PROBLEM SOLVING TECHNIQUES OF PHYSICAL CHEMISTRY FOR NEET

BY JITENDRA HIRWANI

CHEMICAL KINETICS

Plot No. 38, Near Union Bank of India, Rajeev Gandhi Nagar, Kota, Rajasthan – 324005 Mob. : 9214233303

BASIC EXERCISE

Rate of Reaction

1. Consider the chemical reaction :

 $N_2(g) + 3H_2(g) \longrightarrow 2NH_3(g)$

The rate of this reaction can be expressed in terms of time of concentration of $N_2(g)$, $H_2(g)$ or $NH_3(g)$. Identify the correct relationship amongst the rate expressions.

(1) Rate =
$$-\frac{d[N_2]}{dt} = -\frac{1}{3}\frac{d[H_2]}{dt} = \frac{1}{2}\frac{d[NH_3]}{dt}$$
 (2) Rate = $-\frac{d[N_2]}{dt} = -\frac{3d[H_2]}{dt} = \frac{2d[NH_3]}{dt}$
(3) Rate = $\frac{d[N_2]}{dt} = \frac{1}{3}\frac{d[H_2]}{dt} = \frac{1}{2}\frac{d[NH_3]}{dt}$ (4) Rate = $-\frac{d[N_2]}{dt} = -\frac{d[H_2]}{dt} = \frac{d[NH_3]}{dt}$

Ans. (1)

2. In the formation of sulphur trioxide by the contact process $2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$ The rate of reaction

is expressed as $-\frac{d(O_2)}{dt} = 2.5 \times 10^{-4} \text{ mol } L^{-1} \text{ sec}^{-1}$. The rate of disappearance of (SO₂) will be -(1) $5 \times 10^{-4} \text{ mol } L^{-1} \text{ S}^{-1}$ (2) $-2.25 \times 10^{-4} \text{ mol } L^{-1} \text{ S}^{-1}$ (3) $3.75 \times 10^{-4} \text{ mol } L^{-1} \text{ S}^{-1}$ (4) $50.0 \times 10^{-4} \text{ mol } L^{-1} \text{ S}^{-1}$

Ans.

(1)

3. In a catalytic reaction involving the formation of ammonia by Haber's process $N_2 + 3H_2 \rightarrow 2NH_3$ the rate of appearance of NH₃ was measured as 2.5×10^{-4} mole L⁻¹ S⁻¹ The rate of disappearance of H₂ will be – (1) 2.5×10^{-4} mol L⁻¹ S⁻¹ (2) 1.25×10^{-4} mol L⁻¹ S⁻¹

(3)
$$3.75 \times 10^{-4} \text{ mol } \text{L}^{-1} \text{ S}^{-1}$$

(3) (4) $5 \times 10^{-4} \text{ mol } \text{L}^{-1} \text{ S}^{-1}$
(3)

Ans.

4. Which of the following statement is correct for a reaction $X + 2Y \rightarrow$ Product

(1) The rate of disappearance of X = twice the rate of disappearance of Y.

(2) The rate of disappearance of $X = \frac{1}{2}$ rate of appearance of products

(3) The rate of appearance of products = $\frac{1}{2}$ the rate of disappearance of Y

(4) The rate of appearance of products = $\frac{1}{2}$ the rate of disappearance of X

Ans.

(3)

5. For the reaction, $N_2O_5 \longrightarrow 2NO_2 + \frac{1}{2}O_2$

Given
$$-\frac{d[N_2O_5]}{dt} = K_1[N_2O_5], \frac{d[NO_2]}{dt} = K_2[N_2O_5]$$

$$\frac{d[O_2]}{dt} = K_3[N_2O_5]$$

The relation between K_1 , K_2 and K_3 is –

(1) $2K_1 = K_2 = 4K_3$ (2) $K_1 = K_2 = K_3$ (3) $2K_1 = 4K_2 = K_3$ (4) None Ans. (1)

6. Rate of formation of SO₃ according to the reaction $2SO_2+O_2 \rightarrow 2SO_3$ is 1.6×10^{-3} kg.min⁻¹ Hence rate at which SO₂ reacts is :-(1) 1.6×10^{-3} kg. min⁻¹
(2) 8.0×10^{-4} kg. min⁻¹
(3) 3.2×10^{-3} kg. min⁻¹
(4) 1.28×10^{-3} kg. min⁻¹

Ans. (4)

