Time: 3 Hrs.

(Divisions of Aakash Educational Services Limited)

Regd. Office: Aakash Tower, 8, Pusa Road, New Delhi-110005; Ph.: 011-47623456

Test Series for NEET - 2019

Test - 6

Topics Covered:

MM: 720

Physics : Electrostatics

Chemistry: Solid State, Solutions, Electrochemistry, Chemical Kinetics, Surface Chemistry

Botany : Reproduction in Organisms, Sexual reproduction in flowering plants.

Zoology : Reproduction in Organisms, Human Reproduction, Reproductive Health.

Instructions:

- (i) Use Blue/Black ballpoint pen only to darken the appropriate circle.
- (ii) Mark should be dark and should completely fill the circle.
- (iii) Dark only one circle for each entry.
- (iv) Dark the circle in the space provided only.
- (v) Rough work must not be done on the Answer sheet and do not use white-fluid or any other rubbing material on Answer sheet.
- (vi) Each question carries 4 marks. For every wrong response 1 mark shall be deducted from total score.

PHYSICS

Choose the correct answer:

Two equal charges Q are placed at the two opposite corners of a square and charges q are placed at the two other opposite corners of square as shown in figure. If the resultant force on Q is zero, then relation between q and Q is

(1)
$$Q = -\frac{q}{2\sqrt{2}}$$

$$(2) \quad Q = -2\sqrt{2}q$$

(3)
$$Q = -2q$$

(4)
$$Q = 2\sqrt{2}q$$

In the circuit shown in figure, potential of points A and B are respectively

- (1) -8 V, 2 V (2) $\frac{10}{3} \text{ V}$, $\frac{20}{3} \text{ V}$
- (3) -6 V, 4 V
- (4) $-\frac{10}{3}$ V, $\frac{20}{3}$ V
- Point charges 4q, -q and 4q kept on a smooth horizontal surface on the x-axis at points x = 0. x = a and x = 2a respectively. Then correct option is
 - (1) Only (-q) is in stable equilibrium
 - (2) None of the charge is in equilibrium
 - (3) All the charges are in unstable equilibrium
 - (4) All the charges are in stable equilibrium
- A hollow conducting sphere is placed in an electric field produced by a point charge placed at P as shown in figure. Let V_A , V_B and V_C be the potential at points A, B and C respectively. Then
 - (1) $V_C > V_A$
 - (2) $V_B > V_C A \oint$
 - (3) $V_A > V_B$
 - (4) $V_A = V_C$

- Two conducting spheres of radius R_1 and R_2 respectively, are charged and joined by a metallic wire. The ratio of electric fields on the sphere is

- Figure shows three concentric thin spherical shells A, B and C of radii a, b and c respectively. The shells A and C are given charge q and -qrespectively and the shell B is earthed. The charge appearing on the outer surface of C is

- (2) $q\left(1-\frac{b}{c}\right)$

- A particle of mass m and charge (-q) is moving around a fixed charge q, in a circle of radius r, under electrostatic force of attraction. The total energy of system is
 - (1) $-\frac{1}{4\pi\epsilon_0} \frac{q^2}{r}$ (2) $\frac{1}{4\pi\epsilon_0} \frac{q^2}{2r}$
- - $(3) -\frac{1}{4\pi\varepsilon_0} \frac{q^2}{2r}$
- (4) 0
- If 10 point charges are placed at x = 1 m, 2 m, 3 m 8. ... 10 m as shown in figure, then value of electric

field at origin 'O' is $\left(k = \frac{1}{4\pi\epsilon_0}\right)$

- (1) 110 k
- (2) 60 k
- (3) 50 k
- (4) 55 k
- 9. The minimum velocity v_0 , such that an electron projected as shown in the figure passes between the plates without touching them (Take mass of electron as m and charge e. E is electric field between the plates) is

- (2) $I\sqrt{\frac{eE}{md}}$

- 10. Two charges +4q and +q are placed at a distance x apart and free to move. What charge must be placed in between two charges so the system will be in equilibrium?
 - $(1) \left(\frac{4}{\Omega}\right)q$
 - $(2) + \left(\frac{4}{9}\right)q$
 - (3) $-\left(\frac{16}{9}\right)q$
 - $(4) + \left(\frac{16}{9}\right)q$
- 11. Two metal spheres, one of radius R and the other of radius 2R both have same surface charge density σ . They are brought in contact and separated. The surface charge density of bigger sphere becomes
 - (1) 2σ
- (3) $\frac{5}{6}\sigma$
- 12. Electric potential in a region is given by $V = x^2y +$ 3yz + 5zxy. The electric field \vec{E} at point (1, 1, 1) is
 - (1) $\vec{F} = -7\hat{i} 9\hat{i} 8\hat{k}$
 - (2) $\vec{E} = -2\hat{i} 3\hat{i} 5\hat{k}$
 - (3) $\vec{F} = -7\hat{i} + 9\hat{i} + \hat{k}$
 - (4) $\vec{E} = +7\hat{i} + 9\hat{i} + \hat{k}$
- 13. The electric flux passing through the disc as shown in figure is approximately

- (1) $0.5 q/\epsilon_0$
- (2) $0.45 \ q/\epsilon_0$
- (3) $0.30 \text{ g/}\epsilon_c$
- (4) $0.15 q/\varepsilon_0$

14. If three charged metal plates have charges 1 C, 0 C, and +2 C, then find the charge on side I of second plate

- $(1) -\frac{1}{2}C$
- (2) $\frac{3}{2}$ C
- (3) $\frac{1}{2}$ C
- (4) $-\frac{3}{2}$ C
- 15. Choose the correct statement from the following.
 - (1) Electric field lines must originate from negative charge
 - (2) Electric field lines do not form closed loop
 - (3) Electric field must be a conservative field
 - (4) Electric field lines can form a closed loop
- 16. Capacitance of a capacitor depends on
 - (1) Potential difference applied
 - (2) Charge on capacitor
 - (3) Both (1) & (2)
 - (4) Neither (1) nor (2)
- 17. Identify the correct statements about the charges q_1 and q_2 .

