PROBLEM SOLVING TECHNIQUES OF PHYSICAL CHEMISTRY FOR NEET

BY JITENDRA HIRWANI

CHEMICAL EQUILIBRIUM

Plot No. 38, Near Union Bank of India, Rajeev Gandhi Nagar, Kota, Rajasthan – 324005 Mob. : 9214233303

....

ETOOSINDIA

INDIA'S NO. 1 ONLINE COACHING

Intro	duction				
1.	Which of the following r	eaction goes in forward d	irection :-		
	$(1) \operatorname{Fe}_2 \operatorname{O}_3 + 6\operatorname{HCl} \to 2\operatorname{FeC}$	$H_{3} + 3H_{2}O$	(2) $NH_3 + H_2O + NaCl$	\implies NH ₄ Cl + NaOH	
	$(3) \operatorname{SnCl}_4 + \operatorname{Hg}_2 \operatorname{Cl}_2 \rightleftharpoons$	SnCl ₂ +2HgCl ₂	$(4) 2Cu + 2I_2 + 4K^+ =$	$\Rightarrow 2Cu^{+2} + 4KI$	
Ans.	(1)				
2.	Which of the following is a characteristic of a reversible reaction :				
	(1) Number of moles of	reactants and products a	re equal.		
	(2) It can be influenced	by a catalyst			
	(3) It can never proceed	to completion			
	(4) None of the above				
Ans.	(3)				
3.	All reactions which have	chemical disintegration			
	(1) Is reversible		(2) Is reversible and en	dothermic	
	(3) is exothermic		(4) Is reversible or irreve	ersible and endothermic or exothermic	
Ans. (4)					
4. Select the endothermic reaction :-					
	$(1) 2H_2 + O_2 \rightarrow 2H_2O$		$(2) N_2 + O_2 \rightarrow 2NO$		
	$(3) 2NaOH + H_2SO_4 \rightarrow Na$	$a_2 SO_4 + 2H_2 O$	$(4) 3O_2 + C_2H_5OH \rightarrow 2C$	$CO_2 + 3H_2O$	
Ans.	(2)				
Facto	ors Affecting Rate of F	Reaction			
5.	In the reaction $A + 2B \rightarrow$ concentration then the ra	2C + D. If the concentration ate becomes	of A is increased four times a	and B is decreased to half of its initial	
	(1) Twice	(2) Half	(3) Unchanged	(4) One fourth of the rate	
Ans.	(3)				
6.	$2A_{(g)} + B_{(g)} \iff Produ$	ct			
	If pressure is increased t previous velocity:-	hree times of the initial p	ressure, the velocity of forv	vard reaction will be of the	
	(1) 9 times	(2) 27 times	(3) $\frac{1}{9}$ times	(4) $\frac{1}{27}$ times	
Ans.	(2)				
Fauil	ibrium & Chemical Pi	rocess			
Equi					
7.	$x \Longrightarrow y$ reaction is said	to be in equilibrium, when	1:-		
	(1) Only 10% conversion	on x to y is just			
	(2) Complete conversio	n of x to y has taken plac	e		
	(3) Conversion of x to y	is only 50% complete			
	(4) The rate of change of x to y is just equal to the rate of change of y to x in the system				

Basic Exercise

(4) Ans.

8.	In the chemical reacti	In the chemical reaction $N_2 + 3H_2 \implies 2NH_3$ at equilibrium, state whether :-					
	(1) Equal volumes of $N_2 \& H_2$ are reacting						
	(2) Equal masses of	(2) Equal masses of N, & H, are reacting					
	(3) The reaction has	stopped					
	(4) The same amoun	t of ammonia is formed as is d	ecomposed into N ₂ and H ₂				
Ans.	(4)						
9.	Active mass of 5 g Ca	0:-					
	(1) 56	(2)1	(3)3.5	(4)2			
Ans.	(2)						
10.	Ratio of active masses	s of 22g CO_2 , 3g H_2 and 7g N_2 i	n a gaseous mixture :-				
	(1)22:3:7	(2) 0.5: 3 : 7	(3) 1 : 3 : 1	(4) 1 : 3 : 0.5			
Ans.	(4)						
11.	Which of the following	ng example shows effect of car	talyst on reversible reaction	1			
	(1) It gives new reaction	on path with low activation en	nergy.				
	(2) It shifts equilibriu	n right side.					
	(3) It decrease kinetic energy of activated molecules.						
	(4) It decrease rate of	(4) It decrease rate of backward reaction.					
Ans.	(1)						
12.	Select the correct statement from the following :						
	(1) Equilibrium constant changes with addition of catalyst						
	(2) Catalyst increases the rate of forward reaction.						
	(3) The ratio of mixture at equilibrium does not changed by catalyst						
	(4) Catalyst are active	e only in solution.					
Ans.	(3)						
Law	of Mass Action						
13.	The equilibrium conc	entration of [B] _e for the revers	ible reaction A \implies B ca	n be evaluated by the expression:-			
	$(1) \mathbf{K}_{\mathbf{C}} [\mathbf{A}]_{\mathbf{e}}^{-1}$	(2) $\frac{k_{f}}{k_{b}} [A]_{b}^{1}$	(3) $k_{f}k_{b}^{-1}[A]_{e}$	$(4) k_{f}^{} k_{b}^{} [A]^{-1}$			
Ans.	(3)						
14.	At 1000 K, the value	of K _p for the reaction :					
	$A(g) + 2B(g) \implies 3$	$A(g) + 2B(g) \longrightarrow 3C(g) + D(g)$					
	is 0.05 atm The value	of K in terms of R would be					
	(1) 20000 R	(2) 0.02 R	(3) 5×10^{-5} R	(4) $5 \times 10^{-5} \times R^{-1}$			
Ans	(1)20000 IX (4)	$(2) 0.02 \mathrm{R}$	(5)5 × 10 K	(4) 5 × 10 × 10			
15.	For the reaction						
	CuSO 5U O	$C_{\rm H}SO = 2 \Pi O = 2 \Pi O$					
	Which one is correct	$CuoO_4 \cdot 3\Pi_2O_{(s)} + 2\Pi_2O_{(g)}$					
	which one is correct						

(1) $K_p = p^2_{(H_2O)}$ (2) $K_c = [H_2O]^2$ (3) $K_p = K_c(RT)^2$ (4) All

Ans. (4)

16.	$\log \frac{K_p}{K_c} + \log RT = 0$ is true relationship for the following reaction:-				
	(1) $PCl_5 \implies PCl_3 + Cl_2$		(2) $2SO_2 + O_2 \implies 2SO_3$		
Ans.	$(3) N_2 + 3H_2 \implies 2NH_3$ (2)		(4) (2) and (3) both		
17.	For the reaction $C(s) + CO$ equilibrium. The K _p for th	$p_2(g) \implies 2CO(g)$ the parties e reaction is	ial pressure of CO and CO ₂ a	are 2.0 and 4.0 atm. respectively at	
	(1)0.5	(2)4.0	(3)8.0	(4) 1	
Ans.	(4)	К			
18.	For which reaction at 298 l	K, the value of $\frac{P}{K_c}$ is maxim	num and minimum respectiv	vely:-	
	(a) $N_2O_4 \Longrightarrow 2NO_2$	(b) $2SO_2 + O_2 \implies 2SO_3$	(c) $X + Y \implies 4Z$	$(d)A + 3B \Longrightarrow 7C$	
Ans	(1) d, c	(2) d, b	(3) c, b	(4) d, a	
AII5.	(2) In this resistion $A a^+ + 2NU^2$			$\Delta \alpha$ (NIII) + and NIII in 10-1 10-1	
19.	and 10^3 . The value of K _c at	$H_3 = Ag(NH_3)_2^{\circ}$ at 298K tor this equilibrium :	-	$, Ag(NH_3)_2^{-1}$ and NH_3 is 10 ⁻¹ , 10 ⁻¹ ,	
	(1) 10-6	$(2) 10^{6}$	$(3) 2 \times 10^{-3}$	$(4) 2 \times 10^{6}$	
Ans. 20	(1) Consider the two gaseous	equilibrium involving SO	and the corresponding equi	librium constants at 200 K	
20.		equinorium involving SO ₂	and the corresponding equi	normani constants at 275 K	
	$SO_2(g) + \frac{1}{2} O_2(g) \Longrightarrow$	$SO_3(g); K_1$	$4\mathrm{SO}_3(\mathrm{g}) \Longrightarrow 4\mathrm{SO}_2(\mathrm{g})$	$+2O_{2}(g);K_{2}$	
	The value of the equilibriu	um constant are related by :-	-		
	1		$(1)^{\frac{1}{4}}$	1	
	(1) $K_2 = \frac{1}{(K_1)^4}$	(2) $K_2 = K_1^4$	$(3) \mathrm{K}_{2} = \left(\frac{1}{\mathrm{K}_{1}}\right)^{2}$	(4) $K_2 = \frac{1}{K_1}$	
Ans.	(1)				
21.	For the reactions :- $A \rightleftharpoons$	\Rightarrow B; K _C =2,			
	$B \rightleftharpoons C; K_C = 4, C \rightleftharpoons$	\implies D;K _c =6			
	$K_{\rm C}$ for the reaction A ===	≐ D:-			
	(1) 12	(2) 4/3	(3)24	(4) 48	
Ans.	(4)				
22.	If A \Longrightarrow B (K _c = 3), B \rightleftharpoons	\implies C (K _c = 5),			
	$C \Longrightarrow D(K_c = 2)$				
	The value of equilibrium c will be:-	constant for the above reaction	on are given, the value of eq	uilibrium constant for $D \Longrightarrow A$	
	(1) 15	(2)0.3	(3) 30	(4) 0.03	

Ans. (4)

23. Effect of increasing temperature on equilibrium constant is given by $\log K_2 - \log K_1 = \frac{-\Delta H}{2.303 R} \left[\frac{1}{T_2} - \frac{1}{T_1}\right]$. Then

for an endothermic reaction the false statement is:-

(1)
$$\left\lfloor \frac{1}{T_2} - \frac{1}{T_1} \right\rfloor$$
 = positive
(2) log K₂ > log K₁
(3) ΔH = positive
(4) K₂ > K₁

Ans. (1)

24. Equilibrium constant of some reactions are given as under :

(a) $x \Longrightarrow y$ $K = 10^{-1}$ (b) $y \Longrightarrow z$ $K = 2 \times 10^{-2}$

(c)
$$P \rightleftharpoons Q$$
 $K = 3 \times 10^{-4}$ (d) $R \rightleftharpoons S$ $K = 2 \times 10^{-3}$

Initial concentration of the reactants for each reaction was taken to be equal :

Review the above reaction and indicate the reactions in which the reactants and products respectively were of highest concentration :-

(1) d, c (2) c, a (3) a, d (4) b, c

Ans. (2)

25. Which Oxide of Nitrogen is most stable :-

(1)
$$2NO_{2(g)} \implies N_{2(g)} + 2O_{2(g)}$$

K = 6.7 × 10¹⁶ mol L⁻¹

(2) 2 NO_(g)
$$\implies$$
 N_{2 (g)} + O_{2 (g)}
K = 2.2 × 10³⁰

(3)
$$2 N_2O_{5(g)} \implies 2N_{2(g)} + 5O_{2(g)}$$

K = 1.2 × 10³⁴ mol⁵ L⁻⁵

(4)
$$2N_2O_{(g)} \implies 2N_{2(g)} + O_{2(g)}$$

K = 3.5 × 10³³ mol L⁻¹

Ans. (1)

26. The equilibrium constant for the reaction

 $Br_2 \implies 2Br$ at 500 K and 700 K are 1×10^{-10} and 1×10^{-5} respectively. The reaction is:-

Ans. (1)

- 27. The equilibrium constant in a reversible reaction at a given temperature:-
 - (1) Depends on initial concentration of the reactants.
 - (2) Depends on the concentration of the products at equilibrium.
 - (3) Does not depend on the initial concentrations.
 - (4) It is not characteristic of the reaction.

