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Syllabus ::

Wave motion (plane waves only), longitudinal and transverse waves, Superposition

of waves; progressive and stationary waves.
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1. WAVES :

Waves is distributed energy or distributed "disturbance (force)"

� Following points regarding waves :

1. The disturbance (force) is transmitted from one point to another.

2. The energy is transmitted from one point to another.

3. The energy or distrubance passes in the form of wave without any net displacement of

medium.

4. The oscillatory motion of preceding particle is imparted to the adjacent particle following it.

5. We need to keep creating disturbance in order to propagate wave (energy or disturbance)

continuously.

(a) Waves classification

The waves are classified under two high level headings :

1. Mechanical waves : The motion of the particle constituting the medium follows mechanical

laws i.e. Newton's laws of motion. Mechanical waves originate from a distrubance in the

medium (such as a stone dropping in a pond) and the disturbance propagates through the

medium. The force between the atoms in the medium are responsible for the propagation of

mechanical waves. Each atom exerts a force on the atoms near it, and through this force the

motion of the atom is transmitted to the others. The atoms in the medium do not experience

any net displacement.

Mechanical waves is further classified in two categories such that

1. Transverse waves (waves on a string)

2. Longitudnal waves (sound waves)

2. Non Mechanical waves : These are electro magnetic waves. The electromagnetic waves do

not require a medium for propagation. Its speed in vacuum is a universal constant. The

motion of the electromagnetic waves in a medium depends on the electromagnetic properties

of the medium.

2.1 Transverse waves

If the disturbance travels in the x direction but the particles move in a direction, perpendicular

to the x axis as the wave passes it is called a transverse waves.
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Consider a sinusoidal harmonic wave travelling through a string and the motion of a particle

as shown in the figure Ist (only one unit of wave shown for illustration purpose). Since the

particle is displaced from its natural (mean) position, the tension in the string arising from

the deformation tends to restore the position of the particle. On the other hand, velocity of

the particle (kinetic energy) move the particle farther is zero. Therefore, the particle is pulled

down due to tension towards mean position. In the process, it acquires kinetic energy (greater

speed) and overshoots the mean position in the downward direction. The cycle of restoration

of position continues as vibration (oscillation) of particle takes place.

2.2 Longitudinal waves

Longitudinal waves are characterized by the direction of vibration (disturbance) and wave

motion. They are along the same direction. It is clear that vibration in the same direction

needs to be associated with a "restoring" mechanism in the longitudinal direction.

(b) Mathematical description of waves

We shall attempt here to evolve a mathematical model of a travelling transverse wave. For

this, we choose a specific set up of string and associated transverse wave travelling through

it. The string is tied to a fixed end, while disturbance is imparted at the free end by up and

down motion. For our purpose, we consider that pulse is small in dimension; the string is

light, elastic and homogeneous. The assumptions are required as we visualize a small travelling

pulse which remains undiminished when it moves through the strings. We also assume that

the string is long enough so that our observation is not subjected to pulse reflected at the

fixed end.

For understanding purpose, we first consider a single pulse as shown in the figure (irrespective

of whether we can realize such pulse in practice or not). Our objective here is to determine

the nature of a mathematical description which will enable us to determine displacement

(disturbance) of string as pulse passes through it. We visualize two snap shots of the travelling

pulse at two close time instants "t" and "t + t". The single pulse is moving towards right in

the positive x-direction.

1 2 3Y

O

O

t = t
x

x
t t t  

The vibration and wave motion are at right angle to each other.

Three position along x-axis named "1", "2" and "3" are marked with three vertical dotted

lines. At either of two instants as shown, the positions of string particles have different

displacements from the undisturbed position on horizontal x-axis. We can conclude from this

observation that displacement in y-direction is a function of positions of particle in x-direction.

As such, the displacement of a particle constituting the string is a function of "x".

Let us now observe the positions of a given particle, say "1". It has certain positive displacement

at time t = t, At the next snapshot at t = t  + t, the displacement has reduced to zero. The

particle at "2" has maximum displacement at t = t, but the same has reduced at t = t + t.

The third particle at "3' has certain positive displacement at t = t, At t = t + t, it acquires

additional positive displacement and reaches the position of maximum displacement. From

these observation, we conclude that displacement of a particle at any position along the

string is a function of "t".
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Combining two observations, we conclude that displacment of a particle is a function of both

position of the particle along the string and time.

y = f (x, t)

We can further specify the nature of the mathematical function by association the speed of

the wave in our consideration. Let "v" be the constant speed with which wave travels from

the left end to the right end. We notice that wave function at a given position of the string is

a function of time only as we are considering displacement at a particular value of "x". Let us

consider left hand end of the string as the origin of reference (x = 0 and t = 0). The displacement

in y-direction (disturbance) at x = 0 is a function of time, "t" only :

y = f(t) = A sin t

The disturbance travels to the right at constant speed "v'. Let it reaches a point specified as

x = x after time "t". If we visualize to describe the origin of this disturbance at x = 0, then

time elapsed for the distrubance to move from the origin (x = 0) to the point (x = x) is "x/v".

Therefore, if we want to use the function of displacement at x = 0 as given above, then we

need to subtract the time elapsed and set the equation is :

y f t
x
v

A t
x
v










 









� sin �

This can also be expressed as

 f
vt x

v
�







  �

�
f

x vt
v











y(x, t) = g(x � vt)

using any fixed value of t (i.e. at any instant), this shows shape of the string.

If the wave is travelling in �x direction, the wave equation is written as

y (x, t) = f t
x
v

( )

The quantity x � vt is called phase of the wave function. As phase of the pulse has fixed value

x � vt  = const.

Taking the derivative w.r.t. time 
dx
dt

v

where v is the phase velocity although often called wave velocity. It is the velocity at which

a particular phase of the distrubance travels through space.

In order for the function to represent a wave travelling at speed v, the quantities x, v and t

must appear in the combination (x + vt) or (x � vt). Thus (x � vt)2 is acceptable but x2 � v2

t2 is not.

(c) Describing Waves :

Two kinds of graph may be drawn displacement - distance and displacement-time.

A displacement-distance graph for a transverse mechanical waves shows the displacement y

of the vibrating particles of the transmitting medium at different distance x from the source

at a certain instant i.e. it is like a photograph showing shape of the wave at that particular

instant.

The maximum displacement of each particle from its undisturbed position is the amplutude

of the wave.

In the figure 1, it OA or OB.



Page # 6 WAVES

394,50 - Rajeev Gandhi Nagar Kota, Ph. No. : 93141-87482, 0744-2209671
IVRS No

 
:

 
0744-2439051, 52, 53, www. motioniitjee.com, info@motioniitjee.com

Distance x

A

O

B

D
is

pl
ac

em
en

t

One wavelength



Crest Trough Crest Trough

The wavelength  of a wave is generally taken as the distance between two successive crests

or two successive trough. To be more specific, it is the distance between two consecutive

points on the wave which have same phase.

