PROBLEM SOLVING TECHNIQUES OF PHYSICAL CHEMISTRY FOR NEET

BY JITENDRA HIRWANI

GASEOUS STATE

Plot No. 38, Near Union Bank of India, Rajeev Gandhi Nagar, Kota, Rajasthan – 324005 Mob. : 9214233303

BASIC EXERCISE

1.	Two flasks A and B contain:	Two flasks A and B of 500 mL each are respectively filled with O_2 and SO_2 at 300K and 1 atm pressure. The flasks contain:					
	(1) The same numb	per of atoms					
	(2) The same number of molecules						
	(3) More number o	f moles in flask A as compa	ared to flask B				
	(4) The same mass	s of gases					
Ans.	(1) (2)						
2.	A 0.5 dm ³ flask cont	ains gas A and 1 dm ³ flask	contains gas B at the same ter	nperature. If density of $A = 3.0$ g dm ⁻³ and			
	that of $B = 1.5 g dm^{-1}$	$^{-3}$ and the molar mass of A	$=\frac{1}{2}$ of B, then the ratio of pr	essure exerted by gases is –			
	$P_A = 2$	$P_A = 1$	$P_A = 4$	$P_A = 3$			
	$(1) \frac{1}{P_{B}} = 2$	(2) $\frac{P_{B}}{P_{B}} = 1$	$(3) \frac{P_{\rm B}}{P_{\rm B}} = 4$	$(4) \frac{P_{B}}{P_{B}} = 3$			
Ans.	(3)						
3.	One litre of an unkn	own gas weighs 1.25g at N.	T.P. which of the following ga	as pertains to the above data			
	(1)CO,	(2)NO ₂	$(3) N_{2}$	$(4) O_{2}$			
Ans.	(3)	-					
4.	A gas occupies one l of Hg at the same ter	itre under atmospheric pres mperature.	sure. What will be the volume	of the same amount of gas under 750 mm			
	(1) 1.0133 lit.	(2)2.0133 lit.	(3) 3.0133 lit.	(4) 5.0133 lit.			
Ans.	(1)						
5.	A flask of methane oxygen at the same	(CH_4) was weighed. Methatemperature and pressure.	ne was then pushed out and t The mass of oxygen would b	the flask again weighed when filled with e:			
	(1) The same as the	methane	(2) Half of the methan	ne			
	(3) Double of that of	fmethane	(4) Negligible in com	parison to that of methane			
Ans.	(3)						
6.	A box of 1L capacity is divided into two equal compartments by a thin partition which are filled with $2g H_2$ and $16g CH_4$ respectively. The pressure in each compartment is recorded as P atm. The total pressure when partition is removed will be						
	(1) P	(2)2P	(3) P/2	(4) P/4			
Ans.	(1)						
7.	A 2.24L cylinder of oxygen at N.T.P. is found to develop a leakage. When the leakage was plugged the press dropped to 570mm of Hg. The number of moles of gas that escaped will be :						
	(1) 0.025	(2) 0.050	(3) 0.075	(4) 0.09			
Ans.	(1)						
8.	10 g of a gas at NTP occupies 5 litres. The temp. at which the volume becomes double for the same mass of gas at the same pressure is ?						
	(1)273K	$(2)-273^{\circ}C$	(3)273°C	(4) 546°C			
Ans.	(3)						
9.	An open vessel cont is :	aining air is heated from 2'	7ºC to 127ºC. The fraction of	air originally present which goes out of it			
	(1) 3/4	(2) 1/4	(3) 2/3	(4) 1/8			
Ans.	(2)						

- 10. In a closed flask of 5 litre, 1.0 g of H, is heated from 300 to 600K. Which statement is not correct
 - (1) Pressure of the gas increases
 - (2) The rate of collision increases
 - (3) The number of moles of gas increases
 - (4) The energy of gaseous molecules increases
- Ans. (3)
- 11. V versus T curves at constant pressure P_1 and P_2 for an ideal gas are shown in Fig. Which is correct

- 12. The density of oxygen gas at 25°C is 1.458 mg/litre at one atmosphere. At what pressure will oxygen have the density twice the value :
 - (1) $0.5 \text{ atm}/25^{\circ}\text{C}$ (2) $2 \text{ atm}/25^{\circ}\text{C}$ (3) $4 \text{ atm}/25^{\circ}\text{C}$ (4) None
- Ans. (2)

Ans.

