DAILY PRACTICE PROBLEM OF PHYSICAL CHEMISTRY FOR NEET

BY JITENDRA HIRWANI

GASEOUS STATE

Plot No. 38, Near Union Bank of India, Rajeev Gandhi Nagar, Kota, Rajasthan – 324005 Mob. : 9214233303

		DP	P-1		
1.	A sample of gas occupies Assuming that temperate	10 L under a pressure of 1 at are of the gas sample does n	tm. What v 10t change	vill be its volume	if the pressure is increased to 2 atm?
	(1) 2 L	(2)5L	(3)10L		(4) 1 L
Ans.	(2)				
2.	A gas at a pressure of 5 at	m is heated from 0° to 546°	C and sime	ultaneously comp	ressed to $\frac{1}{3}$ rd of it original volume.
	Hence final pressure is				
	(1) 10 atm	(2)45 atm	(3) 30 atn	n	(4) 5 atm
Ans.	(2)				
3.	How much should the pre-	essure be increased in order t	o decrease	the volume of a g	as by 5% at a constant temperature?
	(1)5%	(2)5.26%	(3)10%		(4)4.26%
Ans.	(2)				
4.	When the temperature is raised through 1°C the volume is increased by $\frac{1}{273}$ th times of the original volume. This is				imes of the original volume. This is
	(1) Boyle's Law	(2) Charles' Law	(3) Avog	adro Law	(4) Graham's Law
Ans.	(2)				
5.	Which curve shows Charle's law?				
			(2)	V $\frac{1}{T}$	
	(3) ¹ V T	\rightarrow	(4)	$ \begin{array}{c c} \uparrow \\ \hline \\ \hline$	

Ans. (2)

6. I, II, III are three isotherms respectively at T_1, T_2, T_3 . Temperature will be in order

	↑ P I					
	L					
	$(1) T_1 = T_2 = T_3$	$(2) T_1 < T_2 < T_3$	$(3) T_1 > T_2 > T_3$	$(4) T_1 > T_2 = T_3$		
Ans.	(3)					
7.	To what temperature decreased by 15.0% ?	must a neon gas sample be	heated to double its pressur	e in the initial volume of gas at 75°C is		
	(1) 592 K	(2) 492 K	(3) 542 K	(4) 642 K		
Ans.	(1)					
8.	When a gas filled in a closed vessel is heated through 1°C, its pressured is increased by 0.4%. The initial temperature of the gas was					
	(1)250 K	(2) 2500 K	(3)250°C	(4)25°C		
Ans.	(1)					
9.	"One gram molecules	of a gas at N.T.P. occupies 2	22.4 litres". This fact was de	rived from		
	(1) Dalton's theory		(2) Avogadro's hypot	(2) Avogadro's hypothesis		
	(3) Berzelius hypothesis		(4) Law of gaseous vol	(4) Law of gaseous volume		
Ans.	(2)					
10.	A sample of gas at 1.2 was its original volum	atm and 27°C heated at cons ne ?	stant pressure to 57°C. Its fina	al volume is found to be 4.75 litres. What		
	(1)4.32 litres	(2) 5.02 litres	(3)4.22 litres	(4) None of these		
Ans.	(1)					
11.	If the density of a cert	ain gas at 30°C and 768 tor	r is 1.35 kg/m ³ its density at	STP would be		
	$(1) 1.48 \text{ kg/m}^3$	(2) 1.58 kg/m ³	(3) 1.25 kg/m^3	(4) 1.4 kg/m^3		
Ans.	(1)					
12.	A vessel has 6 g of ox much O_2 leaks out if	ygen at a presure P and tem the pressure is P/2 and tem	perature 400 K. A small hole perature 300 K?	e is made in it so that O_2 leaks out. How		
	(1)5g	(2) 4 g	(3)2g	(4) 3 g		
Ans.	(3)					
13.	What percent of a sample of nitrogen must be allowed to escape if its temeprature, pressure and volume are to be changed from 220°C, 3 atm and 1.65 litre to 110°C, 0.7 atm and 1.00 litre respectively?					
	(1)81.8%	(2)71.8%	(3)76.8%	(4)86.8%		
Ans.	(1)					
14.	The density of neon v	vill be highest at				
	(1)STP	(2) 0°C and 2 atm	(3) 273°C and 1 atm	(4) 273°C and 2 atm		
Ans.	(2)					
15.	Which of the following	ng relation is correct for an i	deal gas ?			
	(1) $\frac{V}{n} = \frac{P}{RT}$	(2) $\frac{MV}{m} = \frac{P}{RT}$	$(3) \frac{d}{M} = \frac{P}{RT}$	(4) All of these		
Ans.	(3)					

