PROBLEM SOLVING TECHNIQUES OF PHYSICAL CHEMISTRY FOR NEET

BY JITENDRA HIRWANI

ELECTROCHEMISTRY

Plot No. 38, Near Union Bank of India, Rajeev Gandhi Nagar, Kota, Rajasthan – 324005 Mob. : 9214233303

BASIC EXERCISE

ELECTROLYTIC CONDUCTANCE

1.	Strong electrolyte are those which :					
	(1) dissolve readily in	water	(2) conduct electricity(4) dissociate into ions at high dilution.			
	(3) dissociate into ion	s even at high concentration				
Ans.	(3)					
2.	Molten sodium chlori	ide conducts electricity due to	the presence of :			
	(1) free electrons	(2) free ions	(3) free molecules	(4) free atoms of Na and Cl		
Ans.	(2)					
3.	Electrolytic conduction	on is due to the movement of :				
	(1) molecules	(2) atoms	(3) ions	(4) electrons		
Ans.	(3)					
4.	Which of the followin	ng solutions of KCl has the low	vest value of equivaler	t conductance ?		
	(1) 1 M	(2) 0.1 M	(3).01 M	(4).001 M		
Ans.	(1)					
5.	If V, in the equation Λ	$a = sp. cond. \times V$, is the volume	in CC containing 1 eq.	of the electrolyte; V for a $\frac{N}{10}$ solution		
	will be :					
	(1) 10 c.c.	(2) 100 c.c.	(3) 1000 c.c.	(4) 10,000 c.c.		
Ans.	(4)					
6.	If the specific resistan	ce of a solution of concentration	on C g equivalent litre-	¹ is R, then its equivalent conductance		
	is:					
	100R	RC	1000	С		
	$(1)\frac{100\mathrm{R}}{\mathrm{C}}$	$(2) \frac{\mathrm{RC}}{1000}$	$(3) \frac{1000}{\mathrm{RC}}$	(4) $\frac{C}{1000R}$		
Ans.	(3)					
7.	The specific conductat	nce of a salt of 0.01 M concentr	ration is 1.061×10^{-4} . N	Aolar conductance of the same solution		
	will be :					
	(1) 1.061 × 10 ⁻⁴	(2) 1.061	(3) 10.61	(4) 106.1		
Ans.	(3)					
8.	Which of the followin	ig solutions of NaCl will have	the highest specific co	nductance ?		
	(1)0.001 N	(2) 0.1 N	(3) 0.01 N	(4) 1.0 N		
Ans.	(4)					
9.	The value of molar con	nductivity of HCl is greater that	in that of NaCl at a par	ticular temperature because :		
	(1) Molecular mass of	FHCl is less than that of NaCl.				
	(2) Velocity of H ⁺ ions	s is more than that of Na^+ ions				
	(3) HCl is strongly acid	dic				
	(4) Ionisation of HCl is	s larger than that of NaCl				
Ans.	(2)					

INDIA'S I	NO. 1 ONLINE COACHING							
10.	Which statement is not correct :-							
	(1) Conductance of an	electrolytic solution incr	eases with dilution					
	(2) Conductance of an	electrolytic solution deci	reases with dilution					
	(3) Specific conductance of an electrolytic solution decreases with dilution							
	(4) Equivalent conductance of an electrolytic solution increases with dilution.							
Ans.	(2)							
11.	The resistance of 0.01	N solution of an electroly	te was found to be 210 ohm	at 298 K using a conductivity cell of cell				
	constant 0.66 cm^{-1} . The	ne equivalent conductanc	e of solution is :-					
	(1) 314.28 mho $\rm cm^2 eq^{-1}$	-1	(2) $3.14 \text{ mho cm}^2 \text{ ec}$	I ⁻¹				
	$(3)314.28 \text{ mho}^{-1} \text{ cm}^2 \text{ e}$	q^{-1}	(4) $3.14 \text{ mho}^{-1} \text{ cm}^{2}$	eq ⁻¹				
Ans.	(1)							
12.	Electrolytic conductio	n differs from metallic c	conduction from the fact t	hat in the former				
	(1) The resistant incre	eases with increasing ter	nperature					
	(2) The resistance dec	creases with increasing t	temperature					
	(3) The resistance ren	nains constant with incr	easing temperature					
	(4) The resistance is	independent of the leng	th of the conductor					
Ans.	(2)							
13.	The specific conductat	nce of a 0.01 M solution	of KCl is $0.0014 \text{ ohm}^{-1} \text{ cm}$	m ⁻¹ at 25° C. Its equivalent conductance				
	$(cm^2 ohm^{-1} equiv^{-1})$	is :						
	(1) 140	(2) 14	(3) 1.4	(4) 0.14				
Ans.	(1)							
KOH	LRAUSCH LAW							
14.	The conductivity of a s 1 cm $^{-1}$ mol $^{-1}$. The K _{sp} of		$D_4 \text{ is } 3.06 \times 10^{-6} \text{ ohm}^{-1} \text{ cm}^{-1}$	and its molar conductance is 1.53 ohm-				
	$(1)4 \times 10^{-12}$	$(2) 2.5 \times 10^{-9}$	$(3)2.5 \times 10^{-13}$	$(4) 4 \times 10^{-6}$				
Ans.	(4)							
15.	The molar conductanc	e at infinite dilution of Ag	gNO ₃ , AgCl and NaCl are	116.5, 121.6 and 110.3 respectively. The				
	molar conductances of	NaNO ₃ is :-						
	(1)111.4	(2) 105.2	(3) 130.6	(4) 150.2				
Ans.	(2)							
16.	The equivalent conduct of CH ₃ COOH is :	tivity of 0.1 N CH ₃ COOH	at 25 °C is 80 and at infinit	e dilution 400. The degree of dissociation				
	(1)1	(2)0.2	(3)0.1	(4) 0.5				
Ans.	(2)							
17.				is 425 ohm ⁻¹ cm ² equiv ⁻¹ . The specific ree of dissociation is 90% the normality				
	(1) 0.90 N	(2) 1.0 N	(3) 10 N	(4) 1.2 N				
Ans.	(3)							

