’ Questions

Q1A Q2A
Q7A Q88
Q138 Q14D
Q19 C Q20C
Q25A,B Q26D

Q317 Q32D

Q3B
Q9D

Q17A,C D
Q23CD

Q298B,C D
Q35A,B,C

Q41 A

Q49 C
Q55D

Q3B
Q9 A
Q15D
Q21 A
Q.27 8
Q336

6ar

B,

Q23 () t=

Q4 A
Q10C

Q18 A, B, C
Q24 A B,CD
Q30A,C
Q368B,C D

Q428

Q.50C
Q.56 B

Q4 A
Q10 A
Q16D
Q22C D
Q28C D
Q34D

(i) s = -1+ r++3)?

N

Q5B
Q11 A

Q19 8B, C
Q.25 8, C
Q318,C
Q37A,B,CD

Q438

Q518

Q5 A
Q11C
Q17 C
Q23 A
Q292
Q35A, 8D

Q.6 A
Q12 A

Q.20 8B, C
Q.26 A, B, D
Q32A,C
Q.388B,C

Q44D

Q528

Q6D
Q12 A
Q.18 B
Q24D
Q304
Q36 A D
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JEE Main/Boards

Exercise 1

Sol 1: Moment of inertia of any body is given by
| = Irzdm where ‘dm’ is mass of a small element under
consideration and 'r' is the distance between the axis of
rotation and the element. Then,

S.I. units of moment of inertia will be m? kg or kg.m?
DIMENSIONS -
[MOLTO]Z[M1LOT0] - [M1L2TO]

It is not a vector quantity since direction is nowhere
considered.

Sol 2: Torque is the rotational analogue of force.

Sol 3: Moment of inertia is the rotational analogue of
mass of a body.

Sol 4: The theorem of parallel axes
=1, +md

C

where | = Moment of Inertia about an axis passing
through center of mass and parallel to the considered
axis

m = mass of the body

d = distance between the axis (about which the value
of | is required) and the axis passing through center of
mass and parallel to the considered axis.

The theorem of perpendicular axes

=1 +1
z X y

y

This theorem is applicable for planar bodies only and
. and | should be about two perpendicular axes lying
in plane.

Sol 5: Moment of inertia of a solid sphere about its
diameter is

1= Zmre
5

where M = mass of the sphere
R = Radius of the sphere

Derivation:

AN

Considering, the solid sphere as a large group of hollow
spheres whose radii range from 0 to R with a thickness
of dr. Integrating moment of inertia of these dements
gives the required value.

dm = p. 4nr2dr (dm = p.dv) and | = jdl

R
| = Ig.rz p.4nradr ("1 = jrzdm)and
03

MR?)

w| N

(Ihollow sphere
R

2 2 r’
dl = =(dm)r2= =.4np| —
= 3( ) 3 “’{5}

0

M

= Ax E_EMRZ p=4
P75 75 P ?RRE’

Sol 6: The moment of inertia of a hollow sphere about

an axis passing through its centeris | = %MR2
where M = mass of sphere

R = Radius of sphere

Derivation:

Considering the hollow sphere, as a large group of
rings with thickness dr and radii ranging from 0 to R.
Integrating the moment of inertia of these rings we will
get the required moment of inertia.
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I = [di = [rdm = [r.p2nrRde
[ 1 = MR?]

ring

=dl=dmr  =1= [2rpR (R®sin0)do
| = 2npR¢ | SN’ 66
0

_ MR? {(3sin0-sin30)

= | .de
2 4
| = MR? " _3c059+cos36
2 4 12

2
LpoMR(3 1 T3 1) o2
4 12 4 12 3

Sol 7: Factors on which moment of inertia depend
— Mass of the body

— Mass distribution of the body

— Size of the body

— Axis about which moment of inertia is required

Sol 8: No, it is not a constant

It depends on the axis about which moment of inertia
is calculated

I
Since, K = ,fﬂ
M

| .= moment of inertia about a given axis

axis

M = mass of the body (constant)

Sol 9: Given

A solid sphere and hollow sphere have same mass and
same radius

- 2uRe

solid sphere 5

MERVIS

hollow sphere 3

: IhoIIow sphere Isolid sphere

Sol 10: Given,

L

Circular discs A and B of same mass and same thickness
but different densities d, and d, (d, > d,)

M, =M,

2 _ p2
= nR,.d, t, = nR;. d, .t,

M,R?
(), = =52 =),
M,R?
= (1), = ), + ), = A2 A
[By perpendicular axes theorem]
also
MgRs
(Ip), 5
2
I R d
A (_A] =L = <l ;sinced; <d,
IB RB A
Sol 11: Given.

Moment of inertia of two rotating bodies A and B as
l,and I, (I, > 1)

and

Angular moment (L, and L) are equal

=L =1L

then kinetic energies

(KE), and (KE.), will be

1, 1, 1., 1 112
212 /1, and =12 /L | KE =210? = Zlo==—
2 a/1a 2 2 /1o 2 2 21

= (KE), < (KE),sincel, <1,

Sol 12: Moment of inertia is the measure of tendency



of a body to resist rotational motion if it was at rest or
resist being stopped it was rotating.

Radius of Gyration is the radius of the circle is which
a zero sized particle of mass M (which is equal to the
mass of a body considered) such that the moment of
inertia of both the particle and the body about any axis
are equal

axis
Vv D
MK?2
| I= MK?

Sol 13: Kinetic energy of rolling motion

ch

Consider a body rolling with angular velocity o and
linear center of mass velocity v__

Velocity of a particle at any point is given by
(V,, +ro cose)i + (ro sine)]’

Vem+ro coso

ro

KE. = j d(KE)

= J%dm((vcm +r®cos0) +(f0)5in9)2)
M M
- l‘[r%)zdm + 1 IVz dm +
2 2 cm
0 0
M
5 jzvcm rocosd dm
0
1
2

m
I 032+1V2 +V oajrcosde
cm 2 cm cm O

1 R2n
o+ ZMVZ + chmjjrcose.de.dr
00

1]
N |-
o
3

2
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2n

=1 ot Imvz | [cosedo=0
2 cam 2 O
) 1 1 .on2
. KE. = Elcm o? + E Mch

Sol 14: Laws of rotational motion

First law: Every body has tendency to be in rest or is
state of rotation unless acted upon by a torque

Second law: The torque applied on a body is moment of
inertia times the angular acceleration of the body J - la

Third law: Every action (torque) has an equal and
opposite reaction (torque) on the body which gave the
action.

Sol 15: Newton'’s second law of linear motion is
F=ma

where F = force acting on the body

m = mass of body

a = acceleration of body

Now, consider ‘dm’ part of as body acted upon by a force
F and the body is rotating with an angular acceleration
of ‘o’

dT=rxF
=r.dm (ro)

=r’.dm.a
.[dT = jr2dm.u

=T =1

axis aixs

o

axis

Sol 16: Principle of conservation of angular momentum.

In absence of a torque, the angular momentum of a
body is always conserved (constant)

=9t _g
dt
= L = constant = lo = constant

or |10)1 = Iz(o2
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Example: By stretching hands a ballet decreases the angular
speed of the body by increasing the moment of inertia

Example: A person sitting is a chair which can rotate
holds a rotating wheel in hands and when he flips the
wheel, the person along with chair rotates conserving
angular momentum.

Sol 17: Consider a circular ring of radius R and mass M

| = jdl = IRz.dszRz

Sol 18: Given,
| =200 g cm?
r=5cm

We know that for a thin ring the moment of inertia
about an axis passing through center is Mr?

=M= -2 = 8 grams

r
Sol 19: Given,
diameter of disc = 40 cm
thickness of disc = 7 cm
density of disc = 9 gm cm™

2
mass of the disc = p.V = p.% t
=9 x t x 400 x 7 = 79168.13 grams

moment of inertia of disc about a transverse axis
through the center of the disc is

_ MR?
2

_79168.13x20x 20
2

=1

= 1=1584 x 10" g cm?

Sol 20: Given,

A uniform circular disc and A Uniform circular ring of
same mass of 10 kg and diameter of T m

Moment of inertia of disc about a transverse axis

through center of the discis | = %MR2

2
:>I:lx10x[1J = 1.25 kg m?
2 2

Sol 21: Given,

Radius of earth assuming it as a sphere as 6400 km
mass of earth is 6 x 102 kg

Moment of inertia of the earth is
| = %MR2 o= éMR2 for a sphere (solid))

== % x 6 x 102 x (6400 x 10%)?