Ans. (3)

28 .	Which one of the following statements is correct about equilibrium constant:-				
	(1) Equilibrium constant of a reac	tion changes with	temperature.		
	(2) Equilibrium constant of a read	ction depends upor	the concentration of reacta	ants with which we start.	
	(3) Equilibrium constant of a reac	tion, $3Fe(s) + 4H_2$	$O_{(\alpha)} \longrightarrow Fe_3O_4(s) + 4H_{2(\alpha)}$	is the same whether, the reaction	
	is carried out in an open vesse	el or a closed vesse	el.	,	
	(4) Equilibrium constant of a read	tion becomes doub	ole if the reaction is multipli	ied by 2 throughout.	
Ans.	(1)				
29.	For a reaction N ₂ + 3H ₂ \implies 2NH ₃ , the value of K _c does not depends upon :-				
	(a) Initial concentration of the reac	tants	(b) Pressure		
	(c) Temperature		(d) Catalyst		
	(1) Only c (2) a, b,	c	(3) a, b, d	(4) a, b, c, d	
Ans.	(3)				
30.	For any reversible reaction if conce	entration of reacta	nts increases then effect on	equilibrium constant :-	
	(1) Depends on amount of concent	ration	(2) Unchange		
	(3) Decrease		(4) Increase		
Ans.	(2)				
31.	In an experiment the equilibrium constant for the reaction $A + B \implies C + D$ is K when the initial concentration of A and B each is 0.1 mol L ⁻¹ Under the similar conditions in an another experiment if the initial concentration of A and B are taken 2 and 3 mol L ⁻¹ respectively then the value of equilibrium constant will be:-			K when the initial concentration of if the initial concentration of A and vill be:-	
	(1) $\frac{K}{2}$ (2) K		(3) K ²	$(4) \frac{1}{K}$	
Ans.	(2)				
32.	List X	List Y			
	(A) Active mass	(i) $\Delta n = 0$			
	(B) Dynamic nature	(ii) Molar concer	ntration		
	(C) A + heat \implies B	(iii) Vant hoff's e	quation		
	(D) $\log (K_{p_2}/K_{p_1})$	(iv) adaptation if	f temperature increases		
	$= \frac{\Delta H}{2.303 R} \left[\frac{1}{T_1} - \frac{1}{T_2} \right]$				
	(E) $2A(g)+B(g) \implies 3C(g)$ Correct match list X and Y	(v) Chemical equ	ilibrium		
	(1) A - (V), B - (II), C - (III), D - (I), E	- (IV)	(2) A - (V), B - (IV), C - (III), D - (II), E - (I)	
	(3) A - (II), B - (V), C - (IV), D - (III),	E - (I)	(4) None of these		
Ans.	(3)				
33.	In system A(s) \implies 2B(g) + 3C(g) at equilibrium if concentration of 'C' is doubled then concentration of B at equilibrium.				
	(1) Double its original concentration	n	(2) Halfits original concer	ntration	
	(3) $2\sqrt{2}$ its original concentration		(4) $\frac{1}{2\sqrt{2}}$ its original conc	centration	
Ans.	(4)				

ET(NO. 1 ONLINE COACHING			J.H. SIR			
34.	The equilibrium co	onstant for the reaction :					
	$N_2(g) + O_2(g) =$ at the same temper (1) 40 × 10 ⁻⁴	$a = 2NO(g)$ at 2000 K is 4×10^{-10} rature. What is the value of $a = (2) 4 \times 10^{-4}$) ⁴ . In presence of catalyst the equilibrium constant in pres (3) 4×10^4	equilibrium is established ten times faster sence of catalyst :-			
Ans	$(1)40 \times 10$	(2)4 ^ 10	(3)4 ~ 10	(4) None			
35.	The equilibrium co one fourth of its ori	nstant of the reaction H ₂ (g)+ ginal volume, the value of th	$I_2(g) \implies 2HI(g) \text{ is } 64. \text{ If}$ e equilibrium constant will b	The volume of the container is reduced to be			
	(1)16	(2) 32	(3) 64	(4) 128			
Ans.	(3)						
36.	If some Helium gas equilibrium constar	is introduced into the equilibration of reaction :	rium $PCl_5 \implies PCl_3 + Cl_2$	at constant pressure and temperature then			
	(1) Increase	(2) Decrease	(3) Unchange	(4) Nothing can be said			
Ans.	(3)						
Degr	ee of Dissociation	and Application of La	aw of Mass Action				
37.	For the reaction : P would be the degree	For the reaction : $P \implies Q + R$. Initially 2 mol of P was taken. Up to equilibrium 0.5 mol of P was dissociated. What would be the degree of dissociation :					
	(1)0.5	(2)1	(3) 0.25	(4)4.2			
Ans.	(3)						
38.	$PCl_{s}(g) \Longrightarrow PCl_{s}(g)$	$a(g) + Cl_{2}(g)$					
	In above reaction, at equilibrium condition mole fraction of PCl_5 is 0.4 and mole fraction of Cl_2 is 0.3. Then find out mole fraction of PCl_3						
	(1) 0.3	(2) 0.7	(3) 0.4	(4) 0.6			
Ans.	(1)						
39.	4 mol of PCl_5 are h calculate total num	eated at constant temperatu ber of moles at equilibrium	re in closed container. If de	egree of dissociation for PCl ₅ is 0.5 then			
	(1)4.5	(2)6	(3)3	(4)4			
Ans.	(2)						
40.	The dissociation of the CO_2 is dissocia	CO_2 can be expressed as 2C ted completely. What is the	$CO_2 \implies 2CO + O_2$. If the 2 total number of moles at equ	mol of CO_2 is taken initially and 40% of illibrium:-			
	(1)2.4	(2) 2.0	(3) 1.2	(4) 5			
Ans.	(1)						
41.	In $A_3(g) \rightleftharpoons 3A$ total number of mo	(g) reaction, the initial conc les at equilibrium will be:-	entration of A_3 is "a" mol L ⁻	¹ If x is degree of dissociation of A_3 . The			
	$(1) a - \frac{ax}{3}$	(2) $\frac{a}{3} - x$	$(3)\left(\frac{a-ax}{2}\right)$	(4) None of these			
Ans.	(4)						
42.	If 8 g mol of PCl ₅ equilibrium then va	heated in a closed vessel of alue of Kp will be equal to:-	f 10 L capacity and 25% of	f its dissociates into PCl_3 and Cl_2 at the			
	(1) P/30	(2) P/15	(3) 2/3P	(4) 3/2P			
Ans.	(2)						

	DOSINDIA			J.H. SIR		
43.	In the reaction 2 1 L flask. At equilibr	$P(g) + Q(g) \implies 3R($ ium which is true:-	g) + S(g). If 2 mol eac	ch of P and Q taken initially in a		
Ans	(1)[P] < [Q]	(2)[P] = [Q]	(3)[Q] = [R]	(4) None of these		
44.	In the reaction PCl_5 If partial pressure of (1)0.3	$ PCl_3 + Cl_2 \text{ the partia}$ fPCl_3 and Cl_2 was increased (2) 1.2	l pressure of PCl ₃ , Cl ₂ and F d twice, what will be the par (3)2.4	PCl_5 are 0.3, 0.2 and 0.6 atm respectively. tial pressure of PCl_5 is in atm:- (4)0.15		
Ans.	(3)					
45.	In a 13 L vessel initi temperature then to	ally following reaction occu tal pressure is	$\operatorname{ur} \mathrm{C}(\mathrm{s}) + \mathrm{S}_{2}(\mathrm{g}) \rightleftharpoons \mathrm{CS}_{2}(\mathrm{g})$	g) by 12 g C, 64 g S ₂ , 76 g CS ₂ at 1027°C		
	(1)200R	(2) 158R	(3) 100R	(4)79R		
Ans.	(1)					
46.	'a' mol of PCl ₅ , unde 0.25 and the total pr	rgoes, thermal dissociation essure is 2.0 atm. The parti	as : $PCl_5 \implies PCl_3 + Cl_2$, t al pressure of Cl_2 at equilib	he mole fraction of PCl ₃ at equilibrium is rium is :-		
	(1)2.5	(2) 1.0	(3)0.5	(4) None		
Ans.	(3)					
47.	In a 0.25 L tube dissociation of 4 mol of NO is take place. If its degree of dissociation is 10%. The value of K_p for reaction 2 NO $\implies N_2 + O_2$ is :-					
	$(1) \frac{1}{\left(18\right)^2}$	(2) $\frac{1}{(8)^2}$	$(3)\frac{1}{16}$	$(4) \frac{1}{32}$		
Ans.	(1)					
48.	In a chemical equilibrium $A + B \longrightarrow C + D$ when one mole each of the two reactants are mixed, 0.4 mol each of the products are formed. The equilibrium constant is :-					
Ang	(1)1	(2) 0.36	(3)2.25	(4) $\frac{4}{9}$		
AIIS. 40	(4) K for the esterifica	tion reaction :				
ч <i>у</i> .	$CH_3COOH + C_2H_5OH \implies CH_3COOC_2H_5 + H_2O \text{ is } 4$. If 4 mol each of acid and alcohol are taken initially, what is the equilibrium concentration of the acid :-					
	$(1)\frac{2}{3}$	(2) $\frac{4}{3}$	$(3)\frac{3}{4}$	$(4)\frac{3}{2}$		
Ans.	(2)					
50.	Evaluate K _P for the concentration of HI	reaction : $H_2 + I_2 \implies 2H$ is 2 mol L ⁻¹ :-	HI. If 2 moles each of H_2 and	d I_2 are taken initially. The equilibrium		
	(1)2.5	(2)4	(3) 0.25	(4) 1.0		
Ans.	(2)					
51.	4 moles of A are mix B \rightleftharpoons C+D. The	equilibrium constant is :-	2 mol of C are formed at ec	uilibrium, according to the reaction, A+		
	(1)4	(2)1	(3) $\sqrt{2}$	$(4) \sqrt{4}$		
Ans.	(2)					

