DAILY PRACTICE PROBLEM OF PHYSICAL CHEMISTRY FOR NEET

BY JITENDRA HIRWANI

CHEMICAL EQUILIBRIUM

Plot No. 38, Near Union Bank of India, Rajeev Gandhi Nagar, Kota, Rajasthan – 324005 Mob. : 9214233303 DPP-1

1.	For the reaction $2A + 3B \implies 2C$						
	the expression for K_c is :						
	(1) $\frac{[A]^2 [B]^3}{[C]^2}$	(2) $\frac{[C]}{[A][B]}$	(3) $\frac{[C]^2}{[A]^2 [B]^3}$	(4) $\frac{[C]^2}{[A]^3 [B]^2}$			
Ans.	(3)						
2.	If K_c is 41 for, $N_2 + 3H_2 \implies 2NH_3$ then for						
	$NH_3 \implies \frac{1}{2} N_2 + \frac{3}{2} H_2 K_c$ will be :-						
	(1)41	(2) $\sqrt{41}$	(3) 20.5	$(4) \sqrt{\frac{1}{41}}$			
Ans.	(4)						
3.	For which of the follow	ving reaction value of K_p a	and K_c is equal :-				
	(1) 2NOC1 \implies 2NO+Cl ₂		$(2) \operatorname{PCl}_5 \Longrightarrow \operatorname{PCl}_3 + \operatorname{Cl}_2$	(2) $PCl_5 \Longrightarrow PCl_3 + Cl_2$			
	(3) H ₂ +Cl ₂ \implies 2HCl		(4) $N_2 + 3H_2 \implies 2N_2$	H,			
Ans.	(3)						
4.	The K _c for given reaction will be $A_2(g) + 2B(g) \rightleftharpoons C(g) + 2D(s)$						
	(1) K = $\frac{[C][D]^2}{[A_2][B]^2}$	(2) K = $\frac{[C]}{[A_2][B]^2}$	(3) K = $\frac{[A_2][B]^2}{[C][D]^2}$	(4) K = $\frac{[A_2][B]^2}{[C]}$			
Ans.	(2)						
5.	In which of the following does the reaction go almost to completion?						
	(1) $K_c = 10^3$	(2) $K_c = 10^2$	(3) $K_c = 10^{-2}$	(4) $K_c = 10^{-3}$			
Ans.	(1) In a chemical equilibriu	m the rate constant of the be	r_{10}	4 and the equilibrium constant is 1.5			
0.	So the rate constant of the forward reaction is 7.5×10^{-10} and the equilibrium constant is 1.5 .						
	$(1) 2 \times 10^{-3}$	(2) 15×10^{-4}	$(3) 1.125 \times 10^{-3}$	$(4) 9.0 \times 10^{-4}$			
Ans.	(3)						
7.	K_{p} is how many times equal to K_{c} for the given reaction ?						
	$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$						
	(1) $\frac{1}{R^2T^2}$	(2) R^2T^2	$(3) \frac{R}{T}$	(4) RT			
Ans.	(1)						
8.	$4 \mathrm{g}\mathrm{H}_{2}, 32 \mathrm{g}\mathrm{O}_{2}, 14 \mathrm{g}\mathrm{N}_{2}$	and $11g CO_2$ are taken in a	a bulb of 500 ml. When one	of these has maximum active mass?			
	$(1) H_2$	$(2)O_{2}$	$(3) N_2$	(4) CO ₂			

