Basic Exercise

Based	on Hydroge	n						
1.	Out of the following metals which will give H_2 on reaction with NaOH :							
	I : Zn,	II : Mg,	III : Al,	IV : Be				
	(1) I, II, III, IV		(2) I, III, IV		(3) II, IV	(4) I, III		
Ans.	(2)							
2.	The gas used in	The gas used in the hydrogenation of oils in presence of nickel as a catalyst is :						
	(1) methane		(2) ethane		(3) ozone	(4) hydrogen		
Ans.	(4)							
3.	In which of the following reactions does dihydrogen act as oxidising agent ?							
	(1) $Ca + H_2$	>	$(2) \operatorname{H}_2 + \operatorname{O}_2 \longrightarrow$		$(3) \operatorname{H}_2 + \operatorname{F}_2 \longrightarrow$	$(4) \operatorname{CuO} + \operatorname{H}_2 \longrightarrow$		
Ans.	(1)							
4.	Hydrogen has t	the tendend	ey to lose one e ⁻ a	nd forma	tion of H ⁺ , In this respec	et it resembles with :		
	(1) Alkali metal		(2) Carbon		(3) Alkaline earth metal	(4) Halogens		
Ans.	(1)							
5.	H_2 gas can not	be prepare	d by :					
	(1) Be + NaOH		(2) Na + NaOH		(3) Mg + NaOH	(4) By $(2 & 3)$ method		
Ans.	(4)							
6.	Deuterium an isotope of hydrogen is :							
	(1) Radioactive	;	(2) Non radioact	ive	(3) Heaviest	(4) Lightest		
Ans.	(2)							
Based	on Water							
7.	Which is true statement about D ₂ O and H ₂ O :							
	(1) $D_{2}O$ has lower dielectric constant than $H_{2}O$							
	(2) NaCl is more soluble in D_2O than in H_2O							
	(3) both are correct							
	(4) none is correct							
Ans.	(1)							
8.	Deuteromethar	ne can be pi	repared if D_2O rea	cts with				
	$(1)Al_4C_3$		(2) CaC ₂		(3) Both the above	(4) None of the above		
Ans.	(1)							
9.	The reactions of heavy water are slow. The reason is							
	(1) Heavy wate	(1) Heavy water is associated			(2) Heavy water is dissociated			
	(3) Heavy water is of higher mass (4) Heavy water is of lower mass							
Ans.	(3)							
10.	$4D_2O + 3Fe$ —	$\xrightarrow{\text{Re d hot}}$]	$Fe_3 O_4 + gas.$ The g	gas produ	ced in the above reaction	n is :		
	(1) O ₂		$(2) H_{2}$		$(3) D_{2}$	(4) None		
Ans.	(3)							
11.	Heavy water re	acts respec	tively with CO_2 , S	$SO_{3}, P_{2}O_{5}$	and N_2O_5 to give the cor	npounds :		
	$(1) D_2 CO_3, D_2 SO_3$	O_4, D_3PO_2, D_3PO_2	DNO ₂		$(2) D_2 CO_3, D_2 SO_4, D_3 PO_4, DNO_2$			
	$(3) D_2 CO_3, D_2, S$	$(3) D_2 CO_3, D_2 SO_3, D_3 PO_4, DNO_2 \qquad (4) D_2 CO_3, D_2 SO_4, D_3 PO_4, DNO_3$						

Ans. (4)

