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FOREWORD

Science, in general, and physics, in particular, have evolved out of man’s quest to know beyond
unknowns. Matter, radiation and their mutual interactions are basically studied in physics.
Essentially, this is an experimental science. By observing appropriate phenomena in nature one
arrives at a set of rules which goes to establish some basic fundamental concepts. Entire physics
rests on them. Mere knowledge of them is however not enough. Ability to apply them to real
day-to-day problems is required. Prof. Irodov’s book contains one such set of numerical
exercises spread over a wide spectrum of physical disciplines. Some of the problems of the book
long appeared to be notorious to pose serious challenges to students as well as to their teachers.
This book by Prof. Singh on the solutions of problems of Irodov’s book, at the outset, seems
to remove the sense of awe which at one time prevailed. Traditionally a difficult exercise to
solve continues to draw the attention of concerned persons over a sufficiently long time. Once
a logical solution for it becomes available, the difficulties associated with its solutions are
forgotten very soon. This statement is not only valid for the solutions of simple physical problems
but also to various physical phenomena.

Nevertheless, Prof. Singh’s attempt to write a book of this magnitude deserves an all out
praise. His ways of solving problems are elegant, straight forward, simple and direct. By writing
this book he has definitely contributed to the cause of physics education. A word of advice to
its users is however necessary. The solution to a particular problem as given in this book is
never to be consulted unless an all out effort in solving it independently has been already made.
Only by such judicious uses of this book one would be able to reap better benefits out of it.

As a teacher who has taught physics and who has been in touch with physics curricula
at LLT., Delhi for over thirty years, I earnestly feel that this book will certainly be of benefit
to younger students in their formative years.

Dr. Dilip Kumar Roy

Professor of Physics

Indian Institute of Technology, Delhi
New Delhi-110016.
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FOREWORD

A. proper understanding of the physical laws and principles that govern nature require
solutions of related problems which exemplify the principle in question and leads to a
better grasp of the principles involved. It is only through experiments or through solutions
of multifarious problem-oriented questions can a student master the intricacies and fall
outs of a physical law. According to Ira M. Freeman, professor of physics of the state
university of new Jersy at Rutgers and author of ‘‘physic--principles and Insights’’ --
““In certain situations mathematical formulation actually promotes intuitive understand-
ing....... Sometimes a mathematical formulation is not feasible, so that ordinary language
must take the place of mathematics in both roles. However, Mathematics is far more
rigorous and its concepts more precise than those of language. Any science that is able
to make extensive use of mathematical symbolism and procedures is justly called an exact
science’’. LE. Irodov’s problems in General Physics fulfills such a need. This book
originally published in Russia contains about 1900 problems on mechanics, thermody-
namics, molecular physics, electrodynamics, waves and oscillations, optics, atomic and
nuclear physics. The book has survived the test of class room for many years as is evident
from its number of reprint editions, which have appeared since the first English edition
of 1981, including an Indian Edition at affordable price for Indian students.

Abhay Kumar Singh’s present book containing solutions to Dr. LE. Irodov’s Problems
in General Physics is a welcome attempt to develop a student’s problem solving skills.
The book should be very useful for the students studying a general course in physics and
also in developing their skills to answer questions normally encountered in national level
entrance examinations conducted each year by various bodies for admissions to profes-
sional colleges in science and technology.

B.P. PAL
Professor of Physics
LLT., Dellu
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PREFACE TO THE SECOND EDITION

Nothing succeeds like success, they say. Now, consequent upon the warm
welcome on the part of students and the teaching fraternity this revised and
enlarged edition of this volume is before you. In order to make it more up-to-date
and viable, a large number of problems have been streamlined with special focus
on the complicated and ticklish ones, to cater to the needs of the aspiring students.

I extend my deep sense of gratitude to all those who have directly or
indirectly engineered the cause of its existing status in the book world.

Patna
June 1997 Abhay Kumar Singh
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PREFACE TO THE FIRST EDITION

When you invisage to write a book of solutions to problems, one pertinent question crops up
in the mind that—why solution! Is this to prove one’s erudition? My only defence against
this is that the solution is a challenge to save the scientific man hours by channelizing thoughts
in a right direction.

The book entitled ‘“Problems in General Physics” authored by LE. Irodov (a noted
Russian physicist and mathematician) contains 1877 intriguing problems divided into six
chapters.

After the acceptance of my first book ‘‘Problems in Physics”, published by Wiley
Eastern Limited, I have got the courage to acknowledge the fact that good and honest
ultimately win in the market place. This stimulation provided me insight to come up with mv
second attempt—*“Solutions to L.E. Irodov’s Problems in General Physics.”

This first volume encompasses solutions of first three chapters containing 1052
problems. Although a large number of problems can be solved by different methods, I have
adopted standard methods and in many of the problems with helping hints for other methods.

In the solutions of chapter three, the emf of a cell is represented by & (xi) in contrast
to the notation used in figures and in the problem book, due to some printing difficulty.

I am thankful to my students Mr. Omprakash, Miss Neera and Miss Punam for their
valuable co-operation even in my hard days while authoring the present book. I am also
thankful to my younger sister Prof. Ranju Singh, my younger brother Mr. Ratan Kumar Singh,
my junior friend Miss Anupama Bharti, other well wishers and friends for their emotional
support. At last and above all I am grateful to my Ma and Pappaji for their blessings and
encouragement.

ABHAY KUMAR SINGH
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PART ONE

PHYSICAL FUNDAMENTALS OF MECHANICS

1.1

KINEMATICS

11 Let Y be the stream velocity and V' the velocity of motorboat with respect to water. The

motorboat reached point B while going downstream with velocity (vo + V') and thea returned
with velocity (v' - vo) and passed the raft at point C. Let ¢ be the time for the raft (which
flows with stream with velocity vo) to move from point A to C, during which the motorboat

moves from A to B and then from B to C.

Therefore

1 (vp+v)T-1 LLn (Vo'fvl)l c——->

—=T+
PR Al % 5>V
On solving we get v, = -2—1; l —C _:;

1.2 Let s be the total distance traversed by the point and ¢, the time taken to cover half the

distance. Further let 2 be the time to cover the rest half of the distance.

s s
Therefore 7= Voh oOr = i—v; 1
and S (v + v)t or U= 5 2)
2 1 Vi+V,

Hence the sought average velocity
- s - s - 2 Vo (Vl + V2)
h+2t [s/2v JH[s/(vi+ V)] v+ v 42

<>

1.3 As the car starts from rest and finally comes to a stop, and the rate of acceleration and

deceleration are equal, the distances as well as the times taken are same in these phases
of motion.
Let At be the time for which the car moves uniformly. Then the acceleration / deceleration

A —2At each. So,

time is

Downloaded From : www.EasyEngineering.net
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1 (@-A))  (x-Ar)
<V>T 2{2w ! Jl+u/» 2 At
2_4<v>1:

w

or At’= 1

Hence A= 1-4<V>
wT

(a) Sought average velocity Sm

s 200cm 20
<v>=t- 20s =10 cm/s A

.

(b) For the maximum velocity, % should be

S~

maximum. From the figure ¢ 1S maximum for /

all points on the line "ac, thus the sought
maximum velocity becomes average velocity -
for the line ac and is equal to : 0 10 20 t,S

bc 100 cm
B 4 =25 cm/s

() Time ¢, should be such that corresponding to it the slope % should pass through the

point O (origin), to satisfy the relationship %a ti From figure the tangent at point d
0

passes through the origin and thus corresponding time t= f,= 16s.

1.5 .Let the particles collide at the point A (Fig.), whose position vector is ?3’ (say). If ¢ be the

1.6

time taken by each particle to reach at point A, from triangle law of vector addition :
— - > - —>
ry=ri+vit=r,+v,t

A -
o, F-R= @G- o vt
e |77- 731 " . .
erefore = — =3
’ [vz-vil Ty nt
From Egs. (1) and (2)
. -7
—_ —> - —>
Fi=ry= (v, =V, ) = =7
12 2 1 |V2"{1| 0 2 >
Fmfp Vv _— x
or, =——=3; = 7=s—=>7, Which is the sought relationship.
[ri=rl lvy-vi] -
We have
—p! — -
v =V-V, (1)

From the vector diagram [of Eq. (1)] and using properties of triangle

Downloaded From : www.EasyEngineering.net
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v’-\rv(z,+v2+2vovcosqaa 39.7km/br  (2)

! .
and Y = —2— or sinB= ysug s“,‘
sin(k-¢) sind v
or 0= sin”! ysing Sil,l
v
Using (2) and putting the values of v and d =
0= 19.1° JVO

Let one of the swimmer (say 1) cross the river along AB, which is obviously the shortest
path. Time taken to cross the river by the swimmer 1.

-—d——', (where AB = d is the width of the river) (¢h)]

2

t = -
V' e-v,

For the other swimmer (say 2), which follows the quickest -path, the time taken to
cross the river.

L= gf )
1 /’ [
T Vo § 4 T 3
d. x  — d v L =
l v: VT :: VI‘ _-—-:
l W =

In the time ¢,, drifting of the swimmer 2, becomes

V
X= vy, = ;(,ld, (using Eq. 2) 3)
If ¢, be the time for swimmer 2 to walk the distance x to come from C to B (Fig.), then
x_ vod . 3 4
== (using Eq. 3) 4)
According to the problem t, = £, +13
d d Vvod
AT
vl2 _ Vg
On solving we get
Yo
U= 1 = 3 km/hl'.
"2
( 1-2 ) 1
v'2
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1.8 Let ! be the distance covered by the boat A along the river as well as by the boat B acrc
the river. Let v, be the stream velocity and V' the velocity of each boat with respect

water. Therefore time taken by the boat A in its journey
l l

we it Vow
and for the boat B ty= + ! = 2l
t y' n V’
Hence, A, = where n = —
5 Vvi-yg \/nz—l( n V)

On substitution t,/tg= 18
1.9 Let v, be the stream velocity and v/ the velocity of boat with respect to water. A

V,
;‘,1 = 1= 2>0, some drifting of boat is inevitable.

Let v~ make an angle 0 with flow direction. (Fig.), then the time taken to cross the rive

t= (where d is the width of the river)

d
V' sin 0
In this time intezval, the drifting of the boat
x= (VcosO+vy)t

-(v’cos6+v0);,:m- (cot 0 + vy cosec 0) d T

|

For x_;, (minimum drifting) ?3’ —_—

d 0 0) = 0, which yield d Yol
de(cot + 1 cosec 0) = 0, which yields V' —
1 1 v —p
coSBm - == - [\
n 2 > X

Hence, 0= 120° 0

1.10 The solution of this problem becomes simple in the frame attached with one of the bodies.

Let the body thrown straight up be 1 and the other body be 2, then for the body 1 in the
frame of 2 from the kinematic equation for constant acceleration :

- — — 1 -
2= Toaz) * Vo2 + 5 W2 !

So, o= \_’&12) 1, (because Wy, = 0 and ;0.(12)' 0)
— —>

or, [72]= |"o(12)|‘ @)

—
But |vgl= [vl= v
So, from properties of triangle

Voz) = \/vg + V2 = 2 vy v, cos (/2 - )
Hence, the sought distance

—
Iral= v I}(Nm(%. ec? Ifrom www.EasyEngineering.net
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Let the velocities of the paricles (say 71' and "72’ ) becomes mutually perpendicuiar aftcr
time ¢. Then their velocitis become

—3! — = - —_ =

V, =V +8L v, = V48t 1)
As WLE so, Vv =0

o, (V;+81):(v,+g8t)=0

2 .
or -V, v, +gt°=0 '
172 g2 Vé F< Vat—>€ — Vit plesa—— '
Hence, t= __Lz_vgv 3)

1
Now form the Eq. Tpp= ?;(12) + V&mt + Ei&'utz

| 7ip | = |17;(12)|t, (because here Wy = 0 and ;:(12)' 0)
Hence the sought djstance

V1

|72l =

From the symmetry of the problem all the three points are always located at the vertices
of equilateral triangles of varying side length and finally meet at the centriod of the initial
equilateral triangle whose side Jength is a, in the sought time interval (say ).

o>

%
)1\
3

2 >
A 0=120° e
vy (3
Let us consider an arbitrary equilateral triangie

of edge length ! (say).
Then the rate by which 1 approaches 2, 2 approches 3, and 3 approches 1, becomes :

=dl_ o cos[2E
dt

+V;
g Vv v, (as| vzl = vi+v)

4
On integrating : - f dl = -3-2! f dt
0

Downloaded From : www.EasyEngineering.net
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Let us locate the points A and B at an arbitrary instant of time (Fig.).
If A and B are separated by the distance s at this moment, then the points converge or

point A approaches B with velocity ;és-- v - u cos o where angle o varies with time.

dt
On intergating, {I’ ’,"'
0 T 13
-fds-f(v—ucosa)dt, //’, B
1 0 - P 4
(where T is the sought time.) v 2
T { ‘
or l-f(v-ucosa)dt (6)) A
0

As both A and B cover the same distance in x-direction during the sought time interval,
so the other condition which is required, can be obtained by the equation

Ax-fvxat
T
So, uT-fvcosadt )
0
ul
Solving (1) and (2), we get T=
ng (1) and (2), we g T

One can see that if u= v, or u<v, point A cannot catch B.

In the reference frame fixed to the train, the distance between the two events is obviously
equal to L Suppose the train starts moving at time ¢#= O in the positive x direction and
take the origin ( x = 0 ) at the head-light of the train at £ = 0. Then the coordinate of first

event in the earth’s frame is
x = 5w
and similarly the coordinate of the second event is
xXy= %w(t-m)z-l

The distance between the two events is obviously.
X -x;= l-wr(t+v/2) =0242 km

in the reference frame fixed on the earth..

For the two events to occur at the same point in the reference frame K, moving with
constant velocity V relative to the earth, the distance travelled by the frame in the time
interval T must be equal to the above distance.

Thus Vi=l-wit(t+1/2)

So, V-.%—w(t+t/2)-4-03 m/s

The frame K must clearly be moving in a direction opposite to the train so that if (for
example) the origin of the frame coincides with the point x; on the earth at time £ it

coincides with the point x, at time ¢ +T. L
Downloaded From : www.EasyEngineering.net
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1.15 (a) One good way to solve the problem is to work in the elevator’s frame having the

1.16

observer at its bottom (Fig.).

Let us denote the separation between floor and celing by /# = 2:7 m. and the acceleration
of the elevator by w= 12 m/! s

From the kinematical formula

1
y= y0+voyt+§wyt2 ()] ;\yl
Here y=0,y,= +h,voy=- 0
and Wy = Woat (y) = Wele () I
=(-8)-w=-(g+w) h=27m.
2
So, 0= h+}-{—(g+w)}t2 T\V‘:]'ka
2 !
0
or, t= v Zh = 07s.
g+w

(b) At the moment the bolt loses contact with the elevator, it has already aquired the
velocity equal to elevator,given by :

vo= (12) (2) = 2-4m/s
In the reference frame attached with the elevator shaft

(ground) and pointing the y-axis upward, we have for
the displacement of the bolt, Vo i

1
Ay==v0},t+iwyt2 T v

1
=Vt + f(-g) t?
or, Ay= (2:4) (07) + %(- 9-8) (07)* = - 07 m.

Hence the bolt comes down or displaces downward relative to the point, when it loses
contact with the elevator by the amount 0-7 m (Fig.).

Obviously the total distance covered by the bolt during its free fall time
24
(9-8)

2
= |Ay|+2 Yo 0-7m +
s y 28

m= 1-3m.

Let the particle 1 and 2 be at points B and A at = 0 at the distances /; and [, from
intersection point O.

Let us fix the inertial frame with the particle 2. Now the particle 1 moves in relative to
this reference frame with a relative velocity 5;2 = ‘71' - 3;, and its trajectory is the straight

line BP. Obviously, the minimum distance between the particles is equal to the length of

the perpendicular AP dropped from point A on to the straight line BP (Fig.).
Downloaded From : www.EasyEngineering.net
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} ->
) Viz - | )
B er——7—00 k:
%
From Fig. (b), vy= VVZ+ V2, and tane-s-:' @)

The shortest distarice
AP = AMsin 0 = (OA - OM)sin 8 = (I,- 1, cot ) sin O

% V1 vh-vl :
or AP = L= - using 1
(’2 1v,)vv§+g Ve el
The sought time can be obtained directly from the condition that (I, - v, 1+ L-v, 1)
Lvi+hv
is minimum. This gives ¢ = Ll 2 iy
Vi +v,

Let the car turn off the highway at a distance x from the point D.

So, CD = x, and if the speed of the car in the field is v, then the time taken by the car
to cover the distance AC = AD - x on the highway

AD-x
== ¢Y)
and the time taken to travel the distance CB A
in the field
VIZe P
h=—"F @ <\
X
So, the total time elapsed to move the car from point A to B &) A
AD-x VIZ+2?
t= t1+t2- +
nv v
For ¢ to be minimum \ B
—41-0 or 1 __l_+_______x =0
dx v n Vit
or n2x2- I?+x* or x= L

-1
Downloaded Fror“ : www.EasyEngineering.net
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1.18 To plot x (¢), s (#) and w, (z) let us partion the given plot v, (f) into five segments (for
detailed analysis) as shown in the figure.
For the part oa:w_ = 1 and v = t= v

: v,
t? *la b
Thus, Axl(t)-fvxdt-fdt- T=50 1 el
° L 0T+ 16| A7
Putting =1, we get, Ax; = 5= > unit -1
For the part ab : -2 d
w,= O and v = v = constant= 1
t
Thus v, @) = [v,dt= [dt= (t-1)= 5,0)
1
Putting t=3, Ax, = 5, = 2 unit
Forthepart b4: w,= 1 and v, = 1 ~-(t-3)=4-f)=v
t
2
t© 15
Thus Ax:,(t)-{(4—t)dt- 4t—?—?- s3(D)
Putting t=4, Ax;= x;= %um’t
For the part 4d : vo=-land v,= ~(1-4)=4-1
So, v=|v |=1-4 for t>4
1 2
t
Thus Ax4(t)=_[(1—t)dt- 41--8
t
2
Similarly s4(t)=f|vx|dt=f(t-4)dt= %-4t+8
4
Putting t= 6, s, = 2unit
For the partd 7 : w,=2and v,= -2+2(-6)=2(-7)

v= v, |=2(7-1) for t< 7
6

Now, Ax(t)= |2 (t-T)dt= t?-14r+48
- t
Putting t=4, Axg= -1
6
Similarly ss@= [2(7-1)dt=141-12-48
t
Putting t=17, ss=1

On the basis of these obtained expressions w, (1), x () and s () plots can be easily plotted

as shown in the figure of answersheet. o
Downloaded From : www.EasyEngineering.net
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1.19 (a) Mean velocity

1.20

_ Total distance covered
- Time elapsed R

LB seas ) Vo

. v
(b) Modulus of mean velocity vector i fl
- Ar 2R
|<v>|= Ar - .- R2cm/s (2

(c) Let the point moves from i to f along the half circle (Fig.) and v, and v be the spe
at the points respectively.

We have % =-w,
or, v= vy+w,t (as w, is constant, according to the problem)
¢
J Gorwpa
S A Vot (vg+wp) vo+v )
0, <v> = . = > = ¢
Ja
0
So, from (1) and (3)
Vo+V xR
2 = @

Now the modulus of the mean vector of total acceleration

Av |?‘{'-o.| WtV .
l A:Ts c =l 0" (see Fig.) ¢

[<W>|=

Using (4) in (5), we get : .
2nR

i [<W>|= ==
T
(a) we have r=at(l-ar)
So, ?=£ﬂ1-2at)
dt
> dv —
and W= d‘-—2aa
(b) From the equation
r=at(l-oaf),

r=0, at t= 0and also at £ = At = &1—

So, the sought time Ar= (—i—
As v=a(l-2ar)

a(l-2az)) forrs 2—15
So, v=|v]=

a(2at-1) fort>L
Downloaded From : M.gasyEngineering.net
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Hence, the sought distance
12a Va

s=fvdt-f a(l-2apdt+ f aat-NDadr
0 12a
Simplifying, we get, s= -2—%
(a) As the particle leaves the origin at r= 0

So, Ax = x = f v, dt
t

As 7= f1- -),
-

where Vg is directed towards the +ve x-axis

t
S = 1--
. i)

From (1) and (2),
o (= P e

0
Hence x coordinate of the particle at £ = 6.

6
X= 10x6(1-2x5)- 24cm= 024m
Similarly at t=10s
10
x= 10x10(1-2x5)- 0
and at t=20s

20
xS

X = 10><20(1—2 )- ~-200cm= -2m

11

ey

@

(€)

(b) At the moments the particle is at a distance of 10 cm from the origin, x = = 10 cm.

Putting x= +10 in Eq. (3)

10= 10:(1-1'5) or, t>-10t+10= 0,

So, t=t 2
Now putting x= —10in Eqn (3)
t
-10= 10 (1 - 10),
On solving, t=5+ V35 s

As t cannot be negative, so,

t=(5+V35

S)s
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Hence the particle is at a distance of 10 cm from the origin at three moments of time :

t=52V1S 5, 5+V35 s
t
() We have V= \7;(1 —_-‘-)

t
vo(l—-'_" forts <t

So, ve|v]=
,,0(_‘.-1) fort>=
T
¢
t
So ss_{vo(l--t-)dtfor ts T = vyt (l-#r)
T 4
t t
and s‘f"o(l‘i)d""f"o(;'l)d‘ for t>1
0 T
= vpT[l+(1-%)%/2 for 1>1 (A)
4 4
t t
o Juft-ga froft- G- 2ecm
0 0
And for t= 8s
| & 8
s-flO 1-% d:+f10 Lo1)ar
5 5
0 5
On integrating and simplifying, we get
s= 34 cm.

On the basis of Eqgs. (3) and (4), x (f) and s () plots can be drawn as shown in the answer
sheet.

As particle is in unidirectional motion it is directed along the x-axis all the time. As at
t=0,x=0
So, Ax=x= s, and %-w
Therefore, v=avx = avs
or, W= dv_ o ds_ a
’ t 2Vsdt 2Vs
_av_aavs of 1
Vs 2V 2 @)
2
v a
As, w-dt- >
v 4
o? o?
On integrating, fdv= ?dt or, v=>-t 2
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(b) Let s be the time to cover first s m of the path. From the Eq.

s=fvdt

2 2.2
o ot .
5= —Z—dt= DI) (using 2)
0
2.
or =, Vs 3

The mean velocity of particle

2\/;/a

f %—2 tdt
fv(t)dt aVs

0 -

<> = =
fdt 2Vs/a 2

According to the problem

- v_d‘.isl- avv (as v decreases with time)
0 s
or, — f \/; dv = afds
Yo 0
On integrating we get s = lv?,”

3a

Again according to the problem

_ﬂ, aVv or —i‘i- adt
dt Vv
0
dv
or, f—= afdt
, =]
Yo
N
Thus 1= 2%
a
(a) As r=atizbe’yc —-----2
So, x=at,y= -bt?
2
and therefore y= -b;

a
Downloaded From : www.EasyEngineering.net
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which is Eq. of a parabola, whose graph is shown in the Fig.

(d) As r=atizbe?j”
—>
v= d—t’=a?-2btj" 6))
So, v=\/a2(—2bt)2=\/az+4b2t2
Diff. Eq. (1) w.r.t. time, we get
v

w= 58 -ij

So, | W] =w=2b

VW (aT22btj)-(-2bj7

(<) cos o =
s (Va*+4b7:%) 20
2bt
or, COS Ol = =,
VaZ+4b%?
50 tano= —o—
’ 2bt
e 22,
or, o= lan (th)
(d) The mean velocity vector
((aiZ2b i3d
. f?dt _!;(at- tj)dt Lo
<V >= = =ai-btj
Ja t
Hence, |<}7’>|--\/;zz+(-bt)"r==\/a2+b2t2
1.25 (a) We have
x=atand y=at(l-at) 1)

Hence, y (x) becomes,

y= ax (1—%15)- x-%x2 (parabola)

(b) Diiferentiating Eq. (1) we get
v,=aand v,=a(l-2at) ?)
Downloaded From : www.EasyEngineering.net


http://Easyengineering.net
http://Easyengineering.net

Downloaded From : www.EasyEngineering.net 15

So, V= \/vxz+vyz-a\/1+(1-20n‘)2
Diff. Eq. (2) with respect to time

w,=0ad w,=-2aa

So, w-\/wx2+wy2-2aa
(c) From Egs. (2) and (3)
We have \7’-ai_-7-a(1-2at)j_’and W= 2aaj_’
x 1 vw -a(l-2at)2aa
SO, COS —= == - 5
4 v2 vw gV1+(l-2at)) 2aa
On simplifying. 1-2aty==1
1
As, tym 0, ty= —
o™ 0= o

126 Differentiating motion law : x= asinw?, y= a (1 -coswt), with respect to time,
V,= AW COS O, V= a o sin ot

So, V=awcosot i+ awsinwtj )
and v=aw= Const. )]
Differentiating Eq. (1) with respect to time

- dv 2. 2

o -
W= —r=-ao sinwti+aw”cos wtj 3)

(a) The distance s traversed by the point during the time <t is given by

T, T

s-fvdt-facodt- aot (using2)

0 (i

(b) Taking inner product of v and w
— —> rd . 2 2 . . 2 FxY

Weget, vV'w= (awcoswti+awsinwtj) (aow’sinwt(-i)+an’coswt-j)
So, 7 W= - a® ©?sin ot cos 0t + a*> > sin ot cos ot = 0

. . n
Thus, V'L W, i.c., the angle between velocity vector and acceleration vector equals 2

1.27 Accordiing to the problem
— bx ¢
W=w(-])

dv, v,
= -——= = '—l L
So, We= 0 and w,= — w @
Differentiating Eq. of trajectory, y= ax - bxz, with respect to time
dy_adx_,,, dx @

Downloaded From : www.EasyEngineering.net
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L4
ds

==a£i—x—
dt

x=0

So,

x=0

_Again differentiating with respect to time

d’y —-——“dz"-zb(i“-‘-)z-sz d’x

FTCPTE dt dt?

2
or, -w=a(0)—2b(%—f) -2bx(0) (using 1)

dx 1 / w . .

or, it b (using 1) C
1 [w

=a\/ — (¢
-0 2b

Hence, the velocity of the particle at the origin

2 2
i VACEANAL ) ey 2 RKT
v= V( dt )x_o"*( dt )x-o =V3p*te 3 (using Eqns (3) and (4))

As the body is under gravity of constant accelration g, it’s velocity vector and displacemen
vectors are:

Using (3) in (2) 4y

V=V +gt @
and A= F= ez g? (F= Oate = 0) @
So, <v> over the first f seconds

— —> —>
‘V;‘%%‘ & )
Hence from Eq. (3), <v> over the first ¢ seconds ) y,
—> —> g’
<V>= v+ 2 “)
0 2 1)0
For evaluating ¢, take
V= (170)+§’t)-(\7;+§’t)= vg+2(\70’-§7t+g2t2 of
2_ 2, (= 2.2 (t=2) <
or, V= vi+(voglt+gt >
0 (¢=0) P\ﬁc
But we have v= v, at t= 0 and Vo

Also at t = 7 (Fig.) (also from energy conservation)
Downloaded From : www.EasyEngineering.net
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Hence using this propety in Eq. (5)
v(2, = vg +2 (\7;-§ft + g212

20,8

As t=0, so, vT=-—7F—
4
Putting this value of v in Eq. (4), the average velocity over the time of flight
—>
—> —;(VO : é-y

_’—
<WV>= v -g——

The body thrown in air with velocity v, at an angle o from the horizontal lands at point

P on the Earth’s surface at same horizontal level (Fig.). The point of projection is taken
as origin, so, Ax=x and Ay =y

(a) From the Eq. Ay= vo‘;+%wytz

0==vsinor.1:—lgl:2 y’?
¢ 2 Yo
2vysina
As T = 0, so, time of motion t= —— '
g ] H
(b) At the maximum height of ascent, v, = 0 L ! P
so, from the Eq. vis vgy+2wyAy o ;._Rlz.q ;
0= (vpsina)’-2gH +_._> W
W=
v(z, sin® o }
Hence maximum height H = —-z—é—-—

During the time of motion the net horizontal displacement or horizontal range, will be
obtained by the equation

1
Ax = voxt+—wx1:2

2
2.
1 2 Vpsin2 a
or, R=vycosat-=(0)1"= yycosat= —
2 4
when R=H
vgsinza vgsinza

or tano = 4, so, o.= tan” ' 4
g 2g
(c) For the body, x () and y (¢) are

X= yycosat 1)
Downloaded From : www.EasyEngineering.net
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and y= vosinott—%gt2 ()]

Hence putting the value of ¢ from (1) into (2) we get,
2

2
) 1( x )_xma__sx__

-58
27 (vpcos a 2v§cos2a’

= y,sina
Y=o (vocosa

Which is the sought equation of trajectory i.e. y (x)
(d) As the body thrown in air follows a curve, it has some normal acceleration at all the
moments of time during it’s motion in air.
At the initial point (x = 0,y = 0), from the equation :
2
w,= -}% , (Where R is the radius of curvature)

2 2
= 20 (see Fig) or Ry= —2
gcosa= R, (see Fig.) or R, 2005 G

At the peak point v, = 0, v = v, =v, cos « and the angential acceleration is zero.

Now from the Eq. Wa= &

Note : We may use the formula of curvature radius of a trajectory y (x), to solve

part (d),
3

2 =
2
[1+(dy/dx) J
I dzy/dx2 I
We have, v, = vycosa, v, = vpsina - gt
As vt 3, all the moments of time.
Thus V= v,2-2gtvosina+g2t2
v, 1.d 1 ,

Now, W= = 2tht(v,Z)- v‘(gzt—gvosma)

=—£ i —-—pt)= - _vl
; (vosina-g1) g :,

v,
Hence [w,| = gl—‘fi

Now wn-VW—w,Z- gz—gz—v‘;-
- t

\Z
or w, = g— (where vx-Vv,z-zy?
ViDbwnloaded From : .EasyEngineering.net
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As 1 G,, during time of motion

v,
2
Wy=W,=~-§g v

On the basis of obtained expressions or facts the sought plots can be drawn as shown in
the figure of answer sheet.

The ball strikes the inclined plane (Ox) at point O (origin) with velocity v, = V 2gh (1)
As the ball elastically rebounds, it recalls with same velocity v, at the same angle a from

the normal or y axis (Fig.). Let the ball strikes the incline second time at P, which is at
a distance / (say) from the point O, along the incline. From the equation

y= v(,),t+%wyt2

0= vocosor.1:—%goosou2

where T is the time of motion of ball in air
while moving from O to P.

2v,
As 1= 0, so,1:=—g— 2)

Now from the equation.

X= vy t+=w.!

2

i XA LA
= Vpsinat+sgsinat

I . 2vol 1, 2v,
S0, =y, sina|—|+=gsina |—

4visina .
~ T (using 2)

Hence the sought distance, /= &g%)ﬁﬂ—o—ls 8hsin o (Using Eq. 1)

Total time of motion

2v,sina . g 98¢
T T ST, T 2x240 @)
and horizontal range
R 5100 85
R= vycosat or coso= v01:= 0% v )

From Egs. (1) and (2)
08?7 (85)
(480 (47’
On simplifying t* - 2400 v* + 1083750 = 0
Downloaded From : www.EasyEngineering.net
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Solving for 2 we get :
2 2400 = V 1425000 2400 + 1194
T = =
2 2
Thus T = 42395 = 0-71 min and

T= 24-55s = 0-41 min depending on the angle o.

Let the shells collide at the point P (x, y). If the first shell takes ¢ s to collide with second
and At be the time interval between the firings, then

x=vycos0,t=v,cos0,(t-A1) (1)

and y= v,sin0, t-% 2 1\3

= vosin 0, (- A) -2 (- AP @) |7

At cos 6, 3) (x}%")
cos 0, - cos 6, P
From Egs. (2) and (3) 92 91

2 vy sin (6, - 6,)
~ g(cos 0, + cos 0,)

From Eq. (1) ¢=

as At= 0 O

According to the problem
(a) -“%= vy or dy= v,dt

y
Integrating f dy = v, f dt or y= vyt (¢))
0 0

And also we have %= ay or dc=aydt= avytdt (using1)

x t
2
So, fdx=av0ftdt, or, x-%avot2= %%‘L(using 1)
A (]
(b) According to the problem
v,= vy and v, = ay 2

So, v==\/v2+v2=-\/v;‘;+a2y2

Therefore ——-—-—X—-—- d ——-———L———
Vvg+ay” dt V1+(ay/v0)

Diff. Eq. (2) with respect to time.

dv, 0 and 2= v, y
—-d—t—'= Wy= an dt = W= a~d7= aVo
SO, w=|wx|= av,

Downloaded From : www.EasyEngineering.net
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VT AV S
Hence w, t 0 14 (ay /Vo)2 V1+/av/v\2 (ay / Vo)2

1.35 (a) The velocity vector of the particle
—> - kng
v=ai+bxj

&_ b
So, 2= s bx @
x ¢
From (1) fax=a f dt or, x=at 2)
0 [}
And dy = bx dt= batdt
y t
Integrating f dy = ab f tdt or, y= -;—ab t? 3)
0 0
b
From Egs. (2) and (3), we get, y= -2—a-x2 @)

(b) The curvature radius of trajectory y (x) is :
3

[1+(dy/dx)2 ]5
|2y ©)

Let us differentiate the path Eq. y = %xz with respect to x,

dy_b £y_b
it and 12 a 6)

From Egs. (5) and (6), the sought curvature radius :
3

sl |

1.36 In accordance with the problem

— —>
w,=a-T
vdy
But W= o or vdv = w,ds
So, vdv= (@~T)ds=a-dr
.- -, .. .
or, vdv=ai-dr= adx (because a'is directed towards the x-axis)
v x
So, fvdv= afdx
0 0
Hence V= 2ax or, v=V2ax
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1.37 The velocity of the particle v= at

dv
So, A= (65
And v2 2,2
A (using v = ar) ()]
From s-fvdt
t
1 2
2xRn=afvdt= Sat
0
2
LA
So, . L )

From Egs. (2) and (3) w, = 4nan
Hence w=Vw?+w?

-Va§+(4uan7=a\/1+l6?n§=0'8m/82
1.38 According to the problem
[wl= [w,l
-dv V?
F. t o N
or v (n), & "R
Integrating this equation from vop< v<s v and 0= r=< ¢

v t
dv 1 Vo
-fvzstdt or, v=-( vot—)
" 0 1+——
0

R
Now for v (s), - Ed‘i, L , Integrating this equation from vps vs vand 0s ss s
SO, f——-— fds or, In —-= —E
Hence v=v,e -wR 2

(b) The normal acceleration of the point
2 2 -2/R
vi Ve .
Wom gT TR (sing2)

And as accordance with the problem
A A
|w,|=|w,| and w,u,Lw,u,
2

V,
so, wwa/o'z’/RV—
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From the equation v= aVs
w ﬂ i ——a ;k—
dt

2
Gl aw/.;-z,and

= -2
2Vs

As w, is a positive constant, the speed of the particle increases with time, and the tangential
acceleration vector and velocity vector coincides in direction.

Hence the angle between v and W is equal to between w,;; an W, and o can be found
Iwl _a*s/R_ 25

by means of the formula : tana = =
y lwl™ &2 R

From the equation l=asinwt
a_ V=awcoswt
dt
So, w,= %- -aw’sinwt, and (6))]
V. dw’cosiot
wnn E- ——E—‘ (2)
(a) Atthe point /= 0,sinw¢= 0 and coswz= = 1 so, wr= 0, = etc.
2
[0}
Hence W= w, = R
Similarly at/= x a, sinwf= = 1 and coswt= 0, so, w,= 0
Hence w--lw,lasam2
As w,= a and at t= 0, the point is at rest
So, v(t) and s(t) are, v= at and s = %at2 (6]
Let R be the curvature radius, then
2 22
V. at 2as , .
But according to the problem
w, = bt
2.2 2 2
a_at =4 __ a4 i
So, bt*= R °F R o 20 (using 1) )]

Therefore w=V w?+w2 = V a*+(2as/R)* = \/a2+(4bs2/a2)2(using 2)

Hence w= aV 1+(4bs2/a3)
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1.42 (a) Let us differentiate twice the path equation y (x) with respect to time.

2 2
D ®, LY | (), Lx
P 2axdt, Za[(dt) +x

Since the particle moves uniformly, its acceleration at all points of the path is normal and
at the point x = 0 it coincides with the direction of derivative d y/dr> Keeping in mind

that at the point x = 0, % =V,
Weget W= é’%" -2av2' Wn
x=0
2
2 v - L
So, w,=2av R,orR >a

Note that we can also calculate it from the formula of problem (1.35 b)
(b) Differentiating the equation of the trajectory with respect to time we see that

2 dy _
bx d+aydt 1)

which implies that the vector (b xi'+a yﬂ' is normal to the velocity vector

? = % T+ %f’which, of course, is along the tangent. Thus the former vactor is along
the normal and the normal component of acceleration is clearly
b x é 2 & y

d12+aydt2

i (bx +ay )V2

onusing w,=w-n/|n].Atx=0,y= 2 bandsoatx=0

W’tdtz

Differentiating (1)
2 2

Also from (1) £Z;%-Oatx-o

So (%) = x v (since tangential velocity is constant = v )

Thus (?): + -llv2

a
and w| = _Ilv_i__vi
n a2 R

This gives R = a*/b. o
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Let us fix the co-ordinate system at the point O as shown in the figure, such that the
radius vector 7 of point A makes an angle 8 with x axis at the moment shown.

Note that the radius vector of the particle A

rotates clockwise and we here take line ox as
reference line, so in this case obviously the y

angular velocity w= -ﬁ taking

dt
anticlockwise sense of angular displacement as
positive.

Also from the geometry of the triangle OAC
R r

sin®  sin(n-28)

Let us write,

= rcosB,'_-'rrsian_; 2Rcoszei_-’r Rsinzer

Differentiating with respect to time.

—

or, r= 2R cos 0.

do »

dr — . do —»
— or v= 2R2cos9(—sm9)-2;—,+2Rcos29EJ

dt

— -do s == L
o, v= 2R Z [sin268i-cos26j]
or, V= 2Rm(sin26i—:cos29j_;
So, |?| or v 20R=04m/s.

As o is constant, v is also constant and w, = %- 0,

2 2
So, W= w = %—-g_z_%i_)_

Alternate : From the Fig. the angular velocity of the point A, with respect to centre of

the circle C becomes

a(20) o (=48
dt dt

Thus we have the problem of finding the velocity and acceleration of a particle moving
along a circle of radius R with constant angular velocity 2 w.

= 4w’R= 032 m/s?

) =2 @ = constant

Hence v=2wR and
2 2
W= W = -R—- T—- 4(02R
Differentiating ¢ ( ¢} with respect to time
99 o - 2ar )

dt
For fixed axis rotation, the speed of the point A:

v=oR=2atR orR-—‘;—; V)
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Differentiating with respect to time

w2 2aR l;-,(using 1)

dt
v? v? .
But wo= R " v/2at-2atv (using 2)
So, W= \/w,2+w,,2 =V (v/t)+(2atv)
- *V1i+aa’s?

The shell acquires a constant angular acceleration at the same time as it accelerates linearly.
The two are related by (assuming both are constant)

w. B

! 2xn
Where w = linear acceleration and f =_angular acceleration

Then, w=V2f2nn= V 2-—‘;—(27:11)2

But v2= 2wl hence finally
= 2nrny
1

Let us take the rotation axis as z-axis whose positive direction is associated with the
positive direction of the cordinate ¢, the rotation angle, in accordance with the right-hand
screw rule (Fig.)

(a) Defferentiating @ (¢) with respect to time.

47
%:B. a-3bt= o, (1) and 3
d’e do
<7 4 - B~ -6bt @)

From (1) the solid comes to stop at At = ¢ = VL

G
The angular velocity o= a-3bt?, for 0stsVa/3b

Va/3b
fodt f’(a-abﬂ)d: o
So, <w>= .l -[at—bts]oa /Va/3b-2a/3
Jar Vaj;!b
dt

Similarly B = |B,|= 6b¢ for all values of r.
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Va/3b
6bt dt
So, <p>= '[Bdt= - = V3g)
fdt Va/3b
dt
0
(b) From Eq. (2) B, = - 6b¢
So, (B,),= Va/3b = - 6b 5--2\/—
Hence ﬁ' l(ﬁz)‘-ml' 2V3az

Angle a is related with |w,| and w, by means of the fomula :

tan o = where w,= ®?R and |w,|= BR @)

Mn_
[w ]’
where R is the radius of the circle which an arbitrary point of the body circumscribes.

From the given equation f§ = Z—? = at (here f§ = ﬁ—? » as B is positive for all values of 7)

@ t
Integrating within the limit [ dw=a | tdt or, m-lat2
grating ) 3

2
2 2.4
So, w,= 0*R= (“—'—) R=25R

2 4
and |w,|=BR= atR
Putting the values of |w,| and w, in Eq. (1), we get,

2.4 3
a’t"R/4 at 4
tan o = iR -1 °" t-[(a)tana]

v3

In accordance with the problem, B, < 0

Thus - %—(:)-- k Vo , where k is proportionality constant

dw ¢ kt
or, - o-\,:-k{dt or, Voo = Voo - 5 )

When o = 0, total time of rotation t= T = 2
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2V, /k
2,2
f (w0+ -ktio)dt
4
A | locity fo)dt ()}
verage angular velocity < @ > =
far 2Vw, /k
2V /k
Hence < @ > = u)t+£—2-li-£ w, ’ 2—@- /3
of YT T ™ Kk - %
0

We have w =wy-a@ = gdgt)-

Integratin this Eq. within its limit for ()¢

® . &
f__ii_L=fdtor,ln 2o ‘p=—kt
b Yo-ko

wg

o,
Hence Q= To(l—e"”)

(b) From the Eq., ® = @y~ k@ and Eq. (1) or by differentiating Eq. (1)

o= wye ¥

@)

Let us choose the positive direction of z-axis (stationary rotation axis) along the vector

. In accordance with the equation
o q

do, o,
@ = ﬁz or mz_d(p = Bz ZI\

o, w,dw,= B, do=Bcospdo, wz
Integrating this Eq. within its limit for ﬁz

w, (p) X /2

lll‘ ) O
or, fd(ozs Bofcosquq)
0 0

w2
or, 3'- = Bysing

Hence w,=xV2p;sing

SV

The plot w, (¢) is shown in the Fig. It can be scen that as the angle ¢ grows, the vector
o first increases, coinciding with the direction of the vector B'; {(w, > 0), reaches the maximum

at @ = /2, then starts decreasing and finally turns into zero at ¢ = . After that the body
starts rotating in the opposite direction in a similar fashion (w, < 0). As a result, the body

will oscillate about the position BSwﬁﬁ)zaﬁ‘e’gl':F@mawmqﬁagggggme%{%g.net
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1.51 Rotating disc moves along the x-axis, in plane motion in x -y plane. Plane motion of a
solid can be imagined to be in pure rotation about a point (say /) at a certain instant
known as instantaneous centre of rotation. The instantaneous axis whose positive sense is
directed along @ of the solid and which passes through the point /, is known as instantaneous
axis of rotation.

