DAILY PRACTICE PROBLEM OF PHYSICAL CHEMISTRY FOR NEET

BY JITENDRA HIRWANI

IONIC EQUILIBRIUM

Plot No. 38, Near Union Bank of India, Rajeev Gandhi Nagar, Kota, Rajasthan – 324005 Mob. : 9214233303

DPP-1

(1) 7.0 (2) 6.0 (3) 8.0 (4) 12.0 Ans. (2) 2. For a acid 'A' pH = 2 and for acid 'B' pH is 4. Then (1) A is a conditioned on the process of the second se	
2. For a acid 'A' $pH = 2$ and for acid 'B' pH is 4. Then	
(1) A is more basic than B (2) B is more acidic than A	
(3) A is more acidic than B (4) B is more basic than A	
Ans. (3)	
3. The following reactions are known to occur in the body	
$CO_2 + H_2O \rightleftharpoons H_2CO_3 \rightleftharpoons H^+ + HCO_3^-$	
If CO_2 escapes from the system	
(1) pH will increase	
(2) Hydrogen ion concentration will diminish	
(3) H_2CO_3 concentration will be promoted	
(4) The forward reaction will be promoted	
Ans. (2)	
4. pK_a of Quinoline base is 4.88. What will be the pK_a of 0.01M solution of it	
(1)4.88 (2)0.01 (3)9.12 (4)14	
Ans. (1)	
5. 10 mL concentrated H_2SO_4 (18 molar) is diluted to 1 litre. Concentration of diluted acid is:-	
(1) 0.18N (2) 0.09N (3) 0.36N (4) 18N	
Ans. (3)	
6. Which of the following is not a Bronsted acid :-	
(1) $CH_3NH_4^+$ (2) CH_3COO^- (3) H_2O (4) HSO_4^-	
Ans. (2)	
7. For the reaction $NH_4^+ + S^{-2} \longrightarrow NH_3 + HS^-, NH_3$ and S^{-2} are a group of :-	
(1) Acids (2) Bases (3) Acid-base pair (4) None of these	
Ans. (2)	
8. According to Bronsted concept, the acids in the following reaction $NH_3 + H_2O \implies NH_4^+ + OH^-$	are :-
(1) NH ₃ and NH ₄ ⁺ (2) H ₂ O and OH ⁻ (3) H ₂ O and NH ₄ ⁺ (4) NH ₃ and OH ⁻	
Ans. (3)	

ETOOSINDIA J.H. SIR INDIA'S NO. 1 ONLINE COACHING J.H. SIR						
9.	The conjugate base of the weak acid in the reaction HBr + $H_2O \implies H_3O^+ + Br^-$ is					
	(1) HBr	(2) H_2O	$(3) \operatorname{Br}^{-}$	(4) H_3O^+		
Ans.	(2)					
10.	Which of the following can act both as Bronsted acid and Bronsted base :-					
	(1) Na_2CO_3	(2) OH ⁻	$(3) \operatorname{CO}_{3}^{-2}$	(4) NH ₃		
Ans.	(4)					
11.	Calculate the concent ($K_a = 1.7 \times 10^{-4}$).	tration of the formate ion pr	resent in 0.100 M formic ac	id (HCOOH) solution at equilibrium		
	(1) 4.1×10^{-3} M	(2) 3.1×10^{-3} M	(3) 2.1×10^{-3} M	(4) 5.1×10^{-3} M		
Ans.	(1)					
12.	The pH of 0.1 M monobasic acid is 4.50. The acidity constant (K_a) of the monobasic acid is –					
	(1) 1.0×10^{-7}	(2) 1.0×10^{-5}	(3) 1.0×10^{-4}	(4) 1.0×10^{-8}		
Ans.	(4)					
13.	Which of the following is the strongest base ? (1) $C_6H_5NH_2(pK_b = 9.42)$ (2) $C_6H_5NHCH_3(pK_b = 9.15)$					
	(3) $C_{6}H_{5}N(CH_{3}) (pK_{b}$	= 8.94)	(4) $C_6H_5NHC_2H_5(pK_b$	= 8.89)		
Ans.	(4)					
14.	Value of dissociation constant of acetic acid is 10^{-6} , where as dissociation constant of formic acid is 10^{-5} . Whic of the following will be the value of pK _a (acetic acid) - pK _a (formic acid)					
	(1) 10	(2)+1	(3) 10+1	(4) –1		
Ans.	(2)					
15.	What would be [H ⁺]	of 0.006 M benzoic acid ($\mathbf{K}=6\times10^{-5}\mathbf{)}$			
	(1) 0.6 × 10 ⁻⁴	(2) 6×10^{-4}	(3) 6×10^{-3}	(4) 3.6×10^{-4}		
	(2)					