A displacement-time graph may also be drawn for a wave motion, showing how the

displacement of one particle at a particular distance from the source varies with time. If this

is simple harmonic variation then the graph is a sine curve.

� Wave Length, Frequency, Speed

If the source of a wave makes f vibrations per second, so they will the particles of the

transmitting medium. That is, the frequency of the waves equals frequency of the source.

When the source makes one complete vibration, one wave is generated and the disturbance

spreads out a distance  from the source. If the source continues to vibrate with constant

frequency f, then f waves will be produced per second and the wave advances a distance f 

in one second. If v is the wave speed then

v = f 

This relationship holds for all wave motions.

Frequency depends on source (not on medium), v depends on medium (not on source

frequency), but wavelength depend on both medium and source.

(d) Initial Phase :

At x = 0 and t = 0, the sine function evaluates to zero and as such y-displacement is zero.

However, a wave form can be such that y-displacement is not zero at x =0 and t = 0. In such

case, we need to account for the displacement by introducting an angle like :

y(x,t) = Asin (kx � t + )

where "" is initial phase. At x = 0 and t = 0.

y(0, 0) = A sin ()

The measurement of angle determines following two aspects of wave form at x = 0, t = 0 :

(i) whether the displacement is positive or negative and (ii) whether wave form has positive

or negative slope.

For a harmonic wave represented by sine function, there are two values of initial

phase angle for which displacement at reference origin (x = 0, t = 0) is positive and has

equal magnitude. We know that the sine values of angles in first and second quadrants are

positive. A pair of initial phase angles, say  = /3 and 2/3, correspond to equal positive

sine values are :

sin = sin ( � )

sin


3
 = sin �



3








  = sin

2
3








  = 

1
2
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To choose the initial phase in between the two values /3 & 
2
3


. We can look at a wavee

motion in yet another way. A wave form at an instant is displaced by a distance x in very

small time interval t then then speed to the particle at t = 0 & x = 0 is in upward +ve

direction in further time t

(0,0)

v

Ex.1 Find out the expression of wave equation which is moving is +ve x direction and at x = 0,

t = 0 y = 
A

2

Sol. Let y = A sin (t � kx + )

at t = 0 and x = 0

A
A

2
 sin    sin = 

1

2

 = 


4
,  

3
4


To choose the correct phase angle  we displaced to wave. Slightly in +ve x direction such

that

a

b

In above figure Paticle at a is move downward towards point b i.e. particle at x = 0 & y = 
A

2

have negative velocity which gives

)kx�cos(A
t
y





 at

t = 0,  x = 0

is cos = � ve (from figure) ...(2)

from above discussion 3/4 gives sin + ve and cos negative i.e.





3
4
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Note : Equation of wave which is moving �ve x direction.

x

v

at time t y A t
x
v

 








sin

y A t sin

y = A sin ( t + kx + )

Ex.2 If (t) & (kx) terms have same sign then the wave move toward �ve x direction and

vice versa and with diffierent initial phase.

y = A sin (t � kx) Wave move toward +ve x direction

y = A sin (�kx + t)   

y = A sin (�kx �  t) Wave move toward �ve x direction.

   = A sin (kx + t + )      

y  = A sin (kx + t)

2. PARTICLE VELOCITY AND ACCELERATION :

Particle velocity at a given position x = x is obtained by differentiating wave function with

respect to time "t". We need to differentiate equation by treating "x" as constant. The partial

differentiation yields particle velocity as :

v
p
 = 



 t
y x t( , )  = 






t
A kx tsin( � )   = �A cos (kx � t)

We can use the property of cosine function to find the maximum velocity. We obtain maximum

speed when cosine function evaluates to "�1" :

 v
pmax

 = A

The acceleration of the particle is obtained by differentiating expression of velocity partially

with respect to time :

  a
p
 = 



t
vp  = 




 

t
A kx t{� cos( � )}  = �2 A sin (kx � t) = �2y

Again the maximum value of the acceleration can be obtained using property of sine function

:

  a
pmax

 = 2A

3. DIFFERENT FORMS OF WAVE FUNCTION :

Different forms give rise to bit of confusion about the form of wave function. The forms used

for describing wave are :

y (x, t) = A sin (kx � t)

y(x, t) = A sin (t � kx + )

Which of the two forms is correct ? In fact, both are correct so long we are in a position to

accurately interpret the equation. Starting with the first equation and using trigonometric

identity :
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We have,

  A sin (kx � t) = A sin ( � kx + t) =  A sin (t � kx + )

Thus we see that two forms represent waves along at the same speed v
k













. They differ,,

however, in phase. There is phase difference of "". This has implication on the waveform

and the manner particle oscillates at any given time instant and position. Let us consider two

waveforms at x = 0, t = 0. The slopes of the waveforms are :






x
y x t kA kx t( , ) cos( � )  = kA = a positive number

and





x
y x t kA t kx( , ) � cos( � )  = �kA = a negative number

Forms of wave functions

x

x

v
y

y A kx t sin[ � ]

vp

O

y A t kx sin[ � ]

vp

O



Exchange of terms in the argument of sine function results in a phase difference of .

In the first case, the slope is positive and hence particle velocity is negative. It means

particle is moving from reference origin or mean position to negative extreme position. In

the second case, the slope is negative and hence particle velocity is positive. It means

particle is moving from positive extreme position to reference origin or mean position. Thus

two forms represent waves which differ in direction in which particle is moving at a given

position.

Once we select the appropriate wave form, we can write wave equation in other forms as

given here :

y(x, t) = A sin (kx � t) = A sin k 






 

k

t
�x  = A sin 

2


( � )x vt

Further, substituting for "k" and "" in wave equation, we have :

y (x, t) = A sin 
2 2

2








x
T

t A
x t

T
� sin �









 











If we want to represent waveform moving in negative "x" direction, then we need to replace

"t" by "�t".
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4. THE LINEAR WAVE EQUATION :

By using wave function y = A sin (t � kx + ), we can describe the motion of any point on

the string. Any point on the string moves only vertically, and so its x coordinate remains

constant. The transverse velocity v
y
 of the point and its transverse acceleration a

y
 are therefore.

t
y

dt
dy

v
ttanconsx

y















 = A cos (t � kx + ) ...(1)

t

v

dt

dv
a y

ttanconsx

y
y

















 = 




2

2

y

t
 = �2A sin (t � kx + )..(2)

and hence

v
y.
 
max

 = A

a
y.max

 = 2A

The transverse velocity and transverse acceleration of any point on the string do not reach

their maximum value simultaneously. Infact, the transverse velocity reaches its maximum

value (A) when the displacement y = 0, whereas the transverse acceleration reaches its

maximum magnitudes (2A) when y = ± A

further

dy

dx t cons t










 tan

 




y
x
= � kA cos (wt � kx + ) ...(3)

= 




2

2

y

x
 = � k2A sin (t � kx + ) ...(4)

From (1) and (3)




 



y
t k

y
x

 �

 v
p
 = � v

w
 × slope

i.e. if the slope at any point is negative, particle

velocity and vice-versa, for a wave moving along positive

x axis i.e. v
w
 is positive.    

x1 x2

A
B

x

y

For example, consider two points A and B on the y-curve

for a wave, as shown. The wave is moving along positive

x-axis.