9.	For reaction, $2A + B \rightleftharpoons 2C$, $K = x$. Equilibrium constant for $C \rightleftharpoons A + \frac{1}{2}B$ will be							
	(1)x		(2) $\frac{x}{2}$		$(3) \frac{1}{\sqrt{x}}$			(4) $\sqrt{\mathbf{x}}$
Ans. 10.	(3) At 700 K, the equilibrium constant, K_p , for the reaction $2SO_3(g) \rightleftharpoons 2SO_2(g) + O_2(g)$ is 1.8×10^{-3} atm. The value of K_c for the above reaction at the same temperature in moles per litre would be							
A m a	$(1) 1.1 \times 10^{-7}$		$(2) 3.1 \times 10^{-5}$		(3) 6.2	× 10 '		$(4) 9.3 \times 10^{-7}$
Alis. 11	(2) For which of the	following	x reaction $K = K_{-}$	_				
11,	For which of the following reaction $K_p = K_C -$							
	(1) H ₂ +I ₂ \Longrightarrow	2HI			(2) PC1	$_5 \rightleftharpoons P$	$Cl_3 + Cl_2$	
	$(3) 2NH_3 \Longrightarrow$	$3H_2 + N_2$			$(4) 2SO_2 + O_2 \Longrightarrow 2SO_3$			
Ans.	(1)							
12.	K for the synthesis of HI is 50. What is K for its dissociation							
	(1) 50		(2)5		(3)0.2			(4) 0.02
Ans.	(4)							
13.	Match List –I (hypothetical reactions) with List–II (ratio $\frac{K_{P}}{K_{C}}$ for the given reactions) and select the correct answer using							
	the code given below the lists :-							
	(a) $A_2(g) + 3B_2(g) \implies 2AB_3(g)$ (i) $(RT)^{-2}$							
	(b) $A_2(g) + B_2(g) \Longrightarrow 2AB(g)$ (ii) (RT) ⁰ (c) $A(s) + 1.5 B_2(g) \Longrightarrow AB_3(g)$ (iii) $(RT)^{\frac{1}{2}}$ (d) $AB_2(g) \Longrightarrow AB(g) + 0.5 B_2(g)$ (iv) $(RT)^{-\frac{1}{2}}$							
	CODES:							
	a b	c	d		а	b	c	d
	(1) (i) (ii)	(iii)	(iv)	(2)	(i)	(iv)	(iii)	(ii)
A	(3) (11) (1)	(IV)	(111)	(4)	(1)	(11)	(iv)	(111)
Ans.	(4) What should have	the respe	ativo activo masso	a of moth	vl alach	and our	hon totro	chlorido, if their densities are 0.5
14.	and 1.2 g/mL?							
	(1) 15.62 and 7.79 (2) 15.65 and 7.40			(3) 15.4	(3) 15.46 and 7.80 (4) 15.40 and 6.50		(4) 15.40 and 6.50	
Ans.	(1)							

15. Rate of reaction curve for equilibrium can be like :

 $[r_f = forward rate, r_b = backward rate]$

		DI	PP -2				
1.	For the equation $2A + B \implies BA_2$, the equilibrium concentration of A, B, BA_2 is 4, 2 and 2 respective						
	value of K will be :-						
	(1) 0.0625 °	(2) 0.625	(3) 6.280	(4) 6.250			
Ans.	(1)						
2	If K for the reaction 1	$N \cap \longrightarrow 2NO$ is 0.66 f	hen what is the equili	$\dot{\mathbf{b}}$			
4.	If \mathbf{x}_p for the reaction $\mathbf{N}_2\mathbf{O}_4$ (10tal pressure of $\mathbf{N}_2\mathbf{O}_4$. (10tal pressure of $\mathbf{N}_2\mathbf{O}_4$. (10tal pressure of $\mathbf{N}_2\mathbf{O}_4$. (10tal pressure						
		(2) 0 222	(2) 0 1	(4) 0.5			
Ang	(1)0.108	(2)0.322	(3)0.1	(4)0.5			
Alls. 3	(1) Earwhich of the following reaction the degree of diagonistics (a) and equilibrium constant (K) are related as						
5.	For which of the follow	whig reaction, the degree of t		quinorium constant (\mathbf{R}_p) are related as			
	$K = \frac{4\alpha^2 P}{2}?$						
	p (1- α^{2})						
	$(1) N_2O_4(g) \rightleftharpoons 2NO_2(g)$		(2) $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$				
	$(3) N_2(g) + 3H_2(g) \rightleftharpoons 2$	2NH ₃ (g)	$(4) \operatorname{PCl}_3(g) + \operatorname{Cl}_2(g) \rightleftharpoons \operatorname{PCl}_5(g)$				
Ans.	(1)						
4.	XY ₂ dissociates as,						
	$XY_2(g) \rightleftharpoons XY(g) + Y(g)$						
	Initial pressure of XY system to remain cons	Initial pressure of XY_2 is 600 mm Hg. The total pressure at the equilibrium is 800 mm Hg. Assuming volume of system to remain constant, the value of K is					
	(1)50	(2) 100	(3)20	(4) 400			
Ans.	(2)						
5.	The initial pressure of COCl ₂ is 1000 torr. The total pressure of the system becomes 1500 torr, when the equilibri $COCl_2(g) \rightleftharpoons CO(g) + Cl_2(g)$ is attained at constant temperature. The value of K ₂ of a reaction						
	(1) 1500	(2) 1000	(3) 2500	(4) 500			
Ans.	(4)						
6.	Hydrogen (a moles) and iodine (b moles) react to give 2x moles of the HI at equilibrium. The total number of mo at equilibrium is						
	(1)a+b+2x	(2)(a-b)+(b-2x)	(3)(a+b)	(4) a + b - x			
Ans.	(3)						
7.	When ethyl alcohol and third of the acid and al	When ethyl alcohol and acetic acid mixed together in equimolecular proportions, equilibrium is attained when two third of the acid and alcohol are consumed. The equilibrium constant of the reaction will be					
	(1) 0.4	(2)4	(3)40	(4) 0.04			
Ans.	(2)						
8.	Two moles of N_2 and two moles of H_2 are taken in a closed vessel of 5 litres capacity and suitable conditions are provided for the reaction. When the equilibrium is reached, it is found that a half mole of N_2 is used up. The equilibrium concentration of NH_3 is						
	(1) 0.3	(2) 0.4	(3) 0.2	(4) 0.1			