ETOOSINDIA INDIA'S NO. 1 ONLINE COACHING

	DPP-2					
1.	Calculate the percent	age ionization of 0.01 M a	cetic acid in 0.1 M HCl K _a of	facetic acid is 1.8×10^{-5}		
	(1)0.18%	(2)0.018%	(3) 1.8%	(4) 18%		
Ans.	(2)					
2.	A 0.2 molar solution	of formic acid is 3.2% ioni	sed, its ionisation constant i	s		
	$(1) 9.6 \times 10^{-3}$	$(2) 2.1 \times 10^{-4}$	$(3) 1.25 \times 10^{-6}$	$(4) 2.1 \times 10^{-8}$		
Ans.	(2)					
3.	A monoprotic acid in	a 0.1 M solution ionises t	o 0.001%. Its ionisation con	istant is		
	(1) 1.0 × 10 ⁻³	(2) 1.0 × 10 ⁻⁶	(3) 1.0 × 10 ⁻⁸	(4) 1.0×10^{-11}		
Ans.	(4)					
4.			cient water to make 1 litre of he dissociation constant of a	f solution. The solution is found to have		
	(1) 1.8×10^{-5}	(2) 1.6×10^{-6}	(3) 1.34×10^{-3}	(4) 1.8×10^{-4}		
Ans.	(1)					
5.	A solution of NaOH contain 0.04 gm of NaOH per litre. Its pH is					
	(1) 10	(2)9	(3) 11	(4) 12		
Ans.	(3)					
6.	1 c.c. of 0.1 N HCl is	added to 1 litre solution of	sodium chloride. The pH o	f the resulting solution will be		
	(1)7	(2)0	(3) 10	(4) 4		
Ans.	(4)					
7.	pH of 1 M HCl is					
	(1) Zero	(2)-2	(3)7	(4) 14		
Ans.	(1)					
8.	A 0.1 N solution of se	odium bicarbonate has a p	H value of			
	(1)5.6	(2)7.0	(3)8.4	(4)4.0		
Ans.	(3)					
9.	0.2M solution of HC	COOH is 3.2% ionised the	n find ionisation constant	of acid :-		
	$(1) 4.2 \times 10^{-4}$	$(2) 4.2 \times 10^{-5}$	$(3) 2.1 \times 10^{-4}$	$(4) 2.1 \times 10^{-5}$		
Ans.	(3)					
10.		on produced when an aq ion of strong acid of pH		cid pH 5 is mixed with equal volume		
	(1) 3.3	(2) 3.5	(3)4.5	(4) 4.0		
Ans.	(1)					

	NO. 1 ONLINE COACHING			J.H. SIR
11.	Two monobasic weak acids have the same concentration of H ⁺ ions. What is the relationship between dissociation constant and dilution:-			
	(1) $Ka_1V_1 = Ka_2V_2$	(2) $Ka_1V_2 = Ka_2V_1$	$(3)\left[\mathbf{K}\mathbf{a}_{1}\mathbf{V}_{1}\right]^{\frac{1}{2}} = \mathbf{K}\mathbf{a}_{2}\mathbf{V}_{2}$	(4) $Ka_1V_1 = [Ka_2V_2]^{\frac{1}{2}}$
Ans.	(2)			
12.	What is the molar conce mL of 4.0 M solution of		the solution obtained by mix	ing 300 mL of 3.0M NaCl and 200
	(1) 5.0 M	(2) 1.8 M	(3) 1.6 M	(4) None of these
Ans.	(1)			
13.	The pH of a 0.1 M formic acid 0.1% dissociated is equal to 4. What will be the pH of another weak acid (same concentration) which is 1% dissociated			
	(1)2	(2) 3	(3) 1	(4) 4
Ans.	(2)			
14.	If 100 mL of pH = 3 ar	ad 400 mL of pH = 3 is r	nixed, what will be the pH	of the mixture
	(1) 3.2	(2) 3.0	(3) 3.5	(4) 2.8
Ans.	(2)			
15.	What is the quantity of N	aOH present in 250 cc of th	e solution, so that it gives a pl	H=13:-
	(1) 10^{-13} g	(2) 10 ⁻¹ g	(3) 1.0 g	(4) 4.0 g
Ans.	(3)			
16.	An aqueous solution of	f HCl is 10 ⁻⁹ M HCl. Th	he pH of the solution should	d be:-
	(1)9	(2) Between 6 and 7		(4) Unpredictable
Ans.	(2)			