13. Figure shows graphs of pressure versus density for an ideal gas at two temperatures T_1 and T_2 . Which is correct :

$(1) T_1 > T_2$	Ť	
(2) $T_1 = T_2$		
$(3) T_1 < T_2$	P	
(4) None of the above	ļ	d
(1)		

- 14.Which pair of the gaseous species diffuse through a small jet with the same rate of diffusion at same P and T :
(1) NO, CO(2) NO, CO2(3) NH_3 , PH3(4) NO, C2H6
- Ans. (4)

Ans.

- **15.** The rate of diffusion of methane at a given temperature is twice that of a gas X. The molecular weight of X is : (1) 64 (2) 32 (3) 4.0 (4) 8.0
- Ans. (1)

16.

```
The increasing order of effusion among the gases, H_2, O_2, NH_3 and CO_2 is –
```

- (1) H_2, CO_2, NH_3, O_2 (2) H_2, NH_3, O_2, CO_2 (3) H_2, O_2, NH_3, CO_2 (4) CO_2, O_2, NH_3, H_2 (4)
- Ans.(4)17.Gas A having molecular weight 4 diffuses thrice as fast as the gas B at a given T. The molecular weight of gas B is :(1)36(2)12(3)18(4)24
- Ans. (1)18. Four rubber tubes are respectively filled with F
 - Four rubber tubes are respectively filled with H_2 , O_2 , N_2 and CO_2 . The tube which will be reinflated first is : (1) H, filled tube (2) O, filled tube (3) N, filled tube (4) CO, filled tube
- Ans. (1) 19. A balloon filled with me
 - **19**. A balloon filled with methane CH_4 is pricked with a sharp point and quickly plunged into a tank of hydrogen at the same pressure. After sometime the balloon will have :

Ans.	(1)	
	(3) Remained unchanged in size	(4) Ethylene (C_2H_4) inside it
	(1)Enlarged	(2) Collapsed

ETC INDIA'S I	NO. 1 ONLINE COACHING			J.H. SIR			
20 .	Ratio of diffusion of	hydrogen is :					
	(1) Half of He	(2) 1.4 times of He	(3) Double than He	(4) four times of He			
Ans.	(2)						
21.	A football bladder contains equimolar proportions of H_2 and O_2 . The composition by mass of the mixture effusing our of punctured football is in the ratio ($H_2 : O_2$)						
	(1)1:4	(2) $2\sqrt{2}$: 1	(3) 1 : $2\sqrt{2}$	(4)4:1			
Ans.	(1)						
22.	If the vapour densit is respectively	ties of methane & oxygen	are in the ratio 1 : 2, the r	ratio of rate of diffusion of O_2 & CF			
	(1)1:2	(2)1:1.414	(3)2:1	(4) 1.414 : 1			
Ans.	(2)						
23.	A gas X diffuses three	ee times faster than another g	gas Y the ratio of their densit	ties i.e., $D_x : D_y$ is			
	(1) 1/3	(2) 1/9	(3) 1/6	(4)1/12			
Ans.	(2)						
24.	The relative rate of c	liffusion of a gas (Mol wt. $=$ 9	98) as compared to hydrogen	will be :			
	(1) 1/7	(2) 1/5	(3) 1/4	(4) 1			
Ans.	(1)						
25.	Since the atomic weights of carbon, nitrogen and oxygen are 12, 14 and 16 respectively, among the following pairs of gases, the pair that will diffuse at the same rate is :						
	(1) Carbon dioxide a	nd nitrous oxide	(2) Carbon dioxide and	nitrogen peroxide			
	(3) Carbon dioxide a	nd carbon monoxide	(4) Carbon dioxide and	nitric oxide			
Ans.	(1)						
26.	50 ml of a gas A diffi pressure temperature	e conditions. If the Molecular	the same time as for the diffuser r weight of $A = 64$, that of B	would be :			
A	(1) 100	(2)250	(3) 200	(4)80			
Ans. 27	(1) If rate of diffusion of	fA is 5 times that of \mathbf{R} what \mathbf{x}	vill be the density ratio of A	and P ·			
21.	(1) 1/25	(2) 1/5	(3) 25	(4) 5			
Ans.	(1) 1/25	(2) 1/5	(5)25	(+)5			
28.	The rate of diffusion of nitrogen gas will l	of a gas having molecular we	eight just double of nitrogen g	gas is 56 ml per sec the ratio of diffusio			
	(1) 79.19 ml/sec.	(2) 112 ml/sec	(3) 56 ml/sec	(4) 90 ml/sec			
Ans.	(1)						
29.	If the four tubes of a first :	car are filled to the same press	sure with N_2 , O_2 , H_2 and CO_2	separately then which one will be fille			
	$(1)N_{2}$	(2) O ₂	$(3) H_2$	(4) CO ₂			
Ans.	(3)						
30.	Under identical cond by :	ditions of temperature and pr	essure the ratio of the rates o	of effission of O_2 and CO_2 gases is give			
	(1) $\frac{\text{rate of effusion}}{\text{rate of effusion}}$	$\frac{\text{of oxygen}}{\text{n of CO}_2} = 0.87$	(2) $\frac{\text{rate of effusion of}}{\text{rate of effusion of}}$	$\frac{f \text{ oxygen}}{of \text{ CO}_2} = 1.17$			
	(3) $\frac{\text{rate of effusion}}{\text{rate of effusion}}$	$\frac{\text{of oxygen}}{\text{n of CO}_2} = 8.7$	(4) $\frac{\text{rate of effusion of}}{\text{rate of effusion of}}$	$\frac{f \text{ oxygen}}{of \text{ CO}_2} = 0.117$			
Ans.	(2)						