Therefore the velocity vector of an arbitrary point (P) of the solid can be represented as :
Ve WX Ty m
On the basis of Eq. (1) for the C. M. (C) of

the disc

V.= WXy ¢))

. — 2>
According to the problem v, %%i and

@1t Eie @Lx- -~y plane, so to satisy the
Eqn. (2) 7¢y is directed along (- j ) Hence point

I is at a distance rp, = y, above the centre of () 4
the disc along y - axis. Using all these facts

in Eq. (2), we get
v
Vo= 0y ory--mi 3)

(a) From the angular kinematical equation

W, = Wg, + ﬁz t (4)
o= f§t
On the other hand x = v, (where x is the x coordinate of the C.M.)
x
or, t= ” &)

From Egs. (4) and (5), w = %

v2
- ﬂx/v Bx ( hyperbola )

(b) As centre C moves with constant acceleration w, with zero initial velocity

Using this value of o in Eq. (3) we get y= —=

So, X = *;-wtz and v, = wt
2x
Therefore, ve=wV, - V2xw
V. VZwx
Hence y= ;‘ —20)!!— (parabola)
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The plane motion of a solid can be imagined as the combination of translation of the C.M.
and rotation about C.M.
. — - —
So, we may write v, = Vo +V,
—_ - —>
=V +OXT, o (1) and

— - -
WA- WC+WAC

wwet 02 (=rrc)+(Bxre)

;:c is the position of vector of A with respect to C»
In the problem v, = v = constant, and the rolling is without slipping i.c., Ve=v=0R,
So, w-= 0 and § = 0. Using these conditions in Eq. (2)

—> 2 - 2 A v A

wWa= 0 (=ryc)= 0 R(-u,c)= _RT('“AC)
Here, ftA ¢ is the unit vector directed along ;: c

2

b d A
Hence w, = — and w, is directed along ( - u ) or directed toward the centre of the
A= R A g A C

wheel.

(b) Let the centre of the wheel move toward right (positive x-axis) then for pure tolling
on the rigid horizontal surface, wheel will have to rotate in clockwise sense. If @ be the

v
angular velocity of the wheel then w = Fc = Ili

Let the point A touches the horizontal surface at t = 0, further let us locate the point A
att=

When it makes 6 = w ¢ at the centre of the wheel.
From Eqn. (1) Vo= Vot B XTae
> = O 2
= vit+w(-k)x[RcosO(-j)+Rsin0(-i)]
or, v,=VvitwR[coswt(-i)+sinwtj ]

- —>
= (v-coswt)i+vsinwtj (asv= wR)

So, v, = \/(v - vcos wt)® + (v sin wf)%

=vV2(1-coswf) = 2vsin (wt/2)

Hence distance covered by the point A during T= 2 x/w
2x/w

s-vadt-f2vsin(mt/2)dt- Y.
0

Let us fix the co-ordinate axis xyz as shown in the fig. As the ball rolls without slipping
along the rigid surface so, on the basis of the solution of problem 1.52 :

m TVt @xiem 0 .
v,= oR and @11 (<k) as ¥ 111 O
Downloaded From : www.EasyEngineering.net
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P co + B'x r.=0
nd - BR and 11 ) as w11 A VctWR=Va
At the position corresponding to that of Fig., in
accordance with the problem, B

W= W, SO v, = Wt

i
L> Y
and = Ye mt and ﬁ- = (usmg 1) 'z * / NV

R R
(a) Let us fix the co-ordinate system with the frame [TT77777
attached with the rigid surface as shown in the Fig.

As point O is the instantancous centre of rotation of the ball at the moment shown in Fig.
so, o= 0,
Now, Vim Vot ®X T
™ e
= Vei+®(-k)xR(j)= (vo+wR)i
So, Vy= 2V im= 2wii (using 1)
Similalty vy = Vo +® X Fpe= vcam(—l?)xR(i_).
-~ =+ e ’ay
= Voi+OR(~j)= voit+ve(-j)
—
So, vp=V2 v, =V2 wt and vy is at an angle 45° from both iand j (Fig.)
0y e Wos 0 (7 + B
v2 A W +8g
2, —» C 2 8
= (- Toc) =5 (ko) (using 1)
where ";oc is the unit vector along 7g¢

2

50, Wym -2 We
- -

> "0 R R

directed towards the centre of the ball

(using 2) and wy is

Now W, = W + @’ (= Tpe ) + B X The
= wit©’R (-j'_)’+ﬂ(-l?)er

2

= (W"'ﬁR)”"E'(‘J) (using 1) = 2wt+—-R—(-))

/ 4.4 2\2
So, Wy = 4w2+‘—v—;—-2w 1+(—”—"——)
R

2R

Similarly Wy= W, + 02 (= 7pc) +BX Tpe
= witoR(-)+BE)xR()

A
ol L i+BR(-j) (using 1)
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- (w - !21{3) z—; w(-j_)’(using 2)

So, w3=\/(w—%)2+w2

1.54 Let us draw the kinematical diagram of the rolling cylinder on the basis of the solutioi
of problem 1.53.

A Va2V Wet+/Br

\

v We

Sr

0

As, an arbitrary point of the cylinder follows a curve, its normal acceleration and
radius of curvature are related by the well known equation

Wa= R
2
) Va
so, for point A, YA ™ R
A
4v: :
or, R, = —3= 4r (because v = or, for pure rolling)
r
Similarly for point B,
v
Wam = R;
VZv, )
’r cos 45° = ( R :) )
B
%
or, RB-2\/7—-2—- 2V2r
or

1.55 The angular velocity is a vector as infinitesimal rotation commute. Then the relative angular
velocity of the body 1 with respect to the body 2 is clearly.
— —  —»
0)12 = (1)1 - (1)2
as for relative linear velocity. The relative acceleration of 1 w.r.t. 2 is

o,

dt
-
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where S’ is a frame corotating with the second body and S is a space fixed frame with
origin coinciding with the point of intersection of the two axes,

b dﬁ—)’l dml - -
ut dt B dt S'+0)2x0)1

. . * — d(T):
Since S’ rotates with angular velocity w, . However Z = 0 as the first body rotates

with constant angular velocity in space, thus
- -
BIz = W) X0,
Note that for any vector b, the relation in space forced frame (k) and a frame (k') rotating
with angular velocity @ is

db d -
dtl .df] . BxF
K K

Wehave @@= ati+ btzr )]
So, o=V (a)? + (b 2 , thus, ®|,_ 1o, = 7.811ad/s

Differentiating Eq. (1) with respect to time

- 22 ari2mj” @
So, B=Va+(2br)?
and Bl,- 10, = 1:312d/s?

B (aivb’])-(@i+2bt])
OB V(@) + o V¥ (2br)

(b) cos a =

Putting the values of (a) and (b) ,and[taking t= 10s, we get
as 17°

(a) Let the axis of the cone (OC) rotates in anticlockwise sense with constant angular
velocity @ and the cone itself about it’s own axis (OC) in clockwise sense with angular
velocity (_o; (Fig.). Then the resultant angular velocity of the cone.

D=0 + @ (¢))]
As the rolling is pure the magnitudes of the
vectors @ and @, can be easily found from
Fig.

o=

As @ L@, from Eq. (1) and (2)
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w=Vao?+w}

v 2 (v)? v
v(Rcota) +(R) chosm“z'smd/s

(b) Vector of angular acceleration

do d@ +&)
i (as ® = constant.)

The vector ‘T’:) which rotates about the OO’ axis with the angular velocity @ ',
magnitude. This increment in the time interval dt is equal to

|dwy| = wy ® dt or in vector form dwy= (& x wy ) dr.

Thus P= @ x @
The magnitude of the vector B’xs equal to
B= o w,(as (TJ"_LSO)

v
RcotaR R?

So, B= —tana = 2-3rad/s

The axis AB acquired the angular velocity
o = Byt ()

Using the facts of the solution of 1.57, the
angular velocity of the body

w=Vol+a?
= V0)§+ﬁgt2 = 0-6 rad/s

&
i

>

o~

retains i

€

<
>
Wo

>

And the angular acceleration.

B._dJ d@ +®y) da do,

dr dt “Ta V&
d @, , do
But T- ® xay, and —— 7E Bot

So, B= (Botx @)+ Py

As, BoL®, so, B=V (wBp0?+P2 =BV 1+(wy1)? = 02rad/s?
Downloaded From : www.EasyEngineering.net
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THE FUNDAMENTAL EQUATION OF DYNAMICS

Let R be the constant upward thurst on the acrostat of mass m, coming down with a
constant acceleration w. Applying Newton’s second law of motion for the aerostat in
projection form

F,= mw,
mg-R = mw (6]
Now, if Am be the mass, to be dumped, then using the Eq. F, = mw,
R-(m-Am)g= (m-Am)w, )
2mw

From Egs. (1) and (2), we get, Am = g+ w

Let us write the fundamental equation of dynamics for all the three blocks in terms of
projections, having taken the positive direction of x and y axes as shown in Fig; and using
the fact that kinematical relation between the accelerations is such that the blocks move
with same value of acceleration (say w)

myg~T = myw @ x TN’ N2
I, -T,-lm g =m;w ) T T i % T
i Py 1 o
and T,-kmyg= myw 3) ir /l 77/};’””lh 7 ?r,_
The simultaneous solution of Egs. (1), (2) and T ! .
(3) yields, 1 ‘m,g 23
[mo-k(m +m)] 1
4 T 1+k)m,

an 2= m°+m1+m2ng ‘mog

As the block my moves down with acceleration w, so in vector form

= ["‘o'k(ml"'mz)]?
mo+m1+m2

Let us indicate the positive direction of x-axis along the incline (Fig.). Figures show the
force diagram for the blocks.

Let, R be the force of interaction between the bars and they are obviously sliding down
with the same constant acceleration w.
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Newton’s second law of motion in projection form along x-axis for the blocks gives :
mygsina -k, m gcosa+R=mw 1)
mygsino-R-k,m,gcos a= myw 2

Solving Eqs. (1) and (2) simultaneously, we get

kymy +kym, a

m, +m,

w= gsina-gcos o nd
m; m, (k, - k,) g cos o
my +m,
(b) when the blocks just slide down the plane, w= 0, so from Eqn. (3)
k, '"1"‘"2'”2_
m; +m,
of, (m;+ my)sinoa= (k, m; +k,my)cosa

(ky m, + ey my)
]
Case 1. When the body is launched up :

Let k be the coefficeint of friction, u the velocity of projection and [ the distance traversed
along the incline. Rétarding force on the block = mg sin o + kmg cos a. and hence the
retardation = gsin o + kg cos a.

Using the equation of particle kinematics along the incline,
0=u’-2(gsina+kgcosa)l

R= €)

gsina - gcos a 0

Hence tana =

2

o i 2(gsina:kgcosa) @
and O=u-(gsina+kgcosa)t

or, u; (gsinafkgcosa)t ?2)
Using (2) in (1) I = %(gsincwkgcosm)t2 )

Case (2). When the block comes downward, the net force on the body
= mg sin o - km g cos a. and hence its acceleration = g sin o ~ k g cos o
Let, ¢ be the time required then,

=%(gsina—kgcosa)t'2 @)
From Egs. (3) and (4)

i _ sina- k cos o
¢? sina+kcosa
But;,t-- ;1]- (according to the question),

Hence on solving we get
2
ke =D n 62 016
(n Iﬂ'o&nloaded From : www.EasyEngineering.net
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163 At the initial moment, obviously the tension in the thread connecting m, and m, equals

1.64

1.65

the weight of m.,

.(a) For the block m, to come down or the block m, to go up, the conditions is

myg-T20 and T-m,gsina-fr20
where T is tension and f; is friction which in the limiting case equals km,g cosa. Then
or m,g-m,sina>km, gcosa

or ﬂ>(l¢:¢:osov.-o-sinov.)
my

(b) Similarly in the case
m gsina-m,g>fr,

or, m, gsino -m,g>km, g cos a

or, &< (sin o - k cos o)
m

(c) F.or this case, neither kind of motion is possible, and fr need not be limiting.

Hence, (k cos a. + sin o) > m&> (sin o - k cos o)
1

From the conditions, obtained in the previous problem, first we will check whether the
mass m, goes up or down.

Here, my/m, = m > sin & + k cos o, (substituting the values). Hence the mass m, will come
down with an acceleration (say w). From the free body diagram of previous problem,

my,-g-T=myw )
and T-m;gsina-km;gcoso=mw )
Adding (1) and (2), we get,

myg-m gsina—-km,gcosa= (m +my)w

_ (mz/ml—sina—kcosa)g_ (n-sino-kcosa)g
B 1+ my/m,)) 1+7m
Substituting all the values, w= 0048 g~0-05g

As m, moves down with acceleration of magnitude w= 0.05 g > 0, thus in vector form
acceleration of m, :

—>

- (n-sina-kcosa)g —
w, 1+m 0.05 g.

Let us write the Newton’s second law in projection form along positive x-axis for the
plank and the bar

fr=m 6

w,, fr=m,w . .
O\R/nlc{aded Profh : www.EasyEngineering.net
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At the initial moment, fr represents the static
friction, and as the force F grows so does the
friction force fr, but up to it’s limiting value

i€ fr= fTomay= kKN=km,g. Fr m, F—F
Unless this value is reached, both bodies moves = fp
as a single body with equal acceleration. But m

as soon as the force fr reaches the limit, the  7////// /.

bar starts sliding over the plank i.c. wy 2 w,.
Substituting here the values of w; and w, taken from Eq. (1) and taking into account that

f,= km, g,we obtain, (at - km, g)/m, 2 _;nlmz__ g, were the sign "=" corresponds to the moment
1

t= 1, (say)
kgm,(m, +
Hence, ty= _..g___il_"b)
am,
- km,g
If t<t, then w, = (constant). and

1
w, = (at - km, g)/m,
On this basis w, (f) and w;, (£), plots are as shown in the figure of answersheet.

Let us designate the x-axis (Fig.) and apply F,= m w, for body A :
mgsina-kmgcosa= mw
or, w= gsina-kgcosa
Now, from kinematical equation :
Iseca=0+(1/2) wt?

or, t=V2lseca/(sina-kcosa) g

=V2Il/(sin20/2-kcos’ ) g
(using Eg. (1))

d(smza—kcosza)

2
fore . , Ta =0
ie. ggis—z—g-q»ZIcoosasina-O
1 o
or, tan2a-—;=>a=49

and putting the values of a, k and [ in Eq. (2) we get #,; = 1s.

Let us fix the x -y co-ordinate system to the wedge, taking the x — axis up, along the
incline and the y - axis perpendicular to it (Fig.).
Downloaded From : www.EasyEngineering.net


http://Easyengineering.net
http://Easyengineering.net

1.68

Downloaded From : www.EasyEngineering.net 39

Now, we draw the free body diagram for the
bar.

Let us apply Newton’s second law in projection
form along x and y axis for the bar :

TcosB-mgsina—fr=0 (6]

TsinB+N-mgcosa=0

or, N= mgcosa-Tsinf )
But f, = kN and using (2) in (1), we get

T= mgsina+ kmg cos a/(cos § + ksin ) ?3)
For T, the value of (cos B + ksin B) should be maximum
d (cos B + ksin B)
dp
Putting this value of § in Eq. (3) we get,

So,

=0 or tanff= £k

m g (sin o + k cos o) mg(sina+kcosa)

T,
m VIR 4k VI B V1+k2

First of all let us draw the free body diagram for the small body of mass m and indicate
x - axis along the horizontal plane and y - axis, perpendicular to it, as shown in the figure.

Let the block breaks off the plane at t= ¢, i.e. N= 0

So, N=mg-atysina=0

e
or, Iy= e ) [i &

asin o x z
From F, = mw,, for the body under :
investigation : 77 /l” L
mdy/dt = atcos o ; Integrating within the
limits for v (f) mg

v

mfdv,- acosaftdt (using Eq. 1)
0

&

acosa 2

SO, V= '37 - bn t (2)
Integrating, Eqn. (2) for s ()
acos o t
=73 (C)

Using the value of ¢ = ¢, from Eq. (1), into Egs. (2) and (3)

mg cosa and s = g COSG

2asin’a 6 a*sin’ o
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1.69 Newton’s second law of motion in projection form, along horizontal or x - axis i.e.

1.70

171

F,

.= mw, gives.

F cos (as) = mviv- (as a = as)

ds ﬁ\N
or, F cos(as)ds = mvady F
Integrating, over the limits for v (s) TS L
® 2 z > x
F Vv
oy f cos (as) ds = Y 7777777777777777
’ }
A\
2Fsina mg‘
or v= V —_—
ma
= V2gsina/3a (using F= %g-)
which is the sought relationship.
From the Newton’s second law in projection from :
For the bar,
T-2kmg= (2m)w )

For the motor,

T-kmg= mw' 2
Now, from the equation of kinematics in the frame of bar or motor :

1= -;-(w+w')t2 ©)

From (1), (2) and (3) we get on eliminating T and w/
t=V2l/(kg+3w)

\f\l

TI
2m =

m h'
TrTTTrr7777 77777 7777777777777 77777777 £

fr r

Let us write Newton’s second law in vector from F = m w, for both the blocks (in the
frame of_ground)

T+m1g-m1w1 ®

T+myg= my¥, @

These two equations contain three unknown
quantities w; , w, and T . The third equation

¥
N

is provided by the kinematic relationship TA

between the accelerations :
- —> - - —> - wo
W= Wo+W , Wo= Wy—w 3) M2

where W is th acceleration of the mass m,
with respect to the pulley or elevator car.
Summing up termwise the IRt hand and the

nght—hand sides of these kinematical equations, we get
Downloaded From : www.
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W’l + »7'; =2 W:, )
The simultaneous solution of Egs-(1), (2) and (4) yiclds

— —
- (m-m)g+2myw,
w, =

my,m,
Using this result in Eq. (3), we get,
- Mmy-my = 2m;m,

w = (E-W:,) and T=
m;+m, m; +m,

(W - 8)

Using the results in Eq. (3) we get # = —1—2
& ’ & m +m

&~y
2
(b) obviously the force exerted by the pulley on the celing of the car

- - 4m1m2 — —>

F=-2T= (8-wp)
2

m1+m

Note : one could also solve this problem in the frame of elevator car.

Let us write Newton’s second law for both, bar 1 and body 2 in terms of projection having
taken the positive direction of x, and x, as shown in the figure and assuming that body 2

starts sliding, say, upward along the incline

T,~-mygsina=m;w (¢9)]

myg~Tp=mw ()]
For the pulley, moving in vertical direction
from the equation F, = m w,
2T,-T,= (m,)w;= 0

(as mass of the pulley m,= 0)
or I,=2T, 3)
As the length of the threads are constant, the

kinematical relationship of accelerations
becomes

w= 2w, ©)
Simultaneous solutions of all these equations yields :
m, .
2gl2 o, Csina
! 2g(2m-sina)
w= m - dn+1)
( 424 1)
my

As m > 1, w is directed vertically downward, and hence in vector form
—> .
—- 2g(2n-sina)
w= n+1
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1.73 Let us write Newton’s second law for masses m; and m, and moving pully in vertical
direction along positive x — axis (Fig.) :

mg=-T=mw, @ —Wo —> X1
myg-T= myw, @ Ti
m,
T,-2T=0(@sm=0) 7777777777777
or I,=2T 3) T
Again using Newton’s second law in projection
form for mass m, along positive x, direction r Wo
(Fig), we get T
T = myw, O]
The kinematical relationship between the X
accelerations of masses gives in terms of m;g mH0
projection on the x - axis ‘G
W Wy = 2w, )

Simultaneous solution of the obtained five equations yields :
[4mymy+mg(m-m)]g
4m; my + my(m; +my)

W1=

In vector form

= [4m m,+my(m -m) 18
1 4m, my+my(m, +my)

1.74 As the thread is not tied with m, so if there were no friction between the thread and the
ball m, the tension in the thread would be zero and as a result both bodies will have free
fall motion. Obviously in the given problem it is the friction force exerted by the ball on
the thread, which becomes the tension in the thread. From the condition or language of
the problem w,, >w, and as both are directed downward so, relative acceleration of

M = w,,—w, and is directed downward. Kinematical equation for the ball in the frame
of rod in projection form along upward direction gives :

b= 2 (=) £ @

Newton’s second law in projection form along
vertically down direction for both, rod and ball
gives,
Mg-fr=Mw, (3]
mg-fr=mw, 3)
Multiplying Eq. (2) by m and Eq. (3) by M

and then subtracting Eq. (3) from (2) and after
using Eq. (1) we get

fr=

2IMm M

N2
M -m)t Downloaded From : www.EasyEngineering.net
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Suppose, the ball goes up with accleration w; and the rod comes down with the acceleration w,.
As the length of the thread is constant, 2w, = w, @

From Newton’s second law in projection form along vertically upward for the ball and
vertically downward for the rod respectively gives,

T-mg=mw, 2
and Mg-T'=Mw, 3)
but T=2T  (because pulley is massless) @

From Egs. (1), (2), (3) and (4)
M-mg (2-mg

W= A n+4 (in upward direction)
and w,= 22;2] " 4; (downwards) T!

From kinematical equation in projection form, we get

l-%(wl+w2)t2 T

as, w, and w, are in the opposite direction.

M}

Putting the values of w; and w,, the sought mg_
time becomes
t=V2im+4)/32-nm)g=14s
Using Newton’s second law in projection form along x - axis for the body 1 and along
negative x - axis for the body 2 respectively, we get
m g-Ty=mw @

T-myg=m,w, @)

For the pulley lowering in downward direction
from Newton’s law along x axis,

T, -2T,= 0 (as pulley is mass less)

or, T,=2T, 3
As the length of the thread is constant so,

12

m:g

wy,= 2w, @ ¥
The simultaneous solution of above equations yields AT7TT77777777 $:m; ;233‘

2(m, - 2’"2)8 2m-2) m
W2 = 4m,+m, n+4 (as ,,n) ©)

Obviously during the time interval in which the body 1 comes to the horizontal floor
covering the distance A, the body 2 moves upward the distance 24. At the moment when
the body 2 is at the height 24 from the floor its velocity is given by the expression :

vi= 2w, (2) = 2[2_(“'_2)&]%_,&9]:_2_)&
n+4 n+4
After the body m, touches the floor the thread becomes slack or the tension in the thread
zero, thus as a result body 2 is only under gravity for it’s subsequent motion.
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Owing to the velocity v, at that moment or at the height 24 from the floor, the body 2
further goes up under gravity by the distance,
K= .vé - 4h(n-2)
28 n+4

Thus the sought maximum height attained by the body 2 :
4h (- 2) - 6mh

Mm+4)  n+4
Let us draw free body diagram of each body, i.e. of rod A and of wedge B and also draw

the kinemetical diagram for accelerations, after analysing the directions of motion of
A and B. Kinematical relationship of accelarations is :

H=2h+h = 2h+

Wa
tana= — (6]
Wp
Let us write Newton’s second law for both bodies in terms of projections having taken
positive directions of y and x axes as shown in the figure.

m,g-Ncoso=m, w, )
and Nsina= mgwy 3
Simultaneous solution of (1), (2) and (3) yields :
g m, gsina g and
4 mysino+mgeotocosa  (1+mcot )
w oy &
2~ tano  (tan o + 1) cot )
N —_—
A Wag
— B
wA -
NN “A
«£
ly % mAg N ¥
e >
wB

Note : We may also solve this problem using conservation of mechanical energy instead
of Newton’s second law.

Let us draw free body diagram of each body and fix the coordinate system, as shown in
the figure. After analysing the motion of M and m on the basis of force diagrams, let us
draw the kinematical diagram for accelerations (Fig.).

As the length of threads are constant so,
ds,\ = dsy, and as V;M and V;, do not change their directions that why
IWM I = IWM I = w (say) and
Woas 11 vy and w,, 1oy,
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—>
wm .
T
r T g
* ->
N N Y Wm
frpT e
Wmm
T
W
As W, =W, + Wy
so, from the triangle law of vector addition
W,= V2w @
From the Eq. F, = mw, , for the wedge and block :

T-N=Mw, )
and N=mw ®3)
Now, from the Eq. F,= mw,, for the block

mg-T-kN=mw @)
Simultaneous solution of Egs. (2), (3) and (4) yields :

- g
(km+2m+M) (k+2+M/m)
Hence using Eq. (1)
w, = 2
" 2+k+M/m)

Bodies 1 and 2 will remain at rest with repect to bar A for w,;, <w s w_,, where w__is

the sought minimum acceleration of the bar. Beyond these limits there will be a relative
motion between bar and the bodies. For 0 < w s w,;,, the tendency of body 1 in relation

to the bar A is to move towards right and is in the opposite sense for w2 W On the
basis of above argument the static friction on 2 by A is directed upward and on 1 by A
is directed towards left for the purpose of calculating w,; .

Let us write Newton’s second law for bodies 1 and 2 in terms of projection along positive

x - axis (Fig.).
T—frl-a:ngw) of, fri=T-mw (1) ANT —>W
Ny= mw © T
As body 2 has no acceleration in vertical f Tie
direction, so v \d
fro=mg-T (3) fmg_ T
From (1) and (3) :
(r+fr)= m@-w) &) P o g
But  fr, +fr,sk(N,+N,) 2 mg

o Inrfaskermw) G I
Downloaded From : www.EasyEngineering.net


http://Easyengineering.net
http://Easyengineering.net

46

1.80

1.81

Downloaded From : www.EasyEngineering.net

From (4) and (5)
m(g-w)smk(g+w), or wz gl-k

1+k)
1-k
Hence Wyin ™ gé+—lc)l
On the basis of the initial argument of the solution of 1.79, the tendency of bar 2 with
respect to 1 will be to move up along the plane.
Let us fix (x — y) coordirate system in the frame of ground as shown in the figure.
From second law of motion in projection form along y and x‘axes :

mgcosa—-N= mwsina

o, N=m(gcosa-wsina) (69)
mgsina+ fr= mwcos a
o, fr=m(wcosa-gsina) 2)

but fr < kN, so from (1) and (2)
(wcosa-gsina)<sk(gcosa+wsina )
or, w(cosa-ksina)sg(kcosa+sina)

(cosa +sina)
or, wsg—m——m———=
cos o — ksin a

So, the sought maximum acceleration of the
wedge :

(kcosa+sina)g (kcota+1)g
cosa-ksina  cota-k
Let us draw the force diagram of each body, and on this basis we observe that the prism
moves towards right say with an acceleration w1 and the bar 2 of mass m, moves down

where cota > k

Wmax =

the plane with respect to 1, say with acceleration w,,1 , then, w2 = w21 +w; (Fig.)

Let us write Newton’s second law for both bodies in projection form along positive
y, and x; axes as shown in the Fig.

m;gcosa-N=myw,(, = mz[w21(y2)+wlky2)] = m2[0+w1 sina]

or, m,gcos a—N= m,w,sina 1)
and " Nsina = mw, @
Solving (1) and (2), we get

ngsixlotcoscnt.= _gsina cos a

W1=

my+mysin’a  (my/my)+sin’a

W

2]
—)X‘l. w2
oL

Wi
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1.82 To analyse the kinematic relations between the bodies, sketch the force diagram of each

1.83

body as shown in the figure.

On the basis of force diagram, it is obvious that the wedge M will move towards right
and the block will move down along the wedge. As the length of the thread is constant,
the distance travelled by the block on the wedge must be equal to the distance travelled
by the wedge on the floor. Hence ds,, M = dsM. As 5:." and i’_;, do not change their
directions and acceleration that’s why w,,,, 11 Vo, and w), t1 Vo and W, =wy=w
(say) and accordingly the diagram of kinematical dependence is shown in figure.

N 7 T
T >
Wnm —>
2 \
" .
N o
7777777777777777777777777777 W g

As w = w mm wM, so from triangle law of vector addition.

wm=\/wM+w,fM-2me wycos o = wV2(1 - cos ) (¢))
From F,= mw,, (for the wedge),

T=Tcosa+Nsina= Mw )

For the bar m let us fix (x —y) coordinate system in the frame of ground Newton’s law
in projection form along x and y axes (Fig.) gives

mgsina-T=mw, =m [wm ot Wi (x)]
=m [me+ w,, cos (7T - a)] =mw (1 - cosa) 3)

mgcosa-N=mw, = m[me(y)-i-wM(y)]s m[0+wsina ] )

Solving the above Egs. simultaneously, we get

m g sin a
M+2m(1-cosa)

Note : We can study the motion of the block m in the frame of wedge also, alternately
we may solve this problem using conservation of mechanical energy.

ws=

Let us sketch the diagram for the motion of the particle of mass m along the circle of
radius R and indicate x and y axis, as shown m the figure

(a) For the particle, change in momentum A p = my (- 1) mv(j )
S0, |Ap | =V2my

and time taken in describing quarter of the circle,
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xR
At= 2v
ol h
Hence, <F> = IAP|= ‘/5'”"_ W2 mv? s ﬂ 75(
At Tt R/2v R vf -
(b) In this case vy
;:.,Oand;;- mwtt(_i-;’ R
so  |Ap|=mw,t

—
Hence, |<F>| = JAIEL= mw,

t

While moving in a loop, normal reaction exerted by the flyer on the loop at different
points and uncompensated weight if any contribute to the weight of flyer at those points.

(a) When the aircraft is at the lowermost point, Newton’s second law of motion in projection
form F, = mw, gives
2

my
N-mg= R
my?
or, N=mg+ =2:09 kN

(b) When it is at the upper most point, again
from F,= mw, we get

N'+mg= !%,2_
N"= mlzz-mg- 0-7kN
(c) When the aircraft is at the middle point of the loop, again from F,= mw,
UL LA

The uncompensated weight is mg. Thus effective weight = VN7Z + m? g2 =1-56 kN acts
obliquely.
Let us depict the forces acting on the small sphere m, (at an arbitrary position when the

thread makes an angle 0 from the vertical) and write equation F=mwvia projection on

A A
the unit vectors ¥, and u,. From F,= mw,, we have
mgsin O =m dv
-m
dt

vdy vdy

=M T de)

(as vertical is refrence line of angular position)
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or vdv= -glsin0d0
Integrating both the sides :

v (]
dv=-gl| sin0do
{VV gifzsm

2
\4
or, 2-glcosE)

2
Hence v—l- =2gcosO=w, 1)

%)

(Eq. (1) can be easily obtained by the
conservation of mechanical energy).

From F,=mw,

mv?

T~

T-mgcos0=

-
r

Using (1) we have
T= 3mgcos 0 )
Again from the Eq. F,= mw,:

mgsin@=mw, or w,= gsin0 3)

Hence w = \/w,2+w"2 = \y[(gsin())2+(2gcos9)2 (using 1 and 3)

=gV1+3cos?0

(b) Vertical component of velocity, v, = v sin 6

So, v2= v2sin?0 = 2gIcos Bsin0 (using 1)
.2
For maximum v, or vy2 , d(c%;mﬁl_ 0
P 1
which yields cos O = vy

Therefore from (2) T= 3mg%= V3 mg

(c) We have W= w,:41+wn1:n thus W, = W+ W

But in accordance with the problem w, = 0

So, W) ¥ Wao) = 0
or, gsinBsinB+2gc0529(—cose)= 0
or, cose-\/-§ or, 0= 547
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The ball has only normal acceleration at the lowest position and only tangential acceleration
at any of the extreme position. Let v be the speed of the ball at its lowest position and /
be the length of the thread, then according to the problem

2

VT = gsina @)
where o is the maximum deflection angle

From Newton’s law in projection form : F,= mw,

- mgsin 0 = mv -
g sin 1d0
or, -glsin0d0 = vadv
On integrating both the sides within their limits.
a 0
—glfsinedesfvdv
0 v
or, v’ = 2gl (1 -cos a) )

Note : Eq. (2) can easily be obtained by the conservation of mechanical energy of the
ball in the uniform field of gravity.
From Egs. (1) and (2) with 8 =

2gl(1-cosa)= Igcosa
or, cos a = %— so, o= 53°
Let us depict the forces acting on the body A (whlch are the force of gravity mg and the
normal reactlon N ) and write equation F- mw via projection on the unit vectors
u and un (Fig.)

From F, = mw,

mgsin 0 = mél
dt

- dev=. m vdv

ds RdO

or, gRsin0d0=vady

Integrating both side for obtaining v (0)
[} v

[ srsinoao= fvav

0 0 ~
or, vl = 2gR (1 - cos 8) c ({)
From F,=

We

@

At the moment the body loses contact with the surface, N = 0 and therefore the Eq. (2)
becomes

mgcos 0 —-N= m—

v’ = gR cos 0 3
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where vand 8 correspond to the moment when the body loses contact with the surface.
Solving Eqs. (1) and (3) we obtain cos 0 = % or, 0= cos™'(2/3) and v =V 2gR/3 .

At first draw the free body diagram of the device as, shown. The forces, acting on the
sleeve are it’s weight, acting vertically downward, spring force, along the length of the
spring and normal reaction by the rod, perpendicular to its length.

Let F be the spring force, and Al be the elongation.
From, F, = mw, :
Nsin0+Fcos0= ma?r 1)
where rcos 0= (I, + Al).
Similarly from F,= mw,
Ncos@-Fsin®=0 or, N=Fsin0/cos0 )
From (1) and (2)

F(sin0/cos 0) -sin @+ Fcos 0= maw’r

g 2

= mw” ([, + Al)/cos 8 k‘)a)
On putting F = x A, I
xAIsin29+|cAlcos29-mm2(10+AI) Y F
on solving, we get, N /

[} [}

Al= mw? 2 5 = 02

K-mw® (x/mo”-1) mg

and it is independent of the direction of rotation.

According to the question, the cyclist moves along the circular path and the centripetal
force is provided by the frictional force. Thus from the equation F, = mw,

2 2
my my
fr= - or kmg = 3
2
or ko(1‘§)8= -‘;— or v2=ko(r-r2/R)g 1)
2
[ r )
d =R
For v .., we should have & - 0
or, 1—%- 0, sor=R/2

Hence v, = %\/m
As initial velocity is zero thus

V=2 w,s 1)
As w, >0 the speed of the car increases with time or distance. Till the moment, sliding
starts, the static friction provides the required centripetal acceleration to the car.

Thus fr=mw, but frs kmg )
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So, w's g or wf+-lv;s g
or, V2$ (ﬁgz—W'?)R
Hence Vpar ™ V (I?g2-wf)R

Ymx _ 1 o/ (kg
. max
so, from Eqn. (1), the sought distance s = 2w, =3 w, -1 = 60m.

Since the car follows a curve, so the maximum velocity at which it can ride without sliding
at the point of minimum radius of curvature is the sought velocity and obviously in this
case the static friction between the car and the road is limiting.

Hence from the equation F, = mw

2
kmgz'—nL or vs YkRg

R
S0 Voaxr = VER ;1 8 - (6))
We know that, radius of curvature for a curve at any point (x, y) is given as,
. | [1+ @y 2 @
@dy)/as
For the given curve, .
dy_a (x) g9 za. x
dc a o ¢ o> «a
Substituting this value in (2) we get,
1+ (@*/0?) cos? (x/a) ]3’2
(as a2) sin (x/a)
For the minimum R, %= =
a 2
and therefore, corresponding radius of curvature
2
a
Riin ™ a 3
Hence from (1) and (2)
Vo = @ Vkg/a

The sought tensile stress acts on each element of the chain. Hence divide the chain into
small, similar elements so that each element may be assumed as a particle. We consider
one such element of mass dm, which subtends angle d o at the centre. The chain moves
along a circle of known radius R with a known angular speed ® and certain forces act on
it. We have to find one of these forces.

From Newton’s second law in projection form, F, = mw, we get
2 T'sin (do./2) - dN cos 8 = dm o’ R
and from F, = mw, we get
dNsin® = gdm
Then putting dm = mdo/2 x and sin (da/2) = do/2 and solving, we get,

T= m((an + g cot 0)

2R
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1.93 Let, us consider a small element of the thread and draw free body diagram for this element.
(a) Applying Newton’s second law of motion in projection form, F, = mw, for this element,

(T+dT)sin(d6/2) + Tsin (d9/2) -dN= dmo’R= 0
or, 2T sin (d 6/2) = dN, [negelecting the term(dT sind 6/2) ]

or, Tdo=dN, as sinL’ - L2 )

Also, dfr=kdN= (T+dl')-T=dT T ?2)
From Egs. (1) and (2), Cl f i
kTdO=dT or 5”T—T- kd® dn

In this case Q =x so, dg T+dT

2.
or, or In T, kn 3

1 T, 1
SO, k-;ln -T—1= ;ln‘r]o 7; 7—2

as = ——= "= ™ m
I, mg m o 2

m
(b) When ;3- 7, Which is greater than 7, the blocks will move with same value of
1

acceleration. (say w) and clearly m, moves downward. From Newton’s second law in
projection form (downward for m, and upward for m;) we get :

myg-Ty= myw @
and T,-mg=mw o)
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I
Also -TT= Ny 6)
Simultaneous solution of Eqs. (4), (5) and (6) yields :
we (mz'no”ﬁ)g_ (n‘no)g as m,
(my+memy)  (n+mg)

The force with which the cylinder wall acts
on the particle will provide centripetal force
necessary for the motion of the particle, and
since there is no acceleration acting in the
horizontal direction, horizontal component of
the velocity will remain constant througout
the motion.

So V, = V,COSs Q.

Using, F, = mw,, for the particle of mass m,

2 2 2
mv, mvycos®a

N=®="%
which is the required normal force.
Obviously the radius vector describing the position of the particle relative to the origin of

coordinate is

(@

r=xi+yj=asinoti+bcosmt]j

Differentiating twice with respect the time :

2—>
W= %——;=—m2(asinmti_;bcoswtf)’=—(o2r—’ ¢))]
t
Thus F=mw=-mao’r
(a) We have Ap= det
t
= fm gdt=mgt 1)
0 ——>
. . . . 2(vpg)
(b) Using the solution of problem 1.28 (b), the total time of motion, T = - 5
8
Hence using t=1tin(1)
|ap" =mg

—>— - —>.
= -2m(vyg)/g (V- g is -ve)
From the equation of the given time dependence force F = tTt( T-1) at t =1, the force
vanishes,

T
(a) Thus AF-F-fF’d:
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T

—»3

or, E’-f;(t-t)dt%-

0

— - - a_’va
but p=mv so V= om
(b) Again from the equation F=mw

- dv”

at(t—t)-mz—
or, E'(m-tz)dt- mdv"

Integrating within the limits for i),

' v
fﬂtt—tz)dn- mfd?
0 0

o o @fwe? £\ _ar’(x ¢

’ mi{ 2 3 m\|2 3

Thus v--a—ti e for t< <
m\{2 3

Hence distance covered during the time interval ¢ = T,
T

s-fvdt

2 4
at” (v t acx
"f m (5'3)d"m12
0
We have F = Fsin ot
or m%tz-;';sina)tor mdv'= I_";sinmtdt

On integrating,

—
— - FO s e :
my = — = cos Wt + C, (where C is integration constant)
-
Fy
When t=0, v=0,s0 C= —
me
F, F,
Hence, v’= —2 cos of + ——
mo mo

F,
As |coswt = 1 so, v= —o(l—cosmt)
mw
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t

Thus s-fvdt
0
Fyt F,sin ot F, .
- - = 3 (ot - sin wt )
mow mo mo

(Figure in the answer sheet). - .
1.99 According to the problem, the force acting on the particle of mass m is, F = o COS Wt
—>

So, m——= F,coswt or dv'= =2 cos wr dt
m

dt
Integrating, within the limits.

-
v 4

— —>
. F, - F, |
dv= — | coswtdt or v= —sin ot
m mw

0 0

o

It is clear from equation (1), that after starting at ¢ = 0, the particle comes to rest fro

. T
the first time at ¢t = ~(;

From Eq. (1 = e/ taroe 2
rom Eq. (1), v= |v|= g Sinor for r= — )

Thus during the time interval ¢ = x/w, the sought distance

F o
s-——o—fsinmtdt- 2F
mw
0

mw?
From Eq. (1)
0 )
- — t 1
Vinax 5 5 | sinot | <
1.100 (a) From the problem F=-rv so mor=
dv —- -
Thus mor= -rv[asdv?tlv]
or, ﬂ- -Lat
v m
On integrating Inv= —"—;-r+ c
But at t=0, v=y; 50, C=Iny,
v r o,
or, In -%= -—'h-t o, v=vy,€ m
Thus for t—oo v=10

(b) We have m%t‘i- -rv sodv= ——ds
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Integrating within the given limits to obtain v (s ):

v s
r rs
I, dve - — -yy-—
o f v mfds or v=vo - 6))
vy 0
my,
Thus for Ve O,s-sW-T
(c) Let we have mdy v oo el
v v m
v ¢
- v
or, 4_3____r dt, or, In 2 ..L
v m nvy m
0 [}
So . -mln(l/n)_mlnn
r r
Now, average velocity over this time interval,
e

1101 According to the problem

dv 2 dv
m -kv or,mv2 kdt

Integrating, withing the limits,
\4

3
dv k m(vo-v)
fv2= _m{dt oL =% VoV @
(]
To fin. the value of k, rewrite
dv 2, W__k
mvds--kv or, =-—
On integrating
v h
Iep
v m
v 0
m._. Vo
So, k= ol 2
Putting the value of k from (2) in (1), we get
h(vy-v
k(%)
n 2
VOV n v
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From Newton’s second law for the bar in projection from, F, = m w, along x direction

we get
mg sin o - kmg cos o = mw

dv .
or, v = gsina-argceosa, (as k= ax),
or, vdv = (gsina - axgcosa)dx
v x
or, fvdv- gf(sina-xcosa)dx
0 0
2 2
So, -v—-=g(sinax—x—acosa) 1
2 2 N fr

From (1) v= 0 at either
x=0, or x= Ztanoz
a

As the motion of the bar is unidirectional it
stops after going through a distance of

Y m
c Mé

2

= tan Q.

a

From (1), forv__,,
d, . x? . : 1
dx(smou:- > acos a)= 0, which yields x = atana

Hence, the maximum velocity will be at the distance, x = tan a/a
Putting this value of x in (1) the maximum velocity,

g sin a tan o
V. =

max a

Since, the applied force is proportional to the time and the frictional force also exists, the
motion does not start just after applying the force. The body starts its motion when F
equals the limiting friction.