52.	Two moles of ammoni	a is introduced in a evacua	ated 500 mL vessel at high	temperature. The decomposition reaction		
	$2NH(g) \longrightarrow N(g) + 3H(g)$					
	$\frac{1}{2} \frac{1}{2} \frac{1}$					
	(1)042	(2)675	(3)17	(4) 1 5		
Ans	(1) 0.12 (2)	(2) 0.75	(5)1.7	(1)1.5		
53.	4.5 mol each of	hydrogen and iodine	heated in a sealed	ten litre vessel At equilibrium		
	3 mol of HI were foun	d. The equilibrium consta	ant for $H_{2(r)} + I_{2(r)} = 2$	Hais:-		
	(1)1	(2) 10	(3) 5	(4) 0.33		
Ans.	(1)	(_)				
54.	The reaction $A + B =$	\implies C + D is studied in a or	ne litre Vessel at 250°C. T	he initial concentration of A was 3n and of		
	B was n. After equilib	rium was attained then ec	quilibrium concentration	of C was found to be equal to equilibrium		
	concentration of B. W	hat is the concentration o	of D at equilibrium :-			
	n	(n)	$\begin{pmatrix} n \end{pmatrix}$			
	$(1)\frac{\pi}{2}$	(2) $\left(3n - \frac{n}{2} \right)$	$(3)\left(\frac{n+\frac{n}{2}}{2}\right)$	(4) n		
•	2 (1)	(-)	(-)			
Ans.	(1)					
55.	$X_2 + Y_2 \implies 2XY \text{ re}$	action was studied at a ce of \mathbf{V} was taken in each	rtain temperature. In the	beginning 1 mole of X_2 was taken in a one		
	(Given equilibrium co	$101 Y_2$ was taken in anothe experimentation of $[XY] = 0.6 t$	er 2 litre llask. what is the mol I ⁻¹)	equilibrium concentration of X_2 and Y_2 ?		
	$(1)\left(\frac{1}{-}-0.3\right),\left(\frac{2}{-}-0\right)$.3	$(2)\left(\frac{1}{-0.6}\right),\left(\frac{2}{-0.6}\right)$	-0.6		
	(1)(3) (3))	(2)(3)(3))		
	(3)(1-0.3), (2-0.3)		(4) (1-0.6), (2-0	.6)		
Ans.	(1)					
56.	1.50 mol each of hydro	gen and iodine were place	d in a sealed 10 L containe	r maintained at 717 K. At equilibrium 1.25		
	mol each of hydrogen	mol each of hydrogen and iodine were left behind. The equilibrium constant, K _c for the reaction				
	$H_2(g) + I_2(g) \Longrightarrow 2I$	HI (g) at 717 K is				
	(1)0.4	(2)0.16	(3) 25	(4) 50		
Ans.	(2)					
57.	AB dissociates as 2A	$B(g) \Longrightarrow 2A(g) + B_{2}(g)$	g)			
	When the initial pressure of AB is 500 mm, the total pressure becomes 625 mm when the equilibrium is attained					
	Calculate K_{p} for the re-	Calculate K_p for the reaction assuming volume remains constant.				
	(1) 500	(2) 125	(3) 750	(4) 375		
Ans.	(2)					
58.	If the pressure of N ₂ ar	nd H, mixture in a closed a	pparatus is 100 atm and 2	0% of the mixture reacts then the pressure		
	at the same temperatu	re would be -	11	1		
	(1) 100	(2)90	(3) 85	(4) 80		
Ans.	(2)					
59.	In a 20 litre vessel init	ially 1 - 1 mole CO, H ₂ O,	CO, is present, then for th	e equilibrium of		
	$CO + H_0 \longrightarrow CO_0$	+ H _a following is true:-	2			
	(1) H more than 1 me			ss then 1 mole		
	(1) Π_2 , more then 1 mC		$(2) CO, \Pi_2 O, \Pi_2 R$			
	(3) $CO_2 \approx H_2O$ both m	ore than I mole	(4) All of these			
Ans.	(2)					

ETC INDIA'S I	NO. 1 ONLINE COACHING			J.H. SIR
60.	If 340 g of mixture	$of N_2$ and H_2 in the correct ratio	gave a 20% yield of NH_3 .	The produced mass of NH ₃ would be:-
	(1) 16 g	(2) 17 g	(3) 20 g	(4) 68 g
Ans.	(4)			
Le-C	hatlier's Principle			
61.	When NaNO, is hea	ated in a closed vessel, O ₂ is lib	erated and NaNO ₂ is left be	ehind. At equilibrium –
	(1) Addition of Na	NO ₃ favours forward reaction		
	(2) Addition of Na	NO_2 favours reverse reaction		
	(3) Increasing pres	ssure favours reverse reaction.		
	(4) Decreasing ten	nperature favours forward react	ion.	
Ans.	(3)			
62.	The equilibrium 2S	$O_2(g) + O_2(g) \implies 2SO_3(g) sh$	ifts forward if :-	
	(1) A catalyst is us	sed		
	(1) An adsorbent i	s used to remove SO ₂ as soon :	as it is formed	
	(2) Fin depercent f(3) Small amounts	s of reactants are used.		
	(4) None			
Ans.	(2)			
63.	In manufacture of NO, the reaction of N_2 and O_2 to form NO is favourable if :-			
	(1) Pressure is incre	eased	(2) Pressure is decrea	sed
	(3) Temperature is i	ncreased	(4) Temperature is dec	creased
Ans.	(3)			
64.	In which of the fol decreased:-	lowing equilibrium reactions,	the equilibrium would sl	hift to right side, if total pressure is
	$(1) N_2 + 3H_2 \rightleftharpoons 2$	$2NH_3$ (2) $H_2 + I_2 \Longrightarrow 2HI$	$(3) N_2 O_4 \rightleftharpoons 2NO_2$	$(4) \operatorname{H}_2 + \operatorname{Cl}_2 \rightleftharpoons 2\operatorname{HCl}$
Ans.	(3)			
65.	The oxidation of SO_2 by O_2 to SO_3 is exothermic reaction. The yield of SO_2 will be minimum if :-			
	(1) Temperature is	increased and pressure is kept	t constant	
	(2) Temperature is	reduced and pressure is increase	sed	
	(3) Both temperatu	are and pressure are increased		
	(4) Both temperatu	are and pressure are decreased		
Ans.	(2)			
66.	For the manufacture	e of ammonia by the reaction N_2	$+ 3H_2 \implies 2NH_3 + 21.9$	K cal, the favourable conditions are :-
	(1) Low temperatu	ire, low pressure & catalyst		
	(2) Low temperatu	re, high pressure & catalyst		
	(3) High temperat	ure, low pressure & catalyst		
	(4) High temperate	ure, high pressure & catalyst		
Ans.	(2)			

INDIA'S NO. 1 ONLINE COACHING **67**. Does Le chatelier's principle predict a change of equilibrium concentration for the following reaction if the gas mixture is compressed $N_2O_{4(g)} \rightleftharpoons 2NO_{2(g)}$ (1) Yes, backward reaction is favoured (2) Yes, forward reaction is favoured (3) No change (4) No information Ans. (1) 68. $aA \implies bB + cC, \Delta H = -x \text{ kcal.}$ If high pressure and low temperature are the favourable condition for the formation of the product in above reaction, hence:-(1) a > b + c(2) a < b + c(3) a = b + c(4) None of them (1) Ans. 69. The reaction in which yield of production cannot be increased by the application of high pressure is :- $(2) N_{2}(g) + O_{2}(g) \Longrightarrow 2NO(g)$ (1) $PCl_3(g) + Cl_3(g) \Longrightarrow PCl_5(g)$ $(4) 2SO_3(g) + O_3(g) \Longrightarrow 2SO_3(g)$ $(3) N_2(g) + 3H_2(g) \implies 2NH_2(g)$ Ans. (2) 70. In a vessel containing SO₃, SO₂ and O₂ at equilibrium, some helium gas is introduced so that the total pressure increases while temperature and volume remain constant. According to Le-Chatelier principle, the dissociation of SO₃, (1) Increases (2) Decreases (3) Remains unaltered (4) None of these Ans. (3) **Physical Equilibrium** 71. For the equilibrium reaction, $H_2O(\ell) \implies H_2O_{(g)}$, What happens, if pressure is applied:-(1) More water evaporates (2) The boiling point of water is increased (3) No effect on boiling point (4) None of the above Ans. (2) 72. On cooling of following system at equilibrium $CO_{2(s)} \rightleftharpoons CO_{2(g)}$:-(1) There is no effect on the equilibrium state (2) More gas is formed (3) More gas is solidifies (4) None of above (3) Ans. Calculation of Degree of Dissociation by V.D. Method Vapour density of PCl₅ is 104.25 at T°C. Then degree of dissociation of PCl₅ is. (Mw = 208.5) 73. (1)20%(2)0%(3) 30% (4) 15% (2) Ans. 74. When heating PCl, then it decompose PCl, and Cl, in form of gas, The density of gas mixture is 70.2 and 57.9 at 200° C and 250°C. The degree of dissociation of PCl₅ at 200°C and 250°C is

ETOOSINDIA

J.H. SIR

The equation $\alpha = \frac{D-d}{(n-1)d}$ is correctly matched for 76.