GAL	VANIC CELL		
18.	In the galvanic cell Cu $ Cu^{2+}(1M) Ag^{+}(1M)Ag $ the	e electrons will travel in the externa	al circuit :
	(1) from Ag to Cu	(2) from Cu to Ag	
	(3) electrons do not travel in the external circuit	(4) in any direction	
Ans.	(2)		
19.	The passage of electricity in the Daniel cell when 2	Zn and Cu electrodes are connected	ed is :
	(1) from Cu to Zn in the cell	(2) from Cu to Zn out side the	cell
	(3) from Zn to Cu outside the cell	(4) in any direction in the cell	
Ans.	(2)		
20.	The equation representing the process by which st	tandard reduction potential of zine	c can be defined is :
	$(1) Zn^{2+}(s) + 2e^{-} \longrightarrow Zn$	$(2) \operatorname{Zn}(g) \longrightarrow \operatorname{Zn}^{2+}(g) +$	- 2e-
	$(3) \operatorname{Zn}^{2+}(g) + 2e^{-} \longrightarrow \operatorname{Zn}$	$(4) \operatorname{Zn}^{2+}(\operatorname{aq.}) + 2e^{-} \longrightarrow Z$	Zn (s)
Ans.	(4)		
21.	A standard hydrogen electrode has zero electrode	potential because :	
	(1) Hydrogen is easiest to oxidize		
	(2) This electrode potential is assumed to be zero		
	(3) Hydrogen atom has only one electron		
	(4) Hydrogen is the lightest element		
Ans.	(2)		
22.	Which is not true for a standard hydrogen electrode	?	
	(1) The hydrogen ion concentration is 1 M		
	(2) Temperature is 25°C		
	(3) Pressure of hydrogen is 1 atmosphere		
	(4) It contains a metallic conductor which does no	ot adsorb hydrogen.	
Ans.	(4) $(1)^{1/2} $		
23.	$Cu Cu^{+2}(1M) Zn^{+2}(1M) Zn$ A cell represented above should have emf.		
	(1) Positive (2) Negative	(3) Zero (4) Cannot be predicted
Ans.	(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	(5)2210 (7)) Cannot be predicted
24.	Given electrode potentials :		
	$Fe^{3+} + e \longrightarrow Fe^{2+}$; $E^{\circ} = 0.771$ volts		
	$I_2 + 2e \longrightarrow 2I^-$; $E^\circ = 0.536$ volts E° cell for the cell reaction		
	$2Fe^{3+} + 2I^- \rightarrow 2Fe^{2+} + I_2$ is -		
	$(1) (2 \times 0.771 - 0.536) = 1.006 \text{ volts}$	$(2)(0.771 - 0.5 \times 0.53)$	36) = 0.503 volts
	(3) 0.771 - 0.536 = 0.235 volts	$(2)(0.771 - 0.3 \times 0.32)$ $(4) 0.536 - 0.771 = -0.0000000000000000000000000000000000$,
Ans.	(3)	(1) 0.000 0.771	

ETOOSINDIA INDIA'S NO. 1 ONLINE COACHING

25. Which of the following is not an anodic reaction–

(1)
$$Ag^+ \rightarrow Ag - e^-$$

(3)
$$Fe^{2+} \to Fe^{3+} + e^{-}$$

26. Which of the following statements is correct :-

(1) Oxidation occur at anode in both galvanic and electrolytic cell

(2) Reduction occurs at anode in both galvanic and electrolytic cell

(3) Reduction occur at anode in electrolytic cell where as oxidation occur at cathode in galvanic cell

(2) $Cu \rightarrow Cu^{2+} + 2e^{-}$

 $(4) 4OH^{-} \rightarrow 2H_2O + O_2 + 4e^{-}$

(4) Oxidation occur at anode in electrolytic cell where as reduction occur at anode in a galvanic cell

Ans. (1)

- 27. Other things being equal, the life of a daniel cell may be increased by :-
 - (1) Keeping low temperature
 - (2) Using large copper electrode
 - (3) Decreasing concentration of copper ions
 - (4) Using large zinc electrodes

Ans. (4)

ELECTROCHEMICAL SERIES

28. The standard reduction potentials at 25°C for the following half reactions are given against each :

	$Zn^{2+}(aq) + 2e^{-} \rightleftharpoons Zn(s)$), -0.762		
	$\operatorname{Cr}^{3+}(\operatorname{aq}) + 3e^{-} \rightleftharpoons \operatorname{Cr}(s),$	-0.740		
	$2\mathrm{H}^{+} + 2\mathrm{e}^{-} \rightleftharpoons \mathrm{H}_{2}(\mathrm{g}), 0.00$)		
	$Fe^{3+} + 2e^- \rightleftharpoons Fe^{2+}, 0.77$			
	Which is the strongest re	ducing agent ?		
	(1)Zn	(2) Cr	$(3) H_2(g)$	(4) Fe^{2+} (aq)
Ans.	(1)			
29.		e oxygen from the oxide XO ne order of activity of the th		will remove oxygen from XO. Use ng the most active first.
	(1) XYZ	(2)ZYX	(3) YXZ	(4) ZXY
Ans.	(2)			
30.	If a spoon of copper meta	l is placed in a solution of f	errous sulphate :	
	(1) Cu will precipitate out		(2) Iron will precipitate	
	(3) Cu and Fe will precipit	ate	(4) No reaction will take p	lace
Ans.	(4)			
31.	Which one will liberate Br	r_2 from KBr ?		
	(1)HI	(2) I ₂	$(3) Cl_{2}$	(4) SO ₂
Ans.	(3)			

32.	Using the standard electrode potential values given below, decide which of the statements, I, II, III and IV are correct. Choose the right answer from (1) , (2) , (3) and (4) .						
	$\operatorname{Fe}^{2^+} + 2e^- \rightleftharpoons \operatorname{Fe}^0;$	$E^{\circ} = -0.44 V$					
	$Cu^{2+} + 2e^- \rightleftharpoons Cu^0;$	$E^{\circ} = +0.34 V$					
	$Ag^+ + e^- \implies Fe^0$; $E^\circ = +0.80 V$						
	I. Copper can displace in						
	II. Iron can displace copp						
	III. Silver can displace co						
	IV. Iron can displace silv	•					
	(1) I and II	(2) II and III	(3) II and IV	(4) I and IV			
Ans.	(3)						
33.	The standard electrode po of their reducing power i		nents A, B and C are 0.68, -	-2.50 and 0.50 V respectively. The order			
	(1)A > B > C	(2)A>C>B	(3)C>B>A	(4) B > C > A			
Ans.	(4)						
34.	Zn can not displace follo	wing ions from their a	queous solution :				
	$(1)Ag^+$	(2) Cu^{2+}	(3) Fe^{2+}	(4) Na ⁺			
Ans.	(4)						
35.	A gas X at 1 atm. is bubbled through a solution containing a mixture of 1 MY ⁻ and 1 MZ ⁻ at 25 °C. If the reduction potential of $Z > Y > X$ then :						
	(1) Y will oxidise X and r	not Z	(2) Y will oxidise Z a	and not X			
	(3) Y will oxidise both X	and Z	(4) Y will reduce bo	th X and Z			
Ans.	(1)						
36.	The standard electrode p	otential of Zn, Ag and C	Cu are –0.76, 0.80 and 0.34	volt respectively, then :			
	(1) Ag can oxidise Zn an						
	(2) Ag can reduce Zn^{2+} a						
	(3) Zn can reduce Ag^+ and	nd Cu ²⁺					
	(4) Cu can oxidise Zn and Ag						
Ans.	(3)						
37.	Each of the three metals x, y and z were put in turn into aqueous solution of the other two. $x + salt of y (or z) = y (or z) + salt of x$. Which one of the following observation is probably incorrect?						
	(1) $y + salt of x = no action observed$						
	(2) $y + salt of z = z + salt$	ofy					
	(3) $z + salt of x = x + salt of z$						
	(4) $z + salt of y = no activity$	on observed					
Ans.	(3)						
38.	The oxidation potential following reaction will pr	-		0, 0.55 volt respectively. Which of the			
	$(1) Zn + Cu^{2+} \longrightarrow Cu -$	$rac{}{}Zn^{2+}$	$(2) Zn + 2Ag^{+}$	$\rightarrow 2Ag + Zn^{2+}$			
	$(3) \operatorname{H}_{2} + \operatorname{Cu}^{2+} \longrightarrow 2\operatorname{H}^{+}$	+ Cu	$(4) \operatorname{H}_2 + \operatorname{Ni}^{2+} \longrightarrow 2$	$2H^+ + Ni$			
Ans.	(2)						