12.	Hard water when passed through ion exchange resin containing RCOOH group, becomes free from						
	(1)Cl-	$(2) SO_4^{-2}$	$(3) H_{3}O^{+}$	$(4) \operatorname{Ca}^{+2}$			
Ans.	(4)						
13.	Permutit is a technical n	ame given to :					
	(1) Aluminates of Ca and	l Na	(2) Hydrated silicates of	Al and Na			
	(3) Silicates of Ca and N	a	(4) Silicates of Ca and M	lg			
Ans.	(2)						
14.	The formula of sodium z	zeolite which is used in per	mutit process for softening	utit process for softening water is			
	(1)Na ₂ O.Al ₂ O ₃ .Si ₂ O ₄ .xH ₂	0	(2) Na ₂ .Al ₂ .Si ₂ O ₄ .xH ₂ O				
	(3) Na ₂ O.AlO ₃ .SiO ₄ .xH ₂ O)	(4) K,Al,SiO ₈ ,xH,O				
Ans.	(1)						
15.	The compound sodium polymeta phosphate $Na_{A}(PO_{A})_{A}$ is called calgon because						
	(1) It was developed by	the scientist	(2) It was developed first	t in California			
	(3) It refers to calcium g	one	(4) It is based on the nan	ne of the company which developed it.			
Ans.	(3)						
16.	Which of the following	pairs produce deutronitric a	acid				
	(1) NO., H.O	(2) NO, D,O	(3) N ₂ O ₂ , D ₂ O	$(4) N_{a}, D_{a}O$			
Ans.	(3)						
	()						
17.	Permanent hardness in	water due to pressence of :					
	(1) Ca ⁺ Mg ⁺	(2) CaCl MgCl	(3) CaCO MgCO	(4) All			
Ans.	(2)	(-)	(*) ***********************************				
18.	Temporary unstable har	dness of water due to prese	ence of ·				
10.	(1) CoCl MaSO	(2) Ca^{+2} Ma^{+2}	$(2) V^{\oplus}$ CoCO	$(A) C_{2}(HCO) = M_{2}(HCO)$			
•	(1) CaCl_2 , WigSO_4	(2) Ca ⁻ , Mg ⁻	(5) K , CaCO ₃	$(4) Ca(HCO_3)_2, Mg(HCO_3)_2$			
Ans.	(4)						
р		• •					
Based	1 on Hydrogen Perox	lae					
19.	H_2O_2 is used but not as	•					
	(1) oxidant, reductant	(2) bleaching agent	(3) antiseptic	(4) catalyst			
Ans.	(4)						
20.	Which of the following is a true structure of H_2O_2 ?						
	180°		94°				
	(1)		(2) H (2)				
	Н ` О-О ` Н		0 O(H				
	ң		ң				
	$(3) \rightarrow O \rightarrow O$		(4) $\rightarrow O=O$				
Ang	(1)		11				
Alls.	(2)		a 1				
21.	In the reaction $2H_2O_2 \rightarrow C_2$	\rightarrow 2H ₂ O + O ₂ oxidation state	e ot oxygen changes as :				
	(1) Only -1 to -2	(2) Only -1 to zero	(3) Both of the above	(4) - 1 to -3			
Ans.	(3)						
22.	The dipole moment of H	I_2O_2 is 2.1D. This indicates	that the structure of H_2O_2 is	:			
	(1) Linear	(2) Non-linear	(3) Symmetrical	(4) None			
Ans.	(2)						
				2			

23.	The dihedral angle in gaseous H_2O_2 is						
	(1) 180°	$(2) 90^{\circ}$	(3) 111.5°	(4) 109°–28"			
Ans.	(3)						
24.	Hydrogen peroxides cann	ot be concentrated easily b	because				
	(1) It is highly volatile in r	ature	(2) It is not dissolve in H_2)			
	(3) It decompose at its boi	ling point	(4) It has a very high b.p.				
Ans.	(3)						
25.	Bleaching action of H_2O_2 is due to its :						
	(1) Oxidising nature	(2) Reducing nature	(3) Acidic nature	(4) Thermal instability			
Ans.	(1)						
26.	Correct order of BP is :-						
	(1) $H_2 > H_2O_2 > D_2O > H_2O > D_2$ (2) $H_2O_2 > H_2 > D_2O > H_2O > D_2$						
	(3) $H_2O_2 > D_2O > H_2O > D_2 > H_2$ (4) $H_2O_2 > D_2O > H_2O > H_2 > D_2$						
Ans.	(3)						