Let the motion start after time ¢, , then
km
F = aty=kmg or, ty= _;g

So, for t = = t;, the body remains at rest and for ¢ >, obviously

d
%EK= a(t-1ty) or, mdv= a(t-ty)dt
Integrating, and noting v = Oat ¢ = £,, we have for¢> 1,
v 4
a 2
fmdv= af(t-to)dt or v= 5;(:-—1‘0)
0 N
!
- = 4 et V= (ot P
Thus s—fvdt— 2mf(t ty)"dt 6m(t ty)

‘o
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While going upward, from Newton’s second law in vertical direction :
vdy

Fg_:n_jj

At the maximum height A, the speed v = 0, so
0 A

{gd-(‘;cvd:/m)- -{ds

Integrating and solving, we get,
m kv,
h= % In ( 1+ _’;E) 1)
When the body falls downward, the net force acting on the body in downward direction
equals (mg - kv? ),
Hence net acceleration, in downward direction, according to second law of motion

my-gv-- -(mg+kv?) or = —ds

ds

vy _ W vdv
s 8" Tm kv?
8-7
Thus f Vd; fds
g-kv/m

Integrating and putting the value of 4 from (1), we get,
vi= vo/ Vi +kv02/mg.

Let us fix x — y co-ordinate system to the given plane, taking x-axis in the direction along
which the force vector was oriented at the moment ¢ =0, then the fundamental equation
of dynamics expressed via the projection on x and y-axes gives,

F A 1
coswr=m=—y 1)
dv,
and Fsinot= m—2 (¥3)]
dt

. - . F_
(a) Using the condition W0) = 0, we obtain v, = g Sne? ©)
and
F
vy-mm(l-coso)t) @
Hence, vaVyiivia _Zi sin ot
oy mw 2
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(b) It is seen from this that the velocity v

turns into zero after the time interval A,
which can be found from the relation, ;Ly /
/

m£= n. Consequentely, ]

2 / F
the sought distance, is Y

g At O=wt
‘/
= f vdt= 2 L’
A mo S
-
Jvat ob-==" > X

Average velocity, <v> =
fa
2n/w

2F . (ot 4F
So, <v> =fmm sm( ) )dt/(ZJtu))=
0

Tmao

The acceleration of the disc along the plane is determined by the projection of the force
of gravity on this plane F, = mgsin a and the friction force fr = kmg cos a. In our case

k= tan o and therefore

fr=F =mgsino
Let us find the projection of the acceleration
on the derection of the tangent to the trajectory
and on the x-axis :

mw,= F,cos ¢ - fr=mgsina (cosp-1)

mw = F - frcosp= mgsino (1-cosg)
It is seen fromthis that w, = — w,, which means
that the velocity v and its projection v, differ

only by a constant value C which does not
change with time, i.e.

v= v +C,

where v, = v cos ¢. The constant C is found from the initial condition v= v,, whence
C =y, since ¢ = g initially. Finally we obtain

v= vo/(1+coscp).
In the cource of time ¢ =0 and v — vy/2. (Motion then is unaccelerated.)

Let us consider an element of length ds at an angle ¢ from the vertical diameter. As the
speed of this element is zero at initial instant of time, it’s centripetal acceleration is zero,
and hence, dN - Adscos = 0, where A is the linear mass density of the chain Let
T and T+dT be the tension at the upper and the lower ends of ds. we have from,
F,= mw,

(T+dT)+Adsgsing-T= Msw,

or, dT + ARd
D

ing= Ads
g’vx?n%aged Fromw.’ www.EasyEngineering.net
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If we sum the above equation for all elements,
the term f dT = 0 because there is no tension

at the free ends, so
I/R

)»ngsinq)dq)- M, [ds=Alw,
0

Hence w,= g?(l—cosé—)

As w, = a at initial moment

So, w=|w,|=gl£(1—cos;li)

In the problem, we require the velocity of the body, realtive to the sphere, which itself
moves with an acceleration wy, in horizontal direction (say towards left). Hence it is advisible

to solve the problem in the frame of sphere (non-incrtial frame).

At an arbitary moment, when the body is at an angle 0 with the vertical, we sketch the
force diagram for the body and write the second law of motion in projection form
F,=mw,

2
or, mgcosO—N—mwosinesmi‘;— (6]

At the break off point, N= 0, 0= 6, and let
v = v;so the Eq. (1) becomes,

2
V,

-I—g-- g cos 8 — w, sin 6 2
From, F,= mw,
d vdy vdy
mgsmG—mwocose=m-—ds—- mEIe
or, vdv= R(gsin@ +w,cos0)d0
% )

Integrating, f vdv = f R (g sin® + w, cosB) d 6
0 0

2
7
Z_OR_ = g(1 - cosB) + w, sin G, 3

Note that the Eq. (3) can also be obtained by the work-energy theorem A = AT (in the
frame of sphere)

therefore, mgR (1 -cos 6, ) + mwy R sin 6, = %"’Voz

[here mw, R sin 8, is the work done by the pseudoforce (- mw,))]
2
0 .

or, ﬁ=g(1—coseo)+wosme0
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Solving Eqgs. (2) and (3) we get,

2+kV 5 +9k2

w,
2 ,wln;tm.:lc--s-—0
3(1+k%) 4

Vo = V2gR/3 and Go-cos"l[
Hence 00 e g= 17°

This is not central force problem unless the path is a circle about the said point. Rather
here F, (tangential force) vanishes. Thus equation of motion becomes,

v, = v, = constant

mv; A
and, —= S forr=r,
r r
We can consider the latter equation as the equilibrium under two forces. When the motion

is perturbed, we write r = ry + x and the net force acting on the particle is,

2 2 2
A my - mv, myv,
- R T i .4 L N P2 P IO
(ro“'x) Iotx 714 Ty Ty

2
my,
This is opposite to the displacement x, if n < 1- (—-ri is an outward directed centrifugul

force while % is the inward directed external force).
r

There are two forces on the sleeve, the weight F, and the centrifugal force F,. We resolve
both forces into tangential and normal component then the net downward tangential force

on the sleeve is,

o’R

mg sin0 (1 - cos 6)
This vanishes for 6,= 0 and for 0

8= 8y = cos ' {—5—), which is real if
o°R

2

Mw2RSin§Cos 8
w2R>g. Ifm2R<g, then 1 - — R

[

cos O

>MWiRSinO=F2

is always positive for small values of 6 and
hence the net tangential force near 6= 0 ('
opposes any displacement away from it. '
0 = 0 is then stable.

2
Ifm2R>g, 1-2 R

O near 0= 0 and 6 = 0 is then unstable.
However 0 = @, is stable because the force tends to bring the sleeve near the equilibrium

g sing mg=F; mg Cos @+ mw? R Sin*

cos0 is negative for small

position 0 = 0,

If w*R = g, the two positions coincide and becomes a stable equilibrium point.
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Define the axes as shown with z along the local vertical, x due east and y due north. (We
assume we are in the northern hemisphere). Then the Coriolis force has the components.

F=-2m@xv)

rag > ™ Iid
= 2mu)[vycose—vzsinﬁ)z—vxcosej-fvxcosek = 2mo (v, cosO - v, sin0) i
since v, is small when the direction in which the gun is fired is due north. Thus the
equation of motion (neglecting centrifugal forces) are

X = 2mo (v, sing - v, cosg),y = 0 and 2’ = - g w > y../\/orrh
Integrating we get y = v (constant), z= - gt z-vertic
and x = 20 vsing t + mg ¢ cosp T.East

Finally,
2 1 3
x= vt sing + 3 wgt” cosp
Now v >> gt in the present case. so,

2
. (s s
x= v sing (—;) = osing -

~ 7 cm (to the east).

The disc exerts three forces which are mutually perpendicular. They are the reaction of
the weight, mg, vertically upward, the Coriolis force 2mv’ @ perpendicular to the plane of
the vertical and along the diameter, and mw’r outward along the diameter. The resultant
force is,

F= m\[g2+co4r2+(2v’ (n)2

The sleeve is free to slide along the rod AB. Thus only the centrifugal force acts on it.
The equation is,

. 2 dr
myvs= mw'r where v= —-

dt
U Y
Butv= vdr dr(ZV)

1 1
s, Zv?= =@’ r® + constant

2 2
or, V= v% + P

v, being the initial velocity when r = 0. The Coriolis force is then,
2mo Vv + 0* P = 2mo® rV1 +vi/o* r#

= 2:83 N on putting the values.
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The disc OBAC is rotating with angular ol
velocity w about the axis OO’ passing through
the edge point O. The equation of motion in .\)w
rotating frame is,

mir"-l_?’+mm21-{’+2m7x5’- F+i": 8

where;‘; is the resultant inertial forc. (psendo - v\
force) which is the vector sum of centrifugal 0 A
and Coriolis forces.

(a) AtA,F,, vanishes. Thus 0 = - 2mw’R n+2mv' on

c

A
where n is the inward drawn unit vector to the centre from the point in question, here A.
Thus, v'= oR

so, W= —= i ®*R.
—» —

(b) AtB F,= mw?OC + mw? BC

its magnitude is mm2V4R§ - r:, where r = OB.

The equation of motion in the rotating coordinate system is,
- 2/a> —
mw = F+mw’R +2m (v’ x ©)

- O W
Now, "~ ¥"= ROe;+Rsinfge, Y
_. ’ N
and W = wcosOe, -w sinfe,
= AN 55 5
L= 4 y .
‘2—“'F 0 RO RsinBg Cf
wcos® -wsin 0 0

= & (wR sin’0 §) + @R sin 6 cos O ¢ €, — WR O cos 6 e
Now on the sphere,

V= (-R6*-Rsin’0¢) e,
+(RO -RsinBcos6¢?) ey
+(Rsin9¢'+2Rcos96cb)E;
Thus the equation of motion are,
m(-—Réz-Rsin29(i)2)-N—mgcosB+mw2Rsin29+2mesin29(b
m (RO - Rsin 0 cos 0 @)= mgsin 6 + mw> R sin 6 cos 6 + 2m R sin 6 cos 0 ¢
m(RsinBp +2Rcos00¢)= -2mwRBcos O
From the third equation, we get, p= - ®

A result that is easy to understant by considering the motion in non-rotating frame. The
eliminating ¢ we get,

mR 6% = mgcos 0 - N

mRO = mgsin 0
Integrating the last equation,

%mRéz-r mg (1 - cos 6)
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Hence N= (3-2cos 8) mg
So the body must fly off for 6 = 8, = cos” ! %, exactly as if the sphere were nonrotating.

Now, at this point F ;= centrifugal force = mw? R sin 6, = V % mw’ R

or ™ V 02 R?6? cos® 8 + (02 R%)* sin” © x 2m
S 2RV 2R2:3.28 22 2 8g
‘\/9(m R)Y +w R2x9x3R x2m 3mmR 5+3m2R

(a) When the train is moving along a meridian only the Coriolis force has a lateral
component and its magnitude (see the previous problem) is,

2mwvcos 0 = 2m wsin A

(Here we have put RO — v)

So, F,mﬂd-2x2000x103xr2‘;)6-x5;6.%)-xg
= 3-77kN, (we write A for the latitude)

(b) The resultant of the inertial forces acting

on the train is,

—

F,= -2moR0cosBe,
+(mw’ R sin 8 cos 0+ 2m w Rsin 0 cos 6 ¢ ) e

\

+(mo’Rsin’0+2m o Rsin’09)e,

This vanishes if 6= 0, p= - %m

- =

1 . 1
Thus v-v,pew,vw---Z-u)RsmG-—-ichosk

(We write X for the latitude here)

Thus the train must move from the east to west along the 60" parallel with a speed,
—(oRcos A= %x gz—f“zx 107* x 6:37x 10° = 1158 m/s ~ 417 km/hr

We go to the equation given in 1.111. Here v, = 0 so we can take y = 0, thus we get for

the motion in the x z plane.
x ==-2wv,cos 0

and 2.- -8
Integrating, Z= —-;-gt2
x= wgcos g
S x lm cospt’= lw cos -2—}1-3/2
0 3 4 P 3 8 P 2
- 2 wh cos 2h
3 4 g

There is thus a displacement to the east of

2 2xn 1/40
3x864x500x1>< 98~26
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1.3 Laws of Conservation of Energy, Momentum and Angular Momentum.

1.118

1.119

1.120

1.121

As F is constant so the sought work done
A= FAF=F-(-7)
e e 4 — = - - -  —
or, A= (3i+4j ) [(Qi-3j)-((+2j)]=@i+4j)-(i-5j)=17]
Differentating v (s) with respect to time
dv_ a ds_ a o _d
- 2Vsa 2T 2T

(As locomotive is in unidrectional motion)
2

Hence force acting on the locomotive F = m w = %
Let, ar v= 0at ¢t = O then the distance covered during the first ¢ seconds
S = lwt2= lf_z.t2= a_2t2
2 22 4
2,22 4.2
1 t
Hence the sought work, A = Fs= ma” (@) - 22
2 4 8
We have
2 2 2 as2

1
T-Emv-asz or, V'=

Differentating Eq. (1) with respect to time

4as 2
2vw,= —v or, w,= —
m

Hence net acceleration of the particle

w= \/wf';»w?I = '\/(2;?)24»(2”2)1‘ = 2asv 1+ (s/R)?

mR m

Hence the sought force, F = mw = 2asV1 + (s/R)z

()

@

—
Let F makes an angle 0 with the horizontal at any instant of time (Fig.). Newton’s second

law in projection form along the direction of the force, gives :

F = kmg cos 8 + mg sin 0 (because there is no
acceleration of the body.)

As F 14 d rthe differential work done by the force F ,

= Sy — F
dA=F-dr= Fds, (where ds = |dr |) N
= kmg ds (cos 0) + mg ds sin 6 . o h
= kmg dx + mg dy. >
' I g ay \ f l x
r
Hence, A = kmg dx+mgfdy m
: : 0“? %
= kmgl+mgh= mg(kl+h). , ,xi

P
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1122 Let s be the distance covered by the disc along the incline, from the Eq. of increment of
M.E. of the disc in the field of gravity : AT+ AU = Ag,
0+ (-mgssina)= - kmgcosas-kmgl
kl
on, §= sina-kcosa @)
Hence the sought work

Ap = —kmg[scosa +1]

2L
. __kimg .
A= ~T"tourq [Using the Eqa. (1)] ]
On puting the values A, = -0.05J mg

L123 Let x be the compression in the spring when the bar m, is about to shift. Therefore at this
moment spring force on m, is equal to the limiting friction between the bar m, and horizontal
floor. Hence

kx=km,g [where x is the spring constant (say)] m
For the block m, from work-energy theorem : A = AT = 0 for minimum force. (A here
indudes the work done in stretching the spring.)
so, Fx—%—xxz—kmgx-o or K%-

From (1) and (2),

F-lm g @ .

F=k -3
= kg|my+=7)
1.124 From the initial condition of the problem the limiting fricition between the chain lying on
the horizontal table equals the weight of the over hanging part of the chain, i.e.
Anilg= kA (1-n)lg(where A is the linear N
mass density of the chain)
So, k= 1—’_1; 1)
Let (at an arbitrary moment of time) the length f r
‘of the chain on the table is x. So the net friction
force between the chain and the table, at this AX
moment : 8‘
f,= kN=kAxg )

The differential work done by the friction forces :

A(X) 3

dA=T. dr= - f,ds = —kAxg(-dr)= Ag i{lﬁ x dx (©)

(Note that here we have written ds = - dx., because ds is essentially a positive term and
as the length of the chain decreases with time, dx is negative)

Hence, the sought work done
0

A-f hgplorde= -(1-m) nZ8- 137
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The velocity of the body, ¢ seconds after the begining of the motion becomes
V= Vo' +g't. Tht power developed by the gravity (m g) at that moment, is

P=mg v=m(g vy+g1t)= mg(gt-v,sin ) )

As mg” is a constant force, so the average power

A mg-ArT

<P>=—=

T T
where A7 is the net displacement of the body during time of flight.
As, mgLAr so <P>=0

2

We have w, = YE- atz, or, v=vYaRt,

t is defined to start from the begining of motion from rest.

So, W, = %‘;., vaR

Instantaneous power, P=F - 7= m (w,i,+w, 1, )- (VaR ti, ),

(where ﬁ, and 1’2, are unit vectors along the direction of tangent (velocity) and normal

respectively)
So, P= mw,YaR t = maRt

Hence the sought average power
t t
f Pdt f ma Re dt
<P> = o' )
t
[ a
0
_ maR t? _ maRe

2t 2
Let the body m acquire the horizontal velocity v, along positive x — axis at the point O.

Hence <P>

(a) Velocity of the body ¢ seconds after the begining of the motion,
- —» —» -
v= vo+wi= (vo-kgt): @)
Instantaneous power P = ? V= (—kmg?) “(vo-kgt) z-: - kmg (v, - kgt )
From Eq. (1), the time of motion T = v,/kg
Hence sought average power during the time of motion
T

f—kmg(vo-kgt)dt

0 kmg vy N
<P>= = - = 2 W (On substitution)
From F, = mw,
dv,
-kmg=mw, = mv, -
or, v,dv,= —kgdx = - agxdx
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89
To find v (x), let us integrate the above equation
\4 x
fvxdvx-—agfxdx o, V= vi-ag? @)
A 0
Now, F=F = -moucg\/vo agx )]
For maximum power, 4 (V vi xi -\ 4) = () which yields x= Y0
P " 4 0 8x y! VZaog

Putting this value of x, in Eq. (2) we get,
Pox= - %-m vg Vo g
Centrifugal force of inertia is directed outward along radial line, thus the sought work

n
A= f mw’ rdr = %ma)2 (r% -ri)= 020 T (On substitution)

ry
Since the springs are connected in series, the combination may be treated as a single spring
of spring constant.

e
- K+ K,y
From the equation of increment of M.E., AT+AU=A_,
K
0+L1xAI?= A, or, A= 1f X% g2
2 2| K +K,

First, let us find the total height of ascent. At the beginning and the end of the path of
velocity of the body is equal to zero, and therefore the increment of the Kinetic energy of
the body is also equal to zero. On the other hand, in according with work-energy theorem
AT is equal to the algebraic sum of the works A performed by all the forces, i.e. by the
force F and gravity, over this path. However, since AT= 0 then A = 0. Taking into
account that the upward direction is assumed to coincide with the positive direction of the
y - axis, we can write

h h
=f(?+m§f-d ﬂf(Fy—mg)dy
0 0

h

= mgf(l -2ay)dy= mgh(1-ah)= 0.
0
whence h= 1/a.
The work performed by the force F over the first half of the ascent is
w2 h2

AF-nydy- 2mgf(1-ay)dy- 3 mg/4a.
0 0

The corresponding increment of the potential energy is

AU= mgh/2= mg/2a.
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From the equation F, = &k we get F, = [-%+—b§]
dr r-r

(a) we have at r = r,, the particle is in equilibrium position. i.e. F,= 0 so, ry= %

To check, whether the position is steady (the position of stable equilibrium), we have to
satisfy

2
‘;g >0
d*U [6a 2b
We have - — =
dr? [ rto3 ]
Putting the value of r= r)= —Z;i, we get
2 4
ddrg = —81-)—3- , (as @ and b are positive constant)
a
2 2
SO, -d—-%]- = —l-)—s > 0,
dr 8a

which indicates that the potential energy of the system is minimum, hence this position
is steady. ’

dau 2a b
(b) We have F’-_dr.[_r3+,2
For F, to be maximum, ——= 0
dr
3a -b
So, r= —l-)—and then F,(m)- -2-;;5,
As F, is negative, the force is attractive.
(a) We have
au -dU
Fx--—d-;-- -2ax and F, = =-2By
So, F=2axi-2Byiand, F=2V 22 +py 1)
For a central force, 7&1_". =0
— —» - —» - -
Here, rxF=(xi+yj)x(-2axi-28yj)

= —2‘3xyl?—2axy(l?)- 0
Hence the force is not a central force.
(b) As U= ax’+py*

U -oU
So, F,= = -2ax and F, = y -2By.

So, F-\rFf+F3=\/4a2x2+482y2
According to the problem

F=2V a?x?+p?y* = C(constant)
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C2
0]', a2x2+ ﬂzyz = ?
2y c?
B g e ®

Therefore the surfaces for which F is constant is an ellipse.
For an equipotential surface U is constant.
So, ax’+By’= C, (constant)
2 C
or, I SE AR K, (constant)

Vi Ve af

Hence the equipotential surface is also an ellipse.
Let us calculate the work performed by the forces of each field over the path from a
certain point 1 (x,, y,) to another certain point 2 (x,, y,)

*
@) dA=F-dr= aytr-’d?s ayde or, A= afydx‘

*

(ii) dA= F-di= (axi+byi)-dr= axdx + bydy

% ¢!
Hence A= f a xdx +f bydy
xl yl

In the first case, the integral depends on the function of type y (x), i.e. on the shape of
the path. Consequently, the first field of force is not potential. In the second case, both
the integrals do not depend on the shape of the path. They are defined only by the coordinate
of the initial and final points of the path, therefore the second field of force is potential.

Let s be the sought distance, then from the equation of increment of M.E.
AT+AU= A,

(0-lmv§)+(+mgssina)- -kmgcosas

2
2
Yo /,.
or, 5= 2g/(smc¢+kcosa)
—kmvg
Hence Ap= —kmgcosas= m

Velocity of the body at height 4, v, = v 2g (H - h), horizontally (from the figure given in
the problem). Time taken in falling through the distance A.

t= V % (as initial vertical component of the velocity is zero.)

Now s=vyt=V2gH+h x'\/% - VA@h -1
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For s_.. -5:9— (Hh - k%) = 0, which yields h -g—

Putting this value of A in the expression obtained for s, we get,
Spax = H

To complete a smooth vertical track of radius R, the minimum height at which a particle
5 . . .
starts, must be equal to -2-R (one can proved it from energy conservation). Thus in our

problem body could not reach the upper most point of the vertical track of radius R/2.

Let the particle A leave the track at some point O with speed v (Fig.). Now from energy
conservation for the body A in the field of gravity :

mg

h . 1
h-2(1+s/m9)]- 2mv2

or, 2 = gh(1 - sin 6) 1
From Newton’s second law for the particle at

the point O; F, = mw,, 4 !
mv* M
ing= TV
N + mg sin /2) A
But, at the point O the normal reaction N= 0
So, V= ng’-sin 0 @ ¥

From (3) and (4), sin 6 = —i- and v= V —g:-f-

After leaving the track at O, the particle A comes in air and further goes up and at maximum
height of it’s trajectory in air, it’s velocity (say v') becomes horizontal (Fig.). Hence, the
sought velocity of A at this point.

V=vcos(90-0)= vsinB= %\/33&

Let, the point of suspension be shifted with velocity v, in the horizontal direction towards
left then in the rest frame of point of suspension the ball starts with same velocity horizontally
towards right. Let us work in this, frame. From Newton’s second law in projection form
towards the point of suspension at the upper most point (say B) :

mv2 mvz

mg+T-—l£ o, T= 7£-mg 6]
Condition required, to complete the vertical circle is that T2 0. But 2
L2 = mg @)+ 3m So, vi= v2-dgl @)
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From (1), (2) and (3)

2
m(v,-4gl
T= #—Ii)—mgzo or, v,z V5gl Vs B

I,” . \\~\
Thus VA (min) ™= V5 8! ’/' Y7 *\
! ! J Ve
From the equation F, = mw, at point C ! Vg c
)
\

. m? ‘ T
=7 4) \\\ l /l
Again from energy conservation \\\. -7 ‘
-;-mvi = %mvf + mgl A Va (5)
From (4) and (5)
T=3mg

Since the tension is always perpendicular to the velocity vector, the work done by the
tension force will be zero. Hence, according to the work energy theorem, the kinetic energy
or velocity of the disc will remain constant during it’s motion. Hence, the sought time

N 0 . . . . .
t= o where s is the total distance traversed by the small disc during it’s motion.
(i

Now, at an arbitary position (Fig.)
ds= (Il,-R0)d6,

I/R

50, s-f(IO—RB)dQ
0

2 R 1}
"R R

or,

12 B lo 5 A
= 2Ry,
It should be clearly understood that the only uncompensated force acting on the disc A
in this case is the tension T, of the thread. It is easy to see that there is no point here,

relative to which the moment of force T is invarible in the process of motion. Hence
conservation of angular momentum is not applicable here.

Hence, the required time, ¢

Suppose that Al is the elongation of the rubbler cord. Then from energy conservation,
AU, + AU, =0 (as AT = 0)

or, —mg(l+AI)+-;-KA12-0

1

zxAlz-mgAl-mgl =0

or,
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mgx\/ (m )2+4x5ml
or, Al = g \/ & 28 x-'ss-'-"—g[1+v1:-2—'(—l}
2 x mg

2x-'-c-

2

Since the value of V 1+ %:Eg! is certainly greater than 1, hence negative sign is avoided.

So, Al = -"-'g(1+\/1+-2—'5!)
K mg

When the thread PA is burnt, obviously the speed of the bars will be equal at any instant
of time until it breaks off. Let v be the speed of each block and 0 be the angle, which
the elongated spring makes with the vertical at the moment, when the bar A breaks off
the plane. At this stage the elongation in the spring.

Al= lysec 0 -] =1,(sec0-1) )
Since the problem is concerned with position and there are no forces other than conservative
forces, the mechanical energy of the system (both bars + spring) in the field of gravity is
conserved, i.e. AT+ AU = 0

So, 2 -;-rhvz)+%K102(sec9-1)2-—mglotan9- (4] )

From Newton’s second law in projection form
along vertical direction : 9
mg=N+xl,(secO-1)cos 0 Kilo (SQL@—O

But, at the moment of break off, N = 0.

Hence, k I, (sec 6 - 1) cos 0 = mg | T
Kig—-m
or, cos 0= Ko~ T2 3) l
xly
m

Taking k = > mg simultaneous solution\of (2) and (3) yields :

Io ?
1 /19 [
V= 3g LI 1-7m/s.

2
Obviously the elongation in the cord, Al = [, (sec © ~ 1), at the moment the sliding first
starts and at the moment horizontal projection of spring force equals the limiting friction.
So, K; Alsin®= kN . ¢))]

(where K, is the elastic constant). KAl\gj‘N

From Newton’s law in projection form along
vertical direction :

x; Alcos 6 + N = mg. 1 L.fr
or, N=mg-x,Alcos 8 > {2)
From (1) and (2),
x; Al'sin 8 = k(mg -k, Al cos 6) Y mg
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Ky = kmg
1™ Alsin 6+ kAl cos 0

From the equation of the increment of
mechanical energy : AU + AT = A,,

or,

or, (%KlAlz)-Af,
kmg Al®
% T AIGnO+kcos0) - Ar

kng I, (sec 0 - 1)
Afr= 3 (sin 0 - kcos 0)
1.142 Let the deformation in the spring be Al, when the rod AB has attained the angular velocity .
From the second law of motion in projection form F,= mw, .

Thus = 0-09] (on substitution)

2

mw” I,

kAl= mw?(ly+Al) or, Al= 9
(o + Al) —

From the energy equation, A_, = %mv2 + ; x al?

= L ma? g + A + 3 AL

2
2 2
1 ; mw210 1 m(n)zlo2
= —mo” |+ +>K
2 T x-me?) 2 |k-mo?
En(t+n Y
On solving A= Eﬂ—(—.‘i)-, where 1= T2
2 a-ny x

1.143 We know that acceleration of centre of mass of the system is given by the expression.
- m ‘-?1 +m, ;*?2

w
c= m;+m,
’
Since ﬁ'fl = - ;72
-—
We= " @
my +m,

Now from Newton’s second law F = mw, for
the bodies m; and m, respectively.

- . T
T+myg=m w, @
— —_ —_ —_ T \ mz T‘VV
and T+my,g= myw,= —mw, 3)
m;
Solving (2) and (3) 'Wl m g

—> (ml - m2) E’

W 22 (4) Mg,

m+m,
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Thus from (1), (2) and (4),

~ (m-m)g

2
(m; +m,)

As the closed system consisting two particles
m; and of m, is initially at rest the CM. of

the system will remain at rest. Further as
m, = m,/2, the C.M. of the system divides the

line joining m; and m, at all the moments of

time in the ratio 1 : 2. In addition to it the
total linear momentum of the system at all the
times is zero. So, ;7; =— ;7; and therefore the

velocities of m; and m, are also directed in

opposite sense. Bearing in mind all these thing,

the sought trajectory is as shown in the figure.

First of all, it is clear that the chain does not
move in the vertical direction during the
uniform rotation. This means that the vertical
component of the tension T balances gravity.
As for the horizontal component of the tension
T, it is constant in magnitude and permanently
directed toward the rotation axis. It follows from
this that the C.M. of the chain, the point C,
travels along horizontal circle of radius p (say).
Therefore we have,

TcosO= mg and Tsin 0= mmzp

Thus p= gﬂ;ﬁ_ 0-8 cm
®

and T=-28 .5N
cos 0

(a) Let us draw free body diagram and write Newton’s
second law in terms of projection along vertical and

horizontal direction respectively. dc
< L
Ncosa-mg+ frsina=0 1 D
o
frcosa - Nsino = mw? )

fr "

From (1) and (2)

sin a
Cos A

freos a - (- frsina+mg) = mw’l \

(mg_
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. w?l
So, fr=mg sma+?cosa = 6N 3

(b) For rolling, without sliding,
frs kN

but, N= mgcosa-mm?lsina
(021 2
mg sina+?cosa s k(mgcos o -mw*lsin o) [Using (3)]

Rearranging, we get,

mw?1(coso+ksino) <(kmgcoso—-mgsina)

Thus osVg(k-tana)/(1+ktana )l = 2 rad/s

(a) Total kinetic energy in frame K’ is

Te 2my (5-7 Pagmy (7-V

-
This is minimum with respect to variation in V, when

bai_‘_;- 0, ie. ml(;;—‘*”)2+m2(;2’—v)-0

vy +my ¥,

- m, v, +

. @ S Che
m1+m2

Hence, it is the frame of C.M. in which kinetic energy of a system is minimum.

(b) Linear momentum of the particle 1 in the K’ or C frame
m,m,

= = — —»
=m(v = V.-V
pr=my(v,~v))= o (vi-v3)
= - >
or, p1= u(vy-vy), where, p= e+ my = reduced mass
Similarly, Pr=n(vy-v7)
=p = ~ - —>
So, |pil=|p;|= P= v, where, v = |v;-v,]| (3

Now the total kinetic energy of the system in the C frame is
~2 = ~2

T=TI,+T,= ‘2%*”2%1:- iLM

Hence T= v2 V=V,

1,
2" Do%/nlcladed Fr(Jm www.EasyEngineering.net
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To find the relationship between the values of the mechanical energy of a system in the
K and C reference frames, let us begin with the kinetic energy T of the system. The
velocity of the i-th particle in the K frame may be represented as v, = v, + V.. Now we

can write
T= 3 2mvi= 3 Im(F+7)- (574 7)

1 v - = 1 2
= 2 2™V +vc2 m‘-vl+2 3 mive
Since in the C frame Z m; 5:’ = 0, the previous expression takes the form

T= i‘+lm vg- 7‘+—1-m v? (since according to the problem v, = V') (6]

2 2
Since the internal potential energy U of a system depends only on its configuration,
the magnitude U is the same in all refrence frames. Adding U to the left and right
hand sides of Eq. (1), we obtain the sought relationship

E-E’+%mV2

~

As initially U= U= 0, so, E= T
From the solution of 1.147 (b)

~ 1
T= Epl‘_’l’_;’;lx

As vilv,
= 1 mm
Thus T 2———m1+m2(v§+v§)

Velocity of masses m; and m,, after t seconds are respectively.

—’ - —» —’ — -

-V, =v,+gtand v; = v, +g1

Hence the final momentum of the system,
—» —»' —»! — - —>
P=mv, +myv, = mvi+mvy+(m +my)gt
—» - —» - —>
= po+mgt, (where, py= myv; +m,v, and m= m; +m,)

And radius vector, Fg- \7;:+-;—u7ct2
—» —»

(mivitmw)t 1,
—_— = +>gt

(my +my) 2

—> —»
my v, +my v,

m;+m,
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1.151 After releasing the bar 2 acquires the velocity v,, obtained by the energy, conservation :

1.152

1.153

-;-mzv%- %Kf or, vz-x‘v ’—:2— 1)
Thus the sought velocity of C.M.

/X
0+myx Vom, xVmyx

m; +m, -(m1+m2)

vcm

Let us consider both blocks and spring as the physical system. The centre of mass of the

. . F . .
system moves with acceleration @ = T towards right. Let us work in the frame of
1 2
centre of mass. As this frame is a non-inertial frame (accelerated with respect to the
ground) we have to apply a pseudo force m, a towards left on the block m, and m, a

towards left on the block m,

As the center of mass is at rest in this frame,
the blocks move in opposite directions and
come to instantaneous rest at some instant. The
elongation of the spring will be maximum or ma
minimum at this instant. Assume that the block <—n), m, —>F
my is displaced by the distance Xy and the block 777

m, through a distance x, from the initial

7772 a
<

positions.
From the energy equation in the frame of C.M.
AT + U =4, ,
(where A_, also includes the work done by the pseudo forces)

Here,

AT=0, U--s%)'c(x1 +x,)° and

W F-myF m, F m F(x +x,)
" m +m, x movm, LT mo+m,
h m, (x,+x,)F
L sy = LT
2 m; +m,
S 0 2m F
0, X, +x, =001 x; +x; = Ky + )
. . 2m F
Hence the maximum separation between the blocks equals : [ + -———
k(m, +m,)

Obviously the minimum sepation corresponds to zero elongation and is equal to [,

(a) The initial compression in the spring Al must be such that after burning of the thread,

the upper cube rises to a height that produces a tension in the spring that is atleast equal

to the weight of the lower cube. Actually, the spring will first go from its compressed
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state to its natural length and then get elongated beyond this natural length. Let / be the
maximum elongation produced under these circumstances.

Then
k!l = mg ()}
Now, from energy conservation,

TKA% = mg(Al+ D+ 2k 12 @)

(Because at maximum elongation of the spring, the speed of upper cube becomes zero)
From (1) and (2),

2
A12_2m'chl_3m2£_ 0 or, Al= Szg’ —fg
K

Therefore, acceptable solution of Al equals 2{3&

(b) Let v the velocity of upper cube at the position (say, at C ) when the lower block
breaks off the floor, then from energy conservation.

%mv2- %K(Alz—lz)-mg(l+Al)

(where /= mg/x and Al = 7%&)

2
o V- 3255 @
h . mv+0 v
At the position C, the velocity of CM; vo = 2% (3 —Let, the CM. of the system
(spring+ two cubes) further rises up to A y.,. T T
. : |C T‘J\

Now, from energy conservation, / teerel

1

3 @m) ve = (2m) g Arc, |

V?: vV 4m

o, Ays,= E" @. _;_8_
But, uptil position C, the C.M. of the system
has already elevated by,
Al+hm+0  4mg

2m K
Hence, the net displacement of the C.M. of
the system, in uwpward direction

8 mg
K

R s |
Vs ]

—=

Ayc,=

Ayc= Ay +Ays=

~

TT7777;

Due to ejection of mass from a moving system (which moves due to inertia) in a direction

perpendicular to it, the velocity of moving system does not change. The momentum change

being adjusted by the forces on the rails. Hence in our problem velocities of buggies

change only due to the entrance of the man coming from the other buggy. From the
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Solving (1) and (2), we get
my My
M-m M-m
As Vit viand v, 419"
‘—;»: - m? M ‘7.
1 M-m) M-m)
From momentum conservation, for the system “rear buggy with man”
(M+m)vg=m(u+vg)+Mvg (¢))

V= and v, =

So, and v, =

From momentum conservation, for the system (front buggy + man coming from rear buggy)
Mvy+m@+vg)= (M+m)v,

pe MB m e
M+m M+m
Putting the value of vy from (1), we get
e T
M +m)

(i) Let 171' be the velocity of the buggy after both man jump off simultaneously. For the
closed system (two men + buggy), from the conservation of linear momentum,

My +2m{E+vy)= 0

So,

—
—> -2mu

or, V= M+2m (1)

(ii) Let 7" be the velocity of buggy with man, when one man jump off the buggy. For

the closed system (buggy with one man + other man) from the conservation of linear

momentum :

0= M+m)v” +m(@u+v") [P
Let 172' be the sought velocity of the buggy when the second man jump off the buggy; then
from conservation of linear momentum of the system (buggy + one man) :

M+m)v™ = MV +m{id +v,) )
Solving equations (2) and (3) we get

— m(2M+3m)1T
V2= (M +m) (M + 2m)

Q)

From (1) and (4)
V2 m

wo it rerem !

Hence v, > v,

The descending part of the chain is in free fall, it has speed v= V2 gh at the instant, all
its points have descended a distance y. The length of the chain which lands on the floor
during the differential time interval dt following this instant is vdr.
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For the incoming chain element on the floor :

From dp, = F,dt (where y - axis is directed down)
0-(Avd)v=F,dt

or F,= -AV= —2Agy

Hence, the force exerted on the falling chain

equals A v% and is directed upward. Therefore

from third law the force exerted by the falling

chain on the table at the same instant of dy — -
¢ =

time becomes A v* and is directed downward. '\f
Since a length of chain of weight (Ayg) already lies on the table the total force on the
floor is (2Ayg) + (Ayg) = (3Ayg) or the weight of a length 3y of chain.

Velocity of the ball, with which it hits the slab, v= V2 gh

}¥

After first impact, v' = ev (upward) but according to the problem V' = 11], S0 e= ;-1]- (6]

and momentum, imparted to the slab,
=mv—(-mv)=mv(l+e)
Similarly, velocity of the ball after second impact,
V= eV = ev
And momentum imparted = m (V'.+v')= m(1 +e)ev
Again, momentum imparted during third impact,
=m(l+e) ezv, and so on,

Hence, net momentum, imparted = mv (1 +e) + mve (1 +¢) + mve? (l+e)+...

=mv(l+e)(l+e+e’+...)

‘v gt—:;, (from summation of G.P.)
(1 + %)
= V2gh ————= mV2gh /(m+1)/(n-1) (Using Eq. 1)

L
n
= 0-2kg m/s. (On substitution)
(a) Since the resistance of water is negligibly small, the resultant of all external forces

acting on the system “a man and a raft” is equal to zero. This means that the position of
the C.M. of the given system does not change in the process of motion.

ie. 7o = constant or, Aro= 0 ie. 2 m; Ar;= 0

or, m(AF;M +Ar—;,)+MAr_;, =0
Thus m(r"+l—5+Ml_r- 0, o, I=- ml”
’ > m+M

(b) As net external force on “man-raft” system is equal to zero, therefore the momentum
of this system does not change,

So, 0= m[v” (8)+v5 () ]+ MV, (1)
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1.159 (a) Since the resistance of water is negligibly small, the resultant of all external forces

1.160

1.161

1.162

acting on the system “a man and a raft” is equal to zero. This means that the position of
the C.M. of the given system does not change in the process of motion.

i.e. 7= constant or, Ari=0 ie. 2 m,Ar;= 0

or, m(AF;M +Ar_;,)+MAr7, =0
Thus m(r"+l—;+Ml_: 0, or I—:- ml”
’ o m+M

(b) As net external force on “man-raft” system is equal to zero, therefore the momentum
of this system does not change,

So, 0=m [V () +v, (1) ]+ MV, (1)
or, V() = -% 1)

As v () or E_,’(t) is along horizontal direction, thus the sought force on the raft
Mdv;)  Mm dv ()
dt m+M dt

Note : we may get the result of part (a), if we integrate Eq. (1) over the time of motion
of man or raft.

In the refrence frame fixed to the pulley axis
the location of C.M. of the given system is

described by the radius vector
Ao MArg+(M-m)Arg, . +mAr,

¢ M
But  Ary= -AFg .
and AT = ATy + AForom (ﬁﬂ (M-m)+m

ml”

-

Thus Arg= M

Note : one may also solve this problem using momentum conservation.

Velocity of cannon as well as that of shell equals V2 glsina down the inclined plane
taken as the positive x — axis. From the linear impulse momentum theorem in projection
form along x - axis for the system (connon + shell) i.e. Ap = F At:

pcosa~-MV2glsina = Mgsina At (as mass of the shell is neligible)
peosa-MV2glsina
Mgsina

From conservation of momentum, for the system (bullet + body) along the initial direction
of bullet

or, At=

m+M
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When the disc breaks off the body M, its velocity towards right (along x-axis) equals the
velocity of the body M, and let the disc’s velocity’in upward direction (along y-axis) at
that moment be v’

y
From conservation of momentum, along x-axis for the system (disc + body)
, , my
mv=(m+M)V_ or Vv = e M 1)
And from energy conservation, for the same system in the field of gravity :
l 2 _ l 2 1-_ 2 ’
S mv= 2(m+M)vx+2mvy-|~mgh R
where h' is the height of break off point from initial level. So,
L2 L MV L2 el .
Smv= 2(m+1l'[)(M"_m)+2mvy+mgh, using (1)
2 2 mv2
or, vy=v-(m+M)—2gh
Also, if A" is the height of the disc, from the break-off point,
then, v’i = 2gh"
2 mv?
So, 2g(h +h)=v—(—A—[+—'-n—)-
Hence, the total height, raised from the initial level
! n Mv2
T 2g M +m)

(a) When the disc slides and comes to a plank, it has a velocity equal to v = \/m . Due
to friction between the disc and the plank the disc slows down and after some time the
disc moves in one piece with the plank with velocity v' (say).
From the momentum conservation for the system (disc + plank) along horizontal towards
right :

my
m+M
Now from the equation of the increment of total mechanical energy of a system :

mv= (m+M)Vv or V=

%(M+ m) v’2—lmv2== Ap,

2
or, —;—(M+m)—(;n%—2—%—mv2=Aﬂ
50 %vz [ M”-:Zm - m] = Ay
Hence, Ap= - (m”:{MM ) gh= -ugh

mM
where p = M

= reduced mass)
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(b) We look at the problem from a frame in which the hill is moving (together with the
disc on it) to the right with speed . Then in this frame the speed of the disc when it just
gets onto the plank is, by the law of addition of velocities, v = u + V2gh. Similarly the
common speed of the plank and the disc when they move together is

- m
v =u+m+MV2gh.
Then as above A -l(m+M)7 --lmVZ--lMu2
2 2 2
-l(m+M) W+ uv2gh + —— m’ 2gh ——1~(m+M)u2-lm2uV2h mgh
2 m+M Y, it 2 gt - me

We see that Zﬁ is independent of u and is in fact just - u g & as in (a). Thus the result
obtained does not depend on the choice of reference frame.

Do note however that it will be in correct to apply “conservation of enegy’” formula in
the frame in which the hill is moving. The energy carried by the hill is not negligible
in this frame. See als6 the next problem.

In a frame moving relative to the earth, one has to include the kinetic energy of the earth
as well as earth’s acceleration to be able to apply conservation of energy to the problem.

