PREVIOUS YEAR QUESTIONS (NEET, AIIMS, AIPMT, JIPMER)

	FREVIOUS 1E	AR QUESTIONS	(NEE 1, AIIVIS, A	AIFWII, JI	IT MILK)		
1.	Equal moles of hydrogen and oxygen gases are placed in a container with a pin-hole through which both can escape. What fraction of the oxygen escapes in the time required for one-half of the hydrogen to escape? [NEET-2016]						
	$(1)\frac{1}{2}$	$(2)\frac{1}{8}$	$(3)\frac{1}{4}$	$(4)\frac{3}{8}$			
Ans.	(2)						
2.	A gas such as carbon monoxide would be most lik (1) High temperatures and high pressures		ely to obey the ideal gas law at (2) Low temperatures and low pressures		[Re-AIPMT-2015]		
	(3) High temperatures and low pressures		(4) Low temperatures and high pressures				
Ans.	(3)						
3.	Equal masses of H_2 , O_2 and methane have been taken in a container of volume V at temperature 27°C in identical conditions. The ratio of the volumes of gases H_2 : O_2 : methane would be [AIPMT - 2014]						
	(1) 8 : 16 : 1	(2) 16 : 8 : 1	(3) 16:1:2	(4) 8 : 1 : 2			
Ans.	(3)						
4.	The temperature at which intermolecular attraction force balance the intermolecular repulsion force is known as: [AIIMS - 2014]						
	(1) Boyle temperature	(2) Critical temperature	(3) Boiling temperature	(4) Equilibriu	ım temperature		
Ans.	(3)						
5. Maximum deviation from ideal gas is expected from					[AIPMT - 2013]		
	(1) N2(g)	$(2) \operatorname{CH}_4(g)$	(3) NH ₃ (g)	(4) H2(g)			
Ans.	(3)						
6.	A certain gas takes three times as long to effuse out as helium. Its molecular mass will be [AIPMT (Mains) –2012]						
	(1) 27 u	(2) 36 u	(3) 64 u	(4) 9 u			
Ans.	(2)						
7.	50 mL of each gas A and of gas B takes 150 and 200 seconds respectively for effusing through a pin hole under the similar condition. If molecular mass of gas B is 36, the molecular mass of gas A will be: [AIPMT Pre. 2012]						
	(1) 20.25	(2) 64	(3) 96	(4) 128			
Ans.	(1)						
8.	For real gases vander W	Valls equation is written as	$\left(p + \frac{an^2}{V^2}\right) (V - nb) = nRC$	Γ [Δ	AIPMT Mains 2012]		
	Where 'a' and 'b' are vander W ls constant. Two sets of gases are :						
	(I) O_2 , CO_2 , H_2 and He (II) CH_4 , O_2 and H_2						
	The gases given in set-I in increasing order of 'b' and gases given in set-II in decreasing order of 'a', are arranged below. Select the correct order from the following:						
	(1) (I) H2 < He < O2 < CO2 (II) CH4 > O2 > H2 $(2) (I) H2 < O2 < He < CO2 (II) O2 > CH4 > H2$						
	(3) (I) $He < H_2 < CO_2 < O_2$ (II) $CH_4 > H_2 > O_2$ (4) (I) $O_2 < He < H_2 < CO_2$ (II) $H_2 > O_2 > CH_4$						

Ans. (1)