	DPP -3				
1.	100 c.c. of N/10 NaOH so The pH of the resulting s		c of N/5 HCl solution and th	ne whole volume is made to 1 litre.	
	(1) 1	(2)2	(3)3	(4) 4	
Ans.	(2)				
2.	The addition of solid sod	ium carbonate to pure wate	er causes		
	(1) An increase in the h	ydronium ion concentration	1		
	(2) An increase on pH				
	(3) No change in pH				
		droxide ion concentration			
Ans.	(2)				
3.	A salt of strong acid and	weak base is dissolved in v	vater. Its hydrolysis in solu	tion is	
	(1) Unaffected on heating	5	(2) Increased by adding	strong acid	
	(3) Suppressed by dilutin	g	(4) Suppressed by addin	g strong acid	
Ans.	(4)				
4.	Which will undergo catio	onic hydrolysis ?			
	(1)NaCl	(2) CH ₃ COONa	$(3) (NH_4)_2 SO_4$	(4) H ₂ CO ₃	
Ans.	(3)				
5.	pH of a salt of a strong ba	ase with weak acid			
	(1) $pH = \frac{1}{2}pK_w + \frac{1}{2}pK_a$	$+\frac{1}{2}\log C$	(2) $pH = \frac{1}{2}pK_w - \frac{1}{2}pK_a$	$-\frac{1}{2}\log C$	
	(3) $pH = \frac{1}{2}pK_w + \frac{1}{2}pK_a$	$-\frac{1}{2}\log C$	(4) None of these		
Ans.	(1)				
6.	Which relation is correct	-			
	$(1) K_h = K_w / K_a$	(2) $K_{h} = K_{w}/K_{b}$	(3) $K_{h} = K_{w}/K_{a}.K_{b}$	(4) $K_{h} = K_{w} K_{a}$	
Ans.	(2)				
7.	An example of a salt diss	olved in water to give acidi	c solution is		
	(1) Ammonium chloride	(2) Sodium acetate	(3) Potassium nitrate	(4) Barium bromide	
Ans.	(1)				
8.	Given that for HA acid, (1) 5	$K_a = 10^{-6}$ and for MOH bas (2) 7	se $K_b = 10^{-6}$. The pH of 0. (3) 9	1 M MA salt solution will be :- (4) 2	
Ans.	(2)				
0	.				
9.			$\mathbf{K}_{\mathbf{b}_1}$ and $\mathbf{K}_{\mathbf{b}_2}$. Their relation	on is $pK_{b_1} < pK_{b_2}$. Conjugate of	
	following base, does not (1) AOH	(2) BOH	(3) Both of them	(4) NOT	
Ans.	(2)	× /			

	DOSINDIA NO. 1 ONLINE COACHING			J.H. SIR	
10.	The pH of a solution obtained by mixing 100 ml of 0.2 M CH_3 COOH with 100 ml of 0.2 M NaOH would be :				
	$(pK_a \text{ for } CH_3COOH = 4.74)$				
	(1)4.74	(2) 8.87	(3) 9.10	(4) 8.57	
Ans.	(2)				
11.	The pH of 0.1 M solution	n of the following salts inc	creases in the order :		
	(1) NaCl $<$ NH ₄ Cl $<$ NaCl	N <hcl< td=""><td>(2) HCl $<$ NH₄Cl $<$ NaCl</td><td>l < NaCN</td></hcl<>	(2) HCl $<$ NH ₄ Cl $<$ NaCl	l < NaCN	
	(3) NaCN $<$ NH ₄ Cl $<$ NaC	Cl <hcl< th=""><th>(4) HCl < NaCl < NaCN</th><th>I<nh<sub>4Cl</nh<sub></th></hcl<>	(4) HCl < NaCl < NaCN	I <nh<sub>4Cl</nh<sub>	
Ans.	(2)				
12.	A pair of salts are given	in a solution each in 0.1M	concentration. Which solu	ution has a higher pH?	
	(1) NaCN and NaOBr	(2) NaF and NaOCl	(3) NaF and NaOBr	(4) NaCN and NaOCl	
Ans.	(1)				
13.	Which of the following	salts undergoes anionic h	ydrolysis?		
	(1) CuSO ₄	(2) NH ₄ Cl	(3) AlCl ₃	(4) $K_2 CO_3$.	
Ans.	(4)				