DPP - 2

1.	2 g of gas A introduced in a evacuated flask at 25°C. The pressure of the gas is 1 atm. Now 3 g of another gas B is introduced in the same flask so total pressure becomes 1.5 atm. The ratio of molecular mass A and B is				
	$(1)\frac{3}{1}$	(2) $\frac{1}{3}$	$(3)\frac{1}{4}$	$(4)\frac{2}{3}$	
Ans.	(2)				
2.	Which mixture of gases a	t room temperature does no	ot obey Dalton's law of part	ial pressure ?	
	(1) NO_2 and O_2	(2) NH_3 and HCl	(3) CO and CO_2	(4) SO_2 and SO_3	
Ans.	(2)				
3.	The partial pressure of hy	drogen in a flask containin	g 2 g H_2 and 32 g SO_2 is		
	(1) $1/16^{th}$ of total pressure	re	(2) $1/9^{\text{th}}$ of total pressure		
	(3) $2/3^{rd}$ of total pressure (4) $1/8^{th}$ of total pressure				
Ans.	(3)				
4.	The two bulbs of volume What is the final pressur	5 litre and 10 litre contain re in the two bulbs if the te	ing an ideal gas at 9 atm an emperature remains constar	ad 6 atm respectively are connected.	
	(1) 15 atm	(2) 7 atm	(3) 12 atm	(4) 21 atm	
Ans.	(2)				
5.	Two non-reactive gases A and B are present in a container with partial pressure 200 and 180 mm of Hg. When a third non-reactive gas C is added then total pressure becomes 1 atm then mole fraction of C will be				
	(1)0.75	(2) 0.5	(3) 0.25	(4) cannot be calculated	
Ans.	(2)				
6.	The rates of diffusion of g	gases A and B of molecular	weights 100 and 81 respect	ively are in the ratio of	
	(1)9:10	(2) 10 : 9	(3) 100 : 18	(4) 81 : 100	
Ans.	(1)				
7.	100 mL of O ₂ gas diffuses in 10 s. 100 mL of gas 'X' diffuses in 't' sec. Gas 'X' and time 't' can be				
	(1) H ₂ , 2.5 s	$(2) SO_2, 16 s$	(3) CO, 10 s	(4) He, 4 s	
Ans.	(1)				
8.	Pressure exerted by a perfect gas is equal to				
	(1) Mean kinetic energy per unit volume				
	(2) Half of the mean kine	etic energy per unit volume			
	(3) Two thirds of mean k	(3) Two thirds of mean kinetic energy per unit volume			
	(4) One third of mean kinetic energy per unit volume				
Ans.	(3)				