Slope at A is positive therefore at the given moment, its velocity is negative. That means it

is coming downward. Reverse is the situation for particle at point B.

Now using equation (2) and (4)



 





2

2

2

2

2

2

y

x

k y

t
   









2

2 2

2

2

1y

x v

y

t


This is known as the linear wave equation or diffential equation representation of the travelling

wave model. We have developed the linear wave equation from a sinusoidal mechanical

wave travelling through a medium. But it is much more general. The linear wave equation

successfully describes waves on strings, sound waves and also electromagnetic waves.

Thus, the above equation can be written as,









2

2
2

2

2

y

t
v

y

x
 ...(i)
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The general solution of this equation is of the form

y(x, t) = f (ax ± bt) ...(ii)

Thus, any function of x and t which satisfies Eq. (i) or which can be written as Eq. (ii)

represents a wave. The only condition is that it should be finite everywhere and at all times.

Further, if these conditions are satisfied, then speed of wave (v) is given by,

v
coefficient of t
coefficient of x

b
a

 

Thus plus (+) sign between ax and bt implies that the wave is travelling along negative x-

direction and minus (�) sign shows that it is travelling along positive x-direction.

Ex.3 Verify that wave  function

1)t3�x(

2
y

2




is a solution to the linear wave equation x and y are in cm.

Sol. By taking partial derivatives of this function w.r.t x and to t.





2

2

2

2 3

12 3 4

3 1

y

x

x t

x t




( � ) �

[( � ) ]
, and





2

2

2

2 3

108 3 36

3 1

y

t

x t

x t




( � ) �

[( � ) ]

or








2

2

2

2

1
9

y

x

x

t


Comparing with linear wave equation, we see that the wave function is a solution to the

linear wave equation if the speed at which the pulse moves is 3 cm/s. It is apparent from

wave function therefore it is a solution to the linear wave equation.

Ex 4. A wave pulse is travelling on a string at 2 m/s. displacement y of the particle at x =

0 at any time t is given by

1t

2
y

2 


Find

(i) Expression of the function y = (x, t) i.e., displacement of a particle position x

and time t.

(ii) Shape of the pulse at t = 0 and t = 1s.

Sol. (i) By replacing t by t
x

v
�









 , we can get the desired wave function i.e.,,

1
2
x

�t

2
y

2











(ii) We can use wave function at a particular instant, say t = 0, to find shape of the wave

pulse using different values of x.
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at t = 0

y
x





2

4
1

2

at x = 0 y = 2

x = 2 y = 1

Y
2

1

�4 �2 �2 �40

x = � 2 y = 1

x = 4 y = 0.4

x = �4 y = 0.4

Using these value, shape is drawn.

Similarly for t = 1s, shape can drawn. What do you conclude about direction of motion of the

wave from the graphs? Also check how much the pulse has move in 1s time interval. This is

equal to wave speed. Here is the procedure.

y
x










 

2

1
2

1
2

� at t = 1s

at x = 2 y = 2(maximum value)

at x = 0 y = 1

at x = 4 y = 1

2

Y

t = 0
1

t = 1

�2
0

2 4 6
x

The pulse has moved to the right by 2 units in 1 s interval.

Also as t � 
x
2

 = constt.

Differentiating w.r.t time

1 � 
1
2

 . 
dx
dt

 0   
dx
dt

 2

Ex.5 A sinusoidal wave travelling in the positive x direction has an amplitude of 15 cm,

wavelength 40 cm and frequency 8 Hz. The  vertical displacement of the medium at t

=0 and x = 0 is also 15 cm, as shown

y(cm)

15

x(cm)

40

(a) Find the angular wave number, period angular frquency and speed of the wave.

(b) Determine the phase constant , and write a general expression for the wave function.
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Sol. (a) cm/rad
20cm40

rad22
k












T
f

s 
1 1

8
 = 2 f = 16 s�1

v = f  = 320 cm/s

(b) It is given that A = 15 cm

     and also y = 15 cm at x = 0 and t = 0

     then usingy = A sin (t � kx + )

15 = 15 sin      sin  = 1

Therefore, the wave function is

y = A sin (t � kx + 


2
) 









 









( )sin ( ) � .�15 16

20 2
cm s t

rad
cm

x
 

5. SPEED OF A TRANSVERSE WAVE ON A STRING

Consider a pulse travelling along a string with a speed v to the right. If the amplitude of the

pulse is small compared to the length of the string, the tension T will be approximately

constant along the string. In the reference frame moving with speed v to the right, the pulse

in stationary and the string moves with a speed v to the left. Figure shows a small segment

of the string of length l. This segment forms part of a circular arc of radius R. Instantaneously

the segment is moving with speed v in a circular path, so it has centripetal acceleration v2/R.

The forces acting on the segment are the tension T at each end. The horizontal component of

these forces are equal and opposite and thus cancel. The vertical component of these forces

point radially inward towards the centre of the circular. arc. These radial forces provide

centripetal acceleration. Let the angle substended by the segment at centre be 2. The net

radial force acting on the segment is

R

 l
v

a
v
Rr 

2

O

(a)
v

v  l

 

T T

 R

O
(b)

Fig. (a) To obtain the speed v of a wave on a stretched string. It is convenient to describe the

motion of a small segment of the string in a moving frame of reference.

Fig. (b)  In the moving frame of reference, the small segment of length l moves to the left

with speed v. The net force on the segment is in the radial direction because the

horizontal components of the tension force cancel.

F T Tr  2 2sin 

Where we have used the approximation sin     for small .

If  is the mass per unit length of the string, the mass of the segment of length l is
m =  l = 2R (as  l = 2R)

From Newton's second law     F
r
 = ma = 

mv
R

2

or 2T = (2R) 
v
R

2







   v

T






Page # 14 WAVES

394,50 - Rajeev Gandhi Nagar Kota, Ph. No. : 93141-87482, 0744-2209671
IVRS No

 
:

 
0744-2439051, 52, 53, www. motioniitjee.com, info@motioniitjee.com

Ex.6 Find speed of the wave generated in the

string as in the situation shown. Assume that

the tension in not

affected by the mass of the cord.

20 kg

500 gm/m

Sol. T = 20 × 10 = 200 N

v m s 
200
0 5

20
.

