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Preface

The main idea behind this book is to amalgamate the de-
scription of the basic concepts of the theory and the practical
methods of solving problems in one book. Therefore, each
chapter contains first a description of the theory of the
subject being considered (illustrated by concrete examples)
and then a set of selected problems with solutions. The prob-
lems are closely related to the text and often complement it.
Hence they should be analysed together with the text. In
author’s opinion, the selected problems should enable the
reader to attain a deeper understanding of many important
topics and 1o visualize (even without solving the problems
but just by going through them) the wide range of applica-
tions of the ideas presénted in this book.

In order to emphasize the most important laws of electro-
magnetism, and especially to clarify the most difficult top-
ics, the author has endeavoured to exclude the less impor-
tant topics. In an attempt to describe the main ideas concise-
ly, clearly and at the same time correctly, the text has been
kept free from superfluous mathematical formulas, and the
main stress has been laid on the physical aspects of the phe-
nomena. With the same end in view, various model repre-
sentations, simplifying factors, special cases, symmetry con-
siderations, etc. have been employed wherever possible.

SI units of measurements are used throughout the book.
However, considering that the Gaussian system of units is
still widely used, we have included in Appendices 3 and 4
the tables of conversion of the most important quantities
and formulas from SI to Gaussian units.

The most important statements and terms are given in
italics. More complicated material and problems involving
cumbersome mathematical calculations are set in brevier
type. This material can be omitted on first reading without
any loss of continuity. The brevier type is also used for
problems and examples.



6 Preface

The book is intended as a textbook for undergraduate stu-
dents specializing in physics (in the framework of the course
on general physics). It can also be used by university
teachers.

The author is grateful to Prof. A.A. Detlaf and Reader
L.N. Kaptsov who reviewed the manuscript and made a
number of valuable comments and suggestions.

I. Irodov
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List of Notations

Vectors are denoted by the bhold-face upright letters
{e.g. r, E). The same letter in the standard-type print (r, E)
denotes the magnitude of the .vector.

Average quantities are denoted by angle brackets ( ),
e.g. (v), (P).

The symbols in front of the quantities denote:

A is the finite increment of the quantity, viz. the difference
between its final and initial values, e.g. AE = E, — E,,
A = ¢, — ¢5 .

d is the differential (infinitesimal increment), e.g. dE, dg;
6 is the incremental value of a quantity, e.g. 84 is the ele-
mentary work.

Unit vectors:

e, e,, e, (or i, j, k) are the unit vectors of Cartesian coordi-
nates z, y, z;

e,, e,, e, are the unit vectors of cylindrical coordinates
P, §. 2

n is the unit vector of the normal to a surface element;
T is the unit vector of the tangent to the contour or to an
interface.

Time derivative of an arbitrary function f is denoted by

-0fidt or by the dot above the letter denoting the function, f
Integrals of any multiplicity are denoted by a single sym-

bol 5 and differ only in the notation of the element of inte-
gration: dV is the volume element, dS is the surface ele-
ment and dl is the element of length. Symbol(§. denotes the

integration over a closed contour or a closed surface.
Vector operator y (nabla). The operations involving this
operator are denoted as follows: y¢ is the gradient of
¢ (grad ¢), y-E is the divergence of E (divE), and y X E
is the curl of E (curl E).
Vector product is denoted [a b}, where a and b are
vectors.



I Electrostatic Field in a Vacuum

1.1. Electvic Field

Electric Charge. At present it is known that diverse phe-
nomena in nature are based on four fundamental interactions
among elementary particles, viz. strong, electromagnetic,
weak, and gravitational interactions. Each type of inter-
action is associated with a certain characteristic of a particle.
For example, the gravitational interaction depends on the
mass of particles, while the electromagnetic interaction is
determined by electric charges.

The electric charge of a particle is one of its basic charac-
teristics. It has the following fundamental properties:

(1) electric charge exists in two forms, i.e. it can be posi-
tive or negative;

(2) the algebraic suin of charges in any electrically insu-
lated system does not change (this statement expresses-the
law of conservation of electric charge);
~ (3) electric charge is a relativistic invariant: its magni-
tude does not depend on the reference system, in other words,
it does not depend on whether the charge moves or is fixed.

It will be shown later that these fundamental properties
have far-reaching consequences.

Electric Field. In accordance with modern theory, inter-
action among charges is accomplished through a field. Any
electric charge g alters in a certain way the properties of
the space surrounding it, i.e. creates an electric field. This
means that another, “test” charge placed at some point of
the field experiences the action of a force.

Experiments show that the force F acting on a fixed test
point charge ¢’ can always be represented in the form

F = ¢E, {1.1)

where vector E is called the intensity of the electric lield at.
a given point. Equation (1.1) shows that vector E can be
defined as the force acting on a positive fixed unit charge.
Here we assume that the test charge ¢’ is sufficiently small so
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that its introduction does not noticeably distort the field
under investigation (as a result of possible redistribution of
charges creating the field).

The Field of a Point Charge. It follows directly from exper-
iment (Coulomb’s law) that the intensity of the field of a
fixed point charge ¢ at a distance r from it can be represent-
ed in the form

1 q
E:E:E; 7 ©n (1.2)

where ¢4 is the electric constant and e, is the unit vector of
the radias vector r drawn from the centre of the field, where
the charge g is located, to the point we are interested in.
Formula (1.2) is written in SI. Here the coefficient

1/4ney = 9 X 10° m/F,

the charge g is measured in coulombs (C) and the field inten-
sity E in volts per metre (V/m). Vector E is directed along r
or uppositely to it depending on the sign of the charge g.

Formula (1.2) expresses Coulomb’s law in the “field” form.
It is important that the intensity E of the field created by a
point charge is inversely proportional to the square of the
distance r. All experimental results indicate that this law
is valid for distances from 107!® cm to several kilometres,
and there are no grounds to expect that this law will be
violated for larger distances.

It should also be noted that the force acting on a test
charge in the field created Ly a fixed point charge does not
depend on whether the test charge is at rest or moves. This
refers to a system of fixed charges as well.

Principle of Superposition. Besides the law expressed by
(1.2), it also follows from experiments that the intensity of
the field of a system of fixed point charges is equal to the
vector sum of the intensities of the fields that would be
created by eacli charge separately:

- 1 3i .
E=2 hi=/m—602%eri' (1.3)
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where r; is the distance between the charge ¢; and the point
under consideration.

This statement is called the principle of superposition of

electric fields. It expresses one of the most remarkable prop-
erties of fields and allows us to calculate field intensity of
any system of charges by representing this system as an ag-
gregate of point charges whose individual contributions are
given by formula (1.2).
- Charge Distribution. In order to simplify mathematical
calculations, it is often convenient to ignore the fact that
charges have a discrete structure (electrons, nuciei) and
assume that they are “smeared” in a certain way in space. In
other words, it is convenient to replace the actusl distribu-
tion of discrete point!charges by a fictitious coutinuous
distribution. This makés it possible to simplify calculations
considerably without introducing any significant error.

While going over to a continuous distribution, the concept
of charge depsity is introduced, viz. the volume density p,
surface density o, and linear density A. By definition,

— 49 . _ 9 _ 99
p=7ys O=—5, Ar=_, (1.4)

where dg is the charge contained in the volume dV, on the
surface dS, and in the length dl respectively.

Taking these distributions into consideration we can repre-
sent formula (1.3) in a different form. For example, if the
charge is distributed over the volume, we must replace g,
by dg = p dV and summation by integration. This gives

1 Spedl'_ 1 Sprdl' (1.5)

4ne, rt T 4ne, rs

where the integration is performed over the entire space with
nonzero values of p.

Thus, knowing the distribution of charges, we can complete-
ly solve the problem of finding the electri¢ field intensity
by formula (1.3) if the distribution is discrete or by formu-
la (1.5) or by a similar formula if it is continuous. In the
general case, the calculation involves certain difficulties
{(although they are not of principle nature). Indeed, in order
to find vector E, we must first calculate its projections £,,
E,, and E,, which means that we must take three integrals
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of the type (1.5). As a rule, the problem becomes much
simpler in cases when a system of charges has a certain sym-
metry. Let us consider two examples.

Example 1. The field on the axis of a thin uniformly charged ring.
A charge g > O is uniformly distributed over a thin ring of radius a.
Find the electric field intensity E on the axis of the ring as a function
of the distance z from its centre.

It can be easily shown that vector E in this case must be directed
along the axis of the ring (Fig. 1.1). Let us isolate element dl on the

Fig. 1.1 Fig. 1.2

ring in the vicinity of point 4. We write the expression for the comp-
onent dE, of the field created by this element at a point C:

1  Adl cos @
4ney rt ?

dE; =
where A == ¢/2na. The values of r and a will be the same for all the
elements of the ring, and hence the integration of this equation is sim-
ply reduced to the replacement of A d! by ¢g. As a result, we obtain

q z
4ne, (a3423)3/2

It can be seen that for z>> a the field E = g/4ney23, i.e. at large dis-
tances the system behaves as a point charge. ‘

Example 2. The feld of & uniformly cha straight filament. A
thin straight filament of length 2! is uniformly charged by a charge q.
Find the field intensity £ at a point separated by a distance :?rom
the midpc()iint of the filament and located symmetrically with respect
to its ends.

It is clear from symmetry considerations that vector E must be
directed as shown in Fig. 1.2. This shows the way of solving this

E=
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problem: we must find the component dE, of the field created by the
¢lement d! of the filament, having the charge dq, and then integrate
the vesult over all the elements of the filament. In this case

1 Adl

——5— COS 2,
ey re

dEy=dE cos x= 7

where A = ¢/21 is the linear charge density. Let us reduce this equation
to the form convenient for integration. Figure 1.2 shows that
dl cos o = rda and r = z/cos a; consequently, -

1 Arda _

dEx= Gie, 1P 4nggr

cosada.

-

This expressio. can be easily integrated:

AL
2 S cosa da=
4negz
0

E= 2sin ag,

A
43801

where a, is the maximum value of the angle a, sin ay= I/ yI* - z2.
Thus,

R I B S — a
4neer Y IE TR - negxr YE+2IE
In this case also E ~~ g/4negz? for z > I as the tield of a point charge.

Geometrical Deseription of Electric Field. If we know
vector E at each point, the electric field can be visually re-
presented with the help of field lines, or lines of E. Such a
line is drawn so that a tangent to it at each point coincides
with the direction of vector E. The density of the lines,
i.e. the number of lines per unit area normal to the lines is
proportional to the magnitude of vector E. Besides, the lines
are directed like vector E. This pattern gives the idea about
the configuration of a given electric field, i.e. about the di-
rection and magnitude of vector E at each point of the field.

On the General Properties of Field E. The field E defined
above has two very important properties. The knowledge of
these properties helped to deeper understand the verv con-
cept of the field and formulate its laws, and also made it pos-
sible to solve a number of problems in a simple and elegant
way. These properties, viz. the Gauss theorem and the theo-
rem on circulation of vector E, are associated with two most
important mathematical characteristics of all vector fields:
the fluz and the circulation. It will he shown below that in
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terms of these two concepts not only all the laws of electri-
city but also all the laws of magnetism can be described. Let
us go over to a systematic description of these properties.

1.2. The Gauss Theorem

Flux of E. For the sake of clarity, we shall use the geomet.-
rical description of electric field (with the help of lines
of E). Moreover, to simplify the

n analyvsis, we shall assume that the

density of lines of field E is equat

E to the magnitude of vector E. Then

: the number of lines piercing the

ds area element dS, the normal n to
which forms angle @ with vector E,

Fig. 1.3 is determined as E-dS cos a (see

Fig. 1.3). This quantity is just the
flux d@ of E through the area element dS. In a more compaet
form, this can be written as

d® = E, dS = E-.dS,

where E, is the projection of vector E onto the normal n to
the area element dS, and dS is the vector whose magnitude
is equal to dS and the direction coincides with the direction
of the normal. It should be noted that the choice of the di-
rection of n (and hence of dS) is arbitrary. This vector could
be directed oppositely.

If we have an arbitrary surface S, the flux of E through
it can be expressed as

® = S E dS. (1.6)
S

This is an algebraic quantity. since it depends not only on
the configuration of the field E but also on the choice of the
normal. If a surface is closed it is customary to direct the
normal n outside the region enveloped by this surface, i.e.
to choose the outward normal. Henceforth we shall always
assume that this is' the case.

Although we considered here the flux of E, the concept of
flux is applicable to any vector field as well.
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The Gauss Theorem. The flux of E through an arbitrary
closed surface S has a remarkable property: it depends only

on the algebraic sum of the charges embraced by this sur-
face, i.e.

{. 1
EdS-~— '
| @ € din

l

where the circie on the integral symbol indicates that the
integration is performed over a closed surface.

This expression is essentially the Gauss theorem: the flux of

ds

(1.7)

Fig. 1.4 rig. 1.5

E through a closed surface is equal to the algebraic sum of the
charges enclosed by this surface, divided by e,.

Proof. Let us first consider the field of a single point charge
g. We enclose this charge by an arbitrary closed surface S
(Fig. 1:4) and find the flux of E through the area element dS:

.1
d®=m@3\= e 7w AScosa=—- dQ,  (1.8)

where dQ is the solid angle resting on the area element dS
and having the vertex at the point where the charge g is lo-
cated. The integration of this expression over the entire
surface § is equivalent to the integration over the entire
solid angle, i.e. to the replacement of dQ by 4n. Thus we
obtain @ = g/e,, as is defined by formula (1.7).

It should be noted that for a more complicated shape of a
closed surface, the angles « may be greater than n/2, and
hence cos a and d2 in (1.8) generzlly assume eithier positive
or negatlive values. Thus, dQ is an algebraic quantity: if
dQ rests on the inner side of the surface S, dQ > 0, while if
it rests on the outer side, dQ << 0.

Z—13%1
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In particular, this leads to ihe following conclusion: if
the charge g is located outside a closed surface S, the flux
of E through this surface is equal to zero. In order to prove
this, it is sufficient to draw through the charge g a conical
surface tangent to the closed surface S. Then the integration
of Eq. (1. 8) over the surface § is equivalent to the integra-
tion over Q (Fig. 1.5): the outer side of the surface S will be
seen from the point g at an angle Q >> 0. while the inner side,
at an angle —Q (the two angles being equal in magnitude).
The sum is equal to zero, and @ == 0, which also agrees
with (1.7). In terms of field lines or lmes of E, this means
that the number of lines entering the volume enclosed by
the surface S is equal to the number of lines emerging from
this surface.

Let us now consider the case when the electric field is
created by a system of point charges ¢;, ¢,, ... . In this
case, in accordance with the principle of superposition E =
=E, +E, + ..., where E; is the field created by the
charge gq,, etc. Then the flux of E can be written in the form

@Ed5=<§ (Ey-+ Ly-i...)dS

=§E,ds+§}:2ds+ =D D,

In accordance with what was said above, each integral on the
right-hand side is equal to g;/¢, if the charge ¢, is inside
the closed surface S and is equal to zero if it is outside the
surface S. Thus, the right-hand side will contain the alge-
braic sum of only those charges that lie inside the surface S.

To complete the proof of the theorem, it remains for us
to consider the case when the charges are distributed contin-
uously with the volume density depending on coordinates.
In this case, we may assume that each volume element dV
contains a “point” charge p dV. Then on the right-hand side
of (1.7) we have

a=| pav, (1.9)

where the integration is performed only over the volume
contained within the closed surface S.
We must pay attention to the following important circum-
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stance: while the field E itself depends on the mutual con-
figuration of all the charges, the flux of E through an arbi-
trary closed surface S is determined by the algebraic sum
of the charges inside the surface S. This means that if we
displace the charges, the field E will be changed everywhere,
and in particular on the surface S. Generally, the flux of E
through the surface S will also change. However, if the
displacement of charges did not involve their crossing of
the surface S, the flux of E through this surface would re-
main unchanged, although, we stress again, the field E itself
may change considerably. What a remarkable property of
electric field!

1.3. Applications of the Gauss Theorem

Since the field E depends on the configuration of all charges,
the Gauss theorem generally does not allow usto deter-
mine this field. However, in certain cases the Gauss theorem
proves to be a very effective analytical instrument since it
gives answers to certain principle questions without solving
the problem and allows us to determine the field E in a very
simple way. Let us consider some examples and then formu-
late several general conclusions gbout the cases when appli-
cation of the Gauss theorem is the most expedient.

Example 1. On the impossibility of stable equilibrium of a charge
io an electric field. Supgose that we have in vacuum a system of fixed
point charges in equilibrium. Let us consider one of these charges,
e.g. a charge ¢. Can itsequilibrium be stable?

In order to answer this question, let us envelop the charge ¢ by a
small closed surface S (Fig. 1.6). For the sake of definiteness, we as-
sume that g > 0. For the equilibrium of this charge to be stable, it is
necessary that the field E created by all the remaining charges of the
system at all the points of the surface S be directed towards the charge
q. Only in this case any small displucement of the charge g from the
equilibrium position will give rise to a restoring force, and the equilib-
rium state will actually be stable. But such a configuration of the
field E around the charge ¢ is in contradiction to the Gauss theorem:
the flux of E through the surface S is negative, while in accordance
with the Gauss theorem it must be equal to zero since it is created by
charges lying outside the surface S. On the other hand, the fact that
E is equal to zero indicates that at some points of the surface S vector
E is directed inside it and at somie other points it is directed cutside,

2e
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Hence it follows that in any electrostatic;field a charge cannol be in
stable equilibrium.

Example 2. The field of a uniformli' charged plane, Suppose that
the surface charge density is o. It is clear from the symmetry of the
problem that vector E can only be normal to the charged plane. More-
over, at points symmetric with respect to this plane, vectors E obvi-
ously have the same magnitude but opposite directions. Such a configu-
ration of the field indicates that a right cylinder should be chosen for
the closed surface as shown in Fig. 1.7, where we assume that ¢ > 0.

Vi

S—
L.

] 0+

L/

Fig. 1.6 Fig. 1.7

The flux through the lateral surface of this cylinder is equal to
zero, and hence the total flux through the entire cylindrical surface
is 2E AS, where AS is the area of each endface. A charge o AS is
enclosed within the cylinder. According to the Gauss theorem, 2E AS =
= 0 AS/e,, whence £ = 6/2¢,. In a more exact form, this expression
must be written as

E, = ol2,, (1.10)

where E;, is the projection of vector E onto the normal n to the charged

plane, the normal n being directed away from this plane. If ¢ > 0

then E,, > 0, and hence vector E is directed away from the charged

plane, as shown in Fig. 1.7. On the other hand, if ¢ << 0 then £, < 0,

and vector E is directed towards the charged plane. The fact that E is

the same at any distance from the plane indicates thatj the corre-

sgondilng electric field is uniform (both on the right and on the left of -
the ane).

The olztained result is valid only for an infinite plane surface,
since only in this case we can use the symmetry considerations dis-
cussed above. However, this result is approximately valid for the region
near téle middle of a finite uniformly charged plane surface far from
its ends.

Example 3. The field of two parallel planes charged uniformly with
densities ¢ and —o by unlike charges. ‘

This field can be easily found as superposition of the kelds created
by each plane separately (Fig. 1.8). Here the upper arrows correspond
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to the field from the positively charged plane, while the lower arrows,
to that from the negatively charged plane. In the space between the
planes the intensities of the fields being added have the same direc-
tion, hence the result (1.10) will be doubled, and the resultant field
jntensity will

E = ofe,, 1.11)
where o stands for the magnitude of the surface charge density. It can
be easily seen that outside this space the field is equal to zero. Thus,

Fig. 1.8 Fig. 1.9

;n the given case the field is located between the planes and is uni-
orm.

This result is approximately valid for the plates of finite dimen-
sions as well, if only the separation between the plates is considerably
smaller than their linear dimensions iparallel-plate capacitor). In this
case, noticeable deviations of the field from uniformity are observed.
only near the edges of the plates (these distortions are often ignored in
calcuiations).

Example 4. The tield of an infinite circular cylinder uniformly
iﬁharggd aver the surface so that the charge A corresponds to its unit
ength.

In this case, as follows from symmetry considerations, the field
is of a radial nature, i.e. vector E at eaa\_(f)omt is perpendicular to
the cylinder axis, and its magnitude depends only on the distance r
from the cylinder axis to the point. This indicates that a closed sur-
face here should be taken in the form of a coaxial right cylinder
{(Fig. 1.9). Then the flux of E through the endfaces of the cylinder is
equal to zero, while the flux through the lateral surface is £, 2 nrh
where E, is the projection of vector E onto the radius vector r coincid-
ing with the normal n to the lateral surface of the cylinder of radins
r and height &. According to the Gauss theorem, F 2nrh == Ah/ey for

> a, whence

(r>a). (1.42

I,=

2negr
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For A > 0, E, > 0 as well, i.e. vector E is directed away from
the charged cylinder, and vice versa.

If r < a, the closed surface does not contain any cha since in
this region £ = 0 irrespective of r. Thus, inside a circular infinite
cylinder uniformly charged over the surface the field is absent.

B Eyl(]ample 5. The field of a spherical surface uniformly charged by
the charge q.

This field is obviously centrally symmetric: vector E from any
point passes through the centre of the sphere, while its magnitude
must depend only on the distance r from the point to the centre of the
sphere. It is clear that for such a configuration of the field we should
take a concentric sphere as a closed surface. Let the radius of this
sphere be r > a. Then, in accordance with the Gauss theorem ‘E 458 =
= g/e,, whence

9
Er=mi (r>a), (1.13)

where E, is the projection of vector E onto the radius vector r coinciding
with the normal n to the surface at each of its points. The sign of the
charge ¢ determines the sign of the projection E, in this case as well.
Hence it determines the direction of vector E itself: either away frcm
the sphere (for ¢ > 0) or towards it (for ¢ << 0).