INDIA'S I	NO. 1 ONLINE COACHING							
39.	A standard reduction electrode potentials of four elements are							
	A = -0.250 V, $B = -0.250 V$	– 0.140 V						
	C = -0.126 V, $D =$	– 0.402 V						
	The element that disp	places A from its compou	nds aqueous solution is	:-				
	(1) B	(2) C	(3) D	(4) None of the above				
Ans.	(3)							
40.	Which of the following	ng displacement does not	occur					
	$(1) \operatorname{Zn} + 2\operatorname{H}^+ \to \operatorname{Zn}^{2^-}$	$^{+}$ + H ₂ \uparrow	(2) Fe + 2Ag ⁺ \rightarrow I	$Fe^{2+} + Ag \downarrow$				
	(3) $\operatorname{Cu} + \operatorname{Fe}^{2+} \to \operatorname{Cu}^{2+}$	$^{2+}$ + Fe \downarrow	(4) $\operatorname{Zn} + \operatorname{Pb}^{2+} \to Z$	$Zn^{2+} + Pb \downarrow$				
Ans.	(3)							
41.	Adding powdered Pb a formation of :-	Adding powdered Pb and Fe to a solution containing 1.0 M in each of Pb^{+2} and Fe^{+2} ions would result into the						
	(1) More of Pb and Fe^{+2} ions (2) More of Fe and Pb^{2+} ions							
	(3) More of Fe and Pb		(4) More of Fe^{+2} and	nd Pb ²⁺ ions				
Ans.	(1)							
NER	NST EQUATION							
42.	$E^{\circ}(Ni^{2+}/Ni) = -0.25 \text{ vol}$	t,						
	$E^{\circ}(Au^{3+}/Au) = 1.50 v_{0}$	olt.						
	The emf of the voltaic	cell.						
	$Ni / Ni^{2+} (1.0 M) Au^{3-}$	+ (1.0 M) Au is :						
	(1) 1.25 volt	(2)–1.75 volt	(3) 1.75 volt	(4) 4.0 volt				
Ans.	(3)							
43.	The emf of the cell in w	which the following reaction	n					
	$Zn(s) + Ni^{2+}(a=0.1) =$	\ge Zn ²⁺ (a = 1.0) + Ni(s)						
	occurs, is found to be 0	.5105 V at 298 K. The stan	dard e.m.f. of the cell is :-					
	(1)-0.5105 V	(2) 0.5400 V	(3) 0.4810 V	(4) 0.5696 V				
Ans.	(2)							
44.	The potential of hydro	0						
	$(P_{H_2} = 1 \text{ atms}; C_{H}^+ = 0.1$							
	(1)0.00 V	(2)-0.059 V	(3)0.118 V	(4) 0.059 V				
Ans.	(2)							
45.				$0.1 \mathrm{MAgNO}_3$ solution at 25° C?				
	$(1) E^{\circ}_{red}$	$(2)(E^{\circ}_{red}+0.059)$	$(3)(E^{\circ}_{ox}-0.059)$	$(4) (\mathrm{E^{\circ}}_{\mathrm{red}} - 0.059)$				
Ans.	(4)							
46.		rogen electrode at $pH = 1$ i						
	(1) 0.059 volt	(2) 0.00 volt	(3) - 0.059 volt	(4) 0.59 volt				
A	(7)							

Ans. (3)

ETOOSINDIA J.H. SIR INDIA'S NO. 1 ONLINE COACHING 47. Consider the reaction $Cl_2(g) + 2Br(aq) \longrightarrow 2Cl(aq) + Br_2$ The emf of the cell when $[C^{+}] = [Br_{2}] = [Br_{2}] = 0.01 \text{ M} \text{ and } Cl_{2}, \text{ gas at } 1 \text{ atm pressure will be} (E^{\circ} \text{ for the above reaction is} = 0.29 \text{ volt})$ (1) 0.54 volt (2) 0.35 volt (3) 0.24 volt (4) - 0.29 volt Ans. (2) The standard emf for the cell reaction $Zn + Cu^{2+} \longrightarrow Zn^{2+} + Cu$ is 1.10 volt at 25 °C. The emf for the cell reaction 48. when 0.1 M Cu²⁺ and 0.1 M Zn²⁺ solution are used at 25°C is: (1) 1.10 volt (2) 0.110 volt (3) - 1.10 volt (4) - 0.110 volt Ans. (1) 49. E° for $F_2 + 2e^- = 2F^-$ is 2.8 V, E° for $\frac{1}{2}F_2 + e^- = F^-$ is ? (2) 1.4 V (1)2.8V (3) - 2.8 V(4) - 1.4 V (1) Ans. 50. ΔG° of the cell reaction AgCl(s) $+\frac{1}{2}H_{2}(g) = Ag(s) + H^{+} + Cl^{-}$ is $-21.52 \text{ KJ } \Delta G^{\circ} \text{ of } 2AgCl(s) + H_{2}(g) = 2Ag(s) + 2H^{+} + 2Cl^{-}$ is : (1) - 21.52 KJ(2)-10.76 KJ (3)-43.04 KJ (4) 43.04 KJ Ans. (3) How much will the potential of Zn / Zn^{2+} change if the solution of Zn^{2+} is diluted 10 times 51. (1) increase by 0.03 V (2) decreases by 0.03 V (3) increases by 0.059 V (4) decreases by 0.059 V (1) Ans. 52. How much will the potential of a hydrogen electrode change when its solution initially at pH = 0 is neutralised to pH =7?(1) increase by 0.059 V (2) decrease by 0.059 V (3) increase by 0.41 V (4) decrease by 0.41 V Ans. (4) Which of the following will increase the voltage of the cell with following cell reaction 53. $\operatorname{Sn}_{(s)}^{+} 2\operatorname{Ag}_{(aq)}^{+} \rightarrow \operatorname{Sn}_{(aq)}^{+2} + 2\operatorname{Ag}_{(s)}^{+}$ (1) Increase in the size of silver rod (2) Increase in the concentration of Sn^{+2} ions (3) Increase in the concentration of Ag^+ ions (4) Decrease in the concentration of Ag^+ ions (3) Ans. 54. E° for the reaction Fe + Zn²⁺ \rightarrow Zn + Fe²⁺ is -0.35V. The given cell reaction is : (1) feasible (2) not feasible (3) in equilibrium (4) can't say anything Ans. (2) 55. For a reaction - $A(s) + 2B^+ \rightarrow A^{2+} + 2B$

