

WAVES

Every piece of music you hear, from Hindustani classical to film songs, depends on performers producing waves and your detection of those waves.

Progressive Wave Parameters

Displacement, $y = A \sin(\omega t + kx)$

$$y = A\sin 2\pi \left(\frac{t}{T} + \frac{x}{\lambda}\right) = A\sin \frac{2\nu}{\lambda} (\nu t + x)$$

• Phase, $\phi = 2\pi \left(\frac{\xi t}{T} + \frac{x}{\lambda}\right) + \phi_0$

where ϕ_0 is the initial phase.

Phase change with time,

$$\Delta \phi = \frac{2\nu}{T} \; \Delta t.$$

Phase change with position,

$$\Delta \phi = \frac{2\nu}{\lambda} \Delta x.$$

Instantaneous particle velocity,

$$u = \frac{dy}{dt} = \frac{2vA}{T}\cos 2\pi \left(\frac{t}{T} + \frac{x}{\lambda}\right)$$

Velocity amplitude,

$$u_0 = \frac{2vA}{T} = \omega A$$

Instantaneous particle acceleration,

$$a = \frac{du}{dt} = -\frac{4v^2}{T^2} A \sin 2\pi \left(\frac{t}{T} + \frac{x}{\lambda}\right)$$
$$= -\omega^2 v$$

Acceleration amplitude,

$$a_0 = \frac{4v^2}{T^2} A = \omega^2 A$$

Wave Travelling Along a String

• Speed, v; $\sqrt{\frac{T}{m}}$,

where, T = tension in the string,

m =mass per unit length.

- Average rate at which kinetic energy or potential energy transported = $\frac{1}{4} \frac{v^2 A^2 T}{v}$
- Average power transmitted along the string

$$P_{av} = \frac{1}{2} \frac{v^2 A^2 T}{v} = 2\pi^2 m v A^2 v^2$$

Principle of Superposition of Waves

According to the principle of superposition of waves, when any number of waves interact at a point in a medium, the net displacement of the point at a given time is the algebraic sum of the displacements due to each wave at that instant of time.

Stationary Waves

The stationary wave formed by the superposition of incident wave and reflected wave is given by

$$y = 2 A \sin \frac{2vx}{\lambda} \cos \frac{2\pi t}{T}$$

Nodes are formed at the positions

$$x = 0, \frac{\varphi}{2}, \lambda, \frac{3\lambda}{2}...$$

and anti nodes are formed at
$$x = \frac{\varphi}{4}, \frac{3\lambda}{4}, \frac{5\lambda}{4}...$$

Wave Motion

A means of transferring momentum and energy from one point to another without any actual transportation of matter

Transverse and Longitudinal Waves

- A transverse wave is one in which the disturbance occurs perpendicular to the direction of travel of the wave.
- A longitudinal wave is one in which the disturbance occurs parallel to the line of

Velocity of Longitudinal Waves

Velocity of longitudinal waves in a solid of bulk modulus κ , modulus of rigidity η and density p is

$$v = \sqrt{\frac{\iota + \frac{C}{3}\eta}{\rho}}$$

Velocity of longitudinal waves in a long solid rod of Young's modulus \it{Y} and density $\it{\rho}$ is

$$\S$$
; $\sqrt{\frac{\breve{G}}{\rho}}$

 $\S \ ; \ \sqrt{\frac{\ddot{G}}{\rho}}$ Velocity of longitudinal waves in a fluid of bulk modulus κ and density ρ is

$$S = \sqrt{\frac{1}{\rho}}$$

Newton's formula for the velocity of sound in

$$\nu = \sqrt{\frac{\iota_{\cancel{X}^{\sim}}}{\rho}} = \sqrt{\frac{P}{\rho}}.$$

here, *P* = pressure of the gas Laplace formula for the velocity of sound in a

$$v = \sqrt{\frac{\kappa_{ps xp}}{\rho}} = \sqrt{\frac{\epsilon P}{\rho}},$$

• Intensity of sound waves
$$I = \frac{1}{2} \frac{v^2 A^2 \kappa}{v} = \frac{2\pi^2 \kappa}{v} A^2 v^2 = \frac{P_0^A v}{2\kappa} = \frac{P_0^2 v}{2\rho v}$$

