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Preface

The area of Modern Physics embraces topics that have evolved since roughly the turn of this
century. These developments can be mind-boggling, as with the effects on time predicted by
. Einstein’s Special Theory of Relativity, or quite practical, like the many devices based upon semicon-
ductors, whose explanation lies in the band theory of solids.

The scope of the present book may be gauged from the Table of Contents. Each chapter consists
of a succinct presentation of the principles and “meat” of a particular subject, followed by a large
number of completely solved problems that naturally develop the subject and illustrate the principles.
It is the authors’ conviction that these solved problems are a valuable learning tool. The solved
problems have been made short and to the point, and have been ordered in terms of difficulty. They
are followed by unsolved supplementary problems, with answers, which allow the reader to check his
grasp of the material. ’ '

It has been assumed that the reader has had the standard introductory courses in general physics,
and the book is geared primarily 4t the sophomore or junior level, although we have also included
problems of a more advanced nature. While it will certainly serve as a supplement to any standard
Modern Physics text, this book is sufficiently comprehensive and self-contained to be used by itself to
learn the principles of Modern Physics.

We extend special thanks to David Beckwith for metlculous editing and for mput that improved
the final version of the book. Any mistakes are ours, of course, and we would appreciate having these
pointed out to us. Finally, we are indebted to our families for their enormous patience with us
throughout the long preparation of this work.

RONALD GAUTREAU
*  WILLIAM SAVIN

 New Jersey Institute of Technology



PART I: The Special Theory of Relativity

Chaptér 1
Galilean Transformati‘ons’

1.1 EVENTS AND COORDINATES

We begin by considering the concept of a physical event. The event might be the striking of a
tree by a lightning bolt or the collision of two particles, and happens at a point in space and at an
instant in time. The particular event is specified by an observer by assigning to it four coordinates:
the three position coordinates x, y, z that measure the distance from the origin of a coordinate system
where the observer is located, and the time coordinate ¢ that the observer records with his clock.

Consider now two observers, O and O’, where O’ travels with a constant velocity v with respect to
O along their common x-x’ axis (Fig. 1-1). Both observers are equipped with metersticks and clocks
so that they can measure coordinates of events. Further, suppose both observers adjust their clocks
so that when they pass each other at x = x’ =0, the clocks read ¢t = ¢ =0. Any given-event P will
have eight numbers associated with it, the four coordinates (x, y, z, {) assigned by O and the four
coordinates (x', y', z’, ') assigned (to the same event) by O'.

Event P: (x', ', 2, 1)

————-—: ’ (x:)”Z,‘)
“““““““““ R,
e x' ~~
—————————— |
| | x'
} 2

A |

Fig. 1-1

12 GALILEAN COORDINATE TRANSFORMATIONS
The relationship between the measurements (x, y, z, t) of O and the measurements (x’, ', z’, ') of
O’ for a particular event is obtained by examining Fig. 1-1:
X=x—o y=y =z
In addition, in classical physics it is implicitly assumed that
‘ U=t
These four equations are called the Galilean coordinate transformations.

13 GALILEAN VELOCITY TRANSFORMATIONS

In addition to the coordinates of an event, the velocity of a particle is of interest. Observers O
and O’ will describe the particle’s velocity by assigning three components to it, with (u,, u,, u,) being
the velocity components as measured by O, and (u;, u,, u;) being the velocity components as measured
by O'.



2 THE SPECIAL THEORY OF RELATIVITY [PART I

The relationship between (u,, u,, u,) and (u;, u}, u;) is obtained from the time differentiation of the
Galilean coordinate transformations. Thus, from x’ = x — v,

r @ _d  ndt_(dx _ - _
U= ar dt(x w)dt’ (dt v)(l) ST e

Altogether, the Galilean velocity transformations are

r__ - [ /=
u,=u, —v u,=u, u,=u,

14 GALILEAN ACCELERATION TRANSFORMATIONS

The acceleration of a particle is the time derivative of its velocity, i.e. a, = du_/dt, etc. To find
the Galilean acceleration transformations we differentiate the velocity transformations and use the facts
that ¢ = ¢ and v = constant to obtain

’ o e (-
a,=a, a,=a, a=a,

Thus the measured acceleration components are the same for all observers moving with uniform
relative velocity.

1.5 INVARIANCE OF AN EQUATION

By invariance of an equation it is meant that the equation will have the same form when
determined by two observers. In classical theory it is assumed that space and time measurements of
two observers are related by the Galilean transformations. Thus, when a particular form of an
equation is determined by one observer, the Galilean transformations can be applied to this form to
determine the form for the other observer. If both forms are the same, the equation is invariant under
the Galilean transformations. See Problems 1.11 and 1.12.

Solved Problems

1.1. A passenger in a train moving at 30 m/s passes a man standing on a station platform at
t=1t"=0. Twenty seconds after the train passes him, the man on the platform determines
that a bird flying along the tracks in the same direction as the train is 800 m away. What are
the coordinates of the bird as determined by the passenger?

The coordinates assigned to the bird by the man on the station platform are
(x,y,2,1)=(800m, 0,0, 20 5)
The passenger measures the distance x’ to the bird as
x' = x— ot = 800 m — (30 m/s)(20 s) = 200 m
Therefore the bird’s coordinates as determined by the passenger are
(x,y,2,¢)=(200m, 0,0, 20 s)

1.2 Refer to Problem 1.1. Five seconds after making the first coordinate measurement, the man
on the platform determines that the bird is 850 m away. From these data find the velocity of
the bird (assumed constant) as determined by the man on the platform and by the passenger
on the train.

The coordinates assigned to the bird at the second position by the man on the platform are
(x2 2 22, 1) = (850 m, 0, 0, 25 5)
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13.

14

1 5‘

Hence; the velocity u, of the bird as measured by the man on the platform is
w“ - X~ X% _ 850m —800m:
T 255—20s
The positive sign indicates the bird is flying in the positive x-direction. The passenger finds that at the
second position the distance xj to the bird is ' ,
x5 = X, — vt; = 850 m — (30 m/s)(25 s) = 100 m
Thus, (x3, y3, 23, t3) = (100 m, 0, 0, 25 s), and the velocity u, of the bird as measured by the passenger is

wow 2% 100m - 200 m
== 5=h 255—20s

= +10m/s

= —20m/s

_so that, as measured by the passenger, the bird is moving in the negative x'-direction. Note that this

result is consistent with that obtained from the Galilean velocity transformation:
w,=u,—0=10m/s—30m/s= —20m/s

A sample of radioactive material, at rest in the laboratory, ejects two electrons in opposite
directions. One of the electrons has a speed of 0.6c and the other has a speed of 0.7¢c, as
measured by a laboratory observer. According to classical velocity transformations, what
will be the speed of one electron as measured from the other?

Let observer O be at rest with respect to the laboratory and let observer O’ be at rest with respect to
the particle moving with speed 0.6¢ (taken in the positive direction). Then, from the Galilean velocity
transformation, ' : .

‘ U, =u —v= —0.7¢ - 0.6c = —1.3¢ :

This problem demonstrates that velocities greater than the speed of light are possible with the '

Galilean transformations, a result that is inconsistent with Special Relativity. : ’

A train moving with a velocity of 60 mi/hr passes through a railroad station at 12:00.
Twenty seconds later a bolt of lightning strikes the railroad tracks one mile from the station in
the same direction that the train is moving. Find the coordinates of the lightning flash as
measured by an observer at the station and by the engineer of the train.
Both observers measure the time coordinate as
_—f= lhr \_ 1
=1 =209 35305 ) = 755 I

- The observer at the station measures the spatial coordinate tobe x=1mi. The spatial coordinate as
determined by the engineer of the train is

x’=,x—vt=lmi—(60mi/hr)(ﬁ hr)= % mi

A hunter on the ground fires a bullet in the northeast direction which strikes a deer 0.25 miles
from the hunter. The bullet travels with a speed of 1800 mi/hr. At the instant when the
bullet is fired, an airplane is directly over the hunter at an altitude of one mile and is traveling’
due east with a velocity of 600 mi/hr. When the bullet strikes the deer, what are the
coordinates as determined by an observer in the airplane?

Using the Galilean transformations,

0.25 mi
1800 mi/hr

x' = x — o = (0.25 mi) cos 45° — (600 mi/hr)(1.39 X 10~ hr) = 0.094 mi
y' =y = (0.25 mi) sin 45° = 0.177 mi : : .
Z=z—h=0—1mi= —1mi

==

=139 X 10~*hr



1.6.

1.7.

1.8.

1.9.

THE SPECIAL THEORY OF RELATIVITY [PART 1

An observer, at rest with respect to the ground, observes the following collision. A particle of
mass m, = 3 kg moving with velocity u, =4 m/s along the x-axis approaches a second particle
of mass m, =1 kg moving with velocity u;= —3 m/s along the x-axis. After a head-on
collision the ground observer finds that m, has velocity uf =3 m/s along the x-axis. Find
the velocity uf of m, after the collision.
initial momentum = final momentum
myuy + myuy = myuf + myu}
G kg)4m/s) + (1 kg)(~3 m/s) = (3kg)ut + (1 kg)(3 m/s)
9kg-m/s=(3kg)ul +3kg-m/s
Solving, uf =2 m/s.

A second observer, O’, who is walking with a velocity of 2 m/s relative to the ground along
the x-axis observes the collision described in Problem 1.6. What are the system momenta
before and after the collision as determined by him?

Using the Galilean velocity transformations,
uy=uy—v=4m/s-2m/s=2m/s
u =~o=-3m/s-2m/s=—-5m/s
uf'=uf —o=2m/s—2m/s=0
u'=uf—v=3m/s~2m/s=1m/s
(initial momentum)’ = m,u}| + myu) = (3 kg)2m/s) + (1 kg)(—5m/s) = Ikg-m/s
(final momentum)’ = mu}’ + myu?’ = (3 kg)(0) + (1 kg)(1 m/s) = lkg-m /s
Thus, as a result of the Galilean transformations, O’ also determines that momentum is conserved (but at
a different value from that found by 0).

An open car traveling at 100 ft/s has a boy in it who throws a ball upward with a velocity of
20 ft/s. Write the equation of motion (giving position as a function of time) for the ball as
seen by (a) the boy, (b) an observer stationary on the road.

(@) For the boy in the car the ball travels straight up and down, so

Y =vot' +}ar? = (20 ft/s) + 1(—32 ft/s2)r? = 20¢ — 1612
xX'=2z=0
(b) For the stationary observer, one obtains from the Galilean transformations
t={t
x=x"+0ot=0+100t y=y =20r- 162 z2=7=0

Consider a mass attached to a spring and moving on a horizontal, frictionless surface. Show,
from the classical transformation laws, that the equations of motion of the mass are the same
as determined by an observer at rest with respect to the surface and by a second observer
moving with constant velocity along the direction of the spring.

The equation of motion of the mass, as determined by an observer at rest with respect to the surface,
is F = ma, or
d*x
—k(x —xg)=m== (1)
0 dr?
To determine the equation of motion as found by the second observer we use the Galilean transforma-
tions to obtain
d*x d*x’
x=x"+ o Xo= x4 + ot —_— = =
oo dr? dr?

Substituting these values in (/) gives

2.7
—k(x’—x(’,)=m“11t—l); )
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\

1.10.

111

1.12.

1.13.

Because (/) and (2) have the same form, the equation of motion is invariant under the Galilean
transformations.
v

Show that the electromagnetic wave equation, ‘

P  Po  Fo 1 Fo

PYCIAEEw R Sr e sy

Caxt Yy 0z ¢t o

is not invariant under the Galilean transformations.

The equation will be invariant if it retains the same form when expresked in terms of the new
variables x', y', z’, #'.  We first find from the Galilean transformations that

x4 X —p al =

ox ot oy az
ygu_w_w '

dy 0z ax  Ox

From the chain rule and using the above results we have

3 _ % o % Y. 3 3 B B _3 - A

Ix X o ay ox 37 ox o ax ox ax2  ox?
Similarly, '
Pel _ 0% P _ %
, P?  dy? 9z2 9z
Moreover, ) ’ :
2

Substituting these expressions in the wave equation glves

32 32 2 2

x? o y? 32’2 ¢t ar? c2 ax'dr ax"?
Therefore the wave equation is not invariant under the Galilean transformations, for the form of the
equation has changed.

The electromagnetic wave equation follows from Maxwell’s equations of electromagnenc theory.
By applying the procedure described here to Maxwell’s equations, one finds that Maxwell’s equations

. also are not invariant under Galilean transformations. Compare with Problem 6.23.

Supplementary Problems

A man (0’) in the back of a 20-ft flatcar moving at 30 ft/s records that a flashbulb is fired in the front
of the flatcar two seconds after he has passed a man (O) on the ground. Find the coordinates of the

event as determined by each -observer. Ans. (%', )=Q01t, 25); (x, )= (80 ft, 2 5)

A boy sees a deer run directly away from him. The deer is running with a speed of 20 mi/hr. The boy
gives chase and runs with a speed of 8 mi/hr. What is the speed of the deer relative to the boy?
Ans. 12 mi/hr

A boy in a train throws a ball in the forward direction with a speed of 20 mi/hr. If the train is moving
with a speed of 80 mi/hr, what is the speed of the ball as measured by a man on the ground?

Ans. 100 mi/hr



1.14.

1.15.

1.16.

1.17.

1.18.

1.19,

1.20.

1.21.

1.22.

1.23.

THE SPECIAL THEORY OF RELATIVITY [PART I

A passenger walks backward along the aisle of a train with a speed of 2 mi/hr as the train moves along a
straight track at a constant speed of 60 mi/hr with respect to the ground. What is the passenger’s speed
as measured by an observer standing on the ground? Ans. 58 mi/hr

A conductor standing on a railroad platform synchronizes his watch with the engineer in the front of a
train traveling at 60 mi/hr. The train is 1/4 mile long. Two minutes after the train leaves the
platform a brakeman in the caboose lights a cigarette. What are the coordinates of the brakeman, as
determined by the engineer and by the conductor, when the cigarette is lit?

Ans. (x', )= (— 4 mi, 2 min); (x, £) = (12 mi, 2 min)

A man sitting in a train lights two cigarettes, one ten minutes after the other. The train is moving in a
straight line with a velocity of 20 m/s. What is the distance separation as measured by a man on the
ground? Ans. 12,000 m

A one-kilogram ball is constrained to move to the north at 3 m/s. It makes a perfectly elastic collision
with an identical second ball which is at rest, and both balls move on a north-south axis after the
collision. Compute, in the laboratory system, the total momentum before and after the collision.
Ans. 3kg.m/s

For Problem 1.17 calculate the total energy before and after the collision. Ans. 457

Refer to Problem 1.17. Calculate the total momentum before and after the collision as measured by an
observer moving northwards at 1.5 m/s.  Ans. 0

For the observer in Problem 1.19 calculate the total energy before and after the collision.
Ans. 2251)

Repeat Problems 1.19 and 1.20 for an observer moving eastwards at 2 m/s.
Ans. Skg-m/s 37° north of west; 8.5]

A person is in a boat moving eastwards with a speed of 15 ft/s. At the instant that the boat passes a
dock a person on the dock throws a rock northwards. The rock strikes the water 6 s later at a distance
of 150 ft from the dock. Find the coordinates of the splash as measured by the person in the boat.
Ans. (x,y, )= (—90 ft, 150 ft, 6 s)

Consider a one-dimensional, elastic collision that takes place along the x-axis of O. Show, from the
classical transformation equations, that kinetic energy will also be conserved as determined by a second
observer, O', who moves with constant velocity u along the x-axis of O.




Chapter 2

The Postulates of Einstein

2.1 ABSOLUTE SPACE AND THE ETHER

A consequence of the Galilean velocity transformations is that if a certain observer measures a
light signal to travel with the velocity ¢ = 3 X 10® m/s, then any other observer moving relative to him
‘will measure the same light signal to travel with a velocity different from ¢. What determines the
particular reference frame such that if an observer is at rest relative to this frame, this privileged
observer will measure the value ¢ for the velocity of light signals?

Before Einstein it was generally believed that this privileged observer was the same observer for
whom Maxwell’s equations were valid. Maxwell’s equations describe electromagnetic theory and
predict that electromagnetic waves will travel with the speed c =1/ Veopo =3 % 10 m/s. The space
that was at rest with respect to this privilege'd observer was called “absolute space.” Any other
observer moving with respect to this absolute space would find the speed of light to be different from
c. Since light is an electromagnetic wave, it was felt by 19th century physicists that a medium must
exist through which the light propagated. Thus it was postulated that the “ether” permeated all of
absolute space.

22 THE MICHELSON-MQRLEY EXPERIMENT

If an ether exists, then an observer on the earth moving through the ether should notice an “ether
wind.” An apparatus with the sensitivity to measure the earth’s motion through the hypothesized ether
was developed by Michelson in 1881, and refined by Michelson and Morley in 1887. The outcome of
the experiment was that no motion through the ether was detected. See Problems 2.4, 2.5 and 2.6.

23 LENGTH AND TIME MF:ASUREMENTS—
A QUESTION OF PRINCIPLE

The one element common to both the null result of the Michelson-Morley experiment and the fact
that Maxwell’s equations hold only for a privileged observer is the Galilean transformations. These
“obvious” transformations were reexamined by Einstein from what might be termed an “operational”
point of view. Einstein took the approach that any quantity relevant to physical theories should, at
least in principle, have a well-defined procedure by which it is measured. If such a procedure cannot
be formulated, then the quantity should not be employed in physics.

Einstein could find no way to justify operationally the Galilean transformation ¢ =1, i.e. the
statement that two observers can measure the time of an event to be the same. Consequently, the
transformation ¢’ = ¢, and with it the rest of the Galilean transformations, was rejected by Einstein.

24 THE POSTULATES OF EINSTEIN

Einstein’s guiding idea, which he called the Principle of Relativity, was that all nonaccelerating
observers should be treated equally in all respects, even if they are moving (at constant velocity)
relative to each other. This principle can be formalized as follows:

Postulate 1: The laws of physics are the same (invariant) for all inertial (nonaccelerating) observers.

7



THE SPECIAL THEORY OF RELATIVITY [PART 1

Newton’s laws of motion are in accord with the Principle of Relativity, but Maxwell’s equations
together with the Galilean transformations are in conflict with it. Einstein could see no reason for a
basic difference between dynamical and electromagnetic laws. Hence his

Postulate 2: In vacuum the speed of light as measured by all inertial observers is

2.1

2.2,

23,

c=1/Veopy =3x108m/s

independent of the motion of the source.

Solved Problems

Suppose that a clock B is located at a distance L from an observer. Describe how this clock
can be synchronized with clock A4, which is at the observer’s location.

Set the (stopped) clock B toread tp = L/c. Att, =0 (as recorded by clock 4) send a light signal
towards the distant clock B. Start clock B when the signal reaches it.

A flashbulb is located 30 km from an observer. The bulb is fired and the observer sees the
flash at 1:00 P.M. What is the actual time that the bulb is fired?

The time for the light signal to travel 30 km is

As _ 30x10°m _
¢ 3x108m/s
Therefore, the flashbulb was fired 1 X 10~* s before 1:00 P.M.

A rod is moving from left to right. When the left end of the rod passes a camera, a picture is
taken of the rod together with a stationary calibrated meterstick. In the developed picture
the left end of the rod coincides with the zero mark and the right end coincides with the
0.90-m mark on the meterstick. If the rod is moving at 0.8¢ with respect to the camera,
determine the actual length of the rod.

In order that the light signal from the right end of the rod be recorded by the camera, it must have
started from the 0.90-m mark at an earlier time given by

As 0.90 m -
At=—=—"—"— __ =3x10""°
¢ 3x10¥m/s

During this time interval the left end of the rod will advance through a distance As* given by (see Fig.
2-1)
As*=p Ar=(08 X3 X 10°m/s)(3 X 107°s) =072 m

v=08¢ v=08¢c
—_— —_—
—
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(b) Signal arrives from right end
(a) Signal starts from right and is recorded by open camera
end; camera shutter closed. together with signal from left end.

Fig. 2-1
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24.

25.

Thereéfore, the actual length of the rod is L =090 m + 0.72 m = 1.62 m. This result illustrates that
photographing a moving rod will not give its correct length,

Let two events occur at equal distances from an observer. Suppose the observer adopts the
following statement as a definition of simultaneity of equidistant events: “The two events are
simultaneous if the light signals emitted from each event reach me at the same time.” Show
that, according to this definition, if the observer determines that two events are simuitaneous,
then another observer, moving relative to him, will in general determine that the two events
are not simultaneous.

From Fig. 2-2 it is seen that if the two light signals reach the first observer (O) at the same time,
they will necessarily reach the second observer (O’) at different times. Since the two signals started out
equidistant from O’, he will, according to the above definition, determine that the two events did not
occur simultaneously, but that event B happened before event A.

o’ —— o’ —
1 ‘ v i 1 : v
A o~ B A e <~~~ B
i T
; . ; ]
(@) Signals 4 and B start. (b) Signal B reaches O’.
o’ — o’ —
| v l 0
A o Sayr~r— B B m s |
[ T
(] i o
(¢) Signals 4 and B reach O simultaneously. (d) Signal A reaches O’.
Fig. 2-2

- Figure 2-3 diagrams a Michelson-Morley interferometer oriented with one arm (4) parallel to
the “ether wind.” Show that if the apparatus is rotated through 90°, the number of fringes,
AN, that moves past the telescope cro§§hairs is, to first order in (v/c)?

o2
AN = F(,IA'*'IB)

M Ether wind
-

o.

Mirror B

c"— 0

’ IB / c+v !
Source @ A 4

¢ N . ‘,i_ 2 .
2_ 2 ¢ v Mirror A

Telescope
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2.6.

27.

THE SPECIAL THEORY OF RELATIVITY [PART I

For arm 4, the time for light to travel to mirror 4 is obtained by dividing the path length /,; by the
velocity of light, which from the Galilean velocity transformations is ¢ — v. On return the path length is
still Z,, but now the velocity is ¢ + v, so the total time for the round trip is

i, L 2 /c
c—-v c+v—1_(02/62)

1y

To travel along the other arm a light ray must be aimed such that its resultant velocity vector (velocity
with respect to the ether plus velocity of the ether with respect to the interferometer) is perpendicular to

arm A. This gives a speed of yc2 — v? for both directions along path /5, so the time for the round trip

18
2, 2y /c

N )

If we assume v/c <1, the times 7, and #; can be expanded to first order in (v/c)® and the time
difference taken.
21, o2 2y o?
tA~T(1+?) IB%T(I‘F;E)

20, -1 2007 Igo?
§=1,~ tyr (L B)+ A __L:_

g

and

4 c? c
Now if the interferometer is rotated 90°, /, and /5 are interchanged, and there is also a reversal of the
time difference. Thus

Wa=1lp) , Lo* _ 2pv

8’ 3

¢ T c
and the interference pattern observed would show a fringe shift of AN fringes, where

Ane 88 _c@=8)  (y+ip)o
T A Ac?

Here T and A are the period and wavelength of the light.

Assume that the earth’s velocity through the ether is the same as its orbital velocity, so that
v=10"%. Consider a Michelson-Morley experiment where the arms of the interferometer
are each 10 m long and one arm is in the direction of motion of the earth through the ether.
Calculate the difference in time for the two light waves to travel along each of the arms.

Refer to Problem 2.5.
2(10~%)>

m (5m)=3.33X10"15

2 202
8 S (L~ 1p) + —c%-(IA—yB)=

The original Michelson-Morley experiment used an interferometer with arms of 11 m and
sodium light of 5900 A. The experiment would reveal a fringe shift of 0.005 fringes. What
upper limit does a null result place on the speed of the earth through the ether?

From Problem 2.5, the number of fringes, AN, seen to pass the telescope crosshairs is

2 202
AN=2_ (I, +1;)=22
Ac? <& Ac?

2(11 m)o?

0.005 = .
(5900 x 10~ m)(3 X 10® m/s)

Solving, v = 3.47 X 10°> m/s.
The earth’s orbital velocity is 3 X 10* m/s, so the interferometer was sensitive enough to detect
this motion. No fringe shift was observed.
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29.

2.10.

211

Supplementary Problems

Repeat Problem 2.3 for the ‘case where the picture is taken when the right end of the rod passes the

camera, Ans. 0.18 m

At the instant that the midpoint of a moving meterstick passes a camera, the camera shutter opens and a

_picture is taken of .the meterstick together with a stationary calibrated rule, as in Problem 2.3. If its

speed relative to the camera is 0.8¢, what will be the length of the moving meterstick as recorded on the
film?  Ans. 2778 m ‘

Refer to Problem 2.4. If the two signals reach O’ simultaneously, what is their time sequence as deter-
mined by 0?  Ans. A occurs before B

Assume that the oribital speed of the earth, 3 X 10* m/s, is equal to the speed of the earth through the
ether. If light takes 7, seconds to travel through an equal-arm Michelson-Morley apparatus in a
direction parallel to this motion, calculate how long it will take light to travel perpendicular to this
motion.  Ans. (1—0.5X 1078,



Chapter 3

The Lorentz Coordinate Transformations

Postulate 2 of Section 2.4 requires that the Galilean coordinate transformations be replaced by the
Lorentz coordinate transformations. For the two observers of Fig. 1-1 these are:

[%

t— Y x
= x— ot = ¢ Y=y 2=z 3.1)
1—(v¥/c?) 1—(v*/c?)
These equations can be inverted to give (see Problem 3.8)
. r+ % x'
=Xt =—S —  y=y =7 (3.2)
1= (v?/c?) 1~ (v%/c?)

In (3.1) and (3.2), v is the velocity of O’ with respect to O along their common axis; v is positive
if O’ moves in the positive x-direction and negative if O’ moves in the negative x-direction It has also
been assumed that both origins coincide when the clocks are started, so that = f¢=0 when
x'=x=0. Note that the inverse transformations can be obtained from the first set of transforma-
tions by interchanging primed and unprimed variables and letting v — —v. This is to be expected
from Postulate I, since both observers are completely equivalent and observer O moves with velocity
— v with respect to O’.

3.1 THE CONSTANCY OF THE SPEED OF LIGHT

Suppose that at the instant when O and O’ pass each other (at 1 = ¢ = 0), a light signal is sent
from their common origin in the positive x-x’ direction. If O finds that the signal’s spatial and time
coordinates are related by x = ct, then, according to (3.7), O’ will find that

o = X — ot _ ct — vt - ct[1~(v/c)] - 1—(v/¢) of
Vi@ Vieove Vi-wolliswal ¥ IFE0

.o ark _ - a _ ([1-(v/¢)] =1/1—(v/c) t
\/1—(02/02) \/1—(02/c2) \/[1 — (/) ][+ (v/c)] L+ (v/¢)

Thus O’ will find that x’ = ct’, in agreement with the second postulate of Einstein. Note also that for
this event ¢ # ¢, in definite disagreement with the Galilean assumption.

3.2 THE INVARIANCE OF MAXWELL’S EQUATIONS

As discussed in Chapters 1 and 2, Maxwell’s equations of electromagnetic theory are not invariant
under Galilean transformations. However, as shown by H. A. Lorentz (before Einstein), they are
invariant under Lorentz transformations. See Problems 6.21 through 6.23.

12
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33 GENERAL CONSIbERAHONS IN SOLVING PROBLEMS
INVOLVING LORENTZ TRANSFORMATIONS

When attacking any space-time problem, the key concept to keep in mind is that of “event.”
Most problems are ¢oncerned with two observers measuring the space and time coordinates of an
event (or events) Thus, each event has eight numbers associated with it: (x, y, z, ), as assigned by O,
and (x!,)’,z/,t), as assigned- by O’. The Lorentz coordinate transformations express the re-
lationships betwcen these assignments.

Many times$ problems are concerned with the determination of the spatial interval and/or the time
interval between two events. In this case a useful technique is to subtract from each other the
appropriate Lorentz transformations describing each event. For example, suppose observer O’
measures the time and spatial intervals between two events, 4 and B, and it is desired to obtain the
time interval between these same two events as measured by O. From (3.2) one obtains upon
subtracting ¢, from 5

B+ o/ — ) 3.3)

g = U
V1 - (v*/¢?)

Since all the quantities on the right-hand side of this equation are known, one can determine #5 — ¢,.

34 SIMULTANEITY

Two events are simultaneous to an observer if he measures that the two events occur at the same
time. With classical physics, when one observer determined that two events were simultaneous, then,
since ¢’ = ¢ from the Galilean transformations, every other observer would also find that the two events
were simultaneous.  In relativistic physics, on the other hand, two events that are simultaneous to one
observer will, in general, not be simultaneous to another observer.

Suppose, for example, that events 4 and B are simultaneous as determined by O’, so that ¢, = ¢}.
According to (3.3), observer O will measure the time separation of these same two events as

(/Y - %)

==
' VI = (v¥/c?)

_If the two events occur at the same spatial location, so that xp = x/, then the two events will also be
simultaneous as determined by O. But if x; # x/, O will determine that the two events are not
simultaneous.

Note that if the two events occur at the same spatial locatlon, only one clock is needed by each
observer to determine if the events are simultaneous. On the other hand, if the two:events are
separated spatially, then each observer needs two clocks, properly synchronized, to determine whether
of not the two events are simultaneous.
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3.2,

33.

THE SPECIAL THEORY OF RELATIVITY [PART I

Solved Problems

Evaluate |1 — (v*/¢?) for (a) v =10"%; (b) v =0.9998c.

In the following we make use of the binomial expansion,

24 ...

" -1
(1+x)=1+nx+n(—n2—)x

(a) Setting x = —107*and n = 1/2 in the binomial expansion, and, because x is so small, keeping only
the first two terms of the expansion, we obtain

(1=10"9"%~ 1+ 1(=10~%) = 1 — 0.00005 = 0.99995

(b) VI = (02/¢?) =y - (09998)* =\1 - (1 - 0.0002)°
To evaluate (1 — 0.0002)* we employ the binomial expansion to obtain

(1 - 0.0002)’~ 1 — 2(0.0002) = 1 — 0.0004

Using this in the above expression we obtain
\/1 — (v?/c?) ~y1 —(1-0.0004) =y0.0004 = 0.02

As measured by O a flashbulb goes off at x = 100 km, y = 10km, z=1kmatr=5x 107*s.
What are the coordinates x’, y’, z’, and ¢’ of this event as determined by a second observer, O’,
moving relative to O at —0.8¢ along the common x-x" axis?

From the Lorentz transformations,

x — ot 100 km — (—0.8 X 3 X 10°km/s)(5 X 10™%5)

Vi - (v%/c?) ) 1-(08)*

—0.8)(100 k
t—ﬂx 5x10-4s_(__m

2 3% 10°km/s
= d = /S 128x10-4s

1-(v?/c?) 1-(08)°

=367 km

x' =

Suppose that a particle moves relative to O’ with a constant velocity of ¢/2 in the x’y’-plane
such that its trajectory makes an angle of 60° with the x’-axis. If the velocity of O’ with
respect to O is 0.6¢ along the x-x’ axis, find the equations of motion of the particle as

determined by O.
The equations of motion as determined by O’ are
X' =ut = —;— (cos 60°)  y'=ut = % (sin 60°)¢’

Substituting from (3.7) in the first expression, we obtain

t— % X
S Sl S % (cos 60°) S S—
Vi - (/) V1= (v%/c?)

_c onf, _ 06
x —(0.6c)t = 5 (cos 60 )(t Tx)

x = (0.74c)t
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Substituting in the second expression then gives
0
t— =x
2 ‘ t —(0.6)(0.74 ¢
d = £ (sin 60°) -—( X )

V1= (2*/) 2 1-(0.6)

34. A train 1 /2 mile long (as measured by an observer on the traih) is traveling at a speed of 100
mi/hr. Two lightning bolts strike the ends of the train simultaneously as determined by an
observer on the ground. What is the time separation as measured by an observer on the

train?
We have

y'=y= 5 (sin 60°) = (030 c)t

(100 mi/hi')( - ) =278 X 10~ mi/s

Let events A and B be defined by the striking of each lightning bolt. With O as the ground observer,
we have from (3.3)

Y 0 7’ ’
(—t)+ 2 (xp — x3)

tp—t, =
VI - (v¥/c?)

2.78 X 10~2 mi/s

(-t + —— (0.5 mi)
0 (1.86 X 10° mi/s)
V1 - (v*/c?)
Solving, £ — t;, = —4.02 X 1073, The minus sign denotes that event A occurred after event B.

35. Observer O notes that two events are separated in space and time by 600 m and 8 X 1077 s,
How fast must an observer O’ be moving relative to O in order that the events be

simultaneous to O'?
Subtracting two Lorentz transformations, we obtain

(—-1)— '%‘(xz - x1)
c

V1 = (0*/c?)

8xlo-7s—2(
» (o

-t =

600 m )
3x108m/s

V1 - (v%/c)

0=

Solving, v/c = 04.

3.6. The sphce-time coordinates of two events as measured by O are x, = 6 X 10* m, »=2z;=0m,
=2%X10"*s and x,=12X10* m, y,=2,=0 m, #,=1X10"% 5. What must be the
velocity of O’ with respect to O if O’ measures the two events to occur simultaneously?

Subtracting two Lorentz transformations:
v
(—t)— 5 (- x)
c

_ V1 - (v*/¢?)

. (1><10“'s—2><10"s)—%(

0=
V1 - (v¥/¢?)

Solving, v/c= —1/2. Therefore v is in the negative x-direction.

- t=

12x10‘m—6x10“m)
3x10°m/s
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3.9.

3.10.

3.11.

3.12.

THE SPECIAL THEORY OF RELATIVITY {PART I

Refer to Problem 3.6. What is the spatial separation of the two events as measured by O"?
Subtracting two Lorentz transformations:

(x;=x) —o(t;—- 1)
V1 - (v*/c?)

From Problem 3.6, v/c=—1/2orv=—15X 108 m/s.

12X10°m—6X10°m)— (—1.5%10°m/s}1 X 107 4s—2x 10"*s
xﬁ—x’1=( )~ ( /X )=5.20X10"m

V1 - (—05)

’

LA—
Xy = X =

Supplementary Problems

Obtain (3.2) from (3.1).

As determined by O’ a lightning bolt strikes at x’ =60 m, y’ =2z’ =0, # =8 X 1078s. O’ has a velocity
of 0.6¢ along the x-axis of 0. What are the space-time coordinates of the strike as determined by O?
Ans. (x,y,2z,6)=(93m,0,0,2 % 1077 s)

Observer O’ has a velocity of 0.8¢ relative to O, and clocks are adjusted such that ¢t = ¢ =0 when
= x'=0. If O determines that a flashbulb goes off at x =50 m and 1 =2 X 1077 s, what is the time
of this event as measured by 0?7  Ans. 111X 1077 s

.

Refer to Problem 3.10. If a second flashbulb flashes at x’ = 10 m and # =2 X 107 s as determined by
O’, what is the time interval between the two events as measured by 0?7  Ans. 1.78 X 1077 s

Refer to Problem 3.11. What is the spatial separation of the two events as measured by (@) O’, (b) O?
Ans. (a) 6.67 m; (b) 46.67 m




Chapter 4

Relativistic Length Measurements

41 THE DEFINITION OF LENGTH

If a body is at rest with respect to an observer, its length is determined by measuring the difference
between the spatial coordinates of the endpoints of the body. Since the body is not moving, these
measurements may be made at any time, and the length so determined is called the rest length or
proper length of the body.

For a moving body, however, the procedure is more complicated, since the spatial coordinates of
the endpoints of the body must be measured at the same time. The difference between these
coordinates is then defined to be the length of the body.

Consider now a ruler, oriented along the x-x’ direction, that is at rest with respect to observer O’.
We wish to determine how the length measurements of O and O’ are related to each other when O’ is
moving relative to O with a velocity v in the x-x’ direction. Let the ends of the ruler be designated by
A and B. From the inverse Lorentz transformations we obtain

(xg = x4) + 0(ts — 1)

V1 - (v*/c?)

The difference x; — x;; = L, is the (proper) length of the ruler as measured by O’. If x, and x, are
measured by O at the same time, so that t; — ¢, = 0, then the difference x; — x, = L will be the length
of the ruler as measured by 0. Thus we have

L =Lgy1 -~ (v*/c?)

Since Y1 — (v?/¢?) <1 we have L < Ly, so that the length of the moving ruler will be measured by O
to be contracted. This result is called the Lorentz-Fitzgerald contraction.

’ r e
xB_xA_

A Warning!

It is essential to keep clear the distinction between the concepts of “spatial coordinate separation”
and “length.” A common mistake in solving problems is simply to multiply or divide a given spatial
interval by the term \/1 — (v®/c?) . This approach will work if one is concerned with finding the
relations between lengths, where the concept of “length” is defined precisely above. However, if one
is interested in the spatial interval between two events that do not occur simultaneously, then the
answer is obtained from the subtraction technique of Section 3.3; the correct answer will not be

obtained by multiplying or dividing the original spatial separation by VI - (v*/cY) .

17
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43.

44.
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THE SPECIAL THEORY OF RELATIVITY [PART 1

Solved Problems

How fast does a rocket ship have to go for its length to be contracted to 99% of its rest length?

From the expression for length contraction,

-£= = — 2/02 =
I 0.99 =Y1 — (v*/c?) or v=0141c

Calculate the Lorentz contraction of the earth’s diameter (in the plane of the ecliptic) as
measured by an observer O’ who is stationary with respect to the sun.

Taking the orbital velocity of the earth to be 3 X 10* m/s and the diameter of the earth as 7920 mi,
the expression for the Lorentz contraction yields

2
D = Dy1 — (v?/c?) = (7192 10° mi)\/: ( 3x10°m/s ) ~(7.92 X 10° mi)(1 — 0.5 X 10~%)

3% 10*m/s

Solving, Dy — D = 3.96 X 10=5 mi=2.51in. It is seen that relativistic effects are very small at speeds
that are normally encountered.

A meterstick makes an angle of 30° with respect to the x’-axis of O’. What must be the value
of v if the meterstick makes an angle of 45° with respect to the x-axis of O?

We have:
Ly=L'sing" =(l m)sin30°=05m L, =L cos @ =(1m)cos30°=0.866 m
Since there will be a length contraction only in the x-x’ direction,
L=L=05m L= Ly - (v¥/c?) = (0866 m)Y1 — (v*/c?)
Since tan8=L,/L,,
0.5m
(0.866 m)y1 — (v*/c?)

tan 45° = 1=
Solving, »=0816¢.

Refer to Problem 4.3. What is the length of the meterstick as measured by O?
Use the Pythagorean theorem or, more simply,

L
__ v _05m _
L= a5 = snd5 0.707 m

A cube has a (proper) volume of 1000 cm?®. Find the volume as determined by an observer
0’ who moves at a velocity of 0.8¢ relative to the cube in a direction parallel to one edge.

The observer measures an edge of the cube parallel to the direction of motion to have the contracted

length
5 =131 = (v¥/c) = (10 cm)Y1 - (08)° =6em

The lengths of the other edges are unchanged:
ly’=1y=1,’=1,=10cm

Therefore,

V' =1, = (6 cm)(10 cm)(10 cm) = 600 cm’®
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4.6.

4.7.

438,

49.

4.10.

4.11.

4.12.

Supplementary Problems

An airplane is moving with respect to the earth at a speed of 600 m/s. Its proper length is 50 m. By
how much will it appear to be shortened to an observer on earth?  Ans. 107°m

Compute the contraction in length of a train 1/2 mile long when. it is traveling at 100 mi/hr.
Ans. 5.58 X 107" mi=3.52% 107 in.

At what speed must an observer move past the earth so that the earth appears like an ellipse whose major
axis is six times its minor axis?  Ans. 0.986¢

An observer O’ holds a 1.00 m stick at an angle of 30° with respect to the positive x’-axis. O’ is moving
in the positive x-x’ direction with a velocity 0.8¢ with respect to observer 0. What are the length and
angle of the stick as measured by 0?  Ans. 0.721 m; 43.9°

A square of area 100 cm? is at rest in the reference frame of O. Observer O’ moves relative to O at 0.8¢
and parallel to one side of the square. What does O’ measure for the area? = Ans. 60 cm?

For the square of Problem 4.10, find ihe area measured by O’ if O’ is moving at a velocity 0.8¢ relative
to O and along a diagonal of the square.  Ans. 60 cm?

Repeat Problem 4.5 if O’ moves with the same speed parallel to a diagonal of a face of the cube.
Ans. 600 cm® '



Chapter 5

Relativistic Time Measurements

5.1 PROPER TIME

If an observer, say O, determines that two events A and B occur at the same location, the time
interval between these two events can be determined by O with a single clock. This time interval,
1y — t, = At,, as measured by O with his single clock, is called the proper time interval between the
events.

52 TIME DILATION

Now consider the same two events 4 and B as viewed by a second observer, O’, moving with a
velocity v with respect to 0. The second observer will necessarily determine that the two events occur
at different locations and will therefore have to use two different, properly synchronized clocks to
determine the time separation t; — t;, = At’ between 4 and B. To find the relationship between the
time separations as measured by O and O’ we subtract two of the Lorentz time transformations,
obtaining

v
Aty — 2 (xp — x4)

V1= (v*/c?)

Because O determines that the two events occur at the same location, x5 — x, =0. Thus

Aty
V1 - (v?/¢?)

Since V1 — v? / 2 <1, A > At,, so that the time interval between the two events as measured by
O’ is dilated (enlarged).

In the above example the single clock was taken to be at rest with respect to 0. The same result
would obtain, however, if the single clock were taken to be at rest with respect to O’. Thus, in
general, suppose a single clock advances through a time interval Az, If this clock is moving with a
velocity v with respect to an observer, he will determine that his two clocks advance through a time
interval A¢ given by

At =

At =

Aty

V1= (v*/?)
See Fig. 5-1.

Time dilation is a very real effect. Suppose in Fig. 5-1 cameras are placed at the location of clock
2 and at the location of the single clock, and a picture is taken by each camera when the single clock
passes clock 2. When the pictures are developed, each picture will show the same thing—that the
single clock has advanced through Az, while clock 2 has advanced through Az, where At and Ay, are
related by the time dilation expression.

At=

20
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’

74 Y y y
_—— . —_—
v : Clocks 1 and 2 v
advance through At
. Single clock advances
Single clock through At
Q. A ORI
Clock 1 » Clock 2 x Clock 1 Clock 2 x
(a) )]

Fig. 5-1. Time Dilation as Viewed by Observer O

A Warning!
It is important to keep clear the distinction between the “time separation” of two events and the

“proper time interval” between two events. If observers O and O’ measure the time separation
between two events that, for both observers, occur at different spatial locations, then these time

separations are not related by simply multiplying or dividing by Y1 — (v?/¢?) .

Solved Problems

5.1. The average lifetime of p-mesons with a speed of 0.95¢ is measured to be 6 X 10~¢
Compute the average lifetime of p-mesons in a system in which they are at rest.

The time measured in a system in which the y-mesons are at rest is the proper time.

- Aty = (A1 = (03/c?) = (6 X 1076 s)Y1 — (0.95)* = 1.87 X 10~

5.2. An airplane is moving with respect to the earth with a speed of 600 m/s. As determined by
earth clocks, how long will it take for the airplane’s clock to fall behind by two microseconds?

From the time dilation expression,

At plane At plane

T 1-2x10"2
\/__ 6x102m/s
3><108m/s

(2 X 107 2)At s & Alegriy — Dlpjane =2 X 1076 s v

Atn~10°s = 11.6 days
This result indicates the smallness of relativistic effects at ordinary speeds.

53.  Observers O and O’ approach each other with a relative velocity of 0.6c. If O measures the
initial distance to O’ to be 20 m, how much time will it take, as determined by O, before the
two observers meet?

We have:

distance _ 20m

Ar=
velocity 0 6% 3 X 108 m/sec

=1L1X 10-%s
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54.

5.5,

5.6.
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In Problem 5.3, how much time will it take, as determined by O’, before the two observers
meet?

The two events under consideration are: (4) the position of O’ when O makes his initial
measurement, and (B) the coincidence of O and O’. Both of these events occur at the origin of O’.
Therefore the time lapse measured by O’ is equal to the proper time between the two events. From the
time dilation expression,

Aty = (ANY1 = (v2/¢?) = (111 X 10-® s)}/1 — (0.6)* =8.89 X 10~% s

This problem can also be solved by noting that the initial distance as determined by O’ is related to
the distance measured by O through the Lorentz contraction:

L' = Lo\l - (v*/c?) =(20 m)\/l —-(06)* =16m

Then

Pions have a half-life of 1.8 X 107®s. A pion beam leaves an accelerator at a speed of 0.8c.
Classically, what is the expected distance over which half the pions should decay?

We have:
distance = 0 Ar = (0.8 X 3 X 10° m/s)(1.8 X 107%5) =4.32 m

Determine the answer to Problem 5.5 relativistically.

The half-life of 1.8 X 107% s is determined by an observer at rest with respect to the pion beam.
From the point of view of an observer in the laboratory, the half-life has been increased because of the
time dilation, and is given by

_ At _ 18x107%s

Vi-(*/c)  y1-(08)
Therefore, the distance traveled is

d=vAr=(08x%x3x10°m/s)(3 X107 85)=720m

For an observer at rest with respect to the pion beam, the distance d, the pions have to travel is
shorter than the laboratory distance 4, by the Lorentz contraction:

At =3x10"8s

d, = d\1 - (v*/c?) =dp/1 - (0.8)* =064,
The time elapsed when this distance is covered is

d 0.64,
Azo=?” or 18x108s= !

08 %3 X108 m/s

Solving, d; = 7.20 m, which agrees with the answer determined from time dilation.
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5.7.

58.

59.

5.10,

511

Supplementary Problems

An atom will decay in 2 X 107 s, What will be the decay time as measured by an observer in a
laboratory when the atom is moving with a speed of 0.8¢?  Anms. 3.33%x107%s

How fast would a rocket ship have to go if an observer on the rocket ship ages at half the rate of an
observer on the earth?  Ans. 0.866¢

A man with 60 years to live wants to visit a distant galaxy which is 160,000 light years away. What
must be his constant speed? ~ Ans. v/c=1—(0.703 X 10~7)

A particle moving at 0.8¢ in a laboratory decays after traveling 3 m. How long did it exist as measured
by an observer in the laboratory?  Ans. 1.25x 107 %s

What does an observer moving with the particle of Problem 5.10 measure for the time the particle lived
before decaying?  Ans. 075X 107%s



Chapter 6

Relativistic Space-Time Measurements

In the previous chapters we discussed, more or less separately, relativistic space measurements and
relativistic time measurements. There are, however, many types of problems where space and time
measurements are intertwined and cannot be treated separately.

Solved Problems

6.1. A meterstick moves with a velocity of 0.6¢ relative to you along the direction of its length.
How long will it take for the meterstick to pass you?

The length of the meterstick as measured by you is obtained from the Lorentz contraction:

L=Lo\1 - (v*/c?) =(1m)y1-(06)’ =08m

The time for the meterstick to pass you is then found from
distance = velocity X time
0.8 m = (0.6 X 3 X 108 m/s) X At
At=444%x10"7s

6.2. It takes 10° years for light to reach us from the most distant parts of our galaxy. Could a
human travel there, at constant speed, in 50 years?

The distance traveled by light in 10° years is, according to an observer at rest with respect to the
earth,

dy= c(AD) = 10°¢

where ¢ is expressed in, say, mi/yr. If this observer now moves with constant speed v with respect to
the earth, the distance d that he has to travel is shortened according to the Lorentz contraction:

d = dg\1 = (v*/c?) = (10°c)y1 - (v*/cH)
The time interval available to travel this distance is 50 years, so that
d 10yl = (v*/c?)
S AT 50
Solving,

% =y1—-2.5%10"7 ~0.999999875

Therefore a human traveling at this speed will find that when he completes the trip he has aged 50 years.

6.3. A p-meson with an average lifetime of 2 X 1076 s is created in the upper atmosphere at an
elevation of 6000 m. When it is created it has a velocity of 0.998¢ in a direction toward the

24
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64.

6.5.

6.6.

6.7.

earth. What is the average distance that it will travel before decaying, as determined by an
observer on the earth? (Classically, this distance is

d=0vAt=(0998 x 3 x 108 m/s)(2 X 10-6 §) =599 m
so that u-mesons would not, on the average, reach the earth.)
As determined by ’an observer on the earth, the lifetime is increased because of time dilation:
At - _2X107%s
Vi—(o?/c)  1-(0998)
The average distance traveled, as determined by an earth observer, is
d=0 Aty = (0998 X 3 X 10° m/s)(31.6 X 106 5) = 9470 m

Thus, an observer on the earth determines that, on the average, a p-meson will reach the earth.

At = =31.6Xx10"6s

Consider an observer at rest with respect to the y-meson of Problem 6.3. How far will he
measure the earth to approach him before the y-meson disintegrates? Compare this distance
with the distance he measures from the point of creation of the p-meson to the earth.

As determined by an observer at rest with respect to the p-meson, the distance traveled by the
earth is :

d=1001,=(0998%x3%X10°m/s)(2X 107%s) =599 m
The initial distance, L, to the earth, however, is shortened because of the Lorentz contraction:

L=Lo\1 - (0*/c?) =(6x 10° m)Y1 - (0.998)° =379 m

Thus, an observer on the y-meson determines that, on the average, it will reach the earth, in agreement
with the result of Problem 6.3.

A pilot in a rocket ship traveling with a velocity of 0.6¢ passes the earth and adjusts his clock
so that it coincides with 12:00 P.M. on earth. At 12:30 P.M., as determined by the pilot, the
rocket ship passes a space station that is stationary with respect to the earth. What time is it
at the station when the rocket passes?

From the time dilation expression,

Atrocket — _ 30 min

Vi-@¥/c) V- (06)

= 37.5 min

At station =

" Therefore, the time at the spéce station is 12:37.5 P.M.

In Problem 6.5, what is the distance from the earth to the space station as determined (a) by
the pilot? (b) by an observer on the earth?

(a) distance = velocity X time = (0.6 X 3 X 10® m/s)(30 min X 60 s/min)
' =324x10"m
) distance = velocity X time = (0.6 X 3 X 10® m/s)(37.5 min X 60 s /min)
' =405x 10" m

Refer to Problems 6.5 and 6.6. When the rocket ship passes the space station the pilot
reports to earth by radio. When does the earth receive the signal, (a) by earth time? (b) by
rocket time?
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6.8.

6.9.
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(@) According to an earth observer,

distance _ 4.05x 10" m . 1min
velocity 3% 10°m/s 60s

Thus the signal arrives, according to an observer on the earth, at
12:37.5 P.M. +22.5 min = 1:00 P.M.

time = =22.5 min

(b) According to the pilot,

distance _ 324X 10" m _ 1 min

velocity 3 x 10°m/s 60s — \8min

time =

Thus, according to the pilot, the signal arrives at the earth at
12:30 P.M. + 18 min = 12:48 P.M.

Suppose an observer O determines that two events are separated by 3.6 X 10® m and occur 2 s
apart. What is the proper time interval between the occurrence of these two events?

There exists a second observer, O’, moving relative to the first observer who will determine that the
two events occur at the same spatial location. The proper time interval between the two events is the
time interval measured by this observer. Denoting the two events by A4 and B, we obtain upon
subtracting two Lorentz transformations

(x5 = x4) = 0(t5 = 14)
V1= (v%/¢?)
oo 36X 10 m—0Q29)
v=18X10"m/s=06c

Again subtracting two Lorentz transformations, we obtain the proper time interval as

Xg— Xy =

o oo 0.6 X 3.6 X 10° m/s
(tB_tA)_ 'c—z(xB—xA) 3><108m/s
r_t/14= = =16s

Ip
V1 - (v2/¢?) Vi - (0.6)

Another way to solve this problem is to use v and the time dilation expression:

Aty = (ADV1 — (03/c?) =2 s)Y1—(0.6)° =165

For observer O, two events are simultaneous and occur 600 km apart. What is the time
difference between these two events as determined by O’, who measures their spatial
separation to be 1200 km?

Let 4 and B designate the two events. Subtracting two Lorentz transformations, we obtain

(x5 — x4) — v(tg — o)

Xp— Xg =
\/1—(02/c2)
6 X 10°m — 0(0
12 % 105 m = 8210 m — 00

V1 - (v?/c?)

2 =0.866
C
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6.10.

6.11.

6.12.

Again subtracting two Lorentz transformations:

o o 0.866(6 % 10° m)
(ts — 1) - ?“"_" *4) 3% 10°m/s
—t, = = =-346X%107"3s

Y1 - (9?/c?) \/1 — (0.866)°

The minus sign denotes that event A occurred after event B as determined by O".

Observer O, moving with a speed of 0.8¢ relative to a space platform, travels to a-Centauri,
which, at a distance of 4 light years, is the nearest star to the platform. When he reaches the
star he immediately turns around and returns to the platform at the same speed. When O’
reaches the space platform, compare his age with that of his twin brother O, who has stayed
on the platform.

According to O the time elapsed during the trip from the space platform to a-Centauri is

distance 4 yr X (distance traveled by light/yr)
velocity 0.8 X (distance traveled by light /yr)

=5yr

Since the return trip takes place with the same speed, the total time elapsed, as measured by the platform
observer O, is

Atl'ound tripl =10 yr
O’ measures the proper time interval between the departure from the platform and the arrival at the

+ star. Hence, from the time dilation expression,

= (At)\/l —(v¥/cH) =(5 yr)Vl - (08

and the total time elapsed, as measured by O’, is
At travel = 6 yr

Therefore, O’ is 4 years younger than O when they meet. This result illustrates the famous “twin effect”
in Special Relativity. Note that.the motion of the twins is definitely not symmetrical. In order to get
back home the ttaveling twin must turn around. This turning around is real (O’ experiences measur--
able accelerations), in contrast to the apparent turning around that O’ observes of O (who experiences
no acceleration during his entire history). Thus the motion of O’ is equivalent to that of two different
inertial observers, one moving with v = +0.8¢ and the other moving with v = —0.8c. Twin O, on the
other hand, is equivalent to one single inertial observer.

Refer to Problem 6.10. Suppose that every year (as determined by 0), O sends a light signal
to O’. How many signals are received by O’ on each leg of his journey? (In other words,
what would twin O’ actually see if he looked at his brother O through a telescope?)

As determined by O, brother O’ reaches a-Centauri at t = 5 yr. In order for a light signal to reach
a-Centauri simultaneously with O’, it must have been sent by O at an earlier time, determined by

distance _ 4 yr X (distance traveled by light/ yr)
velocity distance traveled by light/yr

Therefore, a signal sent by O at ¢ =1 yr reaches a-Centauri simultaneously with O’. Since O sends a
total of 10 signals, the remaining signals all reach O’ on the return journey. !

time = =4yr

Refer to Problems 6.10 and 6.11. Suppose that every year (as determined by O’), O’ sends a
light signal to O. Consider the signal sent by O’ just as he reaches a-Centauri. What is the
time, as determined by O, when this signal is received. (That is, what would twin O see if he
looked at his brother O’ through a telescope?)



28

6.13.

6.14.

6.15.

6.16.

6.17.
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As determined by O, brother O’ reaches a-Centauri at 7 =5 yr. A light signal sent by O’ from
a-Centauri will reach O in a time interval (as determined by O) of

_ distance _ 4yr X (distance traveled by light/ yr)
= velocity distance traveled by light /yr -

4 yr

Therefore, this signal reaches O at t =5 yr + 4 yr =9 yr. Hence, of the six signals sent by O’, three of
them are received by O during the first nine years (one every three years) and the remaining three are
received by O during the last year.

A man in the back of a rocket shoots a high-speed bullet towards a target in the front of the
rocket. The rocket is 60 m long and the bullet’s speed is 0.8¢, both as measured by the man.
Find the time that the bullet is in flight as measured by the man.

We have:
_ distance _ 60 m =250%x10"7s
velocity  08x3x103m/s

Refer to Problem 6.13. If the rocket moves with a speed of 0.6¢ relative to the earth, find the
time that the bullet is in flight as measured by an observer on the earth.

Subtracting two inverse Lorentz transformations:
0.6)(60 m)
Y+ L (xh - X 25%1077 s + ——-
(tp— )+ o2 (x5 — x2) 3x108m/s
tg— 1, = = =463%x1077s

V1 —(v?/c?) V1-— (0.6)

The rest lengths of spaceships 4 and B are 90 m and 200 m, respectively. As they travel in
opposite directions a pilot in spaceship 4 determines that the nose of spaceship B requires
5% 1077 s to traverse the length of 4. What is the relative velocity of the two spaceships?

As determined by pilot 4,

In Problem 6.15, what is the time interval, as determined by a pilot in the nose of B, between
passing the front and rear ends of A?

The relative velocities are the same as determined by each observer. The pilot B measures the
length of spaceship A to be contracted according to

L=Lgy1 - (v*/c?) =0 m)y1-(06)’ =72m

The time interval as measured by B is then

A rocket ship 90 m long travels at a constant velocity of 0.8¢ relative to the ground. As the
nose of the rocket ship passes a ground observer, the pilot in the nose of the ship shines a
flashlight toward the tail of the ship. What time does the signal reach the tail of the ship as
recorded by (a) the pilot, (b) the ground observer?
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S/
(a) Letevents A and B be defined by the emission of the light signal and the light signal’s striking the
tail of the rocket, respectively. Since the signal travels at speed ¢ in the negative direction,

, x’B - x:{ -9 m —7
B —c —-3%108m/s
(b) Subtraction of two inverse Lorentz transformations gives N
' (=90 m)
- - 3%X1077s+(0.8) —————
(tB tA) + (xB xA) § ( ) 3 % 108 m/s

= =1%10""s

tp—ty =
o Vl-—(vz/cz) V1 - (0.8)°

6.18.  Refer to Problem 6.17." When does the tail of the rocket pass the ground observer, (a)
according to the ground observer? (b) according to the pilot?

(a) As determined by the ground observer, the length, L, of the rocket is

L= Loyl = (*/c?) =(90m}1-(08) =54m

Then
ar=Lo___3m_ 55510775
v 08X3Xx10®°m/s
() ar=L o 0m 395,107

v 08x3x10°m/s

&

6.19. The speed of a rocket with respect to a space station is 2.4 X 10® m/s, and observers O’ and O
in the rocket and the space station, respectively, synchronize their clocks in the usual fashion
(ie. t=1¢ =0 when x = x"=0). Suppose that O looks at O”s clock through a telescope.
What time does he see on O”’s clock when his own clock fe‘ads 30 s?

Let events 4 and B be defined, respectively, by the emission of the light signal from O’ and the
reception of the same signal by O. Our problem is to find #,. Applying the inverse Lorentz
transformations to event 4, we obtain

et (v/cHD)xy i+ (@/cHO) 1
4= = =
\/1 - (v*/c?) \/l - (0.8) 06

x4 + ot 0+ (0.8 x 3 % 10* m/s)¢,
xym At 0t /)‘=(4.0x108m/s)t;

VI=(*/c®) V- (08)*

The light signal travels in the negative direction at speed c, so that

Xp— X4 = _.c(tB - tA)

Substituting from above,
, m Z
0- (4.0 X 108 m/s)t, = (—3 X lOé " )(305 X3 )
Solving; #, = 10.0 s. ’

This result, and that of Problem 6.20, point out the distinction between seeing an event and
measuring the coordinates of the same event.

6.20. Refer to Problem 6.19. If 0 looks at O’s clock through a telescope, what tlme does his own
' clock read when he sees O’s clock reading 30 s? :
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6.21.

6.22.
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Let events 4 and B be defined by the emission of the light signal from O and the reception of the
same signal by O’, respectively. Our problem is to find #. Applying the Lorentz transformations to
event A gives .

X4 — Oty 0—(3x10°m/s)(30s)

X4 = = = ~150 X 10°m
1—-(0%/c?) 1 - (0.8)

[ = - (u/cz)xA _ 305—(0/02)(0) —s0s
1-(v*/c?) 1 - (0.8)

As measured by O, the light signal travels in the positive direction with speed ¢, so that
xp = xp = ¢ty ~ 1)
Substituting from above,
0—(—150 X 108 m) = (3 X 10® m/s)(¢5 — 50°s)
Solving, tz = 100 s.

The equation for a spherical pulse of light starting from the origin at r =+ =0 is
x2+y2+22—c2t2=0
Show from the Lorentz transformations that O’ will also measure this same pulse to be

spherical, in accord with Einstein’s second postulate stating that the velocity of light is the
same for all observers.

From the inverse Lorentz transformations :
12
2= x + vt o 12 —~ (x? + 072 + 20x'1)
‘/1_(02/02) ] - (v*/c?)
ne I
U+ (v/c*)x’ 2
2= (6/) = ]2 > (%x’2+t/2+2—t;—x’t’)
1’1—-(02/02) ] 1= (v /e \e 4

Substituting, one finds that
242+ 22— W =Xyt -
Therefore, since x? + y2 + z* — ¢** = 0, we also have
x4+ y’2 +z22-c%?=0

so that the pulse as determined by O’ is also spherical.

Show that the differential expression
dx? + dy? + dz* — c%dr?
is invariant under a Lorentz transformation.

If the expression is invariant, it will retain the same form when expressed in terms of the primed
coordinates. From the inverse Lorentz transformations one finds

- 2
dxt= dx’ + v dt } = 1 (12/ ) (dx? + 0¥ dt? + 20 dx’ dr')
1 - (v¥/c? A
- 2
dt + (v/c¥dx’ 2
d? = (v/<%) = ‘2 . (%dx'2+ ar* + 2—'21dx’ dt’)
] 1/1_(02/62) 1-(v*/cH) \ ¢ c

dy2 = dy’2 dzt = dz”*
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Substituting these expressions one finds

dx*+ dy* + dz* — oM = dx? + dy'? + dz? — Fdr?

6.23. Show that the electromagnetic wave equation,

' 92 92 92 92
_¢ + _¢ + ._.i - _1,. _¢ =
ax? - yr 92 ¢ o
is invariant under a Lorentz transformation.

The equation will b’e invariant if it retains the same form when expressed in terms of the new

variables x’, y’, 2/, t.  To express the wave equation in terms of the primed variables we first find from
the Lorentz transformations that :

X _ 1 o' _ v
¥ Vi— @) CVitere
o __ o/ o _ 1
Y Ni— @) 1= (o?/e)
Y_w_ o w_w ¥ _
dy 9z dy 0z ax
From the chain rule, and using the above results, we have
9 % oo % Y % o Yoo 1 D, -0 d
9x 9x’ dx & ox 37 Ix 9 ox x’ ot’

I~y V- e

Differentiating again with respect to x, we have

L 1 Vo o2 e\ _20 3%
dx? 1 - (v%/cY) x? ot ar? ¢t —p? &X'
Similarly we have
a_¢ = —v _gt + 1 ..a_qi
t 7 oo OxX VN
1= (0%/c%) 1-(v*/c?)
3% 1 , 8% % 20 3%
I\ T ar )T ox'dr
1-(v*/c?)
S Ve 2w _ %
ayZ aylz 22 azll
Substituting these in the wave equation, we obtain
% % 3% 1 3% _ 3% 3% 3% | 3%
Tttt T e et at e T 2 e
ox dy 9z c* ot ox dy 9z c* ot

so that the equation is invariant under Lorentz transformations.

Recall that the wave equation is not
invariant under Galilean transformations (Problem 1.10),
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6.24.

6.25.

6.26.

6.27.

6.28.

6.29.

6.30.

6.31.

6.32.

6.33.

6.34.
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Supplementary Problems

An unstable particle with a mean lifetime of 4 ps is formed by a high-energy accelerator and projected
through a laboratory with a speed of 0.6c. (a) What is the mean lifetime of the particle as determined
by an observer in the laboratory? (b) What will be the average distance that the particle will travel in
the laboratory before disintegrating? (¢) How far would an observer at rest with respect to the particle
determine that he has traveled before the particle disintegrates?  Ans. (@) 5 ps; (b) 900 m; (¢) 720 m

A p-meson with a lifetime of 8 X 1079 s is formed 10,000 m high in the upper atmosphere and is moving
directly toward the earth. If the p-meson decays just as it reaches the earth’s surface, what is its speed
relative to the earth?  Ans. 0.972¢

A meterstick moves along the x-axis with a velocity of 0.6c. The midpoint of the meterstick passes O at
t =0. Asdetermined by O, where are the ends of the meterstick at ¢t = 0?
Ans. 40 cm and —40 cm

Observer O measures the area of a circle at rest in his xy-plane to be 12 cm?. An observer O’ moving

relative to O at 0.8¢ also observes the figure. What area does O’ measure? Ans. 72 cm?

As determined by observer O a red light flashes, and, 1076 s later, a blue light flashes 600 m farther out
on the x-axis. What are the magnitude and direction of the velocity of a second observer, O’, if he
measures the red and blue flashes to occur simuitaneously? Ans.  +0.5¢

Refer to Problem 6.28. What is the spatial separation of the red and blue flashes as determined by O’?
Ans. 519.6 m

A rocket ship 150 m long travels at a speed of 0.6c. As the tail of the rocket passes by a man on a
stationary space platform, he shines a flashlight in the direction of the nose. (a) How far from the
platform is the nose when the light reaches it? (b) As measured by the observer on the space platform,
how much time elapses between the emission and arrival of the light signal? (¢) What is the time
interval between emission and reception of the signal as determined by an observer in the nose of the
rocket? Ans. (@) 300 m; (b) 10765; (¢) 0.5 % 1076 s

Two events occur at the same place and are separated by a 4 s time interval as determined by one
observer. If a second observer measures the time separation between these two events to be 5 s, what is
his determination of their spatial separation?  Ans. 9X 108 m

An observer sets off two flashbulbs that are on his x-axis, He records that the first bulb is set off at his
origin at 1 o’clock and the second bulb is set off 20 s later at x =9 X 10® m. A second observer is
moving along the common x-x’ axis with a speed of —0.6¢ with respect to the first observer. What are
the time and spatial separations between the two flashes as measured by the second observer?

Ans. 2735; 563 % 108 m

The relative speed of O and O’ is 0.8¢c. At ¢ =2X 1077 s, a super bullet is fired from x’ = 100 m.
Traveling in the negative x’-direction with a constant speed, it strikes a target at the origin of O’ at
=6x10""7s. As determined by O, what is the velocity of the bullet and how far did it travel?
Ans. —3x10"m/s; —6.67 m '

A ground observer determines that it takes 5 X 107 s for a rocket to travel between two markers in the
ground that are 90 m apart. What is the speed of the rocket as determined by the ground observer?
Ans. 0.6c
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6.35. Refer to Problem 6.34. As determined by an observer in the rocket, what is the distance between the
-two markers and the time interval between passing the two markers? Ans. 72m; 4X 107 s

6.36. A laser beam is rotated at 150 rev/min and throws a beam on a screen 50,000 miles away. What is the
sweep speed of the beam across the screen?  Ans.  7.85 X 10° mi/s (note: ¢ = 1.86 X 10° mi/s)

637.  Show that the expressions x2+ y?+ 22— c¢¥? and dx?+ dy® + dz? — c%dt* are not invariant under
Galilean transformations. '



Chapter 7

Relativistic Velocity Transformations

To find the velocity transformations we consider an arrangement identical to that for the Lorentz
coordinate transformations (Fig. 1-1). One observer, O’, moves along the common x-x’ axis at a
constant velocity v with respect to a second observer, O. Each observer measures the velocity of a
single particle, with O recording (u,, u,, u,y and O’ recording (u;, u), u;) for the components of the
particle’s velocity. From the Lorentz coordinate transformations one finds the following Lorent:z
velocity transformations (see Problem 7.1):

) u - v ) w1 - (v?/c?) A S )
U= —————— u=-———" We=—r "7
1= (v/cP)u, ” 1= (v/c?)u, ‘ 1-(v/cP)u,
As before, the velocity v is positive if O’ moves in the positive x-direction and negative if O’ moves in
the negative x-direction. When these equations are inverted, one obtains

W+ v wVi=(o?/c) V- (7<) (7.2)

U, = ———— U= ———""">—""" 'z
1+ (v/c?)u, 7 1+ (v/c?)u; 1+ (v/c?)u

Note that, as with the Lorentz coordinate transformations, the inverse velocity transformations
can be obtained from the velocity transformations (7.1) by interchanging primed and unprimed
variables and letting v — —o. This is to be expected from symmetry, since from Postulate 1 of
Section 2.4 both observers are completely equivalent, and observer O moves with a velocity of —ov
with respect to O’.

(7.1)

7.1 THE LORENTZ VELOCITY TRANSFORMATIONS
AND THE SPEED OF LIGHT

Consider now the experiment discussed in Section 3.1 where a light signal is sent in the x-x’
direction from the common origin when O and O’ pass each other at r = ¢ =0. If O measures the
signal’s velocity components to be u, = ¢, u, = u, = 0, then, by (7.1), O’ will measure

U, —v cC—0

u' = = = u/ = u; = O

ol=(v/PAu, 1-(v/cHe ’

Thus O’ also determines that the light signal travels with speed ¢, in accord with the second postulate
of Einstein.

7.2 GENERAL CONSIDERATIONS IN SOLVING
VELOCITY PROBLEMS

In velocity problems there are three objects involved: two observers, O and O’, and a particle, P.
The particle P has two velocities (and, hence, six numbers) associated with it: its velocity with respect
to O, (u, u, u,), and its velocity with respect to O’, (u;, uy, u;). The quantity v appearing in the
velocity transformations is the velocity of O’ with respect to O.

When attacking a velocity problem, one should first determine which objects in the problem are to
be identified with O, O’, and P. Sometimes this identification is dictated; other times the identifica-
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(ion can be made arbitrarily (see, for example, Problem 7.3). Once the identification has been made,
one then uses the appropriate Lorentz velocity transformations to achieve the answer.

In dealing with velocity problems the best way to avoid mistakes is not to forget the phrase “with

respect to.” The phrase “velocity of an object” is meaningless (both classically and relativistically)
because a velocity is always measured with respect to something.

1.1

7.2

7.3.

Solved Problems

Derive the Lorentz velocity transformation for the x-direction.

Taking the differentials of the Lorentz coordinate transformations (3.1), one finds

di— (2 ) ax
dx’ = dx — v dt dt = (02)
VI = (v?/c?) 1= (/%)
Dividing dx’ by dt’ gives
dx
o _dx—vdr _ A w—o
oodr {2 _v dx  1-(v/cdu,
a-(B)ex -5 & 1-0/eD

At what speeds will the Galilean and Lorentz expressions for u, differ by 2%?

The Galilean transformation is u,; = u, — v and the Lorentz transformation is

’

, u.—v U
ux = =
1= (o/ADu,  1=(v/Du,

' Rearranging,

’ ’
Usr — UxG _ vu,
— = —
Usr C2

Thus, if the product vu, exceeds 0.02 ¢, the error in using the Galilean transformation instead of the
Lorentz transformation will exceed 2%.

Rocket A travels to the right and rocket B travels to the left, with velocities 0.8¢ and 0.6¢,
respectively, relative to the earth. What is the velocity of rocket 4 measured from rocket B?

Let observers O, O’ and the particle be associated with the earth, rocket B, and rocket A,
respectively. Then ) :
u,— v 0.8¢ — (—0.6¢)
1= (v/c*)u, |- (—0.6c)(0.8¢)
2
c

The problem can also be solved with other associations.. For example, let observers O, O’ and the
particle be associated with rocket 4, rocket B, and the earth, respgctively. Then

%

= 0.946¢

W= —2"% ot 06c= —08c -0
T 1= (v/P)u, 1= (v/c*)(-08¢)
Solving, v = —0.946¢, which agrees with the above answer. (The minus sign appears because v is the

velocity of O’ with respect to° O, which, with the present association, is the velocity of rocket B with

respect to rocket 4.)
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74.

7.5.

7.6.

THE SPECIAL THEORY OF RELATIVITY [PART 1

Repeat Problem 7.3 if rocket 4 travels with a velocity of 0.8¢ in the + y-direction relative to
the earth. (Rocket B still travels in the — x-direction.)

Let observers O, O’ and the particle be associated with the earth, rocket B, and rocket A,
respectively. Then

. =0  0—(-06¢) _

u, = = (o)), = =0 0.6¢
wV1-(0*/c)  (08c)Y1-(06) 06he

v 1-(v/cPu, 1-0 o

which give the magnitude and direction of the desired velocity as

W =\ + u? =\(06¢) + (0.64¢)* = 0.88¢

and

tang'= = = 52 =107 or ¢ =468°

A particle moves with a speed of 0.8¢ at an angle of 30° to the x-axis, as determined by O.
What is the velocity of the particle as determined by a second observer, O’, moving with a
speed of —0.6¢ along the common x-x’ axis?
For observer O we have
u, = (0.8¢) cos 30° = 0.693¢ u, = (0.8¢) sin 30° = 0.400¢
Using the Lorentz velocity transformations, we have for observer O’
U, — v 0.693¢ — (—0.6¢)

u, = 1= (/D = 1_ (=060 030) =0913¢
c? '
Yo wV1 - (v?/c?) 04c)Y1 - (0.6)  0226c
Tl (o/u | (£060) ©0693)
C2 ’

The speed measured by observer O’ is

w =YuZ + u? =(0913c)* + (0.226¢)* = 0.941c

and the angle ¢’ the velocity makes with the x’-axis is

ul
tan ¢’ = = = OolRe =028 or ¢ =139°

Consider a radioactive nucleus that moves with a constant speed of 0.5¢ relative to the
laboratory. The nucleus decays and emits an electron with a speed of 0.9¢ relative to the
nucleus along the direction of motion. Find the velocity of the electron in the laboratory
frame.

Let the laboratory observer, the radioactive nucleus and the electron be respectively associated with
O, O’ and the particle. Then

Uto _ 09¢+05¢c  _ 0.966¢

S T (o), (059059

c?
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77.

7.8.

7.9.

Refer to Problem 7.6. Suppose that the nucleus decays by emitting an electron with a speed
of 0.9¢ in a direction perpendicular to the direction of (the laboratory’s) motion as determined

. by an observer at rest with respect to the nucleus. Find the velocity of the electron as

measured by an observer in the laboratory frame.
With the same association as in Problem 7.6, one has

wo=_%FO 0405
1+ (v/cAu 1+0

’ _ 27,2 _ 2
4= w\1= (/%) (090)V1 - (0.5) 0779

14+ (v/c?)u, B 1+0

=0.5¢

whence

u=\i2 + w2 =\(0.5¢) + (0.779¢)" = 0.926¢
and ,
b 0779¢ _ &m0
tan ¢ = W = 1.56 or ¢=573

X

At ¢t = 0 observer O emits a photon traveling in a direction of 60° with the x-axis. A second
observer, O’, travels with a speed of 0.6¢ along the common x-x' axis. What angle does the
photon make with the x’-axis of 07

We have:
u, =. cos 60° = 0.500¢ u, = c sin 60° = 0.866¢
U — v ‘ 0.5¢ — 0.6¢

. = = = —0.143¢

ST o/, | 06059 -
' _ pe)
,_ V1= (0%/)  (0.866c)V1 - (0.6)° 0.9
= = = V. (4
K4 1-(v/c?)u, . (0.6¢)(0.5¢)
- —
Thus

[
(=]
£

tan4>’= u; = TMBC = —6.92

and ¢’ = 81.8° above the negative x’-axis. The magnitude‘o‘f the velocity as measured by O’ is

W =Vu? + u? =Y(-0.143¢)> + (0.99c) = ¢
,as is necessary.