— | = 9.8304 x 10% kgm?

Sol 22: Given,

A Uniform circular disc of mass 700 gms and diameter
20 cm

(i) Moment of inertia about the transverse axis through
center of disc is
_ MR?
2
_ 700x10x10 _

= 3.5 x 10* gcm?

(i) Moment of inertia about the diameter of disc is
~ MR?
4

[ L=1Landl +1 =1
X y X y z

(perpendicular axis theorem)]

z

y

_700x(10x10)

= =1.75x10%*gcm?

~
R

/

Moment of inertia about a tangent is plane is

(iii)

I =1, + MR? (parllel axis theorem)
_ 5MR?
4

| =%x (700) x (10 x 10) = 8.75 x 10* gcm?

=1



(iv)

C R

I I
Moment of inertia about a tangent perpendicular to
the plane is
I =1.+ MR

=1= éMR2
2

= I=%X7OO x10 x10 = 10.5 x10* gcm?

Sol 23: X

Given, particles of masses m are placed at A, B and C
and side of triangle ABC is L

Then,

moment of inertia of system is

L=1,+1;+ 1
L 2
= 1 = m(0)? + m(L)* + m(E]

_ 5ml?
4

=1

Sol 24: Given,
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A circular disc of mass 1 kg and radius 0.2 m rotating
about transverse axis passing through its center.

Moment of inertia about the given axis as

2
- MRT - %x (0.2)2 = 0.02 kg—m?

2

Given, disc makes ﬁ rotations per minute then,
T

Angular velocity = 21 x % x % rad/s
= 1rad/s

kinetic energy = % lw?

- % x 0.02 x (1)2 = 0.01 joules

Sol 25: Given,

A circular dice of mass M and radius r is set rolling on
table the kinetic energy of the disc is given by

K.E = % lo? + %mvz(refer Q. 14)

=KE == —o?+ —mv?
=>KT.= —
[For pure rolling v = ro]

= KE. = Emv2
4

Sol 26: Given,

Sun rotates around itself once in 27 days angular

velocity of sum = ;—771 rad/days

If it expands to truce its present diameter, then moment
of inertia becomes 4

Sl= EMR2 (for sphere)

2
I, R

L _ %
I Rf

=1,=4l,
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Lo, = Lo,

(By principle of conservation of angular momentum)

= O
> 4 108

Then, the new period of revolution

o 2m
(2m /108)

=

Sol 27: Given,

rad/days

= 108 days

A 40 kg of flywheel is form of a uniform circular disc 1

meter in radius is making 120 r.p.m.
Angular velocity = 120 x 2n x % rad/s

= 4x rad/s

Moment of inertia about transverse axis passing

through center is
_ MR?
S 2
_ 40x(1)?
==

angular momentum = l.o

= 80 ©t kgm?/s = 251.33 kgm?/s

=1 = 20 kg—m?

Sol 28: Given,
Angular velocity of the system = 120 r.p.m
Moment of inertia of the system initially = 6 kgm?
Moment of inertia of the system finally = 2 kgm?
Lo, = Lo,
(By principle of conservation of angular momentum)
I
= 0,= 1 x o, =360rpm.
2
.. Final angular velocity = 360 r.p.m

Exercise 2

Single Correct Choice Type

Sol 1: (B)

B<C<A

Sol 2: (B)

Mass of each rod =

sphere




Moment of inertia of one rod about the given axis is

- [M(Za)z] L Ma? _ama? _ ma?

4x12 4 4x3 3
2
Total moment of inertia = 41 = MTa

Sol 3: (A) Given,

|, is the moment of inertia about perpendicular bisector
of rod

TIl
1
! ML
Q ! 0 L=—
| ) h B
1
Now rod is bent into semi-circular arc
Length of arc = L = nR
Moment of inertia of the arc = MR?
_we
Tl',2 :
I, >, (since m* < 12)
1 2 1 2
Sol 4: (B) So, 21== (M+M)R? = 2I== (2M)R
2 2

“—>Imaginary
% semi-disc

[}
1

i of same
¢ specific list
X
Mars=M
Radius=R
SN EENVES
2

Physics | 7.89

Sol 5: (D) Given,
I" as a function of x of a rigid body
| =2x2—12x + 27

The value of moment of inertia is minimum at center
of mass point

To calculate min value of |, differentiate w.r.t. x and equate
itto0

a
dx
=4x-12=0
=>x=3

To check whether it is minimum,
2

ﬂ >0

dx?

=4>0

~. X = 3 is the x-coordinate of center of mass.

Sol 6: (D)
I 3m |
AQ 0B
2N 4N

To keep the body in equilibrium a 6 N acts at point x
from A

—X oN
AQ 0B
| P |
2N 4N

Taking moment of torques about A
> M, =0 (In equilibrium)

=6xx-4x3=0

=Xx=2m
Sol 7: (D) 1 2
T1 T2
/4
AQ 0B
L L C 1
—L/2 —
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Let T, and T, be tensions is the strings considering force
equilibrium

T +T,=W

Also Considering moment equilibrium about A

™M, =0

=T, x ﬁ—Wx E =0
4 2
=W W
3
Sol 8: (B) Ra T[
A B
m
3
C W=mg

Center of mass of the triangular plate is at a distance

of é from AC.

Considering force equilibrium
R,+T=W=mg

Considering torque or moment equilibrium about B

=R, (/) = W(%]

Sol 9: (B) Given, A constant torque is applied on a rod
which hinged the angular acceleration in rod will be

o = —

I

t
Angular velocity o = ja dt = % + O

0

0

Power developed = To = T. [¥+moj

Ifo,=0

T2
P=—® |
Pext

Time —

Sol 10: (C) Given,

Two spheres of same mass M and radii R and 2R and
also have equal rotational kinetic energies

1., 1., LB 12
= Ellwl = 5120)2 = I—l = 1—2

1 2

" lo= L (Angular momentum)]

2
R =—2=
R2 R,

Sol 11: (A) Angular momentum remains constant since,
no torque is acting on the skater.

While kinetic energy increases, since,

KE. = lL.(D.
2

and as L = constant and w increase K.E. increases

Sol 12: (D) Energy is not conserved in this case because
the disc is fixed at its center and a force is acting on it
when the child jumps.

But Angular momentum can be conserved since No
torque is present in the boy-disc system

- Initial angular momentum = final angular momentum
(I + mR)o = lo" + MRv

. (I+mR?*)®-mRv
o = I

Sol 13: (B) °

(/3

2
Moment of inertia of the rod a bout pivot = '\1—2

Since, the collision is elastic and the rod stops, velocity

of the particleisv = é.m

By principle of Angular Momentum,

/
lo = mv. —
3

M2 ¢ 3M

> —O0O=M.—-0W. —=mnN= —

12 33 4
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Sol 14: (B) p/;\/\ v
116: (B A
E W f Sol 16: (B) v, =)

The point P experiences centripetal acceleration
towards centre

- ~ . .
" a =al Angular velocity = relative velocity
AB
the velocity of point P is s oa
. _lvizvil v
v =Vi +Roj J2R R
= v =vi+ vj T
Sol 17: (B)
[ v =Ro pure rolling]
- " ~
= v =v(i+]))
- -
g= 2V 1
COSV = -5 - E
lallv] mg
=0 =45° ma—T T
Acceleration of yo-yo = mo=’._ g-——
m m
Sol 15: (C) y ,
Sol 18: (B) In case of pure rolling v = Ro
—> 3m/s . .
T (Bottom-most point has zero velocity)
8m
|
0 X
v
y f
after 5 seconds w
15m <
o i
8m 7 as o is in clockwise direction, thread winds also friction
v cosf .
9 acts leftwards to increase w.
6]
. vcos®  v8 Sol 19: (B)
Angular velocity = T2
l

N;—,

24 24 4
= ——— = —rad/s Wl m
8157 289/ fl\I g
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f1=0
C) 1(_‘

N1:0' mgI w

f,+ N, =mgN, =mg

fo TNb

mg

Nl
_+N =m f:_
3 ‘ 9% 3

f
? +Na=mg[. N, =f]

N
N = Smg {f :—a} =

10 |73
o9
f 10
Sol 20: (A)

F = Ma (By Newton'’s second law), also T = Ta

Ia a .
= FR = = ("." a =—=for pvre rollin
R (o g forp 9)

= | = MR?