Factors Affecting Velocity of Sound through Gases

Effect of density, $v \cdot \frac{1}{\sqrt{\rho}}$

i.e.,
$$\frac{v_2}{v_1} = \sqrt{\frac{\pi_1}{\rho_2}}$$

Effect of density,
$$v \cdot \frac{1}{\sqrt{\rho}}$$

i.e., $\frac{v_2}{v_1} = \sqrt{\frac{\pi_1}{\rho_2}}$

Effect of temperature, $v \cdot \sqrt{T}$
 $\frac{v_t}{v_0} = \sqrt{\frac{T}{T_0}} = \sqrt{\frac{273}{273}} \frac{t}{273}$

No change in velocity of sound

No change in velocity of sound with change in pressure provided temperature is kept

Doppler's Effect

If v, v_o , v_s and v_m are the velocities of sound, observer, source and medium respectively, then the apparent frequency,

$$v' = \frac{v \iff v_m \pm v_o}{v \pm v_{oo}} \times v$$

 $v' = \frac{v \leftrightarrow_m \pm v_o}{v \pm v_m - v_s} \times v$ If the medium is at rest, $(v_m = 0)$ then

$$v' = \frac{v \Leftrightarrow v_o}{v \sim v_s} \times v$$

 $\upsilon' = \frac{v \leftrightarrow v_o}{v \to v_s} \times \upsilon$ Upper sign on v_s (or v_o) is used when source (observer) moves towards the observer (source) while lower sign is used when it moves away.

Organ Pipes

Open organ pipe Fundamental mode,

$$\sigma_1 = \frac{v}{2L} = v$$
 (First harmonic)

Second mode, $v_2 = 2v$

(Second harmonic or first overtone)

$$n^{\text{th}} \mod e, \upsilon_n = \frac{n\nu}{2L}$$

 $(n^{\text{th}} \text{ harmonic or } (n-1)^{\text{th}} \text{ overtone})$

Closed organ pipe

Fundamental mode,

$$\sigma_1 = \frac{v}{4L} = v$$
 (First harmonic)

Second mode, $v_2 = 3v$

(Third harmonic or first overtone)

Third mode, $v_3 = 5v$

(Fifth harmonic or second overtone) n^{th} mode, $v_n = (2n-1)v$

$$[(2n-1)^{th}$$
 harmonic or $(n-1)^{th}$ overtone]

Laplace correction e = 0.6r (in closed pipe) and 2e = 1.2r (in open pipe)

$$v = n \left| \frac{v}{2(l+1.2r)} \right|$$
 (in open pipe)

$$v = n \left| \frac{v}{4(l + 0.6r)} \right|$$
 (in closed pipe)

Modes of Vibration of Strings

String fixed at both ends

$$\sigma = \frac{nv}{2L} = \frac{n}{2L} \sqrt{\frac{T}{m}}$$

where L = length of string

n =mode of vibration

Fundamental frequency

$$\sigma_0 = \frac{v}{2L} = \frac{1}{2L} \sqrt{\frac{T}{m}},$$

Second harmonic or 1st overtone, $v_2 = 2v_0$ Third harmonic or 2^{nd} overtone, $v_3 = 3v_0$ and so on.

String fixed at one end Frequency of vibration

$$\upsilon = \left(n + \frac{1}{2}\right) \frac{v}{2L} = \frac{\left(m + \frac{1}{2}\right)}{2L} \sqrt{\frac{T}{m}}$$

Fundamental frequency,

$$\sigma_0 = \frac{v}{4I} = \frac{1}{4I} \sqrt{\frac{T}{m}}$$

Law of length

$$vL = \text{constant}$$

or $v_1L_1 = v_2L_2$

Beat frequency = Number of beats/sec = Difference in frequencies of two sources.

$$v_{\text{beat}} = (v_1 - v_2) \text{ or } (v_2 - v_1)$$

$$v_2 = v_1 \pm v_{\text{beat}}$$

- The ± sign is decided by loading/filing any of the prongs of either tuning fork.
- On loading a fork, its frequency decreases and on filing, its frequency increases.