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In preparing this new edition of Modern Physics, we have again relied heavily on the
many helpful suggestions from a large team of reviewers and from a host of instruc-

tor and student users of the earlier editions. Their advice reflected the discoveries that
have further enlarged modern physics in the early years of this new century and took
note of the evolution that is occurring in the teaching of physics in colleges and uni-
versities. As the term modern physics has come to mean the physics of the modern
era—relativity and quantum theory—we have heeded the advice of many users and
reviewers and preserved the historical and cultural flavor of the book while being
careful to maintain the mathematical level of the fourth edition. We continue to pro-
vide the flexibility for instructors to match the book and its supporting ancillaries to a
wide variety of teaching modes, including both one- and two-semester courses and
media-enhanced courses.

Features
The successful features of the fourth edition have been retained, including the following:

• The logical structure—beginning with an introduction to relativity and quantiza-
tion and following with applications—has been continued. Opening the book with
relativity has been endorsed by many reviewers and instructors.

• As in the earlier editions, the end-of-chapter problems are separated into three sets
based on difficulty, with the least difficult also grouped by chapter section. More
than 10 percent of the problems in the fifth edition are new. The first edition’s
Instructor’s Solutions Manual (ISM) with solutions, not just answers, to all end-of-
chapter problems was the first such aid to accompany a physics (and not just a
modern physics) textbook, and that leadership has been continued in this edition.
The ISM is available in print or on CD for those adopting Modern Physics, fifth
edition, for their classes. As with the previous edition, a paperback Student’s
Solution Manual containing one-quarter of the solutions in the ISM is also available.

• We have continued to include many examples in every chapter, a feature singled
out by many instructors as a strength of the book. As before, we frequently use
combined quantities such as , , and in to simplify many numerical
calculations.

• The summaries and reference lists at the end of every chapter have, of course, been
retained and augmented, including the two-column format of the summaries,
which improves their clarity.

eV # nmke2Uchc
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• We have continued the use of real data in figures, photos of real people and appa-
ratus, and short quotations from many scientists who were key participants in the
development of modern physics. These features, along with the Notes at the end of
each chapter, bring to life many events in the history of science and help counter
the too-prevalent view among students that physics is a dull, impersonal collection
of facts and formulas.

• More than two dozen Exploring sections, identified by an atom icon and
dealing with text-related topics that captivate student interest such as superluminal
speed and giant atoms, are distributed throughout the text.

• The book’s Web site includes 30 MORE sections, which expand in depth on many
text-related topics. These have been enthusiastically endorsed by both students 
and instructors and often serve as springboards for projects and alternate credit assign-
ments. Identified by a laptop icon , each is introduced with a brief text box.

• More than 125 questions intended to foster discussion and review of concepts are
distributed throughout the book. These have received numerous positive comments
from many instructors over the years, often citing how the questions encourage
deeper thought about the topic.

• Continued in the new edition are the Application Notes. These brief notes in the
margins of many pages point to a few of the many benefits to society that have
been made possible by a discovery or development in modern physics.

New Features
A number of new features are introduced in the fifth edition:

• The “Astrophysics and Cosmology” chapter that was on the fourth edition’s Web
site has been extensively rewritten and moved into the book as a new Chapter 13.
Emphasis has been placed on presenting scientists’ current understanding of the
evolution of the cosmos based on the research in this dynamic field.

• The “Particle Physics” chapter has been substantially reorganized and rewritten
focused on the remarkably successful Standard Model. As the new Chapter 12, it
immediately precedes the new “Astrophysics and Cosmology” chapter to recog-
nize the growing links between these active areas of current physics research.

• The two chapters concerned with the theory and applications of nuclear physics
have been integrated into a new Chapter 11, “Nuclear Physics.” Because of the
renewed interest in nuclear power, that material in the fourth edition has been aug-
mented and moved to a MORE section of the Web.

• Recognizing the need for students on occasion to be able to quickly review key
concepts from classical physics that relate to topics developed in modern physics,
we have added a new Classical Concept Review (CCR) to the book’s Web site.
Identified by a laptop icon in the margin near the pertinent modern physics 

topic of discussion, the CCR can be printed out to provide a convenient study sup-
port booklet.

• The Instructor’s Resource CD for the fifth edition contains all the illustrations
from the book in both PowerPoint and JPEG format. Also included is a gallery of
the astronomical images from Chapter 13 in the original image colors.

• Several new MORE sections have been added to the book’s Web site, and a few for
which interest has waned have been removed.



Organization and Coverage
This edition, like the earlier ones, is divided into two parts: Part 1, “Relativity and
Quantum Mechanics: The Foundation of Modern Physics,” and Part 2, “Applica-
tions.” We continue to open Part 1 with the two relativity chapters. This location for
relativity is firmly endorsed by users and reviewers. The rationale is that this
arrangement avoids separation of the foundations of quantum mechanics in
Chapters 3 through 8 from its applications in Chapters 9 through 12. The two-chap-
ter format for relativity provides instructors with the flexibility to cover only the
basic concepts or to go deeper into the subject. Chapter 1 covers the essentials of
special relativity and includes discussions of several paradoxes, such as the twin
paradox and the pole-in-the-barn paradox, that never fail to excite student interest.
Relativistic energy and momentum are covered in Chapter 2, which concludes with
a mostly qualitative section on general relativity that emphasizes experimental
tests. Because the relation is the result most needed for the
later applications chapters, it is possible to omit Chapter 2 without disturbing conti-
nuity. Chapters 1 through 8 have been updated with a number of improved explana-
tions and new diagrams. Several classical foundation topics in those chapters have
been moved to the Classical Concept Review or recast as MORE sections. Many
quantitative topics are included as MORE sections on the Web site. Examples of
these are the derivation of Compton’s equation (Chapter 3), the details of Ruther-
ford’s alpha-scattering theory (Chapter 4), the graphical solution of the finite
square well (Chapter 6), and the excited states and spectra of two-electron atoms
(Chapter 7). The comparisons of classical and quantum statistics are illustrated
with several examples in Chapter 8, and unlike the other chapters in Part 1, Chapter
8 is arranged to be covered briefly and qualitatively if desired. This chapter,
like Chapter 2, is not essential to the understanding of the applications chapters 
of Part 2 and may be used as an applications chapter or omitted without loss of
continuity.

Preserving the approach used in the previous edition, in Part 2 the ideas and
methods discussed in Part 1 are applied to the study of molecules, solids, nuclei,
particles, and the cosmos. Chapter 9 (“Molecular Structure and Spectra”) is a broad,
detailed discussion of molecular bonding and the basic types of lasers. Chapter 10
(“Solid-State Physics”) includes sections on bonding in metals, magnetism, and
superconductivity. Chapter 11 (“Nuclear Physics”) is an integration of the nuclear
theory and applications that formed two chapters in the fourth edition. It focuses on
nuclear structure and properties, radioactivity, and the applications of nuclear
reactions. Included in the last topic are fission, fusion, and several techniques of age
dating and elemental analysis. The material on nuclear power has been moved to a
MORE section, and the discussion of radiation dosage continues as a MORE
section. As mentioned above, Chapter 12 (“Particle Physics”) has been substantially
reorganized and rewritten with a focus on the Standard Model and revised to reflect
the advances in that field since the earlier editions. The emphasis is on the funda-
mental interactions of the quarks, leptons, and force carriers and includes discus-
sions of the conservation laws, neutrino oscillations, and supersymmetry. Finally,
the thoroughly revised Chapter 13 (“Astrophysics and Cosmology”) examines the
current observations of stars and galaxies and qualitatively integrates our discus-
sions of quantum mechanics, atoms, nuclei, particles, and relativity to explain our
present understanding of the origin and evolution of the universe from the Big Bang
to dark energy.

E2 � p2c2 � (mc2)2
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The Research Frontier
Research over the past century has added abundantly to our understanding of our world,
forged strong links from physics to virtually every other discipline, and measurably
improved the tools and devices that enrich life. As was the case at the beginning of the
last century, it is hard for us to foresee in the early years of this century how scientific
research will deepen our understanding of the physical universe and enhance the quality
of life. Here are just a few of the current subjects of frontier research included in
Modern Physics, fifth edition, that you will hear more of in the years just ahead. Beyond
these years there will be many other discoveries that no one has yet dreamed of.

• The Higgs boson, the harbinger of mass, may now be within our reach at
Brookhaven’s Relativistic Heavy Ion Collider and at CERN with completion of the
Large Hadron Collider. (Chapter 12)

• The neutrino mass question has been solved by the discovery of neutrino oscilla-
tions at the Super-Kamiokande and SNO neutrino observatories (Chapters 2, 11,
and 12), but the magnitudes of the masses and whether the neutrino is a Majorana
particle remain unanswered.

• The origin of the proton’s spin, which may include contributions from virtual
strange quarks, still remains uncertain. (Chapter 11)

• The Bose-Einstein condensates, which suggest atomic lasers and super–atomic
clocks are in our future, were joined in 2003 by Fermi-Dirac condensates,
wherein pairs of fermions act like bosons at very low temperatures. (Chapter 8)

• It is now clear that dark energy accounts for 74 percent of the mass energy of
the universe. Only 4 percent is baryonic (visible) matter. The remaining 22 percent
consists of as yet unidentified dark matter particles. (Chapter 13)

• The predicted fundamental particles of supersymmetry (SUSY), an integral
part of grand unification theories, will be a priority search at the Large Hadron
Collider. (Chapters 12 and 13)

• High-temperature superconductors reached critical temperatures greater
than 130 K a few years ago and doped fullerenes compete with cuprates for
high-Tc records, but a theoretical explanation of the phenomenon is not yet in
hand. (Chapter 10)

• Gravity waves from space may soon be detected by the upgraded Laser Interfero-
metric Gravitational Observatory (LIGO) and several similar laboratories around
the world. (Chapter 2)

• Adaptive-optics telescopes, large baseline arrays, and the Hubble telescope are
providing new views deeper into space of the very young universe, revealing that
the expansion is speeding up, a discovery supported by results from the Sloan
Digital Sky Survey and the Wilkinson Microwave Anisotropy Project. (Chapter 13)

• Giant Rydberg atoms, made accessible by research on tunable dye lasers, are
now of high interest and may provide the first direct test of the correspondence
principle. (Chapter 4)

• The search for new elements has reached , tantalizingly near the edge
of the “island of stability.” (Chapter 11)

Many more discoveries and developments just as exciting as these are to be found
throughout Modern Physics, fifth edition.

Z � 118
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Some Teaching Suggestions
This book is designed to serve well in either one- or two-semester courses. The chap-
ters in Part 2 are independent of one another and can be covered in any order. Some
possible one-semester courses might consist of

• Part 1, Chapters 1, 3, 4, 5, 6, 7; and Part 2, Chapters 11, 12

• Part 1, Chapters 3, 4, 5, 6, 7, 8; and Part 2, Chapters 9, 10

• Part 1, Chapters 1, 2, 3, 4, 5, 6, 7; and Part 2, Chapter 9

• Part 1, Chapters 1, 3, 4, 5, 6, 7; and Part 2, Chapters 11, 12, 13

Possible two-semester courses might consist of

• Part 1, Chapters 1, 3, 4, 5, 6, 7; and Part 2, Chapters 9, 10, 11, 12, 13

• Part 1, Chapters 1, 2, 3, 4, 5, 6, 7, 8; and Part 2, Chapters 9, 10, 11, 12, 13

There is tremendous potential for individual student projects and alternate credit
assignments based on the Exploring and, in particular, the MORE sections. The latter
will encourage students to search for related sources on the Web.
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PART1

Relativity and Quantum

Mechanics: The Foundations 

of Modern Physics

The earliest recorded systematic efforts to assemble knowledge about motion as a key to un-

derstanding natural phenomena were those of the ancient Greeks. Set forth in sophisticated

form by Aristotle, theirs was a natural philosophy (i.e., physics) of explanations deduced from

assumptions rather than experimentation. For example, it was a fundamental assumption

that every substance had a “natural place” in the universe. Motion then resulted when a

substance was trying to reach its natural place. Time was given a similar absolute meaning,

as moving from some instant in the past (the creation of the universe) toward some end goal

in the future, its natural place. The remarkable agreement between the deductions of

Aristotelian physics and motions observed throughout the physical universe, together with a

nearly total absence of accurate instruments to make contradictory measurements, led to ac-

ceptance of the Greek view for nearly 2000 years. Toward the end of that time a few scholars

had begun to deliberately test some of the predictions of theory, but it was Italian scientist

Galileo Galilei who, with his brilliant experiments on motion, established for all time the

absolute necessity of experimentation in physics and, coincidentally, initiated the disintegra-

tion of Aristotelian physics. Within 100 years Isaac Newton had generalized the results of

Galileo’s experiments into his three spectacularly successful laws of motion, and the natural

philosophy of Aristotle was gone. 

With the burgeoning of experimentation, the following 200 years saw a multitude of

major discoveries and a concomitant development of physical theories to explain them. Most

of the latter, then as now, failed to survive increasingly sophisticated experimental tests, but

by the dawn of the twentieth century Newton’s theoretical explanation of the motion of

mechanical systems had been joined by equally impressive laws of electromagnetism and

thermodynamics as expressed by Maxwell, Carnot, and others. The remarkable success of

these laws led many scientists to believe that description of the physical universe was com-

plete. Indeed, A. A. Michelson, speaking to scientists near the end of the nineteenth century,

said, “The grand underlying principles have been firmly established . . . the future truths of

physics are to be looked for in the sixth place of decimals.”
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Such optimism (or pessimism, depending on your point of view) turned out to be pre-

mature, as there were already vexing cracks in the foundation of what we now refer to as

classical physics. Two of these were described by Lord Kelvin, in his famous Baltimore

Lectures in 1900, as the “two clouds” on the horizon of twentieth-century physics: the fail-

ure of theory to account for the radiation spectrum emitted by a blackbody and the inex-

plicable results of the Michelson-Morley experiment. Indeed, the breakdown of classical

physics occurred in many different areas: the Michelson-Morley null result contradicted

Newtonian relativity, the blackbody radiation spectrum contradicted predictions of thermo-

dynamics, the photoelectric effect and the spectra of atoms could not be explained by elec-

tromagnetic theory, and the exciting discoveries of x rays and radioactivity seemed to be

outside the framework of classical physics entirely. The development of the theories of quan-

tum mechanics and relativity in the early twentieth century not only dispelled Kelvin’s “dark

clouds,” they provided answers to all of the puzzles listed here and many more. The ap-

plications of these theories to such microscopic systems as atoms, molecules, nuclei, and

fundamental particles and to macroscopic systems of solids, liquids, gases, and plasmas

have given us a deep understanding of the intricate workings of nature and have revolu-

tionized our way of life.

In Part 1 we discuss the foundations of the physics of the modern era, relativity theory,

and quantum mechanics. Chapter 1 examines the apparent conflict between Einstein’s prin-

ciple of relativity and the observed constancy of the speed of light and shows how accepting

the validity of both ideas led to the special theory of relativity. Chapter 2 discusses the relations

connecting mass, energy, and momentum in special relativity and concludes with a brief dis-

cussion of general relativity and some experimental tests of its predictions. In Chapters 3, 4,

and 5 the development of quantum theory is traced from the earliest evidences of quantiza-

tion to de Broglie’s hypothesis of electron waves. An elementary discussion of theSchrödinger

equation is provided in Chapter 6, illustrated with applications to one-dimensional systems.

Chapter 7 extends the application of quantum mechanics to many-particle systems and

introduces the important new concepts of electron spin and the exclusion principle.

Concluding the development, Chapter 8 discusses the wave mechanics of systems of large

numbers of identical particles, underscoring the importance of the symmetry of wave func-

tions. Beginning with Chapter 3, the chapters in Part 1 should be studied in sequence because

each of Chapters 4 through 8 depends on the discussions, developments, and examples of

the previous chapters.
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The relativistic character of the laws of physics began to be apparent very early
in the evolution of classical physics. Even before the time of Galileo and

Newton, Nicolaus Copernicus1 had shown that the complicated and imprecise
Aristotelian method of computing the motions of the planets, based on the assumption
that Earth was located at the center of the universe, could be made much simpler,
though no more accurate, if it were assumed that the planets move about the Sun
instead of Earth. Although Copernicus did not publish his work until very late in
life, it became widely known through correspondence with his contemporaries and
helped pave the way for acceptance a century later of the heliocentric theory of
planetary motion. While the Copernican theory led to a dramatic revolution in human
thought, the aspect that concerns us here is that it did not consider the location of
Earth to be special or favored in any way. Thus, the laws of physics discovered 
on Earth could apply equally well with any point taken as the center — i.e., the 
same equations would be obtained regardless of the origin of coordinates. This
invariance of the equations that express the laws of physics is what we mean by the
term relativity.

We will begin this chapter by investigating briefly the relativity of Newton’s
laws and then concentrate on the theory of relativity as developed by Albert Einstein
(1879–1955). The theory of relativity consists of two rather different theories, the
special theory and the general theory. The special theory, developed by Einstein and
others in 1905, concerns the comparison of measurements made in different frames
of reference moving with constant velocity relative to each other. Contrary to popu-
lar opinion, the special theory is not difficult to understand. Its consequences, which
can be derived with a minimum of mathematics, are applicable in a wide variety of
situations in physics and engineering. On the other hand, the general theory, also
developed by Einstein (around 1916), is concerned with accelerated reference frames
and gravity. Although a thorough understanding of the general theory requires more
sophisticated mathematics (e.g., tensor analysis), a number of its basic ideas and
important predictions can be discussed at the level of this book. The general theory
is of great importance in cosmology and in understanding events that occur in the
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vicinity of very large masses (e.g., stars) but is rarely encountered in other areas of
physics and engineering. We will devote this chapter entirely to the special theory
(often referred to as special relativity) and discuss the general theory in the final
section of Chapter 2, following the sections concerned with special relativistic
mechanics.

1-1 The Experimental Basis of Relativity

Classical Relativity

In 1687, with the publication of the Philosophiae Naturalis Principia Mathematica,
Newton became the first person to generalize the observations of Galileo and others
into the laws of motion that occupied much of your attention in introductory physics.
The second of Newton’s three laws is

1-1

where is the acceleration of the mass m when acted upon by a net force F.
Equation 1-1 also includes the first law, the law of inertia, by implication: if ,
then also, i.e., . (Recall that letters and symbols in boldface type are
vectors.)

As it turns out, Newton’s laws of motion only work correctly in inertial reference
frames, that is, reference frames in which the law of inertia holds.2 They also have the
remarkable property that they are invariant, or unchanged, in any reference frame that
moves with constant velocity relative to an inertial frame. Thus, all inertial frames are
equivalent—there is no special or favored inertial frame relative to which absolute
measurements of space and time could be made. Two such inertial frames are illus-
trated in Figure 1-1, arranged so that corresponding axes in S and are parallel and

moves in the direction at velocity v for an observer in S (or S moves in the �x��xS�
S�

a � 0dv>dt � 0
F � 0

dv>dt � a

F � m
dv
dt

� ma

Figure 1-1 Inertial reference frame S is attached to Earth (the palm tree) and S� to the cyclist.
The corresponding axes of the frames are parallel, and S� moves at speed v in the �x direction
of S.
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Figure 1-2 A mass suspended by a cord from the roof of a railroad boxcar illustrates the
relativity of Newton’s second law, F � ma. The only forces acting on the mass are its weight mg
and the tension T in the cord. (a) The boxcar sits at rest in S. Since the velocity v and the
acceleration a of the boxcar (i.e., the system S�) are both zero, both observers see the mass
hanging vertically at rest with F � F� � 0. (b) As S� moves in the �x direction with v constant,
both observers see the mass hanging vertically but moving at v with respect to O in S and at rest
with respect to the S� observer. Thus, F � F� � 0. (c) As S� moves in the �x direction with
a � 0 with respect to S, the mass hangs at an angle � 0 with respect to the vertical. However,
it is still at rest (i.e., in equilibrium) with respect to the observer in S�, who now “explains” the
angle by adding a pseudoforce Fp in the �x� direction to Newton’s second law.�
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Figure 1-3 A geosynchronous satellite has an orbital angular velocity
equal to that of Earth and, therefore, is always located above a particular
point on Earth; i.e., it is at rest with respect to the surface of Earth. An
observer in S accounts for the radial, or centripetal, acceleration a of the
satellite as the result of the net force FG . For an observer O� at rest on
Earth (in S�), however, a� � 0 and FG� ma�. To explain the acceleration
being zero, observer O� must add a pseudoforce Fp � �FG .
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direction at velocity for an observer in ). Figures 1-2 and 1-3 illustrate the con-
ceptual differences between inertial and noninertial reference frames. Transformation
of the position coordinates and the velocity components of S into those of is the
Galilean transformation, Equations 1-2 and 1-3, respectively.

1-2

1-3uœ
x � ux � v uœ

y � uy uœ
z � uz

x� � x � vt y� � y z� � z t� � t
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Figure 1-4 The observers in S and S� see identical electric fields 2k y1 at a distance 
from an infinitely long wire carrying uniform charge per unit length. Observers in both S and
S� measure a force 2kq y1 on q due to the line of charge; however, the S� observer measures
an additional force due to the magnetic field at arising from the motion of
the wire in the �x� direction. Thus, the electromagnetic force does not have the same form in
different inertial systems, implying that Maxwell’s equations are not invariant under a Galilean
transformation.

yœ
1�	0
v2q>(2�y1)


> 

y1 � yœ

1
>
x´x

y´y

y1

q
S

v

z´z

S´

Notice that differentiating Equation 1-3 yields the result since for
constant v. Thus, This is the invariance referred to above. Generalizing
this result:

Any reference frame that moves at constant velocity with respect to an iner-

tial frame is also an inertial frame. Newton’s laws of mechanics are invariant

in all reference systems connected by a Galilean transformation.

Speed of Light

In about 1860 James Clerk Maxwell summarized the experimental observations of
electricity and magnetism in a consistent set of four concise equations. Unlike
Newton’s laws of motion, Maxwell’s equations are not invariant under a Galilean
transformation between inertial reference frames (Figure 1-4). Since the Maxwell
equations predict the existence of electromagnetic waves whose speed would be a par-
ticular value, , the excellent agreement between this
number and the measured value of the speed of light3 and between the predicted po-
larization properties of electromagnetic waves and those observed for light provided
strong confirmation of the assumption that light was an electromagnetic wave and,
therefore, traveled at speed c.4

That being the case, it was postulated in the nineteenth century that electromagnetic
waves, like all other waves, propagated in a suitable material medium. The implication
of this postulate was that the medium, called the ether, filled the entire universe,
including the interior of matter. (The Greek philosopher Aristotle had first suggested that
the universe was permeated with “ether” 2000 years earlier.) In this way the remarkable
opportunity arose to establish experimentally the existence of the all-pervasive ether by
measuring the speed of light relative to Earth as Earth moved relative to the ether at
speed v, as would be predicted by Equation 1-3. The value of c was given by the
Maxwell equations, and the speed of Earth relative to the ether, while not known, was
assumed to be at least equal to its orbital speed around the Sun, about 30 km s. Since
the maximum observable effect is of the order and given this assumption

, an experimental accuracy of about 1 part in 108 is necessary in order
to detect Earth’s motion relative to the ether. With a single exception, equipment and
v2>c2 � 10�8

v2>c2
>

c�

c � 1>1	0P0 � 3.00 � 108 m>s

F � ma � Fœ.
dv>dt � 0a� � a
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Figure 1-5 Light source, mirror, and observer are moving with speed v relative to the ether.
According to classical theory, the speed of light c, relative to the ether, would be c � v relative
to the observer for light moving from the source toward the mirror and c � v for light
reflecting from the mirror back toward the source.

Observer

Light source Mirror

BA
L

v

c + v

c – v

Albert A. Michelson, here
playing pool in his later
years, made the first
accurate measurement of
the speed of light while an
instructor at the U.S. Naval
Academy, where he had
earlier been a cadet. [AIP
Emilio Segrè Visual Archives.]

techniques available at the time had an experimental accuracy of only about 1 part in
104, woefully insufficient to detect the predicted small effect. That single exception was
the experiment of Michelson and Morley.5

Questions

1. What would the relative velocity of the inertial systems in Figure 1-4 need to be
in order for the S� observer to measure no net electromagnetic force on the
charge q?

2. Discuss why the very large value for the speed of the electromagnetic waves
would imply that the ether be rigid, i.e., have a large bulk modulus.

The Michelson-Morley Experiment

All waves that were known to nineteenth-century scientists required a medium in
order to propagate. Surface waves moving across the ocean obviously require the
water. Similarly, waves move along a plucked guitar string, across the surface of a
struck drumhead, through Earth after an earthquake, and, indeed, in all materials acted
upon by suitable forces. The speed of the waves depends on the properties of the
medium and is derived relative to the medium. For example, the speed of sound waves
in air, i.e., their absolute motion relative to still air, can be measured. The Doppler ef-
fect for sound in air depends not only on the relative motion of the source and listener,
but also on the motion of each relative to still air. Thus, it was natural for scientists of
that time to expect the existence of some material like the ether to support the propa-
gation of light and other electromagnetic waves and to expect that the absolute mo-
tion of Earth through the ether should be detectable, despite the fact that the ether had
not been observed previously.

Michelson realized that although the effect of Earth’s motion on the results of any
“out-and–back” speed of light measurement, such as shown generically in Figure 1-5,
would be too small to measure directly, it should be possible to measure v2 c2 by a dif-
ference measurement, using the interference property of the light waves as a sensitive
“clock.” The apparatus that he designed to make the measurement is called the
Michelson interferometer. The purpose of the Michelson-Morley experiment was to
measure the speed of light relative to the interferometer (i.e., relative to Earth), thereby
detecting Earth’s motion through the ether and thus verifying the latter’s existence. To
illustrate how the interferometer works and the reasoning behind the experiment, let us
first describe an analogous situation set in more familiar surroundings.

>



8 Chapter 1 Relativity I

EXAMPLE 1-1 A Boat Race Two equally matched rowers race each other over
courses as shown in Figure 1-6a. Each oarsman rows at speed c in still water; the
current in the river moves at speed v. Boat 1 goes from A to B, a distance L, and
back. Boat 2 goes from A to C, also a distance L, and back. A, B, and C are marks
on the riverbank. Which boat wins the race, or is it a tie? (Assume c � v.)

SOLUTION

The winner is, of course, the boat that makes the round trip in the shortest time,
so to discover which boat wins, we compute the time for each. Using the classical
velocity transformation (Equations 1-3), the speed of 1 relative to the ground is

, as shown in Figure 1-6b; thus the round-trip time t1 for boat 1 is

1-4

where we have used the binomial expansion. Boat 2 moves downstream at speed
relative to the ground and returns at , also relative to the ground. The

round-trip time t2 is thus

1-5
�

2L
c

1

1 �
v2

c2

�
2L
c
a1 �

v2

c2
� Á b

t2 �
L

c � v
�

L
c � v

�
2Lc

c2 � v2

c � vc � v

�
2L

cA1 �
v2

c2

�
2L
c
a1 �

v2

c2
b�1/2

�
2L
c
a1 �

1

2

v2

c2
� Á b

t1 � tASB � tBSA �
L

2c2 � v2
�

L

2c2 � v2
�

2L

2c2 � v2

(c2 � v2)1>2

Ground

Ground

River

C

B

A

1

2

L

L
v

(a)

(b)

c 2 – v 2

v

A→B

c
c 2 – v 2

v

B →A

c

Figure 1-6 (a) The rowers both row at speed c in still water. (See Example 1-1.) The current in
the river moves at speed v. Rower 1 goes from A to B and back to A, while rower 2 goes from A to
C and back to A. (b) Rower 1 must point the bow upstream so that the sum of the velocity vectors
c � v results in the boat moving from A directly to B. His speed relative to the banks (i.e., points A
and B) is then The same is true on the return trip.(c2 � v2)1>2.
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Figure 1-7 Drawing of Michelson-Morley apparatus used in their 1887
experiment. The optical parts were mounted on a 5 ft square sandstone slab,
which was floated in mercury, thereby reducing the strains and vibrations
during rotation that had affected the earlier experiments. Observations
could be made in all directions by rotating the apparatus in the horizontal
plane. [From R. S. Shankland, “The Michelson-Morley Experiment,” Copyright ©
November 1964 by Scientific American, Inc. All rights reserved.]
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Mirrors
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glass plate
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The Results Michelson and Morley carried out the experiment in 1887, repeating
with a much-improved interferometer an inconclusive experiment that Michelson
alone had performed in 1881 in Potsdam. The path length L on the new interferom-
eter (Figure 1-7) was about 11 meters, obtained by a series of multiple reflections.
Michelson’s interferometer is shown schematically in Figure 1-8a. The field of view
seen by the observer consists of parallel alternately bright and dark interference
bands, called fringes, as illustrated in Figure 1-8b. The two light beams in the inter-
ferometer are exactly analogous to the two boats in Example 1-1, and Earth’s motion
through the ether was expected to introduce a time (phase) difference as given by

which, you may note, is the same result obtained in our discussion of the speed of
light experiment in the Classical Concept Review.

The difference ¢t between the round-trip times of the boats is then

1-6

The quantity is always positive; therefore, t2 � t1 and rower 1 has the
faster average speed and wins the race.

Lv2>c3

¢t � t2 � t1 �
2L
c
a1 �

v2

c2
b �

2L
c
a1 �

1

2

v2

c2
b �

Lv2

c3
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Compensator

Rotation

Sodium
light source
(diffuse)

Beam
splitter

1 Fringe width

O

A

B

C

v

L

L

M2́

M2

M1

1

2

(a) (b)

Figure 1-8 Michelson interferometer. (a) Yellow light from the sodium source is divided
into two beams by the second surface of the partially reflective beam splitter at A, at which
point the two beams are exactly in phase. The beams travel along the mutually
perpendicular paths 1 and 2, reflect from mirrors M1 and M2 , and return to A, where they
recombine and are viewed by the observer. The compensator’s purpose is to make the two
paths of equal optical length, so that the lengths L contain the same number of light waves,
by making both beams pass through two thicknesses of glass before recombining. M2 is
then tilted slightly so that it is not quite perpendicular to M1 . Thus, the observer O sees M1
and the image of M2 formed by the partially reflecting second surface of the beam
splitter, forming a thin wedge-shaped film of air between them. The interference of the two
recombining beams depends on the number of waves in each path, which in turn depends on
(1) the length of each path and (2) the speed of light (relative to the instrument) in each
path. Regardless of the value of that speed, the wedge-shaped air film between M1 and
results in an increasing path length for beam 2 relative to beam 1, looking from left to right
across the observer’s field of view; hence, the observer sees a series of parallel interference
fringes as in (b), alternately yellow and black from constructive and destructive
interference, respectively.

Mœ
2

Mœ
2 ,

Equation 1-6. Rotating the interferometer through 90° doubles the time difference
and changes the phase, causing the fringe pattern to shift by an amount ¢N. An im-
proved system for rotating the apparatus was used in which the massive stone slab on
which the interferometer was mounted floated on a pool of mercury. This dampened
vibrations and enabled the experimenters to rotate the interferometer without intro-
ducing mechanical strains, both of which would cause changes in L and hence a shift
in the fringes. Using a sodium light source with 
 � 590 nm and assuming v �
30 km s (i.e., Earth’s orbital speed), ¢N was expected to be about 0.4 of the width
of a fringe, about 40 times the minimum shift (0.01 fringe) that the interferometer
was capable of detecting.

>
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with arms as long as 4 km

are currently being used in

the search for gravity waves.

See Section 2-5.
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To Michelson’s immense disappointment and that of most scientists of the time,
the expected shift in the fringes did not occur. Instead, the shift observed was only
about 0.01 fringe, i.e., approximately the experimental uncertainty of the apparatus.
With characteristic reserve, Michelson described the results thus:6

The actual displacement [of the fringes] was certainly less than the twentieth part
[of 0.4 fringe], and probably less than the fortieth part. But since the displace-
ment is proportional to the square of the velocity, the relative velocity of the earth
and the ether is probably less than one-sixth the earth’s orbital velocity and cer-
tainly less than one-fourth.

Michelson and Morley had placed an upper limit on Earth’s motion relative to the
ether of about 5 km s. From this distance in time it is difficult for us to appreciate
the devastating impact of this result. The then-accepted theory of light propagation
could not be correct, and the ether as a favored frame of reference for Maxwell’s equa-
tions was not tenable. The experiment was repeated by a number of people more than
a dozen times under various conditions and with improved precision, and no shift has
ever been found. In the most precise attempt, the upper limit on the relative velocity
was lowered to 1.5 km s by Georg Joos in 1930 using an interferometer with light
paths much longer than Michelson’s. Recent, high-precision variations of the experi-
ment using laser beams have lowered the upper limit to 15 m s.

More generally, on the basis of this and other experiments, we must conclude that
Maxwell’s equations are correct and that the speed of electromagnetic radiation is the
same in all inertial reference systems independent of the motion of the source relative
to the observer. This invariance of the speed of light between inertial reference frames
means that there must be some relativity principle that applies to electromagnetism as
well as to mechanics. That principle cannot be Newtonian relativity, which implies the
dependence of the speed of light on the relative motion of the source and observer.
It follows that the Galilean transformation of coordinates between inertial frames
cannot be correct but must be replaced with a new coordinate transformation whose
application preserves the invariance of the laws of electromagnetism. We then expect
that the fundamental laws of mechanics, which were consistent with the old Galilean
transformation, will require modification in order to be invariant under the new trans-
formation. The theoretical derivation of that new transformation was a cornerstone of
Einstein’s development of special relativity.

More

A more complete description of the Michelson-Morley experiment, its
interpretation, and the results of very recent versions can be found on
the home page: www.whfreeman.com/tiplermodernphysics5e. See also
Figures 1-9 through 1-11 here, as well as Equations 1-7 through 1-10.

1-2 Einstein’s Postulates
In 1905, at the age of 26, Albert Einstein published several papers, among which was
one on the electrodynamics of moving bodies.11 In this paper, he postulated a more
general principle of relativity that applied to the laws of both electrodynamics and
mechanics. A consequence of this postulate is that absolute motion cannot be detected

>>

>
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Figure 1-12 (a) Stationary
light source S and a stationary
observer R1, with a second
observer R2 moving toward
the source with speed v.
(b) In the reference frame in
which the observer R2 is at
rest, the light source S and
observer R1 move to the right
with speed v. If absolute
motion cannot be detected,
the two views are equivalent.
Since the speed of light does
not depend on the motion of
the source, observer R2
measures the same value for
that speed as observer R1.
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R2
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by any experiment. We can then consider the Michelson apparatus and Earth to be at
rest. No fringe shift is expected when the interferometer is rotated 90°, since all di-
rections are equivalent. The null result of the Michelson-Morley experiment is there-
fore to be expected. It should be pointed out that Einstein did not set out to explain
the Michelson-Morley experiment. His theory arose from his considerations of the
theory of electricity and magnetism and the unusual property of electromagnetic
waves that they propagate in a vacuum. In his first paper, which contains the complete
theory of special relativity, he made only a passing reference to the experimental at-
tempts to detect Earth’s motion through the ether, and in later years he could not re-
call whether he was aware of the details of the Michelson-Morley experiment before
he published his theory.

The theory of special relativity was derived from two postulates proposed by
Einstein in his 1905 paper:

Postulate 1. The laws of physics are the same in all inertial reference frames.

Postulate 2. The speed of light in a vacuum is equal to the value c, independent
of the motion of the source.

Postulate 1 is an extension of the Newtonian principle of relativity to include all
types of physical measurements (not just measurements in mechanics). It implies that
no inertial system is preferred over any other; hence, absolute motion cannot be de-
tected. Postulate 2 describes a common property of all waves. For example, the speed
of sound waves does not depend on the motion of the sound source. When an ap-
proaching car sounds its horn, the frequency heard increases according to the Doppler
effect, but the speed of the waves traveling through the air does not depend on the
speed of the car. The speed of the waves depends only on the properties of the air, such
as its temperature. The force of this postulate was to include light waves, for which
experiments had found no propagation medium, together with all other waves, whose
speed was known to be independent of the speed of the source. Recent analysis of the
light curves of gamma-ray bursts that occur near the edge of the observable universe
have shown the speed of light to be independent of the speed of the source to a preci-
sion of one part in 1020.

Although each postulate seems quite reasonable, many of the implications of the
two together are surprising and seem to contradict common sense. One important im-
plication of these postulates is that every observer measures the same value for the
speed of light independent of the relative motion of the source and observer. Consider
a light source S and two observers R1, at rest relative to S, and R2, moving toward S
with speed v, as shown in Figure 1-12a. The speed of light measured by R1 is c �
3 � 108 m s. What is the speed measured by R2? The answer is not c � v, as one
would expect based on Newtonian relativity. By postulate 1, Figure 1-12a is equiva-
lent to Figure 1-12b, in which R2 is at rest and the source S and R1 are moving with
speed v. That is, since absolute motion cannot be detected, it is not possible to say
which is really moving and which is at rest. By postulate 2, the speed of light from a
moving source is independent of the motion of the source. Thus, looking at Figure
1-12b, we see that R2 measures the speed of light to be c, just as R1 does. This result,
that all observers measure the same value c for the speed of light, is often considered
an alternative to Einstein’s second postulate.

This result contradicts our intuition. Our intuitive ideas about relative velocities
are approximations that hold only when the speeds are very small compared with the
speed of light. Even in an airplane moving at the speed of sound, it is not possible to
measure the speed of light accurately enough to distinguish the difference between the
results c and c � v, where v is the speed of the plane. In order to make such a

>
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(Top) Albert Einstein in 1905
at the Bern, Switzerland,
patent office. [Hebrew
University of Jerusalem Albert
Einstein Archives, courtesy AIP
Emilio Segrè Visual Archives.]
(Bottom) Clock tower and
electric trolley in Bern on
Kramstrasse, the street on
which Einstein lived. If you
are on the trolley moving
away from the clock and look
back at it, the light you see
must catch up with you. If
you move at nearly the speed
of light, the clock you see
will be slow. In this, Einstein
saw a clue to the variability
of time itself. [Underwood &
Underwood/CORBIS.]

distinction, we must either move with a very great velocity (much greater than that of
sound) or make extremely accurate measurements, as in the Michelson-Morley ex-
periment, and when we do, we will find, as Einstein pointed out in his original rela-
tivity paper, that the contradictions are “only apparently irreconcilable.”

Events and Observers

In considering the consequences of Einstein’s postulates in greater depth, i.e., in de-
veloping the theory of special relativity, we need to be certain that meanings of some
important terms are crystal clear. First, there is the concept of an event. A physical
event is something that happens, like the closing of a door, a lightning strike, the col-
lision of two particles, your birth, or the explosion of a star. Every event occurs at
some point in space and at some instant in time, but it is very important to recognize
that events are independent of the particular inertial reference frame that we might use
to describe them. Events do not “belong” to any reference frame.

Events are described by observers who do belong to particular inertial frames of
reference. Observers could be people (as in Section 1-1), electronic instruments, or
other suitable recorders, but for our discussions in special relativity we are going to be
very specific. Strictly speaking, the observer will be an array of recording clocks lo-
cated throughout the inertial reference system. It may be helpful for you to think of
the observer as a person who goes around reading out the memories of the recording
clocks or receives records that have been transmitted from distant clocks, but always
keep in mind that in reporting events, such a person is strictly limited to summarizing
the data collected from the clock memories. The travel time of light precludes him
from including in his report distant events that he may have seen by eye! It is in this
sense that we will be using the word observer in our discussions.

Each inertial reference frame may be thought of as being formed by a cubic three-
dimensional lattice made of identical measuring rods (e.g., meter sticks) with a
recording clock at each intersection as illustrated in Figure 1-13. The clocks are all
identical, and we, of course, want them all to read the “same time” as one another at
any instant; i.e., they must be synchronized. There are many ways to accomplish syn-
chronization of the clocks, but a very straightforward way, made possible by the sec-
ond postulate, is to use one of the clocks in the lattice as a standard, or reference clock.
For convenience we will also use the location of the reference clock in the lattice as
the coordinate origin for the reference frame. The reference clock is started with its
indicator (hands, pointer, digital display) set at zero. At the instant it starts, it also
sends out a flash of light that spreads out as a spherical wave in all directions. When
the flash from the reference clock reaches the lattice clocks 1 meter away (notice that
in Figure 1-13 there are six of them, two of which are off the edges of the figure), we want
their indicators to read the time required for light to travel 1 m (� 1 299,792,458 s).
This can be done simply by having an observer at each clock set that time on the in-
dicator and then having the flash from the reference clock start them as it passes. The
clocks 1 m from the origin now display the same time as the reference clock; i.e., they
are all synchronized. In a similar fashion, all of the clocks throughout the inertial
frame can be synchronized since the distance of any clock from the reference clock
can be calculated from the space coordinates of its position in the lattice and the initial
setting of its indicator will be the corresponding travel time for the reference light
flash. This procedure can be used to synchronize the clocks in any inertial frame, but
it does not synchronize the clocks in reference frames that move with respect to one
another. Indeed, as we shall see shortly, clocks in relatively moving frames cannot in
general be synchronized with one another.

>
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When an event occurs, its location and time are recorded instantly by the nearest
clock. Suppose that an atom located at x � 2 m, y � 3 m, z � 4 m in Figure 1-13 emits
a tiny flash of light at t � 21 s on the clock at that location. That event is recorded in
space and in time or, as we will henceforth refer to it, in the spacetime coordinate sys-
tem with the numbers (2,3,4,21). The observer may read out and analyze these data at
his leisure, within the limits set by the information transmission time (i.e., the light travel
time) from distant clocks. For example, the path of a particle moving through the lattice
is revealed by analysis of the records showing the particle’s time of passage at each
clock’s location. Distances between successive locations and the corresponding time dif-
ferences make possible the determination of the particle’s velocity. Similar records of the
spacetime coordinates of the particle’s path can, of course, also be made in any inertial
frame moving relative to ours, but to compare the distances and time intervals measured
in the two frames requires that we consider carefully the relativity of simultaneity.

Relativity of Simultaneity

Einstein’s postulates lead to a number of predictions about measurements made by ob-
servers in inertial frames moving relative to one another that initially seem very
strange, including some that appear paradoxical. Even so, these predictions have been
experimentally verified; and nearly without exception, every paradox is resolved by
an understanding of the relativity of simultaneity, which states that

Two spatially separated events simultaneous in one reference frame are

not, in general, simultaneous in another inertial frame moving relative to

the first.

Figure 1-13 Inertial reference frame formed
from a lattice of measuring rods with a clock at
each intersection. The clocks are all
synchronized using a reference clock. In this
diagram the measuring rods are shown to be 1 m
long, but they could all be 1 cm, 1 or 1 km
as required by the scale and precision of the
measurements being considered. The three space
dimensions are the clock positions. The fourth
spacetime dimension, time, is shown by
indicator readings on the clocks.

	m,

x

z

y

Reference clock
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A corollary to this is that

Clocks synchronized in one reference frame are not, in general, synchronized

in another inertial frame moving relative to the first.

What do we mean by simultaneous events? Suppose two observers, both in the in-
ertial frame S at different locations A and B, agree to explode bombs at time to
(remember, we have synchronized all of the clocks in S). The clock at C, equidistant
from A and B, will record the arrival of light from the explosions at the same instant, i.e.,
simultaneously. Other clocks in S will record the arrival of light from A or B first, de-
pending on their locations, but after correcting for the time the light takes to reach each
clock, the data recorded by each would lead an observer to conclude that the explosions
were simultaneous. We will thus define two events to be simultaneous in an inertial
reference frame if the light signals from the events reach an observer halfway between
them at the same time as recorded by a clock at that location, called a local clock.

Einstein’s Example To show that two events that are simultaneous in frame S are
not simultaneous in another frame S� moving relative to S, we use an example intro-
duced by Einstein. A train is moving with speed v past a station platform. We have ob-
servers located at A�, B�, and C� at the front, back, and middle of the train. (We con-
sider the train to be at rest in S� and the platform in S.) We now suppose that the train
and platform are struck by lightning at the front and back of the train and that the
lightning bolts are simultaneous in the frame of the platform (S; Figure 1-14a).
That is, an observer located at C halfway between positions A and B, where lightning
strikes, observes the two flashes at the same time. It is convenient to suppose that the

(a)

(b)

(c)

(d)

B C A

B´
S´

S

C´ A´
v

B C A

B´
S´

S

C´ A´
v

B C A

B´
S´

S

C´ A´
v

B C A

B´
S´

S

C´ A´
v

Figure 1-14 Lightning bolts strike the
front and rear of the train, scorching
both the train and the platform, as the
train (frame S�) moves past the platform
(system S) at speed v. (a) The strikes are
simultaneous in S, reaching the C
observer located midway between the
events at the same instant as recorded by
the clock at C as shown in (c). In S� the
flash from the front of the train is
recorded by the C� clock, located
midway between the scorch marks on
the train, before that from the rear of the
train (b and d, respectively). Thus, the
C� observer concludes that the strikes
were not simultaneous.
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lightning scorches both the train and the platform so that the events can be easily lo-
cated in each reference frame. Since C� is in the middle of the train, halfway between
the places on the train that are scorched, the events are simultaneous in S� only if the
clock at C� records the flashes at the same time. However, the clock at C� records
the flash from the front of the train before the flash from the back. In frame S, when
the light from the front flash reaches the observer at C�, the train has moved some dis-
tance toward A, so that the flash from the back has not yet reached C�, as indicated in
Figure 1-14b. The observer at C� must therefore conclude that the events are not si-
multaneous, but that the front of the train was struck before the back. Figures 1-14c
and 1-14d illustrate, respectively, the subsequent simultaneous arrival of the flashes at
C and the still-later arrival of the flash from the rear of the train at C�. As we have dis-
cussed, all observers in S� on the train will agree with the observer C� when they have
corrected for the time it takes light to reach them.

The corollary can also be demonstrated with a similar example. Again consider
the train to be at rest in S� that moves past the platform, at rest in S, with speed v.
Figure 1-15 shows three of the clocks in the S lattice and three of those in the S�
lattice. The clocks in each system’s lattice have been synchronized in the manner
that was described earlier, but those in S are not synchronized with those in S�. The
observer at C midway between A and B on the platform announces that light sources
at A and B will flash when the clocks at those locations read to (Figure 1-15a). The
observer at C�, positioned midway between A� and B�, notes the arrival of the light
flash from the front of the train (Figure 1-15b) before the arrival of the one from the
rear (Figure 1-15d). Observer C� thus concludes that if the flashes were each emitted
at to on the local clocks, as announced, then the clocks at A and B are not synchro-
nized. All observers in S� would agree with that conclusion after correcting for the
time of light travel. The clock located at C records the arrival of the two flashes
simultaneously, of course, since the clocks in S are synchronized (Figure 1-15c).

Figure 1-15 (a) Light flashes originate
simultaneously at clocks A and B,
synchronized in S. (b) The clock 
at C�, midway between A� and B� on
the moving train, records the arrival 
of the flash from A before the flash 
from B shown in (d). Since the observer
in S announced that the flashes were
triggered at to on the local clocks, the
observer at C� concludes that the local
clocks at A and B did not read to
simultaneously; i.e., they were not
synchronized. The simultaneous arrival
of the flashes at C is shown in (c).
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Notice, too, in Figure 1-15 that C� also concludes that the clock at A is ahead of the
clock at B. This is important, and we will return to it in more detail in the next sec-
tion. Figure 1-16 illustrates the relativity of simultaneity from a different perspective.

Questions

3. In addition to that described above, what would be another possible method of
synchronizing all of the clocks in an inertial reference system?

4. Using Figure 1-16d, explain how the spaceship observer concludes that Earth
clocks are not synchronized.

1-3 The Lorentz Transformation
We now consider a very important consequence of Einstein’s postulates, the general
relation between the spacetime coordinates x, y, z, and t of an event as seen in refer-
ence frame S and the coordinates x�, y�, z�, and t� of the same event as seen in reference
frame S�, which is moving with uniform velocity relative to S. For simplicity we will

Earth view of Earth clocks(a) Spaceship view of spaceship clocks(b)

AB A�B�

Spaceship view of Earth clocks(d)Earth view of spaceship clocks(c)

A�B� AB

v v

Figure 1-16 A light flash occurs on Earth midway between two Earth clocks. At the instant of
the flash the midpoint of a passing spaceship coincides with the light source. (a) The Earth
clocks record the lights’ arrival simultaneously and are thus synchronized. (b) Clocks at both
ends of the spaceship also record the lights’ arrival simultaneously (Einstein’s second postulate)
and they, too, are synchronized. (c) However, the Earth observer sees the light reach the clock at
B� before the light reaches the clock at A�. Since the spaceship clocks read the same time when
the light arrives, the Earth observer concludes that the clocks at A� and B� are not synchronized.
(d) The spaceship observer similarly concludes that the Earth clocks are not synchronized.
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consider only the special case in which the origins of the two coordinate systems are
coincident at time t � t� � 0 and S� is moving, relative to S, with speed v along the x
(or x�) axis and with the y� and z� axes parallel, respectively, to the y and z axes, as
shown in Figure 1-17. As we discussed earlier (Equation 1-2), the classical Galilean
coordinate transformation is

1-2

which expresses coordinate measurements made by an observer in S� in terms of those
measured by an observer in S. The inverse transformation is

and simply reflects the fact that the sign of the relative velocity of the reference
frames is different for the two observers. The corresponding classical velocity trans-
formation was given in Equation 1-3 and the acceleration, as we saw earlier, is
invariant under a Galilean transformation. (For the rest of the discussion we will ig-
nore the equations for y and z, which do not change in this special case of motion
along the x and x� axes.) These equations are consistent with experiment as long as v
is much less than c.

It should be clear that the classical velocity transformation is not consistent with
the Einstein postulates of special relativity. If light moves along the x axis with speed
c in S, Equation 1-3 implies that the speed in S� is rather than .
The Galilean transformation equations must therefore be modified to be consistent
with Einstein’s postulates, but the result must reduce to the classical equations when
v is much less than c. We will give a brief outline of one method of obtaining the rel-
ativistic transformation that is called the Lorentz transformation, so named because
of its original discovery by H. A. Lorentz.12 We assume the equation for x� to be of
the form 

1-11

where  is a constant that can depend upon v and c but not on the coordinates. If this
equation is to reduce to the classical one,  must approach 1 as v c approaches 0. The
inverse transformation must look the same except for the sign of the velocity:

1-12

With the arrangement of the axes in Figure 1-17, there is no relative motion of the
frames in the y and z directions; hence y� � y and z� � z. However, insertion of the as
yet unknown multiplier  modifies the classical transformation of time, t� � t. To see

x � (x� � vt�)

>
x� � (x � vt)

ux
œ � cux

œ � c � v

x � x� � vt� y � y� z � z� t � t�

x� � x � vt y� � y z� � z t� � t

Figure 1-17 Two inertial frames S and S� with the latter moving
at speed v in �x direction of system S. Each set of axes shown is
simply the coordinate axes of a lattice like that in Figure 1-13.
Remember, there is a clock at each intersection. A short time
before, the times represented by this diagram O and O� were
coincident and the lattices of S and S� were intermeshed.
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this, we substitute x� from Equation 1-11 into Equation 1-12 and solve for t�. The
result is

1-13

Now let a flash of light start from the origin of S at t � 0. Since we have assumed
that the origins coincide at t � t� � 0, the flash also starts at the origin of S� at t� � 0.
The flash expands from both origins as a spherical wave. The equation for the wave
front according to an observer in S is

1-14

and according to an observer in S�, it is

1-15

where both equations are consistent with the second postulate. Consistency with the
first postulate means that the relativistic transformation that we seek must transform
Equation 1-14 into Equation 1-15 and vice versa. For example, substituting Equations
1-11 and 1-13 into 1-15 results in Equation 1-14 if

1-16

where � � v c. Notice that  � 1 for v � 0 and  for v � c. How this is done
is illustrated in Example 1-2 below.

EXAMPLE 1-2 Relativistic Transformation Multiplier � Show that  must be given
by Equation 1-16 if Equation 1-15 is to be transformed into Equation 1-14 consis-
tent with Einstein’s first postulate.

SOLUTION

Substituting Equations 1-11 and 1-13 into Equation 1-15 and noting that and
in this case yields

1-17

To be consistent with the first postulate, Equation 1-15 must be identical to
1-12. This requires that the coefficient of the term in Equation 1-17 be equal to
1, that of the term be equal to , and that of the xt term be equal to 0. Any of
those conditions can be used to determine , and all yield the same result. Using,
for example, the coefficient of , we have from Equation 1-17 that 

2 � c22
(1 � 2)2

4v2
� 1

x2

c2t2
x2
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 �
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which can be rearranged to

Canceling on both sides and solving for  yields

With the value for  found in Example 1-2, Equation 1-13 can be written in a
somewhat simpler form, and with it the complete Lorentz transformation becomes

1-18

and the inverse

1-19

with

EXAMPLE 1-3 Transformation of Time Intervals The arrivals of two cosmic-ray 	
leptons (muons) are recorded by detectors in the laboratory, one at time at loca-
tion and the second at time at location in the laboratory reference frame, S
in Figure 1-17. What is the time interval between those two events in system S�,
which moves relative to S at speed v?

SOLUTION

Applying the time coordinate transformation from Equation 1-18,

1-20

We see that the time interval measured in S� depends not just on the corre-
sponding time interval in S, but also on the spatial separation of the clocks in S that
measured the interval. This result should not come as a total surprise, since we have

tœb � tœa � (tb � ta) �
v

c2
(xb � xa)

tœb � tœa � a tb �
vxb
c2
b � a ta �

vxa
c2
b

xbtbxa

ta

 �
1

21 � �2

t � a t� �
vx�

c2
b z � z�

x � (x� � vt�) y � y�

t� � a t �
vx

c2
b z� � z
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 �
1

A1 �
v2

c2

1 � 2

�c2
(1 � 2)2
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already discovered that although the clocks in S are synchronized with each other,
they are not, in general, synchronized for observers in other inertial frames.

Special Case 1
If the two events happen to occur at the same location in S, i.e., then

, the time interval measured on a clock located at the events, is called the
proper time interval. Notice that since  � 1 for all frames moving relative to S, the
proper time interval is the minimum time interval that can be measured between
those events.

Special Case 2
Does an inertial frame exist for which the events described above would be mea-
sured as being simultaneous? Since the question has been asked, you probably sus-
pect that the answer is yes, and you are right. The two events will be simultaneous
in a system S� for which , i.e., when

or when

1-21

Notice that time for a light beam to travel from to thus
we can characterize S� as being that system whose speed relative to S is that frac-
tion of c given by the time interval between the events divided by the travel time of
light between them. (Note, too, that implies that , a
nonphysical situation that we will discuss in Section 1-4.)

While it is possible for us to get along in special relativity without the Lorentz
transformation, it has an application that is quite valuable: it enables the spacetime co-
ordinates of events measured by the measuring rods and clocks in the reference frame
of one observer to be translated into the corresponding coordinates determined by the
measuring rods and clocks of an observer in another inertial frame. As we will see in
Section 1-4, such transformations lead to some startling results.

Relativistic Velocity Transformations

The transformation for velocities in special relativity can be obtained by differentiation
of the Lorentz transformation, keeping in mind the definition of the velocity. Suppose a
particle moves in S with velocity u whose components are 
and An observer in S� would measure the components 

and Using the transformation equations, we obtain

dt� � adt �
vdx

c2
b dz� � dz

dx� � (dx � vdt) dy� � dy

uœ
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� � 1c(tb � ta) � (xb � xa)
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from which we see that is given by

or

1-22

and, if a particle has velocity components in the y and z directions, it is not difficult
to find the components in S� in a similar manner.

Remember that this form of the velocity transformation is specific to the arrange-
ment of the coordinate axes in Figure 1-17. Note, too, that when v c, i.e., when

, the relativistic velocity transforms reduce to the classical velocity
addition of Equation 1-3. Likewise, the inverse velocity transformation is

1-23

EXAMPLE 1-4 Relative Speeds of Cosmic Rays Suppose that two cosmic ray pro-
tons approach Earth from opposite directions, as shown in Figure 1-18a. The speeds
relative to Earth are measured to be and . What is Earth’s
velocity relative to each proton, and what is the velocity of each proton relative
to the other?

v2 � �0.8cv1 � 0.6c
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Figure 1-18 (a) Two cosmic ray
protons approach Earth from
opposite directions at speeds v1
and v2 with respect to Earth.
(b) Attaching an inertial frame
to each particle and Earth
enables one to visualize the
several relative speeds involved
and apply the velocity
transformation correctly.
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SOLUTION

Consider each particle and Earth to be inertial reference frames S�, S�, and S with their
respective x axes parallel as in Figure 1-18b. With this arrangement 
and . Thus, the speed of Earth measured in S� is and
the speed of Earth measured in S� is .vfl

Ex � 0.8c
vœ
Ex � �0.6cv2 � u2x � �0.8c
v1 � u1x � 0.6c
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To find the speed of proton 2 with respect to proton 1, we apply Equation 1-22
to compute i.e., the speed of particle 2 in S�. Its speed in S has been measured to
be , where the S� system has relative speed with respect to S.
Thus, substituting into Equation 1-22, we obtain

and the first proton measures the second to be approaching (moving in the 
direction) at 0.95c.

The observer in S� must of course make a consistent measurement, i.e., find the
speed of proton 1 to be 0.95c in the �x � direction. This can be readily shown by a
second application of Equation 1-22 to compute 

Questions

5. The Lorentz transformation for y and z is the same as the classical result: y � y�
and z � z�. Yet the relativistic velocity transformation does not give the classical
result and Explain.

6. Since the velocity components of a moving particle are different in relatively
moving frames, the directions of the velocity vectors are also different in
general. Explain why the fact that observers in S and S� measure different
directions for a particle’s motion is not an inconsistency in their observations.

Spacetime Diagrams

The relativistic discovery that time intervals between events are not the same for all
observers in different inertial reference frames underscores the four-dimensional
character of spacetime. With the diagrams that we have used thus far, it is difficult to
depict and visualize on the two-dimensional page events that occur at different times,
since each diagram is equivalent to a snapshot of spacetime at a particular instant.
Showing events as a function of time typically requires a series of diagrams, such as
Figures 1-14, 1-15, and 1-16, but even then our attention tends to be drawn to the
space coordinate systems rather than the events, whereas it is the events that are fun-
damental. This difficulty is removed in special relativity with a simple yet powerful
graphing method called the spacetime diagram. (This is just a new name given to the
t vs. x graphs that you first began to use when you discussed motion in introductory
physics.) On the spacetime diagram we can graph both the space and time coordi-
nates of many events in one or more inertial frames, albeit with one limitation. Since
the page offers only two dimensions for graphing, we suppress, or ignore for now,
two of the space dimensions, in particular y and z. With our choice of the relative
motion of inertial frames along the x axis, y� � y and z� � z anyhow. (This is one of
the reasons we made that convenient choice a few pages back, the other reason being
mathematical simplicity.) This means that for the time being, we are limiting our
attention to one space dimension and to time, i.e., to events that occur, regardless of
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when, along one line in space. Should we need the other two dimensions, e.g., in a
consideration of velocity vector transformations, we can always use the Lorentz
transformation equations.

In a spacetime diagram the space location of each event is plotted along the x axis
horizontally and the time is plotted vertically. From the three-dimensional array of
measuring rods and clocks in Figure 1-13, we will use only those located on the x axis,
as in Figure 1-19. (See, things are simpler already!) Since events that exhibit relativis-
tic effects generally occur at high speeds, it will be convenient to multiply the time
scale by the speed of light (a constant), which enables us to use the same units and scale
on both the space and time axes, e.g., meters of distance and meters of light travel
time.13 The time axis is, therefore, c times the time t in seconds, i.e., ct. As we will see
shortly, this choice prevents events from clustering about the axes and makes possible
the straightforward addition of other inertial frames into the diagram.

As time advances, notice that in Figure 1-19 each clock in the array moves verti-
cally upward along the dotted lines. Thus, as events A, B, C, and D occur in spacetime,
one of the clocks of the array is at (or very near) each event when it happens.
Remember that the clocks in the reference frame are synchronized, and so the differ-
ence in the readings of clocks located at each event records the proper time interval be-
tween the events. (See Example 1-3.) In the figure, events A and D occur at the same
place (x � 2 m) but at different times. The time interval between them measured on
clock 2 is the proper time interval since clock 2 is located at both events. Events A and
B occur at different locations but at the same time (i.e., simultaneously in this frame).
Event C occurred before the present since ct � �1 m. For this discussion we will con-
sider the time that the coordinate origins coincide, , to be the present.

Worldlines in Spacetime Particles moving in space trace out a line in the spacetime
diagram called the worldline of the particle. The worldline is the “trajectory” of the par-
ticle on a ct versus x graph. To illustrate, consider four particles moving in space
(not spacetime) as shown in Figure 1-20a, which shows the array of synchronized clocks
on the x axis and the space trajectories of four particles, each starting at x � 0 and mov-
ing at some constant speed during 3 m of time. Figure 1-20b shows the worldline for
each of the particles in spacetime. Notice that constant speed means that the worldline
has constant slope; i.e., it is a straight line (slope � ¢t ¢x � 1 (¢x ¢t) � 1 speed).>>>>

ct � ct� � 0

Figure 1-19 Spacetime diagram for an inertial reference frame S. Two of the space dimensions
(y and z) are suppressed. The units on both the space and time axes are the same, meters. A
meter of time means the time required for light to travel one meter, i.e., 3.3 � 10�9 s.
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That was also the case when you first encountered elapsed time versus displacement
graphs in introductory physics. Even then, you were plotting spacetime graphs and
drawing worldlines! If the particle is accelerating—either speeding up like particle 5
in Figure 1-20c or slowing down like particle 6—the worldlines are curved. Thus,
the worldline is the record of the particle’s travel through spacetime, giving its speed
(� 1 slope) and acceleration (� 1 rate at which the slope changes) at every instant.

EXAMPLE 1-5 Computing Speeds in Spacetime Find the speed u of particle 3 in
Figure 1-20.

SOLUTION

The speed u � ¢x ¢t � 1 slope, where we have and
(from Figure 1-20). Thus, � �

� and

The speed of particle 4, computed as shown in Example 1-5, turns out to be c, the
speed of light. (Particle 4 is a light pulse.) The slope of its worldline ¢(ct) ¢x �
3 m 3 m � 1. Similarly, the slope of the worldline of a light pulse moving in the 
direction is . Since relativity limits the speed of particles with mass to less than c,�1

�x> >
u � 1.5 m>10�8 s � 0.5c.10�8 s(3.0>3.0 � 108)

(3.0>c)¢t¢ct � c # ¢t � 3.0 � 0 � 3.0 m
¢x � 1.5 � 0 � 1.5 m>>

>>

Figure 1-20 (a) The space trajectories of four
particles with various constant speeds. Note that
particle 1 has a speed of zero and particle 2
moves in the �x direction. The worldlines of the
particles are straight lines. (b) The worldline of
particle 1 is also the ct axis since that particle
remains at x � 0. The constant slopes are a
consequence of the constant speeds. (c) For
accelerating particles 5 and 6 [not shown in (a)],
the worldlines are curved, the slope at any point
yielding the instantaneous speed.
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as we will see in Chapter 2, the slopes of worldlines for particles that move through
x � 0 at ct � 0 are limited to the larger shaded triangle in Figure 1-21. The same lim-
its to the slope apply at every point along a particle’s worldline, such as point A on the
curved spacetime trajectory in Figure 1-21. This means that the particle’s possible
worldlines for times greater than must lie within the heavily shaded triangle.

Analyzing events and motion in inertial systems that are in relative motion can
now be accomplished more easily than with diagrams such as Figures 1-14 through
1-18. Suppose we have two inertial frames S and S� with S� moving in the �x direc-
tion of S at speed v as in those figures. The clocks in both systems are started at
t � t� � 0 (the present) as the two origins x � 0 and x� � 0 coincide, and, as before,
observers in each system have synchronized the clocks in their respective systems.
The spacetime diagram for S is, of course, like that in Figure 1-19, but how does S�
appear in that diagram, i.e., with respect to an observer in S? Consider that as the ori-
gin of S� (i.e., the point where x� � 0) moves in S, its worldline is the ct� axis since
the ct� axis is the locus of all points with x� � 0 (just as the ct axis is the locus of points
with x � 0.) Thus, the slope of the ct� axis as seen by an observer in S can be found
from Equation 1-18, the Lorentz transformation, as follows:

x� � (x � vt) � 0 for x� � 0

or

x � vt � (v c)(ct) � �ct

and

ct � (1 �)x

which says that the slope (in S) of the worldline of the point x� � 0, the ct� axis, is 1 �.
(See Figure 1-22a.)

In the same manner, the x� axis can be located using the fact that it is the locus of
points for which ct� � 0. The Lorentz transformation once again provides the slope:

Thus, the slope of the x� axis as measured by an observer in S is �, as shown in
Figure 1-22a. Don’t be confused by the fact that the x axes don’t look parallel anymore.
They are still parallel in space, but this is a spacetime diagram. It shows motion in both

or t �
vx

c2
and ct �

v
c
x � �x

t� � a t �
vx

c2
b � 0

>>
>

ct � 2 m

Figure 1-21 The speed-of-light limit to the speeds
of particles limits the slopes of worldlines for
particles that move through x � 0 at ct � 0 to the
shaded area of spacetime, i.e., to slopes ��1 and
��1. The dashed lines are worldlines of light flashes
moving in the �x and �x directions. The curved
worldline of the particle shown has the same limits at
every instant. Notice that the particle’s
speed � 1/slope.
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space and time. For example, the clock at x� � 1 m in Figure 1-22b passed the point 
x � 0 at about ct � �1.5 m as the x� axis of S� moved both upward and to the right in
S. Remember, as time advances, the array of synchronized clocks and measuring rods
that are the x axis also move upward, so that, for example, when ct � 1, the origin of S�
(x� � 0, ct� � 0) has moved vt � (v c)ct � �ct to the right along the x axis.

Question

7. Explain how the spacetime diagram in Figure 1-22b would appear drawn by an
observer in S�.

>
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ct´ (m)(a)

4

3

2

1

–1

x (m)
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Figure 1-22 Spacetime diagram of S showing
S� moving at speed v � 0.5c in the �x
direction. The diagram is drawn with
t � t� � 0 when the origins of S and S�
coincided. The dashed line shows the worldline
of a light flash that passed through the point
x � 0 at t � 0 heading in the �x direction. Its
slope equals 1 in both S and S�. The ct� and x�
axes of S� have slopes of and

respectively. (a) Calibrating the axes
of S� as described in the text allows the grid of
coordinates to be drawn on S�. Interpretation is
facilitated by remembering that (b) shows the
system S� as it is observed in the spacetime
diagram of S.

� � 0.5,
1>� � 2
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2
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(S frame)

Train
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ct´ (B´)

ct´ (A´)

Figure 1-23 Spacetime
equivalent of Figure 1-15,
showing the spacetime
diagram for the system S in
which the platform is at rest.
Measurements made by
observers in S� are read from
the primed axes.

EXAMPLE 1-6 Simultaneity in Spacetime Use the train-platform example of
Figure 1-15 and a suitable spacetime diagram to show that events simultaneous in
one frame are not simultaneous in a frame moving relative to the first. (This is the
corollary to the relativity of simultaneity that we first demonstrated in the previous
section using Figure 1-15.)

SOLUTION

Suppose a train is passing a station platform at speed v and an observer C at the mid-
point of the platform, system S, announces that light flashes will be emitted at clocks
A and B located at opposite ends of the platform at t � 0. Let the train, system S�, be
a rocket train with v � 0.5c. As in the earlier discussion, clocks at C and C� both read
0 as C� passes C. Figure 1-23 shows this situation. It is the spacetime equivalent of
Figure 1-15.

Two events occur, the light flashes. The flashes are simultaneous in S since both
occur at ct � 0. In S�, however, the event at A occurred at ct�(A�) (see Figure 1-23),
about 1.2 ct� units before ct� � 0, and the event at B occurred at ct�(B�), about 1.2 ct�
units after ct� � 0. Thus, the flashes are not simultaneous in S� and A occurs before
B, as we also saw in Figure 1-15.

EXPLORING

Calibrating the Spacetime Axes

By calibrating the coordinate axes of S� consistent with the Lorentz transformation,
we will be able to read the coordinates of events and calculate space and time intervals
between events as measured in both S and S� directly from the diagram, in addition
to calculating them from Equations 1-18 and 1-19. The calibration of the S� axes is
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straightforward and is accomplished as follows. The locus of points, e.g., with x� � 1 m,
is a line parallel to the ct� axis through the point x� � 1 m, ct� � 0, just as we saw ear-
lier that the ct� axis was the locus of those points with x� � 0 through the point x� � 0,
ct� � 0. Substituting these values into the Lorentz transformation for x�, we see that
the line through x� � 1 m intercepts the x axis, i.e., the line where ct � 0 at

1-24

or, in general,

In Figure 1-22b, where � � 0.5, the line x� � 1 m intercepts the x axis at x �
0.866 m. Similarly, if x� � 2 m, x � 1.73 m; if x� � 3 m, x � 2.60 m; and so on.

The ct� axis is calibrated in a precisely equivalent manner. The locus of points with
ct� � 1 m is a line parallel to the x� axis through the point ct� � 1 m, x� � 0. Using the
Lorentz transformation, the intercept of that line with the ct axis (where x � 0) is found
as follows:

which can also be written as 

1-25

or ct� � ct for x � 0. Thus, for ct� � 1 m, we have 1 � ct or ct � (1 � �2) and,
again in general, ct � ct�(1 � �2) . The x� ct� coordinate grid is shown in Figure 1-22b.

Notice in Figure 1-22b that the clocks located in S� are not found to be synchro-
nized by observers in S, even though they are synchronized in S�. This is exactly the
conclusion that we arrived at in the discussion of the lightning striking the train and
platform. In addition, those with positive x� coordinates are behind the S� reference
clock and those with negative x� coordinates are ahead, the differences being greatest
for those clocks farthest away. This is a direct consequence of the Lorentz transforma-
tion of the time coordinate—i.e., when ct � 0 in Equation 1-25, ct� � ��x. Note,
too, that the slope of the worldline of the light beam equals 1 in S� as well as in S, as
required by the second postulate.

1-4 Time Dilation and Length Contraction
The results of correct measurements of the time and space intervals between events
do not depend upon the kind of apparatus used for the measurements or on the events
themselves. We are free therefore to choose any events and measuring apparatus that
will help us understand the application of the Einstein postulates to the results of mea-
surements. As you have already seen from previous examples, convenient events in
relativity are those that produce light flashes. A convenient, simple such clock is a
light clock, pictured schematically in Figure 1-24. A photocell detects the light pulse
and sends a voltage pulse to an oscilloscope, which produces a vertical deflection of
the oscilloscope’s trace. The phosphorescent material on the face of the oscilloscope
tube gives a persistent light that can be observed visually, photographed, or recorded
electronically. The time between two light flashes is determined by measuring the

#1>2 1>2
ct� � (ct � �x)

t� � (t � vx>c2)

x � x�21 � �2

 1 � x or x � 1> � 21 � �2

x� � (x � vt) � (x � �ct)
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distance between pulses on the scope and knowing the sweep speed. Such clocks can
easily be calibrated and compared with other types of clocks. Although not drawn as
in Figure 1-24, the clocks used in explanations in this section may be thought of
as light clocks.

Time Dilation (or Time Stretching)

We first consider an observer A� at rest in frame S� a distance D from a mirror, also in
S�, as shown in Figure 1-25a. She triggers a flash gun and measures the time interval
¢t� between the original flash and the return flash from the mirror. Since light travels
with speed c, this time is ¢t� � (2D) c.

Now consider these same two events, the original flash of light and the return-
ing flash, as observed in reference frame S, with respect to which S� is moving to the
right with speed v. The events happen at two different places, and in frame S
because between the original flash and the return flash observer A� has moved a hor-
izontal distance v¢t, where ¢t is the time interval between the events measured in S.

x2 ,x1

>

Figure 1-24 Light clock for
measuring time intervals. The
time is measured by reading
the distance between pulses
on the oscilloscope after
calibrating the sweep speed.

Detector

Mirror

Vertical
input

Time
base

Signal

L1 = ct1

2L2 = ct2

Δt = t2 – t1 =Δt 2L2 – L1––––––––––––––––––––––––––––c

L1

L2

L2

Figure 1-25 (a) Observer A� and the mirror are in a spaceship at rest in frame S�. The time it
takes for the light pulse to reach the mirror and return is measured by A� to be (b) In
frame S, the spaceship is moving to the right with speed v. If the speed of light is the same in
both frames, the time it takes for the light to reach the mirror and return is longer than in
S because the distance traveled is greater than 2D. (c) A right triangle for computing the time
�t in frame S.
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In Figure 1-25b, a space diagram, we see that the path traveled by the light is longer
in S than in S�. However, by Einstein’s postulates, light travels with the same speed c
in frame S as it does in frame S�. Since it travels farther in S at the same speed, it takes
longer in S to reach the mirror and return. The time interval between flashes in S is
thus longer than it is in S�. We can easily calculate ¢t in terms of ¢t�. From the triangle
in Figure 1-25c, we see that

or

Using ¢t� � 2D c, we have

1-26

where � � ¢t� is the proper time interval that we first encountered in Example 1-3.
Equation 1-26 describes time dilation; i.e., it tells us that the observer in frame S al-
ways measures the time interval between two events to be longer (since  � 1) than
the corresponding interval measured on the clock located at both events in the frame
where they occur at the same location. Thus, observers in S conclude that the clock at
A� in S� runs slow since that clock measures a smaller time interval between the two
events. Notice that the faster S� moves with respect to S, the larger is , and the slower
the S� clocks will tick. It appears to the S observer that time is being stretched out
in S�.

Be careful! The same clock must be located at each event for ¢t� to be the proper
time interval �. We can see why this is true by noting that Equation 1-26 can be ob-
tained directly from the inverse Lorentz transformation for t. Referring again to Figure
1-25 and calling the emission of the flash event 1 and its return event 2, we have that

or

1-27

If the clock that records and is located at the events, then ¢x� � 0. If that is
not the case, however, and , though certainly a valid measurement, is not
a proper time interval. Only a clock located at an event when it occurs can record a
proper time interval.

¢t�¢x� � 0
tœ1tœ2

¢t � ¢t� �
v

c2
¢x�

¢t � (tœ2 � tœ1) �
v

c2
(xœ

2 � xœ
1)

¢t � t2 � t1 � a tœ2 �
vxœ

2

c2
b � a tœ1 �

vxœ
1

c2
b

¢t �
¢t�

21 � v2>c2
� ¢t� � �

>
¢t �

2D

2c2 � v2
�

2D
c

1

21 � v2>c2

a c¢t
2
b 2

� D2 � a v¢t
2
b 2



Figure 1-26 Spacetime
diagram illustrating time
dilation. The dashed line is
the worldline of a light flash
emitted at x� � 0 and
reflected back to that point
by a mirror at x� � 1 m.
� � 0.5.
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EXAMPLE 1-7 Spatial Separation of Events Two events occur at the same point 
at times and in S�, which moves with speed v relative to S. What is the spatial
separation of these events measured in S?

SOLUTION

tœ2tœ1

xœ
0

1. The location of the events in S is
given by the Lorentz inverse
transformation Equation 1-19:

x � (x� � vt�)

2. The spatial separation of the
two events is then¢x � x2 � x1

¢x � (xœ
0 � vtœ2) � (xœ

0 � vtœ1)

3. The terms cancel:xœ
0 ¢x � v(tœ2 � tœ1) � v¢tœ

4. Since ¢t� is the proper time
interval �, Equation 1-26 yields

¢x � v� � v¢t

5. Using the situation in Figure 1-26 as
a numerical example, where � � 0.5
and  � 1.15, we have � 1.15 m

¢x � 
v
c

¢(ct�) � (1.15)(0.5)(2)

EXAMPLE 1-8 The Pregnant Elephant14 Elephants have a gestation period of 21
months. Suppose that a freshly impregnated elephant is placed on a spaceship and
sent toward a distant space jungle at v � 0.75c. If we monitor radio transmissions
from the spaceship, how long after launch might we expect to hear the first squeal-
ing trumpet from the newborn calf?

SOLUTION

1. In S�, the rest frame of the elephant,
the time interval from launch to
birth, is � � 21 months. In the Earth
frame S the time interval is 
given by Equation 1-26:

¢t1 ,

� 31.7 months

�
1

21 � (0.75)2
(21 months)

¢t1 � � �
1

21 � �2
�

2. At that time the radio signal
announcing the happy event starts
toward Earth at speed c, but from
where? Using the result of Example
1-7, since launch the spaceship has
moved ¢x in S, given by

where c month is the distance light
travels in one month.

#
� 23.8 c # months

� (1.51)(0.75)(21 c # months)

¢x � vt � �ct

3. Notice that there is no need to con-
vert ¢x into meters since our interest
is in how long it will take the radio
signal to travel this distance in S.
That time is given by¢t2 ,

� 23.8 months

� 23.8 c # months>c¢t2 � ¢x>c

4. Thus, the good news will arrive at
Earth at time ¢t after launch where

� 55.5 months

� 31.7 � 23.8

¢t � ¢t1 � ¢t2



Figure 1-27 Sketch of the
spacetime diagram for
Example 1-8. The
colored line is the worldline
of the pregnant elephant. The
worldline of the radio signal
is the dashed line at 45°
toward the upper left.
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Question

8. You are standing on a corner and a friend is driving past in an automobile. Both
of you note the times when the car passes two different intersections and
determine from your watch readings the time that elapses between the two
events. Which of you has determined the proper time interval?

The time dilation of Equation 1-26 is easy to see in a spacetime diagram such as
Figure 1-26, using the same round trip for a light pulse used above. Let the light flash
leave x� � 0 at ct� � 0 when the S and S� origins coincided. The flash travels to
x� � 1 m, reflects from a mirror located there, and returns to x� � 0. Let � � 0.5. The
dotted line shows the worldline of the light beam, reflecting at (x� � 1, ct� � 1) and
returning to x� � 0 at ct� � 2 m. Note that the S observer records the latter event at

; i.e., the observer in S sees the S� clock running slow.
Experimental tests of the time dilation prediction have been performed using

macroscopic clocks, in particular, accurate atomic clocks. In 1975, C. O. Alley con-
ducted a test of both general and special relativity in which a set of atomic clocks were
carried by a U.S. Navy antisubmarine patrol aircraft while it flew back and forth over
the same path for 15 hours at altitudes between 8000 m and 10,000 m over
Chesapeake Bay. The clocks in the plane were compared by laser pulses with an iden-
tical group of clocks on the ground. (See Figure 1-13 for one way such a comparison
might be done.) Since the experiment was primarily intended
to test the gravitational effect on clocks predicted by general
relativity (see Section 2-5), the aircraft was deliberately flown at
the rather sedate average speed of 270 knots (140 m s) �
4.7 � 10�7c to minimize the time dilation due to the relative
speeds of the clocks. Even so, after Alley deducted the effect of
gravitation as predicted by general relativity, the airborne clocks
lost an average of 5.6 � 10�9 s due to the relative speed during
the 15-hour flight. This result agrees with the prediction of spe-
cial relativity, 5.7 � 10�9 s, to within 2 percent, even at this low
relative speed. The experimental results leave little basis for fur-
ther debate as to whether traveling clocks of all kinds lose time on
a round trip. They do.

Length Contraction

A phenomenon closely related to time dilation is length contrac-
tion. The length of an object measured in the reference frame in
which the object is at rest is called its proper length Lp. In a ref-
erence frame in which the object is moving, the measured length
parallel to the direction of motion is shorter than its proper length.
Consider a rod at rest in the frame S� with one end at and the
other end at as illustrated in Figure 1-28. The length of the rod
in this frame is its proper length Some care mustLp � xœ

2 � xœ
1 .

xœ
1 ,

xœ
2

>

ct � 2 m

Remarks: This result, too, is readily obtained from a spacetime diagram. Figure 1-27
illustrates the general appearance of the spacetime diagram for this example, showing
the elephant’s worldline and the worldline of the radio signal.
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1
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(x ′)2

Figure 1-28 A measuring rod, a meter stick in
this case, lies at rest in S� between and

System S� moves with 
relative to S. Since the rod is in motion, S must
measure the locations of the ends of the rod x2 and
x1 simultaneously in order to have made a valid
length measurement. L is obviously shorter than Lp .
By direct measurement from the diagram 
(use a millimeter scale) L>Lp � 0.61 � 1>.

� � 0.79xœ
1 � 1 m.

xœ
2 � 2 m
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be taken to find the length of the rod in frame S. In this frame, the rod is moving to
the right with speed v, the speed of frame S�. The length of the rod in frame S is
defined as where x2 is the position of one end at some time t2 and x1
is the position of the other end at the same time as measured in frame S. Since
the rod is at rest in S�, need not equal Equation 1-18 is convenient to use to cal-
culate at some time t because it relates x, x�, and t, whereas Equation 1-19 is
not convenient because it relates x, x�, and t�:

Since we obtain

or

1-28

Thus, the length of a rod is smaller when it is measured in a frame with respect
to which it is moving. Before Einstein’s paper was published, Lorentz and G.
FitzGerald had independently shown that the null result of the Michelson-Morley
experiment could be explained by assuming that the lengths in the direction of the
interferometer’s motion contracted by the amount given in Equation 1-28. For that
reason, the length contraction is often called the Lorentz-FitzGerald contraction.

EXAMPLE 1-9 Speed of S� A stick that has a proper length of 1 m moves in a
direction parallel to its length with speed v relative to you. The length of the stick
as measured by you is 0.914 m. What is the speed v?

SOLUTION

L �
1

Lp � A1 �

v2

c2
Lp

x2 � x1 �
1


(xœ
2 � xœ

1) � A1 �
v2

c2
(xœ

2 � xœ
1)

xœ
2 � xœ

1 � (x2 � x1)

t2 � t1 ,

xœ
2 � (x2 � vt2) and xœ

1 � (x1 � vt1)

x2 � x1

tœ1 .tœ2

t1 � t2

L � x2 � x1 ,

L �
Lp


1. The length of the stick measured in
a frame relative to which it is mov-
ing with speed v is related to its
proper length by Equation 1-28:

 �
Lp

L
2. Rearranging to solve for :

 �
1 m

0.914 m
�

1

21 � v2>c2
3. Substituting the values of Lp and L:

v � 0.406c

v2 � 0.165c2

v2>c2 � 1 � 0.835 � 0.165

 1 � v2>c2 � (0.914)2 � 0.835

21 � v2>c2 � 0.9144. Solving for v:
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Figure 1-29 The appearance of rapidly moving objects depends on both length contraction in
the direction of motion and the time when the observed light left the object. (a) The array of
clocks and measuring rods that represents S� as viewed by an observer in S with
(b) When S� approaches the S observer with the distortion of the lattice becomes
apparent. This is what an observer on a cosmic-ray proton might see as it passes into the lattice
of a face-centered-cubic crystal such as NaCl. [P.-K. Hsiung, R. Dunn, and C. Cox. Courtesy of
C. Cox, Adobe Systems, Inc., San Jose, CA.]

� � 0.9,
� � 0.

It is important to remember that the relativistic contraction of moving lengths
occurs only parallel to the relative motion of the reference frames. In particular,
observers in relatively moving systems measure the same values for lengths in the y
and y� and in the z and z� directions perpendicular to their relative motion. The result
is that observers measure different shapes and angles for two- and three-dimensional
objects. (See Example 1-10 and Figures 1-29 and 1-30.)

Figure 1-30 Length contraction distorts the shape and orientation of two- and three-
dimensional objects. The observer in S measures the square shown in S� as a rotated
parallelogram.
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(a) Muon

(b)
Muon
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600 m
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Figure 1-31 Although
muons are created high above
Earth and their mean lifetime
is only about 2 when at
rest, many appear at Earth’s
surface. (a) In Earth’s
reference frame, a typical
muon moving at 0.998c has a
mean lifetime of 30 and
travels 9000 m in this time.
(b) In the reference frame of
the muon, the distance
traveled by Earth is only 600
m in the muon’s lifetime of 
2 . (c) L varies only slightly
from Lp until v is of the order
of 0.1c. as v S c.LS 0

	s

	s

	s

EXAMPLE 1-10 The Shape of a Moving Square Consider the square in the 
plane of S� with one side making a 30° angle with the x� axis, as in Figure 1-30a.
If S� moves with � � 0.5 relative to S, what is the shape and orientation of the figure
in S?

SOLUTION

The S observer measures the x components of each side to be shorter by a factor 
than those measured in S�. Thus, S measures

Since the figure is a square in S�, A� � B�. In addition, the angles between B
and the x axis and between A and the x axis are given by, respectively,

Thus, S concludes from geometry that the interior angle at vertex 1 is not 90°, but
180° � (63.4° � 33.7°) � 82.9°—i.e., the figure is not a square, but a parallelogram
whose shorter sides make 33.7° angles with the x axis! Its shape and orientation in S
are shown in Figure 1-30b.

Muon Decay

An interesting example of both time dilation and length contraction is afforded by the
appearance of muons as secondary radiation from cosmic rays. Muons decay accord-
ing to the statistical law of radioactivity:
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where N0 is the original number of muons at time t � 0, N(t) is the number remaining
at time t, and � is the mean lifetime (a proper time interval), which is about 2 	s for
muons. Since muons are created (from the decay of pions) high in the atmosphere,
usually several thousand meters above sea level, few muons should reach sea level.
A typical muon moving with speed 0.998c would travel only about 600 m in 2 	s.
However, the lifetime of the muon measured in Earth’s reference frame is increased
according to time dilation (Equation 1-26) by the factor , which is 15
for this particular speed. The mean lifetime measured in Earth’s reference frame is
therefore 30 	s, and a muon with speed 0.998c travels about 9000 m in this time.
From the muon’s point of view, it lives only 2 	s, but the atmosphere is rushing past
it with a speed of 0.998c. The distance of 9000 m in Earth’s frame is thus contracted
to only 600 m in the muon’s frame, as indicated in Figure 1-31.

It is easy to distinguish experimentally between the classical and relativistic pre-
dictions of the observations of muons at sea level. Suppose that we observe 108 muons
at an altitude of 9000 m in some time interval with a muon detector. How many would

1>(1 � v2>c2)1>2

N(t) � N0e
(�t>�)

 � � tan�1 c A� cos30

A� sin30> d � tan�1 c cos30

sin30
d � 63.4°

 � � tan�1 c B� sin30

B� cos30> d � tan�1 c sin30

cos30
d � 33.7°

B � [sin2 30 � cos2 30>2]1>2B� � 0.901B�

A � [cos2 30 � sin2 30>2]1>2A� � 0.968A�

1>

x�y�
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we expect to observe at sea level in the same time interval? According to the nonrel-
ativistic prediction, the time it takes for these muons to travel 9000 m is (9000 m)
0.998c 30 	s, which is 15 lifetimes. Substituting N0 � 108 and t � 15� into
Equation 1-29, we obtain 

We would thus expect all but about 31 of the original 100 million muons to decay
before reaching sea level.

According to the relativistic prediction, Earth must travel only the contracted dis-
tance of 600 m in the rest frame of the muon. This takes only 2 	s � 1�. Therefore,
the number of muons expected at sea level is

Thus relativity predicts that we would observe 36.8 million muons in the same
time interval. Experiments of this type have confirmed the relativistic predictions.

The Spacetime Interval

We have seen earlier in this section that time intervals and lengths (� space intervals),
quantities that were absolutes, or invariants, for relatively moving observers using the
classical Galilean coordinate transformation, are not invariants in special relativity.
The Lorentz transformation and the relativity of simultaneity lead observers in iner-
tial frames to conclude that lengths moving relative to them are contracted and time
intervals are stretched, both by the factor . The question naturally arises: Is there any
quantity involving the space and time coordinates that is invariant under a Lorentz
transformation? The answer to that question is yes, and as it happens, we have already
dealt with a special case of that invariant quantity when we first obtained the correct
form of the Lorentz transformation. It is called the spacetime interval, or usually just
the interval, ¢s, and is given by

1-30

or, specializing it to the one-space-dimensional systems that we have been discussing,

1-31

It may help to think of Equations 1-30 and 1-31 like this:

The interval ¢s is the only measurable quantity describing pairs of events in
spacetime for which observers in all inertial frames will obtain the same numerical
value. The negative sign in Equations 1-30 and 1-31 implies that (¢s)2 may be posi-
tive, negative, or zero depending on the relative sizes of the time and space separa-
tions. With the sign of (¢s)2, nature is telling us about the causal relation between the
two events. Notice that whichever of the three possibilities characterizes a pair for one
observer, it does so for all observers since ¢s is invariant. The interval is called time-
like if the time separation is the larger and spacelike if the space separation predomi-
nates. If the two terms are equal, so that ¢s � 0, then it is called lightlike.

[interval]2 � [separation in time]2 � [separation in space]2

(¢s)2 � (c¢t)2 � (¢x)2

(¢s)2 � (c¢t)2 � [¢x2 � ¢y2 � ¢z2]

N � 108e�1 � 3.68 � 107

N � 108e�15 � 30.6

�
>

Experiments with muons

moving near the speed of

light are performed at many

accelerator laboratories

throughout the world despite

their short mean life. Time

dilation results in much longer

mean lives relative to the

laboratory, providing plenty

of time to do experiments.
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Timelike Interval Consider a material particle15 or object, e.g., the elephant in
Figure 1-27, that moves relative to S. Since no material particle has ever been
measured traveling faster than light, particles always travel less than 1 m of distance
in 1 m of light travel time. We saw that to be the case in Example 1-8, where the time
interval between launch and birth of the baby was 31.7 months on the S clock, during
which time the elephant had moved a distance of 23.8c months. Equation 1-31 then
yields (c¢t)2 � (¢x)2 � (31.7c)2 � (23.8c)2 � (21.0c)2 � (¢s)2, and the interval in S
is ¢s � 21.0 c months. The time interval term being the larger, ¢s is a timelike in-
terval and we say that material particles have timelike worldlines. Such worldlines lie
within the shaded area of the spacetime diagram in Figure 1-21. Note that in the ele-
phant’s frame S� the separation in space between the launch and birth is zero and ¢t
is 21.0 months. Thus ¢s � 21.0 c months in S�, too. That is what we mean by the
interval being invariant: observers in both S and S� measure the same number for 
the separation of the two events in spacetime.

The proper time interval � between two events can be determined from Equations
1-31 using space and time measurements made in any inertial frame since we can
write that equation as

Since ¢t � � when ¢x � 0—i.e., for the time interval recorded on a clock in a
system moving such that the clock is located at each event as it occurs—in that case
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Notice that this yields the correct proper time � � 21.0 months in the elephant
example.

Spacelike Interval When two events are separated in space by an interval whose
square is greater than the value of (c¢t )2, then ¢s is called spacelike. In that case it is
convenient for us to write Equation 1-31 in the form

1-33

so that, as with timelike intervals, (¢s)2 is not negative.16 Events that are spacelike
occur sufficiently far apart in space and close together in time that no inertial frame
could move fast enough to carry a clock from one event to the other. For example, sup-
pose two observers in Earth frame S, one in San Francisco and one in London, agree
to each generate a light flash at the same instant, so that c¢t � 0 m in S and ¢x �
1.08 � 107 m. For any other inertial frame (c¢t )2 � 0, and we see from Equation 1-33
that (¢x)2 must be greater than (1.08 � 107)2 in order that ¢s be invariant. In other
words, 1.08 � 107 m is as close in space as the two events can be in any system; con-
sequently, it will not be possible to find a system moving fast enough to move a clock
from one event to the other. A speed greater than c, in this case infinitely greater,
would be needed. Notice that the value of ¢s � Lp, the proper length. Just as with the
proper time interval �, measurements of space and time intervals in any inertial sys-
tem can be used to determine Lp.

(¢s)2 � (¢x)2 � (c¢t)2

2(¢t)2 � (¢x>c)2 � 2�2 � 0 � � �
¢s
c

¢s
c

� 2(¢t)2 � (¢x>c)2

#

#
#
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Lightlike (or Null) Interval The relation between two events is lightlike if �s in
Equation 1-31 equals zero. In that case

1-34

and a light pulse that leaves the first event as it occurs will just reach the second as
it occurs.

The existence of the lightlike interval in relativity has no counterpart in the world
of our everyday experience, where the geometry of space is Euclidean. In order for the
distance between two points in space to be zero, the separation of the points in each
of the three space dimensions must be zero. However, in spacetime the interval be-
tween two events may be zero, even though the intervals in space and time may indi-
vidually be quite large. Notice, too, that pairs of events separated by lightlike intervals
have both the proper time interval and proper length equal to zero since �s � 0.

Things that move at the speed of light17 have lightlike worldlines. As we saw ear-
lier (see Figure 1-22), the worldline of light bisects the angles between the ct and x
axes in a spacetime diagram. Timelike intervals lie in the shaded areas of Figure 1-32
and share the common characteristic that their relative order in time is the same for
observers in all inertial systems. Events A and B in Figure 1-32 are such a pair.
Observers in both S and S� agree that A occurs before B, although they of course mea-
sure different values for the space and time separations. Causal events, i.e., events that
depend upon or affect one another in some fashion, such as your birth and that of your
mother, have timelike intervals. On the other hand, the temporal order of events with
spacelike intervals, such as A and C in Figure 1-32, depends upon the relative motion
of the systems. As you can see in the diagram, A occurs before C in S, but C occurs
first in S�. Thus, the relative order of pairs of events is absolute in the shaded areas but
elsewhere may be in either order.

c¢t � ¢x

Figure 1-32 The relative temporal order of events for pairs characterized by timelike intervals,
such as A and B, is the same for all inertial observers. Events in the upper shaded area will all
occur in the future of A; those in the lower shaded area occurred in A�s past. Events whose
intervals are spacelike, such as A and C, can be measured as occurring in either order,
depending on the relative motion of the frames. Thus, C occurs after A in S but before A in S�.
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EXAMPLE 1-11 Characterizing Spacetime Intervals Figure 1-33 is the spacetime
diagram of a laboratory showing three events, the emission of light from an atom in
each of three samples.

1. Determine whether the interval between each of the three possible pairs of
events is timelike, spacelike, or lightlike.

2. Would it have been possible in any of the pairs for one of the events to have
been caused by the other? If so, which?

SOLUTION

1. The spacetime coordinates of the events are

and for the three possible pairs 1 and 2, 2 and 3, and 1 and 3 we have

Figure 1-33 A spacetime diagram of
three events whose intervals �s are found
in Example 1-11.

2

4

6

8

Event 1

Event 2

Event 3

0
0 8 10642

x (m)

ct
 (

m
)

event ct x

1 2 1

2 5 9

3 8 6

pair c�t �x (c�t )2 (�x )2

1 & 2 5–2 9–1 9 64 spacelike

2 & 3 8–5 6–9 9 9 lightlike

1 & 3 8–2 6–1 36 25 timelike

2. Yes, event 3 may possibly have been caused by either event 1 since 3 is in the
absolute future of 1, or event 2, since 2 and 3 can just be connected by a flash
of light.

Question

9. In 1987 light arrived at Earth from the explosion of a star (a supernova) in the
Large Magellanic Cloud, a small companion galaxy to the Milky Way, located
about 170,000 c y away. Describe events that together with the explosion of the
star would be separated from it by (a) a spacelike interval, (b) a lightlike
interval, and (c) a timelike interval.

#
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1-5 The Doppler Effect
In the Doppler effect for sound the change in frequency for a given velocity v depends
on whether it is the source or receiver that is moving with that speed. Such a distinc-
tion is possible for sound because there is a medium (the air) relative to which the mo-
tion takes place, and so it is not surprising that the motion of the source or the receiver
relative to the still air can be distinguished. Such a distinction between motion of the
source or receiver cannot be made for light or other electromagnetic waves in a vac-
uum as a consequence of Einstein’s second postulate; therefore, the classical expres-
sions for the Doppler effect cannot be correct for light. We will now derive the rela-
tivistic Doppler effect equations that are correct for light.

Consider a light source moving toward an observer or receiver at A in Figure
1-34a at velocity v. The source is emitting a train of light waves toward receivers A
and B while approaching A and receding from B. Figure 1-34b shows the spacetime

(a)

(b) ct

x

(c) (d )

ct´

B 0

Worldline of
light wave
toward B

Observer
x (in S)

Source Gamma
rays

Kündig’s
experiment

A

c Δt´c Δt

c Δt v Δt c Δt

Worldline of
light wave
toward A

v

AB

x´

y´y

S´

x

S
Source

Receiver

θ (measured
in S)

ω

vc c

Figure 1-34 The Doppler effect in light, as in sound, arises from the relative motion of the
source and receiver; however, the independence of the speed of light on that motion leads to
different expressions for the frequency shift. (a) A source approaches observer A and recedes
from observer B. The spacetime diagram of the system S in which A and B are at rest and the
source moves at velocity v illustrates the two situations. (b) The source located at x� � 0
(the x� axis is omitted) moves along its worldline, the ct� axis. The N waves emitted toward A
in time �t occupy space �x � c�t � v�t, whereas those headed for B occupy �x � c�t � v�t.
In three dimensions the observer in S may see light emitted at some angle with respect to the
x axis as in (c). In that case a transverse Doppler effect occurs. (d) Kündig’s apparatus for
measuring the transverse Doppler effect.

�
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diagram of S, the system in which A and B are at rest. The source is located at x� � 0
(x� axis is not shown), and, of course, its worldline is the ct� axis. Let the source emit
a train of N electromagnetic waves in each direction beginning when the S and S� ori-
gins were coincident. First, let’s consider the train of waves headed toward A. During
the time �t over which the source emits the N waves, the first wave emitted will have
traveled a distance c�t and the source itself a distance v�t in S. Thus, the N waves are
seen by the observer at A to occupy a distance c�t � v�t and, correspondingly, their
wavelength is given by

and the frequency is

The frequency of the source in S�, called the proper frequency, is given by
where �t� is measured in S�, the rest system of the source. The

time interval �t� � is the proper time interval since the light waves, in particular the
first and the Nth, are all emitted at x� � 0; hence �x� � 0 between the first and the Nth
in S�. Thus, �t and �t� are related by Equation 1-26 for time dilation, so �t � �t�,
and when the source and receiver are moving toward each other, the observer A in S
measures the frequency

1-35

or

1-36

This differs from the classical equation only in the addition of the time dilation factor.
Note that f � fo for the source and observer approaching each other. Since for visible
light this corresponds to a shift toward the blue part of the spectrum, it is called a
blueshift.

Suppose the source and receiver are moving away from each other, as for ob-
server B in Figure 1-34b. Observer B, in S, sees the N waves occupying a distance

, and the same analysis shows that observer B in S measures the frequency

1-37

Notice that f � f0 for the observer and source receding from each other. Since for vis-
ible light this corresponds to a shift toward the red part of the spectrum, it is called a
redshift. It is left as a problem for you to show that the same results are obtained when
the analysis is done in the frame in which the source is at rest.

In the event that (i.e., ), as is often the case for light sources mov-
ing on Earth, useful (and easily remembered) approximations of Equations 1-36 and
1-37 can be obtained. Using Equation 1-36 as an example and rewriting it in the form

f � f0(1 � �)1>2(1 � �)�1>2

� V 1v V c
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the two quantities in parentheses can be expanded by the binomial theorem to yield

Multiplying out and discarding terms of higher order than yields

(approaching)

and, similarly,

(receding)

and in both situations, where �f � f0 � f.

EXAMPLE 1-12 Rotation of the Sun The Sun rotates at the equator once in about
25.4 days. The Sun’s radius is 7.0 � 108 m. Compute the Doppler effect that you
would expect to observe at the left and right limbs (edges) of the Sun near the equa-
tor for light of wavelength � 550 nm � 550 � 10�9 m (yellow light). Is this a
redshift or a blueshift?

SOLUTION

The speed of limbs v � (circumference)/(time for one revolution) or

so we may use the approximation equations. Using we have
that or Hz. Since 
fo � c o � (3 � 108 m s) (550 � 10�9) � 5.45 � 1014 Hz, �f represents a frac-
tional change in frequency of or about one part in 105. It is a redshift for the
receding limb, a blueshift for the approaching one.

Doppler Effect of Starlight

In 1929 E. P. Hubble became the first astronomer to suggest that the universe is
expanding.18 He made that suggestion and offered a simple equation to describe the
expansion on the basis of measurements of the Doppler shift of the frequencies of
light emitted toward us by distant galaxies. Light from distant galaxies is always
shifted toward frequencies lower than those emitted by similar sources nearby. Since
the general expression connecting the frequency f and wavelength of light is c � f
the shift corresponds to longer wavelengths. As noted above, the color red is on the
longer-wavelength side of the visible spectrum (see Chapter 4), so the redshift is used
to describe the Doppler effect for a receding source. Similarly, blueshift describes
light emitted by stars, typically stars in our galaxy, that are approaching us.

Astronomers define the redshift of light from astronomical sources by the
expression z � (fo � f) f, where fo � frequency measured in the frame of the star or
galaxy and f � frequency measured at the receiver on Earth. This allows us to write 

� v c in terms of z as

1-38� �
(z � 1)2 � 1

(z � 1)2 � 1

>�

>


,


�,
>>>
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Equation 1-37 is the appropriate one to use for such calculations, rather than the
approximations, since galactic recession velocities can be quite large. For example,
the quasar 2000-330 has a measured z � 3.78, which implies from Equation 1-38 that
it is receding from Earth due to the expansion of space at 0.91c. (See Chapter 13.)

EXAMPLE 1-13 Redshift of Starlight The longest wavelength of light emitted by
hydrogen in the Balmer series (see Chapter 4) has a wavelength of � 656 nm. In
light from a distant galaxy, this wavelength is measured as � 1458 nm. Find the
speed at which the galaxy is receding from Earth.

SOLUTION




o

f � A
1 � �

1 � �
f01. The recession speed is the v in

Since this is a redshift and
Equation 1-37 applies:


 � 
o ,
� � v>c.

f � A
1 � �

1 � �
�
f

f0
�


o



2. Rewriting Equation 1-37 in terms of the

wavelengths:

� a 656 nm

1458 nm
b 2

� 0.202

1 � �

1 � �
� a
0



b 2

3. Squaring both sides and substituting val-
ues for and 
:
o

� �
0.798

1.202
� 0.664

 1.202� � 1 � 0.202 � 0.798

 1 � � � (0.202)(1 � �)4. Solving for �:

v � c� � 0.664c5. The galaxy is thus receding at speed v,
where

EXPLORING

Transverse Doppler Effect

Our discussion of the Doppler effect in Section 1-5 involved only one space dimension,
wherein the source, observer, and the direction of the relative motion all lie on the x
axis. In three space dimensions, where they may not be colinear, a more complete
analysis, though beyond the scope of our discussion, makes only a small change in
Equation 1-35. If the source moves along the positive x axis but the observer views the
light emitted at some angle with the x axis, as shown in Figure 1-34c, Equation 1-35
becomes

1-35a

When � 0, this becomes the equation for the source and receiver approaching, and
when the equation becomes that for the source and receiver receding. Equation
1-35a also makes the quite surprising prediction that even when viewed perpendicular

� � �,
�

f �
f0



1

1 � � cos �

�
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to the direction of motion, where the observer will still see a frequency shift,
the so-called transverse Doppler effect, f � f0 . Note that f � f0 since � 1. It is some-
times referred to as the second-order Doppler effect and is the result of time dilation of
the moving source. [The general derivation of Equation 1-35a can be found in the French
(1968), Resnick (1992), and Ohanian (2001) references at the end of the chapter.]

Following a suggestion first made by Einstein in 1907, Kündig in 1962 made an ex-
cellent quantitative verification of the transverse Doppler effect.19 He used 14.4-keV
gamma rays emitted by a particular isotope of Fe as the light source (see Chapter 11).
The source was at rest in the laboratory, on the axis of an ultracentrifuge, and the receiver
(an Fe absorber foil) was mounted on the ultracentrifuge rim, as shown in Figure 1-34d.
Using the extremely sensitive frequency measuring technique called the Mössbauer effect
(see Chapter 11), Kündig found a transverse Doppler effect in agreement with the rela-
tivistic prediction within �1 percent over a range of relative speeds up to about 400 m s.

1-6 The Twin Paradox and Other Surprises
The consequences of Einstein’s postulates—the Lorentz transformation, relativistic
velocity addition, time dilation, length contraction, and the relativity of simultaneity—
lead to a large number of predictions that are unexpected and even startling when
compared with our experiences in a macroscopic world where and geometry
obeys the Euclidean rules. Still other predictions seem downright paradoxical, with
relatively moving observers obtaining equally valid but apparently totally inconsistent
results. This chapter concludes with the discussion of a few such examples that will
help you hone your understanding of special relativity.

Twin Paradox

Perhaps the most famous of the paradoxes in special relativity is that of the twins or,
as it is sometimes called, the clock paradox. It arises out of time dilation (Equation 
1-26) and goes like this. Homer and Ulysses are identical twins. Ulysses travels at a
constant high speed to a star beyond our solar system and returns to Earth while his
twin, Homer, remains at home. When the traveler Ulysses returns home, he finds his
twin brother much aged compared to himself—in agreement, we will see, with the
prediction of relativity. The paradox arises out of the contention that the motion is rel-
ative and either twin could regard the other as the traveler, in which case each twin
should find the other to be younger than he and we have a logical contradiction—a
paradox. Let’s illustrate the paradox with a specific example. Let Earth and the desti-
nation star be in the same inertial frame S. Two other frames S� and S� move relative
to S at v � �0.8c and v � �0.8c, respectively. Thus, in both cases. The
spaceship carrying Ulysses accelerates quickly from S to S�, then coasts with S� to the
star, again accelerates quickly from S� to S�, coasts with S� back to Earth, and brakes
to a stop alongside Homer.

It is easy to analyze the problem from Homer’s point of view on Earth. Suppose,
according to Homer’s clock, Ulysses coasts in S� for a time interval �t � 5 y and in
S� for an equal time. Thus, Homer is 10 y older when Ulysses returns. The time in-
terval in S� between the events of Ulysses’ leaving Earth and arriving at the star is
shorter because it is a proper time interval. The time it takes to reach the star by
Ulysses’ clock is

¢t� �
¢t


�
5 y

5>3 � 3 y

 � 5>3

� � 0

>

>� � �>2,
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Figure 1-35 (a) The spacetime diagram of Ulysses’ journey to a distant star in the inertial
frame in which Homer and the star are at rest. (b) Divisions on the ct axis correspond to years
on Homer’s clock. The broken lines show the paths (worldlines) of light flashes transmitted by
each twin with a frequency of 1/year on his clock. Note the markedly different frequencies at
the receivers.
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Since the same time is required for the return trip, Ulysses will have recorded 6 y for
the round trip and will be 4 y younger than Homer upon his return.

The difficulty in this situation seems to be for Ulysses to understand why his twin
aged 10 y during his absence. If we consider Ulysses as being at rest and Homer as
moving away, Homer’s clock should run slow and measure only � 1.8 y, and it
appears that Ulysses should expect Homer to have aged only 3.6 years during the
round trip. This is, of course, the paradox. Both predictions can’t be right. However,
this approach makes the incorrect assumption that the twins’ situations are symmetri-
cal and interchangeable. They are not. Homer remains in a single inertial frame,
whereas Ulysses changes inertial frames, as illustrated in Figure 1-35a, the spacetime
diagram for Ulysses’ trip. While the turnaround may take only a minute fraction of the
total time, it is absolutely essential if the twins clocks are to come together again so
that we can compare their ages (readings).

3>
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A correct analysis can be made using the invariant interval �s from Equation 
1-31 rewritten as

where the left side is constant and equal to the proper time interval squared, and
the right side refers to measurements made in any inertial frame. Thus, Ulysses
along each of his worldlines in Figure 1-35a has �x � 0 and, of course, measures 
�t � � 3 y, or 6 y for the round trip. Homer, on the other hand, measures

and since (�x c)2 is always positive, he always measures �t � . In this situation
�x � 0.8c�t, so

or

or 10 y for the round trip, as we saw earlier. The reason that the twins’ situations can-
not be treated symmetrically is because the special theory of relativity can predict the
behavior of accelerated systems, such as Ulysses at the turnaround, provided that in
the formulation of the physical laws we take the view of an inertial, i.e., unacceler-
ated, observer such as Homer. That’s what we have done. Thus, we cannot do the
same analysis in the rest frame of Ulysses’ spaceship because it does not remain in
an inertial frame during the round trip; hence, it falls outside of the special theory,
and no paradox arises. The laws of physics can be reformulated so as to be invariant
for accelerated observers, which is the role of general relativity (see Chapter 2),
but the result is the same: Ulysses returns younger than Homer by just the amount
calculated above.

EXAMPLE 1-14 Twin Paradox and the Doppler Effect This example, first suggested
by C. G. Darwin,20 may help you understand what each twin sees during Ulysses’
journey. Homer and Ulysses agree that once each year, on the anniversary of the
launch date of Ulysses’ spaceship (when their clocks were together), each twin will
send a light signal to the other. Figure 1-35b shows the light signals each sends.
Based on our discussion above, Homer sends 10 light flashes (the ct axis, Homer’s
worldline, is divided into 10 equal interval corresponding to the 10 years of the jour-
ney on Homer’s clock) and Ulysses sends 6 light flashes (each of Ulysses’ world-
lines is divided into 3 equal intervals corresponding to 3 years on Ulysses’ clock).
Note that each transmits his final light flash as they are reunited at B. Although each
transmits light signals with a frequency of 1 per year, they obviously do not receive
them at that frequency. For example, Ulysses sees no signals from Homer during the
first three years! How can we explain the observed frequencies?
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Question

10. The different ages of the twins upon being reunited are an example of the
relativity of simultaneity that was discussed earlier. Explain how that accounts
for the fact that their biological clocks are no longer synchronized.

More

It is the relativity of simultaneity, not their different accelerations, that
is responsible for the age difference between the twins. This is readily
illustrated in The Case of the Identically Accelerated Twins, which 
can be found on the home page: www.whfreeman.com/tiplermodern-
physics5e. See also Figure 1-36 here.

The Pole and Barn Paradox

An interesting problem involving length contraction, reported initially by W. Rindler,
involves putting a long pole into a short barn. One version, from E. F. Taylor and J. A.
Wheeler,22 goes as follows. A runner carries a pole 10 m long toward the open front
door of a small barn 5 m long. A farmer stands near the barn so that he can see both
the front and the back doors of the barn, the latter being a closed swinging door, as
shown in Figure 1-37a. The runner carrying the pole at speed v enters the barn, and at
some instant the farmer sees the pole completely contained in the barn and closes the

SOLUTION

The Doppler effect provides the explanation. As the twins (and clocks) recede from
each other the frequency of their signals is reduced from the proper frequency f0
according to Equation 1-37 and we have

which is exactly what both twins see (refer to Figure 1-35b): Homer receives 3
flashes in the first 9 years and Ulysses 1 flash in his first 3 years; i.e., f � (1 3)f0
for both.

After the turnaround they are approaching each other and Equation 1-38 yields

and again this agrees with what the twins see: Homer receives 3 flashes during the
final (10th) year and Ulysses receives 9 flashes during his final 3 years; i.e., f � 3fo
for both.
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Figure 1-37 (a) A runner carrying a 10-m pole moves quickly enough so that the farmer will
see the pole entirely contained in the barn. The spacetime diagrams from the point of view
of the farmer’s inertial frame (b) and that of the runner (c). The resolution of the paradox is in
the fact that the events of interest, shown by the large dots in each diagram, are simultaneous
in S but not in S�.
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front door, thus putting a 10-m pole into a 5-m barn. The minimum speed of the run-
ner v that is necessary for the farmer to accomplish this feat can be computed from
Equation 1-28, giving the relativistic length contraction L � Lp , where Lp � proper
length of the pole (10 m) and L � length of the pole measured by the farmer, to be
equal to the length of the barn (5 m). Therefore, we have

v � 0.866c or � � 0.866

v2>c2 � 1 � (5>10)2 � 0.75

 1 � v2>c2 � (5>10)2
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A paradox seems to arise when this situation is viewed in the rest system of the run-
ner. For him the pole, being at rest in the same inertial system, has its proper length
of 10 m. However, the runner measures the length of the barn to be

How can he possibly fit the 10-m pole into the length-contracted 2.5-m barn? The
answer is that he can’t, and the paradox vanishes, but how can that be? To understand
the answer, we need to examine two events—the coincidences of both the front and
back ends of the pole, respectively, with the rear and front doors of the barn—in the
inertial frame of the farmer and in that of the runner.

These are illustrated by the spacetime diagrams of the inertial frame S of the
farmer and barn (Figure 1-37b) and that of the runner S� (Figure 1-37c). Both dia-
grams are drawn with the front end of the pole coinciding with the front door of the
barn at the instant the clocks are started. In Figure 1-37b the worldlines of the barn
doors are, of course, vertical, while those of the two ends of the pole make an angle 

� tan�1 � 49.1° with the x axis. Note that in S the front of the pole reaches
the rear door of the barn at ct � 5 m 0.866 � 5.8 m simultaneous with the arrival of
the back end of the pole at the front door; i.e., at that instant in S the pole is entirely
contained in the barn.

In the runner’s rest system S� it is the worldlines of the ends of the pole that are
vertical, while those of the front and rear doors of the barn make angles of 49.1° with
the �x� axis (since the barn moves in the �x� direction at v). Now we see that the rear
door passes the front of the pole at ct� � 2.5 m 0.866 � 2.9 m, but the front door of
the barn doesn’t reach the rear of the pole until ct� � 10 m 0.866 � 11.5 m. Thus, the
first of those two events occurs before the second, and the runner never sees the pole
entirely contained in the barn. Once again, the relativity of simultaneity is the key—
events simultaneous in one inertial frame are not necessarily simultaneous when
viewed from another inertial frame.

Now let’s consider a different version of this paradox, the one initially due to 
W. Rindler. Suppose the barn’s back wall were made of thick, armor-plate steel and
had no door. What do the farmer and the runner see then? Once again, in the farmer’s
(and the barn’s) rest frame, the instant the front of the pole reaches the armor plate, the
farmer shuts the door and the 10-m pole is instantaneously contained in the 5-m barn.
However, in the next instant (assuming that the pole doesn’t break) it must either bend
(i.e., rotate in spacetime) or break through the armor plate. Since this is relativity, the
runner must come to the same conclusion in his rest frame as the 2.5-m barn races to-
ward him at But now when the armor plate back wall contacts the front of
the pole, the barn continues to move at taking the front of the pole with it
and leaving at that instant 7.5 m of the pole still outside the barn. Yet like the farmer,
the runner must also see the 10-m pole entirely contained within the 2.5-m barn. How
can that be? Like this: the instant the tip of the pole hits the steel plate, that information
(an elastic shock wave) begins to propagate down the pole. Even if the wave were to
propagate at the speed of light c, it will take 
to reach the back of the pole. In the meantime, the barn door must move only 7.5 m to
reach the back of the pole and does so in only 

Thus, the runner, in agreement with the farmer, sees the 10-m pole
entirely contained within the 2.5-m barn—at least briefly!
2.89 � 10�8 s.

7.5 m>(0.866 � 3.0 � 108 m>s) �

10 m>3.0 � 108 m>s � 3.33 � 10�8 s

� � 0.866,
� � 0.866.

>>

>(1>�)�
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L � Lp> � 521 � �2
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Question

11. In the discussion where the barn’s back wall was made from armor-plate steel
and had no door, do the farmer and the runner both see the pole entirely
contained in the barn, no matter what their relative speed is? Explain.

Headlight Effect

We have made frequent use of Einstein’s second postulate asserting that the speed of
light is independent of the source motion for all inertial observers; however, the same
is not true for the direction of light. Consider a light source in S� that emits light uni-
formly in all directions. A beam of that light emitted at an angle with respect to the
x� axis is shown in Figure 1-38a. During a time �t� the x� displacement of the beam
is �x�, and these are related to by

1-39

The direction of the beam relative to the x axis in S is similarly given by

1-40

Applying the inverse Lorentz transformation to Equation 1-40 yields

Dividing the numerator and denominator by �t� and then by c, we obtain

and substituting from Equation 1-39 yields
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Figure 1-38 (a) The source at rest in S� moves
with � � 0.7 with respect to S. (b) Light
emitted uniformly in S� appears to S
concentrated into a cone in the forward
direction. Rays shown in (a) are 18° apart.
Rays shown in (b) make angles calculated from
Equation 1-41. The two colored rays shown are
corresponding ones.
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In determining the brightness

of stars and galaxies, a critical

parameter in understanding

them, astronomers must

correct for the headlight

effect, particularly at high

velocities relative to Earth.
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Considering the half of the light emitted by the source in S� into the forward
hemisphere, i.e., rays with between note that Equation 1-41 restricts the an-
gles measured in S for those rays (50 percent of all the light) to lie between

For example, for the observer in S would see half of the total
light emitted by the source in S� to lie between i.e., in a cone of half angle
60° whose axis is along the direction of the velocity of the source. For values of near
unity is very small, e.g., yields � 8.1°. This means that the observer in S
sees half of all the light emitted by the source to be concentrated into a forward cone
with that half angle. (See Figure 1-38b.) Note, too, that the remaining 50 percent of
the emitted light is distributed throughout the remaining 344° of the two-dimensional
diagram.23 As a result of the headlight effect, light from a directly approaching source
appears far more intense than that from the same source at rest. For the same reason,
light from a directly receding source will appear much dimmer than that from the
same source at rest. This result has substantial applications in experimental particle
physics and astrophysics.

Question

12. Notice from Equation 1-41 that some light emitted by the moving source into
the rear hemisphere is seen by the observer in S as having been emitted into the
forward hemisphere. Explain how that can be, using physical arguments.

EXPLORING

Superluminal Speeds

We conclude this chapter with a few comments about things that move faster than light.
The Lorentz transformations (Equations 1-18 and 1-19) have no meaning in the event
that the relative speeds of two inertial frames exceed the speed of light. This is gener-
ally taken to be a prohibition on the moving of mass, energy, and information faster
than c. However, it is possible for certain processes to proceed at speeds greater than c
and for the speeds of moving objects to appear to be greater than c without contradict-
ing relativity theory. A common example of the first of these is the motion of the point
where the blades of a giant pair of scissors intersect as the scissors are quickly closed,
sometimes called the scissors paradox. Figure 1-39 shows the situation. A long straight
rod (one blade) makes an angle with the x axis (the second blade) and moves in the
�y direction at constant speed vy � �y �t. During time �t, the intersection of
the blades, point P, moves to the right a distance �x. Note from the figure that 

>�
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� � 0.5,� � �cos�1 �.
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Figure 1-39 As the long straight
rod moves vertically downward,
the intersection of the “blades,”
point P, moves toward the right
at speed vp � �x �t. In terms of vy
and vp � vy>tan �.�,
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�y �x � The speed with which P moves to the right is

1-42

or

Since as it will always be possible to find a value of close
enough to zero so that vp � c for any (nonzero) value of vy . As real scissors are closed,
the angle gets progressively smaller, so in principle all that one needs for vp � c
are long blades so that 

Question

13. Use a diagram like Figure 1-32 to explain why the motion of point P cannot be
used to convey information to observers along the blades.

The point P in the scissors paradox is, of course, a geometrical point, not a mate-
rial object, so it is perhaps not surprising that it could appear to move at speeds greater
than c. As an example of an object with mass appearing to do so, consider a tiny mete-
orite moving through space directly toward you at high speed v. As it enters Earth’s at-
mosphere, about 9 km above the surface, frictional heating causes it to glow and the
first light from the glow starts toward your eye. After some time �t the frictional heat-
ing has evaporated all of the meteorite’s matter, the glow is extinguished, and its final
light starts toward your eye, as illustrated in Figure 1-40. During the time between the
first and the final glow, the meteorite traveled a distance v�t. During that same time in-
terval light from the first glow has traveled toward your eye a distance c�t. Thus, the
space interval between the first and final glows is given by

and the visual time interval at your eye �teye between the arrival of the first and final
light is

and, finally, the apparent visual speed va that you record is

1-43

Clearly, yields va � c and any larger yields va � c. For example, a mete-
orite approaching you at v � 0.8c is perceived to be moving at va � 4c. Certain galactic

�� � 0.5

va �
v¢t
¢teye

�
v¢t

¢t(1 � �)
�

�c

1 � �

¢teye � ¢y>c �
¢t(c � v)

c
� ¢t(1 � �)

¢y � c¢t � v¢t � ¢t(c � v)

� S 0.

�� S 0,tan � S 0

vp �
vy

tan �

vp � ¢x>¢t �
¢x

¢y>vy �
vy¢x

¢x tan �

tan �.>

Meteorite
first glow

Last glow
wave front

First glow
wave front

Eye

v

v Δt

c Δt

(c – v) Δt

Figure 1-40 A meteorite
moves directly toward the
observer’s eye at speed v. The
spatial distance between the
wave fronts is (c � v)�t as
they move at c, so the time
interval between their arrival 
at the observer is not �t, but
�teye , which is 
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Superluminal Motion in M87 Jet
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1996

1997

1998

6.0c 5.5c 6.1c 6.0c

structures may also be observed to move at superluminal speeds, as the sequence of im-
ages of the jet from galaxy M87 in Figure 1-41 illustrates.

As a final example of things that move faster than c, it has been proposed that par-
ticles with mass might exist whose speeds would always be faster than light speed. One
basis for this suggestion is an appealing symmetry: ordinary particles always have
v � c, and photons and other massless particles have v � c, so the existence of particles
with v � c would give a sort of satisfying completeness to the classification of particles.
Called tachyons, their existence would present relativity with serious but not necessar-
ily insurmountable problems of infinite creation energies and causality paradoxes, e.g.,
alteration of history. (See the next example.) No compelling theoretical arguments pre-
clude their existence and eventual discovery; however, to date, all experimental
searches for tachyons24 have failed to detect them, and the limits set by those experi-
ments indicate that it is highly unlikely they exist.

EXAMPLE 1-15 Tachyons and Reversing History Use tachyons and an appropriate
spacetime diagram to show how the existence of such particles might be used to
change history and, hence, alter the future, leading to a paradox.

SOLUTION

In a spacetime diagram of the laboratory frame S the worldline of a particle with
v � c created at the origin traveling in the �x direction makes an angle less than 45°
with the x axis; i.e., it is below the light worldline, as shown in Figure 1-42. After
some time the tachyon reaches a tachyon detector mounted on a spaceship moving
rapidly away at v � c in the �x direction. The spaceship frame S� is shown in the
figure at P. The detector immediately creates a new tachyon, sending it off in the �x�
direction and, of course, into the future of S�, i.e., with ct� � 0. The second tachyon
returns to the laboratory at x � 0 but at a time ct before the first tachyon was emitted,
having traveled into the past of S to point M, where ct � 0. Having sent an object into
our own past, we would then have the ability to alter events that occur after M and
produce causal contradictions. For example, the laboratory tachyon detector could be
coupled to equipment that created the first tachyon via a computer programmed to

Figure 1-41 Superluminal
motion has been detected in a
number of cosmic objects.
This sequence of images taken
by the Hubble Space Telescope
shows apparent motion at six
times the speed of light in galaxy
M87. The jet streaming from the
galaxy’s nucleus (the bright round
region at the far left in the bar
image at the top) is about
5000 long. The boxed region
is enlarged. The slanting lines
track the moving features
and indicate the apparent speeds
in each region. [John Biretta,
Space Telescope Science Institute.]
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cancel emission of the first tachyon if the second tachyon is detected. (Shades of
The Terminator!) It is logical that contradictions such as this, together with the
experimental results referred to above, lead to the conclusion that faster-than-light
particles do not exist.

As mentioned above, one attraction (or specter) associated with objects mov-
ing faster than light is the prospect of altering history via time travel. We close this
chapter on relativity by illustrating one such paradox in Figure 1-43.

Summary

TOPIC RELEVANT EQUATIONS AND REMARKS

1. Classical relativity

Galilean transformation x� � x � vt y� � y z� � z t� � t 1-2

Newtonian relativity Newton’s laws are invariant in all systems connected by a Galilean transformation.

Figure 1-42 A tachyon emitted
at O in S, the laboratory frame,
catches up with a spaceship
moving at high speed at P. Its
detection triggers the emission of
a second tachyon at P back toward
the laboratory at x � 0. The
second tachyon arrives at the
laboratory at ct � 0, i.e., before
the emission of the first tachyon.x

ct

P
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O

ct´

x´

Light worldline

S´

S

Figure 1-43 The knowledge
creation paradox illustrates
a causality problem
associated with time travel,
one possible consequence of
material objects moving
faster than light speed.
[The authors thank Costas
Efthimiou for this example.]

March 1, 1905: Aristotle finds the famous paper
entitled “On the Electrodynamics of Moving Bodies,”
by Albert Einstein, published in the journal 
Annals of Physics earlier in 1905.

February 1, 1905: Aristotle arrives in the future.

January 1, 1906: Aristotle leaves for the past.

Aristotle studies the new paper.

January 1, 1905: Einstein publishes the paper.

March 1, 1904: Aristotle explains the paper to Einstein.

February 1, 1904: Aristotle meets Einstein, and they start 
discussing physics.

January 1, 1904: Aristotle returns before the pubblication 
of the paper.

January 1, 350 B.C.: Time traveler Aristotle leaves for the future.

Aristotle 
travels 

to the past

Aristotle 
travels to 
the future

Where did 
the knowledge 

come from?
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2. Einstein’s postulates The laws of physics are the same in all inertial reference frames. The speed of light is c,
independent of the motion of the source.

3. Relativity of simultaneity Events simultaneous in one reference frame are not in general simultaneous in any other
inertial frame.

4. Lorentz transformation 1-18

with

5. Time dilation Proper time is the time interval between two events that occur at the same space point. If
that interval is �t� � then the time interval in S is

�t � �t� � where 1-26

6. Length contraction The proper length of a rod is the length Lp measured in the rest system of the rod. In S,
moving at speed v with respect to the rod, the length measured is

1-28

7. Spacetime interval All observers in inertial frames measure the same interval �s between pairs of events in
spacetime, where

1-31

8. Doppler effect

Source/
observer approaching

Source/
observer receding
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The following general references are written at a level appro-
priate for readers of this book.

Bohm, D., The Special Theory of Relativity, W. A. Benjamin,
New York, 1965.

French, A. P., Special Relativity, Norton, 1968. Includes an
excellent discussion of the historical basis of relativity.

Gamow, G., Mr. Tompkins in Paperback, Cambridge
University Press, Cambridge, 1965. Contains the de-
lightful Mr. Tompkins stories. In one of these Mr.
Tompkins visits a dream world where the speed of light
is only about 10 mi/h and relativistic effects are quite
noticeable.

Lorentz, H. A., A. Einstein, H. Minkowski, and W. Weyl, The
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Notes

1. Polish astronomer, 1473–1543. His book describing
heliocentric (i.e., Sun-centered) orbits for the planets was
published only a few weeks before his death. He had hesitated
to release it for many years, fearing that it might be con-
sidered heretical. It is not known whether or not he saw the
published book.

2. Events are described by measurements made in a coordi-
nate system that defines a frame of reference. The question
was, Where is the reference frame in which the law of inertia
is valid? Newton knew that no rotating system, e.g., Earth or
the Sun, would work and suggested the distant “fixed stars” as
the fundamental inertial reference frame.

3. The speed of light is exactly 299,792,458 m s. The value
is set by the definition of the standard meter as being the dis-
tance light travels in 1 299,792,458 s.

4. Over time, an entire continuous spectrum of electromag-
netic waves has been discovered, ranging from extremely low-
frequency (radio) waves to extremely high-frequency waves
(gamma rays), all moving at speed c.

5. Albert A. Michelson (1852–1931), an American experi-
mental physicist whose development of precision optical in-
struments and their use in precise measurements of the speed
of light and the length of the standard meter earned him the
Nobel Prize in 1907. Edward W. Morley (1838–1923), an
American chemist and physicist and professor at Western
Reserve College when Michelson was a professor at the
nearby Case School of Applied Science.

6. Albert A. Michelson and Edward W. Morley, The
American Journal of Science, XXXIV, no. 203, November
1887.

7. Note that the width depends on the small angle between
and M1 . A very small angle results in relatively few wide

fringes, a larger angle in many narrow fringes.

8. Since the source producing the waves, the sodium lamp,
was at rest relative to the interferometer, the frequency would
be constant.

9. T. S. Jaseja, A. Javan, J. Murray, and C. H. Townes,
Physical Review, 133, A1221 (1964).

10. A. Brillet and J. Hall, Physical Review Letters, 42, 549
(1979).

11. Annalen der Physik, 17, 841(1905). For a translation
from the original German, see the collection of original papers
by Lorentz, Einstein, Minkowski, and Weyl (Dover, New York,
1923).

12. Hendrik Antoon Lorentz (1853–1928), Dutch theoretical
physicist, discovered the Lorentz transformation empirically
while investigating the fact that Maxwell’s equations are not in-
variant under a Galilean transformation, although he did not rec-
ognize its importance at the time. An expert on electromagnetic
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theory, he was one of the first to suggest that atoms of matter
might consist of charged particles whose oscillations could ac-
count for the emission of light. Lorentz used this hypothesis to
explain the splitting of spectral lines in a magnetic field discov-
ered by his student Pieter Zeeman, with whom he shared the
1902 Nobel Prize.

13. One meter of light travel time is the time for light to travel
1 m, i.e., ct � 1 m, or t � 1 m/3.00 � 108 m s � 3.3 � 10�9 s.
Similarly, 1 cm of light travel time is ct � 1 cm, or
t � 3.3 � 10�11 s, and so on.

14. This example is adapted from a problem in H. Ohanian,
Modern Physics (Englewood Cliffs, NJ: Prentice Hall, 1987).

15. Any particle that has mass.

16. Equation 1-31 would lead to imaginary values of �s for
spacelike intervals, an apparent problem. However, the geom-
etry of spacetime is not Euclidean, but Lorentzian. While a
consideration of Lorentz geometry is beyond the scope of this
chapter, suffice it to say that it enables us to write (�s)2 for
spacelike intervals as in Equation 1-33.

17. There are only two such things: photons (including those
of visible light), which will be introduced in Chapter 3, and
gravitons, which are the particles that transmit the gravita-
tional force.

18. Edwin P. Hubble, Proceedings of the National Academy
of Sciences, 15, 168 (1929).

19. Walter Kündig, Physical Review, 129, 2371 (1963).

20. C. G. Darwin, Nature, 180, 976 (1957).

21. S. P. Boughn, American Journal of Physics, 57, 791
(1989).

22. E. F. Taylor and J. A. Wheeler, Spacetime Physics, 2d ed.
(New York: W. H. Freeman and Co., 1992).

23. Seen in three space dimensions by the observer in S, 50
percent of the light is concentrated in 0.06 steradian of 4 -
steradian solid angle around the moving source.

24. T. Alväger and M. N. Kreisler, “Quest for Faster-Than-
Light Particles,” Physical Review, 171, 1357 (1968).

25. Paul Ehrenfest (1880–1933), Austrian physicist and pro-
fessor at the University of Leiden (the Netherlands), longtime
friend and correspondent of Einstein, about whom, upon his
death, Einstein wrote, “[He was] the best teacher in our pro-
fession I have ever known.”

26. This experiment is described in J. C. Hafele and R. E.
Keating, Science, 177, 166 (1972). Although not as accurate
as the experiment described in Section 1-4, its results sup-
ported the relativistic prediction.

27. R. Shaw, American Journal of Physics, 30, 72 (1962).
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Problems

Level I

Section 1-1 The Experimental Basis of Relativity

1-1. In episode 5 of Star Wars, the Empire’s spaceships launch probe droids throughout the
galaxy to seek the base of the Rebel Alliance. Suppose a spaceship moving at 2.3 � 108 m s
toward Hoth (site of the rebel base) launches a probe droid toward Hoth at 2.1 � 108 m s relative
to the spaceship. According to Galilean relativity, (a) What is the speed of the droid relative to
Hoth? (b) If rebel astronomers are watching the approaching spaceship through a telescope, will
they see the probe before it lands on Hoth?
1-2. In one series of measurements of the speed of light, Michelson used a path length L of
27.4 km (17 mi). (a) What is the time needed for light to make the round trip of distance 2L?
(b) What is the classical correction term in seconds in Equation 1-5, assuming Earth’s speed is
v � 10�4c? (c) From about 1600 measurements, Michelson arrived at a result for the speed of
light of 299,796 � 4 km s. Is this experimental value accurate enough to be sensitive to the cor-
rection term in Equation 1-5?
1-3. A shift of one fringe in the Michelson-Morley experiment would result from a difference
of one wavelength or a change of one period of vibration in the round-trip travel of the light
when the interferometer is rotated by 90°. What speed would Michelson have computed for
Earth’s motion through the ether had the experiment seen a shift of one fringe?
1-4. In the “old days” (circa 1935) pilots used to race small, relatively high-powered airplanes
around courses marked by a pylon on the ground at each end of the course. Suppose two such
evenly matched racers fly at airspeeds of 130 mph. (Remember, this was a long time ago!) Each
flies one complete round trip of 25 miles, but their courses are perpendicular to each other and
there is a 20-mph wind blowing steadily parallel to one course. (a) Which pilot wins the race
and by how much? (b) Relative to the axes of their respective courses, what headings must the
two pilots use?
1-5. Paul Ehrenfest25 suggested the following thought experiment to illustrate the dramati-
cally different observations that might be expected, dependent on whether light moved relative
to a stationary ether or according to Einstein’s second postulate:

Suppose that you are seated at the center of a huge dark sphere with a radius of
3 � 108 m and with its inner surface highly reflective. A source at the center emits
a very brief flash of light that moves outward through the darkness with uniform
intensity as an expanding spherical wave.

What would you see during the first 3 seconds after the emission of the flash if (a) the sphere
moved through the ether at a constant 30 km s and (b) if Einstein’s second postulate is correct?
1-6. Einstein reported that as a boy he wondered about the following puzzle. If you hold a
mirror at arm’s length and look at your reflection, what will happen as you begin to run? In par-
ticular, suppose you run with speed v � 0.99c. Will you still be able to see yourself? If so, what
would your image look like, and why?
1-7. Verify by calculation that the result of the Michelson-Morley experiment places an upper
limit on Earth’s speed relative to the ether of about 5 km s.
1-8. Consider two inertial reference frames. When an observer in each frame measures the
following quantities, which measurements made by the two observers must yield the same re-
sults? Explain your reason for each answer.

(a) The distance between two events
(b) The value of the mass of a proton
(c) The speed of light
(d) The time interval between two events
(e) Newton’s first law
( f ) The order of the elements in the periodic table
(g) The value of the electron charge
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Section 1-2 Einstein’s Postulates

1-9. Assume that the train shown in Figure 1-14 is 1.0 km long as measured by the observer
at C� and is moving at 150 km h. What time interval between the arrival of the wave fronts at
C� is measured by the observer at C in S?
1-10. Suppose that A�, B�, and C� are at rest in frame S�, which moves with respect to S at speed
v in the �x direction. Let B� be located exactly midway between A� and C�. At t� � 0 a light
flash occurs at B� and expands outward as a spherical wave. (a) According to an observer in S�,
do the wave fronts arrive at A� and C� simultaneously? (b) According to an observer in S, do the
wave fronts arrive at A� and C� simultaneously? (c) If you answered no to either (a) or (b), what
is the difference in their arrival times and at which point did the front arrive first?

Section 1-3 The Lorentz Transformation

1-11. Make a graph of the relativistic factor as a function of 
Use at least 10 values of ranging from 0 up to 0.995.
1-12. Two events happen at the same point in frame S� at times and (a) Use Equation
1-19 to show that in frame S, the time interval between the events is greater than by a
factor (b) Why is Equation 1-18 less convenient than Equation 1-19 for this problem?
1-13. Suppose that an event occurs in inertial frame S with coordinates x � 75 m, y � 18 m,
z � 4.0 m at t � 2.0 � 10�5 s. The inertial frame S� moves in the �x direction with v � 0.85c.
The origins of S and S� coincided at t � t� � 0. (a) What are the coordinates of the event in S�?
(b) Use the inverse transformation on the results of (a) to obtain the original coordinates.
1-14. Show that the null effect of the Michelson-Morley experiment can be accounted for if the
interferometer arm parallel to the motion is shortened by a factor of 
1-15. Two spaceships are approaching each other. (a) If the speed of each is 0.9c relative 
to Earth, what is the speed of one relative to the other? (b) If the speed of each relative to Earth
is 30,000 m s (about 100 times the speed of sound), what is the speed of one relative to 
the other?
1-16. Starting with the Lorentz transformation for the components of the velocity (Equation 
1-23), derive the transformation for the components of the acceleration.
1-17. Consider a clock at rest at the origin of the laboratory frame. (a) Draw a spacetime dia-
gram that illustrates that this clock ticks slow when observed from the reference frame of a
rocket moving with respect to the laboratory at v � 0.8c. (b) When 10 s have elapsed on the
rocket clock, how many have ticked by on the lab clock?
1-18. A light beam moves along the y� axis with speed c in frame S�, which is moving to the
right with speed v relative to frame S. (a) Find ux and uy , the x and y components of the veloc-
ity of the light beam in frame S. (b) Show that the magnitude of the velocity of the light beam
in S is c.
1-19. A particle moves with speed 0.9c along the x� axis of frame S�, which moves with speed
0.9c in the positive x� direction relative to frame S�. Frame S� moves with speed 0.9c in the pos-
itive x direction relative to frame S. (a) Find the speed of the particle relative to frame S�.
(b) Find the speed of the particle relative to frame S.

Section 1-4 Time Dilation and Length Contraction

1-20. Use the binomial expansion to derive the following results for values of and use
when applicable in the problems that follow.

(a)

(b)

(c)

1-21. How great must the relative speed of two observers be for their time-interval measure-
ments to differ by 1 percent (see Problem 1-20)?
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1-22. A nova is the sudden, brief brightening of a star (see Chapter 13). Suppose Earth as-
tronomers see two novas occur simultaneously, one in the constellation Orion (the Hunter) and
the other in the constellation Lyra (the Lyre). Both nova are the same distance from Earth,

and are in exactly opposite directions from Earth. Observers on board an air-
craft flying at 1000 km h on a line from Orion toward Lyra see the same novas, but note that
they are not simultaneous. (a) For the observers on the aircraft, how much time separates the
nova? (b) Which one occurs first? (Assume Earth is an inertial reference frame.)
1-23. A meter stick moves parallel to its length with speed v � 0.6c relative to you.
(a) Compute the length of the stick measured by you. (b) How long does it take for the stick
to pass you? (c) Draw a spacetime diagram from the viewpoint of your frame with the front
of the meter stick at x � 0 when t � 0. Show how the answers to (a) and (b) are obtained from
the diagram.
1-24. The proper mean lifetime of mesons (pions) is 2.6 � 10–8 s. If a beam of such parti-
cles has speed 0.9c, (a) What would their mean life be as measured in the laboratory? (b) How
far would they travel (on the average) before they decay? (c) What would your answer be to part
(b) if you neglected time dilation? (d) What is the interval in spacetime between creation of a
typical pion and its decay?
1-25. You have been posted to a remote region of space to monitor traffic. Near the end of a
quiet shift, a spacecraft streaks past. Your laser-based measuring device reports the spacecraft’s
length to be 85 m. The identification transponder reports it to be the NCXXB-12, a cargo craft
of proper length 100 m. In transmitting your report to headquarters, what speed should you give
for this spacecraft?
1-26. The light clock in the spaceship in Figure 1-25 uses a light pulse moving up the y-axis to
reflect back from a mirror as the ship moves along the x-axis. Suppose instead the light pulse
moves along the x�-axis between x� � 0 and a mirror at x� � L. (a) What is the time required
for the pulse to make a round trip in the rest system of the spaceship? (b) What is the round-trip
time in the laboratory frame? (c) Does the result in (b) agree with that expected from time di-
lation? Justify your answer.
1-27. Two spaceships pass each other traveling in opposite directions. A passenger on ship A,
which she knows to be 100 m long, notes that ship B is moving with a speed of 0.92c relative
to A and that the length of B is 36 m. What are the lengths of the two spaceships measured by
a passenger in B?
1-28. A meter stick at rest in S� is tilted at an angle of 30° to the x� axis. If S� moves at 
how long is the meter stick as measured in S and what angle does it make with the x axis?
1-29. A rectangular box at rest in S� has sides a� � 2 m, b� � 2 m, and c� � 4 m and is ori-
ented as shown in Figure 1-44. S� moves with with respect to the laboratory frame S.
(a) Compute the volume of the box in S� and in S. (b) Draw an accurate diagram of the box as
seen by an observer in S.

Section 1-5 The Doppler Effect

1-30. How fast must you be moving toward a red light ( nm) for it to appear yellow
( nm)? green ( nm)? blue ( nm)?
1-31. A distant galaxy is moving away from us at speed 1.85 � 107 m s. Calculate the frac-
tional red shift of the light from this galaxy.
1-32. The light from a nearby star is observed to be shifted toward the blue by 2 percent, i.e.,

Is the star approaching or receding from Earth? How fast is it moving? (Assume
motion is directly toward or away from Earth to avoid superluminal speeds.)
1-33. Stars typically emit the red light of atomic hydrogen with wavelength 656.3 nm (called
the spectral line). Compute the wavelength of that light observed at Earth from stars reced-
ing directly from us with relative speed v � 10�3c, v � 10�2c, and v � 10�1c.

Section 1-6 The Twin Paradox and Other Surprises

1-34. Heide boards a spaceship and travels away from Earth at a constant velocity 0.45c toward
Betelgeuse (a red giant star in the constellation Orion). One year later on Earth clocks, Heide’s
twin, Hans, boards a second spaceship and follows her at a constant velocity of 0.95c in the
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same direction. (a) When Hans catches up to Heide, what will be the difference in their ages?
(b) Which twin will be older?
1-35. You point a laser flashlight at the Moon, producing a spot of light on the Moon’s surface.
At what minimum angular speed must you sweep the laser beam in order for the light spot to
streak across the Moon’s surface with speed v � c? Why can’t you transmit information
between research bases on the Moon with the flying spot?
1-36. A clock is placed in a satellite that orbits Earth with a period of 108 min. (a) By what
time interval will this clock differ from an identical clock on Earth after 1 y? (b) How much
time will have passed on Earth when the two clocks differ by 1.0 s? (Assume special relativity
applies and neglect general relativity.)
1-37. Einstein used trains for a number of relativity thought experiments since they were the
fastest objects commonly recognized in those days. Let’s consider a train moving at 0.65c along
a straight track at night. Its headlight produces a beam with an angular spread of 60° according
to the engineer. If you are standing alongside the track (rails are 1.5 m apart), how far from you
is the train when you see its approaching headlight suddenly disappear?

Level II

1-38. In 1971 four portable atomic clocks were flown around the world in jet aircraft, two east-
bound and two westbound, to test the time dilation predictions of relativity.26 (a) If the west-
bound plane flew at an average speed of 1500 km h relative to the surface, how long would it
have had to fly for the clock on board to lose 1 second relative to the reference clock on the
ground at the U.S. Naval Observatory? (b) In the actual experiment the planes circumflew Earth
once and the observed discrepancy of the clocks was 273 ns. What was the average speed of
each plane?
1-39. “Ether drag” was among the suggestions made to explain the null result of the
Michelson-Morley experiment (see More section). The phenomenon of stellar aberration re-
futes this proposal. Suppose Earth moves relative to the ether at velocity v and a light beam
(e.g., from a star) approaches Earth at an angle with respect to v. (a) Show that the angle of
approach in Earth’s reference frame is given by

(b) is the stellar aberration angle. If by how much does differ from 90°?
1-40. A friend of yours who is the same age as you travels to the star Alpha Centauri, which is
4 away, and returns immediately. He claims that the entire trip took just 6 years. (a) How
fast did he travel? (b) How old are you when he returns? (c) Draw a spacetime diagram that ver-
ifies your answers to (a) and (b).
1-41. A clock is placed in a satellite that orbits Earth with a period of 90 min. By what time
interval will this clock differ from an identical clock on Earth after 1 year? (Assume that spe-
cial relativity applies.)
1-42. In frame S, event B occurs 2 after event A and at �x � 1.5 km from event A. (a) How
fast must an observer be moving along the �x axis so that events A and B occur simultaneously?
(b) Is it possible for event B to precede event A for some observer? (c) Draw a spacetime dia-
gram that illustrates your answers to (a) and (b). (d) Compute the spacetime interval and proper
distance between the events.
1-43. A burst of mesons travels down an evacuated beam tube at Fermilab moving at

with respect to the laboratory. (a) Compute for this group of pions. (b) The proper
mean lifetime of pions is 2.6 � 10�8 s. What mean lifetime is measured in the lab? (c) If the
burst contained 50,000 pions, how many remain after the group has traveled 50 m down the
beam tube? (d) What would be the answer to (c) ignoring time dilation?
1-44. H. A. Lorentz suggested 15 years before Einstein’s 1905 paper that the null effect of the
Michelson-Morley experiment could be accounted for by a contraction of that arm of the inter-
ferometer lying parallel to Earth’s motion through the ether to a length 
He thought of this, incorrectly, as an actual shrinking of matter. By about how many atomic di-
ameters would the material in the parallel arm of the interferometer have had to shrink in order
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to account for the absence of the expected shift of 0.4 of a fringe width? (Assume the diameter
of atoms to be about m.)
1-45. Observers in reference frame S see an explosion located at x1 � 480 m. A second explo-
sion occurs 5 later at x2 � 1200 m. In reference frame S�, which is moving along the �x axis
at speed v, the explosions occur at the same point in space. (a) Draw a spacetime diagram de-
scribing this situation. (b) Determine v from the diagram. (c) Calibrate the ct� axis and deter-
mine the separation in time in between the two explosions as measured in S�. (d) Verify your
results by calculation.
1-46. Two spaceships, each 100 m long when measured at rest, travel toward each other with
speeds of 0.85c relative to Earth. (a) How long is each ship as measured by someone on Earth?
(b) How fast is each ship traveling as measured by an observer on the other? (c) How long is
one ship when measured by an observer on the other? (d) At time t � 0 on Earth, the fronts of
the ships are together as they just begin to pass each other. At what time on Earth are their ends
together? (e) Sketch accurately scaled diagrams in the frame of one of the ships showing the
passing of the other ship.
1-47. If v is much less than c, the Doppler frequency shift is approximately given by

both classically and relativistically. A radar transmitter-receiver bounces a signal
off an aircraft and observes a fractional increase in the frequency of What
is the speed of the aircraft? (Assume the aircraft to be moving directly toward the transmitter.)
1-48. The null result of the Michelson-Morley experiment could be explained if the speed of
light depended on the motion of the source relative to the observer. Consider a binary eclipsing
star system, that is, a pair of stars orbiting their common center of mass with Earth lying in the
orbital plane of the system, as is very nearly the case for the binary system Algol (see More sec-
tion about the Michelson-Morley experiment). Assume that the stars in the system have circu-
lar orbits with a period of 115 days and that one of the stars’ orbital speed is 32 km s (about the
same as Earth’s orbital speed around the Sun). If the suggestion above were true, astronomers
would simultaneously see two images of the star in opposition, i.e., on opposite sides of its
orbit. What is the minimum distance L from Earth to the binary for this phenomenon to occur?
1-49. Frames S and S� are moving relative to each other along the x and x� axes. They set their
clocks to t � t� � 0 when their origins coincide. In frame S, event 1 occurs at x1 � 1 c y and
t1 � 1 y and event 2 occurs at x2 � 2.0 c y and t2 � 0.5 y. These events occur simultaneously
in frame S�. (a) Find the magnitude and direction of the velocity of S� relative to S. (b) At what
time do both of these events occur as measured in S�? (c) Compute the spacetime interval �s
between the events. (d) Is the interval spacelike, timelike, or lightlike? (e) What is the proper
distance Lp between the events?
1-50. Do Problem 1-49 parts (a) and (b) using a spacetime diagram.
1-51. An observer in frame S standing at the origin observes two flashes of colored light sep-
arated spatially by �x � 2400 m. A blue flash occurs first, followed by a red flash 5 later.
An observer in S� moving along the x axis at speed v relative to S also observes the flashes 5 
apart and with a separation of 2400 m, but the red flash is observed first. Find the magnitude
and direction of v.
1-52. A cosmic-ray proton streaks through the lab with velocity 0.85c at an angle of 50° with
the �x direction (in the xy plane of the lab). Compute the magnitude and direction of the pro-
ton’s velocity when viewed from frame S� moving with 

Level III

1-53. A meter stick is parallel to the x axis in S and is moving in the �y direction at constant
speed vy . From the viewpoint of S show that the meter stick will appear tilted at an angle 
with respect to the x� axis of S� moving in the �x direction at Compute the angle

measured in S�.
1-54. The equation for the spherical wave front of a light pulse that begins at the origin at time
t � 0 is Using the Lorentz transformation, show that such a light
pulse also has a spherical wave front in S� by showing that in S�.
1-55. An interesting paradox has been suggested by R. Shaw27 that goes like this. A very thin
steel plate with a circular hole 1 m in diameter centered on the y axis lies parallel to the xz plane
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in frame S and moves in the �y direction at constant speed vy as illustrated in Figure 1-45.
A meter stick lying on the x axis moves in the �x direction with The steel plate ar-
rives at the y � 0 plane at the same instant that the center of the meter stick reaches the origin
of S. Since the meter stick is observed by observers in S to be contracted, it passes through the
1-m hole in the plate with no problem. A paradox appears to arise when one considers that an
observer in S�, the rest system of the meter stick, measures the diameter of the hole in the plate
to be contracted in the x dimension and, hence, becomes too small to pass the meter stick, re-
sulting in a collision. Resolve the paradox. Will there be a collision?
1-56. Two events in S are separated by a distance and a time (a) Use
the Lorentz transformation to show that in frame S�, which is moving with speed v relative to
S, the time separation is (b) Show that the events can be simultaneous
in frame S� only if D is greater than cT. (c) If one of the events is the cause of the other, the sep-
aration D must be less than cT since is the smallest time that a signal can take to travel from
x1 to x2 in frame S. Show that if D is less than cT, is greater than in all reference frames.
(d) Suppose that a signal could be sent with speed c� � c so that in frame S the cause precedes
the effect by the time Show that there is then a reference frame moving with speed
v less than c in which the effect precedes the cause.
1-57. Two observers agree to test time dilation. They use identical clocks and one observer in
frame S� moves with speed v � 0.6c relative to the other observer in frame S. When their ori-
gins coincide, they start their clocks. They agree to send a signal when their clocks read 60 min
and to send a confirmation signal when each receives the other’s signal. (a) When does the ob-
server in S receive the first signal from the observer in S�. (b) When does he receive the confir-
mation signal? (c) Make a table showing the times in S when the observer sent the first signal,
received the first signal, and received the confirmation signal. How does this table compare with
one constructed by the observer in S�?
1-58. The compact disk in a CD-ROM drive rotates with angular speed There is a clock at
the center of the disk and one at a distance r from the center. In an inertial reference frame, the
clock at distance r is moving with speed Show that from time dilation in special rela-
tivity, time intervals �to for the clock at rest and �tr for the moving clock are related by

if

1-59. Two rockets, A and B, leave a space station with velocity vectors vA and vB relative to the
station frame S, perpendicular to each other. (a) Determine the velocity of A relative to B, vBA .
(b) Determine the velocity of B relative to A, vAB . (c) Explain why vAB and vBA do not point in
opposite directions.
1-60. Suppose a system S consisting of a cubic lattice of meter sticks and synchronized clocks,
e.g., the eight clocks closest to you in Figure 1-13, moves from left to right (the �x direction)
at high speed. The meter sticks parallel to the x direction are, of course, contracted and the cube

r� V c
¢tr � ¢to

¢to
�
r2�2

2c2

u � r�.

�.

T � D>c�. tœ1tœ2

D>ct2 � t1 � (T � vD>c2).

T � t2 � t1 .D � x2 � x1

� � v>c.
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would be measured by an observer in a system S� to be foreshortened in that direction. However,
recalling that your eye constructs images from light waves that reach it simultaneously, not
those leaving the source simultaneously, sketch what your eye would see in this case. Scale con-
tractions and show any angles accurately. (Assume the moving cube to be farther than 10 m
from your eye.)
1-61. Figure 1-11b (in the More section about the Michelson-Morley experiment) shows an
eclipsing binary. Suppose the period of the motion is T and the binary is a distance L from Earth,
where L is sufficiently large so that points A and B in Figure 1-11b are a half orbit apart.
Consider the motion of one of the stars and (a) show that the star would appear to move from
A to B in time and from B to A in time assuming
classical velocity addition applies to light, i.e., that emission theories of light were correct.
(b) What rotational period would cause the star to appear to be at both A and B simultaneously?
1-62. Show that if a particle moves at an angle with respect to the x axis with speed u in sys-
tem S, it moves at an angle with the x� axis in S� given by

1-63. Like jets emitted from some galaxies (see Figure 1-41), some distant astronomical ob-
jects can appear to travel at speeds greater than c across our line of sight. Suppose distant galaxy
AB15 moving with velocity v at an angle with respect to the direction toward Earth emits two
bright flashes of light separated by time �t on the galaxy AB15 local clock. Show that (a) the
time interval and (b) the apparent speed of AB15 measured by ob-

servers on Earth is (c) For compute the value of for 
which vapp � c.

�� � 0.75,vapp �
¢xEarth

¢tEarth

�
� sin�

1 � � cos�
.

¢tEarth � ¢t(1 � � cos�)

�

tan �� �
sin �

(cos� � v>u)
��

�

T>2 � 2Lv>(c2 � v2),T>2 � 2Lv>(c2 � v2)
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In the opening section of Chapter 1, we discussed the classical observation that, if
Newton’s second law, F � ma, holds in a particular reference frame, it also holds in

any other reference frame that moves with constant velocity relative to it, i.e., in any
inertial frame. As shown in Section 1-1, the Galilean transformation (Equation 1-2)
leads to the same accelerations in both frames, and forces such as those due
to stretched springs are also the same in both frames. However, according to the
Lorentz transformation, accelerations are not the same in two such reference frames.
If a particle has acceleration ax and velocity ux in frame S, its acceleration in S�, obtained
by computing from Equation 1-22, is

2-1

Thus, must transform in a similar way, or else Newton’s second law, F � ma,
does not hold.

It is reasonable to expect that F � ma does not hold at high speeds, for this equa-
tion implies that a constant force will accelerate a particle to unlimited velocity if it
acts for a long time. However, if a particle’s velocity were greater than c in some ref-
erence frame S, we could not transform from S to the rest frame of the particle because

becomes imaginary when v � c. We can show from the velocity transformation that,
if a particle’s velocity is less than c in some frame S, it is less than c in all frames mov-
ing relative to S with v � c. This result leads us to expect that particles never have
speeds greater than c. Thus, we expect that Newton’s second law F � ma is not rela-
tivistically invariant. We will, therefore, need a new law of motion, but one that re-
duces to Newton’s classical version when since F � ma is consistent
with experimental observations when 

In this chapter we will explore the changes in classical dynamics that are dictated
by relativity theory, directing particular attention to the same concepts around which
classical mechanics was developed, namely, mass, momentum, and energy. We will

� V 1.
�(�v>c) S 0,
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find these changes to be every bit as dramatic as those we encountered in Chapter 1,
including a Lorentz transformation for momentum and energy and a new invariant
quantity to stand beside the invariant spacetime interval �s. Then, in the latter part of
the chapter, we will briefly turn our attention to noninertial, or accelerated, reference
frames, the realm of the theory of general relativity.

2-1 Relativistic Momentum
Among the most powerful fundamental concepts that you have studied in physics
until now are the ideas of conservation of momentum and conservation of total en-
ergy. As we will discuss a bit further in Chapter 12, each of these fundamental laws
arises because of a particular symmetry that exists in the laws of physics. For ex-
ample, the conservation of total energy in classical physics is a consequence of the
symmetry, or invariance, of the laws of physics to translations in time. As a conse-
quence, Newton’s laws work exactly the same way today as they did when he first
wrote them down. The conservation of momentum arises from the invariance of
physical laws to translations in space. Indeed, Einstein’s first postulate and the re-
sulting Lorentz transformation (Equations 1-18 and 1-19) guarantee this latter in-
variance in all inertial frames.

The simplicity and universality of these conservation laws leads us to seek equa-
tions for relativistic mechanics, replacing Equation 1-1 and others, that are consistent
with momentum and energy conservation and are also invariant under a Lorentz trans-
formation. However, it is straightforward to show that the momentum, as formulated
in classical mechanics, does not result in relativistic invariance of the law of conser-
vation of momentum. To see that this is so, we will look at an isolated collision be-
tween two masses, where we avoid the question of how to transform forces because
the net external force is zero. In classical mechanics, the total momentum p � �miui
is conserved. We will see that relativistically, conservation of the quantity �miui is an
approximation that holds only at low speeds.

Consider one observer in frame S with a ball A and another in with ball B. The
balls each have mass m and are identical when measured at rest. Each observer
throws his ball along his y axis with speed u0 (measured in his own frame) so that the
balls collide.1 Assuming the balls to be perfectly elastic, each observer will see his
ball rebound with its original speed u0. If the total momentum is to be conserved, the
y component must be zero because the momentum of each ball is merely reversed by
the collision. However, if we consider the relativistic velocity transformation, we can
see that the quantity muy does not have the same magnitude for each ball as seen by
either observer.

Let us consider the collision as seen in frame S (Figure 2-1a). In this frame ball
A moves along the y axis with velocity uyA � u0. Ball B has x component of velocity
uxB � v and y component

2-2

Here we have used the velocity transformation (Equation 1-22) and the facts that 
is just and We see that the y component of the velocity of ball B is
smaller in magnitude than that of ball A. The quantity comes from
the time dilation factor. The time taken for ball B to travel a given distance along the y
axis in S is greater than the time measured in S� for the ball to travel this same distance.

(1 � v2>c2)1>2uœ
xB � 0.�u0

uœ
yB

uyB � uœ
yB> � �u021 � v2>c2

S�
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Thus, in S the total y component of classical momentum is not zero. Since the y com-
ponents of the velocities are reversed in an elastic collision, momentum as defined
by p � �mu is not conserved in S. Analysis of this problem in S� leads to the same
conclusion (Figure 2-1b), since the roles of A and B are simply interchanged.2 In the
classical limit momentum is conserved, of course, because in that limit 
and

The reason for defining momentum as �mu in classical mechanics is that this
quantity is conserved when there is no external force, as in our collision example.
We now see that this quantity is conserved only in the approximation We will
define the relativistic momentum p of a particle to have the following properties:

1. p is conserved in collisions.

2. p approaches mu as approaches zero.

Let’s apply the first of these conditions to the collision of the two balls that we
just discussed, noting two important points. First, for each observer in Figure 2-1, the
speed of each ball is unchanged by the elastic collision. It is either (for the ob-
server’s own ball) or (for the other ball). Second, the failure of the
conservation of momentum in the collision we described can’t be due to the velocities
because we used the Lorentz transformation to find the y components. It must have
something to do with the mass! Let us write down the conservation of the y compo-
nent of the momentum as observed in S, keeping the masses of the two balls straight
by writing for the S observer’s own ball and for the observer’s ball.

2-3

Equation 2-3 can be readily rewritten as

2-4

If is small compared to the relative speed v of the reference frames, then it follows
from Equation 2-2 that and, therefore,

If we can now imagine the limiting case where i.e., where each ball is at
rest in its “home” frame so that the collision becomes a “grazing” one as B moves past
A at speed v � u, then we conclude from Equations 2-2 and 2-4 that in order for
Equation 2-3 to hold, i.e., for the momentum to be conserved,

or

2-5

Equation 2-5 says that the observer in S measures the mass of ball B, moving relative
to him at speed u, as equal to times the rest mass of the ball, or its
mass measured in the frame in which it is at rest. Notice that observers always mea-
sure the mass of an object that is in motion with respect to them to be larger than the
value measured when the object is at rest.

1>(1 � v2>c2)1>2
m(u) �

m

21 � v2>c2

m(u � v)

m(u0 � 0)
�

u0

u021 � v2>c2

u0 S 0,
u � v.uyB V v

u0

m(u)

m(u0)
�
u0

uyB

(after collision)(before collision)

m(u0)u0 � m(u)uyB � �m(u0)u0 � m(u)uyB

S�m(u)m(u0)

(u2
y � v2)1>2 � u

u0

u>c
v V c.

uyB � u0 .
 � 1v V c,

S´

S

B

A

A

v

x´

x

y´

y

(b)

S´

S

B

v

x´

x

y´

y
u0

u0

(a)

The design and construction

of large particle accelerators

throughout the world, such

as CERN’s LHC, are based

directly on the relativistic

expressions for momentum

and energy.

Figure 2-1 (a) Elastic
collision of two identical
balls as seen in frame S. The
vertical component of the
velocity of ball B is in S
if it is u0 in S�. (b) The same
collision as seen in S�. In this
frame, ball A has vertical
component of velocity u0>.

u0>
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4mc

3mc

2mc

mc

Relativistic
momentum

0
0 0.2 0.4 0.6 0.8 1.0

u/c

p

Figure 2-2 Relativistic momentum as given
by Equation 2-6 versus where u � speed
of the object relative to an observer. The
magnitude of the momentum p is plotted
in units of mc. The fainter dashed line shows
the classical momentum mu for comparison.

u>c,

Thus, we see that the law of conservation of momentum will be valid in relativ-
ity, provided that we write the momentum p of an object with rest mass m moving
with velocity u relative to an inertial system S to be 

2-6

where u is the speed of the particle. We therefore take this equation as the definition
of relativistic momentum. It is clear that this definition meets our second criterion be-
cause the denominator approaches 1 when u is much less than c. From this definition,
the momenta of the two balls A and B in Figure 2-1 as seen in S are

where and It is similarly straightforward to show that
Because of the similarity of the factor and in the

Lorentz transformation, Equation 2-6 is often written

2-7

This use of the symbol for two different quantities causes some confusion; the
notation is standard, however, and simplifies many of the equations. We will use this
notation except when we are also considering transformations between reference
frames. Then, to avoid confusion, we will write out the factor and
reserve for where v is the relative speed of the frames. Figure 2-2
shows a graph of the magnitude of p as a function of The quantity m(u) in
Equation 2-5 is sometimes called the relativistic mass; however, we will avoid using
the term or a symbol for relativistic mass: in this book m always refers to the mass

u>c.1>(1 � v2>c2)1>2,
1>(1 � u2>c2)1>2
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1

21 � u2>c2

1>11 � u2>c2pyB � �pyA .
uxB � v.uyB � u0(1 � v2>c2)1>2

pyA �
mu0

21 � u2
0>c2

  pyB �
muyB

21 � (u2
xB � u2

yB)>c2
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mu
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measured in the rest frame. In this we are following Einstein’s view. In a letter to a
colleague in 1948 he wrote:3

It is not good to introduce the concept of mass of a

body for which no clear definition can be given. It is better to introduce no

other mass than “the rest mass” m. Instead of introducing M, it is better to

mention the expression for the momentum and energy of a body in motion.

M � m>(1 � v 2>c 2)1>2

EXAMPLE 2-2 Momentum of a Rocket A high-speed interplanetary probe with a
mass m � 50,000 kg has been sent toward Pluto at a speed u � 0.8c. What is its
momentum as measured by Mission Control on Earth? If, preparatory to landing
on Pluto, the probe’s speed is reduced to 0.4c, by how much does its momentum
change?

EXAMPLE 2-1 Measured Values of Moving Mass For what value of will the
measured mass of an object exceed the rest mass by a given fraction f?

SOLUTION

From Equation 2-5 we see that

Solving for 

or

from which we can compute the table of values below or the value of for any
other f. Note that the value of that results in a given fractional increase f in the
measured value of the mass is independent of m. A diesel locomotive moving at a
particular will be observed to have the same f as a proton moving with that u>c.u>c u>c u>cu>c �

2f(f � 2)

f � 1

1 � u2>c2 �
1

(f � 1)2 ¡ u2>c2 � 1 �
1

(f � 1)2

u>c,
f �

m � m

m
�  � 1 �

1

21 � u2>c2
� 1

m
u>c

f Example

10�12 1.4 � 10�6 jet fighter aircraft

5 � 10�9 0.0001 Earth’s orbital speed

0.0001 0.014 50-eV electron

0.01 (1%) 0.14 quasar 3C273

1.0 (100%) 0.87 quasar 0Q172

10 0.996 muons from cosmic rays

100 0.99995 some cosmic ray protons

u>c
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SOLUTION

1. Assuming that the probe travels in a straight line toward Pluto, its momentum
along that direction is given by Equation 2-6:

2. When the probe’s speed is reduced, the momentum declines along the relativis-
tic momentum curve in Figure 2-2. The new value is computed from the ratio:

3. The reduced momentum is then given by

Remarks: Notice from Figure 2-2 that the incorrect classical value of would
have been 4.0 � 104 c kg. Also, while the probe’s speed was decreased to its
initial value, the momentum was decreased to of the initial value.

Question

1. In our discussion of the inelastic collision of balls A and B, the collision was
a “grazing” one in the limiting case. Suppose instead that the collision is a 
“head-on” one along the x axis. If the speed of (i.e., ball B) is low, say,
v � 0.1c, what would a spacetime diagram of the collision look like?

2-2 Relativistic Energy
As noted in the preceding section, the fundamental character of the principle of con-
servation of total energy leads us to seek a definition of total energy in relativity that
preserves the invariance of that conservation law in transformations between inertial
systems. As with the definition of the relativistic momentum, Equation 2-6, we will
require that the relativistic total energy E satisfy two conditions:

1. The total energy E of any isolated system is conserved.

2. E will approach the classical value when approaches zero.

Let us first find a form for E that satisfies the second condition and then see if it
also satisfies the first. We have seen that the quantity mu is not conserved in collisions
but that is, with We have also noted that Newton’s second � 1>(1 � u2>c2)1>2.mu

u>c

S�

1>3 1>2# p0.8c

� 6.6 � 1012 kg # m>s� 2.2 � 104 c # kg

� (0.33)(6.7 � 104 c # kg)

p0.4c � 0.33p0.8c

p0.4c

� 0.33

�
1

2

21 � (0.8)2

21 � (0.4)2

p0.4c

p0.8c

�
m(0.4c)>21 � (0.4)2

m(0.8c)>21 � (0.8)2

� 6.7 � 104 c # kg � 2.0 � 1013 kg # m>sp �
mu

21 � u2>c2
�

(50,000 kg)(0.8c)

21 � (0.8c)2>c2



2-2 Relativistic Energy 71

law in the form F � ma cannot be correct relativistically, one reason being that it leads
to the conservation of mu. We can get a hint of the relativistically correct form of the
second law by writing it F � dp dt. This equation is relativistically correct if the rel-
ativistic momentum p is used. We thus define the force in relativity to be

2-8

Now, as in classical mechanics, we will define kinetic energy as the work done by
a net force in accelerating a particle from rest to some velocity u. Considering motion
in one dimension only, we have

using u � dx dt. The computation of the integral in this equation is not difficult but
requires a bit of algebra. It is left as an exercise (Problem 2-2) to show that

Substituting this into the integrand of the equation for Ek above, we obtain

or

2-9Ek � mc2 � mc2

� mc2a 1

21 � u2>c2
� 1b

Ek � �
u

0
u d(mu) � �

u

0
ma1 �

u2

c2
b�3>2

u du

d(mu) � ma1 �
u2

c2
b�3>2

du

>
Ek � �

u

u�0
F dx � �

u

0

d(mu)

dt
dx � �

u

0
u d(mu)

Ek

F �
dp

dt
�
d(mu)

dt

>

Aerial view of the Jefferson Laboratory’s
Continuous Electron Beam Accelerator
Facility (CEBAF) in Virginia. The dashed line
indicates the location of the underground
accelerator, where electrons are accelerated
to 6 GeV and reach speeds of more than
99.99 percent of the speed of light. The circles
outline the experiment halls, also
underground. [Thomas Jefferson National
Accelerator Facility/U.S. Department of Energy.]
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1.0

0.5

Nonrelativistic

Relativistic

0.0
0 4 5321

Kinetic energy (MeV)
u –– c

2

1––
2

Ek = mu2

Ek = mc2 – 1
1–––––––––

  1 – (u/c)2

Equation 2-9 defines the relativistic kinetic energy. Notice that, as we warned earlier,
is not or even This is strikingly evident in Figure 2-3. However,

consistent with our second condition on the relativistic total energy E, Equation 2-9
does approach when We can check this assertion by noting that for

expanding by the binomial theorem yields

and thus

The expression for kinetic energy in Equation 2-9 consists of two terms. One
term, depends on the speed of the particle (through the factor ), and the other
term, is independent of the speed. The quantity is called the rest energy of
the particle, i.e., the energy associated with the rest mass m. The relativistic total en-
ergy E is then defined as the sum of the kinetic energy and the rest energy.

2-10

Thus, the work done by a net force increases the energy of the system from the rest
energy to (or increases the measured mass from m to ).

For a particle at rest relative to an observer, and Equation 2-10 becomes
perhaps the most widely recognized equation in all of physics, Einstein’s famous
E � mc2. When Equation 2-10 can be written as 

E �
1

2
mu2 � mc2

u V c,

Ek � 0,
mmc2mc2

E � Ek � mc2 � mc2 �
mc2

21 � u2>c2

mc2mc2,
mc2,

Ek � mc2a1 �
1

2

u2

c2
� Á �1b �

1

2
mu2

 � a1 �
u2

c2
b�1>2

� 1 �
1

2

u2

c2
� Á

u>c V 1,
u V c.mu2>2 mu2>2.mu2>2Ek

Figure 2-3 Experimental confirmation of the
relativistic relation for kinetic energy. Electrons were
accelerated to energies up to several MeV in large
electric fields, and their velocities were determined
by measuring their time of flight over 8.4 m. Note
that when the velocity the relativistic and
nonrelativistic (i.e., classical) relations are
indistinguishable. [W. Bertozzi, American Journal of
Physics, 32, 551 (1964).]

u V c,



Before the development of relativity theory, it was thought that mass was a con-
served quantity;4 consequently, m would always be the same before and after an
interaction or event and would therefore be constant. Since the zero of energy is
arbitrary, we are always free to include an additive constant; therefore, our definition
of the relativistic total energy reduces to the classical kinetic energy for and
our second condition on E is satisfied.5

Be very careful to understand Equation 2-10 correctly. It defines the total energy
E, and E is what we are seeking to conserve for isolated systems in all inertial frames,
not and not Remember, too, the distinction between conserved quantities and
invariant quantities. The former have the same value before and after an interaction in
a particular reference frame. The latter have the same value when measured by ob-
servers in different reference frames. Thus, we are not requiring observers in relatively
moving inertial frames to measure the same values for E, but rather that E be un-
changed in interactions as measured in each frame. To assist us in showing that E as
defined by Equation 2-10 is conserved in relativity, we will first see how E and
p transform between inertial reference frames.

Lorentz Transformation of E and p

Consider a particle of rest mass m that has an arbitrary velocity u with
respect to frame S, as shown in Figure 2-4. System is a second
inertial frame moving in the �x direction. The particle’s momentum
and energy are given in the S and systems, respectively, by,

In S:

2-11

where

In S�:

2-12

where

Developing the Lorentz transformation for E and p requires that we first express 
in terms of quantities measured in S. (We could just as well express in terms of
primed quantities. Since this is relativity, it makes no difference which we choose.)
The result is

2-13
1

21 � u�2>c2
� 

(1 � vux>c2)

21 � u2>c2
 where now  �

1

21 � v2>c2


�

� � 1>21 � u�2>c2

pœ
z � �muœ

z

pœ
y � �muœ

y

pœ
x � �muœ

x

E� � �mc2

 � 1>21 � u2>c2

pz � muz

py � muy

px � mux

E � mc2

S�

S�

mc2.Ek

u V c

mc2
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y´S S´

z

y

u

x, x´

z´

v

Figure 2-4 Particle of mass m moves with
velocity u measured in S. System S� moves in the
�x direction at speed v. The Lorentz velocity
transformation makes possible determination of
the relations connecting measurements of the total
energy and the components of the momentum in
the two frames of reference.
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Substituting Equation 2-13 into the expression for in Equation 2-12 yields

The first term in the brackets you will recognize as E, and the second term, canceling
the factors, as from Equation 2-11. Thus, we have

2-14

Similarly, substituting Equation 2-13 and the velocity transformation for into the
expression for in Equations 2-12 yields

The first term in the brackets is from Equation 2-11, and, because 
the second term is Thus, we have

2-15

Using the same approach, we can show (Problem 2-46) that 

Together these relations are the Lorentz transformation for momentum and energy:

2-16

The inverse transformation is

2-17

with

Note the striking similarity between Equations 2-16 and 2-17 and the Lorentz
transformation of the space and time coordinates, Equations 1-18 and 1-19. The mo-
mentum transforms in relativity exactly like and the total en-
ergy E transforms like the time t. We will return to this remarkable result and related
matters shortly, but first let’s do some examples and then, as promised, show that the
energy as defined by Equation 2-10 is conserved in relativity.

EXAMPLE 2-3 Transforming Energy and Momentum Suppose a micrometeorite of
mass 10�9 kg moves past Earth at a speed of 0.01c. What values will be measured
for the energy and momentum of the particle by an observer in a system moving
relative to Earth at 0.5c in the same direction as the micrometeorite?
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SOLUTION

Taking the direction of the micrometeorite’s travel to be the x axis, the energy and
momentum as measured by the Earth observer are, using the approximation
of Equation 2-10:

and

For this situation so in the measured values of the energy and
momentum will be

and

Thus, the observer in measures a total energy nearly 15 percent larger and a
momentum more than 50 times greater and in the �x direction.

EXAMPLE 2-4 A More Difficult LorentzTransformation of Energy Suppose that a par-
ticle with mass m and energy E is moving toward the origin of a system S such that
its velocity u makes an angle with the y axis, as shown in Figure 2-5. Using the
Lorentz transformation for energy and momentum, determine the energy of the
particle measured by an observer in which moves relative to S so that the parti-
cle moves along the axis.

SOLUTION

System moves in the �x direction at speed as determined from the
Lorentz velocity transformation for Thus, Also,

and from the latter,

In the energy will be

�
1

21 � u2 sin2 �>c2
[E � Am>21 � u2>c2 Bu2 sin2 �]

�
1

21 � v2>c2
[E � (u sin�) Am � 	>21 � v2>c2 Bsin�]

E� � (E � vpx)

S�

p � � Amu>21 � u2>c2 Bsin �

E � mc2>21 � u2>c2  p � mu>21 � u2>c2

v � �u sin �.uœ
x � 0.

u sin �,S�

y�
S�,

E�
�

S�

pœ
x � �5.66 � 10�10 c kg # m>s � �56.6 � 10�11 c kg # m>spœ
x � (1.1547)(10�11 � 5.00025 � 10�10)c

pœ
x � (px � vE>c2) � (1.1547)[10�11c � (0.5c)(1.00005 � 10�9c2)>c2]

E� � 1.14898 � 10�9 c2 J

E� � (1.1547)(1.00005 � 10�9 � 0.5 � 10�11)c2

E� � (E � vpx) � (1.1547)[1.00005 � 10�9c2 � (0.5c)(10�11c)]

S� � 1.1547,

px � mux � (10�9 kg)(0.01c) � 10�11c kg # m>s
E � 1.00005 � 10�9 c2 J

E �
1

2
mu2 � mc2 � 10�9 kg[(0.01c)2>2 � c2]

u V c

S

y
m

u

x

α

Figure 2-5 The system
discussed in Example 2-4.
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Multiplying the second term in the brackets by and factoring an E from both
terms yield

Since and we see that except for when 
in which case S and are the same system. Note, too, that for � 0, if 

As we will see later, this is the case for light.

Question

2. Recalling the results of the measurements of time and space intervals by
observers in motion relative to clocks and measuring rods, discuss the results 
of corresponding measurements of energy and momentum changes.

Conservation of Energy

As with our discussion of momentum conservation in relativity, let us consider a col-
lision of two identical particles, each with rest mass m. This time, for a little variety,
we will let the collision be completely inelastic—i.e., when the particles collide, they
stick together. In the system called the zero momentum frame, the particles ap-
proach each other along the axis with equal speeds u—hence equal and opposite
momenta—as illustrated in Figure 2-6a. In this frame the collision results in the for-
mation of a composite particle of mass M at rest in If moves with respect to a
second frame S at speed v � u in the x direction, then the particle on the right before
the collision will be at rest in S and the composite particle will move to the right at
speed u in that frame. This situation is illustrated in Figure 2-6b.

S�S�.

x�
S�,

E� S E cos�.
uS c,�S�
E� � E,� � 0E� � E,sin2 � � 1,u � c

E� � E21 � (u2>c2)sin �

c2>c2

Figure 2-6 Inelastic collision
of two particles of equal rest
mass m. (a) In the zero
momentum frame S� the
particles have equal and
opposite velocities and hence
momenta. After the collision,
the composite particle of mass
M is at rest in S�. The diagram
on the far right is the spacetime
diagram of the collision from
the viewpoint of S�. (b) In
system S the frame S� is
moving to the right at speed u
so that the particle on the right
is at rest in S, while the left one
moves at 
After collision, the composite
particle moves to the right at
speed u. Again, the spacetime
diagram of the interaction is
shown on the far right. All
diagrams are drawn with the
collision occurring at the origin.

2u>(1 � u2>c2).
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Using the total energy as defined by Equation 2-10, we have in :

Before collision:

2-18

After collision:

2-19

Energy will be conserved in if i.e., if 

2-20

This is ensured by the validity of conservation of momentum, in particular by
Equation 2-5, and so energy is conserved in (The validity of Equation 2-20 is im-
portant and not trivial. We will consider it in more detail in Example 2-7.) To see if
energy as we have defined it is also conserved in S, we transform to S using the inverse
transform, Equation 2-17. We then have in S:

Before collision:

2-21

After collision:

2-22

The energy will be conserved in S and, therefore, the law of conservation of energy
will hold in all inertial frames if i.e., if

2-23

which, like Equation 2-20, is ensured by Equation 2-5. Thus, we conclude that the en-
ergy as defined by Equation 2-10 is consistent with a relativistically invariant law of con-
servation of energy, satisfying the first of the conditions set forth at the beginning of this
section. While this demonstration was not a general one, since that is beyond the scope
of our discussions, you may be assured that our conclusion is quite generally valid.

Question

3. Explain why the result of Example 2-4 does not mean that energy conservation
is violated.

a 2mc2

21 � u2>c2
b � Mc2

Ebefore � Eafter ,

Eafter � (Mc2 � upœ
x) � Mc2 since again pœ

x � 0

Ebefore � a 2mc2

21 � u2>c2
b since pœ

x � 0

Ebefore � a 2mc2

21 � u2>c2
� upœ

xb
Ebefore � (Eœ

before � vpœ
x)

S�.

2mc2

21 � u2>c2
� Mc2

Eœ
before � Eœ

after ,S�

Eœ
after � Mc2

�
2mc2

21 � u2>c2

Eœ
before �

mc2

21 � u2>c2
�

mc2

21 � u2>c2

S�
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EXAMPLE 2-5 Mass of Cosmic Ray Muons In Chapter 1, muons produced as sec-
ondary particles by cosmic rays were used to illustrate both the relativistic length
contraction and time dilation resulting from their high speed relative to observers on
Earth. That speed is about 0.998c. If the rest energy of a muon is 105.7 MeV, what
will observers on Earth measure for the total energy of a cosmic ray–produced
muon? What will they measure for its mass?

SOLUTION

The electron volt (eV), the amount of energy acquired by a particle with electric
charge equal in magnitude to that on an electron (e) accelerated through a potential
difference of 1 volt, is a convenient unit in physics, as you may have learned. It is
defined as

2-24

Commonly used multiples of the eV are the keV (103 eV), the MeV (106 eV),
the GeV (109 eV), and the TeV (1012 eV). Many experiments in physics involve the
measurement and analysis of the energy and/or momentum of particles and systems
of particles, and Equation 2-10 allows us to express the masses of particles in en-
ergy units rather than the SI unit of mass, the kilogram. That and the convenient size
of the eV facilitate6 numerous calculations. For example, the mass of an electron is
9.11 � 10�31 kg. Its rest energy is given by 

or

or

The mass of the particle is often expressed with the same number thus:

Now, applying the above to the muons produced by cosmic rays, each has a total
energy E given by

and a measured mass (see Equation 2-5) of

The dependence of the measured mass on the speed of the particle has been verified
by numerous experiments. Figure 2-7 illustrates a few of those results.

m � E>c2 � 1670 MeV>c2

E � 1670 MeV

E � mc2 �
1

21 � (0.998c)2>c2
� 105.7

MeV

c2
� c2

m �
E

c2
� 0.511 MeV>c2 mass of the electron

E � 0.511 MeV rest energy of the electron

E � 8.19 � 10�14 J �
1

1.602 � 10�19 J>eV
� 5.11 � 105 eV

E � mc2 � 9.11 � 10�31 kg # c2 � 8.19 � 10�14 J

1.0 eV � 1.602 � 10�19 C � 1.0 V � 1.602 � 10�19 J
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γm
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Figure 2-7 A few of the many experimental
measurements of the mass of electrons as a
function of their speed The data points are
plotted onto Equation 2-5, the solid line. The data
points represent the work of W. Kaufmann 
(�, 1901), A. H. Bucherer (�, 1908), and
W. Bertozzi (●, 1964). Note that Kaufmann’s
work preceded the appearance of Einstein’s 1905
paper on special relativity. Kaufmann used an
incorrect mass for the electron and interpreted
his results as support for classical theory. [Adapted
from Figure 3-4 in R. Resnick and D. Halliday, Basic
Concepts in Relativity and Early Quantum Theory,
2d ed. (New York: Macmillan, 1992).]

u>c.

EXAMPLE 2-6 Change in the Solar Mass Compute the rate at which the Sun is
losing mass, given that the mean radius R of Earth’s orbit is 1.50 � 108 km and the
intensity of solar radiation at Earth (called the solar constant) is 1.36 � 103 W m2.

SOLUTION

1. The conversion of mass into energy, a consequence of conservation of energy
in relativity, is implied by Equation 2-10. With u � 0 that equation becomes

2. Assuming that the Sun radiates uniformly over a sphere of radius R, the total
power radiated by the Sun is given by

3. Thus, every second the Sun emits 3.85 � 1026 J, which, from Equation 2-10,
is the result of converting an amount of mass given by

Remarks: Thus, the Sun is losing 4.3 � 109 kg of mass (about 4 million metric
tons) every second! If this rate of mass loss remains constant (which it will for the
next few billion years) and with a fusion mass-to-energy conversion efficiency of
about 1 percent, the Sun’s present mass of about 2.0 � 1030 kg will “only” last for
about 1011 more years!

� 4.3 � 109 kg

�
3.85 � 1026 J

(3.00 � 108 m>s)2

m � E>c2

� 3.85 � 1026 J>s� 4�(1.50 � 1011 m)2(1.36 � 103 W>m2)

� (4�R2)(1.36 � 103 W>m2)

P � (area of the sphere)(solar constant)

E � mc2

>
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Figure 2-8 (a) A lever in the xy plane of system S is free to rotate about the pin P but is
held at rest by the two forces Fx and Fy . (b) The same lever as seen by an observer in 
that is moving with instantaneous speed v in the �x direction. For the observer the lever
is moving in the direction.�x�

S�
S�

EXPLORING

From Mechanics, Another Surprise

One consequence of the fact that Newton’s second law, F � ma, is not relativistically
invariant is yet another surprise—the lever paradox. Consider a lever of mass m at rest
in S (Figure 2-8). Since the lever is at rest, the net torque due to the forces Fx and
Fy is zero, i.e. (using magnitudes):

and therefore

An observer in system moving with with respect to S sees the
lever moving in the direction and measures the torque to be 

where and (see Problem 2-53) and the lever is rotating!
The resolution of the paradox was first given by the German physicist Max von Laue

(1879–1960). Recall that the net torque is the rate of change of the angular momentum
L. The observer measures the work done per unit time by the two forces as

For

For zero, since is perpendicular to the motion

and the change in mass �m per unit time of the moving lever is 

¢m
¢t�

�
¢E>c2

¢t�
�

1

c2

¢E
¢t�

� �
1

c2
Fxv

F œ
yF œ

y :

�F œ
xv � �FxvF œ

x :

S�

F œ
y � Fy >2F œ

x � Fx

� �Fxb � Fxb>4 � �(3>4)Fxb � 0

�œ
net � �œ

x � �œ
y � �F œ

xb� � F œ
ya� � �Fxb � (Fy >2)(a>2)

�x�
� � 0.866 ( � 2)S�

Fxb � Fya

�net � �x � �y � �Fxb � Fya � 0

�net



The observer measures a change in the magnitude of angular momentum per unit
time given by

Substituting for from above yields

As a result of the motion of the lever relative to an observer in that system sees the
force doing net work on the lever, thus changing the angular momentum over time,
and the paradox vanishes. (The authors thank Costas Efthimiou for bringing this para-
dox to our attention.)

2-3 Mass/Energy Conversion 

and Binding Energy
The identification of the term mc2 as rest energy is not merely a conve-
nience. Whenever additional energy �E in any form is stored in an ob-
ject, the mass of the object is increased by �E c2. This is of particular
importance whenever we want to compare the mass of an object that
can be broken into constituent parts with the mass of the parts (for ex-
ample, an atom containing a nucleus and electrons, or a nucleus con-
taining protons and neutrons). In the case of the atom, the mass changes
are usually negligibly small (see Example 2-8). However, the difference
between the mass of a nucleus and that of its constituent parts (protons
and neutrons) is often of great importance.

As an example, consider Figure 2-9a in which two particles, each
with mass m, are moving toward each other with speeds u. They col-
lide with a spring that compresses and locks shut. (The spring is
merely a device for visualizing energy storage.) In the Newtonian
mechanics description, the original kinetic energy 
is converted into potential energy of the spring U. When the spring is
unlocked, the potential energy reappears as kinetic energy of the par-
ticles. In relativity theory, the internal energy of the system, Ek � U,
appears as an increase in the rest mass of the system. That is, the mass
of the system M is now greater than 2m by Ek c2. (We will derive this
result in the next example.) This change in mass is too small to be ob-
served for ordinary-size masses and springs, but it is easily observed in transforma-
tions that involve nuclei. For example, in the fission of a nucleus, the energy
released as kinetic energy of the fission fragments is an appreciable fraction of the
rest energy of the original nucleus. (See Example 11-19.) This energy can be calcu-
lated by measuring the difference between the mass of the original system and the
total mass of the fragments. Einstein was the first to point out this possibility in
1905, even before the discovery of the atomic nucleus, at the end of a very short
paper that followed his famous article on relativity.7 After deriving the theoretical
equivalence of energy and mass, he wrote:

It is not impossible that with bodies whose energy content is variable to a

high degree (e.g., with radium salts) the theory may be successfully put to

the test.

235U

>
Ek � 2 A 12mu2 B

>

F œ
x

S�,

�œ
net �

¢L�

¢t�
� bv

�Fxv

c2
� �bFx

v2

c2
� �bFx�

2 � �
3

4
Fxb

¢m>¢t� �net �
¢L�

¢t�
�
b¢p�

¢t�
�
bv¢m

¢t�
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The relativistic conversion of

mass into energy is the

fundamental energy source

in the nuclear reactor–based

systems that produce

electricity in 30 nations and

in large naval vessels and

nuclear submarines.

m

M

m

u u

(a)

m

M

m
u

u

u´(b)

S´

S

Figure 2-9 Two objects colliding with a
massless spring that locks shut. The total
rest mass of the system M is greater than
that of the parts 2m by the amount Ek c2,
where Ek is the internal energy, which in this
case is the original kinetic energy. (a) The
event as seen in a reference frame S in
which the final mass M is at rest. (b) The
same event as seen in a frame S� moving to
the right at speed u relative to S, so that one
of the initial masses is at rest.

>
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EXAMPLE 2-7 Change in the Rest Mass of the Two-Particle and Spring System of

Figure 2-9 Derive the increase in the rest mass of a system of two particles in a to-
tally inelastic collision. Let m be the mass of each particle so that the total mass of
the system is 2m when the particles are at rest and far apart, and let M be the rest
mass of the system when it has internal energy Ek. The original kinetic energy in the
reference frame S (Figure 2-9a) is

2-25

SOLUTION

In a perfectly inelastic collision, momentum conservation implies that both particles
are at rest after collision in this frame, which is the center-of-mass frame. The total
kinetic energy is therefore lost. We wish to show that if momentum is to be con-
served in any reference frame moving with a constant velocity relative to S, the total
mass of the system must increase by �m, given by

2-26

We therefore wish to show that the total mass of the system with internal energy
is M, given by

2-27

To simplify the mathematics, we chose a second reference frame moving to the
right with speed v � u relative to frame S so that one of the particles is initially at
rest, as shown in Figure 2-9b. The initial speed of the other particle in this frame is

2-28

After collision, the particles move together with speed u toward the left (since they
are at rest in S). The initial momentum in is 

The final momentum is

Using Equation 2-28 for squaring, dividing by c2, and adding �1 to both sides
gives

Then

pœ
i �

m[2u>(1 � u2>c2)]

(1 � u2>c2)>(1 � u2>c2)
�

2mu

(1 � u2>c2)

1 �
u�2

c2
� 1 �

4u2>c2

(1 � u2>c2)2
�

(1 � u2>c2)2

(1 � u2>c2)2

u�,

pœ
f �

Mu

21 � u2>c2
 to the left

pœ
i �

mu�

21 � u�2>c2
 to the left

S�

u� �
u � v

1 � uv>c2
�

�2u

1 � u2>c2

S�

M � 2m � ¢m � 2m

¢m �
Ek
c2

� 2m( � 1)

Ek � 2mc2( � 1)
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Conservation of momentum in frame requires that or

Solving for M, we obtain

which is Equation 2-27. Thus, the measured value of M would be 

If the latch in Figure 2-9b were to suddenly come unhooked, the two particles
would fly apart with equal momenta, converting the rest mass �m back into kinetic
energy. The derivation is similar to that in Example 2-7.

Mass and Binding Energy

When a system of particles is held together by attractive forces, energy is required to
break up the system and separate the particles. The magnitude of this energy Eb is
called the binding energy of the system. An important result of the special theory of
relativity that we will illustrate by example in this section is

The mass of a bound system is less than that of the separated particles by

Eb c2, where Eb is the binding energy.

In atomic and nuclear physics, masses and energies are typically given in atomic
mass units (u) and electron volts (eV) rather than in standard SI units of kilograms and
joules. The u is related to the corresponding SI units by

2-29

(The eV was defined in terms of the joule in Equation 2-24.) The rest energies of
some elementary particles and a few light nuclei are given in Table 2-1, from which
you can see by comparing the sums of the masses of the constituent particles with
the nuclei listed that the mass of a nucleus is not the same as the sum of the masses
of its parts.

The simplest example of nuclear binding energy is that of the deuteron, which
consists of a neutron and a proton bound together. Its rest energy is 1875.613 MeV.
The sum of the rest energies of the proton and neutron is 938.272 � 939.565 �
1877.837 MeV. Since this is greater than the rest energy of the deuteron, the deuteron
cannot spontaneously break up into a neutron and a proton without violating conser-
vation of energy. The binding energy of the deuteron is 1877.837 � 1875.613 �
2.224 MeV. In order to break up a deuteron into a proton and a neutron, at least 
2.224 MeV must be added. This can be done by bombarding deuterons with energetic
particles or electromagnetic radiation. If a deuteron is formed by combination of a
neutron and a proton (fusion; see Chapter 11), the same amount of energy is released.

2H,

1 u � 1.66054 � 10�27 kg � 931.494 MeV>c2

>

2m.

M �
2m

21 � u2>c2
� 2m

Mu

21 � u2>c2
�

2mu

1 � u2>c2

pœ
f � pœ

i ,S�
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EXAMPLE 2-8 Binding Energy of the Hydrogen Atom The binding energies of
atomic electrons to the nuclei of atoms are typically of the order of 10�6 times those
characteristic of particles in the nuclei; consequently, the mass differences are cor-
respondingly smaller. The binding energy of the hydrogen atom (the energy needed
to remove the electron from the atom) is 13.6 eV. How much mass is lost when an
electron and a proton form a hydrogen atom?

SOLUTION

The mass of the proton plus that of the electron must be greater than that of the
hydrogen atom by 

This mass difference is so small that it is usually neglected.

2-4 Invariant Mass
In Chapter 1 we discovered that as a consequence of Einstein’s relativity postulates,
the coordinates for space and time are linearly dependent on one another in the
Lorentz transformation that connects measurements made in different inertial refer-
ence frames. Thus, the time t became a coordinate, in addition to the space coordinates
x, y, and z, in the four-dimensional relativistic “world” that we call spacetime. We note
in passing that the geometry of spacetime was not the familiar Euclidean geometry of
our three-dimensional world, but the four-dimensional Lorentz geometry. The differ-
ence became apparent when one compared the computation of the distance r between
two points in space with that of the interval between two events in spacetime. The for-
mer is, of course, the vector r, whose magnitude is given by 
The vector r is unchanged (invariant) under a Galilean transformation in space, and
quantities that transform like r are also vectors. The latter we called the spacetime
interval �s, and its magnitude, as we have seen, is given by

2-30(¢s)2 � (c¢t)2 � [(¢x)2 � (¢y)2 � (¢z)2]

r2 � x2 � y2 � z2.

13.6 eV

931.5 MeV>u � 1.46 � 10�8 u

Table 2-1 Rest energies of some elementary particles and light nuclei

Particle Symbol Rest energy (MeV)

Photon 0

Neutrino (antineutrino) �2.8 � 10�6

Electron (positron) 0.5110

Muon 105.7

Pi mesons (pions) 139.6 (135) 139.6

Proton p 938.272

Neutron n 939.565

Deuteron 1875.613

Helion 2808.391

Alpha 3727.3794He or �

3He or h

2H or d

�� (�0) ��

	� 	�

e or e� (e�)

� (�)
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The interval �s is the four-dimensional analog of r and therefore is called a four-
vector. Just as x, y, and z are the components of the three-vector r, the components of
the four-vector �s are �x, �y, �z, and c�t. We have seen that �s is also invariant under
a Lorentz transformation in spacetime. Correspondingly, any quantity that transforms
like �s—i.e., is invariant under a Lorentz transformation—will also be a four-vector.
The physical significance of the invariant interval �s is quite profound: for timelike
intervals (the proper time interval), for spacelike intervals �s � Lp (the
proper length), and the proper intervals can be found from measurements made in
any inertial frame.8

In the relativistic energy and momentum we have components of another four-
vector. In the preceding sections we saw that the momentum and energy, defined by
Equations 2-6 and 2-10, respectively, were not only both conserved in relativity, but
also together satisfied the Lorentz transformation, Equations 2-16 and 2-17, with
the components of the momentum transforming like the space compo-
nents of r(x, y, z) and the energy transforming like the time t. The questions then
are, What invariant four-vectors are they components of? and, What is its physical
significance? The answers to both turn out to be easy to find and yield for us yet
another relativistic surprise. By squaring Equations 2-6 and 2-10, you can readily
verify that 

2-31

This very useful relation we will rearrange slightly to

2-32

Comparing the form of Equation 2-32 with that of Equation 2-30 and knowing that
E and p transform according to the Lorentz transformation, we see that the magni-
tude of the invariant energy/momentum four-vector is the rest energy of the mass m!
Thus, observers in all inertial frames will measure the same value for the rest energy
of isolated systems and, since c is constant, the same value for the mass. Note that
only in the rest frame of the mass m, i.e., the frame where p � 0, are the rest energy
and the total energy equal. Even though we have written Equation 2-31 for a single
particle, we could as well have written the equations for momentum and energy in
terms of the total momentum and total energy of an entire ensemble of noninteract-
ing particles with arbitrary velocities. We would only need to write down Equations
2-6 and 2-10 for each particle and add them together. Thus, the Lorentz transforma-
tion for momentum and energy, Equations 2-16 and 2-17, holds for any system of
particles and so therefore does the invariance of the rest energy expressed by
Equation 2-32.

We may state all of this more formally by saying that the kinematic state of the
system is described by the four-vector �s where

and its dynamic state is described by the energy/momentum four-vector mc2, given by

The next example illustrates how this works.

(mc2)2 � E2 � (pc)2

(¢s)2 � (c¢t)2 � [(¢x)2 � (¢y)2 � (¢z)2]

(mc2)2 � E2 � (pc)2

E2 � (pc)2 � (mc2)2

p(px , py , pz)

¢s>c � �
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EXAMPLE 2-9 Rest Mass of Moving Object A particular object is observed to move
through the laboratory at high speed. Its total energy and the components of its mo-
mentum are measured by lab workers to be (in SI units) E � 4.5 � 1017 J,

and
What is the object’s rest mass?

SOLUTION A

From Equation 2-32 we can write

SOLUTION B

A slightly different but sometimes more convenient calculation that doesn’t involve
carrying along large exponentials makes use of Equation 2-32 divided by c4:

2-33

Notice that this is simply a unit conversion, expressing each term in (mass)2 units—
e.g., kg2 when E and p are in SI units:

In the example, we determined the rest energy and mass of a rapidly moving ob-
ject using measurements made in the laboratory without the need to be in the system
in which the object was at rest. This ability is of enormous benefit to nuclear, particle,
and astrophysicists, whose work regularly involves particles moving at speeds close
to that of light. For particles or objects whose rest mass is known, we can use the in-
variant magnitude of the energy/momentum four-vector to determine the values of
other dynamic variables, as illustrated in the next example.

EXAMPLE 2-10 Speed of a Fast Electron The total energy of an electron produced
in a particular nuclear reaction is measured to be 2.40 MeV. Find the electron’s
momentum and speed in the laboratory frame. (The rest mass of an electron is
9.11 � 10�31 kg and its rest energy is 0.511 MeV.)

SOLUTION

The magnitude of the momentum follows immediately from Equation 2-31:

p � 2.34 MeV>c� 2.34 MeV

pc � 2E2 � (mc2)2 � 2(2.40 MeV)2 � (0.511 MeV)2

m � (21.4)1>2 � 4.6 kg

� 25 � 3.56

� (5.0)2 � [(1.25)2 � (1.0)2 � (1.0)2]

m2 � a4.5 � 1017

c2
b 2

� c a 3.8 � 108

c
b 2

� a3.0 � 108

c
b 2

� a3.0 � 108

c
b 2 d

m2 � aE
c2
b 2

� ap
c
b 2

m � (1.74 � 1035 J2)1>2>c2 � 4.6 kg

� 1.74 � 1035 J2

� 2.0 � 1035 � 2.9 � 1034

� (4.5 � 1017)2 � [1.4 � 1017 � 9.0 � 1016 � 9.0 � 1016]c2

 (mc2)2 � (4.5 � 1017)2 � [(3.8 � 108c)2 � (3.0 � 108c)2 � (3.0 � 108c)2]

pz � 3.0 � 108 kg # m>s.py � 3.0 � 108 kg # m>s,px � 3.8 � 108 kg # m>s,
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where we have again made use of the convenience of the eV as an energy unit. The
resulting momentum unit MeV c can be readily converted to SI units by converting
the MeV to joules and dividing by c, i.e.,

Therefore, the conversion to SI units is easily done, if desired, and yields

The speed of the particle is obtained by noting from Equation 2-32 or from
Equations 2-6 and 2-10 that

2-34

or

It is extremely important to recognize that the invariant rest energy in Equation 2-32
is that of the system and that its value is not the sum of the rest energies of the particles
of which the system is formed, if the particles move relative to one another. Earlier we
used numerical examples of the binding energy of atoms and nuclei that illustrated this
fact by showing that the masses of the atoms and nuclei were less than the sum of
the masses of their constituents by an amount �mc2 that equaled the observed binding
energy, but those were systems of interacting particles—i.e., there were forces acting
between the constituents. A difference exists, even when the particles do not interact.
To see this, let us focus our attention on specifically what mass is invariant.

Consider two identical noninteracting particles, each of rest mass m � 4 kg mov-
ing toward each other along the x axis of S with momentum as illustrated
in Figure 2-10a. The energy of each particle, using Equation 2-33, is

Thus, the total energy of the system is kg, since the energy is a
scalar. Similarly, the total momentum of the system is since
the momentum is a vector and the momenta are equal and opposite. The rest mass
of the system is then 

Hence, the system mass of 10 kg is greater than the sum of the masses of the two par-
ticles, 8 kg. (This is in contrast to bound systems, such as atoms, where the system
mass is smaller than the total of the constituents.) This difference is not binding en-
ergy, since the particles are noninteracting. Neither does the 2 kg “mass difference”
reside equally with the two particles. In fact, it doesn’t reside in any particular place
but is a property of the entire system. The correct interpretation is that the mass of the
system is 10 kg.

Although the invariance of the energy/momentum four-vector guarantees that ob-
servers in other inertial frames will also measure 10 kg as the mass of the system, let
us allow for a skeptic or two and transform to another system e.g., the one shown
in Figure 2-10c, just to be sure.

S�,

m � 2(E>c2)2 � (p>c)2 � 2(10)2 � 02 � 10 kg

3c # kg � 3c # kg � 0,
5c2 � 5c2 � 10c2

E>c2 � 2m2 � (p>c)2 � 2(4)2 � (3)2 � 5 kg

px � 3c # kg,

u � 0.975c

u
c

�
pc

E
�

2.34 MeV

2.40 MeV
� 0.975

p � 1.25 � 10�21 kg # m>sp � 2.34 MeV>c �
5.34 � 10�22 kg # m>s

1 MeV>c
1 MeV>c �

1.602 � 10�13 J

2.998 � 108 m>s � 5.34 � 10�22 kg # m>s
>
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EXAMPLE 2-11 Lorentz Transformation of System Mass For the system illustrated
in Figure 2-10, show that an observer in which moves relative to S at
also measures the mass of the system to be 10 kg.

SOLUTION

1. The mass m measured in is given by Equation 2-33, which in this case is

2. is given by Equation 2-16:

3. is also given by Equation 2-16:

4. Substituting and into Equation 2-33 yields

Remarks: This result agrees with the value measured in S. The speed of cho-
sen for this calculation, v � 0.6c, is convenient in that one of the particles consti-
tuting the system is at rest in ; however, that has no effect on the generality of
the solution.

S�

S�

� 10 kg

� [(12.5)2 � (�7.5)2]1>2m � [(12.5c2>c2)2 � (�7.5c>c)2]1>2pœ
xE�

� �7.5 c # kg

� (1.25)[0 � (0.6c)(10c2)>c2]

pœ
x � (px � vE>c2)

pœ
x

� 12.5 c2 # kg

� (1.25)(10c2)

�
1

21 � (0.6)2
(10c2 � 0.6c � 0)

E� � (E � vpx)

E�

m � [(E�>c2)2 � (pœ
x>c)2]1>2S�

� � 0.6,S�,

Figure 2-10 (a) Two identical particles with rest mass 4 kg
approach each other with equal but oppositely directed momenta.
The rest mass of the system made up of the two particles is not
4 kg � 4 kg because the system’s rest mass includes the mass
equivalent of its internal motions. That value, 10 kg (b), would be
the result of a measurement of the system’s mass made by an
observer in S, for whom the system is at rest, or by observers in any
other inertial frames. (c) Transforming to S� moving at v � 0.6c with
respect to S, as described in Example 2-11, also yields m � 10 kg.

m = 4 kg m = 4 kg

u = 0.6c u = –0.6c

y
S

x

(a)

m = 10 kg

m = 10 kg

y
S System

System

x

S´
y´

x´

v = 0.6c

(b)

(c)
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Thus, we see that it is the rest energy of any isolated system that is invariant,
whether that system is a single atom or the entire universe. And based on our discus-
sions so far, we note that the system’s rest energy may be greater than, equal to, or less
than the sum of the rest energies of the constituents depending on their relative
velocities and the detailed character of any interactions between them.

Questions

4. Suppose two loaded boxcars, each of mass m � 50 metric tons, roll toward each
other on level track at identical speeds u, collide, and couple together. Discuss
the mass of this system before and after the collision. What is the effect of the
magnitude of u on your discussion?

5. In 1787 Count Rumford (1753–1814) tried unsuccessfully to measure an
increase in the weight of a barrel of water when he increased its temperature
from 29°F to 61°F. Explain why, relativistically, you would expect such an
increase to occur, and outline an experiment that might, in principle, detect the
change. Since Count Rumford preceded Einstein by about 100 years, why might
he have been led to such a measurement?

Massless Particles

Equation 2-32 formally allows positive, negative, and zero values for just as
was the case for the spacetime interval (�s)2. We have been tacitly discussing positive
cases so far in this section; a discussion of possible negative cases we will defer until
Chapter 12. Here we need to say something about the mc2 � 0 possibility. Note first
of all that the idea of zero rest mass has no analog in classical physics since classically

and If m � 0, then the momentum and kinetic energy are al-
ways zero too, and the “particle” seems to be nothing at all, experiencing no second-
law forces, doing no work, and so forth. However, for mc2 � 0, Equation 2-32 states
that in relativity

2-35

and, together with Equation 2-34, that u � c, i.e., a particle whose mass is zero moves
at the speed of light. Similarly, a particle whose speed is measured to be c will have
m � 0 and satisfy E � pc.

We must be careful, however, because Equation 2-32 was obtained from the rel-
ativistic definitions of E and p:

As however, since m is also approaching zero, the quan-
tity which is tending toward can (and does) remain defined. Indeed, there is
ample experimental evidence for the existence of particles with mc2 � 0.

Current theories suggest the existence of three such particles. Perhaps the most
important of these and the one thoroughly verified by experiment is the photon, a par-
ticle of electromagnetic radiation (i.e., light). Classically, electromagnetic radiation
was interpreted via Maxwell’s equations as a wave phenomenon, its energy and mo-
mentum being distributed continuously throughout the space occupied by the wave.

0>0,m,
uS c, 1>21 � u2>c2 S �;

E � mc2 �
mc2

21 � u2>c2
  p � mu �

mu

21 � u2>c2

E � pc (for m � 0)

p � mu.Ek � mu2>2
(mc2)2,
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It was discovered around 1900 that the classical view of light required modification in
certain situations, the change being a confinement of the energy and momentum of the
radiation into many tiny packets or bundles, which were referred to as photons.
Photons move at light speed, of course, and, as we have noted, are required by rela-
tivity to have mc2 � 0. Recall that the spacetime interval �s for light is also zero.
Strictly speaking, of course, the second of Einstein’s relativity postulates prevents a
Lorentz transformation to the rest system of light since light moves at c relative to all
inertial frames. Consequently, the term rest mass has no operational meaning for light.

EXAMPLE 2-12 Rest Energy of a System of Photons Remember that the rest energy
of a system of particles is not the sum of the rest energies of the individual particles
if they move relative to one another. This applies to photons too! Suppose two pho-
tons, one with energy 5 MeV and the second with energy 2 MeV, approach each
other along the x axis. What is the rest energy of this system?

SOLUTION

The momentum of the 5-MeV photon is (from Equation 2-35) and
that of the 2-MeV photon is Thus, the energy of the system is
E � 5 MeV � 2 MeV � 7 MeV and its momentum is p � 5 MeV c � 2 MeV c �
3 MeV c. From Equation 2-32 the system’s rest energy is 

A second particle whose rest energy is zero is the gluon. This massless particle
transmits or carries the strong interaction between quarks, which are the “building
blocks” of all fundamental particles, including protons and neutrons. The existence of
gluons is well established experimentally. We will discuss quarks and gluons further
in Chapter 12. Finally, there are strong theoretical reasons to expect that gravity is
transmitted by a massless particle called the graviton, which is related to gravity in
much the same way that the photon is related to the electromagnetic field. Gravitons,
too, move at speed c. While direct detection of the graviton is beyond our current and
foreseeable experimental capabilities, major international cooperative experiments are
currently under way to detect gravity waves. (See Section 2-5.)

Until about the beginning of this century a fourth particle, the neutrino, was also
thought to have zero rest mass. However, substantial experimental evidence collected
by the Super-Kamiokande (Japan) and SNO (Canada) imaging neutrino detectors,
among others, made it clear that neutrinos are not massless. We discuss neutrino mass
and its implications further in Chapters 11 and 12.

Creation and Annihilation of Particles

The relativistic equivalence of mass and energy implies still another remarkable
prediction that has no classical counterpart. As long as momentum and energy are
conserved in the process, 9 elementary particles with mass can combine with their
antiparticles, the masses of both being completely converted to energy in a process
called annihilation. An example is that of an ordinary electron. An electron can orbit
briefly with its antiparticle, called a positron,10 but then the two unite, mutually anni-
hilating and producing two or three photons. The two-photon version of this process
is shown schematically in Figure 2-11. Positrons are produced naturally by cosmic
rays in the upper atmosphere and as the result of the decay of certain radioactive
nuclei. P. A. M. Dirac predicted their existence in 1928 while investigating the invari-
ance of the energy/momentum four-vector.

mc2 � 2(7 MeV)2 � (3 MeV)2 � 6.3 MeV!!

> >>px � �2 MeV>c. px � 5 MeV>c
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If the speeds of both the electron and the positron (not a requirement for the
process, but it makes the following calculation clearer), then the total energy of each par-
ticle is E � mc2 � 0.511 MeV. Therefore, the total energy of the system in Figure 2-11a
before annihilation is 2mc2 � 1.022 MeV. Also from the diagram, the momenta of the
particles are always opposite and equal, and so the total momentum of the system is zero.
Conservation of momentum then requires that the total momentum of the two photons
produced also be zero, i.e., that they move in opposite directions relative to the original
center of mass and have equal momenta. Since E � pc for photons, then they must also
have equal energy. Conservation of energy then requires that the energy of each photon
be 0.511 MeV. (Photons are usually called gamma rays when their energies are a few
hundred keV or higher.) Notice from Example 2-12 that the magnitude of the energy/
momentum four-vector (the rest energy) is not zero, even though both of the final parti-
cles are photons. In this case it equals the rest energy of the initial system. Analysis of
the three-photon annihilation, although the calculation is a bit more involved, is similar.

