PROBLEM SOLVING TECHNIQUES OF PHYSICAL CHEMISTRY FOR NEET

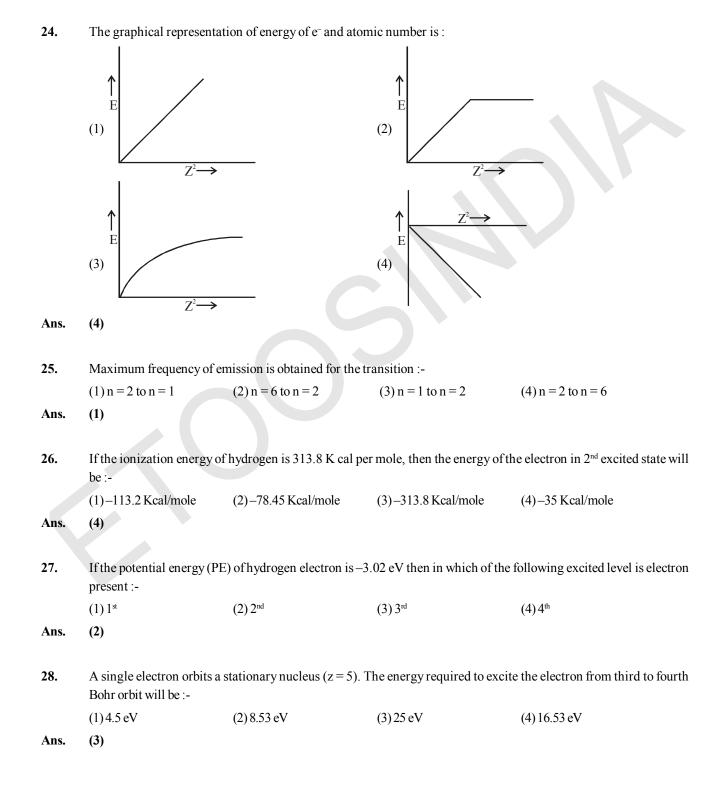
BY JITENDRA HIRWANI

ATOMIC STRUCTURE

Plot No. 38, Near Union Bank of India, Rajeev Gandhi Nagar, Kota, Rajasthan – 324005 Mob. : 9214233303

Ans.

(1)


BASIC EXERCISE

Introduction 1. A and B are two elements which have same atomic weight and are having atomic number 27 and 30 respectively. If the atomic weight of A is 57 then number of neutron in B is :-(1)27(2)33(4)40(3)30Ans. (1) 2. Find out the nucleus which are isoneutronic : (2) ${}^{12}_{6}$ C, ${}^{14}_{7}$ N, ${}^{19}_{9}$ F $(1)_{6}^{14}C, _{7}^{15}N, _{9}^{17}F$ $(3)_{6}^{14}C, _{7}^{14}N, _{9}^{17}F$ (4) ${}^{14}_{6}$ C, ${}^{14}_{7}$ N, ${}^{19}_{9}$ F (1) Ans. 3. Species which are isoelectric to one another are $(d)N_{2}$ (a) CN-(b) OH- $(c) CH_{3}^{+}$ (e)CO Correct answer is (1) a, b, c (2) a, c, d (3) a, d, e (4) b, c, d Ans. (3) 4. Which of the following pairs is correctly matched (1) Isotopes ${}^{40}_{20}$ Ca, ${}^{40}_{19}$ K (2) Isotones ${}^{30}_{14}$ Si, ${}^{31}_{15}$ P, ${}^{32}_{16}$ S (3) Isobars ¹⁶₈O,¹⁷₈O,¹⁸₈S (4) Isoelectronic N⁻³, O⁻², Cr⁺³ Ans. (2) 5. The e/m ratio is maximum for $(1) D^{+}$ (2) He^+ (3) H⁺ (4) He²⁺ (3) Ans. If change in energy (ΔE) = 3 × 10⁻⁸ J, h = 6.64 × 10⁻³⁴ J-s and c = 3 × 10⁸ m/s, then wavelength of the light is 6. (2) $6.64 \times 10^5 \text{ Å}$ $(3) 6.64 \times 10^{-8} \text{ Å}$ (4) 6.64×10^{18} Å $(1) 6.64 \times 10^3 \text{ Å}$ (3) Ans. 7. The atom A, B, C have the configuration $A \rightarrow [Z(90) + n(146)], B \rightarrow [Z(92) + n(146)], C \rightarrow [Z(90) + n(148)]$ So that :-(a) A and C - Isotones (b) A and C - Isotopes (c) A and B - Isobars (d) B and C - Isobars (e) B and C - Isotopes The wrong statement's are:-(1) a, b only (2) c, d, e only (3) a, c, d only (4) a, c, e only

INDIA'S M	NO. 1 ONLINE COACHING				
8 .	(i) $_{26}$ Fe ⁵⁴ , $_{26}$ Fe ⁵⁶ , $_{26}$ Fe ⁵⁷ , $_{26}$ Fe ²⁸	(a) Isotopes			
	(ii) $_{1}$ H ³ , $_{2}$ He ³	(b) Isotones			
	(iii) ₃₂ Ge ⁷⁶ , ₃₃ As ⁷⁷	(c) Isodiaphers			
	(iv) $_{92}U^{235}$, $_{90}Th^{231}$	(d) Isobars			
	(v) $_{1}H^{1}$, $_{1}D^{2}$, $_{1}T^{3}$				
	Match the above correct terms:-				
	(1) [(i), - a], [(ii) - d], [(iii) - b], [(i	v) - c], [(v) - a]			
	(2) [(i) - a] [(ii) - d], [(iii) - d] [(iv) - c] [v - a]			
	(3)[v-a][(iv)-c].[(iii)-d][(ii)-d]	b] [(i) - a]			
	(4) None of them				
Ans.	(1)				
9.	Choose the false statement about	t deuterium :-			
	(1) It is an isotope of hydrogen			$(p^{-}) + (1 p^{+}) + (1 (n))$	
	(3) It contains only $[(1 (p^+) + (1 (p^+)) + (1 (p^+$	n)]	(4) D_2O is called t	he heavy water	
Ans.	(3)				
10.	If the table of atomic masses were established with the oxygen atom and assigned value of 200, then the mass of				
	carbon atom would be, approxim		(2) 50	(4) 112	
A	(1)24 $(2)15$	50	(3) 50	(4) 112	
Ans.	(2)				
11.	The relative abundance of two r	ubidium isotopes of	atomic weights 85 ar	nd 87 are 75% and 25% respectively. The	
11.	average atomic wt. of rubidium i		atomic weights 65 af	in 67 are 7576 and 2576 respectively. The	
	(1)75.5 (2)85		(3)86.5	(4) 87.5	
Ans.	(2)		(5) 00.5		
Alls.	(2)				
12.	The ratio of specific charge o	f a proton and an o	y_particle is :_		
12.	(1)2:1 (2)1	•	(3)1:4	(4)1:1	
Ans.	(1) (2) 1	. 2	(5)1.1		
1 1115	(1)				
13.	Atomic weight of Ne is 20.2. Ne is	smixture of Ne ²⁰ and	Ne ²² , Relative abundar	nce of heavier isotope is :-	
	(1)90 (2)2		(3)40	(4) 10	
Ans.	(4)				
	· /				
14.	Number of protons, neutrons &	electrons in the elen	hent $_{89}\gamma^{231}$ is :-		
		9, 89, 242	(3) 89, 142, 89	(4) 89, 71, 89	
Ans.	(3)	,, -	(2) 02, 1 12, 02	(.), , ., .,	
1 1113.					

INDIA'S N	IO. 1 ONLINE COACHING			J.H. SIR
15.	Let mass of electron is had new atomic wt. of O ¹⁶ ato	· •	nes and mass of neutron is th	ree fourth of original. The find out
	(1) increases by 37.5%	(2) Remain constant	(3) increases by 12.5%	(4) decreases by 25%
Ans.	(1)			
Bohr	Atomic Model			
16.	Angular momentum is se ion :	cond Bohr orbit of H-atom i	s x. Then find out angular m	nomentum in Ist excited state of Li ⁺²
	(1)3x	(2)9x	$(3) \frac{x}{2}$	(4) x
Ans.	(4)			
17.	Multiplication of electro	n velocity and radius for a o	rbit in an atom is :	
	(1) Proportional to mas	s of electron		
	(2) Proportional to squa	re of mass of electron		
	(3) Inversely proportion	al to mass of electron		
	(4) Does not depend up	on mass of electron		
Ans.	(3)			
18.	In Bohr's atomic model i	adius of 1st orbit of Hydrog	en is 0.053 nm then radius	of 3rd orbit of Li ⁺² is :
	(1) 0.159	(2) 0.053	(3) 0.023	(4) 0.026
Ans.	(1)			
19.	For Li^{+2} ion, $r_2 : r_5$ will be	:		
	(1)9:25	(2)4:25	(3) 25 : 4	(4) 25 : 9
Ans.	(2)			
20.		n third excited state of Be ³⁺		
	(1) $\frac{3}{4}$ (2.188×10 ⁸)ms ⁻¹	(2) $\frac{3}{4}$ (2.188×10 ⁶)ms ⁻¹	$(3)(2.188 \times 10^6) \mathrm{Kms}^{-1}$	(4) (2.188 × 10 ³) Kms ⁻¹
Ans.	(4)			
21.	According to Bohr theor number 'n' as :-	ry, the radius (r) and veloci	ty (v) of an electron vary v	vith increasing principal quantum
	(1) r increases, v decreas	ses	(2) r & v both increases	
	(3) r & v both decreases		(4) r decreases, v increas	Ses
Ans.	(1)			
22.	The ratio between kinetio	e energy and the total energy	y of the electrons of hydroge	en atom according to Bohr's model
	(1)2:1	(2)1:1	(3) 1 : -1	(4)1:2