/

Ex.7 A taut string having tension 100 N and linear mass density

0.25 kg/m is used inside a cart to generate a wave pulse

starting at the left end, as shown. What should be the

velocity of the cart so that pulse remains stationary w.r.t

ground.

Sol. Velocity of pulse = 
T

m s

 20 /

Now

vPG  = 

 
v vPC CG

0 = 20 i  + 

vCG

s/mi�20�VCG


Ex.8 One end of 12.0 m long rubber tube with a total mass of 0.9 kg is fastened to a fixed

support. A cord attached to the other and passes over a pulley and supports an

object with a mass of 5.0 kg. The tube is struck a transverse blow at one end. Find

the time required for the pulse to reach the other end (g = 9.8 m/s2)

Sol. Tension in the rubber tube AB, T = mg

T = (5.0) (9.8) = 49 N

or

Mass per unit length of rubber tube,

 = 
0 9
12
.

 = 0.075 kg/m

m
B

A
 Speed of wave on the tube,

v
T

m s  


49
0 075

25 56
.

. /

 The required time is,

t
AB
v

s  
12

25 56
0 47

.
.

Ex.9 A uniform rope of mass 0.1 kg and length 2.45 m hangs from a ceiling

(a) Find the speed of transverse wave in the rope at a point 0.5 m distant from the

lower end.

(b) Calculate the time taken by a transverse wave to travel the full length of the

rope.

Sol. (a) As the string has mass and it is suspended vertically, tension in it will be different at

different points. For a point at a distance x from the free end, tension will be due to the

weight of the string below it. So, if m is the mass of string of length l, the mass of length x
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of the string will be, 
m

x
l









 .

 T
m

xg xg








 

l


m
l













T

xg



or v
T

xg 


...(i)

At x = 0.5 m, v  0 5 9 8. .  = 2.21 m/s



x

(b) From Eq. (i) we see that velocity of the wave is different at different points. So, if at point

x the wave travels a distance dx in time dt, then

dt
dx
v

dx

gx
 

 dt
dx

gx

t

0 0
 

l

or t
g

 2 2
2 45
9 8

l .
. =   1.0 s Ans.

6. ENERGY CALCULATION IN WAVES :

,

(a) Kinetic energy per unit length

The velocity of string element in transverse direction is greatest at mean position and zero at

the extreme positions of waveform. We can find expression of transverse velocity by differ-

entiating displacement with respect to time. Now, the y-displacement is given by :

y = A sin (kx � t)

Differentiating partially with respect to time, the expression of particle velocity is :

v
y
tp 




 = � A cos (kx � t)

In order to calculate kinetic energy, we consider a small string element of length "dx" having

mass per unit length "". The kinetic energy of the element is given by :

dK dmv dx A kx tp 
1
2

1
2

2 2 2 2
  cos ( � )

This is the kinetic energy associated with the element in motion. Since it involves squared of

cosine function, its value is greatest for a phase of zero (mean position) and zero for a phase

of 


2
 (maximum displacement).

Now, we get kinetic energy per unit length, "K
L
", by dividing this expression with the length

of small string considered :

K
dK
dx

A kx tL  
1
2

2 2 2
 cos ( � )
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� Rate of transmission of kinetic energy

The rate, at which kinetic energy is transmitted, is obtained by dividing expression of kinetic

energy by small time element, "dt" :

dK
dt

dx
dt

A kx t
1
2

2 2 2
  cos ( � )

But, wave or phase speed, v, is time rate of position i.e. 
dx
dt

. Hence,

dK
dt

v A kx t
1
2

2 2 2
  cos ( � )

Here kinetic energy is a periodic function. We can obtain average rate of transmission of

kinetic energy by integrating the expression for integral wavelengths. Since only cos2(kx �

t) is the varying entity, we need to find average of this quantity only. Its integration over

intergal wavelengths give a value of " "
1
2

. Hence, average rate of transmission of kinetic

energy is :

dK
dt

v A v Aavg|   
1
2

1
2

1
4

2 2 2 2
   

(b) Elastic potential energy

The elastic potential energy of the string element results as string element is stretched

during its oscillation. The extension or stretching is maximum at mean position. We can see

in the figure that the length of string element of equal x-length "dx" is greater at mean

position than at the extreme. As a matter of fact, the elongation depends on the slope of the

curve. Greater the slope, greater is the elongation. The string has the least length when

slope is zero. For illustration purpose, the curve is purposely drawn in such a manner that the

elongation of string element at mean position is highlighted.

V
y

x
O

t = t

O

t t t  
vp

x

fig : The string element stretched most at equilibrium position

Greater extension of string element corresponds to greater elastic energy. As such, it is

greatest at mean position and zero at extreme position. This deduction in contrary to the

case of SHM in which potential energy is greatest at extreme position and zero at mean

position.
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� Potential energy per unit length

When the string segment is stretched from the length dx

to the length ds an amount of work = T (ds � dx) is

done. This is equal to the potential energy stored in the

stretched string segment. So the potential energy in this

case is :

U = T (ds � dx)     

ds
dy

x x + dx

Now ds dx dy ( )2 2

 
























dx
dy
dx

1
2

from the binomial expansion

so ds  dx + 
1
2

2
dy
dx

dx










U = T (ds � dx)  
1
2

2

T
y
x

dx














or the potential energy density

dU
dx

T
y
x












1
2

2



...(i)

dy
dx

 = kAcos (kx � t)

and T = v2 

Put above value in equation (i) then we get

dU
dx

A kx t
1
2

2 2 2
 cos ( � )

� Rate of transmission of elastic potential energy

The rate, at which elastic potential energy is transmitted, is obtained by dividing expression

of kinetic energy by small time element, "dt". This expression is same as that for kinetic

enegy.

dU
dt

v A kx t
1
2

2 2 2
  cos ( � )

and average rate of transmission of elastic potential energy is :

dU
dt

v A v Aavg|   
1
2

1
2

1
4

2 2 2 2
   

(c) Mechanical energy per unit length

Since the expression elastic potential energy is same as that of kinetic energy, we get me-

chanical energy expression by multiplying expression of kinetic energy by "2". The mechani-

cal energy associated with small string element, "dx", is :

dE = 2xdK = 2
1
2

2x dmvp  = dx2A2cos2 (kx � t)

Similarly, the mechanical energy per unit length is :

)t�kx(cosA
2
1

x2
dx
dE

E 222
L   = 2 A2 cos2 (kx � t)
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(d) Average power transmitted

The average power transmitted by wave is equal to time rate of transmission of mechanical

energy over integral wavelengths. It is equal to :

P
dE
dt

v A v Aavg avg   | 2
1
4

1
2

2 2 2 2
   

If mass of the string is given in terms of mass per unit volume, "", then we make appropri-

ate change in the derivation. We exchange "" by "s" where "s" is the cross section of the

string :

P sv Aavg 
1
2

2 2
 

(e) Energy density

Since there is no loss of energy involved, it is expected that energy per unit length is uniform

throughout the string. As much energy enters that much energy goes out for a given length

of string. This average value along unit length of the string length is equal to the average

rate at which energy is being transferred.