The speed of light in still water is ¢ /n, wher; the index of refraction for water is approxi-
mately n =4/3. Fizeau, in 1851, found that the speed (relative to the laboratory) of light in
water moving with a speed V (relative to the laboratory) could be expressed as

u=< +kv
n

where the “dragging coefficient” was measured by him to be k ~0.44. Determine the value
of k predicted by the Lorentz velocity transformations.

An observer at rest relative to the water will measiire the speed of light to be u, = ¢/n. Treating
the light as a particle, the laboratory observer will find its speed to be

[
e ()14 XY
2

u.+v n
ux= =

A
N 4

<
n
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7.10.

711

7.12.

7.13.

7.14.

7.15.

7.16.

7.17.

THE SPECIAL THEORY OF RELATIVITY [PART I

For small values of ¥ the approximation
-1
(l + Y ) ~1- L4
nc
yields
c vV (4 _ 1
uom( £ +V)(l %)N; +[1 . ]V
where terms of order ¥2/c¢ have been neglected. Thus
kml- L =1 L~ o438
n 4/3)

which agrees with Fizeau’s experimental result.

Supplementary Problems

A rocket moves with a velocity of ¢/3 with respect to a man holding a lantern. The pilot of the rocket
measures the speed of light reaching him from the lantern. Determine this speed from the Lorentz
velocity transformations. Ans. ¢

The pilot of a rocket moving at a velocity of 0.8¢ relative to the earth observes a second rocket
approaching in the opposite direction at a velocity of 0.7c. What does an observer on earth measure for
the second rocket’s velocity? Ans. 0.227¢

An observer in rocket A finds that rockets C and B are moving away from him in opposite directions at
speeds of 0.6¢ and 0.8¢, respectively. What is the speed of C as measured by B?
Ans. 0.946¢ (classically, 1.4¢)

An observer O’ is moving along the x-x’ axis with a speed of ¢/2 with respect to another observer, O.
Observer O measures a particle moving in the positive y-direction with a speed c/y3 . Calculate the
velocity of the particle as measured by O’. Ans. c/y2,135°

A man standing on the platform of a space station observes two rocket ships approaching him from
opposite directions at speeds of 0.9¢c and 0.8¢. At what speed does one rocket ship move with respect to
the other? Ans. 0.988¢

Derive the Lorentz velocity transformations for the y- and z-directions.

Starting from the Lorentz velocity transformations, (7.1), obtain the inverse Lorentz velocity transforma-
tions, (7.2).

A K% meson, at rest, decays into a = *-meson and a 7~ -meson, each with a speed of 0.827c. When a
K°%-meson traveling at a speed of 0.6¢ decays, what is the greatest speed that one of the 7m-mesons can
have? Ans. 0.954c¢




Chapter 8

Mass, Energy and Momentum in Relativity

8.1 THE NEED TO REDEFINE CLASSICAL MOMENTUM

One of the major developments to come out of the Special Theory of Relativity is that the mass of
a body will vary with its velocity. A heuristic argument for this variation can be given as follows.

Consider a ballistics experiment where an observer, say O’, fires a bullet in the y’-direction into a
block that cannot move relative to him. It is reasonable to suppose that the amount the bullet
penetrates into the block is determined by the y'-component of the momentum of the bullet, given by
P, = m'uy, where m’ is the mass of the bullet as measured by O’

Now consider the same experiment from the point of view of observer O who sees observer O’
moving in the common x-x’ direction with a velocity v.  Since the tunnel left by the bullet is at right
angles to the direction of relative motion, O will agree with O’ as to the distance that the bullet
penetrates into the block, and therefore would expect to find the same value as O for the y-component
of the bullet’s momentum.

As determined by O, Py = mu,, where m is the mass of the bullet as measured by O. From the
Loréntz velocity transformations we find, since u, = 0, that

u’Vl— 2/c? '
u, = ll_+(1.>(/vc—2)cu') = w1 - (v?/c?)

so that P = mu}vl - (02 / c2) . Since from above py’ = m’uy’, it is seen that if both observers assign the
same mass to the bullet, so that m’ = m, they will find P, * p,, contrary to what is expected.

'82 THE VARIATION OF MASS WITH VELOCITY

At this point we have two choices. We can assume that momentum principles—in particular,
conservation of momentum—do not apply at large velocities. Or, we can look for a way to redefine
the momentum of a body in order to make momentum principles applicable to Special Relativity.
The latter alternative was chosen by Einstein. He showed that all observers will find classical
‘momentum principles to hold if the mass m of a body varies with its speed u according to

VI — (u?/c?)

where my, the rest mass, is the mass of the body measured when it is at rest with respect to the
observer. See Problem 8.1.

Ve

m=

83 NEWTON’S SECOND LAW IN RELATIVITY

The classical expression of Newton’s second law is that the net force on a body is equal to the rate
of change of the body’s momentum. To include relativistic effects, allowance must be made for the
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fact that the mass of a body varies with its velocity. Thus the relativistic generalization of Newton’s
second law is

84 MASS AND ENERGY RELATIONSHIP: E = mc?

In relativistic mechanics, as in classical mechanics, the kinetic energy, K, of a body is equal to the
work done by an external force in increasing the speed of the body from zero to some value u, i.e.

K=["'F-ds
u=0
Using Newton’s second law, F = d(mu)/dt, one finds (Problem 8.21) that this expression reduces to

K = mc?* — myc?

The kinetic energy, K, represents the difference between the total energy, E, of the moving particle
and the rest energy, E,, of the particle when at rest, so that
E — Ey= mc? — myc?
If the rest energy is chosen so that E, = myc?, we obtain Einstein’s famous relation

E=mc?

which shows the equivalence of mass and energy. Thus, even when a body is at rest it still has an

energy content given by E,= mqc?, so that in principle a massive body can be completely converted
into another, more familiar, form of energy.

85 MOMENTUM AND ENERGY RELATIONSHIP

= Since momentum is conserved, but not velocity, it is often useful to express the energy of a body in
terms of its momentum rather than its velocity. To this end, if the expression

my

V1= (4?/c?)

is squared and both sides are multiplied by ¢*[1 — (4?/¢c?)], one obtains

m=

mZc* — miulc? = mict

Using the results E = mc?, Ey = myc?, and |p| = mu, we find the desired relationship between E and p
to be

E*=(pc)*+ E} or (K + m0c2)2= (pe)*+ (mocz)2

8.6 UNITS FOR ENERGY AND MOMENTUM

The electron volt (eV) is the kinetic energy of a body whose charge equals the charge of an
electron, after it moves through a potential difference of one volt.

1eV =(1.602x 107" C)(1 V) = 1.602 X 10~ J

1 MeV = 10° eV 1GeV=10°eV

The relationship 1.602 X 1071° J = 1 eV can be looked at as a conversion factor between two different
units of energy.
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The standard units for momentum are kg-m/s. In relativistic calculations, however, units of
MeV/c are frequently used for momentum. These units arise from the énergy-momentum expression

VE* - B¢

c

P ==
The conversion factor is

= 0534 x [0~ Xg'm

] MeV
¢ s

87 GENERAL CONSIDERATIONS IN SOLVING
MASS-ENERGY PROBLEMS

A common mistake in solving mass-energy problems is to use the wrong expression for the kinetic
energy. Thus

K# img’  and K # Lpy?
The correct expressior for the kinetic energy is
K =(m— mg)c?
Likewise, concerning the momentum, we note that
P * mgu

Solved Problems

8.1 Show how Einstein’s mass-speed relation resolves the difficulty in the ballistics experiment of
Section 8.1.

As determined by O’, the niass of the bullet will be, since u, =0,
\ my mg

' = my -
” u/2+ u/2 u’z
| P Y |
2 1- 2
c (;2 (4

while the mass of the bullet as measured by O is, since u, = p,

My My My
—— . == E
u? u; + u? o+ u?
I-= - — - —
¢ ¢ c

If we now apply the Lorentz transformation to the quantity inside the last square root, we find

m=

2 2
'l_v_z_uy—]_l’i_L A/l 22 —l_ﬁ l_uL
2 2" 2 2% o2 = 2 pe)
so that
m = mo = ml
\/1 —(v*/c?) \/1 - (w*/?) \/l - (v¥/c?
Hence

= ’ — 02 CZ = L’ ’ - 2 2y ‘W = p’
Py =mu\1 - (v*/c?) (m)uyvl (v’/e?) " =py
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8.2.

8.3.

84.

8.5.

8.6.

8.7.

THE SPECIAL THEORY OF RELATIVITY [PART I

From the rest masses listed in the Appendix calculate the rest energy of an electron in joules
and electron-volts.

We have: Eg = mgc? = (9.109 x 103! kg)(2.998 x 10° m/s)’ = 8.187 X 10~ J, and

(8.187 X 10~ J)( 1eV )( 1 MeV

=0.511 MeV
1.602 X 107123 J\ 108 eV )

A body at rest spontaneously breaks up into two parts which move in opposite directions.
The parts have rest masses of 3 kg and 5.33 kg and respective speeds of 0.8¢ and 0.6c. Find
the rest mass of the original body.

Since Einitial = Eﬁnal’

oo Mgy c? N mgac? _ (Bkg)? N (5.33 kg)c?

el = =

S Vis@) Vi-eie) I-08 Vi-©6
my = 11.66 kg

Observe that rest mass is not conserved (see also Problem 8.26).

What is the speed of an electron that is accelerated through a potential difference of 10° V?

Since K = e AV = 10° eV = 0.1 MeV, we have

m0C2
0.1 MeV=K= ———— —myc?

Vi - (v%/e?)

Substituting mge? = 0.511 MeV (Problem 8.2) and solving, we find v = 0.548¢.

. Calculate the momentum of a 1 MeV electron.

E?= (pc)2+ E}

(1 MeV + 0.511 MeV)? = (pc)* + (0.511 MeV)
p=142MeV/c

Calculate the kinetic energy of an electron whose momentum is 2 MeV/c.

El= (pc)2 + EZ

2M
c

2
(K +0.511 MeV)2=( eV c) +(0.511 MeV)?

K =1.55MeV

Calculate the velocity of an electron whose kinetic energy is 2 MeV.

mocz

K= ——F— —my
Vi —(v*/c?)
0.511 MeV
V1 - (v*/c?)
v=098c

2

2MeV = —0.511 MeV
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8.8.

8.9.

8.10.

8.11.

8.12.

8.13.

8.14,

Calculate the momentum of an electron whose velocity is 0.8c.
moc? (1 ) _ 0511 MeV ( 0.8

—_ — }=0.681

The rest mass of a p-meson is 207m,, and its average lifetime when at rest is 2 X 10~ s.
What is the mass of a p-meson if its average lifetime in the laboratory is 7 X 106 §?

p=mo=

MeV
¢

From the time dilation expression,
1

1-(v?/c?)
\/_*

m=—_"0 __ _ (2o7mo,)( I ) = 725m,,

V1= (v*/c?)

Compute the effective mass of a 5000 A photon.

(ST |

= Ar _
T A,

and so

meffcz = Ephoton =hy= h"‘/A
(See Chapter 10.) Hence

6.63x10737J-5
(5% 1077 m)(3 % 10 m/s)

=442%10"% kg

Mgy =

An electron is accelerated to an energy of 2 GeV by an electron synchrotron. What is the
ratio of the electron’s mass to its rest mass?

From mc? = K + myc?,
m _ me? _ K+moc® 2000 MeV +0.511 Mev

my mocz mocz - ) 0.511 MeV = 3915

A Py nucleus, when it fissions, releases 200 MeV of energy. What percent of the total
energy available is this?

The rest mass of a U atom is, in terms of the unified atomic mass unit (u), 235 u. Using the
conversion 1 u = 931.5 MeV, we have:

total available enérgy = rest energy of 35U = (235 u) —931'5# =219 X 10° MeV

200 MeV

LOMeV_ o 100% = 0.0913%
219 X 10° MeV, ¢ ?

% total energy =

’

An electron is accelerated from rest to a velocity of 0.5c. Calculate its change in energy.
2

m,
change in energy = ——% _ _ o2 OSUMEV (v 0000 Mev

V1= (v2/cY) V1 - (05

At what fraction of the speed of light must a particle move so that its kinetic energy is double
its rest energy? '
2 ,
K-Q--———moc——mot:2=2moc2 “or —1—=3

V1 ~-(v*/c?) - V1 - (v*/c?)

Solving, v = 0.943¢. ' ,



8.15.

8.16.

8.17.

8.18.

8.19.

8.20.
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An electron’s velocity is 5 X 10" m/s. How much energy is needed to double the speed?

2
initial energy = Mo = 0.511 MeV =0.518 MeV
-‘/l_v_z | [ 95 %10 m/s ?
c? 3x 105 m/s
2
m
final energy = o 0511 MeV = (.542 Mev

| - o) 1 — 1% 10°m/s \°
c? 3% 10°m/s
change in energy = 0.024 MeV

A 1 MeV photon collides with a stationary electron in the vicinity of a heavy nucleus and is
absorbed. (A free electron cannot capture a photon.) If the recoil energy of the nucleus can
be neglected, what is the velocity of the electron after the collision?

From Eiiial = Efinar
' 2
Mmo.C
E, + moec? + moyc? = ———=——— +mg,c®  or 1 MeV +0511 MeV = _0S1I MeV

Vi - (2%/¢) Vi = (v%/¢?

Solving, v = 0.941c.

An electron moves in the laboratory with a speed of 0.6¢. An observer moves with a velocity
of 0.8¢ along the direction of motion of the electron. What is the energy of the electron as
determined by the observer?

From the Lorentz velocity transformations,

, U, — v 0.6¢c — 0.8¢
u

e 1- 0D

and

2
MmopC
K= per= —OSUMEV 4511 MeV =0.043 MeV

V1= (/) V1 - (~0385)

A particle has a total energy of 6 X 10° MeV and a momentum of 3 X 10> MeV/c. What is
its rest mass?

Using E? = (pc)* + E§,
(6 % 10° MeV)2= [ (3 X 10° MeV/c)e]' + EE
Solving, Eg= 52X 10°* MeV, and (see Problem 8.12) j

mo=(52 % 10° MeV)( 65%:%\7 ) =558

Refer to Problem 8.18. What is the energy of the particle in a frame where its momentum is
5% 10° MeV/¢?

E? = (po)i+ E2 =[(5 X 10° MeV/c)c]' + (52X 10° MeV)’
Solving, E = 7.2 X 10°> MeV.

The K%meson decays at rest into two a%mesons. If the rest energy of the K° is 498 MeV
and of the #° is 135 MeV, what is the kinetic energy of each 7%
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Since the initial and final momenta must be equal in the lab frame, the #%s move off in opposite
directions with equal amounts of kinetic energy.

Epitiat = Efinal ,
498 MeV = 2(135 MeV) + 2K .
K =114 MeV

821. For one-dimensional motion show that

u=u
K=f F-ds = mc? — myc?
u=0

For one-dimensional motion,

_ fu=u _ u-'ui ’ _ fu=u 1{
K= o Fdx | 'L-o dt(mu)dx j:;-o d(mu) ar
Uumy ‘ U= u: 2
=f (mdu+ udm)u= (mu du + w? dm) (1)
u=0 u=0
From the expression for the variation of mass with velocity we have
. m
m= — 2 or  m%*?®— mu? = mic?
\/1 —(u*/c?)
Taking differentials of both sides of this expression, we obtain
2mc? dm — m*2u du — u*2m dm = 0
which can be rewritten as
mu du+ u? dm=c*dm )

The left-hand side of (2) is exactly the integrand of (1), so we obtain

K=fm-mczdm= c2(m — mg)
m=mg .

822. Show from the binomial expansion that E — E, reduces to 4 myu® when u/c < 1.

- aN-12
E—E0=—o———mocz=mocz[(l——%) —l]
Vi-@2/e) ¢

. 2’ '
=moc2[(l+% %-F---)—l]z—;—mouz
c : _

8.23. What is the maximum speed that a particle can have such that its kinetic energy can be written
as 4 myo? with an error no greater than 0.5%?

At the maximum speed,

K — 1mg? Lmgu?
14 = 0.005 or. K=W
But, as in Problem 8.22,
I eV 2 4
eme2|[1_ % — 1l = mec? Tw 3w . \_
K moc[(l cz) 1] moc[(1+2c2+8c4+ ) 1]

1 3 2\
=5 mou? + §mou2(%~)+ e
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8.24.

8.25.

8.26.
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Hence

Solving, © ~0.082¢.

Suppose that a force F acts on a particle in the same direction as its velocity. Find the
corresponding expression for Newton’s second law.

The force F is the time derivative of the momentum.

Fo d [ Mol ] my du gt w du
= = a 372 2 dr
f \/1 (L) Vi -/ c?) 1= (/)] ¢ di

[l _ (uz/cz)]3/2 cz cz [l = (uz/cz)]J/z

Using Newton’s second law, find an expression for the relativistic velocity of a particle of
charge ¢ moving in a circle of radius R at right angles to a magnetic field B.

In vector form Newton's second law is

F d (mu) d mgu d mgu
=a\""VE gl  —— ||
V1= (u?/c?) | L Vi—(u-u/c?)
Performing the differentiation by means of the chain rule, we obtain
du
u-

m m dr
F= 2 ﬂl—+ 0 dt u

Vi—(u-u/c?) a ['_(“'“/"2)]3/2 ¢*

In a magnetic ficld the velocity and acceleration are perpendicular, so that

L du
ur o= 0
Furthermore,
. . _ du |_ u_Z
F,=quB and @ |— R
Thus
my u? qBR/my

r—————l or u=
V1= (¥ ¢Y Vi+ (gBR/ myc)?

The classical velocity is obtained by letting ¢ — o0 in the above expression.

quB =

Two identical bodies, each with rest mass my,. approach each other with equal velocities u,
collide, and stick together in a perfectly inelastic collision. Determine the rest mass of the
composite body.

Since the initial velocities are equal in magnitude, and the final momentum must be zero,

Eipiia1 = Efinal
2mge?
__L_ = Mo(‘z
VI = (u2/c?)
2m°
Mo = > 2mo

Vi = (/)
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8.27.

8.28.

What is the rest mass of the composite body in Problem 8.26 as determined by an observer
who is at rest with respect to one of the initial bodies?

Consider the body, 4, that moves in the + x-direction. The velocity v of the observer O’ at rest
with respect to A4 is equal to A’s velocity, v = u. The second body, B, has a velocity uy = —u as

measured by O. Its velocity as measured by O’, u}, is obtained from the Lorentz velocity transforma-
tion:

u, - uB—U - _ 2u
B Ugv u?
1-— 1+ =
(4 cz

Since the composite body, C, is at rest with respect to the laboratory (observer 0), its velociiy with
respect to O’ is uz = —u. From conservation of momentum, as determined by 0",

LOVA + mgup Myuc
CVi—e) Vi-e) V- @)
But u, = 0. ‘
m - 2u
1+ (/) Mo(—u)
0 2u/c 2 \/1 = (W?/cY) .
_[ 1+ (/) ]
2m,
My=,

V1 - (uz/cz)

in agreement with the value found from energy considerations by observer O (Problem 8.26).

A particle of rest mass my, moving with a speed of 0.8c makes a completely inelastic collision
with a particle of rest mass 3mj that is initially at rest. What is the rest mass of the resulting
single body? :

From pﬁ?,, = Pinitial> .,
My mo mo08c) _ 4
= — = = 3 Mot
Vi-@/e)  Vi-@wre Voo

.3
From Eg,\ = Ejpigia,

Mc? moc? mgc?

= +3mgel s ———
VI - (4f/¢?) \/1 —(uf/ V1 —(08)
Solving these two equations simultaneously, we get

uf = 0.2860 Mo = 4.47m°

+ 3moc? = 4.6Tmyc?

Find the increase in mass of 100 kg of copper if its temperature is increased 100 °C. (For
copper the specific heat is € =93 cal/kg- °C.)
The energy added to the copper block is
AE = mC(AT) = (100 kg)(93 cal /kg - °C)(100 °C)(4.184 J /cal) = 39 X 10° J
If this energy appears as an increase in mass, then
Am=A4E _ _% =433x10"" kg
c (3 x 108 m/s)

This increase is far too small to be measured.
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8.30.

8.31.
8.32.
8.33.
8.34.
8.35.

8.36.

8.37.

8.38.

8.39.

8.40.

8.41.

8.42.

8.43.

8.4,

845,

THE SPECIAL THEORY OF RELATIVITY [PART I

Supplementary Problems

From the rest masses given in the Appendix calculate the rest mass of one atomic mass unit in joules.
Ans. 1.49%1071°J

Calculate the kinetic energy of a proton whose velocity is 0.38c. Ans. 625.5 MeV
Calculate the momentum of a proton whose kinetic energy is 200 MeV. Ans. 6445 MeV/c
Calculate the kinetic energy of a neutron whose momentum is 200 MeV /c. Ans. 21.0 MeV
Calculate the velocity of a proton whose kinetic energy is 200 MeV. Ans. 0.566¢
What is the mass of a proton whose kinetic energy is 1 GeV? Ans. m=20Tmg,

At what velocity must a particle move such that its kinetic energy equals its rest energy?
Ans. 0.866¢

Suppose that the relativistic mass of a particle is 5% larger than its rest mass. What is its velocity?
Ans. 0.305¢

What is the ratio of the relativistic mass to the rest mass for (a) an electron, (b) a proton, when it
accelerates from rest through a potential difference of 15 megavolts?  Ans. (a) 30.35; (b) 1.015

What is the mass of an electron if it moves through a potential difference that would, according to
classical physics, accelerate the electron to the speed of light? Ans. 3my

Refer to Problem 8.20. What are the velocity and momentum of each 7%
Ans. 0.84c; 209 MeV/c v

Suppose that electrons in a uniform magnetic field of flux density 0.03 T move in a circle of radius 0.2 m.
What are the velocity and kinetic energy of the electrons? Ans. 0.962c¢; 1.36 MeV

What is the minimum energy required to accelerate a rocket ship to a speed of 0.8¢ if its final payload
rest mass is 5000 kg?  Ans. 3 X 10°7J

A 0.8 MeV electron moves in a magnetic field in a circular path with a radius of 5 cm. What is the
magnetic induction?  Ans. 8.07 X 1072T

Compute the radius of a 20 MeV electron moving at right angles to a uniform magnetic field of flux
density 5 T. Ans. 137 cm

A particle of rest mass mg moving with a speed of 0.6¢ collides and sticks to a similar particle initially at
rest. What are the rest mass and velocity of the composite particle?  ‘Ans.  2.12mg; 0.333¢

-
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8.46.

8.47.

A particle with a rest mass mg, and kinetic energy 3)noc2 makes a completely inelastic collision with a
stationary particle of rest mass 2m,. What are the velocity and rest mass of the composite particle?
Ans. 0.645c; 4.58m,

A 7*-meson whose rest energy is 140 MeV is created 100 km above sea level in the earth’s atmosphere.
The #*-meson has a total energy of 1.5X 10° MeV and is moving vertically downward. Tf it

“disintegrates 2 X 10~ % s after its creation, as determined in its own frame of reference, at what altitude

above sea level does the disintegration occur?  Ans, 93.6 km



Chapter 9
The Relativistic Doppler Effect

Consider a source that emits electromagnetic radiation with a frequency v, as measured by an
observer who is at rest with respect to the source. Suppose this same source is in motion with respect
to another observer, who measures the frequency » of the radiation received from the source. With
the angle 8 and velocity v of the source as defined in Fig. 9-1, the frequency v as measured by observer
O is given by the Doppler equation

Source
——
b ~

RS \\[\ »
01— (v/c)cos § 6 \’:‘7\,\0

Observer

Fig. 9-1

If the source and observer are moving toward each other, § = 0 and we have

V__v"c+v
0 cC— v
In this case, v > v,

If the source and observer are moving away from each other, # = 180° and we have

c—v /
V=7V
In this case, ¥ < v,

If the radiation is observed transverse {0 the direction of motion, § = 90° and we have
v = o\l — (07/¢%)
Thus, » < »,.

Because all observers measure the speed of light as ¢, the above equations also allow the change in
wavelength to be obtained via A = ¢ /v.

50
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9.1.

9.2.

9.3.

94,

Solved Problems
Evaluate the Dopplér equation to first order in v/c when the source and observer are receding
from each other.
2
-2 \/1 +2 1- %
v=1p, X = d Y ¢

Oc+v

14
1+ 2 \/—,,_ 1+ 8
c 1+; c

which is the classical expression for the Doppler effect when the receiver is stationary with respect to the
medium. . ’

A car is approaching a radar speed trap at 80 mph. If the radar set works at a frequency of
20 x 10° Hz, what frequency shift is observed by the patrolman at the radar set?

To first order in v /¢, the frequency received by the car is

= Vg (l+%)(l+%) =Vo(l+1:-)

The car then acts as a moving source with this frequency. The frequency received back at the radar set
is . '

L
c
1-2

c

v =,

v”zV'(l + _:Z)zyo(l + %)2zvo(l + %ﬁ)

from which (80 mi/hr = 35 m/s)
V= pyms2 2y = 2X35m/s

vo= ————71" x20x%10° Hz = 4.67 X 10° Hz o
c 3x 10 m/s

A star is receding from tﬁg earth at a speed of 5% 107%. What is the wavelength shift for
the sodium D, line (5890 A)?

The Doppler equation gives

“xVER o a=n :—%:;—% =(5890A)\/}—‘_‘8:—88% =5920 A

Hence, A\ = 5920 A — 5890 A =30 A. The shiftisto a greater wavelength (red shift).

>

Suppose that the Doppler shift in the sodium D, line (5890 A) is 100 A when the light is-
observed from a distant star. Determine the star’s velocity of recession.

: 1+ (v/c) . A

Solving, v = 0.017¢.

A man in a rocket ship moving with a speed of 0.6¢ away from a space platform shines a light

- of wavelength 5000 A toward the platform. What is the frequency of the light as seen by an

observer on the platform?

1-(v/¢c) 3x103m/s.‘/1—0.6 14
p—pov I+ (v/c) T 5x100'm Y 1+06 =3 X107 He
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9.6.

9.7.

9.8.

99.

THE SPECIAL THEORY OF RELATIVITY [PART 1

Refer to Problem 9.5. What is the frequency of the light as seen by a passenger in a second
«ocket ship that moves in the opposite direction with a speed of 0.8¢ relative to the space
platform?
The velocity of the first rocket relative to the second is found from the Lorentz velocity transforma-
tion.
uo—v  06c— (-0.8¢)
- Zu : (—0.8¢)(0.6¢)

2
c
02

’

u, = = 0.946¢

The frequency observed by the second rocket is then given by

1—-(u,/c) 3% 108m/s /1 —0.946
= = \/ . =10x10“H
g "°V 1+ (4,/c) 5% 10 'm V 1+0546 ’

Supplementary Problems

What is the Doppler shift in 5500 A light if the source approaches the observer with velocity of 0.8¢?
Ans. —3667 A

Suppose that the largest wave)ength visible to the eye is 6500 A. How fast must a rocket move in order
that a green light (\ = 5000 A) on the rocket shall be invisible to an observer on the earth?
Ans. 0.257c¢ away from the observer

How fast must a star recede from the earth in order that a given wavelength shall be shifted by 0.5%?
Ans. 499X 1073
—~




PART Il: The Quantum Theory of
Electromagnetic Radiation

Chapter 10
The Theory of Photons

The basic postulate of the quantum interpretation is that electromagnetic radiation consists of
particle-like discrete bundles of energy called photons or quanta. Each photon has an energy E that
depends only on the frequency » of the radiation and is given by

E=hv=_h§

where h = 6.626 X 10734 J+s is Planck’s constant. Each photon interacts in an all-or-nothing manner;
it either gives up all its energy or none of it.

Since photons travel at the speed of light, they must, according to relativity theory, have zero rest
mass; hence, their energy is entirely kinetic. If a photon exists, then it moves at the speed of light, c;
if it ceases to move with speed c, it ceases to exist. For my =0, the relativistic momentum-energy
relation (Section 8.5) becomes E = pc. Thus, each photon has a momentum of

E h

c c A

From the quantum point of view, a beam of electromagnetic energy is composed of photons
. traveling at the speed ¢. The intensity of the beam will be proportional to the number of photons
crossing a unit area per unit time. Hence, if the beam is monochromatic (one frequency), the

intensity 7 will be given by
number of photons
area X time
Finally, we note for convenience in calculations the following expressions in nonstandard units:

h=4136 x 10" eV s

he=124keV:A
where 1 eV=10"3keV=1602x10""Jand 1 A=10"""m.

I = (energy of one photon) X

Solved Problems

10.1.  Find the wavelength and frequency of a 1.0 keV photon.

_he _ 124keV-A _ 3
A= E T Tiokev 1244
3% 108 m/s

2270 9410V Hz
A 124%x107°m

10.2.  Find the momentum of a 12.0 MeV photon.
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10.3.

10.4.

10.5.

10.6.

10.7.

10.8.

THE QUANTUM THEORY OF ELECTROMAGNETIC RADIATION [PART II

Calculate the frequency of the photon produced when an electron of 20 keV is brought to rest
in one collision with a heavy nucleus.

Assuming all the kinetic energy of the electron is used to produce the photon, we have
Einitiat = Efina
K + pagt® = hv + mge®
20% 10° eV = (4.136 X 10~ ¥ eV s)»
» =4.84 X 10" Hz

Show that momentum is not conserved in Problem 10.3.
The initial momentum of the electron is found from

(K+ EgY=(p,c)*+EZ or (0.02MeV +0.511 MeV)’= (p,c)’+ (0.511 MeV)’
whence p, = 0.144 MeV /c. But

Ephoton _ 0.02 MeV
c c

The excess momentum is absorbed by the nucleus that stops the electron. Because the nucleus is so
much more massive than the electron, its change in energy could be neglected in Problem 10.3.

Ptinal = pphoton =

Find the maximum wavelength of the photon that will separate a molecule whose binding
energy is 15 eV,

From E =hc /A,

=12.4><1}(\)3eV'A or  A=827A

15eV
What energy does a photon have if its momentum is equal to that of a 3 MeV electron?
The momentum and energy of an electron are related by \
E =(p.c)’+ EZ or (3 MeV +0.511 MeV)’= (p,c)*+ (0.511 MeV)
whence p, = 3.47 MeV/c. The energy of the photon is
E = pc = p,c = (3.47 MeV /c)c = 3.47 MeV

Monochromatic light of wavelength 3000 A is incident normally on a surface of area 4 cm?
If the intensity of the light is 15 X 1072 W /m?, determine the rate at which photons strike the

surface.
The energy per photon is

6.63x 1073 J-s)(3x 10°m/s
g he X /9 _663x10-°1
A 3%X107"m

The total energy flux is
IA=(15x10"2W/m)(4 X 107*m) =6 X 107°W=6x10"3J/s
Hence, the rate at which photons strike the surface is
6x107%]1/s
6.63 X 1071 J /photon

= 9.05 x 10" photons/s

A radio station operates at a frequency of 103.7 MHz with a power output of 200 kW.
Determine the rate of emission of quanta from the station.
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The energy of each quantum is

E=h=(663x10"%]. s)(103.7 x 108 s'l) =6.88 X 10-26 )
50 '
quanta

number'of Quanta _ 200 X 10° J % 1 quantum

—— =291 x 10%
time s 688x 10 _

Supplementary Problems

109.  Find the wavelength and frequency of a 1 MeV photon.  Ans. 124X 10~2 A; 2.42 X 10®° Hz

10.10.  Find the wavelength and frequency of a photon whose momentum is 0.02 MeV/c.
Ans. 620X 107'A; 484 x 10" H

10.11.  Find the momentum of a 4 keV photon.  Ans. 4keV/c
10.12.  Find the energy of a photon whose momentum is 10 MeV/c.  Ans. 10 MeV
10.13.  Find the energy of a photon whose wavelength is 4000 A.  Ans. 3.1 eV

10.14.  Find the energy and momentum of a photon whose frequency is 10° Hz,
Ans. 4.14 X 10% MeV; 4.14 X 103 MeV/c

10.15. Find the momentum of a photon whose wavelength is 10 A Ans. 124 MeV/c

10.16. A 1 MeV electron is brought to rest by a single collision and produces one photon. Find the wave-
length of the photon.  Ans. 124x10-3 A :

10.17.  If the maximum wavelength of a photon needed to separate a diatomic molecule is 3000 A, what is its
binding energy?  Ans. 4.13 eV

10.18. What is the momentum of a photon if it has the same energy as a 10 MeV alpha particle?
Ans. 10 MeV /¢ '

10.19. A radio station has a power 6utput of 150 kW at 101.1 MHz. Find the number of photons crossing a
unit area per unit time one mile from the radio station. Assume the radio station radiates uniformly in
all directions.  Ans. 6.3%X 10?! photons/ft?-

4
10.20. A plane, 300 MHz electromagnetic wave is incident normally on a surface of area 50 cm? If the
intensity of the wave is 9 x 10~5 W/m?, determine the rate at which photons strike the surface.
Ans.  2.26 X 10'® photons /s

;011. A light source of frequency 6 x 10'* Hz produces 10 W. How many photons are produced in 1 second?
‘ Ans. 2,52 X 10" photons

10.22.  Refer to Problem 10.8. Treating the radio station as a point source radiating uniformly in all directions,
find the number of photons inside a cubical radio 20 cm on a side located 15 km from the radio station,
Ans.  2.75 X 10" photons



Chapter 11 \ -
The Photoelectric Effect

11.1 EXPERIMENTAL RESULTS

In a photoelectric experiment light shines on
a metal surface in an evacuated tube and elec-
trons are emitted from this surface, as shown in

Fig. 11-1. The frequency » and intensity / of the /
—

light, the retarding voltage V, and the material of )
the emitter can be varied. If the electrons are @
sufficiently energetic they will be able to over- Emitter Collector
come the retarding potential ¥ and will reach the
collector and be recorded as current i in the
ammeter A. In order to be able to reach the
collector the electrons must have a kinetic energy 4——@ » — A
equal to or greater than the electrical potential !
energy that they must gain in going between
emitter and collector, i.e. [ r

% mev2 >eV

If their energy is less than this value, they will be
turned back before reaching the collector and Fig. 11-1

will not be recorded as current.

The experimental results are:

(1) The current begins almost instantaneously, even for light of(ry low intensity. The delay
between when the incident light strikes the surface and when the electrons are observed is of
the order of 107° s and is independent of the intensity.

(2) When the frequency and retarding potential are held fixed, the current is directly propor-
tional to the intensity of the incident light.

(3) When the frequency and light intensity are held fixed, the current decreases as the retarding
voltage is increased, reaching zero for a certain stopping voltage, V. This stopping voltage is
independent of the intensity.

(4) For a given emitter material the stopping voltage varies linearly with the frequency according
to the relation

eV,= hv — eW,

The value of the constant term, eWy, varies from material to material, but the slope h remains
the same for all materials, being numerically equal to Planck’s constant (see Problem 11.2).

(5) For a given material there exists a threshold frequency, v, below which no electrons will be
emitted, no matter how great the light intensity.

11.2 THEORY OF THE PHOTOELECTRIC EFFECT

A wave picture of light can explain only result (2), the increase of current with intensity, since the
more intense the light, the more energy transmitted by the wave, and the more electrons that should be

56
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emitted. The other results, however, are completely inexplicable in terms of a wave picture (see
Problem 11.1).

The quantum interpretation of light is capable of explaining all the experimental results. In the
quantum picture the energy carried by a photon is absorbed by a single electron. If the electron is
ejected from the material, the difference between the energy absorbed by the electron and the energy
with which the electron was bound to the surface appears as kinetic energy of the electron. The
electrons are bound to the surface with varying energies, but the binding energy of the least tightly
bound electrons depends on the material of the emitter. The energy required to remove these least
tightly bound electrons is called the work function, ¢, of the material. Hence, the electrons will be
ejected with various kinetic energies ranging from zerp to a maximum value given by

maximum kinetic energy of emitted electron = ‘
(energy carried by photon) — (binding energy of the least tightly bound electron)

thereby explaining experimental result (3). Since K, = eV,, the maximum-energy relation becomes
eV,=h—2¢

where ¢ = eW,,. Hence the linear relation of result (4) is explained, along with the existence of a
threshold frequency (result (5)) given by

Below this threshold frequency the incident photons will not have sufficient energy to release even the
least tightly bound electrons, no matter how intense the light. The short delay time of experimental
result (1) is also explained, because the absorption of a photon occurs almost instantaneously.
Finally, the more intense the light, the larger the photon density, and hence the more electrons that
will be ejected, thereby explaining result (2).

Solved Problems

11.1.  Consider a potassium surface that is 75 cm away from a 100-watt bulb. Suppose that the
energy radiated by the bulb is 5% of the input power. Treating each potassium atom as a
circular disc of diameter 1 A, determine the time required for each atom to absorb an amount
of energy equal to its work function of 2.0 eV, according to the wave interpretation of light.

Treating the bulb as a point source, the intensity at the location of the potassium surface is

power _ 100 W X 0.05
area of sphere  44(0.75 m)*

intensity = =(0.707 W/m?

The power incident on each potassium atom is

power per atom = intensity X (area per atom)

1% 10-1° m)’
= (0.707 w ) r(X107Pm) o s6w10-1w
m

4
The time interval to absorb 2.0 eV of energy is then found from
20eV)(1.6 X 10712 J/eV
power = en'ergy or time= L ( X /) =576s
time power 5.56 X 10°21J/s

In this calculation it has been assumed that all the incident energy has been absorbed. Since, with
a wave picture, much of the incident energy would be reflected, the actual calculated time would be in
excess of 57.6 s. Thus a wave picture of electromagnetic radiation predicts an emission time much
larger than the experimentally observed time of less than 10~° s.
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11.2.  When a photoelectric experiment is performed using calcium as the emitter, the following
stopping potentials are found: |

A A 2536 | 3132 | 3650 | 4047
v, Hzx 10" | 1.18 | 0.958 | 0.822 | 0.741

V.,V 195| 098 | 050 ( 0.14

Find Planck’s constant from these data.

The data are graphed in Fig. 11-2. From the photoelectric equation, the slope of the graph is h/e,
O
1.66 V

_ OV =66X1073]s
0.40 X 10 57!

h = e(slope) = (1.6 X 10717 C)

ac-v=1J.

AV =166V l

\J

/ Av = 0.40 X 101 Hz
1 |
1.0

», Hz X 101
Fig. 11-2

0 0.5

113. The kinetic energies of photoelectrons range from zero to 40 % 107" J when light of
wavelength 3000 A falls on a surface. What is the stopping potential for this light?

1eV

&  =25eV
1.6 %1071

K., =40%x10"°Jx

Then, from eV, = K., V,=25V.

114. What is the threshold wavelength for the material in Problem 11.3?

124x10°eV-A 124X 10°eV-A
3000 A At

eV, = hy — eWy= ﬁ}f- - ;\’—C or 25eV=
th

Solving, Ay, = 7590 A.

115. The emitter in a photoelectric tube has a threshold wavelength of 6000 A. Determine the
wavelength of the light incident on the tube if the stopping potential for this light is 2.5 V.

The work function is

eWo=hm=,’:—fh= 12.4><103;V-A -2
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The photoelectric equation then gives

124X10°eV-A _, 00

V= —eWom"C_eW, or 25ev= .

A
Solving, A = 2713 A.

Find the work function for potassium if the largest wavelength for electron emission in a
photoelectnc experlment is 5620 A.

he _ 124X10°eV-A

= W =
?= W= N 5620

=22leV

Potassium is illuminated with ultraviolet light of wavelength 2500 A. If the work function of
potassium is 2.21 eV, what is the maximum kinetic energy of the emitted electrons?

Koua = h £ —eWo = 24AXIPVA _ 50 v 2756y

2500 A

) .
In Problem 11.7 the ultraviolet light has an intensity of 2 W/m2. Calculate the rate of
electron emission per unit area.

In Problem 11.7 each phbton has an energy of 4.96 eV =794 X 10-" J. Assuming each photon
liberates one electron, we have

number of electrons _ number of photons - 2J/m?-s =2.52 % 10'® photons
m?-s m?-s 794 X 10~'° J/photon m?-s

Suppose the wavelength of the incident light in a photoelectric experiment is increased from
3000 A to 3010 A. Find the corresponding change in the stopping potential.

he
Fi=x W

Treating the change in the wavelength as a differential and remembering that W, is a constant, one finds

e(dv,) = - %dA= - 12'—4(?0%)‘2"—"(10,&)= ~1.38x 10~2eV

Solving, dV, = —1.38 X 1072 V.

Find the strength of the transverse magnetic field required to bend all the photoelectrons -
within a circle of radius 20 cm when light of wavelength 4000 A is incident on a barium
emitter. The work function of barium is 2.5 eV.

mol, =hv — eWy= th -

(ST

(6.63 X 10734 J - 5)(3 X 10* m/s)
4x107"m
and solving, vp,, =4.62 X 10° m/s. When these electrons enter the magnetic field, we have

1 ~31 2 _ -19 J
7 (911X 107" kg)o,, = (25eV)(16x10 v)

force of magnetic field = mass X radial acceleration

evnB = m(';mnx)
max
9.11 X 10~31 kg)(4.62 X 10° m
B= Mo _ O1 e /9 13 %10-5T

€Ruex (16X 10~ C)020 m)
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11.11.

11.12.

11.13.

11.14.

11.15.

11.16.

11.17.

11.18.

11.19.

11.20.

THE QUANTUM THEORY OF ELECTROMAGNETIC RADIATION [PART II

It should be noted that this field is comparable to the earth’s magnetic field, which is approximately
58x107°T.

Prove that the photoelectric effect cannot occur for free electrons.

In Fig. 11-3 we look at the hypothetical process in the center-of-mass system, which is defined as
that system in which the initial momentum is zero. From the conservation of energy,

= 2, 2
Eigitiat== Efinq~ OT by + mc® = myc

which implies my > m. Since this cannot be true, so the process cannot occur.
The electrons participating in the photoelectric effect are not free. The heavy matter present takes
off momentum but absorbs a negligible amount of energy. See Problem 8.16.

p="h/A p=m v=0
e Ya . <—® @ mg
(a) Before absorption (b) After absorption
Fig. 11-3

| Supplementary Problems

The threshold wavelength for a material is 5000 A. Find the work function. Ans. 248 eV
For the material in Problem 11.12, what is the stopping potential for 3500 A photons? Ans. 1.06 V

The maximum energy of the emitted electrons when a material is illuminated with 3000 A light is 1.2 eV.
Find the work function. Ans. 293 eV

In Problem 11.14 the light has an intensity of 3 W/ m2. What is the rate of electron emission per m? if it
is 50% efficient?  Ans. 2.27 x 10'® electrons/s - m*

Find the maximum kinetic energy of electrons emitted from a surface with a threshold wavelength of
6000 A when light of 4000 A strikes the surface. Ans. 1.03 eV

Determine the maximum wavelength of light that will cause emission of electrons from a material whose
work function is 3.0 eV~ Ans. 4133 A

Find the energy of the fastest electrons that are emitted when light of wavelength 5000 A is incident on
lithium (work function =2.13 V).  Ans. 0.35eV

When light of wavelength 4500 A falls on a surface, the stopping potential for the emitted electrons is
found to be 0.75 V. What is the stopping potential for the photoelectrons if light of wavelength 3000 A
falls on the surface? Ans. 213V

The most energetic electrons emitted from a surface by 3500 A photons are found to be bent in a 18 cm
circle by a magnetic field of 1.5 X 10~° T. Find the work function for the material. Ans. 290 eV
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11.21.

11.22,

Light of wavelength 4500 A is incident on two photoelectric tubes. . The emitter in the first tube has a
threshold wavelength of 6000 A and the emitter in the second tube has a work function twice as large as
in the first tube. Find the stopping potential in each of the tubes.

Ans. V,; =0.69 V; there is no photoelectric emission from the second tube

Suppose a photon of wavelength 600 A is absorbed by a hydrogen atom whose ionization energy is 13.6
eV. What is the kinetic energy of the cjected electron?  Ans. 7.1 eV



Chapter 12
The Compton Effect

The wave interpretation predicts that when electromagnetic radiation is scattered from a charged
particle the scattered radiation will have the same frequency as the incident radiation in all directions.
Arthur H. Compton, in 1922, demonstrated that if the quantum interpretation of electromagnetic
radiation (Chapter 10) is accepted, then the scattered radiation will have a frequency that is smaller
than the incident radiation’s and that also depends on the angle of scattering.

Compton’s analysis involved, in effect, viewing the scattering of electromagnetic radiation from a
charged particle as a perfectly elastic, billiard ball type of collision between a photon and the
effectively free charged particle, as shown in Fig. 12-1. Even though the details of the interaction are
not known, conservation of energy and momentum can be applied. It is found that the scattered
photon undergoes a shift in wavelength, A\, given by

AN =N —A= -2 (1 - cos )
meyc
(see Problem 12.10). The quantity h/myc is usually called the Compton wavelength; its value, for an

electron, is 0.0243 ‘A. Note that the shift in the wavelength depends only on the scattering angle 8
and is independent of the incident photon’s energy.

YA A

\J

&
x\}
/
/
/
Al

~
@ E,=mc?

Pe=mv

(a) Before scattering (b) After scattering
Fig. 12-1

Compton verified his theoretical relationship experimentally by scattering X-rays (A = 0.7 ;\) from
graphite. The energy of the X-rays (1.8 X 10* eV) is several orders of magnitude larger than the

binding energy of the outer carbon electrons, so treating these electrons as free particles is a good
approximation.
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12.1.

12.2.

12.3.

124.

125.

Solved Problems

A 0.3 MeV X-ray photon makes a “head-on” collision with an electron initially at rest. Using
conservation of energy and momentum, find the recoil velocity of the electron.

In the notation of Fig. 12-1, the conservation of energy is expressed by
2
m
E+mct= '+ —— % or 03 MeV+0511 MeV = £’ + —0511 MeV

V- (o%/c?) VI-(o¥/c?)
The momentum of a photon is hv/c = E/c, so the conservation of momentum is (@ = 180°, ¢ =0)
E oa_E ,__ mv . 03MeV _ —E'_ _0SlIMeV o
‘ Vi - (v*/c?) ¢ © V- ¢?

or
Simultaneous solution of the energy and momentum equations gives v = 0.65c¢.

In Problem 12.1 check that the velocity agrees with the value determined from the Compton
equation.

N-A= - (1-cost)= 1 (1-cos180°) = 2H o n=p4 2h
myc mgc mgoc mgyC
Multiplying this result by 1/kc, we obtain ’
XN_A, 2 1, 2 1 2 1

e he | me  hw | me  03MeV T O3TIMeV ~ 2 Mev

Substituting E’ = (1 /7.24) MeV into the energy equation of Problem 12.1 and solving for v, we again
obtain v = 0.65c¢. ‘

Calculate the fractional change in the wavelength of an X-ray of wavelength 0.400 A that
undergoes a 90° Compton scattering from an electron.

N—A= % (1 — cos 8) = (0.0243 A)(1 — cos 90°) = 0.0243 A
oL .

N-A _ 00243 A
A 0400 A

= 0.0608

An X-ray of wavelength 0.300 A undergoes a 60° Compton scattering. Find the wavelength
of the scattered photon and the energy of the electron after the scattering.

N=A+ 7n"—c (1= cos §) = 0.30 A + (0.0243 A)(1 - cos 60°) = 0.312 A
0
From energy conservation,

he he 124keV-A _ 124keV-A
3 gt = - mgc? = == +K,
x v K+ or 03 A 0312 A .

Solving, K, = 1.59 keV.

In a Compton experiment an electron attains a kinetic energy of 0.100 MeV when an X-ray of

energy 0.500 MeV strikes it. Determine the wavelength of the scattered photon if the electron
is initially at rest.

Einitiat = Efinal
E +.pt™ = E' + (K, +.mgt%)
0.500 MeV = E’ + 0.100 MeV
E’ = 0.400 MeV
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whence

-3 <R .
he _ 124X107°MeV-A _ 305 s

N=F 0,400 MeV

In Problem 12.5 find the angle that the scattered photon makes with the incident direction.

The incident wavelength is

_he _ 124x 1073 MeV-A _ _3 3
A=F = 500 MaV =248x 1073 A

From the Compton equation,

A=t -
A A—moc(l cos 9)

31X 1073A-248x 10732 A=(243x 1073 A)(1 — cos )
Solving, § = 42°.

 §
If the maximum energy imparted to an electron in Compton scattering is 45 keV, what is the
wavelength of the incident photon?
If the electron is to have its maximum recoil energy, then the photon is back-scattered. By
conservation of energy,
E+myc?=E +45keV+my? or E—E =45keV €D
By conservation of momentum, l
E__E
? - c +pe (2 )
Relating the momentum and energy of the electron by E? = (p,c)* + EZ, we have
(0.511 MeV + 0.045 MeV)’ = (p,c)*+ (0.511 MeV)’ or  p,=0219 MeV/c
Putting this in (2), we have /
E+ E' =219 keV 3)
Solving (1) and (3), we obtain E = 132 keV, from which
_he _ 124keV-A _ -2 ;
A= I3 32 keV 939x107° A
Show that a free electron at rest cannot absorb a photon. (Hence Compton scattering must
occur with free electrons.) ‘
hy
pphoton = Pelectron or ? = Pe

2 2
Ephoton = Eelectron or hy = V(Pec) + (mocz)

Dividing the energy expression by ¢ gives

hy
B Vgt e mict >,

which contradicts the momentum expression.
Essentially the same problem has been solved in a somewhat different manner in connection with
the photoelectric effect (Problem 11.11).

Determine the maximum scattering angle in a Compton experiment for which the scattered
photon can produce a positron-electron pair.
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12.10.

12.11.

The threshold wavelength for positron-electron pair production is (see Problem 13.4)

£ = 2mge? -
h ™ 2mye or oc A

Substituting this result in the Compton equation, we find
N=A+2A;,(1-cos @)
The right-hand side of this expression is the sum of two positive-definite terms. Hence, if
Wyl —cos 0) > Ay
then A’ > Ay, and pair production cannot occur. Taking the equality, we find for 8,:
Dl —cosby)=A, or cosbp=1/2 or B,;=060°

*

Note that this result is independent of the energy of the incident photon.

Derive the Compton equation. A’ — A = (h/myc)(1 — cos 8).

Refer to Fig. 12-1. The photon is treated as a
particle of energy E = hv = hc /A and momentum
p = h/A. From conservation of energy:

he 2_he |2
X + moct = % + mc Fig, 12-2
Squaring and rearranging we obtain
3
w2 B oy 2HAE | 2hmgc” 2y?
(mc)—}\zXz()\ +)\)-——M\—,—+——M\,—(A—}\)+(moc) (1)
From conservation of momentum we obtain the vector diagram shown in Fig. 12-2. Sincep, =p — p’,
. , [y )
Pe'Pe=pc=p'+p? =2 p = 55 (N?+ A7~ 2W cos §) (2)
Substituting (/) and (2) in the relation (mc?)? = (p,c)? + (myc?)?, we obtain
) h2C2 2 2 2h2C2 2hm0c3 B 2 2_ h2C2 2 2 ’ 2 2
}\2}\,2_0\ +N) - St oo W N+ (me?) = }\—2)\,—20\ + A2 — 2\ cos 8) + (moc?)

Solving, we obtain the Compton relationship

>\’—}\=A>\=—£z—(l—cosﬂ)
mgc

In Compton scattering, what is the kinetic energy of the electron scattered at angle ¢ to the
incident photon?

initial energy = final energy
vy + mpc = hv' + K, + myc?

or, since hv = pc,

pc=pc+K, (1)
From Fig. 12-2, p" = p — p,, and so
pop=p?=p*+pl-2pp. cos¢ (2)
Using (/) and the relation
E2X — (moc?)
pi= —% = % [(moc2 + K, )2 - (mocz)z] = % (K2 + 2K,myc?) (3)

in (2) we obtain

Ke(mo + g ) = pp. COS ¢



66

12.12.

12.13.

12.14.

12.15.

12.16.

12.17.

12.18.

12.19.

12.20.

12.21.

12.22.

12.23.

THE QUANTUM THEORY OF ELECTROMAGNETIC RADIATION [PART II

Squaring this and using (3) again, we obtain
PY_ P
1<3(m0 +L ) = £ (K2 +2K,myc?) cos? ¢
c c2

Finally, solving for K, and replacing p by hv/c, we find

2( hv2 ) cos? ¢

mgC

7 7
( hy2+1) —( hvz)coszqa
MgC myc

Observe that K, is maximum for ¢ = 0.

Supplementary Problems

Find the Compton wavelength for a proton (rest mass = 938.3 MeV). Ans. 132x107%A
Repeat Problem 12.3 for visible light of wavelength 5000 A, Ans. 486X 107

A 100 keV photon scatters from a free electron initially at rest. Find the recoil velocity of the electron if
the photon scattering angle is 180°. (Use energy and momentum conservation.) Ans. 0.319¢

In Problem 12.14 calculate from the Compton equation the wavelength of the scattered photon.
Ans. 0.1726 A

If the photon of Problem 12.14 is scattered at an angle of 65° to the incoming beam, find its final
wavelength. Ans. 0.138 A /

For Problem 12.16 calculate the final momentum of the electron.  Ans. 102.4 keV/c
Repeat Problems 12.16 and 12.17 for a scattering angle of 144°, Ans. 0.168 A; 166 keV/c

In Compton scattering the scattered photon and electron are detected. It is found that the electron has
a kinetic energy of 75 keV and the photon an energy of 200 keV. What was the initial wavelength of the
photon? Ans. 0.045 A

For Problem 12.19 find the scattering angles for the photon and the electron. Ans. 72.5°; 41.7°

Calculate the percent change in wavelength in a 0.15 A photon which undergoes a 120° scattering from
an electron.  Ans. 24.3%

Find the final wavelength of a scattered photon which undergoes a 90° Compton scattering from a free
proton if its original energy is 12 MeV. (For a proton, myc? = 938.3 MeV.)  Ans. 1.05X 1072 A

Calculate the maximum energy, in electron volts, that can be transferred to an electron in a Compton
experiment when the incident quanta are X-rays of wavelength 0.50 A. Ans. 47eV ?
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12.24.  Repeat Problem 12.23 for visible light photons of wavelength 5000 A.  Ans. 2.41 X 10~5eV
1225. For Compton scattering, what is the relation between scatteﬁng angles for the photon and the electron?
Ans. cot¢ = (1 - ——}l'%)cot%
mgc
12.26.  An electron that undergoes a “head-on” collision with an X-ray photon has a stopping potential of 70 .

kV. If the electron was initially at rest, what are the wavelengths of the initial and scattered X-ray
photons?  Ans. 0.0716 A; 0.1201 A



Chapter 13
Pair Production and Annihilation

13.1 PAIR PRODUCTION

In the process of pair production the energy carried by a photon is completely converted into
matter, resulting in the creation of an electron-positron pair, as indicated in Fig. 13-1. (Except for its
charge, a positron is identical in all ways to an electron.) Since the charge of the system was initially
zero, two oppositely charged particles must be produced in order to conserve charge. In order to
produce a pair, the incident photon must have an energy at least equal to the rest energy of the pair;
any excess energy of the photon appears as kinetic energy of the particles.

/l’«v-
E+=m+c2®

ben Q.

NSNS
Heavy nucleus, M, \
P
(a) Before pair production (b) After pair production

Fig. 13-1

Pair production cannot occur in empty space (see Problem 13.11). Heg%, in Fig. 13-1 the
presence of a heavy nucleus is indicated. The nucleus carries away an appreciable amount of the
incident photon’s momentum, but because of its large mass, its recoil kinetic energy, K ~ p?/2M,, is
usually negligible compared to the kinetic energies of the electron-positron pair. Thus, energy (but
not momentum) conservation may be applied with the heavy nucleus ignored, yielding

w=m,c>+m_c*=K, +K_+2my?

since the positron and the electron have the same rest mass, my=9.11 x 107! kg.

13.2 PAIR ANNIHILATION

The inverse of pair production can also occur. In pair annihilation a positron-electron pair is
annihilated, resulting in the creation of two (or more) photons, as shown in Fig. 13-2. At least two
photons must be produced in order to conserve energy and momentum. - In contrast to pair pro-
duction, pair annihilation can take place in empty space and both energy and momentum princi-
ples are applicable, so that

Epiiar = Egpar O 2moc? + K, +K_=hv + v,

h h
Pinitial = Prinn = O m V. +m_v_=—Kk + Py k,

27

where k is the propagation vector, |k| = 27 /A.
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h'l
E,=m,l=my*+ K,
O— o |
&- m_cl=my?+ K_
) B
(a) Before pair annihilation : (b) After pair annihilation

Fig. 13-2

" Both pair production and annihilation can occur with other particles and antiparticles, such as a
proton and an antiproton (see Problem 13.16).

Solved’Problems

13.1. A photon of wavelength 0.0030 A in the vicinity of a heavy nucleus produces an electron- -
positron pair. - Determine the kinetic energy of each of the particles if the kinetic energy of
the positron is twice that of the electron.

From Eiyija = Efipas '
th =2myc? + K, +K_'=2moc? + 3K _
124 X 1073 MeV - A
0.0030 A

=2(0.511 MeV) + 3K _

K_ =104 MeV
and K, =2K_=2.08 MeV.

LY .
13.2.  Find the energies of the two photons that are produced when annihilation occurs between an
electron and positron that are initially at rest.

* Since the initial momentum of the positron-electron pair is zero, the two photons must travel in
opposite directions with equal energies. Applying conservation of energy then yields

2myc*=2E, or E,=my?*=0511MeV"

133.  Pair annihilation takes place when an electron and a positron have a head-on collision,
producing two 2.0 MeV photons that travel in opposite directions. Find the kinetic energies
of the electron and positron before the collision.

Since the final momentum of the photons is zero, the electron and positron must have had equal
kinetic energies before the collision. From energy conservation,

2moc* + 2K = 2E,
2(0.511 MeV) + 2K = 2(2.0 MeV)
K =149 MeV

134. Determine the threshold wavelength for pair production.



70

13.5.

13.6.

13.7.

13.8.
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The threshold wavelength is that wavelength for which the positron and electron have zero kinetic
energy. Conservation of energy for this situation (neglecting the recoil energy of the nucleus) gives

he  _ 124x10"*MeV-A

= =0.0121 A
2myc? 2(0.511 MeV)

Annihilation occurs between an electron and positron at rest, producing three photons. Find
the energy of the third photon if the energies of two of the photons are 0.20 MeV and 0.30
MeV.

From conservation of energy,
2(0.511 MeV) =0.20 MeV + 030 MeV + E;  or  E;=0522 MeV

How many positrons can a 200 MeV photon produce?

The energy needed to create an electron-positron pair at rest is twice the rest energy of an electron,
or 1.022 MeV. Therefore,

. . 1 pai it
maximum number of positrons = (200 MeV)( pair )( positron

1.022 MeV pair ) = 195 positrons

A 5 MeV electron undergoes annihilation with a positron that is at rest, producing two
photons. One of the photons travels in the direction of the incident electron. Calculate the
energy of each photon.

The second photon must travel parallel to (e = + 1) or antiparallel to (¢ = — 1) the first photon in
order that momentum be conserved in the transverse direction. From conservation'of momentum,
E, K
P_=T+€T or E +eE;=p_c /

Substituting for p_ ¢ from
(K_ +moc?)' = (p_ )+ (moc?)’

we obtain

E, + ¢E, =\[(K_ +mae?) = (moc?)’ = V(5511 MeV)? — (0511 MeV)? = 5.49 MeV
Conservation of energy requires
Ei+ E; = K_ +myc® + mge? = 5 MeV + 2(0.511 MeV) = 6.02 MeV
Substituting for E; in the momentum equation gives

—0.53 MeV = (e ~ 1)E,

Therefore € must be taken equal to — 1, so that the second photon travels in the opposite direction from
the first. The energies are then found to be

E;,=027MeV  E,=5.75MeV

An electron and positron, traveling together as shown in Fig. @——> v, =(3/2)c
13-3, annihilate. Find the wavelengths of the two photons

that are produced if they are both to move along the line of G______, o =(3/2c
motion of the original pair. Fig. 13-3

If the process is looked at in the center-of-mass system, the photons move off in opposite directions.
Transforming this back to the laboratory frame, one must still find the photons moving in opposite
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13.9.

directions, because the laboratory velocity relative to the center of mass is less than ¢. Conservation of
momentum gives

2mo=p,—p,= -’L - xh;
with .
e 2(moc?)(v/¢) _ 2051 MeV)(V3’ /2) =177 MeV
M - (v*/c?) Vi - (5/2)
Therefore, '
1 _ 1 _@Qmo)e _ LT70MeV 1407 A- )

A 2 he 124 X 107> MeV : A
By conservation of energy,

he
2mc? = hvy + hvy = € 4 1€
1 vy >‘l AZ
with
2myc? 2(0.511 MeV
amer = e X V) 2044 Mev
VI=@/e) V-
Therefore,
1,1 _ 2mc? _ 2.044 MeV = 1648 A~} 2)

NN ke 1241073 MeV-A
Solving (1) and (2) simultaneously we get
A =650x10"2A A,=905x10"2A

An electron and positron moving as in Problem 13.8 annihilate, and the photons produced are
observed to have equal scattering angles. Find the energy and scattering angles of the
photons.

Since the initial momentum in the transverse direction was zero, the photons must have the same
energy E,. By conservation of energy and the results of Problem 13.8,

2moc2
2E,= ——— =2.044MeV or E, =1022MeV

Y
V1= (v¥/c?)
By conservation of momentum in the longitudinal direction,
‘ E7 EY
2my=—cos @ + — cos (—4)
c ¢
2mgv 2mye
Vi-@/e)  Vi-(Ye)
whence cos @ = v/c =3 /2 and 8 = 30°.

cos 8

13.10. Pair production occurring in a magnetic field of 0.1 T results in a positron and electron having

radii of curvature of 120 mm and 40 mm, respectively. Determine the energy of the incident

_photon:

Applying Newton’s second law to a charged particle in a magnetic fleld (see Problem 825), we

Obtaln
2 2

Vi- (/) R ) oc

l:

quB =
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Hence the total energy of a charged particle is

mgc?

Evaluating the energy of the positron and of the electron:

[ (1.6 X 10719 C)(0.1 T)(120 X 10~ m) |’
E, =051 MeW)\ /1 +| & )01 TN ™ 363 Mev
(9.11 X 1073 kg)(3 X 10¥ m/s)

- 2
(1.6 X 10712 C)(0.1 T)(40 x 1073 m)
E_=(0.511 MeV)\/1 + = 1.30 MeV
( )\/ (9.11 X 1073 kg)(3 X 10* m/s)

Then, by energy conservation (with the heavy nucleus ignored),
hw=E, +E_=493 MeV

Prove that pair production cannot occur in empty space. (Hence, in order for pair produc-
tion to occur a nucleus must be present.)

The production of a pair of particles is an invariant occurrence—if one observer finds that a pair is
produced, then any other observer moving relative to him must also find that a pair is produced. The
frequency of a photon, however, will vary from one observer to another because of the Doppler shift
(Chapter 9). It is always possible to find an observer moving with a speed such that a given photon’s
frequency is Doppler-shifted below the threshold frequency required for pair production (Problem 13.4).
Since this observer will find pair production to be impossible in empty space, it follows that all other
observers will also find it impossible to produce a pair in empty space.

Supplementary Problems

Determine a photon’s threshold energy for pair production. Ans. 1022 MeV

A 0.0005 A photon produces an electron-positron pair in the vicinity of a heavy nucleus. If they have
the same kinetic energies, find the energy of each particle. Ans. 11.9 MeV

For Problem 13.13, if the positron’s kinetic energy is five times the electron’s kinetic energy, find the
energy of each particle.  4ns. 19.8 MeV; 3.96 MeV

After pair annihilation two 1 MeV photons are observed moving in opposite directions. If the electron
and positron both had the same kinetic energy, find its value. Ans. 0.49 MeV

Find the threshold wavelength for proton-antiproton production. The rest mass of a proton (or
antiproton) is 938 MeV.  Ans. 6.61 X 1075 A

An electron, velocity 0.8¢, annihilates with a positron at rest, producing two photons. One photon is
observed to travel in the direction of the incident electron. Calculate the energy of each photon.
Ans. 1.02 MeV; 0.34 MeV
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13.18. If in Problem 13.17 the photon observed is found to move perpendicular to the incident electron, find the
energy of each photon.  Ans. 0.51 MeV; 0.85 MeV

13.19. Pair produéﬁon occurs in a magnetic field of 0.05 T and both the electron and positron are observed to
have a radius of curvature of 90 mm. Find the energy of the incident photon.  Ans. 2.88 MeV



Chapter 14

Absorption of Photons

The intensity of a beam of radiation will be reduced as it passes through material because photons
will be removed or scattered from the forward direction by some combination of the photoelectric
effect, the Compton effect, and pair production. The reduction in intensity obeys the exponential
attenuation law

I=1[e ™ ' (14.1)

Here I, is the intensity of the radiation incident on the absorber and p (the linear absorption coefficient)
is, for a given photon energy, a constant that depends on the particular absorbing material. For any

given material p will vary with the energy (or wavelength) of the radiation because different
interactions predominate at different energies. j

Solved Problems

14.1.  What percentage of incident X-ray radiation passes through 5.0 mm of material whose linear
absorption coefficient is 0.07 mm™'?

L o o = - 007 mm150 mm) = 0705 = 70.5%

Iy

14.2. A monochromatic beam of photons is incident on an absorbing material. If the incident
intensity is reduced by a factor of two by 8 mm of material, what is the absorption coefficient?

1 .
70 = Ioe—n(B mm)

Solving, . = 0.0866 mm ™.
143.  Find the half-value thickness of aluminium if p = 0.070 mm™".

The half-value thickness is that thickness which reduces the intensity of a photon beam to half its
incident value. Thus

_ -1
= @00 mm™Dx o x =99 mm

ST

14.4. What is the ratio of the intensity of a photon beam to its original intensity after it passes
through material whose thickness is equal to two half-thicknesses?

Through each half-thickness the intensity is reduced to one-half its original value. So through two
half-thicknesses the incident intensity (1) is reduced to one-quarter its initial value (/,/4).

14.5. A beam passes normal to a 20 mm sheet and is attenuated to half its original intensity. The
sheet is now rotated through an angle of 40°. Find the intensity of the beam as it now
emerges from the sheet.

74
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14.6.

14.7.

14.8.

The linear absorption coefficient is obtained from

% = H®mm) o ) = 00347 mm-!

When: the sheet is rotated through 40°, the new thickness is

X = *1_ _ 20mm
27 cos40° ~ cos 40°

The new intensity is then found from
)

I = ¢ M2 = o—(0.0347 mm~!)N26.1 mm) _ 0.404
o

=26.1 mm

What thickness of aluminum (g, =0.044 mm~") is equivalent to 6.0 mm of lead (g, =58
mm™!)?

-An equivalent thickness of aluminum will reduce the incident radiation by the same amount that it
is reduced in passing through 6.0 mm of lead.

i = @ WX = o "X,
I; e Wi=¢
from which p,x; = y,x,. Thus _

’ B 5.8 mm~!

=—xy= ——————— (6.0 mm) = 791 mm
Ya l'-axl 0.044mm"( )

Material 4 has an absorption coefficient of 0.044 mm™' and material B has an absorption
coefficient of 0.056 mm~'. If the incident intensity is I and the final intensity is to be 1,/5,
calculate the thicknesses of 4 and B, if 4 is to be twice as thick as B and the beam passes
through both materials. '

If the thickness of 4 is 2x, the intensity incident on B is I,e~%@9. Therefore, applying the
exponential law to B,
I

I= ? = [Ioe_”v(zx)]e—"‘bx - Ioe_(zl‘a*’"b)x v

or

5= e(O.IM mm~})x
Solving, x = 11.18 mm, 2x = 22.36 mm.

Derive the formula I = Ie~**.

For a given photon energy, the photon flux is reduced in a material because of the photoelectric
effect, pair production and Compton scattering. The number of reactions, dN, in the thickness dx is
directly proportional to the magnitude of the photon flux, N, and the number of atoms encountered as
the photons pass through the small thickness of material. In turn, the number of atoms in dx is
proportional to dx. Therefore,

—dN = uN dx
Integrating this we get
NdN _ _  fx
j].vo TV— = j(; dx
N= Noe~“x

But the intensity, /, of a monochromatic beam is proportional to N. Hence,
I=Jpe ™
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Supplementary Problems

The absorption coefficient for a material is 0.061 mm™". If the incident intensity is I, calculate the
thickness of material needed to reduce the beam to Iy/3. Ans. 18 mm

The linear absorption coefficient for a material is 0.055 mm~'. What percentage of a monochromatic
beam will pass through 10 mm of the material? Ans. 51.7%

Through 8.5 mm of material a monochromatic beam is reduced by a factor of three. Find the linear
absorption coefficient.  Ans.  0.129 mm™!

For a material g = 0.035 mm™ 1. Find the half-value thickness./ Ans. 19.8 mm

What thickness of material 4 (p, = 0.060 mm™") is equivalent to 8 mm of material B (g, = 0.131
mm~')?  Ans. 17.5 mm

The materials of Problem 14.13 are to be of equal thickness and together are to reduce an incident
monochromatic beam by a factor of 5. Find their thicknesses.  Ans. 8.4 mm

Radiation of equal intensities of 0.3 A X-rays (p, =03 mm~ 1 and 0.5 A X-rays (p = 0.72 mm~ 1 are

incident on a material. Find the thickness of the material if, in the emerging radiation, the 0.3 A X-rays
are twice as intense as the 0.5 A X-rays. Ans. 1.7 mm
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Chapter 15

De Brdglie Waves

15.1 THE WAVE-PARTICLE DUALITY OF ELECTROMAGNETIC RADIATION

In Chapters 10 through 13 it was shown that particle characteristics had to be assigned to
electromagnetic radiation in order to explain certain experimental observations (photoelectric effect,
Compton scattering). It is known from interference and diffraction experiments, however, that
electromagnetic radiation also behaves like a wave. Hence electromagnetic radiation exhibits a
‘wave-particle duality: in certain circumstances it behaves like a wave, while in other situations it acts
like a particle. ' : ‘

It is essential that one clearly understand the distinction between waves and particles, since these
are the only two modes of energy transmission. A classical particle is something that has position,
momentum, kinetic energy, mass, and electric charge. A classical wave, on the other hand, has the
attributes of wavelength, frequency, velocity, amplitude of the disturbance, intensity, energy, and
momentum. The most distinctive difference between the two is that a particle can be localized,
whereas a wave is spread out and occupies a relatively large portion -of space. 4

152 THE WAVE-PARTICLE DUALITY OF MATTER

In 1924, Louis de Broglie proposed that if electromagnetic radiation could behave sometimes like a
wave and other times like a particle, then perhaps material objects, like electrons, may at certain times
act like waves. In other words, de Broglie proposed that if material objects pass through a slit whose
width is comparable to a wavelength associated with them, they will undergo diffraction just as
photons do in a single-slit experiment. :

For a photon, » = E/h and A = h/p. 1Itis seen that the left-hand sides. of these equations involve
the wave aspects of photons (frequency, wavelength), while on the right-hand sides the particle aspects
(energy, momentum) appear. The bridge between the two sides is Planck’s constant. Arguing from
the symmetry of nature, de Broglie conjectured that wavelengths associated with material bodies would
satisfy the same relations that held for photons. He therefore postulated that a material body will
have a wavelength given by

A=h

p m
There is one important difference between photons and massive objects in the way their wave and

particle properties are related. Because Av = ¢ for a photon, only one rule is required to get both

wavelength and frequency from a photon’s particle properties of energy and momentum. A massive

object, on the other hand, requires separate rules for its wavelength (A= £ /p) and frequency

(v=E/h).

k]
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15.1.

15.2.

15.3.

15.4.

15.5.

MATTER WAVES [PART III

Solved Problems

Find the de Broglie wavelength of a 0.01 kg pellet having a velocity of 10 m/s.

_h _ 663x107%#J-s _ YR -2 §
A== 0.01kg><10m/s‘6'63x‘° m=663x10"2A

In order to observe de Broglie waves, interference or diffraction experiments must be performed using
apertures comparable to the de Broglie wavelength. The above de Broglie wavelength of 1072 A is
orders of magnitude smaller than any existing aperture. /

Determine the accelerating potential necessary to give an electron a de Broglie wavelength of
1 A, which is the size of the interatomic spacing of atoms in a crystal.

From conservation of energy (nonrelativistic calculation) we have

1 oo P _ 1 (kY
ev= Mot™ = 2m0— 2m0(>\)

2 663 % 10-%J+s)°
y=-t_ - ( ) =151V
2meeh? (9.1 x 1073 kg)(1.6 X 107 C)(1 X 1071 m)

Note that a kinetic energy of 151 eV is small compared to the rest energy of 0.511 MeV, and this justifies
the nonrelativistic calculation.

Accelerating potentials of the order of 150 volts are readily available in the laboratory. Therefore,
unlike the macroscopic case of Problem 15.1, conditions are possible for observing de Broglie waves of
electrons.

Calculate the de Broglie wavelength of a 0.05 eV (“thermal”) neutron.
Making a nonrelativistic calculation,
h o _ he _ 124 X 10°eV-A

= =128A
V2moK \E(mOCZ)K V2(940 X 10° eV)(0.05 eV)

This convenient wavelength of the order of 1 A is handy in slow-neutron physics.

Calculate the energy of a proton of wavelength 0.5 fm (1 fm = 10" m=10"% A = 1 fermi).
From A = h/p = hc/pc,

- 1240 MeV * fm
pe

Then, from the relativistic energy-momentum relation,

0.5 fm or  pc=2480 MeV

E2=(pc)* + E2 = (2480 MeV)" + (938 MeV)
yielding E = 2650 MeV and
K = E — Ey= 2650 MeV — 938 MeV = 1712 MeV

In this case, K = E, and a relativistic calculation was indeed necessary.

If we wish to observe an object which is 2.5 A in size, what is the minimum-energy photon
which can be used?

In order for scattering to occur, the wavelength of the waves must be of the same order of
magnitude or smaller than the size of the object being observed (imagine a pea scattering water waves).
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15.6.

15.7.

158.

Hence the largest possible wavelength we can use in the present problem is A,, =2.5 A. The
corresponding minimum energy is then

Emin = thin = AhC = 1240 ; ;Ogev. A =496 X 103 eV
max .

Rework Problem 15.5 for electrons instead of photons.