23. The energy levels of $_{z}A^{(+Z-1)}$ can be given by :-(1) E_{n} for $A^{(+Z-1)} = Z^{2} \times E_{n}$ for H (2) E_{n} for $A^{(+Z-1)} = Z \times E_{n}$ for H (3) E_{n} for $A^{(+Z-1)} = \frac{1}{Z^{2}} \times E_{n}$ for H (4) E_{n} for $A^{(+Z-1)} = \frac{1}{Z} \times E_{n}$ for H Ans. (1)

29.	The ratio of potential	energy and total energy of an	n electron in a Bohr orbit of h	ydrogen like species is :-
	(1)2	(2)-2	(3)1	(4)-1
Ans.	(1)			
30.	Which is not a correc	t order of energy for $1, 2^{nd} \&$	3 rd orbit :-	
	$(1) E_1 > E_2 > E_3$	$(2)(PE)_{1} > (PE)_{2} > (PE)_{3}$	$(3)(KE)_{1} > (KE)_{2} > (KE)_{3}$	(4) '1' & '3' both
Ans.	(1)			
31.	Which of the followin	g is a correct relationship :-		
	(1) $E_1 \text{ of } H = 1/2 E_2 \text{ or}$	$f He^+ = 1/3 E_3 \text{ of } Li^{+2} = 1/4 E_4$	of Be ⁺³	
	(2) $E_1(H) = E_2(He^+)$	$= E_3 (Li^{+2}) = E_4 (Be^{+3})$		
	(3) $E_1(H) = 2E_2(He^+)$	$= 3E_3(Li^{+2}) = 4E_4(Be^{+3})$		
	(4) No relation			
Ans.	(2)			
32.	Which of the followin	ng is a correct graph :-		
	(1) \bigwedge (1) \bigwedge (3) \bigwedge (3) \bigwedge		(4) (2) (2) (3) (4) (4) (4) (4) (5) (6) (7) (7) (7) (7) (7) (7) (7) (7	/
Ans.	(3)			
33.	The energy required t	o excite an electron of H-ator	m from first orbit to second or	rbit is :-
	(1) $\frac{3}{4}$ of its ionisation	n energy	(2) $\frac{1}{2}$ of its ionisation er	nergy
	(3) $\frac{1}{2}$ of its ionisation	n energy	(4) None	
Ans.	(1)			
84.	_	ial of a singly ionised helium	-	
	(1) Kinetic Energy o	f first orbit	(2) Energy of last orbit	
	(3) Average energy i		(4) Maximum energy in c	

	OSINDIA			J.H. SIR
Specti	rum and Spectral I	Lines		
35.	Third line of Balmer	series is produced by which	ch transition in spectrum of H-a	atom
	(1) 5 to 2	(2) 5 to 1	(3) 4 to 2	(4) 4 to 1
Ans.	(1)			
36.	Which one of the foll hydrogen spectrum	-	s between energy levels produc	ces the line of shortest wavelength in
	$(1) \mathbf{n}_2 \rightarrow \mathbf{n}_1$	$(2) n_3 \rightarrow n_1$	$(3) n_4 \rightarrow n_1$	$(4) n_4 \rightarrow n_3$
Ans.	(3)			
37.		n frequency of Lyman & B		(1) 10
A	(1) 1.25	(2) 0.25	(3)5.4	(4) 10
Ans.	(3)			
38.	(1) Second spectral	its photon of maximum fre line of Balmer series line of Pashchen series	equency :-	
	(3) Fifth spectral lin	e of Humphery series		
	(4) First spectral line	e of Lyman series		
Ans.	(4)			
39.	The wavelength of pl λ_1 and λ_2 respectively		n transition between two levels	in H-atom and singly ionised He are
	$(1) \lambda_2 = \lambda_1$	$(2) \lambda_2 = 2\lambda_1$	$(3) \lambda_2 = \lambda_1/2$	$(4) \lambda_2 = \lambda_1 / 4$
Ans.	(4)			
40.	Find out ratio of foll	owing for photon $(v_{max})_{Lyn}$	$_{man}$: $(v_{max})_{Brakett}$	
	(1)1:16	(2) 16 : 1	(3)4:1	(4)1:4
Ans.	(2)			
41.				yman series in deuterium $(_1H^2)$ is :
Ans.	(1)1:9 (1)	(2)9:1	(3)1:4	(4)4:1
A115.	(1)			
42.	In an electron transit	ion atom cannot emit :		
	(1) Visible light	(2) γ-rays	(3) Infra red light	(4) Ultra violet light
Ans.	(2)			
43.	The first Lyman trans		ctrum has $\Delta E = 10.2$ eV. The s	ame energy change is observed in the
	$(1) Li^{2+}$	(2) Li ⁺	(3) He ⁺	(4) Be^{3+}
Ans.	(3)			

ETC	DOSINDIA			J.H. SIR
44.	The limiting line in Ba	lmer series will have a frequ	ency of:-	
	$(1) 3.65 \times 10^{14} \mathrm{sec}^{-1}$	-	(3) $8.22 \times 10^{14} \text{sec}^{-1}$	$(4) - 8.22 \times 10^{14} \text{sec}^{-1}$
Ans.	(3)			
45.	If the shortest wavelen; will be :-	gth of Lyman series of H ator	n is x, then the wave length o	of first line of Balmer series of H atom
	$(1)\frac{9x}{5}$	$(2) \frac{36x}{5}$	$(3)\frac{5x}{9}$	(4) $\frac{5x}{36}$
Ans.	(2)			
46.	In H-atom, electron tra be :-	nsits from 6 th orbit to 2 nd orbi	t in multi step. The total spec	tral lines (without Balmer series) will
	(1)6	(2) 10	(3)4	(4)0
Ans.	(1)			
47.	An atom has x energy	level, then total number of l	ines in its spectrum are :-	
	(1) 1+2+3	(x+1)	(2) 1 + 2 + 3 ((x ²)
	(3) 1+2+3	(x-1)	(4)(x+1)(x+2)(x+4)	
Ans.	(3)			
48.	-			in emission spectrum (e.g. line no. 5 ines will not occur in the absorption
			$\begin{array}{c c} & & & C \\ & & & & B \\ & & & & & \\ \hline & & & & & \\ \hline & & & & &$	
Ans.	(1) 1, 2, 3 (3)	(2) 3. 2	(3) 4, 5, 6	(4) 3, 2, 1

- **49.** A certain electronic transition from an excited state to ground state of the H_2 atom in one or more step gives rise to three lines in the ultra violet region of the spectrum. How many lines does this transition produce in the infrared region of the spectrum :-
 - (1)1 (2)2 (3)3 (4)4
- Ans. (3)

ETOOSINDIA INDIA'S NO. 1 ONLINE COACHING

50.	Four lowest energy levels		he figure. The number of en	nission lines could be:-
		3		
		2		
		n = 1		
	(1)3	(2)4	(3)5	(4)6
Ans.	(4)			
51.	In the above problem, the	e number of absorption line	es could be :-	
	(1)3	(2)4	(3)5	(4) 6
Ans.	(1)			
52.	If 9.9 eV energy is suppli	ed to H atom, the no. of spe	ctral lines emitted is equal t	0 :-
	(1)0	(2)1	(3)2	(4) 3
Ans.	(1)			
De-Br	oglie Concept and Ho	eisenberg Principle		
53.	An electron has kinetic en		ie wavelength will be nearly	-
	$(1) 9.28 \times 10^{-24} \mathrm{m}$	(2) 9. 28×10^{-7} m	$(3) 9.28 \times 10^{-8} \mathrm{m}$	(4) 9. 28×10^{-10} m
Ans.	(3)			
54.	What is the de-Broglie w	avelength associated with t	he hydrogen electron in its	third orbit :-
	(1) 9. 96 × 10 ⁻¹⁰ cm	(2) 9. 96 × 10 ⁻⁸ cm	$(3) 9.96 \times 10^4 \text{cm}$	(4) 9. 96 × 10^8 cm
Ans.	(2)			
55.	If the de-Broglie wavelen	gth of the fourth Bohr orbit of	of hydrogen atom is 4 Å, the	circumference of the orbit will be:-
	(1)4Å	(2)4 nm	(3) 16 Å	(4) 16 nm
Ans.	(3)			
56.	What is the ratio of the d	e-Broglie wave lengths for	electrons accelerated throug	gh 200 volts and 50 volts :
	(1)1:2	(2)2:1	(3)3:10	(4) 10 : 3
Ans.	(1)			
57.	What should be the mom the value of h is 6.6252 ×		per second) of a particle if its	s de-Broglie wavelength is 1Å and
	(1) 6.6252×10^{-19} gcm/s		(2) 6.6252×10^{-21} gcm/s	
	(3) 6.6252×10^{-24} gcm/s		(4) 6.6252×10^{-27} gcm/s	
Ans.	(1)			