Analytical Exercise

1.	Calgon is an industrial name given to :						
	(1) normal sodium pho	sphate	(2) sodium meta-alumina	(2) sodium meta-aluminate			
	(3) sodium hexametaph	osphate	(4) hydrated sodium alur	ninium silicate			
Ans.	(3)						
2.	Hydrogen may be prepared by heating a solution of caustic soda with :						
	(1) Mg	(2) Zn	(3) Fe	(4) Ag			
Ans.	(2)						
3.	Hydrogen peroxide has a :						
	(1) linear structure		(2) closed chain structur	e			
	(3) closed book type st	ructure	(4) half open book type	structure			
Ans.	(4)						
4.	Hydrogen peroxide is a	:					
	(1) liquid	(2) gas	(3) solid	(4) semi-solid			
Ans.	(1)						
5.	One of the following is	an incorrect statement, poin	nt it out.				
	(1) Permanent hardnes	s can be removd by boiling	water				
	(2) hardness of water effects soap consumption						
	(3) Temporary hardness is due to bicarbonates of Ca and Mg						
	(4) Permanent hardnes	s is due to the soluble SO_4^2 ,	Cl− of Ca and Mg				
Ans.	(1)						
6.	Water is said to be permanently hard when it contains						
	(1) Chlorides and sulphates of Mg and Ca:						
	(2) Bicarbonates of Na and K						
	(3) Carbonates of Na and K						
	(4) Phosphates of Na and K						
Ans.	(1)						
7.	Which is the lightest g	as ?					
	(1) Nitrogen	(2) Helium	(3) Oxygen	(4) Hydrogen			
Ans.	(4)						
8.	The absorption of hydrogen by platinum is known as :						
	(1) Hydrogenation	(2) reduction	(3) Dehydrogenation	(4) Occlusion			
Ans.	(4)						
9.	False statement for H atom –						
	(1) It resembles halogens in some properties						
	(2) It resembles alkali metals in some property						
	(3) It can not be placed I st group in table						
	(4) It can be placed in 17 th group of periodic table						
Ans.	(3)						
10.	Boiling point of water	is high due to presence of					
	(1) H-bonding		(2) its bend structure				
	(3) It high dielectric co	nstant	(4) None				
Ans.	(1)						

11.	D ₂ O is	D_2O is used more in :							
	(1) Chemical industry				(2) Nuclear moderator	(2) Nuclear moderator			
	(3) Pha	armaceutical prepa	aration		(4) Insecticide preparat	ions			
Ans.	(2)	(2)							
12.	Which one of the following removes temporary hardness of water ?								
	(1)Sla	ked lime	(2) Plas	ster of parris	(3) CaCO ₃	(4) Hydrolith			
Ans.	(1)								
13.	Heavy	Heavy water is used in nuclear reactors as :							
	(1) So	(1) Source of α - particles							
	(2) Slo	owing down the sp	peed of hig	gh energy neutror	18				
	(3) Tra	ansporting heat of	f the reacto	or					
	(4) He	ating purposes							
Ans.	(2)								
14.	Nasce	nt hydrogen cons	ists of :						
	(1) Hy	drogen atoms wit	h excess o	fenergy					
	(2) Hy	drogen molecules	s with exce	ess energy					
	(3) Hy	drogen ions in ex	cited state						
	(4) So	lvated protons							
Ans.	(1)								
15.	Match	Match list I with list II and select the correct answer			er using the codes given be	low the lists :			
	List I		List II						
	1. Heavy water		А.	A. Bicarbonates of Mg					
				and Ca in water					
	2.	Temporary	В.	No foreign ion	S				
		hard water		in water					
	3.	Soft water	С.	D_2O					
	4.	Permanent	D.	Sulphates and					
		hard water		chlorides of M	g				
				and Ca in water	r				
	(1)1-0	C, 2-D, 3-B, 4-A	(2) 1-B,	, 2-A, 3-C, 4-D	(3) 1-B, 2-D, 3-C, 4-A	(4) 1-C, 2-A, 3-B, 4-D			
Ans.	(4)								
16.	What is formed when calcium carbide reacts with heavy water ?								
	$(1)C_{2}I$	D_2	(2) CaE	\mathbf{D}_2	(3)Ca ₂ D ₂ O	$(4) \operatorname{CD}_2$			
Ans.	(1)								
17	Shape	of O_2F_2 is similar	to that of:						
	$(1)C_{2}I$	2	(2) H ₂ C	D_2	$(3) H_2 F_2$	$(4) C_2 H_2$			
Ans.	(2)								
18.	In whi (a) H ₂	In which of the following reactions H_2O_2 acts as a reducing agent? (a) $H_2O_2 + 2H^+ + 2e^- \longrightarrow 2H_2O$							
	(b) $H_2O_2 - 2e^- \longrightarrow O_2 + 2H^+$								
	(c) H_2	$O_2 + 2e^- \longrightarrow 2C$)H-						
	(d) H,	(d) $H_2O_2 + 2OH^ 2e^- \longrightarrow O_2 + 2H_2O$							
	(1) (a), (c)		(2) (b),	(d)	(3) (a), (b)	(4)(c), (d)			
Ans.	(2)								