By now you will not be surprised to learn that the reverse process, the creation of
mass from energy, can also occur under the proper circumstances. The conversion
of mass and energy works both ways. The energy needed to create the new mass can be
provided by the kinetic energy of another massive particle or by the “pure” energy of a
photon. In either case, in determining what particles might be produced with a given
amount of energy, it is important to be sure, as was the case with annihilation, that the
appropriate conservation laws are satisfied. As we will discuss in detail in Chapter 12,
this restricts the creation process for certain kinds of particles (including electrons,
protons, and neutrons) to producing only particle-antiparticle pairs. This means, for
example, that the energy in a photon cannot be used to create a single electron but must
produce an electron-positron pair.

u V c

+ –
(a) (b)

Figure 2-11 (a) A positron orbits with an electron about their common center of mass, shown
by the dot between them. (b) After a short time, typically of the order of 10�10 s for the case
shown here, the two annihilate, producing two photons. The orbiting electron-positron pair,
suggestive of a miniature hydrogen atom, is called positronium.

Decay of a Z into an electron-positron
pair in the UA1 detectors at CERN.
This is the computer image of the first
Z event recorded (30 April 1983).
The newly created pair leave the
central detector in opposite directions
at nearly the speed of light. [CERN.]
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To see how relativistic creation of mass goes, let us consider a particular situation,
the creation of an electron-positron pair from the energy of a photon. The photon mov-
ing through space encounters, or “hits,” an electron at rest in frame S, as illustrated in
Figure 2-12a.11 Usually the photon simply scatters, but occasionally a pair is created.
Encountering the existing electron is important since it is not possible for the photon
to produce spontaneously the two rest masses of the pair and also conserve momen-
tum. (See Problem 2-45.) Some other particle must be nearby, not to provide energy
to the creation process, but to acquire some of the photon’s initial momentum. In this
case we have selected an electron for this purpose because it provides a neat example,
but almost any particle would do. (See Example 2-13.)

While near the electron, the photon suddenly disappears, and an electron-positron
pair appears. The process must occur very fast since the photon, moving at speed c,
will travel across a region as large as an atom in about 10�19 s. Let’s suppose that the
details of the interaction that produced the pair are such that the three particles all
move off together toward the right in Figure 2-12b with the same speed u—i.e., they
are all at rest in which moves to the right with speed u relative to S.12 What must
the energy of the photon be for this particular electron-positron pair to be created?
To answer this question, we first write the conservation of energy and momentum:

where mc2 � rest energy of an electron. In the final system after pair creation the total
rest energy is 3mc2 in this case. We know this because the invariant rest energy equals
the sum of the rest energies of the constituent particles (the original electron and the
pair) in the system where they do not move relative to one another, i.e., in So in 
we have for the system after pair creation

Noting that the terms cancel and dividing the remaining terms by mc2, we see that

E


� 4mc2

E2


 9(mc2)2 � E2


� 2E

mc2 � (mc2)2 � E2



 9(mc2)2 � (E


� mc2)2 � aE
c

c
b 2

 (3mc2)2 � E2 � (pc)2

S�S�.

pi �
E



c
   pf � pi �

E


c

Ei � E


� mc2   Ef � Ei � E


� mc2

After pair creationBefore pair creation

E


S�,

+
–

–

–

S S

u = 0.8c

(a) (b)

Figure 2-12 (a) A photon of energy E and momentum p � E c encounters an electron at rest.
The photon produces an electron-positron pair (b), and the group move off together at speed
u � 0.8c.

>
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Thus, the initial photon needs energy equal to 4 electron rest energies in order to
create 2 new electron rest masses in this case. Why is the “extra” energy needed?
Because the three electrons in the final system share momentum they must also
have kinetic energy Ek given by

or the initial photon must provide the 2mc2 necessary to create the electron and
positron masses and the additional 2mc2 of kinetic energy that they and the existing
electron share as a result of momentum conservation. The speed u at which the group
of particles moves in S can be found from � pc E (Equation 2-34):

The portion of the incident photon’s energy that is needed to provide kinetic en-
ergy in the final system is reduced if the mass of the existing particle is larger than that
of an electron and, indeed, can be made negligibly small, as illustrated in the follow-
ing example.

EXAMPLE 2-13 Threshold for Pair Production What is the minimum or threshold
energy that a photon must have in order to produce an electron-positron pair?

SOLUTION

The energy of the initial photon must be 

where mc2 � electron rest energy, and are the kinetic energies of the elec-
tron and positron, respectively, and kinetic energy of the existing particle of
mass M. Since we are looking for the threshold energy, consider the limiting case
where the pair is created at rest in S, i.e., and correspondingly

Therefore, momentum conservation requires that

where u � speed of recoil of the mass M. Since the masses of single atoms are in
the range of to MeV c2 and the value of at the threshold is clearly less
than 2 MeV (i.e., it must be less than the value � 4mc2 � 2.044 MeV, the speed
with which M recoils from the creation event is quite small compared with c, even
for the smallest M available, a single proton! (See Table 2-1.) Thus, the kinetic
energy becomes negligible, and we conclude that the minimum energy

of the initial photon that can produce an electron-positron pair is 2mc2, i.e., that
needed just to create the two rest masses.
E



EkM � 1
2mu

2

E


E


>105103

pinitial � E

>c � pfinal �

Mu

21 � u2>c2

p
�

� p
�

� 0.
Ek� � Ek� � 0

EkM �
Ek�Ek�

E


� mc2 � Ek� � mc2 � Ek� � EkM

E


u>c �

aE

c
� cb

(E


� mc2)
�

4mc2

5mc2
� 0.8

>u>c
� 4mc2 � mc2 � 3mc2 � 2mc2

Ek � E � 3mc2 � (E


� mc2) � 3mc2

E

>c,
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mc2

pc
E = (pc)2 + (mc2)2

Figure 2-13 Triangle
showing the relation
between energy, momentum,
and rest mass in special
relativity. Caution:
Remember that E and pc are
not relativistically invariant.
The invariant is mc2.

Some Useful Equations and Approximations

2-31

Extremely Relativistic Case The triangle shown in Figure 2-13 is sometimes use-
ful in remembering this result. If the energy of a particle is much greater than its rest
energy mc2, the second term on the right of Equation 2-31 can be neglected, giving the
useful approximation

2-36

This approximation is accurate to about 1 percent or better if E is greater than about
8mc2. Equation 2-36 is the exact relation between energy and momentum for particles
with zero rest mass.

From Equation 2-36 we see that the momentum of a high-energy particle is
simply its total energy divided by c. A convenient unit of momentum is MeV c. The
momentum of a charged particle is usually determined by measuring the radius of cur-
vature of the path of the particle moving in a magnetic field. If the particle has charge
q and a velocity u, it experiences a force in a magnetic field B given by

where F is perpendicular to the plane formed by u and B and hence is always
perpendicular to u. Since the magnetic force is always perpendicular to the velocity,
it does no work on the particle (the work-energy theorem also holds in relativity),
so the energy of the particle is constant. From Equation 2-10 we see that if the energy
is constant, must be a constant, and therefore the speed u is also constant. So

For the case the particle moves in a circle with centripetal acceleration 
u2 R. (If u is not perpendicular to B, the path is a helix. Since the component of u
parallel to B is unaffected, we will only consider motion in a plane.) We then have

or

2-37

This is the same as the nonrelativistic expression except for the factor of Figure 2-14
shows a plot of BqR mu versus It is useful to rewrite Equation 2-37 in terms of
practical but mixed units; the result is 

2-38

where p is in MeV c, B is in tesla, and R is in meters.>
p � 300 BRaq

e
b

u>c.> .

BqR � mu � p

quB � m ` du
dt
` � ma u2

R
b

> u ⊥ B,

F � qu � B �
dp

dt
�
d(mu)

dt
� m

du
dt



F � qu � B

>

E � pc  for  EW mc2

E2 � (pc)2 � (mc2)2
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EXAMPLE 2-14 Electron in a Magnetic Field What is the approximate radius of the
path of a 30-MeV electron moving in a magnetic field of 0.05 tesla (� 500 gauss)?

SOLUTION

1. The radius of the path is given by rearranging Equation 2-38 and substituting
q � e:

2. In this situation the total energy E is much greater than the rest energy mc2:

3. Equation 2-36 may then be used to determine p:

4. Substituting this approximation for p into Equation 2-38 yields

Remarks: In this case the error made by using the approximation, Equation 2-36,
rather than the exact solution, Equation 2-31, is only about 0.01 percent.

Nonrelativistic Case Nonrelativistic expressions for energy, momentum, and other
quantities are often easier to use than the relativistic ones, so it is important to know
when these expressions are accurate enough. As all the relativistic expressions
approach the classical ones. In most situations, the kinetic energy or the total energy is
given, so that the most convenient expression for calculating is, from Equation 2-10,

2-39 �
E

mc2
� 1 �

Ek
mc2



 S 1,

� 2 m

R �
30 MeV>c
(300)(0.05)

p � E>c � 30 MeV>c
E � 30 MeV W mc2 � 0.511 MeV

R �
p

300 B

Figure 2-14 BqR mu versus u c for
particle of charge q and mass m
moving in a circular orbit of radius R
in a magnetic field B. The agreement
of the data with the curve predicted by
relativity theory supports the
assumption that the force equals the
time rate of change of relativistic
momentum. [Adapted from I. Kaplan,
Nuclear Physics, 2d ed., Reading, MA:
Addison-Wesley Publishing Company,
Inc., 1962; by permission.]

>>
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When the kinetic energy is much less than the rest energy, is approximately 1 and
nonrelativistic equations can be used. For example, the classical approximation

can be used instead of the relativistic if
is much less than mc2. We can get an idea of the accuracy of these expressions by

expanding using the binomial expansion as was done in Section 2-2, and examin-
ing the first term that is neglected in the classical approximation. We have

and

Then

For example, if the error in using the approximation
is about 1.5 percent.

At very low energies, the velocity of a particle can be obtained from its kinetic
energy just as in classical mechanics. At very high energies, the ve-
locity of a particle is very near c and the following approximation is sometimes use-
ful (see Problem 2-28):

2-40

An exact expression for the velocity of a particle in terms of its energy and momen-
tum was obtained in Example 2-10.

2-41

This expression, of course, is not useful if the approximation has already
been made.

EXAMPLE 2-15 Different Particles, Same Energy An electron and a proton are each
accelerated through 10 � 106 V. Find the momentum, and the speed for each.

SOLUTION

Since each particle has a charge of e, each acquires a kinetic energy of 10 MeV. This
is much greater than the 0.511 MeV rest energy of the electron and much less than
the 938.3 MeV rest energy of the proton. We will calculate the momentum and
speed of each particle exactly and then by means of the nonrelativistic (proton) or
the extreme relativistic (electron) approximations.

1. We first consider the electron. From Equation 2-39 we have

 � 1 �
Ek
mc2

� 1 �
10 MeV

0.511 MeV
� 20.57

,

E � pc

u
c

�
pc

E

u
c

� 1 �
1

22
  for  W 1

Ek � (1>2)mu2

Ek � (1>2)mu2
Ek>mc2 � 1 percent,

Ek � 1
2mu

2

Ek
�

3

2

Ek
mc2

Ek � ( � 1)mc2 �
1

2
mu2 �

3

2

A 12mu2 B 2
mc2

� Á

 � a1 �
u2

c2
b 1>2

� 1 �
1

2

u2

c2
�

3

8

u4

c4
� Á

,
Ek

Ek � ( � 1)mc2Ek � (1>2)mu2 � p2>2m 
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Since the total energy is we have, from the
magnitude of the energy/momentum four-vector (Equation 2-31),

The exact calculation then gives p � 10.50 MeV c. The high-energy or
extreme relativistic approximation is in good
agreement with the exact result. If we use Equation 2-34, we obtain for the
speed On the other hand,
the approximation of Equation 2-40 gives

2. For the proton, the total energy is 
From Equation 2-39 we obtain 

Equation 2-31 gives for the momentum

The nonrelativistic approximation gives

or

The speed can be determined from Equation 2-34 exactly or from p � mu
approximately. From Equation 2-34 we obtain

From the nonrelativistic expression for p, we obtain

2-5 General Relativity
The generalization of relativity to noninertial reference frames by Einstein in 1916 is
known as the general theory of relativity. This theory is much more difficult mathe-
matically than the special theory of relativity, and there are fewer situations in which it
can be tested. Nevertheless, its importance in the areas of astrophysics and cosmology
and the need to take account of its predictions in the design of such things as global
navigation systems13 calls for its inclusion here. A full description of the general theory
uses tensor analysis at a quite sophisticated level, well beyond the scope of this book,
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so we will be limited to qualitative or, in some instances, semiquantitative discussions.
An additional purpose to the discussion that follows is to give you something that few
people will ever have, namely, an acquaintance with one of the most remarkable of all
scientific accomplishments and a bit of a feel for the man who did it.

Einstein’s development of the general theory of relativity was not motivated by
any experimental enigma. Instead, it grew out of his desire to include the descriptions
of all natural phenomena within the framework of the special theory. By 1907 he re-
alized that he could accomplish that goal with the single exception of the law of grav-
itation. About that exception he said,14

I felt a deep desire to understand the reason behind this [exception].

The “reason” came to him, as he said later, while he was sitting in a chair in the patent
office in Bern. He described it like this:15

Then there occurred to me the happiest thought of my life, in the following

form. The gravitational field has only a relative existence in a way similar to

the electric field generated by electromagnetic induction. Because for an
observer falling freely from the roof of a house there exists—at least in his

immediate surroundings—no gravitational field [Einstein’s italics]. . . . The

observer then has the right to interpret his state as “at rest.”

Out of this “happy thought” grew the principle of equivalence that became Einstein’s
fundamental postulate for general relativity.

Principle of Equivalence

The basis of the general theory of relativity is what we may call Einstein’s third pos-
tulate, the principle of equivalence, which states:

A homogeneous gravitational field is completely equivalent to a uniformly

accelerated reference frame.

This principle arises in a somewhat different form in Newtonian mechanics because
of the apparent identity of gravitational and inertial mass. In a uniform gravitational
field, all objects fall with the same acceleration g independent of their mass because
the gravitational force is proportional to the (gravitational) mass while the accelera-
tion varies inversely with the (inertial) mass. That is, the mass m in

and that in 

appear to be identical in classical mechanics, although classical theory provides no ex-
planation for this equality. For example, near Earth’s surface,

Recent experiments have shown that to better
than one part in 1012.

To understand what the equivalence principle means, consider a compartment in
space far away from any matter and undergoing uniform acceleration a as shown in
Figure 2-15a. If people in the compartment drop objects, they fall to the “floor” with
acceleration g � �a. If they stand on a spring scale, it will read their “weight” of
magnitude ma. No mechanics experiment can be performed within the compartment

minertial � mgravmgravg � minertiala � F.
FG � GMm>r2 �

F �
GMm

r2
rN (gravitational m)

F � ma (inertial m)
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that will distinguish whether the compartment is actually accelerat-
ing in space or is at rest (or moving with uniform velocity) in the
presence of a uniform gravitational field g � �a.

Einstein broadened the principle of equivalence to apply to all
physical experiments, not just to mechanics. In effect, he assumed
that there is no experiment of any kind that can distinguish uniformly
accelerated motion from the presence of a gravitational field. A direct
consequence of the principle is that is a requirement,
not a coincidence. The principle of equivalence extends Einstein’s
first postulate, the principle of relativity, to all reference frames, non-
inertial (i.e., accelerated) as well as inertial. It follows that there is no
absolute acceleration of a reference frame. Acceleration, like velocity,
is only relative.

Question

6. For his 76th (and last) birthday Einstein received a present
designed to demonstrate the principle of equivalence. It is
shown in Figure 2-16. The object is, starting with the ball
hanging down as shown to put the ball into the cup with a
method that works every time (as opposed to random shaking).
How would you do it? (Note: When it was given to Einstein, he
was delighted and did the experiment correctly immediately.)

minertial � mgrav

Planet

a

g

(a) (b) Figure 2-15 Results from
experiments in a uniformly
accelerated reference frame
(a) cannot be distinguished
from those in a uniform
gravitational field (b) if the
acceleration a and
gravitational field g have
the same magnitude.

Figure 2-16 Principle of equivalence demonstrator given to Einstein by E. M. Rogers. The object is to put the hanging brass
ball into the cup by a technique that always works. The spring is weak, too weak to pull the ball in as it stands, and is stretched
even when the ball is in the cup. The transparent sphere, about 10 cm in diameter, does not open. [From A. P. French, Albert
Einstein: A Centenary Volume, Harvard University Press, Cambridge, Mass. (1979).]
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Some Predictions of General Relativity

In his first paper on general relativity, in 1916, Einstein was able to explain quanti-
tatively a discrepancy of long standing between the measured and (classically) com-
puted values of the advance of the perihelion of Mercury’s orbit, about 43 arc sec-
onds/century. It was the first success of the new theory. A second prediction, the
bending of light in a gravitational field, would seem to be more difficult to measure
owing to the very small effect. However, it was accurately confirmed less than five
years later when Arthur Eddington measured the deflection of starlight passing near
the limb of the Sun during a total solar eclipse. The theory also predicts the slowing
of light itself and the slowing of clocks—i.e., frequencies—in gravitational fields,
both effects of considerable importance to the determination of astronomical dis-
tances and stellar recession rates. The predicted slowing of clocks, called gravita-
tional redshift, was demonstrated by Pound and co-workers in 1960 in Earth’s
gravitational field using the ultrasensitive frequency measuring technique of the
Mössbauer effect (see Chapter 11). The slowing of light was conclusively measured
in 1971 by Shapiro and co-workers using radar signals reflected from several plan-
ets. Two of these experimental tests of relativity’s predictions, bending of light and
gravitational redshift, are discussed in the Exploring sections that follow. The peri-
helion of Mercury’s orbit and the delay of light are discussed in More sections on the
book’s Web page. Many other predictions of general relativity are subjects of active
current research. Two of these, black holes and gravity waves, are discussed briefly
in the concluding paragraphs of this chapter.

EXPLORING

Deflection of Light in a Gravitational Field

With the advent of special relativity, several features of the Newtonian law of gravita-
tion became conceptually troublesome. One of these was the implica-
tion from the relativistic concept of mass-energy equivalence that even particles with
zero rest mass should exhibit properties such as weight and inertia, thought of classi-
cally as masslike; classical theory does not include such particles. According to the
equivalence principle, however, light, too, would experience the gravitational force.
Indeed, the deflection of a light beam passing through the gravitational field near a
large mass was one of the first consequences of the equivalence principle to be tested
experimentally.

To see why a deflection of light would be expected, consider Figure 2-17, which
shows a beam of light entering an accelerating compartment. Successive positions of
the compartment are shown at equal time intervals. Because the compartment is ac-
celerating, the distance it moves in each time interval increases with time. The path of
the beam of light, as observed from inside the compartment, is therefore a parabola.
But according to the equivalence principle, there is no way to distinguish between an
accelerating compartment and one with uniform velocity in a uniform gravitational
field. We conclude, therefore, that a beam of light will accelerate in a gravitational
field as do objects with rest mass. For example, near the surface of Earth light will fall
with acceleration 9.8 m s2. This is difficult to observe because of the enormous speed
of light. For example, in a distance of 3000 km, which takes about 0.01 second to
cover, a beam of light should fall about 0.5 mm. Einstein pointed out that the deflec-
tion of a light beam in a gravitational field might be observed when light from a dis-
tant star passes close to the Sun.16 The deflection, or bending, is computed as follows.

>

FG � GMm>r2
This relativistic effect results

in gravitational lenses in the

cosmos that focus light from

extremely distant galaxies,

greatly improving their

visibility in telescopes, both

on Earth and in orbit.
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Rewriting the spacetime interval �s (Equation 2-32) in differential form and convert-
ing the space Cartesian coordinates to polar coordinates (in two dimensions, since the
deflection occurs in a plane) yields

2-42

Einstein showed that this expression is slightly modified in the presence of a (spheri-
cal, nonrotating) mass M to become

2-43

where with G � universal gravitational constant and
r � distance from the mass M. The factor is roughly analogous to the of special
relativity. In the following Exploring section on gravitational redshift, we will describe
how arises. For now, can be thought of as correcting for gravitational time
dilation (the first term on the right of Equation 2-43) and gravitational length
contraction (the second term).

This situation is illustrated in Figure 2-18, which shows the light from a distant star
just grazing the edge of the Sun. The gravitational deflection of light (with mass

) can be treated as a refraction of the light. The speed of light is reduced to
in the vicinity of the mass M since (see Equation 2-43), thus bending the

wave fronts, and hence the beam, toward M. This is analogous to the deflection of starlight
toward Earth’s surface as a result of the changing density—hence index of refraction—of
the atmosphere. By integrating Equation 2-43 over the entire trajectory of the light beam
(recall that ds � 0 for light) as it passes by M, the total deflection is found to be17

2-44

where R � distance of closest approach of the beam to the center of M. For a beam just
grazing the Sun, solar radius � 6.96 � 108 m. Substituting the values for G
and the solar mass (M � 1.99 � 1030 kg) yields � 1.75 arc second.18

Ordinarily, of course, the brightness of the Sun prevents astronomers (or anyone else)
from seeing stars close to the limbs (edges) of the Sun, except during a total eclipse.
Einstein completed the calculation of in 1915, and in 1919 expeditions were organized
by Eddington19 at two points along the line of totality of a solar eclipse, both of which were
successful in making measurements of for several stars and testing the predicted 
dependence of . The measured values of for grazing beams at the two sites were:

At Sobral (South America): arc seconds
At Principe Island (Africa): arc seconds� � 1.61 � 0.30

� � 1.98 � 0.12

��
1>R}�

�

�
R � R} �

� � 4GM>c2R

�

(r) � 1(r)c
m � E>c2

(r)(r)

(r)
(r) � (1 � 2GM>c2r)1>2,

ds2 � (r)2c2 dt2 � dr2>(r)2 � r2 d�2

ds2 � c2 dt2 � (dr2 � r2 d�2)

Light

t1

t1 t2 t3 t4

t2 t3 t4

beam

a
(a)

(b)

Figure 2-17 (a) Light beam moving in a straight line through a compartment that is
undergoing uniform acceleration. The position of the light beam is shown at equally spaced
times t1 , t2 , t3 , t4 . (b) In the reference frame of the compartment, the light travels in a
parabolic path, as would a ball were it projected horizontally. Note that in both (a) and
(b) the vertical displacements are greatly exaggerated for emphasis.
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Figure 2-18 Deflection
(greatly exaggerated) of
a beam of starlight due to
the gravitational attraction
of the Sun.
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their average agreeing with the general relativistic prediction to within about 2 percent.
Figure 2-19 illustrates the agreement of the dependence with Equation 2-44.
(Einstein learned of the successful measurements via a telegram from H. A. Lorentz.)
Since 1919, many measurements of have been made during eclipses. Since the de-
velopment of radio telescopes, which are not blinded by sunlight and hence don’t re-
quire a total eclipse, many more measurements have been made. The latest data agree
with the deflection predicted by general relativity to within about 0.1 percent.

The gravitational deflection of light is being put to use by modern astronomers via
the phenomenon of gravitational lensing to help in the study of galaxies and other large
masses in space. Light from very distant galaxies passing near or through other galax-
ies or clusters of galaxies between the source and Earth can be bent so as to reach Earth
in much the same way that light from an object on a bench in the laboratory can be re-
fracted by a glass lens and thus reach the eye of an observer. An intervening galaxy or
cluster of galaxies can thus produce images of the distant source, even ones magnified
and distorted, just as the glass lens can. Figure 2-20a will serve as a reminder of a
refracting lens in the laboratory, while Figure 2-20b illustrates the corresponding action

�

1>R}

Figure 2-20 (a) Ordinary refracting lens bends light, causing many rays
that would not otherwise have reached the observer’s eye to do so. Their
apparent origin is the image formed by the lens. Notice that the image is not
the same size as the object (magnification) and, although not shown here, the
shape of the lens can cause the image shape to be different from that of the
object. (b) Gravitational lens has the same effects on the light from distant
galaxies seen at Earth.
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of a gravitational lens. The accompanying photograph shows the images of several dis-
tant galaxies drawn out into arcs by the lens effect of the cluster of galaxies in the center.
The first confirmed discovery of images formed by a gravitational lens, the double
image of the quasar QSO 0957, was made in 1979 by D. Walsh and his co-workers.
Since then, astronomers have found many such images. Their discovery and interpreta-
tion is currently an active area of research. Gravitational lensing was recently used to
help image the first apparent findings of dark matter in this cosmos. (See Chapter 13.)

EXPLORING

Gravitational Redshift

A second prediction of general relativity concerns the rates of clocks and the frequen-
cies of light in a gravitational field. As a specific case that illustrates the gravitational
redshift as a direct consequence of the equivalence principle, suppose we consider two
identical light sources (A and ) and detectors (B and ) located in identical space-
ships (S and ) as illustrated in Figure 2-21. The spaceship in Figure 2-21b is located
far from any mass. At time t � 0, begins to accelerate, and simultaneously an atom
in the source emits a light pulse of its characteristic frequency During the time

for the light to travel from to acquires a speed v � at � gh c, and
the detector receding from the original location of measures the frequency of the
incoming light to be f redshifted by a fractional amount for 
(See Section 1-5.) Thus,

2-45(f0 � f)>f0 � ¢f>f � � � v>c � gh>c2

v V c.(f0 � f)>f0 � �
A�,B�,

>B�B�,A�t( � h>c) f0 .A�
S�

S�S�
B�A�
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g
a (= –g)

(b)

Planet

A´A

S´S
B´B

(a)

h

Figure 2-21 (a) System S is at rest in the gravitational field of the planet. (b) Spaceship S�,
far from any mass, accelerates with a � �g.
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Notice that the right side of Equation 2-45 is equal to the gravitational potential (i.e., the
gravitational potential energy per unit mass) between A and B, divided by c2.
According to the equivalence principle, the detector at B in S must also measure the fre-
quency of the arriving light to be f, even though S is at rest on the planet and, therefore,
the shift cannot be due to the Doppler effect! Since the vibrating atom that produced the
light pulse at A can be considered to be a clock and since no “cycles” of the vibration
are lost on the pulse’s trip from A to B, the observer at B must conclude that the clock at
A runs slow, compared with an identical clock (or an identical atom) located at B. Since
A is at the lowest potential, the observer concludes that clocks run more slowly the lower
the gravitational potential. This shift of clock rates to lower frequencies, hence longer
wavelengths, in lower gravitational potentials is the gravitational redshift.

In the more general case of a spherical, nonrotating mass M, the change in gravi-
tational potential between the surface at some distance R from the center and a point at
infinity is given by 

2-46

and the factor by which gravity shifts the light frequency is found from 

or

2-47

Notice that if the light is moving the other way, i.e., from high to low gravitational
potential, the limits of integration in Equation 2-46 are reversed and Equation 2-47
becomes

2-48f>f0 � 1 � GM>c2R (gravitational blueshift)

f>f0 � 1 � GM>c2R (gravitational redshift)

¢f>f0 � (f0 � f)>f0 � GM>c2R

¢� � �
�

R

GM

r2
dr � GM(�1>r) ` �

R
�

GM

R

¢� � gh

Images of distant galaxies are drawn out into arcs by the massive cluster of
galaxies Abell 2218, whose enormous gravitational field acts as a lens to
magnify, brighten, and distort the images. Abell 2218 is about 2 billion from
Earth. The arcs in this January 2000 Hubble Space Telescope photograph are
images of galaxies 10 to 20 billion away. [NASA, A. Fruchter; ERO Team.]c # y

c # y



Analyzing the frequency of starlight for gravitational effects is exceptionally diffi-
cult because several shifts are present. For example, the light is gravitationally red-
shifted as it leaves the star and blueshifted as it arrives at Earth. The blueshift near Earth
is negligibly small with current measuring technology; however, the redshift due to the
receding of nearby stars and distant galaxies from us as a part of the general expansion
of the universe is typically much larger than gravitational effects and, together with
thermal frequency broadening in the stellar atmospheres, results in large uncertainties
in measurements. Thus, it is quite remarkable that the relativistic prediction of Equation
2-48 has been tested in the relatively small gravitational field of Earth. R. V. Pound and
his co-workers,20 first in 1960 and then again in 1964 with improved precision, mea-
sured the shift in the frequency of 14.4-keV gamma rays emitted by falling
through a height h of only 22.5 m. Using the Mössbauer effect, an extremely sensitive
frequency shift measuring technique developed in 1968, Pound’s measurements agreed
with the predicted fractional blueshift gh c2 � 2.45 � 10�15 to within 1 percent.
Equations 2-47 and 2-48 have been tested a number of times since then—using atomic
clocks carried on aircraft, as described in Section 1-4, and, in 1980, by R. F. C. Vessot
and his co-workers using a precision microwave transmitter carried to 10,000 km from
Earth by a space probe. The results of these tests, too, agree with the relativistically
predicted frequency shift, the latter to 1 part in 14,000.

Question

7. The frequency f in Equation 2-47 can be shifted to zero by an appropriate value
of M R. What would be the corresponding value of R for a star with the mass of
the Sun? Speculate on the significance of this result.

More

The inability of Newtonian gravitational theory to correctly account for
the observed rate at which the major axis of Mercury’s orbit precessed
about the Sun was a troubling problem, pointing as it did to some subtle
failure of the theory. Einstein’s first paper on general relativity, the
Perihelion of Mercury’s Orbit, quantitatively explained the advance of
Mercury’s orbit, setting the stage for general relativity to supplant the old
Newtonian theory. A clear description of the relativistic explanation is on
the home page: www.whfreeman.com/tiplermodernphysics5e. See also
Equations 2-49 through 2-51 here, as well as Figure 2-22 and Table 2-2.

More

General relativity includes a gravitational interaction for particles with
zero rest mass, such as photons, which are excluded in Newtonian theory.
One consequence is the prediction of a Delay of Light in a Gravitational
Field. This phenomenon and its subsequent observation are described
qualitatively on the home page: www.whfreeman.com/tiplermodern-
physics5e. See also Equation 2-52 here, as well as Figures 2-23 and 2-24.

Black Holes Black holes were first predicted by J. R. Oppenheimer and H. Snyder in
1939. According to the general theory of relativity, if the density of an object such as a
star is great enough, the gravitational attraction will be so large that nothing can escape

>

>
57Fe
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from its surface, not even light or other electromagnetic radiation. It is as if space itself
were being drawn inward faster than light could move outward through it. A remark-
able property of such an object is that nothing that happens inside it can be communi-
cated to the outside world. This occurs when the gravitational potential at the surface
of the mass M becomes so large that the frequency of radiation emitted at the surface
is redshifted to zero. From Equation 2-47 we see that the frequency will be zero when
the radius of the mass has the critical value This result is a consequence
of the principle of equivalence, but Equation 2-47 is a approximation. A precise
derivation of the critical value of the radius called the Schwarzschild radius, yields

2-53

For an object with mass equal to that of our Sun to be a black hole, its radius would
be about 3 km. A large number of black holes have been identified by astronomers in
recent years, one of them in the center of the Milky Way. (See Chapter 13.)

An interesting historical note is that Equation 2-53 was first derived by
nineteenth-century French physicist Pierre Laplace using Newtonian mechanics to
compute the escape velocity ve from a planet of mass M before anyone had ever heard
of Einstein or black holes. The result, derived in first-year physics courses by setting
the kinetic energy of the escaping object equal to the gravitational potential energy
at the surface of the planet (or star), is

Setting ve � c gives Equation 2-53. Laplace obtained the correct result by making two
fundamental errors that just happened to cancel each other!

Gravitational Waves Einstein’s formulation of general relativity in 1916 explicitly
predicted the existence of gravitational radiation. He showed that, just as accelerated
electric charges generate time-dependent electromagnetic fields in space—i.e., elec-
tromagnetic waves—accelerated masses would create time-dependent gravitational
fields in space—i.e., gravitational waves—that propagate from their source at the

speed of light. The gravitational waves are propagating ripples, or
distortions of spacetime. Figure 2-25 illustrates gravitational radia-
tion emitted by two merging black holes distorting the otherwise
flat “fabric” of spacetime.

The best experimental evidence that exists so far in support of
the gravitational wave prediction is indirect. In 1974 R. A. Hulse
and J. H. Taylor24 discovered the first binary pulsar, i.e., a pair of
neutron stars orbiting each other, one of which was emitting peri-
odic flashes of electromagnetic radiation (pulses). In an exquisitely
precise experiment they showed that the gradual decrease in the or-
bital period of the pair was in good agreement with the general rel-
ativistic prediction for the rate of loss of gravitational energy via the
emission of gravitational waves.

Experiments are currently under way in several countries to
directly detect gravitational waves arriving at Earth. One of the most
promising is LIGO (Laser Interferometer Gravitational-Wave
Observatory), a pair of large Michelson interferometers with Fabry-
Perot cavities at the Livingston Observatory in Louisiana and the

ve � A
2GM
r

RG �
2MG

c2

RG ,
v V c

RG � GM>c2.
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Figure 2-25 Gravitational waves, intense ripples
in the fabric of spacetime, are expected to be
generated by a merging binary system of neutron
stars or black holes. The amplitude decreases
with distance due to the 1 R falloff and because
waves farther from the source were emitted at an
earlier time, when the emission was weaker.
[Courtesy of Patrick Brady.]

>
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Hanford Observatory 3002 km away in Washington, operating in coincidence. Figure
2-26 illustrates one of the LIGO interferometers. Each arm is 4 km long. The laser
beams are reflected back and forth in the cavities, making about 75 round trips along
each arm and recombining at the photodetector, making the effective lengths of the
arms about 400 km. (A half-size but equally sensitive instrument using Fabry-Perot
cavities is also housed at the Hanford Observatory.) The arrival of a gravitational wave
would stretch one arm of the interferometer by about 1 1000 of the diameter of a pro-
ton and squeeze the other arm by the same minuscule amount! Nonetheless, that tiny
change in the lengths is sufficient to change very slightly the relative phase of the
recombining laser beams and produce a signal at the detector. The two LIGO inter-
ferometers must record the event within 10 ms of each other for the signal to be
interpreted as a gravitational wave, that being the travel time between the two obser-
vatories for a gravitational wave moving at speed c. LIGO completed its two-year,
low-sensitivity initial operational phase and went online in mid-2002. By 2005
LIGO had completed two science runs that included observations on 28 pulsars.
(See Chapter 13.) At this writing a third science run with improved sensitivity is under
way, operating jointly with GEO 600, a similar gravitational wave interferometer in
Germany. A third gravitational wave observatory, Virgo, in Italy, is currently being
commissioned and will soon join the search. These instruments are by far the most
sensitive scientific instruments ever built. So far, none of the half-dozen or so experi-
ments under way around the world has detected a gravitational wave.25

An enormous amount remains to be learned about the predictions and implica-
tions of general relativity—not just about such things as black holes and gravity
waves, but also, for example, about gravity and spacetime in the very early universe,
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Figure 2-26 The LIGO detectors are
equal-arm Michelson interferometers.
The mirrors, each 25 cm in diameter by
10 cm thick and isolated from Earth’s
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gravitational wave detector. Arrival of
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This application of

Michelson’s interferometer

may well lead to the first

direct detection of “ripples”

or waves in spacetime.



when forces were unified and the constituents were closely packed. These and other
fascinating matters are investigated more specifically in the areas of astrophysics and
cosmology (Chapter 13) and particle physics (Chapter 12), fields of research linked
by general relativity, perhaps the grandest of Einstein’s great scientific achievements.

Question

8. Speculate on what the two errors made by Laplace in deriving Equation 2-53
might have been.
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Summary

TOPIC RELEVANT EQUATIONS AND REMARKS

1. Relativistic momentum 2-7

The relativistic momentum is conserved and approaches mu for
in Equation 2-7, where u � particle speed in S.

2. Relativistic energy 2-10

Total energy The relativistic total energy is conserved.

Kinetic energy 2-9

is the rest energy. in Equations 2-9 and 2-10.

3. Lorentz transformation for E and p.
2-16

where v � relative speed of the systems and 

4. Mass/energy conversion Whenever additional energy �E in any form is stored in an object, the rest mass
of the object is increased by �m � �E c2.

5. Invariant mass 2-32

The energy and momentum of any system combine to form an invariant 
four-vector whose magnitude is the rest energy of the ma˜ss m.

(mc2) � E2 � (pc)2

>
 � (1 � v2>c2)�1>2E� � (E � vpx) pœ

z � pz

pœ
x � (px � vE>c2) pœ

y � py

 � (1 � u2>c2)�1>2mc2

Ek � mc2 � mc2

E � mc2

 � (1 � u2>c2)�1>2 v V c.

p � mu

Aerial view of the LIGO
gravitational wave
interferometer near
Hanford, Washington.
Each of the two arms is 
4 km long. [CalTech/LIGO.]
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General References

The following general references are written at a level appro-
priate for readers of this book.

Bohm, D., The Special Theory of Relativity, W. A. Benjamin,
New York, 1965.

French, A. P., Albert Einstein: A Centenary Volume. Harvard
University Press, Cambridge, Mass., 1979. An excellent
collection of contributions from many people about
Einstein’s life and work.

Lorentz, H. A., A. Einstein, H. Minkowski, and W. Weyl, The
Principle of Relativity: A Collection of Original
Memoirs on the Special and General Theory of Relativity
(trans. W. Perrett and J. B. Jeffery), Dover, New York,
1923. Two of Einstein’s papers reprinted here are of in-
terest in connection with this chapter: “On the
Electrodynamics of Moving Bodies” [Annalen der
Physik, 17 (1905)], and “Does the Inertia of a Body

Depend upon Its Energy Content?” [Annalen der Physik,
17 (1905)].

Ohanian, H. C., Special Relativity: A Modern Introduction,
Physics Curriculum & Instruction, 2001.

Pais, A., Subtle Is the Lord . . . , Oxford University Press,
Oxford, 1982.

Resnick, R., Introduction to Relativity, Wiley, New York,
1968.

Resnick, R., and D. Halliday, Basic Concepts in Relativity and
Early Quantum Theory, 2d ed., Macmillan, New York,
1992.

Rosser, W. G. V., The Theory of Relativity, Butterworth,
London, 1964.

Taylor, E. F., and J. A. Wheeler, Spacetime Physics, 2d ed.,
W. H. Freeman and Co., 1992. A good book with many
examples, problems, and diagrams.

6. Force in relativity The force F � ma is not invariant in relativity. Relativistic force is defined as

2-8

7. General relativity

Principle of equivalence A homogeneous gravitational field is completely equivalent to a uniformly
accelerated reference frame.

F �
dp

dt
�
d(mu)

dt

Notes

1. This Gedankenexperiment (thought experiment) is based
on one first suggested by G. N. Lewis and R. C. Tolman,
Philosophical Magazine, 18, 510, (1909).

2. You can see that this is so by rotating Figure 2-1a through
180° in its own plane; it then matches Figure 2-1b exactly.

3. C. G. Adler, American Journal of Physics, 55, 739 (1987).
4. This idea grew out of the results of the measurements of

masses in chemical reactions in the nineteenth century, which,
within the limits of experimental uncertainties of the time,
were always observed to conserve mass. The conservation of
energy had a similar origin in the experiments of James Joule
(1818–1889) as interpreted by Hermann von Helmholtz
(1821–1894). This is not an unusual way for conservation
laws to originate; they still do it this way.

5. The approximation of Equation 2-10 used in this discus-
sion was, of course, not developed from Newton’s equations.
The rest energy mc2 has no classical counterpart.

6. “Facilitates” means that we don’t have to make frequent
unit conversions or carry along large powers of 10 with nearly
every factor in many calculations. However, a word of caution
is in order. Always remember that the eV is not a basic SI unit.
When making calculations whose results are to be in SI units,
don’t forget to convert the eV!

7. A. Einstein, Annalen der Physik, 17, 1905.
8. Strictly speaking, the time component should be written

ic�t, where The i is the origin of the minus sign in
the spacetime interval, as well as in Equation 2-32 for the
energy/momentum four-vector and other four-vectors in both
special and general relativity. Its inclusion was a contribution of
Hermann Minkowski (1864–1909), a Russian-German mathe-
matician who developed the geometric interpretation of relativ-
ity and who was one of Einstein’s professors at Zurich.
Consideration of the four-dimensional geometry is beyond the
scope of our discussions, so we will not be concerned with the i.

i � (�1)1>2.
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9. Other conservation laws must also be satisfied, e.g., elec-
tric charge, angular momentum.
10. The positron is a particle with the same mass as an ordi-
nary electron but with a positive electric charge of the same
magnitude as that carried by the electron. It and other antipar-
ticles will be discussed in Chapters 11 and 12.
11. Since electrons are thought to be point particles, i.e., they
have no space dimensions, it isn’t clear what it means to “hit”
an electron. Think of it as the photon close to the electron’s lo-
cation, hence within its strong electric field.
12. Such a system is called a polyelectron. It is analogous to
an ionized hydrogen molecule much as positronium is analo-
gous to a hydrogen atom. (See Figure 2-12 caption.)
13. Satellite navigation systems, e.g., the Global Positioning
System, are now so precise that the minute corrections arising
primarily from the general relativistic time dilation must be
taken into account by the system’s programs.
14. From Einstein’s lecture in Kyoto in late 1922. See A. Pais,
Subtle Is the Lord . . . (Oxford: Oxford University Pres, 1982).
15. From an unpublished paper now in the collection of the
Pierpont Morgan Library in New York. See Pais (1982).
16. Einstein inquired of the astronomer George Hale (after
whom the 5-m telescope on Palomar Mountain is named) in
1913 whether such minute deflections could be measured near
the Sun. The answer was no, but a corrected calculation two
years later doubled the predicted deflection and brought de-
tection to within the realm of possibility.
17. This is not a simple integration. See, e.g., Adler et al., Intro-
duction to General Relativity (New York: McGraw-Hill, 1963).

18. Both Newtonian mechanics and special relativity predict
half this value. The particle-scattering formula used in
Chapter 4 to obtain Equation 4-3, applied to the gravitational
deflection of a photon of mass by the solar mass at
impact parameter b equal to the solar radius shows how
this value arises.
19. A copy of Einstein’s work (he was then in Berlin) was
smuggled out of Germany to Eddington in England so that he
could plan the project. Germany and England were then at
war. Arthur S. Eddington was at the time director of the pres-
tigious Cambridge Observatory. British authorities approved
the eclipse expeditions to avoid the embarrassment of putting
such a distinguished scientist as Eddington, a conscientious
objector, into a wartime internment camp.
20. See, e.g., R. V. Pound and G. A. Rebka, Jr., Physical
Review Letters, 4, 337 (1960).
21. These values are relative to the fixed stars.
22. A. Einstein, “The Foundation of the General Theory of
Relativity,” Annalen der Physik, 49, 769 (1916).
23. I. I. Shapiro et al., Physical Review Letters, 26, 1132
(1971).
24. R. A. Hulse and J. H. Taylor, Astrophysical Journal, 195,
L51 (1975).
25. Gravity wave detectors outside the U.S. are the TAMA
300 (Japan), GEO600 (Germany), and Virgo (Italy). NASA
and the European Space Agency are designing a space-based
gravity-wave detector, LISA, that will have arms 5 million
kilometers long. The three satellites that LISA will comprise
are scheduled for launch in 2011.

R} ,
M}h�>c2

Problems

Level I

Section 2-1 Relativistic Momentum and Section 2-2 Relativistic Energy

2-1. Show that where and are the relativistic momenta and speeds of the
balls in Figure 2-1, given by

2-2. Show that 
2-3. An electron of rest energy � 0.511 MeV moves with respect to the laboratory at
speed u � 0.6c. Find (a) (b) p in units of MeV c, (c) E, and (d)
2-4. How much energy would be required to accelerate a particle of mass m from rest to a
speed of (a) 0.5 c, (b) 0.9 c, and (c) 0.99 c? Express your answers as multiples of the rest energy.
2-5. Two 1-kg masses are separated by a spring of negligible mass. They are pushed together,
compressing the spring. If the work done in compressing the spring is 10 J, find the change in
mass of the system in kilograms. Does the mass increase or decrease?

Ek .>,
mc2

d(mu) � m(1 � u2>c2)�3>2 du.
uyB � �u021 � v2>c2  uxB � v

pyA �
mu0

21 � u2
0>c2

  pyB �
muyB

21 � (u2
xB � u2

yB)>c2

pyBpyApyA � �pyB ,
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2-6. At what value of does the measured mass of a particle exceed its rest mass by
(a) 10%, (b) a factor of 5, and (c) a factor of 20?
2-7. A cosmic ray proton is moving at such a speed that it can travel from the Moon to Earth
in 1.5 s. (a) At what fraction of the speed of light is the proton moving? (b) What is its kinetic
energy? (c) What value would be measured for its mass by an observer in Earth’s reference
frame? (d) What percent error is made in the kinetic energy by using the classical relation? (The
Earth-Moon distance is 3.8 � 105 km. Ignore Earth’s rotation.)
2-8. How much work must be done on a proton to increase its speed from (a) 0.15c to
0.16c? (b) 0.85c to 0.86c? (c) 0.95c to 0.96c? Notice that the change in the speed is the same
in each case.
2-9. The Relativistic Heavy Ion Collider (RHIC) at Brookhaven is colliding fully ionized gold
(Au) nuclei accelerated to an energy of 200 GeV per nucleon. Each Au nucleus contains 197
nucleons. (a) What is the speed of each Au nucleus just before collision? (b) What is the mo-
mentum of each at that instant? (c) What energy and momentum would be measured for one of
the Au nuclei by an observer in the rest system of the other Au nucleus?
2-10. (a) Compute the rest energy of 1 g of dirt. (b) If you could convert this energy entirely
into electrical energy and sell it for 10 cents per kilowatt-hour, how much money would you
get? (c) If you could power a 100-W lightbulb with the energy, for how long could you keep the
bulb lit?
2-11. An electron with rest energy of 0.511 MeV moves with speed u � 0.2c. Find its total en-
ergy, kinetic energy, and momentum.
2-12. A proton with rest energy of 938 MeV has a total energy of 1400 MeV. (a) What is its
speed? (b) What is its momentum?
2-13. The orbital speed of the Sun relative to the center of the Milky Way is about 250 km s.
By what fraction do the relativistic and Newtonian values differ for (a) the Sun’s momentum
and (b) the Sun’s kinetic energy?
2-14. An electron in a hydrogen atom has a speed about the proton of m s. (a) By
what percent do the relativistic and Newtonian values of differ? (b) By what percent do the
momentum values differ?
2-15. Suppose that you seal an ordinary 60-W lightbulb and a suitable battery inside a trans-
parent enclosure and suspend the system from a very sensitive balance. (a) Compute the
change in the mass of the system if the lamp is on continuously for one year at full power.
(b) What difference, if any, would it make if the inner surface of the container were a perfect
reflector?

Section 2-3 Mass/Energy Conversion and Binding Energy

2-16. Use Appendix A and Table 2-1 to find how much energy is needed to remove one proton
from a atom, leaving a atom plus a proton and an electron.
2-17. Use Appendix A and Table 2-1 to find how much energy is required to remove one of the
neutrons from a atom to yield a atom plus a neutron.
2-18. The energy released when sodium and chlorine combine to form NaCl is 4.2 eV. (a) What
is the increase in mass (in unified mass units) when a molecule of NaCl is dissociated into an
atom of Na and an atom of Cl? (b) What percentage of error is made in neglecting this mass
difference? (The mass of Na is about 23 u and that of Cl is about 35.5 u.)
2-19. In a nuclear fusion reaction two atoms are combined to produce one (a) Calculate
the decrease in rest mass in unified mass units. (b) How much energy is released in this reaction?
(c) How many such reactions must take place per second to produce 1 W of power?
2-20. An elementary particle of mass M completely absorbs a photon, after which its mass is
1.01M. (a) What was the energy of the incoming photon? (b) Why is that energy greater than
0.01Mc2?
2-21. When a beam of high-energy protons collides with protons at rest in the laboratory (e.g.,
in a container of water or liquid hydrogen), neutral pions are produced by the reaction

Compute the threshold energy of the protons in the beam for this reac-
tion to occur. (See Table 2-1 and Example 2-11.)
p � pS p � p � �0.

(�0)

4He.2H

2H3H

3H4He

Ek

>2.2 � 106

>

u>c
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2-22. The energy released in the fission of a nucleus is about 200 MeV. How much rest
mass (in kg) is converted to energy in this fission?
2-23. The temperature of the Sun’s core is about K. Assuming the core to consist of
atomic hydrogen gas and recalling that temperature measures the average kinetic energy of the
atoms, compute (a) the thermal energy of 1 kg of the gas and (b) the mass associated with this
energy ( where k is the Boltzmann constant; see Chapter 3).

Section 2-4 Invariant Mass

2-24. Compute the force exerted on the palm of your hand by the beam from a 1.0-W flashlight
(a) if your hand absorbs the light, and (b) if the light reflects from your hand. What would be the
mass of a particle that exerts that same force in each case if you hold it at Earth’s surface?
2-25. An electron-positron pair combined as positronium is at rest in the laboratory. The pair
annihilate, producing a pair of photons (gamma rays) moving in opposite directions in the lab.
Show that the invariant rest energy of the gamma rays is equal to that of the electron pair.
2-26. Show that Equation 2-31 can be written and use the binomial
expansion to show that, when pc is much less than mc2,
2-27. An electron of rest energy 0.511 MeV has a total energy of 5 MeV. (a) Find its momen-
tum in units of MeV c. (b) Find 
2-28. Make a sketch of the total energy of an electron E as a function of its momentum p.
(See Equations 2-36 and 2-39 for the behavior of E at large and small values of p.)
2-29. What is the speed of a particle that is observed to have momentum 500 MeV c and en-
ergy 1746 MeV? What is the particle’s mass (in MeV c2)?
2-30. An electron of total energy 4.0 MeV moves perpendicular to a uniform magnetic field
along a circular path whose radius is 4.2 cm. (a) What is the strength of the magnetic field B?
(b) By what factor does exceed m?
2-31. A proton is bent into a circular path of radius 2 m by a magnetic field of 0.5 T. (a) What
is the momentum of the proton? (b) What is its kinetic energy?

Section 2-5 General Relativity

2-32. Compute the deflection angle for light from a distant star that would, according to gen-
eral relativity, be measured by an observer on the Moon as the light grazes the edge of Earth.
2-33. A set of twins work in the Sears Tower, a very tall office building in Chicago. One works
on the top floor and the other works in the basement. Considering general relativity, which twin
will age more slowly? (a) They will age at the same rate. (b) The twin who works on the top
floor will age more slowly. (c) The twin who works in the basement will age more slowly. (d) It
depends on the building’s speed. (e) None of the previous choices is correct.
2-34. Jupiter makes 8.43 orbits/century and exhibits an orbital eccentricity � � 0.048. Jupiter
is 5.2 AU from the Sun (see footnote for Table 2-2 in the More section) and has a mass 318
times the Earth’s kg. What does general relativity predict for the rate of precession
of Jupiter’s perihelion? (It has not yet been measured.) (The astronomical unit AU � the mean
Earth-Sun distance m.)
2-35. A synchronous satellite “parked” in orbit over the equator is used to relay microwave
transmissions between stations on the ground. To what frequency must the satellite’s receiver
be tuned if the frequency of the transmission from Earth is exactly 9.375 GHz? (Ignore all
Doppler effects.)
2-36. A particular distant star is found to be 92 from Earth. On a direct line between us
and the star and 35 from the distant star is a dense white dwarf star with a mass equal to
3 times the Sun’s mass and a radius of 104 km. Deflection of the light beam from the dis-
tant star by the white dwarf causes us to see it as a pair of circular arcs like those shown in
Figure 2-20(b). Find the angle formed by the lines of sight to the two arcs.

Level II

2-37. A clock is placed on a satellite that orbits Earth with a period of 90 min at an altitude of
300 km. By what time interval will this clock differ from an identical clock on Earth after
1 year? (Include both special and general relativistic effects.)

2�

M}

c # y
c # y

� 1.50 � 1011

5.98 � 1024

�

m

> >
u>c.> E � mc2 � p2>2m.

E � mc2(1 � p2>m2c2)1>2

Ek � 3kT>2,

1.5 � 107

235U
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2-38. Referring to Example 2-11, find the total energy E� as measured in S� where p� � 0.
2-39. In the Stanford linear collider, small bundles of electrons and positrons are fired at each
other. In the laboratory’s frame of reference, each bundle is about 1 cm long and 10 in
diameter. In the collision region, each particle has energy of 50 GeV, and the electrons and
positrons are moving in opposite directions. (a) How long and how wide is each bundle in its
own reference frame? (b) What must be the minimum proper length of the accelerator for a
bundle to have both its ends simultaneously in the accelerator in its own reference frame? 
(The actual length of the accelerator is less than 1000 m.) (c) What is the length of a positron
bundle in the reference frame of the electron bundle? (d) What are the momentum and energy
of the electrons in the rest frame of the positrons?
2-40. The rest energy of a proton is about 938 MeV. If its kinetic energy is also 938 MeV, find
(a) its momentum and (b) its speed.
2-41. A spaceship of mass kg is coasting through space when suddenly it becomes necessary
to accelerate. The ship ejects kg of fuel in a very short time at a speed of relative to the
ship. (a) Neglecting any change in the rest mass of the system, calculate the speed of the ship in the
frame in which it was initially at rest. (b) Calculate the speed of the ship using classical Newtonian
mechanics. (c) Use your results from (a) to estimate the change in the rest mass of the system.
2-42. A clock (or a light-emitting atom) located at Earth’s equator moves at about 463 m s rel-
ative to one located at the pole. The equator clock is also about 21 km farther from the center
of Earth than the pole clock due to Earth’s equatorial bulge. For an inertial reference frame cen-
tered on Earth, compute the time dilation effect for each clock as seen by an observer at the
other clock. Show that the effects nearly cancel and that, as a result, the clocks read very close
to the same time. (Assume that g is constant over the 21 km of the equatorial bulge.)
2-43. Professor Spenditt, oblivious to economics and politics, proposes the construction of a
circular proton accelerator around Earth’s circumference using bending magnets that provide a
magnetic field of 1.5 T. (a) What would be the kinetic energy of protons orbiting in this field in
a circle of radius RE? (b) What would be the period of rotation of these protons?
2-44. In ancient Egypt the annual flood of the Nile was predicted by the rise of Sirius (the Dog
Star). Sirius is one of a binary pair whose companion is a white dwarf. Orbital analysis of the
pair indicates that the dwarf’s mass is kg (i.e., about one solar mass). Comparison of
spectral lines emitted by the white dwarf with those emitted by the same element on Earth shows
a fractional frequency shift of Assuming this to be due to a gravitational redshift, com-
pute the density of the white dwarf. (For comparison, the Sun’s density is 1409 kg m3.)
2-45. Show that the creation of an electron-positron pair (or any particle-antiparticle pair, for
that matter) by a single photon is not possible in isolation, i.e., that additional mass (or radia-
tion) must be present. (Hint: Use the conservation laws.)
2-46. With inertial systems S and S� arranged with their corresponding axes parallel and S�
moving in the �x direction, it was apparent that the Lorentz transformation for y and z would
be y� � y and z� � z. The transformations for the y and z components of the momentum are not
so apparent, however. Show that, as stated in Equations 2-16 and 2-17, and 

Level III

2-47. Two identical particles of rest mass m are each moving toward the other with speed u in
frame S. The particles collide inelastically with a spring that locks shut (see Figure 2-9) and come
to rest in S, and their initial kinetic energy is transformed into potential energy. In this problem
you are going to show that the conservation of momentum in reference frame S�, in which one
of the particles is initially at rest, requires that the total rest mass of the system after the collision
be (a) Show that the speed of the particle not at rest in frame S� is

and use this result to show that

B1 �
u�2

c2
�

1 � u2>c2

1 � u2>c2
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(b) Show that the initial momentum in frame S� is (c) After the colli-
sion, the composite particle moves with speed u in S� (since it is at rest in S). Write the total
momentum after the collision in terms of the final rest mass M, and show that the conservation
of momentum implies that (d) Show that the total energy is conserved
in each reference frame.
2-48. An antiproton has the same rest energy as a proton. It is created in the reaction

In an experiment, protons at rest in the laboratory are bombarded
with protons of kinetic energy Ek , which must be great enough so that kinetic energy equal to

can be converted into the rest energy of the two particles. In the frame of the laboratory,
the total kinetic energy cannot be converted into rest energy because of conservation of mo-
mentum. However, in the zero-momentum reference frame in which the two initial protons are
moving toward each other with equal speed u, the total kinetic energy can be converted into rest
energy. (a) Find the speed of each proton u such that the total kinetic energy in the zero-
momentum frame is (b) Transform to the laboratory’s frame in which one proton is at
rest, and find the speed of the other proton. (c) Show that the kinetic energy of the moving
proton in the laboratory’s frame is 
2-49. In a simple thought experiment, Einstein showed that there is mass associated with elec-
tromagnetic radiation. Consider a box of length L and mass M resting on a frictionless surface.
At the left wall of the box is a light source that emits radiation of energy E, which is absorbed
at the right wall of the box. According to classical electromagnetic theory, this radiation carries
momentum of magnitude p � E c. (a) Find the recoil velocity of the box such that momentum
is conserved when the light is emitted. (Since p is small and M is large, you may use classical
mechanics.) (b) When the light is absorbed at the right wall of the box, the box stops, so the
total momentum remains zero. If we neglect the very small velocity of the box, the time it takes
for the radiation to travel across the box is �t � L c. Find the distance moved by the box in this
time. (c) Show that if the center of mass of the system is to remain at the same place, the radi-
ation must carry mass 
2-50. A pion spontaneously decays into a muon and a muon antineutrino according to (among
other processes) Recent experimental evidence indicates that the mass m of the

is no larger than about 190 keV c2 and may be as small as zero. Assuming that the pion
decays at rest in the laboratory, compute the energies and momenta of the muon and muon
antineutrino (a) if the mass of the antineutrino were zero and (b) if its mass were 190 keV c2.
The mass of the pion is 139.56755 MeV c2 and the mass of the muon is 105.65839 MeV c2.
(See Chapters 11 and 12 for more on the neutrino mass.)
2-51. Use Equation 2-47 to obtain the gravitational redshift in terms of the wavelength Use
that result to determine the shift in wavelength of light emitted by a white dwarf star at 720.00 nm.
Assume the white dwarf has the same mass as the Sun ( kg) but a radius equal to
only 1 percent of the solar radius ( m).
2-52. For a particle moving in the xy plane of S, show that the y� component of the accelera-
tion is given by

2-53. Consider an object of mass m at rest in S acted upon by a force F with components Fx
and Fy . System moves with instantaneous velocity v in the �x direction. Defining the force
with Equation 2-8 and using the Lorentz velocity transformation, show that (a) and
(b) (Hint: See Problem 2-52.)
2-54. An unstable particle of mass M decays into two identical particles, each of mass m.
Obtain an expression for the velocities of the two decay particles in the lab frame (a) if M is at
rest in the lab and (b) if M has total energy when it decays and the decay particles move
along the direction of M.
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The idea that all matter is composed of tiny particles, or atoms, dates to the specu-
lations of the Greek philosopher Democritus1 and his teacher Leucippus in about

450 B.C. However, little attempt was made to correlate such speculations with obser-
vations of the physical world until the seventeenth century. Pierre Gassendi, in the
mid-seventeenth century, and Robert Hooke, somewhat later, attempted to explain
states of matter and the transitions between them with a model of tiny, indestructible
solid objects flying in all directions. But it was Avogadro’s hypothesis, advanced in
1811, that all gases at a given temperature contain the same number of molecules per
unit volume, that led to great success in the interpretation of chemical reactions and
to development of kinetic theory in about 1900. Avogadro’s hypothesis made possible
quantitative understanding of many bulk properties of matter and led to general
(though not unanimous) acceptance of the molecular theory of matter. Thus, matter is
not continuous, as it appears, but is quantized (i.e., discrete) on the microscopic scale.
Scientists of the day understood that the small size of the atom prevented the dis-
creteness of matter from being readily observable.

In this chapter, we will study how three additional great quantization discoveries
were made: (1) electric charge, (2) light energy, and (3) energy of oscillating me-
chanical systems. The quantization of electric charge was not particularly surprising
to scientists in 1900; it was quite analogous to the quantization of mass. However, the
quantization of light energy and mechanical energy, which are of central importance
in modern physics, were revolutionary ideas.

3-1 Quantization of Electric Charge

Early Measurements of and 

The first estimates of the order of magnitude of the electric charges found in atoms were
obtained from Faraday’s law. The work of Michael Faraday (1791–1867) in the early to
mid-1800s stands out even today for its vision, experimental ingenuity, and thorough-
ness. The story of this self-educated blacksmith’s son who rose from errand boy and
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bookbinder’s apprentice to become the director of the distinguished Royal Institution of
London and the foremost experimental investigator of his time is a fascinating one. One
aspect of his work concerned the study of the conduction of electricity in weakly con-
ducting solutions. His discovery that the same quantity of electricity, now called the
faraday and equal to about 96,500 C, always decomposes one gram-ionic weight, that
is, Avogadro’s number of monovalent ions leads to the reasonable conclusion that
each monovalent ion carries the same electric charge, and therefore

3-1

Equation 3-1 is called Faraday’s law of electrolysis. While was readily mea-
surable, neither nor could be experimentally determined at the time. Faraday was
aware of this but could not determine either quantity. Even so, it seemed logical to ex-
pect that electric charge, like matter, was not continuous, but consisted of particles of
some discrete minimum charge. In 1874, G. J. Stoney2 used an estimate of from
kinetic theory to compute the value of from Equation 3-1 to be about how-
ever, direct measurement of the value of had to await an ingenious experiment con-
ducted by R. A. Millikan a third of a century later.

Meanwhile, Pieter Zeeman, in 1896, obtained the first evidence for the existence of
atomic particles with a specific charge-to-mass ratio by looking at the changes in the dis-
crete spectral lines emitted by atoms when they were placed in a strong magnetic field.
He discovered that the individual spectral lines split into three very closely spaced lines
of slightly different frequencies when the atoms were placed in the magnetic field. (This
phenomenon is called the Zeeman effect and will be discussed further in Chapter 7.)
Classical electromagnetic theory relates the slight differences in the frequencies of ad-
jacent lines to the charge-to-mass ratio of the oscillating charges producing the light.

From his measurements of the splitting, Zeeman calculated to be about
which compares favorably with the presently accepted value,

(see Appendix D). From the polarization of the spectral lines,
Zeeman concluded that the oscillating particles were negatively charged.

Discovery of the Electron: J. J. Thomson’s Experiment

The year following Zeeman’s work, J. J. Thomson3 measured the value for the so-
called cathode rays that were produced in electrical discharges in gases and pointed out
that, if their charge was Faraday’s charge as determined by Stoney, then their mass was
only a small fraction of the mass of a hydrogen atom. Two years earlier J. Perrin had col-
lected cathode rays on an electrometer and found them to carry a negative electric
charge.4 Thus, with his measurement of for the cathode rays, Thomson had, in fact,
discovered the electron. That direct measurement of of electrons by J. J. Thomson
in 1897, a little over a century ago, can be justly considered to mark the beginning of
our understanding of atomic structure.

Measurement of e/m When a uniform magnetic field of strength is established
perpendicular to the direction of motion of charged particles, the particles move in a
circular path. The radius of the path can be obtained from Newton’s second law by
setting the magnetic force equal to the mass times the centripetal acceleration

where is the speed of the particles:
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Figure 3-1 J. J. Thomson’s tube for measuring Electrons from the cathode pass
through the slits at and and strike a phosphorescent screen. The beam can be deflected by
an electric field between the plates and or by a magnetic field (not shown) whose
direction is perpendicular to the electric field between and From the deflections
measured on a scale on the tube at the screen, can be determined. [From J. J. Thomson,
“Cathode Rays,” Philosophical Magazine (5), 44, 293 (1897).]
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Thomson performed two experiments of somewhat different designs. The second,
more reproducible of the two has become known as the J. J. Thomson experiment
(Figure 3-1). In this experiment he adjusted perpendicular and fields so that the
particles were undeflected. This allowed him to determine the speed of the electrons
by equating the magnitudes of the magnetic and electric forces and then to compute

from Equation 3-2:

3-3

Thomson’s experiment was remarkable in that he measured for a subatomic par-
ticle using only a voltmeter, an ammeter, and a measuring rod, obtaining the result

Present-day particle physicists routinely use the modern equivalent
of Thomson’s experiment to measure the momenta of elementary particles.
0.7 � 1011 C>kg.
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J. J. Thomson in his laboratory. He is facing the screen end of an tube; an older cathode
ray tube is visible in front of his left shoulder. [Courtesy of Cavendish Laboratory.]
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Thomson repeated the experiment with different gases in the tube and different metals
for cathodes and always obtained the same value for within his experimental
uncertainty, thus showing that these particles are common to all metals. The agree-
ment of these results with Zeeman’s led to the unmistakable conclusion that these
particles—called corpuscles by Thomson and later called electrons by Lorentz—
which have one unit of negative charge and a mass about 2000 times less than the
mass of the lightest known atom were constituents of all atoms.

Questions

1. One advantage of Thomson’s evidence over others’ (such as Faraday’s or
Zeeman’s) was its directness. Another was that it was not just a statistical
inference. How does the Thomson experiment show that is the same for a
large number of the particles?

2. Thomson noted that his values for were about 2000 times larger than those
for the lightest known ion, that of hydrogen. Could he tell from his data whether
this was the result of the electron having either a greater charge or a smaller
mass than the hydrogen ion?

Measuring the Electric Charge: Millikan’s Experiment

The fact that Thomson’s measurements always yielded the same results regard-
less of the materials used for the cathodes or the kind of gas in the tube was a persua-
sive argument that the electrons all carried one unit of negative electric charge.
Thomson initiated a series of experiments to determine the value of The first of
these experiments, which turned out to be very difficult to do with high precision,
was carried out by his student J. S. E. Townsend. The idea was simple: a small (but
visible) cloud of identical water droplets, each carrying a single charge was ob-
served to drift downward in response to the gravitational force. The total charge on the
cloud was measured, as were the mass of the cloud and the radius of a single
drop. Finding the radius allowed calculation of the total number of drops in the
cloud, and, hence, the value of 

The accuracy of Thomson’s method was limited by the uncertain rate of evapo-
ration of the cloud. In addition, the assumption that each droplet contained a single
charge could not be verified. R. A. Millikan tried to eliminate the evaporation prob-
lem by using a field strong enough to hold the top surface of the cloud stationary so
that he could observe the rate of evaporation and correct for it. That, too, turned out
to be very difficult, but then he made a discovery of enormous importance, one that
allowed him to measure directly the charge of a single electron! Millikan described
his discovery in the following words:

It was not found possible to balance the cloud as had been originally

planned, but it was found possible to do something much better: namely, to

hold individual charged drops suspended by the field for periods varying

from 30 to 60 seconds. I have never actually timed drops which lasted more

than 45 seconds, although I have several times observed drops which in my

judgment lasted considerably longer than this. The drops which it was found

possible to balance by an electric field always carried multiple charges, and

the difficulty experienced in balancing such drops was less than had been

anticipated.5
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The discovery that he could see individual droplets
and that droplets suspended in a vertical electric field
sometimes suddenly moved upward or downward, evi-
dently because they had picked up a positive or negative
ion, led to the possibility of observing the charge of a sin-
gle ion. In 1909, Millikan began a series of experiments
that not only showed that charges occurred in integer mul-
tiples of an elementary unit but measured the value of 
to about 1 part in 1000. To eliminate evaporation, he used
oil drops sprayed into dry air between the plates of a ca-
pacitor (Figure 3-2). These drops were already charged
by the spraying process, i.e., by friction in the spray noz-
zle, and during the course of the observation they picked
up or lost additional charges. By switching the direction
of the electric field between the plates, a drop could be
moved up or down and observed for several hours.
When the charge on a drop changed, the velocity of the
drop with the field “on” changed also. Assuming only that
the terminal velocity of the drop was proportional to the
force acting on it (this assumption was carefully checked
experimentally), Millikan’s oil drop experiment6 gave
conclusive evidence that electric charges always occur in integer multiples of a fun-
damental unit whose value he determined to be The currently
accepted value7 is An expanded discussion of Millikan’s
experiment is included in the Classical Concept Review.

3-2 Blackbody Radiation
The first clue to the quantum nature of radiation came from the study of thermal ra-
diation emitted by opaque bodies. When radiation falls on a opaque body, part of it is
reflected and the rest is absorbed. Light-colored bodies reflect most of the visible ra-
diation incident on them, whereas dark bodies absorb most of it. The absorption part
of the process can be described briefly as follows. The radiation absorbed by the body
increases the kinetic energy of the constituent atoms, which oscillate about their equi-
librium positions. Since the average translational kinetic energy of the atoms deter-
mines the temperature of the body, the absorbed energy causes the temperature to rise.
However, the atoms contain charges (the electrons), and they are accelerated by the
oscillations. Consequently, as required by electromagnetic theory, the atoms emit
electromagnetic radiation, which reduces the kinetic energy of the oscillations and
tends to reduce the temperature. When the rate of absorption equals the rate of emis-
sion, the temperature is constant, and we say that the body is in thermal equilibrium
with its surroundings. A good absorber of radiation is therefore also a good emitter.

The electromagnetic radiation emitted under these circumstances is called
thermal radiation. At ordinary temperatures (below about ) the thermal radia-
tion emitted by a body is not visible; most of the energy is concentrated in wave-
lengths much longer than those of visible light. As a body is heated, the quantity of
thermal radiation emitted increases, and the energy radiated extends to shorter and
shorter wavelengths. At about there is enough energy in the visible spec-
trum so that the body glows and becomes a dull red, and at higher temperatures it
becomes bright red or even “white hot.”

600°–700°C

600°C

1.60217653 � 10�19 C.
1.601 � 10�19 C.e,

ee,
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Light
source

(+)
(–)

(+)
(–)

Atomizer

Telescope

Figure 3-2 Schematic diagram of Millikan’s oil drop
experiment. The drops are sprayed from an atomizer and pick
up a static charge, a few falling through the hole in the top
plate. Their fall due to gravity and their rise due to the
electric field between the capacitor plates can be observed
with the telescope. From measurements of the rise and fall
times, the electric charge on a drop can be calculated. The
charge on a drop could be changed by exposure to x rays
from a source (not shown) mounted opposite the light source.
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A body that absorbs all radiation incident on it is called an ideal blackbody.
In 1879 Josef Stefan found an empirical relation between the power radiated by an
ideal blackbody and the temperature:

3-4

where is the power radiated per unit area, is the absolute temperature, and
is a constant called Stefan’s constant. This result was

also derived on the basis of classical thermodynamics by Ludwig Boltzmann about
five years later, and Equation 3-4 is now called the Stefan-Boltzmann law. Note that
the power per unit area radiated by a blackbody depends only on the temperature and
not on any other characteristic of the object, such as its color or the material of which
it is composed. Note, too, that tells us the rate at which energy is emitted by the ob-
ject. For example, doubling the absolute temperature of an object, e.g., a star, in-
creases the energy flow out of the object by a factor of An object at room
temperature will double the rate at which it radiates energy as a result of a
temperature increase of only Thus, the Stefan-Boltzmann law has an enormous
effect on the establishment of thermal equilibrium in physical systems.

Objects that are not ideal blackbodies radiate energy per unit area at a rate less
than that of a blackbody at the same temperature. For those objects the rate does de-
pend on properties in addition to the temperature, such as color and the composition
of the surface. The effects of those dependencies are combined into a factor called the
emissivity which multiplies the right side of Equation 3-4. The values of which is
itself temperature dependent, are always less than unity.

Like the total radiated power the spectral distribution of the radiation emitted
by a blackbody is found empirically to depend only on the absolute temperature 
The spectral distribution is determined experimentally as illustrated schematically in
Figure 3-3. With the power emitted per unit area with wavelength between 
and Figure 3-4 shows the measured spectral distribution function ver-
sus for several values of ranging from to 

The curves in Figure 3-4 are quite remarkable in several respects. One is that
the wavelength at which the distribution has its maximum value varies inversely with
the temperature:

or

3-5
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This result is known as Wien’s displacement law. It was obtained by Wien in 1893.
Examples 3-1 and 3-2 illustrate its application.

EXAMPLE 3-1 How Big Is a Star? Measurement of the wavelength at which the
spectral distribution from a certain star is maximum indicates that the star’s
surface temperature is If the star is also found to radiate 100 times the
power radiated by the Sun, how big is the star? (The symbol ) The
Sun’s surface temperature is 5800 K.

SOLUTION

If the Sun and the star both radiate as blackbodies (astronomers nearly always make
that assumption, based on, among other things, the fact that the solar spectrum is
very nearly that of an ideal blackbody), their surface temperatures from Equation 
3-5 are and respectively. Measurement also indicates that

Thus, from Equation 3-4 we have

and

So we have

Since this star has a radius of about or about half
the radius of the orbit of Mercury. This star is a red giant (see Chapter 13).
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Figure 3-5 A small hole
in the wall of a cavity
approximating an ideal
blackbody. Radiation
entering the hole has little
chance of leaving before it is
completely absorbed within
the cavity.
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Rayleigh-Jeans Equation

The calculation of the distribution function involves the calculation of the energy
density of electromagnetic waves in a cavity. Materials such as black velvet or lamp-
black come close to being ideal blackbodies, but the best practical realization of an
ideal blackbody is a small hole leading into a cavity (such as a keyhole in a closet
door; Figure 3-5). Radiation incident on the hole has little chance of being reflected
back out of the hole before it is absorbed by the walls of the cavity. The power  radi-
ated out of the hole is proportional to the total energy density (the energy per unit
volume of the radiation in the cavity). The proportionality constant can be shown 
to be where is the speed of light.8

3-6

Similarly, the spectral distribution of the power emitted from the hole is proportional
to the spectral distribution of the energy density in the cavity. If is the frac-
tion of the energy per unit volume in the cavity in the range then and 
are related by

3-7

The energy density distribution function can be calculated from classical
physics in a straightforward way. The method involves finding the number of modes
of oscillation of the electromagnetic field in the cavity with wavelengths in the inter-
val and multiplying by the average energy per mode. The result is that the number
of modes of oscillation per unit volume, is independent of the shape of the cavity
and is given by

3-8

According to classical kinetic theory, the average energy per mode of oscillation is 
the same as for a one-dimensional harmonic oscillator, where is the Boltzmann
constant. Classical theory thus predicts for the energy density distribution function

3-9

This prediction, initially derived by Lord Rayleigh,9 is called the Rayleigh-Jeans
equation. It is illustrated in Figure 3-6.

At very long wavelengths the Rayleigh-Jeans equation agrees with the experi-
mentally determined spectral distribution, but at short wavelengths this equation pre-
dicts that becomes large, approaching infinity as whereas experiment
shows (see Figure 3-4) that the distribution actually approaches zero as This
enormous disagreement between the experimental measurement of and the pre-
diction of the fundamental laws of classical physics at short wavelengths was called
the ultraviolet catastrophe. The word catastrophe was not used lightly; Equation 3-9
implies that

3-10

That is, every object would have an infinite energy density, which observation assures
us is not true.
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Planck’s Law

In 1900 the German physicist Max Planck10 announced that by making somewhat
strange assumptions, he could derive a function that agreed with the experimen-
tal data. He first found an empirical function that fit the data and then searched for a
way to modify the usual calculation so as to predict his empirical formula. We can see
the type of modification needed if we note that, for any cavity, the shorter the wave-
length, the more standing waves (modes) will be possible. Therefore, as 
the number of modes of oscillation approaches infinity, as evidenced in Equation 3-8.
In order for the energy density distribution function to approach zero, we expect
the average energy per mode to depend on the wavelength and approach zero as 

approaches zero, rather than be equal to the value predicted by classical theory.
Parenthetically, we should note that those working on the ultraviolet catastrophe

at the time—and there were many besides Planck—had no a priori way of knowing
whether the number of modes or the average energy per mode (or both) was
the source of the problem. Both were correct classically. Many attempts were made
to rederive each so as to solve the problem. As it turned out, it was the average en-
ergy per mode (that is, kinetic theory) that was at fault.

Classically, the electromagnetic waves in the cavity are produced by accelerated
electric charges in the walls of the cavity vibrating as simple harmonic oscillators.
Recall that the radiation emitted by such an oscillator has the same frequency as the
oscillation itself. The average energy for a one-dimensional simple harmonic oscil-
lator is calculated classically from the energy distribution function, which in turn is
found from the Maxwell-Boltzmann distribution function. That energy distribution
function has the form (see Chapter 8)

3-11

where is a constant and is the fraction of the oscillators with energy equal to 
The average energy is then found, as is any weighted average, from

3-12

with the result as was used by Rayleigh and others.E � kT,

E � �
�

0
E f (E) dE � �

�

0
EAe�E>kT dE

E
E.f(E)A

f(E) � Ae�E>kT

kTn(
)

kT




u(
)


 S 0

u(
)

Figure 3-6 Comparison of Planck’s law and the Rayleigh-Jeans equation with experimental
data at obtained by W. W. Coblenz in about 1915. The axis is linear. [Adapted
from F. K. Richmyer, E. H. Kennard, and J. N. Cooper, Introduction to Modern Physics, 6th ed.,
McGraw-Hill, New York (1969), by permission.]
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Planck found that he could derive his empirical formula by calculating the aver-
age energy assuming that the energy of the oscillating charges, and hence the radi-
ation that they emitted, was a discrete variable; i.e., that it could take on only the
values where is an integer; and further, that was proportional to
the frequency of the oscillators and, hence, to that of the radiation. Planck therefore
wrote the energy as

3-13

where the proportionality constant is now called Planck’s constant. The Maxwell-
Boltzmann distribution (Equation 3-11) then becomes

3-14

where is determined by the normalization condition that the sum of all fractions 
must, of course, equal 1, i.e.,

3-15

The average energy of an oscillator is then given by the discrete-sum equivalent of
Equation 3-12:

3-16

Calculating the sums in Equations 3-15 and 3-16 (see Problem 3-58) yields the result

3-17

Multiplying this result by the number of oscillators per unit volume in the interval 
given by Equation 3-8, we obtain for the energy density distribution function of the
radiation in the cavity

3-18

This function, called Planck’s law, is sketched in Figure 3-6. It is clear from the figure
that the result fits the data quite well.

For very large the exponential in Equation 3-18 can be expanded using
for where Then
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which is the Rayleigh-Jeans formula. For short wavelengths, we can neglect the 1 in
the denominator of Equation 3-18, and we have

as The value of the constant in Wein’s displacement law also follows from
Planck’s law, as you will show in Problem 3-23.

The value of Planck’s constant, can be determined by fitting the function
given by Equation 3-18 to the experimental data, although direct measurement (see
Section 3-3) is better but more difficult. The presently accepted value is

3-19

Planck tried at length to reconcile his treatment with classical physics but was unable
to do so. The fundamental importance of the quantization assumption implied by
Equation 3-13 was suspected by Planck and others but was not generally appreciated
until 1905. In that year Einstein applied the same ideas to explain the photoelectric
effect and suggested that, rather than being merely a mysterious property of the oscil-
lators in the cavity walls and blackbody radiation, quantization was a fundamental
characteristic of light energy.

EXAMPLE 3-2 Peak of the Solar Spectrum The surface temperature of the Sun is
about and measurements of the Sun’s spectral distribution show that it ra-
diates very nearly like a blackbody, deviating mainly at very short wavelengths.
Assuming that the Sun radiates like an ideal blackbody, at what wavelength does the
peak of the solar spectrum occur?

SOLUTION

1. The wavelength at the peak, or maximum intensity, of an ideal blackbody is
given by Equation 3-5:

2. Rearranging and substituting the Sun’s surface temperature yield

Remarks: This value is near the middle of the visible spectrum.

EXAMPLE 3-3 Average Energy of an Oscillator What is the average energy of an
oscillator that has a frequency given by according to Planck’s calculation?

SOLUTION

Remarks: Recall that according to classical theory, regardless of the
frequency.
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The electromagnetic

spectrum emitted by

incandescent bulbs is a

common example of

blackbody radiation, the

amount of visible light being

dependent on the

temperature of the filament.

Another application is the

pyrometer, a device that

measures the temperature of

a glowing object, such as

molten metal in a steel mill.
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Figure 3-7 The energy
density spectral distribution
of the cosmic microwave
background radiation.
The solid line is Planck’s law
with These
measurements (the black
dots) were made by the
COBE satellite.

T � 2.725 K.

EXAMPLE 3-4 Stefan-Boltzmann from Planck Show that the total energy density
in a blackbody cavity is proportional to in accordance with the Stefan-
Boltzmann law.

SOLUTION

The total energy density is obtained from the distribution function (Equation 3-18)
by integrating over all wavelengths:

Define the dimensionless variable Then or
Then

Since the integral is now dimensionless, this shows that is proportional to 
The value of the integral can be obtained from tables; it is Then

This result can be combined with Equations 3-4 and 3-6 to
express Stefan’s constant in terms of and (see Problem 3-13).

A dramatic example of an application of Planck’s law on the current frontier of
physics is in tests of the Big Bang theory of the formation and present expansion
of the universe. Current cosmological theory holds that the universe originated in an
extremely high-temperature explosion of space, one consequence of which was to fill
the infant universe with radiation whose spectral distribution must surely have been
that of an ideal blackbody. Since that time, the universe has expanded to its present size
and cooled to its present temperature However, it should still be filled with radia-
tion whose spectral distribution should be that characteristic of a blackbody at 

In 1965, Arno Penzias and Robert Wilson discovered radiation of wavelength
7.35 cm reaching Earth with the same intensity from all directions in space. It was
soon recognized that this radiation could be a remnant of the Big Bang fireball, and
measurements were subsequently made at other wavelengths in order to construct
an experimental energy density versus graph. The most recent data from
the Cosmic Background Explorer (COBE) satellite, shown in Figure 3-7, and by the
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Wilkinson Microwave Anisotropy Probe (WMAP) have established the temperature
of the background radiation field at The excellent agreement of the
data with Planck’s equation, indeed, the best fit that has ever been measured, is con-
sidered to be very strong support for the Big Bang theory (see Chapter 13).

3-3 The Photoelectric Effect
It is one of the ironies in the history of science that in the famous experiment of
Heinrich Hertz11 in 1887, in which he produced and detected electromagnetic waves,
thus confirming Maxwell’s wave theory of light, he also discovered the photoelectric
effect, which led directly to the particle description of light. Hertz was using a spark
gap in a tuned circuit to generate the waves and another similar circuit to detect them.
He noticed accidentally that when the light from the generating gap was shielded from
the receiving gap, the receiving gap had to be made shorter in order for the spark to
jump the gap. Light from any spark that fell on the terminals of the gap facilitated the
passage of the sparks. He described the discovery with these words:

In a series of experiments on the effects of resonance between very rapid

electric oscillations that I had carried out and recently published, two electric

sparks were produced by the same discharge of an induction coil, and there-

fore simultaneously. One of these sparks, spark was the discharge spark of

the induction coil, and served to excite the primary oscillation. I occasionally

enclosed spark in a dark case so as to make observations more easily, and

in so doing I observed that the maximum spark length became decidedly

smaller inside the case than it was before.12

The unexpected discovery of the photoelectric effect annoyed Hertz because it in-
terfered with his primary research, but he recognized its importance immediately and
interrupted his other work for six months in order to study it in detail. His results, pub-
lished later that year, were then extended by others. It was found that negative parti-
cles were emitted from a clean surface when exposed to light. P. Lenard in 1900 de-
flected them in a magnetic field and found that they had a charge-to-mass ratio of the
same magnitude as that measured by Thomson for cathode rays: the particles being
emitted were electrons.

B

B,

2.725 � 0.001 K.

Albert A. Michelson, Albert Einstein, and Robert A. Millikan at a meeting in
Pasadena, California, in 1931. [AP/Wide World Photos.]
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Figure 3-8 shows a schematic diagram of the basic apparatus used by Lenard.
When light is incident on a clean metal surface (cathode ), electrons are emitted.
If some of these electrons that reach the anode pass through the small hole, a cur-
rent results in the external electrometer circuit connected to The number of
the emitted electrons reaching the anode can be increased or decreased by making the
anode positive or negative with respect to the cathode. Letting be the potential dif-
ference between the cathode and anode, Figure 3-9a shows the current versus for
two values of the intensity of light incident on the cathode. When is positive, the
electrons are attracted to the anode. At sufficiently large all the emitted electrons
reach the anode and the current reaches its maximum value. Lenard observed that the
maximum current was proportional to the light intensity, an expected result since dou-
bling the energy per unit time incident on the cathode should double the number of
electrons emitted. Intensities too low to provide the electrons with the energy neces-
sary to escape from the metal should result in no emission of electrons. However, in
contrast with the classical expectation, there was no minimum intensity below which
the current was absent. When is negative, the electrons are repelled from the anode.
Then only electrons with initial kinetic energy greater than can reach the
anode. From Figure 3-9a we see that if is less than no electrons reach the
anode. The potential is called the stopping potential. It is related to the maximum
kinetic energy of the emitted electrons by

3-20

The experimental result, illustrated by Figure 3-9a, that is independent of the inci-
dent light intensity was surprising. Apparently, increasing the rate of energy falling on
the cathode does not increase the maximum kinetic energy of the emitted electrons,
contrary to classical expectations. In 1905 Einstein offered an explanation of this
result in a remarkable paper in the same volume of Annalen der Physik that contained
his papers on special relativity and Brownian motion.
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Figure 3-8 Schematic diagram of the apparatus used by P. Lenard to demonstrate the
photoelectric effect and to show that the particles emitted in the process were electrons. Light
from the source strikes the cathode Photoelectrons going through the hole in anode are
recorded by the electrometer connected to A magnetic field, indicated by the circular pole
piece, could deflect the particles to a second electrometer connected to making possible the
establishment of the sign of the charges and their ratio. [P. Lenard, Annalen der Physik, 2,
359 (1900).]
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Figure 3-9 (a) Photocurrent versus anode voltage for light of frequency with two
intensities and where The stopping voltage is the same for both. (b) For
constant Einstein’s explanation of the photoelectric effect indicates that the magnitude of the
stopping voltage should be greater for than as observed, and that there should be a
threshold frequency below which no photoelectrons were seen, also in agreement with
experiment. (c) Electron potential energy curve across the metal surface. An electron with the
highest energy in the metal absorbs a photon of energy Conservation of energy requires
that its kinetic energy after leaving the surface be hf � �.
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Einstein assumed that the energy quantization used by Planck in solving the
blackbody radiation problem was, in fact, a universal characteristic of light. Rather
than being distributed evenly in the space through which it propagated, light energy
consisted of discrete quanta, each of energy When one of these quanta, called a
photon, penetrates the surface of the cathode, all of its energy may be absorbed com-
pletely by a single electron. If is the energy necessary to remove an electron from
the surface ( is called the work function and is a characteristic of the metal), the max-
imum kinetic energy of an electron leaving the surface will be as a conse-
quence of energy conservation; see Figure 3-9c. (Some electrons will have less than
this amount because of energy lost in traversing the metal.) Thus, the stopping poten-
tial should be given by

3-21

Equation 3-21 is referred to as the photoelectric effect equation. As Einstein noted,

If the derived formula is correct, then when represented in Cartesian

coordinates as a function of the frequency of the incident light, must be a

straight line whose slope is independent of the nature of the emitting

substance.13

As can be seen from Equation 3-21, the slope of versus should equal At
the time of this prediction there was no evidence that Planck’s constant had anything
to do with the photoelectric effect. There was also no evidence for the dependence of
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the stopping potential on the frequency. Careful experiments by Millikan, reported
in 1914 and in more detail in 1916, showed that Equation 3-21 was correct and that
measurements of from it agreed with the value obtained by Planck. A plot taken
from this work is shown in Figure 3-10.

The minimum, or threshold, frequency for the photoelectric effect, labeled in
this plot and in Figure 3-9b, and the corresponding threshold wavelength are related
to the work function by setting in Equation 3-21:

3-22

Photons of frequencies lower than (and therefore having wavelengths greater
than ) do not have enough energy to eject an electron from the metal. Work func-
tions for metals are typically on the order of a few electron volts. The work functions
for several elements are given in Table 3-1.
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Table 3-1 Photoelectric work functions

Element Work function (eV)

Na 2.28

C 4.81

Cd 4.07

Al 4.08

Ag 4.73

Pt 6.35

Mg 3.68

Ni 5.01

Se 5.11

Pb 4.14

Figure 3-10 Millikan’s data for
stopping potential versus frequency for
the photoelectric effect. The data fall
on a straight line with slope 
as predicted by Einstein a decade
before the experiment. The intercept
on the stopping potential axis is 
[R. A. Millikan, Physical Review, 7,
362 (1915).]
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EXAMPLE 3-5 Photoelectric Effect in Potassium The threshold frequency of potas-
sium is 558 nm. What is the work function for potassium? What is the stopping
potential when light of 400 nm is incident on potassium?

SOLUTION

1. Both questions can be answered with the aid of Equation 3-21:

2. At the threshold wavelength the photoelectrons have just enough energy to over-

come the work function barrier, so hence and

3. When 400-nm light is used, is given by Equation 3-21:

Another interesting feature of the photoelectric effect that is contrary to classical
physics but is easily explained by the photon hypothesis is the lack of any time lag be-
tween the turning on of the light source and the appearance of photoelectrons.
Classically, the incident energy is distributed uniformly over the illuminated surface;
the time required for an area the size of an atom to acquire enough energy to allow the
emission of an electron can be calculated from the intensity (power per unit area)
of the incident radiation. Experimentally, the incident intensity can be adjusted so that
the calculated time lag is several minutes or even hours. But no time lag is ever ob-
served. The photon explanation of this result is that although the rate at which photons
are incident on the metal is very small when the intensity is low, each photon has
enough energy to eject an electron, and there is some chance that a photon will be
absorbed immediately. The classical calculation gives the correct average number of
photons absorbed per unit time.

EXAMPLE 3-6 Classical Time Lag Light of wavelength 400 nm and intensity
is incident on potassium. Estimate the time lag for the emission of photo-

electrons expected classically.

SOLUTION

According to Example 3-5, the work function for potassium is If we assume
m to be the typical radius of an atom, the total energy falling on the atom

in time is
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Setting this energy equal to gives

According to the classical prediction, no atom would be expected to emit an elec-
tron until 18.8 min after the light source was turned on. According to the photon
model of light, each photon has enough energy to eject an electron immediately.
Because of the low intensity, there are few photons incident per second, so the
chance of any particular atom absorbing a photon and emitting an electron in any
given time interval is small. However, there are so many atoms in the cathode that
some emit electrons immediately.

EXAMPLE 3-7 Incident Photon Intensity In Example 3-6, how many photons are
incident per second per square meter?

SOLUTION

The energy of each photon is

Since the incident intensity is the number of photons
per second per square meter is

This is, of course, a lot of photons, not a few; however, the number per atom at
the surface is quite small. 

or about 1 photon for every 1000 atoms.

Questions

3. How is the result that the maximum photoelectric current is proportional to the
intensity explained in the photon model of light?

4. What experimental features of the photoelectric effect can be explained by
classical physics? What features cannot?

The photoemission of electrons has developed into a significant technique for investi-
gating the detailed structure of molecules and solids, making possible discoveries far
beyond anything that Hertz may have imagined. The use of x-ray sources (see Section
3-4) and precision detectors has made possible precise determination of valence elec-
tron configurations in chemical compounds, leading to detailed understanding of chem-
ical bonding and the differences between the bulk and surface atoms of solids.
Photoelectric-effect microscopes will show the chemical situation of each element in a
specimen, a prospect of intriguing and crucial importance in molecular biology and
microelectronics. And they are all based on a discovery that annoyed Hertz—at first.

6.3 � 10�4 photons>s # atom,
n � 2.02 � 1016 photons>s # m2 � �(10�10)2 m2>atom �

n

� 2.02 � 1016 photons>s # m2

N �
10�2 J>s # m2

4.96 � 10�19 J>photon

10�2 W>m2 � 10�2 J>s # m2,

� 4.96 � 10�19 J

E � hf � hc>
 � (1240 eV # nm)>(400 nm) � (3.10 eV)(1.60 � 10�19 J>eV)

t �
(2.22 eV)(1.60 � 10�19 J>eV)

(3.14 � 10�22 J>s)
� 1.13 � 103 s � 18.8 min

 (3.14 � 10�22 J>s)t � (2.22 eV)(1.60 � 10�19 J>eV)

2.22 eV
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3-4 X Rays and the Compton Effect
Further evidence of the correctness of the photon concept was furnished by Arthur
H. Compton, who measured the scattering of x rays by free electrons and, by his
analysis of the data, resolved the last lingering doubts regarding special relativity
(see Chapter 1). Before we examine Compton scattering in detail, we will briefly
describe some of the early work with x rays since it provides a good conceptual
understanding of x-ray spectra and scattering.

X Rays

The German physicist Wilhelm K. Roentgen discovered x rays in 1895 when he was
working with a cathode-ray tube. Coming five years before Planck’s explanation of
the blackbody emission spectrum, Roentgen’s discovery turned out to be the first sig-
nificant development in quantum physics. He found that “rays” originating from the
point where the cathode rays (electrons) hit the glass tube, or a target within the tube,
could pass through materials opaque to light and activate a fluorescent screen or pho-
tographic film. He investigated this phenomenon extensively and found that all mate-
rials are transparent to these rays to some degree and that the transparency decreases
with increasing density. This fact led to the medical use of x rays within months after
the publication of Roentgen’s first paper.14

(a) Early x-ray tube.
[Courtesy of Cavendish
Laboratory.] (b) X-ray tubes
became more compact over
time. This tube was a design
typical of the mid-twentieth
century. [Courtesy of
Schenectady Museum, Hall of
Electrical History, Schenectady,
NY.] (c) Diagram of the
components of a modern 
x-ray tube. Design technology
has advanced enormously,
enabling very high operating
voltages, beam currents, and
x-ray intensities, but essential
elements of the tubes remain
unchanged.

Tungsten
target

Anode Cathode

Pyrex glass
envelope

Electron
beam

Filament

X rays

+ –

(a) (b)

(c)
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Roentgen was unable to deflect these rays in a magnetic field, nor was he able to ob-
serve refraction or the interference phenomena associated with waves. He thus gave the
rays the somewhat mysterious name of x rays. Since classical electromagnetic theory pre-
dicts that accelerated charges will radiate electromagnetic waves, it is natural to expect
that x rays are electromagnetic waves produced by the acceleration of the electrons
when they are deflected and stopped by the atoms of a target. Such radiation is called
bremsstrahlung, German for “braking radiation.” The slight diffraction broadening of an
x-ray beam after passing through slits a few thousandths of a millimeter wide indicated
the wavelength of x rays to be of the order of In 1912 Max von Laue
suggested that since the wavelengths of x rays were of the same order of magnitude as the
spacing of atoms in a crystal, the regular array of atoms in a crystal might act as a three-
dimensional grating for the diffraction of x rays. Experiments (Figure 3-11) soon con-
firmed that x rays are a form of electromagnetic radiation with wavelengths in the range
of about and that atoms in crystals are arranged in regular arrays.

W. L. Bragg, in 1912, proposed a simple and convenient way of analyzing the dif-
fraction of x rays by crystals.15 He examined the interference of x rays due to scatter-
ing from various sets of parallel planes of atoms, now called Bragg planes. Two sets
of Bragg planes are illustrated in Figure 3-12 for NaCl, which has a cubic structure
called face-centered cubic. Consider Figure 3-13. Waves scattered from the two suc-
cessive atoms within a plane will be in phase and thus interfere constructively, inde-
pendent of the wavelength, if the scattering angle equals the incident angle. (This con-
dition is the same as for reflection.) Waves scattered at equal angles from atoms in two

0.01 to 0.10 nm

10�10 m � 0.1 nm.

Figure 3-12 A crystal of NaCl showing two sets of Bragg planes.

(a)

(b)

Photographic
plate with
Laue spots

X rays

Crystal

Figure 3-11 (a) Schematic
sketch of a Laue experiment.
The crystal acts as a three-
dimensional grating, which
diffracts the x-ray beam and
produces a regular array of
spots, called a Laue pattern,
on photographic film or an 
x-ray-sensitive charge-
coupled device (CCD)
detector. (b) Laue x-ray
diffraction pattern using a
niobium boride crystal and

molybdenum x rays.
[General Electric Company.]
20-keV

An x ray
of Mrs.
Roentgen’s
hand taken
by Roentgen
shortly after
his discovery.
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Figure 3-13 Bragg scattering from two successive planes. The waves from the two atoms
shown have a path length difference of They will be in phase if the Bragg condition

is met.2d sin � � m

2d sin�.

Ionization chamber

CrystalAnode

X rays

X-ray tube

Electron
beam

+

–

Lead
collimator

Figure 3-14 Schematic diagram of a Bragg crystal spectrometer. A collimated x-ray beam is
incident on a crystal and scattered into an ionization chamber. The crystal and ionization
chamber can be rotated to keep the angles of incidence and scattering equal as both are varied.
By measuring the ionization in the chamber as a function of angle, the spectrum of the x rays
can be determined using the Bragg condition where is the separation of the
Bragg planes in the crystal. If the wavelength is known, the spacing can be determined.d


d2d sin � � m
,

d
θ

θ d sin θ

different planes will be in phase (constructive interference) only if the difference in
path length is an integral number of wavelengths. From Figure 3-13 we see that this
condition is satisfied if

3-23

Equation 3-23 is called the Bragg condition.
Measurements of the spectral distribution of the intensity of x rays as a function of

the wavelength using an experimental arrangement such as that shown in Figure 3-14
produces the x-ray spectrum and, for classical physics, some surprises. Figure 3-15a
shows two typical x-ray spectra produced by accelerating electrons through two volt-
ages and bombarding a tungsten target mounted on the anode of the tube. In this fig-
ure is the intensity emitted within the wavelength interval for each value of 
Figure 3-15b shows the short wavelength lines produced with a molybdenum target and

electrons. Three features of the spectra are of immediate interest, only one of
which could be explained by classical physics. (1) The spectrum consists of a series
of sharp lines, called the characteristic spectrum, superimposed on (2) the continuous

35-keV


.d
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2d sin� � m
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bremsstrahlung spectrum. The line spectrum is characteristic of the target material and
varies from element to element. (3) The continuous spectrum has a sharp cutoff wave-
length, which is independent of the target material but depends on the energy of
the bombarding electrons. If the voltage on the x-ray tube is volts, the cutoff wave-
length is found empirically to be given by

3-24

Equation 3-24 is called the Duane-Hunt rule, after its discoverers. It was pointed out
rather quickly by Einstein that x-ray production by electron bombardment was an in-
verse photoelectric effect and that Equation 3-21 should apply. The Duane-Hunt sim-
ply corresponds to a photon with the maximum energy of the electrons, that is, the pho-
ton emitted when the electron losses all of its kinetic energy in a single collision. Since
the kinetic energy of the electrons in an x-ray tube is or higher, the work
function is negligible by comparison. That is, Equation 3-21 becomes

or
Thus, the Duane-Hunt rule is explained by Planck’s quantum hypothesis. (Notice that
the value of can be used to determine )

The continuous spectrum was understood as the result of the acceleration (i.e.,
“braking”) of the bombarding electrons in the strong electric fields of the target atoms.
Maxwell’s equation predicted the continuous radiation. The real problem for classical
physics was the sharp lines. The wavelengths of the sharp lines were a function of the
target element, the set for each element being always the same. But the sharp lines
never appeared if was such that was larger than the particular line, as can be seen
from Figure 3-15a, where the shortest-wavelength group disappears when is reduced
from to so that becomes larger. The origin of the sharp lines was a
mystery that had to await the discovery of the nuclear atom. We will explain them
in Chapter 4.
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Figure 3-15 (a) X-ray spectra from tungsten at two accelerating voltages and (b) from molybdenum at one. The names of
the line series ( and ) are historical and explained in Chapter 4. The lines for molybdenum (not shown) are at about

The cutoff wavelength is independent of the target element and is related to the voltage on the x-ray tube by
The wavelengths of the lines are characteristic of the element.
m � hc>eV.
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Figure 3-16 Schematic sketch of Compton’s apparatus. X rays from the tube strike the 
carbon block and are scattered into a Bragg-type crystal spectrometer. In this diagram,
the scattering angle is The beam was defined by slits and Although the entire
spectrum is being scattered by the spectrometer scanned the region around the line of
molybdenum.
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Compton Effect

It had been observed that scattered x rays were “softer” than those in the incident
beam, that is, were absorbed more readily. Compton16 pointed out that if the scatter-
ing process were considered a “collision” between a photon of energy (and mo-
mentum ) and an electron, the recoiling electron would absorb part of the inci-
dent photon’s energy. The energy of the scattered photon would therefore be less
than the incident one and thus of lower frequency and momentum (The fact
that electromagnetic radiation of energy carried momentum was known from
classical theory and from the experiments of Nichols and Hull in 1903. This relation
is also consistent with the relativistic expression for a particle
with zero rest energy.) Compton applied the laws of conservation of momentum and
energy in their relativistic form (see Chapter 2) to the collision of a photon with an
isolated electron to obtain the change in the wavelength of the photon as a
function of the scattering angle The result, called Compton’s equation and derived
in a More section on the home page, is

3-25

The change in wavelength is thus predicted to be independent of the original wave-
length. The quantity has the dimensions of length and is called the Compton
wavelength of the electron. Its value is

Because is small, it is difficult to observe unless is very small so that the
fractional change is appreciable. For this reason the Compton effect is
generally only observed for x rays and gamma radiation.

Compton verified his result experimentally using the characteristic x-ray line of
wavelength 0.0711 nm from molybdenum for the incident monochromatic photons
and scattering these photons from electrons in graphite. The wavelength of the scat-
tered photons was measured using a Bragg crystal spectrometer. His experimental
arrangement is shown in Figure 3-16; Figure 3-17 shows his results. The first peak at
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Figure 3-17 Intensity versus
wavelength for Compton
scattering at several angles.
The left peak in each case
results from photons of the
original wavelength that are
scattered by tightly bound
electrons, which have an
effective mass equal to that of
the atom. The separation in
wavelength of the peaks is
given by Equation 3-25. The
horizontal scale used by the
Compton “angle from calcite”
refers to the calcite analyzing
crystal in Figure 3-16.
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Arthur Compton. After
discovering the Compton
effect, he became a world
traveler seeking an
explanation for cosmic rays.
He ultimately showed that
their intensity varied with
latitude, indicating an
interaction with Earth’s
magnetic field, and thus
proved that they are charged
particles. [Courtesy of
American Institute of Physics,
Niels Bohr Library.]

each scattering angle corresponds to scattering with no shift in the wavelength due
to scattering by the inner electrons of carbon. Since these are tightly bound to the
atom, it is the entire atom that recoils rather than the individual electrons. The ex-
pected shift in this case is given by Equation 3-25, with being the mass of the atom,
which is about times that of the electron; thus, this shift is negligible. The varia-
tion of with was found to be that predicted by Equation 3-25.

We have seen in this section and the preceding two sections that the interaction
of electromagnetic radiation with matter is a discrete interaction that occurs at the
atomic level. It is perhaps curious that after so many years of debate about the nature
of light, we now find that we must have both a particle (i.e., quantum) theory to de-
scribe in detail the energy exchange between electromagnetic radiation and matter and
a wave theory to describe the interference and diffraction of electromagnetic radiation.
We will discuss this so-called wave-particle duality in more detail in Chapter 5.

More

Derivation of Compton’s Equation, applying conservation of energy
and momentum to the relativistic collision of a photon and an electron,
is included on the home page: www.whfreeman.com/tiplermodern
physics5e. See also Equations 3-26 and 3-27 and Figure 3-18 here.

Questions

5. Why is it extremely difficult to observe the Compton effect using visible light?

6. Why is the Compton effect unimportant in the transmission of television and
radio waves? How many Compton scatterings would a typical FM signal have
before its wavelengths were shifted by 0.01 percent?

�¢
 � 
2 � 
1

104
m

www.whfreeman.com/tiplermodernphysics5e
www.whfreeman.com/tiplermodernphysics5e
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EXAMPLE 3-8 X Rays from TV The acceleration voltage of the electrons in a typi-
cal television picture tube is What is the minimum wavelength x ray pro-
duced when these electrons strike the inner front surface of the tube?

SOLUTION

From Equation 3-24, we have

These x rays penetrate matter very effectively. Manufacturers provide essential
shields to protect against the hazard.

EXAMPLE 3-9 Compton Effect In a particular Compton scattering experiment it is
found that the incident wavelength is shifted by when the scattering
angle (a) What is the value of (b) What will be the wavelength of
the shifted photon when the scattering angle is 

SOLUTION

1. For question (a) , the value of is found from Equation 3-25:

2. That the scattered wavelength is shifted by from means that

3. Combining these yields:

4. Question (b) is also solved with the aid of Equation 3-25, rearranged as

5. Substituting and from above yields

A Final Comment

In this chapter, together with Section 2-4 of the previous chapter, we have introduced
and discussed at some length the three primary ways by which photons interact with
matter: (1) the photoelectric effect, (2) the Compton effect, and (3) pair production.
As we proceed with our explorations of modern physics throughout the remainder of
the book, we will have many occasions to apply what we have learned here to aid in
our understanding of myriad phenomena, ranging from atomic structure to the fusion
“furnaces” of stars.
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Summary

TOPIC RELEVANT EQUATIONS AND REMARKS

1. J. J. Thomson’s experiment Thomson’s measurements with cathode rays showed that the same particle (the
electron), with about 2000 times that of ionized hydrogen, exists in all elements.

2. Quantization of electric charge

3. Blackbody radiation

Stefan-Boltzmann law 3-4

Wein’s displacement law 3-5

Planck’s radiation law 3-18

Planck’s constant 3-19

4. Photoelectric effect 3-21

5. Compton effect 3-25

6. Photon-matter interaction The (1) photoelectric effect, (2) Compton effect, and (3) pair production are the
three ways of interaction.
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The following general references are written at a level appro-
priate for readers of this book.

Millikan, R. A., Electrons (� and �) Protons, Photons, Neu-
trons, Mesotrons, and Cosmic Rays, 2d ed., University of
Chicago Press, Chicago, 1947. This book on modern
physics by one of the great experimentalists of his time
contains fascinating, detailed descriptions of Millikan’s
oil drop experiment and his verification of the Einstein
photoelectric-effect equation.

Mohr, P. J., and B. N. Taylor, “The Fundamental Physical
Constants,” Physics Today (August 2004). Also available
at http://www.physicstoday.org/guide/fundcont.html.

Richtmyer, F. K., E. H. Kennard, and J. N. Cooper,
Introduction to Modern Physics, 6th ed., McGraw-Hill,
New York, 1969. This excellent text was originally pub-
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students.

Shamos, M. H. (ed.), Great Experiments in Physics, Holt,
Rinehart, and Winston, New York, 1962. This book con-
tains 25 original papers and extensive editorial comment.
Of particular interest for this chapter are papers by
Faraday, Hertz, Roentgen, J. J. Thomson, Einstein (photo
electric effect), Millikan, Planck, and Compton.

Thomson, G. P., J. J. Thomson, Discoverer of the Electron,
Doubleday/Anchor, Garden City, NY, 1964. An interest-
ing study of J. J. Thomson by his son, also a physicist.
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Computer simulation software allows the user to analyze
blackbody radiation emitted over a wide range of tem-
peratures and investigate the Compton effect in detail.

Weart, S. R., Selected Papers of Great American Physicists,
American Institute of Physics, New York, 1976. The bi-
centennial commemorative volume of the American
Physical Society.
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Notes

1. Democritus (about 470 B.C. to about 380 B.C.). Among his
other modern-sounding ideas were the suggestions that the
Milky Way is a vast conglomeration of stars and that the
Moon, like Earth, has mountains and valleys.

2. G. J. Stoney (1826–1911). An Irish physicist who first
called the fundamental unit of charge the electron. After
Thomson discovered the particle that carried the charge, the
name was transferred from the quantity of charge to the parti-
cle itself by Lorentz.

3. Joseph J. Thomson (1856–1940). English physicist and
director for more than 30 years of the Cavendish Laboratory,
the first laboratory in the world established expressly for re-
search in physics. He was awarded the Nobel Prize in 1906 for
his work on the electron. Seven of his research assistants also
won Nobel Prizes.

4. Much early confusion existed about the nature of cath-
ode rays due to the failure of Heinrich Hertz in 1883 to ob-
serve any deflection of the rays in an electric field. The fail-
ure was later found to be the result of ionization of the gas in
the tube; the ions quickly neutralized the charges on the
deflecting plates so that there was actually no electric field
between the plates. With better vacuum technology in 1897,
Thomson was able to work at lower pressure and observe
electrostatic deflection.

5. R. A. Millikan, Philosophical Magazine (6), 19, 209
(1910). Millikan, who held the first physics Ph.D. awarded by
Columbia University, was one of the most accomplished ex-
perimentalists of his time. He received the Nobel Prize in
1923 for the measurement of the electron’s charge. Also
among his many contributions, he coined the phrase cosmic
rays to describe radiation produced in outer space.

6. R. A. Millikan, Physical Review, 32, 349 (1911).

7. Mohr, P. J., and B. N. Taylor, “The Fundamental Physical
Constants,” Physics Today (August 2004).

8. See pp. 135-137 of F. K. Richtmyer, E. H. Kennard, and
J. N. Cooper (1969).

9. John W. S. Rayleigh (1842–1919). English physicist, al-
most invariably referred to by the title he inherited from his
father. He was Maxwell’s successor and Thomson’s predeces-
sor as director of the Cavendish Laboratory.
10. Max K. E. L. Planck (1858–1947). Most of his career was
spent at the University of Berlin. In his later years his renown
in the world of science was probably second only to that of
Einstein.
11. Heinrich R. Hertz (1857–1894), German physicist, student
of Helmholtz. He was the discoverer of electromagnetic “radio”
waves, later developed for practical communication by Marconi.
12. H. Hertz, Annalen der Physik, 31, 983 (1887).
13. A. Einstein, Annalen der Physik, 17, 144 (1905).
14. A translation of this paper can be found in E. C. Watson,
American Journal of Physics, 13, 284 (1945), and in Shamos
(1962). Roentgen (1845–1923) was honored in 1901 with the
first Nobel Prize in Physics for his discovery of x rays.
15. William Lawrence Bragg (1890–1971), Australian-English
physicist. An infant prodigy, his work on x-ray diffraction per-
formed with his father, William Henry Bragg (1862–1942),
earned for them both the Nobel Prize in Physics in 1915, the
only father-son team to be so honored thus far. In 1938 W. L.
Bragg became director of the Cavendish Laboratory, succeed-
ing Rutherford.
16. Arthur H. Compton (1892–1962), American physicist. It
was Compton who suggested the name photon for the light
quantum. His discovery and explanation of the Compton ef-
fect earned him a share of the Nobel Prize in Physics in 1927.

Problems

Level I

Section 3-1 Quantization of Electric Charge

3-1. A beam of charged particles consisting of protons, electrons, deuterons, and singly ion-
ized helium atoms and molecules all pass through a velocity selector, all emerging with
speeds of The beam then enters a region of uniform magnetic field 
directed perpendicular to their velocity. Compute the radius of curvature of the path of each type
of particle.
3-2. Consider Thomson’s experiment with the electric field turned “off.” If the electrons enter
a region of uniform magnetic field and length show that the electrons are deflected through
an angle for small values of (Assume that the electrons are moving at non-
relativistic speeds.)

�.� � e�B>mu� l,B

B � 0.40 T2.5 � 106 m>s.
H2
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3-3. Equation 3-3 suggests how a velocity selector for particles or mixtures of different par-
ticles all having the same charge can be made. Suppose you wish to make a velocity selector
that allows undeflected passage for electrons whose kinetic energy is The elec-
tric field available to you is What magnetic field will be needed?
3-4. A cosmic ray proton approaches Earth vertically at the equator, where the horizontal
component of Earth’s magnetic field is If the proton is moving at 
what is the ratio of the magnetic force to the gravitational force on the proton?
3-5. An electron of kinetic energy moves in a circular orbit perpendicular to a mag-
netic field of (a) Compute the radius of the orbit. (b) Find the period and frequency of
the motion.
3-6. If electrons have kinetic energy of find (a) their speed, (b) the time needed to
traverse a distance of between plates and in Figure 3-1, and (c) the vertical compo-
nent of their velocity after passing between the plates if the electric field is 
3-7. In J. J. Thomson’s first method (see Problem 3-44), the heat capacity of the beam stop-
per was about and the temperature increase was about How many

electrons struck the beam stopper?
3-8. On drop #16, Millikan measured the following total charges, among others, at differ-
ent times:

What value of the fundamental quantized charge do these numbers imply?
3-9. Show that the electric field needed to make the rise time of the oil drop equal to its field-
free fall time is 
3-10. One variation of the Millikan oil drop apparatus arranges the electric field horizontally,
rather than vertically, giving charged droplets acceleration in the horizontal direction. The re-
sult is that the droplet falls in a straight line that makes an angle with the vertical. Show that

where is the terminal speed along the angled path.
3-11. A charged oil droplet falls in at terminal speed in the absence of an elec-
tric field. The specific gravity of air is and that of oil is The viscosity of air
is (a) What are the mass and radius of the drop? (b) If the droplet carries
two units of electric charge and is in an electric field of what is the ratio of the
electric force to the gravitational force on the droplet?

Section 3-2 Blackbody Radiation

3-12. Find for blackbody radiation at (a) (b) and (c)
3-13. Use the result of Example 3-4 and Equations 3-4 and 3-6 to express Stefan’s constant in
terms of and Using the known values of these constants, calculate Stefan’s constant.
3-14. Show that Planck’s law, Equation 3-18, expressed in terms of the frequency is

3-15. As noted in the chapter, the cosmic microwave background radiation fits the Planck
equation for a blackbody at (a) What is the wavelength at the maximum intensity of the
spectrum of the background radiation? (b) What is the frequency of the radiation at the maxi-
mum? (c) What is the total power incident on Earth from the background radiation?
3-16. Find the temperature of a blackbody if its spectrum has its peak at (a)
(visible), (b) (microwave region), and (c) (FM radio waves).
3-17. If the absolute temperature of a blackbody is doubled, by what factor is the total emitted
power increased?
3-18. Calculate the average energy per mode of oscillation for (a) a long wavelength

(b) a short wavelength and compare your results with the clas-
sical prediction (see Equation 3-9). (The classical value comes from the equipartition theo-
rem discussed in Chapter 8.)
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3-19. A particular radiating cavity has the maximum of its spectra distribution of radiated
power at a wavelength of (in the infrared region of the spectrum). The temperature is
then changed so that the total power radiated by the cavity doubles. (a) Compute the new tem-
perature. (b) At what wavelength does the new spectral distribution have its maximum value?
3-20. A certain very bright star has an effective surface temperature of (a) Assuming
that it radiates as a blackbody, what is the wavelength at which is maximum? (b) In what
part of the electromagnetic spectrum does the maximum lie?
3-21. The energy reaching Earth from the Sun at the top of the atmosphere is 
called the solar constant. Assuming that Earth radiates like a blackbody at uniform temperature,
what do you conclude is the equilibrium temperature of Earth?
3-22. A incandescent bulb radiates from a tungsten filament operating at 
Assuming that the bulb radiates like a blackbody, (a) what are the frequency and the wave-
length at the maximum of the spectral distribution? (b) If is a good approximation of the
average frequency of the photons emitted by the bulb, about how many photons is the bulb ra-
diating per second? (c) If you are looking at the bulb from 5 m away, how many photons enter
your eye per second? (The diameter of your pupil is about )
3-23. Use Planck’s law, Equation 3-18, to derive the constant in Wein’s law, Equation 3-5.

Section 3-3 The Photoelectric Effect

3-24. The wavelengths of visible light range from about to about (a) What is
the range of photon energies in visible light? (b) A typical FM radio station’s broadcast
frequency is about What is the energy of an FM photon of the frequency?
3-25. The orbiting space shuttle moves around Earth well above 99 percent of the atmosphere,
yet it still accumulates an electric charge on its skin due, in part, to the loss of electrons caused
by the photoelectric effect with sunlight. Suppose the skin of the shuttle is coated with Ni,
which has a relatively large work function at the temperatures encountered in
orbit. (a) What is the maximum wavelength in the solar spectrum that can result in the emission
of photoelectrons from the shuttle’s skin? (b) What is the maximum fraction of the total power
falling on the shuttle that could potentially produce photoelectrons?
3-26. The work function for cesium is the lowest of any metal. (a) Find the threshold
frequency and wavelength for the photoelectric effect. Find the stopping potential if the wave-
length of the incident light is (b) and (c)
3-27. (a) If 5 percent of the power of a bulb is radiated in the visible spectrum, how
many visible photons are radiated per second? (b) If the bulb is a point source radiating equally
in all directions, what is the flux of photons (number per unit time per unit area) at a distance
of
3-28. The work function of molybdenum is (a) What is the threshold frequency for
the photoelectric effect in molybdenum? (b) Will yellow light of wavelength cause ejec-
tion of photoelectrons from molybdenum? Prove your answer.
3-29. The NaCl molecule has a bond energy of that is, this energy must be supplied
in order to dissociate the molecule into neutral Na and Cl atoms (see Chapter 9). (a) What are
the minimum frequency and maximum wavelength of the photon necessary to dissociate the
molecule? (b) In what part of the electromagnetic spectrum is this photon?
3-30. A photoelectric experiment with cesium yields stopping potentials for and

to be and respectively. Using these data only, find the threshold
frequency and work function for cesium and the value of 
3-31. Under optimum conditions, the eye will perceive a flash if about 60 photons arrive at the
cornea. How much energy is this in joules if the wavelength of the light is 
3-32. The longest wavelength of light that will cause emission of electrons from cesium is

(a) Compute the work function for cesium. (b) If light of (ultraviolet) were to
shine on cesium, what would be the energy of the ejected electrons?

Section 3-4 X Rays and the Compton Effect

3-33. Use Compton’s equation (Equation 3-25) to compute the value of in Figure 3-17d.
To what percent shift in the wavelength does this correspond?
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3-34. X-ray tubes currently used by dentists often have accelerating voltages of What
is the minimum wavelength of the x rays they produce?
3-35. Find the momentum of a photon in and in if the wavelength is (a)
(b) (c) and (d)
3-36. Gamma rays emitted by radioactive nuclei also exhibit measurable Compton scattering.
Suppose a photon from a positron-electron annihilation scatters at from a free
electron. What are the energies of the scattered photon and the recoiling electron? Relative to
the initial direction of the photon, what is the direction of the recoiling electron’s
velocity vector?
3-37. The wavelength of Compton-scattered photons is measured at If is to be
1 percent, what should the wavelength of the incident photon be?
3-38. Compton used photons of wavelength (a) What is the energy of these pho-
tons? (b) What is the wavelength of the photons scattered at (c) What is the energy
of the photons scattered at (d) What is the recoil energy of the electrons if 
3-39. Compute for photons scattered at from (a) free protons, (b) free electrons, and
(c) molecules in air.
3-40. Compton’s equation (Equation 3-25) indicates that a graph of versus 
should be a straight line whose slope allows a determination of Given that the wave-
length of in Figure 3-17 is compute for each scattering angle in the figure and
graph the results versus What is the slope of the line?
3-41. (a) Compute the Compton wavelength of an electron and a proton. (b) What is the en-
ergy of a photon whose wavelength is equal to the Compton wavelength of (1) the electron and
(2) the proton?

Level II

3-42. When light of wavelength is incident on potassium, photoelectrons with stopping
potential of are emitted. If the wavelength of the incident light is changed to 
the stopping potential is Using only these numbers together with the values of the speed
of light and the electron charge, (a) find the work function of potassium and (b) compute a value
for Planck’s constant.
3-43. Assuming that the difference between Thomson’s calculated in his second experiment
(Figure 3-19) and the currently accepted value was due entirely to his neglecting the horizontal
component of Earth’s magnetic field outside the deflection plates, what value for that component
does the difference imply? (Thomson’s data:
x1 � 5 cm, y2>x2 � 8>110.)
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3-44. In his first experiment, Thomson determined the speed of electrons accelerated
through a potential by collecting them in an insulated beam stopper and measuring both
the total collected charge and the temperature rise of the beam stopper. (a) Show that
with those measurements he could obtain an expression for in terms of the speed of the
electrons and the directly measured quantities. (b) Show that the expression obtained in (a) to-
gether with the result of Problem 3-2 enabled Thomson to compute in terms of directly
measured quantities.

e>me>m¢TQ
¢V
e>m

Figure 3-19 Deflection of the electron beam in Thomson’s apparatus. The deflection plates
are and in Figure 3-1. Deflection is shown with magnetic field off and the top plate positive.
The magnetic field is applied perpendicular to the plane of the diagram and directed into the page.

ED
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3-45. Data for stopping potential versus wavelength for the photoelectric effect using
sodium are

200 300 400 500 600

4.20 2.06 1.05 0.41 0.03

Plot these data in such a way as to be able to obtain (a) the work function, (b) the threshold fre-
quency, and (c) the ratio 
3-46. Prove that the photoelectric effect cannot occur with a completely free electron, i.e., one
not bound to an atom. (Hint: Consider the reference frame in which the total momentum if the
electron and the incident photon is zero.)
3-47. When a beam of monochromatic x rays is incident on a particular NaCl crystal, Bragg
reflection in the first order (i.e., with ) occurs at The value of 
What is the minimum voltage at which the x-ray tube can be operating?
3-48. A beam of light is shone onto a blackbody of mass for The
blackbody is initially at rest in a frictionless space. (a) Compute the total energy and momen-
tum absorbed by the blackbody from the light beam, (b) calculate the blackbody’s velocity at
the end of the period of illumination, and (c) compute the final kinetic energy of the blackbody.
Why is the latter less than the total energy of the absorbed photons?
3-49. Show that the maximum kinetic energy called the Compton edge, that a recoiling
electron can carry away from a Compton scattering event is given by

3-50. The x-ray spectrometer on board a satellite measures the wavelength at the maximum in-
tensity emitted by a particular star to be Assuming that the star radiates like a
blackbody, (a) compute the star’s surface temperature. (b) What is the ratio of the intensity ra-
diated at and at to that radiated at 
3-51. Determine the fraction of the energy radiated by the Sun in the visible region of the spec-
trum Assume that the Sun’s surface temperature is 
3-52. Millikan’s data for the photoelectric effect in lithium are shown in the table:

Incident 253.5 312.5 365.0 404.7 433.9

Stopping voltage 2.57 1.67 1.09 0.73 0.55

(a) Graph the data and determine the work function for lithium. (b) Find the value of Planck’s
constant directly from the graph in (a) . (c) The work function for lead is Which, if
any, of the wavelengths in the table would not cause emission of photoelectrons from lead?

Level III

3-53. This problem is to derive the Wein displacement law, Equation 3-5. (a) Show that the
energy density distribution function can be written where is a con-
stant and (b) Show that the value of for which satisfies the equation

(c) This equation can be solved with a calculator by the trial-and-error
method. Try for various values of until is determined to four significant
figures. (d) Show that your solution in (c) implies and calculate the value of
the constant.
3-54. This problem is one of estimating the time lag (expected classically, but not observed)
for the photoelectric effect. Assume that a point light source emits of light energy.
(a) Assuming uniform radiation in all directions, find the light intensity in at a dis-
tance of from the light source. (b) Assuming some reasonable size for an atom, find the en-
ergy per unit time incident on the atom for this intensity. (c) If the work function is how
long does it take for this much energy to be absorbed, assuming that all of the energy hitting the
atom is absorbed?
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3-55. A photon can be absorbed by a system that can have internal energy. Assume that a
photon is absorbed by a carbon nucleus initially at rest. The recoil momentum of the

carbon nucleus must be (a) Calculate the kinetic energy of the carbon nucleus. What
is the internal energy of the nucleus? (b) The carbon nucleus comes to rest and then loses its in-
ternal energy by emitting a photon. What is the energy of the photon?
3-56. The maximum kinetic energy given to the electron in a Compton scattering event plays
a role in the measurement of gamma-ray spectra using scintillation detectors. The maximum is
referred to as the Compton edge. Suppose that the Compton edge in a particular experiment is
found to be What were the wavelength and energy of the incident gamma rays?
3-57. An electron accelerated to in an x-ray tube has two successive collisions in being
brought to rest in the target, emitting two bremsstrahlung photons in the process. The second
photon emitted has a wavelength longer than the first. (a) What are the wavelengths
of the two photons? (b) What was the energy of the electron after emission of the first photon?
3-58. Derive Equation 3-17 from Equations 3-15 and 3-16.

0.095 nm

50 keV
520 keV.

15 MeV>c.15-MeV
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Among his many experiments, Newton found that sunlight passing through a small
opening in a window shutter could be refracted by a glass prism so that it would

fall on a screen. The white sunlight thus refracted was spread into a rainbow-colored
band—a spectrum. He had discovered dispersion, and his experimental arrangement
was the prototype of the modern spectroscope (Figure 4-1a). When, 150 years later,
Fraunhofer1 dispersed sunlight using an experimental setup similar to that shown in
Figure 4-1b to test prisms made of glasses that he had developed, he found that the
solar spectrum was crossed by more than 600 narrow, or sharp, dark lines.2 Soon after,
a number of scientists observed sharp bright lines in the spectra of light emitted by
flames, arcs, and sparks. Spectroscopy quickly became an important area of research.

It soon became clear that chemical elements and compounds emit three general
types of spectra. Continuous spectra, emitted mainly by incandescent solids, show no
lines at all, bright or dark, in spectroscopes of the highest possible resolving power.
Band spectra consist of very closely packed groups of lines that appear to be contin-
uous in instruments of low resolving power. These are emitted when small pieces of
solid materials are placed in the source flame or electrodes. The line spectra men-
tioned above arise when the source contains unbound chemical elements. The lines
and bands turned out to be characteristic of individual elements and chemical com-
pounds when excited under specific conditions. Indeed, the spectra could be (and are
today) used as a highly sensitive test for the presence of elements and compounds.
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Line spectra raised an enormous theoretical problem: although classical physics could
account for the existence of a continuous spectrum (if not its detailed shape, as we saw
with blackbodies), it could in no way explain why sharp lines and bands should exist.
Explaining the origin of the sharp lines and accounting for the primary features of the
spectrum of hydrogen, the simplest element, was a major success of the so-called old
quantum theory begun by Planck and Einstein and will be the main topic in this chap-
ter. Full explanation of the lines and bands requires the later, more sophisticated quan-
tum theory, which we will begin studying in Chapter 5.

4-1 Atomic Spectra
The characteristic radiation emitted by atoms of individual elements in a flame or in
a gas excited by an electrical discharge was the subject of vigorous study during the
late nineteenth and early twentieth centuries. When viewed or photographed through
a spectroscope, this radiation appears as a set of discrete lines, each of a particular

Source of
wavelengths
λ1 and λ2
(λ2 > λ1)

λ1

λ2

Slit

Lens

Source

Prism

Screen

Slit

Prism Screen

Spectrum

(a)

(b)

Figure 4-1 (a) Light from the source passes through a small hole or a narrow slit before
falling on the prism. The purpose of the slit is to ensure that all the incident light strikes the
prism face at the same angle so that the dispersion by the prism causes the various frequencies
that may be present to strike the screen at different places with minimum overlap. (b) The
source emits only two wavelengths, The source is located at the focal point of the
lens so that parallel light passes through the narrow slit, projecting a narrow line onto the face
of the prism. Ordinary dispersion in the prism bends the shorter wavelength through the larger
total angle, separating the two wavelengths at the screen. In this arrangement each wavelength
appears on the screen (or on film replacing the screen) as a narrow line, which is an image of
the slit. Such a spectrum was dubbed a “line spectrum” for that reason. Prisms have been
almost entirely replaced in modern spectroscopes by diffraction gratings, which have much
higher resolving power.
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color or wavelength; the positions and intensities of the lines are characteristic of the
element. The wavelengths of these lines could be determined with great precision, and
much effort went into finding and interpreting regularities in the spectra. A major
breakthrough was made in 1885 by a Swiss schoolteacher, Johann Balmer, who found
that the lines in the visible and near ultraviolet spectrum of hydrogen could be repre-
sented by the empirical formula

4-1

where n is a variable integer that takes on the values n � 3, 4, 5, . . . . Figure 4-2a
shows the set of spectral lines of hydrogen (now known as the Balmer series) whose
wavelengths are given by Balmer’s formula. For example, the wavelength of the 
line could be found by letting n = 3 in Equation 4-1 (try it!), and other integers
each predicted a line that was found in the spectrum. Balmer suggested that his for-
mula might be a special case of a more-general expression applicable to the spectra
of other elements when ionized to a single electron, i.e., hydrogen-like elements.
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Figure 4-2 (a) Emission line
spectrum of hydrogen in the
visible and near ultraviolet. The
lines appear dark because the
spectrum was photographed;
hence, the bright lines are exposed
(dark) areas on the film. The
names of the first five lines are
shown, as is the point beyond
which no lines appear, called
the limit of the series. (b) Part of
the emission spectrum of sodium.
The two very close bright lines at
589 nm are the and lines.
They are the principal radiation
from sodium street lighting.
(c) Part of the emission spectrum
of mercury. (d) Part of the dark
line (absorption) spectrum of
sodium. White light shining
through sodium vapor is
absorbed at certain wavelengths,
resulting in no exposure of the
film at those points. Note that the
line at 259.4 nm is visible here in
both the bright and dark line
spectra. Note, too, that frequency
increases toward the right,
wavelength toward the left in
the four spectra shown.
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Such an expression, found independently by J. R. Rydberg and W. Ritz and thus
called the Rydberg-Ritz formula, gives the reciprocal wavelength3 as

4-2

where m and n are integers and R, the Rydberg constant, is the same for all series of
spectral lines of the same element and varies only slightly, and in a regular way, from
element to element. For hydrogen, the value of R is � 1.096776 � 107 m�1. For
very heavy elements, R approaches the value of � 1.097373 � 107 m�1. Such em-
pirical expressions were successful in predicting other series of spectral lines, such as
other hydrogen lines outside the visible region.

EXAMPLE 4-1 Hydrogen Spectral Series The hydrogen Balmer series reciprocal
wavelengths are those given by Equation 4-2, with m � 2 and n � 3, 4, 5, . . . . For
example, the first line of the series, would be for m � 2, n � 3:

or

Other series of hydrogen spectral lines were found for m � 1 (by Theodore Lyman)
and m � 3 (by Friedrich Paschen). Compute the wavelengths of the first lines of the
Lyman and Paschen series.

SOLUTION

For the Lyman series (m � 1), the first line is for m � 1, n � 2:

For the Paschen series (m � 3), the first line is for m � 3, n � 4:

All of the lines predicted by the Rydberg-Ritz formula for the Lyman and Paschen
series are found experimentally. Note that no lines are predicted to lie beyond �
1 R � 91.2 nm for the Lyman series and � 9 R � 820.6 nm for the Paschen se-
ries and none are found by experiments.

4-2 Rutherford’s Nuclear Model
Many attempts were made to construct a model of the atom that yielded the Balmer
and Rydberg-Ritz formulas. It was known that an atom was about 10�10 m in diame-
ter (see Problem 4-6), that it contained electrons much lighter than the atom (see
Section 3-1), and that it was electrically neutral. The most popular model was J. J.
Thomson’s model, already quite successful in explaining chemical reactions. Thomson
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attempted various models consisting of electrons embedded in a fluid that contained
most of the mass of the atom and had enough positive charge to make the atom elec-
trically neutral. (See Figure 4-3a.) He then searched for configurations that were sta-
ble and had normal modes of vibration corresponding to the known frequencies of the
spectral lines. One difficulty with all such models was that electrostatic forces alone
cannot produce stable equilibrium. Thus, the charges were required to move and, if
they stayed within the atom, to accelerate; however, the acceleration would result in
continuous emission of radiation, which is not observed. Despite elaborate mathemat-
ical calculations, Thomson was unable to obtain from his model a set of frequencies
of vibration that corresponded with the frequencies of observed spectra.

The Thomson model of the atom was replaced by one based on the results of a
set of experiments conducted by Ernest Rutherford4 and his students H. W. Geiger and
E. Marsden. Rutherford was investigating radioactivity and had shown that the radia-
tions from uranium consisted of at least two types, which he labeled and He
showed, by an experiment similar to that of Thomson, that for the was half that
of the proton. Suspecting that the particles were doubly ionized helium, Rutherford
and his co-workers in a classic experiment let a radioactive substance decay in a pre-
viously evacuated chamber; then, by spectroscopy, they detected the spectral lines of
ordinary helium gas in the chamber. Realizing that this energetic, massive particle
would make an excellent probe for “feeling about” within the interiors of other atoms,
Rutherford began a series of experiments with this purpose.

�

�
�

�q>m �.�

(a) (b)

α θ

Figure 4-3 Thomson’s model of the atom: (a) A sphere of positive charge with electrons
embedded in it so that the net charge would normally be zero. The atom shown would have
been phosphorus. (b) An particle scattered by such an atom would have a scattering angle 
much smaller than 1°. 

��

Hans Geiger and Ernest Rutherford in
their Manchester Laboratory. [Courtesy of
University of Manchester.]
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In these latter experiments, a narrow beam of particles fell on a zinc sulfide
screen, which emitted visible light scintillations when struck (Figure 4-4). The distri-
bution of scintillations on the screen was observed when various thin metal foils were
placed between it and the source. Most of the particles were either undeflected or�

�

(b)

Observer

Radioactive
source R

D

M S

F

D
R

Scintillation
screen S

Microscope M

Au foil F

Rotation

Pb shield
α beam

θ

(a)

Figure 4-4 Schematic diagram of the apparatus used by Geiger and Marsden to test
Rutherford’s atomic model. (a) The beam of particles is defined by the small hole D in
the shield surrounding the radioactive source R of 214Bi (called RaC in Rutherford’s day).
The beam strikes an ultrathin gold foil F (about 2000 atoms thick), and the particles are
individually scattered through various angles. Those scattering at the angle shown strike a
small screen S coated with a scintillator, i.e., a material that emits tiny flashes of light
(scintillations) when struck by an particle. The scintillations were viewed by the observer
through a small microscope M. The scintillation screen–microscope combination could be
rotated about the center of the foil. The region traversed by the beam is evacuated. The
experiment consisted of counting the number of scintillations as a function of (b) A diagram
of the actual apparatus as it appeared in Geiger and Marsden’s paper describing the results.
The letter key is the same as in (a). [Part (b) from H. Geiger and E. Marsden, Philosophical
Review, 25, 507 (1913).]
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deflected through very small angles of the order of 1°. Quite unexpectedly, however,
a few particles were deflected through angles as large as 90° or more. If the atom
consisted of a positively charged sphere of radius 10�10 m, containing electrons as in
the Thomson model, only a very small deflection could result from a single encounter
between an particle and an atom, even if the particle penetrated into the atom.
Indeed, calculations showed that the Thomson atomic model could not possibly ac-
count for the number of large-angle scatterings that Rutherford saw. The unexpected
scatterings at large angles were described by Rutherford with these words:

It was quite the most incredible event that ever happened to me in my life. It

was as incredible as if you fired a 15-inch shell at a piece of tissue paper and

it came back and hit you.

Rutherford’s Scattering Theory and the Nuclear Atom

The question is, then, Why would one obtain the large-angle scattering that Rutherford
saw? The trouble with the Thomson atom is that it is too “soft”—the maximum force
experienced by the is too weak to give a large deflection. If the positive charge of
the atom is concentrated in a more compact region, however, a much larger force will
occur at near impacts. Rutherford concluded that the large-angle scattering obtained
experimentally could result only from a single encounter of the particle with a mas-
sive charge confined to a volume much smaller than that of the whole atom. Assuming
this “nucleus” to be a point charge, he calculated the expected angular distribution for
the scattered particles. His predictions of the dependence of scattering probability
on angle, nuclear charge, and kinetic energy were completely verified in a series of
experiments carried out in his laboratory by Geiger and Marsden.

We will not go through Rutherford’s derivation in detail, but merely outline the
assumptions and conclusions. Figure 4-5 shows the geometry of an particle being
scattered by a nucleus, which we take to be a point charge Q at the origin. Initially,
the particle approaches with speed v along a line a distance b from a parallel line
COA through the origin. The force on the particle is given byF � kq
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Figure 4-5 Rutherford scattering geometry. The nucleus is assumed to be a point charge Q
at the origin O. At any distance r the particle experiences a repulsive force The 
particle travels along a hyperbolic path that is initially parallel to line COA a distance b from it
and finally parallel to line OB, which makes an angle with OA. The scattering angle can be
related to the impact parameter b by classical mechanics.
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Coulomb’s law (Figure 4-6). After scattering, when the particle
is again far from the nucleus, it is moving with the same speed v
parallel to the line OB, which makes an angle with line COA.
(Since the potential energy is again zero, the final speed must be
equal to the initial speed by conservation of energy, assuming,
as Rutherford did, that the massive nucleus remains fixed during
the scattering.) The distance b is called the impact parameter and
the angle the scattering angle. The path of the particle can be
shown to be a hyperbola, and the scattering angle can be related
to the impact parameter b from the laws of classical mechanics.
The result is

4-3

Of course, it is not possible to choose or know the impact parameter for any
particular particle, but when one recalls the values of the cotangent between 0° and
90°, all such particles with impact parameters less than or equal to a particular b will
be scattered through an angle greater than or equal to that given by Equation 4-3;
i.e., the smaller the impact parameter, the larger the scattering angle (Figure 4-7).
Let the intensity of the incident particle beam be particles per second per unit
area. The number per second scattered by one nucleus through angles greater than 
equals the number per second that have impact parameters less than b ( ). This num-
ber is 

The quantity which has the dimensions of an area, is called the cross section
for scattering through angles greater than The cross section is thus defined

as the number scattered per nucleus per unit time divided by the incident intensity.
��.�
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Figure 4-6 Force on a
point charge versus distance r
from the center of a uniformly
charged sphere of radius R.
Outside the sphere the force is
proportional to where Q
is the total charge. Inside the
sphere, the force is
proportional to

where
is the charge within a sphere
of radius r. The maximum
force occurs at r � R.

q� � Q(r>R)3QrR>R3,
q�>r2 �

Q>r2,

b2

b1

+Ze

Area πb1
2

Area πb2
2

α2

α1

θ1

θ2

Figure 4-7 Two particles with equal kinetic energies approach the positive charge
with impact parameters b1 and b2 , where b1 � b2 . According to Equation 4-3,

the angle through which is scattered will be larger than In general, all particles
with impact parameters smaller than a particular value of b will have scattering angles larger
than the corresponding value of from Equation 4-3. The area is called the cross section
for scattering with angles greater than �.
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The total number of particles scattered per second is obtained by
multiplying by the number of nuclei in the scattering foil (this
assumes the foil to be thin enough to make the chance of overlap
negligible). Let n be the number of nuclei per unit volume:

4-4

For a foil of thickness t, the total number of nuclei “seen” by
the beam is nAt, where A is the area of the beam (Figure 4-8). The
total number scattered per second through angles greater than is
thus If we divide this by the number of particles inci-
dent per second we get the fraction f scattered through angles
greater than 

4-5f � �b2nt

�:
I0A,

��b2I0ntA.
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Number of foil nuclei
in beam is nAt

t

Area A of beam

Figure 4-8 The total number of nuclei of foil
atoms in the area covered by the beam is nAt,
where n is the number of foil atoms per unit
volume, A is the area of the beam, and t is the
thickness of the foil.

1. The fraction f is
related to the impact
parameter b, the num-
ber density of nuclei
n, and the thickness t
by Equation 4-5:

f � �b2nt

2. The particle density n
is given by Equation
4-4: � 5.90 � 1022 atoms>cm3 � 5.90 � 1028 atoms>m3

n �
�NA
M

�
(19.3 g>cm3)(6.02 � 1023 atoms>mol)

197 gm>mol

3. The impact parameter
b is related to by
Equation 4-3:

�
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4. Substituting these into
Equation 4-5 yields f :

� 9.6 � 10�5 � 10�4

f � �(2.28 � 10�14 m)2a5.9 � 1028
atoms

m3
b (10�6 m)

Remarks: This outcome is in good agreement with Geiger and Marsden’s mea-
surement of about 1 in 8000 in their first trial. Thus, the nuclear model is in good
agreement with their results.

On the strength of the good agreement between the nuclear atomic model and the
measured fraction of the incident particles scattered at angles Rutherford
derived an expression, based on the nuclear model, for the number of particles �N
that would be scattered at any angle That number, which also depends on the atomic�.

�
� ! 90°,�

EXAMPLE 4-2 Scattered Fraction f Calculate the fraction of an incident beam of 
particles of kinetic energy 5 MeV that Geiger and Marsden expected to see for

from a gold foil (Z � 79) 10�6 m thick.

SOLUTION

� ! 90°

�
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number Z and thickness t of the scattering foil, on the intensity of the incident 
particles and their kinetic energy and on the geometry of the detector ( is the
detector area and r is the foil-detector distance), is given by

4-6

Within the uncertainties of their experiments, which involved visually observing several
hundred thousand particles, Geiger and Marsden verified every one of the predictions
of Rutherford’s formula over four orders of magnitude of �N. The excellent agree-
ment of their data with Equation 4-6 firmly established the nuclear atomic model as the
correct basis for further studies of atomic and nuclear phenomena. (See Figure 4-9.)
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Figure 4-9 (a) Geiger and Marsden’s data for scattering from thin gold and silver foils. The graph is a log-log plot to show
the data over several orders of magnitude. Note that scattering angle increases downward along the vertical axis. (b) Geiger and
Marsden also measured the dependence of �N on t predicted by Equation 4-6 for foils made from a wide range of elements,
this being an equally critical test. Results for four of the elements used are shown.
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More

Rutherford’s derivation of Equation 4-6 was based on his atomic model
and the well-known Coulomb scattering process of charged particles.
Rutherford’s Prediction and Geiger and Marsden’s Results are described
on the home page: www.whfreeman.com/tiplermodernphysics5e. See also
Equations 4-7 through 4-10 here, as well as Figures 4-10 through 4-12.

The Size of the Nucleus

The fact that the force law is shown to be correct, confirming Rutherford’s model, does
not imply that the nucleus is a mathematical point charge, however. The force law would
be the same even if the nucleus were a ball of charge of some radius as long as the 
particle did not penetrate the ball. (See Figures 4-6 and 4-13.) For a given scattering
angle, the distance of closest approach of the particle to the nucleus can be calculated
from the geometry of the collision. For the largest angle, near 180°, the collision is nearly
“head-on.” The corresponding distance of closest approach rd is thus an experimental

�

�R0

www.whfreeman.com/tiplermodernphysics5e


upper limit on the size of the target nucleus. We can calculate the distance of closest
approach for a head-on collision rd by noting that conservation of energy requires the
potential energy at this distance to equal the original kinetic energy:

or

4-11

For the case of 7.7-MeV particles, the distance of closest approach for a head-on
collision is

For other collisions, the distance of closest approach is somewhat greater, but for 
particles scattered at large angles it is of the same order of magnitude. The excellent agree-
ment of Geiger and Marsden’s data at large angles with the prediction of Equation 4-6 thus
indicates that the radius of the gold nucleus is no larger than about 3 � 10�14 m. If higher-
energy particles could be used, the distance of closest approach would be smaller, and as
the energy of the particles increased, we might expect that eventually the particles would
penetrate the nucleus. Since, in that event, the force law is no longer the
data would not agree with the point-nucleus calculation. Rutherford did not have higher-
energy particles available, but he could reduce the distance of closest approach by using
targets of lower atomic numbers.9 For the case of aluminum, with
Z � 13, when the most energetic particles that he had available
(7.7 MeV from 214Bi) scattered at large angles, they did not follow
the predictions of Equation 4-6. However, when the kinetic energy
of the particles was reduced by passing the beam through thin mica
sheets of various thicknesses, the data again followed the prediction of
Equation 4-6. Rutherford’s data are shown in Figure 4-14. The value
of rd (calculated from Equation 4-11) at which the data begin to devi-
ate from the prediction can be thought of as the surface of the nucleus.
From these data, Rutherford estimated the radius of the aluminum
nucleus to be about 1.0 � 10�14 m. (The radius of the Al nucleus is
actually about 3.6 � 10�15 m. See Chapter 11.)

A unit of length convenient for describing nuclear sizes is the
fermi, or femtometer (fm), defined as 1 fm � 10�15 m. As we will see
in Chapter 11, the nuclear radius varies from about 1 to 10 fm from
the lightest to the heaviest atoms.

EXAMPLE 4-3 Rutherford Scattering at Angle In a particular experiment, parti-
cles from 226Ra are scattered at � 45° from a silver foil and 450 particles are
counted each minute at the scintillation detector. If everything is kept the same except
that the detector is moved to observe particles scattered at 90°, how many will be
counted per minute?
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Figure 4-13 (a) If the 
particle does not penetrate the
nuclear charge, the nucleus
can be considered a point
charge located at the center.
(b) If the particle has enough
energy to penetrate the
nucleus, the Rutherford
scattering law does not hold
but would require
modification to account for
that portion of the nuclear
charge “behind” the
penetrating particle.�
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SOLUTION

Using Equation 4-6, we have that �N � 450 when but we don’t have any
of the other parameters available. Letting all of the quantities in the parenthesis
equal a constant C, we have that

or

When the detector is moved to the value of C is unchanged, so

� 38.6 � 39 particles>min

¢N � C sin�4a90°

2
b � 450 sin4a45°

2
b  sin�4a90°

2
b� � 90°,

C � 450 sin4a45°

2
b

¢N � 450 � C sin�4
45°

2

� � 45°,

EXAMPLE 4-4 Alpha Scattering A beam of particles with Ek � 6.0 MeV impinges
on a silver foil thick. The beam current is 1.0 nA. How many particles will
be counted by a small scintillation detector of area equal to 5 mm2 located 2.0 cm from
the foil at an angle of 75°? (For silver Z � 47, and M � 108.)

SOLUTION

� � 10.5 gm>cm3,

�1.0 	m
�

1. The number counted
�N is given by
Equation 4-6:

¢N � a I0Ascnt

r2
b akZe2

2Ek
b 2 1

sin4 �
2

2. Since each particle
has is:I0q

�
� 2e,

�

� 3.12 � 109 �>sI0 � (1.0 � 10�9A)(2 � 1.60 � 10�19 C>�)�1

3. The kinetic energy of 
each is� � 9.60 � 10�13 J

Ek � (6.0 MeV)(1.60 � 10�13 J>MeV)

4. For silver, n is given
by

� 5.85 � 1022 atoms>cm3 � 5.85 � 1028 atoms>m3

�
(10.5 g>cm3)(6.02 � 1023 atoms>mol)

108 g>mol

n � �NA>M

5. Substituting the given values and computed results into Equation 4-6 gives �N:

� 528 �>s� c (9 � 109)(47)(1.60 � 10�19)2

(2)(9.60 � 10�13)
d 2

¢N �
(3.12 � 109 �>s)(5 � 10�6 m2)(5.85 � 1028 atoms>m3)(10�6 m)

(2 � 10�2)2 sin4 (75°>2)

EXAMPLE 4-5 Radius of the Au Nucleus The radius of the gold (Au) nucleus has
been measured by high-energy electron scattering as 6.6 fm. What kinetic energy 
particles would Rutherford have needed so that for 180° scattering, the particle
would just reach the nuclear surface before reversing direction?

�
�



SOLUTION

From Equation 4-11, we have

Alpha particles of such energy are not emitted by naturally radioactive materials
and so were not accessible to Rutherford. Thus, he could not have performed an
experiment for Au equivalent to that for Al illustrated by Figure 4-14.

Questions

1. Why can’t the impact parameter for a particular particle be chosen?
2. Why is it necessary to use a very thin target foil?
3. Why could Rutherford place a lower limit on the radius of the Al nucleus but not

on the Au nucleus?
4. How could you use the data in Figure 4-9a to determine the charge on a silver

nucleus relative to that on a gold nucleus?
5. How would you expect the data (not the curve) to change in Figure 4-9 if the foil

were so thick that an appreciable number of gold nuclei were hidden from the
beam by being in the “shadow” of the other gold nuclei?

4-3 The Bohr Model of the

Hydrogen Atom
In 1913, the Danish physicist Niels H. D. Bohr10

proposed a model of the hydrogen atom that com-
bined the work of Planck, Einstein, and Rutherford
and was remarkably successful in predicting the ob-
served spectrum of hydrogen. The Rutherford model
assigned charge and mass to the nucleus but was
silent regarding the distribution of the charge and
mass of the electrons. Bohr, who had been working
in Rutherford’s laboratory during the experiments of
Geiger and Marsden, made the assumption that the
electron in the hydrogen atom moved in an orbit
about the positive nucleus, bound by the electrostatic
attraction of the nucleus. Classical mechanics allows
circular or elliptical orbits in this system, just as in the
case of the planets orbiting the Sun. For simplicity,
Bohr chose to consider circular orbits.

Such a model is mechanically stable because the
Coulomb potential provides the cen-
tripetal force

4-12

necessary for the electron to move in a circle of radius r at speed v, but it is electrically
unstable because the electron is always accelerating toward the center of the circle.

F �
kZe2

r2
�
mv2

r

V � �kZe2>r

�

� 5.52 � 10�12 J � 34.5 MeV

1

2
mv2 �

kq
�
Q

rd
�

(9 � 109)(2)(79)(1.60 � 10�19)2

6.6 � 10�15
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Niels Bohr explains a point in front of the blackboard (1956).
[American Institute of Physics, Niels Bohr Library, Margrethe Bohr
Collection.]



The laws of electrodynamics predict that such an accelerating charge will radiate
light of frequency f equal to that of the periodic motion, which in this case is the
frequency of revolution. Thus, classically,

4-13

The total energy of the electron is the sum of the kinetic and the potential energies:

From Equation 4-12, we see that (a result that holds for circular mo-
tion in any inverse-square force field), so the total energy can be written as

4-14

Thus, classical physics predicts that, as energy is lost to radiation, the
electron’s orbit will become smaller and smaller while the frequency
of the emitted radiation will become higher and higher, further in-
creasing the rate at which energy is lost and ending when the electron
reaches the nucleus. (See Figure 4-15a.) The time required for the
electron to spiral into the nucleus can be calculated from classical me-
chanics and electrodynamics; it turns out to be less than a microsec-
ond. Thus, at first sight, this model predicts that the atom will radiate
a continuous spectrum (since the frequency of revolution changes
continuously as the electron spirals in) and will collapse after a very
short time, a result that fortunately does not occur. Unless excited by
some external means, atoms do not radiate at all, and when excited
atoms do radiate, a line spectrum is emitted, not a continuous one.

Bohr “solved” these formidable difficulties with two decidedly
nonclassical postulates. His first postulate was that electrons could
move in certain orbits without radiating. He called these orbits
stationary states. His second postulate was to assume that the atom
radiates when the electron makes a transition from one stationary
state to another (Figure 4-15b) and that the frequency f of the emit-

ted radiation is not the frequency of motion in either stable orbit but is related to the
energies of the orbits by Planck’s theory

4-15

where h is Planck’s constant and Ei and Ef are the energies of the initial and final states.
The second assumption, which is equivalent to that of energy conservation with the
emission of a photon, is crucial because it deviated from classical theory, which requires
the frequency of radiation to be that of the motion of the charged particle. Equation 4-
15 is referred to as the Bohr frequency condition.

In order to determine the energies of the allowed, nonradiating orbits, Bohr made a
third assumption, now known as the correspondence principle, which had profound
implications:

In the limit of large orbits and large energies, quantum calculations must

agree with classical calculations.

hf � Ei � Ef

E �
kZe2

2r
�
kZe2

r
� �

kZe2

2r
� �

1
r

1
2mv2 � kZe2>2r

E �
1

2
mv2 � a�

kZe2

r
b

f �
v

2�r
� akZe2

rm
b 1>2 1

2�r
� a kZe2

4�2m
b 1>2 1

r3>2 �
1

r3>2
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(a) (b)
γ

γ

γ

γ

γ

Figure 4-15 (a) In the classical orbital model,
the electron orbits about the nucleus and spirals
into the center because of the energy radiated.
(b) In the Bohr model, the electron orbits
without radiating until it jumps to another
allowed radius of lower energy, at which time
radiation is emitted.
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Thus, the correspondence principle says that whatever modifications of classical
physics are made to describe matter at the submicroscopic level, when the results are
extended to the macroscopic world, they must agree with those from the classical laws
of physics that have been so abundantly verified in the everyday world. While Bohr’s
detailed model of the hydrogen atom has been supplanted by modern quantum theory,
which we will discuss in later chapters, his frequency condition (Equation 4-15) and
the correspondence principle remain as essential features of the new theory.

In his first paper,11 in 1913, Bohr pointed out that his results implied that the an-
gular momentum of the electron in the hydrogen atom can take on only values that are
integral multiples of Planck’s constant divided by in agreement with a discovery
made a year earlier by J. W. Nicholson. That is, angular momentum is quantized; it can
assume only the values where n is an integer. Rather than follow the intricacies
of Bohr’s derivation, we will use the fundamental conclusion of angular momentum
quantization to find his expression for the observed spectra. The development that
follows applies not only to hydrogen, but to any atom of nuclear charge �Ze with a
single orbital electron—e.g., singly ionized helium He� or doubly ionized lithium Li2�.

If the nuclear charge is �Ze and the electron charge �e, we have noted (Equation
4-12) that the centripetal force necessary to move the electron in a circular orbit is
provided by the Coulomb force Solving Equation 4-12 for the speed of the
orbiting electron yields

4-16

Bohr’s quantization of the angular momentum L is

4-17

where the integer n is called a quantum number and (The constant read
“h-bar,” is often more convenient to use than h itself, just as the angular frequency

is often more convenient than the frequency f.) Combining Equations 4-16
and 4-17 allows us to write for the circular orbits

Squaring this relation gives

and canceling common quantities yields

4-18

where

4-19

is called the Bohr radius. The , a unit commonly used in the early days of spec-
troscopy, equals 10�10 m or 10�1 nm. Thus, we find that the stationary orbits of Bohr’s
first postulate have quantized radii, denoted in Equation 4-18 by the subscript on rn.

Å

a0 �
U2

mke2
� 0.529 Å � 0.0529 nm

rn �
n2U2

mkZe2
�
n2a0

Z

r2 �
n2U2

m2
a rm
kZe2

b
r �

nU
mv

�
nU
m
a rm
kZe2

b 1>2
� � 2�f

U,U � h>2�.

L � mvr �
nh

2�
� nU  n � 1, 2, 3, Á

v � akZe2

mr
b 1>2

kZe2>r2.

nh>2�,

2�,
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Notice that the Bohr radius for hydrogen (Z � 1) corresponds to the orbit radius
with n � 1, the smallest Bohr orbit possible for the electron in a hydrogen atom. Since

the Bohr orbits for single-electron atoms with Z � 1 are closer to the nucleus
than the corresponding ones for hydrogen.

The total energy of the electron (Equation 4-14) then becomes, upon substitution
of rn from Equation 4-18,

4-20

where Thus, the energy of the electron is also quantized; i.e., the sta-
tionary states correspond to specific values of the total energy. This means that ener-
gies Ei and Ef that appear in the frequency condition of Bohr’s second postulate must
be from the allowed set En, and Equation 4-15 becomes

or

4-21

which can be written in the form of the Rydberg-Ritz equation (Equation 4-2) by sub-
stituting f � c and dividing by c to obtain

or

4-22

where

4-23

is Bohr’s prediction for the value of the Rydberg constant.
Using the values of m, e, c, and known in 1913, Bohr calculated R and found

his result to agree (within the limits of uncertainties of the constants) with the value
obtained from spectroscopy, 1.097 � 107 m�1. Bohr noted in his original paper that
this equation might be valuable in determining the best values for the constants e, m,
and because of the extreme precision possible in measuring R. This has indeed
turned out to be the case.

The possible values of the energy of the hydrogen atom predicted by Bohr’s
model are given by Equation 4-20 with Z � 1:

4-24

where

E0 �
mk2e4

2U2
� 2.18 � 10�18 J � 13.6 eV

En � �
mk2e4

2U2n2
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E0

n2

U

U

R �
E0

hc
�
mk2e4

4�cU3

1
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f

�
1
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i
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a 1
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a 1

n2
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1

n2
i

b
hf � Eni � Enf � �E0

Z2

n2
i

� a�E0

Z2

n2
f

b
E0 � mk2e4>2U2.
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is the magnitude of En with n � 1. is called the ground state. It is conve-
nient to plot these allowed energies of the stationary states as in Figure 4-16. Such a
plot is called an energy-level diagram. Various series of transitions between the sta-
tionary states are indicated in this diagram by vertical arrows drawn between the
levels. The frequency of light emitted in one of these transitions is the energy differ-
ence divided by h according to Bohr’s frequency condition, Equation 4-15. The energy
required to remove the electron from the atom, 13.6 eV, is called the ionization energy,
or binding energy, of the electron.

E1(� �E0)

100 200 500 1000 2000

λ, nm

(a)

(b)
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Figure 4-16 Energy-level diagram for hydrogen showing the seven lowest stationary states and the four lowest energy
transitions each for the Lyman, Balmer, and Paschen series. There are an infinite number of levels. Their energies are given by

where n is an integer. The dashed line shown for each series is the series limit, corresponding to the energy
that would be radiated by an electron at rest far from the nucleus ( ) in a transition to the state with n � nf for that series.
The horizontal spacing between the transitions shown for each series is proportional to the wavelength spacing between the lines
of the spectrum. (b) The spectral lines corresponding to the transitions shown for the three series. Notice the regularities within
each series, particularly the short-wavelength limit and the successively smaller separation between adjacent lines as the limit is
approached. The wavelength scale in the diagram is not linear.

nS �
En � �13.6>n2 eV,
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At the time Bohr’s paper was published, there were two spectral series known for
hydrogen: the Balmer series, corresponding to nf � 2, ni � 3, 4, 5, . . . , and a series
named after its discoverer, Paschen (1908), corresponding to nf � 3, ni � 4, 5, 6, . . . .
Equation 4-22 indicates that other series should exist for different values of nf . In 1916
Lyman found the series corresponding to nf � 1, and in 1922 and 1924 F. S. Brackett
and A. H. Pfund, respectively, found series corresponding to nf � 4 and nf � 5. As can
be easily determined by computing the wavelengths for these series, only the Balmer
series lies primarily in the visible portion of the electromagnetic spectrum. The Lyman
series is in the ultraviolet, the others in the infrared.

EXAMPLE 4-6 Wavelength of the Line Compute the wavelength of the 
spectral line, i.e., the second line of the Balmer series predicted by Bohr’s model. The

line is emitted in the transition from ni � 4 to nf � 2.

SOLUTION

1. Method 1: The wavelength is given by Equation 4-22 with Z � 1:

2. Substituting R � 1.097 � 107 m�1 and the values of ni and nf:

or

3. Method 2: The wavelength may also be computed from Equation 4-15:

or

4. The values of Ei and Ef are given by Equation 4-24:

5. Substituting these into Equation 4-15 yields

or

Remarks: The difference in the two results is due to rounding of the Rydberg con-
stant to three decimal places.


 � 4.87 � 10�7 m � 487 nm

� 2.051 � 106 m�1

1



�

[�0.85 eV � (�3.4 eV)](1.60 � 10�19 J>eV)

(6.63 � 10�34 J # s)(3.00 � 108 m>s)

Ef � �a13.6 eV

n2
f
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Reduced Mass Correction

The assumption by Bohr that the nucleus is fixed is equivalent to the assumption that
it has infinite mass. In fact, the Rydberg constant in Equation 4-23 is normally writ-
ten a as we will do henceforth. If the nucleus has mass M, its kinetic energy will
be where is the momentum. If we assume that the total
momentum of the atom is zero, conservation of momentum requires that the momenta
of the nucleus and electron be equal in magnitude. The total kinetic energy is then

where

4-25

This is slightly different from the kinetic energy of the electron because called the
reduced mass, is slightly different from the electron mass. The results derived above for
a nucleus of infinite mass can be applied directly for the case of a nucleus of mass M
if we replace the electron mass in the equations by reduced mass defined by
Equation 4-25. (The validity of this procedure is proved in most intermediate and
advanced mechanics books.) The Rydberg constant (Equation 4-23) is then written

4-26

This correction amounts to only 1 part in 2000 for the case of hydrogen and to even
less for other nuclei; however, the predicted variation in the Rydberg constant from
atom to atom is precisely that which is observed. For example, the spectrum of a
singly ionized helium atom, which has one remaining electron, is just that predicted
by Equation 4-22 and 4-26 with Z � 2 and the proper helium mass. The current value
for the Rydberg constant from precision spectroscopic measurements12 is

4-27

Urey13 used the reduced mass correction to the spectral lines of the Balmer series to
discover (in 1931) a second form of hydrogen whose atoms had twice the mass of or-
dinary hydrogen. The heavy form was called deuterium. The two forms, atoms with
the same Z but different masses, are called isotopes.

EXAMPLE 4-7 Rydberg Constants for H and Compute the Rydberg constants
for H and applying the reduced mass correction. (m � 9.1094 � 10�31 kg,
mp � 1.6726 � 10�27 kg, � 5.0078 �10�27 kg)

SOLUTION

For hydrogen:

� 1.09677 � 107 m�1

RH � R
�
a 1

1 � m>MH

b � R
�
a 1

1 � 9.1094 � 10�31>1.6726 � 10�27
b

m
�

He�
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R
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For helium: Since M in the reduced mass correction is the mass of the nucleus, for
this calculation we use M equal to the particle mass.

Thus, the two Rydberg constants differ by about 0.04 percent.

Correspondence Principle

According to the correspondence principle, which applies also to modern quantum
mechanics, when the energy levels are closely spaced, quantization should have little
effect; classical and quantum calculations should give the same results. From the
energy-level diagram of Figure 4-16, we see that the energy levels are close together
when the quantum number n is large. This leads us to a slightly different statement of
Bohr’s correspondence principle: In the region of very large quantum numbers (n in
this case) quantum calculation and classical calculation must yield the same results.
To see that the Bohr model of the hydrogen atom does indeed obey the correspon-
dence principle, let us compare the frequency of a transition between level ni � n and
level nf � n � 1 for large n with the classical frequency, which is the frequency of
revolution of the electron. From Equation 4-22 we have

For large n we can neglect the ones subtracted from n and 2n to obtain

4-28

The classical frequency of revolution of the electron is (see Equation 4-13)

Using from Equation 4-17 and from Equation 4-18,
we obtain

4-29

which is the same as Equation 4-28.

Fine Structure Constant

The demonstration of the correspondence principle for large n in the preceding para-
graph was for �n � ni � nf � 1; however, we have seen (see Figure 4-16) that transi-
tions occur in the hydrogen atom for when n is small, and such transitions
should occur for large n too. If we allow �n � 2, 3, . . . for large values of n, then the fre-
quencies of the emitted radiation would be, according to Bohr’s model, integer multiples
of the frequency given in Equation 4-28. In that event, Equations 4-28 and 4-29 would
not agree. This disagreement can be avoided by allowing elliptical orbits.14 A result of
Newtonian mechanics, familiar from planetary motion, is that in an inverse-square force
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field, the energy of an orbiting particle depends only on the major axis of the ellipse and
not on its eccentricity. There is consequently no change in the energy at all unless the
force differs from inverse square or unless Newtonian mechanics is modified. A.
Sommerfeld considered the effect of special relativity on the mass of the electron in the
Bohr model in an effort to explain the observed fine structure of the hydrogen spectral
lines.15 Since the relativistic corrections should be of the order of v2 c2 (see Chapter 2),
it is likely that a highly eccentric orbit would have a larger correction because v becomes
greater as the electron moves nearer the nucleus. The Sommerfeld calculations are quite
complicated, but we can estimate the order of magnitude of the effect of special relativ-
ity by calculating for the first Bohr orbit in hydrogen. For n � 1, we have from
Equation 4-17 that Then, using we have

and

4-30

where we have used another convenient combination

4-31

The dimensionless quantity is called the fine-structure constant because
of its first appearance in Sommerfeld’s theory, but as we will see, it has much more
fundamental importance.

Though v2 c2 is very small, an effect of this magnitude is observable. In
Sommerfeld’s theory, the fine structure of the hydrogen spectrum is explained in the
following way. For each allowed circular orbit of radius rn and energy En, a set of n
elliptical orbits is possible of equal major axes but different eccentricities. Since the
velocity of a particle in an elliptical orbit depends on the eccentricity, so then will the
mass and momentum, and therefore the different ellipses for a given n will have slightly
different energies. Thus, the energy radiated when the electron changes orbit depends
slightly on the eccentricities of the initial and final orbits as well as on their major axes.
The splitting of the energy levels for a given n is called fine-structure splitting, and its
value turns out to be of the order of v2 c2 � just as Sommerfeld predicted.
However, the agreement of Sommerfeld’s prediction with the observed fine-structure
splitting was quite accidental and led to considerable confusion in the early days of
quantum theory. Although he had used the relativistic mass and momentum, he com-
puted the energy using classical mechanics, leading to a correction much larger than
that actually due only to relativistic effects. As we will see in Chapter 7, fine structure
is associated with a completely nonclassical property of the electron called spin.

A lasting contribution of Sommerfeld’s effort was the introduction of the fine-
structure constant With it we can write the Bohr radius 
and the quantized energies of the Bohr model in a particularly elegant form. Equations
4-24 and 4-19 for hydrogen become
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Since is a dimensionless number formed of universal constants, all observers will
measure the same value for it and find that energies and dimensions of atomic systems
are proportional to and respectively. We will return to the implications of this
intriguing fact later in the book.

EXPLORING

Giant Atoms

Giant atoms called Rydberg atoms, long understood to be a theoretical possibility and
first detected in interstellar space in 1965, are now being produced and studied in the
laboratory. Rydberg atoms are huge! They are atoms that have one of the valence elec-
trons in a state with a very large quantum number n. (See Figure 4-17.) Notice in
Equation 4-18 that the radius of the electron orbit and n can be any
positive integer, so the diameter of a hydrogen atom (or any other atom, for that mat-
ter) could be very large, a millimeter or even a meter! What keeps such giant atoms
from being common is that the energy difference between adjacent allowed energy
states is extremely small when n is large and the allowed states are very near the 

� 0 level where ionization occurs, because For example, if n � 1000,
the diameter of a hydrogen atom would be r1000 � 0.1 mm, but both E1000 and the dif-
ference in energy are about 10�5 eV! This energy is far below the
average energy of thermal motion at ordinary temperatures (about 0.025 eV), so ran-
dom collisions would quickly ionize an atom whose electron happened to get excited
to a level with n equal to 20 or so with r still only about 10�8 m.

The advent of precisely tunable dye lasers in the 1970s made it possible to nudge
electrons carefully into orbits with larger and larger n values. The largest Rydberg
atoms made so far, typically using sodium or potassium, are 10,000 times the diameter
of ordinary atoms, about 20 m across or the size of a fine grain of sand, and exist for
several milliseconds inside vacuum chambers. For hydrogen, this corresponds to quan-
tum number n 600. An electron moving so far from the nucleus is bound by a mi-
nuscule force. It also moves rather slowly since the classical period of 
and follows an elliptical orbit. These characteristics of very large n orbits provide
several intriguing possibilities. For example, very small electric fields might be studied,
making possible the tracking of chemical reactions that proceed too quickly to be
followed otherwise. More dramatic is the possibility of directly testing Bohr’s corre-
spondence principle by directly observing the slow (since ) movement of the
electron around the large n orbits—the transition from quantum mechanics to classical
mechanics. Computer simulations of the classical motion of a Rydberg electron “wave”
(see Chapter 5) in orbit around a nucleus are aiding the design of experiments to
observe the correspondence principle.

v � 1>n
T � 1>f � n3

�

	

¢E � E1001 � E1000

En � 1>n2.E
�

rn � n2a0>Z � n2

1>�,�2

�

NucleusElectron

Figure 4-17 A lithium (Z � 3) Rydberg atom. The outer electron occupies a small
volume and follows a nearly classical orbit with a large value of n. The two inner electrons
are not shown.



4-4 X-Ray Spectra 169

Questions

6. If the electron moves in an orbit of greater radius, does its total energy increase
or decrease? Does its kinetic energy increase or decrease?

7. What is the energy of the shortest-wavelength photon that can be emitted by the
hydrogen atom?

8. How would you characterize the motion and location of an electron with E � 0
and n in Figure 4-16?

4-4 X-Ray Spectra
The extension of the Bohr theory to atoms more complicated than hydrogen proved
difficult. Quantitative calculations of the energy levels of atoms of more than one elec-
tron could not be made from the model, even for helium, the next element in the pe-
riodic table. However, experiments by H. Moseley in 1913 and J. Franck and G. Hertz
in 1914 strongly supported the general Bohr-Rutherford picture of the atom as a pos-
itively charged core surrounded by electrons that moved in quantized energy states
relatively far from the core. Moseley’s analysis of x-ray spectra will be discussed in
this section, and the Franck-Hertz measurement of the transmission of electrons
through gases will be discussed in the chapter’s concluding section.

Using the methods of crystal spectrometry that had just been developed by W. H.
Bragg and W. L. Bragg, Moseley16 measured the wavelengths of the characteristic x-ray
line spectra for about 40 different target elements. (Typical x-ray spectra are shown in
Figure 3-15.) He noted that the x-ray line spectra varied in a regular way from element to
element, unlike the irregular variations of optical spectra. He surmised that this regular
variation occurred because characteristic x-ray spectra were due to transitions involving
the innermost electrons of the atoms. (See Figure 4-18.) Because the inner electrons are

S �

Henry G.-J. Moseley.
[Courtesy of University of
Manchester.]

Ejected
electron

Nucleus
+Ze

n = 1

n = 2

n = 3

n = 4

–

Kα x ray

Lα x ray

Figure 4-18 A stylized picture of the Bohr circular
orbits for n � 1, 2, 3, and 4. The radii In a
high-Z element (elements with Z 12 emit x rays),
electrons are distributed over all the orbits shown.
If an electron in the n � 1 orbit is knocked from
the atom, e.g., by being hit by a fast electron
accelerated by the voltage across an x-ray tube, the
vacancy thus produced is filled by an electron of
higher energy (i.e., n � 2 or higher). The difference
in energy between the two orbits is emitted as a
photon, according to the Bohr frequency condition,
whose wavelength will be in the x-ray region of
the spectrum if Z is large enough.

!
rn � n2.



170 Chapter 4 The Nuclear Atom

shielded from the outermost electrons by those in intermediate orbits, their energies do
not depend on the complex interactions of the outer electrons, which are responsible for
the complicated optical spectra. Furthermore, the inner electrons are well shielded from
the interatomic forces that are responsible for the binding of atoms in solids.

According to the Bohr theory (published earlier the same year, 1913), the energy of
an electron in the first Bohr orbit is proportional to the square of the nuclear charge (see
Equation 4-20). Moseley reasoned that the energy, and therefore the frequency, of a
characteristic x-ray photon should vary as the square of the atomic number of the target
element. He therefore plotted the square root of the frequency of a particular character-
istic line in the x-ray spectrum of various target elements versus the atomic number Z
of the element. Such a plot, now called a Moseley plot, is shown in Figure 4-19. 
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Figure 4-19 Moseley’s plots of the square root of frequency versus Z for characteristic x rays.
When an atom is bombarded by high-energy electrons, an inner atomic electron is sometimes
knocked out, leaving a vacancy in the inner shell. The K-series x rays are produced by atomic
transitions to vacancies in the n � 1 (K) shell, whereas the L series is produced by transitions to
the vacancies in the n � 2 (L) shell. [From H. Moseley, Philosophical Magazine (6), 27, 713 (1914).]
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These curves can be fitted by the empirical equation

4-34

where An and b are constants for each characteristic x-ray line. One family of lines,
called the K series, has b � 1 and slightly different values of An for each line in the
graph. The other family shown in Figure 4-19, called the L series,17 could be fitted by
Equation 4-34 with b � 7.4.

If the bombarding electron in the x-ray tube causes ejection of an electron from the
innermost orbit (n � 1) in a target atom completely out of the atom, photons will be
emitted corresponding to transitions of electrons in other orbits (n � 2, 3, . . .) to fill the
vacancy in the n � 1 orbit. (See Figure 4-18.) (Since these lines are called the K series,
the n � 1 orbit came to be called the K shell.) The lowest-frequency line corresponds
to the lowest-energy transition (n � 2 n � 1). This line is called the line. The
transition n � 3 n � 1 is called the line. It is of higher energy, and hence higher
frequency, than the line. A vacancy created in the n � 2 orbit by emission of a 
x ray may then be filled by an electron of higher energy, e.g., one in the n � 3 orbit,
resulting in the emission of a line in the L series, and so on. The multiple L lines in the
Moseley plot (Figure 4-19) are due in part to the fact that there turn out to be small dif-
ferences in the energies of electrons with a given n that are not predicted by the Bohr
model. Moseley’s work gave the first indication of these differences, but the explana-
tion will have to await our discussion of more advanced quantum theory in Chapter 7.

Using the Bohr relation for a one-electron atom (Equation 4-21) with nf � 1 and
using (Z � 1) in place of Z, we obtain for the frequencies of the K series

4-35

where is the Rydberg constant. Comparing this with Equation 4-34, we see that An
is given by

4-36

The wavelengths of the lines in the K series are then given by

4-37

EXAMPLE 4-8 for Molybdenum Calculate the wavelength of the line of
molybdenum (Z � 42), and compare the result with the value � 0.0721 nm mea-
sured by Moseley and with the spectrum in Figure 3-15b.

SOLUTION

Using n � 2, � 1.097 � 107 m�1, and Z � 42, we obtain

This value is within 0.3 percent of Moseley’s measurement and agrees well with
that in Figure 3-15b.
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The fact that f is proportional to (Z � 1)2 rather than to Z is explained by the par-
tial shielding of the nuclear charge by the other electron remaining in the K shell as
“seen” by electrons in the n � 2 (L) shell.18 Using this reasoning, Moseley concluded
that, since b � 7.4 for the L series, these lines involved electrons farther from the nu-
cleus, which “saw” the nuclear charge shielded by more inner electrons. Assuming
that the L series was due to transitions to the n � 2 shell, we see that the frequencies
for this series are given by

4-38

where n � 3, 4, 5, . . . .
Before Moseley’s work, the atomic number was merely the place number of the

element in Mendeleev’s periodic table of the elements arranged by weight. The ex-
periments of Geiger and Marsden showed that the nuclear charge was approximately

while x-ray scattering experiments by C. G. Barkla showed that the number of
electrons in an atom was also approximately These two experiments are consis-
tent since the atom as a whole must be electrically neutral. However, several discrep-
ancies were found in the periodic table as arranged by weight. For example, the 18th
element in order of weight is potassium (39.102), and the 19th is argon (39.948).
Arrangement by weight, however, puts potassium in the column with the inert gases
and argon with the active metals, the reverse of their known chemical properties.
Moseley showed that for these elements to fall on the line versus Z, argon had to
have Z � 18 and potassium Z � 19. Arranging the elements by the Z number obtained
from the Moseley plot rather than by weight, gave a periodic chart in complete agree-
ment with the chemical properties. Moseley also pointed out that there were gaps in
the periodic table at Z � 43, 61, and 75, indicating the presence of undiscovered ele-
ments. All have subsequently been found. Figure 4-20 illustrates the discovery of
promethium (Z � 61).

f1>2

A>2.
A>2,

f � cR
�
a 1

22
�

1

n2
b (Z � 7.4)2

Figure 4-20 Characteristic x-ray
spectra. (a) Part of the spectra of
neodymium (Z � 60) and samarium
(Z � 62). The two pairs of bright lines
are the and lines. (b) Part of the
spectrum of the artificially element
promethium (Z � 61). This element
was first positively identified in 1945
at the Clinton Laboratory (now Oak
Ridge). Its and lines fall between
those of neodymium and samarium,
just as Moseley predicted. (c) Part of
the spectra of all three of the elements
neodymium, promethium, and
samarium. [Courtesy of J. A. Swartout,
Oak Ridge National Laboratory.]
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Figure 4-21 (a) The Auger spectrum of Cu
bombarded with 10-keV electrons. The energy of
the Auger electrons is more precisely determined
by plotting the weighted derivative E dN(e) dE
of the electron intensity rather than the intensity
N(e). (b) A portion of the Auger spectrum of Al
from elemental Al and Al oxide. Note the energy
shift in the largest peaks resulting from
adjustments in the Al electron shell energies in
the Al2O3 molecule.

>

Auger Electrons

The process of producing x rays necessarily results in the ionization of the atom since
an inner electron is ejected. The vacancy created is filled by an outer electron, pro-
ducing the x rays studied by Moseley. In 1923 Pierre Auger discovered that, as an
alternative to x-ray emission, the atom may eject a third electron from a higher-energy
outer shell via a radiationless process called the Auger effect. In the Auger (pro-
nounced oh-zhay) process, the energy difference �E � E2 � E1 that could have
resulted in the emission of a x ray is removed from the atom by the third electron,
e.g., one in the n � 3 shell. Since the magnitude of E3 � �E, the n � 3 electron would
leave the atom with a characteristic kinetic energy which is determined by
the stationary-state energies of the particular atom.19 Thus, each element has a char-
acteristic Auger electron spectrum. (See Figure 4-21a.) Measurement of the Auger
electrons provides a simple and highly sensitive tool for identifying impurities on
clean surfaces in electron microscope systems and investigating electron energy shifts
associated with molecular bonding. (See Figure 4-21b.)

Question

9. Why did Moseley plot versus Z rather than f versus Z?f1>2

¢E � ƒE3 ƒ ,

K
�
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4-5 The Franck-Hertz Experiment
We conclude this chapter with discussion of an important experiment that provi-
ded strong support for the quantization of atomic energies, thus helping to pave the
way for modern quantum mechanics. While investigating the inelastic scattering of
electrons, J. Franck and G. Hertz20 made a discovery that confirmed by direct
measurement Bohr’s hypothesis of energy quantization in atoms. First done in 1914,
it is now a standard undergraduate laboratory experiment. Figure 4-22a is a schematic
diagram of the apparatus. A small heater heats the cathode. Electrons are ejected from
the heated cathode and accelerated toward a grid, which is at a positive potential V0
relative to the cathode. Some electrons pass through the grid and reach the plate P,
which is at a slightly lower potential Vp � V0 � �V. The tube is filled with a 
low-pressure gas of the element being investigated (mercury vapor, in Franck and
Hertz’s experiment). The experiment involves measuring the plate current as a func-
tion of V0 . As V0 is increased from 0, the current increases until a critical value (about
4.9 V for Hg) is reached, at which point the current suddenly decreases. As V0 is in-
creased further, the current rises again.

The explanation of this result is a bit easier to visualize if we think for the mo-
ment of a tube filled with hydrogen atoms instead of mercury. (See Figure 4-22b.)
Electrons accelerated by V0 that collide with hydrogen electrons cannot transfer en-
ergy to the latter unless they have acquired kinetic energy eV0 � E2 � E1 � 10.2 eV
since the hydrogen electron according to Bohr’s model cannot occupy states with en-
ergies intermediate between E1 and E2 . Such a collision will thus be elastic; i.e., the
incident electron’s kinetic energy will be unchanged by the collision, and thus it can
overcome the potential �V and contribute to the current I. However, if eV0 10.2 eV,!

Electron
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Figure 4-22 (a) Schematic diagram of the Franck-Hertz experiment. Electrons ejected from the heated cathode C at zero
potential are drawn to the positive grid G. Those passing through the holes in the grid can reach the plate P and thereby
contribute to the current I if they have sufficient kinetic energy to overcome the small back potential �V. The tube contains a
low-pressure gas of the element being studied. (b) Results for hydrogen. If the incoming electron does not have sufficient
energy to transfer �E � E2 � E1 to the hydrogen electron in the n � 1 orbit (ground state), then the scattering will be elastic.
If the incoming electron does have at least �E kinetic energy, then an inelastic collision can occur in which �E is transferred to
the n � 1 electron, moving it to the n � 2 orbit. The excited electron will typically return to the ground state very quickly,
emitting a photon of energy �E.
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then the incoming electron can transfer 10.2 eV to the hydrogen electron in the ground
state (n � 1 orbit), putting it into the n � 2 orbit (called the first excited state). The
incoming electron’s energy is thus reduced by 10.2 eV; it has been inelastically scat-
tered. With insufficient energy to overcome the small retarding potential �V, the in-
coming electrons can no longer contribute to the plate current I, and I drops sharply.

The situation with Hg in the tube is more complicated since Hg has 80 electrons.
Although Bohr’s theory cannot predict their individual energies, we still expect the en-
ergy to be quantized with a ground state, first excited state, and so on, for the atom.
Thus, the explanation of the observed 4.9-V critical potential for Hg is that the first
excited state is about 4.9 eV above the lowest level (ground state). Electrons with en-
ergy less than this cannot lose energy to the Hg atoms, but electrons with energy
greater than 4.9 eV can have inelastic collisions and lose 4.9 eV. If this happens near
the grid, these electrons cannot gain enough energy to overcome the small back volt-
age �V and reach the plate; the current therefore decreases. If this explanation is cor-
rect, the Hg atoms that are excited to an energy level of 4.9 eV above the ground state
should return to the ground state by emitting light of wavelength

There is indeed a line of this wavelength in the mercury spectrum. When the tube is
viewed with a spectroscope, this line is seen when V0 is greater than 4.9 eV, while no
lines are seen when V0 is less than this amount. For further increases in V0 , additional
sharp decreases in the current are observed, corresponding either to excitation of other
levels in Hg (e.g., the second excited state of Hg is at 6.7 eV above the ground state)
or to multiple excitations of the first excited state, i.e., due to an electron losing 4.9
eV more than once. In the usual setup, multiple excitations of the first level are
observed and dips are seen every 4.9 V.21 The probability of observing such multiple
first-level excitations, or excitations of other levels, depends on the detailed variation
of the potential of the tube. For example, a second decrease in the current at
V0 � 2 � 4.9 � 9.8 V results when electrons have inelastic collisions with Hg atoms
about halfway between the cathode and grid (see Figure 4-22a). They are reacceler-
ated, reaching 4.9 eV again in the vicinity of the grid. A plot of the data of Franck and
Hertz is shown in Figure 4-23.

The Franck-Hertz experiment was an important confirmation of the idea that dis-
crete optical spectra were due to the existence in atoms of discrete energy levels that
could be excited by nonoptical methods. It is particularly gratifying to be able to de-
tect the existence of discrete energy levels directly by measurements using only volt-
meters and ammeters.

Electron Energy Loss Spectroscopy

The Franck-Hertz experiment was the precursor of a highly sensitive technique for
measuring the quantized energy states of atoms in both gases and solids. The tech-
nique, called electron energy loss spectroscopy (EELS), is particularly useful in
solids, where it makes possible measurement of the energy of certain types of lattice
vibrations and other processes. It works like this. Suppose that the electrons in an in-
cident beam all have energy Einc . They collide with the atoms of a material, causing
them to undergo some process (e.g., vibration, lattice rearrangement, electron excita-
tion) that requires energy El . Then, if a beam electron initiates a single such process,
it will exit the material with energy Einc � El —i.e., it has been inelastically scattered.
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Figure 4-23 Current versus
accelerating voltage in the
Franck-Hertz experiment.
The current decreases
because many electrons lose
energy due to inelastic
collisions with mercury
atoms in the tube and
therefore cannot overcome
the small back potential
indicated in Figure 4-21a.
The regular spacing of the
peaks in this curve indicates
that only a certain quantity of
energy, 4.9 eV, can be lost to
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interpretation is confirmed by
the observation of radiation
of photon energy 4.9 eV
emitted by the mercury
atoms, when V0 is greater
than this energy. [From 
J. Franck and G. Hertz,
Verband Deutscher
Physiklischer Gesellschaften,
16, 457 (1914).]
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The exit energy can be measured very accurately with, e.g., a magnetic spectrometer
designed for electrons.22 Figure 4-24a illustrates a typical experimental arrangement
for measuring an energy-loss spectrum.

As an example of its application, if an incident beam of electrons with Einc � 2 keV
is reflected from a thin Al film, the scattered electron energies measured in the magnetic
spectrometer result in the energy-loss spectrum shown in Figure 4-24b, which directly
represents the quantized energy levels of the target material. The loss peaks in this par-
ticular spectrum are due to the excitation of harmonic vibrations in the thin film sam-
ple, as well as some surface vibrations. The technique is also used to measure the
vibrational energies of impurity atoms that may be absorbed on the surface and, with
higher incident electron energies, to measure energy losses at the atomic inner levels,
thus yielding information about bonding and other characteristics of absorbed atoms.
Inelastic scattering techniques, including those using particles in addition to electrons,
provide very powerful means for probing the energy structure of atomic, molecular, and
nuclear systems. We will have occasion to refer to them many times throughout the rest
of the book.

More

Here and in Chapter 3 we have discussed many phenomena that were
“explained” by various ad hoc quantum assumptions. A Critique of
Bohr Theory and the “Old Quantum Mechanics” contrasts some of its
successes with some of its failures on the Web page:
whfreeman.com/modphysics5e.
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Figure 4-24 Energy-loss spectrum
measurement. (a) A well-defined electron
beam impinges upon the sample. Electrons
inelastically scattered at a convenient
angle enter the slit of the magnetic
spectrometer, whose B field is directed out
of the paper, and turn through radii R
determined by their energy Einc � E1 via
Equation 3-2 written in the form

(b) An
energy-loss spectrum for a thin Al film.
[From C. J. Powell and J. B. Swan, Physical
Review, 115, 869 (1954).]

R � [2m(Einc � E1)]
1>2>eB.
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Summary

TOPIC RELEVANT EQUATIONS AND REMARKS

1. Atomic spectra 4-2

This empirical equation computes the correct wavelengths of observed spectral
lines. The Rydberg constant R varies in a regular way from element to element.

2. Rutherford scattering 

Impact parameter 4-3

Scattered fraction f 4-5

for a scattering foil with n nuclei/unit volume and thickness t

Number of scattered 
alphas observed 4-6

Size of nucleus 4-11

3. Bohr model

Bohr’s postulates 1. Electrons occupy only certain nonradiating, stable, circular orbits selected
by quantization of the angular momentum L.

4-17

2. Radiation of frequency f occurs when the electron jumps from an allowed
orbit of energy Ei to one of lower energy Ef . f is given by the frequency
condition

4-15

Correspondence principle In the region of very large quantum numbers classical and quantum calculations
must yield the same results.

Bohr radius 4-19

Allowed energies 4-20

where

Reduced mass 4-25

Fine-structure constant 4-30� �
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4. X-ray spectra

Moseley equation 4-34

5. Franck-Hertz experiment Supported Bohr’s theory by verifying the quantization of atomic energies
in absorption.

f1>2 � An(Z � b)

General References
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priate for the readers of this book.
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and throughout this book can be found in these volumes.
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Theory, Thomas Y. Crowell, New York, 1965.
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Quantum Theory, Doubleday, Garden City, NY, 1965.

Herzberg, G., Atomic Spectra and Atomic Structure, Dover
Publications, New York, 1944. This is without doubt one
of the all-time classics of atomic physics.

Melissinos, A., and J. Napolitano, Experiments in Modern
Physics, 2d ed., Academic Press, New York, 2003. Many
of the classic experiments that are now undergraduate lab-
oratory experiments are described in detail in this text.

Mohr, P. J., and B. N. Taylor, “The Fundamental Physical
Constants,” Physics Today (August 2004). Also available
at http://physicstoday.org/guide/fundcont.html.

Shamos, M. H. (ed.), Great Experiments in Physics, Holt,
Rinehart & Winston, New York, 1962.

Virtual Laboratory (PEARL), Physics Academic Software,
North Carolina State University, Raleigh, 1996. Includes
an interactive model of the Bohr atom.

Virtual Spectroscope, Physics Academic Software, North
Carolina State University, Raleigh, 2003. Several sources
can be viewed with a spectroscope to display the corre-
sponding spectral lines.

Visual Quantum Mechanics, Kansas State University, Manhat-
tan, 1996. The atomic spectra component of this software
provides an interactive construction of the energy levels
for several elements, including hydrogen and helium.

Notes

1. Joseph von Fraunhofer (1787–1826), German physicist.
Although he was not the first to see the dark lines in the
solar spectrum that bear his name (Wollaston had seen seven,
12 years earlier), he systematically measured their wavelengths,
named the prominent ones, and showed that they always occur-
red at the same wavelength even if the sunlight were reflected
from the moon or a planet.

2. To date, more than 10,000 Fraunhofer lines have been
found in the solar spectrum.

3. Although experimentalists preferred to express their mea-
surements in terms of wavelengths, it had been shown that the
many empirical formulas being constructed to explain the ob-
served regularities in the line spectra could be expressed in
simpler form if the reciprocal wavelength, called the wave
number and equal to the number of waves per unit length, was
used instead. Since c � f this was equivalent to expressing
the formulas in terms of the frequency.

4. Ernest Rutherford (1871–1937), English physicist, an
exceptional experimentalist and a student of J. J. Thomson. He
was an early researcher in the field of radioactivity and received
the Nobel Prize in 1908 for his work in the transmutation of


,

elements. He bemoaned the fact that his prize was awarded in
chemistry, not in physics, as work with the elements was con-
sidered chemistry in those days. He was Thomson’s successor
as director of the Cavendish Laboratory.

5. Alpha particles, like all charged particles, lose energy by
exciting and ionizing the molecules of the materials through
which they are moving. The energy lost per unit path length
(�dE dx) is a function of the ionization potential of the mol-
ecules, the atomic number of the atoms, and the energy of the

particles. It can be computed (with some effort) and is rela-
tively simple to measure experimentally.

6. Notice that the differential solid angle
subtended at the scattering nucleus by the surface in Figure 
4-11. Since the cross section � b2, then d � 2 b db and
Equation 4-9 can be rewritten as

is called the differential cross section.
7. H. Geiger and E. Marsden, Philosophical Magazine (6),

25, 605 (1913).
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8. The value of Z could not be measured directly in this ex-
periment; however, relative values for different foil materials
could be found and all materials heavier than aluminum had Z
approximately equal to half the atomic weight.

9. This also introduces a deviation from the predicted �N
associated with Rutherford’s assumption that the nuclear mass
was much larger than the particle mass. For lighter-atomic-
weight elements that assumption is not valid. Correction for
the nuclear mass effect can be made, however, and the data in
Figure 4-9b reflect the correction.
10. Niels H. D. Bohr (1885–1962), Danish physicist and first-
rate soccer player. He went to the Cavendish Laboratory to work
with J. J. Thomson after receiving his Ph.D.; however, Thomson
is reported to have been impatient with Bohr’s soft, accented
English. Happily, the occasion of Thomson’s annual birthday ban-
quet brought Bohr in contact with Rutherford, whom he promptly
followed to the latter’s laboratory at Manchester, where he learned
of the nuclear atom. A giant of twentieth-century physics, Bohr
was awarded the Nobel Prize in 1922 for his explanation of the
hydrogen spectrum. On a visit to the United States in 1939, he
brought the news that the fission of uranium atoms had been ob-
served. The story of his life makes absolutely fascinating reading.
11. N. Bohr, Philosophical Magazine (6), 26, 1 (1913).
12. P. J. Mohr and B. N. Taylor, “The Fundamental Physical
Constants,” Physics Today (August 2004). Only 8 of the 14
current significant figures are given in Equation 4-27. The rel-
ative uncertainty in the value is about 1 part in 1012!
13. Harold C. Urey (1893–1981), American chemist. His
work opened the way for the use of isotopic tracers in biolog-
ical systems. He was recognized with the Nobel Prize in 1934.
14. The basic reason that elliptical orbits solve this problem is
that the frequency of the radiation emitted classically depends on
the acceleration of the charge. The acceleration is constant for a
circular orbit but varies for elliptical orbits, being dependent on
the instantaneous distance from the focus. The energy of a parti-
cle in a circular orbit of radius r is the same as that of a particle
in an elliptical orbit with a semimajor axis of r, so one would ex-
pect the only allowed elliptical orbits to be those whose semima-
jor axis was equal to an allowed Bohr circular orbit radius.
15. Viewed with spectrographs of high resolution, the spectral
lines of hydrogen in Figure 4-2a—and, indeed, most spectral
lines of all elements—are found to consist of very closely

�

spaced sets of lines, i.e., fine structure. We will discuss this
topic in detail in Chapter 7.
16. Henry G.-J. Moseley (1887–1915), English physicist,
considered by some the most brilliant of Rutherford’s stu-
dents. He would surely have been awarded the Nobel Prize
had he not been killed in action in World War I. His father was
a naturalist on the expedition of the HMS Challenger, the first
vessel ever devoted to the exploration of the oceans.
17. The identifiers L and K were assigned by the English
physicist C. G. Barkla, the discoverer of the characteristic x-
ray lines, for which he received the Nobel Prize in 1917. He
discovered two sets of x-ray lines for each of several ele-
ments, the longer wavelength of which he called the L series,
the other the K series. The identifiers stuck and were subse-
quently used to label the atomic electron shells.
18. That the remaining K electron should result in b � 1, i.e.,
shielding of exactly 1e, is perhaps a surprise. Actually it was a
happy accident. It is the combined effect of the remaining K elec-
tron and the penetration of the electron waves of the outer L elec-
trons that resulted in making b � 1, as we will see in Chapter 7.
19. Since in multielectron atoms the energies of the station-
ary states depend in part on the number of electrons in the
atom (see Chapter 7), the energies En for a given atom change
slightly when it is singly ionized, as in the production of char-
acteristic x-ray lines, or doubly ionized, as in the Auger effect.
20. James Franck (1882–1964), German-American physicist;
Gustav L. Hertz (1887–1975), German physicist. Franck won
an Iron Cross as a soldier in World War I and later worked on
the Manhattan Project. Hertz was a nephew of Heinrich Hertz,
discoverer of the photoelectric effect. For their work on the in-
elastic scattering of electrons, Franck and Hertz shared the
1925 Nobel Prize in Physics.
21. We should note at this point that there is an energy state
in the Hg atom at about 4.6 eV, slightly lower than the one
found by Franck and Hertz. However, transitions from the
ground state to the 4.6-eV level are not observed, and their ab-
sence is in accord with the prediction of more advanced quan-
tum mechanics, as we will see in Chapter 7.
22. Since for electrons is much larger than for ionized
atoms, the radius for an electron magnetic spectrometer need
not be as large as for a mass spectrometer, even for electron
energies of several keV. (See Equation 3-2.)

q>m

Problems

Level I

Section 4-1 Atomic Spectra

4-1. Compute the wavelength and frequency of the series limit for the Lyman, Balmer, and
Paschen spectral series of hydrogen.
4-2. The wavelength of a particular line in the Balmer series is measured to be 379.1 nm.
What transition does it correspond to?
4-3. An astronomer finds a new absorption line with � 164.1 nm in the ultraviolet region
of the Sun’s continuous spectrum. He attributes the line to hydrogen’s Lyman series. Is he right?
Justify your answer.
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4-4. The series of hydrogen spectral lines with m � 4 is called Brackett’s series. Compute the
wavelengths of the first four lines of Brackett’s series.
4-5. In a sample that contains hydrogen, among other things, four spectral lines are found in
the infrared with wavelengths 7460 nm, 4654 nm, 4103 nm, and 3741 nm. Which one does not
belong to a hydrogen spectral series?

Section 4-2 Rutherford’s Nuclear Model

4-6. A gold foil of thickness 2.0 m is used in a Rutherford experiment to scatter particles with
energy 7.0 MeV. (a) What fraction of the particles will be scattered at angles greater than 90°?
(b) What fraction will be scattered at angles between 45° and 75°? (c) Use NA, and M for gold to
compute the approximate radius of a gold atom. (For gold, � 19.3 g cm3 and M � 197 g mol.)
4-7. (a) What is the ratio of the number of particles per unit area on the screen scattered at
10° to those at 1°? (b) What is the ratio of those scattered at 30° to those at 1°?
4-8. For particles of 7.7 MeV (those used by Geiger and Marsden), what impact parameter
will result in a deflection of 2° for a thin gold foil?
4-9. What will be the distance of closest approach rd to a gold nucleus for an particle of
5.0 MeV? 7.7 MeV? 12 MeV?
4-10. What energy particle would be needed to just reach the surface of an Al nucleus if its
radius is 4 fm?
4-11. If a particle is deflected by 0.01° in each collision, about how many collisions would be
necessary to produce an rms deflection of 10°? (Use the result from the one-dimensional ran-
dom walk problem in statistics stating that the rms deflection equals the magnitude of the indi-
vidual deflections times the square root of the number of deflections.) Compare this result with
the number of atomic layers in a gold foil of thickness 10�6 m, assuming that the thickness of
each atom is 0.1 nm � 10�10 m.
4-12. Consider the foil and particle energy in Problem 4-6. Suppose that 1000 of those par-
ticles suffer a deflection of more than 25°. (a) How many of these are deflected by more than
45°? (b) How many are deflected between 25° and 45°? (c) How many are deflected between
75° and 90°?

Section 4-3 The Bohr Model of the Hydrogen Atom

4-13. The radius of the n � 1 orbit in the hydrogen atom is a0 � 0.053 nm. (a) Compute the
radius of the n � 6 orbit. (b) Compute the radius of the n � 6 orbit in singly ionized helium
(He�), which is hydrogen-like, i.e., it has only a single electron outside the nucleus.
4-14. Show that Equation 4-19 for the radius of the first Bohr orbit and Equation 4-20 for the
magnitude of the lowest energy for the hydrogen atom can be written as

where c � h mc is the Compton wavelength of the electron and � ke2 hc is the fine-structure
constant. Use these expressions to check the numerical values of the constants a0 and E1.
4-15. Calculate the three longest wavelengths in the Lyman series (nf � 1) in nm and indicate
their position on a horizontal linear scale. Indicate the series limit (shortest wavelength) on this
scale. Are any of these lines in the visible spectrum?
4-16. If the angular momentum of Earth in its motion around the Sun were quantized like a
hydrogen electron according to Equation 4-17, what would Earth’s quantum number be? How
much energy would be released in a transition to the next lowest level? Would that energy re-
lease (presumably as a gravity wave) be detectable? What would be the radius of that orbit?
(The radius of Earth’s orbit is 1.50 � 1011 m.)
4-17. On average, a hydrogen atom will exist in an excited state for about 10�8 sec before
making a transition to a lower energy state. About how many revolutions does an electron in
the n � 2 state make in 10�8 sec?
4-18. An atom in an excited state will on average undergo a transition to a state of lower en-
ergy in about 10�8 seconds. If the electron in a doubly ionized lithium atom (Li�2, which is
hydrogenlike) is placed in the n � 4 state, about how many revolutions around the nucleus does
it make before undergoing a transition to a lower energy state?
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4-19. It is possible for a muon to be captured by a proton to form a muonic atom. A muon is
identical to an electron except for its mass, which is 105.7 MeV c2. (a) Calculate the radius of
the first Bohr orbit of a muonic atom. (b) Calculate the magnitude of the lowest energy state.
(c) What is the shortest wavelength in the Lyman series for this atom?
4-20. In the lithium atom (Z � 3) two electrons are in the n � 1 orbit and the third is in the
n � 2 orbit. (Only two are allowed in the n � 1 orbit because of the exclusion principle, which
will be discussed in Chapter 7.) The interaction of the inner electrons with the outer one can be
approximated by writing the energy of the outer electron as

where E1 � 13.6 eV, n � 2, and is the effective nuclear charge, which is less than 3 because of
the screening effect of the two inner electrons. Using the measured ionization energy of 5.39 eV,
calculate
4-21. Draw to careful scale an energy-level diagram for hydrogen for levels with n � 1, 2, 3,
4, Show the following on the diagram: (a) the limit of the Lyman series, (b) the line,
(c) the transition between the state whose binding energy (� energy needed to remove the elec-
tron from the atom) is 1.51 eV and the state whose excitation energy is 10.2 eV, and (d) the
longest wavelength line of the Paschen series.
4-22. A hydrogen atom at rest in the laboratory emits the Lyman radiation. (a) Compute the
recoil kinetic energy of the atom. (b) What fraction of the excitation energy of the n � 2 state
is carried by the recoiling atom? (Hint: Use conservation of momentum.)
4-23. (a) Draw accurately to scale and label completely a partial energy-level diagram for C5�,
including at minimum the energy levels for n � 1, 2, 3, 4, 5, and (b) Compute the wavelength
of the spectral line resulting from the n � 3 to the n � 2 transition, the C5� line. (c) In what
part of the EM spectrum does this line lie?
4-24. The electron-positron pair that was discussed in Chapter 2 can form a hydrogenlike system
called positronium. Calculate (a) the energies of the three lowest states and (b) the wavelength of
the Lyman and lines. (Detection of those lines is a “signature” of positronium formation.)
4-25. With the aid of tunable lasers, Rydberg atoms of sodium have been produced with n 100.
The resulting atomic diameter would correspond in hydrogen to n 600. (a) What would be
the diameter of a hydrogen atom whose electron is in the n 600 orbit? (b) What would be
the speed of the electron in that orbit? (c) How does the result in (b) compare with the speed
in the n 1 orbit?

Section 4-4 X-Ray Spectra

4-26. (a) Calculate the next two longest wavelengths in the K series (after the line) of
molybdenum. (b) What is the wavelength of the shortest wavelength in this series?
4-27. The wavelength of the x-ray line for an element is measured to be 0.0794 nm. What
is the element?
4-28. Moseley pointed out that elements with atomic numbers 43, 61, and 75 should exist and
(at that time) had not been found. (a) Using Figure 4-19, what frequencies would Moseley’s
graphical data have predicted for the x ray for each of these elements? (b) Compute the
wavelengths for these lines predicted by Equation 4-37.
4-29. What is the approximate radius of the n � 1 orbit of gold (Z � 79)? Compare this with
the radius of the gold nucleus, about 7.1 fm.
4-30. An electron in the K shell of Fe is ejected by a high-energy electron in the target of an x-
ray tube. The resulting hole in the n � 1 shell could be filled by an electron from the n � 2 shell,
the L shell; however, instead of emitting the characteristic Fe x ray, the atom ejects an Auger
electron from the n � 2 shell. Using Bohr theory, compute the energy of the Auger electron.
4-31. In a particular x-ray tube, an electron approaches the target moving at 2.25 � 108 m s. It
slows down on being deflected by a nucleus of the target, emitting a photon of energy 32.5 keV.
Ignoring the nuclear recoil, but not relativity, compute the final speed of the electron.
4-32. (a) Compute the energy of an electron in the n � 1 (K shell) of tungsten, using Z � 1 for
the effective nuclear charge. (b) The experimental result for this energy is 69.5 keV. Assume
that the effective nuclear charge is Z � where is called the screening constant, and calcu-
late from the experimental result.�
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4-33. Construct a Moseley plot similar to Figure 4-19 for the x rays of the elements listed
below (the x-ray energies are given in keV):

K
�

Al 1.56 Ar 3.19 Sc 4.46 Fe 7.06

Ge 10.98 Kr 14.10 Zr 17.66 Ba 36.35

Determine the slope of your plot, and compare it with the line in Figure 4-19.

Section 4-5 The Franck-Hertz Experiment

4-34. Suppose that, in a Franck-Hertz experiment, electrons of energy up to 13.0 eV can be
produced in the tube. If the tube contained atomic hydrogen, (a) what is the shortest-wavelength
spectral line that could be emitted from the tube? (b) List all of the hydrogen lines that can be
emitted by this tube.
4-35. Using the data in Figure 4-24b and a good ruler, draw a carefully scaled energy-level di-
agram covering the range from 0 eV to 60 eV for the vibrational states of this solid. What ap-
proximate energy is typical of the transitions between adjacent levels corresponding to the
larger of each pair of peaks?
4-36. The transition from the first excited state to the ground state in potassium results in the
emission of a photon with � 770 nm If potassium vapor is used in a Franck-Hertz experi-
ment, at what voltage would you expect to see the first decrease in current?
4-37. If we could somehow fill a Franck-Hertz tube with positronium, what cathode-grid volt-
age would be needed to reach the second current decrease in the positronium equivalent of
Figure 4-23? (See Problem 4-24.)
4-38. Electrons in the Franck-Hertz tube can also have elastic collisions with the Hg atoms.
If such a collision is a head-on, what fraction of its initial kinetic energy will an electron lose,
assuming the Hg atom to be at rest? If the collision is not head-on, will the fractional loss be
greater or less than this?

Level II

4-39. Derive Equation 4-8 along the lines indicated in the paragraph that immediately precedes it.
4-40. Geiger and Marsden used particles with 7.7-MeV kinetic energy and found that when they
were scattered from thin gold foil, the number observed to be scattered at all angles agreed with
Rutherford’s formula. Use this fact to compute an upper limit on the radius of the gold nucleus.
4-41. (a) The current i due to a charge q moving in a circle with frequency frev is qfrev . Find the
current due to the electron in the first Bohr orbit. (b) The magnetic moment of a current loop is
iA, where A is the area of the loop. Find the magnetic moment of the electron in the first Bohr
orbit in units A-m2. This magnetic moment is called a Bohr magneton.
4-42. Use a spreadsheet to calculate the wavelengths (in nm) of the first five spectral lines of
the Lyman, Balmer, Paschen, and Brackett series of hydrogen. Show the positions of these lines
on a linear scale and indicate which ones lie in the visible.
4-43. Show that a small change in the reduced mass of the electron produces a small change in
a spectral line given by � � � Use this to calculate the difference in the Balmer
red line � 656.3 nm between hydrogen and deuterium, which has a nucleus with twice the
mass of hydrogen.
4-44. Consider the Franck-Hertz experiment with Hg vapor in the tube and the voltage between
the cathode and the grid equal to 4.0 V, i.e., not enough for the electrons to excite the Hg atom’s
first excited state. Therefore, the electron-Hg atom collisions are elastic. (a) If the kinetic energy
of the electrons is Ek, show that the maximum kinetic energy that a recoiling Hg atom can have
is approximately where M is the Hg atom mass. (b) What is the approximate maxi-
mum kinetic energy that can be lost by an electron with Ek � 2.5 eV?
4-45. The Li2� ion is essentially identical to the H atom in Bohr’s theory, aside from the effect
of the different nuclear charges and masses. (a) What transitions in Li2� will yield emission lines
whose wavelengths are very nearly equal to the first two lines of the Lyman series in hydrogen?
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(b) Calculate the difference between the wavelength of the Lyman line of hydrogen and the
emission line from Li2� that has very nearly the same wavelength.
4-46. In an scattering experiment, the area of the particle detector is 0.50 cm2. The detector
is located 10 cm from a 1.0- m-thick silver foil. The incident beam carries a current of 1.0 nA,
and the energy of each particle is 6.0 MeV. How many particles will be counted per second
by the detector at (a) � 60°? (b) � 120°?
4-47. The and x rays are emitted in the n � 2 n � 1, n � 3 n � 2, and
n � 4 n � 3 transitions, respectively. For calcium (Z � 20) the energies of these transitions
are 3.69 keV, 0.341 keV, and 0.024 keV, respectively. Suppose that energetic photons imping-
ing on a calcium surface cause ejection of an electron from the K shell of the surface atoms.
Compute the energies of the Auger electrons that may be emitted from the L, M, and N shells
(n � 2, 3, and 4) of the sample atoms, in addition to the characteristic x rays.
4-48. Figure 3-15b shows the and characteristic x rays emitted by a molybdenum (Mo)
target in an x-ray tube whose accelerating potential is 35 kV. The wavelengths are � 0.071 nm
and � 0.063 nm. (a) Compute the corresponding energies of these photons. (b) Suppose we
wish to prepare a beam consisting primarily of x rays by passing the molybdenum x rays
through a material that absorbs x rays more strongly than x rays by photoelectric effect
on K-shell electrons of the material. Which of the materials listed in the accompanying table
with their K-shell binding energies would you choose? Explain your answer.
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Element Zr Nb Mo Tc Ru

Z 40 41 42 43 44

EK (keV) 18.00 18.99 20.00 21.04 22.12

R

β

β

βb

θ

Figure 4-25 Small particle
scattered by a hard sphere of
radius R.

Level III

4-49. A small shot of negligible radius hits a stationary smooth, hard sphere of radius R, making
an angle with the normal to the sphere, as shown in Figure 4-25. It is reflected at an equal angle
to the normal. The scattering angle is � 180° � 2 as shown. (a) Show by the geometry of
the figure that the impact parameter b is related to by (b) If the incoming in-
tensity of the shot is I0 particles/s area, how many are scattered through angles greater than 
(c) Show that the cross section for scattering through angles greater than 0° is R2. (d) Discuss
the implication of the fact that the Rutherford cross section for scattering through angles greater
than 0° is infinite.

�
�?# b � R cos 12 �.�

�,�
�

4-50. Singly ionized helium He� is hydrogenlike. (a) Construct a carefully scaled energy-level
diagram for He� similar to that in Figure 4-16, showing the levels for n � 1, 2, 3, 4, 5, and 
(b) What is the ionization energy of He�? (c) Compute the difference in wavelength between
each of the first two lines of the Lyman series of hydrogen and the first two lines of the He�

Balmer series. Be sure to include the reduced mass correction for both atoms. (d) Show that for
every spectral line of hydrogen, He� has a spectral line of very nearly the same wavelength.
(Mass of He� � 6.65 � 10�27 kg.)

�.
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Figure 4-26 Energy-loss
spectrum of helium. Incident
electron energy was 34 eV.
The elastically scattered
electrons cause the peak at 0 eV.

4-56. If electric charge did not exist and electrons were bound to protons by the gravitational
force to form hydrogen, derive the corresponding expressions for a0 and En and compute the en-
ergy and frequency of the line and the limit of the Balmer series. Compare these with the
corresponding quantities for “real” hydrogen.
4-57. A sample of hydrogen atoms are all in the n � 5 state. If all the atoms return to the
ground state, how many different photon energies will be emitted, assuming all possible transi-
tions occur? If there are 500 atoms in the sample and assuming that from any state all possible
downward transitions are equally probable, what is the total number of photons that will be
emitted when all of the atoms have returned to the ground state?
4-58. Consider muonic atoms (see Problem 4-19). (a) Draw a correctly scaled and labeled
partial energy level diagram including levels with n � 1, 2, 3, 4, 5, and for muonic hydrogen.
(b) Compute the radius of the n � 1 muon orbit in muonic H, He1�, Al12�, and Au78�.
(c) Compare the results in (b) with the radii of these nuclei. (d) Compute the wavelength of the
photon emitted in the n � 2 to n � 1 transition for each of these muonic atoms.