	DOSINDIA			J.H. SIR
58.		ass of the photon of sodium fh is 6.6252×10^{-34} kg m ² /s		ne velocity of light is 3×10^8 meter/
	(1) 3.746×10^{-26} kg	(2) 3.746×10^{-30} kg	(3) 3.746×10^{-34} kg	(4) 3.746×10^{-36} kg
Ans.	(4)			
59.	• •	ition of an electron & heliur certainity in momentum of		ainity in momentum for the electron
	$(1) 32 \times 10^{5}$	(2) 16×10^{5}	$(3) 8 \times 10^5$	(4) None
Ans.	(1)			
60.	-	the position of an electertainity in velocity is 0.01		m) moving with a velocity of
	(1) 1.92 cm	(2) 7.68 cm	(3) 0.175 cm	(4) 3.84 cm
Ans.	(3)			
61.			a debroglie wavelength of 1Å es wavelength of Y will be :	. If particle Y has a mass of 25%
	(1) 3Å	(2) 5.33 Å	(3) 6.88 Å	(4) 48Å
Ans.	(2)			
62 .	Heisenberg Uncertaini	ity principle is not valid for	or	
	(1) Moving electron	(2) Motor car	(3) Stationary particles	(4) 2 & 3 both
Ans.	(4)			
63.	The number of waves m	ade by a Bohr electron in an	orbit of maximum magnetic qu	iantum number +2:-
03.	(1) 3	(2) 4		(4) 1
Ang		(2)4	(3) 2	(4) 1
Ans.	(1)			
Quan	tum Numbers			
64.	The following quantur	n no. are possible for how r	nany orbitals n = 3, ℓ = 2, m =	+2
	(1)1	(2)2	(3)3	(4)4
Ans.	(1)			
65.	Number of possible orb	pitals (all types) in $n = 3$ end	ergy level is :	
	(1)1	(2)3	(3)4	(4)9
Ans.	(4)			
66.	Which sub-shell is not	permissible :		
	(1)2d	(2)4f	(3) 6p	(4) 3s
Ans.	(1)	()	\~ / ~ r	
	(*)			

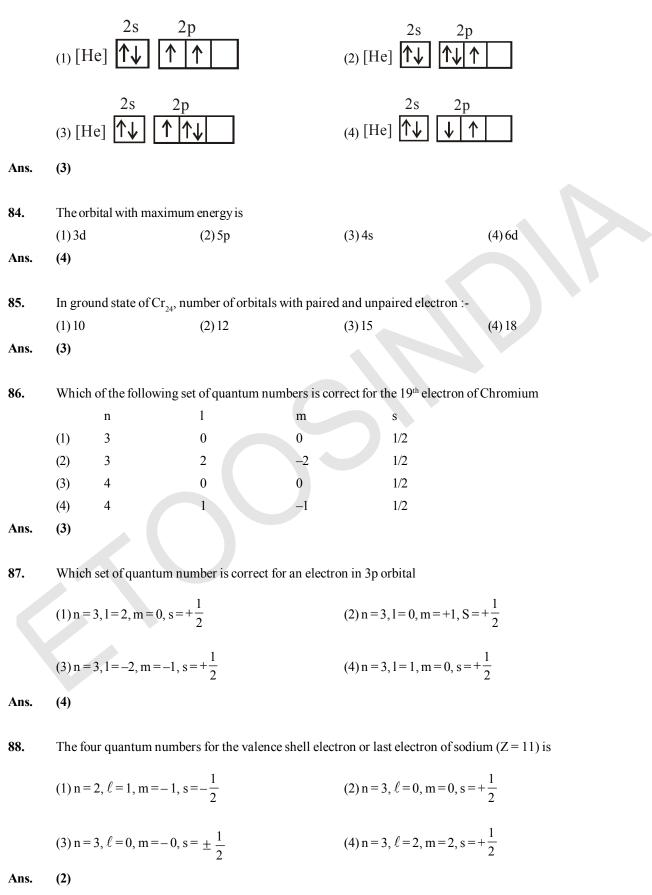
ETC	OSINDIA			J.H. SIR
67.	Nodal plane is found in w	hich orbital.		
	(1) n = 2, l = 0	(2) n = 3, 1 = 0	(3) n = 2, 1 = 1	(4) n = 1, 1 = 0
Ans.	(3)			
68.	No. of nodal surface in 2s			
	(1)0	(2)1	(3)2	(4)3
Ans.	(4)			
69.	Which orbital is represen	ted by the complete wave fu	unction Ψ ·-	
	(1)4d	(2) 3d	(3)4p	(4) 4s
Ans.	(1)		(-) r	
70.	Which of the following is	s correct for a 4d-electron		
	1			
	(1) $n = 4, \ell = 2, s = +\frac{1}{2}$		(2) $n = 4, \ell = 2, s = 0$	
	_			
	(3) $n = 4$, $\ell = 3$, $s = 0$		(4) $n = 4, \ell = 3, s = +\frac{1}{2}$	
			(1) 1 1, 3 2, 5 2	
Ans.	(1)			
71.		in a particular shell is in ord		
	., .	(2) s > p > d > f	(3) $p < d < f < s$	(4) f > d > s > p
Ans.	(1)			
72.	Spin angular momentum f	For electron :-		
, 2 .				
	(1) $\sqrt{s(s+1)} \frac{h}{2\pi}$	(2) $\sqrt{2 s (s+1)} \frac{h}{2 \pi}$	(3) $\sqrt{s(s+2)} \frac{h}{2\pi}$	(4) None
A mg	(1)	211	270	
Ans.	(1)			
73.	Which statement is not co	rrect for $n = 5$, $m = 2$:-		
	(1) $\ell = 4$	(2) $\ell = 0, 1, 2, 3; s = +1/2$	$(3) \ell = 3$	$(4) \ell = 2, 3, 4$
Ans.	(2)			
74.	An electron is in one of 4d	orbital. Which of the follow	ving orbital quantum numbe	r value is not possible :-
	(1)n=4	(2) $\ell = 1$	(3)m=1	(4)m=2
Ans.	(2)			
75.			ctrons. The number of s-electr	
Ana	(1)2	(2)8	(3) 10	(4)6
Ans.	(2)			

	DOSINDIA			J.H. SIR
76.	n, ℓ and m valu	es of an electron in 3p _v orbital are	e:-	
	(1) $n = 3; \ell = 1$	5	(2) $n = 3; \ell = 1a$	and $m = -1$
	(3) Both 1 and 2	2 are correct	(4) None of the	se
Ans.	(3)			
77.	In an atom, for	how many electrons, the quantum	numbers will be , n =	3, $\ell = 2$, m = +2, s = + $\frac{1}{2}$:-
	(1)18	(2)6	(3)24	(4)1
Ans.	(4)			
78.	₃₆ Kr has the elect	ronic configuration $(_{18}Ar)4s^2 3d^{10}4p$ (2)4d	⁶ . The 39 th electron will (3) 3p	go into which one of the following sub-levels :- (4) 5s
Ans.	(2)	(_)	(-)-r	
79.	The maximum	probability of finding an electron	in the d _{xy} orbital is :-	
	(1) Along the x-	axis	(2) Along the y-	axis
	(3) At an angle	of 45° from the x and y axis	(4) At an angle of	of 90° from the x and y axis
Ans.	(3)			
80.	Which orbital	has two angular nodal planes :-		
	(1) s	(2) p	(3) d	(4) f
Ans.	(3)			

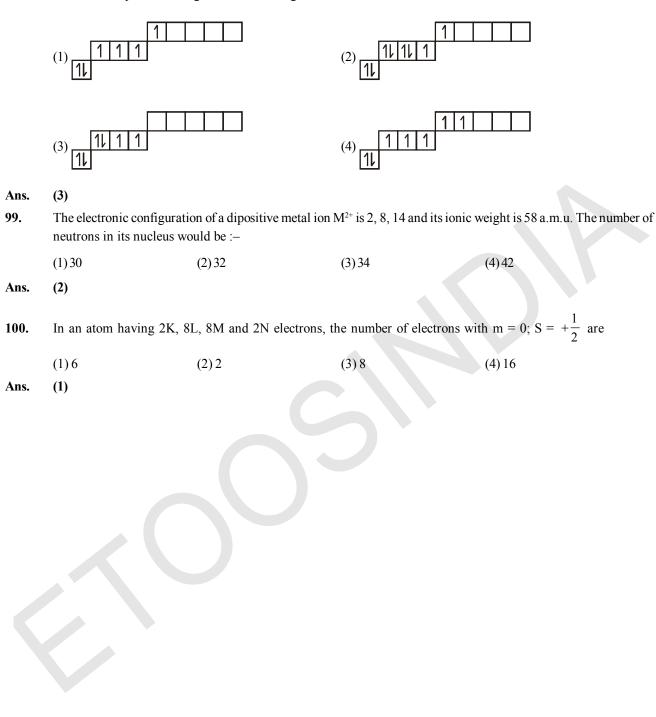
81. In n & ℓ are principal and azimuthal quantum no. respectively then the expression for calculating the total no. of electron in any energy level is :-