- 19. From the following statements regarding H₂O₂, choose the incorrect statement?(1) It has to be stored in plastic or wax lined glass bottles in dark
 - (2) It has to be kept away form dust
 - (3) It can act only as an oxidizing agent
 - (4) It decomposes on exposure to light

Ans. (3)

- 20. Which one of the following statements about water is FALSE?
 - (1) Water can act both as an acid and as a base.
 - (2) There is extensive intramolecular hydrogen bonding in the condensed phase.
 - (3) Ice formed by heavy water sinks in normal water.
 - (4) Water is oxidized to oxygen during photosynthesis.
- Ans. (2)

Prev. Yr. Questions

	Prev. Yr. Questions					
1.	Which of the following statements about hydrogen is incorrect ?			[NEET - 2016]		
	(1) Dihydrogen does not act as a reducing agent					
	(2) Hydrogen has	three isotopes of which trit	ium is the most commor	1		
	(3) Hydrogen neve	er acts as cation in ionic sa	alts			
	(4) Hydrogen ion,	H ₃ O ⁺ exists freely in solut	ion			
Ans.	(1,2)					
2.	In acidic medium, H	H_2O_2 changes $Cr_2O_7^{2-}$ to $Cr_2O_7^{2-}$	O_5 which has two (–O–O	-) bonds. Oxidation state of Cr in CrO ₅ is [AIPMT - 2014]		
	(1)+5	(2)+3	(3)+6	(4)–10		
Ans.	(3)					
3.	The ease of adsorpt	tion of the hydrates alkali	metal ions on an ion-exc	hange resins follows the order		
	(1) $K^+ < Na^+ < Rb^+$	< Li ⁺	(2) $Na^+ < Li^+ < K$	+ < Rb ⁺		
	$(3) Li^+ < K^+ < Na^+ < $	$< Rb^+$	(4) $Rb^+ < K^+ < Na$	$a_{+} < \Gamma a_{+}$		
Ans.	(3)					
4.	Some statements al	bout heavy water are given	below	[AIPMT(Mains)-2010]		
	(a) Heavy water is	used as a moderator in nu	clear reactors			
	(b) Heavy water is	more associated than ordi	nary water			
	(c) Heavy water is	more effective solvent that	n ordinary water			
	Which of the above	e statements are correct?				
	(1) a and b	(2) a,b and c	(3) b and c	(4) a and c		
Ans.	(1)					
Quest	tion asked Prior t	o Medical Ent. Exams	. 2005			
5.	Hydrogen is prepar	ed from H ₂ O by adding				
	(1) Ca, which acts	as reducing agent				
	(2) Al, which acts	as oxidising agent				
	(3) Ag, which acts	s as reducing agent				
	(4) Au, which acts	as oxidising agent				
Ans.	(1)					
6.	The hydride ion H ⁻	is stronger base than its hyd	roxide ion OH ⁻ . Which o	f the following reaction will occur if sodium		
	hydride (NaH) is di	issolved in water ?				
	$(1) \mathrm{H}^{-} + \mathrm{H}_{2}\mathrm{O} \rightarrow \mathrm{Ne}$	reaction				
	(2) $H^{-}(aq) + H_{2}O -$	\rightarrow H ₂ O				
	(3) $H^{-}(aq) + H_2O(l$	$) \rightarrow OH^- + H_2$				
	(4) None of these					
Ans.	(3)					