(2) 0.708 V (3) 0.0098 V (4) 1.36 V

Ans. (1)

(1)0.354 V

 K_c has been found to be 10¹². The E°cell is:

	NO. 1 ONLINE COACHING			J.H. SIR	
56.		ctrode potential (E°) for e of OCI ⁻ / $\frac{1}{2}$ Cl ₂ will be :	OCl ⁻ /Cl ⁻ and Cl ⁻ / $\frac{1}{2}$	Cl_2 respectively are 0.94 V and	
	(1)–2.20 V	(2)-0.42 V	(3) 0.52 V	(4) 1.04 V	
Ans.	(3)				
57.	The emf of the cell				
	$Tl/Tl^+ (0.0001 M) \parallel 0$	Cu ²⁺ (0.01M)/Cu is 0.83 V			
	The emf of this cell	will be increased by :-			
	(1) Increasing the co	oncentration of Cu ⁺⁺ ions	(2) Decreasing the c	oncentration of Tl ⁺	
	(3) Increasing the co	oncentration of both	(4)(1)&(2) both		
Ans.	(4)				
58.	Consider the cell Cu	$/Cu^{+2}$ Ag ⁺ /Ag. If the concentration	ation of Cu^{+2} and Ag^+ ions	becomes ten times the emf of the cell:-	
	(1) Becomes 10 time		(2) Remains same		
	(3) Increase by 0.029		(4) Decrease by 0.029	95 V	
Ans.	(3)				
ELE	CTROLYSIS				
59.		rrent is passed through acid dil current passed, in ampere is :	uted water, 112 ml. of hyd	rogen gas at STP collects at the cathode	
	(1) 1.0	(2)0.5	(3)0.1	(4)2.0	
Ans.	(1)				
60.				cidified ferric chloride are connected in city is passed through the cells will be	
	(1)3:1	(2)2:1	(3)1:1	(4)3:2	
Ans.	(4)				
61.	nitrate $[Ni(NO_3)_2]$ am amount of chromiun	d chromium nitrate [Cr(NO ₃) n deposited is :		tic cells containing solutions of nicked nickel was deposited in the first cell, the	
	(at. wt. of $Ni = 59$, at				
	(1)0.1 g	(2) 0.17 g	(3)0.3 g	(4) 0.6 g	
Ans.	(2)				
62.		s of electricity are required for		2 2	
	(1) 9.65 \times 10 ⁴ C	(2) $4.825 \times 10^5 \mathrm{C}$	(3) 1.93×10^{5} C	(4) $1.93 \times 10^4 \mathrm{C}$	
Ans.	(3) The second second	4	- 1. in .1t. 1i 60 2	Martalian Carmon antalasta atau	
63.		ty equal to that required to lib	-	M solution of copper sulphate when a n at STP from 0.1 M aqueous H_2SO_4 is	
	(1) 1.59 g	(2) 3.18 g	(3) 6.35 g	(4) 12.70 g	
Ans.	(3)				
64.		tricity through the electron harge on the metal cation is -	colyte deposited 2.97	7 g of metal with atomic mass	
	(1)+4	(2)+3	(3)+2	(4)+1	