In a reference frame falling to the earth with velocity v, the stone is initially going up
with velocity v, and so is the earth. The final velocity of the stone is 0 = v, — gt and

that of the earth is v, + — gt (M is the mass of the earth), from Newton’s third law,

where ¢t = time of fall. From conservation of energy
2

1mv0 leo + mgh = —M(v0 '—n-v)

2 2 M
1 2 m2
Hence 3% (m + H) = mgh

Negcctmg o in comparison with 1, we get
vg = 2ghor v, = V2gh

The point is this in earth’s rest frame the effect of earth’s accleration is of order % and

can be neglected but in a frame moving with respect to the earth the effect of earth’s
acceleration must be kept because it is of order one (i.c. large).

From conservation of momentum, for the closed system “both colliding particles”
mvs + myvs = (my +my) v

s My tmy, -
or, ey e\ Sl i N 1(31 21)+2(4_] 6k)=l+2] 4k
my +m, 3

Hence [v]=V1+4+16 m/s= 46m/s
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For perfectly inelastic collision, in the C.M. frame, final kinetic energy of the colliding
system (both spheres) becomes zero. Hence initial kinetic energy of the system in C.M.
frame completely turns into the internal energy (Q) of the formed body. Hence

~ 1 — -2
Q=1TI;= 5!‘]"1“’2'
2
Now from energy conservation AT = - Q = -—;-u |V;— V;I ,

In lab frame the same result is obtained as

1 memiy

=12 =2

AT m,+m, 5 ™ [vil® + my |y,
1 2
= - -Z-l»l I‘T;‘ ‘-’-2.|

(a) Let the initial and final velocities of m; and m, are a_i; , 5; and V), 172’ respectively.

Then from conservation of momentum along horizontal and vertical directions, we get :

m, u; = myv,cos 0 @)
and mv;= myy,sin0 2 r Vi
Squaring (1) and (2) and then adding them, Us
me mld +17) NN AW
Now, from kinetic energy conservation, \0
N\,
AY
1 2 1 2.1 2 N
F MU= My vyt S my vy 3
2 VZ
m
o, m (u:; - vf) = mzvg =-m, -;i,- ("21’ + vf) [Using (3)]
2
m m
or, uf 1——-—-1--v§ 1,+-—1
my my
v\ m
oI, (——1-) = -——-——m2 E (4)
) m+m
So, fraction of kinetic energy lost by the particle 1,
1 2 1
M- ym Vf vf
= —-——-i——-———-———-—— = l - —2
5m ul “
my-my  2m .
-1- - [Using (4)] ®)

ml + mz ml + n12
(b) When the collision occurs head on,
myly = my, +myv, ¢);

and from conservation of kinetic energy,
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1 2.1 5.1 4
Eml u1= 5m1v1+'2'"I2V2

my
or, 2] (1 + —:—l) =-u; (%- 1)
2

v gml/m2—1! (6)

Zg <1 +m1/m2)

2
“’1)2 .
m, ————] [Using (5)]

or,

Fraction of kinetic energy, lost

2 2
Vi m;-m, 4mym,
= 1 -—— 1 d = i 6
(m1 + mz) (m; + »12)2 [Using (6)]

(a) When the particles fly apart in opposite direction with equal velocities (say v), then
from conservatin of momentum,
mu+0= (m,-m)v 1)

and from conservation of kinetic energy,

—;—ml u2- —;-ml v2+%m2v2

or, m u?= (m,+m)V )
From Eq. (1) and (2),

. -
mu = (m+m) ——+ o~
(my-m,))
oy =0
or, m; -3 m, m,
m 1
Hence —= — asm, = 0

3
(b) When they fly apart symmetrically relative to the initial motion direction with the
angle of divergence 8= 60°,
From conservation of momentum, along horizontal and vertical direction,

my uy = my v, cos (6/2) + m, v, cos (6/2) (1)
and m, v, sin (8/2) = m, v,sin (8/2)
or, my v, = m,v, )
Now, from conservation of kinetic energy,
1 1 1
-2—m1uf+0-§m1vf+5m2v§ 3)

From (1) and (2),

myu, = cos (6/2) (m1 vl+m e mil- 2m; v, cos (8/2)
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So, u; = 2v, cos (6/2) 4)

From (2), (3), and (4)
2.2
4m; cos? (8/2) V2= m, V4 w
m;

m
or, 4cos’(6/2)= 1+ e
m,

v

m
or, —Lo4c0s? -1
my

m
and putting the value of 8, we get, El =2

If (Vn"ﬁy) are the instantaneous velocity components of the incident ball and
(vye» sz) are the velocity components of the struck ball at the same moment, then since
there are no external impulsive forces (i.e. other than the mutual interaction of the balls)

We have usina=v,, , vzy-O
Mmucosa=mvy +mv,,

The impulsive force of mutual interaction satisfies
d F d
dt(le)= m ~ dt(VZg)
( F is along the x axis as the balls are smooth. Thus Y component of momentum is not

transferred.) Since loss of K.E. is stored as deformation energy D, we have

1 -, 1 2 1
D'j"”“'z"m"li"”"z

1 2 2 1. 2 1
- — MU COS A - —mle - -—szv

2 2 2

1
- E[ ulcoso. - mzvh‘2 ~ (mucosa~ mv, ) 2 ]

= -2%'— [ bnzumsav,;x- 2mv, 2 ] = m (v ucosa - v, %)
2
m u’cos’a _ [ weosa
4 2 L

We see that D is maximum when
u cosaL

-le

2. .2
and D, - Mo |4

-

Dtax 1 U
L 2 4
2
> )C

On substiuting o = 45° - —
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1.171 From the conservation of linear momentum of the shell just before and after its fragmentation

1.172

WV vy ®

where V7, v, and v, are the velocities of its fragments.

From the energy conmservation  3nv® =12 +12 + v 2
=p - - - - —»
Now V,OIVie= V= Vo=V, =V 3)

where v, = v’= velocity of the C.M. of the fragments the velocity of the shell. Obviously
in the CM. frame the linear momentum of a system is equal to zero, so

=y 2y =y

i+, +v;=0 ©)
Using (3) and (4) in (2), we get

= (V) 4+ TV )+ (T v - 1) =3P+ 202420242000

or, 252427, %, cos0 + 272+ 3 (1 -2 =0 ®)
If we have had used \gr; -— 71' - 53', then Eq. 5 were contain ¥, instead of ¥, and so on.

The problem being symmetrical we can look for the maximum of any one. Obviously it
will be the same for each.
For V;to be real in Eq. (5)

472 cos?0 2 8(272 + 3 (1 - 1) V) or 6(n - 1)V’ = (4 - cos°0)7 3

So, Vs v -‘?—LICL;%; of Vymey=V2(M-1) v

Hence v, .0 = I‘—':’:Tz’lm =v+V2(n-1) v-v(1+V2(n—1)’-1km/s

Thus owing to the symmetry

Viman) = V2 (man) = Vimary = ¥ (1 + V20 = 1)) = Lk /s

Since, the collision is head on, the particle 1 will continue moving along the same line
as before the collision, but there will be a change in the magnitude of it’s velocity vector.
Let it starts moving with velocity v, and particle 2 with v, after collision, then from the
conservation of momentum

mu= mv,+mv, Of, u= Vv, +v, (1)
And from the condition, given,

lmu2 (lmv§+lmv%) 9

i 2™ -\2 2 -1- nt "%
n 1 - u?

Emu

or, vf + vg = (1-n)u? )
From (1) and (2),

vf+(u-v1)2- (1-1])142
or, vf-b»uz--2uv1+vﬂ‘;-(l-n)uv2
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or, 2vi-2v1u+nu2-0
2 2
So, e e VOB

= %[u:Vuz-Znu2]= %u(lt\/l—Z’ﬂ)

Positive sign gives the velocity of the 2nd particle which lies ahead. The negative sign is
correct for v, .

So, v; = %u (1-v1-2n)= 5m/s will continue maving in the same direction.

Note that v; = 0 if = 0 as it must.

Since, no external impulsive force is effective on the system “M + m”, its total momentum
along any direction will remain conserved.
So from p, = const.

m u
M cos 0 @)

mu= Mv,cos@ or, v;=
and from p, = const
mvy= Mv,;sin@ or, v,= %nl-— v;sin@= utan B, [using (1)]
Final kinetic energy of the system
T;= %mv% + %va

And initial kinetic energy of the system= lmu2

2
T.-T;
So, % change = —-LT—ixIOO
i
2 2
Lo lanes i L 1,2
2 27 M cos’e 2
- 1 x 100
2
—mu
12 u
Euztan29+%;'—luzsecze——u2 -@-—+
= xlOO

! .
- Ltan20+;n—lsec29—1)x 100

and putting the values of 0 and Z , we get % of change in kinetic energy= - 40 %

(a) Let the particles m; and m, move with velocities ;1, and ‘72’ respectively. On the basis
of solution of problem 1.147 (b)
P=wvy=u|v-%
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As DR
m, m
So, P=uVi24+12 where p= ——2

my +m,
(b) Again from 1.147 (b)

Te Jwl= 20 Iﬁ-f’;r

~ 1
So, T= Eu(v§+v§)
From conservation of momentum

— - — !
pPr=p tPy

2
s0 (Pi-P1) = pi-2pi picosd; + py' 7 = py'*
From conservation of energy
i Pl' 2 le 2

Im, " Zm,  2m,

Eliminating p,’ we get

; m, ) m,
0=p 2(1 + ',;,'1') - 2p;’ pycosB, +P12(1 = -'"—1)

This quadratic equation for p,’ has a real solution in terms of p, and cos 0, only if

m2
4cos’0, z4[1-—2 >!
m
! B
2
or sin’ 0, = —;’- .
my (=S 0
e 7
. my . m '
or sin@,<+—~ or sin@,z-—
my m, B’
This clearly implies (since only + sign makes sense) that 1
sin 0, .= m,

From the symmetry of the problem, the velocity of the disc A will be directed either in
the initial direction or opposite to it just after the impact. Let the velocity of the disc A
after the collision be V' and be directed towards right after the collision. It is also clear
from the symmetry of problem that the discs B and C have equal speed (say V") in the

directions, shown. From the condition of the problem,
d

n —_ .
cosG-—Ez—-gso, sin 0 = V4 -n? /2 1)
For the three discs, system, from the conservation of linear momentum in the symmetry
direction (towards right)
mv=2mv'sin@+mv or, v=2v"sin0+V ?)
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From the definition of the coefficeint of restitution, we have for the discs A and B (or C)

_Vv'-V'sin@
vsin6-0

But e= 1, for perfectly elastic collision,
So, vsin@= v’ -v'sin O A3)

From (2) and (3), A
. v!1—2si1129) P

"~ (1 +2sin26)

_v-2) :
————-—-—-6 — T|2 {using (1)}

Hence we have,
2
Vo= v (7] X 2)
6 - n2

Therefore, the disc A will recoil if 1} <V2 and stop if 1= V2.
Note : One can write the equations of momentum conservation along the direction per-
pendicular to the initial direction of disc A and the consevation of kinetic energy instead
of the equation of restitution.
(a) Let a molecule comes with velocity 17: to strike another stationary molecule and just

st . o —' - .
after collision their velocities become v™; and v, respectively. As the mass of the each

molecule is same, conservation of linear momentum and conservation of kinetic energy
for the system (both molecules) respectively gives :
s S N
Vi= VvV +V,
2 2
and vi=V + v’y

From the property of vector addition it is obvious from the obtained Eqs. that
LT, o 7= 0
(b) Due to the loss of kinetic energy in inelastic collision vf > v’% + v’%

s0, v 1 v 2 > 0 and therefore angle of divergence < 90°.

Suppose that at time 4 the rocket has the mass m and the velocity v”, relative to the
reference frame, employed. Now consider the inertial frame moving with the velocity that
the rocket has at the given moment. In this reference frame, the momentum increament
that the rocket & ejected gas system acquires durmg time dt is,

dp= mdv+udtu- F dt

or, ‘fl F tT
or, mw=F - wiro
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1.179 According to the question, F= Oand U = — dm/dt so the equation for this system becomes,
AV dm s
dt dt
As dv?Ylua so, mdv= —udm.
Integrating within the limits :

v m
m
lfdv=— g’-’-’-or1=]n—-9-
u m u

m

my
Thus, v= uln —
m

m
— . —

As dv?| i, so in vector form v= — i In —

m

1.180 According to the question, F (external force) = 0

So v dm—
’ dt dt
As s T
so, in scalar form, mdv= -udm
wdt dm
or, Zeh gy
u m

Integrating within the limits for m (1)

Hence, m=mye

1.181 As I_'" = 0, from the equation of dynamics of a body with variable mass;

on
milo Pt o gy pin o)

dt dt

Now dv™ |wand since %L, v, we must have | dv”| = vod o (because v, is constant)
where d a is the angle by which the spaceship turns in time dt.

dm u dm
So, -u —=vyda or, da= -——
m Vo M
m
u dm u my
or, o= —— | —= — In| —
Vo m v, m
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We have %= -n or, dn= - pdt

m t
Integrating fdm- - ufdt or, m= my- \ut
m, 0

As u'’= 0 so, from the equation of variable mass system :

(mo-ut)E—=F or, E“W”F/('”O'W)
5 [;
or, fd?=F -
(mo'l“)
0
Hence V= F ln( o )
u my -

Let the car be moving in a reference frame to which the hopper is fixed and at any instant
of time, let its mass be m and velocity ing

Then from the general equation, for variable mass system.

o
m L Faii

dt dt

We write the equation, for our system as,

—_
dv = _dm —_ -

m$=F—v7t- as, u=-v (1)
So gz_ () = F
Fr
and Vo= ;t on integration.
But m=my + pt
—
— Ft
so, Ve ————
my (1 + E)
my
- —>
Thus the sought acceleration, w = —d‘%- _j_—_i
mg (1 + —M-L)
my

Let the length of the chain inside the smooth horizontal tube at an arbitrary instant is x.
From the equation,
m= Foi 2
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—
asu=0, Ft1 w, for the chain inside the tube

Axw= T where A= -';l (¢))
Similarly for the overhanging part, A V/A T
u=0 A
- XC >
Thus mw=F v T
oo ANhw=2MAhg-T 2) h
From (1) and (2), )\h?
dv
AMx+h)w= Ahg or (x+h)vds=hg B
dv
or, x+h)v ——== gh,
x+h)v To5= 8
[As the length of the chain inside the tube decreases with time, ds = -dx.]
or, vdv:—ghx+h
v 0
. dx
Integrating, f vdv=-gh f T+ h
0 (-k)

2
or, %= gh In (—Il;) or v= V 2gh In (—,I;)

Force moment relative to point O ;

N= 73 2bt_’ -
Let the angle between M and N, CoL

a=45%att =1, .

Then L M ‘N (a+bto) (2 bty 4
VITMINI V@ +b2t{,‘ 2bt, M

2b% 13 b1l

Ve+rit o, Va+b5 bt2

Q)

a .
So, 2b t; = @+ b t; or, = \/ b (as &, cannot be negative)
It is also obvious from the figure that the angle o is equal to 45° at the moment £,

when a = bl ie. ty=Va/b and N= 2 V% b,
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M@= rxp= (;;t+-;-§)t2 xm(§;+§’t)
= mvogt2 sin(gﬂx) (—l?) + %mvo.gt2 sin (-’22+ a) (l?)

= %mvogtzoosa(—l?):

mv, gt cos o
2
Thus angular momentum at maximum height

Thus M (f) =

. T Vpsina
ie at t= —-= ,
2 g mg
M|[E| = ek sin” o cos o = 37kg %, '
2) \28 g il
Alternate : ! 77X

t 3
M©=0s0, M@= [Nat= [ (Fmp)
0 0
4
-f [(V;t+l§72)xm§1dt- ?xm?)ﬁ
; 2 ( 0 2
(a) The disc experiences gravity, the force of
reaction of the horizontal surface, and the force

=
R of reaction of the wall at the moment of the
impact against it. The first two forces

counter-balance each other, leaving only the Ag

force I—(’ It’s moment relative to any point of A E

the line along which the vector R acts or along E

normal to the wall is equal to zero and therefore 8 S >
the angular momentum of the disc relative to <€ hre \TO O n
any of these points does not change in the given R

process. l

(b) During the course of collision with wall A

the position of disc is same and is equal to o}

7., Obviously the increment in linear

momentum of the ball A;_)’ = 2mv cos o n

Here, AXI’ = r_':o X AE’ = 2mv I cos o n and directed normally emerging from the plane of
figure

Thus|A1-|-rI’|=2mvlcosa N

(a) The ball is under the influence of forces T and m g at all the moments of time, while

moving along a horizontal circle. Obviously the vertical component of ?balanoe m E’ and
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so the net moment of these two about any point becoems zero. The horizontal component
of f which provides the centripetal acceleration to ball is already directed toward the
centre (C) of the horizontal circle, thus its moment about the point C equals zero at all
the moments of time. Hence the net moment of the force acting on the ball about point
C equals zero and that’s why the angular mommetum of the ball is conserved about the

horizontal circle.

(b) Let o be the angle which the thread forms
with the vertical.

Now from equation of particle dynamics :

Tcosa= mg and Tsina = me? Isin o

Hence on solving cos o = ﬁ; 1)

As IIT'[. | is constant in magnitude so from figure.
—
|AM|= 2 M cos o where

— —>
M= |M;|= | M|
= |rpxmv’|= mvl(as F;.L?)

ThuslAﬁls 2mvlcosa=2mwl*sin o cos

= 2%! 1- (%)2 (using 1).

During the free fall time ¢t = t© = V , the reference point O moves in hoizontal direction
(say towards right) by the distance V‘t In the translating frame as M 0)=0, so

AM=M;=7 ‘ i(V)

-(—Vti_:h.r)xm[gtj_:Vi_’] >

>
-—ngt217+th(+I7) J( )
= -ng(%)l::thGI?) - -mVhk

Hence |A1Ti|- mVh

The Coriolis force is.(2m v” x @).

Here @ is along the z-axis (vertical). The moving disc is moving with velocity v, which
is constant. The motion is along the x-axis say. Then the Coriolis force is along y-axis
and has the magnitude 2m v, w. At time ¢, the distance of the centre of moving disc from

O is vyt (along x-axis). Thus the torque N due to the coriolis force is
N=2mvyovy along the z-axis.
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Hence equating this to %
% = 2m vﬁ Wt or M= mvg 2 + constant.

The constant is irrelevant and may be put equal to zero if the disc is originally set in
motion from the point O.

This discussion is approximate. The Coriolis force will cause the disc to swerve from
straight line motion and thus cause deviation from the above formula which will be substantial
for large t.

If r = radial velocity of the particle then the total energy of the particle at any instant is

1 .2 M 2
—mr°+——+hkr‘=E 1
2 2mr? M

where the second term is the kinetic energy of angular motion about the centre O. Then
the extreme values of r are determined by 7 = 0 and solving the resulting quadratic equation

2
k(rz)2 -Er*+ M =0

2m
we get
5 Es Vi 2%
2k
From this we see that
E=Kri+13) @)
where r; is the minimum distance from O and r, is the maximum distance. Then
1
-2-mv§+2kr§-k(r%+rg)
2
Hence, m="
V2

‘Note : Eq. (1) can be derived from the standard expression for kinetic energy and angular

momentum in plane poler coordinates :

1 .2 1 )
T 5 mr-+ E m "2 e
M = angular momentum = mr® §
The swinging sphere experiences two forces : The gravitational force and the tension of
the thread. Now, it is: clear from the condition, given in the problem, that the moment of
these forces about the vertical axis, passing through the point of suspension N, = 0. Con-

sequently, the angular momentum M, of the sphere relative to the given axis () is constant.
Thus myy (Isin @) = mv ] (6))
where m is the mass of the sphere and v is it s velocity in the position, when the thread
n

2 with the vertical. Mechanical energy is also conserved, as the sphere is
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under the influence if only one other force, i.e. tension, which does not perform any work,
as it is always perpendicular to the velocity.

1,
So, 5 mvp+mg lcos 0= 5 mv

From (1) and (2), we get,

@

Vo= V2gl/cos O

Forces, acting on the mass m are shown in the figure. As N= mg, the net torque of these
two forces about any fixed point must be equal to zero. Tension T, acting on the mass m
is a central force, which is always directed towards the centre O. Hence the moment of
force T is also zero about the point O and therefore the angular momentum of the particle
m is conserved about O.
Let, the angular velocity of the particle be ®, when the separation between hole and
particle m is r, then from the conservation of momentum about the point O, :
m(wyrg)rg= m(wr)r,

“’0'20

or w= /
’,2

!

Now, from the second law of motion for m, \
\

T=F=mao*r

Hence the sought tension;

-

2 4 2.4
i mm0r0r= mwqry
r r’

On the given system the weight of the body m is the only force whose moment is effective
about the axis of pulley. Let us take the sense of @ of the pulley at an arbitrary instant
as the positive sense of axis of rotation (z-axis)

As M,(0)= 0, so, AM,= Mz(t)-szdt

t

So, M, (t) = f mgRdt= mgRt
0

Let the point of contact of sphere at initial
moment (t= 0) be at O. At an arbitrary
moment, the forces acting on the sphere are
shown in the figure. We have normal reaction
N, = mgsin o and both pass through same line
and the force of static friction passes through
the point O, thus the moment about point O
becomes zero. Hence mg sin o is the only force
which has effective torque about point O, and
is given by |N |= mgRsino normally
emerging from the plane of figure.

As M(t= 0)= 0, so, AM = Xi(z)=f17dt X

Hence, M () = Nt = mg R sin ot ) )
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Let position vectors of the particles of the system be r_: and 7: " with respect to the points
O and O’ respectively. Then we have,

—_! -

=71 471 0]

where 7, is the radius vector of O’ with respect to O.

Now, the angular momentum of the system relative to the point O can be written as follows;
Yy 4 .
M= 3 (Fx5)= 3 (7 <)+ X (foxFi) [using (1))

or, M=-M +(Fo'x17), where, p’= 2 e )

From (2), if the total linear momentum of the system, p’= 0, then its angular momen-
tum does not depend on the choice of the point O.

Note that in the C.M. frame, the system of particles, as a whole is at rest.

On the basis of solution of problem 1.196, we have concluded that; “in the C.M. frame,
the angular momentum of system of particles is independent of the choice of the point,
relative to which it is determined” and in accordance with the problem, this is denoted

by M.

We denote the angular momentum of the system of particles, relative to the point O, by
A_';. Since the internal and proper angular momentum ﬁ, in the C.M. frame, does not depend
on the choice of the point O’, this point may be taken coincident with the point O of the

K-frame, at a given moment of time. Then at that moment, the radius vectors of all the
particles, in both reference frames, are equal ( 7: ‘= Ff) and the velocities are related by

the equation,

— S —»

V'-= Vi+Vc, (1)
where 17: is the velocity of C.M. frame, relative to the K-frame. Consequently, we may
write,

—> P
He S m (7= 3 (7 )0 S m (7T
- ﬁ — — —> —
or, M= +m(rcxvc>, aszmir,.= mr_, where m=2mi.
—>
or, M=MR+(Fxmv))= R+ (7xp)

From conservation of linear momentum along the direction of incident ball for the system
consists with colliding ball and phhere

mvy= mv' + n vy 1)

2
where V' and v, are the velocities of ball and sphere 1 respectively after collision. (Remember

that the collision is head on).
As the collision is perfectly elastic, from the definition of co-efficeint of restitution,
vV-v

1=

=, o, V= v;= -y, )
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Solving (1) and (2), we get,

4
v = —3—v—0, directed towards right. @Vi’_—_{D m/Z
1 .

In the C.M. frame of spheres 1 and 2 (Fig.)

= ~5 28 = — —
Py = -p; and |py|=|p,| = u|v;-v;|

Also, 71 = —Ta, thus M = 2[F.xp] C
- = 1 m/2 4vo o T
Asric 1 p,, so,ﬁ-z[2 > 3 " 1/2
(where 7 is the unit vector in the sense of 7y x Py ) 777/20
~ mvyl
Hence M = 3

In the C.M. frame of the system (both the discs + spring), the linear momentum of the
discs are related by the relation, 5; = - ;J'; at all the moments of time.
where, Pi=Dy=D= UV
And the total kinetic energy of the system,
T= %— uv2, [See solution of 1.147 (b)]
Bearing in mind that at the moment of maximum deformation of the spring, the projection
of v, along the length of the spring becomes zero, i.e. v, =0
The conservation of mechanical energy of the considered system in the C.M. frame gives.

1fm\ » 1 1/m
7 E)VO- EKXZ+E(E)‘&‘(V)_ 1)
Now from the conservation of angular momentum of the system about the C.M.,

1(o)(m \_,(o*tX\m
2(2)(2° 2 )2 4O
-1
Yolo X x
or, Vel (y) = m = v, (1 + Io) ~ v, (1 - A ), as x <<l ?2)

1 x

Using (2) in (1), Sm vg[l_(l_gr ]= '3

2
LI 2 2Y) |
or, Fmvo 1-(1-lo+102) = kX
mvix
or, Io ~ K X*, [neglecting ¥* / I7]
0
mvg
As x» 0, thus x= ——
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1.4 UNIVERSAL GRAVITATION

1.200 We have
M# YMm, ym,
r r Vv
3
Thlls W= K = v v

roym/v? T ym,
(Here m is the mass of the Sun.)

2nym;  2xx667x10 1% 197 x 10
So T= 3 = 3
v (349 x 10°)

(The answer is incorrectly written in terms of the planetary mass M)

= 194 x 10 sec = 225 days.

1.201 For any planet

M
MRmz-Y m’orm- Ym,
R3
So, T= %‘ = 2xR¥?/Vym,
32
I, (R
a) Thus —_— ==
@ 2 (R)
S & T,/ T,) = 12)*=5-24
0o RE‘(] E) = (12)"" = -
23
2 Ym; _ va
(b) G (T—-L“)
23 2/3 3
s (m)?" (2m) 2rym
So V]---—";-m——— or, V; = |——

where T= 12 years. m = mass of ths Sun.

Putting the values we get V, = 12:97 km/s

23

2
. vy 2rym 2%
Acceleration = —= | ——— x
R, ( T ) (T Vym, )

4/3

= (ZTE) (ym, )"

= 215%x107* km/s?
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1.202 Semi-major axis= (r + R)/2

It is sufficient to consider the motion be along a circle of semi-major axis A ;R for T
does not depend on eccentricity.
3/2
r+R
2 n( 2 )
= = R 3
Hence T ‘fm aV(r+R)\/2ym,

(again m_ is the mass of the Sun)

1.203 We can think of the body as moving in a very elongated orbit of maximum distance R
and minimum distance 0 so semi major axis = R/2. Hence if t is the time of fall then

2 3
2T R/2 2 _ 72
(—-—T ) (-————R ) or t'=T°/32

or v=T/4V2 = 365/ 4/2 = 64'5 days.

1204 T=2aR>?/Vym,

If the distances are scaled down, R*? decreases by a factor ns/zand so does m . Hence
T does not change.

m
1.205 The double star can be replaced by a single star of mass — moving about the centre
1
of mass subjected to the force y m, m,/ r*. Then
2xr"? - 2mr¥?
N
ym
m m +m,
So ra ——\/ M
T -V 2
or, r=\3x (yM) YM(T/2 n)

1.206 (a) The gravitational potential due to m1 at the point of location of m, :

m m
V,= fc; dr=f-1—‘dx= -Y—r—‘

m, m
So, Uy=m,V,= —Y ; 2
Similarly Upy= -1

’
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Hence mr My

ymom, o . -—---—l ——>
Up=Uy=U= ‘-—,1-—— -1l F- x
dx

(b) Choose the location of the point mass as the origin. Then the potential effergy dU of

an element of mass dM = L{dx of the rod in the field of the point mass is

M, 1
dU = - ym —l"dxx

where x is the distance between the element and the point. (Note that the rod and the
point mass are on a straight line.) If then a is the distance of the nearer end of the rod
from the point mass.

< { >
L A | —,—>
-+ le - x >mM x
dx
a+l

U-—Y—l—- ?-—YmTln

mM | dx M ( ) )
The force of interaction is

U
F--aa

. me _1 »
] 1 2 a(a+1)

1 l)- ymM
1+ £

a
Minus sign means attraction.

As the planet is under central force (gravitational interaction), its angular momentum is
conserved about the Sun (which is situated at one of the focii of the ellipse)

4

So, mv,ri=mv,r, or, vf = -7 1)
1

From the conservation of mechanical energy of the system (Sun + planet),

Yymm 1, ymom 1 ,

- "l +2mV1- -T‘Pi—m"z

¥m, 1,5 (1m) 1 :
or, "y +2v§’%--— " +2v§ [Using (1)]
Thus, v,=V2ym r [ ry(r +r) ¥))
Hence M=mv,r,= m\/iym,r ry/(ry+1)
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From the previous problem, if r, , r, are the maximum and minimum distances from the
sun to the planet and v, , v, are the corresponding velocities, then, say,

mm
1'3--1-mv2—Y 2

2 r,
ymms n ymm, ymm, ymm, )
rl + "2 r2 r2 - r + r2 - 2a [Usmg Eq- (2) of 1.207]

where 24 = major axis = r; +r,. The same result can also be obtained directly by writing
an equation analogous to Eq (1) of problem 1.191.
2 ymm
Ealppr, M1
2 2mr r

(Here M is angular momentum of the planet and m is its mass). For extreme position

r=0 and we get the quadratic
2

M
EP+ ymmg — > = 0
The sum of the two roots of this equation are

ymm, -2

r+r,=-

mm
Thus E-—Y L

= constant

From the conservtion of angular momentum about the Sun.
MmvyrosinC = mvri=mv,r, of, v;r;= v,I,= y,r,sina (6))
From conservation of mechanical energy,
1 Yymm 1 Ym,m
m v(z) _ = N ;1» _ s
2 ro 2 ry
v% ym, v%rznsinza ym,

or, o015, - (Using 1
r 2 e T 2l ,I(Ung)

2ym
or, (vg— 1 :)r§+2ymsr1—v§r§sina-0
[}
2ym
2 2 2 . 2 _ S
—2ymx V4y ms+4(v0rﬁsm a)("% o )
So r=
’ 2ym,
To
) 2
.\/1_v§rf,sm @12 Vo ro[lt\/l—(Z-‘n)nsin2a]
1=z Y mg rg rmg
) 2 % } @-w
To h Y m

where 1= V37,/ym, (m, is the mass of the Sun).
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1.210 At the minimum separation with the Sun, the cosmic body’s velocity is perpendicular to

1.211

its position vector relative to the Sun. If r_; be the sought minimum distance, from con-
servation of angular momentum about the Sun (C).
vl
mvyl= mvr,, or, ve — (6]
‘min
From conservation of mechanical energy of the system (sun + cosmic body),
1 2 Yymsm 1 2

=myy = = ————+ —my
270 [)
2 --- 2
Yo Ym, Vo .
So, —_—= - (using 1)
2 Tmin n2nn
or, V02 jm+2y —v0212- 0
-2ym, :\/47 m +4v0 Vo 22 _-rm =V y? mz-o-v0 1?
So, Toin ™ 5
2v0 Yo

Hence, taking positive root

i ™ (yms/voz)[\/1+(lv02/'yms)2 —1]

Suppose that the sphere has a radius equal to a. We may imagine that the sphere is made
up of concentric thin spherical shells (layers) with radii ranging from O to a, and each
spherical layer is made up of elementry bands (rings). Let us first calculate potential due
to an elementry band of a spherjcal layer at the point of location of the point mass m (say
point P) (Fig.). As all the points of the band are located at the distance ! from the point
P, so,

dp= - YaI—M (Where mass of the band) )
aM=(4dM2)(2nasin9)(adB)
xa
(~2M)snn9d9 @)

And %= a’+r?-2arcosd 3)
Differentiating Eq. (3), we get
ldl = arsin0 dO “)

Hence using above equations

\
so- -(L2L)a ©
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Now integrating this Eq. over the whole spherical layer

r+a

dy=fag= 1]

So do= J—?"—‘ ©)

Equation (6) demonstrates that the potential produced by a thin uniform spherical layer
outside the layer is such as if the whole mass of the layer were concentrated at it’s centre;

Hence the potential due to the sphere at point P;
- -1 -
o= fdo=-"fdM ™

r
This expression is similar to that of Eq. (6)

Hence thte sought potential energy of gravitational interaction of the particle m and the
sphere,

U= mp= _I_”_:ﬁ
(b) Using the Egq., G, = —%?

M ,
G, = - IrT (using Eq. 7)

So G= -IAT{F'and F’-m&’--f—”‘f—'? ®)

r r
(The problem has already a clear hint in the answer sheet of the problem book). Here we
adopt a different method.

Let m be the mass of the spherical layer, wich
is imagined to be made up of rings. At a point
inside the spherical layer at distance » from
the centre, the gravitational potential due to a
ring element of radius a equals,

dp= - _;La”; dl (see Eq. (5) of solution of 1.211)

Hence G --ﬂ-o.
or

Hence gravitational field strength as well as field force becomes zero, inside a thin sphereical
layer.

One can imagine that the uniform hemisphere is made up of thin hemispherical layers of
radii ranging from O to R. Let us consider such a layer (Fig.). Potential at point O, due

to this layer is,
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2
do= _ydm _ —iw:—{rdr, where dm = M 3 dqr dr
r R (2/3)=nR 2

(This is because all points of each hemispherical shell are equidistant from O.)

R

3yM WM

Hence, (p-fd(p- -—}(;—-frdr- ——ZYR—
0

M

Hence, the work done by the gravitational field dr

force on the particle of mass m, to remove it

to infinity is given by the formula m 0 / r .
A = mo, since ¢ = 0 at infinity. )

Hence the sought work,

v

3ymM
2R
(The work done by the external agent is — A.)
In the solution of problem 1.211, we have obtained @ and G due to a uniform shpere, at
a distance r from it’s centre outside it. We have from Egs. (7) and (8) of 1.211,
Q= -X—f’!and (—;'S_I_I;_l;-» (A)
r

Aya= -

Accordance with the Eq. (1) of the solution of 1.212, potential due to a spherical shell of
radius a, at any point, inside it becomes

o= Y. Const. and G,= -22 0 (B)
a or
For a point (say P) which lies inside the uniform solid sphere, the potential @ at that point
may be represented as a sum.
q)im'ide =Pt
where @, is the potential of a solid sphere having radius r and @, is the potential of the
layer of radii r and R. In accordance with equation (A)
o= LM 4. ) 1M
r{@4/3)xR°3 R
The potential @, produced by the layer (thick shell) is the same at all points inside it. The
potential ¢, is easiest to calculate, for the point positioned at the layer’s centre. Using

Eq. (B)

R
am 3yM 2 2
P, = -Yf 5 =73 %;(R,—r)
r
where dM = —L3-4nr2dr= }—TM P dr
(4/3)nR R
is the mass of a thin layer betveen the radii »» and r +dr.
2
- (MY
Thus q)muc—(p1+(p2_ (ZR (3 Rg (C)
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From the Eq. G, = ;;'7‘2
YMr
G, = e

Ce M 4 =

or G IE r Y3

M. .
(where p = 7 , is the density of the sphere) D)
-3-1IR3

The plots ¢ (r) and G (r) for a uniform sphere of radius R are shown in figure of answersheet.
Alternate : Like Gauss’s theorem of electrostatics, one can derive Gauss’s theorem for

gravitation in the formf G-dS= -4nxym,,,,. ., - For calculation of Gata point

inside the sphere at a distance 7 from its centre, let us consider a Gaussian surface of
radius 7, Then,

G,4nr2- -4ny(}%—)r3 o, G = —%r

= M —» 4 M
Hence, G= —L-r- -Yy—Tnpr|as p= ——
ene R? Y3 "*( 3 (4/3)nR3)

© R
So, (p=fG,dr=f-y—A3£ rdr+f—%£dr
R r
r r R

Integrating and summing up, we get,
2
- IM(y
And from Gauss’s theorem for outside it :
M

G,4nr’= -4nyM or G,= -Y—rT

Thus q)(r)-fG,dr- -%—M
r

Treating the cavity as negative mass of density — p in a uniform sphere density + p and
using the superposition principle, the sought field strength is :

- - —
G=G,+G,
or G= —gnwi’ + -§M(-p) r

(Where 7, and 7. are the position vectors of

an orbitrary point P inside the cavity with
respect to centre of sphere and cavity
respectively.)

+

Thus G = -%uyp(?'-?_’ = —g-nypl—.
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We partition the solid sphere into thin spherical layers and consider a layer of thickness
dr lying at a distance r from the centre of the ball. Each spherical layer presses on the
layers within it. The considered layer is attracted to the part of the sphere lying within it
(the outer part does not act on the layer). Hence for the considered layer

dpanrl=dF

4 3
, 13" Pj@xridrp)
o, dP4nr*= 2

(where p is the mean density of sphere)

or, dp= %przrdr
R

Thus p-fdp- %ﬁvpz(Rz-rz)
r

(The pressure.must vanish at r = R.)
o, p= %(1 - (*/R?)yM*/ xR, Putting p = M/(4/3)xR?
Putting r = 0, we have the pressure at sphere’s centre, and treating it as the Earth where

mean density is equal to p= 5:5 x 10 l:g/m3 and R = 64x10%km
we have, p=173x10"Pa or 1-72 x 10° atms.

(a) Since the potential at each point of a spherical surface (shell) is constant and is equal

togp= - IE"—’, [as we have in Eq. (1) of solution of problem 1.212]

We obtain in accordance with the equation
1 1
U- Efqu)- i—tpfdm
2
lfymy o _im
2| R 2R

(The factor 1 is needed otherwise contribution of different mass elements is counted twice.)

2
(b) In this case the potential inside the sphere depends only on r (see Eq. (C) of the
solution of problem 1.214)

2
2 3ym(, r”
¢ 2R 1 3R2)

Here dm is the mass of an elementry spherical layer confined between the radii
r and r+dr:

dm= (4nr2drp)- -;—': ridr
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1
U= Zfqu)
R
1l (3m) > 3ym(, _r?
J () {3l -5e))
0
After integrating, we get
3ym*
U=-5%

1218 Letw="Y Y—s’i = circular frequency of the satellite in the outer orbit,
3.

Wy = v e . circular frequency of the satellite in the inner orbit.

r-ar’

So, relative angular velocity = w,+ ® where - sign is to be taken when the satellites are
moving in the same sense and + sign if they are moving in opposite sense.
Hence, time between closest approaches

2n 2n 1 { 4:S days (? - 0))
= N =1 0-80 hour (6 = 2
Wyt ® \/Y_M;/rm 32Arr+6

where 8 is 0 in the first case and 2 in the second case.

_IM _ 667x107" x5.96 x 10%

o = 9-8 m/s’
1.219 @9 ry (637 x 10°

2

2
2 2x 2x22 . 6 o O 2
w,= 0°R (—T)R (_—24X3600X7)637XI0 0:034 m/s

_YMs  667x107 " x1.97 x 10%
RZ. (14950 x 10° x 10°)?

and o, = 59x10" m/s?

Then mlzmz:m3-1:0-0034:0-0006

1.220 Let 4 be the sought height in the first case. so

9 . _IM
100° (R +h)?
-_YM g
2 2
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2

or 9 _(1.B .
100 - R
From the statement of the problem, it is obvious that in this case h <<R
9 2h R 6400
Thus 100 (I—R) or h-200 (mo)km- 32km

In the other case if 4’ be the sought height, than
2

g. KY 1_ (1.2

> g(1+R) or 3 (1+R)
From the language of the problem, in this case 4’ is not very small in comparision with R.
Therefore in this case we cannot use the approximation adopted in the previous case.

wY A
Here, (1+-R—) =2 So,i-z\/f-l
As - ve sign is not acceptable
B = (V2 -1)R= (V2 -1) 6400 km = 2650 km

Let the mass of the body be m and let it go upto a height A.
From conservation of mechanical energy of the system

_YMm 1 —YMm
R tzmv%s ®+h) +O

Using YR—A:= g, in above equation and on solving we get,

RY
2gR- vo2
Gravitational pull provides the required centripetal acceleration to the satelite. Thus if A

be the sought distance, we have
2

my ymM 2
so, o, R+h)vi=yM
R+m ™ ®Renp o EHRV=Y
or, RV+hv*= gR?, as ga%
2 2
Hence h-g—R;‘;—R!—-R[gVTR-I]

A satellite that hovers above the earth’s equator and corotates with it moving from the
west to east with the diurnal angular velocity of the earth appears stationary to an observer
on the earth. It is called geostationary. For this calculation we may neglect the annual
motion of the earth as well as all other influences. Then, by Newton’s law,

YMm _ ,,,( 2 )2,
r T
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where M = mass of the earth, T = 86400 seconds = period of daily rotation of the earth
and r = distance of the satellite from the centre of the earth. Then

2
r=-43 T
w2 )
Substitution of M = 596 x 10%* kg gives

r= 4220 x10* km
The instantaneous velocity with respect to an inertial frame fixed to the centre of the earth
at that moment will be

% r= 307 km/s
and the acceleration will be the centripetal acceleration.
2

( - ) r= 0223 m/s
T
We know from the previous problem that a satellite moving west to east at a distance

R = 2:00 x 10* km from the centre of the earth will be revolving round the earth with an
angular velocity faster than the earth’s diurnal angualr velocity. Let

o = angular velocity of the satellite
W, = % = anuglar velocity of the earth. Then

2%
w - (l)o- —w
T

as the relative angular velocity with respect to earth. Now by Newton’s law

2n

So, M-—(t T)
+I

3

Substitution gives

J

The velocity of the satellite in the inertial space fixed frame is v 1M cast to west. With

M= 627x10% kg

R
respect to the Earth fixed frame, from the 71' - (W x ¥ the velocity is
. 22R AM
v T R 703 km/s

Here M is the mass of the earth and T is its period of rotation about its own axis.
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It would be - 2—”—& ‘\/ , if the satellite were moving from west to east.

To find the acccleratlon we note the formula
- F - —» 25>
mw =F+2m(v xo)+mon°R
Here F = — %ﬂﬁ and v~ L@and v x @ is directed towards the centre of the Earth.

2
' IM | 27R ‘/M 2x_(2x
Thus w R? +2( T + R T T R
toward the earth’s rotation axis

yM 2% |2nR

==+ = 494 m/s? on substitution.
R T

From the well known relationship between the velocities of a particle w.r.t a space fixed
frame (K) rotating frame (K') v'=v" +(Wx )

Vi=v- ( 271‘) R
Thus kinetic energy of the satellite in the earth’s frame
2
o1 21 2R
I, ZmVi= 3 m( T )

Obviously when the satellite moves in opposite sense comared to the rotation of the Earth
its velocity reldtive to the same frame would be

V) = v+(ng)R

And Kkinetic energy

2
1] 1 /2- 1 ZJtR
Tznimv2 7m(v+ T ) )
From (1) and (2)
L, 28RY
T
T' = ——— ©)
v_2nR
T
Now from Newton’s second law
Mm_mé A R
I'E R TV R gR C))
Using (4) and (3) -
" (ng )
T_z'_ = 127 nearly (Using Appendices)
G|
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1227 For a satellite in a circular orbit about any massive body, the following relation holds
between kinetic, potential & total energy :

T=-E U=2E @

Thus since total mechanical energy must decrease due to resistance of the cosmic dust,
the kintetic energy will increase and the satellite will ‘fall’, We see then, by work energy

theorm
dl = ~dE = - dAf,
So, mvdy = av?vdt or, gd_t - d_v
m 2

Now from Netow’s law at an arbitray radius r from the moon’s centre.