7.	For a general chemical change $2A+3B \rightarrow$ products, the rate of disappearance of A is r ₁ and of B is r ₂ . The rates r, and r, are related as :-			
Ans.	(1) $3r_1 = 2r_2$ (1)	(2) $r_1 = r_2$	(3) $2r_1 = 3r_2$	(4) $r_1^2 = 2r_2^2$
8.	For the reaction 4A +	$B \rightarrow 2C + 2D$		
	The statement not con	rrect is :-		
	(1) The rate of disapp	pearance of B is one	fourth the rate of disappears	ance of A
	(2) The rate of appear	rance of C is half the	rate of disappearance of B	
	(3) The rate of forma	tion of D is half the r	ate of consumption of A	
Ans.	(4) The rates of forma(2)	ation of C and D are o	equal	
9 .	In a reaction $N_2(g) + 3$ of reaction & rate of	$3H_2(g) \longrightarrow 2NH_3(g)$ disappearance of H_2 v	g) the rate of appearance of N vill be (In mol L ⁻¹ sec. ⁻¹)	IH_3 is 2.5×10^{-4} mol L ⁻¹ sec ⁻¹ . The Rate
	(1) 3.75 × 10 ⁻⁴ , 1.25 ×	< 10 ⁻⁴	(2) 1.25×10^{-4} , 2.5	× 10 ⁻⁴
	(3) 1.25×10^{-4} , $3.75 \times$	< 10 ⁻⁴	(4) 5.0×10^{-4} , 3.75	× 10 ⁻⁴
Ans.	(3)			
				1
10.	For gaseous reaction,	rate = $k [A] [B]$. If v	olume of container is reduce	ed to $\frac{1}{4}$ of initial, then the rate of the
	reaction will be tin	mes of initial:-		
	(1) $\frac{1}{8}$	(2) 8	(3) $\frac{1}{16}$	(4) 16
Ans.	(4)			
Ans. Rate l	(4) Law / Order / Mol	ecularity		
Ans. Rate I 11.	(4) Law / Order / Mole If the concentration u	ecularity inits are reduced by n	times then the value of rat	e constant of first order will
Ans. Rate I 11.	 (4) Law / Order / Mole If the concentration u (1) Increases by n tin 	ecularity inits are reduced by n nes	times then the value of rat (2) Decreases by fa	e constant of first order will actor of n
Ans. Rate I 11.	 (4) Law / Order / Mole If the concentration u (1) Increases by n tin (3) Not change 	ecularity units are reduced by n nes	times then the value of rat (2) Decreases by fa (4) None	e constant of first order will actor of n
Ans. Rate I 11. Ans. 12	 (4) Law / Order / Mole If the concentration u (1) Increases by n tin (3) Not change (3) The rate of certain hype 	ecularity inits are reduced by n nes	times then the value of rat (2) Decreases by fa (4) None	e constant of first order will actor of n
Ans. Rate I 11. Ans. 12.	 (4) Law / Order / Mole If the concentration u (1) Increases by n tin (3) Not change (3) The rate of certain hyp A + B + C → products 	ecularity units are reduced by n nes pothetical reaction s is given by	times then the value of rat (2) Decreases by fa (4) None	e constant of first order will actor of n
Ans. Rate I 11. Ans. 12.	 (4) Law / Order / Mole If the concentration u (1) Increases by n tin (3) Not change (3) The rate of certain hyp A + B + C → products 	ecularity units are reduced by n nes vothetical reaction s is given by	times then the value of rat (2) Decreases by fa (4) None	e constant of first order will actor of n
Ans. Rate I 11. Ans. 12.	(4) Law / Order / Mole If the concentration u (1) Increases by n tin (3) Not change (3) The rate of certain hyp $A + B + C \rightarrow \text{products}$ $r = \frac{-d[A]}{dt} = K[A]^{\frac{1}{2}}[B$	ecularity units are reduced by nes wothetical reaction s is given by $\int_{3}^{3} [C]^{4}$ The order of	times then the value of rat (2) Decreases by fa (4) None	e constant of first order will actor of n
Ans. Rate I 11. Ans. 12.	(4) Law / Order / Mole If the concentration u (1) Increases by n tin (3) Not change (3) The rate of certain hyp $A + B + C \rightarrow \text{products}$ $r = \frac{-d[A]}{dt} = K[A]^{\frac{1}{2}}[B$ (1) 1	ecularity units are reduced by n nes pothetical reaction s is given by $\int_{3}^{3} [C]^{4}$ The order of (2) $\frac{1}{2}$	times then the value of rat (2) Decreases by fa (4) None of the reaction – (3) 2	e constant of first order will actor of n (4) $\frac{13}{12}$
Ans. Rate I 11. Ans. 12. Ans. 13.	(4) Law / Order / Mole If the concentration u (1) Increases by n tin (3) Not change (3) The rate of certain hyp $A + B + C \rightarrow \text{products}$ $r = \frac{-d[A]}{dt} = K[A]^{\frac{1}{2}}[B$ (1) 1 (4) Which of the following	ecularity units are reduced by n nes pothetical reaction s is given by $\int_{-1}^{1/3} [C]_{-1}^{1/4}$ The order of (2) $\frac{1}{2}$ ng rate law has an over	times then the value of rat (2) Decreases by fa (4) None of the reaction – (3) 2 erall order of 0.5 for reaction	e constant of first order will actor of n (4) $\frac{13}{12}$ n involving substances x,y and z ?
Ans. Rate I 11. Ans. 12. Ans. 13.	(4) Law / Order / Mole If the concentration u (1) Increases by n tin (3) Not change (3) The rate of certain hyp $A + B + C \rightarrow \text{products}$ $r = \frac{-d[A]}{dt} = K[A]^{\frac{1}{2}}[B$ (1) 1 (4) Which of the following (1) Pate = K(C) (C)	ecularity inits are reduced by non- nes pothetical reaction is is given by $\int_{1}^{1/3} [C]^{1/4}$ The order of (2) $\frac{1}{2}$ ing rate law has an over $h(C_{1})$	times then the value of rat (2) Decreases by fa (4) None of the reaction – (3) 2 erall order of 0.5 for reaction (2) Pata = $V_{1}(C_{1})^{0.5}$	e constant of first order will actor of n (4) $\frac{13}{12}$ n involving substances x,y and z ?
Ans. Rate I 11. Ans. 12. Ans. 13.	(4) Law / Order / Mole If the concentration u (1) Increases by n tin (3) Not change (3) The rate of certain hyp $A + B + C \rightarrow \text{products}$ $r = \frac{-d[A]}{dt} = K[A]^{\frac{1}{2}}[B$ (1) 1 (4) Which of the followin (1) Rate = K (C _x) (C _y) (3) Rate = K (C) ^{1.5} (C)	ecularity inits are reduced by n nes wothetical reaction s is given by $\int_{2}^{1/3} [C]_{4}^{1/4}$ The order of (2) $\frac{1}{2}$ ing rate law has an over C_{z}	times then the value of rat (2) Decreases by fa (4) None of the reaction – (3) 2 erall order of 0.5 for reaction (2) Rate = K (C _x) ^{0.5} (4) Rate = K (C) (C	e constant of first order will actor of n $(4) \frac{13}{12}$ n involving substances x,y and z ? $(C_y)^{0.5}(C_z)^{0.5}$)° / (C)²
Ans. Rate I 11. Ans. 12. Ans. 13.	(4) Law / Order / Mole If the concentration u (1) Increases by n tin (3) Not change (3) The rate of certain hyp $A + B + C \rightarrow \text{products}$ $r = \frac{-d[A]}{dt} = K[A]^{\frac{1}{2}}[B$ (1) 1 (4) Which of the followind (1) Rate = K (C _x) (C _y) (3) Rate = K (C _x) ^{1.5} (C (3)	ecularity inits are reduced by n nes pothetical reaction is is given by $\int_{2}^{1/3} [C]_{4}^{1/3}$ The order of (2) $\frac{1}{2}$ ing rate law has an over $O(C_{z})^{2}$	times then the value of rat (2) Decreases by fa (4) None of the reaction – (3) 2 erall order of 0.5 for reaction (2) Rate = K (C _x) ^{0.5} (4) Rate = K(C _x)(C _y)	e constant of first order will actor of n $(4) \frac{13}{12}$ n involving substances x,y and z ? $(C_y)^{0.5}(C_z)^{0.5}$ $(C_y)^{2}$
Ans. Rate I 11. Ans. 12. Ans. 13. Ans. 14.	(4) Law / Order / Mole If the concentration u (1) Increases by n tin (3) Not change (3) The rate of certain hyp $A + B + C \rightarrow \text{products}$ $r = \frac{-d[A]}{dt} = K[A]^{\frac{1}{2}}[B$ (1) 1 (4) Which of the followin (1) Rate = K (C _x) (C _y) (3) Rate = K (C _x) ^{1.5} (C (3) A chemical reaction in one of them and investigation	ecularity mits are reduced by n nes oothetical reaction s is given by $\int_{2}^{1/3} [C]^{1/4}$ The order of (2) $\frac{1}{2}$ ng rate law has an ove $O(C_z)$ $C_y)^{-1}(C_z)^{\circ}$ nvolves two reacting seriesly proportional to T_{2}^{-1}	times then the value of rat (2) Decreases by fa (4) None of the reaction – (3) 2 erall order of 0.5 for reaction (2) Rate = K (C _x) ^{0.5} ((4) Rate = K(C _x)(C _y) species. The rate of reaction the concentration of the oth	e constant of first order will actor of n $(4) \frac{13}{12}$ n involving substances x,y and z ? $(C_y)^{0.5}(C_z)^{0.5}$ $(C_y)^2$ is directly proportional to the conc. of er. The order of reaction is –
Ans. Rate I 11. Ans. 12. Ans. 13. Ans. 14.	(4) Law / Order / Mole If the concentration u (1) Increases by n tin (3) Not change (3) The rate of certain hyp $A + B + C \rightarrow \text{products}$ $r = \frac{-d[A]}{dt} = K[A]^{\frac{1}{2}}[B$ (1) 1 (4) Which of the followin (1) Rate = K (C _x) (C _y) (3) Rate = K (C _x) ^{1.5} (C (3) A chemical reaction in one of them and invert (1) 1	ecularity mits are reduced by n nes wothetical reaction s is given by $\int_{2}^{1} [C]^{1/4}$ The order of (2) $\frac{1}{2}$ ng rate law has an ove (C_z) $C_y)^{-1}(C_z)^{\circ}$ nvolves two reacting sersely proportional to $T_{2}^{(2)}$	times then the value of rat (2) Decreases by fa (4) None of the reaction – (3) 2 erall order of 0.5 for reaction (2) Rate = K (C _x) ^{0.5} (4) Rate = K(C _x)(C _y) species. The rate of reaction the concentration of the oth (3) Zero	e constant of first order will actor of n $(4) \frac{13}{12}$ n involving substances x,y and z ? $(C_y)^{0.5}(C_z)^{0.5}$ $(C_y)^{2}$ is directly proportional to the conc. of er. The order of reaction is – (4) Unpredictable