DPP-4

		DI	PP -4	
1.	A buffer solution can be	prepared from a mixture of	f	
	I. Sodium acetate and	l acetic acid in water		
	II. Sodium chloride an	d HCl in water		
	III. Ammonia and NH_4	Cl in water		
	IV. Ammonia and sodi	um hydroxide in water		
	(1) 1, 3, 4	(2) 2, 3, 4	(3) 1, 2, 4	(4) 1, 3
Ans.	(4)			
2.	Solubility product pring	into con he contied when		
2.		tiple can be applied when		
	(1) A solid is insoluble(2) A liquid is insolubl	-		
		nd is sparingly soluble in a	liquid	
		iu is sparingly soluble in a	nquiu	
Ans.	(4) Substance is ionic(3)			
AIIS.	(3)			
3.	The solubility product of	f AgCl is K_{sp} . Then the solu	ıbility of AgCl in xM KCl is	5
	(1) $\mathbf{V} = -2$	() X	(2) K _{sp}	(4) $\frac{K_{sp}}{m}$
	(1) $K_{sp} \times x^2$	(2) $\frac{X}{K_{sp}}$	$(3) \frac{1}{x^2}$	$(4) \frac{1}{x}$
Ans.	(4)			
4.	The correct representat	ion for the K_{sp} of SnS_2 is		
	$(1) [Sn^{2+}] [S^{2-}]^2$	(2) $[Sn^{4+}] [S^{-2}]^2$	$(3)[Sn^{2+}][2S^{-2}]$	$(4) [Sn^{4+}] [2S^{2-}]^2$
Ans.	(2)			
5.	The K for a sparingly	soluble A σ CrO is 4×10^{-12}	The molar solubility of the	saltis
3.	(1) $2.0 \times 10^{-6} \text{ mol } \text{L}^{-1}$	(2) $1.0 \times 10^{-4} \text{ mol } \text{L}^{-1}$	(3) $2.0 \times 10^{-12} \text{ mol } \text{L}^{-1}$	(4) $1.0 \times 10^{-15} \text{ mol } \text{L}^{-1}$
Ans.	(1) 2.0 × 10 more (2)	(2) 1.0 × 10 more	(5) 2.0 × 10 more	(4) 1.0 * 10 110112
1 1113.	(-)			
6.	The precipitate of CaF_2	$(K_{sp} = 1.7 \times 10^{-10})$ is obtained	ed when equal volumes of th	e following are mixed
	(1) 10^{-4} M Ca ²⁺ + 10^{-4} M F ⁻		(2) 10^{-2} M Ca ²⁺ + 10^{-3} M	1 F-
	(3) 10^{-4} M Ca ²⁺ + 10^{-3} M	[F-	(4) 10^{-3} M Ca ²⁺ + 10^{-5} M	1 F-
Ans.	(2)			
7.	Hunderson equation p	$H - pK_a = 1$ will be app	plicable to an acidic buffer	when :-
	(1) [Acid] = [Conjugat	e base]	(2) [Acid] \times 10 = [Con	njugate base]
	(3) [Acid] = [Conjugat	e base] \times 10	(4) None of these	
Ans.	(2)			
8 .	Which indicator works	in the pH range 8 – 9.8		
	(1) Phenolphthalein	(2) Methyl orange	(3) Methyl red	(4) Litmus
Ans.	(1)			

	NO. 1 ONLINE COACHING			J.H. SIR
9.	In a buffer solution the ratio of concentration of NH_4Cl and NH_4OH is 1 : 1 when it changes in 2 : 1 w be the value of pH of buffer :-			
	(1) Increase	(2) Decrease	(3) No effect	(4) None
Ans.	(2)			
10.	The pOH of beer is 10.0. The hydrogen ion concentration will be :-			
	(a) 10^{-10}	(b) $\frac{Kw}{10^{-10}}$	(c) $\frac{Kw}{10^{-8}}$	(d) 10 ⁻⁴
	(1) a, d	(2) b, c	(3) a, b, c	(4) None
Ans.	(4)			
11.	Solubility product of Mg(OH) ₂ is 1×10^{-11} . At what pH, precipitation of Mg(OH) ₂ will begin from 0.1 M Mg solution:-			
	(1)9	(2) 5	(3) 3	(4) 7
Ans.	(1)			
12.	In the qualitative a	nalysis of group III, Fe(O	H) ₂ is not precipitated bec	ause :-
	(1) The K _{sp} for Fe((OH) ₂ is higher	(2) To precipitate Fe	(OH) ₂ , only small [OH ⁻] is needed
	(3) $Fe(OH)_2$ is a w	eak electrolyte	(4) The oxidation s	tate of Fe in $Fe(OH)_2$ is +2
Ans.	(1)			