31. The correct expression for the vander waal's equation of states is :

	$(1)\left(p+\frac{a}{n^2V^2}\right)\left(V-nb\right)$	p) = nRT	$(2)\left(p+\frac{an^2}{V^2}\right)(V-nb) =$	$=\Delta nRT$
	$(3)\left(p+\frac{an^2}{V^2}\right)(V-b) =$	- nRT	$(4)\left(p+\frac{an^2}{V^2}\right)(V-nb) =$	= nRT
Ans.	(4)			
32.	Pressure of real gas is le	ess than the pressure of idea	l gas because :	
	(1) No. of collisions incr	reases	(2) Definite shape of mol	ecule
	(3) K.E. of molecule incr	reases	(4) Inter molecular forces	3
Ans.	(4)			
33.	At relatively high pressu	ure, van der waals' equation	reduces to :	
	(1)PV=RT	(2) $PV = RT + \frac{a}{V}$	(3) PV = RT + Pb	$(4) PV = RT - \frac{a}{V^2}$
Ans.	(3)			
34.	A real gas most closely	approaches the behaviour of	f an ideal gas at :	
	(1) 15 atm and 200 K	(2) 1 atm and 273 K	(3) 0.5 atm and 500 K	(4) 15 atm and 500 K
Ans.	(3)			
35.	The compressibility of a	gas is less than unity at ST	P therefore :	
	(1) V > 22.4 lit	(2) V_{2} < 22.4 lit	(3) V = 22.4 lit	$(4) V_{=} = 44.8 \text{ lit}$
Ans.	(2)			
36.	The values of vander wa mol ⁻² respectively. The g	aals' constant 'a' for the gase gas which can most easily be	s O_2 , N_2 , NH_3 and CH_4 are 1 e liquefied is :	1.360, 1.390, 4.170 and 2.253 L^2 atm
	$(1)O_{2}$	$(2) N_{2}$	(3) NH ₂	(4) CH ₄
Ans.	(3)		× >	× / 4
37.	A thin balloon filled with	air at 47°C has a volume of 3	litre. If on placing it in a coo	oled room its volume becomes 2.7 litre,
	the temperature of room	is:	r c	
	(1)42°C	(2) 100°C	(3) 15°C	(4) 200°C
Ans.	(3)			
20	If a mixture containing 2	malas of hydrogan and 1 m	ala afnitragan is converted	completely into ammonia the ratio of
30.	initial and final volume	under the same temperature	and pressure would be .	completely into animonia, the fatto of
	(1) 3 : 1	(2) 1:3	(3) 2 : 1	(4) 1:2
Ans.	(3)			
39.	SO_2 at STP contained in	h a flask was replaced by O_2	under identical conditions of	of pressure, temperature and volume.
	Then the weight of O_2 w	$\int \frac{\partial f}{\partial t} = \int \frac{\partial f}{\partial t} \frac{\partial f}{\partial t} = \int \frac{\partial f}{\partial t} \frac{\partial f}{\partial t} \frac{\partial f}{\partial t} = \int \frac{\partial f}{\partial t} \frac{\partial f}{\partial t} \frac{\partial f}{\partial t} \frac{\partial f}{\partial t} = \int \frac{\partial f}{\partial t} \frac{\partial f}{\partial t$		
	(1) half	(2) one fourth	(3) twice	(4) four times.
Ans.	(1)			