(M is the mass of the moon.) Then

Y TR LT
nR R

where R= moon’s radius. So

dv a av
vz-mfdt-m
vy 0
or, t,mi__l_ -L(J‘VT—I)-
’ av'- Vf aq;. GV_

where g is moon’s gravity. The averaging implied by Eq. (1) (for noncircular orbits) makes
the result approximate.

1.228 From Newton’s second law

I%_;ﬂ- =2 o vo= \/ B = 167kmss o
From conservation of mechanical energy
L2 -2 _ 0 o1, v,= V2L = 237 kmss? @
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In Eq. (1) and (2), M and R are the mass of the moon and its radius. In Eq. (1) if M and
R represent the mass of the earth and its radius, then, using appendices, we can easily get

vo= 799 km/s and v_= 112 km/s.

In a parabolic orbit, E = 0
1,2 Mm_ -V
So Zmvi =g =00 V2 R

where M = mass of the Moon, R = its radius. (This is just the escape velocity.)
On the other hand in orbit

mvf2R= IA% or v, = V W
R

R

Thus Av=(1-V2) VXRM = —0-70 km/s.

From 1.228 for the Earth surface

Vo= ‘\/? and v, = '\/_Z__—YR—M—

Thus the sought additional velocity

Av= v, -y = V XITM (V2-1)=gR(V2-1)

This ‘kick’ in velocity must be given along the direction of motion of the satellite in its
orbit.

Let r be the sought distance, then

. M

nR

. 4
Vi +1 3-8 x 10" km.

or Viir=(nR-r) orr=

Between the earth and the moon, the potential energy of the spaceship will have a maximum
at the point where the attractions of the earth and the moon balance each other. This
maximum P.E. is approximately zero. We can also neglect the contribution of either body
to the p.E. of the spaceship sufficiently near the other body. Then the minimum energy
that must be imparted to the spaceship to cross the maximum of the P.E. is clearly (using
E to denote the earth)
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YMgm
RE

With this energy the spaceship will cross over the hump in the P.E. and coast down the
hill of p.E. towards the moon and crashland on it. What the problem seeks is the minimum
energy reguired for softlanding. That reguies the use of rockets to loving about the braking
of the spaceship and since the kinetic energy of the gases ejected from the rocket will
always be positive, the total energy required for softlanding is greater than that required
for crashlanding. To calculate this energy we assume that the rockets are used fairly close

to the moon when the spaceship has nealy attained its terminal velocity on the moon

1\ / 2YM,
; 2 where M, is the mass of the moon and R, is its radius. In general
0

dE = vdp and since the speed of the ejected gases is not less than the speed of the rocket,
and momentum transfered to the ejected gases must equal the momentum of the spaceship

the energy E of the gass ejected is not less than the kinetic energy of spaceship

YMym
RO

Addding the two we get the minimum work done on the ejected gases to bring about
the softlanding.

A ME MO
e = (R, * Ry

On substitution we get 1-3 x 10® kJ.

Assume first that the attraction of the earth can be neglected. Then the minimum velocity,
that must be imparted to the body to escape from the Sun’s pull, is, as in 1230, equal to

(V2 -1)v,

where "12 = yM_ /r, r = radius of the earth’s orbit, M, = mass of the Sun.

In the actual case near the earth, the pull of the Sun is small and does not change much
over distances, which are several times the radius of the Earth. The velocity v, in question
is that which overcomes the earth’s pull with sufficient velocity to escape the Sun’s pull.
Thus

1, Y™y 1 2 2
—z—mvs—T —2-m(\/f 1) V;

where R = radius of the earth, M = mass of the earth.

Writing v2 = M, /R, we get

va= V2024 (VZ-1)2v2 = 166 km/s
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1.5 DYNAMICS OF A SOLID BODY

1.234

1.235

1.236

1.237

Since, motion of the rod is purely translational, net torque about the C.M. of the rod
should be equal to zero.

Th I I F, a
us F12= F, or, F—,2= 1-1_/—2- 1)

For the translational motion of rod.

@

From (1) and (2)
a mw,
127 F,
Sought moment IV- F&F— (ai_-: bf;x (Ai—:Bf;
= aBE+Ab(-K)= (aB-Ab)E"

and arm of the force = —= ——=
F VAT+ B
Relative to point O, the net moment of force :
=, ChUIKRIEE e oE e e
N=r xF +r,xF,= (aixAj)+(BjxBi)
— — —»
=abk+AB(-k)= (ab-AB)k )}
Resultant of the external force
— = - - -
F=F +F,= Aj+Bi )

-

AsN-F=0 (as N.LF)sothcsoughtannloftbc forceF
ab-AB
VA® + B?

- - - —
For coplanar forces, about any point in the same plane, 2 r;xF;=rxF,,

l= N/F =

— —>
(where I_v‘:‘ = z ;': = resultant force) or, N, = rx F,,

NM
Thus length of the arm, / = T

net

Here obviously |, | = 2F and it is directed toward right along AC. Take the origin at C. Then
about C,

V2aF+ %F - V2 aF | directed normally into the plane of figure.

(Here a = side of the square.)

Thus F = F Taz- directed into the plane of the figure.
F(anV2Z) _a a . e
Hence I= Y Y T 45

Thus the point of application of force is at the mid point of the side BC.
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1238 (a) Consider a strip of length dx at a perpendicular distance x from the axis about which
we have to find the moment of inertia of the rod. The elemental mass of the rod equals
dm = 7 dx
Moment of inertia of this element about the axis
dl= dmx®= T dex?

Thus, moment of inertia of the rod, as a whole
about the givcn axis

1-f'” 2dx-————

(b) Let us imagine the plane of plate as xy
plane taking the origin at the intersection point

of the sides of the plate (Fig.). 0 Vi |
Obviously I= f dmy? x dx

m 2

N f ( ab bdy )y
0
_ma 2
3
2

Similarly I, = 1n_3b__

Hence from perpendicular axis theorem
m, 2 2
L=1I+1,=3 (a +b )
which is the sought moment of inertia.

1.239 (a) Consider an elementry disc of thickness dx. Moment of inertia of this element about
the z -axis, passing through its C.M.

2

where p = dcnsny of the matenal of the plate
and S = area of cross section of the plate.

Thus the sought moment of inertia
b

B—————fdx- Z_psSb

o

x

<

-3 ZobR (ass- nR’)
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putting all the vallues we get, I, = 2 gm-m2 5

(b) Consider an element disc of radius 7 and
thickness dx at a distance x from the point
O. Then r = x tana and volume of the disc

= neltan?ade R
Hence, its mass dm = 7 x> tana de-p (where A l
p = density of the cone = m/%nth) )/ ax
Moment of inertia of this element, about the p
axis OA, ’
2
dl = dm 5

2,2
= (thztan%uix)x—ta;—oi
= %Ex"tan‘adx

h

Thus the sought moment of inertia / = 122 tan* a f x*dx
0

4,5
& 1&1L4L a5 tary SR
10k h

3mR? . 3m
Hence I= 10 (puttmg p= 7rR2h)

1.240 (a) Let us consider a lamina of an arbitrary shape and indicate by 1,2 and 3, three axes
coinciding with x, y and z - axes and the plane of lamina as x - y plane.

Now, moment of inertia of a point mass about
x - axis, dl = dmy2 g A3 €)
Thus moment of inertia of the lamina about
this axis, [, = f dmy*

. @)
Similarly, I, = fdmx2 a4
and Iz=fdmr2 x
=fdm(x2+y2) as r=\'x2+y2 x ()
Thus, L=1I+I o, L=1+I,

(b) Let us take the plane of the disc as x -y plane and origin to the centre of the disc
(Fig.) From the symmetry I, = 1. Let us consider a ring element of radius r and thickness

dr, then the moment of inertia of the ring element about the y - axis.
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dr,= dmr? sE(andr)r r’f ;
Thus the moment of inertia of the disc about
Z - axis
R
2
2 (g R
0 0 >
But we have L=L+I=2I
I R dx
z_mR
Thus I= 2 ]

For simplicity let us use a mathematical trick. We consider the portion of the given disc
as the superposition of two. complete discs (without holes), one of positive density and
radius R and other of negative density but of same magnitude and radius R/2.

As (area) o (mass), the respective masses of the considered discs are
(4m/3) and (- m/3) respectively, and these masses can be imagined to be situated at
their respective centers (C.M). Let us take point O as origin and point x — axis towards
right. Obviously the C.M. of the shaded position of given shape lies on the x — axis. Hence
the C.M. (C) of the shaded portion is given by

(-m/3)(-R/2)+(4m/3)0 p

e = (-m/3)+4m/3 3

Thus C.M. of the shape is at a distance R/6
from point O toward x — axis

Using parallel axis theorem and bearing in mind
that the moment of inertia of a complete
homogeneous disc of radius m, and radius r,

equals %—mo "02 . The moment of inetia of the

small disc of mass (-m/3) and radius R/2
about the axis passing through point C and
perpendicular to the plane of the disc

L .1(_m\(RY (_m\(R R
2721 312 312 6
mR*> 4 2
"™
2
. _1(4m\ 2 (4m\(R
Similarly Lic= 2( 3 )R +( 3 )(6)
2 g2, mR?
=3mRT+
Thus the sought moment of inertia,
2 2_37 o2
Io=ILc+1 = 24mR 27mR 72mR
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1.242 Moment of inertia of the shaded portion, about the axis passing through it’s certre,

2(4 3 2 2(4 3 3
I=§(3an)R —5(3:0' p)r

Hna ()

Now, if R = r + dr, the shaded portion becomes
a shell, which is the required shape to calculate
the moment of inertia.

Now, I= %—;lnp{(r+dr)5—r5}
=§-§np(r5+5r‘dr+ ...... -rﬁ)

Neglecting higher terms.

= %(4nr2drp>r2- %mr2

1.243 (a) Net force which is effective on the system (cylinder M + body m ) is the weight of
the body m in a uniform gravitational field, which is a constant. Thus the initial acceleration

of the body m is also constant.

From the conservation of mechanical energy of the said system in the uniform field of

gravity at time t= At : AT+ AU= 0

1 5 1MR?

— — —— 2-— =
or Smi+s =0 mgAh=0
or, %(2'”+M)v2_mgAh-0[aS V-(DR ata“ times]
But vie 2wAh

Hence using it in Eq. (1), we get
1 . 2mg
4(2m+M)2wAh—mgAh 0orw= (2m + M)

. . . . w 2m
From the kinematical relationship, f = - (2m+M)R
Thus the sought angular velocity of the cylinder

2mg gt
w(t)= Br= MR~ (T+M/2m)R

(b) Sought kinetic energy.

2
T(t)= %mv2+%—1‘%w2- -‘11—(2m+M)R2w2
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1.244 For equilibrium of the disc and axle

1.245

1.246

2T = mg or T= mg/2
As the disc unwinds, it has an angular acceleration B given by

IB= 2Tr or B = %T—'-- g

The corresponding linear acceleration is

2 | o ]
rﬁ = W= Ln—gIL— /\T J' T
Since the disc remains stationary under the a _D
combined action of this acceleration and the
acceleration (-w) of the bar which is
transmitted to the axle, we must have mg
2

W mgIr

Let the rod be deviated through an angle ¢’from its initial position at an arbitrary instant
of time, measured relative to the initial position in the positive direction. From the equation
of the increment of the mechanical energy of the system.

AT=A_,
1)1l 2
or, Elw =szd(p
®
2
or, %Lgl—m2=fl"lcos¢d(p = Flsingp
Thus, ©=\/ SEsing

Mi

First of all, let us sketch free body diagram of each body. Since the cylinder is rotating
and massive, the tension will be different in both the sections of threads. From Newton’s
law in projection form for the bodies m, and m, and noting that w,; = w, = w= R, (as

no thread slipping), we have (m, > m,)

m g-T = mw=mfR 4

and T,-m,g=m,w 1) O

Now from the equation of rotational dynamics

of a solid about stationary axis of rotation. i.e. T \ YT2

N,= I, for the cylinder.

or, (T,-T,)R=IB = mR*B/2 V) .

Similtaneous solution of the above equations yields : % W 2 WT

. (my-my)g and £= m, (m+4m,) J
R(m1+m2+g—) T, my(m+dm) mg. mzg
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As the systemr (m +m, + m,) is under constant forces, the acceleration of body m, an
m, is constant. In addition to it the velocities and accelerations of bodies m, and m, a1
equal in magnitude (say v and w) because the length of the thread is constant.
From the equation of increament of mechanical energy i.e. AT + AU = Ay, at time ¢ whe
block m, is distance h below from initial position corresponding to ¢ = 0,

2\ 2
) - o= -k a

(as angular velocity w = v/R for no slipping of thread.)

1 2 1
-2-(ml+m2)v +5(

But vZ=2wh
So using it in (1), we get
2(my-km,)g

=m+2(m1+m2)‘ @

Thus the work done by the friction force on m,
1 -
A= —kmgh= —lkmg P

Irml(ml—lanl)gzt2
m+2(m;+m,)

(using 2).

In the problem, the rigid body is in translation equlibrium but there is an anguiar retardation.
We first sketch the free body diagram of the cylinder. Obviously the friction forces, acting
on the cylinder, are kinetic. From the condition of translational equlibrium for the cylinder,

m m
Hence, N = I:%; N,=k 1 +i2

For pure rotation "of the cylinder about its

rotation axis, N, = If, y

A

mR? %

o, -kN,R-kN,R= —-8@, KN2
2 2 ®

2 /

or _kmgR(1+k) _mR 8 2

1+k2 2 %

or b, - _2k(1+2k) 4

(t+k%)R /K/v, %

Now, from the kinematical equation,
2

w?= of +2B,A ¢ we have,
woZ(1+k*)R

2k (1+ because w = 0

k 2
D)<)€vnloaded From : www.EasyEngineering.net
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Hence, the sought number of turns,
Ap u)oz (1+ k2 )R

" T Snk(1+k)g

1.249 It is the moment of friction force which brings the disc to rest. The force of friction is
applied to each section of the disc, and since these sections lie at different distances from
the axis, the moments of the forces of friction differ from section to section.

To find N,, where z is the axis of rotation of the disc let us partition the disc into thin
rings (Fig.). The force of friction acting on the considered element
dfr= k(2nrdro)g, (where o is the density of the disc)
The moment of this force of friction is
dN,= -rdfr= -2nkogridr
Integrating with rcspe:t to r from zero to R, we get

N,= -2nkogfr2dr= —%nkogRs.
0

For the rotation of the disc about the stationary dr
axis z, from the equation N, = I,

(nR%c)R? akg

2 Bz or ﬁz 3R
Thus from the angular kinematical equation
w,= 0y, + B,

3Rw
- g+ -8 Lihe
0 u)0+( 3R | ot akg

-%nkogR3-

1.250 According to the question,
1% VG or, == kit

Vo
Integrating, Vo = —% + Vay,
2,2
or, w=k71-g——fq?£+mo,(Notingthatatt= 0, w = wgy)
Vo
Let the flywheel stops at ¢ = £, then from Eq. (1), £,= __k_o_
Hence sought average angular velocity
AV Yy
k
k212 Voo k
—;]—2_ - 7 + W, dt
<w>=2 -2

k
[a
0
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dM,
Let us use the equation Tz = N, relative to the axis through O 1

For this purpose, let us find the angular momentum of the system M, about the given
rotation axis and the corresponding torque N, The angular momentum is

my 2
M, = Io> + mvR = (—+m)R ®

2
m
[where I = 7°R2 and v= o R (no cord slipping)]
dM. 2
So, dtz- (Mf +mR2)ﬁz 2

The downward pull of gravity on the overhanging part is the only external force,
which exerts a torque about the z -axis, passing through O and is given by,

N,= ( ? ) xgR
. MZ
Hence from the equation - N,
MR? m
( > +mR2)ﬂz- -l—ng

B,= —2M& .

Z IR(M+2m)
Note : We may solve this problem using conservation of mechanical energy of the system’
(cylinder + thread) in the uniform field of gravity.

Thus,

(a) Let us indicate the forces acting on the sphere and their points of application. Choose
positive direction of x and @ (rotation angle) along the incline in downward direction and
in the sense of @ (for undirectional rotation) respectively. Now from equations of dynamics
of rigid body i.e. F,= mw_ and N_= I f§, we get :

mgsina— f, = mw 1)
and frR=2mR?p )
But frs kmg cosa 3)

In addition, the absence of slipping provides
the kinematical realtionship between the
accelerations :

w= BR @)
The simultaneous solution of all the four
equations yields :

kcosaz= %sina, or k= %tana

(b) Solving Eqgs. (1) and (2) [of part (a)], we get :
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S .
W= Zgsino.

As the sphere starts at ¢ = 0 along positive x
axis, for pure rolling

v.(t)= w_t= %gsinat )
Hence the sought kinetic energy
1212, pr22. 1 -
T 2mv +25mR 10mvf(asm v./R)
7 (s ’ s
L2 - 2 L2 2
1Om(7gsmctt) 14mg2s1n at

(a) Let us indicate the forces and their points of application for the cylinder. Choosing
the positive direction for x and @ as shown in the figure, we write the equation of motion
of the cylinder axis and the equation of moments in the C.M. frame relative to that axis
i.e. from equation F, = mw_ and N, = I_§,.
2
mg-2T=mw_; 2IR = m—g—ﬁ
As there is no slipping of thread on the cylinder
w.= R

From these three equations

mg 2g 2 2
T - = [ Iy ]

3 13N, B 3R 5 x10°rad/s
(b) we have § = 2g

3R

So, w, = §g>0 or, in vector form w, = 38
P=F-v=F-(%.1)

- ng (25 Zme
Let us depict the forces and their points of application corresponding to the cylinder attached

with the elevator. Newton’s second law for solid in vector form in the frame of elevator,
gives :

2T+mg+m(-wy) = mw 1) @ T T
The equation of moment in the C.M. frame
relative to the cylinder axis i.e. from OO )) | )))
N,= I, B, - m o
mR2 ¢
21IR = ﬂ = R
MWo

[as thread does not slip on the cylinder, w' = BR |
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mw
or, T= 4
As () THw
so in vector form
= mw
T= - 4 2)

Solving Egs. (1) and (2), W = —g—(? - wy) and sought force
F=2T- %—m(?— ).

Let us depict the forces and their points of application for the spool. Choosing the positive
direction for x and @ as shown in the fig., we apply F, = mw_ and N_;= I B, and get

0

mgsina~-T=mw; Tr=If

“Notice that if a point of a solid in plane motion
is connected with a thread, the projection of
velocity vector of the solid’s point of contact
along the length of the thread equals the velocity
of the other end of the thread (if it is not
slacked)”

Thus in our problem, v, =V but v,= 0,

hence point P is the instantaneous centre of
rotation of zero velocity for the spool. Therefore

v.= or and subsequently w_ = Pr. XA
Solving the equations simultaneously, we get l’/
- £ 2 - tomss’ -
1+ — g
mr

Let us sketch the force diagram for solid cylinder and apply Newton’s second law in
projection form along x and y axes (Fig.) :

fri+fry= mw, M Ny )
and N, +N,-mg-F=20
or N,+N,=mg+F )

Now choosing positive direction of ¢ as shown
in the figure and using N, = I_f,,

we get

2 2
FR-(fry+ fryR="8-p= 222 (3)

[as for pure rolling w_= BR ]. In addition to,
fri+frysk(N;+N,) @
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Solving the Egs., we get

3kmg _3kmg
Fs G a0 O Fox= 3 3%

kN, +N,)

and wc(mu)-lT
k k 3kmgl  2kg
m U8 * Frnax | m['ng+2—3k] 2 - 3%

(a) Let us choose the positive direction of the rotation angle @, such that w_, and B, have
identical signs (Fig.). Equation of motion, F, = mw_, and N_= I_p, gives :
Fcosa-fr=mw_:frR-Fr=100,= ymRzﬁz
In the absence of the slipping of the spool w_ = B, R
_ Flcosa-(r/R)]

. r
From the three equations w_ = w, = , Where cos a > R 1

m(+y)
(b) As static friction (fr) does not work on
the spool, from the equation of the increment
of mechanical energy A_, = AT.
2

v
A, = %mvf-t-%ymRzR—‘I- %m(l +y) vV

1N

1 1 1 2
= -i-m(l +Y) 2w, x = -z-m(l +y)2wc(5wct )

2
F (cosa - R%) P
2m(l+y)
Note|that at cos a.= r/R, there is no rolling and for cos a.<r/R, w_ <0, i.e. the spool
will move towards negative x-axis and rotate in anticlockwise sense.

For the cylinder from the equation N, = I f, about its stationary axis of rotation.

2Tr = %p or ﬁs% )

For the rotation of the lower cylinder from the
equation N, = I_B,

2
mre , ,_ 4T
2Tr = 2 g’ or, ﬁ_mr-

B

Now for the translational motion of lower
cylinder from the Eq. F, = mw_, :
mg-2T= mw, )
As there is no slipping of threads on the
cylinders :
w. = p'r+fpr=2pr 3)
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Simultaneous solution of (1), (2) and (3) yields

- Mg
T 10

Lst us depict the forces acting on the pulley
and weight A, and indicate positive direction
for x and ¢ as shown in the figure. For the
cylinder from the equation F,= m w and

N_=18, we get

Mg+T,-2T= Mw, Q@)
Iw,
and 2TR+T,(2R)=If= R 2 i
For the weight A from the equation
F = mw,
mg-T,= mw, 3

As there is no slipping of the threads on the
pulleys.

w,=w+2BR=w_ +2w = 3w, O]
Simultaneous solutions of above four equations
gives :

3M+3mg
w, = 7
E (M +9m+ ——2)
R

(a) For the translational motion of the system (m+ m,), from the equation : F, = mw_
F=(my+myw, or, w=F/(m+m) (¢8)]

Now for the rotational motion of cylinder from the equation : N_ = I B,

m,r* 2F
Fr= > B or Pr= m, 2)
But wg=w.+Br, So
F 2F F(3m +2m,)
W= +—= ——= (3
m+m, m my (m; +m,)

(b) From the equation of increment of mechanical energy : AT = A_,

Here AT=T(), so, T(t)= A_,
As force F is constant and is directed along x-axis the sought work done.
A= Fx

(where x is the displacement of the point of application of the force F during time interval ¢ )
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2 Wkt )= 2m; (m; + m,) =T0

(using Eq. (3)
Alternate : T(t) = T, pi000n (O + T, (5]

-F(l ,\ Fii(mi+2my)

2
Ft 2+l 17 2Ft -1“2:2(3m1+2m2)
(m; + my) 2 2 | mr 2m; (m,, m,)

= %(mli-mz)(

Choosing the positive direction for x and ¢ as shown in Fig, let us we write the equation
of motion for the sphere F, =mw_, and N, =18,

2 2
fr=m,w,; frr-gmzr B

(w, is the acceleration of the C.M. of sphere.) o4
For the plank from the Eq. F, = mw, < —> X
~f=mw,
In addition, the condition for the absence of ,fr
slipping of the sphere yields the kinematical fr m > ¢
. . i 7 r
relation between the accelerations :
w=w,+Br /7777777777777
Simultaneous solution of the four equations yields :
F 2
W =-————— and W= w
m, + 7 m,

(a) Let us depict the forces acting on the cylinder and their point of applications for the
cylinder and indicate positive direction of x and ¢ as shown in the figure. From the
equations for the plane motion of a solid F, = mw_, and N, = I_§, :

kmg=mw_ or w, = kg 1)

2
—kng-m}%B’ or pz--z’—;ﬁ @)

Let the cylinder starts pure rolling at £ = £, after
releasing on the horizontal floor at t= 0.

4

From the angular kinematical equation

w,= w,+p,1 G—-)v " o
or w-u:o-Z%t 3) Q)O
From the equation of the linear kinematics, ﬁ;

Vo™ Voo ¥ W 8 777777, @

or @
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But at the moment ¢ = f,, when pure rolling starts v, = wR

wy R
Thus o= ?k_g-

(b) As the cylinder pick, up speed till it starts rolling, the point of contact has a purely

translatory movement equal to %w‘. tg in the forward directions but there is also a backward

movement of the point of contact of magnitude (w,7, - —;—B tg) R. Because of slipping

the net displacement is backwards. The total work done is then,

. = kmg [-;—w B - (0d+3 ﬁF)R]
= kmg [%kgtﬁ - %(-%&) HR- “’o’oR]

mmoR

3kg [— Y3 ‘”OR]

The same result can also be obtained by the work-energy theorem, A, = AT.

Let us write the equation of motion for the centre of the sphere at the moment of breaking-off:
mv*/(R +r) = mg cos 6,

where v is the velocity of the centre of the sphere at that moment, and 0 is the corresponding

angle (Fig.). The velocity v can be found from the energy conservation law :

mgh = —;— m? + -;—Imz,

where I is the moment of inertia of the sphere
relative to the axis passing through the sphere’s hI

centre. i.e. I = %mrz. In addition,
v=owr; h= (R+r)(1 -cos0).

From these four equations we obtain

o=V10gR+r)17 4. 0

Since the cylinder moves without sliding, the centre of the cylinder rotates about the point
O, while passing through the common edge of the planes. In other words, the point O
becomes the foot of the instantaneous axis of rotation of the cylinder.
It at any instant during this motion the velocity of the C.M. is v, when the angle (shown
in the figure) is B, we have

m vf

—— =mgcosP-N,
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where N is the normal reaction of the edge
2
) - - - 1
or, vi= gRcos f - @

From the energy conservation law,

2
1 % 1. %
EI°R—12_5 I, ;(%- mgR (1 - cos B) \
2 7///////////0 m
But Iy = ﬁg;urmRz - %mRz, g
(from the parallel axis theorem) <
Thus, vf- v(2,+§gR(1-cos B) )

From (1) and (2)
Vo= 335(7cosﬁ-4) - 1%

The angle B in this equation is clearly smaller than or equal to o so putting f = o we get

. gR NR
Vo= 83—(7(:050.—4) - M
where N, is the corresponding reaction. Note that N 2 N, No jumping occurs during

this turning if N, > 0. Hence, v, must be less than

Viax = \/8-3’5(7cosa—4)

Clearly the tendency of bouncing of the hoop will be maximum when the small body A,
will be at the highest point of the hoop during its rolling motion. Let the velocity of C.M.
of the hoop equal v at this position. The static friction does no work on the hoop, so from
conservation of mechanical energy; E; = E,

% 2
1o2e Lm0 CpmeRe Lm@?s bmi? s Lmr2 (Y
or, 9+2mvg+2mR (R) mgR 2m(2v) +2mv2+2mR (R) +mgR
or, 3= vg—2gR 1)
From the equation F, = mw, for body A at final position 2 :
2
mg+N' = mo’R = m(i—) R 2)
f—\
$) W
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As the hoop has no acceleration in vertical direction, so for the hoop,

N+N = mg 3)
From Egs. (2) and (3),
mv?
N=2mg- R ©)
As the hoop does not bounce, Nz 0 ®)
So from Egs. (1), (4) and (5),
8gR-
3R ——— 220 o 8 gR= v2

Hence vos V8gR

Since the lower part of the belt is in contact with the rigid floor, velocity of this part
becomes zero. The crawler moves with velocity v, hence the velocity of upper part of the
belt becomes 2v by the rolling condition and kinetic energy of upper part

= -1— -"1 (2v) mvz, which is also the sought kinetic energy, assuming that the length of

the bclt is much larger than the radius of the wheels.

The sphere has two types of motion, one is the rotation about its own axis and the other
is motion in a circle of radius R. Hence the sought kinetic energy

1 2 1 2
T = illm1+712m2 (1)

where I, is the moment of inertia about its own axis, and I, is the moment of inertia about
the vertical axis, passing through O,

But, I,= -§—mr2 and 1, = émr2 + mR? (using parallel axis theorem,) )

In addition to

®, = ;-and W, = % 3

Using (2) and (3) in (1), we get T/ = — mv2 (1 + 7_1:2.)

For a point mass of mass dm, looked at from C rotating frame, the equation is
dmW = f+dm 7 +2dm (7 x @)
where 7~ = radius vector in the rotating frame with respect to rotation axis and
g velocity in the same frame. The total centrifugal force is clearly
i":f- 2 dm o’ 7" = mmzk:
I—i: is the radius vector of the C.M. of the body with respect to rotation axis, also

—

F. =2mv, x®
where we have used the definitions
mﬁ:= 2 dmr” and mv, = 2 dm v~
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1269 Consider a small element of length dx at a distance x from the point C, which is rotating

1.270

in a circle of radius r = x sin 0

Now, mass of the element = (%) dx o'

—

e mmm——
- F -~

So, centrifugal force acting on this element g s B
- % dx w’xsin © and moment of this force T —r:' \(
about C, 9 /“{’0
|dN| = (ﬁ)dxmzxsine-xcose ./JC'
l
o2
-5 sin 2 0 x° dx -
and hence, total moment 0 ) J
% e -

2
mo° 1 242 .
N 2f 2 sm29x2dx-——24mco 1“sin2 0,
0

Let us consider the system in a frame rotating with the rod. In this frame, the rod is at

—
rest and experiences not only the gravitational force m g’and the reaction force R, but also

the centrifugal force I_":f.

In the considered frame, from the condition of equilibrium i.e. Ny, = 0
or, N,f = mg ésin 0
where N, is the moment of centrifugal force
about O. To calculate N, , let us consider an
element of length dx, situated at a distance x
from the point O. This element is subjected to
% dx @’ x sin 6.
The moment of this pseudo force about the
axis of rotation through the point O is

a horizontal pseudo force

dN = (l"l__) dx ” x sin @ x cos 0
mo®
== sin @ cos 0 x> dx
1
2 2,2
So N, =fm;o sin 0 cos 0 x* dx = mn; ! sin O cos 0

0
It follows from Egs. (1) and (2) that,
cos 0 = ——3—5— or 0= cos™! _2_&2_
2071 2wl
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When the cube is given an initial velocity on
the table in some direction (as shown) it
acquires an angular momentum about an axis
on the table perpendicular to the initial velocity
and (say) just below the C.G.. This angular
momentum will disappear when the cube stops
and this can only by due to a torque. Frictional
forces cannot do this by themselves because
they act in the plain containing the axis. But
if the force of normal reaction act eccentrically
(as shown), their torque can bring about the

vanishing of the angular momentum. We can " Initial
calculate the distance Ax between the point of velocity
application of the normal reaction and the C.G. /v

of the cube as follows. T'akc the mancnt about N ~— focis L fo the
C.G. of all the forces. This must vanish because Initial initial locit
the cube does not turn or turnble on the table. angular velociy

. N o on the table
Then if the force of friction is fr momentum
a
fr 5= N Ax

But N= mg and fr= kmg, so

Ax= ka/2
In the process of motion of the given system the kinetic energy and the angular momentum
relative to rotation axis do not vary. Hence, it follows that

1M2 5 1 2,2, ,2y 1 MP
-2-—3—0)0=§m(0) I“+V )+E—3—(D
(w is the final angular velocity of the rod)
2 2
and Ag—lmou Ai;—u)+mlzm

From these equations we obtain

3
o = mo/(l + T{‘;)and
V= wol/ V1+3m/M

Due to hitting of the ball, the angular impulse received by the rod about the C.M. is equal

top % If w is the angular velocity acquired by the rod, we have
m? = pl &
12°72 "% @)

In the frame of C.M,, the rod is rotating about an axis passing through its mid point with
the angular velocity w. Hence the force exerted by one half on the other = mass of one
half x acceleration of C.M. of that part, in the frame of C.M.

m( 2l o’ 9p?_
'2(‘” 4) m=g = omi = °N

Downloaded From : www.EasyEngineering.net


http://Easyengineering.net
http://Easyengineering.net

Downloaded From : www.EasyEngineering.net 137

1274 (a) In the process of motion of the given system the Kkinetic energy and the angular

1.275

momentum relative to rotation axis do not vary. Hence it follows that

1, 1, 1(M?) ,
Emv—imv +§(3 w

and mv-l-- my' -I—+MI—2(0
2 2 3
From these equations we obtain
, 3m -4M 4v
V = (-—) v. and o =

11 +4m/3M)
3m—4M ?
3m+4M

(b) Obviously the sought force provides the centripetal acceleration to the C.M. of the
rod and is

3m+4M

—> —> . —»!
As v % % v,soin vector form v =

F = mw,_
2
- Moo B
2 I(1+4M/3m)
(a) About the axis of rotation of the rod, the angular momentum of the system is conserved.
Thus if the velocity of the flying bullet is v.

2
myl = (m12+M-I-)w

3
- L . -3—"2 <«< M 1
w-( M) M e m (6]
m+-5- )

Now from the conservation of mechanical energy of -the system (rod with bullet) in the
uniform field of gravity

1( i+ Mi?

) 3 )m =(M+m)g (1-cosa) )

/
[because C.M. of rod raises by the height %( 1-cosa) ]
Solving (1) and (2), we get

M)y /200 snl \/és in &
v (m) 3gl sin 5 and @ )
(b) Sought Ap = [m(wl)+M((o-iI-)]—mv
where !/ is the veloccity of the bullet and m-é— equals the velocity of C.M. of the rod
after the impact. Putting the value of v and w we get

1 ] .. o
~—my= &¢ sin—
Ap 2 mv M . sin >

This is caused by the reaction at the hinge on the upper end.
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(c) Let the rod starts swinging with angular velocity o’, in this case. Then, like part (a)

Mi? AP ,  3mvx
myx=| ——+mx W Or @ =
3 Mi?

Final momentum is

M M 3 X
ps= mx(o’+fy(o’-—dy~ —olm =mv=
o l 2 2 l
So, Ap-Pf-p.-~mV(3—f-1)
. . 2
This vanishes for X~ 51

1.276 (a) As force F on the body is radial so its angular momentum about the axis becomes

zero and the angular momentum of the system about the given axis is conserved. Thus

2 2
2 (oo+m(noR2- 2 (oor(o-wo(1+2—1:;-)

(b) From the equation of the increment of the mechanical energy of the system :
AT=A_,

1 MR? , 1(MR2
272 2

33 ® -3 +mR )mo-Aw
Putting the value of w from part (a) and solving we get

mmosz 1 2m
“ ()

3 2

1.277 (a) Let z be the rotation axis of disc and ¢ be its rotation angle in accordance with

right-hand screw rule (Fig.). (¢ and @’ are to be measured in the same sense algebraically.)
As M, of the system (disc + man) is conserved and M , (;,...;y = 0, we have at any instant,

2 ’
=l"£_R_d£+ml[(£ii)R+(d£)R]R

2 a dt dr
d ml do
oh = "mr(my2) %7

P L4

. . ido! )

On integrating do= - m do
0 [}

my

or, 9= - —1¥ )
my + =

This gives the total angle of rotation of the disc.
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(b) From Egq. (1)
de_ (™ \de'_ _(_™ V(1)

dt m, | dt R
m1+'2_2 m1+%
Differentiating with respect to time ‘F§
d’e_ _(_m \1dv(s)
de? m, |R dr
my+ ="
Thus the sought force moment from the Eq. N,= I8,
m
-m2R2d2(p=-m2R2 ml ldv’(t) R ‘w
22 ds? 2 m, |R dt
my+ ==

m, m,R !
Hence N = - 1M dv (¢)
z 2m, +m, dt

(a) Frome the law of conservation of angular momentum of the system relative to vertical
axis z, it follows that:

Lopthoy= (I +1)) o,
Hence W, = (11(’312'*12(’32:)/(11*12) (6]
Not that for w, > 0, the corresponding vector @ coincides with the poitive direction to the

z axis, and vice versa. As both discs rotates about the same vertical axis 2, thus in vector

form.
o= 0o + Lo, [ (I +1,)
However, the problem makes sense only if (—o'l tt (—6’2 or u_)'l IR o_)’z

(b) From the equation of increment of mechanical energy of a system: A, = AT.

= 3 +h)e2 -2 Lo+ Lol
Using Eq. (1)
1112 2

For the closed system (disc + rod), the angular momentum is conserved about any axis.
Thus from the conservation of angular momentum of the system about the rotation axis
of rod passing through its C.M. gives :

1 L amt’
mvz-mv2+ 12 (0] (1)
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(v' is the final velocity of the disc and o angular velocity of the rod)

For the closed system linear momentum is also
conserved. Hence

mv=mv' +mmy, )
(where v, is the velocity of C.M. of the rod)
From Egs (1) and (2) we get
lw ,
ve= 3 and v-Vv =1y,
Applying conservation of kinetic energy, as the collision is elastic

1 1 ,2.1 2,1 "lmlz 2

—2-mv2 3™V + 2nmvc + 3 12 o (3) ]
or v - v2= 4nv 2 and hence v + V' = 4v, J\
Then /2

- 4-n .12y l
VS aen O G Ic
Vectorially, noting that we have taken nd parallel to v~
gl (—11“ = )r
4+

So,i” =0 form=4and i |t ¥ for n>4 O—>--—>‘ﬂ

See the: diagram in the book (Fig. 1.72)
(a) When the shaft BB’ is turned through 90° the platform must start turning with angular
velocity € so that the angular momentum remains constant. Here

I+1,)Q= 1, Q Ty 2o
(I+1))Q=I,00, or, =I+Io

The work performed by the motor is therefore

2 2
11, o9

27T+,
If the shaft is turned through 180°, angular velocity of the sphere changes sign. Thus from
conservation of angular momentum,

S U+1,) Q2

(Here -1, w, is the complete angular momentum of the sphere i. e. we assume that the
angular velocity of the sphere is just — wg). Then
)
and the work done must be,
1 2_ 2I()2 (‘)02

12,12 1
2152 +210w0 2100)- 7
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(b) In the case (a), first part, the angular momentum vector of the sphere is precessing
with angular velocity Q. Thus a torque,
2 2

I, 0, Q= 0—mois needed
070 I+1, :

The total centrifugal force can be calculated by,

f-w xdx = ml »?

/
Then for equilibrium, 0

) ly
(Tz“T1)5= mgi

and, T, + T, = mlom

Thus T, vanishes, when

2,28 .\ B .
0= l,w— l—6rad/s e | |1

7 €

Iy
Then T, = mg—l- =25N
See the diagram in the book (Fig. 1.71).

(a) The angular velocity ® about OO ' can be resolved into a component parallel to the
rod and a component ® sin® perpendicular to the rod through C. The component parallel

to the rod does not contribute so the angular momentum

M= Iosind = —llz—mlzmsine

Also, M,= Msind = 2-m1*wsin®0

This can be obtained directly also,
(b) The modulus of M does not change but
the modulus of the change of M s | AM |

| AM | = 2Msin (90 -0) = Emlzmsin26

(c) Here M, = M cosO = I o sin0 cos0

wdt 1 .2 2.2
= [ w sinO cos® = 24 ml“w*sin“0

Now ar

—
as M precesses with angular velocity w.
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1.283 Here M= [ o is along the symmetry axis. It has two components, the part I  cos0 is

1.284

constant and the part M, = I @ sin® presesses, then

% = ] wsin® w’ = mgl sinB

or, ' = precession frequency = %f)! = 0-7rad/s
(b) This force is the centripetal force due to precession. It acts inward and has the magnitude
|;'1 - '2 m,-u)’zﬁ,-'l = mw'?1sin® = 12mN.

p; is the distance of the ith element from the axis. This is the force that the table will
exert on the top. See the diagram in the answer sheet

M4
ML

ML

mg, {

See the diagram in the book (Fig. 1.73).

The moment of inertia of the disc about its symmentry axis is %mRz. If the angular

1 mR? . The precession frequency

velocity of the disc is o then the angular momentum is 2

being 2n n,

we have I 2w x 2nn

This must equal m (g+ w)]l, the effective gravitational torques (g being replaced by
g +w in the elevator). Thus,
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The effective g is V gz +w? inclined at angle tan~ ! g— with the vertical. Then with reference
to the new " vertical" we proceed as in problem 1-283. Thus

, miVgiew?

® = ———— = (-8 rad/s.
Iw

The vector @ forms an angle 6 = tzm'l-‘gZ = 6° with the normal vertical.

The moment of inertia of the sphere is ZmR % and hence the value of angular momentum

5
is %mR2 w. Since it precesses at speed o’ the torque required is

%mszm’=F'l

So, F' = %mRzm(o’/I = 300N
(The force F' must be vertical.)

NSUPTRRI | .1 .
The moment of inertia is 7mr2 and angular momentum is = mr? . The axle oscillates

2

about a horizontal axis making an instantaneous angle.

. 2t
?= @, Sin 7"
This means that there is a variable precession with a rate of precession ar The maximum
np @, 7. S 3
value of this is T"’. When the angle between the axle and the axis is at its maximum

value, a torque /0 Q

1, 2mp, wmrlog,
=2mr w T = T

acts on it.
nmr? WP,
Ir
The revolutions per minute of the flywheel being », the angular momentum of the flywheel
\4
R
Thus N = 2xINV/R = 597 kN.m.

The corresponding gyroscopic force will be =90 N

is I x 27n. The rate of precession is

As in the previous problem a couple 2n/nv/R must come in play. This can be done if a
force, —2% acts on the rails in opposite directions in addition to the centrifugal and other

forces. The force on the outer rail is increased and that on the inner rail decreased.

The additional force in this case has the magnitude 1-4 kN. m.
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ELASTIC DEFORMATIONS OF A SOLID BODY

Variation of length with temperature is given by
L= lo(1+aAr) or $= aArm ¢ )
0
o
But €= E ’

Thus o = aAtE, which is the sought stress of pressure.
Putting the value of a and E from Appendix and taking Az = 100°C, we get

o= 22x10° atm.

(a) Consider a transverse section of the tube and concentrate on an element which subtends
an angle Ag at the centre. The forces acting on a portion of length Al on the element are

(1) tensile forces side ways of magnitude cArAL
The resultant of these is

20ArAlksin A%- oArAlAg

radially towards the cente.
(2) The force due to fluid pressure = prAgpAl
Ar

Since these balance, we get p . =~ Op

where o, is the maximum tensile force.

Putting the values we get p_ .. = 19-7 atmos.