(1)
$$\sum_{\ell=0}^{\ell=n} 2(2\ell+1)$$
 (2) $\sum_{\ell=1}^{\ell=n-1} 2(2\ell+1)$ (3) $\sum_{\ell=0}^{\ell=n+1} 2(2\ell+1)$ (4) $\sum_{\ell=0}^{\ell=n-1} 2(2\ell+1)$
(4)

Ans. (


Rules for Filling of Orbitals

82. Which configuration does not obey pauli's exclusion principle :-



Ans. (2)

83. Which of the following configuration follows the Hund's rule :-

	The stomis number of	on alomontia 17 the ment	r of orbitala containing -1	tron noire in the sector as about in
89.		(2)2	_	tron pairs in the valency shell is:- (4)6
ns.	(1)8	(2)2	(3)3	(4)0
	(3)			
0.	The total spin resulting	g from a d ⁹ configuration is:	-	
	$(1)\frac{1}{2}$	(2) 2	(3)1	$(4)\frac{3}{2}$
ns.	(1)			
1.	n and ℓ values of an	orbital 'A' are 3 and 2, of	another orbital 'B' are 5 ar	nd 0. The energy of
	(1) B is more than A		(2) A is more than B	
	(3) A and B are of same	me energy	(4) None	
Ans.	(1)			
2.	Electronic configuration	m 11 11 11 11 has	violated :-	
	(1) Hund's rule	(2) Pauli's principle	(3) Aufbau principle	(4) $(n + \ell)$ rule
ns.	(1)			
3.	Sum of the paired electr	ons present in the orbital wi	th $\ell = 2$ in all the species Fe^{2+}	, Co^{2+} and Ni^{+2} are:-
	(1)9	(2) 12	(3)6	(4) 15
.ns.	(2)			
4.	What is the electronic c	onfiguration of an element i	n its first excited state which	is isoelectronic with O_2
	(1) [Ne] $3s^2 3p^3 3d^1$	(2) [Ne] $3s^2 3p^4$	(3) [Ne] $3s^1 3p^3 3d^2$	(4) [Ne] $3s^1 3p^5$
ns.	(1)			
5.	The quantum number of	20th electron of Fe($Z = 26$) ion	would be :	
	(1) 3, 2, -2 , $-\frac{1}{2}$	(2) 3, 2, 0, $\frac{1}{2}$	$(3)4, 0, 0, +\frac{1}{2}$	$(4) 4, 1, -1, +\frac{1}{2}$
.ns.	(3)			
6.	Which of the following	-	-	nergy in case of Hydrogen atom
	$(1) 3p_x \rightarrow 3s$	$(2) 3d_{xy} \rightarrow 3d_{yz}$	$(3) 3s \rightarrow 3d_{xy}$	(4) All the above
ns.	(4)			
7.		_	_	3p electrons is (in ground state
	(1) 15	(2) 10	(3) 12	(4)8
ns.	(1)			

(1)35.46

(4)0

ANALYTICAL EXERCISE A certain negative ion X⁻² has in its nucleus 18 neutrons and 18 electrons in its extra nuclear structure. What is the mass number of the most abundant isotope of 'X' :-(2)32(3) 36 (4)39

Ans. (2)

1.

2. In P-atom find out the no. of paired electrons for $\ell = 1$ and m = 0 :-(3)2(1)3(2)1

(3) Ans.

3. For the azimuthal quantum number (ℓ) , the total number of magnetic quantum number is given by:-

(1)
$$\ell = \frac{(m+1)}{2}$$
 (2) $\ell = \frac{(m-1)}{2}$ (3) $\ell = \frac{(2m+1)}{2}$ (4) $\ell = \frac{(2m-1)}{2}$

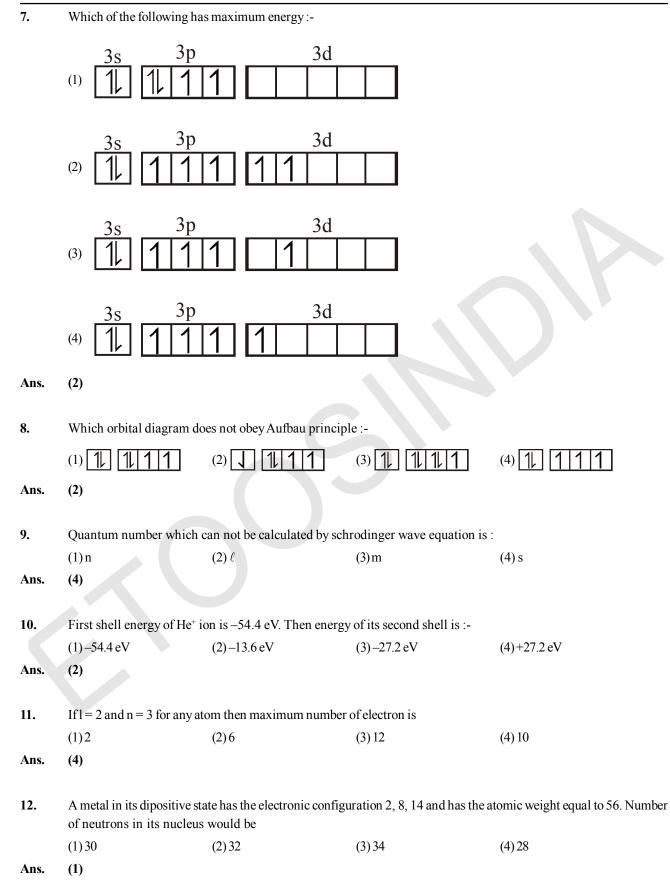
Ans. (2)

4. When the value of principal quantum number n is 3, the permitted value of azimuthal quantum numbers ℓ and magnetic quantum numbers 'm' are:-

$(1) \begin{pmatrix} \ell \\ 0 \\ 1 \\ 2 \end{pmatrix}$	m 0 +1, 0, -1 +2, +1, 0, -1, -2	$(2) \begin{pmatrix} \ell \\ 0 \\ 2 \\ 3 \end{pmatrix}$	m 1 +2, 1, -2 +3, +3, +2, 1, -2, -3
(3) $\begin{pmatrix} \ell \\ 0 \\ 1 \\ 2 \end{pmatrix}$ (1)	m 0 1 2 3 2 0, 1, 2 +3, +2, 1, -2, -3	(4) $\begin{pmatrix} \ell \\ 1 \\ 2 \\ 3 \end{pmatrix}$	m 0, 1 0, 1, 2 0, 1, 2, 3

Ans.

5. A filled or half-filled set of p or d orbitals is spherically symmetric. Point out the species which has spherical symmetry :-


(1)Na (2) C (3) Cl-(4) Fe

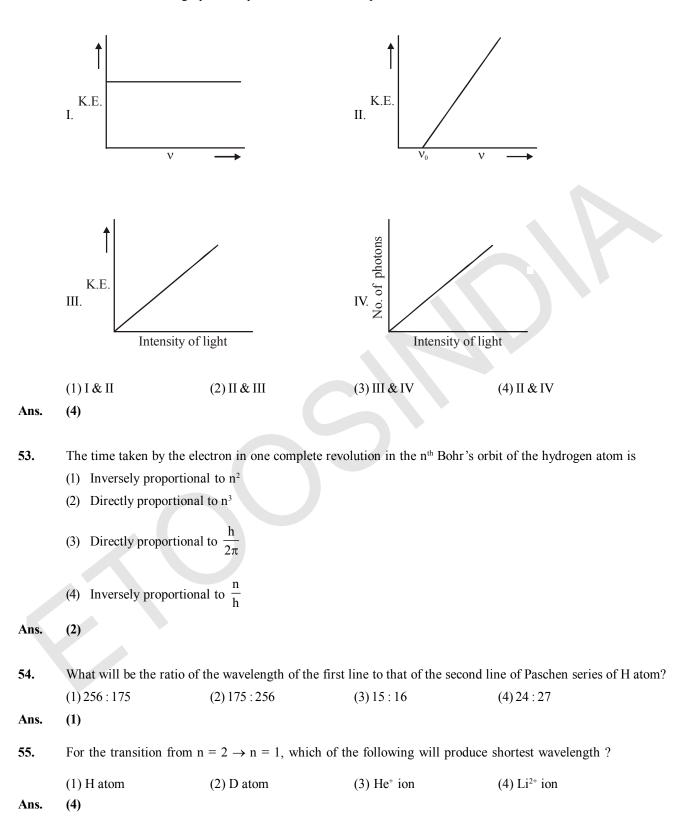
Ans. (3)

Radius of H-atom in its ground state is 5.3×10^{-11} m. After collision with an electron it is found to have a radius 6. of 21.2×10^{-11} m. What is the principal quantum no. 'n' of the final state of the atom:-

(1)
$$n = 2$$
 (2) $n = 3$ (3) $n = 4$ (4) $n = 16$

Ans. (1)