This is satisfied for thin pipe

Sol21: (D) ——

1/6

By conservation of linear momentum,

mv._=J=v -4
m

cm cm

By conservation of angular momentum, lo = J.

A

N |~

Y
e
1l

3e

w
P
=

o
1_03
<
[a)

3

I——»é

L]
— — —— ]
N

/2

<
=)
3
L]

l_____t-
N‘II—‘(_
=

r--

mm/
12)

After time t =

The angle rotated by rod 6 = ot =T m_ﬂﬂ =z
12 ) me 2

2
Velcoity of point P = [@j +(ch)2
2 2
=[%+F}=ﬁi
m m m

Sol 22: (C) Solid cylinder rolls without slipping

=vVv_=Rw

cm

S
(KE) _ 2"

rotational

(KE)ranslational l mv?
2

KE), mR%? 1
= = =
(KE)t 2mv2 2

Sol 23: (C) There will be no diff in velocity of centre of
mass

=F=ma
cm

- a,, = same in both cases

Sol 24: (B)

A hoop & solid cylinder of same mass

> | as mass is distributed away from center

* "hoop cylinder

.. Since gain in potential energy in both case is same



Let P for hoop

2
P= %mv2 + lI (Vj

2 hoop | —

hoop < chlinder

Sol 25: (D) (i) Upward acceleration = a = same for both
case

=2h=0xt,+ la><’cf2 >t = 4h
2 g

h=0xt + la><t2
p 2 P

Sty # 2’[p

(i) The acceleration of both the balls is same = g sin q

(iii) AKE = APE

. AKE, = 2mgH
AKE, = mgH
.. AKE, = 2AKE,

Sol 26: (B) Moment of inertia decreases since mass is
closer to axis while.

Angular momentum remains constant which implies
angular velocity increases and which intern implies
increase is kinetic energy.

(o L=lwand KE = %Lco)
Sol 27: (C) Angular momentum is conserved on any

point on the ground since the only force present passes
through that point making torque zero.
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Previous Years' Questions

Sol 1: (A) AB" L ABandCD" L CD
From symmetry 1,; = I g and Iop = I

From theorem of perpendicular axes,

v
C'\ /D
A 0 B
C D'
iy
IZZ = IAB + IAB = ICD + |C'D = 2|AB = ZICD

Alternate:

The relation between 1,, and I, should be true for
all value of 6

Ate = O, ICD = IAB
Similarly, at ¢ = n/2,1-p =1,5 (by symmetry)

Keeping these things in mind, only option (A) is correct.

Sol 2: (C) Since, it is head on elastic collision between
two identical spheres, they will exchange their linear
velocities i.e, A comes to rest and B starts moving
with linear velocity v, As there is no friction anywhere,
torque on both the spheres about their center of mass
is zero and their angular velocity remains unchanged.
Therefore,

> 09 &

Before collision

A
After collision

v,
\/EJ_

v?sin® 45° _ﬁ
29 49

el )5

Sol3:(B) L=m

Here, ry =h =



7.94 | Rotational Mechanics

Sol 4: (A) Let o be the angular velocity of the rod.
Applying, angular impulse = change in angular
momentum about center of mass of the system

L
J.EZ ICOJ

, L) [ML
- (Mv)[zj = (2)[7}9

e

®
<

J=Mv

Sol 5: (A) Mass of the element dxis m = % dx.

This element needs centripetal force for rotation.
o
i

T
F—>
DL
f———

X dx

TTTTTTTTTTTITITE
<—F+dF
T

X =

ix=0

o dF = mxe? = (%xmzdxj

Ma?’L

e ffapm ool
s F_IOdF_f'w ondx—
This is the force exerted by the liquid at the other end.

Sol 6: (B) mg sin 6 component is always down the
plane whether it is rolling up or rolling down. Therefore,
for no slipping, sense of angular acceleration should
also be same in both the cases.

Therefore, force of friction f always act upwards.

Sol 7: (C) Work done w = %I(DZ

If x is the distance of mass 0.3 kg from the center of
mass, we will have

| =(0.3) X + (0.7)(1.4 — x?)

For work to be minimum, the moment of inertia (I)
should be minimum or

dI
i 0
or2(0.3)-2(0.7)(1.4-x) =0or (0.3)x = (0.7)(1.4 — x)

X = (0.7)(1.4)

=03+ 07 098

Sol 8: (C) From the theorem

[o = [CM + M (Fx\?) ()

We may write

Angular momentum about O = Angular momentum
about CM + Angular momentum of CM about origin

. L0 =Io+MRv

152 3\ 102
= —MR*®» + MR(Rw) = —=MR“®

2 2
y
4

y
v=Ro
’ ©*

(a)

Note that is this case both the terms in

Eq. (i) i.e., ECM and M (F><\7)

Have the same direction. That is why we have used
L, =Io~MRv if they are in opposite direction as
shown in figure (b).

Sol 9: (C) At the critical condition, normal reaction N
will pass through point P. In this condition.

Ty =0= Ty (About P)

F—> by

f,—> \l' 4



The block will topple when
L
T > Tmg OF FL > (mg)z

R >m
2
Therefore, the minimum force required to topple the

block is

F_M9
2

Sol 10: (B) Net external torque on the system is zero.
Therefore, angular momentum is conserved. Force
acting on the system are only conservative. Therefore,
total mechanical energy of the system is also conserved.

Sol 11: (A) Mass of the whole disc = 4M

Moment of inertia of the disc about the given axis
= %(4M)R2 = 2MR?

. Moment of inertia of quarter section of the disc

= l(2|\/|RZ) - LR
4 2

Note: These type of questions are often asked in
objective. Students generally error in taking mass of the
whole disc. They take if M instead of 4 M.

Sol 12: (C) Since, there is no external torque, angular
momentum will remains conserved. The moment of
inertia will first decrease till the tortoise moves from
A to Can then increase as it moves from C and D.
Therefore, o will initially increase and then decrease.

Let R be the radius of platform, m the mass of disc and
M is the mass of platform.

Moment of inertia when the tortoise is at a

MR?2

I = mR2+

And moment of inertia when the tortoise is at B.
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Here, r’ = a° -|—[\/R2 —a’ —vt]2

Form conservation of angular momentum

ogl; = o(t)l,

Substituting the values we can see that variation of ®
(t) is non-linear.

R U S o P G O N
2 I Mr? + 2mr? M+2m

2
Sol 14: (A) r=\/§% or r? =""7

M Y M
a o—T > cer
0O I0)
(@)

Net torque about O is zero. Therefore, angular
momentum (L) about O will be conserved,

MV(;] =lyo = (Igy+ Mr?)o

[

3v
O=—
4a

Sol 15: (D) Mass of the ring M = pL
Let R be the radius of the ring, then

L=2nR or R= i
2n

Moment of inertia about an axis passing through O and
parallel to XX will be

-1
° 2
Therefore, moment of inertia about XX (from parallel
axis theorem) will be given by

Ty =%MR2 +MR? =%MR2

I MR?

Substituting values of m and R

3 2 ] 3pL3
I , =— |_ - | =—
XX 2 (P )[4n2 J 8n2
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m,r m,r
Sol 16: (D) 1, = =
m, +m, m; +m,
nh
L +)o=—=nh
<1 ) 27
232
1 , N h (ml+m2)
KE=2 (I +1,) of =————L22)

2m1 m,r

Sol 17: (B) From conservation of angular momentum
about any fix point on the surface
mr? 0, = 2mr? o
_ %
2

RO

(DOF

Vg =2
2

Cc™M

Sol 18: (A)

—l

e

mmE
- ~
=" -

SV

~ 5
~ -
---------------

L changes in direction not in magnitude

1000Y
Sol19: (C) 5= T-1
= el _g (i)
T
1000Y
Again, I=e T -1
ﬂ_ 100TOV 1000
dv T
1000
=y
=199 T Vay
Using (i)
1000 60 60

Al=—x6x001l=—=—=02mA
T T 300

Sol 20: (B) For maximum possible volume of cube

2R = x/ga, a is side of the cube.