As in Problem 15.5, the maximum electron wavelength is A, =2.5 A. The kinetic energy and
momentum are related nonrelativistically by p =\/5moK . Hence,

=h__h
P 2myK
and
A2 () (124X 10°eV-AY

=241eV

min

D 2mpl,, 2mge?M 2 2(0.511 X 105 V(2.5 A)?

Comparison with Problem 15.5 shows that, for a given energy, electrons will have a much higher
resolving power than photons. This is why electron microscopes can achieve magnifications much
greater than those of optical microscopes.

At what energy will the nonrelativistic calculation of the de Broglie wavelength of an electron
be in error by 5%?

For the nonrelativistic case, the de Broglie wavelength is
_ he he

Anr =—_=
2moc’K

pe

For the relativistic case,

172
(K + mocz)2= (pe) + (mocz)2 or pc= [ZMOCZK(I + 5 K 5 )]
mgoc

and the de Broglie wavelength is

A= he - hc.

ﬁ 1/2
[2moc2K(l + X > )]
2mOC

For our case, A,, — A, = 0.05A,; A, /A, = 1.05.

>

nr

K
Lo A1+
A 2myc?

~ K
105 "\/1 * 20511 Mev)

Solving, K = 0.105 MeV.

Show that the de Broglie wavelength of a particle is approximately the same as that of a

photon with the same energy, when the energy of the particle is much greater than its rest
energy.

E P
E*=p*%*+E o p= 1_(—}52) ~

o |t
> |t
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15.9.

15.10.

15.11.

15.12.

15.13.

15.14.

15.15.

MATTER WAVES (PART III
if Ex»Ey, So
Y.
A= il
For a photon, £ = hv = hc/A,, so /
" he

Determine the phase velocity of the wave corresponding to a de Broglie wavelength of
A=h/p=h/mo.
The de Broglie frequency is found from
E=m?=h o v=mc?/h

The phase velocity, u,, is found from

e () 2)-

<%

Note that since v < ¢, 4, > c.

Determine the group velocity of the wave corresponding to a de Broglie wavelength of
A=h/p.

The group velocity, u,, is given by u, = dv /d(A~"). Using the expression for » found in Problem
15.9, we have

Cd(m/h)  cram

u

& d(p/h)
By differentiation of m%* = p%? + mjc*, we obtain ¢’m dm = p dp. Therefore,
- e/mdp _ p
s dp m

In the theoretical structure of quantum mechanics, a particle is described by associating with it a
wave packet formed from the superposition of an infinite number of plane waves. Each plane wave
moves with a phase velocity which may exceed the velocity of light, as shown in Problem 15.9. The
individual phase velocities, however, are not observable. The quantity that is observable is the velocity
of the localized disturbance, or group velocity, which, as just shown, is equal to the velocity one normally
associates with a particle and is less than the speed of light.

Supplementary Problems

Calculate the de Broglie wavelength of a 2 kg mass whose velocity is 25 m/s. Ans. 133x10°B A
Calculate the de Broglie wavelength of a 0.08 eV neutron. Ans. 101 A

Calculate the kinetic energy of a neutron whose de Broglie wavelength is 0.7 A. Ans. 0.167 eV
What is the minimum-energy electron needed to observe a 5 A object? Ans. 6.02 eV

For the object of Problem 15.14, what is the minimum-energy proton that can be used?
Ans. 328X 1073 eV
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15.16. A proton is accelerated from rest through a potential of 1 kV. Find its de Broglie wavelength.
Ans. 9.05X% 1073 A

15.17.  Find the de Broglie wavelength of a 1 keV a-particle (mg = 3728 MeV).  Ans. 454 x 1073 A

15.18. At what kinetic energy will the nonrelativistic calculation of the de Broglie wavelength of a proton be in
error by 5%?  Ans. 192 MeV

A 2
15.19.  What is the ratio of a particle’s Compton and de Broglie wavelengths?  Ans. A—c = ( 'EE ) -1
d 0



Chapter 16 /

Experimental Verification of De Broglie’s Hypothesis

16.1 THE BRAGG LAW OF DIFFRACTION

Max von Laue, in 1912, suggested that because of their regular arrangement of atoms, crystals
might be used as diffraction gratings for X-rays. X-rays are electromagnetic radiation of about 1 Ain
wavelength, the same order of size as the interatomic spacing in a typical crystal.

The. theory of X-ray diffraction was developed by Sir William H. Bragg in 1913. Bragg showed
that a plane of atoms in a crystal, called a Bragg plane, would reflect radiation in exactly the same
manner that light is reflected from a plane mirror, as shown in Fig. 16-1.

Reflected
beam

Incident
beam

-0 -0--0- o0 --0--u

Fig. 16-1

If one considers radiation that is reflected from successive parallel Bragg planes spaced a distance
d apart, it is seen from Fig. 16-2 that it is possible for the beams reflected from each plane to interfere
constructively to produce an enhanced overall reflected beam. The condition for constructive
interference is that the path difference between the two rays, 2d sin 0, be equal to an integral number
of wavelengths, thereby giving Bragg’s law as

nA =2dsin §

Incident ray Reflected rays

N

dsin 8

e R, ———

Transmitted ray

Fig. 16-2
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If n and d are known, the wavelength of the incident beam can be determined by measuring the
scattering angle 20 between the transmitted and diffracted beams.

In any crystal many different families of Bragg planes, each with its own spacing, can be formed
by taking slices through the crystal in various manners. Each of these families can give rise to
diffraction. Hence, if an X-ray beam is passed through crystals that are randomly oriented, as in a
powder sample or in a thin foil, a difffaction pattern of concentric circles will be observed on a film
placed behind the sample. A given circle will correspond to diffraction of a particular order by a
particular family of planes. In the Solved Problems that follow, we shall, except in Problem 16.8,
consider only diffraction from the principal Bragg planes, whose spacing is the interatomic spacing.

162 ELECTRON DIFFRACTION EXPERIMENTS

The first experiments to observe electron diffraction were performed by C. J. Davisson and L. H.
Germer at Bell Telephone Laboratories. They directed a beam of 54 eV electrons at a single crystal
of nickel, whose interatomic spacing was known from X-ray diffraction measurements to be 2.15 A,
and measured the intensity of the scattered electrons as a function of the scattering angle. If there
were no diffraction effects one would expect that the intensity of the scattered electrons would
decrease monotonically with the scattering angle, with no large fraction of the electrons coming out at
any single angle. Instead, it was found that there was a pronounced peak in the electron intensity at a
scattering angle of 50°. With a small correction (see Problems 16.8 and 16.9), the computed
wavelength agreed with the de Broglie wavelength, thereby verifying de Broglie’s hypothesis.

Shortly after the experiments of Davisson and Germer, G. P. Thomson, in 1927, studied the
transmission of electrons through thin metal foils. If the electrons behaved like particles, a blurred
image would have resulted in the transmitted beam. Instead, Thomson found circular diffraction
patterns, which can be explained only in terms of a wave picture, further confirming de Broglie’s

hypothesis.

Subsequently, thermal (low-energy) neutron diffraction experiments were performed that further
upheld the de Broglie hypothesis.

Solved Problems
/ .

16.1. A 0.083 eV neutron beam scatters from an unknown sample and a Bragg reflection peak is
observed centered at 22°. What is the Bragg plane spacing?

The wavelength of the neutron beam is found from
b b _ he - 1240 X 10°eV-A
P \amek Va(mac)k V20940 X 10° €V)(0.083 V)
Assuming the peak corresponds to first-order diffraction (n = 1), we have

d= M __ 0993A
2sind 2 sin 22°

=0993 A

=133A

162.  Thermal neutrons incident on a sodium chloride crystal (interatomic spacing 2.81 A) undergo

first-order diffraction from the principal Bragg planes at an angle of 20°. What is the energy
of the thermal neutrons? :

For a first-order Bragg reflection,
A = 2d sin 6 = 2(2.81 A) sin 20° = 1.922 A
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16.3.

164.

MATTER WAVES [PART 111

From the de Broglie relationship, A = h/p = hc/ 2(moc?)K , s0

Lo A= J240X18eV-A o k00220 eV

\/2(940 x 108 eV)K

A narrow beam of 60 keV electrons passes through a thin silver polycrystalline foil. The ‘
interatomic spacing of silver crystals is 408 A. Calculate the radius of the first-order  §
diffraction pattern from the principal Bragg planes on a screen placed 40 cm behind the foil.

The de Broglie wavelength for the electron beam is

ao he o he he - 124X 10°eV-A
. .
Pe \E* - E? \/(7< + Eg) — E} \/(60 X 10° eV + 511 x 10° eV) — (511 X 10° V)’  §
=0.0487 A

For first-order Bragg reflections,

sng= 2 = 0.0487 A
2d ~ 2(408 A)

from which § = 0.342°. From Fig. 16-3, the radius of the first-order diffraction pattern is given by

R = D tan 26 = (40 cm) tan 0.684° = 0.478 cm

N

T TITRTIITRRTRRRINRNNR

Electron beam

\

AN

One small crystal
in polycrystalline foil

Fig. 16-3

A crystalline material has a set of Bragg planes separated by 1.1 A. For 2 eV neutrons, what
is the highest-order Bragg reflection?

The wavelength of the neutrons is

1240 X 10°eV - A

_ h _ hc -
Mo \2amoK ,/2(,,,002) K 20940 X 10°eV)(2 eV)

The maximum angle that can be attained is 90°. Then, from Bragg’s law,

=0202 A

2(1.1 A) sin 90° = n(0.202 A) or n=1089

Since n must be an integer, the highest order is n = 10.
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16.5.

16.6.

16.7.

A large crystal is used to extract single-energy neutrons from a beam of neutrons emerging

_from a reactor. The spacing of the Bragg planes is 1.1 A. . If the Bragg angle is set to be 30°,

what is the energy of ‘neutrons seen at this angle for a first-order reflection?
A=2dsin #=2(11 A)sin 30° = 1.1 A

The wavelength of the neutrons is related to their kinetic energy by

2 2
. R X V ¢
A=t ke o K=2(h,c)2.>\2= (12.40 0:03e A).2=0- ooV
P \hmeyk A 240X 10°eV)(1L1A) 0

Y

If the crystal of Problem 16.5 is not perfect, sob that its Bragg pfane spacing varies by +0.01 A,
calculate the spread in energy in the diffracted beam.

The differential of nA =2d sin 8 is n 8\ = 2 8d sin 8, so that
28dsing  2(+0.01 A)sin 30°

o= , = I = +001 A
As in Problem 16.5, K «< A ™2, so that ,
- —2(0.0676 eV .
8K = §K8A= (11Ae ) (£001 A) = £1.23 X 10

Determine the interatomic spacing of a NaCl crystal if the density of NaCl is 2.16 X 10°
kg/m? and the atomic welghts of sod1um and chlorine are 23.00 and 35.46, respectively.

The molecular weight of NaCl is 23.00 + 35 46 58 46. The number of molecules per 58 46 kg of
NaCl is

1 kmol ¢ molecules _ 6.025 X 10?6 molecules
5846 kg < 8025 X 10 = o = 5846 kg

Since there are two atoms per molecule, we have

number of atoms _ number of atoms mass _ 2 X 6.025 X 10% atoms kg
= = X216 x 10*° =
volume mass volume 58.46 kg m?

4.45 x 1028 2toms.
. o

To relate this to the interatomic spacing d, consider the NaCl
unit cell shown in Fig. 16-4 (differences between the Na* and
Cl~ ions are ignored). The volume of the cube is 2d)°. As
to the number of ions to be assigned to the cube, there are: 8
corner ions, each shared by 8 of the cubes; 12 edge ions, each
shared by 4 of the cubes; 6 face ions, each shared by 2 of the
cubes; and 1 unshared center ion. Thus

number of'ions=8(l)+ 12(‘1)+6(-1-)’+ 1=8 E
8 4 2 ; e % . /
and ' ) ke §v4 .
numberofions _ 8 _ 1 e . ' ’
volume (2d)3 d3 ‘ % . % %
Equating this to the above result, we have . ‘ | —} .",7
' .- v

1 o4asx108m? | i Va

d3 ) .
or . S/ .

d=282X10""m=28A Fig. 164
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16.8.

16.9.
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1

Fig. 16-5

In one of their experiments Davisson and Germer used electrons incident normally on a nickel
crystal surface cut parallel to the principal Bragg planes. They observed constructive in-
terference at an angle of 50.0° to the normal to the surface. Find the wavelength associated
with the electron beam. (The interatomic spacing of nickel is 2.15 A)

We first find the relation between the scattering angle ¢ to the normal and the interatomic spacing
D. From Fig. 16-5 it is seen that # + ¢/2 = 90°, so that
sin @ = cos %
Also from the figure we see the spacing d between the Bragg planes is
d= D sin ;—
Substituting these results in the Bragg relation, 2d sin = n), and using the half-angle formula

. ¢ ¢ _ .
2sm7cosi—sm¢

we obtain
D sin ¢ = nA
Taking n = 1, we then have
(2.15A)sin 500° = (DA or  A=165 A

In the experiment described in Problem 16.8 Davisson and Germer used 54.0 eV electrons.
Determine the effective accelerating potential of the nickel crystal.

The de Broglie wavelength of 54 eV electrons is
3.V - A .
h _ 124x10°eV-A —167 A

h _ he -
Mo \amoK  \(mc?)K V2(0511 X 10° eV)(54 €V)

This is fiifferent from the observed wavelength of 1.65 A. The kinetic energy corresponding to A
=1.65 A is found from

he (k) (124 x 10° eV - A
or K =

= Nz 5 2
1/2(m0c2) X' 2(moc®)A 2(0.511 x 10°eV)(1.65 A)

Therefore, the effective accelerating potential of the nickel crystal is
V,=553V-540V=13 \Y

Ad=

=553eV

A=



CHAP. 16] EXPERIMENTAL VERIFICATION OF DE BROGLIE’S HYPOTHESIS 87

16.10.

16.11.

16.12.

16.13.

16.14.

16.15.

16.16.

Supplementary Problems

The spacing between the nuclei in a certain crystal is 1.2 A. At what angle will first-order Bragg
reflection occur for neutrons with kinetic energy of 0.020 eV?  Ans. 57.4°

A 0.1 eV neutron beam scatters from an unknown sample. If a first-order Bragg reflection is found at
28°, what is the Bragg plane spacing?  Ans. 0963 A

Thermal neutrons are incident on a crystal whose interatomic spacing is 1.8 A, If a first-order Bragg

reflection from the principal Bragg planes is found at 22°, what is the kinetic energy of the thermal
neutrons?  Ans. 4.50 X 10~2 eV

For the crystal of Problem 16.2, what would be the energy of thermal neutrons observed at 30° if this
were a second-order Bragg reflection?  Ans. 4.14 x 10-2 eV

Refer to Problem 16.3. Determine the radius of the second-order diffraction pattern from the principal
Bragg planes. Ans. 9.6 mm

A beam of neutrons with kinetic energy 0.020 eV is incident on KCl powder. The lattice spacing of KCl
is 3.14 A.  What is the radius of the circle on a flat photograpl.lic plate placed 5 cm behind the target
from first-order reflections from the Bragg planes that are 3.14 A apart?  Ans. 3.85cm

Refer to Problem 16.15. What is the radius of the circle due to second-order reflections from the same
Bragg planes?  Ans. 289 cm '



Chapter 17
The Probability Interpretation of De Broglie Waves

We here address ourselves to the question of what it is that does the waving when a massive object
such as an electron exhibits wave properties. The probabilistic interpretation that we shall be led to is
perhaps disturbing at first; in fact, it is still being debated today. However, with such an interpreta-
tion, many otherwise unexplainable experimental results can be resotved.

17.1 A PROBABILITY INTERPRETATION FOR
ELECTROMAGNETIC RADIATION

Consider the interference pattern obtained in a double-slit experiment. According to the wave
picture, the intensity I (energy per unit area per unit time) at a point on the screen is given by

I = ¢, &2

where & is the value of the electric field at the particular point, € is the permittivity of free space, and

¢ is the velocity of light. In terms of the photon picture, on the other hand, the intensity at a point on
the screen is given by

I=mwN
where v is the energy per photon and N is the photon flux (the number, of photons per unit area per
unit time) striking the particular point on the screen.

There is no way of predicting in advance where any individual photon will strike the screen,
producing a single flash. However, since the final pattern consists of alternating bright and dark
bands, any single photon has a very high probability of arriving at 2 bright band and zero probability of
arriving at a dark band. The photon flux N at a point on the screen is therefore a measure of the
probability of finding a photon near that point.

Since I = €4 &2 = hyN, it follows that N o &2. Hence, in terms of the quantum interpretation of
electromagnetic radiation, the quantity that is undergoing the oscillations, namely the electric field &,
is that function whose square gives the probability of finding a photon at a given place.

172 A PROBABILITY INTERPRETATION OF MATTER

The interference pattern discussed above could have been produced with matter waves instead of
light waves. For this case the probability interpretation based upon the wave-particle duality of light
is carried over directly to explain the wave-particle duality of matter. Thus, with electron waves, the
quantity oscillating with the de Broglie wavelength A = h / mo is that wave function whose square gives
the probability of finding an electron at a given place. In order to reconcile the wave and particle
pictures of matter, we must give up the idea that the location of a single material particle can be
specified exactly. Instead, we can talk only of the probability of finding a particle at a particular
location at a particular time, as is illustrated in Problem 17.2.

The wave function is commonly denoted . For a photon, the de Broglie wave represented by ¢
is an electromagnetic wave; but for an electron or other material body, ¢ is a nonelectromagnetic de
Broglie wave.

88
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17.1.

17.2.

Solved Problems

Determine the photon flux associated with a beam of monochromatic light of wavelength 3000
A and intensity 3 X 1074 W/m?,

he (663 % 107*J+5)(3 X 10° m/s)

E=h=— = 6.63 X 10~ '° J/photon
T 3x10""m /p
X 107" J /s m? h hot
N=L= 3IX107*J/s°m =45% 104 P otons=4.5p001:s
kv 6.63 X 10~'° J/photon s*m? $*cm

On the average, 4.5 photons will strike a 1 cm? area (of photographic film, say).during a period of
1 s. Of course, only integral numbers of photons can be observed. Thus, for a given 1 cm? area, we
might observe 3 photons or 5 photons in a one-second interval, but never 4.5 photons. Only if an
average is taken over many intervals will the average number approach 4.5 photons. Also, for a given
one-second interval, the arriving photons may cluster within a fixed 1 cm? area. Only after a long
period of time will the photon positions approach a uniform distribution.

Suppose & = 6.625 X 1072 J -5 instead of 6.625 X 1073 J-s. Balls of mass 66.25 grams are
thrown with a speed of 5 m/s into a house through two tall, narrow, parallel windows spaced
0.6 m apart, the choice of window as target being random at each toss. Determine the
spacing between the fringes that would be formed on a wall 12 m behind the windows.

The de Broglie wavelength of the balls is
A= B 6.625x1072J s

mo "~ (6.625% 10 2kg)(5m/s)

From interference theory, the angles 6, to the lines
of zero intensity in a double-slit interference pattern
are given by

0.02m

dsin0,,=2n2+17\ n=012,... d=06m

The corresponding y-distance is given from Fig,
17-1 as

-

2n+1 A
2 d

The distance between adjacent fringes is then given
by

yp=Ltanf,~Lsinh,=L

Ay =ppr1=yn= % {Lr+1+ l]—(2n-}- 1}

3 AA—
d :
Substituting the values for our problem, we have
" (12 m)(0.02 m)
Ay = —06m =04m

This problem illustrates the probabilistic interpretation of de Broglie waves. Any single ball will
strike the wall at a specific, -although undeterminable, position. Although it cannot be predicted in
advance where any ball will strike, each ball has a high probability of arriving at a maximum, and zero
probability of arriving at 2 minimum, of the interference pattern.

The actual interference pattern is experimentally determined by counting the number of balls that
strike each part of the wall. In the beginning of the experiment the balls will hit the wall in a more or
less sporadic fashion. Only after a large number of balls have been thrown through the windows will
the interference pattern become discernible, since the number of hits at the eventual maxima will
increase, while the number of hits at the minima will remain zero.
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17.5.

17.6.
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A particle of mass m is confined to a one-dimensional line of length L. From arguments
based on the wave interpretation of matter, show that the energy of the particle can have only

discrete values and determine these values.

If the particle is confined to a line segment, say from x = 0 to x = L, the probability of finding the
particle outside this region must be zero. Therefore, the wave function ¢ must be zero for x <0 or
x > L, since the square of y gives the probability for finding the particle at a certain location. Inside
the limited region the wavelength of  must be such that ¢ vanishes at the boundaries x = Oand x= L,
so that it can vary continuously to the outside region. Hence only those wavelengths will be possible for
which an integral number of half wavelengths fit between x =0 and x = L,ie. L =n\/2, where nis an
integer, called the quantum number, with values n=1,2,3,... . From the de Broglie relationship
A= h/p we then find that the particle’s momentum can have only discrete values given by

_h_n
P=XTIL
e the region, its potential energy will be a constant

Since the particle is not acted upon by any forces insid
f the body is entirely kinetic and will have the

which we set equal to zero. Therefore the energy o
discrete values obtained from

2
o1 2_‘p_z__(nh/2L)
E=K=ym'= o0~ Im
i.e.
2
E, = n? h n=123,...
8mL?

blem illustrates one of the basic features of the probability interpretation of

This very simple pro
nergy of a bound system can take on only discrete values, with zero energy not

matter; namely, that the e
being a possible value.

Supplementary Problems

Do Problem 17.1 for A = 4000 A and an intensity of 5 X 10" W/m%  Ans. 1x10* photons/s- m?

Refer to Problem 17.3. Suppose that the particle is an electron confined on a line of length L =5 A
(which is of atomic dimensions). Determine the lowest energy. Ans. 15eV

Refer to Problem 17.3. Suppose that the particle is a small but macroscopic body of mass 0.1 milligram
confined to a length L =0.1 mm. Determine its lowest energy. Ans. 343X 107 eV




‘Chapter 18
The Heisenberg Uncertainty Principle

18.1 MEASUREMENTS AND UNCERTAINTIES

Suppose it is desired to determine the location of a material body such as an electron. In order to
measure the body’s position an experiment of some type must be performed. We can, for example,
place a slit in the suspected path of a body moving parallel to the y-axis with known energy, as shown
in Fig. 18-1. If a mark is made by the particle on a screen placed behind the slit, we will then know
that the body passed through the slit. Thus, to within the width d of the slit, we will have determined
the particle’s x-location. Saying this ,another way, we will have measured the x-position of the
particle, upon (and before) entering the siit, up to an uncertainty Ax given by Ax = d. The smaller we
make the slit width, the smaller is the uncertainty in the x- posmon of the body, and hence the more
precisely is its location known.

o |

A
le—

Screen

Electron ’
I Electron
diffraction

pattern

Fig. 18-1

Because of the wave nature of matter we know that the particle will be diffracted as it passes
" through the slit. However, even though we will not be able to predict where on the screen it will
strike, as long as the body strikes the screen somewhere we will have ascertained that it has gone
through the slit.

The diffraction process, however, has an effect on the momentum of the particle. Before the
particle passed through the slit its position was completely unknown, but its momentum was known
both in magnitude (since it had a fixed energy) and direction (perpendicular to the slit). When the
particle passes through the slit, thereby determining its position, the x-component, p,, of its momentum
may no longer be zero, because the particle will be moving toward some arbitrary point on the
diffraction pattern. Because it is not known just where the particle will strike the screen, there is a
corresponding uncertainty Ap, in the x-component of its momentum when at the slit.

91



92 MATTER WAVES [PART III

An analysis (Problem 18.11) shows that the uncertainty Ap, can be made as small as desired by
increasing the slit width 4. If the slit width is increased, however, the uncertainty in the particle’s
position will also increase!

It is therefore seen that with a single experiment the uncertainties in a particle’s x-position and
x-momentum cannot both be made arbitrarily small; accuracy in one of these quantities can be
obtained only at the expense of accuracy in the other.

18.2 THE UNCERTAINTY RELATION FOR POSITION
AND MOMENTUM

The above example illustrates the Heisenberg uncertainty principle, first set forth in 1927 by W.
Heisenberg. A quantum mechanical analysis shows that for all types of experiments the uncertainties
Ax and Ap, will always be related by

h
Ap, Ax > e

It should be noted that this relationship holds both theoretically and experimentally.

183 THE UNCERTAINTY RELATION FOR ENERGY AND TIME

The Heisenberg uncertainty relation can also be formulated in terms of other conjugate variables.
For example, in order to measure the energy E of a body an experiment must be performed over a
certain time interval Az. An analysis shows that the uncertainty in the energy, AE, is related to the
time interval At over which the energy is measured by
h
47
Thus the energy of a body can be known with perfect precision (AE = 0) only if the measurement is
made over an infinite period of time (At = o0).

The Heisenberg uncertainty principle has an important consequence for systems like excited atoms
that, on the average, live for a finite period of time, called the mean lifetime 7. Since the mean lifetime
limits the length of time one has to measure the energy of the system before it decays, these systems
will have a natural minimum uncertainty in their energy given by AE = h/(47r).

AE At >

184 THE PRINCIPLE OF COMPLEMENTARITY

The uncertainty principle shows that it is impossible in a single experiment to measure conjugate
variables (e.g. p, and x, E and 7) to arbitrary precision. As a result, both the particle and wave
aspects of matter cannot be measured in the same experiment. Suppose, for example, that an
experiment is designed to measure the particle properties of a body. Then necessarily in this
experiment Ax and As must be zero, since a particle, by definition, can be located with infinite
precision at any particular time. The momentum and energy, and hence the wave aspects (A = h/p,
v = E/h), will then, according to the uncertainty principle, be completely unknown. Thus, when the
particle aspect of matter is displayed, the wave nature is necessarily suppressed. Likewise, if the wave
aspects are measured exactly, so that AA and Ay, and therefore Ap and AE, are zero, then the particle
aspects will not be observed.

The inability to observe the wave and particle aspects of matter at the same time illustrates the
principle of complementarity, enunciated in 1928 by N. Bohr. The wave and particle aspects of matter
complement each other since both pictures are necessary to understand completely the properties of
matter, but both aspects cannot simultaneously be observed.
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18.1.

18.2.

18.3.

184.

Solved Problems

Suppose that the momentum of a certain particle can be measured to an accurancy of one part
in a thousand. Determme the minimum uncertainty in the position of the particle if the
particle is (@) a 5 X 102 kg mass moving with a speed of 2 m/s, (b) an electron moving with a
speed of 1.8 X 10® m/s.

A
{ 71? =102 or Ap=10"=10"3
Then, from Ax Ap > h/4x,
h h
Ax > = ' ,
¥ %8 T 4r10-mo V )
6.63X10°3J s

=528%X10"%m=528x 10" A

@ 471073(5 X 1077 kg)(2 m/s)
The minimum uncertainty is 5.28 X 1072 A, a value that is clearly unmeasurable.

(b) The relativistic mass of the electron, m = my/\1 — (v?/c?) , must be used in (/).

wh - (/¢ (663x 107# J-s)\/1 - (0.6)°
Ax > /e _ -« V1~ (06) =257x10"°m=257A

47107 mgp  471073(9.11 X 10~ kg)(1.8 X 10° m/s)

The minimum uncertainty is 2.57 A.

What is the uncertainty in the location of a photon of wavelength 3000 A if this wavelength is
known to an accuracy of one part in a million?

The momentum of the photon is given by

_he _ 1240%x10°eV-A cannsy
(3 X 10° A)c e

The uncertainty in the photon momentum is (working with magnitudes only):

2 lm=pR =pxi0-s=a13x 1070 ¥
}\2

Ap=|— X

from which

he 124X 10°eV-A

h L
= = =239 X 10° A =239 mm
47 Ap  4mc Ap 47c(4.13X 107%eV/c) )

Ax >

What is the mlnlmum uncertainty in the energy state of an atom 1f an electron remains in this
state for 10~%

The time available for measuring the energy is 107% s. Therefore, from AE At > h /4,

h  _ he _ 124 X 103 eV - A

= = =0329% 10"7 eV
dmlr 4w At 47(3 % 10° m/s)(107 5)(10'° A /m) ¢

AE >

The minimum uncertainty in the energy of a state, I' = h/(4xr), where 7 is the mean lifetime of the
excited state, is called the natural wzdth of the state. For this problem the mean lifetime is 10~® s and
the natural width is 0.329 X 10~7

The width of a spectral line of wavelength 4000 A is measured as 10~* A. What is the
average time that the atomic system remains in the corresponding energy state?
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From Problem 18.3, 7 = h/(4xT), where I' = AE is the energy spread corresponding to A\ =
10% A. From E = hc /A,

|AE| = € ax
}\2
and

h A2 (4x1077 m)2

= = =424x10"%s
4,,( %M) dmc AN 47(3x 10°m/s)(107 " m)

T=

Note that Planck’s constant does not enter into the final expression.

18.5. Suppose the uncertainty in the momentum of a particle is equal to the particle’s momentum.
How is the minimum uncertainty in the particle’s location related to its de Broglie wavelength?

We are given that Ap = p, so that

Ko h A
AX> 48 " Fnp  dn

since the de Broglie wavelength of a particle is A = h/p. Thus the minimum uncertainty in the position
is A/4m.

18.6. From the relation Ap Ax > h/4m, show that for a particle moving in a circle, AL AQ > h/4m.
The quantity AL is the uncertainty in the angular momentum and A8 is the uncertainty in the
angle.

Since the particle moves in a circle, the uncertainty principle will apply to directions tangent to the
circle. Thus,

Ap, As > —:l—w

where s is measured along the circumference of the circle. The angular momentum is related to the
linear momentum by

L=mvR=pR
therefore Ap, = AL/R. The angular displacement is related to the arc length by 8 = 5/ R; therefore
As = R Af. Hence :

Ap, As=(AL/R)(RA8) =AL A§ > h/4n

For a state of fixed angular momentum (e.g. an electron in a Bohr orbit, which will be discussed in
Chapter 19) the uncertainty in the angular momentum, AL, is zero. Therefore the uncertainty in the
angular position, A9, is infinite, so that the position of the particle in the orbit is undeterminable.

18.7. If we assume that E = %mu2 for a particle moving in a straight line, show that AE At > h/4az,
where A7 = Ax /v,

A A
m
Then, from Ap Ax > h/4m,
AE h h
TAX}m or AEAt?&;

188. A particle of mass m is confined to a one-dimensional line of length L. From arguments
based upon the uncertainty principle, estimate the value of the smallest energy that the body
can have.
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18.9. -

18.10.

18.11.

Since the particle must be somewhere in the
given segment, the uncertainty in its position, Ax,
cannot be greater than L. If Ax is set equal to L, l‘—~—— Alp.| ——’I
the uncertainty relation Ax Ap, > h/4x in turn im- ! .
plies that the momentum must be uncertain by the ol '
amount Ap, > h/4nL. We are looking for the -
smallest possible value of the energy and hence,
since K =p?/2m, the smallest possible |p,|. We Fig. 18-2
identify the uncertainty in |p,| with that in p,, and
assume that the uncertainty interval is symmetrical
about |p,|. Then (see Fig. 18-2)

[}
Y

1{ &
Pl = 38lpel >0 or  |p 34Alpd > 5 | o ) =
2

Thus, the minimum magnitude of p, is h/8xL, and

K. =L ( _h )2= R
™ 2m \ 87L 12872mL?
This value compares reasonably well, considering the crudeness of our argument, with the value
. B2
© 8mL?

from Problem 17.3. The result further illustrates that, under the uncertainty principle, bound system§
cannot have zero energy.

E,

Calculate the minimum kinetic energy of a neutron in a nucleus of diameter 10~ m.

The situation is that of Problem 18.8, with L equal to the nuclear diameter. Thus,

2 2 i -3 A TP
Kmin=—l—( h ) 1 (hc) 1 [12.4x10 MeV-A |°_ 1013 Mev

Zm\87L ) = Y(me?) \ 37L ) = 2(340 Mev) 87(10~* &)

If an electron were in the nucleus of Problem 18.9, what would be its minimum kinetic energy?
For an electron, a relativistic calculation is necessary. As in Problem 18.8, the minimum magni-
tude of the momentum is
h h

| Plmin 87 m
Then:

(Kmin + E0)2 = ('leinc)2 + EO2

124 % 1073 MeV - A |
87(10-% A)

(Kpmin + 0.511 MeV)* = +(0.511 MeV)?
Solving, K., = 4.45 MeV.

When the emission of electrons ( B-rays) from nuclei was first observed, it was believed that the
electrons must reside inside the nucleus. The energies of the emitted electrons, however, were often a
few hundred keV and not the minimum 4 MeV predicted by the foregoing calculation. It was therefore
concluded that electrons are not nuclear building blocks. (See also Problem 26.1.)

The position of a particle is measured by passing it through a slit of width 4. Find the
corresponding uncertainty induced in the particle’s momentum.

When monochromatic waves of wavelength A pass through a slit of width d, a diffraction pattern
will be produced on a screen as shown in Fig. 18-3. The location of the first point of zero intensity is
found from diffraction theory to be sin a =A/d.

Because of its associated de Broglie wave, whose wavelength is A= h/p, the particle will be
diffracted as it passes through the slit and hence will acquire some unknown momentum in the
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Fig. 183

x-direction. Although we do not know exactly where the particle will strike the screen, the most
probable place for it to hit will be somewhere within the central region of the diffraction pattern.
Therefore we can be reasonably certain that the x-component of the particle’s momentum has a
magnitude between 0 and p sin a; ie.

This uncertainty can be made as small as desired by increasing d. However, since d = Ax, the
uncertainty in the particle’s x-position, we see that

Ap, Ax=nh

in agreement with Heisenberg’s uncertainty principle.

It is desired to measure the position and momentum of an electron by observing it through a
microscope. Analyze the observation process in detail to show that results consistent with the
uncertainty principle are obtained.

When light is scattered from the electron during the observa-
tion process, the momentum of the electron, which we are trying to
measure, will be affected because the incident light itself carries
momentum. Hence, we will consider the experiment to be per-
formed with the smallest amount of light possible, namely with a
single photon.

When light reflecting from a particle passes through the objec-
tive lens of a microscope, a diffraction pattern is produced at the
location of the eye (or photographic film). Thus, a “fuzzy” pattern
rather than a precise sharp point will be observed with normally
intense light consisting of many photons. Diffraction theory of
light shows that the diameter of the central disc of the diffraction
pattern is given approximately by

- _>‘ Scattered
sin o photon

where A is the wavelength of the light and 2« is the angle subtended

at the particle by the microscope objective, as shown in Fig. 18-4. o Slca‘:e“"d
When we observe the single photon in our experiment, we can be Inﬁﬁz’: OKCIO:
reasonably certain only that it will have arrived somewhere in the P

central disc of the diffraction pattern. Hence, the uncertainty in Fig. 184
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18.13.

18.14.
18.15.

18.16.

18.17.

18.18.

18.19.

18.20.

the electron’s position can be taken as

A

sin

The uncertainty in the position can be made as small as desired by using a sufficiently small wavelength.
In the scattering process some of the photon’s momentum will be transférred to the electron. If the

momentum of the scattered photon were known exactly, it would be a relatively easy matter to work

backwards to determine how the original momentum of the electron was affected. However, since all

we know is that the scattered photon entered the objective lens somewhere, its x-component of

momentum could have a magnitude anywhere between 0 and p sin a, where p = h/A is the photon’s

momentum. Hence, when we finally measure the momentum of the electron, the value of its x-

momentum ‘will be uncertain by

Ax=d=

=hg
| Ap, = ) Sin «
We can make Ap, as small as desired by making A sufficiently large, but then Ax becomes correspond-
ingly larger. Taking the product of the two uncertainties, we obtain
Ax Ap,=h

in agreement with Heisenberg’s uncertainty principle.

Suppleméntary Problems

Suppose that the x-component of the velocity of a 2 X 10™* kg mass is measured to an accuracy of
+10-6 m/ s. What then is the limit of the accuracy with which we can locate the particle along the
x-axis? = Ans. 132X1073m

Repeat Problem 18.13 for an electron.  Ans. 290 m
Repeat Problem 18.2 for a gamma-ray photon of wavelength 1073 A.  Ans. 0.796 A

What is the minimum uncertainty in the energy of an excited state of a system if, on the average, it
remains in that state for 10" s?  Ans. 329X 1075 eV

Refer to Problem 18.3. If the transition from the emergy state in question to the ground state
corresponds to 3. 39 eV, determine the minimum uncertainty in the wavelength of the emitted photon.
Ans. 355x107% A

If the energy width of an excned state of a system is 1.1 eV, what is the average lifetime of that state?
Ans. 299X 10765

If the state of Problem 18.18 is located at an excitation energy of 1.6 keV, what is the minimum
uncertainty in the wavelength of the photon emitted when the excited state decays?
Ans. 533x 1073 A

If the uncertainty in the energy of a nuclear state is 33 keV, what is its average lifetime?
Ans. 997 %1072 s
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18.22.

18.23.

18.24.

18.25.
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If the uncertainty. in a photon’s wavelength is one part in a million, find the minimum value of the
uncertainty in its position if the photon’s wavelength is (a) 3000 A, (b) 0.5 A, and (c) 2Xx 107 A,
Ans. (a)2.39 cm; (b) 3.98 X 10 A; () 159 A

For an object of size 0.5 A, what is the longest-wavelength photon with which it can be observed?
Ans. 05 A

For the object of Problem 18.22, what is the smallest-energy electron which can be used to make the
measurement?  Ans. 602 eV

For the object of Problem 18.22, what is the smallest-energy proton which can be used to make the
measurement?  Ans. 0328 eV

If a photon was in the nucleus of Problem 18.9, what would be its minimum energy?

he _
Ans. S_W_J = 4.9 MeV




PART IV: Hydrogenlike Atoms

Chaptér 19
The Bohr Atom

19.1 THE HYDROGEN SPECTRUM

By the end of the last century much experimental work had been done on the analysis of the
discrete spectrum of the radiation emitted when electrical discharges were produced in gases. The
lightest and simplest of all atoms is hydrogen, being composed of a nucleus and one electron. It was
perhaps not surprising, then, that very precise spectroscopic measurements showed that hydrogen had
the simplest spectrum of all the elements. It was found that the various lines in the optical and
nonoptical regions were systematically spaced in various series. Amazingly it turned out that a//-the
wavelengths of atomic hydrogen were given by a single empirical relation, the Rydberg formula:

A nt n?

1_ R(l - i) R = 1.0967758 X 10~3 A~!

u

where m,=1landn,=23,4 gives the Lyman series (ultraviolet region)
m=2and n,=3,4,5... gives the Balmer series (optical region) -
m=3andn,=4,5,6 gives the Paschen series (infrared region)
m=4andn,=5,6,7... gives the Brackett series (far infrared region)

and so on for other series lying in the farther infrared.

19.2 THE BOHR THEORY OF THE HYDROGEN ATOM

In 1913 Niels Bohr developed a physical theory of atomic hydrogen from which the Rydberg
formula could be derived. Bohr’s model for atomic hydrogen is based upon a planetary picture where
a light negatively charged electron revolves around a heavy positively charged nucleus. The force
maintaining the electron in its orbit is the attractive Coulomb force

= zé = 9 '2 2
F=k= k=90x10°N'm*/C
r -
where for hydrogen Z =1. A straightforward classical calculation (Problem 19.14) then shows that

the orbital velocity of the electron is related to the radius of its orbit, assumed by Bohr to be circular,
by ‘ ‘

2 kZeZ
v =
mr

(19.1)

- where m is the mass of the electron, and the total energy of the electron (kinetic energy + potential
energy) is given by '

(19.2)

Now we come to®the point where Bohr’s model differs radically from a classical picture. (The
presentation that follows, in terms of de Broglie waves, differs from the approach actually employed
by Bohr. It was the ability of the de Broglie hypothesis to get the Bohr orbits in a natural way, rather
than by Bohr’s original arbitrary route, that led to de Broglie’s theory being taken seriously.) As the
electron moves in its orbit with linear momentum mo, it will have a de Broglie wavelength associated
with it, given by A =h/mv. Now, a wave can be associated with a given circular orbit only if the

99
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circumference of the orbit is an integral number of wavelengths. Thus Bohr effectively postulated
that only those orbits are allowed that satisfy the relation

=1 =2 or  mor=ndt (19.3)
mv 2q
where n=1,2,3,... . The quantity L = mor is the angular momentum of the electron moving in its

circular orbit, so it is seen that in the Bohr theory the electron’s angular momentum is quantized. The
integer n is called the principal quantum number.
Solving (19.1), (19.2), and (19.3) for the three unknowns r, E, and v, we find the following
quantized quantities:
2

O (19.4
r,= r = :
Z : 4d7*kme? )
Z’E} 20%k%'m
En= - n2 El = T (195)
Zoy o 2ake?
v, = T vy = T (196)

In the stable states of the atom specified by (19.4), (/9.5), and (19.6) the electron is assumed not to
radiate; the radiation process is discussed in Section 19.3. The minimum-energy state (n=1)is called
the ground state.

It is seen that the quantities 7, E7, and vy depend only on the fundamental constants of nature m,

e, k, and k. When the numerical values of these constants are used, one obtains (Problems 19.33
through 19.35)

o __ A o o 5
rf=0529A  Ef=1358eV  of= 5o

Note that for hydrogen (Z = 1), r{ = r,, E} = — E,, and v{ = v,. The values 0.529 A and 13.58 eV
are in good agreement with experimental determinations of the radius and ionization energy of the
hydrogen atom.

19.3 EMISSION OF RADIATION IN BOHR’S THEORY

Classical electrodynamical theory predicted that an orbiting (hence, accelerating) charge should
. emit radiation whose frequency would be equal to the frequency of revolution. We have already seen
in the photoelectric effect, however, that classical electrodynamics must be modified on an atomic
scale when absorption of electromagnetic radiation is considered. In an analogous fashion Bohr chose
to modify classical electrodynamics on an atomic scale when emission of electromagnetic radiation
occurs.

Bohr postulated that an atom will emit radiation only when the electron, initially in one of the
stable allowed orbits where E = E,, changes to another allowed orbit with a smaller energy given by
E = E,. The energy of the emitted photon will then be equal to the difference between the electron
energies in the two allowed orbits. Thus the wavelength of the emitted photon will be found from

c 1 1
E,=hw=hy=E~-E o =5 (E~E) (19.7)
Substituting the values of the orbital energies given by (/9.5), we then find
1 2n%%*mZ? ( 1 1 ) 2( 1 1 )
A hc \n R
with
27%(ke?) (mc?)

ey =1.09737 X 1073 A~!
C

o0
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In this analysis it was assumed that the positively charged nucleus is so massive compared to the
electron that it could be considered infinitely heavy. If the finite mass of the nucleus is taken into
consideration, the motion of the combined electron (m) and nucleus (M) system, separated by distance
r, about its center of mass (mp = MP, r =p +P) is equivalent to a particle of reduced mass

m M

orbiting the center of mass at a radius . For hydrogen m/M =1/1836, and using this to modify the
Rydberg constant we obtain

_ R, 109m37x10%A
T+ (m/M) 1+ (1/1836)

in agreement with the experimental value R = 1.0967758 X 1072 A1,

R, =1.0968 X 107> A~!

194 ENEﬁGY LEVEL DIAGRAMS

A convenient way of describing the transitions between allowed states is in terms of energy level
diagrams. In these, the allowed energy levels, given by (19.5), are plotted, as shown in Fig. 19-1 for
Z = 1. The transitions are then indicated by arrows running from the initial energy state, designated
by n,, to the final energy state, designated by n,. Thus, for example, the transitions that give rise to
the Balmer series are indicated in Fig. 19-1 by the arrows that end on n, =2. The lines in the Balmer
series are called H, Hﬂ, H,, etc., as indicated in Fig. 19-1.

n
- 0.00 o0
-0.38 i 6
-0.54 1 . 5

H .
_ 8 'Yy 4
. —085 Brackett series
(far infrared)
—-1.51 Hill 2NN A ‘ 'Yy 3
) Paschen series
(infrared)
3 ABRAAAI
? —340 Balmer series 2
& (optical)

—1358 — ¥ "x'

Lyman series
(ultraviolet)

Fig, 19-1
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H He*
n E, eV n E, ev
® 0.00 © 0.00
3 -1.51
2: —340 Y R —1 YT
3—— 704
| — 1360 2 — 1360
1 —54.40

Fig. 192
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195 HYDROGENIC ATOMS

A hydrogenic atom is an atom that is stripped of all but one of its electrons, Thus, hydrogenic
atoms are singly ionized helium (He*, Z = 2), doubly ionized lithium (Li?*, Z = 3), triply ionized
beryllium (Be**, Z = 4) and so forth. These atoms behave in all respects like hydrogen except that
the nucleus has a positive charge of Ze, where Z is the atomic number of the atom. Equations (19.1)

through (79.7) hold for hydrogenic atoms, provided the appropriate value of Z is used. Figure 19-2
shows the energy levels for H, He*, and Li2*,

19.6 u-MESIC AND 7-MESIC ATOMS

In Yukawa’s explanation of nuclear binding forces (i.e. strong interactions), the existence of a
particle called a meson, of rest mass 264 times the rest mass of an electron, was predicted. Two years
after this prediction, in 1937, a particle with a rest mass of 207 electron masses was discovered.
However, in 1946, it was shown that this M-meson was not the predicted particle, and a short time after,
the Yukawa particle, called a m-meson, was found. :

Both 7- and p-mesons can be found with negative charge, and can therefore form hydrogenic
atoms. The Bohr orbits of these particles, due to their large masses, are much smaller than the

electron’s orbits. In fact, for certain nuclei the orbits actually lie within the nuclear charge distribu-
tion (see Problems 19.21 through 19.25). ‘ '

Solved Problems

19.1. Determine, in angstroms, the shortest and longest wavelengths of the Lyman series of hydro-
gen. :

Wavelengths in the Lyman series are given by n, = |:
L. sA-np( L _ 1 =
X (1.097 x 10-2 A )( el ) n,=23,4,...

The longest wavelength corresponds to n, = 2:

=(1.097><10-3A-')(1—%) Cor A, =I215A

Amax

The shortest wavelength corresponds to ri,, = c0:

~ =1.097><10-3A—'(1—L2) or  An, =912 A
min 0

19.2.  Determine the wavelength of the second line of the Paschen series for hydrogen.

1 Saaonf 1 1)
+ =(1.097 X 10-3 A - - =
A ( )(”12 ”3

The Paschen series is defined by n, = 3, and the second line corresponds to n, = 5. Hence,

X~ ooTx 10 A-y( L _ L) A=12820 A
A 2 52

193.  The longest wavelength in the Lyman series for hydrogen is 1215 A.  What is the Rydberg

constant?
1 1
=R{ = - L
( n,z n3 )

>
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For the Lyman series, n, = 1; the longest wavelength will correspond to the value n, = 2.

1 11 sl
1 __p{Ll_1 R=1097x 10 A~!
1215 A (12 22) or

Determine the wavelengths of hydrogen that lie in the optical spectrum (3800 A to 7700 A).
The wavelengths for hydrogen are given by

I _ Sigen( L _ 1
5 = (1097 X 10 A‘)(—z——)

n; "3

In Problem 19.1 it was found that when n; = 1 the wavelengths range from 912 A 10 1215 A, so that none

of these lie in the optical region. For n, = 2 the longest wavelength corresponds to n, = 3, giving
1_ 3a-nf b _ 1 _ ;
N = (1097 x 107> A )( 23 ) or A=06563 A

and the shortest wavelength corresponds to n, = oo, giving

2

% = (1.097 x 10-32&—')(% - o%) or  A=3646A

Hence, sdme of the wavelengths in the Balmer series (n, = 2) lie in the optical region. To determine
these wavelengths set A = 3800 A and solve for n,.

1
3.8 % 10° A

Therefore, the lines in the optical region are given by

—097x10 A )LL) o m =99
-

1_ N _
Y (1.097 x 107% A )(4 n,f) n,=3475...,9
Since the shortest wavelength of the Paschen series (n; = 3) is
LI -A-n( L oL - A
) (1.097 X 107° A )( 2 ) or A=28200A
all other series will give rise to lines lying outside the optical region.

Evaluate the ionization potential of hydrogen, £}, in units of eV.

o 20kl 2n2(ke?)'(mc?)  27%(14.40 €V - A)X(0.511 X 108 V)
| = = =
X (he)? (12.40 X 10° eV - A)

=13.6eV

Find the wavelength of the photon that is emitted when a hydrogen atom undergoes a
transition from n, =5 to n, = 2.

From the Bohr model the energy levels are E, = (—13.6 eV)/n?. Hence,

13.;eV = 3406V E,=— 13OV _ gsarev

Ey= - o

From the Bohr postulates the energy of the emitted photon is
E,= —0544eV —(-340eV) =286¢V
The wavelength of this photon is given by

This problem can also be solved using Rydberg’s formula,

L_pfl_1)_ (L1
X = (n,z n,f) 1.097 X 10 (22 52)

Solving, A = 4340 A.
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19.7.

19.8.

19.9.

19.10.

Determine the ionization energy of hydrogen if the shortest wavelength in the Balmer series is
found to be 3650 A.

The Balmer series is given by m =2. The shortest wavelength will correspond to n, = 0. Con-

sequently, from E, = — E} /n? where E 1 is the ionization energy, we have
E} 4(124 X 10°eV - A
%=E,,—El=0_(—71) o Ep= e X 2~ 3y

A 3650 A -

How many different photons can be emitted by hydrogen atoms that undergo transitions to
the ground state from the n = 5 state?

We can consider the problem for arbitrary n. If n, > n, is any pair of unequal integers in the range
1 to n, it is clear that there is at least one route from state n down to the ground state that includes the
transition n, —n,. Thus, the number of photons is equal to the number of such pairs, which is

ny_ n(n—1)
(2) 2
For n =5, there are 5(4)/2 = 10 photons.

The above reasoning fails if there is “degeneracy,” i.e. if two different pairs of quantum numbers
correspond to the same energy difference. In that case the number of distinct photons is smaller than

n(n—1)/2.

In a transition to a state of excitation energy 10.19 eV a hydrogen atom emits a 4890 A
photon. Determine the binding energy of the initial state.

The energy of the emitted photon is

= e _ 1240X10°eV-A
Vs —
A 489 x 10° A

The excitation energy (E,) is the energy to excite the atom to a level above the ground state. Therefore
the energy of the level is

=254V

E,=E +E,=—-136eV+10.19eV=—34] eV
The photon arises from the transition between energy states such that E, — E; = hv; hence

E,—(-341eV)=254¢eV  or E,=-087eV

Therefore the binding energy of an electron in the state is 0.87 eV.
Note that the transition corresponds to

E, 13.6 eV E, \/13.6eV
”"‘\/E ‘\/o.s7ev =4 ad w=Vg =Vt =2

Electrons of energy 12.2 eV are fired at hydrogen atoms in a gas discharge tube. Determine
the wavelengths of the lines that can be emitted by the hydrogen.

The maximum energy that can be absorbed by a hydrogen atom is equal to the electron energy, 12.2

eV. Absorption of this energy would excite the atom into an energy state E, given by (assuming the
atom was initially in the ground state)

E,=E +122¢V=—136eV+122eV=—~14¢eV

The value of n corresponding to this state is found from E,= ~E}/n% thus

—l4ev=- 18V o
n
Since n must be an integer, the highest state that can be reached corresponds to » = 3. Hence (Problem
19.8) there are three possible wavelengths that will be emitted as the atom returns to the ground state,
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corresponding to the transitions 32, 2—1 and 3— 1. These wavelengths are found from

1 aaonf 11
= (1.097 X 10-* A ‘)(§ -5
1

) or  A=6563 A

=(1.097x10-3A—')(%- ) or  A=1215A

1
It

= = >
W= 8

(1.097 x 10-3A—')( ) or A=1026 A

19.11. According to the Bohr theory, how many revolutions will an electron make in the first excited
state of hydrogen if the lifetime in that state is 1078 §?

By (19.4) and (19.6), the radius and orbital velocity for the state n = 2 are given by
ry=4r; =4(0529A)=212A=212x10"""m

c _ Ix 108 m/s
2037y 20137

o
%=z

= 1.10 X 10° m /s

The angular velocity is then

v 1.10 x 10¢
o= 2 o L10X107m/s =0.52 X 10" rad /s
ry  212x107%m

and the total number of revolutions is

; (0.52x 10 rad/s)(10~%5)

= = 6
- 6.28 rad /rev 8.3 X 10° rev

€

N=

¥
3

19.12. Determine the correction to the wavelength of an emitted photon when the recoil kinetic
energy of the hydrogen nucleus is taken into account.
Assuming that the atom is initially at rest, conservation of energy gives
Eu - El EY K
he he ke
where K is the nuclear kinetic energy. The first term on the left is 1 /Ay, and the second is 1 /A, where Aq
and A are the uncorrected and actual wavelengths. Thus

1 1 _ K A-X Ak
_1_ or = AK

N A ke Ao he
The recoil momentum of the nucleus is p =v2MK . Then, by conservation of momentum,

_ h h?
0= —V2MK + x o kK

E,=E+E +K or

T oM
from which
A-ho _MH/2MN) _ pe  _ 1240X10°eV-A _ 660X 107 A
Ao he 2(MeHA  2(939 X 10° eV)A A

Since the wavelengths are of the order A~ 10° A, the fractional change is of the order, 10~ and is
therefore negligible.

19.13.  For hydrogen, show that when n>> 1 the frequency of the emitted photon in a transition from
n to n — 1 equals the rotational frequency. )
The rotational frequency in state n is
Oy 2nke’/nh  4n%Pme?

w = - =
2r 2w, 2qn*h?/4n’kme? np’
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The frequency of the emitted photon is

1 1 1 2n -1
v=c+ =cR - |=eRy——
A w[ (n— 1 n? ] * n¥(n - 1)
Forn>»1,
2n 27%%°m 2 Ankimet
vacR, —— = == 3
n’n? he n nh

which is the same as the rotational frequency given above.

This problem illustrates Bohr’s correspondence principle, which states that for large n a quantum
equation should go over into the corresponding classical equation. According to classical theory,
radiation emitted from a rotating charge will have a frequency equal to the rotational frequency.

19.14. An electron rotates in a circle around a nucleus with positive charge Ze. How is the
electron’s velocity related to the radius of its orbit?

Equating the Coulomb force to the (electron mass) X (centripetal acceleration),

k 2 2
(e)(Ze) _ mv* or o= kZe
r? r mr

19.15. How is the total energy of the electron in Problem 19.14 related to the radius of its orbit?
The electrical potential energy of the electron is

k(zZ 2
U=gV=(-e)V= _eLrQ = _ kzeZ

r

The kinetic energy of the electron is found by using the result of Problem 19.14:

L2 L, kZe _ kze?
I R R 2r

(35

The total energy is then

_ _kZé _kzet _ kze? 1
E=K+U= 2r r 2r 2

U

19.16. Assuming that all transitions are possible, will the optical spectrum (3800 A to 7700 A) of
hydrogen have more or fewer lines than the optical spectrum of doubly ionized lithium?

EO
For hydrogen: E,= — —;
. n
Z’E} E}
For Li?*: E,=- 2' = - ! 5
n (n/3)

Hence the energy level diagram for Li®* contains all the energy levels of hydrogen, plus two extra levels
for each hydrogen level. Since there are more levels available, there will be more lines in the optical
spectrum of Li%* than in the optical spectrum of hydrogen.

19.17. Determine the mass ratio of deuterium and hydrogen if, respectively, their H, lines have
wavelengths of 6561.01 A and 6562.80 A. (It was through measurements of this type that
deuterium was discovered.) ,

In terms of the reduced mass of the atom, the Rydberg formula is
1 B2 ( 1_1 )

A 1+ 42 \nf  nl
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19.18.

19.19.

19.20.
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where m and M are the electronic and nuclear masses. For a fixed transition and fixed Z, this implies
that A is proportional to 1 + (m/ M), so that

1+ -2

>\D MD

A _ i

H 1+M—H

or
m _ m
Ap=Ay  Mp My _om My~ Mp m My- Mp
A g+ L My ( i)’”M_H 7
7 Mo(1+ 37

Substituting the data and m/ M = 1/1836,
-179A 1 (Mu_l)

6562.80 A 1836 Mp
Solving,
MH MD
—M—D ~0.5 or M—H' ~2.0

Find the difference in wavelength between the line from the 3—2 transition in hydrogen

(R =1.09678 X 1072 A™') and the line from the 6 —4 transition in singly ionized helium
(Rye = 109722 x 1072 A1),
We have
1_[(zV (zV _ R,
X—R[(m) (n)] where R = 1/

Since Zy = 1, Zy, = 2, the expression in brackets has the same value, 5 /36, for the two transitions, and
the difference in wavelength arises solely from the difference in Rydberg constants. Taking differ-
entials,

-1 3 _ 143 - _dR
32 d}\ dR 3% or d\=A*dR 36 5 2
36

Therefore, approximately,

Ry.— R -3 41 .
Mt = Ape =~ = QUM A" 554

2 p2 3 -3 % -12
36RH 36(1.09678><10 A™D

Determine the Rydberg constant for positronium (a bound system composed of a positron and
an electron).
The mass of a positron is the same as the mass of an electron, so that
R R R .
- = = = = =0.5485x 107> A~
1+ (m/M) 1+ (m/m) 2

Rp=

Refer to Problem 19.19. Find the ionization potential of positronium.

=RP(—!2——i2) or };\C hv——thP(L—iz)

n n, n; n,

>

The ionization energy is the energy requiréd to excite positronium from its ground state (n, =1) to the
state n, = 0. Thus

Eion = hcRyp = (12.40 X 10° eV + A)(0.5485 X 1072 A~ ) = 6.8 eV
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19.21.

19.22.

19.23.

19.24.

19.25.

Determine the ionization energy of a p-mesic atom that is formed when a p-meson is captured
by a proton. A p-meson is an elementary particle with a charge of — e and a rest mass equal
to 207 times the rest mass of an electron.

The analysis is identical in all respects to that of a hydrogen atom, with the mass, m, of the electron
replaced by 207m.

Eion=207(13.6 eV) = 2.82 keV

Refer to Problem 19.21. Calculate the radius of the first Bohr orbit in 2P (Z = 82) for a
p-mesic atom,

By (19.4), r| varies inversely with Zm. Hence,

=1 _ sa_
Ty (82)(207) (0-529 A) 3.12x 10 A 3.12 fm

For Problem 19.22, calculate the energy of the first Bohr orbit.
By (19.5), E, varies directly with Z?m. Hence,
Ey, = (82)%(207)(~13.58 eV) = —19.0 MeV

Refer to Problems 19.21 through 19.23.. For a 2%Pb p-mésic atom, what is the energy of the
photon given off in the first Lyman transition (n, = 2'to n=1)? :

1 1 1 1

E,=AE=E,—E = —zZE;’(— - —)=E,(— - —)=(—19.0Mev)(% -4

1 L F)=14.25Mev

n, n; n, ni

The transition in Problem 19.24 is measured experimentally to be 6.0 MeV. The 2®Pb
nucleus is found to have a radius of 7.1 fm. From Problem 19.22.it is then seen that the first
Bohr orbit lies inside the nucleus. Assuming the charge of the nucleus to be uniformly
distributed, determine the new first Bohr orbit that will be consistent with the above data.

The potential of a uniformly chérged sphere of radius R and total charge Q = Ze is

52[2__1] <k

2
y=1 R |2 2R
' E"Q r>R
For a p-meson moving inside the uniform charge distribution, we have for the energy,
- =Lt (o) kZe[3 _ 2
E—K+U—2mv +(-e R [2 2R2:|

If the p-meson moves in a circular orbit of radius r, we have
. ’ . 2
F=ma or eb= mTv
where &, the radial electric field inside the charge distribution, is given by
| - dY _kQr _ kzer
dr R3 R3

Hence

and for the energy we get

_kzer _kz[3 P \_ k[ 3
2 2

=k TR
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19.26.

19.27.

19.28.

19.29.

19.30.
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The second Bohr orbit lies outside the nucleus; therefore E5, can be calculated as if E, p = —19.0 Mev
(Problem 19.23), ie.
—19.0 MeV
Ey = = —4.75 MeV

Using the experimental data, we then have

E,= E, —~AE= —475MeV - 6.0 MeV = —10.75 MeV
and so

A3
(7.1 fm)*> 2

Solving, ry, =6.56 fm, an increase of 3.44 fm (see Problem 19.22) due to the orbit’s being inside the
nuclear charge distribution.

~10.75 MeV = g2 144 MeV + fm
7.1 fm

An electron moves in a uniform spherical charge distribution of total charge Ze and radius R.
Using the Bohr postulates, calculate the allowed energy levels assuming that the Bohr orbits lie
inside the charge.

From Problem 19.25, the energy of the electron is given by

_kZer [ 2 3
£= k2 [ -3 } (1)
Bohr’s first postulate gives (h=h/27)
242
mor=nh  or 2= nzhz 2)
mer

From Newton’s second law and assuming the electron to move in a circular orbit, we have

kZe? 2
R§r=”’bT ()

Eliminating v? between (2) and (3), we obtain

2_ hh R3
r= e mkZ (4)

Putting (4) into (1), we find for each integer value of n

E=kZe2 yﬁ‘/ 1 _3
" R e mkZR 2

Supplementary Problems

Repeat Problem 19.1 for the Balmer series. Ans, 3646 A; 6563 A

Determine in angstroms the wavelength of the photon emitted in the transition n, = 6 to n, = 3. (This is
the third transition in the Paschen series.) Ans. 1.094 X 10* A

Calculate the shortest-wavelength photon in the series of transitions with 7, = 4 (the Brackett series).
Ans. 1459 x 10* A

The shortest wavelength in the Balmer series for hydrogen is 3646 A. Determine the Rydberg constant
from this value.  Ans. 1.097 x 1073 A~!
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19.31.

19.32.

19.33.

19.34,

19.38.

19.36.

19.37.

19.38.

19.39.
19.40.

19.41.

19.42.

19.43.

19.44.
19.45.

19.46.

19.47.

19.48.

19.49.
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Find the value of n, in the series that gives rise to the line in the hydrogen spectium at 1026 A. (Note:
this is in the Lyman series.)  Ans. 3

Repeat Problem 19.31 for the hydrogen spectral line at 4861 A. (Note: this is in the Balmer series.)
Ans. 4

Evaluate ke? in units of eV+A.  Ans. 1440 eV-A

Show that v /c =27 ke’/hc = a is 1/137. The dimensionless quantity « is called the fine structure
constant. . v

From (19.4) evaluate the radius of the first Bohr orbit of hydrogen in angstroms. Ans. 0529 A

Determine the ratio of the Compton wavelength of an electron (Chapter 12) to the radius of the first
Bohr orbit of hydrogen. Ans. 21.8

What is the minimum accelerating potential that will enable an electron to excite a hydrogen atom out of
its ground state?  Ans. 102V :

Determine the minimum energy that must be given to a hydrogen atom so that it can emit the Hy line.
(The Hg line corresponds to a 4 2 transition.) - Ans. 2.55 eV

Determine the binding energy of an electron in the third excited state of hydrogen. Ans. 085 eV
What accelerating potential will enable an electron to ionize a hydrogen atom?  Ans. 13.6 V

What is the highest state that unexcited hydrogen atoms can reach when they are bombarded with
12.6 eV electrons?  Ans. n=3

Find the recoil energy of a hydrogen atom when a photon is emitted in a transition from n,=10 to
m=1 Ans. 9.6X10"%eV

Calculate the fractional change in the wavelength of a spectral line that arises from a small change in the
reduced mass of the atom.  Ans. AA/A= —Ap/p ’

Determine the radius of the second Bohr orbit for doubly ionized lithium. Ans. 0.705 A
For triply ionized beryllium (Z = 4) determine the first Bohr orbit radius. Ans. 0.132 A

Determine the wavelength of the Hy line of deuterium if the Hg line of hydrogen is 4862:6 A
(Rp=1.09707 X 1073 A~Y.  Ans. 48613 A

Calculate the first and second Bohr radii for positronium.  Ans. 1.06 A; 4.23 A

(a) Calculate the first three energy levels for positronium. () Find the wavelength of the H, line (32
transition) of positronium. Ans. (a) —6.8 eV, —1.7eV, —0.76 eV; (b) 1313 A

For the 7-mesic atom of 2%®Pb (m, = 273m,), calculate (a) the first two Bohr radii, (b) the energies of the
first two Bohr orbits, (¢) the energy of the photon released when the 7-meson makes a transition from
the second to the first Bohr orbit. ‘

Ans.  (a) 539 fm (inside the nucleus), 9.45 fm; (b) —15.35 MeV, —6.25 MeV; (¢) 9.1 MeV



Chapter 20

Electron Orbital Motion and the Zeeman Effect

20.1 ORBITAL ANGULAR MOMENTUM FROM A
CLASSICAL VIEWPOINT

Consider a particle of mass m moving in an
elliptical orbit under the influence of a central force,
as shown in Fig. 20-1. The vector angular momen-
tum about the force center, L, has magnitude muvd,
where d is the perpendicular distance between the
velocity direction and the force center, and v is the
particle’s speed. The direction of L is given by the
usual right-hand rule, as shown in the figure. From
Newton’s second law, the net torque 7 on the par-
ticle will be equal to the rate at which its angular
momentum changes: 7= dL/dr. However, since
the force on the particle is a central force, the torque
exerted will be zero. Hence the particle’s angular
momentum L will have a constant magnitude and Fig. 20-1
direction at every point along its elliptical trajectory.

Figure 20-2 shows various possible elliptical motions, ranging from a circle to nearly a straight
line, all with the same major axis, 2a. It can be shown that the total energy E (kinetic and potential)
depends only on the value of the major axis and hence will have the same value (e.g. E = — ke?/2a for
the Coulomb force; see Problem 19.15) for all these ellipses. The orbital angular momentum,
however, will vary from ellipse to ellipse, ranging continuously from a maximum value of ay—2mE
for the circle to nearly zero for the approximately straight line. (A straight-line ellipse has zero
angular momentum because d = 0 everywhere along the trajectory.)

Since L is constant, the component L, = L cos  in any direction in space will also be a constant
during the elliptical motion. In the classical picture there is no restriction on 8; it can take on any
value from 0° to 180°.

LA

L\ Force center

Fig. 20-2

20.2 CLASSICAL MAGNETIC DIPOLE MOMENT

An electron moving in a circular path will produce a current given by

I = (charge on electron) X (number of times per second electron passes a given point) = ef

112
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where f is the frequency of rotation of the electron. The circular current loop in turn will produce a
magnetic field very similar to the field produced by a small bar magnet, as shown in Fig. 20-3. Just as
with the bar magnet, there will be a magnetic dipole moment p associated with the orbiting electron,
whose magnitude is given by

|l = 14 = (ef )(wr?) (20.1)
/"\\ L | /"\\ e
/T \ // ~~_ \ //
N / v/

N\ / \ / \

N "‘ —

(a) Current loop ‘ (b) Bar magnet
' Fig. 20-3

and whose direction is opposite to that of L (because the electron has a negative charge). Since
; [L} = mor = mQ2arf)r = 2mfar* = 27m Il

we have \
p=— L A (20.2)

20.3 CLASSICAL ENERGY OF A MAGNETIC DIPOLE
MOMENT IN AN EXTERNAL MAGNETIC FIELD

Suppose that either the current loop or the small bar magnet is placed in an external magnetic field
B. The loop experiences a torque,

r=p X B (20.3)
tending to align p with B. Thus the system has potential energy, E,, the change in which gives the

work done by the torque when the orientation of p changes. By integration of the torque we can
show that

‘ g =—p'B (20.4)
Choosing the direction of B as the z-direction and using (20.2), we have for an orbiting electron:
= L-B= - :
E; = m LB P L,B (20.5)

204 THE ZEEMAN EXPERIMENT

An experiment measuring the effects of the interaction between an atom’s internal magnetic
moment and an external magnetic field was performed before the advent of quantum mechanics by
the Dutch physicist Pieter Zeeman in 1896. In a Zeeman experiment an atom is placed in an external
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magnetic field and its excitation spectrum is measured and compared with the spectrum when there is
no magnetic field present. This could be accomplished, for example, by measuring the wavelengths of
the radiation emitted from a discharge tube when it is placed in a magnetic field.

When the experiment is performed it is found that in the presence of the external field each
spectral line is split into a number of discrete lines. Further, the observed change in frequency of the
lines is directly proportional to the magnitude of the applied magnetic field. This observation of extra
spectral lines means that an atom has additional discrete energy levels when it is placed in an external
magnetic field.

The explanation of Zeeman splitting requires a wave mechanical analysis which predicts that both
the magnitude and the direction of the orbital angular momentum are quantized.

20.5 QUANTIZATION OF THE MAGNITUDE OF THE
ORBITAL ANGULAR MOMENTUM

A quantum mechanical analysis shows that the magnitude of the orbital angular momentum of an
electron in a one-electron atom will not have the single value nk (h=h/2%) as predicted by the Bohr
theory. Instead, for a given principal quantum number n (i.. for a given energy E, = — Ey /nd),
there are n possible values of ,

Lj=vi(l+1) A : (20.6)
where / is an integer, called the orbital angular momentum quantum number, with the range
1=0,1,2,...,n—1 (20.7)

In particular, for the lowest value of energy, corresponding to n =1, the value for / is zero, and
therefore the orbital angular momentum is also zero.

20.6 QUANTIZATION OF THE DIRECTION OF THE
ORBITAL ANGULAR MOMENTUM

Suppose that a one-electron atom is placed in an external magnetic field, whose direction we take
‘as the z-direction. A wave mechanical analysis shows that the direction of the orbital angular
momentum vector L cannot be arbitrary. Instead, L will be oriented such that the component L, '
along the z-direction will be quantized, with discrete values

= mh : (20.8)

L, .
where m, is an integer, called the magnetic quantum number, with the range :
m=L1-1,1-2,...,0,...,—(—-1),—-1 = (20.9)

Note that for a given /, the maximum value of L,(= Ih) is less than the magnitude of L (=VI(I+1) h).

207 EXPLANATION OF THE ZEEMAN EFFECT

‘Quantum mechanics states that the energy of a single-electron atom placed in an external
magnetic field is changed by the potential energy-(20.5). Now, however, L, is quantized according to
(20.8), so that the total energy is

E=Ey+ Ey=Eot m 2B (20.10)
where E, is the quantized energy before the field B is turned on. Thus, in the presence of a magnetic
field, each energy level E, will be split into 2/ + 1 equal-spaced sublevels, with the spacing propor-
tional to B. The factor ef/2m is called the Bohr magneton; its value is

% =579% 1075 eV/T =927 X 10-#J/T
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my
Eqy+ X Ee—”"; )B 2
Ey+(52)B 1
l=2 — E, E, 0
h
Ey-(3,)B -1
R
Eg-%3.)B -2
1=0 _ 1 I B I
(a) Single transition without (b) Five transitions with an
an external magnetic field applied external magnetic field
: Fig. 204

 Since there are more discrete energy levels available after a magnetic field is turned on, there will
be additional discrete lines seen in the excitation spectrum of an atom when it is placed in an external
magnetlc field, as illustrated in Fig. 20-4.

It is found that'the more intense transitions in atoms obey the following selection rules:

, Al=+1 Am=*1or0 (20.11)
For these electric dtpole transitions, (20.10) gives AE = AE, (the zero-field spectral line) and
AE=AE,+ L2
i.e. two new lines shifted in energy from the zero-field line by the absolute amount
eh ’ .
AEj.= 7. B : (20.12)

Other transitions may occur, but they result in much weaker spectral lines. In any case, the
energy or frequency differences among the new lines will be propomonal to the magnitude of the
applied field.

The above predictions correspond exactly to what is observed in the “normal” Zeeman effect.
The discrete splittings are clear experimental evidence of the phenomenon of orbital angular momen-
tum quantization. If the orientation of the angular momentum were not quantized, then L, could
take on all possible values, as in the Bohr theory, and the lines would be broadened into a continuous
band instead of the discrete values that are experimentally observed. The above analysis, however,
does not explain all the lines observed in Zeeman experiments. There are additional transitions that
fall into the category of the anomalous Zeeman effect, which involves the concept of electron spin.
The anomalous Zeeman effect will be treated in Problems 24.17 through 24.21; it reduces to the
normal Zeeman effect for sufficiently strong magnetic fields (Problem 24.22).
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Solvéd Problems

Determine the magnetic moment of an electron moving in a circular orbit of radius r about a
proton.

‘

From (20.1), the magnetic moment is

. p=1IA4 = (ef)(=r?)
The equation of motion of the electron is

2 2
F, rad = MArg or !C;gz_ = m;)—
from which
==L = 1 [ ke
2ar 27w ¥ mr
Therefore,

= zL‘/ch _ﬁ\/g
k '”er(Z-rr [ mr )_2 m

Calculate the frequency at which an electron’s or-
bital magnetic moment p precesses in a magnetic
field B.

A magnetic moment in a maghetic field will ex-
perience a torque 7, given by (20.3) as '

'r=p,XB=—7%LXB

This torque will cause a change in the angular momentum
given by

The change in L, 4L, is perpendicular to both L'and B, as
shown in Fig. 20-5, resulting in a precession of L about the
direction of B. From the figure it is seen that

_lay
d¢_Lsin0
from which
dL| e g4
de _ dtl_—z-’;LBsmO__g—B
=% " Lsinf  Lsn8  2m

This is known as the Larmor precession, and @, is equal to
the frequency difference observed in the normal Zeeman
effect.

Using the results of quantum mechanics, calculate the magnetic moments that are possible for
an n =3 level.

For n = 3 the possible values of / are 2, 1, 0; and L = 11+ 1) A
For /= 2:

=€y eh _ ' -nJ = -3 J
=20 L= 1(1+1)—(0.927><10 T)2(2+1) 221X 1072 %
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Forl=1: -
p= i+ = (0.927 x 10-2 %)(\/z‘); 131x1072 %
Forl=0,pu=0. . .
Notice that none of these results agrees with what the Bohr theory predicts. From the Bohr theory
L = nh, so :
= £ =2 3r=3c"
ks = mL_ 2m (3h)—3( 2m)
_ - I\ _ -3 J
3(0.927 X 1073 £ ) 2781073 £

204. Show the possible orientations of the orbital angular momentum vector L for /=0, 1, 2, 3
and 4.

The possible values of L, are m h, with m, taking on all integer values between +/ and —/. The
corresponding possible orientations for the orbital angular momentum vector are shown in Fig. 20-6.

1=1 1=2 =3 =4

'4» zf:g L=V2h L=V6r ~  L=V2h L=¥20h
. / i
2h

o -
~h

o AN\

Fig. 20-6

20.5. Determine the normal Zeeman splitting of the cadmium red line of 6438 A when the atoms are
placed in a magnetic field of 0.009 T.