- (1) q_1 and q_2 both are positive
- (2) q_1 is positive but q_2 is negative
- (3) q_2 is positive and q_1 is negative $(|q_1| > |q_2|)$
- (4) Both are negative $(|q_1| > |q_2|)$
- 18. Find the value of *q* so that the tension in string 2 becomes zero. (m is mass of each ball)

- (1) $\sqrt{4\pi\epsilon_0 mg}$
- (2) $\sqrt{\frac{mg}{4\pi\epsilon_0}}$
- (3) $\frac{mg}{4\pi\epsilon_0}$
- $(4) \quad \sqrt{\frac{2mg}{4\pi\varepsilon_0}}$
- 19. The value of mass *m* so that the system (a parallel plate capacitor) will remain at equilibrium.

- (1) Zero
- (2) $\frac{\sigma^2 A}{\epsilon_0 g}$
- (3) $\frac{\sigma^2 A}{4\epsilon_0 g}$
- $(4) \quad \frac{\sigma^2 A}{2\varepsilon_0 g}$
- 20. A charge *q* is placed in front of a neutral metallic sphere. The magnitude of electric field at the centre of sphere due to the induced charge on the surface of sphere is

- $(1) \quad E = \frac{1}{4\pi\varepsilon_0} \frac{q}{R^2}$
- (2) $E = \frac{1}{4\pi\varepsilon_0} \frac{q}{R}$
- $(3) E = \frac{1}{4\pi\varepsilon_0} \frac{q}{d^2}$
- (4) Zero
- 21. There are two concentric conducting shells. The potential of outer shell is 10 V and that of inner shell is 15 V. If the outer shell is grounded, the potential of inner shell is
 - (1) 25 V
 - (2) 15 V
 - (3) 10 V
 - (4) 5 V
- 22. A parallel plate capacitor is filled by a dielectric whose relative permittivity varies with applied voltage V as $\epsilon_r = \alpha V$ where $\alpha = 2$ per volt. A similar capacitor without dielectric is charged to $V_0 = 136$ volt. It is then connected to the uncharged capacitor with the dielectric. The final voltage on the capacitors is
 - (1) 6 volt
- (2) 68 volt
- (3) 4 volt
- (4) 8 volt

- 23. Two charges 1 μ C and 9 μ C are placed 8 cm apart in vacuum. The electric potential between the two charges is minimum at a distance of
 - (1) 1 cm from 1 μ C
 - (2) 2 cm from 1 μ C
 - (3) 3 cm from 1 μ C
 - (4) 4 cm from 1 μ C
- 24. The electric flux from a cube of edge l is ϕ . The new value of flux if edge length is made 2l and charge enclosed is halved is
 - (1) ¢

- (2) $\frac{\phi}{2}$
- $(3) 2 \phi$
- (4) 4 ¢
- 25. Three capacitors each of capacitance *C* and breakdown voltage *V* are joined in series. The capacitance and breakdown voltage of the combination is
 - (1) 3C, 3V
- (2) $\frac{C}{3}$, 3V
- (3) 3C, $\frac{V}{3}$
- (4) $\frac{C}{3}, \frac{V}{3}$
- 26. Four identical capacitors are connected as shown in figure. When a battery of 6 V is connected between A and B, the charge drawn from battery is 1.5 μ C. The value of C is

- (1) 2.5 μF
- (2) $1 \mu F$
- (3) $1.5 \mu F$
- (4) 0.1 μF
- 27. Which of the following is incorrect about equipotential surfaces?
 - (1) These are closer in regions of strong electric fields compared to regions of weak electric fields
 - (2) These are more crowded near sharp edges of a conductor
 - (3) These are more crowded near regions of large charge densities
 - (4) These are always equally spaced
- 28. The variation of electric field *E* due to uniformly charged non-conducting solid sphere with distance (*r*) from its center (*R* is the radius of sphere)

- 29. Two charges 2*q* and –3*q* are kept on a straight line. The number of points on this line where the electric field intensity is zero, is
 - (1) 1
 - (2) 2
 - (3) 3
 - (4) Infinite
- 30. Consider two points 1 and 2 in a region outside a charged sphere. Two points are not very far away from the sphere. If *E* and *V* represents electric field and electric potential, then which of the following pair is not possible?
 - (1) $|\vec{E}_1| = |\vec{E}_2|, V_1 \neq V_2$
 - (2) $|\vec{E}_1| = |\vec{E}_2|, V_1 = V_2$
 - (3) $\vec{E}_1 \neq \vec{E}_2, V_1 = V_2$
 - (4) $\vec{E}_1 \neq \vec{E}_2, V_1 \neq V_2$
- 31. In the given circuit potential of point A is 3000 V and of C is 1000 V. Then potential of point B is

- (1) 2000 V
- (2) 1600 V
- (3) 1500 V
- (4) 1400 V
- 32. Two concentric metallic spheres of different radius are given equal amount of charge, then
 - (1) Inner sphere may be at high potential
 - (2) Inner sphere must be at high potential
 - (3) Both the spheres are at same potential
 - (4) Inner sphere must be at zero potential

33. Three charge 4q, -q and -3q are placed at three vertex of equilateral triangle of side a as shown in figure. The dipole moment of system is

- (1) 3ga
- (2) $2\sqrt{3}$ qa
- (3) $qa\sqrt{10}$
- (4) $qa\sqrt{13}$
- 34. Gauss's law is useful for
 - (1) Any closed surface
 - (2) Some special symmetric closed surface
 - (3) Only open surface
 - (4) Irregular surface
- 35. A rod lies along the x-axis with one end at origin and other end at $x = \infty$. It carries a uniform charge distribution of λ C/m. The electric field at a point on x = -a on the x-axis is

 - (1) $\vec{E} = \frac{\lambda}{4\pi\epsilon_0 a}(\hat{i})$ (2) $\vec{E} = \frac{\lambda}{4\pi\epsilon_0 a}(-\hat{i})$
 - (3) $\vec{E} = \frac{\lambda}{2\pi\epsilon_0 a} (-\hat{i})$ (4) $\vec{E} = \frac{\lambda}{2\pi\epsilon_0 a} (\hat{i})$
- 36. Four capacitors are connected in a circuit as shown in figure. The charge on capacitor of 1 µF is

