PROBLEM SOLVING TECHNIQUES OF PHYSICAL CHEMISTRY FOR NEET

BY JITENDRA HIRWANI

IONIC EQUILIBRIUM

Plot No. 38, Near Union Bank of India, Rajeev Gandhi Nagar, Kota, Rajasthan – 324005 Mob.: 9214233303

BASIC EXERCISE

1. INTRODUCTION

1.	1 M solution is:-						
	(1) 2.45 g	(2) 3.92 g	(3) 4.90 g	(4) 9.8 g			
Ans.	(2)						
2.	Normality of 2M sulp						
Ans.	(1) 2 N (2)	(2) 4N	(3) N/2	(4) N/4			
3.	Basicity of H ₃ PO ₃ and	d H ₃ PO ₂ are respectivily :-					
	(1) 1 and 2	(2) 2 and 3	(3) 3 and 2	(4) 2 and 1			
Ans.	(4)						
4.	Find out pH of solution	on having 2×10^{-3} moles	of OH ⁻ ion's in 2 litre sol	ution :-			
Ans.	(1) $pH = 3$ (4)	(2) $pH = 3 + log 2$	(3) $pH = 3 - log2$	(4) $pH = 11$			
AIIS.	(4)						
5.	If the molar concentr (1) 3.0×10^{-3}	ation of PbI ₂ is 1.5×10^{-3} (2) 6.0×10^{-3}	mol L^{-1} , the concentration (3) 0.3×10^{-3}	n of iodide ions in g ion L^{-1} is:- (4) 0.6×10^{-6}			
Ans.	(1)			· /			
6.		4.4. Then concentration of	$^{\circ}\text{H}_{3}\text{O}^{+}$ will be :- (3) 3.9×10^{-4}	$(4) 3.9 \times 10^5$			
Ans.	$(1) 39 \times 10^{-4}$ (2)	$(2)3.9\times10^{-5}$	(3) 3.9 × 10	(4) 3.9 × 10			
2. OS	TWALD'S DILUT	ION LAW					
7.	If α is the degree of is the initial concentr		ic organic acid and y is th	e hydrogen ion concentration, what			
	$(1) \frac{\alpha(y)^{-1}}{2}$	(2) y(α) ⁻¹	$(3) \ \frac{y(\alpha)^{-1}}{2}$	(4) None of them			
Ans.	(3)						
8.	The degree of dissocia acid) What is the pH	-	by the expression $\alpha = 0.1$	$< C^{-1}$ (where $C =$ concentration of the			
Ans.	(1) 1 (1)	(2) 2	(3) 3	(4) 4			
9.	Ostwald's dilution law is not applicable for strong electrolytes because:-						
	(1) Strong electrolytes are completely ionised (2) Strong electrolytes are volatile						

(4) Strong electrolytes often contain metal ions

(3) Strong electrolytes are unstable

Ans.

(1)

10 .	The degree of ionisa	ation of a compound depend	ls upon :			
	(1) Size of the solute	e molecules	(2) Nature of the solute molecules			
	(3) Nature of the con	ntainer taken	(4) The amount of cu	irrent passed		
Ans.	(2)					
11.	Which of the following	ng will occur if a 1.0 M solution	on of a weak acid is diluted	1 to 0.01 M at constant temperature		
	(1) Percentage ionisa	tion will increase	(2) [H ⁺] will decrease	to 0.01M		
	(3) K _a will increase		(4) pH will decrease	by 2 units		
Ans.	(1)					
12.	The pH of 0.15 M so	olution of HOCl ($K_a = 9.6 \times$	10 ⁻⁶) is:-			
	(1) 4.42	(2) 2.92	(3) 3.42	(4) None		
Ans.	(2)					
13.	The extent of ionisat	tion increases (weak electrol	lytes)			
	(1) With the increase	e in concentration of solute				
	(2) On decreasing th	e temp. of solution				
	(3) On addition of ea	xcess of water to the solution	on			
	(4) On stirring the se	olution vigorously				
Ans.	(3)					
14.	If Ka of HCN = 4×1	0^{-10} , then the pH of 2.5×10^{-10}	⁻¹ molar HCN (aq) is:-			
	(1)4.2	(2) 4.7	(3) 0.47	(4) 5.0		
Ans.	(4)					
15.	The molarity of nitro	ous acid at which its pH become	omes $2.(K_a = 4.5 \times 10^{-4})$:-		
	(1) 0.3333	(2) 0.4444	(3) 0.6666	(4) 0.2222		
Ans.	(4)					
16.	Correct statement for	HCN weak acid at 25°C ten	nperature.:-			
	V	И[ОП-1				
	$(1) \alpha = \frac{K_a}{[H^+]}$	(2) $\alpha = \frac{K_a \times [OH^-]}{K_w}$	(3) (1) & (2) both	$(4) K_b = C\alpha^2$		
Ans.	(3)					
3. EX	EPLANATION OF	WATER				
17.	Ionic product of water	er will increase, if:-				
	(1) Dissociation the	pressure	(2) Add H ⁺			
	(3) Add OH-		(4) Increase the temporal	erature		
Ans.	(4)					
18.	For water at 25° C, 2	2×10^{-7} moles per litre is the	ne correct answer for whi	ch one of the followoing		
	$(1)[H^+] + [OH^-]$	$(2)[H^+]^2$	$(3)[OH^{-}]^{2}$	$(4) [H^+] - [OH^-]$		
Ans.	(1)					

19. At 25°C, the dissociation constant for pure water is given by :-							
	$(1) (55.4 \times 10^{14})^{-1}$	(2) 1 × 10 ⁻¹⁴	$(3) \ \frac{1 \times 10^{-14}}{18}$	(4) None of these			
Ans.	(1)						
20.	At 90°C, pure water ha	s [H ₃ O ⁺] =10 ^{-6.7} mol L ⁻¹	what is the value of K_W a	t 90°C:-			
	$(1) 10^{-6}$	$(2)\ 10^{-12}$	(3) 10 ⁻⁶⁷	$(4)\ 10^{-13.4}$			
Ans.	(4)						
21.	The common ion effect	t is shown by which of	the following sets of solu	tions :-			
	(1) BaCl2 + BaNO3	(2) NaCl + HCl	(3) NH4OH + NH4Cl	(4) None			
Ans.	(3)						
22.	Which of the following	g is a true statement:					
	(1) The ionisation cons	stant and ionic product	of water are same.				
	(2) Water is a strong e	lectrolyte.					
		-	s than that of its ionisation	n constant.			
		er of H ⁺ ions in a litre of	of water is 6.023×10^{16} .				
Ans.	(4)						
23.	If it is known that H ₂ S is a weak acid and it is ionised into 2H ⁺ and S ⁻² . Then in this solution HCl is added so,						
	pH becomes less, then						
	(1) Decrease in S ⁻² ion		(2) Concentration of				
Ama	(3) Increase in S ⁻² ion	concentration	(4) It is not possible	, to add HCl in solution			
Ans.	(1)						
4. SA	LTS, TYPES OF SA	LT & CONJUGAT	TE THEORY				
24.	Which is a basic salt :						
	(1) PbS	(2) PbCO ₃	(3) PbSO ₄	(4) 2PbCO ₃ Pb(OH) ₂			
Ans.	(4)						
25.	The process of neutral	ication invariably result	s in the production of :-				
23.	(1) H ⁺ ions	isation invariably result	(2) OH [—] ions				
	(3) Both H ⁺ and OH ⁻	ions	(4) Molecules of wat	er			
Ans.	(4)		、				
26 .	Which of the following	y is an acid salt :-					
-0.	(1) Na_2S	(2) Na2SO3	(3) NaHSO ₃	(4) Na ₂ SO ₄			
Ans.	(3)	() 2 3	()	() 2 4			
27.	The mixed salt among	the following is :-					
	(1) CH(OH)COONa	(2) NaKSO ₄	(3) CaCl,	(4) All			
	CH(OH)COONa	. / 4		` '			
Ans.	(2)						