Where D = Theoretical vapour density

d = Observed vapour density

(1)
$$A \xrightarrow{nB}_{2} + \frac{nC}{3}$$

(2) $A \xrightarrow{nB}_{3} + \left(\frac{2n}{3}\right)C$
(3) $A \xrightarrow{nC}_{2} B + \left(\frac{n}{4}\right)C$
(4) $A \xrightarrow{nC}_{2} B + C$

Ans. (2)

(4)
$$A \rightleftharpoons \left(\frac{n}{2}\right) B + C$$

Analytical Exercise

1.	For the reversible reaction	n		
	$N_2(g) + 3H_2(g) \implies 2NH_3(g)$ at 500°C, the value of K_p is 1.44×10^{-5} when partial pressure is measure atmospheres. The corresponding value of K_c , with concentration in mol L ⁻¹ is:-			n partial pressure is measured in
	(1) $1.44 \times 10^{-5} / (0.082 \times 50^{-5})$	00) ⁻²	(2) $1.44 \times 10^{-5} / (8.314 \times 77)^{-5}$	3)-2
	(3) $1.44 \times 10^{-5} / (0.082 \times 77)^{-5}$	$(73)^2$	(4) $1.44 \times 10^{-5} / (0.082 \times 77)^{-5}$	3)-2
Ans.	(4)			
2.	In which reaction equilibrium	rium moves in left hand side	e when pressure is increased	1:-
	$(1) H_2 + Cl_2 \Longrightarrow 2HCl$		(2) 2Mg (s) + $O_2(g) \rightleftharpoons$	2MgO(s)
	$(3) 2H_2O \Longrightarrow 2H_2 + O_2$		$(4) N_2 + 3H_2 \rightleftharpoons 2NH_3$	
Ans.	(3)			
3.	K_p \rightarrow Temperature \rightarrow What would you consider(1) Equilibrium constant i(2) more molecules form of(3) Energy is released(4) None	10 ⁻² 10 ⁻³ 400K 450K t by above information :- increases with increase in co on left hand side	oncentration	
Ans.	(3)			
4.	3.1 mol of FeCl ₃ and 3.2 m The equilibrium constant	ol of NH_4SCN are added to o K_c of the reacion	ne litre of water. At equilibrin	um 3.0 mol of FeSCN ²⁺ are formed.
	$Fe^{3+} + SCN^{-} \implies FeSC$	N ²⁺ will be :		
	(1) 6 66 $\times 10^{-3}$	(2)0.30	(3) 3 30	(4) 150
Ans.	(4)	(2)0.50	(5)5.50	(1)150
F	One walk of NO in a 11	flash daaruu aasa ta attain t	$(h \circ a m)$	$\rightarrow 2NO(a)$
5.	One mole of N_2O_4 in a TL	mask decomposes to attain	the equilibrium $N_2O_4(g) \leftarrow$	$= 2NO_2(g)$
	At the equilibrium the mo	ble fraction of $1/2$. Hence K_c	will be:	
	(1) 1/3	(2) 1/2	(3) 2/3	(4) 1
Ans.	(3)			
6.	At equilibrium 500mL ve would be the K_c :-	essel contains 1.5 M of ea	ch A, B, C, D. If 0.5M of	C and D expelled out than what
	(1)1	(2) $\frac{1}{9}$	$(3) \frac{4}{9}$	$(4) \frac{5}{9}$
Ans.	(1)			
7.	The equilibrium constant	K for the following reaction	n will be	
	$K_2CO_2(aq) + BaSO_4(s) \rightleftharpoons$	$BaCO_{2}(s) + K_{2}SO_{4}(aq)$		
	2 3 2 4 7 .			
	$(1) \frac{\left[\operatorname{CO}_3^{2-}\right]}{\left[\operatorname{SO}_4^{2-}\right]}$	$(2) \frac{\left[K_{2}CO_{3}\right]}{\left[K_{2}SO_{4}\right]}$	$(3) \frac{\left[\text{BaSO}_{4}\right]}{\left[\text{CO}_{3}^{2-}\right]}$	$(4) \frac{\left[\mathrm{SO}_{4}^{2^{-}}\right]}{\left[\mathrm{CO}_{3}^{2^{-}}\right]}$
Ans.	(4)			

8. At temperature T, a compound AB₂(g) dissociates according to the reaction,

$2AB_2(g) \rightleftharpoons 2AB(g) + B_2(g)$

with a degree of dissociation 'x' which is small as compared to unity. The expression for K_p in terms of 'x' and total pressure P is

(1)
$$\frac{Px^3}{2}$$
 (2) $\frac{Px^2}{3}$ (3) $\frac{Px^3}{3}$ (4) $\frac{Px^2}{2}$

Ans. (1)

9. Ammonium carbamate dissociates as

 $NH_2COONH_{4(s)} \rightleftharpoons 2NH_{3(g)} + CO_{2(g)}$

In a closed vessel containing ammonium carbamate in equilibrium, ammonia is added such that the partial pressure of NH_3 now equals to the original total pressure. The ratio of total pressure now to the original pressure is

(1)
$$\frac{27}{31}$$
 (2) $\frac{31}{27}$ (3) $\frac{4}{9}$ (4) $\frac{9}{4}$

Ans. (2)

10. When 1 mole of N_2 and 1 mole of H_2 is enclosed in 3L vessel and the reaction is allowed to attain equilibrium, it is found that at equilibrium there is 'x' mole of H_2 . The number of moles of NH_3 formed would be

$(1)\frac{2x}{3}$	$(2) \ \frac{2(1+x)}{3}$	$(3) \frac{2(1-x)}{3}$	(4) $\frac{(1-x)}{2}$
		2	_

Ans. (3)

11. 1 mole of 'A', 1.5 mole of 'B' and 2 mole of 'C' are taken in a vessel of volume one litre. At equilibrium concentration of C is 0.5 mole/L. Equilibrium constant for the reaction, $A_{(g)} + B_{(g)} \rightleftharpoons C_{(g)}$ is (1)0.66 (2)0.066 (3)66 (4)6.6

Ans. (2)

12. $N_2 + 3H_2 \rightleftharpoons 2NH_3$; $K_c = 1.2$ At the start of a reaction, there are 0.249 mol N_2 , 3.21×10^{-2} mol H_2 and 6.42×10^{-4} mol NH₃ in a 3.50 L reaction vessel at 375°C. Hence reaction will proceed in

(1) Forward direction (2) Backward direction (3) At equilibrium (4) Stops

Ans.

(1)

13. Sodium ammonium carbamate dissociated according to the given reaction NH₂COONH₄(s) \rightleftharpoons 2NH₃(g) + CO₂(g)

Total pressure of the gases in equilibrium is 5 atm. Hence K_p

Ans. (1)

14.1.1 mole of A is mixed with 1.2 mol of B and the mixture is kept in a 1 L flask till the equilibrium
 $A + 2B \rightleftharpoons 2C + D$ is reached. At equilibrium 0.1 mol of D is formed. The K_c of the reaction
(1) 0.002
(2) 0.004
(3) 0.001
(4) 0.003

Ans. (2)

15.	$C(s) + H_2O(g) \rightleftharpoons CO(g) + H_2(g); \Delta H < 0$				
	The above equilibrium will proceed in forward direction when				
	(1) It is subjected to high pressure				
	(2) It is subjected to high temperature				
	(3) Inert gas (Argon) id added at constant pressure				
	(4) Carbon (solid) is added				
Ans.	(3)				
16.	In the equilibrium $SO_2Cl_2(g) \rightleftharpoons SO_2(g) + Cl_2(g)$ at 200	0K and 10 atm pressure, $\% \text{Cl}_2 = \% \text{SO}_2 = 40$ (by volume) Then			
	(1) $K_c = 0.1 \text{ mol } lt^{-1}$	(2) $\frac{n(SO_2Cl_2)}{n(SO_2)} = \frac{1}{4}$ at equilibrium			
	$(3) n(SO_2Cl_2) = n(SO_2) = n(Cl_2)$	(4) $K_{p} = 8 atm$			
Ans.	(4)				
17.	Le-chatelier's principle is not applicable to				
	$(1) \operatorname{Fe}(s) + \operatorname{S}(s) \rightleftharpoons \operatorname{FeS}(s)$	$(2) H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$			
	$(3) N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$	(4) $N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$			
Ans.	(1)				
18.	For the reaction, $N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$				
	Equilibrium constant $K_c = 2$				
	Degree of association is				
	1				
	(1) $\frac{1}{1-\sqrt{2}}$ (2) $\frac{1}{1+\sqrt{2}}$	(3) $\frac{2}{1+\sqrt{2}}$ (4) $\frac{2}{1-\sqrt{2}}$			
Ans.	(2)				
19.	Which causes the change in the value of equilibrium	constant of any equilibria ?			
	(1) Adding of inert gas at constant pressure	(2) Increasing the pressure			
	(3) Adding of inert gas at constant volume	(4) Decreasing the temperature			
Ans.	(4)	()			
20.	The value of K for the reaction				
-01	$2SO(g) + O(g) \Rightarrow 2SO(g) \text{ is 5}$				
	What will be the partial pressure of Ω at equilibrium y	when equal moles of SO and SO are present at equilibrium?			
	(1)0.5 (2)0.3	$(3)02 \qquad (4)01$			
Anc	(1)0.5 (2)0.5	(5) 0.2 (4) 0.1			
Alls. 21	(5) The equilibrium constants for $\Lambda(\alpha) \rightarrow 2\Lambda(\alpha)$ at 400 K	and 600 K are 1×10^{-8} and 1×10^{-2} respectively. The reaction			
<i>4</i> 1,	is	and ooo is all if a to all if a to respectively. The reaction			
	(1) Exothermic	(2) Endothermic			
	(3) May be exothermic or endothermic	(4) No heat is evolved or absorbed			
Ans.	(2)				
22.	Two samples of CH ₃ COOH each of 10 g were taken litre respectively at 27°C. The degree of dissociation	separately in two vessels containing water of 6 litre and 12 of CH ₂ COOH will be			
	(1) More in 12 litre vessel	(2) More in 6 litre vessel			
	(3) Equal in both vessels	(4) Half in 6 litre vessel than in 12 litre vessel			

Ans. (1)