	NO. 1 ONLINE COACHING			J.H. SIR
65.	On passing electricity in the ratio :	through dil. H_2SO_4 solution	on the amount of substance lib	perated at the cathode and anode are
	(1)1:8	(2)8:1	(3) 16 : 1	(4) 1 : 16
Ans.	(1) 1 . 8 (1)	(2) 6 . 1	(5)10.1	(4)1.10
66.		fused calcium hydride, the	e hydrogen is produced at :	
	(1) Cathode			
	(2) Anode			
	(3) Hydrogen is not lib	perated at all		
	(4) H_2 produced reacts	with oxygen to form wate	r	
Ans.	(2)			
67.	A solution of sodium s are respectively :-	sulphate in water is electrol	ysed using inert electrodes. T	he product at the cathode and anode
	$(1) H_2, SO_2$	$(2) O_2, H_2$	$(3) O_2, Na$	(4) H ₂ , O ₂
Ans.	(4)			
68.	One Faraday of electri	city will liberate one mol a	tomic mass of the metal from	the solution of
	(1) Auric chloride	(2) Silver nitrate	(3) Calcium chloride	(4) Copper sulphate
Ans.	(2)			
69.	When 96500 coulomb will be :-	s of electricity are passed th	nrough barium chloride solutio	on, the amounts of barium deposited
	(1) 0.5 mol.	(2) 1.0 mol.	(3) 1.5 mol.	(4) 2.0 mol.
	(1)0.5 mol.	(<u>-</u>) 110 mon	(5) 1.5 mol.	(4) 2.0 1101.
Ans.	(1) (1)		(5) 1.5 mor.	(4) 2.0 mor.
	(1)	kg. of calcium in two hou		aluminium can be produced by the
	(1) A factory produces 40	kg. of calcium in two hou		
	(1) A factory produces 40 same current in two he	kg. of calcium in two hou		
70.	 (1) A factory produces 40 same current in two here (At wt. of Ca = 40, A1 = 	9 kg. of calcium in two hou ours :- = 27)	rs by electrolysis. How much	aluminium can be produced by the
70. Ans.	 (1) A factory produces 40 same current in two he (At wt. of Ca = 40, A1 = (1) 22 kgm. (2) 	9 kg. of calcium in two hou ours :- = 27) (2) 18 kgm. h of Ag ⁺ ion, Cu ⁺² , Fe ⁺³ i	rs by electrolysis. How much (3)9 kgm.	aluminium can be produced by the
70. Ans.	 (1) A factory produces 40 same current in two here (At wt. of Ca = 40, A1 = (1) 22 kgm. (2) How many moles each 	9 kg. of calcium in two hou ours :- = 27) (2) 18 kgm. h of Ag ⁺ ion, Cu ⁺² , Fe ⁺³ i heir salts :-	rs by electrolysis. How much (3)9 kgm.	aluminium can be produced by the (4) 27 kgm.
70. Ans.	 (1) A factory produces 40 same current in two he (At wt. of Ca = 40, A1 = (1) 22 kgm. (2) How many moles each through solutions of the 	9 kg. of calcium in two hou ours :- = 27) (2) 18 kgm. h of Ag ⁺ ion, Cu ⁺² , Fe ⁺³ i heir salts :-	rs by electrolysis. How much (3)9 kgm. on would be deposited by pas	aluminium can be produced by the (4) 27 kgm.
70. Ans. 71.	 (1) A factory produces 40 same current in two ho (At wt. of Ca = 40, A1 = (1) 22 kgm. (2) How many moles each through solutions of the (1) Same number of mage 	9 kg. of calcium in two hou ours :- = 27) (2) 18 kgm. h of Ag ⁺ ion, Cu ⁺² , Fe ⁺³ i heir salts :-	(3) 9 kgm. (3) 1 : $\frac{1}{2}$: $\frac{1}{3}$ moles	aluminium can be produced by the (4) 27 kgm.
70. Ans. 71. Ans.	(1) A factory produces 40 same current in two he (At wt. of Ca = 40, A1 = (1) 22 kgm. (2) How many moles each through solutions of th (1) Same number of m (3) $\frac{1}{3}:\frac{1}{2}:1$ (2)	9 kg. of calcium in two hou ours :- = 27) (2) 18 kgm. h of Ag ⁺ ion, Cu ⁺² , Fe ⁺³ i heir salts :- oles of each	(3) 9 kgm. (3) 1 : $\frac{1}{2}$: $\frac{1}{3}$ moles	(4) 27 kgm.
70. Ans. 71. Ans.	(1) A factory produces 40 same current in two he (At wt. of Ca = 40, A1 = (1) 22 kgm. (2) How many moles each through solutions of th (1) Same number of m (3) $\frac{1}{3}:\frac{1}{2}:1$ (2)	9 kg. of calcium in two hou ours :- = 27) (2) 18 kgm. h of Ag ⁺ ion, Cu ⁺² , Fe ⁺³ i heir salts :- oles of each	(3) 9 kgm. (3) 9 kgm. (2) $1: \frac{1}{2}: \frac{1}{3}$ moles (4) $1: 2: 3$	(4) 27 kgm.
70. Ans. 71. Ans. 72.	(1) A factory produces 40 same current in two he (At wt. of Ca = 40, A1 = (1) 22 kgm. (2) How many moles each through solutions of th (1) Same number of m (3) $\frac{1}{3}:\frac{1}{2}:1$ (2) The passage of current (1) CuSO ₄ (aq)	9 kg. of calcium in two hou ours :- = 27) (2) 18 kgm. h of Ag ⁺ ion, Cu ⁺² , Fe ⁺³ i heir salts :- oles of each the liberates H ₂ at cathode a	(3) 9 kgm. (3) 9 kgm. on would be deposited by pass (2) $1: \frac{1}{2}: \frac{1}{3}$ moles (4) $1: 2: 3$ nd Cl ₂ at anode the solution i	aluminium can be produced by the (4) 27 kgm. ssage of same quantity of electricity s :-
70. Ans. 71. Ans. 72. Ans.	(1) A factory produces 40 same current in two be (At wt. of Ca = 40, A1 = (1) 22 kgm. (2) How many moles each through solutions of the (1) Same number of me (3) $\frac{1}{3}:\frac{1}{2}:1$ (2) The passage of current (1) CuSO ₄ (aq) (3)	9 kg. of calcium in two hou ours :- = 27) (2) 18 kgm. h of Ag ⁺ ion, Cu ⁺² , Fe ⁺³ i heir salts :- oles of each tt liberates H ₂ at cathode a (2) CuCl ₂ (aq.)	(3) 9 kgm. (3) 9 kgm. on would be deposited by pass (2) $1: \frac{1}{2}: \frac{1}{3}$ moles (4) $1: 2: 3$ nd Cl ₂ at anode the solution i	aluminium can be produced by the (4) 27 kgm. ssage of same quantity of electricity s :-
70. Ans. 71. Ans. 72. Ans.	(1) A factory produces 40 same current in two be (At wt. of Ca = 40, A1 = (1) 22 kgm. (2) How many moles each through solutions of th (1) Same number of m (3) $\frac{1}{3}$: $\frac{1}{2}$: 1 (2) The passage of current (1) CuSO ₄ (aq) (3) Electrolysis of aq. Cus	9 kg. of calcium in two hou ours :- = 27) (2) 18 kgm. h of Ag ⁺ ion, Cu ⁺² , Fe ⁺³ i heir salts :- oles of each tt liberates H ₂ at cathode a (2) CuCl ₂ (aq.)	(3) 9 kgm. (3) 9 kgm. on would be deposited by pass (2) $1: \frac{1}{2}: \frac{1}{3}$ moles (4) $1: 2: 3$ and Cl ₂ at anode the solution i (3) NaCl(aq.)	aluminium can be produced by the (4) 27 kgm. ssage of same quantity of electricity s :-
Ans. 70. Ans. 71. Ans. 72. Ans. 73.	(1) A factory produces 40 same current in two be (At wt. of Ca = 40, A1 = (1) 22 kgm. (2) How many moles each through solutions of the (1) Same number of me (3) $\frac{1}{3}:\frac{1}{2}:1$ (2) The passage of current (1) CuSO ₄ (aq) (3)	9 kg. of calcium in two hou ours :- = 27) (2) 18 kgm. h of Ag^+ ion, Cu^{+2} , Fe^{+3} i heir salts :- oles of each their salts H ₂ at cathode a (2) $CuCl_2$ (aq.) SO ₄ produces :-	(3) 9 kgm. (3) 9 kgm. on would be deposited by pass (2) $1: \frac{1}{2}: \frac{1}{3}$ moles (4) $1: 2: 3$ nd Cl ₂ at anode the solution i	aluminium can be produced by the (4) 27 kgm. ssage of same quantity of electricity s :-

COMMERCIAL CELLS

- 74. When lead accumulator is charged it is :
 - (1) an electrolytic cell (2) a galvanic cell
- Ans. (1)
- **75.** When a lead storage battery is charged :
 - (1) PbO_2 dissolves
 - (3) Sulphuric acid is regenerated
- Ans. (3)

- (2) The lead electrode becomes coated with lead sulphate
- (4) The amount of acid decreases