5. HYDROLYSIS OF SALTS

- 28. What will the pH of 1.0 M ammonium formate solution, If $K_a=1 \times 10^{-4}$ acid $K_b=1 \times 10^{-5}$:

(2)7.5

- (3)8.0
- (4)9.0

Ans. **(1)**

- 29. $HCOO^- + H_2O \Longrightarrow HCOOH + OH^-$ is related:-
- (1) $h = \sqrt{K_h}$ (2) $h = \sqrt{\frac{K_h}{C}}$ (3) $h = \sqrt{\frac{K_h}{V}}$
- $(4) K_{h} = \sqrt{hc}$

Ans. **(2)**

- 30. If pK_b for CN⁻ at 25°C is 4.7. The pH of 0.5M aqueous NaCN solution is :-
 - (1)12

- (2)10
- (3)11.5
- (4)11

(3) Ans.

- 31. The highest pH value is of :-
 - (1) 0.1 M NaCl
- (2) 0.1 M NH₄Cl
- (3) 0.1 M CH₃COONa
- (4) 0.1 M CH₃COONH₄

Ans. **(3)**

- 32. A weak acid react with strong base, ionisation constant of weak acid is 10⁻⁴. Find out equilibrium constant for this reaction :-
 - $(1)\ 10^{-10}$
- $(2) 10^{10}$
- $(3) 10^{-9}$
- $(4) 10^9$

Ans. **(2)**

Hydroxyl ion concentration [OH⁻] in the case of sodium acetate can be expressed as (where K_a is dissociation 33. constant of CH₃COOH and C is the concentration of sodium acetate):-

(1)
$$[OH^-] = (CK_w. K_a)^{1/2}$$

(2)
$$[OH^{-}] = C.K_{w} \sqrt{K_{a}}$$

(3) [OH⁻] =
$$\left(\frac{C.K_w}{K_a}\right)^{1/2}$$

(4) $[OH^{-}] = C. K_a. K_w$

Ans. **(3)**

- 34. Consider:-
 - (a) FeCl₃ in water Basic
 - (b) NH₄Cl in water Acidic
 - (c) Ammonium acetate in water Acidic
 - (d) Na₂CO₃ in water Basic

Which is/are not correctly matched:-

- (1) b and d
- (2) b only
- (3) a and c
- (4) d only

(3) Ans.

- 35. Which of the following salts undergoes hydrolysis in water:-
 - $(1) Na_3PO_4$
- (2) CH₃COONa
- (3) NaNO₃
- (4) Both of (1) and (2)

Ans. **(4)**

36.	A salt 'X' is dissolved in water of pH = 7. The resulting solution becomes alkaline in nature. The salt is made
	up of:-

- (1) A strong acid and strong base
- (2) A strong acid and weak base

(3) A weak acid and weak base

(4) A weak acid and strong base

Ans. **(4)**

- K_a for cyano acetic acid is 3.5×10^{-3} . Then the degree of hydrolysis of 0.05 M. sodium cyano acetate solution 37. will have the following value :-
 - $(1) 4.559 \times 10^{-6}$
- $(2) 5.559 \times 10^{-6}$
- (3) 6.559×10^{-6} (4) 7.559×10^{-6}

(4) Ans.

- Degree of Hydrolysis of $\frac{N}{100}$ solution of KCN is (Given Ka = 1.4 × 10⁻⁹) 38.
 - $(1) 2.7 \times 10^{-3}$
- $(2) 2.7 \times 10^{-2}$
- $(3) 2.7 \times 10^{-4}$

Ans. **(2)**

6. SOLUBILITY & SOLUBILITY PRODUCT(K,,)

- 39. The solubility product of sparingly soluble univalent salt is defined as the product of ionic concentration in a:-
 - (1) 1 M solution

(2) Concentration solution

(3) Very dilute solution

(4) Saturated solution

Ans. **(4)**

- 40. The expression of solubility product of mercurous iodide is :-
 - (1) $[2 \text{ Hg}^+]^2 \times 2 [I^-]^2$
- (2) $[Hg^{++}]^2 \times [2I^-]^2$ (3) $[Hg_2^{2+}] \times [I^-]^2$ (4) $[Hg^{2+}]^2 \times [I^-]^2$

Ans.

- 41. Concentration of Ag⁺ ions in saturated solution of Ag₂CrO₄ at 20^oC is 1.5 × 10⁻⁴ mol L⁻¹. At 20^oC, the solubility product of Ag₂CrO₄ is :-
 - $(1) 3.3750 \times 10^{-12}$
- (2) 1.6875×10^{-10}
- $(3)\ 1.68 \times 10^{-12}$
- $(4) 1.6875 \times 10^{-11}$

Ans. (3)

- 42. How many grams of CaC₂O₄ will dissolve in distilled water to make one litre saturated solution? solubility product of CaC_2O_4 is 2.5×10^{-9} mol² L⁻² and its molecular weight is 128.
 - (1) 0.0064 g
- (2) 0.0128 g
- (3) 0.0032 g
- (4) 0.0640 g

Ans. **(1)**

- If the concentration of CrO_4^{2} ion in a saturated solution of silver chromate will be 2×10^{-4} M, solubility **43**. product of silver chromate will be -
 - $(1) 4 \times 10^{-8}$
- (2) 8×10^{-12}
- (3) 32 x 10^{-12}
- $(4) 6 \times 10^{-12}$

Ans.

	NO. 1 ONLINE COACHING				J.H. SIR
44.	If the solubility of a of K _{sp} will be :-	AgCl (formula mass=143) is	n water at 25°C is 1.43 ×1	0 ⁻⁴ g/100 mL of solution	on then the value
	$(1) 1 \times 10^{-5}$	$(2) \ 2 \times 10^{-5}$	(3) 1×10^{-10}	$(4) \ 2 \times 10^{-10}$	
Ans.	(3)				
45 .	If the salts M_2X , Q	$2Y_2$ and PZ_3 have the same	solubilities, their K _{sp} values	s are related as -	(S < 1)
	$(1) K_{sp} (M_2 X) = K$	$_{\rm sp}$ (QY ₂) \leq K _{sp} (PZ ₃)	(2) $K_{sp}(M_2X) > K_s$	$_{sp}$ (QY ₂) = K_{sp} (PZ ₃)	
	(3) $K_{sp}(M_2X) = K$	$_{\rm sp}$ (QY ₂) > K _{sp} (PZ ₃)	(4) $K_{sp}(M_2X) > K_s$	$_{sp} (QY_2) > K_{sp} (PZ_3)$	

Ans.

46. If the solubility of PbBr2 is 'S' g molecules per litre, considering 100% ionisation its solubility product is :- $(1) 2S^3$ $(2) 4S^2$ $(3)4S^3$ $(4) 2S^4$

(3) Ans.

Ans.