13.	What is the maximum number of electrons which can be accommodated in an atom in which the highest principal quantum number value is 4.					
	(1) 10	(2) 18	(3) 36	(4) 54		
Ans.	(1)10	(2)10	(5)50	(+) 5+		
14.	The quantum number	s + 1/2 and $-1/2$ for the elec	tron spin represent.			
	(1) Rotation of the el	ectron in clockwise and an	ticlockwise direction respe	ctively.		
	(2) Rotation of the el	ectron in anti clockwise an	d clockwise direction respe	ctively.		
	(3) Magnetic momen	nt of the electron pointing u	p and down respectively.			
	(4) Two quantum me	chanical spin states which	have no classical analogue			
Ans.	(4)					
15.	Uncertainity in position	on of a 0.25 g particle is 10^{-3}	m. Then uncertainity in its	s velocity will be :-		
	$(h = 6.6 \times 10^{-34} \text{ Js})$					
	$(1) 1.2 \times 10^{34}$	$(2) 2.1 \times 10^{-26}$	$(3) 1.6 \times 10^{-20}$	$(4) 1.7 \times 10^{-9}$		
Ans.	(2)					
6.	The wavelength of rac	liation emitted when an ele	ctron in a hydrogen atom m	akes a transition from an energy level		
	with n = 3 to a level with n = 2 is : [Given that $E_n = \frac{-1312}{n^2} \text{ kJ mol}^{-1}$]					
	with $n = 3$ to a level wi	ith $n = 2$ is : [Given that E_n	$=\frac{1512}{n^2} \text{ kJ mol}^{-1}$			
	(1) 6.56×10^{-7} m	(2) 65.6 nm	$(3) 65.6 \times 10^{-7} \mathrm{m}$	(4) n only		
Ans.	(1)					
7.	A gas absorbs a photo	on of 355 nm and emits two	wavelengths. If one of the	emission is at 680 nm, the other is at		
	(1)743 nm	(2) 518 nm	(3) 1035 nm	(4) 325 nm		
Ans.	(1)		(0) 1000 IIII	())		
18.	The frequency of light ing to which of the fol		$= 4 \text{ to } n = 2 \text{ of } He^+ \text{ is equal t}$	to the transition in H atom correspond-		
	(1) n = 3 to n = 1	(2) n = 2 to n = 1	(3) n = 3 to n = 2	(4) n = 4 to n = 3		
Ans.	(2)					
			(π^2)			
19.	Energy of an electron i	is given by $E = -2.178 \times 10^{-10}$	¹⁸ $J\left(\frac{Z^2}{n^2}\right)$. Wavelength of li	ght required to excite an electron in an		
	hydrogen atom from le	evel $n = 1$ to $n = 2$ will be :-	$h = 6.62 \times 10^{-34}$ Js and $c = 3$	$8.0 \times 10^8 \mathrm{ms}^{-1}$)		
	(1) $1.214 \times 10^{-7} \mathrm{m}$	(2) 2.816×10^{-7} m	$(3) 6.500 \times 10^{-7} \mathrm{m}$	(4) $8.500 \times 10^{-7} \mathrm{m}$		
	(1)					
Ans.	(1)					
	If the ionisation poten	tial of an atom is 20V, its fir	st excitation potential will b	be :-		
Ans. 20.	If the ionisation poten (1)5V	tial of an atom is 20V, its fir (2) 10 V	st excitation potential will b (3) 15 V	e :- (4) 20 V		


	NO. 1 ONLINE COACHING		J.H. SIR						
21.	A single electron orbits a stationary nucleus of charge +Ze, where Z is a constant. It requires 47.2 eV to excite electron from second Bohr orbit to third Bohr orbit, find the value of Z :-								
	(1)1 (2)3	(3) 5	(4) 4						
Ans.	(3)								
22.	If a photon of energy 14 eV is incident on an H-atom, what is true :-								
	(1) Atom will be ionised and electron will have a kinetic energy of 14 eV								
	(2) Atom will be ionised and electron will have a kinetic energy of 0.4 eV								
	(3) Photon passes through atom without interacting with it								
	(4) More than one electrons will make transitions	(4) More than one electrons will make transitions							
Ans.	(2)								
23.	An electron of energy 10.8 eV is incident on an H	atom then :-							
	(1) The electron will come out with 10.8 eV energ	y.							
	(2) The electron will be completely absorbed								
	(3) 10.2 eV of the electron would be absorbed by H atom and it would come out with 0.6 eV energy.								
	(4) None								
Ans.	(3)								
24.	The ratio of the difference in energy between the first and second Bohr orbit to that between second and third Bohr orbit in H-atom is :-								
	(1) 4/9 (2) 1/3	(3) 27/5	(4) 1/2						
Ans.	(3)								
25.	Match the following :-								
	(A) Energy of ground state of He ⁺	(i) + 6.04 eV							
	(B) Potential energy of I orbit of H-atom	(ii)-27.2 eV							
	(C) Kinetic energy of II excited state of He ⁺	(iii) 8.72 × 10 ⁻¹⁸ J							
	(D) Ionisation potential of He ⁺	(iv)-54.4 eV							
	(1) A-(i), B-(ii), C-(iii), D-(iv)	(2) A-(iv), B-(iii), C-((ii), D-(i)						
	(3) A-(iv), B-(ii), C-(i), D-(iii)	(4) A-(ii), B-(iii), C-(i	i), D-(iv)						
Ans.	(3)								
26.	In the following transition which statement is correct								
	E_3	λ_3 λ_2							
	E_2	λ_1							
	$E_1 - \Psi$	\checkmark n_1							
	(1) $E_{3-1} = E_{3-2} - E_{2-1}$ (2) $\lambda_3 = \lambda_1 + \lambda_2$	$(3) v_3 = v_2 + v_1$	(4) All of these						
Ans.	(3)								
27.	When a hydrogen sample in ground state is bombarded then what potential is required to accelerate electron so that								
	first Paschen line is emitted :-								
	(1)2.55 V $(2)0.65 V$	(3) 12.09 V	(4) 12.75 V						