(b) Consider an element of area dS = n (r A0/2 )2 about z —axis chosen arbitrarily. There

are tangential tensile forces all around the ring of the cap. Their resultant is

AB . AB

0[2n(r > ) Ar] sin =
Hence in the limit

2

pmn(%) = omn(r—gg)ArAe

A8

20, Ar 2
~— = 39:5 atmos. 2

or p,.=

Let us consider an element of rod at a distance x from its rotation axis (Fig.). From

Newton’s second law in projection form directed towards the rotation axis
m
-dl = (dm)mzx- 7m2xdx

On integrating
22
mw* x
T C ( constant )
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But at x= :t‘% or free end, T= 0
2 ;2 2

mo”l mo 1

Thus 0= 2 4+CorC-- 3
2 2
Hence T= r_ng)__(:l‘__gl_) ¢
Y
mo?1l
Thus T ™ (at mid point)
Condition required for the problem is L % _)% J
T .= S0, dx
2
mo1 24/%n

So, 3 -Scmorm-l o

Hence the sought number of rp s

- W7 _1_\/__"‘0»' i 8 x 107
n= "= 3 [using the table n 0-8 x 10“1ps ]
Let us consider an element of the ring (Fig.). From Newton’s law F,= mw, for this
element, we get,

Td6 = (—;"; do ) o’r [see solution of 1.930r 1.92}

m
So, Te =0

Condition for the problem is : «— \T
-l-s o2 lor, IS0,
i Om O eI
2 /C
o, @2 =-———————2u On” -—0—"—
o Omae™ 2 (mrp)  pr?
Thus sought number of 1ps T
o Ome 1 4/0n
2 2mr P

Using the table of appendices n = 231ps
Let the point O desend by the distance x (Fig.). From the condition of equilibrium of point
o.

i = = m = ﬂ& 2 2
2Tsin0= mg or T —_g—2sin0 > V(I/2) +x 1)
2
Now, T G=eEorT= Ent @
n(d/2) 4

( o here is stress and & is strain.)
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In addition to it,

Vv (1/2)2+x2 _d

/
Dttt

From Egs. (1), (2) and (3) 7 0 9 2

x- x:,x =:E1§12 as x<<l J‘? T

(7 N
o M mgl 0
* 4% nEd? m
Vs ¢
o, x= l(—ﬁg—i) = 25cm
2nEd

Let us consider an element of the rod at a distance x from the free end (Fig.). For the
considered element ‘T- T’ are internal restoring forces which produce elongation and
dT provides the acceleration to the element. For the element from Newton’s law :

dT = (dm mu\Fe _ oy
e (30)2

As free end has zero tension, on integrating the above expression,

N FO FO
denT dx or T=—l-x

Elongation in the considered element of lenght dx :

a T F,xdx
08=g () dr=gpde=—co
1
Th 1 elengati Fo f dx F,!
us total elengation §=m xde=scr
* L 7+dT 5
Hence the sought strain <X —> 4 é_—
gL
O=1725E

Let us consider an element of the rod at a distance r from it’s rotation axis. As the element
rotates in a horizontal circle of radius r, we have from Newton’s second law in projection
form directed toward the axis of rotation :

T-(T+dT) = (dm) 0*r

or, -dTl = (ﬂdr)mzr- 2 rdr
L 1
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At the free end tension becomes zero. Integrating the above experession we get, thus

1
—de= mezfrdr
T r

2/,2 2 2 2
Thus T M (l ;r)smml(l_r2)

1 2 2
Elongation in elemental length dr is given by :

.o - T
E E dr SEdr

(where S is the cross sectional area of the rod and T is the tension in the rod at the
considered element)

2 2
mw”l r
or, dE= 2 SE (l-lz)dr s
Thus the sought elongation
ol At |
m(o l r e 3 <«
5= fas- 5 ( ’zﬁ)d' T dr

mw?l2l  (Slp) o2
o 8= 5sF 3" 3SE " P

243
= %ﬂ%—l— (where p is the density of the copper.)

Volume of a solid cylinder
V=nrl

AV  n2rArl wnPAl 2Ar Al
av . + = + = (1)
14 nrtl artl r l

But longitudinal strain Al/I and accompanying lateral strain A r/r are related as

So,

Ar Al
ar __p = 2
" kg @
Using (2) in (1), we get :
AV Al
ar . = 3
=T a-2p ©
Al -F/nr?
But 7= E
(Because the increment in the length of cylinder Al is negative)
AV
So,
v r2E
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Thus, AV = -‘-Ef—’- 1-2p)

Negative sign means that the volume of the cylinder has decreased.

(a) As free end has zero tension, thus the tension in the rod-at a vestical distance y from
its lower end

m
T= T8y )
Let 8l be the elongation of the element of length dy, then

ol = ﬂEdey

= g%dy = ﬂ;ﬂl’EaX= p gydy/E (where p is the density of the copper)

Thus the sought elongation
1
A1=fal= pgngxs %pglz/E )
0

(b) If the longitudinal (tensile) strain is € = él—l , the accompanying lateral (compressive)

strain is given by

g’-ér—r--ue ©)

Then since V = n 2] we have
AV _2ar Al
|4 r l
Al .
- (1-24) T [Using (3)

where -Ail is given in part (a), p is the Poisson ratio for copper.

Consider a cube of unit length before pressure is applied. The pressure acts on each face.

The pressures on the opposite faces constitute a tensile stress producing longitudianl com-
pression and lateral extension. The compressions is % and the lateral extension is u%

The net result is a compression

%(1 -2p) in each side.

—A‘7V= __SEE(I_ZP') because from symme AV, 3A—l

Hence
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(b) Let us consider a cube under an equal compressive stress o, acting on all its faces.
AV ¢

Then, volume strain = - vV=r (6]
where k is the bulk modulus of elasticity.
o 30

So t~ E 1-2pw

3 1
or, E=3k(1-2p)==(1-2n)|as k= —

p B
n < 1 if £ and B are both to remain positive.

2

A beam clamped at one end and supporting an applied load at the free end is called a
cantilever. The theory of cantilevers is discussed in advanced text book on mechanics. The
key result is that elastic forces in the beam generate a couple, whose moment, called the
moment of resistances, balances the external bending moment due to weight of the beam,
load etc. The moment of resistance, also called internal bending moment (I.B.M) is given
by
LBM. = EI/R

Here R is the radius of curvature of the beam at the representative point (x, y). [ is called
the geometrical moment of inertia

1-f£ds

of the cross section relative to the axis passing through the netural layer which remains
unstretched. (Fig.1.). The section of the beam beyond P exerts the bending moment
N (x) and we have,

EI
F bl N(x)

If there is no load other than that due to the
weight of the beam, then

—

 'ds

N@)= %pg(l-x)zbh

where p = density of steel.

Hence, at x=0
I\ pgl’bh
R 2E]I

Here b= width of the beam perpendicular to paper.

h/2

bh®

Also, 1-f£bdz= TR
-n2

2
Hence, (1) = 828 _ (0.121 km)-!
R) EW

{

)
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We use the equation given above and use the result that when y is small
A _x N@)
R dx? > a&* EI
(a) Here N (x) = N, is a constant. Then integration gives,
dy _ Nyx +C,
dc EI
But (%) = 0 for x= 0, so C; = 0. Integrating again,
N, x?
Y

where we have used y= 0 for x= 0 to set the constant of integration at zero. This is the
equation of a parabola. The sag of the free end is
N, I?
2EI
(b) In this case N (x) = F (I -x) because the load F at the extremity is balanced by a
similar force at F directed upward and they constitute a couple. Then

d’y F(-x)

o EI -

2
Integrating, % = F(lx_EIx/gl +C,

A=y(x= )=

As before C, = 0. Integrating again, using y= 0 for x = 0

£
Fl2 6 FP

nirater 5 A B i

Here for a square cross section
/2

I=f22adz= a*/12.

-a/2

One can think of it as analogous to the previous
case but with a beam of length I/2 loaded

upward by a force F/2. TF/Z l 'L/ZT

FI? A ]
Thus A= 48 El’ A\::\ l ’,;:/%

-
-
R

On using the last result of the previous problem.

(a) In this case N (x) = 2 ~pgbh(l- x)* where b= width of the girder.

Also I= bh>/12. Then,
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2
Ebi d’y f’—g—(12-21x+x2).

12 ¢

3

- & _6pg(2, 2,5

Integrating, i g 1“x lx2+3
using %- 0 for x = 0. Again integrating

6pg (I’ 1’ x'

Y= |2 "3 12

_6pglf(1 1 1

Thus A= 2 |2 3+12

2
(b) As before, EI d_l’X = N (x) where N (x) is the bending moment due to section PB.
dx

This bending moment is clearly
2

N=fwd'§(§-x)-wl(2!-x)

= w(2!2-2xl+%2)-w1(21-x)- w(";-xl)

(Here w= p gb h is weight of the beam per unit length)

2
Now integrating, EI Zx_y -w (%3 - "TI) +¢, == 21

->
i —‘Z= = = 3
or since ; 0 forx=1co=wl’/3 P

4

3

As y= 0 for x= 0, ¢, = 0. From this we find

swit Spgl4
A=y = D= 2 B 2P

The deflection of the plate can be noticed by going to a co- rotating frame. In this frame
cach element of the plate experiences a pseudo force proportional to its mass. These
forces have a moment which constitutes the bending moment of the problem. To calculate
this moment we note that the acceleration of an element at a distance & from the axis is
a= Ef and the moment of the forces exerted by the section between x and [ is
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1
N= plthEsz- %plhﬁ(ls—x?’).
X
From the fundamental equation

da’y _1 3_ .3
EIdx2 3plhﬂ(l x).

+h/2
3

The moment ofinertial-fzzldz- 11!2'_

-h/2
Note that the neutral surface (i.e. the surface which contains lines which are neither

stretched nor compressed) is a vertical plane here and z is perpendicular to it.

d’y 4 .
—22 = «E%zﬁ (I3 - £°). Integrating

dy 4pB(
E— 'E—’?-(l X 4 +C

Since %= 0, for x= 0, ¢; = 0. Integrating again,
Jdep (P2 X
mER(2 T20)7%

c,= 0 because y= 0 for x=0
9ppI°

Thu A=y@x=1]=

s ylx=1) SER

(a) Consider a hollow cylinder of length I, outer radius r + Ar inner radius 7, fixed at one
end and twisted at the other by means of a couple of moment N. The angular displacement
¢, at a distance [ from the fixed end, is proportional to both / and . Consider an element
of length dx at the twisted end. It is moved by an angle @ as shown. A vertical section
is also shown and the twisting of the parallelopipe of length !/ and area Ar dx under the
action of the twisting couple can be discussed by elementary means. If f is the tangential
force generated then shearing stress is f/Ar dx and this must equal

Go= G%, since 0 = '—;2

Hence, f=GArdx LIQ
The force f has moment fr about the axis and so the total moment is
3
N-Gar2P[aa 22006
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(b) For a solid cylinder we must integrate over r. Thus
r

dx N=f2nr3drq>G_nr4Gq>
N ‘\\ 1 21
XOP\ ™ 0
F e—i Y \x\ \\\\
: v
1 H ]
1 H i
] ] I
! ] H
l ! 1
& o
AN | i
\\ E E —»f
\“ [] {
s
o a1
dy2
2nr d reG n 4 L4
1.306 Clearly N = =Ech(d2-d1)
d,/2
. 10 N
using G=281GPa=81x10"—

m

dy=5%x10"%m, d,= 3x107*m

p=20°= —radlans I=3m

90
_nx8-1xn 27,
N= __32x3x90(625 81) x 10°N'm

= 0:5033 x 10°N'm =~ 0-5k N-m
1.307 The maximum power that can be transmitted by means of a shaft rotating about its axis
is clearly N ® where N is the moment of the couple producing the maximum permissible
torsion, ¢p. Thus

4
P %‘Z-m = 169 kw

1.308 Consider an elementary ring of width dr at a distant r from the axis. The part outside
exerts a couple N +%dr on this ring while the part inside exerts a couple N in the
opposite direction. We have for equilibrium

dN
o dr= - dIp
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where dI is the moment of inertia of the elementary ring, p is the angular acceleration
and minus sign is needed because the couple N (r) decreases, with distance vanshing at
the outer radius, N (r,) = 0. Now

dl = ——T——qudr r

m(g=1)
- 2mB 5
Thus dN ( ’%_ r}) rdr
or, N= %#% (r; - r‘), on integration

N+aN
=t

o ’?

We assume that the deformation is wholly due to external load, neglecting the effect of
the weight of the rod (see next problem). Then a well known formula says,

elastic energy per unit volume

1 i
= — stres: straln = —O ¢
;) e 2

im

20 E &% = 0-04kJ for the total deformation energy.

This gives

When a rod is deformed by its own weight the stress increases as one moves up, the
stretching force being the weight of the portion below the element considered.

The stress on the element dx is 7
prrr(l-x)g/nrP=pg(-x) T
The extension of the element is
Adx=dAx= pg(l-x)dx/E x
Integrating Al = %p gl %/E is the extension of l d
X
the whole rod. The elastic energy of the element i,
is
1 l-x
3 pg(l-x) &g—%—l nr?dx
Integrating [x
2
AU = %nrzngzﬂ/}s-zmzusﬁi) N
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The work done to make a loop out of a steel band appears as the elastic energy of the
loop and may be calculated from the same.

If the length of the band is / the radius of the loop R = 2—11; Now consider an element

ABCD of the loop. The elastic energy of this element can be calculated by the same sort
of arguments as used to derive the formula for internal bending moment. Consider a fibre
at a distance z from the neutral surface PQ. This fibre experiences a force p and undergoes

an extension ds where ds = Zd ¢, while PQ = s = Rd ¢. Thus strain %= % If o is the

cross sectional area of the fibre, the elastic energy associated with it is
2
1 _.(Z
> E ( R) Rdyp a
Summing over all the fibres we get

Elg 2_Eldg
2R 28" T
For the whole loop this gives,

usingf do=2m,

Eln_ 2EIx
R 1
8/2
Now I=f22hdZ
-8/2
2 3
So the energy is %n Elh 8

When the rod is twisted through an angle 6, a couple

N (0) = G 0 appears to resist this. Work done in twisting the rod by an angle ¢ is

art
21
then

@
4
fN(O) do= -n—:{l—c-;-(pz = 7] on putting the values.
0

3
Jtrler(pz

The energy between radii r and r +dr is, by differentiation,

xrdr Gqu:_l_Gq)zr2
2ardrl 1 2 2

Its density is
The energy density is as usual 1/2 stress x strain. Stress is the pressure p g h. Strain is
 x p gh by defination of . Thus

u= %B (p gh)2 = 23-5kJ/m’ on putting the values.
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HYDRODYNAMICS

Between 1 and 2 fluid particles are in nearly circular motion and therefore have centripetal
acceleration. The force for this acceleration, like for any other situation in an ideal fluid,
can only come from the pressure variation along the line joining 1 and 2. This requires
that pressure at 1 should be greater than the pressure at 2 i.e.

Py>p
so that the fluid particles can have required acceleration. If there is no turbulence. the
motion can be taken as irrotational. Then by considering

_(ﬁ vedl= 0

along the circuit shown we infer that
V>V,
(The portion of the circuit near 1 and 2 are

streamlines while the other two arms are at
right angle to streamlines)

In an incompressible liquid we also have div V=0
By electrostatic analogy we then find that the density of streamlines is proportional to the
velocity at that point.

From the conservation of mass
ViS) = 1,5, M

But §; < S, as shown in the figure of the problem, therefore
vy >V,
As every streamline is horizontal between 1 & 2, Bernoull’s theorem becomes
p+ —;— pv2 = constant, which gives
pl<p238V1>V2
As the difference in height of the water column is Ah, therefore
Py, —p; = pg8Ah €3]

From Bemnoull’s theorem between points 1 and 2 of a streamline

1 2 1 -
P1*§PV1’P2+§PV2

1

or, Pr-pi=5 000 - W)
of pgAh = % p(? - (3 (using Eq. 2)
using (1) in (3), we get I l J l

2gAh N —

vy =5, 2 _ g2
2 72 ——— T
L 2

Hence the sought volume of water flowing per see

2gAh
Q=vS =557V s_zi_Lsz

1 . .
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Applying Bemnoulli’s theorem for the point A and B,

1
pA=pB~v--2-pv2 as, v,=0

1
or, 2PV =py-py= Ahpog
\/ZAhpog
So, v\ ——
p
1 /2Ah
Thus, rate of flow of gas, Q= Sv=§ kil 11

P
The gas flows over the tube past it at B. But at A the gas becomes stationary as the gas
will move into the tube which already contains gas.

In applying Bemoulli’s theorem we should remember that % + %vz + gz is constant along

a streamline. In the present case, we are really applying Bernoulli’s theorem somewhat
indirectly. The streamline at A is not the streamline at B. Nevertheless the result is correct.
To be convinced of this, we need only apply Bernoull’s theorem to the streamline that
goes through A by comparing the situation at A with that above B on the same level. In
steady conditions, this agrees with the result derived because there cannot be a transverse
pressure differential.

Since, the density of water is greater than that of kerosene oil, it will collect at the bottom.
Now, pressure due to water level equals h; p, g and pressure due to kerosene oil level

equals h, p, g. So, net pressure becomes h, p, g + h, p, &
From Bernoulli’s theorem, this pressure energy

will be converted into kinetic energy while
flowing through the whole A.

. 1
ie. hypg+hyp8= Eplv2

Hencev = \/ 2 h1+h2£2- g =3m/s =
P1 A

Let, H be the total height of water column and the hole is made at a height 4 from the
bottom.

Then from Bernoulli’s theorem

1
Spvi= (H-h)pg

> AV

or,v= V(H - h) 2g, which is directed horizontally.

For the horizontal range, /= v ¢

=V2gH-h) - % = 2V(Hh-H)

P - Z —_—
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2
Now, for maximum I, d H:h.h =0

which yields h= %{-- 25 cm.
Let the velocity of the water jet, near the orifice be v/, then applying Bernoullis theorem,

1 4 1 5
2PV hopg+5pv

or, V= Vi 2g h, (6))
Here the pressure term on both sides is the same and equal to atmospheric pressure. (In
the problem book Fig. should be more clear.)

Now, if it rises upto a height A, then at this height, whole of its kinetic-energy will be

converted into potential energy. So,
12

l 2 = - —
2 pv pgh or h %
v .
= Z-—ho = 20 cm, [using Eq. (1)]
Water flows through the small clearance into the orifice. Let d be the clearance. Then
from the equation of continuity
(2nRd)v;= (2nrd)v= (2nRd)v,
or ViR =vr=wR, 1) I

Ricte Ry Bnd v arceaclgy etvard ZZZ////////////}////// i,

radial velocities of the fluid at 1, 2 and 3.
Now by Bemnoulli’s theorem just before 2 and _ _ _ _|_| ' <.
just after it in the clearance il b Ry T T T
ils —==ps £o I

Pot hpg=py+ 5pv; @ —=-1 > ===
Applying the same theorem at 3 and 1 we find =—= ¥ = =- T -
that this also equals 2 3 '\\I J [ 1

1 2 :
P+ 2Pv 'PO 2pV1 (3)

(since the pressure in the orifice is p, )

From Egs. (2) and (3) we also hence

v;=V 2gh “

2

1 2 v
and p-po+§-pv1(1-(;I))

2
=P + hpg (1 - (%) ) [Using (1) and (4)]

Downloaded From : www.EasyEngineering.net


http://Easyengineering.net
http://Easyengineering.net

Downloaded From : www.EasyEngineering.net 189

1322 et the force acting on the piston be F and the length of the cylinder be L

1323

1324

Then, work done = Fl (4))
Applying Bermnoulli’'s theorem for points

A and B,p= %
and v is the velocity at point B. Now, force 3

on the piston,

T e - e e -,

NN

b\\\\\\}\\'\\“\\

1

\

|

1

>

o

‘\

Y/

//.

pv2 where p is the density

Ly
|
<
n!

11
'l

n
\
\
:

\
l!'
fl

Uy
]
Hpn
i
1
X
¥
!

— oy T ot > -
—

F=pA= -;-pva @

e o — — " —

A
~
v

where A is the cross section area of piston.

Also, discharge through the orifice during time
interval ¢ = Svt and this is equal to the volume
of the cylinder, i.c.,
| 4
V= Svt or v= 5 3
From Eq. (1), (2) and (3) work done
B %pv2Al- % pAa%z- %pva/s%’ (as Al= V)
Let at any moment of time, water level in the vessel be H then speed of' flow of water
through the orifice, at that moment will be
v=V2gH ()
In the time interval df, the volume of water ejected through orifice,
dVe= svdt )
On the other hand, the volume of water in the vessel at time ¢ equals
V=SH
Differentiating (3) with respect to time,
av

dH
-Z--Sdt or dV=SdH )

Egs. (2) and (4)
SdH= svdt or dt= S_di from (2)
sV2gH’

R 0
. S dh
Ingring [ 5l &
[ k

Thus, tw :S'__\/_Z_h_
s 8

In a rotating frame (with constant angular velocity) the Eulerian equation is
_.I

—Vp+p§’+2p(\7"x5')+pmz?=pd—d‘%—

In the frame of rotating tube the liquid in the "column* is practically static because the

orifice is sufficiently small. Thus the Eulerian Eq. in projection form along 7 (which is
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the position vector of an arbitrary liquid element of lenth dr relative to the rotation axis)

reduces to
-dp ‘2
ar +pr=0
or, dp=p o’ rdr
P r
S0, f dp = pm)2 f rdr
Py (- k)
2
Thus p(r) = py + 2‘2—"— [ - -w’] )
Hence the pressure at the end B just before the orifice ie.
2 2
p() = po + - @A - ) @)

Then applying Bernoull’s theorem at the orifice for the points just inside and outside of
the end B

Po + —12-p o2 Qlh- h2) = p, + %p Vv ( where v is the sought velocity)

2

v = oh h

So,

e = = — .
The Euler’s equation is p A f-Vp=-V(p+pge), Where 215 vertically upwards.

dv av > -
Now i (v:V) v )
= =21 2 — —
But (v:V)v=V P -vxCurlv 03}

we consider the steady (i.c. av7 ot = 0) flow of an incompressible fluid then p = constant.

.and as the motion is irrotational Curl v=0

So from (1) and (2) p V( —;— vz) = - 6.(p +pg2)

or,

V(p+-;-pv2+pgz) =0

Hence p+-;-pv2+pgz = constant.

Let the velocity of water, flowing through A be v, and that through B be v, then discharging
rate through A= Q, = Sv, and similarly through B = S vp.

Now, force of reaction at A,
Fy= pQava= PSV3
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Hence, the net force,

2 2 =g = -?-‘—E.;E:T T
F=pS(vg-vy as F, t| Fy (€)) === /A
Applying Bernoulli’s theorem to the liquid ?_T_':-‘—‘_AL
flowing out of A we get =Ic- §.T

1 - o=

Po + Pgh = po + 3 PVa g i

and similarly at B S -:-_-_:_ - ;‘:.:.

1 B

Po + pg(h+AR) = py + 5 V3 ===

8 gty

Hence V5 - V) ‘;- = Ahpg T

=4

Thus F = 2pgSAh = 0-50N ==

Consider an element of height dy at a distance y from the top. The velocity of the fluid
coming out of the element is
v=V2gy

The force of reaction dF due to this is dF = pdA v2, as in the previous problem,
= p(bdy)2gy \
Integrating F=pgb f 2y dy
h-1
=pgb [~ (h-1*]= pgbl 2h-1)
(The slit runs from a depth 4 -/ to a depth 4 from the top.)
Let the velocity of water flowing through the tube at a certain instant of time be u, then

U= —Q—z, where Q is the rate of flow of water and & r* is the cross section area of the tube.
nr

From impulse momentum theorem, for the stream of water striking the tube comer, in
x—direction in the time interval d,

Fdt=-pQudt or F,= -pQu
and similarly, Fy= pQu
Therefore, the force exerted on the water stream
by the tube,
= i rad
F=-pQui+pQuj
According to third law, the reaction forcg on

the tube’s wall by the stream equals (- F) \
= = A\
=pQui-pQuj. == /AN
Hence, the sought moment of force about 0 oo
becomes — ==

-b- __—> —: 7»- —:&2 —>
N=Il(-i)x(pQui-pQuj)= pQulk nrzlk

- 2
and IN]= 2210 070 Nm
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1.329 Suppose the radius at A is R and it decreases uniformaly to r at B where S = nR? and
s = 7. Assume also that the semi vectical angle at 0 is a. Then
R r y

L, L «x

So y=r+R_r (x - Ly
1

L,-L
where y is the radius at the point P distant x from the vertex O. Suppose the velocity with
which the liquid flows out is V at A, v at B and u at P. Then by the equation of continuity

TRV = iy = nyzu
The velocity v of efflux is given by
v =V2gh

and Bernoulli’s theorem gives

Jll

||‘Fll|

"'
]

)

I'l
)

1, 1
Pty ol =pyt+ 5 pV

J

l|l

|
Vo

Iy
[ B]
|“)

|

where p, is the pressure at P and p, is the

atmospheric pressure which is the pressure just

outside of B. The force on the nozzle tending B r T T !
to pull it out is then

F =f (P, - pg) sin® 2nyds

We have subtracted p, which is the force due to atmosphenic pressure the factor sin 0

gives horizontal component of the force and ds is the length of the element of nozzle
surface, ds = dx sec O and

1
\

R-r
tan9=L2_L1
Thus
LZ
1.2 2 R-r
F fz(v u)p 2my L2_lex

Ll
R
A
-npftrz(l—7)ydy
y
r

4 2 22
2lfpe 2,2 MR -r)
TPV 2(R r +R2 r‘) pgh( e )

= pgh (S-5)%/S = 602N on putting the values.

Note : If we try to calculate F from the momentum change of the liquid flowing out wi
will be wrong even as regards the sign of the force.

There is of course the effect of pressure at S and s but quantitative derivation of F fron
Newton’s law is difficult. . .
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1330 The Euler’s equation is pd—? - 7— Vp in the space fixed frame where ?— - pgl?

1.331

downward Wc assume incompressible fluid so p is constant.

Then f = - V (pg z) where z is the height vertically upwards from some fixed origin. We
go to rotating frame where the equation becomes

p%= —V(p+pgz)+pm27'+2p(17yxc_u)’)
the additional terms on the right are the well known coriolis and centrifugal forces. In the
frame rotating with the liquid v = 0so
‘?(p+ pgz—%poﬁrz) =0

or p+pgz-%pm2r2-constant
On the free surface p = constant, thus

z= ‘2”—8 7 + constant
If we choose the origin at point 7 = 0 (i.e. the axis) of the free surface then “cosntant” = 0 and

z= —r2 (The paraboloid of revolution)

At the bottom 2z = constant
So p= %pm2r2+ constant
If p = p, on the axis at the bottom, then

P=po+ % paw’r

When the disc rotates the fuild in contact with, corotates but the fluid in contact with the
walls of the cavity does not rotate. A velocity gradient is then set up leading to viscous forces.

At a distance r from the axis the linear velocity is @ r so there is a velocity gradient

-(P’-'L both in the upper and lower clearance. The corresponding force on the element whose

radial width is dr is

n 2nrdr —— er (from the formular F = nA I )
The torque due to this force is
M 2mrdr ﬂh’; r
dnd the net torque considering both the upper and lower clearance is
R
()
2 { n2 P dr N
= nR*on/h

So power developed is
P= nR‘wzn/h- 9:05 W (on putting the values).

(As instructed end effects i.e. rotation of fluid in the clearance 7 > R has been neglected.)
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Let us consider a coaxial cylinder of radius r and thickness dr, then force of friction or

viscous force on this elemental layer, F = in rin %

This force must be constant from layer to layer so that steady motion may be possible.

or, g- 2nindy. (6]
Integrating,
4
' ’ 2 \
Ff——-= 2nl'r]fdv R r R _?'
2 0 1 |
%
r L
or, Fln (—) =2nlnv ¥)) \
R,
Putting r= R,, we get

R,
Fin -R;; =2niny,
From (2) by (3) we get,
Inr/R,
“InR,/R,
Note : The force F is supplied by the agency which tries to carry the inner cylinder with
velocity v, .

y=

(a) Let us consider an elemental cylinder of radius r and thickness dr then from Newton’s
formula

dw 2do
F=2nrinr ar - 2xlmr ar
and moment of this force acting on the element,

22 PIn®e, 2x P
N=2nr'ln drr—ZJtrlqdr

or, 2nlndm=N£§ ?2)
r

As in the previous problem N is constant when
conditions are steady

© r
d
Integrating, 2nin f do=N —r—;-
0 R,
N1 1
- | == 3
or, 2ninw Z[Ri ’2] (E)]
Putting r=R, o= 0,, we get

1 1
2nlnm2-11 -3 @
2|R] R
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From (3) and (4),

R?R?
0= o, 114, [1 1]

R-R|R 7
(b) From Eq. (4),
2 p2
N RiR;
Nl = —= 475 nw, o —
! R;-R;
1334 (a) Let dV be the volume flowing per second through the cylindrical shell of thickness

dr then,
dV=-Qnrd L a
=-Q2mnrdr)y, l—R2 = 2RV, r-g dr

and the total volume,

(b) Let, dE be the kinetic energy, within the above cylindrical shell. Then
dT = %-(dm) V= %(anldrp) W

. 2 3 1
n %(hlp)rdrv%{l—#} ulpvoir—%w’R—A]dr

Hence, total energy of the fluid,
R

30 aRp v}
T= nlpvﬁf(r—%-kéj)dr- __gp___o
0

(c) Here frictional force is the shearing force on the tube, exerted by the fluid, which

equals —T]S‘;—:.
Given, V=, (1 —%)
dy r
SO, ‘a—r= —2V0F
2v,
And at r=R,%v;= —_Eg
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Then, viscous force is given by, F = —n (2x Rl) (%)
r= R

2y,
= -2nxRn! “RIl" 4nnv,yl
(d) Taking a cylindrical shell of thickness dr and radius r viscous force,
dv
F= - n (23't r I) dar’

Let Ap be the pressure difference, then net force on the element = Ap ©t P+2n nlr %

But, since the flow is steady, F,_,= 0

v

_2,;1&,1,-%"_ -2xnl nr(-2v°R2)
r

or, - = =4 I/R?
=7 " HAC

The loss of pressure head in travelling a distance / is seen from the middle section to be
hy— h;= 10 cm. Since h, - h; = h; in our problem and h;-hy=15cm =5 +h, - h;,
we see that a pressure head of 5 cm remains incompensated and must be converted into
kinetic energy, the liquid flowing out. Thus

2
%= pgAh where Ah= hy- h,

Thus v=1v 2gAh = 1 m/s

We know that, Reynold’s number (R,) is defined as, R, = p vI/m, where v is the velocity

1 is the characteristic length and m the coefficient of viscosity. In the case of circular cross

section the chracteristic length is the diameter of cross-section d, and v is taken as average

velocity of flow of liquid.

pd v
mmn

Now, R, (Reynold’s number at x, from the pipe end) = where v, is the velocity
e \REY 1 pipe 1

at distance x,

R

V. d,v

and similarly, R, = pd:‘, 2 so Re‘ zl—v}-
2V2

From equation of continuity, A; v, = A, v,
or, R vy= kv, or divyr = dyvyry
dv, r, rye
2 0 -
1 1- = T gz - € adx (as Xy =Xy = Ax)
d2V2 ry rpe

1

ThllS —ez' - ean = 5
R e,
We know that Reynold’s number for turbulent flow is greater than that on laminar flow:
2p,nr 2 pyvyr.
Now, (Ry= Bte BT ana ()= <222
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But, (R), = (R),
- P1Vir1 M2

= Sum/s on ing the values.
2o P22 My " putting

so

vpod

We have R = and v is given by

4x
6anrve=2-r'(p-pog
(p = density of lead, p, = density of glycerine.)

'9%.'(‘""0)3'2' 181—n(P—Po)8d2

V=

1 1 3
Thus 2= W(P-Po)gpod

and d=[9M%/py(p-py)g]”> = 52 mm on putting the values.

mﬂ- mg-6nxmry
dr g n

dv 6znnr
or at T m VT8

dv 6rmr
or dt+kv g k= ~

vdv & & d k b

or e 7d7+ke ve= ge” or —e v=ge
or ve¥ = %e"+c or v= -i—+Ce'" (where C is const.)
Since ve 0 for t= o,o-%,uc
So C-—i-
Thus v= i—(l—e'h)

The steady state velocity is %

v differs from i- by n where e ¥=n

or t= l]nn
k

4n
1_ 3 rsP_ _4rzp= _dzp
k 6xnr 187 187
We have neglected buoyancy in olive oil.

Thus
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1.8 RELATIVISTIC MECHANICS

1.340 From the formula for length contraction

1Y
(Io‘lo V 1‘:3 )’ nk

2

1%
, l—c—z- (1-m)% or v=cVn(Z-n)

So

1.341 (a) In the frame in which the triangle is at rest the space coordinates of the vertices are

Vi 4 V3 a
(000), (aT,i-i',O) (a—i—’_E

frame the corresponding coordinates at time ¢’ are
A:(vﬂ,O,O),B:(%V?Tv1_B2 +V¢',%,0) and C:(%ﬁ\/i———f+ vt’,—%,O)

The perimeter P is then

,O), all measured at the same time ¢. In the moving

172

P= ‘“’2"(%(1-52)*‘%] = a(1+V4—3[52)

(b) The coordinates in the first frame are shown at time r. The coordinates in the moving
frame are,

(3% 0)

A

(0,0,0) C (a,ojo)

A:(vt’,O,O),B:(EVI—BZ+vt’, aﬁ 0), C:(a\/l—ﬁ2 +vt’,0,0>

2 2

The perimeter P is then

P= aVI—ﬁ2+%[1-B2+3]V2x 2= a(Vl—ﬁ2+V4—|32> here B = 1:—

1.342 In the rest frame, the coordinates of the ends of the rod in terms of proper length /,
A :(0,0,0) B : (I, cosBy , I, sinf , 0)
at time . In the laboratory frame the coordinates at time ¢’ are

A:(v,0,0),B: |l cos8, V1= p® +w, I,sin8,, 0
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Therefore we can write,

Icos 8y = I, cos0, V1 - B2 and Isin 0= [;sinf,

Hence 102 - (12 ) (0032 0+ il—_ﬁgz ) Sin2 9) | B
1 - 1 9
” ) 1 'sf;;l A Y

In the frame K in which the cone is at rest the coordinates of A are (0,0,0) and of B are
(h, h tan 6, 0). In the frame K’, which is moving with velocity v along the axis of the cone,
the coordinates of A and B at time ¢’ are

A:(-v,00),B: (m/l —B% - v, htan 6, o)
Thus the taper angle in the frame K’ is
tan® [ YB=Ya
Vl n 52 ( x’B—x'A)
and the lateral surface area is,
S = nh'? sechd’ tan6’

- nh? (1 - py)—20 1420 2 = SoV1-p?cos? 0
\/l_ﬂz 1-B

Here Sy = = h? sec tand is the lateral surface area in the rest frame and
KH=hV1-p2,B=v/c.

Because of time dilation, a moving clock reads less time. We write,

t-At= tV1-p*, = -Z-

2
Thus, 1_%_._(%‘.) = l-ﬂz

or, v-cvéi(Z—é—t)
t t

In the frame K the length / of the rod is related to the time of flight Az by
l=vAt

tan @' =

In the reference frame fixed to the rod (frame K')the proper length /; of the rod is
given by

10‘ vAt,
l v At v
» B=—

Viig Vig @ ¢
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ThUS, vAt',-v—At._
Vi g2

Ar\? Az\2

So l—ﬁzl (E") or v= ¢ 1—(-A7)

and Iy= c;V(At’)z— A’ = ¢ At"v 1- (%)2

The distance travelled in the laboratory frame of reference is vA r where v is the velocity
of the particle. But by time dilation

At
At= ———— So v=cV1-(A At)2
Vi1-v¥/c? o/

Thus the distance traversed is

cAtV1 - (Aty/At)?

(a) If v, is the proper life time of the muon the life time in the moving frame is

and hence = ————
V1 -/ V1-v/J

Thus T = L 1-v%/c
v
(The words "from the muon’s stand point” are not part of any standard terminology)

In the frame K in which the particles are at rest, their positions are A and B whose
coordinates may be taken as,

A:(0,0,0),B= (I,,0,0)
In the frame K’ with respect to which K is moving with a velocity v the coordinates of
A and B at time ¢ in the moving frame are

A= (,00)B = (10\/1 —p +w, 0,0), B==

®

Suppose B hits a stationary target in K’ after
time ¢’y while A hits it after time ¢ + At. Then,

m-‘-

Iy V1-B% +vip= v (' + At) /A
v At

So IN
’ 1-v2/c2

In the reference frame fixed to the ruler the rod is moving with a velocity v and suffers
Lorentz contraction. If l; is the proper length of the rod, its measured length will be

Av,= hV1-p7, B=
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In the reference frame fixed to the rod the ruler suffers Lorentz contraction and we must
have

Ax, V1 -7 = |, thus I, = VAx, Ax,

and l—ﬁzaﬁor v-ch--é—x—l
Ax, Ax

2

The coordinates of the ends of the rods in the frame fixed to the left rod are shown.
The points B and D coincides when
c, -1
ly=c,-vty or t,= 19
The points A and E coincide when
vy c,+l,V1-p?
0=c,+,, V1-8%-w,, L= 1_o_v__ﬁ_
)
Thus At-tl—to-;o(lt\/l—ﬂz) A B8 D £
q -vt,00
N , 0,0,0) (Ly:00) (€1 )
or (vl— - 1) =1-p2=1- v_2 (G+lo ViR%-ve,00)
0 c
22 A/l 2ly/ At
From this Ve 5 - 3
1+FAY/E 1+ (ly/c M)
In K|, the rest frame of the particles, the events corresponding to the decay of the particles

are,
A:(0,0,0,0) and (0,/, 0,0)= B

In the reference frame K, the corresponding coordintes are by Lorentz transformation

i
L — 00
-p?

A:(0,000),B:

vl
cz\/l—ﬂ2 , \/1
Now LV1-p% =1

by Lorentz Fitzgerald contraction formula. Thus the time lag of the decay time of B is

At viy vl vl
= = T 2 2
szl_ﬁz c“1-p) c“-v

B decays later (B is the forward particle in the direction of motion)

(a) In the reference frame K with respect to which the rod is moving with velocity v, the
coordinates of A and B are

A:t,x,+v(t-t,)0,0

B:tx +v(t—t,(?,0,0 ) )
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Thus I=x,-x5-v(t,—tg) = [;V1 -

X, =Xxg—v(t, —1g)
Vi-v2/¢?

) = lp-vit, -ty = I=1,V1 -2/

(since x, — xg can be either +/;, or -1,)

Thus v(g,-tp)= (= 1-V1-V7/c, ),

1 + t
ie. f,—tp= ;“(1- 1-"—2)
C

I
or tg-t, = ;0,(1+V1—v2/c2)

At the instant the picture is taken the coordintes of A, B,A’, B’ in the rest frame of A B
are

So Ihy=

A:(0,0,0,0) Al g’
B:(0,,0,0) e Y
B':(0,0,0,0) 2’:—————9
A0, -1, V1 -3/ ,0,0) B

In this frame the coordinates of B’ at other times are B': (1, vt, 0, 0). So B’ is opposite to

]
B at time ¢ (B) = ;0. In the frame in which B’, A’ is at rest the time corresponding this

is by Lorentz tranformation.

Iy Vi l
P B)= —1——(3——29)- 2V
V
)
c

Similarly in the rest frame of A, B, te coordinates of A at other times are

A':(t,—lt-,VI—ﬁ2 +vt,0,0)
c
. . . by \/ v
A’ is opposite tu A at time ¢ (4) = ” 1-=
c

The corresponding time in the frame in which A’, B’ are at rest is

IO
tA)=yt@A)=

1.354 By Lorentz transformation ¢' = ———-1—( - _vxi)
2 c
14

1 - —
2
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vx 1
V1Vl

Ifx>0r <0, if x<0, ¢ >0 and we get the diagram given below "in terms of the K-clock".

SSCGI0NSS
- OOOOOOD®

The situation in terms of the K’ clock is reversed.

So at time t=0, t'=

1.355 Suppose x () is the locus of points in the frame K at which the readings of the clocks of
both reference system are permanently identical, then by Lorentz transformation

i 1 t_Vx(t) -t
Vi-vZe 2

C

2 2
So differentiating x () = 5‘7(1- T )- S(1-vi-?), B~ %’

? B
Let B=tanh0, 0< 6 <, Then
c Vi-unrile )= cos kO / 1
x(0)= umhe(l' L “‘“he) csinhe(l coshB)

CcoshB—l - /coshe—l - ctanhg /A
sinh 0 coshO+1 2

-(tan h 6 is a monotonically increasing function of 0)
1.356 We can take the coordinates of the two events to be
A:(0,0,0,0) B:(At,4a,0,0)

For B to be the effect and A to be cause we must have Az > 1%[.

In the moving frame the coordinates of A and B become

A:(0,0,0,0),B:|y[ar-22) y(a-VAn,0,0| where y=
c2

Since
2
”

2_a- 2 _avy 1 2| 2
ar') 2 yl(At CZ) Cz(a VAt)] (Ar) c2>0

we must have A > ]‘_’C_l
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1.357 (a) The four-dimensional interval between A and B (assuming Ay = Az= 0) is :

52 - 3% = 16 units
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Therefore the time interval between these two events in the reference frame in which the

events occurred at the same place is

c(Wy-r,)=V16 = 4m C*7
or tp-t,= %- %xlO'ss ;
(b) The four dimensional interval between 4
A and C is (assuming Ay = Az = 0) 3
3?-52=-16 2

So the distance between the two events in the frame [~ |A
in which they are simultaneous is 4 units = 4m. 0

1.358 By the velocity “addition formula

., =V v},\ll-Vz/c2
o e V.V

1-
(,‘2 C2

V)24V (1 -V

and e v’i+v’§-w"" y+v;( )
_va
c2

1.359 (a) By definition the velocity of apporach is
dx, dx,
Vapproach ™ T—T- vl—("VZ)- LBy 715}
in the reference frame K .
(b) The relative velocity is obtained by the transformation law
v,-(=v) vi+V,
1_"1(“’2) Lert2

—_— +
C C2

.V, =

1.360 The velocity of one of the rods in the reference frame fixed to the other rod is

V= vy 2v
V2 l+Bi
1+?

The length of the moving rod in this frame is

42/ 1-p
l= lo'\/ 1-(“‘32)2 = lo1+t32

1.361 The approach velocity is defined by

- dr; dr,
Vappmet:h= EI——Tit_' VI—V_;

. N
in the laboratory frame. So V, ;0= VVi +V;
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On the other hand, the relative velocity can be obtained by using the velocity addition
formula and has the components

1
Vi

The components of the velocity of the unstable particle in the frame K are

(v,v'\h-%,o)
C

!
so the velocity relative to X is y

1272
2. ,2 v'°V
'\/V vt

The life time in this frame dilates to

V2 vl2 vlzv2 $ I

C2 c

vV
1v2
soV, = vi+v§- 3
c

and the distance traversed is
" VV2+ v12 _ (vl2 VZ)/CZ
'Vi-v¥/ & V1-v2/ 3
In the frame K’ the components of the velocity of the particle are

Vo vcos 8-V

* 1_vV:::os() ® @

. vsin®V1-V2/?