If the solubility of lithium sodium hexeafluoro aluminate $\mathrm{Li_3Na_3}(\mathrm{AlF_6})_2$ is 'S' $\mathrm{mol}\ L^{-1}$. Its solubility product is 47. equal to :-

- $(1) S^8$ $(2) 12 S^3$ $(3) 18S^3$ $(4) 2916 S^8$ **(4)**
- One litre of saturated solution of CaCO₃ is evaporated to dryness, when 7.0 g of residue is left. The solubility 48.
 - product for CaCO3 is:-(2) 4.9×10^{-5} (3) 4.9×10^{-9} $(1) 4.9 \times 10^{-3}$ $(4) 4.9 \times 10^{-7}$

(1) Ans.

7. APPLICATION OF SOLUBILITY PRODUCT(K_m)

- 49. Correct order of solubility porduct is :-
 - (1) $CaCrO_4 > SrCrO_4 > BaCrO_4$ (2) $BaCrO_4 > SrCrO_4 > CaCrO_4$
 - (3) CaCrO₄> BaCrO₄> SrCrO₄ (4) SrCrO₄> BaCrO₄> CaCrO₄

Ans. (1)

- **50.** If 's' and 'S' are respectively solubility and solubility product of a sparingly soluble binary electrolyte then:-
 - (2) $s = S^2$ (3) $s = S^{1/2}$ (4) $s = \frac{1}{2}S$ (1) s = S

Ans. (3)

- 51. If the maximum concentration of PbCl₂ in water is 0.01 M at 298 K, Its maximum concentration in 0.1 M NaCl will be:-
 - (2) $0.4 \times 10^{-4} \text{ M}$ (3) $4 \times 10^{-2} \text{ M}$ (4) $4 \times 10^{-4} \text{ M}$ $(1) 4 \times 10^{-3} \text{ M}$

(4) Ans.

- M_2SO_4 (M⁺ is a monovalent metal ion) has a K_{sp} of 1.2×10^{-5} at 298 K. The maximum concentration of M⁺ ion that **52**. could be attained in a saturated solution of this solid at 298 K is :-
 - (1) $3.46 \times 10^{-3} \text{ M}$ $(2) 2.89 \times 10^{-2} M$ $(3) 2.8 \times 10^{-3} M$ (4) 7.0×10^{-3} M

Ans. **(2)**

=-	XX71 · 1	C /1	C 11 .	1		1 1 111	/T7	1				1 1 ()	
53 .	Which	of the	following	has	maximum	solubility	(K_{sn})	value	1S	given	ın	brackets)	:-

- (1) HgS (1.6×10^{-54})
- (2) PbSO₄ (1.3×10^{-8}) (3) ZnS (7.0×10^{-26}) (4) AgCl (1.7×10^{-10})

Ans. **(2)**

54. The solubility product of three sparingly soluble salts are given below:

No.	Formula Solubility	product
1	PQ	4.0×10^{-20}
2	PQ_2	3.2×10^{-14}
3	PQ_3	2.7×10^{-35}

The correct order of decreasing molar solublity is:-

- (1) 1, 2, 3
- (2) 2, 1, 3
- (3) 3, 2, 1
- (4) 2, 3, 1

(4) Ans.

K_{sp} value is more for :-55.

- (1) CuS
- (2) NiS
- (3) PbS
- (4) CdS

(2) Ans.

The K_{sp} value for $Gd(OH)_3$ is 2.8×10^{-23} , the pH at which $Gd(OH)_3$ begins to precipitate is:-**56.**

- (1)6.08
- (2)5.08
- (3)8.47
- (4)4.08

Ans. **(3)**

57. If the solubility product of AgBrO₃ and Ag₂SO₄ are 5.5×10^{-5} and 2×10^{-5} respectively, the relationship between the solubilities of these can be correctly represented as:-

 $(1) \text{ sAgBrO}_3 > \text{sAg}_2\text{SO}_4$

(2) $sAgBrO_3 = sAg_2SO_4$

(3) sAgBrO₃ < sAg₂SO₄

 $(4) sAgBrO_3 = sAgSO_4$

Ans. **(3)**

58. 0.5 M HCl solution has ions- Hg++, Cd++, Sr++, Fe++, Cu++. To pass the H₂S gas in this solution, which are precipitated out :-

- (1) Cd^{+2} , Fe^{+2} , Sr^{+2}
- (2) Cd^{+2} , Hg^{+2} , Cu^{+2} (3) Hg^{+2} , Cu^{+2} , Fe^{+2} (4) Cu^{+2} , Sr^{+2} , Fe^{+2}

(2) Ans.

A solution, containing 0.01 M Zn⁺² and 0.01 M Cu²⁺ is saturated by passing H₂S gas. The S⁻² concentration **59**. is 8.1×10^{-21} M, Ksp for ZnS and CuS are 3.0×10^{-22} and 8.0×10^{-36} respectively. Which of the following will occur in the solution:-

(1) ZnS will precipitate

- (2) CuS will precipitate
- (3) Both ZnS and CuS will precipitate
- (4) Both Zn²⁺ and Cu²⁺ will remain in the solution

Ans.

60. Consider (1) Zn(OH), (2) Cr(OH), (3) Mg(OH), (4) Al(OH), which hydroxide is precipitated by NH₄OH containing NH₄Cl:-

- (1) 1, 2
- (2) 2, 4
- (3) Only 4
- (4) 1, 2, 3 and 4

Ans. **(2)**

61.	What will happen if the pH $(K_{sp}Mg(OH)_2 = 8.9 \times 10^{-1})$		$M Mg(NO_3)_2$ solution is adjusted to pH = 9			
	$(R_{sp}Mg(OH)_2 = 8.9 \times 10^{-4})$ (1) ppt will take place)	(2) ppt will not take place			
	(3) Solution will be saturat	ed	(4) None of these			
Anc		cu	(4) None of these			
Ans.	(2)					
62.				is 0.010 M with respect to Mg ² without causing the precipitation		
	(1) $1.5 \times 10^{-7} \text{ M}$	(2) $3.0 \times 10^{-7} \text{ M}$	(3) $1.5 \times 10^{-5} \text{ M}$	$(4) 3.0 \times 10^{-5} M$		
Ans.	(4)					
63.	(1) The impurities dissol(2) HCl is slightly solubl(3) The ionic product [N	ve in HCl		ecipitated because:-		
Ans.	(3)	t of Naci is lowered by C	i nom aq. ner			
64.	precipitating (K _{sp} AgCl = nearly equal to :-	1×10^{-10} and K_{sp} AgI = 4	\times 10 ⁻¹⁶). The concentration	added drop by drop till AgCl starts of Iodide ion at this stage will be		
Ans.	(1) 4.0×10^{-5} M (2)	(2) $2.4 \times 10^{-7} \text{ M}$	$(3) 2.0 \times 10^{-8} M$	(4) $4 \times 10^{-8} \text{ M}$		
65. Ans.	containing As ³⁺ and Zn ² (1) Enough As ³⁺ are pres (2) Zinc salt does not ion (3) Solubility product of	ent in acidic medium	f ZnS	assed through an acidic solution		
66.	H S is passed through a	solution of entions in HC	1 madium to pracipitate co	tion of:		
00.	(1) II-A group of cation		of cations in HCl medium to precipitate cation of :- (2) II - B group of cation analysis			
	(3) IV group of cation at	=	(4) Both II - A and II-B	-		
Ans.	(4)		(1) 2011 11 11 11 11 2	5P 5.		
67.	The solubility product of	hydroxides of Mg ⁺² , Zn ⁺² ecipitation of hydroxides i		$Mg(OH)_2 > K_{sp} Zn(OH)_2 > K_{sp}$		
	(1) $Fe(OH)_3$, $Zn(OH)_2$, N	$Mg(OH)_2$	$(2) Mg(OH)_2, Zn(OH)_2, F$	$e(OH)_3$		
	(3) Zn(OH) ₂ , Fe(OH) ₃ , M	$g(OH)_2$	$(4) \operatorname{Zn}(OH)_2, \operatorname{Mg}(OH)_2, \operatorname{F}$	$e(OH)_3$		
Ans.	(1)					
8. pH						
68.	Given:-					
	(a) 0.005 M H ₂ SO ₄	(b) 0.1 M Na ₂ SO ₄	(c) 10 ⁻² M NaOH	(d) 0.01 M HCl		
	Choose the correct code	having same pH:-				
	(1) a, c, d	(2) b, d	(3) a, d	(4) a, c		
Ans.	(3)					