from three lowest states of He ⁺ atom will be ⁻ (in eV) (1)13.6, 10.2, 3.4 (2) 13.6, 3.4, 1.5 (3) 13.6, 27.2, 40.8 (4) 54.4, 13.6, 6 Ans. (4) 29. Given that in the H-atom the transition energy for n = 1 to n = 2. Rydberg states is 10.2eV. The energy for the same transition in Be ⁺⁺ is :- (1) 20.4 eV (2) 163.2 eV (3) 30.6 eV (4) 40.8 eV Ans. (2) 30. When a electron in H- atom jumps from n = 4 to n = 1, ultra violet light is emitted, if the transition corresponds to n = 4 to n = 2, which of the following colours will be emitted :- (1) Ultra violet (2) Green (3) Infra red (4) No colour Ans. (2) 31. The wavelength of first line of Lyman series for hydrogen is 1216 A ⁵ . The wavelength for the first line of this series for a 10 time ionised sodium atom (z = 11) will be :- (1) 1000 Å (2) 100 Å (3) 10 Å (4) 1 Å Ans. (3) 32. A certain electronic transition from an excited state to the ground state of the H atom in one or more steps gives riss to four lines in the ultra violet region of the spectrum, how many lines does this transition produce in the infrared region of the spectrum :- (1) 1 (2) 2 (3) (4) (4) 4 Ans. (3) 33. The uncertainty in momentum of an electron is 1 × 10 ⁻⁵ kg-m/s. The uncertainty in its position will be (h ^{-6.6.2} × 10 ⁻⁴⁰ kg-m ² /s) (1) 5.27 × 10 ⁻⁶⁰ m (2) 1.05 × 10 ⁻²⁰ m (3) 1.05 × 10 ⁻³⁰ m (4) 5.25 × 10 ⁻³³ m Ans. (1) 34. In hydrogen atom, energy of first excited state is -3.4 eV. Then find out KE of same orbit of hydrogen atom (1) +3.4 V (2) + 6.8 V (3) -13.6 V (4) 13.6 V Ans. (1) 35. Maximum number of electrons in a subshell with 1 = 3 and n = 4 (1) 10 (2) 12 (3) 14 (4) 16		NO. 1 ONLINE COACHING			J.H. SIR					
Ans. (4) 29. Given that in the H-atom the transition energy for n = 1 to n = 2. Rydberg states is 10.2eV. The energy for the same transition in Be ⁺ is :- (1) 20.4 eV (2) 30. When a electron in H- atom jumps from n = 4 to n = 1, ultra violet light is emitted, if the transition corresponds to n = 4 to n = 2, which of the following colours will be emitted :- (1) Ultra violet (2) Green (3) Infra red (4) No colour Ans. (2) 31. The wavelength of first line of Lyman series for hydrogen is 1216 A°. The wavelength for the first line of this series for a 10 time ionised sodium atom (z = 11) will be :- 	28.	The binding energy of e^- in ground state of hydrogen atom is 13.6 eV. The energies required to eject out an electron from three lowest states of He ⁺ atom will be - (in eV)								
29. Given that in the H-atom the transition energy for n = 1 to n = 2. Rydberg states is 10.2eV. The energy for the same transition in Be ⁺⁺ is :- (1) 20.4 eV (2) 163.2 eV (3) 30.6 eV (4) 40.8 eV 30. When a electron in H- atom jumps from n = 4 to n = 1, ultra violet light is emitted, if the transition corresponds to n = 4 to n = 2, which of the following colours will be emitted :- (1) Ultra violet (2) Green (3) Infra red (4) No colour Ans. (2) 31. The wavelength of first line of Lyman series for hydrogen is 1216 A°. The wavelength for the first line of this series for a 10 time ionised sodium atom (z = 11) will be :- (1) 1000 Å (2) 100 Å (3) 10 Å (4) 1 Å 32. A certain electronic transition from an excited state to the ground state of the H atom in one or more steps gives rise to four lines in the ultra violet region of the spectrum, how many lines does this transition produce in the infrared region of the spectrum is 1 × 10⁻³ kg-m/s. The uncertainty in its position will be (h=6 62 × 10⁻¹⁴ kg-m³/s) (1) 527 × 10⁻³⁰ m (2) 1.05 × 10⁻³⁶ m (3) 1.05 × 10⁻³⁸ m (1) 34. In hydrogen atom, energy of first excited state is =-3.4 eV. Then find out KE of same orbit of hydrogen atom (1) +3.4 V (2) +6.8 V (3) -13.6 V (4) 13.6 V 35. Maximum number of electrons in a subshell with 1= 3 and n = 4 (1) 10 (2		(1) 13.6, 10.2, 3.4	(2) 13.6, 3.4, 1.5	(3) 13.6, 27.2, 40.8	(4) 54.4, 13.6, 6					
transition in Be ³⁺ is :- (1) 20.4 eV (2) 163.2 eV (3) 30.6 eV (4) 40.8 eV Ans. (2) 30. When a electron in H- atom jumps from n = 4 to n = 1, ultra violet light is emitted, if the transition corresponds to n = 4 to n = 2, which of the following colours will be emitted :- (1) Ultra violet (2) Green (3) Infra red (4) No colour Ans. (2) 31. The wavelength of first line of Lyman series for hydrogen is 1216 A°. The wavelength for the first line of this series for a 10 time ionised sodium atom (z = 11) will be :- (1) 1000 Å (2) 100 Å (3) 10 Å (4) 1 Å Ans. (3) 32. A certain electronic transition from an excited state to the ground state of the H atom in one or more steps gives risk to four lines in the ultra violet region of the spectrum, how many lines does this transition produce in the infrared region of the spectrum :- (1) 1 (2) (2) (3) 3 (4) (4) Ans. (3) 33. The uncertainty in momentum of an electron is 1×10^{-5} kg-m/s. The uncertainty in its position will be (h=6.62 \times 10^{-34}kg-m ² /s) (1) 5.27 \times 10^{-39}m (2) 1.05 × 10 ⁻²⁶ m (3) 1.05 × 10 ⁻³⁹ m (4) 5.25 × 10 ⁻²⁹ m Ans. (1) 34. In hydrogen atom, energy of first excited state is -3.4 eV. Then find out KE of same orbit of hydrogen atom (1) $+3.4$ V (2) + 6.8 V (3) - 13.6 V (4) 13.6 V Ans. (1) 35. Maximum number of electrons in a subshell with $1=3$ and $n = 4$ (1) 10 (2) 12 (3) 14 (4) 16	Ans.	(4)								
Ans.(2)30.When a electron in H- atom jumps from n = 4 to n = 1, ultra violet light is emitted, if the transition corresponds to n = 4 to n = 2, which of the following colours will be emitted :- (1) Ultra violet(2) Green(3) Infra red(4) No colourAns.(2)31.The wavelength of first line of Lyman series for hydrogen is 1216 Ű. The wavelength for the first line of this series for a 10 time ionised sodium atom (z = 11) will be :- (1) 1000 Å(2) 100 Å(3) 10 Å(4) 1 ÅAns.(3)32.A certain electronic transition from an excited state to the ground state of the H atom in one or more steps gives risk to four lines in the ultra violet region of the spectrum, how many lines does this transition produce in the infrared region of the spectrum :- (1) 1(2) 2(3) 3(4) 4Ans.(3)33.The uncertainty in momentum of an electron is 1×10^{-5} kg-m/s. The uncertainty in its position will be (h= 6.62×10^{-34} kg-m ² /s) (1) 5.27×10^{-50} m (2) 1.05×10^{-36} m (3) 1.05×10^{-38} m (4) 5.25×10^{-38} m34.In hydrogen atom, energy of first excited state is $=3.4$ eV. Then find out KE of same orbit of hydrogen atom (1) $+3.4$ V (2) $+6.8$ V (3) -13.6 V (4) 13.6 V Ans.35.Maximum number of electrons in a subshell with $1 = 3$ and $n = 4$ (1) 10 (2) 12 (3) 14 (4) 16	29.	Given that in the H–atom the transition energy for $n = 1$ to $n = 2$. Rydberg states is 10.2eV. The energy for the same transition in Be ³⁺ is :-								
30. When a electron in H- atom jumps from n = 4 to n = 1, ultra violet light is emitted, if the transition corresponds to n = 4 to n = 2, which of the following colours will be emitted :- (1) Ultra violet (2) Green (3) Infra red (4) No colour Ans. (2) 31. The wavelength of first line of Lyman series for hydrogen is 1216 Ű. The wavelength for the first line of this series for a 10 time ionised sodium atom (z = 11) will be :- (1) 1000 Å (2) 100 Å (3) 10 Å (4) 1 Å 33. A certain electronic transition from an excited state to the ground state of the H atom in one or more steps gives risk to four lines in the ultra violet region of the spectrum, how many lines does this transition produce in the infrared region of the spectrum :- 		(1) 20.4 eV	(2) 163.2 eV	(3) 30.6 eV	(4) 40.8 eV					
n = 4 to n = 2, which of the following colours will be emitted :- (1) Ultra violet(2) Green(3) Infra red(4) No colourAns.(2)31.The wavelength of first line of Lyman series for hydrogen is 1216 A°. The wavelength for the first line of this series for a 10 time ionised sodium atom (z = 11) will be :- (1) 1000 Å(2) 100 Å(3) 10 Å(4) 1 ÅAns.(3)32.A certain electronic transition from an excited state to the ground state of the H atom in one or more steps gives risk to four lines in the ultra violet region of the spectrum, how many lines does this transition produce in the infrared region of the spectrum :- (1) 1(2) 2(3) 3(4) 433.The uncertainty in momentum of an electron is 1×10^{-5} kg-m/s. The uncertainty in its position will be (h= 6.62×10^{-34} kg-m ² /s) (1) 5.27×10^{-30} m(3) 1.05×10^{-28} m(4) 5.25×10^{-28} m34.In hydrogen atom, energy of first excited state is -3.4 eV. Then find out KE of same orbit of hydrogen atom (1) $+3.4$ V(2) $+6.8$ V(3) -13.6 V(4) 13.6 V35.Maximum number of electrons in a subshell with $1 = 3$ and $n = 4$ (1) 10(2) 12 (3) 14 (4) 16	Ans.	(2)								
Ans.(2)31.The wavelength of first line of Lyman series for hydrogen is 1216 A°. The wavelength for the first line of this series for a 10 time ionised sodium atom (z = 11) will be :- (1) 1000 Å (2) 100 Å (2) 100 Å (3) 10 Å (4) 1 ÅAns.(3)32.A certain electronic transition from an excited state to the ground state of the H atom in one or more steps gives risk to four lines in the ultra violet region of the spectrum, how many lines does this transition produce in the infrared region of the spectrum :- (1) 1 (2) 2 (3) 3(1) 1(2) 2 (3) 3 (4) 4Ans.(3)33.The uncertainty in momentum of an electron is 1×10^{-5} kg-m/s. The uncertainty in its position will be (h=6.62 × 10 ⁴⁴ kg-m²/s) (1) 5.27 × 10 ⁻³⁰ m (2) 1.05×10^{-26} m (3) 1.05×10^{-28} m (4) 5.25×10^{-28} m34.In hydrogen atom, energy of first excited state is -3.4 eV. Then find out KE of same orbit of hydrogen atom (1) $+3.4$ V (2) $+6.8$ V (3) -13.6 V (4) 13.6 V35.Maximum number of electrons in a subshell with $1 = 3$ and $n = 4$ (1) 10 (2) 12 (3) 14 (4) 16	30.	When a electron in H- atom jumps from $n = 4$ to $n = 1$, ultra violet light is emitted, if the transition corresponds to $n = 4$ to $n = 2$, which of the following colours will be emitted :-								
 31. The wavelength of first line of Lyman series for hydrogen is 1216 Å^o. The wavelength for the first line of this series for a 10 time ionised sodium atom (z = 11) will be :- (1) 1000 Å (2) 100 Å (3) 10 Å (4) 1 Å Ans. (3) 32. A certain electronic transition from an excited state to the ground state of the H atom in one or more steps gives risk to four lines in the ultra violet region of the spectrum, how many lines does this transition produce in the infrared region of the spectrum is a constrained of the spectrum is a specific transition of the spectrum is the ultra violet region of the spectrum, how many lines does this transition produce in the infrared region of the spectrum is 1 × 10⁻⁵ kg·m/s. The uncertainty in its position will be (h=6.62 × 10⁻³⁴ kg·m³/s) (1) 5.27 × 10⁻³⁰ m (2) 1.05 × 10⁻²⁶ m (3) 1.05 × 10⁻²⁸ m (4) 5.25 × 10⁻²⁸ m (4) 5.25 × 10⁻²⁸ m (1) 34. In hydrogen atom, energy of first excited state is -3.4 eV. Then find out KE of same orbit of hydrogen atom (1) +3.4 V (2) + 6.8 V (3) -13.6 V (4) 13.6 V Ans. (1) 35. Maximum number of electrons in a subshell with 1 = 3 and n = 4 (1) 10 (2) 12 (3) 14 (4) 16 	Ans		(2) Green	(3) Infra red	(4) No colour					
for a 10 time ionised sodium atom (z = 11) will be :- (1) 1000 Å (2) 100 Å (3) 10 Å (4) 1 Å Ans. (3) 32. A certain electronic transition from an excited state to the ground state of the H atom in one or more steps gives risk to four lines in the ultra violet region of the spectrum, how many lines does this transition produce in the infrared region of the spectrum :- (1) 1 (2) 2 (3) 3 (4) 4 Ans. (3) 33. The uncertainty in momentum of an electron is 1×10^{-5} kg-m/s. The uncertainty in its position will be (h=6.62 × 10 ⁻³⁴ kg-m ² /s) (1) 5.27 × 10 ⁻³⁰ m (2) 1.05 × 10 ⁻²⁶ m (3) 1.05 × 10 ⁻²⁸ m (4) 5.25 × 10 ⁻²⁸ m Ans. (1) 34. In hydrogen atom, energy of first excited state is -3.4 eV. Then find out KE of same orbit of hydrogen atom (1) $+3.4$ V (2) $+6.8$ V (3) -13.6 V (4) 13.6 V Ans. (1) 35. Maximum number of electrons in a subshell with $1 = 3$ and $n = 4$ (1) 10 (2) 12 (3) 14 (4) 16	AII 5 .	(2)								
Ans.(3)32.A certain electronic transition from an excited state to the ground state of the H atom in one or more steps gives risk to four lines in the ultra violet region of the spectrum, how many lines does this transition produce in the infrared region of the spectrum :-(1) 1(2) 2(3) 3(4) 4Ans.(3)33.The uncertainty in momentum of an electron is 1×10^{-5} kg-m/s. The uncertainty in its position will be $(h=6.62 \times 10^{-34}$ kg-m ² /s) (1) 5.27×10^{-30} m(2) 1.05×10^{-26} m(3) 1.05×10^{-28} m(4) 5.25×10^{-28} mAns.(1)10(2) $+ 6.8$ V(3) -13.6 V(4) 13.6 V35.Maximum number of electrons in a subshell with $1=3$ and $n=4$ (4) 16	31.	for a 10 time ionised sodium atom $(z = 11)$ will be :-								
32. A certain electronic transition from an excited state to the ground state of the H atom in one or more steps gives risk to four lines in the ultra violet region of the spectrum, how many lines does this transition produce in the infrared region of the spectrum :- (1)1 (2)2 (3)3 (4)4 Ans. (3) 33. The uncertainty in momentum of an electron is 1×10^{-5} kg-m/s. The uncertainty in its position will be $(h=6.62 \times 10^{-34}$kg-m²/s) (1) 5.27 × 10^{-30} m (2) 1.05 × 10^{-26} m (3) 1.05 × 10^{-28} m (4) 5.25 × 10^{-28} m Ans. (1) 34. In hydrogen atom, energy of first excited state is -3.4 eV. Then find out KE of same orbit of hydrogen atom (1) $+34$ V (2) $+6.8$ V (3) -13.6 V (4) 13.6 V Ans. (1) 35. Maximum number of electrons in a subshell with $1=3$ and $n=4$ (1) 10 (2) 12 (3) 14 (4) 16			(2)100 A	(3) 10 A	(4) I A					
to four lines in the ultra violet region of the spectrum, how many lines does this transition produce in the infrared region of the spectrum :- (1) 1 (2) 2 (3) 3 (4) 4 Ans. (3) 33. The uncertainty in momentum of an electron is 1×10^{-5} kg-m/s. The uncertainty in its position will be $(h=6.62 \times 10^{-34}$ kg-m ² /s) (1) 5.27 × 10 ⁻³⁰ m (2) 1.05 × 10 ⁻²⁶ m (3) 1.05 × 10 ⁻²⁸ m (4) 5.25 × 10 ⁻²⁸ m Ans. (1) 34. In hydrogen atom, energy of first excited state is -3.4 eV. Then find out KE of same orbit of hydrogen atom (1) $+3.4$ V (2) $+6.8$ V (3) -13.6 V (4) 13.6 V Ans. (1) 35. Maximum number of electrons in a subshell with $1=3$ and $n=4$ (1) 10 (2) 12 (3) 14 (4) 16	Ans.	(3)								
Ans. (3) 33. The uncertainty in momentum of an electron is 1×10^{-5} kg-m/s. The uncertainty in its position will be $(h=6.62 \times 10^{-34}$ kg-m ² /s) (1) 5.27 × 10^{-30} m (2) 1.05 × 10^{-26} m (3) 1.05 × 10^{-28} m (4) 5.25 × 10^{-28} m Ans. (1) 34. In hydrogen atom, energy of first excited state is -3.4 eV. Then find out KE of same orbit of hydrogen atom (1) $+3.4$ V (2) $+ 6.8$ V (3) -13.6 V (4) 13.6 V Ans. (1) 35. Maximum number of electrons in a subshell with $1 = 3$ and $n = 4$ (1) 10 (2) 12 (3) 14 (4) 16	32.	to four lines in the ultra violet region of the spectrum, how many lines does this transition produce in								
33.The uncertainty in momentum of an electron is 1×10^{-5} kg-m/s. The uncertainty in its position will be $(h=6.62 \times 10^{-34}$ kg-m ² /s) $(1) 5.27 \times 10^{-30}$ (2) 1.05×10^{-26} m (3) 1.05×10^{-28} m (4) 5.25×10^{-28} mAns.(1)34.In hydrogen atom, energy of first excited state is -3.4 eV. Then find out KE of same orbit of hydrogen atom $(1) + 3.4$ V (2) $+ 6.8$ V (3) -13.6 V (4) 13.6 VAns.(1)35.Maximum number of electrons in a subshell with $1 = 3$ and $n = 4$ (1) 10 (2) 12 (3) 14 (4) 16		(1)1	(2)2	(3)3	(4)4					
(h=6.62 × 10 ⁻³⁴ kg-m ² /s) (1) 5.27 × 10 ⁻³⁰ m (2) 1.05×10^{-26} m (3) 1.05×10^{-28} m (4) 5.25×10^{-28} m Ans. (1) 34. In hydrogen atom, energy of first excited state is -3.4 eV. Then find out KE of same orbit of hydrogen atom (1) $+3.4$ V (2) $+6.8$ V (3) -13.6 V (4) 13.6 V Ans. (1) 35. Maximum number of electrons in a subshell with $1 = 3$ and $n = 4$ (1) 10 (2) 12 (3) 14 (4) 16	Ans.	(3)								
Ans.(1)34.In hydrogen atom, energy of first excited state is -3.4 eV . Then find out KE of same orbit of hydrogen atom (1) $+3.4 \text{ V}$ (2) $+6.8 \text{ V}$ (3) -13.6 V (4) 13.6 V Ans.(1)35.Maximum number of electrons in a subshell with $1 = 3$ and $n = 4$ (1) 10 (2) 12 (3) 14 (4) 16	33.			\times 10 ⁻⁵ kg-m/s. The uncertain	nty in its position will be					
34.In hydrogen atom, energy of first excited state is -3.4 eV . Then find out KE of same orbit of hydrogen atom (1) $+3.4 \text{ V}$ (2) $+6.8 \text{ V}$ (3) -13.6 V (4) 13.6 V Ans.(1)35.Maximum number of electrons in a subshell with $1 = 3$ and $n = 4$ (1) 10 (2) 12 (3) 14 (4) 16		$(1)5.27 \times 10^{-30} \mathrm{m}$	(2) 1.05×10^{-26} m	(3) 1.05×10^{-28} m	(4) 5.25×10^{-28} m					
(1) $+3.4$ V (2) $+6.8$ V (3) -13.6 V (4) 13.6 V Ans. (1) 35. Maximum number of electrons in a subshell with $1 = 3$ and $n = 4$ (1) 10 (2) 12 (3) 14 (4) 16	Ans.	(1)								
Ans. (1) (1) 35. Maximum number of electrons in a subshell with $1 = 3$ and $n = 4$ (1) 10 (2) 12 (3) 14 (4) 16	34.									
(1) 10 (2) 12 (3) 14 (4) 16	Ans.		(2)+6.8 V	(3)–13.6 V	(4) 13.6 V					
	35.	Maximum number of	electrons in a subshell with	1 = 3 and $n = 4$						
		(1) 10	(2) 12	(3) 14	(4) 16					
	Ans.	(3)	~ /	~ /						