	DPP -5					
1.		10.6 at 25°C. K_{sp} of Ca(OH)				
Ans.	(1) $3.2 \times 10^{-12} \mathrm{M}^3$ (1)	(2) $3.2 \times 10^{-11} \mathrm{M}^3$	(3) $1.6 \times 10^{-12} \mathrm{M}^3$	(4) $1.6 \times 10^{-11} \mathrm{M}^3$		
2.	Solubility of AgI in 0	.05 M BaI ₂ solution is 10^{-1}	⁵ M. The solubility of AgI i	n water is		
Ans.	(1) 25×10^{-7} (4)	(2) 10 ⁻⁷ M	$(3) 5 \times 10^{-8}$	(4) 10 ⁻⁸		
3.	The solubility of CaF	$_2$ in a solution of 0.1 M Ca	$(NO_3)_2$ is			
	(1) [Ca ²⁺]	(2) 2[F ⁻]	$(3)\frac{[F^-]}{2}$	(4) 2[NO ₃ ⁻]		
Ans.	(3)					
4.	The volume of water (1) 80 mL	needed to dissolve 1 mg of (2)43 mL	f PbSO ₄ (K _{sp} = 1.44×10^{-8} , (3) 27.5 mL	Mw of $PbSO_4 = 303 \text{ g}$) at 25°C is (4) 10 mL		
Ans.	(3)					
5.	How many grams of KBr can be added to 1 L of 0.12 M solution of AgNO ₃ just to start the precipitation of AgBr. (Mw of KBr = 120; K_{sp} of AgBr = 10 ⁻¹³)					
	(1) 10^{-10} g	(2) 10^{-9} g	(3) 0.5×10^{-10} g	(4) 0.5×10^{-9} g		
Ans.	(1)					
6.	The solubility of CH ₃	COOAg in a buffer solution	on with pH = 4, whose K_{sp} =	= 10 ⁻¹² and $K_a = \frac{10^{-4}}{3}$ is		
	(1) 10-6	(2) 0.5×10^{-6}	$(3) 5 \times 10^{-6}$	$(4) 2 \times 10^{-6}$		
Ans.	(4)					
7.	What is the maximum of $CoS = 2 \times 10^{-21}$.	n molarity of Co ⁺² ions in 0	.1 M HCl saturated with 0.1	M H ₂ S. (K _a = 4 × 10 ⁻²¹). Given : K _{sp}		
A. 19.0	(1) 0.10 M	(2) 1.00 M	(3) $4.48 \times 10^{-11} \mathrm{M}$	(4) 0.50 M		
Ans.	(4)					
8.	-	• •	uring the course of weak ac of acid equal to that of its	id HA with a strong base. At which conjugate base.		
		ĴрН м	D D Ol. of NaOH added			
	(1) Point B	(2) Point C	(3) Point D	(4) Point E		
Ans.	(3)					

If the salts M₂X, QY₂ and PZ₃ have the same solubilities $\left(< \frac{4}{27} \right)$, their K_{sp} values are related 9. (1) $K_{sp}(M_2X) = K_{sp}(QY_2) > K_{sp}(PZ_3)$ (2) $K_{sp}(M_2X) > K_{sp}(QY_2) = K_{sp}(PZ_3)$ $(4)K_{sp}(M_{2}X) > K_{sp}(QY_{2}) > K_{sp}(PZ_{3})$ (3) $K_{sp}(M_2X) = K_{sp}(QY_2) = K_{sp}(PZ_3)$ Ans. (1) 10. Arrange the following solutions in decreasing order of $[Ag^{\oplus}]$ ion : I. $1M[Ag(CN)_2]^-$ II. Saturated AgCl III. 1 M [Ag(NH₃)₂][⊕] in 0.1 M NH₃ IV. Saturated AgI $(K_{sp} \text{ of AgCl} = 10^{-10}, K_{sp} \text{ of AgI} = 8.3 \times 10^{-17}), K_{f} (Formation constant) [Ag(CN)_{2}]^{-} = 10^{21}$ $K_{f} [Ag(NH_{3})_{2}]^{\oplus} = 10^{8}$ (1) I > II > III > IV(3) IV > III > II > I(4) I > IV > III > II(2) II > III > IV(2) Ans.