ETC INDIA'S I		IDIA COACHING						J.H. SIR
15.	For the and or	reaction der of re	$H_2(g) + E$ action for	$\operatorname{Br}_2(g) \to \mathbb{R}$	2HBr(g), the action is –	e expe	rimental data suggests, Ra	te = K [H ₂] [Br ₂] ^{$\frac{1}{2}$} . The molecularity
	(1) 2 a	nd 2 resp	pectively				(2) 2 and $1\frac{1}{2}$ respect	tively
	$(3) 1\frac{1}{2}$	and 2	respectiv	velv			(4) $1\frac{1}{2}$ and $1\frac{1}{2}$ respe	ectively
Ans.	(3) 1/2 (2)	und 2	respectiv	Cly			(1) 1/2 and 1/2 105pc	
16.	Select	the rate	law that	correspo	nds to the o	lata s	hown for the following r	eaction $A + B \rightarrow C$
	Exp.	[A]		[B]			Initial rate	
	1.	0.012		0.035			0.10	
	2.	0.024		0.070			1.6	
	3.	0.024		0.035			0.20	
	4.	0.012		0.070			0.80	
	(1) Rat	e = K [B]] ³	(2) Rat	$te = K[B]^4$		(3) Rate = $K[A][B]^3$	(4) Rate = $K[A]^{2}[B]^{2}$
Ans.	(3)							
17.	In a ce	ertain gas	eous rea	ction bet	ween X and	IY, X	$1 + 3Y \rightarrow XY_3$ The initia	l rates are reported as follows -
	01M	0.1M	0.002 N	∕/s ^{−1}				
	0.1 M	0.1 M	0.0021	Ms ⁻¹				
	0.2 M	0.1 M	0.0021	v15				
	0.3 M	0.2 M	0.008 1	v15				
	U.4 MI	te law is	0.0181	V15				
	(1)r = 1	V[V][V]	-	(2) r = 1	V[V]0[V]2		(2) r - V[V][V]	$(A) r = [\mathbf{V}]^{9} [\mathbf{V}]^{3}$
Ans.	(1)1 – 1 (2)	κ [λ][Ι]΄		(2)1-	κίαι [1].		$(5)I = \mathbf{K}[\mathbf{X}][\mathbf{I}]$	$(4)\mathbf{I} - [\mathbf{A}] [\mathbf{I}]^{T}$
18.	Select	the law t	that corre	esponds 1	to date show	vn for	the following reaction 2	$A + B \rightarrow C + D -$
	Exp.	[A]		[B]		Initia	l rate	
					((mol I	L ⁻¹ min ⁻¹)	
	1.	0.1		0.1		7.5 ×	10-3	
	2.	0.3		0.2		9.0 ×	10-2	
	3. 1	0.3		0.4		3.6 ×	10-1	
	4.	0.4	12[]]1	(2) D (2)		3.0 ×	10^{2}	(4) $\mathbf{D}_{aba} = \mathbf{V}[\mathbf{A}][\mathbf{D}]$
Ans.	(1) Kat (2)	е – к [А	.] ⁻ [D]	(2) Ka	$\mathbf{E} = \mathbf{K}[\mathbf{A}][\mathbf{D}]$]-	(5) Kale – $K[A][D]^{2}$	(4) Kate – $\mathbf{K}[A][D]$
19.	For a l	vpotheti	cal reacti	on · A +	$- B \rightarrow C th$	e follo	wing data was obtained	in three different experiments -
171	[A]	ijpoulou	IBI	, 11 ·	Rate or r	eactio	n	in the unit of the spectrum is .
	(mol li	t ⁻¹)	(mol li	t ^{−1})	(mol lit ⁻¹	min ⁻¹	(¹)	
	0.01	()	0.01	•)	1.0×10^{-1}	4)	
	0.01		0.03		9.0 × 10 ⁻	4		
	0.03		0.03		2.70×10^{-10}	-3		
	Sugges	st rate lay	w :					
	(1) r =	K[A] ² [F	3]	(2) r =	K[A] [B] ²		(3) $r = K[A][B]$	(4) None of these
Ans.	(2)	ויניזן ני	,]	(2)1	n [i n] [D]		$(\mathbf{J})^{\mathbf{I}} = \mathbf{K}[\mathbf{I}] [\mathbf{D}]$	
20.	Calcula	ate the or	rder of th	e reaction	on in A and	B :		
	[A] (m	ol l ⁻¹)	[B] (m	ol ⁻¹)	Rate			
	0.05			0.05		1.2 >	< 10 ⁻³	
	0.10			0.05		2.4 >	< 10 ⁻³	
	0.05			0.10		1.2 >	< 10 ⁻³	
	(1) 1 a	nd 0		(2) 1 a	and 1		(3) 0 and 1	(4) None
Ans.	(1)							

21. For a chemical reaction $A + B \rightarrow$ product, the order is one with respect to each A and B. Value of x and y from the given data is :-Rate (mole/lit./sec.) (A) **(B)** 0.10 0.20 M 0.05 M 0.40 0.05 M х 0.80 0.40 M у (1)0.20, 0.80(2)0.80, 0.40(3) 0.80, 0.20(4) 0.40, 0.20Ans. (3) 22. Time required to complete a half fraction of a reaction varies inversely to the concentration of reactant then the order fo reaction is -(1) Zero (4)3(2)1(3)2Ans. (3) 23. The rate law for the single step reaction $2A + B \rightarrow 2C$, is given by – (1) Rate = K[A][B](2) Rate = $K[A]^{2}[B]$ (3) Rate = K[2A][B](4) Rate = $K[A]^{2}[B]^{\circ}$ Ans. (2) 24. Following mechanism has been proposed for a reaction. $2A + B \rightarrow D + E$ $A + B \rightarrow C + D - (slow)$ $A + C \rightarrow E - -$ (fast) The rate law expression for the reaction is – (1) $r = K[A]^2 [B]$ (2) r = K[A] [B](3) $r = K[A]^2$ (4) r = K[A][C]Ans. (2) 25. For a reaction of the type $A + B \rightarrow$ products, it is observed that doubling the concentration of A causes the reaction rate to be four times as great, but doubling the amount of B does not effect the rate. The rate equation is -(1) Rate = K[A][B](2) Rate = $K [A]^2$ (3) Rate = $K[A]^{2}[B]$ (4) Rate = $K[A]^2[B]^2$ Ans. (2) 26. Point out incorrect statement. (1) Rate law is an experimental valve (2) Law of mass action is a theoretical proposal (3) Rate law is more informative than law of mass action for developing mechanism (4) Rate law is always different from the expression of law of mass action. Ans. (4) 27. For a chemical reaction $A \rightarrow B$ it is found that the rate of reaction double when the concentration of A is increased four times. The order in A for this reaction is -(1) Two (2) One (4) Zero (3) Half (3) Ans. 28. For an elementary process $2X + Y \rightarrow Z + W$, the molecularity is – (1)2(3) 3` (4) Unpredictable (2)1(3) Ans.

INDIA'S NO. 1 ONLINE COACHING

J.H. SIR

29.	The rate law of the	ne reaction A + 2B \rightarrow pro-	oduct is given by $\frac{d[P]}{dt} =$	$K[A]^2[B]$. If A is taken	n in large excess,
	the order of the r	eaction will be -			
Ans.	(1) Zero (2)	(2) 1	(3) 2	(4) 3	
30.	The decomposition	on of N_2O_5 occurs as,			
	$2N_2O_5 \rightarrow 4NO_2 +$	O_2 , and follows first order	er kinetics; hence		
	(1) The reaction is	s bimolecular	(2) The recation	i is unimolcular	
Ans.	(3) t _{1/2} α a° (3)		(4) None		
31.	The accompanying figure depicts the change in concentration of species X and Y for the reaction $X \rightarrow Y$ as a function of time the point of intersection of the two curves represents.				

35. For a chemical reaction $A \rightarrow B$, the rate of reaction doubles when the conc. of A is increased 8 times. The order

	NO. 1 ONLINE COACHING			J.H. SIR	
	of reaction w.r.t. A is	:			•
	(1) 3	(2) $\frac{1}{2}$	(3) $\frac{1}{3}$	(4) Zero	
Ans.	(3)				
36.	The specific rate cor	stant of a first order re	eaction depends on the :-		
	(1) Conc. of the reac	tant	(2) Conc. of the p	product	
A ma	(3) Time		(4) Temperature		
ANS.	(4)				
Pseud 37.	do First Order Rea The hypothetical rea	action / Mechanism action $A_2 + B_2 \rightarrow 2AB$ f	of Reaction follows the mechanism as	given below –	
	$A \implies A + A$	(fast)			
	A + D + AD + D	(1)			
	$A + B_2 \rightarrow AB + B \dots$	(fact)			
	$A + D \rightarrow AD$	(last)			
	(1) 2	(2) 1	$(3) 1\frac{1}{2}$	(A) Zero	
Ans.	(1) 2 (3)	(2)1	(3)172	(4) 2010	
38.	For reaction $NO_2 + C$	$CO \rightarrow CO_2 + NO$, the r	rate expression is, Rate =	$K [NO_2]^2$	
	The number of mole	cules of CO involved in	n the slowest step will be	-	
	(1)0	(2) 1	(3) 2	(4) 3	
Ans.	(1)				
39.	The acid hydrolysis	of ester is –			
	(1) I order reaction		(2) Bimolecular re	action	
Ans	(3) Pseudo unimolect	llar reaction	(4) All		
40.	In the sequence of r	eaction			
	$\mathbf{K}_1 \times \mathbf{D} \times \mathbf{K}_2$	$\sim C = K_3 \sim D$			
	$\begin{array}{c} A & \longrightarrow & B \\ \hline \\ K & > K & > K \\ \end{array} $ then t	$\rightarrow C \longrightarrow D$,	n of the reaction is :-		
	$K_3 > K_2 > K_1$, then t (1) $A \rightarrow B$	$(2) C \rightarrow D$	$(3) B \rightarrow C$	$(4) A \rightarrow D$	
Ans.	(1) (1)	(2) C / D			
41.	The reaction mechan	ism for the reaction P -	\rightarrow R is as follows :-		
	$P \xrightarrow{K_1} 2O$ (fast)	$\cdot 2\mathbf{O} + \mathbf{P} = \mathbf{K}_2 \times \mathbf{R}$	slow)		
		$, 2Q + 1 \longrightarrow K(1)$			
	the rate law for the r	nain reaction $(P \rightarrow R)$	IS :		
Ans	$(1) \mathbf{K}_{1}[\mathbf{P}] [\mathbf{Q}]$	$(2) \mathbf{K}_{1} \mathbf{K}_{2} [P]$	$(3) K_1 K_2 [P]^2$	$(4) \mathbf{K}_{1} \mathbf{K}_{2} [a]$	
Alls. 42.	The reaction $2A + B$	\rightarrow products, follows the	e mechanism		
	24	Δ (fast)			
	$\Delta + \mathbf{P} \rightarrow \mathbf{I}$	\mathbf{P}_{2} (last)			
	$A_2 \top D \rightarrow f$ The order of the real	ction is :			
	(1) 1 5	(2) 2	(2) 1	(A) 2	
Ans.	(1) 1.5	(2) 5	(3) 1	(+) 2	