	-								
36.	For which of the following sets of four quantum numbers, an electron will have the highest energy?								
		n	1	m	S				
	(1)	3	2	1	+1/2				
	(2)	4	2 1						
	(3) (4)	4 5	0	0 0	-1/2 -1/2				
Ans.	(4) (2)	5	0	0	-1/2				
	(-)								
37.	Isoelectronic species are								
	(1)CC), CN⁻, N	$10^+, C_2^{2-}$	(2) CC	C^{-}, CN, NO, C_{2}^{-}	$(3) \mathrm{CO}^+, \mathrm{CN}^+, \mathrm{NO}^-, \mathrm{C}_2$	(4) CO, CN, NO, C_2		
Ans.	(1)								
38.	Two particles A and B are in motion. If the wavelength associated with particle A is 5×10^{-8} m; calculate the wavelength associated with particle B if its momentum is half of A.								
		< 10 ⁻⁸ m	sociated v	(2) 10 ⁻		(3) 10^{-7} cm	$(4) 5 \times 10^{-8} \mathrm{cm}$		
Ans.	(1) 0	10 111		(_) 10	•				
39.	Total number of spectral lines in UV region, during transition from 5th excited state to 1st excited state								
	(1)10			(2)3		(3)4	(4) Zero		
Ans.	(4)								
40.	-	rincipal c	juantum n			ber of orbitals having $l = 3$ is			
	(1)7			(2)14		(3)9	(4) 18		
Ans.	(4)								
41.	The first emission line in the atomic spectrum of hydrogen in the Balmer series appears at								
71.									
	$(1)\frac{51}{3}$	$\frac{R}{5}$ cm ⁻¹		(2) $\frac{3F}{4}$	cm^{-1}	(3) $\frac{7R}{144}$ cm ⁻¹	(4) $\frac{9R}{400}$ cm ⁻¹		
Ans.	(1)	,		г		177	100		
AU3.	(1)		~						
42.	The four quantum numbers of valence electron of potassium are								
		1			1	1	1		
	(1)4,	$0, 1, \frac{1}{2}$		(2)4,	$1, 0, \frac{1}{2}$	$(3)4, 0, 0, \frac{1}{2}$	$(4)4,1,1,\frac{1}{2}$		
Ans.	(3)								
	(-)								
43.	In a hydrogen atom, if the energy of electron in the ground state is $-x eV$, then that in the 2 nd excited state of He ⁺ is								
				2	4		9		
	(1)-x	eV		$(2) - \frac{2}{2}$	-x eV	(3)+2x eV	(4) $-\frac{9}{4}x \text{ eV}$		