The change in wavelength is found'by taking the differential of E = hc /A

! 2
dE = —hc—d—A or |dA| = AldE|
. ) A2 he
The energy shift is found from (20.12): / ‘
|dE| = AE,,, = % B= (5.79 x 10~ % )(0.009 T) =521 10-7 eV

giving '

2 6438 A)%(5.21 X 10~ 7 ¢V .

jan = M4EL_ ) V) 1 7ax 103 A
e 124X 10°eV-A

20.6. What magnetic flux density B is required to observe the normal Zeeman effect if a spec-
trometer can resolve spectral lines separated by 0.5 A at 5000 A?

*«
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From Problem 20.5,
ld)\l |dE| (eh/2m)B
= he /A he /A

- L (5)( )= () 250 s ) =4

207. In a normal Zeeman experiment the calcium 4226 A line splits into 3 lines separated by 025 A
in a magnetic field of 3 T. Determine e/m for the electron from these data.

From Problem 20.6 (h = h/2m):

giving

Id)\l (e/4nm)B

A c/A
Solving for e/m, one obtains
Ix1 »
£ - 47"( )|d |— 0 m/s - 1025 % 1070 m) = 1.76 10" C/kg
m (4226 X 10~ '° m)
where we have used the conversion
kg kg
1 — == ttetr—
T A s2 1 C-s

208. Tra}nsitions occur in an atom between / =2 and / = 1 states in a magnetic field of 0.6 T. If
the wavelength before the field was turned on was 5000 A, determine the wavelengths that are

observed.

The energy separation between adjacent levels is given by

AEy, =L p= (5.79 x 1073 iTY')(o.s T) =347 X 1075 eV

Fig. 20-7
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20.9.

20.10.

20.11.

20.12.

20.13.
20.14.
20.15.

20.16.

20.17.

Therefore, as in Problem 20.5,

A2 AE;,, (5000 A)*(3.47 X 10~5 eV)
he . 124%10°eV-A

The transitions must obey the selection rule Am; = +1, 0, — 1; they are shown in Fig, 20-7. Only three
different wavelengths are observed from the nine possible transitions:

Ay =500007A A,=5000A A_ =4999.93 A

|dA} = =007 A

Supplementary Problems

An electron in He* is in an n=2 orbit. What is its magnetic moment due to its orbital motion
according to the Bohr theory?  Ans. 1.85X 1072 J/T

Do Problem 20.9 using quantum mechanical theory.  Ans. 131X 10°2 J/T or 0

An electron in a circular orbit has an angular momentum of V2 . In a field of 0.5 T, what is its Larmor
frequency?  Ans. 6.99 X 10° Hz

For / = 3 calculate the possible angles L makes with the z-axis. Ans. 16.8°; 35.3°; 60°

Determine the normal Zeeman splitting in the mercury 4916 A line when in a magnetic field of 0.3 T.
Ans. 338x10°2A

What will the separation be between adjacent normal Zeeman components for emitted radiation of
4500 A in a magnetic field of 04 T?  Ans. 3.78x 1072 A

A 5000 A line exhibits a normal Zeeman splitting of 1.1 X 1073 A, Find the magnetic field.
Ans. 942X10°3T

What is the frequency difference in the photons emitted in a normal Zeeman effect corresponding to
transitions from adjacent magnetic sublevels to the same final state in a magnetic field of 1.2 T?
Ans. 1.68 X 10'° Hz

Transitions occur in an atom between an {=3and an /=2 state in a field of 0.2 T. If the wavelength
before the field was tumeq on was 4000.A, determine the final wavelengths observed.
Ans. 4000.0149 A; 4000 A; 3999.9851 A



Chapter 21
The Stern-Gerlach Experiment and Electron Spin

21.1 THE STERN-GERLACH EXPERIMENT

In the Stern-Gerlach experiment, performed in 1921, a beam of silver atoms having zero total
orbital angular momentum passes through an inhomogeneous magnetic field and strikes a photographic
plate, as shown in Fig. 21-1. Any deflection of the beam when the magnetic field is turned on is
measured on the photographic plate. , '

'Beam of B

.

Photographic

Inhomogeneous plate

magnetic field

Fig. 2111

The purpose of the inhomogeneous magnetic field is to produce a deflecting force on any magnetic
moments that are present in the beam. If a homogeneous magnetic field were used, each magnetic
moment would experience only a torque and no deflecting force. In an inhomogeneous magnetic
field, however, a net deflecting force will be exerted on each magnetic moment p,. For the situation
of Fig. 21-1, ‘

— . cos 0 9B :
E =y cos 8 (21.1)

where # is the angle between p, and B, and dB/d: is the gradient of the inhomogeneous field (see
Problem 21.1).

In the experiment it is found that when the beam strikes the photographic plate it has split into
two distinct parts, with equal numbers of atoms deflected above and below the point where the beam
strikes when there is no magnetic field. Because the atoms have zero total orbital angular momentum
and therefore zero magnetic moment due to orbital electron motion, the magnetic interaction that
produced the deflections must come from another type of magnetic moment.

212 ELECTRON SPIN

In 1925,‘ S. A. Goudsmit and G. E. Uhlenbeck suggested that an electron possesses an intrinsic
angular momentum called its spin. - The extra magnetic moment g, associated with the intrinsic spin

120
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angular momentum S of the electron accounts for the deflection of the beam observed in the
Stern—Gerlach experiment. , : ‘

Similar to the orbital angular momentum, the electron’s intrinsic angular ‘'momentum and
associated magnetic moment are quantized both in magnitude and direction. The two equally spaced
lines observed in the Stern-Gerlach experiment show that the intrinsic angular momentum can assume
only two orientations with respect to the direction of the impressed magnetic field. In Section 20.6 it
was shown that for orbital motion specified by the quantum number /, the component of the orbital
magnetic moment along the magnetic field can have 2/ + 1 discrete values. Similarly, if the quantum
number for the spin angular momentum is specified by s, we have, since there are only two
orientations possible, 2 = 25 + 1, giving the unique value s = 1/2. The magnitude of the spin angular
momentum S is then ' :

1SI=Vss+ 1) A =V3 3+ n = L @1.2)
The component S, along the z-direction is
S;=mh m=s55—-1=4}, -1 (21.3)

The two orientations of S are commonly referred to as “spin up” (m,= + 1) and “spin down”
(m, = — 1) (although the spin can never point in the positive or negative z-direction).

It is also found that the electron’s intrinsic magnetic moment p, and intrinsic angular momentum
S are proportional to each other; their relationship can be written as

m=-g%-S » - @Le

The dimensionless quantity g, is called the gyromagnetic ratio; for the electron, it has the value 2.002
(we shall use g, =2.0 in the problems). A comparison of (21.4) with (20.2) gives

_ nl/18|

&= Tal/i

Thus the ratio of magnetic moment to angular momentum is about twice as great for electron spin as it
is for the electron’s orbital motion. )

The unique value 1/2 for the spin quantum number is a characteristic as basic to the electron as
its unique charge and mass. The properties of electron spin were first explained by Dirac around
1928, by combining the principles of wave mechanics with the theory of relativity. It should be noted
that particles other than electrons, e.g. protons and neutrons, also possess an intrinsic angular
momentum. "

Solved Problems

21.1.  Derive (21.1).
The potential energy of an electron in a magnetic field is [cf. (20.4)]
. Ea=-mB=-u.B - B - B,
For the field of Fig. 21-1, B, =0, and B, and B, depend only on x and z. Therefore,
0E, 9B, 9B,

Bem o g T gt gy
E
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213.

214.
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But, along the beam axis, 3B,/dx = 0 (by symmetry) and B, =3B, /3z =0 (by antisymmetry); also,'
9B,/ 9x will be very small. Consequently,

F,=~0 F,=0 F‘_”'"dz cosodz

Determine the maximum separation of a beam of hydrogen atoms that moves a distance of
20 cm with a speed of 2 X 10° m/s perpendicular to a magnetic field whose gradient is
2% 10> T/m. Neglect the magnetic moment of the proton (see Problem 26.9).

In the ground state, hydrogen atoms have zero orbital angular momentum. From Problem 21.1,
the force on a hydrogen atom is

dB
F: = Bs: "d7
By (21.3) and (21.4), with g, =2, p, = —(e/m)m,h, so that
=k dB _ ¢k dB _ -uJ Ty\_ -21
IFl= L jm) 28 = 2 B8 (9271074 1 )(2x 10 1 ) = 185 X 10 N

Using the constant-acceleration formulas Az = 1g,¢% and Ay = vt (see Fig. 21-1 for the coordinates), we

obtain
lapl M B &y
Az= 34t Z(mH)(v)
The mass of hydrogen is 1.67 X 1072 kg, so

—21 2
pr= L[ 185x10°%N ( 020m ) —554%10-"m
2\ 1.67x107%kg J\ 2% 10°m/s

Since this is the displacement up or down, the total separation is 2 Az = 1.11 X 107% m.

Determine the energy difference between the electrons that are “aligned” and “anti-aligned”
with a uniform magnetic field of 0.8 T when a beam of free electrons moves perpendicular to
the field. ,

From Problem 21.1 with B, = B, =0
Eg=—-By, = —B(— %)m,

Hence,
=B Am = eV L _(-1Y)]= -5
AE;=BE: Am, = (08 T)(2><5.79>< 107 & )[ > ( : )] =926 X 1075 eV
The 21 cm line is used in radioastronomy to map the galaxy. The line arises from the emis-
sion of a photon when the electron in a galactic hydrogen atom “flips” its spin from being
aligned to being anti-aligned with the spin of the proton in the hydrogen atom. What is the
magnetic field the electron experiences?

ap=te J12AXICEV-A 59, 156,y

A 21 X 108 A
From Problem 21.3 we have
AEg =B Cid Am,
m
-6 = —SS.! _l_ —_f - l
591070V B[2><5.79x 10-5 53 ][ : ( ! )]

B=0.0510T
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21.5.

21.6.

21.7.

218.

Supplementary Problems

In a Stern-Gerlach experiment silver atoms traverse a distance of 0.1 m through an inhomogeneous
magnetic field with a gradient of 60 T/m. If the separation observed on the collector plate is 0.15 mm,
determine the velocity of the silver atoms. The mass of a silver atom is 1.79 X 10~ kg,

Ans. 455 m/s

What is the energy difference between the two electron spin orientations when the electrons are in a
magnetic field of 0.5 T?  Ans. 579X 105 eV

Refer to Problem 21.6. Determine the wavelength of the radiation that can cause the electrons to “flip”
their spins.  Ans. 2.14 cm

The wavelength needed to cause an electron-spin “flip” is 1.5 cm. Calculate the magnetic field the

~ electron is in. Ans. 0714T -



Chapter 22

Electron Spin and Fine Structure

22.1 SPIN-ORBIT COUPLING

In Section 20.3 it was shown that a magnetic moment p placed in a magnetic field B has a
potential energy E, given by

E;=-p'B (22.1)

When this expression was developed, only external magnetic fields were considered, but the result
holds in general. . ‘

In a semiclassical Bohr picture, the electron revolves around the nucleus with an orbital angular
momentum L. From the point of view of the electron, however, the positively charged nucleus
revolves around the electron with the same angular velocity. The revolving nucleus will therefore
produce a magnetic field B at the location of the electron that will be parallel to the electron’s orbital
angular momentum L. This internal magnetic field in turn will interact with the electron’s intrinsic
magnetic moment p, described in Section 21.2. Since p, is proportional to the electron’s intrinsic spin
S, and since B and L are proportional for a given orbit, it is seen that there will be a potential energy,
E,, of the form : .

E,= KL-S (22.2)

where the precise value of the quantity X need not be considered here.
Effectively, the spin-orbit interaction behaves like an internal Zeeman effect, splitting each energy
level for which L # 0 into two sublevels, corresponding to the two values of S, allowed by (21.3).

222 FINE STRUCTURE

Since there are more energy levels available than were previously considered, there should be
additional lines seen in the spectrum of hydrogen, as indicated in Fig, 22-1. Such additional lines, or
fine structure, are readily observed with spectrometers of moderately high resolution. With such an
instrument it is found that many spectral lines that were previously seen as single are actually
composed of two or more distinct lines, separated from each other by a few angstroms in wavelength.

It was the observation of the fine structure of spectral lines that originally motivated Uhlenbeck
and Goudsmit to introduce the concept of electron spin.

223 TOTAL ANGULAR MOMENTUM (THE VECTOR MODEL)

In classical mechanics the total angulér momentum (orbital plus spin) is an important quantity
because its rate of change is equal to the net torque applied to the system. Similarly, in wave
mechanics, the fotal angular momentum J, found from the vector addition

J=L+S8S

plays an important role. Because the vector model applies to many-electron, as well as one-electron,
atoms, we here introduce the following notation: Quantum numbers specifying states of individual
electrons will be denoted, as previously, by small letters; quantum numbers representing atomic states will
be denoted by capital letters. In the special case of a one-electron atom the electronic state is the atomic
state, and capital letters will be used.

124
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=2
n=3; [=210 I=0

n=2; [=10

Energy levels with - R b :
L+ S term neglected _ ) Energy levels with L+ S term included

Fig. 22-1

In this notation, then, the magnitude of J is quantized according to

| =VI(J +1) & (22.3)

The quantum number J has the possible values
’  J=L+SL+S-1,...,[L-S| (22.4)
where L and S are the orbital and spin quantum numbers. As is the case for the orbital and spin

angular momenta, the component of J in a physically defined z-dlrecuon is separately quantized. We
have .

Lo=Mph M;=JJ-1,J-2...,-J (22.5)

For a hydrogenlike atom, S = 1 /2 and (22.4) becomes
| L+S,L-S L>0 ; ‘
J= { s 20 (22.6)
Solved Problems

22,1, Express LS in terms of JJ, L, and S.
. Evaluating J - J = |J?, where J =L + S, we have

«

MP=(L+8S)(L+S)=L'L+2L'S+8'S=|LP+2LS +|SP
or |
L-S=5 (- IR = ISP)

Substituting |J|* = J(.I + l)h2 JLP = L(L + l)h2 |S|>= S(S + 1)#?, one fmds
L'S= 5 b+D-LL+ 1)— S(S + D2
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Calculate the possible values of L+S for L=1and S =1/2.

From (22.4), the possible values of J are

1_3 11
JeL+S=l+z=3, J=L+S-1=|L-§|=1-3=3

From Problem 22.1,
L-S= %[J(J+ 1) = L(L + 1) - S(S + DI

ForJ =3/2: ,

L'S-%[%(%+l)—l(l+l)-—%(%+l)]h2=—;-hz

For J = 1/2: .
L-S=—;—[%(%+l)—l(l+l)——%(%+l)]h2=—h2

Figure 22-2 illustrates the relative orientations of the three vectors.

IS| =%
f
' S| = §»
W =VEA | | =2n
L =V2 A
Mi=%a
(@ J=% ‘ (b J=}

Fig. 222
Estimate the strength of the magnetic field produced by the electron’s orbital motion which

results in the two sodium D lines (5889.95 A, 5895.92 A).

This transition occurs between an L = | state and an L = 0 state; only the L = 1 state is split.- The
difference in energy between the L = 1 substates can be obtained from the wavelength difference by

he
E= -A_
124 X 10° eV - A)(5.97 A '
|dE| = hc"f‘l ¢ A 2)( ) —213% 1072 eV
A (5890 A)

The energy difference can also be found from (22.1). We have, using (21.4) with g, =2,
E,=—p,'B=—-p.,,B=—;-m,hB 7
so that
sru= aam= 2[4 -(-1)] - 2)s
Hence,
213X 107% eV =2{579 x 10~ L )5

B=184T
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224. Calculate the vahie of K iﬁ (22.2) using the information givén in Problem 22.3 and S =1/2.

22.5.

226.

22.

22.8.

For § = 1/2, the two L = 1 states are J = 3/2 and J = 1/2. From Problem 22.2 we have
3

= 3. a2
J 5 LS 2h

- % : LeS=-#
From (22.2) we have AE, = K(L* S)ypper — K(L* Shiowers OF
213X 1073 eV = K( %rﬂ) — K(-#) = K( % h’) - K% (0.658 X 105 ¢V + 5)*
Solving,

1
evV's

© K=3.28x 107

Supplementary Problems

Calculate the possible values of J for L=3and S=1/2, Ans. 1; 3

For Problem 22.5 calculate L*S.  Ans. A% —2#

Estimate the étrength of the magnetic field produced by the electron’s orbital motion which results in the
7664.1 A and 7699.0 A lines observed in the L = 1 to L =0 transition in potassium. Ans. 633 T

1
eV:s

Repeat Problem 22.4 with the data of Problem 22.7 if § = 1/2.  Ans. 113x10% >



"PART V: Many?EIe'ctron Atoms

Chapter 23

The Pauli Exclusion Principle

23.1 INTRODUCTION

To this point we have considered quantum mechanical systems possessing many energy levels but
only one effective electron, namely hydrogenlike atoms. We have found that in the absence of strong
spin-orbit coupling the behavior of the electron is described by specifying the values of its four
quantum numbers (n, /, m;, m,) that are respectively associated with its energy, orbital angular
"momentum, the z-component of the orbital angular momentum, and the z-component of its spin.
When these four quantum numbers are given it is said that the state of the (one-electron) system has
been specified.

In this and the following chapters we shall describe quantum mechanical systems that have many
energy levels and more than one electron. »

23.2 THE PAULI EXCLUSION PRINCIPLE

By analyzing spectroscopic data from atoms with more than one electron, Wolfgang Pauli in 1924
came to the conclusion that in a quantum mechanical system no two electrons can occupy the same state.
This result is called the Pauli exclusion principle; put another way, it states that no two electrons can
have the same set of quantum numbers (n, [, m;, m,).

‘The Pauli exclusion principle correlates many important expenmental facts of atomic structure
and provides the explanation of the periodic table of the elements, the subject of Chapter 24. To
illustrate the Pauli exclusion principle, however, we ‘will here discuss the simple problem of one or
more particles of mass m moving in a straight line and confined between the points 0 and a4, ie.
particles in a one-dimensional “box” of length a.

233 A SINGLE PARTICLE IN A ONE-DIMENSIONAL BOX

The problem of a single particle in a one-dimensional box was solved previously in Problem 17.3.
It was found that the energy of the particle could not vary continuously, but could have only the
discrete values given by

E,=n? n=123,...

8ma?

Figure 23-1(a) shows these energy levels. We now take the particle in the box to be an electron with
intrinsic spin. The state of the system is then specified by the pair of quantum numbers (n, m,). In
Fig. 23-1(b) the electron is in the n =1 state with “spin up” (m, = + 1); in Fig. 23-1(c) it is in the n =3
state with “spin down” (m, = — 1).

234 MANY PARTICLES IN A ONE-DIMENSIONAL BOX

The Pauli exclusion principle will have an important effect on the situation when more than one
particle is in the one-dimensional box. In the following we assume that the energy levels are not
altered when more than one particle is present.

With two electrons, the ground (lowest-energy) state of the system will have both electrons in the
n=1 energy level, one with spin up (1, + 1) and one with spin down (1, — 1), as shown in Fig.
23-2(a). Note that the two electrons do not have the same set of quantum numbers (n, m,).
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10 —

| ? G-1 n=3
ng -
QiS5 L

&
L - n=2
_ A ap .
VY
o L.
(a) (%) (©
Fig. 23-1

Now consider what happens when a third electron is added to the system. The Pauli exclusion
principle prohibits this electron from occupying the n = 1 energy level; for if it were in the n = 1 level,
two of the three electrons would have the same set of quantum numbers (n, m,). The third electron
must therefore go to a different energy level, the n =2 level if the system is in its ground state, as
shown in Fig. 23-2(b) for a spin up configuration.

A similar line of reasoning shows that a fourth electron can be put into the n = 2 level, but when a
fifth is added it must go into the n = 3 level, as shown in Fig. 23-2(¢) for a spin down configuration.
Thus it is seen that the Pauli exclusion principle has the effect of increasing the total energy of the

&
~

® A
L S —_— =2
: —49—?— n=l
o )
(a) ) © )

Fig. 232



130

MANY-ELECTRON ATOMS [PART V

ground state of the system to a much higher value than it would have if all the electrons occupied the
n =1 energy level.

Excited states of the above systems occur when the electrons do not occupy all the lowest available
energy levels, as shown for a three-electron system in Fig. 23-2(d). As with one-electron systems, it is
possible for energy in the form of photons to be emitted when excited electrons seek their ground state
configurations.

23.2.

Solved Problems

Calculate the first three energy levels for noninteracting electrons in an infinite square well of
length 6 A.

The energy levels are given by
n#? _ n¥he)' (124X 10°eV-AY
8ma®  8(mcDa® 8(0 511 X 10° eV)(6 A)?
Therefore, E, = 1.04 eV, E, = 4.16 eV, E, =936 eV.

E, = = 1.04n% eV

What are the energies of the photons that would be emitted when the four-electron system in
Fig. 23-3(a) returns to its ground state?

A
| .-’. Jd, t ole,
936 [ L ; s & n=3
B| ¢ Dl |
416 - & —:-—é—@ %—?7—— n=2
v VoY
104 {I} - | fL b
oL T

(@) . )
Fig. 23-3

The possible transitions that will return the system to its ground state are shown in Fig. 23-3(b) and
(c)- The energy of the emitted photon will be equal-to the energy difference between the initial and
final levels. Transitions B, C, and D have the same energy difference and therefore give rise to the
same-energy photon.

E,=E,— E =416eV—1.04¢cV =312¢eV
Ep=Ec=Ep=FE;— E;=936eV—4.16eV=520eV
Eg=E;— E; =936¢V—1.04¢V =832¢V



CHAP. 23] ‘ ‘ THE PAULI EXCLUSION PRINCIPLE 131

233.  Consider three noninteracting particles in their ground states in an infinite square well [Fig.
23-4(a)). What happens when a magnetic field is turned on which interacts with the spins.of
the particles?

A

10+ '

h?/ 8ma?
W

(a) Without magnetic field (b) With megnetic field
Fig. 234

After the external magnetic field is apphed the new value (E)) of each particle’s energy equals the

original value (E,) plus the interaction energy:
E=E,—p B=E,—p,B=E, +m, ﬂB

(see Problem 22.3). Since m,= + 1, the new levels will be displaced from the old by an amount
AE = *ehB/2m, with a spin — 1 particle occupying the lower sublevel and a spin + 1 particle
occupying the upper sublevel [Fig. 23-4(b)]. In contrast to the situation without the magnetic field
present, the particle in the n =2 level will have its spin — 1 if the system is in the ground state.

234. In an infinite square well of length a there are 5 X 10° electrons per meter. If all the lowest
energy levels are filled, determine the energy of the most energetic electron.

Since there are two electrons in each energy level, the total number of electrons up to and including

the last or nth level is N = 2n. The number of electrons per unit length is therefore

N2 sx10m!
a a
so that

n 9 . —1 -10m A-1-
- =o)X = ().
(25%x10°m )(10 X) 0.25 A
The energy of the nth energy level is thus .
2 (124 X 10° eV - A)°

n*h? _ 2 (he)’ - -1 =
8ma2_(a) 3(mcd) ©025A7) 0SIIx10°ey) 20V

235.  If a nucleus is approximated by a square well, there will be about 1 neutron per 10~ m, In
this approximation, determine the energy of the most energetic neutron. The neutron rest
mass is 938 MeV.
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23.7.

238.

239.

23.10.
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Refer to the Problem 23.4.
N_2n _io5m
a a
L 15 2 —1 —omy A-1
2 =(05%10%m )(10 1 ) 0.5 X ;(fA

=512x10%eV = 51.2 MeV

_(ny? () _,2(12.4x103ev-,1§)2
E"_(“) 8(mc?) = 05x16°A™) 8(938 x 10°eV)

Supplementary Problems

What is the energy of the photon that would be emitted in a transition from the n = 3 to the n = 2 level
in the infinite square well of Problem 23.1? Ans. 520eV

An infinite square well has length 10~ m. What are the values of the first three energy levels for a
neutron (m, = 938 MeV) in the well?  Ans. 2.05 MeV; 8.20 MeV; 18.45 MeV

Repeat Problem 23.7 for an electron in a 1 A well. Ans. 37.6 eV; 150 eV; 338 eV
Repeat Problem 23.2 for neutrons. Ans. 615 MeV; 1024 MeV; 1634 MeV

Determine the energy required to cause the uppermost electron in Problem 23.3 to “flip” its spin if the
magnetic fieldis 2 T.  A4ns. 232X 10"%eV



Chapter 24
Many-Electron Atoms and the Periodic Table

24.1 SPECTROSCOPIC NOTATION FOR ELECTRON
CONFIGURATIONS IN ATOMS

A great deal of information about the character of many-electron atomic states can be found by
assuming in a first approximation that each electron moves independently in the field of the nucleus
and the average field produced by the other electrons. The other existing interactions are treated
separately, as will be described below. In such an independent particle model the quantum numbers n,
1, m;, and m, are used to describe each electron’s state.

For a given n the integer values that the quantum number / can take on are

1=0,1,2,...,n~1
“The value of / will be designated by a lowercase letter according to the following scheme.

value of [: 01 2 3 4 5
lettersymbol: s p d f g h

-The convention for specifying the number of electrons in a particular orbit, defined by the quantum
numbers (n, 1), is to give n, followed by the letter symbol for /, with the number of electrons as a
post-superscript. Various orbits are sequentially written one after the other, thereby defining an
electron con [ guratxon As an example, the configuration for the five electrons in the ground state of
boron is 1s* 2s% 2p'. ‘ ’

Electrons with the same value of n are said to occupy the same electron shell. The various shells
are designated by capital letters according to the following scheme.

valueofn: 1 2 3 4

shellletter: K L M N
Within a given shell different values of / are possible; each value of / defmes a subshell (whlch is thus
equivalent to an orbit). For example, in the boron ground-state configuration, 1s? 252 2p', there are
two electrons in the s subshell and one electron in the p subshell of the L shell.

242 THE PERIODIC TABLE AND AN ATOMIC SHELL MODEL

' The lowest-energy, or ground-state, electron .configuration for many-electron atoms can be
explained using the Pauli exclusion principle together with an atomic shell model. The Pauli principle
states that no two electrons can have the same set of quantum numbers (n, /, m;, m,). Therefore the
number of combinations of m, and m, for a given subshell (n, ) gives the maximum number of
- electrons in that subshell.

For each value of / there are 2/ + 1 values of m,, and for each value of / and m, there are two
values of m, (m= +1). Thus the maximum number of electrons that can be placed in a given
subshell without violating the Pauli exclusion principle is 2(2/ + 1), as shown in the following table.

valie of I: 01 2 3
letter symbol
of subshell: s p d f

maximum number
of electrons: 2 6 10 14

133
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The order in which the various subshells are filled for most atoms is shown by reading upwards in
Fig. 24-1. The figure also indicates the relative energies of the electrons in any particular atom. The
gaps observed in Fig. 24-1 occur at Z = 2, 10, 18, 36, 54, and 86, which are the inert or noble gases
that are chemically inactive and very difficult to ionize. With the exception of He (Z = 2), the gaps
correspond to the complete filling of a p subshell. The other properties of the periodic table of the
elements can also be explained by the manner in which the different subshells fill, as shown in the
Solved Problems.

Maximum Number - Total Number

of of
Shell Level Electrons Electrons

6p 6 86

5d 10
P .

af 14

6s 2

Sp 6 54
0 44 10

5s - 2

4p 6 36
N 3d 10

4s - 2

3p 6 18
M 3s 2

2p 6 10
L 2s 2 ’
K 1s 2 2

Fig. 24-1

243 SPECTROSCOPIC NOTATION FOR ATOMIC STATES

Each state of an atom is characterized by giving the set of quantum numbers L, S, J related
respectively to the atom’s total orbital angular momentum, total spin angular momentum, and total
angular momentum (see Section 22.3). \

The particular value of L for the atomic state is designated in spectroscopic notation by a capital
letter according to the following scheme.

value of L: 01 2 3 4 5
letter symbol: § P D F G H
Atomic states are specified by giving the letter symbol of L with the value 2S + 1 as a pre-superscript

and the value of J as a post-subscript. As an example, in the ground state of boron L=1, S = 1,
J =1 and the spectroscopic notation is 2P, /2
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244 ATOMIC EXCITED STATES AND LS COUPLING

The mathematical analysis of many-electron atomic states is complicated by the fact that besides
the Coulomb interaction between the electrons and the nucleus there are also residual Coulomb
interactions between the individual electrons, interactions between the electron orbital angular
momenta and the electron spins, and interactions between the spins of the different electrons. For
light and medium-heavy atoms it is found that a scheme called “LS coupling,” developed by Russell
and Saunders in 1925, provides a method for understanding the observed atomic states. For LS
coupling, the atom’s orbital angular momentum L is the vector sum of the orbital angular momenta of
the individual electrons,

L=YL, (24.1)
[} 1
~ Similarly, the atom’s spin angular momentum S is the vector sum of the spin angular momenta of the
individual electrons,

S=3S§, (24.2)
i

The atom’s total angular momentum is then given by
J=L+S8S (24.3)
as in Section 22.3. The magnitudes of the three atomic momentum vectors are quantized according to
ILP=L(L+ D [SP=S(S+ 1) [P=J( + K (24.4)

and their z-components are quantized according to

L,=Mh S,=Msh J,=Mh (24.5)

The z-component quantum numbers are related to those of the individual electrons by the
following addition rules:

M, = 2 (m), Mg= 2 (m,), M, =M, + Mg (24.6)
~ H !
Knowing M,;, Mg, and M,, one can infer L, S, and J from the conditions
My=LL-1,L-2,...,-L ‘ (24.7)
Mg=§8,5-1,8-2,...,—-8 (24.8)
My=J,J-1,J-2,...,—J (24.9)

. It is possible to excite an atom into energy levels above the ground state. In returning to its
ground state the atom will emit radiation with a corresponding line spectrum. For strong transitions
the following selection rules apply:

AJ=0,x1 (but J=0->J=0 isnotallowed)
AL=0, +1 AS=0 AM; =0, =1 (butif AJ=0, M, =0— M, =0 is not allowed)

These are electric dipole transitions; other transitions occur but they are found to be much weaker. If
the electric dipole transition involves just one electron, AL # 0. '

245 THE ANOMALOUS ZEEMAN EFFECT

In a semiclassical picture, the normal Zeeman effect (triple line-splitting) is associated with the
precession of the atomic magnetic moment p about an external magnetic field B (Problem 20.2). The
stronger the field, the faster the precession and the greater the separation between the three spectral
lines into which the zero-field line is split. When the L+S interaction is strong compared to the
interaction of either vector with B, then S and L precess rapidly about J, producing a rapid precession
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of|u about J; this system then precesses slowly about B. In this way arises the anomalous Zeeman
effect, whose strength depends on the component of g ‘along J. In Problems 24.17 through 24.21 it is
shown that anomalous Zeeman splitting produces more than three spectral lines.

2A4.1.

Solved Problems
Show that under LS coupling the total angular momentum quantum number has the values
given by (22.4), i.e.
J=L+S§,L+8S-1,L+S8-2,...,|[L-S]
By (24.7) and (24.8),

My=LL-1,L-2...,-(L-2),-(L-1),-L

Mg=8,85-1,8-2,...,-(§-2),—-(§-1), -8
and M, is calculated from M; = M, + M;.

Table 24-1
[0 Value of M, L+S|L+S-1 L-S+1|L-S§ —(@L-S)|-(L-S+1 ~(L+S-1D)|—(L+S)
) Multiplicity 1 2 (steps of +'l) 25 25+ 1 |(constant) | 2S5+ 1 25 (steps of — 1) 2 1
J=L+S 1 1 1 i 1 1 1 1
JmL4+5—1 1 1 1 1 1 1
Multi-
() | plicity
Assigned
To:
J=L-S+1 [ 1 1 1
JmL-S : 1 [
4) |Unassigned 0 ] e [} 0 1] ] [} [}
Multiplicity

Assume that L > S. Row (1) of Table 24-1 shows the calculated values of M), and row (2) shows
the number of (M;, M) combinations that give rise to each M,-value. For instance, the multiplicity of
L+ S -2is 3 because

. D+(5-2)
L+8S~-2=3(L-1D+(S-1)
(L-2)+(S)
Observe that the sum of the multiplicities is
28528 +1)

2042+3+4 - +25)+ @S+ DAL -8) +1]=2 +Q2S+DQEL-25+1)

2
=Q2S+1DQRL+1)

or the total number of (M,, My) combinations.
The desired values of J are such that to each one of them corresponds a range of M,-valués:

M=JJ-1...,-(J-1),-J
Rows (3) and (4) of Table 24-1 show how the values
' J=L+S,L+S-1,...,L-S=|L-3§|

precisely exhaust the (M, M) combinations.
For the case S > L, simply interchange L and § in the above argument.
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24.2.

24.3.

244,

245.

Find the maximum number of electrons that can occupy a d subshell.

For a d suBshell, I=2. As shown in Section 24.2, the maximum number of electrons in the
subshell is given by
21+ 1)=22%x2+1)=
corresponding to the 10 combinations of m, and m, shown in Table 24-2.

Table 24-2
/ 2 2 2 2 2 2 2 2 2
my 2 2 1 1 0 0 -1 -1 -2 -2
m 4 e ]

Show that the maximum number of electrons that can lie in a shell specified by a quantum
number n is 2n.
The total number of substates with a given / is 2(2/ + 1). The values of / are
1=0,1,2,...,n—1
so the number of electrons in a filled n shell is
N="212(21+ D=2A1+3+--- +Q2n-1)]

1=0 .

Let us define
S=1434+---+4+Q2n-1)

which written backwards is

S=@n-1D+Q@n-3)+--- +1
Adding these two expressions term by term gives

28 =2n+2n+ - - +2n=02n)n
Therefore, N =25 =2n?,

Show that atoms composed of filled subshells will have a 1S, ground state.

The z-component of the atom’s total orbital angular momentum, M, 4, and the z-component of the
total spin angular momentum, Mgh, are found from

=2'”l Ms=2m,

the summations being over all electrons. The electrons in a complete / subshell have the following
values of m; and m;:

(mum)=(L £4), (1= 1, £4), ..., (=} £ 1)

Thus, summing over all the electrons in the atom always gives M, =0 and Mg =0. Since these are the
only possible values of M; and Mg, we can only have L =0 and S = 0, which in turn imply that J = 0.

~ The state is therefore 'S,

For hydrogen (/ = L) the energy states shown in Fig. 24-2 are found. What are the poss1ble
electric dipole transitions for these states?

The transitions must obey the selection rule A/ = + 1. Thus only the transitions shown in F ig. 24-3
are allowed.
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A .8 P D
I=0 I=1 : =2
+1.5} n=3
—-34} n=2
>
()
%)
—-136 | n=1/
Fig. 24-2
4 =2
-15F n=3
=34 n=2
%
%)
—-136 | n=1]

Fig. 24-3

' 246. Calculate L-S for a °F, state. _
For a 3F2 state, S=1, L =3 and J =2. From the result of Problem 22.1 we have
L'S= %[J(J+ D-LL+D-S(S+ D= %[2(2+ D-3C3+1) - 101+ DAt = —4n?

24.7. Determine the transitions occurring from a °F state to a 3D state with an L*S interaction
present.

The relative sizes of the spin-orbit splittings are determined by evaluating
L-S= [/ +1) = L(L+ 1)~ S(S + DI
See Table 24-3, in which J is evaluated from (22.4).

Table 24-3
State L S J L-S
F 3 1 4,3,2 3%, — 182, — 4K?
3p | 2 1 3,2,1 20, — 112, — 3K

In this case the L - S interactions split each energy level into three parts, as shown in Fig. 24-4. The
transitions satisfying the selection rule A/ =0, + 1 (but no 0-»0) are also shown. The transition rule
AL = +1 is automatically satisfied.
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24.8.

24.9.

L:S=0 : L:S#0

Fi3z .
3

3 FZ

3D3

3D3,2,| - - - - - Y |

3 l)2

3 DI
Fig. 244

Assuming a °Li atom to be hydrogenlike, determine the ionization energy of the 2s electron.
Explain qualitatively the difference from the experimental value of 5.39 eV.

If the two inner electrons were neglected, the valence electron would be in the n = 2 Bohr orbit with
Z =3. From (19.5),
13.58)Z2 13.58)(3)*
E,,=—%ev ‘SO E2=—£—L)—ev=—30.6ev
n " 22 :
so the ionization energy is 30.6 eV. On the other hand, if we consider that the two inner electrons
completely shield the Li nucleus so the outer electron only sees Z = 1, then

Ey=— '3258 V= —34eV

and the ionization energy is 3.4 eV.. The actual answer, 5.39 eV, lies between these two values. This
shows that the valence electron penetrates the helium core and thus sees some but not all of the nuclear
charge. The inner electrons partially shield. the valence electron from the nuclear charge.

The measured ionization energy of He is E,, = 24.60 eV. Suppose that the interaction energy
between the two electrons of an He atom is taken to be the difference between their common
binding energy, assuming each moves independently in a Bohr orbit, and the measured
ionization energy. Determine this interaction energy.

According to Bohr’s theory the ground-state energy of an electron in the field of a nucleus of charge
Ze is [see (19.5)]

E,=~Z%13.58 ¢V)

For He, Z =2, so that if each electron is treated as being completely independent of the other electron,
its binding energy by the Bohr theory would be

Ep=—E = (2)’(13.58 eV) = 54.32 eV
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and the interaction energy would be
E, = Eg — Ep, = 5432 ¢V —24.60 eV = 29.72 ¢V

The interaction energy is positive because the force between the two electrons is repulsive.

Calculate the average separation of the electrons in Problem 24.9.

If it is assumed that the interaction energy E; = 29.72 eV arises from the Coulomb force between the
two electrons, the average separation 4 is found from

2
[4

(1.60 X 10~ C)°
a

; i
2072 eV)(1.60 x 10-1° L) = (8998 x 10° -1
eV C

Solving, d = 0.484 x 10~ '° m = 0.484 A,

Give the electron configurations for the first five noble gases.

The noble gases are those elements with numbers of electrons that completely fill the various shells
shown in Fig. 24-1. The ground-state electron configurations of the first five noble gases are shown in
Table 24-4.

Table 24-4

Noble : Number of
Gas Electron Configuration Electrons (Z)
He 1s? 2

Ne 152 257 2p8 10

Ar 152 252 2p% 352 3p® 18

Kr 15% 252 2p® 35% 3p% 452 3d'0 4p° 36

Xe 152 252 2p5 352 3p® 452 3d'° 4p® 552 4d'° 5p° 54

24.12. Alkali metals have one electron more than a noble gas. Give the electron configurations of

24.13.

the first four alkali metals.

When a particular np subshell (that is, the p subshell of a particular shell 'n) is completely filled,
corresponding to one of the noble gases, the next-higher-Z atom will have an (n + 1)s electron added to
the noble gas core. Thus we have the ground-state electron configurations given in Table 24-5.

Table 24-5
Noble Gas
Alkali Metal Electron Configuration - Core
Li(Z=3) 152 257 He
Na(Z=1]) 152 252 2pS 35! Ne
K(Zz=19 152 252 2p® 352 3p° 45" Ar
Rb(Z =37) 152 25 2p5 352 3p® 4s? 3d'0 4p° 55" Kr

Because alkali metals have one s electron added to a relatively inert core, their spectra are.
qualitatively similar to that of hydrogen and their ground states are all %5, /2

Members of the halogen family have one electron less than a noble gas. Give the electron
configurations of the first three halogens.
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In an atom one Z-unit lower than a noble gas the “missing” electron (except for H) will be an np
electron. The ground-state electron configurations are as shown in Table 24-6.

Table 24-6
Halogen Electron Configuration
F(Z=9) | 1s22s22p° ‘
’ Cl(Z=17) 152 252 2p® 35? 3p°
Br (Z = 35) 1s% 25% 2p® 352 3p% 452 3d'° 4p°

24.14. Following the filling of the 4s subshell, the 34 subshell is filled. The 10 elements thereby
formed are called the transition elements. Give the electron configirations for the first three
elements of the transition group (,,Sc, ,,Ti, 53 V).

See Table 24-7.

Table 24-7
Transition
Element Electron Configuration
Cy Sc(Z=21) | 1522522p%3s*3p®4s?3d!
Ti(Z=22) 152 252 2p8 352 3p5 452 3d?
, V(Z=2) 152 252 2pS 352 3p° 452 34°

24.15. What are the possible states of an atom if they are determined by two equivalent np electrons?

For each electron, n is fixed; /=1; m;=1,0, — 1; m,= + 1, —1. Thus there are 3 X 2 = 6 ways
of choosing each electron’s state (m;, m,), and so there are 6 X 6 = 36 ways of specifying the state of the
two electrons. Of these 36, 6 put both electrons in the same state, in violation of the Pauli principle.
The remaining 30 fall into fifteen pairs, wherein the members of a pair differ only in respect to which
electron is labeled “electron 1” and which “electron 2.” Since the two electrons are indistinguishable,
we must drop one member of each pair, and are left with 15 possible atomic substates [(m;, m,), (m], m))}.
In Table 24-8 we calculate the values of the atomic z-component quantum numbers corresponding to
these 15 substates.

Table 24-8

Substate (my;, m,) (mj,my) M, =m+m Mg=m, +m,
#1 a, -1 a b 2 0
#2 ©hH | ab 1 1
#3 (U aG-9 1 0
#4 ©, -1 a b 1 0
! #5 ©, - 1) a, -1 1 -1
#6 o, -1 o bH 0 0
#7 (-1, 1 a b 0 1
#8 -1 G- 0 0
- #9 (-1, © 1 -1 1
#10 -1, 1H ©, -1 -1 0
#11 -L-9H | @t 0 0.
- #12 -1, -9 a, - 0 -1
#13 (-1,-1 o -1 0
#14 L= 7 0= -1 -1
#15 (-1, -1 (-1, 1% -2 0
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We must now find values of L and S that, consistent with (24.7) and (24.8), account for the
(M, M) values of all fifteen substates (and for these only). First, find the largest entry in the last two
columns of Table 24-8; this is M, =2 in substate #1. (If, in the more general case, more than one
(M,, M) pair contained the maximal entry, we would further maximize over the other member of the
pair) Then (24.7) shows that the largest value of L that must be considered is L = 2. Correspon-
dingly, S=0. (By (24.8), § > 0, but if S > 0 then substate #1 would not be maximal) To L =2,
S =0 we assign without repetition the (M, Mg) pairs with +2> M; > =2, +0> Mg > ~0; eg.
substates #1, #3, #6, #10, #15. (We could have chosen #4-instead of #3, #8 or #11 instead of #6,
#13 instead of #10.)

Now, repeat the process for the remaining 10 substates. The new maximal substate is #2, giving

L =1, S=1; to these we assign substates #2, #4, #5, #7, #8, #9, #12, #13, #14.
Now only substate #11 remains; it corresponds to L =0, §'= 0.
Table 24-9 displays the final results, wherein J is calculated from L and S via (22. 4.

Table 24-9
Designation of
Substate L S J Atomic State
#1,3%3,#6, #10, #15 2 0 2 'D,
#2, 44, 45, #7, %8, #9, #12, #13, #14 1 1 2,1,0 Py10
#11 0 0 0 1So

The ground-state configuration for (C is 1s? 252 2p2. Calculate the possible atomic states
from this configuration and compare them to the observed spectrum.

For the given six electrons we wish to calculate the possible values of L, S and J. The two 1s
electrons will not contribute to the atomic state since they form a closed shell (Problem 24.4). The 2s
electrons both have /=0, so that, according to the Pauli exclusion principle, their spins must be
antiparallel, giving a net spin for these two of zero, Thus the atomic state is determined entirely by the
two 2p electrons, and Problem 24.15 gives the possibilities as 'D,, *P,, *P,, °P,, and 'S,

The actual ground state of carbon turns out to be 3P0. The first five states, as inferred from the
observed spectrum, are indicated in Fig. 24-5.

Knowing that

pL=—(5e;)L and ps=—2(-2—‘;’;)s

show in a vector diagram that p and J are not parallel.

1,
0
i, =2( 5 )VS(S+ D
[-4

[l = 2 VL(L+ 1) A
'D, N =y +1) A

S| =yS(S+ 1) &
3'P2
3, IL|=YL(L+ 1)

3P, (Ground state)

Fig. 24-5 , Fig. 24-6
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The vector relations J=L + S and p = p; + pg are shown in Fig.'24~6. Because

sl _, Il
[S] L

the two triangles are not similar, and p and J are not parallel.

2

24.18. Refer to Problem 24.17. Calculate the projectioh of the total magnetic moment vector p on
the vector J. ‘

From Problem 24.17,
= - = C
B=p,+ ps 3, (L +28) 5 +S)
The projection of p on J is

peJ (- ZL)J'J+J'S
m

T R
Now, - '
L'L=(J-8)(J-S)=J:J+8:S—-2J'S
or
JS= %(J-J+S-S—L~"L)
Therefore,

e \J'J+iJI+8:S-L-L)
2m pr
) JU + DB+ 1[I + DR + S(S + D2~ L(L + 1)R?]

W +1)h

]
—
|

€
2m

5 JU+D+SS+1D)-L(L+1)
=("7er?)°1(1+1) I+ 27U +1) J
E(— -2%—)\/.1(.1+1) g

The qﬁantity
JU+D+S(S+1D)-L(L+1)
WU+

is called the Landé g-factor. As will be seen in the following problems, the g-factor is needed to
calculate the relative splitting of different energy levels in weak magnetic fields.

g=1+

24.19. Determine the value of the energy splitting of an atom in a magnetic field B if it is assumed
that the splitting depends only on the component of g along J.

From Problem 24.18, the component of p along J is

w=(- s WG+D,

or in vector notation
J h J
== (= o WO+ D g =t = - g3
) : JJ+1)h
The splitting in energy is given by (22.7) as

£

=—p, B=-_ouJ'B= -5 =
AE=~p,; B= 5= gJB= 5= gBJ, = =

gBM,h
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Since M;=J,J—-1,...,—J+1,—J, it is seen that for a given field B each energy level will split into
2J + 1 sublevels, with the amount of splitting being determined by the g-factor associated with that level.

Assuming the L+ S interaction to be much stronger than the interaction with an external
magnetic field, calculate the anomalous Zeeman splitting of the lowest states és, /2
2P, 5, *P5 ) in hydrogen for a field of 0.05 T.

From Problem 24.19 we have
=L M, = (579x 107 & )s00s T,

with :
-1 JU+D)+S(S+1)-L(L+1)
7= T +1)
Table 24-10 shows the calculations.
‘ Table 24-10
State L S J s | M AE, eV X 1073
2P3/2 1 1/2 3/2 4/3 +3/2 +*0.579
+1/2 +0.193

2P,/z 1 1/2 1/2 2/3 +1/2 +0.097
2S,/z 0 1/2 " 1/2 2 +1/2 +0.290

Refer to Problem 24.20. Determine the lines resulting from the transitions P /2 —28,,, and
2p, /2 -2S, 2 In hydrogen for a field of 0.05 T. Without a magnetic field these transitions

result in (1210'= 3.54 X 107?) A and (1210 + 1.77 X 107%) A lines, respectively.

The relationship between the splitting of the spectral lines and the applied field is found from

E,,—E,=%£ o dE,,-dE,=—% a

or

(1210 AY? A
124X 10°eV-A (dE, - dE;) ( 18 ov )(dE" 4E:)
The values for dE, and dE, are given in Table 24-10. There are 10 transitions that satisfy the rule
AM, = +1, 0 (see Fig. 24-7). The deviation of each of these lines from Ag = 1210 A is calculated in
Table 24-11. '
This problem illustrates the anomalous Zeeman effect in that 10 lines are observed instead of 3 lines
as in the normal Zeeman effect.

. xz )

Table 24-11
A, dE,, dE, an, dhy = dhg + dA,
Ax10-3 | Transition | eVXx1073 | eVX 10-5 | Ax1073 Ax1073
—3.54 a + 0.579 + 0.290 -0.341 - 3.88
—-3.54 b +0.193 + 0290 +0.114 —-3.43
—3.54 ¢ +0.193 -0290 - - 0.570 —4.11
- 3.54 d —0.193 +0.290 + 0.570 -297
—3.54 e —0.193 —0.290 -0.114 —3.65
— 354 f - 0.579 —-0.290 +0.341 -3.20
1.77 g + 0.097 +0290 | +0.228 +2.00
1.77 h + 0.097 —0.290 —0.457 + 1.31
1.77 i - 0.097 + 0.290 + 0.457 +2.23
1.77 i - 0.097 - =0.290 —0.228 + 1.54
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24.22. Neglecting the spin-orbit interaction in a strong external field of 5 T, determine the lines

resulting from the 2p — 1s transition Mo = 1210 A) in hydrogen.
The total magnetic moment is the vector sum of the orbital and spin magnetic moments:

p=uL+ps=—ﬁL—2ﬁS=—2—fn—(L+2S)

If the spin-orbit interaction is neglected, the change in the energy of the system will be determined only
by the interaction of the total magnetic moment with the external field, giving

=—pB=—yBe € = ¢h
dE=-p'B=—pB= £ (L, +25,)B 5 (Mo +2M)B

={579%10°3 A4 GTY(M, +2M;) = (2894 x 10-3 eV)(M, +2M;)
T L s

We therefore have the splittings given in Table 24-12.
The shift in the wavelengths is found from Problem 24.21 to be

A
d)\=(—118 e—v)(dE,,—dE,)

Since the separation between the upper energy levels is the same as that between the lower levels
(28.94 X 1073 V), only three lines result from the transitions satisfying the selection rules AM;, = +1,0,
AMyg = 0 (see Fig. 24-8 and Table 24-13),

It is seen that in strong external magnetic fields where the spin-orbit interaction is negligible, one
has a situation similar to the normal Zeeman effect, where only three lines are present.
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Table 24-12
_ dE,
State L M, M M, +2Mg eV x 1073
2p 1 +1 +1 +2 +57.88
2p 1 0 +1 +1 + 28.94
2p 1 -1 +1 0 0.00
2p 1 +1 -1 0 0.00
2p 1 0 -1 -1 - 28.94
2p 1 -1 -1 -2 ~57.88
1s 0 0 +1 +1 +28.94
1s 0 0 ~1 -1 — 2894
! Table 24-13
dE, - dE, dA, A=A+ dA,
Transitions eV x 1073 Ax1073 A
a,d 28.94 ~34.15 1210 — 34.15 X 1073
b, e 0 0 1210
e f — 28.94 +34.15 1210 + 34.15 % 1073
MJ ML
3/2 1
_ 1/2 0
2 QP ,7P, ) ~1/2,1/2 { T
-1/2 0
-3/2 -1
1210 A al b c| d| e] f
1p—Y VY 0
]
1s G5y 2) ‘ |
-1/2 [ 0

Fig. 24-8

[PART V

M, +2M;
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24.23.

24.24.

2425,

24.26.

24.27.
24.28.

24.29.

24.30.

24.31.

24.32.

2433.

2434,

24.38.

\

Supplementary Problems

Suppose that an atom’s state is determined by a single electron. What are the possible values of the
atom’s total angular momentum in an (a) S state, (b) P state, (c) D state?

ans. @ Bw o) p B g B p, 0

Find the maximum number of electrons that can occupy a p subshell.  Ans. 6 electrons

Find the maximum number of electrons that can occupy an f subshell and list the values of my and m, for
the electrons.  Ans. 14 electrons; m;= *3, +2, +1,0; m, = + 1

Calculate L*S for a *D, , state. ~ Ans. — 3P

Give the follt;wing states in spectroscopic notation: (@) L=0,S=0,J=0; (b)) L=2, S=0,J=2; ©
L=3,8=1/2,7=5/2;(d)L=4,S=1,7=5 Ans.  (a)'Sy; (b) 'Dy; (c) *Fs 3 (d) %G

Give the strong transitions from a 2D state to a *P state with an L * S interaction present.
Ans. 2D5/2 '—92P3/2; 2D3/2 -—)2P3/2; 2D3/2 —)zpl/z

Which noble gas completes the 6p subshell?  Ans. gRn= Rn (Z =86)

Give the electron configuration for the alkali metal built on the Xe noble gas core.
Ans. 15 257 2p° 357 3p% 45% 340 4p5 557 440 5p5 65" (55Cs)

The alkaline earths have two electrons more than a noble gas. Give the electron configuration of the
first four.
Ans. Be(Z=4): 152 252
. Mg (Z=12): 1s%2s% 2p° 352
Ca(Z=20): 1s%2s522p53s? 3p6 452
St(Z=38): 15?252 2p% 35? 3p® 452 340 4p° 552

Give the electron configuration for the halogen with one electron less than the noble‘gas Xe.
Ans.  1s? 25% 2p® 357 3p® 452 3d'° 4p° 552 440 5p° ()

What transition element has the electron configuration 152 25? 2p¢ 352 3p% 3d 4522 Ans. ,sFe

Give in spectral notation the possible states of an atom which has a closed core plus one d electron.
Ans. 2D5/2; 2D3/2

List the possible states (M,, M) of two equivalent nd electrons.

Ans. The 45 allowable combinations of quantum numbers (10 things taken 2 at a time) yield 23 states:
(x4, 0), (£3, 1), (£3,0), (£3, - 1), (22, 1), (£2,0), (22, = 1), (1, 1), (1,0), (21, — 1),
(0’ l)’ (0: 0): (0’ - 1) ‘ ‘



148 MANY-ELECTRON ATOMS [PART V

2436. For a field of 2 T, calculate the Zeeman energy splitting of the 2P, /2 and 25, /2 states in Na.
Ans. +386%x1075eV; £11.58 X 1073 eV

2437. The?P, /2 -2, /2 transition in Na has a wavelength of 5895.9 A. Calculate the wavelength changes seen
in a 2 T magnetic field. Ans. *0.216 A; +0433 A

2438. Assuming the LS interaction to be much larger than the interaction with an external magnetic field,
calculate the anomalous Zeeman splitting of the 2D; ,, and 2D, states in hydrogen in a field of 0.05 T.
Ans. for 2Dy ;: +3.47X 1076 eV, £1.16 X 107 eV; for *Ds/;: +8.68 X 1076 eV, £5.21 X 1075 eV,
+1.74X 1076 eV



Chapter 25
Inner-Electron Transitions: X-Rays

25.1 X-RAY APPARATUS .

X-rays, discovered by Wilhelm Roentgen in 1895, are high-energy photons (1-100 keV) with
wavelengths of the order of 1 A. They are usually produced by bombarding a target with high-energy
electrons, as shown in Fig. 25-1. The kinetic energy of the electrons at the cathode is negligible, so
that when they strike the target the electrons have kinetic energy K = eV,

Accelerating voltage,

—0 Va10kV O—
- +

-

Accelerated electrons ]
_L % C_) - @ —_— ‘:::_; Target

Emitted X-rays /

, m\/ : J

Fig. 25-1

252 PRODUCTION OF BREMSSTRAHLUNG

The bombarding electrons can interact with the atoms of the target in a number of different ways.
In one type of interaction the electrons are accelerated by the positively charged nuclei, as shown in
Fig. 25-2. Whenever a charge is accelerated it produces radiation which, according to the quantum

Emitted
X-ray -
photon E ’:
K P=X
O——— ———_ __
Pi -
~
~
~
~
~
~
~
Nucleus ~
NG
. K,
Pr
Fig. 25.2
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picture, will be in the form of a photon with energy hv equal to the change in the electron’s kinetic
energy, i.e. hv= K, — K, Radiation produced in this fashion is called bremsstrahlung after the
German word for “braking” or “slowing down” radiation.

An electron may produce a number of such photons before coming to rest. Clearly, the most
energetic photon possible will occur when an electron loses all of its initial kinetic energy in a single

interaction, producing a single photon with a maximum frequency or minimum wavelength given by

By = S = eV (25.1)

max Amin

Thus the bremsstrahlung process will produce radiation with a continuous spectrum that has a cutoff
frequency or wavelength which depends on the accelerating voltage according to (25.7).

253 PRODUCTION OF CHARACTERISTIC X-RAY SPECTRA

It is also possible for the incident electrons to excite the electrons in the atoms of the target of the
X-ray tube. Moreover, because of the large accelerating voltage,.the bombarding electrons can have
sufficient energy to eject tightly bound electrons from the cores of the target atoms. If a core electron
is ejected, electrons from higher energy levels in the atom will make transitions to this lower vacated
state, emitting radiation in the process. Because the energy differences between the inner levels of the
target atoms are rather large, the emitted radiation lies in the X-ray region.

If K-shell (n = 1) electrons are removed, electrons from higher energy states falling into the K shell
produce a series of lines denoted in X-ray notation as the K, Kg, K,, . .., lines. See Fig. 25-3(a).
If L-shell (n=2) electrons are removed, another series of lines, called the L series, is produced.
Similarly, transitions to the M shell (n = 3) result in an M series, etc.

When the spectrum of a many-electron atom excited by electron bombardment is observed, one
sees a smooth bremsstrahlung background having a lower-wavelength cutoff corresponding to the
maximum accelerating voltage, together with intense sharp lines produced by the K, K, etc.,
transitions, as shown in Fig. 25-4.

Upon closer observation each of the characteristic X-ray lines is found to be composed of a
numbser of closely spaced lines [Fig. 25-3(b)]. This splitting in the lines results from the fine-structure
splitting of the atomic energy levels (with the exception of the K shell wheren =1, L = 0), as described
in Chapter 22.

254 THE MOSELEY RELATION

In 1913 H. Moseley found that the observed frequencies » for the K and L X-ray series could be

fitted by the relation ‘
v/2=A(Z - Zy) (25.2)

where Z is the atomic number of the target material, and A and Z, are constants that depend on the
particular transition being observed. For the K series it is found experimentally that Z, =1 and the
value of A changes slightly depending on whether the K, K, . - -, transition!is being observed. For
_the L series, Z, = 7.4, and again a slight variation is found in 4 for the L,, Lg, . - ., lines.

The form of (25.2) can be deduced from a Bohr-type model (Problem 25.6). It is found that

(3 172 3 g m ; 1\ 7 1y,1/2
Ag = (5 eR) [(Z)(3x10 I )(1097x 10 )] =497 x 10" Hz

s m
1/2 1/2
a,=(Z cr.) =[(—5—)(3x 100 2 )(1.097 x 107 l)] = 2.14 X 107 Hz"/?

]

36 36 S m

These values are in reasonably good agreement with what is found experimentally (see Problems 25.7
and 25.8), and, unless otherwise stated, will be used in the problems involving the Moseley relation.

Although the Bohr theory was developed for noninteracting atoms in the gaseous state, it is seen
also to afford an explanation of the properties of atoms in a solid material, which interact very strongly
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with each other. The reason is that in the production of X-rays transitions occur only between the
strongly bound inner electrons. When atoms are bound together to form a solid, the energy levels of
" the outer electrons will be different than in the gaseous state. However, the inner electrons, because
they are so tightly bound, remain essentially unchanged when the material goes from the gaseous to
the solid or liquid state.

255 X-RAY ABSORPTION EDGES , )

When a beam of X-rays passes through a material, some of the photons may interact with the
atoms of the material, causing the photons to be removed from the beam. The primary interaction
processes responsible for the reduction of the intensity of any photon beam are the photoelectric effect,
Compton scattering, and pair production (Chapter 14). Because X-rays have energies in the 1-100
keV range they cannot produce electron-positron pairs, which require energies in excess of 1000 keV
(Problem 13.12). Therefore the intensity of an X-ray beam will be reduced by only the first two of the
above processes, with the photoelectric effect being the dominant mechanism.

The intensity I of a monochromatic X-ray beam after it has penetrated a distance x in a target
material is given by (I4.1) as

. I= I oe—’“ ’

where I, is the intensity of the incident beam and p is the absorption coefficient of the material. The
quantity p depends on both the target atoms and the energy of the X-ray photons. .

Suppose, for a given target material, that p is ‘measured as a function of the incident X-ray energy.
As this energy increases, the absorption coefficient decreases because the higher-energy photons are

“less likely to produce photoelectrons or undergo Compton scattering. This decrease continues until

the X-ray energy just equals the binding energy of one of the core electrons. At this point more
electrons suddenly become available for photoelectric emission, causing a marked decrease in the
transmitted X-ray intensity, or equivalently, a sudden increase in the value of the absorption
coefficient. This sharp increase in p happens at the binding energies of each of the core electrons,
resulting in the absorption edges shown in Fig. 25-5(a). Measurement of the energies of the
K,L,..., absorption edges thus serves to determine the binding energies of the corresponding core
electrons. . , '

With the exception of the K edge, each absorption edge actually consists of a number of. closely
spaced peaks corresponding to the fine structure of the energy levels [Fig. 25-5(b)].

A A L
, Ly
Ey 2 L
g § 111
g M edge 3
<§ ' L edge 5
g g
g K edge ‘ -g-
] :
<, <
Photon Energy hv Photon Energy v
(@) ()
Fig. 25-§

256 AUGER EFFECT . . -
In the above discussion it was assumed that the photoelectrons were produced by X-rays coming
from an external source. It is possible, however, for an X-ray emitted by a transition within an atom
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to be absorbed by an electron in the same atom, causing its ejection. Photoelectrons produced by
such internal conversions of X-rays are called Auger (pronounced OH - ZHAY) electrons.

25.7 X-RAY FLUORESCENCE

X-ray photons can be used to excite or eject core electrons. The resulting downward transitions
.as the atom returns to its ground state will then. produce additional X-ray photons of smaller energy
than the incident X-ray. This phenomenon is known as X -ray fluorescence.

Solved Problems

251. A TV tube operates with a 20 kV accelerating potential. What are the maximum-energy
X-rays from the TV set? - "

The electrons in the TV tube have an energy of 20 keV, and if these electrons are brought to rest by
a collision in which one X-ray photon is emitted, the photon energy is 20 keV. The corresponding
wavelength is

¢ _h _124keV-A _ ;
AT h T kv SO082A

25.2.  Determine the wavelength of the K, line for mblybdenum (Z = 42).
From the Moseley rela‘tion, we have
/2= A(Z - 1) = (497 x 107 Hz'/2)(42 — 1) = 2.04 X 10° Hz!/2
3 10f m/s

= =0721 x 10" m=0721 A

A= 3
(2.04 X 10° Hz'/?)

w6

This compares well with the experiinental value of 0.709 A.

253. In the Moseley relation, which will have the greater value for the constant 4, a K, ora Ky
transition? .

The Moseley relation for K transitions is »'/2 = 4(Z — 1). The K, transitions are larger-energy
than the K, transitions; therefore higher-frequency photons are emitted in the K transitions, and A4 is
larger for the K, transitions than for the K, transitions.

254. An experiment measuring the K, lines for various elements yields the following data:

Fe:1.94A  Co:1.79A Ni:1.66A Cu: 1.54 A
Determine the atomic number of each of the elements from these data.
The Moseley relation gives
pl/2

V2= (497X 10 H2/WZ - 1) o z=14 22
( Xz-1 4,97 x 107 Hz!/?

and using » = ¢ /A we obtain

e 1 L 3485 -
Z—1+m(,4.97X107Hz1/2)_l+ az (o)

The results are given in Table 25-1.
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Table 25-1
Element “AMA z
Fe 1.94 26.02 ~~ 26
Co 1.79 27.04 =27
! Ni 1.66 28.04 ~28
Cu 1.54 29.08 ~ 29

Before Moseley’s work Ni, whose atomic weight is 58.69, was listed in the periodic table before Co,
whose atomic weight is 58.94, and it was believed that the atomic numbers for Ni and Co were 27 and
28, respectively. By using the above experimental data, Moseley showed that this ordering and the
corresponding atomic numbers should be reversed.

255. A beam of 100 keV electrons is incident on a Mo (Z = 42) target. The binding energies of
the core electrons in Mo are given in Table 25-2. Calculate the wavelengths of the transitions

that occur.
Table 25-2
Shell : K L Ly | Lm | M; My | My | My My
Electron s | 25 | 2p |20 | 3 | 3 | 3p | 3| 34
Binding '
Energy, keV | 20.000 2866 | 2.625 | 2.520 | 0.505 | 0.410 0.393 | 0.230 | 0.227

Only transitions with Al = +1 are allowed. These are shown in Fig. 25-6. The wavelengths are
found from

A= Cmhe o B _ 124keV-A
14 hy EU_E' E“—EI

resulting in Table 25-3.

Table 25-3
Transition E, keV E, keV AA
K, | 1 - 2625 —20000 | 07137
’ 2 - 2520 — 20.000 0.7094
Ky 1 0410 | —20000 | 06330
2 - 0.393 — 20.000 0.6324
1 —0.505 -2520 6.1538
2 — 0505 -2.625 5.8491
3 — 0410 2866 | 50489
L, 4 - 0393 —2.866 5.0142
5 o230 | —2520 | 54148
6 - 0230 -2.625 51775
7 ~0.227 -2.520 5.4078
8 - 0227 ~2.625 51710

This problem illustrates the fine structure of characteristic X-rays.
T
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Using a simple Bohr picture, calculate the value of 4 in Moseley’s equation for the K, and L,
series of transitions. ‘

For one-electron atoms we know that (Section 19.3)

»

1=1=R Z%2 1 _ 1 or 172 o i—i ‘R 1/22#
N 7 )R

where R, is the Rydberg constant, n, and n; the principal quantum numbers of the ﬁpper and lower
states for the electron transition, and Z*e the net positive charge acting on the electron. For K, and L,
transitions we have respectively n, =2, n, = 1-and n, =3, i, =2, so that

; 1/2 1/2
v,}fz=[( 1 1 )ch] z*= (%ch) Z* = (497 x 10" Hz'/?)Z*

1/2 11 V2 5. v, . 7 1,1/2) 74
vl =[(———)cR°°] z =(§ch) Z* = (2.14 X 10" Hz'/)Z
Therefore, Ay =4.97 X 10" Hz'/2 and 4 L =2.14 X 10" Hz"/2. 1f it is assumed in a K, transition that
the inner electrons are not affected by the outer electrons in the atom, the L electron before the

transition will see an effective charge of (Z — 1)e, because the remaining K electron shields the atomic
nucleus, whose charge is Ze. Using Z* = Z — 1 in the above expression for the K, transition, we obtain

/2= (497 X 10" Hz'/2(Z - 1)

In transitions involving electrons from shells farther out than the I shell the shielding effect
becomes more complicated and the constant Z, in the Moseley relation is no longer equal to the number
of screening electrons.
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25.7. For each of the K, lines given in Table 25-4 find the value of 4 in Moseley’s relation.

Table 254
Element Sc Ga Nb Sb Pm Lu Tl
z 21 31 41 51 61 7 81
K1, keV 4.09 9.25 16.62 26.36 38.72 54.07 72.87
K. keV 4.09 9.22 16.52 26.11 38.17 52.97 70.83
Using
1/2 _ ‘ 1/2 1/2
y1/2 = ( 5) - ( E ) - (49.17 x 107 B2 )EVZ
h 4.136 X 107 ¥ keV s keV'/?
where E is in keV, in Moseley’s relation, we obtain_
o . EV?
A=z—7°< 49.17 X 10 v ) Z =1
The numerical results are displayed in Table 25-5.
Table 25-5
z 21 31 41 51 © 6l 71 81
A, Hz'/* X 107 497 4.98 5.01 5.05 5.10 5.17 5.25
A,, Hz'/2 X 107 497 498 5.00 5.02 5.06 5.11 5.17

These values of A agree reasonably well with the value 4 = 4.97 X 107 Hz obtained in Problem 25.6.

258. The energies of the L and M shells in W (Z = 74) are

Shell L Ly Liy M, My My My My
Energy, keV 12.099 11.542 10.205 2.820 2.575 2.281 1.872 1.810

Determine the values of A in the Moseley relation for the largest- and smallest-frequency L,
lines and compare them with the result of Problem 25.6.

The L, lines arise from transitions from the M to the L shell. The largést and smallest allowed
frequencies arise respectively from the M,;— L, and M, — Ly, transitions (see Problem 25.5). The
corresponding frequencies are :

. Er, = Emy _ 12099 keV —2281keV _ 5 3945 101 Hz
e h 4136 X 1078 keV *s ’

E, —E _
P = Lin M _ 10.205 keV — 2.820 keV = 1.786 X 10! Hz
h 4.136 X 10" ¥ keV s
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Substituting these values in the Moseley relation, we find

1/2 18 1/2
Vniax (2.374 X 10 Hz) ; ‘
= = - /2
Am= 775 =73 231 x 10" Hz
4 (86X 10°H)' " 2,01 107ﬁ 1/2
A= 74— 7.4 =2.01 X z

These values straddle the value 4 = 2.14 X 107 Hz!/2 obtained in Problem 25.6.

25.9. Assume the following model for the two K electrons in an atom: the total energy of each
electron is given by the. Bohr energy, for an “effective” nuclear charge Z*e, plus the Coulomb
interaction energy, where it is assumed the two electrons are maximally separated at a distance
equal to twice the Bohr radius, ;. Find the nuclear shielding factor Z,= Z — Z* for the
elements whose K-shell binding energies are given in Table 25-6.

Table 25-6
Element Ni Zr Sb Gd Ta
zZ 28 40 51 64 73
K-Shell
Binding Energy, keV 8.333 17.998 30.491 50.239 67.417

By (19.5) with n= 1, the Bohr energy is — Z*E{; and by Problem (24.10), the Coulomb
interaction energy is ke?/2ry. The binding energy of each electron is the negative of its total energy;
hence ’

= [ zvge 4 ke _pogea_ ke '
BE (z,El+2rB) Eyze- K 1)

in which E} = 13.6 eV = 0.0136 keV and, by (/9.4) with n=1,
‘ M1 R _ 1 ket

or

ke _ ..
2rp - E’Z
Substituting these values in (1) yields the quadratic equation

BE
*2 * -
Z zZ Ford =0

whose positive root is Z*. The numerical results are displayed in Table 25-7..

Table 25-7
z Z* Z,
8 | 253 | 27
40 36.9 3.1
51 479 3.1
64 61.3 217
73 | 709 3.1
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25.10.

25.11.

25.12.
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. 1
The fact that the shielding factors Z, are all approximately equal shows that the Bohr model is a
reasonably good approximation for the K-shell electrons.

In uranium (Z = 92) the K absorption edge is 0.107 A and the K, line is 0.126 A. Determine
the wavelength of the L absorption edge.

From Fig. 25-7 it is seen that

he 124keV - A
E &= — o = - = .
3 ™ 0.107 115.9 keV
and
' _ he _ 124keV-A _
E - Ex= 3= “onek  ~084keV
Therefore E, = 98.4— 1159 = —17.5 keV, and _
_ _hc _ 124keV-A _ .
M= —F = TTskev. - O10A
0 (n=x)
| g _ ke
T ) L-shell binding energy = X
L
) . . hc
K-shell binding energy = W
K
B (n=2) l T shell
K, line
B (=D K shell
Fig. 25-7

The K absorption edge for Y (Z = 39) is 0.7277 A. In order to produce emission of the K
series from Y an accelerating potential of at least 17.039 kV is required. Determine 4/ e from
these data. '
The energy of the 0.7277 A photon that will just remove an electron from the K shell is
<oy 2.998 X 10. m/s
AT 0277%x 107 m
The energy of the bombarding electron that will just remove an electron from the X shell is
‘ E,= eV = ¢(17.039 X 10° V)
Since both of these energies must be equal, we have
(4.120 X 10'8 s~ ')A = ¢(17.039 x 10° V)

E,=h =(4.120 X 10" s~ )h

g =4.136 X 10-5V-s=4.136x 10-15 18

A material whose K absorption edge is 0.15 Ais irradiated with 0.10 A X-rays. What is the
maximum kinetic energy of photoelectrons that are emitted from the K shell?
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The K-shell bindiné eniergy is ,
he _ 124keV-A -
Ey]=+—= = 82.7 keV
|Exd A 015A 82.7ke
The energy of the incident photon is

g o= he _ 124keV-A
A 0.10A
The maximum kinetjc energy is the difference between these two values.
Kopax = E, — |Ex| = 124 keV — 82.7 keV = 41.3 keV

m

=124 keV

25.13. When 0.50 A X-rays strike a material, the photdelectrons from the K shell are observed to
move in a circle of radius 23 mm in a magnetic field of 2 X 1072 T. What is the binding
energy of K-shell electrons?

The velocity of the photoelectrons is found from F = ma:

i 2
ewB=mZ or vo=S<BR
R m

The kinetic energy of the photoelectrons is then ‘
1 e3B2R? 1 (16X 1071 C)*(2x 10~2T)’(23 X 10~ m)’

1 2 -1s
K=smv’= > =297x10"")

2 2 m 2 (9.11 x 1073 kg)

or
k=@97x10-55) —LkV__ _ig6yev
1.6x1071¢J
The energy of the incident photon is
_ hc _ 124keV-A _
E, = x 050 & =248 keV

The binding energy is the difference between these two values.
' BE=E, — K=248keV — 18.6 keV = 6.2 keV

25.14. Stopping potentials of 24, 100, 110, and 115 kV are megsured for photoelectrons emitted from
a certain element when it is irradiated with monochromatic X-rays. If this element is used as
a target in an X-ray tube, what will be the wavelength of the K, line?

The stopping potential energy, eV, is equal to the difference between the energy of the incident
photon and the binding energy of the electron in a particular shell.
eV, =E,— Ep
The different stopping potentials arise from electrons being emitted from different shells, with the

smallest value (24 kV) corresponding to ejection of a K-shell electron. Subtracting the expression for
the two smallest stopping potentials, we obtain

eVy—eVg= (Ep —Ep.)— (Ep — Epx )= Egx — Ep;
or
100 keV — 24 keV = Eg, — Eg;
This difference, 76 keV, is the energy of the K, line. The correéponding wavelength is

A he _ 124keV-A
. EBK‘_EBL 76keV

=0.163 A

25.15. In Zn (Z = 30) the ionization (binding) energies of the K and L shells are, respectively,
9.659 keV and 1.021 keV. Determine the kinetic energy of an Auger electron emitted from
the L shell by a K, X-ray.



160

25.16.

25.17.
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The energy of the K, X-ray is
Ex =E, - EK = —1.021 keV — (—9.659 keV) = 8.638 keV

The kinetic energy of the Auger electron will be equal to the difference between the K, photon energy
and the binding energy of the electron in the L shell:

K=Ey — Ep, =8.638 keV — 1.021 keV = 7.617 keV

The K, L, and M energy levels for Cu, Ni, and Co are given in Table 25-8. It is desired to
filter the K, line from the K, and K, radiation emitted from Cu. Which will be the better
filter, Ni or Co? :

Table 25-8
Element Z -| EgkeV E;, keV " Ep, keV
Cu 29 - 8979 - 0931 - 0.074
Ni 28 —8.333 -0855 | ~—0.068
Co 27 - 17.709 -0.779 - 0.060

The energies of the X-rays emitted from Cu are equal to the differences between the various energy
levels in Cu. Thus,

Ex = —0931keV — (—8.979 keV) = 8.048 keV
Eg, = —0.074 keV — (—8.979 keV) = 8.905 keV

A material will filter out X-rays if the energy of the X-rays is larger than the energy required to eject
electrons from the atoms of the material. Otherwise the incident X-rays will not interact appreciably
with the material and will pass through unfiltered. It is seen that the K absorption edge of Ni (8.333
keV) lies between the K, (8.048 keV) and K, (8.905 keV) X-ray energles from Cu, so that the K, photons
will interact much more with Ni than will the K, photons. On the other hand, both K, and K, photons

can cause photoelectric emission from the K shell (7.709 keV) of Co. Thus Ni will be the better filter.