�

H
�

Element P Ca Co Kr Mo I

Z 15 20 27 36 42 53

Wavelength (nm) 10.41 4.05 1.79 0.73 0.51 0.33

4-52. In this problem you are to obtain the Bohr results for the energy levels in hydrogen with-
out using the quantization condition of Equation 4-17. In order to relate Equation 4-14 to the
Balmer-Ritz formula, assume that the radii of allowed orbits are given by rn � n2r0 , where n is
an integer and r0 is a constant to be determined. (a) Show that the frequency of radiation for a
transition to is given by for large n. (b) Show that the frequency
of revolution is given by

(c) Use the correspondence principle to determine r0 and compare with Equation 4-19.
4-53. Calculate the energies and speeds of electrons in circular Bohr orbits in a hydrogenlike
atom using the relativistic expressions for kinetic energy and momentum.
4-54. (a) Write a computer program for your personal computer or programmable calculator
that will provide you with the spectral series of H-like atoms. Inputs to be included are ni , nf ,
Z, and the nuclear mass M. Outputs are to be the wavelengths and frequencies of the first
six lines and the series limit for the specified nf , Z, and M. Include the reduced mass correction.
(b) Use the program to compute the wavelengths and frequencies of the Balmer series. (c) Pick
an nf � 100, name the series the [your name] series, and use your program to compute the
wavelengths and frequencies of the first three lines and the limit.
4-55. Figure 4-26 shows an energy loss spectrum for He measured in an apparatus such as that
shown in Figure 4-24a. Use the spectrum to construct and draw carefully to scale an energy-
level diagram for He.
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4-51. Listed in the table are the x-ray wavelengths for several elements. Construct a Moseley
plot from these data. Compare the slope with the appropriate one in Figure 4-19. Determine and
interpret the intercept on your graph, using a suitably modified version of Equation 4-35.
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CHAPTER5

In 1924, a French graduate student, Louis de Broglie,1 proposed in his doctoral disser-
tation that the dual—i.e., wave-particle—behavior that was by then known to exist for

radiation was also a characteristic of matter, in particular, electrons. This suggestion was
highly speculative, since there was yet no experimental evidence whatsoever for any
wave aspects of electrons or any other particles. What had led him to this seemingly
strange idea? It was a “bolt out of the blue,” like Einstein’s “happy thought” that led to
the principle of equivalence (see Chapter 2). De Broglie described it with these words:

After the end of World War I, I gave a great deal of thought to the theory of

quanta and to the wave-particle dualism. . . . It was then that I had a sudden

inspiration. Einstein’s wave-particle dualism was an absolutely general phe-

nomenon extending to all physical nature.2

Since the visible universe consists entirely of matter and radiation, de Broglie’s
hypothesis is a fundamental statement about the grand symmetry of nature. (There
is currently strong observational evidence that ordinary matter makes up only about
4 percent of the visible universe. About 22 percent is some unknown form of invisible
“dark matter,” and approximately 74 percent consists of some sort of equally myste-
rious “dark energy.” See Chapter 13.)

5-1 The de Broglie Hypothesis
De Broglie stated his proposal mathematically with the following equations for
the frequency and wavelength of the electron waves, which are referred to as the
de Broglie relations:

5-1

5-2

where E is the total energy, p is the momentum, and is called the de Broglie wave-
length of the particle. For photons, these same equations result directly from
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λ

Figure 5-1 Standing waves
around the circumference of a
circle. In this case the circle
is in circumference. If the
vibrator were, for example, a
steel ring that had been
suitably tapped with a
hammer, the shape of the ring
would oscillate between the
extreme positions represented
by the solid and broken lines.

3


Einstein’s quantization of radiation E � hƒ and Equation 2-31 for a particle of zero
rest energy E � pc as follows:

By a more indirect approach using relativistic mechanics, de Broglie was able to
demonstrate that Equations 5-1 and 5-2 also apply to particles with mass. He then
pointed out that these equations lead to a physical interpretation of Bohr’s quantiza-
tion of the angular momentum of the electron in hydrogenlike atoms, namely, that the
quantization is equivalent to a standing-wave condition. (See Figure 5-1.) We have

5-3

The idea of explaining discrete energy states in matter by standing waves thus seemed
quite promising.

De Broglie’s ideas were expanded and developed into a complete theory by
Erwin Schrödinger late in 1925. In 1927, C. J. Davisson and L. H. Germer verified
the de Broglie hypothesis directly by observing interference patterns, a characteristic
of waves, with electron beams. We will discuss both Schrödinger’s theory and the
Davisson-Germer experiment in later sections, but first we have to ask ourselves why
wavelike behavior of matter had not been observed before de Broglie’s work. We can
understand why if we first recall that the wave properties of light were not noticed
either until apertures or slits with dimensions of the order of the wavelength of light
could be obtained. This is because the wave nature of light is not evident in experi-
ments where the primary dimensions of the apparatus are large compared with the
wavelength of the light used. For example, if A represents the diameter of a lens
or the width of a slit, then diffraction effects3 (a manifestation of wave properties)
are limited to angles around the forward direction ( ) where In
geometric (ray) optics so too. However, if a characteristic� � sin � S 0,
>AS 0,

sin � � 
>A.� � 0°�

2�r �
nh
mv

�
nh
p

� n
 � circumference of orbit

mvr � nU �
nh

2�
  for  n � integer

E � pc � hf �
hc




Louis V. de Broglie,
who first suggested
that electrons might
have wave properties.
[Courtesy of
Culver Pictures.]
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dimension of the apparatus becomes of the order of (or smaller than) the wavelength
of light passing through the system, then In that event is readily
observable, and the wavelike properties of light become apparent. Because Planck’s
constant is so small, the wavelength given by Equation 5-2 is extremely small for any
macroscopic object. This point is among those illustrated in the following section.

5-2 Measurements of Particle Wavelengths
Although we now have diffraction systems of nuclear dimensions, the smallest-scale
systems to which de Broglie’s contemporaries had access were the spacings between
the planes of atoms in crystalline solids, about 0.1 nm. This means that even for an ex-
tremely small macroscopic particle, such as a grain of dust ( ) moving
through air with the average kinetic energy of the atmospheric gas molecules, the small-
est diffraction systems available would have resulted in diffraction angles only of the
order of 10�10 radian, far below the limit of experimental detectability. The small mag-
nitude of Planck’s constant ensures that will be smaller than any readily accessible
aperture, placing diffraction beyond the limits of experimental observation. For objects
whose momenta are larger than that of the dust particle, the possibility of observing
particle, or matter waves, is even less, as the following example illustrates.

EXAMPLE 5-1 De Broglie Wavelength of a Ping-Pong Ball What is the de Broglie
wavelength of a Ping-Pong ball of mass 2.0 g after it is slammed across the table
with speed 5 m s?

SOLUTION

This is 17 orders of magnitude smaller than typical nuclear dimensions, far below
the dimensions of any possible aperture.

The case is different for low-energy electrons, as de Broglie himself realized.
At his soutenance de thèse (defense of the thesis), de Broglie was asked by Perrin4

how his hypothesis could be verified, to which he replied that perhaps passing
particles, such as electrons, through very small slits would reveal the waves.
Consider an electron that has been accelerated through V0 volts. Its kinetic energy
(nonrelativistic) is then

Solving for p and substituting into Equation 5-2,

Using and mc2 � 0.511 � 106 eV, we obtain

5-4

The following example computes an electron de Broglie wavelength, giving a measure
of just how small the slit must be.


 �
1.226

V1>2
0

nm  for  eV0 � mc2

hc � 1.24 � 103 eV # nm


 �
h
p

�
hc
pc

�
hc

(2mc2eV0)
1>2

E �
p2

2m
� eV0

� 6.6 � 10�32 m � 6.6 � 10�23 nm


 �
h
mv

�
6.63 � 10�34 J # s

(2.0 � 10�3 kg)(5 m>s)

>
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ϕ

Electron gun

Ni crystal

Ionization
chamber

Figure 5-2 The Davisson-
Germer experiment. 
Low-energy electrons
scattered at angle from
a nickel crystal are detected
in an ionization chamber.
The kinetic energy of the
electrons could be varied by
changing the accelerating
voltage on the electron gun. 

#

EXAMPLE 5-2 De Broglie Wavelength of a Slow Electron Compute the de Broglie
wavelength of an electron whose kinetic energy is 10 eV.

SOLUTION

1. The de Broglie wavelength is given by Equation 5-2:

2. Method 1: Since a 10-eV electron is nonrelativistic, we can use the classical
relation connecting the momentum and the kinetic energy:

or

3. Substituting this result into Equation 5-2:

4. Method 2: The electron’s wavelength can also be computed from Equation 5-4
with V0 � 10 V:

Remarks: Though this wavelength is small, it is just the order of magnitude of the
size of an atom and of the spacing of atoms in a crystal.

The Davisson-Germer Experiment

In a brief note in the August 14, 1925, issue of the journal Naturwissenschaften,
Walter Elsasser, at the time a student of J. Franck’s (of the Franck-Hertz experiment),
proposed that the wave effects of low-velocity electrons might be detected by scatter-
ing them from single crystals. The first such measurements of the wavelengths of elec-
trons were made in 1927 by C. J. Davisson5 and L. H. Germer, who were studying
electron reflection from a nickel target at Bell Telephone Laboratories, unaware of
either Elsasser’s suggestion or de Broglie’s work. After heating their target to remove
an oxide coating that had accumulated during an accidental break in their vacuum
system, they found that the scattered electron intensity as a function of the scattering
angle showed maxima and minima. The surface atoms of their nickel target had, in
the process of cooling, formed relatively large single crystals, and they were obser-
ving electron diffraction. Recognizing the importance of their accidental discovery,
they then prepared a target consisting of a single crystal of nickel and extensively
investigated the scattering of electrons from it. Figure 5-2 illustrates their experi-
mental arrangement. Their data for 54-eV electrons, shown in Figure 5-3, indicate a
strong maximum of scattering at Consider the scattering from a set of Bragg# � 50°.

� 0.39 nm


 �
1.226

V1>2 �
1.226

210

� 3.88 � 10�10 m � 0.39 nm


 �
6.63 � 10�34 J # s

1.71 � 10�24 kg # m>s
� 1.71 � 10�24 kg # m>s�4(2)(9.11 � 10�31 kg)(10 eV)(1.60 � 10�19 J>eV)

p � 22mEk

Ek �
p2
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 �
h
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Figure 5-3 Scattered intensity vs. detector angle for 54-eV electrons. (a) Polar plot of the
data. The intensity at each angle is indicated by the distance of the point from the origin.
Scattering angle is plotted clockwise starting at the vertical axes. (b) The same data plotted
on a Cartesian graph. The intensity scales are arbitrary but the same on both graphs. In each
plot there is maximum intensity at as predicted for Bragg scattering of waves having
wavelength [From Nobel Prize Lectures: Physics (Amsterdam and New York: Elsevier,
© Nobel Foundation, 1964).]


 � h>p.
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beam
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reflected
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Figure 5-4 Scattering of
electrons by a crystal.
Electron waves are strongly
scattered if the Bragg
condition is
met. This is equivalent to
the condition n
 � D sin#.

n
 � 2d sin�

planes, as shown in Figure 5-4. The Bragg condition for constructive interference is
The spacing of the Bragg planes d is related to the spacing

of the atoms D by thus

or
5-5

where is the scattering angle.
The spacing D for Ni is known from x-ray diffraction to be 0.215 nm. The wave-

length calculated from Equation 5-5 for the peak observed at by Davisson
and Germer is, for n � 1,

The value calculated from the de Broglie relation for 54-eV electrons is


 �
1.226

(54)1>2 � 0.167 nm


 � 0.215 sin 50° � 0.165 nm

# � 50°

# � 2�

n
 � D sin#

n
 � 2D sin� cos� � D sin2�

d � D sin �;
n
 � 2d sin� � 2d cos�.



The agreement with the experimental observation is excel-
lent! With this spectacular result Davisson and Germer then
conducted a systematic study to test the de Broglie relation
using electrons up to about 400 eV and various experimen-
tal arrangements. Figure 5-5 shows a plot of measured
wavelengths versus The wavelengths measured by
diffraction are slightly lower than the theoretical predictions
because the refraction of the electron waves at the crystal
surface has been neglected. We have seen from the photo-
electric effect that it takes work of the order of several eV
to remove an electron from a metal. Electrons entering a
metal thus gain kinetic energy; therefore, their de Broglie
wavelength is slightly less inside the crystal.6

A subtle point must be made here. Notice that the
wavelength in Equation 5-5 depends only on D, the inter-
atomic spacing of the crystal, whereas our derivation of
that equation included the interplane spacing as well. The
fact that the structure of the crystal really is essential
shows up when the energy is varied, as was done in col-
lecting the data for Figure 5-5. Equation 5-5 suggests that
a change in resulting from a change in the energy, would
mean only that the diffraction maximum would occur at
some other value of such that the equation remains
satisfied. However, as can be seen from examination of
Figure 5-4, the value of is determined by the angle

of the planes determined by the crystal structure. Thus, if there are no crystal planes
making an angle with the surface, then setting the detector at 
will not result in constructive interference and strong reflection for that value of even
though Equation 5-5 is satisfied. This is neatly illustrated by Figure 5-6, which shows
a series of polar graphs (like Figure 5-3a) for electrons of energies from 36 eV through
68 eV. The building to a strong reflection at is evident for V0 � 54 V, as we
have already seen. But Equation 5-5 by itself would also lead us to expect, for exam-
ple, a strong reflection at when V0 � 40 V, which obviously does not occur.# � 64°

# � 50°


,
# � sin�1(
>D)� � #>2 �,#

#


,

V�1>2
0 .
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50°36 V

40 V 48 V44 V 54 V 60 V 64 V 68 V

Figure 5-6 A series of
polar graphs of Davisson and
Germer’s data at electron
accelerating potentials from
36 V to 68 V. Note the
development of the peak at

to a maximum
when V0 � 54 V.
# � 50°

λ,
 Å
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0
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V0
–1/2
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Figure 5-5 Test of the de Broglie formula The
wavelength is computed from a plot of the diffraction
data plotted against where V0 is the accelerating
voltage. The straight line is as predicted
from These are the data referred to in
the quotation from Davisson’s Nobel lecture. (� From
observations with diffraction apparatus; same,
particularly reliable; same, grazing beams. From
observations with reflection apparatus.) [From Nobel Prize
Lectures: Physics (Amsterdam and New York: Elsevier,
© Nobel Foundation, 1964).]
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In order to show the dependence of the diffraction on the inner atomic layers,
Davisson and Germer kept the detector angle fixed and varied the accelerating voltage
rather than search for the correct angle for a given Writing Equation 5-5 as

5-6

and noting that a graph of intensity versus for a given angle 
should yield (1) a series of equally spaced peaks corresponding to successive values
of the integer n, if is an existing angle for atomic planes, or (2) no diffraction
peaks if is not such an angle. Their measurements verified the dependence upon
the interplane spacing, the agreement with the prediction being about percent.
Figure 5-7 illustrates the results for Thus, Davisson and Germer showed con-
clusively that particles with mass moving at speeds do indeed have wavelike
properties, as de Broglie had proposed.

v V c
# � 50°.

�1
#>2 � � #>2 #V1>2

0 (� 1>
)
 � V�1>2
0 ,


 �
D sin #

n
�
D sin (2�)
n


.
#

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0.5 1.0 1.5 2.0

S
ca

tte
re

d 
in

te
ns

ity

1/λ

ϕ = 50°

8th
order

7th
order

6th
order

5th
order

4th
order

3rd
order

The diffraction pattern

formed by high-energy

electron waves scattered

from nuclei provides a means

by which nuclear radii and

the internal distribution of

the nuclear charge (the

protons) are measured.

See Chapter 11.

Figure 5-7 Variation of the
scattered electron intensity
with wavelength for
constant #. The incident
beam in this case was 10°
from the normal, the resulting
refraction causing the
measured peaks to be slightly
shifted from the positions
computed from Equation 5-5,
as explained in note 6.
[After C. J. Davisson and 
L. H. Germer, Proceedings of
the National Academy of
Sciences, 14, 619 (1928).]

Clinton J. Davisson (left) and Lester 
H. Germer at Bell Laboratories,
where electron diffraction was first observed.
[Bell Telephone Laboratories, Inc.]
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Here is Davisson’s account of the connection between de Broglie’s predictions
and their experimental verification:

Perhaps no idea in physics has received so rapid or so intensive development

as this one. De Broglie himself was in the van of this development, but the

chief contributions were made by the older and more experienced

Schrödinger. It would be pleasant to tell you that no sooner had Elsasser’s

suggestion appeared than the experiments were begun in New York which

resulted in a demonstration of electron diffraction — pleasanter still to say

that the work was begun the day after copies of de Broglie’s thesis reached

America. The true story contains less of perspicacity and more of chance. . .

It was discovered, purely by accident, that the intensity of elastic scattering

[of electrons] varies with the orientations of the scattering crystals. Out of

this grew, quite naturally, an investigation of elastic scattering by a single

crystal of predetermined orientation. . . Thus the New York experiment was

not, at its inception, a test of wave theory. Only in the summer of 1926, after

I had discussed the investigation in England with Richardson, Born, Franck

and others, did it take on this character.7

A demonstration of the wave nature of relativistic electrons was provided in the
same year by G. P. Thomson, who observed the transmission of electrons with ener-
gies in the range of 10 to 40 keV through thin metallic foils (G. P. Thomson, the son
of J. J. Thomson, shared the Nobel Prize in 1937 with Davisson). The experimental
arrangement (Figure 5-8a) was similar to that used to obtain Laue patterns with x rays
(see Figure 3-11). Because the metal foil consists of many tiny crystals randomly ori-
ented, the diffraction pattern consists of concentric rings. If a crystal is oriented at an
angle with the incident beam, where satisfies the Bragg condition, this crystal will
strongly scatter at an equal angle thus there will be a scattered beam making an
angle with the incident beam. Figure 5-8b and c show the similarities in patterns
produced by x rays and electron waves.

2�
�;

��

Incident
beam

Circular
diffraction
ring

(x rays or
electrons)

Al foil
target

Screen or
film

θ

θ

Figure 5-8 (a) Schematic
arrangement used for
producing a diffraction
pattern from a polycrystalline
aluminum target. 
(b) Diffraction pattern
produced by x rays of
wavelength 0.071 nm and
an aluminum foil target.
(c) Diffraction pattern
produced by 600-eV electrons
(de Broglie wavelength of
about 0.05 nm) and an alumi-
num foil target. The pattern
has been enlarged
by 1.6 times to facilitate com-
parison with (b). [Courtesy of
Film Studio, Education
Development Center.]

(a)

(b)

(c)
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Diffraction of Other Particles

The wave properties of neutral atoms and molecules were first demonstrated by 
O. Stern and I. Estermann in 1930 with beams of helium atoms and hydrogen molecules
diffracted from a lithium fluoride crystal. Since the particles are neutral, there is no pos-
sibility of accelerating them with electrostatic potentials. The energy of the molecules
was that of their average thermal motion, about 0.03 eV, which implies a de Broglie
wavelength of about 0.10 nm for these molecules, according to Equation 5-2. Because
of their low energy, the scattering occurs just from the array of atoms on the surface of
the crystal, in contrast to Davisson and Germer’s experiment. Figure 5-9 illustrates the
geometry of the surface scattering, the experimental arrangement, and the results.
Figure 5-9c indicates clearly the diffraction of He atom waves.

Since then, diffraction of other atoms, of protons, and of neutrons has been ob-
served (see Figures 5-10, 5-11, and 5-12 on page 194). In all cases the measured wave-
lengths agree with de Broglie’s prediction. There is thus no doubt that all matter has
wavelike, as well as particlelike, properties, in symmetry with electromagnetic radiation.
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Figure 5-9 (a) He atoms impinge upon the surface of the LiF crystal at angle 
in Estermann and Stern’s experiment). The reflected beam also makes the same angle with
the surface but is also scattered at azimuthal angles relative to an axis perpendicular to
the surface. (b) The detector views the surface at angle but can scan through the angle 
(c) At angle where the path difference ( ) between adjacent “rays” is constructive
interference, i.e., a diffraction peak, occurs. The n � 1 peaks occur on either side of the 
n � 0 maximum.
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Figure 5-10 Diffraction pattern produced by 0.0568-eV
neutrons (de Broglie wavelength of 0.120 nm) and a
target of polycrystalline copper. Note the similarity in the
patterns produced by x rays, electrons, and neutrons.
[Courtesy of C. G. Shull.]

Figure 5-11 Neutron Laue pattern of NaCl. Compare this
with the x-ray Laue pattern in Figure 3-14. [Courtesy of 
E. O. Wollan and C. G. Shull.]
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Figure 5-12 Nuclei
provide scatterers whose
dimensions are of the order
of 10�15 m. Here the
diffraction of 1-GeV
protons from oxygen nuclei
result in a pattern similar to
that of a single slit.

An Easy Way to Determine de Broglie Wavelengths

It is frequently helpful to know the de Broglie wavelength for particles with a specific
kinetic energy. For low energies where relativistic effects can be ignored, the equation
leading to Equation 5-4 can be rewritten in terms of the kinetic energy as follows:

5-7
 �
h
p

�
h

22mEk



To find the equivalent expression that covers both relativistic and
nonrelativistic speeds, we begin with the relativistic equation relating
the total energy to the momentum:

2-31

Writing E0 for the rest energy mc2 of the particle for convenience,
this becomes

5-8

Since the total energy Equation 5-8 becomes

that, when solved for p, yields

from which Equation 5-2 gives

5-9

This can be written in a particularly useful way applicable to any
particle of any energy by dividing the numerator and denominator by
the rest energy as follows:

Recognizing h mc as the Compton wavelength of the particle of
mass m (see Section 3-4), we have that, for any particle,

5-10

A log-log graph of versus is shown in Figure 5-13. It has two sections of
nearly constant slope, one for and the other for connected by
a curved portion lying roughly between 0.1 � � 10. The following example
illustrates the use of Figure 5-13.

EXAMPLE 5-3 The de Broglie Wavelength of a Cosmic Ray Proton Detectors on
board a satellite measure the kinetic energy of a cosmic ray proton to be 150 GeV.
What is the proton’s de Broglie wavelength, as read from Figure 5-13?

SOLUTION

The rest energy of the proton is mc2 � 0.938 GeV and the proton’s mass is
1.67 � 10�27 kg. Thus, the ratio is

Ek
E0

�
150 GeV

0.938 GeV
� 160

Ek>E0

Ek>E0

Ek W mc2,Ek V mc2
Ek>E0
>
c


>
c �
1

[2(Ek>E0) � (Ek>E0)
2]1>2


c>

 �

hc>mc2

(2E0Ek � E2
k)

1>2>E0

�
h>mc

[2(Ek>E0) � (Ek>E0)
2]1>2

E0 � mc2


 �
hc

(2E0Ek � E2
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1>2

p �
(2E0Ek � E2
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1>2

c

(E0 � Ek)
2 � (pc)2 � E2

0

E � E0 � Ek,

E2 � (pc)2 � E2
0

E2 � (pc)2 � (mc2)2
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Figure 5-13 The de Broglie wavelength 
expressed in units of the Compton wavelength 
for a particle of mass m versus the kinetic energy
of the particle Ek expressed in units of its
rest energy E0 � mc2. For protons and neutrons
E0 � 0.938 GeV and For electrons
E0 � 0.511 MeV and 
c � 0.00234 nm.
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This value on the curve corresponds to about 6 � 10�3 on the axis. The
Compton wavelength of the proton is

and we have then for the particle’s de Broglie wavelength

Questions

1. Since the electrons used by Davisson and Germer were low energy, they
penetrated only a few atomic layers into the crystal, so it is rather surprising that
the effects of the inner layers shows so clearly. What feature of the diffraction is
most affected by the relatively shallow penetration?

2. How might the frequency of de Broglie waves be measured?

3. Why is it not reasonable to do crystallographic studies with protons?

5-3 Wave Packets
In any discussion of waves the question arises, “What’s waving?” For some waves the
answer is clear: for waves on the ocean, it is the water that “waves”; for sound waves
in air, it is the molecules that make up the air; for light, it is the and the B. So what
is waving for matter waves? For matter waves as for light waves, there is no “ether.”
As will be developed in this section and the next, for matter it is the probability of find-
ing the particle that waves.

Classical waves are solutions of the classical wave equation

5-11

Important among classical waves is the harmonic wave of amplitude y0 , frequency ƒ,
and period T, traveling in the direction as written here:

5-12

where the angular frequency and the wave number8 k are defined by

5-13a

and

5-13b

and the velocity v of the wave, the so-called wave or phase velocity vp, is given by
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A familiar wave phenomenon that cannot be described by a single harmonic wave
is a pulse, such as the flip of one end of a long string (Figure 5-14), a sudden noise,
or the brief opening of a shutter in front of a light source. The main characteristic of
a pulse is localization in time and space. A single harmonic wave is not localized in
either time or space. The description of a pulse can be obtained by the superposition
of a group of harmonic waves of different frequencies and wavelengths. Such a group
is called a wave packet. The mathematics of representing arbitrarily shaped pulses by
sums of sine or cosine functions involves Fourier series and Fourier integrals. We will
illustrate the phenomenon of wave packets by considering some simple and somewhat
artificial examples and discussing the general properties qualitatively. Wave groups
are particularly important because a wave description of a particle must include the
important property of localization.

Consider a simple group consisting of only two waves of equal amplitude and
nearly equal frequencies and wavelengths. Such a group occurs in the phenomenon of
beats and is described in most introductory textbooks. The quantities k, and v are
related to one another via Equations 5-13 and 5-14. Let the wave numbers be k1 and
k2 , the angular frequencies and and the speeds v1 and v2. The sum of the two
waves is

which, with the use of a bit of trigonometry, becomes

where and Since the two waves have nearly equal values
of k and we will write and for the mean values.
The sum is then

5-15

Figure 5-15 shows a sketch of y (x, t0) versus x at some time t0. The dashed curve is
the envelope of the group of two waves, given by the first cosine term in Equation 5-15.
The wave within the envelope moves with the speed the phase velocity vp due to
the second cosine term. If we write the first (amplitude-modulating) term as

we see that the envelope moves with speed The
speed of the envelope is called the group velocity vg.
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Figure 5-14 (a) Wave
pulse moving along a string.
A pulse has a beginning
and an end; i.e., it is
localized, unlike a pure
harmonic wave, which goes
on forever in space and time.
(b) A wave packet formed
by the superposition of
harmonic waves.
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Figure 5-15 Two waves of slightly different wavelength and frequency
produce beats. (a) Shows at a given instant for each of the two
waves. The waves are in phase at the origin, but because of the
difference in wavelength, they become out of phase and then in phase
again. (b) The sum of these waves. The spatial extent of the group �x is
inversely proportional to the difference in wave numbers �k, where k
is related to the wavelength by Identical figures are obtained
if y is plotted versus time t at a fixed point x. In that case the extent in
time �t is inversely proportional to the frequency difference ¢�.
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A more general wave packet can be constructed if, instead of adding just two
sinusoidal waves as in Figure 5-15, we superpose a larger, finite number with slightly
different wavelengths and different amplitudes. For example, Figure 5-16a illustrates
the superposing of seven cosines with wavelengths from to 
(wave numbers from to ) at time t0. The waves are all in phase at

x � 0 and again at Their sum 

oscillates with maxima at those values of x, decreasing and increasing at other values
as a result of the changing phases of the waves (see Figure 5-16b). Now, if we super-
pose an infinite number of waves from the same range of wavelengths and wave num-
bers as in Figure 5-16 with infinitesimally different values of k, the central group
around x � 0 will be essentially the same as in that figure. However, the additional
groups will no longer be present since there is now no length along the x axis into which
an exactly integral number of all of the infinite number of component waves can fit.
Thus, we have formed a single wave packet throughout this (one-dimensional) space.

y(x, t0) � a
15

i�9

yi (x, t0)x � �12, x � �24, Á .

k15 � 30�k9 � 18�

15 � 1>15
9 � 1>9

30π
–6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 7 8 9 10 11 12
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1/2
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k

k

1/4
1/3

3/4

16π 20π 24π

4π

28π 32π

y9 18π

y10 20π

y11 22π

y12 24π

y13 26π

y14

y15

28π

y = Σ yii

x (units of 1/2)

(a)

(b)

(c)

Figure 5-16 (a) Superposition of seven sinusoids with uniformly spaced wave numbers ranging
from to with t 0. The maximum amplitude is 1 at the center of the range decreasing 

to 1 2, 1 3, and 1 4, respectively, for the waves on each side of the central wave. (b) The sum is maximum

at x 0 with additional maxima equally spaced along the axis. (c) Amplitudes of the sinusoids yi versus wave number k.�x�

y(x, 0) � a
15

i�9

yi(x, 0)>>> (k � (2�)12),�k � (2�)15k � (2�)9
yk(x, t) � y0k cos (kx � �t)
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This packet moves at the group velocity The mathematics needed 
to demonstrate the above involves use of the Fourier integral described in the Classical
Concept Review.

The phase velocities of the individual harmonic waves are given by Equation 5-14:

Writing this as the relation between the group and phase velocities is given
by Equation 5-16:

5-16

If the phase velocity is the same for all frequencies and wavelengths, then dvp dk � 0,
and the group velocity is the same as the phase velocity. A medium for which the
phase velocity is the same for all frequencies is said to be nondispersive. Examples
are waves on a perfectly flexible string, sound waves in air, and electromagnetic waves
in a vacuum. An important characteristic of a nondispersive medium is that, since all
the harmonic waves making up a packet move with the same speed, the packet main-
tains its shape as it moves; thus, it does not change its shape in time. Conversely, if
the phase velocity is different for different frequencies, the shape of the pulse will
change as it travels. In that case the group velocity and phase velocity are not the
same. Such a medium is called a dispersive medium; examples are water waves,
waves on a wire that is not perfectly flexible, light waves in a medium such as glass
or water in which the index of refraction has a slight dependence on frequency, and
electron waves. It is the speed of the packet, the group velocity vg, that is normally
seen by an observer.

Classical Uncertainty Relations

Notice that the width of the group9 �x of the superposition in Figure 5-16b is
just a bit larger than Similarly, the graph of the amplitude of these waves versus
k has width which is a bit more than 12 (Figure 5-16c), so we see that

5-17

By a similar analysis, we would also conclude that

5-18

The range of wavelengths or frequencies of the harmonic waves needed to form a
wave packet depends on the extent in space and duration in time of the pulse. In gen-
eral, if the extent in space �x is to be small, the range �k of wave numbers must be
large. Similarly, if the duration in time �t is small, the range of frequencies must
be large. We have written these as order-of-magnitude equations because the exact
value of the products and depends on how these ranges are defined, as
well as on the particular shape of the packets. Equation 5-18 is sometimes known as
the response time–bandwidth relation, expressing the result that a circuit component
such as an amplifier must have a large bandwidth ( ) if it is to be able to respond to
signals of short duration.

¢�

¢�¢t¢k¢x

¢�

¢�¢t � 1

¢k¢x � 1

¢k � 4�,
1>12.
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� � kvp,

vp � f
 � a �

2�
b a 2�

k
b �

�

k

vg � d�>dk.

The classical uncertainty

relations define the range

of signal frequencies

to which all kinds of

communications equipment

and computer systems

must respond, from cell

phones to supercomputers.



200 Chapter 5 The Wavelike Properties of Particles

There is a slight variation of Equation 5-17 that is also helpful in interpreting the
relation between �x and �k. Differentiating the wave number in Equation 5-13b yields

5-19

Replacing the differentials by small intervals and concerning ourselves only with
magnitudes, Equation 5-19 becomes

which when substituted into Equation 5-17 gives

5-20

Equation 5-20 says that the product of the spatial extent of a classical wave �x
and the uncertainty (or “error”) in the determination of its wavelength will always
be of the order of The following brief examples will illustrate the meaning of
Equations 5-17 and 5-18, often referred to as the classical uncertainty relations, and
Equation 5-20.

EXAMPLE 5-4 for Ocean Waves Standing in the middle of a 20-m-long pier,
you notice that at any given instant there are 15 wave crests between the two ends
of the pier. Estimate the minimum uncertainty in the wavelength that could be com-
puted from this information.

SOLUTION

1. The minimum uncertainty in the wavelength is given by Equation 5-20:

2. The wavelength of the waves is

3. The spatial extent of the waves used for this calculation is:

4. Solving Equation 5-20 for and substituting these values gives

Remarks: This is the minimum uncertainty. Any error that may exist in the mea-
surement of the number of wave crests and the length of the pier would add further
uncertainty to the determination of 
.
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EXAMPLE 5-5 Frequency Control The frequency of the alternating voltage pro-
duced at electric generating stations is carefully maintained at 60.00 Hz. The fre-
quency is monitored on a digital frequency meter in the control room. For how long
must the frequency be measured and how often can the display be updated if the
reading is to be accurate to within 0.01 Hz?

SOLUTION

Since then rad/s and

Thus, the frequency must be measured for about 16 s if the reading is to be accurate
to 0.01 Hz and the display cannot be updated more often than once every 16s.

Questions

4. Which is more important for communication, the group velocity or the phase
velocity?

5. What are �x and �k for a purely harmonic wave of a single frequency and
wavelength?

Particle Wave Packets

The quantity analogous to the displacement y(x, t) for waves on a string, to the pres-
sure P(x, t) for a sound wave, or to the electric field for electromagnetic waves
is called the wave function for particles and is usually designated It is 
that we will relate to the probability of finding the particle and, as we alerted you ear-
lier, it is the probability that waves. Consider, for example, an electron wave consist-
ing of a single frequency and wavelength; we could represent such a wave by any of
the following, exactly as we did the classical wave:

The phase velocity for this wave is given by

where we have used the de Broglie relations for the wavelength and frequency. Using
the nonrelativistic expression for the energy of a particle moving in free space, i.e., no
potential energy) with no forces acting upon it,

we see that the phase velocity is

i.e., the phase velocity of the wave is half the velocity of an electron with momentum p.
The phase velocity does not equal the particle velocity. Moreover, a wave of a single
frequency and wavelength is not localized but is spread throughout space, which makes
it difficult to see how the particle and wave properties of the electron could be related.

vp � E>p � (p2>2m)>p � p>2m � v>2
E �

1

2
mv2 �

p2

2m

vp � f
 � (E>h)(h>p) � E>p
°(x, t) � A sin (kx � �t), or °(x, t) � Aei(kx��t).

°(x, t) � A cos (kx � �t),

°(x, t)°(x, t).
e(x, t)

¢t � 16 s

¢t � 1>¢� � 1>2�(0.01)

¢� � 2�¢ƒ � 2�(0.01)� � 2�ƒ,
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Thus, for the electron to have the particle property of being localized, the matter waves
of the electron must also be limited in spatial extent—i.e., realistically, must be
a wave packet containing many more than one wave number k and frequency It is
the wave packet that we expect to move at a group velocity equal to the parti-
cle velocity, which we will show below is indeed the case. The particle, if observed,
we will expect to find somewhere within the spatial extent of the wave packet 
precisely where within that space being the subject of the next section.

To illustrate the equality of the group velocity vg and the particle velocity v, it is
convenient to express de Broglie’s relations in a slightly different form. Writing
Equation 5-1 as follows,

5-21

and Equation 5-2 as

5-22

The group velocity is then given by

Again using the nonrelativistic expression E � p2 2m, we have that

and the wave packet moves with the velocity of the electron. This was, in fact,
one of de Broglie’s reasons for choosing Equations 5-1 and 5-2. (De Broglie used 
the relativistic expression relating energy and momentum, which also leads to the
equality of the group velocity and particle velocity.)

5-4 The Probabilistic Interpretation 

of the Wave Function
Let us consider in more detail the relation between the wave function and the
location of the electron. We can get a hint about this relation from the case of light.
The wave equation that governs light is Equation 5-11, with the electric field,
as the wave function. The energy per unit volume in a light wave is proportional to 
but the energy in a light wave is quantized in units of hf for each photon. We expect,
therefore, that the number of photons in a unit volume is proportional to a con-
nection first pointed out by Einstein.

Consider the famous double-slit interference experiment (Figure 5-17). The pat-
tern observed on the screen is determined by the interference of the waves from the
slits. At a point on the screen where the wave from one slit is 180° out of phase with
that from the other, the resultant electric field is zero; there is no light energy at this
point, and this point on the screen is dark. If we reduce the intensity to a very low
value, we can still observe the interference pattern if we replace the ordinary screen
by a scintillation screen or a two-dimensional array of tiny photon detectors (e.g., a
CCD camera) and wait a sufficient length of time.

e2,

e2,
y � e,

°(x, t)

°(x, t)

vg � dE>dp � p>m � v

>vg � d�>dk � (dE>U)>(dp>U) � dE>dp
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�
h
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The interaction of light with the detector or scintillator is a quantum phenomenon.
If we illuminate the scintillators or detectors for only a very short time with a low-
intensity source, we do not see merely a weaker version of the high-intensity pattern;
we see, instead, “dots” caused by the interactions of individual photons (Figure 5-18).
At points where the waves from the slits interfere destructively, there are no dots,
and at points where the waves interfere constructively, there are many dots. However,

S1

S2
S1

S2

θ

θ

d sin θ

d

I Figure 5-17 Two-source
interference pattern. If the
sources are coherent and
in phase, the waves from
the sources interfere
constructively at points for
which the path difference
(d ) is an integral
number of wavelengths.

sin�

Figure 5-18 Growth of two-slit interference pattern. The photo (d) is an actual two-slit electron interference pattern in which
the film was exposed to millions of electrons. The pattern is identical to that usually obtained with photons. If the film were to
be observed at various stages, such as after being struck by 28 electrons, then after about 1000 electrons, and again after about
10,000 electrons, the patterns of individually exposed grains would be similar to those shown in (a), (b), and (c) except that the
exposed dots would be smaller than the dots drawn here. Note that there are no dots in the region of the interference minima.
The probability of any point of the film being exposed is determined by wave theory, whether the film is exposed by electrons
or photons. [Parts (a), (b), and (c) from E. R. Huggins, Physics 1, © by W. A. Benjamin, Inc., Menlo Park, California. Photo (d)
courtesy of C. Jonsson.]

(a)

(b)

(c)

(d)
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when the exposure is short and the source weak, random fluctuations from the average
predictions of the wave theory are clearly evident. If the exposure is long enough that
many photons reach the detector, the fluctuations average out and the quantum nature
of light is not noticed. The interference pattern depends only on the total number of
photons interacting with the detector and not on the rate. Even when the intensity is so
low that only one photon at a time reaches the detector, the wave theory predicts the
correct average pattern. For low intensities, we therefore interpret as proportional
to the probability of detecting a photon in a unit volume of space. At points on the de-
tector where is zero, photons are never observed, whereas they are most likely to be
observed at points where is large.

It is not necessary to use light waves to produce an interference pattern. Such pat-
terns can be produced with electrons and other particles as well. In the wave theory of
electrons the de Broglie wave of a single electron is described by a wave function 
The amplitude of at any point is related to the probability of finding the particle at
that point. In analogy with the foregoing interpretation of the quantity is propor-
tional to the probability of detecting an electron in a unit volume, where 
the function being the complex conjugate of In one dimension, is the
probability of an electron being in the interval dx.10 (See Figure 5-19.) If we call this
probability P(x)dx, where P(x) is the probability distribution function, we have

5-23P(x)dx � ƒ° ƒ 2dx

ƒ° ƒ 2dx°.°*
ƒ° ƒ 2 � °*°,
ƒ° ƒ 2e2,

°
°.

e2
e2

e2

|Ψ(x, y, t )|2

y

t = 0

t = Δt

t = 2Δt

x

|Ψ(x, y, t)|2

y x

|Ψ(x, y, t)|2

y x

Figure 5-19 A three-dimensional wave packet
representing a particle moving along the x axis.
The dot indicates the position of a classical
particle. Note that the packet spreads out in the x
and y directions. This spreading is due to
dispersion, resulting from the fact that the phase
velocity of the individual waves making up the
packet depends on the wavelength of the waves.
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In the next chapter we will more thoroughly discuss the amplitudes of matter waves
associated with particles, in particular developing the mathematical system for
computing the amplitudes and probabilities in various situations. The uneasiness
that you may feel at this point regarding the fact that we have not given a precise
physical interpretation to the amplitude of the de Broglie matter wave can be attrib-
uted in part to the complex nature of the wave amplitude; i.e., it is in general a com-
plex function with a real part and an imaginary part, the latter proportional to

We cannot directly measure or physically interpret complex numbers
in our world of real numbers. However, as we will see, defining the probability in
terms of which is always real, presents no difficulty in its physical interpreta-
tion. Thus, even though the amplitudes of the wave functions have no simple
meaning, the waves themselves behave just as classical waves do, exhibiting the
wave characteristics of reflection, refraction, interference, and diffraction and obey-
ing the principles of superposition.

5-5 The Uncertainty Principle
The uncertainty relations for classical wave packets (Equations 5-17 and 5-18) have
very important matter wave analogs.

Consider a wave packet representing an electron. The most probable
position of the electron is the value of x for which is a maximum. Since

is proportional to the probability that the electron is located at x and
is nonzero for a range of values of x, there is an uncertainty in the position of the
electron (see Figure 5-19). This means that if we make a number of position measure-
ments on identical electrons—electrons with the same wave function—we will not al-
ways obtain the same result. In fact, the distribution function for the results of such
measurements will be given by If the wave packet is very narrow, the un-
certainty in position will be small. However, a narrow wave packet must contain a wide
range of wave numbers k. Since the momentum is related to the wave number by
p � hk, a wide range of k values means a wide range of momentum values. We have
seen that for all wave packets the ranges �x and �k are related by

5-17

Similarly, a packet that is localized in time �t must contain a range of frequencies 
where the ranges are related by

5-18

Equations 5-17 and 5-18 are inherent properties of waves. If we multiply these equa-
tions by and use and we obtain

5-24

and

5-25

Equations 5-24 and 5-25 provide a statement of the uncertainty principle first enunci-
ated in 1927 by Werner K. Heisenberg.11 Equation 5-24 expresses the fact that the dis-
tribution functions for position and momentum cannot both be made arbitrarily narrow
simultaneously (see Figure 5-16); thus, measurements of position and momentum will
have similar uncertainties, which are related by Equation 5-24. Of course, because of

¢E¢t � U

¢x¢p � U

E � U�,p � UkU

¢�¢t � 1

¢�,

¢k¢x � 1

ƒ°(x, t) ƒ 2.

ƒ°(x, t) ƒ 2ƒ°(x, t) ƒ 2
ƒ°(x, t) ƒ 2

°(x, t)

°
ƒ°ƒ 2,
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inaccurate measurements, the product of �x and �p can be, and usually is, much larger
than The lower limit is not due to any technical problem in the design of measuring
equipment that might be solved at some later time; it is instead due to the wave and par-
ticle nature of both matter and light.

If we define precisely what we mean by the uncertainty in the measurements of
position and momentum, we can give a precise statement of the uncertainty principle.
For example, if is the standard deviation for measurements of position and is the
standard deviation for measurements of the wave number, the product has its
minimum value of 1 2 when the distribution functions are Gaussian. If we define �x
and �p to be the standard deviations, the minimum value of their product is Thus,

5-26

Similarly,

5-27

Question

6. Does the uncertainty principle say that the momentum of a particle can never be
precisely known?

EXPLORING

The Gamma-Ray Microscope

Let us see how one might attempt to make a measurement so accurate as to violate the
uncertainty principle. A common way to measure the position of an object such as an
electron is to look at it with light, i.e., scatter light from it and observe the diffraction
pattern. The momentum can be obtained by looking at it again a short time later and
computing what velocity it must have had the instant before the light scattered from it.
Because of diffraction effects, we cannot hope to make measurements of length (posi-
tion) that are smaller than the wavelength of the light used, so we will use the shortest-
wavelength light that can be obtained, gamma rays. (There is, in principle, no limit to
how short the wavelength of electromagnetic radiation can be.) We also know that light
carries momentum and energy, so that when it scatters off the electron, the motion of the
electron will be disturbed, affecting the momentum. We must, therefore, use the mini-
mum intensity possible so as to disturb the electron as little as possible. Reducing the in-
tensity decreases the number of photons, but we must scatter at least one photon to ob-
serve the electron. The minimum possible intensity, then, is that corresponding to one
photon. The scattering of a photon by a free electron is, of course, a Compton scattering,
which was discussed in Section 3-4. The momentum of the photon is The
smaller that is used to measure the position, the more the photon will disturb the elec-
tron, but we can correct for that with a Compton-effect analysis, provided only that we
know the photon’s momentum and the scattering angles of the event.

Figure 5-20 illustrates the problem. (This illustration was first given as a gedanken-
experiment, or thought experiment, by Heisenberg. Since a single photon doesn’t form
a diffraction pattern, think of the diffraction pattern as being built up by photons from
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many identical scattering experiments.) The position of the electron is to be determined
by viewing it through a microscope. We will assume that only one photon is used. We
can take for the uncertainty in position the minimum separation distance for which two
objects can be resolved; this is12

where is the half angle subtended by the lens aperture, as shown in Figure 5-20a and b.�

¢x �
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Figure 5-20 “Seeing an electron”
with a gamma-ray microscope.
(b) Because of the size of 
the lens, the momentum of the
scattered photon is uncertain by

Thus
the recoil momentum of the
electron is also uncertain by at least
this amount. (c) The position of the
electron cannot be resolved better
than the width of the central
maximum of the diffraction pattern

The product of the
uncertainties �px �x is therefore of
the order of Planck’s constant h.
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Let us assume that the x component of momentum of the incoming photon is known
precisely from a previous measurement. To reach the screen and contribute to the dif-
fraction pattern in Figure 5-20c, the scattered photon need only go through the lens
aperture. Thus, the scattered photon can have any x component of momentum from 0
to px � p where p is the total momentum of the scattered photon. By conserva-
tion of momentum, the uncertainty in the momentum of the electron after the scatter-
ing must be greater than or equal to that of the scattered photon (it would be equal, of
course, if the electron’s initial momentum were known precisely); therefore, we write

and

Thus, even though the electron prior to our observation may have had a definite position
and momentum, our observation has unavoidably introduced an uncertainty in the
measured values of those quantities. This illustrates the essential point of the uncertainty
principle—that this product of uncertainties cannot be less than about h in principle, that
is, even in an ideal situation. If electrons rather than photons were used to locate the
object, the analysis would not change since the relation is the same for both.

5-6 Some Consequences of the

Uncertainty Principle
In the next chapter we will see that the Schrödinger wave equation provides a straight-
forward method of solving problems in atomic physics. However, the solution of the
Schrödinger equation is often laborious and difficult. Much semiquantitative informa-
tion about the behavior of atomic systems can be obtained from the uncertainty prin-
ciple alone without a detailed solution of the problem. The general approach used in
applying the uncertainty principle to such systems will first be illustrated by consid-
ering a particle moving in a box with rigid walls. We then use that analysis in several
numerical examples and as a basis for discussing some additional consequences.

Minimum Energy of a Particle in a Box

An important consequence of the uncertainty principle is that a particle confined to a finite
space cannot have zero kinetic energy. Let us consider the case of a one-dimensional
“box” of length L. If we know that the particle is in the box, �x is not larger than L.
This implies that �p is at least (Since we are interested in orders of magnitude, we
will ignore the in the minimum uncertainty product. In general, distributions are not
Gaussian anyway, so �p�x will be larger than ) Let us take the standard deviation
as a measure of �p,

If the box is symmetric, will be zero since the particle moves to the left as often as to
the right. Then
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L
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and the average kinetic energy is

5-28

Thus, we see that the uncertainty principle indicates that the minimum energy of a
particle (any particle) in a “box” (any kind of “box”) cannot be zero. This minimum
energy given by Equation 5-28 for a particle in a one-dimensional box is called the
zero point energy.

EXAMPLE 5-6 A Macroscopic Particle in a Box Consider a small but macroscopic
particle of mass m � 10�6 g confined to a one-dimensional box with L � 10�6 m,
e.g., a tiny bead on a very short wire. Compute the bead’s minimum kinetic energy
and the corresponding speed.

SOLUTION

1. The minimum kinetic energy is given by Equation 5-28:

2. The speed corresponding to this kinetic energy is:

Remarks: We can see from this calculation that the minimum kinetic energy implied
by the uncertainty principle is certainly not observable for macroscopic objects even
as small as 10�6 g.

EXAMPLE 5-7 An Electron in an Atomic Box If the particle in a one-dimensional
box of length L � 0.1 nm (about the diameter of an atom) is an electron, what will
be its zero-point energy?

SOLUTION

Again using Equation 5-28, we find that

This is the correct order of magnitude for the kinetic energy of an electron in an atom.

Size of the Hydrogen Atom

The energy of an electron of momentum p a distance r from a proton is

E �
p2

2m
�
ke2

r

E �
(Uc)2

2mc2L2
�

(197.3 eV # nm)2

2(0.511 � 106 eV)(0.1 nm)2
� 3.81 eV

� 1.06 � 10�19 m>sv � A
2E
m

� C
2(5.57 � 10�48 J)

10�9 kg

� 3.47 � 10�29 eV

� 5.57 � 10�48 J

E �
U2

2mL2
�

(1.055 � 10�34 J # s)2

(2)(10�9 kg)(10�6 m)2

E �
p2

2m
!

U2

2mL2



210 Chapter 5 The Wavelike Properties of Particles

If we take for the order of magnitude of the position uncertainty �x � r, we have

The energy is then

There is a radius rm at which E is minimum. Setting dE dr � 0 yields rm and Em:

and

The fact that rm came out to be exactly the radius of the first Bohr orbit is due to the
judicious choice of �x � r rather than 2r or r 2, which are just as reasonable. It
should be clear, however, that any reasonable choice for �x gives the correct order of
magnitude of the size of an atom.

Widths of Spectral Lines

Equation 5-27 implies that the energy of a system cannot be measured exactly unless an
infinite amount of time is available for the measurement. If an atom is in an excited state,
it does not remain in that state indefinitely but makes transitions to lower energy states
until it reaches the ground state. The decay of an excited state is a statistical process.

We can take the mean time for decay called the lifetime, to be a measure of
the time available to determine the energy of the state. For atomic transitions, is of the
order of 10�8 s. The uncertainty in the energy corresponding to this time is

This uncertainty in energy causes a spread in the wavelength of the light emitted.
For transitions to the ground state, which has a perfectly certain energy E0 because of
its infinite lifetime, the percentage spread in wavelength can be calculated from

thus,
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The energy width is called the natural line width and is represented by 
Other effects that cause broadening of spectral lines are the Doppler effect, the recoil
of the emitting atom, and atomic collisions. For optical spectra in the eV energy range,
the Doppler width D is about 10�6 eV at room temperature, i.e., roughly 10 times the
natural width and the recoil width is negligible. For nuclear transitions in the MeV
range, both the Doppler width and the recoil width are of the order of eV, much larger
than the natural line width. We will see in Chapter 11 that in some special cases of
atoms in solids at low temperatures, the Doppler and recoil widths are essentially zero
and the width of the spectral line is just the natural width. This effect, called the
Mössbauer effect after its discoverer, is extremely important since it provides photons
of well-defined energy that are useful in experiments demanding extreme precision.
For example, the 14.4-keV photon from 57Fe has a natural width of the order of 10�11

of its energy.

Questions

7. What happens to the zero-point energy of a particle in a one-dimensional box as
the length of the box 

8. Why is the uncertainty principle not apparent for macroscopic objects?

EXAMPLE 5-8 Emission of a Photon Most excited atomic states decay, i.e., emit a
photon, within about following excitation. What is the minimum uncer-
tainty in the (1) energy and (2) frequency of the emitted photon?

SOLUTION

1. The minimum energy uncertainty is the natural line width therefore,

2. From de Broglie’s relation we have

so that Equation 5-27 can be written as

and the minimum uncertainty in the frequency becomes

Remarks: The frequency of photons in the visible region of the spectrum is of the
order of 1014 Hz.
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5-7 Wave-Particle Duality
We have seen that electrons, which were once thought of as simply particles, exhibit
the wave properties of diffraction and interference. In earlier chapters we saw that
light, which we previously had thought of as a wave, also has particle properties in its
interaction with matter, as in the photoelectric effect or the Compton effect. All phe-
nomena—electrons, atoms, light, sound—have both particle and wave characteristics.
It is sometimes said that an electron, for example, behaves both as a wave and a par-
ticle. This may seem confusing since, in classical physics, the concepts of waves and
particles are mutually exclusive. A classical particle behaves like a pellet or BB shot
from an air-powered rifle. It can be localized and scattered, it exchanges energy sud-
denly in a lump, and it obeys the laws of conservation of energy and momentum
in collisions, but it does not exhibit interference and diffraction. A classical wave
behaves like a water wave. It exhibits diffraction and interference patterns and has its
energy spread out continuously in space and time, not quantized in lumps. Nothing,
it was thought, could be both a classical particle and a classical wave.

We now see that the classical concepts do not adequately describe either waves or
particles. Both matter and radiation have both particle and wave aspects. When emis-
sion and absorption are being studied, it is the particle aspects that are dominant.
When matter and radiation propagate through space, wave aspects dominate. Notice
that emission and absorption are events characterized by exchange of energy and dis-
crete locations. For example, light strikes the retina of your eye and a photon is ab-
sorbed, transferring its energy to a particular rod or cone: an observation has occurred.
This illustrates the point that observations of matter and radiation are described in
terms of the particle aspects. On the other hand, predicting the intensity distribution
of the light on your retina involves consideration of the amplitudes of waves that have
propagated through space and been diffracted at the pupil. Thus, predictions, i.e., a
priori statements about what may be observed, are described in terms of the wave as-
pects. Let’s elaborate on this just a bit.

Every phenomenon is describable by a wave function that is the solution of a
wave equation. The wave function for light is the electric field (in one space
dimension), which is the solution of a wave equation like Equation 5-11. We have
called the wave function for an electron We will study the wave equation of
which is the solution, called the Schrödinger equation, in the next chapter. The
magnitude squared of the wave function gives the probability per unit volume that the
electron, if looked for, will be found in a given volume or region. The wave function
exhibits the classical wave properties of interference and diffraction. In order to pre-
dict where an electron, or other particle, is likely to be, we must find the wave func-
tion by methods similar to those of classical wave theory. When the electron (or light)
interacts and exchanges energy and momentum, the wave function is changed by the
interaction. The interaction can be described by classical particle theory, as is done in
the Compton effect. There are times when classical particle theory and classical wave
theory give the same results. If the wavelength is much smaller than any object or
aperture, particle theory can be used as well as wave theory to describe wave propa-
gation because diffraction and interference effects are too small to be observed.
Common examples are geometrical optics, which is really a particle theory, and the
motion of baseballs and jet aircraft. If one is interested only in time averages of en-
ergy and momentum exchange, the wave theory works as well as the particle theory.
For example, the wave theory of light correctly predicts that the total electron current
in the photoelectric effect is proportional to the intensity of the light.

°
°(x, t).

e(x, t)
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More

That matter can exhibit wavelike characteristics as well as particlelike
behavior can be a difficult concept to understand. A wonderfully clear
discussion of wave-particle duality was given by R. P. Feynman, and we
have used it as the basis of our explanation on the home page of the Two-
Slit Interference Pattern for electrons: whfreeman.com/tiplermodern
physics5e/. See also Figures 5-21 and 5-22 and Equation 5-29 here.

Summary

TOPIC RELEVANT EQUATIONS AND REMARKS

1. De Broglie relations 5-1

5-2

Electrons and all other particles exhibit the wave properties of interference
and diffraction

2. Detecting electron waves

Davisson and Germer Showed that electron waves diffracted from a single Ni crystal according 
to Bragg’s equation

5-5

3. Wave packets

Wave equation 5-11

Uncertainty relations 5-17

5-18

Wave speed

Group (packet) speed 5-16

Matter waves The wave packet moves with the particle speed; i.e., the particle speed is 
the group speed vg.

4. Probabilistic interpretation The magnitude square of the wave function is proportional to the probability 
of observing a particle in the region dx at x and t.

5-23

5. Heisenberg uncertainty principle 5-26

5-27

where each of the uncertainties is defined to be the standard deviation.

¢E¢t ! 1
2 U

¢x¢p ! 1
2 U

P(x)dx � ƒ°ƒ2dx

vg �
d�

dk
� vp � k

dvp

dk

vp � f
 � �>k¢�¢t � 1

¢k¢x � 1

d2y

dx2
�

1

v2

d2y

dt 2

n
 � D sin#


 � h>pf � E>h



214 Chapter 5 The Wavelike Properties of Particles

Particle in a box 5-28

The minimum energy of any particle in any “box” cannot be zero.

Energy of H atom The Heisenberg principle predicts eV in agreement with 
the Bohr model.

Emin � �13.6

E !
U2

2mL2

TOPIC RELEVANT EQUATIONS AND REMARKS

General References

Notes

1. Louis V. P. R. de Broglie (1892–1987), French physicist.
Originally trained in history, he became interested in science
after serving as a radio engineer in the French army (assigned
to the Eiffel Tower) and through the work of his physicist
brother Maurice. The subject of his doctoral dissertation re-
ceived unusual attention because his professor, Paul Langevin
(who discovered the principle on which sonar is based),
brought it to the attention of Einstein, who described de
Broglie’s hypothesis to Lorentz as “the first feeble ray of light
to illuminate the worst of our physical riddles.” He re-
ceived the Nobel Prize in Physics in 1929, the first person so
honored for work done for a doctoral thesis.

2. L. de Broglie, New Perspectives in Physics, Basic Books,
New York, 1962.

3. See, e.g., Tipler, Physics for Scientists and Engineers, 5th

ed. (New York: W. H. Freeman and Co., 2008), Section 35-5.
4. Jean-Baptiste Perrin (1870–1942), French physicist. He

was the first to show that cathode rays are actually charged par-
ticles, setting the stage for J. J. Thomson’s measurement of their
q m ratio. He was also the first to measure the approximate size
of atoms and molecules and determined Avogadro’s number.
He received the Nobel Prize in Physics for that work in 1926.

>

Á

5. Clinton J. Davisson (1881–1958), American physicist.
He shared the 1937 Nobel Prize in Physics with G. P.
Thomson for demonstrating the diffraction of particles.
Davisson’s Nobel Prize was the first ever awarded for work
done somewhere other than at an academic institution.
Germer was one of Davisson’s assistants at Bell Telephone
Laboratory.

6. Matter (electron) waves, like other waves, change their
direction in passing from one medium (e.g., Ni crystal) into
another (e.g., vacuum) in the manner described by Snell’s law
and the indices of refraction of the two media. For normal in-
cidence Equation 5-5 is not affected, but for other incident an-
gles it is altered a bit, and that change has not been taken into
account in either Figure 5-6 or 5-7.

7. Nobel Prize Lectures: Physics (Amsterdam and New York:
Elsevier, 1964).

8. In spectroscopy, the quantity is called the wave
number. In the theory of waves, the term wave number is used
for

9. Following convention, the “width” is defined as the full
width of the pulse or envelope measured at half the maximum
amplitude.

k � 2�>
.

k � 
�1

The following general references are written at a level appro-
priate for the readers of this book.

De Broglie, L., Matter and Light: The New Physics, Dover,
New York, 1939. In this collection of studies is de
Broglie’s lecture on the occasion of receiving the Nobel
Prize, in which he describes his reasoning that led to the
prediction of the wave nature of matter.

Feynman, R., “Probability and Uncertainty—The Quantum-
Mechanical View of Nature,” filmed lecture, available from
Educational Services, Inc., Film Library, Newton, MA.

Feynman, R. P., R. B. Leighton, and M. Sands, Lectures on
Physics, Addison-Wesley, Reading, MA, 1965.

Fowles, G. R., Introduction to Modern Optics, Holt, Rinehart
& Winston, New York, 1968.

Hecht, E., Optics, 2d ed., Addison-Wesley, Reading, MA, 1987.
Jenkins, F. A., and H. E. White, Fundamentals of Optics, 4th

ed., McGraw-Hill, New York, 1976.
Mehra, J., and H. Rechenberg, The Historical Development of

Quantum Theory, Vol. 1, Springer-Verlag, New York, 1982.
Resnick, R., and D. Halliday, Basic Concepts in Relativity and

Early Quantum Theory, 2d ed., Wiley, New York, 1992.
Tipler, P. A., and G. Mosca, Physics for Scientists and Engineers,

6th ed., W. H. Freeman and Co., New York, 2008. Chapters
15 and 16 include a complete discussion of classical waves.
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10. This interpretation of was first developed by
German physicist Max Born (1882–1970). One of his posi-
tions early in his career was at the University of Berlin,
where he was to relieve Planck of his teaching duties. Born
received the Nobel Prize in Physics in 1954, in part for his in-
terpretation of 
11. Werner K. Heisenberg (1901–1976), German physicist.
After obtaining his Ph.D. under Sommerfeld, he served as
an assistant to Born and to Bohr. He was the director of re-
search for Germany’s atomic bomb project during World War II.
His work on quantum theory earned him the Nobel Prize in
Physics in 1932.
12. The resolving power of a microscope is discussed in
some detail in Jenkins and White, Fundamentals of Optics,

ƒ°ƒ2.

ƒ°ƒ2 4th ed. (New York: McGraw-Hill, 1976), pp. 332–334. The
expression for �x used here is determined by Rayleigh’s
criterion, which states that two points are just resolved if
the central maximum of the diffraction pattern from one falls
at the first minimum of the diffraction pattern of the other.
13. Richard P. Feynman (1918–1988), American physicist.
This discussion is based upon one in his classic text Lectures
on Physics (Reading, MA: Addison-Wesley, 1965). He shared
the 1965 Nobel Prize in Physics for his development of quan-
tum electrodynamics (QED). It was Feynman who, while a
member of the commission on the Challenger disaster,
pointed out that the booster stage O-rings were at fault. A gen-
uine legend in American physics, he was also an accom-
plished bongo drummer and safecracker.

Problems

Level I

Section 5-1 The de Broglie Hypothesis

5-1. (a) What is the de Broglie wavelength of a 1-g mass moving at a speed of 1 m per year?
(b) What should be the speed of such a mass if its de Broglie wavelength is to be 1 cm?
5-2. If the kinetic energy of a particle is much greater than its rest energy, the relativistic ap-
proximation holds. Use this approximation to find the de Broglie wavelength of an
electron of energy 100 MeV.
5-3. Electrons in an electron microscope are accelerated from rest through a potential differ-
ence V0 so that their de Broglie wavelength is 0.04 nm. What is V0?
5-4. Compute the de Broglie wavelengths of (a) an electron, (b) a proton, and (c) an alpha
particle of 4.5-keV kinetic energy.
5-5. According to statistical mechanics, the average kinetic energy of a particle at tempera-
ture T is where k is the Boltzmann constant. What is the average de Broglie wavelength
of nitrogen molecules at room temperature?
5-6. Find the de Broglie wavelength of a neutron of kinetic energy 0.02 eV (this is of the order
of magnitude of kT at room temperature).
5-7. A free proton moves back and forth between rigid walls separated by a distance L � 0.01 nm.
(a) If the proton is represented by a one-dimensional standing de Broglie wave with a node at
each wall, show that the allowed values of the de Broglie wavelength are given by 
where n is a positive integer. (b) Derive a general expression for the allowed kinetic energy of
the proton and compute the values for n � 1 and 2.
5-8. What must be the kinetic energy of an electron if the ratio of its de Broglie wavelength
to its Compton wavelength is (a) 102, (b) 0.2, and (c) 10�3?
5-9. Compute the wavelength of a cosmic-ray proton whose kinetic energy is (a) 2 GeV and
(b) 200 GeV.

Section 5-2 Measurements of Particle Wavelengths

5-10. What is the Bragg scattering angle for electrons scattered from a nickel crystal if their
energy is (a) 75 eV, (b) 100 eV?
5-11. Compute the kinetic energy of a proton whose de Broglie wavelength is 0.25 nm. If a
beam of such protons is reflected from a calcite crystal with crystal plane spacing of 0.304 nm,
at what angle will the first-order Bragg maximum occur?

#


 � 2L>n

3kT>2,

E � pc
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5-12. (a) The scattering angle for 50-eV electrons from MgO is 55.6°. What is the crystal spac-
ing D? (b) What would be the scattering angle for 100-eV electrons?

5-13. A certain crystal has a set of planes spaced 0.30 nm apart. A beam of neutrons strikes the
crystal at normal incidence and the first maximum of the diffraction pattern occurs at 
What are the de Broglie wavelength and kinetic energy of the neutrons?

5-14. Show that in Davisson and Germer’s experiment with 54-eV electrons using the
D � 0.215 nm planes, diffraction peaks with n � 2 and higher are not possible.

5-15. A beam of electrons with kinetic energy 350 eV is incident normal to the surface of a
KCl crystal that has been cut so that the spacing D between adjacent atoms in the planes paral-
lel to the surface is 0.315 nm. Calculate the angle at which diffraction peaks will occur for all
orders possible.

Section 5-3 Wave Packets

5-16. Information is transmitted along a cable in the form of short electric pulses at 
100,000 pulses/s. (a) What is the longest duration of the pulses such that they do not overlap?
(b) What is the range of frequencies to which the receiving equipment must respond for this
duration?

5-17. Two harmonic waves travel simultaneously along a long wire. Their wave functions are
y1 � 0.002 cos (8.0x � 400t) and y2 � 0.002 cos (7.6x � 380t), where y and x are in meters and
t in seconds. (a) Write the wave function for the resultant wave in the form of Equation 5-15.
(b) What is the phase velocity of the resultant wave? (c) What is the group velocity?
(d) Calculate the range �x between successive zeros of the group and relate it to �k.

5-18. (a) Starting from Equation 5-16, show that the group velocity can also be expressed as

(b) The phase velocity of each wavelength of white light moving through ordinary glass is a func-
tion of the wavelength; i.e., glass is a dispersive medium. What is the general dependence of 
on in glass? Is positive or negative?

5-19. A radar transmitter used to measure the speed of pitched baseballs emits pulses of 2.0-cm
wavelength that are 0.25 in duration. (a) What is the length of the wave packet produced?
(b) To what frequency should the receiver be tuned? (c) What must be the minimum bandwidth
of the receiver?

5-20. A certain standard tuning fork vibrates at 880 Hz. If the tuning fork is tapped, causing it
to vibrate, then stopped a quarter of a second later, what is the approximate range of frequen-
cies contained in the sound pulse that reached your ear?

5-21. If a phone line is capable of transmitting a range of frequencies �f � 5000 Hz, what is
the approximate duration of the shortest pulse that can be transmitted over the line?

5-22. (a) You are given the task of constructing a double slit experiment for 5-eV electrons. If you
wish the first minimum of the diffraction pattern to occur at 5°, what must be the separation of the
slits? (b) How far from the slits must the detector plane be located if the first minima on each side
of the central maximum are to be separated by 1 cm?

Section 5-4 The Probabilistic Interpretation of the Wave Function

5-23. A 100-g rigid sphere of radius 1 cm has a kinetic energy of 2 J and is confined to move
in a force-free region between two rigid walls separated by 50 cm. (a) What is the probability
of finding the center of the sphere exactly midway between the two walls? (b) What is the prob-
ability of finding the center of the sphere between the 24.9- and 25.1-cm marks?

5-24. A particle moving in one dimension between rigid walls separated by a distance L has
the wave function Since the particle must remain between the walls, what
must be the value of A?

°(x) � A sin (�x>L).
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t

y

Δt
Figure 5-23

5-25. The wave function describing a state of an electron confined to move along the x axis is
given at time zero by

Find the probability of finding the electron in a region dx centered at (a) x � 0, (b) and
(c) (d) Where is the electron most likely to be found?

Section 5-5 The Uncertainty Principle

5-26. A tuning fork of frequency vibrates for a time �t and sends out a waveform that looks
like that in Figure 5-23. This wave function is similar to a harmonic wave except that it is con-
fined to a time �t and space �x � v�t, where v is the phase velocity. Let N be the approximate
number of cycles of vibration. We can measure the frequency by counting the cycles and
dividing by �t. (a) The number of cycles is uncertain by approximately cycle. Explain why
(see the figure). What uncertainty does this introduce in the determination of the frequency f?
(b) Write an expression for the wave number k in terms of �x and N. Show that the uncertainty
in N of leads to an uncertainty in k of ¢k � 2�>¢x.�1

�1

f0

x � 2�.
x � �,

°(x, 0) � Ae�x2>4�2

5-27. If an excited state of an atom is known to have a lifetime of 10�7 s, what is the uncertainty
in the energy of photons emitted by such atoms in the spontaneous decay to the ground state?

5-28. A ladybug 5 mm in diameter with a mass of 1.0 mg being viewed through a low-power
magnifier with a calibrated reticule is observed to be stationary with an uncertainty of 10�2 mm.
How fast might the ladybug actually be walking?

5-29. 222Rn decays by the emission of an particle with a lifetime of 3.823 days. The kinetic
energy of the particle is measured to be 5.490 MeV. What is the uncertainty in this energy?
Describe in one sentence how the finite lifetime of the excited state of the radon nucleus trans-
lates into an energy uncertainty for the emitted particle.

5-30. If the uncertainty in the position of a wave packet representing the state of a quantum-
system particle is equal to its de Broglie wavelength, how does the uncertainty in momentum
compare with the value of the momentum of the particle?

5-31. In one of G. Gamow’s Mr. Tompkins tales, the hero visits a “quantum jungle” where h is
very large. Suppose that you are in such a place where A cheetah runs past you a
few meters away. The cheetah is 2 m long from nose to tail tip and its mass is 30 kg. It is mov-
ing at 40 m s. What is the uncertainty in the location of the “midpoint” of the cheetah? Describe
in one sentence how the cheetah would look different to you than when h has its actual value.

5-32. In order to locate a particle, e.g., an electron, to within 5 � 10�12 m using electromag-
netic waves (“light”), the wavelength must be at least this small. Calculate the momentum and
energy of a photon with If the particle is an electron with

what is the corresponding uncertainty in its momentum?

5-33. The decay of excited states in atoms and nuclei often leave the system in another, albeit
lower-energy, excited state. (a) One example is the decay between two excited states of the
nucleus of 48Ti. The upper state has a lifetime of 1.4 ps, the lower state 3.0 ps. What is the frac-
tional uncertainty in the energy of 1.3117-MeV gamma rays connecting the two states?¢E>E
¢x � 5 � 10�12 m,


 � 5 � 10�12 m.

> h � 50 J # s.

�

�
�
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(a) Another example is the line of the hydrogen Balmer series. In this case the lifetime of
both states is about the same, 10�8 s. What is the uncertainty in the energy of the photon?

5-34. Laser pulses of femtosecond duration can be produced but for such brief pulses it makes
no sense to speak of the pulse’s color. To see this, compute the time duration of a laser pulse
whose range of frequencies covers the entire visible spectrum (4.0 � 1014 Hz to 7.5 � 1014 Hz).

Section 5-6 Some Consequences of the Uncertainty Principle

5-35. A neutron has a kinetic energy of 10 MeV. What size object is necessary to observe neu-
tron diffraction effects? Is there anything in nature of this size that could serve as a target to
demonstrate the wave nature of 10-MeV neutrons?

5-36. Protons and neutrons in nuclei are bound to the nucleus by exchanging pions ( mesons)
with each other (see Chapter 11). This is possible to do without violating energy conservation
provided the pion is reabsorbed within a time consistent with the Heisenberg uncertainty rela-
tions. Consider the emission reaction where (a) Ignoring
kinetic energy, by how much is energy conservation violated in this reaction? (b) Within what
time interval must the pion be reabsorbed in order to avoid violation of energy conservation?

5-37. Show that the relation can be written for a particle moving in a
circle about the z axis, where is the linear momentum tangential to the circle, s is the arc
length, and L is the angular momentum. How well can the angular position of the electron be
specified in the Bohr atom?

5-38. An excited state of a certain nucleus has a half-life of 0.85 ns. Taking this to be the un-
certainty �t for emission of a photon, calculate the uncertainty in the frequency using
Equation 5-25. If find 

5-39. The lifetimes of so-called resonance particles cannot be measured directly but is com-
puted from the energy width (or uncertainty) of the scattering cross section versus energy graph
(see Chapter 12). For example, the scattering of a pion ( meson) and a proton can produce a
short-lived � resonance particle with a mass of 1685 MeV c2 and an energy width of 250 MeV
as shown in Figure 5-24: Compute the lifetime of the 

Section 5-7 Wave-Particle Duality

There are no problems for this section.

Level II

5-40. Neutrons and protons in atomic nuclei are confined within a region whose diameter is
about 10�15 m. (a) At any given instant, how fast might an individual proton or neutron be mov-
ing? (b) What is the approximate kinetic energy of a neutron that is localized to within such a
region? (c) What would be the corresponding energy of an electron localized to within such a
region?

5-41. Using the relativistic expression E2 � p2c2 � m2c4, (a) show that the phase velocity of an
electron wave is greater than c. (b) Show that the group velocity of an electron wave equals the
particle velocity of the electron.

5-42. Show that if y1 and y2 are solutions of Equation 5-11, the function y3 � C1y1 � C2y2 is
also a solution for any values of the constants C1 and C2 .

5-43. The London “Bobby” whistle has a frequency of 2500 Hz. If such a whistle is given a
3.0-s blast, (a) what is the uncertainty in the frequency? (b) How long is the wave train of this
blast? (c) What would be the uncertainty in measuring the wavelength of this blast? (d) What is
the wavelength of this blast?

5-44. A particle of mass m moves in a one-dimensional box of length L. (Take the potential
energy of the particle in the box to be zero so that its total energy is its kinetic energy 
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p2 2m.) Its energy is quantized by the standing-wave condition where is the
de Broglie wavelength of the particle and n is an integer. (a) Show that the allowed energies
are given by En � n2E1 where E1 � h2 8mL2. (b) Evaluate En for an electron in a box of size
L � 0.1 nm and make an energy-level diagram for the state from n � 1 to n � 5. Use Bohr’s
second postulate to calculate the wavelength of electromagnetic radiation emitted
when the electron makes a transition from (c) n � 2 to n � 1, (d) n � 3 to n � 2, and
(e) n � 5 to n � 1.

5-45. (a) Use the results of Problem 5-44 to find the energy of the ground state (n � 1) and
the first two excited states of a proton in a one-dimensional box of length L � 10�15 m � 1 fm.
(These are of the order of magnitude of nuclear energies.) Calculate the wavelength of elec-
tromagnetic radiation emitted when the proton makes a transition from (b) n � 2 to n � 1,
(c) n � 3 to n � 2, and (d) n � 3 to n � 1.

5-46. (a) Suppose that a particle of mass m is constrained to move in a one-dimensional space
between two infinitely high barriers located A apart. Using the uncertainty principle, find an
expression for the zero-point (minimum) energy of the particle. (b) Using your result from (a) ,
compute the minimum energy of an electron in such a space if A � 10�10 m and A � 1 cm.
(c) Calculate the minimum energy for a 100-mg bead moving on a thin wire between two stops
located 2 cm apart.

5-47. A proton and a 10-g bullet each move with a speed of 500 m s, measured with an
uncertainty of 0.01 percent. If measurements of their respective positions are made simultaneous
with the speed measurements, what is the minimum uncertainty possible in the position
measurements?

Level III

5-48. Show that Equation 5-11 is satisfied by where for any function f.

5-49. An electron and a positron are moving toward each other with equal speeds of 
3 � 106 m s. The two particles annihilate each other and produce two photons of equal energy.
(a) What were the de Broglie wavelengths of the electron and positron? Find the (b) energy,
(c) momentum, and (d) wavelength of each photon.

5-50. It is possible for some fundamental particles to “violate” conservation of energy by cre-
ating and quickly reabsorbing another particle. For example, a proton can emit a according
to where the n represents a neutron. The has a mass of 140 MeV c2. The
reabsorption must occur within a time �t consistent with the uncertainty principle.
(a) Considering the example shown, by how much �E is energy conservation violated? (Ignore
kinetic energy.) (b) For how long �t can the exist? (c) Assuming that the is moving at
nearly the speed of light, how far from the nucleus could it get in the time �t? (As we will dis-
cuss in Chapter 11, this is the approximate range of the strong nuclear force.) (d) Assuming that
as soon as one pion is reabsorbed another is emitted, how many pions would be recorded by a
“nucleon camera” with a shutter speed of 1 

5-51. De Broglie developed Equation 5-2 initially for photons, assuming that they had a small
but finite mass. His assumptions was that RF waves with traveled at a speed of at
least 99 percent of that of visible light with Beginning with the relativistic ex-
pression verify de Broglie’s calculation that the upper limit of the rest mass of a
photon is 10�44 g. (Hint: Find an expression for v c in terms of hf and mc2, and then let

) (

5-52. Suppose that you drop BBs onto a bull’s-eye marked on the floor. According to the un-
certainty principle, the BBs do not necessarily fall straight down from the release point to the
center of the bull’s-eye but are affected by the initial conditions. (a) If the location of the release
point is uncertain by an amount �x perpendicular to the vertical direction and the horizontal
component of the speed is uncertain by �vx , derive an expression for the minimum spread �X

 � 1>21 � v2>c2).mc2 V hf
>hf � mc2,


 � 500 nm.

 � 30 m

	s?

����

>��p � n � ��

��

>
# � x � vty � f(#),

>

f � ¢E>h > 
n(
>2) � L,>
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of impacts at the bull’s-eye if it is located a distance y0 below the release point. (b) Modify your
result in (a) to include the effect on �X of uncertainties �y and �vy at the release point.
5-53. Using the first-order Doppler-shift formula calculate the energy 
shift of a 1-eV photon emitted from an iron atom moving toward you with energy (3 2)kT at
T � 300 K. Compare this Doppler line broadening with the natural line width calculated in
Example 5-8. Repeat the calculation for a 1-MeV photon from a nuclear transition.
5-54. Calculate the order of magnitude of the shift in energy of a (a) 1-eV photon and 
(b) 1-MeV photon resulting from the recoil of an iron nucleus. Do this by first calculating 
the momentum of the photon and then by calculating p2 2m for the nucleus using that value of
momentum. Compare with the natural line width calculated in Example 5-8.

>
>f� � f0(1 � v>c),
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The success of the de Broglie relations in predicting the diffraction of electrons and
other particles, and the realization that classical standing waves lead to a discrete

set of frequencies, prompted a search for a wave theory of electrons analogous to the
wave theory of light. In this electron wave theory, classical mechanics should appear
as the short-wavelength limit, just as geometric optics is the short-wavelength limit of
the wave theory of light. The genesis of the correct theory went something like this,
according to Felix Bloch,1 who was present at the time:

. . . in one of the next colloquia, Schrödinger gave a beautifully clear account

of how de Broglie associated a wave with a particle and how he [i.e., de

Broglie] could obtain the quantization rules . . . by demanding that an inte-

ger number of waves should be fitted along a stationary orbit. When he had

finished Debye2 casually remarked that he thought this way of talking was

rather childish . . . [that to] deal properly with waves, one had to have a

wave equation.

In 1926, Erwin Schrödinger3 published his now-famous wave equation, which
governs the propagation of matter waves, including those of electrons. A few months
earlier, Werner Heisenberg had published a seemingly different theory to explain
atomic phenomena. In the Heisenberg theory, only measurable quantities appear.
Dynamical quantities such as energy, position, and momentum are represented by
matrices, the diagonal elements of which are the possible results of measurement.
Though the Schrödinger and Heisenberg theories appear to be different, it was even-
tually shown by Schrödinger himself that they were equivalent, in that each could be
derived from the other. The resulting theory, now called wave mechanics or quantum
mechanics, has been amazingly successful. Though its principles may seem strange to
us, whose experiences are limited to the macroscopic world, and though the mathe-
matics required to solve even the simplest problem is quite involved, there seems to
be no alternative to describe correctly the experimental results in atomic and nuclear
physics. In this book we will confine our study to the Schrödinger theory because it is
easier to learn and is a little less abstract than the Heisenberg theory. We will begin by
restricting our discussion to problems in one space dimension.
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6-1 The Schrödinger Equation 

in One Dimension
The wave equation governing the motion of electrons and other particles with mass,
which is analogous to the classical wave equation (Equation 5-11), was found by
Schrödinger late in 1925 and is now known as the Schrödinger equation. Like the clas-
sical wave equation, the Schrödinger equation relates the time and space derivatives
of the wave function. The reasoning followed by Schrödinger is somewhat difficult
and not important for our purposes. In any case, it must be emphasized that we can’t
derive the Schrödinger equation just as we can’t derive Newton’s laws of motion. Its
validity, like that of any fundamental equation, lies in its agreement with experiment.
Just as Newton’s second law is not relativistically correct, neither is Schrödinger’s
equation, which must ultimately yield to a relativistic wave equation. But, as you
know, Newton’s laws of motion are perfectly satisfactory for solving a vast array of
nonrelativistic problems. So, too, will be Schrödinger’s equation when applied to the
equally extensive range of nonrelativistic problems in atomic, molecular, and solid-
state physics. Schrödinger tried without success to develop a relativistic wave equa-
tion, a task accomplished in 1928 by Dirac.

Although it would be logical merely to postulate the Schrödinger equation, we
can get some idea of what to expect by first considering the wave equation for pho-
tons, which is Equation 5-11 with speed v � c and with y(x, t) replaced by the elec-
tric field (x, t).

6-1

As discussed in Chapter 5, a particularly important solution of this equation is the har-
monic wave function Differentiating this function twice,
we obtain

and

Substitution into Equation 6-1 then gives

or

6-2

Using and for electromagnetic radiation, we have

6-3

which, as we saw earlier, is the relation between the energy and momentum of a photon.

E � pc

p � Uk� � E>U � � kc

�k2 � �
�2

c2

$2e

$x2
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$2e

$t2
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e(x, t) � e0 cos (kx � �t).
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Erwin Schrödinger. [Courtesy of
the Niels Bohr Library, American
Institute of Physics.]

Now let us use the de Broglie relations for a particle such as an electron to find the
relation between and k that is analogous to Equation 6-2 for photons. We can then
use this relation to work backward and see how the wave equation for electrons must
differ from Equation 6-1. The total energy (nonrelativistic) of a particle of mass m is

6-4

where V is the potential energy. Substituting the de Broglie relations (Equations 5-21
and 5-22) in Equation 6-4, we obtain

6-5

This differs from Equation 6-2 for a photon because it contains the potential energy V
and because the angular frequency does not vary linearly with k. Note that we get a
factor of when we differentiate a harmonic wave function with respect to time and a
factor of k when we differentiate with respect to position. We expect, therefore, that the
wave equation that applies to electrons will relate the first time derivative to the second
space derivative and will also involve the potential energy of the electron.

Finally, we require that the wave equation for electrons will be a differential equa-
tion that is linear in the wave function This ensures that, if and

are both solutions of the wave equation for the same potential energy, then
any arbitrary linear combination of these solutions is also a solution—i.e.,

is a solution, with a1 and a2 being arbitrary con-
stants. Such a combination is called linear because both and appear
only to the first power. Linearity guarantees that the wave functions will add together
to produce constructive and destructive interference, which we have seen to be a char-
acteristic of matter waves, as well as all other wave phenomena. Note, in particular,
that (1) the linearity requirement means that every term in the wave equation must be
linear in and (2) that any derivative of is linear in 4&(x, t).&(x, t)&(x, t)

&2(x, t)&1(x, t)
&(x, t) � a1&1(x, t) � a2&2(x, t)

&2(x, t)
&1(x, t)&(x, t),

�
�

U� �
U2k2

2m
� V

E �
p2

2m
� V
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The Schrödinger Equation

We are now ready to postulate the Schrödinger equation for a particle of mass m. In
one dimension, it has the form

6-6

We will now show that this equation is satisfied by a harmonic wave function in
the special case of a free particle, one on which no net force acts, so that the potential
energy is constant, V(x, t) � V0 . First note that a function of the form 
does not satisfy this equation because differentiation with respect to time changes the
cosine to a sine, but the second derivative with respect to x gives back a cosine. Similar
reasoning rules out the form However, the exponential form of the har-
monic wave function does satisfy the equation. Let

6-7

where A is a constant. Then

and

Substituting these derivatives into the Schrödinger equation with V(x, t) � V0 gives

or

which is Equation 6-5.
An important difference between the Schrödinger equation and the classical

wave equation is the explicit appearance5 of the imaginary number 
The wave functions that satisfy the Schrödinger equation are not necessarily real, as
we see from the case of the free-particle wave function of Equation 6-7. Evidently
the wave function which solves the Schrödinger equation is not a directly
measurable function as the classical wave function y(x, t) is since measurements
always yield real numbers. However, as we discussed in Section 5-4, the probability of
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finding the electron in dx is certainly measurable, just as is the probability that a
flipped coin will turn up heads. The probability P(x)dx that the electron will be found
in the volume dx was defined by Equation 5-23 to be equal to This proba-
bilistic interpretation of was developed by Max Born and was recognized, over the
early and formidable objections of both Schrödinger and Einstein, as the appropriate
way of relating solutions of the Schrödinger equation to the results of physical mea-
surements. The probability that an electron is in the region dx, a real number, can be
measured by counting the fraction of time it is found there in a very large number of
identical trials. In recognition of the complex nature of we must modify
slightly the interpretation of the wave function discussed in Chapter 5 to accommo-
date Born’s interpretation so that the probability of finding the electron in dx is real.
We take for the probability

6-8

where the complex conjugate of is obtained from by replacing i with �i
wherever it appears.6 The complex nature of serves to emphasize the fact that, in
reality, we should not ask or try to answer the question, “What is waving in a matter
wave?” or inquire as to what medium supports the motion of a matter wave. The wave
function is a computational device with utility in Schrödinger’s theory of wave me-
chanics. Physical significance is associated not with itself, but with the product

which is the probability distribution P(x, t) or, as it is often called, the
probability density. In keeping with the analogy with classical waves and wave func-
tions, is also sometimes referred to as the probability density amplitude, or just
the probability amplitude.

The probability of finding the electron in dx at x1 or in dx at x2 is the sum of sep-
arate probabilities, Since the electron must certainly be some-
where in space, the sum of the probabilities over all possible values of x must equal 1.
That is7

6-9

Equation 6-9 is called the normalization condition. This condition plays an important
role in quantum mechanics, for it places a restriction on the possible solutions of
the Schrödinger equation. In particular, the wave function must approach zero
sufficiently fast as so that the integral in Equation 6-9 remains finite. If it
does not, then the probability becomes unbounded. As we will see in Section 6-3, it is
this restriction together with boundary conditions imposed at finite values of x that
leads to energy quantization for bound particles.

In the chapters that follow, we are going to be concerned with solutions to the
Schrödinger equation for a wide range of real physical systems, but in what follows
in this chapter, our intent is to illustrate a few of the techniques of solving the equa-
tion and to discover the various, often surprising properties of the solutions. To this
end we will focus our attention on one-dimensional problems, as noted earlier, and use
some potential energy functions with unrealistic physical characteristics, e.g., infi-
nitely rigid walls, which will enable us to illustrate various properties of the solutions
without obscuring the discussion with overly complex mathematics.
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Separation of the Time and Space Dependencies of

Schrödinger’s first application of his wave equation was to problems such as the hy-
drogen atom (Bohr’s work) and the simple harmonic oscillator (Planck’s work), in
which he showed that the energy quantization in those systems can be explained nat-
urally in terms of standing waves. We referred to these in Chapter 4 as stationary
states, meaning they did not change with time. Such states are also called eigenstates.
For such problems that also have potential energy functions that are independent of
time, the space and time dependence of the wave function can be separated, leading
to a greatly simplified form of the Schrödinger equation.8 The separation is accom-
plished by first assuming that can be written as a product of two functions, one
of x and one of t, as

6-10

If Equation 6-10 turns out to be incorrect, we will find that out soon enough, but it
turns out that if the potential function is not an explicit function of time, i.e., if the
potential is given by V(x), our assumption turns out to be valid. That this is true can
be seen as follows:

Substituting from Equation 6-10 into the general, time-dependent
Schrödinger equation (Equation 6-6) yields

6-11

which is

6-12

where the derivatives are now ordinary rather than partial ones. Dividing Equation 
6-12 by in the assumed product form gives

6-13

Notice that each side of Equation 6-13 is a function of only one of the independent
variables x and t. This means that, for example, changes in t cannot affect the value of
the left side of Equation 6-13, and changes in x cannot affect the right side. Thus, both
sides of the equation must be equal to the same constant C, called the separation con-
stant, and we see that the assumption of Equation 6-10 is valid—the variables have
been separated. We have thus replaced a partial differential equation containing two
independent variables, Equation 6-6, with two ordinary differential equations each a
function of only one of the independent variables:
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Let us solve Equation 6-15 first. The reason for doing so is twofold: (1) Equation 
6-15 does not contain the potential V(x); consequently, the time-dependent part 
of all solutions to the Schrödinger equation will have the same form when
the potential is not an explicit function of time, so we only have to do this once.
(2) The separation constant C has particular significance that we want to discover
before we tackle Equation 6-14. Writing Equation 6-15 as

6-16

The general solution of Equation 6-16 is

6-17a

which can also be written as

6-17b

Thus, we see that which describes the time variation of is an oscillatory
function with frequency However, according to the de Broglie relation
(Equation 5-1), the frequency of the wave represented by is there-
fore, we conclude that the separation constant C � E, the total energy of the particle,
and we have

6-17c

for all solutions to Equation 6-6 involving time-independent potentials. Equation 6-14
then becomes, on multiplication by 

6-18

Equation 6-18 is referred to as the time-independent Schrödinger equation.
The time-independent Schrödinger equation in one dimension is an ordinary dif-

ferential equation in one variable x and is therefore much easier to handle than the
general form of Equation 6-6. The normalization condition of Equation 6-9 can be ex-
pressed in terms of since the time dependence of the absolute square of the wave
function cancels. We have

6-19

and Equation 6-9 then becomes

6-20

Conditions for Acceptable Wave Functions

The form of the wave function that satisfies Equation 6-18 depends on the form
of the potential energy function V(x). In the next few sections we will study some sim-
ple but important problems in which V(x) is specified. Our example potentials will be
approximations to real physical potentials, simplified to make calculations easier.
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In some cases, the slope of the potential energy may be discontinuous, e.g., V(x) may
have one form in one region of space and another form in an adjacent region. (This is
a useful mathematical approximation to real situations in which V(x) varies rapidly
over a small region of space, such as at the surface boundary of a metal.) The proce-
dure in such cases is to solve the Schrödinger equation separately in each region of
space and then require that the solutions join smoothly at the point of discontinuity.

Since the probability of finding a particle cannot vary discontinuously from point
to point, the wave function must be continuous.9 Since the Schrödinger equation
involves the second derivative the first derivative (which is the slope)
must also be continuous. That is, the graph of versus x must be smooth. (In a
special case in which the potential energy becomes infinite, this restriction is relaxed.
Since no particle can have infinite potential energy, must be zero in regions where
V(x) is infinite. Then, at the boundary of such a region, may be discontinuous.)

If either or were not finite or not single valued, the same would be
true of and As we will shortly see, the predictions of wave mechanics
regarding the results of measurements involve both of those quantities and would thus
not necessarily predict finite or definite values for real physical quantities. Such re-
sults would not be acceptable since measurable quantities, such as angular momentum
and position, are never infinite or multiple valued. A final restriction on the form of
the wave function is that in order to obey the normalization condition, must
approach zero sufficiently fast as so that normalization is preserved. For fu-
ture reference, we may summarize the conditions that the wave function must
meet in order to be acceptable as follows:

1. must exist and satisfy the Schrödinger equation.

2. and must be continuous.

3. and must be finite.

4. and must be single valued.

5. fast enough as so that the normalization integral, Equation
6-20, remains bounded.

Note that, given Equation 6-10, the acceptability conditions above ultimately apply
to

Questions

1. Like the classical wave equation, the Schrödinger equation is linear. Why is this
important?

2. There is no factor in Equation 6-18. Does this mean that must
be real?

3. Why must the electric field be real? Is it possible to find a nonreal wave
function that satisfies the classical wave equation?

4. Describe how the de Broglie hypothesis enters into the Schrödinger wave
equation.

5. What would be the effect on the Schrödinger equation of adding a constant rest
energy for a particle with mass to the total energy E in the de Broglie relation
f � E h?

6. Describe in words what is meant by normalization of the wave function.
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EXAMPLE 6-1 A Solution to the Schrödinger Equation Show that for a free particle
of mass m moving in one dimension, the function is a
solution to the time-independent Schrödinger equation for any values of the con-
stants A and B.

SOLUTION

A free particle has no net force acting upon it, e.g., V(x) � 0, in which case the
kinetic energy equals the total energy. Thus, Differentiating

gives

and differentiating again,

Substituting into Equation 6-18,

and, since we have

and the given is a solution of Equation 6-18.

6-2 The Infinite Square Well
A problem that provides several illustrations of the properties of wave functions and is
also one of the easiest problems to solve using the time-independent, one-dimensional
Schrödinger equation is that of the infinite square well, sometimes called the particle
in a box. A macroscopic example is a bead moving on a frictionless wire between
two massive stops clamped to the wire. We could also build such a “box” for an elec-
tron using electrodes and grids in an evacuated tube, as illustrated in Figure 6-1a.
The walls of the box are provided by the increasing potential between the grids G
and the electrode C as shown in Figures 6-1b and c. The walls can be made arbitrarily
high and steep by increasing the potential V and reducing the separation between each
grid-electrode pair. In the limit such a potential energy function looks like that in
Figure 6-2, which is a graph of the potential energy of an infinite square well. For this
problem the potential energy is of the form

6-21

Although such a potential is clearly artificial, the problem is worth careful study for
several reasons: (1) exact solutions to the Schrödinger equation can be obtained

V(x) � �   x � 0 and x � L
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Potential
energy
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Figure 6-1 (a) The electron
placed between the two sets
of electrodes C and grids G
experiences no force in the
region between the grids,
which are at ground potential.
However, in the regions
between each C and G is a
repelling electric field whose
strength depends upon the
magnitude of V. (b) If V is
small, then the electron’s
potential energy versus x has
low, sloping “walls.” (c) If V
is large, the “walls” become
very high and steep,
becoming infinitely high for
VS �.

without the difficult mathematics that usually accompanies its solution for more real-
istic potential functions, (2) the problem is closely related to the vibrating-string prob-
lem familiar in classical physics, (3) it illustrates many of the important features of all
quantum-mechanical problems, and finally, (4) this potential is a relatively good ap-
proximation to some real situations; e.g., the motion of a free electron inside a metal.

Since the potential energy is infinite outside the well, the wave function is re-
quired to be zero there; that is, the particle must be inside the well. (As we proceed
through this and other problems, keep in mind Born’s interpretation: the probability
density of the particle’s position is proportional to ) We then need only to solve
Equation 6-18 for the region inside the well subject to the condition that
since the wave function must be continuous, must be zero at x � 0 and x � L.
Such a condition on the wave function at a boundary (here, the discontinuity of the
potential energy function) is called a boundary condition. We will see that, mathe-
matically, it is the boundary conditions together with the requirement that 
as that lead to the quantization of energy. A classic example is the case of a
vibrating string fixed at both ends. In that case the wave function y(x, t) is the dis-
placement of the string. If the string is fixed at x � 0 and x � L, we have the same
boundary condition on the vibrating-string wave function: namely, that y(x, t) be zero
at x � 0 and x � L. These boundary conditions lead to discrete allowed frequencies of
vibration of the string. It was this quantization of frequencies (which always occurs
for standing waves in classical physics), along with de Broglie’s hypothesis, that mo-
tivated Schrödinger to look for a wave equation for electrons.

The standing-wave condition for waves on a string of length L fixed at both ends
is that an integral number of half wavelengths fit into the length L.

6-22n
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We will show below that the same condition follows from the solution of the
Schrödinger equation for a particle in an infinite square well. Since the wavelength is
related to the momentum of the particle by the de Broglie relation and the
total energy of the particle in the well is just the kinetic energy (see Figure 
6-2), this quantum condition on the wavelength implies that the energy is quantized
and the allowed values are given by

6-23

Since the energy depends on the integer n, it is customary to label it En . In terms of
the energy is given by

6-24

where E1 is the lowest allowed energy10 and is given by

6-25

We now derive this result from the time-independent Schrödinger equation (Equation
6-18), which for V(x) � 0 is

or

6-26

where we have substituted the square of the wave number k since

6-27

and we have written for the second derivative Equation 6-26 has so-
lutions of the form

6-28a

and

6-28b

where A and B are constants. The boundary condition at x � 0 rules out the
cosine solution (Equation 6-28b) because so B must equal zero. The
boundary condition at x � L gives

6-29'(L) � A sin kL � 0

'(x) � 0
cos 0 � 1,

'(x) � 0

'(x) � B cos kx

'(x) � A sin kx

d2'(x)>dx2.'�(x)
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U
b 2

�
2mE
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'�(x) � �
2mE
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'(x) � �k2'(x)

�
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2m

d2 '(x)

dx2
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�2U2
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En � n2
�2U2
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�
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� n2

h2

8mL2

p2>2mp � h>
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This condition is satisfied if kL is any integer times i.e., if k is restricted to the
values kn given by

6-30

If we write the wave number k in terms of the wavelength we see that
Equation 6-30 is the same as Equation 6-22 for standing waves on a string. The quan-
tized energy values, or energy eigenvalues, are found from Equation 6-27, replacing k
by kn as given by Equation 6-30. We thus have

which is the same as Equation 6-24. Figure 6-3 shows the energy level diagram and
the potential energy function for the infinite square well potential.

The constant A in the wave function of Equation 6-28a is determined by the nor-
malization condition:

6-31�
��

��

'*n'n dx � �
L

0
A2
n sin2an�x

L
b dx � 1

En �
U2k2

n

2m
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U2 �2

2mL2
� n2E1
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Figure 6-3 Graph of energy vs. x for a particle in an infinitely deep well. The potential
energy V(x) is shown with the colored lines. The set of allowed values for the particle’s
total energy En as given by Equation 6-24 form the energy-level diagram for the infinite square
well potential. Classically, a particle can have any value of energy. Quantum mechanically,
only the values given by En � n2 yield well-behaved solutions of the Schrödinger
equation. As we become more familiar with energy-level diagrams, the x axis will be omitted.
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Since the wave function is zero in regions of space where the potential energy is infinite,
the contributions to the integral from �� to 0 and from L to �� will both be zero.
Thus, only the integral from 0 to L needs to be evaluated. Integrating, we obtain

independent of n. The normalized wave function solutions for this
problem, also called eigenfunctions, are then

6-32

These wave functions are exactly the same as the standing-wave functions yn(x) for the
vibrating-string problem. The wave functions and the probability distribution func-
tions Pn(x) are sketched in Figure 6-4 for the lowest energy state n � 1, called the
ground state, and for the first two excited states, n � 2 and n � 3. (Since these wave
functions are real, ) Notice in Figure 6-4 that the maximum
amplitudes of each of the are the same, as are those of 
Note, too, that both and extend to They just happen to be zero for
x � 0 and x � L in this case.

The number n in the equations above is called a quantum number. It specifies
both the energy and the wave function. Given any value of n, we can immediately
write down the wave function and the energy of the system. The quantum number n
occurs because of the boundary conditions at x � 0 and x � L. We will see
in Section 7-1 that for problems in three dimensions, three quantum numbers arise,
one associated with boundary conditions on each coordinate.

Comparison with Classical Results

Let us compare our quantum-mechanical solution of this problem with the classical so-
lution. In classical mechanics, if we know the potential energy function V(x), we can
find the force from and thereby obtain the acceleration 
from Newton’s second law. We can then find the position x as a function of time t if
we know the initial position and velocity. In this problem there is no force when the

ax � d2x>dt2Fx � �dV>dx

'(x) � 0

� � .Pn(x)'n(x)
Pn(x), 2>L.(2>L)1>2,'n(x)

Pn(x) � 'n
…'n � '2

n .

'n(x) � A
2

L
 sin
n�x

L
  n � 1, 2, 3, Á

An � (2>L)1>2
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particle is between the walls of the well because V � 0 there. The particle therefore
moves with constant speed in the well. Near the edge of the well the potential energy
rises discontinuously to infinity—we may describe this as a very large force that acts
over a very short distance and turns the particle around at the wall so that it moves away
with its initial speed. Any speed, and therefore any energy, is permitted classically. The
classical description breaks down because, according to the uncertainty principle, we
can never precisely specify both the position and momentum (and therefore velocity)
at the same time. We can therefore never specify the initial conditions precisely and
cannot assign a definite position and momentum to the particle. Of course, for a macro-
scopic particle moving in a macroscopic box, the energy is much larger than E1 of
Equation 6-25, and the minimum uncertainty of momentum, which is of the order of

is much less than the momentum and less than experimental uncertainties. Then
the difference in energy between adjacent states will be a small fraction of the total en-
ergy, quantization will be unnoticed, and the classical description will be adequate.11

Let us also compare the classical prediction for the distribution of measurements of
position with those from our quantum-mechanical solution. Classically, the probability
of finding the particle in some region dx is proportional to the time spent in dx, which is
dx v, where v is the speed. Since the speed is constant, the classical distribution func-
tion is just a constant inside the well. The normalized classical distribution function is

In Figure 6-4 we see that for the lowest energy states, the quantum distribution
function is very different from this. According to Bohr’s correspondence principle, the
quantum distributions should approach the classical distribution when n is large, that
is, at large energies. For any state n, the quantum distribution has n peaks. The distri-
bution for n � 10 is shown in Figure 6-5. For very large n, the peaks are close to-
gether, and if there are many peaks in a small distance �x, only the average value will
be observed. But the average value of over one or more cycles is Thus

which is the same as the classical distribution.

c'2
n(x) d
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� c 2
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�
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Figure 6-5 Probability distribution for n � 10 for the infinite square well potential. The
dashed line is the classical probability density P � 1 L, which is equal to the quantum-
mechanical distribution averaged over a region �x containing several oscillations. A physical
measurement with resolution �x will yield the classical result if n is so large that has
many oscillations in �x.

'2(x)
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The Complete Wave Function

The complete wave function, including its time dependence, is found by multiplying
the space part by

according to Equation 6-17c. As mentioned previously, a wave function corresponding
to a single energy oscillates with angular frequency but the probability
distribution is independent of time. This is the wave-mechanical justifi-
cation for calling such a state a stationary state or eigenstate, as we have done earlier.
It is instructive to look at the complete wave function for a particular state n.

If we use the identity

we can write this wave function as

Just as in the case of the standing-wave function for the vibrating string, we can
consider this stationary-state wave function to be the superposition of a wave travel-
ing to the right and a wave of the same frequency and amplitude traveling to the left.
Since measurable quantities are related to the fact that is complex is not
a problem.

EXAMPLE 6-2 An Electron in a Wire An electron moving in a thin metal wire is a
reasonable approximation of a particle in a one-dimensional infinite well. The
potential inside the wire is constant on average but rises sharply at each end.
Suppose the electron is in a wire 1.0 cm long. (a) Compute the ground-state energy
for the electron. (b) If the electron’s energy is equal to the average kinetic energy of
the molecules in a gas at T � 300 K, about 0.03 eV, what is the electron’s quantum
number n?

SOLUTION

1. For question (a), the ground-state energy is given by Equation 6-25:

2. For question (b), the electron’s quantum number is given by Equation 6-24:

En � n2E1

� 6.03 � 10�34 J � 3.80 � 10�15 eV

�
�2(1.055 � 10�34 J # s)2

(2)(9.11 � 10�31 kg)(10�2 m)2

E1 �
�2U2

2mL2

&P � ƒ& ƒ 2,

&n(x, t) �
1

2iA
2

L
 [ei(knx��nt) � e�i(knx��nt)]

sin knx �
(eiknx � e�iknx)

2i

&n(x, t) � A
2

L
 sin knx e

�i�nt

ƒ&n(x, t) ƒ 2
�n � En>U,

e�i�t � e�i(En>U)t
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3. Solving Equation 6-24 for n and substituting En � 0.03 eV and E1 from above
yields

or

Remarks: The value of E1 computed above is not only far below the limit of mea-
surability, but also smaller than the uncertainty in the energy of an electron con-
fined into 1 cm. For a value of n this large, the correspondence principle applies.

EXAMPLE 6-3 Calculating Probabilities Suppose that the electron in Example 6-2
could be measured while in its ground state. (a) What would be the probability of
finding it somewhere in the region 0 � x � L 4? (b) What would be the probabil-
ity of finding it in a very narrow region �x � 0.01L wide centered at x � 5L 8?

SOLUTION

(a) The wave function for the n � 1 level, the ground state, is given by Equation 
6-32 as

The probability that the electron would be found in the region specified is

Letting hence and noting the appropriate change in the
limits on the integral, we have that

Thus, if one looked for the particle in a large number of identical searches, the elec-
tron would be found in the region 0 � x � 0.25 cm about 9 percent of the time. This
probability is illustrated by the shaded area on the left side in Figure 6-6.

(b) Since the region �x � 0.01L is very small compared with L, we do not need to
integrate but can calculate the approximate probability as follows:

Substituting �x � 0.01L and x � 5L 8, we obtain

�
2

L
(0.854)(0.01L) � 0.017
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Figure 6-6 The probability density versus x for a particle in the
ground state of an infinite square well potential. The probability of finding
the particle in the region 0 � x � L 4 is represented by the larger shaded
area. The narrow shaded band illustrates the probability of finding the
particle within �x � 0.01L around the point where x � 5L 8.>>'

2(x)

This means that the probability of finding the electron within 0.01L around x � 5L 8
is about 1.7 percent. This is illustrated in Figure 6-6, where the area of the shaded
narrow band at x � 5L 8 is 1.7 percent of the total area under the curve.

EXAMPLE 6-4 An Electron in an Atomic-Size Box (a) Find the energy in the ground
state of an electron confined to a one-dimensional box of length L � 0.1 nm. (This
box is roughly the size of an atom.) (b) Make an energy-level diagram and find the
wavelengths of the photons emitted for all transitions beginning at state n � 3 or
less and ending at a lower energy state.

SOLUTION

(a) The energy in the ground state is given by Equation 6-25. Multiplying the nu-
merator and denominator by we obtain an expression in terms of hc and
mc2 , the energy equivalent of the electron mass (see Chapter 2):

Substituting and mc2 � 0.511 MeV, we obtain

This is of the same order of magnitude as the kinetic energy of the electron in the
ground state of the hydrogen atom, which is 13.6 eV. In that case, the wavelength
of the electron equals the circumference of a circle of radius 0.0529 nm, or about
0.33 nm, whereas for the electron in a one-dimensional box of length 0.1 nm, the
wavelength in the ground state is 2L � 0.2 nm.

(b) The energies of this system are given by

En � n2E1 � n2(37.6 eV)

E1 �
(1240 eV # nm)2

8(5.11 � 105 eV)(0.1 nm)2
� 37.6 eV

hc � 1240 eV # nm

E1 �
(hc)2

8mc2L2

c2>4�2,

> >
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Figure 6-7 Energy-level diagram for
Example 6-4. Transitions from the state
n � 3 to the states n � 2 and n � 1, and from
the state n � 2 to n � 1, are indicated by the
vertical arrows.

Figure 6-7 shows these energies in an energy-level diagram. The energy of the first
excited state is and that of the second excited state
is The possible transitions from level 3 to level 2,
from level 3 to level 1, and from level 2 to level 1 are indicated by the vertical
arrows on the diagram. The energies of these transitions are

The photon wavelengths for these transitions are

6-3 The Finite Square Well
The quantization of energy that we found for a particle in an infinite square well is a
general result that follows from the solution of the Schrödinger equation for any
particle confined in some region of space. We will illustrate this by considering the
qualitative behavior of the wave function for a slightly more general potential energy
function, the finite square well shown in Figure 6-8. The solutions of the Schrödinger
equation for this type of potential energy are quite different, depending on whether the
total energy E is greater or less than V0 . We will defer discussion of the case E � V0
to Section 6-5 except to remark that in that case, the particle is not confined and any
value of the energy is allowed; i.e., there is no energy quantization. Here we will
assume that E � V0 .
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(a) (b) Figure 6-8 (a) The
finite square well
potential. (b) Region I is
that with x � �a, II with
�a � x � �a, and III
with x � �a.

Inside the well, V(x) � 0 and the time-independent Schrödinger equation
(Equation 6-18) becomes Equation 6-26, the same as for the infinite well:

The solutions are sines and cosines (Equation 6-28) except that now we do not require
to be zero at the well boundaries, but rather we require that and be con-

tinuous at these points. Outside the well, i.e., for 0 � x � L, Equation 6-18 becomes

6-33

where

6-34

The straightforward method of finding the wave functions and allowed energies
for this problem is to solve Equation 6-33 for outside the well and then require
that and be continuous at the boundaries. The solution of Equation 6-33 is
not difficult [it is of the form for positive x], but applying the boundary
conditions involves a method that may be new to you; we describe it in the More sec-
tion on the Graphical Solution of the Finite Square Well.

First, we will explain in words unencumbered by the mathematics how the condi-
tions of continuity of and at the boundaries and the need for as 
leads to the selection of only certain wave functions and quantized energies for values
of E within the well; i.e., 0 � E � V0. The important feature of Equation 6-33 is that
the second derivative which is the curvature of the wave function, has the same sign
as the wave function If is positive, is also positive and the wave function
curves away from the axis, as shown in Figure 6-9a. Similarly, if is negative, is neg-
ative and, again, curves away from the axis. This behavior is different from that inside
the well, where 0 � x � L. There, and have opposite signs so that always curves
toward the axis like a sine or cosine function. Because of this behavior outside the well,
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'�'
'�''.
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Figure 6-9 (a) Positive
function with positive
curvature; (b) negative
function with negative
curvature.



for most values of the energy the wave function becomes infinite
as i.e., is not well behaved. Such functions, though
satisfying the Schrödinger equation, are not proper wave functions
because they cannot be normalized.

Figure 6-10 shows the wave function for the energy
for Figure 6-11 shows a well-

behaved wave function corresponding to wavelength 
which is the ground state wave function for the finite well, and the
behavior of the wave functions for two nearby energies and wave-
lengths. The exact determination of the allowed energy levels in a
finite square well can be obtained from a detailed solution of the
problem. Figure 6-12 shows the wave functions and the probability
distributions for the ground state and for the first two excited states.
From this figure we see that the wavelengths inside the well are
slightly longer than the corresponding wavelengths for the infinite
well of the same width, so the corresponding energies are slightly
less than those of the infinite well. Another feature of the finite well
problem is that there are only a finite number of allowed energies,
depending of the size of V0. For very small V0 there is only one al-
lowed energy level; i.e., only one bound state can exist. This will be
quite apparent in the detailed solution in the More section.

Note that, in contrast to the classical case, there is some proba-
bility of finding the particle outside the well, in the regions x � L or

x � 0. In these regions, the total energy is less than the potential energy, so it would
seem that the kinetic energy must be negative. Since negative kinetic energy has no
meaning in classical physics, it is interesting to speculate about the meaning of this pen-
etration of wave function beyond the well boundary. Does quantum mechanics predict
that we could measure a negative kinetic energy? If so, this would be a serious defect in
the theory. Fortunately, we are saved by the uncertainty principle. We can understand
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Figure 6-11 Functions satisfying the Schrödinger equation with wavelengths near the critical
wavelength If is slightly greater than the function approaches infinity like that in
Figure 6-10. At the wavelength the function and its slope approach zero together. This is
an acceptable wave function corresponding to the energy If is slightly less
than the function crosses the x axis while the slope is still negative. The slope becomes
more negative because its rate of change is now negative. This function approaches negative
infinity at large x. [This computer-generated plot courtesy of Paul Doherty, The Exploratorium.]
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Figure 6-10 The function that satisfies the
Schrödinger equation with � 4L inside the well
is not an acceptable wave function because it
becomes infinite at large x. Although at x � L, the
function is heading toward zero (slope is
negative), the rate of increase of the slope is so
great that the slope becomes positive before the
function becomes zero, and the function then
increases. Since has the same sign as the
slope always increases and the function increases
without bound. [This computer-generated plot
courtesy of Paul Doherty, The Exploratorium.]
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Figure 6-12 Wave functions
and probability

distributions for n � 1,
2, and 3 for the finite square
well. Compare these with
Figure 6-4 for the infinite
square well, where the wave
functions are zero at x � 0
and x � L. The wavelengths
are slightly longer than the
corresponding ones for the
infinite well, so the allowed
energies are somewhat
smaller.
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this qualitatively as follows (we will consider the region x � L only). Since the wave
function decreases as with given by Equation 6-34, the probability density

becomes very small in a distance of the order of If we consider
to be negligible beyond we can say that finding the particle in the

region x � L is roughly equivalent to localizing it in a region Such a mea-
surement introduces an uncertainty in momentum of the order of and
a minimum kinetic energy of the order of This
kinetic energy is just enough to prevent us from measuring a negative kinetic energy! The
penetration of the wave function into a classically forbidden region does have important
consequences in tunneling or barrier penetration, which we will discuss in Section 6-6.

Much of our discussion of the finite well problem applies to any problem in which
E � V(x) in some region and E � V(x) outside that region. Consider, for example, the
potential energy V(x) shown in Figure 6-13. Inside the well, the Schrödinger equation is
of the form

6-35

where now depends on x. The solutions of this equation are
no longer simple sine or cosine functions because the wave number varies
with x, but since and have opposite signs, will always curve toward the axis
and the solutions will oscillate. Outside the well, will curve away from the axis so
there will be only certain values of E for which solutions exist that approach zero as
x approaches infinity.

More

In most cases the solution of finite well problems involves transcendental
equations and is very difficult. For some finite potentials, however, graph-
ical solutions are relatively simple and provide both insights and numeri-
cal results. As an example, we have included the Graphical Solution of the
Finite Square Well on the home page: www.whfreeman.com/tiplermodern
physics5e. See also Equations 6-36 through 6-43 and Figure 6-14 here.
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'�(x) � �k2'(x)

(�p)2>2m � h2�2>2m � V0 � E.
�p � h>�x � h�

�x � ��1.
x � L � ��1,'(x)

�x � ��1.'2 � e�2�x
�e��x, V(x)

E
x

Figure 6-13 Arbitrary well-
type potential with possible
energy E. Inside the well
[E � V(x)], and 
have opposite signs, and the
wave function will oscillate.
Outside the well, and

have the same sign and,
except for certain values of E,
the wave function will not be
well behaved.
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Quantum Wells

Development of techniques for fabricating devices whose dimensions are of the order
of nanometers, called nanostructures, has made possible the construction of quantum
wells. These are finite potential wells of one, two, and three dimensions that can chan-
nel electron movement in selected directions. A one-dimensional quantum well is a thin
layer of material that confines particles to within the dimension perpendicular to the
layer’s surface but does not restrict motion in the other two dimensions. In the case of
three-dimensional wells, called quantum dots, electrons are restricted entirely to quan-
tized energy states within the well. A ubiquitous current application of quantum wells
is the diode lasers that read CDs, DVDs, and bar codes. Quantum dots have potential
applications in data storage and quantum computers, devices that may greatly enhance
computing power and speed.

One-dimensional quantum wells, called quantum wires, offer the possibility of
dramatically increasing the speed that electrons move through a device in selected di-
rections. This in turn would increase the speed with which signals move between cir-
cuit elements in computer systems. Figure 6-15 is an outline of how such a well might
be formed. 

6-4 Expectation Values and Operators

Expectation Values

The objective of theory is to explain experimental observations. In classical mechan-
ics the solution of a problem is typically specified by giving the position of a particle
or particles as a function of time. As we have discussed, the wave nature of matter pre-
vents us from doing this for microscopic systems. Instead, we find the wave function

(a) Energy

L1 0 L2

(b) Energy

L1 0 L2

Potential well

Figure 6-15 (a) Two infinite square wells of different widths L1 and L2 , each containing the
same number of electrons, are put together. An electron from well 1 moves to the lowest empty
level of well 2. (b) The energies of the two highest electrons are equalized, but the unequal
charge in the two wells distorts the energy-level structure. The distortion of the lowest empty
levels in each well results in a potential well at the junction between the wells. The orientation
of the newly formed well is perpendicular to the plane of the figure.
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and the probability distribution function The most that we can know
about a particle’s position is the probability that a measurement will yield various val-
ues of x. The expectation value of x is defined as

6-44

The expectation value of x is the average value of x that we would expect to obtain
from a measurement of the positions of a large number of particles with the same wave
function As we have seen, for a particle in a state of definite energy, the prob-
ability distribution is independent of time. The expectation value of x is then given by

6-45

For example, for the infinite square well, we can see by symmetry (or by direct cal-
culation) that is L 2, the midpoint of the well.

In general, the expectation value of any function f(x) is given by

6-46

For example, can be calculated as above, for the infinite square well of width L.
It is left as an exercise (see Problem 6-56) to show that

6-47

You may recognize the expectation values defined by Equations 6-45 and 6-46 as
being weighted average calculations, borrowed by physics from probability and sta-
tistics. We should note that we don’t necessarily expect to make a measurement whose
result equals the expectation value. For example, for even n, the probability of mea-
suring x � L 2 in some range dx around the midpoint of the well is zero because the
wave function sin is zero there. We get because the probability
density function is symmetrical about that point. Remember that the expectation
value is the average value that would result from many measurements.

Operators

If we knew the momentum p of a particle as a function of x, we could calculate the
expectation value from Equation 6-46. However, it is impossible in principle to
find p as a function of x since, according to the uncertainty principle, both p and x can-
not be determined at the same time. To find we need to know the distribution func-
tion for momentum. If we know it can be found by Fourier analysis. The 

also can be found from Equation 6-48, where is the mathematical operator

acting on that produces the x component of the momentum (see also Equation 6-6).
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Similarly, can be found from

Notice that in computing the expectation value the operator representing the physical
quantity operates on not on i.e., its correct position is between 
and This is not important to the outcome when the operator is simply some f(x),
but it is critical when the operator includes a differentiation, as in the case of 
the momentum operator. Note that is simply 2mE since, for the infinite square 

well, The quantity which operates on the wave function in

Equation 6-48, is called the momentum operator

6-49

EXAMPLE 6-5 Expectation Values for p and p2 Find and for the ground-
state wave function of the infinite square well. (Before we calculate them, what do
you think the results will be?)

SOLUTION

We can ignore the time dependence of in which case we have

The particle is equally as likely to be moving in the �x as in the �x direction, so its
average momentum is zero.

Similarly, since

we have

The time-independent Schrödinger equation (Equation 6-18) can now be written con-
veniently in terms of pop:
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In classical mechanics, the total energy written in terms of the position and mo-
mentum variables is called the Hamiltonian function H � p2 2m � V. If we replace
the momentum by the momentum operator pop and note that V � V(x), we obtain the
Hamiltonian operator Hop:

6-51

The time-independent Schrödinger equation can then be written

6-52

The advantage of writing the Schrödinger equation in this formal way is that it allows
for easy generalization to more-complicated problems such as those with several
particles moving in three dimensions. We simply write the total energy of the system
in terms of position and momentum and replace the momentum variables by the
appropriate operators to obtain the Hamiltonian operator for the system.

Table 6-1 summarizes the several operators representing physical quantities that
we have discussed thus far and includes a few more that we will encounter later on.

Hop' � E'

Hop �
p2

op

2m
� V(x)

>

Table 6-1 Some quantum-mechanical operators

Symbol Physical quantity Operator

f(x) Any function of x—e.g., the position x, f(x)
the potential energy V(x), etc.

px x component of momentum

py y component of momentum

pz z component of momentum

E Hamiltonian (time independent)

E Hamiltonian (time dependent)

Ek kinetic energy

Lz z component of angular momentum �iU
$

$�

�
U2

2m

$2

$x2

i U
$

$t
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Questions

7. Explain (in words) why and in Example 6-5 are not both zero.

8. Can ever have a value that has zero probability of being measured?8x9 8p298p9
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Figure 6-17 Potential energy
function for a simple
harmonic oscillator.
Classically, the particle is
confined between the
“turning points” �A and �A.
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More

In order for interesting things to happen in systems with quantized
energies, the probability density must change in time. Only in this way
can energy be emitted or absorbed by the system. Transitions Between
Energy States on the home page (www.whfreeman.com/tiplermodern
physics5e) describes the process and applies it to the emission of light
from an atom. See also Equations 6-52a–e and Figure 6-16 here.

6-5 The Simple Harmonic Oscillator
One of the problems solved by Schrödinger in the second of his six famous papers was
that of the simple harmonic oscillator potential, given by

where K is the force constant and the angular frequency of vibration defined by
The solution of the Schrödinger equation for this potential is

particularly important, as it can be applied to such problems as the vibration of mole-
cules in gases and solids. This potential energy function is shown in Figure 6-17, with
a possible total energy E indicated.

In classical mechanics, a particle in such a potential is in equilibrium at the ori-
gin x � 0, where V(x) is minimum and the force Fx � �dV dx is zero. If disturbed,
the particle will oscillate back and forth between x � �A and x � �A, the points at
which the kinetic energy is zero and the total energy is just equal to the potential en-
ergy. These points are called the classical turning points. The distance A is related to
the total energy E by

6-53

Classically, the probability of finding the particle in dx is proportional to the time
spent in dx, which is dx v. The speed of the particle can be obtained from the conser-
vation of energy:

The classical probability is thus

6-54

Any value of the energy E is possible. The lowest energy is E � 0, in which case the
particle is at rest at the origin.

The Schrödinger equation for this problem is
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The mathematical techniques involved in solving this type of differential equation
are standard in mathematical physics but unfamiliar to most students at this level.
We will, therefore, discuss the problem qualitatively. We first note that since the
potential is symmetric about the origin x � 0, we expect the probability distribution
function also to be symmetric about the origin, i.e., to have the same value
at �x as at �x.

The wave function must then be either symmetric or anti-
symmetric We can therefore simplify our discussion by consider-
ing positive x only and find the solutions for negative x by symmetry. (The symme-
try of is discussed further in the Exploring section, Parity; see page 250.)

Consider some value of total energy E. For x less than the classical turning
point A defined by Equation 6-53, the potential energy V(x) is less than the total
energy E, whereas for x � A, V(x) is greater than E. Our discussion in Section 
6-3 applies directly to this problem. For x � A, the Schrödinger equation can
be written

where

and curves toward the axis and oscillates. For x � A, the Schrödinger equation
becomes

with

and curves away from the axis. Only certain
values of E will lead to solutions that are well
behaved, i.e., that approach zero as x approaches
infinity. The allowed values of E for the simple
harmonic oscillator must be determined by solving
the Schrödinger equation; in this case they are 
given by

6-56

Thus, the ground-state energy is and the energy
levels are equally spaced, each excited state being
separated from the levels immediately adjacent
by

The wave functions of the simple harmonic
oscillator in the ground state and in the first two
excited states (n � 0, n � 1, and n � 2) are sketched
in Figure 6-18. The ground-state wave function has
the shape of a Gaussian curve, and the lowest energy

is the minimum energy consistent with the
uncertainty principle.
E � 1

2 U�

U�.

1
2 U�

En � an �
1

2
b U�  n � 0, 1, 2, Á

'(x)

�2 �
2m

U2
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'�(x) � ��2'(x)
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k2 �
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U2
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x0

ψ

n = 0

x0

ψ

n = 1

x0

ψ

n = 2

Figure 6-18 Wave functions for the ground state and the first
two excited states of the simple harmonic oscillator potential,
the states with n � 0, 1, and 2.
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frequencies (see Chapter 9)

enables determination of
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of solids.
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The allowed solutions to the Schrödinger equation, the wave functions for the simple
harmonic oscillator, can be written

6-57

where the constants Cn are determined by normalization and the functions Hn(x) are
polynomials of order n called the Hermite polynomials.13 The solutions for n � 0, 1,
and 2 (see Figure 6-18) are

6-58

Notice that for even values of n, the wave functions are symmetric about the origin;
for odd values of n, they are antisymmetric. In Figure 6-19 the probability distribu-
tions are sketched for n � 0, 1, 2, 3, and 10 for comparison with the classical
distribution.

'2
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'2(x) � A2a1 �
2m�x2

U
be�m�x2>2U

'1(x) � A1A
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U
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n = 10

n = 1

0 1 2 3–1–3 –2
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n = 2

0 1 2 3–1–3 –2

n = 3

0 1 2 3–1–3 –2

0 1 2 3 4 5–1–3 –2–5 –4

n = 0

ψn
2

Figure 6-19 Probability
density for the simple
harmonic oscillator plotted
against the dimensionless
variable u � ,
for n � 0, 1, 2, 3, and 10.
The dashed curves are the
classical probability
densities for the same energy,
and the vertical lines
indicate the classical turning
points x � �A.

(m�>U)1>2x
'2
n
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V(x)

x0

V(x) =V(x) = 1––
2

1––
2

Kx 2 = mω2x 2

1––
2

E5 = (5 + ) ω

1––
2

E4 = (4 + ) ω

1––
2

E3 = (3 + ) ω

1––
2

E2 = (2 + ) ω

1––
2

E1 = (1 + ) ω
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Figure 6-20 Energy levels in the simple harmonic oscillator potential. Transitions obeying
the selection rule �n � �1 are indicated by the arrows (those pointing up indicate absorption).
Since the levels have equal spacing, the same energy is emitted or absorbed in all allowed
transitions. For this special potential, the frequency of the emitted or absorbed photon equals
the frequency of oscillation, as predicted by classical theory.

U�

A property of these wave functions that we will state without proof is that

6-59

This property places a condition on transitions that may occur between allowed states.
This condition, called a selection rule, limits the amount by which n can change for
(electric dipole) radiation emitted or absorbed by a simple harmonic oscillator:

The quantum number of the final state must be 1 less than or 1 greater than

that of the initial state.

This selection rule is usually written

6-60

Since the difference in energy between two successive states is this is the energy
of the photon emitted or absorbed in an electric dipole transition. The frequency of the
photon is therefore equal to the classical frequency of the oscillator, as was assumed
by Planck in his derivation of the blackbody radiation formula. Figure 6-20 shows an
energy level diagram for the simple harmonic oscillator, with the allowed energy
transitions indicated by vertical arrows.

More

Solution of the Schrödinger equation for the simple harmonic oscillator
(Equation 6-55) involves some rather advanced differential equation tech-
niques. However, a simpler exact solution is also possible using an ap-
proach invented by Schrödinger himself that we will call Schrödinger’s
Trick. With the authors’ thanks to Wolfgang Lorenzon for bringing it to
our attention, we include it on the home page www.whfreeman.com/
tiplermodernphysics5e so that you, too, will know the trick.

U�,

�n � �1

�
��

��

'…nx'm dx � 0 unless n � m � 1
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EXPLORING

Parity

We made a special point of arranging the simple harmonic oscillator potential sym-
metrically about x � 0 (see Figure 6-17), just as we had done with the finite square well
in Figure 6-8b and will do with various other potentials in later discussions. The usual
purpose in each case is to emphasize the symmetry of the physical situation and to sim-
plify the mathematics. Notice that arranging the potential V(x) symmetrically about the
origin means that V(x) � V(�x). This means that the Hamiltonian operator Hop , defined
in Equation 6-51, is unchanged by a transformation that changes Such a
transformation is called a parity operation and is usually denoted by the operator P.
Thus, if is a solution of the Schrödinger equation

6-52

then a parity operation P leads to

and is also a solution to the Schrödinger equation and corresponds to the same
energy. When two (or more) wave functions are solutions corresponding to the same value
of the energy E, that level is referred to as degenerate. In this case, where two wave func-
tions, and are both solutions with energy E, we call the energy level doubly
degenerate.

It should be apparent from examining the two equations above that and
can differ at most by a multiplicative constant C; i.e.,

or

from which it follows that C � �1. If C � 1, is an even function, i.e.,
If C � �1, then is an odd function, i.e., Parity

is used in quantum mechanics to describe the symmetry properties of wave functions
under a reflection of the space coordinates in the origin, i.e., under a parity operation.
The terms even and odd parity describe the symmetry of the wave functions, not whether
the quantum numbers are even or odd. We will have more on parity in Chapter 12.

6-6 Reflection and Transmission of Waves
Up to this point, we have been concerned with bound-state problems in which the po-
tential energy is larger than the total energy for large values of x. In this section, we
will consider some simple examples of unbound states for which E is greater than V(x)
as x gets larger in one or both directions. For these problems and 
have opposite signs for those regions of x where E � V(x), so in those regions
curves toward the axis and does not become infinite at large values of Any value
of E is allowed. Such wave functions are not normalizable since does not ap-
proach zero as x goes to infinity in at least one direction and, as a consequence,

�
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0

V(x)

V0

x

Figure 6-21 Step potential.
A classical particle incident
from the left, with total
energy E greater than V0 , is
always transmitted. The
potential change at x � 0
merely provides an impulsive
force that reduces the speed
of the particle. However, a
wave incident from the left is
partially transmitted and
partially reflected because
the wavelength changes
abruptly at x � 0.

A complete solution involves combining infinite plane waves into a wave packet of
finite width. The resulting finite packet is normalizable. However, for our purposes it
is sufficient to note that the integral above is bounded between the limits a and b,
provided only that Such wave functions are most frequently encoun-
tered, as we are about to do, in the scattering of beams of particles from potentials, so
it is usual to normalize such wave functions in terms of the density of particles in
the beam. Thus,

where dN is the number of particles in the interval dx and N is the number of particles
in the interval (b � a).14 The wave nature of the Schrödinger equation leads, even so,
to some very interesting consequences.

Step Potential

Consider a region in which the potential energy is the step function

as shown in Figure 6-21. We are interested in what happens when a beam of particles,
each with the same total energy E, moving from left to right encounters the step.

The classical answer is simple. For x � 0, each particle moves with speed
At x � 0, an impulsive force acts on it. If the total energy E is less than

V0 , the particle will be turned around and will move to the left at its original speed;
that is, it will be reflected by the step. If E is greater than V0 , the particle will continue
moving to the right but with reduced speed, given by We might
picture this classical problem as a ball rolling along a level surface and coming to a
steep hill of height y0 , given by mgy0 � V0 . If its original kinetic energy is less than
V0 , the ball will roll partway up the hill and then back down and to the left along the
level surface at its original speed. If E is greater than V0 , the ball will roll up the hill
and proceed to the right at a smaller speed.

The quantum-mechanical result is similar to the classical one for E � V0 but quite
different when E � V0 , as in Figure 6-22a. The Schrödinger equation in each of the
two space regions shown in the diagram is given by

Region I

6-61

Region II

6-62
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ψ(x )

Energy

E

0 x

0
I II

I II

V(x ) = V0

V(x) = 0

x

(a)

(b)

Figure 6-22 (a) A potential step. Particles are incident on the step from the left toward the
right, each with total energy E � V0 . (b) The wavelength of the incident wave (Region I) is
shorter than that of the transmitted wave (Region II). Since k2 � k1 , however,
the transmission coefficient T � 1.

ƒC ƒ 2 � ƒA ƒ 2;

The general solutions are

Region I

6-63

Region II

6-64

Specializing these solutions to our situation where we are assuming the incident beam
of particles to be moving from left to right, we see that the first term in Equation 6-63
represents that beam since multiplying by the time part of yields a
plane wave (i.e., a beam of free particles) moving to the right. The second term,

represents particles moving to the left in Region I. In Equation 6-64, D � 0
since that term represents particles incident on the potential step from the right and
there are none. Thus, we have that the constant A is known or at least obtainable (de-
termined by normalization of in terms of the density of particles in the beam as
explained above) and the constants B and C are yet to be found. We find them by ap-
plying the continuity condition on and at x � 0, i.e., by requiring that

and . Continuity of at x � 0 yields

or

6-65a

Continuity of at x � 0 gives

6-65bk1A � k1B � k2C

d'>dx A � B � C
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d'(x)>dx'(x)

Aeik1x

Be�ik2x,

&(x, t), ei�t,Aeik1x

(x � 0)  'II(x) � Ceik2x � De�ik2x

(x � 0)  'I(x) � Aeik1x � Be�ik1x
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Solving Equations 6-65a and b for B and C in terms of A (see Problem 6-47), we have

6-66

6-67

where Equations 6-66 and 6-67 give the relative amplitude of the reflected and trans-
mitted waves, respectively. It is usual to define the coefficients of reflection R and
transmission T, the relative rates at which particles are reflected and transmitted, in
terms of the squares of the amplitudes A, B, and C as15

6-68

6-69

from which it can be readily verified that

6-70

Among the interesting consequences of the wave nature of the solutions to
Schrödinger’s equation, notice the following:

1. Even though E � V0 , R is not 0; i.e., in contrast to classical expectations, some
of the particles are reflected from the step. (This is analogous to the internal re-
flection of electromagnetic waves at the interface of two media.)

2. The value of R depends on the difference between k1 and k2 but not on which is
larger; i.e., a step down in the potential produces the same reflection as a step up
of the same size.

Since the wavelength changes as the beam passes the step. We
might also expect that the amplitude of will be less than that of the incident wave;
however, recall that the is proportional to the particle density. Since particles move
more slowly in Region II (k2 � k1),
may be larger than Figure 6-22b
illustrates these points. Figure 6-23
shows the time development of a wave
packet incident on a potential step for
E � V0.
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Figure 6-23 Time development of a 
one-dimensional wave packet representing
a particle incident on a step potential for
E � V0 . The position of a classical particle
is indicated by the dot. Note that part of the
packet is transmitted and part is reflected.
The sharp spikes that appear are artifacts of
the discontinuity in the slope of V(x) at x � 0.
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ψ(x )

Energy

E

0 x

0

V(x) = V0

V(x) = 0

x

(a)

(b)

Figure 6-24 (a) A potential
step. Particles are incident
on the step from the left
moving toward the right,
each with total energy
E � V0 . (b) The wave
transmitted into region II is
a decreasing exponential.
However, the value of R in
this case is 1 and no net
energy is transmitted.

1.0
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0.4
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0
0 321
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5

R
, T

4

R

T

E/V0

Figure 6-25 Reflection
coefficient R and transmission
coefficient T for a potential
step V0 high versus energy E
(in units of V0).

Now let us consider the case shown in Figure 6-24a, where E � V0 . Classically,
we expect all particles to be reflected at x � 0; however, we note that k2 in Equation
6-64 is now an imaginary number since E � V0 . Thus,

6-71

is a real exponential function where (We choose the positive
root so that as ) This means that the numerator and denominator of
the right side of Equation 6-66 are complex conjugates of each other; hence

and R � 1 and T � 0. Figure 6-25 is a graph of both R and T versus en-
ergy for a potential step. In agreement with the classical prediction, all of the particles
(waves) are reflected back into Region I. However, another interesting result of our so-
lution of Schrödinger’s equation is that the particle waves do not all reflect at x � 0.

ƒB ƒ 2 � ƒA ƒ 2

xS � .'II S 0
� � 22m(V0 � E)>U.

'II(x) � Ceik2x � Ce��x
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Figure 6-26

Table 6-2 ƒ' ƒ 2

x (m) 2 x

0 0 0.40

0.1 � 10�10 0.137 0.349

1.0 � 10�10 1.374 0.101

2.0 � 10�10 2.748 0.026

5.0 � 10�10 6.869 0.001

10.0 � 10�10 13.74 �0

ƒ' ƒ 2�

Since is an exponential decreasing toward the right, the particle density in
Region II is proportional to

6-72

Figure 6-24b shows the wave function for the case E � V0 . The wave function does
not go to zero at x � 0 but decays exponentially, as does the wave function 
for the bound state in a finite square well problem. The wave penetrates slightly
into the classically forbidden region x � 0 but eventually is completely reflected.
(As discussed in Section 6-3, there is no prediction that a negative kinetic energy
will be measured in such a region because to locate the particle in such a region
introduces an uncertainty in the momentum corresponding to a minimum kinetic
energy greater than V0�E.) This situation is similar to that of total internal reflec-
tion in optics.

EXAMPLE 6-6 Reflection from a Step with E � V
0

A beam of electrons, each with
energy E � 0.1 V0 , is incident on a potential step with V0 � 2 eV. This is of the
order of magnitude of the work function for electrons at the surface of metals.
Graph the relative probability of particles penetrating the step up to a distance
x � 10�9 m, or roughly five atomic diameters.

SOLUTION

For x � 0, the wave function is given by Equation 6-71. The value of is, from
Equation 6-67,

where we have taken Computing for several values of x from 0
to 10�9 m gives, with the first two columns of the Table
6-2. Taking and then multiplying by yields which is graphed
in Figure 6-26.

ƒ' ƒ 2,ƒC ƒ 2 � 0.4e�2�x
2� � 2[2m(0.9 V0)]

1>2>U,
e�2�xƒA ƒ 2 � 1.

ƒC ƒ 2 � ` 2(0.1 V0)
1>2

(0.1 V0)
1>2 � (�0.9 V0)

1>2 ` 2 � 0.4

ƒC ƒ 2

ƒ' ƒ 2

ƒ'II ƒ 2 � ƒC ƒ 2e�2�x

'II
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ψ(x )

Energy

E

x

x

0 a

0 a
I II III

V0

(a)

(b)

Barrier Potential

Now let us consider one of the more interesting quantum-mechanical potentials, the
barrier, illustrated by the example in Figure 6-27. The potential is

6-73

Classical particles incident on the barrier from the left in Region I with E � V0 will
all be transmitted, slowing down while passing through Region II but moving at their
original speed again in Region III. For classical particles with E � V0 incident from
the left, all are reflected back into Region I. The quantum-mechanical behavior of
particles incident on the barrier in both energy ranges is much different!

First, let us see what happens when a beam of particles, all with the same energy
E � V0 , as illustrated in Figure 6-27a, are incident from the left. The general solutions
to the wave equation are, following the example of the potential step,

6-74

where, as before, and Note that involves
real exponentials, whereas and contain complex exponentials. Since the parti-
cle beam is incident on the barrier from the left, we can set G � 0. Once again, the
value of A is determined by the particle density in the beam and the four constants B,
C, D, and F are found in terms of A by applying the continuity condition on and

at x � 0 and at x � a. The details of the calculation are not of concern to us
here, but several of the more interesting results are.

As we discovered for the potential step with E � V0, the wave function incident
from the left does not decrease immediately to zero at the barrier but instead will decay
exponentially in the region of the barrier. Upon reaching the far wall of the barrier,
the wave function must join smoothly to a sinusoidal wave function to the right of the
barrier, as shown in Figure 6-27b. This implies that there will be some probability of
the particles represented by the wave function being found on the far right side of the

d'>dx
'

'III'I

'II� � 22m(V0 � E)>U.k1 � 22mE>U'III(x) � Feik1x � Ge�ik1x  x � a

'II(x) � Ce��x � De�x   0 � x � �

'I(x) � Aeik1x � Be�ik1x  x � 0

V(x) � eV0 for 0 � x � a

0  for 0 � x and x � a

Figure 6-27 (a) Square
barrier potential.
(b) Penetration of the barrier
by a wave with energy less
than the barrier energy. Part
of the wave is transmitted by
the barrier even though,
classically, the particle cannot
enter the region 0 � x � a in
which the potential energy is
greater than the total energy.
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barrier, although classically they should never be able to get through; i.e., there is a
probability that the particles approaching the barrier can penetrate it. This phenomenon
is called barrier penetration or tunneling (see Figure 6-28). The relative probability of
its occurrence in any given situation is given by the transmission coefficient.

The coefficient of transmission T from Region I into Region III is found to be (see
Problem 6-64)

6-75

If Equation 6-75 takes on the somewhat simpler form to evaluate

6-76

Scanning Tunneling Microscope In the scanning tunneling microscope (STM),
developed in the 1980s by G. Binnig and H. Rohrer, a narrow gap between a con-
ducting specimen and the tip of a tiny probe acts as a potential barrier to electrons
bound in the specimen, as illustrated in Figure 6-29. A small bias voltage applied be-
tween the probe and the specimen causes the electrons to tunnel through the barrier
separating the two surfaces if the surfaces are close enough together. The tunneling
current is extremely sensitive to the size of the gap, i.e., the width of the barrier, be-
tween the probe and specimen. A change of only 0.5 nm (about the diameter of one
atom) in the width of the barrier can cause the tunneling current to change by as much
as a factor of 104. As the probe scans the specimen, a constant tunneling current is
maintained by a piezoelectric feedback system that keeps the gap constant. Thus, the
surface of the specimen can be mapped out by the vertical motions of the probe. In
this way, the surface features of a specimen can be measured by STMs with a resolu-
tion of the order of the size of a single atom (see Figure 6-29).

T � 16
E

V0

a1 �
E

V0

be�2�a

�aW 1,

T �
ƒF ƒ 2

ƒA ƒ 2
� J1 �

sinh2 �a

4
E

V0

a1 �
E

V0

b K
�1

An important application of

tunneling is the tunnel diode,

a common component of

electronic circuits. Another is

field emission, tunneling of

electrons facilitated by an

electric field, now being used

in wide-angle, flat-screen

displays on some laptop

computers.

Figure 6-28 Optical barrier
penetration, sometimes
called frustrated total internal
reflection. Because of the
presence of the second prism,
part of the wave penetrates
the air barrier even though
the angle of incidence in the
first prism is greater than the
critical angle. This effect can
be demonstrated with two
45° prisms and a laser or a
microwave beam and 45°
prisms made of paraffin.

• •

+
ΔV

–

–

+

e–

Microtip

Figure 6-29 Schematic illustration of the path of the probe of an STM (dashed line) scanned
across the surface of a sample while maintaining constant tunneling current. The probe has an
extremely sharp microtip of atomic dimensions. Tunneling occurs over a small area across the
narrow gap, allowing very small features (even individual atoms) to be imaged, as indicated by
the dashed line.
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Room temperature UHV-
STM images of gold (Au)
nanoparticles supported
on TiC after annealing at
500°C. Images are 
(a) 375 nm � 375 nm,
(b) 200 � 200 nm, and 
(c) 100 � 100 nm. 
(d) A 3-D image of a 
70 nm � 70 nm section of
(c). [The authors thank Beatriz
Roldán Cuenya for permission
to use these STM images.]

EXPLORING

Alpha Decay

Barrier penetration was used by G. Gamow, E. U. Condon, and R. W. Gurney in 1928
to explain the enormous variation in the mean life for decay of radioactive nuclei and
the seemingly paradoxical very existence of decay.16 While radioactive decay will
be discussed more thoroughly in Chapter 11, in general, the smaller the energy of the
emitted particle, the larger the mean life. The energies of particles from natural ra-
dioactive sources range from about 4 to 7 MeV, whereas the mean lifetimes range from
about 1010 years to 10�6 s. Gamow represented the radioactive nucleus by a potential
well containing an particle, as shown in Figure 6-30a. For r less than the nuclear ra-
dius R, the particle is attracted by the nuclear force. Without knowing much about
this force, Gamow and his co-workers represented it by a square well. Outside the nu-
cleus, the particle is repelled by the Coulomb force. This is represented by the
Coulomb potential energy �kZze2 r, where z � 2 for the particle and Ze is the re-
maining nuclear charge. The energy E is the measured kinetic energy of the emitted 
particle, since when it is far from the nucleus its potential energy is zero. We see from
the figure that a small increase in E reduces the relative height of the barrier V � E
and also reduces the thickness. Because the probability of transmission varies expo-
nentially with the relative height and barrier thickness, as indicated by Equation 6-76,
a small increase in E leads to a large increase in the probability of transmission and in
turn to a shorter lifetime. Gamow and his co-workers were able to derive an expression
for the decay rate and the mean lifetime as a function of energy E that was in good
agreement with experimental results as follows:

�

�
�>�

�
�

��

��
�

(a)

(b) (d)

(c)
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The probability that an particle will tunnel through the barrier in any one ap-
proach is given by T from Equation 6-76. In fact, in this case is so large that the ex-
ponential dominates the expression and

6-77

which is a very small number; i.e., the particle is usually reflected. The number of
times per second N that the particle approaches the barrier is given roughly by

6-78

where v equals the particle’s speed inside the nucleus. Thus, the decay rate, or the prob-
ability per second that the nucleus will emit an particle, which is also the reciprocal
of the mean life is given by

6-79

Figure 6-30b illustrates the good agreement between the barrier penetration calculation
and experimental measurements.
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Figure 6-30 (a) Model of potential-energy function for an particle and a nucleus. The
strong attractive nuclear force for r less than the nuclear radius R can be approximately
described by the potential well shown. Outside the nucleus the nuclear force is negligible,
and the potential is given by Coulomb’s law, V(r) � �kZze2 r, where Ze is the nuclear
charge and ze is the charge of the particle. An particle inside the nucleus oscillates
back and forth, being reflected at the barrier at R. Because of its wave properties, when the

particle hits the barrier, there is a small chance that it will penetrate and appear outside
the well at r � r1 . The wave function is similar to that shown in Figure 6-27b. (b) The
decay rate for the emission of particles from radioactive nuclei. The solid curve is the
prediction of Equation 6-79; the points are experimental results.
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V(x)x

E2

E1

x0

(a) (b)

Figure 6-31 (a) The NH3 molecule oscillates between the two equilibrium positions
shown. The H atoms form a plane; the N atom is colored. (b) The potential energy of the N
atom, where x is the distance above and below the plane of the H atoms. Several of the
allowed energies, including the two lowest shown, lie below the top of the central barrier
through which the N atom tunnels.

EXPLORING

NH
3

Atomic Clock

Barrier penetration also takes place in the case of the periodic inversion of the ammo-
nia molecule. The NH3 molecule has two equilibrium configurations, as illustrated in
Figure 6-31a. The three hydrogen atoms are arranged in a plane. The nitrogen atom os-
cillates between two equilibrium positions equidistant from each of the H atoms above
and below the plane. The potential energy function V(x) acting on the N atom has two
minima located symmetrically about the center of the plane, as shown in Figure 6-31b.
The N atom is bound to the molecule, so the energy is quantized and the lower states
lie well below the central maximum of the potential. The central maximum presents a
barrier to the N atoms in the lower states through which they slowly tunnel back and
forth.17 The oscillation frequency f � 2.3786 � 1010 Hz when the atom is in the state
characterized by the energy E1 in Figure 6-31b. This frequency is quite low compared
with the frequencies of most molecular vibrations, a fact that allowed the N atom tun-
neling frequency in NH3 to be used as the standard in the first atomic clocks, devices
that now provide the world’s standard for precision timekeeping.

More

Quantum-mechanical tunneling involving two barriers is the basis for a
number of devices such as the tunnel diode and the Josephson junction,
both of which have a wide variety of useful applications. As an exam-
ple of such systems, the Tunnel Diode is described on the home page:
www.whfreeman.com/tiplermodernphysics5e. See also Equation 6-80
and Figure 6-32 here. 

Summary

TOPIC RELEVANT EQUATIONS AND REMARKS

1. Schrödinger equation

Time dependent, one space dimension 6-6�
U2

2m

$2'(x, t)

$x2
� V(x, t)'(x, t) � iU

$'(x, t)

$t

www.whfreeman.com/tiplermodernphysics5e
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TOPIC RELEVANT EQUATIONS AND REMARKS

Time independent, one space dimension 6-18

Normalization condition 6-9

and

6-20

Acceptability conditions
1. must exist and satisfy the Schrödinger equation.

2. and must be continuous.

3. and must be finite.

4. and must be single valued.

5. fast enough as so that the normalization integral,
Equation 6-20, remains bounded.

2. Infinite square well 

Allowed energies 6-24

Wave functions

6-32

3. Finite square well For a finite well of width L the allowed energies En in the well are lower
than the corresponding levels for an infinite well. There is always at least
one allowed energy (bound state) in a finite well.

4. Expectation values and operators The expectation or average value of a physical quantity represented by an
operator, such as the momentum operator pop , is given by

6-48

5. Simple harmonic oscillator

Allowed energies 6-56

6. Reflection and transmission When the potential changes abruptly in a distance small compared to the
de Broglie wavelength, a particle may be reflected even though E � V(x).
A particle may also penetrate into a region where E � V(x).
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General References

The following general references are written at a level appro-
priate for the readers of this book.

Brandt, S., and H. D. Dahmen, The Picture Book of Quantum
Mechanics, Wiley, New York, 1985.

Eisberg, R., and R. Resnick, Quantum Physics, 2d ed., Wiley,
New York, 1985.

Feynman, R. P., R. B. Leighton, and M. Sands, Lectures on
Physics, Addison-Wesley, Reading, MA, 1965.

Ford, K. W., The Quantum World, Harvard University Press,
Cambridge, MA, 2004.

French, A. P., and E. F. Taylor, An Introduction to Quantum
Physics, Norton, New York, 1978.

Mehra, J., and H. Rechenberg, The Historical Development of
Quantum Theory, Vol. 1, Springer-Verlag, New York,
1982.

Park, D., Introduction to the Quantum Theory, 3d ed.,
McGraw-Hill, New York, 1992.

Visual Quantum Mechanics, Kansas State University,
Manhattan, 1996. Computer simulation software allows
the user to analyze a variety of one-dimensional poten-
tials, including the square wells and harmonic oscillator
discussed in this chapter.

Notes

1. Felix Bloch (1905–1983), Swiss American physicist. He
was a student at the University of Zurich and attended the col-
loquium referred to. The quote is from an address before the
American Physical Society in 1976. Bloch shared the 1952
Nobel Prize in Physics for measuring the magnetic moment of
the neutron, using a method that he invented that led to the de-
velopment of the analytical technique of nuclear magnetic
resonance (NMR) spectroscopy.

2. Peter J. W. Debye (1884–1966), Dutch American physi-
cal chemist. He succeeded Einstein in the chair of theoretical
physics at the University of Zurich and received the Nobel
Prize in Chemistry in 1936.

3. Erwin R. J. A. Schrödinger (1887–1961), Austrian physi-
cist. He succeeded Planck in the chair of theoretical physics at
the University of Berlin in 1928 following Planck’s retirement
and two years after publishing in rapid succession six papers
that set forth the theory of wave mechanics. For that work he
shared the Nobel Prize in Physics with P. A. M. Dirac in 1933.
He left Nazi-controlled Europe in 1940, moving his house-
hold to Ireland.

4. To see that this is indeed the case, consider the effect on
of multiplying by a factor C. Then

and the derivative is in-
creased by the same factor. Thus, the derivative is proportional
to the first power of the function; i.e., it is linear in 

5. The imaginary i appears because the Schrödinger equa-
tion relates a first time derivative to a second space derivative
as a consequence of the fact that the total energy is related to
the square of the momentum. This is unlike the classical wave
equation (Equation 5-11), which relates two second deriva-
tives. The implication of this is that, in general, the 
will be complex functions, whereas the y(x, t) are real.

6. The fact that is in general complex does not mean that
its imaginary part doesn’t contribute to the values of mea-
surements, which are real. Every complex number can be

&

&(x, t)

&(x, t).

$2C&(x, t)>$x2 � C$2 &(x, t)>$x2,
&(x, t)$2 &(x, t)>$x2

written in the form z � a � bi, where a and b are real num-
bers and The magnitude or absolute value of z
is defined as The complex conjugate of z is
z* � a � bi, so 
thus, the value of will contain a contribution from its
imaginary part.

7. Here we are using the convention of probability and sta-
tistics that certainty is represented by a probability of 1.

8. This method for solving partial differential equations is
called separation of variables, for obvious reasons. Since
most potentials in quantum mechanics, as in classical me-
chanics, are time independent, the method may be applied to
the Schrödinger equation in numerous situations.

9. We should note that there is an exception to this in the
quantum theory of measurement.
10. E � 0 corresponding to n�0 is not a possible energy for
a particle in a box. As discussed in Section 5-6, the uncer-
tainty principle limits the minimum energy for such a particle
to values
11. Recalling that linear combinations of solutions to
Schrödinger’s equation will also be solutions, we should note
here that simulation of the classical behavior of a macroscopic
particle in a macroscopic box requires wave functions that are
the superpositions of many stationary states. Thus, the classi-
cal particle never has definite energy in the quantum mechan-
ical sense.
12. To simplify the notation in this section, we will some-
times omit the functional dependence and merely write for

and for 
13. The Hermite polynomials are known functions that are
tabulated in most books on quantum mechanics.
14. It is straightforward to show that the only difference be-
tween a normalized in terms of the particle density and
one for which is the probability density is a multi-
plicative constant.

ƒ'(x) ƒ 2
'(x)

&n(x, t).&n'n(x)
'n

� U2>2mL2.

ƒ& ƒ 2
z*z � (a � bi)(a � bi) � a2 � b2 � ƒz ƒ 2;

(a2 � b2)1>2.i � (�1)1>2.
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15. T and R are derived in terms of the particle currents, i.e.,
particlesNunit time, in most introductory quantum mechanics
books.
16. Rutherford had shown that the scattering of 8.8-MeV 
particles from the decay of 212Po obeyed the Coulomb force
law down to distances of the order of 3 � 10�14 m, i.e., down
to about nuclear dimensions. Thus, the Coulomb barrier at
that distance was at least 8.8 MeV high; however, the energy
of particles emitted by 238U is only 4.2 MeV, less than half
the barrier height. How that could be possible presented clas-
sical physics with a paradox.

�

�

17. Since the molecule’s center of mass is fixed in an inertial
reference frame, the plane of H atoms also oscillates back and
forth in the opposite direction to the N atom; however, their
mass being smaller than that of the N atom, the amplitude of
the plane’s motion is actually larger than that of the N atom.
It is the relative motion that is important.
18. See, for example, F. Capasso and S. Datta, “Quantum
Electron Devices,” Physics Today, 43, 74 (1990). Leo Esaki
was awarded the Nobel Prize in Physics in 1973 for inventing
the resonant tunnel diode.

Problems

Level I

Section 6-1 The Schrödinger Equation in One Dimension

6-1. Show that the wave function does not satisfy the time-dependent
Schrödinger equation.
6-2. Show that satisfies both the time-dependent Schrödinger equation
and the classical wave equation (Equation 6-1).
6-3. In a region of space, a particle has a wave function given by and energy

where L is some length. (a) Find the potential energy as a function of x, and sketch V
versus x. (b) What is the classical potential that has this dependence?
6-4. (a) For Problem 6-3, find the kinetic energy as a function of x. (b) Show that x � L is the
classical turning point. (c) The potential energy of a simple harmonic oscillator in terms of its
angular frequency is given by Compare this with your answer to part (a) of
Problem 6-3, and show that the total energy for this wave function can be written 
6-5. (a) Show that the wave function does not satisfy the time-
dependent Schrödinger equation. (b) Show that 
does satisfy this equation.
6-6. The wave function for a free electron, i.e., one on which no net force acts, is given by

where x is in meters. Compute the electron’s (a) momentum,
(b) total energy, and (c) de Broglie wavelength.
6-7. A particle with mass m and total energy zero is in a particular region of space where its
wave function is (a) Find the potential energy V(x) versus x and (b) make a
sketch of V(x) versus x.
6-8. Normalize the wave function in Problem 6-2 between �a and �a. Why can’t that wave
function be normalized between and 

Section 6-2 The Infinite Square Well

6-9. A particle is in an infinite square well of width L. Calculate the ground-state energy if
(a) the particle is a proton and L � 0.1 nm, a typical size for a molecule; (b) the particle is a
proton and L � 1 fm, a typical size for a nucleus.
6-10. A particle is in the ground state of an infinite square well potential given by Equation 
6-21. Find the probability of finding the particle in the interval �x � 0.002 L at (a) x � L 2,
(b) x � 2L 3, and (c) x � L. (Since �x is very small, you need not do any integration.)
6-11. Do Problem 6-10 for a particle in the second excited state (n � 3) of an infinite square
well potential.
6-12. A mass of 10�6 g is moving with a speed of about 10�1 cm s in a box of length 1 cm.
Treating this as a one-dimensional infinite square well, calculate the approximate value of the
quantum number n.

>
> >

��?� �

'(x) � Ce�x2>L2
.

'(x) � A sin(2.5 � 1010x),

&(x, t) � A cos(kx � �t) � iA sin(kx � �t)
&(x, t) � A sin(kx � �t)
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6-13. (a) For the classical particle of Problem 6-12, find �x and �p, assuming that 
�x L � 0.01 percent and �p p � 0.01 percent. (b) What is 

6-14. A particle of mass m is confined to a tube of length L. (a) Use the uncertainty relation-
ship to estimate the smallest possible energy. (b) Assume that the inside of the tube is a force-
free region and that the particle makes elastic reflections at the tube ends. Use Schrödinger’s
equation to find the ground-state energy for the particle in the tube. Compare the answer to that
of part (a).

6-15. (a) What is the wavelength associated with the particle of Problem 6-14 if the particle is
in its ground state? (b) What is the wavelength if the particle is in its second excited state (quan-
tum number n � 3)? (c) Use de Broglie’s relationship to find the magnitude for the momentum
of the particle in its ground state. (d) Show that p2 2m gives the correct energy for the ground
state of this particle in the box.

6-16. The wavelength of light emitted by a ruby laser is 694.3 nm. Assuming that the emission
of a photon of this wavelength accompanies the transition of an electron from the n � 2 level
to the n � 1 level of an infinite square well, compute L for the well.

6-17. The allowed energies for a particle of mass m in a one-dimensional infinite square well
are given by Equation 6-24. Show that a level with n � 0 violates the Heisenberg uncertainty
principle.

6-18. Suppose a macroscopic bead with a mass of 2.0 g is constrained to move on a straight
frictionless wire between two heavy stops clamped firmly to the wire 10 cm apart. If the bead
is moving at a speed of 20 nm y (i.e., to all appearances it is at rest), what is the value of its
quantum number n?

6-19. An electron moving in a one-dimensional infinite square well is trapped in the n � 5
state. (a) Show that the probability of finding the electron between x � 0.2 L and x � 0.4 L is
1 5. (b) Compute the probability of finding the electron within the “volume” �x � 0.01 L at
x � L 2.

6-20. In the early days of nuclear physics before the neutron was discovered, it was thought
that the nucleus contained only electrons and protons. If we consider the nucleus to be a one-
dimensional infinite well with L � 10 fm and ignore relativity, compute the ground-state energy
for (a) an electron and (b) a proton in the nucleus. (c) Compute the energy difference between
the ground state and the first excited state for each particle. (Differences between energy levels
in nuclei are found to be typically of the order of 1 MeV.)

6-21. An electron is in the ground state with energy En of a one-dimensional infinite well with
L � 10�10 m. Compute the force that the electron exerts on the wall during an impact on either
wall. (Hint: Why?) How does this result compare with the weight of an elec-
tron at the surface of Earth?

6-22. The wave functions of a particle in a one-dimensional infinite square well are given by
Equation 6-32. Show that for these functions i.e., that and are
orthogonal.

Section 6-3 The Finite Square Well

6-23. Sketch (a) the wave function and (b) the probability distribution for the n � 4 state for
the finite square well potential.

6-24. A finite square well 1.0 fm wide contains one neutron. How deep must the well be if
there are only two allowed energy levels for the neutron?

6-25. An electron is confined to a finite square well whose “walls” are 8.0 eV high. If the
ground-state energy is 0.5 eV, estimate the width of the well.

6-26. Using arguments concerning curvature, wavelength, and amplitude, sketch very carefully
the wave function corresponding to a particle with energy E in the finite potential well shown
in Figure 6-33.

'm(x)'n(x)� 'n(x)'m(x) dx � 0,

F � �dEn>dL.

>>
>

>

(�x�p)>U?>>
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Energy

0

V1

V2V2

V = 0

x

Figure 6-33 Problem 6-26.

6-27. For a finite square well potential that has six quantized levels, if a � 10 nm (a) sketch
the finite well, (b) sketch the wave function from x � �2a to x � � 2a for n � 3, and
(c) sketch the probability density for the same range of x.

Section 6-4 Expectation Values and Operators

6-28. Compute the expectation value of the x component of the momentum of a particle of
mass m in the n � 3 level of a one-dimensional infinite square well of width L. Reconcile your
answer with the fact that the kinetic energy of the particle in this level is 
6-29. Find (a) and (b) for the second excited state (n � 3) in an infinite square well
potential.
6-30. (a) Show that the classical probability distribution function for a particle in a one-
dimensional infinite square well potential of length L is given by P(x) � 1 L. (b) Use your
result in (a) to find and for a classical particle in such a well.
6-31. Show directly from the time-independent Schrödinger equation that 

in general and that for the infinite square well. Use this result
to compute for the ground state of the infinite square well.

6-32. Find and for the ground-state wave
function of an infinite square well. (Use the fact that by symmetry and 
from Problem 6-31.)
6-33. Compute and for the ground state of a harmonic oscillator (Equation 6-58). Use

6-34. Use conservation of energy to obtain an expression connecting x2 and p2 for a harmonic
oscillator, then use it along with the result from Problem 6-33 to compute for the harmonic
oscillator ground state.
6-35. (a) Using A0 from Problem 6-33, write down the total wave function for the
ground state of a harmonic oscillator. (b) Use the operator for from Table 6-1 to compute 

Section 6-5 The Simple Harmonic Oscillator

6-36. For the harmonic oscillator ground state n � 0 the Hermite polynomial Hn(x) in Equation
6-57 is given by H0 � 1. Find (a) the normalization constant C0 , (b) and (c)
for this state. (Hint: Use the Probability Integral in Appendix B1 to compute the needed 
integrals.)
6-37. For the first excited state, H1(x) � x. Find (a) the normalization constant C1 , (b)
(c) (d) for this state (see Problem 6-36).
6-38. A quantum harmonic oscillator of mass m is in the ground state with classical turning
points at �A. (a) With the mass confined to the region compute �p for this state.
(b) Compare the kinetic energy implied by �p with (1) the ground-state total energy and (2) the
expectation value of the kinetic energy.

�x � 2A,

8V(x)98x29, 8x9,
8V(x)98x29,
8p29.px

&0(x, t)

8p29A0 � (m�>U�)1>4. 8x298x9 8p29 � 82mE98p9 � 0
�x�p�p � 28p29 � 8p92,�x � 28x29 � 8x92,8p29 8p29 � 82mE982m[E � V(x)]9 8p29 �

8x298x9 >
8x298x9 9�2U2>2mL2.
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6-39. Compute the spacing between adjacent energy levels per unit energy, i.e., �En En , for
the quantum harmonic oscillator and show that the result agrees with Bohr’s correspondence
principle (see Section 4-3) by letting 
6-40. Compute and for (a) the ground state and (b) the first excited state of the
harmonic oscillator.
6-41. The period of a macroscopic pendulum made with a mass of 10 g suspended from a
massless cord 50 cm long is 1.42 s. (a) Compute the ground-state (zero-point) energy. (b) If the
pendulum is set into motion so that the mass raises 0.1 mm above its equilibrium position, what
will be the quantum number of the state? (c) What is the frequency of the motion in (b)?
6-42. Show that the wave functions for the ground state and the first excited state of the simple
harmonic oscillator, given in Equation 6-58, are orthogonal; that is, show that 

Section 6-6 Reflection and Transmission of Waves

6-43. A free particle of mass m with wave number k1 is traveling to the right. At x � 0, the po-
tential jumps from zero to V0 and remains at this value for positive x. (a) If the total energy is

what is the wave number k2 in the region x � 0? Express your answer in
terms of and (b) Calculate the reflection coefficient R at the potential step. (c) What is the
transmission coefficient T? (d) If one million particles with wave number k1 are incident upon
the potential step, how many particles are expected to continue along in the positive x direction?
How does this compare with the classical prediction?
6-44. In Problem 6-43, suppose that the potential jumps from zero to �V0 at x � 0 so that the
free particle speeds up instead of slowing down. The wave number for the incident particle is
again k1 , and the total energy is 2V0 . (a) What is the wave number for the particle in the region
of positive x? (b) Calculate the reflection coefficient R at the potential step. (c) What is the
transmission coefficient T? (d) If one million particles with wave number k1 are incident upon
the potential step, how many particles are expected to continue along in the positive x direction?
How does this compare with the classical prediction?
6-45. In a particular semiconductor device an oxide layer forms a barrier 0.6 nm wide and 9 V high
between two conducting wires. Electrons accelerated through 4 V approach the barrier. (a) What
fraction of the incident electrons will tunnel through the barrier? (b) Through what potential differ-
ence should the electrons be accelerated in order to increase the tunneling fraction by a factor of 2?
6-46. For particles incident on a step potential with E � V0, show that T � 0 using Equation 6-70.
6-47. Derive Equations 6-66 and 6-67 from those that immediately precede them.
6-48. A beam of electrons, each with kinetic energy E � 2.0 eV, is incident on a potential bar-
rier with V0 � 6.5 eV and width 5.0 � 10�10 m. (See Figure 6-26.) What fraction of the elec-
trons in the beam will be transmitted through the barrier?
6-49. A beam of protons, each with kinetic energy 40 MeV, approaches a step potential of 30
MeV. (a) What fraction of the beam is reflected and transmitted? (b) Does your answer change
if the particles are electrons?

Level II

6-50. A proton is in an infinite square well potential given by Equation 6-21 with L � 1 fm.
(a) Find the ground-state energy in MeV. (b) Make an energy-level diagram for this system.
Calculate the wavelength of the photon emitted for the transitions (c) n � 2 to n � 1, (d) n � 3
to n � 2, and (e) n � 3 to n � 1.
6-51. A particle is in the ground state of an infinite square well potential given by Equation 
6-21. Calculate the probability that the particle will be found in the region (a)
(b) and (c)
6-52. (a) Show that for large n, the fractional difference in energy between state n and state
n � 1 for a particle in an infinite square well is given approximately by

(b) What is the approximate percentage energy difference between the states n1 � 1000 and
n2 � 1001? (c) Comment on how this result is related to Bohr’s correspondence principle.

En�1 � En
En

�
2
n

0 � x � 3�4L.0 � x � 1�3L,
0 � x � 1�2L,

V0 .k1

E � U2k2
1>2m � 2V0 ,

� '0(x)'1(x) dx � 0.

8x298x9 nS �.

>
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6-53. Compute the expectation value of the kinetic energy of a particle of mass m moving in
the n � 2 level of a one-dimensional infinite square well of width L.
6-54. A particle of mass m is in an infinite square well potential given by

Since this potential is symmetric about the origin, the probability density must also be
symmetric. (a) Show that this implies that either or (b) Show
that the proper solutions of the time-independent Schrödinger equation can be written

and

(c) Show that the allowed energies are the same as those for the infinite square well given by
Equation 6-24.
6-55. The wave function represents the ground-state energy of a harmonic
oscillator. (a) Show that is also a solution of Schrödinger’s equation.
(b) What is the energy of this new state? (c) From a look at the nodes of this wave function, how
would you classify this excited state?
6-56. For the wave functions

corresponding to an infinite square well of width L, show that

6-57. A 10-eV electron is incident on a potential barrier of height 25 eV and width 1 nm.
(a) Use Equation 6-76 to calculate the order of magnitude of the probability that the electron
will tunnel through the barrier. (b) Repeat your calculation for a width of 0.1 nm.
6-58. A particle of mass m moves in a region in which the potential energy is constant V � V0.
(a) Show that neither nor satisfies the time-
dependent Schrödinger equation. (Hint: If for all values of then C1 and
C2 must be zero.) (b) Show that does
satisfy the time-independent Schrödinger equation providing that k, V0, and are related by
Equation 6-5.

Level III

6-59. A particle of mass m on a table at z � 0 can be described by the potential energy

For some positive value of total energy E, indicate the classically allowed region on a sketch of
V(z) versus z. Sketch also the kinetic energy versus z. The Schrödinger equation for this problem
is quite difficult to solve. Using arguments similar to those in Section 6-3 about the curvature
of a wave function as given by the Schrödinger equation, sketch your “educated guesses” for
the shape of the wave function for the ground state and the first two excited states.

V � �  for z � 0

V � mgz for z � 0

�
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8x29 �
L2

3
�
L2

2n2�2

'(x) � A
2

L
 sin 
n�x

L
  n � 1, 2, 3, Á

'1(x) � L d'0(x)>dx
'0(x) � Ae�x2>2L2

'(x) � A
2

L
 sin 
n�x

L
  n � 2, 4, 6, 8, Á

'(x) � A
2

L
 cos 
n�x

L
  n � 1, 3, 5, 7, Á

'(�x) � �'(x).'(�x) � '(x)
ƒ'(x) ƒ 2

V � �  �L>2 � x

V � 0   �L>2 � x � �L>2V � �  x � �L>2



268 Chapter 6 The Schrödinger Equation

6-60. Use the Schrödinger equation to show that the expectation value of the kinetic energy of
a particle is given by

6-61. An electron in an infinite square well with L � 10�12 m is moving at relativistic speed;
hence, the momentum is not given by p � (2mE) . (a) Use the uncertainty principle to verify
that the speed is relativistic. (b) Derive an expression for the electron’s allowed energy levels and
(c) compute E1. (d) By what fraction does E1 computed in (c) differ from the nonrelativistic E1?
6-62. (a) Derive Equation 6-75. (b) Show that, if Equation 6-76 follows from
Equation 6-75 as an approximation.
6-63. A beam of protons, each with energy E � 20 MeV, is incident on a potential step 40 MeV
high. Graph the relative probability of finding protons at values of x � 0 from x � 0 to x � 5 fm.
(Hint: Take and refer to Example 6-6.)ƒA ƒ 2 � 1

�xW 1,

1>2
8Ek9 � �

��

��

'(x)a�
U2

2m
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dx2
b dx
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In this chapter we will apply quantum theory to atomic systems. For all neutral atoms
except hydrogen, the Schrödinger equation cannot be solved exactly. Despite this, it

is in the realm of atomic physics that the Schrödinger equation has had its greatest
success because the electromagnetic interaction of the electrons with one another and
with the atomic nucleus is well understood. With powerful approximation methods
and high-speed computers, many features of complex atoms, such as their energy lev-
els and the wavelengths and intensities of their spectra, can be calculated, often to
whatever accuracy is desired. The Schrödinger equation for the hydrogen atom was
first solved in Schrödinger’s first paper on quantum mechanics, published in 1926.
This problem is of considerable importance not only because the Schrödinger equa-
tion can be solved exactly in this case, but also because the solutions obtained form
the basis for the approximate solutions for other atoms. We will therefore discuss this
problem in some detail. Although the mathematics that arises in solving the
Schrödinger equation is a bit difficult in a few places, we will be as quantitative as
possible, presenting results without proof and discussing important features of these
results qualitatively only when necessary. Whenever possible, we will give simple
physical arguments to make important results plausible.

7-1 The Schrödinger Equation 

in Three Dimensions
In Chapter 6 we considered motion in just one dimension, but of course the real world
is three-dimensional. Although in many cases the one-dimensional form brings out
the essential physical features, there are some considerations introduced in three-
dimensional problems that we want to examine. In rectangular coordinates, the time-
independent Schrödinger equation is

7-1

The wave function and the potential energy are generally functions of all three coor-
dinates x, y, and z.
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Infinite Square Well in Three Dimensions

Let us consider the three-dimensional version of a particle in a cubical box. The po-
tential energy function V(x, y, z) � 0 for 0 � x � L, 0 � y � L, and 0 � z � L. V is
infinite outside this region. For this problem, the wave function must be zero at the
walls of the box and will be a sine function inside the box. In fact, if we consider just
one coordinate such as x, the solution will be the same as in the one-dimensional box
discussed in Section 6-2. That is, the x dependence of the wave function will be of the
form sin k1x with the restriction where n1 is an integer. The complete wave
function can be written as a product of a function of x only, a function of y
only, and a function of z only.

7-2

where each of the functions is a sine function as in the one-dimensional problem.
For example, if we try the solution

7-3

we find by inserting this function into Equation 7-1 that the energy is given by

which is equivalent to

with and so forth. Using the restrictions on the wave numbers 
from the boundary condition that the wave function be zero at the walls, we obtain for
the total energy

7-4

where n1, n2, and n3 are integers greater than zero, as in Equation 6-24.
Notice that the energy and wave function are characterized by three quantum

numbers, each arising from a boundary condition on one of the coordinates. In this
case the quantum numbers are independent of one another, but in more-general prob-
lems the value of one quantum number may affect the possible values of the others.
For example, as we will see in a moment, in problems such as the hydrogen atom that
have a spherical symmetry, the Schrödinger equation is most readily solved in spher-
ical coordinates r, and The quantum numbers associated with the boundary con-
ditions on these coordinates are interdependent.

The lowest energy state, the ground state for the cubical box, is given by Equation
7-4 with n1 � n2 � n3 � 1. The first excited energy level can be obtained in three differ-
ent ways: either n1 � 2, n2 � n3 � 1 or n2 � 2, n1 � n3 � 1 or n3 � 2, n1 � n2 � 1 since
we see from Equation 7-4 that E211 � E121 � E112. Each has a different wave function.
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(a) (b)

E122 = E212 = E221 = 9E1

E221

L1 < L2 < L3L1 = L2 = L3

E212
E122

E211 = E121 = E112 = 6E1

E111 = 3E1

E211
E121
E112

Figure 7-1 Energy-level diagram for (a) cubic infinite square well potential and (b) noncubic
infinite square well. In the cubic well, the energy levels above the ground state are threefold
degenerate; i.e., there are three wave functions having the same energy. The degeneracy is
removed when the symmetry of the potential is removed, as in (b). The diagram is only schematic,
and none of the levels in (b) necessarily has the same value of the energy as any level in (a).

For example, the wave function for n1 � 2 and n2 � n3 � 1 is of the form

An energy level that has more than one wave function associated with it is said to be
degenerate. In this case there is threefold degeneracy because there are three wave
functions corresponding to the same energy. The degeneracy is related to the
symmetry of the problem, and anything that destroys or breaks the symmetry will
also destroy or remove the degeneracy.1 If, for example, we considered a noncubical
box V � 0 for 0 � x � L1, 0 � y � L2, and 0 � z � L3, the boundary condition at
the walls would lead to the quantum conditions and

and the total energy would be

7-5

Figure 7-1 shows the energy levels for the ground state and first two excited states
when L1 � L2 � L3, for which the excited states are degenerate, and when L1, L2, and
L3 are slightly different, in which case the excited levels are slightly split apart and the
degeneracy is removed.

The Schrödinger Equation in Spherical Coordinates

In the next section we are going to consider another, different potential, that of a real
atom. Assuming the proton to be at rest, we can treat the hydrogen atom as a single
particle, an electron moving with kinetic energy p2 2me and a potential energy V(r)
due to the electrostatic attraction of the proton:

7-6

As in the Bohr theory, we include the atomic number Z, which is 1 for hydrogen, so
we can apply our results to other similar systems, such as ionized helium He�, where
Z � 2. We also note that we can account for the motion of the nucleus by replacing
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Hydrogenlike atoms, those

with a single electron, have

been produced from

elements up to and including

U91�. Highly ionized atomic

beams are used to further

our understanding of

relativistic effects and atomic

structure. Collision of two

completely ionized Au atoms,

each moving at nearly the

speed of light, produced the

“star” of thousands of

particles reproduced on

page 562 in Chapter 12.
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y
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x

P

θ
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r

r sin θ

z = r cos θ

x = r sin θ cos φ

y = r sin θ sin φ

Range of variables

Cartesian
x, y, z: –∞ → +∞

Spherical
r : 0 → +∞
θ: 0 → π
φ: 0 → 2π

Figure 7-2 Geometric
relations between spherical
(polar) and rectangular
coordinates.

the electron mass me by the reduced mass where MN is the
mass of the nucleus. The time-independent Schrödinger equation for a particle of
mass moving in three dimensions is Equation 7-1, with m replaced by 

7-7

Since the potential energy V(r) depends only on the radial distance 
the problem is most conveniently treated in spherical coordinates and These are
related to x, y, and z by

7-8

These relations are shown in Figure 7-2. The transformation of the three-dimensional
Schrödinger equation into spherical coordinates is straightforward but involves much
tedious calculation, which we will omit. The result is

7-9

Despite the formidable appearance of this equation, it was not difficult for
Schrödinger to solve because it is similar to other partial differential equations that
arise in classical physics, and such equations had been thoroughly studied. We will
present the solution of this equation in detail, taking care to point out the origin of the
quantum number associated with each dimension. As was the case with the three-
dimensional square well, the new quantum numbers will arise as a result of boundary
conditions on the solution of the wave equation, Equation 7-9 in this case.

7-2 Quantization of Angular Momentum

and Energy in the Hydrogen Atom
In this section we will solve the time-independent Schrödinger equation for hydrogen
and hydrogenlike atoms. We will see how the quantization of both the energy and the
angular momentum arise as natural consequences of the acceptability conditions on
the wave function (see Section 6-1) and discover the origin and physical meaning of
the quantum numbers n, and m.�,
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The first step in the solution of a partial differential equation such as Equation 7-9 is
to search for separable solutions by writing the wave function as a product
of functions of each single variable. We write

7-10

where R depends only on the radial coordinate r, f depends only on and g depends
only on When this form of is substituted into Equation 7-9, the partial
differential equation can be transformed into three ordinary differential equations, one
for R(r), one for ƒ( ), and one for g( ). Most of the solutions of Equation 7-9 are, of
course, not of this separable product form; however, if enough product solutions of the
form of Equation 7-10 can be found,2 all solutions can be expressed as superpositions
of them. Even so, the separable solutions given by Equation 7-10 turn out to be the
most important ones physically because they correspond to definite values (eigenval-
ues) of energy and angular momentum. When Equation 7-10 is substituted into
Equation 7-9 and the indicated differentiations are performed, we obtain

7-11

since derivatives with respect to r do not affect ƒ( ) and g( ), derivatives with respect to
do not affect R(r) and g( ), and those with respect to do not affect R(r) and ƒ( ).

Separation of the r-dependent functions from the - and -dependent ones is accom-
plished by multiplying Equation 7-11 by and rearranging slightly
to obtain

7-12

Note two points about Equation 7-12: (1) The left side contains only terms that are func-
tions of r, while the right side has only terms depending on and Since the variables
are independent, changes in r cannot change the value of the right side of the equation,
nor can changes in and have any effect on the left side. Thus, the two sides of the
equation must be equal to the same constant, which we will call, with foresight,
(2) The potential is a function only of r so the solution of the right side, the angular part,
of Equation 7-12 will be the same for all potentials that are only functions3 of r.

In view of the second point above, we will first solve the angular equation so that its
results will be available to us as we consider solutions to the r-dependent equation, re-
ferred to usually as the radial equation, for various V(r). Setting the right side of Equation
7-12 equal to multiplying by and rearranging slightly, we obtain

7-13

Once again we see that the two sides of the relation, Equation 7-13, are each a func-
tion of only one of the independent variables hence both sides must be equal to the
same constant, which we will, again with foresight, call �m2. Setting the left side of
Equation 7-13 equal to �m2 and solving for g( ) yields
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The single valued condition on (see Section 6-1) implies that 
which in turn requires that m be a positive or negative integer or zero.

Now letting the right side of Equation 7-13 equal �m2 and solving for ƒ( ), we
obtain (not intended to be obvious; for the detailed solution see Weber and Arfken,
Chapter 11):
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The condition that be finite requires that ƒ( ) be finite at and 
which restricts the values of to zero and positive integers and limits The nota-
tion reflects the link between and m, namely, that each value of has associated
values of m ranging from 0 up to The functions given by Equation 7-15, are
called the associated Legendre functions. The subset of those with is referred to
as the Legendre polynomials.

The product of and which describes the angular dependence of
for all spherically symmetric potentials, forms an often-encountered family

of functions 

7-16

called the spherical harmonics. The first few of these functions, which give the com-
bined angular dependence of the motion of the electron in the hydrogen atom, are
given in Table 7-1. The associated Legendre functions and the Legendre polynomi-
als (m � 0) can, if needed, be easily taken from the same table. (Extended tables of
both functions can be found in Weber and Arfken.) In the following section we will
discover the physical significance of and m.�
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Table 7-1 Spherical harmonics
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Quantization of the Angular Momentum

The definition of the angular momentum L of a mass m moving with velocity v, hence
momentum p, at some location r relative to the origin, given in most introductory
physics textbooks, is

where the momentum p � m(dr dt). In cases where V � V(r), such as the electron in
the hydrogen atom, L is conserved (see Problem 7-15) and the classical motion of the
mass m lies in a fixed plane perpendicular to L, which contains the coordinate origin.
The momentum p has components (in that plane) pr along r and pt perpendicular to r,
as illustrated in Figure 7-3, whose magnitudes are given by

and the magnitude of the conserved (i.e., constant) vector L is

The kinetic energy can be written in terms of these components as

from which the classical total energy E is given by

7-17

Rewriting Equation 7-17 in terms of the “effective” potential 
as is often done, we obtain

7-18

which is identical in form to Equation 6-4, which we used as a basis for our introduc-
tion to the Schrödinger equation.
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Figure 7-3 The orbit of a
classical particle with V � V(r)
lies in a plane perpendicular to L.
The components of the momentum
p parallel and perpendicular to r
are pr and pt, respectively. The
momentum p makes an angle A
with the displacement r.
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Equation 7-17 can be used to write the Schrödinger equation, just as we did in
Chapter 6 by inserting de Broglie’s relation and the appropriate differential operators
in spherical coordinates for and Doing so is a lengthy though not particularly
difficult exercise whose details we will omit here. For the operator turns out to be

7-19

which, divided by and operating on you recognize as the first term (kinetic en-
ergy) of the Schrödinger equation in spherical coordinates (Equation 7-9). Similarly,
the operator for L2 turns out to be

7-20

which, divided by and operating on is the second term of the Schrödinger
equation in spherical coordinates (Equation 7-9). The right side of Equation 7-12,
which equals can now be written as follows when multiplied by 
remembering that 

7-21a

or

7-21b

or, since 

7-21c

Thus, we have the very important result that, for all potentials where V � V(r), the an-
gular momentum is quantized and its allowed magnitudes (eigenvalues) are given by

7-22

where is referred to as the angular momentum quantum number or the orbital quan-
tum number.

In addition, if we use the same substitution method on the z component of 
we find that the z component of the angular momentum is also quantized and its al-
lowed values are given by
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The physical significance of Equation 7-23 is that the angular momentum L,
whose magnitude is quantized with values can only point in those
directions in space such that the projection of L on the z axis is one or another of
the values given by Thus, L is also space quantized. The quantum number m is
referred to as the magnetic quantum number. (Why “magnetic”? See Section 7-4.)
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Figure 7-4 shows a diagram, called the vector model of the atom, illustrating the
possible orientations of the angular momentum vector. Note the perhaps unexpected re-
sult that the angular momentum vector never points in the z direction, since the maxi-
mum z component is always less than the magnitude This is a con-
sequence of the uncertainty principle for angular momentum (which we will not derive)
that implies that no two components of angular momentum can be precisely known
simultaneously,4 except in the case of zero angular momentum. It is worth noting that
for a given value of there are possible values of m, ranging from to in
integral steps. Operators for Lx and Ly can also be obtained by the substitution method;
however, operating with them on does not produce eigenvalues. This is mainly be-
cause specifying rotation about the x and y axes requires measurement of both and �.�

'

����2� � 1�

1�(� � 1)U.mU
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L = l (l + 1) = = 2(2 + 1) 6
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–2

0

Figure 7-4 Vector model
illustrating the possible
orientations of L in space
and the possible values of Lz
for the case where � 2.�

EXAMPLE 7-1 Quantized Values of L If a system has angular momentum character-
ized by the quantum number what are the possible values of Lz, what is the
magnitude L, and what is the smallest possible angle between L and the z axis?

SOLUTION

� � 2,

1. The possible values of Lz are
given by Equation 7-23:

Lz � mU

2. The values of m for are� � 2 m � 0, �1, �2

3. Thus, allowed values of Lz are Lz � �2U, �1U, 0, U, 2U

4. The magnitude of L is given
by Equation 7-22. For � � 2

ƒL ƒ � 2�(� � 1)U � 26U � 2.45U

5. From Figure 7-4 the angle 
between L and the z axis is
given by:
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Quantization of the Energy

The results discussed so far apply to any system that is spherically symmetric, that is,
one for which the potential energy depends on r only. The solution of the radial equa-
tion for R(r), on the other hand, depends on the detailed form of V(r). The new quan-
tum number associated with the coordinate r is called the principal quantum number n.
This quantum number, as we will see, is related to the energy in the hydrogen atom.
Figure 7-5 shows a sketch of the potential energy function of Equation 7-6. If the total
energy is positive, the electron is not bound to the atom. We are interested here only
in bound-state solutions, for which the values of E are negative. For this case, the po-
tential energy function becomes greater than E for large r, as shown in the figure. As
we have discussed previously, for bound systems only certain values of the energy E
lead to well-behaved solutions. These values are found by solving the radial equation,
which is formed by equating the left side of Equation 7-12 to the constant 
For V(r) of the hydrogen atom, given by Equation 7-6, the radial equation is

7-24

The radial equation can be solved using standard methods of differential equations
whose details we will omit here, except to note that (1) we expect a link to appear
between the principal quantum number n and the angular momentum quantum
number (since the latter already appears in Equation 7-24) and (2) in order that
the solutions of Equation 7-24 be well behaved, only certain values of the energy
are allowed, just as we discovered for the square well and the harmonic oscillator.
The allowed values of E are given by
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r

E´

E

Energy

0

V(r ) = – kZe2
––––

r

Figure 7-5 Potential energy of an electron in a hydrogen atom. If the total energy is greater
than zero, as E�, the electron is not bound and the energy is not quantized. If the total energy is
less than zero, as E, the electron is bound. Then, as in one-dimensional problems, only certain
discrete values of the total energy lead to well-behaved wave functions.
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where and the principal quantum number n can take
on the values n � 1, 2, 3, . . ., with the further restriction that n must be greater than 
These energy values are identical to those found from the Bohr model. The radial func-
tions resulting from the solution of Equation 7-24 for hydrogen are given by Equation
7-26, where the are standard functions called Laguerre polynomials.

7-26

and the Bohr radius The radial functions for n � 1, 2, and 3 are
given in Table 7-2. (For a detailed solution of Equation 7-24 and an extended table of
Laguerre polynomials, see Weber and Arfken, Chapter 13.)

Summary of the Quantum Numbers

The allowed values of and restrictions on the quantum numbers n, and m associated
with the variables and are summarized as follows:

7-27

The fact that the energy of the hydrogen atom depends only on the principal quantum
number n and not on is a peculiarity of the inverse-square force. It is related to the re-
sult in classical mechanics that the energy of a mass moving in an elliptical orbit in an
inverse-square force field depends only on the major axis of the orbit and not on the ec-
centricity. The largest value of angular momentum ( � n � 1) corresponds most nearly
to a circular orbit, whereas a small value of corresponds to a highly eccentric orbit.
(Zero angular momentum corresponds to oscillation along a line through the force
center, i.e., through the nucleus, in the case of the hydrogen atom.) For central forces
that do not obey an inverse-square law, the energy does depend on the angular momen-
tum (both classically and quantum mechanically) and thus depends on both n and �.
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Table 7-2 Radial functions for hydrogen
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The quantum number m is related to the z component of angular momentum.
Since there is no preferred direction for the z axis for any central force, the energy can-
not depend on m. We will see later that if we place an atom in an external magnetic
field, there is a preferred direction in space (the direction of the field) and the energy
then does depend on the value of m. (This effect, called the Zeeman effect, is dis-
cussed in a More section on the Web site. See page 303.)

Figure 7-6 shows an energy-level diagram for hydrogen. This diagram is similar
to Figure 4-16a except that states with the same n but different are shown separately.
These states are referred to by giving the value of n along with a code letter: S stands
for � 0, P for � 1, D for � 2, and F for � 3. These code letters are remnants
of the spectroscopist’s descriptions of various series of spectral lines as Sharp,
Principal, Diffuse, and Fundamental. (For values of greater than 3, the letters follow
alphabetically; thus G for � 4, etc.) The allowed electric dipole transitions between
energy levels obey the selection rules

7-28

That the quantum number of the atom must change by �1 when the atom emits or
absorbs a photon results from conservation of angular momentum and the fact that the
photon itself has an intrinsic angular momentum of 1 For the principal quantum
number, �n is unrestricted.

U.
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Figure 7-6 Energy-level diagram for the
hydrogen atom, showing transitions
obeying the selection rule � � �1.
States with the same n value but different

value have the same energy, �E1 n2,
where E1 � 13.6 eV, as in the Bohr theory.
The wavelengths of the Lyman

and Balmer
lines are shown in nm.
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Questions

1. Why wasn’t quantization of angular momentum noticed in classical physics?

2. What are the similarities and differences between the quantization of angular
momentum in the Schrödinger theory and in the Bohr model?

3. Why doesn’t the energy of the hydrogen atom depend on ? Why doesn’t it
depend on m?

7-3 The Hydrogen Atom Wave Functions
The wave functions satisfying the Schrödinger equation for the hydro-
gen atom are rather complicated functions of and In this section we will
write some of these functions and display some of their more important features
graphically.

As we have seen, the dependence of the wave function, given by Equation 
7-14, is simply The dependence is described by the associated Legendre func-
tions given by Equation 7-15. The complete angular dependence is then given
by the spherical harmonic functions the product of and as
indicated by Equation 7-16 and, for the first few, tabulated in Table 7-1. The solu-
tions to the radial equation are of the form indicated by Equation 7-26 and are
listed in Table 7-2 for the three lowest values of the principal quantum number n.
Referring to Equation 7-10, our assumed product solutions of the time-independent
Schrödinger equation, we have that the complete wave function of the hydrogen
atom is

7-29

where is a constant determined by the normalization condition.
We see from the form of this expression that the complete wave function depends

on the quantum numbers n, and m that arose because of the boundary conditions
on R(r), ƒ( ), and g( ). The energy, however, depends only on the value of n.
From Equation 7-27 we see that for any value of n, there are n possible values of

and for each value of there are 2 � 1 possible values
of ). Except for the lowest energy level (for which n � 1
and therefore and m can only be zero) there are generally many different wave func-
tions corresponding to the same energy. As discussed in the previous section, the ori-
gins of this degeneracy are the 1 r dependence of the potential energy and the fact
that there is no preferred direction in space.

The Ground State

Let us examine the wave functions for several particular states beginning with
the lowest-energy level, the ground state, which has n � 1. Then and m must both
be zero. The Laguerre polynomial l10 in Equation 7-26 is equal to 1, and the wave
function is
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The angular dependence of

the electron probability

distributions is critical to our

understanding of the

bonding of atoms into

molecules and solids (see

Chapters 9 and 10).
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The constant C100 is determined by normalization:

using for the volume element in spherical coordinates (see Figure 7-7)

Because for this state is spherically symmetric, the integration over angles gives
Carrying out the integration over r gives5
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The probability of finding the electron in the volume is 
The probability density is illustrated in Figure 7-8. The probability density

for the ground state is maximum at the origin. It is often of more interest to determine
the probability of finding the electron in a spherical shell between r and r � dr.
This probability, P(r)dr, is just the probability density times the volume of the
spherical shell of thickness dr:

7-32

Figure 7-9 shows a sketch of P(r) versus It is left as a problem (see Problem 
7-21) to show that P(r) has its maximum value at In contrast to the Bohr
model for hydrogen, in which the electron stays in a well-defined orbit at r � a0, we
see that it is possible for the electron to be found at any distance from the nucleus.
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Figure 7-7 Volume element in spherical coordinates.d�
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⎪ψ100⎪2
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r /a0

(a) (b)

Figure 7-8 Probability density for the ground state in hydrogen. The quantity 
can be thought of as the electron charge density in the atom. (a) The density is spherically
symmetric, is greatest at the origin, and decreases exponentially with r. This computer-
generated plot was made by making hundreds of “searches” for the hydrogen electron in 
the x-z plane (i.e., for ), recording each finding with a dot. (b) The more conventional
graph of the probability density vs. Compare the two graphs carefully. 
[This computer-generated plot courtesy of Paul Doherty, The Exploratorium.]
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� � 0

e'*''*'

However, the most probable distance is a0, and the chance of finding the electron at a
much different distance is small. It is useful to think of the electron as a charged cloud
of charge density (We must remember, though, that the electron is always
observed as one charge.) Note that the angular momentum in the ground state is zero,
contrary to the Bohr model assumption of 1 

The Excited States

In the first excited state, n � 2 and can be either 0 or 1. For � 0, m � 0, and again
we have a spherically symmetric wave function, given by
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For � 1, m can be �1, 0, or �1. The corresponding wave functions are (see Tables
7-1 and 7-2)
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Figure 7-10a shows P(r) for these wave functions. The distribution for n � 2, � 1
is maximum at the radius of the second Bohr orbit,

while for n � 2 and � 0, P(r) has two maxima, the larger of which is near this radius.
Radial probability distributions can be obtained in the same way for the other ex-

cited states of hydrogen. For example, those for the second excited state n � 3 are
shown in Figure 7-10b. The main radial dependence of P(r) is contained in the factor

except near the origin. A detailed examination of the Laguerre polynomials
shows that as r S 0. Thus, for a given n, is greatest near the origin when

is small.
An important feature of these wave functions is that for � 0, the probability

densities are spherically symmetric, whereas for � 0, they depend on the angle 
The probability density plots of Figure 7-11 illustrate this result for the first excited
state n � 2. These angular distributions of the electron charge density depend only on
the value of and not on the radial part of the wave function. Similar charge distrib-
utions for the valence electrons in more complicated atoms play an important role in
the chemistry of molecular bonding.

Question

4. At what value of r is maximum for the ground state of hydrogen? Why is
P(r) maximum at a different value of r?

'*'
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Figure 7-10 (a) Radial
probability density P(r) vs. 
r a0 for the n � 2 states in
hydrogen. P(r) for � 1 has
a maximum at the Bohr value
22a0. For � 0, there is a
maximum near this value and
a smaller submaximum near
the origin. The markers on
the r a0 axis denote the
values of (b) P(r) vs.
r a0 for the n � 3 states in
hydrogen.
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z

n = 2
l = 0

m = 0
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n = 2
l = 1

m = 0

z

 n = 2
 l = 1
m = ±1

Figure 7-11 Probability densities for the n � 2 states in hydrogen. The probability is
spherically symmetric for � 0. It is proportional to for � 1, m � 0, and to for

� 1, m � �1. The probability densities have rotational symmetry about the z axis. Thus, the
three-dimensional charge density for the � 1, m � 0 state is shaped roughly like a dumbbell,
while that for the � 1, m � �1 states resembles a doughnut, or toroid. The shapes of these
distributions are typical for all atoms in S states ( � 0) and P states ( � 1) and play an
important role in molecular bonding. [This computer-generated plot courtesy of Paul Doherty,
The Exploratorium.]
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7-4 Electron Spin
As was mentioned in Chapter 4, when a spectral line of hydrogen or other atoms is
viewed with high resolution, it shows a fine structure; that is, it is seen to consist of
two or more closely spaced lines. As we noted then, Sommerfeld’s relativistic calcu-
lation based on the Bohr model agrees with the experimental measurements of this
fine structure for hydrogen, but the agreement turned out to be accidental since his cal-
culation predicts fewer lines than are seen for other atoms. In order to explain fine
structure and to clear up a major difficulty with the quantum-mechanical explanation
of the periodic table (Section 7-6), W. Pauli6 in 1925 suggested that in addition to the
quantum numbers n, and m, the electron has a fourth quantum number, which could
take on just two values.

As we have seen, quantum numbers arise from boundary conditions on some co-
ordinate (see Equations 7-14 and 7-15). Pauli originally expected that the fourth quan-
tum number would be associated with the time coordinate in a relativistic theory, but
this idea was not pursued. In the same year, S. Goudsmit and G. Uhlenbeck,7 gradu-
ate students at Leiden, suggested that this fourth quantum number was the z compo-
nent, ms, of an intrinsic angular momentum of the electron, euphemistically called
spin. They represented the spin vector S with the same form that Schrödinger’s wave
mechanics gave for L:

7-36ƒS ƒ � S � 2s(s � 1)U
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Figure 7-12 A particle
moving in a circle has
angular momentum L. If the
particle has a positive charge,
the magnetic moment due to
the current is parallel to L.
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Since this intrinsic spin angular momentum is described by a quantum number s
like the orbital angular momentum quantum number we expect 2s � 1 possible
values of the z component just as there are 2 � 1 possible z components of the
orbital angular momentum If ms is to have only two values, as Pauli had sug-
gested, then s could only be and ms only In addition to explaining fine struc-
ture and the periodic table, this proposal of electron spin explained the unexpected
results of an interesting experiment that had been preformed by O. Stern and 
W. Gerlach in 1922, which is described briefly in an Exploring section later on
(see pages 288–289). To understand why the electron spin results in the splitting of
the energy levels needed to account for the fine structure, we must consider the con-
nection between the angular momentum and the magnetic moment of any charged
particle system.

Magnetic Moment

If a system of charged particles is rotating, it has a magnetic moment proportional to
its angular momentum. This result is sometimes known as the Larmor theorem.
Consider a particle of mass M and charge q moving in a circle of radius r with speed
v and frequency this constitutes a current loop. The angular momentum
of the particle is L � Mvr. The magnetic moment of the current loop is the product of
the current and the area of the loop. For a circulating charge, the current is the charge
times the frequency,

7-37

and the magnetic moment is8

7-38

From Figure 7-12 we see that, if q is positive, the magnetic moment is in the same di-
rection as the angular momentum. If q is negative, and L point in opposite directions;
i.e., they are antiparallel. This enables us to write Equation 7-38 as a vector equation:

7-39

Equation 7-39, which we have derived for a single particle moving in a circle, also
holds for a system of particles in any type of motion if the charge-to-mass ratio q M
is the same for each particle in the system.

Applying this result to the orbital motion of the electron in the hydrogen atom and
substituting the magnitude of L from Equation 7-22, we have for the magnitude of 

7-40

and, from Equation 7-23, a z component of
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Figure 7-13 Bar-magnet
model of magnetic moment.
(a) In an external magnetic
field, the moment experiences
a torque that tends to align it
with the field. If the magnet is
spinning (b), the torque
causes the system to precess
around the external field.
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where me is the mass of the electron, is the z component of the angular momen-
tum, and is a natural unit of magnetic moment called the Bohr magneton, which
has the value

7-42

The proportionality between and L is a general property of rotating charge dis-
tributions; however, the particular relation expressed by Equation 7-39 is for a single
charge q rotating in a circle. To allow the same mathematical form to be used for other,
more complicated situations, it is customary to express the magnetic moment in terms
of and a dimensionless quantity g called the gyromagnetic ratio, or simply the g
factor, where the value of g is determined by the details of the charge distribution.
In the case of the orbital angular momentum L of the electron, gL � 1 and Equation
7-39 would be written

7-43

and Equations 7-40 and 7-41 as

7-44

7-45

There are minus signs in Equations 7-43 and 7-45 because the electron has a negative
charge. The magnetic moment and the angular momentum vectors associated with the
orbital motion are therefore oppositely directed, and we see that quantization of
angular momentum implies quantization of magnetic moments. Other magnetic
moments and g factors that we will encounter will have the same form.

Finally, the behavior of a system with a magnetic moment in a magnetic field can
be visualized by considering a small bar magnet (Figure 7-13). When placed in an ex-
ternal magnetic field B there is a torque that tends to align the magnet
with the field B. If the magnet is spinning about its axis, the effect of the torque is to
make the spin axis precess about the direction of the external field, just as a spinning
top or gyroscope precesses about the direction of the gravitational field.

To change the orientation of the magnet relative to the applied field direction
(whether or not it is spinning), work must be done on it. If it moves through angle 
the work required is

The potential energy of the magnetic moment in the magnetic field B can thus
be written

7-46

If B is in the z direction, the potential energy is

7-47U � �	zB
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Applying these arguments to the intrinsic spin of the electron results in the pre-
dictions (with )

7-48

Since the atomic electron is in a magnetic field arising from the apparent motion of
the nuclear charge around the electron, the two values of ms correspond to two differ-
ent energies, according to Equation 7-47. It is this splitting of the energy levels that
results in the fine structure of the spectral lines.

The restriction of the spin, and hence the intrinsic magnetic moment, to two
orientations in space with is another example of space quantization. The
magnitude of the magnetic moment due to the spin angular momentum can be deter-
mined from quantitative measurement of the deflection of the beam in a Stern-Gerlach
experiment. The result is not Bohr magneton, as predicted by Equation 7-41
with but twice this value. (This type of experiment is not an accurate
way to measure magnetic moments, although the measurement of angular momentum
this way is accurate because that involves simply counting the number of lines.) 
The g factor for the electron, gs in Equation 7-49, has been precisely measured to be
gs � 2.002319.

7-49

This result, and the fact that s is a half integer rather than an integer like the orbital
quantum number makes it clear that the classical model of the electron as a spin-
ning ball is not to be taken literally. Like the Bohr model of the atom, the classical
picture is useful in describing results of quantum-mechanical calculations, and it
often gives useful guidelines as to what to expect from an experiment. The phenom-
enon of spin, while not a part of Schrödinger’s wave mechanics, is included in the
relativistic wave mechanics formulated by Dirac. In its nonrelativistic limit, Dirac’s
wave equation predicts gs � 2, which is approximately correct. The exact value of gs
is correctly predicted by quantum electrodynamics (QED), the relativistic quantum
theory that describes the interaction of electrons with electromagnetic fields.
Although beyond the scope of our discussions, QED is arguably the most precisely
tested theory in physics.

EXPLORING

Stern-Gerlach Experiment

If a magnetic moment is placed in an inhomogeneous external magnetic field B,
the will feel an external force that depends on and the gradient of B. This is be-
cause the force F is the negative gradient of the potential, so

7-50

from Equation 7-46. If we arrange the inhomogeneous B field so that it is homogeneous
in the x and y directions, then the gradient has only � 0 and F has only a z com-
ponent, i.e.,
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This effect was used by Stern and Gerlach9 in 1922
(before spin) to measure the possible orientations in
space, i.e., the space quantization, of the magnetic
moments of silver atoms. The experiment was re-
peated in 1927 (after spin) by Phipps and Taylor
using hydrogen atoms.

The experimental setup is shown in Figure 
7-14. Atoms from an oven are collimated and sent
through a magnet whose poles are shaped so that the
magnetic field Bz increases slightly with z, while Bx
and By are constant in the x and y directions,
respectively. The atoms then strike a collector plate.
Figure 7-15 illustrates the effect of the dB dz on sev-
eral magnetic moments of different orientations.
In addition to the torque, which merely causes the
magnetic moment to precess about the field direc-
tion, there is the force Fz in the positive or negative z direction, depending on whether

is positive or negative, since dB dz is always positive. This force deflects the mag-
netic moment up or down by an amount that depends on the magnitudes of both dB dz
and the z component of the magnetic moment Classically, one would expect a con-
tinuum of possible orientations of the magnetic moments. However, since the magnetic
moment is proportional to L, which is quantized, quantum mechanics predicts that 
also can have only the 2 � 1 values corresponding to the 2 � 1 possible values of m.
We therefore expect 2 � 1 deflections (counting 0 as a deflection). For example,
for � 0 there should be one line on the collector plate corresponding to no deflection,
and for � 1 there should be three lines corresponding to the three values m � �1,
m � 0, and m � �1. The � 1 case is illustrated in Figure 7-15.�
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Figure 7-14 In the Stern-
Gerlach experiment, atoms
from an oven are collimated,
passed through an
inhomogeneous magnetic
field, and detected on a
collector plate.
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Figure 7-15 (a) In an inhomogeneous magnetic field the magnetic moment experiences a force whose direction
depends on the direction of the z component of and whose magnitude depends on those of and dB dz. The beam
from an oven (not shown) is collimated into a horizontal line. (b) The pattern for the � l case illustrated in (a). The three
images join at the edges and have different detailed shapes due to differences in the field inhomogeneity. (c) The pattern
observed for silver and hydrogen.
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Using neutral silver atoms, Stern and Gerlach expected to see only a single line, the
middle line in Figure 7-15b, because the ground state of silver was known to be an � 0
state; therefore, m � 0 and � 0. The force Fz would then be zero, and no deflection
of the atomic beam should occur. However, when the experiment was done with either
silver or hydrogen atoms, there were two lines, as shown in Figure 7-15c. Since the
ground state of hydrogen also has � 0, we should again expect only one line, were it
not for the electron spin. If the electron has spin angular momentum of magnitude

where the z component can be either or Since
the orbital angular momentum is zero, the total internal angular momentum of the atom
is simply the spin10 and two lines would be expected. Stern and Gerlach had made the
first direct observation of electron spin and space quantization.

The Complete Hydrogen Atom Wave Functions

Our description of the hydrogen atom wave functions in Section 7-3 is not complete
because we did not include the spin of the electron. The hydrogen atom wave functions
are also characterized by the spin quantum number ms, which can be or (We
need not include the quantum number s because it always has the value s � ) A general
wave function is then written where we have included the subscript on m/ to
distinguish it from ms. There are now two wave functions for the ground state of the
hydrogen atom, and corresponding to an atom with its electron spin
“parallel” or “antiparallel” to the z axis (as defined, for example, by a external mag-
netic field). In general, the ground state of a hydrogen atom is a linear combination of
these wave functions:

The probability of measuring (for example, by observing to which spot
the atom goes in the Stern-Gerlach experiment) is Unless atoms have been
preselected in some way (such as by passing them through a previous inhomogeneous
magnetic field or by their having recently emitted a photon), and will each
be so that measuring the spin “up” and measuring the spin “down”

are equally likely.

Questions

5. Does a system have to have a net charge to have a magnetic moment?

6. Consider the two beams of hydrogen atoms emerging from the magnetic field in
the Stern-Gerlach experiment. How does the wave function for an atom in one
beam differ from that of an atom in the other beam? How does it differ from the
wave function for an atom in the incoming beam before passing through the
magnetic field?
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Photographs made by Stern
and Gerlach with an atomic
beam of silver atoms.
(a) When the magnetic field
is zero, all atoms strike in a
single, undeviated line.
(b) When the magnetic field
is nonzero, the atoms strike in
upper and lower lines, curved
due to differing inhomo-
geneities. [From O. Stern 
and W. Gerlach, Zeitschr. 
f. Physik 9, 349 (1922).]
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7-5 Total Angular Momentum and 

the Spin-Orbit Effect
In general, an electron in an atom has both orbital angular momentum characterized
by the quantum number and spin angular momentum characterized by the quantum
number s. Analogous classical systems that have two kinds of angular momentum are
Earth, which is spinning about its axis of rotation in addition to revolving about the
Sun, or a precessing gyroscope, which has angular momentum of precession in addi-
tion to its spin. Classically the total angular momentum

7-52

is an important quantity because the resultant torque on a system equals the rate of
change of the total angular momentum, and in the case of central forces, the total an-
gular momentum is conserved. For a classical system, the magnitude of the total an-
gular momentum J can have any value between L � S and We have already
seen that in quantum mechanics, angular momentum is more complicated: both L and
S are quantized and their relative directions are restricted. The quantum-mechanical
rules for combining orbital and spin angular momenta or any two angular momenta
(such as for two particles) are somewhat difficult to derive, but they are not difficult
to understand. For the case of orbital and spin angular momenta, the magnitude of the
total angular momentum J is given by

7-53

where the total angular momentum quantum number j can be either

7-54

and the z component of J is given by

7-55

(If � 0, the total angular momentum is simply the spin, and j � s.) Figure 
7-16a is a simplified vector model illustrating the two possible combinations

and for the case of an electron with � 1. The lengths
of the vectors are proportional to and The
spin and orbital angular momentum vectors are said to be “parallel” when 
and “antiparallel” when A quantum mechanically more accurate vector
addition is shown in Figure 7-16b. The quantum number mj can take on 2j � 1 possi-
ble values in integer steps between �j and �j, as indicated by Equation 7-55.
Equation 7-55 also implies that mj � m/ � ms since Jz � Lz � Sz.

Equation 7-54 is a special case of a more-general rule for combining two angular
momenta that is useful when dealing with more than one particle. For example,
there are two electrons in the helium atom, each with spin, orbital, and total angular
momentum. The general rule is

If J
1

is one angular momentum (orbital, spin, or a combination) and J
2

is an-

other, the resulting total angular momentum J � J
1

� J
2
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EXAMPLE 7-2 Addition of Angular Momenta I Two electrons each have zero or-
bital angular momentum. What are the possible quantum numbers for the total an-
gular momentum of the two-electron system? (For example, these could be the He
atom electrons in any of the S states.)

SOLUTION

In this case The general rule then gives two possible results, j � 1 and
j � 0. These combinations are commonly called parallel and antiparallel, respectively.

EXAMPLE 7-3 Addition of Angular Momenta II An electron in an atom has orbital
angular momentum L1 with quantum number 1 � 2, and a second electron has
orbital angular momentum L2 with quantum number 2 � 3. What are the possible
quantum numbers for the total orbital angular momentum L � L1 � L2?

SOLUTION

Since 1 � 2 � 5 and the possible values of are 5, 4, 3, 2, and 1.

Spectroscopic Notation

Spectroscopic notation, a kind of shorthand developed in the early days of spec-
troscopy to condense information and simplify the description of transitions between
states, has since been adopted for general use in atomic, molecular, nuclear, and
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Figure 7-16 (a) Simplified vector model illustrating the addition of orbital and spin angular
momenta. The case shown is for � 1 and There are two possible values of the
quantum number for the total angular momentum: j � � s � and
(b) Vector addition of the orbital and spin angular momenta, also for the case � 1 and 

According to the uncertainty principle, the vectors can lie anywhere on the cones,
corresponding to the definite values of their z components. Note in the middle sketch that there
are two ways of forming the states with and j � 1
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particle physics. The notation code appears to be arbitrary,11 but it is easy to learn and,
as you will discover, convenient to use. For single electrons we have:

1. For single-electron states the letter code s p d f g h . . . is used in one-to-one
correspondence with the values of the orbital angular momentum quantum
number : 0 1 2 3 4 5. . . . For example, an electron with � 2 is said to be a 
d electron or in a d state.

2. The single-electron (Bohr) energy levels are called shells, labeled K L M N O . . .
in one-to-one correspondence with the values of the principal quantum number n:
1 2 3 4 5. . . . For example, an electron with n � 3 in an atom is said to be in the
M shell. (This notation is less commonly used.)