69.	What is H^+ ion concentration of 5 × 10 ⁻³ M H_2CO_3 solution having a 10% dissociation:-					
	$(1) 10^{-3}$		$(2)\ 10^{-2}$	$(3)\ 10^{-1}$	$(4) 5 \times 10^{-2}$	
Ans.	(1)					
70.	A metal hydrox	kide of n	nolecular formula M(OH	0) ₄ is 50% ionised. Its 0	.0025M solution will have the	e pH :-
	(1) 12		(2) 2	(3) 4	(4) 11.7	
Ans.	(4)					
71.	In the following	g solutio	ons, the conc. of differen	t acids are given, which	h mixture of the acid has hig	hest pH :-
	(1) $\frac{M}{10}$ H ₂ SO ₄ ,	$\frac{M}{20}$ HNO	$O_3, \frac{M}{10} HCIO_4$	(2) $\frac{M}{20}$ H ₂ SO ₄ , $\frac{M}{10}$	$\frac{1}{6}$ HNO ₃ , $\frac{M}{20}$ HClO ₄	
	(3) $\frac{M}{20}$ H ₂ SO ₄ ,	$\frac{M}{10}$ HNO	$O_3, \frac{M}{40} HClO_4$	(4) $\frac{M}{20}$ H ₂ SO ₄ , $\frac{M}{5}$	HNO ₃ , $\frac{M}{5}$ HClO ₄	
Ans.	(3)					
72.	_	lution co	ntaining 10 mL of a 0.1M	NaOH and 10 mL of 0.05	MH ₂ SO ₄ would be	
	(1) Zero		(2) 1	(3)>7	(4) 7	
Ans.	(4)					
73.	Which of the fo	ollowing	g statements are (is) corr	rect		
	(a) The pH of 1	1.0 × 10	⁷⁸ M solution of HCl is	8.		
	(b) The conjug	ate base	of H ₂ PO ⁻ ₄ is HPO ₄ ²⁻			
	(c) Autoprotoly	sis cons	stant of water increases	with temperature.		
	(d) When a sol $pH = 1/2 p$		a weak monoprotic aci	d is titrated against a s	trong base, at half neutraliza	tion point
	(1) a		(2) a, b	(3) a, b, d	(4) b, c	
Ans.	(4)					
74 .	The hydrogen i	ion conc	entration in a given sol	ution is 6×10^{-4} M. Its	pH will be :-	
	(1)6		(2) 3.22	(3) 4	(4) 2.	
Ans.	(2)					
75 .	Following five	solution	of KOH were prepare a	as–		
	First	\rightarrow	0.1 moles in 1 L			
	Second	\rightarrow	0.2 moles in 2 L			
	Third	\rightarrow	0.3 moles in 3 L			
	Fourth	\rightarrow	0.4 moles in 4 L			
	Fifth	\rightarrow	0.5 moles in 5 L			
	The pH of resu	ıltant so	lution is :-			
	(1) 2		(2) 1	(3) 13	(4) 7	
Ans.	(3)					
76 .	The pH of a 0.0	02 M an	nmonia solution which i	s 5% ionised will be :-		
	(1) 2		(2) 11	(3) 5	(4) 7	
Ans.	(2)					

77.	For $\frac{N}{10}$ H ₂ SO ₄ ,	pH value is :-			
Ans.	(1) 1 (1)	(2) 0.586	(3) 0.856	(4) None	
78.		tion of HCl is 10 ⁻⁹ M HC			
Ans	(1) 9	(2) Between 6 and	17 (3)7	(4) Unpredictable	
Ans.	(2)				
79.	2	acid which dissociates comp of this acid which has a p	: <u> </u>	ne of the following is the molarity of a	ın
	(1) 0.1	(2) 0.05	(3) 0.2	(4) 0.5	
Ans.	(2)				
80.	How many moles	of HCl must be removed fr	om 1 litre of aqueous HC	l solution to change its pH from 2 to 3	:-
	(1) 1	(2) 0.02	(3) 0.009	(4) 0.01	
Ans.	(3)				
81.	One litre solution	n contains 1M HOCl [K _a = 1	10 ⁻⁸] and 1 M NaOH. Wh	nat is the pH of the solution:	
	(1)8	(2) 11	(3) 5	(4) 2	
Ans.	(2)				
82.	0.001 mol of the pH will be: - [K.		has been dissolved to ma	ke a 20 mL of its saturated solution. I	ts
	(1) 13	(2)3.3	(3) 11	(4) 9.8	
Ans.	(1)				
83.	Choose the wron	g statement :-			
	(1) For a neutral	solution : $[H^+] = [OH^-] = $,	$\sqrt{\mathrm{K}_{\mathrm{w}}}$		
	(2) For an acidic	solution : $[H^+] > \sqrt{K_w}$ an	$d [OH^-] < \sqrt{K_w}$		
	(3) For a basic so	olution: $[H^+] < \sqrt{K_w}$ and	$[OH^-] > \sqrt{K_w}$		
	(4) For a neutral	solution at all temperatures	$S: [H^+] = [OH^-] = 10^{-7} M$		
Ans.	(4)				
84.	The pH of 0.1 M	I solution of the following s	salts increases in order :-		
	$(1) NaCl < NH_4C$	l < NaCN < HCl			
	(2) NaCN \leq NH ₄ 0				
	(3) HCl < NaCl <	·			
	$(4) HCl < NH_4Cl$	< NaCl < NaCN			
Ans.	(3)				