ETC INDIA'S I	NO. 1 ONLINE COACHING				J.H. SIR		
40.	Assuming that O ₂ molecule is spherical in shape with radius 2 Å, the percentage of the volume of O ₂ molecules to the						
	total volume of gas at S.T.P. is :						
	(1) 0.09 %	(2) 0.9 %	(3) 0.009 %	(4) 0.045 %			
Ans.	(1)						
41.	An amount of 1.00 g compound is (R = 0.08	of a gaseous compou 820 liter atm mole ⁻¹ K (2) B H	nd of boron and hydrogen e^{-1} ; at. wt: H = 1.0, B = 10.8) (3) B H	occupies 0.820 liter at 1.00 a	tm and at 3 ⁰ C. The		
Ans.	(1) DH ₃ (3)	$(2) D_4 n_{10}$	$(3) D_2 T_6$	$(+) D_3 m_{12}$			
42.	A and B are two ident same temperature and	ical vessels. A contai d pressure. The vapo	ns 15 g ethane at 1atm and ur density of X_2 is :	298 K. The vessel B contain	s 75 g of a gas X ₂ at		
	(1) 75	(2) 150	(3) 37.5	(4) 45			
Ans.	(1)						
43.	A mixture of hydrog hydrogen will be	en and oxygen at on	e bar pressure contains 20	0% by weight of hydrogen.	Partial pressure of		
Ans.	(1) 0.2 bar (4)	(2) 0.4 bar	(3) 0.6 bar	(4) 0.8 bar			
11	Y ml of H . gas affliggs through a hole in a container in 5 see. That imataken for the offician of the same values of the						
44.	gas specified below u (1) 10 sec. He	nder identical condit	ions is : (3) 25 sec. CO	$(4) 55 \sec CO$	same volume of the		
Ans.	(1) 10 see. He	$(2) 20 \text{ sec. } 0_2$	(5) 25 300.00	$_{2}$ (+) 55 sec. \cos_{2}			
45.	According to kinetic (1) The pressure exer (2) The pressure exer (3) The r.m.s. velocity (4) The mean translat	theory of gases, for a ted by the gas is prop ted by the gas is prop y of the molecule is in tional K.E. of the mol	diatomic molecule : portional to the mean veloc portional to the r.m.s. veloc oversely proportional to the lecule is proportional to the	ity of the molecule. ity of the molecule. temperature. absolute temperature.			
Ans.	(4)						
46.	The R.M.S. speed of (1) 120 m s^{-1}	f the molecules of a g (2) 300 m s^{-1}	gas of density 4 kg m ⁻³ and (3) 600 m s ⁻¹	l pressure 1.2×10^5 N m ⁻² is (4) 900 m s ⁻¹	:		
Ans.	(2)						
47.	The temperature of an molecules is v, at 480	n ideal gas is increase K it becomes :	d from 120 K to 480 K. If a	t 120 K the root-mean-squar	e velocity of the gas		
	(1) 4v	(2) 2v	(3) v/2	(4) v/4			
Ans.	(2)						
48.	A real gas obeying Va (1) constants a & b a (3) a is small & b is la	nder Waal's equation re small arge	will resemble ideal gas, it (2) a is large & (4) constant a	f the : & b is small & b are large			
Ans.	(1)						
49.	A gaseous alkane is e. 4. The molecular form	xploded with oxygen. nula of alkane is :	The volume of O_2 for com	plete combustion to CO_2 form	ned is in the ratio 7/		
	(1) C_2H_4	(2) $C_2 H_6$	(3) CH ₄	(4) C ₄ H ₁₂			
Ans.	(2)						