Electrons are accelerated between a filament and a grid through mercury vapor by a variable
potential ¥, as shown in Fig. 25-8(a). A small retarding potential, ¥, ~0.5 V is maintained
between the grid and the collector plate. When the current I in the collector is measured as a
function of the accelerating voltage, the curve of Fig. 25-8(b) is obtained. Determine the first
excitation energy of mercury and the wavelength of the light emitted by mercury in the
experiment.

In order to reach the collector the electrons must have a kinetic energy greater than the retarding
potential energy of about 0.5 eV between the grid and the collector. As the accelerating potential is
increased, the electrons acquire larger and larger kinetic energies and hence more and more reach the
collector, resulting in an increasing current. Eventually, however, the electrons acquire an energy equal
to the first excited state of the mercury atoms. At this point the electrons can excite the mercury atoms |
into this state, thereby, of course, losing kinetic energy. Thus fewer electrons will have sufficient energy
to overcome the retarding potential ¥, resulting in the observed dip in the collector current. In
addition, the mercury vapor, previously dark, will emit radiation as the atoms return to their ground
state.

Upon further increase in V' the current will again begin to increase because the electrons can acquire
additional kinetic energy after they excite a mercury atom. At still greater accelerating potentials
electrons will have sufficient enengy to excite two mercury atoms, resulting in a second dip in 7, and so
on. (We are neglecting the possibility that an electron might put a mercury atom into a higher excited
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Mercury vapor
Grid '
: l \ Anode (collector)
\I Cathode (emitter) | IJ

<——®'¥

L

. 1
| ., 1
Variable Voltage Retarding Voltage, Vr

— 4

@

o , 488V ='l= 488V ——»f

'

)
Fig. 25-8

\

state. This could happen, but special potential variations across the vapor tube would be required.)
The voltage difference between the various current peaks is thus seen to correspond to the energy
required to excite mercury into its first excited state, so that

AE=eAV =488¢V
(The potential of the first peak cannot be used because of the existence of ¥, and various contact
potentials.) The wavelength of the photons emitted when the excited mercury atoms return to their
ground state is ' ‘

=&_n_nc 124X10°ev-A _ A
A= v v AE 488 eV 2540A

This experiment was first performed by J. Franck and G. Hertz in 1914, and was the first
experiment - to demonstrate the existence of stationary states in atoms, further confirming Bohr’s
emerging quantum hypothesis. In addition it showed that atoms can be excited by interacting with
energetic electrons.
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25.20.

25.21.

25.22.

25.24,

25.26.

25.27.

25.28.

25.29.
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Supplementary Problems

If a K, X-ray from a certain element is measured to have a wavelength of 0.786 A, what is the element?

Ans.  golt

An electron is accelerated through a 10° V potential. Find the smallest possible wavelength produced
when this electron interacts with a heavy target.  Ans. 0.124 A ‘

How many lines are in the K, fine structure?  Ans. 2

Determine the constant 4 in Moseley’s equation for L, transitions if the L, lines have the values 30.1 A
in Ca (Z=20) and 112 A in Zn (Z = 30).
Ans. for Ca, A =251 x 10" Hz'/2; for Zn, A =2.29 X 10 Hz!/?

/

From the data in Problem 25.7 determine for each line the value of Z, in Moseley’s relation if the value
of A for each line is taken to be 4.97 X 107 Hz'/2,

Ans.
Element Sc Ga ~ Nb Sb Pm Lu Tl
Z, for K,; 0.99 0.91 0.67 0.21 - 0.56 - 175 — 346
Z,for K, '0.99 0.96 0.79 0.45 -0.12 - 1.00 -2.26

In a NaCl crystal thé lattice spacing is 2.820 A. If a first-order Bragg reflection for a K, X-ray is
observed from a principal plane at 15.8°, what is its wavelength? (This problem shows how one can
measure wavelengths of X-rays))  Ans. 1.54 A

X-rays from copper (K, = 1.54 A, Ky = 1.39 A, K, =1.38 A) are passed through a sheet of nickel
(K, =166 A, K3 =1.50 A, K., = 149 A). What intense wavelengths emerge?  Ans. 8.05 A

In a given element which is larger, the K absorption energy or the energy of a X, X-ray?
Ans. K absorption energy

In Os (Z = 76) the K and L absorption edges have .respective wavelengths of 0.168 Aand .L17A. What
is the wavelength of the K, line?  Ans. 0.196 A

In Ta (Z = 73) the K, line is 0.216 A and the L absorption edge is 1.25 A. What is the wavelength of
the K absorption edge?  Ans. 0.184 A

N

“The stopping potential for the photoelectrons emitted from the L shell of a material when it is irradiated

with 0.257 A X-rays is found to be 8.20 V. Find the wavelength of the L absorption edge.
Ans. 0310 A

The kinetic energy of an Auger electron emitted by a K, X-ray from the L shell of a material with a X
absorption edge of 0.827 A is measured as 10.2 keV. Find the energy of the K, X-ray and the
wavelength of the L absorption edge.  Ans. 12.6 keV; 517 A



PART VI: Nuclear Physics

Chapter 26

Nucleon and Deuteron Properties

26.1 THE NUCLEONS

All nuclei are composed of two types of particles, positively charged protons and neutral neutrons,
referred to collectively as nucleons. Their principal properties are listed in Table 26-1.

Table 26-1
Proton Neutron
Charge +1.6x107°C 0C
Rest Mass 1.67252 x 1072 kg 1.67482 X 10~ kg
938.256 MeV 939.550 MeV

1.007277 u 1.008665 u
Spin 1/2 1/2
Magnetic
Moment + 2.79288, - 191288,

The atomic mass unit, v, is defined such that a '%C atom has a rest mass of exactly 12 u; the nuclear
magneton, B, is given by

eh (16X 107 C)(6.58 X 107" €V +5) e eV
B, = —— = =315%x107% =
2m, 2(1.673 X 10~ %" kg) T

where m, is the proton rest mass. The positive or negative sign for the magnetic moment indicates
that the magnetic moment and spin vectors are in the same or opposite directions, respectively. It is
interesting to note that even though the neutron has no charge, it still possesses a magnetic moment.

Protons have an infinite half-life; left alone they will not decay. Neutrons, on the other hand,
have a half-life of 12 minutes; if a group is left alone, half the number, on the average, will decay every
12 minutes.

26.2 NUCLEON FORCES

When nucleons are brought close together (on the order of 107> m =1 fm), it is found that they
exhibit a strong attractive force which has a short range; i.e. at distances greater than a few
femtometers the nucleon force is essentially zero. The attractive force is found to be independent of
the charge of the nucleons; this means that the proton-proton, neutron-neutron, and proton-neutron
forces are all approximately equal.

The force between two nucleons is made up of several different parts. Besides the normal central
component, there is a spin-dependent term which is different when the nucleon spins are aligned and
when they are antialigned. In addition there is a noncentral component that does not point along the
line joining the two nucleons. This noncentral component depends upon how the nucleon spins are
oriented relative to the line joining the nucleons.

At distances very much smaller than 1 fm the nucleon force changes in character from being
attractive to being repulsive. This behavior is usually referred to as the repulsive nuclear core.

163
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263 THE DEUTERON

A deuteron or deuterium is a bound system composed of a proton and a neutron, and as such
represents the simplest nucleus having more than one nucleon. The properties of a deuteron are:
charge, +1.6 X 10! C; mass, 1875.5803 MeV or 2.013553 u; spin, S =1 (this is the sum of the
neutron and proton spins); magnetic moment, +0.85748,; total angular momentum, J = 1.

It is possible to assign to an atom a single quantized orbital angular momentum L. Because the
proton-neutron interaction is noncentral, however, it is found that a deuteron does not possess a
definite orbital angular momentum. Instead, a deuteron in its ground state has a 96% probability of
being in an S (L = 0) state and a 4% probability of being in a D (L = 2) state.

A deuteron is also found not to be spherical. A quantity that measures a charged body’s
deviation from sphericity is its electric quadrupole moment (see Problem 26.5). If a body is spherical its
quadrupole moment is zero. The quadrupole moment of a deuteron is found experimentally to be
+0.282 fm2 '

The above discussion shows that even though a deuteron is composed of only two nucleons, its
structure is quite complex, giving an indication of the complications to be expected when heavier
nuclei are investigated.

Solved Problems

26.1. If an electron is confined within a nucleus whose diameter is 10~ ' m, estimate its minimum
kinetic energy.

The de Broglie wavelength of a minimum-energy electron confined inside the nucleus would be
approximately twice the nuclear diameter (one-half a wavelength would fit into the diameter). There-
fore the electron’s momentum would be of the order of magnitude

~h_he _124x10°eV-A _ o 106 €V _ o MeV
PEX T T Tex10 A ¢ ¢

corresponding to a kinetic energy of
~\(pP + EZ —Ey= MeV )’_ 2 _ -
K=\(pe) + E5 —E, \[(62 p Xc (0.511 MeV) 0.511 MeV = 61 MeV

26.2. For the nucleus of Problem 26.1 estimate the Coulomb energy of the electron.

The nucleon number A is roughly (see Section 27.3)
' 3 -14 3
A=(5) =(0.5><10 m)z%
To 14X 107 m

For nuclei of this size the number of protons is Za 4 /2 =23. If the electron is assumed to be at the
edge of the nucleus, the Coulomb energy is given by

2 1.44 MeV + fm)(23
_kz __( eV-Im)@3) _ o Mev
R 5fm

Ec.=

This correction is negligible compared to the 61 MeV electron kinetic energy found in Problem 26.1.
Electrons emitted from nuclei have kinetic energies of a few MeV, and not =~ 54 MeV as predicted by
this and the previous problem. Furthermore, some type of positive barrier must exist so that electrons
could be bound in the nucleus with a positive energy. Neither of these effects can be produced by a
Coulomb interaction, and a reasonable conclusion is that electrons are not nuclear building blocks.
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26.3.

264.

26.5.

An alternate proposal, made in 1920 by E. Rutherford, was that neutral particles of mass
approximately equal to that of a proton but of charge zero were contained in the nucleus. In 1932, J.
Chadwick’s experiments verified the existence of these neutrons (see Problems 30.14 through 30.16),
thereby establishing that a nucleus is composed of Z protons and N =4 — Z neutrons, for a total of 4
nucleons.

Calculate the binding energy of the deuteron.

The binding energy of the deuteron is the amount of energy needed to separate the deuteron into a
proton and a neutron.

BE=(m, + m,— M, )c?
= 938.256 MeV + 939.550 MeV — 1875.5803 MeV = 2.226 MeV

Calculate the difference between the deuteron magnetic moment and the sum of the neutron
and proton magnetic moments.

Proton magnetic moment 2.7938,

Neutron magnetic moment - 19138,

' SUM 0.8808,
Deuteron magnetic moment 0.8578,
DIFFERENCE 0.0238,

The deuteron magnetic moment does not equal the sum of the proton and neutron magnetic moments
because the deuteron is not always in an S (L = 0) state but can also be found in a D (L = 2) state 4% of
the time.

The electric quadrupole moment of a nuclear charge distribution which is symmetric about the
z-axis is given by

Q = % fV(322 — ro(x, y, z) dr ()

with p(x, y, z) the charge density and r> = x> + y> + z%. For the uniformly charged ellipsoid
of revolution defined by the equation

x4yt g2
2 X (2)

the electric quadrupole moment reduces to

2= 2w -a) (3)

where Ze is the total nuclear charge. If the average nuclear radius is taken to be R; = a%
(the volume of the ellipsoid is % 7a®h), with R, + 8R, = b, show that the electric quadrupole
moment is

_ 6Z pof 2o
2 - 2 il )

If b= Ry + 8R, and Rg = a’b, then, for §R,< Ry,

R} R} SR
at= 0 0 g2

Ry
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26.6.

26.7.

" From Problem 26.5,

NUCLEAR PHYSICS [PART VI
and |
bz—azzR§[1+2(%g)+(%)z - 2(1—%2.)
)
- Hence,

For '%Gd the quadrupole moment is 130 fm% If R, is given by R, = (1.4 fm)4'/3, find
SR,/ R, '

The average radius is

Ry = (14 fm)A'/3 = (1.4 fm)(155)'/* = (1.4 fm)(5.37) = 7.52 fm

= §Z paof R
2 5R°(Ro)

: SR
130 fm? = 869 (7.52 fm)?{ =2
5 Ro

&Ry
— =299 X 1072=299%
Ry
This shows that for '33Gd the nucleus is almost spherical, deviating from sphericity by only 2.99% of the
average radius.

Determine the possiblé states of a deuteron if its total angular momentum has quantum
number J = 1. : :

The total angular momentum (J) of the deuteron is the vector sum of the orbital angular momentum
for the neutron-proton bound system (L) and the total intrinsic spin of the neutron-proton system (S).
Since both neutron and proton have spin § = 1/2, the total intrinsic spin is 0 (singlet state) or 1 (triplet

-state). SinceJ=L+S andJ=1 and S =0, 1, the only possible values for L are 0, 1 and 2. In the

spectroscopic notation of Section 24.3, the possible deuteron states are 3S,, *P,, 'P, and 3D,.
The ground state of the deuteron is a mixture of S, and *D,.
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2638.

26.9.

26.10.

26.12.

26.13.

26.14.

Supplementary Problems
Evaluate the nuclear magneton in units of J/T.  Ans. 503 x 1072 J/T
What is the ratio of the nuclear magneton to the Bohr magneton of an electron?  Ans. 5.45x 1074
Find the ratio of the nuclear to the atomic density for hydrogen. (Assume the nuclear radius to be

1 fm.) Ans. 0.15 x 10'%

A 6 MeV y-ray is absorbed and dissociates a deuteron into a proton and neutron. If the neutron makes
an angle of 90° with the direction of the y-ray, determine the kinetic energies of the proton and neutron.
Ans. K, =191 MeV; K, = 1.86 MeV

For Problem 26.11 find the angle the proton makes with the y-ray. Ans. 84°
Refer to Problem 26.5. Derive (3) from (/) and (2) and the fact that the ellipsoid is uniformly charged.

The electric quadrupole moment of '$3Ho is 300 fm%. If Ry = (1.4)4'/? find 8Ry,/R,.  Ans. 6.33%



Chapter 27

Properties of Nuclei

Of all known nuclei about 270 are stable, while roughly four and a half times that number are
unstable. The following is a description of some basic properties of nuclei in their ground (lowest-
energy) states. Part of this discussion is also applicable to nuclei in excited states.

27.1 DESIGNATION OF NUCLEI

Each nucleus is identified by the atomic number Z, an integer equal to the number of protons in
the nucleus; an integer N, equal to its number of neutrons, and a mass number 4 = N + Z, which is
the total number of nucleons. Nuclei are designated by giving the symbol X of the chemical element,
with the Z value as a pre-subscript and the 4 value as a pre-superscript; thus, 4X. For example, }}Na
has 11 protons, 23 nucleons, and 23 — 11 = 12 neutrons.

Nuclei are grouped into three categories. Isotopes are nuclei with the same atomic (proton)
number Z, e.g. 'O and 'JO. Isotones are nuclei with the same neutron number ¥, ¢.g. 13C and “N.
Isobars are nuclei with the same mass number 4, e.g. '¢C and !IN.

272 RELATIVE NUMBER OF PROTONS AND NEUTRONS

In light nuclei the number of neutrons is about equal to the number of protons (N~ Z). As the
number of nucleons increases, however, it is found that for stable nuclei the number of neutrons
becomes greater than the number of protons (N > Z), following roughly the curve shown in Fig. 27-1.
The neutron excess occurs because the protons’ repulsive Coulomb force keeps them farther apart.
Therefore proton matter is less dense than neutron matter, and as the number of nucleons increases
there are fewer protons than neutrons in a given nuclear volume.

A
120 -
N /7
2 /
_§ /N = Z
" /7
80
g /
G /7
g 60 - /
2 /
z 7/
40 /
/4
20 -
1 o
0o 2:) 4:1 60 slo -
Atomic Number, Z
Fig. 27-1
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27.3 THE NUCLEUS AS A SPHERE

If the density of nuclear matter is assumed to be constant, the volume of a nucleus will be directly
proportional to the number of nucleons, 4, init. For spherical symmetry we then have V = ({ mrd)A4,
giving the nuclear radius R as

R=r,4'?

Several experiments have been performed to check this relation and obtain r,. 1t is found that the
value of r, depends upon the nuclear property being measured. For the size of the mass distribution,
ro = 1.4 fm; while for the size of the charge distribution, r, = 1.2 fm. Unless specified otherwise, we
will use the value ry = 1.4 fm in the following discussion and problems.

From the picture of a nucleus as a sphere with uniformly distributed charge Ze it follows that the
nucleus will have an electrostatic energy of (see Problem 27.7)

3 kZ(Z - 1)é?
<=5 T R
2,2
~ % kZRe (for large Z)

This relationship provides a method for determining the size of nuclear charge distributions.

27.4 NUCLEAR BINDING ENERGY

It is found that the rest mass of a stable nucleus is less than the sum of the rest masses of its
constituent nucleons. The mass decrease arises because negative energy is required to hold the
nucleons together in the nucleus (see Problem 26.3). The total nuclear binding energy, BE, is given by
the difference between the rest energies of the constituent nucleons and the rest energy of the final
nucleus:

BE = (Zm,)c* + (Nm,)c* — M, .c?

uc

with m,, m,, and M, being respectively the proton, neutron, and nuclear rest masses. The “liquid
drop” model (Section 28.1) can be used to calculate the binding energies of stable nuclei.

Usually tables list the aromic masses rather than the nuclear masses of elements. In order to find
the nuclear mass one must subtract the mass of the atom’s electrons from the atomic mass. (Strictly
speaking, one should also add the mass equivalent of the binding energy of the electrons, but this is
usually negligible compared to the rest masses.) As an example, $Li, which has an atomic mass of
6.015125 u, has a nuclear mass of

Moy = Moo — Zm, = 6.015125 u — 3(0.000549 u) = 6.013478 u

nuc

Unless stated otherwise, the masses given in the problems will be atomic masses. Where masses are
not supplied, the reader should consult the table of atomic masses in the Appendix. Where
applicable, the mass of hydrogen will be used in place of the proton mass in the expression for BE to
compensate for the electrons in the atomic masses.
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Solved Problems

27.1. Determine the radii of a %0 and a 2Pb nucleus.
From R = ryd'/? = (1.4 fm)4 '/,
Ro = (1.4fm)(16)'/* = 3.53 fm
Rpy = (1.4 fm)(208)"/* = 8.29 fm

27.2. Determine the approximate density of a nucleus.
If the nucleus is treated as a uniform sphere,

mass _ 4 X (mass of a nucleon) 4 (1.7 % 10" 7 kg)
volume §.qu3 S7(1.4 % 1015 4173 m)3

density = = 1.5 x 10" k_g3
m

A cubic inch of nuclear material would weigh about 1 billion tons!

273. Determine the stable nucleus that has a radius 1/3 that of "®Os.
' Since R « A'/3,

1_R _(A "’=(_4;)'/’
3 Ro, \ Ao 189
giving
189 _
A= 57 =

corresponding to "Li.

27.4. A nucleus with 4 = 235 splits into two new nuclei whose mass numbers are in the ratio 2 : 1.
Find the radii of the new nuclei.

The new mass numbers are
4= 535 4= 2 @)
so that
1/3 235 \'/3
ry = (1.4 fm)4}/ =(1.4fm)(——5—) =599 fm

1/3
ry= (14 im)4)/3 = (1.4 fm)[% (235)] 7 =1755tm

\

275. Calculate the binding energy of '2Te.
The binding energy is given by
BE = (Zm,)c? + (Nm,)c* — My,
= (52 X 1.007825 u + 74 X 1.008665 u — 125.903322 u) X 931.5 MeV /u = 1.066 X 10° MeV
or 1.066 GeV.

27.6. What is the energy required to remove the least tightly bound neutron from 3Ca?

From conservation of mass-energy,
Muocy? + E = (Mg, + m,)c?
(39.962589 u)(931.5 MeV /u) + E = (38.970691 u + 1.008665 u)(931.5 MeV /u)
E =15.6 MeV
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27.7.

278.

Determine the electrical potential energy of the protons in a nucleus if it is assumed that the
charge is uniformly spherically distributed.

Consider a thin spherical shell of charge,
dq = p dV = p(47r? dr)
that is added to a sphere that has the same charge density and has total charge

g=p¥ =p( 2 7)
The electrical potential energy dE of the thin shell is then

kg _ k(4 2 28 = 4 V.,
dE——;—dq—7(§pvrr )(4'n'pr dr)—3k(§p7r)r dr

The total electrical potential energy of the sphere is found by integrating dE from r=0 to r = R, the
final radius of the sphere.

(R a4 N (Ra,_3,(4 \os_ 3k(4 _;\°
E—f(; dE—3k(3p17)for dr—gk(gpﬂ)R —5—(ng)

Since $p7R>=pV = Q = Ze, we have

T35 R
The charges forming a nucleus are actually not continuous but must be brought in discrete amounts.
For Z =1 the Coulomb energy should be zero, but the above expression gives a finite answer. To
correct the above relationship Z? should be changed to Z(Z — 1). For large values of Z this is a minor
correction, but not for small values of Z. The correct Coulomb energy is
3 kZ(Z-1)é?
Ee=5 —%—

Calculate the Coulomb energy of 13Ge.

Using the result of Problem 27.7, we have

g3 kZ(Z — 1)e? 3 ke’Z(Z-1) _ 3 (1.44 MeV * fm) 2(Z — 1
€3 R T3 T TS (amas 2ETD
Z(Z -1 32(31
— 0617 Mev) 22—V 1)

— s = (0.617 MeV) ——~ = 146 MeV
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27.10.

27.1L

27.12.

27.13.

27.14.

27.15.
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Supplementary Problems

Atomic masses are tabulated in the Appendix.

Using standard notation, give the symbols for neon with 20 nucleons and yttrium with 89 nucleons.
Ans. ¥Ne; Y

The radius of Ge is measured to be twice the radius of 3Be. From this information, how many nucleons
are in Ge?  Ans. 72

What is the energy required to remove the least tightly bound proton from 49Ca? Compare this answer
with that found'in Problem 27.6.  Ans. 8.33 MeV

Calculate the ratio of the nuclear radius of %33Pb to the radius of its innermost electrons as calculated
from Bohr theory.  Ans. 1/778

Determine the value of Z for which the correct and approximate expressions for the Coulomb energy,
given in Problem 27.7, differ by 5%. Ans. 21

Calculate the Coulomb energies of ‘{0 and 3Lu.  Ans. 132 MeV; 548 MeV

Calculate the binding energy of 33K.  Ans. 333.7 MeV



Chapter 28

Nuclear Models

At present there exists no fundamental theory that will explain all the observed properties of
nuclei. In lieu of a theory different models have been developed, each of which successfully explains
some, but not all, nuclear properties. “

28.1 LIQUID DROP MODEL

C. v. Weiszicker in 1935 recognized that the nuclear properties connected with size, mass, and
binding energy resemble what is found in a drop of liquid. In a liquid drop the density is constant,
the size is proportional to the number of particles, or molecules, in the drop, and the heat of
vaporization, or binding energy, of the drop is directly proportional to the mass or number of particles
forming the drop.

As we shall now demonstrate, a liquid drop model for a nucleus leads to the following expression,
known as the semiempirical mass formula, for the dependence of the mass of a nucleus on 4 and Z:

M=2Zm,+ (A~ Z)yn,—bA+ b,A*? + b;ZA7 '3 + by(A —2Z A" + bsA~¥/* (28.1)

The constants in (28.1) are determined from experimental data; their values (in energy units) can be
taken as
b,=140MeV  b;=0.58 MeV

b,=13.0MeV b, =19.3 MeV

and b; is given according to the following scheme:

A zZ bs
Even Even —33.5 MeV
Odd 0
Even Odd + 33.5 MeV

The various terms in (28.1) are obtained by a series of successive corrections, in the following manner.

With binding energy neglected, the first estimate of the mass of a nucleus composed of Z protons
and N = 4 — Z neutrons would be Zm, + (4 — Z)m,.

Next, this estimate of the mass is corrected to account for the binding energy of the nucleons.
Because the nuclear force is attractive, this binding energy will be positive (positive work must be done
to separate the nucleons), so that the mass of the nucleus will be smaller than the mass of the separate
nucleons. From the liquid drop model the heat of vaporization (binding energy) will be directly
proportional to the number of nucleons 4, resulting in a correction of —b,4 (b, > 0).

The assumption made in the first correction, that the binding energy is b, per nucleon, is
tantamount to assuming that all nucleons are equally surrounded by other nucleons. This is, of
course, not true for nucleons on the nuclear surface, which are more weakly bound. Thus, too much
was subtracted in the first correction, and a mass correction proportional to the nuclear surface area,
b,A*/3, must be added to account for this “surface” effect.

173
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The positive Coulomb energy between the protons, E, (which is equivalent to binding energy
— E_) increases the mass of the nucleus by an amount E¢ /c% By Problem 27.7, for large Z,

Eeox ZR™'= ZY(rgd?) e 22UV

which accounts for the term b,Z%4 /3,

“To this point all the ferms in the nuclear mass expression have been obtained from analogy to a
charged incompressible liquid drop. In addition, because of quantum mechanical effects, two extra
terms are usually added as follows.

It is found that if there are more neutrons than protons (or vice versa) in a nucleus, its energy, and
correspondingly its mass, will be increased because of the Pauli exclusion principle. The correction
term for this effect depends on the neutron (or proton) excess according to

b(N—Z)A ' =by(A—-2Z)4"!
(see Problem 28.16). .

Nucleons in nuclei also tend to “pair,” that is, neutrons or protons group together with opposite
spins. Because of this effect it is found that a pairing energy exists that varies as 4 ~3/* and increases
with the number of unpaired nucleons. This number is determined as follows:

A Z Number of Unpaired Nucleons
Even " Even 0
Odd ‘ 1
Even Odd 2 (1 neutron and 1 proton)

The inclusion of this pairing energy term then gives the final expression, (28.1), for the nuclear mass.

The average binding energy per nucleon is obtained from (28.7) by taking the difference between
the nuclear mass-energy and the mass-energies of its constituent nucleons and dividing by the number
of nucleons:

[Zm, + (4 - Z)m, - M]c?

BE/A = ~

= b, — bA”V3 = b,Z?A 7 — by(A - 2Z)' A2~ bsA T/

(28.2)

(It should be noted that the BE/ 4 is not the same as the energy required to remove a single nucleon
from a given nucleus.) A plot of this equation is shown in Fig. 28-1. It is seen that for large 4 the
value of BE/ 4 is approximately constant at 8 MeV.

0 50 100 150 200 250
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It should be emphasized that (28.7) or (28.2) does not give exact values but predicts only
approximate values, with the accuracy being different for different nuclei, as demonstrated in the
Solved Problems.

282 SHELL MODEL

In the liquid drop model the nucleons are not treated individually, but instead their effects are
averaged out over the nucleus. This model is successful in explaining some nuclear properties like the
average binding energy per nucleon. However, other nuclear properties, such as the energies of
excited states and nuclear magnetic moments, require a microscopic model that takes into account the
behavior of the individual nucleons.

As nuclear data were accumulated it became evident that gross changes in nuclear properties
occurred in nuclei with N or Z equal to 2, 8, 20, 28, 50, 82, or 126, usually referred to as “magic
numbers.” At these magic numbers nuclei are found to be particularly stable and numerous, and the
last or magic nucleons that complete these “shells” have high binding energies. In addition, the
energies of the first excited states are found to be larger than for nearby nuclei that do not have magic
numbers. As an example, tin, with the magic number Z = 50, has 10 stable isotopes (same Z,
different 4), the energy required to remove a proton is about 11 MeV, and the first excited states of the
even-even isotopes (i.e. both N and Z even) are about 1.2 MeV above the ground state. In contrast,
for the nearby tellurium isotopes, with Z = 52, the energy required to remove a proton is about 7 MeV
and for the even-even isotopes the first excited state has an energy of about 0.60 MeV.

We recall that similar fluctuations in behavior are observed in atoms, as the electrons completely
fill the various atomic shells (Chapter 24). This similarity in behavior suggests that some nuclear
properties might be explainable in terms of a nuclear shell model.

The atomic shell structure is obtained by a series of successive approximations. It is first assumed
that the energy levels for a nucleus of charge Ze are successively filled with Z electrons as if they do
not interact with each other, and then corrections are made to account for the various interaction
effects. These corrections, however, are small; the main effect, resulting in the first approximation to
the shell levels, is that on the average the electrons move independently in the Coulomb field of the
nucleus.

If the same approach is taken to develop a shell picture for the nucleus, a different potential must
be used to represent the short-range nuclear forces. One approach is to assume that the nucleons
move in an average harmonic oscillator potential

V= lkR2 = — mw?R?

1
2 2

A quantum mechanical treatment then shows that the energy levels are given by
E=(@L+%)hw (28.3)

with 9 =2(n — 1)+ I. The quantity / is the orbital angular momentum quantum number and takes
on the values 0, 1, 2, 3, . . . ; it is related to the orbital angular momentum vector in the usual fashion

by i =VI(/+ 1) h. (For nucleons, both quantized vectors and quantum numbers will be represented
by lowercase letters.) The quantity » is an integer, taking on the values 1, 2, 3,4, ... . In contrast
with the hydrogen atom solution, however, the value of / is not limited by n.

Nucleon orbital angular momentum states are indicated in spectroscopic notation:

value of /: 01 2 3 4 5
lettersymbol: s p d f g h

By prefixing the letter symbol with the value of n, the order (with respect to increasing energy) of a
given /-state is shown. (For fixed /, 9 increases with n.) Thus, the 2d state is the next-to-lowest
/=2 state.
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Figure 28-2(a) shows the energy levels predicted from a harmonic oscillator potential, together
with the maximum number of nucleons in each energy level consistent with the Pauli exclusion
principle. It is seen that the energy level closings are at 2, 8, 20, 40, 70, 112, and 168 nucleons, of
which only the first three are magic numbers.

To account for the observed magic numbers M. Mayer and J. Jensen, in 1949, independently
proposed the existence of a spin-orbit (1 -s) interaction in addition to the harmonic oscillator potential.
Because nucleons have the single value s =  for their spin quantum number, the spin-orbit effect will
cause each orbital angular momentum state with / > 0 to split into two orbits (or orbitals), according to
whether the total angular momentum quantum number j is j=/+ s or j=/— s [see (22.6)]. The
relative energy splitting is found by evaluating 1-s (Problem 22.1):

Ls= 2 [JG+ 1) = I+ 1) = s(s + )]

(28.4)

Subtraction of these two expressions shows that the energy separation between the two orbits is
proportional to 2/ + 1 and therefore becomes larger as / increases.

Orbits are designated by appending the value of j as a post-subscript to the symbol for the orbital
angular momentum state. For example, 1d; , stands for the combination of quantum numbers n = 1,
I=2,j=1-s=3/2. For nuclei, it is convenient to rewrite the Pauli exclusion principle as follows:
no two nucleons may have the same set of quantum numbers (n, /, j, m;). It follows (Problem 28.10)
that an orbit may contain a maximum of 2; + 1 nucleons.

In atoms the spin-orbit splitting is a small effect giving rise to the “fine” structure. In nuclei,
however, the spin-orbit interaction is rather strong and gives rise to energy splittings comparable to the
separation between the harmonic oscillator energy levels. Another difference between I+ s splitting in
nuclei and in atoms is that in nuclei the energy of the j = / + } orbit is Jower than that of the j=/—1
orbit, which is just the opposite of what is found in atoms.

It is not possible to predict whether a spin-orbit splitting will or will not result in “crossovers” of
the initial harmonic oscillator levels. The final ordering of the orbits is determined from experimental
evidence, and is shown in Fig. 28-2(h). The shell closings—the total number of nucleons up to each
large energy gap—correspond to the magic numbers.

Protons (and neutrons) in the same orbit tend to pair to states of zero angular momentum.
Therefore, even-even nuclei will have a total angular momentum, J = 3j, of zero, while if a nucleus has
an odd proton or neutron its total angular momentum is the angular momentum of the last (odd)
nucleon. For odd-odd nuclei the situation is more complicated (see Problem 28.13).

Solved Problems

28.1.  What is the Coulomb repulsion energy of the two protons in 3He if it is assumed that they are
separated by a nuclear radius?

The Coulomb energy is

=0.71 MeV

ke’ _ ke  _ 144MeV- fm
R

Fe (rod'3)  (141m)(31/%)

28.2.  What is the difference between the binding energies of ;He and H?
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The binding energy for 3He is
BEy, = (Zm, + Nm, — M )c? = [2(1.007825 u) + 1.008665 u — 3.016030 ul(931.5 MeV /u) = 7.72 MeV
The binding energy for 3H is .
BE, = [1.007825 u + 2(1.008665 u) — 3.016050 ul(931.5 MV /u) = 8.48 Me

Note that the binding energy of jHe is lower than that of H by an amount (0.76 MeV) that is
approximately equal to the Coulomb repulsion energy of 3He as estimated in Problem 28.1.

Calculate the binding energy per nucleon for BMo. -

(Zm, + Nm, - M)t

. A

where the atomic masses are used for m, and M, (so that the electron masses cancel).

42(1.007825 u) + 56(1.008665 u) — 97.905409 u MeV
= - (931.5 <

BE/A =

BE/A ) = 8.64 MeV

Compare the minimum energies required to remove a neutron from 3,Ca, 42Ca and 3Ca.

. For $}Ca the energy needed to remove a neutron is obtained from the process
' $iCa+ E—>$Ca+n
S0 .
E =(Muwc, + m, — Mag,)c? = (39.962589 u + 1.008665 u — 40.962275 u)(931.5 MeV /u) = 8.36 MeV
For $Ca,
E = (Mugy + m, — Mag,)c? = (40.962275 u + 1.008665 u — 41.958625 u)(931.5 MeV /u) = 11.47 MeV
For 53Ca,

E=(Muoc, + m, — Magc,)c? = (41.958625 u + 1.008665 u — 42.958780 u)(931.5 MeV /u) = 7.93 MeV

The energy needed to remove a neutron from 42Ca is 3.11 MeV larger than the energy needed to
remove a neutron from 3 Ca and 3.54 MeV larger than the energy needed to remove a neutron from
43Ca, even though all the neutrons are in the 1 f1/2 shell (which consists of the 1f;/, orbit). The rea-
son for this difference is that neutrons in the same orbit tend to pair. ‘Therefore, in $2Ca with 22
neutrons, one needs not only the normal neutron binding energy but an additional energy to break the
1f;/2 neutron pair. In 4)Ca and 43Ca there is an unpaired neutron available, so less energy is needed.
It is interesting to note that 3Ca requires 11.14 MeV to remove a neutron (it has two neutron pairs).

“Mirror” nuclei have the same odd value of 4, but the values of N and Z are interchanged.
Determine the mass difference between two mirror nuclei which have N and Z differing by
one unit.

The term A — 2Z in the semiempirical mass formula can be written as
A-2Z=N+2Z-2Z=N-2Z

so that if N and Z differ by one unit, 4 —2Z = * 17 If we now subtract the two masses Mz, and Mz
from each other, the (4 — 2Z)? term will cancel, leaying, for constant 4 = 2Z + 1,

(Mz+, - Mz =(m—-m)(Z+1)- zl+ byd~'2[(Z + 1)’ - Z?] = m, — m, + b;4*/*

The masses of 3Na and 2Mg are 22.989771 u and 22.994125 u, respectively. From these
data determine the constant b, in the semiempirical mass formula.
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28.7.

28.8.

28.9.

The two nuclei are mirror nuclei. From Problem 28.5,
Mzy1— Mz =m, — m, + b,4%/3
22.994125 u — 22.989771 u = 1.007825 u — 1.008665 u + b3(23)2/3
by=6.42 X 107% u = 0.598 MeV

From Problem 27.7, the Coulomb energy of a nucleus is, for large Z,
_3 kz%

5 R
Calculate b, in the semiempirical mass formula, taking ro= 15 fm.

E.

For a nucleus, R = ry4'/?, and the Coulomb energy is
_ 3 kz% z?

E = = _
cT 3 rOAl/B 3A1/3
Therefore,
3 ke? 3(1.44 MeV-fm)
by=- —=—_— 7 =058 MeV
T3 5(1.5 fm) ¢

If ry is taken as 1.4 fm, the value of bs becomes 0.62 MeV. These answers agree reasonably well with
the value of b, found in Problem 28.6.

Using the liquid drop model, find the most stable isobar for a given odd 4.
For odd 4, b5 =0 in the semiempirical mass formula and the binding energy is found to be
BE = b4 — b,4%/% = b,Z24 13— b (4 —2Z )4 !

The most stable isobar (4 = constant) is the one with the maximum binding energy. This is found by
setting d(BE)/dZ = 0.

d(BE
4(BE) ==2bZA7 3 +4b(4-22Z)4" ' =0
dz
4b
Z= ! - A

2b347'3 + 8b,4 ! b s,
25,

Using b; = 0.58 MeV and b, = 19.3 MeV gives

A
Z= —22
0.015 423 42

For 4 = 25, 43, 77, find the most stable nuclei.

The result of Problem 28.8 gives, for 4 = 25,
_ A - 25
0015472 +2  (0.015)(25)* + 2

and Mg is in fact stable. It is found experimentally that 23Al and 2Na are not stable.
For 4 =43,

=11.7~12

43
zZ= 273
(0.015)(43)7" + 2

and it is found experimentally that $Ca is stable, while 43K and $3Sc are unstable.
For A =77,

=19.7~20

Z=__ 17
0.015)(17)* + 2

and it is found experimentally that ;Se is stable, while JAs and 1Br are unstable.

=339~34
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Show that in an orbit of given j there may be at most 2j + 1 nucleons. Demonstrate that for
p states (/ = 1) this is consistent with the fact that the Pauli principle allows 2(2/ + 1) =6
nucleons. '
For given j,
, . "!l'=j’j_1$""9_(j—l)7_j
a total of 2j + 1 values. Therefore the Pauli principle allows 2j + 1 nucleons in the orbit.

A p state is split into a p;, orbit, which may contain 2j + 1 = 2(3/2) + 1 = 4 nucleons, and a p;
orbit, which may contain 2j + 1 = 2(1/2) + 1 = 2 nucleons. The total is 6 nucleons.

For A = 50 the known masses are: 3%Sc, 49.951730 u; 33Ti, 49.944786 u; 33V, 49.947164 u; 3Cr,
49.946055 u; 32Mn, 49.954215 u. From these data estimate the constant bs, the strength of
the pairing term, in the semiempirical mass formula.

For fixed even A and for Z odd (whence Z + 1 is even, etc.) the semiempirical mass formula can be
written as: '
'M(Z)=alzz +azz +a3+b5A—3/4
M(Z+1)=a(Z+ 1) +afZ+1)+ay—bsa™/*
M(Z+2)=a(Z+2)+ayZ+2)+as+bsA™/*
M(Z+3)=a(Z+3)+a(Z+3)+a,—ba™>/*
where a;, a,, and a, are constants. Taking the third difference:.
M(Z+3)-3M(Z+2)+3M(Z+1)— M(Z)= —8bs4 ~3/4
Applying this to Z = 21 gives (after reducing the data by 49 v)
’ 0.946055 u — 3(0.947164 u) + 3(0.944786 u) — 0.951730u = — 8(50~3/%)bs
from which
50 3/4 '
bs= 3 (0.012809 u) = 0.0301 v = 28.0 MeV

If instead we take another third difference,
M(Z+4)—3M(Z+3)+3M(Z+2)— M(Z+1)= +8bs4~%/*
we obtain

50 3/4
bs= T (0.012756 u) = 0.0300 u = 27.9 MeV

and the two estimates for b are seen to be very close together. The accepted value is 33.5 MeV.

Find the ground-state angular momentum of (a) 30, (b) 1K, (¢) XNe.

The ground-state configurations, as given by the shell model, are as shown in Fig. 28-3.

(a) All nucleons are paired except the 1p,,, neutron; therefore, the total angular momentum in the
ground state is J = 1/2.

(b) All nucleons are paired except a 1d;, proton; the total angular momentum is J = 3/2.

(¢) All nucleons are paired; J = 0.

What are the possible values of the ground-state angular momentum for 32P?

The shell model ground-state description of }3P, assuming all the lowest energy levels are totally
filled, is shown in Fig. 28-4. Al the nucleons in this model of 3P are paired to zero angular momentum
except for the 25, /, proton and the 1d;, neutron. The ground-state angular momentum of 12P in this
picture must be the vector sum of the angular momenta of the j = 1/2 and j = 3/2 particles. For the
proton we have as the possible values of m;

8| —

1
m1/2=5, -
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28.14.

14, — KA AN
Isy/, a3 K
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1py; —KK X XX X% X X%
sy —HHHHTHHHKH— IO HHHHN— R HHH— NN
18,/ ——HH—— KX %% % —X% —X-%
Protons Neutrons Protons Neutrons Protons Neutrons
(a) 7O () $K (e) {iNe
Fig. 28-3

and for the neutron,

my,=3 1
3/2 272’

[T
N W

Then
- - 1 /0 [ -1 _
M;=my;+my,=2, { . {0, { _p 2
The upper line of M;-values corresponds to J = 2; the lower line, to J = 1.

The experimental value of the ground state of 3P is J=1,J =2 corresponding to the first excited
state.

Excitation
1d, ¥ Energy, MeV J
2s AV 4 N\
1/2 o R 200 —0— 112
1ds, HRHHKHTHHHRHHNNK
156 ———— 5,2
IPI v ALY,
/2 XX XX 14 ——— 15,2
]P3/2 *HHX HHHK
078 ———— 11,2
L5/, —X- X
Protons Neutrons GS. 9/2
Fig. 284 Fig. 28-5

The first four excited states of *3;Pb are as shown in Fig. 28-5. Explain the spectrum as a
single-particle excitation, using the shell model.

The isotope *3Pb, with 82 protons and 126 neutrons, is doubly magic. As shown in Fig. 28-6(a),
’2Pb has a ¥Pb closed core and one additional neutron in the 2g, /2 orbit.  The 11/2, 15/2, 5/2 and
1/2 excited states correspond to excitations of the neutron to the 1; /2 Viss 3ds;; and 4s,,,
shell-model orbits [Fig. 28-6(b) through (e)].
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Ground
State
I=9/2 J=11/2 J=15/2 J=5/2 J=1/2
—¥— 45112
+ 3d5/z
—— ‘ - Lirs/2
. —y— liyy /2
—% 29,2

(@ ® ©
Fig. 28-6

The masses of %9Ca, #Ca, and 3Ca are 39.962589 u, 40.962275 u, and 38.970691 u, respec-
tively. Calculate the energy difference between the 1d;, and the 1f; , neutron shells (i.e. the
energy gap corresponding to neutron magic number 20). - ,

From the shell model, 33Ca has one neutron missing in the 14, /2 shell, 4Ca completes this shell and
41Ca adds a neutron to the 1f; /, shell.
The binding energy of a 1d;/, neutron in 40Ca is
BE, = (Mg, + m, — Muc,)c?
= (38.970691 u + 1.008665 u — 39.962589 u)(931.5 MeV /}1) = 15.62 MeV
while the binding energy of the 1f;/, neutron in 4Cais
BE, = (Muoc, + m, — Mag,)c? ,
= (39.962589 u + 1.008665 u — 40.962275 u)(931.5 MeV /u) = 836 MeV
The difference in binding energies must be the energy separation, 8, of the 1f;; and 1d;/; shells:
8 = BE, — BE, = 15.62 MeV — 8.36 MeV = 7.26 MeV

Consider a shell model in which the nucleons are in pairs in equally spaced energy levels. If
one.- starts with the same number of neutrons and protons, calculate the energy needed to
change n proton pairs to neutrons and move them to neutron orbits.

The problem is illustrated in Fig. 28-7. If the final nucleus is to have N neutrons-and Z protons, we
define the nucleon difference by n=N — Z, which is twice the number of nucleon pairs to be moved
from proton levels to neutron levels. If all levels are separated by an energy §, the total energy needed
to create the final nucleus is

E=(28)(1) + (28)3)+(8)(5) + - - - +(28)(n - D=28[1+3+5+---+(n-1)

=2s(§)=%(1v—z)?=%(,4-22)2

This term is directly related to the b4 —2Z)*4 ~" term in the semiempirical mass formula, which is an
expression for the neutron or proton excess encrgy.
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Fig. 28-7
Supplementary Problems

Atomic masses are tabulated in the Appendix.

Calculate the binding energy per nucleon for (a) $He, (b) '2C, (c) %Ca, (4) %2Hg.
Ans. (a) .07 MeV; (b) 7.68 MeV; (c) 8.55 MeV:; (d) 7.90 MeV

Calculate the energy needed to remove the least tightly bound neutron in 170. Ans. 4.14 MeV

Determine the value of b, in the semiempirical mass formula from the masses of #Ne (21.991385 u) and
1iNa (21.994437 u). Compare your value with that found in Problem 28.6.  Ans. 0.484 MeV

For 4 = 57 find the most stable nucleus. ~ Ans. Z =26 (IFe)

Find the ground-state angular momentum of (a) $3Ca, (b) Kr, (c) 3Zr.
Ans. (a)7/2; (b) 0; (c) 5/2

Give the expected total angular momentum for the following states in '3C: (a) the ground state, with all
neutron and proton orbits filled through the 1p, /2 and the extra neutron in the 1p, , orbit; (b) an excited
state which is the same as (a) except that the extra neutron is excited to the 25y s, orbit; (¢) an excited
state which is the same as (a) except that the extra neutron is in the 1d; /, orbit; (d) an excited state with
the proton orbits filled through the 1p, /2 and with two neutrons in the ls, ,, orbit, three neutrons in the
1p3,, orbit and two neutrons in the 1p,,, orbit. Ans. (@) 1/2;(b) 1/2; () 5/2; (d) 3/2

The mass excesses,
=[M (inu) — 4(x1 u)] x (931.5 MeV /u)
for 30, '30 and 'O are respectively 2859.9 keV, —4736.6 keV and —807.7 keV. From this data

calculate the difference in energy between the 1p, s2 and 1ds,; neutron shells (i.e. the energy gap
corresponding to neutron magic number 8). Ans. 11.53 MeV
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The Decay of Unstable Nuclei

29.1 INTRODUCTION

As discussed in Chapter 28, nuclei have excited states. These excited states can decay by the
emission of high-energy photons to the ground state, directly or via lower energy states. In addition,
nuclei in both excited and ground states can spontaneously emit other particles to reach lower-energy
configurations. :

When nuclear decay was first investigated, the decay products were given the names y-rays,
a-particles, B ~-particles and B * -particles. It was not until later that it was recognized that the decay
products were not new entities, but that y-rays are high-energy photons, a-particles are helium nuclei,
B ~-particles are electrons, and B *-particles are positrons. '

In the various reactions the usual conservation laws of mass-energy, charge, and linear and
angular momenta always apply. In nuclear decay, however, it is found ‘that a law of conservation of
nucleons also holds: the number of nucleons before and after a decay must be equal.

29.2 THE STATISTICAL RADIOACTIVE DECAY LAW -

In a typical radioactive decay an initially unstable nucleus, called the parent, emits a particle and
decays into a nucleus called the daughter; effectively, the birth of the daughter arises from the death of
the parent. The daughter may be either the same nucleus in a lower energy state, as in the case of
y-decay, or an entirely new nucleus, as arises from a- and p-decays. No matter what types of
particles are emitted, all nuclear decays follow the same radioactive decay law. If there are initially N,
unstable parent nuclei present, the number N of parents that will be left after a time ¢ is (Problem
29.1) ‘

N = Nge™ . (29.1)

The constant A is called the decay constant or disintegration constant and depends on the particular
decay process. . ’

Equation (29.1) is a statistical, not a deterministic, law; it gives the expected number N of parents
that survive after a time r. However, if N, is very large (as it always is in applications), the actual
number of survivors and the expected number will almost certainly differ by no more than an
insignificant fraction of N, : :

The rapidity of decay of a particular radioactive sample is usually measured by the half-life, T 5,
defined as the time interval in which the number of parent nuclei at the beginning of the interval is
reduced by a factor of one-half. The half-life is readily obtained in terms of A as

n2 _ 0693
Ty = 'I;\_ = (29.2)

Thus, starting initially with N, nuclei, No/2 will be left after a time T 5, Ny /4 will remain after a time
2T, etc. )

Another quantity that measures how fast a sample decays is the average or mean lifetime of a
nucleus, T,,, given by '

T\
2

Tn= In

m

(29.3)

>

(see Problem 29.7).
184
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The law describing the increase in daughter nuclei, assuming they are stable, is obtained from
(29.1) as

Np=Ny— N =Nyl — e™™) (29.4)

In many decays the daughter nucleus is also unstable and decays further into a granddaughter; this
situation will be treated in the Solved Problems.
The activity of a sample is defined as the value of the disintegration rate:
activity = ‘ ‘2—’?’ =ANge M =AN (29.5)

The unit of measure of the disintegration rate, or activity, is the curie, defined as 1 Ci = 3.700 x 10'°
disintegrations per second.

293 GAMMA DECAY

In a gamma decay a nucleus initially in an excited state makes a transition to a lower energy state
and in the process emits a photon, called a y-ray. It is found that the v-rays emerge with discrete
energies, which shows that nuclei possess discrete energy levels. The energy of the y-ray photon is
given by the usual expression

hv = E, - E, (29.6)

In contrast to photons emitted in atomic transitions, where the energies are of the order of a few eV,
the energies of y-rays range from tens of keV’s to MeV’s.

Because y-ray photons carry no charge or mass, the charge and atomic number of the nucleus do
not change in gamma decay. If the excited nucleus is designated by (Z#)*, a gamma decay to the
ground state can be written symbolically as

V4 4 Y>Z4+y
Most excited nuclei that undergo gamma decay have immeasurably small half-lives of the order of
107" s, much shorter than the half-life of excited electronic states. The excited states of some

nuclei, however, are very long and their half-lives are readily measurable. These excited nuclei are
called isomers and the excited states are referred to as isomeric states.

29.4 ALPHA DECAY

In alpha decay an a-particle is ejected from a nucleus. Inasmuch as an a-particle is a helium
nucleus, the parent nucleus loses two protons and two neutrons. Therefore its atomic number Z
decreases by two units and its mass number 4 decreases by four units, so that the daughter, D, and
parent, P, are different chemical elements. Applying conservation of charge and nucleons, we can
write alpha decay symbolically as

2P —>4%73D + 3He
For example,
8U B4Th + {He
In a system where the parent is at rest, we find from conservation of energy that
Mpc? = Mpc*+ M,c* + K + K, (29.7)

where K, and K, are the respective kinetic energies of the daughter and a-particle, and M,, M, and
M, are the rest masses of the parent, daughter and a-particle, respectively. Because kinetic energy
can never be negative, alpha decay cannot occur unless

M,> My + M, (29.8)



186 NUCLEAR PHYSICS {PART VI

In addition to energy, momentum must be conserved. Since only two particles result from alpha
~ decay, the two conservation conditions fix uniquely the kinetic energies (and momenta) of the
a-particle and daughter nucleus. If a parent nucleus of mass number 4 decays at rest, the kinetic
energy of the a-particle is given by (see Problem 29.15)

K, = ( 4-4 )Q (29.9)
where the disintegration energy Q is the total energy released in the reaction: ’
Q= (Mp- Mp— M,)? 4 (29.10)

The quantity Q is a constant for any alpha decay and has the same value for all observers. In the rest
frame of the parent nucleus,

Q=K,+K, (29.11)

295 BETA DECAY AND THE NEUTRINO

It is possible for a nuclear process to occur where the charge Ze of a nucleus changes, but the
number of nucleons, 4, remains unchanged. This can happen with a nucleus emitting an electron
(B~ decay), emitting a positron ( B+ decay), or capturing an inner atomic electron (electron capture).
In each of these processes either a proton is converted into a neutron or vice versa.

It is also found that in each of these processes an extra particle, called a neutrino (v), appears as
one of the decay products. The properties of a neutrino are: electric charge, 0; rest mass, 0; intrinsic
spin, 1/2; and, as with all massless particles, it has speed ¢ (speed of light).

The existence of a neutrino was first postulated by W. Pauli in 1930 in order to preserve
conservation of energy and momentum in beta decays. For example, neutron beta decay is

nop+e +7 (29.12)

If the neutrino were not part of the decay products, it would follow from conservation of energy and

 momentum that for the two-body decay the electrons would be ejected with one single energy, as was

described above in alpha decay. Experimentally, however, it had been found that the ejected
electrons have a distribution of energies ranging from zero up to a maximum energy, as shown in Fig.
29.1. Moreover, since originally there is a single particle with spin , the creation of only two
particles, each with spin 1, would violate conservation of angular momentum. Actual observation of
a neutrino did not take place until the experiments of C. L. Cowan and F. Reines in 1956.

Number of 8’s

(Kp)max = @
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In (29.12) the emitted neutrino has been designated by » rather than by ». This is done because
there are actually two different types of neutrinos, the “neutrino” () and the “antineutrino” (¥). The
antineutrino arises in 8~ decay, while the neutrino occurs in the other beta processes. Antiparticles
will be discussed further in Chapter 32.

In general, a 8~ decay can be expressed as

P, AD+e +7
a typical example being
ZB2C+e™ +7
Thus in 8~ decay a neutron is converted into a proton. For 8% decay, where a positron is emitted,
4P, D+e* +v»
so that a proton is converted into a neutron. An example of 8+ decay is
INS2C+et +v
From conservation of energy, in a system where the parent nucleus is at rest, we have for both 8~ and

* decays (the electron and positron masses are equal
y p q

Mpc? = Mpc* + me? + K

total
giving a disintegration energy Q of
0= Ktotal = (MP - MD - rne)c2

In electron capture, where an inner atomic electron (usually a K electron) is captured by a nucleus,
no charged particle is emitted. Instead, electron capture is accompanied by the emission of a
neutrino, followed by the emission of characteristic X-ray photons as the outer electrons make
transitions to the vacant inner energy levels. In electron capture a proton is converted into a neutron.
Moreover, the emitted X-rays are characteristic of the daughter atom and not the parent atom, since

they are produced after the electron capture has taken place. An electron capture process may be
written as

e” +4P>, 4D+
where an example is
e+ Be—ILi+ v
It must be emphasized that in beta decay or electron capture the electrons or positrons do not exist
inside the nucleus. The nucleus is composed only of protons and neutrons. The creation or
absorption of the electrons or positrons results in the rearrangement of the nucleus into a state of lower

energy by the transformation of a proton into a neutron or vice versa.
In the following problems, unless otherwise stated, all given mass values are atomic masses.

Solved Problems

29.1.  Derive the decay law N = Nge ™.

The number of nuclei dN that decay in a time interval 4t will be proportional to that time interval
and proportional to the number of nuclei N that are present. Thus

dN = —AN di

where A is the proportionality constant and the minus sign is introduced because N decreases.
Integration of this expression yields the decay law.
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29.2,

293.

294.
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An alternative derivation will shed light on the statistical nature of the decay law. Consider the
lifetime T (a random variable) of a single parent nucleus. Suppose that the probability that the nucleus

. will decay within the next 7 seconds (7 arbitrary) is independent of how long the nucleus has already

lived. Then it can be shown that T has an exponential distribution:

Prob{t < T < t+dt} =Ae™dt )
where A is a positive constant. It follows from (/) that the nucleus has probability
p=[ e M= e | 2)
t

of living at least ¢ seconds.

Now imagine that we have an initial sample consisting of N, independent nuclei, and that we
observe the sample over a period of ¢ seconds. The decay process can be modeled by tossing a coin Ny
times, where the probability of “heads” (survival over the period) is p on each toss. The expected
(average) number of heads, N, is just

N= NOP = Noe—M
which is the radioactive decay law.

What is the activity of one gram of 225Ra, whose half-life is 1622 years?

The number of atoms in 1 g of radium is

_ 1 g-mole “ 3 atoms \ _ 1
N=(1 g)( S )(6.025 x 107 2o ) = 2666 X 102

The decay constant is related to the half-life by

A= 0693 =( 0.693 )( ly )( 1d
T2 1622y JA 365d J\ 8.64 x 10°s

The activity is then found from
activity = AN = (1.355 x 10~ s71)(2.666 x 10*') = 3.612 x 10'° disintegrations /s

The definition of the curie is 1 Ci = 3.700 X 10'° disintegrations/s. ~ This is approximately equal to
the value iound above. .

)= 1355 x 10~ !

Over what distance in free space will the intensity of a 5 eV neutron beam be reduced by a
factor of one-half? (7,,,=12.8 min.)

The speed of the neutrons in the beam is found from { mv? = K:

1 —27 2. 1.6 X 103%1°]
1 (167X 1077 kg)o? = (5 eV)( 16x109) )
v=31.0km/s

During a time of T/, = 12.8 min, half the neutrons will have decayed from the beam. The distance
traveled by the undecayed neutrons during this time is

d = ot = (31.0 km /s)(12.8 min)(60 s /min) = 23,800‘kni
or about 2 earth diameters.

How much time is required for 5 mg of ??Na (7, 2 =2.60 y) to reduce to 1 mg?

Since the mass of a sample will be proportional to the number of atoms in the sample, we may write

At —(0.693/T, ;)¢

m=mge " = mye

1 mg= (5 mg)e—(0.693/2.60 y)

£0693/260%) . 5
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Taking logarithms of both sides, we find

0.693¢
260y

=In5=161 or t=604y

29.5. If 3 x 107° kg of radioactive 29Au has an activity of 58.9 Ci, what is its half-life?
The number of atoms in 3 X 1077 kg of 2%Au is

N=(3x10"° kg)( 123‘0“;(‘;‘ )(6.025 x 1oz 2loms ) =9.04 X 105 atoms

The activity is

activity = (58.9 Ci)( 3.7 x 10% dlisglitegration/ s ) =218 x 1012 disintegrations
The decay constant is found from
activity = AN
12 -1
A= ZI8XI0 ST 545 q0-450
9.04 x 10"
Finally,
In 2 0.693 .
T,,= 5= ——""— =288Xx10°s =48 min
2T 241x 107457

29.6. The activity of a sample of 5;3Cr at the end of 5-min intervals is found to be 19.2, 7.13, 2.65,
0.99, and 0.37 millicuries. What is the half-life of 5;Cr?
activity = AN = ANge ™M
Taking the natural logarithms of both sides, we have
In (activity) = In (ANge ™) = In (ANg) — A1

Thus In (activity) varies linearly with the time ¢, with slope —A. Plotting the data

Time, min 0 5 10 15 20
Activity, mCi 19.2 7.13 2.65 0.99 0.37
In (activity) 2.95 1.96 0.974 - 0.010 —0.994

we obtain the curve shown in Fig. 29-2. From the curve we find

|slope|=A = 0.197 min~!

1 [

5 10 15 20 Time, min

In (activity, mCi)

Fig. 29-2
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Finally,

In2 _ 0693 .
Ty)g= —m = —————7 = 3.52 min
/277X 0197 min™!

297. Show that the average lifetime of a radioactive nucleus is T,, = 1/A.
If a sample starts out with N, nuclei, the average lifetime as it decays to zero puclei is given by

% aN
N 0
Tp= = L [ran
dN 0 /Ny
No - v
From N = Nge™™ we have dN = —~ANge ™™ dt, and the limits Ng, O change to 0, © in terms of the
variable t. Thus '
= ___l_ © (- -M = © oM = _l_ ) = .!_
o= o [ 1\ i) N i a x()\z !
Alternatively, we have from the exponential distribution, (1) of Problem 29.1,
(PN gr= &
T, = fo e di=x
298. In terms of the parent and daughter rest masses determine the Q-values for B~ decay, B+
decay, and electron capture.
The three reactions are (P = parent, D = daughter): !
4Pz iD+e” +7 (BT decay)
APz D+e* +» (B* decay)
AP+e  —zAD+v (electron capture)
The corresponding mass-energy relations are, after subtracting the electron masses from the atomic
masses to obtain the nuclear masses,

(Mp — Zm)c* =(Mp —(Z + Dm])c? + mc?+ Q ~
(B~ decay)
0 =(Mp— Mp)c?

Q=(Mp— Mp—2m, ?
(Mp — Zm)ct + mc* = (M, —(Z-Dm]*+ 0

Q=(Mp—Mp )c24 ‘ } (electron capture)

(M, — Zm))c? = [Mp —(Z - Dm.]c* + m,c?+ Q }
(B decay)

299. What is the maximum energy of the electron emitted in

the B~ decay of 1H?
The reaction is

3H->3He+e +7
From Problem 29.8,

0=(My- Myo)e?

= (3.016050 u — 3.016030 u)(931.5 MeV/u)
= 00186 MeV = Ky + K. + K,

Since the mass of the neutrino is

zero and My » m,, the kinetic energy of the He nucleus can be
neglected, so that the 0.0186 MeV o

f energy is shared between the electron and the neutrino. When the
energy of the neutrino is zero,

kinetic energy of the electron will have its maximum value, 0.0186 MeV.
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29.10.

29.11.

29.12,

29.13.

Determine the minimum energy of an antineutrino to produce the reaction # +p—>n +e™.
From conservation of mass-energy,
E, + m,c?=m,c* + m?+ K, + K,
The required neutrino energy will be minimum when the neutron and positron are both emitted with
zero kinetic energy:
E, ~+9382MeV =9395MeV +0.5 MeV or E, =18MeV

Determine the energy and momentum of the daughter and the neutrino that are produced
when Be undergoes electron capture at rest.

The electron capture reaction is
JBe+e” —jLi+ v
From Problem 29.8,
Q = (MBe - ]WLi)c2
© =(7.016929 u — 7.016004 u)(931.5 MeV /u) = 0.862 MeV

This energy is split between the neutrino and the jLi nucleus. However, because of the large mass of
the JLi nucleus and the zero rest mass of the neutrino, almost all the energy is carried by the neutrino, so
that

E, ~0.862 MeV

Assuming that the JBe nucleus was initially at rest, the magnitudes of the momenta of the neutrino and
ILi nucleus must be equal. Using p, = E,/c, we then have
p, = pL; = 0862 MeV/c

The kinetic energy of the ]Li nucleus can now be found from

ph (pue) (0.862 MeV)?
K= = =

- - - =568 % 1075 MeV = 56.8 eV
IM,  aM.2  2(7.02u x 9315 MeV/u) € ¢

2F decays to the ground state of 25Ne as follows:
BF>(INe)* + e +7
|—>%8Ne +y
where (?0Ne)* is an excited state of 3JNe. If the maximum Kkinetic energy of the emitted

electrons is 5.4 MeV and the y-ray energy is 1.6 MeV, determine the mass of *JF (My, =
19.99244 u).

Conservation of mass-energy applied to each of the reactions yields (the energy of the neutrino is
zero in the limiting case and the recoil energies of (3Ne)* and 2INe are negligible)

(Mg —9m)e? = (Mye — 10m )2+ mc2+ K,  or Mpe?= Myc?+ K,
Myerc? = Myc? + E,
Rearranging these two expressions, we have
Mgc? = My c* + E, + K,

M, = 19.99244 u + (1.6 MeV + 5.4 MeV)( 93]15% ) =20.000 u

From the 8% decay of '3N find the value of r, in the expression R = ry4'/3(Section 27.3).
The maximum energy of a 8% is found to be 1.19 MeV.

From conservation of energy for the 8% decay of 1N,

BNSRC+et +v
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one has
MI3NC —M|3C +mc +K +K

Substituting into this expression the masses of the odd-4 nuclei obtained from the liquid drop model,
with the Coulomb term shown explicitly (Problem 27.7), one has

7 24 2. 3,5 7)(6 b(
myc 6m,,c ,bﬂ/-hbﬂm+ = ke __.__( )( ) +
= 2 2". 3,2 6)(5 b(
6mpc + Tm,c —M+b¢7s+ 3 ke ( )( ) + +m.c?

+K +K,
42 - 30
%k 2(———) =(m,~m,+m)*+ K, +K,
1If the kinetic energy of the 8 * is to be a maximum, the kinetic energy of the neutrino must be zero.
Therefore, .
3 12
3 kel—R— =(m, — m,+ m)c?+ K,
3 12 .
3 (1.44 MeV - fm) x= 1.80 MeV'+ 1.19 MeV
R=347im
If we take R = rg4'/* = ro(l3)'/3 =235ry, then
3.47 fm
ro= —ZT =148 fm

This value is in good agreement with the value ry = 1.4 fm given in Section 27.3.

For A = 104 show that the graph of mass versus atomic number Z predicts the stable isobars
to be '%Ru and '%Pd.

As seen from Fig, 29-3, %Mo and '%Tc undergo B~ decay endmg thh 18Ru. This is energeti-
cally possible because 42Mo is heavier than '%Tc, wh1ch is heavier than '3Ru. (If '%Ru were to B~
decay, it would become 45Rh which is heavier than %Ru; hence that decay is forbidden.) Also it is
shown that '%¥Rh decays to '%Ru and '3%Pd; while ' Cd decays to '%Ag, which then decays to '3%Pd.
These processes are all energetically possnble and show '3¢Pd to be stable. Note that the mass of “"Ru
is larger than that of '3¢Pd, but this decay process is forbidden because it must form 194Rh as an
intermediate nucleus, and, as mentioned before, this is forbidden. It is seen that the data follow very
closely the parabolic shape predicted from the liquid drop model for A = const.

Determine the kinetic energy of the a-particles emitted in an alpha decay in terms of the Q of
the reaction. : :

An alpha decay reaction has the form
zP g z— zD + 4He

Assuming that the parent is initially at rest, we obtain from conservatlon of momentum p, = p,.
Because the kinetic energies will be very small compared to the rest energy of the parent, we can use the
nonrelativistic relation K = pz/ 2M to obtain ]

Ko M. _4

K, M, " A-4
where A is the mass number of the parent. The Q of the reaction is

4 AK,

Q=KD+K,=A 4K+K 1—4
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29.16.

A
103912 +
/
103.910
electron
capture
=
)
§ 103.908 |
+
electron /i and
103.906 |+ capture electron
capture
Stable
103.904
1 ] | L } ) i -
42 44 46 48
Atomic Number, Z
Fig. 29-3
SO
A—-4
K= (457 )

Since  has a precise value, so does K,; so that in this two-body decay the a-particles are
monoenergetic. The kinetic energy of the daughter nucleus is

o rte(£5%0)- 42

Note that the larger 4 is, the more nearly is K, equal to the total available energy Q and the smaller is
Kp.

Show that %35Pu is unstable and will a-decay.
For %3¢Pu to spontaneously a-decay,
BePu—2PU + dHe + Q0
the value of Q must be positive. Solving for O gives
Q =(Mp, — My — My )c?
= (236.046071 u — 232.037168 u — 4.002603 u)(931.5 MeV /u)

= 5.87 MeV
Therefore 235Pu can, and in fact does, spontaneously a-decay.
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29.17. An analysis shows that the kinetic energy and half-life in alpha decay for even-even isotopes
are related by

T,/ = Be b/

where B and b are constants. Show that the data in Table 29-1 satisfy this expression.

Table 29-1
Isotope T2 K,, MeV
2% 1384 d 5.30
22po 3IX1077s 8.78
214Po 1.64x 10745 7.68
2epo 0.15s 6.78
2gpo 3.05 min 6.00

. Taking logarithms of both sides of the expression, one obtains
InTy/,=InB+bK;'?

according to which In T/, should be a linear function of K, /2% The data give the values shown in
Table 29-2 and plotted in Fig. 29-4. The fit is good if b3 X 10? MeV'/2, B~ 1 X 10~% s,

| //‘

12 : /

8 /|

In (T3 5)
N\

. 1/

. p.
./ /
-16 - : =
033 0.38 . 043

Ka_ I/Z’ MeV-™ 172
Fig. 294
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29.18.

29.19.

Table 29-2
Isotope Ty s In Ty, K7V Mev~1/2
2i%o 1.20 x 107 16.30 0.434
212po 3x 1077 - 15.02 0.337
2iPo 1.64 x 10~4 —-8.72 0.361
2lepo 0.15 -1.90 0.384
28po 1.83 x 10? 5.21 0.408

An unstable element is produced in a nuclear reactor at a constant rate R. If its half-life for
B~ decay is T/, how much time, in terms of T, is required to produce 50% of the
equilibrium quantity?

We have:
. number of nuclei produced by reactor  number of nuclei decaying
rate of increase of element = S - S
dN _ ,
Z = R—-AN
or
dN _
ar +AN=R

The solution to this is the sum of the homogeneous solution, N, = ce ™™, where ¢ is a constant, and a
particular solution, N, = R/A.

= = —At E

N=N+N,=ce "+ X

The constant ¢ is obtained from the requirement that the initial number of nuclei be zero:
—0=c+ R =_R
N(O)—O—c+}‘ or c=-5
so that
=R
N X (1—e"™)

The equilibrium value is N(c0) = R/A. Setting N equal to 1/2 of this value gives
L(RY_R_
(x)=xa-¢™
=1
2
in2
oy

The result is independent of R.

Radioactive material a (decay constant A ) decays into a material b (decay constant A,) which
is also radioactive. Determine the amount of material b remaining after a time .

number of b nuclei produced by @ number of b nuclei decaying
s s

rate of increase of b nuclei =

For every a nucleus that decays one b nucleus is formed, so that b nuclei are formed at the rate of

N,
dt ">‘a a
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giving
dN, . Ny
- AN; = ANy = AN ge = MNy
or
dN,
- AN = AN e (1)

This is a first-order linear differential equation solvable by conventional techniques. The homogeneous
equation has the solution

(Ny),=ce™™"
where ¢ is an arbitrary constant. A particular solution is obtained by trying (N,), = De™'in (1)

(=X +A)De ™ =\, Nyge ™'

N,
b Mo
>‘b - >‘a
The complete solution is then
AN
= = ~Nt =Nt
Ny =(Ny)y+ (Np),=ce™ + N =N e 2)
The constant ¢ is evaluated by requiring N, = N,y at 1 = 0,
AdNgo
Nyp=c+ ——
% A=A
giving finally
AN,
Ny = Nye ™ + % a;: (e N —e™™) 3)
b — Ng

If it is assumed in Problem 29.19 that N,y =0, find the time at which N, (the number of
daughter nuclei) is a maximum.

With Ny, = 0, we have

ANy
= R T W
N, N = A (e e ™)
from which, for a maximum,
dN, ANy

7 = X—_Aa (—Aae_)‘-’ +}\,,e""") =0
b

Solving for ¢ gives

z=ﬁln(%)

Refer to Problem 29.19. If the material b decays into a stable substance ¢, determine how the
amount of ¢ varies with time, assuming Ny = 0.

The total number of nuclei present at any time will be N, so
Ne=Ngyp—- Na - Nb
ANeo
= Nyg— Nge ™ — eN — =N
a0 a0 Ab — Aﬂ ( v )

= N,,o(l - )\b}:bka e M+ }\,,A—ak,, e"‘b')
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29.22

29.23.

29.24.

29.25.

29.26.

29.27.

29.28.

29.29.

29.30.

29.31.

29.32.

2933,

29.34.

29.35.

29.36.

29.37.

Supplementary Problems

Atomic masses are tabulated in the Appendix.

Determine the Q-values of alpha, proton, neutron, and deuteron decays of .
Ans. 542 MeV; —-6.09 MeV; —7.23 MeV: —10.59 MeV

What is the kinetic energy of the a-particles emitted in the alpha decay of 233U? Assume that the 232U
nucleus decays at rest. Ans. 5.33 MeV

Which of the following are possible decay modes for {JK: 8~ decay, 8+ decay. alpha decay, electron
capture, neutron emission? Ans. B decay: 8+ decay: electron capture

The maximum kinetic energy of the 8 ~-particle emitted in a trittum (3H) decay is 19 keV. If the mass
of tritium is 3.0160504 u, what is the mass of the decay product? Ans.  3.016030 u

Determine the energy of the neutrino emitted in electron capture for 33Ca. Ans. 0.41 MeV

Element a (T, ,, = 2.1 h) decays into element b (T, s2=4.6 h), which then decays into element ¢. If the
initial amount of element b is zero, find the value of N,/ N, after 2 h.
Ans. 041

Determine the disintegration constant of 3Sr (T, ,, = 28 y). Ans. 0.0247 y !

What is the energy of the a-particle emitted in the alpha decay of 2Ra, if the recoil energy of the
radium nucleus is neglected? Ans. 4.87 MeV

Solve Problem 29.29 taking into account the recoil energy of the radium nucleus.
Ans. 478 MeV

Determine the maximum possible speed of the daughter in a 8~ decay of a $He nucleus which is initially
atrest.  Ans. 1.0Xx10°m/s

What is the mass of a sample of '{C (T,/,=5570 y) that has an activity of 5 Ci? Ans. 1.09 g

What is the activity of 5 X 1077 kg of 33U, whose half-life is 0.180 X 10’ s?  Ans. 149 Ci
How much time is required for an amount of 381 (T} ,2=28y) to be reduced by 75%?  Ans. 56y

Determine the energies of the a-particle and daughter nucleus in the decay '¢Nd —'%Ce + .
Ans. 1.85 MeV; 0.53 MeV

The a-particles emitted in the alpha decay of 23JAm have an energy of 5.3 MeV. Assuming that the
a-particles have the same kinetic energy inside the nucleus, determine the number of collisions per
second that the a-particles make with the walls of the nucleus.  Ans. 9.2 x 102

A substance with atomic number 4 undergoes alpha decay by emitting two groups of a-particles with
kinetic energies K,; and K. Show that the energy of the accompanying y-ray is

A
Ey = A—4 (Kal - KaZ)
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2938. The maximum distance traveled, or range R (in cm), of an a-particle in a bubble chamber is related to its
kinetic energy K (in MeV) by the empirical equation R = 0.318K3/2, The a-particles emitted in the
decay of 2}3Ru are measured in a bubble chamber to have ranges of 5.66 cm, 5.33 cm, and 5.18 cm.
What are their energies? Ans. 6.82 MeV; 6.55 MeV; 643 MeV

2939. Refer to Problem 29.38. If the daughter nucleus is produced in the ground and two excited states,
determine the energies of the emitted y-rays. Ans. 0.28 MeV; 0.40 MeV; 0.12 MeV



Chapter 30

Nuclear Reactions

30.1 INTRODUCTION

A great deal of the nuclear data now available has come from the analysis of reaction experiments.
In these experiments nuclei are bombarded with known projectiles and the final products observed.
Isotopes of nuclei with atomic numbers as high as Z = 18 are used as projectiles, but only the
following incident particles will be considered in this chapter:

Particle Notation
neutron n
proton p,H
deuteron d,*H
triton t,3H
helium-3 h, IHe
helium-4 (alpha particle) a, $He

Normally the reaction results in a final residual nucleus (which is usually not observed) plus another
particle which is detected experimentally. (Sometimes both final particles are observed.)
Nuclear reactions are indicated in equation form,

TARGET RESIDUAL | DETECTED
ROJECT + +
PROJECTILE NUCLEUS - NUCLEUS PARTICLE

or in condensed form,
TARGET(PROJECTILE, DETECTED PARTICLE)RESIDUAL NUCLEUS

In the equation for any nuclear reaction the total charge (total Z) and the total number of nucleons
(total A) must be the same on the left-hand and right-hand sides.
For example, the first nuclear reaction observed (by Rutherford in 1919) was

UN+3HesH+'50 or "N(a,p)'iO

30.2 CLASSIFICATION OF NUCLEAR REACTIONS

Reactions are classified according to the projectile, detected particle and residual nucleus. If the
projectile and detected particle are the same, one has a scattering reaction. If the residual nucleus is
left in its lowest or ground'state, the scattering is elastic; when the residual nucleus is left in an excited
state, the scattering is called inelastic.