9. Buffer Solutions and Indicator

85.	To a 50 mL of 0.05M formic acid how much volume of 0.10M sodium formate must be added to get a buffer solution of pH = 4.0 ? (pK _a of the acid is 3.8)							
	$(1) 50 \mathrm{mL}$	(2) 4 mL	$(3)39.6 \mathrm{mL}$	(4) 100 mL				
Ans.	(3)							
86.	In the volumetric estir for the titration :-	nation of HCl, if we make us	se of phenolphthalein as an	indicator, which base is unsuitable				
	(1) NaOH	(2) RbOH	(3) KOH	$(4)\mathrm{NH_4OH}$				
Ans.	(4)							
87.	pK _b for NH ₄ OH at certa and NH ₄ Cl will be:-	nin temperature is 4.74. The p	oH of basic buffer containing	equimolar concentration of NH ₄ OH				
	(1) 7.74	(2) 4.74	(3) 2.37	(4) 9.26				
Ans.	(4)							
88.	What is the suitable i	ndicator for titration of Na	OH and oxalic acid:-					
	(1) Methyl orange	(2) Methyl red	(3) Phenolphthalein	(4) Starch solution				
Ans.	(3)							
89 .	Phenolphthalein does not act as an indicator for the titration between :-							
	(1) KOH and H ₂ SO ₄		(2) NaOH and CH ₃ COO)H				
	(3) Oxalic acid and K	MnO_4	(4) Ba(OH) ₂ and HCl					
Ans.	(3)							
90.	Which can act as buffer :-							
	(1) $NH_4OH + NaOH$		(2) HCOOH + CH ₃ COO	ONa				
	(3) 40 mL 0.1 M NaC	N + 20 mL of 0.1 M HCl	(4) None of them					
Ans.	(3)							
91.	Ka for HCN is 5×10^{-10} at 25° C. For maintaining a constant pH of 9, the volume of 5M KCN solution required to be added to 10mL of 2M HCN solution is-							
	(1) 4 mL	(2) 7.95 mL	(3) 2 mL	(4) 9.3 mL				
Ans.	(3)							
92.	Buffering action of a r to-	mixture of CH ₃ COOH and C	CH ₃ COONa is maximum wl	hen the ratio of salt to acid is equal				
	(1) 1.0	(2) 100.0	(3) 10.0	(4) 0.1				
Ans.	(3)							
93.	A basic - buffer will	obey the equation pOH - pl	$K_b = 1$ only under condition	on:-				
	(1) [Conjugate acid]:		(2) [Conjugate acid] =					
	(3) [Conjugate acid] :	[base] = 10:1	(4) N.O.T					
Ans.	(3)							

94.	For weak acid strong base titration, the indicator used is :-						
	(1) Potassium di-chroma	te	(2) Methyl orange				
	(3) Litmus		(4) Phenolphthalein				
Ans.	(4)						
95.	From the following in v	which titration methyl or	ange is a best indicator :-				
	(1) CH3COOH + NaOH	(2) H2C2O4 + NaOH	(3) HCl + NaOH	(4) CH3COOH + NH4OH			
Ans.	(3)						
96.	The total number of diff	ferent kind of buffers obt	ained during the titration of	f H ₃ PO ₄ with NaOH are :-			
	(1) 3	(2) 1	(3) 2	(4) 0			
Ans.	(1)						
97 .		on in 0.001 M acetic acid ed to a litre of 0.001 M C		he H ⁺ ion concentration of 0.164			
	$(1) 9 \times 10^{-6}$	(2) 18×10^{-6}	$(3) 4.5 \times 10^{-6}$	$(4) 5 \times 10^{-6}$			
Ans.	(1)						
98.	A certain acidic buffer so of the buffer is:-	solution contains equal co	oncentration of X^- and HX .	The K_b for X^- is 10^{-10} . The pH			
	(1) 4	(2) 7	(3) 10	(4) 14			
Ans.	(1)						
99 .	Which of the following	solutions does not act a	s buffer :-				
	(1) H3PO4 + NaH2PO4	$(2) \text{ NaHCO}_3 + \text{H}_2\text{CO}_3$	(3) NH4Cl + HCl	(4) CH ₃ COOH + CH ₃ COONa			
Ans.	(3)						
100.	50 mL of 2N acetic acid $(K_a = 10^{-5})$:-	d mixed with 10 mL of	1N sodium acetate solution	will have an approximate pH of			
	(1) 4	(2) 5	(3) 6	(4) 7			
Ans.	(1)						
101.	On addition of NaOH to	CH ₃ COOH solution, 60%	% of the acid is neutralised.	If pK_a of CH_3COOH is 4.7 then			
	the pH of the resulting solution is :-						
	(1) More than 4.7 but le	ess than 5.0	(2) Less than 4.7 but more than 4.0				
	(3) More than 5.0		(4) Remains unchanged				
Ans.	(1)						
102.		ncid are added to 500 mL of 0 ⁻⁵ then pH of the result		ution. If the dissociation constant			
	(1) 5.0	(2) 9.0	(3) 3.0	(4) 4.0			
Ans.	(1)						
103.		acid solution is neut then pH of the solution		a KOH solution to it. If			
	(1) 3.6990	(2) 10.3010	(3) 3.85	(4) 4.3010			
Ans.	(1)						

104. A solution contains 0.2M NH₄OH and 0.2M NH₄Cl. If 1.0 mL of 0.001 M HCl is added to it. What will be the [OH-] of the resulting solution

$$[K_b = 2 \times 10^{-5}]$$
:-

$$(1) 2 \times 10^{-5}$$

(2)
$$5 \times 10^{-10}$$

$$(3) 2 \times 10^{-3}$$

(4) None of these

Ans. **(1)**

105. 10 mL of a solution contains 0.1 M NH₄Cl+0.01 M NH₄OH. Which addition would not change the pH of solution:—

(1) Adding 1 mL water

- (2) Adding 5 mL of 0.1 M NH₄Cl
- (3) Adding 5 mL of 0.1 M NH₄OH
- (4) Adding 10 mL of 0.1 M NH₄Cl

Ans. **(1)**

 $\frac{N}{10}$ acetic acid was titrated with $\frac{N}{10}$ NaOH. When 25%, 50% and 75% of titration is over then the pH of the **106**.

solution will be :- $[K_a = 10^{-5}]$

$$(1)$$
 5 + log 1/3, 5, 5 + log 3

$$(2)$$
 5 + log 3, 4, 5 + log $1/3$

$$(3)$$
 5 – $\log 1/3$, 5, 5 – $\log 3$

$$(4) 5 - \log 1/3, 4, 5 + \log 1/3$$

Ans. **(1)**

10. Acid, Base

107. Which ion does not show acid behaviour :-

(1)
$$\left[Al(H_2O)_6 \right]^{+3}$$

(1)
$$\left[Al(H_2O)_6 \right]^{+3}$$
 (2) $\left[Fe(H_2O)_6 \right]^{+3}$

(3)
$$HPO_4^{-2}$$

 $(4) \text{ClO}_3^-$

Ans.

108. An example of Lewis acid is:-

- (1) CaO
- (2) CH,NH,
- (3) SO₃

(4) None of these

Ans. **(3)**

109. In the reaction NH₃ + H₂O \Longrightarrow NH₄+ + OH water behaves as :-

- (1) Acid
- (2) Base
- (3) Neutral

(4) Both acid & Base

Ans. (1)

110. Which acts as Lewis base in the reaction

$$BCl_3 + :PH_3 \rightarrow Cl_3B \leftarrow PH_3$$

- (1) PH₃
- (2) BCl₃
- (3) Both 1 & 2

(4) None

Ans. **(1)**

111. Which equilibrium can be described as Lewis acid base reaction but not Bronsted acid base reaction:-

- (1) $H_2O + CH_3COOH \Longrightarrow H_3O^+ + CH_3COO^-$
- (2) $2NH_3 + H_2SO_4 \Longrightarrow 2NH_4^+ + SO_4^{2-}$
- (3) $NH_3 + CH_3COOH \implies NH_4^+ + CH_3COO^-$
- (4) $Cu^{+2} + 4NH_3 \Longrightarrow [Cu(NH_3)_4]^{2+}$

(4) Ans.