The average mechanical energy per unit length is equal to integration of expression

over integral wavelength

E
L
|

avg
 = 2x

1
4

 v2 A2 = 
1
2

2 2
 v A

We have derived this expression for harmonic wave along a string. The concept, however,

can be extended to two or three dimensional transverse waves. In the case of three dimen-

sional transverse waves, we consider small volumetric element. We, then, use density, ,  in

place of mass per unit length, . The corresponding average energy per unit volume is

referred as energy density (u) :

u vw A
1
2

2 2


(f) Intensity

Intensity of wave (I) is defined as power transmitted per unit cross section area of the

medium :

22
2

2 Avw
2
1

s2
A

svI 

Intensity of wave (I) is a very useful concept for three dimensional waves radiating in all

direction from the source. This quantity is usually referred in the context of light waves,

which is transverse harmonic wave in three dimensions. Intensity is defined as the power

transmitted per unit cross sectional area. Since light spreads uniformly all around, intensity

is equal to power transmitted, divided by spherical surface drawn at that point with source at

its center.

Phase difference between two particles in the same wave :

The general expression for a sinusoidal wave travelling in the positive x direction is

y(x, t) = A sin (t � kx)

Eqn of Particle at x
1
 is given by y

1
 = A sin (t � kx

1
)

Eqn of particle which is at x
2
 from the origin

y
2
 = Asin (t � kx

2
)

Phase difference between particles is k(x
2
 � x

1
) = 

Kx =  x  


k
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7. PRINCIPLE OF SUPERPOSITION :

This principle defines the displacement of a medium particle when it is oscillating under the

influence of two or more than two waves. The principle of superposition is stated as :

"When two or more waves superpose on a medium particle than the resultant

displacement of that medium particle is given by the vector sum of the individual displacements

produced by the component waves at that medium particle independently."

Let y y y N

  

1 2, ,.......  are the displacements produced by N independent waves at a

medium particle in absence of others then the displacemnt of that medium, when all the

waves are superposed at that point, is given as

N321 y.......yyyy














If all the waves are producing oscillations at that point are collinear then the displacement of

the medium particle where superposition is taking place can be simply given by the algebric

sum of the individual displacement. Thus we have

y = y
1
 + y

2
 + ..............+y

N

The above equation is valid only if all individual displacements y
1
, y

2
 ........... y

N
 are along

same straight line.

A simple example of superposition can be understood by figure shown. Suppose two wave

pulses are travelling simultaneously in opposite directions as shown. When they overlap

each other the displacement of particle on string is the algebric sum of the two displacement

as the displacements of the two pulses are in same direction. Figure shown (b) also shows

the similar situation when the wave pulses are in opposite side.

y1

y2

y1

v
y2

v

x

y

y1

v

y2

v

x

y

y1

y2

y1

v
y2

v

x

y

 
y1

v

y2

v

x

y

v

v

y  + y1 2 v

v

(a) Applications of Principle of Superposition of Waves

There are several different phenomenon which takes place during superposition of two or

more wave depending on the wave characteristics which are being superposed. We'll discuss

some standard phenomenons, and these are :

(1) Interference of Wave

(2) Stationary Waves

(3) Beats

(4) Lissajou's Figures (Not discussed here in detail.)

    Lets discuss these in detail.
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(b) Interference of  Waves

Suppose two sinusoidal waves of same wavelength and amplitude travel in same direction

along the same straight line (may be on a stretched string) then superposition principle can

be used to define the resultant displacement of every medium particle. The resultant wave in

the medium depends on the extent to which the waves are in phase with respect to each

other, that is, how much one wave form is shifted from the other waveform. If the two waves

are exactly in same phase, that is the shape of one wave exactly fits on to the other wave

then they combine to double the displacement of every medium particle as shown in figure

(a). This phenomenon we call as constructive interference. If the superposing waves are

exactly out of phase or in opposite phase then they combine to cancel all the displacements

at every medium particle and medium remains in the form of a straight line as shown in

figure (b)

y

x

A

�A

Wave I

y

x

A

�A

y

x

A

Wave II

y

x

+A

�A

y

x

2A

�2A

Resultant
Wave

(a) 

y

x

(b) 

This phenomenon we call destructive interference. Thus we can state that when waves meet,

they interfere constructively if they meet in same phase and destructively if they meet in

opposite phase. In either case the wave patterns do not shift relative to each other as they

propagates. Such superposing waves which have same form and wavelength and have a

fixed phase relation to each other, are called coherent waves. Sources of coherent waves are

called coherent source. Two indepedent sources can never be coherent in nature due to

practical limitations of manufacturing process. Generally all coherent sources are made either

by spliting of the wave forms of a single source or the different sources are fed by a single

main energy source.
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In simple words interference is the phenomenon of superposition of two coherent

waves travelling in same direction.

We've discussed that the resultant displacement of a medium particle when two

coherent waves interfere at that point, as sum or difference of the individual displacements

by the two waves if they are in same phase (phase difference =  0, 2, .....) or opposite phase

(phase difference = , 3,.....) respectively. But the two waves can also meet at a medium

particle with phase difference other then 0 or 2, say if phase difference  is such that 0 < 

< 2, then how is the displacement of the point of superposition given ? Now we discuss the

interference of waves in details analytically.

(c) Analytical Treatment of Interference of Waves

S1

S2

x1

x2

A t kx1 sin( ) 

A t kx2 sin( ) 

y A t kx2 2 2 sin( )

y A t kx1 1 1 sin( )

Interference implies super position of waves. Whenever two or more than two waves

superimpose each other they give sum of their individual diplacement.

Let the two waves coming from sources S
1
 & S

2
 be

y
1
 = A

1
 sin ( t + kx

1
 )

y
2
 = A

2
 sin (t + kx

2
) respectively.

Due to superposition

y
net

 = y
1
 + y

2

y
net

 = A
1
 sin ( t + kx

1
) + A

2
 sin (t + kx

2
)

Phase difference between y
1
 & y

2
 = k(x

2
 � x

1
)

i.e.,   = k(x
2
 � x

1
)

As  = x
2





(where x = path difference &  = phase difference)

A
net

  = A A A A1
2

2
2

1 22  cos

 A A A A Anet
2

1
2

2
2

1 22   cos

   I
net

 = I
1
 + I

2
 + cosII2 21   (as I  A2)

When the two displacements are in phase, then the resultant amplitude will be sum of the

two amplitude & I
net

 will be maximum, this is known of constructive interference.