If r < a, the closed surface does not contain any charge and hence
within this region £ = 0 everywhere. In other words, inside a uni-
formly charged spherical surface the electric field is absent. QOutside
this surface the field decreases with the distance r in accordance with
the same law as for a point charge. .

Example 6. The field of a uniformly charged sphere. Suppose that
a charge g is uniformly distributed over a sphere of radius a. Obvious-
ly, the field of such a system is centrally symmetric, and hence for de-
termining the field we must take a concentric sphere as a closed sur-
face. It can be easily seen that for the field outside the sphere we obtain
the same result as in the previous example [see (1.13)]. However,
inside the sphere the expression for the field will be different. The
sphere of radius r << a encloses the charge ¢’ = g (r/2)® since in our
case the ratio of charges is equal to the ratio of volumes and is pro-
portional to the radii to the third power. Hence, in accordance with
the Gauss theorem we have

1 r\?
. - -
E,-4nr o q( 2 ) ,
whence

1
= " <o) (1.44)
i.e. inside a uniformly charged sphere the field intensity grows linear-
ly with the distance r from its centre. The curve representing the de-
pendence of E on r is shown in Fig. 1.10.

E

General Conclusions. The results obtained in the above
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examples could be found by direct integration (1.5) as well.
However, it is clear that these problems can be solved in a
much simpler way by using the Gauss theorem.

" The simple solution of the problems considered above may
create an illusive impression about the strength of the method
based on the application of
the Gauss theorem and
about "the possibility of
solving many other prob-
lems by using this the-
orem. Unfortunately, it is
not the case. The number of
problems that can be easily
solved with the help of the
Gauss theorem is limited. Fig. 1.10

We cannot use it even to

solve the problem of finding the field of a symmetric charge
distribution“on a uniformly ‘charged disc. In this case, the
field configuration is rather complicated, and a closed
;.urface for a simple calculation of the flux of E cannot be
ound.

The Gauss theorem can be effectively applied to calcula-
tion of fields only when a field has a special symmejry (in
most cases plane, cylindrical, or circular). The symmetry,
and hence the field configuration, must be such that, firstly,
a sufficiently simple closed surface S can be found and,
secondly, the calculation of the' flux of E can be reduced
to a simple multiplication of E (or E,) by the area of the
surface S or its part. If these conditions are not satisfied,
the problem of finding the field should be solved either di-
rectly by formula (1.5) or by using other methods which
will be discussed below.

1.4. Differential Form of the Gauss Theorem -

A remarkable property of electric field expressed by the Gauss
theorem suggests that this theorem be represented in a different form
which would broaden its possibilities as an instrument for analysis
and calculation.

In contrast to (1.7) which is called the integral form we shall seek
the differential form of the Gauss theorem, which establishes the rela-
tion between the volume charge density p and the changes in the field
intensity E in the vicinity of a given point in space.
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For this-purpose, we first represent the charge ¢ in the volume V
enveloped by a closed surface S in the form giqt = {p) V, where {p)
is the volume charge density, averaged over the.volume V. Then we
substitute this expression into Eq. (1.7) and divide both its sides by
vV, which gives ‘

-%,f § E dS={p)/e,. (1.15)

We now make the volume V tend to zero by contracting it to the
point we are interested in. In this case, {p) will obviously tend to the
value of p at the given point of the field, and hence the ratio on the
left-hand side of Eq. (1.15) will tend to p/e,.

The quantity which is the limit of the ratio of § EdStoVasV —0

is called the divergence of the field E and is denoted by div E. Thus,
by definition,

1
divE= lim —@Eds. 1.16
VLo Vv (1.16)

The divergence of any other vector field is determined in a similar
way. It-follows from definition (1.16) that divergerce is a scalar
function of coordinates.

In order to obtain the expression for the divergence of the ficld E,
we must, in accordance with (1.168), take an infinitely small volume ¥,
determine the flux of E through the closed surface enveloping this
volume, and find the ratio of this flux to the volume. The expression
obtained for the divergence will depend on the choice of the cosrdi-
nate system (in different systems of coordinates it turns out to be
different). For example, in Cartesian coordinates it is given by

dEx , 9Ey | GE,
9z ' 8y ' oz ° 47

Thus, we have found that as V — 0 in (1.45), its right-hand side
tends to p/e;, while the left-hand side tends to div E. Consequenily,
the divergence of the field E ig related to the charge density at the
same point through the equation

divE=

divE=p/e,. (1.18)

This equation expresses the Gauss theorem in the differential form.

The form of many expressions and their applications can be consid-
erably simplified if we introduce the vector differential operator v.
In Cartesian coordinates, the operator y has the form

. 0 F) 3
v=i ;,;+i—3;+k-87. (1.19)

where 1, §, and k are the unit vectors of the X-, Y-, and Z-axes. The
operator v itself does not have any meaning. It becomes meaningzful
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only in combination with a scalar or vector function by which it is
symbolically multiplied. For example, if we form the scalar product
of vector y and vector E, we obtain

a a a
V-E=V:E,+VyEy+V,E,=-5-; Ex+'a—y' Ey,+

3

It follows from (1.17) that this is just the divergence of E.

Thus, the divergence of the field E can be written as div E or v -E
(in both cases it is read as “the divergence of E”). We shall be using
the latter, more convenient notation. Then, for example, the Gauss
theorem (1.18) will have the form

, V-E=p/e,- (1.20)

The Gauss theorem in the differential form is a local theorem:
the divergence of the field E at a given point depends only on the
electric ¢ density p at this point. This is one of the remarkable
properties of electric field. For example, the field E of a point charge
is different at different points. Generaily, this refers to the spatial
derivatives 9E./dz, 0E,/dy, and 0F_/0z as well. However, the Gauss
theorem states that the sum of these derivatives, which determines the
divergence of E;“turns out to be equal to zero at all points of the field
(outside the charge itself).

At the points of the field where the divergence of E is positive, we
have the sources of the fiel@ (positive charges), while at the dpoints
where it is negative, we have sinks (negative charges). The field lines
emerge from the field sources and terminate at the sinks.

E;.

4.5. Circulation of Yector E. Potential

Theorem on Circulation of Vector E. It is known from
mechanics that any stationary field of central forces is con-
servative, i.e. the work done by the forces of this field is
independent of the path and depends only on the position
of the initial and final points. This property is inherent io
the electrostatic field, viz. the field created by a system of
fixed charges. If we take a unit positive charge for the test
charge and carry it from point I of a given field E to point 2.
the elementary work of t he forces of the field done over the
distance dl is equal to E-dl, and the total work of the fielc
forces over the distance between points 7 and 2 is defined a:

2

5 Edl. (1.21
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This integral is taken along a certain line (path) and is
therefore called the line integral.

We shall now show that from the independence of line
integral (1.21) of the path between two points it follows
that when taken along an arbitrary closed path, this inte-
gral is equal to zero. Integral (1.21) over a closed contour is

called the circulation of vector E and is denoted by &

‘Thus we state that circulation of vector E in any electro-
static field is equal to zero, i.e.

&Ea=o.’ (1.22)
1248 ‘

This statement is called the theorem on ciréulation of
vector E.

In order to prove this theorem, we break an arbitrary closed
path into twe parts Ja2 and 2b1
2 (Fig.1.11). Since line integral (1.21)
a (we denote it by (lz) does not
depend on the path between points I
1 (a) ®) .
b and 2, we have .= g'.On the .

¢ 12
other hand, it is clear that
Fig. 1.41 (b) () (b
' g o= \' where\ is the
21
integral over the same segment b but taken in the opposue

direction. Therefore
() ®) (a) (b)

512 + 521:5“ _51220’
Q.E.D.

A field having property (1.22) is called the potential field.
Hence, any electrostatic field is a potential field.

The theorem on circulation of vector E makes it possible
to draw a number of important conclusions without re-
sorting to calculations. Let us consider two examples.

Example 1. The field lines of an electrostatic field E cannot be
closed,
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Indeed, if the opposite were true and some lines of field E were
closed, then taking the circulation of vector E along this line we would
immediately come to contradiction with theorem (1.22). This means
that actually there are no closed lines of E in an electrostatic field.
the lines emerge from positive charges
and terminate on negative ones (or go

Example 2. Is the configuration of an 1
electrostatic field shown in Fig. 1.12
possible? : |
No, it is not. This immediately becomes I

T
L

clear if we apply the theorem on circula-
tion of vector E to the closed contour
shown in the figure by the dashed line.

The arrows on the contour indicate the
direction of circumvention. With such a
special choice of the contour, the contri- Fig. 1.12
bution to the circulation from its ver- g 1.

tical parts is equal to zero, since in

this case E | dl and E-.dl = 0. It remains for us to consider the
two horizontal segments of equal lengths. The figure shows that the
contributions to the circulation from these regions are opposite in
sign, and unequal in magnitude (the contribution from the upper seg-
ment is larger since the field lines are denser, and hence the value of
E is larger). Therefore, the circulation of E differs from zero, which
contradicts to (1.22).

Potential. Till now we considered the description of elec-
tric field with the help of vector E. However, there exists
another adequate way of describing it by using potential ¢
(it should be noted at the very outset that there is a one-to-
one correspondence between the two methods). It will be
shown that the second method has a number of significant
advantages.

The fact that line integral (1.21) representing the work-of
the field forces done in the displacement of a unit positive
charge from point I to point 2 does not depend on the path
allows us to¥state that for electric field there exists a certain
scalar function ¢ (r) of coordinates such that its decrease is
given by

2
Py — Py = g Edl, (1.23)
{

where ¢, and ¢, are the values of the function ¢ at the
points 7 and 2. The quantity ¢ (r) defined in this way is
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called the field potential. A comparison of (1.23) with the
expression for the work done by the forces of the potential
field (the work being equal to the decrease in the potential
energy of a particle in the field) leads to the conclusion
that the potential is the quantity numerically equal to the po-
tenlfiial energy of a unit positive charge at a given point of the
field.

We can conditionally ascribe to an arbitrary point O of the
field any value @, of the potential. Then the potentials of
all other points of the field will be unambiguously deter-
mined by formula (1.23). If we change @, by a certain value
Ae, the potentials of all other points of the field will change
by the same value.

Thus, potential ¢ is determined to within an arbitrary
additive constant. The value of this constant does not play
any role, since all electric phenomena depend only on the
electric field strength. It is determined, as.will bevshown
later, not by the potential at a given point but by the’poten-
tial difference between neighbouring points of the field.

The unit of potential is the volt (V).

Potential of the Field of a Point Charge. Formula (1.23)
contains, in addition to the definition of potential ¢, the
method of finding this function. For this purpose, it is suf-

ficient to evaluate the integral | E dl over any path be-

tween two points amd then represent the obtained result as
a decrease in a certain function which is just ¢ (r). We can
make it even simpler. Let us use the fact that formula
(1.23) is valid not only for finite displacements but{for ele-
mentary displacements dl as well. Then, in accordance with
this formula, the elementary decrease in the potential over
this displacement is

—dg = E-dl. (1.24)

in other words, if we know the field E (r), then to find ¢
we must represent E.dl {with the help of appropriate trans-
formations) as a decrease in a certain function. This function
will be the potential ¢.

Let us apply this method for finding the potential of the
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field of a fixed point charge: .
T DI RPN S N
E'dl_-’msu . epdl = —e

{
=—d ( 4iteg
where we took into account that ¢, dl == 1.(dl), == dr, since
the projection of dl onto e,, and hence on r, is equal to the
increment of the magnitude of vector r, i.e. dr. The quantity”
appearing in the parentheses under the differential is exact-
ly  (r). Since the additive constant contained in the for-
mula-does not play any physical role, it is usually omitted in
order to simplify the expression for ¢. Thus, the potential
of the field of a point charge is given by

TR,
- " wmt) ,

Q=g L. (1.25)

The absence ‘of an additive constant in this expression
‘indicates that we conventionally assume that the potential
is equal to zero at infinity (for r — oo).

Potential of the Field of a System of Charges. Let a system
consist of fixed point charges g,, g,, . ... In accordance
with the principle of superposition, the field intensity at any
point of the field is given by E = E, + E, + ..., where
E, is the field intensity from the charge g¢,, etc. By using
formula (1.24), we can then write

Edl=(E +E +..)dd =E.dl +E,-dl + ...
= qu31 —dg, — ... = —do,
where ¢ = 2(9,, i.e. the principle of superposition turns out

to be valid for potential as well. Thus, the potential of a
system of fixed point charges is given by

@ t SV (1.26)

T 4ne, ri?

where r; is the distance from the point charge ¢; to the point
under consideration. tlere we also omitted an arbitrary con-
stant. This is in complete agreement with the fact that any
real system of charges is Lounded in space, and hence its
potential can be taken equal to zero at infinity.
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If the charges forming the system are distributed contin-
uously, then, as before, we assume that each volume ele-
ment dV contains a “point” charge p dV, where p is the charze
~density in the volume dV. Taking this into consideration,
we can wrile formula (1.26) in a different form:

t f paVv
= m; 5 P (127)

.

where the integration is performed either over the entire
space or over its part containing the charges. If the charges
are located only on the surface S, we can write

A S g dS
4ng, r ?

= (1.28)
where o is the surface charge density and dS is the element
of the surface S. A similar expression corresponds to the
case when the charges have a linear distribution.

Thus, if we know the charge distribution (discrete or con-
tinuous), we can, in principle, find the potential of any
system.

1.6. Relation Between Potential and Vector E

It is known that electric field is completely described by
vector function E (r). Knowing this function, we can find
the force acting on a charge under investigation at any point
of the field, calculate the work of field forces for any displace-
ment of the charge, and so on. And what do we get by
introducing potential? First of all, it turns out that if we
know the potential ¢ (r) of a given electric field, we can re-
construct the field E (r) quite easily. Let us consider this
question in greater detail.

The relation between ¢ and E can be established with the
help of Eq. (1.24). Let the displacement dl be parallel to
the X-axis; then dl = i dx, where i is the unit vector along
the X-axis and dz is the increment of the coordinate z. In
this case

E.-dl = E-idz = E, dz,

where E is the projection of vector E onto the unit vector i
(and not on the displacement dl!). A comparison of this ex-
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pression with formula (1.24) gives
E, =—0¢lix, (1.29)

where the symbol of partial derivative emphasizes that the
function ¢ (z, y, 2) must be differentiated only with respect
to z, assuming that y and z are constant in this case.

In a similar way, we can obtain the corresponding expres-
sions for the projections E, and E, Having determined
E,, E,, and E,, we can easily find vector E itself:

_ do ., dp . 99
E_.—(—a;l—}—a—yq-}-—a;—k). (1.30)

The quantity in the parentheses is the gradient of the po-
tential ¢ (grad ¢ or y¢). We shall be using the latter, more
convenient notation and will formally consider y¢ as the
product of a symbolic vector y and the scalar ¢. Then
Eq. (1.30) can be represented in the form

o

E=—vo, (1.31)

i.e. the field intensity E‘is equal to the potential gradient
with the minus sign. This is exactly the formula that can
be used for reconstructing the field E if we know the
function ¢ (r).

Example. Find the field intensity E if the field potential has the
form: (1) @ (z, y) = —azy, where a is a constant; (2) ¢ (r) = —a-r,
where a is a constant vector and r is the radius vector of a point under
consideration.

(1) By using formula (1.30), we obtain E = a (yi - zj).

(2) Let us first represent the function @ as @ == —ayz — ayy —
— a,z, where a,, ¢, and g, are constants. Then with the help of for-
wula (1.30) we find E = a,i -+ e,j + a,k = a. It can be seen that in
this case the field E is uniform.

Let us derive one more useful formula. We write the right-
hand side of (1.24) in the form E-.dl == I/, dl, wherc dl =
= |dl} is an elementary displacement and £, is the prcjec-
tion of vector E onto the displacement dl. Hence

|
E, = —dgldl, (1.32)

i.e. the projection of vector E onto the direction of the dis-
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placement dl is equal to the directional derivative of the
potential (this is emphasized by the symbol of partial de-
rivative).

Equipotential Surfaces. Let us introduce the concept of
equipotential surface, viz. the surface at all points of which
potential ¢ has the same value. We shall show that vector E
at each point of the surface is directed along the normal to
the equipotential surface and towards the decrease in the
potential. Indeed, it follows
from formula (1.32) that the
projection of vector E onto
any direction tangent to the
equipotential surfaceat a given
point is equal to zero. This
means that vector E is norm-
al to the given surface. Fur-
ther, let us take a displace-
ment dl along the normal to the
surface, towards decreasing

Fig. 1.13 ¢. Then d¢p << 0, and accord-

ing to (1.32), E; >0, i.e.

vector E is directed towards decreasing ¢, or in theé direc-
tion opposite to that of the vector y¢.

It is expedient_to draw equipotential surfaces in such a
way that the potential difference between two neighbouring
surfaces be the same. Then the density of equipotential
surfaces will visually indicate the magnitudes of field inten-
sities at different points. Field intensity will be higher in
the regions where equipotential surfaces are denmser (“the
potential relief is steeper”).

Since vector E is normal to an equipotential surface every-
where, the field lines are orthogonal to these surfaces.

Figure 1.13 shows a two-dimensional pattern of an electric field.
The dashed lines correspond to equipotential surfaces, while the solid
lines to the lines of E. Such a representation can be easily visualized.
It immediately shows the direction of vector E, the regions where field
intensity is higher and where it is lower, as well 13 the regions with
greater steepuess of the potential relief. Sucli a patters car be used to
obtain qualitative answers to a number of juestions, sugh as “In what
divection will a charge placed at a certain pcint movel Where is the
magnitude of the potentiai gradient higher? At which point will
the force acting on the charge be greater?” etc.
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On the Advantages of Potential. [t was noted earlier that
-electrostatic field is completely characterized by vector
function E (r). Then what is the use of introducing potential?
There are several sound reasons for doing that. The concept
of potential is indeed very useful, and it is not by chance
that this concept is widely used not only in physics but in
engineering as well.;

i1. If we know the potential ¢ (r), we can easily calculate
the work of field forces done in the displacement of a point
charge ¢’ from point / to point 2:

A2 = ¢ (91 — ¢2), (1.33)
where @, and_g, are the polentials at points I and 2. This
means that the required work is equal to the decrease in the
potential energy of the charge ¢° upon its displacement from
point I to 2. Calculation of the work of the field forces with
the help of formula (1.33) is not just very simple, but is
in some cases the only possible resort.

Example. A cHarge ¢ is distributed over a thin ring of radius a.
Find the work of the field forces done in the displacement of a point
charge ¢’ from the centre of the ring to iafinity. '

Since the distribution of the charge g over the ring is unknown, we
cannot say anything definite about the intensity E of the field created
by this charge. This means that we cannot calculate the work by eval-

uating the integral \ ¢’E dl in this case. This problem can be easily

solved with the help of potential. lndeed, since all elements of the
ring are at the same distance a from the centre of the ring, the poten-
tial of this point is @, == ¢/4neya. And we know that ¢ = 0 at infinity.
Consequently, the work 4 = ¢'p, = ¢'q/4agga.

2. 1t turns out in many cases that in order to find electric
field intensity E, it is easier lirst Lo calculate the potential
¢ and then take its gradient than to calculate the value of E
directly. This is a considerable advantage of potential. In-
deed, for calculating ¢, we must evaluate only one integral,
while for calculating E we must take three integrals (since
it is a vector). Moreover, the integrals for calculating ¢ are
usually simpler than those for £, £, and E,.

Let us note here that this does not apply to a comparative-
ly small number of problems with high symmetry, in
which the calculation of the field E directly or with the help
of the Gauss theorem turns out to be much simpler.

3—-0181
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There are some other advantages in using potential which
will be discussed later.

1.7. Electric Dipole

The Ficld of a Dipole. The electric dipole is a system of two
equal in magnitude unlike charges + ¢ and — g, separated
by a certain distance {. When the dipole field is considered,

Fig. 1.14

it is assumed that the dipole itself is pointlike, i.e. the dis-
tance r from the dipole to the points under consideration is
assumed to be much greater than [.

The dipole field is axisymmetric. Therefore, in any plane
passing through the dipole axis the pattern of the field is
the same, vector E lying in this plane.

L‘git us lirst find the potential of the dipole field and then
its intensity. According to (1.25), the potential of the dipole
field at the point P (Fig. 1.14a) is defined as

! (_‘1,__‘1.) -1 el—r)
dagy \ ry r- 4ne, rer—- °
Since r > I, il can be seen from Fig. 1.44a that r_ —r =
= lcos ¢ and rqyr_ = r%, where r is the distance from the
point P to the dipole (it is pointlikel). Taking this into
account, we get

(P._

L peos? (1.34)

Y= datey 2

where p = gl is the electric mmoment of the dipole. This quan-
tity corresponds Lo a vector directed along the dipole axis
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from the negative to the positive charge:
p=4ql (1.35)

where ¢ >0 and 1 is the vector directed as p.

It can be seen from formula (1.34) that the dipole field
depends on its electric moment p. It will be shown below
that the behaviour of the dipole in an external field also
depends en p. Consequently, p is an important characteristic
of the dipole. '

It should also be noted that the potential of the dipole field
decreases with the distance r faster than the potential of the
field of a point charge (in proportion to 1/r? instead of 1/r).