<u>Ans. (4)</u>

DPP-3

1.	For non-zero value of force of attraction between gas molecules, gas equation will be					
	(1) $PV = nRT - \frac{n^2a}{V}$	(2) $PV = nRT + nbP$	(3) $P = \frac{nRT}{V-b}$	(4) PV = nRT		
Ans.	(1)					
2.	What is the ratio of the average molecular kinetic energy of UF ₆ to that of H_2 both at 300 K ?					
	(1)1:1	(2) 349 : 2	(3)2:349	(4) None of these		
Ans.	(1)					
3.	If pressure of a fixed quant	tity of a gas is increased 4 tir	nes keeping the temperature	constant, the r.m.s. velocity will be		
	(1)4 times	(2) 2 times	(3) Same	(4) $\frac{1}{2}$ times		
Ans.	(3)					
4.	The total kinetic energy in	n joules of the molecules in 8	8 g of methane at 27°C?			
	(1) 3741.30 J	(2)935.3 J	(3) 1870.65 J	(4) 700 J		
Ans.	(3)					
5.	At what temperature the F	RMS velocity of oxygen will	be same as that of methane	e at 27°C ?		
	(1)54°C	(2) 327 K	(3) 600 K	(4) 573 K		
Ans.	(3)					
6.	The temperature at which	the root mean square veloc	ity of SO_2 molecules is the s	same as that of O_2 at 27°C is		
	(1)600°C	(2)300°C	(3)327°C	(4)27°C		
Ans.	(3)					
7.	At what temperature will (the total KE of 0.3 mol of He	e be the same as the total KE	t of 0.4 mol of Ar at 400 K ?		
	(1) 533 K	(2) 400 K	(3) 346 K	(4) 300 K		
Ans. 8.	(1) The time taken for a certain volume of gas to diffuse through a small hole was 2 min. Under similar conditions an equal volume of ovvren took 5.65 minute to pass. The molecular mass of the gas is					
	(1) 32.0	(2) 11.33	(3)4.0	(4)8.0		
Ans.	(3)					
9.	The r.m.s. velocity of hydrogen is $\sqrt{7}$ times the r.m.s. of nitrogen. If T is the temperature of the gas then					
	(1) $T_{H_2} = T_{N_2}$	(2) $T_{H_2} > T_{N_2}$	(3) $T_{H_2} < T_{N_2}$	(4) $T_{H_2} = \sqrt{7}T_{N_2}$		
Ans.	(3)					
10.	Distribution of fraction of molecules with velocity is represented in the figure					
10.	N N Velocity		epresented in the figure			
	Velocity corresponding to point X is					
	(1) $\sqrt{\frac{2RT}{M}}$	(2) $\sqrt{\frac{3RT}{M}}$	(3) $\sqrt{\frac{8RT}{\pi M}}$	(4) $\sqrt{\frac{2RT}{\pi M}}$		
Ans.	(1)					
11.	If saturated vapours are co	mpressed slowly at constant	temperature to half the init	ial volume, the vapour pressure will		
	(1) Becomes double	(2) Becomes 4 times	(3) Becomes half	(4) Remains unchanged		

Ans.