ETOOSINDIA INDIA'S NO. 1 ONLINE COACHING

23.	Following three gaseous	equilibrium reactions are	occuring at 27°C	
	A; $2CO + O_2 \rightleftharpoons 2CO_2$	$B; PCl_5 \rightleftharpoons PCl_3 + Cl_2$	C ; 2HI \rightleftharpoons H ₂ + I ₂	
	The correct order of $\frac{K_{P}}{K_{C}}$	for the following reaction	ons is	
	(1) $A < C < B$	(2) $A < B < C$	(3) $C < B < A$	(4) $B < C < A$
Ans.	(1)			
24.	Pure ammonia is placed in	n a vessel at a temperature v	where its dissociation consta	nt is appreciable. At equilibrium:-
	(1) K_p does not change signature	gnificantly with pressure		
	(2) Degree of dissociation does not change with pressure			
	(3) concentration of NH_3	does not change with pres	sure	
	(4) concentration of H_2 is less than that of N_2			
Ans.	(1)			
25.	For the reaction $PCl_5 \implies PCl_3 + Cl_2$, the degree of dissociation varies inversely as the square root of pressure of the system. Supposing at constant temperature If the volume is increased 16 times the initial volume, the degree of dissociation for this reaction will becomes			
	(1)4 times	(2) $\frac{1}{4}$ times	(3) 2 times	(4) $\frac{1}{2}$ times
Ans.	(1)			
26 .	A reaction in equilibrium	is represented by the follow	ving equation –	
	$2A_{(s)} + 3B_{(g)} \implies 3C_{(g)} +$	-D(g) + Q if the pressure o	n the system is reduced to h	alf of its original value:-
	(1) The amounts of C and	D decreases	(2) The amounts of C and	1 D increases
	(3) The amount of D decr	eases	(4) All the amounts rema	in constant
Ans.	(2)			
27.	Two systems $PCl_5(g) \implies PCl_3(g) + Cl_2(g)$ and $COCl_2(g) \implies CO(g) + Cl_2(g)$ are simultaneously in equilibrium in a vessel at constant volume. If some CO(g) is introduced in the vessel at constant volume, then at new equilibrium the concentration of:			
	(1) PCl_5 is increases		(2) PCl ₃ remains unchang	ed
	(3) PCl_5 is decreases		(4) Cl_2 is increases	
Ans.	(3)		-	
28.	The effect of adding Kryp	oton (Kr) gas on position of	fequilibrium, keeping the v	volume of the system constant is :-
	(1) If $\Delta n = 0$, backward re	action is favoured.	(2) If $\Delta n = +ve$, forward r	eaction is favoured
	(3) If $\Delta n = -ve$, forward re	eaction is favoured	(4) No effect whatever be	the value of Δn .
Ans.	(4)			

29.	Ma bele	Match list –I (equilibrium) with List –II (conditions for reaction) and select the correct answer using the codes given below the lists :-							
		List–I			List–II				
	(Equilibrium)				(Conditions)				
	P.	$A_2(g) + B_2(g) \implies 2AB(g)$ Endothermic			1. High temperature				
	Q.	$2AB_2(g)+B_2(g) \Longrightarrow 2AB_3(g)$ Exothermic			2. Low temperature				
	R.	$2AB_{a}(g) \Longrightarrow A_{a}(g) + 3B_{a}(g)$			3. High	pressure			
	Endothermic				4. Low pressure				
						5. Independent of pressure			
	CO	CODE:							
		Р	Q	R					
	(1)	1&3	2&3	2&4					
	(2)	2&3	1&4	1 & 3					
	(3)	1&5	2&3	1&4					
	(4)	2&4	1&5	1 & 3					
Ans.	(3)								
30 .	$aA + bB \rightleftharpoons cC + dD$								
	in above reaction low pressure and high temperature, conditions are shift equilibrium in back direction so correct set:-								
	$(1)(a+b) > (c+d), \Delta H > 0$					(2)(a+b) < (c+c)	d), $\Delta H > 0$		
	(3)	(a+b) < (c+c)	d), $\Delta H < 0$)		(4)(a+b) > (c+c)	d), $\Delta H < 0$		
Ans.	(4)	4)							
31.	For reaction $aA \implies \ell L + mM$. In condition of su represent that.				ion of suc	ddenly volume inc	rease, degre	ee of dissociation i	s decrease it
Ans.	(1) (4)	$a < (\ell + m)$		(2) $a = (\ell + m)$		$(3) a = (\ell - m)$	(•	4) $a > (\ell + m)$	
32.	For the reaction, $PCl_{g} \implies PCl_{g} + Cl_{g}$ the forward reaction at constant temperature is favoured by -								
	(a) Introducing an inert gas at constant volu				ime	me (b) Introducing chlorine gas at constant volume			e
	(c)	Introducing a	an inert g	as at constant pres	sure (d) Increasing volume of the container				
	(e) Introducing PCl ₅ at constant volume								
	(1)	a, b, c	C	(2) b, c, d		(3) c, d, e	(4) a, c, d, e	
Ans.	(3)								
33.	Following equilibrium is present in a closed container at the temperature of 25° C.								
	$SO_2Cl_2(g) \Longrightarrow SO_2(g) + Cl_2(g)$								
	When Cl ₂ is added to the equilibrium mixture, the following statements will be correct for the system.								
	(a) Concentrations of SO_2 , Cl_2 and SO_2Cl_2 change.								
	(b)	Cl_2 is formed	l in more a	amount.					
	(c)	Concentratio	on of SO ₂	decreases and that	at of SO ₂ C	Cl_2 increases.			
	(1)	a, c		(2) a, b		(3) b, c	(4) a, b, c	

Ans. (1)

ET(DOSINDIA NO. 1 ONLINE COACHING			J.H. SIR				
34.	When two reactants A and B are mixed to give products C and D, the reaction quotient, Q at the initial stage of the							
	reaction :							
	(1) is zero.	(2) decreases with time	(3) increases with time.	(4) is independent of time.				
Ans.	(1)							
35.	A reaction mixture con	A reaction mixture containing H_2 , N_2 and NH_3 has partial pressures 2 atm, 1 atm and 3 atm respectively at 725K. If the						
	value of K_p for the reaction, $N_2 + 3H_2 \implies 2NH_3$ is 4.28×10^{-5} atm ⁻² at 725K, in which direction the net reaction will							
	go							
	(1) Forward		(2) Backward					
	(3) No net reation		(4) Direction of reaction	cannot be predicted				
Ans.	(2)							
36	For the reaction SO	$+\frac{1}{2}$ \longrightarrow SO of $K = 1$	Z (PT) x where the symbols	have usual meaning then the value				
30.	For the reaction $SO_{2(g)}$	For the reaction $SO_{2(g)} + \frac{1}{2}O_{2(g)} \rightleftharpoons SO_{3(g)}$, of $K_p = K_C (KI)^{A}$ where the symbols have usual meaning then the value						
	of x is (assuming ideal	ity)						
	$(1)\frac{1}{2}$	(2) 1	(3)-1	$(4) - \frac{1}{2}$				
	(1) 2	(2)1	$(3)^{-1}$	(4) 2				
Ans.	(4)							
37.	If the amount of dissociation is $\sqrt{0.5}$, the value of K_p for the reaction $N_2O_3 \rightleftharpoons NO + NO_2$ will be							
	(1) equal to the pressure of the system							
	(2) $\frac{2}{8}$ of the pressure of the system							
	(3) $\frac{8}{3}$ of the pressure of the system							
	(4) 5 times of the pre	essure of the system						
Ans.	(1)							
38.	How many moles per litre of PCl_5 has to be taken to obtain 0.1 mol of Cl_2 , if the value of equilibrium constant K_c is 0.04?							
	(1)0.15	(2) 0.25	(3) 0.35	(4) 0.05				
Ans.	(3)							
39.	For the reaction, $N_2O_3 \rightleftharpoons NO + NO_2$, the value of equilibrium constant K_p at fixed temperature is 4. What will be the amount of dissociation at same temperature and 5 atmospheric pressure ?							
	$(1)\frac{1}{3}$	(2) $\frac{2}{3}$	$(3)\frac{7}{9}$	$(4)\frac{2}{4}$				
Ans.	(2)							
40.	One mole of PCl_5 is heated in a closed container of one litre capacity. At equilibrium, 20% PCl_5 is not dissociated. What should be the value of K_c ?							
	$(1)(3.2)^{-1}$	(2) 3.2	(3)2.4	(4) 42				
Ans.	(2)							

	DOSINDIA			J.H. SIR				
41.	For $N_2O_3 \rightleftharpoons NO + NO_2$, if total pressure is P atm and amount of dissociation is 50%, the value of K_p will be							
	(1)3 P	(2) 2 P	$(3) \frac{P}{3}$	$(4) \frac{\mathrm{P}}{2}$				
Ans.	(3)							
42.	If 2/9 of 1 mol of H	II is dissociates, the equilib	orium constant of disinte	gration of acid at same temperature will be				
		1		1				
	(1)64	$(2)\frac{1}{64}$	(3) 49	$(4) \frac{1}{49}$				
Ans	(4)							
43	A schematic plot	of In K versus inverse of f	temperature for a reaction	n is shown below ·				
10.	6.0	A schematic plot of in \mathbf{x}_{eq} versus inverse of temperature for a reaction is shown below .						
	0.0							
	لا ه							
	ч							
	2.0							
	1.5×10^{-3}	<u>2.0×10⁻³</u> 1/T	$\Gamma(K^{-1})$					
	The reaction must	2.0~10						
	(1) endothermic							
	(2) exothermic							
	(3) highly spontaneous at ordinary temperature							
	(4) one with neglig	gible enthalpy change						
Ans.	(2)							
44.	For the reaction,	$2NO_2(g) \rightleftharpoons 21$	$\mathrm{NO}(\mathrm{g}) + \mathrm{O}_{2}(\mathrm{g}),$	$(K_c = 1.8 \times 10^{-6} \text{ at } 184^{\circ}\text{C})$				
	(K=0.0831 KJ/(mol.K))							
	When K_p and K_c are compared at 184°C it is found that							
	(1) whether \mathbf{K}_{p} is greater than, less than of equal to \mathbf{K}_{c} depends upon the total gas pressure (2) $\mathbf{K}_{p} = \mathbf{K}$							
	(2) $K_p - K_c$ (3) K is less than	K						
	(3) K_p is reast that (4) K is greater th	ian K						
Ans.	(1) R _p is greater th (4)							
45.	The exothermic fo	rmation of CIF, is represe	ented by the equation :					
	$Cl_2(g) + 3F_2(g) \Longrightarrow 2ClF_2(g); \Delta H = -329 J$							
	which of the following will increase the quantity of ClF, in an equilibrium mixture of Cl ₂ , F ₂ and ClF ₂ .							
	(1) Adding F ₂		(2) Increasing	the volume of container				
	(3) Removing Cl_2		(4) Increasing	the temperature				
46.	An amount of solid pressure. Ammor decomposition rea constant for NH ₄ H	An amount of solid NH_4HS is placed in a flask already containing ammonia gas at a certain temperature at 0.50 atr pressure. Ammonium hydrogen sulphide decomposes to yield NH_3 and H_2S gases in the flask. When th decomposition reaction reaches equilibrium, the total pressure in the flask rises to 0.84 atm? The equilibrium constant for NH_4HS decomposition at this temperature is :						
	(1)0.11	(2) 0.17	(3) 0.18	(4) 0.30				
Ans.	(1)							