{In order to find the dipole field, we shall use formula (1.32)
and calculate the projections of vector E onto two mutually
perpendicular directions along the unit vectors e, and eg
(Fig. 1.14b):

Eo— — dp 1 2pcosd
aQ 1 sin ¢ (1.36)
Ey=— = £ .

réd® = 4me, rs
Hence, the modulus of vector E will be
T o3 1 D DTS
E=VE:+E§= Tneg LV 1t3cos?d.  (1.37)

In particular, for ¢ = 0 and ¥ = n/2 we obtain the ex-
pressions for the field intensity on the dipole axis (E) and
on the normal to it (E ):

__1 2 _ 1 p
E" = Zne, R _L-‘m =) (138)

i.e. for the same r the intensity E is twice as high as E .
The Force Acting on a Dipole. Let us place a dipole into
a ponuniform electric field. Suppose that E. and E_ are
the intensities of the external field at the points where the
positive and negative dipole charges are located. Then the
resultant force F acting on the dipole is (Fig. 1.15a):

F=¢gE; —gE_=¢(E; —E.).

The difference E; — E_ is the increment AE of vector E
on the segment equal to the dipole length I in the direction

3
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of vector 1. Since the length of this segment is small, we can
write
JE

ar b

AE=E,—E_—2%E; _
Substituting this expression into the formula for F, we
find that the force acting on the dipole is equal to

dE

where p = gl is the dipole electric moment. The derivative
appearing in this expression is called the directional deriva-
tive of the vector. The symbol of
partial derivative indicates that it
is taken with respect to a certain
direction, viz. the direction coincid-
ing with vector 1 or p.
Unfortunately, the simplicity of
formula (1.39) is delusive: taking
~4E- the derivative GE/dl is a rather com-
' plicated mathematical operation.

E." - . . .
®) g E We shall not discuss this question
; in detail here but pay attention to
B the esse~~e of the obtained result.

Fig. 1.15 First of all, note that in a uniform

C field GE/9l = 0 and F = 0. This

means that generally the force acts

on a dipole only in a nonuniform field. Next, in the gener-

al case the direction of F coincides neither with vector E

nor with vector p. Vector F coincides in direction only

with the elementary increment of vector E, taken along the
direction of 1 or p (Fig. 1.15b).

Figure 1.16 shows the directions of the force F acting on a dipole

in the field of a point charge ¢ for three dilferent dipole orientations.
We suggest that the reader prove independently that it is really so.

(a)

If we are interested in the projection of force F onto a
certain direction X), it is sufficient to write equation (1.39)
in terms of the projections onto this direction, and we get

Fo=p 2= (1.40)

al ?




1.7. Electric Dipole 37

where JE./dl is the derivative of the corresponding projec-
tion of vector E again onto the direction of vector 1 or p.

Let a dipole with moment p be oriented along the symme-
try axis of a certain nonuniform field E. We take the positive
direction of the X-axis, for example,

as shown in Fig. 1.17. Since the incre- .__,___l;=__‘_’>
ment of the projection E, in the direc- E
tion of vector p will be negative, F,<<0, ﬁ
and hence vector F is directed to the

left, i.e. towards increasing field in- &~~~ —~— ?P
tensity. If we rotate vector p shown in |
the figure through 90° so that the dipole ¥
centre coincides with the symmetry = ——= P
axis of the field, it can be easily seen

that in this position F, = 0. Fig. 1.16

The Moment of Forces Acting on a

Dipole. Let«us consider behaviour of a dipole in an exter-
nal electric field in its centre-of-mass system and find out
whether the dipole will rotate or not. For this purpose, we
must find the moment of external forces with respect to the
dipole centre of mass*.

1By definition, the moment of forces F4+ = gE. and F_ =
= ——gE_ with respect to the centre of mass C (Fig. 1.18) is
equal to

M=1[r, XFul +r. X Fl=1Ir; X gE+] —[r_ X gE_],

where r,. and r_ are the radius vectors of the charges -+ ¢
and — g relative to the point C. For a sufficiently small di-
pole length, E. ~ E_ and M = [(r4 —r_) X gEL It re-
mains for us to take into account that ry —r_ =1 and
gl = p, which gives

M=[pxE]. (1.41)

This moment of force tends to rotate the dipole so that
its electric moment p is oriented along the external field E.
Such a position of the dipole is stable.

Thus, in a nonuniform electric field a dipole behaves as

* We take the moment with respect to the centre of mass in order
to eliminate the moment of inertial forces.
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follows: under the action of the moment of force (1.41),
the dipole tends to get oriented along the field (p {4 E),
while under the action of the resultant force (1.39) it is

Fig. 1.17 Fig. 1.18

displaced towards the region where the field E has larger
magnitude. Both these motions are simultaneous.

The Energy of a Dipole in an External Field. We know
that the energy of a point charge ¢ in an external field is
W = g, where ¢ is the field potential at the point of lo-
cation of the charge ¢. A dipole is the system of two charges,
and hence its energy in an external field is

W =q+9+ +q-9_ = ¢ (p+ — @.),

where @, and @_ are the potentials of the external field at
the points of location of the charges 4-g and —g. To within
a quantity of the second order of smallness, we can write

a
P+—P_= —6% I

where d¢/dl is the derivative of the potential in the direc-
tion of the vector 1. According to (1.32), d¢/dl = —E,,
and hence oy — ¢_ = —E |l = —E-:1, from which we get

W=-—p'E. (1.42)

It follows from this formula that the dipole has the mini-
mum energy (Wy,,, = —pE) in the position p 4} E (the
position of stable equilibrium). If it is displaced from this
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position, the moment of external forces will return the di-
pole to the equilibrium position.

Problems

@ 1.1. A very thin disc is uniformly charged with surface charge
density ¢ > 0. Find the electric field intensity £ on the axis of this
disc at the point from which the disc is scen at an angle Q.

E

dEz}-4dE
V
A

Fig. 1.19 Fig. 1.20

Solution. It is clear from symmetry considerations that on the disc
axis vector E must coincide with the direction of this axis (Fiﬁ' 1.19).
Hence, it is sufficient to find the component dE, from the charge of
the area element S at the point A and then integrate the obtained
eﬁmmion over the entire surface of {the disc. It can be easily seen
that

1 o¢dS
dE, = Zne; 73 008 0. )]
In our case (dS cos #)/r* = dQ is the solid angle at which the area
::ement dS is seen from the point 4, and expression (1) can be writ-
n as .

1
dE; = Tne, odQ.
Hence, the required quantity is
1
E= Zneg o,

It should be noted that at large distances from the disc, Q = §/r%
where S is the area of the disc and E = g/4me,r? just as the field of the
point charge ¢ = 0S. In the immediate vicinity of the point O, the
solid angle Q = 2n and E = 0/2¢,.
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@ 1.2. A thin nonconducting ring of radius R is charged with a
linear density A = A, cos ¢, where A, is a positive constant and ¢
isf tl:i:a azimuth angle. Find the electric field intensity E at the centre
of the ring.

Solution. The given charge distribution is shown in Fig. 1.20.
The symmetry of this distribution implies that vector E at the point 0
is directed to the right, and its magnitude is equal to the sum of the
projections onto the direction of E of vectors dE from elementary
charges dg. The projection of vector dE onto vector E is

dg

dE cos q>=%‘30 55 ©08 9, )

where dg = AR do = AR cos ¢ dp. Integrating (1) over ¢ between 0
and 2n, we find the magnitude of the vector E:

Ao f A
—_10 2 = 0
E= 4“80}? S cos™ P d(P - 4891? ¢

0

It should be noted that this integral is evaluated in the most simple
way if we take into account that {cos? ¢) = 1/2. Then

2n
g cos? @ dp={cos? ¢) 2n=n.
[}

® 1.3. A semi-infinite straight uniformly charged filament has a
charge A per unit length. Find the magnitude and the direction of the
field intensity at the point separated from the filament by a distance y
and lying on the normal to the filament, passing through its end.

Solution. The problem is reduced to finding E, and Ep, viz. the
projections of vector E (Fig. 1.24, where it is assumed that A > 0).
Let us start with E.. The contribution to E, from the"charge element
of the segment dz is

1 Adz
dET:.EI—B: TSID x. (i)

Let us reduce this expression to the form convenient for integration.

In our case, dr = rdal/cos a, r = y/cos @. Then -

sin a da.

A
dEx= 4negy

Integrating this expression over a between 0 and /2, we find
E, = Méneyy.

In order to find the projection By, it is sufficient to recall that
dE, differs from dE, in that sin a'in (1) is simply replaced by cos «.
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This gives
dE, = (A cos a da)/hneyy and E, = Maaeyy.

We have obtained an interesting result: £, = E, independently of y,

Fig. 1.21

&

i.e. vector E is oriented at the angle of 45° to the filarnent. The modu-
lus of vector E is .

E=V E2+E;=M\V 2j4ueqy.

@ 1.4. The Gauss theorem. The intensitiv of an electric field de-
pends only on the coordinates z and y as follows:

E = a (zi 4 pi)/(z* + ¢*),

where a is a constant, and i and j are the unit vectors of the X- and
Y-axes. Find the charge within a sphere of radius’ R with the cenire
at the origin.

Solution. In accordance. with the Gauss theorem, the required
charge is equal to the flux of E through this sphere, divided by e,.
In our case, we can determine the flux as follows. Since the field Eis
axisymmetric (as the field of a uniformly charged filament), we arrive
at the conclusion that the flux through the sphere of radius’ R is equal
to the flux through the lateral surface of a cylinder having the same
radius and the height 2R, and arranged as showr in Fig. 1.22. Then

g=¢, <§ E dS=¢,E,S,

where E, = o/R and S = 2nR-2R = 4nR?. Finally, we gei
q = 4neqaR.

® 1.5. A system consists of a uniformly charged sphere of radius
R and a surrounding medium filled by a charge with the volume den-
sity p = a/r, where a is a positive constant and r is the distance from
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thé centre of the sphere. Find the charge of the sphere for which the
electric field intensity E outside the sphere is independent of r. Find
the value of E.

Solution. Let the sought charge of the sphere be g. Then, using the

Fig. 1.22 Fig. 1.23

Gauss theorem, we can write the following expression for a spherical
surface of radius r (outside the sphere with the charge g):
r

Eoagnrr=2. 1 g 2 gnrtdr.
€ r

0 £ h
After integration, we transform this equation to
E 4nr? = (g — 2naR®)/e, + 4nar?/2e,.
The intensity £ does not depend on r when the expression in the paren-
theses is equal to zero. Hence
q = 2naR? and E = a/2s,.

® 1.6. Find the electric field intensity E in the region of inter-

seciion of two spheres uniformly charged by unlike charges with the

volume densities p and —p, if the distance between the centres of the
spheres is determined by vector 1 (Fig. 1.23).

Solution. Using the Gauss theorem, we can easily show that the
electric field intensity within a uniformly charged sphere is

E = (p/3¢y) r,
where r is the radius vector relative to the centre of the sphere. We
can consider the field in the region of intersection of the spheres as the

superposition of the fields of two uniforlmy charged spheres. Then at
an arbitrary point 4 (Fig. 1.24) of this region we have

E=E++ E_=p(r+ — r.)/3g, = pl/3¢,.

Thus, in the region of intersection of these spheres the field is uni-
form. This conclusion is valid regardless of the ratio between the radii
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of the spheres and of the distance between their centres. In particular,
it is valid when one sphere is completely within the other or, in other
words, when there is a spherical cavity in a sphere (Fig. 1.25).

® 1.7. Using the solution of the previous problem, find the field
intensity E inside the sphere over which a charge is distributed with

Fig. 1.24 Fig. 1.25

the surface density o = o, cos &, where o, is a constant and ¢ is
the polar angles

Solution. Let us consider two spheres of the same radius, having
uniformly distributed volume charges with the densities p and —p.
Suppose that the centres of the spheres are sep-
arated by the distance | (Fig. 1.26). Then, in
accordance with the solution of the previous
problem, the field in the region of intersection
of these spheres will be uniform:

E = (0/380) L 1)

In our case, the volume charge differs from zero
only in the surface layer. For a very small I,
we shall arrive at the concept of the surface
charge density on the sphere. The thickness of
the charged layer at the points determined by
angle ¥ (Fig. 1.26) is equal to ! cos . Hence,
in this region the charge Eﬂ unit area is
o = plcos® = g, cos®, where g, == pl, and ‘
expression (1) can be represented in the form Fig. 1.26

E = —(0,/3¢,) k,
where k is the unit vector of the Z-axis from which the angle # is
measured.

® 1.8. Potential. Tho potential of a certain electric field has the
form @ = a (zy — z%). Find the projection of vector E onto the di-
rection of the vector a = i 4+ 3k at the point M (2, 1, —3).

Solution. Let us first find vector E:
E=—yp=—a(yl + zi — 2zk).
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The sought projection is

E,—p 2 _—oWi—zj-2k)(i43k) —a@—6)
a T Vira VT’T
At the point M we have
—a(+18) __ 19
E, =% 110 9 o
¢ V1o Vi®©

@ 1.9. Find the potential ¢ at the edge of a thin disc of radius R
with a charge uniformly distributed over one of its sides with the sur
face density o.

Solution. By definition, the potential in the case of a surface charge
distribution is defined by integral (1.28). In order to simplify in-
. tegration, we shall choose the area element 4S in the form of a part
of the ring of radius r and width¥dr (Fig. 1.27). Then dS = 20rdr,
r= 2R cos®, and dr = —2R sin ¢ d0. After substituting these ex-
pt?eatiogs into integral (1.28), we obtain the expression for ¢ at the
point O:

o= aR
182

0
S # sin 8 20.
n/2

We integrate by parts, denoting ® = »
and sin ¢ d® = dv:

S*Ssinﬁdﬁ-:-—ﬁ cos &

Fig. 1.27 + { cos 0 db= —8 cos d+sin 8,

o

which gives —1 after substituting the limits of integration. As a re-
sult, we obtain ~/
= oR/zne,.

@ 1.10. The potential of the field inside a charged sphere depends
only on the distance r from its centre to the point under consideration
in the following way: @ = ar® 4 b, where a and b are constants.
Find the distribution of the volume charge p (r) within the ‘sphere.

Solution. Let us first find the field intensity. According to (1.32),
we have
E, = —ag/or = —2ar. N

Then we use the Gauss theorem: 4nr3E, = g/e,. The differential of

this expression is
4 d(rOE) =

= 2
— T e Do r2dr
dq ] 4n 1
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where dg is the charge contained between the spheres of radii r and
r + dr. Hence

oo 1 oE 2 P
4 2 = —— 2 _r —_ _
rrdE.+2rE, dr = pridr, o + ; E, oo
Substituting (1) into the last equation, we obtain
p = —bega,

i.e. the charge is distributed uniformly within the sphere.

@ 1.11. Dipole. Find the force of interaction between two point
dipoles with moments p; and p,, if the vectors p, and p, are directed
along the straight line connecting the dipoles and the distance be-
tween the dipoles is I.

Solution. According to (1.39), we have

F = p, | 9Elal |,
where E is the tield intensity from the dipole p,, determiaed by the
first of formulas (1.38):
_ 1 2pg
o - 4“80 [
Taking the derivative of this expression with respect to I and sub-
stituting it into the formula for ¥, we obtain

__ 1 6pp,
F= 4dneg, I8

It should be noted that the dipoles will be attracted when p, 1t p, and
repulsed when p, t{ p,.

2. A Conductor in an Electrostatic Field

2.1. Field in a Substance

Micro- and Macroscopic Fields. The real electric field in
any substance (which is called the microscopic field) varies
abruptly both in space and in time. It is different at differ-
ent points of atoms and in the interstices. In order to find
the intensity E of a real field at a certain point at a given
instant, we should sum up the intensities of the fields of all
individual charged particles of the substance, viz. electrons
and nuclei. The solution of this problem is obviously not
feasible. In any case, the result would be so complicated
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that it would be impossible to use it. Moreover, the knowledge
of this field is not required for the solution of macroscop-
ic problems. In many cases it is sufficient to have a simpler
and rougher description which we shall be using henceforth.

Under the electric field E in a substance (which is called
the macroscopic field) we shall understand the microscopic
field averaged over space (in this case time averaging is
superfluous). This averaging is performed over what is called
a physically infinitesimal volume, viz. the volume contain-
ing a large number of atoms and having the dimensions
that are many times smaller than the distances over which
the macroscopic field noticeably changes. The averaging over
such volumes smoothens all irregular and rapidly varying
fluctuations of the microscopic field over the distances of
the order of atomic ones, but retains smooth variations of
the macroscopic field over macroscopic distances.

Thus, the field in the substance is

E=Emacro=(Emicro)- (2.1)

The Influence of a Substance on a Field. 1f any substance is
introduced into an electric field, the positive and negative
charges (nuclei and electrons) are displaced, which in turn
leads to a partial separation of these charges. In certain
regions of the substance, uncompensated charges of different
signs appear. This phenomenon is called the electrostatic
induction, while the charges appearing as a result of sepa-
ration are called induced charges.

Induced charges create an additional electric field which
in combination with the initial (external) field forms the
resultant field. Knowing the external field and the distribu-
tion of induced charges, we can forget about the presence of
the substance itself while calculating the resultant field,
since the role of the substance has already been taken imto
account with the help of induced charges

Thus, the resultant field in the presence of a substance is
determined simply as the superposition of the external field
and the field of induced charges. However, in many cases
the situation is complicated by the fact that we do not kmow
beforehand how all these charges are distributed in space,
and the problem turns cut to be not as simple as it could
seem at first sight. It will be shown later that the distri-
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bution of induced charges is mainly determined by the prop-
erties of the substance, i.e. its physical nature and the
shape of the bodies. We shall have to consider these ques-
tions in greater detail.

2.2. Fields Inside and Outside a Conductor

Inside a Conductor E = 0. Let us place a metallic conduc-
tor into an external electrostatic field or impart a certain
charge to it. In both cases, the electric field will act on all
the charges of the conductor, and as a result all the negative
charges (electrons) will be displaced in the direction against
the field. This displacement (current) will continue until
(this practically takes a small fraction of a second) a cer-
tain charge distribution sets in, at which the electric field
at all the points inside the conductor vanishes. Thus, in the
static case the electric field inside a conductor is absent
(E =0).

Further, since E = 0 everywhere in the conductor, the
densnty of excess (uncompensated) charges inside the conduc-
tor is- also equal to zero at all points (p = 0). This can be
easﬂy explained with the help of the Gauss theorem. Indeed,
since inside the conductor E = 0, the flux of E through any
closed surface inside the conductor is also equal to zero.
And this means that there are no excess charges inside the
conductor.

Excess charges appear only on the conductor surface with
a certain density o which is generally different for different
points of the surface. It should be noted that the excess
surface charge is located in a very thin surface layer (whose
thickness amounts to one or two interatomic distances).

The absence of a field inside a conductor indicates, in
accordance with (1.31), that potential ¢ in the conductor
has the same value for all its points, i.e. any conductor in
an electrostatic field is an equipotential region, its surface
being an equipotential surface.

The fact that the surface of a conductor is equipotential
implies that in the immediate vicinity of this surface the
field E at each point is directed along the normal to the sur-
face. If the opposite were true, the tangential component of
E would make the charges move over the surface of the
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conductor, i.e. charge equilibrium would be impossible.

Example. Find the petential of an uncharged conducting sphere
provided that a point charge ¢q isllocatjd”at a distance r from its centre
(Fig. 2.1).

Potential ¢ is the same for all points
of the sphere. Thus we can calculate
its value at the centre O of the sphere,
because only for this point it can
be calculated in the most simple way:

== e, €

where the first term is the potential of
the charge ¢, while the second is the
potential of the charges induced on
the surface of the sphere. But since all induced charges are at the same
distance a from the point O and the tolal induced charge is equal to
zero, ¢’ =0 as well. Thus, in this case the potential of the sphere will
be determined only by the first term in (1).

Fig. 2.1

Figure 2.2 shows the field and the charge distributions for
a system consisting of two conducting spheres one of which
(left) is charged. As a result of electric induction, the charges
of the opposite sign appear on the surface of the right
uncharged sphere. The field of these_charges will in turn
cause a redistribution of charges on the surface of the left
sphere, and their surface distribution will become nonuni-
form. The solid lines in the figure are the lines of E, while
the dashed lines show the intersection of equipotential sur-
faces with the plane of the figure. As we move away from
this_ system, the equipotential surfaces become closer and
closer to spherical, and the field lines become closer to ra-
dial. The field itself in this case resembles more and more the
field of a point charge ¢, viz. the total charge of the given
system.

The Field Near aConductor Surface. We shall show that
the electric field intensity in the immediate vicinity of the
surface of a conductor is connected with the local charge
density at the conductor surface through a simple relation.
This relation can be established with the help of the Gauss
theorem.

. Suppose that the region of the conductor surface we are
interested in borders on a vacuum. The field lines are nor-
mal to the conductor surface. Hence for a closed surface we



2.3. Forces Acting on the Surface of a Conductor 49

shall take a small cylinder and arrange it as is shown in
Fig. 2.3. Then the flux of E through this surface will be
equal only to the flux through the “outer” endface of the
cylinder (the fluxes through the lateral surface and the
inner endface are equal to zero). Thus we obtain E, AS =

Fig. 2.2 Fig. 2.3
= 0AS/e,, where E,}is the projection of [vector E onto
the outward normal n (with respect to the conductor), AS
isJthe cross-sectional area of the cylinder and ¢ is the local

surface charge density of the conductor. Cancelling both
sides of this expression by AS, we get

Ep=o/ey. (2.2)

If 0 >0, then E, > 0, i.e. vector E is directed from the
conductor surface (coincides in direction with the normal n).
If 0 < 0, then E; << 0, and vector E is directed towards the
conductor surface.