ETOOSINDIA INDIA'S NO. 1 ONLINE COACHING

43 .	For the reaction $2NO + Cl_2 \rightarrow 2NOCl$ the following mechanism has been proposed			
	$NO + Cl_2 \implies NOCl_2 \text{ (fast)}$			
	NOCl ₂ + NO \rightarrow 2NOCl (s	slow) the rate law for the	reaction is :-	
	(1) Rate = $K[NO]^{2}[Cl_{2}]$		(2) Rate = $K[NO][Cl_2]^2$	
	(3) Rate = $K[NOCl_{2}]$		(4) Rate = $K[NOC1]^2$	
Ans.	(1)			
	_			
Zero / 44.	First / nth Order Rea K for a zero order reaction	action on is		
	$2 \times 10^{-2} \text{ mol } L^{-1} \text{ sec}^{-1}$. If	the concentration of the re	actant after 25 sec is 0.5 N	1, the initial concentration must
	have been.			
A	(1) 0.5 M	(2) 1.25 M	(3) 12.5 M	(4) 1.0 M
Ans.	(4)	· · · ·		1
45.	If the first order reaction	i involves gaseous reactan	its and gaseous products t	he units of its rate are –
Ang	(1) atm.	(2) atm - sec.	(3) atm $- \sec^{-1}$	(4) $\operatorname{atm}^2 \operatorname{sec}^2$
AII5. 16	(3) Plot of $\log(a - x)$ vs time	e t is straight line. This in	dicates that the reaction is	of_
40.	(1) Second order	(2) Eirst order	(2) Zero order	(4) third order
Ans.	(1) Second order (2)	(2) First order		(4) third order
47.	The units for the rate co	nstant of first order reacti	on is –	
	(1) s^{-1}	(2) mol $L^{-1} s^{-1}$	(3) mol s^{-1}	(4) $Lmol^{-1} s^{-1}$
Ans.	(1)			
48.	The rate constant of 0.02 M, the rate of reaction	a first order reaction would be-	is 4×10^{-3} sec ⁻¹ . At	a reactant concentration of
	(1) 8 × 10 ⁻⁵ M sec ⁻¹		(2) 4×10^{-3} M sec ⁻¹	
	(3) 2×10^{-1} M sec ⁻¹		(4) $4 \times 10^{-1} \text{ M sec}^{-1}$	
Ans.	(1)			
49.	In a first order reaction the constant of the reaction	e concentration of the reac would be –	tant is decreased from 1.0	M to 0.25 M in 20 min. The rate
	(1) 10 min ⁻¹	(2) 6.931 min ⁻¹	(3) 0.6931 min ⁻¹	(4) 0.06931 min ⁻¹
Ans.	(4)			
50.	In a first order reaction t	he $a/(a - x)$ was found to	be 8 after 10 minute. The	e rate constant is
	(1) $(2.303 \times 3 \log 2)/10$	(2) $(2.303 \times 2 \log 3)/10$	$(3) 10 \times 2.303 \times 2\log 3$	(4) $10 \times 2.303 \times 3\log 2$
Ans.	(1)			
51.	75% of a first order react	ion was found to complete	in 32 min. When will 50%	of the same reaction complete-
	(1) 24 min	(2) 16 min	(3) 8 min	(4) 4 min
Ans.	(2)			
52.	A first order reaction has	a half life period of 69.3	sec. At 0.10 mol lit ^{-1} react	ant concentration rate will be –
A m a	(1) 10^{-4} M sec ⁻¹	(2) 10^{-3} M sec ⁻¹	(3) 10^{-1} M sec ⁻¹	(4) $6.93 \times 10^{-1} \text{ M sec}^{-1}$
A115. 53	(4) What fraction of a reacta	nt chowing first order ram	ains after 10 minute if 11/	is 20 minute :
55.	(1) 1/A	(2) 1/2	(2) $1/8$	(A) 1/6
Ans.	(1) 1/4	(2) 1/2	(3) 1/0	(+) 1/0

ET(NO. 1 ONLINE COACHING			J.H. SIR			
54.	For a first order reaction period for the reaction	$n A \rightarrow products$, the rate is –	of reaction at $[A] = 0.2 \text{ M} \text{ i}$	is 1×10^{-2} mol lit ⁻¹ min ⁻¹ . The half life			
	(1) 832 min.	(2) 440 sec.	(3) 416 min.	(4) 14 min.			
Ans.	(4)						
55.	The half life for the fir	st order reaction					
	$N_2O_5 \rightarrow 2NO_2 + \frac{1}{2} O_2$ a period of 96 hours ?	is 24 hrs. at 30°C. Starting	g with 10g of N_2O_5 how m	any grams of N_2O_5 will remain after			
	(1) 1.25 g	(2) 0.63 g	(3) 1.77 g	(4) 0.5 g			
Ans.	(2)						
56.	What is the half life of 40 minutes ?	a radioactive substance if	87.5% of any given amo	unt of the substance disintegrate in			
	(1) 160 min	(2) 10 min	(3) 20 min	(4) 13 min 20 sec.			
Ans.	(4)						
57.	For a given reaction of required for the concent	For a given reaction of first order it takes 20 minute for the concentration to drop from 1 M to 0.6 M. The time required for the concentration to drop from 0.6 M to 0.36 M will be :					
	(1) More than 20 min	(2) Less than 20 min	(3) Equal to 20 min	(4) Infinity			
Ans.	(3)						
58.	A first order reaction is changes into the product for the same period the	s carried out with an initia et. Now if the same reaction e percentage of the reacta	l concentration of 10 mo n is carried out with an in nt changing to the produ	le per litre and 80% of the reactant itial concentration of 5 mol per litre act is.			
	(1)40	(2) 80	(3) 160	(4) Cannot be calculated			
Ans.	(2)						
59.	In the following first or	rder completing reaction.					
	A + Reagent \rightarrow Produce	ct, B + Reagent \rightarrow Produc	et				
	The ratio of K_1 / K_2 if	only 50% of B will have	been reacted, When 94%	o of A has been reacted is -			
	(1) 4.06	(2) 0.246	(3) 2.06	(4) 0.06			
Ans.	(1)						
60.	The reaction $L \rightarrow M$ is The order of reaction i	started with 10 g of L. Afters	er 30 and 90 minute, 5 g a	and 1.25 g of L are left respectively.			
	(1) 0	(2) 2	(3) 1	(4) 3			
Ans.	(3)						
61.	If doubling the initial co	oncentration of a reactant do	ubles t_{y_2} of the reaction, the	e order of the reaction is-			
	(1) 3	(2) 2	(3) 1	(4) 0			
Ans.	(4)						
62.	The half life period for The order of reaction i	calalytic decomposition of s –	AB_3 at 50 mm is found to	b be 4 hrs and at 100 mm it is 2 hrs.			
	(1) 3	(2) 1	(3) 2	(4) 0			
Ans.	(3)						
63.	The rate constant for a	reaction is 10.8×10^{-5} m	ol L ⁻¹ S ⁻¹ The reaction of	beys –			
	(1) First order	(2) Zero order	(3) Second order	(4) All are wrong			
Ans.	(2)						