47. 1.1 mol of A mixed with 2.2 mol of B and the mixture is kept in a 1L flask and the equilibrium, A + 2B ⇒ 2C + D is reached. If at equilibrium 0.2 mol of C is formed then the value of K _c will be (1)0.1 (2)0.01 (3)0.001 (4)0.0001 Ans. (3) If 0.5 mol of H ₂ is reacted with 0.5 mol of I ₂ in a 10 L container at 444°C and at same temperature value of equilibrium constant K _c is 49, the ratio of [HI] and [I ₂] will be : (1) (1) (2) 1 (3) (4) 49 Ans. (1) (3) (1) (4) 49. A vessel at 1000 K contains CO ₂ with a pressure of 0.5 atm. Some of the CO ₂ is converted into CO on the addition of graphite. If the total pressure at equilibrium is 0.8 atm, the value of K is :- (1) 49. A vessel at 1000 K contains CO ₂ with a pressure of 0.5 atm. Some of the CO ₂ is converted into CO on the addition of graphite. If the total pressure at equilibrium is 0.8 atm, the value of K is :- (1) 50. The equilibrium constant (K _C) for the reaction N ₂ (g) + O ₂ (g) → 2NO(g) at temperature T is 4 × 10 ⁻⁴ . The value of K _C for the reaction. NO(g) → ½ N ₂ (g) + ½ O ₂ (g) at the same temperature is :- (1) 51. For the reaction, SO _{3,0} + 1/2 O _{3,0} ⇒ SO _{3,0} if K _p = K _c (RT) ^k where the symbols have usual meaning then the value of x is : (assuming ideality) (1) 1/2 (2) 1 (3) -1 (4) 4 × 10 ⁻⁴ 1 52. </th <th>ETC INDIA'S I</th> <th>NO. 1 ONLINE COACHING</th> <th></th> <th></th> <th></th> <th></th> <th>J.H. SIR</th>	ETC INDIA'S I	NO. 1 ONLINE COACHING					J.H. SIR		
(1)0.1 (2)0.01 (3)0.01 (4)0.001 Ans. (3) 48. If 0.5 mol of H ₂ is reacted with 0.5 mol of I ₂ in a 10 L container at 444°C and at same temperature value of equilibrium constant K _e is 49, the ratio of [III] and [I ₂] will be : (1)7 (2) $\frac{1}{7}$ (3) $\sqrt{\frac{1}{7}}$ (4)49 Ans. (1) 49. A vessel at 1000 K contains CO ₂ with a pressure of 0.5 atm. Some of the CO ₂ is converted into CO on the addition of graphite. If the total pressure at equilibrium is 0.8 atm, the value of K is :- (1) 0.3 atm (2) 0.18 atm (3) 1.8 atm (4) 3 atm Ans. (3) 50. The equilibrium constant (K _C) for the reaction N ₂ (g) + O ₂ (g) \rightarrow 2NO(g) at temperature T is 4 × 10 ⁻⁴ . The value of K _C for the reaction. NO(g) \rightarrow ½ N ₂ (g) + ½ O ₂ (g) at the same temperature is :- (1) 50.0 (2) 0.02 (3) 2.5 × 10 ² (4) 4 × 10 ⁻⁴ Ans. (1) 51. For the reaction, SO ₃₄₉ + $\frac{1}{2}$ O ₃₄₉ \rightarrow SO ₃₄₉ if K _p = K _c (RT) where the symbols have usual meaning then the value of x is : (assuming ideality) (1) $\frac{1}{2}$ (2) 1 (3) - 1 (4) $-\frac{1}{2}$ Ans. (4) 52. The standard Gibbs energy change at 300K for the reaction 2A \implies B + C is 2494.2J. At a given time, the composition of the reaction mixture is [A] = $\frac{1}{2}$, [B] = 2 and [C] = $\frac{1}{2}$. The reaction proceeds in the : [R=8.314 J/K/mol, e=2.718] (1) forward direction because Q < K _c (2) reverse direction because Q < K _c (3) forward direction because Q < K _c (4) reverse direction because Q > K _c (4) forward direction because Q < K _c (4) reverse direction because Q < K _c (3) forward direction because Q < K _c (4) reverse direction because Q > K _c (4) reverse direction because Q > K _c (4) reverse direction because Q > K _c (5) The equilibrium constant at 298 K for a reaction A + B \rightleftharpoons C + D is 100. If the initial concentration of all the four species were 1M each, then equilibrium concentration of D((n mol L ⁻¹) will be: (1) 0.818 (2) 1.818 (3) 1.182 (4) 0.182	47.	1.1 mol of A mixed with 2.2 mol of B and the mixture is kept in a 1L flask and the equilibrium, $A + 2B \rightleftharpoons 2C + D$ is reached. If at equilibrium 0.2 mol of C is formed then the value of K_C will be							
Ans.(3)48.If 0.5 mol of H2 is reacted with 0.5 mol of I2 in a 10 L container at 444°C and at same temperature value of equilibrium constant Kc is 49, the ratio of [HI] and [I2] will be :(1)7(2) $\frac{1}{7}$ (3) $\sqrt{\frac{1}{7}}$ (4)49Ans.(1)49.A vessel at 1000 K contains CO2 with a pressure of 0.5 atm. Some of the CO2 is converted into CO on the addition of graphite. If the total pressure at equilibrium is 0.8 atm, the value of K is :-(1)0.3 atm(2)0.18 atm(3) The equilibrium constant (Kc) for the reaction N2(g) + O2(g) \rightarrow 2NO(g) at temperature T is 4×10^{-4} . The value of Kc for the reaction. NO(g) \rightarrow $\frac{1}{2}$ N2(g) + $\frac{1}{2}$ O2(g) at temperature is :-(1) 50.0(2)0.0251.For the reaction, SO2(g) + $\frac{1}{2}$ O2(g) \implies SO3(g) if $K_p = K_c(RT)^c$ where the symbols have usual meaning then the value of x is : (assuming ideality)(1) $\frac{1}{2}$ (2) 1(3) -1(4) $-\frac{1}{2}$ Ans.(4)52.The standard Gibbs energy change at 300K for the reaction $2A \implies B + C$ is 2494.2J. At a given time, the composition of the reaction mixture is $[A] = \frac{1}{2}$, $[B] = 2$ and $[C] = \frac{1}{2}$. The reaction proceeds in the : $[R = 8.314 JK/mol, e = 2.718]$ (1) forward direction because $Q < K_c$ (1)(1) forward direction because $Q < K_c$ (2) forwards direction because $Q < K_c$ (3) The equilibrium constant at 298 K for a reaction $A + B \implies C + D$ is 100. If the initial concentration of all the four species were 1M each, then equilibrium concentration of D (in mol L ⁻¹) will be:(1) 0.818(2) 1.818(3) 1.182(4) 0.182		(1)0.1	(2) 0.01	(3)0	.001	(4) 0.0001			
48. If 0.5 mol of H₂ is reacted with 0.5 mol of I₂ in a 10 L container at 444°C and at same temperature value of equilibrium constant K₂ is 49, the ratio of [HI] and [I₂] will be : (1) 7 (2) $\frac{1}{7}$ (3) $\sqrt{\frac{1}{7}}$ (4) 49 Ans. (1) 49. A vessel at 1000 K contains CO₂ with a pressure of 0.5 atm. Some of the CO₂ is converted into CO on the addition of graphite. If the total pressure at equilibrium is 0.8 atm, the value of K is :- (1) 0.3 atm (2) 0.18 atm (3) 1.8 atm (4) 3 atm Ans. (3) 50. The equilibrium constant (K₂) for the reaction N₂(g) + O₂(g) → 2NO(g) at temperature T is 4 × 10 ⁻⁴ . The value of K₂ for the reaction. NO(g) → ½ N₂(g) + ½ O₂(g) at the same temperature is :- (1) 50. (2) 0.02 (3) 2.5 × 10 ² (4) 4 × 10 ⁻⁴ Ans. (1) 51. For the reaction, SO ₂₀₀ + $\frac{1}{2}$ O ₂₀₀ → SO ₃₀₀ if K _p = K₂(RT) ^o where the symbols have usual meaning then the value of x is : (assuming ideality) (1) $\frac{1}{2}$ (2) 1 (3) -1 (4) $-\frac{1}{2}$ Ans. (4) 52. The standard Gibbs energy change at 300K for the reaction 2A → B + C is 2494.2J. At a given time, the composition of the reaction mixture is [A] = $\frac{1}{2}$, [B] = 2 and [C] = $\frac{1}{2}$. The reaction proceeds in the : [R = 8.314 JK/mol, e = 2.718] (1) forward direction because Q < K₂ (4) reverse direction because Q < K₂ (3) forward direction because Q < K₂ (4) reverse direction because Q < K₂ (4) forward direction because Q < K₂ (4) reverse direction because Q < K₂ Ans. (4) 53. The equilibrium constant at 298 K for a reaction A + B → C + D is 100. If the initial concentration of all the four species were 1M each, then equilibrium concentration of D (in mol L ⁻¹) will be: (1) 0.818 (2) 1.818 (3) 1.182 (4) 0.182	Ans.	(3)							
(1)7 (2) $\frac{1}{7}$ (3) $\sqrt{\frac{1}{7}}$ (4)49 Ans. (1) 49. A vessel at 1000 K contains CO ₂ with a pressure of 0.5 atm. Some of the CO ₂ is converted into CO on the addition of graphite. If the total pressure at equilibrium is 0.8 atm, the value of K is :- (1) 0.3 atm (2) 0.18 atm (3) 1.8 atm (4) 3 atm Ans. (3) 50. The equilibrium constant (K _C) for the reaction N ₂ (g) + O ₂ (g) \longrightarrow 2NO(g) at temperature T is 4×10^{-4} . The value of K _c for the reaction. NO(g) \longrightarrow $\frac{1}{2}$ N ₂ (g) + $\frac{1}{2}$ O ₂ (g) at the same temperature is :- (1) 50.0 (2) 0.02 (3) 2.5 × 10 ² (4) 4 × 10 ⁻⁴ Ans. (1) 51. For the reaction, SO _{2,g} + $\frac{1}{2}$ O _{3,g} \implies SO _{3,g} , if K _p = K _c (RT) where the symbols have usual meaning then the value of x is : (assuming ideality) (1) $\frac{1}{2}$ (2) 1 (3) -1 (4) $-\frac{1}{2}$ Ans. (4) 52. The standard Gibbs energy change at 300K for the reaction 2A \implies B + C is 2494.2J. At a given time, the composition of the reaction mixture is [A] = $\frac{1}{2}$, [B] = 2 and [C] = $\frac{1}{2}$. The reaction proceeds in the : [R = 8.314 J/K/mol, e= 2.718] (1) forward direction because Q < K _c (4) reverse direction because Q < K _c (3) forward direction because Q < K _c (4) reverse direction because Q < K _c (4) forward direction because Q > K _c (4) reverse direction because Q < K _c (b) forward direction because Q > K _c (4) reverse direction because Q < K _c (b) forward direction because Q > K _c (2) reverse direction because Q < K _c (4) reverse direction because Q < K _c (4) reverse direction because Q < K _c (5) forward direction because Q > K _c (4) reverse direction because Q < K _c (4) (10.818 (2) 1.818 (3) 1.182 (4).0.182	48.	If 0.5 mol of H ₂ is constant K _c is 49	If 0.5 mol of H_2 is reacted with 0.5 mol of I_2 in a 10 L container at 444°C and at same temperature value of equilibrium constant K_c is 49, the ratio of [HI] and [I ₂] will be :						
Ans.(1)49.A vessel at 1000 K contains CO2 with a pressure of 0.5 atm. Some of the CO2 is converted into CO on the addition of graphite. If the total pressure at equilibrium is 0.8 atm, the value of K is :- (1) 0.3 atm(2) 0.18 atm(3) 1.8 atm(4) 3 atmAns.(3)50.The equilibrium constant (KC) for the reaction N2(g) + O2(g) \longrightarrow 2NO(g) at temperature T is 4×10^{-4} . The value of KC for the reaction. NO(g) \longrightarrow ½ N2(g) + ½ O2(g) at the same temperature is :- (1) 50.0(2) 0.02(3) 2.5 \times 10^2(4) 4×10^{-4} Ans.(1)51.For the reaction, SO2(g) $+ \frac{1}{2}$ O2(g) $=$ SO3(g), if Kp = Kc(RT)* where the symbols have usual meaning then the value of x is : (assuming ideality)(1) $\frac{1}{2}$ (2) 1(3) = 1(4) $-\frac{1}{2}$ Ans.(4)52.The standard Gibbs energy change at 300K for the reaction 2A $=$ B + C is 2494.2J. At a given time, the composition of the reaction mixture is $[A] = \frac{1}{2}$, $[B] = 2$ and $[C] = \frac{1}{2}$. The reaction proceeds in the : $[R=8.314 J/K/mol, e=2.718]$ (1) forward direction because Q < Kc (3) forward direction because Q < Kc (4) reverse direction because Q < Kc <td></td> <td>(1)7</td> <td>(2) $\frac{1}{7}$</td> <td>(3)</td> <td>$\sqrt{\frac{1}{7}}$</td> <td>(4) 49</td> <td></td>		(1)7	(2) $\frac{1}{7}$	(3)	$\sqrt{\frac{1}{7}}$	(4) 49			
 49. A vessel at 1000 K contains CO₂ with a pressure of 0.5 atm. Some of the CO₂ is converted into CO on the addition of graphite. If the total pressure at equilibrium is 0.8 atm, the value of K is :- (1) 0.3 atm (2) 0.18 atm (3) 1.8 atm (4) 3 atm 50. The equilibrium constant (K_C) for the reaction N₂(g) + O₂(g) → 2NO(g) at temperature T is 4 × 10⁻⁴. The value of K_C for the reaction. NO(g) → ½ N₂(g) + ½ O₂(g) at the same temperature is :- (1) 50.0 (2) 0.02 (3) 2.5 × 10² (4) 4 × 10⁻⁴ 51. For the reaction, SO_{2x0} + ¹/₂ O_{2x0} ← SO_{3x0}, if K_p = K_c(RT)^k where the symbols have usual meaning then the value of x is : (assuming ideality) (1) ¹/₂ (2) 1 (3) -1 (4) -¹/₂ Ans. (4) 52. The standard Gibbs energy change at 300K for the reaction 2A ← B + C is 2494.2J. At a given time, the composition of the reaction mixture is [A] = ¹/₂, [B] = 2 and [C] = ¹/₂. The reaction proceeds in the : [R=8.314.1/K/mol, e=2.718] (1) forward direction because Q < K_c (2) reverse direction because Q < K_c (3) forward direction because Q < K_c (4) reverse direction because Q < K_c (53. The equilibrium constant at 298 K for a reaction A + B ← C + D is 100. If the initial concentration of all the four species were 1M each, then equilibrium concentration of D (in mol L⁻¹) will be: (1) 0.818 (2) 1.818 (3) 1.182 (4) 0.182 	Ans.	(1)							