Relation (2.2) may lead to the erroneous conclusion that
the field E in the vicinity of a conductor depends only on
the local charge density ¢. This is not so. The intensity E
is determined by all the charges of the system under con-
sideration as well as the value of o itself.

2.3. Forces Acting on the Surface of a Conductor

Let us consider the case when a charged region of the sur-
face of a conductor borders on a vacuum. The force acting
on a small area AS of the conductor surface is

AF = ¢AS -E,, (2.3)
4i—0181
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where o AS jis the charge of this element and E, is the field
created by all the other charges of the systemjin the region
where the charge o AS is located. It should be noted at the
very outset that E, is not equal to the field intensity E in
the vicinity of the given surface element of the cofiductor,
although there exists]a certain relation between thém. Let
us find this relation, i.e. express E, through E,

Let E, be the intensity of the field created by the charge
on the area element AS at the points that are very closeto
this element. In this region, it behaves as an infinite uni-
formily charged plane. Then, in accordance with (1.10), E, =
= 0 28..

The resultant field both inside and outside the conductor
(near the area element AS) is the superposition of the fields
E, and E,. On both sides of the area element AS the field E,
is practically the same, while the field E; has opposite di-
rections (see Fig. 2.4 where for the sake of definiteness it is
assumed that o > 0). From the condition E = 0 inside the
conductor, it follows that E, = E,, and then outside the
conductor, near its surface, £ = E, + E, = 2E,. Thus,

E2E,, E, = E/2, (2.4)
n and Eq. (2.3) becomes
AF=% oAS-E. (2.5)

Dividing both sides. of this
equation by AS, we obtain the
expression for the force acting
on unit surface of a conductors
Fyem - 0E- (2.6)
We can write this expression
: in a different form since the
quantities o and E appearing in it are interconnected. Indeed,
in accordance with (2.2), E, = 0/g,, or E = (o/eg) n, where
n is the outward normal to the surface element at a given
point of the conductor. Hence

03 g E?
Fu=-—26—q-n_ 3 n, (2.7)
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where we took into account that ¢ = egoE, and Ej = EZ
The quantity F, is called the surface density of force. Equa-
tion (2.7) shows that regardless of the sign of o, and hence
of the direction of E, the force F, is always directed outside
the conductor, tending to stretch it.

Example. Find the expression for the electric force acting in a
vacuum on a conductor as a whole, assuming that the field intensities
E are known at all points in the vicinity of the conductor surface.

Multiplying (2.7) by dS, we obtain the expression for the force dF
acting on the surface element dS:

dF =-% goE% dSs,

where dS = n dS. The resultant force acting on the entire conductor

can be found by integrating this equation over the entire conductor
surface:

=3 <§ E*as,
2.A. Properties of a Closed Conducting Shell

It wasshown that in equilibrium there are no excess charges
inside a conductor, viz. the material inside the conduc-
tor is electrically neutral. Consequently, if the substance is
removed from a certain volume inside a conductor (a closed
cavity is created), this does not change the field anywhere,
i.e. does not affect the equilibrium distribution of charges.
This means that the excess charge is distributed on a
conductor with a cavity in the same way as on a uniform
conductor, viz. on its outer surface.

Thus, in the absence of electric charges within the cavity
the electric field is equal to zero in it. Ezternal charges,
including the charges on the outer surface of the conductor, do
not create any electric field in the cavity inside the conductor.
- This forms the basis of electrostatic shielding, i.e. the screening

of bodies, e.g. measuring instruments, from the influence
of external electrostatic fields. In practice, a solid conduct-
ing shell can be replaced by a sufficiently dense metallic
grating.

That there is no electric field inside an empty cavity can
be proved in a different way. Let us take a closed surface S
enveloping the cavity and lying completely in the material
I
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of the conductor. Since the field E is equal to zero inside the
conductor, the flux of E through the turface S is also equal
to zero. Hence, in accordance with the Gauss theorem, the
total charge inside S is equal to zero as well. This does not
exclude the situation depicted in Fig 2.5, when the surface

b‘u

Fig. 2.6

of the cavity itself contains equal quantities of positive
and negative charges. However, this assumption is prohibit-
ed by another theorem, viz. the theorem on circulation of
vector E. Indeed, let_the contour I' cross the cavity along
one of the lines of E and be closed in the conductor material.
It is clear that the line integral of vector E along this contour
differs from zero, which is in contradiction with the theorem
on circulation.

Let us now consider the case when the cavity is not empty
but contains a certain electric charge g (or several charges).
Suppose also that the entire external space is filled by a
conducting medium. In equilibrium, the field in this medium
is equal to zero, which means that the medium is electrical-
ly neutral and contains no excess charges.

Since E = 0 inside the conductor, the field flux through a
closed surface surrounding the cavity is also equal to zero.
According to the Gauss theorem, this means that the alge-
braic sum of the charges within this closed surface is equal to
zero as well. Thus, the algebraic sum of the charges induced
on the cavity surface is equal in magnitude and opposite in
sign to the algebraic sum of the charges inside the cavity.
In equilibrium the charges induced on the surface of the
cavity are.arranged so as to compensate comple:ely, in the
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gpace outside the cavity, the field created by the charges
located inside the cavity.

Since the conducting medium is electrically neutral every-
where, it does not influence the electric field in any way.
Therefore, if we remove the medium, leaving only a conduc-
ting shell around the cavity, the field will not be changed
anywhere, and will remain equal to zero beyond this shell.

Thus, the field of the charges surrounded by a conducting
shell and of the charges induced on the surface of the cavity
(on the inner surface of the shell) is equal to zero in the en-
tire outer space.

We arrive at the following important conclusion: a closed
conducting shell divides the entire space into the inner .and
outer parts which are completely independent of one another
in respect of electric fields. This must be interpreted as follows:
any arbitrary displacement of charges inside the shell does
not introduce any change in the field of the outer space,
and hence the charge distribution on the outer surface of the
shell remains unchanged. The same refers to the field inside
the cavity (if it contains charges) and to the distribution of
charges induced on the cavity walls. They will also remain
unchanged upon the displacement of charges outside the
shell. Naturally, the above arguments are applicable only
in the framework of electrostatics.

Example. A point charge ¢ is within an electrically neutral shell
whose outer surface has spherical shape (Fig. 2.6). Find the potential
@ at the point P lying outside the shell at a distance r from the
centre O of the outer surface.

The field at the point P is determined only by charges induced on
-thg outer spherical surface since, as was shown above, the field of the
Point charge g and of the charges induced on the inner surface of the
sphere is equal to zero everywhere outside the cavity. Next, in view of
symmetry, the charge on the outer surface of the shell is distributed
uniformly, and hence

1 q

4ﬂ€o r°

(p=

An infinite conducting plane is a special case of a closed
conducting shell. The space on one side of this plane is
electrically independent of the space on its other side,

We shall repeatedly use this property of a closed con-
ducting shell, '

-
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i.s. General Problem of Electrostatics.
Image Method

Frequently, we must solve problems in which the charge
distribution is unknown but the potentials of conductors,
their shape and relative arrangement are given. We must
find the potential ¢ (r) at any point of the field between the
conductors. It should be recalled that if we know the poten-
tial ¢ (r), the field E (r) itself can be easily reconstructed
and then its value in the immediate vicinity of the conductor
surfaces can be used for determining the surface charge
distribution for the conductors.

The Poisson and Laplace equations. Let us derive the differential
equation for the function ¢ (potential). For this purpose, we substitute
into the left-hand side of (1.20) the expression for E in terms of o,
i.e. E= —v@. As a result, we obtain the general differential equation
for potential, which is called the Poisson equation:

Vip= —p/e,,

2.8

where y2? is the Laplace operator (Laplacian). In Cartesian coordinates
it has the form .

a2 a2 ik
- —_— —
Vi=gmt y’+6z’ ’
i.e. is the scalar product y-y [see (1.19)].
If there are no charges between the conductors (p = 0), Eq. (2.8)
is transformed into a simpler equation, viz. the Laplace equation:

v2¢= 0. ‘ 2.9)

To determine potential, we must find a function ¢ which satisfies
Eqs. (2.8) or (2.9) in the entire” space between the conductors and ac-
quires the given values ¢,, @,, . . . on the surfaces of the conductors.

It can be proved theoretically that this problem has a uni-
que solution. This statement is called the uniqueness theo-
rem. From the physical point of view, this conclusion is
quite obvious: if there are more than one solution, there
will be several potential “reliefs”, and hence the field E at
each point generally has not a single value. Thus we arrive
at a physically absurd conclusion.

Using the uniqueness theorem, we can state that in a
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static case the charge is distributed over thhe surface of a
conductor in a unique way as well. Indeed, thiere is a one-to-
one correspondence (2.2) between the charges; on the conduc-
tor and the electric field in the vicinity of itts surface: o0 =

q 9 q
®
AN AT
w4 AT,
\b I
-9 q--q7
(a) (b) (©)
Fig. 2.7

= g,E,. Hence it immediately follows that the uniqueness
of the field E determines the uniqueness of the charge
distribution over the conductor surface.

The solution of Eqs. (2.8) and (2.9) in the generaal case is a compli-
cated and laborious problem. The analytic solutions; of these equations
were obtained only for a few particular cases. As ffor the uniqueness
theorem, it simplifies the solution of a number of electrostatic prob-
lems. If a solution of the problem satisfies the Laiplace (or Poisson)
equation and the boundary conditions, we can statce that it is correct
and unique regardless of the methods by which itt was obtained (if
only by guess).

Example. Prove that in an empty cavity of a cconductor the field
is absent.

The potential ¢ must satisfy the Laplace equaticon (2.9) inside the
cavity and acquire a certain value @, at the’cavity’s vwalls. The solution
of the Laplace equation satisfying this condition czan immediately be
found. It is @ = @,. In accordance with the uniquerness theorem, there
can be no other solutions. Hence, E = —{ ¢ = (0.

Image Method. This is an artificial metho»d that makes it
possible to calculate in a simple way the :electric field in
some (unfortunately few) cases. Let us consiider this method
by using a simple example of a point charge ¢g near an infinite
conducting plane (Fig. 2.7a).

. The idea of this method lies in that we must find another
problem which can be easily solved and whcose solution or a
part of it can be used in our problem. In ourr case such a sim-
ple problem is the problem about two chairges: ¢ and —g.
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The field of this system is well known (its equipotential
surfaces and field lines are shown in Fig. 2.7b).

Let us make the conducting plane coincide with the mid-
dle equipotential surface (its potential ¢ = 0) and remove
the charge -——g. According to the uniqueness theorem, the
field in the upper half-space will remain unchanged. Indeed,
¢ == 0 on the conducting plane and everywhere at infinity.
The point charge ¢ can be considered to be the limiting case
of a small spherical conductor whose radius tends to zero
and potential to infinity. Thus, the boundary conditions for
the potential in the upper half-space remain the same, and
hence the field in this region is also the same (Fig. 2.7¢).

It should be noted that we can arrive at this conclusion
proceeding from the properties of a closed conducting shell
[see Sec. 2.4}, since both half-spaces separated by the con-
ducting plane are electrically independent of one another,
and the removal of the charge —¢q will not affect the field
in the upper half-space.

Thus, in the case under consideration the field differs from
zero only in the upper half-space. In order to calculate this
field, it is sufficient to introduce a fictitious image charge
g’ = —q, opposite in sign to the charge ¢, by placing it on
the other side of the conducting plane at the same distance
as the distance from g to the plane. The fictitious charge g’
creates in the upper half-space the same field as that of the
charges induced on the plane. This is precisely what is
meant when we say that the fictitious charge produces the same
“effect” as all the induced charges. We must only bear in
mind that the “effect” of the fictitious charge extends only to
the half-space where the real charge g is located. In another
half-space the field is absent.

Summing up, we can say that the image method is essen-
tially based on driving the potential to the boundary con-
ditions, i.e. we strive to find another problem (configura-
tion of charges) in which the field configuration in the region
of space we are interested in is the same. The image methed
proves to be very effective if this"can be done with the help
of sufficiently simple configurations. Let us consider one
more example.

Example. A point charge g is placed between two mutually perpen-
dicular half-planes (Fig. 2.8a). Find the location of fictitious point
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charges whose action on the charge g is equivalent to the action of all
charges induced on these half planes. -
We have to find a system of(;)oint charges for which the equipoten-

(®)

tial surfaces with ¢ = 0 woul
coincide with the conducting
hali-planes. One or two fictitious
charges are insufficient in this
case; there should be three of
them (Fig. 2.8b). Only with such a
configuration of the system of four
charges we can realize the re-
quired “trimming”, i.e. ensure
that the potential on ‘the con-
ducting half-planes be equal to
zero. These three fictitionus char-
ges create just the same field
within the “right angle” as the Fig. 2.8

ficld of the charges induced on g =

the conducting planes.

Having found this configuration of point charges {another problem),
we can easily answer a number of other questions, for example, find
the potential and field intensity on any point within the “right angle”
or determine the farce acting on the charge g.

2.6. Capaditance. Capacitors

Capacitance of an Isolated Conductor. Let us consider a
solitary conductor, i.e. the conductor removed from other
conductors, bodies, and charges. Experiments show that the
charge q of this conductor is directly proportional to its
potential ¢ (we assumed that at infinity potential is equal to
zero): @ o< q. Consequently, the ratio g/¢ does not depend
on the charge g and has a certain value for each solitary
conductor. The quantity

C = qlp (2.10)

is called the electrostatic capacitance of an isolated conductor
(ar simply capacitance). It is numerically equal to the charge
that must be supplied to the conductor in order to increase
its potential by unity. The capacitance depends on the size
and shape of the conductor.

Example. Find the capacitance of an isolated conductor which has
the shape of a sphere of radius R.

It can be scen from formula (2.10) that for this purpose we must
mentally charge the conductor by a charge ¢ and calculate its poten-



58 2. A Conductor in an Electrostatic Field

tial ¢. In accordance with (1.23), the potential of a sphere is

Q= S‘E,drr—-— 1
R

A a4 = 9
4ne, g ra dr = 4me, R
R

Substituting this result into (2.10), we find
: = 4neyR. 2.11)

The unit ‘of capacitance is the capacitance of a conductor
whose potential changes by 1 V when a charge of 1 C is
supplied to it. This unit of capacitance is called the fa-
rad (F).

The farad is a very large quantity. It corresponds to the
capacitance of an isolated sphere 9 X 10®° km in radius,
which is 1500 times the radius of the Earth (the capacitance
of the Earth is 0.7 mF). In actual practice, we encounter
capacitances between 1 pF and 1 pF.

Capacitors. If a conductor is not isolated, its capacitance
will considerably increase as other bodies approach it. This
is due to the fact that the field of the given conductor causes
a redistribution of charges on the surrounding bodies, i.e.
induces charges on them. Let the charge of the conductor
be g > 0. Then negative induced charges will be nearer to
the conductor than the positive charges. For this reason, the
potential of the conductor, which is the algebraic sum of the
potentials of its own charge and of the charges induced on
other bodies will decrease when other uncharged bodies
approach it. This means that its capacitance increases.

This circumstance made it possible to create the system
of conductors, which has a considerably higher capacitance
than that of an isolated conductor. Moreover, the capacitance
of this system does not depend on surrounding bodies.
Such a system is called a capacitor. The simplest capacitor
consists ‘of two conductors (plates) separated by a small
distance.

In order to exclude the effect of external bodies on the
capacitance of a capacitor, its plates are arranged with re-
spect to one another in such a way that the field created by
the charges accumulated on them is concentrated almost
completely inside the capacitor. This means that the lines
of E emerging on one plate must terminate on the other,
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i.e. the charges on the plates must be equal in magnitude
and opposite in sign (g and —q).

The basic characteristic of a capacitor is its capacitance.
Unlike the capacitance of an is6lated conductor, the capaci-
tance of a capacitor is defined as the ratio of its charge to
the potential difference between the plates (lLhis differenceis
called the voltage):

C=qlU. (2.12)

The charge ¢ of a capacitor is the charge of its positively
charged plate.

Naturally, the capacitance of a capacitor is also measured
in farads. '

The capacitance of a capacitor depends on its geometry
(size and shape of its plates), the gap between the plates,
and the material that fills the capacitor. Let us derive
the expressions for the capacitances of some capacitors
assuming that there is a vacuum between their plates.

Capacitance of a Paralfel-plate Capacitor. This capacitor
consists of two parallel plates separated by a gap of width h.
If the charge of the capacitor is g, then, according to (1.11),
the intensity of the field between its plates is £ = o/e,,
wheré 0 = ¢/S and S is the area of each plate. Consequent-
ly, the voltage between the plates is

U = Eh = ghle,S.
Substituting this expression into (2.12), we obtain
C = g4,S/h. (2.13)

This calculation was made without taking into account
field distortions near the edges of the plates (edge effects).
The capacitance of a real plane capacitor is determined by
this formula the more accurately the smaller the gap % in
comparison with the linear dimensions of the plates.

Capacitance of a Spherical Capacitor. Let the radii of the
inner and outer capacitor plates be a and b respectively. I
the charge of the capacitor is g, field intensity between the
plates is determined by the Gauss theorem:

=1
Er - -471_80' 'r_'-
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The voltage of the capacitor is
b

U= Bt (1),

It can be easily seen that the capacitance of a spherical
capacitor is given by

C =4ne,

—a " (2.14)

It is interesting that when the gap between the plates is
small, i.e. when b — a < a (or b), this expression is re-
duced to (2.13), viz. the expression for the capacitance of a
parallel-plate capacitor.

Capacitance of a Cylindrical Capacitor. By using the same
line of reasoning as in the case of a spherical capacitor, we
obtain

_2megl
C=1g (b/a) ?

where ! is the capacitor’s length, a and b are the radii of the
inner and outer cylindrical plates. Like in the previous
case, the obtained expression is reduced to (2.13) when the
gap between the plates is small.

The influence of the medium on the capacitance of a ca-
pacitor will be discussed in Sec. 3.7.

(2.15)

Problems

@ 2.i. On the determination of potential. A point charge g is at
a distance r from the centre O of an uncharged spherical conducting
layer, whose inner and outer radii are equal 10 a and & respectively.
Find the potential at the point O if r -< a.

Solution. As a result of electrostatic induction, say, negative charges
will be induced on the inner surface of the layer and positive char-
ges on its outer surface (Fig. 2.9). According to the principle of super-
position, the sought potential at the point O can be represented in

the form
4 (4, podS f g, ds
q)'-lmso (T'*‘? e YT )’

where the first integral is taken over all the charges induced on the
inner surface of the layer, while the second integral, over all the
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charges on the outer surface. It follows from this expression that
q 1 i 1
(+—=+7)

r a
It should be noted that the potential can be found in such a simple
form only at the point O since all the like induced charges are at the
same distance from this point and their
distribution (which is unknown to us)
does not play any role.

@® 2.2. A system consists of iwo
concentric spheres, the inner sphere of
radius R, having a charge q;. What cha-
rge g, must be placed onto the outer
sphere of radius R; to make the poten-
tial of the inner sphere equal to zero?
What will be the dependence of poten-
tial ¢ on the distance r from the cen-
tre of the system? Plot schematically
the graph of this dependence, assuming
that ¢; < 0. . 'Fig. 2.9

Solution. We write the expressions

for potentials outside the system (pr1) and in the region between the
spheres (p1): 4

nta '

-1 — %
M=fmee ~ 7 0 T Igg, T

where @, is a certain constant. Its value can be easily found from the
boundary condition: for r = R,, ¢11 = @1. Hence

Qo = qa/4negR,.

From the condition @y (R;) = 0 we find that ¢, = —gq,R,/R;.
The ¢ (r) dependence (Fig. 2.110) will have the form:z e
=0 A-RJR, o @ (L__i_
fu= 4ne, r )y o= 4neg \ r Ry ) :

® 2.3. The force acting on a surface charge. An uncharged me-
tallic sphere of radius R is placed into an external uniform field, as a
result of which an induced charge appears on the sphere with surface
density ¢ = g, cos ¥, where o, is a positive constant and ® is a polar
angle. Find the magnitude of the resultant electric force acting on
like charges.

Solution. According to (2.5), the force acting on the area element
das is

F;—%—GEdS. (1)

fn,

It follows from symmetry considerations that the resultant force ¥
is directed along *fte Z-axis (Fig. 2.11), and hence it can be represented
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as the sum (integral) of the projections of elementary forces (1) onto
the Z-axis:

dF, = dF cos 9. @)

It is expedient to take for the area element dS a spherical zone dS =

Fig. 2.11

= 2nR sin O+R dO. Considering that E = o/e,, we transform (2) as
follows:

dF; = (n62R?/e,y) sin @ cos & d& = — (ng}R3/r,) cos® O d (cos B).

Integrating this expression over the half-sphere (i.e. with respect to
cos O between 1 and 0), we obtain

F = nojR%4e,.

@ 2.4. Image method. A point charge q is at a distance ! from an
infinite conducting plane. Find the density of surface charges induced
on the plane as a function of the distance r from the base of the per-
pendicular dropped from the charge g onto the plane.

Solution. According to (2.2), the surface charge’density on a conduc-
tor is connected with the electric field near its surface (in vacuum
through the relation 0 = gyE,. Consequently, the problem is reduce
to determining the field E in the vicinity of the conducting plane.

Using the image method, we find that the field at the point P
(Fig. 2.12) which is at a distance r from the point O is
- —o_9 1
E=2Eqcosa=2 Treg® 7
Hence
a4

2n (134-r3)3/2
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where the minus sign indicates that the induced charge is opposite
to sign to the point charge q.

@ 2.5. A point charge g is at a distance ! from an infinite conduc-
ting plane. Find the work of the electric force acting on the charge q
done upon its slow removal to a very large distance from the plane.