ETC INDIA'S I	NO. 1 ONLINE COACHING			J.H. SIR
50.	The volume of CC (1) 40 ml	D_2 produced by the combust	ion of 40 ml of gaseous ace	one in excess of oxygen is
Ans.	(1)40 m (4)	(2) 80 mi	(3)00 III	(4) 120 mi
51.	A vessel of volum molecules are diss (1) 4.05 atm	e 5 litre contains 1.4 g of n ociated into atoms at this te (2) 2.025 atm	itrogen at a temperature 18 mperature is : (3) 3.84 atm	00 K. The pressure of the gas if 30% of its (4) 1.92 atm
Ans.	(4)			
52.	One litre of a gased density of gaseous	bus mixture of two gases effut mixture containing CH_4 are	ses in 311 seconds while 2 lind H_2 is	tres of oxygen takes 20 minutes. The vapour
Ans.	(1)4 (2)	(2) 4.3	(3) 3.4	(4) 5
53	Pure O diffuses th	rough an aperture in 224 sec	and whereas mixture of O	and another gas containing 90% O diffuses
55.	from the same in 2	34 second. The molecular n	hass of gas will be	and another gas containing 8070 O_2 diffuses
	(1) 51.5	(2)48.6	(3) 55	(4) 46.6
Ans.	(1)			
54.	Calculate the com result. (1) 0.40, CO ₂ is m	pressibility factor for CO_2 , i ore compressible than ideal a	f one mole of it occupies 0.4 gas (2) 0.65, CO_2 is mo	litre at 300 K and 40 atm. Comment on the re compressible than ideal gas
	(3) 0.55, CO ₂ is m	ore compressible than ideal	gas (4) 0.62, CO ₂ is mo	re compressible than ideal gas
Ans.	(2)			
55.	A sample of an ide are true.	eal gas was heated from 30%	C to 60°C at constant pressu	re. Which of the following statement(s) is/
	(1) Kinetic energy	of the gas is doubled	(2) Boyle's law wil	apply
Ans	(3) Volume of the	gas will be doubled	(4) None of the ab	ove
Alls.	(4)			
56.	 Select correct state (1) We can condet (2) To liquify a gate (3) At T_c, there is density of the (4) All the statement 	ement(s): ense vapours simply by app is one must lower the tempe no distinction between lique e vapour ents are correct statements	lying pressure erature below T _C and also ap id and vapour state, hence o	oply pressure density of the liquid is nearly equal to
Ans. 57.	(4) The product of PV about T_1 and T_2 ?	is plotted against P at two to	emperatures T_1 and T_2 and the theorem T_1 and T_2 and the theorem T_2 and T_2 and the theorem T_2 and T_2 and T_3 and T_4 and T_2 and T_3 and T_4 and T_5 and	ne 'result is shown in figure. What is correct
		PV	T_{2} T_{1} $P(bar)$	
	(1) $T_1 > T_2$	(2) $T_2 > T_1$	(3) $T_1 = T_2$	(4) $T_1 + T_2 = 1$
Ans.	(2)			-

INDIA'S	NO. 1 ONLINE COACHING				J.H. SIR
58.	2.5 L of a sample of constant, the perce (1) 100 %	of a gas at 27°C and 1 bar p entage increase in pressure (2) 400 %	bressure is compressed is (3) 500%	to a volume of 500 mL (4) 80%	keeping the temperature
Ans.	(2)				
59.	At STP the order o (1) $H_2 > N_2 > O_2 > I$ (3) $HBr > H_2 > O_2 > I$	f mean square velocity of n HBr ^{>} N ₂	nolecules of H_2 , N_2 , O_2 (2) HBr > O_2 (4) N_2 > O_2 >	$_{2}$ and HBr is - > N_{2} > H_{2} H_{2} > HBr	
Ans.	(1)				

TOOCINIDIA

-

ANALYTICAL EXERCISE

1. Two separate bulbs contain ideal gases A and B. The density of A is twice as that of gas B. The molecular mass of gas A is half as that of B. If two gases are at same temperature, the ratio of the pressure of A to that of B is :