2
Moment of inertia about the required axis =1 = pa’ %,

3M 132R° 4MR? 4MR?

(M z[z_RT_ 132R°
47R36(3) 47R36 943 931 93=x

Sol 21: (A, ) [, = mvi(—IQ) D to Al

J2
o =mv{%+a}l€

[C to D]

Sol 22: (D) From normal reactions of roller, we can
conclude it moves towards left.

JEE Advanced/Boards
Exercise 1

Sol 1: Given,

A thin uniform rod of mass M and length L is hinged at
its upper end, and is released from rest in a horizontal
position.

I L -EZITETIIINNT
3 COM
L2 — I )
l / h
L LJ|com / T
/
7/

Let angular velocity of the rod about hinge ‘O’ when it
is vertical be ‘o’

Moment of inertia of rod about o is

2
l=1,.* M[%) (parallel axis theorem)

MEZ M2 M2
== + =
12 4 3

By using principle of conservation of energy

AK.E = - APE

com

= %Imz—o = —Mg(h,-h)
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1 M2
3__
2 3

3
.mZZMg%:m: Tg

The tension in the rod at a point % from hinge would

be due to weight below that point and centrifugal force
of that part.

1
I
I
I
rtT

| 3

Mg

2L 2M M
m=pA —= — '.-p:H

L
Centrifugal force = J. ro’.dm

L/3
L I’2 L
= o Ir.p.Adr = mzp.Al:—}
L/3 2 L/3
_ 39 M[1],,[8]_ 4Mg
L L2 9 3
Tension at the pointis T =mg + F_
= 2'\/'_9 + % = ZMg
3 3
Sol 2: @
a
A a B
5m/s
Given, 10 m/s

V,=5m/sV, =10 m/s

In the frame of A &
2 |a
A a i

5m/s

A is stationary

Since, angular velocity of system would be same through

V.
w=-& = Erad/s
a a

and

V. = 2aw = 5v2m/s perpendicular to AC in vector
form.

Ve = +51 + (- S)j if co-ordinate system is along AB

and BC

Velocity of 'C' in original frame

d el el A ~ ~ ~
Ve=Ve+Va=+5i-5]-5] .. (V,=-5))
— Vc= 5i-10]

IVe| = V521107 =55 mys

Sol 3: Initial

I
Li)co

[0 I 0 1
7a /4

final

>

®

q

(/2 1/2

-

Angular momentum of the system is conserved, since
no torque is applied

L=L,

=lo=lo

= mff2+m £2><2 ®
12 4
2 2
= M+m ! x2 |
12 2

0.03
0.09

= o, = 10 rad/s

x 30 =

By energy conservation,
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1
%I@Z = %lf(@gz + (Emsz x 2
= L((o—of) = e, 203x30x(20) _
2m 0.2

=v=3m/s

.. Velocity of ring along rod = 3m/s

Sol 4: Given,

A straight rod AB of mass M and length L, a horizontal
force F starts on A

F
acm
B Acm
L
—a
2
F = Ma__ (by newton’s second law)
T=1Ia
L ML
F.— = X a
2 12
6F
=0 = —
ML

N

, 1 -
Acceleration of end B=a__§ - SXi

2 N .. I
M I " @ M
2|

.. Magnitude of acceleration of end B = ]

Vem=3mM/s

Sol 5:
String
A
Given, the wheel is rolling without slipping
ro=V_ (. V,=0)

(pure rolling)
The velocity of the string should be

V,=V_-ro=V_ {1_ij = 2m/s

Fa

Sol 6: Given,

A uniform wood door of mass m, height h and width w.

Location of hinges are h and 2h from the bottom of
the door. 3 3

Let the hinges be named A and B.
—w—

1 (Fa)

(FA)X

h/3 com| |,

]

mg

h/3 (FB))(

|
>
D

Given, hinge A is screwed while B is not, So, the upward
component of force by hinge B is absent.

By equilibrium equations,
2R =0=(F), = (F),
2 F =0=() =mg

ZMCOM =0

(Moment about center of mass)

= (F), (%} +(F). [2} v (R, [2} -0

_3mgo
2h

—mg. % N (FB)X[EJ =0=(F), =

and F, =(F),} + (FB)], F, = FB(_})

- 3mgo - ~ 7 3mgo -
F, = R =
A o i +mgj, K o i

Givenm =20kg, h=22m, ® =1m

= F, =(-133.64i+ 196 j)N and F, = 133.64i

Sol 7: Given, A thin rod of length ‘a’ with variable mass

per unit length p = p0[1+§] where x is distance from A.
a

X
p=p 1+—j
—xX—A / O( a

| 7] |
A ax B
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(a) Mass of the elemental part is dm = p.dx
X
=>dm=p [1+—j.dx
0 a

Mass of the rod

m = hJ{Idm = ‘Tpo[1+£j .dx
0 0 a

a
=>m= X+ﬁ m = 3a
TP Mt o) MRl

3ap,
2

.. Mass of rod =

(b) Center of mass is situated at distance of C from A
where

M
jx.dm
c=20
M

jdm
0

M a
Value of Jx.dm = Jx(po)(l+£]dx
a
0 0

¥ X3 ’ 5a°
= _t — f— —_—
P12 73]~ "ol 6

| 1
:\a/Z ;
.l /

I
1
1
1
1 ’
1
1
1
|

I
I

I 'l
1 .-
-

P

—P,L
for minimum value of P, the angular velocity rod in the
final position should be zero

by applying conservation of energy

K.E = - APE.

= K.E, - KE =-mg(h,-h)

0- %IQ)Z:—mg (a)

sa?
:C:LDC:S_a
3a° 9

(c) Given, to find the moment of inertia about axis
perpendicular to rod and passing through A.

A
: dx
——f |—

Al [ B
i
|
|

= [x2dm (" dl = x2 dm)

ow—Z

but dm = Py (l+5j.dx
a

a X3
== jpo X+ | dx
0 a

3 472 3
X X 7p,a
== p0|:—+—:| == Po
0

3 4a

(d) We know that,
Angular momentum L = Lo
7082
= P?
12

12
7poa2

Pa

(e) Given, an impulse of ‘P’ is applied at point B, then
Angular impulse about the axis will be

L = Pa

= (lo).0 = 2mga

Pa.12.P
7p0a2

7 3 7
=>P2= 5 Po ga? (2 oa] = Zp(z)ga3

Sol 8: Given, two cylinders of mass 1 kg and 4 kg with
radii 10 cm and 20 cm respectively.

= =2 mga

also initial angular velocities as
o, = 100 rad/s and o, = 200 rad/s

final angular velocities will be such that there is no slip
at point of contact
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1
nw,
1
1 W2
ENY PN
1
rlwl
=V, _..=0=rne; - Lo, =0
contact 171 2772
1
r
= oy = =1

)
Angular impulse on one cylinder due to other is

(0} —0) = (AP)R)

where AP = linear impulse while for the other

!

AP\ R,

Ri
(s

L(w}—0,) = (AP)R)
I (coi - )

==
I2 (0)2_0)2) 2

) |._IJU

1 _ 1
= 8(w;-0,) = 0] — o,

-8
L= 27 300 radys

while o} = - % = 150 rad/s

Let,

a_ be acceleration of center of mass o be angular
acceleration

by Newton's second law,
Mg-f=Ma_ e (i)
and by considering torque

MgxR+fx3R=1.a o (i)

Since, the body is in pure rolling
(V. =3Rw) = (a_, = 3Ra)
Solving (i) and (ii) we get,

a_=—.

cm 5 g
Acceleration of the point where force is applied B
~ . s 3, 8 =
a=acmi+R(a)l=Zacmi=§gl
|a| =16 m/s?
Sol 10:

sphere
@‘V

r

Given, A sphere of mass m and radius r and radius of
loop as R + r the velocity of the sphere at the top most
point should be such that the centrifugal force balances
the weight of sphere

2

me
=

= mg
("." Center of mass makes circle of radius R)

=V, = \/@

Since, the sphere is in pure rolling at every point of time,

V. _=To

am

By principle of conservation of energy

K.E, +PE, = KE, + PE,

1 1
= -mv? + =lo® + mg(r
> 5@ g(n

= %mvf + %Imf + mg(2R + 1)

1, 1(2) ., 1
= —Mve+ — | — | Mmv =—me +
2 2(5 2

1(2)(2
5 [gj (gjmvf + mg(2R)

= V2= v + g(2R)x %
jvz\/RWZOﬁ _ [27Rg
7 7

27Rg

7



Sol 11: rT,=1,.a,;
a
a = =
2
b
T2

mg-T,-T,=ma,;

Q

1 Ta
]

: -
—
(@ (T,-T,.r = La,also, o

a, = 2a, by constraint relations.