ANALATYCAL EXERCISE

		ANALAI YCA	L EXERCISE	
1.	respectively silver nitrate	e, mercuric nitrate and merc	curous nitrate. At the catho	connected in series. These contain de of the cell P, 0.216 g of Ag was vely are : (at. wt. of Hg = 200.59)
	(1) 0.4012 and 0.8024 g	(2) 0.4012 and 0.2006 g	(3) 0.2006 and 0.4012 g	(4) 0.1003 and 0.2006 g
Ans.	(3)			
2.	•	valent of silver is 0.0011180 ution for 200 sec., the amou	•	of 0.5 ampere is passed through an
	(1) 1.1180 g	(2) 0.11180 g	(3) 5.590 g	(4) 0.5590 g
Ans.	(2)			
3.		passed through an aqueous 00 coulombs the amount of 1 (2) 8.0 g	•	itable electrodes for 1000 s. Given ed on electrolysis is : (4) 1.0 g.
Ans.	(3)			
4.	Given standard electrode	potentials		
	$Fe^{3+} + 3e^{-} \longrightarrow Fe; E^{\circ}$	= -0.036 Volt		
	$Fe^{2+} + 2e^{-} \longrightarrow Fe; E^{\circ}$	= -0.440 Volt		
	The standard electrode po	otential E° for $Fe^{3+} + e^{-}$ —	\rightarrow Fe ²⁺ is :	
	(1)-0.476 volt	(2)-0.404 volt	(3) 0.440 volt	(4)+0.772 volt
Ans.	(4)			
5.	The standard oxidation p	otential of Zn and Ag in wat	ter at 20° C are :–	
	$Zn(s) = Zn^{2+}(aq.) + 2e^{-}$	$E^{o} = 0.76 V$		
	$Ag(s) \rightarrow Ag^{+}(aq.) + e^{-}$	$E^{\circ} = -0.80 V$		
		ng reactions actually takes	place :-	
	(1) $Zn(s) + 2Ag^+(aq.) \rightarrow 2$	-	(2) $\operatorname{Zn}^{2+}(\operatorname{aq.}) + 2\operatorname{Ag}(s) \rightarrow$	\rightarrow 2Ag ⁺ (aq.) + Zn(s)
	(3) $Zn(s) + Ag(s) \rightarrow Zn^{2+}$		$(4) Zn^{2+}(aq.) + Ag^{+}(aq.)$	\rightarrow Zn(s) + Ag(s)
Ans.	(1)	((·) (·······························	,(c) = -6(c)
6	The thermodynamic effic	eiency of cell is given by-		
	(1) $\frac{\Delta H}{\Delta G}$	(2) $\frac{\text{nFE}}{\Delta G}$	$(3) - \frac{nFE}{\Delta H}$	(4) Zero
Ans.	(3)			
7.	For the redox reaction :			
	$Zn(s) + Cu^{2+} (0.1M) \rightarrow Z$	Zn^{2+} (1M) + Cu(s) taking	place in a cell,	
	E°_{Cell} is 1.10 volt. E_{Cell} fo	or the cell will be $\left(2.303^{-1}\right)$	$\frac{\text{RT}}{\text{F}} = 0.0591$	
	(1) 1.07 volt	(2) 0.82 volt	(3) 2.14 volt	(4) 1.80 volt
Ans.	(1)			

	OSINDIA			J.H. SIR
8.		s of a solution of $AgNO_3$ 9 sited on the cathode will		ss through the electroplating bath,
	(1)21.6g	(2) 108g	(3) 1.08g	(4) 10.8g
Ans.	(4)			
9.				ltameter. The cathode of the silver of oxygen evolved at STP is : (4) 11.2 cm ³
Ans.	(3)			
10.	Specific conductance of (1) 630 $ohm^{-1} cm^2 mol^{-1}$	0.1 M Nitric acid is 6.3 >	$< 10^{-2} \text{ ohm}^{-1} \text{ cm}^{-1}$. The mol (2) 315 ohm ⁻¹ cm ² mol ⁻¹	ar conductance of the solution is:
	(3) 100 ohm ⁻¹ cm ² mol ⁻¹		(4) $6.300 \text{ ohm}^{-1} \text{ cm}^2 \text{ mol}$	-1
Ans.	(1)			
11.	 (1) Electrons flow from (2) Current flows from (3) Cations move towar (4) Cations move towar 	copper electrode to zinc o zinc electrode to copper e d copper electrode.		zell :
Ans. 12.	(3) Consider the following E	²⁰ values		
120	$E_{Fe^{3+}/Fe^{2+}}^{0} = +0.77V$, undes		
	$E_{Sn^{2+}/Sn}^{0} = -0.14V$			
	Under standard conditio	ns the potential for the rea	ction	
	$Sn(s) + 2Fe^{3+}(aq) \longrightarrow$	-		
	(1)0.91V	(2)1.40V	(3)1.68V	(4)0.63V
Ans.	(1)			
13.	In a cell that utilises the	reaction		
	$Zn(s) + 2H^+(aq.) \rightleftharpoons$	$Zn^{2+}(aq) + H_2(g)$ addition of	$of H_2 SO_4$ to cathode comparting	ment, will
	(2) lower the E_{cell} and shi (3) lower the E_{cell} and shi	shift equilibrium to the righ ft equilibrium to the right ft equilibrium to the left shift equilibrium to the left	it	
Ans.	(1)			
14.		Cr, Mn, Fe and Co are – 0.4	1, +1.57, +0.77 and +1.97V	respectively. For which one of these
		dation state from $+2$ to $+3$ i		
	(1)Fe	(2) Mn	(3) Cr	(4) Co
Ans.	(3)			
15.		-		I.F. of a cell prepared by combining 0.80V. The reduction potential of
	(1) - 3.26 V	(2)+1.66V	(3)–1.66V	(4) 3.26 V
Ans.	(3)			

16.	For a spontaneou	s reactio	on the ΔG ,	equilibri	um consta	ant (K) an	$d E_{Ce^{\parallel}}^{0}$ will be re	espectively	
	(1) - ve, < 1, -ve		(2)-ve,					(4) + ve, >1, -ve	
Ans.	(1) ve, vi, ve		(2) (0,	· 1, VC		(5) (6,1	1, 10		
17.	Aluminium oxi	Aluminium oxide may be electrolysed at 1000°C to furnish aluminium metal (At. Mass = 27 amu; 1 Faraday = 96500 Coulombs). The cathode reaction is							
	$A\ell^{3+} + 3e^{-} \longrightarrow \ell^{3+}$								
	To prepare 5.12 k	To prepare 5.12 kg of aluminium metal by this method would require.							
	$(1) 5.49 \times 10^4 \mathrm{C}\mathrm{c}$	of electri	c charge			(2) 5.49×10^{1} C of electric charge			
	$(3) 5.49 \times 10^7 \mathrm{C}\mathrm{c}$	of electri	c charge			(4) 1.83	$\times 10^7 \mathrm{C}\mathrm{of}\mathrm{electric}$	c charge	
Ans.	(3)								
18.	The highest elect	trical co	nductivity	of the fo	ollowing a	queous so	olution is of		
	(1) 0.1 M fluoroad	cetic aci	d			(2) 0.1 M	I difluoroacetic a	cid	
	(3) 0.1 M acetic a	cid				(4) 0.1 M	I chloroacetic aci	d	
Ans.	(2)		-	-	-				
19.	Electrolyte	KCl	KNO ₃	HC1	NaOAC	NaCl			
	$\Lambda^{\infty}(\operatorname{S}\operatorname{cm}^{2}\operatorname{mol}^{-1})$	149.9	145.0	426.2	91.0	126.5			
	Calculate Λ^{∞}_{HOAC} at 25°C	Calculate Λ^{∞}_{HOAc} using appropriate molar conductances of the electrolytes listed above at infinite dilution in H ₂ O at 25°C							
	(1) 390.7		(2) 217.5	5		(3) 517.2		(4) 552.7	
Ans.	(1)								
20.	Given the data at 25°C,								
	$Ag + I \rightarrow AgI + e^{-}, E^{\circ} = 0.152V$								
	$Ag \rightarrow Ag^+ + e^-, E^\circ = -0.800 V$								
	What is the value	e of log l	Ksp for Ag	gI ? (2.3	$0.3 \frac{\text{RT}}{\text{F}} =$	0.059V			
	(1)-8.12		(2)+8.61	2		(3)-37.8	3	(4)-16.13	
Ans.	(4)								
21.		is soluti	on is 1.29	Sm ⁻¹ . Re	esistance o	of the sam	e cell when filled	Example 1 for 0.1 M is 100Ω . The limit with .02M of the same solution is	
	$(1) 124 \times 10^{-4} \mathrm{Sm}$	$n^2 \text{mol}^{-1}$	(2) 1240	× 10-4 Si	m ² mol ⁻¹	(3) 1.24 >	$\times 10^{-4} \text{Sm}^2 \text{mol}^{-1}$	(4) $12.4 \times 10^{-4} \text{Sm}^2 \text{mol}^{-1}$	
Ans.	(1)								
22.	The reduction po	otential of	of hydroge	en half-ce	ell will be	negative	if :-		
	$(1) p(H_2) = 2 atm$					-	= 2 atm and [H]	$^{+}] = 2.0 \text{ M}$	
	(3) $p(H_2) = 1$ atm and $[H^+] = 2.0 \text{ M}$					(4) $p(H_2) = 1$ atm and $[H^+] = 1.0$ M			
Ans.	(1)	L	-			1 . 2	L	-	
23.								ce of the solution is 1.3 S m^{-1} . If ductivity is :-	
	(1) $6250 \text{ S} \text{ m}^2 \text{ mo}$						$\times 10^{-4} \mathrm{S} \mathrm{m}^2 \mathrm{mol}^{-1}$	-	
	(1) 6250 S m ² mo (3) 625×10^{-4} S r		1				\times 10 \times 5 m ² mol ⁻¹		
Ans.						(+) 02.3			
AU 5.	(2)								