	(1)2	(2) 1/2	(3)4	(4) 1/4				
Ans.	(3)							
2.	The following graph illustrates							
	(1) Dalton's Law			1				
	(2) Charles Law			V				
	(3) Boyles Law							
	(4) Gay Lussac Law							
				Temp(°C)				
Ans.	(2)							
3.	The total pressure exer the same conditions is	ted by a number non read	cting gases is equal to	o the sum of partial pressure of the gases und	ler			
	(1) Boyle's law	(2) Charle's law	(3) Avogadro's	law (4) Dalton's law				
Ans.	(4)							
4.	Equal masses of methar oxygen is :	ne and oxygen are mixed i	n an empty container	at 25°C. The fraction of total pressure exerted	by			
	(1) 1/3	(2) 1/2	(3) 2/3	$(4) \ \frac{1}{3} \times \frac{273}{298}$				
Ans.	(1)							
5.	Which out of the follow	wing statements is false ?						
	(1) Avogadro number =	$6.02 imes 10^{21}$						
	(2) The relationship betw	veen average velocity $(\overline{\upsilon})$:	and root mean square	velocity (u) is $\overline{v}=0.9213$ u				
	(3) The mean kinetic en	nergy of an ideal gas is ir	ndependant of the pre	ssure of the gas				
				$\left(\right)^{\frac{1}{2}}$				
	(4) The root mean squa	are velocity of the gas car	n be calculated by the	formula $\left(\frac{3 \text{ RT}}{M_{\text{w}}}\right)^2$				
Ans.	(1)							
6.	The molecular velocity	y of any gas is :-						
	(1) inversely proportional to the square root of temperature							
	(2) inversely proportio	nal to absolute temperat	ure					
	(3) directly proportiona	al to square of temperatu	ire					
	(4) directly proportiona	al to square root of temp	erature					
Ans. 7	(5) When r D and M received	agent rate of life-size	and malacel	r many respectively, they the ratio of the set	tar			
/.	when r, P and M represent	esent rate of diffusion, pr	ressure and molecula	r mass, respectively, then the ratio of the rat	les			
	of diffusion (r_A/r_B) of t	two gases A and B, is gi	ven as :-					

Ans. (4)

8. The compressibility factor for a real gas at high pressure is :-

(1)
$$1 - \frac{pb}{RT}$$
 (2) $1 + \frac{RT}{pb}$ (3) 1 (4) $1 + \frac{pb}{RT}$

Ans. (4)

9. As graph of Maxwell distribution of molecular velocities is plotted below.

Correct order to temperature

(2) $T_1 < T_2 < T_3$ (3) $T_1 = T_2 > T_3$ $(1) T_1 > T_2 > T_3$

(4) $T_1 = T_2 = T_3$

(4)1

Ans. (2)

10. A spherical balloon of 21 cm diameter is to be filled up with H, at NTP from a cylinder containing the gas at 20 atm at 27°C. The cylinder can hold 2.82 litre of water. The number of balloons that can be filled up

(2) Ans.

11. What is the correct increasing order of liquefiability of the gas?

(1)
$$H_2 < N_2 < CH_4 < CO_2$$

(2) $H_2 < CO_2 < CH_4 < N_2$
(3) $CO_2 < CH_4 < N_2 < H_2$
(4) $CO_2 < CH_4 < H_2 < N_2$

$$(3) \operatorname{CO}_{2} < \operatorname{CH}_{4} < \operatorname{N}_{2} < \operatorname{H}_{2} \tag{4) } \operatorname{CO}_{2} < \operatorname{CO}_{2}$$

Ans. (1)

12. 4 g argon (Atomic mass = 40) in a bulb at a temperature of T K has a pressure P atm. When the bulb was placed in hot bath at a temperature 50°C more than the first one, 0.8 g of gas had to be removed to get the original pressure. T is equal to

(1) 510 K	(2) 200 K	(3) 100 K	(4) 73 K
-----------	-----------	-----------	----------

Ans. (2)

- 13. A flask containing air (open to atmosphere) is heated from 300 K to 500 K. Then percentage of air escaped to the atmosphere is
 - (1) 20 (2)40(3)60(4)80

Ans. (2) 14. Equal mass of H₂, He and CH₄ are mixed in empty container at 300 K, when total pressure is 2.6 atm. The partial pressure of H₂ in the mixture is

 $(1)0.5 \, \text{atm}$ (2) 1.6 atm (3)0.8 atm $(4)0.2 \, \text{atm}$

Ans. (2)

15. At STP 16 mL of O₂ diffused through a porous partition in t seconds. What volume of CO₂ will diffuse in the same time and under the same conditions ?

$$(1) 13.65 \text{ mL} \qquad (2) 10.5 \text{ mL} \qquad (3) 20.2 \text{ mL} \qquad (4) 224.8 \text{ mL}$$

Ans. (1)

- 16. The molecular velocities of two gases at the same temperature are u₁ and u₂ and their molar masses are m₁ and m₂ respectively. Which of the following expression are correct ?
 - (3) $\frac{m_1}{u_1} = \frac{m_2}{u_2}$ (1) $\frac{m_1}{u_1^2} = \frac{m_2}{u_2^2}$ (4) $m_1 u_1^2 = m_2 u_2^2$ $(2) m_1 u_1 = m_2 u_2$
- (4) Ans.