For atomic states that may contain one or more electrons, the notation includes
the principal quantum number and the angular momenta quantum numbers. The total
orbital angular momentum quantum number is denoted by a capital letter in the same
sequence as in rule 1 above, i.e., S P D F . . . correspond to values 0 1 2 3. . . . The
value of n is written as a prefix and the value of the total angular momentum quantum
number j by a subscript. The magnitude of the total spin quantum number s appears
as a left superscript in the form 2s � 1.12 Thus, a state with � 1, a P state, would be
written as

For example, the ground state of the hydrogen atom (n � 1, � 0, s � 1 2) is 
written read “one doublet S one-half.” The n � 2 state can have � 0 or 

� 1, so the spectroscopic notation for these states is and 
(The principal quantum number and spin superscript are sometimes not included if
they are not needed in specific situations.)

Spin-Orbit Coupling

Atomic states with the same n and values but different j values have slightly differ-
ent energies because of the interaction of the spin of the electron with its orbital mo-
tion. This is called the spin-orbit effect. The resulting splitting of the spectral lines
such as the one that results from the splitting of the 2P level in the transition 2P S 1S
in hydrogen is called fine-structure splitting. We can understand the spin-orbit effect
qualitatively from a simple Bohr model picture, as shown in Figure 7-17. In this pic-
ture, the electron moves in a circular orbit with speed v around a fixed proton. In the
figure, the orbital angular momentum L is up. In the frame of reference of the elec-
tron, the proton moves in a circle around it, thus constituting a circular loop current
that produces a magnetic field B at the position of the electron. The direction of B is
also up, parallel to L. Recall that the potential energy of a magnetic moment in a mag-
netic field depends on its orientation relative to the field direction and is given by

7-56

The potential energy is lowest when the magnetic moment is parallel to B and highest
when it is antiparallel. Since the intrinsic magnetic moment of the electron is directed
opposite to its spin (because the electron has a negative charge), the spin-orbit energy
is highest when the spin is parallel to B and thus to L. The energy of the state in2P3>2

U � �� # B � �	zB

�
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Figure 7-17 (a) An electron
moving about a proton with
angular momentum L up.
(b) The magnetic field B seen
by the electron due to the
apparent (relative) motion of
the proton is also up. When
the electron spin is parallel to
L, the magnetic moment is
antiparallel to L and B, so the
spin-orbit energy has its
largest value.
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hydrogen, in which L and S are parallel, is therefore slightly higher than the state,
in which L and S are antiparallel (Figure 7-18).13 The measured splitting is about
4.5 � 10�5 eV for the and levels in hydrogen. For other atoms, the fine-
structure splitting is larger than this. For example, for sodium it is about 2 � 10�3 eV,
as will be discussed in Section 7-7. Recalling that transitions resulting in spectral lines
in the visible region are of the order of 1.5 to 3.0 eV, you can see that the fine-structure
splitting is quite small.

2P3>22P1>2
2P1>2

2P1/2

2P

1S

2P3/2

ΔU

ΔU = 2μB

+ μB

– μB

B L S

B L μ

μ

S

Figure 7-18 Fine-structure energy-level diagram.
On the left, the levels in the absence of a magnetic field
are shown. The effect of the magnetic field due to the
relative motion of the nucleus is shown on the right.
Because of the spin-orbit interaction, the magnetic field
splits the 2P level into two energy levels, with the

level having slightly greater energy than the
level. The spectral line due to the transition

2P S 1S is therefore split into two lines of slightly
different wavelengths. (Diagram is not to scale.)

j � 1
2

j � 3
2

1. The energy of the 2p electrons is shifted in
the presence of a magnetic field 
by an amount given by Equation 7-56:

U � �� # B � �	zB

2. U is positive or negative depending on the
relative orientation of and B,
so the total energy difference �E between
the two levels is:

�
¢E � 2U � 2	zB

3. Since the magnetic moment of the electron
is and	B , 	z � 	B

¢E � 2	BB

4. Solving this for B substituting for and
the energy splitting gives¢E

	B

� 0.39 T

�
4.5 � 10�5 eV

(2)(5.79 � 10�5 eV>T)

B �
¢E
2	B

EXAMPLE 7-4 Fine-Structure Splitting The fine-structure splitting of the and
levels in hydrogen is 4.5 � 10�5 eV. From this, estimate the magnetic field

that the 2p electron in hydrogen experiences. Assume B is parallel to the z axis.

SOLUTION

2P1>2 2P3>2

Remarks: This is a substantial magnetic field, nearly 10,000 times Earth’s aver-
age magnetic field.
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When an atom is placed in an external magnetic field B, the total angular mo-
mentum J is quantized in space relative to the direction of B and the energy of the
atomic state characterized by the angular momentum quantum number j is split into
2j � 1 energy levels corresponding to the 2j � 1 possible values of the z component
of J and therefore to the 2j � 1 possible values of the z component of the total mag-
netic moment. This splitting of the energy levels in the atom gives rise to a splitting
of the spectral lines emitted by the atom. The splitting of the spectral lines of an atom
placed in an external magnetic field was discovered by P. Zeeman and is known as the
Zeeman effect. (See the second More section on page 303 and Section 3-1.) Zeeman
and Lorentz shared the Nobel Prize in Physics for the discovery and explanation of the
Zeeman effect.

7-6 The Schrödinger Equation 

for Two (or More) Particles
Our discussion of quantum mechanics so far has been limited to situations in which a
single particle moves in some force field characterized by a potential energy function
V. The most important physical problem of this type is the hydrogen atom, in which
a single electron moves in the Coulomb potential of the proton nucleus. This problem
is actually a two-body problem, as the proton also moves in the Coulomb potential of
the electron. However, as in classical mechanics, we can treat this as a one-body prob-
lem by considering the proton to be at rest and replacing the electron mass with the
reduced mass. When we consider more complicated atoms we must face the problem
of applying quantum mechanics to two or more electrons moving in an external field.
Such problems are complicated by the interaction of the electrons with each other and
also by the fact that the electrons are identical.

The interaction of the electrons with each other is electromagnetic and essentially
the same as that expected classically for two charged particles. The Schrödinger
equation for an atom with two or more electrons cannot be solved exactly, and
approximation methods must be used. This is not very different from the situation in
classical problems with three or more particles. The complication arising from the
identity of electrons is purely quantum mechanical and has no classical counterpart.

The indistinguishability of identical particles has important consequences related
to the Pauli exclusion principle. We will illustrate the origin of this important princi-
ple in this section by considering the simple case of two noninteracting identical par-
ticles in a one-dimensional infinite square well.

The time-independent Schrödinger equation for two particles of mass m is

7-57

where x1 and x2 are the coordinates of the two particles. If the particles are interacting,
the potential energy V contains terms with both x1 and x2, which cannot usually be sep-
arated. For example, if the particles are charged, their mutual electrostatic potential en-
ergy (in one dimension) is If they do not interact, however, we can
write V as V1(x1) � V2(x2). For the case of an infinite square well potential, we need
solve the Schrödinger equation only inside the well where V � 0 and require the wave
function to be zero at the walls of the well. Solutions of Equation 7-57 can be written
as products of single-particle solutions and linear combinations of such solutions.

�ke2> ƒx2 � x1 ƒ .

�
U2

2m

$2'(x1 , x2)

$x2
1

�
U2

2m

$2'(x1 , x2)

$x2
2

� V'(x1 , x2) � E'(x1 , x2)
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The single-particle product solutions are

7-58

where and are the single-particle wave functions for an infinite square
well given by Equation 6-32. Thus, for n � 1 and m � 2,

7-59

The probability of finding particle 1 in dx1 and particle 2 in dx2 is
which is just the product of the separate probabilities and 
However, even though we have labeled the particles 1 and 2, if they are identical, we
cannot distinguish which is in dx1 and which is in dx2. For identical particles, there-
fore, we must construct the wave function so that the probability density is the same
if we interchange the labels:

7-60

Equation 7-60 holds if is either symmetric or antisymmetric on ex-
change of particles—that is,

We note that the general wave function of the form of Equation 7-58 and the example
(Equation 7-59) are neither symmetric nor antisymmetric. If we interchange x1 and x2,
we get a different wave function, implying that the particles can be distinguished.
These forms are thus not consistent with the indistinguishability of identical particles.
However, from among all of the possible linear combination solutions of the single
product functions, we see that, if and are added or subtracted, we form sym-
metric or antisymmetric wave functions necessary to preserve the indistinguishability
of the two particles:

Pauli Exclusion Principle

There is an important difference between the antisymmetric and symmetric combina-
tions. If n � m, the antisymmetric wave function is identically zero for all x1 and x2,
whereas the symmetric function is not. More generally, it is found that electrons
(and many other particles, including protons and neutrons) can only have antisym-
metric total wave functions, that is

7-61

where is the radial wave function, is the spherical harmonic, and is the spin
wave function. Thus, single-particle wave functions such as and for two
such particles cannot have exactly the same set of values for the quantum numbers.

'm(x1)'n(x1)
XmsY�m�

Rn�

&n�m�ms
� Rn�Y�m�

Xms

'A � C C'n(x1)'m(x2) � 'n(x2)'m(x1) D antisymmetric

'S � C C'n(x1)'m(x2) � 'n(x2)'m(x1) D symmetric

'mn'nm

'(x2 , x1) � �'(x1 , x2) antisymmetric

'(x2 , x1) � �'(x1 , x2) symmetric

'(x1 , x2)

ƒ'(x1 , x2) ƒ2 � ƒ'(x2 , x1) ƒ2

ƒ'(x2) ƒ 2 dx2 .ƒ'(x1) ƒ 2 dx1

ƒ'(x1 , x2) ƒ 2 dx1 dx2 ,

'12 � C sin 
�x1

L
 sin 

2�x2

L

'm(x2)'n(x1)

'nm(x1 , x2) � 'n(x1)'m(x2)



7-7 Ground States of Atoms: The Periodic Table 297

This is an example of the Pauli exclusion principle. For the case of electrons in atoms
and molecules, four quantum numbers describe the state of each electron, one for each
space coordinate and one associated with spin. The Pauli exclusion principle for elec-
trons states that

No more than one electron may occupy a given quantum state specified by

a particular set of single-particle quantum numbers n, ms.

The effect of the exclusion principle is to exclude certain states in the many-
electron system. It is an additional quantum condition imposed on solutions of the
Schrödinger equation. It will be applied to the development of the periodic table in
the following section. Particles such as particles, deuterons, photons, and mesons
have symmetric wave functions and do not obey the exclusion principle.

7-7 Ground States of Atoms: 

The Periodic Table
We now consider qualitatively the wave functions and energy levels for atoms more
complicated than hydrogen. As we have mentioned, the Schrödinger equations for
atoms other than hydrogen cannot be solved exactly because of the interaction of the
electrons with one another, so approximate methods must be used. We will discuss the
energies and wave functions for the ground states of atoms in this section and consider
the excited states and spectra for some of the less complicated cases in the following
section. We can describe the wave function for a complex atom in terms of single-
particle wave functions. By neglecting the interaction energy of the electrons, that
description can be simplified to products of the single-particle wave functions. These
wave functions are similar to those of the hydrogen atom and are characterized by the
quantum numbers n, ms. The energy of an electron is determined mainly by
the quantum numbers n (which is related to the radial part of the wave function) and

(which characterizes the orbital angular momentum). Generally, the lower the value
of n and the lower the energy of the state. (See Figure 7-19.) The specification of n
and for each electron in an atom is called the electron configuration. Customarily,
the value of and the various electron shells are specified with the same code defined
in the subsection “Spectroscopic Notation” (page 292) in Section 7-5. The electron
configurations of the atomic ground states are given in Appendix C.

The Ground States of the Atoms

Helium (Z � 2) The energy of the two electrons in the helium atom consists of the
kinetic energy of each electron, a potential energy of the form for each elec-
tron corresponding to its attraction to the nucleus, and a potential energy of interac-
tion Vint corresponding to the mutual repulsion of the two electrons. If r1 and r2 are the
position vectors for the two electrons, Vint is given by

7-62

Because this interaction term contains the position variables of the two electrons, its
presence in the Schrödinger equation prevents the separation of the equation into
separate equations for each electron. If we neglect the interaction term, however, the

Vint � �
ke2

ƒr2 � r1 ƒ

�kZe2>ri

�
�

�,
�

m� ,�,

�

m�,�,

Energy
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2p
2s
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5p

6p
5d
4f
6s
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4s

Figure 7-19 Relative
energies of the atomic shells
and subshells.
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Schrödinger equation can be separated and solved exactly. We then obtain separate
equations for each electron, with each equation identical to that for the hydrogen atom
except that Z � 2. The allowed energies are then given by

7-63

The lowest energy, E1 � �2(2)2E0 � �108.8 eV, occurs for n1 � n2 � 1. For this
case, 1 � 2 � 0. The total wave function, neglecting the spin of the electrons, is of
the form

7-64

The quantum numbers n, and can be the same for the two electrons only if
the fourth quantum number ms is different, i.e., if one electron has 
and the other has The resulting total spin of the two electrons must
therefore be zero.

We can obtain a first-order correction to the ground-state energy by using the ap-
proximate wave function of Equation 7-64 to calculate the average value of the inter-
action energy Vint, which is simply the expectation value The result of this cal-
culation is

7-65

With this correction, the ground-state energy is

7-66

This approximation method, in which we neglect the interaction of the electrons
to find an approximate wave function and then use this wave function to calculate the
interaction energy, is called first-order perturbation theory. The approximation can be
continued to higher orders: for example, the next step is to use the new ground-state
energy to find a correction to the ground-state wave function. This approximation
method is similar to that used in classical mechanics to calculate the orbits of the plan-
ets about the Sun. In the first approximation the interaction of the planets is neglected
and the elliptical orbits are found for each planet. Then, using this result for the posi-
tion of each planet, the perturbing effects of the nearby planets can be calculated.

The experimental value of the energy needed to remove both electrons from the
helium atom is about 79 eV. The discrepancy between this result and the value 
74.8 eV is due to the inaccuracy of the approximation used to calculate as
indicated by the rather large value of the correction (about 30 percent). (It should be
pointed out that there are better methods of calculating the interaction energy for
helium that give much closer agreement with experiment.) The helium ion He�,
formed by removing one electron, is identical to the hydrogen atom except that Z � 2;
so the ground-state energy is

The energy needed to remove the first electron from the helium atom is 24.6 eV. The
corresponding potential, 24.6 V, is called the first ionization potential of the atom.
The ionization energies are given in Appendix C.

The configuration of the ground state of the helium atom is written 1s2. The 1 sig-
nifies n � 1, the s signifies � 0, and the 2 signifies that there are two electrons in
this state. Since can only be zero for n � 1, the two electrons fill the K shell (n � 1).�

�

�Z2(13.6) � �54.4 eV

8Vint9,

E � �108.8 � 34 � �74.8 eV

8Vint9 � �34 eV

8Vint9.
ms � � 1

2 .
ms � � 1

2

m��,

' � '100(r1 , �1 , �1)'100(r2 , �2 , �2)

��

E � �
Z2E0

n2
1

�
Z2E0

n2
2

 where E0 � 13.6 eV
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Lithium (Z � 3) Lithium has three electrons. Two are in the K shell (n � 1), but the
third cannot have n � 1 because of the exclusion principle. The next-lowest energy
state for this electron has n � 2. The possible values are � 1 or � 0.

In the hydrogen atom, these values have the same energy because of the degen-
eracy associated with the inverse-square nature of the force. This is not true in lithium
and other atoms because the charge “seen” by the outer electron is not a point charge.14

The positive charge of the nucleus �Ze can be considered to be approximately a point
charge, but the negative charge of the K shell electrons �2e is spread out in space over
a volume whose radius is of the order of We can in fact take for the charge den-
sity of each inner electron where is a hydrogenlike 1s wave function
(neglecting the interaction of the two electrons in the K shell). The probability distrib-
ution for the outer electron in the 2s or 2p states is similar to that shown in Figure 7-10.
We see that the probability distribution in both cases has a large maximum well outside
the inner K-shell electrons but that the 2s distribution also has a small bump near the
origin. We could describe this by saying that the electron in the 2p state is nearly always
outside the shielding of the two 1s electrons in the K shell so that it sees an effective
central charge of Zeff � 1, whereas in the 2s state the electron penetrates this “shield-
ing” more often and therefore sees a slightly larger effective positive central charge.
The energy of the outer electron is therefore lower in the 2s state than in the 2p state,
and the lowest energy configuration of the lithium atom is 1s22s.

The total angular momentum of the electrons in this atom is due to the spin of
the outer electron since each of the electrons has zero orbital angular momentum and
the inner K-shell electrons are paired to give zero spin. The first ionization potential
for lithium is only 5.39 V. We can use this result to calculate the effective positive
charge seen by the 2s electron. For Z � Zeff and n � 2, we have

which gives Zeff � 1.3. It is generally true that the smaller the value of the greater
the penetration of the wave function into the inner shielding cloud of electrons: The
result is that in a multielectron atom, for given n, the energy of the electron increases
with increasing (See Figure 7-19.)

Beryllium (Z � 4) The fourth electron has the least energy in the 2s state. The ex-
clusion principle requires that its spin be antiparallel to the other electron in this state
so that the total angular momentum of the four electrons in this atom is zero. The elec-
tron configuration of beryllium is 1s22s2. The first ionization potential is 9.32 V. This
is greater than that for lithium because of the greater value of Z.

Boron to Neon (Z � 5 to Z � 10) Since the 2s subshell is filled, the fifth electron
must go into the 2p subshell; that is, n � 2 and � 1. Since there are three possible
values of (�1, 0, and �1) and two values of ms for each, there can be up to six
electrons in this subshell. The electron configuration for boron is 1s22s22p. Although
it might be expected that boron would have a greater ionization potential than beryl-
lium because of the greater Z, the 2p wave function penetrates the shielding of the core
electrons to a lesser extent and the ionization potential of boron is actually about 8.3
V, slightly less than that of beryllium. The electron configuration of the elements car-
bon (Z � 6) to neon (Z � 10) differs from boron only by the number of electrons in
the 2p subshell. The ionization potential increases slightly with Z for these elements,
reaching the value of 21.6 V for the last element in the group, neon. Neon has the

m�
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E �
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�
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eff(13.6 eV)
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George Gamow and
Wolfgang Pauli in
Switzerland in 1930.
[Courtesy of George Gamow.]
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maximum number of electrons allowed in the n � 2 shell. The electron configuration
of neon is 1s22s22p6. Because of its very high ionization potential, neon, like helium,
is chemically inert. The element just before this, fluorine, has a “hole” in this shell;
that is, it has room for one more electron. It readily combines with elements such as
lithium, which has one outer electron that is donated to the fluorine atom to make an
F� ion and a Li� ion, which bond together. This is an example of ionic bonding, to be
discussed in Chapter 9.

Sodium to Argon (Z � 11 to Z � 18) The eleventh electron must go into the
n � 3 shell. Since this electron is weakly bound in the Na atom, Na combines readily
with atoms such as F. The ionization potential for sodium is only 5.14 V. Because of
the lowering of the energy due to penetration of the electronic shield formed by the
other 10 electrons—similar to that discussed for Li—the 3s state is lower than the 3p
or 3d states. (With n � 3, can have the values 0, 1, or 2.) This energy difference be-
tween subshells of the same n value becomes greater as the number of electrons in-
creases. The configuration of Na is thus 1s22s22p63s. As we move to higher-Z ele-
ments, the 3s subshell and then the 3p subshell begin to fill up. These two subshells
can accommodate 2 � 6 � 8 electrons. The configuration of argon (Z � 18) is
1s22s22p63s23p6. There is another large energy difference between the eighteenth and
nineteenth electrons, and argon, with its full 3p subshell, is stable and inert.

Atoms with Z � 18 One might expect that the nineteenth electron would go into the
3d subshell, but the shielding or penetration effect is now so strong that the energy is
lower in the 4s shell than in the 3d shell. The nineteenth electron in potassium (Z � 19)
and the twentieth electron in calcium (Z � 20) go into the 4s rather than the 3d
subshell. The electron configurations of the next 10 elements, scandium (Z � 21)

through zinc (Z � 30), differ
only in the number of elec-
trons in the 3d subshell except
for chromium (Z � 24) and
copper (Z � 29), each of
which has only one 4s elec-
tron. These elements are called
transition elements. Since
their chemical properties are
mainly due to their 4s elec-
trons, they are quite similar
chemically.

Figure 7-20 shows a plot of
the first ionization potential of
an atom versus Z up to Z � 90.
The sudden decrease in ioniza-
tion potential after the Z num-
bers 2, 10, 18, 36, and 54 marks
the closing of a shell or sub-
shell. A corresponding sudden
increase occurs in the atomic
radii, as illustrated in Figure 
7-21. The ground-state electron
configurations of the elements
are tabulated in Appendix C.
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Figure 7-20 First ionization energy vs. Z up to Z � 90. The energy is the binding energy
of the last electron in the atom. This energy increases with Z until a shell is closed at Z
values of 2, 10, 18, 36, 54, and 86. The next electron must go into the next higher shell and
hence is farther from the center of core charge and thus less tightly bound. The ionization
potential (in volts) is numerically equal to the ionization energy (in eV).



The concept of shell structure

for the electrons in the atomic

systems was a significant aid

to the later understanding of

molecular bonding

(see Chapter 9) and the

complex structure of the

atomic nuclei (see Chapter 11).

7-8 Excited States and Spectra of Atoms 301

Questions

7. Why is the energy of the 3s state considerably lower than that of the 3p state for
sodium, whereas in hydrogen these states have essentially the same energy?

8. Discuss the evidence from the periodic table of the need for a fourth quantum
number. How would the properties of He differ if there were only three quantum
numbers, n, and m?�,
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Figure 7-21 The atomic radii
versus Z shows a sharp rise
following the completion of a
shell as the next electron must
have the next larger n. The radii
then decline with increasing Z,
reflecting the penetration of
wave functions of the electrons
in the developing shell. The
recurring patterns here and in
Figure 7-20 are examples of the
behavior of many atomic
properties that give the periodic
table its name.

7-8 Excited States and Spectra of Atoms

Alkali Atoms

In order to understand atomic spectra, we need to understand the excited states of
atoms. The situation for an atom with many electrons is, in general, much more com-
plicated than that of hydrogen. An excited state of the atom usually involves a change
in the state of one of the electrons or more rarely two or even more electrons. Even in
the case of the excitation of only one electron, the change in state of this electron
changes the energies of the others. Fortunately, there are many cases in which this ef-
fect is negligible, and the energy levels can be calculated accurately from a relatively
simple model of one electron plus a stable core. This model works particularly well
for the alkali metals: Li, Na, K, Rb, and Cs. These elements are in the first column of
the periodic table. The optical spectra of these elements are similar in many ways to
the spectrum of hydrogen.

Another simplification is possible because of the wide difference between excita-
tion energy of a core electron and the excitation energy of an outer electron. Consider
the case of sodium, which has a neon core (except Z � 11 rather than Z � 10) and an
outer 3s electron. If this electron did not penetrate the core, it would see an effective
nuclear charge of Zeff � 1 resulting from the �11e nuclear charge and the �10e of the
completed electron shells. The ionization energy would be the same as the energy of
the n � 3 electron in hydrogen, about 1.5 eV. Penetration into the core increases Zeff
and so lowers the energy of the outer electron, i.e., binds it more tightly, thereby
increasing the ionization energy. The measured ionization energy of sodium is about
5 eV. The energy needed to remove one of the outermost core electrons, a 2p electron,
is about 31 eV, whereas that needed to remove one of the 1s electrons is about 1041 eV.
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Figure 7-22 Energy-level diagram for sodium (Na) with some transitions indicated.
Wavelengths shown are in nanometers. The spectral lines labeled D1 and D2 are very intense
and are responsible for the yellow color of lamps containing sodium. The energy splittings of
the D and F levels, also doublets, are not shown.

An electron in the inner core cannot be excited to any of the filled n � 2 states because
of the exclusion principle. Thus, the minimum excitation of an n � 1 electron is to the
n � 3 shell, which requires an energy only slightly less than that needed to remove
this electron completely from the atom. Since the energies of photons in the visible
range (about 400 to 800 nm) vary only from about 1.5 to 3 eV, the optical (i.e., visi-
ble) spectrum of sodium must be due to transitions involving only the outer electron.
Transitions involving the core electrons produce line spectra in the ultraviolet and x-
ray regions of the electromagnetic spectrum.

Figure 7-22 shows an energy-level diagram for the optical transitions in sodium.
Since the spin angular momentum of the neon core adds up to zero, the spin of each
state in sodium is Because of the spin-orbit effect, the states with have
a slightly lower energy than those with Each state is therefore a doublet
(except for the S states). The doublet splitting is very small and is not evident on
the energy scale of Figure 7-22 but is shown in Figure 7-18. The states are labeled
by the usual spectroscopic notation, with the superscript 2 before the letter indicating
that the state is a doublet. Thus, read as “doublet P three-halves,” denotes a state2P3>2 ,

j � � � 1
2 .

j � � � 1
2

1
2 .

Among the many

applications of atomic

spectra is their use in

answering questions about

the composition of stars and

the evolution of the universe

(see Chapter 13).
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in which � 1 and (The S states are customarily labeled as if they were
doublets even though they are not. This is done because they belong to the set of lev-
els with but, unlike the others, have � 0 and are thus not split. The number
indicating the n value of the electron is often omitted.) In the first excited state, the
outer electron is excited from the 3s level to the 3p level, which is about 2.1 eV above
the ground state. The spin-orbit energy difference between the and states due
to the spin-orbit effect is about 0.002 eV. Transitions from these states to the ground
state give the familiar sodium yellow doublet

The energy levels and spectra of other alkali atoms are similar to those for sodium.
It is important to distinguish between doublet energy states and doublet spectral

lines. All transitions beginning or ending on an S state give double lines because they
involve one doublet state and one singlet state (the selection rule � � �1 rules out
transitions between two S states). There are four possible energy differences between
two doublet states. One of these is ruled out by a selection rule on j, which is15

7-67

Transitions between pairs of doublet energy states therefore result in three spectral
lines, i.e., a triplet. Under relatively low resolution the three lines look like two, as
illustrated in Figure 7-23, because two of them are very close together. For this rea-
son, they are often referred to as a compound doublet to preserve the verbal hint that
they involve doublet energy states.

More

Atoms with more than one electron in the outer shell have more com-
plicated energy-level structures. Additional total spin possibilities
exist for the atom, resulting in multiple sets of nearly independent en-
ergy states and multiple sets of spectral lines. Multielectron Atoms and
their spectra are described on the home page: www.whfreeman.com/
tiplermodernphysics5e. See also Equations 7-68 and 7-69 and Figures
7-24 through 7-27 here.

More

Tradition tells us that Mrs. Bohr encountered an obviously sad young
Wolfgang Pauli sitting in the garden of Bohr’s Institute for Theoretical
Physics in Copenhagen and asked considerately if he was unhappy.
His reply was, “Of course I’m unhappy! I don’t understand the anom-
alous Zeeman effect!” On the home page we explain The Zeeman
Effect so you, too, won’t be unhappy: www.whfreeman.com/
tiplermodernphysics5e. See also Equations 7-70 through 7-74 and
Figures 7-28 through 7-31 here.

¢j � �1 or 0  (but no j � 0 S j � 0)

�

3p(2P3>2) S 3s(2S1>2)  
 � 589.0 nm

3p(2P1>2) S 3s(2S1>2)  
 � 589.6 nm

P1>2P3>2
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Figure 7-23 The transitions
between a pair of doublet
energy states in singly
ionized calcium. The
transition represented by the
dotted line is forbidden by
the �j � �1, 0 selection rule.
The darkness of the lines
indicates relative intensity.
Under low resolution the
faint line on the left of the
spectrum at the bottom
merges with its neighbor and
the compound doublet (or
triplet) looks like a doublet.
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EXPLORING

Frozen Light

Using the quantum properties of atomic energy states, tunable lasers, and a Bose-
Einstein (BE) condensate of sodium atoms (see Chapter 8), physicists have been able
to slow a light pulse to a dead stop, then regenerate it some time later and send it on its
way. Here is how it’s done.

Consider the 3s and 3p energy levels of sodium in Figure 7-22. L-S coupling does
not cause splitting of the 3s state because the orbital angular momentum of that state is
zero; however, we will discover in Chapter 11 (see also Problem 7-72) that protons and
neutrons also have intrinsic spins and magnetic moments, resulting in a nuclear spin
and magnetic moment. Although the latter is smaller than the electron’s magnetic mo-
ment by a factor of about 1000, it causes a very small splitting of the 3s level exactly
analogous to that due to L-S coupling in states with nonzero orbital angular momenta.
Called hyperfine structure (because it’s smaller than the fine-structure splitting dis-
cussed earlier), the 3s level is split into two levels spaced about 3.5 � 10�6 eV above
and below the original 3s state.

Producing the BE condensate results in a cigar-shaped “cloud” about one cen-
timeter long suspended by a magnetic field in a vacuum chamber. The cloud contains
several million sodium atoms all with their spins aligned and all in the lower of the two
3s hyperfine levels, the new ground state. (See Figure 7-32a.) The light pulse that we
wish to slow (the probe beam) is provided by a laser precisely tuned to the energy dif-
ference between the lower of the 3s hyperfine levels (the new ground state) and the 3p
state. A second laser (the coupling beam) is precisely tuned to the energy difference be-
tween the higher of the 3s hyperfine levels and the 3p state and illuminates the BE con-
densate perpendicular to the probe beam.

If the probe beam alone were to enter the sample, all of the atoms would be ex-
cited to the 3p level, absorbing the beam completely. As the atoms relaxed back to the
ground state, sodium yellow light would be emitted randomly in all directions. If the
coupling beam alone entered the sample, no excitation of the 3p level would result be-
cause the coupling beam photons do not have enough energy to excite electrons from
the ground state to the 3p state. However, if the coupling beam is illuminating the sam-
ple with all atoms in the ground state and the probe beam is turned on, as the leading
edge of the probe pulse enters the sample (Figure 7-32b), the two beams together shift
the sodium atoms into a quantum superposition of both states, meaning that in that re-
gion of the sample each atom is in both hyperfine states (Figure 7-32c). Instead of both
beams now being able to excite those atoms to the 3p level, the two processes cancel,
a phenomenon called quantum interference, and the BE condensate becomes transpar-
ent to the probe beam, as in Figure 7-32c. A similar cancellation causes the index of re-
fraction of the sample to change very steeply over the narrow frequency range of the
probe pulse, slowing the leading edge from to about As the rest
of the probe pulse (still moving at ) enters the sample and slows, it piles
up behind the leading edge, dramatically compressing the pulse to about 0.05 mm in
length, which fits easily within the sample. Over the region occupied by the compressed
pulse, the quantum superposition shifts the atomic spins in synchrony with the super-
position, as illustrated in Figure 7-32d.

At this point the coupling beam is turned off. The BE condensate immediately be-
comes opaque to the probe beam; the pulse comes to a stop and turns off. The light has
“frozen”! The information imprinted on the pulse is now imprinted like a hologram on
the spins of the atoms in the superposition states. (See Figure 7-32e.) When the cou-
pling pulse is again turned on, the sample again becomes transparent to the probe pulse.

3 � 108 m>s 15 m>s.3 � 108 m>s
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Coupling beam

(a) Probe
beam

(b)

(c )

(d )

(e )

(f )

Figure 7-32 (a) The coupling beam illuminates the sodium Bose-Einstein condensate,
whose atoms are in the ground state with spins aligned. (b) The leading edge of the probe
beam pulse enters the sample. (c) Quantum superposition shifts the spins, and the rapidly
changing refractive index dramatically slows and shortens the probe beam inside the
condensate. (d) Now completely contained inside the sample, the speed of the probe pulse
is about 15 m s. (e) The coupling beam is turned off and the probe pulse stops, its
information stored in the shifted spins of the atoms. (f) The coupling beam is turned back
on and the probe pulse regenerates, moves slowly to the edge of the sample, then leaves at
3 � 108 m s. [Courtesy of Samuel Velasco.]>

>

The “frozen” probe pulse is regenerated carrying the original information, moves
slowly to the edge of the sample, then zooms away at (See Figure 7-32f.)

The ability to slow and stop light raises new opportunities in many areas. For ex-
ample, it may make possible the development of quantum communications that cannot
be eavesdropped upon. Building large-scale quantum computers may depend upon the
ultra-high-speed switching potential of quantum superpositions in slow light systems.
Astrophysicists may be able to use BE condensates in vortex states, already achieved
experimentally, with slow light to simulate in the laboratory the dragging of light into
black holes. Stay tuned!

3 � 108 m>s.
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Summary

TOPIC RELEVANT EQUATIONS AND REMARKS

1. Schrödinger equation in three The equation is solved for the hydrogen atom by separating it into three ordinary
dimensions differential equations, one for each coordinate The quantum numbers n,

and m arise from the boundary conditions to the solutions of these equations.

2. Quantization

Angular momentum 7-22

z component of L 7-23

Energy 7-24

3. Hydrogen wave functions

where are normalization constants, are the radial functions, and are the
spherical harmonics.

4. Electron spin The electron spin is not included in Schrödinger’s wave equation.

Magnitude of S 7-36

z component of S

Stern-Gerlach experiment This was the first direct observation of the electron spin.

5. Spin-orbit coupling L and S add to give the total angular momentum J � L � S, whose magnitude is
given by

7-53

where j � � s or This interaction leads to the fine-structure splitting of 
the energy levels.

6. Exclusion principle No more than one electron can occupy a given quantum state specified by a particular
set of the single-particle quantum numbers n, and ms.m� ,�,

ƒ� � s ƒ .�

ƒJ ƒ � 2j(j � 1)U

Sz � msU ms � � 1
2

ƒS ƒ � 2s(s � 1)U s � 1
2

Y�mRn�Cn�m

&n�m � Cn�mRn�(r)Yn�m(�, �)

En � �akZe2

U
b2 	

2n2
� �13.6

Z2

n2
 eV

Lz � mU for m � 0, �1, �2, Á , ��

ƒL ƒ � 2�(� � 1)U for � � 0, 1, 2, 3, Á

�,r, �, �.
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Notes

1. Degeneracy may arise because of a particular symmetry
of the physical system, such as the symmetry of the potential
energy described here. Degeneracy may also arise for com-
pletely different reasons and can certainly occur for nonprod-
uct wave functions. The latter are sometimes called accidental
degeneracies, and both types can exist in the same system.

2. “Enough” means a complete set in the mathematical sense.
3. Such potentials are called central field or, sometimes, con-

servative potentials. The Coulomb potential and the gravita-
tional potential are the most frequently encountered examples.

4. would mean that Lx � Ly � 0. All three compo-
nents of L would then be known exactly, a violation of the
uncertainty principle.

5. The functions and listed in Tables 7-1 and 7-2 are
normalized. The are simply the products of those corre-
sponding normalization constants.

6. Wolfgang Pauli (1900–1958), Austrian physicist. A bona
fide child prodigy, while a graduate student at Munich he
wrote a paper on general relativity that earned Einstein’s in-
terest and admiration. Pauli was 18 at the time. A brilliant the-
oretician, he became the conscience of the quantum physi-
cists, assaulting “bad physics” with an often devastatingly
sharp tongue, one of his oft-quoted dismissals of a certain
poor paper being, “It isn’t even wrong.” He belatedly won the
Nobel Prize in Physics in 1945 for his discovery of the exclu-
sion principle.

7. Samuel A. Goudsmit (1902–78) and George E. Uhlenbeck
(1900–88), Dutch-American physicists. While graduate stu-
dents at Leiden, they proposed the idea of electron spin to their
thesis adviser Paul Ehrenfest, who suggested that they ask H. A.
Lorentz his opinion. After some delay, Lorentz pointed out that
an electron spin of the magnitude necessary to explain the fine
structure was inconsistent with special relativity. Returning to
Ehrenfest with this disturbing news, they found that he had
already sent their paper to a journal for publication.

8. Since the same symbol is used for both the reduced mass
and the magnetic moment, some care is needed to keep these
unrelated concepts clear. The symbol m is sometimes used to
designate the magnetic moment, but there is confusion enough
between the symbol m of the quantum number for the z com-
ponent of angular momentum and me as the electron mass.

9. Otto Stern (1888–1969), German-American physicist,
and Walther Gerlach (1899–1979), German physicist. After
working as Einstein’s assistant for two years, Stern developed
the atomic/molecular beam techniques that enabled him and
Gerlach, an excellent experimentalist, to show the existence
of space quantization in silver. Stern received the 1943 Nobel
Prize in Physics for his pioneering molecular beam work.
10. The nucleus of an atom also has angular momentum and
therefore a magnetic moment, but the mass of the nucleus is
about 2000 times that of the electron for hydrogen and greater
still for other atoms. From Equation 7-39 we expect the mag-
netic moment of the nucleus to be on the order of of a1>2000

	

Cn�m

Rn�Y�m

Lz � ƒL ƒ

Bohr magneton since M is now mp rather than me. This small
effect does not show up in the Stern-Gerlach experiment.
11. The letters first used, s, p, d, f, weren’t really arbitrary.
They described the visual appearance of certain groups of
spectral lines. After improved instrumentation vastly in-
creased the number of measurable lines, the letters went on al-
phabetically. As we noted in Chapter 4, the K, L, etc., notation
was assigned by Barkla.
12. This particular form for writing the total spin was chosen
because it also corresponded to the number of lines in the fine
structure of the spectrum; e.g., hydrogen lines were doublets
and so 2s � 1 � 2.
13. A more precise interpretation is that the electron, possessing
an intrinsic magnetic moment due to its spin, carries with it a di-
pole magnetic field. This field varies in time due to the orbital
motion of the electron, thus generating a time-varying electric
field at the (stationary) proton, which produces the energy shift.
14. Actually, it’s not quite true for hydrogen either. W. Lamb
showed that the 2S and 2P levels of hydrogen differ slightly in
energy. That difference together with the spin-orbit splitting of
the 2P state puts the level 4.4 � 10�6 eV below the

level, an energy difference called the Lamb shift. It en-
ables the state, which would otherwise have been
metastable due to the � � �1 selection rule, to deactivate to
the ground state via a transition to the level. The
Lamb shift is accounted for by relativistic quantum theory.
15. We can think of this rule in terms of the conservation of
angular momentum. The intrinsic spin angular momentum of
a photon has the quantum number s � 1. For electric dipole
radiation, the photon spin is its total angular momentum rela-
tive to the center of mass of the atom. If the initial angular mo-
mentum quantum number of the atom is j1 and the final is j2,
the rules for combining angular momenta imply that
j2 � j1 � 1, j1, or j1 � 1, if j1 � 0. If j1 � 0, j2 must be 1.
16. This is true for nearly all two-electron atoms, such as He,
Be, Mg, and Ca, except for the triplet P states in the very
heavy atom mercury, where fine-structure splitting is of about
the same order of magnitude as the singlet-triplet splitting.
17. Pieter Zeeman (1865–1943), Dutch physicist. His discovery
of the Zeeman effect, which so enlightened our understanding
of atomic structure, was largely ignored until its importance
was pointed out by Lord Kelvin. Zeeman shared the 1902
Nobel Prize in Physics with his professor H. A. Lorentz for its
discovery.
18. The terminology is historical, arising from the fact that
the effect in transitions between singlet states could be ex-
plained by Lorentz’s classical electron theory and hence was
“normal,” while the effects in other transitions could not and
were thus mysterious or “anomalous.”
19. This calculation can be found in Herzberg (1944).
20. After Alfred Landé (1888–1975), German physicist. His
collaborations with Born and Heisenberg led to the correct in-
terpretation of the anomalous Zeeman effect.

22P1>212S1>2 �
22S1>222S1>2 22P1>2

s � 1
2 ,
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Problems

Level I

Section 7-1 The Schrödinger Equation in Three Dimensions

7-1. Find the energies E311, E222, and E321 and construct an energy-level diagram for the three-
dimensional cubic well that includes the third, fourth, and fifth excited states. Which of the
states on your diagram are degenerate?
7-2. A particle is confined to a three-dimensional box that has sides L1, L2 � 2L1, and
L3 � 3L1. Give the sets of quantum numbers n1, n2, and n3 that correspond to the lowest 10 en-
ergy levels of this box.
7-3. A particle moves in a potential well given by V(x, y, z) � 0 for �L 2 � x � L 2,
0 � y � L, and 0 � z � L and V � � outside these ranges. (a) Write an expression for the
ground-state wave function for this particle. (b) How do the allowed energies compare with
those for a box having V � 0 for 0 � x � L rather than for �L 2 � x � L 2?
7-4. Write down the wave functions for the 5 lowest energy levels of the particle in Problem 7-2.
7-5. (a) Repeat Problem 7-2 for the case L2 � 2L1 and L3 � 4L1. (b) What sets of quantum
numbers correspond to degenerate energy levels?
7-6. Write down the wave functions for the lowest 10 quantized energy states for the particle
in Problem 7-5.
7-7. Suppose the particle in Problem 7-1 is an electron and L � 0.10 nm. Compute the energy
of the transitions from each of the third, fourth, and fifth excited states to the ground state.
7-8. Consider a particle moving in a two-dimensional space defined by V � 0 for 0 � x � L
and 0 � y � L and V � � elsewhere. (a) Write down the wave functions for the particle in this
well. (b) Find the expression for the corresponding energies. (c) What are the sets of quantum
numbers for the lowest-energy degenerate state?

Section 7-2 Quantization of Angular Momentum and Energy

in the Hydrogen Atom

7-9. If n � 3, (a) what are the possible values of ? (b) For each value of in (a), list the
possible values of m. (c) Using the fact that there are two quantum states for each combination
of values of and m because of electron spin, find the total number of electron states with
n � 3.
7-10. Determine the minimum angle that L can make with the z axis when the angular
momentum quantum number is (a) and (b)
7-11. The moment of inertia of a compact disc is about 10�5 kg m2. (a) Find the angular
momentum L � I when the disc rotates at and (b) find the approximate
value of the quantum number 
7-12. Draw an accurately scaled vector model diagram illustrating the possible orientations of
the angular momentum vector L for (a) � 1, (b) � 2, (c) � 4. (d) Compute the magni-
tude of L in each case.
7-13. For � 2, (a) what is the minimum value of (b) What is the maximum value
of (c) What is for � 2 and m � 1? Can either Lx or Ly be determined from
this? (d) What is the minimum value of n that this state can have?
7-14. For � 1, find (a) the magnitude of the angular momentum L and (b) the possible val-
ues of m. (c) Draw to scale a vector diagram showing the possible orientations of L with the z
axis. (d) Repeat the above for � 3.
7-15. Show that, if V is a function only of r, then dL dt � 0, i.e., that L is conserved.
7-16. What are the possible values of n and m if (a) � 3, and (b) � 4, and (c) � 0?
(d) Compute the minimum possible energy for each case.
7-17. A hydrogen atom electron is in the 6f state. (a) What are the values of n and ? 
(b) Compute the energy of the electron. (c) Compute the magnitude of L. (d) Compute the pos-
sible values of Lz in this situation.
7-18. At what values of r a0 is the radial function R30 equal to zero? (See Table 7-2.)>
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Section 7-3 The Hydrogen Atom Wave Functions

7-19. For the ground state of the hydrogen atom, find the values of (a) (b) and (c) the
radial probability density P(r) at r � a0. Give your answers in terms of a0.
7-20. For the ground state of the hydrogen atom, find the probability of finding the electron in
the range �r � 0.03a0 at (a) r � a0 and at (b) r � 2a0.
7-21. The radial probability distribution function for the hydrogens ground state can be written

where C is a constant. Show that P(r) has its maximum value at r � a0 Z.
7-22. Compute the normalization constant C210 in Equation 7-34.
7-23. Find the probability of finding the electron in the range �r � 0.02a0 at (a) r � a0 and
(b) r � 2a0 for the state n � 2, � 0, m � 0 in hydrogen. (See Problem 7-25 for the value of C200.)
7-24. Show that the radial probability density for the n � 2, � 1, m � 0 state of a one-
electron atom can be written as

where A is a constant.
7-25. The value of the constant C200 in Equation 7-33 is

Find the values of (a) (b) and (c) the radial probability density P(r) at r � a0 for the state
n � 2, � 0, m � 0 in hydrogen. Give your answers in terms of a0.
7-26. Show that an electron in the n � 2, � 1 state of hydrogen is most likely to be found at
r � 4a0.
7-27. Write down the wave function for the hydrogen atom when the electron’s quantum num-
bers are n � 3, � 2, and Check to be sure that the wave function is normalized.
7-28. Verify that the wave function is a solution of the time-independent Schrödinger
equation, Equation 7-9.

Section 7-4 Electron Spin

7-29. If a classical system does not have a constant charge-to-mass ratio throughout the sys-
tem, the magnetic moment can be written

where Q is the total charge, M is the total mass, and g � 1. (a) Show that g � 2 for a solid cylin-
der that spins about its axis and has a uniform charge on its cylindrical surface.
(b) Show that g � 2.5 for a solid sphere (I � 2MR2 5) that has a ring of charge on the surface
at the equator, as shown in Figure 7-33.
7-30. Assuming the electron to be a classical particle, a sphere of radius 10�15 m and a uniform
mass density, use the magnitude of the spin angular momentum 
to compute the speed of rotation at the electron’s equator. How does your result compare with
the speed of light?
7-31. How many lines would be expected on the detector plate of a Stern-Gerlach experiment
(see Figure 7-15) if we use a beam of (a) potassium atoms, (b) calcium atoms, (c) oxygen
atoms, and (d) tin atoms?
7-32. The force on a magnetic moment with z component moving in an inhomogeneous
magnetic field is given by Equation 7-51. If the silver atoms in the Stern-Gerlach experiment
traveled horizontally 1 m through the magnet and 1 m in a field-free region at a speed of 250
m s, what must have been the gradient of Bz, dBz dz in order that the beams each be deflected
a maximum of 0.5 mm from the central, or no-field, position?
7-33. (a) The angular momentum of the yttrium atom in the ground state is characterized by
the quantum number j � 3 2. How many lines would you expect to see if you could do a Stern-
Gerlach experiment with yttrium atoms? (b) How many lines would you expect to see if the
beam consisted of atoms with zero spin but � 1?�
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Section 7-5 Total Angular Momentum and the Spin-Orbit Effect

7-34. The spin-orbit effect removes a symmetry in the hydrogen atom potential, splitting the
energy levels. (a) Considering the state with n � 4, write down in spectroscopic notation the
identification of each state and list them in order of increasing energy. (b) If a weak external
magnetic field is applied to the atoms, into how many levels will each state in (a) be split?

7-35. Suppose the outer electron in a potassium atom is in a state with � 2. Compute the
magnitude of L. What are the possible values of j and the possible magnitudes of J?

7-36. A hydrogen atom is in the 3D state (n � 3, � 2). (a) What are the possible values of j?
(b) What are the possible values of the magnitude of the total angular momentum? (c) What are
the possible z components of the total angular momentum?

7-37. Compute the angle between L and S in (a) the and (b) the states of atomic
hydrogen.

7-38. Write down all possible sets of quantum numbers for an electron in a (a) 4f, (b) 3d, and
(c) 2p subshell.

7-39. Consider a system of two electrons, each with � 1 and (a) What are the possi-
ble values of the quantum number for the total orbital angular momentum L � L1 � L2?
(b) What are the possible values of the quantum number S for the total spin S � S1 � S2?
(c) Using the results of parts (a) and (b), find the possible quantum numbers j for the combina-
tion J � L � S. (d) What are the possible quantum numbers j1 and j2 for the total angular
momentum of each particle? (e) Use the results of part (d) to calculate the possible values of j
from the combinations of j1 and j2. Are these the same as in part (c)?

7-40. The prominent yellow doublet lines in the spectrum of sodium result from transitions
from the and states to the ground state. The wavelengths of these two lines are
589.0 nm and 589.6 nm. (a) Calculate the energies in eV of the photons corresponding to these
wavelengths. (b) The difference in energy of these photons equals the difference in energy �E
of the and states. This energy difference is due to the spin-orbit effect. Calculate �E.
(c) If the 3p electron in sodium sees an internal magnetic field B, the spin-orbit energy splitting
will be of the order of where is the Bohr magneton. Estimate B from the
energy difference �E found in part (b).

Section 7-6 The Schrödinger Equation forTwo (or More) Particles

7-41. Show that the wave function of Equation 7-59 satisfies the Schrödinger equation
(Equation 7-57) with V � 0 and find the energy of this state.

7-42. Two neutrons are in an infinite square well with L � 2.0 fm. What is the minimum total
energy that the system can have? (Neutrons, like electrons, have antisymmetric wave functions.
Ignore spin.)

7-43. Five identical noninteracting particles are placed in an infinite square well with L � 1.0 nm.
Compare the slowest total energy for the system if the particles are (a) electrons and (b) pions.
Pions have symmetric wave functions and their mass is 264 me.

Section 7-7 Ground States of Atoms: The PeriodicTable

7-44. Write the electron configuration of (a) carbon, (b) oxygen, and (c) argon.

7-45. Using Figure 7-34, determine the ground-state electron configurations of tin (Sn, Z � 50),
neodymium (Nd, Z � 60), and ytterbium (Yb, Z � 70). Check your answers with Appendix C.
Are there any disagreements? If so, which one(s)?

7-46. In Figure 7-20 there are small dips in the ionization potential curve at Z � 31 (gallium),
Z � 49 (indium), and Z � 81 (thallium) that are not labeled in the figure. Explain these dips,
using the electron configuration of these atoms given in Appendix C.

7-47. Which of the following atoms would you expect to have its ground state split by the spin-
orbit interaction: Li, B, Na, Al, K, Ag, Cu, Ga? (Hint: Use Appendix C to see which elements
have � 0 in their ground state and which do not.)�
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7-48. If the 3s electron in sodium did not penetrate the inner core its energy would be 
�13.6 eV 32 � �1.51 eV. Because it does penetrate, it sees a higher effective Z and its energy
is lower. Use the measured ionization potential of 5.14 V to calculate Zeff for the 3s electron
in sodium.

7-49. What elements have these ground-state electron configurations? (a) 1s22s22p63s23p2 and
(b) 1s22s22p63s23p64s2?

7-50. Give the possible values of the z component of the orbital angular momentum of (a) a d
electron, (b) an f electron, and (c) an s electron.

Section 7-8 Excited States and Spectra of Atoms

7-51. Which of the following elements should have an energy-level diagram similar to that of
sodium and which should be similar to mercury: Li, He, Ca, Ti, Rb, Ag, Cd, Mg, Cs, Ba, Fr, Ra?

7-52. The optical spectra of atoms with two electrons in the same outer shell are similar, but
they are quite different from the spectra of atoms with just one outer electron because of the in-
teraction of the two electrons. Separate the following elements into two groups such that those
in each group have similar spectra: lithium, beryllium, sodium, magnesium, potassium, cal-
cium, chromium, nickel, cesium, and barium.

7-53. Which of the following elements should have optical spectra similar to that of hydrogen
and which should have optical spectra similar to that of helium: Li, Ca, Ti, Rb, Ag, Cd, Ba, Hg,
Fr, Ra?

7-54. The quantum numbers n, and j for the outer electron in potassium have the values 4, 0,
and respectively, in the ground state; 4, 1, and in the first excited state; and 4, 1, and in the
second excited state. Make a table giving the n, , and j values for the 12 lowest-energy states
in potassium (see Figure 7-24).

7-55. Which of the following transitions in sodium do not occur as electric dipole transitions?
(Give the selection rule that is violated.)

7-56. Transitions between the inner electron levels of heavier atoms result in the emission of
characteristic x rays, as was discussed in Section 4-4. (a) Calculate the energy of the electron
in the K shell for tungsten using Z � 1 for the effective nuclear charge. (b) The experimental
result for this energy is 69.5 keV. Assume that the effective nuclear charge is (Z � �),
where � is called the screening constant, and calculate � from the experimental result for the
energy.

7-57. Since the P states and the D states of sodium are all doublets, there are four possible en-
ergies for transitions between these states. Indicate which three transitions are allowed and
which one is not allowed by the selection rule of Equation 7-67.

5P
1>2 S 3S

1>25D
3>2 S 4S

1>24D
3>2 S 3S

1>24D
3>2 S 3P

1>2
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5>2 S 3P
1>24P
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7-58. The relative penetration of the inner-core electrons by the outer electron in sodium can
be described by the calculation of Zeff from and comparing with
E � �13.6 eV n2 for no penetration (see Problem 7-45). (a) Find the energies of the outer elec-
tron in the 3s, 3p, and 3d states from Figure 7-22. (Hint: An accurate method is to use �5.14 eV
for the ground state as given and find the energy of the 3p and 3d states from the photon ener-
gies of the indicated transitions.) (b) Find Zeff for the 3p and 3d states. (c) Is the approximation
�13.6 eV n2 good for any of these states?
7-59. A hydrogen atom in the ground state is placed in a magnetic field of strength Bz � 0.55 T.
(a) Compute the energy splitting of the spin states. (b) Which state has the higher energy? 
(c) If you wish to excite the atom from the lower to the higher energy state with a photon, what
frequency must the photon have? In what part of the electromagnetic spectrum does this lie?
7-60. Show that the change in wavelength of a transition due to a small change in energy is

(Hint: Differentiate )
7-61. (a) Find the normal Zeeman energy shift for a magnetic field of strength
B � 0.05 T. (b) Use the result of Problem 7-57 to calculate the wavelength changes for the sin-
glet transition in mercury of wavelength (c) If the smallest wavelength change
that can be measured in a spectrometer is 0.01 nm, what is the strength of the magnetic field
needed to observe the Zeeman effect in this transition?

Level II

7-62. If the outer electron in lithium moves in the n � 2 Bohr orbit, the effective nuclear charge
would be � 1e and the energy of the electron would be �13.6 eV 22 � �3.4 eV.
However, the ionization energy of lithium is 5.39 eV, not 3.4 eV. Use this fact to calculate the
effective nuclear charge Zeff seen by the outer electron in lithium. Assume that r � 4a0 for the
outer electron.
7-63. Show that the expectation value of r for the electron in the ground state of a one-electron
atom is 
7-64. If a rigid body has moment of inertia I and angular velocity its kinetic energy is

where L is the angular momentum. The solution of the Schrödinger equation for this problem
leads to quantized energy values given by

(a) Make an energy-level diagram of these energies, and indicate the transitions that obey the
selection rule � � �1. (b) Show that the allowed transition energies are E1, 2E1, 3E1, 4E1, etc.,
where (c) The moment of inertia of the H2 molecule is where mp is the
mass of the proton and is the distance between the protons. Find the energy of
the first excited state � 1 for H2, assuming it is a rigid rotor. (d) What is the wavelength of the
radiation emitted in the transition � 1 to � 0 for the H2 molecule?
7-65. In a Stern-Gerlach experiment hydrogen atoms in their ground state move with speed
vx � 14.5 km s. The magnetic field is in the z direction, and its maximum gradient is given by dBz
dz � 600 T m. (a) Find the maximum acceleration of the hydrogen atoms. (b) If the region of the
magnetic field extends over a distance �x � 75 cm and there is an additional 1.25 m from the edge
of the field to the detector, find the maximum distance between the two lines on the detector.
7-66. Find the minimum value of the angle between the angular momentum L and the z axis
for a general value of and show that for large values of �, �min � 1>�1>2.�,
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7-67. The wavelengths of the photons emitted by potassium corresponding to transitions from
the and states to the ground state are 766.41 nm and 769.90 nm. (a) Calculate the en-
ergies of these photons in electron volts. (b) The difference in energies of these photons equals
the difference in energy �E between the and states in potassium. Calculate �E.
(c) Estimate the magnetic field that the 4p electron in potassium experiences.
7-68. The radius of the proton is about R0 � 10�15 m. The probability that the electron is in-
side the volume occupied by the proton is given by

where P(r) is the radial probability density. Compute P for the hydrogen ground state. (Hint:
Show that for r a0 is valid for this calculation.)
7-69. (a) Calculate the Landé g factor (Equation 7-74) for the and levels in a one-
electron atom and show that there are four different energies for the transition between these
levels in a magnetic field. (b) Calculate the Landé g factor for the level and show that there
are six different energies for the transition in a magnetic field.
7-70. (a) Show that the function

is a solution of Equation 7-9, where A is a constant and a0 is the Bohr radius. (b) Find the
constant A.

Level III

7-71. Consider a hypothetical hydrogen atom in which the electron is replaced by a parti-
cle. The is a meson with spin 0, hence, no intrinsic magnetic moment. The only magnetic
moment for this atom is that given by Equation 7-43. If this atom is placed in a magnetic field
with Bz � 1.0 T, (a) what is the effect on the 1s and 2p states? (b) Into how many lines does the
2p S 1s spectral line split? (c) What is the fractional separation between adjacent lines?
(See Problem 7-57.) The mass of the is 493.7 MeV c2.
7-72. If relativistic effects are ignored, the n � 3 level for one-electron atoms consists of the

and states. Compute the spin-orbit-effect splittings of 3P
and 3D states for hydrogen.
7-73. In the anomalous Zeeman effect, the external magnetic field is much weaker than the in-
ternal field seen by the electron as a result of its orbital motion. In the vector model (Figure 7-30)
the vectors L and S precess rapidly around J because of the internal field and J precesses
slowly around the external field. The energy splitting is found by first calculating the compo-
nent of the magnetic moment in the direction of J and then finding the component of in 

the direction of B. (a) Show that can be written

(b) From J2 � (L � S) (L � S) show that ). (c) Substitute your result
in part (b) into that of part (a) to obtain

(d) Multiply your result by to obtain
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7-74. If the angular momentum of the nucleus is I and that of the atomic electrons is J, the total
angular momentum of the atom is F � I � J, and the total angular momentum quantum num-
ber ranges from I � J to Show that the number of possible values is 2I � 1 if I � J
or 2J � 1 if J � I. (If you can’t find a general proof, show it for enough special cases to con-
vince yourself of its validity.) (Because of the very small interaction of the nuclear magnetic
moment with that of the electrons, a hyperfine splitting of the spectral lines is observed. When
I � J, the value of I can be determined by counting the number of lines.)
7-75. Because of the spin and magnetic moment of the proton, there is a very small splitting of
the ground state of the hydrogen atom called hyperfine splitting. The splitting can be thought
of as caused by the interaction of the electron magnetic moment with the magnetic field due to
the magnetic moment of the proton, or vice versa. The magnetic moment of the proton is par-
allel to its spin and is about where is called the nuclear magneton. (a) The
magnetic field at a distance r from a magnetic moment varies with angle, but it is of the order
of where km � 10�7 in SI units. Find B at r � a0 if (b) Calculate the
order of magnitude of the hyperfine splitting energy where is the Bohr mag-
neton and B is your result from part (a). (c) Calculate the order of magnitude of the wavelength
of radiation emitted if a hydrogen atom makes a “spin flip” transition between the hyperfine
levels of the ground state. [Your result is greater than the actual wavelength of this transition,
21.22 cm, because is appreciably smaller than making the energy �E found in part
(b) greater. The detection of this radiation from hydrogen atoms in interstellar space is an
important part of radio astronomy.]
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�3,8r�39

�B¢E � 2�BB,
� � 2.8�N .B � 2km�>r3,
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The physical world that we experience with our senses consists entirely of macro-
scopic objects, i.e., systems that are large compared with atomic dimensions and

thus are assembled from very large numbers of atoms. As we proceed to the descrip-
tion of such systems from our starting point of studying single-electron atoms, then
multielectron atoms and molecules, we expect to encounter increasing complexity and
difficulty in correctly explaining their observed properties. Classically, the behavior of
any macroscopic system could, in principle, be predicted in detail from the solution of
the equation of motion for each constituent particle, given its state of motion at some
particular time; however, the obvious problems with such an approach soon become in-
tractable. For example, consider the difficulties that would accompany the task of ac-
counting for the measured properties of a standard liter of any gas by simultaneously
solving the equations of motion for all of the 1022 molecules of which the system is
composed. Fortunately, we can predict the values of the measurable properties of
macroscopic systems without the need to track the motions of each individual particle.
This remarkable shortcut is made possible by the fact that we can apply general prin-
ciples of physics, such as conservation of energy and momentum, to large ensembles
of particles, ignoring their individual motions, and determine the probable behavior of
the system from statistical considerations. We then use the fact that there is a relation
between the calculated probable behavior and the observed properties of the system.
This successful, so-called microscopic approach to explaining the behavior of large
systems is called statistical mechanics. It depends critically on the system containing a
sufficiently large number of particles so that ordinary statistical theory is valid.1

In this chapter we will investigate how this statistical approach can be applied to
predict the way in which a given amount of energy will most likely be distributed
among the particles of a system. You may have already encountered kinetic theory, the
first successful such microscopic approach, in introductory physics. Since the assump-
tions, definitions, and basic results of kinetic theory form the foundation of classical
statistical physics, we have included a brief review of kinetic theory in the Classical
Concept Review. We will see how, in an isolated system of particles in thermal equi-
librium, the particles must be able to exchange energy, one result of which is that the
energy of any individual particle may sometimes be larger and sometimes smaller than
the average value for a particle in the system. Classical statistical mechanics requires
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that the values of the energy taken on by an individual particle over time, or the values
of the energy assumed by all of the particles in the system at any particular time, be de-
termined by a specific probability distribution, the Boltzmann distribution. In the first
section of the chapter we will briefly review the principal concepts of classical statisti-
cal physics, noting some of the successful applications and some of the serious failures.
We will then see how quantum considerations require modification of the procedures
used for classical particles, obtaining in the process the quantum-mechanical Fermi-
Dirac distribution for particles with antisymmetric wave functions, such as electrons,
and the Bose-Einstein distribution for particles with symmetric wave functions, such as
helium atoms. Finally, we will apply the distributions to several physical systems,
comparing our predictions with experimental observations and gaining an understand-
ing of such important phenomena as superfluidity and the specific heat of solids.

8-1 Classical Statistics: A Review
Statistical physics, whether classical or quantum, is concerned with the distribution of
a fixed amount of energy among a large number of particles, from which the observ-
able properties of the system may then be deduced. Classically, the system consists of
a large ensemble of identical but distinguishable particles. That is, the particles are all
exactly alike, but in principle they can be individually tracked during interactions.
Boltzmann2 derived a distribution relation that made possible prediction of the prob-
able numbers of particles that will occupy each of the available energy states in such
a system in thermal equilibrium.

Boltzmann Distribution

The Boltzmann’s distribution given by Equation 8-1 is the fundamental distribu-
tion function of classical statistical physics:

8-1

where A is a normalization constant whose value depends on the particular system being
considered, is called the Boltzmann factor, and k is the Boltzmann constant:

Boltzmann’s derivation was done to establish the fundamental properties of a dis-
tribution function for the velocities of molecules in a gas in thermal equilibrium that
had been obtained by Maxwell a few years before and to show that the velocity dis-
tribution for a gas that was not in thermal equilibrium would evolve toward Maxwell’s
distribution over time. Boltzmann’s derivation is more complex than is appropriate for
our discussions, but in the Classical Concept Review we present a straightforward nu-
merical derivation that results in an approximation of the correct distribution and then
show by a simple mathematical argument that the form obtained is exact and is the
only one possible. Here we will illustrate application of the Boltzmann distribution
with some examples by way of providing a basis for comparing classical and quantum
statistical physics later in the chapter.

The number of particles with energy E is given by

8-2

where g(E) is the statistical weight (degeneracy) of the state with energy E.

n(E) � g(E)fB(E) � A g(E)e�E>kT

k � 1.381 � 10�23 J>K � 8.617 � 10�5 eV>Ke�E>kT
fB(E) � Ae�E>kT

fB(E)
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Figure 8-1 n(E) versus E
for data from Table 1 in the
CCR Boltzmann distribution
derivation. The solid curve 
is the exponential

, where the
constants B and Ec have been
adjusted to give the best fit to
the data points.

n(E) � Be�E>Ec

Classically, the energy E is a continuous function and so is n(E) (Figure 8-1).
Consequently, g(E) and fB(E) are also continuous functions, in which case g(E) in
Equation 8-2 is referred to as the density of states, meaning that g(E)dE is the number
of states with energy between E and E�dE. The next two examples illustrate how
to apply the Boltzmann distribution and how the results explain observations of
physical systems.

EXAMPLE 8-1 The Law of Atmospheres Consider an ideal gas in a uniform gravi-
tational field. (a) Find how the density of the gas depends upon the height above
ground. (b) Assuming that air is an ideal gas with molecular weight 28.6, compute
the density of air 1 km above the ground when T � 300 K. (The density at the
ground is 1.292 kg m3 at 300 K.)

SOLUTION

(a) Let the force of gravity be in the negative z direction and consider a column of
gas of cross-sectional area A. The energy of a gas molecule is then

where and mgz is the potential energy of a molecule
at height z above the ground. The density is proportional to fB since is
proportional to N, the number of molecules in a unit volume at height z, and 
N is proportional to fB.

From Equation 8-1 we have

Since we are interested only in the dependence on z, we can integrate over
the other variables px, py, and pz. The integration merely gives a new
normalization constant A�; i.e., the result is equivalent to ignoring these
variables. The fraction of the molecules between z and z � dz is then

8-3

The constant A� is obtained from the normalization condition 
The result is A��mg kT. The density, therefore, also decreases exponentially with
the distance above the ground. Equation 8-3 is known as the law of atmospheres.

> ��
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(b) The ratio of the density at z � 1000 m to that at z � 0 m is the same as
where is given by Equation 8-3. Thus,

Substituting m � 28.6 � 1.67 � 10�27 kg and g � 9.8 m s2 yields

EXAMPLE 8-2 H Atoms in the First Excited State The first excited state E2 of the hy-
drogen atom is 10.2 eV above the ground state E1. What is the ratio of the number
of atoms in the first excited state to the number in the ground state at (a) T � 300 K
and (b) T � 5800 K? The latter is the temperature at the surface of the Sun.

SOLUTION

1. The number of atoms in a state with energy E is given by Equation 8-2:

2. The ratio of the number in the first excited state to the number in the ground
state is then

3. The statistical weight (� degeneracy) of the ground state g1, including spin, is 2;
the degeneracy of the first excited state g2 is 8 (one and three states,
each with two spin states). Therefore:

and

4. For question (a), at T � 300 K, Substituting this and
E2 � E1 � 10.2 eV from above gives

5. For question (b), at the surface of the Sun where T � 5800 K,
Substituting this and E2 � E1 � 10.2 eV gives

Remarks: The result in step 4 illustrates that, because of the large energy difference
between the two states compared with kT, very few atoms are in the first excited state.
Even fewer would be in the higher excited states, which explains why a container of
hydrogen sitting undisturbed at room temperature does not spontaneously emit the
visible Balmer series. At the surface of the Sun (step 5 above) about 1015 atoms of
every mole of atomic hydrogen are in the first excited state at any given time.

� e�19 � 10�8

n2

n1

� 4e�(10.2)>(0.500) � 4e�20.4

kT � 0.500.

n2

n1

� 4e�(10.2)>(0.026) � 4e�392 � 10�171 � 0

kT � 0.026 eV.

n2

n1

� 4e�(E2�E1)>kT

g2

g1

�
8

2
� 4

� � 1� � 0

n2

n1

�
Ag2e

�E2>kT
Ag1e

�E1>kT �
g2

g1

e�(E2�E1)>kT

n(E) � g(E)fB(E) � A g(E)e�E>kT

�(1000) � �(0)e�0.113 � 1.292 � 0.893 � 1.154 kg>m3

>
�(1000)

�(0)
�
fB(1000)

fB(0)
�
e�mg(1000)>k(300)

e�mg(0)>k(300)
� e�mg(1000)>k(300)

fB(z)fB(1000)>fB(0),



8-1 Classical Statistics: A Review 319

More

In learning about systems containing large numbers of particles,
the meaning of the temperature needs to be more carefully defined. 
It is closely related to another descriptor of such systems, the entropy.
To help you understand both concepts better, we have included
Temperature and Entropy on the home page: www.whfreeman.com
tiplermodernphysics5e. See also Equations 8-4 a, b, c, and d here.

>

f (vx)

vx

Figure 8-2 The distribution
function f(vx) for the x
component of velocity. This is
a Gaussian curve symmetric
about the origin.

Maxwell Distribution of MolecularSpeeds

The Boltzmann distribution is a very fundamental relation from which many properties
of classical systems, both gases and condensed matter, can be derived. Two of the most
important are Maxwell’s distribution of the speeds of molecules in a gas and the
equipartition theorem. Considering the first of these, Maxwell derived the velocity and
speed distributions of gases in 1859, some five years before Boltzmann derived
Equation 8-1. As with the Boltzmann distribution, we will present the results here,
illustrating their application with examples and including fuller descriptions and de-
rivations in the Classical Concept Review. Maxwell obtained the velocity distribution,
F(vx, vy, vz), which can also be used to obtain the speed distribution, by assuming that
the components vx, vy, and vz of the velocity were independent and that therefore the
probability of a molecule having a certain vx, vy, vz could be factored into the product
of the separate probabilities of its having vx, vy, and vz. He also assumed that the distri-
bution could depend only on the speed; i.e., the velocity components could occur only
in the combination vx

2 � vy
2 � vz

2. He thus wrote for the distribution function for 

8-5

where ƒ(vx) is the distribution function for vx only; i.e., ƒ(vx)dvx is the fraction of the
total number of molecules that have their x component of velocity between vx and
vx � dvx.

3 Similar expressions can be written for ƒ(vy) and ƒ(vz). The constant C is
determined by the normalization condition. The complete normalized velocity distri-
bution is

8-6

The utility of distribution functions is that they make possible the calculation of aver-
age or expectation values of physical quantities; i.e., they allow us to make predictions
regarding the physical properties of systems. For example, the observation from
Figure 8-2 that the average value of vx is zero can be verified by computing as
indicated by Equation 8-7.

8-7

Writing we have
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From Table B1-1 we see that the value of the inte-
gral is zero, so as expected.

The probability distribution function for the
speeds of the molecules in a classical ideal gas can
be derived from the Boltzmann distribution. The re-
sult is the famous Maxwell distribution of molecu-
lar speeds:

8-8

The distribution of speeds is shown graphically in 
Figure 8-3. The most probable speed vm, the average
speed and the rms speed vrms are indicated in the
figure. Although the velocity distribution function F
(see Equation 8-6 and Figures 8-4 and 8-5) is a max-
imum at the origin (where vx � vy � vz � 0), the
speed distribution function n(v) approaches zero as

v S 0 because the latter is proportional to the volume of the spherical shell 
(see Equation 8-8), which approaches zero. At very high speeds, the speed distribu-
tion function again approaches zero because of the exponential factor 

The most probable speed vm is that where n(v) has its maximum value. It is left as
an exercise (see Problem 8-9) to show that its value is

8-9

The average speed is obtained in general and for a specific situation in the next
example.

8v9
vm � a2kT

m
b 1>2

e�mv2>2kT.
4�v2 dv

8v9,
n(v) dv � 4�Na m

2�kT
b 3>2

v2e�mv2>2kT dv

8vx9 � 0,

One of the ways used to

separate 235U from the far

more abundant 238U isotope

is to react the uranium metal

with fluorine, forming UF
6
, a

gas. 235UF diffuses through a

membrane just a bit faster

than 238UF since both

molecules have the same

average kinetic energy. After

several stages of diffusion,

the concentration of 235U is

high enough for making

nuclear reactor fuel (see

Chapter 11).
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Figure 8-4 Velocity vectors in
velocity space. The velocity
distribution function gives the
fraction of molecular velocities
whose vectors end in a cell of
volume dvxdvydvz.
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2v0v0

v

dv

vx

vy

2v0

v0

v0 = kT/m

Figure 8-5 Two-dimensional representation of velocity distribution in velocity
space. Each molecular velocity with components vx, vy, and vz is represented by a
point in velocity space. The velocity distribution function is the density of points in
this space. The density is maximum at the origin. The speed distribution is found by
multiplying the density times the volume of the spherical shell [This
computer-generated plot courtesy of Paul Doherty, The Exploratorium.]

4�v2 dv.

Figure 8-3 Maxwell speed distribution function n(v).
The most probable speed vm, the average speed 
and the rms speed vrms are indicated.
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EXAMPLE 8-3 Average Speed of N
2

Molecules Obtain the average speed of the
Maxwell distribution and use it to compute the average speed of nitrogen molecules
at 300 K. The mass of the N2 molecule is 4.68 � 10�26 kg.

SOLUTION

1. The average speed is found by multiplying the distribution of speeds
(Equation 8-8) by v, integrating over all possible speeds, and dividing by the
total number of molecules N:

where and 

2. Writing this as

where

3. Using Table B1-1 for evaluating I3, we have

8-10

4. The found in step 3 can now be used to find the average speed of nitrogen
molecules at T � 300 K. Substituting the mass of a nitrogen molecule into
Equation 8-10 yields

The average speed is about 8 percent less than as indicated in
Figure 8-3. The rms speed can be computed from the speed distribution following the
same procedure as in Example 8-3 or, as we will see below, from the equipartition
theorem. Figure 8-6, a plot of Equation 8-8 for H2 and O2 molecules at 300 K,
illustrates the effect of mass on the speed distribution.
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Figure 8-6 Graph of n(v)/N
versus v from Equation 8-8
for O2 and H2 molecules,
both at T � 300 K.



Evaporation is a cooling

process, even at very low

temperatures! The sample

from which a BE condensate

will form, confined at about

1 mK, is cooled further by

allowing the atoms in the

high-speed “tail” of the

Maxwell distribution to “leak”

from the sample, taking

kinetic energy with them and

thus reducing the

temperature (see Section 8-3).
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Maxwell’s speed distribution has been precisely verified by many experiments,
so there is little incentive to perform additional measurements. One of the more
recent experiments, that of R. C. Miller and P. Kusch, illustrated in Figures 8-7
and 8-8, is applicable to the measurement of any sort of molecular speed distribu-
tion, and variations of it are used to measure the speeds in jet or nozzle molecular
beams.

Oven source

Detector

ωφ

Figure 8-7 Schematic sketch of
apparatus of Miller and Kusch for
measuring the speed distribution
of molecules. Only one of the 720
helical slits in the cylinder is
shown. For a given angular
velocity only molecules of a
certain speed from the oven pass
through the helical slits to the
detector. The straight slit is used
to align the apparatus. [From R. C.
Miller and P. Kusch, Physical
Review, 99, 1314 (1955).]
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Figure 8-8 Data of Miller and Kusch
showing the distribution of speed of
thallium atoms from an oven at 870 K.
The data have been corrected to give the
distribution inside the oven since the
faster molecules approach the exit slit
more frequently and skew the external
distribution slightly. The measured value
for vm at 870 K is The solid
curve is that predicted by the Maxwell
speed distribution. [From R. C. Miller and
P. Kusch, Physical Review, 99, 1314 (1955).]

376 m>s.

Questions

1. How does vrms for H2 molecules compare with vrms for O2 molecules under
standard conditions?
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Maxwell Distribution of Kinetic Energy

Maxwell’s distribution of molecular speeds also provides, as a bonus, the distribution
of the molecular translational kinetic energy and the average kinetic energy of a mol-
ecule. These can also be determined from Equation 8-2. Since v2 � 2E m,
and g(E) dE is

8-11

Substituting the above into Equation 8-2, we have

8-12

Evaluating A� using the fact that the total number of particles,
allows us to write Maxwell’s distribution of kinetic energy as

8-13

The kinetic energy distribution is sketched in Figure 8-9. The average kinetic energy
is computed in the same manner as the average speed; i.e., the distribution is multi-
plied by E (the quantity being averaged), and the result is integrated4 over all values
of E (from ) and divided by the number of molecules N:

8-148E9 �
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E n(E) dE �
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n(E) dE � 4�A�(2>m3)1>2E1>2eE>kT dE

g(E) dE � 4�C(2E>m)(2mE)�1>2 dE

dv � (2mE)1>2 dE,
>E � 1

2mv2,

n
(E

)

0

E

kT 3kT2kT

3––
2

〈E 〉 = kT Figure 8-9 Maxwell
distribution of kinetic energies
for the molecules of an ideal
gas. The average energy

is shown.8E9 � 3kT>2
EXAMPLE 8-4 Escape of H

2
from Earth’s Atmosphere A rule of thumb used by

astrophysicists is that a gas will escape from a planet’s atmosphere in 108 years if
the average speed of its molecules is one-sixth of the escape velocity. Compute the
average speed from the average kinetic energy and show that the absence of hydrogen
in Earth’s atmosphere suggests that Earth must be older than 108 years (mass of H2
molecules � 3.34 � 10�27 kg).
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SOLUTION

The escape speed at the bottom of the atmosphere, i.e., Earth’s surface, is 11.2 km s,
and one-sixth of that value is 1.86 km s. If we assume T � 300 K, the average energy
of a hydrogen molecule (or any other molecule since is independent of mass) is

Thus,

or, for hydrogen molecules,

Therefore,

Remarks: Since v � (1 6)vesc � 1.86 km s, the absence of hydrogen in the atmo-
sphere suggests that the age of Earth is greater than 108 years.

Questions

2. How does for He molecules compare with for Kr molecules under
standard conditions?

3. H2 molecules can escape so freely from Earth’s gravitational field that H2 is not
found in Earth’s atmosphere. (See Example 8-4.) Yet the average speed of H2
molecules at ordinary atmospheric temperatures is much less than the escape
speed. How, then, can all of the H2 molecules escape?

4. Why wouldn’t you expect all molecules in a gas to have the same speed?

Heat Capacities of Gases and Solids

The second important property of classical systems derivable from the Boltzmann dis-
tribution is one that applies to both gases and solids. Called the equipartition theorem,
it states that

In equilibrium, each degree of freedom contributes to the average

energy per molecule.

A degree of freedom is a coordinate or a velocity component that appears squared in
the expression for the total energy of a molecule. For example, the one-dimensional
harmonic oscillator has two degrees of freedom, x and vx; a monatomic gas molecule
has three degrees of freedom, vx, vy, and vz.

1

2 kT

8Ek98Ek9
>> v � 1.93 km>s

v2 �
2 � 6.21 � 10�21

3.34 � 10�27
� 3.72 � 106 m2>s2

1
2mv2 � 6.21 � 10�21 J

8E9 �
3

2
kT �

3 � 1.38 � 10�23 � 300

2
� 6.21 � 10�21 J

8E9> >

More

That each degree of freedom in a classical material should have the
same average energy per molecule is not at all obvious. On the home
page we have included A Derivation of the Equipartition Theorem for
a special case, the harmonic oscillator, to illustrate how the more
general result arises: www.whfreeman.com/tiplermodernphysics5e.
See also Equations 8-15 through 8-23 here.

www.whfreeman.com/tiplermodernphysics5e
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C
V

for Gases

The power of the equipartition theorem is its ability to accu-
rately predict the heat capacities of gases and solids, but
therein is also found its most dramatic failures. As an exam-
ple, consider a rigid-dumbbell model of a diatomic molecule
(Figure 8-10a) that can translate in the x, y, and z directions
and can rotate about axes x� and y� through the center of
mass and perpendicular to the z� axis along the line joining
the two atoms.5 The total energy for this rigid-dumbbell
model molecule is then

where and are the moments of inertia about the x� and
y� axes. Since this molecule has 5 degrees of freedom, 3
translational and 2 rotational, the equipartition theorem
predicts the average energy to be (5 2)kT per molecule. The
energy per mole U is then (5 2)NAkT � (5 2)RT and the molar heat capacity at constant
volume is (5 2)R. The observation that CV for both nitrogen and
oxygen is about (5 2)R enabled Rudolf Clausius to speculate (in about 1880) that
these gases must be diatomic gases, which can rotate about two axes as well as translate.
(See Table 8-1.)

> >CV � ($U>$T)V

>> >
Iy�Ix�

E � 1
2mv2

x � 1
2mv2

y � 1
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2 Ix��

2
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Table 8-1 C
V

for some gases at 15°C and 1 atm

Gas C
V

(cal mol-deg)

Ar 2.98 1.50

He 2.98 1.50

CO 4.94 2.49

H2 4.87 2.45

HCl 5.11 2.57

N2 4.93 2.49

NO 5.00 2.51

O2 5.04 2.54

Cl2 5.93 2.98

CO2 6.75 3.40

CS2 9.77 4.92

H2S 6.08 3.06

N2O 6.81 3.42

SO2 7.49 3.76

R � 1.987 cal mol-deg

From J. R. Partington and W. G. Shilling, The Specific
Heats of Gases (London: Ernest Benn, Ltd., 1924).

>

C
V
>R>

Figure 8-10 (a) Rigid-dumbbell model of a diatomic gas
molecule that can translate along the x, y, or z axis and
rotate about the x� or y� axis fixed to the center of mass.
If the spheres are smooth or are points, rotation about the z�
axis can be neglected. (b) Nonrigid-dumbbell model of a
diatomic gas molecule that can translate, rotate, and vibrate.
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If a diatomic molecule is not rigid, the atoms can also vibrate along the line joining
them (Figure 8-10b). Then, in addition to the translational energy of the center of mass
and rotational energy, there can be vibrational energy. The vibration, a simple harmonic
motion, adds two more squared terms to the energy, one for the potential energy and one
for kinetic energy. For a diatomic molecule that is translating, rotating, and vibrating, the
equipartition theorem thus predicts a molar heat capacity of (3 � 2 � 2) , or (7 2)R.
However, measured values of CV for diatomic molecules (see Table 8-1) show no con-
tribution from the vibrational degrees of freedom. The equipartition theorem provides
no explanation for their absence.

Experimental values of CV for several diatomic gases are included in Table 8-1.
For all of these except Cl2, the data are consistent with the equipartition theorem pre-
diction, assuming a rigid, nonvibrating molecule. The value for Cl2 is about halfway
between that predicted for a rigid molecule and that predicted for a vibrating mole-
cule. The situation for molecules with three or more atoms, several of which are also
listed in Table 8-1, is more complicated and will not be examined in detail here.

The equipartition theorem in conjunction with the point-atom, rigid-dumbbell
model was so successful in predicting the molar heat capacity for most diatomic mol-
ecules that it was difficult to understand why it did not do so for all of them. Why
should some diatomic molecules vibrate and not others? Since the atoms are not
points, the moment of inertia about the line joining the atoms, while small, is not zero,
and there are three terms for rotational energy rather than two. Assuming no vibration,
CV should then be (6 2)R. This agrees with the measured value for Cl2 but not for the
other diatomic gases. Furthermore, monatomic molecules would have three terms for
rotational energy if the atoms were not points, and CV should also be (6 2)R for these
atoms rather than the (3 2)R that is observed. Since the average energy is calculated
by counting terms, it should not matter how small the atoms are as long as they are
not merely points. In addition to these difficulties, it is found experimentally that
the molar heat capacity depends on temperature, contrary to the predictions from the
equipartition theorem. The most spectacular case is that of H2, shown in Figure 8-11.
It seems as if at very low temperatures, below about 60 K, H2 behaves like a
monatomic molecule and does not rotate. It seems to undergo a transition, and be-
tween about 250 K and 700 K it has CV � (5 2)R, thus behaving like a rotating rigid>

> >>

>1
2R

T, K
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10005002501005025
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2

R
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R
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Figure 8-11 Temperature dependence of molar heat capacity of H2. Between about 250 and
750 K, CV is (5 2)R, as predicted by the rigid-dumbbell model. At low temperatures, CV is
only (3 2)R, as predicted for a nonrotating molecule. At high temperatures CV seems to be
approaching (7 2)R, as predicted for a dumbbell model that rotates and vibrates, but the
molecule dissociates before this plateau is reached.

>> >
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dumbbell. At very high temperatures H2 begins to vibrate, but the molecule dissoci-
ates before CV reaches (7 2)R. Other diatomic gases show similar behavior except that
at low temperatures they liquefy before CV reaches (3 2)R. The failure of the equipar-
tition theorem to account for these observations occurs because classical mechanics
itself fails when applied to atoms and molecules. As we will see, it must be replaced
by quantum mechanics.

C
V

forSolids

The equipartition theorem is also useful in understanding the heat capacity of solids.
In 1819 P. Dulong and A. Petit pointed out that the molar heat capacity of most solids
was very nearly equal to 6 cal K-mol � 3R. This result was used by them to obtain
unknown molecular weights from the experimentally determined heat capacities. The
empirical Dulong-Petit law is easily derived from the equipartition theorem by as-
suming that the internal energy of a solid consists entirely of the vibrational energy of
the molecules (see Figure 8-12). If the force constants in the x, y, and z directions are

and respectively, the vibrational energy of each molecule is

Since there are six squared terms, the average energy per molecule is 6( kT), and the
total energy of 1 mole is 3NAkT � 3RT, giving CV � 3R.

At high temperatures, all solids obey the Dulong-Petit law. For temperatures
below some critical value, CV drops appreciably below the value of 3R and approaches
zero as T approaches zero. The critical temperature is a characteristic of the solid. It
is lower for soft solids such as lead than for hard solids such as diamond. The tem-
perature dependence of CV for several solids is shown in Figure 8-13.

The fact that CV for metals is not appreciably different from that for insulators is
puzzling. The classical model of a metal is moderately successful in describing the
conduction of electricity and heat. It assumes that approximately one electron per
atom is free to move about the metal, colliding with the atoms much as the molecules
do in a gas. According to the equipartition theorem, this “electron gas” should have an
average kinetic energy of (3 2)kT per electron; thus, the molar heat capacity should
be about (3 2)R greater for a conductor than for an insulator. Although the molar heat
capacity for metals is slightly greater than 3R at very high temperatures, the difference
is much less than the (3 2)R predicted for the contribution of the electron gas.>> >
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Figure 8-12 Simple model
of a solid consisting of atoms
connected to each other by
springs. The internal energy
of the solid then consists of
kinetic and potential
vibrational energy.

5

1

200 800 1000 1200600400

Aluminum
Silicon

Carbon (diamond)

Lead

Absolute temperature, K

C
v

, k
ca

l/k
m

ol
 · 

K

0

7

3

4

2

6
Figure 8-13 Temperature
dependence of molar heat
capacity of several solids.
At high temperatures CV is
3R, as predicted by the
equipartition theorem.
However, at low temperatures
CV approaches zero. The
critical temperature at which
CV becomes nearly 3R is
different for different solids.
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The Boltzmann distribution and statistical mechanics were enormously success-
ful in predicting the observed thermal properties of physical systems; however, the
failure of the theory to account correctly for the heat capacities of gases and solids was
a serious problem for classical physics, constituting as it did a failure of classical me-
chanics itself. The search for an understanding of specific heats was instrumental in
the discovery of energy quantization in the early years of the twentieth century. The
following sections show how quantum mechanics provides a basis for the complete
understanding of the experimental observations.

EXAMPLE 8-5 Broadening of Spectral Lines In Chapter 5 we saw that spectral lines
emitted by atoms had a certain natural width due to the uncertainty principle.
However, in luminous gases, such as sodium and mercury vapor lamps and the visi-
ble surface of the Sun, the atoms are moving with the Maxwell velocity distribution.
The velocity distribution results in a Doppler effect that Rayleigh showed was pro-
portional to the Boltzmann factor and led to a broadening � of spectral lines equal to

where is the wavelength of the line, T is the absolute temperature, and M is the
molecular weight. From this, compute the velocity (Doppler) broadening of the
hydrogen line emitted by H atoms at the surface of the Sun, where T � 5800 K.

SOLUTION

The wavelength of the line is 656.3 nm and the atomic weight of H is 1, so

For comparison, the natural width of the line is about 0.0005 nm. Note that the
effect of the pressure of the gas in causing spectral line broadening via collisions is
also an important factor and, in fact, at high pressures, is the dominant cause.
Collisions reduce the level lifetime, hence broaden the energy width (uncertainty
principle). This is the reason that the Sun’s visible spectrum is a continuous one.

8-2 Quantum Statistics

Bose-Einstein and Fermi-Dirac Distributions

The classical systems that were the subject of Section 8-1 consisted of identical but
distinguishable particles. They were treated like billiard balls: exactly the same as
one another but with numbers painted on their sides. Indeed, that was the point of the
first assumption on the first page of the kinetic theory review in the Classical Concept
Review on the Web site. However, the wave nature of particles in quantum mechan-
ics prevents identical particles from being distinguished from one another. The finite
extent and the overlap of wave functions makes identical particles indistinguishable.
Thus, if two identical particles 1 and 2 pass within a de Broglie wavelength of each
other in some event, we cannot tell which of the emerging particles is 1 and which
is 2—i.e., we cannot distinguish between the several possible depictions of the event
in Figure 8-14. The treatment of classical particles that led to the Boltzmann distri-
bution can be extended to systems containing large numbers of identical indistin-
guishable particles.

H
�

¢ � 0.72 � 10�6 � 656.325800>1 � 0.036 nm

H
�

H
�




¢ � 0.72 � 10�6
2T>M
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Particle 1

Particle 1

Particle 2

Particle 2

Particle 2

Particle 2

Particle 1

Particle 1

Figure 8-14 The wave nature of
quantum-mechanical particles
prevents us from determining which
of the four possibilities shown
actually occurred when the two
identical, indistinguishable particles
passed within a de Broglie
wavelength of each other.

The first such theoretical treatment for particles with zero or integer spins—i.e.,
those that do not obey the exclusion principle, such as helium atoms (spin 0) and pho-
tons (spin 1), was done by Bose6 in 1924, when he realized that the Boltzmann dis-
tribution did not adequately account for the behavior of photons. Bose’s new statisti-
cal distribution for photons was generalized to massive particles by Einstein shortly
thereafter. The resulting distribution function, called the Bose-Einstein distribution
fBE(E), is given by

8-24

where is a system-dependent normalization constant. Particles whose statistical dis-
tributions are given by Equation 8-24 are called bosons.

Following the discovery of electron spin and Dirac’s development of relativistic
wave mechanics for spin- particles, Fermi7 and Dirac8 completed the statistical me-
chanics for quantum mechanical particles by deriving the probability distribution for
large ensembles of identical indistinguishable particles that obey the exclusion princi-
ple. The result is called the Fermi-Dirac distribution fFD(E) and is given by

8-25

where, again, is a system-dependent normalization constant. Particles whose be-
havior is described by Equation 8-25 are called fermions or Fermi-Dirac particles.

Comparison of the Distribution Functions

We can write the Boltzmann distribution (Equation 8-1) in the form

8-26

where the normalization constant A in Equation 8-1 is replaced by After doing so,
one is immediately struck by the very close resemblance between the three distribu-
tions (Equations 8-24, 8-25, and 8-26), the Fermi-Dirac and Bose-Einstein probability
functions differing from that of Boltzmann only by the �1 in the denominator. The
question immediately arises as to the significance of this seemingly small difference.
In particular, since integrals of the form and require
the use of numerical methods for their solutions, it would be helpful to know if and
under what conditions the Boltzmann distribution can be used for indistinguishable
quantum-mechanical particles.
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0 F(E)fFD(E) dE��
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Enrico Fermi on a picnic in
Michigan in July 1935. The
bandage covers a cut on his
forehead received when he
accidentally hit himself with
his racket while playing tennis.
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Let us first examine the physical meaning of the difference between the distribu-
tions. Consider a system of two identical particles, 1 and 2, one of which is in state n
and the other in state m. As we discussed in Section 7-6, there are two possible single-
particle-product solutions to the Schrödinger equation. They are

8-27a

8-27b

where the numbers 1 and 2 represent the space coordinates of the two particles. If the
two identical particles are distinguishable from each other, i.e., if they are classical par-
ticles, then we can tell the difference between the two states represented by Equations
8-27a and 8-27b. However, for indistinguishable particles we have seen that the solu-
tions must be the symmetric or antisymmetric combinations given in Section 7-6:

8-28a

8-28b

The factor is the normalization constant. As we have discussed earlier (see
Section 7-6), the antisymmetric function describes particles that obey the exclusion
principle, i.e., fermions. The symmetric function describes indistinguishable parti-
cles that do not obey the exclusion principle, i.e., bosons.

Writing and to keep us reminded of the probability distribu-
tions followed by the fermions and bosons, respectively, let us now consider the prob-
ability that, if we look for the two particles, we will find them both in the same state,
say state n. For two distinguishable particles Equations 8-27a and 8-27b both become

8-29

where we have written to remind us that distinguishable particles fol-
low the Boltzmann distribution. Thus, the probability density of finding both distin-
guishable particles in state n is

8-30

Turning to indistinguishable particles, the wave function for two bosons both oc-
cupying state n is, from Equation 8-28a,

8-31

and the probability density of finding both bosons in state n is then

8-32

Thus, the probability that both bosons would be found by an experiment to be occupy-
ing the same state is twice as large as for a pair of classical particles. This surprising
discovery can be generalized to large ensembles of bosons as follows:

The presence of a boson in a particular quantum state enhances the proba-

bility that other identical bosons will be found in the same state.

It is as if the presence of the boson attracts other identical bosons. Thus, the �1 that
appears in the denominator of Equation 8-24 results physically in an increased
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probability that multiple bosons will occupy a given state, compared with the probabil-
ity for classical particles in the same circumstances. The laser is the most common
example of this phenomenon (see Chapter 9). We will consider another result of this
intriguing behavior in Section 8-3.

If the two indistinguishable particles are fermions, the wave function for both
occupying the same state is, as we have previously discussed in Section 7-6,

8-33

And, of course, the probability density also. This result, too, can be gen-
eralized to large ensembles of fermions as follows:

The presence of a fermion in a particular quantum state prevents any other

identical fermions from occupying the same state.

It is as if identical fermions actually repel one another. The �1 in the denominator of
Equation 8-25 is thus due to the exclusion principle. We will consider consequences
of this peculiar property of fermions further in Chapter 10. Figure 8-15 compares the
distributions of bosons and fermions.

With the physical discussion above in mind, now let’s compare the three functions.
Figure 8-16 shows a comparison of the three distributions for � 0 over the energy
range from zero up to 5kT. Notice that for any given energy the fBE curve for bosons lies
above that for fB for classical particles, reflecting the enhanced probability pointed out
by Equation 8-32. Similarly, the fFD curve for fermions lies below those for both fBE and
fB, a consequence of the exclusion of identical fermions from states that are already oc-
cupied. Notice that Equations 8-24 and 8-25 both approach the Boltzmann distribution
when For this situation and 
Thus, fBE(E) and fFD(E) both approach the classical Boltzmann distribution when the
probability that a particle occupies the state with energy E is much less than 1. The same
is also clearly the case when, for a given E kT, as Figure 8-16 illustrates.W�,

fFD(E) � fB(E) V 1.fBE(E) � fB(E) V 1e� W eE>kT.
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Figure 8-15 n(E) versus E for a system of six identical,
indistinguishable particles. is for particles with zero
or integer spin (bosons). is for particles with integer
spin (fermions). Compare with Figure 8-1.
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At the beginning of this section we noted that identical quantum particles were
rendered indistinguishable from one another by the overlap of their de Broglie waves.
This provides another means of determining for a given system when the Boltzmann
distribution may be used that can be shown to be equivalent to the fB(E) 1 condi-
tion above but that is sometimes easier to apply. If the de Broglie wavelength is
much smaller than the average separation of the particles, then we can neglect the
overlap of the de Broglie waves, in which case the particles can be treated as if they
were distinguishable:

8-34

where

8-35

The average separation of the particles is where N V is the number
of particles per unit volume in the system. Thus, the condition stated by Equation 
8-34 becomes

which when cubed and rearranged becomes

8-36

Equation 8-36 gives the condition under which the Boltzmann distribution can be
used. Note that in general the condition requires low particle densities and high tem-
peratures for particles of a given mass. The next example illustrates the application of
the condition.

EXAMPLE 8-6 Statistical Distribution of He in the Atmosphere He atoms have spin
0 and hence are bosons. He makes up 5.24 � 10�6 of the molecules in the atmo-
sphere. (a) Can the Boltzmann distribution be used to predict the thermal properties of
atmospheric helium at T � 273 K? (b) Can it be used for liquid helium at T � 4.2 K?

SOLUTION

(a) NA atoms of air occupy 2.24 � 10�2 m3 at standard conditions. The number of
He atoms per unit volume is then

The left side of Equation 8-36 is then

The behavior of the helium in the atmosphere can therefore be described by
the Boltzmann distribution.
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(b) The density of liquid helium at its boiling point T � 4.2 K is 0.124 g cm3.
The particle density N V is then

The left side of Equation 8-36 is then

which is not 1. Therefore, the Boltzmann distribution does not adequately
describe the behavior of liquid helium, so the Bose-Einstein distribution must
be used.

Using the Distribution: Finding n (E )

In order to find the actual number of particles n(E) with energy E, each of the three
distribution functions given by Equations 8-24, 8-25, and 8-26 must be multiplied by
the density of states, as indicated by Equation 8-2.

8-37a

8-37b

8-37c

Finding g(E) enables the constant to be determined for particular systems from the
normalization condition that we have used several times, namely, the total number of
particles

Density ofStates

As an example of determining g(E), consider an equilibrium system of N classical par-
ticles confined in a cubical volume of side L. Treating the cube as a three-dimensional
infinite square well, in Chapter 7 we found the energy of a particle in such a well to be

7-4

which we will for the convenience of our present discussion write as

8-38

where x, y, and z replace 1, 2, and 3 and The three quantum num-
bers nx, ny, and nz specify the particular quantum state of the system. Recalling that
g(E) is the number of states with energy between E and (E � dE), our task is to find
an expression for the total number of states from zero energy up to E, then differenti-
ate that result to find the number within the shell dE. This is made quite straightfor-
ward by (1) observing that Equation 8-38 is the equation of a sphere of radius

in nx ny nz “space” and (2) recalling that the quantum numbers must be
integers, each combination of which represents a particular energy and corresponds to
a point in the “space.” (See Figure 8-17.) Since the quantum numbers must all be
positive, the “space” is confined to that octant of the sphere, as Figure 8-17 shows.
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Figure 8-17 A representation
of the allowed quantum states
for a system of particles
confined in a three-
dimensional infinite square
well. The radius R � E1>2.
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The number of states N within radius R (equal to the number of different combinations
of the quantum numbers) in the volume is given by

8-39

The density of states in nx ny nz “space” is

8-40

or

8-41

where the volume V � L3. If the particles were electrons, then each state could ac-
commodate two (one with spin up and one with spin down) and the density of states
ge(E) would be twice that given by Equation 8-41, or

8-42

We can compute the constant in the Boltzmann distribution for these two cases
from the normalization condition

8-43

If the distinguishable particles are electrons, gB(E) � ge(E) and we have that

which, when evaluated, yields

or

8-44

For particles that do not obey the exclusion principle, the 2 multiplying the parenthe-
ses in Equation 8-44 is not present. Note that depends upon the number density
of particles N V. Note too that is essentially the quantity on the left side of
Equation 8-36, which was obtained from de Broglie’s relation for classical particles.
Thus, the test for when the Boltzmann distribution may be used given by Equation 
8-36 is equivalent to the condition that e�� V 1.
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Questions

5. How can identical particles also be distinguishable classically?

6. What are the physical conditions under which the Boltzmann distribution holds
for a system of particles?

7. Do the opposite spins of two electrons in the same state make them
distinguishable from each other?

8. How would you characterize a boson? A fermion?

8-3 The Bose-Einstein Condensation
We saw in Section 8-2 that, for ordinary gases, the Bose-Einstein distribution differs
very little from the classical Boltzmann distribution, basically because there are many
quantum states per particle due to the low density of gases and the large mass of the
particles. However, for liquid helium, there is approximately one particle per quantum
state at very low temperatures, and the classical distribution is invalid, as was
illustrated in Example 8-6. The somewhat daring idea that liquid helium can be treated
as an ideal gas obeying the Bose-Einstein distribution was suggested in 1938 by 
F. London in an attempt to understand the amazing properties of helium at low
temperatures. When liquid helium is cooled, several remarkable changes take place in
its properties at a temperature of 2.17 K. In 1924, H. Kamerlingh Onnes and J. Boks
measured the density of liquid helium as a function of temperature and discovered a
cusp in the curve at that temperature, as illustrated in
Figure 8-18. In 1928, W. H. Keesom and M. Wolfke
suggested that this discontinuity in the slope of the 
curve was an indication of a phase transition. They used
the terms “helium I” for the liquid above 2.17 K, called the
lambda point (see Figure 8-19), and “helium II” for 
the liquid below that temperature. In London’s theory,
called the two-fluid model, helium II is imagined to con-
sist of two parts, a normal fluid with properties similar to
helium I and a superfluid (i.e., a fluid with viscosity 0)
with quite different properties. The density of liquid he-
lium II is the sum of the densities of the normal fluid and
the superfluid:

8-45

As the temperature is lowered from the lambda point, the
fraction consisting of the superfluid increases and that 
of the normal fluid decreases until, at absolute zero, only
the superfluid remains. The superfluid corresponds to the
helium atoms being in the lowest possible quantum state,
the ground state. These atoms are not excited to higher
states, so the superfluid cannot contribute to viscosity.
When the viscosity of helium II is measured by the
rotating disk method (a standard technique for mea-
suring the viscosity of liquids), only the normal-fluid
component exerts a viscous force on the disk. As the
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Figure 8-18 Plot of density of liquid helium versus
temperature, by Kamerlingh Onnes and Boks. Note the
discontinuity at 2.17 K. [From F. London, Superfluids 
(New York: Dover Publications, Inc., 1964). Reprinted by
permission of the publisher.]
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temperature is lowered, the fraction of helium in the normal component decreases
from 100 percent at the lambda point to 0 percent at T � 0 K; thus, the viscosity
decreases rapidly with temperature in agreement with experiment.

It is not at all obvious that liquid helium should behave like an ideal gas, because the
atoms do exert forces on each other. However, these are weak van der Waals forces (to be
discussed in Chapter 9), and the fairly low density of liquid helium (0.145 g cm3 near the
lambda point) indicates that the atoms are relatively far apart. The ideal gas model is
therefore a reasonable first approximation. It is used mainly because it is relatively sim-
ple and because it yields qualitative insight into the behavior of this interesting fluid.

EXPLORING

Liquid Helium

In a classic experiment conducted in 1908, H. Kamerlingh Onnes9 succeeded in lique-
fying helium, condensing the last element that had steadfastly remained in gaseous
form and culminating a determined effort that had consumed nearly a quarter of a cen-
tury of his life. Even then, he nearly missed seeing it. After several hours of cooling,
the temperature of the helium sample, being measured by a constant-volume helium gas
thermometer, refused to fall any further. The liquid hydrogen being used to precool the
system was gone, and it appeared that the experiment had failed when one of the sev-
eral interested visitors gathered in Kamerlingh Onnes’s lab suggested that perhaps the
temperature was steady because the thermometer was immersed in boiling liquid that
was so completely transparent as to be very hard to see. At the visitor’s suggestion, a
light was shined from below onto the glass sample vessel and the gas-liquid interface
became clearly visible! Condensation to the very low-density, transparent liquid had
occurred at 4.2 K.

The liquid helium must have been boiling vigorously. Soon afterward Kamerlingh
Onnes was able to reduce the temperature further, passing below 2.17 K, at which point
the vigorous boiling abruptly ceased. He must have observed the sudden cessation of
the violent boiling, yet he made no mention of it then or in the reports of any of his
many later experiments. Indeed, it was another quarter century before any mention of
this behavior would appear in the literature,10 even though many investigators must
have surely seen it. The abrupt halt in boiling at 2.17 K signaled a phase transition in
which helium changed from a normal fluid to a superfluid, that is, bulk matter that
flows essentially without resistance (viscosity 0). Of all the elements, only the two
naturally occurring isotopes of helium exhibit this property. The transition to the su-
perfluid phase in 4He occurs at 2.17 K. In 3He, which accounts for only 1.3 � 10�4 per-
cent of natural helium, the transition occurs at about 2 mK. This transition should not
be interpreted as due in some way to a peculiarity in the structure of helium. Liquid
phases of other bosons do not become superfluids because all other such systems so-
lidify at temperatures well above the critical temperature for Bose-Einstein condensa-
tion. Only helium remains liquid under its vapor pressure at temperatures approaching
absolute zero.11 The fundamental reason that it does not solidify is that the interaction
potential energy (see Section 9-3) between helium molecules is quite weak. Since he-
lium atoms have small mass, their zero-point motion (i.e., their motion in the lowest-
allowed energy level—see Section 5-6) is large, in fact, so large that its kinetic energy
exceeds the interaction potential energy, thus melting the solid at low pressure. It is the
superfluid phase of 4He that we will be referring to throughout the remainder of this
section. It turns out that 3He becomes a superfluid for a different reason. (Hint: 4He has
spin 0, hence is a boson; 3He has spin and is thus a fermion.)1

2

�

>

H. Kamerlingh Onnes and 
J. D. Van der Waals by the
helium liquefier in the
Kamerlingh Onnes
Laboratory in Leiden in 1911.
[Courtesy of the Kamerlingh
Onnes Laboratory.]

Liquid helium, because of its

extremely low boiling

temperature, is the standard

coolant for superconducting

magnets throughout the

world. Medical diagnostic

MRI systems use such

magnets. The large particle

accelerators at, e.g., CERN

and Fermilab use hundreds

of them (see Chapter 11).
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Experimental Characteristics of Superfluid 4He

In 1932 W. Keesom and K. Clusius measured the specific heat as a function of temperature
and made a dramatic discovery of an enormous discontinuity, obtaining the curve shown in
Figure 8-19. Because of the similarity of this curve to the Greek letter the transition tem-
perature 2.17 K is called the lambda point. Figure 8-20 shows this same curve measured
with much greater resolution. Just above the lambda point, He boils vigorously as it evapo-
rates. The bubbling immediately ceases at the lambda point, although evaporation contin-
ues. This effect is due to the sudden large increase in the thermal conductivity at the lambda
point. In normal liquid helium, like other liquids, the development of local hot spots causes
local vaporization, resulting in the formation of bubbles. Below the lambda point the ther-
mal conductivity becomes so large, dissipating heat so rapidly, that local hot spots cannot
form. Measurements of thermal conductivity show that helium II conducts heat better than
helium I by a factor of more than a million; in fact, helium II is a better heat conductor than
any metal, exceeding that of copper at room temperature by a factor of 2000. This conduc-
tion process is different from ordinary heat conduction, for the rate of conduction is not pro-
portional to the temperature difference. Bubble formation ceases (even though evaporation
continues) because all parts of the fluid are at exactly the same temperature.
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This lambda-point transition is clearly visible on the surface of the liquid shown in
Figures 8-21a and b, which also illustrates the phenomenon largely responsible for ap-
plying the name superfluid to helium II. The small container of liquid helium sus-
pended above the surface has a bottom made of tightly packed, ultrafine powder (fine
emery powder or jeweler’s rouge). The microscopic channels through the powder are
too small for the ordinary liquid to pass through, but when the temperature drops below
the lambda point, the superfluid flows through essentially unimpeded, the viscosity
suddenly dropping at that point by a factor of about one million.12

Figures 8-22a and b illustrate the creeping film effect. A container containing
liquid helium has a thin film (several atomic layers thick) of helium vapor coating the
walls, just as is the case with any other enclosed liquid. However, if the level of liquid
helium in the container is raised above the general level in the reservoir, such as the cup
in the photo of Figure 8-22a, the superfluid film on the walls creeps up the inner walls,
over the top, and down the outside and returns to the reservoir until both surfaces are
level or the cup is empty! In the thermomechanical effect, which involves two contain-
ers of liquid helium II connected by a superleak, if heat is added to one side, e.g., by a
small heater as illustrated in Figure 8-23a, the superfluid on the other side migrates
toward the heated side, where the level of liquid (still superfluid) rises. If the system is
suitably arranged, as in Figure 8-23b, the rising liquid can jet out a fine capillary in the
so-called fountain effect.13

Superfluid 3He

Physicists thought for a long time that 3He could not form a superfluid since its nucleus
consists of two protons and a neutron. It thus has -integer spin and obeys Fermi-Dirac
statistics, which prohibits such particles from sharing the same energy state. However,
early in the 1970s D. M. Lee, D. D. Osheroff, and R. C. Richardson showed that when
cooled to 2.7 mK, the spins of pairs of 3He atoms can align parallel, creating, in effect,
a boson of spin 1 and allowing the liquid to condense to a superfluid state. Two addi-
tional superfluid states were subsequently discovered, a spin-0 state (antiparallel spins)
at 1.8 mK and a second spin-1 state that is created when an external magnetic field
aligns the spins of the 3He pairs. The three scientists received the 1996 Nobel Prize for
their discovery.

1
2

Figure 8-21 (a) Liquid
helium being cooled by
evaporation just above the
lambda point boils
vigorously. (b) Below the
lambda point the boiling
ceases and the superfluid
runs out through the fine
pores in the bottom of the
vessel suspended above the
helium bath. [Courtesy of
Clarendon Laboratory. From
K. Mendelssohn, The Quest for
Absolute Zero: The Meaning of
Low Temperature Physics,
World University Library 
(New York: McGraw-Hill Book
Company, 1966).]

(b)
(a)

Figure 8-22 (a) The creeping film. The liquid helium in the dish is at a temperature of
about 1.6 K. A thin film creeps up the sides of the dish, over the edge, and down the outside
to form the drop shown, which then falls into the reservoir below. [Courtesy of A. Leitner,
Rensselaer Polytechnic Institute.] (b) Diagram of creeping film. If the dish is lowered until
partially submerged in the reservoir, the superfluid creeps out until the levels in the dish
and reservoir are the same. If the level in the cup is initially lower than that of the reservoir,
superfluid creeps into the dish.

(a)

(b)
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In the Bose-Einstein distribution the number of particles in the energy range dE
is given by n(E)dE, where we have from Equation 8-37b

8-46

where g(E) is given by Equation 8-41. The constant which is determined by nor-
malization, cannot be negative, for if it were, n(E) would be negative for low values
of E. This situation would make no sense physically since, if were negative for small
energies (i.e., ), then would be negative. But is the number
of particles in the state with energy E, and a negative value would be meaningless.
The normalization condition is

8-47

where x � E kT and the integral in this equation is a function of 
The usual justification for using a continuous energy distribution to describe a

quantum system with discrete energies is that the energy levels are numerous and
closely spaced. In this case, as we have already seen, for a gas of N particles in a macro-
scopic box of volume V (the container), this condition holds, as you can demonstrate for
yourself by computing the spacing using Equation 7-4 for a three-dimensional box.
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Heater
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(c)

Superfluid
reservoir

Superleak

Figure 8-23 (a) Diagram of the thermomechanical effect. The level of the fluid rises in
the container where the heat is being added. (b) A bulb containing liquid helium is in a cold
bath of liquid helium II at 1.6 K. When light containing infrared radiation is focused on
the bulb, liquid helium rises above the ambient level. The height of the level depends on the
narrowness of the tube. If the tube is packed with powder and the top drawn out into a fine
capillary, the superfluid spurts out in a jet as shown, hence the name “fountain effect.”
(c) Diagram showing the components in the photograph in (b). [Photo courtesy of Helix
Technology Corporation.]

(b)
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However, in replacing the discrete distribution of energy states by a continuous distri-
bution, we ignore the ground state. This is apparent from Equation 8-41, where we see
that therefore, if E � 0, g(E) � 0 also. This has little effect for a gas con-
sisting of Fermi-Dirac particles since there can be only two particles in any single state,
and ignoring two particles out of 1022 causes no difficulty. In a Bose-Einstein gas, how-
ever, there can be any number of particles in a single state. If we ignore the ground state,
as we have up to now, the normalization condition expressed by Equation 8-47 cannot
be satisfied below some minimum critical temperature corresponding to the minimum
possible value of This implies that at very low temperatures there are a sig-
nificant number of particles in the ground state.

The critical temperature can be found by evaluating Equation 8-47 numerically.
The integral has a maximum value of 2.315 when has its minimum value of 0.
This results in a maximum value for N V given by

Since N V is determined by the density of liquid helium, this implies a value for the
critical temperature, given by

8-48

Inserting the known constants and the density of helium, we find for the critical
temperature

8-49

For temperatures below 3.1 K the normalization Equation 8-47 cannot be satisfied for
any value of Evidently at these temperatures there are a significant number of
particles in the ground state, which we have not included.

We can specifically include the ground state by replacing Equation 8-47 with

8-50

where N0 is the number in the ground state. If we choose E0 � 0 for the energy of the
ground state, this number is

8-51

where g0, the density of states or statistical weight, is 1 for a single state. We see that
N0 becomes large as becomes small. With the inclusion of N0, which depends on 
the normalization condition (Equation 8-50) can be met and can be computed
numerically for any temperature and density. For temperatures below the critical tem-
perature we see from Equation 8-51 that Expanding for small 
yields and we thus conclude that is of the order of and that
the fraction of molecules in the ground state is given approximately by
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In the London two-fluid model the N0 atoms that we added in Equation 8-50 have
condensed to the ground state. These particles in the ground state constitute the su-
perfluid. The remaining (N � N0) atoms are the normal fluid. That fraction of the fluid
that is superfluid for is shown in Figure 8-24.

The value is not very different from the observed lambda-point tem-
perature T � 2.17 K, especially considering that our calculation is based on the as-
sumption that the liquid helium is an ideal gas. The process of atoms dropping into the
ground state as the temperature is lowered below is called Bose-Einstein conden-
sation. Such an occurrence was predicted by Einstein in 1924, before there was any
evidence that such a process could occur in nature.

The Bose-Einstein Condensate

Like all atoms, the constituents of 4He (protons, neutrons, and electrons) are fermions;
however, they are assembled in such a way that the total spin of the ground state is inte-
ger (zero), so that the 4He atom is a boson. Indeed, a review of the periodic table shows
that, although atoms can be either fermions or bosons, the ground-state spins are mostly
integer, so in their lowest energy state most atoms are bosons. This fact is of no great con-
sequence in determining the properties of a gas in a macro-
scopic container because the spacing between the quantized
energies is extremely small, so the probability that any par-
ticular level is occupied by an atom is also small. For exam-
ple, the spacing between adjacent levels in a cubical box
with a volume of 1 cm3 containing sodium gas is about

(see Equation 8-38), so even at relatively low tem-
peratures the atoms in a sample of a few billion would be
widely spread among the allowed levels, as in Figure 8-25a.
In addition, the average distance between atoms in the box
would be about or tens
of thousands of atomic diameters, so the interactions be-
tween the atoms are minuscule.

If our goal is to form a Bose-Einstein condensate (BEC)
from the widely separated atomic bosons of the gas sample
in the box, the obvious approach is that used to condense any
gas; that is, the sample is cooled and the density is increased
until the gas liquefies. However, this approach presents us
with a formidable problem: as the gas liquefies, the atoms
get very close together, the density approximating that of the
solid. The atoms now interact strongly, mainly via their outer
electrons, and thus all begin to act like fermions! (This is es-
sentially what happens in liquid helium II, where even at
very low temperatures the fraction of the atoms in the ground
state [superfluid phase] is only about 10 percent or so.)

This problem was solved by C. E. Wieman and 
E. Cornell in 1995, more than 70 years after Einstein’s
prediction. They did it by forming the BEC directly from a
supersaturated vapor, cooling the sample but never allow-
ing it to reach ordinary thermal equilibrium.14 This was
done with standard cooling methods and a very neat
“trick.” First, a sample of rubidium vapor at room temper-
ature was illuminated by the beams from six small diode
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Figure 8-24 Graph of the
fraction of superfluid in a
sample of liquid helium as a
function of temperature.

Figure 8-25 (a) The atoms in a sample of dilute gas in any
macroscopic container are distributed over a very large
number of levels, making the probability of any one level
being occupied quite small. (b) Cooled to the point where
the de Broglie wavelength becomes larger than the
interatomic spacing, atoms fall into the ground state, all
occupying the same region of space.
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lasers of appropriate frequency. Collisions of the laser photons with atoms in the low-
speed tail of the Maxwell distribution (see Figure 8-3) slowed those atoms, and within
a second or two a sample of about 107 atoms collected in the volume defined by the in-
tersecting laser beams, about 1.5 cm in diameter. The temperature of this laser-cooled
sample was about 1 mK. Then a special magnetic trap (i.e., a magnetic field shaped so
as to confine the atoms) was used to “squeeze” the cooled sample, whose atomic spins

had been polarized in the direction. (Polarizing the spins was the “trick”
referred to above. Equilibrium is reached in the spin-polarized vapor very rapidly,
long before the true thermal equilibrium state—the solid—can form, thus maintaining
the sample as a supersaturated vapor.) The warmer atoms on the high-speed tail of
the Maxwell distribution of the trapped atoms are allowed to escape through a “leak”
in the magnetic trap, taking with them a substantial amount of the kinetic energy and
evaporatively cooling the remaining few thousand atoms to less than 100 nK, just as
water molecules evaporating from the surface of a cup of hot coffee cool that which
remains in the cup. These remaining cold atoms fall into the ground state of the con-
fining potential and have, within the experimental uncertainties, reached absolute zero.
They are the condensate. The BEC is illustrated in Figure 8-25b. The condensate, if left
undisturbed in the dark, lives for 15 to 20 seconds, its destruction eventually resulting
from collisions with impurity atoms in the vacuum that are also colliding with the hot
(room temperature) walls of the experimental cell. The peak in Figure 8-26 is a macro-
scopic quantum wave function of the condensate.

m � 2(� 2U)

Figure 8-26 Two-dimensional velocity distributions of the trapped cloud for three
experimental runs with different amounts of cooling. The axes are the x and z velocities, and
the third axis is the number density of atoms per unit velocity-space volume. This density is
extracted from the measured optical thickness of the shadow. The distribution on the left
shows a gentle hill and corresponds to a temperature of about 200 nK. The middle picture is
about 100 nK and shows the central condensate spire on the top of the noncondensed
background hill. In the picture on the right, only condensed atoms are visible, indicating that
the sample is at absolute zero, to within experimental uncertainty. The gray bands around the
peaks are an artifact left over from the conversion of false-color contour lines into the present
black and white. [From C. E. Wieman, American Journal of Physics 64 (7), 853 (1996).]
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Since the discovery by Wieman and Cornell, several other physicists have
produced Bose-Einstein condensates. One of the largest produced (by W. Ketterle and
co-workers) contained 9 � 107 sodium atoms, was about a millimeter long, and lived
for half a minute. Its direct photograph is shown in Figure 8-27. As of this writing, the
largest condensates are made of hydrogen and contain about 109 atoms.

Does this discovery have any potential use? The answer is, probably many that
we can’t even imagine yet, but here is one possibility. The BEC can form the basis
of an atomic laser. This was demonstrated in late 1996, also by Ketterle and his
colleagues, and is illustrated in Figure 8-28. The condensate is coherent matter, just as
the laser beam is coherent light. It could place atoms on substrates with extraordinary
precision, conceivably replacing microlithography in the production of microcircuitry.
Here is another potential use for the BEC: It could form the basis for atomic in-
terferometers, making possible measurements far more precise than those made 
with visible lasers since the de Broglie wavelengths are much shorter than those of
light. Ketterle, Cornell, and Wieman shared the 2001 Nobel Prize in Physics for 
their work.

Figure 8-27 Successive
images show shadow of a
millimeter-long cloud of
atoms containing Bose-
Einstein condensate as it
expands from its initial
cigar shape (top). [From 
D. S. Durfee, Science 272,
1587 (1996).]
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Figure 8-28 (a) When the two identical condensates of sodium atoms, each containing about
atoms, were allowed to expand freely and overlapped, phase contrast imagery

revealed interference fringes, the “signature” of coherent waves—the first atomic laser.
(b) Optical lasers amplify light by stimulating atoms to emit photons. Atom lasers amplify by
stimulating more atoms to join the “beam.” [(a) From D. S. Durfee, Science 275, 639 (1997). 
(b) From Science 279, 986 (1998). Courtesy of L. Carroll.]

5 � 106

Questions

9. Explain how the escaping “hot” rubidium atoms cool those remaining in the
sample.

10. What is Bose-Einstein condensation?

11. Would you expect a gas or liquid of 3He atoms to be much different from one
of 4He atoms? Why or why not?
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8-4 The Photon Gas: An Application 

of Bose-Einstein Statistics

Photon Gas

Planck’s empirical expression for the energy spectrum of the blackbody radiation in a
cavity (Equation 3-18) can now be derived by treating the photons in the cavity as a
gas consisting of bosons. The distribution is then given by

8-24

As we saw in Section 8-2 and in particular in the discussion of Equation 8-44, the
value of is determined by the total number of particles that the system contains.
However, in the case of photons contained in a cavity, which we are discussing, that
seems to present a problem since the total number of photons is not constant. Photons
are continually being created (emitted by the oscillators in the cavity walls) and de-
stroyed (absorbed by the oscillators). Even so, this does indeed specify the value of 
it tells us that Equation 8-24 for photons cannot be a function of i.e.,

8-53

The fact that the total number of photons is not constant makes it necessary that 
so that We will see in a moment that this must be true.

The number of photons with energy E is found by substituting Equation 8-53 into
Equation 8-37b, which yields

or

8-54

The density of states is derived in the same manner as it was for massive par-
ticles in Section 8-2. The result, which we first encountered as in our
discussion of Planck’s derivation of the blackbody spectrum, is given in terms of the
photon frequency as

8-55

where V is the volume of the cavity. The energy density u(E)dE in the energy interval
between E and E � dE is then given by

8-56

or, in terms of the photon frequency using for the conversion, we have

8-57u(f) df �
8�f2

c3

hf df

ehf>kT � 1

E � hff,

u(E) dE �
Egph(E)fph(E) dE

V
�

8�E3 dE

c3h3(eE>kT � 1)

gph(E) dE �
8�Vf2 df

c3
�

8�VE2 dE

c3h3

f

n(
) � 8�
�4
gph(E)

nph(E) �
gph(E)

eE>kT � 1

nph(E) � gph(E)fph(E)

e� � 1.
� � 0

fph(E) �
1

eE>kT � 1

e�;
�:

�

fBE (E) �
1

e�eE>kT � 1



Equation 8-57 is identical to Equation 3-18 when the latter is converted from
wavelength to frequency as the variable using We saw in Chapter 3 that
Equation 3-18 is in precise agreement with experimental observations. This agreement
serves as justification for the Bose-Einstein distribution function for photons given by
Equation 8-53, which resulted from our argument that for photons. Notice that
Planck’s derivation presented in Chapter 3, in which the radiation in the blackbody
cavity was treated as a set of distinguishable standing electromagnetic waves to which
he (correctly) applied the Boltzmann distribution, agrees exactly with the derivation
presented here, in which the radiation is treated as indistinguishable particles to which
the Bose-Einstein distribution must be applied. This is an example of the wave-particle
duality of photons.

� � 0

c � f
.f
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1. The number of photons with
energy E is given by
Equation 8-54:

nph(E) �
gph(E)

eE>kT � 1

2. The total number per unit 
volume N V is then given by> N

V
�

1

V �
�

0
nph(E) dE �

1

V �
�

0

gph(E) dE

eE>kT � 1

3. Substituting the density of
states from Equation
8-55 yields

gph(E)

�
8�(kT)3

(ch)3 �
�

0

(E>kT)2(dE>kT)

eE>kT � 1

N

V
� �

�

0

8�E2 dE

(ch)3(eE>kT � 1)

4. Letting x � E kT, this can
be written

> N

V
� 8�a kT

ch
b 3

�
�

0

x2 dx

ex � 1

5. Evaluating the integral from
standard tables:

�
�

0

x2 dx

ex � 1
� 2.40

6. Substituting values into the expression for N V in step 4 yields

� 3.97 � 108 photons>m3

N

V
� 8�a 1.38 � 10�23 J>K � 2.7 K

3.00 � 108 m>s � 6.63 � 10�34 J # s
b 3

 (2.40)

>

EXAMPLE 8-7 Photon Density of the Universe The high temperature of the early
universe implied a thermal (i.e., blackbody) electromagnetic radiation field which
has, over aeons, cooled to the present 2.7 K. This cosmic background radiation was
discovered in 1965. (See Chapter 13.) Compute the number of these photons per
unit volume in the universe.

SOLUTION
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Quantization of the Energy States of Matter

We pointed out earlier that the molar heat capacity for solids falls appreciably below
the classical Dulong-Petit value of 3R when the temperature falls below some critical
value. In 1908 Einstein showed that the failure of the equipartition theorem in predict-
ing the specific heats of solids at low temperatures could be understood if it were as-
sumed that the atoms of the solid could have only certain discrete energy values.
Einstein’s calculation is closely related to Planck’s calculation of the average energy
of a harmonic oscillator, assuming the oscillator can take on only a discrete set of en-
ergies. The calculation itself presents no real problem, as we have seen in Chapter 3.
Einstein’s most important contribution in this area was the extension of the idea of
quantization to any oscillating system, including matter. We will see in this subsec-
tion how the idea of quantized energy states for matter also explains the puzzling
behavior of the heat capacities of diatomic gases that was pointed out in Section 8-1.
In particular, we will be able to understand why the H2 molecule seems to have only
3 degrees of freedom (corresponding to translation) at low temperatures, 5 degrees
of freedom at intermediate temperatures (corresponding to translation and rotation),
and 7 degrees of freedom at high temperature (corresponding to translation, rotation,
and vibration).

Consider 1 mole of a solid consisting of NA molecules, each free to vibrate in
three dimensions about a fixed center. For simplicity, Einstein assumed that all the
molecules oscillate at the same frequency in each direction. The problem is then
equivalent to 3NA distinguishable one-dimensional oscillators, each with frequency 
The classical distribution function for the energy of a set of one-dimensional oscilla-
tors is the Boltzmann distribution, given by Equation 8-1. Following Planck, Einstein
assumed that the energy of each oscillator could take on only the values given by

8-58

where rather than have an average value of kT as predicted by the
equipartition theorem. He then used the Boltzmann distribution15 to compute the aver-
age energy for the distinguishable oscillators, just as we have done previously, from

8-59

obtaining

8-60

which is, of course, the same as Equation 3-17. We can expand the exponential, using
for , where (see Appendix B2). At

high temperatures the quantity and then, keeping only the first two terms
of the expansion,

and approaches kT, in agreement with the equipartition theorem from classical
statistics (see Equation 8-14).
8E9

ehf>kT � 1 � a1 �
hf

kT
� Á b � 1 �

hf

kT

hf>kT V 1
x � hf>kTx V 1ex � 1 � x � (x2>2!) � Á

8E9 �
hf

ehf>kT � 1

8E9 � �
�

0
EnB(E) dE

8E9n � 0,1,2, Á ,

En � nhf

f.
f

CV
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The total energy for 3NA oscillators is now

8-61

and the heat capacity is

8-62

It is left as an exercise (see Problem 8-29) to show directly from Equation 8-62 that
Cv S 0 as T S 0 and Cv S 3NAk � 3R as T S �.

By comparing the Einstein calculation of the average energy per molecule,
Equation 8-60, with the classical one, we can gain some insight into the problem of
when the classical theory will work and when it will fail. Let us define the critical
temperature,

8-63

called the Einstein temperature. The energy distribution in terms of this temperature is

For temperatures T much higher than TE, small changes in n have little effect on
the exponential in the distribution; that is Then E can be treated as
a continuous variable. However, for temperatures much lower than TE, even the small-
est possible change in n, �n � 1, results in a significant change in and we
would expect that the discontinuity of possible energy values becomes significant.
Since hard solids have stronger binding forces than soft ones, their frequencies of
molecular oscillation and therefore their Einstein temperatures are higher. For lead
and gold, TE is of the order of 50 to 100 K; ordinary temperatures of around 300 K are
“high” for these metals, and they obey the classical Dulong-Petit law at these temper-
atures. For diamond, TE is well over 1000 K; in this case 300 K is a “low” tempera-
ture, and Cv is much less than the Dulong-Petit value of 3R at this temperature.

The agreement between Equation 8-62 and experimental measurements justifies
Einstein’s approach to understanding the molar heat capacity of solids. Figure 8-29
shows a comparison of this equation with experiments. The curve fits the experimental
points well except at very low temperatures, where the data fall slightly above the curve.

e�nTE>T,

fB(En) � fB(En�1).

fB(En) � Ae�En >kT � Ae�nhf>kT � Ae�nTE>T

TE �
hf

k

CV �
dU

dT
� 3NAka hfkT b 2 ehf>kT

(ehf>kT � 1)2

U � 3NA8E9 �
3NAhf

ehf>kT � 1
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Figure 8-29 Molar heat
capacity of diamond versus
reduced temperature 
The solid curve is that
predicted by Einstein. 
[From Einstein’s original
paper, Annalen der Physik
22 (4), 180 (1907).]

T>TE .
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The lack of detailed agreement of the curve with the data at low T is due to the over-
simplification of the model. A refinement of this model was made by P. Debye, who
gave up the assumption that all molecules vibrate at the same frequency. He allowed
for the possibility that the motion of one molecule could be affected by that of the oth-
ers and treated the solid as a system of coupled oscillators. The effect was to allow a
range of vibrational frequencies from � 0 up to a maximum called the Debye
frequency, used to define the Debye temperature This contrasts with the
infinite range of oscillation modes in the blackbody cavity. Debye’s argument was that
the number of vibrational modes or frequencies cannot exceed the number of degrees
of freedom of the atoms that make up the solid. Calculations with the Debye model
are somewhat more involved and will not be considered here. The improvement of the
Debye model over the Einstein model is shown by Figure 8-30. Note that all solids
fall on the same curve.

Understanding Specific Heats of Gases

Let us now see if we can understand the specific heats of diatomic gases on the basis
of discrete, or quantized, energies. In Section 8-1 we wrote the energy of a diatomic
molecule as the sum of translational, rotational, and vibrational energies. If is the
frequency of vibration and the vibrational energy is quantized by as we as-
sumed for solids, we know from the previous calculation (see Equation 8-62) that for
low temperatures, the average energy of vibration approaches zero and vibration will
not contribute to We can define a critical temperature for vibration of a diatomic
gas molecule by

8-64

where is the frequency of vibration. Apparently � 15° C for all the diatomic
gases listed in Table 8-1 except for Cl2. From Figure 8-11 we can see that is of the
order of 1000 to 5000 K for H2.

Tv

Tvf

Tv �
hf

k
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Figure 8-30 Molar heat capacity of several solids versus reduced temperature T TD, where TD
is the Debye temperature, defined as The solid curve is that predicted by Debye.
The data are taken from Debye’s original paper. Cv 3R � 1 is the Dulong-Petit value. [From
Annalen der Physik 39 (4), 789 (1912), as adapted by David MacDonald, Introductory Statistical
Mechanics for Physicists (New York: John Wiley & Sons, Inc., 1963); by permission.]
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The rotational energy of a diatomic molecule is

where I is the moment of inertia and is the angular velocity of rotation. It is not ob-
vious how the rotational energy is quantized or even if it is; however, let us make use
of a result from Section 7-2, where we learned that the angular momentum is quan-
tized. If L is the angular momentum of a diatomic molecule, and we can
write the energy as

Equation 7-22 tells us that where Thus, the rotational
energy becomes

8-65

The energy distribution function will contain the factor

and we can define a critical temperature for rotation similar to that for vibration as

8-66

If this procedure is correct, we expect that for temperatures i.e.,
the equipartition theorem will hold for rotation and the average energy of rotation will
approach for each axis of rotation, while for low temperatures, the aver-
age energy of rotation will approach 0. Let us examine for some cases of interest:

1. H2. For rotation about the x or y axis as in Figure 8-10a, taking the z axis as the
line joining the atoms, the moments of inertia and through the center of
mass are

The separation of the atoms is about The mass of the H atom is
about We first calculate 

Using we obtain

As can be seen from Figure 8-11, this is indeed the temperature region below
which the rotational energy does not contribute to the heat capacity.

2. O2. Since the mass of the oxygen atom is 16 times that of the hydrogen atom and
the separation is roughly the same, the critical temperature for rotation will be

For all temperatures at which O2 exists as a gas, T TR.WTR � (74>16) � 4.6 K.
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�
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3. A monatomic gas, or rotation of diatomic gas about the z axis. We will take the
H atom for calculation. The moment of inertia of the atom is mainly due to the
electron since the radius of the nucleus is extremely small (about 10�15 m). The
distance from the nucleus to the electron is about the same as the separation of
atoms in the H2 molecule. Since the mass of the electron is about 2000 times
smaller than that of the atom, we have

and

This is much higher than the dissociation temperature for any diatomic gas.
Thus, for monatomic gases and for rotation of diatomic gases about
the line joining the atoms for all attainable temperatures.

We see that energy quantization explains, at least qualitatively, the temperature de-
pendence of the specific heats of gases and solids.

EXAMPLE 8-8 Average Vibrational Energy What is the average energy of vibration
of the molecules in a solid if the temperature is (a) T � hƒ 2k, (b) T � 4hƒ k?

SOLUTION

(a) This is lower than the critical temperature for vibration hƒ k given by Equation
8-64, so we expect a result considerably lower than the high temperature limit
of kT given by the equipartition theorem. From Equation 8-60 we have

(b) This temperature is four times the critical temperature, so we expect a result
near the high temperature limit of kT. Using hƒ kT � 1 4 in Equation 8-60,
we have

EXAMPLE 8-9 Number of Oscillators At the “low” and “high” temperatures of
Example 8-8, find the ratio of the number of oscillators with energy E1 � hƒ to the
number with E0 � 0.

SOLUTION

At any temperature T, the Boltzmann distribution for the fraction of oscillators 
with energy En � nhƒ is For n � 0, this gives
ƒ0 � Ae0 � A. The ratio is then 

(a) For n � 1 and we have Most of the
oscillators are in the lowest energy state E0 � 0.

(b) For the higher temperature kT � 4hƒ, we get 
At the higher temperature the states are more nearly equally populated and the
average energy is larger.

f1>f0 � e�hf>kT � e�0.25 � 0.779.

f1>f0 � e�hf>kT � e�2 � 0.135.kT � 1
2 hf,

fn>f0 � e�nhf>kT.fn>f0fB(En) � Ae�En>kT � Ae�nhf>kT.

8E9 �
0.25kT

e0.25 � 1
� 0.880 kT

>>
8E9 �

hf

ehf>kT � 1
�

2kT

e2 � 1
� 0.31 kT

>
>>

8ER9 � 0

TR � 2000 � 74 K � 1.5 � 105 K

IH �
1

2000
IH2
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EXAMPLE 8-10 Debye Frequency Note from Figure 8-30 that the Debye tempera-
ture of silver is 215 K. Compute the Debye frequency for silver and predict the
Debye temperature for gold. Silver and gold have identical crystal structures and
similar physical properties.

SOLUTION

1. From the definition of the Debye temperature , the Debye frequency for
silver can be computed:

or

2. We would expect the interatomic forces of silver and gold to be roughly the
same, hence their vibrational frequencies to be in inverse ratio to the square
root of their atomic masses:

3. Solving this for TD(Au) yields

Remarks: This estimate is in reasonable agreement with the measured value of
164 K.

8-5 Properties of a Fermion Gas
The fact that metals conduct electricity so well led to the conclusion that they must
contain electrons free to move about through a lattice of more or less fixed positive
metal ions. Indeed, this conclusion had led to the development of a free-electron the-
ory to explain the properties of metals within three years after the electron’s discov-
ery by Thomson and long before wave mechanics was even a glimmer in
Schrödinger’s eye. The free-electron theory of metals was quite successful in explain-
ing a number of metallic properties, as we will discuss further in Chapter 10; however,
it also suffered a few dramatic failures. For example, in a conductor at temperature T
the lattice ions have average energy 3kT consisting, as we have seen, of 3kT 2 of ki-
netic energy and 3kT 2 of potential energy, leading to a molar heat capacity � 3R
(rule of Dulong-Petit). Interactions (i.e., collisions) between the free electrons and lat-
tice ions would be expected to provide the electrons with an average translational
kinetic energy of 3kT 2 at thermal equilibrium, resulting in a total internal energy U
for metals of 3kT � 3kT 2 � 9kT 2. Thus, metals should have 4.5R. In fact, they
do not. The heat capacity of conductors is essentially the same as that of other solids,
except for a slight temperature-dependent increase that is much smaller than 3R 2.
The problems with the classical free-electron theory are due mainly to the fact that
electrons are indistinguishable particles that obey the exclusion principle, and as a
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consequence they have the Fermi-Dirac distribution of energies rather than the
Boltzmann distribution. In this section we will investigate the general characteristics of
systems made up of fermions. In Chapter 10 we will see how the absence of a signifi-
cant electron contribution to the heat capacity of conductors is explained.

In the Fermi-Dirac distribution given by

8-25

it is convenient to write as

8-67

where EF is called the Fermi energy. Doing so allows Equation 8-25 to be written as

8-68

The Fermi energy is an important quantity in systems of fermions, such as the elec-
tron gas in metals (discussed in Chapter 10) and the neutron gas in a neutron star.
Notice in particular that for E � EF the quantity for all values of the
temperature greater than zero and hence If we consider a system of
fermions at T � 0 K, we find that

For E<EF:

and

For E>EF:

In other words, at absolute zero all energy states from the ground state up to the Fermi
energy are occupied and all energy states above the Fermi energy are empty. This is
in sharp contrast with a system of bosons, such as the rubidium BE condensate,
where all particles condense to the ground state at T � 0 K. This situation is
illustrated in Figure 8-31a. If the system contains N fermions, we can find its Fermi
energy by filling the energy states in increasing order starting with the ground state.
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Figure 8-31 Fermi-Dirac distribution function for three different temperatures. (a) At
T � 0 K, all levels above are unoccupied. (b) For T � 0 K with some particles near
the Fermi energy can move to levels within about kT above (c) For high temperatures where

even particles in the lower energy states may move to higher levels so that fFD(0) � 1.kT � EF ,
EF .

kT � EF ,EF
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The energy state occupied by the Nth particle will be the Fermi energy. We can find
the total energy of the system simply by adding up the energies of all N particles
and their average energy by dividing that total by N. Each of these calculations will
be done for electrons in Section 10-3.

If the temperature of the system is increased to some temperature T � 0 K but
with kT remaining smaller than EF, fermions within about kT of the Fermi energy
could now move to previously unoccupied levels lying within about kT above the
Fermi energy in response to collisions with the lattice ions. However, fermions occu-
pying levels much lower than kT below EF would not be able to move since the addi-
tional kT of energy that they might acquire in a collision would not be enough to move
them past levels occupied by other fermions in order to reach the unoccupied levels
near or above EF. Figure 8-31b illustrates this situation. At temperatures so high
that kT � EF, fermions in even the very low-lying energy states will be able to move
to higher states. Only then can drop below 1, as shown in Figure 8-31c. This
latter situation also corresponds to the lowest curve in Figure 8-16.

The number of fermions with energy E is given by Equation 8-37c. The
density of states was computed for fermions in Section 8-3 and is given by Equation
8-42, so we have for fermions that

8-69

Figure 8-32 is a graph of Equation 8-69 for three different temperatures. The T � 0 K
curve is the result of multiplying in Figure 8-31a by the function,
which increases as The curves for T � 300 K and T � 1200 K result from
multiplying by appropriate versions of Figure 8-31b. The shaded areas for
T � 0 K represent those electrons near the Fermi energy, a very small number, that are
able to move into the empty states above EF at each temperature.

Quantum Degenerate Fermion Gas

Since fermions have half-integer spins, the Pauli exclusion principle prohibits two
identical fermions from occupying the same quantum state. Thus, a system of half-
integer-spin atoms cannot all occupy the ground state to form a fermion version of the
Bose-Einstein condensate as is possible for integer-spin bosons. The fermion analog of

gFD(E)
E1>2 .

gFD(E)fFD(E)

nFD(E) �
�

2
a8m

h2
b 3>2 VE1>2
e(E�EF)>kT � 1

nFD(E)

fFD(0)

10 3 4 52 6

EF

n F
D

(E
)

E (ev)

0 K
300 K

1200 K

gFD(E ) ∝ E1/2

Figure 8-32 The distribution
of fermion energies at three
different temperatures for a
material whose Fermi energy
is 4.8 eV. Curves are plots of
Equation 8-69 for the
indicated values of
temperature. (See text for
explanation of shaded area.)



the BEC occurs when the atoms fill all of the energy
states from the ground state up to the Fermi energy. The
transition to this quantum degenerate state for a gas of
fermions is a gradual one, quite unlike the sudden phase
transition to the BEC. This makes it harder to detect, in
addition to which the exclusion principle makes evapo-
rative cooling that is so important in producing the BEC
much less effective as the temperature of the fermion
gas decreases. In 1999 these problems were solved by
Deborah Jin and Brian DeMarco, four years after the
first BEC was produced. They loaded a magnetic trap
with 40K (total atomic spin � 9 2), dividing the atoms
between two magnetic substates to solve the evaporative
cooling problem. One of several ways used to detect 
the quantum degenerate state of the 40K atoms was to
determine the total energy (from the momentum
distribution) of the approximately 8 � 105 atoms in the
sample (Figure 8-33). Classically, the total energy 
(3 2)NAkT S 0 as T S 0. Quantum mechanically, how-
ever, the total energy should be higher than expected
classically as T decreases and remain finite as T S 0.
This is exactly what Jin and DeMarco observed. High

on the list of new things their discovery may make possible is the study of Cooper pairs
(see Section 10-8) as they condense into a superconductor.

More recently, scientists have been successful in forming Bose-Einstein conden-
sates from paired fermions using 6Li and 40K. The very loosely bonded 6Li-6Li and
40K-40K are bosons and dropped into their respective ground states when the temper-
ature reached about 

Questions

12. Why does the exclusion principle make evaporative cooling less effective as T
decreases for fermions in a single-spin state?

13. Why does the total energy of the fermion gas not approach zero as T S 0?

50 � 10�9 K.

>

>
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Summary

TOPIC RELEVANT EQUATIONS AND REMARKS

1. Boltzmann distribution 8-1

where the distribution is the probability that the state with energy E
will be occupied.

Boltzmann’s constant k � 1.381 � 10�23 J>K � 8.617 � 10�5 eV>K
fB(E)

fB(E) � Ae�E>kT

T/TF = 3

EFERMI EFERMI

T/TF = 0.5

Figure 8-33 Quantum degenerate state of a Fermi gas. The
images show that more of the atoms of the ultracold gas lie
below the Fermi energy (black circles) than above it in the right
sample than in the left one. The colder cloud on the right
contains 0.78 million 40K atoms at The cloud on
the left contains 2.5 million atoms at T � 2.4 	K.

T � 0.29 	K.
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TOPIC RELEVANT EQUATIONS AND REMARKS

General References

The following general references are written at a level appro-
priate for the readers of this book.

Blatt, F. J., Modern Physics, McGraw-Hill, New York, 1992.
Brehm, J. J., and W. J. Mullin, Introduction to the Structure of

Matter, Wiley, New York, 1989.
Eisberg, R., and R. Resnick, Quantum Physics of Atoms,

Molecules, Solids, Nuclei, and Particles, 2d ed., Wiley,
New York, 1985. An excellent but somewhat more ad-
vanced discussion of quantum statistics can be found in
Chapter 11 of this book.

Ford, K. W., The Quantum World, Harvard University Press,
Cambridge, MA, 2005.

Kittel, C., and H. Kroemer, Thermal Physics, W. H. Freeman
and Co., New York, 1995.

Leitner, A., Liquid Helium II: The Superfluid, Michigan State
University, East Lansing, 1963. This 39-minute film is an
excellent introduction to the subject of liquid helium II.

London, F., Superfluids, Vol. II:Macroscopic Theory of
Superfluid Helium, 2d rev. ed., Dover, New York, 1954.

Mandel, F., Statistical Physics, Wiley, New York, 1988.
Mendelssohn, K., The Quest for Absolute Zero: The Meaning

of Low Temperature Physics, World University Library,
McGraw-Hill, New York, 1966.

Maxwell distribution
of molecular speeds 8-8

Equipartition theorem In equilibrium, each degree of freedom contributes to the average 
energy per molecule.

Average kinetic energy 8-14

where is the average translational kinetic energy per molecule.

Dulong-Petit law CV � 3R

2. Quantum statistics

Bose-Einstein distribution 8-24

Fermi-Dirac distribution 8-25

In all three distributions ƒB, ƒBE, and ƒFD, is a normalization constant that depends on 
the particle density. The FD distribution applies to particles with -integral spin, the BE
distribution to particles with zero or integral spin. At high energies both ƒBE and ƒFD
approach ƒB.

The Boltzmann distribution will be a good approximation of either ƒBE or ƒFD if

3. Applications

Liquid helium 4He becomes a superfluid at 2.17 K, called the lambda point. 3He, the only other naturally
occurring isotope that has this property, becomes superfluid at about 2 mK.

Bose-Einstein condensate Bosons undergo a phase transition, condensing to the lowest quantum state.

Degenerate Fermi gas Fermions condensed to states from the ground state to the Fermi energy.

e� V 1.

1
2

e�

fFD(E) �
1

e�eE>kT � 1

fBE(E) �
1

e�eE>kT � 1

8E98E9 �
3

2
kT

1
2 kT

n(v) dv � 4�Na m
2�kT

b 3>2
v2e�mv2>2kT dv
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Notes

1. The statistical approach may also be used as an approxi-
mation in systems where the number of particles is not partic-
ularly large. For example, in Chapter 11 we will discuss
briefly a statistical model of the atomic nucleus, a system con-
taining only of the order of 100 particles.

2. Ludwig E. Boltzmann (1844–1906), Austrian physicist.
His pioneering statistical interpretation of the second law of
thermodynamics earned for him recognition as the founder of
statistical mechanics. He explained theoretically the experi-
mental observations of Stefan, whom he served as an assistant
while in college, that the quantity of radiation increased with
the fourth power of the temperature. He eventually succeeded
Josef Stefan in the chair of physics at Vienna. A strong pro-
ponent of the atomic theory of matter, his suicide was appar-
ently motivated in part by opposition to his views by others.

3. To avoid having to repeat this rather long phrase fre-
quently, which will occur for E as well as v, we will hereafter
use the expression “the number in dvx at vx” or simply “the
number in dvx.”

4. Or refer to a table of integrals.
5. Historically, rotation about the z' axis of the dumbbell

was ruled out by assuming either that the atoms are points and
the moment of inertia about this axis is therefore zero (not
true) or that the atoms are hard smooth spheres, in which case
rotation about this axis cannot be changed by collisions and
therefore does not participate in the exchange of energy (also
not true). Either of these assumptions also rules out the possi-
bility of rotation of a monatomic molecule.

6. Satyendra Nath Bose (1894–1974), Indian physicist.
Following publication of his paper on the statistics of indis-
tinguishable particles, which was translated into German for
publication by Einstein himself, Bose spent two years in
Europe, then returned to India to devote himself to teaching.
Lacking a Ph.D., he was denied a professorship until a one-
sentence postcard from Einstein was received at Dacca
University in his support.

7. Enrico Fermi (1901–1954), Italian-American physicist.
An exceedingly prolific scientist and intrepid amateur tennis
player whose work encompassed solid-state, nuclear, and par-
ticle physics, he is perhaps best known as the “father” of the
nuclear reactor. He was awarded the Nobel Prize in Physics in
1938 for his work in nuclear physics.

8. Paul A. M. Dirac (1902–1984), English physicist. His de-
velopment of relativistic wave mechanics for spin- particles
led to his prediction in 1930 of the existence of the positron.
Its discovery by Anderson two years later resulted in Dirac’s
being awarded (along with Schrödinger) the 1933 Nobel Prize
in Physics. From 1932 until his retirement he occupied the
Lucasian Chair of Mathematics at Cambridge University,
which had been held 250 years earlier by Newton and is cur-
rently held by Stephen Hawking.

9. Heike Kamerlingh Onnes (1853–1926), Dutch physicist.
His success in liquefying helium enabled him to investigate
the properties of other materials at liquid helium tempera-
tures. This in turn led to his discovery of superconductivity in
1911. His work on the behavior of materials at low tempera-
tures earned him the Nobel Prize in Physics in 1913.
10. J. C. McLennan, H. D. Smith, and J. O. Wilhelm,
Philosophical Magazine, 14, 161 (1932).
11. At very low temperatures liquid 4He does solidify at a
pressure of about 25 atm, liquid 3He at about 30 atm.
12. Narrow channels that permit only the superfluid to pass
are, of course, called superleaks.
13. These and many other properties are elegantly displayed
in the film Liquid Helium II: The Superfluid, available from
the Instructional Media Center, Michigan State University,
East Lansing, Michigan 48824.
14. In the thermodynamic equilibrium state their sample,
rubidium, is a solid metal at room temperature.
15. Einstein used the Boltzmann distribution in its discrete 

form fB(E) � a
�

n�0

Ae�En>kT.

1
2

Problems

Level I

Section 8-1. Classical Statistics: A Review

8-1. (a) Calculate vrms for H2 at T � 300 K. (b) Calculate the temperature T for which vrms for
H2 equals the escape speed of 11.2 km s.
8-2. (a) The ionization energy for hydrogen atoms is 13.6 eV. At what temperature is the av-
erage kinetic energy of translation equal to 13.6 eV? (b) What is the average kinetic energy of
translation of hydrogen atoms at T � 107 K, a typical temperature in the interior of the Sun?
8-3. The molar mass of oxygen gas (O2) is about 32 g mol and that of hydrogen gas (H2)
about 2 g mol. Compute (a) the rms speed of O2 and (b) the rms speed of H2 when the tem-
perature is 0°C.
8-4. Show that the SI units of are m s.>(3RT>M)1>2

> >
>
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8-5. (a) Find the total kinetic energy of translation of 1 mole of N2 molecules at T � 273 K.
(b) Would your answer be the same, greater, or less for 1 mole of He atoms at the same tem-
perature? Justify your answer.
8-6. Use the Maxwell distribution of molecular speeds to calculate for the molecules of
a gas.
8-7. Neutrons in a nuclear reactor have a Maxwell speed distribution when they are in ther-
mal equilibrium. Find and vm for neutrons in thermal equilibrium at 300 K. Show that n(v)
(Equation 8-8) has its maximum value at 
8-8. A container holds 128 identical molecules whose speeds are distributed as follows:

v � vm � (2kT>m)1>2.8v9
8v29

Graph these data and indicate on the graph and 
8-9. Show that the most probable speed vm of the Maxwell distribution of speeds is given by
Equation 8-9.
8-10. Compute the total translational kinetic energy of one liter of oxygen held at a pressure of
one atmosphere and a temperature of 20°C.
8-11. From the absorption spectrum it is determined that about one out of 106 hydrogen atoms
in a certain star is in the first excited state, 10.2 eV above the ground state (other excited states
can be neglected). What is the temperature of the star? (Take the ratio of statistical weights to
be 4, as in Example 8-2.)
8-12. The first excited rotational energy state of the H2 molecule (g2 � 3) is about

above the lowest energy state (g1 � 1). What is the ratio of the numbers of mole-
cules in these two states at room temperature (300 K)?
8-13. A monatomic gas is confined to move in two dimensions so that the energy of an atom
is What are and for this gas? ( the heat capacity at constant
pressure, is equal to and )
8-14. Use the Dulong-Petit law that for solids to calculate the specific heat

in cal g for (a) aluminum, M � 27.0 g mol, (b) copper, M � 63.5 g mol, and
(c) lead, M � 207 g mol, and compare your results with the values given in a handbook.
(Include the reference in your answer.)
8-15. Calculate the most probable kinetic energy Em from the Maxwell distribution of kinetic
energies (Equation 8-13).
8-16. (a) Show that the speed distribution function can be written 

where is the most probable speed. Consider 1 mole of molecules
and approximate dv by �v � 0.01 Find the number of molecules with speeds in dv at
(b) v � 0, (c) (d) v � 2 and (e) v � 8
8-17. Consider a sample containing hydrogen atoms at 300 K. (a) Compute the number of
atoms in the first (n � 2) and second (n � 3) excited states compared to those in the ground
state (n � 1). Include the effects of degeneracy in your calculations. (b) At what temperature
would one percent of the atoms be in the n � 2 state? (c) At the temperature found in (b), what
fraction of the atoms will be in the n � 3 state?
8-18. Consider a sample of noninteracting lithium atoms (Li, Z � 3) with the third (outer) elec-
tron in the 3p state in a uniform 4.0 T magnetic field. (a) Determine the fraction of the atom in
the and �1 states at 300 K. (b) In the transition, what will be the relative
intensities of the three lines of the Zeeman effect?

Section 8-2 Quantum Statistics

8-19. Find the number density N V for electrons such that (a) and (b)
8-20. (a) Compute from Equation 8-44 for O2 gas at standard conditions. (b) At
what temperature is for O2?
8-21. Given three containers all at the same temperature, one filled with a gas of classical mol-
ecules, one with a fermion gas, and one with a boson gas, which will have the highest pressure?
Which will have the lowest pressure? Support your answer.

e�� � 1
e��1b2 � 4ac

e�� � 10�6 .e�� � 1>
3pS 2sm� � �1, 0,

vm .vm ,v � vm ,
vm .

vm4��1>2(v>vm)2 v�1
m e

�(v>vm)2
,

n(v) �

> >>>cV � CV>M CV � 3R
 � CP>CV .CV � nR

CP ,CP ,CV ,Ek � 1
2mv2

x � 1
2mv2

y .

4 � 10�3 eV

vrms .vm , 8v9,
No. of molecules 4 12 20 24 20 16 12 8 6 4

Speed range (m s) 0.0–1.0 1.0–2.0 2.0–3.0 3.0–4.0 4.0–5.0 5.0–6.0 6.0–7.0 7.0–8.0 8.0–9.0 9.0–10.0>
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8-22. (a) For T � 5800 K, at what energy will the Bose-Einstein distribution function 
equal 1 (for (b) Still with to what value must the temperature change if

for the energy in part (a)?
8-23. A container at 300 K contains H2 gas at a pressure of one atmosphere. At this tempera-
ture H2 obeys the Boltzmann distribution. To what temperature must the H2 gas be cooled be-
fore quantum effects become important and the use of the Boltzmann distribution is no longer
appropriate? (Hint: Equate the de Broglie wavelength at the average energy to the average spac-
ing between molecules, using the ideal gas law to compute the density.)

Section 8-3 The Bose-Einstein Condensation

8-24. Compute N0 N from Equation 8-52 for (a) T � 3Tc 4, (b) (c) T � Tc 4, and
(d) T � Tc 8.
8-25. Show that for small values of as asserted in the paragraph above Equation
8-52.
8-26. Like 4He, the most common form of neon, 20Ne, is a rare gas and the 20Ne atoms have
zero spin and hence are bosons. But unlike helium, neon does not become superfluid at low
temperatures. Show that this is to be expected by computing neon’s critical temperature and
comparing it with the element’s freezing point of 24.5 K.

Section 8-4 The Photon Gas: An Application of Bose-Einstein Statistics

8-27. If the Sun were to become cooler (without changing its radius), the energy density at the
surface would decrease according to Equation 8-56. Suppose the Sun’s temperature were to de-
crease by 5 percent. Compute the fractional change in the rate at which solar energy arrives at
Earth. (Assume that the Sun’s surface is in equilibrium and radiates as a blackbody.)
8-28. Find the average energy of an oscillator at (a) (b) and 
(c) and compare your results with those from the equipartition theorem.
8-29. (a) Show that the rule of Dulong-Petit follows directly from Einstein’s specific heat for-
mula (Equation 8-62) as (b) Show that as T S 0.
8-30. Using Figure 8-13, compute the (approximate) frequency of atomic oscillations in sili-
con and in aluminum at 200 K.
8-31. Use Equation 8-62 to calculate the value of for a solid at the Einstein temperature

Section 8-5 Properties of a Fermion Gas

8-32. Use Equation 8-69 to plot an accurate graph of nFD(E) V for electrons whose Fermi en-
ergy is 4.8 eV from E � 4.5 eV to E � 5.1 eV at T � 300 K. Determine from the graph the
number of electrons per unit volume just below the Fermi energy that can move to states just
above the Fermi energy.
8-33. Consider a gas of electrons (fermions) and a gas of photons (bosons). Which has more
states available at T � 1 K? Explain why.

Level II

8-34. The molar heat capacity data given in Table 8-2 are taken from AIP Handbook, 2d ed.
(McGraw-Hill, New York, 1963). Plot the data for these solids all on one graph and sketch in
the curves CV versus T. Estimate the Einstein temperature for each of the solids using the result
of Problem 8-31.
8-35. Recalling that the Fermi-Dirac distribution function applies to all fermions, including
protons and neutrons, each of which have spin consider a nucleus of 22Ne consisting of 10
protons and 12 neutrons. Protons are distinguishable from neutrons, so two of each particle
(spin up, spin down) can be put into each energy state. Assuming that the radius of the 22Ne
nucleus is estimate the Fermi energy and the average energy of the nucleus in
22Ne. Express your results in MeV. Do the results seem reasonable?

3.1 � 10�15 m,

1
2 ,

>
TE � hf>k. CV

CV S 0TS �.

T � 0.1hf>k T � hf>k,T � 10hf>k,

�N0 � 1>�> >T � 1
2 Tc ,>>

fBE(E) � 0.5
� � 0,� � 0)?

fBE(E)
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Table 8-2 Heat capacities in cal mole K for Au, diamond, Al, and Be#>
T, K Au Diamond Al Be

20 0.77 0.00 0.05 0.003

50 3.41 0.005 0.91 0.04

70 4.39 0.016 1.85 0.12

100 5.12 0.059 3.12 0.43

150 5.62 0.24 4.43 1.36

200 5.84 0.56 5.16 2.41

250 5.96 0.99 5.56 3.30

300 6.07 1.46 5.82 3.93

400 6.18 2.45 6.13 4.77

500 6.28 3.24 6.42 5.26

600 6.40 3.85 6.72 5.59

800 6.65 4.66 7.31 6.07

1000 6.90 5.16 7.00 6.51

8-36. What is the ground-state energy of 10 noninteracting bosons in a one-dimensional box
of length L?
8-37. Make a plot of ƒFD(E) versus E for (a) T � 0.1TF, and (b) T � 0.5TF, where TF � EF k.
8-38. Compute the fraction of helium atoms in the superfluid state at (a) and 
(b)
8-39. The depth of the potential well for free electrons in a metal can be accurately determined
by observing that the photoelectric work function is the energy necessary to remove an electron
at the top of the occupied states from the metal; an electron in such a state has the Fermi en-
ergy. Assuming each atom provides one free electron to the gas, compute the depth of the well
for the free electrons in gold. The work function for gold is 4.8 eV.
8-40. An early method testing Maxwell’s theoretical prediction for the distribution of molecu-
lar speeds is shown in Figure 8-34. In 1925 Otto Stern used a beam of Bi2 molecules emitted
from an oven at 850 K. The beam defined by slit S1 was admitted into the interior of a rotating
drum via slit S2 in the drum wall. The identical bunches of molecules thus formed struck and

T � Tc>4.
T � Tc>2 >

A B
w

S2

S1

Glass plate

Drum

Oven

Figure 8-34
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adhered to a curved glass plate fixed to the interior drum wall, the fastest molecules striking
near A, which was opposite S2, the slowest near B, and the others in between depending on their
speeds. The density of the molecular deposits along the glass plate were measured with a den-
sitometer. The density (proportional to the number of molecules) plotted against distance along
the glass plate (dependent on v) made possible determination of the speed distribution. If the
drum is 10 cm in diameter and is rotating at 6250 rpm, (a) find the distance from A where mol-
ecules traveling at will strike. (b) The plot in (a) must be corrected slightly in
order to be compared with Maxwell’s distribution equation. Why? (c) Would N2 molecules
work as well as Bi2 molecules in this experiment? Why or why not?
8-41. The speed distribution of molecules in a container is the Maxwell distribution

The number with speed v that hit the wall in a given time is proportional
to the speed v and to ƒ(v). Thus, if there is a very small hole in the wall (too small to have
much effect on the distribution inside), the speed distribution of those that escape is

Show that the mean energy of those that escape is 2kT.

Level III

8-42. This problem is related to the equipartition theorem. Consider a system in which the
energy of a particle is given by E � Au2, where A is a constant and u is any coordinate or
momentum that can vary from to (a) Write the probability of the particle having u in
the range du and calculate the normalization constant C in terms of A. (b) Calculate the average
energy and show that 
8-43. Calculate the average value of the magnitude of from the Maxwell distribution.
8-44. Show that 
8-45. Carry out the integration indicated in Equation 8-43 to show that is given by Equation
8-44.
8-46. Consider a system of N particles that has only two possible energy states, E1 � 0 and

The distribution function is (a) What is C for this case? (b) Compute the
average energy and show that as T S 0 and as (c) Show that
the heat capacity is

(d) Sketch versus T.
8-47. If the assumptions leading to the Bose-Einstein distribution are modified so that the num-
ber of particles is not assumed constant, the resulting distribution has This distribution
can be applied to a “gas” of photons. Consider the photons to be in a cubic box of side L. The
momentum components of a photon are quantized by the standing-wave conditions

and where is the magnitude of
the momentum. (a) Show that the energy of a photon can be written where

(b) Assuming two photons per space state because of the two possible
polarizations, show that the number of states between N and N � dN is (c) Find
the density of states and show that the number of photons in the energy interval dE is

(d) The energy density in dE is given by u(E) dE � En(E) dE L3. Use this to obtain the Planck
blackbody radiation formula for the energy density in where is the wavelength:

u(
) �
8�hc
�5

ehc>
kT � 1


d
,
>n(E) dE �

8�(L>hc)3E2 dE

eE>kT � 1

�N2 dN.
N2 � n2

1 � n2
2 � n2

3 .
E � N(Uc�>L),

p � U(k2
x � k2

y � k2
z)

1>2kz � n3�>L,kx � n1�>L, ky � n2�>L,

e� � 1.

CV

CV � Nka �

kT
b 2 e��>kT

(1 � e��>kT)2

TS �.8E9S �>28E9S 08E9 fi � Ce�Ei>kT.E2 � �.

�
fFD(E) S fB(E) for EW EF .

vx

8E9 � 1
2 kT.8E9 � 8Au29 ��.��

F(v) � vf(v) � v3e�mv2>2kT.
f(v) � v2e�mv2>2kT.

vm ,8v9, and vrms
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PART2

Applications of Quantum

Mechanics and Relativity

Part 1 introduced the principles of the special and general relativity theories and illustrated

how they led to profound alterations of our classical views of space and time. We then saw

how the ideas and methods of quantum mechanics developed and how their application to

atomic physics provides us with an understanding of atomic structure and spectra that is in

excellent accord with our observations. In Part 2 we extend the applications of quantum the-

ory and relativity to a wider variety of physical systems and phenomena that are, like atomic

physics, of great interest to engineers, chemists, and physicists.

The topics we will discuss form the foundation of a broad range of theoretical and exper-

imental research by physicists, chemists, and mathematicians and provide the basic under-

standing of the principles underlying many practical devices developed by engineers. They in-

clude molecular bonding and spectra (Chapter 9); the structure of solids and their thermal and

electrical properties (Chapter 10); superconductors (Chapter 10); nuclear structure, radioactiv-

ity, and nuclear reactions (Chapter 11); and elementary particles, the quarks and leptons, that

are the constituents of all visible matter (Chapter 12). Practical applications include the study

of lasers (Chapter 9); semiconductors, semiconductor junctions, and transistors (Chapter 10),

and radioactive dating and elemental analysis, nuclear fission and fusion, and reactors

(Chapter 11). Many of these applications have revolutionized contemporary society. Part 2

concludes with a look outward into the cosmos from our solar system to the Big Bang, the

realm of astrophysics and cosmology (Chapter 13), topics that stimulate the imagination of

everyone. These chapters are independent of one another and can be studied in any order.
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In this chapter we will study the bonding of molecules—systems of two or more
atoms. Properly, a molecule is the smallest constituent of a substance that retains its

chemical properties. The study of the properties of molecules forms the basis for the-
oretical chemistry. The application of quantum mechanics to molecular physics has
been spectacularly successful in explaining the structure of molecules and the com-
plexity of their spectra and in answering such puzzling questions as why two H atoms
join together to form a molecule but three H atoms do not. As in atomic physics, the
detailed quantum-mechanical calculations are often difficult. When the difficulty
would tend to obscure understanding of the physics, we will, as before, make our dis-
cussions semiquantitative or qualitative. In the final sections we will discuss the in-
teraction of electromagnetic radiation with molecules, concluding with a discussion of
the common general types of lasers.

There are essentially two extreme views we can take of a molecule. Consider, for
example, H2. We can think of it either as two H atoms somehow joined together or as
a quantum-mechanical system of two protons and two electrons. The latter picture is
more fruitful in this case because neither of the electrons in the H2 molecule can be
considered as belonging to either proton. Instead, the wave function for each electron
is spread out in space about the whole molecule. For more complicated molecules,
however, an intermediate picture is useful. Consider the N2 molecule as an example.
We need not consider the complicated problem of 2 nuclei and 14 electrons. The elec-
tron configuration of an N atom in the ground state is 1s22s22p3. Of the three electrons
in the 2p state, two are in an m/ � �1 state with their spins paired (that is, with spins
antiparallel so that the resultant spin for those two is zero). The third one is in an
m/ � 0 level and its spin is, of course, unpaired. Only the electron with the unpaired
spin is free to take part in the bonding of the N2 molecule. We therefore can consider
this molecule as two N� ions and two electrons that belong to the molecule as a whole.
The molecular wave functions for these bonding electrons are called molecular orbitals.
In many cases these molecular wave functions can be constructed from linear combi-
nations of the atomic wave functions with which we are familiar.

Another type of bonding involves the transfer of one or more electrons between
atoms, the bond resulting from Coulomb attraction between the ions, an example
being NaCl. Again in this case, as in all four types of molecular bonding, it is the wave
properties of the spin- electrons that are the key to understanding.1

2
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9-1 The Ionic Bond
The two principal types of bonds that join two or more atoms together to form a mol-
ecule are called ionic and covalent bonds. Other types of bonds that are important in
the bonding of liquids and solids are dipole-dipole bonds and metallic bonds. In many
cases the bonding is a mixture of these mechanisms. We will discuss all of these in this
chapter and the next, but it is important to recognize that all types of molecular bond-
ing arise for the same fundamental reasons: the total energy of the stable bound mole-
cule is lower than the total energy of the constituent atoms when they are widely
separated, and there is a net attractive force between constituent atoms when their sep-
aration becomes larger than some equilibrium value. The bonding mechanisms are
primarily due to electrostatic forces between the atoms or ions of the system together
with the wave properties of electrons and the fact that they obey the exclusion princi-
ple. The complete description of molecular bonding is in most cases quite complex,
involving as it does the mutual interactions of many electrons and nuclei; consequently,
we will discuss each type using simplified models consisting of two or a few atoms,
then illustrate qualitatively the extension of the results to more complex molecules.

The easiest type of bond to understand is the ionic bond, typically the strongest
of the bonds and the one found in most salts. Consider KCl as an example. For the
molecule to be stable, we must be able to show that E(KCl) � E(K) � E(Cl) when
the K and Cl atoms are far apart and at rest. Let us define the energy of the system to
be zero when the neutral atoms are widely separated. (See Figure 9-1.) The potassium
atom has one 4s electron outside an argon core, 1s22s22p63s23p6. The ionization en-
ergy for K is low, as it is for all the alkali metals; for K only 4.34 eV is required to re-
move the outer electron from the atom. (See Table 9-1.) The removal of one electron
from K leaves a positive ion with a spherically symmetric, closed-shell core. Chlorine,
on the other hand, is only one electron short of having a closed argon core. The en-
ergy released by the acquisition of one electron is called the electron affinity, which
in the case of Cl is 3.62 eV. Energy is released because the wave function of the
“extra” electron penetrates the outer shell to a degree (see Figure 7-10b) and thus sees
a net positive charge. The acquisition of one electron by chlorine results in a negative

Figure 9-1 Net energy
required to ionize a K and a
Cl atom. An addition of
4.34 eV is required to remove
the 4s electron from the
neutral K atom, forming K�

and a free electron. That
electron (or some electron)
can then occupy the vacancy
in the 3p shell of the Cl atom
forming a Cl� ion. The
electron is positively bound,
with the release of 3.62 eV.
Formation of the widely
separated K� and Cl� ions
thus requires a net addition
of 0.72 eV.
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Table 9-1 Ionization energies of alkali metal atoms and electron affinities 

of halogen atoms

Alkali metal Ionization energy (eV) Halogen Electron affinity (eV)

Li 5.39 F 3.40

Na 5.14 Cl 3.61

K 4.34 Br 3.36

Rb 4.18 I 3.06

Cs 3.89 At 2.8

Fr 4.07

Source: Data from Handbook of Chemistry and Physics, 85th ed. (New York: Chemical Rubber
Co., 2004).

ion with a spherically symmetric, closed-shell electron core. Thus, the formation of a
K� ion and a Cl� ion by the donation of one electron of K to Cl requires just
4.34�3.62 � 0.72 eV. If this were the whole story, the KCl molecule would not form;
however, the electrostatic potential energy of the two ions separated by a distance r is
�ke2 r. When the separation of the ions is less than about 2.8 nm, the negative po-
tential energy of attraction is of greater magnitude than the energy needed to create
the ions, and the ions move toward each other.

Since the electrostatic attraction increases as the ions get closer, it would seem
that equilibrium could not exist. For very small separation of the ions, however, the
wave function of the 3p electrons in the K� ion and the 3p electrons in the Cl� ion
begin to overlap. Since the 3p shells in each ion contain electrons with sets of quan-
tum numbers identical to those in the other, a strong repulsion develops due to the ex-
clusion principle. This “exclusion-principle repulsion” is primarily responsible for the
repulsion of the atoms in all molecules (except H2), no matter which type of bonding
occurs. When the ions are very far apart, the wave function for a core electron of one
ion does not overlap that of the other ion. We can distinguish the electrons by the ion
to which they belong, and the electrons of one ion can have the same quantum num-
bers as in the other ion. However, when the ions are close, the wave functions of their
core electrons begin to overlap, and some of the electrons must go into higher-energy
quantum states because of the exclusion principle, thus increasing the total energy of
the system. This is not a sudden process: the energy states of the electrons are gradu-
ally changed as the ions move closer together. The total potential energy U of the KCl
system can be expressed in terms of the separation r of the ion centers as the sum of
the electrostatic potential, the exclusion-principle repulsion, and net ionization energy.

9-1

where Eion � 0.72 eV for K� and Cl�, as was found above. The exclusion-principle
repulsion Eex can be written as

9-2Eex �
A

rn

U(r) � �
ke2

r
� Eex � Eion

>
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Figure 9-2 (a) Potential
energy for K� and Cl� ions
as a function of separation
distance r. The energy at
infinite separation was
chosen to be 0.72 eV,
corresponding to the energy
needed to form the ions from
neutral atoms. The minimum
energy for this curve is at the
equilibrium separation
r0 � 0.27 nm for the ions in
the molecule. (b) Potential
energy for Na� and Cl� ions
as a function of r. Differences
between the two similar
molecules are due to the
higher ionization potential
and smaller core of Na.

where A and n are constants for each ionic molecule. Figure 9-2a is a sketch of the
potential energy of the K� and Cl� ions versus their separation. The energy is lowest
at an equilibrium separation r0 of about 0.27 nm. At smaller separations, the energy
rises steeply as a result of the exclusion principle. The energy Ed required to separate
the ions and form K and Cl atoms, called the dissociation energy, is about 4.40 eV.
Figure 9-2b shows the total potential energy of another ionically bonded molecule,
NaCl. Note the differences between the two total potential energy curves, which are
due to the higher ionization potential and smaller closed-shell core of Na compared
to K. Example 9-1 illustrates calculations used to construct curves like those in the
diagram. Example 9-2 describes how the constants A and n in Equation 9-2 are found.

EXAMPLE 9-1 Ionic Bonding in NaF The ionization potential of sodium is 5.14 eV,
the electron affinity of fluorine is 3.40 eV, and the equilibrium separation of sodium
fluoride (NaF) is 0.193 nm. (a) How much energy is needed to form Na� and F�

ions from neutral sodium and fluorine atoms? (b) What is the electrostatic potential
energy of the Na� and F� ions at their equilibrium separation? (c) The dissociation
energy of NaF is 4.99 eV. What is the energy due to repulsion of the ions at the equi-
librium separation?

SOLUTION

(a) Since the energy needed to ionize sodium is 5.14 eV and the electron affinity of
F is 3.40 eV, the energy needed to form Na� and F� ions from neutral sodium and
fluorine atoms is 5.14 eV � 3.40 eV � 1.74 eV � Eion .
(b) The electrostatic potential energy of the Na� and F� ions at their equilibrium
separation (with � ke2 r � 0 at infinite separation) is>



9-1 The Ionic Bond 367

(c) Choosing the total potential energy at infinity to be 1.74 eV (the net ionization
energy needed to form Na� and F� from the neutral atoms), the net electrostatic
(Coulomb) potential is

At the equilibrium separation r0, this energy is UC � �7.45 eV � 1.74 eV �
�5.71 eV. Since the measured dissociation energy is 4.99 eV, the potential energy
due to exclusion-principle repulsion Eex of the Na� and F� at equilibrium separation,
from Equation 9-1, must be 5.71 eV � 4.99 eV � 0.72 eV.

EXAMPLE 9-2 Contribution from Exclusion-Principle Repulsion Find the values of
A and n in Equation 9-2 for NaF.

SOLUTION

From Example 9-1 we have that the potential energy due to exclusion-principle
repulsion at equilibrium separation of the ions is

At r � r0 the net force on each ion must be zero because the potential energy has
its minimum value at that point. This means that at r � r0 , the net Coulomb force
FC is equal in magnitude and opposite in sign to the exclusion-principle repulsive
force, i.e.,

At r � r0

Thus, we have that

or

and, therefore, A � 5.4 � 10�8 Finally, for NaF, Eex is given by

Eex �
(5.4 � 10�8 eV # nm10)

r10

eV # nm10.

n �
38.7 eV>nm

0.72 eV
� (0.193 nm) � 10.4 � 10

nA

rn�1
0

�
n
r0

A

rn0
�
n
r0

(0.72 eV) � 38.7 eV>nm

FC �
UC(r0)

r0
�
ke2

r2
0

� 38.7 eV>nm

FC � �adUC
dr
b
r�r0

� a nA
rn�1
b
r�r0

Eex(r0) �
A

rn0
�

A

(0.193 nm)n
� 0.72 eV

UC � �
ke2

r
� 1.74 eV

UC

� �1.19 � 10�18 J � �7.45 eV

�
ke2

r0
� �

(8.99 � 109 N # m2>C2)(1.60 � 10�19C)2

1.93 � 10�10 m
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It should be emphasized that our discussion of ionic bonding and, in particular,
the graphs of potential energy in Figure 9-2 apply to the ground states of the mole-
cules. The outer (valence) electrons of molecules may occupy excited states, just as
they do in atoms. Since the electron wave functions of the excited states tend to ex-
tend farther from the ions than do those of the ground state, the potential energy curve
is broader and shallower than for the ground state, resulting in a slightly weaker bond
and a larger equilibrium separation of the ions. In our discussion we have ignored two
additional contributions to the total energy of the molecule: (1) the zero-point energy
(see Section 5-6), which decreases the magnitude of Ed , and (2) the van der Waals at-
traction, which increases the magnitude of Ed . Both are small and tend to partially off-
set each other. The latter, which arises from induced dipole moments, is the only form
of bonding available for certain molecules and will be discussed later in this chapter.

The KCl equilibrium separation of 0.27 nm noted earlier is for gaseous diatomic
KCl (which can be obtained by evaporation of solid KCl). Normally, KCl exists in a
cubic crystal structure, with K� and Cl� at alternate corners of a cube. The separation
of the ions in a crystal is somewhat larger—about 0.32 nm. Because of the presence of
neighboring ions of opposite charge, the Coulomb energy per ion pair is lower when
the ions are in a crystal. This energy is usually expressed as where r0 is the
equilibrium separation distance or bond length and called the Madelung constant,
depends on the crystal structure, as will be discussed further in Chapter 10. For KCl,

is about 1.75. The values of Ed and r0 listed in Table 9-2 are for several ionically
bonded (gaseous) molecules.
�

� ,
�ke2>r0 ,

Table 9-2 Dissociation energies E
d

and equilibrium separations r
0

for several ionic molecules* in the gaseous state

Molecule Dissociation energy (eV) Equilibrium separation (nm)

NaCl 4.27 0.236

NaF 5.34 0.193

NaH 1.92 0.189

NaBr 3.81 0.250

LiCl 4.86 0.202

LiH 2.47 0.159

LiI 3.58 0.239

KCl 4.49 0.267

KBr 3.94 0.282

RbF 5.12 0.227

RbCl 4.43 0.279

CsI 3.50 0.332

*The two entries of molecules formed by an alkali atom and a hydrogen atom may seem odd, but
hydrogen atoms, like those of a number of other elements, may form molecules as either positive
or negative ions. The ionization energy of H is, of course, 13.6 eV; its electron affinity is 0.75 eV.

Source: Data from Handbook of Chemistry and Physics, 85th ed. (New York: Chemical Rubber
Co., 2004).



One final comment concerning ionic bonding: Few of the molecules in Table 9-2
are bonded exclusively by the ionic mechanism. As we will see in the next section,
they may also be covalently bonded.

9-2 The Covalent Bond
A completely different mechanism is responsible for the bonding of such molecules as
H2, N2, H2O, and CO and also leads to bonding of many of the molecules in Table 9-2.
If we calculate the energy needed to form the ions H� and H� by the transfer of an elec-
tron from one atom to the other, we find the net ionization energy to be more than 12 eV.
Adding this energy to the electrostatic energy (including the repulsion of the protons),
we find that there is no separation distance for which the total energy is negative. The
bond of H2 thus cannot be ionic. The attraction of two hydrogen atoms is instead an en-
tirely quantum-mechanical effect. The decrease in energy when two hydrogen atoms
approach each other is due to the sharing of the two electrons by both atoms and is
intimately connected with the symmetry properties of the electron wave functions. We
can gain some insight into this phenomenon by first studying a simple one-dimensional
quantum-mechanics problem—that of two finite square wells each of width L.

Consider first a single electron that is equally likely to be in either well. Since
the wells are identical, symmetry requires that be symmetric about the midpoint
of the wells. Then must be either symmetric or antisymmetric about that point.
These two possibilities for the ground state are shown in Figure 9-3. Previously, we
did not distinguish between these two possibilities when superimposing (i.e., adding)
wave functions because the energies and the probability densities for
both of these wave functions are the same when the wells are far apart. Figure 9-4
shows the symmetric and antisymmetric wave functions when the wells are very
close together. Now the parts of the wave function describing the electron in one well
or the other overlap, and the symmetric and antisymmetric resultant wave functions
are quite different. Notice that for the symmetric wave functions the probability of
the electron being found in the region between the wells is much larger than for the
antisymmetric wave function. In the limiting case of no separation, the symmetric
wave function approaches the ground-state wave function for a particle in a well&S

&2�2U2>2mL2

&
ƒ& ƒ2
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(a)

(b)

(c)

ΨS

ΨA

Figure 9-3 (a) Two square wells far apart.
The electron wave function can be either
(b) symmetric or (c) antisymmetric. The
probability distributions and energies are the
same for the two wave functions when the wells
are far apart.

ΨS

ΨA

Figure 9-4 Symmetric and antisymmetric space wave
functions for two square wells close together. The probability
distributions and energies are not the same for the two wave
functions in this case. The symmetric space wave function
(and therefore the probability density) is larger between the
wells than the antisymmetric space wave function.
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of size 2L and the antisymmetric wave function approaches that for the first ex-
cited state in such a well; thus is a lower energy state than This discussion
has two important results:

1. The originally equal energies for and are split into two different energies
as the wells become close.

2. The wave function for the symmetric state is large in the region between the
wells, whereas that for the antisymmetric state is small.

Now consider adding a second electron to the two wells. The total wave function
for the two electrons must be antisymmetric on exchange of the electrons since they
obey the Pauli exclusion principle. Note that exchanging the electrons in the wells is
the same as exchanging the wells; i.e., for a two-particle system, exchange symmetry
is the same as space symmetry. The two electrons can therefore be in the space-
symmetric state if the spins are antiparallel (S � 0) or in the space-antisymmetric state
if their spins are parallel (S � 1).

H
2
� Molecule

Now let us consider a real physical system with one electron, the hydrogen molecule
ion H2

�. For a one-dimensional model, the double potential well formed by the two
protons is illustrated in Figure 9-5. The Hamiltonian (total energy) operator for this
system is (see Equation 6-51 and Figure 9-5b)

In the ground state, the hydrogen atom wave function is proportional to For our
one-dimensional model, we will write this as The symmetric and antisymmet-
ric combinations for two values of the distance between the protons are shown in
Figure 9-6. In general,

and

&A � a 1

22
b (&100(r1) � &100(r2))

&S � a 1

22
b (&100(r1) � &100(r2))

e� ƒx ƒ>a0 .
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Hop �
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1 2

Electron

Figure 9-5 Coulomb
potential for an electron
resulting from two protons
separated by a distance r0 .
The solid line is the total
potential for a one-
dimensional model. The
circled plus signs mark the
locations of the protons.



9-2 The Covalent Bond 371

ΨA
2

Ψ2

Ψ2

Ψ1

Ψ1Ψ1

Ψ1 Ψ2

Ψ2

ΨA = Ψ1 – Ψ2

ΨA = Ψ1 – Ψ2ΨS = Ψ1 + Ψ2

ΨS = Ψ1 + Ψ2

ΨS
2

r

r

(a)

(b)

(c)

Figure 9-6 One-dimensional symmetric and antisymmetric electron space wave functions for (a) two protons far apart
and (b) two protons close together. (c) Probability distributions for wave functions in (b). Computer-drawn electron
density around the protons is shown above the probability densities.

The results are similar to the square-well case: is large in the region between the
protons, while is small in that region. Only in the case where the electron wave
function and, hence, the probability density is large near the center of the molecule do
we expect a stable molecular bond to form. This concentration of negative charge be-
tween the protons for holds the protons together. Similarly, we would not expect

to result in a stable molecule. The justification of this conclusion would be the
solution of the Schrödinger equation and calculation of for 

The solution and calculation are quite difficult, so we will simply state the re-
sults for the energy of the molecule as a function of the separation r of the pro-
tons, describing in the process how, in general, the potential energy function
arises. Referring first to Figure 9-6a, when the protons are far apart, the electron’s
energy is �13.6 eV. The potential energy Up (repulsion) of the protons is negligi-
bly small for large r and, since there is only a single electron in the system, there
is no exclusion-principle repulsion. As the two protons are brought closer together
as in Figure 9-6b, Up increases and the energy of the electron decreases since the
electron experiences a greater Coulomb force and becomes more tightly bound.
Consider what is happening to the energy of the electron as the separation r of the
protons is reduced. As r S 0, the electron’s wave function is approaching that of
an atom with Z � 2. The symmetric wave function has a maximum at r � 0
and thus corresponds to the 1s (ground) state of the Z � 2 atom. As we have al-
ready seen (Equation 7-25), its energy is E1 � �13.6 Z2/n2 � �54.4 eV. For our
discussion here, let us call the electron’s energy ES for the wave function &S.

&S

H2
�.ƒ& ƒ2

&A

&S

&A

&S
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Thus, ES � �13.6 eV for r S � and ES � �54.4 eV for r S 0. The antisymmet-
ric wave function is zero at r � 0 and thus corresponds to the 2p (first excited)
state of the Z � 2 atom, this state being the lowest energy state with a wave func-
tion that vanishes at r � 0. (See Equation 7-26 and Table 7-2.) The energy of this
state is E2 � �13.6 Z2 n2 � �13.6 eV. As above, if we call EA the energy of the
electron for the wave function then EA � �13.6 eV for r S � (where
and are the same) and EA � �13.6 eV for r S 0. Recall that the smaller av-
erage slope of compared to as r S 0 implies a smaller energy for the sym-
metric state. The variation of both ES and EA are shown in Figure 9-7.

The potential energy of the protons as a function of their separation is,
of course, � ke2 r, and the total energy of the molecule is then � ES or

� EA , depending on which of the electronic wave functions happens to exist.
As can be seen in Figure 9-7, only one of the total energy functions has a mini-
mum and therefore can result in bonding of the molecule. The potential energy
function Etotal � � ES has a minimum at r � 0.106 nm. This tells us that the 
molecule is stable, with equilibrium separation r0 � 0.106 nm and binding energy �
Etotal(r S �) � Etotal(r0) � �13.6 � (�16.3) � 2.7 eV. In contrast, the potential
energy function Etotal � � EA has no minimum; therefore, the antisymmetric
wave function does not result in a stable molecule, as we expected at the outset of
this discussion. Note that the -type bond will tend to be unstable unless the nuclei
have the same Z.
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H
2

Molecule

Formation of the H2 molecule is very similar to that of We can think of it as two
H atoms in their ground states, initially far apart. Each has a 1s electronic orbital,1 i.e.,
an electron the space part of whose wave function is with an energy of �13.6 eV.
Thus, the total energy of the H2 system for large r (i.e., r S �) is �27.2 eV. As the
two atoms approach each other, the wave functions begin to overlap, again as illus-
trated by Figure 9-6a and b, so that the two atoms (protons) share both electrons. Just
as was discussed above, the two wave functions may add to produce a symmetric total
wave function that results in a stable bound H2 molecule or an antisymmetric one

which does not lead to a stable molecule. Since the total wave function must
always be antisymmetric to an exchange of the electrons, the space wave function

must be associated with an antisymmetric spin function (see
Section 7-6). Thus, is a singlet state (S � 0) and is a triplet state (S � 1).

There is a difference between the H2 molecule and the H�
2 molecule that needs

explanation. Just as H�
2, the H2 molecule has two molecular states whose total energy

at large r is, as we have seen, �27.2 eV. As r gets smaller, the molecule still has two
states, but their energies separate, as sketched in Figure 9-8a. The lower energy ES is,
as before, associated with the electronic wave function of the stable molecule,
known also as the bonding orbital. The wave function associated with the energy
EA that does not result in bonding is also called the antibonding orbital. The differ-
ence is that there are now two electrons whose probability density is large in the re-
gion between the protons, both in the molecular orbital. Since electrons obey the
exclusion principle, their spins must be antiparallel (S � 0). Thus, a molecular orbital,
just like an atomic orbital, can be occupied by no more than two electrons. For H2 both
electrons can occupy the bonding orbital. Both electrons being in s states, H2 is re-
ferred to as being s-bonded.

Figure 9-8b illustrates the potential energy functions for H2. The energy
corresponding to the bonding orbital, has a minimum of E � �31.7 eV at
r � 0.074 nm—i.e., the equilibrium separation r0 � 0.074 nm—and the binding
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Figure 9-8 (a) The two levels of the H2 system, which have the same energy for r S �, have different energies as the atoms
approach each other. (b) Potential energy versus separation for two hydrogen atoms. Up � E S is for the symmetric (bonding)
space wave function, and Up � EA is for the antisymmetric (antibonding) space wave function. As the separation approaches
zero, both curves approach � �.
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energy is E(r S �) �E(r0) � �27.2 �(�31.7) � 4.5 eV. The effect of adding the
second electron to to form H2 is evident from a comparison of Figure 9-7 and
Figure 9-8b. The increased charge concentration between the protons binds them
more tightly, the binding energy increasing from 2.7 eV to 4.5 eV and the equilibrium
separation decreasing by 30 percent. The sharing of the outer, or valence, electrons in
a molecule, as in our H2 example, is the mechanism of the covalent molecular bond.
The basic requirement for covalent bonding is that the wave functions of the valence
electrons of the participating atoms overlap as much as possible. Unlike the H�

2 case,
the covalent bond is just as strong for nonidentical nuclei as it is for identical nuclei.2

We can now see why three H atoms do not bond to form H3. If a third H atom is
brought near an H2 molecule, the third electron cannot be in a 1s state and have its
spin antiparallel to both the other electrons. It must therefore occupy the higher-
energy, antibonding orbital. If it is in an antisymmetric state with respect to exchange
with one of the electrons, the repulsion of this atom is greater than the attraction of the
other. Thus, as the three atoms are pushed together, the third electron is in effect
forced into a higher quantum state by the exclusion principle. The bond between
two H atoms is called a saturated bond because there is no room for another electron.
The two electrons being shared essentially fill the 1s states of both atoms. This is ba-
sically the reason why covalent bonds involving three (or more) electrons are typically
unstable. However, be aware that the H�

3 ion is stable. Discovered by J. J. Thomson in
1911, this simplest of all polyatomic molecules provides important cosmic spectral
lines for astrophysicists and a calculation benchmark for quantum chemists.

It should also be clear now why He atoms do not bond together to form He2.
There are no valence electrons that can be shared. As two He atoms approach each
other, the bonding and antibonding molecular orbitals form, just as they do for H2;
however, each orbital can accommodate only two electrons (with spins antiparallel),
so two of the four electrons in the He2 system cannot remain in the 1s atomic states
but must be in the antibonding orbital. The net effect is that He2 does not form as a
stable bond. At low temperatures or high pressures, He atoms do bond together, but
the bonds are very weak and are due to van der Waals forces, which we will discuss
in Section 9-3. The bonding is so weak that at atmospheric pressure, He boils at 4.2 K,
and it does not form a solid at any temperature unless the pressure is greater than
about 20 atm.

Covalent or Ionic?

When two identical atoms bond, as in homonuclear diatomic molecules such as O2 or
N2, the bonding is purely covalent. Since the wave functions of the two atoms are ex-
actly alike, neither atom dominates and the electrons are completely shared between
them. However, the bonding of two dissimilar atoms is often a mixture of covalent and
ionic bonding. Even in NaCl, the electron donated by sodium to chlorine has some
probability of being at the sodium atom because its wave function does not suddenly
fall to zero. Thus, this electron is partially shared in a covalent bond, although this
bonding is only a small part of the total bond, which is mainly ionic.

A measure of the degree to which a bond is ionic or covalent can be obtained from
the electric dipole moment of the molecule. For example, if the bonding in NaCl were
purely ionic, the center of positive charge would be at the Na� ion and the center of
negative charge would be at the Cl� ion. The electric dipole moment would have
the magnitude

9-3pionic � er0

H2
�
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where r0 is the equilibrium separation of the ions. Thus, the dipole moment of NaCl
would be

The actual measured electric dipole moment of NaCl is

A purely covalent molecule would be expected to have an electric dipole moment of
zero. We can define the ratio of pmeasured to pionic as the fractional amount of ionic bond-
ing. For NaCl, this ratio is 3.00/3.78 � 0.79. Thus, the bonding in NaCl is about 79
percent ionic and 21 percent covalent.

EXAMPLE 9-3 Bonding in LiH The measured electric dipole moment of LiH is
1.96 � 10�29 C m. This molecule is among those listed in Table 9-3 (on the home
page) as being covalently s-bonded. What portion of the LiH bond is covalent?

SOLUTION

The equilibrium separation of LiH from the table is 0.159 nm. If it were a purely
ionically bonded molecule, its dipole moment pionic would be

The fractional amount of the bond that is ionic is 1.96/2.54 � 0.77. Thus, LiH is
only about 23 percent covalently s-bonded.

More

In addition to the s-bonded H2 molecule, there are many other covalently
bonded molecules involving shared pairs of s electrons, s and p elec-
trons, and p electrons. Important among these are the s-p bonds involv-
ing carbon that are the basis for the vast array of hydrocarbon molecules
and compounds. Several examples, including the remarkable fullerenes,
are discussed in Other Covalent Bonds on the home page: www
.whfreeman.com/tiplermodernphysics5e See also Equations 9-4 and 9-5
here, as well as Tables 9-3 through 9-6 and Figures 9-9 through 9-17.

EXPLORING

9-3 Other Bonding Mechanisms

The two bonding mechanisms that we have discussed thus far, ionic and covalent,
account for a large fraction of the cases in which atoms combine to form molecules.
As is described in Chapter 10, when atoms combine on a larger scale to form solids,
these exact same mechanisms are responsible for the bonding in many solids. In addi-
tion to these types of bonding, two other types occur in solids. One of these, molecular
bonding, or dipole-dipole bonding, also occurs in the formation of many large mole-
cules from smaller molecules and will be discussed in this section. The second type,
metallic bonding, is responsible for the structure of metals in the solid state and has no
single-molecule version or counterpart. For that reason, our discussion of metallic
bonding will be deferred to Chapter 10.

pionic � (1.60 � 10�19 C)(0.159 � 10�9 m) � 2.54 � 10�29 C # m

#

pmeasured � 3.00 � 10�29 C # m

pionic � er0 � (1.60 � 10�19 C)(2.36 � 10�10 m) � 3.78 � 10�29 C # m

www.whfreeman.com/tiplermodernphysics5e
www.whfreeman.com/tiplermodernphysics5e


376 Chapter 9 Molecular Structure and Spectra

Dipole-Dipole Bonding

It was first suggested by J. D. van der Waals5 in 1873 that any two separated molecules
will be attracted toward each other by electrostatic forces. Similarly, atoms that do not
otherwise form ionic or covalent bonds will be attracted to each other by the same sort
of weak electrostatic bonds. The practical result of this is that at temperatures low
enough so that the disruptive effects of thermal agitation are negligible, all substances
will condense into a liquid and then a solid form. (Recall that helium is the only ele-
ment that does not solidify at any temperature under its own vapor pressure.) The rela-
tively weak electrostatic forces responsible for this sort of intermolecular attraction
arise because of the electrostatic attraction of electric dipoles.

The electric field due to an electric dipole is illustrated in Figure 9-18a. The elec-
tric field Ed at point A due to the dipole is given by

9-6

whose magnitude for r W a is

9-7

where is the dipole moment.6 Thus, the electric field of the dipole, and hence
the electric force on a charge, falls off as 1 r3. This result, which is correct even if the
point A is not on the perpendicular, is to be compared with the 1 r2 dependence of the
Coulomb force that occurs in the covalent and ionic bonds: the force on a test charge
due to the dipole qa is weaker at a distance r than that due to a charge q. A second di-
pole p2 that happens into the vicinity of p1 will then orient itself along the Ed field lines,
as illustrated in Figure 9-18b, as a result of the electric force on the charges.

The potential energy of the second dipole p2 in the field of p1 is given by

9-8

and, since Ed falls off like , the electric force between two perma-
nent dipoles falls off as . Thus, it is attractive (F is negative), relatively weak, and
of short range.

Polar Molecules

It is then not hard to see physically why molecules with permanent electric dipole
moments—so-called polar molecules such as H2O and NaCl—will attract other polar
molecules. Consider the H2O molecule as an example. Although the molecule is elec-
trically neutral, its bonding is partially ionic, so the electrons tend to be concentrated
nearer the oxygen atom, making it look like the negative end of a dipole. The two
protons then look like the positive end of the dipole. There will then be a mutual

1>r4
F (� �$U>$r)1>r3

U � �p2
# Ed

>>ƒp1 ƒ � qa

Ed �
kqa

r3
�
kp1

r3

Ed � k c p

r3
�

3(p # r)

r5
r d

(a) (b)+q

a E+
A

E–

Ed
–q

r

+

+
– –

p2

p1

Figure 9-18 (a) The electric field Ed at a point A on a line perpendicular to the axis of an
electric dipole p1 � qa. (b) The field of Ed acts on a second dipole p2 to orient it along the
field lines. The force on a charge due to p1 is � .1>r3
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Figure 9-19 (a) Schematic of four H2O molecules. The water molecules’ permanent
dipole moments are shown by the vectors p. (b) The four polar water molecules
represented as electric dipoles. Notice that the attractive dipole-dipole force tends to align
the dipoles so that the nearest neighbors of each charge are charges of the opposite sign.
(c) A snowflake—one result of dipole-dipole bonding.

attraction between the molecule and other nearby molecules with potential energy
given by Equation 9-8. (See Figure 9-19.) Pairs of polar molecules will thus move
closer to each other, decreasing their potential energy, until the combined effects of the
increasing nuclear repulsion and the exclusion principle produce a minimum in the total
potential energy similar to the minima in Figures 9-2 and 9-8b. For H2O the resulting
bonding energy is about 0.5 eV per molecule. Although this is only about 10 percent of
the strength of the bond in the water molecule, it is this dipole-dipole force
that bonds H2O molecules to each other to form ice and is responsible in part for the
beautiful hexagonal patterns that we see in snowflakes (Figure 9-19c).

When dipole-dipole bonds between molecules with permanent dipole moments in-
volve hydrogen, as is the case for water, the bond is referred to as a hydrogen bond. The
hydrogen bond is of enormous importance since it is the bonding mechanism responsi-
ble for the cross-linking that allows giant biological molecules and polymers to hold
their fixed shape. For example, it is the hydrogen bond that forms the linkage between
the two strands of the double helix DNA molecule. It is the weakness of the hydrogen
bonds relative to the covalent/ionic bonds along each strand that allows the two strands
to unwind from each other in the DNA molecular replication process. Notice that the
hydrogen bond can be viewed as the sharing of a proton by two negatively charged
atoms, oxygen atoms in the case of water. (See Figure 9-19.) In this way it is similar to
the sharing of electrons that is responsible for the covalent bond. Hydrogen bonding is
facilitated by the small mass of the proton and the absence of inner-core electrons.

Nonpolar Molecules

A nonpolar molecule will be polarized by the field of a polar molecule and thus have
an induced dipole moment and be attracted to the polar molecule. If p2 in Figure 9-18b
is an induced dipole, then

9-9

where is a constant characteristic of the nonpolar molecule called the polarizability.
In this case we expect the potential energy of the interaction to fall off as since we
have from Equations 9-8 and 9-9 that

9-10

Once again, the energy is negative, signifying that the force between the dipoles is attrac-
tive. The force is thus proportional to 1 r7, i.e., the force is very short range,
dropping rapidly with increasing r. Indeed, increasing the separation of the molecules by
a factor of 2 reduces the attractive force between them to only 0.008 of its original value.

>F � �$U>$r
U � �p2

# Ed � ��E2
d � ��k2p2

1>r6

1>r6
�

p2 � �Ed

H ¬ OH



Scientists have recently

succeeded in trapping a

sample of molecules in

a single quantum level at a

temperature in the millikelvin

range. This ability raises the

possibilities for, among other

things, high-precision

molecular spectroscopy

and producing a molecular

Bose-Einstein condensate.
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Perhaps surprisingly, two molecules, neither of which has a permanent dipole mo-
ment, can also attract each other via the mechanism just described. It is somewhat
harder to see why an attractive force exists between two nonpolar molecules. Though
the average dipole moment of a nonpolar molecule is zero, the average square dipole
moment is not because the electrons are in constant motion and at any given instant
there will be an excess or deficiency of them in one part or another of the molecule.
A measurement that we might do in the laboratory reveals the average value (zero), not
the instantaneous value. The instantaneous dipole moment of a nonpolar molecule is,
in general, not zero. When two nonpolar molecules are nearby, the fluctuations in the
instantaneous dipole moments tend to be correlated so as to produce attraction, as il-
lustrated in Figure 9-20. The potential energy is again given approximately by Equation
9-10, so that the potential energy is proportional to and the attractive force is pro-
portional to . This attractive force between nonpolar molecules is called the van der
Waals force7 or, occasionally, the London dispersion force, after Fritz London, the
German physicist who in 1930 first explained the physical origin of the interaction.

As van der Waals first suggested, dipole-dipole forces act between all molecules
and, in addition, between all atoms. They are the only forces that occur between rare gas
atoms, without which the atoms of these elements would not condense into liquids or
form solids. (The single exception to the latter is He, whose quantum-mechanical zero-
point energy exceeds the minimum of the potential energy resulting from Equation 9-10
and core repulsion.) The dipole-dipole forces between molecules, although relatively
weak, are also responsible for the physical phenomena of surface tension and friction.
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Figure 9-20 Nonpolar molecules have,
on average, symmetric charge
distributions, as illustrated by the pair of
molecules at the top of the figure.
However, instantaneous fluctuations in
the electron distribution are asymmetric
and tend to be correlated with those of
nearby molecules, as shown in the other
three examples. The correlated
distributions lead to an attractive force
proportional to 1 r7 that draws the
molecules closer to each other as shown.

>
The 2-nm height of DNA molecules is
readily imaged by an atomic force
microscope (AFM). [Taken from
www.di.com, Digital Instruments, Veeco
metrology Group, Santa Barbara, CA.]

www.di.com
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Questions

1. Why would you expect the separation distance between the two protons to be
larger in the H�

2 ion than in the H2 molecule?

2. Would you expect the NaCl molecule to be polar or nonpolar?

3. Would you expect the N2 molecule to be polar or nonpolar?

4. Does neon occur naturally as Ne or Ne2? Why?

9-4 Energy Levels and Spectra 

of Diatomic Molecules
As is the case with an atom, a molecule often emits electromagnetic radiation when it
makes a transition from an excited energy state to a state of lower energy. Conversely,
a molecule can absorb radiation and make a transition from a lower energy state to a
higher energy state. The study of molecular emission and absorption spectra thus pro-
vides us with information about the energy states of molecules. For simplicity, we will
consider only diatomic molecules here.

As might be expected, the energy levels of molecular systems are even more com-
plex than those of atoms. The energy of a molecule can be conveniently separated into
three parts: electronic, due to the excitation of its electrons; vibrational, due to the os-
cillations of the atoms of the molecule; and rotational, due to the rotation of the mol-
ecule about an axis through its center of mass. Fortunately, the magnitudes of these
energies are sufficiently different that they can be treated separately. Electrons in mol-
ecules can be excited to higher states, just as those in atoms. For example, a 1s elec-
tron in the H2 molecule can be excited to a 2p level, emitting a photon as it returns to
the ground state. The energies due to the electronic excitations of a molecule are of
the order of magnitude of 1 eV, the same as for the excitation of atoms. We have al-
ready discussed such transitions and will not consider them further in this section. The
energies of vibration and rotation are about to times smaller and will
be the focus of our attention.

Rotational Energy Levels

Classically, the kinetic energy of rotation is

9-11

where I is the moment of inertia, the angular velocity of rotation, and the
angular momentum. The solution of the Schrödinger equation for the rotation of a
rigid body leads to the quantization of the angular momentum, with values given by

9-12

where / is the rotational quantum number. This is the same quantum condition on an-
gular momentum that holds for the orbital angular momentum of an electron in an atom.

L2 � �(� � 1)U2  � � 0, 1 , 2 , Á

L � I��
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(I�)2

2I
�
L2

2I

1>10001>100
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Figure 9-22 Diatomic
molecule rotating about an axis
through its center of mass.
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Figure 9-21 Energy levels
and allowed transitions for a
rotating rigid body as given
by Equation 9-13.
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Note, however, that L in Equation 9-11 refers to the angular momentum of the entire mol-
ecule rotating about an axis through its center of mass. The energy levels of a rotating
molecule are therefore given by

9-13

where E0r is the characteristic rotational energy of a particular molecule, which is in-
versely proportional to its moment of inertia:

9-14

The rotational-energy level scheme is shown in Figure 9-21. Transitions between
these levels produce the pure rotational spectrum of a molecule. While all diatomic
molecules have rotational energy levels, those without permanent dipole moments
(symmetric molecules such as H2, Cl2, or CO2) cannot emit or absorb electric dipole
radiation by only changing the rotational quantum state and thus do not have a pure
rotational spectrum. For molecules that do have dipole moments and emit pure rota-
tional spectra, the quantum number / is subject to the selection rule �/ � �1, just as
it was for the atomic electrons. Thus, the energy separation between adjacent rotation
states is given by

9-15

A measurement of the rotational energy of a molecule from its rotational spectrum can
be used to determine the moment of inertia of the molecule, which can then be used
to find the equilibrium separation of the atoms in the molecule, i.e., the bond length.
The moment of inertia about an axis through the center of mass of a diatomic mole-
cule (see Figure 9-22) is

Using m1r1 � m2r2 , which relates the distances r1 and r2 from the atoms to the center
of mass, and r0 � r1 � r2 for the separation of the atoms, we can write the moment of
inertia as

9-16

where the reduced mass, is

9-17

If the masses are equal (m1 � m2), as in H2 and O2, the reduced mass and

9-18

A unit of mass convenient for discussing atomic and molecular masses is the unified mass
unit u, which is defined as one-twelfth of the mass of a neutral carbon-12 (12C) atom.

I �
1

2
mr2

0

	 � m>2
	 �

m1m2

m1 � m2

	 ,

I � 	 r2
0

I � m1r
2
1 � m2r

2
2

¢E�, ��1 �
[(� � 1)(� � 2) � �(� � 1)]U2

2I
�

(� � 1)U2

I

E0r �
U2

2I

E �
�(� � 1)U2

2I
� �(� � 1)E0r � � 0, 1 , 2 , Á



9-4 Energy Levels and Spectra of Diatomic Molecules 381

The mass of one 12C atom is thus 12 u. The mass of an atom in unified mass units is
therefore numerically equal to the molar mass of the atom in grams. The unified mass
unit is related to the gram and kilogram by

9-19

where NA is Avogadro’s number.

EXAMPLE 9-4 The Reduced Mass of HCl Compute the reduced mass of the HCl
molecule.

SOLUTION

1. The reduced mass is given by Equation 9-17:

2. From the periodic table on the inside back cover of this book, the mass of the
hydrogen atom is 1.01 u and that of the chlorine atom is 35.5 u. Substituting
these gives

Remarks: Note that the reduced mass of the HCl molecule is less than that of a
single hydrogen atom.

EXAMPLE 9-5 Equilibrium Separation in CO The energy difference �E between
the / � 0 and / � 1 rotational levels in the CO molecule is found experimentally
from measurement of the wavelength of the corresponding transition.
For CO, �E is equal to 4.77 � 10�4 eV. Find the equilibrium separation, or bond
length r0 , of the CO molecule.

SOLUTION


 � 2.6 mm

� 0.98 u

	 �
(1.01 u)(35.5 u)

1.01 u � 35.5 u

	 �
m1m2

m1 � m2

	

1 u �
1g

NA
�

10�3 kg

6.0221 � 1023
� 1.6605 � 10�27 kg � 931.4940 � 106 eV>c2

1. The bond length r0 is given
in terms of the moment of
inertia I of the molecule by
Equation 9-16:

I � 	r2
0 or r0 � A

I
	

2. I in terms of �E is given by
Equation 9-15:

¢E�, ��1 �
(� � 1)U2

I
 or I �

(� � 1)U2

¢E�, ��1

3. Substituting / � 0 and
�E � 4.77 � 10�4 eV into
step 2 gives

I �
U2

4.77 � 10�4 eV

4. The reduced mass of the
CO molecule is computed
from Equation 9-17 using
atomic mass values from
the periodic table:

� 6.86 u

	 �
m1m2

m1 � m2

�
(12 u)(16 u)

12 u � 16 u
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5. Substituting these results into step 1 gives

The rotational energy levels are several orders of magnitude smaller than those
due to electron excitation, which have energies of the order of 1 eV or higher. For ex-
ample, the characteristic rotational energy of the O2 molecule, whose equilibrium sep-
aration is about 0.1 nm, is 2.59 � 10�4 eV, calculated from Equation 9-14. Transitions
within a given set of rotational energy levels yield photons in the far infrared region
of the electromagnetic spectrum. Notice that the rotational energies are also small
compared with the typical thermal energy kT at normal temperatures. For T � 300 K,
for example, kT is about 2.6 � 10�2 eV. Thus, at ordinary temperatures, a molecule
can easily be excited to the lower rotational energy levels by collisions with other mol-
ecules. But such collisions cannot excite the molecule to electronic energy levels
above the ground state.

Vibrational Energy Levels

The molecular vibrational energies are a bit harder to estimate than were the rota-
tional energies. Our discussion is aided by the fact that the molecular potential
energy functions of Figures 9-2, 9-7, and 9-8b can be closely approximated by parab-
olas in the vicinity of the equilibrium point. (See Figure 9-23b.) Thus, we can use the

� 0.133 nm

�
1.055 � 10�34

[(4.77 � 10�4 eV)(1.60 � 10�19 J>eV)(6.86 u)(1.66 � 10�27 kg>u)]1>2
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Figure 9-23 (a) The energy levels of the molecular vibrations are equally spaced in the vicinity of the equilibrium spacing
of the atoms. (b) A harmonic oscillator potential fitted to the actual potential energy function of the NaCl molecule shown
in Figure 9-2b.
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results of our study of the simple harmonic oscillator in Chapter 6. The energy levels
are given by

9-20

where f is the frequency of the vibration and is the vibrational quantum number.8

An interesting feature of this result is that the energy levels are equally spaced with
intervals as shown in Figure 9-23a. The frequency of vibration of a
diatomic molecule can be related to the force exerted by one atom on the other.
Consider two objects of mass m1 and m2 connected by a spring of force constant K.
The frequency of oscillation of this system is (see Section 6-5)

9-21

where is the reduced mass given by Equation 9-17. The effective force constant of
a diatomic molecule can thus be determined from a measurement of the frequency of
oscillation of the molecule.

We could get a good estimate of f by fitting the one-dimensional parabolic
harmonic oscillator potential energy function for the molecule as illustrated in
Figure 9-23b, but for simplicity we can get a rough idea of the order of magnitude of
the vibrational energies by observing that the energy of an atom of mass m in a square
well of width r0 is (Figure 9-24)

Except for the factor (and the n2), this expression is the same as the char-
acteristic rotational energy E0r; thus we expect the vibrational energies to be some-
what larger than the rotational energies.
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En � n2
h2

8mr2
0

� n2
4�2U2

8mr2
0

� n2
�2

2

U2

mr2
0

	

f �
1

2�A
K
	

¢E
�, ��1 � hf ,

�

Ev � (� � 1>2)hf � � 0, 1 , 2 , 3 , Á

r

P
ot

en
tia

l e
ne

rg
y

Square well
approximation

Simple
harmonic
oscillator
approximation

Molecular
potential

Figure 9-24 Molecular potential. The simple harmonic oscillator approximation, used to
calculate the energy levels, and a square well approximation, used to estimate the order of
magnitude of the energy levels, are each indicated by dashed curves.
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The selection rule for transitions between vibrational states (of the same elec-
tronic state) requires that change only by �1, so the energy of a photon emitted
by such a transition is hf and the frequency is the same as the frequency of vibration.
A typical measured frequency of a transition between vibrational states is 5 � 1013

Hz, which gives for the order of magnitude of vibrational energies

Thus, a typical vibrational energy is actually about 1000 times greater than the typi-
cal rotational energy E0r of the O2 molecule we noted above and about 8 times greater
than the typical thermal energy kT � 0.026 eV at T � 300 K. In contrast with the
rotational levels, the molecular vibrational states are not readily excited by collisions
between molecules at ordinary temperatures.