24.		25 M solution of $K_2 SO_4$ is 326	ohm. The specific cond	uctance of the solution, if cell constant			
	is 4.						
	$(1)4.997 \times 10^{-4}$	(2) 5.997×10^{-7}	$(3) 6.997 \times 10^{-4}$	$(4) 1.20 \times 10^{-2}$			
Ans.	(4)						
25.	•	ur electrolytes P, Q, R, S in ohn which offers highest resistance		$(5 \times 10^{-5}); Q(1 \times 10^{-10}); R(7 \times 10^{-8}); S$ ric current is			
	(1) P	(2) S	(3)R	(4) Q			
Ans.	(4)						
26.	Zn rod is placed in 100 this stage will be	$0 \text{ ml of } 1 \text{M} \text{CuSO}_4 \text{ solution so the solution so the solution solution}$	hat molarity of Cu ²⁺ cha	nges to 0.7 M. The molarity of SO_4^{2-} at			
	(1) 0.8 M	(2) 1 M	(3) 0.7 M	(4) 1.8 M			
Ans.	(2)						
27.	The time taken by the galvanic cell which operates almost ideally under reversible conditions at a current of 10^{-16} A to deliver 1 mole of electron is						
	(1) 19.30×10^{20} s	(2) 4.825×10^{20} s	(3) 9.65×10^{20} s	(4) 3.14×10^{11} s			
Ans.	(3)						
28.	-	its 54 g of silver (atomic mass ium chloride in molten state eq	= 108) during the electrolysis. The same quantity of electricit ual to				
	(1)4.5 g	(2) 5.4 g	(3) 54 g	(4) 27 g			
Ans.	(1)						
29.	During the electrolysis of water 4 mol of electrons were transferred from anode to cathode. The total volume gases produced at STP will be approximately						
	(1)67.2 L	(2)22.4 L	(3)44.8 L	(4)89.4 L			
Ans.	(1)						
30.	Which of the following	ng can oxidise fluoride ions?					
	(1)O ₃	(2) Cl ₂	(3) Br ₂	(4) No chemical substance			
Ans.	(4)		2				
31.	Electrolysis of H ₂ SO ₄	(conc.) gives the following at a	anode				
	(1) H ₂	(2) O ₂	$(3) H_2 S_2 O_3$	$(4) H_2 S_2 O_8$			
Ans.	(4)						
32.	If the standard reduction potential E° for four divalent elements X, Y, Z, W are $-1.46V$, $-0.36V$, $0.15V$ and $-1.24V$ respectively then						
	(1) X will replace Z ²⁺	from aqueous solution	(2) Y will replace Z^{2+} from aqueous solution				
	(3) W will replace Z^{2+}	from aqueous solution	(4) All statements are	ecorrect			
Ans.	(4)						
33.	In SHE, the pH of the	acid solution should be					
	(1)7	(2) 14	(3)0	(4)4			
Ans.	(3)						
34.		$(aq) \ Cu^{2+}_{(aq)} \ Cu(s) $ cell can be	increased by				
	(1) Adding NH, in th	(D)	(2) Increasing the co	nc. of Ni ²⁺ ions			
	5	glyoxime into the left half-cell	• •				
Ans.	(3)						

	NO. 1 ONLINE COACHING			J.H. SIR		
35.	For given cell; $\operatorname{Zn} \operatorname{Zn}^{+2}(C_1) \operatorname{Zn}^{+2}(C_2) \operatorname{Zn}$; ΔG is negative if					
	$(1) C_1 = C_2$	(2) $C_1 > C_2$	$(3) C_2 > C_1$	(4) Can't predicted		
Ans.	(3)					
36.	The emf of the cell, $Zn Zn^{+2} Ag^{+} Ag$ is independent of					
	(1) The volume of Zn^{2}	•	(2) The molar	rity of Zn^{2+} ions in solution		
	(3) The molarity of Ag^+ ions in solution		(4) Temperatu	ire		
Ans.	(1)					
37.	Standard cell voltage for the cell Pb/Pb ²⁺ Sn ²⁺ /Sn is -0.01V. If the cell is to exhibit $E_{cell} = 0$, the value of log [Sn ²⁺]/ [Pb ²⁺] should be					
	(1)0.33	(2) 0.5	(3) 1.5	(4)-0.5		
Ans.	(1)					
38.	The voltage of a cell whose half cell reactions are given below is					
	$Mg^{2+} + 2e^{-} \longrightarrow Mg(s)$); $E = -2.37 V$				
	$Cu^{2+} + 2e^{-} \longrightarrow Cu(s)$; +0.34 V				
	(1)–2.03 V	(2) 1.36 V	(3)2.71 V	(4) 2.03 V		
Ans.	(3)			, , ,		
39.	The quantity of electrici (1) 115800 C	ity required to reduce 12.3 (2) 57900 C	3 g of nitro benzene to ani (3) 231600 C	iline assuming 50% current efficiency is (4) 28950 C		
Ans.	(1)					
40.	A 100 watt, 110 volt lamp is connected in series with an electrolytic cell containing $CdSO_4$ solution, the weight of C deposited by the current for 10 hrs is (At. wt. $Cd = 112.4$)					
	(1) 19.06 g	(2) 38.12 g	(3) 1.906 g	(4) 3.812 g		
Ans.	(1)					
41.	The two platinum electrodes fitted in a conductance cell are 1.5 cm apart while the cross sectional area of each electrode is 0.75 cm^2 . What is the cell constant ?					
	(1) 1.25 cm	(2) 0.5 cm	$(3) 2.0 \mathrm{cm}^{-1}$	$(4) 0.2 \mathrm{cm}^{-1}$		
Ans.	(3)					
42.	A current of 2.0 A is passed for 5 hours through a molten metal salt deposits 22.2 g of metal (At. mass : oxidation state of the metal in metal salt is					
	(1)+1	(2)+2	(3)+3	(4)+4		
Ans.	(3)					
43.	The following facts are available					
	$2A^- + B_2 \longrightarrow 2B^- + A_2$					
	$2C^- + B_2 \longrightarrow No reaction$					
	$2D^- + A_2 \longrightarrow 2A^- + D_2$					
	Which of the following	g statement is correct				
	(1) $E^{\circ}_{C^{-}/C_{2}} > E^{\circ}_{B^{-}/B_{2}} > I$	$< E^{o}_{A^{-}/A_{2}} < E^{o}_{D^{-}/D_{2}}$				
	(3) $E^{o}_{C^{-}/C_{2}} < E^{o}_{B^{-}/B_{2}} > I$	$E^{o}_{A^{-}/A_{2}} > E^{o}_{D^{-}/D_{2}}$	(4) Can't predict			
Ans.	(2)					