17.	Correct statement						
	(1) At constant tempe	erature,the KE of all the gas	molecules	is the same.			
	(2) At constant temperature, average KE of gas molecules remain constant but KE of individual molecule may differ						
	(3) At constant temperature, the KE is greater for heavier gas molecules						
	(4) At constant tempe	erature, the KE is less for he	avier gas m	olecules			
Ans.	(2)						
18.	Air constant 23% oxys	gen and 77% nitrogen by we	eight. The r	percentage of O ₂ b	by volume is		
	(1)28.1	(2)20.7	(3)21.8		(4)23.0		
Ans.	(2)		(-)		()		
19.	When the temperature of certain sample of a gas is changed from 30° C to 606 K and its pressure is reduced to half, the volume of gas changes from V to V ² The value of V is						
	$(1) 2 dm^3$	$(2)4 dm^3$	(3)8 dr	m ³	(4) Unpredictable		
Ans.	(2)						
20.	Molar mass of certain g speed of B at the tempe	gas A is half that of B. If rms erature half that of A will be	speed of mo	olecules of A at ce	rtain temperature is 200 ms ⁻¹ . The rms		
	$(1) 200 \text{ ms}^{-1}$	(2) 100 ms^{-1}	(3) 300	ms^{-1}	(4) 400 ms^{-1}		
Ans.	(2)						
21.	In what ratio by mass, t	the gases CO and 2 butene (C	C_4H_6) be mix	xed in a vessel so t	that they cause same partial pressures?		
	(1)1:1	(2)2:1	(3)1:2		(4)1:3		
Ans.	(3)						
22.	A sample of gas contain has total kinetic energy will be	ns N_1 molecules and the tota y as $2E_1$ ergs. Asssuming ga	l kinetic ene ases to be id	ergy at -123 °C is lead, the number of	E_1 ergs. Another sample of gas at 27°C of gas molecules in the second sample		
	$(1)N_{1}$	$(2) N_1/2$	(3)2N ₁		$(4)4N_{1}$		
Ans.	(1)						
23.	A gas in a vessel is hea gas expressed in Kelvi	ited in such a way that its pr in scale becomes	essure and	volume both beco	me two times. The temperature of the		
	(1) Half		(2)	Becomes two ti	imes		
	(3) Becomes 2/3rd of	its original value	(4)	Becomes four t	imes		
Ans.	(4)						
24.	At constant volume for a fixed number of a moles of a gas, the pressure of the gas increases with the rise in temperature due to						
	(1) Increase in average	ge molecular speed	(2)	Increase in rate	e of collisions		
	(3) Increase in molecu	lar attraction	(4)	Increase in mea	an free path		
Ans.	(1)						
25	The root mean square	velocity of an ideal gas at c	constant pre	essure varies with	density as		
	$(1) d^2$	(2) d	(3) \sqrt{d}		$(4) \frac{1}{\sqrt{d}}$		
Ans.	(4)						
26.	Which of the following	, has maximum number of m	nolecules?				
	(1) 2.7 g of NH_{3}	(2) 1 L SO ₂ at STP	(3) 2 L	of Cl ₂ at STP	(4) 0.1 mol of H_2S		
Ans.	(1)						