- (1) 300 μC
- (2) 75 μC
- (3) 150 μC
- (4) 225 μC
- 37. A spherical charged conductor has a surface charge density σ . The electric potential of conductor is V. If radius of sphere is halved, keeping charge same, then potential on the surface becomes
 - (1) 2 V
- (3) 4 V
- (4) V
- 38. Initially an electric dipole is perpendicular to uniform electric field E. If dipole moment is p, then work done to rotate the dipole by an angle 180° from this position is
 - (1) pE
- (2) Zero
- (3) 2pE
- (4) -pE

- 39. For a uniformly charged non-conducting solid sphere, the electric field from its centre
 - (1) Increases linearly up to the surface
 - (2) Decreases linearly up to the surface
 - (3) Remains zero up to the surface
 - (4) First increases and then decreases up to the surface
- 40. A, B, C, D, P and Q are points in a uniform electric field. The potential at these points are V(A) = 3volts, V(P) = V(B) = V(D) = 8 Volts and V(C) = 13volts. The electric field at P is

- (1) 10 V/m along *PA*
- (2) $15\sqrt{2} V/m$ along PA
- (3) 5 V/m along PC
- (4) $25\sqrt{2} V/m$ along PA
- 41. A thick walled hollow spherical conducting shell of inner radius r_1 and outer radius r_2 has a charge Q. A charge q is placed at the centre of sphere. The surface charge densities on inner and outer surfaces of the sphere will be respectively
- (1) $\frac{-q}{4\pi r_1^2}$, $\frac{q}{4\pi r_2^2}$ (2) $-\frac{q}{4\pi r_1^2}$, $\frac{Q+q}{4\pi r_2^2}$ (3) $-\frac{q}{4\pi r_1^2}$, $\frac{Q-q}{4\pi r_2^2}$ (4) $-\frac{q}{4\pi r_1^2}$, $\frac{Q}{4\pi r_2^2}$
- 42. Minimum number of capacitors 8 µF and breakdown voltage 250 V, required to make a combination of $8 \mu F$ and 1000 V are
 - (1) 32

(2) 16

- (4) 4
- 43. A parallel plate air capacitor is charged to a potential difference of V volts. After disconnecting the charging battery, the distance between the plates of the capacitors is decreased using insulating handle. The electric field between the plates
 - (1) Decreases
 - (2) Increases
 - (3) Remains same
 - (4) First increases then decreases
- 44. A 3 μF capacitor is charged to a potential of 100 V and 2 µF capacitor is charged to 100 V. The capacitors are then connected in parallel with plates of opposite polarities joined together. The amount of charge flown is
 - (1) 500 μC
- (2) $100 \mu C$
- (3) 200 μC
- (4) 240 μC

45. Two identical small conducting sphere having charges Q_1 and Q_2 with $(Q_2 >>> Q_1)$. The spheres are at 'd' distance apart. The force they exert on each other is F_1 . The spheres are made to touch each other and then separated by distance d. The

force they exert on each other is F_2 . Then $\frac{F_1}{F_2}$ is

- (1) $\frac{4Q_1}{Q_2}$
- (2) $\frac{Q_1}{4Q_2}$
- $(3) \quad \frac{4Q_2}{Q_1}$
- $(4) \quad \frac{Q_2}{4Q_2}$

CHEMISTRY

- 46. The incorrect statement for metal excess (F-centres) defect is
 - (1) It imparts colour to the crystal.
 - (2) It maintains the electrical neutrality of the crystal.
 - (3) In this, some extra positive ions occupy interstitial sites.
 - (4) It is a non-stoichiometric defect.
- 47. Ferromagnetic substance among the following is
 - (1) Fe_3O_4
- (2) MnO
- (3) VO₂
- (4) CrO₂
- 48. The radius of B⁻ ion is 194 pm and of A⁺ is 83 pm. The arrangement of the cubical crystal and the position of cation in the crystal can be
 - (1) Sphalerite type and tetrahedral voids
 - (2) Fluorite type and tetrahedral voids
 - (3) Rock salt type and octahedral voids
 - (4) CsCl type and cubic voids
- 49. The incorrect statement regarding chemisorption is
 - (1) It is an irreversible process
 - (2) It is highly specific in nature
 - (3) Enthalpy of adsorption is very low
 - (4) It results into uni-molecular layer on adsorbent surface
- 50. The catalyst used in the manufacture of chlorine by Deacon's process is
 - (1) Fe_2O_3
- (2) CuCl₂
- (3) Fe powder
- (4) Ni powder
- 51. Which is not a method for purification of colloidal solution?
 - (1) Dialysis
- (2) Electro-dialysis
- (3) Ultrafiltration
- (4) Coagulation
- 52. FeCl₃ is added to NaOH solution, the sol obtained is
 - (1) $Fe_2O_3 \cdot xH_2O$
- (2) $Fe_2O_3 \cdot xH_2O/Fe^{3+}$
- (3) $Fe_2O_3 \cdot xH_2O/OH^-$
 - (4) FeCl₃·xH₂O

53. The freezing point of a 10% aqueous solution by weight of X is same as the freezing point of another 20% aqueous solution by weight of Y. If molar mass of Y = 80; the molar mass of X is

(X and Y are non electrolytic solutes)

- (1) 35.5
- (2) 80

- (4) 45.5
- 54. AB crystallizes as rock salt type crystal. If the distance between A^+ and B^- is 280 pm then the density of AB crystal is (At. mass of A = 40 and B = 16)
 - (1) 0.211 g/ml
- (2) 2.11 g/ml
- (3) 4.22 g/ml
- (4) 0.422 g/ml
- 55. Which of the following aqueous solutions has highest vapour pressure?
 - (1) 0.02 M glucose at 20°C
 - (2) 0.005 M MgCl₂ at 15°C
 - (3) 0.05 M KCl at 60°C
 - (4) 0.005 M MgCl₂ at 60°C
- 56. The elevation in boiling point for 18.0 g of urea dissolved in 1 kg of water as solvent will be $(K_b = 0.52 \text{ K kg mol}^{-1}, \text{ molar mass of urea} = 60 \text{ g/ mol})$
 - (1) 1.56
- (2) 0.156
- (3) 0.3
- (4) 0.03
- 57. The molality of 19.6% w/w $\rm H_2SO_4$ aqueous solution is
 - (1) 1.8 m
- (2) 1.2 m
- (3) 0.8 m
- (4) 2.5 m
- 58. For a weak electrolyte A₂B₃, where A is trivalent cation and B is divalent anion, if the degree of dissociation is 'α' then van't Hoff factor is given as
 - (1) $4 + \alpha$
 - (2) $1 + 4\alpha$
 - (3) $1 + 2\alpha$
 - (4) $1 + \alpha$