(1)0.3(2)0.4(3)0.2

(3) Ans.

ET(NO. 1 ONLINE COACHING			J.H. SIR			
9.	1 mole of NO ₂ and 2 moles of CO are enclosed in a one litre vessel to attain the following equilibrium NO ₂ + CO \rightleftharpoons NO + CO ₂ . It was estimated that at the equilibrium, 25% of initial amount of CO is consumed. The equilibrium constant K _n is						
	(1)1	(2) 1/2	(3) 1/4	(4) 1/3			
Ans.	(4)						
10.	Two moles of NH_3 gas high temperature as 21	are introduced into a prev NH ₃ (g) \rightleftharpoons N ₂ (g) + 3H ₂ (g)	viously evacuated one litre ve At equilibrium, one mole of	essel in which it partially dissociates at $SNH_3(g)$ remain. The value of K_c is			
	(1)3	(2)27/16	(3) 3/2	(4)27/64			
Ans.	(2)						
11.	4.0 moles of PCl ₅ dissociate at 760 K in a 2 litre flask, PCl ₅ (g) \Rightarrow PCl ₃ (g) + Cl ₂ (g) at equilibrium. 0.8 mole of Cl ₂ was present in the flask. The equilibrium constant would be						
	$(1) 1.0 \times 10^{-1}$	$(2) 1.0 \times 10^{-4}$	$(3) 1.0 \times 10^{-2}$	$(4) 1.0 \times 10^{-3}$			
Ans.	(1)						
12.	When 3.00 mole of A and 1.00 mole of B are mixed in a 1.00 litre vessel, the following reaction takes place						
	$A(g) + B(g) \rightleftharpoons 2C(g)$						
	The equilibrium mixture contains 0.5 mole of C. What is the value of equilibrium constant for the reaction ?						
	(1)0.12	(2)6	(3) 1.5	(4) 3			
Ans.	(1)						
13.	For the reaction, A+B \rightleftharpoons C+D, K _c = 9. If A and B are taken in equal amounts, then amount of C at equilibrium is:-						
	(1)1	(2) 0.25	(3) 0.75	(4) None of these			
Ans.	(3)						
14.	For $I_2(g) \rightleftharpoons 2I(g), K_e$ at 1000 K is 10 ⁻⁶ . One mole I_2 is added in a one-litre container. Which of the following expressions is correct for the above system at equilibrium ?						
	(1) $[I_2] + [I] = 1 + x$	(2) $[I_2] = \frac{1}{2} [I]$	$(3)[I_2(g)] >> [I(g)]$	(4) Both (1) and (3)			
Ans.	(4)						
15.	Value of K_c at 300° C for $N_2 + O_2 \implies 2NO$ is 9×10^{-4} and equimolecular amounts of N_2 and O_2 are used. The concentration of NO at equilibrium will be						
	(1)0.0148a	(2)0.296a	(3)0.148a	(4) 0.0296a			
Ans.	(4)						
16.	An equilibrium mixture in a vessel of capacity 100 litre contain 1 mol N ₂ , 2 mol O ₂ and 3 mol NO. Number of moles of						
	O, to be added so that at new equilibrium the conc. of NO is found to be 0.04 mol/lit :						
	(1)(101/18)	(2)(101/9)	(3)(202/9)	(4) None of these			
Ans	(1)	(-)()					
	(*)						