V. = —
Y vV

1-—-cosB |

v

2
Vv ;
Hence, tan@' = —X= ﬂg—\'(l -V? )/c2 0
vcos0-V

Ve

In K' the coordinates of A and B are
A:(1,0,-v'¢,0,B:(t,],-v'1t,0)
After performing Lorentz transformation to the frame K we get

A:t=yr B:t= y(t’+v—2l)
C

x=yVe \x=y(I+V?)
\
y=Vvi y= -Vt
z=0 z=0

By translating ¢ — ¢ - Vl, we can write
y ng ‘;7

the coordinates of B as B:t= y¢t'
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2 / 2
x-yl(l-%)+Vt’y-l 1—:—2 +Vi'y

y= -v’(t'-ﬂz), z=0
c

o [® 0 |©

2
Thus Ax=1 1_(_‘,_) , Ay =

Hence tan 0’ - A — -V

t I +dt ‘ J'(}' B

In K the velocities at time ¢ and ¢ + dt are respectively v and v + wdt along x — axis which
- —>
is parallel to the vector V. In the frame K’ moving with velocity V with respect to K, the

velocities are respectively,

v-V v+wdt-V
Vand 7
1-5 1-(v+wd)
c c

The latter velocity is written as

v-V wdt v-V W—V-dts v-V h

+ +
Vv | v\ 2 |4 2
l-v—= 1-v— |[1-— 1-v—= vy
¢ P ( c‘z/) ¢ (l 2] 6‘2/)
Also by Lorentz transformation
dt - Vdx/c? P v/
V1-V/e V1-V/e?

Thus the acceleration in the K’ frame is

dt' =

372
w'a ﬂ-—w_l——‘{z—
ar v 3 2
7]

(®) In the K frame the velocities of the particle at the time ¢ and ¢+ di are repectively
(0, v, 0) and (0, v + wdt, 0)

—
where V is along x-axis. In the K’ frame the velocities are

(- v,vW1-V¥/&, o)
and (— V,(v+wdt) V1 - Vit Op) respectively
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Thus the acceleration

. watV(1- VD) ( v“)
W-'——dT———'-wl-c—

7| along the y-axis.
dt

Vi-V/é?

In the instantaneous rest frame v= V and
W= —2— (from 1.365a)

-3

dv ,
So, == W dt
WV

1-—
(:2

We have used df' =

W’ is constant by assumption. Thus integration gives
w't

2 ! \2
Integrating once again x = f—v; ( 1+ %—t —1)

The boost time T, in the reference frame fixed to the rocket is related to the time T elapsed

on the earth by
172

T T (ﬂ)z
zo-f\/l_ﬁ dr-f 1~ | 4

¢ (w't)

0 0 1¥ (L

(W tVe

=f w‘)._f@._m

m=
Vi-g
For B =1 LI ml - Vf’:l
’ mo - n
We define the density p in the frame K in such a way that p dc dydz is the rest mass

dm,, of the element. That is p dx dy dz = p, dx,dy, dz, , where p,, is the proper density
dx,, dy,, dz, are the dimensions of the element in the rest frame K Now

dy= dy,, dz= dz,, dx = dx, Vl__"f
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if the frame K is moving with velocity, v relative to the frame K. Thus

Po
p= >
v
1__.
2
Defining 1) by p= py(1+n)
1 v 1 __1n@2+m
Weget 1l4+m= —— o, 5=1-
1 v c? A+m?  (L+m)?
-5
\/n(zm) cVn@2+n)
or 2
(L+m) 1+

1.370 We have

Yy Vi
V1-‘c—’:— V1-— ¢

2 2

2 2
Vv myc P
or 165 = =1-
& m(2,c2+p pz+m;‘;c2
c
P C
or V=
Vp?+mie 2" \/ myc\2
1+|—
p
-12
2 i cz
- myc
So s 1-(1+L ] «100 % » 1[725) x 100 9%
p 2\ p
1.371 By definition of 1),
myv v

=1nmyv or 1- -—1-
0 e 712

1%
1-=5
C

or v-ch——l—f-ﬁVnz—l
n

1.372 The work done is equal to change in kinetic energy which is different in the two cases
Classically i.e. in nonrelativistic mechanics, the change in kinetic energy is

> my ¢ (08 - (06)°) = 2y 2028 = 014 my c?
Relativistically it is, -
mO C2 mO C2 mO C2 mO C2

= myc? (1-666 - 1:250)

Vi-08? Vi-@e? 06 08

= 0416 m, ¢ 042moc
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m0C2 2
= 2mOC

¥
1-3
c
or 1———-

\4
or —-
[

Relativistically

But Classically, = 15 s0 == 7= €

Hence if 5 <3E

the velocity B is given by the classical formula with an error less than €.

From the formula

\/h—_ﬁ

we find E*= P emic or (myt+ T = *p*+mict

or T2myc+ = *p* ie. p= VT(2m0c2+T)

178

Let the total force exerted by the beam on the target surface be F and the power liberated

there be P. Then, using the result of the previous problem we see

F=Np= %’fr(r»f 2myc?) = é VT (T +2myc?)

since I = Ne, N being the number of particles striking the target per second. Also,

P=N

Vi-v?*/

2
myc I
0
—m0c2]= =T
e

These will be, respectively, equal to the pressure and power developed per unit area of

the target if I is current density.

Downloaded From : www.EasyEngineering.net


http://Easyengineering.net
http://Easyengineering.net

180 Downloaded From : www.EasyEngineering.net

1.377 In the frame fixed to the sphere :-

e Ir: The momentum transferred to the eastically scatterred
particle is

2my
‘/ vE
1-—
&2

The density of the moving element is, from 1.369, n

and the momentum transferred per unit time per unit area is
2my 1 2 mnv?

n
VAR .
C [+

ym=
2
% 1-—
= 2

In the frame fixed to the gas :- When the sphere hits a stationary particle, the latter recoils
with a velocity

p = the pressure =

C

v+ 2v
1+v l+v
& P
m2y
The momentum transferred is A = 2 mvz
) 4%/ 1-%
a- V2 )2 c
. 2mv 2 mm/?
and the pressure is ——'n:v= ——
v v
1- 1-
3 l
1.378 The equation of motion is
d myv
= =F
dt
1 -——
&
F
Integrating = vie . B = ——, using v=0 for t= 0
Vig
1 - —
2
2 2 1)? Fct
_ﬁ__z, Fr or, B?= 2(F) 5 o, Ve e
1-p myc (Ft)* + (mg c) \/(mD c)* + (F1)

Fet dt cf EdE CVEE+me 2 +c6
or x= | —m—m————=— == +m; ¢ + constant
VF2t2+mo§c2 F \'1§2+(m‘,c)2 F o

my P2 myc?

F F
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a+c?e?
2 2
v ey myv myc
or, -t Thes 420 - ——=F
v2 a dt V2 a
1-= 1-3
C Cc
J—y
= —|—=my————tm,—= V"V
dr ° 0.2 %
V2 V2 c ( VZ)
1-2 1-% 1-%
2 2
C C Cc
—
—> w :
Thus F = m, =, W=V, W,V
1-8

1.381 By definition,

2 3
c myc dt Ve cmydx
E= MOF= s y Pe= My = o
l—y-Ji 1_."3
e ¢

where ds® = ¢ df - dx? is the invariant interval (dy = dz= 0)

- oo A (dx-Vi)  P=VE/S
N 7
2
E 3dt’ 3 ¢ E-Vp, |
-mocz—cmoy s -
7
02

1.382 For a photon moving in the x direction
€= cp,, p=p,= 0,

ey 1 1-P 3 .3
Note that € 21f,4 1+6 or B 5,V 5"
1.383 As before
dt dx
E= mocsa,px- moc o
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dz
=myc -

Similarly Py=mc d s

. P
Then Ez-czpzs Ez—cz(pi+p§+p,2‘)

2 c* (c%t’-dfd; dy*-d?) 4, 4

= myc is invariant

1384 (b) & (a) In the CM frame, the total momentum is zero, Thus
P, VI(T+ 2m0 ¢’ /
T E+E, T+ 2m, ¢ T+ Zm0

where we have used the result of probiem (1.375)

Then
1 1 1 /T+2moc2
Vi-v/2 L/ ?
1

°I<

T 2my c
T+2m, ?
. Total energy in the CM frame is

2m, ¢* 1/T+2mc2
= 2 \/Zmoc(T+2mc)-T+2mc

Vi-V2

So T=2m,c? \/ 1+—T-7 “i
2myc

Also 2 cZﬁQ+m(2)c4 T V2m0C2(T+2’”062) , 4c’p*=2my T, or p= V %moT
1.385 M0c2= 1/Ez_czp"z
\/(2m0c2+1')2—T(2m0c2+T) = \/2m0c2(2m0c2+T) = c\/2m0(2m0c2+1')

Also cp= \/T(T+2mo v= ——E-c S -

T +2myc?

1.386 Let T' = kinetic energy of a proton striking another stationary particle of the same rest
mass. Then, combined kinetic energy in the CM frame

’ 2 !
-2m0c2( 141 2—1)-2T, (—T—5+1)=1+ T
N m,C

2
2my c N 2my ¢

T T@myc*+T) r 2T (T +2m,c?)
2m, P m? c* ’ m, c?
Downloaded From : www.EasyEngineering.net



http://Easyengineering.net
http://Easyengineering.net

Downloaded From : www.EasyEngineering.net 183

1.387 We have
E\+Ey+Ey~ myc?, pr+py+p3=0

Hence (m, - El)2 - czf’f = (E,+ E3)2 - (ﬁ;+f; )2 &
The LHS. = (myc*-E)*-c*pi= (mi+md)c*-2myc*E,

The R.H.S. is an invariant. We can evaluate it in any frame. Choose the CM frame of the
particles 2 and 3.

In this frame RH.S. = (E', + E'))’ = (my 4 my)* ¢*
Thus  (m+m?) c* - 2my ?E, = (m, + m;)* c*

”’o + m1 (m, + m3)
2my,

or 2myc’E,s {m§+mf—(m2+m3)2}c4, or E <

1.388 The velocity of ejected gases is u realtive to the rocket. In an earth centred frame it is

v-u
vu
1-
P

in the direction of the rocket. The momentum conservation equation then reads

(m +dm) (v + dv) + “'“v(-dm)= my

1__

or mdy - ( vldm=0

Here - dm is the mass of the ejected gases. so

u?
‘“*"2" W2
mdy - ——<—dm = 0, or mdv+u( )dm=0
1-% ¢
C

. uv . . .
(neglecting 1 - = since  is non- relativistic.)

c
' LA N B 1+ ¥y im=
Integrating (B C), - te f p 0, In 1-8 +o Inm = constant

u . e
The constant = —Inm, since § = 0 initially.
C

_(
Thus 1—5- (L"—) or f= o

——
&3
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PART TWO

THERMODYNAMICS AND MOLECULAR PHYSICS

2.1 EQUATION OF THE GAS STATE * PROCESSES

2.1 Letm, and m, be the masses of the gas in the vessel before and after the gas is released.
Hence mass of the gas released,
Am = m; -m,
Now from ideal gas equation

R R
pV= ’”1;{"To and p,V= m2A—4T0

as V and T are same before and after the relcase of the gas.

R R
so, P,-p) V= (m1"m2)ﬁTo= AmﬁTO
P-P)VM  pApVM
or, Am = RT, "R T, @
R M P
We also know p= p—T s0, ——= — 2)
P=PM RT, po (

(where p,= standard atmospheric pressure and T = 273 K)
From Egs. (1) and (2) we get

Am = pV'M= 1*3x30x-0—'z-8—= 30g
Py 1

2.2 Let m be the mass of the gas enclosed.
Then, pV=v,RT,

When heated, some gas, passes into the evacuated vessel till préssure difference becomes
Ap. Let p’, and p’, be the pressure on the two sides of the valve. Then
p V=V, RT, and

p,V=vVv,RT,= (v,-v'))RT,
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yo [PV _PLV ,_[PL_PY
sz-( Tl" T‘z/) or p,= (T1—T2)T2

But, p.-p,=Ap
So p (B P22
’ 2 Tl T2 2
Pl T2 ’
= T -P2- AP
T
or, p, = %(&fl—z - Ap) = 0-08 atm

Let the mixture contain v; and v, moles of H, and H, respectively. If molecular weights
of Hy and H_ are M, and M,, then respective masses in the mixture are equal to
mi=v, M, and m,= v, M,
Therefore, for the total mass of the mixture we get,
m=m+my or m=v,M +v,M, €))
Also, if v is the total number of moles of the mixture in the vessels, then we know,
V=V +V, ?)
Solving (1) and (2) for v, and v,, we get,
VM, -m) m-vM,
A A A A

(vM,-m) (m-vM,)
R S

Therefore, we get m, = M, -
m M, (vM,-m)

One can also express the above result in terms of the effective molecular weight M of the
mixture, defined as,

RT

v

m M M,-M 1-M/M,

m, M, M-M, M/M,-1

m
M=—=m
v

Thus,

Using the data and table, we get :

m,
M= 3-0g and, = 0-50

2
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2.4 We know, for the mixture, N, and CO, (being regarded as ideal gases, their mixture too

2.5

behaves like an ideal gas)
pV=vRT, so p,V=RT

where, v is the total number of moles of the gases (mixture) present and V is the volume
of the vessel. If v, and v, are number of moles of N, and CO, respectively present in

the mixture, then
V=V +V,
Now number of moles of N, and CO, is, by definition, given by
m m,
v, = i, and, v,= M,
where, m, is the mass of N, (Moleculer weight = M) in the mixture and m, is the mass
of CO, (Molecular weight = M) in the mixture.
Therefore density of the mixture is given by
m+m, m+m,
P="V = WRI/P)

_ Py mtmy Po(my+ my)M, M,
RT vy+v, RT(m M,+m,M,)

= 15 kg/m3 on substitution

(a) The mixture contains v, ,v, and v; moles of O,, N, and CO, respectively. Then the
total number of moles of the mixture

V= v +V, 4V,
We know, ideal gas equation for the mixture

vRT
\%

pV=vRT or p=

(vi +v,+V3)RT

v = 1-968 atm on substitution

or,

(b) Mass of oxygen (O,) present in the mixture : m; = v, M,
Mass of nitrogen (N,) present in the mixture : m, = v, M,

. Mass of carbon dioxide (CO,) present in the mixture : my= v; M,

So, mass of the mixture

m=m +my+my=v,M, +v, M, +v; M3

mass of the mixture
total number of moles

Moleculer mass of the mixture : M =

= 36-7 g/mol. on substitution
Vi+V,+V,
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Let p; and p, be the pressure in the upper and lower part of the cylinder respectively at
temperature T, At the equilibrium position for the piston :

m
—

pyS+mg=p,S or, p+ Sg P, (m is the mass of the piston.)

RT
But p, = ;]—‘—,% (where V) is the initial volume of the lower part)

RT, RT, RT,
So, o ME_ 0 o mE_ofy 1 )
WtsTV, % sV (1 Th

Let T be the sought temperature and at this temperature the volume of the lower part
becomes V', then according to the problem the volume of the upper part becomes 1y V'

Hence, 2 & (1 - nl) @)

From (1) and (2).

Vol )TV Ty

RT, To(l"%)v
01-1-5—1:-1—1, o, T'=s ———+—
n "

As, the total volume must be constant,

Vo(l+m)=V (1+%') o, V=

Putting the value of V' in Eq. (3), we get

1 (1+m)
- T°(1_n]v°(1+n')

1
w(i-3)

_ L’ -Dn’
m'*-1n

Let p, be the density after the first stroke. The the mass remains constant

P1= _Yo__
17 (v+AY)
Similarly, if p, is the density after second stroke

= 0-42kK

Vp= (V+AV)p,, or,

2
4 14
Vey= (V+AV)p, on py= (V+AV) Pr= (V+AV) Po

In this way after nth stroke.

V n
Pn = (V+ AV) Po
Since pressure o density,
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n

| 4 .
p,= (V+ AV) Py (because temperature is constant.)

It is required by B to be 1
Do n

“ (VN oo (veany
‘ n- |\veav] M v
Hence e — DM
In 1+—A—V
v

From the ideal gas equation p = %RVT

dp _ RT dm M
d MV dt

In each stroke, volume v of the gas is ejected, where v is given by

In case of continuous ejection, if (m,_,) corresponds to mass of gas in the vessel at time
t, then my is the mass at time ¢ + At, where At, is the time in which volume v of the gas

. h Vv .
has come out. The rate of evacuation is therefore — i.e.

At
ce Y. V. m(t+A)-m@)
T At m(e+ A At
In the limit Ar - 0, we get
V dm
¢= m dt @
From (1) and (2)
dp_ _CmRT _ C __<
7R V. 2 7 S d

P 0
. d C 2 C
Integrating f L__= f dt or In &= ~—¢
1% 1%
; p g Do

Thus p=pye <’
Let p be the instantaneous density, then instantancous mass = V. In a short interval df

the volume is increased by Cdt.
So, i Vep= (V+Cdt)(p +dp)
(because mass remains constant in a short interval df)
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p__C
s0, o th

Since pressure o density é’f’-- - %dt

e <,
or 7 V
P,
or t= ¥ In 21, -‘{ln-l— 1-0 min
cC p C

2.10 The physical system consists of one mole of gas confined in the smooth vertical tube. Let
m, and m, be the masses of upper and lower pistons and S, and S, are their respective

areas.
For the lower piston

PS,+myg=p,S, +T, 4 b
/] /
or, T=(p-p)S,+mg ) ; P
Similarly for the upper piston Y — ,o —rrd)
PoSi+T+mg=pSs,, 2 P\ TEJZ
or, T=(p-py)S,~-mg ) Z ATV,
From (1) and (2) a7
P-pPy) (S =S)= (m+m)g 2 }3 7
7
o, ‘p-p)AS=mg 77

so, p= ﬁ + p, = constant

From the gas law, pV= vRT
PAV=vRAT (because p is constant)

So, (po+—'§S&)A/SI-RAT,
Hence, AT= Il—z(poAS+mg)l- 09Kk

2
R
211 (a) p=po-aV’=py-a 71)
(as, V= RT/p for one mole of gas)

11]“5, R\/_P' R\/— 'POP p (1)

i< p0p2 -p3 ) must be zero

For T ,, Z
P Downloaded From : www.EasyEngineering.net
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P 2
which yields, p= §Po )
1 2 1 / 2 2(Po 1 /Po

Hence, T = ——-= A S LA R YA

ence. max R\/; 3P0 Do 3P0 3 (R) 3a
®) p= Poe-ﬁv - Poe—BRT/P
0 uq:-:hxl-i"-, andT-Lln& 1)

p p BR — p
SPTRIN" / | ca s
For T,,, the condition is -‘-1;- 0, which yields
)
P=
Hence using this value of p in Eq. (1), we get
P,
Tmax = eﬂR
2 12
T= T0+aV2- To+a1—z—§—
. P
(as, V= RT/p for one mole of gas)
So, p= Vo RT(T-T)*? (1)
d »e

For Prin » 3% =0, which gives

T=2T, @)
From (1) and (2), we get,
Poin= VO R2T, (2T, - T)"¥*= 2RVa T,
Consider a thin layer at a height k and thickness dh. Let p and dp + p be the pressure on

the two sides of the layer. The mass of the layer is Sdhp. Equating vertical downward
force to the upward force acting on the layer.

Sdhpg+(p+dp)S=pS
P
So. k=P8 @ l |pedes
A
But, p--gRT,wchavedp- LRdT, v
M M dhg |P
PR yro h 3OS
or, —MdT- pgdh '
ar_ M _ _
So, 2 34 K/km

. That means, temperature of air drops by 34°C at a height of 1 km above bottom.
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2.14 We have, g% = —- pg (See 2.13)

2.15

2.16

But, from p= Cp" (where C is, a const) %- Cnp"!

We have from gas low p=p I%T’ so using (2)

Cp"-p— T, or T= %Cp""1

M
Thus, -g—g——ﬂ Ch-1)p" -2
dT _ dT dp dp
But, dh= dp dp dh
_d_I_ M n-2 1 —Mg !n - 1!
So, - rCM-1p Cnol —1(-r8) R
We have, dp = - p g dh and from gas law p = % P
p_ Mg
Thus - RT dh
Integrating, we get
p h
g __Mg f p_ _Mg
or, f = RT dh or, RT h,
P, 0
(where p,, is the pressure at the surface of the Earth.)
p= poe—Mgh/RT’ I
[Under standard condition, p,= 1atm, T= 273K
/
Pressure at a height of 5 atm = 1 x ¢~ 2*¥81x3000/8314x273 _ .5 atm.

Pressure in a mine at a depth of 5 km = 1 x ¢~ 2781 x(=3000V8314x213 _ 5 4im ]

We have dp = - pg dh but from gas law p = A—%RT,

Thus dp = ‘—IAERT at const. temperature
dp _ &M

So, o = RT dh

Integrating within limits f f EM 4,
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o _ gM
or, In ~ RT h
0, p= pgye and A 7 In o0
. orr PO
(a) Given T= 273°K, e e
RT. _,
Th == - = .
us h Mg Ine 8 km

() T = 273°K and

Po=P 001 or & = 099
Po Po

Thus h = - R In£ = 0.09km on substitution

Mg " p,

2.17 From the Barometric formula, we have
P=Ppoe mas <
- M

and from gas law P="RT

So, at constant temperature from these two Egs.

Mp, o~ Mg WRT

) - Mg h/RT
P= =F 1)

= pyé€

Eq. (1) shows that density varies with height in the same manner as pressure. Let us
consider the mass element of the gas contained in the coltmn.

M;
dm= p(Sdh) = —ége-”&""" Sdh

Hence the sought mass,
k

m=

Mp,§ - Mg h/RT PoS - Mg k/RT
RT J ¢ dh= =0 (1-e )

0

2.18 As the gravitational field is constant the centre of gravity and the centre of mass are same.

The location of C.M.
f hdm f hpdh
h= 2 = 2

fan [oa

0 0

But from Barometric formula and gas law p = p, e~ MEMRT
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a

fh e MeWRT\ gy
So, h=2 ( 1> =ﬂ

a Mg
f (e'M‘ WRI\ an
0

2.19 (a) We know that the variation of pressure with height of a fluid is given by :

dp=-pgdh

But from gas law p=

From these two Eqgs.

dp= -2 (1)

RT
or, dp _-Mgdh
p RT,(1-ah)
P h
. dp _ Mg f _dn_
Integrating, f » - RT, 1 - ahy we get
P, 0
2 = In(1 - an)Me/aRT,
Py
Hence, P=py(1-ah) Mg/aRT,  Obvionsly h < %

(b) Proceed up to Eq. (1) of part (a), and then put T = T, (1 + a h) and proceed further
in the same fashion to get

Py
= T \Mz/aRT,
P (1 + ah)"¥ "%

2.20 Let us consider the mass element of the gas
(thin layer) in the cylinder at a distance  from D
its open end as shown in the figure.

=3

F, = mw,; ]

Using Newton’s second law for the element : A N
J
n

<~ 7" —>
(P+dp)S-pS= (pSdr)w’r dr"-

M
dp = 2 - M 2
o, dp=pw°rdr RT® rdr
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r
2 2
So, £IP—= Mo rdr or, f £12-«- M
P RT p
2
p_Mo o oM F[2RT
Thus, lnpo R O P=Poe
2.21 For an ideal gas law
= £

P MR T

500
So, p= 0082 x300 x g dtms = 279-5 atmosphere

For Vander Waal gas Eq.

(p.,,l'zv_g)(v_vb)- vRT, whereV = vV,

VRT av? mRT/M am?®

on PRv=ve™vIT T Tme VIR
M
- PRT _ ._E_
alvon ob " a2 79-2 atm
222 (a) p= {—-———-—-](1 )- v
Vu
(The pressure is less for a Vander Waal gas than for an ideal gas)
a(1+n) Y = R X g NVy+b
on V2 VM Vie-b Vi (Vy— )

- a(l+m)(Vy,-b)
RV, (mV,+b)

or, , (here V), is the molar volume.)
- 1:35 x 1-1 x (1 - 0-039)
0-082 x (0-139)
(b) The corresponding pressure is
RT a a(l+n) a

ﬁ'V “b V2T V@V +b) V2

a Wyt Vy-nVy, - b) a (Vy-b)

~125K

.v2 (M Vy +b) T V2 (Vy+b)
1;55)(0961 93 atm
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1 a 1 a
2.23 Pl-RTIV_b—F,pz- RTZV—b-{/—i
R(T,-T)
So, PP
R(T,-T, R(T,-T
or. v-pa 22-T) o, b= y.2&-1)
pP-p pP-py
Py-P1 a
Also, py=T -
1 17‘2_1‘1 V2
a _ T1(I’2"P1)_ - Iip,-p T,
v I,-T, ! I,-T,
I,p,-p, T,
or, a= V2_}__2_l_
T,-T,

Using T, = 300K, p, = 90atms, T, = 350K, p,= 110 atm, V= 0-250 litre

a = 1:87 atm. litre?>/mole?, b = 0-045 litre/mole

224 p=

RT _a __(3\ _RIV 2a
V-b vz \avV|, v-b} V2

Or, K-:_la—
? Vidp),

- [RTV3-2a(V—b)2] v3(V-b)

V3 (V- by " [RTVP-2a(V-b7]
2.25 For an ideal gas x, = Y
' 838 ¥o= RT
2 2 -1 2 2 -1
v-b | 2a(v-b° _ b 2 (, b
Now <= Tmv ' ko =%\l-y 11 rv|i Y

2b  2a . .
= K, {1 -V +RTV }, to leading order in g, b

.. 2a 2b a
Now K>k, if RTV>V or T<bR

If a, b do not vary much with temperature, then the effect at high temperature is clearly
determined by b and its effect is repulsive so compressibility is less.
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2.2 THE FIRST LAW OF THERMODYNAMICS. HEAT CAPACITY

2.26 Internal energy of air, treating as an ideal gas
UsﬂCVTsﬂ—R——T=-PL

M My-1 y-1
s - G
sing CV-y-l’ smocCp—CvsRandCV-y

M

Thus at constant pressure U = constant, because the volume of the room is a constant.

Puting the value of p=p_. and V in Eq. (1), we get U =10 MJL.

2.27 From energy conservation

1 2
U + E(vM)v = U,

or, AU = %VM v
But from U = v YR—TI , AU = :{v-_Rl AT (trom the previous problem)
Hence from Egs. (1) and (2).

AT = MV Z(RI -1)

@)

@

2.28 On opening the valve, the air will flow from the vesscl at heigher pressure to the vessel
at lower pressure till both vessels have the same air pressure. If this air pressure is p, the
total volume of the air in the two vessels will be (V, +V,). Also if v, and v, be the

number of moles of air initially in the two vessels, we have
pVi= v{RT, and p,V,= v,RT,

@

After the air is mixed up, the total number of moles are (v, +v,) and the mixture is at

temperature T.
Hence p(Vi+V,)= (v +Vv))RT

@

Let us look at the two portions of air as one single system. Since this system is contained
in a thermally insulated vessel, no heat exchange is involved in the process. That is, total

heat transfer for the combined system Q = 0

Moreover, this combined system does not perform mechanical work either. The walls of
the containers are rigid and there are no pistons etc to be pushed, looking at the total

system, we know A = 0.

Hence, internal energy of the combined system docs not change in the process. Initially
energy of the combined system is equal to the sum of internal energies of the two portions

of air :

viRT, Vv,RT
U= U, +U,-= _lt_l+__2.__2.

-1
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Final internal energy of (n, + n,) moles of air at temperature T is given by

(v; + V) RT

U= _}_‘-1—. )
Therefore, U; = Uy implies :
ro ity nVi+p Y, orr VitV
Vi +V, @, Vi/T)+ (p,V,/T)) "172p VT, +p,V,T,
From (2), therefore, final pressure is given by :
Vi +V, R _pVitp, Y,
p: V1+V2RT Vi+V, ViTi+v, T = V,+V,

This process in an example of free adiabatic expansion of ideal gas.

By the first law of thermodynamics,
O=AU+A
Here A = 0, as the volume remains constant,

vR
So, Q=AU= y-IAT
From gas law, pyV=vRT,
P VAT
So, AU= ——F——=-025KJ
Ty(r-1)

Hence amount of heat lost = - AU = 0.25 kJ

By the first law of thermodynamics Q = AU + A
But AU = pAV (as p is constant)
y-1 1
A_ _YA__14 =
Q= A*4= 1" 1a-1*= 7!

Under isobaric process A= pAV= RAT (as v= 1)= 0-6 kJ
From the first law of thermodynamics
AU=Q-A= Q-RAT=1KJ

Again increment in internal energy AU = $A{ , forv=1
_ RAT e
Thus Q-RAT= y-1 or Yy Q—RAT-16
Let v = 2 moles of the gas. In the first phase, under isochoric process, A, = 0, therefore

from gas law if pressure is reduced n times so that temperature i.e. new temperature
becomes T/n.

Now from first law of thermodynamics

0,= AU, = YR AT
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vR (To ) VRT (1-n)

Ty-1{n T g1

During the second phase (under isobaric process),
A,= pAV= vR AT

Thus from first law of thermodynamics :

vR AT

Q= AU, +4; = y-1

+ VRAT
T,

VR TO'; Y VRT,(n-1)y

y-1 " ony-1)

Hence the total amount of heat absorbed

VRT,(1-n) vRT,(n-1)y

@=0+%= 4Th *Taq-D
YRT,(n-1)y 1
—;—(Y—:—ﬁ——(—li-y)- VRTO(I—';)

2.33 Total no. of moles of the mixture v = v, +v,

At a certain temperature, U= U, +U, or vCy= v,Cy, +v, C“,2
1

LR R
v, Cy +v,Cy, Ty =17 2yp-1

Thus Cy= y = -
v;C, +v,C
Similarly I TR
Y, R Y, R
Vl———-—-T+v2——1-
Vlchv""VzYzcvz Y1 Y2
= v = v
Y1 Y2
c v1Y1_1R+v2Y2_1R
Thus Y= EP_-
V.oowv +V
1?1'1 2Y2"1

. Vivi (=1 +vyv, (1, - 1)

23 Yrom (e previous problem

Cy= = 152 3/mole. X
Ny * Vo o
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o R nR
ly, =17 2y,-1
and C,= L Y2 = 23-85 J/mole. K
Vi +V,
. Total mass 20+7
Now molar mass of the mixture (M) = Totl mumber of moles ~ 11 36
— + —
2 4
Cy C,
Hence v= = 0-42)/g K and ¢, = o 0-66J/g'K

2.35 Let S be the area of the piston and F be the force exerted by the external agent.
Then, F+pS = p,S (Fig.) at an arbitrary instant of time. Here p is the pressure at the
instant the volume is V. (Initially the pressure inside is p,)
LA

A (Work done by the agent)= f Fdx

Vo
Y, "V, F
- [ @o-prs-ae= [ @o-prav poSl |
Vn VO
. o TPS v
=Po('l"1)Vo‘deV=Po(ﬂ'l)vo‘f"RT'%
Vo Vo

= M-1)pyV,-nRT Inn = (n~1)vRT - vRT Inn
= VRT(-1-Inm)= RT(n -1 -1nmn) (For v= 1mole)
2.36 Let the agent move the piston to the right byA x. In equilibirium position,
Pr\S+F = pyS, o, Fo.,= @,-p)S
Work done by the agent in an infinitesmal change dx is
Fygens* dx = (py = p)) Sdx = (p, - py) dV
By applying pV = constant, for the two parts,
Py (Vo +5x)= p,V, and p, (Vy-Sx) = p, V,
P Vp25x  2p,V,V

— = where Sx =
Ve-5'2 Vi-V? ( K

So, pPy-p=
When the volume of the left end is 1) times the volume of the right end

-1
(Vo+ V)= n(Vy-V), or, V= :”Vo
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20V V
A=f(p2 -p)dv= f ? "PoVo[’“(Voz‘Vz)]:
= -poVo[ln(Voz-Vz)-anoz]

- -povo[ln{vg-(—“ll—z)vg}-mvg]
n+1

2
-- —4n )\, Mm+1)
J 290 (1“ n+ 1)2) Po Vpln an

In the isothermal process, heat transfer to the gas is given by

Q= VRT ln = vRT,Inn |For ‘_’_2__{_’_1_
o V1 0 k Vi ;&
In the isochoric process, A= 0

Thus heat transfer to the gas is given by

VR R
2 -AU-vCVAT-Y TAT (for Cy= Y—l)
But I:Z‘--T—o' or, T-T&- Y|T for n-p_l
p T °p, " ° P
or, AT=nT,-Ty= n-1)T, so, Q,=
Thus, net heat transfer to the gas
Q= vRToln'r]+Y ‘mM-1T,
LQ _ n-1 L .._n-1
o WRT,” MM+ Ty o6 ppomiMm= T
n-1 6-1
or, =1+ =1+ =14
! £ iy 80x10° ) |
VRT, 3x8314x 273

(a) From ideal gas law p = (}'é_ T= kT [where k= %

For isochoric process, obviously k = constant, thus p = k7, represents a straight line passing
through the origin and its slope becomes k.

For isobaric process p = constant, thus on p — T curve, it is a horizontal straight line parallel
to T - axis, if T is along horizontal (or x - axis)

For isothermal process, T = constant, thus on p — T curve, it represents a vertical straight
line if T is taken along horizontal (or x - axis)

For adiabatic process TYp'~"= constant

After diffrentiating, we get (1-v)p 'dp- T +yp'™"-T""1-dT= 0
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i (25) (o= ) ()

The approximate plots of isochoric, isobaric, isothermal, and adiabatic processess are drawn
in the answersheet.
(b) As p is not considered as variable, we have from ideal gas law

V= ﬂTs K T|where k' = R
p p

On V - T co-ordinate system let us, take T along x — axis.

For isochoric process V = constant, thus k' = constant and V= k'T obviously represents a
straight line pasing through the origin of the co-ordinate system and &’ is its slope.

For isothermal process T = constant. Thus on the stated co- ordinate system it represents
a straight line parallel to the V - axis.

For adiabatic process TV' ™! = constant

After differentiating, we get (y-1) V" 2dV-T+ V'~ 'dT= 0

av_ (_1_ Y

ar - " |y- 1) T

The approximate plots of isochoric, isobaric, isothermal and adiabatic processess are drawn
in the answer sheet.

According to T - p relation in adiabatic process, 7' = kp"~! (where k= constant)
U y-1
and L o1fE2 So fw 0"~ !|for ns&

P T, 1
Hence T=Tym %1 = 290 x 10 ™4~ V14 2 056 kKK

(b) Using the solution of part (a), sought work done

vR AT_ vRT,

A= y-1 y-1

(n“'ly' - 1) = 5-61kJ (on substitution)

Let (py, Vg, Tp) be the initial state of the gas.

-vRAT
y-1

But from the equation 7V '~ 1. constant, we get AT = T, (‘ﬂ r-1_ 1)

-, (1" 1)
y-1

We know A, = (work done by the gas)

Thus A=

On the other hand, we know A, = vRT,In (%) = -vR T,Inn (work done by the gas)

Aadia_ n'"1-1 - 5%4_1 - 14
A4, (G¢-1)Inm 04xIns
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241 Since here the piston is conducting and it is moved slowly the temperature on the two
sides increases and maintained at the same value.

Elementary work done by the agent = Work done in compression - Work done in expansion
ie.dA= p,dV-p,dV= (p,-p,)dV

where p; and p, are pressures at any instant of the gas on expansion and compression
side respectively.
From the gas law p, (V, + Sx) = vRT and p, (V, - Sx) = vRT, for each section

(x is the displacement of the piston towards section 2)

2.5x 2V
So, -pi= VRT————5= vRT-———(as Sx=
PPy V2_s22 v2_vit "

So dA-vRT——;zz—z-dV

Also, from the first law of thermodynamics
dA= -dU= —ZV}—R;I—dT (as dQ = 0)

So, work done on the gas = —dA = 2v - —LdT

2V-dv

vi-v?’

Thus 2v-—&—dT= vRT
y-1 o

or, ﬂ- -1 vay,
1 T vZ-v?

When the left end is M times the volume of
the right end. [< '2’5

9| Ly
Vo+V=n(V-V) or V= -:—;-:-IVO Fagent

T
VdV
On integrating f —TZ= (y- 1)f
T,

v
T _ 1 2_y2
or In 7_;- (v 1)[ 5 In(Vy-V )]0

= _Y—;l[]n(vg-Vz)-mvoz-v2)-1n Voz]

2

2
gy-_l InV2-1inV? 1_3]"_1 =I:__1_]n(_rl+_1)_
2 0 0 n+1 2 4n
1-1
2
Hence T=T, C—:—‘;ﬂ—l))
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From energy conservation as in the derivation of Bemoullis theorem it reads
g1
p'2
In the Eq. (1) u is the internal energy per unit mass and in this case is the thermal energy
per unit mass of the gas. As the gas vessel is thermally insulated Q, = 0, also in our case.

CyT RT p_RT _ .
M- Ma-1) also 0 Y Inside the vessel v = 0 also. Just

outside p =0, and u =0. Ingeneral gz is not very significant for gases.
Thus applying Eq. (1) just inside and outside the hole, we get

v’ +gz+u+Q, = constant (¢))

Just inside the vessel u =

1-._p
2V p+u
aR_T+ RT __ _ _YRT
M Mky-1) M@E-1)
2y RT 2YRT
Hen 2 o AR or, = AR L322 kmps.
“ Y TMg-p "V M(y-1) f

Note : The velocity here is the velocity of hydrodynamic flow of the gas into vaccum.
This requires that the diameter of the hole is not too small (D > mean free path /). In the
opposite case (D < <) the flow is called effusion. Then the above result does not apply
and kinetic theory methods are needed.

The differential work done by the gas

VRT*( a
dA = pdV = —a—(-ﬁ)dT- - VvRdT

(as pVe= vRT and V= %)
T+ AT

So, A= —f VRAT = - vRAT
T
From the first law of thermodynamics

O=AU+A= %AT—VRAT
- vRAT'iT_lY-= RAT'%—_:—X (for v = 1 mole)

According to the problem : Aa U or dA = aU (where a is proportionality constant)

avRdTl
or, pdv = y-1 1)
From ideal gas law, pV= vR7T, on differentiating
pdV + Vdp = v RdT )]
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Thus from (1) and (2)
— (pdV + Vdp)

a
or,pdV(Y_l-l)-rY 1Vdpm 0

or, pdV(k-1)+kVdp= 0 (where k= -Y—a—- = another constant)
or, pdV !c—;—l +Vdp=0

or, pdVn+Vdp= 0 (where k-1 . ratio)

k

Dividing both the sides by pV

av _dp _
nV+p 0

On integrating 7 In V+1n p= InC (where C is constant)
or, In(pV")=InC or, pV"= C (const.)
In the polytropic process work done by the gas

4o RIT-T))
n-1

(where T; and T; are initial and final temperature of the gas like in adiabatic process)
VR

and AU = 'Y—j(Tf-Ti)

By the first law of thermodynamics Q = AU +A

=;——(r, T)+ A -1

- “Twv 1 1 VR [n -¥]
T;=1) R[Y-l ] G-DG-D

According to definition of molar heat capacity when number of moles

v=1 and AT = 1 then Q = Molar heat capacity.

. _R@-y
Here, C, -1 G-1) <0 for 1<n<y

Let the process be polytropic according to the law pV" = constant

P.
Thus, pVi=p Vi o (}—’;-)- B
So, a"=f or Inf=nlna or nzlip-
Ina

In the polytropic process molar heat capacity is given by
Downloaded From : www.EasyEngineering.net
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- R(n-v) - R R
n-1)(-1) y-1 n-1

R RInao Inp
y-1 IB-lna’ where n Ina

8314 8314In4
So, Ce= 166-1 Im8-In4

Ca

= -42J/mol.K

2.47 (a) Increment of internal energy for AT, becomes

AU = X%Z= %_A—f= -324J (as v = 1mole)

From first law of thermodynamics

RAT_RAT_ 011 kJ
y-1 n-1

|4

Q=AU+A=

s
Sough kv
(b) Sought work done, A”-fpdV- ;—;
v

(where pV" = k= p, V= p, V()

(Pf VEVET" - gV Vil-")
1-n
_ P Vi-pVi vR(I;-T)
1-n 1-n

VRAT RAT
1™ a1 0-43kJ (as v = 1 mole)

2.48 Law of the process is p= oV or pV = a
so the process is polytropic of index n= -1
As p=aV so, p;=aV;, and p;= anV,

k
1-n

(Vf1-n _ Vil"') -

(a) Increment of the internal energy is given by
vR PV -pVY;
(b) Work done by the gas is given by
A= PiVi'Pfo - an—a'q Vo'V

n-1 -1-1
aV02(1-7]2) 1 2,2
- - -z-aVo(n -1)
(c) Molar heat capacity is given by
c R(n-y) R(-1-y) _Ry+1

T -DE-) (1-DG-D 27-1
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1AT and Q = vC, AT

where C, is the molar heat capacity in the process. It is given that Q = — AU

R R
So, C,AT= *{—IAT’ or C".-Y"l
(b) By the first law of thermiodynamics, dQ = dU +dA,

or, 2dQ = dA (as dQ = -dU)
2VC,dT = pdV, or, ;Z—R;ldT+ pdV =0

vRT 2 dT_ dV
So, dT+ dV=0, or, (Y 1)T 2

Y- 1 =0

or, d; L{-d‘y 0, or, TVY~¥2. constant.