64.	A substance 'A' decomposes in solution following the first order kinetics flask I contains 1 lit of 1M. solution of A and flask II contains. 100 ml of 0.6 M solution. After 8 hr. the concentration of A in flask.					
	I become 0.25 M, what	will be the time for concet	ration of A in flask II to be	ition of A in flask II to become 0.3 M.		
	$(1) 0.4 \mathrm{hr.}$		(2) 2.4 hr.			
	(3) 4.0 hr.		(4) Unpredictable as rate	e constant is not given		
Ans.	(3)					
65.	The rate constant (K) for 15 sec , 2.60×10^{-5} lit m is	for the reaction $2A + B \rightarrow aol^{-1} \sec^{-1} after 30 \sec and 2$	product was found to be 2.55×10^{-5} lit mol ⁻¹ sec ⁻¹ af	2.5×10^{-5} litre mol ⁻¹ sec ⁻¹ after ther 50 sec. The order of reaction		
Ans.	(1) 2 (1)	(2) 3	(3) Zero	(4) 1		
66.	If a reaction with $t_{4} = 6$	59.3 second; has a rate con	stant 10 ⁻² per second the	order is :		
Ans.	(1) Zero (2)	(2) 1	(3)2	(4) 3		
67.	The rate constant fo 1M solution to be reduced	r a second order reaction ced to 0.5 M.	on is 8 \times 10 ⁻⁵ M ⁻¹ min	⁻¹ : How long will it take a		
Ans.	(1) $8.665 \times 10^3 \min$ (3)	(2) 8×10^{-3} min	(3) 1.25×10^4 min	(4) 4×10^{-5} min		
68.	A graph between $t_{1/2}$ and in 10 minutes when cond	l conc. for n th order reaction c. is 2 mol L ⁻¹ . This is decon	is a straight line. Reaction nposed 50% in t minutes at	of this nature is completed 50% 4 mol L ⁻¹ n and t are respectively		
	(1) 0, 20 min. (2) 1, 10 min. (3) 1, 20 min. (4) 0, 5 min. (4) Fig.	conc.				
Ans.	(2)					
69.	In the first order reaction	75% of the reactant disapp	eared in 1.388 h. Calculate	the rate constant of the reaction:-		
Ans.	(1) 1 s ⁻¹ (2)	(2) $2.8 \times 10^{-4} \text{ s}^{-1}$	(3) $17.2 \times 10^{-3} \text{ s}^{-1}$	(4) $1.8 \times 10^{-3} \text{ s}^{-1}$		
70.	In the case of first order	r reaction, the ratio of time	required for 99.9% compl	letion to 50% completion is :-		
	(1) 2	(2) 5	(3) 10	(4) None		
Ans.	(3)	X /				
71.	From different sets of	data of $t_{1/2}$ at different	initial concentrations say	y 'a' for a given reaction, the		
	$[t_{1/2} \times a]$ is found to be	constant. The order of rea	action is :-			
Ans.	(1) 0 (3)	(2) 1	(3)2	(4) 3		
72.	The reaction $2N_2O_5(g)$ –	$\rightarrow 4NO_2(g) + O_2(g)$				
	is first order with respe	ct to N_2O_5 . Which of the fo	ollowing graph would yield	d a straight line :-		
	(1) log(PN ₂ O ₅) versus ti	me with – Ve slope	(2) (PN ₂ O ₅) ⁻¹ versus time			
Ans.	(3) (PN_2O_5) versus time (1)		(4) $\log(PN_2O_5)$ versus tin	ne with + Ve slope		

73. Which of the following curves represents a Ist order reaction :-(2) log (a-x) (1) log (a-x (3) $t^{\frac{1}{2}}$ (4) 1 & 3 both (4) Ans. 74. The following data were obtained at a certain temperature for the decomposition of ammonia 50 100 200 p(mm) 3.64 1.82 0.91 $t_{1/2}$ The order of the reaction is :-(1)0(2)1(3)2(4)3(3) Ans. 75. A reaction is found to have the rate constant x sec⁻¹ by what factor the rate is increased if initial conc. of A is tripled (1)3(2)9(3) x (4) Remains same (1) Ans. 76. The half life of a first order reaction is 10 min. If initial amount is 0.08 mol/lit. and conc. at some instant is 0.01 mol/lit. then t =(1) 10 min. $(2) 30 \min$. (3) 20 min. (4) 40 min. Ans. (2) 77. Which is incorrect :-(1) Half life of a first order reaction is independent of initial concentration (2) Rate of reaction is constant for first order reaction (3) Unit of K for second order reaction is mol⁻¹ lit sec⁻¹ (4) None (2) Ans. 78. Hydrolysis of ester in alkaline medium is :-(1) First order reaction with molecularity one (2) Second order reaction with molecularity two (3) First order reaction with molecularty two (4) Second order reaction with molecularity one Ans. (2) The expression which gives $\frac{1}{4}$ th life of Ist order reaction is :-79. (1) $\frac{K}{2.303}\log\frac{4}{3}$ (2) $\frac{2.303}{K}\log 3$ (3) $\frac{2.303}{K}\log\frac{3}{4}$ (4) $\frac{2.303}{K}\log\frac{4}{3}$ (4) Ans.

ETC INDIA'S I	NOSINDIA				J.H. SIR	
80.	The rate constant of a is 0.05 mol dm ⁻³ . The	zero order reaction is 0.2 en its initial concentration	mol dm ⁻³ h ⁻¹ . If the concentra would be :-	ation of the re	eactant after 30 minutes	
Ans.	(1) 6.05 mol dm ⁻³ (2)	(2) 0.15 mol dm^{-3}	(3) 0.25 mol dm ⁻³	(4) 4.00	mol dm ⁻³	
81.	A reaction is of fi 100 gm are taken initi weight taken is 200 gr	rst order. After 100 m ally, calculate the time rec m :-	uinutes 75 gm of the re uired when 150 gm of the re	actant A are	e decomposed when decomposed, the initial	
	(1) 100 minutes	(2) 200 minutes	(3) 150 minutes	(4) 175 r	ninutes	
Ans. 82	(1) For which of the follo	owing the unit of rate an	d rate constant of the reac	tion are ident	tical ·-	
02.	(1) First order reactio	n	(2) Zero order reaction	n		
	(3) Second order read	ction	(4) Fractional order o	f reaction		
Ans.	(2)					
83.	$2A \rightarrow Product, for [A]_{Initial} = 0.2 mole h$	lows the first order it ⁻¹ is 20 min. then the va	kinetics. If the half 1 alue of rate constant would	ife period be:-	of the reaction at	
	(1) 4 sec.	(2) 20 sec.	(3) 4 lit. mol ⁻¹ min. ⁻¹	(4) Non	e of these	
Ans.	(4)					
84 .	Correct statement about first order reaction is:-					
	(1) $t_{complition = finite}$		(2) $t_{1/2} \propto \frac{1}{a}$			
Ans.	(3) Unit of K is mole (4)	e lit ⁻¹ sec ⁻¹	(4) $t_{1/2} \times K = \text{const.}$	(4) $t_{1/2} \times K = \text{const.}$ at const. temp.		
Collis	sion Theory and Fa	ctors Affecting Rate				
85.	According to collisio	n theory of reaction rates	5 —			
	(1) Every collision between reactant leads to chemical reaction					
	(2) Rate of reaction i	s proportional to velocity	of molecules			
	(3) All reactions wh	ich occur in gaseous phas	se are zero order reaction			
Ang	(4) Rate of reaction i	s directly proportional to	collision frequency.			
Alls.	(4)					
86.	Activation energy of a reaction is -					
	(1) The energy released during the reaction					
	(2) The energy evolve	ed when activated comple	ex is formed			
	(3) Minimum amoun	t of energy needed to	overcome the potential bar	rrier of reacti	lon	
Ans.	(4) The energy neede (3)	ed to form one mole of the	ie product			
87.	The minimum energy	for molecules to enter in	to chemical reaction is calle	ed.		
Ans.	(1) Kinetic energy (3)	(2) Potentia	l energy (3) Threshol	d energy	(4) Activation energy	

88.	The rate constant K_1 of a reaction is found to be double that of rate constant K_2 of another reaction. The relationship between corresponding activation energies of the two reactions at same temperature ($E_1 \& E_2$) can be represented as			
Ans.	(1) $E_1 > E_2$ (2)	(2) $E_1 < E_2$	(3) $E_1 = E$	(4) $E_1 = 4E_2$
89.	At room temperature th it is due to –	e reaction between NO ar	nd O_2 to give NO_2 is fast	while that between CO and O_2 is slow
	(1) CO is smaller in siz	e than that of NO		
	(2) CO is poisonous			
	(3) The activation ener	gy for the reaction		
	$2NO + O_{2} \rightarrow 2$	$2NO_{\rm o}$ is less than $2CO +$	$0. \rightarrow 2CO.$	
	(4) None			
Ans.	(3)			
90.	Chemical reaction occur	rs as a result of collision b	etween reacting molecu	les. Therefore the reaction rate is given
	by			
	(1) Total number of col	llisions occuring in a uni	t volume per second	
	(2) Fraction of molecul	les which possess energy	less than the threshol	d energy.
	(3) Total number of eff	ective collisions		
	(4) None			
Ans.	(3)			
91.	An endothermic reaction cal/mol. The activation	on $A \rightarrow B$ have an activation energy of the reaction B	ation energy 15 K cal/n $B \rightarrow A$ is –	nol and the heat of the reaction is 5 K
Ans.	(1) 20 k cal/mol (3)	(2) 15 kcal/mol	(3) 10 kcal/mol	(4) Zero
92.	For A + B \rightarrow C + 85 KJmol ⁻¹ . The activa	D; Δ H = -20 kJ mo tion energy for backward	I ⁻¹ . The activation e reaction is	nergy of the forward reaction is. KJ mol ⁻¹ .
	(1) 65	(2) 105	(3) 85	(4)40
Ans.	(2)			
93.	A large increase in the	rate of a reaction for a r	rise in temperature is d	ue to –
	(1) Increase in the num	ber of collisions		
	(2) Increase in the num	ber of activated molecul	es	
	(3) Lowering of activat	ion energy		
	(4) Shortening of the m	nean free path		
Ans.	(2)			
94.	Rate of which reactions	s increases with temperat	ure –	
	(1) Of any		(2) Of exothermic r	eaction
	(3) Of endothermic read	ction	(4) Of None	
Ans.	(1)			
95.	The rate of a chemical r rate of reaction increas	eaction doubles for every es by :	10°C rise in temperatu	re. If the temp is increased by 60°C the
	(1) 20 times	(2) 32 times	(3) 64 times	(4) 128 times
Ans.	(3)			