E � hf � (4.14 � 10�15 eV # s)(5 � 1013 s�1) � 0.2 eV

�

1. The force constant K is given in terms of the
vibrational frequency ƒ by Equation 9-21:

f �
1

2�A
K
	

2. The reduced mass of the CO molecule was
computed in step 4 of Example 9-5:

	 	 � 6.86 u

3. Solving Equation 9-21 for K and substituting the values of ƒ and gives

� 1.86 � 103 N>m� (2� � 6.42 � 1013 Hz)2(6.86 u)(1.66 � 10�27 kg>u)

K � (2�f)2	

	

Emission Spectra

Figure 9-25 shows schematically some electronic, vibrational, and rotational energy
levels of a diatomic molecule. The vibrational levels are labeled with the quantum
number v and the rotational levels with the quantum number /. The lower vibrational
levels are evenly spaced, with �E � hƒ. For higher vibrational levels, the approxima-
tion that the vibration is simple harmonic is not valid and the levels are not quite
evenly spaced. The actual potential spreads somewhat more rapidly, as can be seen in
Figure 9-24, and the spacing of the vibrational levels becomes closer for large values
of the quantum number v. Notice in Figure 9-25 that the potential energy curves rep-
resenting the force between the two atoms in the molecule do not have exactly the
same shape for the electronic ground and excited states. This implies that the funda-
mental frequency of vibration f is different for different electronic states. For transi-
tions between vibrational states of different electronic states, the selection rule
�v � �1 does not hold. Such transitions result in the emission of photons of wave-
length in or near the visible spectrum.

EXAMPLE 9-6 Force Constant of CO The observed vibrational frequency of the CO
molecule is 6.42 � 1013 Hz. What is the effective force constant for this molecule?

SOLUTION
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Figure 9-25 Electronic,
vibrational, and rotational
energy levels of a diatomic
molecule. The rotational
levels are shown in an
enlargement of the v � 0 and
v � 1 vibrational levels of the
electronic ground state.

The spacing of the rotational levels increases with increasing values of /. Since
the energies of rotation are so much smaller than those of vibrational or electronic
excitations of a molecule, molecular rotation shows up in molecular spectra as a 
fine-structure splitting of the spectral lines. When the fine structure is not resolved,
the spectrum appears as bands, as shown in Figure 9-26a (page 386). Close inspec-
tion of these bands reveals that they have a fine structure due to the rotational energy
levels, as shown in the enlargement in Figure 9-26b.

Absorption Spectra

Much molecular spectroscopy is done using infrared absorption techniques in which
only the vibrational and rotational energy levels of the ground-state electronic level
are excited. Consequently, we will now direct our attention to what is called the
vibration-rotation spectrum. For ordinary temperatures, the vibrational energies are
sufficiently large in comparison with the thermal energy kT that most of the molecules
are in the lowest vibrational state v � 0, for which the energy is The tran-
sition from v � 0 to v � 1 is the predominant transition in absorption. The rotational
energies, however, are sufficiently smaller than kT that the molecules are distributed
among several rotational energy states, the relative number in each state being deter-
mined by the Boltzmann factor. If the molecule is originally in a rotational state
characterized by the quantum number /, its initial energy, in addition to that of the
electronic state, is

9-22

where E0r is given by Equation 9-14. From this state, two transitions are permitted by
the selection rules. For a transition to the next highest vibrational state v � 1 and a
rotational state characterized by / � 1, the final energy is

9-23E��1 � 3
2hf � (� � 1)(� � 2)E0r

E� � 1
2hf � �(� � 1)E0r

E0 � 1
2hf .
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Figure 9-26 Part of the emission spectrum of N2. (a) These components of the band are due to transitions
between the vibrational levels of two electronic states, as indicated in the diagram. (b) An enlargement of part
of (a) shows that the apparent lines in (a) are in fact band heads with structure caused by rotational levels.
[Courtesy of J. A. Marquisee.]

For a transition to the next highest vibrational state and to a rotational state character-
ized by / � 1, the final energy is

9-24

The energy differences are

9-25

where / � 0, 1, 2, . . . , and

¢E� S ��1 � E��1 � E� � hf � 2(� � 1)E0r

E��1 � 3
2 hf � (� � 1)�E0r
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Figure 9-27 Absorptive transitions between the lowest vibrational states v � 0 and v � 1 in a
diatomic molecule. These transitions obey the selection rule �/ � �1 and fall into two bands.
The energies of the / S / � 1 band are hf � 2E0r , hf � 4E0r , hf � 6E0r , and so forth, whereas
the energies of the / S / � 1 band are hf � 2E0r , hf � 4E0r , hf � 6E0r , and so forth.

9-26

where / � 1, 2, 3, . . . . (In Equation 9-26, / begins at / � 1 because from / � 0
only the transition / S / � 1 is possible.) Figure 9-27 illustrates these transitions.
The frequencies of these transitions are given by

9-27

and

9-28

The frequencies for the transitions / � / � 1 are thus, f � 2(E0r h), f � 4(E0r h),
f � 6(E0r h), and so forth; those corresponding to the transition / S / � 1 are
f � 2(E0r h), f � 4(E0r h), f � 6(E0r h), and so forth. We thus expect the absorption
spectrum to contain frequencies equally spaced by 2E0r h except for a gap of 4E0r h
at the vibrational frequency f, as shown in Figure 9-28. A measurement of the position
of the gap gives f and a measurement of the spacing of the absorption peaks gives E0r ,
which is inversely proportional to the moment of inertia of the molecule.

>>>>>> >>
f� S ��1 �

¢E� S ��1

h
� f �

2�E0r

h
� � 1, 2 , 3 , Á

f� S ��1 �
¢E� S ��1

h
� f �

2(� � 1)E0r

h
� � 0, 1 , 2 , Á

¢E� S ��1 � E��1 � E� � hf � 2�E0r
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Figure 9-29 Absorption spectrum of the diatomic molecule HCl. The double-peak structure results from the two
isotopes of chlorine, 35Cl (abundance 75.5 percent) and 37Cl (abundance 24.5 percent). The intensities of the peaks
vary because the population of the initial state depends on /.

Figure 9-29 shows the absorption spectrum of HCl. The double-peak structure re-
sults from the fact that chlorine occurs naturally in two isotopes, 35Cl and 37Cl, which
results in slightly different moments of inertia. If all of the rotational levels were
equally populated initially, we would expect the intensities of each absorption line to
be equal. However, the population n(E/) of a rotational level / is proportional to the
density of states g(E/), which equals the degeneracy of the level in this case, that is,
the number of states with the same value of /, which is 2/ � 1, and to the Boltzmann
factor where E/ is the energy of the state:

9-29

or

9-30n(E�) � (2� � 1)e�[1
2 hf��(��1)E0r]kT

n(E�) � g(E�)e
�E�>kT

e�E�>kT,

E

� → � – 1 � → � + 1

2E0r

� = 3
to

� = 2

� = 2
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� = 1

� = 1
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� = 0

� = 0
to

� = 1
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Figure 9-28 Expected absorption spectrum of a diatomic molecule. The right branch
corresponds to the transitions / S / � 1 and the left branch to the transitions / S / � 1.
The lines are equally spaced by 2E0r . The energy midway between the branches is hf, where f
is the frequency of vibration of the molecule.
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The -fold degeneracy of the rotational state with angular momentum / makes
the thermal equilibrium population proportional to (2/ � 1) exp 
Therefore, the / � 0 state is usually not the most densely populated state at room tem-
perature. For low values of /, the population increases slightly because of the degener-
acy factor, whereas for higher values of /, the population decreases because of the
Boltzmann factor. The intensities of the absorption lines therefore increase with /
for low values of / and then decrease with / for high values of /, as can be seen from
the figure. We can find out where the maximum population of the rotational states is lo-
cated and hence which lines will be the most intense by differentiating Equation 9-30
with respect to / and setting dn d/ equal to zero. The result is

9-31

For a measurement made at room temperature, kT � 0.026 eV and thus /max L 3. This,
too, can be seen in Figure 9-29.

Notice also in Figure 9-29 that the spacing between adjacent peaks, which we
expected to be constant and equal to 2E0r on the basis of our calculation above, is in
fact not constant. The reason for this is our assumption that the moment of inertia of
the molecule is constant. The rotation of the molecule tends to increase the separation
of the atoms and hence increase the moment of inertia and decrease the rotational
energy. As might be expected and the figure also shows, this effect becomes larger
as / increases.

As mentioned above, the gap in the spectrum in Figure 9-29 is due to the absence
of a transition beginning on the / � 0 level in the / S / � 1 group of peaks. The
center of the gap is at the characteristic oscillation frequency f of the molecule given
by Equation 9-21. From the figure we see that f for HCl is about 8.56 � 1013 Hz, or
about 0.36 eV, corresponding to a force constant K of about 476 N/m. Table 9-7 lists
the rotational and vibrational constants for several diatomic molecules. All diatomic

�max �
1

2
cA 4kT

h2>mr2
� 1 d

>

[��(� � 1)U2>2 IkT] .
U(2� � 1)

Table 9-7 Rotational and vibrational constants for selected diatomic molecules

Molecule Equilibrium separation r
0

(nm) Frequency ƒ (Hz) E
0r

(eV)

H2 0.074 1.32 � 1014 7.56 � 10�3

Li2 0.267 1.05 � 1013 8.39 � 10�5

O2 0.121 4.74 � 1013 1.78 � 10�4

LiH 0.160 4.22 � 1013 9.27 � 10�4

HCl35 0.127 8.97 � 1013 1.32 � 10�3

NaCl35 0.251 1.14 � 1013 2.36 � 10�5

KCl35 0.279 8.40 � 1012 1.43 � 10�5

KBr79 0.294 6.93 � 1012 9.1 � 10�6

Symmetric molecules such as H2 or O2 have no electric dipole moment. The vibration or rota-
tion of these molecules does not involve a changing dipole moment, and there is no vibrational-
rotational electric dipole absorption or radiation for these molecules.
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molecules9 have a gap at f in their vibration-rotation spectra; however, many poly-
atomic molecules have more complex vibrations and rotations, one result of which
is that �/ � 0 may be allowed, i.e., vibrational energy may change without an
accompanying rotational transition. In that event, a line will occur in the vibration-
rotation spectrum at the frequency f. Such lines are given the rather enigmatic name
of Q branch.10

9-5 Scattering, Absorption, 

and Stimulated Emission

Scattering

In the interactions between radiation incident on atomic or molecular systems, pho-
tons may also be scattered both elastically and inelastically. The process by which
photons scatter elastically, i.e., without a change in their frequency, is called elastic or
Rayleigh scattering since it was first described adequately by a classical scattering
theory derived by Rayleigh in about 1900. Rayleigh scattering is illustrated in Figure
9-30d. In the classical theory, the oscillating electric field of the incident radiation pro-
duces an oscillating acceleration of the atomic electrons, causing them to radiate elec-
tromagnetic waves of the same frequency as and in phase with the incident wave.
Thus, the electrons of the target atoms and molecules absorb energy from the incident
wave and re-emit, or scatter it, in all directions without changing its frequency. The
intensity of the scattered radiation is proportional to f 4. Rayleigh scattering is the ori-
gin of the unmodified line in our discussion of the Compton scattering of x rays in
Section 3-4. (See Figure 3-17.) We saw there that if the incident wavelength was
large compared with the Compton shift i.e., visible wavelengths or larger,
then the scattered wave always included a wavelength equal to the incident wave-
length to within experimental accuracy regardless of whether the electron mass or
atomic mass is used in Equation 3-25. So as the quantum explanation of
Chapter 3 and Rayleigh’s classical explanation of elastic scattering agree. However,
for incident wavelengths in the x-ray and gamma-ray regions of the spectrum,
Compton scattering, shown in Figure 9-30e, becomes increasingly important for low-
Z atoms whose electron binding energies are not large. In the gamma-ray region as

the photon energy becomes so large that even the most tightly bound electrons
are freed in the process and Compton effect becomes the dominant process.

The incident and scattered photons are also correlated in the inelastic scattering
process illustrated in Figure 9-30f. Such scattering of light from molecules was first
observed by physicist C. V. Raman11 and is known as Raman scattering, or sometimes
as the Raman effect. The scattered photon may have less energy than the incident pho-
ton or it may have greater energy if the molecule is initially in an excited vibrational
or rotational energy state. Both possibilities are illustrated in Figure 9-30f. Thus, the
scattered frequency is not the same as the incident frequency, nor is it related to a char-
acteristic frequency of the molecule. It is found that for incident monochromatic radi-
ation of frequency f the scattered radiation contains not only the frequency f (Rayleigh
scattering; see Figure 9-31), but also much weaker lines on either side of the Rayleigh
line, with frequencies given by

9-32f� � f � ¢f
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Figure 9-30 Description of photon interactions with an atom. (a) The photon is absorbed and the atom, in an
excited state, later emits one or more photons as it decays to a state of lower energy. This is a two-step process
called fluorescence, and the emitted photons are uncorrelated with the incident photon. (b) If the energy of the
incident photon matches one of the excitation energies of the atom, resonance radiation results. (c) The atom,
in an excited state, is stimulated to make a transition to a lower state by an incident photon of just the right
energy. The emitted and incident photons have the same energy and are coherent. The Rayleigh scattering
process (d) and Raman scattering (f) differ from (a) and (b) in that they are single-step processes and there is a
correlation between the incident and emitted photons. Parts (e) and (g) illustrate Compton scattering and the
photoelectric effect discussed in Chapter 3.

These are the Raman lines illustrated in Figure 9-31. If the incident frequency is var-
ied, the Raman lines are observed to move along the frequency axis at the same rate
so that the difference �f between f and f � remains constant. It is this difference �f that
corresponds to characteristic transitions of the scattering molecule.
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N2

Figure 9-31 The rotational Raman
spectrum of N2. The alternating
intensities, determined by the nuclear
spins, are in the ratio of 1/2,
corresponding with the I � 1 spin of the
nitrogen nucleus. The dark central area
is the result of the much more intense
Rayleigh-scattered portion of the
incident wave. [R. Eisberg and 
R. Resnick, Quantum Physics, 2d ed. (New
York: Wiley, 1985), p. 436.]

Although the measurements of �f for each line in the Raman spectrum makes
possible construction of the rotational levels for a given molecule,12 its quantum-
mechanical explanation is different from that of the rotational spectrum. In particular,
the selection rule for the rotational quantum number in the Raman effect is �/ � 0, �2.
The �/ � 0 value yields Rayleigh scattering, while �/ � �2 yields the Raman lines.
One can see how this comes about physically by studying the transitions shown in
Figure 9-30f. An electron initially in the / � 0 state absorbs energy �E01 � �E12 from
the incident photon of frequency f and emits energy �E12 . Thus, the energy of the scat-
tered photon is

9-33

or

where �ƒ � �E01 h. If the electron is initially in the / � 1 state, then it absorbs
�E12 from the incident photon and emits �E12 � �E01 . Thus, the scattered photon
has energy

9-34

or

Many Raman spectra have been studied. They provide a valuable source of infor-
mation regarding molecular quantum states, including, as was pointed out earlier, the
structure of the rotational levels for homonuclear diatomic molecules. For example,
the detailed understanding of the complex vibrations and rotations of the ammonia
molecule referred to in Section 6-6 that enabled the development of the first atomic
clocks was made possible by studies of the Raman rotational-vibrational spectrum of
the NH3 molecule, the so-called ammonia inversion spectrum. Finally, Figure 9-30g
illustrates the photoelectric effect, the final example of the interaction of radiation
with matter, in which the absorption of the photon ionizes the atom or molecule.
Like Compton scattering, this effect was discussed in Chapter 3 and will not be con-
sidered further here.

f� � f � ¢f

hf � � hf � ¢E12 � (¢E12 � ¢E01) � hf � ¢E01

> f� � f � ¢f

hf � � hf � (¢E01 � ¢E12) � ¢E12 � hf � ¢E01
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Absorption

Information about the energy levels of an atom or molecule is usually obtained from
the radiation emitted when the atom or molecule makes a transition from an excited
state to a state of lower energy. As mentioned in Section 9-4, we can also obtain
information about such energy levels from the absorption spectrum. When atoms
and molecules are irradiated with a continuous spectrum of radiation, the transmit-
ted radiation shows dark lines corresponding to absorption of light at discrete wave-
lengths. Absorption spectra of atoms were the first line spectra observed. Fraunhofer
in 1817 labeled the most prominent absorption lines in the spectrum of sunlight; it
is for this reason that the two intense yellow lines in the spectrum of sodium are
called the Fraunhofer D lines. Since at normal temperatures atoms and molecules
are in their ground states or in low-lying excited states, the absorption spectra are
usually simpler than the emission spectra. For example, only those lines correspon-
ding to the Lyman emission series are seen in the absorption spectrum of atomic
hydrogen because nearly all the atoms are originally in their ground states. In the
Chapter 6 MORE section “Transitions Between Energy States,” we described how
transitions between quantum states in an atomic system occur as a result of interac-
tion with oscillating electromagnetic fields. In particular, if the frequency greater
than ƒ12 is present in radiation incident on an atom whose ground-state and an
excited-state energies are respectively E1 and E2 , then there is a probability that the
atom will undergo a transition from the lower energy state E1, absorbing the energy
hƒ12 � E2 � E1 from the radiation. This absorption of energy resulting from the in-
teraction between the electric field of the radiation oscillating at ƒ12 and the charge
on the atomic electrons was first described quantum mechanically by Einstein, who
expressed the probability of absorption per atom per unit time as B12u(ƒ), where u(ƒ)
is the energy density of the radiation per unit frequency and B12 is Einstein’s coef-
ficient of absorption.

In addition to absorption, several other interesting phenomena occur when elec-
tromagnetic radiation—i.e., photons—is incident on atoms or molecules. These are
illustrated in Figure 9-30. In Figure 9-30a a photon of energy hf is absorbed and
the system makes a transition to the excited state. Later, the system makes a transi-
tion to a lower state and/or back to the ground state with the spontaneous emission
of one or more photons via the mechanism described on the home page in the
Chapter 6 MORE section “Transitions Between Energy States.” The radiation thus
emitted is called fluorescence. If state 2 happens to be the first excited state, then
this two-step process is called resonance absorption and the photon emitted is
called resonance radiation, as shown in Figure 9-30b. As a result of motions that
occur while the system is in state 2, there is no correlation in direction or phase be-
tween the incident and emitted photons. While in state 2 the system has definite
probabilities of making spontaneous transitions to each of the lower states as deter-
mined by the probability density given by Equation 6-52d in the MORE section.
For example, the probability per atom per unit time of returning to state 1 with the
spontaneous emission of a photon can be expressed by the quantity A21 (transitions
per unit time). Notice that the reciprocal 1 A21 has the units of time per transition;
i.e., it is a measure of how long the system stays in state 2 before returning to state 1.
This is ts , the mean lifetime of the state, defined as ts � 1 A21 . For most atomic
(electric dipole) transitions this characteristic lifetime is of the order of 10�8 s. A21
is called Einstein’s coefficient of spontaneous emission.

>>
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Stimulated Emission

In addition to the spontaneous emission of fluorescent and resonant radiation with
probability A21 , which is independent of the energy density u( f ) of the incident radi-
ation, emission can also be induced to occur by the oscillating electromagnetic field
of the incident radiation. Called stimulated emission, its probability does depend upon
u( f ). This phenomenon, like absorption and spontaneous emission, was first analyzed
by Einstein, in 1917. The probability of stimulated emission per atom per unit time
(transition rate) can be written as B21u( f ), where B21 is called Einstein’s coefficient of
stimulated emission. In this process the electric field of an incident photon with en-
ergy hƒ equal to the energy difference E2 � E1 in Figure 9-30c stimulates the atom or
molecule in state 2 to emit a photon with energy E2 � E1 � hƒ, which is propagated
in the same direction and with the same phase as the incident photon. Such photons
(or radiation) are said to be coherent.

The relation between the three Einstein coefficients can be found as follows.
Consider a system of atoms and radiation in thermal equilibrium at temperature T. Let
N1 and N2 be the number of atoms occupying the states with energies E1 and E2 . The
ratio N2 N1 is determined by the Boltzmann factor, given by Equation 8-2, assuming
the two states have the same degeneracy:

9-35

This ratio represents a dynamic equilibrium in which the number of absorption tran-
sitions (E1 S E2) per unit time equals the sum of the number of spontaneous and stim-
ulated emissions (E2 S E1) per unit time. Since the number of atoms making a tran-
sition (of any type) is proportional to the population of the state on which the transi-
tion begins and to the probability, we can express the dynamic equilibrium as

9-36

Solving Equation 9-36 for the energy density u(f) of the radiation yields

9-37

Inserting N1 N2 from Equation 9-35, we have that

9-38

This expression for the energy density of radiation of frequency f in thermal equilib-
rium at temperature T with atoms of energies E1 and E2 must be consistent with
Planck’s law for a blackbody spectrum at temperature T given by Equation 8-57:

9-39u(f) �
8�hf3

c3
a 1

ehf>kT � 1
b

u(f) �

A21

B21

B12
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A21

B21
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N2

B12

B21
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Comparing Equation 9-38 and 9-39, we conclude that

9-40

and that

9-41

Although this analysis gives us only the ratios of the coefficients, A21 can be computed
from quantum mechanics, as was discussed in the home page MORE section “Transitions
Between Energy States” in Chapter 6, and the other coefficients may then be computed
from the result.

There are several points of interest in these equations. For instance, Equation 
9-40 tells us that the coefficients for absorption and stimulated emission are the same
for the same pair of states. Notice, too, that Equation 9-41 says that the ratio of the
spontaneous emission coefficient to that for stimulated emission is proportional to ƒ3.
This means that the larger �E � E2 � E1 , the more likely spontaneous emission will
be comparable to stimulated emission. Rewriting Equation 9-39 as

9-42

yields the result that, in equilibrium situations, spontaneous emission is far more prob-
able than stimulated emission for Since this is usually the case for elec-
tronic transitions in both atoms and molecules, de-excitation of excited electronic
states by stimulated emission is normally ignored in these transitions. Stimulated
emission does become important when and may dominate de-excitation of
excited states when This latter condition exists for ordinary temperatures in
the microwave region of the spectrum. We will return to these matters in Section 9-6
in connection with the discussion of lasers and masers.

EXAMPLE 9-7 Spontaneous versus Stimulated Emission Compare the relative
probabilities of spontaneous and stimulated emission in an equilibrium system at
room temperature (T � 300 K) for transitions that occur in (a) the visible and (b) the
microwave regions of the spectrum.

SOLUTION

Equation 9-42 gives the ratio of the probability for spontaneous emission A21 to that
for stimulated emission B21u( f ). At T � 300 K, kT � 0.026 eV.

(a) In the visible region of the spectrum, so hf kT � 2 0.026 � 77.
Therefore,

Clearly, under these conditions spontaneous emission is favored over stimulated
emission by an enormous factor.

(b) In the microwave region of the spectrum, so 
and stimulated emission is rather heavily favored.0.0038 � 1>260

hf>kT �10�4>0.026 �hf � 10�4 eV,

A21

B21u(f)
� e77 � 1

>>hf � 2 eV,

hf V kT.
hf � kT

hf W kT.

A21

B21u(f)
� ehf>kT � 1

A21

B21

�
8�hf 3

c3

B12

B21

� 1
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Questions

5. How does Rayleigh scattering differ from resonance absorption?

6. How does the photoelectric effect differ from all the other processes illustrated
in Figure 9-30?

7. Why is stimulated emission usually not observed?

9-6 Lasers and Masers
The laser (light amplification by stimulated emission of radiation) is a device that
produces a strong beam of coherent photons by stimulated emission. The maser,
where microwave replaces light in the definition from which the acronym is formed,
was the laser’s predecessor. Both devices depend on stimulated emission for their op-
eration. We will discuss it more fully here because of its application to these impor-
tant devices. Stimulated emission occurs if the atom is initially in an excited state
and if the energy of the photon incident on the atom is just E2 � E1 , where E2 is the
excited energy of the atom and E1 is the energy of a lower state or the ground state.
In this case, the oscillating electromagnetic field of the incident photon accelerates the
electron(s) at a rate that matches the photon’s frequency and thus, we say, stimulates
the excited atom, which may then emit a photon in the same direction as the incident
photon and with the same phase. We have seen that the relative probabilities of stim-
ulated emission and absorption B21 and B12 are equal (Equation 9-40). Ordinarily, at
normal temperatures, nearly all atoms will initially be in the ground state, so absorp-
tion will be the main effect. That is, N1 W N2 , so

where N1 and N2 are the populations of the two states. To produce more stimulated
emission transitions than absorption transitions, we must arrange to have more
atoms in the excited state than in the ground state (N2 � N1). This condition is called
population inversion. It can be achieved if the excited state E2 is a metastable state.
Once population inversion is achieved, any light emitted by a spontaneous E2 S E1
transition is amplified by stimulated emission from the excited atoms that it en-
counters. Population inversion is often obtained by a method called optical pump-
ing, in which atoms are “pumped” up to energy levels greater than E2 by the ab-
sorption of an intense auxiliary radiation. The atoms then decay down to the
metastable state E2 by either spontaneous emission or by nonradiative transitions
such as those due to collisions.

The maser was the first of these devices to be constructed, an accomplishment of
Charles Townes and his co-workers in 1953. Currently, the most important type of
maser is the hydrogen maser, which is used as an atomic-frequency standard, one type
of atomic clock. The hydrogen transition used in these masers is that between the
hyperfine levels of the ground state, the same transition used to map hydrogen clouds
in interstellar space (see Chapter 13). This transition between the and 
states is shown in Figure 9-32a. Townes shared the 1964 Nobel Prize in Physics for
his contributions to the development of masers and lasers.

&100�1
2

&100�1
2

N1u(f)B12 WN2u(f)B21
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Figure 9-32 (a) Hyperfine levels used in the hydrogen maser. (b) Schematic diagram of the
first ruby laser. (c) Energy levels of chromium in ruby, Al2O3.

The Ruby Laser

Figure 9-32b shows a schematic diagram of the first laser, a ruby laser built by
Theodore Maiman in 1960.13 It consists of a small rod of ruby (a few centimeters
long) surrounded by a helical gaseous flashtube. The ends of the ruby rod are flat and
perpendicular to the axis of the rod. Ruby is a transparent crystal of Al2O3 containing
a small amount (about 0.05 percent) of chromium. It appears red because the
chromium ions (Cr3�) have strong absorption bands in the blue and green regions of
the visible spectrum. The energy levels of chromium that are important for the opera-
tion of a ruby laser are shown in Figure 9-32c.

When the mercury- or xenon-filled flashtube is fired, there is an intense burst of
light lasting a few milliseconds. Absorption excites many of the chromium ions to the
bands of energy levels called pump levels in Figure 9-32c. The excited chromium ions
give up their energy to the crystal in nonradiative transitions and drop down to a pair
of metastable states labeled E2 in the figure. These metastable states are about 1.79 eV
above the ground state. If the flash is intense enough, more atoms will make the tran-
sition to the states E2 than remain in the ground state. As a result, the populations of
the ground state and the metastable states become inverted. When some of the atoms
in the states E2 decay to the ground state by spontaneous emission, they emit photons
of energy 1.79 eV and wavelength 694.3 nm. Some of these photons then stimulate
other excited atoms to emit photons of the same energy and wavelength, moving in
the same direction with the same phase.
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Figure 9-33 Laser as a resonating
optical cavity. If mirror 1 is the
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standing-wave modes, for which
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sides of the cavity are also
reflective, as in (b), then standing-
wave modes transverse to the long
axis are also possible. Notice that
the exit beam for these modes is not
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The ruby laser, like other conventional lasers, acts as a resonating optical cavity.
In the ruby laser, both ends of the crystal are silvered such that one end is almost to-
tally reflecting (about 99.9 percent) and the other end is only partially reflecting (about
99 percent) so that some of the beam is transmitted through that slightly transparent
end. If the ends are parallel, standing waves are set up, as shown in Figure 9-33, and an
intense beam of coherent light emerges through the partially silvered end. Figure 9-34
illustrates the buildup of the beam inside the laser. When photons traveling parallel to
the axis of the crystal strike the silvered ends, all are reflected from the back face and
most are reflected from the front face, with a few escaping through the partially sil-
vered front face. During each pass through the crystal, the photons stimulate more and
more atoms so that an intense photon beam is developed.

Modern ruby lasers generate intense light beams with energies ranging from 50 J
to 100 J in pulses lasting a few milliseconds. This pulse length is approximately equal
to that of the flash tube, whose output excites atoms into the pump levels shown in
Figure 9-32c. The output of the laser during that time is actually a series of very short
pulses, each of the order of a microsecond long, as illustrated in Figure 9-35. This is
because the pump levels depopulate quickly compared to the pump rate. Therefore,
the flash requires some time to reestablish the population inversion that generates the
next short pulse.
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Figure 9-35 A single output pulse
from a ruby laser. The pulse actually
consists of a series of very short
pulses each about 1 s long.
Flashlamp intensities below the
threshold do not produce a sufficient
population inversion to initiate
lasing. Not shown is a weak
background of incoherent
spontaneous emission that
accompanies the coherent laser light.

	

Figure 9-34 Buildup of
photon beam in a laser.
(a) Some of the atoms
spontaneously emit photons,
some of which travel to the
right and stimulate other atoms
to emit photons parallel to the
axis of the crystal. The others
are absorbed, transmitted
through the walls, or otherwise
lost to the lasing process.
(b) Four photons strike the
partially silvered right face of
the laser. (c) One photon has
been transmitted and the others
have been reflected. As these
photons traverse the laser
crystal, they stimulate other
excited atoms to emit photons
and the beam intensity
increases. By the time the
beam reaches the right face
again (d), it comprises many
photons. (e) Some of these
photons are transmitted to
become part of the external
laser beam and the rest are
reflected to sustain the process.
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Notice in Figure 9-35 that the first of the very brief laser pulses, or “spikes,” be-
gins very soon after the population inversion N2 � N1 occurs and ends when N2 falls
back to N1 due to stimulated emissions. Extremely intense spikes can be generated via
a technique called Q-switching, whereby the resonating property of the cavity is tem-
porarily destroyed in order to sharply reduce the stimulated emissions so as to allow
the pumping radiation to make N2 ≫ N1 . The resonant status is then suddenly re-
stored and an extremely intense laser pulse results. This is how the very high-energy
pulses mentioned above are typically produced. The Q in Q-switching refers to the
cavity’s quality factor, or its ability to maintain the intensity of the reverberating
wave. If the end mirrors are low loss and the medium very transparent to the laser fre-
quency, then the wave will die out slowly and the cavity is of high quality, or high Q.
If Q is low, then substantial light is lost in each pass and the wave will die out quickly.
If Q is too low, lasing will not occur at all. Q can be made very low, for example, by
replacing the totally reflecting end mirror with an external one of equal reflectivity
that rotates. When the rotating mirror is not parallel to the one on the other end of the
cavity, Q is very low and little stimulated emission occurs as the pumping flash builds
the population of state E2 so that N2 ≫ N1 . When the rotating mirror becomes paral-
lel to the other, Q suddenly becomes very high (hence the name Q-switch) and the ex-
tremely intense laser pulse is generated as E2 depopulates.

Sustaining laser action requires that the increase in the number of coherent pho-
tons produced by stimulated emission per round trip through the resonating cavity to
be greater than or equal to the decrease resulting from all losses, such as transmission
through the partially reflecting end mirror and scattering. Although its a bit difficult,
we have information to calculate the population inversion density necessary for lasing
with the aid of the Einstein coefficients from Section 9-5, so let’s try it. To begin, let’s
combine all of the various ways by which photons may be lost into a single charac-
teristic time tp . That is, the intensity of radiation I of a particular frequency f in the
resonant cavity will decay due to the losses according to

9-43

where I0 is the intensity at t � 0. Thus, the rate at which intensity is lost is given by

9-44

The net rate at which the intensity of the frequency f gains due to the difference
between the gain from stimulated emissions E2 S E1 and the offsetting loss from ab-
sorptions E1 S E2 is equal to the difference in the populations (N2 � N1) times the in-
tensity per photon times the transition probability u(f )B21 . The transition probability
u(f )B21 must be corrected for the width �ƒ of the spectral line emitted in the E2 S E1
transition arising from the finite width of the level E2 , as described in Chapter 5.14

The correction is a multiplicative factor approximately equal to Taking these
together, we obtain

9-45

where V is the volume of the resonant cavity and hfc V is the intensity per photon.>
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Using Equation 9-38 and the fact that A21 is the reciprocal of the lifetime for sponta-
neous emission ts , Equation 9-45 can be written as

9-46

or

9-47

where n2 � N2 V and n1 � N1 V are the population densities of the states and
cu(ƒ) � I, the intensity.15 If the density of states (degeneracies) g(E) of E2 and E1 are
not equal, then Equation 9-47 must be modified to

9-48

Thus, the condition for laser action becomes

9-49

or

9-50

The equal sign provides the threshold condition for the initiation of lasing. The
greater-than sign represents sustained laser action. Solving the threshold condition
yields the critical population inversion density �nc:

9-51

where

Equation 9-51 describes the population inversion that must be established if laser
action is to be achieved for a given frequency and spontaneous emission lifetime.
It also points out that the only property of the cavity that affects �nc is its character-
istic decay lifetime tp .

The ruby laser is an example of a three-level laser, referring to the energy levels in
Figure 9-32c. Such lasers have a practical disadvantage for many applications in that
more than half of the atoms must be pumped from E1 S E3 in order to obtain the nec-
essary population inversion between levels E2 and E1. In addition, the source of the
excitation energy, the flashlamp, produces light over a broad range of frequencies, most
of which do not contribute to exciting the level E3 and are thus wasted. The large pump-
ing requirement and relatively low excitation efficiency mean that substantial energy
must be dissipated as heat, so three-level solid-state lasers such as the ruby laser must
be pulsed in order to allow the system time to cool periodically. A more advantageous
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b � ¢nc

¢nc �
4�2f2¢f ts
c3tp

cn2 � n1ag(E2)

g(E1)
b d c3I

4�2f2¢f ts
!
I

tp

adI
dt
b

gain

! adI
dt
b

loss

adI
dt
b

gain

� cn2 � n1ag(E2)

g(E1)
b d c3I

4�2f2¢f ts

>>
adI
dt
b

gain

� (n2 � n1)
c3I

4�2f2¢f ts

adI
dt
b

gain

�
(N2 � N1)

V
(hfc) c u(f)c3

4�2hf 3¢f ts
d



9-6 Lasers and Masers 401

system is one that does not require such a large fraction of the atoms to be excited at
any one time and avoids the excess heat produced by optical pumping. Such lasers
provide continuous output and are called continuous wave, or cw, lasers.

Helium-Neon Lasers

In 1961, the first successful operation of a cw laser, a continuous helium-neon gas laser,
was announced by Ali Javan, W. R. Bennet, Jr., and D. R. Herriott.16 Figure 9-36 shows
a schematic diagram of the type of helium-neon laser commonly used for physics
demonstrations and laser pointers and by land surveyors and carpenters. It consists of a
gas tube containing 15 percent helium gas and 85 percent neon gas. A totally reflecting
flat mirror is mounted on one end of the gas tube and a partially reflecting concave mir-
ror is placed at the other end. The concave mirror focuses parallel light at the flat mirror
and also acts as a lens that transmits part of the light so that it emerges as a parallel beam.

Population inversion is achieved somewhat differently in the helium-neon laser than
in the ruby laser. Figure 9-37 shows the energy levels of helium and neon that are im-
portant for operation of the laser. (The complete energy-level diagrams for helium and
neon are considerably more complicated.) Helium has excited states, the 23S and 21S
levels that lie 19.72 eV and 20.61 eV, respectively, above the 11S ground state. Both are
metastable because of the �/ � �1 selection rule, the 23S level being more strongly for-
bidden due to the �S � 0 selection rule, discussed in the Chapter 7 home page MORE
section “Multielectron Atoms,” that prohibits intercombination lines. Helium atoms are
excited to these states by an electrical discharge. Neon has closely spaced groups of ex-
cited states at 19.83 eV and 20.66 eV above its ground state—the energies of these neon
states almost exactly match the excited states of helium. The neon atoms are excited to
these levels by collisions with excited helium atoms. The kinetic energy of the helium
atoms provides the extra energy, about 0.05 eV, needed to excite the neon atoms. There
is another excited state of neon that is 18.70 eV above its ground state and 1.96 eV below
the 20.66 eV state. Since this state is normally unoccupied, population inversion be-
tween these states is obtained immediately. The stimulated emission that occurs between
these states results in photons of energy 1.96 eV and wavelength 632.8 nm, which pro-
duces a bright red light. After stimulated emission, the atoms in the 18.70 eV state decay
to the ground state by spontaneous emission of a photon with a wavelength of about
600 nm followed by a nonradiative de-excitation, typically collision with the cavity wall.
The collisions are an important part of the laser process since if the diameter of the tube
(see Figure 9-36) is too large, the probability of collision with the wall decreases and the
600-nm radiation may re-excite the 18.70 eV level. This reduces the population inversion
and decreases the laser gain. Stimulated emission also occurs from the state at 19.83 eV
to the 18.70 eV level, producing laser light with a wavelength of 1100 nm (infrared).

Rear
Laser tube

Flat mirror:
99.9% reflective

Front Parallel
laser beam

Concave mirror:
reflects 99%,
transmits 1%

Figure 9-36 Schematic drawing of a helium-neon laser. The use of a concave mirror rather
than a second plane mirror makes the alignment of the mirrors less critical than it is for the
ruby laser. The concave mirror on the right also serves as a lens that focuses the emitted light
into a parallel beam.
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Helium-neon lasers have recently been developed that lase at a number of other visible
and infrared wavelengths. The several possible laser wavelengths are not present simul-
taneously since each device is designed to operate at a particular wavelength.

Note that there are four energy levels involved in producing the 632.8-nm helium-
neon laser line, whereas the ruby laser involved only three levels. In a three-level laser,
population inversion is difficult to achieve because more than half the atoms in the
ground state must be excited, i.e., N2 � N1 2 in Equation 9-46. In a four-level laser,
population inversion is easily achieved because the state after stimulated emission is
not the ground state but an excited state that is normally unpopulated, so that N1 L 0.

New Lasers and Applications

A laser beam is coherent, very narrow, and intense. Its coherence makes the laser beam
useful in the production of holograms, such as those used on credit cards and “heads-
up” displays; i.e., transparent data displays that don’t obstruct the user’s view. The pre-
cise direction and small angular spread of the beam make it useful as a surgical tool for
destroying cancer cells or reattaching a detached retina. Lasers are also used by land sur-
veyors and carpenters to ensure precise alignment over large distances. Distances can be
accurately measured by reflecting a laser pulse from a mirror and measuring the time
the pulse takes to travel to the mirror and back. The distance to the Moon is currently
measured to within a few millimeters using corner reflectors placed on the Moon by
Apollo astronauts for that purpose. Laser beams are also used in fusion research. 
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Figure 9-37 Energy levels of helium and neon that are important for the helium-neon laser.
The helium atoms are excited by electrical discharge to energy states 19.72 eV and 20.61 eV
above the ground state. They collide with neon atoms, exciting some neon atoms to energy
states 19.83 eV and 20.66 eV above the ground state. Population inversion is thus achieved
between these levels and one at 18.70 eV above the ground state. The spontaneous emission of
photons of energy 1.96 eV from the upper state stimulates other atoms in the upper state to emit
photons of energy 1.96 eV, producing the characteristic He-Ne red laser light. Emission from
the 19.83 eV neon state to the 18.70 eV level also produces laser output at about 1100 nm.
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Three counterpropagating pairs of orthogonal laser beams illuminate about 100 million
sodium atoms at their intersection. The pressure of the laser light cools the atoms, slowing
them to rms velocities comparable to those resulting from recoil due to emission or absorption
of a single photon. Systems incorporating laser cooling of sodium atoms have achieved a
record low temperature of 450 pK. [National Institute of Science and Technology.]

An intense laser pulse is focused on tiny pellets of deuterium-tritium in a combustion
chamber. The beam heats the pellets to temperatures of the order of 108 K in a very short
time, causing the deuterium and tritium to fuse and release energy. (See Section 11-8.)
At the other end of the temperature scale, using advanced cooling techniques that in-
cluded the focusing of three orthogonal pairs of lasers (optical tweezers) on a sample
containing 2500 cesium atoms, in 2003 W. Ketterle and his group achieved a record low
temperature of 450 pK.17 (See the photo above.) Orthogonal pairs of laser beams, called
optical traps, capable of cooling samples containing millions of atoms down to the sub-
microkelvin range, are used in creating Bose-Einstein condensates and the degenerate
Fermi gas, discussed in Chapter 8, and antihydrogen atoms, described in Chapter 12.

While cw lasers are the lasers of choice for many applications, many others re-
quire pulsed lasers, particularly those where very high power levels are important or
even essential. For these applications the current state of the art is chirped pulse am-
plification. With this technique, invented in the 1980s by Gérhard Mourou, an input
ultrashort pulse is stretched out (in time) by dispersing the wavelengths (frequencies)
of the pulse with a suitable arrangement of gratings or prisms together with mirrors.
After passing through the optical stretcher, the pulse duration is up to 105 times longer
than the original pulse and the intensity has been correspondingly lowered as a result
to avoid nonlinear effects that would damage or destroy the amplification medium.
The laser pulse, amplified by a factor of 106 or more, is recompressed by an optical
system that is essentially the reverse of the stretcher. Off-the-shelf chirped pulse lasers
are available with peak power in the 10- to 100-gigawatt range. Several major research
facilities operate chirped lasers with peak power in the petawatt range.

Laser technology is advancing so fast that it is possible to mention only a few recent
developments. In addition to the ruby laser, there are many other solid-state lasers with
output wavelengths ranging from about 18 nm (soft x rays) to about 3900 nm (infrared).
Lasers that generate more than 1 kW of continuous power have been constructed,
and pulsed lasers can now deliver nanosecond pulses of power exceeding 109 W.
Various gas lasers produce wavelengths ranging from the far infrared to the ultraviolet.
Semiconductor lasers (also known as diode lasers or junction lasers; these will be
discussed further in Chapter 10) the size of a pinhead can develop 200 mW of power.
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In addition to the ubiquitous diode lasers used in supermarket checkout counters, com-
pact disc players, copiers, and computer printers, through very recent developments
in materials physicists have constructed reliable diode lasers that emit in the blue to
ultraviolet region of the spectrum. These lasers should make possible significantly in-
creased high-density optical storage on digital versatile discs (DVDs). Liquid lasers
using chemical dyes can be tuned over a range of wavelengths (about 70 nm for contin-
uous lasers and more than 170 nm for pulsed lasers). The free-electron laser extracts
light energy from a beam of free electrons moving through a spatially varying magnetic
field. It has the potential for very high power and high efficiency and can be tuned over
a large range of wavelengths. The variety and uses of modern lasers seem limitless.

Questions

8. What are the advantages of a four-level laser over a three-level laser?

9. Why is helium needed in a helium-neon laser? Why not just use neon?

EXAMPLE 9-8 Critical Population Inversion Comparison Compare the critical pop-
ulation inversion necessary for laser action in the ruby and He-Ne lasers. Compute
the corresponding power requirements.

SOLUTION

The critical population density �nc is given by Equation 9-51. The typical param-
eters of these systems are as follows:

For ruby laser:

For He-Ne laser:

Thus, the critical population density is far smaller for the He-Ne laser.

¢nc � 8.96 � 1013 atoms>m3 � 8.96 � 107 atoms>cm3

¢nc �
4�2f2¢f ts
c3tp

�
4�2(4.74 � 1014)2(9 � 108)(10�7)

(3.00 � 108)3(3.3 � 10�7)

¢nc � 5.08 � 1022 atoms>m3 � 5.08 � 1016 atoms>cm3

¢nc �
4�2f2¢f ts
c3tp

�
4�2(4.32 � 1014)2(3.3 � 1011)(3 � 10�3)

(3.00 � 108>1.76)3(2.9 � 10�8)

Parameter Ruby laser He-Ne laser

694.3 nm 632.8 nm

ƒ 4.32 � 1014 s�1 4.74 � 1014 s�1

n (refractive index) 1.76 1.00

ts 3 � 10 �3 s 10�7 s

tp 2.9 � 10�8 s 3.3 � 10�7 s

�ƒ 3.3 � 1011 s�1 9 � 108 s�1

N (Cr3� concentration) 2 � 1019 cm3 )>
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The minimum power input P needed to maintain the laser action in the helium-
neon system is approximately equal to �nc(hƒ ts) since N1 L 0, or>

Summary

TOPIC RELEVANT EQUATIONS AND REMARKS

1. The ionic bond The bonding mechanism typical of most salts, it involves the transfer of one or more
electrons to form ions that are attracted by the Coulomb force. The exclusion principle
limits the close approach of the ions, resulting in a minimum in the potential energy U(r).
For a diatomic molecule,

9-1

where Eion is the net ionization energy and Eex is the exclusion-principle energy. The latter
is given by

9-2

where A and n are constants.

2. The covalent bond This bond is a quantum-mechanical effect arising from the sharing of one or more
electrons by identical or similar atoms. The symmetry of the molecular wave functions
resulting from their superposition of electron orbitals determines whether bonding will
occur. The wave function for the symmetric state is large between the atomic potential
wells, resulting in minimum potential energy and bonding. The antisymmetric wave
function is small in that region. Bonding of two nonidentical atoms is often a mixture
of ionic and covalent bonding.

Other covalent bonds Covalent bonds differ in detail, depending upon which electrons are shared. For example,
H2 with only s electrons, is s-bonded. O2 is p-p bonded. There are also s-p bonds, of which
H2O is one example.

3. Dipole-dipole bonds Bonding between atoms and molecules may arise due to interactions between dipole
moments. The interaction may involve molecules with either permanent electric dipole
moments (polar molecules) or induced dipole moments (nonpolar molecules). The
potential energy U of a dipole p2 in the electric field Ed of dipole p1 is given by

9-8

The force between permanent dipoles decreases as 1 r4. If one or both of the dipoles is an
induced dipole, the force between them decreases as 1 r7.>>
U � �p2

# Ed

&A

&S

Eex �
A

rn

U(r) � �
ke2

r
� Eex � Eion

P(He-Ne) � ¢nc(hf>ts) �
(8.96 � 107)(6.63 � 10�34)(4.74 � 1014)

10�7
� 2.8 � 10�4 W>cm3

For the ruby laser, about one-half of the Cr3� ions must be in the pumped level E3
in Figure 9-32c, and the power per unit volume necessary to maintain that popula-
tion is approximately

P(ruby) �
N

2
ahf
ts
b �

(2 � 1019)(6.63 � 10�34)(4.32 � 1014)

2 � 3 � 10�3
� 955W>cm3
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4. Molecular spectra The energy states of diatomic molecules consist of rotational bands superimposed on
more widely spaced vibrational levels, which are in turn superimposed on the much more
widely spaced atomic electron levels.

Rotational energies The rotational energies of a diatomic molecule are

9-13

where I is the moment of inertia, is the characteristic rotational energy,
and / is the rotational quantum number, which obeys the selection rule �/ � �1.

Vibrational energies The vibrational energies of a diatomic molecule are

9-20

where ƒ is the vibrational frequency and is the vibrational quantum number, which
obeys the selection rule 

5. Scattering, absorption, A photon incident on an atom can be absorbed, producing fluorescence or resonance
and stimulated emission radiation, or scattered elastically (Rayleigh scattering) or inelastically (Raman scattering).

If the photon energy is greater than the ionization energy of the atom, Compton scattering
or the photoelectric effect can occur. If the atom is initially in an excited state, an incident
photon of the proper energy can stimulate emission of another photon of the same energy.
The incident and emitted photons are in phase and travel parallel to each other. In an
equilibrium system the probabilities (Einstein coefficients) for absorption and for
stimulated emission between two states are equal.

6. Lasers and masers Lasers and masers are important applications of stimulated emission, differing only in the
wavelengths of their outputs. Amplification by stimulated emission depends on the
possibility of obtaining population inversion, in which there are more atoms in an excited
state than in the ground state or another excited state of lower energy. Population inversion
is usually obtained by optical pumping and is produced more readily in four-level systems
than in three-level systems.

¢� � � 1.
�

E
�

� (� � 1>2)hf � � 0, 1 , 2 , Á

E0r � U2>2IE �
�(� � 1)U2

2I
� �(� � 1)E0r � � 0, 1 , 2 , Á
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Notes

1. The term orbital is frequently used in molecular physics
and in chemistry to refer to the space part of the electron
wave functions, that is, the quantum numbers n, /, and m/ .
In molecular physics the electrons of interest are usually the
outermost (valence) ones of the constituent atoms, which
become associated with the entire molecule rather than their
original atoms, so we speak of “molecular orbitals” as well as
“atomic orbitals.”

2. Molecules whose atoms are identical, such as H2, are
sometimes called homopolar or homonuclear. Those whose
atoms are not identical are called heteropolar or heteronuclear.

3. C60 and the other fullerenes are named after the philo-
sopher and engineer R. Buckminster Fuller, who invented
the architectural geodesic dome structure. Such domes, as
Fuller pointed out, can be considered as networks of pen-
tagons and hexagons.

4. Leonhard Euler (1707–1783), Swiss mathematician.
Arguably the most prolific mathematician of all time, he pub-
lished 866 papers during his lifetime and, despite having lost
his sight in 1766 (in part due to his earlier observations of
the Sun), he left so many manuscripts at his death that it took
another 35 years to get them all published. He introduced
the symbol e as the base of the natural logarithms and i as the
square root of �1.

5. Johannes D. van der Waals (1837–1923), Dutch physicist.
Largely self-taught, he became interested in the fact that the
ideal gas law derived from kinetic theory does not hold ex-
actly for real gases. This led him to question the assumption
that no forces act between individual gas molecules except
during collisions, which resulted in his development of an
equation, the van der Waals equation, which more accurately
describes real gases. He was awarded the 1910 Nobel Prize in
Physics for his work.

6. This result is derived in most introductory physics books.
See, e.g., P. A. Tipler and G. Mosca, Physics for Scientists and

Engineers, 6th ed., W. H. Freeman and Co., New York, 2008,
p. 671.

7. Terminology concerning the dipole-dipole forces is a bit
confused. Some textbooks use van der Waals to describe all
three types of dipole-dipole forces. We will follow the more
common (and traditional) use, reserving van der Waals for the
attractive force between induced dipoles only.

8. We use v (the Greek letter nu) here rather than n so as not
to confuse the vibrational quantum number with the principal
quantum number n for electronic energy levels.

9. The nitric oxide (NO) molecule is an exception due to its
odd electron.
10. Also, the group of lines are called the P
branch and the group the R branch.
11. Chandrasekhara V. Raman (1888–1970), Indian physicist.
Graduating from college at the age of 16, like Einstein he be-
came a civil servant and worked at science in his spare time.
He had predicted that visible light should be inelastically scat-
tered even before Heisenberg had predicted and Compton had
found the effect for x rays. He was awarded the 1930 Nobel
Prize in Physics for his work, becoming the first Asian to be
so recognized in the sciences.
12. There is also a Raman effect for the vibrational and elec-
tronic levels of molecules.
13. T. H. Maiman, “Stimulated Optical Radiation in Ruby,”
Nature, 187, 493 (1960).
14. The correction essentially accounts for the fact that, due
to the finite line width, the energy density u(f) in the transition
probability must include a narrow range of frequencies �f
rather than just the single frequency f.
15. Recall that the energy per unit volume u(f) times c is the
intensity, e.g., W/m2 in SI units.
16. A. Javan, W. B. Bennet, Jr., and D. R. Herriott, Physical
Review Letters, 6, 106 (1961).
17. W. Ketterle et al., Science, 301, 1513 (2003).
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Problems

Level I

Section 9-1 The Ionic Bond

9-1. The dissociation energy is sometimes expressed in kilocalories per mole. (a) Find the re-
lation between electron volts per molecule and kilocalories per mole. (b) Find the dissociation
energy of molecular NaCl in kilocalories per mole. (c) The dissociation energy of the Li2 mol-
ecule is 106 kJ/mole. Find the value in eV per molecule.
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9-2. The dissociation energy of Cl2 is 2.48 eV. Consider the formation of an NaCl molecule
by the reaction

Is this reaction endothermic (requiring energy) or exothermic (giving off energy)? How much
energy per molecule is required or given off?
9-3. Using the data in Table 9-1, compute the net energy required to transfer an electron be-
tween the following pairs of atoms: Cs to F, Li to I, and Rb to Br.
9-4. Using the data in Tables 9-1 and 9-2, estimate the dissociation energy of the three ioni-
cally bonded molecules CsI, NaF, and LiI. Your results are probably all higher than those in
Table 9-2. Explain why.
9-5. The equilibrium separation of the Rb� and Cl� ions in RbCl is about 0.267 nm.
(a) Calculate the potential energy of attraction of the ions, assuming them to be point charges.
(b) The ionization energy of rubidium is 4.18 eV, and the electron affinity of Cl is 3.62 eV.
Find the dissociation energy, neglecting the energy of repulsion. (c) The measured dissociation
energy is 4.37 eV. What is the energy due to repulsion of the ions?
9-6. Compute the Coulomb energy of the KBr molecule at the equilibrium separation. Use
that result to compute the exclusion-principle repulsion at r0 .
9-7. If the exclusion-principle repulsion in Problem 9-6 is given by Equation 9-2, compute the
coefficient A and the exponent n.
9-8. Compute the dissociation energy of molecular NaBr in kilocalories per mole.
9-9. Note in Table 9-2 that the equilibrium separations of the KBr and RbCl molecules are
very nearly equal. Compute the exclusion-principle repulsion for these molecules.

Section 9-2 The Covalent Bond

9-10. Hydrogen can bond covalently with many atoms besides those listed in Tables 9-3 and 9-5,
including sulfur, tellurium, phosphorus, and antimony. What would you expect to be the chemical
formula of the resulting molecules? (Hint: Use the table of electron configurations in Appendix C.)
9-11. What kind of bonding mechanism would you expect for (a) the KCl molecule, (b) the O2
molecule, and (c) the CH4 molecule?
9-12. The equilibrium separation of the atoms in the HF molecule is 0.0917 nm, and its mea-
sured electric dipole moment is 6.40 � 10�30 C m. What percentage of the bonding is ionic?
9-13. The equilibrium separation of CsF is 0.2345 nm. If its bonding is 70 percent ionic, what
should its measured electric dipole moment be?
9-14. Ionic bonding in the BaO molecule involves the transfer of two electrons from the Ba
atom. If the equilibrium separation is 0.193 nm and the measured electric dipole moment is
26.7 � 10�30 C m, to what extent is the bond actually ionic?

Section 9-3 Other Bonding Mechanisms

9-15. Find three other elements with the same subshell electron configuration in the two out-
ermost orbits as carbon. Would you expect the same kind of hybrid bonding for these elements
as for carbon? Support your answer.
9-16. The dipole moment p of the water molecule, illustrated in Figure 9-19, is actually the
vector sum of two equal dipoles p1 and p2 directed from the oxygen atom to each of the hy-
drogen atoms. The measured value of the angle between the two hydrogen atoms is 104.5°, the
O–H bond length is 0.0956 nm, and the magnitude of p is 6.46 � 10�30 C m. Compute the
fraction of the electron charge that is transferred from each hydrogen to the oxygen.
9-17. The polarizability of Ne is 1.1 � 10�37 m C2 N. (a) At what separation would the dipole-
dipole energy between a molecule of H2O and an atom of Ne in the atmosphere be sufficient to
withstand collision with an N2 molecule moving with the average kinetic energy for T � 300 K?
(b) At what separation does this energy occur for a typically bonded molecule? (c) On the basis
of these results, do you expect H2O–Ne bonds to be very likely? Explain your answer.

>#
#
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9-18. The hydrogen bonds linking the two helical strands of DNA have bond strengths of
about 0.3 eV, or approximately 15 percent of the strengths of the ionic/covalent bonds along
the strands. (a) What is the wavelength of a photon with sufficient energy to break this bond?
(b) In what part of the spectrum does this wavelength lie? (c) Since a significant intensity ex-
ists at this wavelength in the environment, why haven’t all the DNA hydrogen bonds long
since broken?
9-19. Would you expect the following molecules to be polar or nonpolar? Explain your answer
in each case. (a) NaCl; (b) O2.

Section 9-4 MolecularSpectra

9-20. The characteristic rotational energy E0r for N2 molecules is 2.48 � 10�4 eV. From this,
find the separation distance of the nitrogen atoms in N2.
9-21. For the O2 molecule, the separation of the atoms is 0.121 nm. Calculate the characteris-
tic rotational energy in eV.
9-22. The CO molecule undergoes a transition from the vibrational state to the 
state. (a) What is the wavelength of the emitted photon? (b) At what temperature would 1 per-
cent of the CO molecules be in the vibrational state?
9-23. Using data from Table 9-7, (a) compute the vibrational energy of the LiH molecule in its
lowest vibrational state. (b) Compute the reduced mass of LiH. (c) Determine the force constant
for LiH. (d) From those results, compute an estimate of the LiH bond length and compare your
result with the value in the table.
9-24. Calculate the reduced mass in unified mass units for (a) H2, (b) N2, (c) CO, and (d) HCl.
9-25. The characteristic rotational energy for KCl is 1.43 � 10�5 eV. (a) Find the
reduced mass for the KCl molecule. (b) Find the separation distance of the K� and Cl� ions.
9-26. Use the data from Table 9-7 to find the force constant for (a) the H35Cl and (b) the K79Br
molecules.
9-27. The equilibrium separation of HBr is 0.141 nm. Treating the Br atom as fixed, compute
the four lowest rotational energies of the HBr molecule and show them in a carefully sketched
energy-level diagram.
9-28. The vibrational spectrum of Li2 consists of a series of equally spaced lines in the mi-
crowave region 1.05 � 1013 Hz apart. Compute the equilibrium separation for Li2.
9-29. Compute the difference in the rotational energy E0r for K35Cl and K37Cl.
9-30. What type of bonding mechanism would you expect for (a) NaF, (b) KBr, (c) N2, and
(d) Ne?
9-31. For NaCl compute (a) the energy in eV necessary to excite the first rotational state and
(b) the wavelength and frequency of the photon emitted in the transition back to the ground
state. (Assume that the molecule is in the electronic and vibrational ground states.)

Section 9-5 Scattering, Absorption, and Stimulated Emission

9-32. The five lowest levels of a certain monatomic gas have the values E1 � 0, E2 � 3.80 eV,
E3 � 4.30 eV, E4 � 7.2 eV, and E5 � 7.5 eV. (a) If the temperature is high enough that all lev-
els are occupied and the gas is illuminated with light of wavelength 2400 nm, what transitions
can occur? (b) Which of those found in part (a) will still occur if the temperature is so low that
only the state E1 is occupied? (c) Repeat (a) and (b) for light of 250 nm wavelength. (d) What
wavelength of the incident light would stimulate emission from state E4?
9-33. A hydrogen discharge tube is operated at about 300 K in the laboratory in order to pro-
duce the Balmer series. Compute the ratio of the probability for spontaneous emission of the

line to that for stimulated emission.
9-34. Determine the ratio of the number of molecules in the v � 1 state to the number in the
v � 0 state for a sample of O2 molecules at 273 K. Repeat the calculation for 77 K. (Ignore rota-
tional motion.)

H
�

E0r � U2>2I

� � 1

� � 0� � 1
E0r � U2>2I
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9-35. The nuclei in the F2 molecule are separated by 0.14 nm. (a) Compute the energy separa-
tions and sketch an energy-level diagram for the lowest four rotational levels with v � 0.
(b) What are the wavelengths of possible transitions between these levels?

Section 9-6 Lasers and Masers

9-36. A pulse from a ruby laser has an average power of 10 MW and lasts 1.5 ns. (a) What is
the total energy of the pulse? (b) How many photons are emitted in this pulse?
9-37. A helium-neon laser emits light of wavelength 632.8 nm and has a power output of 4
mW. How many photons are emitted per second by this laser?
9-38. A laser beam is aimed at the Moon, a distance 3.84 � 108 m away. The angular spread
of the beam is given by the diffraction formula (Rayleigh’s criterion), where
D is the diameter of the laser tube or rod. (a) Calculate the size of the beam on the Moon for
D � 10 cm and (b) Repeat the calculation if the laser beam is projected toward
the Moon through a 1.0-m-diameter telescope.
9-39. A particular atom has two energy levels with a transition wavelength of 420 nm. At 297
K there are 2.5 � 1021 atoms in the lower state. (a) How many atoms are in the upper state?
(b) Suppose that 1.8 � 1021 of the atoms in the lower state are pumped to the upper state. How
much energy could this system release in a single laser pulse?

Level II

9-40. (a) Calculate the electrostatic potential energy of Na� and Cl� ions at their equilibrium
separation distance of 0.24 nm, assuming the ions to be point charges. (b) What is the energy of
repulsion at this separation? (c) Assume that the energy of repulsion is given by Equation 9-2.
From Figure 9-2b, this energy equals ke2 r at about r � 0.14 nm. Use this and your answer
to part (b) to calculate n and A. (Although this calculation is not very accurate, the energy of
repulsion does vary much more rapidly with r than does the energy of attraction.)
9-41. The angular width of a ruby laser beam is determined by Rayleigh’s criterion (see
Problem 9-38). For this laser the diameter of the ruby rod is 1.0 cm and 
(a) What is the diameter of the spot projected by the ruby laser at a distance of 1.0 km? (b) If
the laser is emitting 1018 photons/s, what is the power deposited per square centimeter on the
target at 1.0 km?
9-42. The equilibrium separation of the K� and Cl� ions in KCl is about 0.267 nm.
(a) Calculate the potential energy of attraction of the ions assuming them to be point charges at
this separation. (b) The ionization energy of potassium is 4.34 eV and the electron affinity of
chlorine is 3.62 eV. Find the dissociation energy for KCl, neglecting any energy of repulsion
(see Figure 9-2a). (c) The measured dissociation energy is 4.40 eV. What is the energy due to
repulsion of the ions at the equilibrium separation?
9-43. Use the equilibrium separation for the K� and Cl� ions given in Problem 9-42 and the
reduced mass of KCl to calculate the characteristic rotational energy E0r of KCl.
9-44. In this problem, you are to find how the van der Waals force between a polar and a non-
polar molecule depends on the distance between the molecules. Let the dipole moment of the
polar molecule be in the x direction and the nonpolar molecule be a distance x away. (a) How
does the electric field due to an electric dipole depend on the distance x? (b) Use the facts that
the potential energy of an electric dipole of moment p in an electric field E is U � �p E and
that the induced dipole moment of the nonpolar molecule is proportional to E to find how the
potential energy of interaction of the two molecules depends on separation distance. (c) Using
Fx � �dU dx, find the x dependence of the force between the two molecules.
9-45. The microwave spectrum of CO has lines at 0.86 mm, 1.29 mm, and 2.59 mm.
(a) Compute the photon energies and carefully sketch the energy level diagram that corre-
sponds. What molecular motion produces these lines? (b) Compute the equilibrium separation
(bond length) of CO.
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9-46. Carefully draw a potential energy curve for a diatomic molecule (like Figure 9-2b) and
indicate the mean values of r for two vibrational levels. Show that because of the asymmetry of
the curve, rav increases with increasing vibrational energy and therefore solids expand when
heated.

9-47. A sample of HCl is illuminated with light of wavelength 435.8 nm. (a) Compute the
wavelengths of the four lines in the rotational Raman spectrum that are closest to that of the in-
cident light. (b) Compare the difference in their frequencies with the corresponding lines in
Figure 9-29.

9-48. Use data from Table 9-7 to compute the first excited vibrational and the first excited rota-
tional states of (a) the Li2 and (b) the K79Br molecules.

9-49. Calculate the effective force constant for HCl from its reduced mass and the fundamen-
tal vibrational frequency obtained from Figure 9-29.

9-50. Notice in Figure 9-32c that the level E2 in Cr3� is a doublet, the pair of states being sep-
arated by only 0.0036 eV. (a) Assume that all of the Cr3� ions in a certain laser are in the three
states E1 and E2 (doublet) and compute the relative populations of these levels. (b) If only the
lower state of the E2 doublet can produce laser light but both levels must be pumped together,
determine the pumping power necessary for laser action to occur. The density of states (degen-
eracy) of level E1 is 4 and for each of the E2 levels is 2.

9-51. The central frequency for the absorption band of HCl shown in Figure 9-29 is at
f � 8.66 � 1013 Hz, and the absorption peaks are separated by about �f � 6 � 106 Hz. Using
this information, find (a) the lowest (zero-point) vibrational energy for HCl, (b) the moment of
inertia of HCl, and (c) the equilibrium separation of the atoms.

Level III

9-52. The potential energy between two atoms in a molecule can often be described rather well
by the Lenard-Jones potential, which can be written

where U0 and a are constants. (a) Find the interatomic separation r0 in terms of a for which the
potential energy is minimum. (b) Find the corresponding value of Umin. (c) Use Figure 9-8b to
obtain numerical values for r0 and U0 for the H2 molecule. Express your answer in nanometers
and electron volts. (d) Make a plot of the potential energy U(r) versus the internuclear separa-
tion r for the H2 molecule. Plot each term separately, together with the total U(r).

9-53. (a) Find the exclusion-principle repulsion for NaCl. (b) Use Equation 9-2 to find A and n.

9-54. Show that the H�–H� system cannot be ionically bonded. (Hint: Show that U(r) has no
negative minimum.)

9-55. (a) Calculate the fractional difference for the reduced masses of the H35Cl and
H37Cl molecules. (b) Show that the mixture of isotopes in HCl leads to a fractional difference
in the frequency of a transition from one rotational state to another given by 
(c) Compute �ƒ ƒ and compare your result with Figure 9-29.

9-56. For a molecule such as CO, which has a permanent electric dipole moment, radiative
transitions obeying the selection rule between two rotational energy levels of the
same vibrational energy state are allowed. (That is, the selection rule does not
hold.) (a) Find the moment of inertia of CO for which r0 � 0.113 nm, and calculate the char-
acteristic rotational energy E0r in electron volts. (b) Make an energy-level diagram for the
rotational levels for / � 0 to / � 5 for some vibrational level. Label the energies in electron

¢� � �1
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volts, starting with E � 0 for / � 0. (c) Indicate on your diagram transitions that obey
�/ � �1 and calculate the energy of the photons emitted. (d) Find the wavelength of the
photon emitted for each transition in (c). In what region of the electromagnetic spectrum are
these photons?
9-57. An H2 molecule in its ground electronic, vibrational, and rotational state absorbs a pho-
ton of frequency 1.356 � 1014 Hz, undergoing a transition to the / � 1 state while re-
maining in the electronic ground state. It then undergoes a transition to the / � 2 state,
emitting a photon of frequency 1.246 � 1014 Hz. (a) Compute the moment of inertia of the H2
molecule about an axis through the center of mass. (b) Determine the vibrational frequency and
r0 for H2 and compare these with the values in Table 9-7.

� � 0,
� � 1,
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The many and varied properties of solids have intrigued us for centuries.
Technological developments involving metals and alloys have shaped the courses

of civilizations, and the symmetry and beauty of naturally occurring, large single crys-
tals have consistently captured our imaginations. However, the origins of the physical
properties of solids were not understood even in rudimentary form until the develop-
ment of quantum mechanics. The application of quantum mechanics to solids has pro-
vided the basis for much of the technological progress of modern times. We will study
briefly some aspects of the structure of solids in Section 10-1 and then concentrate on
the electrical and magnetic properties of solids.

10-1 The Structure of Solids
In our everyday world we see matter in three phases: gases, liquids, and solids. In a
gas the average distance between two atoms or molecules is large compared with the
size of an atom or molecule. The molecules have little influence on one another ex-
cept during their frequent but brief collisions. In a liquid or solid the atoms or mole-
cules are close together and exert forces on one another comparable to the forces that
bind atoms into molecules. (There is a fourth phase of matter, plasma, which occurs
when the matter consists largely—or entirely—of ions and free electrons. Usually this
condition exists only at very high temperatures, such as inside stars, in intense elec-
trical discharges—e.g., lightning—and in the laboratory. The properties of a plasma
are very different from those of an ordinary gas because of the long-range electrical
and magnetic effects arising from the charges of the particles. The recently discovered
low-temperature gas phase of matter, the Bose-Einstein condensate, was discussed in
Chapter 8.) In a liquid, the molecules form temporary short-range bonds that are con-
tinually broken and re-formed as the result of the thermal kinetic energy of the mole-
cules. The strength of the bonds depends on the type of molecule. For example, as we
discussed in Section 9-3, the bonds between helium atoms are very weak van der
Waals bonds, and He does not liquefy at atmospheric pressure until the very low tem-
perature of 4.2 K is reached.
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(a)

(b)

Figure 10-1 (a) A single crystal of
quartz, one of several naturally occurring
crystalline forms of SiO2. [Courtesy of
Sawyer Research Products, Inc.]
(b) A synthetic silicon crystal is created
beginning with a raw material containing
silicon (for instance, common beach
sand), purifying out the silicon, and
melting it. From a seed crystal, the molten
silicon grows into a cylindrical crystal,
such as the one shown here. The crystals
(typically about 1.3 m long) are formed
under highly controlled conditions to
ensure that they are flawless and sliced
into thousands of thin wafers, onto which
the layers of an integrated circuit are
etched. [Courtesy of the Museum of Modern
Art, New York City.]

If a liquid is slowly cooled, the kinetic energy of its molecules is reduced and the
molecules will arrange themselves in a regular crystalline array, producing the maxi-
mum number of bonds and leading to a minimum potential energy. However, if the liq-
uid is cooled rapidly so that its internal energy is removed before the molecules have a
chance to arrange themselves, a solid is often formed that is not crystalline but resem-
bles a “snapshot” of a liquid. Such a solid is called amorphous; it displays short-range
order but not the long-range order (over many atomic diameters) characteristic of a
crystal. Glass is a typical amorphous solid. A characteristic of the long-range ordering
of a crystal is that it has a well-defined melting point, whereas an amorphous solid
merely softens as its temperature is increased. Many materials may solidify in either an
amorphous or a crystalline state, depending on how they are prepared. Others exist only
in one form or the other. Most common solids are polycrystalline—i.e., they are col-
lections of single crystals. The size of such single crystals is typically a fraction of a
millimeter; however, large single crystals occur naturally and can be produced artifi-
cially (Figure 10-1). We will discuss only simple crystalline solids in this chapter.

The most important property of a single crystal is its symmetry and regularity of
structure: it can be thought of as a single unit structure repeated throughout the solid.
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The smallest unit of a crystal is called the unit cell. The structure of the unit cell
depends on the type of bonding between the atoms, ions, or molecules in the crystal.
If more than one kind of atom is present, the structure will also depend on their rela-
tive size. The structure may also change in response to changes in pressure and/or
temperature. The bonding mechanisms are those discussed in Chapter 9: ionic, cova-
lent, and dipole-dipole, the latter including the hydrogen and van der Waals bonds.
In addition, a quantum-mechanical mechanism responsible for bonding metals in the
solid state, metallic bonding, will be described later in this section.

Ionic and Covalent Solids

Figure 10-2 shows the structure of the ionic crystal NaCl. The Na� and ions are
spherically symmetric (see Section 9-1) with the ions approximately twice as large
as the Na� ions. The minimum potential energy of this crystal occurs when an ion of
either kind has six nearest neighbors of the other kind. This structure is called face-
centered-cubic ( fcc) because the unit cell is a cube and an ion, in this case occu-
pies the center of each face. Note that the Na� and ions are not paired into NaCl
molecules in solid NaCl.

The net attractive part of the potential energy of an ion in a crystal can be written

10-1

where r is the separation distance between neighboring ions (which is 0.282 nm for the
Na� and ions in crystalline NaCl) and called the Madelung constant, depends
on the geometry of the crystal. If only the six nearest neighbors of each ion were im-
portant, would be 6. However, in addition to the six neighbors of opposite charge at
a distance r there are 12 ions of the same charge at a distance 8 ions of opposite
charge at distance and so on. The Madelung constant is thus an infinite sum:

10-2

Unfortunately, the sum in Equation 10-2 does not converge! We are saved by the fact
that NaCl crystals are not spherical, as the analysis above implies. A better physical ap-
proach is to use cubic shells rather than spherical ones; then the cubic-shell equivalent

� � 6 �
12

22
�

8

23
�

6

2
�

20

25
� Á

31>2r, 21>2r,�

�,Cl�

Uatt � ��
ke2

r

Cl�

Cl�,

Cl�

Cl�

Na+

Cl–

Na+

Cl–

Figure 10-2 Structure of the
face-centered-cubic (fcc)
NaCl crystal.
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Table 10-1 Properties of selected crystalline solids

Equilibrium Cohesive Melting

separation Crystal Madelung energy point

Solid Bonding (nm) symmetry constant (eV>atom) (K)

NaCl ionic 0.282 fcc 1.7476 3.19 1074

LiBr ionic 0.275 fcc 1.7476 3.10 823

KCl ionic 0.315 fcc 1.7476 3.24 1043

RbF ionic 0.282 fcc 1.7476 3.55 1068

CsCl ionic 0.348 sc 1.7627 3.27 918

ZnO ionic 0.222 hcp 1.4985 7.22 2248

Li metallic 0.302 bcc — 1.63 454

Fe metallic 0.248 bcc — 4.28 1811

Au metallic 0.288 fcc — 3.81 1338

Zn metallic 0.266 hcp — 1.35 693

C covalent 0.154 fcc — 7.37 †

Si covalent 0.235 fcc — 4.63 1687

Ge covalent 0.245 fcc — 3.85 1211

H2O dipole-dipole 0.367 hcp — 0.52* 273

C60 dipole-dipole 1.00 fcc — 1.5* ?

Ne dipole-dipole 0.313 fcc — 0.020 24

* eV>molecule.

† Diamond transforms to graphite at high temperature. The latter then sublimes at about 3800 K.

of Equation 10-2 does converge, albeit slowly. The result for face-centered-cubic struc-
tures such as NaCl is The geometric details of other ionic arrangements
results in slightly different values for (See Table 10-1.)

When Na� and ions are very close together, they repel each other because of
the overlap of the wave functions of their electrons and the exclusion principle repul-
sion discussed in Section 9-1. A simple empirical expression for the potential energy
associated with this repulsion that works fairly well is

where A and n are constants.1 The total potential energy of an ion is then

10-3

The equilibrium separation r � r0 is that at which the force F � � dU dr is zero.
Differentiating Equation 10-3 and setting dU dr � 0 at r � r0 , we obtain
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The total potential energy of an ion in the crystal can thus be written

10-5

At r � r0 , we have

10-6

If we know the equilibrium separation r0, which can be found from x-ray diffraction
experiments or computed from the crystal density, the value of n can be found approx-
imately from the dissociation energy or lattice energy of the ionic crystal, which is
the energy needed to break up the crystal into its constituent ions. In the case of
NaCl the measured dissociation energy is 770 kJ mol. Using 1 eV � 1.602 � 10 �19 J
and the fact that 1 mol of NaCl contains NA pairs of ions, we can express the dissocia-
tion energy in electron volts per ion pair, which makes possible an easier comparison
with, e.g., the binding energy per molecule. The conversion between electron volts per
ion pair and kilojoules per mole is

10-7

Thus, 770 kJ mol � 7.98 eV per ion pair. Substituting �7.98 eV for U(r0), 0.282 nm
for r0 (see Example 10-1), and 1.75 for in Equation 10-6, we can solve for n. The
result is 

The dissociation energy is also used to compute the cohesive energy of a crystal,
which is the potential energy per atom or per atomic pair rather than per ion pair and
is the term used for all crystalline bonding mechanisms. For the NaCl illustration
above, 7.98 eV is the energy needed to remove an Na� and pair from the crystal.
Forming Cl from requires the input of 3.62 eV, and forming Na from Na� releases
5.14 eV. Therefore, the energy necessary to remove the neutral Na and Cl pair from
the crystal is 7.98 eV � 3.62 eV � 5.14 eV � 6.46 eV, and the cohesive energy of
NaCl is 6.46 eV per Na and Cl pair. This result is in good agreement with the observed
value of 3.19 eV atom in Table 10-1. A large cohesive energy implies a high melting
point and vice versa.

EXAMPLE 10-1 Equilibrium Spacing r
0

in an NaCl Crystal Calculate the equilibrium
spacing r0 for NaCl from the measured density of NaCl, which is 

SOLUTION

We consider each ion to occupy a cubic volume of side r0 . The mass of 1 mol of
NaCl is 58.4 g, which is the sum of the atomic masses of sodium and chlorine. The
ions occupy a volume of where NA � 6.02 � 1023 is Avogadro’s number.
The density is thus related to r0 by

Then

r0 � 2.82 � 10�8 cm � 0.282 nm

r3
0 �

m

2NA�
�

58.4 g

2(6.02 � 1023)(2.16 g>cm3)
� 2.24 � 10�23 cm3

� �
m

V
�
m

2NAr
3
0

2NAr
3
0 ,
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>
Cl�

Cl�
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�
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1
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EXAMPLE 10-2 Measuring r
0

from X-Ray Diffraction Molybdenum x rays 
strike the diagonal Bragg planes of the NaCl crystal shown on the right

in Figure 3-15 such that a diffraction maximum (a bright Laue spot) is observed for
Determine the value of r0 .

SOLUTION

1. Since NaCl is a cubic crystal, the distance d between the diagonal Bragg
planes is related to the equilibrium separation r0 by

2. The x-ray diffraction maxima satisfy the Bragg condition, Equation 3-23:

3. For m � 1 and substituting d from above:

4. Solving this for r0 and substituting values from above gives

Remarks: This result agrees with the value calculated from the density of NaCl in
Example 10-1.

Most ionic crystals, such as LiF, KF, KCl, KI, AgCl, and others formed by mol-
ecules in Table 9-2, have a face-centered-cubic structure. Some elemental solids that
also have this structure are Ag, Al, Au, Ca, Cu, Ni, and Pb.

Figure 10-3 illustrates the structure of another ionic crystal, CsCl, which is
called simple cubic (sc) because it can be considered as two interpenetrating cubic
structures, one of Cs� ions and the other of ions. In this structure, each ion
has eight nearest-neighbor ions of the opposite charge. The Madelung constant for
ionic crystals with simple cubic structure is 1.7627. Other crystals with this structure
include CsI, TlI, TlBr, LiHg, and NH4Cl. Some elemental solids, such as Ba, Cs, Fe,
K, Li, Mo, and Na, also crystallize with the structure shown in Figure 10-3; when
the atoms are the same at the vertices and in the center of the cube, the structure is
called body-centered-cubic (bcc).

Cl�

� 0.282 nm

�
(22)(0.071 nm)

(2)(sin10.25°)

r0 �
22 


2 sin �

2a r022
bsin � � 


2d sin � � m


d �
r0

22

� � 10.25°.

0.071 nm)
(
 �K

�

Cl–

Cs+

Cs+

Cl–

Figure 10-3 Structure of the
simple cubic (sc) crystal CsCl.



Figure 10-4 Hexagonal
close-packed (hcp) crystal
structure.
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Figure 10-4 illustrates another important crystal structure, called hexagonal close-
packed (hcp). This is the structure obtained by stacking identical spheres such as 
Ping-Pong balls. In one layer, each ball touches six others; hence the name hexagonal.
In the next layer, each ball fits into the triangular depressions of the first layer. In the
third layer, each ball fits into a triangular depression of the second layer such that it
lies directly over a ball in the first layer. Elements with a hexagonal close-packed crys-
tal structure include Be, Cd, Ce, Mg, Os, Zn, and Zr. There are a total of 14 different
types of three-dimensional crystal lattice structures, of which we have discussed only
a few of the most common ones. (See Appendix B3.)

EXAMPLE 10-3 Madelung Constant for a Two-Dimensional Crystal Calculate out
to four terms in the series the Madelung constant for the hypothetical univalent,
two-dimensional ionic crystal shown in Figure 10-5.

SOLUTION

The net attractive potential is given by Equation 10-1. When the negative ion at the
origin of Figure 10-5 is considered, there are four positive ions located a distance r
away, as indicated by circle A in the diagram. There are four negative ions lying on
circle B, whose radius is Four negative ions are located on circle C, whose
distance from the ion at the origin is 2r, and finally, eight positive ions lie on circle
D at from the origin. Therefore, to four terms the net attractive potential is

or

The quantity in parentheses is the Madelung constant correct to four terms in the
infinite expansion; thus we have that � � 2.749.
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Figure 10-5 A hypothetical
univalent two-dimensional
ionic crystal (Example 10-3).
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In covalently bonded crystals the nature of the individual bonds is just like that in
covalently bonded molecules, as was described in Section 9-2. The electron-sharing
character of the bond enhances its effectiveness in crystals, for example, enabling
tetravalent carbon atoms to form bonds with as many as four other carbon atoms.
The crystal structure is determined by the directional nature of the bonds. Figure 10-6
illustrates the diamond structure of carbon (which is also the structure of Ge and Si),
in which each atom is bonded to four others located at the vertices of a regular tetra-
hedron as a result of the sp3 hybridization discussed in the Chapter 9 MORE section
Other Covalent Bonds on the home page. The diamond structure can be considered to
be two interpenetrating face-centered-cubic structures. This arrangement with equal
bond angles is particularly tightly bound and results in the carbon diamond structure
having one of the largest atomic cohesive energies of all solids, about 7.37 eV per car-
bon atom. Carbon has two other well-defined crystalline structures, graphite and solid
fullerenes,2 both the result of carbon orbitals hybridized in the sp2 configuration. In
graphite, illustrated in Figure 10-7a, three of the valence electrons link each atom to

(a)

(b)
1 	m

(a) (b) (c)
3 nm

Figure 10-7 (a) An atomic-force micrograph of graphite. The brighter spots at each vertex are single carbon atoms.
In graphite, carbon atoms are arranged in sheets, each sheet made up of atoms in hexagonal rings. The sheets slide easily
across one another, a property that allows graphite to function as a lubricant. [Courtesy of Srinivas Manne, University of
California at Santa Barbara.] (b) This high-resolution transmission electron micrograph shows clearly the close-packed fcc
arrangement of the C60 molecules in the solid fullerene. [Courtesy of P. R. Buseck, Science, 257, 215 (1992).] (c) Carbon
nanotubes grown on a titanium substrate. The nanotubes are perpendicular to the substrate and range between 40 nm and
100 nm in diameter. [Courtesy of Z. F. Ren et al., Boston College.]

Figure 10-6 (a) Diamond
crystal structure showing how
this structure can be considered
to be a combination of two
interpenetrating face-centered-
cubic structures. (b) Synthetic
diamonds magnified about
50,000 times. In diamond, each
carbon atom is at the center of a
tetrahedron formed by four other
carbon atoms. [Courtesy of Chris
Kovach Discover Publications.]>
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three near neighbors via directed bonds, forming a planar hexagonal structure. The
planes thus formed are connected by much weaker dipole-dipole forces. This results in
a structure consisting of strong sheets that can be readily separated from one another.
The structure of the fullerenes, using solid C60 as an example, is quite different from
that of both diamond and graphite. As described in Section 9-2, the C60 molecule
achieves its spheroid shape by incorporating 12 pentagons into the hexagonal struc-
ture, thus distorting the graphite planes into the soccer-ball configuration. The C60 mol-
ecules are then bonded to each other by dipole-dipole forces, just as are the sheets of
graphite. As a result, the cohesive energy per atom is quite high, about 7.4 eV, or nearly
equal to that of diamond, but the cohesive energy per molecule is low, only 1.5 eV.
The C60 crystal, shown in Figure 10-7b, is face-centered-cubic. The equilibrium sep-
aration between the molecules is 1.00 nm. The nanotubes shown in Figure 10-7c are
a remarkable example of carbon’s possible bonding configurations.

Metallic Bonding in Solids

All solid metals, formed from the metal elements that make up more than half of the
periodic table, are bonded by the metallic bond, which, as was noted earlier, has no
single-molecule counterpart. It is somewhat analogous to the covalent bond, in which
the atoms of the molecule share one or more electrons. In the metallic bond one or two
of the valence electrons of each atom are free to move throughout the solid, and all of
the atoms share all of those electrons. Thus, the metallic crystal can be pictured as a
lattice of fixed, positive ions immersed in an electron gas. It is the attraction between
the positively charged lattice and the negatively charged electron gas that results in
bonding of the solid.3

To see how metallic bonding occurs, let us consider a specific simple example,
the bonding of solid lithium. The electron structure of the lithium atom is and
the radial wave function of the 2s electron, which “sees” a hydrogenlike core consist-
ing of the nucleus and the completed 1s shell, is

10-8

where C20 is a normalization constant and a0 is the Bohr radius. The probability den-
sity corresponding to this wave function for a single lithium atom located at r � 0 is
shown in one dimension in Figure 10-8a. The probability density decays exponentially
to zero as r approaches Figure 10-8b illustrates the probability density of the elec-
trons in the metal, which must be the same around each Li ion core. The peaks of the
probability density are now closer to the positive Li ion core than was the case for the
isolated atom. Thus, the potential energy of the electrons has been reduced. However,
the effect of assembling the atoms into a lattice has also been to effectively confine the
electrons to within about �0.3 nm of the ion core rather than the larger volume of the
isolated atom. The uncertainty principle then implies an increase in the momentum,
hence kinetic energy, of the electrons. The metallic bond is stable because the rise in
kinetic energy is more than offset by the decrease in the potential energy, thus lower-
ing the total energy of the system of atoms. The net effect is greatest when the differ-
ence in size between the atom and the core is large (so that the magnitude of the
potential energy reduction is large) and when the number of valence electrons is small
(so that the increase in kinetic energy is as small as possible). These conditions are
increasingly satisfied as one moves toward the left across the periodic table.

��.

'20 � C20a2 �
r
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be�r>2a0
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Figure 10-8 (a) Probability
density for the 2s electron in
an isolated Li atom.
(b) Probability density
for the 2s electrons in a 
(one-dimensional) Li crystal.
The large dots on the r axis
represent Li nuclei. Note that

is compressed relative
to that of the single atom and
that an electron is, on the
average, confined to
within about �0.3 nm of a 
Li nucleus rather than
between ��.

ƒ' ƒ 2

Questions

1. Why is r0 different for solid NaCl than for the diatomic molecule?

2. Why would you not expect NaCl to have an hcp structure?

3. How can you account for the difference in the Madelung constants of NaCl
and CsCl?

4. Although it is in the same column of the periodic table as Li, why is solid
hydrogen not metallically bonded?

10-2 Classical Theory of Conduction
Because metals conduct electricity so readily, there must be charges in metals that are
relatively free to move. The idea that metals contain electrons free to move about
through a lattice of relatively fixed positive ions was proposed by the German physi-
cist Paul Drude around 1900, just three years after Thomson’s discovery of the elec-
tron, and was developed by H. A. Lorentz in about 1909. This microscopic model, now
called the classical model of electrical conduction, successfully predicts Ohm’s law
and relates electrical conduction and heat conduction to the motion of free electrons in
conductors. However, the model gives the wrong temperature dependence for electri-
cal conductivity, and it predicts that the heat capacity of metals should be greater than
that of insulators by ( )R per mole, which is not observed. Despite these failures, the
classical free-electron theory is a good starting point for a more sophisticated treatment

3>2
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of metals based on quantum mechanics. For that reason, a discussion of the classical
theory is included in the Classical Concept Review on the Web page. In this section
we will briefly outline those predictions from classical theory that are pertinent to our
subsequent discussion of the quantum mechanical theory of conduction. As we will see,
the main defects in the classical theory are the use of the classical Maxwell-Boltzmann
distribution function for electrons in a conductor and the treatment of the scattering of
electrons by the lattice as a classical particle scattering.

Electrical Conduction

The classical model of a metal is a regular three-dimensional array of atoms or ions
with a large number of electrons free to move throughout the entire metal. In the
absence of an applied electric field the average speed of these electrons is quite high.
For example, at T � 300 K, their average speed is

10-9

Applying an electric field superimposes a drift velocity on the free electrons
that is opposite to the field direction. For n electrons per unit volume, the resulting
current I in the conductor, the charge �Q through a cross-sectional area A per unit time
(see Figure 10-9), is

10-10

In contrast to the average speed of the electrons due to their thermal motion, the drift
velocity is quite low, as Example 10-4 illustrates for copper.

EXAMPLE 10-4 Drift Velocity of Electrons in Copper What is the magnitude of the
drift velocity of electrons in a typical copper wire of radius 0.815 mm carrying a
current of 1 A?

SOLUTION

If we assume one free electron per copper atom, the density of free electrons is the
same as the density of atoms na , which is related to the mass density Avogadro’s
number NA , and the molar mass M by

For copper and M � 63.5 g mol. Then

The density of electrons is then

The magnitude of the drift velocity is therefore

8.47 � 1022 electrons>cm3 � 8.47 � 1028 electrons>m3

na �
(8.93 g>cm3)(6.02 � 1023 atoms>mol)

63.5 g>mol
� 8.47 � 1022 atoms>cm3

>� � 8.92 g>cm3
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�NA
M

�,

I �
¢Q
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� neAvd
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8v9 �A
8kT
�me
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8(1.38 � 10�23 J>K)(300 K)

�(9.11 � 10�31 kg)
� 1.08 � 105 m>s
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Figure 10-9 In time �t, all the
charges in the shaded volume
pass through A. If there are 
n charge carriers per unit vol-
ume, each with charge e, the
total charge in this volume is
�Q � nevd A �t, where vd is
the drift velocity of the charge
carriers. The total current is
then I � �Q �t � nevd A.>

vd �
I

Ane
�

1 C>s
�(0.000815 m)2(8.47 � 1028 m�3)(1.60 � 10�19 C)

� 3.54 � 10�5 m>s
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We see that typical drift velocities are of the order of 0.01 mm s, which is quite
small. Notice in particular that the magnitude of the drift velocity is very small com-
pared with the average speed of the electrons due to their thermal energy as given
by Equation 10-9. Indeed, the difference is approximately 10 orders of magnitude.

According to Ohm’s law, the current in a conducting wire segment is proportional
to the voltage drop across the segment I V. The constant of proportionality is 
so that I � V R. The resistance R of the wire is independent of both I and V, being pro-
portional to the length of the wire L divided by its cross-sectional area A:
The constant of proportionality is called the resistivity of the conductor material.
Combining these two expressions and recalling that the electric field in the wire is

Equation 10-10 enables us to write

10-11

where j � I A is the current density. For materials that obey Ohm’s law, the resistiv-
ity and, of course, its reciprocal the conductivity must be independent of 

Mean Free Path 

The objective of the classical theory of conduction is to find an expression for in
terms of the properties of the conductor, a task that is aided by a consideration of the
average distance an electron travels in the conductor between collisions, called the
mean free path It is the product of the average speed and the average time be-
tween collisions called the relaxation time:

10-12

where na is the number of ions per unit volume and r is the ion radius. As an exam-
ple, for copper is about 0.38 nm. In terms of the resistivity and conductivity are
given by 

10-13

In Example 10-5 we compute the classical values for the resistivity and conductivity
for copper, which illustrates a basic defect in the classical theory of conduction.

EXAMPLE 10-5 Conductivity and Resistivity of Copper Calculate the values of the
resistivity and the conductivity of copper at 300 K.

SOLUTION

Using Equations 10-12 and 10-13, we have

and then

� 1.19 � 10�7 " # m

�
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and

Remarks: This value for the resistivity is about 7 times greater than the measured
value of 1.7 � 10�8

Defects in the Classical Theory

At first glance it is surprising that any material obeys Ohm’s law since in the pres-
ence of an electric field, a free electron experiences a force of magnitude If this
were the only force acting on the electron, it would have acceleration and its
velocity would steadily increase. However, the agreement of Ohm’s law with ex-
periment implies that there is a steady-state situation in which the drift velocity of
the electron is proportional to the field because the current I is proportional to
both and i.e., In the classical model, it is assumed that a
free electron is accelerated for a short time and then collides with a lattice ion. After
the collision, the velocity of the electron is assumed to be completely unrelated to
that before the collision. The justification for this assumption is that, as we have
seen, the drift velocity is very small compared to the average thermal velocity.
With the average speed given by Equation 10-9 and the mean free path by Equation
10-12, the resistivity has been expressed in terms of the properties of metals, which
was the objective of the classical theory of conduction. According to Ohm’s law,
the resistivity is independent of the electric field The only quantities in Equation
10-13 that might depend on the electric field are the average speed and the mean
free path As we have seen, the drift velocity, a result of the applied electric field,
is very much smaller than the average thermal speed of the electrons in equilibrium
with the lattice ions. Thus, the electric field has essentially no effect on the average
speed of the electrons. The mean free path of the electrons depends on the size of
the lattice ions and on the density of the ions, neither of which depends on the elec-
tric field Thus the classical model predicts Ohm’s law with the resistivity as given
by Equation 10-13.

Although successful in predicting Ohm’s law, the classical theory of conduction
has several defects. We saw from Example 10-5 that the magnitude of the resistivity
of copper calculated from Equation 10-13 is about 7 times the measured value at
T � 300 K. The temperature dependence of is also not correct. Experimentally,
the resistivity varies linearly with temperature over a wide range of temperatures. The
temperature dependence of resistivity in Equation 10-13 is given completely by the
speed which according to Equation 10-9 is proportional to Thus, this calcu-
lation does not give a linear dependence on temperature. Finally, the classical model
says nothing about why some materials are conductors, others insulators, and still
others semiconductors.

In the quantum-mechanical theory of electrical conduction, which is discussed in
Section 10-4, the resistivity is again given by Equation 10-13, but the average speed
and the mean free path are interpreted in terms of quantum theory. We discovered in
Section 8-5 that the average energy of the electrons, hence their average speed, is not
proportional to but is approximately independent of T because electrons do not
obey the Boltzmann distribution law, but instead obey the Fermi-Dirac distribution.
Also, in the quantum-mechanical calculation of the mean free path the wave nature of
the electron is important and must be taken into account.
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Heat Capacity

If the electron gas in metals were a classical ensemble of identical distinguishable par-
ticles, it would obey Boltzmann statistics (see Chapter 8) and have the Maxwell dis-
tribution of speeds. It should then have an average kinetic energy ( )kT, and we
would expect the molar heat capacity of a metal to be ( )R greater than that of an
insulator—that is, 3R from the lattice vibrations (rule of Dulong and Petit—see
Section 8-1) and ( )R from the electron gas:

As was noted in Section 8-5, this is not observed. The molar heat capacity of metals
is very nearly 3R. At higher temperatures it is slightly greater, but the increase is
nowhere near the value of ( )R predicted by the classical theory. The increase is,
in fact, proportional to temperature, and at T � 300 K, it is only about 0.02R.

10-3 Free-Electron Gas in Metals
Classically, at T � 0, all the electrons in a metal would have zero kinetic energy. As a
conductor is heated, the lattice ions acquire an average kinetic energy of ( )kT,
which is imparted to the electron gas by interactions of the lattice with the electrons.
The electrons classically would be expected to have a mean kinetic energy of ( )kT
in equilibrium. Quantum mechanically, however, since the electrons are confined to
the space occupied by the metal, it is clear from the uncertainty principle that even at
T � 0, an electron cannot have zero kinetic energy. Furthermore, the exclusion prin-
ciple prevents more than two electrons (with opposite spins) from being in the lowest
energy level. At T � 0, we expect the electrons to have the lowest energies consistent
with the exclusion principle. This is illustrated clearly by first considering a one-
dimensional model that provides us with the foundation needed for the quantum
theory of conduction in Section 10-4.

One-Dimensional Model

To simplify visualization, let us first consider N electrons in a one-dimensional infi-
nite square well of width L. The physical analog of such a model could be a long, thin
metal wire. As we have seen previously, the allowed energies are given by

10-14

where m is the electron mass and E1 � h2 8mL2 is the energy of the ground state.
Since two electrons can be put in the n � 1 level, two in the n � 2 level, etc., at T � 0,
the N electrons in the system will fill N 2 levels, i.e., from the n � 1 to the n � N 2
state. (See Figure 10-10a.) The energy of the last filled level (or half-filled level, if N
happens to be odd) is the Fermi energy, which for our one-dimensional system is

10-15EF � EN>2 �
(N>2)2h2

8mL2
�
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32m
aN
L
b 2

>> >
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n2h2
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3>23>2

3>2
Cv � (3R)lattice vibrations � (3>2)Relectron gas � (9>2)R
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We see that the Fermi energy is a function of the number of electrons per unit length,
which is the number density or number per unit volume in one dimension. The num-
ber density of electrons in copper, computed in Example 10-4, is 8.47 � 1028 m3.
In one dimension this corresponds to

Using this value, we see that the Fermi energy for a one-dimensional copper system,
such as a wire, is

This value is much larger than the room temperature value of kT, which is about
0.026 eV. The average energy of the electrons is the total energy divided by N:

where the factor of 2 accounts for the two electrons in each energy state. Since
the summation can be replaced by an integral, so we have that

10-16

Our one-dimensional calculation thus gives an average energy for copper’s free elec-
trons of about 0.6 eV at T � 0. This is 15 times the room-temperature average kinetic
energy of molecules in the atmosphere. The temperature at which the average energy
would be 0.6 eV for a one-dimensional Boltzmann distribution is about 14,000 K,
obtained from 1

2 kT � 0.6 eV.
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Figure 10-10 (a) A one-dimensional infinite square well for N electrons at T � 0 K. Two
electrons, one with spin up and one with spin down, occupy each level. The Fermi energy is
the energy of the level with n � N 2, the highest occupied level. (b) The levels are so closely
spaced, they can be assumed to be continuous. The density of states g(E) is the number of
states between E and E � dE divided by dE.

>



428 Chapter 10 Solid State Physics

The expression for the number n(E) of electrons with energy E in the one-
dimensional system follows from Equation 8-37c:

where � 1 for T � 0 K and E � EF and � 0 for T � 0 K and E � EF .
The density of states g(E) is the number dn of states between E and E � dE
divided by dE and multiplied by 2 to account for the two spin states per space state
(see Figure 10-10b):

Since E � n2E1 , then and we have that

The number of electrons with energy E at T � 0 K in the one-dimensional conductor
is then

10-17

Three-Dimensional Electron Gas

Now let us extend the discussion to three-dimensional systems. The Fermi energy can
be computed from the general expression for the number of fermions nFD(E) given by
Equation 8-37c. The number density N V of electrons in three dimensions, where V is
the volume of the metal, is

10-18

For arbitrary values of T, Equation 10-18 must be evaluated numerically, but for 
T � 0 K, the solution is straightforward since, as noted above, � 0 or 1 as E
is greater than or less than EF . In that event, we have that

10-19

Solving for EF we have for T � 0 K that

10-20

Table 10-3 lists the number density of free electrons for several elements. Notice that
EF increases slowly with N V, as would be expected at T � 0 K since all states up
to EF are being filled and an increasing N V requires more states to be filled, i.e.,
a larger value of EF . The number n(E) of electrons with energy E is then given by
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and the average energy of an electron at T � 0 K by
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At temperatures greater than zero, some electrons will gain energy and occupy
higher energy states. However, electrons cannot move to a higher or lower energy state
unless the state is unoccupied. Since the kinetic energy of the lattice ions is of the order
of kT, electrons cannot gain much more energy than kT in collisions with the lattice;
therefore, only those electrons with energies within about kT of the Fermi energy can
gain energy as the temperature is increased.

At T � 300 K, kT is only 0.026 eV, so the exclusion principle
prevents all but a very few electrons near the top of the energy dis-
tribution from gaining energy by random collisions. Figure 10-11
shows the small fraction of the free electrons that move at T � 300
K (shaded rectangle at the Fermi energy of the T � 0 K curve).
Even for temperatures as high as several thousand degrees, the
energy distribution of an electron gas does not differ very much
from that at T � 0 K.

For values of T � 0, we must remember that the Fermi energy
is defined by Equation 8-68, since for T � 0, there is no state below
which all states are full and above which all states are empty.
Equation 8-68 defines the Fermi energy as that energy for which

For all but extremely high temperatures, the difference
between the Fermi energy at temperature T, and that at T � 0
K, EF(0) is essentially negligible. As is clear from Equation 8-68 and
Figure 8-31b, the value of at arbitrary T differs from that at
T � 0 K only for those energies within about kT of the Fermi energy.
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fFD(E) � 1

2.

8E9 �
1

N �
EF

0
E n(E) dE �

3

2
E�3>2
F �

EF

0
E3>2 dE �

3

5
EF

10-3 Free-Electron Gas in Metals 429

Table 10-3 Free-electron number densities, Fermi energies, and
Fermi temperatures for selected elements

Fermi energy Fermi temperature

Element N V (� 1028 m �3) (eV) (� 104 K)

Al 18.1 11.7 13.6

Ag 5.86 5.53 6.41

Au 5.90 5.55 6.43

Cu 8.47 7.06 8.19

Fe 17.0 11.2 13.0

K 1.40 2.13 2.47

Li 4.70 4.77 5.53

Mg 8.61 7.14 8.28

Mn 16.5 11.0 12.8

Na 2.65 3.26 3.78

Sn 14.8 10.3 11.9

Zn 13.2 9.50 11.0

>

EF

n
(E

)

E

T > 0

kT

Figure 10-11 The fraction of the N electrons in
the metal that contribute to Cv is the ratio of the
shaded rectangle to the total area under the n(E)
versus E curve.
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Fermi Temperature

It is convenient to define the Fermi temperature TF by

10-23

For temperatures much lower than the Fermi temperature, the average energy of the lat-
tice ions will be much less than the Fermi energy; thus the electron energy distribution
will not differ greatly from that at T � 0. The Fermi temperature corresponding to
EF � 7.0 eV for copper is about 81,900 K. Table 10-3 lists the Fermi temperatures for
several elements. At temperatures much larger than the Fermi temperature (i.e., much
larger than 81,900 K for copper) approaches and the Fermi-Dirac distri-
bution approaches the Boltzmann distribution. This result is not very important for the
understanding of the behavior of conductors since there are no conductors that remain
as solids or even liquids at such extreme temperatures.

EXAMPLE 10-6 Fermi Energy and Temperature of Silver Compute (a) the Fermi
energy and (b) the Fermi temperature for silver at 0 K.

SOLUTION

The density of silver is 10.50 gm cm3, and its molecular weight is 107.9 gm mol.
If each silver atom is assumed to contribute one electron to the Fermi gas, the num-
ber density N V is computed as follows:

which agrees with the entry in Table 10-3.

(a) The Fermi energy is then, from Equation 10-20,

in agreement with the entry for Ag in Table 10-3.

(b) The Fermi temperature is then

again, in agreement with Table 10-3.

10-4 Quantum Theory of Conduction
With two relatively simple but important quantum-mechanical modifications of the
classical free-electron theory, we can understand the electrical conductivity, heat ca-
pacity, and thermal conductivity of metals. First, we must replace the classical
Boltzmann distribution with the Fermi distribution of energies in the electron gas, as
was discussed in Section 8-5. Second, we must consider the effect of the wave prop-
erties of the electrons on their scattering by the lattice ions. We will discuss the latter
modification qualitatively.

TF �
EF
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�
8.84 � 10�19 J

1.38 � 10�23 J>K � 6.41 � 104 K

� 8.84 � 10�19 J � 5.53 eV
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(6.63 � 10�34 J # s)2

2(9.11 � 10�31 kg)
a3 � 5.86 � 1028

8�
b2>3

� 5.86 � 1022 electrons>cm3 � 5.86 � 1028 electrons>m3

N

V
� (10.50 g>cm3)(1>107.9 g>mol)(6.02 � 1023 electrons>mol)

> >>

e�E>kTfFD(E)

EF � kTF
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Electrical Conduction

We might expect that most of the electrons would not participate in the conduction of
electricity because of the exclusion principle, but this is not the case because the elec-
tric field accelerates all the electrons together. Figure 10-12 shows the Fermi-Dirac
distribution function versus velocity for some temperature T that is small compared
with TF (such as T � 300 K). The function is approximately 1 for �uF � vx � � uF ,
where the Fermi speed uF is the speed corresponding to the Fermi energy:

10-24

EXAMPLE 10-7 Fermi Speed in Al Compute the Fermi speed of electrons in
aluminum.

SOLUTION

From Table 10-3, the Fermi energy EF of Al is 11.7 eV. Thus,

The dashed curve in Figure 10-12 shows the Fermi distribution after the electric
field has been acting for some time t. Although all of the electrons have been shifted
to higher velocities, the net effect is equivalent to shifting only the electrons near the
Fermi level; therefore, we can use the classical equations for the resistivity and con-
ductivity (Equations 10-13) if we use the Fermi speed uF in place of 
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We now have two problems. First, since uF is independent of temperature (to a very
good approximation), the above expression for and is independent of temperature
unless the mean free path depends on it. The second problem concerns the magnitudes.
We saw in Example 10-5 that the classical expression for yielded a result that was
too small by a factor of 7, using calculated from the Maxwell-Boltzmann distri-
bution. Since uF is about 19 times the value of the magnitude of predicted from
Equation 10-25 will be even smaller by another factor of 19 and the magnitude of 
will, correspondingly, be larger than the observed value by the same factor.

�
�8v9,8v9 �

��

� �
1
�

�
meuF
ne2


8v9:

uF(Al) � a2 � 11.7 eV � 1.60 � 10�19 J>eV

9.11 � 10�31 kg
b 1>2

� 2.03 � 106 m>s

uF � a2EF
me
b1>2

fFD(E )

0

No electric field With electric field
1

–uf +uf vx

Figure 10-12 Occupation
probability versus
velocity in one dimension,
with no electric field and
with an electric field in the
�x direction. The difference
is greatly exaggerated.

fFD(E)
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The resolution of both of these problems lies in the way that the value of the mean
free path is calculated. If we use uF from Equation 10-24 and the experimental value

for copper in Equation 10-25, we obtain for the mean free path
about 100 times the value of 0.38 nm, which was noted in Section 10-2

for Cu ions. 
We shouldn’t be too surprised that the mean free path of electrons in the copper

lattice is not given correctly by classical kinetic theory. The reason for this large dis-
crepancy between the classical calculation of the mean free path and the “experimental”
result calculated from Equation 10-25 is that the wave nature of the electron must be
taken into account. The collision of an electron with a lattice ion is not similar to the
collision of a baseball and a tree. Instead, it involves the scattering of the electron
wave by the regularly spaced ions of the lattice. If the wavelength is long compared with
the crystal spacing, as is approximately the case here (see Problem 10-55), Bragg scat-
tering cannot occur. Detailed calculations of the scattering of electron waves by a
perfectly ordered crystal of infinite extent show that there is no scattering, and the mean
free path is infinite. Thus, the scattering of electron waves must arise from imperfections
in the crystal lattice. The most common imperfections are due to impurities and to ther-
mal vibrations of the lattice ions.

In Equation 10-12, for the classical mean free path, the quantity can be
thought of as the cross-sectional area of the lattice ions as seen by the electron, where
r is the ion radius. Figure 10-13a depicts the classical picture in which the lattice ions
have area According to quantum mechanics applied to the scattering of electron
waves, however, the “area” of the ion’s cross section seen by the electron wave has
nothing to do with the size of the ion. Instead, it depends upon the deviations of
the lattice ions from a perfectly ordered array. We can estimate the magnitude of the
deviations and thus compute a more accurate value for the mean free path in the fol-
lowing way.

Let us assume that the lattice ions are points that are vibrating because of their
thermal energy. (See Figure 10-13b.) We will take for the scattering cross section 
where is the mean-square displacement of the point atom in a plane per-
pendicular to the direction of the electron’s motion and represents a measure of the de-
viation of the ion from its equilibrium location. We can calculate from the equipar-
tition theorem. We have

10-26

where K is the force constant, M is the mass of the ion, and is the an-
gular frequency of vibration. The mean free path is then

10-27

We thus see that this argument gives the correct temperature dependence for and 
that is, (Equation 10-25), and so rather than as was obtained
from the classical calculation.

We can then calculate the magnitude of and therefore using the Einstein
model of a solid, which is fairly accurate except at very low temperatures. In the
Einstein model (see Section 8-4) all the atoms vibrate with the same frequency. The
Einstein temperature was defined by Equation 8-63 as

kTE � hf � U�
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Figure 10-13 (a) Classical
picture of the lattice ions as
spherical balls of radius r that
present an area to the
electrons. (b) Quantum-
mechanical picture of the
lattice ions as points that are
vibrating in three dimensions.
The area presented to the
electrons is where r0 is
the amplitude of oscillation
of the ions.

�r2
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Using this for we have

10-28

The Einstein temperature for copper is about 200 K, corresponding to an energy of
kTE � 0.0172 eV. Using this and Mc2 � 63.5 � 931 MeV for the mass of a copper
ion, the value of at T � 300 K is

Since this is about 100 times smaller than the area presented by a copper ion of radius
0.1 nm, the mean free path is about 100 times larger than that calculated from the clas-
sical model, in agreement with that calculated from the measured value of the con-
ductivity. We see, therefore, that the free-electron model of metals gives a good
account of electrical conduction if the classical average speed is replaced by the
Fermi speed uF and if collisions are interpreted in terms of the scattering of electron
waves for which only deviations from a perfectly ordered lattice are important.

The presence of impurities in a metal also causes deviations from perfect
regularity in the crystal. The effects of impurities on resistivity are approximately
independent of temperature. The resistivity of a metal containing impurities can be
written where is due to the thermal motion of the lattice and is due
to impurities. Figure 10-14 shows a typical resistance versus temperature curve for a
metal with impurities. As the temperature approaches zero, approaches zero and the
resistivity approaches the constant 

Heat Capacity

Next, let’s estimate the contribution of the electron gas to the molar heat capacity.
At T � 0, the average energy of the electron, given by Equation 10-22, is ( )EF, so the
total energy for N electrons is U � At a temperature T, only those electrons
near the Fermi level can be excited by random collisions with the lattice ions, which have

(3>5)NEF.
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Figure 10-14 Relative
resistance versus temperature
for three samples of sodium.
The three curves have the
same temperature
dependence but have
different magnitudes because
of differing amounts of
impurities in the samples.
[From D. MacDonald and
K. Mendelssohn, Proceedings
of the Royal Society, A202,
103 (1950).]
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an average energy of the order of kT. The fraction of the electrons that are excited is of
the order kT EF, and their energy is increased from that at T � 0 by an amount of the
order of kT. We can thus write for the energy of the N electrons at temperature T,

10-29

where is some constant, which we expect to be of the order of 1 if our reasoning is
correct. The calculation of requires the use of the complete Fermi electron distribu-
tion at an arbitrary temperature T and is quite difficult. Such a calculation, first carried
out by A. A. Sommerfeld, shows that this equation is correct with Using this
result, the contribution of the electrons to the molar heat capacity is

10-30

where Nk � R for 1 mole and TF � EF k is the Fermi temperature. We see that because
of the large value of TF , the contribution of the electron gas is a small fraction of R at
ordinary temperatures. Using TF � 81,900 K for copper, the molar heat capacity of the
electron gas at T � 300 K is

which is in reasonable agreement with the value estimated from the small fraction of
electrons with energies greater than EF in Figure 10-11 and in good agreement with
experiment.

More

Quantum theory readily accounts for heat conduction, predicting
results in good agreement with observations. Thermal Conduction—
The Quantum Model is outlined briefly on the home page: www
.whfreeman.com/tiplermodernphysics5e. See also Equations 10-31
and 10-32 here.

Questions

5. When the temperature is lowered from 300 K to 4 K, the resistivity of pure
copper drops by a much greater factor than that of brass. Why?

6. Explain why, physically, you would expect the mean free path of electrons in a
metal to decrease as the temperature increases.

10-5 Magnetism in Solids
Electron spins with their associated magnetic moments are the origin of magnetism in
solids. If the atoms of the solid have unpaired spins, the solid itself may have a net
magnetic moment. Since the atoms are effectively fixed in one or another of the several
crystalline structures, the interactions between them may have a substantial effect on the
magnetism exhibited by the solid. Several types of magnetism are observed in solids,
ferromagnetism being perhaps the most familiar, though hardly the most common, among
elements and compounds. In this section we will describe each of the several types.
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Paramagnetism

Consider a solid consisting of atoms that each have an unpaired electron spin; that is,
each atom has a net spin of (actually of course) and the atoms do not inter-
act magnetically. Examples of such solids are the rare earth elements and many of the
transition elements. In that event, the only magnetic energy the system may have re-
sults from interaction with an applied external field B. Such a solid, one with no net
magnetic moment in the absence of an applied external field, is called paramagnetic.

The magnetic moment of each atom is thus that of the unpaired electron
Its z component is given by Equation 7-49:

7-49

where gs is the g factor for the electron and is the Bohr magneton. In an applied
field B, whose direction provides the atom with an external z axis, the possible ener-
gies of the magnetic moment are

7-47

or

10-33

Since the orientation of s (called “spin down” because is
antiparallel to B) is of lower energy than the orientation (called “spin up,”
of course). Thus, in a thermal distribution the spin-down states will contain more
atoms than the spin-up states and the solid will have a net magnetic moment per unit
volume M whose magnitude is given by

where and are the densities of electrons with spin-up and spin-down, respec-
tively. Since and is negative, M is positive. For sufficiently small fields M
is proportional to B:

10-34

where is called the magnetic susceptibility. For high temperatures such that
it can be shown that (see Problem 10-60)

10-35

where is the total electron density. Equation 10-35 is known as Curie’s
law, after Pierre Curie. Thus, as T increases, the ability of the magnetic field to align
the spins decreases. Many solids exhibit Curie’s law behavior. For low temperatures
where as corresponding to the alignment of all the mag-
netic moments with the field.

Equation 10-35 does not apply to the magnetism arising from electrons in metals.
The reason is that since TF � 104 � 105 K for metals. Thus, the electrons are
highly degenerate, with each allowed level containing two with paired spins. When an
external B field is applied, spins cannot just “flip” to align with the field since doing so
would violate the exclusion principle. A spin flip must be accompanied by raising that
electron to a higher, unoccupied energy state. Thus, even at T � 0 K, metals have a
finite susceptibility. This type of magnetic behavior is called Pauli paramagnetism.
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Diamagnetism

Recall that a free electron moving perpendicular to a magnetic field experiences a
magnetic force The resulting circular motion produces a current loop
with a magnetic moment opposite to the direction of the applied field. (To see this, use
the right-hand rule.) Now consider two electrons with paired spins orbiting in oppo-
site directions in an atom. (See Figure 10-15.) If an external B field perpendicular to
the plane of the orbits is turned on, the net force (FCoulomb � Fmagnetic) on electron 1 is
reduced, reducing its orbital magnetic moment, which is parallel to B. The net force
on electron 2 is increased, increasing its magnetic moment. The result is a net
magnetic moment opposite to the direction of the applied field. This magnetic
behavior is called diamagnetism. The diamagnetic effect is seen only in solids con-
sisting of atoms whose electron spins are all paired. As we will see in Section 10-9,
the “test” of superconductivity is that the material exhibit perfect diamagnetism.

Ferromagnetism

The first magnetic effect discovered, a result of its existence in iron that led to its early
use as a compass, ferromagnetism is the consequence of a phase transition in certain
materials. At high temperatures a piece of iron is unmagnetized, the spin directions of
the atoms having rotational symmetry—all spin directions are equally probable. (In an
applied B field iron is paramagnetic at high temperatures.) As the temperature
decreases, at a certain temperature TC , called the Curie temperature, the magnetic
interaction between the atoms exceeds the randomizing effect of thermal agitation,
spontaneously breaking the rotational symmetry and causing a phase transition in the
solid that tends to align the spins parallel to each other, converting the sample into a
permanent magnet. Only four elements besides iron exhibit ferromagnetism: nickel,
cobalt, gadolinium, and dysprosium. There are also several ferromagnetic compounds,
including some that contain none of the ferromagnetic elements.

In certain compounds the magnetic interaction between the atoms tends to align
the spins on adjacent atoms antiparallel below a certain temperature, analogous to the
Curie temperature, called the Neel temperature TN . Such materials are called antifer-
romagnetic. Examples are FeO, NiCl2, MnO, and MnS. In a few other materials the
spins on adjacent sites are antiparallel below TN , but because they contain two differ-
ent types of positive ions, the spins do not exactly cancel and the material is left with
a small net magnetization. Such materials are called ferrimagnetic. The most common
example is the iron ore magnetite, FeO Fe2O3.#

F � �e(v � B).
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Figure 10-15 Electrons 1 and
2 orbit the atomic core (not
shown) in opposite directions.
The magnetic field B is
perpendicular to the plane of
the orbits. The magnetic
forces F1 and F2 increase the
orbital magnetic moment of
electron 2 and decrease that of
electron 1, resulting in a net
moment opposite to B.
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EXPLORING

Spintronics

A relatively new field of research with almost immediate applications, spintronics, or spin
electronics, is the manipulation of electron spin currents rather than charge currents. N. F.
Mott was the first to suggest the possibility of spin-polarized currents in ferromagnetic ma-
terials more than 30 years ago. Utilization of spin currents was first realized with the dis-
covery of the giant magnetoresistance (GMR) of magnetic multilayers in 1988. A magnetic
multilayer film consists of a stack of alternate ferromagnetic and nonmagnetic layers.
The resistance to current flow is low when the electron spins, hence magnetic moments, of
the ferromagnetic layers are aligned parallel. The resistance is high when the spins of the
ferromagnetic layers are aligned antiparallel, a result of spin-dependent scattering. The re-
sulting relative resistance change can be as large as 200 percent (although 10–20 percent
is more typical); hence the name giant magnetoresistance. Depending on the design of the
layers, the direction of the spins (magnetic moments) can be changed very quickly by
an applied magnetic field of only about 10�6 tesla. These so-called spin valves can detect
very small magnetic fields, such as those of the magnetic bits on CDs and DVDs.

Another spintronic device with enormous potential applications is the magnetic tun-
nel junction. In these devices the ferromagnetic layers are separated by very thin insulating
layers, typically aluminum oxide (see Figure 10-16). Electrons can tunnel through the in-
sulating layer (see Sections 6-6 and 10-8) and, since the tunneling probability from a fer-
romagnetic layer depends on the spin direction, the resistance of the junction is different
by as much as 75 percent between the parallel and antiparallel configurations. Extremely
small junctions can be mass-produced making possible random access memory for
portable permanent computer memory with write speeds three orders of magnitude
faster than current flash memory devices. The magnetic tunnel junction was also the key
element in the recent direct electrical detection of the potential due to the spin Hall effect
(see page 452), opening opportunities for controlling spin currents with electric fields.

Yet another intriguing future possibility is the application of spintronic devices to
the development of quantum computers. The use of electron charge states for infor-
mation storage is currently a barrier to their development since such states are readily
destroyed by scattering. Spin states, on the other hand, have very long relaxation times.

Spin valves, the first

spintronic devices, form the

read/write heads on the hard

drives of essentially all

modern computers. In

addition, recent commercial

development of

magnetoresistive random

access memory (MRAM) chips

have read/write speeds

much faster than flash

memory and, like the latter,

do not degrade over time.

Nonmagnetic
layer

Current
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Ferromagnetic
layers
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Ferromagnetic
layers

Spins antiparallel
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Figure 10-16 A magnetic tunnel
junction consists of two
ferromagnetic layers separated by a
very thin nonmagnetic insulating
layer. (a) The probability of electrons
tunneling through the barrier layer is
dependent on the spin direction,
being highest when the spins, hence
the magnetic moments, of the
electrons in the ferromagnetic layers
are parallel. This is the configuration
of low resistance. (b) The tunneling
probability is low when the spins are
antiparallel, resulting in high
resistance. Thus, each junction can
store one bit of data, (a) representing,
e.g., “0” and (b) representing “1.”
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10-6 Band Theory of Solids
We have seen that, if the electron gas is treated as a Fermi gas and the electron-lattice col-
lisions treated as the scattering of electron waves, the free-electron model gives a good
account of the electrical and thermal properties of conductors. This simple model, how-
ever, gives no indication why one material is a good conductor and another is an insula-
tor. The conductivity (and its reciprocal, the resistivity) vary enormously from the best
insulators to the best conductors. For example, the resistivity of a typical insulator (such
as quartz) is of the order of whereas that of a typical conductor (most metals)
is of the order of and that of a superconductor is less than 

To understand why some materials conduct and others do not, we must refine the
free-electron model and consider the effect of the lattice on the electron energy levels.
There are two standard approaches to this problem of determining the energy levels of
electrons in a crystal. One is to consider the problem of an electron moving in a peri-
odic potential and to determine the possible energies by solving the Schrödinger equa-
tion. The other is to determine the energy levels of the electrons in a solid by follow-
ing the behavior of the energy levels of individual atoms as they are brought together
to form the solid, in much the same way that we did in Section 9-2 in the explanation
of the covalent bonding in the H2 molecule. Both approaches lead to the result that the
energy levels are grouped into allowed and forbidden bands. The details of the band
structure of a particular material determine whether that material is a conductor, an in-
sulator, or a semiconductor. Qualitative discussion of the first of these methods is
given in this section. The second is described in the MORE section Energy Bands in
Solids—An Alternate Approach on the home page.

Kronig-Penney Model

Consider first the problem of an electron moving in a periodic potential. Figure 10-17a
shows a one-dimensional sketch of the potential energy function for a lattice of posi-
tive ions. The most important feature of this potential is not the shape, but the fact that
it is periodic. A simpler periodic potential consisting of finite square wells is shown
in Figure 10-17b. The model based on this potential is called the Kronig-Penney model.
It has the important feature of periodicity and is easier to treat mathematically;
however, even for this model the mathematical solution of the Schrödinger equation is

10�19 " # m.10�8 " # m
1016 " # m,

(b)

(a)

Figure 10-17 (a) One-dimensional potential energy of an electron in a crystal. U(x)
approaches at the atom sites. (b) Simplified (Kronig-Penney) model of potential energy
of an electron in a crystal.

��



quite involved, and we will only outline it here. For both potential functions shown
in Figure 10-17, for certain ranges of energy traveling-wave-type solutions of the
Schrödinger equation exist. This result is based on an important discovery made by
Felix Bloch4 that solutions to the Schrödinger equation for periodic potentials must be
of the form (in one dimension)

10-36

where uk(x) � uk(x � L) � uk(x � nL), L is the periodic spacing of the potential wells,
and n is an integer. The function eikx is a plane wave, i.e., a free electron (see Section
6-6) with wave number As Bloch himself described it:

I felt that the main problem was to explain how the electrons could sneak by

all the ions in a metal. . . . I found to my delight the wave differed from the

plane wave of free electrons only by a periodic modulation.

Thus, we require that the solutions of the Schrödinger equation

10-37

where U(x) is the Kronig-Penney potential of periodic square wells and has the
form of the Bloch function given by Equation 10-36. The solution for the region
0 � x � a in Figure 10-18 is

10-38

where In the region �b � x � 0, the solutions are of
the form

10-39

where The requirement that have the form of Equation
10-36 means that

10-40a

where a � b is the periodic spacing of the wells. In general,

10-40b'(x � n(a � b)) � '(x)eikn(a�b)

'(x � a � b) � '(x)eik(a�b)

'(x � a � b) � uk(x)e
ikxeik(a�b)

'(x � a � b) � uk(x � a � b)eik(x�a�b)

'(x)� � [2m(U0 � E)]1>2>U2.

'(x) � B1e
�x � B2e

��x

k� � 2�>
 � (2mE)1>2>U2.

'(x) � A1e
ik�x � A2e

�ik�x

'(x)

�
U2

2m

d2'(x)

dx2
� U(x)'(x) � E'(x)

k � 2�>
.

'(x) � uk(x)e
ikx
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a + b–(a + b) –b a0

U(x)

U0

x

Figure 10-18 A portion of
the Kronig-Penney potential
of Figure 10-17b showing
the width of the square wells
a and their periodic
spacing (a � b).
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As was done in Section 6-3 for solving the finite one-dimensional square well, the
constants A1 , A2 , B1 , and B2 are chosen so as to make and continuous at
x � 0 and x � a. Obtaining the constants is beyond the scope of our discussion here,
but as in Chapter 6, doing so yields a conditional equation connecting k, k�, and with
a and b, the parameters of the lattice. The result is that, in order to satisfy the re-
quirement of Equation 10-40, only certain ranges of electron energies are allowed.
These energy ranges, called bands, are separated by forbidden energy regions called
energy gaps, in which no traveling wave can exist. Figure 10-19a shows the energy
versus the wave number k for a completely free electron. This is, of course, merely a
sketch of Figure 10-19b shows E versus k for an electron in the peri-
odic potential of Figure 10-18. The energy gaps occur at

10-41

where n is an integer and a is the lattice spacing.5 We can understand this result in
terms of the Bragg reflection of the electron waves. Consider E to be small (near zero
in Figure 10-19b) so that k is small; hence is large. As E increases, k eventually be-
comes large enough so that becomes small enough to suffer a Bragg reflection (con-
structive interference) from the lattice. (See Section 3-4.) Bragg reflection is governed
by the Bragg condition (Equation 3-23):

n
 � 2a sin �






ka � �n�

E � U2k2>2m.

�

d'>dx'(x)

E

k

Allowed
bands

Energy gap
Eg

0 π /a 2π /a 3π /a 4π /a

E

k

(b)

(a)

Figure 10-19 (a) Energy versus k for a free electron. (b) Energy versus k for a nearly free
electron in the one-dimensional periodic potential of Figure 10-18 with b � 0 and 
Energy gaps occur at the k values which satisfy the Bragg scattering condition. In each case
only the portions with k � 0 are shown. The complete curves are symmetric about k � 0.

U0 S � .
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In a one-dimensional system such as we are considering here, reflection means
Since Equation 10-41 becomes the condition for Bragg reflec-

tion. The reason that traveling waves cannot exist for these wave numbers is that the
amplitude of the reflection from one atom in the chain becomes equal to and in phase
with the forward electron wave from the preceding atom, so that standing waves are
set up. Figure 10-20 shows a sketch of the electron probability density for the two
types of standing waves for the lowest energy gap, where the value 

Since gives a higher concentration of electron charge density near the ion sites
than the potential energy is less for than for The difference in the potential
energies corresponds to the magnitude of the energy gap. Within the allowed energy
bands, the energy has a continuous range if the number of atoms in the chain is infi-
nite; for N atoms, there are N allowed energy levels in each band. Since the number
of atoms is very large in a macroscopic solid, the energy bands can be considered con-
tinuous. Calculations in three dimensions are more difficult, of course, but the results
are similar. The allowed ranges of the wave vector k are called Brillouin zones.
Referring to Figure 10-19a, the first Brillouin zone has the sec-
ond has and and so on.

Conductors, Insulators, and Semiconductors

Conductors We can now understand why some solids are conductors and others are
insulators. Consider sodium. There is room for two electrons in the 3s state of each
atom, but each sodium atom has only one 3s electron. Therefore, when N sodium
atoms are bound in a solid, the 3s energy band is only half filled. In addition, the
empty 3p band overlaps the 3s band. The allowed energy bands of sodium are shown
schematically in Figure 10-21. We can see that many allowed energy states are avail-
able immediately above the filled lower half of the 3s band, so the valence electrons
can easily be raised to a higher energy state by an electric field. Accordingly, sodium
is a good conductor. Magnesium, on the other hand, has two 3s electrons, so the 3s
band is filled. However, like sodium, the empty 3p band overlaps the 3s band, so
magnesium is also a conductor. The band occupied by the outer, or valence electrons,
is called the valence band. The next (higher) allowed band is called the conduction band.

�>a � k � 2�>a,�2�>a � k � ��>a ��>a � k � ��>a,

'1 .'2'1 ,
'2

'1 � sin kx � sin
�x
a
  '2 � cos kx � cos

�x
a

k � �>a:ƒ' ƒ 2

k � 2�>
,� � 90°.

x

⎪ψ1⎪2⎪ψ2⎪2

Probability
density

a

Figure 10-20 Probability density (proportional to the charge distribution) for standing
waves of wave number in a one-dimensional crystal. The solid curve is a
maximum at the lattice ion sites and has a lower potential energy than the dashed curve ƒ'1 ƒ 2.

ƒ'2 ƒ 2k � �>a

2p

2s

1s

3p

3s

Figure 10-21 Energy-band
structure of sodium. The
empty 3p band overlaps the
half-filled 3s band. Just above
the filled states are many
empty states into which
electrons can be excited by
an electric field, so sodium is
a conductor.
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Thus, a conductor is a solid whose valence band is only partly filled or whose con-
duction band overlaps its valence band. There are a few elements, notably antimony,
arsenic, and bismuth, whose conduction band overlaps the valence band only very
slightly, limiting the number of available empty states. These materials are called
semimetals. (See Figures 10-22a and b.)

Insulators A solid that has a completely filled valence band is an insulator if the en-
ergy gap between the valence band and the empty conduction band is larger than about
2eV, as illustrated in Figure 10-22c. For example, ionic crystals are insulators. The
band structure of an ionic crystal, such as NaCl, is quite different from that of a metal.
The energy bands arise from the energy levels of the Na� and ions. Both of these
ions have a closed-shell configuration, so the highest occupied band in NaCl is com-
pletely full. The next allowed band, which is empty, arises from the excited states of

and There is a large energy gap between the filled band and this empty band.
Typical electric fields applied to NaCl will be too weak to excite an electron from the
upper energy levels of the filled valence band across the large gap into the lower en-
ergy levels of the empty conduction band, so NaCl is an insulator. When an applied
electric field is sufficiently strong to cause an electron to be excited to the empty band,
the phenomenon called dielectric breakdown occurs.

Intrinsic Semiconductors If the gap between a filled valence band and an empty
conduction band is small, the solid is a semiconductor. Consider carbon, which has
two 2s electrons and two 2p electrons. We might expect carbon to be a conductor be-
cause of the four unfilled 2p states. However, the 2s and 2p levels mix when carbon
forms covalent bonds.6 Figure 10-23 shows the splitting of the eight 2s � 2p levels
when carbon bonds in the diamond structure. This splitting is due to the nature of the
covalent bond and is similar to the splitting of the 1s levels in hydrogen discussed in
Section 9-2. The energy of the levels corresponding to the four space-symmetric wave
functions (one for the 2s levels and three for the 2p levels) is lowered while the en-
ergy of the other four levels (one 2s and three 2p) is raised. The valence band there-
fore contains four levels per atom that are filled, and the conduction band is empty.

Cl�.Na�

Cl�

Allowed,
occupied

Key

Allowed,
empty

Forbidden

(a) (c) (d)(b)

Conductor Insulator SemiconductorConductor

Figure 10-22 Four possible band structures for a solid. (a) The allowed band is only partially
full, so electrons can be excited to nearby energy states. At 0 K the Fermi level is at the top of the
filled states. (a) is a conductor. (b) is a conductor because the allowed bands overlap. In (c) there
is a forbidden band with a large energy gap between the filled band and the next allowed band;
this is an insulator. (d) The energy gap between the filled band and the next allowed band is
very small, so some electrons are excited to the conduction band at normal temperatures,
leaving holes in the valence band. The Fermi level is approximately in the middle of the gap.
(d) is a semiconductor.



At the diamond lattice spacing of about 0.154 nm,
the energy gap between the filled valence band
and the empty conduction band is about 7 eV. Since
this gap is large compared to the energy that an
electron might receive by thermal excitation due to
scattering from the lattice ions, which on the aver-
age is of the order of at T � 300 K,
very few electrons can reach the conduction band.
Thus, diamond is an insulator. The band structure is
similar for silicon, which has two 3s and two 3p
electrons, and for germanium, which has two 4s
and two 4p electrons. At the silicon lattice spacing
of 0.235 nm the energy gap is about 1 eV; at the
germanium lattice spacing of 0.243 nm the energy
gap is only about 0.7 eV. For these gaps, at ordinary
temperatures there are an appreciable number of
electrons in the conduction band due to thermal
excitation, although the number is still small com-
pared with the number in a typical conductor. Solids
such as these are called intrinsic semiconductors.
Figure 10-22d illustrates the band structure of in-
trinsic semiconductors.

In the presence of an electric field, the elec-
trons in the conduction band of an intrinsic semi-
conductor can be accelerated because there are
empty states nearby. Also, for each electron that
has been excited to the conduction band there is a
vacancy, or hole, in the nearby filled valence band.
In the presence of an electric field, other electrons in this band can be excited to the
vacant energy level, thus filling that hole but creating another hole. This contributes to
the electric current and is most easily described as the motion of a hole in the direc-
tion of the field and opposite to the motion of the electrons. The hole thus acts like a
positive charge. An analogy of a two-lane, one-way road with one lane full of parked
cars and the other empty may help in visualizing the conduction of holes. If a car
moves out of the filled lane into the empty lane, it can move ahead freely. As the other
cars move up to occupy the space left, the empty space propagates backward in the di-
rection opposite to the motion of the cars. Both the forward motion of the car in the
nearby empty lane and the backward propagation of the empty space contribute to a
net forward propagation of the cars.

An interesting characteristic of semiconductors is that the conductivity increases
(and the resistivity decreases) as the temperature increases, which is contrary to the
case for normal conductors. The reason is that as the temperature is increased, the
number of free electrons is increased because there are more electrons in the conduc-
tion band. The number of holes in the valence band is also increased, of course. In
semiconductors, the effect of the increase in the number of charge carriers, both elec-
trons and holes, exceeds the effect of the increase in resistivity due to the increased
scattering of the electrons by the lattice ions due to thermal vibrations.
Semiconductors therefore have negative temperature coefficients of resistivity.

Whether a solid with a filled valence band will be a semiconductor or an insula-
tor depends critically on the width of the energy gap Eg , as Figure 10-23 suggests. A
comparison of the relative numbers of electrons with various energies that could be

kT � 0.026 eV
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 2s, 3s, or 4s

 2p, 3p, or 4p
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3 states per atom
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1 state per atom
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RC ≈ 0.15 nm
RGe ≈ RSi ≈ 0.24 nm

7 eV 1 eV

Figure 10-23 Splitting of the 2s and 2p states of carbon, the 3s
and 3p states of silicon, or the 4s and 4p states of germanium versus
separation of the atoms. The energy gap between the four filled
states in the valence band and the empty states in the conduction
band is 7 eV for the diamond-lattice spacing, RC � 0.154 nm. For
the silicon spacing RSi � 0.235 nm, the energy gap is 1.09 eV. The
splitting is similar for the 4s and 4p levels in germanium, which has
an atom spacing of 0.243 nm, giving an energy gap of only 0.7 eV.
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above the Fermi level (located at the center of the band gap) at ordinary temperatures
illustrates why this is true. Those numbers are given by the Fermi-Dirac distribution
fFD(E) given by Equation 8-68:

8-68

At T � 293 K, kT � 0.025 eV. Recall that for E � EF, fFD(E) � 1 2 (see Section 8-5).
For (E � EF) � 0.10, or 4(kT), we have

Repeating this calculation for several additional values of (E � EF) yields the relative
numbers of electrons in Table 10-4. From the numbers in the table we see that, if a certain
material has an energy gap Eg between the valence and conduction bands of 0.25 eV,
for example, then approximately 10�5 of the electrons within kT of the Fermi level would
be excited to the conduction band and thus able to participate in the conduction of
electricity. This is a sizable number, given the numbers of electrons near the Fermi level,
so we expect this material to have a higher electrical conductivity than materials with
larger values of Eg.

For a gap of 1.0 eV, just four times that of the previous example, the relative number
of electrons excited to the conduction band decreases by more than 12 orders of magni-
tude, illustrating the sharp decline of as the energy gap increases. The calculation
of above also illustrates the increased conductivity of semiconductors as the tem-
perature increases described earlier. If the temperature of a material with an energy gap of
1.0 eV is increased to 393 K from 293 K, as in Table 10-4, increases to 1.5 � 10�13,
thus increasing the relative number of electrons in the conduction band by nearly four
orders of magnitude. Table 10-5 lists the energy gaps for several semiconducting elements
and compounds. Notice that the energy gap is slightly temperature dependent.

A concept that is helpful in understanding a number of characteristics of semi-
conductors is that of effective mass. As pointed out above, Figure 10-19a is a graph of

the energy of a free electron of wavelength The curvature
of the E versus k graph is given by and we may say that the curva-
ture is determined by 1 me, the reciprocal mass. In Figure 10-19a 1 me is of course
constant; however, in regions near the energy gaps in Figure 10-19b the curvature is
much higher than that for the free electron. Since the behavior of electrons near the
band/gap boundary is of considerable interest, particularly in the discussion of impurity
semiconductors and devices in Section 10-7, it is helpful to continue to describe the cur-
vature of the E versus k curve near the boundary in terms of a reciprocal mass.
Accordingly, we define the effective mass m* as

10-42
1

m*
�

1

U2

d2E

dk2

>> d2E>dk2 � U2>me , 
 � 2�>k.E � U2k2>2me ,
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E(E�EF)>kT � 1

E � EF (eV) 0.05 0.10 0.25 1.0 2.5 7.5

Multiple of kT 2 4 10 40 100 300

1.3 � 10�1291.1 � 10�436.5 � 10�185.1 � 10�51.8 � 10�21.2 � 10�1fFD (E)
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Then, as in the case of the free electron, the curvature of E versus k for electrons
bound in the crystal energy bands is also described in terms of a reciprocal mass, 1 m*.
For a free electron m* � me , as is also the case for electrons that are not close to the
boundaries in Figure 10-19b. Close to the band/gap boundaries, however, is a differ-
ent matter. Starting from k � 0 in the figure, the curvature is initially constant and
equal to that of a free electron, thus m* � me , but near the boundary where 
the curvature becomes large and, very close to the boundary, negative; hence m*
becomes smaller than me and also eventually negative! Just above the gap, the curva-
ture is large and positive, so m* � me and positive. For the situation where Eg is small
compared to the width of the band, the values of the effective mass are typically of
the order of 0.01�0.1 of the mass of a free electron. We will make further use of the
effective mass in Section 10-7.

Questions

7. How does the change in resistivity of copper compare with that of silicon when
the temperature increases?

8. Suppose an electron is excited from the valence band of a semiconductor to a
state several levels above the lower edge of the conduction band. Devise an
explanation for why it will quickly “decay” to a level at the bottom of the
conduction band.

More

An alternative to the Kronig-Penny model of a solid is based on the
molecular bonding model discussed in Section 9-2 for hydrogen.
Energy Bands in Solids—An Alternate Approach is described briefly
on the home page: www.whfreeman.com/tiplermodernphysics5e.
See also Figures 10-24 and 10-25 here.

10-7 Impurity Semiconductors
Most semiconductor devices, such as the semiconductor diode and the transistor,
make use of impurity semiconductors, which are created through the controlled addi-
tion of certain impurities to intrinsic semiconductors. This process is called doping.

k � �>a,
>

Table 10-5 Energy gap E
g

and dielectric constant * for selected semiconductors

E
g

(eV) E
g

(eV)

Material 0 K 293 K Material 0 K 293 K

Si 1.15 1.11 11.8 CdTe 1.56 1.44 10.2

Ge 0.74 0.67 15.9 PbS 0.28 0.37 17.0

Te — 0.33 — InP 1.41 1.27 12.4

GaAs 1.53 1.35 13.1 CdSe 1.85 1.74 10.1

InSb 0.23 0.16 17.8 GaP 2.40 2.24 11.1

ZnS — 3.54 5.2 PbTe 0.19 0.25 30.1

**

www.whfreeman.com/tiplermodernphysics5e


Figure 10-26a illustrates the lattice struc-
ture of pure silicon, and Figure 10-27a is a
schematic illustration of silicon doped with
a small amount of arsenic such that arsenic
atoms replace a few of the silicon atoms in
the crystal lattice. Arsenic has five valence
electrons in the n � 4 shell, whereas silicon
has four valence electrons in the n � 3
shell. Four of the five arsenic electrons take
part in covalent bonds with the four neigh-
boring silicon atoms, and the fifth electron
is very loosely bound to the atom. This
extra electron occupies an energy level that
is just slightly below the conduction band
in the solid and is easily excited into the
conduction band, where it can contribute to
electrical conduction. The fifth arsenic va-
lence electron and the arsenic ion core form
a hydrogenlike system. Thus, Bohr theory
(see Section 4-3) can be used to calculate
the approximate values of the energies
available to it, provided only that we make
allowance for the fact that the electron-

arsenic ion system is embedded in the semiconductor crystal rather than being isolated
from other atoms. First, the crystal is a medium with a high dielectric constant; thus the
potential energy function in the Schrödinger equation for a hydrogenlike atom (Equation
7-6) becomes7 where is the dielectric constant of the mater-
ial and Second, the electron mass in the Schrödinger equation must be re-
placed by the effective mass m*, which accounts for the fact that the electron “sees” a
three-dimensional version of the periodic potential of Figure 10-17. With these two mod-
ifications the solution of the Schrödinger equation is carried out just as in Chapter 7. The
results for the allowed energies and average values of the radii of the Bohr orbits for the
fifth arsenic electron are given by

10-43

10-44

where a0 is the Bohr radius, equal to 0.0529 nm (see Equation 4-19), and n is the prin-
cipal quantum number.

To understand where these energy levels lie relative to the bands and gap of the
silicon, consider that when the arsenic atom is ionized by removing the fifth electron,
that electron is then free to move about and to participate in electrical conduction; i.e.,
it is then in the conduction band. Thus, we conclude that is at the bottom edge
of the conduction band and the other En hydrogenlike levels lie below it in the gap.
The energy of the ground state E1 can be calculated from the experimentally deter-
mined value of the electron’s effective mass in silicon, about 0.2 me , and the dielec-
tric constant of silicon given in Table 10-5. Substituting these into Equation 10-43
yields E1 � �0.020 eV below the conduction band, which is substantially smaller
than the �13.6-eV ground state for hydrogen. Similarly, substitution into Equation
10-44 yields or about 60 times the ground-state radius of hydrogen.88r19 � 3.1 nm,
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Si Si Si Si Si

Si Si Si Si Si

Si Si Si Si Si

Si Si Si Si Si

(a)

Figure 10-26 (a) A two-dimensional schematic illustration of solid silicon.
Each atom forms a covalent bond with four neighbors, sharing one of its
four valence electrons with each neighbor. (b) X-ray scattering
measurement of electron density in the vicinity of two atoms in an Si
crystal. The arrow points to the high electron density of the covalent bond.
[Adapted from Y. W. Yang, P. Coppens, Solid State Comm., 15, 1555 (1974).]

(b)
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These energies are quite close to the conduction band, as illustrated in Figure 10-27b;
thus these electrons can be easily excited to the conduction band since their ionization
energy is comparable to kT at room temperature.

These hydrogenlike levels just below the conduction band are called donor levels
because they donate electrons to the conduction band without leaving holes in the
valence band. Such a semiconductor is called an n-type semiconductor because the
major charge carriers are negative electrons. The conductivity of a doped semicon-
ductor can be controlled by controlling the amount of impurity added. The addition of
just one part per million can increase the conductivity by several orders of magnitude.

Another type of impurity semiconductor can be made by replacing a silicon atom in
the crystal lattice with a gallium atom, which has three electrons in its valence level
rather than four (see Figure 10-28a). The gallium atom accepts electrons from the valence
band of the silicon in order to complete its four covalent bonds, thus creating a hole in
the valence band. The effect on the band structure of silicon achieved by doping it with

Impurity donor
levels

Filled valence band

Empty conduction
band

Extra electron

Extra
electron

Si Si Si Si Si

Si Si Si Si

Si Si Si Si

Si Si Si Si Si

As

As

(a) (b)

Figure 10-27 (a) A two-dimensional schematic illustration of silicon doped with arsenic.
Because arsenic has five valence electrons, there is an extra, weakly bound electron that is
easily excited to the conduction band, where it can contribute to electrical conduction.
(b) Band structure of an n-type semiconductor such as silicon doped with arsenic. The
impurity atoms provide filled energy levels that are just below the conduction band. These
levels donate electrons to the conduction band.

Impurity
acceptor levels

Filled valence band

Empty conduction
band

Hole

Hole

Si Si Si Si Si

Si Si Ga Si

Si Ga Si Si

Si Si Si Si Si

Si

Si

(a) (b)

Figure 10-28 (a) Two-dimensional schematic illustration of silicon doped with gallium.
Because gallium has only three valence electrons, there is a hole in one of its bonds. 
As electrons move into the hole, the hole moves about, contributing to the conduction of
electric current. (b) Band structure of a p-type semiconductor such as silicon doped with
gallium. The impurity atoms provide empty energy levels just above the filled valence band
that accept electrons from the valence band.
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gallium is shown in Figure 10-28b. The empty levels shown just above the valence band
are due to the holes resulting from the ionization of the gallium atoms. These levels are
called acceptor levels because they accept electrons from the filled valence band when
these electrons are thermally excited to a higher energy state. They arise because the
holes, which act like positive charges, may be bound to the negative gallium core much
like the fifth electron was bound to the positive arsenic core. Thus, the hole-gallium ion
system also forms a hydrogenlike system and the energy levels of the hole can also be
calculated approximately using the Bohr model with results similar to Equation 10-43.
Since the energy-band diagrams like Figure 10-27b and 10-28b are drawn with electron
energy increasing upward, hole energy in those diagrams increases downward. Ionizing
the hole-gallium system means returning the hole to the valence band; hence these levels
are just above the top of the valence band, as shown in Figure 10-28b, and their magni-
tudes are of the same order as those of the donor levels discussed previously. Increasing
the energy of holes is equivalent to promoting electrons from the valence band into the
acceptor levels. This creates holes in the valence band that are free to propagate in the di-
rection of an electric field. Such a semiconductor is called a p-type semiconductor be-
cause the charge carriers are positive holes. The fact that conduction is due to the motion
of holes can be verified by the Hall effect, described in the Exploring section on page 449.

EXAMPLE 10-8 Donor Ionization Energy in Ge If phosphorus is used to dope
germanium to form an n-type semiconductor, what is the ionization energy of
the levels? What is the radius of the electron’s orbit? Phosphorus has five valence
electrons. (The effective mass for electrons in germanium is about 0.1 me .)

SOLUTION

1. The magnitude of the ionization energy
is computed from Equation 10-43 with
n � 1:

E1 �
1

2
ake2

U
b2 m*

*2

2. The dielectric constant for germanium
is given in Table 10-5:

*

3. Substituting values into Equation 10-43
gives

Remarks: The value computed above for E1 is very close to the experimental value
of 12.0 � 10�3 eV, even though our calculation is a Bohr model approximation.

* � 15.9

4. The orbit radius of the fifth phospho-
rus electron is computed from Equation
10-44 with n � 1:

8r19 8r19 � a0

me
m*

*

5. Substituting values, where the Bohr
radius a0 � 0.0529 nm, gives

� 8.4 nm

8r19 � 0.0529 �
me

0.1me
� 15.9

� 8.6 � 10�22 J � 5.4 � 10�3 eV

E1 �
1

2
a9 � 109 N # m2>C2 � (1.60 � 10�19 C)2

1.055 � 10�34 J # s
b2 (0.1 � 9.11 � 10�31 kg)

(15.9)2
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EXPLORING

Hall Effect

The number of donated electrons in a doped n-type semiconductor, or holes in a
doped p-type semiconductor, is typically much greater than the intrinsic number of
electron-hole pairs created by thermal excitation of electrons from the valence band
to the conduction band. In an electric field, the current will therefore consist of both
majority carriers (electrons in an n-type or holes in a p-type semiconductor) and
minority carriers. The reality of conduction by motion of positive holes is clearly
evident in the Hall effect, illustrated in Figure 10-29a. In this figure a thin strip of a
doped semiconductor is connected to a battery (not shown), so that there is a current
to the right. A uniform magnetic field B is applied perpendicular to the current.
For the direction of the current and magnetic field shown, the magnetic force on a
moving charged particle is upward (where is the drift velocity) inde-
pendent of whether the current is due to a positive charge moving to the right or a
negative charge moving to the left. Let us assume for the moment that the charge
carriers are electrons, as in Figure 10-29b. The magnetic force will then cause the
electrons to drift up to the top of the strip, leaving the bottom of the strip with an
excess positive charge. This will continue until the electrostatic field caused by
the charge separation produces an electric force on the charge carriers just balancing
the magnetic force. The condition for balance is If w is the width of the
strip, there will be a potential difference called the Hall voltage

10-45

between the top and bottom of the strip. This potential difference can be measured
with a high-resistance voltmeter. A measurement of the sign of the potential difference
(i.e., whether the top of the strip is at a higher potential due to positive charge or lower
potential due to negative charge) determines the sign of the majority carriers. Such
measurements reveal that, indeed, the charge carriers are negative in n-type and posi-
tive in p-type semiconductors. The value of the Hall voltage provides a measurement
of the drift velocity vd . Since the current density j � nqvd can be easily measured from
the total current and cross-sectional area of the strip, measurement of the drift velocity
determines n, the number of charge carriers per unit volume.

VH � ew � vdBw

qe � qvdB.

e

vdq vd � B

w+q

++++++++++++++++++++

––––––––––––––––––––

vd

F

B in

l

(a)

w–q

––––––––––––––––––––

++++++++++++++++++++

vd

F

B in

I

(b)

Figure 10-29 The Hall effect. The force on the charge carriers is up whether the carriers
are positive charges moving to the right (a) or negative charges moving to the left (b).
The sign of the charge carriers can be determined by the sign of the potential difference
between the top and bottom of the strip, and the drift velocity can be determined by
the magnitude of this potential difference. The thickness t of the strip is not shown.

Hall-effect probes are

frequently used to measure

magnetic field strengths.

A current is established in a

calibrated metal strip.

Measuring the Hall voltage

then yields the value of B
(see Equation 10-46).
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EXAMPLE 10-9 Hall Effect in Aluminum A strip of aluminum of width w � 1.5 cm
and thickness is placed in a uniform magnetic field of 0.55 T oriented
perpendicular to the plane of the strip. When a current of 25 A is established in the
strip, a voltage of 1.64 is measured across the width of the strip. What is the den-
sity of charge carriers in aluminum and how many charge carriers are provided, on av-
erage, by each atom?

SOLUTION

Substituting for the drift velocity vd in terms of the current density (Equation 10-11) in
Equation 10-45 yields

10-46

since j � i wt. The density of the charge carriers in aluminum is then given by

The density of atoms N in aluminum is given by the following, where the density
and the molar mass M � 26.98 kg mol:

Thus, each aluminum atom contributes on average n N � 3.5 charge carriers.

The Quantum Hall Effect

According to Equation 10-46, the Hall voltage should increase linearly with the mag-
netic field B for a given current. In 1980, while studying the Hall effect in thin
semiconductors at very low temperatures and very large magnetic fields, Klaus von
Klitzing9 discovered that a plot of VH versus B was not linear, but included a series
of plateaus, as shown in Figure 10-30a. That is, the Hall voltage is quantized. More
specifically, if we define the Hall resistance RH � VH i, it is the Hall resistance that is
quantized, taking on only the values

10-47

where RK , called the von Klitzing constant, is related to the fundamental electron
charge e and Planck’s constant h by

10-48RK �
h

e2
�

6.626 � 10�34 J # s

(1.602 � 10�19 C)2
� 25,813 "

RH �
VH
i

�
RK
n

>

>� 6.02 � 1028 atoms>m3

N �
NA�

M
�

(6.02 � 1026 atoms>mol)(2.702 � 103 kg>m3)

26.98 kg>mol

>�(Al) � 2.72 � 103 kg>m3

� 2.10 � 1029 carriers>m3

n �
iB

qtVH

�
(25 A)(0.55 T)

(1.60 � 10�19 C)(250 � 10�6 m)(1.64 � 10�6 V)

> VH � vdBw �
jBw

nq
�

iB

qnt

	V

t � 250 	m
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The values of n found by von Klitzing were small positive integers (n � 1, 2,
3, . . .), as indicated in Figure 10-30a. Then, in 1982, Daniel Tsui and his co-workers,10

while investigating the quantum Hall effect in ultrapure semiconductors, discovered
quantized values of the Hall resistance for values of that were series of rational frac-
tions formed from small integers. Values of RH have been found thus far for more than
30 values of v where a, b, where a and b are integers with no common factors.
Several of these are seen in Figure 10-30b.

Von Klitzing’s discovery is referred to as the integral quantized Hall effect (IQHE)
and that of Tsui and his colleagues as the fractional quantized Hall effect (FQHE).
The theoretical models that have been developed to explain these phenomena are as yet
incomplete and, in any case, beyond the scope of our discussion here; however, we can
give a brief qualitative description of the IQHE. In the “normal” Hall effect the mater-
ial carries a current i due to an applied electric field The electric field is perpendic-
ular to the applied magnetic field B, and as a result, the charge carriers move in a
circular path, or orbit, of radius r � m*v qB. The fact that electrons obey the Pauli
exclusion principle prevents the orbits from overlapping and determines how closely the
electrons can group together on the negative side of the sample. Recalling that the or-
bital motion of electrons is quantized with only certain radii being allowed—namely
those for which the orbit circumference equals an integral number of de Broglie wave-
lengths—we see that increasing the magnetic field decreases the orbit radius, but such
decreases must occur suddenly and result in another, smaller allowed radius. Thus,
more electron orbits can fit without overlapping in a given area and the density of
charge carriers increases on the edges of the semiconductor sample. This increases the
frequency of collisions and hence the Hall resistance. Since the orbit radii change only
in quantized steps, so must the Hall resistance. Surprisingly, when the Hall resistance is
on one of the plateaus, the ordinary resistance R � V i falls to zero, as illustrated by the
multiple peaked curve in Figure 10-30b. The additional plateaus that occur in the FQHE
are due to electron-electron spin interactions.

Because the von Klitzing constant can be measured with a precision of better than
1 part in 1010, the quantum Hall effect is now used to define the standard of resistance.
The ohm is now defined so that RK has the value 25,812.807 exactly."

>

> e.

v �

n

(a)

200

100

0

300

B, T

105

n = 4

n = 3

n = 2

15

V
H

, m
V

(b )

1.0

0.5

0

1.5

0

B, T

12 142 64 108 16

11

1/2

2/3

1

2

2/3

4/3
5/3

1/2

4/3
5/3

2
3

2

0

3

R
H

, k
Ω

R
N

,h
/e

2

Figure 10-30 (a) A plot of the Hall voltage versus applied magnetic field shows plateaus, indicating that the Hall voltage is
quantized. These data were taken at a temperature of 1.39 K with the current i held fixed at 25.52 (b) The fractional
quantum Hall effect. The Hall resistance RH (the curve with the plateaus) is read on the left vertical axis, the normal resistance
RN (the curve with the peaks) on the right vertical axis. [Data collected by Y. W. Suen and co-workers at Princeton University.]

	A.



Spin Hall Effect

A new vista for spintronics was opened in 2004 with the observation of the spin Hall
effect in GeAs at 20 K by David Awschalom and his group. In the spin Hall effect the
electrons of a charge current flow in a nonmagnetic material in the absence of an ex-
ternal magnetic field but with an applied external electric field separate perpendicular
to the conventional current direction into spin-up and spin-down populations that ac-
cumulate on opposite sides of the conducting material. The same phenomenon was de-
tected at 295 K (room temperature) in ZnSe in 2006 by the same researchers. Although
the effect is small, the potential useful applications, e.g., injecting spin-
polarized electrons into semiconductor devices, would be enormous if current experi-
ments to improve the size of the effect are successful.

10-8 Semiconductor Junctions and Devices
Semiconductor devices such as diodes and transistors make use of n-type and p-type
semiconductors joined together as shown in Figure 10-31. In practice, the two types
of semiconductors are often a single silicon crystal doped with donor impurities on
one side and acceptor impurities on the other. The region in which the semiconductor
changes from a p-type to an n-type is called a junction.

When an n-type and p-type semiconductor are placed in contact, the initially un-
equal concentrations of electrons and holes result in the diffusion of electrons across
the junction from the n side to the p side until equilibrium is established. The result
of this diffusion is a net transport of positive charge from the p side to the n side.
Unlike the case when two different metals are in contact, there are fewer electrons
available to participate in this diffusion because the semiconductor is not a particularly
good conductor. The diffusion of electrons and holes creates a double layer of charge
at the junction similar to that on a parallel-plate capacitor. There is thus a potential
difference V across the junction, which tends to inhibit further diffusion. In equilib-
rium, the n side with its net positive charge will be at a higher potential than the p side
with its net negative charge. In the junction region, there will be very few charge car-
riers of either type, so the junction region has a high resistance. Figure 10-32 shows
the energy-level diagram for a pn junction. The junction region is also called the
depletion region because it has been depleted of charge carriers.

Diodes

A semiconductor with a pn junction can be used as a
simple diode rectifier. In Figure 10-33, an external po-
tential difference has been applied across the junction
by connecting a battery and resistor to the semicon-
ductor. When the positive terminal of the battery is
connected to the p side of the junction, as shown in
Figure 10-33a, the diode is said to be forward biased.
Forward biasing lowers the potential across the junc-
tion. The diffusion of electrons and holes is thereby in-
creased as they attempt to reestablish equilibrium, re-
sulting in a current in the circuit. If the positive termi-
nal of the battery is connected to the n side of the junc-
tion, as shown in Figure 10-33b, the diode is said to be
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Figure 10-31 A pn junction.
Because of the difference in
their concentrations, holes
diffuse from the p side to the n
side and electrons diffuse
from the n side to the p side.
As a result, there is a double
layer of charge at the junction,
with the p side negative and
the n side positive.
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energy levels for an unbiased
pn junction.
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Figure 10-33 A pn-junction
diode. (a) Forward-biased pn
junction. The applied potential
difference enhances the
diffusion of holes from the p
side to the n side and electrons
from the n side to the p side,
resulting in a current I.
(b) Reverse-biased pn junction.
The applied potential difference
inhibits the further diffusion of
holes and electrons, so there is
no current.



reverse biased. Reverse biasing tends to increase the potential difference across the
junction, thereby further inhibiting diffusion. Figure 10-34 shows a plot of current ver-
sus voltage for a typical semiconductor junction. Essentially, the junction conducts
only in one direction, the same as a vacuum-tube diode. Junction diodes have replaced
vacuum diodes in nearly all applications except when a very high current is required.

We can get an idea of how the current depends on applied voltage quantitatively
if we note that the electrons and holes, being at the high energy end of the distribu-
tion, are approximately described by the Maxwell-Boltzmann distribution. Let Ne be
the number of conduction electrons in the n region. With no external voltage, only a
small fraction given by will have enough energy to diffuse across the con-
tact potential difference. When a forward bias Vb is applied, the number that can cross
the barrier becomes

The current due to the majority electron carriers in the n region will be

where I0 is the current with no bias. The current due to the minority carriers, the holes
from the n side, will be merely I0 , the same as with no bias. (The minority carriers are
swept across the junction by the contact potential V with or without a bias voltage.)
The net current due to carriers from the n side will therefore be

10-49

If we now consider the current due to the majority and minority carriers from
the p side, we obtain the same results. We can use Equation 10-49 for the total current
if we interpret I0 as the total current due to both kinds of minority carriers, holes in the
n region and electrons in the p region. For positive the exponential quickly domi-
nates. For � 0, the current is 0, and for less than zero, the current saturates
at �I0 , due to the flow of minority carriers. Note that the current in Figure 10-35 sud-
denly increases in magnitude at extreme values of reverse bias. In such large electric
fields, two things can happen: either electrons are stripped from their atomic bonds or
the few free electrons that exist in a reversed-biased junction are accelerated across the
junction and gain enough energy to cause others to break loose. The first effect is

VbVb

Vb

Inet � I0(e
�eVb>kT � 1)

I � I0e
�eVb>kT

Nee
�e(V�Vb)>kT � (Nee

�eV>kT )e�eVb>kT

Nee
�eV>kT
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Figure 10-34 Current versus
applied voltage across a pn
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Figure 10-35 Current versus
applied voltage for a tunnel
diode. Up to point A, an
increase in the bias voltage
enhances tunneling. Between
points A and B, an increase in
the bias voltage inhibits
tunneling, i.e., the diode acts
as if it has negative
resistance. After point B, the
tunneling is negligible, and
the diode behaves like an
ordinary pn-junction diode,
shown by the dashed line.
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called Zener breakdown; the second, avalanche breakdown. Although such a break-
down can be disastrous in a circuit where it is not intended, the fact that it occurs at a
sharp voltage value makes it of use in a special voltage reference standard known as
a Zener diode.

An interesting effect that we can discuss only qualitatively occurs if both the n side
and the p side of a pn-junction diode are so heavily doped that the bottom of the con-
duction band lies below the top of the valence band. Figure 10-36a shows the energy-
level diagram for this situation. Since there are states on the p side with the same energy
as states on the n side and the depletion region is now so narrow, electrons can tunnel
across the potential barrier (see Section 6-6). This flow of electrons is called tunneling
current, and such a heavily doped diode is called a tunnel diode.

At equilibrium with no bias, there is an equal tunneling current in each direction.
When a small bias voltage is applied across the junction, the energy-level diagram is as
shown in Figure 10-36b and the tunneling of electrons from the n to the p side is in-
creased, whereas that in the opposite direction is decreased. This tunneling current in
addition to the usual current due to diffusion results in a considerable net current. When
the bias voltage is increased slightly, the tunneling current decreases because there are
fewer states on the p side with the same energy as states on the n side. Although the dif-
fusion current is increased, the net current is decreased. At large bias voltages the
energy-level diagram is as shown in Figure 10-36c, the tunneling current is completely
negligible, and the total current increases with increasing bias voltage due to diffusion
as in an ordinary pn-junction diode. Figure 10-35 shows the current versus voltage
curve for a tunnel diode. Such diodes are used in electric circuits because of their very
fast response time. When operated near the peak in the current versus voltage curve, a
small change in bias voltage results in a large change in the current.

Among the many applications of semiconductors with pn junctions are particle
detectors called surface-barrier detectors. These consist of a pn-junction semiconduc-
tor with a large reverse bias so that there is ordinarily no current. When a high-energy
particle, such as an electron, passes through the semiconductor, it excites electrons
into the conduction band, creating many electron-hole pairs as it loses energy. The
intrinsic electric field sweeps the electrons toward the positive (n) side of the junction
and the holes toward the negative (p) side. The resulting current pulse signals the
passage of the particles and records the energy lost by the particle in the detector.
The pulses are of short duration (10�8 � 10�7 seconds), making possible high-energy-
resolution measurements.
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band

p side n side
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p side n side
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Figure 10-36 Electron energy levels for a heavily doped pn-junction tunnel diode. (a) With no bias voltage, some electrons
tunnel in each direction. (b) With a small bias voltage, the tunneling current is enhanced in one direction, making a sizable
contribution to the net current. (c) With further increases in the bias voltage, the tunneling current decreases dramatically.
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Light-emitting and light-absorbing pn-junction semiconductors function similar
to gaseous atoms emitting and absorbing light, with the conduction and valence bands
analogous to the atomic energy levels. The light-absorbing pn-junction semiconduc-
tor diode, or solar cell, is illustrated schematically in Figure 10-37a. When photons
with energy greater than the gap energy (1.1 eV in silicon) strike the pn-junction, they
can excite electrons from the valence band into the conduction band, leaving holes in
the valence band. This region is already rich in holes. Some of the electrons created
by the photons will recombine with holes, but some will migrate to the junction. From
there they are accelerated into the n-type region by the intrinsic electric field between
the double layers of charge. This creates an excess negative charge in the n-type re-
gion and excess positive charge in the p-type region. The result is a potential differ-
ence, a photovoltage, between the two regions, which in practice is about 0.6 V. If a
load resistance is connected across the two regions, a charge flows through the resis-
tance. Some of the incident light energy is thus converted into electrical energy. The
current in the resistor is proportional to the number of incident photons, which is in
turn proportional to the intensity of the incident light.

Light-emitting diodes (LEDs) are pn-junction semiconductors with a large forward
bias that produces a large excess concentration of electrons on the p side and holes
on the n side of the junction. (See Figure 10-37b.) Under these conditions, the diode
emits light as the electrons and holes recombine. This is essentially the reverse of the
process that occurs in a solar cell. Following the first practical demonstration of an
LED (in 1962), the performance of LEDs has steadily improved. (See Figure 10-38.)
They can be fabricated in all of the primary colors and, more recently, white light as
well, portending them as a common source of white light in the future. LEDs already
provide a viable alternative to filtered incandescent lighting in applications requiring
monochromatic light. They are used, for example, as indicator lamps in appliances,
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Figure 10-37 (a) A pn
junction as a solar cell.
Radiation striking the
junction produces electrons
and holes. The electrons are
swept from the p side and
holes from the n side by the
intrinsic electric field. The
accumulated charge results in
a potential difference that
produces a current through an
external load. (b) A pn
junction as an LED. Large
forward bias produces current
of electrons moving to the
left and holes moving to the
right. When they recombine,
radiation is emitted.
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The development of InGaAlP

HB LEDs in the early 1990s

led to their rapid application

to automotive rear lighting.

The recent development of

high-powered, large area,

white GaN HB LEDs makes

automobile headlights using

these LEDs a possibility for

the near future.
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electronic equipment, calculators, and digital watches. In automobiles they are used in
instrument panel lighting, and high-brightness (HB) LEDs are now often used for rear,
stop, and turn lights. In traffic signals the red, amber, and green LED arrays now in
common use require only 10 percent of the power consumed by the standard 140-W
incandescent lamps, are brighter, and have a much longer lifetime. Rapid development
of organic semiconductor light-emitting diodes (OLEDs) in the 1990s was catalyzed
by worldwide efforts to construct large, full-color, flat-screen displays. Fabricated
from small organic molecules and various polymers, OLEDs have an advantage over
LEDs in that they can be produced on a large scale at very low cost. In LEDs high for-
ward currents result in a very large population inversion, i.e., electrons on the p side
and holes on the n side, so that stimulated emission dominates the light emission
process and lasing results. By appropriate construction of the diode, a resonant cavity
can be formed, leading to the production of a coherent beam of laser light in a selected
direction (see Figure 10-39).

Transistors

The transistor, invented in 1948 by William Shockley, John Bardeen, and Walter
Brattain,11 has revolutionized the electronics industry and our everyday world. A sim-
ple junction transistor consists of three distinct semiconductor regions called the
emitter, the base, and the collector. The base is a very thin region of one type of semi-
conductor sandwiched between two regions of the opposite type. The emitter semicon-
ductor is much more heavily doped than either the base or the collector. In an npn
transistor, the emitter and collector are n-type semiconductors and the base is a p-type
semiconductor; in a pnp transistor, the base is an n-type semiconductor and the emitter
and collector are p-type semiconductors. In a pnp transistor holes are emitted by the
emitter; in an npn transistor electrons are emitted.

Figures 10-40 and 10-41 show, respectively, a pnp transistor and an npn tran-
sistor with the symbols used to represent each transistor in circuit diagrams. Notice
that a transistor consists of two pn junctions. The operation of a pnp transistor
is described in the MORE section How Transistors Work. The operation of an npn
transistor is similar.

p-type

p-type

n-type

Emitter

Collector

Collector

Emitter

Base

Base

(a)

(b)

Figure 10-40 (a) A pnp
transistor. The heavily
doped emitter emits holes
that pass through the thin
base to the collector.
(b) Symbol for a pnp
transistor in a circuit. The
arrow points in the direction
of the conventional current,
which is the same as that of
the emitted holes.

n-type

n-type

p-type

Emitter

Collector
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Collector

Emitter
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Figure 10-41 (a) An npn transistor. The heavily doped
emitter emits electrons that pass through the thin base to
the collector. (b) Symbol for an npn transistor. The arrow
points in the direction of the conventional current, which
is opposite the direction of the emitted electrons.
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Figure 10-39 The resonant
cavity is formed by cleaving
the ends of the diode crystal
parallel to one another and
with the proper separation.
Gallium arsenide and similar
compounds, which have
much higher photon-
production efficiency than
silicon, are typically used as
diode laser semiconductors.
Their light-energy-out to
electrical-energy-in ratios are
greater than 50 percent.
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(a) LED traffic lights use 10 percent
of the power of the old 140-W
signal lamps, last far longer, and are
collectively brighter. (b) Automobile
LED rear lighting and brake lights
have become ubiquitous, as have
LED traffic signals. Pictured here
are examples of the scores of
different colors, shapes, and sizes of
vehicle clearance and safety LED
lights one sees every day on the
streets and highways. [Photos by
Francisco Roman.]

More

How Transistors Work, on the home page at www.whfreeman.com/
tiplermodernphysics5e, describes the way transistors function in elec-
trical circuits. Also located here are Equations 10-50 through 10-54,
Example 10-10, and Figures 10-42 and 10-43.

Questions

9. Why is a semiconductor diode less effective at high temperatures?

10. Explain why adding impurities to metals decreases their conductivity but
adding impurities to semiconductors increases their conductivity.

11. What would you expect to be the effect on the conductivity when impurities are
added to an insulator?

(a)

(b)

www.whfreeman.com/tiplermodernphysics5e
www.whfreeman.com/tiplermodernphysics5e


10-9 Superconductivity
In 1911, just a few years after he had succeeded in liquefying helium and
while he was investigating the properties of materials at liquid helium tem-
peratures, the Dutch physicist H. Kamerlingh Onnes discovered that for
some materials a certain temperature exists, called the critical temperature
Tc, below which the resistivity is zero and the conductivity 
He called this phenomenon superconductivity. Figure 10-44 shows the plot
Kamerlingh Onnes obtained of the resistance of mercury versus temperature.
The critical temperature for mercury is 4.2 K. The critical temperature varies
from material to material, but below this temperature the electrical resistance
of the material is zero. Critical temperatures for other superconducting ele-
ments range from less than 0.1 K for hafnium and iridium to 9.2 K for nio-
bium. The critical temperatures of several superconducting materials are
given in Table 10-6. In the presence of a magnetic field B, the critical tem-
perature is lower than it is when there is no field. As the magnetic field in-
creases, the critical temperature decreases, as illustrated in Figure 10-45.
If the magnetic field is greater than some critical field Bc, superconductivity
does not exist at any temperature. The values of Tc in the table are for B � 0.

Many metallic compounds are also superconductors. For example, the
superconducting alloy Nb3Ge, discovered in 1973, has a critical temperature
of 23.2 K, which was the highest known until 1986, when the first of the

complex high-Tc cuprate ceramic superconductors was discovered. More recently, in
2001 Jun Akimitsu discovered that the metal compound MgB2, available “off the shelf”
for about $2>g, became superconducting at 39 K, as of this writing the highest Tc yet for
a conventional superconductor. (See Table 10-6.) Despite the cost and inconvenience of
refrigeration with expensive liquid helium, which boils at 4.2 K, many superconducting
magnets have been built using such materials.

� � 1>� S �.
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Table 10-6 T
c

and B
c

values for some type I and type II superconductors

Type I T
c

B
c

Type II T
c

B
c2

element (K) (at 0 K; T) compound (K) (at 0 K; T)

Al 1.175 0.0105 Nb3Sn 18.1 24.5

Cd 0.517 0.0028 Nb3Ge 23.2 34.0

Hg 4.154 0.0411 NbN 16.0 15.3

In 3.408 0.0282 V3Ga 16.5 35.0

Nb 9.25 0.2060 V3Si 17.1 15.6

Os 0.66 0.0070 PbMoS 14.4 6.0

Pb 7.196 0.0803 CNb 8.0 1.7

Sn 3.722 0.0305 MgB2 39.0 16

Tl 2.38 0.0178 Rb3C60 29.0 ?

Zn 0.85 0.0054 Cs2RbC60 33.0 ?

Electromagnets wound

with superconducting wire

are used in applications

ranging from medical

diagnostic MRI systems

to beam-focusing and 

beam-bending magnets

at large particle accelerators

worldwide.

Figure 10-44 Plot by Kamerlingh
Onnes of the resistance of mercury versus
temperature, showing sudden decrease at
the critical temperature T � 4.2 K
signifying the onset of superconductivity.



The conductivity of a superconductor cannot be de-
fined since its resistance is zero. There can be a current
in a superconductor even when the electric field in the
superconductor is zero. Such currents are called super-
currents. Indeed, steady currents have been observed to
persist for years without apparent loss in superconduct-
ing rings in which there was no electric field.

Meissner Effect

Consider a superconducting material that is originally at
a temperature greater than the critical temperature and is
in the presence of a small external magnetic field
B � Bc . We now cool the material below the critical tem-
perature so that it becomes superconducting. Since the
resistance is now zero, there can be no emf in the super-
conductor. Thus, from Faraday’s law, the magnetic field
in the superconductor cannot change. We therefore ex-
pect from classical physics that the magnetic field in the superconductor will remain
constant. However, it is observed experimentally that when a superconductor is cooled
below the critical temperature in an external magnetic field, the magnetic field lines
are expelled from the superconductor and thus the magnetic field inside the super-
conductor is zero. (See Figure 10-46.) This effect was discovered by H. W. Meissner
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Figure 10-45 Variation of the critical temperature with
magnetic field for lead. Note that Bc approaches zero as T
approaches Tc .

T > Tc

(a)

T < Tc

Figure 10-46 (a) The Meissner effect in a superconducting sphere cooled in a constant
applied magnetic field. As the temperature drops below the critical temperature Tc , the
magnetic field lines are expelled from the sphere. (b) Demonstration of the Meissner effect.
A superconducting tin cylinder is situated with its axis perpendicular to a horizontal magnetic
field. The directions of the field lines near the cylinder are indicated by weakly magnetized
compass needles mounted in a Lucite sandwich so that they are free to turn. [Courtesy of
A. Leitner, Rensselaer Polytechnic Institute.]



and R. Ochsenfeld in 1933 and is now known as the Meissner effect. It, not zero resis-
tance, is the criterion that determines if a material is a superconductor. The mechanism
by which the magnetic field lines are expelled or, more specifically, canceled within
the bulk of the superconductor is that a supercurrent (called a screening current) is in-
duced on the surface in such a direction as to exactly cancel the external field within
the material.12 Thus, the superconductor exhibits perfect diamagnetism. Establishing
the supercurrent “costs” the superconductor an amount of energy per unit volume
equal to where is the permeability of the vacuum. When the field B be-
comes larger than Bc , there is insufficient energy available and the material reverts to
its “normal” resistive state. The magnetic levitation shown in the photograph below
results from the repulsion between the permanent magnet producing the external
field and the magnetic field produced by the currents induced in the superconductor.

Only certain superconductors called type I, or “soft,” su-
perconductors exhibit the complete Meissner effect.
Type I superconductors are primarily very pure metal el-
ements. Figure 10-47a shows a plot of the magnetization
M times versus the applied magnetic field Bapp for a
type I superconductor. For a magnetic field less than the
critical field Bc , the magnetic field induced in the
superconductor is equal and opposite to the external
magnetic field; that is, the superconductor is a perfect
diamagnet. The values of Bc for type I superconductors
are all too small for such materials to be useful in the
coils of a superconducting magnet. (See Table 10-6.)

Other materials, known as type II, or “hard,” super-
conductors, have a magnetization curve similar to that in
Figure 10-47b. Such materials are usually alloys or met-
als that have large resistivities in the normal state. Type II
superconductors exhibit two critical magnetic fields, Bc1
and Bc2, as shown in Figure 10-48 for tantalum. Applied
fields less than Bc1 result in the Meissner effect of total
magnetic flux cancellation and the entire sample is super-
conducting, as in type I superconductors. Applied fields
greater than Bc2 result in complete penetration of the mag-
netic field throughout the sample, and the resistivity of

	0M

	0

	0B2>2	0 ,
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(a) (b)

Bapp

Type I
superconductor

Bc

μ0M = –Bapp

Bapp

Type II
superconductor
Bc1 Bc2

μ0M μ0M

Figure 10-47 Plots of times the magnetization M versus applied magnetic field for type I
and type II superconductors. (a) In a type I superconductor, the resultant magnetic field is zero
below a critical applied field Bc because the field due to induced currents on the surface of the
superconductor exactly cancels the applied field. Above the critical field, the material is a normal
conductor and the magnetization is too small to be seen on this scale. (b) In a type II
superconductor, the magnetic field starts to penetrate the superconductor at a field Bc1, but the
material remains superconducting up to the field Bc2, after which it becomes a normal conductor.

	0

A small, cubicle permanent magnet levitates above a disk
of the superconductor yttrium-barium-copper oxide, cooled
by liquid nitrogen to 77 K. At temperatures below 92 K, the
disk becomes superconducting. The magnetic field of the
cube sets up circulating electric supercurrents in the
superconducting disk, such that the resultant magnetic field
in the superconductor is zero. These currents produce a
magnetic field opposite to that of the cube, and thus the
cube is repelled. [Courtesy of IBM Research.]



the material returns to normal. However, in the region between Bc1 and Bc2 there is par-
tial penetration of the magnetic field, the field lines being confined to flux tubes, also
called vortices, in which the material has normal resistivity. The surrounding material
remains field free and superconducting, as illustrated schematically in Figure 10-49.
Each flux tube contains one quantized unit of magnetic flux, as will be described later
in this section. For many type II superconductors the critical field Bc2 may be several
hundred times larger than the typical values of critical fields for type I superconductors
(see Table 10-6). For example, the alloy Nb3Ge has a critical field Bc2 � 34 T. Such
materials can be used to construct high-field superconducting magnets.
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Figure 10-48 Critical magnetic fields Bc1 and Bc2 for Ta (99.95 percent) as a function of
temperature. Below the Bc1 curve Ta exhibits the Meissner effect. Between the two curves is a
mixed, or vortex, state with filaments of normal Ta penetrating the superconducting state.
Above the Bc2 curve there is complete magnetic field penetration and the entire sample has
normal resistivity.

B = 0

B

Screening
supercurrent

B

Flux
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Figure 10-49 (a) Below Bc1 the type II material shows the Meissner effect. For temperatures below the material is
superconducting and B � 0 throughout the volume. (b) For Bc1 � B � Bc2 , magnetic field lines penetrate the material but are
confined to flux tubes of normally resistive material that form the so-called vortex lattice. For a given T � , as the applied
field B approaches Bc2 , the size of the superconducting region shrinks as more flux tubes occupy the volume. When B � Bc2 ,
the entire material has normal resistivity. (c) The lattice of magnetic vortices in UPt3, a strongly type II superconductor, is
shown clearly by neutron diffraction.
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EXPLORING

Flux Quantization

Consider a superconducting loop of area A carrying a current. There can be a magnetic
flux through the loop due to the current in the loop. According to Faraday’s
law of induction, if the flux changes, an emf will be induced in the loop that is propor-
tional to the rate of change of the flux. But for a superconductor there can be no emf in
the loop because there is no resistance. Therefore, the flux through the ring is frozen
and cannot change. Indeed, the quantum-mechanical treatment of superconductivity
reveals that the total flux through the loop is quantized and is given by

The quantum of flux, called a fluxoid, is

Each flux tube in a type II superconductor with Bc1 � B � Bc2 contains one quantum
of flux.

�0 �
h

2e
� 2.0678 � 10�15 T # m2

�m � n
h

2e
  n � 1, 2, 3, Á

�m � BnA

(a) (b)

2 	m

Vacuum
Pb

Vacuum
Pb

Fluxoids penetrating a superconducting film. The image has been formed by the technique of electron holography, in which
coherent electron beams are used in place of coherent light beams to create a hologram. Electrons passing by a magnetic field
are phase-shifted; i.e., the phase term in their wave function changes. (The shift arises from a phenomenon known as the
Aharonov-Bohm effect.) By superposing such a phase-shifted beam with an unshifted reference beam, an interference pattern is
created that can be interpreted as an image of the magnetic field. For the upper images, a magnetic field was applied
perpendicular to a thin superconducting lead film. When the field was weak, it was expelled by the Meissner effect. A stronger
field, however, penetrated the film. The fluxoids shown arose from vortices of current set up in the superconductor—not from
the applied field directly. In the upper right is an isolated fluxoid; in the upper left is an antiparallel pair of fluxoids. The lower
micrograph, in which the lead film is thicker, shows penetration by bundles of fluxoids. [Courtesy of Akira Tonomura, Hitachi
Ltd., Saitama, Japan.] (b) A lattice of fluxoid vortices penetrating the surface of a superconductor. They were made visible for
the photograph by a dusting of fine ferromagnetic particles. [Courtesy of U. Essmann.]
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BCS Theory

Our discussion of the classical free-electron theory in Section 10-2 considered the
ions of the crystal lattice to be fixed. Resistivity was due to the interactions of the
electrons with the ions of the lattice, and both electron-electron interactions and
the effects of lattice vibrations, i.e., electron-phonon interactions, were ignored. 
In the quantum theory of conduction, lattice vibrations were explicitly taken into
account (see Equations 10-41 to 10-43). Lattice vibrations are also responsible for
the isotope effect13 in superconductivity, discovered in 1950. This experimental
observation revealed that the critical temperature depended on the isotopic mass of
the crystal according to

10-55

where M is the average isotopic mass and varies from material to material. For ex-
ample, for mercury and Tc � 4.185 K for samples of average isotopic mass
M � 199.5 u, whereas Tc � 4.146 K for samples with M � 203.4 u. Table 10-7 lists
experimental values for for a few superconductors.

The importance of the discovery represented by Equation 10-55 is to tell us that the
lattice vibrations, hence the electron-phonon interactions, cannot be ignored. The
assumption of fixed lattice ions is equivalent to assuming that for electron-
lattice ion interactions. But if then Tc would be zero for all materials.

It had been recognized for some time that superconductivity is due to a collective
behavior of the conducting electrons, and discovery of the isotope effect pointed to the
crucial interaction as being with the phonons. In 1957, John Bardeen, Leon Cooper,
and Bob Schrieffer published a successful theory of superconductivity now known as
the BCS theory.14 According to this theory, the electrons in a superconductor are cou-
pled in pairs at low temperatures. The coupling comes about because of the interac-
tion between electrons and the crystal lattice. An electron moving through the lattice
of positive ions interacts with and perturbs it, as illustrated in Figure 10-50. The elec-
tron attracts the positive ions nearby, displacing them slightly, resulting in a region of
increased positive charge density. Because the ions are bound to the lattice by elastic
forces, this region of increased charge density propagates through the material as a vi-
brational wave in the lattice, i.e., a phonon. The momentum of the phonon has been
provided by the electron, and we can think of the electron as having emitted a phonon.

MS �,
MS �

�

� � 0.50
�

M�Tc � constant

Table 10-7 Experimental values of for a few superconductors�

Material Material

Cd 0.32 Nb3Sn 0.08

Hg 0.50 Os 0.15

Pb 0.49 Zn 0.45

Data from C. Kittel, Introduction to Solid State Physics, 8th ed. (New York:
Wiley, 2005).

��
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–

Figure 10-50 An electron
traveling through the lattice
of positive ions generates a
wave of increased charge
density, shown in two
dimensions by the dashed
lines. The momentum of the
wave comes at the expense
of the electron’s momentum.
A second electron may
encounter the wave and
absorb its momentum. The
net effect is an attraction
between the two electrons
and the production, for
T � , of a Cooper pair.Tc
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A second electron that encounters the wave of increased positive charge concentra-
tion is attracted toward it by the Coulomb interaction and can absorb the momentum car-
ried by the wave; i.e., it may absorb the phonon. Thus, the two electrons can interact via
the phonon and (very important) the interaction is an attractive one since both electrons
experience an attractive force toward the region of increased positive charge density.
At low temperatures (T � Tc) the attraction between the two electrons can exceed the
Coulomb repulsion between them. Then the electrons can form a bound state called a
Cooper pair, provided the temperature is low enough so that the number and energy of
randomly generated thermal phonons will not disrupt its formation. The electrons in a
Cooper pair have opposite spins and equal and opposite linear momenta. Thus, they form
a system with zero spin and zero momentum. Each Cooper pair may be considered as a
single particle with zero spin. Such a particle does not obey the Pauli exclusion principle,
so any number of Cooper pairs may be in the same quantum state with the same energy.15

In the ground state of a superconductor (at T � 0), all the electrons are in Cooper pairs
and all the Cooper pairs are in the same energy state. In the superconducting state, the
Cooper pairs are correlated, so that they all act together. In order for the electrons in a
superconducting state to absorb or emit energy, the binding of the Cooper pairs must be
broken. The energy needed to break up a Cooper pair is analogous to that needed to break
up a molecule into its constituent atoms. This energy is called the superconducting energy
gap Eg. In the BCS theory, this energy at absolute zero is predicted to be

10-56

In agreement with experimental observations, BCS theory also predicts the flux quan-
tization described in the Exploring section on page 462 and the temperature dependence
of Bc .

EXAMPLE 10-11 Energy Gap of Cadmium (a) Calculate the superconducting
energy gap at T � 0 K predicted by the BCS theory for cadmium and compare the
result with the measured result of 1.50 � 10�4 eV. (b) Compute the wavelength of
a photon whose energy is just sufficient to break up a Cooper pair in cadmium.

SOLUTION

(a) From Table 10-6, we have that Tc � 0.517 K for cadmium. The BCS prediction
of the energy gap is then

This differs from the measured values of 1.50 � 10�4 eV by about 4 percent.

(b) or we have that

Remarks: This wavelength is in the short-wavelength microwave region of the
electromagnetic spectrum.

Note that the energy gap for a typical superconductor is much smaller than the
energy gap for a typical semiconductor, which is of the order of 1 eV. As the temperature
is increased from T � 0, some of the Cooper pairs are broken. The resulting individ-
ual (unpaired) electrons interact with the remaining Cooper pairs, reducing the energy
gap until at the energy gap is zero (see Figure 10-51). Notice, too, that the gapT � Tc


 � hc>Eg �
(6.63 � 10�34 J # s)(3.00 � 108 m>s)

(1.56 � 10�4 eV)(1.60 � 10�19 J>eV)
� 7.97 � 10�3 m

Eg � hf � hc>
,

Eg � 3.5kTc �
3.5(1.38 � 10�23 J>K)(0.517 K)

(1.60 � 10�19 J>eV)
� 1.56 � 10�4 eV

Bc(T)>Bc(0) � 1 � (T>Tc)2

Eg � 3.5kTc



energy is typically larger than that available from the thermal energy of the
system. For example, for 
whereas the thermal energy kT � (0.5)kTc .

The Cooper pairs that we have discussed so far have zero momen-
tum, so there are as many electrons traveling in one direction as the other
and there is no current. Cooper pairs can also be formed with a net mo-
mentum p rather than zero momentum, but all the pairs have the same
momentum. In this state, current is carried by the Cooper pairs. In ordi-
nary conductors, resistance is present because the current carriers can be
scattered with a change in momentum. As we have discussed, this scat-
tering may be due to impurity atoms or thermal vibrations of the lattice
ions. In a superconductor, the Cooper pairs are constantly scattering each
other, but since the total momentum remains constant in this process,
there is no change in the current. A Cooper pair cannot be scattered by a
lattice ion because all the pairs act together. The only way that the cur-
rent can be decreased by scattering is if a pair is broken up, which re-
quires energy greater than or equal to the energy gap Eg . At reasonably
low currents, scattering events in which the total momentum of a Cooper
pair is changed are completely prohibited, so there is no resistance.

EXAMPLE 10-12 How Big Is a Cooper Pair? Calculate an estimate of the separation
�x of the electrons forming a Cooper pair, assuming that the binding energy of the
pair equals the gap energy Eg and that, like semiconductors, the gap is centered on
the Fermi energy EF .

SOLUTION

The energy of either electron is, with the aid of the de Broglie relation, given by

and

If we associate E with the Fermi energy and �E with the gap, then

Since the Fermi energy is typically of the order of 1 eV and the gap of the order
10�4 eV, as computed in Example 10-12, then and

where k refers to the value at the Fermi level. As was discussed in Section 10-6 and
illustrated in Figure 10-19, at the top of the first allowed band, where the
energy is approximately The lattice spacing so we have that

and From the uncertainty relation (Equation 5-
17), we then have that the uncertainty in the location of either electron, i.e., the ex-
tent of their wave functions in space, is

or roughly equal to 10,000 atomic diameters and approximately equal to the wave-
length of visible light.

¢x �
1

¢k
� 103 nm

¢k � 10�3 nm�1.k � �>0.1 nm�1
a � 0.1 nm,EF .

k � �>a
¢k � 0.5 � 10�4k

Eg>EF � 10�4

¢E
E

�
Eg

EF
�

2kU2 ¢k
2m*

�
2m*

U2k2
�

2 ¢k
k

¢E �
2kU2 ¢k

2m*

E �
p2

2m*
�

U2k2

2m*

T � 0.5 Tc , Eg(T) � (0.95) Eg(0) � (3.3) kTc ,
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Figure 10-51 Ratio of the energy gap at
temperature T to that at T � 0 as a function
of the relative temperature T Tc. The solid
curve is that predicted by the BCS theory.
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High-Temperature Superconductivity

For many years, the highest known critical temperature for a superconductor was 23.2 K
for the alloy Nb3Ge. Then in 1986 J. G. Bednorz and K. A. Müller found that an oxide
of lanthanum, barium, and copper became superconducting at 30 K. Soon afterward, in
1987, superconductivity with a critical temperature of 92 K was found in a ceramic of
copper oxide containing yttrium and barium (YBa2Cu3O7). Since then, several copper
oxides have been found with critical temperatures as high as 164 K. Table 10-8 lists
some of the high-temperature superconductors along with their critical temperatures.
These discoveries have revolutionized the study of superconductivity because relatively
inexpensive liquid nitrogen, which boils at 77 K, can be used for a coolant. However,
there are many problems, such as the brittleness of ceramics, that thus far make these
new superconductors difficult to use. High-temperature superconductors are all type II
superconductors with very high upper critical fields. For some, Bc2 is estimated to be
as high as 100 T. Although the BCS theory appears to be the correct starting place for
understanding these new superconductors, they have many features that are not clearly
understood, and the theoretical explanation of the phenomenon is not yet in hand.
Thus, there is much work, both experimental and theoretical, to be done.
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EXPLORING

Josephson Junction

In Section 6-6, we discussed barrier penetration—the tunneling of a single particle
through a potential barrier. The tunneling of electrons from one metal to another can
be observed by separating the two metals with a thin layer only a few nanometers
thick of an insulating material such as aluminum oxide. When both metals are
normal metals (not superconductors), the current resulting from the tunneling of

Material T
c
, K

LaBaCuO 30

La2CuO4 40

YBa2Cu3O7 92

DyBa2Cu3O7 92.5

C60(CHBr3) 117

BiSrCaCuO 120

Tl2Ba2Ca2Cu3O10 120

Hg.8Tl.2Ba2Ca2Cu3O8.33 138

Table 10-8 Critical temperatures of
some high T

c
superconductors
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VVc
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Figure 10-52 Tunneling current versus voltage for a junction of two metals separated by a
thin oxide layer. (a) When both metals are normal metals, the current is proportional to the
voltage as predicted by Ohm’s law. (b) When one metal is a normal metal and one is a
superconductor, the current is approximately zero until the applied voltage exceeds the
critical voltage Vc � Eg 2e.>
electrons through the insulating layer obeys Ohm’s law for low applied voltages
(see Figure 10-52a). When one of the metals is a normal metal and the other is a su-
perconductor, there is no current (at absolute zero) unless the applied voltage V is
greater than a critical voltage Vc � Eg 2e, where Eg is the superconductor energy
gap. Figure 10-52b shows the plot of current versus voltage for this situation.
The current jumps abruptly when V is great enough to break up a Cooper pair.
(At temperatures above absolute zero, there is a small current because some of the
electrons in the superconductor are thermally excited above the energy gap and
therefore are not paired.) The superconducting energy gap can thus be accurately
measured by measuring the critical voltage Vc .

In 1962, Brian Josephson16 proposed that when two superconductors form a
junction, now called a Josephson junction, Cooper pairs could tunnel from one su-
perconductor to the other with no resistance. The current is observed with no voltage
applied across the junction and is given by

10-57

where Imax is the maximum current, which depends on the thickness of the barrier,
is the phase of the wave function for the Cooper pairs in one of the superconductors,
and is the phase of the corresponding wave function in the other superconductor.
(The phase of a wave function is the exponent of the time part of the total
wave function. See Section 6-1.) This result has been observed experimentally and is
known as the dc Josephson effect.

Josephson also predicted that if a dc voltage were applied across a Josephson
junction, there would be a current that alternates with frequency f given by

10-58

This result, known as the ac Josephson effect, has also been observed experimentally,
and careful measurement of the frequency allows a precise determination of the ratio
e h. Because frequency can be measured so accurately, the ac Josephson effect is also
used to establish precise voltage standards. The inverse effect, in which the applica-
tion of an alternating voltage across a Josephson junction results in a dc current, has
also been observed.

>
f �

2eV

h

Et>U � �t
�2

�1

I � Imaxsin (�2 � �1)

>
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EXAMPLE 10-13 AC Josephson Effect Using e � 1.602 � 10�19 C and 
6.626 � 10�34 J s, calculate the frequency of the Josephson current if the applied
voltage is 1 

SOLUTION

From Equation 10-58, we obtain

� 483.6 MHz

f �
2eV

h
� a2(1.602 � 10�19 C)(10�6 V)

6.616 � 10�34 J # s
b � 4.836 � 108 Hz

	V.

# h �

There is a third effect observed with Josephson junctions. When a dc magnetic field
is applied through a superconducting ring containing two Josephson junctions, the total
supercurrent shows interference effects that depend on the intensity of the magnetic field
(Figure 10-53). This effect can be used to measure very weak magnetic fields. It is the
basis for a device called a SQUID (for Superconducting Quantum Interference Device)
that can detect magnetic fields as low as 10�14 T. Such a device can detect the magnetic
fields produced by the tiny currents flowing in the heart and brain.

Junctions

Superconducting ring

ItotalI total

I1

I2

Figure 10-53 A superconducting ring with two Josephson junctions. When there is no applied
magnetic field through the ring, the currents I1 and I2 are in phase. A very small applied magnetic
field produces a phase difference in the two currents that produces interference in the total
current exiting the ring.

Summary

TOPIC RELEVANT EQUATIONS AND REMARKS

1. Structure of solids Solids are often found in crystalline form, in which a small structure called the unit
cell is repeated over and over. The structure of the unit cell depends on the type of
bonding between the atoms, ions, or molecules forming the crystal.

Ionic and covalent solids The attractive part of the potential energy of an ion in an ionic crystal is

10-1

where r is the separation between neighboring ions and is the Madelung constant,
which depends on the crystal geometry. The constant is 1.7476 for face-centered-
cubic crystals.

�
�

Uatt � ��
ke2

r
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TOPIC RELEVANT EQUATIONS AND REMARKS

In covalently bonded crystals the individual bonds are just like those in covalently
bonded molecules.

The metallic bond has no single-molecule counterpart. One or more valence
electrons are free to move throughout the solid, and all of the atoms share all of
the free electrons, making this bond roughly analogous to the covalent bond.

2. Classical free-electron theory Electrical resistivity and conductivity are given by

10-13

where is the mean speed of the electrons and is the mean free path between
collisions. The latter is given by

10-12

where na is the ion density. These yield Ohm’s law correctly but result in the wrong
temperature dependence of the resistivity.

3. Electron gas in metals The average energy of the electrons at ordinary temperatures is much larger than kT:

10-22

where typical values of the Fermi energy EF are 1 to 2 eV.

4. Quantum theory of conduction This theory results from making two important corrections to the classical free-
electron theory. First, the Fermi-Dirac distribution of electron energies is used rather
than the Maxwell-Boltzmann distribution. Second, the effect of the wave
characteristics of the electrons is considered in their scattering from the lattice ions.
The resulting theory is in good agreement with observations.

5. Magnetism in solids The origin of magnetism in solids is the electron spins and their associated 
magnetic moments.

6. Band theory of solids When many atoms are brought together to form a solid, the individual energy levels
are split into bands of allowed energies. The splitting depends on the type of
bonding and the lattice separation. In a conductor, the uppermost band containing
electrons is only partially full, so there are many available states for excited
electrons. In an insulator, the uppermost band containing electrons, the valence
band, is completely full and there is a large energy gap between it and the next
allowed band, the conduction band. In a semiconductor, the energy gap between the
filled valence band and the empty conduction band is small, so at ordinary
temperatures an appreciable number of electrons are thermally excited into the
conduction band.

Kronig-Penney model The solid is modeled as a periodic potential. The wave functions are then

10-36

where the function uk(x) is periodic with a period equal to that of the spacing of the
potential wells and is a free electron, i.e., a plane wave. The energy gaps occur at

10-41

for integer n and a equal to the lattice spacing.
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7. Impurity semiconductors The conductivity of a semiconductor can be greatly increasing by doping. In an 
n-type semiconductor, the doping adds electrons just below the conduction band.
In a p-type semiconductor, holes are added just above the valence band. A junction
between an n-type and p-type semiconductors has applications in many devices,
such as diodes, solar cells, and light-emitting diodes. A transistor consists of a very
thin semiconductor of one type sandwiched between two semiconductors of the
opposite type. Transistors are used in amplifiers because a small variation in the base
current results in a large variation in the collector current.

8. Superconductivity In a superconductor the resistance drops suddenly to zero below a critical
temperature Tc . Magnetic field lines are expelled and B � 0 inside a type I
semiconductor, a phenomenon called the Meissner effect. Superconductivity at low
temperatures is described by BCS theory, in which free electrons form Cooper pairs.
Recently discovered high-temperature semiconductors are only partially understood
in terms of BCS theory.

General References

The following general references are written at a level appro-
priate for the readers of this book.

Anderson, B., Fundamentals of Semiconductor Devices,
McGraw-Hill, New York, 2005.

Blatt, F., Modern Physics, McGraw-Hill, New York, 1992.
Burns, G., Solid State Physics, Academic Press, Orlando, FL,

1985.
Eisberg, R., and R. Resnick, Quantum Physics of Atoms,

Molecules, Solids, Nuclei, and Particles, 2d ed., Wiley,
New York, 1985.

Fermi, E., Molecules, Crystals, and Quantum Statistics (trans.
M. Ferro-Luzzi), W. A. Benjamin, New York, 1966.

Holden, A., The Nature of Solids, Columbia University Press,
1968. An excellent nonmathematical treatment of the
properties of solids.

Kittel, C., Introduction to Solid State Physics, 8th ed., Wiley,
New York, 2005.

Leitner, A., Introduction to Superconductivity, Michigan State
University, East Lansing, 1965. This excellent film,
running 48 minutes, is probably one of the best introduc-
tions to superconductivity available.

Shockley, W., Electrons and Holes in Semiconductors, Van
Nostrand, Princeton, NJ, 1950.

Notes

1. The constant n is often called the Born exponent.
2. Carbon also has a fourth solid form, charcoal, which has

no well-defined crystalline structure.
3. Notice that this view of the metal fits the definition of a

plasma set forth in the opening paragraph of the chapter.
Though not usually thought of in that way, metals are indeed
low-temperature plasmas.

4. Felix Bloch (1905–1983), Swiss American physicist. He
devised a method for measuring atomic magnetic fields in liq-
uids and solids that led to the development of nuclear mag-
netic resonance (NMR) spectroscopy and earned for him a
share (with E. M. Purcell) of the 1952 Nobel Prize in Physics.
He was the first director-general of CERN, the European
Center for Nuclear Research.

5. The graph of the energy bands and gaps of Figure 10-19b
results from a simplified version of the conditional equation
connecting k, k�, and in which and In that
limit the lattice spacing is a, rather than a � b, as in Figure
10-18.

6. This mixing, called hybridization, was discussed in
Section 9-2.

7. See, e.g., Section 25-5 in P. Tipler and G. Mosca, Physics
for Scientists and Engineers, 6th ed. (W. H. Freeman and Co.,
New York, 2008).

8. The fact that the radius of the bound electron is several
times the equilibrium spacing of the atoms helps justify our
tacit assumption that the fifth electron sees a uniform dielec-
tric constant in the crystal.
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9. Klaus von Klitzing (b. 1943), German physicist. He re-
ceived the 1985 Nobel Prize in Physics for this discovery.
10. Daniel C. Tsui (b. 1939), Chinese American physicist. He
received the 1998 Nobel Prize in Physics with H. L. Stormer
and R. B. Laughlin for their discovery.
11. William B. Shockley (1910–1989), John Bardeen (1908–
1991), and Walter H. Brattain (1902–1987), American physi-
cists. Shockley discovered that doped germanium crystals were
excellent rectifiers, and subsequently the three Bell Laboratories
colleagues discovered that two such “solid-state rectifiers” com-
bined would amplify current. The discovery of this device, the
transistor, earned them the 1956 Nobel Prize in Physics.
12. Actually, the field decreases exponentially across the sur-
face, reaching zero at a depth of about 10 nm.
13. Isotopes are atoms with the same atomic number Z but
different atomic mass numbers A. Isotopes will be discussed
in Chapter 11.
14. John Bardeen (1908–1991), Leon N. Cooper (b. 1930),
and J. Robert Schrieffer (b. 1931), American physicists.

Developed at the University of Illinois, the BCS theory earned
the collaborators the 1972 Nobel Prize in Physics, and
Bardeen became the only person thus far to win two physics
Nobel Prizes (see note 11).
15. This may make it seem like the Cooper pair is a boson
and superconductivity another example of Bose-Einstein con-
densation (see Section 8-3); however, the large size of the
Cooper pair (see Example 10-12) means many pairs overlap
and that the symmetry of the pair with respect to an exchange
of electrons must also take into account exchanges involving
electrons in different pairs. The result is that the Cooper pair
is neither a pure boson nor a pure fermion.
16. Brian D. Josephson (b. 1940), Welsh physicist. For this
discovery, made while he was still a graduate student, he
shared the 1973 Nobel Prize in Physics with L. Esaki and
I. Giaever. Bardeen had strongly opposed Josephson’s tunnel-
ing prediction until experiments, led by those of Giaever (also
done while he was a graduate student), confirmed tunneling
by Cooper pairs.

Problems

Level I

Section 10-1 The Structure ofSolids

10-1. Find the value of n in Equation 10-6 that gives the measured dissociation energy of
741 kJ mol for LiCl, which has the same structure as NaCl and for which r0 � 0.257 nm.
10-2. Calculate the distance r0 between the K� and ions in KCl, assuming that each ion
occupies a cubic volume of side r0 . The molar mass of KCl is 74.55 g mol and its density is
1.984 g cm3.
10-3. The distance between the Li� and ions in LiCl is 0.257 nm. Use this and the molec-
ular mass of LiCl (42.4 g mol) to compute the density of LiCl.
10-4. The crystal structure of KCl is the same as that of NaCl. (a) Calculate the electrostatic
potential energy of attraction of KCl, assuming that r0 is 0.314 nm. (b) Assuming that n � 9 in
Equation 10-6, calculate the dissociation energy in eV per ion pair and in kcal mol. (c) The
measured dissociation energy is 165.5 kcal mol. Use this to determine n in Equation 10-6.
10-5. The observed dissociation energy of solid LiBr is 788 kJ mol. Compute the cohesive
energy of LiBr and compare the result with the value in Table 10-1. (Ionization energies for Li
and Br are in Table 9-1.)
10-6. The density of NaCl (an fcc crystal) is 2.16 g cm3. Find the distance between ions that
are nearest neighbors.
10-7. The separation of nearest neighbor ions in the KCl crystal (an fcc structure) is 0.315 nm.
Use this information to determine the density of KCl.
10-8. Using the data for ionic and metallic crystals from Table 10-1, (a) graph cohesive energy
versus melting point and put the best straight line through the points. (b) Determine the cohesive
energies of cobalt, silver, and sodium, whose melting temperatures are 1495°C, 962°C, and 98°C,
respectively. (The measured values are cobalt 4.43 eV, silver 2.97 eV, and sodium 1.13 eV.)
10-9. Figure 10-54 shows a one-dimensional ionic lattice consisting of doubly charged posi-
tive ions and twice as many singly charged negative ions. Compute the Madelung constant for
this “crystal” to within 1 percent.
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Section 10-2 Classical Theory of Conduction

10-10. (a) Given a mean free path and a mean speed for
the current flow in copper at a temperature of 300 K, calculate the classical value for the resis-
tivity of copper. (b) The classical model suggests that the mean free path is temperature in-
dependent and that depends on temperature. From this model, what would be at 100 K?
10-11. Find (a) the current density and (b) the drift velocity if there is a current of 1 mA in a
No. 14 copper wire. (The diameter of No. 14 wire, which is often used in household wiring, is
0.064 in � 0.163 cm.)
10-12. A measure of the density of the free-electron gas in a metal is the distance rs , which is
defined as the radius of the sphere whose volume equals the volume per conduction electron.
(a) Show that where na is the free-electron number density. (b) Calculate rs for
copper in nanometers.
10-13. Calculate the number density of free electrons in (a) Ag and (b) Au

assuming one free electron per atom, and compare your results with the val-
ues listed in Table10-3.
10-14. Calculate the number density of free electrons for (a) Mg and (b) Zn
( ), assuming two free electrons per atom, and compare your results with the val-
ues listed in Table 10-3.
10-15. (a) Using nm and at T � 300 K, calculate and for
copper from Equations 10-13. Using the same value of find and at (b) T � 200 K and
(c) T � 100 K.

Section 10-3 Free-Electron Gas in Metals

10-16. Find the average energy of the electrons at T � 0 K in (a) copper (EF � 7.06 eV) and
(b) Li (EF � 4.77 eV).
10-17. Calculate the Fermi energy for magnesium in a long, very thin wire.
10-18. Compute (a) the Fermi energy and (b) the Fermi temperature for silver and for iron and
compare your results with the corresponding values in Table 10-3.
10-19. Show that for T � 300 K about 0.1 percent of the free electrons in metallic silver have
an energy greater than EF .

Section 10-4 Quantum Theory of Conduction

10-20. What is the Fermi speed, i.e., the speed of a conduction electron whose energy is equal
to the Fermi energy EF , for (a) Na, (b) Au, and (c) Sn? (See Table 10-3.)
10-21. The resistivities of Na, Au, and Sn at T � 273 K are 

respectively. Use these values and the Fermi speeds calculated in Problem
10-20 to find the mean free paths for the conduction electrons in these elements.
10-22. At what temperature is the heat capacity due to the electron gas in copper equal to 10
percent of that due to lattice vibrations?
10-23. Use Equation 10-29 with to calculate the average energy of an electron in
copper at T � 300 K. Compare your result with the average energy at T � 0 and the classical
result of ( )kT.
10-24. Compute the maximum fractional contribution to the heat capacity of solid iron that
can be made by the electrons.

Section 10-5 Magnetism in Solids

10-25. The magnetic polarization of any material is defined as Compute
the high-temperature polarization of a paramagnetic solid at T � 200 K in a magnetic field
of 2.0 T.
10-26. Show that the magnetic susceptibility is a dimensionless quantity.(
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Section 10-6 Band Theory ofSolids

10-27. (a) The energy gap between the valence band and the conduction band in silicon is
1.14 eV at room temperature. What is the wavelength of a photon that will excite an electron
from the top of the valence band to the bottom of the conduction band? Do the same calcula-
tion for (b) germanium, for which the energy gap is 0.72 eV, and (c) for diamond, for which the
energy gap is 7.0 eV.
10-28. (a) The energy band gap in germanium is 0.72 eV. What wavelength range of visible
light will be transmitted by a germanium crystal? (Think about it carefully!) (b) Now consider
a crystal of an insulator whose energy band gap is 3.6 eV. What wavelength range of visible
light will this crystal transmit? (c) Justify each of your answers to (a) and (b).
10-29. A photon of wavelength 3.35 has just enough energy to raise an electron from the
valence band to the conduction band in a lead sulfide crystal. (a) Find the energy gap between
these bands in lead sulfide. (b) Find the temperature T for which kT equals this energy gap.
10-30. Consider a small silicon crystal measuring 100 nm on each side. (a) Compute the total
number N of silicon atoms in the crystal. (The density of silicon is 2.33 g cm3.) (b) If the conduc-
tion band in silicon is 13 eV wide and recalling that there are 4N states in this band, compute an
approximate value for the energy spacing between adjacent conduction band states for the crystal.

Section 10-7 Impurity Semiconductors

10-31. Arsenic has five valence electrons. If arsenic is used as a dopant in silicon, compute
(a) the ionization energy and (b) the orbit radius of the fifth arsenic electron. The effective mass
for electrons in silicon is 0.2 me . (c) What is the ratio of the ionization energy of the fifth elec-
tron to the energy gap in silicon?
10-32. Gallium has three valence electrons. If gallium is used to dope germanium, compute
(a) the ionization energy of the hole and (b) the orbit radius of the hole. The effective mass of
holes in germanium is 0.34 me .
10-33. What type of semiconductor is obtained if silicon is doped with (a) aluminum and
(b) phosphorus? (See Appendix C for the electron configurations of these elements.)
10-34. The donor energy levels in an n-type semiconductor are 0.01 eV below the conduction
band. Find the temperature for which kT � 0.01 eV.
10-35. A strip of tin is 10 mm wide and 0.2 mm thick. When a current of 20 A is established
in the strip and a uniform magnetic field of 0.25 T is oriented perpendicular to the plane of the
strip, a Hall voltage of 2.20 is measured across the width of the strip. Compute (a) the den-
sity of charge carriers in tin and (b) the average number of charge carriers contributed by each
tin atom. The density of tin is 5.75 � 103 kg m3 and its molecular mass is 118.7.

Section 10-8 Semiconductor Junctions and Devices

10-36. For a temperature of 300 K, use Equation 10-49 to find the bias voltage Vb for which
the exponential term has the value (a) 10 and (b) 0.1.
10-37. For what value of bias voltage Vb does the exponential in Equation 10-49 have the
value (a) 5, and (b) 0.5 for T � 200 K?
10-38. Compute the fractional change in the current through a pn junction diode when the for-
ward bias is changed from �0.1 V to �0.2 V.
10-39. For T � 300 K, use Equation 10-49 to find the bias voltage Vb for which the exponen-
tial term had the value (a) 10 and (b) 0.1.
10-40. When light of wavelength no larger than 484 nm illuminates a CdS solar cell, the cell
produces electric current. Determine the energy gap in CdS.