- 7. Which of the following statements about the interstitial compounds is incorrect ?
 - (1) They are chemically reactive
 - (2) They are much harder than the pure metal
 - (3) They have higher melting points than the pure metal
 - (4) They retain metallic conductivity

Ans. (1)

8.	The volume strength of $1.5 \text{ NH}_2\text{O}_2$ solution is						
	(1)8.8	(2)8.4	(3)4.8	(4) 5.2			
Ans.	(2)						
9.	Which one of the following pairs of substances on reaction will not evolve H ₂ gas ?						
	(1) Copper and HCl (ac	queous)					
	(2) Iron and steam						
	(3) Iron and H_2SO_4 (aq	ueous)					
	(4) Sodium and ethyl al	lcohol					
Ans.	(1)						
10.	Zn gives H ₂ gas with H ₂ SO ₄ and HCl but not with HNO ₃ because						
	(1) Zn act as oxidizing	agent when react with HNC	3				
	(2) HNO_3 is weaker aci	d than H_2SO_4 and HCl					
	(3) In electrochemical	series Zn is above hydroge	n				
	(4) NO_3^- is reduced in	preference to hydronium id	on				
Ans.	(4)						
11.	Which pair of substance	es gives same gaseous pro	duct, when these react with	water?			
	(1) K and KO_2	(2) Ba and BaO_2	(3) Ca and CaH_2	(4) Na and Na_2O_2			
Ans.	(3)						
12.	Ortho and para hydroge	n differ in					
	(1) Proton spin	(2) Electron spin	(3) Nuclear charge	(4) Nuclear reaction			
Ans.	(1)						
13.	Action of water or dilute	e mineral acids on metals o	an give				
	(1) Monohydrogen	(2) Tritium	(3) Dihydrogen	(4) Trihydrogen			
Ans.	(3)						
14.	(1) More vigorously the	drogen in chemical proper	ties but reacts				
	(1) Note vigorously in (2) Easter than hydroge	an nyurogen					
	(2) Fusice than hydrog.(3) Slower than hydrog.	ren					
	(4) Just as hydrogen						
Ans.	(3)						
15.	Spin isomerism is shown	n by					
	(1) Dichloro benzene	(2) Hydrogen	(3) Dibasic acid	(4) n-butane			
Ans.	(1) 21011010 001120110						
	(2)						
16.	(2)Hydrogen can be fused to	to form helium at					
16.	(2)(2)(1) High temperature a	to form helium at nd high pressure					
16.	 (2) Hydrogen can be fused t (1) High temperature a (2) High temperature at 	to form helium at nd high pressure nd low pressure					
16.	 (2) Hydrogen can be fused to (1) High temperature at (2) High temperature at (3) Low temperature at 	to form helium at nd high pressure nd low pressure nd high pressure					
16.	 (1) Diameter can be fused if (2) Hydrogen can be fused if (1) High temperature at (2) High temperature at (3) Low temperature at (4) Low temperature at 	to form helium at nd high pressure nd low pressure nd high pressure nd low pressure					
16. Ans.	 (1) Diameter can be fused if (2) Hydrogen can be fused if (1) High temperature at (2) High temperature at (3) Low temperature at (4) Low temperature at (1) 	to form helium at nd high pressure nd low pressure nd high pressure nd low pressure					
16. Ans. 17.	 (2) Hydrogen can be fused to (1) High temperature at (2) High temperature at (3) Low temperature at (4) Low temperature at (1) What is formed when cat 	to form helium at nd high pressure nd low pressure nd high pressure nd low pressure nd low pressure	heavy water				
16. Ans. 17.	 (1) Difference of the function of the	to form helium at nd high pressure nd low pressure id high pressure id low pressure id low pressure id low carbide reacts with (2) CaD_2	heavy water (3) Ca_2D_2O	(4) CD ₂			