	NO. 1 ONLINE COACHING			J.H. SIR			
96.	According to the arrhenius equation a straight line is to be obtained by plotting the logarithm of the rate constant of chemical reaction (log k) against.						
	(1)(T)	(2) log T	(3) $\frac{1}{T}$	(4) log $\frac{1}{T}$			
Ans.	(3)		, 1	, 1			
97.	Which plots will give	e the value of activation en	iergy.				
	(1) K vsT	(2) $\frac{1}{K}$ usT	(3) lnK vsT	(4) lnK us $\frac{1}{T}$			
Ans.	(4)	K / K					
98.	Given that K is the rate	e constant for some order of	any reaction at temp T then	the value of $\lim_{T\to\infty} \log K$			
Ans.	(1) A 2.303 (4)	(2) A	(3) 2.303 A	(4) log A			
99.	From the following d	ata; the activation energy f	for the reaction (cal/mol) H	$I_2 + I_2 \rightarrow 2HI$			
	T , (in, K)	1/T,	(in, K ⁻¹)	log ₁₀ K			
	769	$1.3 imes 10^{-3}$		2.9			
	667	1.5×10^{-3}		1.1			
Ans.	(1) 4×10^4 (1)	(2) 2×10^4	(3) 8×10^4	(4) 3×10^4			
100. Ans.	The rate constant; th $3 \times 10^{-4} \sec^{-1}$; 104.4 1 (1) $2 \times 10^{8} \sec^{-1}$ (1)	the activation energy and the KJ mol ⁻¹ and 6.0×10^{14} sec (2) 6×10^{14} sec ⁻¹	he arrhenius parameter of c ⁻¹ respectively, the value of (3) Infinity	f a chemical reaction at 25°C are of the rate constant as $T \rightarrow \infty$ is. (4) $3.6 \times 10^{30} \text{ sec}^{-1}$			
101.	For an endothermic re for the energy of acti	eaction where ΔH represent vation will be	s the enthalpy of the reacti	on in KJ/mol ; the minimum value			
Ans.	(1) Less than ΔH(3)	(2) Zero	(3) More than ΔH	(4) Equal to ΔH			
102.	The rate of reaction in constant at 300 K the	hereases by 2.3 times when en the rate constant at 310	the temperature is raised from K will be equal to –	om 300 K to 310 K. If K is the rate			
Ans.	(1)2K (3)	(2) K	(3) 2.3 K	(4) 3K ²			
103.	If concentration of re	eactants is increased by 'x'	then the K becomes –				
	(1) $\ln \frac{K}{L}$	$(2) \frac{K}{2}$	(3) $K + x$	(4) K			
Ans.	(4) x	X					
104	Which is used in the	determination of reaction	rotos				
104.	(1) Reaction Temperat(3) Specific rate const	ture	(2) Reaction Concentra (4) All of these	ation			
Ans.	(4)						
105.	The rate constant of	a first order reaction depen	nds on the :-				
	(1) Concentration of	the reactant	(2) Concentration of the	he product			
Ans.	(3) Time (4)		(4) Temperature				

ETOOSINDIA INDIA'S NO. 1 ONLINE COACHING

106.	For the decomposition of $N_2O_5(g)$ it is given that-			
	$2N_2O_5(g) \rightarrow 4NO_2(g) + O_2(g)$ activation energy = Ea $N_2O_5(g) \rightarrow 2NO_2(g) + \frac{1}{2}O_2(g)$ activation energy = Ea' then			
Ans.	(1) $Ea = 2Ea'$ (4)	(2) Ea > Ea'	(3) Ea < Ea'	(4) Ea = Ea'
107.	For a reaction for which	the activation energies of	f forward and reverse reac	tions are equal :-
Ans.	(1) $\Delta H = 0$ (1)	$(2) \Delta S = 0$	(3) The order is zero	(4) There is no catalyst
108.	The energy of activation is:-	of a forward reaction is 5	50 Kcal. The energy of act	tivation of its backward reaction
	(1) Equal to 50 Kcal.		(2) Greater than 50 Kcal.	
Ans.	(3) Less than 50 Kcal. (4)		(4) Either greater or less	than 50 Kcal.
109.	An exothermic reaction 2	$X \rightarrow Y$ has an activation en	ergy 30 KJ mol ⁻¹ . If energy	α change (ΔE) during the reaction
	is - 20 KJ, then the act	ivation energy for the reve	erse reaction is :-	
	(1) 10 KJ	(2) 20 KJ	(3) 50 KJ	(4) – 30 KJ
Ans.	(3)			
110.	Which of the following	plot is in accordance with	the arrhenius equation :-	
	(1) $\log K$	(2) log K $\frac{1}{\frac{1}{T}}$	(3) log K $\underbrace{\frac{1}{T}}_{T}$	(4) K $\underbrace{\frac{1}{\frac{1}{T}}}_{-\frac{1}{T}}$
Ans. 111.	(3) For a certain gaseous rea the value of activation of	action a 10° C rise of temp energy :-	. from 25° C to 35° C dou	bles the rate of reaction. What is
	10		2.303 × 10	
	(1) $\frac{1}{2.303 \text{R} \times 298 \times 30}$	8	$(2) \frac{1}{298 \times 308 \mathrm{R}}$	
	0.693R ×10		$0.693 \text{R} \times 298 \times 30$	8
	(3) $\overline{290 \times 308}$		(4)10	_
Ans.	(4)			
112.	The activation energy for the backward reaction	the forward reaction $X \rightarrow Y$ $Y \rightarrow X$ is:-	is 60 KJ mol ⁻¹ and ΔH is -	20 KJ mol ⁻¹ . The activation energy
Ans.	(1) 80 KJ mol ⁻¹ (1)	(2) 40 KJ mol ⁻¹	(3) 60 KJ mol ⁻¹	(4) 20 KJ mol ⁻¹
113.	For producing the effect	tive collisions, the colloidi	ng molecules must posses	:-
	(1) A certain minimum a	mount of energy		
	(2) Energy equal to or g	reater than threshold ener	gv	
	(3) Proper orientation	,	<i>c.</i>	
Ans.	(4) Threshold energy as(4)	s well as proper orientation	on of collision	

114.	The half life for a reaction isof temperature:-				
	(1) Independent	(2) Increased with increase			
	(3) Decreased with increase	(4) Increased or decreased with increase			
Ans. 115.	(3) The activation energy for a chemical reaction depends upon :-				
	(1) Temperature	(2) Nature of reacting species			
	(3) Concentration of the reacting species	(4) Collision frequency			
Ans.	(2)				
116.	The rate of reaction increases by the increase(1) Collision is increased(2) Energy of products decreases	of temperature because :			
Ans.	 (3) Fraction of molecules possessing energy ≥ (4) Mechanism of a reaction is changed (3) 	: E _T (Threshold energy) increases			