DO
ZXI

o, =

3T2: zr;]g = @N

(b) And also velocity 'v' of the =~
body after traveling 1.2 m / \

1
x| [ / x
V= 4/2xaxs =4\/§m/s [ ‘|r

Sol 12: The moment of inertia of a thin hoop about it's
diameter is

EMW
2

Here M = Lp

Also we have 2nR = L

1

=R=—
2n

2 3
Sowehave,IleRzzleL _Lte
2 2 P\2n) a2

Now using parallel axis theorem we have

2 2
Cp L 3%
I.=1 +MR2=—E 4|p|l—| = —
XX cm 87[2 p(znj 8Tl',2
Sol 13:
i
@ a
mg sina
(@) Now T —mg sina. = ma . ()
2
™R =—=-lo = ——MR X o = __MRO(. (II)

2

Ra=a

.. (iii)
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=>T=-—
2

Ma .
-5 mg sina. = ma

e (me)
= -mgsina = m+? a

0 _ _mgsina
M
m+—
)
So, T = @ _ Mx (+mgsina)

2 2 ( M]
m-+—
2

_ Mm.gsina _ 2x(1/2)x(9.8)1/2) _ 9.8

~— =165N
(2m+ M) (2x0.5+2) 6
(b) ® = 10 rad/s
—a=aR = mgsino. _ _~ mg __(0.5)(938)
( Mj R(2m + M) 0.21+2)
Rim+—
2
=- 2 . 9.8 rad/s?
6
=—8.166 rad/s?
Now, ®? = o)(z) + 200
= 0=(10)> + 2(- 8.166) x O
0= _ 100 =6.123 rad,
2x8.166
So distance = 6R = 6.123 x 0.2 = 1.224 m
Sol 14: ] ]
Vo v=0
o—
< ™
° |X :> o+—>Veom
=)
()
v,=V,_ - %L; soforv, =0
=V _ = —L
com 2
Now, mv, = M.v_ _ (moment cons.)
=V = %
com M
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and my, = lo
X

[Angular momentum conservation about O]
2

Somvyx = X M

12mv0x
> m=
ML

SoV, = ol/2

mv, 12mv0x L
= X — = X = L/6
M ML2 2

Sol 15:

>
lon)
—_

mg

—nN 0

C

Before connection B is released

T, + T, = mg (By force equilibrium)
and

T, = T, (for torque equilibrium)

Mg
helem
= Just after B is released
T, ismgbutT, =0
= FBD
Ta

NIl
1
1
1
N O
1
1

Moment of inertia about

sG]

mc? (5 5 5
=l==— | 2|+ =mc= 1= —mc
12 | 4 16 12

Torque about A, T = (mg)[%] = la

C

mg—
o2 _69_1l2

5mc2 5¢ C

12 \/,
Acceleration of the centeris a = % X [ﬁj
C

= 0.3(+/59)
or
-

a = —0.3(7 + 2]’)

: :

After connection B is released

TA is still % while T, =0

m
. . g |Mg——=
linear acceleration a = > 2

m

angular acceleration = 0.5 g

Sol 16: By energy conservation,

oF

KE + PE = KE, + PE,

=0+ mgR

v= [H9R
3
.. Velocity of the axis of cylinder = JMTQR



Sol 17:
Vo \%

Angular momentum about any point on ground is

conserved

= vaR = |lo + mvR

R’m

vaR = + mvR

=>vV= %vo['.' v = Row]

Work done by frictional for time t_

W=—%mv§+[%mv2+ Icozj
mvg (3 4,
W=-—2+ =m-v;
2 4 9
Wz—%mvg

Also for t > t_No frictional force exists
1 5
=>W-=- gmv0 fort>t

Alsoma =-umg = a =-pug

and v = v, - ugt

‘t:v_o
° 3ug
o(:I: fR =2L9
I MR?2 R
2

Work done by friction for t < t = K.E, - KE,
1 1.(2ugtY | (1
S W= | Zm(vy —pgt? + =1 22| | - | Zmy2
W= [ Lm2a? + L mow2a?i?) -
=|5mw g +§m( pngott) —mvyugt

1
=W = 5 (Bmp2g’t® — 2mv, ugt)

Sol 18:
300cm

20cm- 100cm

FBD of disc is

2
fR=la=fR= %ajaz 2t

FBD of ant, in frame of disc

M(Ro)«<——1—

f

mRo
= mRa + f = ma' = mRa + 5 =a'

:>a1=5R—(x.'.M=3m

Given, after time T, the ant reaches same point

N 1 ESRTOLJTZ =2n.R=>T= isec:onds

2 %

Also the angle moved by disc = %OLTZ = % radians

Sol 19:

mYy v=2wR

Angular momentum of the system is conserved

L=L

2 2
= mR%e _ (_mZR erRZJoa1

2

L
S o= —
3

Impulse in the direction of velocity

=m(v,-v)=-mv =-2mnR

Physics | 7.103
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Impulse perpendicular to direction of velocity
=m(v,—m) = mRo')

mRw

3
Net Impulse = - meRj +

V37

R
85| = = mRo

mR®

—_

Impulse on particle due to disc =

Impulse on hinge due to disc

S V37

= [ AP | e gueto hinge — TmRm

Sol 20: 30 inches
—_—_—
L

View
from the 2ft/s?
car

2ft/s?
2cos0 ft/s?

2cos0

)

Angular acceleration of door = ft/s?

w is the width of the door
We know that,

do do do
— =a=> —. — =
dt do dt

= odo =o.do

2 n/2

:m——0= i '[cose.de
2 Wy
2
2 w

=>mn=2

Velocity of the outer edge = (w)(w) = 8w

Sol 21:

T 1]

h ma 09m
—
0.6 m

F=100N
F=ma=a=5m/s?
The cabinet will tip when
F. h > mg(0.3) + ma(0.9)

. 20x10x0.3 . 20x5x0.9
100 100

=h>15m

h

and also when
Fh > m =(0.9) - mg (0.3)
=h>03m

2. 0.3 < h < 1.5m is the range of values of h for which
cabinet will not tip.

Sol 22: In the frame of truck,

am/s2

X
2M(a) - 2f = 2Ma, (force equation)
(2f)R = (2T).a (Moment equation)

a' = Ra (pure rolling)
g lo _ Ma
R 2
3a

— 1 _2a_ 2
:>a—7:>a1—?—6m/s
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Exercise 2

f=

Ma, 6N
5 =

Frictional torque magnitude about rod is Single Correct Choice Type

fR =0.6 Nm Sol 1: (D) A 0 8
Friction torque about O is
0.2 ANk
=+ 06 ( )(k)—06(01)J——0.6(jik) P
p—2 C
Sol 23: pb——a——
We know the moment of inertia of a square plate along
00" as M_a
12
Sl = Ma?
212
m
B ¢ Alsol, =1, + 1
Conserving linear momentum, we get (Perpendicular axis theorem)
Bm)(v,,) = mv, =1, =2l
v = Vo =1 fn square)
cm 3 2
) Ma
Conserving angular momentum about COM we get =1, = T
mv.= —— =lo (I, is about transverse axis through p) to find I, or I,

we take x and y axis as diagonals of square and apply
mv.a ( 3 j2 perpendicular axis theorem again
=3m ®

- z

23 V3

y
Vo
> o=
2\/§a
Time taken to complete one revolution = ul X
(O]

_3ra 1 :

Vo R L

X y 2 1 X 12
Displacement of point B will be L 1
2 2a \/_ 2a 1- L
V.t + | —=x—i+—=.2]
B2 [ 2
Sol 2: (C) Given, moment of inertia of rectangular plate
[ j(a) L3 about transverse axis through P as | then the moment

L . I .
of inertia of PQR about P will be greater that Esmce

mass is distributed away from P unlike in PSR. Since, |
depends on distance 'r', the farther the mass, the more
the moment of inertia. The moment of inertia of PQR
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will be less than 1 about R since mass is distributed
closes to R

-———

- —

Sol 3: (B) Given, A triangle ABC such AB = BC = a and
ZACB = 90° of mass M

A

O is the midpoint

Consider a counterpart with same mass such a square
is formed

A ct

C B

we know the moment of inertia of a square about
2

. Ma
transverse axis through center as ra

But, here m = 2M (total mass)
Ma?

square = 3

Since both triangles are symmetric about axis through O
they have equal moment of inertia about axis through O.