9.	By what factor does the average velocity of a gaseous molecules increase when the temperature (in kelvin) is doubled? [AIPMT (Prelims) – 2011]							
	(1) 1.4	(2) 2.0	(3) 2.8	(4)4.0				
Ans.	(1)	` ,	. ,					
10.	A gaseous mixture was prepared by taking equal mole of CO and N_2 . If the total pressure of the mixture was found 1 atmosphere, the partial pressure of nitrogen (N_2) in the mixture is [AIPMT (Prelims) –2011]							
Ans.	(1) 1 atm (2)	(2) 0.5 atm	(3) 0.8 atm	(4) 0.98 atm				
11.	Two gases A and B having the same volume diffuse through a porous partition in 20 and 10 seconds respectively. The molecular mass of A is 49 u. Molecular mass of B will be [AIPMT (Prelims) –2011]							
	(1) 25.00 u	(2) 50.00 u	(3) 12.25 u	(4) 6.50 u				
Ans.	(3)							
12.	A bubble of air is underwater at temperature 15°C and the pressure 1.5 bar. If the bubble rises to the surface where the temperature is 25°C and the pressure is 1.0 bar what will happen to the volume of the bubble?							
				[AIPMT (Mains) –2011]				
	 Volume will become smaller by a factor of 0.70 Volume will become greater by a factor of 2.5 Volume will become greater by a factor of 1.6 Volume will become greater by a factor of 1.1 							
Ans.	(3)	c ,						
13.		The pressure exerted by 6.0 g of methane gas in a 0.03 m ³ vessel at 129°C is (Atomic masses : $C = 12.01$, $H = 1.01$ and $R = 8.314$ JK ⁻¹ mol ⁻¹) [AIPMT (Mains)–2010]						
	(1)215216 Pa	(2) 13409 Pa	(3) 41 648 Pa	(4) 31684 Pa				
Ans.	(3)							
14.	If a gas expands at co	nstant temperature, it ind	icates that	[AIPMT (Prelims)-2008]				
	(1) Number of the m	olecules of gas increases						
		molecules decreases						
	(3) Pressure of the g							
Ans	(4) Kinetic energy of (4)	molecules remains the sa	me					
Ans.		Medical Ent. Exams.	2005					
15.			atm pressure ? ($R = 0.08$)	$21.54 \times W^{-1} \times 10^{-1}$				
15.			-					
	(1) 0.29 g/ml	(2) 1.40 g/ml	(3) 2.81 g/ml	(4) 3.41 g/ml				
Ans.	(4)							
16.	Equal weight of CH ₄ a	and H_2 are mixed in a con	tainer at 25°C. Fraction of	f total pressure exerted by methane is				
	$(1)\frac{1}{2}$	(2) $\frac{1}{3}$	$(3) \frac{1}{9}$	$(4) \frac{8}{9}$				
Ans.	(3)							
17.	50 ml of hydrogen diffuse out through a small hole of a vessel, in 20 minutes. The time taken by 40 ml of oxygen to diffuse out is							
	(1) 32 minutes	(2) 64 minutes	(3) 8 minutes	(4) 12 minutes				
Ans.	(2)							
18.	The temperature of a	The temperature of a gas is raised from 27°C to 927°C. The root mean square speed of the gas						
	(1) Remains same		(2) Gets $\sqrt{\frac{927}{27}}$ time	es				
Ans	(3) Gets halved		(4) Gets doubled					
Ans.	(4)							

19.	An ideal gas, obeying kinetic energy of gases can not be liquefied, because (1) It solidifies before becoming a liquid						
	(2) Forces acting between its molecules are negligible						
	(3) Its critical temperature is above 0°C						
	(4) Its molecules are relatively small in size						
Ans.	(2)						
20.	Which of the following mixture of gases does not obey Dalton's law of partial pressure?						
	(1) Cl, and SO,	(2) CO ₂ and He	(3) O ₂ and CO ₂	(4) N ₂ and O ₂			
Ans.	(1)	2		2			
21.	0.24 g of a volatile substance, upon vapourisation, gives 45 ml vapour at NTP. What will be the vapour density of the substance ?						
	(1) 95.93	(2) 59.73	(3) 95.39	(4) 5.993			
Ans.	(2)						
22.	will be						
	(1) $6.17 \times 10^{-20} \mathrm{J}$	(2) $7.16 \times 10^{-20} \mathrm{J}$	(3) $61.7 \times 10^{-21} \mathrm{J}$	(4) $6.17 \times 10^{-21} \mathrm{J}$			
Ans.	(4)						
23.	perature is constant, what volume will the						
	(1) 569 ml	(2) 365 ml	(3)265 ml	(4) 621 ml			
Ans.	(2)						
24.	Which of the following statements is wrong for gases?						
	(1) Confined gas exerts uniform pressure on the walls of its container in all directions						
	(2) Volume of the gas is equal to volume of container confining the gas						
	(3) Gases do not have a definite shape and volume						
	(4) Mass of gas cannot be determined by weighing a container in which it is enclosed						
Ans.	(4)						
25.	Average molar kinetic energy of CO and N_2 at same temperature is						
	$(1) KE_1 = KE_2 $ (2) KE ₁ > KE ₂						
	$(3)\mathrm{KE}_1\!<\!\mathrm{KE}_2$		(4) Can't say any thing. Both volumes are not given				
Ans.	(1)						
26.	van der Wall's real gas acts as an ideal gas, at which conditions?						
	(1) High temperature, low pressure						
	(2) Low temperature, low pressure						
	(3) High temperature, high pressure						
	(4) Low temperature, low pressure						
Ans.	(1)						