ETOOSINDIA INDIA'S NO. 1 ONLINE COACHING

ANALYTICAL EXERCISE

1.	Consider	the data bel	low for a rea	action $A \rightarrow$	В			
		Time (sec)	0	10	20	30		
		Rate	1.60×10 ⁻²	1.60×10 ²	1.60×10 ⁻²	1.59×10 ⁻²		
	From the	above data	the order of	freaction is	5			
	(1) Zero		(2)1		((3)2	(4) 1	
Ans.	(1)							
2.	The graph between the log K versus $\frac{1}{T}$ is a straight line. The slope of the line is							
	$(1) - \frac{2.30}{E}$	$\frac{03R}{E_a}$	(2) –	$\frac{E_a}{2.303R}$	($(3) \frac{2.303R}{E_a}$	$(4) \frac{\mathrm{E_a}}{2.303\mathrm{R}}$	
Ans.	(2)							
3.	The temp	perature coef	fficient for r	nost of the	reaction lie	s between		
	(1)1&3		(2) 2	& 3	((3) 1 & 4	(4) 2 & 4	
Ans.	(2)		. ,					
4.	If the vol	ume of close	d vessel in v	which the fo	ollowing sim	ple reaction	is carried out is reduced to one third of original	
	volume,	the rate of re	eaction beco	omes				
	2NO(g)+	$-O_2(g) \rightarrow 2$	$2NO_2(g)$					
	(1) One third			((2) Three times			
	(3) Nine t	times				(4) Twenty s	even times	
Ans.	(4)							
5.	For the reaction $A + B \rightarrow$ Products, it is found that order of A is 2 and the order of B is 3 in the rate expression. When the concentration of both A and B are doubled the rate will increase by a factor					I the order of B is 3 in the rate expression. When e by a factor		
	(1) 10		(2) 16		((3) 32	(4) 28	
Ans.	(3)							
6.	Nitric ox	ide (NO) rea	ets with oxy	gen to pro	duce nitroge	en dioxide		
	2NO(g)	$+ O_2(g) \rightarrow 2$	2NO _{2 (g)} ,	If the m	nechanism o	of reaction is		
	$NO + O_{2}$	$\xrightarrow{K} N$	O, (fast), N	$NO_{2} + NO -$	$\xrightarrow{K_1} NO_2$	+ NO ₂ (slow	y) then rate law is	
	(1) Rate =	= K'[NO][O]]	3	2	(2) Rate = K'	[NO][O ₁] ²	
	(3) Rate =	= K'[NO] ² [O]		((4) Rate = $K'[NO]^3[O_2]$		
Ans.	(3)		2-					
							,	
7.	For a first order reaction, the time taken to reduce the initial concentration to a factor of $\frac{1}{4}$ is 10 minute. If the							
	reduction in concentration is carried out to a factor of $\frac{1}{16}$, then time required will be							
	(1) 10 mi	nutes	(2) 20) minutes	((3) 40 minute	es (4) 60 minutes	
Ans.	(2)							

$$N_2O_5 \longrightarrow 2NO_2 + \frac{1}{2}O_2$$
. Given: $-\frac{d[N_2O_5]}{dt} = K_1[N_2O_5]$

$$\frac{d[NO_2]}{dt} = K_2[N_2O_5] \quad \text{and} \quad \frac{d[O_2]}{dt} = K_3[N_2O_5]$$

The relation between K_1 , K_2 and K_3 is

(1)
$$2K_1 = K_2 = 4K_3$$
 (2) $K_1 = K_2 = K_3$ (3) $2K_1 = 4K_2 = K_3$ (4) $K_1 = 2K_2 = 3K_3$

9. For the reaction, $N_2O_4(g) \xrightarrow{K_1} 2NO_2(g)$, the rate of disappearance of NO_2 will be

(1)
$$K_1[N_2O_4] - K_2[NO_2]^2$$

(2) $2K_1[N_2O_4] - 2K_2[NO_2]^2$
(3) $K_2[NO_2]^2 - K_1[N_2O_4]$
(4) $2K_2[NO_2]^2 - 2K_1[N_2O_4]$

Ans. (4)

10. For a homogeneous gaseous reaction $A \rightarrow B + C + D$, the initial pressure was P_0 while pressure after time 't' was P if $(P > P_0)$. The expression for the rate constant K is

(1)
$$K = \frac{2.303}{t} \log\left(\frac{2P_0}{3P_0 - P}\right)$$

(2) $K = \frac{2.303}{t} \log\left(\frac{3P_0}{2P_0 - P}\right)$
(3) $K = \frac{2.303}{t} \log\left(\frac{P_0}{P_0 - P}\right)$
(4) $K = \frac{2.303}{t} \log\left(\frac{2P_0}{4P_0 - P}\right)$

Ans. (1)

11. For a gaseous phase reaction $2A + B_2 \rightarrow 2AB$, the following rate date was obtained at 300K

	[A]	[B ₂]	
(i) 1.8 × 10 ⁻³	0.015	0.15	
(ii) 1.08 × 10 ⁻²	0.09	0.15	
(iii) 5.4 × 10 ⁻³	0.015	0.45	
The rate constant for th	e reaction is		
(1) 0.5 mol ⁻¹ min ⁻¹ litre		(2) 0.8 mol ⁻¹ mir	n ⁻¹ litre
(3) 1.5 mol ⁻¹ min ⁻¹ litre		$(4) 2 \text{ mol}^{-1} \text{ min}^{-1}$	litre

Ans. (2)

12. Inversion of a sugar follows first order rate equation which can be followed by noting the change in rotation of the plane of polarization of light in the polarimeter. If r_{∞} , r_t and r_0 are the rotations at $t = \infty$, t = t and t = 0 then, first order reaction can be written as

(1)
$$K = \frac{1}{2} \log_e \frac{r_1 - r_\infty}{r_0 - r_\infty}$$
 (2) $K = \frac{1}{t} \ln \frac{r_0 - r_\infty}{r_t - r_\infty}$ (3) $K = \frac{1}{t} \ln \frac{r_\infty - r_0}{r_t - r_\infty}$ (4) $K = \frac{1}{t} \ln \frac{r_\infty - r_t}{r_\infty - r_0}$

Ans. (2)

13.	Which of the following	g correct ?					
	(1) $\log \frac{K_2}{K_1} = \frac{E_a}{2.303} \left[\frac{\Delta}{T_1} \right]$	$\left[\frac{\Gamma}{\Gamma_2}\right]$					
	(2) For zero order $t_{1/2}$ is inversely proportional to initial concentration						
	(3) Catalyst decreases the activation energy						
	(4) All of these						
Ans.	(3)						
14.	The rate constant of a nenergy?	reaction is $1.5 \times 10^7 \text{ s}^{-1}$ at	t 50°C and 4.5 \times 107 s ⁻¹ at 10	0°C. What is the value of activation			
Ans.	(1) $2.2 \times 10^3 \mathrm{J}\mathrm{mol}^{-1}$ (3)	(2) 2300 J mol ^{-1}	(3) $2.2 \times 10^4 \mathrm{J}\mathrm{mol}^{-1}$	(4) 220 J mol ⁻¹			
15.	5. In Arrhenius equation, $k = Ae^{-E_a/RT}$, A may not be termed as rate constant						
	(1) When 100% reacta	nt will convert into the pro-	oduct				
	(2) When the temperatu	are becomes infinite					
	(3) When the fraction of	of molecule crossing over	the energy barrier becomes	unity			
	(4) At very low temperature						
Ans.	(4)						
16.	The rate constant of th	e production of 2B(g) by	the reaction,				
	$A(g) \xrightarrow{\Delta} 2B(g) \text{ is } 2.48 \times 10^{-4} \text{ s}^{-1}$						
	A 1:1 molar ratio of A to	B in the reaction mixtur	e is attained after				
	(1) 26.25 minute	(2) 27.25 minute	(3) 28.25 minute	(4) 0 minute			
Ans.	(2)						
17.	Two substances A and I If they start decaying at them would be the sam	B are present such that [A the same time following the same time following the same same same same same same same sam	$\mathbf{B}_{0} = 4[\mathbf{B}]_{0}$ and half life of A is first order kinetics how much	5 minute and that of B is 15 minute. time will the concentration of both of			
	(1) 15 minute	(2) 10 minute	(3) 5 minute	(4) 12 minute			
Ans.	(1)						
18.	If the rate of reaction in the reaction is	creases by 27 times, when	n temperature is increased by	30 K, then temperature coefficient of			
	(1)3	(2)2	(3)1	(4)2.5			
Ans.	(1)						
19.	9. The reaction $A \rightarrow B$ follows first order kinetics. The time taken for 0.80 mole of A to produce 0.60 mole of B What is the time taken for conversion of 0.90 mole of A to produce 0.675 mole of B 2						
	(1) 1 hour	(2) 30 min	(3) 15 min	(4) 5 min			
Ans.	(1)						
	K. = 2	$2 \times 10^3 \text{ s}^{-1}$					
	B						
20.	If, A $K_2 = 0$	$6 \times 10^3 \text{ s}^{-1} \rightarrow \text{C}$					
	find B%						
	(1)25%	(2) 50%	(3)75%	(4) 80%			
Ans.	(1)						

21. For a first order reaction :-

(1) The degree of dissociation is equal to $(1-e^{-KT})$

(2) The preexponential factor in the arrhenius equation has the dimension of time⁻¹

(3) A plot of reciprocal concentration of the reaction v/s time gives a straight line

(4) 1 & 2 both

Ans. (4)

22. Azo isopropane decomposes according to the equation :-

 $(CH_{3})_{2}CHN = NCH(CH_{3})_{2}(g) \xrightarrow{250-290^{\circ}C} N_{2}(g) + C_{6}H_{14}(g)$

It is found to be a first order reaction. If initial pressure is P_0 and pressure of the mixture at time t is (P_t) then rate constant K would be :-

(1)
$$K = \frac{2.303}{t} \log \frac{P_o}{2P_o - P_t}$$
 (2) $K = \frac{2.303}{t} \log \frac{P_o - P_t}{P_o}$
(3) $K = \frac{2.303}{t} \log \frac{P_o}{P_o - P_t}$ (4) $K = \frac{2.303}{t} \log \frac{2P_o}{2P_o - P_t}$