Processes in which the bombarding projectile gains nucleons from, or loses nucleons to, the target
are referred to respectively as pickup and stripping reactions. Two examples of pickup reactions are:

%0(d, N30 or 'O+ d-10+1
%Ca(h, a)3Ca  or  3Ca+ h—-3Ca+a
and two stripping reactions are:
WZr(d, pywlt  or  Zr+d—pZt+p
#Na(h,d)3Mg  or  PNa+h¥Mg+d
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Pickup and stripping reactions are often observed at high enough energies that one can assume the
reaction to be direct. In a direct stripping or pickup reaction it is assumed that the nucleon taking
part in the process enters or leaves a definite shell-model orbit of the target without disturbing the
other nucleons in the target. .

Quite the opposite type of reaction is one in which the incident projectile and target form a new
nucleus, referred to as a compound nucleus, which lives for a short time in an excited state and then
decays. The lifetime of a typical compound nucleus is of the order of 107 5. Although 10~ s is
so short that the cOmpound nucleus cannot be observed directly, it is much longer than the time a
bombarding particle takes to traverse a nuclear distance, which is of the order of 10725, Ttis
therefore assumed that the decay of a compound nucleus does not depend on how it was formed; the
compound nucleus does not “remember” how it was formed. N\

There are usually several different reactions that will give rise to the same compound nucleus, and
also several different modes or channels in which this compound nucleus can decay. As an example,
for the compound nucleus 2)Ne formed in an excited state, [lgNe]* ‘we can have the reactions shown in
Fig. 30-1.

(SF+p
BNe+n
. ioNe +y
"SF+p :éi e
5 JF+1t
10+ A 0 + k
'gO ta - [BNe]* - 0 + « ’
l‘-}N + gLi 10 lgN + SLi
12C + §Be s
198 + 198 3N + 3;Li
5 57 2C + §Be
NC + 3Be
9B + '¢B
[ 3+

Fig. 30-1

30.3 LABORATORY AND CENTER-OF-MASS SYSTEMS

Experimental nuclear reactions are often analyzed in what is called the center-of-mass system.
This system moves at constant velocity with respect to the laboratory system in such a manner that in
it the colliding particles (and final particles) have zero total momentum.

If the target nucleus is at rest in the laboratory system, the velocity V., of the center-of-mass
system will be along the direction of the incident bombarding particle. Therefore, with respect to the
center of mass, the magnitudes of the velocity of the target nucleus (¥’) and the incident particle (v")
are respectively (in a nonrelativistic treatment)

V=V v=0-V

em (30.1)
with the directions as shown in Fig. 30-2(a). Here v is the velocity of the incident particle as
measured in the laboratory. Requiring the sum of the momenta of the target nucleus (mass M;) and
incident particle (mass m,) to be zero in the center-of-mass system, we obtain the center-of-mass

velocity from

-MV' +mo' =0
MV +m(o—V.,)=0
LM+ m)V o = mpo (30.2)

where (M, + m)V_, is the momentum of the center of mass in the laboratory system. From (30.1)



CHAP. 30] NUCLEAR REACTIONS 201

and (30.2), the target nucleus and incident particle have, before the reaction takes place, respective
velocities in the center-of-mass system of

m,; M,
7 ’ _— U
m,+ M,

= m U v = (30.3)
After a reaction the final particles (if there are only two) must move in opposite directions with equal

momenta in the center-of-mass system, because the initial total momentum in this system was zero [see
Fig. 30-2(b)].

m; , , m;
(a) Before (mo’ = M, V") :
collision O -~ O - ‘V‘,'O
v
v’f\
™y /5,
- ®) O\'"f
d \
-~ d \
(b) After - \
collision <~ (mpo; = M, V) N N
- M, \
- M,
O— Q)
Vi
Laboratory System Center-of-Mass System
Fig. 30-2 y

304 ENERGETICS OF NUCLEAR REACTIONS

Energy is often released or absorbed in a nuclear reaction. To say that a reaction “releases
energy” means that the kinetic energy of the particles after the reaction is greater than the kinetic
energy of the particles before the reaction, the increase resulting from the transformation of rest mass
into kinetic energy. The amount of energy released is measured by the Q-value of the nuclear
reaction, defined as the difference between the final and the initial kinetic energies:

Q= Kafler - Kbefore
Since total energy, £ = E; + K, is conserved, we also have

Q = EO before EO after

In other words, Q/ ¢? is the difference between the total initial and final rest masses; this is exactly the
definition given in Chapter 29 for the special class of decay reactions.

A reaction with Q > 0, so that energy is released, is called an exothermic or exoergic reaction; the
reaction can occur even if both initial particles are at rest. If Q < 0 energy is absorbed or consumed
and the reaction is called endothermic or endoergic; the reaction cannot occur unless the bombarding
particle has a certain threshold kinetic energy (see Problem 30.8). If Q =0 and if the particles are the
same before and after the reaction, we have an elastic collision.

30.5 NUCLEAR CROSS SECTIONS

When a target material is bombarded with incident particles to produce a nuclear reaction, there is
no guarantee that a particular bombarding projectile will interact with a target nucleus to bring about
the reaction. A cross section, 0, is a quantity that measures the probability that a nuclear reaction will
occur in a given region of target material. It is defined as:

number of reactions per second per nucleus

0= ——
number of projectiles incident per second per area
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The larger the value of 6, the more probable will it be for a particular reaction to occur. A cross
section has the dimensions of area and is usually measured in terms of a unit called the barn, where

1 barn =102 m

so that one barn is of the order of the square of a nuclear radius.

If the number of target nuclei per unit volume in a material is n, the number N of particles
scattered when a beam of N, projectiles is incident on a thickness T of the material is (see Problem
30.12) '

Ny=No(l—e™™T) -

Cross sections will be different for different reactions, and for a given reaction will vary with the
energy of the bombarding particle. If the reaction is endothermic, the cross section will be zero if the
energy is below the threshold value.

Solved Problems

30.1. When gLi is bombarded with 4 MeV deuterons, one reaction that is observed is the formation
of two alpha particles, each with 13.2 MeV of energy. Find the Q-value for this reaction.

= (K, + K,;) — K, = (132 MeV + 13.2 MeV) — 4 MeV = 22.4 MeV

30.2. Determine the unknown particle in the following nuclear reactions: (a) '20(d, p)X,, (b)
X(p, )5Y, (c) 'BTe(X, d)'41.

(a) In the process 'SO(d, p)X a neutson is added to '30 to form X, which is '30.
(b) In the process X(p, )}Y a proton and two neutrons have been removed from X to form §}Y, so

X is 3Zr.
(c) In the process 'ZTe(X, d)'%1 a deuteron (3H) and '#I have been formed from '$#Te and X.
Therefore X must have two protons and a total of four nucleons, and is 3He.

303. Determine the compound nucleus and some of the possible reaction products when a-particles
are incident on '3F.

The compound nucleushas Z=2,+ Z,=2+9=11and 4 =4, + A, =4+ 19=23. Therefore
we have

4He + 'JF —[}iNa]*

This nucleus can then decay to many products, such as

BNa+ vy
Ne +
[BNa] i P

HNe +d

304. Calculate the Q-values for the reactions (a) 'SO(y, p)'N, (b) '22Sm(p, « )l
For the reaction M;(m;, m)M;, the Q-va}ue is
‘ Q=[M+m—(M+ mg) | c?
(a) Q= [15.994915 u + 0 u — (15.000108 u +1.007825 w](931.5 MeV /u) = —12.13 MeV
b)) @= [149.917276 u + 1.007825 u — (146.915108 u + 4.002603 w)l(931.5 MeV /u) = 6.88 MeV
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30.5.

30.6.

30.7.

30.8.
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Calculate the mass excess (Problem 28.23) for (a) 52Ca, (b) '33Te.

(a) 8 =41.958625 u — 42 u = —0.041375 u = —38.540 MeV
b) 8 =129.906238 u ~ 130 u = —~0.093762 u = —87.337 MeV

Nuclear data are often given in terms of mass excess rather than atomic weight.

Using the data

Nucleus Mass Excess
19205 —0.038550 u
1B10s - 0.039030

d +0.014102
t + 0.016050

203

find the Q-value for the reaction '920s(d, 1)'3.0s.

Since total 4 is conserved in any reaction, we can replace rest masses by mass excesses in
calculating Q. Thus

Q=[M+m~(M+ mp) ]
=[-0.038550 u + 0.014102 u — (—0.039030 u + 0.016050 u)}(931.5 MeV /u) = —1.37 MeV

As observed in the laboratory system, a 6 MeV proton is incident on a stationary '2C target.
Find the velocity of the center-of-mass system. Take the mass of the proton to be | u.

Using a nonrelativistic treatment, the proton velocity is found from K; = 1 m,v*:

[2x, [ 2k, 2(6 MeV)
=\/— =c\/— =(@xI10® =341 x 107
¢ m =\ e ¢ m/ S)\/(1 1)(931.5 MeV /) m/s
By (30.2),
Vem= oo v = — 19 (341 x 107 m/s) = 2.62 X 10° m /s
= M rm T Du+tia :

in the direction of the proton.

For the endothermic reaction M,(m, m)M,, determine how the Q-value is related to the
threshold energy of the incoming particle. Use a nonrelativistic treatment.

The desired answer is obtained most easily by first doing the calculation in the center-of-mass
system, where the total momentum is zero, and then transforming the results to the laboratory system.
Using the notation of Fig. 30-2, we have for the total initial kinetic energy in the center-of-mass system

1<icm = %mivlz + %Mi V/z

Transforming to the laboratory system via (30.3), and recalling that the target particle is at rest in the
laboratory system,

K 1 M, ’ 1 i ?
iem 277 m,+M,D +2 l(mi+Miv)
n MM+ m)
—(%m,-v) 2
(mi+Mi)
M,
=Kilab(m) )
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Equation (/) is the general relation between the initial kinetic energies measured in the laboratory and
center-of-mass systemis.
The Q-value of the reaction, which depends only on rest masses, is the same in both systems:

Kflab_Kilab=Kfcm_Kicm=Q (2)
The threshold energy, Ky, cm» in the center-of-mass system is the initial kinetic energy that will produce
the final two particles at rest (Ko, = 0), so that

Kpem=—0€ 3)

The corresponding energy in the laboratory system is then obtained from (1) as

M +m
Kihap = — 0 M

4

A more revealing expression for Ky, 1, can be obtained by considering the kinetic energy, K*, of the
center of mass (in the laboratory system) when the incident particle has the threshold energy. We have,
using (30.2) and (4),

K‘=1(M.+m.)V2 =__'_n—i—(-|-m‘vz)= l__K
- 2 i i/¥ cm th M,-+m,- 2774Vt Mi+mi th lab

M;
=\~ 3+ m |Kow= hisb +
or

Kpp=—-Q+K* )

Equation (5) states that the incident particle must have sufficient energy to start the endothermic
reaction (— Q) and to account for the gross motion of the system (K*, which remains unchanged in the
reaction).

Find the Coulomb barriers of 'S0, $}Nb and 23Bi as seen by a proton.

The Coulomb barrier is the energy needed to bring the proton to the edge of the nucleus (Fig. 30-3).
If we define A= R + r = ro(A4'/> + 1), then

(Ze)e Ze? 1.44 MeV * fm z z
Ee=k—g— =k (A2 + 1) _( 1.4 fm )(A'/3+1 )_(1'03 Mev)( AV 41 )
Prot
For €0, on
- 8 -
Ee=(L03MeV) i ) =234 MeV
1/3
For $INb, R=r,A"
~ a )
£, =(1.03 MeV)( AT ) =7.64 MeV
For 23Bi,
03 MeV 83 12.33 MeV Nucleus
e = (0 MeV)( gy ) = 123 Me Fig. 303

Refer to Problem 30.9. Compare the Coulomb barrier, E, with the threshold energy for the
reactions

60(p, d)30  UNb(p, d)ENb  2ZBi(p, d)’BBi

The Q-value for a reaction is '
Q = (M, + m; — Mf_ mf)cz



CHAP. 30] NUCLEAR REACTIONS 205

30.11.

30.12.

and, from (4) of Problem 30.8,

M+ m;
K!h=—Q M.

For '$0(p, d)30:
Q = (15994915 u + 1.007825 u — 15.003070 u — 2.014102 u)(931.5 MeV /u) = — 13.44 MeV

Ke = (13.44 Mev)( % ) = 1428 MeV

For 3INb(p, d)3iNb:
Q = (92.906382 u + 1.007825 u ~ 91.907211 u ~ 2.014102 u)(931.5 MeV /u) = —6.62 MeV

QBu+1lu

Ky = (6.62 MeV)( o1

) = 6.69 MeV

For 2%Bi( p, d)*%8Bi:
Q = (208.980394 u + 1.007825 u — 207.979731 u — 2.014102 u)(931.5 MeV /u) = —5.23 MeV

209u+1u
209 u

For '80(p, 4)'0, Ky, > E and the reaction will occur with a large probability at the threshold
energy. For “$Bi(p, d)*%Bi, Ky, < Ec and the reaction will hardly ever occur at the threshold energy,
because the proton never gets close to the *§3Bi nucleus. In the §}Nb(p, d)§}Nb reaction the threshold
energy (6.69 MeV) is slightly less than the Coulomb barrier (7.61 MeV), so one might expect no reaction,
because the proton just doesn’t reach the 3;Nb nucleus. But in fact the reaction §;Nb(p, d)3}Nb is seen
at the threshold energy. This is an example of Coulomb barrier tunneling, where the proton, even
though below the Coulomb barrier, does manage to reach the 3JNb nucleus.

Ky =(523 MeV)( ) = 5.26 MeV

If there are n scattering centers (nuclei) per unit volume, each of area o, in a thin target of
thickness dT, find the ratio R of the area covered by scattering centers to the total area of the
target.

In a thin target no nucleus hides another nucleus. Hence,

R = total area of scattering centers _ volume of target X n X a _ (4dT)XnXoe

area of target - area of target A = no dl

Obtain an expression for the number of particles scattered from a beam of area 4 containin

an exp p : g
N, particles, after it traverses a thickness 7 of target material containing n scattering centers
per unit volume, each of cross-sectional area o.

Consider a thin slice, of thickness dT, of the target material. Any time an incident particle
encounters one of the scattering centers in this thin slice, the incident particle will be scattered.
Therefore, the ratio of the number of scattered particles to the number of particles N incident on the thin
slice will be the same as the ratio of the total area of the scattering centers to the area of the beam, so
that from Problem 30.11 we have

number of scattered particles  total area of scattering centers

number of incident particles area of target
or
dNy dN
N = - W =nodTl

(The minus sign is used because an increase of scattered particles, dN,., corresponds to a decrease of
incident particles, —dN.) Integrating this expression we obtain

— N/dN = T — Nf = = —noT
—£v0 i —j; ne dT or In W, =noT or Ny= Nge
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with Ny and N the initial and final numbers of particles in the beam. The number of scattered particles
is then given by

Nsc‘_- No— Nf‘ No(l - e—MT)

For a hypothetical scattering target 1073% of an incoming neutron beam is scattered. If the
target has a density of 1.06 X 10* kg/m> 4 =200 and the total neutron cross section per
nucleus, o, is 1.1 barns, find the target thickness.

The number of scattering centers per unit volumie is

[ 6.02 x 10 nuclei/kmol
"= 200 kg /kmol

)(1.06 X 10* kg/m?) = 3.19 X 10%® nuclei/m*

and
no=(3.19x 108 m-3)(1.1 X 1072 m?) =351 m™"
From Problem 30.12, the numbei' of scattered particles is given by
Ny = No(1 — e~™T)
and with N /N, = 10~° we have
10-5=1—-GSIm™ T o ~GSt@ )T _19-5
For small x, e *~1 — x, and we have

-5
=107  _585x10~%m
351 m™!

(BSIm~HT=10"° or
When 5.30 MeV a-particles from a %j3Po source are incident on a Be target it is found that
uncharged but otherwise unknown radiation is produced. Assuming that the unknown
radiation is y-rays, calculate the energy the y-rays have as they leave the Be target in the
forward direction. [This problem, together with Problems 30.15 and 30.16, illustrates the
reasoning that led Chadwick in 1932 to the discovery of the neutron.]

The assumed reaction is 2Be(a, y)'2C. Taking the 3Be nucleus to be at rest and the a-particle
kinetic energy to be 5.30 MeV, we have from conservation of mass-energy

(Mg + M, )?+ K, = M.+ K.+ K,
(9.012186 u + 4.002603 u)(931.5 MeV /u) + 5.30 MeV = (13.003354 u)(931.5 MeV /u) + K. + K,
‘ K, + K =160 MeV o)

When the y-ray and '3C nucleus move in the same direction as the incident a-particle, we have from
conservation of momentum

Pa=Py+Pc or Pa€ = PyC + pcc (2)
For the material particles, in a nonrelativistic treatment,
7 (pe) >
K== M or  pc=\2McH)K

Thus

Pac =V2(4 u X 931.5 MeV /u)(5.30 MeV) = 199 MeV

pce =V2(13 u X 931.5 MeV/u)Kc = 156K¢/>
and for the y-ray photon, E, = K, = p,c.\‘ Substituting in (2):
199 MeV =K, + 156KL/? 3)
Solving (1) and (3) simultaneously, we obtain
K,=146MeV K¢ =14 MeV
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30.15.

30.16.

In separate experiments the unknown radiation of Problem 30.14 is incident on a proton-rich
paraffin target and a "IN target. Still assuming this radiation to be photons, determine the
minimum photon energies to produce the observed 5.7 MeV recoil protons and the 1.4 MeV
recoil "IN nuclei, and compare these energies with the result of Problem 30.14.

The photons will interact with the target nuclei by Compton scattering. The minimum E, will
correspond to a head-on collision. In analyzing this collision we may use nonrelativistic expressions for
the particles since the observed kinetic energies are much less than the rest energies of the target
particles. Thus (primes refer to conditions after collision):

hvqin="hv'+ K’ (energy conservation)

and, since all momenta are along the x-axis,
(momentum conservation)

Multiplying the second equation by ¢ and adding it to the first equation, we obtain, after using

mov’ =y2mgK’ ,
2hyin =\2moc’K’ + K’ =y/17(\/2m0c2 +\/17)

Since 2myc? > K’, we may neglect the YK~ in the parentheses to obtain

, K’ 2
hvmin = —( ':OC )

By min V(5.7 MeV)(938 MeV) /2 = 52 MeV

For the proton target,

For the "IN target,

B min ~V(1.4 MeV)(14 u X 931.5 MeV /u) /2 = 96 MeV

Both these energies far exceed the K, = 14.6 MeV calculated in Problem 30.14, showing that the
assumption that the unknown radiation is y-rays is inconsistent with the observed data.

Assuming that the recoil protons and 'JN nuclei of Problem 30.15 were the results of head-on
collisions with a massive incident particle, find its mass and initial kinetic energy.

Using subscripts 1 and 2 for the projectile and target particles, respectively, we have

2 ’2
1

imiot = 1m0} + 1myv) (nonrelativistic energy conservation)

mv; = mo] + myv; (momentum conservation)

The velocity v} is not measured in the experiments. Solving for v} from the second equation and
substituting into the first equation, we obtain the relation

, 2myv,
T M m,
The final kinetic energy of particle 2 is then
K= lm o2 = lm 2mv, 2= 4m,m,
2027 T2 o + my (m,+m2)2

Substituting the target masses and observed energies, we obtain two equations for the quantities m, and
K;:

4m (1 u)
proton target: 57MeV = ——— K,
(m; + 1u)

4m,(14 u)

N target: l4MeV= ——
’ (m, + 14u)’
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Solving:
m, = 0.98 u Kl = 5.7 MeV

The value m, ~ 1 u agrees reasonably well with the mass of a neutron as we now know it. Also, if
in Problem 30.14 the reaction is taken as JBe(a, 7)'2C instead of jBe(a, v)'3C, it will be found that the
kinetic energy of the neutron will be approximately equal to the above value of 5.7 MeV (see Problem
30.22). : '

Supplementary Problems
Atomic masses are tabulated in the Appendix '

Determine the unknown particle in the nuclear reactions (a) '3WQGHe, n)X, (b) %Ca(§Li, X)3iSc.
Ans. (a) ‘%0s; (b) 3He

42Sc]* in the reaction
$4Ca + p—>[$iSc]*>%Ca +4d
if the proton energy in the laboratory is 7.2 MeV. ~ Ans. 89X 10°m/s

Find the velocity of |

Calculate the Q-value for the reaction 52Ca(p, d)3Ca. Ans. —9.25 MeV
Find the mass excess in u for (a) $He and (b) Bsr.  Ans. (a) 0.002603 u; (b) — 0.094359 u

For a certain scattering target, 10~%% of an incoming neutron beam is scattered. If the target density is
4.1 x 10° kg/m?, 4 = 30, and the target thickness is 10~% m, find the total neutron cross section.
Ans. 0.122 barn :

Assuming in Problem 30.14 that the reaction is SBe(a, n)'2C, Caléulate the kinetic energy of the neutron
and compare it to the value found in Problem 30.16.  Ans. 5.7 MeV

Show that in a two-body elastic collision each particle’s speed will bé unchanged by the collision when
measured in the center-of-mass system.



Chapter 31

Fission and Fusion

31.1 NUCLEAR FISSION

One of the most practical nuclear reactions is the formation of a compound nucleus when a
nucleus with 4 > 230 absorbs an incident neutron. Many of these compound nuclei will then split
into two medium-mass nuclear fragments and additional neutrons. This type of reaction is called
nuclear fission.

In a nuclear reactor, the number of fissions per unit time is controlled by the absorption of excess
neutrons so that, on the average, one neutron from each fission produces a new fission. The liberated
heat is used to make steam to drive turbines and generate electrical power. If the reaction is
uncontrolled, so that each fission results in more than one neutron capable of producing further
fissions, the number of fissions will increase geometrically, resulting in all the energy of the source
being released over a short time interval, producing a nuclear bomb.

A typical fission reaction is

235 1 2367711 % A A 1
92U + 0n—>[ 92U] —)Z'IX + Z§Y+ €

with Z, + Z, =92, A+ A, + ¢=236, and € an integer. The ratio of the masses of the fission
fragments, M, /M,, is found experimentally to be roughly 3/2. The number € of neutrons released in
the fissioning of a particular element will depend upon the final fragments that are produced. For the
above reaction the average number of neutrons released in a fission is found experimentally to be
about 2.44, the fractional number resulting from an average taken over all reaction products.

The two decay fragments usually have a neutron-proton ratio approximately equal to that of the
original nucleus. Therefore, in Fig. 31-1, they lie above the stability curve. in a region where nuclei
are neutron-rich and undergo beta decay. Usually it will require a chain of several beta decays, each
decay reducing the N / Z ratio, before a stable nucleus is reached (Problem 31.7).

NA -
Original compound nucleus

Fission / /
fragments

~NY

Fig. 31-1
209
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A fission reaction liberates about 200 MeV of energy for each fission (Problem 31.8). This is
much greater than the few MeV released in a typical exothermic reaction where the final products '
include only one particle comparable in mass to the ongmal target nucleus. This 200 MeV is
distributed as follows:

(a) 170 MeV is kinetic energy of the fission fragments

(b) 5 MeV is the combined kinetic energy of fission neutrons

(¢) 15 MeV is B~ - and y-ray energy

(d) 10 MeV is neutrino energy liberated in the 8~ decays of the fission fragments

In many fission reactions the formation of the compound nucleus occurs most readily with
thermal neutrons of energy E ~0.04 eV. From the above it is seen that the neutrons released in a
typical fission reaction have large kinetic energies of about 2 MeV. How these fast neutrons are
slowed down to facilitate further fissions is demonstrated in Problems 31.2 and 31.17.

31.2 NUCLEAR FUSION

As implied by its name, the fusion reaction is one in which two nucleons or relatively light
(A < 20) nuclei combine to form a heavier nucleus, with a resulting release of energy. An example of
a fusion reaction is the formation of a deuteron from a proton and a neutron:

H + n>H Q=223 MeV
Another fusion reaction is the formation of an a-particle by the fusion of two deuterons:
2H + 3H —»3He Q = 23.8 MeV

Although these energies are much smaller than the energy released in a typical fission reaction (=200
MeV), the energy per unit mass is larger because of the smaller masses of the participating particles.

The release of energy in fusion can be understood from Fig. 28-1, which shows that for light nuclei
the binding energy per nucleon generally increases with increasing mass number 4. Consequently,
the heavier nucleus formed from the fusion of two lighter nuclei will have a larger binding energy per
nucleon than either of the two original nuclei. But higher binding energy means lower rest mass
(Section 28.1), and the lost rest mass appears as released energy.

The reactions which seem most promising for use in the first practlcal fusion reactor are the D-D
reactions

%H(d, n)%He 0 =3.27 MeV

2H(d, p)iH Q =4.03 MeV
and the D-T reaction

?H(d, n)‘;He Q = 17.59 MeV

Reaction series known as the carbon or Bethe cycle and the proton-proton or Critchfield cycle are
believed to occur in stars. These cycles are illustrated in Problems 31.11 through 31.13 and Problem
31.18.
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31.1.

31.2.

31.3.

314,

31.5.

Solved Problems

What is the kinetic energy of a 300 K thermal neutron?

The thermal energy of a particle is of the order of kT, where k is Boltzmann’s constant. Thus,
K,~(8.617 X 1073 eV /K)(300 K) = 0.026 eV

On the average, neutrons lose half their energy per collision with quasi-free protons (see
Problem 31.17 for the effects of a head-on collision). How many collisions, on the average,
are required to reduce a 2 MeV neutron to a thermal energy of 0.04 eV?

If N is the number of collisions, the ratio of the final to initial energy is

ff _ _0.04ev

2 05" or 0.5)¥=2x10"%
K, 2x100ev (03) (03) '

Taking the log of both sides of the equation, we obtain
(—030)N = —-7.70 or N =26

The energy of the neutrons produced in a nuclear fission is approximately 2 MeV, and it takes on
the average about 26 proton collisions to reduce the energy to thermal levels. Thermal neutrons have
large probabilities for producing further fissions.

5

Determine the total final kinetic energy in the photofission of %5U by a 6 MeV y-ray into

3Kr, '¥2Ba, and three neutrons.
The fission reaction is
U + yo3%Kr + 'EBa + 3ln
From conservation of mass-energy,
Myc? + K, = (Mg, + Mg, + 3m,)c? + K,
or

K; = [235.043915 u — (89.91972 u + 141.91635 u + 3 X 1.008665 u)}(931.5 MeV /u) + 6 MeV = 1754 MeV

About 185 MeV of usable energy is released in the neutron-induced fissioning of a 23U
nucleus. If 33U in a reactor is continuously generating 100 MW of power, how long will it
take for 1 kg of the uranium to be used up?

The fission rate corresponding to the given power output is

5 d 1075 MeV 1 fission ) _ 15 fissions
(10 - )( PRRTELY ( RS My ) = 3:38 x 10 filons

One kilogram of ***U cdntains

1k .
( ﬁskg/ﬁ )(6-023 X 10% ik‘r‘n—c—fll ) =2.56 X 10** nuclei

and so it will last

4
- 26XI0% e 05s=8784d
3.38 x 1018 7!
Estimate the temperature required to produce fusion in a deuterium plasma (a neutral mixture
of negatively charged electrons and positivély charged deuterium nuclei).
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31.6.

31.7.
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Taking the range of nuclear forces to be 2 fm, the Coulomb repulsion energy between two deuterons
separated by this distance is )

_ ke* _ 144 MeV -fm

' E. R > m =0.72 MeV
The average kinetic energy in a system of particles at a temperature T is of the order of kT, giving
EC = k T

0.72 MeV = (8.617 X 10~ ' MeV/K)T

T=835x10°K

A more detailed analysis that takes into account barrier penetration shows that fusion will begin at
about 107 K.

" What will be the energy released if two deuterium nuclei fuse into an a-particle?

The reaction is
?H + ?H >3He
Conservation of mass-energy gives
2Myc? = My c*+ Q
0 =(2My — My,)c?
= (2 X 2.014102 u — 4.002603 u)(931.5 MeV /u) = 23.80 MeV

In Problem 31.5 it was found that about 0.7 MeV of energy is required to begin the fusion process, while
23.8 MeV of energy is released after fusion takes place.

In a sequential process 233U plus a neutron forms the compound nucleus [35U]*, which then
fissions; the fission then produces further decays. If the initial fission fragments are '§;Ba
and 3K, illustrate a process leading to final stable nuclei.

The initial process is
U+ n —>[2gg ]‘ >'8Ba + 32K + 3in
143Ba then starts the series of beta decays
YBa'8lat e +7
BCe+e  +75
L'ggpr +e 47
I-»'ggNd +e  +7
the nucleus '$Nd being stable. 20Kr starts the beta decays
60 g 36 y
WKr>¥Rb + e~ +7
L>§28r +e +7
|—>§3Y +e 47
L>;’32r +e  +7

the nucleus 39Zr being stable.
The total reaction then looks like

U + In>[BU]* "GN + P0Zr + 3jn + 8¢~ +85 )
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31.8. Calculate the energy released in the fission reaction of Problem 31.7.

If atomic rest masses are used in calculating Q from (/) of Problem 31.7, the term 8¢~ drops out.
Thus,

0= [MU — Myyg— Mz —(3 - 1)’"’.]02
= [235.043915 u — 142.909779 u — 89.904700 u — 2(1.008665 u)](931.5 MeV /u) = 197.6 MeV

319. Estimate the Coulomb energy of repulsion for the '¢Ba and 30Kr nuclei of Problem 31.7 just
after they are formed.

Just after formation, the nuclei are assumed to be spherical and touching. The Coulomb energy is .
then

E = (Zle)(Zze) _ (kez)ZIZZ - (144 MeV'fm)(56)(36)
i Ri+ R, ro(A17 + 437 (1.41m)(143'/% + 90'/3)

=214 MeV
This is approximately the energy released in the reaction, as determined in Problem 31.8.

31.10. For the D-T fusion reaction, calculate the rate at which deuterium and tritium are consumed
to produce | MW, (Assume all energy from the fusion reaction is available.)

In the D-T reaction, ;H(d, n)iHe, the energy released in each fusion is @ = 17.6 MeV (Problem
31.14). The rate at which the reactions must occur is

R= (1 w108 3 )( 1eV )( 1 reaction ) _ 3.55 % o7 Feactions
S s

16 x 10793 J\ 17.6 X 105 eV
In each reaction one atom of deuterium and one of tritium are used up. Therefore, for deuterium
A4=2:
dm ( 17 atoms )( 1 kmol )( 2kg ) _o kg
- =~ =[3.55x%x10 =LI8§x 1077 —=
dr $ \ 6.023 X 10%° atoms /\ 1 kmol $

and for tritium (4 = 3):

kg

k
_ dm (1.18>< 10-9Tg)= 177 x 1079 -

dr

31.11. Calculate the total energy released in the following carbon (Bethe) cycle:

p+ 'gC-ﬂ;N
BNSBC+et +0

p+ 130N

p+ NSO
ROSUEN + et +

p+ 5N S"C + $He

Instead of finding the energy released in each reaction, we can add all the reactions together to get
(P+20)+ PN+ (p+ 2O+ (p+ "N)+ (P0) + (p + "N) -
CN)Y+ (BC+ et +2) + (*N) + (P0) + (PN + e* +») + (2C + *He)
After canceling common terms from both sides we are left with

4p >*He + 2e* +2»



214

31.12.

31.13.

31.14.

3L18.

31.16.

3117,

3118.

31.19.

31.20.
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Thus all the reactions are equivalent to the fusion of four protons into a helium nucleus. Applying
conservation of mass-energy, we obtain ‘

4(Myy — m)c? = (My, — 2m)c? + 2mc* + Q
Q = (4MH - Ml-le - 4m¢)c2
= [4(1.007825 u) - 4.002603 u — 4(0.000549 u)](931.5 MeV/ u) = 24.69 MeV

It is seen that the carbon atom acts as a sort of catalyzer, since it is regeneraied at the end of the carbon
cycle.

Determine the energy released for each kilogram of hydrogen that is consumed in the cycle of
Problem 311 ’

From the equivalent cycle 4p _s%He + 2e* +2v it is seen that 24.69 MeV of energy is released for
each four protons that are consumed, so that we have

2469Mev | __Lproton

MeV
__tprotom _369% 107 =——
dprotons ~ 1.673 X 1072 kg kg

or 5.90 X 10" J/kg.

Refer to Problem 31.12. Itis estimated that the carbon cycle releases about 4% 10% W of
power. Determine the rate at which hydrogen is consumed.

(4 % 10% 3 )( 1 kg hydrogen ) - 68X 10" kg hydrogen
§ 590 X 10™J s
For comparison, the mass of the sun is about 2 X 10° kg.

Supplementary Problems
Atomic masses are tabulated in the Appendix.

Calculate the Q-value for the D-T fusion reaction, JH(d, n)3He. Ans. 17.6 MeV

Find the Q-values for the D-D reactions (a) 2H(d, n3He, (b) {H(d, piH.
Ans. (a) 327 MeV; (b) 403 MeV .

Refer to Problem 3i.4. What is the power output of a 23U reactor if it takes 30 days to use up 2 kg of
fuel?  Ans. 625 MW ‘

Using results of Problem 30.16, find the kinetic energy that a 2 MeV neutron has after it undergoes a
head-on collision with a quasi-free proton atrest.  Ans. 0347 eV

Show the equivalence of the following proton-proton (Critchfield) cycle to the carbon cycle of Problem
3111
ptpodtet +v
p+d—°He
3He + JHe >3He + 2p

Calculate the energy released in the fusion process
4He + §He + $He>'*C
Ans. 127 MeV
Consider a reaction series similar to that of Problem 31.11, but with p an& 14N as the initial reactants

If the intermediate nuclei formed are 130, 1N, '$0, 'JF, and 170, give the reactions which result in th
regeneration of 14N and give the overall reaction.  Ans. 4p —iHe +2e* +27 (overall)



Chapter 32

Elementary Particles

32.1 ELEMENTARY PARTICLE GENEALOGY

At present more than 30 long-lived elementary particles and antiparticles have been detected
experimentally. An antiparticle has the same mass and spin as its associated particle, but the
electromagnetic properties, such as charge and magnetic moment, are opposite in particle and
antiparticle. These particles are listed in Table 32-1, which also gives some of their properties. In
addition to these particles, about 50 resonances have been observed since 1963. In contrast with the
relatively stable elementary particles (mean lifetime T, > 1072! s5), a resonance is extremely short-
lived, with T,, < 1072 5. As indicated in Table 32-1, elementary particles are grouped into four
families. The classification arises mainly from the particle’s spin, mass, and type of interaction,
according to the scheme of Table 32-2.

Table 32-1*
Particle
Rest Mean Charge Lepton Baryon
Particle Mass, | Lifetime, Number Number Number | Strangeness
(Antiparticle) | MeV $ 2 Spin £, e, B &
Massless
bosons |y (y) 0 stable 0 1
Leptons | v, (7,) 0 stable 0(0) 1/2 | +1(~1)
v, (3,) 0 stable 0(0) 1/2 +1 (=D
e (™) 0.511 stable —-1(+D) | 1/2 | +1(=])
p(nt) 1057 [22% 1076 | —1(+1) | 1/2 +1(-1)
Mesons |[7% (77) 1396 [26x107% [ +1(-1) | O 0
° (7% 135.0 | 0.8 x 10716 0 0 0(0)
7~ (v%) 1396 [26%x107% | —1(+D)| O 0(0)
K*(K™) 4937 [12x1078 [ +1(-D | © +1(-1
K° (K% 4977 18.8x 10" | 0(0) 0 +1(=1
K° (K% 4977 |52 % 1078 0(0) 0 —1(+1)
K (K*) 4937 [12%x107¢% | —1(+1) | O —1(+1
17° (1°) 549 |2.5% 1071 0 0 0 (0)
Baryons | p (p) 938.3 stable +1(-1){1/2 +1I(-D 0 (0)
n (R) 939.6 932 0(0) 1/2 +1(=1 0 (0
A° (A% 1116 [25%x107°| 0@© |1/2 +1(=1)] —1(+D
2 E0) 1189 | 80X 10~ | +1(=1) | 1/2 +1(-D}{ =1(+D
0 EY 1192 10~ 0(0) 1/2 +1(=D| —1(+D
=T (EY) 1197 [ 15X 1071 | —1(+1) | 1/2 +1(=D| —=1(+1)
=0 (50 1315 | 3.0x 10710 0 (0) 1/2 +1(-D| —2(+2)
IT(EY) 1321 |{L7X10710 | —1(+1) | 1/2 +1(-1| —-2(+2)
Q- @) 1672 [ 13X 10719 —1(+1) | 3/2 +1 (=D —3(+3)

- Adapted from Thomas G. Trippe, et al., Rev. Mod. Phys., 48:2, Part 11 (1976).
215
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* Table 32-2

Mass
Family Spin (m, = mass of electron) Type of Interaction
Massless bosons Integer 0 Electromagnetic, Gravitational
Leptons Half-integer 0< M <207m, Weak, Electromagnetic
Mesons Integer 273m, < M < 1075m, Strong, Weak,
Electromagnetic, Gravitational

Baryons Half-integer 1836m, < M ‘ Strong, Weak,

: Electromagnetic, Gravitational

322 PARTICLE INTERACTIONS

Table 32-2 shows that in addition to the familiar gravitational and electromagnetic interactions
there are two other types of forces by which particles may interact with each other, namely the strong
and weak interactions. ‘

The force that holds the nucleons together in a nucleus is an example of a strong interaction.
Since protons are bound within a nucleus, the strong interaction must be much greater than the
electromagnetic interaction, which tends to force the protons apart. In addition, it is found that the
strong interaction does not-depend on the charge of the body. An example of a strong interaction is

7 +po>a’+n
The existence of weak interactions is necessary to explain how a neutrino interacts with nuclear
matter. Since a neutrino is massless and carries no charge, it cannot undergo gravitational or

electromagnetic interactions. Moreover, since it is not a nucleon, a neutrino does not participate in
nuclear or strong interactions. An example of a weak interaction is

nopte +7¥
Both the interaction strengths and decay times (lifetimes before decay) of elementary particles are
characterized by dimensionless coupling constants. At low energies the larger the coupling constant,
the stronger the interaction and the shorter the lifetime. For the electromagnetic interaction the
coupling constant is .
ket _ L
. hc 137
and mean lifetimes against electromagnetic decays are about 1076 5. For strong interactions the
coupling constant is g*/hc~13 (g is a constant appearing in Yukawa’s theory) and strong decays
have lifetimes of about 1072 s. The weak coupling constant is about 3 X 10~ '? and weak decays
have mean lifetimes of about 107 s. The gravitational coupling constant, Gm?/hc, where m is a
nuclear mass, is about 10~%. "All particles listed in Table 32-1 have lifetimes which are large
compared to 1072 s, the mean lifetime for strong decays.

323 CONSERVATION LAWS

All elementary particle reactions and decays appear to obey certain conservation laws and
selection rules. These include the familiar conservation laws for:

(a) Mass-energy ‘

(b) Linear momentum

(¢) Angular momentum (spin)

(d) Charge

which are found to hold whether the process goes by the strong, weak or electromagnetic interaction.
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The last of these conservation laws differs from the others in that not only is charge conserved but
it is also quantized in units of e, the magnitude of the electron charge. Conservation of quantized
charge can be expressed by assigning a charge quantum number, © = charge/e, to every particle. Ina
reaction the initial and final values of the total 2 will then be equal. For example, in antiproton
production,

ptrp—> ptptptp
9: +l+1=4+1+1+1-1

32.4 CONSERVATION OF LEPTONS

Several other conservation laws or selection rules are found to hold for other quantum numbers.
A lepton number is defined as £ = +1 for lepton particles, £ = —1 for lepton antiparticles, and £ =0
for all other particles. Lepton numbers for electrons and their associated neutrinos (,), and also
lepton numbers for p-mesons and their associated neutrinos (»,), are separately conserved in all
processes. Examples of the conservation of leptons are:

p-—e +ty, t,

+1= 0 + 0 +1

o

ue

L.: 0=+1-1+0
Kot +e +7,
£,: 0= 0+1 -1

325 CONSERVATION OF BARYONS

Similarly, a baryon number, %, can be defined as being + 1 for baryon particles, — 1 for baryon
antiparticles, and 0 for all other particles. For any reaction or decay, the total baryon number is
conserved. Examples of this conservation law are:

n— pt+e +v,
B s +1=+4+1+0 +0

K +p->A +a% +0~
B: 0 +1=+14+0 +0

32.6 CONSERVATION OF ISOTOPIC SPIN

Table 32-1 shows that the mesons and baryons occur in groups, or multiplets, of like mass, the
particles in a particular multiplet differing with respect to charge. For example, the three pions (7%,
7% 77 ) all have a mass of about 140 MeV, and the two nucleons (n, p) have a mass of approximately
940 MeV.

Mesons and baryons interact with each other by means of the strong interaction. Because of the
charge independence of the strong interaction, all particles in a multiplet should interact with another
particle strongly in the same way; however, the (much weaker) electromagnetic interaction causes
small differences. This charge independence has led to the introduction of another quantum number,
called the isotopic spin, I, defined such that 27 + 1 gives the number of particles in the particular
multiplet. Thus, for pions / = 1 and for nucleons I = 1.

Isotopic spin is treated as a vector with magnitude V(7 + 1) , like angular momentum. How-
ever, unlike angular momentum, isotopic spin is a dimensionless quantity. The z-component of the
isotopic spin, m,, is quantized according to

m=L1-1,..., -1 (32.1)
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‘Each particle in the multiplet corresponds to a value of m;, with the values arranged in order of

“decreasing charge. Thus, for the pions, m; = +1,0, — 1 for =™, «° 7=, respectively, and, for the
nucleons, m, = + 4, — 1 for the proton and neutron, respectively. Antiparticle multiplets have the
same isotopic spin as the corresponding particle multiplet, but m, for an antiparticle is the negative of
m, for the corresponding particle. Table 32-3 gives I and m, for the mesons and baryons.

Table 32-3
m; .
Baryons I 1 1/2 0 -1/2 -1
940 MeV 1/2 p n

1110 MeV 0 A |

1190 MeV 1 =+ =0 =T

1320 MeV 1/2 =0 : E-

1670 MeV 0 Q-
Mesons

138 MeV 1 at «° ‘ a”

496 MeV 1/2 K* K°

549 MeV 0 7°

It is found that in all strong interactions the total isotopic spin (added as a vector) is conserved. For
the case of two particles, I = I, + I, the z-component of the resultant I is given by

) m=m +m, 1 (32.2)
and the allowed values of I are given by
' , I=L+ L L+L-1L,L+1L-2,... (32.3)
the sequence terminating in |/, — I,| or |m,|, whichever is greater. For example, in the strong reaction
mp+pont +n |
we have for the reactants
; ' m=0+i=1 . I=1+},1+4-1=4%,}
and for the products
m=1-1=1 I=1+4,1+4-1=3,1

It is further found that in all strong and electromagnetic processes the total my is conserved. The

above example illustrates this conservation law.
It should be noted that the conservation laws for isotopic spin do not apply to weak interactions.

For example, in _the weak decay ‘
K 5a%+7°
m: —1#0+0
I 1 4#2,1,0

so that neither m, nor [ is conserved.

327 CONSERVATION OF STRANGENESS

It is found experimentally that the K-mesons—and the A, Z, %, and € baryons (this group being
referred to as hyperons)—are always produced in pairs in strong interactions, a phenomenon called
associated production. Moreover, the lifetimes of these particles are very much greater than 1078 s,
showing that they do not decay by the strong interaction (which they might be expected to do). To
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explain this “strange” phenomenon a new quantum number, the strangeness, &, was introduced in
Table 32-1, and particles with & # 0 were designated as strange particles. It was found that the total
strangeness (added as a scalar) is conserved in strong and electromagnetic reactions (or decays). In weak
interactions it is found that AS =0, 1. This second condition, though not a conservation law,
forbids certain reactions and is called a selection rule.

An example of strangeness conservation in a strong process is

Tt +p—> ZT+K*
S: 0 +0=-1 +1
while in the weak decay
ANsq + p
S -1#0 +0
strangeness is not conserved but the selection rule for strange particles is satisfied (AS = +1).
The strangeness of a particle can be expressed in terms of its charge, baryon number, and
z-component of isotopic spin.
L=m+ (D +53) (32.4)

With this definition the strangeness of a particle will be an integer, and the strangeness of an
antiparticle will have the opposite sign to that of its associated particle.

32.8 CONSERVATION OF PARITY

Another quantity that we mention for completeness is parity, which is conserved in a reaction if
the mirror image of the reaction (involving the antiparticles) also occurs. It is found that parity is
conserved in strong and electromagnetic interactions but is not conserved in weak interactions.

329 SHORT-LIVED PARTICLES AND THE RESONANCES

Because of their extremely short lifetimes, particles such as the 7° and 1° (7, < 107! 5) and the
resonances (7, < 107%! s) do not leave observable tracks in instruments like bubble chambers. Their
existence is inferred by measuring the energies and momenta of the final decay products and working
backward through the conservation laws to see if the measured results are consistent with the
assumption of the existence of the unobservable intermediate particle. For example, when the K *
decays, what is observed is a #* particle and two y-rays, so that it might be believed that the decay
scheme is

K*osat +2y
However, it is found experimentally that in the center-of-mass system the # * particle is monoenergetic

(see Problem 32.22). This fact rules out a three-particle decay (which would be associated with a
distribution of w* energies — see Section 29.5). The correct decay is

K* gt +4°

l—>2y
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32.2.

323.
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Sdlved Problems

A 150 MeV K* particle decays into 277 +7~. Rarige measurements in a photographic
emulsion give the kinetic energies of the 7*’s as 68.6 MeV and 80.8 MeV, and that of the 7~
as 75.5 MeV. Find the Q for the reaction and the mass of the K *.

The reactionis Kt >a* +o* +o7, 50
0= K+ +Ky+ +K,- — Ky = 68.6 MeV + 80.8 MeV + 75.5 MeV — 150 MeV = 74.9 MeV
From Q = (my+ —2m,+ —m,-)c? we then obtain

mgec? =0+ (2m,+ +m,-)c? =749 MeV + 3(139.6 MeV) = 493.7 MeV

- Give the possible values of the isotopic spin and its z-component for the following systems of

particles: (a) #* +p, (b)) 7~ +p.

(@) Forn*,I1=1,m =1, and for p, I =}, m; = 3; so that the total m, is 1 +1=32. By(32.3), the
only possible value of the total isotopic spin is

—1+423
I=1+ 7 =3
() For 7w, I=1, my=—1, and for p, I =3, m;=1; so that the total m, is -1+3=-4. By
(32.3), there are two possible values of the total isotopic spin:
NS BN - B |
I=1+5,1+5-1=3, 5

In the following reactions, what particles are possible for the unknown particle X ? (Al
reactions are strong.)

(@) K +po>K*+X
() =~ +p K" +X
() p +p—mt +n+ A%+ X

Writing the various conservation laws for each reaction we have:

(a) chargenumber: —-1+1=+1+2 or 2 =-1
lepton number: 0+0=0+€ £ =0
baryon number: 0+1=0+9% : B =1
strangeness: -1+0=+1+5 S = -2
z-componént of

isotopicspin:  —i+i=+1+m my=—1
These properties fix X as a £~ particle.

() charge number: —1+1=0+2 or 2 =0
lepton number: 0+0=0+¢€ £ =0
baryon number: 0+1=0+% ; B =+1
strangeness: 0+0=1+5 S =-1
z-component of

isotopic spin;  —1+31=—1+ m,i ‘ m =0

These properties fix X as either a =° or a A? particle.
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(c) charge number: +1+1 =+14+0+0+2 or Q +1
lepton number: 0+0= 0+04+0+ £ £ =
baryon number: +1+1 = 0+1+1+ % B 0
strangeness: 0+0 = 0+0-1+4+5 S =+1
z-component of
isotopic spin:  +4+1 = 1-1+0+m, mp=+1

These properties fix X as a K *-meson.
324. In the following pairs determine which of the reactions is possible.

(@) =~ +p—>2°+ 7°

(strong interaction)
7" +p->30+ K°

b 2T oTm +
(%) K (weak decay)
2T +p

(c) p+p-oK*+Z* . ‘
. (strong interaction)
p+p—>K ' +p+A

(d) #7+pon+y ) )
o o (strong interaction)
7" +pon + A

() nop+te +v,
nop+e +7 (weak decay)

The reactions marked “none” in the last column of Table 32-4 violate none of the applicable
conservation laws and so are possible.

Table 324

z-Component Violated

Reaction Charge Lepton Baryon Strangeness of Isotopic Conservation
Pair Number (2) Number (£,) Number (%) ) Spin (m,) Laws

(@ 7 +poZ+q° —1+1=0+0 |0+0=0+0| O+1=1+40 [0+0# ~1+0| —~1+4 #0+0 S, m
7 +p->30+ K° —1+1=0+0 |0+0=0+0]| O+1=1+0 | 0+0=—1+1 ~1+4i=0-14 none
b)) Z"sa +n ~1l=-1+4+0 [0+0=0+0 1=0+1 (not applicable) (not applicable) none
TosaT+p —1# ~1+1 |0+0=0+0 1=0+1 2

() p+p-oK*+2* I+1=1+1 0+0=0+0 [1+1#0+1 0+0=1-1 1+4# 4i+1 B, m
PHpoK 4p+ A% [ 1+1=1+1+0(0+0=040 [1+1=0+1+1[0+0=1+0-1| i+i=i+440 none
(d) n +posn+y -1+1=0+0 | 0+0=0+0 O+1=1+0 0+0=0+0 —1+i==-1+0 none
" +p-sa®+ A® -1+1=0+0 [0+0=04+0| 0+1=0+1 04+40%#0-1 [—1+4£0+40 s, my
(&) nopt+e +, O=+1-1+0 |O#0+1+1 0=0+0+0 (not applicable) (not applicable) £
nop+e” +7, O0=+1-140 |0=0+1-1 0=0+0+0 none

32.5. Explain why the decay =°— A° + y is observed but not

sp+a or Xon+q°
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In the decay -
' 05 A%+ vy
§: -1 =-1+40
strangeness is conserved, and the lifetime of the 3° (=~ 10~'* 5) indicates that it decays by the faster
electromagnetic process and not by the slower weak interaction (lifetime ~ 10~ 10.5). * The decays

p+a”

S: -1%0+0 AS = +1)
O sn+q°

S: -1#0+0 (AS = +1)

would be weak because the strangeness changes.

32.6. Figure 32-1 shows two sets of bubble chamber tracks (a magnetic field is directed into the
paper). Identify the unknown neutral particles (dashed tracks).

T t
. /x
Proton™ -
at rest > - >
Y
P
Fig. 32-1
. (a) The reaction is K~ > 7~ +X. The conservation laws that must be satisfied are
spin: 0=0+5

lepton number: 0=0+ £
baryon number: 0=0+ %

Therefore § = £ = ® =0. From Table 32-1 it is seen that the unknown particle is an uncharged
meson, either #°, K K° or #° Since the rest mass of the parent X~ must be greater than the
combined rest masses of the daughters (Q > 0 for a spontaneous decay), the only possibility is that
X is a #%meson.

(b) The decay of particle X is X »>o* +7~. Conservation laws applied to this decay yield

spin: S=+1-1=0
lepton number: £ = 0+0=0
baryon number: %= 0+0=0

As in (a), a 7° K° K° or n° is indicated. This time, Q > 0 rules out the 7%-meson. The lifetime
of the n%meson is so short (7, < 107 '8 5) that its path would not be observable on the diagram.
Thus the particle X can only be a K% or K%meson. The correct choice will be made by
determining particle Y.

The decay of particle Y is Y >#~ +p. Application of conservation laws to this decay yields

spin: S=0+1i=1
lepton humber: £ =0+0=0
baryon number: $=0+1= +1
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32.7.

328.

From Table 32-1 these properties indicate that particle Y is an uncharged baryon, either n, A, >0

or Z% Since the mass of the parent must be greater than the combined mass of the daughters, the

neutron is ruled out. Because Y decays weakly, we know that AS =0, = 1; and since 7~ +p has
S =0, we know that particle ¥ has S =0, % 1, thereby ruling out Z° From Problem 32.5 we see
that the Z° decay is
SO LAy
so the particle Y must be a A% which has § = —land I =m, =0.
To fix X we return to the original strong interaction reaction, which must be either
7" +p > K+ A°
S: 0 +0=1 -1
or
T +p o K%+ A°
S: 0 +0 # —-1-1

The second reaction doesn’t conserve strangeness, so K° can be ruled out, leaving X as a K %-meson.

A 3° particle decays at rest to a A® particle. Determine the energy of the released photon.

The reaction is =°— A%+ y. From conservation of momentum we have, using the relativistic
relationship E2 = (pc)* + (moc?),

E'Y
PATPy = i
2
prct=E; — (M) = E} (1)
From conservation of energy we have
Msct=E,+E, or E}=(Msc?) + E2 - 2MscE, (2)

Combining (/) and (2), we obtain

2 2
(M) = (Mac®)" (1192 MeVY — (1116 MeV)’

E, 2M>:cz (1192 MeV) = 73.6 MeV
Determine the energies of the products in the reaction
7" +p—on+ 7°
if the 7~ and p were initially at rest.
From conservation of momentum,
Pa=po o (pa)'=(ppc)’ (1)

Using the relativistic relationship between energy and momentum for each of the final products, we have
E}=EZ + (p,c}  Eh=E}o+ (p,,oc)2
Subtracting these and using (/), we obtain
E2— Eb = EZ, — Ego=(939.6 MeV)’ — (135.0 MeV)’ = 8.646 x 10° (MeV)’
or
(E, + E)(E, — E,0) = 8.646 X 10° (MeV)? )
From conservation of energy,
E, + Eo=Ey, - +Ey = 139.6 MeV + 938.3 MeV = 1007.9 MeV (3)
Substituting this in (2), we obtain
(1077.9 MeV)(E, — E,o) = 8.646 X 105 (MeV)’
E, — E,o=802.1 MeV 4)
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Solving (3) and (4) simuitaneously, we obtain

. E,=9400MeV  E,o=137.9 MeV

from which
K, = E, — E,, = 940.0 MeV — 939.6 MeV = 0.4 MeV
K= Ep— Ego=137.9 MeV — 135 MeV = 2.9 MeV

Find the threshold energy for the high-energy reaction
m+m-o>M+M+ -+ M,
if the target, m,, is stationary.
The calculation must be done relativistically. In the laboratory system, where mj is at rest,
Eypy = (mic? + Ky) + myc? | )
In the center-of-mass system the total momentum is zero, and at the threshold energy all the final
particles are created at rest. Therefore, ‘
Eq=(M;+ My+ - - - + M,)c? )

For a system of particles the quantity E? — (pc)? is invariant, where E is the sum of the energies of the
particles and p is the magnitude of the vector sum of the particle momenta. Therefore, since the total
momentum in the laboratory system is just the momentum of the projectile m,,

Elznb - (Plc)z = Eczm

[(me? + Ki) + myc?]' = (pie) = [(M, + My + - - - + M,)e?] (3)
Also, for the particle m,
(pic) = E = (myc)’= (K; + myc?)’ ~ (myc?)’ 4)
Elimination of (p,c)* between (3) and (4) gives a linear equation for K, with solution
K=Ky = - 5-'1;1; [+ my = M= My = - - - — M) omy+ my+ M + My+ - +M,)
=_2L"12Q(ml+mz+M,+M2+---+M,,) ‘ (5)

in terms of the (negative) Q-value of the reaction.
Note that, in a low-energy approximation, we could use the classical mass relationship

M1+M2+ ce +M,,=ml+m2
We would then obtain from (5)
Kn= - (m; + my)
my

in agreement with the nonrelativistic result of Problem 30.8.

Find the threshold energy for the reaction p + p—p + p + 7°.
For the reaction,
' Q=[mp+mp—(mp+mp+m.,,)]cz=—m.,,c2=—l35MeV
so, by Problem 32.9, '

Kt,,=—%(%+%+mp+%+m)=-;€?@%+m&

= _135MeV -
= 2(938 MeV) [4(938 MeV) + 135 MeV] = 280 MeV
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32.11.

32.12.

32.13.

This is the minimum energy that an accelerator must give to a proton to produce a #%-meson by the
above reaction.

From the reaction #~ +p—>n + y determine the possible values of the spin of a 7~ -meson.
From conservation of intrinsic angular momentum we have

S, t§,=8,+S8,

where |s| =\/s(s +1) k. On the right side we have 5, = 3 and s, = 1, so the total angular momentum is

1 or 3. The proton has s, =3, s0s,is Oor L.

Evaluate the quantity 7, = h/m_c’.

-16 .
h - 6.58 X 10 eV-s =47 % 10_24 s
m,c? 140 x 106 eV

Tog =

If one views the strong interaction as the exchange of a #-meson, then inside a nucleus processes
such as

nop+ma
can occur, even though mass-energy conservation forbids the process for free nucleons. According to

quantum mechanics, conservation of energy can be violated in the amount m_c? if the time for the
process is of the order given by the Heisenberg uncertainty principle:

h

At AE=~h or To(m,,cz)zh or Ty 3
m,c

Therefore, strong interaction processes occur on a time scale of about 107 s.

Estimate the mass of a 7-meson

If the range a of the 7-meson field is about the size of a nucleus and if it is assumed that the
7-meson travels at nearly the speed of light, then a = ery, where 7, is the time for the 7-meson to travel
the extent of the nucleus. Setting @ = 1.4 fm (the approximate nuclear size) and 7o = h/ m,c?, the time
consistent with the Heisenberg uncertainty principle (Problem 32.12), we obtain

ch_ _ 197 MeV - fm

m,c? m,c?

1.4 fm = or  m,c*=141 MeV

This compares well with the observed masses of «-mesons (Table 32-1).
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32.14.

32.15.

32.16.

32.17.

32.18.

32.19.
32.30.

32.21.

32.22.
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Suppleihentary Problems

Find the threshold energy for the reactionp+p—op+p+p+p.  Ans. 5630 MeV

Give the possible values of the isotopic spin and its z-component for the system of particles K+ + p
Ans. my=11=1

Which of the following weak decays is not possible for the 277 ‘
(@ Q@ SE +a° (b)) Q@ >A°+K- (c) @ -2 +K°
Ans. (¢) ‘

The p* decays weakly to a positron plus neutrinos. Which neutrinos are observed in the final state?
Ans. v+ ¥,

Which of the following strong reactions is possible?
(@) p+pop+n+K* (b)) p+p->A"+K'+p+a*
Ans. (b) . )

Which conservation laws are violated in the reaction p—> 7%+ e* +e7?  Ans. % and 2

For the decay A%—>p + 7™, with the A° initially at rest, find the 7~ kinetic energy.  Ans. 32.7 MeV

For the decay # ~ — e~ +7,, with the =~ initially at rest, find the ¢~ kinetic energy. Ans. 693 MeV

For the decay K* »>a* +71°‘2 calculate the #* kinetic energy in the K * rest frame (which is the
y ,
center-of-mass frame). Ans. 108 MeV
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Chapter 33

Molecular Bonding

33.1 IONIC BONDING

Ionic bonding is the type of bonding found in most salts, in which an alkali metal (the first column
in the periodic table—Li, Na, K, . .. ) is bound to a halogen (the seventh column in the periodic table
—F, ClLBr,...). To explain ionic bonding let us analyze the typical salt KCl. Potassium (;gK) has
one 4s electron beyond a closed inert argon core (1s? 252 2p® 352 3p® 4s' = 4Ar + 4s').  Because the
last electron is weakly bound, having an ionization energy of only 4.34 €V, it is very easy to form a
potassium ion K*. Chlorine (;,Cl) lacks one electron from closing the 3p shell (1s? 25* 2p® 3s?
3p5 = Ar — 3p’), so that it is relatively easy to bind an extra electron to a chlorine atom to form the
negative chlorine ion Cl~. Neutral atoms like CI that have the ability to accept an extra electron are
said to have an electron affinity. The energy, called the electron affinity energy, required to remove the
extra electron from a Cl~ ion to form a neutral Cl atom is found to be 3.62 eV. The fact that energy
must be added means that the total energy of the chlorine ion is actually lower by 3.62 eV than the
total energy of the neutral chlorine atom. ’

The formation of a KCl molecule can be thought of as occurring in two steps. First, an electron
is removed from neutral potassium, forming a K* ion, and transferred to a neutral chlorine atom to
form a Cl™ ion. In this process 4.34 eV must be added to the potassium atom, but 3.62 eV is given
back by the Cl atom; hence the net energy required to form the K* Cl™ pairis 434 eV — 3.62 ¢V, or
0.72 eV. In the next step, the K* and Cl~ ions can be imagined to be brought together to form the
neutral KCl atom. In this process the energy of the system will increase in a negative manner because
of the Coulombic attraction between the two oppositely charged ions. The final total energy of the
system will be the sum of the positive 0.72 eV required to form the original K* CI™ pair and the
negative Coulomb energy of the combined ions. If this total energy is negative, the KCl molecule will
be stable, since it will require energy to dissociate the molecule into the original K and Cl atoms.
Experimentally it is found that the ions in KCl are separated by a distance of ro = 2.79 A and that KCI
has a dissociation energy of 4.42 eV. ,

Since the Coulomb force between the two ions is attractive it might at first be expected that there
would be no stable configuration. However, at sufficiently small distances the electrons in the ions
produce repulsive effects because of the Coulomb force between them and also because of the Pauli
exclusion principle. Thus, because there is an attractive force at large separations and a repulsive
force at small separations, there exists some intermediate separation at which the K* and C1~ ions will
be in equilibrium.

33.2 COVALENT BONDING

Molecules such as H,, Cl,, NO are bound by a mechanism known as covalent bonding. To
explain covalent bonding in detail would require the quantum mechanical solution for a many-electron
system under the influence of two nuclei. Though quantum mechanical solutions are beyond the
scope of this book, their results can be given to explain covalent bonding.

As an example of covalent bonding consider the simplest covalent molecule, H,. The H,
molecule can be visualized as two positive charges with two electrons moving in their electromagnetic
fields. The two electrons can be found with total spin S = 0 (singlet state, with spins antialigned) or
S = 1 (triplet state, with spins aligned). The quantum mechanical solution shows that the singlet state
has the lower energy. Moreover, it is found that the most probable location for the two electrons is

227
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between the hydrogen nuclei. The protons on' either side of the electrons are thus attracted to the
negative electrons between them, resulting in a force binding the two protons together.

The H;" molecule will bond essentially the same way as the neutral H, molecule, but because only
one electron is present to attract the protons, the bonding is much weaker. For H, the bonding
energy is 4.48 eV and the atomic separation 0.74 A, while for H) the bonding energy is 2.65 eV and
the atomic separation is 1.06 A.

The difference between covalent and ionic bonding is that in covalent bonding the electrons are in
effect shared by the atoms, while in ionic bonding an electron is effectively transferred from one atom
to another. In most chemical bonds there is some contribution from each type of bonding.

The differences between the two types of bonding are also manifested in the relative sizes of the
electric dipole moments ‘of ionically and covalently bound molecules. An electric dipole can be
thought of roughly as two equal but oppositely charged particles separated by a small distance d; the
magnitude of the electric dipole moment vector p is then given by p = Qd, where Q is the magnitude of
the charge of either particle, with the direction of the dipole moment vector being from the negative to
the positive charge. The dipole moment of an ionically bound molecule is relatively large because of
the large separation between the two charged ions. For a covalently bound molecule, on the other
hand, where the electrons are located betrween the two nuclei, there are effectively two dipole moments
formed by the two positively charged nuclei and the negatively charged electrons. Because they point
in opposite directions, the two dipoles tend to cancel each other, resulting in essentially no dipole
moment for a covalently bound molecule.

333 OTHER TYPES OF BONDING

It is possible for two or more atoms, each normally possessing zero dipole moment, to induce
dipole moments in each other. The induced dipole can be thought of as arising from the separation
of the atom’s positive and negative charge because of the close proximity of another atom. The weak
attractive force between the induced dipoles is called a van der Waals bond. It is the sole force that
bonds the inert elements in the liquid and solid state. ‘

In metals, atoms do not share or exchange electrons to bond together. Instead, many electrons
(roughly one for each atom) are more or less free to move throughout the metal, so that each electron
can interact with many of the fixed atoms. The effects of this interaction, which can be explained
only in terms of a quantum mechanical analys1s, are responsible for the metallic bonding holdmg the
metal together.

Solved Problems

33.1.  Obtain an expression for the dissociation energy of an ionically bound, diatomic molecule of a
salt in terms of the interatomic spacing, the ionization energy of the alkali, and the electron
affinity energy of the halogen. Compare the results predicted by the equation with the
experimental values of D given in Table 33-1.

The dissociation of an ionically bound, diatomic molecule can be thought of as occurring in three
steps: (1) increasing the separation of the two ions from a distance ry to infinity, which requires an
energy — Ec = + ke?/ry (the negative of the Coulomb energy); (2) the removal of an electron from the
negative halogen ion to neutralize it, requiring an energy equal to the halogen’s electron affinity energy,
F; (3) the placing of this electron on the positive alkali ion to neutralize it, requmng energy — I, where /
is the ionization energy of the alkali.

The energy D required to dissociate the molecule is thus

ke? 1440 eV A

D=—4+4+F-1I=
To ro

+F-1
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33.2,

33.3.

Table 33-1

Alkali Ionization Energy, I Halogen Electron Affinity Energy, F
Li 5.39 eV F 345eV

Na 5.14eV Cl 3.62eV

K 434 ¢V Br 3.36eV

Salt Bond Length, ry Dissociation Energy, D

LiF 1.56 A 5.95 eV

NacCl 251 A 3.58 eV

KCl 279A 442V

KBr 294 A 3.96 eV

Substituting the data from Table 33-1, we obtain

LiF: p=1440eV-A L 4 5ev_539eV=729eV
1.56 A

NaCl: p=1440eVA 50 ev_514cV =422eV
251 A

KCl: p=14A06V"A | 36 v _434eV =4d4eV
279 A

KBr: p=1440eV A | 330y _434eV=392eV

294 A
It is seen that the predicted values agree fairly well with the observed dissociation energies.

Estimate the dipole moment for KCl (ry, = 2.79 A).
If we assume the charge separation to be the atomic separation, the dipole moment is given by
p=0ro=(L6x10"7C)(2.79 X 107" m) = 4.46 X 100 C'm

(Dipole moments are often given in debyes; 1 D = 3.335641 X 1073 C-m.) The actual dipole moment
is found to be 2.64 X 10~2° C - m, showing the centers of charge to be closer than the atomic separation.

The two protons in a H, molecule are separated by 0.74 A. How much negative electric

. charge must be placed at a point midway between the two protons to give the system the

observed binding energy of 4.5 eV?

The binding energy, the energy necessary to remove all particles to infinity, will be equal in
magnitude to the total Coulomb energy of the charges forming the H, molecule. The Coulomb energy
consists of a positive contribution from the two protons,

_ ke _ 1440eV-A

To 0.74 A

and a negative contribution from the unknown negative charge 6(— e) located midway between the two
protons,

=19.5eV

+

2
E_=8(—eWyy= —se(—’“’— + ke )= _ g ke’

re/2  re/2 ro/2
1440 eV - A
= -2§ = —(778¢eV)s
oy - 778V
From this we find
—BE=E, +E_

~45eV=195¢eV - (778 eV)d
6 =0.308
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This number is much smaller than the & = 2 electrons that actually exist in a H, molecule. These
two electrons. are not located exactly at the midpoint but can be found anywhere around the two
protons. However, the most probable place to find the two electrons is, from a quantum mechanical
analysis, at the midpoint between the two protons. Thus the electrons spend most of their time around
the midpoint, thereby producing the attractive force that results in the covalent bonding of an H,
molecule.

An approximate expression for the potential energy of two ions as a functlon of their
separation is

PE= - k& . b
N r9
The first term is the usual Coulomb interaction, while the second term is introduced to
account for the repulsive effects of the two ions at small distances. Find b as a function of

the equilibrium spacing 7,.

The minimum of the expression for the potential energy occurs at the equilibrium separation 7,
The minimum is found as follows:

d(PE ke’
(d ) ki - % =0 or b= 9 0
r rery ro To

" The general shape of PE as a function of r is shown in Fig. 33-1.

PE A

~Y

Fig. 33-1

Calculate the potential energy of KCl at its equilibrium spacing (r, = 2.79 A).

From Problem 33.4 the minimum PE is

b ke ke? 8ke?
PE, = ,—o“,—g o T 9, 9r0 Sr,

- —8(14.40eV - A)
= -———A—9(2.79 y = ‘4.59beV

An expression for the potential energy of two neutral atoms as a function of their separation r
is given by the Morse potential,
| PE = Py[1— e~o¢~"0]

Show that r is the atomic spacing and P, the dissociation energy.
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33.9.

33.10.

33.11.

33.12.

The minimum in the potential energy function is found from

d(PE
(dr ) - zpoae—a(r—ro)[l _ e_“("'"o)] =0

giving r = r, for the equilibrium separation. At r = ry, PE = 0; as r— o0, PE— P;.  Thus an amount of
work

Py—0=P,

is needed to bring about an infinite separation of the atoms, and this is the dissociation energy.

Supplementary Problems

Determine the minimum separation for Na* and C1~ if they are just to be bound. Consider the ions as
point charges. (The ionization energy of Na is 5.14 eV, the electron affinity energy for Cl is 3.62 eV,
and the dissociation energy of NaCl is 3.58 eV.) Ans. 2.82 A

The dissociation energy of KI is 3.33 eV. Calculate the bond length (interionic distance) for KI given
that the electron affinity energy of I is 3.06 eV and the ionization energy of K is 4.34 eV. (The
measured KI bond length is 3.23 A) Ans. 3.12 A

The dipole moment of KI is 3.05 X 107* C-m. Estimate the bond length of KI. (Experimentally it is
found that ry = 3.23 A)) Ans. 191 A

Suppose the two electrons in H, were located at a point midway between the two protons. What must
then be the separation between the protons to account for the observed binding energy of 4.5 eV?
Ans. 96 A

The two protons in a HF molecule are separated by 1.06 A and the binding energy is 2.6 eV. How
much negative electric charge must be placed at a point midway between the two protons to be
consistent with these values? Ans. 0.298e

Using the data in Problem 33.8, calculate the potential energy of KI at its equilibrium spacing.
Ans. —4.10eV



Chapter 34

Excitations of Diatomic Molecules

In complex molecules one finds that besides the normal electron excitations the molecules can also
possess rotational and vibrational motions. We shall restrict our discussion to diatomic (two-atom)
molecules, which exhibit all the important features of molecular excitations without undue mathemati-
cal complexity. '

341 MOLECULAR ROTATIONS

The rotational motion of a diatomic molecule can be
considered as the planar rotation of a dumbbell about its
center of mass (see Fig. 34-1). If the moment of inertia of
the system about the center of mass is 7, the kinetic energy
E, due to the rotational motion will be

‘Iw, 2 2
E’=%]w3%lg__)_=lL_ (34.1)
where w, is the rotational angular velocity and L = /e, is the
angular momentum of the system.

As with many-electron atoms, the angular momentum of molecules is quantized and can assume

only one of the discrete values
L} =\/l(l+ 1) A 1=0,1,2,... (34.2)

Thus the rotational kinetic energy given by (34.1) will be quantized, taking on only the values
I(1+ 1)A?
g DY
r 21
A typical rotational energy-level diagram is given in Fig. 34-2(a).

(34.3)

34.2 MOLECULAR VIBRATIONS

The chemical bonds holding a diatomic molecule together allow vibrational motions to occur in a
manner similar to the vibrations of two'masses at opposite ends of a spring. For sufficiently small
energies the vibrational motions of molecules can be considered to be approximately simple harmonic.
A quantum mechanical treatment shows that a harmonic oscillator can assume only discrete vibra-
tional kinetic energies, E , with values '

E,=(n+1)ho, n=0,1,2,... (34.4)

where «, is the vibrational angular frequency, which depends upon the restoring constant and the
reduced mass of the system. _

It is seen from (34.4) that the lowest vibrational energy is E, = 1hw,. Thus at its lowest energy
the molecule is not at rest but is performing some minimum vibration about its equilibrium point.
Equation (34.4) predicts that the energy levels of -a harmonic oscillator will be equally spaced in
intervals of siw,. At higher energies, however, the simple harmonic oscillator approximation breaks

232
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2 Rotational Vibrational
levels levels
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(a) Rotational levels (b) Vibrational levels (¢) Combined levels
Fig. 34-2

down and it is found that the energy levels actually become more closely spaced than predicted by
(34.4). An energy level diagram for a typical harmonic oscillator is shown in Fig. 34-2(b).

343 COMBINED EXCITATIONS

It is found that the vibrational energy level spacings are roughly 10-100 times the rotational
energy level spacings (see Problem 34.7). In classical terms this means that there are many cycles of
vibration during each rotation, so that the two motions can be treated separately. Figure 34-2(c)
shows the small rotational energy levels superimposed on the larger vibrational energy levels.

Transitions between the levels can occur either by photon emission in molecular deexcitation or by
photon absorption. In most cases at low energies, the transitions are subject to the selection rules

Al=2*1 An= %1
One of the uses of vibrational and rotational spectra is to obtain bond distances and bond
stiffnesses of molecules (see Problems 34.4 and 34.8).
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Solved Problems

Consider a diatomic molecule to be a dumbbell with masses m; and m, at the ends of a

massless rod of length r,, Show that the moment of inertia about the center of mass for an

axis perpendicular to the dumbbell axis is
m,my

2= 2
To =Wy

- om+m
where p is the reduced mass (Section 19.3).