2
Isquare Ma
= lrequired = 2 = T

Sol 4: (A) Given, | is moment of inertia of a uniform
square plate about axis parallel to two of its sides and
passing through center

I

A
A i B
|
1
1
1
1
1

then about any axis as shown below will be

NI

" C

i \‘Il

Consider, this axis as x-axis and y-axis perpendicular to
alinetoit

(|1)x—axis = (|1)yfaxis |By Symmetry|

- . Ma’
We know that | is independent 0 since | = ra

= [ is also independent of g

= ILO) =10 =1

Sol 5: (B) Given, see-saw is out of balance.

= Centre of mass is not at the center of see-saw.

[

Let ‘X’ be the distance of COM from center. By moment
equilibrium at center
W, — W
[WH_WG] E =WS‘X = X = ML
2 W 2

Now if the girl and body move to half of the original

[
—r
X~y

COM
Ws

\I

Wg



moment due to heavy body and girl is (w,, — wG)%

(opposite in direction to w,.x)

while

_ L
WS'X_(WH_WG)E
WL X > (W —w)L
o S H G 4

The side the girl is sitting on will once again tilt
downward

Sol 6: (A) F

The force on the hinge is same as the force on the
thread this can be found by using force equilibrium
conditions.

Since, there is a torque always about hinge on pulley,
angular velocity increases.

Sol 7: (D)

— - L
T=r x F = EW cosO
T=la
L W cos0
2 €0 3mgcos® _ 3gcos6
=>a-= = _
ML2 2mL 2L
3
Acceleration of point P=L.a. = 39C2°59
Sol 8: (B) .
*|6md

Physics | 7.107

Moment of inertia of rod about point |,
_ Md®
12

Angular momentum is conserved as no torque is acting
on the system. (while energy is not since a force acts on
rod at point)

- Initial angular momentum = final angular momentum

d —
Lo, + mzv1 = lLo,
Md? dv [Md® Md?
= O +me = [ [
3 2 12 4
:>m—dv=§md2m1
2
1 2v
=>0'= —
3d
Sol 9: (D)

I

By the principle of conservation of energy

KE, + PE = KE, + PE,

=0+ mg(l) = %mv2 + %Im2 +0

= mgl = lmr2w2 + 1 zerm2
2 5

= M = Egl
7 2

Angular momentum of the sphere about P is

L=lo+ m.lv

2
:>L:§mr2w+m.l.rco
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Sol 10: (C)

‘|'A
y Va
| N

C B

X2 +y? =2
L = length of ladder = constant

dx dy
=X — +y—> =
dt dt

=>xv+yv,=0

N

> (Lsin30°) OC

Angular velocity of rod

[ =3vi+vi| 2y
L L

Velocity of center = —.0 = v

N

Sol 11: (A) If d_v =0
dt

X2 +y2 =2

:x.% +y.d—y:0

dt dt

=>xv+yv, =0

dx dv dy dv,
= —VHX——+—.V, +y.—
dt dt dt dt

dv,

S+ v o4y —A
LA AT

dv, 0-(v’+v3)
dt y

when o = 45°

vA=—vandy=L

NF

dv, 222
:> =

dt L

Angular acceleration =

ap
a = ﬁ

L)

2v?
(1 = —_—

L2
Sol 12: (A)

Initial Final
™o
Vo
f f

Frictional forces acts to reduce the velocity of bottom
most point.

f=-ma_, (By Newton's second law)
T=1Ia

MR? a4 - MRa
' S22

=fR =

After time t = t, angular velocity and lineal velocity
becomes zero.

=0-v,=-a_tand 0- o, = -at

f
LYo % . M
A o 2f
MR
Vo R Y 1
o, 2 Ro, 2



Sol 13: (C) Conserving linear momentum

2Zmv—mv =2m X v
cm

v
cm E
Initial angular momentum

b b 3vbm
=M X 2VX —+MVX—=
2 2 2

Final angular momentum
bY  (bY mbe
={m|=| +m|= X W=
2 2 2

3mvb  mb’e

2 2
®? = 3_v
b
For skater at x = b/2
®
0, \wb
P 2
/7
/7
/
'/
V. =V + m—bcose
X 2
vV =-— O)—bsine
y 2
0 = ot
SV, att = —
3v 3vt
V. =V + —cos| —
X 2 b
o _ 3V 3vt
SoX = jvx dt= Iv+7cos(T]

=vt+

3V . [ 3vt
x b x sin | =—

2x3V b
b . (3vt

=vt+ —sin| —
2 b

y = Ivy dt= I—%bsin(wt)

+ob b 3vt
= cos (ot) = —cos| —
2x® 2 b
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Sol 14: (C) When F, is applied, the body moves right
and angular acceleration is developed accordingly by
friction

when F, is applied, the angular acceleration developed it
the body move left.

When F, is applied the body can move either left of
right depending on angle of inclination.

Multiple Correct Choice Type

Sol 15: (B, C) +——x—i

| °
A com
A

w >

FBD of rod

—X—

Ra W Re
R, + R, = w (force equilibrium)

R,.d = w.x (torque equilibrium)

WX _ w(d-x)
B d an A d

Sol 16: (A, D) umg cosf

mg cosO

Sliding condition = mg sin® > umgcos6

= tanb > m
Toppling condition = mgsine.g > mgcose.g
— tand > 2
h
a
Ifu> =
M7

a . .
tano > ™ is met earlier than tan® > m

.. Topples before sliding

a
fu< —
S

It will slide before toppling
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Sol 17: (A, C, D)
a=gl
1 Mg h
|
I
- ¥
d

Angular momentum = mvd = mgtd
Torque of gravitational force = % = mgd
Moment of inertia = m(d? + h?)

where h = H_ - %gt2

Angular velocity = é = %t

N
- =
:>d—L:A><L
dt
N
N
cdb
dt
- -

Components of L on A remain unchanged because

if L component changes the LH.S changes while
R.H.S remains unchanged which is a contradiction. If
magnitude of L changes with time, thin L.H.S and RH.S
vary differently with time which is a contradiction.

N
Suppose L :(x.t)%
IL|
- - - -
Then d—":% while A x L = XtAiL
IL| IL|
Sol 19: (B, C) A
222272727
X
o—
m ||

Linear momentum is not conserved because of hinge
force angular momentum about A is conserved since
torque at A is zero.

Kinetic energy of system before collision is equal to
kinetic energy of system just after collision since, the
collision is elastic

Sol 20: (B, C)
m
Kinetic energy of the body

= lmv-’- + lmv2 + lI(D2
2 2 2

= (1+1£] mv? = gmv2 (" v=Ro)

(o= %mR2 only hollow sphere
*.* Non-viscous liquid )
Angular momentum about any point on ground

=2mRv + ZmRzoo = § mRv

Sol 21: (B, C) A

Q]

B —> Vv

Since the cylinder does not slip
At point B velocity = 0
- -
= -V + ch + R =0
- ~
3ch=_(V—R(D)i
At point A, velocity = 0

=V =Ro
-
:>ch=0

Sol 22: (B, C, D) To the right of B, angular acceleration
will disappear but linear acceleration will increase since
no friction is present angular velocity attained by disc
after time T is

o=ol

and 2n = 1 aT?