For I
net

 to be maximum

cos = 1     = 2n where n = {0,1,2,3,4,5...........}

2
2




x n     x = n

For constructive interference

I
net

 = 2
21 )II( 

When I
1
 = I

2
 = I

I
net

 = 4 I

A
net

 = A
1
  + A

2
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When superposing waves are in opposite phase, the resultant amplitude is the difference of

two amplitudes & I
net

 is minimum; this is known as destructive interference.

For I
net

 to be minimum,

cos  = � 1

      = (2n + 1)  where n = {0,1,2,3,4,5...........}

2

x  = (2n + 1)   x = 

2
λ

1)(2n 

For destructive interfence

I
net

 = ( � )I I1 2
2

If I
1
 = I

2

I
net

 = 0

A
net

 = A
1
 � A

2

Ratio of I
max

 & I
min

 = 

( )

( � )

I I

I I
1 2

2

1 2
2



Generally,

I
net

 = I
1
 + I

2
 + cosII2 21

If I
1
 = I

2
 = I

I
net

 = 2I + 2Icos

I
net

 = 2I(1 + cos ) = 4Icos2 


2

Ex.10 Wave from two source, each of same frequency and travelling in same direction,

but with intensity in the ratio 4 : 1 interfere. Find ratio of maximum to minimum

intensity.

Sol.

2

21

21

min

max

I�I

II

I
I













 
 =    

I
I

I
I

1

2

1

2

2

1

1




















�

=
2 1
2 1

2










�
 = 9 : 1

Ex.11 A triangular pulse moving at 2 cm/s on a rope approaches an end at which it is free

to slide on a vertical pole.

1 cm

2 cm/s

2 cm 1cm 1cm

(a) Draw the pulse at 
1
2

s interval until it is completely reflected.

(b) What is the particle speed on the trailing edge at the instant depicted ?
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Sol. (a) Reflection of a pulse from a free boundary is really the superposition of two identical

waves travelling in opposite direction. This can be shown as under.

1cm 1cm
2cm 2cm1cm 1cm

+ =
1cm

1cm 2cm

(a) (b) (c)

At t = ½ S

1cm
2cm 1cm

+ =
1cm

1cm 2cm1cm2cm
1cm 2cm

(d) (e) (f)

At t = 1 s

+ =
1cm 1cm1cm

0.5cm 1cm
1cm 1cm

1cm

0.5cm

1cm 2cm

1cm

(g) (h) (i)

At t = ½ s

+ =
1cm

1cm

2cm 1cm
1cm

2cm 2cm

1cm

1cm

(i)(k)(j)
At t = 2s

In every 
1
2

s , each pulse (one real moving towards right and one imaginary moving towards

left travels a distance of 1 cm, as the wave speed is 2 cm/s.)

(b) Particle speed, v
p
 = |� v (slope)|

Here, v = wave speed = 2 cm/s and slope = 
1
2

 Particle speed = 1 cm/s Ans.
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Ex.12 Figure shows a rectanglar pulse and triangular pulse approaching each other. The

pulse speed is 0.5 cm/s. Sketch the  resultant pulse at t = 2 s

�2 �1 0 1 2 3

2cm

x(cm)

Sol. In 2 s each pulse will travel a distance of 1 cm.

The two pulses overlap between 0 and 1 cm as shown in figure. So, A
1
 and A

2
 can be added

as shown in figure (c).

A1

�1 0 1

+

A2

0 1 2

2cm

2cm(a)

(b)

(c)
A1

A2

�1 0 1 2

2cm

2cm

Resultant pluse
at t = 2s

8. REFLECTION AND TRANSMISSION IN WAVES :

1. When a pulse travelling along a string reaches the end, it is reflected. If the end is fixed as

shown in figure (a), the pulse returns inverted. This is bacause as the leading edge reaches

the wall, the string pulls up the wall. According to Newton's third law, the wall will exert an

equal and opposite force on the string as all instants. This force is therefore, directed first

down and then up. It produces a pulse that is inverted but otherwise identical to the original.

The motion of free end can be studied by letting a ring at the end of string sliding smoothly

on the rod. The ring and rod maintain the tension but exert no transverse force.
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(a) (b)

Reflection of wave pulse (a) at a fixed end 
of a string and (b) at a free end. Time 
increases from top to bottom in each 
figure.

When a wave arrives at this free end, the ring slides the rod. The ring reaches a maximum

displacement. At this position the ring and string come momentarily to rest as in the fourth

drawing from the top in figure (b). But the string is stretched in this position, giving in-

creased tension, so the free end of the string is pulled back down, and again a reflected pulse

is produced, but now the direction of the displacement is the same as for the initial pulse.

2. The formation of the reflected pulse is similar to the overlap of two pulses travelling in

opposite directions. The net displacement at any point is given by the principle of superpo-

sition.
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(a) (b)

Fig (a) : shows two pulses with the same shape, one inverted with respect to the other,

travelling in opposite directions. Because these two pulses have the same shape the net

displacement of the point where the string is attached to the wall is zero at all times.

Fig (b) : shows two pulses with the same shape, travelling in oppoiste directions but not

inverted relative to each other. Note that at one instant, the displacement of the free end is

double the pulse height.

9. REFLECTION AND TRANSMISSION BETWEEN TWO STRING :

Here we are dealing with the case where the end point is neither completely fixed nor

completely free to move As we consider an example where a light string is attached to a

heavy string as shown is figure a.

If a wave pulse is produced on a light string moving towards the friction a part of the wave is

reflected and a part is transmitted on the heavier string the reflected wave is inverted with

respect to the original one.

v
T

1
1




v
T

2
2




v > v1 2

y A t k x i 1sin( � )

( , )v1 1

( , )v2 2
        

At

Ar

v1 y Ar t k x  sin( ) 1

v2 y At t k x sin( � ) 2

figure (a)

On the other hand if the wave is produced on the heavier string which moves toward the

junction a part will the reflected and a part transmitted, no inversion in waves shape will take

place.

The wave velocity is smaller for the heavier string lighter string

v2

2
1

v1
y A t k x i 1sin( � )

P
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P At

v2
v1

y Ar t k x sin( ) 1 y At t k x sin( � ) 2

figure : (b)

Ar

Now to find the relation between A
i
, A

r
, A

t
 we consider the figure (b)

Incident Power = Reflected Power + Transmitted Power

P
i  
= P

r
 + P

t

22
2

t
22

11
2

r
22

11
2

i
22 vAf2vAf2vAf2  ...(i)

Put 
1
 = 

T

v1
2  and 

2
 = 

T

v2
2

in equation (i) their

A
v

A
v

A
v

i r t
2

1

2

1

2

2

 

2
t

2

12
r

2
i A

v
v

AA  .......(ii)

Maximum displacement of joint particle P (as shown in figure) due to left string

= A
i
 + A

r

Maximum displacement of joint particle due to right string = A
t

At the boundary (at point P) the wave must be continuous, that is there are no kinks in it.