112.	When ammonia is added (1) OH-	to water it decreases the (2) H ₃ O ⁺	concentration of which of (3) NH ⁺ ₄	f the following ion (4) None		
Ans.	(2)	•	•			
113.	In the reaction $HNO_3 + H_2O \Longrightarrow H_3O^+ + NO_3^-$, the conjugate base of HNO_3 is :-					
Ans.	(1) H ₂ O (3)	(2) H_3O^+	$(3) NO_3^-$	(4) H_3O^+ and NO_3^-		
114.	In which of the following reactions NH_3 acts as acid (1) $NH_3 + HCl \rightarrow NH_4Cl$ (2) $NH_3 + H^+ \rightarrow NH_4^+$					
Ans.	$(3) NH_3 + Na \rightarrow NaNH$ (3)	$I_2 + \frac{1}{2} H_2$	(4) NH ₃ cannot act as ac	eid		
115.	Consider the following reactions:- (i) $CO_3^{2-} + H_2O \Longrightarrow HCO_3^{-} + OH^{-}$					
	(ii) $CO_2 + H_2O \rightleftharpoons H_2$ (iii) $NH_3 + H_2O \rightleftharpoons NH_2$. ,				
	(iv) $HCl + H_2O \rightleftharpoons Cl^- + H_3O^+$ Which of the pairs of reactions proves that water is amphoteric in character :-					
Ans.	(1) (i) and (ii) (3)	(2) (ii) and (iii)	(3) (iii) and (iv)	(4) (i) and (iii)		
116.	Which one of the follow (1) NH ₃	ying is strong Lewis base (2) PH ₃	& Bronsted acid & bronst (3) CH ₄	ted base:- (4) BH ₃		
Ans.	(1)			J		
117.	Which of the following is not a correct statement (1) Arrhenius theory of acids-bases is capable of explaining the acidic or basic nature of the substances in the solvents other than water (2) Arrhenius theory does not explain acidic nature of AlCl ₃ (3) The aqueous solution of Na ₂ CO ₃ is alkaline although it does not contain OH ⁻ ions (4) Aqueous solution of CO ₂ is acidic although it does not contain H ⁺ ions					
Ans.	(1)					
118.	According to Lewis cond (1) HO ⁻ , H ⁺	cept acid & base pair is— (2) Ag ⁺ , Cl ⁻	(3) BF ₃ ,NH ₃	(4) None of these		
Ans	(3)	(-)8,	(-) 3)2 12-3	(1) 1.500 01 0000		

 $[\log 5 = 0.7]$ (1) 4.3

(1)

Ans.

EXERCISE - 2

ANALYTICAL EXERCISE

1.	The number of hydrogen ions in 10 ml of a solution with $pH = 13$ is					
	$(1) 10^{13}$	$(2) 6.023 \times 10^{8}$	$(3) 6.023 \times 10^{10}$	$(4) 6.023 \times 10^{13}$		
Ans.	(2)					
2.	In the following reaction					
	$HC_2O_4^- + PO_4^{3-} \rightleftharpoons HPO_4^{2-} + C_2O_4^{2-}$					
	which pair can act as Bro	onsted bases only?				
	(1) $HC_2O_4^-$ and PO_4^{3-}	(2) HPO_4^{2-} and $C_2O_4^{2-}$	(3) $HC_2O_4^-$ and HPO_4^{2-}	(4) PO_4^{3-} and $C_2O_4^{2-}$		
Ans.	(4)					
3.	At 30°C, the solubility of A	$Ag_2CO_3(K_{sp} = 8 \times 10^{-12})$ wou	ald be maximum in 1 litre of			
	$(1) 0.05 \mathrm{MNa_2CO_3}$	$(2)0.05\mathrm{MAgNO}_{3}$	(3) Pure water	$(4) 0.05 \mathrm{M} \mathrm{NH}_3$		
Ans.	(4)					
4.	Which of the following solutions will have pH close to 1?					
	(1) 100 ml, $\frac{M}{5}$ HCl +100 m	ml, $\frac{M}{5}$ NaOH	(2) 55 ml, $\frac{M}{10}$ HCl + 45 ml,	$\frac{M}{10}$ NaOH		
	(3) $10 \text{ ml}, \frac{M}{10} \text{HCl} + 90 \text{ ml}$	$\frac{M}{10}$ NaOH	(4) 75 ml, $\frac{M}{5}$ HCl + 25 ml,	$\frac{M}{5}$ NaOH		
Ans.	(4)					
5.	Silver nitrate is gradually added to an aqueous solution containing 0.01 M each of chloride, bromide and iodide ions. The correct sequence (decreasing order) in which the halides will be precipitated is					
	(1) Br ⁻ , Cl ⁻ , I ⁻	(2) I ⁻ , Cl ⁻ , Br ⁻	(3) I ⁻ , Br ⁻ , Cl ⁻	(4) Cl ⁻ , Br ⁻ , I ⁻		
Ans.	(3)					
6.	If ionic product of water is $K_w = 10^{-16}$ at 4°C, then a solution with pH = 7.5 at 4°C will					
	(1) Turn blue litmus red	(2) Turn red litmus blue	(3) Be neutral to litmus	(4) Be alkaline		
Ans.	(1)					
7.	When a small amount of HCl is added to a buffer solution of acetic acid and sodium acetate					
	(1) pH increase		(2) [H ⁺] decreases			
	(3) Dissociation of acetic	acid decreases	(4) [CH ₃ COO ⁻] increases			
Ans.	(3)					
8	When equal volumes of $nH = 4$ and $nH = 6$ are mixed together then the nH of the resulting solution will be					

(3)5

(2)4.7

(4)5.3

).	The solubility product of AgBr is 4.9×10^{-9} . The solubility of AgBr will be					
	(1) 7×10^{-4} mole/litre	(2) 7×10^{-5} g/litre	(3) 1.316×10^{-2} g/litre	(4) 1×10^{-3} mole/litre		
Ans.	(3)					
10.	In which of the following solution, AgCl has minimum solubility?					
	$(1) 0.05 \mathrm{MAgNO}_{3}$	$(2) 0.01 \mathrm{MCaCl}_2$	(3) 0.01 M NaCl	$(4) 0.01 \mathrm{M} \mathrm{NH_4OH}$		
Ans.	(1)					
11.	The pH of $\frac{M}{100}$ Ca(OH) ₂ is					
	(1) 1.699	(2) 12	(3) 12.301	(4) 12.699		
Ans.	(3)					
12.	The pH of a mixture of 100 ml 1 M H ₂ SO ₄ and 200 ml 1 N NaOH at 25°C is					
	(1) More than 7	(2) Less than 7	(3) Equal to 7	(4) Can't predict		
Ans.	(3)					
13.	The solubility product of $BaSO_4$ is 4×10^{-10} . The solubility of $BaSO_4$ in presence of 0.02 N H_2SO_4 will be					
	$(1) 4 \times 10^{-8} M$	$(2) 2 \times 10^{-8} M$	$(3) 2 \times 10^{-5} M$	$(4) 2 \times 10^{-4} M$		
Ans.	(1)					
14.	Solubility product of t	Solubility product of the salt, $A_x B_y$ will be represented most suitably, if the solubility is represented by S				
	$(1) K_{sp} = x^y y^x (S)^{x \times y}$		(2) $K_{sp} = x^y + y^x + (S)^y$	x+y		
	(3) $K_{sp} = x^x y^y (S)^{x+y}$		(4) $K_{sp} = x \cdot S^{x+y} \cdot y$			
Ans.	(3)					
15.	Which is incorrect?					
	(1) Conjugate acid of H ₂ O is H ₃ O ⁺		(2) Conjugate base of l	(2) Conjugate base of HCO ₃ ⁻ is CO ₃ ²⁻		
	(3) Conjugate base of NH, is NH,		(4) Conjugate base of I	(4) Conjugate base of HOCl is Cl ⁻		
Ans.	(4)					
16.	A buffer solution can be obtained from					
	(1) HCN and KCN	(2) CH ₃ COONH ₄	(3) NH ₄ Cl and NH ₄ OH	(4) All of these		
Ans.	(4)	3 7	7			
17.	The solubility of BaSO ₄ in water, is 2.33×10^{-3} gL ⁻¹ . Its solubility product will be (molecular weight of BaSO ₄ = 233):-					
	$(1) 1 \times 10^{-5}$	(2) 1×10^{-10}	$(3) 1 \times 10^{-15}$	(4) 1×10^{-20}		
Ans.	(2)					
18.	The solubility product of BaSO ₄ at 25°C is 1.0×10^{-9} . What would be the concentration of H ₂ SO ₄ necessary to					