Time to complete one rotation

2n = ot
2n 2n.T T
:}t = — = — = —
ol  2m.2 2

Sol 23: (C, D) Given,
180° < Q- Q > 360°
nrad < Q- Q < 2n rad

Sol 24: (A, B, C, D)

I =1, + I, (Perpendicular axes theorem)
Also I, =1, (by symmetry)

1

2 1 3
l, + 1, (perpendicular axis theorem)

Also I, = I, (by symmetry)

Sol 25: (B, C) Option A is incorrect, since the statement
indicates a force body system as below.

Which is not in equilibrium while B, C are possible

Fs F1

b)FR+FE+FK=0
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(©

F/2—

F/2——

(d) While D is possible
F N—
F \ F

Sol 26: (A, B, D)

—>V
h-[ "

A f=pw=pumg

L = mvh (Angular momentum)
acceleration = - —= =

V,=v-pugt
L, = m(v - ugt)h
dL,

—— =T =-umgh
at pumg

Sol 27: (A, C, D) If Re spreads or curls up his hands,
moment of inertia changes, accordingly angular
velocity changes too.

If Io = Constant, it cant keep

1 . N
> Io? the same, rotational kinetic energy would also

change.

Sol 28: (A, C, D)

u = Ro (for pure rolling)

The velocity of bottom most pointisu—Ro =0
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the velocity of topmost pointis u + Ro = 2u

S 0<v<2u

Velocity of P is

- ~ "~ ~
Vo=ul o+ | =Y 35
2 2

g ~ "~

:>V—Ei+i

2 2
=>V=u

If CR is horizontal
‘> .y "~
V = ui +uj

V=\/§u

Sol 29: (B, C, D) Angular moment about O is not
constant because a component of weight causes
torque at point ‘O".

Angular moment about C is zero since weight is parallel
axis

About O,

- - -
L =m(r x v)gives angular momentum in direction

perpendicular to length of thread and velocity. The
vertical component never changes direction.

Sol 30: (A, C)

A cylinder rolling down with incline may or may not
attain pure rolling. It depends on length of the incline

Sol 31: (B, C) Friction on cylinder under pure rolling
depends on the external forces

Sol 32: (A, €)

fpseudo =ma

In frame of plank,

f=ma,

pseudo -

f . .
a, = a- — where a is acceleration of plank
m

F—f
a=—
M

Total K.E. of system = work done by force F
(*." no other external forces is doing work)

Work done on sphere = work done by friction + work
done by pseudo force = change in K.E.

Sol 33: (A, B, C)

A AV
Y,
B
V,=V+Ro =2V
V,=V-Ro =0
L about B = mvR + %mRzm = 3RV clockwise
mRV

L about A = -mvR + %mRZm = anti-clockwise

Sol 34: (A, B, Q)
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d " ~
Vp =(V + ro cosd)i + (ro sind) j

5
| Ve |2 = V2 + rPo? + 2re cosBV
= (R? + r* + 2r R cos0)w?

5

|VP |2 = M2P2?

- [—
=|Vr| = (MP).®

Using the above relation we draw a circle with radius R
to get point with velocities Ro = v

Sol 35: (A, B, C) As the ring enters frictional force
(limiting) acts on sphere increases angular acceleration
in clockwise direction and slows down the linear motion.

Sol 36: (B, C, D) Rolling motion starts when the
point of contact has zero velocity. Conserving angular
momentum about point of ground gives

mvR = lo + mv'R

= mvR = mR?0" + mR?e' (. v! = Re")
LV
S>o'= —
2R
V‘I = X
2

Time taken to achieve pure rolling is

v—uzat:x—v:—ugt:n:L
2 2ug

Sol 37: (A, B, C, D) Distance moved by ring

2a 8ug
- 3vé
Work done by friction = — umg. —
8ug
3mv(2)
8
2 2
m
Gain in rotational KE. = ~mRe, 2 = ™0
2 4R? 8

3mv?2 mv?
Loss in K.E. = —(— MV ; é} .

Sol 38: (B, C) By holding a pole horizontally, the
moment of inertia is increased leading to slower
angular acceleration due to undesired torques.

Also, adjusts center of gravity to be vertically over rope
to eliminate torque.

Assertion Reasoning Type

Sol 39: (B) A cyclist always bends inwards to reduce the
centrifugal force.

Also, he lowers the center of gravity.

But the reason does not explain the assertion

e

Sol 40: (B) € -~ -~ - - -

AY

Statement-| is true because the initial angular moment
about any point on xy plane is L=mvsin6x and final
angular momentum L, = mvxsin 6,

for elastic collision v, = v, 6. = 6,
=L=L
Statement-llis also correct since the discis in equilibrium

But Il is explanation of |

Sol 41: (A)

In frame of O

©, =0y =®

Vp = 1,0, V, = 0,

In frame of P

Vo = = 1,0, Vg = M0, 0,
w, = Yo -0, =0

0

b
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- (fg = 1)(®) Taking an elemental point dy

= — " = (®
T (- wp)

W

Statement-1 is true and statement-ll is correct

explanation of | Idy

y
Sol 42: (B) Statement-| true by parallel axis theorem.
Statement-1l is true but doesn't explain parallel axis =
theorem. dm = p.(2x)dy

Sol 43: (B) See above =p.2y)dy [y =x]

Sol 44: (D) ¢ o= M _ M
:I_y 1, 22
£l Zﬁ
dm(2x)?
dI2 = T + dm(y)?
— | ||*
m/? .
?for rod, parallel axis theorem
| {1 0/2 v
=|dl, = | |=—+ 2y)pdy (" y =X
F = F (force equilibrium in x-direction ) I 2 £ ( 3 y ]( Ypdy (-7y =)
.. Assertion is false ) 4702
80 [ 3gu 8P Y
While reason is true since = _[0”1 =1, = 3 I y dy = 3 {T
0 0
F
T—Ia—F.x:oc—T.x S ﬁ _M_L2
3|16 6

Sol 45: (B) Statement-| is true, which is the condition

for pure rolling Sol 48: (A) dI_ = (dm)(y?)

/2
= JdIX = _([2py3dy

Statement-l is also correct by the definition of center of
mass but Il is not correct explanation of I.

Sol 46: (D) Statement-| is false, because a body can roll if
we throw it with property determined linear and angular
velocities.

Statement-1l is true by definition of pure rolling

Sol 49: (C) Moment of inertia about base is
Comprehension Type

Sol 47: (C)
y
—(——
45° 45°
M
45°
X

2
L
dl = dm| = -
5]

L/2 L 2
= [dI = ![E‘VJ (2py) dy

2 L
:>I=2p_[y (E—yj.dy
0
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L/2 .
s Lﬁ_ﬁ 5055.(D)
R PR T .
0

1 B 1 4-3 MLZ

== 29”[48 64} = 8ML{64X3J= 4
Frictional force in this depends on distance between
Sol50: (C) | =1 + Iy (perpendicular axis theorem) application of force and center
M2 M2 ML
= Iy = - = f
6 8 24 Sol 56: (B) ——F

- =l d
Sol51: (B) dL =dm (r x v) pseudo

dm force = F,
r

= ma f
y
> By basic FBD's we can understand that friction acts in
forward direction
X
C .. Option B is correct
And the torque is acting horizontally, since the

horizontal component of angular momentum is only

1
v
z
dr changing.
" Previous Years' Questions
' r
5 Sol 1: (A) W=AU=U;-U, = U, -Up
\%

L =-Up=—mVp =-\p (asm=1)
(z direction) ) ) ) ) ) )
Potential at point P will be obtained by integration as

.. Angular momentum is down at 20° to horizontal given below.
e
Sol 52: (B) There is a torque since angular momentum
is always changing direction. AN
ys changing aRi N N16RT

Sol 53: (A)

ff’l’l’l’l’l’

Let dM be the mass small ring as shown
Friction reduces linear acceleration and increases
angular velocity dM M 2nr)dr = 2Mrdr

= R — nRE 7R?

Sol 54: (A) Same as previous
GdM

V16R? +r?

dVp = -



7.116 | Rotational Mechanics

4R
2GM
- _ j r dr = _ZG_M(4\/§_5)

7R? 3R V16R? +12 R

2GM
=+ 242 -5
— (442 -5)

S W

Sol 2: (A) %MRZ =%Mr2 +Mr?