Then we must have A
i
 + A

r
 = A

t
...(iii)

from equation (ii) & (iii)

A
i
 � A

r
  = 

v
v

A t
1

2
...(iv)

from eq. (iii) & (iv)

A
t
 = 

2 2

1 2

v
v v

A i












A
r
 = 

v v
v v

A i
2 1

1 2

�













10. STANDING WAVES :

In previous section we've discussed that when two coherent waves superpose on a medium

particle, phenomenon of interference takes place. Similarly when two coherent waves travelling

in opposite direction superpose then simultaneous interference if all the medium particles

takes place. These waves interfere to produce a pattern of all the medium particles what we

call, a stationary wave. If the two interfering waves which travel in opposite direction carry

equal energies then no net flow of energy takes place in the region of superposition. Within

this region redistribution of energy takes place between medium particles. There are some

medium particles where constructive interference takes place and hence energy increases

and on the other hand there are some medium particles where destructive interference takes

place and energy decreases. Now we'll discuss the stationary waves analytically.



Page # 28 WAVES

394,50 - Rajeev Gandhi Nagar Kota, Ph. No. : 93141-87482, 0744-2209671
IVRS No

 
:

 
0744-2439051, 52, 53, www. motioniitjee.com, info@motioniitjee.com

Let two waves of equal amplitude are travelling in opposite direction along x-axis.

The wave equation of the two waves can be given as

y
1
 = A sin (t � kx) [Wave travelling in +x direction] ...(1)

and y
2
 = A sin (t + kx) [Wave travelling in �x direction] ...(2)

When the two waves superpose on medium particles, the resultant displacement of the

medium particles can be given as

y = y
1
 + y

2

or y = A sin (t � kx) + A sin (t + kx)

or y = A [sint cos kx � cos t sin kx + sin t cos kx + cos t sin kx]

or y = 2A cos kx sin  t ...(3)

Equation (3) can be rewritten as

y = R sin t ...(4)

Where R = 2 A cos kx ...(5)

Here equation (4) is an equation of SHM. It implies that after superposition of the two waves

the medium particles executes SHM with same frequency  and amplitude R which is given

by equation (5) Here we can see that the oscillation amplitude of medium particles depends

on x i.e. the position of medium particles. Thus on superposition of two coherent waves

travelling in opposite direction the resulting interference pattern, we call stationary waves,

the oscillation amplitude of the medium particle at different positions is different.

At some point of medium the resultant amplitude is maximum which are given as

R is maximum when cos kx = ± 1

or
2


x N [N  I]

or x = 
N
2

or x = 0, 


2
, , 

3
2


.....

and the maximum value of R is given as

R
max

= ± 2 A ...(6)

Thus in the medium at position x = 0, 


2
, , 

3
2


, ........... the waves interfere constructively

and the amplitude of oscillations becomes 2A. Similarly at some points of the medium, the

waves interfere destructively, the oscillation amplitude become minimum i.e. zero in this

case. These are the points where R is minimum, when

cos kx = 0

or
2

)1N2(
x2 






or x = (2N + 1) 
4


[N  I]

or x 
  

4
3
4

5
4

, , ...........

and the minimum value of R is given as

R
min

 = 0 [7]

Thus in the medium at position x = 


4
, 

3
4


, 
5
4


......... the waves interfere destructively and

the amplitude of oscillation becomes zero. These points always remain at rest. Figure (a)

shows the oscillation amplitude of different medium particles in a stationary waves.
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figure (a)

In figure (a) we can see that the medium particles at which constructive interference takes

place are called antinodes of stationary wave and the points of destructive interference are

called nodes of stationary waves which always remain at rest.

Figure (b) explain the movement of medium particles with time in the region where stationary

waves are formed. Let us assume that at an instant t = 0 all the medium particles are at their

extreme positions as shown in figure - (b - 1). Here points ABCD are the nodes of stationary

waves where medium particles remains at rest. All other starts moving towards their mean

positions and t = T / 4  all particles cross their mean position as shown in figure (b � 3), you

can see in the figure that the particles at nodes are not moving. Now the medium crosses

their mean position and starts moving on other side of mean position toward the other

extreme position. At time t = T/2, all the particles reach their other extreme position as

shown in figure (b - 5) and at time t = 3T/4 again all these particles cross their mean position

in opposite direction as shown in figure (b - 7).

    

(1) (2) (3)

(4) (5) (6)

(7) (8) (9)

figure (b)

Based on the above analysis of one complete oscillations of the medium particles, we can

make some interference for a stationary waves. These are :

(i) In oscillations of stationary wave in a region, some points are always at rest (nodes) and

some oscillates with maximum amplitudes (antinodes). All other medium particles oscillate

with amplitudes less then those of antinodes.

(ii) All medium particles between two successive nodes oscillate in same phase and all

medium particles on one side of a node oscillate in opposite phase with those on the other

side of the same node.

(iii) In the region of a stationary wave during one complete oscillation all the medium particles

come in the form of a straight line twice.

(iv) If the component wave amplitudes are equal, then in the region where stationary wave

is formed, no net flow of energy takes place, only redistribution of energy takes place in the

medium.
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(a) Different Equation for a Stationary Wave

Consider two equal amplitude waves travelling in opposite direction as

y
1
 = A sin (t � kx) ...(11)

and y
2
 = A sin (t + kx) ...(12)

The result of superposition of these two waves is

y = 2A cos kx sin t ...(13)

Which is the equation of stationary wave where 2A cos kx represents the amplitude of medium

particle situated at position x and sin t is the time sinusoidal factor. This equation (13) can

be written in several ways depending on initial phase differences in the component waves

given by equation (11)) can (12). If the superposing waves are having an initial phase

difference , then the component waves can be expressed as

y
1
 = A sin (t � kx) ...(14)

y
2
 = � A sin (t � kx) ...(15)

Superposition of the above two waves will result

y = 2A sin kx cos t ...(16)

Equation (16) is also an equation of stationary wave but here amplitude of different medium

particles in the region of interference is given by

R = 2A sin kx ...(17)

Similarly the possible equations of a stationary wave can be written as

y = A
0
 sin kx cos ( t + ) ....(18)

y = A
0
 cos kx sin (t + ) ...(19)

y = A
0
 sin kx sin (t + ) ...(20)

y = A
0
 cos kx cos (t + ) ...(21)

Here A
0
 is the amplitude of antinodes. In a pure stationary wave it is given as

A
0
 = 2A

Where A is the amplitude of component waves. If we care fully look at equation (18) to (21),

we can see that in equation (18) and (20), the particle amplitude is given by

R = A
0
 sin kx ...(22)

Here at x = 0, there is nodes as R = 0 and in equation (19) and (21) the particle amplitude

is given as

R = A
0
 cos kx ...(23)

Here at x = 0, there is an antinode as R = A
0
. Thus we can state that in a given system of co-

ordinates when origin of system is at a node we use either equation (18) or (20) for analytical

representation of a stationary wave and we use equation (19) or (21) for the same when an

antinode is located at the origin of system.