-q F ¢
o- - ——
x dx X
Fig. 2.12 Fig. 2.13

Solution. By definition, the work of this force done upon an ele-
mentary displacement dz (Fig. 2.13) is given by

0A=Fydz= e, @ dz,
where the ex.fression for the force is obtained with the help of the
;il::ge method. Integrating this equation over z between ! and oo, we
- J
Am — 20 5 gz &
T ibne, J z? = 16meyl °

Remark. An attempt to solve this problem in a diflerent way (through
potential) leads to an erroneous result which differs from what
was obtained by us by a factor of two. This is because the relation
A = q (p; — @y) is valid only for potential fields. However, in the
reference system fixed to the conducting plane, the electric field of
induced charges is not a potential field: a displacement of the charge
¢ leads to a redistribution of the induced charges, and their field turns
out to be time-dependent.

@® 2.6, A thin conductinf ring of radius R, having a charge g, is

arranged so that it is parallel to an infinite conducting plane at a dis-

tance [, from it. Find (1) the surface charge density at a point of the
lane, which is symmetric with respect to the ring and (2) the electric
eld potential at the centre of the ring.

Solution. It can be easily seen that in accordance with the image
method, a fictitious charge —g must be located on a similar ring but
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on the other side of the conducting plane (Fig. 2.14). Indeed, only in
this case the potential of the midplane between these rings is equal to
zero, i.e. it coincides with the potential of the conducting plane. Let
us now use the formulas we already know.

(1) In order to find o at the point O, we must, according to (2.2),
find the field E at this point (Fig. 2.14). The expression for E on the

——— ——

S -2 (a) (v)

Fig. 2.14 Fig. 2.15

axis of a ring was obtained in Example 1 (see p. 14}. In our case, this
expression must be doubled. As a result, we cbtain
ql
2 (RO By
(2) The potential at the centre of the ring is equal to the algebraic
sum of the potentials at this point created by the charges ¢ and —g¢:

g=

= 4::50 (% ‘/ﬁTqm)

@ 2.7. Three unlike point charges are arranged as shown in
:“1'5. 2.15a, where AOB is the right angle formed by two conducting

f-planes. The magnitude of each of the charges is | ¢ |.and the dis-
tances between them are shown in the figure. Find (4) the total charge
ittliduced on the conducting half-planes and (2) the force acting on the
charge —gq.

Solution. The half-planes forming the angle A0B go to irfinity,
and hence their potential ¢ = 0. It can be ecasily seen that a system
having equipotential suriaces with ¢ = 0 coincidizg with the conduc-
ting half-planes has the form shown in Fiz. 2.45b. Hence the action
of the charges induced on the conducting bali-planes is equivalent to
the action of the fictitious charge —¢ placed in the lewer left corner of
the dashed square.

Thus we have already answered the first question: —g.

By reducing the system to jour point charges, we can easiiy find
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the required force (see Fig. 2.15b)

9 2
FeFy—F—=2V2=1 T

Gne,  2a%7
and answer the second question.

® 2.8. Capacitance of parallel wires. Two long straight wires
with the same cross section are arranged in air parallel to one another.

P
LAY

Fig. 2.16

. Fig. 2.17

The distance between the wires is 1) times larger than the radius of the
wires’ cross section. Find the capacitance of the wires per unit length
provided that n > 1.

Solution. Let us mentally charge the two wires by charges of the
same magnitude and opposite signs so that the charge per unit length
is equal to A. Then, by definition, the required capacitance is

C,= MU, 1)
and it remains for us to find the potential difference between the wires.

It follows from Fig. 2.16 showing the dependences of the potentials
+ and @_ on the distance between the plates that the sought potential

ifference is
U=[A¢+| + |[Agp_| = 2[Aq. . (2

The intensity of the electric field created by one of the wires at a dis-

tance z from its axis can be easily found with the help of the Gauss
theorem: E = A/2negz. Then .

b-a

A b—a
|A‘P+'=SEdI=2—neo—lﬂ—a ’ (3)

a

where a is the radius of the wires’ cross section and b is the separation
between the axes of the wires.

5—0181
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It follows from (1), (2) and (3) .nat
Cy = 7g/ln y,
where we took into account that b > a.

® 2.9. Four identical metallic plates are arranged in air at the
same distance & from each other. The outer plates are connected by a
conductor. The area of each plate is equal to S. Find the capacitance
of this system (between points I and 2, Fig. 2.17).

Solution. Let us charge the plates 7 and 2 by charges ¢, and —¢,.
Under the action of the dissipation field appearing between these
plates (edge effect), a charge will move in the connecting wire, after
which the plate 4 will be charged negatively while the plate B will
acquire a positive charge. An electric field appears in the gaps be-
tween the plates, accompanied by the corresponding distribution of
potential ¢ (Fig. 2.18). It should be noted that as follows from the
symmetry of the system, the potentials at the {middle of the system as
well as on its outer plates are equal to zero.

By definition, the capacitance of the system in this case is

C=qlU (1)

where U is the required potential difference between the points 1
and 2. Figure 2.18 shows that the polential difference U between the
inner plates is twice as large as the potential dilference between the
outside pair of plates (both on the right and on the leit). This also
refers to the field intensity:

E = 2E’, A
And since £ OC 0, we can state that according to (2) the charge g, on

plate 1 is divided into two parts: g,/3 on the left side of the plate 1
and 2g,/3 on its right side. Hence

U = Eh = ohley = 2ghl3e,S,
and the capacitance of the system (between points 7 and 2) is
3605

C=—p -

@ 2.10. Distribution of an induced charge. A point charge ¢ is
placed between two large parallel conducting plates 7 and 2 sepa-
rated by a distance !. Find the total charges ¢, and ¢, induced on each
plate, if the plates are connected by a wire and the charge g is located
at a distance !, from the left plate 7 (Fig. 2.19a).

Solution. Let us use the superposition principle. We mentally
place somewhere on a plane P the same charge g. Clearly, this wiil
double the surface charge on each plate. If we now distribute uniformly
on the surface P a certain charge with surface density o, the electric
field can be easily calculated (Fig. 2.19%).

The plates are connected by the wire, and hence the potential
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difference between them is equal to zero. Consequently,
Ejxly + Eop (I — L) =0,

where E,, and E,, are the projections of vector E onto the X-axis to
the left and to the right of the plane P (Fig. 2.19b).
On the other hand, it is clear that

g = —-(01 + oi)t
where, in accordance with (2.2), 0y = gEyn = &E;, and o, =
= Eolyy = —&oEy, (the minus sign indicates that the normal n,

is directed oppositely to the unit vector of the X-axis).
Eliminating £, and E,, from these equations, we obtain

0= —0a (Il — UL/, g, = —al/l.

The formulas for charges ¢; and g, in terms of g have a similar form.
It would be difficult, however, to solve this problem with the help

P
® © I = N
.. l —
“ |
E|E|E —
A B . 4 ol | X
7P, @ |
0 ? |
4 X | 1 o 7
7,
~ (a) ()

Fig. 2.1803 Fig. 2.19

of the image mcthod, since it would require an infinite scries of ficti-
tious charges arranged on both sides of the charge g, and to find the
field of such a system is a complicated problem.

3. Electric Field in Dielectrics

3.1. Polarization of Dielectrics

Dielcctrics. Dielectrics (or insulators) are substances that
practically do not conduct electric current. This raeans that
in contrast, for example, to conductors dielectrics do not
contain charges that can move over considerable distances
and create eleclric current.

(3]
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When even a neutral dielectric is introduced into an exter-
nal electric field, appreciable changes are observed in the
field and in the dielectric itself. This is because the dielec-
tric is acted upon by a force, the capacitance of a capacitor
increases when it is filled by a dielectric, and so on.

In order to understand the nature of these phenomena, we
must take into consideration that dielectrics consist either
of neutral molecules or of charged ions located at the sites
- of a crystal lattice (ionic crystals, for example, of the NaCl
type). The molecules can be either polar or nonpolar. In a
polar molecule, the centre of “mass” of the negative charge
is displaced relative to the centre of “mass” of the positive
charge. As a result, the molecule acquires an intrinsic dipole
moment p. Nonpolar molecules do not have intrinsic dipole
moments, since the “centres of mass” of the positive and ne-
gative charges in them coincide.

Polarization. Under the action of an external electric
field, dielectric is polarized. This phenomenon consists in
the following. If a dielectric is made up by nonpolar molecu-
les, the positive charge in each molecule is shifted along the
field and the negative, in the opposite direction. 1f a dielec-
tric consists of polar molecules, then in the absence of the
field their dipole moments are oriented at random (due to
thermal motion). Under the action of an external field, the
dipole moments acquire predominant orientation in the
direction of the external field. Finally, in dielectric crystals
of the NaCl type, an external field displaces all the positive
ions along the field and the negative ions, against the field.*

Thus, the mechanism of polarization depends on the struc-
ture of a dielectric. For further discussion it is only impor-
tant that regardless of the polarization mechanism, all the
positive charges during this process are displaced along the
field, while the negative charges, against the field. It should
be noted that under normal conditions the displacements of
charges are very small even in comparison with the dimen-
sions of the molecules. This is due to the fact that the inten-
sity of the external field acting on the dielectric is consider-

* There exist ionic crystals polarized even in the absence of an
external field. This property is inherent in dielectrics which are
called electrets (they resemble permanent magnets).
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ably lower than the intensities of internal electric fields in
the molecules.

Bulk and Surface Bound Charges. As a result of polariza-
tion, uncompensated charges appear on the dielectric surface
as well as in its bulk. To understand better the mechanism

(a) (b) (c)
Fig. 3.1

of emergence of these charges (and especially bulk charges),
let us consider the following model. Suppose that we have a
plate made of a neutral inhomogeneous dielectric (Fig. 3.1a)
whose density increases with the coordinate z according
to a certain law. We denote by p, and p_ the magnitudes of
the volume densities of the positive and negative charges in
the material (these charges are associated with“nuclei and
electrons).

In the absence of an external field, p, = p_ at each point
of the dielectric, since the dielectric is electrically neutral.
However, p, as well as p_ increase with z due to inhomoge-
neity of the dielectric (Fig. 3.1b). This figure shows that in

- the absence of external field, these two distributions ex-
actly coincide (the distribution of p)(z) is shown by the
solid line, while that of p_ (z), by the dashed line).

Switching on of the external field leads to a displacement
of the positive charges along the field and of the negative
charges against the field, and the two distributions will be
shifted relative to one another (Fig. 3.1¢). As a result, un-
compensated charges will appear on the dielectric surface as
well as in the bulk (in Fig. 3.1 an uncompensated negative
charge appears in the bulk). It should be noted that the re-
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version of the field direction changes the sign of all these
charges. It can be easily seen that in the case of a plate made
of a homogeneous dielectric, the distributions p, (z) and
p_ () would be II-shaped, and only uncompensated surface
charges would appear upon their relative displacement in
the field E.

Uncompensated charges appearing as a result of polariza-
tion of a dielectric are called polarization, or bound, charges.
The latter term emphasizes that the displacements of these
charges are limited. They can move only within electrically
neutral molecules. We shall denote bound charges by a prime
(q'9 P', 0')-

Thus, in the general case the polarization of a dielectric
leads to the appearance of surface and bulk bound charges
in it.

We shall call the charges that do not constitute dielectric
molecules the extraneous charges.* These charges may be
located both inside and outside the dielectric.

The Field in a Dielectric. The field E in a dielectric is the
term applied to the superposition of the field E, of extra-
neous charges and the field E’ of bound charges:

E=E, +E, (3.1)

where E, and E’ are macroscopic fields, i.e. the microscopic
fields of extraneous and bound charges, averaged over a
physically infinitesimal volume. Clearly, the field E in the
dielectric defined in this way is also a macroscopic field.

3.2. Polarization

Definition. It is natural to describe polarization of a dielec-
tric with the help of the dipole moment of a unit volume.
If an external field or a dielectric (or both) are nonuniform,
polarization turns out to be different at different points of
the dielectric. In order to characterize the polarization at a
given point, we must mentally isolate an infinitesimal volume
AV containing this point and then find the vector sum of the

* Extraneous charges are frequently called free charges, but this
termfis not convenient in some cases since extraneous charges may be
not free.
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dipole moments of the molecules in this volume and write
the ratio

p=X‘f,_2 P.. (3.2)

Vector P defined in this way is called the polarization of a
dielectric. This vector is numerically equal to the dipole mo-
ment of a unit volume of the substance.

There are two more useful representations of vector P.
Let a volume AV contain AN dipoles. We multiply and di-
vide the right-hand side of (3.2) by AN. Then we can write

P =n {p), (3.3)

where n = AN/AV is the concentration of molecules (their
number in a unit volume) and {p) = (Zp,)/AN is the mean
dipole moment of a molecule.

Another expression for P corresponds to the model of
a dielectric as a mixture of positive and negative “fluids”.
Let us isolaté a very small volume AV inside the dielectric.
Upon polarization, the positive charge p’, AV contained
in this volume will he displaced relative to the negative
charge by a distance 1, and these charges will acquire the
dipole moment Ap = p} AV.l. Dividing both sides of this
formula by AV, we obtain the expression for the dipole mo-
ment of a unit volume, i.e. vector P:

P = o}l (3.4)

The unit of polarization P is the coulomb per square meter
(C/m®).

Relation Between P and E. Experiments show that for
a large number of dielectrics and a broad class of phenomena,
polarization P linearly depends on the field E in a dielectric.
For an isotropic dielectric and for not very large E, there
exists a relation

P — xe,E, (3.5)

where % is a dimensionless quantity called the dielectric
susceptibility of a substance. This quantity is independent
of E and characterizes the properties of the dielectric itself.
% is always greater than zero.

Henceforth, if the opposite is not stipulated, we shall
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consider only isotropic dielectrics for which relation (3.5)
is valid.

However, there exist dielectrics for which (3.5) is not
applicable. These are some ionic crystals (see footnote on
page O8) and ferroelectrics. The relation between P and E
for ferroelectrics is nonlinear and depends on the history
of the dielectric, i.e. on the previous values of E: (this'phe-
nomenon is called hysteresis).

3.3. Properties of the Field of P

The Gauss Theorem for the Field of P. We shall show
that the field of P has the following remarkable and impor-
tant property. It turns out that the flux of P through an

Fig. 3.2

arbitrary closed surface S is equal to the excess bound charge
(with the reverse sign) of the dielectric in the volume en-
_closed by the surface 3, i.e.

<§ PdS = — gin:. (3.6)

This equation expresses the Gauss theorem for vector P.

Proof of the theorem. Let an arbitrary closed surface S
envelope a part of a dielectric (Fig. 3.2a, the dielectric is
hatched). When an external electric field is switched on,
the dielectric is polarized—its positive charges are displaced
relative to the negative charges. Let us find the charge which
passes through an element dS of the closed surface S in the
outward direction (Fig. 3.2b).

Let 1; and 1. be vectors characterizing the displacement
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of the positive and negative bound charges as a result of
polarization. Then it is clear that the positive charge
p.11dS cos a inclosed in the “inner” part of the oblique
cylinder will pass through the area element dS from the
surface S outwards (Fig. 3.2b). Besides, the negative charge
p’l_dS cos a enclosed in the “outer” part of the oblique cyl-
inder will enter the surface S through the area element dS.
But be know that the transport of a negative charge in a
certain direction is equivalent to the transport of the posi-
tive charge in the opposite direction. Taking this into account,
we can write the expression for the total bound charge pass-
ing through the.area element dS of the surface S in the out-
ward direction:

dq =p,lydScosa+ |p/|l.dScosa.
Since | p! | = p, we have
dg’ = py (I+ +1.)dS cosa = pyldS cos a,

3.7)
where [ = I, + I_ is the relative displacement of positive
and negative bound charges in the dielectric during polari-
zation.

Next, according to (3.4), p,l = P and dg’ = P dS cos a,
or
dq’ = P, dS = P-dS. (3.8)

Integrating this expression over the entire closed surface
S, we find the total charge that left the volume enclosed
by the surface S upon polarization. This charge is equal to

§ P.dS. As a result, a certain excess bound charge g will

be left inside the surface S. Clearly, the charge leaving the
volume must be equal to the excess bound charge remaining
within the surface S, taken with the opposite sign. Thus, we
arrive at (3.6).

Difterential form of Eq. (3.6). Equation (3.6), viz. the Gauss

theorem for the field of vector P, can be written in the differential form
as follows:

VvV -P=—p’, (3'9)
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i.e. the divergence of the field of vector P is equal to the volume density
of the excess bound charge at the same point, but taken with the oppo-
site sign. This equation can be obtained from (3.6) in the same manner
as the similar expression for vector E was obtained (see p. 24). For
this purpose, it is sufficient to replace E by P and p by p’..

When Is p’ Equal to Zero in a Dielectric? We shall show
that the volume density of excess bound charges in a dielec-
tric is equal to zero if two conditions are simultaneously
satisfied: (1) the dielectric is homogeneous and (2) there
are no extraneous charges within it (p = 0).

Indeed, it follows from the main property (3.6) of the
field of vector P that in the case of a homogeneous dielectric,
we can substitute xeyE for P in accordance with (3.5), take
% out of the integral, and write

x@eOE-dS-: —q'.

The remaining integral is just the algebraic sum of all the
charges—extraneous and bound—inside the closed surface
S under consideration, i.e. it is equal to ¢ + ¢’. Hence,
% (g + ¢') = — ¢’, from which we obtain

X
¢=—q75 (3.10)

This relation between the excess bound charge ¢’ and
the extraneous charge ¢ is valid for any volume inside the
dielectric, in particular, for a physically infinitesimal vol-
ume, when ¢’ — dg’ = p’dV and q — dg = pdV. Then, after
cancelling out dV, Eq. (3.10) becomes

p'=— %P (3.11)

Hence it follows that in a homogeneous dielectricp’ = 0
when p = 0.

Thus, if we place a homogeneous isotropic dielectric of
any shape into an arbitrary electric field, we can be sure
that its polarization will give rise only to the surface bound
charge, while the bulk excess bound charge will be zero at
all points of such a dielectric.

Boundary Conditions for Vector P. Let us consider the
behaviour of vector P at the interface between two homo-
geneous isotropic dielectrics. We have just shown that in
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such a dielectric there is no excess bound bulk charge and
only a surface bound charge appears as a result of polari-
zation.

Let us find the relation between polarization P and the
surface density ¢’ of the bound charge at the interface be-
tween the dielectrics. For this purpose, let us use property
(3.6) of the field of vector P. We ”
choose the closed surface in the

form of a flat cylinder whose end- P n AS
faces are on different sides of the

interface (Fig. 3.3). We shall as- 1 ,
sume that the height of the cyl- V.
inder is negligibly small and the n
area AS of each endface is so small Fig. 3.3

that vector P is the same at all
points of each endface (this also refers to the surface density
o’ of the bound charge). Let n be the common normal to the
interface at a given point. We shall always draw vector n
from dielecfric 7 to dielectric 2.

Disregarding the flux of P through the lateral surface
of the cylinder, we cah write, in accordance with (3.6):

Py, AS + P,,,-AS = — o' AS,

where P,, and P,,. are the projections of vector P in dielec-
tric 2 onto the normal n and in dielectric / onto the normal
n’ (Fig. 3.3). Considering that the projection of vector P onto
_the normal n’ is equal to the projection of this vector onto
the opposite (common) normal n, taken with the opposite

sign, i.e. P,,» = — P,,, we can write the previous equation
in the following form (after cancelling AS):
Py — Py = —0'. (3.12)

This means that at the interface between dielectrics the
normal component of vector P has a discontinuity, whose
magnitude depends on ¢’. In particular, if medium 2 is a
vacuum, then P,, = 0, and condition (3.12) acquires a
simpler form:

o = P, (3.13)

where P, is the projection of vector P onto the outward nor-
mal to the surface of a given dielectric. The sign of the pro-
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jection P, determines the sign of the surface bound charge
o’ at a given point. Formula (3.13) can be written in a differ-
ent form. In accordance with (3.5), we can write

o' = ugokE,, (3.14)

where E, is the projection of vector E (inside the dielectric
and in the vicinity of its surface) onto the outward normal.
Here, too, the sign of E, determines the sign of o’.

A Remark about the Field of Vector P. Relations (3.6)
and (3.13) may lead to the erroneous conclusion that the
field of vector P depends only on the bound charge. Actually,
this is not true. The field of vector P, as well as thefield of E,
depends on all the charges, both bound and extraneous.
This can be proved if only by the fact that vectors P and
E are connected through the relation P = x¢,E. The bound
charge determines the flux of vector P through a closed sur-
face S rather than the field of P. Moreover, this flux is de-
termined not by the whole bound charge but by its part
enclosed by the surface §.

3.4. Yector D

The Gauss Theorem for Field D. Since the sources of an
electric field E are all the electric charges—extraneous and .
bound, we can write the Gauss theorem for the field E in
the following form:

§ eE dS = (g+ ¢)int, (3.15)

where ¢ and ¢’ are the extraneous and bound charges en-
closed by the surface S. The appearance of the bound charge
q’ complicates the analysis, and formula (3.15) turns out
to be of little use for finding the field E in a dielectric even
in the case of a “sufficiently good” symmetry. Indeed, this
formula expresses the properties of unknown field E in terms
of the bound charge ¢’ which in turn is determined by un-
known field E.