Section 10-9 Superconductivity

10-41. Three naturally occurring isotopes of lead are 206Pb, 207Pb, and 208Pb. Using the value
of from Table 10-7 and the isotopic masses from Appendix A, compute the critical tempera-
tures of these isotopes.
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10-42. Compute (a) the superconducting energy gap for indium and (b) the wavelength of a
photon that could just break up a Cooper pair in indium at T � 0 K.
10-43. (a) Use Equation 10-56 to calculate the superconducting energy gap for tin and com-
pare your result with the measured value of 6 � 10�4 eV. (b) Use the measured value to calcu-
late the wavelength of a photon having sufficient energy to break up a Cooper pair in tin at
T � 0 K.
10-44. Use the BCS curve in Figure 10-51 to estimate the energy gaps in (a) tin, (b) niobium,
(c) aluminum, and (d) zinc, all at T � 0.5Tc .
10-45. Expressing the temperature T as a fraction of the critical temperature Tc , according to
BCS theory at what temperature is (a) Bc � 0.1Bc(0), (b) Bc � 0.5Bc(0), (c) Bc � 0.9Bc(0)?

Level II

10-46. Estimate the fraction of free electrons in copper that are in excited states above the
Fermi energy at (a) room temperature of 300 K and (b) 1000 K.
10-47. A one-dimensional model of an ionic crystal consists of a line of alternating positive
and negative ions with distance r0 between adjacent ions. (a) Show that the potential energy of
attraction of one ion in the line is

(b) Using the result that

show that the Madelung constant for this one-dimensional model is 
10-48. Estimate the Fermi energy of zinc from its electronic molar heat capacity of

10-49. The density of the electron states in a metal can be written where A is
a constant and E is measured from the bottom of the conduction band. (a) Show that the total
number of states is A . (b) About what fraction of the conduction electrons are within
kT of the Fermi energy? (c) Evaluate this fraction for copper at T � 300 K.
10-50. High-purity germanium (HPGe) crystals are used as detectors for x rays and gamma
rays. On interacting with the crystal, incoming photons produce electron-hole pairs, exciting
many electrons across the 0.72-eV energy gap into the conduction band. The decay of the ra-
dioisotope 60Co results in the emission of two gamma rays with energies 1.17 MeV and 1.33
MeV (see Chapter 11). (a) Compute the numbers of electrons N1 and N2 excited across the en-
ergy gap by each of the two gamma rays. (b) The numbers N1 and N2 are subject to statistical
fluctuations of and Compute the fractional uncertainties in N1 and N2 .
(c) Compute the corresponding fractional uncertainties in the energies of the two gamma rays.
This is a measure of the energy resolution of the HPGe crystal.
10-51. A doped n-type silicon sample with 1016 electrons per cubic centimeter in the conduc-
tion band has a resistivity of at 300 K. Find the mean free path of the electrons.
Use 0.2 me for the effective mass of the electron. Compare your result with the mean free path
of electrons in copper at 300 K.
10-52. A “good” silicon diode has a current-voltage characteristic given by

Let kT � 0.025 eV (room temperature) and the saturation current I0 � 1 nA. (a) Show that for
small reverse-bias voltages, the resistance is 25 (Hint: Do a Taylor expansion of the expo-
nential function or use your calculator and enter small values for Vb .) (b) Find the dc resistance
for a reverse bias of 0.5 V. (c) Find the dc resistance for a 0.5-V forward bias. What is the cur-
rent in this case? (d) Calculate the ac resistance dV dI for a 0.5-V forward bias.>
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10-53. The relative binding of the extra electron in the arsenic atom that replaces an atom in
silicon or germanium can be understood from a calculation of the first Bohr orbit of this elec-
tron in these materials. Four of arsenic’s outer electrons form covalent bonds, so the fifth elec-
tron sees a singularly charged center of attraction. This model is a modified hydrogen atom. In
the Bohr model of the hydrogen atom, the electron moves in free space at a radius a0 given by

When an electron moves in a crystal, we can approximate the effect of the other atoms by re-
placing with and me with an effective mass for the electron. For silicon is 12 and the
effective mass is about 0.2me , and for germanium is 16 and the effective mass is about 0.1me .
Estimate the Bohr radii for the outer electron as it orbits the impurity arsenic atom in silicon
and germanium.
10-54. InSb is a semiconductor. The energy gap Eg between its valence and conduction bands
is 0.23 eV, and its dielectric constant In the InSb crystal the electron’s effective mass

(a) Compute the ionization energy for an electron donor in InSb. (b) What is
the radius of the ground-state orbit? (c) At approximately what donor concentration will the
orbits of adjacent donor atoms begin to overlap?
10-55. The mean free path of an electron in a metal depends on both the lattice oscillations of
the metal ions and those of any impurity ions according to The resistivity
of pure copper is increased by about by the addition of 1 percent (by number
of atoms) of a certain impurity dispersed evenly throughout the metal. (a) Estimate from this
information. (b) The impurity atoms are “seen” by the electrons to have an effective diameter d.
Estimate the scattering cross section d2 from Equation 10-12, where d � 2r.

Level III

10-56. When arsenic is used to dope silicon, the fifth arsenic electron and the As� ion act like
a hydrogen atom system except that the potential function V(r) and the electron mass must be
modified as described in Section 10-7 to account for the crystal lattice. With these modifica-
tions, (a) solve the Schrödinger equation, using the solution in Chapter 7 as a guide. (b) Obtain
Equation 10-43, and (c) sketch a properly scaled energy-level diagram for the fifth electron for
n � 1 through 5.
10-57. The quantity K is the force constant for a “spring” consisting of a line of alternating
positive and negative ions. If these ions are displaced slightly from their equilibrium separation
r0 , they will vibrate with a frequency

(a) Use the values of and r0 for NaCl and the reduced mass for the NaCl molecule to cal-
culate this frequency. (b) Calculate the wavelength of electromagnetic radiation corresponding
to this frequency, and compare your result with the characteristic strong infrared absorption
bands in the region of about that are observed for NaCl.
10-58. Consider a model for a metal in which the lattice of positive ions forms a container for a
classical electron gas with n electrons per unit volume. In equilibrium, the average electron
velocity is zero, but the application of an electric field produces an acceleration of the electrons. If
we use a relaxation time to account for the electron-lattice collisions, then we have the equation

(a) Solve the equation for the drift velocity in the direction of the applied electric field.
(b) Verify that Ohm’s law is valid, and find the resistivity as a function of n, e, m, and the re-
laxation time �.
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10-59. Imagine a cubic crystal like NaCl, with a negative charge at the center of a Cartesian
coordinate system with scale units equal to the interatomic distance (a) Show that an ion at a po-
sition r units along the x axis, s units along the y axis, and t units along the z axis has a charge
of where e is the electron charge. (b) Using Equation 10-2
as a guide, calculate the Madelung constant for a cube 2 units on a side. Do the same for cubes
of sides 4, 6, 8, 10, 12, 16, and 20 units (You will probably want to use a computer spreadsheet
to write a program to do the calculations for the larger cubes). Are your answers approaching the
value 
10-60. (a) Show that for a paramagnetic solid with electron energies given by Equation 10-33
the magnetization per unit volume M is given by

(b) For show that the susceptibility is given by Equation 10-35.	B V kT

M � 	� tanh (	B>kT)

� � 1.7476?
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The first information about the atomic nucleus came with the discovery of
radioactivity by A. H. Becquerel1 in 1896. Intrigued by Roentgen’s discovery of

x rays the previous year, Becquerel was investigating the possibility that minerals that
exhibit fluorescence after exposure to sunlight might also be emitting x rays. He used
the simple technique of placing a sample of such a mineral, potassium uranyl sulfate,
on top of a photographic plate wrapped in black paper lying in the sunlight on a win-
dow ledge. Sure enough, an image of the sample appeared on the developed plate, and
Becquerel concluded that x rays had indeed been emitted. But when a similar sample
lying on a wrapped photographic plate in a drawer without exposure to sunlight dur-
ing a period of cloudy weather produced an image just as dark, he investigated further
and found that the sample was spontaneously emitting a previously unknown pene-
trating radiation. He had discovered radioactivity.2

The rays emitted by radioactive nuclei were first classified by Rutherford as 
and according to their ability to penetrate matter and to ionize air: radiation pen-
etrates the least and produces the most ionization, radiation penetrates the most with
the least ionization, and radiation is intermediate between them. In a classic exper-
iment, Rutherford soon found that rays are nuclei. It was also quickly discov-
ered that rays are electrons and rays are very short-wavelength electromagnetic
radiation. Geiger and Marsden’s -particle-scattering experiments in 1911 (see
Section 4-2) and the successes of the Bohr model of the atom led to the modern view
of an atom as consisting of a tiny, massive nucleus with a radius of 1 to 10 femtome-
ter (fm; 1 fm � 10�15 m) surrounded by a cloud of electrons at a relatively great dis-
tance, of the order of 0.1 nm ( � 100,000 fm) from the nucleus.

In 1928, the correct explanation of radioactivity as a quantum-mechanical,
barrier-penetration phenomenon was given by G. Gamow, R. W. Gurney, and E. U.
Condon. Then, in rapid succession in 1932, the neutron was discovered by 
J. Chadwick and the positron by C. D. Anderson, and the first nuclear reaction using
artificially accelerated particles (protons) was observed by J. D. Cockcroft and E. T. S.
Walton.3 Thus, it is quite reasonable to mark that year as the beginning of modern
nuclear physics. Much of the information about nuclei is obtained by bombarding
them with various particles and observing the results. The advent of particle acceler-
ators, the Van de Graaff electrostatic generator in 1931 and the cyclotron in 1932,
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made many experimental studies possible without the severe limitations on particle
type and energy imposed by naturally radioactive sources. Since then, an enormous
technology has been developed for accelerating and detecting particles, and many nu-
clear reactions and fundamental particle interactions have been studied.

Among the myriad nuclear reactions that have been investigated are two types of
special interest: fission and fusion. Both are processes by which nuclear mass is con-
verted into other forms of energy, such as thermal energy, just as some atomic mass is
converted in chemical reactions such as oxidation. Fission reactions currently provide
a significant, albeit controversial, means of producing electrical energy in 30 coun-
tries, accounting for 6.0 percent of the world’s total consumption of energy in 2005.4

The similar potential of fusion reactions has not yet been realized at a practical level;
however, of far more intrinsic importance is the role of fusion in the production of
energy in stars. The grim reality that both fission and fusion are also the basis for
weapons of enormous destructive power means that this application of nuclear
reactions influences political debate to a greater degree than has perhaps any other
scientific discovery in history.

In this chapter we will discuss some of the general properties of atomic nuclei and
the important features of radioactivity. While our discussions will of necessity be only
semiquantitative, we will consider the nature of the nuclear force as it is currently un-
derstood and describe one of the most useful models in terms of which many nuclear
properties may be explained. The applications of radioactivity and nuclear reactions
are by no means limited to fission and fusion. The radiations emitted by radioisotopes
have long been used in medical diagnosis and treatment. These contributions were
measurably enhanced with the development of computer assisted tomography5 (CAT)
in the 1970s, which made possible not only x-ray CAT scans, but also the more recent
development of positron emission tomography, called PET. Neutron-induced nuclear
reactions provide an extremely sensitive technique, called neutron activation analysis
(NAA), for measuring trace amounts of certain isotopes for most elements in the
periodic table. These and many other applications will be discussed in this chapter.

11-1 The Composition of the Nucleus
The experiments of Moseley (see Section 4-4) showed that the nuclear charge is Z
times the proton charge, where Z is the atomic number, which is about half the atomic
mass number A (except for hydrogen, for which Z � A). Thus, the nucleus has a mass
about equal to that of A protons but a charge of only protons. Before the
discovery of the neutron, it was difficult to understand this unless there were A–Z elec-
trons in the nucleus to balance the charge without changing the mass very much. The
idea that the nucleus contained electrons was supported by the observation of decay,
in which electrons are ejected by certain radioactive nuclei. However, there were seri-
ous difficulties with this model. A relatively simple calculation from the uncertainty
principle (see Problem 11-2) shows that an electron has a minimum kinetic energy of
about 100 MeV if it is confined in the region of r � 10�14 m; however, the energies
of the electrons emitted in decay are only of the order of 1 or 2 MeV. In addition,
there is no evidence for such a strong attractive force between nuclei and electrons as
would be implied by a negative potential energy of 50 to 100 MeV inside the nucleus.
Furthermore, since the electrostatic potential energy of the electron and nucleus is neg-
ative, there is no barrier to be overcome, as there is in decay (Figure 11-1). If the
electron’s total energy were positive, as required for decay, the electron should es-
cape from the nucleus immediately and most naturally occurring emitters should�

�
�

�

�

Z � 1
2A
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(a) (b)

Positive Coulomb
barrier

Negative Coulomb
potential between
electron and nucleus

Energy

Nuclear potential well
in which α particle is
confined

Eα
Ee > 0

Ee < 0
rr

Figure 11-1 (a) Potential
barrier for an particle
compared with (b), potential
for a negative electron.
Because there is no barrier
for the electron, it will not be
bound at all unless the total
energy is negative, in which
case it can never escape. The
very narrow steep rise to the
potential in (a) as 
represents the “hard core” of
the nucleus.

rS 0

�

have long since disappeared. A further difficulty is the observation that the magnetic
moments of nuclei are of the order of nuclear magnetons, about 2000
times smaller than a Bohr magneton which would be expected if there
were electrons inside the nucleus.

A further convincing argument against electrons existing in the nucleus concerns
angular momentum. Protons and neutrons are fermions with spins of and as such
both obey the exclusion principle. The angular momentum of the nitrogen nucleus has
a quantum number of 1, which can be inferred from a very small splitting of atomic
spectral lines called hyperfine structure (see Section 11-2). It is also known (from
molecular spectra—see Section 9-4) that the nitrogen nucleus obeys Bose-Einstein
rather than Fermi-Dirac statistics. If contained 14 protons and 7 electrons, each
with spin the resultant angular momentum would have to be etc.,
and the nucleus would obey Fermi-Dirac statistics.

In 1920 Rutherford suggested that there might be a neutral particle, possibly a
proton and an electron tightly bound together, which he called a neutron. When such
a particle was found by Chadwick in 1932, the idea that electrons were permanent
constituents of nuclei was abandoned. Instead, the nucleus was assumed to contain N
neutrons and Z protons, a total of A � N � Z particles. N is referred to as the neutron
number. The notion of the neutron being a proton and electron bound together has also
been abandoned since the spin of the neutron is Thus, the nucleus is composed of
protons and neutrons, the nucleons, which collectively occupy a volume whose radius
is of the order of 1 to 10 fm. All of the large variety of nuclei with their broad diversity
of properties are assembled from various numbers of these two particles. The funda-
mental properties of the individual nucleons are given in Table 11-1. We should note at
this point that the nucleons are not fundamental particles. Each of the two types of
nucleons is composed of a set of three quarks, fundamental particles that interact with
each other via the strong force, which accounts for the fact that the nucleons also feel
that force. Quarks and their interactions will be discussed in Chapter 12.

1>2.

1>2, 3>2, 5>2,1>2,

14N

1>2
	B � eU>2me , 	N � eU>2mp ,

Table 11-1 Fundamental properties of atomic constituents

Particle Charge Mass (u) Mass (kg) Spin Magnetic moment

Proton 1.007276

Neutron 0 1.008665

Deuteron 2.013553 1

Electron 1.00116 	B1>29.1094 � 10�315.4858 � 10�4�e

0.85744 	N3.3436 � 10�27�e

�1.91304 	N1>21.6749 � 10�27

2.79285 	N1>21.6726 � 10�27�e



11-2 Ground-State Properties of Nuclei
Understanding nuclei, like atoms, requires the application of quantum theory. It was
the study of nuclear spectra, the energy and particles emitted spontaneously by radio-
active nuclei, that provided the first indication of the existence of quantized energy
levels, angular momenta, and magnetic moments in nuclei, just as the regularities in
atomic spectra had earlier pointed the way to Bohr’s theory and, ultimately, to wave
mechanics. Interpreting the nuclear studies presents more complex problems due to
the existence of two nucleons, the possible emission of several different particles in
addition to photons from excited energy states, and our incomplete knowledge of the
nuclear potential function.

In this section we will discuss some of the properties of nuclei in the ground state
and mention a few methods of determining these properties. In Section 11-3 we will
study radioactivity, which provides information about the excited states of nuclei.

Several of the general references at the end of this chap-
ter contain good discussions of the experimental methods
used in measuring nuclear properties. We will use the fol-
lowing standard terminology: the letter N stands for the
number of neutrons in a nucleus and Z for the number of
protons (the atomic number); A � N � Z is the total
number of nucleons, the mass number. The mass number
is an integer approximately equal to the atomic weight. A
particular nuclear species is called a nuclide. Nuclides
are denoted by the chemical symbol with a presuperscript
giving the value of A, such as or Sometimes Z is
given as a pre-subscript, such as although this is not
necessary because each element (Z number) has a unique
chemical symbol. Occasionally, N is also given as a sub-
script, such as although this, too, is unnecessary
since N � A � Z. Nuclides with the same Z, such as 
and are called isotopes. Nuclides with the same N,
such as and are called isotones, while nuclides
with the same A, such as and are called isobars.

Size and Shape of Nuclei

Nuclear Radii All of the methods for measuring nu-
clear radii agree that the radii are proportional to the cube
root of the mass number. The nuclear radius can be de-
termined by scattering experiments similar to the first
ones of Rutherford or in some cases from measurements
of radioactivity. Indeed, as we discussed in Section 4-2
and as illustrated in Figure 11-2, Rutherford’s original 

-particle-scattering experiment furnished the first mea-
surement of the nuclear radius. An interesting, nearly
classical method of determining the nuclear radius in-
volves the measurement of the energy of decay be-
tween mirror nuclides, which are nuclides whose Z and
N numbers are interchanged (Figure 11-3). For example,

with eight protons and seven neutrons, and with15N,15O,

�

�

14N,14C

14
7N7,13

6C7

16O,

15O

15
8O7,

15
8O,

15O.16O
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Figure 11-2 Rutherford’s -scattering formula (Equation
4-6) is shown by the dashed line. particles of increasing
energy incident on the nuclei of a Pb target scattered as
would be expected by the Rutherford formula until their
energy reached about 27 MeV. At greater energies the 
particles approach the Pb nuclei closely enough so that the
nucleons of the and the Pb interact via the attractive
nuclear force and the scattered intensity falls below that
predicted by the Rutherford equation. [Data from R. M.
Eisberg and C. E. Porter, Rev. Mod. Phys., 33, 190 (1961).]
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eight neutrons and seven protons, are mirror nuclides. If one assumes that the nuclear
force between nucleons is independent of the kind of nucleons, the only difference
in energy between and is electrostatic. The electrostatic energy of a ball of
uniform charge is given by

11-1

where q is the charge and R is the radius. is radioactive and, as
we will discuss further in a later section, decays to by emitting a
positron and a neutrino. The energy difference between and 
the beta-decay energy, is then

11-2

with Z � 8. A measurement of the energy of decay, equal to �U, thus
gives a measurement of R. If one assumes a uniform charge distribu-
tion, measurements of the positron-decay energies (see Section 11-4)
for 18 pairs of mirror nuclides give for the nuclear radius

11-3

where A is the atomic mass number. The value of R0 in Equation 11-3
includes the effect of a quantum-mechanical correction using a
charge distribution calculated from the nuclear shell model discussed
in Section 11-6. The consistency of these results with other methods
of determining R is a strong indication that the nuclear
part of the potential energy is the same for each pair of
mirror nuclei.

The most extensive measurements of nuclear radii
were carried out by Robert Hofstadter and his co-work-
ers in a series of experiments begun in 1953.6 In these
experiments at the Stanford Linear Accelerator (SLAC),
nuclei were bombarded with electrons having
energies of about 200 to 500 MeV. The wavelength of a
500-MeV electron is about 2.5 fm, which is smaller
than the radius of heavy nuclei. It is thus possible
to learn something about the detailed structure of the
charge distribution of nuclei by analyzing the diffrac-
tion pattern that results from the scattering of these
electrons. The analysis is fairly complicated because the
electrons are relativistic. Figure 11-4 shows the diffrac-
tion pattern of high-energy electrons scattered by 
and nuclei. If we consider the incoming electron
beam to be a plane wave of wavelength the scattering
process is similar to the diffraction of light from a cir-
cular hole of radius R, discussed in most introductory
physics textbooks, where R in this case is the nuclear
radius. The first minimum of the diffraction pattern is
then given approximately by

11-4sin � � 0.16
>R


,

12C

16O

R � R0A
1>3 with R0 � 1.2 � 0.2 fm

¢U �
3

5

1

4��0

e2

R
cZ2 � (Z � 1)2 d

15N,15O

15N

15O

U �
3

5

1
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R

15N15O
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Figure 11-3 Mirror nuclides. If all the neutrons
are changed to protons and all the protons are
changed to neutrons, becomes its mirror,
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differs only in the electrostatic energy.
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Example 11-2 shows how the nuclear radius can be calculated from Equation 11-4
with the aid of Figure 11-4. Figure 11-5a shows some charge distributions obtained
from detailed analysis of these experiments. The mean electromagnetic radius R and
the surface thickness t, defined in Figure 11-5b, are given by

11-5

These results are consistent with those obtained from the -decay studies of mirror
nuclides.

�

t � 2.4 � 0.3 fm

R � (1.07 � 0.02)A1>3 fm
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Figure 11-5 (a) Charge
density versus distance for
several nuclei as determined
by high-energy electron
scattering experiments.
(b) Definitions of parameters
R0 and t used to describe
nuclear charge density. The
skin thickness t is measured
from 10 percent to 90 percent
of the central core density.
[From R. Hofstadter, Annual
Review of Nuclear Science, 7,
231 (1957).]
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EXAMPLE 11-1 Nuclear Radii of and Use Equation 11-3 to compute the
radii of and 

SOLUTION

For

For

Thus, the nuclear radius varies only by a factor of about 4 from the lightest nuclides
to the heaviest.

RU � 1.2(238)1>3 � 7.42 fm238U:

RHe � 1.2(4)1>3 � 1.90 fm4He:

238U.4He

238U4He

EXAMPLE 11-2 Nuclear Radius of Using the data for 420-MeV electrons scat-
tered from in Figure 11-4, compute a value for the radius of the nucleus.

SOLUTION

16O16O

16O

1. The radius R of the 
nucleus is computed from
Equation 11-4:

16O sin � �
0.61


R
 or R �

0.61


sin �

� � 44°

2. The angle in Equation 11-4
is the first minimum of the
diffraction pattern. From
Figure 11-4 we see that the
first minimum occurs at about:

�


 �
h
p

3. The de Broglie wavelength of
the electrons is




4. The momentum p of the 
420-MeV electrons is
computed from the relativistic
expression, Equation 2-32:

or

p � 420 MeV>c � 2.24 � 10�19 kg # m>s
� (420 MeV)2

� (420)2 � (0.511)2

p2c2 � E2 � (mc2)2

5. Substituting this value in 
from step 3 gives




� 2.96 � 10�15 m � 2.96 fm


 �
6.63 � 10�34 J # s

2.24 � 10�19 kg # m>s
6. The radius R is computed by

substituting the values for 
and into Equation 11-4:


�
R �

(0.61)(2.96 fm)

sin44°
� 2.60 fm

Remarks: This result agrees well with the values of R0 for the low-Z nuclei in
Figure 11-5a.



484 Chapter 11 Nuclear Physics

A different kind of measurement of the nuclear radius can be made using the at-
tenuation of a beam of fast neutrons as it moves through a sample. The total cross sec-
tion for attenuation can be shown to be

11-6

where R is the nuclear radius and is the de Broglie wavelength of the neutron. The
neutrons must be fast enough so that in order to gain information about R
from measurement of These experiments do not measure the charge distribution but
instead measure the “radius” of the nuclear force between a neutron and the nucleus.
The results of these measurements are

11-7

These different types of experiments thus give comparable but not identical results,
depending on whether the particular experiment measures the nuclear force radius
(neutrons) or the nuclear charge radius (electrons). The fact that the radius is propor-
tional to implies that the volume of the nucleus is proportional to A. Since the
mass of the nucleus is also approximately proportional to A, the densities of all nuclei
are approximately the same. A drop of liquid also has a constant density independent
of its size, and this fact has led to a model in which the nucleus is viewed as analo-
gous to a liquid drop. This model has been helpful in computing nuclear masses and
in understanding certain types of nuclear behavior, particularly the fission of heavy el-
ements. The numerical value of the nuclear density is about 1017 kg m3. This fantas-
tically high density, compared with 103 kg m3 for atoms, is a consequence of the fact
that nearly all the mass of the atom is concentrated in a region whose radius is only
about 10�5 that of the atom. A cubic millimeter of nuclear matter has a mass of about
200,000 metric tons, or about the same mass as a supertanker filled with petroleum!

EXAMPLE 11-3 Radius of a Neutron Star In certain supernova events, the outer
layer of the star is blown away, leaving a core consisting entirely of neutrons. This
stellar remnant is called a neutron star, and its density is approximately the same as
that of atomic nuclei. Compute the radius of a neutron star whose mass is equal to
that of the Sun,

SOLUTION

The mass of the neutron star is where V is the volume and the density 
is approximately 1017 kg m3. Assuming the neutron star to be a sphere, we have that

where R is the radius of the star in meters. Solving for R3 yields

and taking the cube root

Remarks: By way of comparison, the mean diameter of the Sun is 1.39 � 106 km.

R � 1.68 � 104 m � 16.8 km

R3 �
(3)(1.99 � 1030 kg)

(4�)(1017 kg>m3)
� 4.75 � 1012 m3

M � 1.99 � 1030 kg � �V � (1017 kg>m3)(4�R3>3)

> �M � �V,

1.99 � 1030 kg.

> >

A1>3

R � R0A
1>3 with R0 � 1.4 fm

�.

>2� � R




� � 2� aR �



2�
b2
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Nuclear Shape With a few exceptions, nuclei are nearly spherical. Most of the ex-
ceptions occur in the rare earth elements (the transition region in the periodic table,
Z � 57 to Z � 71), in which the shape is ellipsoidal, with the major axis differing
from the minor axis by about 20 percent or less. In these heavy nuclides, the inner
atomic electron wave functions penetrate the nucleus, and deviations from spherical
shape, which correspond to deviations in the nuclear charge distributions, show up as
small changes in the atomic energy levels. In direct analogy with the fact that the
potential at points outside a static distribution of charges is determined by the dimen-
sions of the distribution7 and, conversely, that measuring the potential yields infor-
mation about the distribution, measuring these small changes in the atomic energy
levels yields information about the nuclear charge distribution, even though it can’t be
measured directly. If the nucleus is shaped like a watermelon (Figure 11-6a), with the
extent of the distribution larger along the z axis than along the x and y axes, the aver-
age value of z2 is larger than the average values of x2 and y2. In this case the electric
quadrupole moment Q, which is proportional to is posi-
tive. This is the most common case for nonspherical nuclei. Nuclei with negative
quadrupole moments are shaped more like flattened pumpkins, with the two equal
axes longer than the third axis, as in Figure 11-6b. The average value of the electric
quadrupole moment is given by

11-8

Figure 11-7 shows the measured values of the electric quadrupole moment for the
odd A nuclei, i.e., those for which either Z or N is odd. Equation 11-8 is evaluated for
wave functions corresponding to the nuclear charge distributions of various theoreti-
cal models of the nucleus and compared with the values in Figure 11-7. As you might
imagine, the calculations are formidable!

� 0 for z2 � x2, y2  (Figure 11-6b)
� 0 for z2 � x2 � y2  (spherical)

� 0 for z2 � x2, y2  (Figure 11-6a)

8Q9 � Z�c* C3(z2)av � (x2 � y2 � z2)av Dc dV
3(z2)av � (x2 � y2 � z2)av ,

(a)

(b)

y

z

x

y

z

x

Figure 11-6 Nonspherical
nuclear shapes. Nuclei with
positive quadrupole moments
have (z2)av greater than (x2)av
or (y2)av and are of
watermelon shape, as in
(a). Nuclei with negative
quadrupole moments have
(z2)av less than (x2)av or (y2)av
and are shaped like flattened
pumpkins, as in (b).
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NuclearStability

Among the more than 3000 known nuclides, there are only 266 whose ground states are
stable. All of the rest have unstable ground states, which eventually undergo radioactive
decay, that is, transition to some lower-energy state of a different element. Figure 11-8
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Figure 11-8 Plot of neutron number N versus proton number Z for the known nuclides.
The 266 stable nuclides are indicated by the black dots. The area between the irregular colored
lines represents the known unstable, or radioactive, nuclides whose lifetimes are longer than
about a millisecond. The curved line through the stable nuclides is called the line of stability.
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shows a plot of the neutron number N versus the proton number Z for the stable
nuclides and the known unstable ones whose lifetimes are longer than about a mil-
lisecond. The straight line is N � Z. The general shape of the line of stability, shown
by the light curve tracing through the stable nuclides in Figure 11-8, can be understood
in terms of the exclusion principle and the electrostatic energy of the protons. Consider
the kinetic energy of A particles in a one-dimensional square well, which is an adequate
model for demonstrating this point. The energy is smallest if A 2 are neutrons and A 2
are protons and greatest if all the particles are of one type (Figure 11-9). Hence there
is a tendency, due to the exclusion principle, for N and Z to be equal. If we include the
electrostatic energy of repulsion of the protons, the result is changed somewhat. This
potential energy is proportional to Z2. At large A, the energy is increased less by adding
two neutrons than by adding one neutron and one proton, and so the difference N � Z
increases with increasing Z.

There is also a tendency for nucleons to pair with other identical nucleons. Of the 266
nuclides whose ground states are stable, 159 have even Z and even N, 50 have odd Z and
even N, 53 have even Z and odd N, and only 4 have both odd N and Z. (See Table 11-2.)
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Figure 11-9 (a) Seven neutrons in an infinite square well. In accordance with the exclusion
principle, only two neutrons can be in a given space state. The total energy is
16E1 � (2 � 9E1) � (2 � 4E1) � (2 � 1E1) � 44E1 . (b) Four neutrons and three protons in
the same infinite square well. Because protons and neutrons are not identical, four particles
(two neutrons and two protons) can be in the state n � 1. The total energy is
(3 � 4E1) � (4 � 1E1) � 16E1 . This is much less than in (a). The integers on the left of each
well are infinite square well principal quantum numbers.

Table 11-2 N versus Z for
stable isotopes

Z

N Even Odd

Even 159 50

Odd 53 4
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Since there are about 100 different elements and about 270 stable nuclides, there
is an average of about 2.7 stable isotopes per element. There is a larger than the aver-
age number of stable isotopes for nuclei with Z equal to 20, 28, 50, and 82. For ex-
ample, tin, with Z � 50, has 10 stable isotopes. Similarly, nuclides with these same
numbers of neutrons have a larger than average number of isotones. These numbers,
called magic numbers, are a manifestation of shell structure in very much the same
way that the atomic “magic numbers” 2, 10, 18, and 36 correspond to closed-electron-
shell structure. As we will discuss further in Section 11-6, the nuclear magic numbers,
which also include 2, 8, and 126, represent configurations of particular stability. 
An island of stability is hypothesized to exist around Z � 126. In the search for it thus
far, a few atoms with atomic numbers up to 118 have been created in that region.
(Atoms with atomic number 117 have not yet been synthesized.)

Nuclides that fall between the irregular colored lines in Figure 11-8, except those
marked by the black dots, are radioactive. We will discuss radioactivity in Section 11-3.

Masses and Binding Energies

The mass of an atom can be accurately measured in a mass spectrometer, which mea-
sures q M for ions by bending them in a magnetic field.8 The mass of an atom is
slightly smaller than the mass of the nucleus plus the mass of the electrons because of
the binding energy of the electrons. The binding energy of the electrons is defined by

11-9

where MN is the mass of the nucleus, MA is the mass of the atom, me is the mass of an
electron, and �m is the mass equivalent of Batomic . (See Section 2-3.) Because the bind-
ing energies of atoms are only of the order of keV, compared with nuclear binding en-
ergies of many MeV, atomic binding energies are usually neglected in nuclear physics.
The binding energy of a nucleus with Z protons and N neutrons is defined as

11-10

where mp is the mass of a proton, mn the mass of a neutron, and MA the mass of the
nucleus of mass number A. Since the mass of an atom is very nearly equal to the mass
of the nucleus plus the mass of the electrons (neglecting the atomic binding energy),
the nuclear binding energy can be accurately computed from

11-11

where MA is the atomic mass and MH is the mass of a hydrogen atom. Note that the
masses of the Z electrons cancel out. This expression is more convenient to use because
it is the mass of the atom that is usually measured in mass spectrometers. The atomic
masses of all stable nuclides and of many unstable ones are listed in Appendix A.

Once the mass of a nucleus or atom is determined, the binding energy can be com-
puted from Equation 11-10 or 11-11. The binding energy per nucleon B A is plotted
against A for the most stable isotope of each element in Figure 11-10. The mean value
is about 8.3 MeV nucleon. The fact that this curve is approximately constant (for
A � 16) indicates that the nuclear force is a saturated force. This is partially explained
by the short range of the nuclear force (see Section 11-5). If each nucleon interacted
with every other nucleon, there would be A � 1 interactions for each nucleon, and the
binding energy per nucleon would be proportional to A � 1 rather than constant.

> >

Bnuclear � ZMHc
2 � Nmnc

2 � MAc
2

Bnuclear � Zmpc
2 � Nmnc

2 � MAc
2

Batomic � MNc
2 � Zmec

2 � MAc
2 � ¢mc2

>
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Figure 11-10 indicates that instead there is a fixed number of interactions per nucleon,
as would be the case if each nucleon were attracted only to its nearest neighbors. Such
a situation also leads to a constant nuclear density, consistent with the radius mea-
surements. If the binding energy per nucleon were instead proportional to the number
of nucleons, then the nuclear radius would be approximately constant, as is the case
for the atomic radii.

More

Of the several models of the nucleus physicists have developed, the
liquid-drop model has been one of the most useful. It has been suc-
cessful in describing the fission process and nuclear reactions and, in
particular, predicting the binding energies (i.e., masses) of isotopes and
individual nucleons within the nucleus. These topics are discussed in
Liquid-Drop Model and the Semiempirical Mass Formula on the 
home page: www.whfreeman.com/tiplermodernphysics5e. See also
Equations 11-12 through 11-14 and Table 11-3 here, as well as
Examples 11-4 through 11-6.

Nuclear Angular Momenta and Magnetic Moments

The spin quantum number of both the neutron and the proton is which means that
the nucleons are fermions. The angular momentum of the nucleus is a combination of
the spin angular momenta of the nucleons plus any orbital angular momentum due to the
motion of the nucleons. This resultant angular momentum is usually called nuclear spin
and designated by the symbol I. The nucleons individually have magnetic moments,
which also combine to produce the nuclear magnetic moment. Evidence for nuclear spin
and magnetic moment was first found in atomic spectra. The nuclear spin adds to the
angular momentum J � L � S of the electrons to form a total angular momentum F:

11-15F � I � J
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Figure 11-10 The binding
energy per nucleon versus
atomic mass number A. The
solid curve represents the
Weizsächer semiempirical
binding-energy formula,
Equation 11-12.
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The possible quantum numbers for F are according
to the usual rule for combining angular momenta. F obeys the selection rule �F � �1, 0,
but no The number of possible values of F is (2J � 1) or (2I � 1),
whichever is smaller. Because of the energy of the interaction between the electronic
magnetic moment and the nuclear magnetic moment associated with I, each atomic
spectral line is split into (2J � 1) or (2I � 1) components. This splitting is one of sev-
eral effects that are the result of interactions of the nuclear spins and moments with the
environment of the nucleus, including its own atomic electrons, collectively called hy-
perfine structure.10 The hyperfine splitting of the spectral lines associated with the nu-
clear magnetic moment occurs for a reason that is exactly analogous to the spin-orbit
coupling discussed in Section 7-5 that is the origin of the fine structure of the atomic
spectral lines. The coupling between I and J expressed by Equation 11-15 results in
a splitting of the atomic energy levels by an amount �E, in addition to the spin-orbit
splitting of Equation 7-68, given by the analogous relation

11-16

where gN is the nuclear Landé factor, mI is the magnetic quantum number of the z com-
ponent of I, is the nuclear magneton, and Be is the magnetic field at the
nucleus produced by the electrons (Table 11-4). The product is the nuclear
magnetic moment. Except for the quantities on the right side of Equation 11-16 are
all of the same order of magnitude as the corresponding ones in Equation 7-68; how-
ever, the ratio Thus, the hyperfine splitting for a given atom is very
small, about 10�3 times the fine-structure splitting. Using as an example the sodium
doublet levels shown in Figure 7-30, which produce the yellow D
lines, Figure 11-11 illustrates the hyperfine splitting of these levels resulting from
I � J coupling. It can be observed only with extremely high resolution. The use of
tunable dye lasers and atomic beam fluorescence spectroscopy has made high precision
measurements of these extremely small energy splittings possible in recent years.

For the case there are (2I � 1) different F states; thus the nuclear spin can
be determined by counting the number of lines in the hyperfine splitting. The spin of
all even-even nuclides (those with even Z and even N) is zero in the ground state.

I � J,

2P1>2 , 2P3>2 , and 2S1>2
	N>	B � 10�3.

	N ,
gNmI	N

	N � eU>2mp
¢E � gNmI	NBe

F � 0 SF � 0.

(I � J), (I � J � 1), Á , ƒI � J ƒ ,

Table 11-4 Magnetic field Be at the nucleus due to electron for
selected alkali elements

Element n

H 1 17 — —

Li 2 13 — —

Na 3 44 4.2 2.5

K 4 63 7.9 4.6

Rb 5 130 16 8.6

Cs 6 210 28 13

Source: Data are from E. Segrè, Nuclei and Particles, 2d ed. (Menlo Park, CA: Benjamin/Cummings
1977), p. 259.

B
e
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3>2(T)B
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Evidently the nucleons couple together in such a way that their angular momenta add
to zero in pairs, as is often the case for electrons in atoms. There is no such simple rule
for other nuclides with either odd N or odd Z or both. Some of the successes of the
shell model to be discussed in Section 11-6 are the correct prediction of nuclear spins
for many nuclei.

The magnetic moment of the nucleus is of the order of the nuclear
magneton, since the magnitude of gN is typically between 1 and 5
and the maximum value of The exact value is difficult to predict because
it depends on the detailed motion of the nucleons. If the proton and neutron obeyed
the Dirac relativistic wave equation, as does the electron, the magnetic moment due
to spin would be 1 nuclear magneton for the proton because its charge is �e and 0
for the neutron because it has no charge.11 The experimentally determined moments
of the nucleons are

As we will see in Chapter 12, the proton and neutron are more complex particles than
the electron. It is interesting that the deviations of these moments from those predicted
by the Dirac equation are about the same magnitude, 1.91 for the neutron and 1.79 for
the proton. The reason that the magnetic moments of the nucleons have these partic-
ular values is not yet completely understood; the current theoretical predictions of 
and agree with high-precision, experimentally measured values only to within
about 1 percent.

	n

	p

(	n)z � �1.91304 	N

(	p)z � �2.79285 	N

ƒm1 ƒ � I.
	N � eU>2mp , gNmI	N
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between the sodium doublet
levels produce the yellow D
lines, being D1
and being D2 .
Coupling between the
atomic angular momentum J
and the nuclear spin 
results in the hyperfine
splitting, each level having
total angular momentum
F � I � J. Note that the
hyperfine splitting of each
of the doublet levels is
about 10�3 times that of the
fine-structure splitting of
the level. (b) The selection
rule leads to
the D2 line being split into six
components. The D1 line
is correspondingly split into
four components (not shown).
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EXAMPLE 11-7 Nuclear Spin of Thallium-205 High-resolution spectroscopic study
of the spectrum of reveals that each component of the doublet 

consists of three hyperfine components.
This requires that there be two hyperfine levels for each J. Determine the spin of
the nucleus.

SOLUTION

If then there are (2I � 1) different F levels, and if I � J, there are (2J � 1)
different F levels. Since the hyperfine spectrum indicates that there are two levels
for each J, then for the level either

But we already know that J � so (2J � 1) cannot equal 2; therefore
(2I � 1) � 2 and the spin of the nucleus (in its ground state) must be 

Note that for the and levels both of the equations above are satisfied
since in these two cases I � J.

Questions

1. Why is N approximately equal to Z for stable nuclei? Why is N greater than Z for
heavy nuclei?

2. Why are there no stable isotopes with Z � 83?

3. The mass of which contains 6 protons and 6 neutrons, is exactly 12.000 u
by the definition of the unified mass unit. Why isn’t the mass of which
contains 8 protons and 8 neutrons, exactly 16.000 u?

11-3 Radioactivity
Of the more than 3000 nuclides known, only 266 are stable. All of the rest are ra-
dioactive; that is, they decay into other nuclides by emitting radiation. The term radi-
ation here refers to particles as well as electromagnetic radiation. In 1900 Rutherford
discovered that the rate of emission of radiation from a substance was not constant but
decreased exponentially with time. This exponential time dependence is characteris-
tic of all radioactivity and indicates that it is a statistical process. Because each nu-
cleus is well shielded from others by the atomic electrons, pressure and temperature
changes have no effect on nuclear properties.12

For a statistical decay (in which the decay of any individual nucleus is a random
event), the number of nuclei decaying in a time interval dt is proportional to dt and to
the number of nuclei present. If N(t) is the number of radioactive nuclei at time t
and �dN is the number that decay in dt (the minus sign is necessary because N de-
creases), we have

11-17

where the constant of proportionality, is called the decay constant. is the proba-
bility per unit time of the decay of any given nucleus. The solution of this equation is

11-18N(t) � N0e
�
t



,

�dN � 
N dt

16O,

12C,

2S1>22P1>2 1>2.205Tl
(3>2),

2I � 1 � 2 or 2J � 1 � 2

2P3>2
I � J,

205Tl

2S1>2 (377.7 nm), 2P3>2 S 2S1>2 (535.2 nm)

2P1>2 S205Tl
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where N0 is the number of nuclei present at time t � 0. The decay rate is

11-19

Note that both the number of nuclei and the rate of decay decrease exponentially with
time. It is the decrease in the rate of decay that is determined experimentally. Figure
11-12 shows N versus t. If we multiply the numbers on the N axis by this becomes
a graph of R versus t.

We can calculate the mean lifetime from Equation 11-18. The number of nuclei
with lifetimes between t and t � dt is the number that decay in dt, which is 
thus the fraction with lifetimes in dt is

11-20

When we use this distribution function, the mean lifetime is

11-21

which is the reciprocal of the decay constant The half-life is defined as the time
after which the number of radioactive nuclei has decreased to half its original value.
From Equation 11-18,

11-22

After each time interval of one half-life, the number of nuclei left in a given sample
and the decay rate have both decreased to half of their previous values. For example,
if the decay rate is R0 initially, it will be R0 after one half-life, R0 after
two half-lives, and so forth. During one mean lifetime, the number of nuclei remain-
ing in the sample and the decay rate have decreased to 1 e of their previous values.
Thus, if the initial decay rate is R0 , it will be R0 after time has elapsed,

R0 after time and so on. The SI unit of radioactivity is the becquerel
(Bq), which is defined as one decay per second:

11-23

A historical unit of activity, the curie (Ci), is also frequently used. The curie is
defined as

11-24

The curie is the disintegration rate of 1 g of radium. Since this is a very large unit, the
millicurie (mCi), microcurie ( Ci), and picocurie (pCi) are also often used.	

1 Ci � 3.7 � 1010 decay>s � 3.7 � 1010 Bq

1 Bq � 1 decay>s
2�,(1>e)(1>e) �(1>e) >

(1>2)(1>2)(1>2)

t1>2 �
ln 2



� (ln 2)� �

0.693
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�
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Figure 11-12 Exponential
radioactive decay law. The
number of nuclei remaining
at time t decreases
exponentially with time t.
The half-life and the
mean life are
indicated. The decay rate
R(t) � N(t) has the same
time dependence.
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EXAMPLE 11-8 Counting Rate of a Radioactive Sample A radioactive source has a
half-life of 1 minute. At time t � 0 it is placed near a detector and the counting
rate (the number of decay particles detected per unit time) is observed to be
2000 counts s. (a) Find the mean life and the decay constant. (b) Find the counting
rate at times t � 1 min, 2 min, 3 min, and 10 min.

SOLUTION

>
1. For question (a), the mean

life is related to the half-
life by Equation 11-22:t1>2�

or

� �
t1>2
ln 2

�
1 min

0.693
� 1.44 min � 86.6 s

t1>2 � (ln 2)�

2. From Equation 11-21, the
decay constant is given by

�
1

86.6 s
� 1.16 � 10�2 s�1


 �
1
�

3. Method 1. For question
(b), the counting rate is pro-
portional to the decay rate R
in Equation 11-19. The
counting rate at t � 0 has
the same proportionality to
R0, so we can write the
counting rate as R, substitut-
ing values for and for t1>2:


where t is now expressed in minutes

� 2000 e�(0.693)t

� 2000 e�(ln 2)t>t1>2R � 2000 e�
t � 2000 e�(1.16�10�2)t

4. The counting rate R can now be computed for each of the times t � 1 min,
2 min, 3 min, and 10 min as follows:

and similarly

R(10 min) � 1.95 counts>sR(3 min) � 250 counts>s
R(2 min) � 2000 e�(0.693)(2) � 500 counts>sR(1 min) � 2000 e�(0.693)(1) � 2000 � 0.50 � 1000 counts>s

5. Method 2. Since the half-
life is 1 min, the counting
rate at t � 1 min will be
half that at t � 0; at t � 2
min it will be half of that at
t � 1 min, and so on. In
general, at t � n min the
count rate will be

and again

and

� (0.0010)(2000) � 1.95 counts>sR(10 min) � (1>2)102000

R(1 min) � (1>2)12000 � 1000 counts>s
R � (1>2)nR0
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More

Very often the decay of a radioactive nucleus results in a new nucleus that
is also radioactive and that, in general, has a different decay constant. In
some cases such sequential decays may result in a dozen or more differ-
ent radioactive isotopes. Production and Sequential Decays, on the home
page (www.whfreeman.com/tiplermodernphysics5e), describes the way
to calculate the total activity and the net rate at which new isotopes are
produced. See Equations 11-25 through 11-29 and Figures 11-13 and 
11-14 here, as well as Examples 11-9 and 11-10 and Questions 4 and 5.

11-4 Alpha, Beta, and Gamma Decay
From the time when Becquerel’s discovery of radioactivity gave the first hint of the ex-
istence of the nucleus, much of what physicists have learned about nuclear structure has
resulted from studies of radioactive nuclides, that is, by studying the transitions of
nuclei from one quantum state to another of lower en-
ergy. As noted earlier, of the approximately 3000 known
isotopes, all but 266 are radioactive. In addition, nearly
all of a theoretically estimated 2000 more possible iso-
topes that have yet to be created are radioactive. The ra-
dioisotopes decay by one or another of at least nine dif-
ferent modes; however, most decays occur via one or
sometimes two of the most common modes: alpha, beta,
and gamma. Others occur by more unusual routes, such
as emission of a proton or neutron or spontaneous fission.
A few may decay by modes that are exceedingly rare,
such as a double beta decay, which is the focus of con-
siderable current theoretical and experimental interest.
The fundamental purpose of the studies of radioactive
nuclei is to obtain information about nuclear structure,
the nature of the strong nuclear force, and the properties
of elementary particles.

In the subsections that follow we will discuss the
three most common types of decay in some detail, touch-
ing on certain of the others when pertinent. In these dis-
cussions it will be helpful to keep two points in mind.
The first of these is that the line of stability in Figure 11-8
is the floor of an energy valley formed by plotting the bind-
ing energy for each isotope on an energy scale perpendic-
ular to the N and Z axes, as illustrated in Figure 11-15a.
In Figure 11-15a the energy is artificially truncated;
however, there are theoretical limitations placed on the
numbers of protons and neutrons that can be assembled
into a nucleus, even a highly unstable one. These limits,
given the whimsical name driplines, are shown in Figure
11-15b and define the N-Z boundaries within which lie
the 5000 or so isotopes that may, in principle, exist. The
limits are set by the energies at which the nuclei will spon-
taneously emit a proton or neutron.
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Figure 11-15 (a) The graph of Z versus N with the nuclear
binding energy B (in MeV) plotted upward. The surface thus
formed is truncated at 100 MeV to make the energy valley
more clearly visible. (b) More than 5000 theoretically predicted
nuclei lie between the proton and neutron driplines. Only about
3000 (those between the inner irregular colored lines) are found
in nature or have been created in the laboratory, and only 266
of those are stable (black dots). The edges of the truncation in
(a) are analogous to artificial driplines.
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The second point to bear in mind is that radioactive-decay processes conform to
the same conservation laws that are obeyed by all physical processes. In particular,
(1) relativistic mass-energy, (2) electric charge, (3) linear momentum, (4) angular mo-
mentum, (5) nucleon number, and (6) lepton number13 are all conserved quantities.
The first four of these are already familiar to you from your previous study of physics.
The last two relate specifically to the interactions and decays of fundamental particles
and will be discussed in Chapter 12. As we discuss the three most common modes of
radioactive decay, consequences of each of the conservation laws will be illustrated.

Alpha Decay

In order for a radioactive substance to be found in nature, either it must have a half-
life that is not much shorter than the age of Earth (about years) or it must
be continually produced by the decay of another radioactive substance or by a nuclear
reaction. For a nucleus to be radioactive at all, its mass must be greater than the sum
of the masses of the decay products. Many heavy nuclei are unstable to decay.
Because the Coulomb barrier inhibits the decay process (the particle must “tunnel”
through a region in which its energy is less than the potential energy, as shown in
Figure 11-1a), the half-life for decay can be very long if the decay energy is small,
that is, if the width of the barrier to be tunneled through is large. Indeed, the relation
between the half-life of an emitter and the energy of the particle is so striking that
it was first noticed by two research assistants in Rutherford’s laboratory, Geiger and
Nuttall, in 1911, the same year that Rutherford discovered the nucleus. The general
relation, called the Geiger-Nuttall rule, is illustrated in Figure 11-16 and given by
Equation 11-30.

11-30

where is the kinetic energy of the emitted particle and A and B are experimen-
tally determined constants.
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Figure 11-16 The Geiger-Nuttall relation is illustrated by the semilogarithmic graph of the 
decay half-life versus the kinetic energy of the emitted particle for the naturally occurring 
emitters. The broken line represents the empirical Geiger-Nuttall rule given by Equation 11-30.�
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Subsequently, an expression for the half-life of an emitter was derived from the
Schrödinger equation treating decay as a barrier penetration phenomenon. Its good
agreement with experimental results was one of the earliest successful applications of
wave mechanics. Briefly, the derivation considered an particle confined within the
nucleus with energy as was shown in Figure 11-1. The wave functions for two such
particles are illustrated in Figure 11-17. The potential for r � R is taken to be the
Coulomb function V(r) � zZe2 4 0r where z � 2 for the particle, with a smooth
transition to the nuclear potential. The probability that the particle will penetrate the
barrier on any one approach is the transmission coefficient T that was derived in
Section 6-6, Equations 6-75 and 6-76. The decay constant is
then given by the product of the transmission coefficient T and the frequency with
which the nuclear particle approaches the barrier. The latter, given by Equation 6-78,
depends on the particle’s speed determined by its kinetic energy for r � R in
Figure 11-17 and the value of the nuclear radius. Thus,

11-31

The result of the wave mechanical derivation, done by B. Taagepera and M. Nurmia, is

11-32

where is in years, is in MeV, and Z refers to the daughter nucleus. Notice that
the dependence of on the nuclear radius provides a method of measuring nuclear
radii that is independent of the methods mentioned in Section 11-2.

Alpha-Decay Chains All very heavy nuclei (Z � 83) are theoretically unstable to 
decay because the mass of the parent radioactive nucleus is greater than the sum of the
masses of the decay products—the daughter nucleus and an particle. When a nu-
cleus emits an particle, both N and Z decrease by 2, and A decreases by 4. There are
four possible -decay chains or sequences, depending on whether A equals 4n,
(4n � 1), (4n � 2), or (4n � 3), where n is an integer. For the longest-lived nucleus
in each sequence, n � 58 for the first and fourth and n � 59 for the second and third.
All but one of these series are found in nature. The (4n � 1) series is not, because its
longest-lived member (other than the stable end product has a half-life
of only years, which is much shorter than the age of Earth; hence 
present when Earth was formed has long since decayed away.
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Figure 11-18 illustrates the thorium series, which
has A � 4n and begins with an decay from to

Decreasing n successively by 1 generates A for
possible daughter nuclides until a stable one is
reached. The daughter nuclide of an decay is on the
left, or neutron-rich, side of the stability curve (dashed
line), so it often decays by decay, in which one neu-
tron changes to a proton by emitting an electron. In
Figure 11-18 decays by decay to 
which in turn decays to There are then four 
decays to which decays to There is a
branch point at which decays either by decay
to or by decay to The branches meet at
the stable lead isotope The (4n � 2) series
begins with and ends with The (4n � 3) se-
ries starts with and ends with Figure 11-19
shows a typical -decay spectrum.

More

The energy spectrum of the alpha particles emitted
by a heavy nucleus such as shows a number of
sharp peaks with energies less than the decay en-
ergy Q. The highest energy of these corresponds to
the transition from the parent’s ground state to that
of the daughter. The others are the result of alpha
transitions to excited states of the daughter. In
Energetics of Alpha Decay, on the home page
(www.whfreeman.com/tiplermodernphysics5e), we
describe how they can be used to construct the excited
levels of the daughter nucleus. See also Figures 11-19
and 11-20, Equations 11-33 through 11-36, and
Example 11-11 here.
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Beta Decay

There are three radioactive-decay processes in which the mass number A remains un-
changed while Z and N change by �1. These are decay, in which a neutron inside
a nucleus changes into a proton with the emission of an electron; decay, in which
a proton inside a nucleus changes into a neutron with the emission of a positron; and
electron capture (EC), in which a proton in a nucleus changes to a neutron by captur-
ing an atomic electron, usually a 1s electron from the K shell since these have the
highest probability density in the vicinity of the nucleus. Those nuclei on the neutron-
rich side of the energy valley in Figure 11-15 will tend to decay by emission, while
those on the proton-rich side will most probably decay by emission or electron
capture. We will discuss each of these processes briefly.

Decay The simplest example of decay is that of the free neutron, which de-
cays into a proton plus an electron with a half-life of about 10.8 minutes. The energy
of decay is 0.78 MeV, which is the difference between the rest energy of the neutron
(939.57 MeV) and that of the proton plus electron (938.28 � 0.511 MeV). More gen-
erally, in decay, a nucleus of mass number A, atomic number Z, and neutron
number N changes into one with mass number A, atomic number Z� � Z � 1, and
neutron number N� � N � 1, conserving charge with the emission of an electron.
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The energy of decay Q is times the difference between the mass of the parent nu-
cleus and that of the decay products. If we add the mass of Z electrons to both the
parent nucleus and the decay products, we can write Q in terms of the atomic masses
of the parent and daughter atoms:

11-37

Another way of understanding this result is to note that in decay an electron of
mass me leaves the atom, which is now a daughter ion of nuclear charge (Z � 1) and
Z atomic electrons. To obtain the mass of the neutral daughter atom, we must add the
mass of an electron me so the total mass change is just the difference in mass between
the parent and daughter atoms. If the decay energy Q were shared only by the daugh-
ter atom and the emitted electron, the energy of the electron would be uniquely deter-
mined by conservation of energy and momentum, just as in decay. Experimentally,
however, the energies of the electrons emitted in decay are observed to vary from
zero to the maximum energy available A typical energy spectrum is shown in
Figure 11-21; compare this with the discrete spectrum of -particle energies of Figure
11-19. Thus, in a particular decay event in which the electron carried away less than
the energy it would appear that energy was not conserved since in that decay

A moment of reflection will persuade you that linear momentum
would not be conserved either and, recalling that the neutron, proton, and electron are
all spin particles, neither would the angular momentum.

A solution to this apparent multiple failure of conservation laws was first sug-
gested by Wolfgang Pauli in 1930. He proposed that a third particle was emitted in 

decay that carried the energy, linear momentum, and angular momentum needed to
conserve these quantities in each individual decay. It would carry no electric charge
since charge was already conserved in decay. Its mass would be much less than that
of the electron since the maximum energy of electrons emitted in decay is observed
to be very nearly equal to the value of Q, the total energy available for the decay.
In 1933 Enrico Fermi developed a highly successful quantum theory of decay that
incorporated Pauli’s proposed particle, which Fermi called the neutrino (“little neutral
one” in Italian) to distinguish it from the massive neutron that had been discovered by
Chadwick earlier that same year. It was not until 1956, in an experiment performed
by Clyde Cowan and Frederick Reines, that neutrinos were first observed in the labo-
ratory. It is now known that there are six kinds of neutrinos, one associated with
electrons, one associated with muons, one associated with the tau particle, and
the antiparticles of each of those, written and The electrons, muons, and taus
together with the neutrinos constitute a family of particles called leptons, which will be
discussed further in Chapter 12. The decay of the free neutron is then expressed by
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and that of a more or less typical emitter, by

11-39

where the lepton conservation law (see Section 12-3) dictates the emission of an electron
antineutrino to accompany a decay. Presently the subject of intense experimental and
theoretical research, current results place the upper limit of the electron neutrino’s mass
at about 2.2 eV c2, or no more than about times the mass of the electron.4 � 10�6> ��
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Figure 11-21 Energy
spectrum of electrons
emitted in decay. The
number of electrons per unit
energy interval N is plotted
versus kinetic energy. The
fact that all the electrons do
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there is another particle
emitted that shares the energy
available for decay.
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Decay In decay, a proton changes into a neutron with the emission of a
positron and a neutrino. A free proton cannot decay by positron emission because of
conservation of energy (the rest energy of the neutron is greater than that of the pro-
ton), but because of binding energy effects, a proton inside a nucleus may emit a
positron. A typical decay is

11-40

The only naturally occurring positron emitter known to exist is which also may
decay by emission or electron capture! The -decay equation is

11-41

As in all nuclear transformations, the decay energy Q is related to the difference in
mass between the parent nucleus and the decay products. Note that if we add the mass
of Z electrons to the nuclear masses (Z � 7 in the case of Equation 11-40 and Z � 19
in Equation 11-41), we obtain on the right side of each equation the mass of the
daughter atom plus two extra electron masses (the positron and electron have identi-
cal mass). The decay energy for decay is thus related to the atomic mass of the par-
ent and daughter atoms by

11-42

Again, we can understand this by noting that in decay, a positron of mass me leaves
the system, which is now a negative daughter ion of nuclear charge (Z � 1) and Z
atomic electrons. To obtain the mass of the neutral daughter atom, we must subtract
the mass of another electron, giving a net change of 2me in addition to the difference
in mass of the parent and daughter atoms. Thus, decay cannot occur unless that
energy difference is at least 2mec

2 � 1.022 MeV.
As we have mentioned, neither electrons nor positrons exist inside the nucleus

prior to the decay. They are created in the process of decay by the conversion of en-
ergy to mass, just as photons are created when an atom makes a transition from a
higher to a lower energy state. In this regard decay differs from decay. There is,
however, a fundamental difference between the emission of electrons (and neutri-
nos) that de-excite the bound states of nucleons that compose a nucleus and the
emission of photons accompanying the de-excitation of the electrons bound to a
nucleus. The latter bonding is due to the electromagnetic interaction, whereas the
nucleons are bound by the strong nuclear force. However, electrons and neutrinos
are not affected by the strong nuclear force and, since the neutron is uncharged,
the electromagnetic interaction is not involved in its decay. Thus, in order to explain

decay, we must invoke a new interaction. Since -decay lifetimes are typically
quite long compared to the characteristic nuclear time scale the time for
a particle moving at near the speed of light to cross the nucleus), the new interac-
tion must act for a long (nuclear) time in order to generate the decay. In other words,
it is weaker than the strong attractive force between the nucleons and is therefore
called the weak interaction or the weak force. So we now have two nuclear forces,
a strong one and a weak one. Like the strong nuclear force, the weak nuclear force
also has a short range.

( � 10�23 s,
��

��
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��
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Electron Capture In electron capture, a proton inside a nucleus captures an atomic
electron and changes into a neutron with the emission of a neutrino; thus the effect on
the atomic number is the same as in decay. The energy available for this process is
given by

11-43

Whenever the mass of an atom of atomic number Z is greater than that of the adjacent
atom with atomic number (Z � 1), electron capture is possible. If the mass difference
is greater than 2me , decay is also possible, and these two processes compete.
The probability of electron capture is negligible unless the atomic electron is in the
immediate vicinity of the nucleus. This probability is proportional to the square of
the electron wave function integrated over the volume of the nucleus. It is significant
only for the 1s electrons of the K shell or, with much lower probability, the 2s elec-
trons of the L shell. A typical example of electron capture is

11-44

which has Q � 0.751 MeV. Note that the emission of the neutrino conserves leptons
since the captured electron has disappeared.

Further understanding of the -decay processes can be gained by considering their
relation to the energy valley of the N versus Z graphs shown in Figure 11-15, with the
energy scale computed from the Weizsäcker formula (Equation 11-14). Cuts through
Figure 11-15a at constant mass number A yield parabolas since Equation 11-14 is qua-
dratic in Z, one parabola for a5 � 0 (odd A) and two parabolas for a5 � �12 MeV c2

(even A). Figure 11-22 illustrates an example of each case. The decays always pro-
ceed down the sides of the energy valley toward the lowest-energy, stable isotope on
the valley floor. Notice in Figure 11-22b the possible double decay from to 60Ni.60Fe�
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Since decay proceeds via the weak interaction, the probability of the weak force pro-
ducing two particles simultaneously is indeed small, as you might imagine. Prior to
1985 its existence had been inferred only indirectly by abundance measurements on
decay products in geologic materials. In 1985 Steven Elliott and his co-workers made
the first direct observation of double beta decay using as the source. The decay
equation is

11-45

The half-life for the double decay measured by Elliott is 1.1 � 1020 years! Double
beta decay has subsequently been observed in several other nuclides. Since recent
experiments show that the neutrino has a very small mass, current theory (the
Standard Model—see Chapter 12) would allow the decay in Equation 11-45 to pro-
ceed without the emission of neutrinos, albeit with an even lower probability. The
implications of a neutrinoless double beta decay are profound for both particle
physics and cosmology. Although active searches are currently under way, no such
decays have yet been observed.

EXAMPLE 11-12 Maximum Energy from We noted earlier that one of the
decay modes of is positron emission, shown in Equation 11-41. What is the max-
imum energy of the positrons?

SOLUTION

40K

40K��

�

82
34Se ¡ 82

36Kr � �� � �� � �e � �e

82Se

��

�

1. The maximum energy Q of the positrons is
given by Equation 11-42, where is the
parent and is the daughter:40Ar

40K

Q

c2
� MP � (MD � 2me)

2. The atomic masses are given in Appendix A:

me � 5.4858 � 10�4 u

M(40Ar) � 39.962384 u

M(40K) � 39.964000 u

3. Substituting these into Equation 11-42 yields

� 0.483 MeV>c2

� 0.000519 u � 931.5 MeV>c2 # u

Q

c2
� 39.964000 u � [39.962384 � 2 � 3.4858 � 10�4] u

Remarks: Neglecting the recoil of the Ar nucleus, the decay energy Q � 0.483
MeV is the maximum energy of the emitted positrons.

EXAMPLE 11-13 The Decay of Determine which decay mode or modes
among decay and the three types of decay are allowed for 

SOLUTION

The four decays whose possibility of occurrence we are to find are

 electron capture:  233
93Np ¡ 233

92U � �e

�� decay:  233
93Np ¡ 233

92U � �� � �e

�� decay:  233
93Np ¡ 233

94Pu � �� � �e

� decay:  233
93Np ¡ 229

91Pa � �

233
93Np.��

233
93

Np
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The decay energy Q for each of these is computed as follows:

decay (Equation 11-34):

which is greater than zero; therefore, decay is allowed.

decay (Equation 11-37):

decay is forbidden.

decay (Equation 11-42):

decay is allowed.

Electron capture (Equation 11-43):

Electron capture is allowed.
Thus, the available decay energy would allow decay, decay, and electron

capture, although the energy for decay is very small. decay is forbidden.
Experimentally, decays more than 99 percent of the time by electron capture
and about 0.3 percent of the time by decay. decay has not been observed.

Gamma Decay

In decay, a nucleus in an excited state decays to a lower energy state of the same iso-
tope by the emission of a photon. This decay is the nuclear analog of the emission of
light by atoms. Since the spacing of the nuclear energy levels is of the order of MeV
(as compared with eV in atoms), the wavelength of the emitted photons are of the
order of

Gamma-ray emission usually follows beta decay or alpha decay. For example, if
a radioactive parent nucleus decays by beta decay to an excited state of the daughter
nucleus, the daughter nucleus often decays to its ground state by emission of one or
more rays. The mean life for decay is usually very short. Direct measurements of
mean lives as short as 10�11 s are possible. Measurements of lifetimes smaller than
10�11 s are difficult but can sometimes be accomplished by determining the natural
line width and using the uncertainty relation A few emitters have very� � U>%.%




 �
hc

E
�

1240 eV # nm

1 MeV
� 1.24 � 10�3 nm



���

233Np
����

���

� 0.001175 u � 1.09 MeV>c2

Q

c2
� 233.040805 � 233.039630

��

� 0.000078 u � 0.073 MeV>c2

Q

c2
� 233.040805 � (233.039630 � 2 � 5.4858 � 10�4)

�	

��

� �0.002158 u � �2.01 MeV>c2

Q

c2
� 233.040805 � 233.042963

��

�

� 0.006117 u � 5.70 MeV>c2

Q

c2
� 233.040805 � (229.032085 � 4.002603)
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long lifetimes, of the order of hours and even, in a few cases, years. Nuclear energy
states with such long lifetimes are called isomers or metastable states. The differences
in -ray lifetimes are a consequence of the quantum-mechanical selection rules that
govern transitions between the energy levels of nuclei, just as they do between atomic
energy levels. For example, large angular momentum (spin) changes are forbidden for

transitions; that is, they have very low probability. This is the major reason that, for
instance, the first excited state of an isomer, decays to the ground state with a
half-life of 13.6 years. The spin of the isomeric state is while that of the ground
state is The decay requires the ray to carry away of angular momentum, a
very unlikely occurrence that accounts for the long half-life.

The energy hf of a gamma-ray photon is the difference in energy of the states be-
tween which the transition occurs. That is,

11-46

where is the energy of the upper level and is that of the lower level. Several
gamma decays are shown in Figure 11-20 between some of the excited states of 
that resulted from the decay of For example, a ray is emitted from the 174-
keV level of reducing the excitation energy of that nucleus to 61 keV above the
ground state. From Equation 11-46, the energy of that ray is equal to 174 keV � 61
keV � 113 keV. To be more precise, conservation of momentum requires that the 

nucleus carry a small part of this energy as it recoils from the emission of the
photon. (See Figure 11-23.) The energy of the nuclear recoil Er is given by

11-47

where M is the nuclear mass. All gamma-ray energies are small compared with atomic
and nuclear rest energies; that is, or therefore,
Thus, Equation 11-46 is an excellent approximation of the gamma ray’s energy.

Internal Conversion An important alternative to gamma-ray emission for the de-
excitation of an excited nuclear state, particularly low-lying states rather than being
emitted as a photon, is the process of internal conversion. In this process the excitation
energy of the state is transferred to an orbital electron, which is ejected from the atom.
Those electrons with the highest probabilities of being close to the nucleus, the K and
L electrons, are the ones most likely to be emitted. The ejected electron has kinetic
energy equal to the nuclear transition energy minus the electron’s binding energy. Since
the latter are accurately known for nearly all elements, measuring the kinetic energies
of the conversion electrons makes possible determination of many nuclear excited
states. While internal conversion is quantum mechanically a one-step process, it was
initially pictured as the emission of a photon followed by a photoelectric-effect inter-
action with an orbital electron of the same atom, hence the name internal conversion.

More

In 1958 Rudolf Mössbauer14 observed a remarkable feature of gamma
decay, the recoilless emission of gamma rays from A discovery
made while he was still a graduate student, it made possible high-pre-
cision-frequency measurements, leading to a host of applications. It is
described in the section The Mössbauer Effect on the home page:
www.whfreeman.com/tiplermodernphysics5e. See Figures 11-24
through 11-26 here.

191Ir.

Er V hf.hf>Mc2 V 1;hf V Mc2
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The exceptional precision of

frequency measurements

made possible by the

Mössbauer effect has

applications in a broad range

of areas, such as

measurements of

gravitational red shift,

impurities and imperfections

in crystalline solids, and the

transverse Doppler effect

(see Section 1-5), to name

just three.
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Figure 11-23 A nucleus of
rest energy Mc2 emits a
photon of energy hf and
momentum p � hf c.
Conservation of momentum
requires that the nucleus also
recoil with momentum p.
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Questions

6. De-excitation of the first excited state of requires the gamma ray to carry
away of angular momentum. Since the gamma ray’s intrinsic angular
momentum is how could it carry away 

7. Why is the decay series A � (4n � 1) not found in nature?

8. A decay by emission is often followed by a decay. When this occurs, it is
usually a decay. Why?

7. How can the application of very high pressure affect the lifetime of a sample that
decays by electron capture? Why are other types of decay not affected?

11-5 The Nuclear Force
The study of nuclear physics is quite different from that of atomic physics. The sim-
plest atom, the hydrogen atom, can be completely understood by solving the
Schrödinger equation using the known potential energy of interaction between the
electron and proton, (though, as we have seen, the mathematics
needed is fairly complicated). The simplest nucleus (other than a single proton) is the
deuteron, consisting of a proton and a neutron. We cannot solve the Schrödinger equa-
tion for this problem and then compare with the experiment because, although many
of its characteristics have been determined, the exact mathematical form of the po-
tential energy of interaction V is not known. There is no macroscopic way to measure
the force between a neutron and a proton. It is clear from the fact that many nuclei are
stable that there are other forces much stronger than electromagnetic or gravitational
forces between nucleons. Considering as an example, we see that the electrosta-
tic potential energy of two protons separated by 1 fm is

and note that it is positive—i.e., the electrostatic force between the protons is, of
course, repulsive. However, the energy needed to remove a proton or neutron from

is about 20 MeV. The force responsible for such a large binding energy must be
attractive and significantly stronger than the electrostatic force. This must certainly be
the case since the neutrons are electrically neutral and hence do not feel the Coulomb
force and the protons are all positively charged and thus feel a repulsive electrostatic
force. Nor can we appeal to the gravitational attractive force between the protons to
offset their Coulomb repulsion since, as Example 11-14 illustrates, the gravitational
force between pairs of protons in the nucleus is insignificantly small compared to their
Coulomb repulsion. Thus, the attractive force that holds the nucleons together must be
strong, stronger even than the electromagnetic interaction. It is called the nuclear or
hadronic force or often simply the strong force.

Determination of the characteristics of the nuclear force is one of the central
problems of nuclear physics. Much information about this force can be and has been
obtained from scattering experiments involving protons, neutrons, and other particles.
Although the results of a scattering experiment can be predicted unambiguously from
knowledge of the force law, the force law cannot be completely determined from the
results of such experiments. The results of scattering experiments do indicate that 

4He

V �
ke2

r
�

1.44 MeV # fm

1 fm
� 1.44 MeV

4He

V(r) � �ke2>r

��

��

4U?1U,
4U

93Nb
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(1) the nuclear force has the same strength between any two nucleons—that is, n-n,
p-p, or n-p; (2) the force is strong when the particles are close together and drops
rapidly to zero when the particles are separated by a few fm; and (3) it is a saturated
force. The potential energy of the nucleon-nucleus interaction can be roughly repre-
sented by a square well of about 40 MeV depth and a few fm width.

EXAMPLE 11-14 Ratio of F
grav

F
Coul

Between Protons Compare the gravitational
attractive force between two protons in an atomic nucleus (or anywhere else, for
that matter) with the electrostatic repulsion between them.

SOLUTION

The electrostatic repulsion for two protons separated by a distance r is

and the gravitational attraction between them is

The ratio is independent of r and equal to

Fgrav

FCoul

� 8.1 � 10�37 � 10�36

Fgrav

FCoul

�
Gm2

p

(1>4��0)e
2

�
(6.67 � 10�11 N # m2>kg2)(1.67 � 10�27 kg)2

(8.99 � 109 N # m2>C2)(1.60 � 10�19)2

FGrav � G
m2
p

r2
�
G(1.67 � 10�27 kg)2

r2

FCoul �
1

4��0

e2

r2
�

(1.60 � 10�19 C)2

4��0r
2

>

Solution of the nuclear-wave equation presents all of the mathematical complex-
ities of our earlier studies of atomic and molecular systems plus some truly monu-
mental new ones. Like the atomic and molecular systems, the nucleus (except for 
and ) is a many-body system with all of the accompanying computational difficul-
ties. In addition, the nuclear interaction is far more complex than the electromagnetic
interaction and, even worse, it is not yet known how the nuclear interaction can be ex-
pressed in closed, analytic form; that is, we do not know the nuclear force law equiv-
alent of Coulomb’s law for the electrostatic force. This means that we cannot yet write
down the exact form of the nuclear potential function that must be included in the
wave equation in order to solve for the nuclear-wave functions and allowed energies.

Substantial progress has been made in recent years toward obtaining the analytic
expression for the interaction. For instance, an estimate of the depth of the nuclear po-
tential can be made by assuming its shape to be approximated by a square well and
computing the ground-state energy of a nucleon, based on a reasonable assumption of
the well width. Using 2 fm as a typical width for light nuclei (see Figure 11-5), the
potential �V for a nucleon is approximately

V � �50 MeV

�V � E1 �
h2

8ma2
�

(6.63 � 10�34 J # s)2

(8)(1.67 � 10�27 kg)(2 � 10�15 m)2(1.60 � 10�13 J>MeV)

2H

1H
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Two protons separated by that same distance experience an electrostatic Coulomb
repulsive potential given by

Thus, our square well approximation suggests that at 2 fm, the attractive nuclear po-
tential exceeds the Coulomb repulsion experienced by a proton by nearly two orders
of magnitude.15

More detailed understanding of the nature of the nuclear force and the shape and
depth of the potential is provided by two types of experiments. First, just as atomic
spectroscopy yielded information that made possible the determination of such things
as the energies, spins, and magnetic moments of the electronic structure of the atoms,
nuclear spectroscopy—i.e., the study of the emission and absorption of particles and
radiation by the nuclei—yields valuable information concerning the ground and ex-
cited states of nuclei, including energies, magnetic moments, electric quadrupole mo-
ments, and spins. The second source of our detailed information comes from the
analysis of scattering experiments. These are experiments in which particles that feel
the nuclear force, such as protons or alpha particles, are used as projectiles “fired” at
target nuclei. The de Broglie wavelength of projectile protons with kinetic energies of
20 MeV (or more) are of the order of nuclear dimensions:

Thus, such protons will experience considerable diffraction in collisions with the tar-
get nuclei. Analysis of the resulting diffraction pattern yields detailed information
concerning the interaction between the particles. Many such experiments, particu-
larly protons scattered from protons, called p-p scattering, and neutrons scattered
from protons, or n-p scattering, reveal that the nuclear potential for proton-proton
pairs and neutron-proton pairs are of the form sketched in Figure 11-27. Although the
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(a) (b)Figure 11-27 (a) The
approximate shape of the
potential between n-p and n-n
pairs. The hard core
suggested by the nearly
constant central density of the
nucleus has a radius of about
0.5 fm. (b) The p-p potential
differs from those in (a) by
the added Coulomb
repulsion, which dominates
beyond about 3 fm. Notice
the n-p and n-n potential well
is slightly deeper than the p-p
potential due to the absence
of the Coulomb repulsion.



shape of the potential for neutron-neutron pairs can only be determined indirectly
since free neutrons are radioactive and we do not know how to make targets consist-
ing only of neutrons (such as the matter of neutron stars), it appears to be identical
to that of n-p pairs. In fact, when the Coulomb repulsion component of the p-p pair
potential in Figure 11-27b is subtracted from the total potential V(r), the remaining
nuclear p-p potential is also the same as those for n-p and n-n pairs. This leads to the
very important conclusion that the nuclear force is independent of the charge of the
nucleons. This suggests that the proton and neutron can be considered as different
charge states of the same particle, the nucleon. We will pursue this suggestion further
in Chapter 12.

As described in Section 11-2, the charge radius of the proton is about 1 fm. The
neutron is approximately the same size. As Figure 11-27 illustrates, two nucleons ex-
perience the attractive nuclear force as long as they are within about 2.5 fm of each
other, but the force diminishes rapidly over the next fm of separation and is es-
sentially zero beyond 3 fm. Thus, we also conclude that the nuclear force is a short-
range force. Nucleon pairs also experience an extremely strong repulsive component
of the nuclear force when they approach within about 0.5 fm. This hard core is con-
sistent with the observation that the central density is nearly the same for all nuclei
(see Figure 11-27). That is, as more and more nucleons are added, the size of the nu-
cleus increases in such a way that the density remains approximately constant, so
something must prevent the nucleons from crowding too closely together. The short
range of the nuclear force together with the repulsion of the hard core means that, as
the size of the nucleus increases beyond the 2.5- to 3-fm range of the force, an indi-
vidual nucleon will be able to interact with only a limited number of the other parti-
cles in the nucleus, namely its nearby neighbors that are within range of its force. This
is analogous to the limited number of bonds associated with each atom in the covalent
bonding of solids. For example, each carbon atom in diamond bonds with only four
of its nearest neighbors, and we could describe the carbon covalent bond as being a
saturated bond. Similarly, the nuclear force is a saturated force.

The Nuclear Exchange Force

Without knowing the analytic form of the nuclear potential function, we have been
able to conclude that the nuclear force is a short-range, saturated, charge-independent,
spin-dependent force with a hard core and a small noncentral component and is about
two orders of magnitude stronger than the electrostatic force. What could be the ori-
gin or mechanism for such a force was first suggested by H. Yukawa16 in 1935.

Yukawa proposed that the nuclear force resulted from an exchange of particles be-
tween the nucleons. He based his theory on an analogy with the quantum-mechanical
explanation of the electrostatic interaction, one of two exchange mechanisms that you
have previously studied, though perhaps not by that name. Classically, any distribu-
tion of charges produces an electric field and the force felt by another charge q lo-
cated in the field is the product q Any change in the charge distribution changes

however, the information that a change has occurred does not appear instanta-
neously throughout the field but is propagated outward at the speed of light. Time-
dependent changes in the charge distribution create time-dependent changes in 
that is, electromagnetic radiation, or waves.17 We have seen that the particle repre-
sentation of the electromagnetic radiation is the photon. Quantum mechanically,
every charge is continually emitting and absorbing photons, even when it is not mov-
ing. They are called virtual photons, meaning that they are not directly observable.

e,

e;
e.

e

1>2
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A charge can emit a virtual photon of energy hf without changing its energy or re-
coiling, i.e., without violating conservation of energy and momentum, provided that
the photon exists for no longer than where �E � hf, as required by the
uncertainty principle. The distance that the virtual photon can travel during the time
�t, called the range R, is given by

11-48

and substituting for �E,

11-49

A second charge located up to a distance R from the first can absorb the photon and a
similar photon emitted by the second charge may be absorbed by the first, all without
violating energy and momentum conservation. It is this exchange of virtual photons
that results in the electrostatic Coulomb force between the two stationary charges in
quantum mechanics. Note that there is no limit to the wavelength of the photon in
Equation 11-49 since the energy of the photon may be arbitrarily small, the photon
having no rest mass. Thus, the distance separating the two charges, the range R of the
Coulomb force, may also be infinite, as you have already learned.

An exchange mechanism was also used in BCS theory to account for the attrac-
tive force between the electrons of the Cooper pairs. (See Section 10-8.) In that case,

the exchange particles were the phonons and the range of the
force was not infinite but determined by the fact that 
the energy gap.

Yukawa proposed that the nuclear force could also be ex-
plained in terms of the exchange of virtual particles by the nucle-
ons. These particles, which he called mesons, were pictured as the
analogs of the virtual photons in the electromagnetic interaction
and established the meson field in analogy with the electromag-
netic field. The mechanism for the nuclear force was proposed to
be an exchange of a meson between a pair of nucleons, as illus-
trated by Figure 11-28. Yukawa accounted for the observed short
range of the nuclear force by assigning mass to the meson. Thus,
the energy uncertainty �E in Equation 11-48 would be

where m is the mass of the meson and mc2 is its rest energy. The
range R of the meson and therefore the nuclear force that it medi-
ates cannot be larger than

11-50

since the speed of the meson must be less than the speed of light.
Recall that h mc is the Compton wavelength of the particle
whose mass is m, so The range of the nuclear force
was known to be about 1 fm, which allowed an approximation of
the meson’s expected mass from Equation 11-50:

m � 3.5 � 10�28 kg � 380 me � 200 MeV>c2

R � 
c>2�.

c>

R � c¢t � cU>¢E � U>mc

¢E ! mc2

¢E �

R � cU>hf � c>2�f � 
>2�

R � c ¢t � cU>¢E
¢t � U>¢E,
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Nucleon
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Δt

Figure 11-28 Schematic representation of the
exchange of a meson by a pair of nucleons. The
meson is emitted by the nucleon on the left,
which recoils as a result and is absorbed after a
time �t by the nucleon on the right, which also
recoils. The effect on the nucleons is as if they
had interacted with each other. This kind of
spacetime diagram of the interaction of
fundamental particles is called a Feynman
diagram (see Section 12-1). The x and t axes are
normally omitted.
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The observed charge independence of the nuclear force was incorporated by Yukawa
into the theory by allowing the mesons to carry �e, 0, or �e charge. Thus, the ex-
change of a neutral meson would leave both of the nucleons with their original charge,
while the exchange of a charged meson would interchange their charges (see Figure
11-28). Note that m � 0 for photons in Equation 11-50 implies the infinite range of
the electromagnetic force.

If the nucleon that emits the meson happens to interact with another particle (or
nucleus) that has sufficient kinetic energy in the emitting nucleon’s rest system to
supply the meson’s rest energy and also provide the recoil momentum to the emitting
nucleon, thus conserving both energy and momentum, the virtual meson can become
real and be observable in the laboratory. Such a situation is shown schematically in
Figure 11-29. Note the analogy to the emission of photons (bremsstrahlung) by ac-
celerated electrons in an x-ray tube (see Section 3-4). It was interactions such as
shown in Figure 11-29 in which Yukawa’s mesons, now called mesons or pions,
were first seen in cosmic rays in 1947, more than a decade after they were pro-
posed.18 The mass measured for the pions is in quite good agreement
with Yukawa’s predicted approximate value of about and all three
charge versions were subsequently discovered, providing beautiful confirmation of
Yukawa’s theory. Since then additional mesons have been discovered and our under-
standing of the nuclear force has been modified to include the effect of their being
exchanged by nucleons as well, but the pions remain as the dominant carrier of the
force between nucleons and the cornerstone of our understanding of it. As we will
discuss further in Chapter 12, the Standard Model of particle physics describes the
nucleons and the mesons as composites of other, more fundamental particles, called
quarks. The interaction between quarks to form these particles is mediated by a field
particle, the gluon, carrying the strong force between quark pairs in analogy with our
discussion above.

200 MeV>c2,
140 MeV>c2,

�

t

x

Nucleon

Nucleus

π Meson

Figure 11-29 A Feynman-
like diagram of a nucleon
emitting a virtual pion in the
vicinity of a nucleus. If the
nucleus can provide at least
the pion’s rest energy and
participate in the
conservation of momentum,
the pion may become real,
i.e., visible in the laboratory.

EXAMPLE 11-15 Range of the Nuclear Force Using the experimentally measured
mass of the pion, 140 MeV c2, estimate the range of the nuclear force.

SOLUTION

The range R cannot be larger than according to Equation 11-50. We then
have that

R � 1.4 � 10�15 m � 1.4 fm

R �
Uc
mc2

�
(1.06 � 10�34 J # s)(3.00 � 108 m>s)

(140 MeV>c2)(c2)(1.60 � 10�13 J>MeV)

Uc>mc2

>

Questions

10. What property of the nuclear force is indicated by the fact that all nuclei have
about the same density?

11. How does the nuclear force differ from the electromagnetic force?

12. Mesons that have been discovered in recent years are all more massive than the
pion. What does that mean regarding the range of the force that they mediate?
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EXPLORING

Probability Density of the Exchange Mesons

A nucleon continually emits and absorbs virtual mesons. The time �t during which a
virtual meson exists can be estimated from Equation 11-50:

This is not a very long time! Thus, a 10�20-second time-exposure “snapshot” of a nucleon
would show a cloud consisting of more than 10,000 mesons surrounding the nucleon!
The probability density of the mesons can be determined using the results that we ob-
tained from relativity and wave mechanics in Chapters 2 and 6, respectively. The rela-
tivistic expression connecting the total energy E and momentum p, the magnitude of the
energy/momentum four-vector, is

2-32

With the appropriate operator substitutions from Table 6-1,

11-51

Equation 2-32 can be written as

11-52

where is the wave function of the meson. Equation 11-52 is a relativistic wave
equation. It was first obtained by Oskar Klein and Walter Gordon in 1926, the same
year that Schrödinger developed his nonrelativistic wave equation.

That the extent of the meson field is related to the range of the nuclear force given
by Equation 11-50 can be illustrated by computing the probability density of the meson

for a static, or time-independent, distribution. This is roughly analogous to the vir-
tual photon distribution, or the electric field intensity, for a stationary charge. In this
case, the time derivative of vanishes and Equation 11-52 can be written as

11-53

whose solution is

11-54

where A is a factor determined by the normalization condition. The probability density
is then

11-55

and we see that the probability density of the mesons falls off exponentially at a rate de-
termined by R. In other words, R determines the range of the exchange mesons as we
had interpreted it in Equation 11-50. Figure 11-30 illustrates the probability distribution
function for the virtual mesons. For values of r greater than about 0.5R,P(r) � ƒ+ ƒ 2r2

ƒ+(r) ƒ 2 �
ƒA ƒ 2 e�2r>R

r2

+(r) �
Ae�r>R

r

∇2+(r) � amc
U
b 2

+(r) �
1

R
+(r)

+

ƒ+ ƒ2

+(r,t)

∇2+(r, t) �
1

c2

$2+(r, t)

$t2
� amc

U
b 2

+(r,t)

E ¡ iU
$

$t
  p2 ¡ �U2∇2

(mc2)2 � E2 � (pc)2

¢t � 5 � 10�24 s

¢t �
U
mc2

�
(1.055 � 10�34 J # s)

(140 MeV>c2)(c2)(1.60 � 10�13 J>MeV)



11-6 The Shell Model
Although the general features of the binding energy of nuclei are well accounted for by
the semiempirical mass formula that was based on modeling the nucleus as a liquid drop,
the binding energy and other properties do not vary with perfect smoothness from nu-
cleus to nucleus. It is not surprising that the smooth curve predicted by Equation 11-12
does not fit the data for very small A, for which the addition of a single proton or a neu-
tron makes a drastic difference. However, even for medium and large A there are some
substantial fluctuations of nuclear properties in neighbor-
ing nuclei. Consider the binding energy of the last neu-
tron in a nucleus. (Note that this is not the same as the
average binding energy per nucleon.) We can calculate
this from the semiempirical mass formula by computing
the difference in mass M[(A � 1), Z] � mn � M(A, Z).
Figure 11-31 shows a plot of the difference between the
experimentally measured binding energy and that calcu-
lated from Equation 11-12 as a function of the neutron
number N. There are large fluctuations near N � 20, 28,
50, 82, and 126. These are also the neutron numbers of
the nuclei that have an unusually large number of iso-
tones. Nuclei with these proton numbers (except that no
element with Z � 126 has been observed) have an un-
usually large number of isotopes.

These numbers are the “magic numbers” that were
referred to in Section 11-2. In the regions between these
magic numbers, the binding energy of the last neutron is
predicted quite accurately by the semiempirical mass
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the curve agrees well with experimental results; however, for small values of r the mea-
sured meson density is much lower than Figure 11-30 would suggest. Indeed, if the
predicted values at very small r values actually existed, they would lead to some quite
unusual nuclear properties that are, in fact, not observed. Nuclear theorists conclude that
the number of pions at very small r is somehow suppressed, likely as a result of the
quark-gluon interaction mentioned above. This is an area of active current research.
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Figure 11-30 Probability P(r),
equal to for the virtual
mesons emitted by a nucleon, and
the range the Compton
wavelength of the mesons divided
by There are essentially no
mesons beyond about 3R.

2�.

R � U>mc,ƒ+ ƒ2r2,

Existence of 126 as a magic

number has prompted

searches for unusually stable

(but still radioactive ) isotopes

with Z in the vicinity of 126.

Finding them will strengthen

our understanding of nuclear

structure. Thus far, the

highest Z discovered is 118.
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Figure 11-31 Difference in the measured binding energy of
the last neutron and that calculated from mass formula
versus neutron number. Note the similarity of this curve and
the ionization energy of atoms versus Z (Figure 7-20). The
neutron numbers 28, 50, 82, and 126 correspond to closed
shells. These data show that the neutron with N � magic
number �1 is much less tightly bound than that with
N � magic number.



formula. Figure 11-31 should be compared with Figure 7-20, which shows the binding
energy of the last electron in an atom as a function of the atomic number Z. The simi-
larity of these two figures suggests a shell structure of the nucleus analogous to the
shell structure of atoms. There is considerable additional evidence for these magic
numbers, such as the electric quadrupole moments (see Figure 11-7), the neutron cap-
ture cross sections illustrated in Figure 11-32, and the binding energies of the last neu-
tron for isotopes of a given Z as shown in Figure 11-33. Additional evidence of nuclear
shell structure is discussed in Mayer and Jensen (1955).

Although the unusual stability of the nuclei with N or Z equal to one of the magic
numbers was noticed in the 1930s, there was no successful explanation in terms of shell
structure until 1949. In the discussion of atoms in Chapter 7, we started with a fixed pos-

itive charge �Ze and computed the energies of individual electrons,
assuming first that each electron was independent of the others as
long as the exclusion principle was not violated. The interaction of
the outer electrons with the inner core could be taken care of by as-
suming an effective nuclear charge that is less than Z because of the
screening of the nuclear charge by the inner electrons. This works
quite well since the electrons are fairly far from each other in an
atom. We could therefore use the individual electron quantum states
of the hydrogen atom described by n, l, ml, and ms as a first approx-
imation for the electrons in complex atoms. The atomic magic num-
bers come about naturally due to the large energy difference between
one shell or subshell and the next. The actual calculations of atomic-
wave functions and atomic energies require powerful approximation
or numerical techniques, but they can be done reliably because the
forces involved are well known.

The situation is not the same for the nuclear-shell model. In the
first place, there is no central potential analogous to the fixed posi-
tive charge of the atom. The interaction of the nucleons with one an-
other is the only interaction present. In addition to being noncentral,
the situation is further complicated by the fact that we know little
about the strong force between nucleons beyond what we have
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Figure 11-32 The capture
cross section measures the
probability that a neutron
approaching a nucleus will be
captured, or bound to the
nucleus. The solid line traces
the average value. Notice the
sharp drop in capture
probability of nearly two
orders of magnitude at
N � 50, 82, and 126.
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Figure 11-33 Binding energy B for the last
neutron of the isotopes of Ce (Z � 58). These
data are typical of nuclei with Z � 20. B
decreases sharply (about 2 MeV) for N � 82 � 1.
This graph also shows the pairing energy
associated with a5 in the Weizsächer formula (see
Section 11-2), where the last neutron is more
tightly bound if N is even than if N is odd.
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discussed: that it is saturated, has a short range, is charge indepen-
dent, and is spin dependent. At first sight, it is difficult to imagine a
neutron or proton moving almost freely in a well-defined orbit when
there are A � 1 particles nearby exerting very strong forces on it.
Despite these difficulties, the observed properties, such as are illus-
trated in Figures 11-7, 11-31, 11-32, and 11-33, give strong motiva-
tion to try a model in which each nucleon moves about more or less
freely in an average potential field produced by the other nucleons.
Figure 11-34 shows how such an average potential could be pro-
duced. The assumption that the nucleon can move in an orbit with-
out making many collisions can be rationalized by using the exclu-
sion principle. Consider N neutrons in some potential well. In the
ground state, the N lowest energy levels will be filled. A collision be-
tween two neutrons that does not result in their merely exchanging
states is forbidden by the exclusion principle if there are no accessi-
ble unfilled states. A collision involving the exchange of identical
particles has no effect. Thus, only those nucleons in the highest filled
levels, where there are empty states available nearby, can collide
with one another. This is analogous to the result that most of the free
electrons in a metal cannot absorb energy in random collisions with
the lattice because all the nearby energy levels are full. Like the elec-
trons, the nucleons also have a Fermi level.

The first shell-model calculations attempted to use a square
well about 40 MeV deep to fit the nuclear energy levels, but they
failed to produce the correct magic numbers. In 1949, M. Mayer and
J. H. D. Jensen 19 independently showed that, with a modification in
these calculations, the magic numbers do follow directly from a rel-
atively simple shell model. Mayer and Jensen resolved the problem
by proposing that the spin dependence of the nuclear force results in
a very strong spin-orbit interaction, coupling the spin of each nu-
cleon to its own orbital angular momentum. Thus, the nuclear spin-
orbit effect depends on j-j coupling20 rather than L-S coupling that
characterizes the electron spin-orbit interaction (see Section 7-5).
This strong spin-orbit interaction results in a decrease in the energy
if the spin and the orbital angular momentum of the nucleon are par-
allel and an increase if they are antiparallel. Figure 11-35 illustrates
the nuclear-shell model of Mayer and Jensen that yields the correct
magic numbers. Depending on the details of the spin-orbit interac-
tion in the superheavy elements, the island of stability may begin to
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Figure 11-34 (a) A single nucleon moving in one dimension sees the potential due to a
second nucleon located at x1 . (b) The potential seen by the single nucleon due to four other
nucleons located along the x axis fluctuates rapidly; however, the average of the four potentials
can be reasonably well approximated by the dashed curve, a finite well with sloping sides.
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Figure 11-35 Energy levels for a single particle in
a nuclear well, including spin-orbit splitting. The
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at the right, followed by the total number through
that level in brackets. The total numbers just before
the large energy gaps are the magic numbers. The
spacing shown here is for protons; the spacing for
neutrons is slightly different (lower).



516 Chapter 11 Nuclear Physics

be evident at Z � 114 or 120 with metastable states whose lifetimes may be as long as
hours or days. In the MORE section on the Web site we consider some of the more de-
tailed qualitative aspects of the nuclear-shell model. Detailed calculations of energies
and wave functions require many approximations, the understanding of which is a
major area of continuing study in nuclear physics.

More

Finding the “Correct” Shell Model describes some of the qualitative
aspects of the several approaches to developing the nuclear-shell
model and its successes (and some failures) in predicting nuclear spins
and magnetic moments. It is on the home page: www.whfreeman.com/
tiplermodernphysics5e. See also Equations 11-56 and 11-57 and
Figures 11-36 through 11-38.

11-7 Nuclear Reactions
When a particle is incident on a nucleus, any of several different things can happen.
The particle may be scattered elastically or inelastically (in which case the nucleus is
left in an excited state and decays by emitting photons or other particles) or the orig-
inal particle may be absorbed and another particle or particles emitted.

Figure 11-39 illustrates schematically the several possible stages of a nuclear re-
action. Elastic scattering refers to the reflection of the incident particle’s wave at the
edge of the nuclear potential well. This is the kind of scattering for particles that�

(a)

(b)

(a) The Cockcroft-Walton accelerator. Walton is
sitting in the shielded enclosure in the foreground. 
J. D. Cockcroft and E. T. S. Walton produced the first
transmutation of nuclei with artificially accelerated
particles in 1932, for which they received the
Nobel Prize (1951). (b) M. S. Livingston and E. O.
Lawrence standing in front of their 27-in. cyclotron
in 1934. Lawrence won the Nobel Prize (1939) for
the invention of the cyclotron. [(a) Courtesy of
Cavendish Laboratory. (b) Courtesy of Lawrence
Radiation Laboratory, University of California,
Berkeley.]

www.whfreeman.com/tiplermodernphysics5e
www.whfreeman.com/tiplermodernphysics5e
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Figure 11-39 Schematic representation of the several possible stages of the nuclear reaction
X (x, y) Y, according to the theory developed by V. Weisskopf and H. Feshbach.

was described by Rutherford’s theory in Section 4-2. If the incident particle interacts
with a single nucleon in the nucleus so that the nucleon leaves the nucleus, the reac-
tion is called a direct interaction. Direct interactions are more probable at high ener-
gies since the incident particle can penetrate deeper into the nucleus. If the nucleon
does not leave the nucleus but interacts with several other nucleons, complicated
excited states can be formed in the nucleus. In such a case, when the energy carried
by the incident particle is shared by many nucleons, the excited nucleus is called a
compound nucleus. The compound nucleus can decay by emitting a particle identi-
cal to the incident particle and with the same kinetic energy (also elastic scattering)
or by emission of one or more other particles (including photons). The decay of the
compound nucleus can be treated as a statistical process independent of the detailed
manner of formation, just as in the case of a radioactive nucleus.

In this section we will examine some of the systematics of nuclear reactions
and some typical reactions produced by incident neutrons, protons, or deuterons.
We will limit the discussion to energies of less than 140 MeV. At higher energies,
mesons and other particles can be created. The study of higher-energy reactions
is generally undertaken to reveal the properties of fundamental particles and of the
nuclear force rather than the structure of the nucleus and will be discussed further
in Chapter 12.

Energy Conservation

Consider a general reaction of particle x incident on nucleus X resulting in nucleus Y
and particle y. The reaction may be written

or, as we will usually write it, The quantity Q, defined by

11-58

is the energy released in the reaction and is called the Q value of the reaction.
When energy is released by a nuclear reaction, the reaction is said to be exothermic.

In an exothermic reaction, the total mass of the initial particles is greater than that of
the final particles and the Q value is positive. If the total mass of the initial particles is

Q � (mx � mX � my � mY)c2

X(x, y)Y.

x � X ¡ Y � y � Q
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less than that of the final particles, the Q value is negative and energy is required for the
reaction to take place. The reaction is then endothermic.

Examples are

Thus, an endothermic reaction cannot take place unless a certain threshold energy is
supplied to the system. In the reference frame in which the total momentum is zero
(the center-of-mass frame), the threshold energy is just However, many reactions
occur with nucleus X at rest relative to the laboratory. In this frame, called the
laboratory frame, the incident particle x must have energy greater than because,
by conservation of momentum, the kinetic energy of y and Y cannot be zero. Consider
the nonrelativistic case of x, of mass m, incident on X, of mass M (Figure 11-40).

ƒQ ƒ

ƒQ ƒ .

 � 2H ¡ 1H � n � 2.22 MeV  (endothermic)

n � 1H ¡ 2H �  � 2.22 MeV  (exothermic)

+

+

+ 50 kV

Positive-ion beam

Negative-ion beam

Steel pressure tank

Metal rings

+Very high voltage
metal terminal

Charging belt

Accelerating tube

Charge exchange
canal

Gas inlet

(a)

(a) Schematic diagram of a two-stage, or tandem, Van de
Graaff accelerator. Negative ions at ground potential (atoms
of a large fraction of the elements in the periodic table form
stable negative ions) enter the beam tube at the top and are
accelerated to the positive high-voltage terminal in the
center, acquiring eV of kinetic energy. In the charge
exchange canal, electrons are stripped from the negative ions
in collisions with gas molecules, producing positive ions
with charges up to �Ze. The positive ions are accelerated
back to ground potential, acquiring an additional kinetic
energy as large as ZeV. Large Van de Graaff accelerators
have terminal voltages V over 16 million volts. Thus, for
example, oxygen atoms stripped of all their electrons may be
accelerated to energies of 100 MeV or more. (b) A portion
of the tandem Van de Graaff laboratory at Purdue University.
The high-voltage terminal is in the tank at the right rear,
insulated from the surroundings by inert gas under high
pressure. The beam travels in the tube and is deflected to
experimental areas by the bending magnets. The Purdue
accelerator is used extensively in accelerator mass
spectrometry. [Courtesy of David Elmore, Purdue University.]

(b)
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In the center-of-mass frame, both particles have momenta of equal magnitude and the
total kinetic energy is

11-59

where p � mv � MV. We transform to the lab frame by adding V to each velocity so
that M is at rest and m has velocity The momentum of m in the lab frame is
then

and its energy is

11-60

The threshold for an endothermic reaction in the lab frame is thus

11-61

(If the incident particle is a photon, the Lorentz transformation must be used. For low
energies, the momentum of a photon is small and approximate methods can be used.
For a photon, pc � E, whereas for a proton or neutron, for
E V 140 MeV.)

pc � (2mc2E)1>2 W E
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EXAMPLE 11-16 Q Value of a Nuclear Reaction Find the Q value of the reaction

and state whether the reaction is exothermic or endothermic. The atomic mass of 
is 7.016003 u.

7Li

p � 7Li ¡ 4He � 4He

Figure 11-40 Energetics of nuclear reaction in center-of-mass system and laboratory system.
The energies are related by Elab � [(M � m) M]ECM.>
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SOLUTION

Using 1.007825 u for the mass of and 4.002602 u for the mass of from
Appendix A, we have for the total mass of the initial particles

and for the total mass of the final particles

Since the initial mass is greater than the final mass by

mass is converted into energy and the reaction is exothermic. The Q value is posi-
tive and given by

Note that we used the mass of atomic hydrogen rather than that of the proton and
the atomic masses of the and atoms rather than the masses of the individual
nuclei so that the masses of the four electrons on each side of the reaction cancel.

4He7Li

Q � (¢m)c2 � (0.018624 u)c2(931.5 MeV>u # c2) � 17.35 MeV

¢m � mi � mf � 8.023828 u � 8.005204 u � 0.018624 u

mf � 2(4.002602 u) � 8.005204 u

mi � 1.007825 u � 7.016003 u � 8.023828 u

4He1H

1. The minimum, or threshold,
energy of the incident
protons in the lab frame is
given by Equation 11-61:

Eth �
m � M

M
ƒQ ƒ

� [M(13N) � mn] � [M(13C) � M(1H)]

ƒQ ƒ
c2

� mfinal � minitial2. The magnitude of the Q
value of the reaction is

M(13N) � 13.005738 u    mn � 1.008665 u

M(13C) � 13.003355 u  M(1H) � 1.007825 u3. The masses of the particles
involved are tabulated in
Appendix A:

� 3.00 MeV

� 0.003223 u # c2 � 931.5 MeV>u # c2

ƒQ ƒ � (14.014403 � 14.011180) u # c24. Substituting these into the
expression for givesƒQ ƒ

� 3.23 MeV

Eth �
1.007825 � 13.003355

13.003355
� 3.005. Substituting this value,

and
into Equation

11-61 gives
M �M(13C)
m �M(1H),

EXAMPLE 11-17 Threshold Energy in Lab Frame Compute the minimum kinetic
energy of protons incident on nuclei at rest in the laboratory that will produce
the endothermic reaction 

SOLUTION

13C(p, n)13N.

13C
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Cross Section

The probability that a particle incident on a nucleus will scatter or induce a reaction
depends on the particle’s energy and what particular particle and nucleus are involved.
It is as if different kinds of particles approaching a given nucleus “see” targets of dif-
ferent sizes. Similarly, identical particles with different energies “see” the same target
nucleus larger or smaller than actual size. This effect is a consequence of the detailed
arrangement of the allowed energy states of the target nucleus. A useful measure
of the effective size of a nucleus for a particular scattering or nuclear reaction is the
cross section If I is the number of particles incident per unit time per unit area
(the incident intensity) and R is the number of reactions per unit time per nucleus,
the cross section is defined as

11-62

Consider, for example, the bombardment of by protons. A number of reactions
might occur. Elastic scattering is written the first p indicates an incident
proton, the second indicates that the particle that leaves is also a proton. If the scat-
tering is inelastic, the outgoing proton is indicated by p� and the nucleus in the
resulting excited state by and one writes Some other possible
reactions are

Each possible scattering or reaction has its own cross section, called the partial cross
section. The partial cross section is also defined by Equation 11-62 with R equal to the
number of events of the specific kind per unit time per nucleus. The total cross section
is the sum of the partial cross sections:

Cross sections have the dimensions of area. Since nuclear cross sections are of the
order of the square of the nuclear radius, that is, a convenient unit for them
is the barn, defined by

11-63

The cross section for a particular reaction is a function of energy. For an endothermic
reaction, it is zero for energies below the threshold.

Compound Nucleus

In 1936, Niels Bohr pointed out that many low-energy reactions could be described as
two-stage processes—the formation of a compound nucleus and its subsequent decay.
In this description, the incident particle is absorbed by the target nucleus and the en-
ergy is shared by all the nucleons of the compound nucleus. After a time that is long
compared with the time necessary for the incident particle to cross the nucleus,
enough of the excitation energy of the compound nucleus becomes concentrated in
one particle for it to escape. The emission of a particle is a statistical process that
depends only on the state of the compound nucleus and not on how it was produced.

1 barn � 10�24 cm2 � 10�28 m2

(10�14 m)2,

� � �p, p � �p, p�
� �p, n � �p, 

� �p, �
� Á

 (p, �)  13C(p, �)10B

 capture  13C(p, )14N

 (p, n)  13C(p, n)13N

13C(p, p�)13C*.13C*

13C(p, p)13C;

13C

� �
R

I

�.



522 Chapter 11 Nuclear Physics

An incident 1-MeV proton has a speed of about 107 m s, so that it takes time
to cross a nucleus. The lifetime of a compound nucleus

can be inferred to be about 10�16 s. This is too short to be measured directly, but it is
so long compared with 10�21 s that it is reasonable to assume that the decay is inde-
pendent of how it was formed.

The compound nucleus for the reactions on shown above is This nu-
cleus can be formed by many other reactions, such as

11-64

The reactions on the left are called the entrance channels and the decays on the right
are called the exit channels.

Since the decay of is independent of the formation, we can write the cross
section for a particular reaction such as as the product of the cross sec-
tion for the formation of the compound nucleus, and the relative probability of
decay by neutron emission, Pn :

11-65

An illustration of the statistical decay of the compound nucleus is afforded by the en-
ergy distribution of neutrons from reactions such as (Figure 11-41)

where shows a broad peak at 14 to 20 MeV and neutrons “evaporate” as decays
to the ground state.

Excited States of Nuclei from Nuclear Reactions

The excited states of a nucleus can be determined in two ways from nuclear reac-
tions. A peak in the cross section as a function of energy indicates an excited
state of the compound nucleus, corresponding to the relatively large probability of
the incident particle giving up all its energy in the single event of exciting an allowed
energy level. (Think of the Franck-Hertz experiment as an analogy.) Information
about the lifetimes of the excited states of the compound nucleus is obtained by
measuring the energy width of these peaks, or resonances, and using the uncer-
tainty principle Figure 11-42 shows the cross section for formation of 
by the reaction as a function of the -particle energy. The peaks
in this curve indicate energy levels in the nucleus. The Q value for this reaction
is The Q value is the binding en-
ergy of the incident particle in the compound nucleus, which is always of the order
of 6 to 10 MeV; thus levels with energy less than 6 MeV cannot be reached in the
compound nucleus.

The kinetic energy in the center-of-mass frame is related to the lab energy of the
particle by

ECM �
M

M � m
Elab �

10

14
Elab

�

11.61 MeV.M(10B)c2 � M(�)c2 � M(14N)c2 �

14N
�10B � � S 14N*

14N�% � U.
%

�

�(E)

209Bi�

 � 209Bi ¡ 208Bi � n

�p, n � �cPn

�c ,

13C(p, n)13N

14N*

12C � d ¡ 14N* ¡ 13N � n

14N �  ¡ 14N* ¡ 14N � 

13N � n ¡ 14N* ¡ 10B � �

10B � � ¡ 14N* ¡ 12C � d

14N*.13C

R>v � 10�14>107 � 10�21 s
>209Bi

209Bi*

“Hot” or excited
compound
nucleus

Neutrons and photons 
with energies of a few 
MeV boil off

16 MeV
γ

γn

n

Figure 11-41 Nuclear
reaction via formation
of compound nucleus.
The 16-MeV photon is
absorbed by the 
nucleus, producing an
excited nucleus that lives so
long that excitation energy
is shared by many nucleons.
The excited nucleus then
decays by emitting neutrons
and photons, each with
energy of the order of a
few MeV.

209Bi
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Eα, MeV

σ

1.6 2.21.8 2.4 3.02.0 2.6 2.8

Figure 11-42 Cross section
for the reaction

energy. The
resonances indicate energy
levels in the compound
nucleus 14N*.

14N* versus

10B � � S

The peak in Figure 11-42 at Elab � 1.63 MeV corresponds to an excited state in 
of energy E � 11.61 � (1.63) � 12.77 MeV. The same level can be excited by
the reaction For this case, the Q value is 10.26 MeV. Thus, the
deuteron energy in the lab must be

A second way to determine the energy levels in a nucleus is to observe the
energies of particles scattered inelastically. In this case, the energy levels of the target
nucleus are determined. Figure 11-43 shows the energy spectrum of protons from the
reaction using 6.92-MeV protons. (The horizontal scale in this
figure is proportional to the momentum of the protons since this is what is measured
experimentally.) The two peaks in the curve correspond to energy losses of 2.31
and 3.75 MeV, which indicated energy levels in of 2.31 and 3.75 MeV. The excited
product nucleus decays from these states by emission. The method of inelastic
scattering can determine energy levels of the target nucleus lying relatively close to
the ground state, whereas the levels excited in the compound nucleus must be much
higher because of the Q values for formation of the compound nucleus.
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Reactions with Neutrons

Nuclear reactions involving neutrons are important for understanding the elemental
analytical technique of neutron activation analysis and the operation of nuclear reac-
tors. The most likely reaction with a nucleus for a neutron of more than about 1 MeV
is scattering. However, even if the scattering is elastic, the neutron loses some energy
to the nucleus because conservation of momentum requires that the nucleus recoil. If
a neutron is scattered many times in a material, its energy decreases until it is of the
order of the energy of thermal motion kT, where k is the Boltzmann constant and T is
the absolute temperature. (At ordinary room temperatures, kT is about 0.025 eV.) The
neutron is then equally likely to gain or lose energy from a nucleus when it is elasti-
cally scattered. A neutron with energy of the order of kT is called a thermal neutron.

At low energies, a neutron is more likely to be captured, with the emission of a 
ray from the excited nucleus:

For example,

Since the binding energy of a neutron is of the order of 6 to 10 MeV and the kinetic en-
ergy of the neutron is negligible by comparison, the excitation energy of the compound
nucleus is from 6 to 10 MeV, and rays of this energy are emitted. Figure 11-44 shows
the neutron capture cross section for silver as a function of the energy of the neutron.
Except for the resonances, the cross section (n, varies smoothly with energy, de-
creasing with increasing energy approximately as where is the speed of the neu-
tron. This energy dependence can be understood as follows. Consider a neutron mov-
ing with speed near a nucleus of diameter 2R. The time it takes the neutron to pass
the nucleus is Thus, the neutron capture cross section is proportional to the time
spent by the neutron in the vicinity of the nucleus. The dashed line in Figure 11-44 in-
dicates this dependence.21 At the maximum of the large resonance, the value of
the cross section is very large � 5000 barns) compared with a value of only about
10 barns just past the resonance. Many elements show similar resonances in the neu-
tron capture cross sections. For example, the maximum cross section for is about
57,000 barns. Thus, is a strong absorber, which makes it very useful as a shield
against low-energy neutrons.22

113Cd

113Cd

(�
1>v2R>v.

v

v1>v,
)�
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Figure 11-44 Neutron capture cross
section for Ag versus energy. The
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and the cross section were merely
proportional to the time spent near
the nucleus, i.e., proportional to 
The resonance widths of a few eV
indicate states with lifetimes of the
order of h>% � 10�16 s.
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Questions

13. What is meant by the cross section for a nuclear reaction? Why is that term
used to describe it?

14. Why is the neutron capture cross section (excluding resonances) proportional
to

15. What is meant by the Q value of a reaction? Why is the reaction threshold not
equal to Q?

16. Why can’t low-lying energy levels (1 to 2 MeV above the ground state) be
studied using neutron capture?

EXAMPLE 11-18 Determination of Reaction Rates The cross section for the reac-
tion is 900 millibarns for thermal neutrons. This reaction is produced
in the so-called thermal column of a reactor where the flux of thermal neutrons is

The sample of natural Zr is a circular foil 1.0 cm in
diameter and 20.0 thick. The density of Zr is 6.506 g cm3, and makes up
11.27 percent of natural Zr. Compute the rate of this reaction.

SOLUTION

First we need to compute the number of atoms in the sample. This number is
given by

where the volume of the sample and the molecular
weight of Zr, MZr � 91.22 g mol. Thus,

From the definition of the cross section given by Equation 11-62, the number of 
(n, reactions per unit time per nucleus is

The rate at which the reaction proceeds is then

Remarks: This is a low reaction rate, given the high neutron flux. It is the result of
the low neutron capture cross section of 91Zr and the other naturally occurring
Zr isotopes. This is the principal reason why zirconium is used to enclose nuclear
reactor fuel elements.

r � 6.08 � 107 s�1

r � N(91Zr)R � (1.04 � 1019 91Zr nuclei)(5.85 � 10�12 s�1 per 91Zr nucleus)

91Zr(n, )92Zrr

R � 5.85 � 10�12 s�1 per 91Zr nucleus

R � �I � (900 � 10�3 barns � 10�24 cm2>barn) � 6.5 � 1012 neutrons>cm2 # s

91Zr)

N(91Zr) � 1.04 � 1019 atoms

N(91Zr) �

(6.02 � 1023 atoms>mol)a2.00 � 10�3 �
�

4
 cm3b � 6.506 g>cm3

91.22 gm>mol

> V � 2.00 � 10�3 � (�>4)cm3

N(91Zr) �
NAV�Zr

MZr

� 0.1127

91Zr

91Zr>	m
6.5 � 1012 neutrons>cm2 # s.

91Zr(n,)92Zr

1>v?
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11-8 Fission and Fusion
Two nuclear reactions, fission and fusion, are of particular importance. In the fission
of for example, the uranium nucleus is excited by the capture of a neutron and
splits into two nuclei, each with very roughly half of the original total mass. A typical
fission reaction is

11-66

The Coulomb force of repulsion drives the fission fragments apart, giving them very
large kinetic energies. As a result of collisions with other atoms, this energy eventu-
ally shows up as thermal energy. In fusion, two light nuclei such as those of deuterium
and tritium and fuse together to form a heavier nucleus (in this case plus
a neutron). A typical reaction is

11-67

Figure 11-45 shows a plot of the mass difference per nucleon 
versus A in units of MeV c2. This curve is just the negative of the binding energy curve of
Figure 11-10. From Figure 11-45 we see that the rest energy per particle for both very
heavy nuclides and very light nuclides is more than that for nuclides
of intermediate mass. Thus, in both fission and fusion the total mass decreases and energy
is released. Since for A � 200 the rest energy is about 1 MeV per nucleon greater than for
A � 100, about 200 MeV is released in the fission of a heavy nucleus. The energy release
in fusion depends on the particular reaction. For the reaction in Equation 11-67,
17.6 MeV is released. Although this is less than the energy released in a single fission, it
is a greater amount of energy per unit mass, as Example 11-19 illustrates. In this section,
we will look at some of the features of fission and fusion that are important for their ap-
plication in reactors to generate electricity.

2H � 3H

(A � 20)(A � 200)

> (M � Zmp � Nmn)>A
2H � 3H ¡ 4He � n � 17.6 MeV

4He3H)(2H

235U � n ¡ 92Kr � 142Ba � 2n � 179.4 MeV

235U,
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Figure 11-45 Plot of mass difference per nucleon (M � Zmp � Nmn) A in units of MeV c2

versus A. The rest energy per nucleon is smaller for intermediate-mass nuclei than for either
very light or very heavy nuclei.
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EXAMPLE 11-19 Energy Release in Fission and Fusion Compare the energy release
per unit mass in the fusion of deuterium and tritium (Equation 11-67) with that of a
typical fission reaction, such as that of given by Equation 11-66.

SOLUTION

(a) A quick approximate comparison can be made by noting that the energy dif-
ference per nucleon between and its fission products is about 1.0 MeV. In the
fusion of it is 17.6 MeV 5 nucleons � 3.5, or about 3.5 times larger.
Thus, the energy released per kilogram will also be about 3.5 times larger in the
fusion reaction.
(b) The mass differences per nucleon for and the two fission products in
Equation 11-66 can be estimated from Figure 11-45. A more accurate calculation
of the total binding energy can be made with the aid of Equation 11-12 and used
to compute the total mass differences as follows:

The difference between the mass of and the sum of masses for the fission
products is 193.3 MeV c2. Thus, the energy release per fission event (with these
particular products) is 193.3 MeV. The mass of (see Appendix A) is
235.043924 u � 3.9030 � 10�25 kg. Therefore, the energy release per kilogram
in the fission of is

The energy release in the deuterium/tritium fusion reaction is

Thus, the fusion reaction releases about 4.3 times the energy kg released by the
fission reaction.

Fission

The fission of uranium was discovered in 1938 by O. Hahn and F. Strassmann,23 who
found, by careful chemical analysis, that medium-mass elements (in particular, bar-
ium) were produced in the bombardment of uranium with neutrons. The discovery that
several neutrons are emitted in the fission process led to speculation concerning the
possibility of using these neutrons to cause further fissions, thereby producing a chain
reaction. When captures a thermal neutron, the resulting nucleus undergoes
fission about 85 percent of the time and emits gamma rays as it de-excites to the
ground state about 15 percent of the time. The fission process is somewhat analogous
to the oscillation of a liquid drop, as shown in Figure 11-46. If the oscillations are
violent enough, the drop splits in two. Using the liquid-drop model, A. Bohr and
J. Wheeler calculated the critical energy Ec needed by the nucleus to undergo
fission. is the compound nucleus formed by the capture of a neutron by )235U.(236U

236U

236U235U

>
17.6 MeV

Md � Mt

�
17.6 MeV

8.353 � 10�27 kg
� 2.11 � 1027 MeV>kg

a193.3 MeV
235U

b
a3.903 � 10�25 kg

235U
b � 4.95 � 1026 MeV>kg

235U

235U
> 235U

142Ba: �8.4 MeV>c2 per nucleon ¡ �1189.5 MeV>c2 per nucleus

92Kr: �8.7 MeV>c2 per nucleon ¡ �800.9 MeV>c2 per nucleus

235U: �7.6 MeV>c2 per nucleon ¡ �1797.1 MeV>c2 per nucleus

235U

>2H � 3H,

235U

235U
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236U

236U

Fission
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235U
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(a)
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(e)

Figure 11-46 Schematic
illustration of nuclear fission.
(a) The absorption of a
neutron by leads to
(b) in an excited state.
(c) Oscillation deforms
the excited nucleus.
(d) The oscillation of 
has become unstable. 
(e) The nucleus splits apart
into two nuclei of medium
mass and emits several
neutrons that can produce
fission in other nuclei.
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The critical energy is the magnitude of the Coulomb barrier seen by the fragments, as
illustrated in Figure 11-47. For this nucleus, the critical energy is about 6.2 MeV,
which is less than the 6.5 MeV of excitation energy produced when captures a
neutron. The capture of a neutron by therefore produces an excited state of the

nucleus that has more than enough energy to break apart. On the other hand, the
critical energy for the fission of the nucleus is 5.9 MeV. The capture of a neutron
by a nucleus produces an excitation energy of only 5.2 MeV. Therefore, when a
thermal neutron is captured by to form the excitation energy is not great
enough for fission to occur. In this case the excited nucleus de-excites by or 
emission. Nuclides that may fission upon capturing a slow neutron are called fissile.

We noted earlier that all nuclei with Z � 83 are radioactive. Among the possible
decay modes of the very heavy nuclei (Z � 90) is that of spontaneous fission. These
nuclei may break apart into two nuclei even if left to themselves without absorbing a
neutron. We can also understand spontaneous fission using the analogy of a liquid
drop of positive charges. If the drop is not too large, surface tension can overcome the
repulsive forces of the charges and hold the drop together. There is, however, a certain
maximum size beyond which the drop will be unstable and will spontaneously break
apart since the repulsive force is proportional to the number of protons, which is pro-
portional to the volume, hence to R3, whereas the surface tension is proportional to the
surface area and so increases only as R2. (See Section 11-2.) Spontaneous fission puts
an upper limit on the size of a nucleus and therefore on the number of elements that
are possible. It should be noted that the probability for spontaneous fission in natu-
rally occurring nuclides is quite low compared with the other possible decay modes.
For example, the half-life of for decay is 4.5 � 109 years, while that for spon-
taneous fission is about 1016 years. The reason is that fission, like decay, is inhibited
by the Coulomb barrier. Even though the process is energetically possible, the large
positively charged fission fragments have a very low probability of tunneling through
the Coulomb barrier part of the nuclear potential.

A fissioning nucleus can break into two medium-mass fragments in many differ-
ent ways, as shown in Figure 11-48. Depending on the particular reaction, one, two,
or three neutrons may be emitted. The average number of neutrons emitted in the ther-
mal-neutron-induced fission of is about 2.4. Equation 11-66 is a typical fission
reaction. The reason that several neutrons are emitted is that the fission fragments
are typically neutron rich and far off the line of stability, as shown in Figure 11-49.
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Figure 11-47 The nucleus
may exist instantaneously as
two fragments as shown on
the left; however, the
Coulomb potential barrier
prevents their fission. To
overcome the barrier, energy
equal to the critical energy
must be provided.
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As a result, neutrons are spontaneously emitted during fission and the fragments 
decay toward stability. The Coulomb force of repulsion drives the fission fragments
apart with very large kinetic energies. This energy is transferred to other nearby atoms
via collisions, eventually showing up as thermal energy of the surroundings. We have
seen that about 200 MeV per nucleus is released in such a fission, a large amount of
energy. By contrast, in the chemical combustion reaction, only about 4 eV is released
per molecule of oxygen consumed.
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Figure 11-48 Distribution of fission
fragments from the thermal-neutron-
induced fission of Symmetric
fission, in which the uranium nucleus
splits into two nuclei of nearly equal
mass, is much less probable than
asymmetric fission, in which the
fragments have unequal masses. Note the
symmetry of the light and heavy lobes of
the distribution, including the small
variations in the tops of the peaks and the
convex outer edges. [Data from G. J.
Dilorio, Direct Physical Measurement of
Mass Yields in Thermal Fission of Uranium-
235, Garland, New York, 1979.]
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reduce their neutron numbers.
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EXAMPLE 11-20 Kilowatt-hours from Calculate the total energy in kilowatt-
hours released in the fission of 1 g of assuming that 200 MeV is released per
fission.

SOLUTION

Since 1 mol of has a mass of 235 g and contains nuclei, the
number of nuclei in 1 g is

The energy released per gram is then

Remark: This is approximately equal to the amount of electrical energy used by a
typical U.S. household in 15 months.

1 h

3600 s
�
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More

Nuclear fission reactors provided 6.0 percent of the energy consumed
worldwide in 2005. Nuclear Power, on the home page at www.
whfreeman.com/tiplermodernphysics5e, is a thorough review of exist-
ing and possible future types of fission reactors, the nuclear fuel cycle,
reactor control, and safety issues. See also Equations 11-68 through 
11-70 here, as well as Tables 11-5 and 11-6, Figures 11-50 through 
11-54, and Examples 11-21 through 11-23.

The discovery that several neutrons were emitted in the fission process led to specu-
lation concerning the possibility of using these neutrons to initiate other fissions,
thereby producing a chain reaction. On December 2, 1942, less than four years after
Hahn and Strassmann’s discovery of fission, a group led by Enrico Fermi produced
the first self-sustaining chain reaction in a nuclear reactor that they had constructed
at the University of Chicago.24

The application of both fission and fusion to the development of nuclear weapons
has had a profound effect on our lives for more than 60 years. The peaceful applica-
tion of these reactions to the development of energy resources may well have an even
greater effect in the future, provided that satisfactory solutions are found to problems
concerning safety, environmental protection, and the spread of nuclear weapons tech-
nology. Indeed, as world demand for energy increases, the diminishing finite reserves
of fossil fuels will undoubtedly result in increasing use of nuclear reactors to provide
the primary energy for the generation of electricity. The MORE section Nuclear
Power is a comprehensive primer on fission reactors and closely related issues.

www.whfreeman.com/tiplermodernphysics5e
www.whfreeman.com/tiplermodernphysics5e


(a) A sketch of the world’s first nuclear reactor,
the CP-1 (for Chicago Pile number 1). Projecting
from the near face next to the top of the ladder is
one of the cadmium-plated rods used to control
the chain reaction by absorbing neutrons. The
cubical balloon surrounding the reactor, open on
the near side, was to contain neutron-activated
radioactive air. News of the reactor’s successful
test was transmitted by A. H. Compton, one of
those present, to President Franklin Delano
Roosevelt’s adviser (and Harvard University
president) J. B. Conant in a phone call thus:
“The Italian navigator [i.e., Fermi] has landed in
the New World,” said Compton. “How were the

natives?” asked Conant. “Very friendly,” was Compton’s reply. (b) The only photograph of CP-1
known to exist, taken during addition of the 19th layer of graphite. Alternate layers of graphite,
containing uranium metal and/or uranium oxide, were separated by layers of solid-graphite
blocks. Layer 18, almost covered, contained uranium oxide. (c) Enrico Fermi, leader of the group
of scientists who succeeded in initiating the first man-made nuclear chain reaction, on December
2, 1942. [(a) and (b) American Institute of Physics, Emilio Segrè Visual Archives; courtesy of Argonne
National Laboratory, University of Chicago. (c) Courtesy of Argonne National Laboratory.]
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(a)

(b)

(c)

Fusion

The production of power from the fusion of light nuclei has the potential for future use
because of the relative abundance of the fuel and the absence of some of the hazards
presented by fission reactors. In fusion, two light nuclei such as deuterium and
tritium fuse together to form a heavier nucleus. A typical fusion reaction is

11-71

As was shown in Example 11-19, the energy released in this fusion reaction is
(17.6 MeV) (5 nucleons) � 3.52 MeV per nucleon, or about 3.5 times as great as the
1 MeV per nucleon released in fission. The technology necessary to make fusion a
practical source of energy has not yet been developed. We will consider the fusion re-
action of Equation 11-71; other reactions present similar problems.

>
2H � 3H ¡ 4He � n � 17.6 MeV

(3H)
(2H)
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Because of the Coulomb repulsion between the and nuclei, very large
kinetic energies, of the order of 1 MeV, are needed to get the nuclei close enough
together for the attractive nuclear forces to become effective and cause fusion. Such
energies can be obtained in an accelerator, but since the scattering of one nucleus by
the other is much more probable than fusion, the bombardment of one nucleus by the
other in an accelerator requires the input of more energy than is recovered. Therefore,
to obtain energy from fusion, the particles must be heated to a temperature great
enough for the fusion reaction to occur as the result of random thermal collisions.
Because a significant number of particles have kinetic energies greater than the mean
kinetic energy kT and because some particles can tunnel through the Coulomb
barrier, a temperature T corresponding to is adequate to ensure that a rea-
sonable number of fusion reactions will occur if the density of particles is sufficiently
high. The temperature corresponding to kT � 10 keV is of the order of 108 K. Such
temperatures occur in the interiors of stars, where such reactions are common. At these
temperatures, a gas consists of positive ions and negative electrons called a plasma
(see Chapter 10). One of the problems arising in attempts to produce controlled fusion
reactions is that of confining the plasma long enough for the reactions to take place.
In the interior of the Sun the plasma is confined by the enormous gravitational field of
the Sun. In a laboratory on Earth, confinement is a difficult problem.

The energy required to heat a plasma is proportional to the density of its ions n,
whereas the fusion rate is proportional to n2, the square of the density (since the rate
is the product of the Maxwell energy distribution and the fusion cross section, both of
which are proportional to n). If is the confinement time, the output energy is thus
proportional to n2 If the output energy is to exceed the input energy, we must have

where C1 and C2 are constants. In 1957, the British physicist J. D. Lawson evaluated
these constants from estimates of the efficiencies of various hypothetical fusion reac-
tors and derived the following relation between density and confinement time, known
as Lawson’s criterion:

11-72

If Lawson’s criterion is met and the thermal energy of the ions is great enough
the energy released by a fusion reactor will just equal the energy

input; that is, the reactor will just break even. For the reactor to be practical, much
more energy must be released.

Two schemes for achieving Lawson’s criterion are currently under investigation.
In one scheme, magnetic confinement, a magnetic field is used to confine the
plasma.25 In the most common arrangement, first developed in Russia and called the
tokamak, the plasma is confined in a large toroid. The magnetic field is a combination
of the doughnut-shaped magnetic field due to the current in the windings of the toroid
and the self-field due to the current of the circulating plasma. An international con-
sortium of nations is currently constructing the International Thermonuclear
Experimental Reactor (ITER) tokamak in France. Production of the first plasma is
scheduled for 2016. The Chinese Experimental Advanced Superconducting Tokamak
(EAST) which uses superconducting windings recognized as essential for continuous
energy production, began operation late in 2006. The break-even point using magnetic
confinement was achieved a few years ago, but we are still a long way from building
a practical fusion reactor.

(kT � 10 keV),

n� � 1020 s # particles>m3

C1n
2� � C2n

�.
�

kT � 10 keV
(3>2)

3H2H
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In a second scheme, called inertial confinement, a pellet of frozen-solid deu-
terium and tritium is bombarded from all sides by intense pulsed laser beams of ener-
gies of the order of 106 J lasting about 10�8 s. (Intense ion and electron beams are also
used.) Computer simulation studies indicate the momentum absorbed by the hydrogen
nuclei from the beams should compress the pellet to about 104 times its normal den-
sity and heat it to a temperature greater than 108 K. This should produce about 106 J
of fusion energy in 10�10 s, which is so brief that confinement is achieved by inertia
alone. (See Figure 11-55a and b.) In theory, after this burst of fusion energy is radi-
ated away from the site to be absorbed by a heat-transfer fluid, such as liquid lithium,
another pellet is injected at the confluence of the beams and the process repeats.

Because the break-even point has barely been achieved in magnetic confinement
fusion and because the building of a fusion reactor involves many practical problems
that have not yet been solved, for example, activation of the reactor walls, the avail-
ability of fusion to meet world energy needs is not expected for several decades.

Schematic of the ITER tokamak experimental fusion reactor. The toroidal field coils,
encircling the 6.2-m maximum diameter doughnut-shaped tritium-deuterium plasma contained
in the vacuum vessel, are designed to conduct current for 300 s up to, eventually, steady state.
The design plasma current is 15 � 106 A, producing a magnetic field of 5.3 T. This field is
the principal means of confining the deuterium-tritium plasma that circulates within the
vacuum vessel. Sets of poloidal field coils, perpendicular to the toroidal coils, carry an
oscillating current that generates a current through the confined plasma itself, heating it
ohmically. Additional poloidal fields help stabilize the confined plasma. Design total fusion
power is 15 MW. ITER’s first plasma is expected to be produced in 2016. Follow the
development of ITER at www.iter.org. [ITER Organization.]

www.iter.org
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Figure 11-55 (a) Schematic diagram of a possible fusion reactor using inertial confinement
and the reaction. This reaction produces 17.6 MeV per fusion, and the
neutron produced reacts with either (slow neutron) or (fast neutron) to produce the 
needed for the reaction. The latter reaction produces an additional slow neutron; thus, every
two neutrons produced by fusion have the potential for generating three nuclei; that is,
this system may also be a tritium breeder. (b) The Nova inertial confinement fusion reactor
uses 10 powerful laser beams focused on a hydrogen-containing pellet 0.5 mm in diameter.
The resulting fusion reaction, visible here as a tiny bright star, lasts 10�10 s and releases 1013

neutrons. (c) The proton-proton reaction is the primary source of the Sun’s energy.
The neutrino produced in the initial reaction escapes from the core. The net energy produced
per cycle is about 26.7 MeV. [(b) Courtesy of Lawrence Livermore National Laboratory, U.S.
Department of Energy.]

3H

3H7Li6Li

2H � 3H S 4He � n



11-8 Fission and Fusion 535

EXAMPLE 11-24 Fusion Temperature for The fusion of
two protons requires that two particles be separated by no more than about 10�14 m
in order for the attractive force of the nuclear potential to overcome the repulsive force
of the Coulomb potential. Compute (a) the minimum temperature of a hydrogen
plasma that will enable a proton with the average energy of those in the plasma to over-
come the Coulomb barrier and (b) the energy released in the fusion.

SOLUTION

(a) The height of the potential energy barrier seen by the protons is given by

In order to overcome this barrier, the average energy of the protons in the
plasma, kT, must equal at least half this amount; that is, each of the two
fusing protons must have J.

where k is Boltzmann’s constant. Thus,

(b) The energy released, equal to the Q value of the fusion reaction, is

where the atomic mass values are given in Appendix A. Thus, the energy release
per fusion is 0.42 MeV. That of the fusion illustrated in Figure
11-55a is 17.6 MeV, which explains why the latter reaction is used in controlled
fusion experiments.

The Source of the Sun’s Energy The present energy content of the Sun as calcu-
lated from thermodynamics would be radiated away in about 3 � 107 years. Since life
has existed on Earth for approximately 100 times that long, we can conclude that the
Sun has been radiating at close to its present rate for at least 3 � 109 years. Therefore,
the Sun must have a supply of energy far larger than that represented by the hot plasma
and the observed radiation field. The source of the Sun’s energy is nuclear fusion.
Current theory proposes that, as the young Sun contracted, its temperature rose.
Eventually the temperature of the core reached about 1.5 � 107 K, which is high
enough for the hydrogen nuclei (protons) in the plasma to have sufficient energy on
the average (about 1 keV) to fuse into helium nuclei. This reaction, actually a chain of
reactions, was first proposed by H. A. Bethe and is referred to as the proton-proton
cycle. The first reaction in the chain is (see Example 11-24)

1H � 1H ¡ 2H � e� � �e � 0.42 MeV

2H � 3H1H � 1H

� 0.000451 u # c2 � 931.5 MeV>u # c2 � 0.42 MeV

� [2 � 1.007825 u � 2.014102 u � 0.001097 u]c2

Q � [2m(1H) � m(2H) � 2me]c
2

T �
2 � 3.84 � 10�14 J

3 � 1.38 � 10�23 J>K � 1.9 � 109 K

(3>2)kT � 3.84 � 10�14 J

3.84 � 10�14
(3>2)

U � 7.68 � 10�14 J � 0.48 MeV

U �
1

4��0

e2

r
�

(9 � 109 N # m2>C2)(1.60 � 10�19 C)2

3.0 � 10�15 m

1H � 1H S 2H � e� � �
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The probability for this reaction is very low except for those protons in the high-
energy tail of the Maxwell-Boltzmann distribution. This sets a limit on the rate at
which the Sun can produce energy and thus ensures a long lifetime for the Sun and
similar stars. This limit is sometimes called the “bottleneck” of the solar fusion cycle.
Once (deuterium) is formed, the following reaction becomes very probable:

It is followed by:

This process by which hydrogen nuclei are “burned” to helium nuclei is shown
schematically in Figure 11-55c. There are other possible reactions for converting 
to all of which have the same net Q value. Their rates, however, differ depending
on the composition and temperature of the interior.

The neutrinos produced in the proton-proton cycle escape from the core, provid-
ing our only means for direct observation of the Sun’s interior. The measured value of
the total power radiated by the Sun and the known total Q value of the proton-proton
cycle allow a calculation of the total reaction rate. In addition, the alternative reactions
for have different neutrino energy spectra, thus providing a way of determining
the relative contributions of each reaction and gaining information about the compo-
sition and temperature of the core. However, the measured rate at which solar neutri-
nos arrive at Earth is less than half that predicted by theoretical calculations based on
the standard solar model. This discrepancy is referred to as the solar-neutrino problem.
Solving this problem was the focus of a recent major international research effort.
Results from the Sudbury (Canada) and Super-Kamiokande (Japan) neutrino observa-
tories show that neutrinos have a small mass and may transform from one type to
another, leading to the observed discrepancy. (See Section 12-5.)

4He

4He,

3He

3He � 3He ¡ 4He � 2 1H �  � 12.86 MeV

2H � 1H ¡ 3He �  � 5.49 MeV

2H

Questions

17. Explain why water is more effective than lead in slowing down fast neutrons.

18. What happens to the neutrons produced in fission that do not produce
another fission?

19. Why does fusion occur spontaneously in the Sun but not on Earth?

More

The Interaction of Particles and Matter is of central importance in un-
derstanding the biological effects of ionizing radiation, in the devel-
opment and use of nuclear radiation detectors, and in protecting the
environment from potential radiation hazards. This topic is discussed
for charged particles, neutrons, and photons on the home page:
www.whfreeman.com/tiplermodernphysics5e. See also Equations 
11-73 through 11-83 here, as well as Figures 11-56 through 11-61 and
Example 11-25.

www.whfreeman.com/tiplermodernphysics5e
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(a) (b) (c)

An application of neutron activation analysis. Hidden layers in paintings are analyzed by bombarding the painting with neutrons
and observing the radiative emissions from nuclei that have captured a neutron. Different elements used in the painting have
different half-lives. (a) Van Dyck’s painting Saint Rosalie Interceding for the Plague-Stricken of Palermo. The black-and-white
images in (b) and (c) were formed using a special film sensitive to electrons emitted by the radioactively decaying elements.
Image (b), taken a few hours after the neutron irradiation, reveals the presence of manganese, found in umber, a dark earth
pigment used for the painting’s base layer. (Blank areas show where modern repairs, free of manganese, have been made.) The
image in (c) was taken four days later, after the umber emissions had died away and when phosphorus, found in charcoal and
boneblack, was the main radiating element. Upside down is revealed a sketch of Van Dyck himself. The self-portrait, executed in
charcoal, had been overpainted by the artist. (See Problem 11-83.) [(a) Courtesy of Metropolitan Museum of Art, New York City. 
(b) and (c) Courtesy of Paintings Conservation Department, Metropolitan Museum of Art, New York City.]

11-9 Applications
Certainly among the most important of the applications of nuclear reactions and inter-
actions have been those developed in the field of nuclear medicine, particularly in the
area of diagnosis, but also including the treatment of cancer and certain other diseases.
State-of-the-art detectors and computer-based data analysis have made critical contribu-
tions to these developments. Also important to a broad spectrum of disciplines ranging
from art through chemistry and geology to zoology are the precision isotope-specific
analytical techniques of accelerator mass spectrometry and neutron activation analysis.
Anthropologists, archeologists, and geologists routinely rely on the decay properties of
a number of radioisotopes to determine the age of artifacts and samples. Examples of
these applications will be discussed briefly in this concluding section of the chapter.

Neutron Activation Analysis

This isotope-specific analytical method for elements is capable of very high sensitivity
and accuracy. While some elements are more readily analyzed by activation analysis than
others, it is particularly useful for the many elements that cannot be conveniently assayed
by the more standard chemical methods of trace analysis. It has a wide range of applica-
tions from identifying trace pollutants in the environment through semiconductor pro-
cessing and materials science to the analysis and authentication of works of art.
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The method consists of exposing the sample to be analyzed to a high flux of slow
neutrons. Isotope of the element of interest undergoes the reaction 
as described in Section 11-7, where is radioactive. can be identified by
its half-life and the energy of its beta- and gamma-ray emissions. The activity R(t)
after the beginning of the neutron irradiation is given by

11-84

where is the decay constant of and R0 is the constant production rate of that
isotope. R(t) is measured and R0 is computed from Equation 11-62 since R0 � N0R,
where N0 is the number of nuclei in the sample. Thus,

11-85

where is the cross section for the reaction in cm2 and I is the neu-
tron flux in Equation 11-84 can then be written

11-86

When the half-life is short enough, irradiation is usually continued to saturation, that
is, until Table 11-7 gives saturation activities per for a few
isotopes. The number of atoms of in the sample is, at the saturation activity,

and the mass of in the sample is

11-87

where W is the atomic weight of the element and NA is Avogadro’s number.
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�
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Table 11-7 Selected saturation activities 
(I � 1012 neutrons>min # cm2)

Saturation activity

1.7 � 107198Au197Au

1.6 � 106128I127I

1.7 � 10664Cu63Cu

8.8 � 10656Mn55Mn

decays>m # 	gA�1
Z

MA
Z

M

R (�)
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Figure 11-62 A proton has
two energy states in the
presence of a magnetic field,
corresponding to whether the
magnetic moment of the
proton is aligned parallel or
antiparallel to the field.
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EXAMPLE 11-26 The “Gold” Chain After buying a chain advertised as 10 percent
pure gold, the suspicious purchaser irradiates one 25-mg link in a constant neutron
flux of for a time long enough for any gold activity to saturate.
She then measures the activity of the link to be with a detector
whose efficiency is 12 percent. What is the percent by weight of gold in the link?
( for is 98.8 barns.)

SOLUTION

Since the detector efficiency is 12 percent, the actual value of is

From Equation 11-87 we can then compute

The weight percent of gold in the link is then

or less than of the advertised amount.

Nuclear Magnetic Resonance

In Section 7-7, we saw that the energy levels of the atom were split in the presence
of an external magnetic field (the Zeeman effect) because of the interaction of the
atomic magnetic moment and the field. Since nuclei also have magnetic moments,
the energy levels of a nucleus is also split in the presence of a magnetic field. We can
readily understand this by considering the simplest case, the hydrogen atom, for
which the nucleus is a single proton.

The potential energy of a magnetic moment in an external magnetic field B is
given by

11-88

The potential energy is lowest when the magnetic moment is aligned with the field and
highest when it is in the opposite direction. Since the spin quantum number of the pro-
ton is the proton’s magnetic moment has two possible orientations in an external
magnetic field: parallel to the field (spin up) or antiparallel to the field (spin down).
The difference in energy of these two orientations (Figure 11-62) is

11-89

When hydrogen atoms are irradiated with photons of energy �E, some of the nuclei
are induced to make transitions from the lower state to the upper state by resonance
absorption. These nuclei then decay back to the lower state, emitting photons of en-
ergy �E. The frequency of the photons absorbed and emitted is found from

hf � ¢E � 2(	z)pB

¢E � 2(	z)pB

1>2,

U � �	 # B

	

1>10

%Au � a2.1 � 10�4 g

25 � 10�3 g
b � 100 � 0.8%

m(197Au) � 2.1 � 10�4 g

m(197Au) �
(6.3 � 105 decays>s)(197 g>mol)

(6.02 � 1023 atoms>mol)(98.8 � 10�24 cm2)(1010 neutrons>s>cm2)

R(�) �
7.5 � 104 decays>s

0.12
� 6.3 � 105 decays>sR(�)

197Au�

7.5 � 104 decays>s1010 neutrons>s # cm2
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In a magnetic field of 1 T, this energy is

and the frequency of the photons is

This frequency is in the radio band of the electromagnetic spectrum; hence the radia-
tion is called RF (radio-frequency) radiation. The measurement of this resonance fre-
quency for free protons can be used to determine the magnetic moment of the proton.

When a hydrogen atom is in a molecule, the magnetic field at the proton is the
sum of the external magnetic field and the local magnetic field due to the electrons
and nuclei of the surrounding material. Since the resonance frequency is proportional
to the total magnetic field seen by the proton, a measurement of this frequency can
give information about the internal magnetic field seen in the molecule. This is called
nuclear magnetic resonance. It is a sensitive tool for probing the internal magnetic
structure of materials.

Nuclear magnetic resonance is also used as an alternative to x rays or ultrasound
for medical imaging, in which case it is called magnetic resonance imaging (MRI). A
patient can be placed in a magnetic field (provided by superconducting magnets) that
is constant in time but not in space. When the patient is irradiated by a broadband RF
source, the resonance frequency of the absorbed and emitted RF photons is then de-
pendent on the value of the magnetic field, which can be related to specific positions
in the body of the patient. Since the energy of the photons is much less than the en-
ergy of molecular bonds and the intensity used is low enough so that it produces neg-
ligible heating, the RF photons produce little, if any, biological damage. Diagnosis
with MRI requires no surgical procedure and is more sensitive than other methods in
detecting tumors in soft tissue.

Computer-Assisted Tomography

Wilhelm Roentgen received the first physics Nobel Prize in 1901 for his discovery of
x rays in 1895, an event that also marked the beginning of radiography, the use of ra-
diation and particle beams to produce images that are otherwise inaccessible. For half
a century x rays were the probing beam of medical imaging. Then in the late 1940s
the introduction of radioisotopes into a patient’s body made it possible for physicians
to target particular organs and produce images that recorded their behavior, a tech-
nique now a part of the specialty of nuclear medicine. The isotopes used are typically
relatively short-lived gamma emitters since and particles have ranges in biologi-
cal tissue that are too short to be useful. The detector normally employed is a colli-
mated (to provide directional information) scintillation crystal viewed by a photo-
multiplier. (See Figure 11-63.) The image is then constructed by a computer from the
output of the photomultiplier.

��

� 4.25 � 107 Hz � 42.5 MHz

f �
¢E
U

�
1.76 � 10�7 eV

4.14 � 10�15 eV # s

� 1.76 � 10�7 eV

� 2(2.79	N)a3.15 � 10�8 eV>T
1 	N

b (1 T)

¢E � 2(	z)pB
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Figure 11-63 Schematic drawing of a
scintillation crystal with a Pb
collimator to define a focus, a gamma
camera. As the detector is moved
around the patient, the intensity of the
gamma radiation yields information
about the location and concentration
of the source radioisotope in the body,
which can be used by a computer to
produce an image of the distribution.
Actual gamma cameras incorporate
collimators with hundreds or even
thousands of tiny channels for the
gamma rays to reach the crystal.

X-ray tube

Detectors

Collimator

Figure 11-64 Sections of the patient’s body transverse to the long axis are imaged by the CT
scanner. The fan-shaped x-ray beam, a few millimeters thick, and the bank of detectors,
typically proportional or wire counters, rotate about the long axis to produce each complete
image. The patient is moved slowly along the axis while the scanner produces successive
images, their sum constituting a full three-dimensional composite.

Just as with ordinary x-ray radiographs, the images formed by the gamma camera
are two-dimensional projections of a three-dimensional distribution. Thus, radiographs
provide no depth information, a very serious disadvantage. G. Hounsfield and 
A. Cormack solved this problem in 1972 with the invention of the computer-assisted
tomography (CT or CAT) scanner.26 A fan-shaped x-ray beam collimated to a thickness
of a few millimeters is rotated about the patient and the transmitted fan beam is recorded
by an arc of detectors opposite the source, as illustrated in Figure 11-64. The measure-
ments are then reconstructed into an image of a two-dimensional image (not a
projection) of a transverse slice of the body—a tomograph. By simultaneously making
a series of two-dimensional projections with a gamma camera and combining the re-
sults with the CT scan, the distribution of the trace radioisotopes in two-dimensional
transverse sections can be constructed. The combination system is called single-photon
emission computer tomography, or SPECT.

It had been recognized early on that the collimators that were essential to the oper-
ation of CT scanners and gamma cameras placed a serious restriction on their sensitiv-
ity. It was also recognized that the collimators could be eliminated and the sensitivity
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Figure 11-65 (a) Nuclei emit positrons at A and B. The oppositely directed 0.511-MeV photons from each annihilation are
detected by a pair of BGO crystal detectors in the annular ring around the subject (not shown). Electronic coincidence circuits
establish the line along which each pair of photons traveled. (b) The pattern of coincidence measurements is used by a computer
to construct an image of the distribution of the radioisotope in the plane of the detector ring. This sequence of PET scans shows
the utilization of glucose in the brain, traced by 7 mCi of a positron emitter. The sequence begins in the upper left. [Courtesy of
D. W. Townsend, Division of Nuclear Medicine, University Hospital of Geneva, Geneva, Switzerland.]

significantly enhanced if the trace radioisotope employed was a positron emitter. The
reason is that the positron is stopped within a few millimeters in the tissue and its sub-
sequent annihilation results in two 0.511-MeV photons emitted in opposite directions.
Detection of the photons by counters 180° apart whose outputs are analyzed by a time-
of-flight coincidence spectrometer yields a precise location for the decay. (See Figure
11-65.) However, this idea did not find its way into a useful diagnostic scanner until the
mid-1980s because of the absence of detectors with good efficiency for the 0.511-MeV
photons and small enough to localize the incident photons to within a millimeter or so.
This problem was solved with the invention by C. Thompson and his co-workers of the
bismuth germanate (BGO) crystal. Currently, nearly all commercial positron emission
tomography (PET) scanners rely on detector rings made of BGO crystals, as illustrated
in Figure 11-65a. A PET scan of brain activity made with BGO detectors is shown in
Figure 11-65b. The availability of PET scans is limited to locations in the proximity of
cyclotron facilities because most biologically useful positron emitters, those that readily
participate in reactions in the body, are and They have short half-lives
of 20 min, 10 min, 2 min, and 110 min, respectively, and supplies must be regularly re-
plenished by nuclear reactions.

Radioactive Dating

Radioactivity occurs in nature as a result of (1) decays within the three decay chains
originating with long-lived emitters discussed in Section 11-4, (2) the existence of iso-
lated long-lived primordial radioisotopes such as and (3) the
production of isolated radioisotopes due to reactions between cosmic ray protons and
neutrons and nuclei in the atmosphere. Each of these provides a means by which the age
of materials, such as rocks and archeological artifacts, can be measured. As one might
guess, the very long-lived isotopes, such as and are
used in determining the ages of “old” rocks, while shorter-lived isotopes are employed
in determining the ages of “younger” rocks, other inorganic materials, and archeologi-
cal samples containing carbon, such as charcoal.

(t1>2 � 1.24 � 1010 y),232Th40K

(t1>2 � 1.25 � 109 y),40K
�

18F.11C, 13N, 15O,

(b)



Nuclide Abundance (%) Daughter

5730

0.0117

27.83

15.0

2.59

62.60 187Os4.30 � 1010187Re

176Hf3.59 � 1010176Lu

143Nd1.06 � 1011147Sm

87Sr4.88 � 101087Rb

40A1.25 � 10940K

14N1.35 � 10�1014C

t
1>2 (y)
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Table 11-8 Selected naturally occurring isolated 
radioactive nuclides

“Group of Stags” from the
Lascaux Caves in France.
Prehistoric paintings such as
this are -dated, the oldest
found so far having been
painted 33,000 to 38,000 B.C.,
depending on the 
ratio used for that period.
[Art Resource.]

14C>12C

14C

The general technique used in determining the age of a sample by radioactive dat-
ing is to measure the present abundance ratio of two isotopes, at least one of which is
either radioactive or the stable end product of a radioactive decay, relative to the abun-
dance ratio that is known (or assumed) to have existed at the time when the material
was formed. Table 11-8 lists the present isotopic abundances of a few of the naturally
occurring isolated radioisotopes used in dating.

Dating An important example, used in dating archeological materials contain-
ing carbon such as bone and charcoal, measures the abundance ratio 
Radioactive is continuously produced in the atmosphere by the reaction

The neutrons are produced by cosmic rays. is a emitter that
decays back to via the reaction

11-90

with years.27t1>2 � 5730

14C ¡ 14N � �� � �e

14N
��14C14N(n, p)14C.

14C

14C>12C.

14C
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The chemical behavior of atoms is the same as that of ordinary atoms. For
example, atoms with nuclei combine with oxygen to form CO2 molecules. Since liv-
ing organisms continually exchange CO2 with the atmosphere, the ratio of to in a
living organism is the same as the equilibrium ratio in the atmosphere, which is presently
about 1.35 � 10�12. When an organism dies, it no longer absorbs from the
atmosphere. The ratio in a dead sample continually decreases due to the
radioactive decay of A measurement of the decay rate per gram of carbon thus allows
the calculation of the time of death of the organism, as illustrated by Example 11-28.

14C.

14C>12C

14C

12C14C

14C

12C14C

EXAMPLE 11-27 Decay Rate in Living Organisms Calculate the decay rate of
per gram of carbon in a living organism, assuming the ratio 

The half-life of is 5730 years.

SOLUTION

14C1.35 � 10�12.

14C>12C �14C

14C

1. Combining Equation 11-19
with Equation 11-22, the decay
rate R can be written in terms
of the half-life and the number of
radioactive atoms N as

R � �
dN

dt
� 
N �

0.693

t1>2 N

2. N is computed from the 
ratio by first computing the
number of in a unit mass,
e.g., in 1 g:

12C

14C>12C

� 5.02 � 1022 nuclei>gN12C �
NA

M
�

6.02 � 1023 atoms>mol

12 g>mol

3. The number N of nuclei per
gram is then given by

14C

� 6.78 � 1010 nuclei>g� (1.35 � 10�12)(5.02 � 1022)

N14C � 1.35 � 10�12 N12C

4. The decay rate is then

� 15.6 decays>min # g

R �
(0.693)(6.78 � 1010 g�1)(60 s>min)

(5730 y)(3.16 � 107 s>y)

Remarks: Thus, the decay rate for a living organism is 15.6 decays per minute per
gram of carbon.

EXAMPLE 11-28 Age of a Bone Fragment A bone fragment found in central
Mexico was thought to be associated with the army of Hernán Cortés, who con-
quered the Aztecs in the early 1500s. The fragment contains 200 g of carbon and
has a -decay rate of 400 decays min. Could the sample have come from a person
who died during the 16th century?

SOLUTION

First we obtain a rough estimate. If the bone were from a living organism, we
would expect the decay rate to be 200 g � 15.6 decays>min # g � 3120 decays>min.

>�



11-9 Applications 545

Since is roughly � 3 (actually the sample must have
decayed for about 3 half-lives, or be about 3 � 5730 years old. To find the age more
accurately, we note that after n half-lives, the decay rate has decreased by a factor
of We therefore find n from

or

The age is therefore � 2.96(5730 years) � 16,980 years. Thus, the bone
fragment is much older than 500 years and cannot be related to Cortés’s conquests.
Instead, it places early humans in Mesoamerica at least 17,000 years ago.

Note that the calculation in Example 11-28 assumes that the concentration in
the atmosphere and the cosmic ray intensity 17,000 years ago were essentially the
same as they are today. Actually, neither has remained unchanged over that period.
Accurate measurements must include corrections for (1) the variations of Earth’s
magnetic field, which affects the cosmic ray intensity, and (2) the changing composi-
tion of the atmosphere, which depends on global geological and chemical activity and
on the average temperature of the atmosphere. For example, current evidence suggests
that just prior to 9000 years ago, the ratio was about 1.5 times as large as the
current value. The ratio has also been significantly altered over the past century by the
burning of fossil fuels, which adds -free carbon to the atmosphere, and by atmo-
spheric testing of hydrogen weapons, which added during the 1950s. Accelerator
mass spectrometry, which was originally developed for just this purpose, makes
possible determination of the ratio with sufficient accuracy to extend the
applicability of dating back 50,000 years before the present with samples as small
as a few milligrams. Calibration of the ratio for earlier periods requires cross-dating
with other methods, such as U-Th dating.

Dating Ancient Rocks Starting with Equation 11-18, a useful relation can be derived
for the age of a sample that initially contains N0 radioactive parent nuclei that decay to
a stable daughter with a half-life Assuming there are no daughter nuclei present
initially, after a time t has elapsed, there will be NP parent nuclei and ND daughter nuclei
in the sample. From Equation 11-18,

11-91

Since NP � ND � N0 at any time, Equation 11-91 can be written as

11-92

where ND NP is the isotopic ratio at age t.>
t �
t1>2
ln 2

 lna1 �
ND
NP
b

t �
1



 lnaN0

NP
b �

t1>2
ln 2

 lnaN0

NP
b

t1>2 .

14C

14C>12C

14C

14C

14C>12C

14C

14N

t � nt1>2
n �

ln 7.8

ln 2
� 2.96

n ln 2 � ln 7.8

 2n �
3120

400
� 7.8

a1

2
bn �

400

3120

(1>2)n.

1>7.8),1>21>8400>3120
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Several isotopic abundance ratios are used as “rock clocks” for samples of geologic
age. These include and the dual ratio 
These have been used to determine the age of Earth rocks, Moon rocks, meteorites, and,
by inference, the solar system itself. The oldest rocks on Earth have been dated at about
4.5 � 109 years. At that time the molten surface froze, fixing the isotopic ratios, which
thereafter changed only as a result of decay. Surprisingly, perhaps, all meteorites turn
out to be about the same age, 4.5 � 109 years, regardless of their composition or when
they collided with Earth. This suggests that they originated in or are the debris of other
bodies within the solar system that formed at the same time as Earth. This value for the
age of Earth is supported by a number of independent ratio measurements, initially the
relative abundances of and and the ratio and corroborated more re-
cently by measurements of the and ratios.

EXAMPLE 11-29 Dating The ratio for a particular rock is found
to be 40.0. How old is the rock?

SOLUTION

Note first that in Equation 11-92, the radioactive parent appears in the denominator
of the ratio; therefore, in this case ND NP � 1 � � 0.025.
Substituting this value and the half-life of from Table 11-8 into Equation 11-92,
we have

This is a young rock, considerably younger than the 4.5 � 109 y age of Earth.

Rocks found on Earth’s surface have a range of ages from zero up to 3.7 � 109

years. None are older. In contrast, rocks brought back from the surface of the Moon
by Apollo astronauts have ages ranging from 3.1 to 4.5 � 109 years; none are younger.
The implications of these results from radioactive dating are (1) Earth surface rocks
older than 3.7 � 109 years have weathered, eroded, and been recycled into other rocks
or into the mantle and (2) the Moon’s internal heat source (gravity and radioactivity)
cooled sufficiently to solidify all its material and fix the initial isotopic ratios about
1.5 � 109 years after it was formed. The Earth’s internal heat source has not yet
reached that point.

Accelerator Mass Spectrometry

Originally developed to extend the usable time span and improve the accuracy of 
dating of archeological materials, accelerator mass spectrometry (AMS) is an ultra-
sensitive analytical technique in which the atoms of interest in a sample are counted
directly rather than irradiating the sample with slow neutrons, then counting the
gamma rays emitted by the radioactive daughter produced or measuring the radiations
emitted by long-lived, naturally occurring radionuclides. To understand how AMS
works, we will use its application to dating as an illustration. At the present time
the ratio in living organic material is about 10�12. Thus, a 1-g sample of car-
bon contains about 5 � 1010 atoms. Since the half-life of is 5730 y, a 1.0-g
sample of 20,000-year-old charcoal would emit about one per minute. To record
10,000 decays (the number needed for a statistical accuracy of 1 percent) would re-
quire counting for one week and involve only 2 � 10�6 of the atoms present in the
sample, a very inefficient method.

14C

��

14C14C

14C>12C

14C

14C

t �
4.88 � 1010 y

ln 2
 ln(1 � 0.025) �

4.88 � 1010 y

0.693
� 0.0247 � 1.74 � 108 y

87Rb
1>40.0>(87Rb>87Sr)>

87Rb>87Sr87Rb>87Sr

87Rb>87Sr40K>40Ar

238U>206Pb235U238U

238U>234U>230Th.238U>206Pb, 87Rb>87Sr, 40K>40Ar,



Mass spectrometry, which records every atom in the sample, provides a possible
alternative (see Section 3-1). However, conventional mass spectrometers do not have
the capability of measuring isotope ratios at the level of (or the other ra-
dioisotopes listed in Table 11-9) due to the presence of isobars and molecules with
nearly the same mass. In the case of these include from residual air within the
spectrometer and and both from the sample itself or contamination. AMS
works in part like a conventional mass spectrometer but reduces background due to
mass ambiguities by taking advantage of the operational characteristics of medium-
energy accelerators, particularly cyclotrons and tandem van de Graaffs. Using the lat-
ter as the basis of our discussion and referring to the photograph and diagram on page
518 and to Figure 11-66, the positive high-voltage terminal is in the middle of the ac-
celerator with the two ends of the beam tube essentially at ground potential. The atoms
of the sample are converted to negative ions in the ion source. The atoms of most el-
ements can form stable negative ions, a notable exception being nitrogen. Thus, AMS
immediately removes background due to A bending magnet deflects the ions ac-
cording to their radii of curvature. The negative ions are accelerated to the positive
terminal, where a stripper removes several electrons, forming positive ions. If more
than three electrons are removed, most molecules break apart. The ions are then ac-
celerated further (to 50–100 MeV), emerging from the machine into another bending
magnet, which effectively removes the molecular fragments that in general do not
have the same radii of curvature as do the atomic ions. After passing through another
90° bending magnet that cleans the beam of any residual molecular fragments, the
high-energy beam enters the detector, a so-called E-�E counting telescope (see

14N.

13CH,12CH2

14N14C

14C>12C
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Table 11-9 Radioisotopes measurable with AMS

Nuclide Half-life (y) Stable isobar Sensitivity

12.3

10�14129Xe1.6 � 107129I

10�1541K1.0 � 10541Ca

2 � 10�1536S3.01 � 10536Cl

10�1526Mg7.40 � 10526Al

2 � 10�1514N5.730 � 10314C

10�1510B1.5 � 10610Be

10�143He3H

High-energy
analyzer
magnet

Low-energy
bending
magnet

Negative-ion source
Second
analyzer
magnet

Beam

Tandem Van de Graaff accelerator

Stripper

Particle detector

ΔE E

Figure 11-66 Schematic
drawing of a tandem 
Van de Graaff accelerator
configured as an accelerator
mass spectrometer.
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Figure 11-66). The very thin �E detector mea-
sures the energy loss by the atoms, which for
particles with the same energy is approximately
proportional to Z2, thus rejecting atoms with a
different atomic number than that of interest.
The high-energy ions are then stopped in the E
detector, which measures the energy of each
one. The product E � �E for each atom is ap-
proximately proportional to mZ2. Thus, requir-
ing sample masses of only a few milligrams,
AMS measures the mass and atomic number of
each atom, and it does so with very high
precision and extremely low background.

Table 11-9 lists several long-lived radioiso-
topes that can be effectively assayed with AMS.
For example, the technique has been used to
time the migration of surface water into deep
aquifers by measuring the concentration of

produced by cosmic ray bombardment of
argon in the atmosphere. Using only a few
strands, AMS -dated the famous Shroud of
Turin as having been made in the Middle Ages,
around 1300. Ötzi (the Iceman) discovered in
1991 in the Tyrolean Alps, was found to have

lived during the late Neolithic age, about 5200 years ago. Some meteorites have been
found to contain relatively short-lived in excess of the concentration attributable
to cosmic ray production, raising the intriguing question of its origin in the cosmos.

Particle-Induced X-ray Emission

An elemental analysis technique similar to neutron activation analysis (NAA),
particle-induced x-ray emission (PIXE) involves bombarding the material of interest
with low-energy (a few MeV) ions, such as protons or alpha particles. Coulomb in-
teraction between the ions and the target atoms ionize the latter by ejecting K- or 
L-shell electrons. Since the interactions occur over atomic dimensions, the cross sec-
tions are quite high, as much as 1000 b for low-Z atoms, decreasing smoothly to
about 1 b at Z � 82 (Pb). The vacancies produced are quickly filled by electrons
from higher-energy shells, emitting K and L x rays or Auger electrons in the process
that are characteristic of the elements in the target (see Section 4-4). Since the bom-
barding particles are relatively low energy, they do not penetrate far into matter, so
the interactions occur near the surface. That fact, together with the low energy of the
emitted x rays, 10 to 100 keV, dictates the use of thin samples. Figure 11-67a is a
schematic of a typical PIXE experimental arrangement. The sensitivity of PIXE is
comparable to NAA and has the advantage of being applicable to all elements above
Z � 20, whereas NAA is restricted to those nuclides with sufficiently large thermal
neutron absorption cross sections. The main disadvantage of PIXE is x-ray energy
ambiguities. For example, the energy of the x ray from Pb is 10.55 keV, while
that of the line of As is 10.54 keV. The resolution of the cooled Si(Li) detectors
used for x rays is about 100 eV, insufficient to resolve the two lines. Figure 11-67b
shows a typical PIXE spectrum.

K
�

L
�

26Al

14C

36Cl,
The perfectly preserved mummy of Ötzi the Iceman was found in the
Tyrolean Alps in 1991. Accelerator mass spectrometry places his date
of death between 3300 and 3200 years B.C. Recent (2003)
measurements of oxygen isotopic ratios in his teeth and bones have
pinpointed the area where he lived. [© South Tyrol Museum of
Archeology, Italy. www.iceman.it.]

www.iceman.it
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Figure 11-67 (a) Schematic drawing of a typical
particle-induced x-ray emission system. (b) PIXE
spectrum from an aerosol bombarded with 2-MeV
protons. [S. A. E. Johansson and T. B. Johansson,
Nuclear Instruments and Methods, 137, 473, 1976.]

Questions

20. If the ratio was 1.5 times larger than that used in Example 11-28, is the
calculated age too large or too small? Explain.

21. Some meteorites are found to contain measurable amounts of whose is
only 7.4 � 105 years. Devise a scenario that would account for its presence.

22. is a gas at ordinary temperatures. Explain why solid rocks can be
accurately dated using the ratio in spite of that fact.

23. Explain why accelerator mass spectrometry can achieve reliable results using
samples of only 1 mg.

More

The biological effects of ionizing radiation were largely unknown in the
early days of atomic and nuclear physics. It took such things as the plight
of the radium-watch dial painters, x-ray crystallographers with missing
fingertips, and young cyclotron physicists with cataracts to focus scien-
tific attention on the risks that attend exposure to ionizing radiation in the
home, the workplace, and the environment. Questions of Radiation
Dosage, its definition, origin, and effects, are discussed on the home
page: www.whfreeman.com/tiplermodernphysics5e. See also Equations
11-93 through 11-95 here, as well as Tables 11-10 through 11-13.

40K>40Ar

40Ar

t1>226Al,

14C>12C

www.whfreeman.com/tiplermodernphysics5e
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Summary

TOPIC RELEVANT EQUATIONS AND REMARKS

1. The composition of the nuclei Nuclei have Z protons, N neutrons, and mass number A � Z � N. Nuclei
with the same Z but different N (and A) are called isotopes. The nucleons are
Fermi-Dirac (spin particles and both have intrinsic magnetic moments.

2. Ground-state properties of nuclei

Size and shape The mean radius of the nuclear charge distribution is

11-5

The radii thus vary from about 1 fm for the proton to about 10 fm 
for the heaviest nuclei. With few exceptions, nuclei are nearly spherical.

Binding energy and mass The binding energy of the nucleus is given by

11-11

Magnetic moments The moments of the proton and neutron are

where is the nuclear magneton.

3. Radioactivity The decay rate R of radioactive nuclei is

11-19

where is the decay constant. N0 and R0 are the number of nuclei present
and the decay rate at t � 0.

Half-life 11-22

where is the mean life.

Units 11-23

4. Alpha, beta, and gamma decay These are the three most common forms of radioactive decay. Alpha particles
are nuclei, beta particles are electrons and positrons, and gamma rays are
very short wavelength electromagnetic radiation.

5. The nuclear force The nuclear force is

(a) About 102 stronger than the Coulomb force
(b) Short-range ( beyond 3 fm)
(c) Charge independent
(d) Saturated
(e) Dependent on spin orientation

The nuclear force is considered to be an exchange force in which the
attraction between a pair of nucleons is due to an exchange of virtual pions.
The range R of the force, determined by the uncertainty principle, is

11-50

where m is the mass of the virtual pion.

R � c ¢t � cU>¢E � U>mc

�0

4He

1 decay>s � 1 becquerel � 1 Bq

� � 1>
t1>2 �
ln 2



� 0.693�




R � �
dN

dt
� 
N0e

�
t � R0e
�
t

	N � eU>2mp (	n)z � �1.91304 	N

 (	p)z � �2.79285 	N

Bnuclear � ZMHc
2 � Nmnc

2 �MAc
2

R � (1.07 � 0.02)A1>3 fm

1>2)
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6. The shell model An independent particle model, similar to that used for assigning energy
states to the atomic electrons, but one that makes use of a strong spin-orbit
coupling for each nucleon accounts for the shell-like structure of the protons
and neutrons. It explains the magic numbers 2, 8, 20, 28, 50, 82, and 126 in
terms of the completion of the shells. Shell-model calculations are relatively
successful in predicting nuclear spins and magnetic moments, particularly in
the vicinity of closed shells.

7. Nuclear reactions The Q value of a reaction X(x, y)Y determines if energy is released or must
be supplied. Q is given by

11-58

Cross section The cross section � measures the effective size of a nucleus for a particular
nuclear reaction.

11-62

where R is the number of reactions per unit time per nucleus and I is the
incident particle intensity.

8. Fission and fusion Fission is the process by which heavy elements such as and 
capture a neutron and split into two medium-mass nuclei. Each event
releases about 1 MeV nucleon.
Fusion is the reaction in which two light nuclei, such as and 
fuse together to produce a heavier nucleus. Each event releases 1 to 
4 MeV nucleon.

9. Applications The applications of nuclear reactions in medicine include the use of nuclear
radiation in the treatment of diseases and the use of nuclear-based imaging
techniques in diagnosis and research. Nuclear magnetic resonance imaging
(MRI) is an alternative to x-ray imaging with the advantage that the RF
photons involved produce little damage to biological tissue. Computer-
assisted tomography using short-lived positron emitters (PET) provides
rapid, three-dimensional images. Radioactive dating employs a number of
naturally occurring radioisotopes to determine the age of rocks and artifacts.
Accelerator mass spectrometry and neutron activation analysis are highly
sensitive means of measuring the concentration of particular isotopes of
nearly every element in the periodic table.

>
3H,2H

>
239Pu235U

� �
R

I

Q � (mx � mX � my � mY)c2
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Notes

1. Antoine Henri Becquerel (1852–1908), French physicist.
He held the scientific post at the Museum of Natural History in
Paris that had been held by his father and grandfather before
him, and his research on the fluorescence of potassium uranyl
sulfate was a continuation of work that his father had begun.
His discovery of radioactivity, which revolutionized existing
theories of atomic structure, earned him a share of the 1903
Nobel Prize in Physics, together with Marie and Pierre Curie.

2. The phenomenon was named radioactivity by Marie
Curie in 1898.

3. These accomplishments were of such importance to the de-
velopment of nuclear physics that all four men were subse-
quently awarded the Nobel Prize, James Chadwick in 1935,
Carl Anderson in 1936 (shared with Victor Hess, the discoverer
of cosmic rays), and John Cockcroft and Ernest Walton in 1951.

4. The United States produced about 30 percent of the
world’s nuclear-generated electric power in 2005.

5. The term tomography is from the Greek tomos, meaning
“slice,” and graphé, meaning “picture.” Thus, a tomograph is
the pictorial representation of a slice through the object or
body being studied.

6. Robert Hofstadter (1915–1990), American physicist. His
electron-scattering measurements also revealed that the proton
and neutron possessed internal structure, opening the way to a
more fundamental understanding of the structure of matter. For
his work he shared the 1961 Nobel Prize in Physics with
Rudolf Mössbauer.

7. See, for example, Section 23-2 in P. A. Tipler and G. Mosca,
Physics for Scientists and Engineers, 6th ed., W. H. Freeman
and Co., New York, 2008.

8. See, for example, Section 26-2 in P. A. Tipler and
G. Mosca, Physics for Scientists and Engineers, 6th ed., W. H.
Freeman and Co., New York, 2008.

9. See P. A. Seeger, Nuclear Physics, 25, 1 (1961).
10. The electric quadrupole moment of the nucleus, discussed
earlier in this section, also causes hyperfine splitting, as do ex-
ternally applied magnetic and electric fields. The effect of the
reduced mass (isotope effect) mentioned in Chapter 4 is also
considered a hyperfine effect.
11. Actually, the electron’s magnetic moment deviates
slightly from that predicted by the Dirac wave equation, one
Bohr magneton. Quantum electrodynamics is able to account

for the small deviation observed experimentally with an error
of less than 1 part in 108, one of the most remarkable agree-
ments between quantum theory and experiment in physics.
12. This statement requires a small qualification. An alterna-
tive to decay, discussed in Section 11-4, is electron cap-
ture, in which an orbital electron may be captured by the nu-
cleus. The probability of its occurrence depends on the prob-
ability density of the electrons, which can be affected slightly
by very high external pressures.
13. Leptons include the electrons and neutrinos that are emit-
ted in decay. (See Chapter 12.)
14. Rudolf Ludwig Mössbauer (b. 1929), German physicist.
His discovery of the recoilless emission and absorption of
gamma rays, made while he was a graduate student in
Munich, made possible the verification (by R. V. Pound and
G. A. Rebka in 1960) of the gravitational red shift predicted
by general relativity. Mössbauer shared the 1961 Nobel Prize
in Physics with Robert Hofstadter.
15. Note that this electrostatic potential corresponds to a
force of nearly 60 N, or the weight of a 6-kg mass! It is act-
ing not on 6 kg, however, but on only 
16. Hideki Yukawa (1907–1981), Japanese physicist. His
paper presenting the exchange meson theory of the nuclear
force was his first publication. He was awarded the 1949
Nobel Prize in Physics for the discovery.
17. See, for example, Section 30-3 in P. A. Tipler and 
G. Mosca, Physics for Scientists and Engineers, 6th ed., W. H.
Freeman and Co., New York, 2008.
18. Previously unknown particles had been observed in cos-
mic rays at about the same time that Yukawa proposed the
meson exchange theory. He sent an article to the journal
Nature in 1937 suggesting that they might be the mesons, but
the journal rejected the article. Those particles were later found
to be muons, a product of the decay of Yukawa’s pi mesons.
19. Maria Goeppert-Mayer (1906–1972), German-American
physicist, and Johannes Hans Daniel Jensen (1907–1973),
German physicist. Goeppert-Mayer’s antecedents for many
generations had been university professors, while Jensen was
the son of a gardener. They co-authored a famous (among
physicists, at least) book explaining their nuclear-shell model
and for that work shared the 1963 Nobel Prize in Physics with
Eugene Wigner.

1.67 � 10�27 kg.

�

��
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20. In j-j coupling the spin and orbital angular momentum of
each particle add to give a total angular momentum j for that
particle, and then J equals the sum of the individual j vectors.
In L-S coupling the spins of all the particles and the orbital
angular momenta of all the particles add to yield total S and
total L, which then add to yield J.
21. This dependence, which occurs only for (n, reactions
with relatively low-energy neutrons, was first measured by
Emilio Segrè in 1935.
22. The first such resonance was observed unexpectedly in
the results of a neutron irradiation of silver conducted by
Edoardo Amaldi and others on the morning of October 22,
1934. By 3:00 p.m. that day, Enrico Fermi had developed the
correct explanation of the strange phenomenon. The paper de-
scribing the discovery was written that evening and delivered
to the scientific journal Ricerca Scientifica the next morning,
less than 24 hours after the discovery!
23. Otto Hahn (1879–1968), German physical chemist, and
Fritz Stassmann (1902–1980), German chemist. Hahn recog-
nized that uranium nuclei bombarded with neutrons were
breaking apart but carefully avoided characterizing the event
as fission since no such thing had been recorded before. He re-
ceived the 1944 Nobel Prize in Chemistry for the discovery.

)

24. Actually, Fermi’s reactor was the first constructed fission
reactor. About 2 billion years ago several deposits of natural
uranium located in what is now Gabon, West Africa, began
chain reactions that continued for 150 million years at an
average power of 100 kW before naturally shutting them-
selves off. The evidence that verified the discovery of the first
of these, a fascinating example of scientific detective work,
can be found in G. A. Cowan, “A Natural Fission Reactor,”
Scientific American, July 1976. The sites are being mined, and
efforts to preserve one of the natural reactors as an interna-
tional historic site are currently under way.

25. An elementary discussion of a magnetic bottle can be
found in Section 26-2 in P. A. Tipler and G. Mosca, Physics
for Scientists and Engineers, 6th ed., W. H. Freeman and Co.,
New York, 2008.

26. Godfrey Hounsfield (1919–2004), English engineer, and
Allan Cormack (1924–1998), American physicist. They
shared the 1979 Nobel Prize in Medicine for the invention of
the CT scanner.

27. The radiocarbon-dating technique was developed by Wil-
lard F. Libby (1908–1980), an American chemist. He received
the 1960 Nobel Prize in Chemistry for his work.

Problems

Level I

Section 11-1 The Composition of the Nucleus

11-1. What are the number of protons and the number of neutrons in each of the following
isotopes? and 
11-2. Electrons emitted in decay have energies of the order of 1 MeV or smaller. Use this
fact and the uncertainty principle to show that electrons cannot exist inside the nucleus.
11-3. The spin of the ground state of which constitutes 7.5 percent of natural lithium, is
zero. Show that this value is not compatible with a model of the nucleus that consists of protons
and electrons.
11-4. The magnetic moment of is 0.4035 Show that this value is not compatible with
a model of the nucleus that consists of protons and electrons.
11-5. Suppose that the deuteron really did consist of two protons and one electron. (It doesn’t!)
Compute the spin and magnetic moment of such a deuteron’s ground state and compare the
results with the values in Table 11-1.

Section 11-2 Ground-State Properties of Nuclei

11-6. Give the symbols for at least two isotopes and two isotones of each of the following
nuclides: (a) (b) and (c)
11-7. Give the symbols for at least two isobars and one isotope of each of the following
nuclides: (a) (b) and (c)
11-8. Approximating the mass of a nucleus with mass number A as A � u and using Equation
11-3, compute the nuclear density in SI units.
11-9. Use the masses in the table in Appendix A to compute the total binding energy and the
binding energy per nucleon of the following nuclides: (a) (b) and (c)
11-10. Use Equation 11-3 to compute the radii of the following nuclei: (a) (b)
(c) and (d) 238U.197Au,

56Fe,16O,

57Fe.13C,9Be,

236Np.63Ni,14O,

120Sn.208Pb,18F,

	N .14N

6Li,

�

222Rn.18F, 25Na, 51V, 84Kr, 120Te, 148Dy, 175W,
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11-11. Find the energy needed to remove a neutron from (a) (b) and (c)
11-12. Use the Weizsäcker formula to compute the mass of Compute the percent dif-
ference between the result and the value in the table in Appendix A.
11-13. Compute the “charge distribution radius” from Equation 11-5 and the “nuclear force
radius” from Equation 11-7 for the following nuclides: (a) (b) and (c)
11-14. and are a mirror pair, decaying into Use Equations 11-1 and 11-2
to compute the radius of 

Section 11-3 Radioactivity

11-15. The counting rate from a radioactive source is 4000 counts per second at time t � 0.
After 10 s, the counting rate is 1000 counts per second. (a) What is the half-life? (b) What is
the counting rate after 20 s?
11-16. A certain source gives 2000 counts per second at time t � 0. Its half-life is 2 min.
(a) What is the counting rate after 4 min? (b) After 6 min? (c) After 8 min?
11-17. A sample of a radioactive isotope is found to have an activity of 115.0 Bq immediately
after it is pulled from the reactor that formed it. Its activity 2 h 15 min later is measured to be
85.2 Bq. (a) Calculate the decay constant and the half-life of the sample. (b) How many ra-
dioactive nuclei were there in the sample initially?
11-18. The half-life of radium is 1620 years. (a) Calculate the number of disintegrations
per second of 1 g of radium and show that the disintegration rate is approximately 1 Ci.
(b) Calculate the approximate energy of the particle in the decay assum-
ing the energy of recoil of the Rn nucleus is negligible. (Use the mass table of Appendix A.)
11-19. The counting rate from a radioactive source is 8000 counts per second at time t � 0.
Ten minutes later the rate is 1000 counts per second. (a) What is the half-life? (b) What is the
decay constant? (c) What was the counting rate after 1 minute?
11-20. The counting rate from a radioactive source is measured every minute. The resulting
numbers of counts per second are 1000, 820, 673, 552, 453, 371, 305, 250, . . . (a) Plot the
counting rate versus time and (b) use your graph to estimate the half-life. (c) What would be
the approximate result of the next measurement after the 250 counts per second?
11-21. is produced at a constant rate [e.g., by the ( n) reaction on placed in a high-
energy x-ray beam] and decays by decay with a half-life of about 10 min. How long does it
take to produce 90 percent of the equilibrium value of 
11-22. The decay constant of is 9.8 � 10�10 y�1. (a) Compute the half-life. (b) How
many decays occur each second in a sample of (c) How many atoms will re-
main in the sample after 106 years?
11-23. The decay constant of is 0.266 y�1. (a) Compute the half-life. (b) What is the ac-
tivity of a sample containing 1.0 g of (c) What is the activity of the sample after 3.5 years
have passed? (d) How many atoms remain in the sample at the time?

Section 11-4 Alpha, Beta, and Gamma Decay

11-24. The stable isotope of sodium is What kind of radioactivity would you expect of
(a) and (b)
11-25. Using Figure 11-16, find the parameters A and B in Equation 11-30.
11-26. Make a diagram like Figure 11-18 for the (4n � 1) decay chain that begins with 
a nuclide that is no longer present in nature. (Use Appendix A.)
11-27. Show that the particle emitted in the decay of carries away 4.01 MeV, or 98
percent, of the total decay energy.
11-28. decays exclusively by electron capture to with a half-life of 53.3 d. Would the
characteristics of the decay be altered and, if so, how if (a) a sample of were placed under
very high pressure or (b) all four electrons were stripped from each atom in the sample?
11-29. Compute the energy carried by the neutrino in the electron capture decay of to the
ground state of 
11-30. Compute the maximum energy of the particle emitted in the decay of 
11-31. In Example 11-13 we saw that could decay by emitting an particle. Show that
decay by emission of a nucleon of either type is forbidden for this nuclide.

�233Np

72Zn.��

67Zn.

67Ga

7Be

7Be

7Li7Be

232Th�

237Np,

24Na?22Na

23Na.

22Na

22Na?

22Na
1.0-	g

235U235U?1.0-	g

235U

62Cu?
��

63Cu,62Cu

226Ra S 222Rn � �,�

40Ca.

39K.39Ca39K39Ca

208Pb.63Cu,16O,

23Na.

14N.7Li,4He,
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11-32. With the aid of Figures 11-19 and 11-20, list the energies of all of the possible rays
that may be emitted by following the decay of 
11-33. is very unusual among low-Z nuclides; it decays by emitting two particles. Show
why is unstable toward decay.
11-34. can undergo all three types of decay. (a) Write down the decay equation in each
case. (b) Compute the decay energy for each case.

Section 11-5 The Nuclear Force

11-35. Assuming that the average separation between two protons in is equal to the nu-
clear diameter, compute the Coulomb force of repulsion and the gravitational force of attraction
between the protons. If the nuclear potential seen by the protons is 50 MeV for separations up
to 3 fm, compare the nuclear force to the other two forces.
11-36. Suppose the range of the nuclear force was 5 fm. Compute the mass (in MeV c2) of
an exchange particle that might mediate such a force.
11-37. The repulsive force that results in the “hard core” of the nucleus might be due to the
exchange of a particle, just as the strong attractive force is. Compute the mass of such an ex-
change particle if the range of the repulsive force equals about 0.25 fm, the radius of the core.

Section 11-6 The Shell Model

11-38. The nuclei listed below have filled j shells plus or minus one nucleon. (For example,
has the shell filled for both neutrons and protons, plus one neutron in the shell.)

Use the shell model to predict the orbital and total angular momentum of these nuclei:

11-39. Use the shell model to predict the nuclear magnetic moments of the isotopes listed in
Problem 11-38.
11-40. The atomic spectral lines of exhibit a hyperfine structure, indicating that the ground
state is split into three closely spaced levels. What must be the spin of the ground state?
11-41. Which of the following nuclei have closed neutron shells:

and
11-42. Sketch diagrams like Figure 11-9 for the ground states of 
and
11-43. Which of the following nuclei have closed proton shells:

and
11-44. (a) Use Figure 11-35 to draw a diagram like Figure 11-9 for (b) What value would
you predict for the value of j? (c) What value would you predict for j for the first excited state?
(d) Draw a diagram like Figure 11-9 for the first excited state. (Is there only one possible?)
11-45. Use Figure 11-35 to predict the values of j for the ground states of 
and

Section 11-7 Nuclear Reactions

11-46. Using data from Appendix A, find the Q values for the following reactions:
(a) (b) (d,p) and (c)
11-47. (a) Find the Q value for the reaction (b) Find the threshold
for this reaction if stationary nuclei are bombarded with nuclei from an accelerator.
(c) Find the threshold for this reaction if stationary nuclei are bombarded with nuclei
from an accelerator.
11-48. What is the compound nucleus for the reaction of deuterons on What are the pos-
sible product nuclei and particles for this reaction?
11-49. Using data from Appendix A, compute the Q value for the reaction (a) p)
and (b)
11-50. The cross section for the reaction is 4.5 b for thermal neutrons. A sam-
ple of natural As in the form of a crystal 1 cm � 2 cm that is 30 thick is exposed to a ther-
mal neutron flux of Compute the rate at which this reaction pro-
ceeds. (Natural arsenic is 100% Its density is 5.73 g>cm3.)75As.

0.95 � 1013 neutrons>cm2 # s.
	m

75As(n, )76As

16O(p,d)17O.

15N,12C(�,

14N?

1H3H

3H1H

3H � 1H S 3He � n � Q.

6Li � nS 3H � 4He � Q.4He,3He2H � 2H S 3H � 1H � Q,

107In.

30Si, 37Cl, 55Co, 90Zr,

13N.

204Pb?60Ni, 60Cu, 90Zr, 124Sn, 166Yb,

3He, 19F, 12C, 40Ca, 50Ti, 56Fe,

16O.

3H, 3He, 14N, 14C, 15N, 15O,

145Eu?82Ge, 88Sr, 93Ru, 94Ru, 131In,

36S, 50V, 50Ca, 53Mn, 61Ni,

14N

14N

29
14Si 37

17Cl 71
31Ga 59

27Co 73
32Ge 33

16S 
87
38Sr

2s5>21d5>229
14Si

>
12C

�80Br
�8Be

�8Be

227Th.�223Ra
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11-51. Write three different reactions that could produce the products (a) n �
(b) and (c)
11-52. Write down the correct symbol for the particle or nuclide represented by the x in the
following reactions: (a) (b) (c) x (d)
(e) (f) (g) (h)

Section 11-8 Fission and Fusion

11-53. A few minutes after the Big Bang the first fusion reaction occurred in the early uni-
verse. It was Compute the Q for this reaction.
11-54. Assuming an average energy release of 200 MeV per fission, calculate the number of
fissions per second needed for a 500-MW reactor.
11-55. If the reproduction factor of a reactor is k � 1.1, find the number of generations needed
for the power level to (a) double, (b) increase by a factor of 10, and (c) increase by a factor of
100. Find the time needed in each case if (d) there are no delayed neutrons, so the time between
generations is 1 ms, and (e) there are delayed neutrons that make the average time between gen-
erations 100 ms.
11-56. Write down the several reactions possible when captures a thermal neutron and
1n, 2n, 3n, or 4n is produced.
11-57. Assuming an average energy release of 17.6 MeV fusion, calculate the rate at which

must be supplied to a 500-MW fusion reactor.
11-58. From Figure 11-52, the cross section for the capture of 1.0-MeV neutrons by 
is 0.02 b. A 5-gm sample of is exposed to a total flux of 1.0-MeV neutrons of 5.0 � 1011

per m2. Compute the number of atoms produced.
11-59. Compute the total energy released in the following set of fusion reactions. This is the
proton-proton cycle, the primary source of the sun’s energy.

11-60. A particular nuclear power reactor operates at 1000 MWe (megawatts electric) with an
overall efficiency in converting fission energy to electrical energy of 30 percent. What mass of

must fission in order for the power plant to operate for (a) one day, (b) one year? (c) If the
energy were provided by burning coal instead of what would be the answers to (a) and
(b)? (Burning coal produces approximately 
11-61. (a) Assuming that the natural abundance of deuterium given in Appendix A is reflected
in the formation of water molecules, compute the energy that would be released if all the
deuterons in 1.0 m3 of water were fused via the reaction (b) Given that
the world’s 5.9 � 109 people used 3.58 � 1020 J in 1999, how long (in hours) would the result
in part (a) have lasted a “typical” person?
11-62. Consider the possible fission reaction

(a) Compute the energy released in the reaction. (b) Is this reaction likely to occur? Explain.

Section 11-9 Applications

11-63. A bone claimed to be 10,000 years old contains 15 g of carbon. What should the decay
rate of be for this bone?
11-64. A sample of animal bone unearthed at an archeological site is found to contain 175 g of
carbon, and the decay rate of in the sample is measured to be 8.1 Bq. How old is the bone?
11-65. The ratio for a particular rock is measured to be 36.5. How old is the rock?
11-66. In a PIXE experiment, an element with A � 80 forms 0.001 percent by weight of a thin
foil whose mass is 0.35 mg cm2. The foil is bombarded with a 250 nA proton beam for 15 min-
utes. The cross section for exciting the L shell is 650 b. If the probability that the excited atom
will emit an L x ray is 0.60 and the overall efficiency of the x-ray detector is 0.0035, how many
counts will the detector record during the 15-minute bombardment?

>
87Rb>87Sr

14C

14C

n � 235
92U ¡ 120

48Cd � 112
44Ru � 3n

2H � 1H S 3He � .

3.15 � 107 J>kg.)

235U,

235U

3He � 3He ¡ 4He � 21H � 

2H � 1H ¡ 3He � 

1H � 1H ¡ 2H � e� � �e

239U

238U

238U

2H
>

235U

n � pS d � .

90Zr(d, x)91Zr.x(d, n)4He;162Dy(�, 6n)x;16O(d, �)x;

9Be(x, n)12C;(�, p)61Cu;208Pb (n, x)208Pb;14N(n, p) x;

d � 31P.p � 14C,

23Na,
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11-67. The naturally occurring A � 4n decay series begins with and eventually ends on
(See Figure 11-18.) A particular rock is measured to contain 4.11 g of and 0.88 g

of Compute the age of the rock.
11-68. Compute the resonance frequency of free protons in a magnetic field of (a) 0.5 � 10�4 T
(approximate strength of Earth’s field), (b) 0.25 T, and (c) 0.5 T.
11-69. A small piece of papyrus is to be -dated using AMS. During a 10-minute run with the
system set to record 1500 ions are counted. With the system set to transmit �3 ions, the beam
current is 12 (a) Compute the ratio, assuming both isotopes are transmitted with the
same efficiency. (b) If the entire sample is consumed in 75 minutes, what was the mass of it con-
tained? (Assume a constant consumption rate and an efficiency of 0.015. (c) How old is the sample?
11-70. A wooden spear found in the mountains of southeastern Spain was found to have 
activity of 2.05 disintegrations per minute per gram. How old is it? (The activity of live
wood is 15.6 disintegrations per minute per gram.)

Level II

11-71. Using Equation 11-14 and the constants in Table 11-3, find the Z for which 
i.e., the minimum of curves like Figure 11-22a for (a) A � 27, (b) A � 65, and (c) A � 139. Do
these calculations give the correct stable isobars and 
11-72. An empirical expression for distance that particles can travel in air, called the range, is

for E in MeV and 4 � E � 7 MeV. (a) What is the range in air of a 5-MeV
particle? (b) Express this range in using � 1.29 � 10�3 for air. (c) Assuming

the range in is the same as that of aluminum find the range in aluminum
in cm for a 5-MeV particle.
11-73. Show that the average electrostatic energy of a proton-proton pair is about 6ke2 5R,
where R is the separation of the pair and 
11-74. A sample of has a mass of 0.05394 kg and emits an average of 2.36 particles
per second. Determine the decay constant and the half-life.
11-75. A sample of radioactive material is found initially to have an activity of 115.0 decays
minute. After 4 d 5 h, its activity is measured to be 73.5 decays minute. (a) Calculate the half-
life of this material. (b) How long (after t � 0) will it take for the sample to reach an activity of
10.0 decays minute? (c) How long after the time in (b) will it take for the activity to reach 2.5
decays minute?
11-76. The half-life of is 18.72 days. It decays by emission to an emitter whose
half-life is 11.43 days. A particular sample contains 106 atoms of and no at time t � 0.
(a) How many atoms of each type will be in the sample at t � 15 days? (b) At what time will the
number of atoms of each type be equal?
11-77. The Mössbauer effect was discovered using the decay of the 0.12939-MeV second excited
state of The lifetime of this isomer is 0.13 ns. (a) Compute the width of this level.
(b) Compute the recoil energy of a free atom that emits the 0.12939-MeV photon. (c) Resonant
(recoilless) absorption occurs when is bound into a lattice. If a Doppler shift equal to de-
stroys the resonance absorption, show that the Doppler velocity necessary is given by

11-78. and are a pair of mirror nuclei. Compute the difference in total binding energy
between the two nuclides and compare the result to the electrostatic repulsion of the protons in

Let the protons be separated by the radius of the helium nucleus.
11-79. Use the masses in Appendix A to compute the energy necessary to separate a neutron
from and From those results determine a value for a5 in the Weizsäcker formula
(Equation 11-14) and compare it with the value in Table 11-3.
11-80. The centripetal force of a nucleus with makes it more stable toward decay. Use
Figure 11-1a and a (classical) argument to show why this is the case.
11-81. (a) Calculate the radii of and from Equation 11-4. (b) Assume that after the
fission of into and the two nuclei are momentarily separated by a distance r equal
to the sum of the radii found in (a), and calculate the electrostatic potential energy for these two
nuclei at this separation. Compare your result with the measured fission energy of 175 MeV.

92Kr,141Ba235U

92
36Kr141

56Ba

�I � 0

48Ca.47Ca

3He.

3H3He

v �
c%

e

v
%191Ir

191Ir
%191Ir.

223Ra227Th
�223Ra,�227Th

> > > >�114Nd
k � 1>4��0 .

>�
(� � 2.70 g>cm3),g>cm2

g>cm3�g>cm2,�
R(cm) � (0.31)E3>2 �

139La?65Cu,27Al,

dM>dZ � 0,

14C

14C

12C

14C>12C	A.
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14C
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11-82. Consider a neutron of mass m moving with speed and colliding head-on with a nucleus
of mass M. (a) Show that the speed of the center of mass in the lab frame is V � mvL (m � M).
(b) What is the speed of the nucleus in the center-of-mass frame before the collision? After the
collision? (c) What is the speed of the nucleus in the original lab frame after the collision? (d) Show
that the energy of the nucleus after the collision is

and use this to obtain Equation 11-82.
11-83. Suppose that the Van Dyck painting shown in the photographs on page 537 was irradi-
ated with a thermal neutron flux of for 2 h. In terms of the numbers of man-
ganese and phosphorus atoms initially present, determine the activity (a) 2 hours and (b) 2 days
after the irradiation stopped. The (n, cross section for is 0.180 b and for is 13.3 b.
(Both isotopes are 100 percent of the naturally occurring elements.)
11-84. The total energy consumed in the United States in 1 y is about 7.0 � 1019 J. How many
kilograms of would be needed to provide this amount of energy if we assume that 200 MeV
of energy is released by each fissioning uranium nucleus, that 3 percent of the uranium atoms un-
dergo fission, and that all of the energy-conversion mechanisms used are 25 percent efficient?
11-85. The rubidium isotope is a emitter with a half-life of 4.9 � 1010 y that decays
into It is used to determine the age of rocks and fossils. Rocks containing the fossils of
early animals contain a ratio of to of 0.010. Assuming that there were no present
when the rocks were formed, calculate the age of these fossils.
11-86. In 1989, researchers claimed to have achieved fusion in an electrochemical cell at
room temperature. They claimed a power output of 4 W from deuterium fusion reactions in the
palladium electrode of their apparatus. (a) If the two most likely reactions are

and

with 50 percent of the reactions going by each branch, how many neutrons per second would
we expect to be emitted in the generation of 4 W of power? (b) If th of these neutrons were
absorbed by the body of an 80.0-kg worker near the device, and if each absorbed neutron car-
ries an average energy of 0.5 MeV with an RBE of 4, to what radiation dose rate in rems per
hour would this correspond? (c) How long would it take for a person to receive a total dose of
500 rems? (This is the dose that is usually lethal to half of those receiving it.)
11-87. Neutron activation analysis is used to study a small sample of automotive enamel found
at the scene of a hit-and-run collision. The sample was exposed to a thermal neutron flux of

for 2.0 minutes. Placed immediately in a gamma-ray detector, it was
found to have an activity of 35 Bq due to and 115 Bq due to Compute the total amount
of each metal in the original sample. (The cross section for is 19 b; that for is 0.15 b.)
11-88. A fusion reactor using only deuterium for fuel would have the following two reactions
taking place in it:

and

The produced in the second reaction reacts immediately with another to produce

The ratio of to atoms in naturally occurring hydrogen is How much energy
would be produced from 4 liters of water if all of the nuclei undergo fusion?
11-89. (a) Using the Compton-scattering result that the maximum change in wavelength is

and the approximation show that for a photon to lose an
amount of energy Ep to a proton, the energy of the photon must be at least E � [(1>2)Mc2Ep]

1>2.¢E � hc ¢
>
2,¢
 � 2hc>Mc2

2H
1.5 � 10�4.1H2H

3H � 2H ¡ 4He � n � 17.7 MeV

2H3H

2H � 2H ¡ 3H � 1H � 4.03 MeV

2H � 2H ¡ 3He � n � 3.27 MeV

50Ti59Co

51Ti.60Co
3.5 � 1012 neutrons>cm2 # s

1>10

2H � 2H ¡ 3H � 1H � 4.03 MeV

2H � 2H ¡ 3He � n � 3.27 MeV

87Sr87Rb87Sr

87Sr.
�87Rb

235U

55Mn31P)

1012 neutrons>cm2 # s

1

2
M(2V)2 � c 4mM

(m � M)2
d 1

2
mv2
L

>vL



(b) Calculate the photon energy needed to produce a 5.7-MeV proton by Compton scattering.
(c) Calculate the energy given a nucleus in a head-on collision with a 5.7-MeV neutron.
(d) Calculate the photon energy needed to give a nucleus this energy by Compton scattering.
11-90. A photon of energy E is incident on a deuteron at rest. In the center-of-mass reference
frame, both the photon and the deuteron have momentum p. Prove that the approximation

is good by showing that the deuteron with this momentum has energy much less than
E. If the binding energy of the deuteron is 2.22 MeV, what is the threshold energy in the lab for
photodisintegration?

Level III

11-91. (a) Compute the binding-energy differences between the two nuclides of the mirror
pairs and (b) From each value computed in (a), determine a
value of the constant a3 in Equation 11-14. Compare each value and their average with the value
given in Table 11-3.
11-92. (a) Differentiate the Weizsäcker empirical mass formula with respect to Z, as in
Problem 11-71, and show that the minima of the constant A curves that result, i.e., Z values for
the most stable isotopes, are given by

(a) Determine the atomic number for the most stable nuclides for A � 29, 59, 78, 119, and 140.
(c) Compare the results in (b) with the data in Appendix A and discuss any differences.
11-93. (a) Use Figure 11-35 to make a diagram like Figure 11-9 for the ground state of 
What do you predict for the value of j for this state? (b) The first excited state of involves
excitation of a proton. Draw the diagram for this state and predict its j value. (c) The j value
for the second excited state is Draw a diagram of the nucleons like Figure 11-9 that could
account for that value. (d) Repeat parts (a) and (b) for where the excitation of the first ex-
cited state involves a neutron. (e) The j value for the second excited state of is Draw a
diagram like Figure 11-9 that would explain that value.
11-94. Approximately 2000 nuclides remain to be discovered between the proton and neutron
driplines in Figure 11-15b. Consider those that lie on the energy parabola (see Figure 11-22a)
for A � 151, whose only stable isotope is (a) From the data in Appendix A, draw an
accurate diagram of the A � 151 parabola showing known nuclides and those yet to be discov-
ered between Z � 50 and Z � 71. (b) Determine where the edges of the driplines lie for
A � 151, i.e., the lowest mass isotopes for which spontaneous proton or neutron emission
becomes possible.
11-95. There are theoretical reasons to expect that a cluster of relatively long-lived nuclides
will exist in the neighborhood of the doubly magic nucleus with Z � 126 and N � 184, the lat-
ter being the next magic number beyond 126 predicted by the shell model. (a) Compute the
mass of this exotic nucleus using Equation 11-14. (b) Computing the necessary masses of
the nearby nuclei, predict the decay modes that would be available to the doubly magic nucleus.
11-96. Assume that a neutron decays into a proton plus an electron without the emission of a
neutrino. The energy shared by the proton and electron is then 0.782 MeV. In the rest frame of
the neutron, the total momentum is zero, so the momentum of the proton must be equal and op-
posite that of the electron. This determines the relative energies of the two particles, but because
the electron is relativistic, the exact calculation of these relative energies is somewhat difficult.
(a) Assume that the kinetic energy of the electron is 0.782 MeV and calculate the momentum p
of the electron in units of MeV c. (Hint: Use Equation 2-32.) (b) From your result for (a), cal-
culate the kinetic energy of the proton. (c) Since the total energy of the electron plus
proton is 0.782 MeV, the calculation in (b) gives a correction to the assumption that the energy
of the electron is 0.782 MeV. What percentage of 0.782 MeV is this correction?

p2>2mp>
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1>2.17O
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4a4
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11-97. Radioactive nuclei with a decay constant of are produced in an accelerator at a con-
stant rate Rp . The number of radioactive nuclei N then obeys the equation dN dt � Rp � N.
(a) If N is zero at t � 0, sketch N versus t for this situation. (b) The isotope is produced at
a rate of 100 per second by placing ordinary copper in a beam of high-energy photons.
The reaction is

decays by decay with a half-life of 10 minutes. After a time long enough so that
how many nuclei are there?

11-98. The (4n � 3) decay chain begins with and ends on (a) How many decays
are there in the chain? (b) How many decays are there? (c) Compute the total energy released
when one atom decays through the complete chain. (d) Assuming no energy escapes,
determine the approximate temperature rise of 1 kg of metal over the period of 1 year.
11-99. Energy is generated in the Sun and other stars by fusion. One of the fusion cycles, the
proton-proton cycle, consists of the following reactions:

followed by either

or

(a) Show that the net effect of these reactions is

(b) Show that the rest mass energy of 24.7 MeV is released in this cycle, not counting the
2 � 0.511 MeV released when each positron meets an electron and is annihilated according to

(c) The Sun radiates energy at the rate of about 4 � 1026 W. Assuming that this
is due to the conversion of four protons into helium plus rays and neutrinos, which releases
26.7 MeV, what is the rate of proton consumption in the Sun? How long will the Sun last if it
continues to radiate at its present level? (Assume that protons constitute about half the total
mass of the Sun, which is about 2 � 1030 kg.)
11-100. The fusion reaction between and is

Using the conservation of momentum and the given Q value, find the final energies of both
the nucleus and the neutron, assuming that the initial momentum of the system is zero.
11-101. (a) A particular light-water -fueled reactor had a reproduction factor of 1.005 and
an average neutron lifetime of 0.08 s. By what percentage will the rate of energy production by
the reactor increase in 5 s? (b) By what fraction must the neutron flux in the reactor be reduced
in order to reduce the reproduction factor to 1.000?
11-102. Compute the reproduction factor for uranium enriched to (a) 5 percent and (b) 95 per-
cent in Compute the corresponding fission rate doubling time in each case. Assuming no
loss of neutrons and the release of 200 MeV fission, at what rate will energy be produced in
each case 1.0 s after the first fission occurs?
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Notwithstanding the speculations of the ancient Greek natural philosopher
Democritus (about 450 BC) and Dalton’s atomic theory of matter (1808),1 the

story of particle physics really began with the discovery of the electron by Thomson
in 1897 (see Section 3-1). That event was followed in 1913 by Rutherford’s discovery
of the atomic nucleus whose lightest example, that of hydrogen, he named the proton
(see Section 4-2). As one moved upward through the periodic table of the elements, a
dilemma arose, caused by the more-rapid increase of the atomic mass compared to
that of the nuclear charge, even though both were presumably due to the protons
bound together in the nucleus. That problem was solved in 1932 by Chadwick’s dis-
covery of the neutron (see Section 11-1). In the meantime Einstein had proposed (in
1905) that Planck’s quantization of blackbody radiation was in fact a quite general
property of the electromagnetic field (see Sections 3-2 and 3-3). Einstein’s suggestion
was not widely accepted until, over the next 20 years, Millikan’s thorough experi-
mental investigation of the photoelectric effect and Compton’s discovery and expla-
nation of the Compton effect provided incontrovertible evidence for the quantization
of electromagnetic radiation, the field quantum being a particle we now call the photon.
For a brief time, it was thought these four were the “elementary” particles from which
all matter was formed. But then Anderson discovered the positron, or antielectron,
later in 1932. Shortly thereafter, the muon, pion, and many other particles were
discovered in searches that have intensified and continued down to the present.

During the past 50 years several nations and international consortia have con-
structed increasingly larger and more sophisticated particle accelerators capable of
producing greater and greater energies with the goals of testing the predictions of cur-
rent theories and searching for additional particles predicted by them. Initially, an im-
portant consideration in such complex experiments, which often involve hundreds of
scientists from many nations, was the question of how to tell if a particle is truly ele-
mentary or composed of a combination of other particles. For example, both the pro-
ton and the neutron were once thought to be elementary, but probing with high-energy
(short-wavelength) electron beams revealed that the nucleons have internal structure,
just as do atoms and nuclei. Each of the nucleons was found to be a composite parti-
cle consisting of three, still more fundamental particles called quarks. Several hundred
particles have at one time or another been considered to be elementary, but a series of
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The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory began colliding gold nuclei (fully ionized gold
atoms) late in 2000, with each of the ions moving at 99.99 percent of the speed of light. (a) through (d) are simulations of the
accelerating Au nuclei at several stages. (a) Two Lorentz-contracted ions approach each other. (b) The collision “melts” the
protons and neutrons and (c) for an instant releases the quarks and gluons from which the nucleons were formed. (d) From the
enormous energy of the collision thousands more are created, creating in turn thousands of particles. (e) Computer construction
of the tracks of the thousands of particles created in a single collision of two gold ions. [Courtesy Brookhaven National
Laboratory, STAR experiment.]

brilliant theoretical achievements over that same 50-year period vastly expanded our
understanding of the “particle zoo.” The culmination of these achievements is the
Standard Model, which has been spectacularly successful in explaining and predict-
ing the properties and interactions of particles by describing them in terms of a
relatively small number of truly (for now, at least) elementary particles. Research at
universities and at the giant accelerator laboratories around the world continues to
strengthen our understanding of the structure of matter. In addition to the usual parti-
cle properties of mass, charge, and spin, research has unveiled new properties that
have no classical analogs, some given whimsical names such as strangeness, charm,
and color. Coincident with the construction of the large accelerators has been the de-
velopment and deployment of larger and more sensitive particle detectors at the big
machines and, for neutrinos, detectors deep underground, in the oceans, and buried in
the polar ice cap.

In this chapter, we will first look at a few basic concepts that will enable us to clas-
sify and describe particles. We will then consider the fundamental interactions between
particles and the conservation laws that apply to them. Central to our discussions will be
the current theory of elementary particles, the Standard Model, in which all matter in
nature—from the most exotic particles produced in the giant accelerator laboratories to
ordinary grains of sand—is constructed from just three groups of elementary particles:
leptons, quarks, and the particles that mediate interactions between them.

12-1 Basic Concepts

Antiparticles

The Positron In the same year that the neutron was discovered, the positron was dis-
covered (and named) by Carl Anderson.2 This particle has the same mass and intrin-
sic angular momentum as the electron but has positive charge; therefore, its intrinsic
magnetic moment is parallel, rather than antiparallel, to its spin. It is the antiparticle
of the electron and is represented by the symbol e�, or sometimes in radioactive decay
equations by The existence of the positron had been predicted by Dirac from his
relativistic wave equation,3 though there was some difficulty about the interpretation
of this prediction. (See Section 2-4.)

��.

(a) (b) (c) (d) (e)
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Air view of the European
Laboratory for Particle
Physics (CERN) just outside
of Geneva, Switzerland. The
large circle shows the Large
Hadron Collider (LHC)
tunnel, which is 27
kilometers in circumference.
The irregular dashed line is
the border between France
and Switzerland (in the
foreground). The LHC
occupies the tunnel formerly
used by the Large Electron-
Positron (LEP) collider,
which was retired in 2000.
The LHC began operations in
2008. [CERN.]

The energy of a relativistic particle is given by Equation 2-31:

2-31

from which we can write

12-1

Though we can usually choose the plus sign and ignore the negative-energy solution
with a “physical argument,” the mathematics of the Dirac equation requires the exis-
tence of wave functions corresponding to these negative-energy states. Dirac postu-
lated that all the negative-energy states were filled with electrons. Electrons in the
negative-energy states would exert no net force on anything and thus would not be ob-
servable. Dirac invoked the exclusion principle to suggest that only holes in this
“infinite sea” of negative-energy states would be observable. The holes would act as
positive charges with positive energy. Anderson’s discovery of a particle with mass
identical to that of the electron but with positive charge seemed to indicate that this
interpretation was reasonable, since the positron is produced simultaneously with an
electron in pair production (see Figure 12-1).

Antiparticles The notion that we are immersed in an infinite sea of negative-energy
electrons is an unsettling one, however. It was rendered unnecessary with the devel-
opment of quantum electrodynamics (QED) by Feynman4 and others in the late 1940s.
The negative energy solutions of the Dirac equation were re-expressed as positive en-
ergy solutions of a new particle—the positron. And the need for the invisible “sea” of
electrons with its mysterious “holes” vanished. However, Dirac’s prediction of an anti-
electron turned out to be farsighted. QED, whose predictions have been verified to the
highest precision of any physical theory, requires that every particle must have a cor-
responding antiparticle with the same mass but opposite electric charge. For example,
the theory predicts that protons and neutrons, which are both spin- particles
whose wave functions are solutions of the Dirac equation, should have antiparticles.

1>2

E � �[(pc)2 � (mc2)2]1>2
E2 � (pc)2 � (mc2)2
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Figure 12-1 Tracks of
electron-positron pairs
produced by 300-MeV
synchrotron x rays at the
Lawrence Livermore
Laboratory. The magnetic
field in the chamber points
out of the page. [Photo
courtesy of Lawrence
Radiation Laboratory,
University of California,
Berkeley.]

e+
p

p p p

e–

–

The creation of a proton-antiproton pair requires at least 2mpc2 � 1877 MeV, which was
not available except in cosmic rays until the development of high-energy accelerators
in the 1950s. The antiproton (designated ) was discovered by Segrè5 and Chamberlain
at Berkeley in 1955 using a beam of protons with kinetic energy 6.2-GeV from the
Bevatron particle accelerator. (See Figure 12-2.) The antineutron ( ) (a particle with
the same mass as the neutron but with a positive magnetic moment) was discovered two
years later. (The standard notation for an antiparticle is the overbar; however, in many
cases it is customary to specify the charge instead, as we did for the positron.)