59. The rate of formation of B reaction with respect to A is is the following

 $3A \rightarrow 2B$

- (1) $\frac{}{2}$ $\frac{}{dt}$
- (3) $\frac{-1}{3} \frac{d[A]}{dt}$
- (4) $\frac{-2}{3} \frac{d[A]}{dt}$
- 60. The rate constant of a reaction A \rightarrow B is 6 × 10⁻² per second. If the initial concentration of A is 5 M, then the half life of the reaction (in seconds) is
 - (1) 1.15
- (2) 4.16
- (3) 41.66
- (4) 11.55
- 61. 6 g of urea is dissolved in 9.9 moles of water. If vapour pressure of pure water is p°, then the vapour pressure of solution is
 - (1) 1.1 p°
- $(2) 0.09 p^{\circ}$
- (3) 0.99 p°
- (4) 0.1 p°
- 62. The packing fraction of body centered cubic unit cell
 - (1) 0.68
- (2) 0.74
- (3) 0.54
- (4) 0.58
- 63. The gas in tanks used by scuba divers of breathing contains
 - (1) 78% N₂
- (2) 11.7% He
- (3) 32.1% O₂
- (4) Both (2) & (3)
- 64. In a compound, atoms of element A form ccp lattice and those of element B occupy all tetrahedral voids. The formula of the compound will be
 - (1) AB
 - $(2) A_3B_2$
 - (3) AB₂
 - $(4) A_2B_3$
- 65. The correct order of coagulating power of the following ions is
 - (1) $PO_4^{3-} > [Fe(CN)_6]^{4-} > SO_4^{2-}$
 - (2) $[Fe(CN)_6]^{4-} > PO_4^{3-} > SO_4^{2-}$
 - (3) $SO_4^{2-} > PO_4^{3-} > [Fe(CN)_6]^{4-}$
 - (4) $SO_4^{2-} > [Fe(CN)_6]^{4-} > PO_4^{3-}$
- 66. The incorrect statement for enzymes is
- - (1) These are highly specific in nature
 - (2) Co-enzyme increases the enzymatic activity
 - (3) These cannot be synthesised in the laboratory
 - (4) Numerous reaction of life process are catalysed by enzymes

67. Which of the following graph(s) is/are correct?

- 68. The incorrect statement for electrolytic cell is
 - (1) It converts electrical energy into chemical energy.
 - (2) For electrolytic cell $\Delta G < 0$.
 - (3) Electrical energy is supplied to conduct redox change.
 - (4) Electroplating is done by electrolytic cell.
- 69. The standard reduction potential of some elements are given
 - (a) $Pb^{2+}/Pb = -0.13 \text{ V}$ (b) $Fe^{2+}/Fe = -0.44 \text{ V}$

 - (c) $Cu^{2+}/Cu = 0.34 \text{ V}$ (d) $Hg^{2+}/Hg = 0.92 \text{ V}$

The elements which will release H₂ gas on reaction with acid are

- (1) a, b and c
- (2) a and b
- (3) a and c
- (4) b, c and d
- 70. The equivalent conductivity of Na_2SO_4 will be (if ionic conductance of Na^+ and SO_4^{2-} are a and b S cm² mol⁻¹)
 - (1) $2a + \frac{b}{2}$
- (2) a + b

- 71. Which of the following is a primary cell?
 - (1) Dry cell
- (2) Lead storage cell
- (3) Nickel-Cadmium cell (4) Fuel cell
- 72. If 70% of a first order reaction was completed in 52 minutes, 50% of the same reaction would be completed in approximately (log 3 = 0.47)
 - (1) 30 minutes
- (2) 42 minutes
- (3) 40 minutes
- (4) 52 minutes
- 73. If Zn2+ ions lying on one of the body diagonals of ZnS (sphalerite) unit cell are removed, the ratio of cation and anion would become
 - (1) 4:3
- (2) 3:4
- (3) 7:8
- (4) 8:7

- 74. In cubic crystal system, which of the following variation is not possible?
 - (1) End-centered
- (2) Face-centered
- (3) Body-centered
- (4) Primitive
- 75. For the equation $\log k = 5 \frac{2000}{T}$

The incorrect statement is

- (1) The rate constant will increase with increase of temperature
- (2) The graph of log k vs $\frac{1}{T}$ will have a negative slope
- (3) The value of activation energy is 2000/T for the reaction
- (4) Both (1) and (3)
- 76. A solution containing 36 g per dm³ of glucose is isotonic with a 3% (w/v) solution of a non-volatile and non-electrolyte solute. The molar mass of solute is
 - (1) 200 g mol^{-1}
- (2) 150 g mol⁻¹
- (3) 20 g mol^{-1}
- (4) 15 g mol⁻¹
- 77. How much electricity is required to produce 5.4 g of Al from Al_2O_3 .
 - (1) 0.6 F
- (2) 1.2 F
- (3) 3 F
- (4) 6 F
- 78. A 0.1 molal aqueous solution of a weak monobasic acid is 40% ionized. The freezing point of the solution will be $(K_{f \text{ (water)}} = 1.86^{\circ}\text{K/m})$
 - (1) 0.58°C
- (2) 0.46°C
- (3) 0.38°C
- (4) 0.26°C
- 79. The values of resistance and resistivity of 0.1 M solution of an electrolyte are 50 Ω and 77 Ω cm respectively. The molar conductivity of the solution is
 - (1) 158 S cm² mol⁻¹
- (2) 130 S cm² mol⁻¹
- (3) 105 S cm² mol⁻¹
- (4) 50 S cm² mol⁻¹
- 80. The number of electrons supplied at the cathode during electrolysis by a current of 2 ampere in 2 minutes is (charge of electron = 1.6×10^{-19} C)
 - (1) 6.02×10^{23}
- (2) 1.5×10^{20}
- (3) 0.15×10^{22}
- $(4) 0.6 \times 10^{20}$
- 81. A reaction is first order with respect to a gaseous reactant A and second order with respect to a gaseous reactant B. If volume of the mixture is doubled, the rate of reaction becomes
 - (1) $\frac{1}{8}$ th times
- (2) 8 times
- (3) $\frac{1}{4}$ th times
- (4) 4 times