The moment of inertia of two point masses m,; and m, about the given axis through the center of
mass is ' '

I=mr}+ my? 1)
(see Fig. 34-1). From the definition of the center of mass we obtain
my \ my
" m 2 mrmy 0

and (/) becomes

myrg  \? mre \? mm;
I=m, +m, = rg
m, + m, m,+m, m;+m,

Determine the interatomic spacing of O,, given that #2/21 = 1.78 x107*

For an O, molecule the reduced mass is m/2, where m =16 u is the mass of each O atom.
Therefore, from Problem 34.1,

’ ="’L /2 | Kc?
0 m/2 mc? (1.78 X 10~* eV)mc?
h

_ - 1973eV-A
V(178X 104 eV)me?  1(1.78 X 10=* eV)(16 u)(931.5 X 10° €V /u)

=1214A

Show that the rotational frequency spectrum of a diatomic molecule will consist of equally
spaced lines separated by an amount Av = h/4x’l, where I is the moment of inertia of the
molecule.

From (34.3) the possible rotational energy values are
_a+ DA
Y

A transition between any two levels will result in the emission (or absorption) of a photon, whose
frequency v is found from

(h/ 2'”)

E,=hv=E,—E = (L + 1) = h(h + D]

v= L [12(12 +1) = 44 +1)]
Because of the selection rule A/ = * 1 we must have h=hL+1s0 that
V= [(1,+1)(1,+1+l)—1(1,+1)]— -———(I.+ )
The frequencies of the emitted photons are determined from /;, =0, 1, ..., so that for adjacent lines the
frequencies will be equally spaced by an amount - :
h

Ay = —- '
4% _ '
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344. The frequency separation between adjacent lines in the rotational spectrum of 3°CIF is
measured as 11.2 GHz. Determine the separation between the atoms.

From Problem 34.3,

- _h _ 6625x10"*]J-s
a7 Ay 47%(112%x 10°s7Y)

Then, from Problem 34.1,

+ my)l 35u+ 19 u)(1.50 X 107* kg - m?
m=\/(m‘ ac =\/( ur 1 uX Bm) Lu =271x10"m

1 = 1.50 X 10™* kg - m?

mm, (35 u)(19 v) 1.66 X 10 kg

or 2.71 A.

345. The interatomic spacing of a '2C'®0 molecule is 1.13 A. Determine the approximate
wavelength separation between adjacent rotational lines arising from electronic transitions in
the visible region (5000 A).

From Problems 34.1 and 34.3,

Ay = h ok
dn  dmurl
and, for small changes,
=A£)= _ £
Av= A( : ) 5 M
Hence,
|AN] = Mok A%(he)
¢ 4ol of M2 )
47 pr— c?lrg
B (5000 A)*(12.4 MeV - A) 0962 A
4172[( 1122;1166 u)(931.5 MeV/u)}(l.B A)?

34.6. Determine the rotational energy levels for H,, whose equilibrium spacing is 0.74 A.

The rotational energy levels and moment of inertia of H, are given by

_ B L
Er—ﬂl(l"'l) ]—,LU'O—T’O
Therefore
2 he)
E =t 21(1+1)=-—(~—CZ——21(1+1)
myrs (muc?)rg

(1973 eV - A)?

(1008 u)(931.5 X 10° eV /u)(0.74 A)* i+ D= (5T 1072 e+ 1)

The following table gives the first four rotational levels for H,.

! 0 1 2 3 4
E,eVXx 1072 0 1.51 4.54 9.08 15.1
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3438.

349,
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Estimate the vibrational energy-level spacing for H, (r, = 0.74 A).

Consider the hydrogen nuclei to electrostatically repel and to be held together by a spring. If the
spring is stretched an amount equal to the nuclear spacing, then the spring constant, X, is found from

2 2 .
=k_ez_.=Kr0 or K=-’S%=ﬁgvo_‘§_=35.5e7.vz_
o ro (074 A) A

Relating K to the harmonic oscillator angular frequency gives

hwl,=h"/!<— =n\[ %
u e

" where p, the reduced mass, is my /2. Therefore

R ) % 35.5 eV /A2
ha, =\ [ 2K = 1973V A) X35V sy
myc? 938 X 10° eV

which is the order of the vibrational energy-level spacing. From Problem 34.6 we see that the rotational
energy-level spacings are a hundredth the vibrational energy-level spacings. For this reason one can
regard rotational states as being built upon vibrational states, as shown in Fig. 34-2(c).

Infrared radiation of wavelength 3.465 um is strongly absorbed by HCl gas. What is the
force constant for a HCl molecule? ’

If the HCI molecule is treated like a quantized harmonic oscillator, it can assume only energies
E,=(n+}{)hw,

The absorbed infrared radiation will produce an increase in the energy of the harmonic oscillator.
Because of the selection rule An = * 1, this increase will be '

AE, = (n+ 1+ })ho, — (n + 1 )ho, = hw, ='-2h—w w,

Setting this increase equal to the energy of the photon, we have

c_h
h N 2%
27(3 % 10°m/s
@, =21 = WEXI0TM/S) s iax 104 He
A 3465x107%m
The reduced mass of an HCl molecule is - .

myme,  (1u)(35u)
mg+mg lu+35u

k
= 1661 X 1027 &) = 161 x 10~ kg
X u

The angular frequency of a harmonic oscillator is related to its reduced mass and force constant by
w, =VK/p ; hence,
K = po? = (1.61 X 10~ kg)(5.44 X 10 5~1)’= 476 N/m

Refer to Problem 34.8. Determine the total vibrational energy of one mole of HCI at
absolute zero temperature. '

At 0 K all the HCI molecules will be at the lowest possible energy, corresponding to n = 0 in (34.4).
Thus, using Avogadro’s number, N,

E a1 = No($he,) = (6.023 X 10 mol = ') 1 (1.055 X 10734 J -5)(5.44 x 10" 57")
=173 kJ/mol
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34.10. Molecules of N, are excited into the n = 1 vibrational levels and deexcite through the emission
of photons. What are the energies of the emitted photons? (Consider only the first five
rotational levels for each vibrational level.) For Ny, #2/21 =2.5 X 107 eV, hw, = 0.29 eV.

The energy levels are given by
hZ
E=hw,(n+4§)+ ﬁl(l+ 1)
and are shown in Fig. 34-3. The transitions all obey An = — 1; they are given by
2
AE = hw, + % ¢+ 1y -1+ 1]

From the rotational selection rule A/ = + 1 we must have !’ = / + 1, so that

2
AE=ho,+ 20+ =012
and from the selection rule A/ = —1 we must have I’ = | — 1, so that
L Yy
AE =ho, + 55 [~21 I=1,2,3,...
4 5X 1073 eV
3 3IX 1073 eV
2 1.5%x 1073 eV
1 0.5x 1073 ev
n=] e—/'=( 00eV 0435 eV
4 . 5% 1073 eV
3 3x 1073 eV
a 4
2 1.5X 1073 eV
b /
1 05X 1073 ev
n=0 =0 < y £ 0.0 eV 0.145 eV
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These transitions are summarized in Table 34-1. It is seen that the energies are separated by an amount
#2/1=0.5 % 1073 eV, except that there is no line occurring at AE = hw, = 0.29 eV.

Table 34-1
Transition l AE, eV
3 029 +2.0x 1073
b 2 029+ 1.5x 1073

¢ 1 029 + 1.0 X 1073

d 0 029+ 0.5 x 1073
e 1 029 -05x 10~3
f 2 029 - 1.0x 10~3
g 3 0.29— 1.5 % 10~3
h 4 029-2.0x 103

34.11. The absorption spectrum for a certain gas at room temperature is shown in Fig. 34-4.-
Determine the zero-point vibration energy of a molecule and the moment of inertia of a

molecule.
A
Av = 0.6 THz
2 b
§ T
G |
14 |
2 |
& |
|
|
|
|
L -
90
Frequency », THz
Fig. 344

The absorption spectrum shown is a combination vibration-rotation spectrum. Absorption of
photons by the molecules of the gas produce the excitations shown in Fig. 34-5. At room temperature
(T ~ 300 K) the molecules will not have enough energy to occupy vibrational bands higher than n = 0.
However, they will possess sufficient thermal energy to be excited into the various rotational levels of the
n = 0 vibrational band. Absorption of photons then produces excitations into the n = 1 band as shown
in Fig. 34-5. The selection rule An= +1 is satisfied. Because of the selection rule Al = *1, the
transitions occur in two groups, / >/ + 1 and / -/ — 1, as shown. . The energy difference between final
and initial levels, which is the sum of the vibrational energy difference and the rotational energy
difference, will be equal to the energy Av of the absorbed photon:

_ h 1 (kY
b= o, + (LU, + 1) = b+ D] 57 (‘ﬂ )
or ‘ :
= % _ _h
v=5-+ (o,@, + l,) L+ 1) Pwr
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I-1+1 I-1-1

Fig. 34-5

For the two groups of transitions we have

Wy h

1u=ll+1: V1=E+(l/+l)m [[=0,1,2,...
w,

=11 y2=§%—1,47’:21 L=1,23,...

The frequencies of the absorbed photons are thus seen to increase in steps of 4/47%I from

D4t (=diny) 0 2 s G =3ins

E et m ( = mvy, O 77—’ m ;= mvy,
with the exception of a gap at »,,,= w,/27. Hence by measuring the frequency difference A» between
adjacent levels one can find the moment of inertia from

h
Ay = —
a7l
-34 7.
[=—h 683X e 1047 g2

S 4nAr 47306 x 107571
Knowing the vibrational frequency (v4,, = 90 X 10'? s~"), we have for the zero-point vibration energy:
Ey=ho, = Ly, = 1 (4136 X 10715 eV +5)(90 x 1057 ) = 0.186 eV
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34.12.
34.13.
34.14.

34.15.
34.16.
34.17.
34.18.

34.19.

34.20.
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Supplementary Problems

The frequency separation between adjacent lines in the rotational spectrum of a certain molecule is

measured as 40 GHz. What is the moment of inertia of the molecule? ~ Ans. 4.20 X 10™% kg m?

The interatomic spacing of "Br'°F is 1.76 A. What is its moment of inertia?
Ans. 1.88 X 107% kg m?

Refer to Problem 34.13. What will be the frequency separation between adjacent lines in the rotational
spectrum of ®Br'®)F?  Ans. 21.3 GHz

For n=0 determine the ratio of the wavelengths of the photons emitted in the /=2 — /=1 and
I =1- =0 transitions in a molecule. ~ Ans. 1/2 )

. The energy difference of the photons emitted in the /=0 — /=1 and the / = 1 — [ =2 transitions,in

1B 160 is measured as 4.46 X 10~* eV. What is the interatomic spacing of BO?  Ans. 120 A

The wavelength separation in the rotational spectrum of a certain molecule is measured as 3.62 A'in the
visible region (5000 A). What is the moment of inertia of the molecule? ~ Ans. 3.86 X 107" kg - m?

Calculate the first three rotational energy levels of Br'°F (ro = 1.76 A).
Ans. 0eV; 881X 107%eV; 264X 107° eV; 528 X 107° eV

Refer to Problem 34.18. What photon wavelengths would produce the rotational transitions / =0—
I=1land/=1-17=2in ”Br'®F?  A4ns. 141 cm; 0.705 cm

What is the vibrational energy-level spacing of Br °F (ry = 1.76A)? (Compare the magnitude of these
energy levels with the magnitude of the rotational energy levels found in Problem 34.18.)
Ans. 268 x 1072 eV :



Chapter 35

Kinetic Theory

In the kinetic theory of gases the classical laws of mechanics, applied to a system containing a
large number of particles, are used to derive various thermodynamic relations—in particular, the ideal
gas law.

35.1 THE IDEAL GAS LAW

In an ideal gas the pressure of the gas is assumed to arise from perfectly elastic collisions of
molecules with the walls of the container. Problem 35.1 shows how a classical analysis of the collision
process leads to an expression for the pressure p exerted on the walls of a container of volume V,
containing N molecules each with mass m, of the form

PV =2 N[im(e?),,] (35.1)

Here the quantity (uz)a‘,g is defined as follows. Let the total number of particles in the container with
an x-component of velocity of magnitude v,; be designated by n;. The average value of the square of
the x-velocity components of the N molecules in the container is

(Dﬁ)ang_]%/- ["1'33-1 + ok 4+ e+ ]= % Z”il’.ff (35.2)

where N =3 5. If it is further assumed that there is no difference between the x-, y-, and z-
directions, we can also write

-

2 1
(U«E)avg= (C,E)avg= (Ul )avg= 5 (Uz)avg (353)

where (v2)awg = (vf)avg + (vyz)a‘,g + (uf)avg is the average value of the square of the speed. The square
root of (02)avg is called the root-mean-square speed:

Crms = V(Uz)avg (35’4 )

The quantity Zlm(vz)avg = K, 1s the average kinetic energy per molecule; therefore

U= N[im(v?),,] (35.5)
represents the total internal kinetic energy of the gas, and (35./) can be written as
pv=2%u (35.6)

This result can be carried one step further by using the relationship between the total number of
particles, N, and the total number of moles, 9 : N = 9N, where N, is Avogadro’s number,

Nq = 6.023 X 10 molecules /gm mole

(When expressing molecular weights in kilograms, we shall use Ny =6.023 X 10*° kmol~') Then
(35.1) becomes
py==N %No %m(vz)

avg

241
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If this expression is compared with the ideal gas equation,

pV = NRT ' (35.7)
it is seen that
I(p?y =3 Rp_3
Zm(v )avg 2 NO 2 kT (358)

where the ratio R/ Ny = 1.38 X 1072 J/K =8.617 X 10~° eV/K is called the Boltzmann constant, k.
‘Thus the absolute temperature T of an ideal gas-is a measure of the average kinetic enérgy of the
molecules composing the gas.

Suppose, however, that we did not know the ideal gas equation, (35.7). Then, in order to proceed
further with (35.1), we would have to be able to evaluate '

. .
) = — ¥ no?
( )avg N 2' iYi

Methods for finding such averages involve distribution functions and will be treated in Chapters 36,
37, and 38.

Solved Problems

35.1. Assume that a gas is composed of jaoint molecules that make perfectly elastic collisions with -
~ the walls of its container. Show then that the pressure exerted on the walls of a rectangular
box of volume ¥ = abe, containing N identical molecules each of mass m, is given by

= 2 D [4m(e)y]

-

= .

Y

Fig. 35-1

~ Consider first the collision of one molecule with a wall (Fig. 35-1). In an elastic collision the
x-component of the particle’s velocity will be changed from + v, to —v,. The corresponding change in
the particle’s x-component of momentum is then
Ap, = m(—v,) — m(v,) = —2mo,

and the collision results in a small force to the left being exerted on the molecule by the wall. The
reaction (Newton’s third law) is a small force to the right on the wall, i.e. pressure.
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35.2.

35.3.

354.

Suppose now that instead of one particle there are in the box #; particles, all with the same
x-velocity magnitude, v,;. In a small time interval dr, the wall of area 4 = bc will be struck by all those
particles within a small volume A (v,; df) to the left of the wall that are moving with x-velocity + v,;.
Thus, the number of collisions in time dt is

‘;‘ ( iVl )A (vy dt)

the factor 1/2 occurring because half the particles are moving away from the wall. The total change in
x-momentum, dp,;, as a result of the collisions is

total change in momentum = (change in momentum per particle)
X (number of particles striking the wall)

_ 1/ _ mmA v dt
dp.i = ( 2mvxi)[ 3 ( 1% )A(Uxi dt)J N 7
so that, by Newton’s second law, the net force on the particles is
dp. nmAv;;
o dt vV

and the force on the wall is — F,,.

In the above argument we neglected the effects of any collisions between the particles. The time
interval dt, however, can be made small enough so that the number of collisions will be negligible. Also
we shall soon see that in a real gas in equilibrium, collisions are really not a problem because, on the
average, every particle whose velocity is changed by a collision is replaced by another particle which,
because of a collision, has acquired the first particle’s velocity.

Of course, all the N molecules in a gas will not have the same magnitude of x-component of
velocity. Instead, there is a spread or distribution in the x-velocity component among all the molecules.
Therefore, to find the total force exerted on the area A we must add the contributions from all groups of
velocities, obtaining

— _ _ mA z_ﬂA; 2 NmA(v )avg
F.= Z( Fy)= v Znivxi_ % [ ( )avg} 3y
where we have used (35.2) and (35.3). The pressure p is then
F, Nm(vz)avg 2 N

Pd T a5 v ] |
Note that the expression for p does not depend on the particular wall that we chose to consider.

What is the average kinetic energy of a molecule at room temperature (300 K)?

3

Kug= 3 KT = 5 (8621073 L JB00K) = 388 x 10-2 €V

It is useful to remember that this number is about 1/25 eV.

If the molecule in Problem 35.2 is O,, calculate the rms velocity of the molecule.

avg 2 m (U )avg = 2 mv?ms

Ko 2(3.88 X 102 eV)(1.6 X 1019 J /eV)
Opms = =484 m/s
(32u)(1.66 X 10~¥ kg /u)

The law of atmospheres states that at constant temperature the pressure p at a distance z above
the surface of the earth will be related to the pressure p, at the surface by

P =poe” /T (1)
Here, m is an average molecular mass. Show how this result follows from the ideal gas law.
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35.6.
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Consider the small volume of - pz+dz)=p(2)+ dp
gas, dV = A dz, shown in Fig. 335-2.
Since the volume is in equilibrium,

its weight, pg dV, must equal the A
difference between the pressure for-
ces on the horizontal faces: dz
pg dv =[p(z) — p(z + d2)l4
pgAdz=—Adp
dp=—pgdz :
From the ideal gas law, pV = 9LRT : 1 p(2)
= NkT, we have for the density: Fig. 352
= Nm _mp
P=V =%r
Hence

, m
dp=—%gdz or %s—%dz

Integrating and applying the boundary condition p(0) = p,, we obtain (/).

The mean free path, L, of a molecule is the average distance it travels between collisions.
Estimate the mean free path of a molecule in a gas at standard conditions if the molecular
diameter is 4 A.

Consider a spherical molecule of radius r moving at a constant average speed v, and assume all
other molecules in the gas remain fixed. The molecule will collide with any other molecule whose
center is within a distance 2r = d of its center. Thus, after a time ¢, it will have collided with all
molecules in a zigzag cylindrical volume of cross-sectional area md? and length wr. The number of
collisions is then

C = nndut

where n is the number of molecules per unit volume. The total distance traveled, divided by the

number of collisions, gives the mean distance between collisions:
ut 1
L=¢-= nrd?
At standard conditions one kilomole of an ideal gas occupies 22.4 m?, so that
6.023 x 107 molecules /kmol
B 22.4 m® /kmol

=2.69 X 10¥ m™?

and
1

(269 X 10 m~?)r(4 X 10~ 10 m)°

The above calculation of L was rough. An exact treatment, involving the Maxwell-Boltzmann
distribution (Chapter 37), gives

L =740 X 10~8m =740 A

0.707

L=
nnd?

A particle suspended in a fluid is acted on by random irregular forces. Show that the average
value of the square of the particle’s absolute displacement in a time interval ¢ is proportional
to t. Assume the time between random forces is much less than the time ¢, and that each
time a force acts on the particle it moves a distance equal to its mean free path L in a random
direction. (The situation described here is the classical random walk.)

After N interactions we can write
XN = XN_l + L
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35.7.

35.8.

with X, the position vector after N interactions. Taking the dot product of X,, with itself, we obtain
Xv'Xy=Xi=X5_,+ L2+ 2L-X,_,

If we average this expression for X3 over all possible directions of
L, the term
L-Xy_=2LXy_,cosf

averages to zero because all directions of L relative to X, _, are
equally probable. Thus

(Al]3 )avg= (X,%_ l)avg-‘,- L2
which, together with the starting value (X, 02)avg =0, implies that
2y a2
(XN )avg— NL

It is seen that (X ,f,)avg is directly proportional to the number of
collisions, N, which in turn is directly proportional to the time ¢:

(X% )= NL?> = at

The quantity (X 2)&,,g is experimentally measurable from the obser-

24 X24 ... 2
vation of a single suspended particle over a large number of time (XD gy = xirx +8 il
intervals of length ¢ (Fig. 35-3); or, equivalently, from the observa-
tion of r suspended particles over a single time interval of length . Fig. 35-3

Suppose the molecule of Problem 35.5 has an average speed of 454 m /s and moves randomly
a distance equal to its mean free path every time it undergoes a collision. What would be its
root-mean-square displacement after 10 seconds?

From the definition of mean free path, the number of collisions, N, will be equal to the distance vt
traveled in a time ¢, divided by the, mean free path, L: N = vr /L. Substituting this into the result of
Problem 35.6, we obtain

Xems = NV = orL =\/(454 m/s)(10s)(7.40 X 1078 m) =183 %X 10" 2m=1.83 cm

Brownian motion occurs when a particle suspended in a fluid undergoes motion as it is
randomly bombarded by the molecules composing the fluid. Starting from Newton’s laws,
show that the mean-square displacement of the particle after a time ¢ will be of the form

6kT
X =Ly
( )avg w

where p is a measure of the viscous force exerted on the particle by the fluid.

Consider first one-dimensional motion. In addition to other forces, the particle will experience a
viscous drag force proportional to the particle’s velocity: Fy, = —pu(dx/dr). The quantity p is to be
thought of as a given number, because it can be directly measured (for example, from observations of the
particle’s terminal velocity under the influence of a known external force).

Suppose that in addition to the viscous drag force, the particle also experiences a random,
fluctuating external force, F,. From Newton’s second law we then obtain (neglecting the weight of the
particle)

o dx
K dt dar?
To evaluate (xz)a‘,g we proceed as follows: First we multiply the above equation by x and average, to
obtain

N d%x dx
(XFr)avg_ m(x dr? ) + ,L(x E )avg (1)
avg
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Now F,, being completely random, is uncorrelated with the particle’s position x.. For a given x,
therefore, all values of F,, both positive and negative, are equally likely, so that the average value of x
times F, will be zero; (xF,),yg = 0. Moreover, it follows from the identity

-G 5)- (%)

(+2) (45 [(5) - 4 55,

since the averaging is not over time, but over the random distribution of F,. Substituting these results

into (1), we obtain
o-ng (%) ]-((4)] A5,

The middle term of this expression can be written as
2 1 ,
m[( %xi') ] = M(Df)“s= m 3 (vz)avg" % ['zlm(vz)uvg] = kT,
avg
using (35.8); hence (2) becomes

| T=m G (<G ) * % ) ®

If we define
=% )

(3) then yields the following differential equation for f:

that

df ,
_ m— +uf = kT «)
By direct substitution the solution of (4) can be verified to be

L
=——+Ade m : )
For the small masses used in Brownian motion experiments the quantity u/m is of the order of 10457,
so the exponential term in (5) quickly damps out. If we assume this term to be essentially zero we have

f= (’x ax ) = kT
: dt Jog B
This expression can be rewritten in the following manner:

dx 1 d(x?) 1 d kT
(xﬁ).'v."[ 2 a ]“f: 7 (D] = =7

so that

where it has been assumed that (xz)“s =0 at ¢t =0. Finally, one can go over to three dimensions by
using

| (Davg= D= (D= 7 X Dug
to obtain -
(X 2)|Vg= 6kTT t

This is the same expression as obtained in Problem 35.6, with a = 6kT/ p.

Since p is known, by measuring (X 2),‘,8 for a fixed time interval ¢ and temperature T it is possible to
determine Boltzmann’s constant k. The study of Brownian motion was first used by J. Perrin to obtain
a value for Avogadro’s number N,, where No= R/k.
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35.9.

35.10.

Two identical containers, 4 and B, are filled with the same gas at the same pressure.
However, the rms speed, v, of the molecules in B is greater than the rms speed, vy, of the
molecules in A. A stopcock between the containers is now opened for a short time.
Describe from kinetic theory what happens.

At first one might think that with the pressures equal, opening the stopcock changes nothing. This,
however, is not the case. The number of collisions per unit time with the wall, N, which is proportional
to the number of particles per unit time to move through the stopcock once opened, was shown in
Problem 35.1 to be proportional to the product no, where 7 is the number of particles per unit volume.
Therefore,

NA ngvy

N,  ngvg
Initially, p, = pg, and (35.1) gives n, 02 = ngov2; hence,

NA Up

— = — > 1

N B V4
and more particles initially move from 4 to B than from B to 4. Furthermore, the energy flow through
the stopcock is given by

E N X (average energy per particle) = N (4 mv?)

so that, again using (35.7),

and energy initially flows from container B to container 4.

Consequently, the system is not in equilibrium with respect to either mass or energy under the initial
conditions. In order to have an equilibrium situation, i.e. for N, = Ny and E, = E,, the two rms
velocities must be equal, v, = vp. Since the temperature is proportional to the square of the rms
velocity, it is seen that for an equilibrium situation the temperatures of both gases must be equal.

Refer to Problem 35.9. Suppose instead of having a stopcock, the two vessels are separated
by a wall which, although restrained from moving an appreciable distance, can vibrate without
friction between the two vessels. Discuss what will happen under the initial conditions given
in Problem 35.9.

Initially,

EB Up

—=—>1

E, L]
which shows that the wall is being struck more violently on side B than on side A. As a result, the wall
vibrates back and forth in such a manner that the molecules on side B lose energy, while the molecules
on side 4 gain energy. Equilibrium is reached when E; = E,, and the mechanical motion of the wall is
transmitting as much energy from B to A as from A4 to B. This mechanical transmission of energy by
the wall corresponds to “heat flow” between the two containers. Equilibrium is reached when there is
no net flow of heat, and this occurs when a single temperature (rms velocity) is attained throughout 4
and B.
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35.12.

35.13.

35.14.

35.15.

35.16.

ATOMIC SYSTEMS [PART VII

Supplementary Problems

Containers of O, CO,, F, and He are all at the same temperature. Find the ratios of their rms
velocities to the rms velocity of H, at the same temperature.  Ans. 0.354; 0.267; 0.324; 0.707

From kinetic theory show that (v,,)? = 3p/p, where p is the density of the ideal gas.

Let w be any physical quantity that has an average value. From the identity
(W - wavg)2= w? — zwwnvg + (wlvg)z

show that
Wims 2> wavg

A man opens a bank account with initial balance zero. Each morning for a year he tosses a coin: if the
result is heads, he deposits $1; if tails, he withdraws $1 (or borrows $1 from the bank). (a) What are
absolute limits for his final balance? (b) What is his expected final balance? (c) What are likely (rms)

limits for his final balance?  Ans. (@) =$365; (b) 0; (¢) =$19.10 '

Find the height above the earth’s surface where the pressure will have dropped to one-half the value at
the ‘earth’s surface. Assume constant temperature of 273 K and take the average mass of an air
molecule as 48.5 X 10~ kg, Ans. 549 km

How many collisions per second are made by the molecule of Problem 35.5 if its average speed is 454
m/s?  Ans. 6.14%x10°



Chapter 36

Distribution Functions

It was found in Chapter 35 that in an ideal gas of N molecules, each of mass m, the pressure p is
related to the volume V by

pV = —23_ N[ Jl_m(oz)avg]

where the average value of the square of the velocity was given by
1
(vz)avg= —ﬁ ;Dizni (361)

In the present chapter we shall describe the methods used for calculating the average value of a
physical quantity. Many times we shall, for concreteness, be referring to the specific quantity v2, but
the methods will be general.

36.1 DISCRETE DISTRIBUTION FUNCTIONS

To determine the average value of a physical quantity in a system we must first identify the
underlying variables on which the quantity depends. As an example, suppose we wish to determine
the average value of the kinetic energy, or, equivalently, the average value of the square of the speed.
For the variable on which the energy depends we can take the speed v of a particle in the system. Let
the equally spaced points v,, v,, v5, ... divide the total range of v into intervals of length Av (Fig.
36-1). Out of the N particles in the system there will, under equilibrium conditions, be a definite
number possessing speeds lying within each interval. Let n; be the number of particles having speeds
between v, and v, + Av=v,,,. To represent this pictorially we could plot n;, versus v. For reasons
that will soon be apparent, however, we instead divide »; by the range Av and plot the ratio f, = n,/Av
to obtain the histogram shown in Fig. 36-1. Since the ordinate f; is the number of particles per unit
speed, the number of particles n; is then equal to the area of the ith rectangle:

n=f; Av (36.2)

Since the total number N of particles must equal the sum of all the n;,, we have the normalization
condition that the sum of the areas of all the rectangles, the total area under the histogram, gives the
total number of particles:

N=73 fAv (36.3)

More generally, the number of particles having speeds between v, and v, is just the area under the
histogram between those two values.

The histogram of f’s is called the distribution function for the particle speeds. (In statistical work
the numbers f, Av are called frequencies, and one speaks of a frequency distribution.) In terms of the
distribution function, (36.1) can be written

(0)avg= % 2 off, Av (36.4)

In a similar manner the average value of any quantity that depends upon the speed can be written in
terms of the speed distribution function f,.

It should be noted that summations like that in (36.4) do not in general extend from 1 to N. The
summation depends upon the number of intervals chosen, not the number of particles.

249
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Area = f; Ao = n; = number of particles

A ] with speeds between
7 v, and v, + Ao
i /
/7] y
|
<)
g
2
£ Ao \
o - { »
o AN
:
4 N

O Y4 U2
Speed
Fig. 36-1

1362 CONTINUOUS DISTRIBUTION FUNCTIONS

In many cases of interest the total number of particles, N, is very large, and there are many
collisions per unit time, so that the speeds can be treated as if they varied continuously. ~:For this
situation one allows the speed range Av to approach zero; Av - dv. One then has a picture from Fig.
36-1 of many more rectangles, each much thinner, with the larger number of rectangles still fitting
under the dashed curve shown. The number of particles, dn, with speeds between v and v + dv equals
the infinitesimal area of a rectangle and is given from the extension of (36.2) as

dn = f(v) dv -
Here f(v) is the continuous distribution function shown by the dashed curve in Fig. 36-1.

In this limit all discrete summations become definite integrals. For example, the normalization
condition (36.3) goes over to -

N = [**f(v) do (36.5)
Omin . . -
and the expression (36.4) for the average value of the square of the speed becomes
2 1 Omax
v = — vf(v) dv 36.6
(D= 7 [ =) (36.6)

363 FUNDAMENTAL DISTRIBUTION FUNCTIONS AND
DENSITY OF STATES

It is found that both under the laws of classical physics and those of quantum physics there are
fundamental distribution functions from which all other distribution functions of interest can be
obtained. A fundamental distribution function describes how the particles in a system are, on the
average, distributed among the available states of the system. Putting it another way, a fundamental
distribution function describes, for each state, the probability that a particle will be found in that state.

The state of a particle is defined by the smallest collection of variables that is needed to describe
completely - the particle’s motion. As an example, classically, for weakly interacting particles, the state
of a particle is completely specified by giving its three velocity components (v,, v,, v,), or equivalently,
since p = mw, its three momentum components (p,, p,, p,)-
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The fundamental distribution function for systems obeying classical laws is called the Maxwell-
Boltzmann distribution function, F,. (We shall denote fundamental distribution functions with
capital letters.) The Maxwell-Boltzmann distribution function is defined such that

dn, = Fyp dv, dv, dv, (36.7)

is the average number of particles having velocity components in the intervals between v, and
v, +dv, v,and v, + dv,, v, and v, + dv,.

It shall be seen in tﬁe followmg chapters that the classical and quantum mechanical fundamental
distribution functions have one thing in common-—they all depend only upon the energy of the state
and not upon the quantities that define the state. Because of this property it is possible, for example,
to write the particle distribution in energy in the form

dng = Fg(E)dE (36.8)
In this expression the fundamental distribution function F is the statistical factor that describes the
probability of finding a particle in a given state at energy E, and g(E) is called the density of states

(with respect to energy). The quantity g(E) dE gives the number of states, dS, that have energies in
the interval between E and E + dE:

dSy = g(E)dE (36.9)
For weakly interacting systems the total energy E of a particle equals its kinetic energy, and so
m
E=Z (02 + 0} +0f) (36.10)

Consequently, there are many different states (v,, v,, v,) that will have the same energy.
More generally, if a dynamical quantity ¢ depends only upon the energy, the number of particles
with values between ¢ and ¢ + dg can always be written in the form

dn, = Fg(q) dq (36.11)
containing a statistical factor F, which maintains the same form for a given statistics (e.g. F = F,,, for
classical statistics), and a density-of-states factor g(g), which depends upon the particular physical

property under consideration. The quantity ¢ could, for example, be the speed, energy [as in (36.8)],
or the magnitude of the momentum.

Solved Problems

36.1. At a certain instant it is found that in one mole of a gas 4782 molecules have speeds between
495 m/s and 505 m/s. What is the value of the speed distribution function at the speed 500
m/s?

The speed distribution function, f,, is defined by

dn, An,
dnv=f,,dv or j;,=—d?NA—D

From the data, An, = 4782 molecules and Av = 505 m/s — 495 m/s = 10 m/s, so that

4782 molecules molecules
fo=fsoms= —Jom7e 7 = 4782 T2 75

36.2. The speeds of the particles in a certain system at a particular time are as given in Table 36-1.
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Table 36-1

Speed interval, m/s | 0-5 | 5-10 [10-15 | 15-20 | 20-25 |25-30 | 30-35 | 35-40
Number of particles | 1 | 0 0 1 3 0 2 1
Speed | 40-45 | 45-50 | 50-55 | 55-60 | 6065 |65-70 | 70-75 | 75-80
Number 5 1 6 4 2. 8 0 2
‘ Speed 80-85 | 85-90 | 90-95 | 95-100 | over 100
Number 3 0 0 1 0

Plot the speed distribution function, taking speed intervals of 20 m/s, starting from 0 m/s.
For finite velocity intervals the speed distribution function is defined by
An,
fo= %5

where An, is the number of particles having speeds in the interval between v and'v + Av. From the
data we find the values for f, given in Table 36-2 and graphed in Fig. 36-2. The two dashed lines in Fig.
36-2 form a continuous approximation to the histogram.

Table 36-2
Av,m/s 0-20 20-40 40-60 6080 80-100 over 100
An,, particles 2 6 .16 12 4 0
f,, particles /(m/s) 0.1 0.3 0.8 0.6 ©02 0.0
]
10
0.8 |-
7’
| P ~ .
Bl, o6t ‘ e ~
8~ e ~
g g - N
o4l f(v) = 00160 —0.16, 7~ ~
3 - N
i - P  f(®) = -0020+2
| ' N
0.2 p 7~ <
7 N
) Vs -
) 20 40 60 ) 80 100 -
) v, m/s
Fig, 36-2

363. Refer to Fig. 36-2. Find the number of pafticles in the system (@) from the histogram, (b)
from the triangular approximation. \

(a) The area under the histogram is (Ao =20 m/s = cbnstant) '

_ . particles particles particles
N Z foi Av = (0.1 m/s +0.3 m/s +0.8 m/s
+06 particles particles

m/s +9~2 m/s )(20 m/s)
= 40 particles
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(b) The area of the triangle is

]
N =1[(100 - 10) m/s](O g Particles

m/s

) = 36 particles

364. Refer to Fig. 36-2. Find the average speed of the particles (a) from the histogram, (b) from
the triangular approximation.

(a) Using the value N = 40 particles found in Problem 36.3(a),
1
Vgyg = i 2 v f; Ao

_ 1
"~ 40 particles

particles particles )

[(IOm/s)(O.l m7s )+(30m/s)(03 m/s

particles particles )

+(50m/s)(0.8 s )+(70m/s)(°-6 m/s

particles

+(90m/s)( .2 m/s )J(20m/s)

=55m/s
(b) Using the value N =36 particles found in Problem 36.3(d),

Vavg = 3 f of(v) dv= 3¢ 0(00160—016) dv + % v( 0.020 + 2) do

% 1 v’ v? 100
=36 [0016T ~0.16 % 5 ]10+ 36 [—O.OZT +27 LO
=56.7m/s
36.5. Refer to Fig. 36-2. Find the rms speed of the particles (a) from the histogram, (b) from the

triangular approximation.

(a) By definition, vy, =\/(vz)‘wg - Using N = 40 particles, from Problem 36.3(a),
1
(vz)avg= Tv_ Z vizfi Av

_ 1
"~ 40 particles

particles particles )

[(10m/s)2(0.1 /s )+(30m/)(3 /s

particles

+(50m/s)2(0.8 /s )+(7o m/s)2(0.6

particles
m/s )

particles

+(90m/)(02 i )](ZOm/s)

= 3420 (m/s)*

whence v, = 58.5 m/s. Note that Orms €XCeeds v,,, as calculated in Problem 36, 4(a). This is as
required by Problem 35.13.

(b) Using N = 36 particles, from Problem 36.3(b),

y 1 (e =1 (%2 _ 1 100 5
(0)avg Nfo of(v) do = 3 |, 000160~ 0.16) do + fw v3(—0.020 + 2) do

36
0* 1% v? o* 1'%
= o 0016 2 O.IG—J +[—0.oz—+2L}
36[ 7, AR
=3550(m/s)2

whence v, = 59.6 m/s.
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36.6.

ATOMIC SYSTEMS [PART VII

Find the number of classical states, dS,, in the speed interval between vand v + dv, and
thereby show that the density of states, g(v), has the form g(v) v '

In determining the relationship between states and speed it is convenient to use a coordinate system
where the three axes are v,, v, and v,. A coordinate system like this, where the components of the
velocity are plotted along the three axes, is referred to as a “velocity space.” A particular value of a
particle’s velocity, (v,, v,, v,), then appears as a point in this velocity space. Since each set (v,, v,, v;)
defines a state of the partlcle, it is seen that each point in velocity space corresponds to a partlcular state
of the particle. Consider now an infinitesimal “volume” element dV, = dv, dv, dv, in the velocity
space, as shown in Fig. 36-3. Although the exact number of points inside the volume element cannot be
determined (it depends upon the definition of “point”), the number of points will be proportional to the
size of the volume element. Since to every point (v,, v,, v,) there corresponds a state of the particle, the
number of states, dS,, determined by the volume element will also be proportlonal to the size of the
volume element, so that we may write

ds,=CdV,= Cdp, dv dv

In the velocity space diagram, o+ u + v2 = v? = constant is a “sphere” of “radius” v, so that all
points lying on this sphere correspond to particles that have the same speed v. If we now consider
particles with speeds between v and v + dv, the corresponding points in the associated velocity space will
be within the spherical shell defined by the spheres of radii v and v + dv, whose volume is

_ dV = 4nv? do
The number of states, dS,, corresponding to speeds lying within this volume element will be proportional
to the size of the volume element, so that

dS, = C dV = C4nv® dv
The density of states is defined by dS, = g(v) dv; hence
g(v) = C4mv?

dvy

fj dv, (vx, %)
A%

N

&

&W

P~ All points in this shell

correspond to the same

" speed v =Yv? + of + 0}

p Fig. 36-3
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36.7.

36.8.

36.9.

36.10.

36.11.

36.12.

36.13.

36.14.

36.15.

Find the number of classical states, dS, = g(E) dE, in the energy interval between E and
E + dE, and thereby show that the density of states, g(E), has the form g(E) < E 172,

Since E = { mo?, a speed interval do will be related to an energy interval dE by

dE = mv dv or dv=£1£=—dE—
mv ‘/ij

Further, the number of states in the energy interval dE must be equal to the number of states in the
corresponding speed interval dv, so that, from Problem 36.6,

dSy = dS, = Cano? do = C477( 2—E) _dE_ ) = 47C 5 EV2 4E = DEV? 4E
m 2mE m3/?

Therefore the density of states in the energy interval between E and E + dE is g(E) = DE 172,

Supplementary Problems

If each particle in the system described in Problem 36.2 has a mass of 0.002 kg, find (a) the average
energy per particle and (b) the total energy of the system. Use the histogram distribution.
Ans. (a)3.427; (b) 136.8]

Repeat Problem 36.8 using the triangular approximation in Fig. 36-2. Ans. (a)3.557;(b) 127.8)

Using the triangular approximation in Fig. 36-2, find the number of particles that have speeds between
20 m/s and 80 m/s. Compare this answer with the answer obtained from Table 36-2.
Ans.  31.2 particles; 34 particles

The speed distribution function for a certain system of particles is
f(v) = v(500 — v) particles/(m/s)

where v can vary between 0 m/s and 500 m/s. Each particle is of mass 2 X 107 '? kg. Calculate (a) the
average particle speed, (b) the average energy per particle, (c) the total energy of the system.
Ans. (a) 250 m/s; (b) 7.51 X 1078 J; (¢) 1.56 J

For speeds v =0 m/s to v = 10° m/s the speed distribution function for a group of particles is
_ 0 i TO particles
f(v) = (5 X 10?%) sin ¢ ms
and f(v) = 0 for speeds above 10° m/s. Find the number of particles in the system.
Ans. 3.18 x 107

What is the average speed of the particles of Problem 36.127 Ans. 500 m/s
What is the rms speed of the particles of Problem 36.12?  Ans. 545 m/s

If the number of classical states in the momentum interval between p and p + dp is dS, = g(p) dp, find
the form of the density of states, g(p).  4ns. g(p)= Kp®> (K = constant)



Chapter 37

Classical Statistics: The Maxwell Boltzmann
Distribution

For systems of particles that obey classical laws the average number of particles, dn,, whose
velocity components lie between v, and v, + dv,, v, and v, + dv,, v, and v, + dv, is given by

dn —FM, dv dv, dv (37.1)

The Maxwell-Boltzmann distribution functlon, s> Which is proportional to the probability that a
particle will be found in the state (v,, v,, v,), has the form

= m 3/ —m(v2+ 02+ 03)/2kT m_\3? —E/kT ‘
FMB_N(21rkT) ey =M 57 ) € (37.2)

(a derivation is given in Problems 37.13 through 37.17). Here, N is the total number of particles, m is
the mass of each particle, k is the Boltzmann constant, and T is the absolute temperature.

As discussed in Section 36.3, if a property ¢ depends only on the energy, the number of particles
with values of the property between g and ¢ + dq is given by

- dn,=Fypg(9) dq (37.3)
where g(g) is the density of states. For ¢ = v, we have (see Problems 36.6 and 37.3)
g(v) = C4mv? = 4mo? (37.4)
and for g = E, we have (see Problems 36.7 and 37.2)
5/ ,
g(E)=DE'/?= 2 ;”2’ E\? (37.5)

The integrals
L)=["ue " & (a>0)
0

‘often arise in the applications of the Maxwell-Boltzmann distribution. The values for small integers n
are given in Table 37-1.

Table 37-1
n 0 1 2 3 4 5

1 [ 1 4] 1 3./ 1
i A | aV&E W | 8V@

256
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Solved Problems
37.1.  Show that the Maxwell-Boltzmann distribution function (37.2) is normalized for a system of ¥
particles.

The total number of particles in the system is given by

wawf_wwf‘oowFMB dv, dv, dv,= ( 27:'7(T )3/2f f f°° ¢~ m(ed+ i+ ed)/UT gy, do, dv,

The triple integral on the right is the product of three integrals of the form

fw o= AT o= 2[ e~ ma /KT g = 210( 2kT)

Then, from Table 37-1, the total number of particles is
m  \32f 2akT \*/?
N( 27kT ) ( m )

37.2. Evaluate the constant D in the expression for the density of states over energy, g(E) = DE 1/2
(see Problem 36.7).

We have

3/2
dng = Fyp g(E) dE = N( kT ) e~ E/KTDE1/2 E

Since the total number of particles is N,

V= (G D [T dp= () Dl an( 7 )| = MR

where we have changed the variable of integration from E to u =yE , and used Table 37-1. Thus
25y
- m3/2

The energy distribution function, fg, is defined by dn; = fy dE. From the above calculation,

= = 2N py-EpT
fe = Fus g(E) AKTY E'/ e

373. Evaluate the constant C in the expression for the density of states over speed, g(v) = C dgrp?
(see Problem 36.6).

We have for the number of particles in the speed interval do:
dn, = Fy5 g(v) dv

This must be equal to the number of particles, dny = Fy 5 g(E) dE, in the corresponding energy interval
dE. From E = imo?,

dE = mv dv =\2mE dv
Hence,
Fyp g(v) do = Fyp g(E) VZmE dv ot g(v)=g(E)V2mE
Since g(v) = C4nv? = C87E/m and g(E) = DE'/? (Problem 37.2),

c87E _ py1/amiiag
m

m3/?
B 25/2

The speed distribution function, f,, is defined by dn, = f, dv. From the above calculation,

3/2
f, = Fyp (4m0?) = 47rN( 5 kT) v2e =M/ 2KT
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374. Evaluate the rms velocity for a Maxwell-Boltzmann distribution.

The average value of the square of the speed is
1 1 (o
(0Davg= i v? dn,= v fo v’ f, dv
Substituting f, from Problem 37.3, we obtain :

on=se( 8ty ) 1 i) = 2

and so
Orms = (vz)avg = '3_’1:'I

in agreement with kinetic theory [see (35.8)).

375. Find the ratio of the most probable speed, v,, to the rms velocity, v, for the Maxwell-
Boltzmann distribution.

The most probable speed in the Maxwell-Boltzmann distribution is that for which f, = 4mo?F,,, is
maximum. Differentiating the expression found in Problem 37.3,

f., =0=4n¥( 5r kT)S/ze—mwT"[z’”z(T?T’)]

The roots v =0 and v = oo yield minima, hence v, =\ﬁkT/ m , and using the result of Problem 37.4,

_ VkT/m \/‘ = 0816

"nm VkT/m

37.6. In many cases of interest the total energy E of a particle can be written in the form:

E= ZCq.

jm]
where the ¢; are constants and the g; are position and /or momentum (velocity) coordinates.
For the Maxwell-Boltzmann distribution function in the form

Fyp = Ae E/KT = go—(Zeql)/kT

evaluate the constant A4. .

The normalization condition is

s

Y Yy hra o R
A[ f-w e=edt/AT g M f " e~ /KT gg, ] [ f:oe—c.q}/kr dq"]
[210( kT)][ZI"( kT)] [210( kT)]

(akT)"?
(erez - '
from which
(cre2- -+ ¢ )l/2
A=N a7
(mkT)

Note that for three velocity coordinates, with ¢, = ¢, = ¢; = m/2, this result agrees with the normaliza-
tion constant in (37.2).
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37.7.

37.8.

37.9.

Refer to Problem 37.6. Show that the average energy per particle is equal to 1 kT times n,
the number of squared position and momentum terms in the energy expression. This result,
that each quadratic term in the energy adds an amount 3 k7 to the average energy per
particle, is known as the Equipartition Theorem.

In Problem 37.6 we showed that
n/2
o) 0 o0 —E/kT _ (WkT)
ce e dg, dg, - - - dg, = ——————
f—aof—oo -[—oo 9442 g (C|C2 e C,,)l/2
Differentiate both sides with respect to kT to obtain

"2n/2) (kT 2
1 L] @ © _E/kT m (n/ N n/
Ee E/*T gy dq, - - - dg, = =42 1=
(kT) f_wf_w f_w 91 492 q (crcy- - - c,,)’/z A kT

or, transposing terms,

%f_‘” . f_°° E(Ae E/KTY dg, - - - dg, = n(%kT)

which is the Equipartition Theorem, since the left side is the average energy of a particle.

A model for a diatomic molecule which is free to rotate, but not to vibrate, is a dumbbell with
the moment of inertia about the axis passing through the masses approximately equal to zero.
Find the molar heat capacity of a diatomic gas, using the Equipartition Theorem.
The energy of one diatomic molecule is equal to
1 1 1
and this expression has five quadratic terms. From the Equipartition Theorem (Problem 37.7) the
energy of one mole of gas is equal to

KT\ _ S
Eg = Non( e ) = 3 NokT

where N, is Avogadro’s number. The molar specific heat, C;, is equal to

dE
CV=—ﬁ=§Nok=—

with R the ideal gas constant.

If a crystal lattice is pictured as a system of regularly spaced atoms connected by springs, find
the molar specific heat, using the Equipartition Theorem.

The energy of a vibrating atom in the lattice is given by
1 1
E=5- (PR+p+p2)+ 5 (K,‘x2 +x,p% + k,2%)
Since there are six terms of the form cg?, by the Equipartition Theorem (Problem 37.7) one mole has an
energy

Ewu= No©)( 5F ) = 3NokT

where N, is Avogadro’s number. The molar specific heat is given by

dElOt
Cy= —= =3Nok =3R

which is the Dulong-Petit law. This result is found experimentally to be correct at high temperatures,
but at low temperatures quantum effects cause a change. These quantum effects will be discussed in
Chapter 38.
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37.10. The RLC, high-Q, tuned circuit shown in Fig. 37-1 (R being small) is at a temperature T.

37.11.

Using the Equipartition Theorem, estimate the rms value of the induced voltage in the
inductor due to thermal fluctuations.

In the inductance L the energy stored is

S S R
E—foV,_tdt fOdez 5 LI

5 3 |

- (o
! Fig. 37-1
and by the Equipartition Theorem (Problem 37.7)
Envg = % L(Iz)nvg= % kT )

because there is one quadratic term in the energy expression. For a high-Q tuned circuit the noise
spectrum is suppressed except at the resonant frequency

1
w |
° JIT
so the current and accompanying voltages are sinusoidal, with angular frequency wo. Then the
magnitude of the voltage across the inductor, ¥, is related to the magnitude of the current, 7, through it
by
VL = O)oLI
from which
(VZ )avg= (“’OL)z(I 2)avg 2)
Equations (/) and (2) together give

5T kT
(VZ )avg= ngkT or VL ms = Wo LkT = T

Find the fraction N, /N of the total number of partlcles N having speeds above a given speed
V in a system of particles described by the Maxwell-Boltzmann distribution.

The desired fraction is given by

%——f«’dn Nf fo D=——f 4'rerMadv=4'rr( 2;” )3/sz 2g =m0’/ 2kT gy,

Changing the integration variable to

2_ Mo = m
w=3x%1 H=V3;r P
we obtain
NV 4 ® 5 2 m
—I—V———‘/—;- Uue du U= KT vV
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37.12,

37.13.

Integrating by parts and using Table 37-1 with n =0,

Ny 4 1217, 1 iy 4 (1, pr 1 o _p L (U _p }
L= - 5 eWduy=—1{ U Y+ e “du— 5 | e du
e (R R T A A T
i{1U—u2+lﬂ-lf”e—uzdu}=il/e—uz+l_if g
VT 2 2 2 2 Jy N Vr Jo
=l+%Ue‘Uz—erfU
w

The second term can be evaluated directly, and the third term, which is the error function of U, is found
from standard tables. A graph of N, /N versus U is shown in Fig. 37-2.

Y

-\/_m._
U=Var ¥

Fig. 37-2

Under a Maxweli-Boltzmann distribution, what percentage of particles have speeds above the
most probable speed, v,?

From Problem 37.5 the most probable speed is

2kT
V=5=\V"m

which corresponds to U = 1 in Problem 37.11. From Fig. 37-2 we find that when U =1, N,,/N =0.57.
Thus 57% of the particles have speeds above v,.

)
Stirling’s formula states that for large n
Inn'=nlnn-—n
i.e. the ratio of the two sides tends to 1. Evaluate the percentage error entailed in Stirling’s
formula for n = 60.
For n = 60 we have the exact result
In n!= In(8.321 x 10%") = 188.63
From Stirling’s formula we have the approximate result
Inn'~nlnn— n=60[(In 60) — 1] = 60(4.0943 — 1) = 185.66

The percent error, §, in the approximation is

5= 188.63 — 185.66
188.63

For n = 60 we see the error is only 1.57%. For n the order of 10% (i.e. Avogadro’s number) the error is
insignificant.

X 100 = 1.57%
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37.14.

37.15,

 37.16.
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In how many ways can N distinguishable particles be put into r “cells” so that n, particles will
be in the first cell, n, in the second cell, . . ., n, in the rth cell 3 n, = N)? .

Let the number of ways be X, and think of any one of these X combinations as an arrangement of
the N particles along a straight line, a group of n, followed by a group of n, . . . followed by a group of
n,. If the elements of the first group, were permuted among themselves, we would obtain n,! different
linear arrangements of the N particles. Each of these in turn would give rise to ny! arrangements upon
permutation of the second group; and so on. Thus, a total of

C=nm!n! --n!
arrangements would arise from the chosen combination. The X combinations would therefore produce
XC arrangements, all distinct, and these must exhaust the N! possible arrangements of the N particles.
Hence, :
N! N!

= NI = = T
XC=N! o X=75 PREA R

Refer to Problem 37.14. In statistical mechanics it is assumed that any given particle has an
“intrinsic probability” g; of occupying the ith cell (3g, =1). For example, if the cells are
energy intervals and if there are twice as many states in AE; as in AE,, then it should be twice
as probable for a particle to have an energy in the interval AE; as in AE, Under this
assumption, obtain an expression for the probability of finding a particular distribution of
particles (n, n,, ..., n). '
Consider one particular way of filling the cells, in which, say, particles ay, B, ... go to cell 1;
az By ... 80 to cell 2; etc. The probability of a, going to cell 1 is g1; the probability of a, and B, .
and ... going to cell 1 is
SiXg;X - Xgy =g
and the probability of the entire filling is
. gl"l g2"2 .. g’"r
Each way of realizing the distribution has this probability, and, by Problem 37.14, there are

N!
mlnte--nt
such ways. Hence the probability we seek is
N!
P,,——:mgl'"gz"""gr"’ (1)

Refer to Problem 37.15. Statistical mechanics assumes that among all distributions of
particles, the one of highest probability corresponds to equilibrium of the system. Find this
most probable distribution subject to the conditions that the number of particles and total
energy of the system are constant.

The problem is to maximize

N! n
Pn=nglgz”2... ‘ (1)
(the number r of cells is not important, provided it stays fixed) subject to two constraints:
fixed number of particles: >n=N : (2)
fixed total energy: 2 En=Ey, (3)

“where N and E,, are given. The energy constraint assumes that each particle in the ith cell has the

same energy E;. It will be convenient to replace P, by the monotonically increasing function of P,

P .
ln—N—'; =>nng-3 Inn!
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37.17.

37.18.

(remember: N is fixed so far as the maximization is concerned). Further we assume that N is very large

(= 10%) and, more important, that all the n, are large enough to allow the use of Stirling’s formula

(Problem 37.13). Thus we write

Py
lnm=2”ilngi"2”iln”i+/2"i/ 4)

dropping the last sum since, by (2), it is constant.
Treating the n; as continuous variables, we maximize the function (4), subject to constraints (2) and
(3), by the method of Lagrange multipliers. That is, we form the function

F(ny,ny .. 5 A A)=2nlng— > Inn— }\l(zn,. - N) —AZ(ZE,.n,- - Em)

and find its maximum, subject to no constraint on the variables n;, n,, ... ; A;, A,. Taking the partial
derivatives of F, we obtain the conditions
X omg—tm—1-N-0E=0 (=12...)

1
plus (2) and (3) from the A-derivatives. Solving for the maximizing n;:
ni=gie~l~kle—'AZEi=Agie_ﬁEi . (5)

where A = ¢! and B8 = A, are unknown constants.

Refer to Problem 37.16. Show that the Maxwell-Boltzmann distribution follows from (5)
under the following assumptions: (/) the “cells” are infinitesimal volumes dv, dv, dv, in
velocity space (see Problem 36.6) and it is equiprobable for a particle to be found in each cell
(i.e. all the g; are equal); (2) the average of the particle energies has the value given by kinetic
theory, E,,, = 3 kT.

Under the assumption of equiprobability, the intrinsic probability that a particle will be found in the
infinitesimal cell dv, dv, dv, is just
g dv, dv, dv,
where g is a constant. Each particle in the cell has the same energy,

1 2 1 .1 3
E—2mvx+2mvy+2mu,

Thus (5) of Problem 37.16 gives for the number of particles in the cell
dn, = Ae™PE dv, dv, dv, (1)

where we have absorbed the constant g into A. Normalizing as in Problem 37.6—except that, there, 8
was already known—we obtain

(m/2)*?
A=NZ7r B )
Finally, proceeding as in Problem 37.7—where, again, B was already known—we find
=3
Eavg = 2B (3)

Equating this to 3kT/2 gives 8 = 1/kT and, from (2),
_ m \3/2
4=N777)
With these values of B and A, (/) is the Maxwell-Boltzmann distribution.

Find the most probable distribution of N = 5 distinguishable particles among r = 3 cells if the
intrinsic probabilities for the cells are

1 »
g|=g2=ga='§
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37.19.

37.20.

3721,

31.22.

ATOMIC SYSTEMS [PARTV vII

By (1) of Problem 37.15, the probability of a distribution (n,, n,, ny) is

5! 1y’
P n,!nz!n3!(§)

since n) + n, + ny =15, Therefore, the most probable distribution is that for which the number of ways
of realizing it, : :

5!
-2
ny! ny! ny!

is greatest. Because the interchanging of the particles in any two cells, e.g.
m=3n=2n=0->n=2n=3,n=0
results in the same value of X, we calculate X in Table 37-2 only for the case n, > n, > n;.

Table 37-2
n ny ny X
5 0 0 1
4 1 0 5
3 2 0 10
3 1 1 20
2 2 1 30

From the table it is seen that there will be three most probable distributions, each with X = 30:
(22,1, (2,1,2), and (1,2,2)

For Problem 37.18, if the energy of a particle in cell 1 is zero, in cell 2 is €, and in cell 3 is 2¢,
find the most probable distribution if the total energy is fixed at E, = 3e.
The constraint
Ony+eny+2en;=3¢ or ny+2ny=3

eliminates all distributions except (3, 1, 1) and (2, 3, 0). From Table 37-2 it is seen that the former is the
most probable.
For equal intrinsic probabilities, the Maxwell-Boltzmann distribution has the form

n; = AePE

'f’he distribution (3, 1, 1), which puts most of the particles in the lowest energy state, is much closer to the
Maxwell-Boltzmann distribution than is (2, 3, 0).

Supplementary Problems

Find the ratio of the root-mean-square speed, v,p,, to the average speed, Oavp fOr a gas described by the
Maxwell-Boltzmann distribution.

Ans. 37/8 =108

For the circuit of Problem 37.10, L=1mH, C =1 pF, R =0.1 2 and T=300 K. Find the rms voltage
produced in the inductance.  Ans. 644X 10"V

Six distinguishable particles are to be distributed into 3 cells. Find the number of different combina-
tions of particles that can produce (a) the distribution (6, 0, 0), (b) the distribution (4,.1, 1).
Ans. (a) 1; (b) 30
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37.23.

37.24.

37.25.

37.26.

37.27.

In Problem 37.22 suppose that the three cells have respective particle energies of 0, €, and 2e. What is
the most probable distribution with total energy 6e if Ithe intrinsic probabilities for the cells are equal?
Ans. 2 particles in each cell

Refer to Problem 37.19. What is the most probable distribution for a total energy 4e¢?
Ans. (2,2, 1)

Consider 50 distinguishable particles distributed into eight cells as follows:

Cell i 2 3 4 5 6 7 8
Number of
particles 6 8 9 0 7 2 10 8

How many combinations can be made of the 50 particles which yield this distribution?
Ans. 1.96 x 10%

For a two-state system with energies € and 2¢ find for the most probable distribution the average energy,
ifgi=g=;.
2ee 2B + o

. FE =
Ans T —s

avg

Express the distribution (5), Problem 37.16, in terms of the partition function,
Z = 2 g,-e-BE"
i

and the total number of particles, N.

Ans. n;= %g,»e‘ﬁE"



Chapter 38

Quantum Statistics

Quantum statistics describes systems composed of large numbers of particles obeying the laws of
quantum mechanics. Each system will have a large number of discrete states, each described by a
complete set of quantum numbers, with each particle in the system occupying one of these states:
One of the ways that quantum statistics differs from classical statistics is that built into the derivation
of the quantum distribution functions is the fact that particles are Jindistinguishable from each other.
In other words, it is impossible in principle to label a particle with, say, a number which will
distinguish the particle for all time.

38.1 FERMI-DIRAC STATISTICS

The statistics of particles which possess half-integral spin, called fermions, was developed by E.
Fermi and P. A. M. Dirac. An example of a fermion system is a large number of weakly interacting
electrons (spin = 1), i.e. an electron “gas”. ‘ ‘

’I;e Fermi-Dirac distribution function, Fgp, describes the most probable distribution of identical,
indistinguishable particles which, obey the Pauli exclusion principle. In a system of fermions in
equilibrium at the absolute temperature 7, the expected number of particles in a particular state i with
energy E, is given by (see Problem 38.35)

1 _ 1

e%B/KT 1| o(E-E)/KT 4 | (38.1)

Fep =

where k is the Boltzmann constant, and where E, = — kTa, the Fermi energy, is a characteristic of the
system being described. Both « and E, are functions of 7. As T -0 K, E,>Eq a positive
constant. The exact form of E, (or of a) is determined from the normalization condmon that the -
number of particles in the system is a fixed number.

It should be noted that, like Fy,z, the Fermi-Dirac dxstnbutlon function F wp does not give the
number of particles with energy E, but rather the number of particles occupying the state i which has
an energy E;. As described in Sectlon 36.3 (for the continuous case), in order to find the number of
particles n, thh energy E; we need to multiply the Fermi-Dirac distribution function by the number of
states g, hav1ng the energy E;:

n = gFpp
If the energy levels are so close together that they can be treated as being continuous, the number of
particles dn, having energies in the interval between E and E + dE is
dng = Fpp g(E) dE

‘where dS; = g(E) dE gives the number of quantum states with energies between E and E + dE. As
discussed in Section 36.3, the quantity g(E) is called the density of states.

.

38.2 BOSE-EINSTEIN STATISTICS

A. Einstein and S. N. Bose developed the statistics that would apply for a system composed of a
large number of weakly interacting, identical and indistinguishable particles, each having an integral
spin. These particles, called bosons, do not obey the Pauli exclusion principle. Examples of boson
systems are photons, H, molecules, and liquid helium. ’

266
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The Bose-Einstein distribution function, Fg, gives the average number of bosons in a system in
equilibrium at the temperature 7 that will be found in a particular state i with energy E, (see Problem
38.37):

1

eaeE,-/kT -1

Fpp = (38.2)

The value of the quantity a depends upon the particular boson system that is being described. For
systems of bosons whose numbers are not conserved (for example, photons), a = 0 (Problem 38.38).
As with the Maxwell-Boltzmann and Fermi-Dirac statistics, the energy distribution of the bosons is
given in terms of a density-of-states function by

dng = Fgp g(E) dE

383 HIGH-TEMPERATURE LIMIT

When the total number of particles is conserved, the constant a for either quantum statistics
increases monotonically with temperature (Problems 38.25 and 38.28). At sufficiently high tempera-
tures (or at sufficiently high energies),

e%f/*T > |
and the two quantum distribution functions reduce to

F=Ae E/kT
which is the classical Maxwell-Boltzmann distribution function.

384 TWO USEFUL INTEGRALS
(a) With p > —1, and in the low-temperature limit k7T < E (e, ax -1,

fEPFFDdE f BT E!)/kTH dE

_1
= Eptt+ S 2, 2AkT 2"( - ) * 38.3
where {(x) is the Riemann zeta function,
1 1
{( )— Ix 2_ + 3x +
which is extensively tabulated. Some values are:
{(2)—?—1.645 §(4)———1082 {(6)= 945 = 1.017

When p is an integer, the series in (38.3) terminates.
(b) Withp >0, a >0, and e = = |, we have

) qP e "
fo i dq= r(p+1)2 T (38.4)
where the gamma function, T'(x), obeys I'(x + 1) = x I'(x). Particular values are:
(1) =1 r( i ) =yr  T(n+1)y=n! (naninteger)

In the special case a =0, e = + 1, (38.4) becomes

o gf
fo - dg=T(p+ 1) {(p+1) (38.5)
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Solved Problems

BLACKBODY RADIATION

The walls of a cavity maintained at a temperature 7 continuously emit and absorb electromagnetic
radiation (photons), and in equilibrium the amounts of energy emitted and absorbed by the walls are
equal. The radiation inside the cavity can be analyzed by opening a small hole in one of the walls of
the cavity; the escaping photons constitute what is called blackbody radiation. Quantum physics was
born when Max Planck discovered around 1900 the correct expression for the experimentally observed
spectral distribution of blackbody radlatlon i.e. the fraction of the total radiated energy with
frequency between » and v + dv.

38.1. Consider, for simplicity, a cubic cavity of side / whose edges define a set of axes and whose
walls are maintained at a temperature 7. Maxwell’s equations for electromagnetic waves
show that the rectangular components of the wave vector

must satisfy the boundary conditions
k! k,1 k1
— nx —_— =n — = "z
T T Y T

where n, n, and n, are positive integers. (These boundary conditions ensure an integral
number of half waves in each edge of the cube.) Each triplet (n,, n,) represents, in
classical terms, an electromagnetic mode of oscillation for the cavity; we shall consider these
modes as photon states. Find the number of modes in the frequency interval between » and
v + dv, given that there are two independent polarization directions for each mode.

Each allowed frequency » corresponds to a certain mode (n,, n,, n,) and can be written as

where N ==Vn3 +nl+n} . Instead of trying to find the number of integer states (n,, n,, n,) corre-
sponding to a given N, we use a continuous approximation and find the number of points in a spherical
shell of radius N and thickness dN in the first octant of (n,, n,, n,)-space. This is simply the “volume”

dM = § (4nN?dN) = T N2 dN
But the number of states between N and N + dN must equal the number of states in the corresponding

frequency interval, » to ¥ + dv. Using » = ¢N/2I,

an=2 g
[+

from which
2 ] 3
dM = 3(2_1.'1) (24,,): sl oa 28V o
2\ ¢ c el c? .
where V is the volume of the cavity. Because there are two possible independent polarization directions

for each mode, we must multiply dM by two to obtain the number of photon states dS:
as=2am=3Y 2 4y = 5() iy
. C
Thus the density of photon states in a frequency interval dv is

WV 2
g = 3
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38.2.

38.3.

384.

Viewing the cavity of Problem 38.1 as a container of photons, which are spin-1 bosons,
determine the spectral distribution (the amount of energy per frequency interval) of the
blackbody radiation coming from a small hole in the container. Because photons are
continuously being emitted and absorbed by the walls of the cavity, their number is not
conserved.

Using the density of states g(») determined in Problem 38.1 and the Bose-Finstein distribution
function for photons, (38.2) with a = 0, we find the number of photons, dn,, with frequencies between »
and » + dv to be
I 87V Vz dv

dn, = F, v)dy = ———
BEg( ) GE/KT _ | 3

Each photon has an energy E = hw, so the amount of energy, dE,, carried by the dn, photons is

3
87Vh Y " dv=F(v) dv

dE, = hv dn, = S A
c3  eM/AT _

The spectral distribution, F(»), is plotted in Fig. 38-1. It should be mentioned that Planck arrived
at the function F(») by a different route.

FO)A

T,> T,

y
Fig. 38-1
The Stefan-Boltzmann law states that the total electromagnetic energy inside a cavity whose

walls are maintained at a temperature T is proportional to 7% Show how the law follows
from the resuit of Problem 38.2, and evaluate the proportionality factor.

The total en‘ergy in the cavity of Problem 38.2 is given by

= = constant X T*
P KT _ | PEER N onstant X T

8nVh (o ¥ dv _ 8aVKT* (= q°dg
E=[dE,= " fo

From (38.5), the integral has the value
4
= 3! '”_ =
I'(4)¢(4) = 3! % 6.49

and so

4(6.49 87(8.617 X 10~° eV /K)"(6.49
g SEE) L S /0°6H) .,
(he) (124 %1077 eV m)

= (471 keV/K*-m*)VT*

From Fig. 38-1 it is seen that the peak of the spectral distribution curve shifts upward in
frequency as the temperature increases. The Wien displacement law states that

Amax ] = constant
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where A, is the wavelength at whnch the maximum value of F(») occurs. Derive the Wien
displacement law.

Setting

’ [ hr/kT(3 _ ) - 3]
aF() _d [ 8avh __ ¥ _ 8avn kT
v dv 3 e/ _ el (e™/kT — 1)

we obtain, for a maximum,

h ' '
erastr(s= o) 3 05— -3m0

This transcendental equatlon for y = hv,,./kT, which must be solved by approximation methods, will
have some solution

max
Y= 37 constant

or, since v, = ¢/Anax
AmaxT = constant

385. Determine the ratio of the energy emitted from a 2000 K blackbody in wavelength bands of
width 100 A centered on 5000 A (visible) and 50,000 A (infrared).

The spectral distribution in terms of wavelength can be-obtained by setting (working with magni-
tudes only)

=< -
=y dv v dA
in the expression for dE, in Problem 38.2, to obtain
dE, = 8xhcV d\ = F(\) dA

N5 g /kTA _ |

The bandwidth A\ = 100 A is sufficiently small that we may treat F(A) as constant over this interval, to
obtain ‘ ‘
AEsqon (5000 A)° (12,400 eV * A)/(8.62% 10-5 &V /K)2000 KX(5000 A) __ |

AEspy (50,000 A)° £(12.400 €V * A)/(8.62 10-% eV /K)(2000 KX50,000 A) _ | =550

This result shows that only a small amount of the overall energy is radiated as visible light.

FREE ELECTRON THEORY OF METALS

: In the free electron theory of metals it is assumed that the weakly bound valence electrons of the

atoms composing the metal are not bound to particular atoms but move throughout the entire solid.
It is further assumed that each electron experiences no net force from either the other valence electrons
or from the bound electrons and nuclei. These assumptions are equivalent to stating that each
electron moves throughout the metal in a constant electrostatic potential. At the boundaries of the
metal the potential will rise rapidly because of the net electrostatic force acting on an electron at the
boundary. Thus, in this model, the electrons in a metal are treated like a gas composed of non-
interacting spin-1 fermions confined to a three-dimensional box.

386. For a one-dimensional infinite square well of length / the allowed energies for noninteracting
particles of mass m were found in Problem 17.3 to be E, = n’E,, where n is a positive integer
and E,= h?/8ml®. The generalization to a three-dimensional infinite well of side / is

h2

=(n2+ n? + n? =
E=(nl+n+n))E, E,= Py
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- 38.7.

38.8.

where n,, n,, n, are positive integers. It is seen that a number of different states (n,, n, n,)

may have the same energy, a situation called degeneracy. For the first 6 energy levels, find
the order of degeneracy, i.e. the number of states having the given energy.

L]
See Table 38-1. For higher levels, the equal-energy states need not be permutations of the same
three integers; see Problem 38.43.

Table 38-1
Energy Equal-Energy States (n,, n,, n,) Order of Degeneracy

3E, (LLY 1
6E, LD (L2, (1,1,2 3
9E, 2,21 21,2 (1,2,2 3
11E, G LD (L3 (1, 1,3) 3
12E, 2,2,2) 1

14E, (1,2,3) (1,3,2) 2,1,3)
2,31 3L2 32,1 6

For electrons in a metal or gas molecules in a container, the value of / in Problem 38.6 is so
large that the energy levels can be regarded as forming a continuous spectrum. For this case
determine the number of states (n,, n,, n,) with energies in the interval between E and E + dE.

The problem here is very similar to that of the blackbody, Problem 38.1. Writing N =
\/nf +n} + n? , we obtain for the number of states, dS, with energies between E and E + dE:
dS= 3 (4xN?dN) = T N2 aN
From Problem 38.6,

2
N2=nf+ny2+nzz=E( 8ml )
h2
so that
_(8m2 ', (sm?\'* dE
e
and

8m12)( 8m12)‘/2( dE )_27713(2m)3/2

= 1/2
h2 h2 2EI/2 E dE

=7
dS—zE( e

Thus the density of states in the energy interval dE is, with ¥V = /3,

20V (2m)*"?
g(B)y=""" (:") E'/?

Draw a graph of the Fermi-Dirac distribution function versus energy for 7~ 0 K.

Near T=0 K, E~ Efo > 0, and so

1

elE~Ep)/kT 4 |

If E< Epand T>0K, e® 59/*T >0 and Fpp=1. If E > Eg and T>0 K, e®~50/*T_, 0 and

Fgp =0. Therefore the graph of Fr;, against E has the form given by the solid curve in Fig. 38-2; if
T > 0K it is found that the graph takes on the form given by the dashed curve.

Fep=
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389.

38.10.
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Fep )
1 -
v lr=ox
\
~
\
N
\,T>0K
\
\
S —
Fig. 38-2

Obtain an expression for Eg, the Fermi energy at T =0 K, for an electron gas in a metal.

In Problem 38.7 we found that the number of states (n,, n,, n,) in the energy interval between E and
E + dE was given by

3/2
21rV(23m) EV2 4E

dS=g(E)dE =
Since for each set of quantum numbers (n,, n,, n,) there are two possible electron spin orientations, we
must multiply g(E) by a factor of 2 to get the actual density of states for the electron gas. Thus, the
total number N of fermions in the system is given by

aav(em)*? o  EV24E
W3 j(; e(E—E,)/kT+1

At T =0 K the Fermi-Dirac distribution function is (see Problem 38.8)
F FD = l for E < Eﬂ)

N=2[" Fpp g(E) dE =
0

FFD=0 for E>Ef0

so the limits on the integral can be changed, to give

, 3/2 3/2
N = 47rV(;3m) LENEI/Z dE = 4qu(;3m) (%—Eﬂ/z)
or
R (3N /3
En= 5 (27)

As the temperature increases, it is found (see Problem 38.13) that the Fermi energy remains about
equal to Eg,.

Metallic potassium has a density of 0.86 X 10° kg/m? and an atomic weight of 39. Find the
Fermi energy for the electrons in the metal if each potassium atom donates one electron to the
electron gas.

First we calculate the number of electrons per unit volume, N/ V:

E _ (6.02 X 1026 atOmS/kmol)(0-86 X 103 kg/ma) =1 33 x 1028 atoms =1 33 % 1028 electrons
4 39 kg/kmol ) m? U 3

m
Then, from Problem 38.9,

2/3
=205eV

Ep= h_2( 3N )2/3_ (he)’ ( 3N )2/3_ (124X 10”7 ¢V *m)’ ( 3% 1.33 X 10%2 m~3 )
0 8m\ gV 8mc2 \ 7V 8(0.511 X 10° V) ™

At 300 K, kT = 0.026 eV, so it is seen that Efz Ejo is much greater than k7 at room temperature.
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38.11.

38.12.

Find the average kinetic energy per particle for a Fermi gas of N particles at 7= 0 K.

Using the density of states 2g(E) found in Problem 38.9, we have

4V (2m)y*’? foo E?24E
0

=L _2 (> =
Eavg_ N fEdnE_ Nj(; EFng(E)dE— Nh3 e(E—E/)/kT_’_l

47V (2m)*’? Ep 3 dnv(2m)’’? /5
- > 7 /2 = {450
R fo EY?dE o ( - Eﬂ,/)

Substituting the value of N found in Problem 38.9, we find that
3

Eavg = g

EfO

Thus, even at 0 K, the electrons, on the average, have a sizable kinetic energy. This occurs because the
Pauli exclusion principle will not allow all the electrons to occupy the lowest energy levels, so that
electrons will be found with all energies up to Ey.