INDIA'S NO. 1 ONLINE COACHING 27. The mixture of three gases X, Y and Z is enclosed in a closed vessel at constant temperature. Molecular weight of X is the highest and that of Y is the least. When equilibrium is established the (1) Gas X will be more at bottom (2)Gas Y will be more at top (3) Gas X, Y, Z are homogeneously present (4) Gas Y will be more at bottom (1) Ans. 28. Density of gaseous mixture A and B from percentage volume is given as (1) $d_{mix} = \frac{d_A}{(\%A)} + \frac{d_B}{(\%B)}$ (2) $d_{min} = d_A \times (\%A) + d_B \times (\%B)$ (4) $d_{mix} = \frac{d_A + d_B}{100}$ (3) $d_{mix} = \frac{d_A \times (\%A) + d_B \times (\%B)}{100}$ Ans. (3) The critical temperature, Boyle's temperature and Inversion temperature respectively are given as 29. (1) $\frac{a}{Rb}$, $\frac{8a}{27Rb}$, $\frac{2a}{Rb}$ (2) $\frac{8a}{27Rb}$, $\frac{a}{Rb}$, $\frac{2a}{Rb}$ (3) $\frac{8a}{Rb}$, $\frac{a}{Rb}$, $\frac{2a}{Rb}$ (4) $\frac{a}{Rb}$, $\frac{a}{27Rb}$, $\frac{2a}{Rb}$ Ans. (2) 30. Which of the following is incorrect for pressure units? (1) 1 atmosphere is equal to 1.01325 bar (2) 1.01325 bar is equal to 0.875 atmosphere (3) 1.01325×10^5 Pa is equal to 1.01325 bar (4) 1 atmosphere is equal to 1.01325×10^6 kg m⁻¹ s⁻² (2) Ans. 31. Temperature at which gas between ideally over a wide range of pressure is called as (1) Boyle's temperature (2) Inversion temperature (3) Critical temperature (4) Kraft temperature Ans. (1) 32. Which of the following is not correct in case of kinetic theory of gases ? (1) Gases are made up of small particles of negligible size as compared to container size (2) The molecules are in random motion always (3) When molecules collide they lose energy (4) When the gas is heated, the average kinetic energy of gas molecules increase Ans. (3) 33. van der Waal's constant 'a' and 'b' are related with respectively (1) Attractive force and bond energy of molecules (2) Attractive force and volume of molecules (3) Volume and repulsive force of molecules (4) Shape and repulsive force of molecules Ans. (2) 34. The rate of diffusion of a gas having molecular weight just double of hydrogen gas is 30 ml s⁻¹. The rate of diffusion of hydrogen gas will be (1) 42.42 ml s⁻¹ $(2) 60 \text{ ml s}^{-1}$ (3) 120 ml s⁻¹ $(4) 21.21 \text{ ml s}^{-1}$ Ans. (1)

Ans. (2)

ASSERTION & REASON EXERCISE

These questions consist of two statements each, printed as *Assertion* and *Reason*. While answering these Questions you are required to choose any one of the following four responses.

- A. If both Assertion & Reason are True & the Reason is a correct explanation of the Assertion.
- B. If both Assertion & Reason are True but Reason is not a correct explanation of the Assertion.
- C. If Assertion is True but the Reason is False.
- D. If both Assertion & Reason are False.
- 1. Assertion :- For a certain fixed amount of gas, the product PV is always constant.

Reason :- PV depends only upon the temperature.

- Ans. (D)
- Assertion :- Different gases at the same conditions of temperature & pressure have same root mean square velocity.
 Reason :- Root mean square velocity is not depend on molecular weight of gas.

Ans. (D)

- Assertion :- Average kinetic energy of a gas is directly proportional to temperature in kelvin scale.
 Reason :- Average kinetic energy of a gas is inversely proportional to molecular weight of gas.
- Ans. (C)
- Assertion :- At zero degree kelvin the volume occupied by a gas is negligible.
 Reason :- At constant pressure volume of a gas is directly proportional to its temperature in degree kelvin.
- Ans. (A)

5. Assertion :- The pressure of real gas is less than the pressure of ideal gas.

Reason :- The intermolecular forces of attraction in real gases are greater than those of ideal gas.

- Ans. (A)
- Assertion :- Vander wall's constant 'b' is a measure of effective size of the gas molecules.
 Reason :- Its value is equal to four times the actual volume of the gas molecule.

Ans. (B)

7. Assertion :- At very low pressure, the real gases behaves like ideal gases.

Reason :- At very low pressure both the correction factors can be neglected.

Ans. (D)

- Assertion :- Observed pressure in real gases is less than the ideal gases.
 Reason :- In real gases intermolecular attraction are present.
- Ans. (A)
- **9.** Assertion :- CO₂ gas will have higher rate of liquifaction then H₂ gas.

Reason :- Because CO, will have higher value of Z so higher inter molecular force of attraction.

- Ans. (B)
- 10. Assertion :- In a P-V plot, below critical temperature pressure of gases is independent if compression.
 Reason :- Forces of attraction and repulsion between gas molecule is equal.
- Ans. (D)
- 11. Assertion :- Gases having higher critical temperature can be liquified easily.

Reason :- Because attractive forces are higher for gases having higher critical temperature.

Ans. (A)