	NOSINDIA			J.H. SIR				
44.	The wavelength of radiation emitted, when in He ⁺ electron falls from infinity to stationary state would be $(R = 1.097 \times 10^7 \text{m}^{-1})$							
	$(1) 2.2 \times 10^{-8} \mathrm{m}$	$(2) 2.2 \times 10^{-9} \mathrm{m}$	(3) 120 m	(4) $22 \times 10^7 \mathrm{m}$				
Ans.	(1)							
45.	In Bohr series of lines of hydrogen spectrum, the third line from the red end corresponds to which one of the following inter-orbit jumps of the electron for Bohr orbits in an atom of hydrogen ?							
	$(1) \ 3 \to 1$	$(2) 5 \rightarrow 2$	$(3) 2 \rightarrow 5$	$(4) \ 3 \rightarrow 2$				
Ans.	(2)							
46.	The correct order of e	nergy difference between a	ndjacent energy levels in H a	atom				
	(1) $E_2 - E_1 > E_3 - E_2 >$	$E_4 - E_3$	$(2) E_2 - E_1 > E_4 - E_3 > 2$	$E_3 - E_2$				
	(3) $E_4 - E_3 > E_3 - E_2 >$	$E_{2} - E_{1}$	$(4) E_3 - E_2 > E_4 - E_3 > 2$	$E_2 - E_1$				
Ans.	(1)							
47.		Which combinations of quantum numbers n, l, m and s for the electron in an atom does not provide a permissible solutions of the wave equation?						
	(1) 3,2,-2, $\frac{1}{2}$	$(2)3,3,1,-\frac{1}{2}$	(3) 3,2,1, $\frac{1}{2}$	(4) 3,1,1, $-\frac{1}{2}$				
Ans.	(2)							
48.	The orbital angular momentum of electron in 4s orbital is							
	$(1) \frac{1}{2} \cdot \frac{h}{2\pi}$	(2) zero	$(3) \frac{h}{2\pi}$	(4) $(2.5)\frac{h}{2\pi}$				
Ans.	(2)							
49.	Radial nodes present	in 3s and 3p-orbitals are re	spectively					
	(1)0,2	(2) 2, 1	(3) 1, 1	(4) 2, 2				
Ans.	(2)							
50.	Ouantum numbers for	r some electrons are given	below :					
	A: n = 4, l = 1	B: n = 4, 1 = 0	C: n = 3, 1 = 2	D: n = 3, 1 = 1				
		g order of energy of electi	rons					
	(1) A < B < C < D	(2) $D < C < B < A$	(3) $D < B < C < A$	(4) C < B < A < D				
Ans.	(3)							
51.	For which of the following options $m = 0$ for all orbitals ?							
	(1)2s, $2p_x$, $3d_{xy}$	(2) $3s, 2p_z, 3d_{z^2}$	(3) $2s_{z}, 2p_{z}, 3d_{x^{2}-y^{2}}$	(4) 3s, $3p_x$, $3d_{yz}$				
Ans.	(2)							

52. Which is the correct graphical representation based on photoeletcric effect ?

ASSERTION & REASON

These questions consist of two statements each, printed as *Assertion* and *Reason*. While answering these Questions you are required to choose any one of the following four responses.

- A. If both Assertion & Reason are True & the Reason is a correct explanation of the Assertion.
- B. If both Assertion & Reason are True but Reason is not a correct explanation of the Assertion.
- C. If Assertion is True but the Reason is False.
- D. If both Assertion & Reason are False.
- 1. *Assertion*: In Rutherford's gold foil experiment, very few α particles are deflected back. *Reason*: Nucleus present inside the atom is heavy.

Ans. (B)

2. Assertion : Limiting line in the Balmer series has a wavelength of 364.7 nm. Reason : Limiting line is obtained for a jump of electron from $n = \infty$ to n = 2 for Balmer series.

Ans. (A)

3. Assertion : A spectral line will be seen for a $2p_x - 2p_y$ transition. Reason : Only Balmer lines are observed in the visible region.

Ans. (D)

4. *Assertion :* Number of radial and angular node for 3p-orbital are 1,1 respectively. *Reason :* No. of radial and angular node depends only on principal quantum no.

Ans. (C)

- *Assertion*: For hydrogen 2s & 2p have same energy.
 Reason: For an atom of same principal quantum number. s, p, d & f have same energy.
 Ans. (C)
- Assertion :- Nodal plane of p_x atomic orbital is yz plane.
 Reason :- In p_x atomic orbital, electron density is zero in the yz plane.

Ans. (A)

Assertion :- No two electrons in an atom can have the same values of four quantum numbers.
 Reason :- No two electrons in an atom can be simultaneously in the same shell, same subshell, same orbitals and have same spin.

Ans. (A)

Assertion :- p-orbital has dumb-bell shape.
 Reason :- Electrons present in p-orbital can have one of three values for 'm', i.e. 0, +1, -1

Ans. (B)

	J.H. SIR
9.	Assertion :- The ground state configuration of Cr is 3d ⁵ . 4s ¹ .
	Reason :- A set of exactly half filled orbitals containing parallel spin arrangement provide extra stability.
Ans.	(A)
10.	Assertion :- Mass numbers of most of the elements are fractional.
	Reason :- Mass numbers are obtained by comparing with the mass number of carbon taken as 12.
Ans.	(D)
11.	Assertion :- The electronic configuration of nitrogen atom is represented as :
	1 1 1 1
	not as
	Reason :- The configuration of ground state of an atom is the one which has the greatest multiplicity.
Ans.	(A)
12.	Assertion :- An orbital cannot have more than two electrons.
	Reason :- The two electrons with opposite spin in an orbital create opposite magnetic field.
Ans.	(A)
13.	Assertion :- The configuration of B atom cannot be $1s^2 2s^3$.
Ans.	Reason :- Hund's rule demands that the configuration should display maximum multiplicity. (B)
14.	Assertion :- In hydrogen energy of 4s is more than 3d.
Ans.	Reason :- An orbital with lower value of $(n+\ell)$ has smaller energy than the orbital with higher value of $(n+\ell)$ (B)
AIIS.	
15.	Assertion :- 2p orbitals do not have spherical nodes.
A	Reason : - The number of spherical nodes in p-orbitals is given by $(n-2)$.
Ans.	(A)
16.	Assertion :- There are two spherical nodes in 3s-orbital.
	Reason : – There is no angular node in 3s-orbital.
Ans.	(B)
17.	Assertion :- In an atom, the velocity of electron in the higher orbits keeps on decreasing.
17.	Reason : – Velocity of electron is inversely proportional to radius of the orbit.
Ans.	(C)
18.	Assertion :- Bohr model fails in case of multielectron species.
	Reason :- It does not mention electron-electron intercation.
Ans.	(D)
19.	Assertion :- Total energy of electron in hydrogen atom is negative.
	Reason :- It is in bound state.
Ans.	(A)