 $(3)\ 10^{-7}$

precipitate $BaSO_4$ from a solution of 0.01 M Ba^{+2} ions :-

 $(2)\ 10^{-8}$

 $(1) 10^{-9}$

(4)

Ans.

 $(4)\ 10^{-6}$

19.	pH of the solution of HCOONH ₄ is 6.48 this can be explained by :-						
	(1) Hydrolysis of both	cation and anion	(2) Hydrolysis of cat	ion			
	(3) Hydrolysis of anior	1	(4) Hydrolysis of wat	ter			
Ans.	(1)						
20.	A solution of FeCl ₃ in water acts as acidic due to:-						
	(1) Acidic impurities	(2) Ionisation	(3) Hydrolysis of Fe ³	(4) Dissociation			
Ans.	(3)						
21.	The pKa of HNO ₂ is 3	.37. The pH of HNO $_2$ i	n its 0.01 mol L ⁻¹ aqueous	solution will be :-			
	(1) 5.37	(2) 2.69	(3) 1.69	(4) 0.69			
Ans.	(2)						
22.	When add 0.01 M HC	l in aqueous solution o	f acetic acid				
	(1) CH ₃ COO ⁻ molar co	nc. is decrease	(2) CH ₃ COOH molar	conc. is decrease			
	(3) CH ₃ COO ⁻ molar co	nc. is increase	(4) None				
Ans.	(1)						
23. On passing H ₂ S gas through a solution of Cu ⁺² and Zn ⁺² ions, CuS is precipitated fir				ipitated first because:-			
	-						
	(2) Solubility product of CuS is equal to the solubility product of ZnS.						
	(3) Solubility product						
	(4) Solubility product of CuS is greater than the solubility product of ZnS.						
Ans.	(3)						
24.	Solubility of MX, – ty	pe electrolytes is 0.5 ×	10^{-4} mol L^{-1} then find out	K _{sn} of electrolytes:-			
	$(1) 5 \times 10^{-12}$	(2) 25×10^{-10}	$(3) 1 \times 10^{-13}$	$(4) 5 \times 10^{-13}$			
Ans.	(4)						
25.	When H ₂ S gas is passe	ed through the HCl con	taining aqueous solutions o	f CuCl,, HgCl,, BiCl, and CoCl,, it			
	does not precipitate ou			2' C 2' 3 2'			
	(1) CuS	(2) HgS	$(3) \operatorname{Bi}_{2} \operatorname{S}_{3}$	(4) CoS			
Ans.	(4)						
26.	Mark the correct stater	Mark the correct statement :					
	(1) I group basic radicals precipitate as chloride.						
	(2) IV group basic radicals precipitate as sulphides						
	(3) V group basic radicals precipitate as carbonates						
	(4) All the above statements are correct						
Ans.	(4)						

27.	The role of NH ₄ Cl in group III for analysis of cations is :-					
	(1) that it acts as a catalyst.					
	(2) that it increases the solubility of hydroxides.					
	(3) that it lowers the	OH ⁻ concentration.				
	(4) that it causes the	precipitation of cations as	s chlorides.			
Ans. (3)						
28.	An acid HA has disso	An acid HA has dissociated as following manner HA \Longrightarrow H ⁺ + A ⁻				
	It has concentration 1	1 M and $pH = 5 then fin$	d out dissociation constant :	-		
	$(1) 1 \times 10^{-10}$	(2) 1×10^{-5}	$(3)\ 5\times 10^{-5}$	(4) 5		
Ans.	(1)					
29.	Which of the following group of cations will be precipitated when passing of H ₂ S gas in the presence of acidi medium:-					
	(1) Cu^{+2} , Cr^{+3}	(2) Zn ⁺² , Co ⁺²	(3) Cu ⁺² , Cd ⁺²	$(4) Al^{+3}, Cd^{+2}$		
Ans.	(3)					
30.	In a saturated solution of the sparingly soluble strong electrolyte AgIO ₃ (Moleculatr mass = 283). The equ					
	which sets in is AgIO ₃	which sets in is $AgIO_{3(S)} \longrightarrow Ag^+_{(aq)} + IO^{3(aq)}$ If the solubility product constant K_{sp} of $AgIO_3$ at a given temperature				
	is 1.0×10^{-8} , what is	the mass of AgIO, contain	ned in 100 mL of its saturated	l solution :		
	$(1) 2.83 \times 10^{-3} \mathrm{g}$			$(4) 28.3 \times 10^{-2} g$		
Ans.	(1)					
31.	If K_{sp} of CaF_2 in pure water is 1.70×10^{-10} , then find the solubility of CaF_2 in 0.10M NaF solution:					
	$(1) 1.70 \times 10^{-10}$	$(2) 1.70 \times 10^{-9}$	$(3) 1.70 \times 10^{-8}$	(4) 0.10 M		
Ans.	(3)					
32.	To precipitate Zn in form of ZnS, Why NH_4OH is first added in the solution before H_2S gas is passed through it (1) To convert Zn into Zn^{+2} (2) To reduce Zinc					
	(3) To decrease the di	ssociation of H ₂ S	(4) To increase the diss	ociation of H ₂ S		
Ans.	(4)					
33.				CH ₃ COOH in 0.1M HCl solution		
	(1) 0.018	(2) 0.36	(3) 18	(4) 36		
Ans.	(1)					
34.	The pKa of a weak acid HA is 4.80. The pK _b of weak base BOH is 4.78. The pH of an aqueous solution of the corresponding salt BA will be:					
	(1) 9.58	(2) 4.79	(3) 7.01	(4) 9.22		
Ans.	(3)	、 ,				
35.	The K_{sp} for $Cr(OH)_3$ is 1.6×10^{-30} . The molar solubility of this compound in water is :-					
	$(1) \sqrt[2]{1.6 \times 10^{-30}}$	$(2) \sqrt[4]{1.6 \times 10^{-30}}$	$(3) \sqrt[4]{1.6 \times 10^{-30} / 27}$	$(4)\ 1.6 \times 10^{-30/27}$		
Ans.	(3)					
	· /					