2. 5 3.,
or £MR2 =2M
FS 5 r

r:LR

V15
Sol 3: (B) Condition of sliding is
ms sin © > pmg cos O or tan 6 >
or tan O >\/§ ()
Condition of toppling is

Torque of mg sin 6 about O>torque of mg about
. (mg sin 6)[1—5) > (mg cos 6)(£J
2 2
.. (ii)

ortan 6 > 2
3

With increase in value of 0, condition of sliding is
satisfied first.

Sol 4: (A) Iremaining™ lwhole ~Tremoved
2 2
1 » |1 (RY 1 (R -
= LommriZ | ImlR] +1ml R

Here, m=

2
Ml X] =m
nR? 3
Substituting in Eq. (i), we have I=4MR?
Sol 5: (A) AB' L ABand C'D' L CD

From symmetry I,g=Iyp and Icp =I-p From

theorem of perpendicular axes,

Iz =Ias +1xp=Icp *1cp = 2las = Acp

Ig = ICD

Alternate The relation between I,; and Iep should
be true for all values of NO

At 0 =0, Ip = Ixg

Similarly, at 6 = n/2, Iep =1ag

(By symmetry)

Keeping these things in mind, only option (a) is correct.

Sol 6: (D) In case of pure rolling,

_ mgsin®
. mR?

I

f (Upwards)

l+m

- focsind

Therefore, as 0 decreases force of friction will also
decrease.

Sol 7: (A) On smooth part BC, due to zero torque,
angular velocity and hence the rotational kinetic
energy remains constant. While moving from B to C
translational kinetic energy converts into gravitational
potential energy.

Sol 8: (B) From conservation of angular momentum
(I o = constant), angular velocity will remains half. As

K =L10?
2
The rotational kinetic energy will become half. Hence,

the correct option is (b).

Sol 9: (A) Let o be the angular velocity of the rod.
Applying angular impulse = change in angular
momentum about center of mass of the system

L

JE = IC(D

2
3 <Mv)[§j=(2){%]m o=t

Sol 10: (A) In case of pure rolling bottom most point is
the instantaneous center of zero velocity.

Velocity of any point on the disc,, where r is the distance
of point from O.

rQ >rC >rP
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. VQ >Ve> Vp

Paragraph 1

Sol 11: (C) %1(20))2 = %kxf (i)

%(21)«0)2 = %kx% ()

From Egs. (i) and (ii), we have X1 \/5
X2

Sol 12: (A) Let ®' be the common velocity. Then from
conservation of angular momentum, we have

(I+2D)o' =I(2w) + 21(w)

4
O ==0
3

From the equation,

Angular impulse = change in angular momentum, for
any of the disc, we have

4 2Im

1 =120 -1 -0 | ==

T (2w) [3(0] 3
3t

Sol 13: (B) Loss of kinetic energy = K; —K¢

2
low? s Xonw? = Lan 2| 2 12
_{21(203) + 2(21)((0)} 2(31)(3(9] Slo

2 2
Sol14: (D) %mv2 +%I(%} :mg[%] Iz%mRZ

.. Body is disc.

Paragraph 2

Sol 15: (D) a=Ra

o 2kx—f R fR
M 1 \R?2
2

Solving this equation, we get

a
b
o
2kx
f
2kx
f="L
3
2kx 4_kx

|Fnet |= 2kX_f=2kX_T= 3

This is opposite to displacement.

4kx
~ et = 3

Sol 16: (D) F. oy = —[%kxjx

Fret _

4k 2
- — [ X=—0X
M 3M
[ 4k
O=,—
3M

Sol 17: (C) In case of pure rolling mechanical energy
will remains conserved.

2
1 1(1 Vv 1

) _I3M
- Xmax = Evo

As f=2—kx
3
2kx 2k [3M
+ fimax = Mg = =55 = S50 Vo
‘ 3M
SV = PGy [—

k
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Sol 18: (B) Angular momentum about rotational axis

yro
[ > ]
é Vv
X
X=vt

2
L(t) = [I+m(vt) :|(x)
dL
—=2mv’te
dt

Torque t= (va2 m)t

Sol 19: (C)

N
L'p !
\ 'l
,.
fammmmmT
L0 =l xp

[0 is always directed along the axis & its magnitude is
constant.

Sol 20: (C)

“ p

Let mass of original disc = m

m
x mR? = —

Tc(4R2) 4

The mass of disc removed =

So M.O.I of remaining section about axis passing

2 2
through "0" I = m(22R) —[r: Fz) +%R2]

2 2
= 2mR? —{%} = {2—%} mR? = % mR?

MOI of remaining section about “P”

2
I, = m(2R) +m(2R)’ _{EK+E5R2}

2 4(2) 4
2 2
:[2mR2+4mR2}— ﬁ+5mR
8 4
:GmRz—EmR2 :3—7mR2
8 8
L _37 8
I, 8 13
Sol 21: (A)

oR

owRcos® wRcosO ©

So, v, =20R sin (cot)
Att=T/2,v, =0

So two half cycles will take place.

Sol 22: (C, D)

R sin ot

According to problem particle is to land on disc.

If one consider a time ‘t' then x component of disc is
Rot
R sinot<Rot

This particle 'P* land on unshaded region. For "Q"
x-component is very small and y-component equal to
P it will also land in unshaded region.

Now repeat same thing when right part is shaded then
correct answer is “C" or "D"



Sol 23: (A) In both the cases, the instantaneous axis
will be along z-axis i.e. along vertical direction.

Sol 24: (D) w.r.t. centre of mass only pure rotation of
disc will be seen. So in both the cases, angular speed
about instantaneous axis will be "®".

Sol 25: (A, B)

A

Ve = Rw?+% (—J) X (Rcos 30°7+R sin 30°I2)

3

4

11

—3Ro|+v3 LRk-LRi=2=Re i+ X2 Rok
4 4 a4

Sol 26: (D)
N

mg

Translation motion:

mg sin6-f=ma__ (i)
Rotational motion

fR=1a (i)
Rolling without slipping
aR=a_, (i)
From (ii) & (iii)

Put this in (i)

I a
H cm “cm
mg sme——2 =ma_,

mg sin®

(Cm+mJ
R2

As I, >IQ

Sol 27: (8) Conservation of angular momentum about
vertical axis of disc
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50(0.4)° 50(0.4)°

«10 = +4(625)(02)" | o

o = 8rad/ sec

Sol 28: (C, D) Condition of translational equilibrium

Ny =1, N,

N, +u, N; =Mg

Solving N, SLL

Trpgp,
_ 1, mg

Polepgn,

Applying torque equation about corner (left) point on
the floor

mg g cos 0 =N, £sin® + p; N, /cos6

1-p by

Solving tan6 =
2,

Sol 29: (2)

3FR sin30°=Ia

I:MRZ

2
o=2
=0, +tat
w=2rad/s

Sol 30: (4) Since net torque about centre of rotation
is zero, so we can apply conservation of angular
momentum of the system about center of disc
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L =L

0 :Ioo+2mv(r / 2) ; comparing magnitude

, (0.45>< 0.5x0.5
.. f

]m:0.05x9x%x2
2
Lo=4

Sol 31: (7) Kinetic energy of a pure rolling disc having
2 2
velocity of centre of mass v = Loyve e LfmRTI V2 3 2
2 2 2 JR?2 4
So,

%m(?a)z +mg(30) = %m(vz)2 +mg(27) Vy,=7m/s

Sol 32: (D) Using conservation of angular momentum

mR%e
> 8o m 9R? 8o m 5, 8o
=| MR X— |[+| —=x—X— |+| — X X" x—
9 8 25 9 8 9

=>X=—
5

Sol 33: I:I§p4nr2 r?dr
I, oc J.(r)(rz)(rz)dr
o 1))

6

1
1, 10

B

Sol 34: (D) Force balance

N sin 30°
A

N cos 30°

N

mg ? A

N+N sin 30°=mg

f_mg_16_16\/§

BTG s

Torque balance (about A)

N x h =mgx£sin30°
cos 30° 2

2mgx 2 —mgxL

39T

h 33

L 16

Sol 35: (A, B, D)

d

<i
<!

dt dt

>

tt=1, \7=(10?+10j) ms

4=201+10j ms™

Sol 36: (A, D) o, =m7acos 0=w/5

d7(t A .
_9r(y )=30ct2i+2[3tj,5=—:6ati+2[3j
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