- 82. The standard reduction potential values of three metallic cations of X, Y and Z are 0.5, -1.5 and -2.1 V respectively. The order of oxidizing power will be
 - (1) X > Y > Z
- (2) Z > X > Y
- (3) Y > Z > X
- (4) Z > Y > X

For the given energy profile diagram, rate determining step is

(1) 1

(2) 2

(3) 3

- (4) 4
- 84. If the unit of rate and rate constant are same for a reaction, the order of reaction will be
 - (1) Zero
- (2) 1

- (4) 3
- 85. For a first order reaction the incorrect representation is

- 86. During electrolysis of dilute H₂SO₄, the gas evolved at anode is
 - (1) H_2
- (2) O₂
- (3) SO₂
- (4) SO₃
- 87. The reaction which carried out in the presence of homogeneous catalyst is
 - (1) Manufacturing of sulphur trioxide from Chamber's process
 - (2) Manufacturing of nitric acid from Ostwald's process
 - (3) Manufacturing of ammonia from Haber's process
 - (4) Manufacturing of hydrogen from Bosch's process

- 88. Soap lather is an example of
 - (1) Sol
 - (2) Aerosol
 - (3) Emulsion
 - (4) Foam
- 89. For Freundlich adsorption isotherm the graph of log x/m vs log P, the slope has a value of
 - (1) 1.5
 - (2) 0 to 1

- (3) 2
- (4) 2 to 3
- 90. Which of the following cannot be a rock salt type crystal?
 - (1) AgBr
 - (2) AgI
 - (3) FeO
 - (4) KBr

BOTANY

- 91. Select the feature which is **not** true for asexual reproduction.
 - (1) Involvement of only one parent
 - (2) It can occur with or without gametic fusion
 - (3) It is simple and quick method of reproduction
 - (4) It occurs through specialised or unspecialised parts of parent
- 92. In Amoeba binary fission is a process in which
 - (1) Karyokinesis is followed by cytokinesis
 - (2) Nucleus is divided into many daughter nuclei
 - (3) The resulting daughter cells do not resemble with their parents
 - (4) Only cytoplasm divides
- 93. Breaking of offsets help in vegetative propagation. These offsets are
 - (1) Underground stems
 - (2) Modified roots
 - (3) Subaerial stems
 - (4) Adventitious buds
- 94. A mature typical anther is
 - (1) Tetrasporangiate
- (2) Trigonal
- (3) Bisporangiate
- (4) Unisporangiate
- 95. Pollen viability is about thirty minutes in
 - (1) Wheat
- (2) Pea
- (3) Gram
- (4) Potato
- 96. In angiosperms, the parenchymatous mass of tissue enclosed within the integuments and forms the body of ovule is called
 - (1) Chalaza
- (2) Funicle
- (3) Embryo sac
- (4) Nucellus

- 97. Which of the following is a disadvantage of cleistogamy?
 - (1) The offsprings produced have limited genetic diversity
 - (2) It needs to produce a lot of pollen grains
 - (3) There is a little probability of flower to get pollinated
 - (4) There is always a need of pollinator
- 98. Consider the following statements and choose the appropriate option.
 - (i) The genetic constitution of a plant is affected in vegetative propagation.
 - (ii) Rhizome in ginger serves as vegetative propagule.
 - (1) Both the statements are correct
 - (2) Both the statements are incorrect
 - (3) Only statement (i) is correct
 - (4) Only statement (ii) is correct
- Select the correct statement w.r.t. seeds of angiosperms.
 - (1) It can be the product of sexual reproduction or apomixis
 - (2) *Phoenix dactylifera* seed remains viable for few hours only
 - (3) Mature seeds always have endosperms
 - (4) Endosperm gives protection to the seeds
- 100. After culturing the anther of a plant, few diploid plants were found along with haploid plants. The diploid plants could have developed from
 - (1) Generative cell of pollen
 - (2) Cells of anther wall
 - (3) Vegetative cell of pollen
 - (4) Exine of pollen wall

- 101. During embryogeny in dicot plants, the zygote first divides into two unequal cells in which
 - (1) Larger suspensor cell lies towards micropyle
 - (2) Smaller suspensor cell lies towards micropyle
 - (3) Larger embryonal cell lies towards antipodal region
 - (4) Larger suspensor cells lies towards antipodal region
- 102. Appearance of vegetative propagules from the nodes of plants such as banana and ginger is mainly because
 - (1) Nodes are shorter than internodes
 - (2) Nodes have non-meristematic cells
 - (3) Nodes have non-photosynthetic cells
 - (4) Nodes have meristematic cells
- 103. Match the following columns and select the correct option.