DPP-4

When there can be more deviation in the behaviour of a gas from the ideal gas equation $PV = nRT$				
(1) At high temperature and low pressure				
(2) At low temperature and high pressure				
(3) At high temperature and high pressure				
(4) At low temperature and low pressure				
(2)				
In van der W1's equation	n of state for a non-ideal gas	s, the term that accounts for	intermolecular forces is	
		[م]		
(1)V-1	(2) RT	(3) $\left P + \frac{a}{V^2} \right $	$(4)(RT)^{-1}$	
(2)				
(3)	'has the dimensions of			
(1) Mol I^{-1}	(2) A tra L^2 mol-2	(2) Litro mol-1	(4) A true L mol $^{-2}$	
(1) MOL	(2)Aun L ⁻ mor	(3) Liue mor	(4) Aun L'hior	
(2)	ro accumptions made by king	atio theory of gases were wro	ng one of them is that are molecules	
are	to assumptions made by kine	cue theory of gases were wro	ing, one of them is that gas molecules	
(1) Verv large				
(1) Very large (2) Compressible				
(3) Point particles without significant volume				
(4) Spherical				
(3)				
Which one is correct relation for 1 mole of real gases ?				
		DT -		
$(1)\left(P+\frac{a}{V^2}\right)(V-b) = R$	Т	(2) $P = \frac{KI}{(V-h)} - \frac{a}{V^2}$		
		(1 0) 1		
$(\mathbf{a}) \begin{pmatrix} \mathbf{a} \\ \mathbf{a} \end{pmatrix} = (\mathbf{R} + \mathbf{T})$				
$(3)\left(1+\frac{1}{V^2}\right)^{-1}(V-b)$		(4) Both (1) & (2)		
(4)				
For a real gas, Z shows				
(1) $Z < 1$, gas is less con	npressible			
(2) $Z > 1$, gas is more co	ompressible			
(3) $Z = \infty$ m for an ideal	gas			
(4) $PV \neq nRT$, for real ga	as			
(4)				
The compressibility fact	or 'Z' for the gas is given by	Į.		
	PV.			
$(1)Z = PV_{obs}$	(2) $Z = \frac{000}{nRT}$	(3)Z = nRT	(4)Z = PV.nRT	
(2)				
Which of the following gas always shows positive deviation from ideal gas behaviour ?				
	When there can be more (1) At high temperature (2) At low temperature (3) At high temperature (4) At low temperature (2) In van der W l's equation (1) V-1 (3) van der W l's constant 'a (1) Mol L ⁻¹ (2) van der W l found that tware (1) Very large (2) Compressible (3) Point particles with (4) Spherical (3) Which one is correct relation (1) $\left(P + \frac{a}{V^2}\right)(V - b) = R$ (3) $\left(P + \frac{a}{V^2}\right) = \frac{(R + T)}{(V - b)}$ (4) For a real gas, Z shows (1) $Z < 1$, gas is less con (2) $Z > 1$, gas is more cond (3) $Z = \infty$ m for an ideal (4) $PV \neq nRT$, for real gas (4) The compressibility factor (1) $Z = PV_{obs}$ (2) Which of the following of	When there can be more deviation in the behaviour of (1) At high temperature and low pressure (2) At low temperature and high pressure (3) At high temperature and high pressure (4) At low temperature and low pressure (2) In van der W I's equation of state for a non-ideal gas (1) V-1 (2) RT (3) van der W I's constant 'a' has the dimensions of (1) Mol L ⁻¹ (2) Atm L ² mol ⁻² (2) van der W I found that two assumptions made by kind are (1) Very large (2) Compressible (3) Point particles without significant volume (4) Spherical (3) Which one is correct relation for 1 mole of real gases (1) $\left(P + \frac{a}{V^2}\right)(V - b) = RT$ (3) $\left(P + \frac{a}{V^2}\right) = \frac{(R + T)}{(V - b)}$ (4) For a real gas, Z shows (1) $Z < 1$, gas is less compressible (2) $Z > 1$, gas is less compressible (3) $Z = \infty$ m for an ideal gas (4) The compressibility factor 'Z' for the gas is given by (1) $Z = PV_{obs}$ (2) $Z = \frac{PV_{obs}}{nRT}$ (2) Which of the following gas always shows positive d	When there can be more deviation in the behaviour of a gas from the ideal gas et (1) At high temperature and low pressure (2) At low temperature and high pressure (3) At high temperature and low pressure (4) At low temperature and low pressure (2) In van der W1's equation of state for a non-ideal gas, the term that accounts for (1) V-1 (2) RT (3) $\left[P + \frac{a}{V^2}\right]$ (3) van der W1's constant 'a' has the dimensions of (1) Mol L ⁻¹ (2) Atm L ² mol ⁻² (3) Litre mol ⁻¹ (2) van der W1 found that two assumptions made by kinetic theory of gases were wro are (1) Very large (2) Compressible (3) Point particles without significant volume (4) Spherical (3) Which one is correct relation for 1 mole of real gases ? (1) $\left(P + \frac{a}{V^2}\right) (V - b) = RT$ (2) $P = \frac{RT}{(V - b)} - \frac{a}{V^2}$ (3) $\left(P + \frac{a}{V^2}\right) = \frac{(R + T)}{(V - b)}$ (4) Both (1) & (2) (4) For a real gas, Z shows (1) $Z < 1$, gas is less compressible (3) $Z = \infty$ m for an ideal gas (4) PV \neq nRT, for real gas (4) The compressibility factor 'Z' for the gas is given by (1) $Z = PV_{obs}$ (2) $Z = \frac{PV_{obs}}{nRT}$ (3) $Z = nRT$ (2) Which of the following as a laway shows positive deviation from ideal case be	

9. For non-zero value of force of attraction between gas molecules, gas equation will be

(1)
$$PV = nRT - \frac{n^2 a}{V}$$
 (2) $PV = nRT + nbP$ (3) $P = \frac{nRT}{V - b}$ (4) $PV = nRT$

Ans. (1)

10. $\rm T_{c}$ and $\rm P_{c}$ of a gas are 400 K and 41 atms. respectively. The V_{c} is

(1)
$$\frac{400R}{41}$$
 (2) $\frac{150R}{41}$ (3) $\frac{41R}{400}$ (4) $\frac{300R}{41}$

(2) Ans.

11. Boyle's temperature of a gas is related to van der W l's constants as

> (4) $T_i = \sqrt{T_b}$ $(1) T_i = T_b$ $(2) 2T = T_{b}$ $(3) T_i = 2T_b$

Ans. (3)

12. The critical temperature of a gas is related to van der W l's constants as

(1)
$$T_c = 3b$$
 (2) $T_c = \frac{a}{27b^2}$ (3) $T_c = \frac{8a}{27bR}$ (4) $T_c = \frac{27bR}{8a}$

(3) Ans.

13. Boyle's temperature T_b is equal to

a	a	2a	a
(1) $\frac{-}{b}$	(2) \overline{bR}	(3) \overline{bR}	$(4) \frac{1}{2bR}$

(2) Ans.

14. The point at which densities of a substance in gaseous as well as in liquid state are same called (1) Critical point (2) Isoelectric point (3) Isotonic point (4) Ideal point (1)

Ans.