(1) 0.3 atm (2) 0.18 atm (3) 1.8 atm (4) 3 atm Ans. (3) 50. The equilibrium constant (K _C) for the reaction N ₂ (g) + O ₂ (g) \longrightarrow 2NO(g) at temperature T is 4×10^{-4} . The value of K _C for the reaction. NO(g) \longrightarrow ¹ / ₂ N ₂ (g) + ¹ / ₂ O ₂ (g) at the same temperature is :- (1) 50.0 (2) 0.02 (3) 2.5 × 10 ² (4) 4 × 10 ⁻⁴ Ans. (1) 51. For the reaction, SO _{2(g)} + $\frac{1}{2}$ O _{2(g)} \implies SO _{3(g)} , if K _p = K _c (RT) ^c where the symbols have usual meaning then the value of x is : (assuming ideality) (1) $\frac{1}{2}$ (2) 1 (3) - 1 (4) $-\frac{1}{2}$ Ans. (4) 52. The standard Gibbs energy change at 300K for the reaction 2A \implies B + C is 2494.2J. At a given time, the composition of the reaction mixture is [A] = $\frac{1}{2}$, [B] = 2 and [C] = $\frac{1}{2}$. The reaction proceeds in the : [R=8.314 J/K/mol, e=2.718] (1) forward direction because Q < K _c (2) reverse direction because Q < K _c (3) forward direction because Q < K _c (4) reverse direction because Q > K _c Ans. (4) 53. The equilibrium constant at 298 K for a reaction A + B \implies C + D is 100. If the initial concentration of all the four species were 1M each, then equilibrium concentration of D (in mol L ⁻¹) will be: (1) 0.818 (2) 1.818 (3) 1.182 (4) 0.182	49.	A vessel at 1000 K contains CO_2 with a pressure of 0.5 atm. Some of the CO_2 is converted into CO on the addition of graphite. If the total pressure at equilibrium is 0.8 atm, the value of K is :-					CO on the addition		
 Ans. (3) 50. The equilibrium constant (K_C) for the reaction N₂(g) + O₂(g) → 2NO(g) at temperature T is 4 × 10⁻⁴. The value of K_C for the reaction. NO(g) → ½ N₂(g) + ½ O₂(g) at the same temperature is :-(1) 50.0 (2) 0.02 (3) 2.5 × 10² (4) 4 × 10⁻⁴ Ans. (1) 51. For the reaction, SO_{2(g)} + ¹/₂ O_{2(g)} ⇒ SO_{3(g)}, if K_p = K_c(RT)^x where the symbols have usual meaning then the value of x is : (assuming ideality) (1) ¹/₂ (2) 1 (3) = 1 (4) -¹/₂ Ans. (4) 52. The standard Gibbs energy change at 300K for the reaction 2A ⇒ B + C is 2494.2J. At a given time, the composition of the reaction mixture is [A] = ¹/₂, [B] = 2 and [C] = ¹/₂. The reaction proceeds in the : [R = 8.314 J/K/mol, e = 2.718] (1) forward direction because Q < K_c (4) reverse direction because Q < K_c (3) forward direction because Q > K_c (4) reverse direction because Q > K_c (4) 53. The equilibrium constant at 298 K for a reaction A + B ⇒ C + D is 100. If the initial concentration of all the four species were 1M each, then equilibrium concentration of D (in mol L⁻¹) will be: (1) 0.818 (2) 1.818 (3) 1.182 (4) 0.182 		(1) 0.3 atm	(2)0).18 atm	(3) 1.8 atm	(4)	3 atm		
 50. The equilibrium constant (K_C) for the reaction N₂(g) + O₂(g) → 2NO(g) at temperature T is 4 × 10⁻⁴. The value of K_C for the reaction. NO(g) → ½ N₂(g) + ½ O₂(g) at the same temperature is :-(1) 50.0 (2) 0.02 (3) 2.5 × 10² (4) 4 × 10⁻⁴ Ans. (1) 51. For the reaction, SO_{2(g)} + ¹/₂ O_{2(g)} ⇒ SO_{3(g)}, if K_p = K_c(RT)^x where the symbols have usual meaning then the value of x is : (assuming ideality) (1) ¹/₂ (2) 1 (3) - 1 (4) -¹/₂ Ans. (4) 52. The standard Gibbs energy change at 300K for the reaction 2A ⇒ B + C is 2494.2J. At a given time, the composition of the reaction mixture is [A] = ¹/₂, [B] = 2 and [C] = ¹/₂. The reaction proceeds in the : [R = 8.314 J/K/mol, e = 2.718] (1) forward direction because Q < K_c (4) reverse direction because Q < K_c (3) forward direction because Q < K_c (4) reverse direction because Q < K_c (4) 53. The equilibrium constant at 298 K for a reaction A + B ⇒ C + D is 100. If the initial concentration of all the four species were 1M each, then equilibrium concentration of D (in mol L⁻¹) will be: (1) 0.818 (2) 1.818 (3) 1.182 (4) 0.182 	Ans.	(3)							
Ans.(1)51.For the reaction, $SO_{2(g)} + \frac{1}{2}O_{2(g)} \Longrightarrow SO_{3(g)}$ if $K_p = K_c(RT)^s$ where the symbols have usual meaning then the value of x is : (assuming ideality)(1) $\frac{1}{2}$ (2) 1(3) -1(4) $-\frac{1}{2}$ Ans.(4)52.The standard Gibbs energy change at 300K for the reaction $2A \Longrightarrow B + C$ is 2494.2J. At a given time, the composition of the reaction mixture is $[A] = \frac{1}{2}$, $[B] = 2$ and $[C] = \frac{1}{2}$. The reaction proceeds in the : $[R = 8.314 J/K/mol, e = 2.718]$ (1) forward direction because $Q < K_c$ (2) reverse direction because $Q < K_c$ (3) forward direction because $Q > K_c$ (4) reverse direction because $Q > K_c$ 53.The equilibrium constant at 298 K for a reaction $A + B \rightleftharpoons C + D$ is 100. If the initial concentration of all the four species were 1M each, then equilibrium concentration of D (in mol L ⁻¹) will be: (1) 0.818(2) 1.818(3) 1.182(4) 0.182	50.	The equilibriu 4×10^{-4} . The va (1) 50.0	im constant (K_C) for lue of K_C for the reaction (2) C	the reaction N on. NO(g) \longrightarrow 0.02	$P_{2}(g) + O_{2}(g) - \frac{1}{2} N_{2}(g) + \frac{1}{2} O_{2}(g) + \frac{1}{2} $	\rightarrow 2NO(g) at (g) at the same t (4)	temperature T is emperature is :- 4×10^{-4}		
 51. For the reaction, SO_{2(g)} + ¹/₂ O_{2(g)} → SO_{3(g)²} if K_p = K_c(RT)^x where the symbols have usual meaning then the value of x is : (assuming ideality) (1) ¹/₂ (2) 1 (3) -1 (4) -¹/₂ Ans. (4) 52. The standard Gibbs energy change at 300K for the reaction 2A → B + C is 2494.2J. At a given time, the composition of the reaction mixture is [A] = ¹/₂, [B] = 2 and [C] = ¹/₂. The reaction proceeds in the : [R = 8.314 J/K/mol, e = 2.718] (1) forward direction because Q < K_c (2) reverse direction because Q < K_c (3) forward direction because Q < K_c (4) reverse direction because Q > K_c (53. The equilibrium constant at 298 K for a reaction A + B → C + D is 100. If the initial concentration of all the four species were 1M each, then equilibrium concentration of D (in mol L⁻¹) will be: (1) 0.818 (2) 1.818 (3) 1.182 (4) 0.182 	Ans.	(1)							
(1) $\frac{1}{2}$ (2) 1 (3) - 1 (4) $-\frac{1}{2}$ Ans. (4) 52. The standard Gibbs energy change at 300K for the reaction 2A \implies B + C is 2494.2J. At a given time, the composition of the reaction mixture is $[A] = \frac{1}{2}$, $[B] = 2$ and $[C] = \frac{1}{2}$. The reaction proceeds in the : [R=8.314 J/K/mol, e=2.718] (1) forward direction because Q < K _c (2) reverse direction because Q < K _c (3) forward direction because Q > K _c (4) reverse direction because Q > K _c Ans. (4) 53. The equilibrium constant at 298 K for a reaction A + B \implies C + D is 100. If the initial concentration of all the four species were 1M each, then equilibrium concentration of D (in mol L ⁻¹) will be: (1) 0.818 (2) 1.818 (3) 1.182 (4) 0.182	51.	For the reaction, $SO_{2(g)} + \frac{1}{2}O_{2(g)} \implies SO_{3(g)}$, if $K_p = K_C(RT)^x$ where the symbols have usual meaning then the value of x is : (assuming ideality)					meaning then the		
 Ans. (4) 52. The standard Gibbs energy change at 300K for the reaction 2A ⇒ B + C is 2494.2J. At a given time, the composition of the reaction mixture is [A] = 1/2, [B] = 2 and [C] = 1/2. The reaction proceeds in the : [R=8.314 J/K/mol, e=2.718] (1) forward direction because Q < K_c (2) reverse direction because Q < K_c (3) forward direction because Q > K_c (4) 53. The equilibrium constant at 298 K for a reaction A + B ⇒ C + D is 100. If the initial concentration of all the four species were 1M each, then equilibrium concentration of D (in mol L⁻¹) will be: (1) 0.818 (2) 1.818 (3) 1.182 (4) 0.182 		(1) $\frac{1}{2}$	(2) 1	(3) -	- 1	(4) $-\frac{1}{2}$			
 52. The standard Gibbs energy change at 300K for the reaction 2A ⇒ B + C is 2494.2J. At a given time, the composition of the reaction mixture is [A] = 1/2, [B] = 2 and [C] = 1/2. The reaction proceeds in the : [R=8.314 J/K/mol, e=2.718] (1) forward direction because Q < K_c (2) reverse direction because Q < K_c (3) forward direction because Q > K_c (4) 53. The equilibrium constant at 298 K for a reaction A + B ⇒ C + D is 100. If the initial concentration of all the four species were 1M each, then equilibrium concentration of D (in mol L⁻¹) will be: (1) 0.818 (2) 1.818 (3) 1.182 (4) 0.182 	Ans.	(4)							
composition of the reaction mixture is $[A] = \frac{1}{2}$, $[B] = 2$ and $[C] = \frac{1}{2}$. The reaction proceeds in the : [R=8.314 J/K/mol, e=2.718] (1) forward direction because $Q < K_c$ (3) forward direction because $Q > K_c$ (4) reverse direction because $Q > K_c$ (4) 53. The equilibrium constant at 298 K for a reaction $A + B \rightleftharpoons C + D$ is 100. If the initial concentration of all the four species were 1M each, then equilibrium concentration of D (in mol L ⁻¹) will be: (1) 0.818 (2) 1.818 (3) 1.182 (4) 0.182	52.	The standard Gi	bbs energy change at 30	00K for the reaction	on $2A \Longrightarrow B$	+ C is 2494.2J. A	At a given time, the		
(1) forward direction because $Q < K_c$ (3) forward direction because $Q > K_c$ (4) reverse direction because $Q > K_c$ (53. The equilibrium constant at 298 K for a reaction $A + B \rightleftharpoons C + D$ is 100. If the initial concentration of all the four species were 1M each, then equilibrium concentration of D (in mol L ⁻¹) will be: (1) 0.818 (2) 1.818 (3) 1.182 (4) 0.182		composition of the reaction mixture is $[A] = \frac{1}{2}$, $[B] = 2$ and $[C] = \frac{1}{2}$. The reaction proceeds in the : [R=8.314 J/K/mol, e=2.718]							
(3) forward direction because $Q > K_c$ (4) reverse direction because $Q > K_c$ Ans. (4) 53. The equilibrium constant at 298 K for a reaction $A + B \rightleftharpoons C + D$ is 100. If the initial concentration of all the four species were 1M each, then equilibrium concentration of D (in mol L ⁻¹) will be: (1) 0.818 (2) 1.818 (3) 1.182 (4) 0.182		(1) forward direc	ction because $Q < K_c$	(2) r	(2) reverse direction because $Q < K_c$				
53.The equilibrium constant at 298 K for a reaction $A + B \rightleftharpoons C + D$ is 100. If the initial concentration of all the four species were 1M each, then equilibrium concentration of D (in mol L ⁻¹) will be: (1) 0.818(2) 1.818(3) 1.182(4) 0.182	Ans.	(3) forward direc (4)	ction because $Q > K_c$	(4) r	everse direction be	ecause $Q > K_c$			
(1) 0.818 (2) 1.818 (3) 1.182 (4) 0.182	53.	The equilibrium constant at 298 K for a reaction $A + B \rightleftharpoons C + D$ is 100. If the initial concentration of all the four species were 1M each, then equilibrium concentration of D (in mol L ⁻¹) will be:				tration of all the four			
Ans (2)	Ans	(1) 0.818	(2) 1.818	(3) 1	.182	(4) 0.182			