Particles with integral spin, whose wave functions are not solutions of the Dirac
equation, also have antiparticles. For example, those with zero spin, which are de-
scribed by the Klein-Gordon relativistic wave equation (see Equation 11-52), include
the pions, thought in the early days (circa 1940) to be the mediating exchange particle,
or force carrier, of the nuclear force. In general, an antiparticle has exactly the same
mass as the particle but with electric charge, baryon number, and strangeness (see
Section 12-4) opposite in sign to that of the particle.

n

p

Figure 12-2 Bubble chamber tracks
showing creation of proton-antiproton pair
in the collision of an incident 25-GeV
proton from the Brookhaven Alternating
Gradient Synchrotron with a liquid
hydrogen nucleus (stationary proton).
The reaction is 
The energy necessary to create the pair is

in the center of
mass system. A relativistic calculation
in the laboratory frame shows that the
beam protons must have at least

to reach the reaction
threshold. [Photo courtesy of R. Ehrlich.]
6mpc

2 � 5.6 GeV

2mpc
2 � 1.877 GeV

p � pS p � p � p � p.
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The tunnel of the proton-
antiproton collider at CERN.
The same bending magnets
and focusing can be used for
protons or antiprotons
moving in opposite
directions. The rectangular
box in the foreground is a
focusing magnet; the next
four boxes are bending
magnets. [CERN.]

Although the positron is stable, it has only a short-term existence in our universe
because of the large supply of electrons in matter. The fate of the positron is annihila-
tion according to the reaction

12-2

Whether bound (as positronium—see Section 2-4) or unbound, annihilation occurs from
S states (zero orbital angular momentum), the antiparallel spins state producing two
quanta as on the left in Equation 12-2, the parallel spins state producing three pho-
tons. The fact that we call electrons particles and positrons antiparticles does not imply
that positrons are less fundamental than electrons, but was initially merely an arbitrary
choice reflecting the nature of our part of the universe. If our matter were made up of
negative protons, positive electrons, and neutrons with positive magnetic moments, then
particles such as positive protons, negative electrons, and neutrons with negative mag-
netic moments would suffer quick annihilation and would probably be called the an-
tiparticles. Antihydrogen atoms (an antiproton and a positron) were first produced “hot”
in the antiproton beam at the European Center for Nuclear Research (CERN) in 1995.
Subsequently, the CERN ATHENA project has produced substantial amounts of “cold”
(slow) antihydrogen and is conducting definitive comparisons of its physical properties
with those of hydrogen. The cover of this book illustrates the annihilation of an anti-
hydrogen atom recorded by the ATHENA project. The matter-antimatter asymmetry of
the universe, that is, why our universe consists of matter with essentially no antimatter
despite the prediction of QED and the symmetry of the relativistic wave equation, is a
question we will return to later in this chapter and in Chapter 13.

EXAMPLE 12-1 Proton-Antiproton Annihilation A proton and an antiproton at rest
annihilate according to the reaction (standard particle physics notation typically
omits the � signs in reaction equations):

Find the energies and wavelengths of the photons.

SOLUTION

Since the proton and the antiproton are at rest, conservation of momentum requires
that the two photons created in their annihilation have equal and opposite momenta

pp ¡ 

3S

1S

e� � e� ¡  �  or e� � e� ¡  �  � 



Richard Feynman, who called
himself a “curious character,”
shared the 1965 Nobel Prize
in Physics for his
contributions to the
development of quantum
electrodynamics. [American
Institute of Physics, Emilio
Segrè Visual Archives, Physics
Today Collection.]

γ
e

e

Figure 12-3 The primitive
vertex of the Feynman
diagram. The particle, shown
as an electron, could be a
proton or any other particle
that feels the electromagnetic
force. Note that the photon
line has no arrow. The
primitive vertex should be
thought of as a “building
block,” combinations of
which form complete
Feynman diagrams.
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and therefore equal energies. Since the total energy on the left side of the reaction
is 2mpc2, the energy of each photon is

The wavelength is

Feynman Diagrams

As a part of quantum electrodynamics Feynman developed a wonderfully clear yet
powerful technique for describing all electromagnetic phenomena. Like QED itself,
the technique of Feynman diagrams is so good that it is used as a model by other quan-
tum field theories, notably quantum chromodynamics (QCD), which we will discuss
in Section 12-4. The detailed rules for drawing Feynman diagrams are directly related
to the equations of QED and are beyond the scope of our discussions here; however,
a brief description of a simplified version of the diagrams and a few basic rules will
be ample for our use in illustrating the phenomena of interest in this chapter. (For a
more complete discussion of Feynman diagrams refer to D. J. Griffith, Chapter 2,
cited in the General References section.)

Feynman diagrams are spacetime diagrams, that is, ct versus x graphs, similar to
those developed and used in Chapters 1 and 2. In particle physics Feynman diagrams
are used to describe interactions at the level of quarks, leptons, and the mediators of the
interactions and to compute lifetimes and cross sections for events. As noted in Figure
11-28, where a Feynman-like diagram was used to illustrate the early view of the 
meson as the mediator of the nuclear force, the ct and x axes are normally not drawn.
In this chapter, as in the earlier relativity chapters, time (ct) is positive upward. (Particle
physicists often draw the diagrams with time flowing horizontally toward the right;
there is no convention.) Particles are represented by straight lines with an arrow. 
A particle line whose arrow points backward in time is interpreted as the correspond-
ing antiparticle moving forward in time. The arrows allow us to omit the overbars in
the diagrams. The lines are symbolic and do not represent the particle trajectories.
The rules for analyzing the diagrams, the details of which are beyond the scope of our
discussions, force conservation of energy and momentum at each vertex. It is the inter-
actions that we are interested in describing. Particles that are their own antiparticles,
like the photon, have no arrows and are represented by wiggly or broken lines of vari-
ous sorts. All electromagnetic phenomena can be represented by combinations of the
process illustrated in Figure 12-3, called the primitive vertex. Interactions occur at
the vertices. This diagram is read as follows: a moving charged particle enters, emits
(or absorbs) a photon, and leaves. The primitive vertex is not itself a complete Feynman
diagram, but rather the basic unit from which complete diagrams are constructed.

Let’s examine the Feynman diagrams for a few familiar events. In Figure 12-4a,
two electrons enter, exchange a photon, and then leave. That is Coulomb repulsion of
like charges.6 Figure 12-4b represents Coulomb attraction of opposite charges. These
serve to illustrate one more rule: Particle lines that both begin and end within the dia-
gram are virtual particles, that is, like Yukawa’s exchange pion in Section 11-5, they
are not, indeed, cannot be observed in the laboratory. Note that a virtual particle need
not have the same mass as the corresponding real particle; it is energy and momentum
that are conserved at vertices, not mass. Only lines that enter or leave the diagram rep-
resent real, observable particles, and these do, of course, have the proper mass. The di-
agram makes clear why we say that the electromagnetic force is mediated by photons.
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Figure 12-4 Feynman diagrams describing
(a) Coulomb repulsion of charges of the
same sign and (b) Coulomb attraction
between charges of opposite signs.
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Figure 12-5a illustrates Compton scattering. Figure 12-5b is another diagram that de-
scribes electron-positron scattering (Coulomb attraction) and includes both pair pro-
duction (upper part) and pair annihilation (lower part). This points up the fact that
there may be many diagrams representing any given reaction.7 For example, Figure
12-5c is also a possible pair annihilation. With this introduction we will now use
simple Feynman diagrams throughout the remainder of this chapter to visualize inter-
actions that might otherwise be very difficult to understand.

(a)

(c)

(b)

γ γ
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e e
��
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Figure 12-5 (a) The Compton effect. A photon enters and is absorbed by an
electron, which then emits a photon and leaves. (Note that time, ct, is positive
to the right in this diagram.) (b) At the lower vertex an electron and a positron
enter and annihilate, producing a photon. At the upper vertex the photon creates
a particle-antiparticle pair. (c) Another possible pair annihilation process.

Other, so-called higher-order diagrams representing pair production are also pos-
sible. Can you draw one?

EXAMPLE 12-2 Feynman Diagram of Particle-Antiparticle Creation In Section 2-4
we described the production of an electron-positron pair. Construct a Feynman
diagram that illustrates this process.

SOLUTION

Consider the primitive vertex as an electron-photon interaction as below, left. Using
the rules outlined above and noting that the now virtual electron exists for too short
a time to be measured, we draw its line horizontal, i.e., with �(ct) � 0. The positron
interacts with a photon at the second primitive vertex. Together the two diagrams
depict the creation of an electron-positron pair.
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Questions

1. What problem might arise in using Dirac’s filled infinite sea of negative energy
states to explain the existence of particle-antiparticle pairs of pions, whose spins
are zero?

2. Why do electron-positron pairs annihilate mainly from S states?

Leptons and Quarks

Since Thomson discovered the electron, theoretical and experimental research in par-
ticle physics has revealed the existence of 62 fundamental particles and antiparticles,
fundamental in the sense that they have no internal structure, as far as we can tell with
current technology. This is not to say that this is all that exist. In fact, an important
task of CERN’s Large Hadron Collider is to search for the predicted Higgs boson,
which may be the key to explaining the origin of mass, and to test current theoretical
predictions of supersymmetry (SUSY) that suggest the existence of a “superpartner”
for each of the known fundamental particles (see Section 12-5).

Many particles with electric charge were first “seen” in the particle detectors of ex-
perimental searches. The existence of many electrically neutral particles was deduced
indirectly by applying conservation laws, particularly energy and momentum, to inter-
actions that included charged particles recorded by particle detectors. Still others, both
charged and neutral, remain unseen directly or indirectly. These are the quarks and the
force carriers that bind them together, the gluons. Nevertheless, we are confident of
their existence because their properties and interactions are so successfully explained
by the Standard Model of particle physics, which is second only to QED in the preci-
sion of its predictions. We will be discussing the Standard Model and its relation to the
fundamental interactions and conservation laws throughout the rest of this chapter.
In this section we will introduce the classifications of the quarks and leptons in gener-
ations (or families) and flavors and list a few of their physical properties. Once you are
familiar with general characteristics, we will discuss their properties and interactions
more thoroughly.

Leptons There are three generations of leptons,8 each consisting of a charged lepton
and its related neutrino, as shown in Table 12-1. The electron is the most familiar of
the charged leptons and the only one that is stable. Each charged lepton has a distinct
antiparticle. The Standard Model assigns each lepton a weak isospin Tz , the z compo-
nent of a quantum-mechanical property represented by the vector T that is loosely
analogous to spin (see Section 12-3). For each neutrino there is also an antineutrino,
although at this point in time it is possible that the two are not distinct; that is, each
neutrino may be its own antiparticle (a so-called Majorana neutrino), much as the
photon is its own antiparticle. Investigating that possibility is an active area of current
research. Unlike the quarks, as we will see, there are no lepton-lepton bound states.
We also refer to leptons as having three flavors: electron, muon, and tau. We will use
this terminology in Section 12-5 in a discussion of neutrino mass.

Quarks As with leptons, there are six quarks grouped into three generations. All have
fractional electric charge and distinct antiparticles. As we will learn in the following
sections, it is the quarks and antiquarks that bind together in a multitude of ways to
form more than 200 particles, accounting for the vast majority of the visible mass of
the universe. The bound states of the quarks and antiquarks are called hadrons (from
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Table 12-1 The leptons

Weak Mass

Lepton l Symbol Charge (e) isospin ( ) Lifetime (s) Spin ( )

1st generation electron e �1 0.5110 stable

electron neutrino 0 stable

2nd generation muon �1 105.659

muon neutrino 0 stable

3rd generation tau �1 1,784

tau neutrino 0 stable 1>2�8.4 eV>c21>2v
�

1>23.3 � 10�13�1>2�

1>2�3.5 eV>c21>2v
	

1>22.197 � 10�6�1>2	

1>2�2.2 eV>c21>2ve

1>2�1>2
UMeV>c 2T

z

the Greek hadros, meaning “robust”). There are two subgroups of hadrons. Three-
quark combinations are called baryons (from the Greek barys, meaning “heavy”), of
which the proton and neutron are the two most common examples. Quark-antiquark
pairs form the mesons. The term meson, derived from the Greek mesos, meaning “mid-
dle,” was chosen because the first mesons discovered (the pions) had masses interme-
diate between those of the electron and the proton; however, many mesons heavier than
the proton were subsequently discovered, so the name is no longer an indicator of the
masses of these hadrons. For reasons we will discuss in Section 12-4, single, or “free”
quarks have not been nor seem likely to be observed. The recently reported five-quark
combination has not been independently confirmed. Table 12-2 records basic descrip-
tions of the quarks.

Each quark in the table also has an additional property, analogous to electric charge,
called color, or color charge. Color has three possible values: red, blue, and green. So,
for example, there are three different u quarks: ur , ub , and ug . The antiquarks have anti-
color, just as they have opposite electric charge, so the three anti-u quarks are the 
and Of course, these terms have nothing to do with the usual meanings of the words
color, red, blue, and green. They are simply labels that are used to describe a particular
ug .

ub ,ur ,

Table 12-2 The quarks

Weak isospin Mass Baryon

Quark (q) Symbol Charge (e) ( ) Spin ( ) number

1st generation up u 336

down d 338

2nd generation charm c 1,500

strange s 540

3rd generation top t 170,900

bottom b 5,000 1>31>2�1>2�1>3 1>31>21>22>3 1>31>2�1>2�1>3 1>31>21>22>3 1>31>2�1>2�1>3 1>31>21>22>3
UMeV>c 2T

z
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quantum-mechanical property of the particles, a choice that will turn out, perhaps unex-
pectedly, to be very convenient (see Section 12-4). Like electric charge, color charge is
conserved. Quarks with 2e 3 electric charge (see Table 12-2) are up-type quarks (up,
charm, and top), and those with �e 3 are referred to as down-type quarks (down,
strange, and bottom). As with the leptons, the Standard Model also assigns each quark
a weak isospin Tz . The up-type quarks have the down-type quarks have

Notice in Table 12-2 that each of the quark generations is an isospin dou-
blet. The Standard Model provides for an equal number of lepton and quark generations,
as you see are contained in Tables 12-1 and 12-2. We refer to the quarks as having six
flavors; e.g., the down quark and antiquark are of the “down flavor.” Altogether, Table
12-2 represents 36 quarks and antiquarks. Like the leptons, the quarks are all fermions.

12-2 Fundamental Interactions and 

the Force Carriers
All the different forces observed in nature, from ordinary friction to the tremendous
forces involved in supernova explosions, can be understood in terms of the four basic
interactions that occur among elementary particles. In order of decreasing strength,
these are

1. The strong interaction

2. The electromagnetic interaction

3. The weak interaction

4. The gravitational interaction

Molecular forces and most of the everyday forces that we observe between macro-
scopic objects (for example, friction, contact forces, and forces exerted by springs and
strings) are complex manifestations of the electromagnetic interaction, which occurs
between all particles that carry electric charge. Although gravity, the interaction be-
tween all particles with mass, plays an important role in our lives, it is so weak com-
pared with other forces that its role in the interactions between elementary particles is
essentially negligible. The weak interaction acts between particles that carry weak
charge and describes, among others, the interaction between electrons or positrons and
nucleons that results in beta decay, which we discussed in Chapter 11. The strong in-
teraction acts between particles that carry color charge and describes, for example, the
force between nucleons that holds nuclei together. Some particles participate in all four
interactions, whereas others participate in only some of them.

In 1979, S. L. Glashow, A. Salam, and S. Weinberg shared the Nobel Prize in Physics
for development of the electroweak theory, successfully unifying theories of the elec-
tromagnetic and the weak interactions. This event, which came exactly 100 years after
Maxwell had accomplished unification of the theories of electricity and magnetism,
was a major advance toward achieving unification of the theoretical descriptions of the
four basic interactions. Developing such a unified field theory has been a goal of
physics for a long time, one that was vigorously sought without success by Einstein,
among many others. As we will discuss in Section 12-4, the electroweak unification oc-
curs only at high particle energies. Current efforts to unify the electroweak, strong, and
gravitational interaction will be discussed in Section 12-5.

The term “strength” of the interactions refers specifically to the relative magnitudes
of the dimensionless coupling constants9 that multiply the fundamental space-dependent
part of the potential energy function whose gradient determines the particular force.

Tz � �1>2.
Tz � 1>2;

>>
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The relative strengths stated in the paragraphs below and in Table 12-4 are only
approximate as there is no unambiguous method of comparison, particularly for the
weak interaction. As an example, the electric (Coulomb) potential energy of two
charges is The multiplier of the space-dependent function 
is made dimensionless by dividing both sides of the equation by the quantity 

12-3

where V(r) is in m�1. The quantity you will recognize as the fine-structure
constant first encountered in our discussion of Bohr’s model of the hydro-
gen atom (see Section 4-3). The fine-structure constant is thus the coupling constant of
the electromagnetic interaction. As we discovered in Chapter 4, energies resulting from
this interaction are proportional to and characteristic dimensions (e.g., the Bohr ra-
dius a0) are proportional to (See Equations 4-32 and 4-33.) Moreover, the proba-
bility densities for atomic phenomena discussed in Chapter 7 are all directly dependent
on the value of (See Equation 7-32.)

Just as Yukawa postulated the pion as the mediator, or carrier, of the force between
nucleons (see Section 11-5), the Standard Model postulates one or more particles as the
force carrier, or mediator, of each fundamental interaction. Each of these mediators, all
of which the theory requires to be bosons, will be introduced in the following para-
graphs, concerned with each of the interactions.

Strong Interaction

All hadrons interact via the strong interaction. Of the two subgroups of hadrons,
baryons (the three-quark combinations) have -integral spins ( etc.).
Mesons (the two-quark combinations) have zero or integral spins. The range of the
strong force is about 10�15 m, or one fm. (See Chapter 11.) The coupling constant 
of the strong interaction is approximately 1, or about 102 larger than the fine-structure
constant of the electromagnetic force. Within the framework of the Standard Model,
the strong force is due to color charge, analogous to the electromagnetic force being
due to electric charge. The mediator of the strong force is the gluon. Like the quarks,
the gluons carry color charge, but with a difference. Each quark carries one unit of one
of the three color charges, but each gluon carries one unit of one of the three color
charges and one unit of one of the three anticolor charges. Since there are nine possible
combinations of r, b, and g with we expect nine different gluons; however,
a technicality reduces that number to eight. One consequence of color-charged gluons
is that the emission of a gluon by a quark can change the color (but not the flavor) of
the quark. Another is that gluons can couple to other gluons (see Section 12-3). Since
leptons don’t carry color charge, they don’t participate in the strong interaction. Note,
too, that the photon, the electromagnetic interaction’s counterpart to the gluon, does not
carry electric charge.

The characteristic interaction time of the strong interaction is extremely short, only
about 10�23 s, meaning that an event caused by this interaction “happens” in this length
of time. Thus, if the probability is to be high that two particles will interact via the strong
force by exchanging a virtual particle, the two must remain within the range of the force
for at least 10�23 s. Similarly, particles that change into another particle or particles, that
is, decay due to the action of the strong force, do so within about 10�23 s. This is about
the time it takes light to travel a distance equal to the diameter of a nucleus.

r, b, and g,

�

�s

1>2, 3>2, 5>2,1>2

�.

1>�.
�2

� � 1>137,
(e2>4��0Uc)

V(r) � U(r)>Uc � �
e2

4��0Uc
1
r

Uc:
1>rU(r) � �(1>4��0)e

2>r.
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Lead sheet

π–

π0

e+
e+ e–

e–

γ γ

K –

A negative kaon ( ) enters a bubble chamber from the bottom and decays into a which
moves off to the right, and a which immediately decays into two photons, whose paths are
indicated by the dashed lines in the drawing. Each photon interacts in the lead sheet, producing
an electron-positron pair. The spiral at the right is an electron that has been knocked out of an
atom in the chamber. (Other, extraneous tracks have been removed from the photograph.)

�0,
��,K�

Table 12-3 lists some of the properties of the hadrons that are stable against decay
via the strong interaction, that is, those with lifetimes significantly longer than 10�23 s.
Those that decay via the electromagnetic and weak interactions have much longer life-
times, typically of the order of 10�18 s and 10�10 s, respectively. Note that all baryons
ultimately decay to a proton. Note, too, that the baryons cluster into “charge multi-
plets” of about the same mass: the nucleons (n and p) of mass about 939 MeV, the 
of mass about 1116 MeV, the particles of mass about 1190 MeV, the particles of
mass about 1315 MeV, and the of mass 1672 MeV. The differences in masses within
multiplets (such as between the neutron and proton) are due primarily to differences
in the masses of the constituent quarks (see Section 12-4). The energy of the electro-
magnetic field also makes a contribution to the mass differences. There are six mesons
in Table 12-3: three pions, two kaons, and the eta particle. The mesons also cluster
into charge multiplets. As with the baryons, the mass differences within each multi-
plet are due primarily to the mass differences of the constituent quarks. Note that the
mass of the is exactly equal to that of the as it must be since these particles are
antiparticles of each other.

Being complex particles composed of other, more fundamental particles (quarks),
the hadrons each have a ground state and a set of quantized excited states directly anal-
ogous to the allowed energy levels of atoms and nuclei, which are of course also com-
plex particles composed of other, more fundamental particles. These excited hadron
states usually decay via the strong interaction and thus have large energy widths, as

��,��

"
,�

-
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Table 12-3 Hadrons that are stable against decay via the strong interaction

Typical

Mass Spin Charge Mean decay

Name Symbol ( ) ( ) (e) Antiparticle lifetime(s) products†

Baryons

Nucleon p (proton) or 938.3 �1

n (neutron) or 939.6 0 930

Lambda 1116 0

Sigma 1189 �1

1193 0

1197 �1

Xi* 1315 0

1321 �1

Omega 1672 �1

Charmed
lambda 2285 �1

Mesons

Pion 139.6 0 �1

135 0 0 self

139.6 0 �1

Kaon 493.7 0 �1

497.7 0 0

and

Eta 549 0 0 self

† Other decay modes also occur for most particles.

‡ The has two distinct lifetimes, sometimes referred to as and All other particles have a unique lifetime.

* The particle is sometimes called the cascade.,

K0
long .K0

shortK0

 � 2 � 10�19.0

�� � e� � ve5.2 � 10�8‡

�� � ��0.88 � 10�10K0K0

�� � �01.24 � 10�8K�K�

	� � v
	

2.6 � 10�8����

 � 0.8 � 10�16�0

	� � v
	

2.6 � 10�8����

p � K� � -�1.8 � 10�13-�
c1>2-�

c

,0 � ��1.3 � 10�10"�3>2"�

-0 � ��1.7 � 10�10,�1>2,�

-0 � �03.0 � 10�10,01>2,0

n � ��1.7 � 10�10��1>2��

-0 � 10�20�01>2�0

n � ��0.8 � 10�10��1>2��

p � ��2.5 � 10�10-01>2-0

p � e� � ven1>2N0

�1032 yp�1>2N�

UMeV>c 2

required by the uncertainty principle and in contrast to the much slower
atomic transitions and nuclear decays. Excited hadron states are usually observed as
resonances in the cross section for scattering of one hadron on another and are there-
fore also called resonance particles. We describe resonance particles more thoroughly
on the home page (see page 591).

(¢E � U>¢t)
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Electromagnetic Interaction

This is the dominant interaction at scales larger than subatomic, the realm of the
strong interaction, and smaller than astronomical, where the gravitational interaction
rules. All particles that carry electric charge or have a magnetic moment participate in
the electromagnetic interaction. In addition, neutral particles without magnetic mo-
ments may also participate in the interaction if the emission of virtual particles results
in charged particles. A neutron emitting and reabsorbing a virtual as shown in
Figure 12-6 is an example of a neutral particle involved in an electromagnetic inter-
action. The range of the electromagnetic force is infinite, and its strength is about

times that of the strong interaction, as we discussed earlier. Its characteristic in-
teraction time is about 10�18 s. According to QED, the mediator of the electromag-
netic force is the photon. In contrast to the gluon, the photon does not carry electric
charge. Decays via the electromagnetic interaction generally result in the emission of
one or more photons, although there are a few exceptions, e.g., Notice in
Table 12-3 that the and decay via the electromagnetic interaction.

Weak Interaction

All quarks and leptons participate in the weak interaction. The range of the weak force
is about 10�18 m or about 10�3 fm, considerably smaller than that of the strong force.
Example 12-3 shows how the range of the weak force is determined. Its characteris-
tic interaction time varies from about 10�16 s to about 10�10 s. No particular name is
given to the source of the weak force, although it is occasionally called the weak
charge or flavor charge, in analogy with electric charge. The strength of the weak in-
teraction relative to the strong interaction is about 10�5. The weak force is carried by
three particles, the charged weak force by the W� and W� (W for “weak”) and the
neutral weak force by the Z0 (Z for “zero”). All three have spin 1 and thus are bosons.
A very important aspect of the weak force is that interactions mediated by the W � turn
one quark flavor into another. The weak interaction does not, however, change the lep-
ton flavor. The mediation of three typical weak interactions, the scattering of a muon
neutrino by an electron, the scattering of an electron neutrino and a muon, and the in-
verse beta decay of a proton are illustrated in Figure 12-7.

The mediators of the weak interaction were all discovered in 1983 by C. Rubbia
and a large international team of co-workers after a long search using the colliderpp

.0�0,�0,
�0 S e�e�.

1>137

��p

n

n

π–

Figure 12-6 A neutron emits
a virtual During the time

that the positive proton and
the exist, they can interact
with other charged particles.
After time the is
reabsorbed by the proton.

��¢t

��

¢t
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Z 0

(c)
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n

e

νe

W –

(b) μ

μνe

νe

W +

Figure 12-7 (a) The scattering of a muon neutrino from an electron involves the exchange of a Such an exchange
is called a neutral current interaction. The interaction does not convert the electron into a muon neutrino. (b) The
scattering of an electron neutrino from a muon may also occur via a neutral current interaction as in (a), but a charged
current interaction in which a charged W is exchanged is also possible, and both would contribute to the cross section.
Measuring the cross sections thus provides a means of testing the standard model. (c) Inverse beta decay also proceeds
via a charged current interaction.

Z0.
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(a) (b)
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Figure 12-9 (a) This computer reconstruction of the CERN UA1 detector shows the first decay ever recorded, obtained by
Rubbia’s group in 1983. Millions more such events have since been seen. [CERN Courier, 33, 4 (1993).] (b) The energy plot of
the electron-positron pair from the decay. Energy, plotted vertically, is measured by individual detectors that
“wrap around” the central cylinder of the UA1. The angular locations of the recorded electron and positron are measured relative
to the position of the Graphs like this are called “Lego plots.”Z0.

Z0 S e� � e�

Z0

at CERN10 that was specifically designed for the task. (See Figures 12-8 and 12-9.)
The Z 0 is the second-heaviest elementary particle known, with a mass of 91 
or nearly 100 times that of the proton. The W �, with masses of 80 are the
next heaviest.

GeV>c2,
GeV>c2

Figure 12-8 (a) The production and subsequent decay of one of the first W bosons ever detected was recorded
by the UA1 detector at the CERN proton-antiproton collider. A collision occurs at the center. A is
produced, which decays by The tau decays into charged particles clearly seen as the thicker
pencil-jet in the central detector directed nearly vertically downward. Conservation of energy and momentum
for all particle tracks produced yields results consistent with a missing from the decay. [CERN.] (b) The
UA1’s energy detectors surrounding the beam pipe recorded the energetic and its angular position relative
to the decay event. Energy is plotted vertically upward.
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EXAMPLE 12-3 Range of the Weak Interaction The mass of the Z 0 has been accu-
rately measured to be What range does that value imply for the neu-
tral current weak interaction mediated by the Z 0?

SOLUTION

91.16 GeV>c2.

Particles

Force Mass Spin carrying Range Interaction Coupling

Interaction carrier ( ) ( ) Source charge (m) time (s) constant

Strong gluon 0 1 color charge q, g

Electromagnetic photon 0 1 electric charge q, e,

Weak 80, 91 1, 1 weak charge q, e,

to

Gravity graviton 0 2 mass q, e, ?

W�, Z0

�g � 10�38�	, �, v,

10�10W�, Z0

�w � 10�510�1610�18	, �,W�, Z0

� � 1/13710�18�	, �,W�

�s � 110�2310�15

UGeV>c 2

1. The range, the distance R
traveled in time 
by a particle moving
at about c, is given by
Equation 11-50:

t � U>¢E R �
U
mc

�
Uc
mc2

2. Substituting the mass of
the into this expression
for R gives
Z0

� 2.17 � 10�18 m � 2.17 � 10�3 fm

R �
(1.055 � 10�34 J # s)(3.00 � 108 m>s)

(91.16 GeV>c2)(1.60 � 10�10 J>GeV)

3. An alternate calculation
of R:

� 2.17 � 10�3 fm

R �
(197.3 eV # nm)

(91.16 GeV)(107 eV>GeV)(109 nm>m)

Gravitational Interaction

All particles participate in the gravitational interaction, but this interaction is so weak
as to be unimportant in the discussion of elementary particles. As we have seen pre-
viously, its strength relative to the strong interactions is about 10�38. The interaction
has infinite range, with the force decreasing as as does the electrostatic force.
The mediating particle for this force is the graviton, which is expected to be un-
charged, massless, and have spin 2. This particle has not yet been observed, nor does
the experimental capability to do so yet exist. Experiments with the objective of de-
tecting gravity waves are currently under way. (See Section 2-5.) The gravitational in-
teraction is produced by mass, which is the “gravitational charge” corresponding to
the color charge, electric charge, and weak charge of the strong, electromagnetic, and
weak interactions, respectively. Table 12-4 summarizes the characteristics of the four
fundamental interactions.

1>r2,

Table 12-4 Characteristics of the fundamental interactions
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EXPLORING

A Further Comment About

Interaction Strengths

At the beginning of this section we defined the strengths of the interactions in terms of
the coupling constants, relating their approximate values to the most familiar one,
which is the fine-structure constant In QED the electric charge

is the amplitude of the coupling of the photon (the mediating boson) to the electron (the
particle). Thus, the probability of events involving that coupling, such as the Compton
effect, illustrated in Figure 12-5(a), is proportional to 

The time-independent solution to the Klein-Gordon equation (Equation 11-52) can
also be interpreted as the static potential U(r) of the field of a point charge represented
by the exchange particles. We then have

12-4

where A is a constant of integration and is both the range of the force and
the Compton wavelength of the mediating boson. For the electromagnetic inter-
action the range R is infinite and U(r) becomes

12-5

Recalling from classical electromagnetism that the electrostatic potential of a point
charge q is we see that the constant A in Equation 12-5 plays the
same role as the charge. In this manner a coupling constant proportional to A2, just as

can be obtained for each of the interactions, albeit not without some difficulty.
Doing so for the strong and weak interactions involves mathematics beyond the scope
of our discussions, but as we will see in Section 12-4, this use of QED as a model is a
powerful aid in understanding both the weak and the strong interaction. The coupling
constants and other characteristics of the four interactions are given in Table 12-4.

One last comment before we leave this topic: The coupling constants are not actu-
ally constants. Again, this can be most clearly illustrated using the electromagnetic in-
teraction. Consider a positive point charge q embedded in a dielectric as shown in
Figure 12-10a. The charge q polarizes the nearby molecules of the dielectric. As a re-
sult, the charge q is partially screened by the negative ends of the polarized molecules
and the electric field of q at a distance r away is correspondingly reduced. Thus, the
value measured for q is the effective charge qeff , which depends on how far from q the
measurement is made, where qeff is given by

12-6

and is the dielectric constant of the material, which you remember is a measure of
how difficult it is to polarize the material. Only by measuring very close to q, roughly
speaking within the molecular equilibrium separation r0 (closer than the closest mole-
cule so that there is no screening), will you actually measure the value q. This is shown
in Figure 12-10b. Notice also that (1) measurements made at large values of r yield
not q, and (2) the value of qeff increases for very small values of r.

q>�,

�

qeff �
q

�

� � e2,

U(r) � q>4��0r,

U(r) �
A
r


c>2�
R � U>mc

U(r) �
Ae�r>R
r

e2 � �.

e � 24��0Uc� � 2�

� � e2>4��0Uc.
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Figure 12-10 (a) A positive charge q placed in a dielectric material polarizes the dielectric
by orienting the nearby molecules with their negative ends closest to q. An observer at
some distance r from q sees a reduced electric field because of the screen of negative
charges. (b) The value qeff is measured for the charge. At small distances, those less than
the equilibrium separation r0 of the molecules of the dielectric, the value of qeff approaches
the value of q. (c) The vacuum also polarizes like a dielectric due to production of virtual
electron-positron pairs by virtual photons. The effect is to increase the value of the fine-
structure constant at very short interaction distances.

The production and absorption of virtual particles in QED results in the vacuum
behaving like a dielectric. The positive charge q (or any charge) is continually emitting
and absorbing virtual photons. Some of the photons occasionally create electron-
positron pairs, which then annihilate, as the Feynman diagram in Figure 12-10c illus-
trates. The virtual electron and positron are attracted and repelled, respectively, by q,
resulting in vacuum polarization, which partially screens q, just as it was screened
when embedded in the dielectric. And just as in the dielectric, the full value of the
charge q is not seen, or measured, until you get inside the screen. In vacuum polariza-
tion the role of the equilibrium separation r0 is played by the Compton wavelength of
the electron Thus, even in a vacuum the “actual” value
of q can only be measured at distances closer than about What we
measure experimentally and refer to as “the charge of the electron” is actually the com-
pletely screened effective charge. Thus, the fine-structure constant which is propor-
tional to the square of the electric charge, will increase at very small distances from q.

A corresponding discussion can be given for the weak and strong interactions, but
there are significant differences. The photon, which mediates the electromagnetic
interaction, does not carry electric charge. However, the W � and Z 0, which mediate
the weak interaction, have mass and carry weak charge. (The W � also carry electric
charge.) The gluons, which mediate the strong force, carry color charge. This latter
difference results in an important characteristic of the strong force called quark
confinement, which we will discuss further in Section 12-4.

�,

2.43 � 10�12 m.

c � h>mc � 2.43 � 10�12 m.
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Questions

3. How are baryons and mesons similar? How are they different?

4. What properties do all leptons have in common?

5. The mass of the muon is nearly equal to that of the pion. How do these particles
differ?

6. The bonding of the electrons to nuclei to form atoms is an example of the
electromagnetic interaction. Use the interaction’s properties to explain why the
dimensions of atoms are of the order of 10�10 m.

7. Describe a way the world would be different if electrons felt the strong
interaction.

8. What might be the “technicality” that results in there being eight gluons instead
of the expected nine?

uproton: d u

uneutron: d d

W�

v e

In words, this diagram is read like this: A d quark in the neutron emits a W�, chang-
ing (decaying) to a u quark, thus changing the neutron into a proton. The W� then
decays to an e� and an 

Remarks: The mediating boson could also be a W�. What would the diagram look
like in that case?

�e .

EXAMPLE 12-4 Neutron Decay The free neutron decays via the weak interaction
with a half-life of 10.4 min according to the reaction

Use a Feynman diagram to illustrate the details of this decay.

SOLUTION

Since this decay involves a change in the charge of the hadron, the mediating boson
is a W� . The W� then decays to the e� and The Feynman diagram describing
these events is therefore as shown below, where particles shown moving backward
in time are to be interpreted as the corresponding antiparticle moving forward in
time. Notice that, as mentioned earlier, the charged weak interaction changes the
quark flavor.

�e .

n ¡ p � e� � �e
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EXAMPLE 12-5 Estimate of Cross Section for Strong Interaction Obtain a rough
estimate for the cross section of a typical strong interaction scattering of two
hadrons, such as pions by protons or protons by protons.

SOLUTION

1. The cross section for an interaction or re-
action is given approximately by the area of
a circle whose radius is the range of the in-
teraction. (See Section 11-7.) For the strong
interaction we can write, therefore, that

� �S � �R2
S

2. From Example 11-15 we found the range of
the strong interaction RS to be about 10�15 m.
Therefore, is equal to�S

� 3.1 � 10�30 m2 � 31 mb

�S � �(10�15 m)2

Remarks: The cross section, as noted in Section 11-7, is actually dependent on the
collision energy, but typical values are of the order of tens of millibarns, in agree-
ment with our approximation.

12-3 Conservation Laws and Symmetries
One of the maxims of nature, sometimes referred to as the totalitarian principle, is
“anything that can happen does happen.” If a conceivable decay or reaction does not
occur, then there must be a reason. The reason is usually expressed in terms of a
conservation law. You are already familiar with several such laws. The conservation of
energy rules out the decay of any particle for which the total mass of the decay products
would be greater than the initial mass of the particle before decay. The conservation of
linear momentum requires that when an electron and positron annihilate, two photons
(at least) must be emitted. Angular momentum must also be conserved in a reaction or
decay. A fourth conservation law that restricts the possible particle decays and reactions
is that of electric charge. The net electric charge before a decay or reaction must equal
the net charge after the decay or reaction.

Every conservation law is a consequence of a particular symmetry in the laws of
physics that govern the universe. This is a paraphrased statement of a theorem proven in
1918 by Emmy Noether11 for conjugate variables in classical mechanics. For instance,
the laws of physics are symmetric (i.e., invariant) with respect to translations in time.
That means they work the same today as they have in the past. Noether’s theorem relates
this particular invariance of the physical laws to the conservation of energy. The fact that
the physical laws are symmetric under translations in space leads to the conservation of
linear momentum. If a system is symmetric to rotations about a point, then the angular
momentum is conserved. The conservation of electric charge is a consequence of the
invariance of the laws of electrodynamics under a gauge (i.e., scale) transformation.

There is a quantum theory analog of Noether’s theorem; however, as was the case
in classical physics, the conservation law is often discovered empirically before the
symmetry that is its origin is identified. For example, Herman von Helmholtz set forth
the law of conservation of energy primarily on the basis of James Joules’s experiments
long before Emmy Noether had proven her theorem. This is also the situation today in
particle physics. Most of the conservation laws discussed in this section are empirical
discoveries since no symmetry has yet been identified that provides their foundation.
We will point out a few of these as we proceed.
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Baryon Number

In Section 11-4 we mentioned two conservation laws in our discussion of radioactive
decay: conservation of nucleon number and of lepton number. We now need to state
these more explicitly. The first is a special case of the following more general law:

The baryon number is conserved.

All baryons have baryon quantum number B � �1, all antibaryons have B � �1, and
all other particles are assigned B � 0. Conservation of baryon number requires that the
total B for all particles before a decay or reaction occurs must be equal to that for all par-
ticles afterward. As an example of baryon conservation, consider the production of the
antiproton in Figure 12-2 again. The reaction is

12-7

The total baryon number before the reaction is B � �1 � 1 � �2. That after the
reaction is B � �1 � 1 � 1 � 1 � �2. Thus, conservation of B requires that three pro-
tons appear on the right side of Equation 12-7; that is, the production of an antiproton is
always accompanied by the production of a proton. Conservation of baryon number to-
gether with the conservation of energy implies that the least massive baryon, the proton,
must be stable. Whether that is in fact true is currently an active experimental question
among particle physicists. There is no known symmetry requiring conservation of baryon
number. There are several conceivable proton decay modes, all involving the proton de-
caying to a lepton and a meson, both of which have B � 0. To date, nonconservation of
baryon number has never been observed. Current experiments place the lower limit of the
proton lifetime at about 1032 years. We will return to this matter later in this chapter.

Lepton Number

In the original version of the Standard Model neutrinos have no mass and are polarized.
Experiments had shown that neutrinos were left-handed; that is, their spin direction was
antiparallel to their momentum, and antineutrinos were right-handed, their spin being
parallel to their momentum (see Figure 12-11a). In the Standard Model mass arises from
interaction with the Higgs boson. That interaction also changes right-handedness to left-
handedness and vice versa, so the fact that neutrinos were always detected as left-handed
meant that, like the photon, they did not interact with the Higgs and therefore had no
mass. This in turn means that lepton number is conserved in the weak interactions and
conservation of leptons applies independently to each of the three flavors.

The lepton number for each flavor of leptons is independently conserved.

The lepton quantum number for the electron and the electron neutrino is Le � �1 and
that for the positron and electron antineutrino is Le � �1. All other particles, including
the other leptons, have Le � 0. In a similar fashion the lepton quantum numbers are
assigned for the muon generation and for the tau generation. To see how conserva-
tion of lepton number works, consider the following decays:
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The decay shown in Equation 12-8 (one of the conceivable proton decay modes)
would conserve energy, charge, angular momentum, and linear momentum, but it has not
been observed. It conserves neither baryon number B nor lepton number Le. The decay
of the given by Equation 12-9a, results in both an electron neutrino and a muon
antineutrino. The has and Le � 0. The decay products also have 
(the ) and Le � �1 � 1 � 0 (the e� and ve). The decay given in Equation 12-9b had
been searched for by many groups without success for many years. Its absence was the
first indicator that Le and were independently conserved. Equation 12-10, the decay
of the neutron, conserves both B and Le. Conservation of lepton number implies that the
neutrino emitted in the beta decay of a free neutron is an electron antineutrino.

However, during the past several years experiments at the Sudbury Neutrino
Observatory and Super-Kamiokande have shown that neutrinos do in fact have mass and
oscillate, albeit slowly, from one flavor to another as they travel. This discovery was the
first experimental evidence that the Standard Model is an approximation of a more com-
prehensive, unknown theory. We will speculate briefly on what that theory might be in
Section 12-5, but for our discussion here the implications are considerable. Since neutri-
nos have mass, their speeds are less than c. This implies that a left-handed neutrino can
become a right-handed neutrino with respect to an observer and vice versa. Since we
know of no fundamental symmetry that requires conservation of leptons, if lepton num-
ber is not conserved, then we have no way to distinguish between neutrinos and antineu-
trinos; the neutrino may be a Majorana particle, as was alluded to in Section 12-1. A num-
ber of theoretical extensions of the Standard Model have been suggested to deal with this
problem, but as yet there is no clear solution. With this caveat in mind, we will for the re-
mainder of this section use the lepton and baryon conservation laws stated above and
defer discussion of the possible consequences of their violation until Section 12-5.

EXAMPLE 12-6 Conservation Laws What conservation laws (if any) are violated
by the following reactions?

(a) (b) (c)

SOLUTION

(a) There are no leptons in this decay, so there is no problem with the conservation
of lepton number. The net charge is zero before and after the decay, so charge is
conserved. Also, the baryon number is �1 before and after the decay. However, the
rest energy of the proton (938.3 MeV) plus that of the pion (139.6 MeV) is greater
than the rest energy of the neutron (939.6 MeV). Thus, this decay violates the con-
servation of energy.

(b) Again, there are no leptons involved, and the net charge is zero before and after
the decay. Also, the rest energy of the (1116 MeV) is greater than the rest energy
of the antiproton (938.3 MeV) plus that of the pion (139.6 MeV), thus energy is
conserved with the loss in rest energy equaling the gain in kinetic energy of the
decay products. However, this decay does not conserve baryon number, which is �1
for the for the antiproton, and 0 for the pion.

(c) There are no baryons involved, so conservation of baryon number is not a problem.
The net charge is �1 before and after the decay, so charge is conserved. Also, the rest
energy of the (139.6 MeV) is greater than that of the (105.7 MeV) and the 
so energy is conserved, the difference appearing as kinetic energy of the muon and
neutrino. Finally, on the left side and on the right side, there-
fore lepton number is also conserved. This is the reaction by which the decays.��
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More

Each conservation law results from a particular symmetry in the laws
that govern the physical universe. Since it is not necessarily obvious
under what mathematical operations the laws of physics will be sym-
metric, on a pragmatic level it is fair to ask, quantum mechanically,
When Is a Physical Quantity Conserved? We provide an answer to this
question on the home page: www.whfreeman.com/tiplermodern-
physics5e. See also Equations 12-11 through 12-22 and Note 12 here,
as well as Example 12-7.

More Conservation Laws

The quantum numbers and corresponding conservation laws of the hadrons described
in this section arise logically from combinations of so-called internal quantum
numbers of the quarks. These are listed in Table 12-5. They are the electric charge Q,
baryon number B, strangeness S, charm C, bottom B�, and top T. As we have noted
above, electric charge and baryon number are conserved in all interactions.
Strangeness, charm, bottom, and top are conserved in the strong and electromagnetic
interactions but are not conserved in the weak interaction.

Strangeness There are some conservation laws that are not universal but apply
only to certain kinds of interactions. In particular, there are quantities that are con-
served in decays and reactions that occur via the strong interaction but not in decays
or reactions that occur via the weak interaction. This is somewhat analogous to the
selection rules discussed in atomic transitions. For example, the selection rule

holds for electric dipole transitions from one atomic state to another.
An atom in a state with cannot decay to a lower energy state with via
electric dipole radiation because of this selection rule, but it can decay via an electric
quadrupole transition, which is generally much slower than electric dipole transi-
tions. One of the particularly important quantities conserved in strong interactions is
strangeness. This quantity was introduced by M. Gell-Mann13 and K. Nishijima in
1952 to explain the seemingly strange behavior of the heavy baryons and mesons.

� � 0� � 2
¢� � �1

Table 12-5 Internal quantum numbers of the quarks

Quark Q B U D C S T B�

u 1 0 0 0 0 0

d 0 �1 0 0 0 0

c 0 0 1 0 0 0

s 0 0 0 �1 0 0

t 0 0 0 0 1 0

b 0 0 0 0 0 �11>3�1>3 1>32>3 1>3�1>3 1>32>3 1>3�1>3 1>32>3

www.whfreeman.com/tiplermodernphysics5e
www.whfreeman.com/tiplermodernphysics5e
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Figure 12-11 (a) The spin of antineutrinos is parallel to their momentum. The spin of neutrinos is antiparallel to
their momentum. Described in terms of helicity � ms s with the z axis in the direction of p, antineutrinos have
helicity �1 and neutrinos have helicity �1. (b) An early photograph of bubble chamber tracks at the Lawrence
Berkeley Laboratory, showing the production, represented by Equation 12-23, and decay of two strange particles,
the and the These neutral particles are identified by the tracks of their decay particles. The lambda particle
was so named because of the similarity of the tracks of its decay particles and the Greek letter The incident

meson had energy of 1 GeV. [(b) Lawrence Berkeley Laboratory Photo Researchers.]>��
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Consider the reaction in which a high-energy interacts with a proton,

12-23

shown in Figure 12-11b. The cross section for this reaction is large, as would be ex-
pected since it takes place via the strong interaction (see Example 12-5). However, the
decay times for both and K0 are of the order of 10�10 s, which is characteristic of
the weak interaction. When first discovered, their unexpectedly long lifetimes were
very strange, so these and other particles showing similar behavior were called
strange particles. An early success of the quark model was the explanation of these
unexpectedly long lifetimes. As an example, the is a uds quark combination, which
corresponds to a particular set of the internal quark quantum numbers. If no lighter
(i.e., lower-energy) hadron with that exact set of quantum numbers exists, then decay
via the strong or electromagnetic interaction is not possible. Decay can only occur via
the much slower weak interaction.

These particles are always produced in pairs and never singly, even when all other
conservation laws are met. This behavior is described by assigning to them a new
quantum number called strangeness. The strangeness of the ordinary hadrons—the
nucleons and pions—was arbitrarily chosen to be zero. The strangeness of the K 0 was
arbitrarily chosen to be �1. Therefore, the strangeness of the particle must be �1
so that strangeness is conserved in the reaction of Equation 12-23. The strangeness of
other particles could then be assigned by looking at their various reactions and decays.
In reactions and decays that occur via the strong and electromagnetic interactions,
strangeness is conserved. In those that occur via the weak interaction, strangeness is
not conserved but can only change by �1.
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p�� ¡ -0K0

��



12-3 Conservation Laws and Symmetries 585

Isospin As pointed out earlier, a striking feature of the hadrons is that they cluster
into charge multiplets, groups of particles with nearly the same mass, such as the mul-
tiplet consisting of the proton ( p � uud) and neutron (n � udd). Within each multi-
plet all of the particles have the same spin, parity (see below), baryon number, strange-
ness, charm, and bottom but differ in their electric charges. In addition, we learned in
Section 11-5 that the strong (nuclear) force is independent of electric charge. Were it
not for the masses of the quarks and the electromagnetic interaction, the masses of the
particles in a given charge multiplet would be the same. We are thus led to the view
that the members of the multiplet are simply different charge states of the same parti-
cle. The “splitting” of particle mass states is analogous to the splitting of atomic en-
ergy states due to the spin-orbit interaction. (See Section 7-5.) Because of the analogy
with isotopes (atoms with the same Z but slightly different masses) and with the split-
ting of different spin states, the term isospin is used to describe this multiplicity.
The isospin I is treated as a vector in a three-dimensional “charge space,” just as
the orbital angular momentum L is a vector in real space. The component of I in the
“z direction” is called I3 and is quantized, just as the z components of the orbital and
intrinsic angular momenta of atomic electrons are quantized. Similarly, there are
(2I � 1) different I3 states. The charge q on a particle is related to its value of I3 by

12-24

where Q is the charge quantum number. The value of I of the nucleon is with the
two possible values for the proton and for the neutron. The
isospin I is also for the xi doublet and 0 for the lambda and omega singlets. It is
1 for the triplet (with for for and �1 for ). In the case of the
mesons, the pion isospin triplet has I � 1, the kaon doublet and the eta sin-
glet I � 0. The rules for combining isospin are the same as those for combining real
spin or angular momentum. If only the strong interaction is present, then Iop and Hop
commute and I is conserved. Decays and reactions in which the total isospin of the
system is not conserved do not proceed via the strong interaction.

Hypercharge Four of the quantum numbers that we have discussed thus far turn out
to be related to one another. These are strangeness, charge, isospin, and baryon num-
ber. The relation is

12-25

Strangeness is now used less frequently than a simpler quantity called hypercharge Y,
which is defined as

12-26

With the aid of Equation 12-25 the hypercharge quantum number Y is then given by

12-27

Stated simply, the hypercharge is twice the average charge of a given multiplet. For
example, the average charge of the nucleon multiplet is Thus,
for the nucleon, Y � 1, as given by Equation 12-27. Since baryon number is strictly
conserved and strangeness is conserved only in strong interactions, hypercharge, too,
is conserved only in strong interactions. Since �S � �1 or 0 in weak interactions,

(1e � 0)>2 � (1>2)e.

Y � S � B � 2(Q � I3)

Y � B � S � C � B� � T

S � 2(Q � I3) � B

I � 1>2,
���0,��, 0I3 � �1�

1>2 I3 � �1>2I3 � �1>2 1>2,

q � eQ � eaI3 �
B � S

2
b
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Table 12-6 Some quantum numbers of the hadrons that are stable against
decay via the strong interaction

Particle Spin ( ) I B S Y

p 1 0 1

n 1 0 1

0 0 1 �1 0

1 �1 1 �1 0

1 0 1 �1 0

1 �1 1 �1 0

1 �2 �1

1 �2 �1

0 0 1 �3 �2

0 1 �1 0 0 0

0 1 0 0 0 0

0 1 �1 0 0 0

0 0 �1 �1

0 0 �1 �1

0 0 0 0 0 0.0

�1>21>2K0

�1>21>2K�

��

�0

��

3>2"�

�1>21>21>2,�

�1>21>21>2,0

1>2��

1>2�0

1>2��

1>2-0

�1>21>21>2 �1>21>21>2
I
3

U

changes in hypercharge are similarly restricted to �Y � �1 or 0. Table 12-6 lists the
values of these additional quantum numbers for those hadrons that are stable against
decay via the strong interaction. Note that, if it were not for the conservation of
strangeness or hypercharge in the strong interaction, all the baryons except the nucle-
ons would decay via the strong interaction and live only for about 10�23 s.

The singlet, doublet, and triplet charge multiplets discussed above are clearly rep-
resented in graphs of Y versus I3 . Studies of the regularities apparent in such graphs
(see Figure 12-12) were instrumental in the development of the quark model of fun-
damental particles to be discussed in Section 12-4. The regularities are analogous to
those observed in the multiplet structure of atomic energy states that ultimately led to
the understanding of atomic structure.

The conservation laws and the properties of charge Q, lepton number L, baryon
number B, and strangeness S give us some insight into the relation between particles
and their antiparticles. A particle and its antiparticle must have opposite signs for the
values of each of these properties. Any particle that has a nonzero value for any of
these properties will therefore have a distinct antiparticle. The photon, graviton, and
the have Q � 0, L � 0, B � 0, and S � 0 and are therefore in some sense their own
antiparticles. The and mesons are somewhat special because they have charge
but have zero values for L, B, and S. They are therefore antiparticles of each other, but
since there is no conservation law for mesons, it is impossible to say which is the par-
ticle and which is the antiparticle.

����

�0
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Figure 12-12 Graphs of
hypercharge Y vs. the 
component of the isospin.
(a) Baryons with spin 
(b) Mesons with spin 0.
(c) Baryons with spin 
Except for the these are
resonance particles, as
discussed in Section 12-3
and on the home page.
Masses in parentheses are
in Notice in each
case that particles of like
charge lie along downward-
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EXAMPLE 12-8 Applying the Conservation Laws State whether the following de-
cays can occur via the strong interaction, via the electromagnetic interaction, via the
weak interaction, or not at all:

(a) (b) (c)

SOLUTION

We first note that the mass of each decaying particle is greater than that of the decay
products, so there is no problem with energy conservation in any of the decays. In
addition, there are no leptons involved in any of the decays, and charge and baryon
number are both conserved in all the decays.

(a) From Figure 12-12, we can see that the hypercharge of the is 0, whereas the
hypercharge of the proton is �1 and that of the pion is 0. This decay is possible via
the weak interaction but not the strong interaction. It is, in fact, one of the decay
modes of the particle, with a lifetime of the order of 10�10 s.��

��
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(b) Since the hypercharge of both the and is 0, this decay can proceed via the
electromagnetic interaction. It is the dominant mode of decay of the particle,
with a lifetime of about 10�20 s.

(c) The hypercharge of the is �1, whereas that of the neutron is �1 and that of
the pion is 0. Since hypercharge cannot change by 2 in a decay or reaction, this
decay cannot occur.

Questions

9. How can you tell if a decay proceeds via the strong, electromagnetic, or weak
interactions?

10. Can the strangeness or hypercharge of a new particle be determined even if the
number of particles in the multiplet is unknown? How or why not?

Parity The parity of a nucleus or particle is defined in the same way as for an atom.
(See Section 6-5.) The parity operation reflects the space variables in the coordinate
origin. If the parity operator acting on the wave function changes the sign of the wave
function, the parity is said to be odd, or �1. If the wave function does not change sign,
the parity is even, or �1. The parity quantum number P is different from the other
quantum numbers we have been considering. It can have only the values �1 or �1.
If the value of the parity of a system changes, the new value is �1 times the old value.
Parity is therefore a multiplicative property rather than an additive property like baryon
number, strangeness, or hypercharge. The parity of an atomic wave function is related
to the orbital angular momentum by The parity is odd or even depending
on whether is odd or even. In our discussion of radiation from atoms, we saw that the
parity of an atom can change just as the angular momentum of the atom changes when
the atom emits light. For electric dipole transitions, so the parity and angu-
lar momentum quantum numbers always change. However, if the complete system,
including the photon, is considered, the total angular momentum and the total parity
do not change in atomic transitions; that is, parity is conserved in electromagnetic
interactions. Parity is also conserved in the strong interaction.

Until 1956 it was assumed that parity is conserved in all nuclear reactions and ra-
dioactive decays. In that year, T. D. Lee and C. N. Yang suggested that parity might not
be conserved in weak interactions. This suggestion grew out of attempts to understand
the peculiar behavior of what were then known as the and mesons. These particles
were identical in every way except that the meson decayed into two pions with pos-
itive parity, whereas the decayed into three pions with negative parity. (Each elemen-
tary particle can be assigned an intrinsic parity. That of the pion is negative.) The 
puzzle was this: Are there two different particles with all properties identical except
parity, or is it possible that parity is not conserved in some reactions? After careful
study Lee and Yang found that all the experimental evidence for parity conservation
pertained to strong or electromagnetic interactions and not for weak interactions. They
suggested that the nonconservation of parity could be observed experimentally by mea-
suring the angular distribution of electrons emitted in decay of nuclei that have their
spins aligned. Such an experiment was performed in December 1956 by a group led by
C. S. Wu and E. Ambler. The results confirmed Lee and Yang’s predictions, for which
they received the Nobel Prize in Physics in 1957. The and mesons are a single par-
ticle, now known as the meson, which has two distinct modes of decay. The signif-
icance of the decay will be discussed further in the TCP Invariance section below.K0

K0
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Figure 12-13 (a) The mirror image
of a right-handed coordinate
system (x � y in the z direction) is
a left-handed coordinate system
(x � y in the –z direction). No
combination of translation and
rotation can change a right-handed
coordinate system into a left-
handed system. (b) Spinning
nucleus emitting an electron in the
direction of its spin. In the mirror,
the image nucleus is emitting the
electron in the direction opposite to
its spin because the mirror reverses
the direction of the spin vector.

The conservation of parity essentially means that a process described by the coor-
dinates x, y, and z appears the same if described by the coordinates 
and The system x, y, z is called a right-handed coordinate system because
x � y is in the �z direction. Similarly, the system is called a left-handed
coordinate system because is in the negative direction. No rotation can
change a right-handed coordinate system into a left-handed one, but reflection in a mir-
ror does, as shown in Figure 12-13a. We can thus state the law of conservation of par-
ity in more physical terms: If parity is conserved, the mirror image of a process cannot
be distinguished from the process itself. Figure 12-13b shows a spinning nucleus emit-
ting an electron in the direction of its spin. In the mirror, the nucleus appears to be emit-
ting the electron in the direction opposite to that of its spin. If parity is conserved in 

decay, the chance of emission in the direction of the nuclear spin must equal the
chance of emission in the opposite direction; i.e., there can be no preferred direction.
Whether or not one direction is actually preferred in decay is usually not observable
because the nuclear spins are randomly oriented. Wu and Ambler aligned the nuclei in

by placing their sample in a magnetic field at a very low temperature (about 0.01
K). They found that more particles were emitted opposite to the spin of the nucleus than
in the direction of the spin, indicating that parity is not conserved in weak interactions.
Table 12-7 summarizes the conservation laws discussed in this section.

TCP Invariance It is a property of any relativistic quantum theory in which signal
speeds cannot exceed the vacuum speed of light, that the combined operations of Parity

Time reversal and Charge conjugation 
leave any wave function unchanged:

12-28TCP &(r, t) � �1 &(r, t) or TCP � �1

(particle S antiparticle)(tS �t),(r S �r),

60Co
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zœxœ � yœ
x�, y�, z�

z� � �z.
x� � �x, y� � �y,
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Table 12-7 Conserved quantities in fundamental particle interactions

Interaction

Conserved quantity Strong Electromagnetic Weak

Energy

Momentum

Charge (Q)

Baryon number (B)

Lepton number (L)

∂ Yes Yes Yes

Isospin (I) Yes No No 

Hypercharge (Y) Yes Yes No 

Strangeness (S) Yes Yes No 

Parity (P) Yes Yes No

(¢S � �1, 0)

(¢Y � �1, 0)

(¢I � �1, 0)

It makes no difference in what order the operations are performed. Invariance under
these combined operations requires that particles and their antiparticles have the same
masses and lifetimes. It was long thought that the invariance under the combined
operations was the result of invariance of physical laws under each of the operations
independently, i.e., T � �1, P � �1, and C � �1.

However, as we described in the previous section, it was discovered that parity
was not conserved in weak interactions. For the weak interaction the parity operation
yields P � �1. That immediately implies that one of the other operations must not be
conserved in the weak interaction. Lee and Yang’s solution to the puzzle
revealed that there are two mesons (kaons) with nearly identical masses but
very different decay modes and lifetimes. The (S for “short”) decays to two pions
with a lifetime of about The (L for “long”) decays to three
pions with a lifetime of about (See Table 12-3.)

Then in 1964 J. H. Christenson and his collaborators showed that in about 1 of
every 1000 decays, the also decayed into just two pions. This result means that for
the decay, the combined operation CP � �1 because the two-pion final system
has CP � �1 and the three-pion final system has CP � �1.

The implications of this result are enormous and continue to be a focus of intense
theoretical and experimental research. For example, within the framework of the
Standard Model, CP violation requires that there be three generations of quarks and,
correspondingly, the very large number of hadrons that can be assembled from them.
The observed matter-antimatter asymmetry in the universe also requires CP violation.
If TCP � �1 and CP � �1, T � �1 also, which establishes an absolute direction for
the flow of time.

Questions

11. Suppose a new uncharged meson is discovered. What condition is necessary
for it to have a distinct antiparticle?

12. How might Table 12-7 be different if strangeness were not conserved in
interactions between hadrons?

K0
L

K0
L

0.5 � 10�7 s.
K0
L0.9 � 10�10 s.

K0
S
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� � �



Searches for experimental

support for the Standard

Model led to the

development of many new

types of particle detectors.

Several have found

applications beyond particle

physics, one example being

BGO crystal detectors, used in

medical diagnostic PET

scanners (see Figure 11-65).
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More

Particles and excited states of particles that decay via the strong interac-
tion have mean lives of only 10�23 s or so, not nearly long enough to be
tracked by a particle detector. Such particles are instead detected by mea-
suring resonances in the scattering cross sections in a way analogous to
J. Franck and G. Hertz’s detection of the first excited state of the Hg atom
by measuring the resonances in the electron scattering from Hg atoms.
Many fundamental particles have been found in this way, as is described
on the home page (www.whfreeman.com/tiplermodernphysics5e),
Resonances and Excited States, which also includes a partial list of meson
and baryon resonances. See also Figures 12-14 through 12-16, Table 
12-8, Equations 12-29 through 12-31, and Examples 12-9 and 12-10 here.

12-4 The Standard Model
The Standard Model is currently (since 1978) the accepted theory of elementary particle
physics. It includes the quark model of particle structure that had been developed earlier,
the unified theory of electromagnetic and weak interactions called the electroweak
theory, and the strong-interaction analog of quantum electrodynamics called quantum
chromodynamics (QCD). It has been remarkably though not totally successful in ex-
plaining the characteristics of fundamental particles and the interactions between them
and is second only to QED in the accuracy of its predictions. In our discussions thus far
in this chapter we have had occasion to allude to a number of specific features of the
Standard Model. In this section we will consider the three of its constituents noted above
in further detail. Since the complexity of the Standard Model’s mathematical detail is be-
yond the level of this book, our discussion will be largely qualitative and conceptual.

Quark Model of the Hadrons

The Eightfold Way The construction of large high-energy particle accelerators be-
ginning in the 1950s made possible the production of a flood of previously unseen
hadrons.14 Among the many attempts at understanding and classifying the jumble of
hadrons, the most successful scheme is known as the eightfold way.15 It was suggested
independently by Gell-Mann and Y. Ne’eman in 1961 and subsequently justified by
the Standard Model. In this scheme, hadrons that make up the charge multiplets were
arranged in groups, called supermultiplets, in which each member had the same in-
trinsic spin and parity, J P, where J is the intrinsic spin and P is the parity. Three of
Gell-Mann’s supermultiplets are shown in Figure 12-12: (a) the eight lightest baryons,
called the baryon octet; (b) the eight lightest mesons, the meson octet (actually a
nonet); and (c) the next 10 heavier baryons, the baryon decuplet. Figure 12-17
shows the energies of the baryon octet in a diagram analogous to the fine-structure
splitting of atomic states. The energy splittings between the isospin multiplets (from
78 to 176 MeV) are about 20 times the splitting within the multiplets. There are no
completed baryon supermultiplets beyond the octet and decuplet, although there are
several partially completed ones. The known mesons complete six nonets. Note that
there is also an antibaryon octet, decuplet, etc., but for the mesons their antiparticles
are members of the same nonet. Gell-Mann’s accomplishment is the elementary

www.whfreeman.com/tiplermodernphysics5e


particle analog of Mendeleev’s development of the periodic table of
the chemical elements, which was first published in 1869, nearly 100
years earlier, far in advance of the theoretical foundation for the periodic
table provided by atomic theory and quantum mechanics.

The eightfold way is based on part of a mathematical theory known as
the theory of continuous groups that was developed by the Norwegian
mathematician S. Lie, among others. The simplest Lie group is known as
SU(2), for special unitary group of 2 � 2 matrices. A special condition on
the 2 � 2 arrays reduces the number of components from 4 to 3. The three
independent components of these arrays correspond to the three compo-
nents of angular momentum (or isospin). As we have seen previously, the
various possible values of angular momentum J have corresponding states
that occur in multiplets having 1, 2, 3, 4, . . ., (2J � 1) elements, which
we describe as having angular momentum of units.
The next higher Lie group is known as SU(3), for special unitary group of
3 � 3 arrays. Again, a special condition reduces the number of components
from 9 to 8 (hence the name eightfold way). The eight quantities in the ap-
plication of SU(3) group theory to hadrons consist of the three components
of isospin, the hypercharge, and four that are yet to be named. Without
going into the details of group theory, we will merely state that the SU(3)
group leads to multiplets of 1, 3, 8, 10, . . . elements. Rather than assigning
a single number to these multiplets analogous to the angular momentum
quantum number of SU(2), it is more useful to make two-dimensional dia-
grams called weight diagrams, which are the geometric patterns of points,
triangles, and hexagons shown in Figure 12-18. In the application of SU(3)
to particle theory, the axes are Y and I3, as in Figure 12-12.

In the plot of Y versus I3 for the baryons (the decuplet
shown in Figure 12-12c), neither the nor the had been discovered
prior to 1961. Note that the difference in rest energy between each line

of the decuplet is about 140 MeV. A constant energy difference between successive
multiplets in the decuplet is predicted by SU(3) theory. The prediction of the par-
ticle by Gell-Mann in 1961 and its discovery in 1964 with just the mass and spin
Gell-Mann had predicted was one of the spectacular successes of the pre–Standard
Model eightfold way. Note that the is the only particle in the decuplet that is not
a resonance particle. The mass of the is just small enough that energy conserva-
tion prevents it from decaying via a strangeness-conserving strong interaction such
as "� S ,0 � K�.

"�

"�

"�

"�,
JP � 3>2�

0, 1>2, 1, 3>2, Á U
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Figure 12-18 Weight diagrams occurring in SU(3) group theory. The circle and dot at the
origin in the hexagon indicate two particles at the origin, making this pattern an octet.
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Figure 12-17 The energy-level diagram of
the baryon octet, the supermultiplet of the
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Other supermultiplets can be formed from the unstable baryons and mesons, but
there are no observed groups of three particles corresponding to the triplet allowed
by SU(3) theory, illustrated second from the left in Figure 12-18. This fact and the
absence of a reason for the supermultiplets of the eightfold way led Gell-Mann and
G. Zweig in 1964 to independently propose that all hadrons are composed of even
more fundamental constituents called quarks.16 Their proposal is the basis of the
quark model, arguably the most important advance in our understanding of elemen-
tary particles.

In the original quark model, quarks came in three types labeled u, d, and s
(for up, down, and strange). Later discoveries, as we have seen, added three more
quarks, labeled c, b, and t for charm, bottom, and top. Recall that the charge of the u
quark is and that of the d and s quarks is Each quark has 
Each quark has spin The strangeness of the u and d quark is 0 and that of the s
quark is �1. Each quark has an antiquark with the opposite electric charge, baryon
number, and strangeness. The three types up, down, and strange form the triangular
SU(3) weight diagram of Figure 12-18, as shown in detail in Figure 12-19. The prop-
erties of the quarks are listed in Table 12-2. The basic assertion of the quark model
is that all baryons consist of three quarks (or three antiquarks for antiparticles),
whereas mesons consist of a quark and an antiquark. The mesons thus have baryon
number B � 0, as required. The proton consists of the combination uud and the neu-
tron udd. Baryons with a strangeness S � �1 contain one s quark. All the particles
listed in Table 12-3 can be constructed from the three original quarks and the corre-
sponding three antiquarks.17

A great success of the quark model was that all of the allowed combinations of
the three quarks and quark-antiquark pairs resulted in known hadrons. Strong evi-
dence for the existence of quarks inside the nucleons is provided by high-energy
scattering experiments called deep inelastic scattering. In these experiments, a nu-
cleon is bombarded with electrons or muons of energies from 15 to 200 GeV.
Analyses of particles scattered at large angles indicate the presence within the nu-
cleon of spin- particles of sizes much smaller than that of the nucleon. These ex-
periments are analogous to Rutherford’s scattering of particles by atoms in which
the presence of a tiny nucleus in the atom was inferred from the large-angle scat-
tering of the particles.�

�
1>2

1>2.
B � 1>3.�e>3.2e>3

S = 0
d

s

su

S = –1

S = 1

S = 0

Q = +1/3Q = –2/3
Q = –1/3

Q = +2/3

u–

–

d–

Figure 12-19 The SU(3) weight diagrams (Y vs. I3) for the three light quarks and their
antiquarks. As in the supermultiplet diagrams of the eightfold way, the downward-sloping lines
are constant charge and the horizontal lines are constant strangeness.

Murray Gell-Mann, who
proposed the existence of
strangeness, developed the
classification system for
hadrons [SU(3)] and
postulated the existence of
fractionally charged
particles, which he called
quarks. He won the Nobel
Prize in Physics in 1969.
[American Institute of Physics,
Neils Bohr Library.]
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Since the conservation laws represented by the several quantum numbers in Table
12-5 are additive, it is simply a matter of arithmetic to determine the properties of the
hadrons. For example, a particle formed by the combination uds can have a spin of
either or charge equal to and baryon number

Table 12-9 lists the possible three-quark combinations
(baryons), and Table 12-10 lists the possible quark-antiquark combinations (mesons).
B � 1>3 � 1>3 � 1>3 � 1.

�2>3 � 1>3 � 1>3 � 0,3>2,1>2

Table 12-9 Properties of three-quark combinations

Spin Charge Baryon

Combination ( ) (e) number Strangeness Hypercharge

uuu �2 1 0 �1

uud �1 1 0 �1

udd 0 1 0 �1

uus �1 1 �1 0 �1

uss 0 1 �2 �1

uds 0 1 �1 0 0

ddd �1 1 0 �1 �

dds �1 1 �1 0 �1

dss �1 1 �2 �1

sss �1 1 �3 �2 03>2 �1>23>21>2,

3>21>2,

3>23>23>21>2,

�1>23>21>2,

3>21>2,

�1>23>21>2,

�1>23>21>2,

�3>23>2
I
3

U

Table 12-10 Properties of quark-antiquark combinations for three quarks

Spin Charge Baryon

Combination ( ) (e) number Strangeness Hypercharge

0, 1 0 0 0 0 0

0, 1 �1 0 0 0 �1

0, 1 �1 0 �1 �1

0, 1 �1 0 0 0 �1

0, 1 0 0 0 0 0

0, 1 0 0 �1 �1

0, 1 �1 0 �1 �1

0, 1 0 0 �1 �1

0, 1 0 0 0 0 0ss

�1>2sd

�1>2su

�1>2ds

dd

du

�1>2us

ud

uu

I
3

U
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Figure 12-20 (a) The
graph of Y vs. I3 for the 
spin- three-quark
combinations—the baryon
octet. (b) The graph of Y
vs. I3 for the quark-antiquark
combinations that form the
lightest meson nonet.

1>2

The eight spin- baryons make up the baryon octet of Figure 12-12a. The three
quarks of which each member is composed are shown in Figure 12-20a. Notice that
Table 12-10 lists nine quark-antiquark combinations, rather than eight, as given by the
eightfold way. The ninth meson identified by the quark model as a part of this group,
the had already been found but had been thought to be a singlet in the eightfold
way. Figure 12-20b shows the quark-antiquark composition of the first of the several
meson nonets, the one illustrated in Figure 12-12b.

EXPLORING

Where Does the Proton Get Its Spin?

In the quark model of the hadrons the proton consists of two up quarks and a down
quark, uud. The electric charge and quantum numbers of the proton, as with the neu-
tron and other composite particles, are correctly given by summing the corresponding
quantities for the constituent quarks. For example, the proton’s charge is

and its spin is the combination of the
three spin quarks. However, a series of deep inelastic scattering experiments of
electrons and muons on protons have yielded a surprising result. Begun in 1987 at
CERN and continued up to the present there and at Brookhaven National Laboratory
(Relativistic Heavy Ion Collider, RHIC) and the Thomas Jefferson National Accelerator
Facility, the experiments consist of scattering extremely high-energy (� very short
wavelength) muons or electrons whose spins are polarized from protons and nuclei
whose spins are also polarized. Measuring the exit angles and energies of the scattered
particles is a rich source of information concerning the spin structure of both the pro-
ton and the neutron. Surprisingly, the experimental results indicate that the spins of the
three constituent, or “valence,” quarks account for only 20 to 30 percent of the proton’s
spin! The experiments show that the spins of the u quarks are aligned parallel with the
proton’s spin, but this is not true for the spin of the d quark, which is as one would ex-
pect it to be. These results suggest that the orbital angular momentum of the valence
quarks and perhaps the spins of the gluons and the “sea” quarks make a significant con-
tribution to the nucleon spin. Aptly called “the proton spin crisis,” the results have un-
derscored that our understanding of nucleon structure and quantum chromodynamics
(QCD) is incomplete in some important respects.

3He

1>2U
�1>2U�(2>3)e � (2>3)e � (1>3)e � �1e,

.�,

1>2
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Nor does the spin crisis stop there. The results also show that the “sea” of virtual
quark-antiquark pairs that surround the valence quarks (just as virtual pions surround
the nucleons themselves in the nucleus) is strongly polarized with its collective spin
direction opposite to the proton’s net spin. Even more mysterious, the “sea” turns out
to contain a significant number of strange (s) quarks. As one scientist put it, there is no
simple “gee whiz” explanation for the spin crisis. Several theories have been advanced
to account for the discovery, but thus far none have been successful. The spin crisis is
currently the focus of vigorous experimental and theoretical research.

EXAMPLE 12-11 Predicting the Properties of Particles What are the properties of
the particles made up of the following quarks: (a) (b) (c) dds, and (d) uss?

SOLUTION

(a) Since is a quark-antiquark combination, it has baryon number 0 and is
therefore a meson. There is no strange quark here, so the strangeness of the
meson is zero. The charge of the up quark is and that of the anti-down
quark is so the charge of the meson is �1e. This is the quark combi-
nation of the meson.

(b) The particle is also a meson with zero strangeness. Its electric charge is
This is the quark combination of the meson.

(c) The particle dds is a baryon with strangeness since it contains one strange
quark. Its electric charge is This is the quark
combination for the particle.

(d) The particle uss is a baryon with strangeness �2. Its electric charge is
This is the quark combination for the particle.

Color In Section 12-1 we briefly introduced the concept of the color charge of the
quarks. In this section we will extend that discussion to include some important quark
and hadron properties related to color. The quark model as described thus far in
Section 12-4, essentially that developed over the decade following the introduction of
Gell-Mann’s quark hypothesis, contained two significant problems: despite numerous
experimental searches, no free quarks had been found, and the model’s construction
of baryons was inconsistent with the Pauli exclusion principle. For example, the
���(1232) has spin and thus contains three u quarks (fermions) with exactly the
same set of quantum numbers.

The solution to the exclusion-principle dilemma came from O. W. Greenberg,
who postulated that each quark flavor (u, d, and s) came in three colors in addition to
their other properties. The color charge of a quark has three possible values: red, blue,
and green. Thus, a blue quark would have blueness �1, redness 0, and greenness 0,
and its antiquark would have blueness �1, and so on. The terms “color” and “color
charge” are, of course, simply labels to describe a quark property analogous to elec-
tric charge and are in no way related to the usual meanings of the words. The use of
the three primary colors for this purpose did, however, provide a very simple rule to
ensure that the exclusion principle was obeyed:

All particles that occur in nature are colorless.

3>2

,0�2>3e � 1>3e � 1>3e � 0.

��

�1>3e � 1>3e � 1>3e � �1e.
�1

���2>3e � (�1>3e) � �1e.
ud

��

�1>3e, �2>3eud

ud,ud,
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The term “colorless” means that either

1. The total amount of color (i.e., the sum of the color quantum numbers) is zero,

or

2. There are equal amounts of all three colors present (in analogy with the combin-
ing of the three primary colors to produce white).

Thus, for example, the three up quarks that compose the ���(1232) are one each of
ur , ub , and ug .

The Puzzle The solution provided by color seemed an artificial one, as did the
explanation for seeing no free quarks described in the next subsection, but strong sup-
port for the model came late in 1974 from an unexpected quarter. Two groups indepen-
dently discovered a new meson. The first, S. Ting and his co-workers at Brookhaven,
called it the J, while the second group, B. Richter and his co-workers at SLAC,18 called
it the Now referred to as the the new meson had three times the mass of the pro-
ton and a lifetime of 10�20 s, extraordinarily long for a strongly interacting particle. The
exceptionally long lifetime pointed to new physics,19 and within months after its dis-
covery it was recognized that the was composed of a fourth quark and its antiquark.
The fourth quark, which had been proposed by S. Glashow and others for compelling
theoretical reasons some years earlier so as to make equal numbers of quarks and lep-
tons (before the discovery of the and ), is called the charm quark and 20

Discovery of the first charm baryon, the is shown in Figure 12-21. Figure 12-22-�
C ,
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Figure 12-21 (a) Discovery of the first charm baryon, the The reaction is The charm
baryon decays via too soon to leave a track, but the subsequent decay of the is easily seen. [Brookhaven
National Laboratory.] (b) A portion of the experimental data obtained by B. Richter and his co-workers at SLAC showing the

resonance.J>' -0-�
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Figure 12-22 Supermultiplets formed from u, d, s, and c quarks. The circles indicate that there are two particles with the
same quark composition and different energies.

shows some supermultiplets formed with four quarks. This discovery made two nicely
symmetric sets of four leptons (e, ve , ) and four quarks (u, d, s, c) and, of course,
their antiparticles. Then in 1975 a new lepton was found! The new lepton, the pre-
sumably had an associated neutrino, the and the numerical symmetry of the gener-
ations of particles was again upset. But within two years a new heavy meson, the up-
silon was discovered and quickly recognized as being composed of a fifth quark-an-
tiquark pair. The fifth quark is called the bottom (or sometimes beauty) quark, and

The theory then predicts a sixth quark, called, as you might guess, the top
(or truth) quark. The t quark was found in 1995 by two groups at Fermilab, thus restor-
ing Glashow’s symmetry of fundamental quarks and leptons and completing the new
periodic table of the constituents of fundamental particles. (See Figure 12-23.) At 176

the t quark is the most massive fundamental particle that has been discovered.
There are substantial theoretical and experimental reasons to believe that there are no
more quarks or leptons to be found. (See Figure 12-24.) Table 12-5 lists the up, down,
strangeness, charm, top, and bottom internal quantum numbers for the six flavors of
quarks and their antiquarks.
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Figure 12-23 Periodic table of elementary particle constituents.
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Figure 12-24 Both the shape and height of Z 0 resonance are theoretically related to the
number of flavors of the leptons and quarks. As that number increases, the maximum cross
section decreases and the energy width (at half the maximum height) becomes larger. Current
measurements, shown by the black circles, are fully consistent with three flavors, or generations,
excluding both two and four.

Quantum Chromodynamics

Quantum chromodynamics (QCD) is the modern theory that describes the strong inter-
action between quarks and gluons. It is directly analogous to quantum electrodynamics
(QED), which so successfully accounts for the electromagnetic interaction. Indeed,
QCD was modeled on QED. As stated earlier, the particle (boson) that mediates the
strong quark-quark interaction is the gluon and the fundamental process (analogous



to shown in Figure 12-4) is illustrated by the Feynman diagram in Figure
12-25a. The gluons are the QCD analog of the photon in QED. Like photons, they are
massless and have spin 1; however, there is one crucial difference between the two par-
ticles. The gluons carry color charge, whereas the photon is electrically neutral. In fact,
the gluons are bicolored, carrying one unit of a color charge and one of an anticolor
charge and hence are not color neutral. Thus, in the process the quark may
change color (but not flavor), as shown in Figure 12-25b. Since the gluons carry net
color charge, they can also interact with each other via the strong interaction and
they form an octet in the SU(3) group theory representation, just as do the mesons.21

This means that, in addition to the increase in the strong interaction coupling constant
at very short distances analogous to the vacuum polarization in QED discussed in

Section 12-2 and shown in Figure 12-10, there are also gluon-gluon loops, as shown
in Figure 12-26. The effect of such gluon loops is to, in a sense, dilute the strong force

and decrease the value of the strong interaction coupling constant
at extremely short distances As it turns out, this lat-

ter effect predominates at very small quark separations. As a pair
of quarks move extremely close to each other, their coupling de-
creases, a condition called asymptotic freedom. The result is that
inside the nucleon, the quarks move more or less as free particles,
a phenomenon that has been confirmed by electron deep scattering
experiments. Indeed, hundreds of experiments have confirmed the
property of asymptotic freedom.

One of the possible potential functions for the strong inter-
action has the approximate form

12-32

It has been reasonably well tested experimentally at short distances.
Notice that VQCD increases indefinitely with r (see Figure 12-27),
that is, the strong force at large r,
rather than going to zero, as do the Coulomb and gravitational
forces. The result is to prevent the quarks from getting too far apart,
effectively containing them inside the hadrons, a phenomenon
called quark confinement. This is the QCD explanation for why
free quarks have not yet been found. When a large amount of
energy is added to a quark system such as a nucleon, a quark-
antiquark pair is created and the original quarks remain confined
within the original system. This is the origin of the virtual pions
that were postulated by the Yukawa model of the nuclear force as
the mediator of that interaction. (See Figure 12-28.)

FQCD � ��VQCD � constant,

VQCD(r) � �
4�S

3r
� kr

(�10�18 m).�s

�s

qS q � g

eS e � 

g

q

g

g

g

Figure 12-26 Feynman
diagram of a quark emitting a
gluon, which then creates two
gluons that recombine, the
resulting gluon being
absorbed by the quark.
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and k � 1 GeV fm in Equation 12-29.>�s � 0.3
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Figure 12-25 (a) The fundamental vertex of QCD, in which a quark emits a virtual gluon.
(b) Since gluons carry a color and an anticolor, the emission of the gluon may also change the
color of the quark.
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Figure 12-28 Shown is one possible illustration of quark confinement. If energy is added to
remove a d quark from a neutron, a ( ) pair is created. The and one of the d quarks
combine to form a while the u from the pair and the original u and d combine to produce a
proton and no free quark appears.

��,
uu, u

During particle decays and interactions quarks transform into one another. For ex-
ample, the decay of the neutron given by Equation 11-38 proceeds according to the
quark model in which a d quark turns into a u quark, as illustrated by Example 12-4.
All baryons eventually decay in one or more steps to the lightest (lowest-energy)
baryon, the proton. The decay of the proton is prohibited by conservation of energy
and baryon number, but searches for proton decay are continuing. Example 12-12
illustrates the decay of another baryon, the 

Questions

13. How can you tell whether a particle is a meson or a baryon by looking at its
quark content?

14. Are there any quark-antiquark combinations that result in nonintegral
electric charge?

15. What experimental evidence exists to support the assertion that natural 
particles are colorless?

EXAMPLE 12-12 Decay of Draw a Feynman diagram that shows the quarks
involved in the decay of the which goes according to

-0 ¡ pe��e

-0,
-0

-0.

��

SOLUTION

From Table 12-10 we see that the is composed of a u quark, a d quark, and an s
quark. The proton consists of two u quarks and a d quark. The decay results from the
weak interaction, the s quark decaying to a u quark and a W�. Note that strangeness
is not conserved in the weak interaction that transforms the s quark into the u quark.

-0



Figure 12-29 The plastic
strip in (a) has left-right
symmetry. Increased vertical
force on the ends of the strip
breaks the symmetry, causing
the strip to take one or the
other of the positions (b) or
(c), neither of which has left-
right symmetry.
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Table 12-11 Quark composition of selected particles

Baryons Quarks Mesons Quarks

p uud

n udd

uds

uuu

uus

uds

dds

uss

dss

sss

udc

uuc

udc

usc ubB�,�
c

dbB0��
c

dbB0���
c

ubB�-�
c

csD�
s"�

cuD0,�

cdD�,0

ccJ>'��

suK��0

sdK0��

dsK0¢��

usK�-0

ud��

ud��

The ElectroweakTheory

In the electroweak theory, the electromagnetic and weak interactions are considered
to be two different manifestations of a more fundamental electroweak interaction.
At very high energies the electroweak interaction is mediated by four
bosons. From symmetry considerations, these would be a triplet consisting of W�, W 0,
and W�, all of equal mass, and a singlet boson B0 of some other mass. Neither the W 0

nor the B0 would be observed directly, but one linear combination of the W 0 and the
B 0 would be the Z 0, and another would be the photon. At ordinary energies, the sym-
metry is spontaneously broken.

By “spontaneously broken symmetry” we mean the following: the Hamiltonian
Hop retains the complete symmetry, but the ground state computed from that Hop does
not, or, as we say, the symmetry is broken. For example, magnetism in solids arises
due to interaction of the spins of the atoms of the crystal lattice. For a ferromagnet,
such as iron, the Hop describing that interaction is invariant under rotation, but in
the ground state magnetic domains are spontaneously formed in the sample. The spin
direction changes from domain to domain but is the same inside each domain. 
A domain is certainly not invariant to a rotation of the spins. Thus, the ground state
spontaneously breaks the rotational symmetry. (To further help you visualize what
“spontaneously broken symmetry” means, think of a small plastic strip, like a short
ruler, gripped at the ends between your thumb and index finger. As you squeeze, the
strip will snap into a curve to one side or the other, breaking the original left-right
symmetry. See Figure 12-29.)

( W 100 GeV),

(a)

(b)

(c)
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The broken symmetry in the electroweak interaction leads to the separation of the
electromagnetic interaction mediated by the photon and the weak interaction mediated
by the W�, W�, and Z 0 particles. The fact that the photon is massless and that the W
and Z particles have masses of the order of shows that the symmetry as-
sumed in the electroweak theory does not exist at lower energies. The symmetry-
breaking agent is called a Higgs field, which requires a new boson, the Higgs boson,
whose rest energy is expected to be of the order of 1 TeV (1 TeV � 1012 eV).
According to the Standard Model, it is by interacting with the Higgs field that parti-
cles acquire their masses. The Higgs boson has not yet been observed. Calculations
show that Higgs bosons (if they exist) should be produced in a head-on collision be-
tween protons of energies of the order of 20 TeV. While such energies are not avail-
able with existing accelerators, the Large Hadron Collider, which began operation at
CERN in 2008, will be able to reach and exceed that energy by accelerating beams of
a variety of nuclei. Searching for the Higgs boson is a primary goal for the LHC.

The Standard Model—A Summary

The Standard Model is the theoretical model of elementary particles and their inter-
actions. It is based on a combination of the quark model, electroweak theory, and
quantum chromodynamics. In this model, the fundamental particles are the leptons
and quarks, each of which comes in three generations, as shown in Tables 12-1 and
12-2. The force carriers are the photon, the W � and Z 0 particles, and eight types of
gluons. The leptons and quarks are all spin- fermions, which obey the Pauli ex-
clusion principle. The force carriers are integral-spin bosons, which do not obey the
Pauli exclusion principle. Every force in nature is due to one of the four basic inter-
actions: strong, electromagnetic, weak, and gravitational. A particle experiences one
of the basic interactions if it carries a charge associated with that interaction. Electric
charge is the familiar charge that you have studied previously. It is carried by the
quarks and charged leptons. Weak charge, also called flavor charge, is carried by lep-
tons and quarks. The charge associated with the strong interaction is called color
charge and is carried by quarks and gluons but not by leptons. The charge associated
with the gravitational force is mass. It is important to note that the photon, which me-
diates the electromagnetic interaction, does not carry electric charge. The W � and Z 0

particles, which mediate the weak interaction, do carry weak charge, and the gluons,
which mediate the strong interaction, carry color charge. This latter fact is related to
the confinement of quarks.

All matter is made up of leptons and quarks. There are no known composite par-
ticles consisting of leptons bound together by the weak force. Leptons exist only as
isolated particles. Hadrons (baryons and mesons) are composite particles consisting of
quarks bound together by the color charge. A result of the QCD theory is that only
color-neutral combinations of quarks are allowed. Three quarks of different colors can
combine to form color-neutral baryons, such as the neutron and proton. Mesons con-
tain a quark and an antiquark and are also color neutral. Excited states of hadrons are
considered to be different particles. For example, the ��� particle is produced by

The ��� must have the exact same set of internal quantum numbers as
the which from Equations 12-26 and 12-27
means Y � 1 and The three u quarks can be in the same spin state in the ���

without violating the exclusion principle because they have different colors.
The strong interaction can manifest itself in two ways: the fundamental, or color,

interaction and the residual strong interaction. The fundamental interaction is re-
sponsible for the force exerted by one quark on another and is mediated by gluons.

I3 � 3>2.
��p: B � 1, C � S � T � B� � 0,

��pS ¢��.

1>2

100 GeV>c2
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The residual strong interaction is responsible for the force between color-neutral nu-
cleons, such as the neutron and proton. This force is due to the residual strong inter-
actions between the color-charged quarks that make up the nucleons and can be
viewed as being mediated by the exchange of mesons. The residual strong interaction
between color-neutral nucleons is analogous to the residual electromagnetic interac-
tion between neutral atoms that bind them together to form molecules.

For each particle there is an antiparticle. A particle and its antiparticle have
identical mass and spin but opposite electric charge. For leptons, the leptons num-
bers Le, and of the antiparticles are the negatives of the corresponding num-
bers for the particles. For example, the lepton number for the electron is Le � �1
and that for the positron is Le � �1. For hadrons, the baryon number, strangeness,
charm, topness, and bottomness are the sums of those quantities for the quarks
that make up the hadron. The number for each antiparticle is the negative of the
number for the corresponding particle. For example, the lambda particle 
which is made up of the uds quarks, has B � 1 and S � �1, whereas its antipar-
ticle, which is made up of the quarks, has B � �1 and S � �1. Particles
such as the photon and the Z 0 that have zero electric charge, B � 0, L � 0,
S � 0 and zero charm, top, and bottom, are each their own antiparticle. Note that
the meson has a zero value for all of these quantities except strangeness,
which is �1. Its antiparticle, the meson has strangeness �1, which makes
it distinct from the The and have electric charge but zero
values for L, B, and S. They are antiparticles of each other, but since there is no
conservation law for mesons, it is impossible to say which is the particle and
which is the antiparticle. Similarly, the W� and W� are antiparticles of each other.
Table 12-11 lists the quark compositions of several particles.

EXAMPLE 12-13 Decay of the The decays according to the equation

and the resulting and usually decay according to

Write each of these reactions in terms of quarks.

SOLUTION

Using Table 12-11, the decay is given by

in which an s is changed to a d and a pair is created. The and decay
according to, for the 

where again an s is changed to a d and a pair is created, and for the meson,

where the s and u annihilate, producing a W�, which decays to the leptons.

su ¡ 	� � �
	

K�uu

uds ¡ uud � ud

-0,
K�"0uu

sss ¡ uds � su

"�

-0 ¡ p � �� and K� ¡ 	� � �
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12-5 Beyond the Standard Model

Grand Unification Theories

At the beginning of Section 12-4 we noted that the Standard Model of particle physics,
while correctly accounting for a wide range of observations, has left a number of fun-
damental questions unanswered. Of premier importance among these are why nature
requires four interactions rather than one and why their strengths and properties
should be so different. The successful unification of the electromagnetic and weak in-
teractions into the electroweak theory discussed earlier has led to a number of efforts
to include the strong interaction and, ultimately, the gravitational interaction into a
single, so-called grand unification theory, or GUT.22 As in the electroweak theory, the
different strengths at energies well below the rest energies of the mediating bosons
would be accounted for by spontaneous symmetry breaking. GUTs also explain the
equality of the electron and proton charges.

A central feature of current GUTs is that the coupling constants of all four inter-
actions approach the same value, approximately that of the fine-structure constant 
at some very high energy. It is a remarkable experimental observation that the mea-
sured values of the coupling constants do appear to be tending toward a common value.
Unfortunately, extrapolation to the common point must be made over an extraordinar-
ily large energy range, that point of common value being at about 1016 GeV, compared
with about 104 GeV that can be reached with the largest existing accelerator, the LHC
at CERN. (See Figure 12-30.) To assume that nature has no surprises or new physics to
await us somewhere in that colossal energy range ignores the lessons of history.

Supersymmetry (SUSY)

A number of GUTs include a proposed new symmetry in addition to the symmetries
we have discussed. Called supersymmetry (with the acronym SUSY), it assigns to
each elementary particle a superpartner. The superpartner is in every way identical to
the particle except for its spin. The leptons and quarks, both spin- fermions, have1>2

�,
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Figure 12-30 The coupling
constants of the four
interactions appear to be
approaching a common value
at some energy in the range
1016 to 1018 GeV. Since the
largest existing accelerator,
the Large Hadron Collider at
CERN, can reach only about
14 TeV, the extrapolation to
the unification energy Ex is
highly uncertain.
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Table 12-12 Elementary particle and their superpartners

Particle Symbol Spin Superpartner Symbol Spin

Quark q Squark q 0

Electron e Selectron e 0

Muon Smuon 0

Tau Stau 0

W W 1 Wino W

Z Z 1 Zino Z

Photon 1 Photino

Gluon g 1 Gluino g

Higgs H 0 Higgsino H 1>21>21>2

1>21>2�1>2�

	1>2	

1>21>2

superpartners with spin 0. The spin-1 bosons have spin- superpartners. The super-
partners of the fermions are given the same names with a prefix s; e.g., the electron’s
superpartner is the selectron. The superpartners of the bosons have the same names
with a suffix ino added (sort of), e.g., the gluon’s superpartner is the gluino. The par-
ticles and their superpartners are listed in Table 12-12.

Exact supersymmetry would equate the masses of the particles and their super-
partners. However, this is apparently not true in nature or the superpartners would
have been detected long ago. So SUSY is modified to account for that absence by pos-
tulating that the mass of the lightest superpartner would be very large indeed, of the
order of the masses of the W � and the Z 0 bosons. Doing so ultimately predicts the
GUT unification energy in the vicinity of the current extrapolated projections, predicts
the proton lifetime in agreement with current experimental limits, and keeps the GUT
unification coupling constant in line with current extrapolations. An important goal of
the Large Hadron Collider is to test predictions of supersymmetry.

SUSY is also a component of current theories designed to include gravity within
GUTs. These are the string and superstring theories. String theories replace pointlike
elementary particles with tiny, quantized strings and require 10 or more dimensions.
Their purpose is to surmount current theoretical problems in quantizing gravity.
Currently, particle physicists are sharply devided over string theories, some heralding
them as the “theory of everything,” others dismissing them as “not even wrong.” As
of this date, there is no experimental evidence supporting any of the string theories.

Proton Decay

In GUTs the quarks and leptons are states of one particle, the leptoquark, and occur
symmetrically in the same multiplet. This would account for why there are equal
numbers of quark and lepton flavors and also lead to the prediction that each type of
particle can be changed into the other. If that is the case, then baryon number is no
longer a conserved quantity and the proton should not be stable. Current versions of
GUTs place the lifetime of the proton at about 1030 to 1033 years, the long lifetime
being the result of the large energy at which unification of the interactions occurs.

1>2



12-5 Beyond the Standard Model 607

The Sudbury Neutrino Observatory (SNO) in Canada and the Super-Kamiokande (Super-K) neutrino detector in Japan collected
data on neutrino interactions that confirmed neutrino oscillations. (a) The SNO neutrino detector is a spherical acrylic vessel
12 m in diameter and contains 1000 metric tons of ultrapure heavy water (D2O) located 2000 m below ground. herenkov light
produced by neutrino reactions in the water is viewed by 9456 photomultipliers, each 20 cm in diameter. (b) The Super-K
neutrino detector, a cylindrical structure 41 m tall and 39 m in diameter, contains 45,000 metric tons of pure water (H2O)
viewed by 11,200 photomultipliers. [(a) Courtesy of Sudbury Neutrino Observatory; (b) courtesy of Kamioka Observatory,
University of Tokyo.]

Č

Current experiments have placed the lower limit on the proton lifetime at about 1032

years; to date, no proton decays have been detected. Searches for proton decay, such
as that at Super-Kamiokande, generally involve monitoring very large volumes of
pure water, watching for one of the several possible proton decay “signatures”; e.g.,

or The nonconservation of baryon number in the early universe
when energies were very high provides an explanation of a major cosmological prob-
lem, namely, why the present universe has many more baryons than antibaryons.

Lepton numbers would no longer be conserved at the unification energy, and cur-
rently forbidden reactions such as and would be
allowed. Experimental searches have been made, but no lepton-number-nonconserving
events have been found.

Massive Neutrinos

From the time Pauli first suggested their existence in 1930, neutrinos were thought to
have zero mass. Then, based on Bahcall’s theoretical calculation of the solar neutrino
flux and Davis’s remarkable measurement23 of the flux at only about 30 percent of
Bahcall’s prediction, the solar neutrino problem emerged (see Section 11-8). Its re-
cent solution through the detection of neutrino oscillations by the Sudbury Neutrino

	� S e� � e� � e�	� S e� � 

pS ���e .pS �0e�

(a) (b)
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Observatory (SNO) and Super-Kamiokande (Super-K) experiments gives support to
GUTs since most GUTs require that neutrinos have mass. The theories predict their
mass to be given approximately by

12-33

where MeW is a characteristic mass of the electroweak interaction, roughly
and Mx is the unification mass (see Figure 12-30).

Nearly all GUTs project Mx values of this order of magnitude, which in turn means
that all neutrinos would have mv less than about 1 eV. The theories also predict

The impact of massive neutrinos on both the solar
neutrino problem described briefly in Chapter 11 and the universe’s “missing energy”
(or “missing mass”) problem discussed in Chapter 13 is substantial. S. Mikheyev,
A. Smirnov, and L. Wolfenstein proposed a solution to the solar neutrino problem in
particular in which an ve can oscillate to a or while propagating through the Sun’s
mass. For this complex process, called the MSW effect, to occur, the neutrino wave
functions and must each consist of superpositions of the three mass
states. Similar processes can be described for neutrinos moving through space and the
atmosphere. (See Exploring, Neutrino Oscillations and Mass.) The relative phases of
the mass states may change for two reasons. (1) In passing through the solar matter
(electrons and protons), the three mass states scatter differently; hence their relative
phases change. (2) While propagating through space and the atmosphere, the mass
states move at different speeds, which also results in a change in the relative phase.
The phase changes result in interference of the neutrino matter waves, and as a
consequence a neutrino emitted in the Sun as a ve may oscillate to a or before
reaching Earth and therefore not be detected by experiments searching for electron
neutrinos. Experimental evidence supporting the existence of oscillations was pro-
vided by the SNO and Super-K measurements.

Magnetic Monopoles

Magnetic monopoles, first suggested by Dirac in 1929, are also proposed by GUTs.
Dirac showed that their existence in relativistic quantum mechanics leads to the quan-
tization of both the electric charge e and the magnetic charge qm . The magnetic charge
of a monopole would be

12-34

It is important to note that In the unified theories the quantiza-
tion of electric charge occurs naturally in units of e, and magnetic monopoles of
charge qm and mass Mm are then predicted. The predicted values of Mm are very large,
about far beyond the energy achievable in any accelerator. Cosmic ray
searches for monopoles place an upper limit on their flux at about 10�15 cm�2 s�1 per
unit solid angle. Coincidentally, this value corresponds approximately to the maxi-
mum flux that could exist in the Milky Way without having long since destroyed the
galactic magnetic field. As of this writing, only a single possible observation of a
magnetic monopole has been reported in the literature, by B. Cabrera in 1982. This
observation is inconsistent with current limits.
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Quantum Gravity

The addition of quantum gravity to grand unified theories is a formidable task. Called
superstring theories because of their basic view of fundamental particles as strings
rather than points, perhaps the most promising of the current versions is based on a
10-dimensional universe (nine space and one time dimension) in which six of the
space dimensions have been collapsed or curled up on themselves. The string
“lengths” are much shorter than can be measured, about 10�35 m. Besides the inclu-
sion of quantum gravity, superstring theories also produce the gauge theories24 with
the correct mediating bosons; however, although they are the subject of considerable
interest to theoretical physicists, there is as yet no experimental support for these the-
ories, and it is not clear to what extent, if any, they represent physical reality.

Many questions are still unanswered. For example, do the quarks have internal
structure? What is the origin of isospin? There is some indication that hadrons are
surrounded by a “sea” of virtual quark-antiquark pairs. What is their role? Is the frac-
tional charge of the quarks related to color? Investigating these problems experimen-
tally will require new, higher-energy accelerators and more advanced detectors than
currently exist anywhere in the world. Obviously, there is much to be done.

EXPLORING

Neutrino Oscillations and Mass

Quantum mechanics requires that, if neutrinos oscillate from one type, or flavor, to an-
other, then they must have mass, whether they originate in the Sun, the atmosphere,
a nuclear power reactor, an accelerator, or somewhere else in the cosmos. While the
detailed justification of this requirement is beyond the scope of our discussions, an
outline of why this must be true is presented here. The relationship between neutrino
(flavor) wave functions and the mass eigenfunctions is given by

12-35

where are the wave functions of the neutrino flavors are the
mass eigenfunctions and (and its complex conjugate) is a function
that describes the extent to which mixing of the flavors or masses occurs, i.e., the
phases of the oscillations. Note that, if there were no oscillations, and the 
would equal the mass eigenfunction for however, the experiments noted above
show that The states with different mass eigenfunctions propagate at different
speeds, the less massive moving faster than the more massive ones. Since the mass
eigenfunctions are combinations of neutrino (flavor) wave functions, the difference in
speeds results in interference between the neutrino waves in each mass eigenfunction.
When, eventually, constructive interference occurs, one neutrino flavor has changed
into another.

The mass eigenfunctions are plane wave solutions of the time-dependent Schrödinger
equation. (See Equation 6-7.)
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The dependence of the energy on the mass is given by Equation 2-31 and the extremely
relativistic approximation of Equation 2-36

2-31

written as

Since for each of the neutrinos under discussion the total energy the bino-
mial expansion allows us to write

12-37

After time t moving at the neutrino has traveled a distance and the
mass wave functions become

12-38

and the probability that a neutrino of flavor at t � 0 will be observed to have changed
or oscillated to flavor is given by

12-39

If we confine our attention to the two-neutrino case (the three-neutrino case is more
complex to describe), Equation 12-39 becomes (after some work!)

12-40

where is the neutrino mixing angle and is the difference in the masses of the two
neutrinos. Although Equation 12-40 applies to a two-neutrino world, its is a decent
approximation for the oscillations in the atmosphere since electron neutrinos
do not contribute significantly in this case. It is also reasonable for solar electron
neutrinos oscillating to superpositions of and 

From Equation 12-40 we now can see why flavor-changing neutrinos must have
mass. Since experiments show that and measure for solar neutrinos

and for atmospheric neutrinos then in both
cases Thus, neutrinos have mass. The current values of are

More

GUTs aren’t the only avenue being actively explored by physicists in
search of a deeper understanding of the structure of matter than we
now have. The so-called Theories of Everything that seek to account
for all of physics within a single theoretical construct are highly spec-
ulative, and none yet have any experimental support. On the home
page at www.whfreeman.com/tiplermodernphysics5/e.
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Summary

TOPIC RELEVANT EQUATIONS AND REMARKS

1. Particles and antiparticles Each fundamental particle found in nature has an antiparticle; some are distinct, e.g.,
the electron and positron; some are the antiparticles of themselves, e.g., the photon.

Feynman diagrams These are spacetime diagrams that provide a useful way of visualizing
interactions between particles—for example, Coulomb repulsion of like charges.

Leptons and quarks All visible matter is made of two types of elementary particles, leptons and
quarks, each consisting of three generations.

2. Fundamental interactions 1. Strong interaction—gluons
Force carriers 2. Electromagnetic interaction—photons

3. Weak interaction—W �, Z 0

4. Gravitational interaction—graviton

Interaction “strengths” This term refers to the magnitudes of the dimensionless coupling constants that
multiply the space-dependent part of the potential energy functions.

3. Conservation laws and symmetries Every symmetry of the particle Hamiltonians leads to a conservation law and
vice versa (Noether’s theorem). Energy, momentum, electric charge, and angular
momentum are conserved in all interactions. Some quantities are conserved in
some interactions but not in others. For example, isospin is conserved in the
strong interaction but not in the weak interaction.

4. Standard Model The Standard Model seeks to explain all matter in terms of the interactions
among three types of elementary particles: quarks, leptons, and force carriers.

Color All quarks and gluons have color charge with one of three possible values: red,
blue, and green. The exclusion principle requires that all particles that occur in
nature are colorless.

QCD The potential function of the strong interaction has the approximate form

12-32

5. Beyond the standard model Grand unification theories (GUTs) attempt to unify all four basic interactions
mathematically. While thus far unsuccessful, some predict, among other things,
proton decay, magnetic monopoles, and massive neutrinos. The latter has been
verified by experiments.

VQCD(r) � �
4�s

3r
� kr
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Notes

1. The word atom comes from the Greek word atomos,
meaning indivisible, which was coined by the philosopher
Democritus, a contemporary of Socrates, about 2400 years
ago. In addition to suggesting that matter consisted of a vari-
ety of tiny atoms, he also suggested that the Milky Way was
made of a large number of individual stars and that the Moon
had mountains and valleys just like Earth.

2. Carl David Anderson (1905–1991), Swedish-American
physicist. His discovery of the positron in cosmic ray cloud
chamber tracks was followed three years later by his discov-
ery of the muon in cloud chamber tracks recorded on Pikes
Peak in Colorado. The former earned him a share of the 1936
Nobel Prize in Physics.

3. The Dirac equation for particles with -integral spin,
like the electron, is the relativistic analog of the Schrödinger
equation; however, it is not obtained by operator substitution
into Equation 2-31 since the resulting wave function does not
include the effects of spin.

4. Richard Phillips Feynman (1918–1988), American physi-
cist who described himself as a “curious character.” An almost
legendary figure among physicists in the United States,
he was one of many who worked on the Manhattan Project at
Los Alamos during World War II, where he also became an
accomplished safecracker. An excellent bongo drummer and a
passable artist, he shared the 1965 Nobel Prize in Physics with
Julian Schwinger and Sin-itiro Tomonaga, all of whom inde-
pendently contributed to the development of quantum electro-
dynamics. His books Surely You’re Joking, Mr. Feynman! and
What Do You Care What People Think? provide delightful
insights into his life.

5. Emilio Gino Segrè (1905–1989), Italian-American physi-
cist. A lifelong friend and colleague of Fermi, Segrè shared
the 1959 Nobel Prize in Physics with Owen Chamberlain, a
member of his Berkeley research group, for the discovery of
the antiproton. Of greater interest to most people might be his
discovery of technetium (Z � 43), the first chemical element
to be artificially created. The isomeric state of the isotope of
technetium, 99Tc, is by far the most widely used radioisotope
in medical diagnosis, treatment, and research.

6. This process is called Møller scattering in QED.
7. In fact, an infinite number. The contribution that each

possible diagram makes to the total process decreases sharply
as the number of vertices increases, so complex diagrams may
typically be ignored.

8. The name lepton, which means “light particle,” was orig-
inally selected to reflect the small mass of these particles rel-
ative to that of the hadrons; however, the (discovered by M.
Perl in 1975) has a mass nearly twice that of the proton, so the
name is no longer an indicator of the mass of these particles.

9. The reason for making the coupling constants dimension-
less is so all observers will measure comparable values, inde-
pendent of the units they may have used.

�

1>2

10. Carlo Rubbia (b. 1934), Italian physicist. He shared the
1984 Nobel Prize in Physics with Simon van der Meer for
their contributions to the discovery of the W � and Z 0.
11. Emmy A. Noether (1882–1935), German mathematician.
Dismissed from her position at Göttigen by the Nazi regime,
she came to the United States in 1933. Her obituary in the
New York Times was written by Einstein.
12. Operators, like Hop , that result in real (i.e., observable)
values are called Hermitian operators. They obey the rule

13. Murray Gell-Mann (b. 1929), American physicist. He re-
ceived the 1969 Nobel Prize in Physics for this and other work
on fundamental particles and their interactions.
14. The rate of discovery became so large that one physicist
quipped that “by 1990 all physicists would be famous because
there would be a particle named for each physicist”
Most “discoveries” turned out to be spurious.
15. From a saying attributed to the Buddha: “Now this, O
monks, is the noble truth of the way that leads to the cessation
of pain: this is the noble Eightfold Way: namely, right views,
right intention, right speech, right action, right living, right ef-
fort, right mindfulness, and right concentration.”
16. The name “quark” was suggested to Gell-Mann by a quo-
tation from Finnegans Wake, by James Joyce: “Three quarks
for Muster Mark.” Joyce did not tell us and the context does
not make clear exactly what a quark is.
17. The correct quark combinations of hadrons are not al-
ways obvious because of the symmetry requirements on the
total wave function. For example, the meson is represented
by a linear combination of and 
18. Samuel Chao Chung Ting (b. 1936), American physicist,
and Burton Richter (b. 1931), American physicist, shared the
1976 Nobel Prize in Physics for this important discovery.
19. One physicist put the long lifetime of the in biologi-
cal terms by comparing it with someone coming upon a re-
mote mountain village where the average age of the inhabi-
tants was 70,000 years. That would be a definite indication of
new biology.
20. Particle physicists call the discovery of the the
“November revolution,” referring to the enormous support of
the quark model that its November 1974 publication provided.
21. They form nine combinations, just like the mesons, but
for the gluons the ninth combination is really a singlet and
hence is independent.
22. Since no theory of quantum gravity complementing QED
and QCD exists, current efforts to develop GUTs include only
the strong and electroweak interactions.
23. Raymond Davis, Jr. (1914–2006), American physicist, and
John Bahcall (1934–2005) American physicist. Davis’s mea-
surements won him a share of the 2002 Nobel Prize in Physics.
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24. Theories in which the interaction is determined by the in-
variance of the theory (i.e., its mathematical equations) under
particular transformations are called gauge theories. For exam-
ple, classical electrodynamics is a gauge theory (although not

usually referred to as such), as are QED and QCD. Historically,
interactions were “figured out” by clever physicists on the basis
of experimental evidence. A bit of a surprise, Schrödinger’s
wave mechanics is not a gauge theory.

Problems

Level I

Section 12-1 Basic Concepts

12-1. Two pions at rest annihilate according to the reaction (a) Why
must the energies of the two gamma rays be equal? (b) Find the energy of each gamma ray.
(c) Find the wavelength of each gamma ray.
12-2. Find the minimum energy of the photon needed for the following reactions:
(a) (b) and (c)
12-3. Draw two different Feynman diagrams for each of the following events:
(a) (b)
12-4. Draw a Feynman diagram illustrating each of the following scattering events: (a) elec-
tron-electron, (b) electron-positron, and (c) Compton effect.
12-5. Find (a) the energy of the electron, (b) the energy of the nucleus, and (c) the mo-
mentum of each in the decay assuming no neutrino in the final state

(The rest mass of is 31.973762 u.)
12-6. The fate of an antiproton is usually annihilation via the reaction 
Assume that the proton and antiproton annihilate at rest. (a) Why must there be two photons
rather than just one? (b) What is the energy of each photon? (c) What is the wavelength of each
photon? (d) What is the frequency of each photon?
12-7. Figure 12-2 shows the production of the first antiproton. It was produced by the reaction

and required a minimum kinetic energy of 5.6 GeV. (The proton
beam energy was actually 25 GeV.) Less energy would be required by either of the following
reactions. Why is neither of them a possible alternative? Justify your answer.
(a) (b)
12-8. Positronium is a bound state of an electron and a positron (see Section 2-4). Its lifetime
expressed in natural units used by particle physicists ( ) is where
m � electron mass and � the fine-structure constant. Use dimensional analysis (a) to include

and c in the expression for and (b) to compute the value of 

Section 12-2 Fundamental Interactions and the Force Carriers

12-9. Name the interaction responsible for each of the following decays:
(a)
(b)
(c)
(d)
12-10. Which of the following decays— —would you ex-
pect to have the longer lifetime? Why?
12-11. Of the reactions below, which are allowed to proceed via the weak interaction and
which are forbidden? Justify your answer.
(a)
(b)
(c)
(d) p � �

	 ¡ 	� � n
-0 ¡ �� � e� � �e

p � e� � �e ¡ e� � �� � p
K� ¡ �0 � 	� � �
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12-12. Which of the four fundamental interactions is most likely responsible for the following
reactions?
(a)
(b)
(c)
(d)
(e)
( f )
12-13. Using the information concerning the neutrinos from SN1987A, including Figure 12-31,
compute an upper limit to the mass of the electron neutrino.

3H ¡ 3He � e� � �e

�0 � p ¡ �0 � p
p � �e ¡ n � e�

p � p ¡  � 

ve � e ¡ ve � e

16O (excited state) ¡ 16O (ground state) � 

10
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Figure 12-31 Problem
12-13. Electron antineutrino
energy versus arrival time in
the Kamiokande detector in
Japan for antineutrinos
emitted by the supernova
1987A. The spread in arrival
times (about 13 s) permits a
calculation of an upper limit
to the mass of the �e .

12-14. The rest energies of the and are slightly different, but those of the and are
exactly the same. Explain this difference in behavior.
12-15. Draw Feynman diagrams of the following decays:
(a)
(b)
(c)

Section 12-3 Conservation Laws and Symmetries

12-16. What is the uncertainty in the rest energies of the following particles?
(a) (b) (c)
12-17. State which of the decays or reactions that follow violate one or more of the conserva-
tion laws, and give the law or laws violated in each case.
(a)
(b)
(c)
(d)
(e)
( f )
12-18. Determine the change in strangeness in each reaction that follows, and state whether the
reaction can proceed via the strong interaction, the electromagnetic interaction, the weak inter-
action, or not at all:
(a)
(b)
(c)
12-19. Determine the change in strangeness for each decay, and state whether the decay can pro-
ceed via the strong interaction, the electromagnetic interaction, the weak interaction, or not at all:
(a) (b) and (c) �0 ¡ -0 � �� ¡ p � �0,"� ¡ -0 � �e � e�,

-0 ¡ p � ��

,0 ¡ p � �� � �0

"� ¡ ,0 � ��

p ¡ �� � e� � e�

ve � p ¡ n � e�

p � p ¡  � 

e� � e� ¡ 
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12-20. The rules for determining the isospin of two or more particles are the same as those for
combining angular momentum. For example, since for nucleons, the combination of
two nucleons can have either T � 1 or T � 0 or may be a mixture of these isospin states. Since

for the proton, the combination p � p has and therefore must have T � 1.
Find T3 and the possible values of T for the following:
(a)
(b)
(c)
(d)
(e)
12-21. Which of the following decays are allowed and which are forbidden? If the decay is al-
lowed, state which interaction is responsible. If it is forbidden, state which conservation law its
occurrence would violate.
(a)
(b)
(c)
(d)
(e)
12-22. For each of the following particles, write down two possible decays that satisfy all con-
servation laws: (a) (b) (c) (d) and (e)
12-23. Consider the following reactions:

Given that B � 1 for the proton and B � 0 for mesons and that baryon number is conserved,
determine the baryon number of the and the 
12-24. Which of the following decays and reactions conserve strangeness?
(a)
(b)
(c)
(d)
(e)

Section 12-4 The Standard Model

12-25. Find the baryon number, charge, isospin, and strangeness for the following quark com-
binations and identify the corresponding hadron: (a) uud, (b) udd, (c) uuu, (d) uss, (e) dss,
(f) suu, and (g) sdd.
12-26. Find the baryon number, charge, isospin, and strangeness for the following quark com-
binations and identify the corresponding hadron (the charge and strangeness of the antiquarks
are the negatives of those of the corresponding quarks, as with any other particle-antiparticle
pair): (a) (b) (c) (d) and (e)
12-27. Draw two Feynman diagrams that represent the decay of the antibottom quark.
12-28. Some quark combinations can exist in two or more isospin states, with each state cor-
responding to a different hadron. One such combination is uds. (a) What is the value of I3 for
this combination? (b) What are the possible values of total isospin I for this combination?
(c) Find the baryon number, charge, and strangeness of this combination, and identify the
hadron corresponding to each isospin state.
12-29. The ��� particle is a baryon that decays via the strong interaction. Its strangeness,
charm, topness, and bottomness are all zero. What combination of quarks gives a particle with
these properties?
12-30. Compute the approximate range of a weak interaction mediated by a W�.

dsss,us,ud,ud,
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12-31. One mode of weak decay of the is

Showing the quark content of the particles, draw the Feynman diagram of this so-called semi-
leptonic decay.
12-32. The undergoes a weak decay as follows: Showing the quark content
of the particles, draw the Feynman diagram of this so-called nonleptonic decay.
12-33. Show that the neutron cannot undergo the weak decay shown for the in Problem 12-32.
12-34. The decay of the shown in Problem 12-32 can also proceed via the strong interac-
tion. Showing the quark content of the particles, draw the Feynman diagram that illustrates the
strong decay of the 
12-35. The can be produced by the reaction (a) Determine the
baryon, strangeness, charm, and bottom quantum numbers of the (b) From your an-
swer to (a), what is the quark content of the 
12-36. Find a possible combination of quarks that gives the correct values for electric charge,
baryon number, and strangeness for (a) and (b)
12-37. The D� meson has strangeness 0, but it has charm of �1. (a) What is a possible quark
combination that will give the correct properties for this particle? (b) Repeat (a) for the D�

meson, which is the antiparticle of the D�.
12-38. The lifetime of the is The lifetime of the is 0.8 � 10�10 s and that
of the is 1.48 � 10�10 s, nearly twice as long. How can these differences in lifetimes be-
tween members of the same isospin multiplet be explained?

Section 12-5 Beyond the Standard Model

12-39. Grand unification theories predict that the proton is unstable. If that turns out to be true,
why does it mean that baryon number is not conserved? If leptons and quarks are interchangeable
at the unification energy, does this mean that there is a new, conserved “leptoquark number”?
12-40. GUTs predict a lifetime of about 1032 y for the proton. If that is the case, how many pro-
tons will decay each year in the world’s oceans? (Assume the average depth of the oceans to be
1 km and that they cover 75 percent of Earth’s surface.)
12-41. Protons might decay via a number of different modes. What conservation laws are vio-
lated by the following possibilities?
(a)
(b)
(c)

Level II

12-42. Find a possible quark combination for the following particles: (a) (b) (c)
(d) and (e)
12-43. State the properties of the particles made up of the following quarks: (a) ddd, (b)
(c) and (d)
12-44. Show that the cannot decay into two identical zero-spin particles.
12-45. Consider the following decay chain:

(a) Are all the final products shown stable? If not, finish the decay chain. (b) Write the overall
decay reaction for to the final products. (c) Check the overall decay reaction for the conser-
vation of electric charge, baryon number, lepton number, and strangeness. (d) In the first step
of the chain, could the have been a �0?-0
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12-46. There are six hadrons with quantum numbers (Q,U,S,C,B) � (2,1,0,1,0); (0,1,�2,1,0);
(0,0,1,0,�1); (0,�1,1,0,0); (0,1,�1,1,0); (�1,1,�3,0,0). Determine the quark content of each
hadron.
12-47. Show that the following decays conserve all lepton numbers:
(a)
(b)
(c)
(d)

12-48. A with energy 850 MeV decays in flight via the reaction Compute the
angles made by the momenta of the gammas with the original direction of the 
12-49. Test the following decays for violation of the conservation of energy, electric charge,
baryon number, and lepton number:
(a)
(b)
(c)

Assume that linear and angular momentum are conserved. State which conservation laws (if
any) are violated in each decay.
12-50. Consider the following decay chain:

(a) Are all the final products shown stable? If not, finish the decay chain. (b) Write the overall
decay reaction for to the final products. (c) Check the overall decay reaction for the con-
servation of electric charge, baryon number, lepton number, and strangeness.

Level III

12-51. The mass of the hydrogen atom is smaller than the sum of the masses of the proton and
the electron, the difference being the binding energy. The mass of the is 
however, the masses of the quarks of which it is composed are only a few How can
that be explained?
12-52. (a) Calculate the total kinetic energy of the decay products for the decay 
Assume the is initially at rest. (b) Find the ratio of the kinetic energy of the pion to the ki-
netic energy of the proton. (c) Find the kinetic energies of the proton and the pion for this decay.
12-53. A particle at rest decays into a plus a photon. (a) What is the total energy of the
decay products? (b) Assuming that the kinetic energy of the is negligible compared with the
energy of the photon, calculate the approximate momentum of the photon. (c) Use your result
for (b) to calculate the kinetic energy of the (d) Use your result for (c) to obtain a better es-
timate of the momentum and the energy of the photon.
12-54. In this problem, you will calculate the difference in the time of arrival of two neutrinos
of different energy from a supernova that is 170,000 light-years away. Let the energies of
the neutrinos be MeV and MeV, and assume that the mass of a neutrino is
2.2 Because their total energy is so much greater than their rest energy, the neutrinos
have speeds that are very nearly equal to c and energies that are approximately (a) If

and are the times it takes for neutrinos of speeds and to travel a distance x, show that 
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u1 � u2

u1u2

�
x ¢u
c2

u2u1t2t1

E � pc.
eV>c2.

E2 � 5E1 � 20

-0.

-0
-0�0

-0
-0 S p � p�.

MeV>c2.
139.6 MeV>c2;��

"�

	� ¡ e� � ve � v
	

	� ¡ e� � ve � v
	

 �� ¡ 	� � v
	

�� ¡ n � ��

�� ¡ 	� � v
	

,0 ¡ �� � e� � ve

"� ¡ ,0 � ��

	� ¡ e� � ve � v
	

�� ¡ n � p�

-0 ¡ p � ��

�0.
�0 S  � .�0

�� ¡ 	� � v
	

n ¡ p � e� � ve

�� ¡ 	� � v
	

� v
�

	� ¡ e� � ve � v
	

Problems 617



618 Chapter 12 Particle Physics

(b) The speed of a neutrino of mass and total energy E can be found from Equation 2-10.
Show that when the speed u is given by

(c) Use the result for (b) to calculate for the energies and mass given, and calculate 
from the result (a) for (d) Repeat the calculation in (c) using eV
for the rest energy of a neutrino.
12-55. There are three possible decay modes for the (a) Draw the Feynman diagrams for
each mode. (b) Which mode is the most probable? Explain why.
12-56. In a large accelerator, such as the Large Hadron Collider at CERN, the momentum of a
proton in a circular orbit of radius R is given by p � 0.3 RB where B is the magnetic
field. Derive this expression.

GeV>c,
��.

m0c
2 � 40x � 170,000 c # y.

¢tu1 � u2

u

c
� 1 �

1

2
am0c

2

E
b 2

EW m0c
2,

m0



619

Physics is an experimental science. The formulation and acceptance of our current
understanding of the physical world, from Newton’s laws and Maxwell’s equa-

tions to relativity theory and quantum mechanics, are based on countless experimen-
tal observations. In this chapter, we look outward from Earth into the cosmos and
apply the principles and techniques of physics first to the composition and evolution
of stars, a branch of physics called astrophysics, and then to the large scale structure
and evolution of the universe, a field called cosmology. In doing so the scale of our
discussions expands from the nanometer and femtometer dimensions of the mole-
cules, atoms, and nuclei to the light-year and parsec dimensions of galaxies and space,
a span of more than 40 orders of magnitude.

When observing stars and galaxies, astrophysicists and cosmologists are limited
to examining the electromagnetic radiation and occasional particles emitted at times
past that happen to have traveled to the vicinity of Earth so as to arrive at the moment
of observation. The information thus gained, together with the fundamental assump-
tion that the laws of physics discovered here on Earth are also valid throughout the
universe, forms the basis for their work. During most of history, the instrument used
for studying the cosmos was the human eye. Though well adapted to life on Earth, the
eye is a relatively poor instrument for the scientific examination of the sky because it
stores information for only a small fraction of a second before transmitting it to the
brain for analysis, is sensitive to a very limited portion of the electromagnetic spec-
trum, and has limited resolution and light-gathering capacity. Today, most of our in-
formation about the distant universe is received through telescopes.

13-1 The Sun
As we look outward from Earth and beyond the Moon, the most obvious object in the
sky is, of course, the Sun. It is important to us for several reasons. First, the light that
reaches us from the Sun is responsible for life on Earth. It sustains a comfortable av-
erage temperature on Earth’s surface and is the ultimate source of virtually all of our
energy. Since the Sun contains nearly all of the mass of the solar system, it also pro-
vides the gravitational force that binds our planet to the system. But most important
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620 Chapter 13 Astrophysics and Cosmology

for our purposes in this section, the Sun is the only star of the 100 billion or so in the
Milky Way that is close enough for us to examine its surface in detail. The others are
so far away that they appear only as point sources when viewed by even the largest
telescopes. (The very recent exceptions are Alpha Orionis—Betelgeuse—which has
been imaged by the Hubble Space Telescope, and Altar, which has been imaged by
long-baseline interferometry.) What we learn from studies of our star not only pro-
vides a more complete understanding of the processes taking place in it, but surely
applies to other stars as well.

The Surface and Atmosphere of the Sun

We can see only the thin outer layer of the Sun, the photosphere, which emits the light
that makes the Sun visible. The photosphere is generally considered to be the surface
of the Sun. The energy per second per square meter that arrives from the Sun at the
top of Earth’s atmosphere is called the solar irradiance or the solar constant f. It has
been measured to be

13-1

The corresponding quantity for stars other than the Sun is called the radiant flux, as we
shall see in Section 13-2. Using the solar constant, the Earth-Sun distance of 1 astro-
nomical unit (AU) � 1.496 � 108 km, and conservation of energy, we can calculate
the luminosity L, which is the total power radiated by the Sun or by any star. The area A
of a sphere of 1 AU radius is

At that radius, each square meter receives energy from the Sun at the rate given by the
solar constant. Therefore, the Sun’s luminosity is given by

13-2

This is truly enormous power. If we could put a 1000-MW electricity-generating plant
on each square meter of Earth’s surface, all of them combined would only produce
0.1 percent of the power produced by the Sun.

If we assume that the Sun radiates as a blackbody, we can use the luminosity of
the Sun along with its radius (6.96 � 108 m) to calculate the effective temperature at
the surface of the Sun from the Stefan-Boltzmann law. It states that the power per unit
area R (� intensity) radiated by a blackbody in thermal equilibrium is proportional to
the fourth power of its surface temperature:

3-4

where Stefan’s constant and T is the absolute tempera-
ture. If the radius of the Sun is the intensity radiated at the surface of the Sun is

13-3

Take care not to confuse the intensity R with the solar radius The effective tem-
perature Te for the surface of the Sun is defined as the temperature for which the
intensity radiated satisfies the Stefan-Boltzmann law for a blackbody:

R} .

R �
L}

4�R2
}

R} ,
� � 5.67 � 10�8 W>m2 # K4

R � �T4

L} � 3.84 � 1026 W

L} � Af � 4�(1.496 � 1011 m)2(1.365 � 103 W>m2)

L}

A � 4�r2 � 4�(1.496 � 1011)2 m2

f � 1.365 � 103 W>m2
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Solving for Te , we obtain

13-4

EXAMPLE 13-1 The Temperature of the Sun’s Photosphere Use the Stefan-
Boltzmann law to calculate the effective temperature of the photosphere.

SOLUTION

Using W from Equation 13-2 in Equation 13-4, we have

The intensity of solar radiation has been mea-
sured at wavelengths ranging from about 10�13 m
in the gamma-ray region to nearly 10 m in the
radio region, a range accounting for over 99 per-
cent of the Sun’s emitted power. Over much of
this span, the solar spectrum is quite well pre-
dicted by Planck’s law of blackbody radiation
(see Chapter 3) with T � 5800 K, as shown in
Figure 13-1. The distribution peaks in about the
middle (yellow) region of the visible spectrum.
This agreement between the measured and theo-
retical spectra is very constant and is one of the
characteristics of the quiet Sun.

If we examine the edge of the solar disk,
called the limb, we see that it is sharply demar-
cated and darker than the rest of the Sun. From
the sharpness of the limb, we conclude from the
following reasoning that the photosphere is very
thin. Atmospheric turbulence during daylight lim-
its the angular resolution of optical telescopes to
about 1 arc second ( of a degree). At the
distance of the Sun, this corresponds to about
700 km. As we look at the Sun, the angle over

1>3600

� 5780 K

Te � a L}

4��R2
}
b 1>4
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Figure 13-1 The spectral distribution of energy emitted by the Sun closely matches
that of a blackbody at 5800 K. The discrepancy between the measured and theoretical
curves in the region illustrated is due mainly to the fact that the photosphere is not in
thermal equilibrium. The hump at short wavelengths is due to x rays emitted by the
corona, which is at a much higher temperature. (In this figure )	 � 10�6 m.



which the gas of the photosphere changes from rarified and transparent to optically
dense and opaque is smaller than we can resolve. Therefore, the photosphere must be
less than 700 km thick, which is only about 0.1 percent of the solar radius.

The relatively dark appearance of the limb tells us about the temperature gradient
in the Sun’s atmosphere. Figure 13-2 shows two paths, A and B, for viewing the Sun.
Because the photosphere is more transparent when viewed at normal incidence than
when viewed at a grazing angle, the light traveling along path B originates deeper in

the Sun than light traveling along path A. Since the interior is hotter than
the outer layers, the light traveling path B originates in a hotter (brighter)
part of the Sun than light traveling path A. Thus, the light from the limb
appears less intense, hence darker (cooler). By measuring the change in
brightness from path A to path B, we can determine the temperature gra-
dient in the photosphere. It is shown in the left portion of Figure 13-3.
Notice in the right portion of Figure 13-3 that the temperature begins to
rise sharply, accompanying the transition from the Sun’s surface, the pho-
tosphere, into the solar atmosphere.

Outside the photosphere are two layers of the Sun’s atmosphere
that are not generally seen because of the brightness of the photosphere.
The inner most of the two layers of the solar atmosphere, the chromo-
sphere, is visible for a few seconds just before totality during a solar
eclipse. Under high resolution, the chromosphere resembles a field of
burning grass, although each burning “blade” is about 700 km thick
and 7000 to 10000 km high and lasts for only 5 to 15 minutes. Spectral
examination indicates that the temperature of the chromosphere in-
creases with distance above the photosphere, averaging about 15,000 K
(Figure 13-4).
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Figure 13-3 The temperature of the Sun
decreases from the base of the photosphere
outward to a minimum at about 500 km,
then increases rather rapidly to about
15,000 K in the chromosphere.
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Figure 13-2 (a) Two sight lines of equal optical path length, A and B. Along B the observer
sees deeper (� hotter � brighter) into the Sun than along A; therefore, path B looks brighter
than path A, so the limb looks darker than the disk of the Sun. For paths C and D, the angle over
which the gas of the photosphere changes from transparent to opaque is smaller than we can
resolve, so the limb looks sharp. (b) A full disk image taken in the visible spectrum or white
light at the National Solar Observatory/Sacramento Peak, New Mexico, on October 28, 2003.
This image shows sunspot groups and evidence of limb darkening. [SOHO (ESA & NASA).]
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When the totality of the eclipse blocks out the chromosphere, the outer layer of the
Sun’s atmosphere, the corona, becomes visible. It is decidedly nonuniform in thick-
ness, consisting of faint white streamers extending 2 to 3 solar diameters into space.
The temperature of the corona is approximately 2,000,000 K. Radiation from the
corona would overpower that from the 5800 K photosphere, except for the fact that the
gas of the corona is so rarified that the total energy it emits is minuscule compared to
that of the photosphere. It does, however, account for the relatively high intensity of 
x rays emitted by the Sun, which shows up in Figure 13-1 as a deviation from the spec-
tral distribution of the blackbody at short wavelengths. It is thought that the extreme
temperatures in the corona are produced by acoustic waves generated in the Sun’s in-
terior that build into shock waves in the corona. These shock waves heat the gases of
the Sun’s outer atmosphere and give the particles so much energy that even the Sun’s
enormous gravity cannot confine them. These high-energy particles, mostly protons
and electrons, stream outward from the corona continuously. They form the solar wind
that pervades the entire solar system.

The Sun’s Interior

We cannot see through the photosphere into the interior of the Sun. Consequently, our
understanding of the processes there is purely theoretical. With the single exception of
solar neutrinos, no radiation or particles originating in the interior reach us directly. To
understand the principle features of the current theory, we need first to determine the
Sun’s mass, as we can do easily with the aid of Newton’s law of universal gravitation
and the second law of motion. The result is that the Sun’s mass 

For simplicity, theoretical models usually consider the Sun to be a nonrotating
star in hydrostatic equilibrium. This means that the outward pressure at any point,
which is presumed to be due to energy conversion processes occurring in the Sun’s in-
terior, is exactly balanced by the inward pressure of gravity. Although the mean den-
sity of the Sun is not much different from that of Earth the
enormous pressures that exist in the solar interior substantially exceed those that cor-
respond to the electrodynamic forces that bind the electrons to the nuclei. Thus, the
matter in the interior of the Sun—and certainly within the core, the central region in
which temperatures are high enough to allow hydrogen fusion—must surely be in the
plasma (ionized) state.

(5.5 g>cm3),(1.4 g>cm3)

M} � 1.99 � 1030 kg.

Figure 13-4 This ultraviolet image shows a loop in the magnetic field, seen circling back
toward the Sun, trapping hot gas in the chromosphere. [SOHO (ESA & NASA).]
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EXAMPLE 13-2 Hydrogen in the Sun’s Core Show that neutral hydrogen is unlikely
to exist in the Sun’s interior.

SOLUTION

The pressure at the center of the Sun is of the order where

and

is the average acceleration due to gravity in the Sun. The pressure turns out to be
about This is the pressure pushing on the surface of a hydrogen atom
near the Sun’s center. The resistance to this gravitational pressure would come from
the Coulomb force tending to hold the atom together. That pressure is given by the
Coulomb attraction between the proton and electron per unit surface area of the
atom. Using the Bohr radius a0 for hydrogen, we have

Thus, the gravitational pressure in the Sun’s interior, at least near the center, exceeds
that tending to hold the hydrogen atoms together by a factor of about 1000—mak-
ing it unlikely that neutral hydrogen atoms could exist there.

Remarks: Given the Sun’s density, even the particles in the depths of the core are
still relatively far apart, so that the plasma behaves much like an ideal gas. This al-
lows calculation of the core temperature from the ideal-gas law. It is found to be
about 1.5 � 107 K.
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The Source of the Sun’s Energy

Using the value for the luminosity of the Sun that we computed earlier, Lord Kelvin
was the first to point out that the present energy content of the Sun as calculated from
thermodynamics would be radiated away in about 3 � 107 years. Since life has existed
on Earth for approximately 100 times that long, we can conclude that the Sun has been
radiating at close to its present luminosity for at least 3 � 109 years. Therefore, the
Sun must have a supply of energy far larger than that represented by gravitational po-
tential energy, the hot plasma, and the observed radiation field. The source of the
Sun’s energy is nuclear fusion.

Current theory proposes that, as the young Sun contracted, its temperature rose.
To understand why the Sun contracted and why that caused its temperature to rise, we
start with Newton’s law of universal gravitation.

where Fgrav is the attractive gravitational force between the masses M and m which are
separated by a distance R, and G is the constant of gravitation.. Notice that, as R
becomes smaller, Fgrav becomes larger, which means that the masses M and m move

Fgrav � G
Mm

R2



toward one another with increasing acceleration. Conservation of en-
ergy requires that the resulting increase in kinetic energy must come
from somewhere. That “somewhere” is the gravitational potential en-
ergy Ugrav of the masses in their original positions; Ugrav must decrease
correspondingly. How might this account for the energy emitted by
the Sun (and other stars)? A star is a huge ball of gas. The gas atoms
near the surface feel the gravitational force attracting them toward
the inner atoms of the star’s core. The core atoms feel that force, too,
but they are also attracted in the opposite direction by the gas atoms
near the surface on the other side; hence, the core atoms don’t move.
(See Figure 13-5.) However, the entire surface of the star accelerates
toward the core—the star undergoes gravitational contraction. The in-
creasing kinetic energy of the accelerated atoms (heat) increases the
star’s temperature, radiating energy into space.

Eventually the temperature of the core reached about 1.5 � 107 K,
which is high enough for the hydrogen nuclei (protons) in the plasma
to have sufficient energy on the average (about 1 keV) to fuse into helium nuclei. This
reaction, actually a chain of reactions, was first proposed by H. A. Bethe1 and is referred
to as the proton-proton cycle. The first reaction in the chain is

13-5

Due to the height of the Coulomb barrier the probability for this reaction is very low
except for those protons in the high-energy tail of the Maxwell-Boltzmann distribution.
Fusion is possible only because of quantum mechanical tunneling. This sets a limit
on the rate at which the Sun can produce energy and thus ensures a long lifetime for
the Sun and similar stars. This limit is sometimes called the “bottleneck” of the solar
fusion cycle. Once (deuterium) is formed via Equation 13-5, the following reaction
becomes very probable:

13-6

It is followed by

13-7

This process by which hydrogen nuclei are “burned” to helium nuclei is shown sche-
matically in Figure 13-6a. There are other possible reactions for converting to 
all of which have the same net Q value. Their rates, however, differ depending on the
composition and temperature of the Sun’s interior. The most important of these is
the CNO (carbon-nitrogen-oxygen) cycle, which accounts for about 1.5 percent of the
total solar luminosity. The CNO cycle is very temperature dependent and is the domi-
nant H-fusion cycle for stars slightly more massive than the Sun.

The neutrinos produced in the proton-proton cycle escape from the core, provid-
ing our only means for direct observation of the Sun’s interior. The measured luminos-
ity and the known total Q value of the proton-proton cycle enable a calculation of
the total reaction rate. In addition, the alternative reactions for have different neu-
trino energy spectra, thus providing a way of determining the relative contributions of
each reaction and gaining further information about the composition and temperature
of the core. The neutrino flux arriving at Earth from all reactions in the proton-proton
fusion cycle determined by John Bahcall’s2 definitive theoretical analysis of the
solar neutrino spectrum based on the standard solar model is shown in Figure 13-6b.

3He
L}

4He,1H

4He � 2 1H �  � 12.86 MeV3He � 3He ¡

3He �  � 5.49 MeV2H � 1H ¡

2H

1H � 1H ¡ 2H � e� � �e � 0.42 MeV

13-1 The Sun 625

Core
atom Surface

atom
Surface

atom FgFg FgFg

Figure 13-5 Atoms in the outer areas of stars
feel a net gravitational force directed toward the
core. The net gravitational force on the atoms in
the core is essentially zero. In the absence of an
outward-directed pressure, the star collapses.
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For those neutrinos resulting from the reaction (Table 13-1)
the predicted intensity is 8.1 � 1.3 Solar Neutrino Units (1 SNU � 1 event per 1036

target atoms per second). However, experiments conducted by Ray Davis and his 
co-workers over more than 30 years using a chlorine radiochemical detector located
deep inside a gold mine in South Dakota which was sensitive primarily to the

found the measured rate at which solar neutrinos from this
reaction arrive at Earth to be 2.56 � 0.16 SNU, only about 32 percent of the expected
rate. Subsequently, experiments sensitive to other reactions in the p-p cycle performed
at six other laboratories around the world confirmed this discrepancy. This discrep-
ancy is referred to as the solar-neutrino problem. Davis shared the 2002 Nobel Prize
in Physics for this discovery.

The discrepancy between the theoretical prediction of the standard solar model
and the experimental results presented a very serious problem for both astrophysics
and particle physics. In the words of John Bahcall, whose calculations provided the
solar model prediction:

Is the solar neutrino problem caused by unknown properties of neutrinos or

by a lack of understanding of the interior of the Sun? In other words, is this

a case of new physics or faulty astrophysics?

It turned out to be a case of “new physics.” As was described in Section 12-5, the re-
cent discovery of neutrino oscillations that enables neutrinos of one flavor to change
into neutrinos of another flavor, means that electron neutrinos emitted in the Sun’s p-p
fusion cycle may oscillate to muon or tau neutrinos during their trip from the Sun to
Earth. Davis’s neutrino telescope was sensitive only to electron neutrinos. This ac-
counts for the discrepancy and also, according to the Standard Model of particle
physics, requires that neutrinos have a nonzero mass.

8B-produced neutrinos3

8B � pS 8Be* � e� � ne



13-1 The Sun 627

The Active Sun

In addition to the relatively stable phenomena that we have discussed, the Sun exhibits
a number of transient phenomena, most of which are associated with its magnetism.
We noted earlier that the solar interior must be primarily a plasma composed of pro-
tons and electrons. The Sun rotates with different angular velocities at different lati-
tudes. At any given latitude, it probably has different angular velocities at different
distances from the spin axis as well. The complex motions resulting from this differ-
ential rotation and from the rise and fall of charged particles in the convection zone
between the core and the photosphere are probably the source of the Sun’s chaotic
magnetic field structure (Figure 13-7). This transient structure may have localized
magnetic field strengths exceeding 1 T on occasion.

The transient structure is superimposed onto a general average magnetic field of
about 10�4 T, roughly twice Earth’s average magnetic field. The origin of this general
field is not known, except that it is not a remnant of the Sun’s formation, since a
primeval field would likely have decayed away by now. Its presence poses formidable
problems for any theoretical solar model. Not only must the model explain the origin
of the general field, but it must also account for the fact that its polarity reverses every
11 years, in step with the sunspot cycle.

Table 13-1 Proton-proton nuclear fusion cycle

Reaction % of events energy (MeV)

1. 99.96

or

0.04 1.445

2. 100

3. 85

or

15

4. 15 0.863 (90%)

0.385 (10%)

5.

or

0.02

6. �15

7.

or

0.00003 �18.8

Source: Data from J. Bahcall, Phys. Rev. C, 56, 3391 (1997).
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3He � 4He ¡ 7Be � 

3He � 3He ¡ 4He � 2p

2H � p ¡ 3He � 

p � e� � p ¡ 2H � �e

� 0.423p � p ¡ 2H � e� � �e

�

Figure 13-7 The field lines
that describe the Sun’s
magnetic field structure at
any given time are derived
from ground-based
measurements, e.g., Zeeman
effect and the transport of
charged matter. The high-
intensity, chaotic structure is
superimposed onto a constant
general magnetic field of
about 10�4 T.
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Sunspots, dark blemishes on the solar disk, were first reported in pretelescope
times and were observed by Galileo in 1610. They originate in the following way, ac-
cording to one of the current models: As shown in Figure 13-8, the Sun’s magnetic
field lines are distorted into bundles or tubes by the Sun’s differential rotation.
Occasionally vertical movements in the convection zone may push a bundle through
the surface. The area where it leaves the surface and the area where it returns to the
surface become the sunspots. They appear darker than the adjacent photosphere,
which means that they are cooler, typically around 3800 K. One of the pair of spots
will have a magnetic north pole, the other a south pole. If the bundle of field lines does
not protrude completely through the photosphere, only a single sunspot is formed.

The number of spots per year varies regularly from about 20 to about 150 in a
cycle of 11 years, as can be seen in Figure 13-9. Early in each new cycle, the sunspots
form at a latitude of about 30°. As the Sun progresses through its 11-year cycle, the
spots form progressively closer to the equator. There is an additional cyclical variation
in the annual number of sunspots with a period of about 100 years that is also appar-
ent in Figure 13-9. Currently, the theoretical explanation for these regularities, while
in agreement with some features of the observations, is not complete.

Solar flares are violent, stormlike phenomena that appear to be associated with the
large magnetic fields in the vicinity of sunspots. There is, however, no generally ac-
cepted model to explain them. Solar flares erupt explosively, ejecting particles and
emitting radiation ranging from the x-ray through the radio regions of the spectrum.
They last anywhere from a few minutes to a few hours and can have temperatures as
high as 5 � 106 K. The particles ejected by solar flares reach Earth within a day or so
and often produce auroras as they accelerate in Earth’s magnetic field. Solar flares can
disrupt some types of radio transmissions, and on rare occasions can generate surges in
high-voltage transmission lines. A flare that happened to be directed toward Earth
in 1996 caused, among other things, the failure of a communications satellite.

S

S

S

N

N

N

Figure 13-8 (a) Magnetic flux lines are distorted by the Sun’s differential rotation and pushed
up out of the surface by motion in the convection zone. (b) A sunspot occurs where a bundle of
field lines leaves and reenters the surface. The areas where they leave and return to the surface
become sunspots. This very large spot on this part of the Sun’s surface is about 20 arc seconds
in diameter. The granular appearance of the Sun’s surface is very apparent. Sunspot activity on
29 March 2001. [(b) Institute for Solar Physics of the Royal Swedish Academy of Sciences.
(c) SOHO (ESA & NASA).]

(b)(a) (c)
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Two other transient solar phenomena related to sunspots are plages and filaments.
Plages are bright (hotter) areas adjacent to the dark sunspots. The evolution of plages
suggests that they are areas of increased mass density, resulting perhaps from the
movement of the magnetic field bundles generated from the sunspots. Filaments are
dark, thin lines that seem to thread their way across the disk, sometimes for thousands
of kilometers. They do not lie on the surface but extend out into space, sometimes
more than 100,000 kilometers, in graceful loops and swirls. Filaments that are seen
projecting into space at the Sun’s edge are called prominences. They may erupt and
disappear quickly or persist for several weeks. While prominences appear closely re-
lated to the shape of the magnetic field, as with other transient features, there is as yet
no model that fully accounts for them.

The huge handle-shaped prominence shown on the
upper right was photographed in 304 Å [30.4 nm]
light on 14 September 1999. It consists of charged
particles confined by the magnetic field of the sun.
[SOHO (ESA & NASA).]

Figure 13-9 The number of sunspots that occur each year has varied regularly on an 11-year
cycle for more than 270 years. The unexplained absence of spots between about 1650 and
1700, referred to as the Maunder minimum, approximately coincides with a period of
unusually low temperatures in Europe referred to as the “Little Ice Age.” Whether there exists
a causal connection between the two phenomena is a matter of scientific debate. Sunspot cycle
23 began in 1996 and ended in 2007. (Counting the cycles began in 1775.) Sunspot activity is
next expected to peak in 2011–2012.
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EXPLORING

Is There Life Elsewhere?

We are certainly not the first to ask that question. The Greek philosophers beginning
with Thales and continuing through Plato and his student Aristotle thought and won-
dered about the structure of the heavens and the mysteries they might contain. Many
scientists in the nineteenth century assumed that the other planets of the solar system,
particularly Mars and Venus, were inhabited. In the twentieth century the term Martian
became synonymous with “beings from outer space.” An entire movie and television
genre has flourished based on time travel, spaceships, aliens from outer space, and a
plethora of weird science—pseudoscience.

The real issue, however, is much more serious: Is life “out there” possible? The an-
swer is surely, Yes. Consider: With the development and evolution of telescopes we
have learned that the motions of stars and galaxies obey the same laws of physics that
have been discovered on Earth. Our location is in no way special. The physical
processes that occur on Earth occur throughout the universe. All of the chemical ele-
ments discovered in our studies of the near and distant universe also occur on Earth.
The relativistic and quantum physics we have developed works in the cosmos, too. So,
then, must our biology—an application of physics and chemistry—work throughout the
universe. On Earth we have learned that life-forms can survive and prosper in seem-
ingly hostile environments. Sea animals thrive in the scalding hot water and enormous
pressures of the deep ocean volcanic vents. Other organisms live in the rocks of deep
mines and in the permanent ice of the Antarctic. Other creatures have been discovered
that use sulfur in their metabolism, rather than oxygen. And the complex organic mol-
ecules that are the building blocks of life as we know it have been found in meteorites
and identified in interstellar gas clouds. Thus, it would appear that the development of
life elsewhere in the Galaxy and the universe may not be all that unusual.

If intelligent life has developed elsewhere, where is it and how do we find it? Since
1995 new technology and techniques have led to the indirect discovery (e.g., via stellar
motion perturbations) of 229 extrasolar planets (called exoplanets) orbiting 194 rela-
tively nearby stars (as of April 2007). While most of the discovered planets are hot and
large, Neptune to Jupiter in size, at least two are cool and about 5 times Earth’s mass
orbiting a faint star in the Milky Way’s central bulge. As of now, only one exoplanet has
been imaged directly. If intelligent life on these planets (or the millions of others that
must exist throughout the universe) are sending electromagnetic signals into space, as
we are, detecting those signals could provide the first clue that we are not the only
intelligent life that has existed in the universe. Listening for those signals is the objec-
tive of the Search for Extraterrestrial Intelligence (SETI) project. Look for SETI online
to learn more.

13-2 The Stars
On clear, dark nights, we can see about 6000 stars without the aid of telescopes. The
sight is incredibly beautiful and must surely have been just as awesome to our forebears.
A cursory glance at the night sky reveals the following features: the distribution of stars
is not uniform, the stars do not all have the same brightness, and there is a dim irregular
band of light bisecting the sky. In this section, we will investigate these features.

The hazy band of light that stretches across the entire sky is the Milky Way. With
the aid of a small telescope or even binoculars, the band is resolved into a mass of
individual stars. It is part of a huge Galaxy4 containing an estimated 1011 stars that are
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bound together gravitationally in our region of the universe. Most of the stars visible
to the unaided eye seen in any direction are simply those members of the Galaxy close
enough to Earth to be individually resolved by the eye.

Constellations Chance groupings in the celestial pattern, usually among the
brighter individual stars, are called constellations. Ancient peoples associated them
with persons, gods, and objects from their histories, religions, and myths, probably as
mnemonic devices. The constellations, as well as several prominent stars, have always
had practical uses. For centuries, seafarers have used the Pole Star (in the northern
hemisphere) and the Southern Cross (in the southern hemisphere) as aids in naviga-
tion. In ancient Egypt the pharaoh’s advisors learned to predict the life-sustaining an-
nual flooding of the Nile by watching for the first appearance of the bright star Sirius5

above the horizon in the early spring. Today, 88 constellations (see Figure 13-10 for
some of them) are used by astronomers to identify sections of the sky. For example,
the center of the Milky Way is said to be “in Sagittarius,” meaning it is in the direc-
tion of the constellation Sagittarius. (The center of the Galaxy is actually more than
10 times farther from the Sun than are the stars that form that constellation.)

Figure 13-10 Star chart of
the sky as it appears on a
spring evening at latitude 40°
north, showing many of the
constellations visible. During
the night, the entire pattern
revolves about 120° about
Polaris, the Pole Star. To use
the chart, hold it (or a copy)
in front of you with the S
(south) at the bottom while
you face south. Match the
lower half to the stars that
you see. Then rotate the
chart, putting the W at the
bottom, face west and again
match the lower half to the
stars you see, and so on. 
[R. A. Freedman and 
W. J. Kaufmann III, Universe,
8e (New York: W. H. Freeman
and Co., 2008), p. S-6.]



Stellar Populations One characteristic of our Galaxy is that
certain regions of it have many more stars than other nearby re-
gions. Such concentrations are called star clusters. There are two
types of star clusters. Galactic clusters, also called open clusters,
may contain from about 20 to several hundred stars. All stars in
galactic clusters appear to have very similar compositions, as in-
ferred from studies of their optical spectra. About 70 percent of
their mass is hydrogen, another 28 percent or so is helium, and 2
to 3 percent consists of elements heavier than helium. Stars with
this characteristic composition, like our Sun, are referred to as
population I stars. Globular clusters may consist of 103 to 106

stars in a compact, roughly spherical group. Their concentrations
of elements heavier than helium are all very similar and much
lower than that of population I stars, typically 0.1 to 0.01 percent.
These are called population II stars. One such cluster, pho-
tographed by the Hubble Space Telescope, is shown in the photo
at the left.

Population I stars are thought to be current generation stars
that formed after the gas and dust that exists between these
stars had been enriched by the products of ancient fusion reac-
tions in the early universe. The lower concentration of heavier
elements in the population II stars suggests that they are of a
previous generation, hence older than those of population I.
The fact that they are found in regions of space where there is
little dust or gas tends to support that interpretation.

Classification ofStars Stars are grouped into classes based primarily on the spectral
lines each emits and absorbs. That different stars have different spectra was discovered
nearly 200 years ago by Joseph Fraunhofer who also measured numerous absorption
lines in the solar spectrum. Over the years, advances in spectroscopy, instrumentation,
and atomic theory enabled astrophysicists Edward Pickering and Annie Jump Cannon6

to rearrange systematically the earlier classification scheme into a temperature sequence.
Stars are grouped according to temperature categories (or spectral types) ranging
from hot blue, so-called O stars, to cool red, so-called M stars. The seven categories
are: O B A F G K M. Generations of students have memorized the classifications by
using the phrase “Oh Be A Fine Girl/Guy, Kiss Me.” Table 13-2 lists some of their
important characteristics. Cannon also added ten subdivisions (0 to 9) within each
category to provide for finer distinctions between the stars in each group. For example,
B0 stars are hotter (called early type) than B9 stars (called late type). The physical basis
for the distinction between the groups and early/late types lies in the quantum me-
chanical details of the spectra and the atomic electron excitations and ionizations of
the elements comprising each star. Improved observational techniques and analytical
methods have led to a number of additional classifications including several for hot
blue emission stars and classes L, T, and Y for cool red and brown dwarfs.

Stellar Magnitudes The Greek astronomer Hipparchus7 devised the first classifica-
tion of stars based on how bright each appeared. Called apparent magnitude and rep-
resented with the letter m, the values he assigned ranged from m � 1 for the brightest
stars to m � 6 for the dimmest visible to his eye. (The telescope had not yet been in-
vented.) As time passed and technology was developed and improved, astronomers
extended and refined the apparent magnitude scale. The modern definition of the
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Globular cluster G1 in galaxy M31 contains more
than 300,000 stars. G1 orbits the Andromeda galaxy,
the nearest large spiral to Earth. The two bright
stars with “spikes” are in the Milky Way. 
[Michael Rich, Kenneth Mighell, and James D. Neill 
(Columbia University), and Wendy Freedman
(Carnegie Observatories), and NASA.]
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Table 13-2 Characteristics of star categories

Spectral type Important characteristics

O Hottest blue-white stars; helium absorption lines

B Hot blue-white stars; helium and 
hydrogen absorption lines

A White stars; hydrogen and calcium absorption lines

F Yellow-white stars; calcium and 
some metal absorption lines

G Yellow stars; solar-type spectra with calcium and 
iron absorption lines (The Sun is a G2 star.)

K Cool orange stars; strong metal absorption lines

M Coolest red stars; strong metal absorption lines

apparent magnitude scale is that a difference of 5 in the value of m corresponds to a
factor of 100 in brightness; that is, a difference of 1 in the value of m between two
stars means the ratio of their respective brightness is Thus, star A with
m � 2 is 2.51 times brighter than star B with m � 3, 2.51 � 2.51 � 6.31 times
brighter than star C with m � 4, and so on. (Note that smaller m-values mean brighter,
larger m-values mean dimmer.) Modern technology enables scientists to measure
apparent magnitude with an accuracy of �0.01 and has vastly extended the range of
m-values. For example, the brightest star in the sky, the Sun, has m � �26.81 and the
faintest objects that can be observed have about m � 29.

Of course, apparent magnitudes are not the whole story. Two stars with the same
luminosity, but located at different distances from us will have different m-values,
the furthest away being the dimmer and, therefore, having the larger m-value. So we
define a new, more basic quantity, the absolute magnitude M, in terms of the radiant
flux F which includes both the star’s luminosity L and its distance R from Earth
(see Section 13-1). The radiant flux F is defined as

13-8

Recall that is the surface area of a sphere of radius R and has SI units of meter
squared (m2). The units of radiant flux are then Using Equation 13-8, the ab-
solute magnitude M of a star is defined as being equal to the apparent magnitude the
star would have, if it were located at a distance of 10 parsecs (pc; see Section 13-3)
from Earth. Using the expression for the radiant flux and the definitions for the
apparent and absolute magnitudes, one can eventually obtain the expression below
connecting F, m, M, and R:

13-9

where R is the actual distance between the star and Earth (measured in pc).

100(m�M)>5 �
F10 pc

F
� a R

10 pc
b 2

J>s # m2.
4�R2

F �
L

4�R2

1001>5 � 2.51.



The Structure of the Milky Way

Figure 13-11 is a map of the Milky Way viewed from the location of the Sun. The size
and shape of the Galaxy are not at all obvious in the picture—hardly surprising from the
perspective of an observer inside the Galaxy itself.8 However, painstaking counts of the
number of stars per unit volume in various directions have revealed that the Milky Way

is basically a huge disk. Up until the early 1900s, astronomers thought that
the Sun was located at the disk’s center. The true size and shape of the Galaxy
(Figure 13-12) were deduced by H. Shapley9 through a brilliant analysis
of the distribution of globular clusters. He discovered that 200 or so globular
clusters are distributed approximately spherically in space and proposed
that the center of that distribution coincided with the center of our Galaxy.
That center lies about 28,000 c y (8 kpc; see Equation 13-12) from the Sun,
which is approximately one-third of the way out from the center. The Milky
Way is roughly in diameter. It has been said that Shapley
dethroned the Sun from the center of the Galaxy in much the same way that
Copernicus had dethroned Earth from the center of the universe.

Following Shapley’s work, astronomers studying other nearby galax-
ies with the aid of new, high-resolution telescopes found that the distribu-
tion of stars within those systems, many of which had open spiral struc-
tures such as shown in Figure 13-24b (page 655), depends in part upon the
ages and compositions of the stars, with open clusters being found mainly
in the arms of the spirals. Making the reasonable assumption that such dis-
tribution patterns would also hold for the Milky Way and with meticulous
measurements of the distances to about 200 galactic clusters, astronomers
have identified three spiral arms and a bar associated with the central bulge
for the Milky Way. Thus, if we could look down on the Milky Way from
the Galactic north pole, it would look much like Figure 13-13a.

1.63 � 105 c # y

#
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Figure 13-11 Infrared view
of the Milky Way taken by the
COBE satellite showing the
disk and the central bulge. [The
COBE Project, DIRBE/NASA.]

Globular cluster

Disk

Sun

Central
bulge

2000 c · y

28,000 c · y

Figure 13-12 A diagram of the
presently accepted structure of the
Milky Way based on the work of Harlow
Shapley. The Milky Way is brighter in
the summer night sky in the northern
hemisphere than in the winter because
the summer night sky looks toward the
center of the Galaxy, while the winter
night sky is toward its outer edge.
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Figure 13-13 (a) The combination of observations in the
visible and radio regions of the spectrum reveal a spiral
structure with a faint bar for the Milky Way. To an observer
looking down on the Galaxy from about 1 million parsecs,
the Milky Way might look something like this. The Sun is
28,000 c y from the center in one of the spiral arms.
(b) Viewed from Earth, the center of the Galaxy is obscured
by clouds of dust and gas that prevent most visible light from
reaching us; however, it contains several areas of strong radio
emission, the strongest of which is Sagittarius A*, a compact
radio source that appears to dominate the large-scale motion
of the galactic center. This radio image (taken at 6 cm
wavelength) is of the inner 8 c y of the Milky Way. The dark
spot at the very center is Sagittarius A, which is very likely a
huge black hole (see Section 13-5). This image was made
using the Very Large Array, a radio frequency interferometer
made of 27 synchronized antennae with an effective diameter
of about 40 km, located in New Mexico. Its resolution is
better than that of the best ground-based optical telescopes by
about a factor of five. [(a) Gemini Observatory-GMOS Team.
(b) HST Astronomy Imaging Workbench/Farhad Yusef-Sadeh/
Northwestern University.]
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(a) Diagrammatic definition
of longitude and latitude on
Earth. (b) Corresponding
definition of right ascension

and declination on the
celestial sphere. marks the
celestial sphere analog of
Earth’s 0° longitude, the
meridian through Greenwich,
United Kingdom.
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EXPLORING

The Celestial Sphere

Copernicus’s refined heliocentric model of the solar system and its subsequent verifi-
cation by observations laid to rest for all time the geocentric model of Aristotle and
Ptolemy. However, we still use one feature of the latter. Putting aside the motions of the
planets and a few interplanetary space probes, our observations of the stars and speci-
fication of their locations in the sky are normally referred to a coordinate system cen-
tered on Earth, not the Sun. The distances to the stars are so great that the stars appear
to us to be fixed relative to one another and collectively form the surface of a huge
sphere—the celestial sphere—with Earth at its center.

The celestial sphere rotates regularly each night from east to west, its axis of rota-
tion coinciding with Earth’s rotational axis and its north and south poles oriented in the
same way as Earth’s poles. The locations of the stars on the celestial sphere, like towns
on a road map and points on the surface of Earth, are specified with two coordinates.
For locations on Earth the coordinates are called latitude and longitude. The former
specifies how many degrees north or south of the equator (which is defined as zero de-
grees, 0° latitude) the point is located; the latter tells how many degrees west of zero
degrees longitude the point lays. The longitude line (also called a meridian) that passes
through Greenwich, United Kingdom, is defined as 0°. (See Figure 13-14a.)

Since there are 360° around Earth and our planet rotates on its axis once every
24 hours (1440 min), longitude is often expressed in time units (hours) rather than angle
units (degrees or radians).

For example, Orlando, Florida, is located at 28.4° N latitude, 81.3° W longitude. In time
units 81.3° W longitude is

Thus, Orlando is 5.42 hours west of (i.e., earlier than) Greenwich.
On the celestial sphere the locations of stars are described in an exactly analogous

way. The analog of longitude on the celestial sphere is right ascension.10 It is repre-
sented by the lower case Greek letter Right ascension is measured in hours, rather
than degrees, from zero up to 24 as on Earth. The analog of latitude is declination,
represented by the lower case Greek letter 1. Declination is measured in degrees north
(�) or south (�) of the celestial equator. (See Figure 13-14b.)

�.

81.3 deg � 4.0 min>deg � 325.2 min � 5.42 h

1440 min

360 deg
� 4.0

min

deg



Choosing the analog of the Greenwich meridian, i.e., the 0° longitude, for the celes-
tial sphere requires a bit of explanation. Since Earth rotates on its axis from west toward
east, the stars fixed on the celestial sphere continually move across the sky from east toward
west. Also, Earth orbits the Sun once every 365.26 days. This means that while Earth ro-
tates on its axis once each 24 hours, it also advances along its orbit around the Sun slightly
less than 1° during that 24-hour period. To bring the Sun directly over the same meridian
as on the day before, Earth must rotate very nearly 361°; however, doing the same thing
with a star on the celestial sphere requires only a 360° rotation, because the distances to the
stars are vastly greater than Earth’s daily motion in its orbit. As we noted above, 1° corre-
sponds to 4.0 minutes, so a given star rises in the east each night 4.0 minutes earlier than it
did the night before, as a result of Earth’s orbital motion around the Sun.

In addition to the nightly advance of star rise, there is a gradual change in the orien-
tation of the celestial sphere that varies with the seasons. This change is due to the fact
that Earth’s rotational axis is tilted at about 23.5° with respect to the plane of our orbit
around the Sun. This means that over the course of one year as viewed from Earth, the
Sun follows a path, called the ecliptic, on the celestial sphere that ranges from 23.5° north
to 23.5° south of the celestial equator. Thus, the ecliptic intersects 0° declination twice
each year (Figure 13-15), once on about March 20, the vernal (or spring) equinox, and
again on about September 23, the autumnal equinox. The Sun reaches its maximum north
declination of 23.5° N on about June 21, the summer solstice and its maximum south dec-
lination of 23.5° S on about December 21, the winter solstice11 (see Figure 13-15).

By international agreement, the point at which the Sun’s path projected against the
celestial sphere (the ecliptic) crosses the celestial equator (0° declination) in the spring,
the vernal equinox, is defined as zero hours (and 0° ) right ascension. On the celestial
sphere the vernal equinox is designated with the Greek capital letter (see Figure 13-14b).
There are a number of other small motions of Earth that affect the appearance of the
celestial sphere over very long periods of time, e.g., the slow wander of Earth’s poles;
however, those are beyond the scope of our discussions in this chapter.

/
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Figure 13-15 The Sun’s path as projected onto the celestial sphere.



638 Chapter 13 Astrophysics and Cosmology

The Mass (and Missing Mass) of the Milky Way

Using the Doppler effect, J. Oort and B. Lindblad first demonstrated in 1926 that the
Galaxy is rotating. The Sun is apparently moving in a circular orbit at a speed of about
2.5 � 105 toward the constellation Cygnus. Assuming that the Sun’s speed is constant,
we can compute the time for the Sun to complete one revolution around the center of
the Milky Way (a “Sun year”) and the mass of the Galaxy. Since the Sun is 28,000 c y
from the galactic center, a Sun year is 2.1 � 108 Earth years. (See Problem 13-4.)

EXAMPLE 13-3 The Mass of the Galaxy Calculate an approximate value for the mass
of the Galaxy. Include in the calculation the mass that lies inside the Sun’s orbit in the
Milky Way.

SOLUTION

#
m>s

1. Using Newton’s law of
gravitation, where the gravitational
force acting on the solar mass 
by the mass of the Galaxy MG is
given by:

M}

F � G
M}MG
R2

2. This gravitational force provides
the centripetal force that holds
the Sun in its galactic orbit of
radius R. Thus,

GM}MG
R2

�
M}v2

R

3. Solving for MG gives: MG �
Rv2

G

4. Substituting values for the Sun’s orbital radius R and speed v and for the uni-
versal gravitational constant G gives:

Remarks: Thus, if the Sun’s mass is a representative average for the stars of the
Milky Way, the Galaxy contains about 1.3 � 1011 stars.

� 2.48 � 1041 kg

MG �
(28,000 c # y)(9.46 � 1015 m>c # y)(2.5 � 105 m>s)2

6.67 � 10�11 Nm2>kg2

A problem arises in that, if we add together the masses of all of the visible stars
in the Galaxy, including those beyond the Sun’s orbit, plus all of the dust and gas
clouds, we can account for only about 4 percent of the gravitational mass necessary to
hold the Galaxy together. This discrepancy is referred to as the missing mass or dark
matter problem. It exists for all galaxies and, indeed, for the universe itself. The first
hint of the problem came in 1933. Based on his studies of the motions of the galaxies
in the Coma Cluster of galaxies (see Section 13-6), F. Zwicky found that the mass of
the cluster, estimated from the brightness and number of galaxies it contained, was too
small by a factor of about 400 to account for the observed motions. He inferred that
there must be some kind of unseen gravitational mass in the cluster—dark matter.
Various solutions to the problem, such as black holes and dark matter, are under
intense investigation and debate. Possible dark matter candidates include massive
neutrinos and weakly interacting massive particles (called WIMPs). Among the WIMP
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candidates (out of many suggested possibilities) are axions and neutralinos, hypo-
thetical elementary particles that many astrophysicists and cosmologists think may be
the best choices. Although it is now certain that neutrinos have mass, they probably
do not contribute significantly to solution of the dark matter problem because, being
relativistic, they don’t clump together into clouds like cold interstellar hydrogen does.

Axions were postulated more than 30 years ago as part of an elegant theoretical so-
lution to a problem with quantum chromodynamics, namely that QCD predicted a large
electric dipole moment for the neutron (that experiments show it does not have). The
axion resulted from the breaking of a symmetry (see Section 12-4) in the theory that ex-
plained the absence of an electric dipole moment for the neutron. As proposed the axion
would have no electric charge and interact only minimally with ordinary matter. As a
contributor to the solution of the dark matter problem, its value may be limited, since
recent experiments place an upper limit to its mass, if it exists, of 

The neutralino is considered by many astrophysicists and cosmologists as per-
haps the best candidate to solve the dark matter problem. The neutralinos (there may
be four of them) are the mass eigenstates that result from the quantum mixing of the
supersymmetry partners of the W, Z, and Higgs bosons, the Wino, Zino, and Higgsino
(see Table 12-11). One of the neutralinos may be the lightest possible supersymmet-
ric particle and would, therefore, be stable. In some cosmological models it was pro-
duced copiously in the early universe and, with no decay channel available, it may
have a relic abundance that could account for the dark matter. The lightest neutralinos
mass is estimated at 10 to (The proton mass is ) It would
couple to other particles only via the weak interaction, so its behavior would be sim-
ilar to that of the neutrino in that it would not be directly observable in existing
detectors at the big accelerators. A significant portion of the experimental runs of
the Large Hadron Collider will be searches for supersymmetry particles, including the
energy/momentum discrepancy signature of the neutralinos.

13-3 The Evolution of Stars
While no universally accepted theory of stellar formation exists, it is generally agreed
that stars are formed from massive clouds of dust and gas that exist throughout space.
At some point in the swirling cloud, gravitational attraction begins to cause aggrega-
tions of matter to collect. These contract further due to gravity, attracting still more
matter to them and eventually—if the cloud has sufficient mass—increasing the tem-
perature to that necessary to initiate fusion as was described earlier, and a star is born.

In this section, we discuss how stars evolve once they have been formed. Two
characteristics of stars are important for this discussion, the luminosity L and the
effective temperature Te . The effective temperature of a star is difficult to measure.
It is usually inferred from a comparison of the spectral distribution of its radiation
with that of a blackbody or from measurements of the absorption lines of hydrogen
and helium in the atmosphere of the star.

The luminosity is the total power radiated by the star. It is determined from the
radiant flux F of the star at Earth (remember, called the solar constant f for the Sun)
and the distance r from Earth to the star (see Equation 13-2):

13-10

Determining the distance to a star is generally a very difficult task. For stars that are
relatively close, the distance can be determined from the apparent motion of the star
in the sky due to the motion of Earth around the Sun. During one complete revolution

L � 4�r2F

0.938 GeV>c2.104 GeV>c2.

10�6 eV>c2.



of Earth, a star appears to move in an ellipse of angular radius along the
major axis called the parallax angle as shown in Figure 13-16. The parallax
angle is given by

13-11

Astronomical distances are measured in parsecs or light-years. One parsec
(pc) is that distance at which 1 AU subtends an angle of 1 arc second ,
which equals of a degree. Setting in Equation 13-11, we obtain

13-12

Using 1 AU � 1.496 � 1011 m and 1 c y � 9.461 � 1015 m, we can express
the parsec in terms of meters or light-years:

13-13

EXAMPLE 13-4 Distance to Proxima Centauri Proxima Centauri is the star closest
to the Sun. By measuring the maximum apparent change in the direction to Proxima
Centauri between two observations made six months apart, the parallax angle is
found to be . How far is it to Proxima Centauri? (Proxima Centauri’s loca-
tion: R. A. 14h29m43s, Dec. 16°41�58�.)

SOLUTION

Since 1 AU 1� � 1 parsec, we have for 

Parallax angles as small as can be measured, which means that the parallax
method of Example 13-4 can be used to measure stellar distances from the Sun out to
about 1 kpc. Since it is about 8 kpc to the center of the Galaxy, the method can be used
for only about 10,000 stars that are relatively close to the Sun and, thus, in the Milky
Way. For the rest, the parallax angle is immeasurably small. In other situations, more
indirect measurements of distance are necessary. One involves complex analyses of
intensity variations over time for particular types of pulsating stars (Cepheid vari-
ables) found primarily in star clusters. Distances to clusters as far away as about
29 Mpc have been measured by this method. Supernovae (see Section 13-4) provide
several methods for determining distances to the galaxies in which they are located.
The most important of these makes use of the similarity of the light curves, that is, the
emitted light intensity versus time, of so-called Type Ia supernovae. Such measure-
ments enable calculations of the distances to supernovae that are accurate to within
about 5 percent and recently provided the crucial evidence that the expansion of the
universe is accelerating.
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Figure 13-16 The parallax method of
finding distances to nearby stars. A
parsec is the distance r for which the
parallax angle subtended by 1 AU is
1 arc second.
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Hertzsprung-Russell Diagram The
various states of stars can be conveniently
displayed by plotting the luminosity L ver-
sus the effective temperature Te. The result
is called the Hertzsprung-Russell (H-R) dia-
gram. Figure 13-17a shows an H-R diagram
for some stars of representative masses. The
large majority of stars on an H-R diagram
fall in the broad central band called the main
sequence. Main sequence stars are normal
in that they are homogeneous mixtures, ex-
cept in the core, they have essentially the
same chemical composition, and they are
fusing hydrogen into helium via one or an-
other of the nuclear reactions discussed
earlier. Stars expand as they leave the main
sequence. For that reason, stars in the main
sequence are often called main sequence
dwarfs. Between 80 and 90 percent of all
stars are on the main sequence.

The location of a star along the main
sequence in the H-R diagram depends on its
luminosity, which is primarily dependent
on the mass of the star. The masses of stars
range from about 0.08 to about 60 
where is the mass of the Sun. Gaseous
objects with less than about 0.08 do
not have enough gravity for their central
cores to be compressed sufficiently to gen-
erate the temperature necessary to sustain
the nuclear fusion reactions needed for en-
ergy emission. Objects with masses greater
than 60 would generate such enormous
internal temperatures that the outward radi-
ation pressure would exceed the gravity-
generated inward pressure. Such a system
would be very unstable, if indeed it could
form at all.

Evaluation of the masses of binary
stars has shown that the luminosity of a
star is approximately proportional to the
fourth power of its mass:

13-14

The lifetime of a star tL is proportional to the total available energy, which is propor-
tional to the star’s mass (E = Mc2), and inversely proportional to the rate of energy
emission, which is the luminosity:

13-15tL �
E

L
�

Mc2

M4
� M�3

L � M4

M}

M}

M}

M} ,M}
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Figure 13-17 (a) The Hertzsprung-Russell (H-R) diagram for
stars in the solar neighborhood. Most stars (80 to 90 percent) fall
on the main sequence. Stars in the lower right end of the main
sequence are cool and dim, those in the upper left are hot and
bright. (b) The Sun’s evolutionary track from the time it entered
the main sequence at point 1. The Sun is currently between points
1 and 2. It will leave the main sequence at point 4. The time
between successive points is approximately 109 years.
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Thus, more massive stars burn their hydrogen more quickly than do less massive stars.
Thus, a star with twice the Sun’s mass would be expected to have a lifetime only 
as long as that of the Sun. (Equation 13-15 doesn’t work for very small or very large
stars because the luminosity-mass relationship of Equation 13-14 is only an average
result. The exponent in Equation 13-15 is larger in magnitude for very small stars and
smaller for very large stars.)

Considerations of energy balance for stars on the main sequence lead to the ap-
proximate proportionality of the radius and the mass, as can be demonstrated using
the data in Table 13-3 (see Problem 13-6):

13-16

Combining this with Equation 13-4, which relates the effective temperature to the
luminosity per unit area, we can relate the effective temperature to the mass of the star:

13-17

Thus, stars with larger masses have higher effective temperatures and, hence, higher
luminosities than those with lower masses. It is on the basis of Equations 13-15 and 
13-17 that the stellar masses were plotted on the H-R diagram in Figure 13-17a.
Table 13-3 lists properties of stars by spectral type. The following values for the
Sun’s characteristics will enable calculation of numerical values for the correspond-
ing characteristics of individual stars:

As the star ages, it consumes its primary fuel, hydrogen. What happens to it as the
hydrogen supply in the core becomes exhausted depends on its initial mass. Low-mass
and high-mass stars follow somewhat different evolutionary paths. In either case,
however, the fundamental processes involved are successive nuclear reactions fueled
by the product of the previous cycle. Thus, after the hydrogen in the core has fused to
helium, the star must begin fusing helium in a cycle that eventually forms carbon.

M} � 1.99 � 1030 kg.
R} � 6.96 � 108 m;L} � 3.83 � 1026 J>s;

Te � a L

4�R2�
b 1>4

� aM4

M2
b 1>4

� M1>2

R � M

1>8

Table 13-3 Selected properties of stars

Spectral type Surface temperature (K)

O5 44,500 790,000 15 60

B0 30,000 52,000 8 18

A0 9,520 54 3 3

F0 7,200 6 2 2

G0 6,030 1.5 1.1 1.1

Sun (G2) 5,800 1.0 1.0 1.0

K0 5,300 0.4 0.8 0.8

M0 3,900 0.08 0.6 0.5

M8 2,600 0.001 0.17 0.06

M>M}R>R}L>L}
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Before this can occur, the core must heat up still further to the 108 K necessary to ini-
tiate helium fusion. The chain of events involved in this process is complex and be-
yond the scope of this book. However, its result for low-mass stars is that the radius
(and therefore the surface area) increases while luminosity remains nearly constant.
Thus, the intensity (luminosity per unit area) and, consequently, the effective temper-
ature decrease and the radiation emitted shifts to longer wavelengths as the star ex-
pands to become a red subgiant. The photosphere rapidly becomes more transparent
as Te and the density decrease, increasing the luminosity and effectively limiting the
decrease in temperature. The star is then a red giant. The track of a typical evolving
low mass star such as the Sun is shown on the H-R diagram in Figure 13-17b.

Helium ignition results in the star again increasing its effective temperature and
moving to the horizontal branch. When the helium in the core is exhausted, the star
begins fusing carbon and ascends the red giant branch again, becoming a red super-
giant. Betelgeuse, the bright star in the shoulder of the constellation Orion, is a red
supergiant. Its density is about 1.5 � 10�5 kg m3, a hundred thousand times less than
the air we breathe! What happens after this is not completely clear. Through a combi-
nation of events that includes the loss of considerable mass, perhaps including the
ejection of an expanding shell of gas (called a planetary nebula), such as that shown
in Figure 13-18, the star may become a white dwarf, slowly cooling toward thermal
equilibrium with the universe. We will discuss white dwarfs further in Section 13-5.

High mass stars—those with masses greater than about —evolve much more
quickly than low-mass ones, as predicted by Equation 13-15. In addition, they have
sufficient initial mass to generate gravitationally the high pressures and temperatures
necessary to ignite the fusion reactions with oxygen, neon, and then silicon to pro-
duce, ultimately, iron. These reactions occur with phenomenal speed and lead to cat-
astrophic events that will be discussed in the next section. An extremely massive star,
such as Betelgeuse, may become a supernova via core collapse (see Section 13-4).

6M}
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Figure 13-18 The nebula 30 Doradus (a), also known as the Tarantula nebula, is believed to be older than nebula NGC 7293 (b),
also known as the Helix nebula. The Tarantula nebula’s rapidly expanding gas cloud consequently shows a greater degree of
diffusion. Located in the Large Magellanic Cloud, the Tarantula contains one of the most massive stars known, as well as
supernova SN1987A, the very bright star slightly below the center (of the left-hand photo). Ultraviolet radiation from stars heats
the gas of a nebulae, causing it to radiate. [(a) The Hubble Heritage Team (AURA/STScI/NASA). (b) NASA, NOAO, ESA, the Hubble
Helix Nebula Team, M. Meixner (STScI), and T.A. Rector (NRAO).]
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13-4 Cataclysmic Events
Huge explosions and other sorts of cataclysmic events are a natural part of the life
cycle of stars. Stars formed in swirling clouds of gas move along the H-R diagram, in-
corporating such occurrences into their evolution and forming in the process the ele-
ments needed to form new stars. Why these cataclysmic events occur is the subject of
this section.

Novae

More than half of all stars are members of binary pairs or even larger associations.
These stars orbit their common center of mass as the group moves with the rotation of
the Galaxy. The periods of binaries vary from a few hours for those with the compan-
ions very close to each other to millions of years for those with the companions sep-
arated by thousands of astronomical units. Here, we are interested in close binaries.

A complete analysis of the interactions between the two stars forming a close bi-
nary is beyond the scope of this book, but a qualitative explanation will suffice.
Consider a binary whose stars of masses M1 and M2 rotate about their common center
of mass in circular orbits. An observer at rest in the rotating system experiences a net
force that is the sum of the gravitational forces due to the two stars and the pseudo-
forces due to the rotation. Figure 13-19 shows an equipotential surface about a binary
pair. It is easy to visualize that there is a point along the line joining the centers of the
two stars where the net potential is a minimum. At this point, the net force due to the
combined effects of the rotation and the gravitational attraction by the masses M1 and
M2 is zero. This point is a Lagrangian point. The three-dimensional equipotential sur-
face that includes the Lagrangian point L forms an envelope around each star called
the Roche lobe.12

Now consider what happens when, through natural evolution, one of the stars, say
M1 , begins expanding and fills its Roche lobe. The photosphere of the star feels a vac-
uum outside the surface, the outward pressure at any point being balanced by gravity.
But at the Lagrangian point there is no gravity. Thus, material from M1 pours through
the Langrangian point into the Roche lobe of M2 . Once inside it is gravitationally at-
tracted toward M2. Since the system is rotating, the material from M1 doesn’t simply
move directly toward M2 but, because of the Coriolis effect, forms a spiraling accre-
tion disk (Figure 13-20).

If M2 is a normal star, nothing of great consequence occurs, but if it is a white
dwarf, then cataclysmic events called novae can occur. We will mention two possibili-
ties. Material flowing through the Lagrangian point into the accretion disk is stored
there until some instability occurs in the disk that results in the dumping of material
onto the surface of the white dwarf. The impact heats the surface, causing a sudden lu-
minosity increase by a factor of 10 to 100. Such events recur at intervals of a few weeks
for dwarf novae to hundreds or thousands of years for recurrent novae. Between these
sudden bursts in intensity, the novae flicker as described in the caption of Figure 13-20.

For classical novae, which eject substantial material into space and can brighten
by a factor of a million within a few days, astrophysicists suggest that the sudden
dumping of material from the accretion disk onto the hot surface may result in the
buildup of sufficient hydrogen to initiate a thermonuclear explosion. After the blast
the system returns to a more quiescent state, pending the accumulation of more hy-
drogen in the disk. The theoretical problems involved in explaining such an event are
formidable, however, and no general agreement on the mechanism exists.

M1M2

L

CM

Figure 13-19 Cross sections
of two gravitational
equipotential surfaces for
stars M1 and M2 . The point
labeled L is one of five
Lagrangian points where the
net gravitational potential is
an extremum (a saddle point
in this case) and the net force
is zero.

M1
M2

L

Matter falling from
M1 toward M2

Accretion
disk

Figure 13-20 Material from
M1 pouring through the
Lagrangian point into the
Roche lobe of M2 forms an
accretion disk in M2’s
equatorial plane. Material
arriving later hits the disk,
generating a high-
temperature impact area.
This causes novae to flicker
irregularly.
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Supernovae

A supernova—the catastrophic explosion of an entire star—is, perhaps surprisingly,
somewhat more clearly understood than the nova. Supernovae are classified as Type I
or Type II mainly on the basis of their spectra (Figure 13-21). The spectra of Type I
supernovae do not contain hydrogen lines, indicating that they are devoid of hydrogen,
or nearly so. In contrast, Type II supernovae exhibit strong hydrogen lines. Type I
supernovae are further divided into Type Ia, which show a strong line of singly ion-
ized Si at 615 nm, Type Ib whose spectra include strong He lines, and Type Ic whose
spectra do not include He lines. Recalling that H and He are in that order the most
abundant elements in the universe, these spectral differences indicated that there
are significant differences in the progenitors of the Type I and Type II supernovae.
Type II supernovae are subdivided into two groups based on the shape of their light
intensity versus time curves following peak brightness. The light curves of Type II-L
supernovae decline linearly with time; the light curves of Type II-P exhibit an inter-
mediate plateau lasting 30 days or more before the intensity decline resumes.

Supernovae are not just big novae. Their origin is completely different. In Section
13-3, we saw what occurs in a star as it uses up the hydrogen in the core and begins
moving off the main sequence of the H-R diagram. The star begins to fuse helium,
then carbon. If it were a low-mass star, it would have insufficient gravitational energy
to ignite the fusion of heavier nuclei in quantity. For massive stars, however, the situ-
ation is different. Type Ia supernovae originate in binary systems where one star is a
massive white dwarf rich in carbon and oxygen (see Section 13-5). An expanding
companion that fills its Roche lobe may dump a huge amount of gas directly onto the
dwarf’s surface, increasing the gravitational pressure in the core. If the pressure in-
creases the core temperature enough to trigger carbon fusion, a runaway fusion reac-
tion results, producing a massive thermonuclear explosion—a huge “carbon bomb.”
Depending on the characteristics of the particular binary, it may be possible that Type
Ib and Type Ic supernovae result from gravitational core collapse. Type I supernovae
occur among population II stars. (Don’t be confused by the apparent inconsistency in
nomenclature.) As noted earlier, Type Ia supernovae all have very similar maximum
intensities and light curves which makes it possible for them to be identified even at
very large distances, enabling them to be used as “standard candles” by astronomers.
It is these features that have made it possible for astronomers to measure much greater
distances to host galaxies than was previously possible.

Supernova

H lines  Type II

No H lines  Type I

No plateau  Type II-L

Plateau  Type II-P

Si lines  Type Ia

No Si lines

He lines  Type Ib

No He lines  Type Ic

Figure 13-21 Schematic
of the classifications of
supernovae. Type I subgroups
are based on their spectra at
maximum brightness. Type II
subgroups are based on the
existence or absence of a
plateau in the light curve.



If a star’s mass is greater than about evolution toward a Type II supernova
proceeds approximately as follows. Gravity is strong enough to continue to draw mass
from the middle layers into the core as the core uses up fuel. The increasing temper-
atures, exceeding 108 K, are sufficient to ignite fusion in neon and silicon ultimately
producing iron. As we saw in Chapter 11, the specific binding energy of iron is the
highest in the periodic table. Fusing elements above iron doesn’t emit energy, it ab-
sorbs energy. Thus, when the core has been fused to iron, there is nowhere else to go
via thermonuclear reactions. With no counteracting outward pressure from nuclear re-
actions, gravitational contraction continues even more rapidly and the core conse-
quently continues to heat up until it exceeds 109 K. At that point, the radiation within
the star is intense and iron nuclei undergo photodisintegration into helium and neu-
trons, absorbing energy from the core and accelerating the gravitational collapse:

13-18

The helium nuclei then begin to photodisintegrate, absorbing enormous amounts of
energy to overcome the nuclear binding energy of helium:

13-19

The core is now in gravitational free fall, compressing the electrons and protons into
neutrons via inverse beta decay:

13-20

What happens next to the core is a matter of intense theoretical conjecture that we will
explore further in Section 13-5.

What happens to the envelope of the star—the material outside the core—although
unclear theoretically, is certainly apparent visually. The entire envelope is blown
away in an incredibly massive explosion. This is a Type II supernova. Supernovae are

extremely rare, but scientists were fortunate enough to observe one in
1987 only 170,000 c y away in the Large Magellanic Cloud, a small
irregular galaxy that is a companion to the Milky Way. Called
SN1987A (see Figure 13-18 and the photo at the left), it was the first
to occur close enough to be visible to the unaided eye since 1604,
when both Kepler and Galileo saw one. Two others were recorded ear-
lier, in 1006 and 1054, the latter documented by Chinese astronomers
and still visible as the Crab Nebula. Several others have been observed
with telescopes. As a result of the enormous number of nuclear reac-
tions and decays initiated by the supernova, the radiation emitted in the
explosion is accompanied by a flood of neutrinos. Neutrinos emitted
by SN1987A were detected by the Kamiokande neutrino observatory,
bringing with them information about the core-collapse model of su-
pernovae and a hint of the nonzero neutrino mass (see Problem 12-13).

At its peak light output, a supernova typically shines more
brightly than the entire galaxy in which it is located. The spectra of
supernovae reveal the presence of elements throughout the entire pe-
riodic table. This indicates that some of the energy removed from the
core following the production of iron is used to produce elements of
even higher atomic numbers. The supernova ejects some of this ma-
terial into space, where it eventually contributes to the formation of
a new generation of stars and their planets via condensation. Such
events undoubtedly preceded the birth of the Sun and the formation
of Earth. We are, as has been said before, “made of the stuff of stars.”
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Supernova 1987A developed a set of rings
some weeks after it was first seen. The rings
are likely caused by a beam of high-energy
radiation or particles sweeping across the gas.
The source of the beam may be a previously
unseen companion of the star that exploded.
This Hubble Space Telescope photo was made
with hydrogen Balmer alpha light. [NASA, ESA,
P. Challis and R. Kirshner (Harvard-Smithsonian
Center for Astrophysics).]
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13-5 Final States of Stars
The cataclysmic events that occur near the end of the life of a star lead to one of only
three possible final states: a white dwarf, a neutron star, or a black hole. The mass
of the star, particularly that of the core, appears to be the primary factor in determin-
ing the final state.

White Dwarfs

Stars whose masses are less than about follow an evolutionary track on the H-R
diagram that takes them through one or more periods of substantial mass loss from the
outer layers of gas. How this occurs is not clear, but the ejected mass, which is heated
to a glowing planetary nebula by the hot core, leaves behind a white dwarf, a term used
because many, though by no means all, are literally white hot. Its mass is typically about
1 and its radius of the order of 107 m, which is about the same as the radius of Earth.
Thus, the density of a typical white dwarf is about 5 � 105 g cm3 compared to Earth’s
average density of about 5.5 g cm3. A coin the size of a penny made from white dwarf
material would have a mass of over 200 kg, one the size of a Euro over 400 kg.

Thermonuclear reactions have ceased in the white dwarf, leaving it with a core
consisting primarily of carbon and oxygen, so there is no outward pressure due to
them from within the star. The star therefore collapses because of the inward gravita-
tional pressure until the exclusion principle prevents the atomic electrons from com-
ing any closer together. This effect is similar to the exclusion-principle repulsion be-
tween atoms in a molecule that we discussed in Chapter 9. It results in an outward
pressure that is larger even than the thermal pressure of the hot core. It is this electron
degeneracy pressure that supports the white dwarf. When the outward electron de-
generacy pressure equals the inward pressure due to gravity, the star stops contracting.

Explicit derivation of the expression for the electron degeneracy pressure leads to a
nonrelativistic relation between the dwarf’s radius R and mass M:

13-21

where Z is the atomic number and A is the atomic mass number of the material of the
star. Note the interesting result that the larger the mass, the smaller the radius, a con-
sequence of the gravitational contraction that was discussed earlier. For example, a
white dwarf with a mass of will have a radius smaller than one with a mass of
0.5 Equation 13-21 raises the interesting question of whether, when the electrons
become relativistic, the mass might become large enough for the radius of the dwarf to
shrink to zero. Although Equation 13-21 does not formally allow that possibility until
M approaches infinity, S. Chandrasekhar13 derived the corresponding relativistic rela-
tion and found that the radius would go to zero when the mass reached about 1.4
This quantity is called the Chandrasekhar limit. Its validity is strongly supported by the
fact that the masses of all white dwarfs that have been measured are less than that value.

A lone white dwarf continually radiates heat to space and, without a nuclear fur-
nace, slowly cools and dims. When it is no longer visible, it has become a black dwarf.
It continues to cool toward thermal equilibrium with the universe. It is not likely
that any white dwarfs have yet reached this final stage. However, if the white dwarf
is a part of a binary, then in addition to the possibility of a nova described earlier,
mass may flow from the companion directly onto the surface of the white dwarf.
When the degenerate electron pressure can no longer support the white dwarf (at the
Chandrasekhar limit), the star implodes, suddenly raising the core temperature and
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detonating fusion in the carbon/oxygen core. The sudden energy release causes the
white dwarf to explode as a Type Ia supernova. The common mass limit, 1.4 
at which the white dwarfs explode, is a major factor in the resulting similarity of the
Type Ia supernovae light curves that enables their use as a luminosity standard for
measuring astronomical distances. Following the supernova explosion, about half of
the residual core of the star is iron.

Neutron Stars

In the discussion of supernovae, we saw that the enormous pressures developed in the
core forced inverse beta decay to occur, converting the core into neutrons. If the mass
of the core following the explosion is greater than the Chandrasekhar limit, what hap-
pens? We can get an idea by considering the neutrons to be an ideal gas of fermions
and derive a nonrelativistic expression for the mass-radius relation analogous to
Equation 13-21. The result is

13-22

where M is the mass in kilograms and R is the radius of the core in meters. Such a star
is called a neutron star, since the envelope was blown away in the supernova and all
that is left is the core consisting of neutrons. For Equation 13-22 yields
the radius R � 1.27 � 104 m � 12.7 km.

The density of the neutron star is about 1.2 � 1014 g cm3. This is only slightly
less than the density of the neutron itself, which is about 4 � 1014 g cm3. Thus, we
can conclude that the gravitational pressure of the neutron star is balanced by the re-
pulsive component (due to the exclusion principle) of the strong nuclear force be-
tween the neutrons. As you might guess from our earlier discussion, gravity can over-
come even this resisting pressure. The mass corresponding to the gravity at which that
occurs would be the maximum mass possible for a neutron star, a mass analogous to
the Chandrasekhar limit for white dwarfs. Current theory puts the maximum mass of
a neutron star between and The few neutron stars that have been tenta-
tively identified and measured all have masses below this limit.
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White dwarfs identified by
the Hubble Space Telescope
in M4, the globular cluster
closest to Earth (7000 c y).
M4 contains more than
100,000 stars. [(left) Kitt Peak
National Observatory 
0.9-meter telescope,
National Optical Astronomy
Observatories; courtesy 
M. Bolte (University of
California, Santa Cruz). 
(right) Harvey Richer
(University of British
Columbia, Vancouver, Canada)
and NASA.]
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A lone neutron star, the first seen
in visible light, is very hot
(about 650,000 K at the surface)
and may be no larger than 28 km
in diameter. [Fred Walter
(State University of New York at
Stony Brook) and NASA.]
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Regularly pulsing radio sources, called pulsars, discovered in 1967 in nebulae
such as the Crab Nebula that are remnants of supernovae, are thought to be neutron
stars. Current theory suggests that the radiation is emitted as the result of charged par-
ticles emitted by the neutron star that are accelerated along the star’s magnetic field
lines as a consequence of the star’s rapid rotation as illustrated in Figure 13-22.

Figure 13-22 (a) The neutron star acquires much of the original star’s angular momentum and magnetic field, causing it to
rotate rapidly while dragging along a distorted magnetosphere. Accelerated charged particles radiate in a cone about the rotating
magnetic axis like a cosmic lighthouse. (b) The pulsar in the Crab Nebula. As the cone of radiation swings to face Earth, light
emitted from accelerated electrons becomes visible (the bright spot in the image). (c) A fraction of a second later, the pulsar has
turned and this light is no longer directed toward Earth. Currently rotating about 30 times a second, the pulsar has a period that
is increasing by about 10�5 s per year. [(b) and (c) Harvard/Smithsonian Center for Astrophysics.]

(b)(a) (c)
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The Crab pulsar also corresponds to an optical
variable as illustrated in Figures 13-22b and c. It
emits energy at an incredible 3 � 1031 W. Its pe-
riod is equally incredible, 0.033 seconds, one of
the shortest known. As it emits energy into
space, the neutron star also slowly cools, ap-
proaching thermal equilibrium with the universe.

Black Holes

What happens when the mass of the remaining
core of a supernova exceeds the to 
upper limit for the formation of a neutron star?
The velocity necessary for an object with mass
to escape from an object of mass M is found by
equating the gravitational potential energy at the
surface of M to the kinetic energy necessary to
escape. This results in the escape velocity

13-23

For a neutron star with ve �
1.3 � 108 m s, more than 40 percent of the speed
of light. If there were no relativistic and quantum
mechanical effects, the escape velocity would
equal c when

13-24

where is called the Schwarzschild radius. Thus, if an incipient neutron star is so
massive that its radius is less than no object with mass can escape from its sur-
face. In addition, radiation of wavelength emitted at some distance R from mass M
is shifted to a longer wavelength according to the gravitational redshift described in
Section 2-5; the ratio is given by

13-25

If R shrinks to the Schwarzschild radius, then approaches infinity and the energy
( ) approaches zero. Thus, if R is less than no energy can escape
the surface as radiation, either. Such an object is called a black hole, because it nei-
ther emits nor reflects radiation or mass and, hence, appears absolutely black.14

The radius of a black hole with a mass of 1 if there is such an object, would
be only about 3 km. Many astrophysicists currently believe that a massive black hole
is located at the center of the Milky Way and may account for a very small part of the
“missing mass” of the Galaxy. During the past decade astronomers at the Max Planck
Institute (Germany) have tracked about a dozen individual stars (of more than 300)
orbiting an unseen object at Sagittarius A*, a radio source near the center of the
Milky Way (see Figure 13-13). One of these, for example, is called S2. Determining
S2’s orbital period to be 15.2 y enabled calculation of the mass of the unseen object to
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This composite image of the Crab Nebula was made from an x-ray
image recorded by the Chandra X-Ray Observatory and an optical
image from the Hubble Space Telescope. The inner ring is about 
1 c y across. [Credits for X-ray Image: NASA/CXC/ASU/J. Hester et al.
Credits for Optical Image: NASA/HST/ASU/J. Hester et al.]
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be about 3 � 106 S2’s orbital speed of approximately 4 � 106 m s “confines” the
unseen mass of Sagittarius A* to such a small volume that there can be little doubt that
it is an enormous black hole. Unlike white dwarfs and neutron stars, black holes are not
cooling toward thermal equilibrium with the universe.
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Black hole in the center of galaxy
NGC 7052. The disk is 3700 c y
in diameter. The black hole, whose
mass is about 300 million solar
masses, will swallow the disk in a
few billion years. [Roeland P. van
der Marel (STScI), Frank C. 
van den Bosch (Univ. of Washington),
and NASA.]
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The series of Chandra X-Ray Observatory images on the left show jets of high-energy particles being produced near a
black hole in a binary system, first on the left (top image), then on the right (middle image). The jets are moving away
from each other at about 0.5 c. In the lower image the left jet has disappeared. The schematic on the right illustrates
how the jets originate. The black hole draws mass from the normal companion, then intense electromagnetic forces in
the accretion disk expel the jets of high-energy particles. [Left: X-ray (NASA/CXC); Right: Illustration (CXC/M.Weiss).]
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Gamma-Ray Bursts

Flashes of gamma rays (and x rays) that occur about once a day at apparently random
locations in the sky were discovered by Vela military satellites in 1967. They are short,
lasting from less than a second to as long as a few minutes. During the burst they are by
far the brightest gamma-ray sources in the sky, their fluxes exceeding those of the bright-
est steady sources, such as the Sun and the Crab Nebula, by a factor of a 1000 or more.
Their brief lifetime makes it difficult to attempt to identify the bursts with individual
stars or galaxies because of the inherent delay in processing the burst information and
re-aiming the large telescopes. With a bit of good fortune, that problem was first solved
in 1997 when the Dutch/Italian BeppoSAX satellite detector discovered an x-ray after-
glow following burst GRB970228.15 Then in 1999 burst GRB990510 was seen simulta-
neously by the Compton Gamma Ray Observatory and BeppoSAX satellites within the
field of view of the Very Large Telescope (VLT) in Chile, the largest telescope in the
southern hemisphere. The subsequent x-ray, optical, and radio wavelength afterglows
told astronomers what to look for and, since then, many bursts have been studied more
thoroughly via their afterglows, some lasting for several months.

Since that time the all-sky surveys of the Burst and Transient Source Experiment
(BATSE) and Swift satellites have recorded more than 8000 gamma-ray bursts distrib-
uted isotropically over the sky (see the photo below). The uniform distribution of the
GRBs across the sky is strong evidence that they occur in the distant universe, since
only at great distances does the cosmos appear uniform. The VLT measured the redshift
z of GBR990510 to be 1.61 implying a recession speed that places the source about
halfway to the edge of the visible universe. The origin of the bursts and the mechanism
for the enormous energy release implied by the gamma-ray flux are not yet clear. As of
this writing approximately 100 afterglows have been located and for most of these a
host galaxy has been identified. The GRBs in many cases appear to be the result of the
supernova collapse of very large stars becoming neutron stars or black holes. This is an
area of active current research.

This map shows the locations of more than 2700 gamma-ray bursts recorded by BATSE
aboard the Compton Gamma-Ray Observatory during its 9 years of operation. The projection
is in galactic coordinates, the plane of the Milky Way being the horizontal line through the
middle of the figure. The burst locations are color-coded based on the integrated energy over
the duration of the burst. [Image courtesy of the BATSE team, http://gammaray.nsstc.nasa.gov.]

http://gammaray.nsstc.nasa.gov


13-6 Galaxies
In Section 13-2 we saw that the Milky Way is shaped like a spiral disk with a central
bulge located about 28,000 c y from the Sun. The disk is surrounded by a roughly
spherical “halo” of globular clusters made up mostly of population II stars, which are
also part of our Galaxy. We will now look at some of the characteristics of galaxies.

Material Between the Stars

“Holes in the sky”—regions where no stars are seen—have been observed since the
early days of astronomy and were assumed to be empty space. However, studies of
open clusters about 70 years ago led to the discovery of a more or less continuous dis-
tribution of tiny dust particles, called interstellar dust, between the stars. Consisting of
solid specks of silicates and carbides averaging only a few hundred nanometers in di-
ameter (approximately matching the wavelength of visible light), the interstellar dust
both absorbs and scatters some of the starlight striking it. Thus, dust in the interstellar
medium (ISM) dims starlight coming toward Earth and, since blue light scatters more
efficiently than red light, starlight is reddened on its trip to us, just as sunlight is red-
dened at sunset. Although the dust seems to pervade the entire Galaxy, the concentra-
tions are very low and its total mass makes only a very small contribution to the total
mass of the ISM. The vacuum in interstellar space is far better than the best obtainable
in the laboratory.

The ISM consists primarily of hydrogen and helium. Hydrogen as atomic hydro-
gen, ionized hydrogen (protons), and hydrogen molecules (H2) makes up about 70 per-
cent of the mass of the ISM. Atomic helium is most of the rest, while the carbide and
silicate dust contribute only a few percent of the ISM’s total mass. Spectroscopic stud-
ies of binaries reveal some absorption lines that are not Doppler-shifted. In 1904, J. F.
Hartmann reasoned correctly, although not to universal acceptance, that the unshifted
lines result from absorption of light from the binary by an intervening gas cloud, rather
than by gas in the atmosphere of the star. Though still difficult to demonstrate conclu-
sively in all cases, the existence of interstellar gas clouds is now generally accepted. As
a result of temperature variations in the early universe and the subsequent continuous
action of gravity, huge clouds of primarily hydrogen have
formed throughout the ISM. They range in mass from
about 1 to 1000 times the mass of the Sun and have tem-
peratures of about 30 to 150 K. At these temperatures the
hydrogen atoms in the clouds are in their ground states.

Even though the atoms are in their ground states, it is
possible to see the clouds as a result of the hyperfine split-
ting of the hydrogen ground state due to the spins (i.e.,
magnetic moments) of the electrons and protons. If the
spins of the electron and the proton in a particular atom
are antiparallel, the atom’s ground state energy is very
slightly lower that it would be if the spins were parallel.
(See Section 7-4 and Figure 13-23.) The energy differ-
ence between the two states is so small, 5.9 � 10�6 eV,
that a collision with another atom or a dust grain can re-
sult in the atom absorbing enough energy to “flip” the
electron’s spin into the parallel configuration. Once the
electron’s spin is flipped, the atom has only two ways to
return to the ground state: it can have another collision

#
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Energy (eV)

5.88 × 10-6

Photon
λ = 21 cm

0
Electron

Electron
Proton

Proton

Figure 13-23 The hyperfine spitting of the hydrogen atom
ground state is the origin of the 21-cm radiation used to map
gas clouds in the ISM.
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enabling the atom to release the excess energy as heat or it can spontaneously flip the
spin back antiparallel to that of the proton, emitting a photon with wavelength 21 cm
in the process. The likelihood of either of these occurring is very small. For a given
atom, collisions only occur every few hundred years and spontaneous return to the
lower state may take millions of years. Even so, the number of atoms in the huge clouds
is so large that there is a faint continuous emission of the 21-cm photons that enables
mapping of the clouds by radiotelescopes.

Together, the interstellar dust and the clouds of gas account for an estimated 2 to 3
percent of the total mass (ordinary and dark matter) of our Galaxy. It is nearly certain
that there is not enough unseen gas and dust to account for the Galaxy`s dark matter.

Gaseous Nebulae

Though most gas clouds, or nebulae, in interstellar space are irregular in shape, a few
are circular, leading to speculation that they are self-gravitating and represent the very
early stages of new star formation. Some large hydrogen clouds have spherical inner
regions of ionized hydrogen, with a quite sharp demarcation between the H and H�

regions. Astrophysicists believe that the ionized region is maintained by ultraviolet
photons with frequencies above the Lyman limit emitted by a hot, newly formed star
at the center of the region. The view that new stars form in the nebulae in an ongoing
process is strongly supported by the observation that, although the Galaxy is of the
order of 1010 years old, our Galaxy contains main sequence stars that are no more than
2 to 3 � 106 years old. Furthermore, high-resolution radioastronomy has in recent
years located numerous newly forming stars embedded in clouds of dust and gas that
are completely opaque to optical wavelengths.

Classification of Galaxies

Although fuzzy, extended objects, at one time called “nebulae” (not to be confused
with planetary nebulae defined in Section 13-3), that were obviously not stars had
been observed in the night sky since the 1700s, what and where they were was a mat-
ter of active scientific debate until well into the twentieth century. The answer had to
await the development of telescopes with sufficient resolution and light gathering
power and a theoretical means of computing distances from observations made with
them. These came together in the mid-1920s when Edwin Hubble16 used the 2.5 m
telescope on Mount Wilson, the largest in existence at the time, to measure the inten-
sities of rare stars, called Cepheid variables17 that he discovered in three “nebulae.”
One of those nebulae, the great spiral Andromeda, he measured to be 2 � 106 light-
years away. In one stroke, he was able to demonstrate that the “nebulae” were in fact
galaxies much like our own, as had first been suggested by the philosopher Emmanuel
Kant 150 years earlier, and that they were far outside the Milky Way. Exploring
Hubble’s discovery will take us into the realm of cosmology, the study of the large-
scale structure of the universe.

Following his discovery that these “nebulae” were in reality distant galaxies,
Hubble conducted a systematic study of the enormous number that were visible. He
found that all but a very few fit into four general categories. Most had regular geo-
metrical shapes and occur in two varieties: ellipticals which are roundish, rather like
a football, and disks. The disks in turn had two subgroups, ordinary spirals and barred
spirals (i.e., spirals with a “bar” of stars across the center). The small percentage that
did not have regular shapes he called irregular galaxies. Figure 13-24 shows an ex-
ample of each type of galaxy. The Milky Way is a large barred spiral.
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Figure 13-24 In Hubble’s galaxy classification scheme, (a) is an example of an elliptical
galaxy, (b) illustrates an ordinary spiral, (c) is a barred spiral, and (d) is an irregular galaxy.
The Milky Way is thought to be a spiral with a faint bar. [(a) NASA, ESA, and The Hubble
Heritage Team (STScI/AURA). (b) NASA and ESA. (c) NASA, ESA, and The Hubble Heritage Team
(STScI/AURA). (d) NASA, ESA, and The Hubble Heritage Team (STScI/AURA).]

(a)

In addition to their geometrical differences, the four types of galaxies have other
dissimilarities. A large fraction of the motion of the stars in spirals is rotational about
the galactic center, whereas the motion of stars in ellipticals is generally random with
only a relatively small rotational component. Ellipticals also seem to have very little in-
terstellar gas and dust, while spirals and many irregulars have a substantial amount. The
fact that most ellipticals have no young stars is probably a consequence of that absence.
With a few exceptions, ellipticals are much smaller than spirals, typically having only
about 20 percent of the diameter of an average spiral and only a thousandth of the mass.

(b)

(c) (d)
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Quiet and Active Galaxies

Most of the approximately 1010 galaxies in the observable universe appear to be quiet
galaxies—i.e., there is very little activity other than what might be expected for such
dynamic systems. The vast majority of these galaxies are so distant that our instru-
ments cannot resolve internal details. Therefore, only the composite spectra and radi-
ant flux F for the entire galaxy can be observed. The range of velocities �v that exists
in the stars of the regular galaxies, measured by the Doppler broadening of the spec-
tral lines, turns out to be related to the total luminosity L by

13-26

Since L is related to F and r, the distance to the galaxy, by Equation 13-8, the distance
r can be found from measurements of the redshift and the apparent brightness of the
galaxy, assuming that L is known.

In a very small percentage of galaxies something extremely violent, even by com-
parison with stellar supernovae, is occurring. Such systems are called active galaxies.
There are several distinct types, some of which may not even be galaxies at all. The
first discovered were Seyfert galaxies, named after Carl Seyfert, who first identified
many of them. They are spirals with extremely bright, central starlike cores, or nuclei.
In many of them, light coming from the core exceeds that from all of the stars in the
galaxy and may vary in intensity by a factor of two or more in less than a year. Such
a rapid variation in the total intensity means that the source must be less than one
light-year in extent while producing as much energy as 1011 stars. Even more incred-
ible, if possible, is the fact that the light emitted by a Seyfert galaxy consists of broad
emission lines originating in both allowed and forbidden transitions in highly ionized
atomic systems superimposed on a continuum, but without the absorption lines typi-
cal of stars. That suggests that its enormous energy is not coming from thermonuclear
reactions. The source is not yet understood.

A similar sort of extreme activity occurs in a few ellipticals called N galaxies and
BL Lac objects. N galaxies are elliptical counterparts of Seyfert galaxies, that is, they
have very bright centers. BL Lac objects seem to be like N galaxies, but exhibit sub-
stantial short-term intensity variations. In these, an intensity variation of a factor of
two can occur within a week and a complete reversal of the polarization of the emitted
light within one day, suggesting that the energy source is only one light-day in diameter.
BL Lac objects are now thought to be giant ellipticals about 109 c y from Earth.

Some of the giant ellipticals are also strong emitters in the radio region of the
spectrum. Study of these radio galaxies has been intense, and the results have been
astonishing. For example, the radio source Centaurus A is double-lobed with a small
radio-emitting nucleus midway between the lobes. It is one of the brightest radio-
emitting objects in the universe. Analyses of its spectra indicate that the initial energy
release represented by the radiation that we now see amounted to 1056 J, which is
about the equivalent of all the stars in the Milky Way undergoing supernova explo-
sions simultaneously! The nature of such a colossal event is not currently understood.