This difficulty, however, can be overcome by expressing
the charge g’ in terms of the flux of P by formula (3.6). Then
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expression (3.15) can be transformed as follows: -
§ (eE+ P) dS = gt (3.16)

The quantity in the parentheses in the integrand is denoted
by D. Thus, we have defined an auxiliary vector D

(3.17)

D=80E+P,

whose flux through an arbitrary closed surface is equal to the

algebraic sum of extraneous charges enclosed by this sur-
face:

Jj;l)dsz Gint-

" This statement is called the Gauss theorem for field D.

It should begnoted that vector D is the sum of two complete-
ly different quantities: e,E and P. For this reason, it is
indeed an auxiliary vector which does not have any deep
physical meaning. However, the property of the field of
vector D, expressed by equation (3.48), justifies the intro-
duction of this vector: in many cases it considerably simpli-
fies the analysis of the field in dielectrics.*

Relations (3.17) and (3.148) are valid for any dielectric,
both isotropic and anisotropic.

Expression (3.17) shows that the dimensions of vector
D are the same as those of vector P. The quantity D is
measured in coulombs per square metre (C/m?).

Differential form of Eq. (3.18) is

(3.18)

' V-D=p, ’ (3.19)

i.e. the divergence of the field D is equal to the volume density of an
extraneous charge at the same point.

This equation can be obtained from (3.18) in the same way as it
was done for the field E (see p. 24). It suffices to replace E by D and
take into account only extraneous charges.

* The quantity D is often called dielectric displacement, or electro-
static induction. We shall not be using this term, however, in order to
emphasize the auxiliary nature of vector D.
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At the points where the divergence of vector D is positive we have
the sources of the tield D (p > 0), while at the points where the diver-
gence is negative, the sinks of the tield D (p << V).

Relation Between Vectors D and E. In the case of isotrop-
ic dielectrics, polarization P = xe E. Substituting this
expression into (3.17), we obtain D = g4 (1 4+ %) E, or

D =¢4eE, (3.20)

where e is the dielectric constant of a substance:
e=1+x% 3.21)

The dielectric constant & (as well as x) is the basic electric
characteristic of a dielectric. For materials € > 1, while
for vacuum & = 1. The value of ¢ depends on the nature of
the dielectric and varies between the values slightly differ-
ing from unity (for gases) and several thousands (for some
ceramics). The value of € for water is rather high (e = 81).

Formula (3.20) shows that in isotropic dielectrics vector
D is collinear to vector E. For anisotropic dielectrics, these
vectors are generally noncollinear.

The field D can be graphically represented by the lines
of vector D, whose direction and density are determined in
the same way as for vector E. The lines of E may emerge and
terminate on extraneous as well as bound charges. We say
that any charges may be the sources and sinks of vector E.
The sources and sinks of field D, however, are only extraneous
charges, since only on these charges the lines of D emerge and
terminate. The lines of D pass without discontinuities
through the regions of the field containing bound charges.

A Remark about the Field of Vector D. The field of vector
D generally depends on extraneous as well as bound charges
(just as the field of vector E). This follows if only from the
relation D = g,eE. .-However, in certain cases the field of
vector D is determined only by extraneous charges. It is
just the cases for which vector D is especially useful. At
the same time, this may lead to the erroneous conclusion
that vector D always depends only on extraneous charges
and to an incorrect interpretation of the laws (3.18) and
(3.19). These laws express only a certain property of field
D but do not determine this field proper.
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Let us illustrate what was said above by several examples.

Example 1. An extrancous point charge q is located at the centre
of a sphere of radius a, made of an isotropic diclectric with a dielectric

Iig. 3.5

constant . Find«he projection £ of lield intensily E as a function of
the distance r from the centre of this sphere.

The symmetry of the system allows us to use the Gauss theorem
for vector D for solving the ‘problem (we cannot use here the similar
theorem for vector E, since the bound charge is unknown to us). Ior a
sphere of radius r witli the centre at the point of location of the charge
g, we can write the following relation: 4ar*D, = 4. llence we can find
D, and then, using formula (3.20), the required quantity L.

E,(r<a)=o- 2, E (r>a)=— -

4rnigy ert? 4ney r*°
Figure 3.4 shows the curves D (r) and £ (r).

Example 2. Suppose that a system consists of a point charge ¢ > 0
and an arbitrary sample of a homogencous isotropic dielectric
(Fig. 3.3), where & is'a certain closed surface. Find out what will hap-
pen to the fields of vectors E and D (and to their fluxes through the
surface 5) if the dielectric is removed.

The field E at any point of space is determined by the charge ¢
and by bound charges of the polarized dielectric. Since in our case
D = gy¢E, this refers to the field D as well: it is also determined by
the extranegus charge ¢ and by the bound charges of the dielectric.

The removal of the dielectric will change the field E, and hence the
field D. The flux} of vector E through the surface § will also change,
since negative bound charges will vanish from inside this surface.
However, the flux of vector D through the surface S will remain the
same in spite of the change in the field D.

Example 3. Let us consider a system containing no extraneous
charges and having only bound charges. Such a system can, for
example, be a sphere made of an electret (see p. 68). Iigure 3.6a shows
the field E of this system. What can we say about the field D?
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First of all, the absence of extrancous charges means that the field
D has no sources: the lines of D do not emerge or terminate anywhere.
However, the field D exists and is shown in Fig. 3.6b. The lines of E

Lines of E Lines of D
(a) (b)
Fig. 3.6

and D coincide outside the sphere, but inside the sphere they have
opposite directions, since here the relation D = g,¢E is no longer va-
lid and D = ¢,E 4 P.

3.5. Boundary Conditions

Let us first consider the behaviour of vectors E and D
at the interface between two homogeneous isotropic dielec-
trics. Suppose that, for greater generality, an extraneous
surface charge exists at the interface between these dielec-
trics. The required conditions can be easily obtained with
the help of two theorems: the theorem on circulation of
vector E and the Gauss theorem for vector D:

PEA=0 and §DdS=gp.

Boundary Condition for Vector E. Let the field near the
interface be E, in dielectric I and E, in dielectric 2. We
choose a small elongated rectangular contour and orient it as
shown in Fig. 3.7. The sides of the contour parallel to the
interface must have such a length that the field E over this
length in each dielectric can be assumed constaut. The
“height” of the contour must be negligibly small. Then, in
accordance with the theorem on circulation of vector E,
we have

Eyl + Eyol =0,
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where the projections of vector E are taken on the direction
of the circumvention of the contour, shown by arrows in
the figure. If in the lower region of the contour we take the

Fig. 3.7 lig. 3.8

projection of vector E not onto the unit vector v’ but onto
the common unit vector v, then E,;» = — E,., and it fol-
lows from the above equation that

>

(3.22)

‘L Eh:: Ez\‘s

i.e. the tangential component of vector E turns oul to be
the same on both sides of the interface (it does not have a
discontinuity).

Boundary Condition for Vector D. Let us take a cylinder
of a very small height and arrange it at the interface be-
tween two dielectrics (Fig. 3.8). The cross section of the
cylinder must be such that vector D is the same within each
of its endfaces. Then, in accordance with the Gauss theorem
for vector D, we have

Dzn‘AS + DIYI.' ‘AS = GAS,

where ¢ is the surface density of the extraneous charge at
the interface. Taking both projections of vector D onto the
common normal n (which is directed from dielectric I to
dielectric 2), we obtain D,,. = — D,,, and the previous
equation can be reduced to the form

D,,— D, = o. (3.23)

It follows from this relation that the normal component
of vector D generally has a discontinuity when passing

6—-0181



82 3. Llectric Field in Dielectrics

through the interface. If, however, there are no extraneous
charges at the interface (0 = 0), we obtain

Dy Dy l (3.24)

In this case the normal components of vector D do not have
a discontinuity and turn out to be the same on different
sides of the interface.

Thus, in the absence of extraneous charges at the inter-
face between two homogencous isotropic dielectrics, the
components /5. and /), vary continuously during a transi-
tion through this interface, while the components E, and
D, have discontinuities.

Relraction of E and D Lines. The boundary conditions
which we obtained for the components of vectors E and D
at the interface between two dielectrics indicate (as will
be shown later) that these vectors have a break at this in-
terface, i.e. are refracted (Fig. 3.9). Let us find the relation
between the angles a; and «,.

In the absence of extraneous charges at the interface,
we have, in accordance with (3.22) and (3.24), E,; = E;«
and &,F,, = &F,,. Figure 3.9 shows that

tanay - Ey/Egp
tan a, Ex/Eq °

Taking into aceount the above condilions, we obtain the
law of refraction of lines E, and hence of lines D:

¢ lan o, €, 3.95
tano, g " (3.25)

This means that lines of D and E will form a larger angle
with the normal to the interface in the dielectric with a
larger value of e (in Fig. 3.9, ¢, > ¢)).

Example. Let us represent graphically the fields E and D at the
inicrface between two homogencous dielectrics 7 and 2, assuming that
¢, >> ¢y and there is no extraneous charge on this surface.

Since ¢, > #;, in accordance with (3.25) a, > a, (Fig. 3.10).
Considering that the tangential component of vector E remains un-
changed and using Fig. 3.9, we can casily show that 1, < | in
magnitude, i.e. the lines of E in diclectric 7 must be denser thanin
dielectric 2, as is shown in Fig. 3.10. The fact that the normal com-
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ponents of vectors D are equal leads to the conclusion that U, > D,
in magnitude, i.e. the lines of D must be denser in dielectric 2.

Ezr

% //// i

Field E Field D

Fig 3.9 Fig. 3.10

We see that in the case under consideration, the lines of E are
refracted and undergo discontinuities (due to the presence of bound
charges), while the lines of D arc only refracted, without discontinu-
ities (since there are no extraneous charges at the interface).

Boundary Condition ron the Conductor-Dielectric Inter-
face. If medium 7 is a conductor and medium 2is a dielectric
(see Fig. 3.8), it follows from formula (3.23) that

D,=o, (3.26)

where n is the conductor’s outward normal (we omitted the
subscript 2 since it is inessential in the given case). Let us
verify formula (3.26). In equilibrium, the clectric field
inside a conductor is E = 0, and hence the polarization
P = 0. This means, according to (3.17), that vector D == 0
inside the conductor, i.e. in the notations of formula (3.23)
D, =0 and D;, = 0. llence .D,, = o.

Bound Charge at the Conductor Surface. If a homogeneous
dielectric adjoins a charged region of the surface of a cou-
ductor, bound charges of a certain density o’ appear at Lhe
conductor-dielectric interface (recall that the volume den-
* sity of bound charges p° = 0 for a homogeneous dielectric).
Let us now apply the Gauss theorem to vector E in the same
way as it was done while deriving formula (2.2). Consider-
ing that there are both bound and extraneous charges (o

(3]
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and o’) at the conductor-dielectric interface we arrive at
the following expression: E, = (6 4+ 0’)/¢,. On the other
hand, according to (3.20) £, = D,/eey = o/eey. Combin-
ing these two equations, we obtain a/¢ = ¢ -- ¢’, whence

’ e—i

0’ = —————a. (3.27)

‘It can be seen that the surface density ¢’ of the bound
charge in the dielectric is unambiguously connected with
the surface density ¢ of the extraneous charge on the con-
ductor, the signs of these charges being opposite.

3.6. Fleld in a Homogeneous Dielectric

It was noted in Sec. 2.1 that the determination of the
resultant field E in a substance is associated with consider-
able difficulties, since the distribution of induced charges in
the substance is not known beforehand. It is only clear
that the distribution of these charges depends on the nature
and shape of the substance as well as on the configuration
of the external field E,. _

Consequently, in the general case, while solving the prob-
lem about the resultant field E in a dielectric, we encounter
serious difficulties: determination of the macroscopic field
E’ of bound charges in each specific case is generally a com-
plicated independent problem, since unfortunately there
is no universal formula for finding E’.

An exception is the case when the entire space where there
is a field E, is filled by a homogeneous isotropic dielectric.
Let us consider this case in greater detail. Suppose that we
have a charged conductor (or several conductors) in a va-
cuum. Normally, extraneous charges are located on conduc-
tors. As we already know, in equilibrium the field E inside
the conductor is zero, which corresponds to a certain
unique distribution of the surface charge o. Let the field
created in the space surrounding the conductor be E,.

Let us now fill the entire space of the field with a homo-
geneous dielectric. As a result of polarization, only surface
bound charges o will appear in this dielectric at the inter-
face with the conductor. According to (3.27) the charges
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o’ are unambiguously connected with the extraneous charges
o on the surface of the conductor.

As before, there will be no field inside the conductor (E =
= 0). This means that the distribution of surface charges
(extraneous charges o and bound charges ¢’) at the conductor-
dielectric interface will be similar to the previous distri-
bution of extraneous charges (o), and the configuration of
the resultant field E in the dielectric will remain the same
as in the absence of the dielectric. Only the magnitude of
the field at each point will be different.

In accordance with the Gauss theorem, o + o' = ¢g,E,,
where E, = D,/ee, = a/ee,, and hence

o+ o =ale. (3.28)
But if the charges creating the field have decreased by a factor

of & everywhere at the interface, the field E itself has become
less than the field E, by the same factor:

o E = Eye. (3.29)
Multiplying both sides of this equation by ee,, we obtain
‘D = D,, (3.30)

i.e. the field of vector D does not change in this case.

It turns out that formulas (3.29) and (3.30) are also valid
in a more general case when a homogeneous dielectric fills
the volume enclosed between the equipotential surfaces
of the field E, of extraneous charges (or of an external field).
In this case also E = E /e and D = D, inside the dielectric.

In the cases indicated above, the intensity E of the field
of bound charges is connected by a simple relation with
the polarization P of the dielectric, namely,

E = —Ple,. (3.31)

This relation can be easily obtained from the formula E =
= E, + E’ ifl we take into account that E, = ¢E and
P = xeg,E.

As was mentioned above, in other cases the situation
is much more complicated, and formulas? (3.29)-(3.31) are
inapplicable.

Corollaries. Thus, if a homogeneous dielectric fills the
entire space occupied by a field, the intensity E of the field
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will be lower than the intensity E, of the field of the same
extraneous charges, but in the absence of dielectric, by a
factor of €. Hence it follows that potential ¢ at all points
will also decrease by a factor of e:

Q= %/3' 6432)

where @, is the field potential in the absemce of the dielectric.
The same applies to the potential difference:

U = U, (3.33)

where U, is the potential difference in a vacuum, in the
absence of dielectric.

In the simplest case, when a homogeneous dielectric
fills the entire space between the plates of a capacitor, the
potential difference U between its plates will be by a facter
of ¢ less than that in the absence of dielectric (naturally,
at the same magnitude of the charge g on the plates). And
since it is so, the capacitance C = g/U of the capacitor
filled by dielectric will increase ¢ times

C' = ¢C, (3.34)

where C is the capacitance of the capacitor in the absence
of dielectric. It should be noted that this formula is valid

when the entire space between the plates is filled and edge
effects are ignored.

Problems

@ 3.1. Polarization of a dielectric and the bound charge. An extra-
neous point charge g is at the centre of a spherical layer of a hetero%‘:-
neous 1sotropic dielectric whose dielectric constant varies only in the
radial direction as ¢ = a/r, where a is a constant and r is the distance
from the centre of the system. Find the volume density p’ of a bound
charge as a function of r within the layer.

Solution. We shall use Eq. (3.6), taking a sphere of radius r as
the closed surface, the centre of the sphere coinciding with the centre
of the system. Then

4nr2. P, = —q' (1),

where ¢’ (r) is the bound charge inside the sphere. Let us take the
differential of this expression:

4n d(r*-P,) = — dq'. 1)
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Here dg’ is the bound charge in a thin layer between the spheres with
radfiiﬁ and r + dr. Considering that d¢’ = p'4nr? dr, we transform (1)
as follows:

r2dP, 4 2rP, dr = —p'r?dr,

whence
, ap 2
o=—(GE ) @
In the case under consideration we have
e—1 e—1 q
Pr=neoE, = br=== =

and after certain transformation expression (2) will have the form

1 q
P =Zna T2

which is just the required result.

@ 3.2. The Gauss theorem for vector D. An infinitely large plate
made of a hemogeneous dieleetric with the dielectric constant ¢ is
uniformly char%ed by an extraneous
charge with volume density p > 0. Exl ¢
The thickness of the plate is 2a. (1) Exp
Find the magnitude of vector E and 2
the potential g as functions of the di- Ex
stance / from the middle of the plate ’
(assume that the potential is zero in
the middle of the plate), choosing the -a 0 a
X-axis perpendicular to the plate.

X
Plot schematic curves. for the pro- / %
jection K, (z) of vector E and the po- / SoSks \\ .
tential @ (z). (2) Find the surface and / SR \?
volume densities of the bound charge. v amm LS \
/

Solution. (1) From symmetry con-
siderations it is clear that £ = 0 in Fig. 3.11
the middle of the plate, while at all 1g. o
other points vectors E are perpend-
icular to the surface of the plate. Inorder to determine E, we shall
use the Gauss theorem for vector D (since we know the distribu-
tion of only extraneous charges). We take for the closed surface a
right cylinder of height I, one of whose endfaces coincides with the
:'II‘\]i]dplane (x = 0). Let the cross-sectional area of this cylinder be S.

en

DS =pSl, D =pl, E=plleco(l < a),
DS = pSa, D =pu, E = pale,(l> a).
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The graphs of the funtions E,. (z) and ¢ (z) are shown in Fig. 3.11.
It is useful to verify that the graph of E. (z) corresponds to the de-
rivative —agq/dz.

(2) In accordance with (3.13), the surface density of the bound
charge is

e—1
- pa>0.

o' =P, =xneyE,=(e—1) pa/e=

This result is valid for both sides of the plate. Thus, if the extraneous
charge p > 0, the bound charges appearing on both surfaces of the
plate are also positive.
In order to find the volume density of the bound charge, we use
Eq. (3.9) which in our case will have a simpler form:
apP a e—1 e—1
== (=5 e)

Z | = -~ .
1 e P

It can be seen that the hound charge is uniformly distributed over
the bulk and has the sign opposite to that of the extraneous charge.

® 3.3. A homogeneous dielectric has the shape of a spherical
layer whose inner and outer radii are a and b. Plot schematically the
curves of intensity £ and potential @ of the electric field as functions
of the distance r from the centre of the system, if the dielectric is
charged by a positive extraneous charge distributed uniformly (1)
over the inner surface of the layer, (2) over the layer’s bulk.

Solution. (1) We use the Gauss theorem for vector D, taking
for the closed surface a sphere of radius r:

4nriD = gq,
where ¢ is the extraneous charge within this sphere. Hence it follows
‘that

D(r<a)=0, D (r>a)= qlinr.
The required intensity is
E(r<a)=0, E(r> a)= Dleeo.

The curve for E (r) is shown in Fig. 3.12a. The curve for ¢ (r) is also
shown in this figure. The curve ¢ (r) must have such a shape that the
derivative d¢/dr taken with the opposite sign corresponds to the curve
of the function E (r). Besides, we must take into account the normali-
zation condition: ¢ - 0 as r - oo.
It should be noted that the curve corresponding to the function
(r) is continuous. At the points where the function E (r) has finite
iscontinuities, the function ¢ (r) is only broken. )
(2) In this case, in accordance with the Gauss theorem, we have

~’mr’l)==-—§— n(r3—ad)p,
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where p is the volume density of the extraneous charge. Hence

E-—-—D-- p r’—ad
T egy  3ge 3

The corresponding curves for E (r) and ¢ (r) are shown in Fig. 3.12b.

I

E

I
L |
b r a b r
(a) (b)

Fig. 3.12

0 a

@ 3.4. Extraneous charge is uniformly distributed with the volume
density p > 0 over a sphere of radius ¢, made of a homogeneous dielec-
tric -with the permittivity €. Find (1) the magnitude of vector E as a
function of the distance r from the centre of the sphere and plot the
curves of the functions £ (r) and ¢ (r); (2) the surface and volume den-
sities of bound charge.

Solution. (1) In order to determine E, we shall use the Gauss theo-
rem for vector D since we know the distribution of only extraneous
charge:

' 5 4 (4 D P
2D — — 3, = e— —_——_—— —
r<a, 4nr:D 3 nrdp, D T E ooy Jeey r,
4 pa® D pa® 1
2 T — ’ = e—— T et T e e
r>a, 4nr:D 3~ Ta%p, D 3 P Pyl
The curves for the functions £ (r) and 3) (r) are shown in Fig. 3.13.
(2) The surface density of the bound charge is
(. p _ &—1 pa
g'=P,= T 3 -

In order to find the volume density of bound charge, it is sufficient to
repeat the reasoning that led us to formula (3.11), and we get

, e—1

P ——— 0 (1

This result can be obtained in a different way, viz. by using
Eq. (3.9). Since P = x&oE and x docs not depend on coordinates (in-
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side the sphere), we obtain

p' = —V-P = —xeuVE,
where €0V ‘E = p - p’. Hence p’ = —x (p + p’), which gives for-
mula (1).

@ 3.5. Capacitance of a conductor. Find the capacitance of a
spherical conductor of radius a, surrounded by a layer of a homoge-

J ]

|
]

b r

0 a r

(=]
1~

‘Fig. 3.13 Fig. 3.14

neous dielectric and having the outer radius b and the dielectric con-
stant . Plot approximate curves for E (r) and ¢ (r), where r is the dis-
tance from the centre of the sphere, if the sphere is charged positi-
vely.

Solution. By definition, the capacitance C = ¢/¢. Let us find the
potential ¢ of the conductor, supplying mentally a charge ¢ to it:

) ’ b 1 )
1\ - g V9
= \ Erdr= 4ne, S erl? dr- 4ne, S r2 dr.
a a H

Integrating this expression, we obtain

q R e—1 L 4nigea
4:1808( * )’ €= 14+(e—1)a/b *

= a b

The curves for E (r) and ¢ (r) are shown in Fig. 3.14.