Ex.13 Find out the equation of the standing waves for the following standing wave pat-

tern.

x=0
x=L

(A) tcosx
L
2

sinA 


(B)  tcos
L
x

sinA 


(C) tcos
L2
x

cosA 


(D) tcos
L
x

cosA 

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Sol. General Equation of standing wave

y = A cos t

where

A = A sin (kx + )

here  = L

 k = 
L
2

A = A sin (kx + ) = 










x

L
2

sinA

 at x = 0 node

  A = 0 at x = 0

   = 0

eq. of standing wave = A sin
L

2
x cos t

Ex.14 Figure shows the standing waves pattern

in a string at t = 0. Find out the equation of

the standing wave where the amplitude of

antinode is 2A.        

2A

�2A

A

y

x

Sol. Let we assume the equation of standing waves

is = A sin (t + )

where A  = 2A sin (kx + )

  x = 0 is node  A = 0,  at x = 0

2A sin  = 0    = 0

at t = 0 Particle at is at y = A and going towards mean position.

   = 
2


+ 
3


 = 
6

5

so eq. of standing waves is

y = 2Asin kx sin 






 


6
5

t

Ex.15 A string 120 cm in length sustains standing wave with the points of the string at

which the displacement amplitude is equal to 3.5 mm being separated by 15.0 cm.

The maximum displacement amplitude is X. 95 mm then find out the value of X.

Sol. In this problem two cases are possible :

A Bx=0

15cm

B x=0

15cm
 Case - I is that A and B have the same displacement amplitude and case - 2 is that C and

D have the same amplitude viz 3.5 mm. In case 1, if x = 0 is taken at antinode then

A = a cos kx

In case -2, if x = 0 is taken at node, then

A = a sin kx

But since nothing is given in the question.

Hence from both the cases, result should be same. This is possible only when

a cos kx = a sin kx

or kx = 
4


 or mm95.4
4/cos

5.3
kxcos

A
a 



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(b) Energy of standing wave in one loop

When all the particles of one loop are at extreme position then total energy in the loop is in

the form of potential energy only when the particles reaches its mean position then total

potential energy converts into kinetic energy of the particles so we can say total energy of

the loop remains constant

Total kinetic energy at mean position is equal to total energy of the loop because potential

energy at mean position  is zero.

Small kinetic energy of the particle

which is in element dx is x

   / 2

dx

d (KE) = 
1
2

2dmv

dm =  dx

Velocity of particle at mean position

= 2A sin kx 

then d (KE) = 
1
2
dx . 4A2 2 sin2kx    d (KE) = 2A22 . sin2kx dx

 




2/

0

222 kxdxsinA2)E.K(d

Total K.E = A kx dx2 2

0

2

1 2 



( � cos )
/

 








A x

kx
k

2 2

0

2
2

2
 



�
sin

/

 = 
1
2

2 2
  A

11. STATIONARY WAVES IN STRINGS :

(a) When both end of string is fixed :

A string of length L is stretched between two points. When the string is set into vibrations, a

transverse progressive wave begins to travel along the string. It is reflected at the other

fixed end. The incident and the reflected waves interfere to produce a stationary transverse

wave in which the ends are always nodes, if both ends of string are fixed.

Fundamental Mode

(a) In the simplest form, the string vibrates in one loop in which the ends are the nodes and

the centre is the antinode. This mode of vibration is known as the fundamental mode and

frequency of vibration is known as the fundamental frequency or first harmonic.

Since the distance between consecutive nodes is 


2

 L 
1

2
  

1
 = 2L

If f
1
 is the fundamental frequency of vibration, then the velocity of transverse waves is given

as,

v f 1 1 or f
v
L1 2

 ...(i)
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First Overtone

(b) The same string under the same conditions

may also vibrate in two loops, such that the cen-

tre is also the node

 L 
2

2
2

  
2
 = L      



2



2If f
2
 is frequency of vibrations

 f
v v

L2
2

 


 f
v
L2  ...(ii)

The frequency f
2
 is known as second harmonic or first overtone.

Second Overtone

(c) The same string under the same conditions

may also vibrate in three segments.

 L 
3

2
3

 3
2
3

 L

If f
3
 is the frequency in this mode of vibration, then,

f
v
L3

3
2

 ...(iii)

The frequency f
3
 is known as third harmonic or second overtone.

Thus a stretched string vibrates with frequencies, which are integral multiples of the funda-

mental frequencies. These frequencies are known as harmonics.

The velocity of transverse wave in stretched string is given as v
T




. Where T = tension in

the string.

 = linear density or mass per unit length of string. If the string fixed at two ends, vibrates

in its fundamental mode, then

f
L

T


1
2 

....(17)

In general f = 
n T
2 

nth harmonic

(n � 1)th overtone

In general, any integral multiple of the fundamental frequency is an allowed frequency.

These higher frequenceis are called overtones. Thus, v
1
 = 2v

0
 is the first overtone, v

2
 = 3v

0

is the second overtone etc. An integral multiple of a frequency is called its harmonic. Thus,

for a string fixed at both the ends, all the overtones are harmonics of the fundamental

frequency and all the harmonics of the fundamental frequency are overtones.
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(b) When one end of the string is fixed and other is free :

free end acts as antinode

1.
   / 4

   f
T


1
4 

 fundamental or Ist harmonic

2.   3 4 / f
T


3
4 

 IIIrd harmonic or Ist overtone

In general : f
n T


( )2 1

4 
    ((2n + 1)th harmonic, nth overtone)

S.No. Travelling w aves Stationary w aves

1 These waves advance in a medium with a
definite velocity

These waves remain stationary between two 
boundaries in the medium.

2 In these waves, all particles of the
medium oscillate with same frequency
and amplitude.

In these waves, all particles except nodes
oscillate with same frequency but different
amplitudes. Amplitude is zero at nodes and
maximum at antinodes.

3 At any instant phase of vibration varies
continuosly from one particle to the other
i.e., phase difference between two
particles can have any value between 
0 and 2  

At any instant the phase of all particles
between two successive nodes is the
same, but phase of particles on one side of
a node is opposite to the phase of particles
on the other side of the node, i.e, phase
difference between any two particles can be 
either 0 or 

4 In these wave, at no instant all the
particles of the medium pass through
their mean positions simultaneously.

In these waves all partic les of the medium
pass through their mean position
simultaneously twice in each time period.

5 These waves transmit energy in the
medium.

These waves do not transmit energy in the
medium.