Using the normalization condition that the total number of particles 1s a fixed number, obtain,
for low temperatures, an expression for the Fermi energy E, of an electron gas in terms of Ep,
the Fermi energy at 7= 0 K.

The number of particles is given by
N =f°° Frpg(E) dE = Cf“’E‘/ZFFD dE
0 0

where, from Problem 38.9, the density of states is g(E) = CE'/2 dE with C = 47V (2m)*/?/h’. Equa-
tion (38.3) gives, for p = } and keeping only the first term of the series,

2C 1 3
N= Cfo“’E‘/sz dE~ 2 [Ef3/2+2(kT)2(1 -3 )f(z)( 2K '/2)]

_ 2C 13

$E (1)

2
1+ —2— (kT)
85,2( )

Letting T—0 K in (/), we obtain

or
4 877 V(Zm) /

which agrees with the result of Problem 38.9. Since kT/Ef is small, we see from (/) that E; doesn’t
change rapidly with temperature. Therefore we can set E; = Eg in the second term on the right of (1),
to obtain, after also substituting N = 2CEf3 /3,
2 (kT )2
1+ ( XL

Z3£Ef:(4/2= 2C E3/?

3
from which
-2/3
2 (kT )2
E;=Eq| 1+ L ( Lt
7= Epo 8§\ E,
Finally, recalling that for small x
(1+x) =1 %x

we can write
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38.13. Silver has a Fermi energy of 5.5 eV at T=0 K. Using the results of Problem 38.12, estimate
the size of the first-order correction at T = 300 K.

The first-order correction is

—a2 (TP _q2 [(8617%107°eV/K)(300 K] B

- -4
o E, = 12 55eV 107%eV

an almost insignificant change.

38.14. At 0 K, silver has a Fermi energy of 5.5 eV and a work function of 4.6 eV. What is the
average electrostatic potential energy seen by the free electrons in silver?

The work function, ¢, is the minimum energy required to remove an electron from a mhaterial. The
electrons so removed will be those with maximum kinetic energy, which at 0 K is the Fermi energy, Ep.
In turn, for a particle in a box, Ey is the energy above the average electrostatic potential energy, — Eq.
The relationship between the various energies is shown in Fig. 38-3, from which it is seen that

Ey=Ep+¢=55eV+46eV=101eV

v

Since Ey ~ Ej for moderate temperatures (Problem 38.13), this result explains why the work function of
a metal is essentially temperature independent.

AE

Empty ¢
energy levels

Filled
energy levels

Fig. 38-3

SPECIFIC HEATS OF CRYSTALLINE SOLIDS

The molar specific heat at constant volume, Cy, of a solid is defined as the change in the energy
content of one mole of the solid per unit change in temperature as the volume of the solid is held

constant:
_ 1 dE;
Cv= %( aT )V

where E, is the total energy possessed by 9 moles of the solid. From classical reasoning it is
expected that the specific heat of a crystalline solid will remain constant with temperature, and will be
given by the Dulong-Petit law (see Problem 37.9), C; = 3R, where R is the ideal gas constant.
Experimentally, however, it is found that C,, varies with temperature, as shown in Fig. 38-4.

A successful explanation of the observed behavior of C,, was givén by P. Debye in 1912, who
improved an earlier theory developed by Einstein in 1906. In the Debye theory a crystalline solid is
viewed as being composed of regularly spaced atoms in a three-dimensional lattice. If an atom is
displaced from its equilibrium position, it will experience a restoring force due to the surrounding
atoms, the atoms behaving like a collection of coupled oscillators. Any disturbance will be trans-
mitted to the surrounding atoms, resulting in a wave propagating through the solid. It is found that
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Wp— — — — — — — —

a T3 (low-temperature limit)

~Y

Fig. 384

the amount of energy transferred from one atom to its neighbor is quantized in amounts of A», with »
the classical frequency at which the atom vibrates about its equilibrium position. Each quantum A» of
acoustical energy is called a phonon, in analogy to the photons of electromagnetic radiation.

Waves propagating in the lattice can be either transverse or longitudinal, with velocities v, and v,
respectively. A transverse wave has two vibrational degrees of freedom, while a longitudinal wave has
only one degree of freedom. Each vibrational degree of freedom (mode of vibration) of the crystal
corresponds to a state of the system, and the phonons are distributed among these states according to
the Bose-Einstein distribution.

In a crystal it is found that there is a maximum frequency of vibration, called the Debye frequency,
v, The maximum frequency exists because a system of N molecules possesses only 3N modes of
vibration (each molecule having three independent vibrational degrees of freedom). The specific heat
of a crystalline solid is obtained by first finding the Debye frequency and the density of states for the
crystal (Problems 38.15 and 38.16), and then using this information to find the vibrational kinetic
energy and molar specific heat (Problems 38.17 and 38.18).

In addition to the transfer of energy by atomic vibrations, if the crystalline solid is a conductor,
there will also be energy transferred by the free conduction electrons. The total specific heat will then
be determined by the sum of the electronic specific heat and the lattice specific heat. However, as
shown in Problems 38.23 and 38.24, the electronic contribution to energy transfer becomes important
only at very low temperatures.

38.15. Find the number of vibrational states with frequencies in the interval between » and v + dbv.

The sound waves traveling in a solid are exactly analogous to the blackbody oscillations of the
photons in the cavity of Problem 38.1. By the same reasoning as in Problem 38.1, the number dM of
modes of vibration with frequencies in the interval between » and » + dv is

dM=i773—-VV2dV
c

for each type of vibration, with ¢ the velocity of the wave propagating in the medium. Taking into
account the two degrees of vibrational freedom for a transverse wave and the single degree of vibrational
freedom for a longitudinal wave, the number of vibrational states, dS, with frequencies in the interval
between » and » + dv is

dS=g(v) dv = 477V( —2—3 + % )v2 dv
v, Yy

Thus the density of states in the frequency interval dv is

g») = 477V( % + % )v2

v; v



276

38.16.

38.17.

38.18.

38.19.

ATOMIC SYSTEMS [PART VII

Rewrite the density of states found in Problem 38.15 in terms of the Debye frequency v,
which is the maximum possible vibrational frequency in a solid composed of N molecules.

The number of possible states is finite and equal to 3N. Thus:

R
3N=de=j:‘g(V)dv=41rV(% + ls)j:‘vzdv=41rV(% + -‘3)%"
. t (]

i v; v,
The density of states then takes the form

2 1 9N
g(») = 4frV( S+ ),,2 = »?
Y L] Va

Assume that acoustical energy is transferred through a crystal lattice in quantized amounts of
hv by quasiparticles called phonons, which are bosons whose total number, like that of
photons, is not fixed. Obtain an expression for the total kinetic energy (vibrational energy) of
the crystalline solid.

The number of phonons dn, with frequencies in the range between » and » + dv is

1 9N ,

dny = FBEg(y)dV = —eE—/E—l ”—3 v dy

where g(v) was found in Problem 38.16. Since each phonon has an energy E= hv, we can write for the
energy dE possessed by these dn, phonons

9Nh »3

dE=hvdn,=—E- :i;/kT__l dv

The total energy Ey of the solid will be the sum of all the phonon energies:

S 3 3 3 de .
Er= [dE= SNk (v 1dv=9NkT(TTd) j:" 94

3 Jo eM/FT ed — 1

where g, = hv,/kT and T, = hv,;/k (calle;d the Debye temperature). The integral must be evaluated
numerically.

From the result of Problem 38.17 obtain an expression for C,, the molar specific heat at
constant volume, in the limit 7< T ,.

From Problem 38.17 the total energy is

bsf‘ld q3 dq

T
T,
where g, = hy, /kT=T,;/T. For T< T, we have g,— oo, and the value of the integral approaches
7*/15 (Problem 38.3). Thus, :

_ T\

Applying the definition of C;,, we then obtain

Co= L (3BT _ 36kN m* TV_12eR(TY
v 5 \T,

1

X\ oT €n 15

Vv
where we have used the result kN/9U = R. Experimentally it is found that at low temperatures CV
does vary as T°.

The classical Dulong-Petit law (see Problem 37.9) states that C;, = 3R. Show how this law
follows from the result of Problem 38.17 in the limit 7 > T,.
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38.20.

38.21.

From Problem 38.17 we have

_ T\’ (% q°dq
ET—9NkT(TD)fO "

For T>» T,, q;= T;/T—0, so that we may write
ell+yg
over the entire range of integration. Thus,

3
Err 9NkT( L ) [T/ Tq? dg = 3NkT
Td 0

From the definition of C,,
1 ( 9Er

_ 1N -
cy—ﬁ(ﬁ)y-—a e k=3R

It is found experimentally that this result holds only at high temperatures.

From the result of Problem 38.17 obtain an expression for C,, at an arbitrary temperature.

From Problem 38.16, », is fixed when V is fixed. Thus,

_ 1 (8ErN N 3 [oNn e P
Cv—ﬁ(ﬁ);@fﬁ =l A R “”}

dv

9Nkh? f‘vd plghr/kT b= 9RA2 fp, g hv /KT
P
0 0

S RRUTY o (T T KT o (emriT 1y

with kN/9U = R. In terms of the Debye temperature T, = hv,/k and the variable ¢ = hv/kT, this
expression becomes

T\’ T,/T q“e"
C, =9R ——) @2 d
d ( T, J;) -1 1

When this expression for C, is plotted against T one obtains very close agreement with the experimental
curve of Fig. 38-4.

Find the total energy of an electron gas at low temperature.
The total energy is given by
o0
Ep= fo EFpp g(E) dE

where, from Problem 38.9, g(E) = CE'/2. Then, using (38.3) and keeping only the first term of the
series,

2\(5
b= [ 5 Prar = 3 [ 20 (1)(5)(3 357

_ 2C .52
=5 E/

Using the results of Problem 38.12 expressing C and E; in terms of Ep, and recalling that E, doesn’t
change rapidly with temperature, we can express E; as follows:

2(3 [ kT 1
Er=§(7NEf°‘”2)Eff/2[l_ﬁ(E)

2 2
1+z;;_(k_f)]

where, consistent with earlier approximations, we have kept only terms of the first order in (kT/ Eﬂ,)z.

3
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38.22. For- the electron gas of Problem 3821 find to first order the molar electronic specific heat at

constant volume, Cy,.
1 ( 3Er 1 3 [3 Sw2 ( kT \*
(W) WT[ ”Efo[' 12(@,‘5)

=3 N[5 2%T)_ Nok® . _ Rk
5 ™6

T
2NEy 2B

7
l

with R = Nk/ 9.

38.23. Estimate the electronic molar specific heat, Cy,, for silver at room temperature (7 = 300 K).
Silver has a Fermi energy Eqp = 5.5 eV.

From Problem 38.22,
RekT  (831J/mol- K)7%(8.62 x 10~° eV /K)(300 K) .
Cy. 2E, (5.5 V) 0.19 J/mol-K

This value is per mole of atoms. However, since silver has valence 1, a mole of atoms corresponds to a
mole of electrons. Note that at T =300 K the Debye theory predicts a specific heat due to lattice
vibrations of about 3R =25 J/mol*K (the Dulong-Petit limit), so at this temperature the electron
specific heat can be neglected.

38.24. Refer to Problem 38.23. For silver find the temperature at which the electronicb molar
specific heat, C,,, and the lattice molar specific heat, C,, are equal. The Debye temperature
for silver is 210 K. The equality occurs at low temperature, so the Debye-theory result can be
taken as

R2+R(TY
o= 255(7)
(see Problem 38.18).
Equating Cy and C,,

12¢°R ( T\ _ Re%T
5 \T, 2Eq

( 5KT} )l/2=[5(8.62x10'5eV/K)(210K)3 LK

"\ 24278, 247%(5.5 eV).

This result shows that the electronic heat conduction will be noticeable only at very low temperatures.

THE QUANTUM MECHANICAL IDEAL GAS

The assumption made for an ideal gas is that the gas molecules are noninteracting. However,
since an ideal gas will be composed of either fermions or bosons, it should be analyzed from a
quantum statistical vxewpomt

As expected, it is found that at high temperatures the quantum mechanical results go over into
those obtained from a classical treatment. At temperatures approachmg absolute zero, however, a
quantum mechanical analysis predicts marked differences from what is expected classically. For
example, it is predicted for a gas of bosons that at a low, but nonzero, temperature, all the particles will
be found in the lowest energy state, a phenomenon called Bose-Einstein condensation (Problem 38.26).
Also, even at absolute zero, a fermion gas will have a finite, nonzero pressure (Problem 38.33). Some
gases that obey Bose-Einstein statistics are H, and helium, while a gas that follows Fermi-Dirac
statistics is atomic hydrogen.
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38.25. Consider a gas composed of a fixed number, N, of bosons in a container of volume V. Show
that a is a strictly increasing function of the temperature 7.

The normalization condition is

- 20V 2m)’? e Ei2gE
N=fdn5=j(; Fggg(E) dE = P E/KT _ |

0 e

where the density of states, g(E), was obtained in Problem 38.7. Rewriting this expression in terms of
the variable ¢ = E/kT, we obtain

20V QmkT)? 10 '/ dg
Ry o

and this equation implicitly defines a as a function of 7. As T increases, the expression multiplying the
integral increases. Therefore, since N is fixed, the integral decreases, which implies that a increases.
Thus, a is a strictly increasing function of 7.

Notice that, because N is finite, the integral must always converge, and so & must always be
nonnegative.

38.26. Refer to Problem 38.25. For a given particle density, N /V, find the lowest possible tem-
perature of the boson gas consistent with Bose-Einstein statistics.

Since a steadily decreases as the temperature decreases, yet cannot go negative, the minimum
temperature, T, is that for which a = 0. From (/) of Problem 38.25,

N 20V (2mkTo)*? fw q' dg
n? o ef—1

By (38.5) the integral has the value
((35(3)- b s(3) - heen

Substituting this value and solving for Ty, we find

(k)67 ( N )2/3_ (124X 1077 eV m)’(261) > | y \2/3
27 (mc®)k 2m(mc?)(8.62x 1075eV/K) \ V

0 V

(N/V) P

mcz

=(1.50 X 107% eV K *m?)

At T~ T, most of the noninteracting bosons will be in the lowest (E = 0) state and the system can be
said to be in a condensed state. This phenomenon is referred to as Bose-Einstein condensation.

38.27. Evaluate the total energy of the Bose gas of Problem 38.25.
Using the change of variable ¢ = E/kT and (38.4),

20V (2m)*? 3/2 g1
Er=[Edng= [ “EFye g(E) dE = ety EdE

20V Qm)HKTY? rw g¥2dg  3VQEmkTY kT 2

2

e o e%ei—1 243 = i

3VQmmkTY/’kT = n
2h3 o’ n5/2

where Z = ¢~ 2.
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38.28.

38.29.

38.30.
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Consider a gas composed of N spin-1 fermions in a container of volume V. Show thata’isa
strictly increasing function of temperature. . : C

From Problem 38.9, the nomaﬁzaﬁon condition is

o T T EVigE  AnvQmkT) o g7 dg
N=fd"5=2fo Fepg(E) dE = ——5 fo e BT 41 n -(; e%?+1

with ¢ = E/kT. The result now follows by the argument of Problém 38.25.

For the Fermi-Dirac distribution, « may assume negative values. It is seen that a’ also increases
monotonically with the mass of the fermions in the system, - This fact accounts for the result that at
room temperature (T =300 K) an electron “gas” exhibits essentially the same quantum behavior as at
very low temperatures (see Problem 38.13), while a gas composed of molecules, which are roughly 2000

'times more massive than an electron, shows nearly classical behavior at room temperature.

Evaluate the total energy of the fermion system of Problem 38.28, assuming that « > 0.
The total energy, Er, is found by use of (38.4) to be '

Er= f E dng=2 fo ®EFep g(E) dE

4V @mY": o  EVIJE  4nVQmKTYKT cw g2 dg
I j;) e B/ T 41 -3 . e%eT+1

R P

_3vV(27rka)3/2kT o L 2"
- " 2V A

where Z=e¢" .

Find the average kinetic energy per particle in the high-temperature limit 7>>0 K for the
boson and fermion gases of Problems 38.25 and 38.28. '

Using (38.4) to evaluate the integrals for N for the two gases, and using the expressions for Er
found in Problems 38.27 and 38.29, we obtain

o0 zn
2 cn+l
E Er 3 kT ! n®/2
avg N 2 § €u+l ,Z"
< n3/2
wh'e'rev Z=e¢"% e= +1 for hosons, and ¢ = —1 for ferniions. In the high-temperature limit, a > o©

(Problems 38.25 and 38.28) and so Z —0. Thus, keeping only the first two terms in each summation, we
obtain, after canceling the common factor €z, ) . i

+€2/25/2
Emz%kT(l——c—L——)z}-kT(l+ei —c——Z—)

1+e2/232 ] 2 2%/2 232
31— Z2.)=3 —el s
-3 kT(l‘_ ¢ /2) 2 kT(l 5 /2)

It is seen that at high temperature E g for both gases is asymptotically equal to the classical value,
3 kT. "The first-order correction to the classical result has the same magnitude for both gases, but the
average energy per particle is higher than the classical result for fermions and lower than the classical
result for bosons.
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38.31.

38.32.

From the first law of thermodynamics, dE; = dQ — p dV, for a reversible process, it is seen
that the pressure p may be written as

(aE})
p=— —
aVQ

Obtain an expression for the pressure of a quantum mechanical gas in terms of E;.

We recall from Problem 38.6 that the energy levels for noninteracting particles in a 3-dimensional
cubical box of side / are given by
h2
8my2/3

- 24 .24 p2\ =
E; = ol (nx +ny+ n,) =
Because of degeneracy there will be a number of states (n,, n,, n,) corresponding to a given E; (see
Problem 38.6). Let n; denote the number of particles in the jth state belonging to level E;. Then the
total energy of the system is

(nf + n} + n,z) (1)

=2 2 Emn
i
from which

dEr = 2_ ZE,- dn+ 2 zn,.j dE,

Since E; depends on the dimensions of the system, the second term, ;> j My dE;, corresponds to
changing E; by changing the dimensions or volume of the system by doing work on the system. Thus
the first term must be equal to the heat absorbed by the system:

dQ=2_2E,»dn,~j

In other words, a flow of heat into the system corresponds to a change in the occupation numbers n;. 1If
Q = const., so that dQ = 0, we see that

But, from (1),

JE; 2 A 2. 2. .2 2
W3 gy (W AR) =~ 5y E
and so
2 2 Er
= - n’..Ei - —
=3y 2; it T3y
This relation is formally identical to the classical result (35.6).

Refer to Problems 38.30 and 38.31. Obtain the first-order correction at high temperatures to
the classical ideal gas law, pV = NkT, when the quantum mechanical properties of the gas are
taken into consideration.

From Problem 38.30,

3
[
4
Try
[ST[3%}

avg =

NkT(l —€— 25/2 )

_ | +1 foraboson gas
—1 for a fermion gas

where

Substituting this into. the result of Problem 38.31, we obtain

e ¢
pV= NkT(l - GW)
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38.33.
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Refer to Problems 38.21 and 38.31. Obtain an expression for the pressure of an ideal spin-1
fertion gas at very low temperatures. i

From Problem 38.21 we have for a spin-1 fermion system at low temperatures

3 e |14 522 ( kT V]
ET=§NEJDI+—IT(E};)
Substituting this into the result of Problem 38.31, we obtain

_2 NEpp | st (kT Y]
57V 12 \ Ep

This result shows that as T—0 K,‘the pressure of a fermion gas approaches a finite value. This
zero-point pressure occurs because even at 0 K the fermions have, as a result of the Pauli exclusion

principle, a finite energy, as discussed in Problem 38.11.

DERIVATION OF THE QUANTUM DISTRIBUTION FUNCTIONS

38.34.

38.35.

For a given energy level E; in a system of fermions there will be a certain number g; of states
that will have this energy (i.e. E; will have a degeneracy of order g). The maximum number
of fermions that can occupy this level will therefore be g, since, according to the Pauli
exclusion principle, no more than one particle can be found in each state. Find the number

" of different ways that N identical, indistinguishable fermions can be distributed among energy

levels E,, E,,...,E,..., such that the ith energy level will have n, < g filled states
(n1+n2+"'=N). ’ » '
There is one way of assigning n, particles to E,, n, particles to E,, ....; since the particles are

mutually indistinguishable. Next, out of the g, states in E,, we pick the n, states that are to be filled by
the n, particles; this can be done in ‘ ‘
| (&)_ &
n n,! (gl - nl)!

different ways. For each of these there are

(&)_ 8!
ny nz! (gz - nz)!

different ways of filling E,; and so on. The total number of ways is thus -

Xglx(gl)(gZ)_._._ &! g:! )

ny J\ ny n! (g —m)! ny! (g —my)!

Find the most probable distribution for Problem 38.34, subject to the conditions that the

- number of particles and total energy are held fixed.

" The most probable distribution is that which can be realized in the greatest number of ways. Thus,
we must maximize the function X(n, My, ...), as given by () of Problem 38.34, subject to the
constraints

> m=N=constant D, E;n= Er = constant
7 7

' (The additional constraints n; < g can be ignored, because we know in advance that the maximum will

satisfy them.) Going over to a continuous problem for the function

X
In —a8—
salg!- -
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38.36.

38.37.

using Stirling’s formula, and applying the method of Lagrange multipliers, all exactly as in Problem
37.16, we obtain the conditions
8i
e%PEi+ |
Since n, is the number of fermions with the energy E;, and g is the number of states with energy E;, n,/g;

is the average number of fermions in a state at energy E;; that is, n;/g,, is the Fermi-Dirac distribution
function, Frp:

1
Fopm ——
P eoebEi 4 |

Integer-spin particles (bosons) do not obey the Pauli exclusion principle, so any number of
bosons may be found in a given state. Suppose at the energy E, there are g, states. Find the
number of different ways that N identical, indistinguishable bosons can be distributed among
energy levels E, E,, ..., E,, ..., with a fixed number n; of particles in the ith level.

1

Consider first one of the levels, E;, with g; states and n, particles. This level can be pictured as n;
particles in a row divided arbitrarily into the g; states by g, — 1 lines (see the example in Fig. 38-5). The
number of different ways the n; bosons can be placed in the g, states, without any limit to the number of
particles in a state and temporarily regarding the particles as distinguishable, is equal to the number of
different ways the n, + g, — 1 particles and dividing lines can be permuted, (n; + g — 1)!, divided by
(since in our picture the interchange of two dividing lines corresponds to the same state) the number of
ways the g; — 1 lines can be permuted, (g, — )!:

(n+g -1
(g,- - 1)!
Because, however, the particles are actually indistinguishable from each other, so that the interchange of
two particles results in the same distribution, the above expression must be divided by the »;! different

ways the particles can be permuted, to get the actual number of different ways the ith level can be
formed:

(n+g -1

nt (g — D!
Therefore, the total number X of different ways there are to arrange n,, n,, ... bosons in the energy
levels E,, E,, . .. if there are g,, g,, . . . states in each level is

(gD (it g - D!

(1)
(g — D' nl(g— D!
State
1 2 3 4 5 7 &
oooo'oolooool |o|oo|ooooool---|ooo
4 2 4 0 1 2 6 cen 3
Number of particles in the state ( total number is n;)
Fig. 38-5

For Problem 38.36 find the most probable distribution if the number of particles and total
energy are held constant.

Proceeding exactly as in Problems 37.16 and 38.35, we maximize the function X from Problem 38.36
—or, more conveniently, the function

In {l(g = D! (- D! - 1x)
—subject to the constraints

> n;= N = constant > E;n;= E; = constant
7 7
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The conditions for a maximum are found to be

" = e_“e_BEi

n+g-—1
If we assume n; + g, > 1 we have

n; :
_; =e % PE  or m= —a—é'——
nTg e%FPr—1

Since n; is the number of bosons with the energy E;, and g is the number of states with the energy E,,
n,/g is the average number of bosons in a state at energy E;; that is, n;/g; is the Bose-Einstein
distribution function, Fgg: i

1
e%ePEi — |

FBE—

Show that a system of bosons which does not have a fixed number of particles (e.g. a system

38.38.

of photons in a blackbody cavity) has a Bose-Einstein distribution with a = 0.

In the derivation given in Problem 38.37, setting a = 0 is equivalent to dropping the constraint
;= N = constant
Supplementary Problems
BLACKBODY RADIATION
3839, What is the density of photon states in the energy interval between E and £ + dE in a cubical cavity of
. volume V=13  Ans. 8aVEZ2/(hc)

3840. What is the amount of energy per wavelength interval emitted by a blackbody?

A 87Vhe 1

ns N5 eM/MT _ |

3841.  Replot Fig. 38-1 as F(A) versus A.
3842. Repeat Problem 38.5 for a wavelength band of width 50 A and an infrared wavelength of 25,000 A.

Ans. 338

FREE ELECTRON THEORY OF METALS

. 3843,
38.44.

38.45.

Whatr is the order of degeneracy of the 57TE, level of a three-dimenéiohal, cubical infinite well?
Ans. 6

For a cubical, three-dimensional infinite well, what is the density of states in the momentum interval
between p and p + dp?  Ans. 4nl’p?*/K

At T =0 K, what is the rms speed, in terms of the Fermi energy Efo, in an electron gas in a metal?
Ans. o(m/s) = (4.59 X lO’)\/Ep(eV)
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38.46.

38.47.

38.48.

38.49.

What is the next term in the expansion of (1), Problem 38.127

7 7kT \4
Ans. W(—E)

At T'=300 K it is found that the Fermi energy of a certain material is reduced from its value at 0 K by
12 x 107* eV. What is the Fermi energy of this material at 0 K? Ans. 4.58 eV

The average electrostatic potential energy is 11.2 eV for a material whose work function is 3.4 eV. What
is the Fermi energy of the material? Ans. 1.8 eV.

At T =0 K, what is the ratio of the maximum speed to the rms speed in an electron gas in a metal?
Ans. 129

SPECIFIC HEATS OF CRYSTALLINE SOLIDS

38.50.

38.51.

38.52.

38.53.

38.54.

In a crystalline solid, what is the density of states in the wavelength interval between A and A + dA?

3
Ans. 417V( _2_ + L ) e

o} o} /A8

Refer to Problem 38.23. For silver find the temperature at which the electronic molar specific heat, Cy,,
is 5% of the lattice molar specific heat, C,,. Ans. 783K

In a quantum mechanical two-state system with energy levels E, =0 and E, = € the probability of
finding a particle in a state of energy E is proportional to the Boltzmann factor e “%/*7, Find the total
energy of a system of N particles.

NEe‘(/kT

Ans. ET= W—T

For the system of Problem 38.52 find the specific heat at constant volume.

_ Nk(e/kT)ze_‘/"T
(1 + e—(/kT)2

Ans.

Find the low- and high-temperature limits of C, in Problem 38.53. Ans. 0and 0

THE QUANTUM MECHANICAL IDEAL GAS

38.55.

38.56.

What is the rms speed in the Bose gas of Problem 38.25?

0 —na 0 —na 172
Ans. (3’1;_T eS/z / 2 £3/—2)
n=1 N n=1 N

Find the temperature T, (see Problem 38.26) for liquid *He, whose density is 0.146 X 10° kg/m>,

Ans.  3.16 K (Although liquid helium is not a true noninteracting Bose gas, the approximation gives a
result quite close to 2.2 K, the temperature at which a rapid increase in the ground state
population is observed, corresponding to the change from a normal fluid to a superfluid.)
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3857. What is the rms speed in the Fermi gas of Problem 38.28? Assume thata > 0.

]l/2 '

3858. Find the zero-point pressure in the electron gas in silver (Eq = 5.5 eV; density = 10.5 X 10° kg/ m3).
Ans. 2.06 X 10'° N/m?~2 X 10° atm

3kT < (_ n+1e"""/ ™ nv1e” ™
Ans. m n§|( 1) ;m‘ ngl( 1) n3/2



Chapter 39
The Band Theory of Solids

The free electron theory of metals, discussed in Chapter 38, does not explain why some materials
are good conductors of electricity, while others, insulators, are poor conductors; and why some
materials, called semiconductors, have conducting properties somewhere in between the previous two.
A more successful theory, called the band theory of solids, explains why the ratios of resistivities of
solids may be as large as 10%.

A solid can be thought of as being formed by bringing together isolated single atoms. Any single
atom will possess a large number of discrete energy levels that can be occupied by the electrons of the
atom. Normally the electrons exist in the ground state, occupying only the lowest-lying energy levels.
It is, of course, possible to excite the electrons into higher energy levels. Usually only the highest-
energy, or valence, electrons will participate in these excitations. Consider first the combination of
two atoms. If there were no interaction between the two atoms, the value of each energy level would
be the same as for each isolated atom, with the number of levels at a particular energy simply being
doubled, as shown in Fig. 39-1(6). Because of interactions, however, each previously single energy
level is split into two levels, as shown in Fig. 39-1(¢). In a similar fashion, if more atoms were
brought together there would be a larger number of splittings of each energy level, one split for each
additional atom. Figure 39-1(d) shows the splitting of energy levels when five atoms are brought
together.

Because there are of the order of 10* atoms/cm® in solids, each previously single energy level of
an isolated atom will be split into an enormous number of parts. Since the values of the energy levels
remain approximately the same, the net effect of assembling a large number of interacting atoms is to
form bands of practically continuous energy levels, separated by gaps where no electron states exist, as
illustrated in Fig. 39-1(e).

The way the electrons occupy the available bands is governed by the Pauli exclusion principle.
The bands will fill with electrons in the same manner as the electron states were filled in many-electron
atoms (Chapter 24). As an example, | Na has all its energy levels filled up to the 3s level, which has
one electron, and its electron configuration is 1s% 2s? 2p® 3s'.  Since the 3s level can accommodate
two electrons, it is only half-filled.

In a similar fashion, the bands in solids may be filled, partially filled or empty, as shown in Fig.
39-2. The highest energy band occupied by the valence electrons and the unoccupied band directly
above it determine the conduction properties of a crystalline solid. If the band containing the valence
electrons is filled, it will be referred to as the valence band, and the next-higher band will be referred to
as the conduction band; if the band containing the valence electrons is not filled, iz will be called the
conduction band. A good conductor has a conduction band that is approximately half-filled [Fig.
39-2(a)], or else the conduction band overlaps the next-higher band [Fig. 39-2(5)]. In this situation it
is very easy to raise a valence electron to a higher energy level, so these electrons can easily acquire
energy from an electric field to participate in electrical conduction.

An insulating material has a filled valence band, and the gap to the conduction band is large [Fig.
39-2(c)]. As a result, electrons cannot easily acquire energy from an electric field, so they cannot
participate in electrical conduction.

Some materials have a filled valence band, like an insulator, but a small gap to the conduction
band [Fig. 39-2(d)]. At T =0 K the valence band is completely filled and the conduction band is
empty, so the material behaves like an insulator. At room temperature, however, some of the
electrons acquire sufficient thermal energy to be found in the conduction band, where they can
participate in electrical conduction. In addition, these electrons leave behind unfilled “holes” into

287
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which other electrons in the valence band can move during electrical conduction. The excitation of
electrons into these holes has the net effect of positive charge carriers supporting electrical conduction.

The semiconductors just described are called intrinsic semiconductors. It is possible, however, by
introducing the proper impurities into a material, to control whether the electrical conduction will be
primarily by electron (negative) or hole (positive) charge carriers. Such “doped” semiconductors are
called extrinsic semiconductors, and serve as the foundation for semiconductor devices. If the
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predominant charge carriers are electrons, the material is called an n-type (for “negative”) semicon-
ductor; while if the holes are the predominant charge carriers, the material is called a p-type (for
“positive) semiconductor.

39.1.

39.2.

Solved Problems

A model for electrical current conduction in a metal is to treat the metal as a contained
electron gas, the container being the metallic lattice. When an electrical potential is applied
across the material, the electrons, which are moving in a random manner, are accelerated in
the direction of the applied electric field, and after many collisions with the heavy lattice ions
acquire a net average drift velocity, v,, which results in a net electrical current. For a material
of n electrons per unit volume, where the electron mean free path is taken as A and the average
velocity due to thermal excitation is 7, find the resistivity. For simplicity, assume the volume
V to be a box of cross-sectional area 4 and length /.

If a potential ¢ is applied across the material along the side of length /, the force on an electron is

F=¢E=¢ ?
and the electron’s acceleration is
F e
a - — =
m m,l

The average time between the electron’s collisions with the lattice is ¢ = A/©. The velocity, over and
above its random velocity, acquired during this time interval is the drift velocity
epA

vy =at
4 m, I

(More exactly, v, = at’, where (' is the average time since the last collision. However, under the
assumption that collisions are independent random events, it can be shown that the intercollision time
has an exponential distribution, (/) of Problem 29.1. It can then be shown that the expected time since
the last collision equals the expected time between collisions, i.e. ¢ = 1.)

The current, 1, is the rate at which charge is transported through the cross-sectional area 4. The
random part of the electrons’ motion produces no net transport, and so
ne’A\A4

m,lp

I =(ne)dv, = ¢
which is Ohm’s law, I = ¢/R. Defining the resistivity p of the material by
]
R= o Z

we have

Refer to Problem 39.1. Estimate the resistivity of silver (4 = 108), whose density is 10.5 X
10° kg/m’, assuming each atom contributes one electron (the valence electron) for conduc-
tion. For purposes of this estimation take A equal to 100 times the atomic spacing d, and v,
equal to the velocity corresponding to the Fermi energy, Ep=55¢V.

The velocity corresponding to the Fermi energy is given by

1/2
) (3% 10° m/s) = 1.39 X 10° m /s

1/2
20\ | axssev
o= ol B v e
m,c 0511 X 105V
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39.3.

394,
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Since each atom contributes one electron, the atomic density equals the electron density:
~ (6.02 X 10° atoms/kmol)(10.5 X 10° kg/m’) ( | electron
"= 108 kg/kmol ( atom )

If each atom takes up a volume of approximately d>, we then have

—"—=d=(—'——1———)1/3=258x10-'°m or A=258X10"*m
100 - 585X 1022 m~3 ) ) )

‘ g electrons
= 5.85 X 102 T

Using the result of Problem 39.1, we have
_myy (9.11 X 107" kg)(1.39 X 10° m/s)
emh (1.6 X 10719 C)*(5.85 % 10%® m~?)(2.58 X 10~% m)

Experimentally it is found that the resistivity of silver varies from 1.5X 1078 @-m at 0 °C to
6.87x 10® @-m at 800 °C. It is thus seen that our crude approximation gives reasonable agreement
with what is observed.

=329%x10"8Q'm

As in Problem 39.2, estimate the resistivity of silicon (4 =28), which has a density of
2.42 X 10° kg/m?> and a valence of 2. Assume the Fermi energy for silicon is about 5 eV.

Proceeding as in Problem 39.2, we find

2Eq \'/? 1/2 .
o 2x5eV )
o= ==l 3x 10 m/s) =13.3 x 10°
y (m,cz) ¢ (0.511XlO°eV - /9=, /s

(6.02 x 1076 3008 )(2.42 x 10° kg /m’)
n= -

28 kg/kmol

The number of atoms per m® is one-half the electron density, and if each atom takes up a volume of
approximately d°, we have

( 2 electrons ) = 1.04 X 10 electrons
atom m3

1
1(1.04 X 10®° m

1/3 '
A =100d = 100[ = ] =268x10"%m

The resistivity is then
m, vy (9.11 X 1073 kg)(13.3 X 10° m/s)
p = = R .
ek (1.6 X 1019 C)*(1.04 X 10®° m~?)(2.68 X 10~% m)

At room temperature the resistivity of silicon is found to be about 10° © -m, much larger than
predicted by this calculation. The reason for the discrepancy is that we have assumed the valence
electrons will produce conduction. However, silicon is a semiconductor, so that there is a gap between
the valence and conduction bands. Only those electrons which have energies sufficient for them to be
found in the conduction band will support electrical conduction.

=17x1078Q'm

Show that in an intrinsic semiconductor the number of holes with energies between E and
E + dE is given by

dny, = (1 — Fpp )g(E)dE
where g(E) is the density of states in the valence band.

At T=0 K in an intrinsic semiconductor the valencé band is filled and no electrons are in the
conduction band. For 7 > 0 K some electrons are excited to the conduction band, and their number
equals the number of holes created in the valence band. This is illustrated in Fig. 39-3. The

" distribution function for the number of holes is the shaded area in Fig. 39-3(b). Therefore, the number

of holes with energies between E and E + dE is given by
dny, = (1 — Fpp ) g(E)dE
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For a semiconductor it can be shown that in the region immediately above the conduction
band and below the valence band the density of states functions g(E) are approximately
symmetrical about the midpoint of the gap, E,, as shown in Fig. 39-4(b). (Of course, in the
gap itself the density of states will be zero.) Show that the Fermi energy level will lie at the
midpoint of the gap.

Because one hole is produced in the valence band for each electron in the conduction band, the
total number of electrons, N,, in the conduction band must be equal to the total number of holes, N,, in
the valence band. The number of electrons, dn,, with energies between E and E + dE in the conduction
band is,

dn, = Frpg(E)dE
while in the valence band the number of holes, dny, with energies between E’ and E’ + dE’ is (see
Problem 39.4)
dny =(1— Frp ) g(E')dE’

Therefore,

f£r+EDFFD(E)g(E)dE=fED[1 — Fep (E) g(E") dE’
£ 0

0

We take the upper limit on the left-hand side as E, + E, because g(E’)=0 for E’ <0 and so, by
symmetry, g(E) =0 for E > E_ + E,. Changing the variables to

x=E-E, x=FE -~ E'

in the left-hand and right-hand integrals, respectively, we obtain

[ 5 g Fr0 (B + X)8(Ep + ) dx= [ = (1= Fio (B = DB, = x)dx

But, by symmetry, _
E.-E,=E,—E, g(E,+x)=g(E,—x)
and so
LEME {Fep (Ep + x) —[1 = Frp(E,, — X)) g(E, + x)dx=0 1)
Using the explicit expression for Fyp,, we have for the quantity in braces:

1 1 1 1 e(Em—x—Ef)/kT
e(Em"'X‘E/)/"T.,.l —[ h e(E,,.—x—Ej)/kt+l J

- eEntx—E KT || - eEn—x—E)/KT | |

1— ez(E,,,—E,)/kT
. [e(Em+x—E)/kT ] 1) eCEn—x—Ep)/kT | 1]
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Now, over the entire range of integration in (1), g(E,, + x) is positive. It is seen that the quantity in
braces would be everywhere positive if E; > E,, and everywhere negative if E, < E,,. In either case the
integrand in (/) would be one-signed, and the integral would be nonzero. Hence, E; = E,,.

A more refined analysis shows that the density of states is not exactly symmetrical about E,,, so the
Fermi energy will not be precisely at the midpoint of the gap. However, the error introduced by our
assumption is quite small. '

In Problem 38.9 the density of states in the free electron theory of metals was found to be

8y2 emd/v
g(E)= 0

Assume that this same expression holds for electrons in the conduction band, but with £ on
the right side replaced by E — E_, where E_ is the energy at the bottom of the conduction

EI/2
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band. Taking the Fermi energy at the center of the gap, show that the number of valence
electrons per unit volume in the conduction band at a temperature T varies like

n = Ce-E/2T
where C = 2Qam,kT)*/?/h* and E, = E, — E, is the size of the energy gap.

At ordinary temperatures kT = 0.026 eV, so that in the conduction band E — Ef>> kT, and the
approximate expression

Frp = e—(E—E,)/kT
may be used. The total number, N,, of electrons in the conduction band is then
82 mm/V
N, =f°°Fmg(E)dE= ﬁ____ fw(E— Ec)l/ze—(E—Ef)/deE
E, h3 E,
or
N, 8T mmi -
=€ =" ,—(E-E)KT _ /2, _(E-E,)/kT
n= 3 e ! fEc (E-E)'"e dE

Using the result (Problem 39.5) that E. — E; = E,/2 and substituting u* = E — E,, we obtain

n,

3/2 3/2
- 8Y2 mm e—Eg/ZszfwuZe—uz/deu= 2( 2mm kT ) e~ Ee/2T
K 0 h?
where the integral has been evaluated by use of Table 37-1 (n = 2).
If the values of the constants are substituted in the expression for #,, one obtains

n, = (4.83 X 102")T%/% ~£/2T electrons /m>
For T =300 K, kT = 0.026 ¢V and we have

Mols0 k= (483 X 1021)(300)* %~ Es/20026 V) = (2,51 X 10%)e ~ B/ ©052¢V) electrons /m?

The expression for n, is not strictly correct, because the Fermi energy is not exactly at the center of the
gap. However, the expression is sufficiently accurate for reasonable order-of-magnitude estimates.

39.7. Refer to Problem 39.6. Estimate the ratio of the electron densities in the conduction bands of
the insulator carbon (E, = 5.33 ¢V) and the semiconductor silicon (E, = 1.14 ¢V) at room
temperature (300 K).

At 300 K, kT =0.026 eV.

ic = ¢—(533eV-114eV)/(0052eV) )35

nsi
Thus the conduction population for the insulator is much much smaller than that for the semiconductor,
which shows why insulators have such enormously high resistivities, even compared to semiconductors.

39.8. * The mobility of charge carriers, defined as p = v,/ E, where v, is the drift velocity resulting
from an applied electric field E, is a measure of the ability of the charge carriers to move
through a material when an electric field is applied. From Problem 39.1 it is seen that we
may also write u = e\/mb. In silicon (E, = 1.1 eV) at room temperature the mobility of
electrons is g, =0.13 m?>/V-s and the mobility of holes is u, =005 m*/V-s. Find the
conductivity, ¢ = 1/p, of silicon, where p is the resistivity (see Problem 39.1).

The conductivity o has two contributions, one from the electrons and the other from the holes.
Therefore
en A\ en\
o=l g L0 T
Pn P m,T, m,T,
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39.9.

39.10.
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Using g = eA/ mb, we may write
o = n,ep, +.npepr
From the result of Problem 39.6,
) n,=n,= (2.51 x 1025)e_(” eV)/(0052¢V) = | 6 % 106 m =3
whence
“o=(1.6x 10" m~3)(1.6 X 1071 C)(0.13 m?/V *s + 0.05 m?/V *s5) = 46x 1074 (Q- m) !
The overall resistivity is then

=22X10°Q2'm

Q-

p=

Refer to Problem 39.8. An impurity atom which donates one extra electron to the conduc-
tion band is added to silicon in the ratio of one impurity atom to 10" silicon atoms.
Determine the conductivity of the doped silicon, assuming that the mobility of the donated
electrons is the same as the mobility of the host electrons and that the donor density is much
greater than the intrinsic density of the host electrons and holes.

From Problem 39.3 the density of the silicon atoms is

ng; = 5.2 X 10?® atoms /m’
so the density of the donor atoms is 10~'© times this value, or

ng = 5.2 x 10'® atoms/m>
(In Problem 39.8 it was found that the density of the intrinsic charge carriers was ~ 10! m~3, which is
much smaller than the donor density n,) The general expression for the conductivity is

o = n,ep, + n,ep,
where n, and n, are the densities of the negative and positive charge carriers. Since the negatively
charged donors are predominant in density, we may write . .
o = ngep, = (5.2 X 10¥ m=3)(1.6 X 10~ ° C)(0.13 m2/V +s) = 0.11 (2 *m) "

This result, when compared with that of Problem 39.8, shows that a very small doping can have a
significant effect on the conduction properties of a semiconductor. In practice, the doping ratio is in
the range 1073 to 1071°,

If a thin strip of material carrying a constant current is placed in a magnetic field B which is
directed perpendicular to the strip, it is found that a measurable potential difference appears
across the strip (this is called the Hall effect). Show that the relationship between the electric.
field E induced in the material, the current density j, the number of charge carriers per unit
volume n, and the magnetic field B is

_ JB

o
where ¢ is the charge of the charge carriers.

A picture of the equilibrium situation for positive charge carriers is shown in Fig. 39-5. When the

magnetic field B is initially turned on, the force Fj causes the left side of the material to assume a net
positive charge with respect to the right side. The electric field E created by this charge separation will

exert a force Fz on the charge carriers to produce an equilibrium situation where the carriers drift
neither to the right nor left. Therefore, with v, perpendicular to B, we have

Fg=F; or qE=quuB or E=uy;B
and since j = gnv,, :

Measuring E, j and B allows us to determine 1 / qn, called the Hall coefficient.
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39.11.

39.12.

39.13.

39.14.

39.15.

39.16.
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Since the direction of the electric field and the corresponding polarity of the potential difference will
depend upon the sign of the charge carriers, it is possible to determine this sign from the Hall effect. It
is interesting that even though only electrons are free to move in a material, one does find Hall
coefficients that indicate conduction by positively charged carriers. It is the holes, or absence of
electrons in the valence band, which behave like positive charge carriers.

Supplementary Problems

In thermionic emission electrons which escape from a metal must have energy of at least E = E; + ¢, with
E; the Fermi energy and ¢ the work function. Assuming that ¢ > k7, find the energy distribution of the
emitted electrons.  Ans. Ae E/KT

For gold (4 = 197) the resistivity is 2.04 X 10°% Q+m, the Fermi energy is 5.54 ¢V, and the density
19.3 X 10> kg/m>. Find the ratio of the mean free path A to the interatomic spacing d for the
conduction electrons if each gold atom contributes one free electron. Ans. A/d =161

Estimate the ratio of the electron densities in the conduction bands of silicon (E;=1.1 eV) and
germanium (E, = 0.7 eV) at 300 K. Ans. ng./ng =22 X 10°

An impurity atom which donates one extra hole to the valence band is added to silicon in the ratio of
one impurity atom to 10° silicon atoms. Determine the conductivity of the doped silicon, assuming that
the mobility of the donated holes is the same as the mobility of the intrinsic holes ( #, = 0.05 m?/V+5s).
Ans. 042 (- m)~!

After addition of an impurity atom which donates one extra electron to the conduction band of silicon
(1, =0.13m?/V +5), the conductivity of the doped silicon is measured as 0.54 (€°m)~". Determine the
doping ratio.  Ans. 2 parts in 10°

It is convenient to describe the motion of an electron (or a hole) in a band by giving it an effective mass,
m*, defined by
1 _ 1 aE
m* TR gk?
where & is the wave number (k = 27 /M).  For a free electron ( p = hk), show that m* = m.



Appendix

SOME FUNDAMENTAL CONSTANTS IN CONVENIENT UNITS

¢ = speed of light =2.998 X 10* m/s
e = electron charge = 1.602 X 10~'° C

h = Planck’s constant = 6.626 X 10734 J-s
=4.136 X 10" eV-s

h= gt = 1055 X 107 J -5 = 0658 X 1075 &V s

k = — = Coulomb constant = 8.988 X 10° N -m?/C?
 dme,

k= % = Boltzmann’s constant = 1.38 X 10-2 J/K

=8.617x 10~ eV/K

SOME USEFUL CONVERSIONS AND COMBINATIONS

" 1eV=1602%x10"17
1A=10"""m = 10° fm ,
“he = 19.865 X 10726 Jm = 12.41 X 10° eV - A =1241 MeV - fm
he=3.165X 1072 J-m = 1973 V- A = 197.3 MeV * fm '
ke? = 1.44 MeV - fm . -
ke? 1

ryale fine structure constant = 137
2en;: = Bohr magneton = 9.27 X 10 J/T

e

=5.79% 1075 eV/T

MASSES OF SOME ELEMENTARY “PARTICLES

, Rest Mass, m, mgc?
Particle » (kg) (MeV)
Electron 9.109 x 10~3! 0.511
Proton » 1.673 x 10~% 938.3
Neutron 1.675 x 10~% 939.6
Atomic mass’ 1.661 x 10=% 931.5
unit (1 u)

296



APPENDIX]

MASSES OF NEUTRAL ATOMS

In the fifth column of the table an asterisk on the mass number in

half-life of which is given in the seventh column.

Chemical
Atomic Mass
VA Element Symbol Weight A (u) Ty,
0 (Neutron) n 1* 1.008665 12 min
1 Hydrogen H 1.0079 1 1.007825
Deuterium D 2 2.014102
Tritium T 3* 3.016050 1226y
2 Helium He 4.0026 3 3.016030
4 4.002603
6* 6.018892 0.802 s
3 Lithium Li 6.939 6 6.015125
7 7.016004
4 Beryllium Be 9.0122 7* 7.016929 534d
9 9.012186
10* 10.013534 27X 108y
5 Boron B 10.811 10 10.012939
11 11.009305
6 Carbon C 1201115 12 12.000000
13 13.003354
14* 14.003242 5730y
7 Nitrogen N 14.0067 14 14.003074
15 15.000108
8 Oxygen 15.9994 15* 15.003070 122 ¢
16 15.994915
17 16.999133
18 17.999160
9 Fluorine F 18.9984 19 18.998405
10 Neon Ne 20.183 20 19.992440
21 20.993849
22 21.991385
11 Sodium Na 22.9898 22+ 21.994437 260y
23 22.989771
12 Magnesium Mg 24.312 23+ 22.994125 125
24 23.985042
25 24.986809
26 25.982593
13 Aluminum Al 26.9815 26* 25.986892 74X 10°y
27 26.981539
14 Silicon Si 28.086 28 27.976929
29 28.976496
30 29.973763
32+ 31.974020 ~700y
15 Phosphorus P 30.9738 31 30.973765
16 Sulfur S 32.064 32 31.972074
33 32971462
34 33.967865
36 35.967089
17 Chlorine Cl 35.453 35 34.968851
36* 35.968309 IX10y
37 36.965898
18 Argon A 39.948 36 35.967544
38 37.962728
39+ 38.964317 270y
40 39.962384
42+ 41.963048 33y
19 Potassium K 39.102 39 38.963710
40* 39.964000 13X 10%y
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dicates a radioactive isotope, the
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Chemical -
Atomic Mass
z Element Symbol Weight A (u) Ty,
9 (Potassium) , 41 40.961832
20 ‘Calcium Ca 40.08 39* 38.970691 0.877s
' ' 40 39.962589 :
41* 40.962275 7.7x 10%y
42 41.958625
43 42.958780
44 43.955492
46 45.953689
. 48 47.952531
21 Scandium Sc 44.956 45 44.955920
: 50* 49.951730 1.73 min
2 Titanium Ti 47.90 44+ 43:959572 47y
46 45.952632
47 46.951768
48 47.947950
49 48.947870
50 49.944786
23 Vanadium v 50.942 50* 49.947164 ~6X10%y
51 50.943961
24 Chromium Cr 51.996 50 49946055
‘ 52. 51.940513
‘ 53 52.940653
. 54 53.938882
25 Manganese Mn 54.9380 50* 49.954215 0.29s
55 54938050
26 Iron Fe 55.847 54 53.939616
55¢ 54.938299 24y
56 55939395 -
57 56.935398
58 57.933282
60* 59.933964 . ~10°y
27 Cobalt Co 58.9332 59 58.933189
60* 59.933813° 524y
28 Nickel Ni 58.71 58 57935342
‘ 59+ 58.934342 8x10%y
60 59.930787
61 60.931056
62 61.928342
63* 62.929664 92y
64 61.927958
29 - | Copper Cu 63.54 63 62.929592
: 65 64.927786
30 Zinc Zn 65.37 64 63.929145
66 65.926052
67 66.927145
68 67.924857
70 69.925334
31 Gallium Ga 69.72 69 68.925574
n 70.924706
32 Germanium Ge 72.59 70 69.924252
. ' /) 71.922082
73 72.923462
74 73.921181
. 76 75.921405
33 Arsenic As 749216 75 74.921596
34 Selenium Se 78.96 74 73.922476
: : 76 75919207
77 76919911
78 71917314
79* 78.918494

7x10%y
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Chemical
Atomic Mass
zZ Element Symbol Weight A (v) T\,
(39 (Selenium) 80 79.916527
82 81.916707
35 Bromine Br 79.909 79 78.918329
81 80.916292
36 Krypton Kr 83.80 78 77.920403
80 79.916380
81* 80.916610 21x10%y
82 81.913482
83 82.914131
84 83.911503
85* 84.912523 10.76 y
86 85.910616
37 Rubidium Rb 85.47 85 84.911800
87* 86.909186 52 % lO'Oy
38 Strontium Sr 87.62 84 83.913430
86 85.909285
87 86.908892
88 87.905641
90* 89.907747 288y
39 Yttrium Y 88.905 89 88.905872
40 Zirconium Zr 91.22 90 89.904700
91 90.905642
92 91.905031
93* 92.906450 9.5 x 10° y
94 93.906313
96 95.908286
41 Niobium Nb 92.906 91* 90.906860 (long)
92+ 91.907211 ~10"y
93 92.906382
. 94* © 93907303 2x10%y
42 Molybdenum Mo 95.94 92 91.906810
93* 92.906830 ~10%y
94 93.905090
95 94.905839
96 95.904674
97 96.90602 1
98 97.905409
100 99.907475
43 Technetium Te 97+ 96.906340 26 X100y
98* 97.907110 1.5 < 10°¢ y
99* 98.906249 21x10%y
44 Ruthenium Ru 101.07 96 95.907598
98 97.905289
99 98.905936
100 99.904218
101 100.905577
102 101.904348
104 103.905430
45 Rhodium Rh 102.905 103 102.905511
46 Palladium Pd 106.4 102 101.905609
104 103.904011
105 104.905064
106 105.903479
107* 106.905132 7 % 108 y
108 107.903891
110 109.905164
47 Silver Ag 107.870 107 106.905094
109 108.904756
48 Cadmium Cd 112.40 106 105.906463
108 107.904187
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"Chemical
Atomic’ Mass
-z Element Symbol Weight A (v) Ty
(a8) (Cadmium) 109* 108.904928 453d
: 110 109.903012
111 110.904188
112 111.902762
113 112.904408
- 114 113.903360
116 - 115.904762
49 Indium In 114.82 113 112.904089
, 115* 114.903871 6 X 10"y
- 50 Tin Sn 118.69 112 111.904835
' 114 113.902773
115 114.903346
116 115.901745
117 116.902958
118 117.901606
119 118.903313
120 119.902198
121* 120.904227 25y
122 121.903441
124 123.905272
51 Antimony Sb 121.75 121 120.903816
123 122.904213
125¢ 124.905232 27y
52 Tellurium Te 127.60 120 119.904023
- 122 121.903064
123+ 122.904277 1.2x 10"y
124 123.902842
125 124.904418
126 125.903322
128 127.904476
130 129.906238
53 Iodine I 126.9044 127 126.904070
_ . 129* 128.904987 1.6x 107y
54 Xenon Xe 131.30 i24 123.906120
126 125.904288
128 127.903540
129 128.904784
130 129.903509
131 130.905085
132 131.904161
134 133.905815
136 135907221
55 Cesium Cs 132.905 133 "132.905355
134+ 133.906823 - 21y
135+ 134.905770 2% 100y
137+ 133.906770 30y
56 Barium Ba 137.34 130 129.906245
132 131.905120
133* 132.905879 12y
134 133.904612
135 134.905550
136 135.904300
137 136.905500
138 137.905000
57 Lanthanum La 138.91 137* 136.906040 6x 104 y
- 138* 137.906910 1.1 x 10y
. 139 138.906140
58 Cerium Ce 140.12 136 135.907100
138 137.905830
140 139.905392
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Chemical
Atomic Mass
z Element Symbol Weight A (uv) Ty
(58) (Cerium) 142* 141.909140 5x10%y
59 Praseodymium Pr 140.907 141 140.907596
60 Neodymium Nd 144.24 142 141.907663
143 142.909779
144* 143.910039 2.1x108y
145 144.912538
146 145.913086
148 147.916869
150 149.920960
61 Promethium Pm 145* 144.912691 18y
146* 145.914632 1600 d
147+ 146.915108 26y
62 Samarium Sm 150.35 144 143.911989
146* 145.912992 1.2x 108y
147+ 146.914867 1.08 X 10'! y
148+ 147.914791 1.2x10%y
149+ 148.917180 4x10My
150 149.917276
151* 150.919919 Ny
152 151.919756
154 153.922282
63 Europium Eu 151.96 151 150.919838
152* 151.921749 124y
153 152.921242
154+ 153.923053 16y
155+ 154.922930 18y
64 Gadolinium Gd 157.25 148+ 147.918101 85y
150+ 149.918605 18x 105y
152* 151.919794 1L1x 10"y
154 153.920929
155 154.922664
156 155.922175
157 156.924025
158 157.924178
160 159.927115
65 Terbium Tb 158.925 159 158.925351
66 Dysprosium Dy 162.50 156* 155.923930 2x 10"y
158 157.924449
160 159.925202
161 160.926945
162 161.926803
163 162.928755
164 163.929200
67 Holmium Ho 164.930 165 164.930421
166* 165.932289 12x 10y
68 Erbium Er 167.26 162 161.928740
164 163.929287
166 165.930307
167 166.932060
168 167.932383
170 169.935560
69 Thulium Tm 168.934 169 168.934245
171* 170.936530 19y
70 Ytterbium Yb 173.04 168 167.934160
170 169.935020
171 170.936430
172 171.936360
173 172.938060
174 173.938740
176 175.942680
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Chemical
Atomic Mass .
7 Lutecium Lu 174.97 173* 172.938800 l4y
. 175 174.940640
. 176* 175.942660 22X 100y
72 Hafnium Hf 178.49 174* 173.940360 20x 108y
176 175.941570
177 176.943400
178 177.943880
179 178.946030
. 180 179.946820
73 Tantalum Ta 180.948 180 179.947544
‘ 181 180.948007
74 Wolfram w 183.85 180 179.947000
(Tungsten) 182 181.948301
183 182.950324
184 183.951025
186 185.954440
75 Rhenium Re 186.2 185 184.953059
187* 186.955833 5% 100y
76 Osmium Os 190.2 184 183.952750
186 185.953870
187 186.955832
188 187.956081
189 188.958300
190 189.958630
192 191.961450 :
194* 193.965229 60y
77 Iridium Ir 192.2 191 190.960640
' 193 192.963012
78 Platinum Pt 195.09 190* 189.959950 7x 101y
192 191.961150 - '
194 193.962725
195 194.964813
196 195.964967
' 198 197.967895
79 Gold Au 196.967 197 196.966541
80 Mercury Hg 200.59 196 195.965820
198 197.966756
199 198.968279
200 199.968327
201 200.970308
202 201.970642
204 203.973495
81 Thallium Tl 204.19 203 202.972353
204* 203.973865 375y
, 205 204.974442
Ra E" 206* 205.976104 4.3 min
AcC” 207* 206.977450 4.78 min
ThC” 208* 207.982013 3.1 min
RaC” 210* 209.990054 1.3 min
82 Lead Pb 207.19 202* 201.927997 3x10° y
204* 203.973044 14107y
205* 204.974480 3x107y
206 205.974468
207 206.975903
208 207.976650
RaD 210* 209.984187 2y
AcB 211* 210.988742 36.1 min
Th B 212* 211.991905 10.64 h
: RaB 214* 213.999764 26.8 min
83 _ Bismuth Bi 209.980 207+ 206.978438 30y
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Atomic Mass
z Element Symbol Weight A (u) Ty
(83) (Bismuth) 208* 207979731 37X 10°y
209 208.980394
RaE 210* 209.984121 5.14d
Th C, 211* 210.987300 2.15 min
212¢ 211.991876 60.6 min
RaC 214+ 213.998686 19.7 min
215+ 215.001830 8 min
84 Polonium Po 209* 208.982426 103y
RaF 210* 209.982876 13844d
AcC’ 211* 210.986657 0.52s
ThC 212+ 211.989629 0.30 ps
Ra C’ 214* 213.995201 164 us
Ac A 215+ 214.999423 0.0018 s
Th A 216* 216.001790 0.15s
Ra A 218* 218.008930 3.05 min
85 Astatine At 215+ 214.998663 = 100 ps
218+ 218.008607 1.3s
219+ 219.011290 0.9 min
86 Radon Rn
An 219+ 219.009481 40s
Tn 220* 220.011401 56s
Rn 222* 222.017531 3.823d
87 Francium Fr
AckK 223+ 223.019736 22 min
88 Radium Ra 226.05
Ac X 223+ 223.018501 114d
Th X 224+ 224.020218 3.64d
Ra 226* 226.025360 1620y
Ms Th, 228* 228.031139 57y
89 Actinium Ac 227+ 227.027753 212y
Ms Th, 228+ 228.031080 6.13h
90 Thorium Th 232,038
Rd Ac 227+ 227.027706 i8.17d
Rd Th 228+ 228.028750 191y
229* 229.031652 7300 y
Io 230* 230.033087 76000 y
Uy 231* 231.036291 256 h
Th 232+ 232.038124 139 x 100y
UX, 234* 234.043583 24.1d
91 Protoac-
tinium Pa 231.0359 231* 231.035877 32480 y
UZ 234* 234.043298 6.66 h
92 Uranium U 238.03 230* 230.033937 20.8d
231* 231.036264 43d
232* 232.037168 2y
233* 233.039522 1.62 X% 10°y
234+ 234.040904 248 X 10°y
AcU 235+ 235.043915 713 x 10%y
236* 236.045637 239x 107y
Ul 238* 238.048608 451 x10%y
93 Neptunium Np 237.0480 235+ 235.044049 410d
236* 236.046624 5000 y
237+ 237.048056 214X 10%y
94 Plutonium Pu 239.0522 236* 236.046071 285y
238* 238.049511 89y
239+ 239.052146 24360 y
240+ 240.053882 6700 y
241* 241.056737 13y
242+ 242.058725 39X 10y
244+ 244.064100 76 X107y
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Absolute space, 7
Absorption
coefficient, 74
edge, 152
Activity, 185
Affinity (see Electron affinity)
Alkali metal, 140, 147, 227
Alpha
decay, 185
particle, 184, 185
Angular momentum, classical, 112
electron, 100, 114
intrinsic, 120
spin, 120
total, 124
Anomalous Zeeman effect, 115, 135, 144
Antiparticle, 68, 187, 213, 215
Atmospheres, law of, 243
Atom, hydrogen, 99
hydrogenic, 103
many-electron, 133
mu-mesic, 103, 109, 111
pi-mesic, 103
Atomic
excited state, 135
mass unit, 163
number, 168
shell model, 133
state, 133
Attenuation law, 74
Auger effect, 152
Average lifetime, 184, 190
Avogadro’s number, 241

Balmer series, 99, 105, 110
Band, conduction, 287
valence, 287
Band theory, 287
Barn, 202
Baryon, 215
number, 217
Beta
decay, 186
particle, 184, 186
Bethe cycle, 210, 213
Binding energy, 173
Blackbody radiation, 266, 268
Bohr, N., 92
atom, 99
correspondence principle, 107
model, 99
orbit, 99
theory, 99, 100

Index

Boltzmann, L., 269
constant, 242
distribution, 251, 256

Bonding, covalent, 227
ionic, 227
metallic, 228
van der Waals, 228

Bose-Einstein
condensation, 278
statistics, 266, 278

Bosons, 215, 266

Box, particle in a, 90, 94, 128, 270

Brackett series, 99

Bragg
diffraction, 82
law, 82
plane, 82

Bremsstrahlung, 149

Brownian motion, 245

Carbon cycle, 210, 213
Center-of-mass system, 101, 200, 203, 208
Characteristic X-rays (see X-ray spectra)
Chadwick, J., 206
Clock synchronization, 8
Complementarity, principle of, 92
Compound nucleus, 200, 202
Compton

effect, 62

equation, 62

scattering, 62

wavelength, 62, 65, 81, 111
Conduction band, 287
Conductivity, electrical, 293

heat, 274
Conductor, 287
Configuration, electron, 133
Conjugate variables, 92
Conservation laws

angular momentum, 216

baryon number, 217

charge, 216

isotopic spin, 217

lepton number, 217

linear momentum, 216

mass-energy, 216

parity, 219

spin, 216

strangeness, 218
Contraction, Lorentz-Fitzgerald, 17
Coordinate transformation, Galilean, 1

Lorentz, 12
Correspondence principle, 107
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Coulomb
energy, 169, 174
- force, 168
Coupling constant, 216
Covalent bonding, 227
Cowan, C. L., 186
Critchfield cycle, 210, 214
Cross section, 201, 202, 205, 206
Curie, 185, 188
Cycle, Bethe, 210, 213
carbon, 210, 213
_ Critchfield, 210, 214
proton-proton, 210, 214

Daughter nuclei, 184
Davisson and Germer experiment, 83 85
De Broglie
hypothesis, 77, 82, 9
waves, 77, 82, 88, 99
Debye, P.; 229, 274
frequency, 275
temperature, 276, 277 - -
theory, 274
unit, 229
Decay, alpha, 185
beta, 185
gamma, 185
Decay constant, 184
Decay law, 184
Degeneracy, 271, 282

Density of states, 250, 254, 255, 256, 266, 276

Deuterium, 107
Deuteron, 163, 164, 199
Diatomic molecules, 232, 259
Diffraction, electron, 83
particle, 91
| X-ray, 82
* Dipole moment, electric, 135, 229
magnetic, 112
Dirac, P., 121, 266, 282
Disintegration
constant, 184
energy, 186, 187
Dissociation energy, 227, 228
Distribution, Boltzmann, 251
Bose-Einstein, 266, 282
Fermi-Dirac, 266, 282
frequency, 249
Maxwell-Boltzmann, 256, 260
Distribution function, 249, 250

- Doping, 288

Doppler effect, 50 ‘
Dulong-Petit law, 259, 274, 276

Edge, X-ray absorption, 152
Einstein, A., 264, 274
‘postulates, 7

INDEX

Electric ,
dipole transitions, 115, 135, 229
quadrupole moment, 164, 165

Electrical
conduction, 270, 287
conductivity, 293

Electron, free, 270
valence, 270

Electron
affinity, 227
capture, 186, 187
configuration, 133
diffraction, 83
spin, 120, 124 ,

Electron theory of metals, 270

Electron volt, 40

Elementary particles
antiparticles, 215
families, 215
interactions, 216
isotopic spin, 217

~ mass, 215
mean lifetime, 215
spin, 215 . !

Endoergic (endothermic) reaction, 201, 203

Energy, Coulomb, 169, 174
clectron affinity, 227
magnetic dipole, 113

- neutron-proton excess, 174

_ nuclear binding, 169, 173
pairing, 174
relativistic, 40
rotational, 232
surface, 173 .
uncertainty in, 92
vibrational, 232

Energy level diagrams, 101

Equipartition theorem, 259

Ether, the, 7

Event, 1

Exchange particle, 225 -

Exclusion principle, 128, 133, 266

Exoergic (exothermic) reaction, 201, 203

Experiment, Fizeau, 37
Franck-Hertz, 161
Michelson-Morley, 7, 9, 10, 11

- Stern-Gerlach, 120
Zeeman, 112
Exponential distribution, 188
Extrinsic semiconductor, 288

Fermi-Dirac statistics, 266, 278
Fermi energy, 266, 272, 293
Fine structure, 124

wnsting 111
Fission, 209
Fizeau experiment, 37



INDEX

Fluorescence, 153 L shell, 150

Franck-Hertz experiment, 161 Lagrange multipliers, 263, 283
Free electron theory, 270 Landé g-factor, 143

Fusion, 210 Larmor precession, 116

' Laue, M. von, 82

] . Law

Galilean transformation, 1 - atmospheres, 243

Gamma Dulong-Petit, 259, 274, 276
deca)f , 185 ideal gas, 241
function, 267 Stefan-Boltzmann, 269
ray, 184, 185 Wien displacement, 269

Goudsmit, S. A., 120
Gerlach, W., 120 Length, proper, 17

Germer, L. H,, 85 L rest, 17
. . ength
Gyromagnetic ratio, 121 contraction, 17
Lepton, 215

Half-life, 184 number, 217
Half-thickness, 74 Light, speed of, 7, 8, 12, 34
Hall Liquid drop model, 173

coefficient, 294 Lorentz

effect, 294 coordinate transformations, 12
Halogen, 140, 147, 227 velocity transformations, 34
Harmonic oscillator, 175, 232 Lyman series, 99, 103, 111
Heat capacity, 274
Heisenberg uncertainty principle, 91 M shell, 150
Hertz, G., 161 Magic numbers, 175, 182
Hole, 287 Magnetic dipole moment, 112, 135
Hydrogen Magneton, Bohr, 114

atom, 99 nuclear, 163

spectrum, 99 Many-electron atom, 133

Mass, atomic, 169

Ideal gas, classical, 241 nuclear, 169

quantum mechanical, 278 relativistic, 39
Impurity atom, 294 Mass-energy relation, 40
Independent particle model, 133 Mass excess, 183, 203, 208
Indeterminacy (see Uncertainty principle) Mass formula, semiempirical, 173
Insulator, 287 Mass number, 168
Interaction, electromagnetic, 216 Maxwell-Boltzmann distribution, 251, 256, 260

gravitational, 216 Maxwell’s equations, 5, 12

strong, 216 Mean free path, 244, 245

weak, 216 Mean lifetime, 184, 215
Interferometer, 9 Measurement
Intrinsic semiconductor, 288 length (relativistic), 17
Invariance, 2, 4, 5, 12, 30, 31 location, 91
Ionic bonding, 227 space-time (relativistic), 24
Ionization time (relativistic), 20

energy, 100 *Meson, 215

potential, 104 Metallic bonding, 228
Isobar, 168, 179 Metals, free electron theory, 270
Isomers, 185 Michelson-Morley experiment, 7, 9, 10, 11
Isotone, 168 Mirror nuclei, 178
Isotope, 168 Mobility, 293
Isotopic spin, 217 Model, atomic shell, 133

independent particle, 133

K shell, 150 liquid drop, 173

Kinetic theory, 241 nuclear shell, 175
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Molecular

energy levels, 233

rotation, 232

vibration, 232
Momentum, relativistic, 39 91

uncertainty in, 91
Momentum change, 91
Morley, E., 7, 9, 10, 11
Morse potential, 230
Moseley relation, 150
Mu-mesic atom, 103, 109, 111

‘Natural line width, 93
Neutrino, 186, 216
Neutron, 163, 168, 199, 206
Newton’s second law, 39
Noble gas, 140, 147
Normal Zeeman effect (see Zeeman effect)
Normalization condition, 249, 257, 273, 279
Nuclear
binding energy, 169
. fission, 209
- fusion, 210
magnetic moment, 163
magneton, 163
matter, 169
models, 173
radius, 169
reactions, 199
- shell model, 175
spin, 163
Nucleon, 163

One-dimensional box, 90, 94, 128
Orbit, 133, 177

Orbital, 177

Orbital angular momentum, 114

Pair '
anmhllauon, 68
production, 68
Pairing, 174, 177, 180, 182
Parent nucleus, 184
Parity, 219
Particles (see Elementary particles)
Paschen series, 99, 103, 110
Pauli, W., 186
exclusion principle, 128, 133, 266
Periodic table, 133
Perrin, J., 246
Phonon, 275
'Photoelectric effect, 56
Photofission, 211 '
Photon, 53, 270
emission, 100
energy, 53
momentum, 53

INDEX

Pickup reaction, 199

Pi-mesic atoms, 103

Planck, M., 53, 268
constant, 53

Position, uncertainty in, 92

Positronium, 108

Potential, harmonic oscillator, 175
Morse, 230

Probability interpretation (see De Broghe waves)

Proper
-length, 17
time, 20
Propagation vector, 68
Proton, 163, 168, 199

Q-value, 201
Quadrupole moment, 164
Quanta, 53
Quantum number
magnetic, 114
orbital angular momentum, 114, 175
principal, 90, 100, 128, 270 .
spin; 121, 177
total angular momentum, 125, 177
Quantum statistics, 266

Radiation

atomic, 100

blackbody, 268
Radioactive decay, 184
Radioastronomy, 122
Radius

Bohr, 100

nuclear, 169
Random walk, 244
Range, 198
Reactlons

compound nucleus, 200

D-D, 210

D-T, 210 .

direct, 200

pickup, 199

stripping, 199
Reduced mass, 101, 111
Reines, F., 186
Relativity, principle of, 7 -
Resistivity, 289 -
Resonance, 215, 219
Riemann zeta function, 267
Roentgen, W., 149
Root-mean-square speed, 241, 258
Rotation, molecular, 232
Russell-Saunders coupling, 135
Rutherford, E., 199
Rydbérg formula, 99 .

Scattering, elastic, 199
inelastic, 199, 201



Selection rules, 135, 233
Semiconductors, 287
doped, 288
extrinsic, 288
intrinsic, 288
n-type, 289
p-type, 289
Semiempirical mass formula, 173
Shell, atomic, 133
nuclear, 175
Shell closing, 175
Shell model, 175
Simultaneity, 9, 13, 15
Singlet, 227
Special Theory of Relativity, 1
Specific heat, 274
Spectra, absorption, 238
hydrogen, 99
rotational, 233, 234, 235
vibrational, 233
X-ray, 150
Spectroscopic notation, 134, 175
Speed, average, 232
of light, 8, 12
most probable, 258
root-mean-square, 241, 258
Spin, electron, 120, 124
Spin-orbit coupling, 124, 135, 177
Square well (see Box)
State, ground, 101
molecular, 250
quantum, 128
singlet, 227
triplet, 227
vibrational, 275
Stefan-Boltzmann law, 269, 283
Stern-Gerlach experiment, 120
Stirling’s formula, 261, 283
Stopping potential, 56
Strangeness, 218
Stripping reaction, 199
Strong interaction, 216
Subshell, 133
Synchronization, 8
System, center-of-mass, 200
laboratory, 200

Thermal neutron, 211
Thermionic emission, 295
Thomson, G. P., 83

INDEX - 309

Threshold
energy, 201, 204
wavelength, 56, 69, 72
Time, proper, 20
uncertainty in, 92
Time dilation, 20
Transformation, Galilean acceleration, 2
Galilean coordinate, 1
Galilean velocity, 1
Lorentz coordinate, 12
Lorentz velocity, 34
mass-energy, 40
momentum-energy, 40
Transition, electric dipole, 115
Transition element, 141, 147
Triplet, 227
Triton, 199
Tunneling, 205
Twin effect, 27

Uhlenbeck, G. E., 120

Uncertainty, angular momentum and angle, 94
energy and time, 92
position and momentum, 92

Uncertainty principle, 91

Valence band, 287

van der Waals bonding, 228
Vector model, 124, 142
Velocity transformation, 34
Vibration, molecular, 232

Wave, de Broglie, 77

matter, 91

probability interpretation of, 88
Wave equation, 5
Wave-particle duality, 77
Weak interaction, 216
Weiszicker, C. v., 173
Wien displacement law, 269

X-ray, 82, 83, 149, 187
absorption edge, 152
diffraction, 82
fluorescence, 153
spectra, 150

Yukawa, H., 216

Zeeman effect, anomalous, 115, 135, 144
normal, 112, 114, 124
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