ASSERTION & REASON QUESTIONS

These questions consist of two statements each, printed as *Assertion* and *Reason*. While answering these Questions you are required to choose any one of the following four responses.

- A. If both Assertion & Reason are True & the Reason is a correct explanation of the Assertion.
- B. If both Assertion & Reason are True but Reason is not a correct explanation of the Assertion.
- C. If Assertion is True but the Reason is False.
- D. If both Assertion & Reason are False.
- Assertion :- Solubility of a gas in liquids increases with increase in pressure of the gas in equilibrium with solution.
 Reason :- The dissolution of a gas in liquids is an exothermic process.
- Ans. (B)
- Assertion :- The effect of temperature on equilibrium constant is given by Vant Hoff's equation.
 Reason :- Vant Hoff's equation is

$$\log \frac{K_1}{K_2} = \frac{\Delta H}{2.303 R} \left[\frac{T_2 - T_1}{T_1 T_2} \right]$$

Ans. (C)

- Assertion :- Solubility of a gas in water decreases with increase in temperature.
 Reason :- Dissolution of a gas in water is an exothermic process.
- Ans. (A)
- 4. Assertion :- The value of K increases when concentration of the reactants are increased.

Reason :- With increases of concentration of reactants the equilibrium shifts in forward direction.

Ans. (D)

5. *Assertion* :- For the reaction

 $H_2(g) + I_2(g) \implies 2HI(g), K_p = K_c.$

Reason :- K_p of all gaseous reactions is equal to K_c .

Ans. (C)

6. Assertion :- $K_p = K_c$ for all reactions.

Reason :- At constant temperature, the pressure of the gas is proportional to the concentration.

7. Assertion :- Effect of temperature of K_{c} or K_{p} depends on enthalpy change.

Reason :- Increase in temperature shifts the equilibrium in exothermic direction and decrease in temperature shifts the equilibrium position in endothermic direction.

Ans. (C)

8. Assertion :- On opening a sealed soda bottle dissolved carbon dioxide gas escapes.

Reason :- Gas escapes to reach the new equilibrium condition of lower pressure.

Ans. (A)

9.	<i>Assertion :-</i> Equilibrium constant has meaning only when the corresponding balanced chemical equation is given at equilibrium.
	<i>Reason :-</i> Its value changes for the new equation obtained by multiplying or dividing the original equation by a number.
Ans.	(A)
10.	Assertion :- Catalyst affects the final state of the equilibrium.
	Reason :- It enables the system to attain a new equilibrium state by complexing with the reagents.
Ans.	(D)
11.	Assertion :- There is no effect on equilibrium constant if inert gas is added to the reaction
	$\mathbf{A}_{(\mathbf{g})} + \mathbf{B}_{(\mathbf{g})} \mathbf{C}_{(\mathbf{g})}.$
	Reason :- Equilibrium constant changes only with temperature.
Ans.	(A)
12.	Assertion : For equilibrium Ice \rightleftharpoons Water on increasing temperature and pressure more of water will form.
	Reason : Forward reaction is endothermic and volume decreases on product side.
Ans.	(1)
13.	Assertion : At equilibrium concentration of the reactant and product does not change with time for a chemical reaction.
	Reason : The rate of reaction is zero at equilibrium.
Ans.	(3)
14.	Assertion : The reaction $2NO(g) + O_2(g) \rightleftharpoons 2NO_2(g)$ is favoured in the forward direction with increase of pressure.
	Reason : The above reaction is exothermic
Ans.	(2)