36.	·			n constant, Ka of this acid is :- (4) 1×10^{-5}			
Ans.	(4)	(2) 3 × 10	(3) 1 × 10	(4) 1 ~ 10			
37.	The aqueous solution of which of the following salt will have the lowest pH						
	(1) NaClO	(2) NaClO ₂	(3) NaClO ₃	(4) NaClO ₄			
Ans.	(4)						
38.	Concentrations of NH ₄ Cl pH of the buffer is :-	Concentrations of NH ₄ Cl and NH ₄ OH in a buffer solution are in the ratio 1 : 10. If K_b for NH ₄ OH is 10^{-10} , then pH of the buffer is :-					
	(1) 4	(2) 5	(3) 9	(4) 11			
Ans.	(2)						
39.	When HF is dissolved in formic acid, the equilibrium established is :-						
	$HF + HCOOH \Longrightarrow F^- + HCOOH,^+$						
	the true pair of conjugat	te acid base is as a [acid,	conjugate acid] [Base, con	njugate base]:-			
	(1) (HF, HCOOH) and (HCOOH $_2^+$, F $^-$)		(2) (HF, HCOOH ₂ ⁺) and (HCOOH, F ⁻)				
A	(3) (HCOOH ₂ ⁺ , HF) and (F ⁻ , HCOOH)		(4) (HF, F ⁻) and (HCOOH ₂ ⁺ , HCOOH)				
Ans.	(2)						
40.	How many grams of dibasic acid (mol. wt. = 200) should be present in 100 mL the aqueous solution to give strength of $(N/10)$:						
	(1) 1g.	(2) 2g.	(3) 5g.	(4) 10g.			
Ans.	(1)						
41.	Which of the following is right for diprotic acid:						
	(1) Ka2 > Ka1	(2) $Ka_1 > Ka_2$	(3) $Ka_2 > \frac{1}{Ka_1}$	$(4) Ka_2 = Ka_1$			
Ans.	(2)						
42.	The first and second dissociation constants of an acid H_2A are 1.0×10^{-5} and 5.0×10^{-10} respectively. The overall dissociation constant of the acid will be:-						
	$(1)5.0\times10^{15}$	$(2) 5.0 \times 10^{-15}$	$(3) 0.2 \times 10^5$	$(4) 5.0 \times 10^{-5}$			
Ans.	(2)						
43.	50 mL solution of 0.1M CH_3COOH (pK _a = 4.73) is titrated with 0.1M NaOH solution, pH of solution when half of CH_3COOH is neutralized						
	(1) 4.53	(2) 4.63	(3) 4.73	(4) 4.83			
Ans.	(3)						
44.	What will be the concentration of H^{\oplus} ions in 0.1M acetic acid and 0.1M sodium acetate solution, if the dissociation constant of acetic acid is 1.8×10^{-5} ?						
	$(1) 1.8 \times 10^{-7}$	$(2) 1.8 \times 10^{-5}$	$(3) 1.8 \times 10^{-2}$	$(4) 1.8 \times 10^{-3}$			
Ans.	(4)						

ASSERTION & REASON QUESTIONS

These questions consist of two statements each, printed as *Assertion* and *Reason*. While answering these Questions you are required to choose any one of the following four responses.

- A. If both Assertion & Reason are True & the Reason is a correct explanation of the Assertion.
- B. If both Assertion & Reason are True but Reason is not a correct explanation of the Assertion.
- C. If Assertion is True but the Reason is False.
- D. If both Assertion & Reason are False.
- 1. Assertion: When small amount of acid or base is added to pure water, its pH undergoes a change. Reason: Addition of an acid or base increases the degree of ionisation of water.
- Ans. (C
- 2. Assertion:— The pH of an aqueous solution of acetic acid remains unchanged on the addition of sodium acetate.

 Reason:— The ionisation of acetic acid is suppressed by the addition of sodium acetate.
- Ans. (D)
- 3. Assertion:— If HCl gas is passed through saturated NaCl solution, solid NaCl starts to precipitate. Reason:— HCl decreases the solubility product of NaCl.
- Ans. (C
- **4.** Assertion: Heat of ionisation of water is equal to the heat of neutralisation of a strong acid with a strong base.
 - **Reason**: Water ionises to a very small extent while H⁺ ions from acid combine very rapidly with OH⁻ from base to form H₂O.
- Ans. (D)
- 5. Assertion: If $K_{sp} < ionic product$, precipitate is formed.

 Reason: Solubility product (K_{sp}) is the highest limit of ionic product of the electrolyte in saturated solutions.
- Ans. (A)
- **6.** Assertion: To precipitate the cations of fourth group in qualitative analysis, medium is made alkaline before passing H₂S gas.
 - **Reason**: This is done to suppress the ionisation of H, S.
- Ans. (C)
- 7. Assertion: To precipitate the cations of fourth group in qualitative analysis, medium is made alkaline before passing H₂S gas.
 - **Reason**: This is done to suppress the ionisation of H, S.
- Ans. (C)
- **8**. **Assertion:** Addition of silver ions to a mixture of aqueous sodium chloride and sodium bromide solution will first precipitate AgBr rather than AgCl.
 - **Reason:** Ksp of AgCl < Ksp of AgBr.
- Ans. (C)
- 9. Assertion: Sb(III) is not precipitated as sulphide when in its alkaline solution H_2S is passed. Reason: The concentration of S^{2-} ion in alkaline medium is inadequate for precipitation.
- Ans. (C)

- 10. Assertion: A mixture of a weak acid CH₃COOH and sodium acetate forms a buffer solution.
 - **Reason**: A buffer solution reacts with small quantities of hydrogen or hydroxyl ions and keeps the pH almost same.
- Ans. (A)
- 11. Assertion: At 25°C the pH of 10-8 M HCl is 8.

 Reason: pH of acidic solution is always below 7 at 25°C.
- Ans. (D)
- 12. Assertion:— In the titration of Na₂CO₃ with HCl using methyl orange indicator, the volume of the acid required at the equivalence point is twice that of the acid required using phenolphthalein as indicator.
 - **Reason:** Two moles of HCl are required for the complete neutralisation of one mole of Na₂CO₃.
- Ans. (B
- **13.** Assertion:— In the acid base titration involving a strong base and a weak acid methyl orange can be used as an indicator.
 - **Reason:** Methyl orange changes its colour in pH range 3 to 5.
- Ans. (D)
- **14.** Assertion: pH of a buffer changes with temperature.

 Reason: Ionic product of water (K,) changes with temperature.
- Ans. (B)
- 15. Assertion: H₃PO₃ is a dibasic compound.Reason: The two H-atom are directly attached to P.
- Ans. (C)
- Assertion: Boric acid behaves as a weak monobasic acid.
 Reason: Boric acid contains hydrogen bonds in its structure.
- Ans. (B)
- **17**. **Assertion**: H₂O is amphoteric in nature.

Reason: H₂O can accept a proton to form H₃O⁺ ion and can donate a proton to form OH⁻ ion.

- Ans. (A
- **18**. Assertion: All Arrhenius acids are also Bronsted acids.
 - Reason: All Bronsted bases are also Lewis bases.
- Ans. (C)
- **19.** Assertion:— The buffer solution has a capacity to resist the change in pH value on addition of small amount of acid or base to it.
 - **Reason**: pH value of buffer solution does not change on dilution or on keeping for long.
- Ans. (B
- 20. Assertion: The species in the buffer must not react with each other.
 - **Reason**: The pH of a buffer depends on the value of K_a of the weak acid and the relative concentration of that acid and its conjugate base.
- Ans. (B)
- 21. Assertion:— Only a very small amount of indicator should be used.
 - **Reason**:— So that addition of the indicator does not effect the pH of the solution.
- Ans. (A)