@ 3.6. Capacitance of a capacitor. A spherical capacitor with
the radii of the plates a and ¥, where a < b, is filled with an isotropic
heterogeneous dielectric whose permittivity depends on the distance r
from the centre of the system as ¢ = a/r, where o is a constant. Find
the capacitance of the capacitor.

Solution. In accordance with the definition of the capacitance of a
capacitor (C = ¢/U), the problem is reduced to determination of the
potential difference U for a given charge g¢:

b

U—_— Ed". (i)

A
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where we assume that the charge of the inner plate is ¢ > 0. Let us
find E with the help of the Gauss theorem for vector D:

D 1 g 1 q

2 =q. = — = —
AnriD=q, E €eg  4ne, er?  4neg ar”

Substituting the latter expression into (1) and integrating, we find

_q i _ dnega
" 4neqa In2-, C= In (b/a) *

@ 3.7. The Gauss theorem and the principle of superposition.
Suppose that we have a dielectric sphere which retains polarization

Fig. 3.15

L4

after an external electric field is switched off. If the sphere is, polar-
ized uniformly, the field intensity inside it is E’ = —P/3¢,, where P
is the polarization. (1) Derive this formula assuming that the sphere is
polarized as a result of a small displacement of all positive charges of
the dielectric with respect to all its negative charges. (2) Using this
formula, find the intensity E, of the field in the spherical cavity inside
an infinite homogeneous dielectric with the permittivity « if the field
intensity in the dielectric away from the cavity is E.

Solution. (1) Let us represent this sphere as a combination of two
spheres of the same radii, bearing uniformly distributed charges with
volume densities p and —p. Suppose that as a result of a small shift,
the centres of the spheres are displaced relative to one another by a
distﬁnce 1 (Fig. 3.15). Then at an arbitrary point A inside the sphere
we have

‘g P oy et
E'=E{-}+EL= 3e, (ry—r.)= 3e;
where we used the fact that field intensity inside a uniformly charged
sphere is E = pr/3g,, which directly follows from the Gauss theorem.
It remains for us to take into account that in accordance with (3.4),

pl = P. )
ﬁ) The creation of a spherical cavity in a dielectric is equivalent
to the removal from a sphere of a ball made of a polarized materia}.
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Consequently, in accordance with the principle of superposition, the
field E inside the dielectric can be represented as the sum E = E’ +

-+ E,. Hence
Eo=E — E’ = E + P/3¢,.
Considering that P = (¢ ]— 1) ¢,E, we obtain
E, = (2 + ¢) E/3.

® 3.8. Boundary conditions. In the vicinity of point 4 (Fig. 3.16)
belonging to a diclectric-vacuum interface, the electric field intensity
in vacuum is cqual to E;, and the vector E, forms the angle ao with
the normal to the interface at the given point. The dielectric permittiv-

ity is e. Find the ratio E/E,, where E is the intensity of the field in-
side the dielectric in the vicinity of point A.

Solution. The field intensity inside the dielectric is
E=)Ez|F%. U]
Using conditions (3.22) and (3.24) at the interface between dielectrics,
we find
E, = Eysinay, E, = Dpleeg = Egle = Eq cos ayle,

where E,, is the normal componcnt of the vector E, in a vacuum.
Substitating these expressions into (1), we obtain

E i cos? a,
=)/ sint e b <t
i.e. E<E,.

@ 3.9. A point charge ¢ is in a vacuum at a distance ! from the
plane surface of a homogeneous dielectric filling the half-space below
the plane. The dielectric’s permittivity is . Find (1) the surface den-
sity of the bound charﬁe as a function of the distance r from the point
charge g and analyse the obtained result; (2) the total bound charge on
the surface of the dielectric.

Solution. Let us use the continuity of the normal component of
vector D at the dielectric-vacuum interface (Fig. 3.17):

Doy = Dyyy  Eop = eEyy,
or

1 q a’ 1 q o’
— 2 cos ©- —¢ (_ I cos 0— )

4, r? cos U+ 2¢, € 4ne, r? cc‘»s ! 2ey 1’
where the term o'/2¢, is the component of the electric field created
near the region of the plane under consideration, where the surface
charge density is o’. From the last equality it follows that

, e—1 gl

S L. LA 1
e+1 2nrd - M
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Here we took into account that cos# = I/r. As I — 0 the quantity
o' — 0, i.e. if the charge ¢ is just at the interface, there is no surface
charge on the plane.

(2) Let us imagine at the interface a thin ring with the centre at
the point O (Fig. 3.17). Suppose that the inner and outer radii of this
ring are r’ and r’' 4 dr’. The surface
bound charge within this ring is
dq'=0’ « 2nr' dr’. It can be seen

r n from the figure that r? = 34 r'2,
! P whence r dr = r’ dr’, and the expres-
2 sion for dg’ combined with (1) gives
‘* e—1 dr

//' 4 Integrating this equation over r be-

tween [ and oo, we obtain

Fig. 3.17 . e—1
q9 = e+1 q.

@ 3.10. A point charge ¢ is on the plane separating a vacuum
from an infinite lomogeneous dielectric with the dielectric permittivi-
ty €. Find the magnitudes of vectors D and E in the entire space.

Solution. In this case, it follows from the continuity of the normal
component of vector D that E,, = ¢E;,. Only the surlace charge ¢’
will contribute to the normal component of vector E in the vicinity
of the point under consideration. Hence the above equality can be
written in the form

6'/280 = & (—0'/2¢€0).

We immediately find that ¢’ = 0.

Thus, in the given case there is no bound surface charge (with the
exception of the points in direct contact with the extraneous point
charge q}. This means that the electric field in the surrounding space
is the field of the point charge ¢ 4 ¢’, and £ depends only on the dis-
tance r from this charge. But the charge ¢’ is unknown, and hence
we must use the Gauss theorem for vector D. Taking for the closed
surface a sphere of radius r with the centre at the point of location of
the charge g, we can write

2ur2Dy + 252D = g,

where Do and D are the magnitades of vector D at the distance r
from the charge ¢ in the vacunm and in the dielectric respectiveiy.
Besides, from the continuity of the tangential component of vector
E it follows that
D = EUQ.

Combining these two conditions, we find

D"”Zu(i—]-s)rz' b 2n(1+e)r2 '
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and the electric field intensity in the entire space is

_ Dy _ 1
E= €y 2n(1-]-g)ger? °
It can be seen that for ¢ = 1 these formulas are reduced to the al-
ready familiar expressions for D and £ of the point charge in a vac-

uum.
The obtained results are represented graphically in Fig. 3.18. It

Field E Field D
Fig. 3.18

should be noted that the field D in this case is not determined by the
extraneous charge alone (otherwise it would have the formm of the field
of a point charge).

4. Energy of Electric Field

4.1. Electric Energy of a System of Charges

Energy Approach to Interaction. The energy approach
to interaction between electric charges is, as will be shown,
rather fruitful in respect of its applications. Besides, this
approach makes it possible to consider the electric field
from a different point of view.

First of all, let us find out how we can arrive at the con-
cept of the energy of interaction in a system of charges.

1. Let us first consider a system of fwo point charges /
and 2. We shall find the algebraic sum of the elementary
works of the forces F, and F, of interaction between the
charges. Suppose that in a certain system of reference K
the charges were displaced by dl, and dl; during the time
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dt. Then the corresponding work of these forces is
6{' 1,2~ Fl . (lll ‘l‘ Fz ‘dlz.

Considering that I, = — F; (according to the Newton
third law), we can write this expression in the form

84, o =F, (dl,—dl,).

The quantity in the parentheses is the displacement of
charge I relative to charge 2. In other words, it is the dis-
placement of charge 7 in the system of reference K’, which
is rigidly fixed to charge 2 and accomplishes with it a trans-
lational motion relative to the initial reference system K.
Indeed, the displacement dl;, of charge / in system K can
be represented as the displacement dl, of system K’ plus
the displacement dli of charge I relative to system
K’:dl, = dl, + dli. Hence, dl; —dl, = dlj, and

. 6A1,2=F1'dl1l.

Thus, il turns out that,the sum of the elementary works
done by two charges in an arbitrary system of reference K
is always equal to the elementary work done by the force
acting on one charge in another reference system (K’) in
which the other charge is at rest. In other words, the work
84, , does not depend on the choice of the initial system of
reference.

The force F, acting on charge I from charge 2 is conserva-
tive (as a central force). Consequently, the work of the given
force in the displacement dli can be represented as the de-
crease in the potential energy of interaction between the
pair of charges under consideration:

8Ay 5 —dW,,

where W,, is the quantity depending only on the distance
between these charges.

2. Let us now go over to a system of three point charges
(the result obtained for this case can be easily generalized
for a system of an arbitrary number of charges). The work
performed by all forces of interaction during elementary
displacements of all the charges can be represented as the
sum of the works of three pairs of interactions, i.e. §4 =
=04,, 4+ 84,3 + 64,5, But as it has just been shown,
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for each pair of interactions 64; , = — dW,;,, and hence
0A = —d (W, + Wy + Wzs) = —adW,

where W is the energy of interaction for the given system of
charges:

W= le + Wl3 -+ sz-

Each term of this sum depends on the distance between
corresponding charges, and hence the energy W of the given
system of charges is a function of its configuration.

Similar arguments are obviously valid for a system of
any number of charges. Consequently, we can state that to
each configuration of an arbitrary system of charges, there
corresponds a certain value of energy W, and the work of
all the forces of interaction upon a change in this configu-
ration is equal to the decrease in the energy W

84 = — dW. (4.1)

Energy of Interaction. Let us find the expression for the
energy W. We again first consider a system of three point
charges, for which we have found that W = W, + W, +

+ W,s. This sum can be transformed as follows. We
represent each term W, in a symmetric form: W;, =

=—; (Wi + Wy,), since Wy, = Wy Then
W= (Wit W+ Wiy W+ Wag + W),
Let us group the terms with similar first indices:
W= —;' [{(Wio+ W)+ (IWar + Wag) + (Wi + W)l

Each sum in the parentheses is the energy W, of interaction
between the ith charge with all the remaining charges.
Hence the latter expression can be written in the form

3
.
W= (Wit Wk W) =3 3 W,
i=1

This expression can be generalized to a system of an arbi-
trary number of charges, since the above line of reasoning
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obviously does not depend on the number of charges con-
stituting the system. Thus, the energy of interaction for
a system of point charges is

W= St (4.2)

Considering that WW; == g;¢;, where g; is the ith charge of
the system and «; is the potential created at the point of
location of the ith charge by all the remaining charges, we
obtain the final expression for the energy of interaction of
the system of point charges:

, 1
o= 2 i (4.3)

Example. Four similar point charges q are located at the vertices
of a tetrahedron with an cdge « (Fig. 4.1). Find the energy of inter-
activn of charges in this system.

The energy of interaction for cach pair of charges of this system is
the same and cqual to W, = ¢%4neqa. It can be scen from the figure
that the total number of interacting pairs is six, and hence the energy
of interaction of all point charges of the system is

W = 6W, = 6¢*/4ne,a.

Another approach to the solution of this
problem is based on formula (4.3). The pote-
ntial @ at the point of location of onc of the
charges, created by the field of all the other

, is @ = 3q/4nega. llence q

4
1 1, 1 (g2
W:—; -—2— Z qiP; - —2— aqQp = —_— q9

‘ 4ney  a
i=1 Fig. 4.1

Total Energy of Interaction. If the charges are arranged
continuously, then, representing the system of charges as
a combination of elementary charges dg = pdV and going
over in (4.3) from summation to integration, we obtain

I W o | pwav, l (4.4)

7-0181
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where ¢ is the potential created by all the charges of the
system in the volume element dV. A similar expression can
be written, for example, for a surface distribution of charges.
For this purpose, we must replace in (4.4) p by o and dV by
as. -

Expression (4.4) can be erroneously interpreted (and
this often leads to misunderstanding) as a modification of
expression (4.3), corresponding to the replacement of the
concept of point charges by that of a continuously distrib-
uted charge. Actually, this is not so since the two expres-
sions differ essentially. The origin of this difference is in
different meanings of the potential ¢ appearing in these ex-
pressions. Let us explain this difference with the help of
the following example,

Suppose a system consists of two small balls having
charges ¢, and g,. The distance between the balls is consi-
derably larger than their dimensions, hence ¢, and g, can be
assumed to be point charges. Let us find the energy W of
the given system by using both formulas.

According to (4.3), we have

1
W =—- (9,91 + 9:92) = 0191 = 0:P5,

where @, (¢,) is the potential created by charge ¢, (g,) at
the point where charge g, (g;) is located.

On the other hand, according to formula (4.4) we must
split the charge of each ball into infinitely small elements
o dV and multiply each of them by the potential ¢ created
by not only the charge elements of another ball but by the
charge elements of this ball as well. Clearly, the result will
be completely different:

W=W +W,+W,, (4.5)

where W, is the energy of interaction of the charge elements
of the first ball with each other, W, the same but for the
second ball, and W, the energy of interaction between the
charge elements of the first ball and the charge elements of
the second ball. The energies W, and W, are called the
intrinsic energies of charges g, and g,, while W, is the energy
of interaction between charge g, and charge g,.

Thus, we see that the energy W calculated by formula (4.3)
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corresponds only to the energy W,,, while calculation by
formula (4.4) gives the total energy of interaction: in addi-
tion to Wy,, it gives intrinsic energies W, and W,. Disre-
gard of this circumstance is frequently a cause of gross
errors.

We shall return to this question in Sec. 4.4. Now, we
shall use formula (4.4) for obtaining several important re-
sults.

4.2. Energies of a Charged Conductfor and
a Charged Capacitor

Energy of an Isolated Conduetor. Let a conductor have
a charge ¢ and a potential ¢. Since the value of ¢ is the
same at all points where charge is located, we can take ¢
in formula (4.4)out of the integral. The remaining integral
is just the charge g on the conductor, and we obtain

‘I'EP sz q2 )
W =T (4.6)

These three expressions are written assuming that C = g¢/¢.

Energy of a Capacitor. Let g and ¢4 be the charge and
potential of the positively charged plate of a capacitor.
According to (4.4), the integral can be split into two parts
(for the two plates). Then '

1
W=—-(9:+9+ + 9.9.).
Since g- = — g+, we have
1 1
W=—q (s —¢)=—5qU,

where g = g+ is the charge of the capacitor and U is the
potential difference across its plates. Considering that
C = q/U, we obtain the following expression for the energy
of the capacitor:

Wy e (4.7)
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It shiould be noted here that these formulas determine the
total energy of interaction, viz. not only the energy of in-
teraction belween the charges of one plate and those of the
other plate, but also the energy of interaction of charges
within each plate.

And What if We Have a Dielectric? We shall show that
formulas (4.6) and (4.7) are valid in the presence of a dielectric.
For this purpose, we consider the process of charging a
capacitor as a transport of small portions of charge (dg’)
from one plaie to the other.

The elementary work performed against the forces of the
field in this case is

6. = U'" d¢" = (¢'/C) dq’,

where U’ is the potential difference between the plates at
the moment when the next portion of charge dg’ is being
transferred.

Integrating this expression over g° between 0 and g, we
obtain

A = ¢/2C,

which coincides with the expression for the total energy of
a capacitor. Consequently, the work done against the forces
of the electric field is completely spent for accumulating
the energy W of the charged capacitor. Moreover, the expres-
sion obtained for the work A4 is also valid in the case when
there is a dieleciric between the plates of a capacitor. Thus,
we have proved the validity of (4.7) in the presence of a
dielectric.
Obviously, all this applies to (4.6) as well.

4.3. Energy of Electric Field

On Localization of Energy. Formula (4.4) defines electric
energy W of any system in terms of charge and potential.
It turns out, however, that energy W can also be expressed
through another quantity characterizing the field itself,
viz. through field intensity E. Let us at first demonstrate
this by using the simple example of a parallel-plate capaci-
tor, ignoring field distortions near the edges of the plates
(edge effect). Substituting into the formula W = CU?%2
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the expression C = ee,S/h, we obtain
W= cus ee,SUY  ee, ( U )2 Sh.

And since U/h = E and Sh = V (the volume between the
capacitor plates), we get

= o e B, (4.8)

This formula is valid for the uniform field which fills the
volume V.

In the general theory, it is proved that the energy W
can be expressed in terms of E (in the case of an isotropic
dielectric) through the formula

2

w= ey~ 5L ay. (4:9)

The mtegrand in this equation has the meaning of the energy
contained in the volume dV. This leads us to a very impor-
tant and fruitful physxcal idea about localization of energy
in the field. This assumption was confirmed in experiments
with fields varying in time. It is the domain where we en-
counter phenomena that can be explained with the help of
the notion of energy localization in the field. These varying
fields may exist independently of electric charges which
have generated them and may propagate in space in the
form of electromagnetic waves. Experiments show that
electromagnetic waves carry energy. This circumstance con-
firms the idea that the field itself is a carrier of energy.

The last two formulas show that the electric energy is
distributed in space with the volume density

EoSE’ . E'D . (4.10)

W= D) = 2

It should be noted that this formula is valid only in the
case of isotropic dielectrics for which the relation P = xe,E
holds.

For anisotropic dielectrics the situation is morecomplicat-
ed.
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Another substantiation for formula (4.9). It is known that the
energy of an isolated charged conductor is W = q@/2. Let us show that
this formula is correct, proceeding from the idea of localization of
energy in the field.

Let us consider an arbitrary positively charged conductor. We
mentally isolate a tube of infinitesimal cross section, which is bound-
ed by lines of E (Fig. 4.2), and take in it an elementary volume dV =

=dS d1.This volume contains the energy

i EDisar =235 pa.
2 2
A as Let us now find the encrgy local-

ized in the entire isolated tube. For
this purpose, we integrate the last ex-
pression, considering that the product

¢ D dS is the same in all cross sections
of the tube and hence it can be taken
out of the integral:
Fig. 4.2 aw=28 1 pa_295 o
2 ) 2
A

where A is a point at the beginning of the imaginary tube.

It remains for us to make the last step,i.e. integrate the obtained
exrression over all the tubes, and find the energy localized in the entire
field. Considering that potential ¢ is the same at the endfaces of all
the tubes (since they originate on the surface of the conductor), we
write

=2
W=— J5)0:15,

where the integration is performed over a closed surface coinciding
with one of the equipotential surfaces. In accordance with the Gauss
theorem, this integral is equal to the charge g of the conductor, and
we finally get

W = g9/2,
Q.E.D.

Let us consider two examples illustrating the advantages
we get by using the idea of energy localization in the field.

Example {. A point charge q is at the centre of a spherical layer
made of a homogeneous dielectric with the dielectric constant e. The
inner and outer radii of the layer are equal to a and b respectively.
Find the electric energy contained in this dielectric layer.

We mentally isolate in the dielectric a very thin concentric spher-
ical layer of radius from r to r + dr. The energy localized in this
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layer is given by

__ goeEt
aw = —5

4artdr,

where E = 2/4neoer’; Integrating this expression over r between a
and b, we obtain
- ( 4 _1_)
W= 8nege \ a b/

“Example 2. Find the work that must be done against the electric
forces in order to remove a dielectric plate from a parallel-plate char-
ged capacitor. It is assumed that the charge g of the capacitor remains
unchanged and that the dielectric fills the entire space between the

capacitor plates. The capacitance of the capacitor in the absence of
the dielectric is C.

The work against the electric forces in this system is equal to the
increment of the electric energy of the system:

A= AW =W, — W,,

where W, is the cnergy of the field between the capacitor plates in
the presence of thedielectric and W, is the same quantity in the absence
of the dielectric. Bearing in mind that the magnitude of vector D
will not change as a result of the removal of the plate, i.e. that D, =
= D, = ¢, we can write °

W=D D’) _L’(__’_)
A=W, Wl_\2so\ 2e,8 Vege =% )

where V = Sh and C=¢€,S/h, S being the area of each plate and h
the distance between them.

The Work of the Field During Polarization of a Dielectric.
An analysis of formula (4.10) for the volume energy density
reveals that for the same value of E, the quantity w is €
times greater in the presence of a dielectric than when it is
absent. At.first glance this may seem strange: field intensity
in both cases is maintained the same. As a matter of fact.
when a field is induced in a dielectric, it does an additional
work associated with polarization. Therefore, under the
energy of the field in the dielectric we must understand the
sum of the electric energy proper and an additional work
which is accomplished during polarization of the dielectric.

In order to prove this, let us substitute into (4.10) the
quantity €,E + P for D, which gives

toE?  E.P
— . (4.41)

w=
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The first term on the mght-hand side coincides with the
energy density of the field E in a vacuum. It remains for
us to verify that the “additional” energy E-P/2 is associated
with polarization.

Let us calculate the work done by the electric field for
polarization of a unit volume of the dielectric, i.e. for the

dl- I- 1. dl«
-— - —

I=1+-1.
Fig. 4.3

displacements of charges p; and p’ respectively along and
against the field upon an increase in the field intensity from
E to E + dE. Neglecting the second-order terms, we write

84 =p.E-dl, + p’E-dl_

where dl; and dl_ are additional displacements due to an
increase in the field by dE (Fig. 4.3). Considering that
p~ = — p,, we obtain

84=p,(dl,—dl.)-E==pdl-E,

where dl = dl; — dl_ is the additional displacement of
the positive charges relative to the negative charges. Accord-
ing to (3.4), p,dl = dP and we get

84 = E.dP. (4.12)
Since P = xe,E, we have

84 =E xe, dE ~ d("%E’)_d(%l’
Hence, the total work spent for the po!arxzatwn of a
unit volume of a dielectric is

A = E-PL2, (4.13)

which coincides with the second term in formula (4.41).
Thus, the volume energy density w = E-D/2 includes

the energy €,E2/2 of the field proper and the energy E-P/2

associated with the polarization of the substance.
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4.4. A System of Two Charged Bodies

Suppose that we have a system of two charged bodies in a
vacuum. Let one body create in the surrounding space the
field E,, while the other body, the field E,. The resultant
field is E = E, -|- E,, and the square of this quantity is

E*=E*+ E? + 2, E,.