17. The figure show the change in concentration of species A and B as a functional of time. The equilibrium constant K_c for the reaction A(g) \implies 2B (g) is :

DPP-3

	DI						
1.	For the process $A(g) 2B(g)$. If pressure is doubled then which is true information about A :-						
	(1) Increase in A	(2) Decrease in A					
	(3) No effect	(4) can't say because d	lata is insufficient				
Ans.	(1)						
2.	Which one of the following equilibrium moves backward when pressure is applied ?						
	$(1) N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$	$(2) N_2(g) + O_2(g) \rightleftharpoons 2N$	IO (g)				
	(3) Water \rightleftharpoons Ice	$(4) I_2(g) \rightleftharpoons I_2(s)$					
Ans.	(3)						
3.	In melting of ice, which one of the conditions will be more favourable?						
	(1) High temp. & high pressure	(2) Low temp. & low pr	essure				
	(3) Low temp. & high pressure	(4) High temp. & low pr	ressure				
Ans.	(1)						
4.	Given the reaction,						
	$2X(g) + Y(g) \rightleftharpoons Z(g) + 80$ kcal						
	Which combination of pressure and temperature gi	ves the highest yield of Z a	t equilibrium ?				
	(1) 1000 atm and 500°C (2) 500 atm and 500°C	(3) 1000 atm and 100°C	(4) 500 atm and 100°C				
Ans.	(3)						
5	What changes will possibly take place in a reversible reaction in equilibrium at constant temperature on changing concentration and pressure, respectively ?						
	(1) Rate of both the reactions and position of equilibrium will respectively change.						
	(2) Percentage of the product and position of the equilibrium will respectively change.						
	(3) Volume and position of the equilibrium will respectively change.						
	(4) No change will take place						
Ans.	(1)						
6.	For the reaction $N_2O_4(g) \rightleftharpoons 2NO_2(g)$, if percentage dissociation of N_2O_4 are 20%, 45%, 65% & 8 sequence of observed vapour densities will be :						
	(1) $d_{20} > d_{45} > d_{65} > d_{80}$	(2) $d_{80} > d_{65} > d_{45} > d_{20}$					
	(3) $d_{20} = d_{45} = d_{65} = d_{80}$	(4) $(d_{20} = d_{45}) > (d_{65} = d_{65})$	d ₈₀)				
Ans.	(1)	20 10 00					
7.	For the dissociation reaction $N_2O_4(g) \rightleftharpoons 2NO_2(g)$, the degree of dissociation (α) in terms of K_p and total equilibrium pressure P is:						
	(1) $\alpha = \sqrt{\frac{4p + K_p}{K_p}}$ (2) $\alpha = \sqrt{\frac{K_p}{4p + K_p}}$	(3) $\alpha = \sqrt{\frac{K_p}{4p}}$	(4) None of these				
Ans.	(2)						
8.	The degree of dissociation of SO, is α at equilibrium pressure P _a .						
	K for 2SO (g) \longrightarrow 2SO (g) + O (g) is						
	$(1) [(D cr^3)/2(1 - cr)^3] = (2) [(D - r^3)/(2 + cr)(1 - cr)^3]$	(2) $[(\mathbf{D}_{cr}^{2})/2(1-cr)^{2}]$	(1) None of these				
	(1) $[(r_0 \alpha^2)/2(1-\alpha)^2]$ (2) $[(P_0 \alpha^2)/(2+\alpha)(1-\alpha)^2]$	$(5)[(r_0\alpha^2)/2(1-\alpha)^2]$	(4) None of these				
Ans.	(2)						

9. The degree of dissociation of $PCl_5(\alpha)$ obeying the equilibrium, $PCl_5 \longrightarrow PCl_3 + Cl_2$, is approximately related to the pressure at equilibrium by (given $\alpha \ll 1$):

(1) $\alpha \propto P$ (2) $\alpha \propto \frac{1}{\sqrt{P}}$ (3) $\alpha \propto \frac{1}{P^2}$ (4) $\alpha \propto \frac{1}{P^4}$

Ans. (2)

- 10. At a temperature T, a compound $AB_4(g)$ dissociates as $2AB_4(g) \rightleftharpoons A_2(g) + 4B_2(g)$ with a degree of dissociation x, which is small compared with unity. The expression of K_p in terms of x and total pressure P is ;
 - (1) $8P^3x^5$ (2) $256P^3x^5$ (3) $4Px^2$ (4) None of these

Ans. (1)