С	ol	u	n	าเ	1	I

Column II

- a. Bombax
- (i) Entomophily
- b. Calotropis
- (ii) Ornithophily
- c. Santalum
- (iii) Hypohydrophily
- d. Zostera
- (iv) Ophiophily
- (1) a(iii), b(i), c(ii), d(iv) (2) a(ii), b(i), c(iv), d(iii)
- (3) a(i), b(ii), c(iii), d(iv) (4) a(iv), b(iii), c(ii), d(i)
- 104. Select the **odd** one w.r.t. post-fertilization changes.
 - (1) Ovule \rightarrow Seed
 - (2) Integument → Seed coat
 - (3) Megaspore → Embryosac
 - (4) Zygote → Embryo
- 105. Middle layer of anther wall
 - (a) Degenerates at maturity
 - (b) Has water resistant fibrous bands
 - (c) Nourishes developing pollen grains
 - (d) Helps in dehiscence of anther due to its hygroscopic nature
 - (e) Is polyploid

The correct one(s) is/are

- (1) (a), (d) & (e)
- (2) (a), (b) & (e)
- (3) All except (b)
- (4) Only (a)
- 106. Which one of the following arrangements is correct w.r.t lifespans?
 - (1) Fruitfly < Crow < Parrot
 - (2) Rice < Banana < Rose
 - (3) Rose > Peepal > Banyan
 - (4) Cow > Crow > Tortoise

- 107. Cryopreservation is the
 - (a) Storage of pollen grains in dry ice.
 - (b) Fossilization of pollen grains.
 - (c) Storage of pollen grains in liquid N₂ for various artificial plant breeding programmes.

 - (1) Only (a) is correct (2) (b) & (c) are correct
 - (3) (a) & (c) are correct (4) Only (c) is correct
- 108. In angiosperms, for the formation of 12 three-celled male gametophytes from microspore mother cells, how many meiotic and mitotic divisions are required respectively?
 - (1) 3 and 24
- (2) 5 and 12
- (3) 3 and 1
- (4) 5 and 20
- 109. Leaves have vegetative buds that help in vegetative reproduction in
 - (1) Pineapple
- (2) Begonia
- (3) Ginger
- (4) Sugarcane
- 110. A maize plant has
 - (1) Both pistilate and staminate flowers
 - (2) Bisexual flowers
 - (3) Either pistilate or staminate flowers
 - (4) Only pistilate flowers
- 111. Select the **incorrect** statements from the following.
 - (a) In pteridophytes, water is the medium for gamete transfer
 - (b) In all seed plants, male gametes are motile and female gametes are non-motile
 - (c) In *Chara*, globule occupies upper position than the nucule
 - (d) Marchantia is a dioecious bryophyte
 - (1) (a), (c) and (d)
- (2) (b) and (d)
- (3) (b) and (c)
- (4) (a) and (c)
- 112. Internal fertilisation occurs in all of the following organisms, except
 - (1) Ulothrix
- (2) Cycas
- (3) Spirogyra
- (4) Maize
- 113. An ovary may have a single ovule as in (i) or many ovules as in (ii)

Select the correct option to fill the blanks (i) and (ii).

- (1) (i) Mango, (ii) Wheat
- (2) (i) Rice, (ii) Mango
- (3) (i) Mango, (ii) Orchid
- (4) (i) Orchid, (ii) Papaya

- 114. The most common type of ovule found in flowering plants is
 - (1) Orthotropous
- (2) Amphitropus
- (3) Anatropous
- (4) Hemianatropous
- 115. In angiosperms, the megaspore mother cell is generally differentiated from
 - (1) Haploid cell of hilum
 - (2) Diploid cell of nucellus
 - (3) Diploid cell of stigma
 - (4) Haploid cell of nucellus
- 116. Select the incorrect match.
 - (1) Cotton Free nuclear endosperm development
 - (2) Barley Albuminous seed
 - (3) Rice Cellulosic endosperm
 - (4) Betal nut Stony endosperm
- 117. When the fusing gametes are morphologically similar they are known as isogametes. They are produced in
 - (1) Fucus
- (2) Ulothrix
- (3) Chara
- (4) Bryophytes
- 118. Select the correct match w.r.t. asexual reproduction
 - (1) Bacteria Bud formation
 - (2) Planaria Oidia formation
 - (3) Penicillium Conidia formation
 - (4) Euglena Transverse binary fission
- 119. Both autogamy and geitonogamy are prevented by an outbreeding device in
 - (1) Maize
- (2) Coconut
- (3) Papaya
- (4) Castor
- 120. The most common asexual spores produced in fungi are
 - (1) Wall-less and motile
 - (2) Produced endogenously
 - (3) Non-flagellated
 - (4) Thick walled, motile and formed exogenously
- 121. Select the **correct** option for the labellings shown below in the diagrams.

Female thallus

Male thallus

- (1) A Antheridiophore
 - E Special branch
- (2) B Archegoniophore
 - F Sexual structure
- (3) D Unicellular rhizoids
 - E Antheridiophore
- (4) C Archegoniophore
 - F Asexual structure
- 122. Select the **incorrect** match of vegetative propagule given in column I with the concerned plant mentioned in column II.

Column I Column II (1) Aerial shoot – Opuntia

- 1) Aeriai Siloot Opurius
- (2) Runner Grass
- (3) Bulb Agave
- (4) Offset Eichhornia
- 123. In an angiospermic ovule, central cell of the embryo sac, prior to the entry of pollen tube, contains
 - (1) A single haploid nucleus
 - (2) One diploid and one haploid nuclei
 - (3) Two haploid polar nuclei
 - (4) One diploid secondary nuclei
- 124. Nature of endosperm in castor seeds is
 - (1) Starchy
 - (2) Oily
 - (3) Cellulosic
 - (4) Hemicellulosic
- 125. Which of the following statements about sporopollenin is **false**?
 - (1) Produced by tapetum and it constitutes exine layer
 - (2) It is one of the resistant organic materials
 - (3) Exine has apertures called germpores where sporopollenin is present
 - (4) It can withstand high temperatures and strong acids
- 126. Find odd one w.r.t. exalbuminous seeds.
 - (1) Groundnut
- (2) Pea
- (3) Bean
- (4) Wheat
- 127. The hilum is a scar on the
 - (1) Fruit where it was attached to pedicle
 - (2) Fruit where style was present
 - (3) Seed where micropyle was present
 - (4) Seed where funicle was attached

- 128. Choose the incorrect match.
 - (1) Mango
- Sporophytic budding
- (2) Cashewnut
- False fruit
- (3) Banana
- Parthenocarpic fruit
- (4) Strawberry
- True fruit
- 129. Identify the following as true(T) or false(F) and select the option accordingly.
 - A. Apple fruits develop without the process of fertilization.
 - B. The wall of ovary forms the wall of seed
 - C. False fruits do not have seeds.
 - В C Δ
 - F Т Т (1)
 - F F (2) F
 - F F Т (3)
 - F (4) Т Т
- 130. Seeds of black pepper and beet
 - (1) Lack seed coat
 - (2) Have persistent nucellus
 - (3) Lack embryo
 - (4) Are not covered within fruit wall
- 131. In the seeds of some grasses, there are remains of second cotyledon. It is called
 - (1) Coleorhiza
- (2) Epiblast
- (3) Coleoptile
- (4) Radicle

- 132. Male gametes in angiosperms are released from pollen grains
 - (1) By breaking the outer walls
 - (2) After dissolving the outer walls
 - (3) By making pores in the cell wall
 - (4) Into pollen tube through germ pore
- 133. How many of the following characteristics of flowers favour pollination by insects?