In a universe of strange phenomena, quasars, short for quasi-stellar radio sources,
are among the strangest. Discovered as radio sources, their optical images look like
stars; that is, they have no resolved structure. Their spectra resemble that of a Seyfert
galaxy. Resolved radio images of some quasars show that a few of them are double-
lobed, like the radio galaxies, which makes their identification ambiguous. The Sloan
Digital Sky Survey (SDSS) has catalogued 46,420 quasars; of those, 520 have red-
shifts ! 4, the most distant at a redshift of z � 5.41. There is also a group of objects
about 10 times more numerous than quasars, radio sources that were earlier called

#

L � (¢v)4

Radio galaxy 3C368. The
contours show the centers
of strong radio emission. The
bright knots may be regions
of star formation in this
elliptical galaxy. [NASA,
NRAO, VLA, HST, WFPC 2,
M. Longair (U. Cambridge).]



quasi-stellar objects. These are like quasars in every major way, except that they are
not radio-emitters. Current terminology refers to both types as quasars, the radio
sources as radio-loud quasars (QSRs) and the others as radio-quiet quasars (QSOs).

Perhaps the strangest thing about the quasars is the magnitude of the redshift of
their spectra, which is very large. It implies that some quasars are receding directly
away from us at greater than 0.95 c. This would make them the most distant massive
objects, of the order of 1010 c y from Earth. Their radiant flux F together with the
great distance imply power outputs of 1040 W, greater than
that of 1012 Suns. Not only that, but the intensities of some
quasars vary over only a few hours, suggesting dimen-
sions of only a few light-hours.

Hubble’s law

E. P. Hubble was the first astronomer to recognize that
there is a relation between the redshifts of the spectra of
galaxies and their distances from us. This relation is illus-
trated in Figure 13-25 for a group of spiral galaxies used
by astronomers for calibrating distances. The recession
velocity v of a galaxy is related to its distance r from us
by Hubble’s law:

13-27

where H0 is the Hubble constant.

v � H0r

#
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Debris from the catastrophic collision of two galaxies may be fueling quasar IRAS04505-
2958. The quasar is about 3 � 109 c y from Earth. Astronomers believe the collision ripped
out the core of a spiral galaxy (bottom of the picture). The ring lies in front of the quasar 
(the bright object in the middle) at a distance of 15,000 c y (one-seventh of the diameter of
the Milky Way). The bright object just above the quasar is a foreground star. [John Bahsall
(Institute for Advanced Study, Princeton), Mike Disney (University of Wales), and NASA.]
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Figure 13-25 A plot of the recession velocities of
individual galaxies versus apparent distance illustrates
Hubble’s law. The slope of the line is H0 .
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In principle, the value of H0 is easy to obtain, since it relies on the direct calcula-
tion of v from redshift measurements. However, recall that astronomical distances are
very difficult to obtain and that they have been measured for only a miniscule fraction
of the 1010 or so galaxies in the observable universe. Thus, the value of H0 changes as
the interpretation of distance calibration data is refined. The currently accepted value
of the Hubble constant is

13-28

Notice that the basic unit of H0 is reciprocal time. The quantity is called the
Hubble time and equals about 1.3 � 1010 years. This would correspond to the age of
the universe if gravitational pull on the receding galaxies were ignored.

The redshift z, defined in Section 1-5, is given by

13-29

where f0 and are measured in the rest system of the star or galaxy (the emitter) and
f and are measured at Earth (the observer). Figure 13-26 shows the redshifted spec-
tra of five galaxies whose distances from us range from 2.6 to 287.5 Mpc.
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f0 � f

f
�


 � 
0


0

1>H0

H0 � 71 � 4 km>s per Mpc � 22 � 2 km>s per 106 c # y

NGC 221 v � 210 km/s d � 2.6 Mpc

NGC 4473 v � 2 300 km/s d � 28.8 Mpc

NGC 379 v � 5 500 km/s d � 68.8 Mpc

Galaxy in the Ursa Major Cluster v � 15 000 km/s d � 187.5 Mpc

Galaxy in the Gemini Cluster v � 23 000 km/s d � 287.5 Mpc

Figure 13-26 The redshifts
of the Ca, H, and K
absorption spectral lines are
shown for five galaxies at
different distances from us.
The line spectra above and
below the absorption
spectrum are standards used
for determining the amount
of shift accurately. [California
Institute of Technology.]
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EXAMPLE 13-5 Distance to a Galaxy in Virgo Redshift measurements on a galaxy
in the constellation Virgo yields a recession velocity of 1200 km s. How far is it to
Virgo?

SOLUTION

Using Hubble’s law, we obtain

Remarks: Compare this result with distance measurements to Virgo made by some
of the standard astronomical distance-measuring methods given in Table 13-4.

� 17.5 Mpc

r �
v

H0

�
1200 km>s

21 km>s per 106 c # y
�

(1200 km>s)(106 c # y)

21 km>s � 57 � 106 c # y

>

Table 13-4 Distance measurements to Virgo

Method Cepheids Novae Brightness fluctuations Type Ia supernovae

Distance to Virgo (Mpc) 15 – 25 21.1 � 3.9 15.9 � 0.9 19.4 � 5.0

Maximum useful distance (Mpc) �29 �20 �50 � 1000

Hubble’s law tells us that the galaxies are all receding from us, with those the farthest
away moving the fastest. However, there is no reason why our location in the universe
should be special. An observer in any galaxy would make the same observations and
compute the same Hubble constant. (See Problem 13-25.) Thus, Hubble’s law states
that all of the galaxies are receding from each other at an average speed of 71 km s
per Mpc of separation. In other words, the universe—space itself—is expanding.
This is a profound discovery with enormous theoretical implications.

All galaxies participate in the general expansion of the universe. As a result, the
wavelengths of light emitted toward Earth by galaxies (and stars and anything else out
there) is lengthened or stretched along with the space through which it is moving, pro-
ducing the cosmological redshift. It is the cosmological redshift that is described by
Hubble’s law. This redshift is not related to the galaxy’s recessional velocity by the
relativistic Doppler effect equation that we developed in Chapter 1 (Equation 1-38),
even though astronomers often use that equation to express a measured redshift z as
the radial velocity of a galaxy as if it were moving through space, rather than the ac-
tual velocity with which it receding from us due to the expansion of space. That this
practice provides a reasonable estimate of relatively nearby distances can be seen as
follows: Substituting Equation 13-27 into Equation 13-29 and solving for r yields
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For Equation 13-30 yields values of r within about 5 percent of the values mea-
sured by the methods listed in Table 13-4. If then the nonrelativistic equation

can be used and, e.g., for the error is about the same as above.
However, always remember that the cosmological redshift has nothing to do with the
Doppler effect.

z � 0.1r � cz>H0

z V 1,
z � 2,

r �
c

H0

(z � 1)2 � 1

(z � 1)2 � 1

>



The fractional change in the wavelength for the cosmological redshift is equal
to the fractional change in the “size” or scale R of the universe since the time when
the light was emitted. This allows us to also write the redshift as

13-31

Equation 13-31 says, for example, that a galaxy with z � 2 is now three times farther
from Earth than it was when the observed light was emitted. Looking at regions in
space that are cosmologically nearby or close to us provides a “snapshot” of what the
universe looks like everywhere now. At Earth at the present time (t0), z � 0. That is,
galaxies close by the Milky Way have no (measurable) cosmological redshift. Looking
at objects with higher z values corresponds to looking back in time. Thus, at redshift
z we are seeing the universe as it appeared when it was of its size now.

The discovery and analysis of the redshifts and luminosities of the quasars has
significantly furthered our understanding of the expansion and evolution of the uni-
verse. Observations show that bright quasars are more numerous at large z than at
small z, that is, the space or volume density of bright quasars was larger at earlier
times than it is now. This could be because there where more of them in earlier times
or their luminosities could have been higher or both. Or it could be that the observa-
tions are simply the result of the general expansion of space and the volume density
and luminosities of the quasars have not changed over time. To remove the compli-
cating effect of the expansion, astrophysicists and cosmologists define comoving

coordinates and, correspondingly, for our purposes here comoving
space density. The former we will return to in Section 13-8. The
latter removes the effect of the expanding universe by dividing the
number density of objects per cubic Mpc at redshift z by (1 � z)3.
This converts the number density of objects to the value it would
have at z � 0 (today). Thus, if the number density and/or bright-
ness have been constant over time, their comoving space density
and brightness will be constant. Changes signal a change in the
number density or an evolution of the quasars or both.

Observations of the comoving space density of bright quasars
show that they are more than 1000 times more numerous at z � 2
than they are today (at z � 0), but the total number of quasars has
not changed back to about z � 2. Therefore, observations indicate
that the luminosity of quasars evolves over time, but not their
comoving space density. That is, at least back to z � 2, there
appears to be a constant number of quasars growing dimmer as
the universe expands. Further back than z � 2, measurements have
reached about z � 6. In this range the picture is more complicated,
the comoving space density declining after about dimin-
ishing by approximately a factor of 10 by z � 4. The meaning of
the decrease is a focus of continuing research.

An obvious question is whether there are other observational re-
sults that support Hubble’s conclusion. For example, is the observed
expansion general, or could it be a statistical accident—a conse-
quence of our having measured distances to only a fraction of the
250,000 (out of the 1010 galaxies in the observable universe) whose
redshifts have been measured to date? Thus, redshift surveys of the
universe are an important first step in studying Hubble’s expansion.

z � 3,

1>(1 � z)

z �

 � 
0


0

�
R � R0

R0

�
Robserved � Remitted
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 ⇒  
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� 1 � z
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The oval encircles the most distant galaxy yet
discovered (as of 2007). The faint streaks are the
galaxy’s image as gravitationally lensed by
galaxy cluster Abell 2218. Its redshift of 6.6 puts
it about from Earth moving away
from us at about 0.97 c. The light that formed this
image left the galaxy when the universe was only
700 million years old. [NASA, Andrew Fruchter
and the ERO Team [Sylvia Baggett (STScI), Richard
Hook (ST-ECF), Zoltan Levay (STScI)] (STScI).]

13 � 109 c # y
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Redshift surveys establish the existence of large scale structure in the universe and, to-
gether with independent distance measurements for individual galaxies, determine the
Hubble constant. Such surveys have been underway for several years and about 10�5 of
the volume of the visible universe has now been mapped. These surveys have yielded
several unexpected discoveries, but have not yet answered the question above conclu-
sively. There are huge voids in space—regions where the density of galaxies is only 20
percent or so of the average for the universe. In addition, the galaxies themselves tend
to be grouped into clusters and the clusters into superclusters. The Milky Way is a part
of the Local Cluster that contains about a dozen galaxies. The galaxies also tend to lie
on thin, sheetlike structures. How such structures might have evolved in the general ex-
pansion described by Hubble’s law presents a challenge to cosmological models. The
most successful cosmological model thus far has been the Cold Dark Matter ( CDM)
model, where is Einstein’s cosmological constant. One of the largest of the galaxy
mapping projects has been the 2dF Galaxy Redshift Survey (2dF GRS; Figure 13-27).
The project, completed in 2002, obtained high-quality spectra and redshifts for
245,591objects, mainly galaxies. Still underway is the largest survey, the Sloan Digital
Sky Survey (SDSS). The SDSS first phase was completed in 2005 after measuring the
spectra of 675,000 galaxies, 90,000 quasars, and 185,000 individual stars. The SDSS
second phase of measurements is currently underway at the project’s dedicated 2.5-m
telescope in New Mexico.

-
--

Figure 13-27 The 2dF Galaxy Redshift Survey (2dF GRS) is a major spectroscopic survey
utilizing unique facilities built by the Anglo-Australian Observatory. By the survey’s
completion in 2002 it had recorded precise spectra for 245,591 objects enabling a wide range
of new analyses including, for example, the first direct comparison with the microwave
background anisotropy on the same spatial scale and studies of galaxy clustering to test
inflationary cosmological models of the early universe. The survey is integrated with the
2dF Quasi Stellar Objects survey. [Matthew Colless and the 2dF Galaxy Redshift Survey Team.]



13-7 Cosmology and Gravitation
We have seen that applying Hubble’s law to the observations of galaxies leads in-
escapably to the conclusion that the universe is expanding and provides us with a mea-
sure, of how long ago that expansion began. In this section, we will examine
the basic theoretical framework that suggests possible tests of that conclusion. The
basis for this discussion is the philosophical view that at large scale the universe is ho-
mogeneous and isotropic at any instant in time. That is, at any given instant the uni-
verse has the same physical properties everywhere and looks the same in all directions
from every location. This is called the cosmological principle. Note that Hubble’s law
is consistent with the cosmological principle.

We have already seen that the cosmological principle clearly does not hold on
a local scale. Galaxies are clustered into local groups. Even on a scale of 108 c y, the
dimension typical of galactic superclusters, the universe is neither homogeneous nor
isotropic. However, when maps of very distant space are examined (Figure 13-28), the
distribution does appear to be statistically homogeneous and isotropic. Redshift survey
maps like Figure 13-27, which extend to about 4 � 109 c y, do indeed show homo-
geneity and isotropy in a statistical sense.

#

#

1>H0 ,
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The Critical Energy Density of the Universe

Noting that the Hubble age years ignores the effect of gravity and
ignoring for the moment the recently discovered acceleration of the expansion, the ex-
pectation is that gravity tends to slow the expansion over time. Is the gravity in the
universe strong enough to eventually reverse the expansion and cause the universe to
collapse? Or will the expansion continue forever? The answer depends upon the mass
density of the universe. We can understand this by considering the motion of a sin-
gle galaxy of mass m at a very large distance R from Earth. Let M be the total mass of
all the galaxies within the spherical volume of radius R. The gravitational potential
energy of our single galaxy is The total energy of the galaxy is

13-32E � K � U �
1

2
mv2 �

GMm

R

�GMm>R.

�0

1>H0 � 1.3 � 1010

Figure 13-28 A map showing
approximately 2 million galaxies ranging
up to 2 � 109 c y away. The distribution
of the galaxies looks essentially
homogeneous and isotropic. This is a
composite of 185 contiguous photos
taken by the Schmidt telescope at the
European Southern Observatory.
The south Galactic pole is at the bottom
center. [S. Maddox (Nottingham U.) et al.,
APM Survey, Astrophys. Dept. Oxford U.]

#
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If we project an object with some speed v from Earth, the object will escape if its total
energy is greater than or equal to zero, but if the total energy is negative, the particle will
eventually stop and fall back to Earth. Similarly, if the total energy of the galaxy is
greater than or equal to zero, it will continue to move away from Earth forever, but if the
total energy is negative, the galaxy will eventually stop moving away from Earth and
start moving back toward Earth. We can see from Equation 13-32 that the total energy of
the galaxy depends on the mass density We can find the critical mass
density of the universe by setting the total energy in Equation 13-32 equal to zero:

Substituting v � H0R from Hubble’s law (Equation 13-27), we obtain

Then

13-33

Substituting the values for H0 and G, we obtain for the critical mass density of the
universe:

This corresponds to about five hydrogen atoms per cubic meter of space.
Determining the present mass density of the universe is thus an important goal.

If it is larger than the expansion will reverse and the universe will collapse. If it is
smaller, then the expansion will continue forever. If it should happen that the
expansion will coast to a stop, but will not begin to contract. It should also be clear
that if is greater than now, it will always be so because it is actually the conser-
vation of energy that determines whether contraction or continued expansion will
occur. Since must decline over time as expansion progresses, the Hubble constant
must also decline over time to ensure that remains larger than In other words,
the Hubble constant must be a function of time H(t), that is, The value
of based on the visible (baryonic matter) universe is only about 4 percent of 
suggesting that the universe will expand forever. However, the dark matter of the
universe discussed earlier affects the value of Together, the visible matter and
dark matter account for about 26 percent of the mass necessary to make 
Examination of the recession rates of the Type Ia “standard candle” supernovae
suggests that dark energy provides the additional 74 percent needed. Recalling
that they have very similar brightness and light curves, the discovery that for a
given brightness the redshifts of distant Type Ia supernovae are less than expected
implies that the universe was expanding at less than the expected rate in the past.
Therefore, the universe is expanding at an accelerated rate today. The implication is
that dark energy corresponds to a repulsive force that is speeding up the expansion.
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This view is independently supported by very recent research that compares the tem-
perature fluctuations in the cosmic microwave background shown in Figure 13-29b
with their origin in the “lumpiness” of matter in the 2dF GRS (see Figure 13-27).

13-8 Cosmology and the Evolution 

of the Universe
Following his completion of general relativity in 1915, Einstein turned to cosmology.
He based his early work on the assumption that the universe was not only homoge-
neous and isotropic, but also constant in time. This is sometimes called the perfect
cosmological principle. He quickly discovered that, like a universe described by
Newton’s gravitational theory, only an empty (no mass) universe can be static. He
found that a static universe could be metastable if it contained mass and a cosmological
constant, thereby committing what he later described as the biggest blunder of his life.
On learning of Hubble’s discovery of the expansion of the universe, he abandoned the
cosmological constant. However, dark energy is essentially a revision of the cosmo-
logical constant for an expanding universe. Since the constant, in effect, generated the
mass of the universe, adjusting its value could shift some of the predicted mass into
energy, thereby accounting for the unseen mass.
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Figure 13-29 (a) The
spectrum of the cosmic
background radiation
measured by NASA’s Cosmic
Background Explorer
(COBE) spacecraft. The dots
are the data points. The solid
curve is the Planck radiation
curve for a blackbody at
2.725 K. [CERN Courier,
June 1991, p. 2, courtesy of
NASA.] (b) This detailed all-
sky picture of the infant
universe includes three years
of WMAP data. It shows 
13.7 � 109-years-old
temperature fluctuations that
were the seeds that eventually
became the galaxies and
provides new clues regarding
events that occurred in the
first trillionth of a second
following the Big Bang. The
range of the temperature
fluctuations is 
[NASA/WMAP Science Team.]
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One difficulty with the steady-state model is a problem known as Olber’s paradox,
first posed by Edmund Halley in 1720, but named after the nineteenth-century physi-
cian-astronomer Wilhelm Olbers who publicized it widely. If there is a uniform distri-
bution of stars throughout an infinite space, then no matter in which direction you look,
you will eventually see a star. Since stars are bright, the night sky should look as bright
as the surface of the average star. (This is analogous to standing in an infinitely large
forest in which all the trees are painted white. Along any line of sight, you will even-
tually see a white tree, so you should see white in all directions.) Why then is the night
sky dark? The solution offered by Olber himself was that interstellar dust absorbs the
light from distant stars. But this is no help since the dust would eventually be heated to
glowing, so the night sky should still be bright.

The solution to this problem came in part with Hubble’s discovery of the expan-
sion of the universe. The point is not that light is redshifted out of the visible region,18

but that the energy of every photon is diminished, since However, redshift
can account for only a very small part of the solution. The key is that, since the ve-
locity of light is finite, looking into space means looking back in time. Looking deeper
into space we eventually would be looking at a time before the stars began to form,
that is, at a time greater than the Hubble age. (In terms of our forest analogy, the dis-
tant trees have not yet been painted white; therefore, if the separation of the trees is
great enough, many lines of sight will end on dark trees.)

A Simple Cosmology Model19

To a considerable extent, descriptions of the origin and evolution of the universe de-
pend on the cosmology model that is used to interpret observations. The appearance
of galaxies at cosmological distances is directly affected by the curvature of spacetime
through which the light travels on its trip to Earth. One would reasonably expect that
the distortion of spacetime would be more complex at higher redshifts when the visi-
ble universe was smaller and the mass density larger than now, which is understand-
ably a region of high interest to cosmologists. A proper interpretation of observations
at high redshifts necessarily requi-
res the use of the general theory
of relativity. Such an application
is beyond the scope of our dis-
cussions; however, we can develop
a useful, albeit approximate view
of the expansion of the uni-
verse with the aid of cosmological
a model based on Newtonian me-
chanics and the cosmological prin-
ciple, then follow up with a very
brief look at the current state of
the theory based on general rela-
tivity and measurements from the
Wilkinson Microwave Anisotropy
Project (WMAP).

Consider a thin spherical
shell of radius r in our homoge-
neous, isotropic universe (Figure
13-30a). The shell contains and
uniformly distributed total mass m.

E � hc>
.
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Universe

(a) (b)

Mass m

r

Universe

Expansion

Mass m

r(t1)

r(t2) > r(t1)

r(t2)

Figure 13-30 (a) Cross section of a thin spherical shell containing mass m in an
isotropic, homogeneous universe. (b) The same shell as it has expanded from its size
at time t1 to time t2 . The thickness of the shell also expands; however, the mass in the
shell is constant. The shell’s comoving coordinate r(t0) remains unchanged.
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Our shell, like all such shells, expands along with the general expansion of the uni-
verse, becoming both large and thicker; however, m remains constant. Assuming grav-
ity to be the only interaction present, the total energy of the mass m within the shell is
the kinetic energy plus the gravitational potential energy:

13-34

where v(t) is the recessional velocity of the shell and Mr is the mass within the sphere
that is enclosed by the shell. Like m, Mr also remains constant because

and, although r and are both functions of time, The mass
of our universe outside the shell exerts no net gravitational force on m. (Why not?)
As the shell expands the gravitational force due to Mr causes the kinetic energy of m
to decrease and the gravitational potential energy to increase, i.e., to become less neg-
ative. Conservation of energy requires that the total energy E be unchanged, so we
will, with remarkable foresight, write the total energy as

13-35

where r(t0) is the radius of the shell at t0 � now and k is a constant with units
(length)�2. As we will see, the constant k determines the geometry of the universe.
Combining Equations 13-34 and 13-35, substituting for Mr , and cancelling m yield

13-36

Referring to Equation 13-36, note that:

• If k � 0, then the total energy of the mass m is negative. In that event there is a
radius r(t) beyond which the shell cannot expand because v is (instantaneously)
zero and we say that the universe is closed or bounded. The shell will then begin
to contract due to the mass Mr interior to the shell and undergo a time-reversed
copy of the expansion back to what is sometimes called the “Big Crunch.”

• If k � 0, then the total energy of the mass m is zero. In that case as
the recession velocity and the shell (and universe)

coast forever toward a halt. We refer to such a universe as flat.

• If k � 0, then the total energy of the mass m is positive. In that event, as r(t)
increases, the gravitational potential energy becomes steadily more negative. 
But v2(t) must continually increase in order to keep the total energy positive.
We then say that the universe is open and will continue to expand forever.

Since the cosmological principle requires that all shells, including ours in Figure 
13-30a, must expand in the same way, that is, the time required for the radii of all
shells to, say, triple, must be the same, we can express the radius r(t) of our shell
(or any shell) as

13-37r(t) � R(t)r(t0)

v (t) S 0tS � , r(t) S �

v2(t) �
8

3
�G�(t) r2(t) � �kc2r2(t0)

E � �
1

2
kmc2r2(t0)

� � r�3.�Mr � (4>3)�r3�

E � K � U �
1

2
mv2(t) �

GMrm

r(t)



where r(t) is the distance from the coordinate origin to the shell (see Figure 13-30a)
and R(t) is the scale factor first introduced in Equation 13-31 which describes the ex-
pansion or contraction of the universe. Since there is nothing special about our shell,
R(t) is the same for all shells. The constant r(t0) that in effect labels the shell is called
the comoving coordinate (see Figure 13-30b). Assuming that the present is t0 ,
R(t0) � 1 and, as we have noted, the present radius of our shell is r(t0). In Equation
13-31 R refers to the rest frame of the observer and R0 to that of the emitting star or
galaxy. Since R(t0) � 1, the scale factor R(t) and the redshift z are related by

13-38

For example, looking back in time to redshift z � 2, the scale factor R � 1 3, that is, the
visible universe was one-third of its present size. Hubble’s law can now be written as

13-39

Differentiating Equation 13-37 with respect to time, substituting into Equation 13-36,
and cancelling r2(t0) yield

13-40

Cosmologists define the density parameter whose
present value is

13-41

and since, as you will show in Problem 13-26,

13-42

In relativistic cosmology models, universes are described in
terms of three components: matter (including dark matter) 
relativistic particles (e.g., neutrinos) and dark energy (the
cosmological constant) Current data suggests that relativistic
particles do not contribute significantly to the energy density at the
present time. Cosmologists, like all scientists, use graphical repre-
sentations whenever possible, in this situation employing a two-
dimensional graph of versus to assess the current state of
the universe. It is reproduced as Figure 13-31. The coordinates

for the best values of the density parameters based on
current WMAP observations are .
Delving further into this and related issues is on the leading edge of
cosmological research, but regretfully beyond the scope of this book.

(0.73 � 0.04, 0.27 � 0.04)
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The Big Bang

Over the past century cosmologists have developed a well-defined standard model of
the universe that fits a comprehensive set of very precise, constraining measurements
and observations. The foundation of the standard model is the Big Bang theory. It is the
observational foundation of the theory that (13.7 � 0.2) � 109 years ago20 the universe
was in a hot, dense state and at that particular time a single event, the Big Bang,21 ini-
tiated an expansion and cooling that has continued to the present time. Two major as-
trophysical discoveries made in the 1960s were the first of several that have convinced
most scientists that the model is correct. The first of the two discoveries that supported
the evolving universe model was Martin Ryle’s22 observations revealing that there is a
higher comoving space density of distant radio galaxies than nearby ones. Since distant
observations correspond to earlier times, this meant that the universe had looked
different at earlier times than it does now; that is, it has evolved over time.

The second discovery was monumental, as important as Hubble’s discovery of the
expansion of the universe itself. In investigating ways of accounting for the cosmic
abundance of elements heavier than hydrogen, cosmologists recognized that nucle-
osynthesis in stars could explain the abundance of those heavier than helium but not
that of helium itself. (See Figure 13-32.) Helium must therefore have been formed
during the Big Bang. Synthesizing the amount of helium that would account for its
present abundance requires that the Big Bang occurred at an extremely high initial
temperature to provide the necessary reaction rate before the fusion was shut down by
the decreasing density due to the very rapid initial expansion. The high temperature
implies a corresponding thermal (blackbody) radiation field that would cool as the ex-
pansion progressed. Theoretical analysis predicted that from the Big Bang to the
present, the remnants of the radiation field should have cooled to a temperature of
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Figure 13-32 The abundances, relative to hydrogen, of elements in the Milky Way up to
Z � 50 (tin). Note the peak at Z � 26 (iron), the sharp decline in abundances after iron, and
the extremely low relative abundances of lithium, beryllium, and boron.
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about 3 K, corresponding to a blackbody spectrum with peak wavelength in the
microwave region. In 1965, the predicted Cosmic Microwave Background (CMB)
radiation was discovered by Arno Penzias and Robert Wilson23 at Bell Labs. Since this
landmark discovery, analysis of data from the Cosmic Background Explorer (COBE)
satellite by John Mather and George Smoot24 and by the Wilkinson Microwave 
Anisotropy Project (WMAP) collaborators have established the temperature of the
background field at 2.725 � 0.001 K with deviations from that value of no more than
a few thousandths of a percent. These results show that the CMB has the isotropic dis-
tribution in space that is absolutely essential for a universe that satisfies the cosmo-
logical principle. Indeed, the Cosmic Microwave Background is the most precise
blackbody known in nature (see Figure 13-29a). In addition, the WMAP detection of
temperature fluctuations in the range of 30 (see Figure 13-29b) provided the first
evidence for density inhomogeneities that cosmologists believe seeded all of the
galactic structure of the universe.

The Very Early History of the Universe

What was the Big Bang like? The singular event that initiated the expansion of the uni-
verse must have been a huge explosion of space that occurred throughout the entire hot,
dense state. Most cosmologists favor the standard model as the theoretical description
of the evolution of the universe following the Big Bang. It relies heavily on recent
experimental discoveries and theoretical advances in particle physics and reflects the in-
creasing overlap of frontier research in those areas of physics over the past several years.
The standard model’s account of how the universe evolved from t � 0 to now, when

years, is outlined in the following discussion and illustrated in Figure 13-33.
In the beginning the universe was dominated by energy at negative pressure which

led to an early exponentially accelerated expansion referred to as inflation. The theo-
retical basis for inflation comes from general relativity and the cosmological principle
which together give the acceleration equation (not intended to be obvious) below.

13-43

where R(t) is the dimensionless scale factor discussed earlier, is the energy density
of the universe, and P is the pressure. Notice that in situations where negative pressure
dominates, the expansion has positive acceleration. This very early period of inflation
for which, bear in mind, we have no direct evidence, is nonetheless successful in re-
solving several cosmological questions, including (1) Why is the CMB temperature so
uniform in every direction? (2) Why is the geometry of the universe so close to being
flat? (3) Why do we not see magnetic monopoles? (4) What is the origin of the
anisotropies measured by WMAP? Following that brief, but extremely rapid inflation,
the universe was dominated by radiation, then subsequently by matter. Recently, cos-
mologically speaking, it has again become dominated by a negative energy pressure
which is driving a new, but slower acceleration of the general expansion. Today, as we
have alluded to earlier, matter accounts for only about 26 percent of the energy den-
sity of the universe, only 4 percent being ordinary matter. (See Figure13-34). The other
22 percent is the cold dark matter (CDM) discussed earlier that neither emits nor re-
flects light or is affected by radiation pressure, but does participate in the gravitational
interaction. Figure 13-34c shows what may be the first indirect observation of dark
matter. Dark energy, the remaining 74 percent of the energy density of the universe, is
apparently driving the new acceleration.
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Initially, the four forces of nature (strong, electromagnetic, weak, and gravity)
were unified into a single force. Physicists have been successful in developing theo-
retical descriptions that unify the first three, but a theory of quantum gravity, needed
for the extreme densities of the single-force period, does not yet exist. Consequently,
until the cooling universe “froze” or “condensed out” the gravitational force about
10�43 seconds after the Big Bang when the temperature was still 1032 K, we have no
means of describing what was occurring. At this point the average energy of the par-
ticles would have been about 1019 GeV. As the universe continued to cool below 1032

K the three forces other than gravity remained unified and are described by grand uni-
fication theories (GUTs). Quarks and leptons were indistinguishable and particle
quantum numbers were not conserved. It was during this period that a slight excess of
quarks over antiquarks occurred, roughly 1 in 109, that ultimately resulted in the mat-
ter that we now observe in the universe.

Dark matter
22%

Atoms
4%

Dark energy
74%

(a) (c)

(b)

Figure 13-34 (a) The mass-energy content of the universe. Recent observations indicate that the dark energy is driving
a renewed acceleration of the general expansion of the universe. (b) Stellar velocities in M31. Newton’s law of
gravitation requires that constant velocity implies Thus, in M31 much of the mass lies well beyond the visible
extent of the galaxy, a very early indicator of dark matter. (c) Galaxy cluster 1E0657-558 resulted from a small cluster
passing through a larger one some time in the past. Using this cluster as a gravitational lens for more distant galaxies
made possible the mapping of the gravitational potential of 1E0657-588 (the large fuzzy “cloud”). X-ray emission
recorded by the Chandra X-Ray Observatory of the two central, darker portions of the “cloud” reveal the hot gases
(ordinary matter) of the two original colliding clusters. The lighter portions to the outside of the “cloud” are inferred to
be dark matter. [The authors thank Vera Rubin for permission to use image (b). (b) Vera Rubin and Janice Dunlap. (c) X-ray
courtesy NASA/CXC/CfA/M Markevitch et al.; optical courtesy NASA/STScl; Magellan/U Arizona/D Clowe et al.; lensing
map courtesy NASA/STScl; ESO WFI; Magellan/U Arizona/D Clowe et al.)]

M � r.
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At 10�35 seconds, the universe had expanded sufficiently to cool to about 1027 K
at which point another phase transition occurred as the strong force condensed out of
the grand unified group, leaving only the electromagnetic and weak forces still uni-
fied as the electroweak force. During this period the previously free quarks in the
dense mixture of roughly equal numbers of quarks, leptons, their antiparticles, and
photons began to combine into hadrons and their antiparticles, including the nucleons.
By the time the universe had cooled to about 1013 K, at about t � 10�6 s, the hadrons
had mostly disappeared through annihilation. This is because 1013 K corresponds to

which is the minimum energy needed to create nucleons and antinucle-
ons from the photons present via the reactions

13-44a
and

13-44b

The particle-antiparticle pairs annihilated and there was no new production to replace
them. Only the slight earlier excess of quarks led to a slight excess of protons and neu-
trons over their antiparticles. The annihilations resulted in photons and leptons and after
about t � 10�4 seconds, those particles in roughly equal numbers dominated the uni-
verse. This was the lepton era. At about t � 10 seconds the temperature had fallen to
1010 K ( ). Further expansion and cooling dropped the average photon en-
ergy below that needed to form an electron-positron pair. Annihilation then removed
all of the positrons as it had the antiprotons and antineutrons earlier, leaving only the
small excess of electrons arising from charge conservation, and the radiation era began.
The particles present were primarily photons and neutrinos.

Within a few more minutes, the temperature dropped sufficiently to enable fusing
protons and neutrons to form nuclei that were not immediately photodisintegrated.
Deuterium, helium, and a bit of lithium were produced in this nucleosynthesis period,
but the rapid expansion soon dropped the temperature too low for the fusion to con-
tinue and the formation of heavier elements had to await the birth of stars.

A long time later, when the temperature dropped to about 3000 K as the universe
grew to about of its present size, kT dropped below typical atomic ionization
energies and atoms were formed. By then the expansion had cooled the radiation field
so that the total radiation energy was now about equal to the energy represented by the
remaining mass. This occurred when the scale factor R(t) reached about 2.8 � 10�4.
As expansion and cooling continued, the energy of the steadily redshifting radiation
declined until matter came to dominate the universe, its energy density exceeding that
of today’s 2.725 K radiation remaining from the Big Bang by about a factor of 1000.
Now, once again, energy at negative pressure appears to dominate.

Unanswered Questions and the Limits of Knowledge

The standard model of the evolution of the universe and the current theories of stellar
and galactic genesis and evolution have been amazingly successful. Still, some funda-
mental questions that have arisen during our discussions remain unanswered. Will the
universe expand forever or rebound to its initial state and repeat the Big Bang? The an-
swer depends on whether the present average matter density is greater or less than the
critical density of about 10�26 kg m3. The uncertainty in the current measurements
would allow either possibility, but the value is tantalizingly close to the critical value.
If it does equal the critical value, an intriguing additional question is, Why? We have noted
the serious problem of the dark matter and how it might be explained. Answering some
of these questions requires that we probe at the current limits of physical knowledge.

>

1>1000

kT � 1 MeV

 ¡ n � n

 ¡ p� � p�
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For example, near a mass m, general relativity prevents our seeing events occurring at
dimensions less than the Schwarzschild radius, the event horizon,

13-45

On the other hand the uncertainty principle in quantum theory places this limit at the
Compton wavelength 

13-46

Equating these, an expression for m that depends only on universal
constants, where kg. That relation for m together with Equation 13-46 al-
lows the corresponding definition of a length unit dependent only on universal con-
stants. That length and the time for light to travel across that length
can be similarly expressed as

13-47

In terms of these units the mass density of the universe is such that a mass m is contained
within a volume of dimensions The definition of the units of mass,
length, and time in terms of fundamental constants was originally pointed out by Planck25

and are the basis for Planck units, the topic of the Exploring section that follows.
Some cosmologists have suggested that, if the universe had evolved even slightly

differently than it has, perhaps due to a slightly different value for h or e or some other
fundamental constant, life on Earth and maybe Earth itself would be impossible. This
can be attributed to the anthropic principle, that the universe looks as it does because
we are here to see it.

EXPLORING

“Natural” Planck Units

Not long after Max Planck had introduced the constant h in fitting physical theory to the
emission spectrum of a blackbody, he pointed out that a system of “natural” units for the
fundamental quantities of mass, length, time, and temperature could be constructed from
the three fundamental constants c, and G, where � Planck’s constant 2 c � speed
of light, and G � Newton’s gravitation constant.

Planck mass:

Planck length:

Planck time:

Planck energy:
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If length, mass, temperature, and time are measured in Planck units, the result is the
“natural” units often used by particle physicists, astrophysicists, and cosmologists:

When first proposed, Planck’s suggested units had little basis in fundamental physics,
but over time that has changed. As Frank Wilczek26 has pointed out, Planck’s proposal
has now become compelling: the constant is now the fundamental unit of action
and c the fundamental unit of velocity. These are the primary units of measurement in
the two great theories of modern physics, quantum mechanics and special relativity.
The corresponding unit in general relativity is G (actually 1 Gc4).

As Wilczek speculates, with the natural units of measure it may soon be possible
to understand why, compared to the other forces in nature, the gravitational force is so
weak and how we can account for the value of the proton’s mass. In addition, he sug-
gests that we have the beginnings of a quantum theory of gravity that agrees accurately
with all existing experimental data. Thus, Einstein’s goal of the unification of the four
natural forces may be just over the horizon.

>
U

c � kB � U � G � 1 .

Summary

TOPIC RELEVANT EQUATIONS AND REMARKS

1. The Sun The solar energy received at the top of Earth’s atmosphere, called the solar constant, is

13-1

The rate at which the Sun emits energy is the luminosity 

13-2

Surface temperature Assuming that the Sun radiates as a blackbody, its effective surface temperature can be
computed from the Stefan-Boltzmann law:

Source of Sun’s energy The source of the Sun’s energy in nuclear fusion, mainly via the proton-proton cycle
which starts with the reaction

13-5

2. The stars Stars are classed as either population I or population II, based on their composition.
The former have 2 to 3 percent of their mass composed of elements heavier than helium;
the latter are nearly devoid of those elements.

The Milky Way Our galaxy, the Milky Way, consists of about 1010 stars. The Sun is about 28,000 c y from
the center of the Galaxy, which is in the direction of the constellation Sagittarius from us.
Only about 4 percent of the mass of the Galaxy is accounted for by the visible stars and
the gas and dust of the ISM.

3. Evolution of the stars The Hertzsprung-Russell diagram displays the evolution of stars, relating their
luminosities to their effective temperatures. Both quantities are related to the stellar mass.

13-14

13-17

Stars “burning” hydrogen to helium fall on the main sequence of the H-R diagram.
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Final states of stars Following exhaustion of their hydrogen fuel, stars evolve to one of three possible final states,
dependent on their mass: white dwarf, neutron star, or black hole. It is in cataclysmic events
accompanying evolution to these states that elements heavier than Fe are formed.

4. Galaxies Edwin Hubble grouped galaxies into four general categories: ellipticals, spirals, barred
spirals, and irregulars.

Hubble’s law Hubble showed that the universe was expanding and, using spectral redshifts to determine
the velocities of galaxies, that the recession velocities v were proportional to the distance r
from us according to

13-27

where the Hubble constant H0 is

13-28

The quantity 1 H0 � 1.3 � 1010 y is the Hubble age. It would correspond to the age of
the universe under a constant velocity expansion if gravitational pull on receding galaxies
were ignored.

5. Gravitation and cosmology The cosmological principle states that the universe has the same physical properties
everywhere and looks the same in every direction from every location. The current theory
of cosmology, called the standard model, describes the universe as having begun with the
Big Bang 13.7 � 1010 years ago. It has substantial theoretical and observational support.

Inflation The standard model holds that the very early universe underwent a period of exponentially
accelerated growth which explains many features of the current universe. After a long
period of slowing, the expansion of the universe is again accelerating.

>H0 � 71 � 4 km>s per Mpc � 22 � 2 km>s per 106 c # y

v � H0r

General References

The following general references are written at a level appro-
priate for the readers of this book.

Akerlof, C. W., and M. A. Srednicki, Relativistic Astrophysics
and Particle Cosmology, New York Academy of
Sciences, New York, 1993.

Bahcall, J. N., Neutrino Astrophysics, Cambridge University
Press, New York, 1989.

Bennett, J., M. Donahue, N. Schneider, and M. Voit, Stars,
Galaxies, and Cosmology, 2d ed., Addison Wesley, San
Francisco, 2002.

Carroll, B. W., and D. A. Ostlie, An Introduction to Modern
Astrophysics, 2d ed., Pearson Addison Wesley, San
Francisco, 2007.

Comins, N. F., and W. J. Kaufmann III, Discovering the
Universe, 6th ed., W. H. Freeman, New York, 2003.

Frauenfelder, H., and E. M. Henley, Subatomic Physics, 2d
ed., Prentice Hall, Englewood Cliffs, N.J., 1991.

Pasachoff, J. M., Contemporary Astronomy, Saunders,
Philadelphia, 1977.

Rees, M., Before the Beginning, Addison Wesley, San
Francisco, 1997.

Ryden, B., Introduction to Cosmology, Addison Wesley, San
Francisco, 2003.

Shu, F. H., The Physical Universe, University Science Books,
Mill Valley, Calif., 1982.

Weinberg, S., The First Three Minutes, updated ed., Basic
Books, New York, 1993.

Notes

1. Hans Albrecht Bethe (1906–2005). He made the proposal
concerning stellar energy sources in 1938. One of those who
worked on the Manhattan Project during World War II, he re-
ceived the Nobel Prize for his work on the Sun’s energy
source in 1967.

2. John Bahcall (1934–2005), American physicist. His de-
finitive theoretical analysis of the solar neutrino spectrum pro-
vided the benchmark for experimentalists whose measure-
ments ultimately confirmed neutrino oscillations.

TOPIC RELEVANT EQUATIONS AND REMARKS
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3. The reaction by which Davis’s detector detected neutri-
nos is Seventy-seven percent of
the neutrinos producing this reaction were from the decay,
step 6 of the p-p cycle shown in Table 13-1.

4. The term galaxy is derived from the Greek word for milk.
5. Apart from the Sun, Sirius is the brightest star in the sky.
6. Annie Jump Cannon (1863–1941). An astronomer at the

Harvard Observatory, her work on stellar classification sys-
tems forms the basis of the Henry Draper Catalogue which
contains the spectral classifications of 225,300 stars.

7. Hipparchus (circa 190 B.C.–circa 120 B.C.). The greatest of
the Greek astronomers, he created the stellar magnitude system
of classifying stars by brightness. He measured the size and dis-
tance to the Sun and Moon and made the first accurate star map
showing the positions of about 1000 of the brightest stars.

8. Astronomers customarily capitalize the word Galaxy
when it refers to the Milky Way.

9. Harlow Shapley (1885–1972). A long-time director of the
Harvard Observatory, he was an early and vocal supporter of
civil liberties and peace movements in the United States.
10. The term “right ascension” for the celestial longitude ap-
parently comes from the appearance of the stars as rising ver-
tically, i.e., at a right angle to the line of sight to the horizon
each night.
11. Equinox means day and night are equal; solstice means
“standing Sun.”
12. Edouard A. Roche (1820–1883). A French astronomer, he
also showed that a small body orbiting a large body would be
broken up by tidal forces if it comes within 2.5 times the ra-
dius of the larger body. The distance is referred to as Roche’s
limit. It corresponds approximately to the outer limit of plan-
etary ring systems in the solar system.
13. Subrahmanyan Chandrasekhar (1910–1995). He received
his Ph.D. under P. A. M. Dirac and spent most of his career
at the University of Chicago. He shared the 1983 Nobel Prize
in Physics for his work on the evolution of stars. The Chandra
X-Ray Observatory is named for him.
14. The possibility of black holes was first suggested by Rev.
John Mitchell, an English amateur astronomer, in 1783. He ob-
served that a star with the same density, but 500 times the radius
of the Sun would have an escape velocity greater than the speed
of light. He speculated that light could not leave such a star. The
name black hole was coined by physicist John Wheeler.

8B

37
17Cl � �e S 37

18Ar � e�.
15. Gamma-ray bursts are named according to the first date
of observation: GRB yymmdd
16. Edwin P. Hubble (1889–1953). Trained as a lawyer, he
was influenced to take up astronomy partly by R. A. Millikan.
In recognition of his many contributions, he was accorded the
honor of being the first user of the 5-m Hale telescope on
Mount Palomar.
17. Cepheid variables are rare stars for which a relation exists
connecting the period of intensity variation to the brightness
and, hence, to the distance from the Sun. They were one of the
earliest means of measuring astronomical distances. Polaris,
the current Pole Star, is a Cepheid variable.
18. Light beyond the blue of the visible region would be
shifted into the visible. Indeed, the visible region might even
get brighter!
19. This discussion is based on the development in the
early part of Chapter 29 of Carroll and Ostlie (see General
References).
20. This age of the universe results from measurements made
by the Wilkinson Microwave Anisotropy Project.
21. The term Big Bang was coined by the eminent as-
tronomer Fred Hoyle, a steadfast proponent of the steady-state
universe, intending the term as derision of the expanding uni-
verse cosmology.
22. Sir Martin Ryle (1918–1984). His invention of long-
baseline radiointerferometry resulted in his sharing the Nobel
Prize in 1974.
23. Arno Allan Penzias (b. 1933), German-American phy-
sicist, and Robert Woodrow Wilson (b. 1936), American
radioastronomer. Their discovery of the cosmic microwave
background radiation, first predicted by George Gamow 20
years earlier, earned each of them a share of the 1978 Nobel
Prize in Physics.
24. Frank C. Mather (b. 1946) and George F. Smoot (b. 1945),
American physicists, shared the 2006 Nobel Prize in Physics
for this work which provides very strong support for the Big
Bang theory.
25. M. Planck, Sitzungsber. “Dtsh. Akad. Wiss,” Berlin,
Math-Phys. Tech. Kl., 440 (1899).
26. Frank Wilczek, American physicist, in the series “Scaling
Mount Planck” in Physics Today, June 2001, November 2001,
and August 2002. He shared the Nobel Prize in Physics in
2004 for his contributions to quark theory.

Problems

Level I

Section 13-1 The Sun

13-1. Measurement of the Doppler shift of spectral lines in light from the east and west limbs
of the Sun at the solar equator reveal that the tangential velocities of the limbs differ by 4 km s.
Use this result to compute the approximate period of the Sun’s rotation. ( )
13-2. The gravitational potential energy U of a self-gravitating spherical body of mass M and
radius R is a function of the details of the mass distribution. For the Sun 
What would be the approximate lifetime of the Sun, radiating at its present rate, if the source of
its emitted energy were entirely derived from gravitational contraction? ( )M} � 1.99 � 1030 kg

U} � �2GM2
}>R} .

R} � 6.96 � 105 km
>
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Section 13-2 The Stars

13-3. Lithium, beryllium, and boron (Z � 3, 4, and 5, respectively) have very low abundances
in the cosmos compared to many heavier elements. (See Figure 13-32.) Considering the fusion
of He to C, explain these low abundances.
13-4. The Sun is moving with speed 2.5 � 105 m s in a circular orbit about the center of the
Galaxy. How long (in Earth years) does it take to complete one orbit? How many orbits has it
completed since it was formed?
13-5. The reason that massive neutrinos were considered as a candidate for solving the miss-
ing mass problem is that, at the conclusion of the lepton era, the universe contained about equal
numbers of photons and neutrinos. They are still here, for the most part. The former can be ob-
served and their density is measured to be about 500 photons cm3; thus, there must be about
that number density of neutrinos in the universe, too. If neutrinos have a nonzero mass and if
the cosmological expansion has reduced their average speed so that their energy is now pri-
marily mass, what would be the individual neutrino mass (in eV c2) necessary to account for
the missing mass of the universe? Recall that the observed mass of the stars and galaxies (in-
cluding the dust and gas) accounts for only about 4 percent of that needed to close the universe.
13-6. Using data from Table 13-3, construct a graph that demonstrates the validity of Equation
13-17.
13-7. Recalling that the light-year c y is the distance light travels in one year, compute in me-
ters the distance equivalent to 1 light-second, 1 light-minute, 1 light-hour, and 1 light-day.

Section 13-3 The Evolution ofStars

13-8. A unit of length often used by astronomers to measure distances in “nearby” space is the
parsec (pc), defined as the distance at which a star subtends a parallax angle of one arc second
due to Earth’s orbit around the Sun. (See Equation 13-11 and Example 13-4.) The practical limit
of such measurements is 0.01 arc second. (a) How many light-years is 1 pc? (b) If the density of
stars in the Sun’s region of the Milky Way is 0.08 stars pc3 , how many stars could, in principle,
have their distances from us measured by the trigonometric parallax method?
13-9. Astronomers often use the apparent magnitude m as a means of comparing the visual
brightness of stars and relating the comparison to the luminosity and distance to “standard” stars,
such as the Sun. (See Equation 13-9.) The difference in the apparent magnitudes of two stars m1
and m2 is defined as a relation based on the logarithmic response of
the human eye to the brightness of objects. Pollux, one of the “twins” in the constellation Gemini,
has apparent magnitude 1.16 and is 12 pc away. Betelgeuse, the star at Orion’s right shoulder, has
apparent magnitude 0.41. How far away is Betelgeuse, if they have the same luminosity?
13-10. Using the H-R diagram (Figure 13-17), determine the effective temperature and the lu-
minosity of a star whose mass is (a) 0.3 and (b) 3 (c) Compute the radius of each star.
(d) Determine their expected lifetimes, relative to that of the Sun.
13-11. Two stars in a binary system are located 100 c y from Earth and separated from each
other by 108 km. What is the angular separation of the stars in arc seconds? In degrees?

Section 13-4 Cataclysmic Events

13-12. Compute the energy required (in MeV) to produce each of the photodisintegration re-
actions in Equations 13-19 and 13-20.
13-13. The gas shell of a planetary nebula shown at the right in Figure 13-18 is expanding at
24 km s. Its diameter is 1.5 c y. (a) How old is the gas shell? (b) If the central star of the plan-
etary nebula is 12 times as luminous as the Sun and 15 times hotter, what is the radius of the
central star in units of ?

Section 13-5 Final States of Stars

13-14. Calculate the Schwarzschild radius of a star whose mass is equal to that of (a) the Sun,
(b) Jupiter, (c) Earth. (The mass of Jupiter is approximately 318 times that of Earth.)
13-15. Consider a neutron star whose mass equals (a) Compute the star’s radius. (b) If
the neutron star is rotating at 0.5 rev s and assuming its density to be uniform, what is its rota-
tional kinetic energy? (c) If its rotation slows by 1 part in 108 per day and the lost kinetic en-
ergy is all radiated, what is the star’s luminosity?

> 2M} .

R}

#>

#
M} .M}

m2 � m1 � 2.5 log (f1>f2),
>

#

>
>

>
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13-16. If the 90 percent of the Milky Way’s mass which is “missing” resides entirely in a large
black hole at the center of the Galaxy, what would be the black hole’s (a) mass and (b) radius?

Section 13-6 Galaxies

13-17. Redshift measurements for a particular galaxy indicate that it has a recession velocity
of 72,000 km s. (a) Compute the distance to the galaxy. (b) The value of Hubble’s constant de-
pends critically on calibration distance measurements which are difficult to make. If the cali-
bration distance measurements are in error by 10 percent, by how much is the age calculated
from Equation 13-28 in error?
13-18. The bright core of a certain Seyfert galaxy had a luminosity of The luminosity
increased by 100 percent in a period of 18 months. Show that this means that the energy source
of the core is less than 9.45 � 104 AU in diameter. How does this compare to the diameter of
the Milky Way?

Section 13-7 Cosmology and Gravitation

13-19. Evaluate Equation 13-33 for the critical density of the universe.

Section 13-8 Cosmology and the Evolution of the Universe

13-20. Cosmological theory suggests that the average separation of galaxies, i.e., the scale of
the universe, is inversely proportional to the absolute temperature. If that is true, relative to the
present size, how large was the universe compared to the scale today (a) 2000 years ago, (b) 106

years ago, (c) t � 10 s after the Big Bang, (d) when t � 1 s and, (e) when t � 10�6 s?
13-21. Determine the value of the mass density of the universe for t � Planck time. How does
this compare to the density of the proton? Of osmium?
13-22. At what wavelength is the blackbody radiation distribution of the cosmic microwave
background at a maximum?
13-23. How long after the Big Bang did it take the universe to cool to the threshold tempera-
ture for the formation of muons? What would be the mass of a particle-antiparticle pair that
could be formed by the average energy of the current 2.725 K background radiation?
13-24. Show that the present mass density of the universe 

Level II

13-25. If Hubble’s Law is true for an observer in the Milky Way (i.e., us), prove that it must
also be true for observers in other galaxies. (Hint: Use the vector property of the velocity.)
13-26. Show that the mass density of the universe at redshift z is given by 
13-27. When the Sun was formed about 75 percent of its mass was hydrogen, of which only
about 13 percent ever becomes available for fusion. (The rest is in regions of the Sun where the
temperature is too low for fusion reactions to occur.) and the Sun fuses
about 6 � 1011 kg s. (a) Compute the total mass of hydrogen available for fusion during the
Sun’s lifetime. (b) How long (in years) will the Sun’s initial supply of hydrogen last? (c) Since
the solar system is currently about 4.6 � 109 years old, when should we begin to worry about
the Sun running out of hydrogen for fusion?
13-28. Supernova SN1987A was first visible at Earth in 1987. (a) How many years B.P. (before
present) did the explosion occur? (b) If protons with 100 GeV of kinetic energy were produced
in the event, when should they arrive at Earth?
13-29. Assume that the Sun when it first formed was composed of 70 percent hydrogen. How
many hydrogen nuclei were there in the Sun at that time? How much energy would ultimately
be released if all of the hydrogen nuclei fused into helium? Astrophysicists have predicted that
the Sun can radiate energy at its current rate until about 23 percent of the hydrogen has been
“burned.” What total lifetime for the Sun does that prediction imply? Compare these results
with the corresponding ones from Problem 13-27.
13-30. Kepler’s third law states that the square of a planet’s orbital speed is proportional to the
cube of its average orbital radius. Use Kepler’s third law to answer each of the following ques-
tions. (a) The Moon’s orbital radius is 3.84 � 105 km and it orbits Earth once every 27.3 d.
Neglecting the Moon’s mass, compute the mass of Earth. (b) Io (one of Jupiter’s moons) orbits
Jupiter once every 42.5 h in a near-circular orbit of average radius 4.22 � 105 km. Neglecting

> M} � 2 � 1030 kg

�(z) � �(1 � z)3.

�0 � R(t)�(t).

1010L} .

>
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Io’s mass, compute the mass of Jupiter. (c) Compute the orbital period of the International
Space Station as it orbits 300 km above Earth’s surface. (d) Charon, a moon of Pluto, orbits that
planet once every 6.4 d at an average distance of 1.97 � 104 km. Compute the total mass of
Pluto and Charon. What fraction of Earth’s mass is this? (e) Using the data for the star S2, com-
pute the volume (upper limit) that confines the black hole at the center of the Milky Way.
Compare the result with the volume of the Sun.
13-31. Consider an eclipsing binary whose orbital plane is parallel to our line of sight. Doppler
measurements of the radial velocity of each component of the binary are shown in Figure 13-35.
Assume that the mass m1 � m2 and that the orbits of each component about the center of mass are
circular. (a) What is the period T and the angular frequency of the binary? (b) Show that in this
case where r � separation of the binary. (c) Compute the values of m1,
m2, and r from the data in the v versus t graph.

(m1 � m2) � (�2 r3)>G,
�

t, days
m1

m2

1510
5

–200

200

0

v, km/s

Figure 13-35

13-32. Prove that the total energy of Earth’s orbital motion is
equal to one-half of its gravitational potential energy where r is Earth’s orbit radius.
13-33. Given the currently accepted value of the Hubble constant and the fact that the average
matter density of the universe is one H atom m3, what creation rate of new H atoms would be
necessary in a steady-state model to maintain the present mass density, even though the universe
is expanding? (Give your answer in H atoms m3 per 106 years.) Would you expect such a spon-
taneous creation rate to be readily observable?

Level III

13-34. The ability of a planet to retain particular gases in an atmosphere depends on the tem-
perature that its atmosphere has (or would have) and the escape velocity for the planet. In gen-
eral, if the average speed of a particular gas molecule exceeds of the escape velocity, that
gas will disappear from the atmosphere in about 108 years. (a) Graph the average speed of H2O,
CO2, O2, CH4, H2, and He from 50 K to 1000 K. On the same graph show the points represent-
ing of the escape velocity versus average temperature of the atmosphere for the planets in
Table 13-5 below. (b) Show that the escape speed v from a planet is given by

v

vEarth

� A
(M>MEarth)

(R>REarth)

1>6
1>6

>>
(�GM} m>r),E � (mv2>2) � (�GM} m>r)

Table 13-5 Atmospheric temperatures

Average T
atmo

(K) Planet M M
Earth

R R
Earth

300 Earth 1.00 1.00

390 Venus 0.81 0.95

600 Mercury 0.06 0.38

150 Jupiter 318.00 11.00

60 Neptune 17.00 3.90

290 Mars 0.11 0.53

>>
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(c) Which of the six gases plotted probably would and would not currently be found in the at-
mospheres of the solar system bodies in the table? Explain each answer briefly.
13-35. Using the parallax technique, compute the distance to (a) Alpha Centauri (parallax
angle 0.742 arc seconds) and (b) Procyon (parallax angle 0.0286 arc second. Express each an-
swer in both light-years and parsecs.
13-36. As the Sun evolves into a red giant star, suppose that its luminosity increases by a fac-
tor of 102. Show that Earth’s oceans will evaporate, but that the water vapor will not escape from
the atmosphere.
13-37. The approximate mass of dust in the Galaxy can be computed from the observed ex-
tinction of starlight. Assuming the mean radius of dust grains to be R with a uniform number
density n grains cm3, (a) show that the mean free path d0 of a photon in interstellar dust is given
by (b) Starlight traveling toward an Earth observer a distance d from the star
has intensity

In the vicinity of the Sun, a measurement of I yields d0 � 3000 c y. If R � 10�5 cm, calculate n.
(c) The average mass density of solid material in the Galaxy is 2 g cm3 and in the disk the den-
sity of stars is about 1 Compute the ratio of the mass density of dust to the mass
density of stars, assuming 1 in 300 (c y)3.
13-38. The supernova SN1987A certainly produced some heavy elements. Compared to the
energy released in fusing 56 atoms into one atom starting from the proton-proton cycle,
how much energy would be required to fuse two atoms into one atom?
13-39. Current theory suggests that black holes evaporate by the emission of Hawking radiation
in a time t that depends on the mass M of the black hole according to the following relation:

(a) Explain without calculating anything why the formula implies that high-mass black holes
have longer lifetimes than low-mass ones and why the rate of evaporation accelerates as the
black hole loses mass. (b) Compute the lifetime of a black hole whose mass equals 
Compare this time with the current age of the universe. (c) According to some theories, the
largest black hole that could conceivably form would have a mass 1012 of the order of
the mass of an entire galaxy. What would be the lifetime of a black hole that large?

M} ,

1M} .

t � (1.024 � 104�2 m3>s2)G2M2>hc4

112Cd56Fe

56Fe1H

#M}

M} >300 (c # y)3.
>#

I � I0e
�d>d0

d0 � 1>(n�R2).
>



Mass
Chemical number Half-life and

atomic (* indicates Atomic Percent decay mode
Z Element Symbol weight radioactive) mass abundance (if unstable)

0 (Neutron) n 1* 1.008665 10.4 m

1 Hydrogen H 1.00798 1 1.007825 99.985
Deuterium D 2 2.014102 0.015
Tritium T 3* 3.016049

2 Helium He 4.00260 3 3.016029 0.00014
4 4.002602 99.99986
6* 6.018886
8* 8.033922

3 Lithium Li 6.941 6 6.015121 7.5
7 7.016003 92.5
8* 8.022486
9* 9.026789

11* 11.043897

4 Beryllium Be 9.0122 7* 7.016928 53.3 d ec
9 9.012174 100

10* 10.013534
11* 11.021657
12* 12.026921
14* 14.042866

5 Boron B 10.811 8* 8.024605
10 10.012936 19.9
11 11.009305 80.1
12* 12.014352
13* 13.017780
14* 14.025404
15* 15.031100

6 Carbon C 12.011 9* 9.031030
10* 10.016854
11* 11.011433
12 12.000000 98.90
13 13.003355 1.10
14* 14.003242
15* 15.010599
16* 16.014701
17* 17.022582 ��0.20 s

��0.75 s
��2.45 s
��5730 y

��20.4 m
��19.3 s
��0.13 s

��10.3 ms
��13.8 ms
��17.4 ms
��0.0202 s

��0.77 s

��4.3 ms
��23.6 ms
��13.8 s
��1.5 � 106 y

��8.7 ms
��0.18 s
��0.84 s

��0.12 s
��0.81 s

��12.33 y

��

Table of Atomic Masses
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AP-2 Appendix A

7 Nitrogen N 14.0067 12* 12.018613
13* 13.005738
14 14.003074 99.63
15 15.000108 0.37
16* 16.006100
17* 17.008450
18* 18.014082
19* 19.017038

8 Oxygen O 15.9994 13* 13.024813
14* 14.008595
15* 15.003065
16 15.994915 99.71
17 16.999132 0.039
18 17.999160 0.20
19* 19.003577
20* 20.004076
21* 21.008595

9 Fluorine F 18.99840 17* 17.002094
18* 18.000937
19 18.998404 100
20* 19.999982
21* 20.999950
22* 22.003036
23* 23.003564

10 Neon Ne 20.180 18* 18.005710
19* 19.001880
20 19.992435 90.48
21 20.993841 0.27
22 21.991383 9.25
23* 22.994465
24* 23.993999
25* 24.997789

11 Sodium Na 22.98977 21* 20.997650
22* 21.994434
23 22.989767 100
24* 23.990961
25* 24.989951
26* 25.992588

12 Magnesium Mg 24.3051 23* 22.994124
24 23.985042 78.99
25 24.985838 10.00
26 25.982594 11.01
27* 26.984341
28* 27.983876
29* 28.375346 ��1.30 s

��20.9 h
��9.46 m

��11.3 s

��1.07 s
��59.1 s
��14.96 h

��2.61 y
��22.5 s

��0.60 s
��3.38 m
��37.2 s

��17.2 s
��1.67 s

��2.2 s
��4.2 s
��4.2 s
��11.0 s

��109.8 m
��64.5 s

��3.4 s
��13.6 s
��26.9 s

��122 s
��70.6 s
��8.6 ms

��0.24 s
��0.62 s
��4.17 s
��7.13 s

��9.96 m
��0.0110 s

Mass
Chemical number Half-life and

atomic (* indicates Atomic Percent decay mode
Z Element Symbol weight radioactive) mass abundance (if unstable)



13 Aluminum Al 26.98154 25* 24.990429
26* 25.986892
27 26.981538 100
28* 27.981910
29* 28.980445
30* 29.982965

14 Silicon Si 28.086 27* 26.986704
28 27.976927 92.23
29 28.976495 4.67
30 28.973770 3.10
31* 30.975362
32* 31.974148
33* 32.977928

15 Phosphorus P 30.97376 30* 29.978307
31 30.973762 100
32* 31.973762
33* 32.971725
34* 33.973636

16 Sulfur S 32.066 31* 30.979554
32 31.972071 95.02
33 32.971459 0.75
34 33.967867 4.21
35* 34.969033
36 35.967081 0.02

17 Chlorine Cl 35.453 34* 33.973763
35 34.968853 75.77
36* 35.968307
37 36.965903 24.23
38* 37.968010

18 Argon Ar 39.948 36 35.967547 0.337
37* 36.966776
38 37.962732 0.063
39* 38.964314
40 39.962384 99.600
42* 41.963049

19 Potassium K 39.0983 39 38.963708 93.2581
40* 39.964000 0.0117
41 40.961827 6.7302
42* 41.962404
43* 42.960716 ��22.3 h

��12.4 h

��, ec, ��1.28 � 109 y

��33 y

��269 y

ec35.04 d

��37.3 m

��3.0 � 105 y

��32.2 m

��87.5 d

��2.57 s

��12.43 s
��25.3 d
��14.26 d

��2.50 m

��6.13 s
��172 y
��2.62 h

��4.16 s

��3.60 s
��6.56 m
��2.24 m

��7.4 � 105 y
��7.18 s

Appendix A AP-3

Mass
Chemical number Half-life and

atomic (* indicates Atomic Percent decay mode
Z Element Symbol weight radioactive) mass abundance (if unstable)
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20 Calcium Ca 40.078 40 39.962591 96.941
41* 40.962279
42 41.958618 0.647
43 42.958767 0.135
44 43.955481 2.086
46 45.953687 0.004
48 47.952534 0.187

21 Scandium Sc 44.9559 41* 40.969250
43* 42.961151
45 44.955911 100
46* 45.955170

22 Titanium Ti 47.88 44* 43.959691
46 45.952630 8.0
47 46.951765 7.3
48 47.947947 73.8
49 48.947871 5.5
50 49.944792 5.4

23 Vanadium V 50.9415 48* 47.952255
50* 49.947161 0.25
51 50.943962 99.75

24 Chromium Cr 51.996 48* 47.954033
50 49.946047 4.345
52 51.940511 83.79
53 52.940652 9.50
54 53.938883 2.365

25 Manganese Mn 54.93805 53* 52.941292
54* 53.940361
55 54.938048 100
56* 55.938908

26 Iron Fe 55.847 54 53.939613 5.9
55* 54.938297
56 55.934940 91.72
57 56.935396 2.1
58 57.933278 0.28
60* 59.934078

27 Cobalt Co 58.93320 57* 56.936294
58* 57.935755
59 58.933198 100
60* 59.933820
61* 60.932478 ��1.65 h

��5.27 y

ec, ��70.9 h
ec271.8 d

��1.5 � 106 y

ec2.7 y

��2.58 h

ec312.1 d
ec3.74 � 106 y

ec21.6 h

��1.5 � 1017 y
��15.97 d

ec49 y

��83.8 d

��3.89 h
��0.596 s

ec1.0 � 105 y

Mass
Chemical number Half-life and

atomic (* indicates Atomic Percent decay mode
Z Element Symbol weight radioactive) mass abundance (if unstable)



28 Nickel Ni 58.693 58 57.935346 68.077
59* 58.934350
60 59.930789 26.223
61 60.931058 1.140
62 61.928346 3.634
63* 62.929670
64 63.927967 0.926

29 Copper Cu 63.546 63 62.929599 69.17
64* 63.929765
65 64.927791 30.83
66* 65.928871

30 Zinc Zn 65.39 64 63.929144 48.6
66 65.926035 27.9
67 66.927129 4.1
68 67.924845 18.8
70 69.925323 0.6

31 Gallium Ga 69.723 69 68.925580 60.108
70* 69.926027
71 70.924703 39.892
72* 71.926367

32 Germanium Ge 72.61 69* 68.927969
70 69.924250 21.23
72 71.922079 27.66
73 72.923462 7.73
74 73.921177 35.94
76 75.921402 7.44
77* 76.923547

33 Arsenic As 74.9216 73* 72.923827
74* 73.923928
75 74.921594 100
76* 75.922393
77* 76.920645

34 Selenium Se 78.96 74 73.922474 0.89
76 75.919212 9.36
77 76.919913 7.63
78 77.917307 23.78
79* 78.918497
80 79.916519 49.61
82* 81.916697 8.73 2��1.4 � 1020 y

���6.5 � 104 y

��38.8 h
��1.1 d

ec, ��17.8 d
ec80.3 d

��11.3 h

ec, ��39.1 h

��14.1 h

��21.1 m

��5.1 m

ec12.7 h

��100 y

��ec,7.5 � 104 y

Appendix A AP-5

Mass
Chemical number Half-life and

atomic (* indicates Atomic Percent decay mode
Z Element Symbol weight radioactive) mass abundance (if unstable)
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AP-6 Appendix A

35 Bromine Br 79.904 79 78.918336 50.69
80* 79.918528
81 80.916287 49.31
82* 81.916802

36 Krypton Kr 83.80 78 77.920400 0.35
80 79.916377 2.25
81* 80.916589
82 81.913481 11.6
83 82.914136 11.5
84 83.911508 57.0
85* 84.912531
86 85.910615 17.3

37 Rubidium Rb 85.468 85 84.911793 72.17
86* 85.911171
87* 86.909186 27.83
88* 87.911325

38 Strontium Sr 87.62 84 83.913428 0.56
86 85.909266 9.86
87 86.908883 7.00
88 87.905618 82.58
90* 89.907737

39 Yttrium Y 88.9058 88* 87.909507
89 88.905847 100
90* 89.914811

40 Zirconium Zr 91.224 90 89.904702 51.45
91 90.905643 11.22
92 91.905038 17.15
93* 92.906473
94 93.906314 17.38
96 95.908274 2.80

41 Niobium Nb 92.9064 91* 90.906988
92* 91.907191
93 92.906376 100
94* 93.907280

42 Molybdenum Mo 95.94 92 91.906807 14.84
93* 92.906811
94 93.905085 9.25
95 94.905841 15.92
96 95.904678 16.68
97 96.906020 9.55
98 97.905407 24.13

100 99.907476 9.63

ec3.5 � 103 y

��2 � 104 y

ec3.5 � 107 y
ec6.8 � 102 y

��1.5 � 106 y

��2.67 d

ec, ��106.6 d

��29.1 y

��17.8 m
��4.75 � 1010 y
��18.6 d

��10.76 y 

ec2.11 � 105 y

��35.3 h

��17.7 m

Mass
Chemical number Half-life and

atomic (* indicates Atomic Percent decay mode
Z Element Symbol weight radioactive) mass abundance (if unstable)



43 Technetium Tc 97* 96.906363
98* 97.907215
99* 98.906254

44 Ruthenium Ru 101.07 96 95.907597 5.54
98 97.905287 1.86
99 98.905939 12.7

100 99.904219 12.6
101 100.905558 17.1
102 101.904348 31.6
104 103.905428 18.6

45 Rhodium Rh 102.9055 102* 101.906794
103 102.905502 100
104* 103.906654 42 s

46 Palladium Pd 106.42 102 101.905616 1.02
104 103.904033 11.14
105 104.905082 22.33
106 105.903481 27.33
107* 106.905126
108 107.903893 26.46
110 109.905158 11.72

47 Silver Ag 107.868 107 106.905091 51.84
108* 107.905953
109 108.904754 48.16
110* 109.906110

48 Cadmium Cd 112.41 106 105.906457 1.25
108 107.904183 0.89
109* 108.904984
110 109.903004 12.49
111 110.904182 12.80
112 111.902760 24.13
113* 112.904401 12.22
114 113.903359 28.73
116 115.904755 7.49

49 Indium In 114.82 113 112.904060 4.3
114* 113.904916
115* 114.903876 95.7
116* 115.905258 ��54.4 m

��4.4 � 1014 y
��1.2 m

��9.3 � 1015 y

ec462 d

��24.6 s

��ec, ��,2.39 m

��6.5 � 106 y

��

ec207 d

��2.1 � 105 y
��4.2 � 106 y
ec2.6 � 106 y

Appendix A AP-7

Mass
Chemical number Half-life and

atomic (* indicates Atomic Percent decay mode
Z Element Symbol weight radioactive) mass abundance (if unstable)
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AP-8 Appendix A

50 Tin Sn 118.71 112 111.904822 0.97
114 113.902780 0.65
115 114.903345 0.36
116 115.901743 14.53
117 116.902953 7.68
118 117.901605 24.22
119 118.903308 8.58
120 119.902197 32.59
121* 120.904237
122 121.903439 4.63
124 123.905274 5.79

51 Antimony Sb 121.76 121 120.903820 57.36
123 122.904215 42.64
125* 124.905251

52 Tellurium Te 127.60 120 119.904040 0.095
122 121.903052 2.59
123* 122.904271 0.905
124 123.902817 4.79
125 124.904429 7.12
126 125.903309 18.93
128* 127.904463 31.70
130* 129.906228 33.87

53 Iodine I 126.9045 126* 125.905619
127 126.904474 100
128* 127.905812
129* 128.904984

54 Xenon Xe 131.29 124 123.905894 0.10
126 125.904268 0.09
128 127.903531 1.91
129 128.904779 26.4
130 129.903509 4.1
131 130.905069 21.2
132 131.904141 26.9
134 133.905394 10.4
136 135.907215 8.9

55 Cesium Cs 132.9054 133 132.905436 100
134* 133.906703
135* 134.905891
137* 136.907078 30 y ��

��2 � 106 y
��2.1 y

��1.6 � 107 y
��, ec, ��25 m

��ec, ��,13 d

2��1.2 � 1021 y
2���8 � 1024 y

ec1.3 � 1013 y

��2.7 y

��55 y

Mass
Chemical number Half-life and

atomic (* indicates Atomic Percent decay mode
Z Element Symbol weight radioactive) mass abundance (if unstable)



56 Barium Ba 137.33 130 129.906289 0.106
132 131.905048 0.101
133* 132.905990
134 133.904492 2.42
135 134.905671 6.593
136 135.904559 7.85
137 136.905816 11.23
138 137.905236 71.70

57 Lanthanum La 138.905 137* 136.906462
138* 137.907105 0.0902
139 138.906346 99.9098

58 Cerium Ce 140.12 136 135.907139 0.19
138 137.905986 0.25
140 139.905434 88.43
142 141.909241 11.13

59 Praseodymium Pr 140.9076 140* 139.909071
141 140.907647 100
142* 141.910040

60 Neodymium Nd 144.24 142 141.907718 27.13
143 142.909809 12.18
144* 143.910082 23.80
145 144.912568 8.30
146 145.913113 17.19
148 147.916888 5.76
150 149.920887 5.64

61 Promethium Pm 143* 142.910928
145* 144.912745
146* 145.914698
147* 146.915134

62 Samarium Sm 150.36 144 143.911996 3.1
146* 145.913043
147* 146.914894 15.0
148* 147.914819 11.3
149 148.917180 13.8
150 149.917273 7.4
151* 150.919928
152 151.919728 26.7
154 153.922206 22.7

��90 y

�7 � 1015 y
�1.06 � 1011 y
�1.0 � 108 y

��2.623 y
ec5.5 y
ec17.7 y
ec265 d

�2.3 � 1015 y

��25.0 m

ec, ��3.39 m

ec, ��1.05 � 1011 y
ec6 � 104 y

ec10.5 y

Appendix A AP-9

Mass
Chemical number Half-life and

atomic (* indicates Atomic Percent decay mode
Z Element Symbol weight radioactive) mass abundance (if unstable)
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AP-10 Appendix A

63 Europium Eu 151.96 151 150.919846 47.8
152* 151.921740
153 152.921226 52.2
154* 153.922975
155* 154.922888

64 Gadolinium Gd 157.25 148* 147.918112
150* 149.918657
152* 151.919787 0.20
154 153.920862 2.18
155 154.922618 14.80
156 155.922119 20.47
157 156.923957 15.65
158 157.924099 24.84
160 159.927050 21.86

65 Terbium Tb 158.9253 158* 157.925411
159 158.925345 100
160* 159.927551

66 Dysprosium Dy 162.50 156 155.924277 0.06
158 157.924403 0.10
160 159.925193 2.34
161 160.926930 18.9
162 161.926796 25.5
163 162.928729 24.9
164 163.929172 28.2

67 Holmium Ho 164.9303 165 164.930316 100
166* 165.932282

68 Erbium Er 167.26 162 161.928775 0.14
164 163.929198 1.61
166 165.930292 33.6
167 166.932047 22.95
168 167.932369 27.8
170 169.935462 14.9

69 Thulium Tm 168.9342 169 168.934213 100
171* 170.936428

70 Ytterbium Yb 173.04 168 167.933897 0.13
170 169.934761 3.05
171 170.936324 14.3
172 171.936380 21.9
173 172.938209 16.12
174 173.938861 31.8
176 175.942564 12.7

��1.92 y

��1.2 � 103 y

��72.3 d

��ec, ��,180 y

�1.1 � 1014 y
�1.8 � 106 y
�75 y

��4.7 y
��8.59 y

ec, ��13.5 y

Mass
Chemical number Half-life and

atomic (* indicates Atomic Percent decay mode
Z Element Symbol weight radioactive) mass abundance (if unstable)



71 Lutetium Lu 174.967 173* 172.938930
175 174.940772 97.41
176* 175.942679 2.59

72 Hafnium Hf 178.49 174* 173.940042 0.162
176 175.941404 5.206
177 176.943218 18.606
178 177.943697 27.297
179 178.945813 13.629
180 179.946547 35.100

73 Tantalum Ta 180.9479 180 179.947542 0.012
181 180.947993 99.988

74 Tungsten W 183.85 180 179.946702 0.12
(Wolfram) 182 181.948202 26.3

183 182.950221 14.28
184 183.950929 30.7
186 185.954358 28.6

75 Rhenium Re 186.207 185 184.952951 37.40
187* 186.955746 62.60

76 Osmium Os 190.2 184 183.952486 0.02
186* 185.953834 1.58
187 186.955744 1.6
188 187.955744 13.3
189 188.958139 16.1
190 189.958439 26.4
192 191.961468 41.0
194* 193.965172

77 Iridium Ir 192.2 191 190.960585 37.3
193 192.962916 62.7

78 Platinum Pt 195.08 190* 189.959926 0.01
192 191.961027 0.79
194 193.962655 32.9
195 194.964765 33.8
196 195.964926 25.3
198 197.967867 7.2

79 Gold Au 196.9665 197 196.966543 100
198* 197.968217
199* 198.968740 ��3.14 d

��2.70 d

�6.5 � 1011 y

��6.0 y

�2.0 � 1015 y

��4.4 � 1010 y

�2.0 � 1015 y

��3.8 � 1010 y

ec1.37 y

Appendix A AP-11

Mass
Chemical number Half-life and

atomic (* indicates Atomic Percent decay mode
Z Element Symbol weight radioactive) mass abundance (if unstable)
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AP-12 Appendix A

80 Mercury Hg 200.59 196 195.965806 0.15
198 197.966743 9.97
199 198.968253 16.87
200 199.968299 23.10
201 200.970276 13.10
202 201.970617 29.86
204 203.973466 6.87

81 Thallium Tl 204.383 203 202.972320 29.524
204* 203.973839
205 204.974400 70.476
206* 205.976084
207* 206.977403
208* 207.981992
210* 209.990057

82 Lead Pb 207.2 202* 201.972134
204 203.973020 1.4
205* 204.974457
206 205.974440 24.1
207 206.975871 22.1
208 207.976627 52.4

(Ra D) 210* 209.984163
(Ac B) 211* 210.988734
(Th B) 212* 211.991872
(Ra B) 214* 213.999798

83 Bismuth Bi 208.9803 207* 206.978444
208* 207.979717
209 208.980374 100

(Ra E) 210* 209.984096
(Th C) 211* 210.987254

212* 211.991259
(Ra C) 214* 213.998692

215* 215.001836

84 Polonium Po 209* 208.982405
(Ra F) 210* 209.982848

211* 210.986627
212* 211.988842
214* 213.995177

(Ac A) 215* 214.999418
(Th A) 216* 216.001889
(Ra A) 218* 218.008965

85 Astatine At 215* 214.998638
218* 218.008685
219* 219.011297 �0.9 m

�1.6 s
�� 100 	s

�3.10 m
�0.145 s
�0.0018 s
�164 	s(Ra C�)
�0.30 	s(Th C�)
�0.52 s(Ac C�)
�138.38 d
�102 y

��7.4 m
��19.9 m
�, ��60.6 m
�2.14 m
�, ��5.01 d

ec3.7 � 105 y
ec, ��32.2 y

��26.8 m
��10.64 h
��36.1 m
��22.3 y

ec1.5 � 107 y

ec5 � 104 y

��1.30 m(Ra C�)
��3.053 m(Th C�)
��4.77 m(Ac C�)
��4.2 m(Ra E�)

��3.78 y

Mass
Chemical number Half-life and

atomic (* indicates Atomic Percent decay mode
Z Element Symbol weight radioactive) mass abundance (if unstable)



86 Radon Rn
(An) 219* 219.009477
(Tn) 220* 220.011369
(Rn) 222* 222.017571

87 Francium 221* 221.01425
Fr 222* 222.017585

(Ac K) 223* 223.019733

88 Radium Ra 221* 221.01391
(Ac X) 223* 223.018499
(Th X) 224* 224.020187

225*
(Ra) 226* 226.025402

228* 228.031064

89 Actinium Ac 225*
227* 227.027749
228* 228.031015
229*

90 Thorium Th 232.0381
(Rd Ac) 227* 227.027701
(Rd Th) 228* 228.028716

229* 229.031757
(Io) 230* 230.033127

(UY) 231* 231.036299
(Th) 232* 232.038051 100

234* 234.043593

91 Protactinium Pa 231* 231.035880
(UZ) 234* 234.043300

92 Uranium U 238.0289 231* 231.036264
232* 232.037131
233* 233.039630

(UII) 234* 234.040946 0.0055
(Ac U) 235* 235.043924 0.720

(UI) 236* 236.045562
238* 238.050784 99.2745
239* 239.054290

93 Neptunium Np 235* 235.044057
236* 236.046559
237* 237.048168 �2.14 � 106 y

ec1.54 � 105 y
�396 d

��23.5 m
�4.47 � 109 y
�2.34 � 107 y
�7.04 � 108 y
�2.45 � 105 y
�1.59 � 105 y
�69 y
��4.2 d

��6.7 h
�32,760 y

��24.1 d(UX1)
�1.40 � 1010 y
��25.52 h
�, sf75,000 y
�7300 y
�1.913 y
�18.72 d

��1.04 h
��6.15 h
��21.77 y(Ms Th2)
�10 d

��5.75 y(MsTh1)
�1600 y
��14.9 d
�3.66 d
�11.43 d
�29 s

��22 m
��14.2 m
�4.18 m

�3.823 d
�55.6 s
�3.96 s

Appendix A AP-13

Mass
Chemical number Half-life and

atomic (* indicates Atomic Percent decay mode
Z Element Symbol weight radioactive) mass abundance (if unstable)

(Continued)



AP-14 Appendix A

94 Plutonium Pu 236* 236.046033
238* 238.049555
239* 239.052157
240* 240.053808
241* 241.056846
242* 242.058737
244* 244.064200

95 Americium Am 240* 240.055285
241* 241.056824

96 Curium Cm 247* 247.070347
248* 248.072344

97 Berkelium Bk 247* 247.070300
249* 249.074979

98 Californium Cm 250* 250.076400
251* 251.079580

99 Einsteinium Es 252* 252.082974
253* 253.084817

100 Fermium Fm 253* 253.085173
254* 254.086849

101 Mendelevium Md 256* 256.093988
258* 258.098594

102 Nobelium No 257* 257.096855
259* 259.100932

103 Lawrencium Lr 259* 259.102888
260* 260.105346

104 Rutherfordium Rf 260* 260.160302
261* 261.108588

105 Dubnium Db 261* 261.111830
262* 262.113763

106 Seaborgium Sg 263* 263.118310

107 Bohrium Bh 262* 262.123081

108 Hassium Hs 265* 265.129984
267* 267.131770

109 Meitnerium Mt 266* 266.137789
268* 268.138820 �70 ms

�, sf3.4 ms

�60 ms
�1.8 ms

�, sf0.10 s

�, sf0.78 s

�35 s
�1.8 s

�, sf65 s
sf24 ms

�, sf3.0 m
�, sf6.14 s

�, sf58 m
�25 s

�55 d
ec, ��75.6 m

�, sf3.24 h
ec3.00 d

�, sf2.02 d
�1.29 y

�898 y
�, sf13.1 y

��327 d
�1380 y

�, sf3.4 � 105 y
�1.56 � 107 y

�, sf432 y
ec2.12 d

�, sf8.1 � 107 y
�, sf3.7 � 105 y
��14.4 y
�, sf6560 y
�, sf24,120 y
�, sf87.7 y
�, sf2.87 y

Mass
Chemical number Half-life and

atomic (* indicates Atomic Percent decay mode
Z Element Symbol weight radioactive) mass abundance (if unstable)



110 Darmstadtium Ds 269* 269.145140
271* 271.146080
273* 272.153480

111 Roentgenium Rg 272* 272.153480

112 Ununbium Unb 277* ?

113 Ununtrium Unt 284* ?

114 Ununquadium Unq 289* ?

115 Ununpentium Unp 288* ?

116 Ununhexium Unh 292* ?

117

118 Ununoctium Uno 294* ? �?

�?

�?

�?

�?

�0.2 ms

�1.5 ms

�8.6 ms
�1.1 ms
�0.17 ms

Appendix A AP-15
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Probability Integrals
When calculating various average values using the Maxwell-Boltzmann distribution,
integrals of the following type occur:

where n is an integer. These can be obtained from and by differentiation. Consider
to be a function of and take the derivative with respect to :

B1-1

Thus, if is known, all the for even n can be obtained, and if is known, all 
the for odd n can be obtained from Equation B1-1. can easily be evaluated.
Using the substitution then and

Then and are

The evaluation of is more difficult, but it can be done using a trick. We
evaluate :

B1-2

where we have used y as the dummy variable of integration in the second integral.
If we now consider this to be an integration over the xy plane, we can change to polar
coordinates and The element of area becomes

and the integration over positive x and y becomes an integration from 
to and from to Then we have

and
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We then obtain by differentiation. For example,

Table B1-1 lists the values of the integral calculated as above for values of n
from 0 to 5.

In

I2 � �
dI0

d

�

1

4
2� 
�3>2

I4 , ÁI2 ,

Appendix B1 AP-17

Table B1-1 Values of the integral 

for to n � 5n � 0

I
n

� �
�

0

x ne�
x 2

dx

n

0

1

2

3

4

5

If n is even

If n is odd �
��

��

xne�
x2
dx � 0

�
��

��
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dx � 2In
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�1>2
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1
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I
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Binomial and Exponential Series

APPENDIXB2

Binomial Series

where

for all cases where 

If m is a negative integer or a positive or negative fraction, the binomial expan-
sion is valid only when Except when m is a positive integer, a binomial such
as must be written in one of the following forms before expanding it:

Exponential Series

ax � 1 � x loga �
(x loga)2

2!
� Á �

(x loga)n�1

(n � 1)!
�

(x loga)n

n!
� Á

ex � 1 � x �
x2

2!
�
x3

3!
� Á �

xn�1

(n � 1)!
�
xn

n!
� Á

ama1 �
b
a
bm if a � b  bma1 �

a

b
bm if b � a

(a � b)m
ƒx ƒ � 1.

Rn � ƒxn ƒ(1 � x)m if �1 � m � 0

Rn � ` m(m � 1)(m � 2) Á (m � n � 1)

n!
xn

(1 � x)n�m `  for x � 0, n � m

Rn � ` m(m � 1)(m � 2) Á (m � n � 1)

n!
xn `  if x � 0

0 � a � 1.

Rn �
m(m � 1)(m � 2) Á (m � n � 1)

n!
xn(1 � ax)m�n

�
m(m � 1)(m � 2) Á (m � n � 2)

(n � 1)!
xn�1 � Rn

 (1 � x)m � 1 � mx �
m(m � 1)

2!
x2 �

m(m � 1)(m � 2)

3!
x3 � Á
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APPENDIXB3
Diagrams of Crystal Unit Cells
Crystalline solids are classified according to their symmetries into 7 crystal systems
and 14 lattices. A lattice is defined as an infinite array of points each of which has sur-
roundings identical to those of all other points. In three dimensions this definition is
expressed by three translation vectors a, b, and c, such that the array of atoms in the
crystal when viewed from point r looks the same when viewed from any other point

, where is reached by translations of integer multiples of the that is,

where are integers. The translation vectors are usually (but not always) used to spec-
ify the three axes of the crystal’s unit cell. The volume of the unit cell is 
and no cell of smaller volume can serve as the unit to assemble the crystal.

Figure B3-1 illustrates the orientations of the translation vectors and the standard des-
ignations of the angles between them. Figure B3-2 illustrates diagrams of the 14 lattices.

a # (b � c),
mi

r� � r � m1a � m2b � m3c

a i ,r�r�

Orthorhombic Trigonal

rhombohedralprimitive body-centered face-centered base-centered

Cubic Tetragonal

body-centered face-centered primitive body-centeredprimitive

Monoclinic Triclinic Hexagonal

primitive base-centered primitive primitive
Figure B3-2

The 14 crystal lattices.

c→

a→

b
→

β α

γ

Figure B3-1 The directions of
the translation vectors are often
used to define the directions
of the crystal axes, the angles
between each axis pair
defining the shape of the cell.
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Electron Configurations

Electron configurations of the atoms in their ground states. For a few of the rare earth elements to 71) and
the heavy elements the configurations are not firmly established.

Ionization K L M N O P Q
energy n : 1 2 3 4 5 6 7

Z Element (eV) l : s s p s p d s p d f s p d f s p d s p

1 H (hydrogen) 13.6 1

2 He (helium) 24.5 2

3 Li (lithium) 5.4 2 1

4 Be (beryllium) 9.3 2 2

5 B (boron) 8.3 2 2 1

6 C (carbon) 11.3 2 2 2

7 N (nitrogen) 14.5 2 2 3

8 O (oxygen) 13.6 2 2 4

9 F (flourine) 17.4 2 2 5

10 Ne (neon) 21.6 2 2 6

11 Na (sodium) 5.1 2 2 6 1

12 Mg (magnesium) 7.6 2 2 6 2

13 Al (aluminum) 6.0 2 2 6 2 1

14 Si (silicon) 8.1 2 2 6 2 2

15 P (phosphorus) 10.5 2 2 6 2 3

16 S (sulfur) 10.4 2 2 6 2 4

17 Cl (chlorine) 13.0 2 2 6 2 5

18 Ar (argon) 15.8 2 2 6 2 6

(Z � 89),
(Z � 57

APPENDIXC
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19 K (potassium) 4.3 2 2 6 2 6 . 1

20 Ca (calcium) 6.1 2 2 6 2 6 . 2

21 Sc (scandium) 6.5 2 2 6 2 6 1 2

22 Ti (titanium) 6.8 2 2 6 2 6 2 2

23 V (vanadium) 6.7 2 2 6 2 6 3 2

24 Cr (chromium) 6.8 2 2 6 2 6 5 1

25 Mn (manganese) 7.4 2 2 6 2 6 5 2

26 Fe (iron) 7.9 2 2 6 2 6 6 2

27 Co (cobalt) 7.9 2 2 6 2 6 7 2

28 Ni (nickel) 7.6 2 2 6 2 6 8 2

29 Cu (copper) 7.7 2 2 6 2 6 10 1

30 Zn (zinc) 9.4 2 2 6 2 6 10 2

31 Ga (gallium) 6.0 2 2 6 2 6 10 2 1

32 Ge (germanium) 7.9 2 2 6 2 6 10 2 2

33 As (arsenic) 9.8 2 2 6 2 6 10 2 3

34 Se (selenium) 9.8 2 2 6 2 6 10 2 4

35 Br (bromine) 11.8 2 2 6 2 6 10 2 5

36 Kr (krypton) 14.0 2 2 6 2 6 10 2 6

37 Rb (rubidium) 4.2 2 2 6 2 6 10 2 6 . . 1

38 Sr (strontium) 5.7 2 2 6 2 6 10 2 6 . . 2

39 Y (yttrium) 6.4 2 2 6 2 6 10 2 6 1 . 2

40 Zr (zirconium) 6.8 2 2 6 2 6 10 2 6 2 . 2

41 Nb (niobium) 6.9 2 2 6 2 6 10 2 6 4 . 1

42 Mo (molybdenum) 7.1 2 2 6 2 6 10 2 6 5 . 1

43 Tc (technetium) 7.3 2 2 6 2 6 10 2 6 6 . 1
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Ionization K L M N O P Q
energy n : 1 2 3 4 5 6 7

Z Element (eV) l : s s p s p d s p d f s p d f s p d s p
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44 Ru (ruthenium) 7.4 2 2 6 2 6 10 2 6 7 . 1

45 Rh (rhodium) 7.5 2 2 6 2 6 10 2 6 8 . 1

46 Pd (palladium) 8.3 2 2 6 2 6 10 2 6 10 .

47 Ag (silver) 7.6 2 2 6 2 6 10 2 6 10 . 1

48 Cd (cadmium) 9.0 2 2 6 2 6 10 2 6 10 . 2

49 In (indium) 5.8 2 2 6 2 6 10 2 6 10 . 2 1

50 Sn (tin) 7.3 2 2 6 2 6 10 2 6 10 . 2 2

51 Sb (antimony) 8.6 2 2 6 2 6 10 2 6 10 . 2 3

52 Te (tellurium) 9.0 2 2 6 2 6 10 2 6 10 . 2 4

53 I (iodine) 10.5 2 2 6 2 6 10 2 6 10 . 2 5

54 Xe (xenon) 12.1 2 2 6 2 6 10 2 6 10 . 2 6

55 Cs (cesium) 3.9 2 2 6 2 6 10 2 6 10 . 2 6 . . 1

56 Ba (barium) 5.2 2 2 6 2 6 10 2 6 10 . 2 6 . . 2

57 La (lanthanum) 5.6 2 2 6 2 6 10 2 6 10 . 2 6 1 . 2

58 Ce (cerium) 5.6 2 2 6 2 6 10 2 6 10 1 2 6 1 . 2

59 Pr (praseodymium) 5.5 2 2 6 2 6 10 2 6 10 3 2 6 . . 2

60 Nd (neodymium) 5.5 2 2 6 2 6 10 2 6 10 4 2 6 . . 2

61 Pm (promethium) 5.5 2 2 6 2 6 10 2 6 10 5 2 6 . . 2

62 Sm (samarium) 5.6 2 2 6 2 6 10 2 6 10 6 2 6 . . 2

63 Eu (europium) 5.7 2 2 6 2 6 10 2 6 10 7 2 6 . . 2

64 Gd (gadolinium) 6.2 2 2 6 2 6 10 2 6 10 7 2 6 1 . 2

65 Tb (terbium) 6.0 2 2 6 2 6 10 2 6 10 9 2 6 . . 2

66 Dy (dysprosium) 6.8 2 2 6 2 6 10 2 6 10 10 2 6 . . 2

67 Ho (holmium) 6.0 2 2 6 2 6 10 2 6 10 11 2 6 . . 2

Ionization K L M N O P Q
energy n : 1 2 3 4 5 6 7

Z Element (eV) l : s s p s p d s p d f s p d f s p d s p



68 Er (erbium) 6.1 2 2 6 2 6 10 2 6 10 12 2 6 . . 2

69 Tm (thulium) 5.8 2 2 6 2 6 10 2 6 10 13 2 6 . . 2

70 Yb (ytterbium) 6.2 2 2 6 2 6 10 2 6 10 14 2 6 . . 2

71 Lu (lutetium) 5.1 2 2 6 2 6 10 2 6 10 14 2 6 1 . 2

72 Hf (hafnium) 7.0 2 2 6 2 6 10 2 6 10 14 2 6 2 . 2

73 Ta (tantalum) 7.9 2 2 6 2 6 10 2 6 10 14 2 6 3 . 2

74 W (tungsten) 8.0 2 2 6 2 6 10 2 6 10 14 2 6 4 . 2

75 Re (rhenium) 7.9 2 2 6 2 6 10 2 6 10 14 2 6 5 . 2

76 Os (osmium) 8.5 2 2 6 2 6 10 2 6 10 14 2 6 6 . 2

77 Ir (iridium) 9.0 2 2 6 2 6 10 2 6 10 14 2 6 7 . 2

78 Pt (platinum) 9.0 2 2 6 2 6 10 2 6 10 14 2 6 9 . 1

79 Au (gold) 9.2 2 2 6 2 6 10 2 6 10 14 2 6 10 . 1

80 Hg (mercury) 10.4 2 2 6 2 6 10 2 6 10 14 2 6 10 . 2

81 Tl (thallium) 6.1 2 2 6 2 6 10 2 6 10 14 2 6 10 . 2 1

82 Pb (lead) 7.4 2 2 6 2 6 10 2 6 10 14 2 6 10 . 2 2

83 Bi (bismuth) 7.3 2 2 6 2 6 10 2 6 10 14 2 6 10 . 2 3

84 Po (polonium) 8.4 2 2 6 2 6 10 2 6 10 14 2 6 10 . 2 4

85 At (astatine) 9.5 2 2 6 2 6 10 2 6 10 14 2 6 10 . 2 5

86 Rn (radon) 10.7 2 2 6 2 6 10 2 6 10 14 2 6 10 . 2 6

87 Fr (francium) 4.0 2 2 6 2 6 10 2 6 10 14 2 6 10 . 2 6 . 1

88 Ra (radium) 5.3 2 2 6 2 6 10 2 6 10 14 2 6 10 . 2 6 . 2

89 Ac (actinium) 6.9 2 2 6 2 6 10 2 6 10 14 2 6 10 . 2 6 1 2

90 Th (thorium) 7.0 2 2 6 2 6 10 2 6 10 14 2 6 10 . 2 6 2 2

91 Pa (protactinium) 2 2 6 2 6 10 2 6 10 14 2 6 10 1 2 6 2 2
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92 U (uranium) 6.1 2 2 6 2 6 10 2 6 10 14 2 6 10 3 2 6 1 2

93 Np (neptunium) 2 2 6 2 6 10 2 6 10 14 2 6 10 4 2 6 1 2

94 Pu (plutonium) 5.8 2 2 6 2 6 10 2 6 10 14 2 6 10 6 2 6 . 2

95 Am (americium) 6.0 2 2 6 2 6 10 2 6 10 14 2 6 10 7 2 6 . 2

96 Cm (curium) 2 2 6 2 6 10 2 6 10 14 2 6 10 7 2 6 1 2

97 Bk (berkelium) 2 2 6 2 6 10 2 6 10 14 2 6 10 8 2 6 1 2

98 Cf (californium) 2 2 6 2 6 10 2 6 10 14 2 6 10 10 2 6 . 2

99 Es (einsteinium) 2 2 6 2 6 10 2 6 10 14 2 6 10 11 2 6 . 2

100 Fm (fermium) 2 2 6 2 6 10 2 6 10 14 2 6 10 12 2 6 . 2

101 Md (mendelevium) 2 2 6 2 6 10 2 6 10 14 2 6 10 13 2 6 . 2

102 No (nobelium) 2 2 6 2 6 10 2 6 10 14 2 6 10 14 2 6 . 2

103 Lw (lawrencium) 2 2 6 2 6 10 2 6 10 14 2 6 10 14 2 6 1 2

104 Rf (rutherfordium) 2 2 6 2 6 10 2 6 10 14 2 6 10 14 2 6 2 2

105 Du (dubnium) 2 2 6 2 6 10 2 6 10 14 2 6 10 14 2 6 3 2

106 Sg (seaborgium) 2 2 6 2 6 10 2 6 10 14 2 6 10 14 2 6 4 2

107 Bh (bohrium) 2 2 6 2 6 10 2 6 10 14 2 6 10 14 2 6 5 2

108 Hs (hassium) 2 2 6 2 6 10 2 6 10 14 2 6 10 14 2 6 6 2

109 Mt (meitnerium) 2 2 6 2 6 10 2 6 10 14 2 6 10 14 2 6 7 2

110 Ds (darmstadtium) 2 2 6 2 6 10 2 6 10 14 2 6 10 14 2 6 9 1

111 Rg (roentgenium) 2 2 6 2 6 10 2 6 10 14 2 6 10 14 2 6 10 1

112 Unb (ununbium) 2 2 6 2 6 10 2 6 10 14 2 6 10 14 2 6 10 2

113 Unt (ununtrium) 2 2 6 2 6 10 2 6 10 14 2 6 10 14 2 6 10 2 1

114 Unq (ununquadium) 2 2 6 2 6 10 2 6 10 14 2 6 10 14 2 6 10 2 2

115 Unp (ununpentium) 2 2 6 2 6 10 2 6 10 14 2 6 10 14 2 6 10 2 3

Ionization K L M N O P Q
energy n : 1 2 3 4 5 6 7

Z Element (eV) l : s s p s p d s p d f s p d f s p d s p



116 Unh (ununhexium) 2 2 6 2 6 10 2 6 10 14 2 6 10 14 2 6 10 2 4

117

118 Uno (ununoctium) 2 2 6 2 6 10 2 6 10 14 2 6 10 14 2 6 10 2 6
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Fundamental Physical Constants
This set of fundamental physical constants consists of selected values recommended by CODATA, the Committee
on Data for Science and Technology of the International Council of Scientific Unions, resulting from the most re-
cent (2002) compilation and computations. The digits in parentheses are the one-standard-deviation uncertainties in
the last digits. (Reference: P. J. Mohr and B. N. Taylor, http://www.physicstoday.org/guide/fundconst.pdf.)

Quantity Symbol Value Units

Universal constants
Speed of light in vacuum (exact) c 299,792,458
Permeability of vacuum (magnetic constant) (exact)
Permittivity of vacuum (electric constant) (exact)
Newtonian constant of gravitation G 6.6742 (10)
Planck constant h 6.6260693 (11)

in electron volts, 4.13566743 (35)
1.05457168 (18)

in electron volts, 6.58211915 (56)
Planck mass, 2.17654 (16)
Planck temperature, 1.41679 (11)
Planck length, 1.61624 (12)
Planck time, 5.39121 (40)

Electromagnetic constants
Elementary charge e 1.60217653 (14)

2.41798940 (21)
Magnetic flux quantum, Φ 2.06783372 (18)
Josephson constant 483597.879 (41)
von Klitzing constant, 25812.807449 (86)
Bohr magneton, 927.400949 (80)

in 5.788381804 (39)
Nuclear magneton, 5.05078343 (43)

in 3.152451259 (24)

Atomic constants
Fine-structure constant, 7.297352568 (24)

inverse fine-structure constant 137.03599911 (46)
Rydberg constant, 10,973,731.568525 (73)

in hertz, 3.289841960360 (22)
in joules, 2.17987209 (37)
in eV, 13.6056923 (12)

Bohr radius 0.5291772108 (18)

Electron
Mass 9.1093826 (16)

5.4857990945 (24)
in electron volts, 0.510998918 (44) MeVmec

2>{e}
10�4 u
10�31 kgme

10�10 ma0

eVR
�
hc>{e}

10�18 JR
�
hc

1015 HzR
�
c

m�1R
�

mec�
2>2h ��1

10�3�e2>4��0Uc

10�8 eV # T�1eV>T 10�27 J # T�1	NeU>2mp 10�5 eV # T�1eV>T 10�24 J # T�1	BeU>2me

ÆRKh>e2 � 	0c>2�
109 Hz # V�1KJ2e>h 10�15 Wb0h>2e 1014 A # J�1e>h 10�19 C

10�44 stp(lP>c) � (UG>c5)1>2 10�35 mlpU>mpc � (UG>c3)1>2 1032 KTp(Uc5>G)1>2>k 10�8 kgmp(Uc>G)1>2 10�16 eV # sU>{e}
10�34 J # sUh>2�
10�15 eV # sh>{e}
10�34 J # s
10�11 m3 # kg�1 # s�2
10�12 F # m�11>	0c

2 � 8.854187817�0

N # A�24� � 10�7 � 12.566370614 � 10�7	0

m # s�1
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Quantity Symbol Value Units

Electron-muon mass ratio 4.83633167 (13)
Electron-tau mass ratio 2.87564 (47)
Electron-proton mass ratio 5.4461702173 (25)
Electron-deuteron mass ratio 2.7244371095 (13)
Electron- -particle mass ratio 1.37093355575 (61)
Specific charge
Molar mass 5.4857990945 (24)
Compton wavelength, 2.426310238 (16)

386.1592678 (26)
Classical radius, 2.817940325 (28)
Thomson cross section, 0.665245873 (13)
Magnetic moment

in Bohr magnetons
in nuclear magnetons

Magnetic moment anomaly, 1.1596521859 (38)
g factor,
Electron-muon magnetic moment ratio 206.7669894 (54)
Electron-proton magnetic moment ratio

Muon
Mass 1.88353140 (33)

0.1134289264 (30) u
in electron volts, 105.6583692 (94)

Muon-electron mass ratio 206.7682838 (54)
Muon-tau mass ratio 5.94592 (97)
Molar mass 1.134289264 (34)
Magnetic moment

in Bohr magnetons 4.84197085 (15)
in nuclear magnetons 8.89059770 (27)

Magnetic moment anomaly, 1.16591981 (62)
g factor,
Muon-proton magnetic moment ratio

Tau
Mass 3.16777 (52)

1.90768 (31) u
in electron volts 1776.99 (29)

Proton
Mass 1.67262171 (29)

1.00727646688 (13) u
in electron volts 938.272029 (80)

Proton-electron mass ratio 1836.15267261 (85)
Proton-muon mass ratio 8.88024333 (23)
Specific charge 9.57883376 (82)
Molar mass 1.00727646688 (13)
Compton wavelength, 1.3214098555 (88)

2.103089104 (14) 10�16 m
–C
C,p>2�
10�15 m
C,ph>mpc
10�3 kg # mol�1M(p)
107 C # kg�1e>mp

mp>m	

mp>me

MeV

10�27 kgmp

MeV

10�27 kgm
�

�3.183345118 (89)	
	
>	p �2.0023318396 (12)g

	
�2(1 � a

	
)

10�3a
	ƒ		 ƒ >(eU>2 m

	
) � 1

	
	
>	N 10�3	

	
>	B 10�26 J T�1�4.49044799 (40)	

	

10�4 kg # mol�1M(	)
m

	
>m�

m
	
>me

MeVm
	
c2>{e}

10�28 kgm
	

�658.2106862 (66)	e>	p	e>		

�2.0023193043718 (75)ge�2(1 � ae)
10�3aeƒ	e ƒ >	B � 1

�1838.28197107 (85)	e>	N �1.0011596521859 (38)	e>	B 10�26 J # T�1�928.476412 (80)	e

10�28 m2�e(8�>3)re
2

10�15 mre�2a0

10�15 m
–C
C>2� � �a0 � �2>4�R
�

10�12 m
Ch>mec 10�7 kg # mol�1M(e)
1011 C # kg�1�1.75882012 (15)�e>me

10�4me>m�
�

10�4me>md 10�4me>mp 10�4me>m�

10�3me>m	
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Quantity Symbol Value Units

Magnetic moment 1.41060671 (12)
in Bohr magnetons 1.521032206 (15)
in nuclear magnetons 2.792847351 (28)

Diamagnetic shielding correction for protons
spherical sample, 25.687 (15)

Shielded proton moment 
( spherical sample, 1.41057047 (12)
in Bohr magnetons 1.520993132 (16)
in nuclear magnetons 2.792775604 (30)

Gyromagnetic ratio 26,752.2205 (23)
42.5774813 (37)

uncorrected ( , spherical sample, 26,751.5333 (23)
42.5763875 (37)

Neutron
Mass 1.67492728 (29)

1.00866491560 (55) u
in electron volts, 939.565360 (81)

Neutron-electron mass ratio 1838.6836598 (13)
Neutron-proton mass ratio 1.00137841870 (58)
Molar mass 1.00866491560 (55)
Compton wavelength, 1.3195909067 (88)

2.100194157 (14)
Magnetic moment

in Bohr magnetons
in nuclear magnetons

Neutron-electron magnetic moment ratio 1.04066882 (25)
Neutron-proton magnetic moment ratio

Deuteron
Mass 3.34358335 (57)

2.01355321270 (35) u
in electron volts, 1875.61282 (16)

Deuteron-electron mass ratio 3670.4829652 (18)
Deuteron-proton mass ratio 1.99900750082 (41)
Molar mass 2.01355321270 (35)
Magnetic moment 0.433073482 (38)

in Bohr magnetons 0.4669754567 (50)
in nuclear magnetons 0.8574382329 (92)

Deuteron-electron magnetic moment ratio
Deuteron-proton magnetic moment ratio 0.3070122084 (45)

Alpha particle
Mass 6.6446565 (11)

in electron volts 3727.37917 (32)

Physiochemical constants
Avogadro constant 6.0221415 (10)
Atomic mass constant, 1.66053886 (28)

in electron volts, 931.494043 (80) MeVmuc
2>{e}

10�27 kgmum(C12)>12
1023 mol�1NA , L

MeV
10�27 kgm

�

	d>	p 10�3�0.4664345548 (50)	d>	e	d>	N 10�3	d>	B 10�26 J # T�1	d

10�3 kg # mol�1M(d)
md>mpmd>me MeVmdc

2>{e}

10�27 kgmd

�0.68497934 (16)	n>	p 10�3	n>	e �1.91304273 (45)	n>	N 10�3�1.04187563 (25)	n>	B 10�26 J # T�1�0.96623645 (24)	n

10�16 m
–C,n
C,n>2�
10�15 m
C,nh>mnc 10�3 kg # mol�1M(n)

mn>mp

mn>me

MeVmnc
2>{e}

10�27 kgmn

MHz # T�1p
œ >2�

104 sec�1 # T�1p
œ25°C)H2O

MHz # T�1p>2�
104 sec�1 # T�1p

	p
œ >	N 10�3	p
œ >	B 10�26 J # T�1	p
œ25°C)H2O

10�6�H2O25°C), 1 � 	p
œ >	p(H2O

	p>	N 10�3	p>	B 10�26 J # T�1	p



Quantity Symbol Value Units

Faraday constant F 96,485.3383 (83)
Molar Planck constant 3.990312716 (27)

0.11962656572 (80)
Molar gas constant R 8.314472 (15)
Boltzmann constant, k 1.3806505 (24)

in electron volts, 8.617343 (15)
in hertz, 2.0836644 (36)
in wavenumbers, 69.50356 (12)

Molar volume (ideal gas),
(at 273.15 K, 101 325 Pa) 22.413996 (39)

Loschmidt constant, 2.6867773 (47)
Stefan-Boltzmann constant, 5.670400 (40)
First radiation constant, 3.74177138 (64)
Second radiation constant, 1.4387752 (25)
Wien displacement law constant,

b 2.8977686 (51)

Conversion factors and units
Electron volt, eV 1.60217653 (14)
Atomic mass unit (unified), u 1.66053886 (28)
Standard atmosphere atm 101,325 Pa
Standard acceleration of gravity 9.80665 m # s�2gn

10�27 kgmu � m(C12)>12
10�19 J(e>C)J � {e}J

10�3 m # K
maxT � c2>4.96511423 Á

10�2 m # Kc2hc>k 10�16 W # m2c12�hc2
10�8 W # m�2 # K�4�(�2>60)k4>h3c2
1025 m�3n0NA>Vm

10�3 m�3 # mol�1VmRT>p m�1 K�1k>hc 1010 Hz # K�1k>h 10�5 eV # K�1k>{e}
10�23 J # K�1R>NA J # mol�1 # K�1
J # m # mol�1NAhc
10�10 J # s # mol�1NAh
C # mol�1
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Conversion Factors
Conversion factors are written as equations for simplicity; relations marked with an asterisk are exact.

APPENDIXE

Length

Area

Volume

Time

Speed

Angle and angular speed

Mass

*1 metric ton � 1000 kg � 1 Mg
*1 kg � 1000 g

1 rad>s � 9.549 rev>min
1 rev>min � 0.1047 rad>s1° � 1.745 � 10�2 rad
1 rad � 57.30°

*� rad � 180°

1 mi>h � 1.467 ft>s1 mi>h � 0.4470 m>s � 1.609 km>h1 km>h � 0.2778 m>s � 0.6215 m>h
1 y � 365.24 d � 31.56 Ms

*1 d � 24 h � 1440 min � 86.4 ks
*1 h � 60 min � 3.6 ks

1 ft3 � 1728 in3 � 28.32 L � 2.832 � 104 cm3
1 in3 � 16.39 cm3
1 gal � 4 qt � 8 pt � 128 oz � 231 in3
1 gal � 3.786 L

*1 L � 1000 cm3 � 10�3 m3
*1 m3 � 106 cm3

1 mi2 � 640 acres � 2.590 km2
*1 acre � 43,560 ft2
1 m2 � 10.76 ft2
1 ft2 � 9.29 � 10�2 m2

*1 in2 � 6.4516 cm2
1 hectare � 104 m2 � 2.471 acres
1 km2 � 0.3861 mi2 � 247.1 acres

*1 m2 � 104 cm2

*1 Å � 0.1 nm
1 light-year � 1 c # y � 9.467 � 1015 m

*1 yd � 3 ft � 91.44 cm
*1 ft � 12 in � 30.48 cm
*1 in � 254 cm
1 m � 1.0936 yd � 3.281 ft � 39.37 in
1 mi � 1.609 km
1 km � 0.6215 mi

Density

Force

Pressure

Energy

Power

Magnetic field

Thermal conductivity

1 Btu # in>h # ft2 # F° � 0.1441 W>m # K
1 W>m # K � 6.938 Btu # in>h # ft2 # F°

*1 T � 104 G
*1 G � 10�4 T

1 W � 1 J>s� 0.7376 ft # lb>s 1 W � 1.341 � 10�3 horsepower
1 Btu>min � 17.58 W
1 horsepower � 550 ft # lb>s � 745.7 W

*1 erg � 10�7 J
1 u # c2 � 931.50 MeV
1 eV � 1.602 � 10�19 J
1 Btu � 778 ft # lb � 252 cal � 1054.35 J
1 L # atm � 24.217 cal

*1 L # atm � 101.325 J
1 ft # lb � 1.356 J � 1.286 � 10�3 Btu

*1 cal � 4.1840 J
*1 kW # h � 3.6 MJ

1 bar � 100 kPa
1 torr � 1 mmHg � 133.32 Pa
1 lb>in2 � 6.895 kPa

� 29.9 inHg � 33.8 ftH2O
 1 atm � 14.7 lb>in2 � 760 mmHg

*1 atm � 101.325 kPa � 1.01325 bars
*1 Pa � 1 N>m2

(1 kg)g � 2.2046 lb
1 lb � 4.4482 N
1 N � 0.2248 lb � 105 dyn

(1 g>cm3)g � 62.4 lb>ft3
*1 g>cm3 � 1000 kg>m3 � 1 kg>L

1 u � 931.50 MeV>c2
1 kg � 6.852 � 10�2 slug
1 slug � 14.59 kg
1 kg � 6.022 � 1026 u
1 u � 1.6606 � 10�27 kg
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Nobel Laureates in Physics
Listed are the names and a brief quotation from the award citation for all Nobel laureates in physics. Included,
too, are a few Nobel laureates in chemistry whose work was very closely related to physics, this latter group with
a (C) following their names. (The Royal Swedish Academy of Sciences, which awards the prizes, has generally
considered the discovery of new elements to be chemistry rather than physics.)

Year Nobel laureate Citation for

1901 Wilhelm Konrad Roentgen 1845–1923 discovery of X rays

1902 Hendrik Antoon Lorentz 1853–1928 their researches into the influence of magnetism upon radiation
Pieter Zeeman 1865–1943 phenomena

1903 Antoine Henri Bequerel 1852–1908 his discovery of spontaneous radioactivity
Pierre Curie 1859–1906 their joint researches on the radiation phenomena discovered by
Marie Sklowdowska-Curie 1867–1934 Henri Bequerel

1904 Lord Rayleigh (John William Strutt) 1842–1919 investigations of the densities of the most important gases and his
discovery of argon

Sir William Ramsay (C) 1851–1939 his discovery of the inert gaseous elements in air and his
determination of their place in the periodic system

1905 Philipp Eduard Anton von Lenard 1862–1947 his work on cathode rays

1906 Joseph John Thomson 1856–1940 his theoretical and experimental investigations on the conduction
of electricity by gases

1907 Albert Abraham Michelson 1852–1931 his optical precision instruments and the spectroscopic and
metrological investigations carried out with their aid

1908 Gabriel Lippman 1845–1921 his method of reproducing colors photographically based on the
phenomena of interference

Ernest Rutherford (C) 1871–1937 his investigations into the disintegration of the elements and the
chemistry of radioactive substances

1909 Guglielmo Marconi 1874–1937 their contributions to the development of wireless telegraphy
Carl Ferdinand Braun 1850–1918

1910 Johannes Diderik van der Waals 1837–1923 his work on the state of equations of gases and liquids

1911 Wilhelm Wien 1864–1928 his discoveries regarding the laws governing the radiation of heat
Marie Curie (C) 1867–1934 her services to the advancement of chemistry by the discovery of

the elements radium and polonium and by the isolation of radium
and the study of its nature and compounds

1912 Nils Gustaf Dalén 1869–1937 his invention of automatic regulators for use in conjunction with
gas accumulators for illuminating lighthouses and buoys
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Year Nobel laureate Citation for

1913 Heike Kamerlingh Onnes 1853–1926 his investigations of the properties of matter at low temperatures,
which led, inter alia, to the production of liquid helium

1914 Max von Laue 1879–1960 his discovery of the diffraction of X rays by crystals

1917 Charles Glover Barkla 1877–1944 his discovery of the characteristic X rays of the elements

1918 Max Planck 1858–1947 his discovery of energy quanta

1919 Johannes Stark 1874–1957 his discovery of the Doppler effect in canal rays and of the
splitting of spectral lines in electric fields

1920 Charles-Édouard Guillaume 1861–1938 the service he has rendered to precise measurement in physics by
his discovery of anomalies in nickel steel alloys

1921 Albert Einstein 1879–1955 his services to theoretical physics, and especially for his 
discovery of the law of the photoelectric effect

Frederick Soddy (C) 1877–1956 his contributions to our knowledge of the chemistry of
radioactive substances, and his investigations into the origin and
nature of isotopes

1922 Neils Bohr 1885–1962 his investigation of the structure of atoms and the radiation 
emanating from them

Francis W. Aston (C) 1877–1945 his discovery, by means of his mass spectrograph, of isotopes in a
large number of nonradioactive elements, and for his enunciation
of the whole-number rule

1923 Robert Andrews Millikan 1868–1953 his work on the elementary charge of electricity and on the
photoelectric effect

1924 Karl Manne Georg Siegbahn 1886–1978 his discoveries and researches in the field of X-ray spectroscopy

1925 James Franck 1882–1964 their discovery of the laws governing the impact of an electron 
Gustav Hertz 1887–1975 upon an atom

1926 Jean-Baptiste Perrin 1870–1942 his work on the discontinuous structure of matter, and especially
for his discovery of sedimentation equilibrium

1927 Arthur Holly Compton 1892–1962 his discovery of the effect named after him
Charles Thomson Rees Wilson 1869–1959 his method of making the paths of electrically charged particles

visible by condensation of vapor

1928 Owen Willans Richardson 1879–1959 his work on the thermionic phenomenon, and especially for the
discovery of the law named after him

1929 Prince Louis-Victor de Broglie 1892–1987 his discovery of the wave nature of electrons

1931 Werner Heisenberg 1901–1976 the creation of quantum mechanics, the application of which has,
inter alia, led to the discovery of the allotropic forms of hydrogen

1933 Erwin Schrödinger 1887–1961 their discovery of new productive forms of atomic theory
Paul Adrien Maurice Dirac 1902–1984



1934 Harold C. Urey (C) 1893–1991 his discovery of heavy hydrogen

1936 Victor Franz Hess 1883–1964 his discovery of cosmic radiation
Carl David Anderson 1905–1991 his discovery of the positron
Peter Debye (C) 1884–1966 his contributions to our knowledge of molecular structure

through his investigations on dipole moments and on the
diffraction of X rays and electrons in gases

1937 Clinton Joseph Davisson 1881–1958 their experimental discovery of the diffraction of electrons 
George Paget Thomson 1892–1975 by crystals

1938 Enrico Fermi 1901–1954 his demonstrations of the existence of new radioactive elements
produced by neutron irradiation, and for his related discovery of
nuclear reactions brought about by slow neutrons

1939 Ernest Orlando Lawrence 1901–1958 the invention and development of the cyclotron and for
results obtained with it, especially with regard to artificial
radioactive elements

1943 Otto Stern 1888–1969 his contributions to the development of the molecular ray method
and his discovery of the magnetic moment of the proton

1944 Isidor Issac Rabi 1898–1988 his resonance method for recording the magnetic properties
of atomic nuclei

Otto Hahn (C) 1879–1968 his discovery of the fission of heavy nuclei

1945 Wolfgang Pauli 1900–1958 his discovery of the exclusion principle, also called the
Pauli principle

1946 Percy Williams Bridgman 1882–1961 the invention of an apparatus to produce extremely high
pressures and for the discoveries he made in the field of
high pressure physics

1947 Sir Edward Victor Appleton 1892–1965 his investigations of the physics of the upper atmosphere,
especially for the discovery of the Appleton layer

1948 Patrick Maynard Stuart Blackett 1897–1974 his development of the Wilson cloud chamber method and his
discoveries therewith in nuclear physics and cosmic radiation

1949 Hideki Yukawa 1907–1981 his prediction of the existence of mesons on the basis of
theoretical work on nuclear forces

1950 Cecil Frank Powell 1903–1969 his development of the photographic method of studying
nuclear processes and his discoveries regarding mesons made
with this method

1951 Sir John Douglas Cockcroft 1897–1967 their pioneer work on the transmutation of atomic nuclei by 
Ernest Thomas Sinton Walton 1903–1995 artificially accelerated atomic particles their discoveries in
Edwin M. McMillan (C) 1907–1991 the chemistry of the transuranium elements
Glenn T. Seaborg (C) 1912–1999

1952 Felix Bloch 1905–1983 the development of new methods for nuclear magnetic precision
Edward Mills Purcell 1912–1997 measurements and discoveries in connection therewith
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1953 Frits Zernike 1888–1966 his demonstration of the phase contrast method, especially for his
invention of the phase contrast microscope

1954 Max Born 1882–1970 his fundamental research in quantum mechanics, especially his
statistical interpretation of the wave function

Walter Bothe 1891–1957 the coincidence method and his discoveries made therewith

1955 Willis Eugene Lamb Jr. b. 1913 his discoveries concerning the fine structure of the hydrogen
spectrum

Polykarp Kusch 1911–1993 his precision determination of the magnetic moment of the electron

1956 William Shockley 1910–1989 their investigations on semiconductors and their discovery of the 
John Bardeen 1908–1991 transistor effect
Walter Houser Brattain 1902–1987

1957 Chen Ning Yang b. 1922 their penetrating investigation of the parity laws, which led to 
Tsung Dao Lee b. 1926 important discoveries regarding elementary particles

1958 Pavel Alekseyevich Cherenkov 1904–1990 their discovery and interpretation of the Cherenkov effect
Ilya Mikhaylovich Frank 1908–1990
Igor Yevgenyevich Tamm 1895–1971

1959 Emilio Gino Segrè 1905–1989 their discovery of the antiproton
Owen Chamberlain 1920–2006

1960 Donald Arthur Glaser b. 1926 the invention of the bubble chamber
Willard F. Libby (C) 1908–1980 his method to use 14C for age determination in several branches

of science

1961 Robert Hofstadter 1915–1990 his pioneering studies of electron scattering in atomic nuclei and
for his discoveries concerning the structure of the nucleon
achieved thereby

Rudolf Ludwig Mössbauer b. 1929 his researches concerning the resonance absorption of  rays
his discovery in this connection of the effect that bears his name

1962 Lev Davidovich Landau 1908–1968 his pioneering theories of condensed matter, especially 
liquid helium

1963 Eugene Paul Wigner 1902–1995 his contributions to the theory of the atomic nucleus and the
elementary particles, particularly through the discovery and
application of fundamental symmetry principles

Maria Goeppert Mayer 1906–1972 their discoveries concerning nuclear shell structure
J. Hans D. Jensen 1907–1973

1964 Charles H. Townes b. 1915 fundamental work in the field of quantum electronics, which 
Nikolai G. Basov 1922–2001 has led to the construction of oscillators and amplifiers
Alexander M. Prokhorov 1916–2002 based on the maser-laser principle

1965 Shin’ichiro Tomonaga 1906–1979 their fundamental work in quantum electrodynamics, with profound
Julian Schwinger 1918–1994 consequences for the physics of elementary particles
Richard P. Feynman 1918–1988

Year Nobel laureate Citation for



1966 Alfred Kastler 1902–1984 the discovery and development of optical methods for studying
Hertzian resonance in atoms

1967 Hans Albrecht Bethe 1906–2005 his contributions to the theory of nuclear reactions, especially his
discoveries concerning the energy production in stars

1968 Luis W. Alvarez 1911–1988 his decisive contributions to elementary particle physics, in
particular the discovery of a large number of resonance states
made possible through his development of the techniques of 
using the hydrogen bubble chamber and data analysis

1969 Murray Gell-Mann b. 1929 his contributions and discoveries concerning the classification of
elementary particles and their interactions

1970 Hannes Alfvén 1908–1995 fundamental work and discoveries in magnetohydrodynamics
with fruitful applications in different parts of plasma physics

Louis-Eugène-Félix Néel 1904–2000 fundamental work and discoveries concerning
antiferromagnetism and ferrimagnetism, which have led 
to important applications in solid-state physics

1971 Dennis Gabor 1900–1979 his invention and development of the holographic method

1972 John Bardeen 1908–1991 their theory of superconductivity, usually called the BCS theory
Leon N. Cooper b. 1930
J. Robert Schrieffer b. 1931

1973 Leo Esaki b. 1925 their experimental discoveries of tunneling phenomena in 
Ivar Giaever b. 1929 semiconductors and superconductors, respectively 
Brian D. Josephson b. 1940 his theoretical predictions of the properties of a supercurrent

through a tunnel barrier, in particular those phenomena which
are generally known as Josephson effects

1974 Antony Hewish b. 1924 the discovery of pulsars
Sir Martin Ryle 1918–1984 his observations and inventions in radio astronomy

1975 Aage Bohr b. 1922 the discovery of the connection between collective motion 
Ben R. Mottleson b. 1926 and particle motion in atomic nuclei and for the theory of the 
L. James Rainwater 1917–1986 structure of the atomic nucleus based on this connection

1976 Burton Richter b. 1931 their pioneering work in the discovery of a heavy elementary 
Samuel Chao Chung Ting b. 1936 particle of a new kind

1977 Philip Warren Anderson b. 1923 their fundamental theoretical investigations of the electronic 
Nevill Francis Mott 1905–1996 structure of magnetic and disordered systems
John Hasbrouck Van Vleck 1899–1980

1978 Pyotr L. Kapitza 1894–1984 his basic inventions and discoveries in the area of 
low-temperature physics

Arno A. Penzias b. 1933 their discovery of cosmic microwave background radiation
Robert Woodrow Wilson b. 1936
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1979 Sheldon Lee Glashow b. 1932 their contributions to the theory of the unified weak and 
Abdus Salam 1926–1996 electromagnetic interaction between elementary particles,
Steven Weinberg b. 1933 including, inter alia, the prediction of the weak neutral current

1980 James W. Cronin b. 1931 the discovery of violations of fundamental symmetry principles 
Val L. Fitch b. 1923 in the decay of neutral K-mesons

1981 Nicolaas Bloembergen b. 1920 their contributions to the development of laser spectroscopy
Arthur L. Schawlow 1921–1999
Kai M. Siegbahn b. 1918 his contribution to the development of high-resolution electron

spectroscopy

1982 Kenneth G. Wilson b. 1936 his theory for critical phenomena in connection with phase
transitions

1983 Subrahmanyan Chandrasekhar 1910–1995 his theoretical studies of the physical processes of importance to 
the structure and evolution of the stars

William A. Fowler 1911–1995 his theoretical and experimental studies of the nuclear reactions
of importance in the formation of the chemical elements in the
universe

1984 Carlo Rubbia b. 1934 their decisive contributions to the large project, which led to the 
Simon van der Meer b. 1925 discovery of the field particles W and Z, communicators of the

weak interaction

1985 Klaus von Klitzing b. 1943 the discovery of the quantized Hall effect

1986 Ernst Ruska 1906–1988 his fundamental work in electron optics and for the design of 
the first electron microscope

Gerd Binnig b. 1947 their design of the scanning tunneling microscope
Heinrich Rohrer b. 1933

1987 J. Georg Bednorz b. 1950 their important breakthrough in the discovery
Karl Alex Müller b. 1927 of superconductivity in ceramic materials

1988 Leon M. Lederman b. 1922 the neutrino beam method and the demonstration of the
Melvin Schwartz 1932–2006 doublet structure of the leptons through the discovery of
Jack Steinberger b. 1921 the muon neutrino

1989 Hans G. Dehmelt b. 1922 their development of the ion trap technique
Wolfgang Paul 1913–1993
Norman F. Ramsey b. 1915 the invention of the separated oscillatory fields method and its 

use in the hydrogen maser and other atomic clocks

1990 Jerome I. Friedman b. 1930 their pioneering investigations concerning deep inelastic 
Henry W. Kendall 1926–1999 scattering of electrons on protons and bound neutrons which 
Richard E. Taylor b. 1929 have been of essential importance for the development of the

quark model in particle physics

Year Nobel laureate Citation for



1991 Pierre-Gilles de Gennes 1932–2007 his discovering that methods developed for studying ordered
phenomena in simple systems can be generalized to more
complex forms of matter, in particular, to liquid crystals and
polymers

1992 Georges Charpak b. 1924 his invention and development of particle detectors, particularly
multi-wire proportional counters 

1993 Joseph H. Taylor, Jr. b. 1941 their discovery of rare binary pulsars
Russell A. Hulse b. 1950

1994 Bertram N. Brockhouse 1918–2003 their pioneering contributions to the development of neutron 
Clifford G. Shull 1915–2001 scattering techniques for studies of condensed matter

1995 Martin Perl b. 1927 for his discovery of the tau lepton
Frederick Reines 1918–1998 for his discovery of the neutrino

1996 David Lee b. 1931 for their discovery of the superfluid phase of 3He
Douglas Osheroff b. 1945
Robert Richardson b. 1937

1997 Steven Chu b. 1948 for their development of techniques to chill atoms to millionths 
Claude Cohen-Tannoudji b. 1933 of a kelvin above absolute zero and to trap them with laser light
William Phillips b. 1948

1998 Robert B. Laughlin b. 1950 for their discovery of a new form of quantum fluid with 
Horst L. Störmer b. 1949 fractiionally charged excitations
Daniel C. Tsui b. 1939

1999 Gerardus ‘t Hooft b. 1946 for elucidating the quantum structure of electroweak interactions 
Martinus J. G. Veltman b. 1931 in physics

2000 Zhores I. Alferov b. 1930 for basic work on information technology
Herbert Kroemer b. 1928
Jack S. Kilby 1923–2005 for his part in the invention of the integrated circuit

2001 Eric A. Cornell b. 1961 for the achievement of Bose-Einstein condensation in dilute 
Wolfgang Ketterle b. 1957 gases of alkali atoms and early fundamental studies of the 
Carl E. Weiman b. 1951 properties of the condensates

2002 Raymond Davis, Jr. 1914–2006 their pioneering contributions to astrophysics, in particular the
Masatoshi Koshiba b. 1926 detection of cosmic neutrinos
Riccardo Giacconi b. 1931 his pioneering contributions to astrophysics, which have led 

to the discovery of cosmic x-ray sources

2003 Alexei A. Abrikosov b. 1928 for pioneering contributions to the theory of superconductors and
Vitaly L. Ginzburg b. 1916 superfluids
Anthony J. Leggett b. 1938
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2004 David J. Gross b. 1941 for the discovery of asymptotic freedom in the theory of the 
H. David Politzer b. 1949 strong interaction
Frank Wilczek b. 1951

2005 Roy J. Glauber b. 1925 for his contribution to the quantum theory of optical coherence
John L. Hall b. 1934 for their contributions to the development of laser-based precision
Theodor W. Hänsch b. 1941 spectroscopy, including the optical frequency combo technique

2006 John C. Mather b. 1946 for their discovery of the blackbody form and anisotropy of the
George F. Smoot b. 1945 cosmic microwave background radiation

Year Nobel laureate Citation for



These results are usually rounded to three significant figures. Differences in the
third significant figure may result from rounding and are not important. When
the solution is a diagram, graph, derivation, or proof, reference is made to the
Students Solution Manual (SSM) where the solution appears.

Chapter 1 1-1. (a) (b) No, since the droid is moving faster than light speed
relative to Hoth.

1-5. (a) At , a bright circle reflected from great circle perpendicular to the motion.

(b) At , the entire interior lights up.

1-9.

1-13. (a) (b)

1-17. (a) See Students Solution Manual (SSM) (b) When 10 s have passed on the rocket’s
clock, only 6 s have passed on the lab clock.

1-21.

1-25.

1-29. (a) In ; in (b) See SSM

1-33. 657.0 nm, 662.9 nm, 725.6 nm

1-37. 3.0 m

1-41. 9.6 ms

1-45. (a) See SSM (b) (c) (d)

1-49. (a) in the direction (b) (c) (d) spacelike
(e)

1-53.

1-57. (a) 120 min (b) 240 min (c) identical

1-61. (a) (b)

Chapter 2 2-1. See SSM

2-5. , mass increases 

2-9. (a) (b) (c) ; 

2-13. (a) (b) 0.0079

2-17.

2-21.

2-25. See SSM

2-29. m � 1673 MeV>c2, u � 0.286c

280 MeV

6.26 MeV

3.5 � 10�7

�3.31 � 109 GeV>c3.31 � 109 GeV3.94 � 104 GeV>c0.99998898c

1.1 � 10�16 kg

4vL>(c2 � v2)AS B: T>2 � 2vL>(c2 � v2); BS A: T>2 � 2vL>(c2 � v2)

�� � 0.494 vy>c0.866 c # y
0.866 c # y0.58 y�xv � 0.5c

4.39 	s4.39 	sv � 1.44 � 108 m>s
S: V � 12.2 m3S�: V� � 16 m3

0.527c

0.14c

2.0 � 10�5 s3.76 � 10�5 s

¢t � 4.63 � 10�13 s

t � 2 s

t � 2 s

4.4 � 108 m>s

Answers
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AN-2 Answers

2-33. (c) is correct.

2-37. 8.62 ms

2-41. (a) (b) (c)

2-45. See SSM

2-49. (a) (b) (c)

2-53. (a) See SSM (b) See SSM

Chapter 3 3-1. proton ; electron ; deuteron 

3-5. (a) (b)

3-9. See SSM

3-13.

3-17.

3-21.

3-25. (a) (b)

3-29. (a) (b) ultraviolet

3-33.

3-37.

3-41. (a) electron 0.00243 nm; proton 1.32 fm (b) electron 0.510 MeV; proton 939 MeV

3-45. (a) 2.08 eV (b) (c)

3-49. See SSM

3-53. See SSM

3-57. (a) 0.0309 nm, 0.1259 nm (b) 9.90 keV

Chapter 4 4-1. Lyman 91.16 nm; Balmer 364.6 nm; Paschen 820.4 nm

4-5. 4103 nm

4-9. 45.5 fm; 29.5 fm; 19.0 fm

4-13. (a) 1.91 nm (b) 0.95 nm

4-17.

4-21. See SSM

4-25. (a) (b)

4-29. 680 fm

4-33.

4-37. 10.2 V

4-41. (a) (b)

4-45. (a) (b)

4-49. (a) (b) (c) (d) See SSM

4-53. For 

4-57. 10; 1,042

n � 1: v � 0.0075cZ1>2; E � �14.4Z eV

�R2I0R
2 cos2 (�>2)b � R cos(�>2)

¢
 � 0.056 nmLyman �: n � 6 S n � 3 Lyman �: n � 9 S n � 3

9.27 � 10�24 A # m21.054 � 10�3 A

1.90 � 10�8 Hz�1>2
3.65 � 103 m>s19.0 	m

8.22 � 1014 Hz, 8.22 � 106 revolutions

4.19 � 10�15 eV>Hz4.95 � 1014 Hz

0.243 nm

4.14 � 10�3 nm; 5.8%

1.03 � 1015 Hz

1.4 � 10�4255 nm

278.3 K (5.3 °C)

16 R1

5.67 � 10�8 W>m2 K4

9.1 � 109 Hz, 1.1 � 10�10 s2.2 mm

helium 0.26 m
0.13 m; H2 0.13 m;3.6 � 10�5 m6.5 � 10�2 m

m � E>c2¢x � EL>Mc2v � E>Mc

155 kg1.5 � 105 m>s1.73 � 105 m>s



Chapter 5 5-1. (a) (b)

5-5. 0.0276 nm

5-9. (a) (b)

5-13.

5-17. (a) See SSM (b) (c) (d)

5-21.

5-25. (a) (b) (c) (d)

5-29.

5-33. (a) (b)

5-37. See SSM

5-41. (a) See SSM (b) See SSM

5-45. (a) 1840 MeV (b) 2.02 fm (c) 1.22 fm (d) 0.76 fm

5-49. (a) 0.243 nm (b) 0.511 MeV (c) (d)

5-53.

Chapter 6 6-1. See SSM

6-5. See SSM

6-9. (a) 0.021 eV (b) 205 MeV

6-13. (a) (b)

6-17. See SSM

6-21.

6-25.

6-29. (a) (b)

6-33.

6-37. (a) See SSM (b) (c) (d)

6-41. (a) (b) (c)

6-45. (a) is the transmitted fraction (b) See SSM

6-49. (a) (b) 

6-53.

6-57. (a) (b) 0.197

6-61. (a) 0.39c (b) See SSM (c) (d)

Chapter 7 7-1. The 1st, 2nd, 3rd, and 5th excited states are degenerate.

7-5. (a) See SSM (b) 1, 1, 4 and 1, 2, 2

7-9. (a) 0, 1, 2 (b) For for for 
(c) 18

7-13. (a) (b) (c) (d)

7-17. (a) (b) (c)
(d)

7-21. See SSM

�3U, �2U, �U, 0
3.65 � 10�34 J # s�0.38 eVn � 6, � � 3

n � 35U26U22U2

� � 2, m � �2, �1, 0� � 1, m � �1, 0;� � 0, m � 0;

11E0 , 12E0 , 14E0 ,

3.76 � 105 eV8.03 � 105 eV

4.95 � 10�13

8Ek9 � U2>(2mL2)

R � 0.111; T � 0.889R � 0.111; T � 0.889

4.3 � 10�6

0.70 Hz2.1 � 10282.33 � 10�34 J

8V(x)9 � 3U�>48x29 � 3U>(2m�)8x9 � 0

8x9 � 0; 8x29 � U>(2m�)

0.320L2L>20.87 nm

1.21 � 10�7 N

9 � 1011¢x � 10�6 m; ¢p � 10�16 kg # m>s

1.2 � 10�6 eV, 1.2 eV

2.43 � 10�3 nm0.511 MeV>c
1.32 � 10�7 eV5.3 � 10�10

1.99 � 10�21 eV

x � 00.14A2 dx0.61A2 dxA2 dx

3.2 � 10�5 s

¢x � 5� m; ¢k � 0.4 m�150 m>s50 m>sl � 0.523 nm; Ek � 3.0 � 10�3 eV

6.18 � 10�3 fm0.445 fm

2.1 � 10�21 m>y2.1 � 10�23 m

Answers AN-3



AN-4 Answers

7-25. (a) (b) (c)

7-29. See SSM

7-33. (a) 4 (b) 3

7-37. See SSM

7-41. See SSM

7-45. Sn:

Nd:

Yb:

7-49. (a) silicon, Si (b) calcium, Ca

7-53. Similar to H: Li, Rb, Ag, and Fr

Similar to He: Ca, Ti, Cd, Ba, Hg, and Ra

7-57. is j-forbidden

7-61. (a) (b) (c)

7-65. (a) (b)

7-69. (a) See SSM (b) See SSM

7-73. (a) through (e) See SSM

Chapter 8 8-1. (a) (b)

8-5. (a) 3400 J (b) One mole of any gas has the same translational energy at the same
temperature.

8-9. See SSM

8-13. , and 

8-17. (a) and are both (b) 19,760 K (c) 0.7%

8-21. See SSM

8-25. See SSM

8-29. See SSM

8-33. See SSM

8-37. (a) (b) See SSM

8-41.

8-45. See SSM

Chapter 9 9-1. (a) (b) (c)

9-5. (a) (b) (c)

9-9. For KBr: 0.19 eV For RbCl: 0.23 eV

9-13.

9-17. (a) 0.67 nm (b) 55 nm (c) See SSM

9-21.

9-25. (a) 18.6 u (b) 0.280 nm

9-29.

9-33. about 

9-37.

9-41. (a) (b) 5.08 � 10�3 W>cm28.47 � 10�5 radians

1.28 � 1016>s5.5 � 1031

0.04 � 10�5 eV

1.78 � 10�4 eV

2.63 � 10�29 C # m

0.46 eV4.83 eV�5.39 eV

1.08 eV>molecule98.5 kcal>mol23.06 kcal>mol

8EK(escape)9 � 2kT

fFD(E) � [e10(E�EF)>EF � 1]�1

� 0n3>n1n2>n1

 � 2Cv � R, Cp � 2R

1.01 � 104 K1930 m>s

1.95 cm1.67 � 106 m>s2

0.638 T7.83 � 10�4 nm2.90 � 10�6 eV

D5>2 SP1>2

1s22s22p63s23p63d104s24p64d104f145s25p66s2
1s22s22p63s23p63d104s24p64d105s25p64f46s2
1s22s22p63s23p63d104s24p64d105s25p2

0.368>(8a0)0.368(1>a0)
3>(32�)0.606(1>a0)

3>2>232�



9-45. (a) , vibrational
states (note equal spacing); See SSM (b) 0.215 nm

9-49.

9-53. (a) (b)

9-57. (a) (b)

Chapter 10 10-1. 4.64

10-5.

10-9. 4.18

10-13. (a) (b)

10-17.

10-21. (a) 34.2 nm (b) 41.4 nm (c) 43.1 nm

10-25.

10-29. (a) 0.37 eV (b) 4300 K

10-33. See SSM

10-37. (a) (b)

10-41. For : 7.217 K; for 7.200 K; for 7.183 K

10-45. (a) 0.95 (b) 0.71 (c) 0.32

10-49. (a) See SSM (b) See SSM (c) 0.0055

10-53. silicon: 3.17 nm; germanium: 8.46 nm

10-57. (a) (b)

Chapter 11 11-1. See SSM

11-5. See SSM

11-9. (a) (b) (c)

11-13. (a) 2.70 fm; 3.53 fm (b) 4.26 fm; 5.57 fm (c) 6.34 fm; 8.30 fm

11-17. (a) (b)

11-21. 33.2 min

11-25.

11-29. 1.00 MeV

11-33. 93 keV

11-37.

11-41.

11-45.

11-49. (a) (b)

11-53. 224 MeV

11-57.

11-61. (a) (b)

11-65.

11-69. (a) (b) (c)

11-73. See SSM

11-77. (a) (b) (c) 1.17 cm>s4.71 � 10�2 eV5.06 � 10�6 eV

2.15 � 104 y0.149 mg1013

1.90 � 109 y

145 y8.78 � 1012 J

1.78 � 1014 atoms>s
1.92 MeV�4.97 MeV

30
14Si, j � 0; 37

17Cl, j � 3>2; 55
27Co, j � 7>2; 90

40Zr, j � 0; 107
49In, j � 9>236S, 53Mn, 82Ge, 88Sr, 94Ru, 131In, 145Eu

789 MeV>c2

A � 191; B � �72.2

3.11 � 106 atoms5.21 h

8.77 MeV>nucleon7.47 MeV>nucleon6.46 MeV>nucleon

23.4 	m1.28 � 1013 Hz

208Pb:207Pb:206Pb

�12.0 mV27.8 mV

6.7 � 10�3

1.87 eV

5.90 � 1022>cm35.86 � 1022>cm3

4.09 eV>atom

1.32 � 1014 Hz4.58 � 10�48 kg # m2

8.9 � 10�14 eV # nm200.31 eV

480 N>m
E3 � 1.44 � 10�3 eV, E2 � 9.61 � 10�4 eV, E1 � 4.79 � 10�4 eV

Answers AN-5



AN-6 Answers

11-81. (a) (b)

11-85.

11-89. (a) See SSM (b) 51.7 MeV (c) 1.43 MeV (c) 96.5 MeV

11-93. (a) See SSM (b) See SSM (c) See SSM (d) See SSM (e) See SSM

11-97. (a) See SSM (b)

11-101. (a) 137% (b) 0.00498

Chapter 12 12-1. (a) See SSM (b) 139.6 MeV (c) 8.88 fm

12-5. (a) (b) (c)

12-9. (a) weak (b) electromagnetic (c) strong (d) weak

12-13.

12-17. (a) Conservation of energy and lepton number are violated. (b) Conservation of
energy is violated. (c) Conservation of linear momentum is violated. 
(d) No conservation laws are violated. (e) Conservation of lepton number is
violated. (f) Conservation of baryon number is violated.

12-21. (a) Conservation of lepton number is violated. (b) Allowed. (c) Allowed.
(d) Conservation of baryon number and angular momentum are violated.
(e) Allowed.

12-25. See SSM

12-29. uuu

12-33. Energy is not conserved.

12-37. (a) (b)

12-41. (a) Energy is not conserved. (b) Angular momentum is not conserved.
(c) Angular momentum is not conserved.

12-45. (a) The final products are all stable. (b) See SSM (c) See SSM (d) No. Energy is
not conserved.

12-49. (a) No conservation laws are violated. (b) Conservation of energy and baryon
number are violated. (c) No conservation laws are violated.

12-53. (a) (b) (c) (d)

Chapter 13 13-1. 25.3 d

13-5.

13-9. 17.0 pc

13-13. (a) (b) using the relation

13-17. (a) (b) 10%

13-21.

13-25. See SSM

13-29. (a) (b) (c)

13-33. “new” No.

13-37. (a) See SSM (b) (c) � 0.1%M}1.1 � 10�12 cm3

H atoms>m3 # 106 y;�  0.001

1.7 � 1010 y8.89 � 1044 J8.33 � 1056

2.45 � 104 kg>m31.67 � 1018 kg>m3;5.5 � 1097 kg>m3;

3.27 � 109 c # y

TeRstar � 1.96R}9400 y

10.4 eV>c2

74.3 MeV>c2.66 MeV77 MeV>c1193 MeV

cdcd

�138.3 MeV

m � 22 eV>c2

2.16 MeV>c78.5 eV1.711 MeV

8.66 � 104

7.03 � 108 y

249 MeV141Ba : 6.24 � 10�15 m; 92Kr : 5.42 � 10�15 m
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Aristotelian physics, 1, 3
Aristotle, 1, 6, 630, 636
Artwork
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Kronig-Penney model of, 438, 438–441, 439
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Barrier potentials, 256, 256–257
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Baryon number, 564, 569t, 583, 583t, 586t

conservation of, 581
nonconservation of, 607

Baryon octet, 587, 591, 592, 595
Baryons, 569, 573t, 587, 594t

supermultiplets of, 598
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BCS theory of superconductivity, 463–465, 510
BEC. See Bose-Einstein condensates (BEC)
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Beta decay, 499–504

��, 501
��, 499–500
double, 503
electron capture, 502–504
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Beta particles (�), 151, 477
Betelgeuse, 620, 643
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Big Bang, 668–672, 670, 676
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664, 668–669

fusion reactions during, 556, 668, 668
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and quantum fluctuations, 206
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Bloch functions, 439
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and probability density, 282–283
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and conduction, 425, 430
and quantization of energy states, 346
vs. other distributions, 329–333, 331
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hydrogen, 377, 378
metallic, 364, 375, 415, 421–422, 422
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Born exponents (n), 470
Bose, Satyendra Nath, 329, 356
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vs. other distributions, 329–333, 331

Bosons, 329–332
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Higgs, 568, 581, 603

and Z0, 575, 575, 576t, 602–603
Bottom (B�), 570, 583, 583t
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Bragg condition, 135, 135

W�

e�E>kT

and band theory of solids, 440–441
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Causality, and special relativity, 37, 39, 39, 54–55,

55
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676
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Chain reactions, 527, 530
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Characteristic rotational energy (E0r), 380, 389t
Characteristic spectra, 135, 136
Charge

color, 569–570, 576t, 596–597
density of, in nucleus, 482
electric, 118–119, 569t, 576t, 583, 583t
flavor, 568, 569t, 574
gravitational, 576, 576t
magnetic, 608
weak, 570, 574, 576t

Charge multiplets, 572, 585–586, 606
Charged current, 574
Charged weak force, 574
Charm (C), 570, 583, 583t, 597, 597
Chirped pulse amplification, 403
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Chromosphere, 622, 622–623, 623
Classical Concept Reviews. See also Exploring;

More
charge-to-mass ratio (e/m) of electrons, 116#
conduction, 423#
Fourier integrals, 199#
Galilean transformation of coordinates, 6#
inertial reference frames, 6#
interference fringes, 9#
kinetic theory, 315#, 316#, 319#, 328#
Millikan oil-drop experiment, 119#
relativity, 6#

Classical novae, 644
Classical physics. See also Newtonian physics

conduction, 422–426, 423#
dynamics, 65–66, 81
failures of, 325, 327, 346–347, 422, 425
history of, 1–2
particles, 212
and relativistic approximations, 95–96
statistical, 316–328
uncertainty relations, 199–201, 200
wave equation, 196, 202, 212

Classical relativity, 4–6#, 8–9, 11
Clausius, Rudolf, 325
Clocks. See also Time

atomic, 33, 260, 392, 396
in gravitational fields, 103–105

light, 29, 30
local, 15
reference, 13, 14

Closed universe, 666
Clusius, K., 337
COBE. See Cosmic Background Explorer

(COBE) satellite
Coblenz, W. W., 123
Cockcroft, John D., 477, 516, 552
Coefficient of reflection (R), 253, 254
Coefficient of transmission (T), 253, 254

and alpha decay, 259, 497
and tunneling, 257

Coherent radiation, 391, 394
Cohesive energy, 417, 420
Collectors, transistor, 456, 456
Collisions. See also Scattering

and atomic energy levels, 174, 174–175
elastic, 66–67, 67
between electromagnetic radiation and matter,

137–139
inelastic, 76, 76–77
and relativistic energy, 76, 76–77
and relativistic momentum, 66–67, 67

Color charge, 569–570, 576t
and quark model of hadrons, 596–597
and strong interaction, 570, 571

Comoving coordinates, 660, 665, 667
Comoving space density, 660, 668
Compact discs (CDs), 404, 437
Complex conjugates, 204, 225, 262
Complex numbers, 109, 205, 224–225, 262, 407
Compound doublets, 303
Compound nucleus, 517, 521–522, 522
Compton, Arthur H., 133, 137, 138, 141, 407,

531, 561
Compton edge, 146
Compton effect, 137, 137–139, 138, 390, 391

Feynman diagram for, 567
Compton Gamma Ray Observatory, 652
Compton wavelength (
c), 137, 195

and limits of knowledge, 673
and range of strong interaction, 510, 578

Compton’s equation, 137, 138*
Computer assisted tomography (CAT), 478,

540–542, 541, 542
Conant, James B., 531
Condon, Edward U., 258, 477
Conduction

and band theory of solids, 441–442, 442
classical, 422–426, 423#
electrical, 423–424
quantum, 430–434
thermal, 337, 434*

Conduction bands, 441, 441, 442
Conductivity (�), 424–425. See also

Superconductivity
Conservation laws, 583*

of electric charge, 580
of energy, 76–81, 517–520, 580, 663, 666
and invariant quantities, 66, 73, 580
of linear and angular momentum, 580
in particle physics, 500, 568, 580–591, 590t,

594
in radioactive decay, 496, 500

Constellations, 631, 631
Continuity conditions, 228, 252
Continuous Electron Beam Accelerator Facility

(CEBAF), 71
Continuous spectra, 147–148
Continuous wave lasers, 400–401
Conversion electrons, 505
Cooper, Leon N., 463, 471
Cooper pairs, 463, 464–465

and exchange forces, 510
in fermion gases, 354
in Josephson junctions, 467

Coordinate systems
celestial, 636, 636–637



comoving, 660, 665, 667
polar, 101
right-handed vs. left-handed, 589, 589
spherical, 271–272, 272, 282

Copernicus, Nicolaus, 3, 57, 636
Core, solar, 623
Cormack, Allan, 541, 553
Cornell, Eric A., 341, 343
Corona, 623
Corpuscles, 118
Correspondence principle, 160–161

and Bohr atoms, 166
for infinite square wells, 233–234, 236
and Rydberg atoms, 168
for simple harmonic oscillators, 248, 248

Cosmic Background Explorer (COBE) satellite,
126, 664, 669

Cosmic background radiation, 126, 126–127, 664,
664

anisotropies in, 664, 664, 669
Cosmic rays, 141

and carbon dating, 543–545
as charged particles, 138
de Broglie wavelength of, 195–196
and pair-production, 90
relativistic speeds of, 22–23

Cosmological constant (-), 661, 664, 667
Cosmological principle, 662, 662, 666–667, 669

perfect, 664
Cosmological redshift, 659–661
Cosmology, 619, 662–674. See also Astrophysics

and the Big Bang, 126–127, 206
and evolution of the universe, 664–674
and expansion of the universe, 43–44
and general relativity, 101–105, 104
and gravitation, 662–664
and headlight effect, 52

Coulomb’s law
and alpha decay, 258–259, 259
and atomic models, 159–160, 161
and covalent bonds, 370, 370–371
Feynman diagrams for, 566–567, 567
and fission, 528, 528
and fusion, 625
and phonons, 464
and scattering of charged particles, 153–154,

156*
Coupling constants, 570–571, 577–578, 605, 612

for electromagnetic interactions (�), 571, 577
for strong interactions (�s), 571, 600

Covalent bonds, 364, 369–375, 374
other types, 375*, 420*
vs. ionic bonds, 374

Covalent solids, 415–421
Cowan, Clyde, 500
CP violations, 590
Crab nebula, 646, 649, 649–650, 650
Creation of particles. See Pair production of

particles
Creeping films, 338, 338
Critical magnetic fields (Bc), 458, 458t, 459, 460,

461
Critical mass density (�0) of the universe,

662–663, 672
Critical population inversion density (�nc), 400,

404–405
Critical temperature (Tc)

for Bose-Einstein condensates, 340–341
for superconductivity, 458, 458t, 459, 466t

Cross sections (�), 154, 154, 484, 521, 523
differential ( ), 178
for neutron capture, 514, 514
partial, 521
for strong interaction, 580

CRT. See Cathode-ray tubes (CRTs)
Crystallography, 134–136
Crystals, 414, 414–415, 416t

symmetry of, 415, 415–421, 416t, 418, 419,
420

ds>dÆ

Curie, Marie, 552
Curie, Pierre, 435, 552
Curie temperature (TC), 436
curies (Ci), 493
Curie’s law, 435
Current, charged vs. neutral, 574
Current density (j), 424
Current loops, 286
Curvature of wave functions, 239, 239
Cyclotrons, 477, 516

and accelerator mass spectroscopy, 547
and medical isotopes, 542

dc Josephson effect, 467
Dalton, John, 561
Dark energy, 185, 663, 664, 667, 669, 671
Dark matter, 185, 638–639, 663, 667, 671

and black holes, 650
and interstellar dust, 654

Darwin, C. G., 47
Davis, Raymond, Jr., 607, 612, 626, 676
Davisson, Clinton J., 186, 188–193, 191, 214
Davisson-Germer experiment, 188, 188–192
de Broglie, Louis, 2, 185–188, 186, 191–193, 214
de Broglie, Maurice, 214
de Broglie relations, 185–187

and Bose-Einstein condensates, 341, 343
and distinguishability of particles, 332
and Schrödinger equation, 223

de Broglie wavelength (
), 185, 195–196
Debye, Peter J. W., 221, 262, 348
Debye frequency (fD), 348, 348, 351
Debye temperature (TD), 348, 348
Decay, radioactive, 495*. See also Radioactivity

alpha, 496–499
beta, 499–504
electron capture, 502–504
gamma, 504–506
hadron, 572, 572
internal conversion, 505

Decay constants (
), 492
Declination (1), 636, 636
Deep inelastic scattering, 593
Degeneracy, 250, 271, 316

of energy eigenvalues, 250
in fermion gases, 353–354, 354
and molecular spectra, 388–389

Degeneracy pressure, electron, 647
Degrees of freedom, 324, 346, 348
DeMarco, Brian, 354
Democritus, 115, 141, 561, 612
Density. See also Probability density (P(x, t))

comoving space, 660, 668
critical (�nc), of population inversions, 400
critical mass (�0), of the universe, 662–663,

672
current (j), 424
energy, 122, 123
nuclear, 484, 489
number, 427, 428, 429t
photon, 345

Density of states (g(E)), 317
and distribution functions, 333–335
and electron gases, 428–429

Density parameter ("), 667, 667
Depleted regions, 452, 452
Deuterium, 165

fusion of, 526, 533, 536
Deuterons, 479t

binding energy of, 83
Diamagnetism, 436

and superconductivity, 460
Dielectric breakdown, 442
Dielectric constant (* or ), 445t, 577
Differential cross section ( ), 178
Diffraction. See also Interference; Superposition

of atoms, 193–196, 194
of electrons, 186–188–192, 192, 481, 481
of x rays, 134, 134–135

s>dÆ
e

Digital versatile discs (DVDs), 404, 437
Diode lasers, 403, 456, 456
Diodes, 452–456

light-emitting (LEDs), 455, 455–456, 456,
457

solar cells, 455, 455
tunnel, 257, 260*, 453, 454
Zener, 453, 454

Dipole moment. See Electric dipole moment (p)
Dipole-dipole bonds, 364, 375–379, 377, 378
Dirac, Paul A. M., 262, 356, 676

and Fermi-Dirac distributions, 329
and magnetic monopoles, 608
and positrons, 90, 562–563
and relativistic wave equation, 222, 288, 491

Direct interactions, 517
Disk galaxies, 654–655, 655
Dispersion, 147, 147

of wave packets, 204, 204
Dispersive media, 199
Dissociation energy (Ed), 366, 368t, 417
Distortion of shapes, relativistic, 35, 35–36
Distribution functions. See Boltzmann

distributions (fB(E)); Bose-Einstein
distributions (fBE(E)); Energy density
distributions; Fermi-Dirac distributions
(fFD(E)); Maxwell distributions;
Maxwell-Boltzmann distributions;
Probability distribution functions (P(x))

DNA molecules, 377, 378
Donor levels, 447, 447
Doped semiconductors. See under

Semiconductors
Doping, 445, 447, 447–448
Doppler effect, 41–45

applications of, 42
and gravitational redshift, 104
for light, 12
and rotation of the Milky Way, 638
for sound, 7, 41
transverse, 41, 44–45
and twin paradox, 47–48

Down (D), 570, 583, 583t
Down-type quarks, 569t, 570
Drift velocity (vd), 423–424

and Hall effect, 449, 449
Driplines, 495, 495
Drude, Paul, 422
Duane-Hunt rule, 136
Dulong, P., 327
Dulong-Petit law, 327, 347, 351, 426
DVDs. See Digital versatile discs (DVDs)
Dwarf novae, 644
Dynamic states, 85

Weak interaction
and beta decay, 501
charged vs. neutral, 574
mediation of, 574

Early type stars, 632
EAST. See Experimental Advanced

Superconducting Tokamak (EAST)
Ecliptic, 637, 637
Eddington, Arthur, 100, 101, 102, 110
EELS. See Electron energy loss spectroscopy

(EELS)
Effective mass (m*), 444–445
Effective nuclear charge (Zeff), 299, 301
Ehrenfest, Paul, 57, 58, 307
Eigenfunctions ('n(x)), 233, 609
Eigenstates, 226
Eigenvalues, 273

angular momentum, 273
energy, 232, 273

Eightfold way, 591–596, 592, 612
Einstein, Albert, 13, 127

and absorption, 393
and atomic spectra, 148, 159
and Bose-Einstein condensates, 341
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and Bose-Einstein distributions, 329
career of, 109, 141, 262, 307, 356, 407, 612
and cosmological constant, 661, 664
and de Broglie relations, 214
and general relativity, 97–102, 105*, 108,

110, 114
and heat capacities, 346–347, 356
and mass-energy equivalence, 81–82
and photoelectric effect, 125, 128–129, 130,

136, 561
and relativistic mass, 69
and special relativity, 2, 3, 11–12, 15, 34
and stimulated emission, 394
and transverse Doppler effect, 45
and unified field theories, 570, 674
and wave equations, 202, 225

Einstein temperature (TE), 347, 347, 432–433
Einstein’s coefficients of absorption and emission,

393, 394
and lasers, 399

Einstein’s postulates, 11–17
Elastic collisions

and relativistic momentum, 66–67, 67
Elastic scattering, 390, 391, 516–517, 517
Electric charge (e), 116, 118–119, 576t

of hadrons, 573t
quantization of, 115–119
of quarks, 569t, 583, 583t

Electric dipole moment (p), 376, 376–378
average, 378
average square, 378
and bond character, 374–375
and rotational spectra, 380

Electric field ( ), 423
Electric quadrupole moment (Q), 485, 485, 552
Electrical conduction, 423–424, 431–433. See

also Conduction
Electrodynamics, and special relativity, 11
Electromagnetic interaction, 509–510, 511, 574,

576t. See also Fundamental interactions
and cosmology, 671

Electromagnetic radiation
detection of, 127
particle description of, 127
slowing, 304–305, 305
transmission of, 89–90
wave description of, 127

Electron affinity, 364, 365t
Electron capture, 502–504, 552
Electron configurations, 297–301

and bonding, 363
Electron degeneracy pressure, 647
Electron energy loss spectroscopy (EELS),

175–176, 176
Electron gases, 352, 421, 422. See also Band

theory of solids
Electron holography, 462
Electron spin. See Spin angular momentum (S)
Electron volts (eV), 78
Electrons (e�), 116, 118, 479t, 561

Auger, 173
charge-to-mass ratio (e/m)of, 116#–118
conversion, 505
diffraction of, 186, 188–192
intrinsic angular momentum of, 285–290
and photoelectric effect, 127–132
relativistic mass of, 78, 79
speed of relativistic, 86–87

Electroweak interaction, 672
Electroweak theory, 570, 591, 602–603
Elliott, Steven, 503
Elliptical galaxies, 654–655, 655
Elsasser, Walter, 188, 192
Emission. See also Radiation

field, 257
spontaneous, 393
stimulated, 391, 394–396

Emission spectra. See Spectra

e

Emissivity ( ), 120
Emitters, transistor, 456, 456
Endothermic reactions, 518
Energy bands. See Band theory of solids
Energy density distributions, 122

and Planck’s law, 123
Energy (E). See also Kinetic energy (Ek); Potential

energy (U)
binding (Eb), 81–84, 83
characteristic rotational (E0r), 380, 389t
cohesive, 417, 420
conservation of, 76–81, 517–520, 663, 666
density, blackbody, 122
dissociation (Ed), 366, 368t, 417
Fermi (EF), 352, 426–429, 429t
first ionization, 298, 300
lattice, 417
Lorentz transformation of, 73–76, 74, 85
quantization of, 124–125, 129, 225, 230, 238,

278–279
relativistic (E), 70–81, 563
rest (mc2), 72–73, 84t, 86, 90
in Schrödinger equation, 226–227
zero point, 208–209

Energy eigenvalues, 232
degenerate, 250

Energy gaps (Eg), 440, 440–441
and conductivity, 443–444, 445t
superconducting (Eg), 464–465, 465

Energy levels for diatomic molecules, 379–384
rotational, 379–382, 380
vibrational, 382, 382–384

Energy-level diagrams, 163
and alpha decay, 499
for atomic spectra, 302
for atoms, 297, 311
for the baryon octet, 592
for fine-structure splitting, 294
for helium-neon lasers, 402
for hydrogen, 163, 278, 280
for infinite square wells, 232, 238
for nuclei, 515
for quantum wells, 242
for simple harmonic oscillators, 249

Entrance channels, 522
Entropy, 319*
Equilibrium separations (r0), 366, 368t

and rotational spectra, 380, 381–382, 389t
in solids, 416–418, 416t

Equinoxes, 637, 637, 676
Equipartition theorem, 324*
Equivalence, principle of, 98–99, 99

and gravitational redshift, 103–104
Esaki, Leo, 263, 471
Escape velocity (ve)

and planetary atmospheres, 323–324, 679
and Schwarzschild radius, 106, 650

Estermann, I., 193
Ether, 6, 7–11
Ether drag, 61
Euler, Leonhard, 407
European Organization for Nuclear Research

(CERN), 91, 336, 563, 565, 575
European Southern Observatory, 662
Evaporation, 322
Event horizons, 673
Events, in special relativity, 13–14, 23, 32, 50
Excited states (En), 175, 223

and atomic spectra, 301–303, 302
and fission, 528
of hadrons, 572–573
of the hydrogen atom, 281–283, 318
of molecules, 368
of nuclei, 504–506, 521–523, 522

Exclusion principle. See Pauli exclusion principle
Exclusion-principle repulsion, 365, 367, 416
Exit channels, 522
Exoplanets, 630
Exothermic reactions, 517

e Expectation values ‹x›, 242–243
in kinetic theory, 319–320

Experimental Advanced Superconducting
Tokamak (EAST), 532

Experiments. See Burst and Transient Source
Experiment (BATSE); Davisson-Germer
experiment; Franck-Hertz experiment;
Gedanken experiments; Ice Cube
experiment; Michelson-Morley
experiment; Millikan oil-drop
experiment; Stern-Gerlach experiment;
Thomson experiment

Exploring. See also Classical Concept Reviews;
MORE

alpha decay, 258–259
atomic clocks, 260
calibration spacetime axes, 28–29
celestial sphere, 636, 636–637
deflection of light in a gravitational field,

100–103, 101, 102
extraterrestrial life, 630
fluxoids, 462, 462
frozen light, 304–305, 305
gamma-ray microscopes, 206–208, 207
gravitational redshift, 103, 103–105, 104
Hall effect, 449, 449–452
interaction strengths, 577–578
Josephson junctions, 466–468, 467
liquid helium, 336–339, 338, 339
neutrino oscillations and mass, 609–610
other bonding mechanisms, 375–379
parity, 250
Planck units, 673–674
probability density of exchange mesons,

512–513, 513
proton spin, 595–596
Rydberg atoms, 168, 168
spintronics, 437, 437
Stern-Gerlach experiment, 288–290, 289, 290
superluminal speeds, 52–55, 54
transverse Doppler effect, 44–45

Fabry-Pérot cavities, 106, 107
Face-centered cubic (fcc) crystal symmetry, 415,

415, 420
Face-centered cubic structure, 134
Faraday, Michael, 115–116
faradays (F), 116
Faraday’s law, 115–116

and flux quantization, 462
and superconductivity, 459

Fermi, Enrico, 329, 329, 356, 500, 530, 531, 553,
612

Fermi energy (EF), 352
and band theory of solids, 442, 444
and free-electron gas in metals, 426–429, 429t
of nucleons, 515

Fermi speed (uF), 431
Fermi temperature (TF), 430
Fermi-Dirac distributions (fFD(E)), 316, 328–329

and band theory of solids, 444, 444t
and conduction, 425, 430, 431
and fermion gases, 352, 352–353, 353
vs. other distributions, 329–333, 331

Fermi-Dirac particles. See Fermions
Fermilab, 336, 598
Fermion gases, 351–354, 354

and lasers, 403
neutron stars as, 648

Fermions, 329–332
Ferrimagnetism, 436
Ferromagnetism, 434, 436
Feynman, Richard P., 213*, 215, 566, 612

and quantum electrodynamics, 563
Feynman diagrams, 566–568, 567

examples of, 510, 511, 574, 578, 579, 600,
601

Field emission, 257
Filaments, 629, 629

Einstein, Albert, (continued)



Fine structure, 167, 285, 288
Fine-structure constant (�), 166–168, 167, 571,

577
Fine-structure splitting, 167, 293–295, 294

and emission spectra, 385, 385
Finite square wells, 238–242, 239

and alpha decay, 258–259, 259
and covalent bonding, 369, 369
graphical solution of, 241*
and Kronig-Penney model, 438, 438, 439
and quantum wells, 242
and strong interaction, 507–508, 508
and vibrational energy levels, 382, 382–383,

383
First ionization energies, 298, 300
First-order perturbation theory, 298
Fissile nuclides, 528
Fission, 478, 527, 527–531

and energy conversion, 81
FitzGerald, George F., 34
Flash memory, 437
Flat universe, 666
Flavor charge, 568, 569t, 574, 599, 609
Fluorescence, 391, 393
Flux lines, 628
Flux quantization, 462
Flux tubes, 461, 461, 462
Fluxoids ( ), 462, 462
Force carriers. See Mediation of forces
Force constants (K)

and vibrational energy levels, 383, 384, 389
Forces (F). See also Electromagnetic interaction;

Fundamental interactions; Gravitational
interaction; Strong interaction; Weak
interaction

coupling constants for, 570–571
inverse-square, 279
relativistic, 70–71
saturated, 488, 507, 509
short-range, 509

Forward biasing, 452, 452
Fountain effect, 338, 339
Fourier analysis, 197–198#
Four-vectors, 85
FQHE. See Fractional quantized Hall effect

(FQHE)
Fractional quantized Hall effect (FQHE), 451
Frames of reference. See Reference frames
Franck, James, 169, 174–175, 179, 188, 192, 591
Franck-Hertz experiment, 174–176
Fraunhofer, Joseph von, 147, 178, 393, 632
Fraunhofer D lines, 393, 490, 491. See also

Sodium (Na)
Free-electron lasers, 404
Free-electron theory, 426–430

failures of, 351
and Fermi temperature, 430
one-dimensional, 426–428
three-dimensional, 428–429

Frequency (f)
control of, 201
Debye (fD), 348, 348, 351
proper (f0), 42
quantization of, 230

Friction, 378
Fringes, interference, 9#, 10. See also Interference
Fuller, R. Buckminster, 407
Fullerenes, 375*, 407, 420, 420–421
Fundamental interactions, 570–580, 576t. See also

Electromagnetic interaction;
Gravitational interaction; Strong
interaction; Weak interaction

unification of, 671
Fundamental particles, 479
Fusion, 478, 531–536. See also Proton-proton cycle

during the early universe, 556, 668, 668, 672
and metallic hydrogen, 421
as stellar energy source, 624, 642–643
and supernovae, 645–646, 648

�0

g factor (g), 287–288
and magnetism, 435

Galactic clusters, 632
Galaxies, 630, 653–661, 676. See also Milky Way

classification of, 654–661, 656
and interstellar medium, 653–654
quiet vs. active, 656, 656–657, 657

2dF Galaxy Redshift Survey, 661, 661
Galilean transformation of coordinates, 5–6#, 11
Galilei, Galileo, 1, 3, 4, 646
Gamma decay, 504–506
Gamma rays, 91, 477
Gamma-ray bursts (GRBs), 652, 652
Gamma-ray microscopes, 206–208, 207
Gamow, George, 217, 258, 299, 477, 676
Gaseous nebulae, 654
Gases

electron, 352, 421, 422
fermion, 351–354, 354
free-electron, 426–430
heat capacities (CV) of, 325–327, 325t,

348–351
kinetic theory of, 115, 316–328
photon, 344–351

Gassendi, Pierre, 115
Gauge theories, 580, 609, 613
Gedanken experiments, 109

flash of light inside a sphere, 58
gamma-ray microscopes, 206–208, 207
headlight effect, 51, 51–52
knowledge creation paradox, 54–55, 55
lever paradox, 80, 80–81
lightning strikes train, 15, 15–17, 16, 28,

28–29
Olbers’ paradox, 665
pole and barn paradox, 48–51, 49
pregnant elephant, 32–33
scissors paradox, 52–54, 54
twin paradox, 45–48*, 46

Geiger, Hans W., 151
and alpha decay, 496
and nuclear charge, 172
and Rutherford scattering, 151–153, 155–156,

159, 477
and size of nucleus, 157

Geiger-Nuttall rule, 496, 496
Gell-Mann, Murray, 583, 591–593, 593, 596, 612
General relativity, 47, 97–108

and cosmology, 665
Generations of leptons, 568, 569t, 599
Geochemistry, 545–548
Geometry of space, 39, 57, 84, 666
Geosynchronous satellites, 5, 112
Gerlach, Walther, 286, 289–290, 307
Germer, Lester H., 186, 188–191, 191, 193, 214
Giaever, I., 471
Giant magnetoresistance (GMR), 437
Glashow, Sheldon L., 570, 597, 598
Glass, 414
Global positioning systems (GPS), 97, 98, 110
Globular clusters, 632, 632

and structure of the Milky Way, 634
Gluon-gluon loops, 600, 600
Gluons, 90, 511, 568

and force mediators, 571, 576t, 603
and quantum chromodynamics, 599–600, 600

GMR. See Giant magnetoresistance (GMR)
Goeppert-Mayer, Maria, 552; see also Mayer, M. 
Gordon, Walter, 512
Goudsmit, Samuel A., 285, 307
GPS. See Global positioning systems (GPS)
Grand unification theories (GUTs), 605–610

and the early universe, 671
Graphite, 420, 420
Gravitational blueshift, 104–105
Gravitational charge, 576, 576t. See also Mass (m)
Gravitational interaction, 576, 576t. See also

Fundamental interactions
and astrophysics, 623, 624–625

and cosmology, 662–664, 671
deflection of light by, 100–103, 101, 102
quantum, 609, 671, 674
transmission of, 90

Gravitational length contraction, 101
Gravitational lensing, 100, 102, 102, 104
Gravitational redshift, 103, 103–105, 104, 104,

650
Gravitational time dilation, 101, 105*
Gravitational waves, 106, 106–108, 576
Gravitons, 57, 90, 576, 576t
GRBs. See Gamma-ray bursts (GRBs)
Greenberg, D. W., 596
Ground states (E0), 163, 175, 233

of hadrons, 572
of the hydrogen atom, 281–283
of molecules, 368
of nuclei, 480–492
and the periodic table, 297–301

Group theory, 592
Group velocity (vg), 197, 199

for particle waves, 202
Gurney, R. W., 258, 477
GUTs. See Grand unification theories (GUTs)
Gyromagnetic ratio (g), 287–288

h-bar ( ), 161. See also Planck’s constant (h)
H-R diagrams. See Hertzsprung-Russell (H-R)

diagrams
Hadronic force. See Strong interaction
Hadrons, 568–569, 573t

quantum numbers of, 586t
quark model of, 591–599
and the strong interaction, 571–573

Hahn, Otto, 527, 530, 553
Hale, George, 110
Half-life ( ), 493, 543t, 547t

and charge-carriers, 449
quantum, 450–451, 451
spin, 437, 452

Hall effect, 449, 449–452
Hall resistance (RH), 450, 451
Halley, Edmund, 665
Hamiltonian operators (Hop), 245, 245t, 370

and symmetry breaking, 602
Hanford Observatory, 107
Hard core, 509
Hard superconductors, 460, 460
Harmonic waves, 196, 222, 224
Hartmann, J. F., 653
Hawking, Stephen, 356
Hawking radiation, 680
Heat capacities (CV), 324–328

for gases, 325–327, 325t, 348–351
for metals, 422, 426, 433–434
and phase transitions, 337, 337
for solids, 327, 327–328, 347–348, 348

Heisenberg, Werner K., 205, 206, 215, 221, 307,
407

Helicity, 584
Helium (He)

formation of, 668, 668
in interstellar medium, 653
liquid, 336–339, 338, 339
wave functions for, 297–298

Helium-neon lasers, 401, 401–402
Helix nebula, 643
Helmholtz, Hermann von, 109, 141, 580
Hermite polynomials, 248
Hermitian operators, 612
Herriott, D. R., 401
Hertz, Gustav L., 169, 174–175, 179, 591
Hertz, Heinrich R., 127, 132, 141, 179
Hertzsprung-Russell (H-R) diagrams, 641,

641–643
Hess, Victor, 552
Heteropolar (heteronuclear) molecules, 407
Hexagonal close-packed (hcc) crystal symmetry,

419, 419
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Higgs bosons, 568, 581, 603
Higgs field, 603
High-temperature superconductivity, 460, 466,

466t
Hipparchus, 632, 676
Hofstadter, Robert, 481, 552
Holes, 443, 448
Holography, electron, 462
Homopolar (homonuclear) molecules, 407
Hooke, Robert, 115
Horizontal branch, in stellar evolution, 643
Hounsfield, Godfrey, 541, 553
Hoyle, Fred, 676
Hubble, Edwin P., 43, 654, 657, 676
Hubble constant (H0), 657–658, 661
Hubble Space Telescope, 620, 632, 646, 648, 650
Hubble time, 658
Hubble’s law, 657, 657–661
Hulse, R. A., 106
Hybridization of orbitals, 420, 470
Hydrogen bonds, 377, 378
Hydrogen (H) atoms

binding energy of, 83
Bohr model of, 159–169, 176*
energy-level diagrams for, 163, 278, 280
excited states of, 281–283, 318
fine-structure splitting in, 293–295, 294
probability density in, 282–285, 283, 284, 285
quantization of angular momentum in,

275–277
quantization of energy in, 278–279
Schrödinger equation for, 272–274
size of, 209–210
spectra of, 149, 150
wave functions for, 281–285, 290

Hydrogen (H2) molecules
escape of, from Earth’s atmosphere, 323–324
heat capacity of, 326, 326
in interstellar medium, 653
wave functions for, 370–374, 371

Hypercharge (Y), 585–586, 586t, 587
and group theory, 592

Hyperfine splitting, 314
and interstellar dust, 653, 653–654
and masers, 396, 397

Hyperfine structure, 304, 479, 490

Ice, dipole-dipole bonds in, 377, 377
Ice Cube experiment, 129
Ideal blackbodies, 120
Imaginary numbers. See Complex numbers
Impact parameters (b), 154, 154
Impurity semiconductors. See under

Semiconductors
Indistinguishable particles, 295–296, 328, 329,

330, 332
Inelastic collisions

and relativistic energy, 76, 76–77
Inelastic scattering, 390, 391
Inertial confinement, 533
Inertial reference frames, 4, 4–6#

and simultaneity, 14–17
and special relativity, 12–14, 14, 47

Infinite square wells, 229–238, 230
complete wave function for, 235–238
and correspondence principle, 233–234, 236
energy levels of, 231–232, 232
and free-electron gas in metals, 426, 427
and line of stability, 487
minimum energy of, 208–209
in three dimensions, 270–271

Inflation, 669
Insulators, and band theory of solids, 442, 442
Integral quantized Hall effect (IQHE), 451
Intensity (I), 407, 521

of electron diffraction, 190, 191
and photoelectric effect, 131–132

Interaction times, 571
Interactions. See also Fundamental interactions

and Feynman diagrams, 566
Interference. See also Diffraction; Superposition

double-slit, 202–204, 203, 213*
by electrons, 186, 188–189, 203
fringes produced by, 9#, 10, 203
and linear equations, 223
quantum, 304–305, 305

Interferometers, Michelson, 7, 9, 9–11, 10
Internal conversion, 505
Internal quantum numbers, 583, 583t
International Thermonuclear Experimental

Reactor (ITER), 532, 533
Interstellar dust, 653–654
Interstellar medium (ISM), 653–654
Intrinsic semiconductors. See under Semiconductors
Invariance, 4

and conservation laws, 66, 73, 580
and gauge theories, 613
of mass, 84–97
TCP, 589–590

Inverse beta decay, 646, 648
Ionic bonds, 364–369

vs. covalent bonds, 374–375
Ionic solids, 415–421
Ionization energy, 163

and ionic bonds, 364, 364–365, 365t
Ionizing radiation, 536*, 549*
IQHE. See Integral quantized Hall effect (IQHE)
Irregular galaxies, 654–655, 655
Island of stability, 488, 515–516
ISM. See Interstellar medium (ISM)
Isobars, 480
Isomers, 505
Isospin (I), 585, 586t, 587

and group theory, 592
weak (Tz), 568, 570

Isotones, 480, 513
Isotope effect, 463
Isotopes, 165, 471, 480
ITER. See International Thermonuclear

Experimental Reactor (ITER)

J/' puzzle, 597–599
Javan, Ali, 401
Jefferson National Accelerator Facility, 595
Jensen, Johannes Hans Daniel, 514, 515, 552
Jin, Deborah, 354
Joos, Georg, 11
Josephson, Brian D., 467, 471
Josephson effect

ac, 467–468
dc, 467

Josephson junctions, 466–468, 467
Joule, James, 109, 580
Junction lasers, 403
Junctions

Josephson, 466–468, 467
semiconductor, 452, 452

K series, 170, 171
K shell, 171
Kamerlingh Onnes, Heike, 335, 336, 336, 356,

458
Kant, Emmanuel, 654
Kaons (K0), 588, 590
Keesom, Willem H., 335, 337
Kelvin, William Thompson, Lord, 2, 307, 624
Kepler, Johannes, 646
Ketterle, Wolfgang, 343, 403
Kinematic states, 85
Kinetic energy (Ek)

Maxwell distributions of, 323, 323–324
minimum, 208–209
negative, 240, 255
in nuclear reactions, 522
and photoelectric effect, 128
relativistic, 71–72, 72
of rotation, 379
vs. potential energy, 81–83

Kinetic energy operators, 245t
Kinetic theory, 315#, 316#, 319#, 328#

and blackbody radiation, 119–122
of gases, 115, 316–328
and Planck’s law, 123

Klein, Oskar, 512
Klein-Gordon relativistic wave equation, 512,

564, 577
Klitzing, Klaus von, 450–451, 471
Kronig-Penney model, 438, 438–441, 439
Kündig, Walter, 45
Kusch, P., 322

L series, 170, 171
Laboratory frames of reference, 518, 519, 522
Lagrangian points, 644, 644
Laguerre polynomials, 279, 279t, 281, 284
Lamb, W., 307
Lamb shift, 307
Lambda points, 335–336, 337, 337, 341
- Cold Dark Matter (-CDM), 661
Landé, Alfred, 307
Landé factor (gN), 490
Langevin, Paul, 214
Laplace, Pierre, 106
Large Hadron Collider (LHC), 563, 568, 603, 605,

639
Larmor theorem, 286
Laser Interferometer Gravitational-Wave

Observatory (LIGO), 106–107, 108
Lasers, 396–405

applications of, 402–405
atomic, 343, 343
continuous wave, 400–401
diode, 403, 456, 456
helium-neon, 401, 401–402
other types of, 403–404
ruby, 397, 397–401, 398
tunable dye, 168, 490

Late type stars, 632
Latitude, 636, 636
Lattice energy, 417
Laue, Max von, 80, 134
Laue patterns, 134, 192, 194, 418
Laughlin, R. B., 471
Law of atmospheres, 317–318
Law of inertia, 4
Lawrence, Ernest O., 516
Lawrence Livermore Laboratory, 564, 584
Laws of motion, Newtonian, 4–6
Lawson, J. D., 532
Lawson’s criterion, 532
LEDs. See Light-emitting diodes (LEDs)
Lee, David M., 338
Lee, T. D., 588, 590
Left-handed coordinate systems, 589, 589
Legendre polynomials, 274
Lenard, Philipp, 127, 128
Lenard-Jones potential, 411
Length, proper (Lp), 33, 38, 85
Length contraction, 33, 33–36

gravitational, 101
Lepton era, 672
Lepton number

conservation of, 581–582
nonconservation of, 607

Leptons, 500, 568–570, 569t, 598, 599, 612
and weak interaction, 574

Leptoquarks, 606, 671
Leucippus, 115
LHC. See Large Hadron Collider (LHC)
Libby, Willard F., 553
Lie, S., 592
Life, extraterrestrial, 630
Lifetime (�), 210, 493

of excited energy states, 393
and force ranges, 572
of protons, 606–607
for spontaneous emission (ts), 399–400



of strange particles, 584
and tunneling, 259

Light. See Electromagnetic radiation; Speed of
light (c)

Light clocks, 29, 30
Light curves, 640
Light-emitting diodes (LEDs), 455, 455–456, 456,

457
Lightlike spacetime intervals, 37, 39
LIGO. See Laser Interferometer Gravitational-

Wave Observatory (LIGO)
Limbs, solar, 621, 622
Lindblad, Bertil, 638
Line of stability, 486, 487

and fission, 528, 529
Line spectra, 147–148, 148
Linear combinations, 223, 262
Liquid lasers, 404
Liquid-drop model, 489*, 513

and fission, 527, 527
Liquids

helium, 336–339, 338, 339
structure of, 413
surface tension of, 378

Livingston, M. S., 516
Livingston Observatory, 106
Local clocks, 15
London, Fritz, 335, 378
London dispersion forces, 378. See also van der

Waals attraction
Longitude, 636, 636
Lorentz, Hendrik A., 34, 102, 214

and conduction, 422
and coordinate transformations, 18
and electrons, 118, 141
and Michelson-Morley experiment, 57, 61
and Zeeman effect, 295, 307

Lorentz transformation, 18
and dynamics, 65, 73–76
of four-vectors, 85
of mass-energy, 88
and nuclear reactions, 519
of space and time coordinates, 17–29

Lorentz-FitzGerald contraction, 34
Luminosity (L), 620, 639

of galaxies, 656
and Hertzsprung-Russell diagrams, 641, 641
of quasars, 660

Lyman, Theodore, 150, 164
Lyman series, 163, 164

Macroscopic quantum wave functions, 342, 342
Madelung constant (�), 368, 415, 416t, 418, 419
Magic numbers, 488, 513–514
Magnetic confinement, 532
Magnetic fields (B)

charged particles in, 116–117
critical (Bc), 458, 458t, 459, 460, 461
and fine-structure splitting, 293–295
inhomogeneous, 289
at the nucleus, 490t
relativistic electrons in, 94–95, 95
solar, 627, 627–629, 628

Magnetic moment (	), 286–290
nuclear, 489–492
quantization of, 287

Magnetic monopoles, 608, 669
Magnetic quantum number (m), 276, 280
Magnetic resonance imaging (MRI), 491, 540

and liquid helium, 336
and superconductivity, 458, 562

Magnetic susceptibility ((), 435
Magnetic traps, 342
Magnetic tunnel junctions, 437, 437
Magnetism, 287, 434–437
Magnetization (M), 476
Magnetons

Bohr (	B), 182
nuclear (	N), 314

Magnetoresistance, giant (GMR), 437
Magnetoresistive random access memory

(MRAM), 437
Magnitude, stellar

absolute (M), 633
apparent (m), 632–633, 677

Maiman, Theodore, 397
Main sequence dwarfs, 641, 641
Main sequence stars, 641, 641
Majorana neutrinos, 568, 582
Marsden, Ernest

and nuclear charge, 172
and Rutherford scattering, 151–153, 155–156,

159, 477
and size of nucleus, 157

Masers, 396, 397. See also Lasers
Mass (m)

effective (m*), 444–445
as gravitational charge, 576, 576t
gravitational vs. inertial, 98–99, 99
and Higgs boson, 603
invariance of, 84–97
of the Milky Way, 638–639
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pure rotational, 380
Raman, 392, 392
of supernovae, 645
vibrational-rotational, 385, 386
x-ray, 169–173, 172

Spectral distributions, 120–121, 121
Spectral lines, 116

Doppler broadening of, 328, 656
and Hubble’s law, 658
natural width (%0) of, 210–211, 504–505, 522
and stellar classification, 632

Spectroscopic notation, 292*–293
Spectroscopy, 147

accelerator mass (AMS), 537, 545, 546–548,
548

atomic beam fluorescence, 490
electron energy loss (EELS), 175–176, 176

Speed. See also Velocity
Fermi (uF), 431
molecular, 319–322
superluminal, 52–55, 54

Speed of light (c), 6–7, 57
and ether, 7–11
slowing of, 304–305
and special relativity, 12
and time dilation, 31
and worldlines, 26

Spherical coordinates, 271–272, 272, 282
Spherical harmonic functions, 274, 274t, 281
Spin angular momentum (S), 167, 285–290

of antineutrinos, 584
of hadrons, 573t, 586t
and magnetism, 434–437
nuclear (I), 304, 489
of protons, 595–596
of quarks, 569t

Spin Hall effect, 437, 452
Spin quantum numbers (ms), 285
Spin valves, 437
Spin-orbit effect, 293–295

nuclear, 515, 515
Spintronics, 437, 437
Spontaneous emission, 393

vs. stimulated emission, 395
Spring equinox, 637, 637
SQUIDs. See Superconducting quantum

interference devices (SQUIDs)
Standard candles, 640, 645, 648, 663
Standard Model, 511, 562, 591–604

and conservation laws, 581, 590
failures of, 605
and mass, 603
and mediation of forces, 571, 603
and quarks and gluons, 568, 570
summary of, 603–604

Standing waves
and de Broglie relations, 186, 186
and lasers, 398, 398
and Planck’s law, 123
and Schrödinger equation, 226

Stanford linear accelerator (SLAC), 113, 481, 597
Star clusters, 632
Stars, 630–652, 642t. See also Astrophysics;

Cosmology; Galaxies; Sun
and cataclysmic events, 644–646
classification of, 632, 633t
composition of, 149, 302
constellations of, 631, 631
evolution of, 639–643
final states of, 647–652
and Hertzsprung-Russell diagrams, 641,

641–643
magnitude of, 632–633
neutron, 484
populations of, 632
surface temperature of, 121, 639, 641, 641

Stationary states, 160, 226
Statistical physics, 315–360

and Bose-Einstein condensates, 335–343
classical, 316–328
and fermion gases, 351–354
and nuclear reactions, 521–522
and photon gases, 344–351
quantum mechanical, 328–335
and radioactivity, 36–37, 492–493

Stefan, Josef, 120, 356
Stefan-Boltzmann law, 120, 126

and stellar temperatures, 620
Stefan’s constant (�), 120, 126, 620
Stellar aberration, 61
Stellar populations, 632
Step potentials, 251, 251–255, 253, 254
Stern, Otto, 193, 286, 289–290, 307, 359
Stern-Gerlach experiment, 286, 288–290, 289, 290
Stimulated emission, 391, 394–396. See also

Lasers
vs. spontaneous emission, 395

STMs. See Scanning tunneling microscopes
(STMs)

Stoney, George J., 116, 141
Stopping potential (V0), 128–130, 130
Stormer, H. L., 471
Strangeness (S), 564, 583–584, 583t, 586t
Strassmann, Fritz, 527, 530, 553
String theories, 606
Strong interaction, 506–513, 571–573, 576t. See

also Fundamental interactions
and alpha decay, 258–259
and beta decay, 501
and cosmology, 671–672
range of, 484, 510–511, 578
residual, 603–604
transmission of, 90

Strutt, John W., Lord Rayleigh, 122, 123, 141, 390
SU(2) group theory, 592
SU(3) group theory, 592–595
Sudbury Neutrino Observatory, 536, 582, 607,

607–608
Summer solstice, 637, 637
Sun, 619–629. See also Astrophysics; Stars

active, 627–629
change in mass of, 79
chromosphere of, 622, 622–623, 623
core of, 623
corona of, 623
energy source of, 535–536, 624–627
interior of, 623–624
limbs of, 621, 622
magnetic field of, 627, 627–629, 628
mass of, 623
photosphere of, 620–622, 622
proton-proton cycle in, 535–536, 625–626,

626, 627t
quiet, 621
spectrum of, 328
surface and atmosphere of, 125, 620–623,

622, 623
x rays from, 621, 623

Sunspot cycle, 627–628, 629
Sunspots, 622, 628, 628
Superclusters, 661, 662
Superconducting energy gaps (Eg), 464–465, 465
Superconducting quantum interference devices

(SQUIDs), 468, 468
Superconductivity, 458–468

BCS theory of, 463–465
high-temperature, 460, 466, 466t
type I vs. type II, 460, 460

Supercurrents, 459
Superfluids, 336–339, 338, 338, 339
Super-Kamiokande Neutrino Observatory, 90,

129, 536, 582, 607, 608, 646
Superleaks, 356
Superluminal speeds, 52–55, 54
Supermultiplets, 591, 598, 598
Supernovae, 484, 643, 645–646, 646

as standard candles, 640, 645, 648, 663
Superpartners, 568, 605–606, 606t

and dark matter, 639
Superposition. See also Diffraction; Interference

and stationary states, 235, 262
and wave packets, 198, 198

Superstring theories, 606, 609
Supersymmetry (SUSY), 568, 605–606
Surface tension, 378
Surface-barrier detectors, 454
Symmetry

breaking of, 602, 602–603
and conservation laws, 66, 580–591
and crystallography, 415, 415–421, 416t, 418,

419, 420
and three-dimensional square wells, 271, 271
and wave-particle duality, 185

Synchronization, in special relativity, 13, 14, 15

Taagepera, B., 497
Tachyons, 54–55
Tarantula nebula, 643
Taylor, E. F., 48
Taylor, J. H., 106
TCP invariance, 589–590
Temperature (T), 319*

critical (Tc), for Bose-Einstein condensates,
340–341

critical (Tc), for superconductivity, 458, 458t,
459, 466t

Curie (TC), 436
Debye (TB), 348, 348
Einstein (TE), 347, 347, 432–433
Fermi (TF), 430
Néel (TN), 436
stellar, 639, 641, 641
of the Sun, 125, 621, 621–623

Thales, 630
Theories of everything, 610*
Thermal conduction, 337, 434*
Thermal equilibrium, 119–120
Thermal neutrons, 524
Thermal radiation, 119
Thermomechanical effect, 338, 339
Thompson, Benjamin, Count Rumford, 89
Thompson, C., 542
Thompson, William, Lord Kelvin, 2, 307
Thomson, George P., 192, 214
Thomson, Joseph J., 117, 141, 178, 179, 192

and atomic model, 150–151
and discovery of electrons, 116, 118, 127,

214, 422, 561, 568
and polyatomic molecules, 374

Thomson experiment, 116–118, 117, 117
Thought experiments. See Gedanken experiments
Time. See also Clocks

absolute direction of, 590
interaction, 571
relativistic, 18–21
relaxation (�), 424

Index I-11



I-12 Index

Time dilation, 30, 30–33, 31
and Doppler effect, 45
gravitational, 101

Time intervals, proper (�), 21
Time-independent Schrödinger equation,

226–227, 245
Timelike spacetime intervals, 37, 38
Timelike worldlines, 38
Ting, Samuel Chao Chung, 597, 612
Tokamaks, 532, 533
Tomography, 552. See also Computer assisted

tomography (CAT); Positron emission
tomography (PET); Single-photon
emission computer tomography (SPECT)

Tomonaga, Sin-itiro, 612
Top (T), 570, 583, 583t
Torque (�)

and magnetic moments, 287, 287
and precession, 291
relativistic, 80–81

Total angular momentum quantum numbers (j),
291

Totalitarian principle, 580
Townes, Charles, 396
Townsend, John S. E., 118
Tracers, isotopic, 179
Transcendental equations, 241*
Transformation of coordinates. See also

Coordinate systems; Lorentz
transformation

Galilean, 5–6#, 11
Transistors, 456, 456, 457*
Transition elements, 300
Transitions between energy states, 246*, 393*,

395*
Transmission of wave functions, 250–260
Tritium, 526, 533
Tsui, Daniel C., 451, 471
Tunnel diodes, 257, 260*, 453, 454
Tunneling, 241, 256, 256–257

and alpha decay, 258–259, 497, 497
and fission, 528
and fusion, 532, 625
and Josephson junctions, 466–467
and scanning tunneling microscopes (STMs),

257, 257–258
and semiconductor devices, 454, 454

Tunneling current, 453, 454
and Josephson junctions, 467

Type I superconductors, 460, 460
Type I supernovae, 645

of white dwarfs, 647–648
Type II superconductors, 460, 460
Type II supernovae, 645, 645–646

Uhlenbeck, George E., 285, 307
Uncertainty principle, 205–208

and angular momentum, 277, 292
classical, 199–201, 200
consequences of, 208–211
and finite square wells, 240–241
and infinite square wells, 234
and limits of knowledge, 673
and mediation of forces, 510

Unified mass unit (u), 380
Unit cells, 415
Universe. See also Big Bang

acceleration of expansion of, 640, 662
evolution of, 302
expansion of, 659–660, 668
geometry of, 666
photon density of, 345

Up (U), 570, 583, 583t
Up-type quarks, 569t, 570
Uranium

diffusion of, 320
fission of, 526, 528–530, 529
isotopes of, 267

Urey, Harold C., 165, 179

Vacuum polarization, 578, 578, 600
Valence bands, 441, 441, 442
Van de Graaff generators, 477, 518

and accelerator mass spectroscopy, 547,
547

van der Meer, Simon, 612
van der Waals, Johannes D., 336, 376, 378, 407
van der Waals attraction, 368, 374, 378, 407
Vector models, 277, 277
Velocity. See also Speed

drift (vd), 423–424
escape (ve), 106, 323–324, 650, 679
group (vg), 197, 199
phase (vp), 196, 199
relativistic transformations of, 21–23

Vernal equinox, 637, 637
Very Large Array, 635
Very Large Telescope (VLT), 652
Vessot, R. F. C., 105
Vibrational energy levels, 382, 382–384
Vibrational quantum numbers (v), 383
Vibrational-rotational spectra, 385, 386
Virtual particles, 206

and exchange forces, 509–511
Feynman diagrams for, 566, 567, 574
and vacuum polarization, 578, 578

Virtual photons, 509–510
VLT. See Very Large Telescope (VLT)
von Fraunhofer, Joseph, 147, 178, 393, 632
von Helmholtz, Hermann, 109, 141, 580
von Klitzing, Klaus, 450–451, 471
von Klitzing constant (RK), 450–451
von Laue, Max, 80, 134
Vortices, 461, 461, 462

bosons, 575, 575, 576t
Walsh, D., 103
Walton, Ernest T. S., 477, 516, 552
Wave equations. See also Schrödinger equation

classical, 196, 202, 212, 222
relativistic, 222, 288, 491, 512, 562, 564

Wave functions ('n(x))
and alpha decay, 497, 497
for barrier potentials, 256, 256
and covalent bonding, 369, 369–370
for finite square wells, 239–241, 240, 241
for the hydrogen atom, 281–285
for hydrogen molecules, 370–374, 371
for infinite square wells, 230–233, 233
macroscopic, 342, 342
for neutrinos, 608
for plane waves, 439
reflection and transmission of, 250–260
for simple harmonic oscillators, 246–248,

247
for step potentials, 252, 252–255, 254
and TCP invariance, 589–590

Wave number (k), 178, 196, 214
Wave packets

dispersion of, 204, 204
for particles, 201–202
reflection and transmission of, 253
for waves (&(x, t)), 196–199, 197

Wave vectors (k), 439–441

W�

Wave velocity. See Phase velocity (vp)
Wave-particle duality, 185, 212–213*

and Compton effect, 138
and photon gases, 345
and uncertainty principle, 206

Waves. See also Particle waves
gravitational, 106, 106–108
harmonic, 196, 222, 224
matter, 187–196
shock, 623

Weak charge, 570, 574, 576t
Weak interaction, 501, 574–576, 576t. See also

Fundamental interactions
and cosmology, 671
Feynman diagrams for, 574
range of, 576

Weak isospin (Tz), 568, 569t, 570
Weakly interacting massive particles (WIMPs),

638–639
Weight diagrams, 592, 592, 593
Weinberg, Steven, 570
Weizsächer semiempirical mass formula, 489*,

489, 502, 559
Wheeler, John A., 48, 527, 676
White dwarfs, 643, 647–648, 648
Wieman, Carl E., 341, 343
Wien, Wilhelm, 121
Wien’s displacement law, 120–121, 125
Wigner, Eugene, 552
Wilczek, Frank, 674, 676
Wilkinson Microwave Anisotropy Project

(WMAP), 127, 664, 665, 669
Wilson, Robert Woodrow, 126, 669, 676
WIMPs. See Weakly interacting massive particles

(WIMPs)
Winter solstice, 637, 637
WMAP. See Wilkinson Microwave Anisotropy

Project (WMAP)
Wolfenstein, L., 608
Wolfke, Mieczys aw, 335
Wollaston, William H., 178
Work

and relativity, 71, 80–81
and torque, 287

Work function ( ), 129, 130, 130t, 136
Worldlines, 24–27, 25, 26, 27

of tachyons, 55
timelike, 38

Wu, C. S., 588, 589

X rays, 133, 133–136
discovery of, 477
and particle-induced x-ray analysis (PIXE),

548–549, 549
from solar corona, 621, 623
spectra of, 169–173, 172

Yang, C. N., 588, 590
Yukawa, Hideki, 552

and exchange forces, 509–511, 566, 571,
600

Z0 bosons, 91, 575, 575, 576t, 599
Zeeman, Pieter, 57, 116, 117, 295, 307
Zeeman effect, 116, 280, 295, 303*

nuclear analog of, 491
Zener breakdown, 453, 454
Zener diodes, 453, 454
Zero momentum frames (S�), 76
Zero point energy, 208–209, 336, 368
Zweig, George, 593
Zwicky, Fritz, 638

�
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The Greek Alphabet Alpha 2 � Iota 3 4 Rho 5 �

Beta 6 � Kappa 7 * Sigma � �

Gamma %  Lambda - 
 Tau 8 �

Delta � 1 Mu 9 	 Upsilon / :

Epsilon ; � Nu < � Phi + �

Zeta = > Xi , ? Chi 0 (

Eta @ . Omicron A B Psi & '

Theta C � Pi D � Omega " �

Prefixes for Powers of 10 Multiple Prefix Abbreviation

1018 exa E

1015 peta P

1012 tera T

109 giga G

106 mega M

103 kilo k

102 hecto h

101 deka da

10�1 deci d

10�2 centi c

10�3 milli m

10�6 micro 	

10�9 nano n

10�12 pico p

10�15 femto f

10�18 atto a

Mathematical Symbols � is equal to �x change in x

� is not equal to |x | absolute value of x

� is approximately equal to n! n(n � 1)(n � 2) · · · 1

� is of the order of � sum

� is proportional to lim limit

� is greater than �t : 0 �t approaches zero

!

��

is greater than or equal to

is much greater than

dx

dt

derivative of x with
respect to t

�

�

is less than

is less than or equal to

$x

$t

partial derivative of x with
respect to t

�� is much less than � integral



Abbreviations for Units A ampere keV kilo-electron volts

Å angstrom (10�10 m) L liter

atm atmosphere m meter

Btu British thermal unit MeV mega-electron volts

Bq becquerel min minute

C coulomb mm millimeter

�C degree Celsius ms millisecond

cal calorie N newton

Ci curie nm nanometer (10�9 m)

cm centimeter rev revolution

eV electron volt R roentgen

�F degree Fahrenheit Sv seivert

fm femtometer, fermi (10�15 m) s second

G gauss T tesla

Gy gray u unified mass unit

g gram V volt

H henry W watt

h hour Wb weber

Hz hertz y year

J joule 	m micrometer (10�6 m)

K kelvin 	s microsecond

kg kilogram 	C microcoulomb

km kilometer " ohm

Some Useful Combinations hc � 1.9864 � 10�25 J · m � 1239.8 eV·nm

�c � 3.1615 � 10�26 J ·m � 197.33 eV·nm
24� � �0 �11Bohr radius a � � 5.2918 � 10 m0 2m ee

2ke � 1.440 eV·nm
2e 1

Fine structure constant � � � 0.0072974 �
4� � �c 1370

1�2kT � 2.5249 � 10 eV � eV at T � 293 K40



Some Physical Constants Avogadro’s number NA 6.022142 � 1023 particles/mol

(See Appendix D for a complete
list of fundamental constants.)

Boltzmann’s constant

Bohr magneton

k

mB � e�

m ce

1.380650 � 10�23 J/K

9.2740095 � 10�24 J/T

Coulomb constant k � 1/4� �0 8.987551788 � 109 N·m2/C2

Compton wavelength 
c � h/ 2.42631024 � 10�12 m

Fundamental charge e 1.602176 � 10�19 C

Gas constant R � NAk 8.31447 J/mol ·K � 1.987 22 cal/mol ·K

� 8.20578 � 10�2 L ·atm/mol ·K

Gravitational constant G 6.6742 � 10�11 N ·m2/kg2

Mass, of electron me 9.109382 � 10�31 kg

� 510.9989 keV/c2

of proton mp 1.672622 � 10�27 kg

� 938.2722 MeV/c2

of neutron mn 1.674927 � 10�27 kg

� 939.5653 MeV/c2

Permeability of free space 	0 4� � 10�7 N/A2

Planck’s constant h 6.626069 � 10�34 J · s

� 4.135667 � 10�15 eV· s

� 1.054572 � 10�34 J · s

� 6.582119 � 10�16 eV· s

Speed of light c 2.99792458 � 108 m/s

Unified mass unit u 1.660539 � 10�27 kg

� 931.49401 MeV/c2

Some Conversion Factors 1 yr � 3.156 � 107 s 1 T � 104 G

1 light-year � 9.461 � 1015 m 1 Ci � 3.7 � 1010 Bq

1 cal � 4.186 J 1 barn � 10�28 m2

1 MeV/c � 5.344 � 10�22 kg·m/s 1 u � 1.66054 � 10�27 kg

1 eV � 1.6022 � 10�19 J 1 parsec � 3.26 light-years

1 kW·h � 3.6 MJ 1 rad � 57.30�

Some Particle Masses

and Rest Energies

kg MeV/c2 u

Electron 9.1094 � 10�31 0.51100 5.4858 � 10�4

Muon 1.8835 � 10�28 105.66 0.11343

Proton 1.6726 � 10�27 938.27 1.00728

Neutron 1.6749 � 10�27 939.57 1.00866

Deuteron 3.3436 � 10�27 1875.61 2.01355

� particle 6.6447 � 10�27 3727.38 4.00151

W 1.43 � 10�25 80 � 103 85.9

Z� 1.63 � 10�25 91.2 � 103 97.9



Periodic Table

1

H
Hydrogen

1.007 94(7)

3

Li
Lithium
6.941(2)

11

Na
Sodium

22.989 769 28(2)

19

K
Potassium
39.0983(1)

37

Rb
Rubidium

85.4678(3)

55

Cs
Cesium

132.905 451 9 (2)

87

Fr
Francium

[223]

4

Be
Beryllium

9.012 182(3)

12

Mg
Magnesium
24.3050(6)

38

Sr
Strontium
87.62(1)

56

Ba
Barium

137.327(7)

88

Ra
Radium
[226]

21

Sc
Scandium

44.955 912 (6)

39

Y
Yttrium

88.905 85(2)

57-71

Lanthanoids

89-103

Actinoids

22

Ti
Titanium
47.867(1)

40

Zr
Zirconium
91.224(2)

72

Hf
Hafnium
178.49(2)

104

Rf
Rutherfordium

[261]

23

V
Vanadium
50.9415(1)

41

Nb
Niobium

92.906 38 (2)

73

Ta
Tantalum

180.947 88(2)

105

Db
Dubnium

[262]

24

Cr
Chromium
51.9961(6)

42

Mo
Molybdenum

95.94(2)

74

W
Tungsten
183.84(1)

25

Mn
Manganese

54.938 045(5)

43

Tc
Technetium
[97.9072]

75

Re
Rhenium

186.207(1)

26

Fe
Iron

55.845(2)

44

Ru
Ruthenium
101.07(2)

76

Os
Osmium
190.23(3)

27

Co
Cobalt

58.933 195(5)

45

Rh
Rhodium

102.905 50(2)

77

Ir
Iridium

192.217(3)

28

Ni
Nickel

58.6934(2)

46

Pd
Palladium
106.42(1)

78

Pt
Platinum

195.084(9)

29

Cu
Copper

63.546(3)

47

Ag
Silver

107.8682(2)

79

Au
Gold

196.966 569(4)

30

Zn
Zinc

65.409(4)

48

Cd
Cadmium

112.411(8)

80

Hg
Mercury
200.59(2)

20

Ca
Calcium

40.078(4)

5

B
Boron

10.811(7)

13

Al
Aluminum

26.981 538 6(8)

49

In
Indium

114.818(3)

81

Tl
Thallium

204.3833(2)

31

Ga
Gallium

69.723(1)

6

C
Carbon

12.0107(8)

14

Si
Silicon

28.0855(3)

50

Sn
Tin

118.710(7)

82

Pb
Lead

207.2(1)

32

Ge
Germanium

72.64(1)

7

N
Nitrogen

14.0067(2)

15

P
Phosphorus

30.973 762(2)

51

Sb
Antimony
121.760(1)

83

Bi
Bismuth

208.980 40(1)

33

As
Arsenic

74.921 60(2)

8

O
Oxygen

15.9994(3)

16

S
Sulfur

32.065(5)

52

Te
Tellurium

127.60(3)

84

Po
Polonium
[208.9824]

34

Se
Selenium
78.96(3)

9

F
Fluorine

18.998 4032(5)

17

Cl
Chlorine
35.453(2)

53

I
Iodine

126.904 47(3)

85

At
Astatine

[209.9871]

35

Br
Bromine
79.904(1)

10

Ne
Neon

20.1797(6)

18

Ar
Argon

39.948(1)

54

Xe
Xenon

131.293(6)

86

Rn
Radon

[222.0176]

36

Kr
Krypton

83.798(2)

2

He
Helium

4.002 602(2)

58

Ce
Cerium

140.116(1)

59

Pr
Praseodymium
140.907 65(2)

60

Nd
Neodymium
144.242(3)

61

Pm
Promethium

[145]

62

Sm
Samarium
150.36(2)

63

Eu
Europium
151.964(1)

64

Gd
Gadolinium
157.25(3)

65

Tb
Terbium

158.925 35(2)

66

Dy
Dysprosium
162.500(1)

67

Ho
Holmium

164.930 32(2)

68

Er
Erbium

167.259(3)

69

Tm
Thulium

168.934 21(2)

70

Yb
Ytterbium
173.04(3)

71

Lu
Lutetium

174.967(1)

90

Th
Thorium

232.038 06(2)

57

La
Lanthanum

138.905 47(7)

89

Ac
Actinium

[227]

91

Pa
Protactinium
231.035 88(2)

92

U
Uranium

238.028 91(3)

93

Np
Neptunium

[237]

94

Pu
Plutonium

[244]

95

Am
Americium

[243]

96

Cm
Curium
[247]

97

Bk
Berkelium

[247]

98

Cf
Californium

[251]

99

Es
Einsteinium

[252]

100

Fm
Fermium

[257]

101

Md
Mendelevium

[258]

102

No
Nobelium

[259]

103

Lr
Lawrencium

[262]

13 14 15 16 17

18

106

Sg
Seaborgium

[266]

107

Bh
Bohrium

[264]

108

Hs
Hassium

[277]

109

Mt
Meitnerium

[268]

110

Ds
Darmstadtium

[271]

111

Rg
Roentgenium

[272]

112

UUb

[277]

113

Uut

[284]

114

Uuq

[289]

115

Uup

[288]

116

Uuh

[292]

118

Uuo

[294]

3

2

1

4 5 6 7 9 11 128 10

Notes

- Symbols for elements 112 through 118 are temporary placeholders. The corresponding Latin names are, using 115 as an example, Ununpentium, meaning element one, one, five.
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