Therefore, according to (4.9), the total energy W of the
given system is equal to the sum of three integrals:

W= {28 gr Sf{_’ av + S eoEy E.dV,  (4.44)

which coincides with formula (4.5) and reveals the field
meaning of the terms appearing in this sum. The first two
integrals in (4.14) are the intrinsic energies of the first and
second charged bodies (W, and W,), while the last integral
is the energy of their interaction (W,,).

The following impgrtant circumstances should be men-
tioned in connection with formula (4.14).

1. The intrinsic energy of each charged body is an essen-
tially positive quantity. The total energyv (4.9) is also always
positive. This can be readily seen from the fact that the in-
tegrand contains essentially positive quantities. However,
the energy of interaction can be either positive or negative.

2. The intrinsic energy of bodies remains constant upon
all possible displacements that do not change the confign-
ration of charges on each hody. and consequently this energy
can be assumed to he an additive constant in the expression
for the total energy W. In such cases, the changes in W are
completely determined only by the changes in the interac-
tion energy W,,. In particular, this is just the mode of be-
haviour of the energy of a system consisting of two point
charges upon a change in the distance between them.

3. Unlike vector E, the cnergy of the clectric field is
not an additive quantity, i.c. the energy of a ficld E which
is the sum of fields E, and E, is generally not equal to the
sum of the energies of these fields in view of the presence of
the interaction cnergy 1W,,. In particular, if I incrcases n
times everywhere, the cnergy of the field increases n? times.



106 4. Energy of Electric Field

4.5. Forces Acting in a Dielecfric

Electrostriction. Experiments show that a dielectric in
an electric field experiences the action of forces (sometimes
these forces are called ponderomotive). These forces appear
when the dielectric is neutral as a whole. Ponderomotive
forces appear in the long run due to the action of a nonuni-
form electric field on dipole molecules of the polarized dielec-
tric (it is known that a dipole in a nonuniform electric
field is acted upon by a force directed towards the increasing
field). In this case, the forces are caused by the nonuniformi-
ty of not only the macroscopic field but the microscopic
ficld as well, which is created mainly by the nearest mole-
cules of the polarized dielectric.

Under the action of these electric forces, the polarized
dielectric is deformed. This phenomenon is called electro-
striction. As a result of electrostriction, mechanical stresses
appear in the dielectric.

Owing to electrostriction, not only the electric force
(which depends on the charges) acts on a conductor in a
polarized dielectric, but also an additional mechanical
force caused by the dielectric. In the general case, the effect
of a dielectric on the resultant force acting on a conductor
cannot be taken into account by any simple relations, and
the problem of calculating the forces with simultaneous
analysis of the mechanism of their appearance is, as a rule,
rather complicated. However, in many cases these forces
can be calculated in a sufficiently simple way without a
detailed analysis of their origin by using the law of conser-
vation of energy.

Energy Method for Calculating Forces. This method is
the most general. It allows us to take into account automat-
ically all force interactions (both electric and mechanical)
ignoring their origin, and hence leads to a correct result.

Let us consider the essence of the energy method for cal-
culating forces. The simplest case corresponds to a situa-
tion when charged conductors are disconnected from the
power supply. In this case, the charges on the conductors
remain unchanged, and we may state that the work A of
all internal forces of thre system upon slow displacements
of the conductors and dielectrics is done completely at the
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expense of a decrease in the electric energy W of the system
(or its field). Here we assume that these displacements do
not cause the transformation of electric energy into other
kinds of energy. To be more precise, it is assumed that such-
transformations are negligibly small. Thus, for infinitesimal
displacements we can write

§A= —dW|,, (4.15)

where the symbol g emphasizes that the decrease in the
energy of the system must be calculated when charges on
the conductors are constant.

Equation (4.15) is the initial equation for determining
the forces acting on conductors and dielectrics in the electric
field. This can be done as follows. Suppose that we are in-
terested in the force acting on a given body (a conductor or
a dielectric). Let us displace this body by an infinitesimal
distance dz in the direction X we are interested in. Then
the work of gthe required force F over the distance dz is
84 = F.dz, where F, is the projection of the force F onto
the positive direction of the X-axis. Substituting this ex-
pression for 64 into (4.15) and dividing both parts of (4.15)
by dz, we obtain '

ow

F‘t=__ or ‘q.

(4.16)

We must pay attention to the following circumstance.
It is well known that the force depends only on the position
of bodies and on the distribution of charges at a given in-
stant. It cannot depend on kow the energy process will deve-
lope if the system starts to move under the action of forces.
And this means that in order to calculate F, by formula
(4.16), we do not have to select conditions under which all
the charges of the conductor are necessarily constant
(g = const). We must simply find the increment dW under
the condition that g = const, which is a purely mathemati-
cal operation.

It should be noted that if a displacement is performed at
constant potential on the conductors, the corresponding
calculation leads to another expression for the force: F, =
= + 0W/oz |,. However (and it is important!) the result
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of the calculation of F, with the help of this formula or
(4.16) is the same, as should be expected. Therefore, hence-
forth we shall confine ourselves to the application of only
formula (4.16) and will use it for any conditions, including
those where g = const upon small displacements. We must
not be confused: the derivative dW/dz will be calculated
at g = const in such cases as well.

Example. Find the force acting on one of the plates of a parallel-
plate capacitor in a liquid dielectric, if the distance between the
plates is k, the capacitance of the capacitor under given conditions is
C and the voltage U is maintained across its plates.

In this case, if we mentally move the plates apart, the voltage U
remains constant, while the charge ¢ of the capacitor changes (this
follows from the relation C = ¢/U). In spite of this, we shall calculate

the force under the assumptlion that ¢ =
X = const, i.e. with the help of formula
(4.16). Here the most convenient expres-

=== xudx __ sion for the energy of the capacitor is
FIX W ql q!
tq £ o T2 T 2ee,S i

., where ¢ is the permittivity of the dielec-
Fig. 4.4 tric, S is the area of each plate, and =z is
the distance between them (zr = k).

Next, let us choose the positive direction of the X-axis as is shown

in Fig. 4.4. According to (4.16), the f{orce acting on the upper plate
of the capacitor is

F ow i g
YT T 0z g 2ee,S

(e}

The minus sign in this formula indicates that vector F is directed
towards the negative values on the X-axis, i.e. the force is attractive
by nature. Considering that ¢ = ¢S = DS = ee,ES and E = U/h,
we transform (1) to

Fy= —CU2h.

Forces in a Liquid Dielectric. Formula (1) of the last
example shows that the force of interaction between the
plates of a parallel-plate capacitor in a liquid dielectric
is smaller than the corresponding force in a vacuum by a
factor of & (in vacuum & = 1). Experiment shows that this
result can be generalized: if the entire space occupied by a
field is filled by a liquid or gaseous dielectric, the forces of
interaction between charged conductors (at constant charges
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on them) decrease by a factor of &:
F = Fle. (4.17)

Hence it follows that two point charges ¢, and g, separat-
ed by a distance r and placed into an infinite liquid or gas-
eous dielectric interact with the force

1
F= o L (4.18)
which is smaller than the force in a vacuum by a factor of
€. This formula expresses the Coulomb law for point charges
in an infinite dielectric.

We must pay a special attention to the fact that point
charges in this law are extraneous charges concentrated on
macroscopic bodies whose dimensions are small in comparison
with the distance between them. Thus, the law (4.18) has,
unlike the Coulomb law in vacuum, a very narrow field
of applicationxthe dielectric must be homogeneous, infinite,
liquid or gaseous, while the interacting bodies must be
pointlike in the macrosgopic sense.

It is interesting to note that the electric field intensity
E, as well as the force F acting on a point charge g in a
homogeneous liquid or gaseous dielectric filling the entire
space of the field, are by a factor of £ smaller than the values
of E, and F; in the absence of dielectric. This means that
the force F acting on the point charge g in this case is de-
termined by the same formula as in vacuum:

F = gE, (4.19)

where E is the field intensity in the dielectric at the point
where the extraneous charge ¢ is placed. Only in this case
formula (%4.49) makes it possible to determine the field E
in the dielectric from the known force F. It should be noted
that gnother field differing from the field in the dielectric
will be acting on the extraneous charge itself (which is
located on some small body). Nevertheless, formula (4.19)
gives the correct result, strange as it may seem.

Surface Density of a Force. We shall be speaking of the
force acting on a unit surface area of a charged conductor
in a liquid or gaseous dielectric. For this purpose, let us
consider a parallel-plate capacitor in a liquid dielectric.
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Suppose that the capacitor is charged and then disconnected
from the power supply to maintain the charge and the field
E of the capacitor constant when the plates are moved apart.

Let us consider once again Fig. 4.4. The energy of the
capacitor is the energy of the field within it. In accordance
with (4.9), this energy is W = (1/2) EDSxz, where § is the
surface area of each plate and z is the distance between them
(Sz is the volume occupied by the field). By formula (4.16),
the force acting on the upper plate is

F.= —0oWdz|,= — EDS,
whence the surface density of the force is

D |
F,— Ezb’l

(4.20)

We have obtained an interesting and important result
of a general nature (for a liquid or gaseous dielectric). It
turns out that the surface density of the force acting on a
conductor is equal to the volume density of the electric
energy near the surface. This force is directed always out-
ward along the normal to the surface of the conductor (tend-
ing to stretch it) regardless of the sign of the surface charge.

Problems

@ 4.1. Energy of interaction. A point charge g is at a distance !
from an infinite conducting plane. Find the energy W of interaction
between this charge and the charges induced on the plane.

Solution. Let us mentally “freeze” the charge distributed over the
plane and displace under these conditions the point charge ¢ to in-
finity. Tn this case the charge ¢ will move in the potential field which
is equivalent to the field of a fixed fictitious point charge --q, located
at a fixed distance ! on the other side of the plane. We can write
straightaway
1 q*

W=— 4':[30 .2—[.

@ 4.2. Intrinsic, mutual, and total energies. A system consists
of two concentric metallic shells of radii R, and R, with charges ¢,
and g, respectively. Find intriusic energies W, and W, of each shell,
the energy W,, of interaction between the shells, und the total elee-
tric euergy of ‘the system W, if R, > R,.
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Solution. In accordance with (4.6), the intrinsic energy of each
shell is equal to q¢/2, where ¢ is the potential of a shell created only
by the charge g on it, i.e. ¢ = g/4ne,R, where R is the shell radius.
Thus, the intrinsic energy of each shell is

1 95,
W= e 2Ry,
The energy of interaction between the charged shells is cqual to the
charge g of one shell multiplied by the potential ¢ created by the charge
of the other shell in the point of location of the charge ¢: Wy, = qop.
In our case (R, > R), we have

SO S WS B FL
Wi = 4dney, R, ~ 4me, N,

The total electric encrgy of the system is

1 ( qi (I qlq-z)

W=WitWet W=7\ 37 F 28, T &,

® 4.3. Two small metallic balls of radii R; and R, are in vacuum
at a distance considerably exceeding their dimensions and have a
certain total charge. Find the ratio q,/q, between the charges of the
balls at which the cnergy of the system is minimal. What is the po-
tential difference between thé balls in this case?

Solution. The electric energy of this system is

i 93 a3 99:
= - - - 1 2] 2
W= Wi Wa Wiy = ( R R ),
where W, and W, are the intrinsic electric energies of the balls (q/2),
W, is the energy of their interaction (q,¢, or g,@,), and ! is the dis-
tance between the balls. Since ¢, == ¢ — q,, where ¢ is the total charge
of the system, we have

i it (a—a0)* | @ilg=aq)

7 [ )" 1
W= 4me, [ 2R, t 21, + l ]

The energy W is minimal when aW/dq, == 0. Henee

~ 1 and ~ __133_
N = q 1{1_%1‘?2 U gy=q HI—I'HZ k]

where we took into account that Ry and R, are considerably smaller
than ! and

01/g92 = By/R,.
The potential of cach ball (they can be considered isolated) is ¢ OC 9/R.

Hence it follows rom the above relation that ¢ = @, i.e. the poten-
tial difference is cqual to zero for such a distribution.
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@ 4.4. Energy localization in the field. A charge g isuniformly
distrtbuted inside a sphere of radius R. Assuming that the dielectric
constant is equal to unity everywhere, find the intrinsic electric energy
of the sphere and thke ratio of the energy W; localized inside the sphere
to the epergy W, in the surrounding space.

Solution. Let us first find the fields inside and outside the sphere
with the help of the Gauss theorem:

-4 .
E, = Teg BB r(r<R), E,= Tney T (r > R).

We can now calculate the intrinsic eleciric energy of the sphere:

R oo
goE} 2 S 8B}, a5 4 (4
W=W1+W2=S 5 4nr? dr -{-R 3 4rer dr—&rteol?( 5 +1),
0
Hence, it follows that
1 3¢ Wi

1
-5

W=Tnee SR° Wy

It is interesting to note that the ratio W,/W, does nov depend on
the radius of the sphere.

® 4.5. A spherical shell is uniformly charged by a charge gq.
A point charge g, is at its centre. Find the work of electric forces upon
the expansion of the shell from radius R, to Rj.

Solution. The work of electric forces is equal to the decrease in
the electric energy of the system:

A=W, — W,

In order to find the difference W, — W,, we note that upon the expan-
sion of the shell (Fig. 4.5), the electric field, and hence the energy
localized in it, changed only in the hatched spherical layer. Conse-
quently,
Ra ‘
Wy—W,= S % (E3— E3) 4nr? dr,
Ry

where £, and E; are the field intensities (in the hatched region at a
distance r from the centre of the system) before and after the expan-
sion of the shell. By using the Gauss theorem, we find

El — 1 q + 9o E2 1 90
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As a result of integration, we obtain
A= 90904-1/2) ( 1 1 )

R, I,

Remark. 1T we try to calculate the work in terms of the potential
as A = g (@, — @), where @ is the potential created by the charge g,
at the point of location of the charge q, the answer would be different

and incorrect. Thf$ is due to the fact that this approach does not take
into account the additional work performed by eclectric forces upon
the chanfe in the contiguration of the charge ¢ located on the ezpand-
ing shell.

@ 4.6. A point charge g is at the centre of a sphcrical uncharged
conducting layer whose inner and outer radii are a and b respectively.
Find the work done by electric forces in this system upon the remov-
al of the charge g from its original position through a small hole
(Fig. 4.6) to a very large distance from the spherical layer.

Solution. We shall proceed from the fact that the work of electric
forces is equal to the decrease in the electric energy of the system. As
is well known, the latter is localized in the field itself. Thus, the prob-
lem is reduced to determination of the change in the field as a result
of this process. )

It can be easily seen that the field around the charge ¢ will change
only within the spherical layer with the inner radius a and the outer
radius 4. Indeed, in the initial position of the charge, there was no
field in this region, while in the final position there is a certain field
(since the conducting spherical layer is far from the charge ¢). Conse-
quently, the required work is

b
E2
A=0—-W¢=—S 20— dV.
a
Considering that E = gl4neyr? and dV = 4mr?dr, and integrating,
we obtain
92 a—b
A= ).
! 8ney  ab {

8-0181
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@ 4.7. The work done upon moving capacitor plates apart.
A parallel-plate air capacitor has the plates of area S each. Find the
work A’ against the electric forces, done to increase the distance be-
tween the plates from 1, to z,, if (1) the charge g of the capacitor and
(2) its voltage U sre maintained constant. Find the increments of the
electric energy of the capacitor in the two cases.

Solution. (1) The required work is
v q?
A’ =qE, (-tz—l'n):m (z2—z1),

where £, is the intensity of the field created by one plate (£ = 0/2¢g).
It is in this field that the charge located on the other plate moves.
This work is completely spent for increasing the electric energy:
AW — A

(2) In this case, the force acting on cach capacitor plate will de-
pend on the distance between the plates. Let us write the elementary
work of the force acting on a plate during its displacemeat over a dis-
tance dr relative to tie other plate:

goSU? dz

2 2 !

6A' = qF dx=

where we took into account that q = CU, E, = U/2z, and C = go5/z.
After integration, we obtain

. 12
A = F’°‘SL_ (.L_L) > u.

)

& £y Ty

The increment. of the electric energy of the capacitor is

AW — 2T

2 \ 1, £y b

2

It should be noted that AW = —A".

Thus, by moving the plates apart, we perform a positive work
(against the electric forces). The energy of the capacitor decreases in
this case. In order to understand this, we must consider a sorrce main-
taining the potential difference of the capacitor at a constant value.
This source also accomplishes the work A,. According to the law of
conservation of energy, 4. -~ A" = AW, whence 4, = AW — A’ =

= 24" < 0.

@ 4.8. TForces acting hetween conductors in a dielectiric. A paral-
lel-plate capacitor is immersed, in the horizontal positicen, into a liq-
uid dielectric with the dielectric constant g, filling the gap of width &
between the plates. Then the capacitor is connected to a source of

.
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permanent voltage U. Find the force /' acting on a unit surface of the
plate from the dielectric.

Solution. The resultant force / acting per unit area of each plate
can be represented as

f=1to— 1" )

where fo is the clectric force acting per unit area of a plate from the
other plate (it is just the force per unit arca when the dielectric is
ahsent). In our case, we have .

f = lile, fo = 0E = u*2e,, @

where E is the field intensity in the region occupied by one plate, creat-
ed by the charges of the other plate. Considering that ¢ := D =
= geoU/h and substituting (2) into (1), we obtain

f =1t (1 —1/e) = € (e — 1) eaU%2h2,

For example, for U = 500 V, h = 1.0 mm and ¢ = 81 (water), we get
{f = 7 kPa (0.07 atm).

® 4.9. Theforce acting on a dielectric. A cylindrical layer of a
homogeneous diglectric with the dielectric constant ¢ is introduced
into a cylindric#ll capacitor so that the layer fills the gap of width d
between the plates. The mean radius of the plates is R such that R >d.
The capacitor is connected tp a source of a permanent voltage U. Find
the force pulling the dielectric inside the capacitor.

Solution. Using the formula W = ¢%/2C for the energy of a capac-
itor, we find that, in accordance with (4.16), the vequired force is
oW __gi aC/ox »_i ac )
dr ‘q_ 2 02 - 2 or
Since d ¢ R the capacitance of the given capacitor can be calculated

by the formula for a parallel-plate capacitor. Therefore, if the dicle-
ctric is introduced to a depth z and the capacitor length is I, we have

C = 8801‘:1233 + Zo (l—;)2ﬂR == 80'3“1'? (EI‘!'I—“T)» (2)

Fy=—

Substituting (2) into (1), we obtain
Fy = €o (¢ — 1) nRU?d.

® 4.10. A capacitor consists of two fixed plates in the form of a
semicircle of radius R and a movable plate of thickness & made of a
dielectric with the dielectric constant &, placed between them. The
latter plate can freely rotate about the axis O (Fig. 4.7) and practical-
ly fills the entire gap betwecn the fixed plates. A constant voltage U is
maintained between the plates. Find the moment A about the axis O
of forces acting on the movable plate when it is placed as shown in the
hgure.

Solutivn. The work performed by the moment of forces M upon
8
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the rotation of the plate through an -.gle’element de is equal to the
decrease in the electric energy of the system at ¢ = const [see (4.16)]:

‘ M, do=—dWl|q,
where W = ¢%/2C. Hence

2
M= — ow q® aC/oa

Ga |y Tz o @
In the case under consideration, ¢ = C; + C¢, where C, and C,
are the capacitances of the parts of the capacitor with and without the
dielectric. The area of a sector with an angle a is determined as S =
= @R?/2, and hence

C == goo.R%/2h + eco (1 — ) R3/2h.

Differentiating with respect to a, we find
dCléa = (eoR?/2h)(1—e). Substituting
this expression into formula (1) and con-
sidering that C = ¢/U, we obtain

_U? ¢R®
Mi=—3-— =9
. 27J2
Fig. 4.7 ______(6_1)‘1.th_U<0.

The negative sign of M, indicates that the moment of the force is
acting clockwise (oppositely to the positive direction of the angle a;
see Fig. 4.7). This moment tends to pull the dielectric inside the ca-
pacitor.

It should be noted that A7, is independent of the angle a. However,
in equilibrium, when & = 0, the moment M, = 0. This discrepancy
is due to the fact that for small values of « we cannot ignore edge efiects
as was done in the solution of this problem.

5. Direct Current
5.1. Current Density. Continuity Equation

Electric Current. In this chapier, we shall confine our-
selves to an analysis of conduction current in a conducting
medium, especially in metals. It is well known that electric
current is the transfer of charge through a certain surface
S (say, the cross section of a conductor).

In a conducting medium, current can be carried by elec-
trons (in metals), ions (in electrolytes), or some other parti-
cles. In the absence of electric field, current carriers perform
chaotic motion and on average the same number of carriers
of either sign passes through each side of any imaginary
surface S. Thus, the current passing through S in this case
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is zero. However, when an electric field is applied, an orde-
red motion with a certain average velocity u is imposed on
the chaotic motion of the carriers, and a current flows
through the surface S. Thus, an electric current is essentially
an ordered transfer of electric charges.

The quantitative measure of electric current is iniensity
I, defined as the charge transf