	NO. 1 ONLINE COACHING			J.H. SIR		
4.	The hydrogen electrode is dipped in a solution of $pH = 3$ at 25°C. The reduction potential of the electrode would be					
	(1)0.177 V	$(2) 0.087 \mathrm{V}$	(3)-0.177 V	(4) 0.059 V		
Ans.	(3)					
45.	A current of 0.965 ampere is passed through 500 ml of 0.2 M solution of $ZnSO_4$ for 10 minutes. The molarity of Zn^{22} after deposition of zinc is					
	(1) 0.1 M	(2) 0.5 M	(3) 0.8 M	(4) 0.194 M		
ns.	(4)					
46.	What will be the emf of the given cell?					
	$Pt \mid H_{2(P1)} \mid H_{(aq)}^{+} \mid H_{2(P2)} \mid Pt$					
	$(1) \frac{\mathrm{RT}}{\mathrm{F}} \ln \frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}$	(2) $\frac{\mathrm{RT}}{\mathrm{2F}} \ln \frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}$	$(3) \frac{\mathrm{RT}}{\mathrm{F}} \ln \frac{\mathrm{P}_2}{\mathrm{P}_1}$	$(4) \frac{\mathrm{RT}}{\mathrm{2F}} \ln \frac{\mathrm{P}_2}{\mathrm{P}_1}$		
Ans.	(2)					

ASSERTION & REASON QUESTIONS

These questions consist of two statements each, printed as *Assertion* and *Reason*. While answering these Questions you are required to choose any one of the following four responses.

- A. If both Assertion & Reason are True & the Reason is a correct explanation of the Assertion.
- B. If both Assertion & Reason are True but Reason is not a correct explanation of the Assertion.
- C. If Assertion is True but the *Reason* is False.
- D. If both Assertion & Reason are False.
- 1. Assertion :- Electrolysis of molten calcium hydride produces hydrogen gas at anode. *Reason* :- Hydrogen in calcium hydride is present as H⁻ ion.
- Ans. (A)
- 2. Assertion :- Conductance of 0.1 M NH_4OH solution is less than that of 0.001M NH_4OH solution. Reason :- Dilution increases the degree of ionisation of NH_4OH
- Ans. (A)
- **3.** *Assertion :-* Salt bridge is used generally in the electrochemical cells.
- **Reason** :- The ions of the electrolyte used in the salt bridge should have nearly same transport number.
- Ans. (B)
- 4. Assertion :- The electrode potential of SHE is zero.
- **Reason** :- SHE is a standard reference electrode.
- Ans. (B)
- 5. Assertion :- Copper sulphate solution cannot be stored in iron-vessel.
- **Reason** :- Copper atoms are oxidised by iron ions.

Ans. (C)

6. Assertion :- Absolute value of E_{red}^0 of an electrode cannot be determined.

Reason :- Neither oxidation nor reduction can take place alone.

- Ans. (A)
- Assertion :- A dry cell became dead after long time even if it has not been used.
 Reason :- The NH₄Cl slowly and gradually corrods the zinc container.
- Ans. (A)
- 8. Assertion :- The molar conductance of weak electrolytes is low as compared to that of strong electrolytes at moderate concentrations.

Reason :- Weak electrolytes at moderate concentration dissociation to a much greater extent as compared to strong electrolytes.

- Ans. (C)
- 9. Assertion :- Galvanised iron does not rust.

Reason :- Zinc has a more negative electrode potential then iron.

Ans. (A)

Assertion :- Increase in the concentration of copper half cell in Daniel cell increases the emf of the cell.
 Reason :- According to the Nernst equation

emf of cell =
$$E_{cell}^{0} + \frac{0.059}{2} \log \frac{\left[Cu^{+2}\right]}{\left[Zn^{+2}\right]}$$

Ans. (A)

- Assertion :- Sodium ions are discharged at the Hg electrode during electrolysis in preference to H⁺ ions.
 Reason :- The nature of electrode also affect the order of discharge of cations.
- Ans. (A)
- 12. Assertion :- The cell constant of a cell depends upon the nature of the material of the electrodes.
 Reason :- The observed conductance depends upon the nature of the electrolyte and the concentration of the solution.

Ans. (D)

13.	<i>Assertion</i> :- At the end of electrolysis using platinum electrodes, an aqueous solution of copper sulphate turns colourless.					
	Reason :- Copper in $CuSO_4$ is converted to $Cu(OH)_2$ during the electrolysis.					
Ans.	(\mathbf{C})					
14.	<i>Assertion</i> :- In electrolysis, the quantity of electricity needed for depositing 1 mole of silver is different from that required for 1 mole of copper.					
	Reason :- The atomic weight of silver and copper are different.					
Ans.	(B)					
15.	Assertion :- Reduction potential of Mn (+3 to +2) is more positive than Fe (+3 to +2) [AIIMS-2011]					
	Reason :- Ionisation potential of Mn is more than that of Fe					
Ans.	(C)					
16.	Assertion :- A reactions is spontaneous if $E_{cell} = +ve$ [AIIMS-2011]					
	Reason :- For $E_{cell} = +ve$. ΔG is always $-ve$					
Ans.	(A)					
17.	Assertion :- pH of solution increases during electrolysis of aqueous solution of NaCl.					
	Reason :- Electrolysis is non-spontaneous process.					
Ans.	(B)					
18.	Assertion :- Cu is stronger reducing agent than H_2 .					
	Reason :- E° of Cu^{+2}/Cu is negative.					
Ans.	(D)					
19.	Assertion :- For cell reaction ; at 298 K					
	$\operatorname{Zn}_{(s)} + \operatorname{Cu}^{+2}(1M) \rightleftharpoons \operatorname{Zn}^{+2}(1M) + \operatorname{Cu}(s)$					
	$E_{cell}^0 = 0$					
	Reason :- At standard condition ; cell potential is always zero.					
Ans.	(D)					
20.	Assertion :- Li forms ethynide with acetylene.					

Reason :- $E^0_{Li^+/Li} = +3.04V$

Ans. (C)