Ans. (1)

23. Arrhenius equation may be written as :-

(1)
$$\frac{d}{dT} (\ell n K) = -\frac{Ea}{RT}$$

(2) $\frac{d}{dT} (\ell n K) = -\frac{Ea}{RT^2}$
(3) $\frac{d}{dT} (\ell n K) = +\frac{Ea}{RT^2}$
(4) $\frac{d}{dT} (\ell n K) = \frac{Ea}{RT}$
(3)

Ans. (3

24. A reagent undergoes 90% decomposition in 366 min. According to first order reaction. It's half life is :-

(1)
$$366 \ge 100 \left(\frac{\ln 2}{90}\right)$$
 (2) $366 \left(\frac{\ln 2}{\ln 10}\right)$ (3) $\frac{1}{366}$ (4) 183

Ans. (2)

25. Which of the following statement is flase :-

(1) A fast reaction has a larger rate constant and short half life

(2) For a first order reaction, succession half lives are equal

(3) For a first order reaction, the half life is independent of concentration

(4) The half life of a reaction is half the time required for the reaction to go to completion

26. The reaction

 $CH_3COOC_2H_5 + NaOH \rightarrow CH_3COONa + C_2H_5OH is:$

(1) Bimolecular reaction (2) II order reaction (3) Both (1) & (2) (4) None

Ans. (3)

27. Correct expression for the first order reaction is:-

(1)
$$C_t = C_0 e^{k_1 t}$$
 (2) $C_t e^{k_1 t} = C_0$ (3) $\ln \frac{C_0}{C_t} = -k_1 t$ (4) $\ln \frac{C_t}{C_0} = k_1 t$

Ans. (2)

ETC	OSINDIA			J.H. SIR		
28.	In a first order reaction, the concentration of the reactant, decreases from 0.8 M to 0.4 M 15 minutes. The time taken for the concentration to change from 0.1 M to 0.025 M is					
	(1) 7.5 min	(2) 15 min	(3) 30 min	(4) 60 min		
Ans.	(3)					
29.	The rate equation for the reaction $2A + B \rightarrow C$ is found to be : rate= k[A][B]. The correct statement in relation to this reaction is that the					
(1) rate of formation of C is twice the rate of disappearance of A.						
	(2) Half life is a const	ant				
	(3) unit of k must be	s ⁻¹				
	(4) value of k is indep	pendent of the initial conc	entrations of A and B			
Ans.	(4)					
30.	The half-life of a radio after 24 hours undeca	b isotope is four hours. If ty yed is :	the initial mass of the isoto	ope was 200 g, the mass remaining		
	(1) 3.125 g	(2) 2.084 g	(3) 1.042 g	(4) 4.167 g		
Ans.	(1)					
31.	For the reaction A	$A + 2B \rightarrow$ Product, the diff	ferential rate equation is :-			
	(1) $-\frac{1}{2}\frac{d[A]}{dt} = \frac{-d[B]}{dt} =$	$= K[A][B]^2$	(2) $\frac{1}{2} \frac{d[A]}{dt} = \frac{d[B]}{dt} = K[A][B]^2$			
	$(3) \frac{-d[A]}{dt} = -\frac{1}{2} \frac{d[B]}{dt} =$	= K[A][B] ²	(4) $\frac{dA}{dt} = \frac{1}{2} \frac{d[B]}{dt} = K[A][B]^2$			
Ans.	(3)					
32.	The $t_{1/2}$ of a reaction is	halved as the initial concen	tration of the reactant is dou	ubled. What is the order of reaction?		
	(1) First order	(2) Zero order	(3) Second order	(4) Third order		
Ans.	(3) The rate of a chemical reaction doubles for every 10°C rise of temperature. If the temperature is raised by 50°C, the rate of the reaction increases by about :-					
33.						
	(1) 32 times	(2) 64 times	(3) 10 times	(4) 24 times		
Ans.	(1)					
34.	A reactant (A) forms t	wo products :				
	$A \xrightarrow{k_1} B$, Activation	B, Activation Energy Ea ₁				
	$\mathbf{A} \stackrel{\mathbf{k}_2}{\longrightarrow} \mathbf{C} \mathbf{A}$ attiviation					
	$A \longrightarrow C$, Activation Energy Ea_2 If $Ea_2 = 2 Ea_1$, then k_1 and k_2 are related as :-					
	(1) $k_1 = 2k_2 e^{Ea_2/RT}$	(2) $k_2 = k_1 e^{Ea_1/RT}$	(3) $k_2 = k_1 e^{Ea_2/RT}$	(4) $k_1 = k_2 e^{Ea_1/RT}$		
Ans. 35.	 (4) For a first order reaction, (A) → products, the concentration of A changes from 0.1 M to 0.025M in 4 The rate of reaction when the concentration of A is 0.01 M is :- 					
	(1) 1.73×10^{-4} M/min	(2) 1.73×10^{-5} M/min	(3) 3.47×10^{-4} M/min	(4) 3.47×10^{-5} M/min		
Ans.	(3)		• •			

ASSERTION & REASON EXERCISE

These questions consist of two statements each, printed as *Assertion* and *Reason*. While answering these Questions you are required to choose any one of the following four responses.

- A. If both Assertion & Reason are True & the Reason is a correct explanation of the Assertion.
- B. If both Assertion & Reason are True but Reason is not a correct explanation of the Assertion.
- C. If Assertion is True but the Reason is False.
- D. If both Assertion & Reason are False.
- 1. *Assertion* : The rate of the reaction is the rate of change of concentration of a reactant or a product. *Reason* : Rate of reaction remains constant during the complete reaction.

	Reason . Rate of reaction remains constant during the complete reaction.
Ans.	(C)
2.	Assertion : The reaction having low value of activation energy are generally fast.
	Reason : Temperature coefficient for reaction having low activation energy is large.
Ans.	(C)
3.	Assertion : Half life period is always independent of initial concentration.
	Reason : Half life period is directly preportional to rate concentration.
Ans.	(D) According to The melocity of a section is a shall supplies of an dama and had a second but according to the 2
4.	Assertion : The molecularity of a feaction is a whole number other than zero, but generally less then 5.
Ans	(C)
5	Assertion : In a reversible endothermic reaction activation energy of the forward reaction is higher than that
0.	of the backward reaction
	Reason : The threshold energy of the forward reaction is more than that of the backward reaction.
Ans.	(C)
6.	Assertion : The molecularity of the reaction $H_2 + Br_2 \longrightarrow 2HBr$ is 2 :
	Reason : The order of the reaction is $\frac{1}{2}$
Ans.	(B)
7.	Assertion : Acid catalysed of ethyl acetate is a first order reaction.
	Reason : Water does not take part in the reaction.
Ans.	(C)
8 .	Assertion : For a first order reaction $t_{1/2}$ is independent of the initial concentration of reactants.
	Reason : For a first order reaction $t_{1/2}$ is twice the t_{34} .
Ans.	(B)
9.	Assertion : If in a zero order reaction, the concentration of the reactant is doubled, the half-life period is also
	doubled.
	<i>Ranson</i> : For a zero order reaction, the rate of reaction is independent of initial concentration
A	D
Ans.	(B)
10.	Assertion : Formation of HI is a biomolecular reaction.
	Reason : Two molecules of reactants are involved in this reaction.
Ans.	(A)
11.	Assertion :- In a first order reaction the rate constant double on doubling the initial concentration of the reaction. [AIIMS 2010]
	Reason :- The rate constant varies directly with the concentration of the reactants in a first order reaction.

Ans. (D)

ET(OOSINDIA NO. 1 ONLINE COACHING	J.H. SIR
12.	Assertion :- Two different reaction can never have same rate of reaction	[AIIMS 2011]
	Reason :- Rate of reaction always depends only on frequency of collision and Arrhenious	factor
Ans.	(D)	
13.	<i>Assertion</i> :- Rate of reaction double when concentration of reactant is double if it is a first <i>Reason</i> :- Rate constant also double.	order reaction. [AIIMS 2012]
Ans.	(C)	
14.	Assertion :- The order of a reaction can have fractional value.	[AIIMS - 2008]
	<i>Reason :-</i> The order of a reaction cannot be written from balanced equation of a reaction.	
Ans.	(B)	
15.	Assertion :- Average life of a radioactive element is that period in which 63% of it is decayed.	[AIIMS - 2007]
	Reason :- Average life : $\tau = 1.44t_{1/2}$	
Ans.	(B)	
16.	Assertion :- The hydrolysis of methyl acetate by dil. HCl is a pseudo first order reaction.	[AIIMS - 2007]
	<i>Reason :-</i> HCl acts as a catalyst for the hydrolysis.	
Ans.	(B)	