Bright colour, Presence of nectaries, Non-sticky pollen grains, Feathery stigma, Foul-odour

- (1) Three
- (2) Two
- (3) Four
- (4) Five
- 134. Zygotic meiosis occurs in
 - (1) Fucus
 - (2) Bambusa
 - (3) Cladophora
 - (4) Polygonum
- 135. In the life cycle of a flowering plant, recovery phase is the part of
 - (1) Juvenile phase
 - (2) Reproductive phase
 - (3) Post-reproductive phase
 - (4) Senescent phase

ZOOLOGY

- 136. Read the following statements and select the correct option stating which statement is true(T) and which ones are false(F).
 - (a) Clone are morphologically and genetically similar individuals.
 - (b) Lifespan of crow is 140 years.
 - (c) Formation of diploid zygote is universal in all sexually reproducing organisms.
 - (d) Embryonal protection and care are better in viviparous organisms w.r.t. oviparous organisms
 - (a)
- (b)
- (c)
 - (d)

- (1) T
- Τ
- Т

- (2) T (3) F
- Τ

- Т

- (4) F
- F
- F Т
- Т

Τ

Τ

- 137. Select the type of parthenogenesis in which unfertilized eggs form only females.
 - (1) Epitoky
 - (2) Thelytoky
 - (3) Arrhenotoky
 - (4) Amphitoky
- 138. Complete the analogy and choose the correct option.

Euglena: Longitudinal binary fission:: Planaria:

- (1) Transverse binary fission
- (2) Simple binary fission
- (3) Oblique binary fission
- (4) Longitudinal binary fission

139.	Read	the	followir	ig st	atem	nent	(A)	and	state	ment	(B)
carefully and choose the correct option.											

Statement (A): Lippe's loop is an effective contraceptive device.

Statement (B): Lippe's loop is a barrier method which prevents the deposition of sperms into the vagina of female.

- (1) Both the statements are correct
- (2) Both the statements are incorrect
- (3) Statement A is correct
- (4) Statement B is correct
- 140. Secretion of milk is inhibited in a non-pregnant female by action of ____ hormone.

Select the option which fills the blank correctly.

- (1) PIH
- (2) Dopamine
- (3) Prolactin
- (4) Both (1) and (2)
- 141. In which of the following animal testes remain permanently in the abdomen and does not cause any defect?
 - (1) Elephant
- (2) Bat
- (3) Otter
- (4) Human
- 142. Mifipristone is
 - (1) Anti-estrogen
 - (2) Anti-progesterone
 - (3) Anti-androgen
 - (4) Anti-gonadotropin
- 143. Foetal ejection reflex triggers the release of
 - (1) Androgens from foetal pituitary
 - (2) Oxytocin from maternal pituitary
 - (3) Relaxin from foetal ovary
 - (4) Oxytocin from maternal adrenal glands
- 144. Maximum lifespan of crocodile is about
 - (1) 78 years
- (2) 28 years
- (3) 60 years
- (4) 45 years
- 145. During gastrulation, ectoderm, endoderm and mesoderm of an embryo is derived from
 - (1) Trophoblast
- (2) Trophoectoderm
- (3) Hypoblast
- (4) Epiblast
- 146. Oblique binary fission occurs in
 - (1) Ceratium
- (2) Euglena
- (3) Paramecium
- (4) Diatoms

- 147. Choose the incorrect match.
 - (1) Testicular lobules in each 250 testis
 - (2) Mammary lobes in each 15-20 breast
 - (3) Sperm count in a healthy 200-300 million male per ejaculate
 - (4) Number of primary follicles 6000-8000 in each ovary at puberty
- 148. Gemmules are asexual reproductive structures present in
 - (1) Hydra
 - (2) Amoeba
 - (3) Spongilla
 - (4) Yeast
- 149. Oocyte from ovary enters the oviduct by
 - (1) Beating action of the flagellum
 - (2) Ciliary movement of fimbriae
 - (3) Contraction of ovarian muscles
 - (4) Uterine contractions
- 150. Female reproductive hormone that inhibits FSH is
 - (1) hCG
- (2) Inhibin
- (3) hPL
- (4) Relaxin
- 151. In human ovary, the structure which is formed after failure in fertilization is
 - (1) Corpus callosum
 - (2) Corpus hemorrhagicum
 - (3) Corpus albicans
 - (4) Corpus luteum
- 152. Interstitial cells produce testosterone under the influence of
 - (1) GH
- (2) LH
- (3) hCG
- (4) FSH
- 153. The device which provides protection against STIs is
 - (1) Norplant
- (2) Gossypol
- (3) Nirodh
- (4) Saheli
- 154. If the menstrual cycle of female is of 35 days then ovulation takes place on
 - (1) 30th day
- (2) 16th day
- (3) 21st day
- (4) 14th day

- 155. The technique that involves fertilization of egg outside the female body, followed by its insertion into the oviduct is
 - (1) GIFT
 - (2) ZIFT
 - (3) AI
 - (4) IUI
- 156. Select the incorrect match w.r.t. sperm.
 - (1) Head Has haploid nucleus
 - (2) Middle piece Has mitochondria
 - (3) Tail Has central axial filament
 - (4) Neck Has nebenkern
- 157. Read the following statement (A) and statement (B) w.r.t. morula and choose the **correct** option.

Statement (A): The embryo with 8-16 blastomeres is called morula.