18.	18. Maximum number of hydrogen bonding in H_2O is						
	(1)1	(2) 2	(3) 3	(4) 4			
Ans.	(4)						
19.	In which of the following reaction hydrogen peroxide is a reducing agent ? (1) $2FeCl_2 + 2HCl + H_2O_2 \rightarrow 2FeCl_3 + 2H_2O$ (2) $Cl_2 + H_2O_2 \rightarrow 2HCl + O_2$ (3) $2HI + H_2O_2 \rightarrow 2H_2O + I_2$ (4) $H_2SO_4 + H_2O_2 \rightarrow H_2SO_4 + H_2O$						
Ans.	(2) There is a second soft to show a schedule concerning to show its state state with						
20.	I nere is a sample of 10 volume of hydrogen peroxide solution. Calculate its strength.						
	(1) 3.00%	(2) 4.045%	(3) 2.509%	(4) 3.035%			
Ans.	(4)						
21.	In lab H_2O_2 is prepared by	7					
	(1) Cold $H_2SO_4 + BaO_2$		(2) HCl + BaO ₂				
	(3) Conc. $H_2SO_4 + Na_2O_2$		(4) $H_2 + O_2$				
Ans.	(1)						
22.	H₂O₂ acts as an oxidising(1) Acidic medium only(3) Neutral medium only	g agent in	(2) Alkaline medium only(4) Acidic and alkaline medium				
Ans.	(4)						
23.	Hydrogen peroxide is red	uced by					
	(1) Ozone		(2) Barium peroxide				
	(3) Acidic solution of KM	InO ₄	(4) Lead sulphide suspen	sion			
Ans.	(4)						
24.	The volume of oxygen libe	erated from 15 ml of 20 volu	$1 \text{me} H_2 O_2 \text{ is}$				
	(1)250 ml	(2) 300 ml	(3) 150 ml	(4) 200 ml			
Ans.	(2)						
25.	The volume of oxygen libe	erated from 0.68 g of H_2O_2 is	8				
	(1)112 ml	(2) 224 ml	(3) 56 ml	(4) 336 ml			
Ans.	(2)						
26.	20 volume H_2O_2 solution	has a strength of about					
	(1) 30%	(2)6%	(3)3%	(4) 10%			
Ans.	(2)						
27.	The $H - O - O$ bond angle	$e \text{ in } H_2O_2(g) \text{ is}$					
	(1) 107.28°	(2) 109.28°	(3) 104.5°	(4) 94.8°			
Ans.	(4)						

ASSERTION & REASON QUESTIONS

These questions consist of two statements each, printed as *Assertion* and *Reason*. While answering these Questions you are required to choose any one of the following four responses.

- A. If both Assertion & Reason are True & the Reason is a correct explanation of the Assertion.
- B. If both Assertion & Reason are True but Reason is not a correct explanation of the Assertion.
- C. If Assertion is True but the Reason is False.
- D. If both Assertion & Reason are False.

1. Assertion : Decomposition of H₂O₂ is a disproportionation reaction. Reason : H₂O₂ molecule simultaneously undergoes both oxidation and reduction. Ans. (A) 2. Assertion: The colour of old lead paintings can be restored by washing with dilute solution of H₂O₂. Reason : Black lead sulphide is oxidised by H2O, to white lead sulphate Ans. **(A)** 3. Assertion : The O–O bond length in H_2O_2 is shorter than that in F_2O_2 . **Reason :** H₂O₂ is ionic compound [AIIMS 2003] **(D)** Ans. 4. Assertion : Hard Water is not fit for washing clothes. **Reason**: It contains Ca⁺² & Mg⁺² ion which can forms ppt with soap & detergents. Ans. **(A)** 5. Assertion : Rate of reaction $CD_4 + Cl_2 \rightarrow Slow \qquad CH_4 + Cl_2 \rightarrow Fast$ Reason : Due to isotopic effect. Ans. **(A)** 6. Assertion :- Saline hydrides are non volatile, non conducting & crystalline solids. Reason : Saline hydrides are compounds of hydrogen with most of the p-block elements. Ans. **(C)** 7. Assertion : Temporory hardness can be removed by boiling. **Reason**: On boiling the soluble bicarbonates change to carbonates which being insoluble, get precipitated. Ans. (A)