Statement (B): The size of morula in human is smaller than a fertilized egg.

- (1) Both the statements are correct
- (2) Both the statements are incorrect
- (3) Statement (B) is correct
- (4) Statement (A) is correct
- 158. Following is a diagrammatic representation of menstrual cycle of 30 days. What will be the length of phase A and B, if menstrual phase is of 5 days?

Choose the **correct** option.

(1) A: 10 days, B: 15 days

(2) A: 14 days, B: 11 days

(3) A: 11 days, B: 14 days

(4) A: 15 days, B: 10 days

- 159. Which of the following association of germ layers and the developed tissue is **correct**?
 - (1) Adrenal cortex: Ectoderm

(2) Adrenal medulla: Mesoderm

(3) Gonads: Mesoderm

(4) Nervous system: Endoderm

160. Match the column I with column II and choose the correct match.

Column I

Column II

- a. Menstrual phase
- (i) Release of ovum
- b. Follicular phase
- (ii) Fully mature Graafian follicle
- c. Ovulatory phase
- (iii) Corpus luteum
- d. Luteal phase
- (iv) Breakdown of endometrium
- (1) a(iv), b(ii), c(i), d(iii) (2) a(iv), b(i), c(ii), d(iii)
- (3) a(i), b(ii), c(iii), d(iv) (4) a(iv), b(iii), c(ii), d(i)
- 161. Read the following statements.
 - (a) Parturition is induced by a complex neuroendocrine mechanism involving cortisol, estrogen and oxytocin.
 - (b) The opening of cervix is often covered partially by a membrane called hymen.
 - (c) Myometrium exhibits strong contraction during the delivery of the baby.
 - (d) Colostrum contains IgA, which provide passive immunity to the newborn.

How many given statement(s) are correct?

- (1) One
- (2) Two
- (3) Three
- (4) Four
- 162. In mammalian males, excretory and reproductive systems share
 - (1) Urethra
- (2) Seminal vesicle
- (3) Vas deferens
- (4) Ureter
- 163. Choose the **odd** one w.r.t. asexual reproduction.
 - (1) Rapid mode of reproduction
 - (2) Biparental in nature
 - (3) Young ones are exact replicas of their parent
 - (4) Simpler than sexual reproduction
- 164. Select the **odd** one w.r.t ploidy.
 - (1) Primary spermatocytes
 - (2) Spermatids
 - (3) Secondary oocyte
 - (4) Ootid
- 165. Select the **odd** one w.r.t. mineralocorticoids.
 - (1) Stimulate the Na⁺ reabsorption and K⁺ excretion
 - (2) Mainly control carbohydrate metabolism
 - (3) Secreted by zona glomerulosa of adrenal cortex
 - (4) Secretion is under the control of reninangiotensin system

- 166. Birth canal consist of _____ and ____ . Select the option which fill the blanks **correctly**.
 - (1) Vagina and uterus
 - (2) Vagina and cervix
 - (3) Cervix and hymen
 - (4) Vagina and hymen
- 167. The average number of children that can be born to a woman during her life time, is
 - (1) Total fertility rate
 - (2) Mortality rate
 - (3) Natality rate
 - (4) Birth rate
- 168. Arrange the following in increasing order of meiocyte (2n) number.
 - (a) Humans
 - (b) Housefly
 - (c) Rat
 - (d) Butterfly
 - (e) Dog
 - (1) (b), (c), (a), (e) & (d)
 - (2) (b), (a), (c), (e) & (d)
 - (3) (b), (a), (c), (d) & (e)
 - (4) (b), (e), (c), (a) & (d)
- 169. During tubectomy, if only one of the fallopian tube is cut and ligated, then
 - (1) Sterilization would still be successful
 - (2) Sterilization will not be successful
 - (3) Ova will reach at isthmus
 - (4) Sterilization cannot be reversed
- 170. Cryptorchidism is a condition in which testes do not descend into the scrotum. It is caused by
 - (1) Tearing of inguinal tissue
 - (2) Pulling action of gubernaculum
 - (3) Deficient secretion of testosterone
 - (4) Collection of fluid in tunica vaginalis
- 171. Which one is **not** natural contraceptive method?
 - (1) Safe period
 - (2) Coitus interruptus
 - (3) Barriers
 - (4) Lactational amenorrhoea

- 172. Which of the following can be a complication resulting from STIs due to delay in treatment?
 - (A) PID
- (B) Ectopic pregnancy
- (C) Still births
- (D) Infertility
- (1) Only (A) and (B)
- (2) Only (A), (B) and (C)
- (3) Only (C)
- (4) (A), (B), (C) and (D)
- 173. How many eggs have been released if the mother gave birth to identical twins?
 - (1) 4

(2)

- (4) 2
- 174. Implantation occurs at
 - (1) Zygote stage
 - (2) Morula stage
 - (3) Blastocyst stage
 - (4) Gastrula stage
- 175. Structure in female external genitalia which is homologous to male scrotum is
 - (1) Labia majora
 - (2) Labia minora
 - (3) Mons pubis
 - (4) Clitoris
- 176. Which of the following **cannot** be considered as method of contraception?
 - (1) Implants
 - (2) Sterilization
 - (3) IUI
 - (4) IUD
- 177. How many primary oocytes are required for the formation of 400 ovum?
 - (1) 200
 - (2) 400
 - (3) 100
 - (4) 50
- 178. All of the following are the reasons for infertility in males **except**
 - (1) Alcoholism
 - (2) Impotency
 - (3) Circumcision
 - (4) Gonadotropin deficiency

- 179. Read the following statements and choose the **incorrect** option.
 - (1) According to MTP Ammendment Act 2017, a pregnancy may be terminated on certain considered grounds within the first 12 weeks of pregnancy on the opinion of one registered medical practitioner.
 - (2) According to 2011 census report, the population growth rate of India was about 2% or 20/1000/ year

- (3) Demographic transition occurs when birth rate exceeds death rate
- (4) In a population, infants and older people have higher mortality rate than individuals of other age.
- 180. Which of the following is used as male contraceptive?
 - (1) Diaphragm
- (2) Gossypol
- (3) Femshield
- (4) Saheli