(n-y)R
n-1)(-1)
R

But from part (a), we have C, = - -1

R (n-y)R
— Y-l m-DG-D)

_1+y
"=

From part (b); we know TV~ 12 = constant
-1
7 V)(Y V2

(c) We know C, =

which yields

So, ==\ = 012 (where T is the final temperature)
)

Work done by the gas for one mole is given by
(To-D  2RT,[1-n'"17]

A=R n-1 y-1

Given p= a T® (for one mole of gas)

-a
So, pT %=a or p(%‘x)

or, pl™*V %= aR™* or, pVv*@-Da constant

Here polytropic exponent 7 = o-1

(a) In the polytropic process for one mole of gas :

A= RAT __ RAT __ pAT(1-a)

1-n a
[1-a%3)

(b) Molar heat capacity is given by

R R R R R
- - - - - 1—
¢ y-1 n-1 y-1 2 y-1+R( @)

Downloaded Frorft TWW.EasyEngineering.net



http://Easyengineering.net
http://Easyengineering.net

2.51

2.52

Downloaded From : www.EasyEngineering.net

Given U= aV*”
a PV a
or, vCyT=aV", or ch;K' aV
a R 1 a-1, -1 Cv
Ot, aV CV pV 1) Or; V p Ra
l1-a R—a'. - - - —R
or pv c, constant= g (y-1)| as Cy - 1]
So polytropric index n= 1 - o.
(a) Work done by the gas is given by
A= -vRAT and AU = v RAT
n-1 y-1
Hence A-ZAUG-D _ AUG-1) (as n=1-0)

n-1 a

‘By the first law of thermodynamics, Q0 = AU +A

- AU+AU—(;Y;-_—1)-= AU 1+%1—]

(b) Molar heat capacity is given by
Ca R R R R
y-1 n-1 y-1 1-a-1

R
y-1

= + R; (asn=1-0a)
(a) By the first law .of thermodynamics

dQ = dU +dA = vC,dT + pdV
Molar specific heat according to definition

c dQ CydT +pdV

vdT vdT
vRT
eI+ dV-C RTav
vdT v vdr’
We have T=T,e®
After differentiating, we get dT = a Tye®" - dV
So av -1 _
’ DT aToeuv,
v
RT 1 RT,e® R
Hence C =C, + v aTe“V CV+aVI'0e°‘". C"+aV
(b) Process is p= p,e” aVv
p=RLa ppe
Dowh
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or, T= %qeav-V

RT dV aVv R
So, C=C,+ VdeCV+p0e ——_—e°v(1+aV) Cv+1+aV

2.53 Using 2.52

a) C=C +Ed—V=C L for one mole of gas
v vt
V dT
a RT a
Wehavep-po«k—-v o, T =Poty, O RT=p,V+a
Therefore RdT = p,dvV, So, %=I—f—
0
R e
R oR YR oR
=|R+ + = +
( Y‘l) PV Y-1 pV
(b) Work done is given by
v, -
o 2
A-f(po+-‘7)dV-po(Vz—Vl)+aln71
v

1

V. V.
AU= Cy(T,- 1)_CV(I’z 2 lel

) (for one mole)

R
= GTI)_R P Vo-P VYD)

V,-V
=Y11[(po+aV)V2 ( 31)V1]’P0(Yi1 )

By the first law of thermodynamics Q = AU +A
4 Po V,-Vy)
V1 (r-1)

- o (V2- V) +alnY3

y-1 Vi

2.54 (a) Heat capacity is given by

=p,(V,-V)+aln=

RT aV
C=Cy,+ v daf (see solution of 2.52)

T T
We have T=Ty+aV or, V= —-—
a a
After differentiating, we get, Z-—%: -(1;
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T 1 R R@G+aV) 4

Hence C= CV+V a”y-1 v o
Ty YR RT, RT RT,
-Y‘ +R(G.V+l).Y-1+(1V-CV+GV-CP+aV

(b) Given T= Ty +aV

As T= ERZ for one mole of gas

R RT
p= V(To+aV)- V= oR

Vz V2
RT,
Now A=fpdV-f —v—+aR dV (for one mole)
Vl Vl
|4

AU = cv<:r2- T)

- Cv[To +a V2 - To a Vl] = GCV(Vz - Vl)
By the first law of thermodynamics Q= AU +A

oR V2
1

1 T 1 22
= aR(V,-V) 1+Y—_—1- +R oln-‘Tl

v,
= aC,(V,-V;+RTyIn ==
Vi

v,
= an (V2—V1)+RToln-‘7;
RT dV

Heat capacity is given by C= Cp, + = v 4T

(@) GivenC= Cy,+aT
RT av a dav

var™ RTV

So, Cy+al=Cy+— v

Integrating both sides, we get ST =V +n Co = In VC,,C, is a constant.

R

Or, V-Co= e or V-e®TRa Cl-- constant
0

b)yC=C,+BV
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RT av RT dV
and C=Cy+ v ar 5 CVV dT-CV+BV
RT 4V _ av_pdr ~2_dl
or, v ar =BV o V2=RT0r,V=T
-1
Integrating both sides, we get — B {;’ =InT+InCy=In T-C,
Com - B T.Com o RV -rpv 1
So, nT-C, BV T-Cy= e o, Te Ce constant
(c) C=Cy+ap and C = CV+£VZ%,
RT av RT av
So, Cy+ap= Cy+ var % PV ar
RT RT dv R
or, =Y dT( p= for one mole of gas)
or, ﬂ-a or, dV= adT or, dT-Q
dr a

So,T= g+ constant or V - T = constant

2.56 (a) By the first law of thermodynamics A = @ - AU

or, = CdT - Cy,dT = (C - Cy) dT (for one mole)
Given C--(-;.-
w7,
a nT,
So, A=) [%-c,|dT= aln——"-C,(n Ty~ T)
T T,
TO
-mlnn-CvTo(n-l)-odnn+Y 1(11 1)
dQ RT dv
® C=+or=Va*
1 (_l.) —R;]—..d—v-g
Given C= T S0 Cy+ Var- T
R 1 dV «
or, ;_——IRT+ V-RladT
v «a 1 dr
or, V-RIQdT-Y-I. T
vV a(@y-1) dT
or, y-1) R dT - T

Integrating both sides, w
nicgrating ! SVhloaded From : www. EasyEngineering.net
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(y-1)InV= -a—(;%u—lnTﬂnK

or,
-1 L _ -oy-1)
or, InV X RT
v-1.pV _-o(y-1
WV RK™ T v
or, };{_z_, Y
aly-1)/pV
or, pv'e = RK = constant

The work done is
v,

A-fpdV-f( - V2)dV

V—b
= RT In +a(—l——L)

V,-b

(a) The increment in the internal energy is

1A

il
- [ (39) av

i

But from second law

Y _ (85 _,- () -
(3 7(&) = 73R,

RT a
On the other hand p= V-p" V"-
o\ _ _RT U _a
o T (ar)v v-p V|~ V2
1 1
SO, AU = a (Vl Vz)
(b) From the first law
V,-b

Q=A+AU=RT In

V,-b
(a) From the first law for an adiabatic

dQ=dU+pdV=10
From the previous problem

3 U
dU = (a;’,)vdT (av) dV= CydT+ 24V
So, 0= Cyar+ XLV
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This equation can be integrated if we assume that Cy, and b are constant then

R dV d R
CVV 5 T-O or, 1nT+CV1n(V—b)-constant

or, T (V-b)?a constant
(b) We use

a

Now, dQ = CydT + - av
RT (aV
So along constant p, Cp=Cy+ 7o b(aT)
RT (aV RT a
Thus Cp-Cv= V_-E(aT)p’ Butp= v 5V
: RT 2a V) . R
On differentiating, 0= |- ——
y ( (V-b) VZ)( ) V-b
o T(_QZ) RT/V-b V-b
’ - = )
o), _RT 2_2_«; ,_2a(V-b)
V-5 V RTV?
R
and C. -Cim SZLL20
P _2a(v-b)
RTV?

2.60 From the first law
Q= U;-U;+A= 0, as the vessels are themally insulated.
As this is free expansion, A= 0, so, Uf =U;
2

But U= vCVT—E-VV—
a a -aVyv
So, Cy(T;-T) = (V1+V2-Vl)\'- AR
—a(y-1)V,v
or, AT = .L)__z__
RV, (V;+V,)

Substitution gives AT = —-3K

261 Q0= Uf— U+A=U;-U, (as A = 0 in free expansion).
So at constant temperature.

0- -avz_(_ﬂz)_ 2V

v, Vi'V,

= 0-33kJ from the given data.
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2.3 KINETIC THEORY OF GASES. BOLTZMANN’S LAW AND
MAXWELL’'S DISTRIBUTION

2.62 From the formula p= nkT

213

2.63

2.64

2.65

2.66

2.67

ne P 4x1077x101x10° s
kT~ 138x10-2x300

= 1x10" per m® = 10° per c.c
Mean distance between molecules
107 %¢cc)P = 10*x 10" %cm = 02 mm.

After dissociation each N, molecule becomes two N-atoms and so contributes, 2 x 3 degrees
of freedom. Thus the number of moles becomes

m mRT
M(l +m) and p= MV (1+m)

Here M is the molecular weight in grams of N,.

Let n, = number density of He atoms, n, = number density of N, molecules
Then p=nm +n,m,
where m; = mass of He atom, m, = mass of N, molecule also p = (n; + n,) kT

From these two equations we get

- (2 _ / f i
™ (kT m2) (1 m,
='nv><2mvcos(3><dAcos9
p dA
= 2mnv?cos’0
From the formula

If i = number of degrees of freedom of the gas then

C,= Cy+RT and Cy= ~RT

2
C
y--é,‘-1+-27 or i==——-2~—1-= 22
v ! Y= v _ 4
p

_IE .\ ET AT
Vyound P M and v, p oM
and l - l+2
50 v V3=V

ms
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(a) For monoatomic gases i = 3

Yot L \f2 2 075
Vims 9

(b) For rigid diatomic molecules i = S

Vim 15

2.68 For a general noncollinear, nonplanar molecule
mean energy = %k T (translational) + %kT (rotational) + (3 N - 6) kT (vibrational)
= (3N - 3) kT per molecule
For linear molecules, mean energy = %kT (translational)
+ kT (rotational) + ( 3N - 5) kT (vibrational)
= (3 N- %) kT per molecule

Translational energy is a fraction 1 and 1 in the two cases.
2N-1) 5
2N - =
3
2.69 (a) A diatomic molecile has 2 translational, 2 rotational and one vibrational degrees of

freedom. The corresponding energy per mole is

%RT, (for translational) + 2 x %RT, (for rotational)

+ 1 x RT, (for vibrational) = %RT

7 S 2
Thus, Cy= 2R, and y= CV= 7 |
(b) For linear N- atomic molecules energy per mole

= (3N - %) RT as before
S 6N -3
= -_— - ——— N

So, Cy=|3N 2)R and y 6N -5 1
(c) For noncollincar N- atomic molecules

3N-2 N-2/3

Cy= 3 (N-1)R as betore (2.68) y= N—3~ N1

2.70 In the isobaric process, work done is
A = pdv = RdT per mole.
On the other hand heat transferred Q = C, ar

d

Now C,= (3N - 2) R for non-collinear molecules and Cp = I£3N -2 R for linear molecules
asyEngineering.net
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2.72

2.73

2.74
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1 non collinear
A |3W-2 tnea
Thus —-
Q 3 linear
3N - E
F S A 2
or monoatomic gascs, ¢, = > and Q—- 5

Given specific heats ¢, , ¢, (per unit mass)

R
M(cp—cv)-R or, M= s
c 2c,
Also y= L= 241, 05, im 2w
c, i %, c,-c,
cV
J 29
@ €= 2K mole = 837
20-7 29 7
Co= g3 R y=gp7=14=5
i=35
(b) In the process pT = const.
T? dT _dv
V=const, So 2T-V=0
This  CdT= C,dT+pdV= CydT+5Lav=cydT+ —T—dT
9 124 3
or C-CV+2R-(83)R So Cy= 83R= 2R
Hence i = 3 (monoatomic)
Obviously

1 3 5
REv=3Nt3n

(Since a monoatomic gas has C,, = éR and a diatomic gas has C}, =

2
molecule is rigid so no vibration])

1 3 5
G =Ntz tNntyn,

A A
Cy 3y,+5y,

The internal energy of the molecules are

Hence

U= %mN<(t7—v 2> = }-mN<u2—v2>

Downloaded From : www.EasyEngineering.net
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2.75

2.76

2.77
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where V= velocity of the vessel, N = number of molecules, each of mass m. When the

vessel is stopped, internal energy becomes %mN <u®>

So there is an increase in internal energy of AU = %—mN v2. This will give rise to a rise

in temperature of

%mN v
AT= ;
ER
- mN v*
iR
there being no flow of heat. This change of temperature will lead to an excess pressure
RAT mNV
=Ty T
and finally & A;v; =22%

where M = molecular weight of N, i = number of degrees of freedom of N,
(a) From the equipartition theorem

- 3 _21 v 3kT \/ 3RT
e-ikT-6x10 J; and v, = =, M = 0-47 km/s

(b) In equilibrium the mean kinetic energy of the droplet will be equal to that of a molecule.

1x 2 3 VT
6d3pv,m 2kT or v, =3 7 0-15m/s

nd p

Here i= 5,C, = iR y= -57-gNen

1/3RT 1 3RT 1
M n ’m-’l’] M or T-nzT

Now in an adiabatic process

TV' 1= TV¥ = constant or VT“?= constant
1 0\ . . .
V'(—ET) =VI? or Vn =V o V=1V

n
The gas must be expanded ‘r]i times, i.e 7-6 times.

Here Cy= é—-——R (i =S here)

m= mass of the gas, M= molecular weight. If v, increases 1 times, the temperature will

have increased nztimes. This will require (neglecting expansion of the vessels) a heat flow
of amount

R(n*-1)T = 10 KJ.
Downloaded From : www.EasyEngineering.net
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2.78 The root mean square angular velocity is given by

%I w’= 2x %kT (2 degrees of rotations)

or W= Z’;‘_Z = 63 x 10" rad/s

2.79 Under compression, the temperature will rise
TV'~ ! = constant, TV>* = constant

or, T (™ V)¥=T,V¥ o, T=n*"%T1,
So mean kinetic energy of rotation per molecule in the compressed state
- kT = kTyn™ = 072 x 10 ]

2.80 No. of collisions = -‘lin <y>= v

Now V_w o> 1T
’ v n<wx> YT
(When the gas is expanded m times, n decreases by a factor n). Also
. . 3 ] : -i-1
T V=TV or T=nT so, l:’-- %n'l/'- ni

i+1
i.e. collisions decrease by a factorvy i ,i = 5 here.

281 Ina polytropic process pV" = constant., where n is called the polytropic index. For this

process
pV"= constant or TV" 1= constant
dT dv
—TT-O-(n—l) V-O
Then dQ=CdT=dU+pdV=C,dT+pdV
i RT i 1 i 1
= 2RdT+ VdV= 2RdT—n_1RdT- (2—n_1)RdT
i 1
Now C=R so 2_n—1=1
1 i—1= i=2 or n-—i—-
or n-1_2 2 i-2
n-1
N v ro> 1T _1(V)?2
ow v n<v> VYT qlVv
1 i-1
1(1\i-2  (1\i-2 =izl 1.
- ;I-("l) = " = 17-2 times = .5 limes
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2.82 If a is the polytropic index then
pV°= constant, TV*~! = constant.

v_rnws V. JTT vrV2

Now v on <> V T =V'T'V2=1
1 1
Hence a-1- "2 or a= -1
iR R
Then C = > +2-3R

283 v = VEL _fBL /2 . 045 kms,
P m M P
V= ‘/ﬁE. =-51km/s and v, = -V§£. = 0-55 km/s
xp P

2.84 (a) The formula is

df (u) = 4 uze"‘zdu, where u= —
Vn v
1+d7n
v-v
Now Prob ('—TLI<6n)=f df (u)
P
1-dn

4 2 5m = 00166
= 7= 'x28n= —0n = 0:0166

vr vr
F v v
() Prob 2= P <dm |=Prob | | X - | <§m =
Vims » Vp Ve
-Prob( u—‘v% ‘< %Gn)
3
Vz+V3z on
= j—uze'" du
n
3 3
Vz-V3z3n
4 3 _in 3 12V3 _ip
= — X = 2 —dn= —e on = 0-0185
< 2° 7%V 2 Van i
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285 @ V=V, = (V3-V2) V% = Av,

2
m Av
T= 7(-(-—‘/3_—_«2?)-) JK = 384K

(b) Clearly v is the most probable speed at this temperature. So

/2T mv?
- =V or T- 2% = 342K
286 (a) We have,

2 2 2 2
V! 2,2 v 2 1% 2 2,2 vy =V
Le /Y. 2 -vz/’ or ( l) =e"™% o Va -——2kT- 12

o vy vy 2 m (In vf/v%)
m V
So Te ——2% mi-v) 2) = 330K
V
2kln—-—
v;

4V e 11 dv
®) F(v)= S 7e x> (Vp comes from F (v)dv=df (u), du= S )

Vp P I
2 2 2 2kT, 24T,
v v/ 2 v /v, 0 2
Thus ——e ""r=v¥/v e /" V¥ = —2 2 = %y now
v ! 2, VT T BT T,
Py

2
mv (1 1 mv? 1 3
s 1
e~ %uT === of ——|1=-=|= =In
u( ") 7}3/2 2kTo( Tl) ) n

- 0 Inm
Thus v v V T-1/m
287 V= '”N

My
\/;R;z Vi )
Vo, = Ve, = Av= M, (1 - M,
M, (Av)? my, (Av)?
T= w (&) 5=  (4) 5 = 363K
_\/__MN _\/Tﬂ )
2k (1 M, ) 2k(1 M,
2.88 V2 -Vz/Vz V2 —vz/vz v ’Z"-”_'; M.
o —e = ——e e O € =
P Ve, M
H He
Inm m
V= 3kT Tﬁig , Putting the values we get v = 1:60 km/s
H ~—""H

e
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Navav Ak
I 2 ¢
v,
For a given range v to v +dv (i.c. given v and dv ) this is maximum when

S NG .
dv, Nvidv

2.89 dN (v)=

&V ) - vz/vz
6
Ve
3kT 1
3

3.2
or, V= -Z-vp- o Thus T=

'”_
k
290 Py 2mv dv, dv,

2
- 2 2
Thus dn(v)= N(2 kT) e w(vx+vl)dvx2nvj_dvj_

291 <v,>= 0 by symmetry
o0 A -] 2 L4 2 *° 2
my_ -my -mv_ %
<|Vxl>=f IvJe‘ﬁdvx/feur dvx=fv,em dvx/erkT dv,
- 0 0 0
2 2
- V—ZH fue'“ du/fe'“ du
m
[} 0
_‘/ dx
f -xdx/f -X
V r(1)/r( ) V 2T
sz ®
2.92 <v:>=fv e gy /fe 2"‘dv
0
Zka -x dx f -x dx
== xe* — e
™ 2\/;/ 0

)R-

2.93 Here vdA = No. of molecules hitting an area dA of the wall per second

0

-de(vx)vdi
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® 2
- o FT
or, 1% fn(ZukT) v dv,
0

"

l 2kT = l n <v>
) "V omx ma - "V 2m n 4 ’
dA
( ST )
where <v> = —_
mx
m 12 2
-mv /2kT
294 Let,dn(v)=n (2 - kT) e dv,

be the number of molecules per unit volume with x component of velocity in the range
v, o v, +dv,

Then p= f 2my -v dn(v)

-j: 3(

4 f _x dx
= —nkT- | xe
Vol Sy

5 372 2
1 m mv_ 1
<v>-f(2nkT) e T 4> dv
0

32
-( m ) 47:12,(-I e *dx

2 m
0

2 172

o N (2m N7 (16 mm) 4
2 n kT kT 2 8kT wer>
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32 2
2.96 AT 4y - -AE
dN (v) = N(ZJ(]CT) e 4nv dv=dN (g) 2 de
32
dN (¢) m - mV/2RT 2dv
or, e N(anT) e‘ 4nv s
dv 1
Now, s-zmv2 o &= my
3/2
dN (e) m - e/T 2 1
o de N(anT ) € 4m m m
- NVZ" (T) =32 ¢~ 12
n
ie. dN ()= N==TkT) 2 e=** 12 g¢
\/—

The most probable kinetic energy is given from

d dN (g) 1 -v2 —enr_ 2 ar 1
E 7 -Oor, ie e kTe =0 or 88-2-,(T-€p,

: - 1 / kT
The corresponding velocity is v = el

2.97 The mean kinetic energy is

3/2 - e/HT V2 - T rer2) 3
<s>-fe ds/f de = kTI‘(3/2) kT
0
Thus
%(uon)u
ON 2 372 _-e/iT _1/2
—= —(k e e’ “de
N f 7= D
;—kT(l-bn)

32
- %e'yz(%) 286m=3 V% e3/2t‘m

If 81 = 1% this gives 09 %

2.98 ’TVW. Vi_(kn‘3”f Ve e ¥de
t

-~ %(k]’)'y2 \/;;f e'wrds(eo»kT)
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- 72; (kD)= ¥*Veg kT e~ = 21 /% oM

(In evaluating the integral, we have taken out Ve as \/Q since the integral is dominated
by the lower limit.)

2.99 ( a) F (V) Av 3 -mv'/%T
For the most probable value of the velocity
W) 0 or 34V2e ™7 _4 )32y e AT _

dv 2kT
3kT
S0, w=Vm

This should be compared with the value v, = V %’;—T for the Maxwellian distribution.

(b) In terms of energy, € = %mvz

F(E) AV3 —mv/2kT dv

de

e 2me m?
From this the probable energy comes out as follows : F' (¢) = 0 implies

gA;-(e"/"r—ie“"”)= 0, or, g,= kT

_A(2E) VN 1 =A - VM

2 kT

2.100 The number of molecules reaching a unit area of wall at angle between 6 and 6 +d06 to
its normal per unit time is

V= 0O

dv-f dn (v) é—gvcose
4n
ve 0 &

2
-fn(2:n:kT) e ™ 23 dysin0cos0dOx2
0

12 12
-n(ﬂ) fe"‘xdx sinecosedesn(%z) sinBcos0d0
mx mx
0

2.101 Similarly the number of molecules reaching the wall (per unit area of the wall with velocities
in the interval v to v + dv per unit time is
0= x/2

dv-f dn (v) % vcos 0

-0 N
Downloaded From : www.EasyEngineering.net


http://Easyengineering.net
http://Easyengineering.net

224 Downloaded From : www.EasyEngineering.net

0= n2
m 32 . ,
—mvz2ld .
n (2 J'leT) e v’ dv sin® cos0 dO x 2n
0=10
m 372 .
= —-mv /2kT 3’,
n (2 nkT) € v

2.102 If the force exerted is F then the law of variation of concentration with height reads

n(Z)-noe‘m”‘T So, n-eFWkT or F-%-QxlO’mN

2.103 Here F= J—':'daApg- RTlm or N = 6RTIn
6 Nah ¢ ﬂdsgAph

In the problem, -'T!‘L = 1:39 here
o

T=290K, n=2 h=4x10"m, d=4x10""m, g=98m/s?, A p=02x 10’ kg/m>
and R = 831 J/k

Hence N = 6 %831 %290 x1n2
» MaT Tx64x98200x4

x 10% = 6:36 x 10 mole ™}

concetration of H. -M, gh/RT
2 e TH, ™M, -M, )
- = =1,e" N H’gh/RT
concentration of N, "o e~ M, ~ VAT Moe T &

2-104 'rl =

So more N, at the bottom, (-Y?- = 1.39 here)
o

2.105 nl (h)= nle_ lgh/b

s my () = mye™ "

n
They are equal at a height & where ;1-- & (m - m VAT
2

kT Inn; -1nn,
g m-m

or h=

2.106 At a temperature T the concentration n (2 ) varies with height according to
n@ )= nye "

This means that the cylinder contains f nz)dsz
0

n, kT
=fnoe"'"‘”‘r dz = —
mg
0
particles per unit area of the base. Clearly this cannot change. Thus ny kT = p, = pressure

at the bottom of the cylinder must not change with change of temperature.
Downloaded From : www.EasyEngineering.net
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fmgze"’"z”"dz fxe'”dx
0 0 F(Z)
<U> = > kL M r e KT
fe""‘””dz fe"‘dx
0 0

When there are many kinds of molecules, this formula holds for each kind and the

average energy
. kT
<Us> = Ef‘—- kT
> fi
where f; a fractional concentration of each kind at the ground level.

The constant acceleration is equivalent to a pseudo force wherein a concentration gradient
is set up. Then

e MAWVRT _ 1
_ RTIn(1-m) nRT _
or w= - M, 1 —MA1—70g

In a centrifuge rotating with angular velocity w about an axis, there is a centrifugal acceleration

w’r where r is the radial distance from the axis. In a fluid if there are suspended colloidal
particles they experience an additional force. If m is the mass of each particle then its

. m . Y/
volume is ; and the excess force on this particle is

m . . m
F (P -pp) w’ r outward corresponding to a potential energy - E(p - Po) w’r?
This gives rise to a concentration variation

n(r)= noexp(+2-‘-)%(p_po)m2rz)

n (ry) M 2(2
Thus ”(rl)-n-exp(+2pRT(p-p0)w (rz—rf))
where %= %, M= N, m is the molecular weight
Thus 2pRTInn

(p-pg)@*(5-1)
The potential energy associated with each molecule is : - %m o’

and there is a concentration variation
()= noxp [T o n exp [MOET
= "0 p 2]( 0 p ZRT

Thus ex Mo P or VzRTln
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Using M= 12+32=44gm, I= 100cm, R= 831 x 1077;%,T 300,
we get w = 280 radians per second.

2
2.111 Here n(r) = nyexp (.. %’F

(a) The number of molecules located at the distance between r and r +dr is

P
41tr2drn(r)- 4nn0exp( kT)r dr

®) r wgwenbydir n(r)y=0 or, 2r—2-l:1]£_i-=0 or rrav-kaz
(c) The fraction of molecules lying between r and r +dr is
dN 4n Pdr ngexp (- ar2/kT)
N~ =
f anrtdr ng exp (- ar*/kT)
0

f4:trdrcxp( )("T) 4:\:f V.exp(-x)

372

(5 2@ ()

372 2
dN a r
Thus N (m) 4nr drexp( kT)
a \7? ar?
(d) dN = N(m) anrtdr exp(kT)
V2 ar’
So n(ry=N ( kT) exp ( T )

When T decreases m times n(0) = n, will increase 1]3/2 times.

2112 Write U = \/— dr = \/—
nte = r or = SO y =
¢ A WU 2V

U dU U

s0 dN=ngdn———— =
Mt e avar P (kr)
=2nnya ¥ U2 exp (_-kT du

The most probable value of U is given by

d (dN 1 U2 1
w(ﬁ)'o’(m' AT )ex"(k;j) on Up=2M

From 2.111 (b), the potential energy at the most probable distance is kT.
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2.4 THE SECOND LAW OF THERMODYNAMICS. ENTROPY

2.113 The efficiency is given by

I,-T,
n= T, T,>T,
Now in the two cases the efficiencies are
T,+AT-T, I q
Ny = —W, ; increase
T,-T,+ AT
;= ———, T, decreased
T,
Thus Ny<n
7
2.114 ForH,, y= =
3 Al

PVi=pVy P3Vi=p,V, Q{

P Vy=ps VY, pVi=p, V] PZKZ
Define n by V;= nV, de
Then p;= p,n”~" so Pu,Vu K.

- - : 3V3
1’4Va'Pa,Vs'szz"1 y'171"1”1 i 2 -
psVi=p V] so V41 V= V1 Tpl=Y or V,= nV;

Vi . Vs
Also O = szzl“ Qz psVsIn=n"""=p,v,In—
vV, Va
Finally n= 1_%= 1-nl"7= 0242
1

(b) Define n by p; = 1—:;2-

p V)= 1—:13V37 or V= n"V,
So we get the formulae here by n —> n'"

vy)-1 ‘
e 1-n 1o % - 018

in the previous case.

2.115 Used as a refrigerator, the refrigerating
efficiency of a heat engine is given by

_Q_z_l_ Qzl Q2 / Ql 1-m
€ A 0.- Qz Q_z' n 9 here,

where 7 is the efficiency of the heat engine.
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2.116 Given Vy;=nV,, V,=nV,
Q. = Heat taken at the upper temperature
= RT\Inn+RT,Inn=R(T;+T))Inn

1
y-1

1

. T\r-! T\~
Similarly  Vs= -1.—3 Vi, Vo= 5:3- \4

-~

Now T,V) '=T,v}™' or V3-(

Ry

=
—

—

Vv
Thus Q, = heat ejected at the lower temperature = — RT; ln-‘—;—s-
5
AL 1
Ry (270 prin(B)T
BRI VY I it VY nV,
1
RT;1 AR NEARES 2RT,1
= - n |—= = = nn
\R) A\n :
Th 125
- i —T1+T2
' CV
2117 Q= Cy(T,-Ty) = ”E‘Vz(Pz -p3)
C'V
o= 'E'Vl (P, -py) /%VI
P,
Thus n=1 ——-————V2 (P, = py) z,Vz
Vi -p)
On the other hand, 1 Y ‘
¥ Y v Y Q —_’Qz
6p,Vi=p, V), p3V; = p, V] also V,=nV, By
y y M BYs
Thus p, = p,n", py= p3n 52
and n=1-2'"" with y= %for N, this is n = 0-602
S .G
2.118 O, = RPI(VZ-VI)’ Q= R P (V3-V))
V-V,
So = 1_!_’2_(,1.___1). %V/ |Q1 X0
p(V,-V) 1{ Y2

1

Now p, = np,, p; V] or V3= nyV,
1

pVi=p V] or Vi=n1V,

|
1 1, [’2)’/4_ &Qé

so M= 1-%- nY=1-nv

Pz}_’;
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2.119 Since the absolute temperature of the gas rises n times both in the isochoric heating and

2.120

in the isobaric expansion
py=np, and V,= nV,. Heat taken is

Q1= 02y +0Q1
where Q= C,(n-1)T; and Q= C, T, (1 -%)
Heat rejected is I/ 7]')3
Q= Q' +Q',, where AV ,Q7l
1 ’ v’ A e
Q=CyT,(n=-1), Q' = CPTI(I—;
V—-}Q’
C,(n-1)+C (l‘l) 2 A w
Q12 \74 - P n
Thusm=1-—"=1- 1 '
1 _ _1 <
Cp(n 1)+Cv(1 n) le’ ¢Q' Rz}V;
. (t/ny 2 7
Y
n-1+y(1—z] 1+n n+
=1- \ { =1- 1 = 1—-1—+—'YtY—
y(n—l)+(1—;) Y+
(@) Here py=np,, pyVi=p, Vs,
np Vi=po Vs %emp 71 %o
, Vo
Q= RToan, Q0,=CyTy(n-1)
1 Q
-1 1
But nVl’"ls V(;"l o, V;=Vynr-1
L RT, Al Fofl
Q’2= RT()]II”Y—I = Y—]_ Inn : f 1'507‘/707'777(1[
' Q2 (Bmpr)
Inn >
Thus n=1- on using C,, = -
n-1’° voy-1
(b) Here V,=nV,, p; V= p,V,
and p (V) = p, V4
ie.n'VI taVt™l or V- ﬂ_v_z—lVo
’ Vo QI
Also 0, = C,Ty(n-1), Q' = RTomvl ) /Pr,Vz,Tﬂb
34 ;
achabatic
or Q= RTylnny-1= Y—R-YTTolnn= C,Tylnn | 70
Q
o q_Inn isotherma(l 247
Thus n l-n-l g 975
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Here the isothermal process proceeds at the maximum temperature instead of at the minimum
temperature of the cycle as in 2.120.

%,%0%  jothermal (Roloe)
QAT Q&
P Ssochor ' isothermal
0, aduabatic
adiabatie ™~ /h’ i ~__ (A1)
@ v > (2 o

b)
P
(a) Here p, V= pyVy, p2- —

p2Vi=p, Vo or p, Vi= npy Vg
1

ie. Vitla avi™! or V= Vyny-1
/ 1 Vi RI
Q2= CvTo(l—;), ng RToln“;(;’ Y_llnn" CVTolan
Q' -1
Thus n= I—Q—l l—nlnn

V.
(b) Here V, = —n—l,povosp 174
poVJSPI sza pln—YVi{ - ‘/(l)_ln“lvly—l or V]’ n(y/y-l)Vo
’ 1 VL R
QZ’ CpTo(l-;); Q1= RToln70= }—-LTolnn= CPTolnn

n-1
ninn

The section from (p,, V;, Tp) to (p,, Vo, Ty/n) is a polytropic process of index o We shall
assume that the corresponding specific heat C is + ve.
Here, dQ = CdT = Cy,dT + pdV

Now pV®= constant or TV®~'= constant.
RT R isothermal
sopdV= Sy dv= - 34 Ao
R 1 1 Po{y[rqoic of
= — = d /
Then C= Cy-——7 R(y-l a—l) ’ Qs indexd
RT, p,V L y
We have p, V,=RTy=p,V,= —-'-’2- --1’-;—1 _PZ; 2,75/71

v
Vo= P Vi=np, Vo po Vo= P, V3,
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1
P1 Vla-pz\V; or Vg_lﬂ %sz_l or V2= Von;___T
-1 1 1 1 i S U
v -;Vz‘" or Vi=n"a-1V,=ny-1 a-1V,
Now Q'; = CT, 1-1 Q‘RT]I\‘YL"RT . Inn= CT,Inn
2 0 np =1 0 VO 0 Y'l a-1 0
n-1
Thus n=1 “nlnn
Pal%lﬁ v
3.271' F.';VO;W7
\ adiabatic Q v
QI——’ —1= 8y
| adiabatic ~_
H;Vm% 7 ¢Qi’ ByTthe, T Po,Vo,To

; T, 1 T,
(a) Here Q',=C, Tl_; =C,T, 1—;, Q,=Cy To—-n—
Along the adiabatic line

T Vi l= T,(n V)" or, Ty=T,n'""

T, n-1
S0 QI-CV—n—(n’—l). Thus m= 1-%#

(b) Here Q',= C,(nT,-Tp), 0,=C, T, (n-1)
Along the adiabatic line TVY™'= constant

AN
T,V =T, (7") or T,=n""'T,
n'-1
Th 2] e—
* " yn'" l(n-1)
nH, Vo &
0,_n__7b | o NP0, Vo, Ton
Y Vi
—r Q2
"
=RTc
PDn Vgﬁ 7-0 QZ OZHFI IDO, VO,T-O

(b) L
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(a) Q2=C To( ) Q"= RTylnn, Q' = C, To(l‘_), Q,=0,+0Q",

1
o cp(l‘;)
So n= 1- 2 1-

2 Cv(l—l)+Rlnn
n
= 1— Y - 1_ Y(n—l)
R nlnn n-1+@-1)nlnn
1+ ———
Cyn-1
®) 2= Cp To(n-1),Q",= CyTy(n-1) Q",=RTylnn, Q', = Q",+Q",
o, n-1+@-1Inn
SO = 1———: 1—
K 1 y(n-1)

2.125 We have
Q'y=tRTylnv, 0",= C,T,(x-1)Q,= Q'+ Q" and
",=RT,lnv, Q" = C,T,(x-1)

aswell as O, =Q,'+Q," and

Q2!=Q2H QNI
QZ Cy(t-1)+RInv
0,V TC, k- +tRInv

A 1+lnv
y-1 _ (-1Dinv

T -

So n=1-

sl_

+tlny  tinv+=
y-1 y-1

2.126 Here Q," = C,T, (t-1), Q'1" =TRTnn and
Q,"=CT(x-1), @, =RT\nn

in addition to we have

Q,=0,/+Q, and

Q2I=Q2H+Q2IH nPO
! C(t-1)+RInn

So m= 122, &ED
(o} Cp(t—1)+tRlnn

1
T_1+(1—?)lnn

T-1+ 1—l Tinn
Y

1
1-=|Inn
-l_t 1+( Y) - (t-1)Inn

T—1+(1—$ Tinn tlnn+y%)-

=1-

Q’é \p,
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2.127 Because of the linearity of the section

2.128

2.129

B C whose equation is

)

114
= — = al)
P VY (=p

T
We have ‘;s vV or v= \/t_

Here Q",= C,T,(Vx -1),
Q"= C,T, (1 - \/1_) e ELV =N

_T‘;(\/?-l)(u%)

rrhus le = Ql!2 + Qlu2 =
Along BC, the specific heat C is given by

CdT= C,dT +pdV = C dT+d( av2) ( %)

1, y+lx
Thus Q= 2RTY 1 ‘/;
‘ Vi+y 1 y-1) VTt -1)
: _xX2_ 4 Y Y-
Finally — m=1 0, 2 iy G+1) (VT +1)

We write Claussius inequality in the form

fee-foe-

where 4'Q is the heat transeferred to the system but &, Q is heat rejected by the system,
both are +ve and this explains the minus sign before &, Q,

In this inequality T, >T>T_  and we can write

[ae_[ae,
Tmax Tmm

Ql Q’Z Tmm Q,2

Thus —<—=— 0O —<—
Tmax Tmm Tmax Ql
Ql Tmax carnot

We consider an infinitesimal carnot cycle with isothermal process at temperatures
T+dT and T.

Let 84 be the work done in the cycle and 30, be the heat received at the higher temperature.
Then by Carnot’s theorem
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1
o _ar Prdp |- &
80, T 4 SESEEEE m
9 14

On the other hand dA = dpdV = (ST) ardv
\4

while 3Q, = U12+pdV-[(g—g) +p]dV
T

au\ (%
Hence (aV)T+P T( )

aT |,
(a) In an isochoric process the entropy change will be
T
CydT T R1
AS f T CvlnTi Cylnn y—1
T,
For carbon dioxide y= 1-30
50, AS = 19-2 Joule/°K - mole
(b) For an isobaric process, /]
T \ - 1sotherm
AS= C.In-l=C Inp= 1RIOR Vaa
7T, 4 y-1 \
\
= 25 Joule/°K ~mole ¥ \,
\
\
In an isothermal expansion ‘\
1% N
AS=vRIn "“/‘? - \\\
Vv
S0, T,f-= e25"R = 2.0 times 2132

The entropy change depends on the final & initial states only, so we can calculate it
directly along the isotherm, it is AS= 2RInn = 20J/°K
(assuming that the final volume is n times the inital volume)

If the initial temperature is T, and volume is V| then in adiabatic expansion.
v-1 1-1
TV' =T,V

1- Vi
50, T=Tyn "'=T, where n= —
Yo
V, being the volume at the end of the adiabatic process. There is no entropy change in
this process. Next the gas is compressed isobarically and the net entropy change is
T,
m 4
( M Cp) In T,
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v, V,

Vo
But —_—= — 0
u T, Tj’ or Tf T, Ton

v,

m 1__m ____Y_ -
So AS (MCP)]nn MCP] n My- Inn 9-7J/K

2.134 The entropy change depends on the initial and f po, Vo ,727
final state only so can be calculated for any
process whatsoever.

‘We choose to evaluate the entropy change along Y
the pair of lines shown above. Then

_0 aT,

B B > .

ar Ao '
f f » T )V, To &’ LVo, & To
ﬂ ﬂ ) 7 e
T, .1, B B
B
VR Joule

=(-CylnB+C,na)v= Y_l(ylnot-ln[.’;)-w—11 K

2.135 To calculate the required entropy difference we only have to calculate the entropy difference
for a process in which the state of the gas in vessel 1 is changed to that in vessel 2.

Tl Tl
oS8 f v T f
uﬁ P’)VI)TT

= v(C,Ina-Cylnaf)

v(Rlna-Y%h{ﬁ)= vR(lna-M)

y-1

With y= i,a=23nd B=15v=12 .

X i pr i V&T

this gives AS = 0-85 Joule/°K &3 JV1’o[ﬂ

2.136 For the polytropic process with index n
p V"= constant
Along this process (See 2.122)

- 1 _ 1 n-y
¢ R(v-l n-l) G-Dr-1 X
tTo
So As= | cLo =Y g
T -D(r-1)
TO
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2.137 The process in question may be written as

p

PV
where o is a constant and p,, V,, are some reference values. For this process (see 2.127)
the specific heat is

1
c=cy, +—R R(Y_—1+2) 2Rh

Along the line volume increases o times then so does the pressure. The temperature must
then increase o ’times. Thus

azTo
AS = f Cgz VR:Y-——-]not = vRX—'-"—l-lna
T 2 y-1 y-1
T, °
if v= 2, y= %,a=2,AS=46-1Joule/°K
2.138 Let (p;, V,) be a reference point on the line

p=py-aV
and let (p, V') be any other point.
The entropy difference

AS= S (p,V) -5 2y, V) N
y4 | %4 po-aV |4
=CyIn—+C In—= Cyln +C In —
v pn W 4 by Vi Y
For an exetremum of AS
@A o Sl AV

WV  pp-aV'V (PM)

or C,(pp-aV)-aVCy=0

Y Do

aly+1)
3> AS
This gives a maximum of AS because e <0

or Y(pp-aV)-aV=0 or V=1V, =

(Note :- a maximum of AS is a maximum of S (p, V))

2.139 Along the process line : S= aT+CyInT
or the specific heat is : C = T:;S—T- alT+C,
On the other hand : dQ = CdT = C,,dT + pdV for an ideal gas.

Thus, pdv = ﬁvdeska‘TdT
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or R;d—V- dT or, ﬁln V + constant = T
aV a
. : R V
Using T=1T, when V=1V,, weget, T=T,+ _an
0

For a Vander Waal gas
a
+—|(V-b)= RT

The entropy change along an isotherm can be calculated from

2
as
os= [ (%)
v, T
It follows from (2.129) that

() () -
V). \oT}, V-b

assuming a, b to be known constants.

V,-b
Thus AS = Rln Vl—b
VZ’TZ Tz VZ
Weuse,AS-de(V,T)s o dT+fiS— av
oT v 1'1% T
Vl'Tl T, t Vl z

1

Tz v2
C,dT f R T, V,-b
.f T + Vb dv = CV]“T1+R]“V1—b

Tx Vl

assuming Cy,, a, b to be known constants.

We can take S — 0 as T— 0 Then

T T

ar _ 2 gro L 73

S-fCT faT dar 3aT
0

I,
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2.144 Here T=aS" or S= (%)n

2.145

2.146

2.147
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1

n
Then C= Tl I T = S
n a n n
Clearly C<0 if n<0
We know,
. 74 C>0
cdT T
S-8,= T = Cln To
TO
assuming C to be a known constant. fo
S-S,
Then T= T exp ( C ) €<0
as __a >S
) 0= deTs aln—-
T,
(c) W= AQ-AU = alnT—2+CV(T1—T2)
Since for an ideal gas Cy, is constant 74 Q
v 1
and AU = C,(T,-T) SoTo SiyTo
(U does not depend on V)
(a) We have from the definition Y
Q= f TdS = area under the curve
/
2
Q1= T, (S, -Sp) q S],TI
, 1
Q2=§(T0+T1)(51“So) >3
T
Thus, using T, = _ng’ A
1+ 1
- _ TO* Tl _ _ n _ n-1
" 27, 2
1
(b) Here Q, = 5(51 -S) (T, + Ty
Q= T, (S, -Sp) <
2, T,-T, n-1 SoTr N SiyTi
‘n = 1 - = = QZ
T,+T, T,-T, n+1
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In this case, called free expansion no work is done and no heat is exchanged. So internal
energy must remain unchanged Uy = U, For an ideal gas this implies constant temperature

T; = T, The process is irreversible but the entropy change can be calculated by considering

a reversible isothermal process. Then, as before
v,

2
M-f%:f‘%- vRInn = 201 J/K
Vl

The process consists of two parts. The first part is free expansion in which U;= U; The

second part is adiabatic compression in which work done results in change of internal

energy. Obviously,

Yo

0= UF-Uf+fpdV, V=2V,
\4
f

Now in the first part p; = % Py Vi= 2V, because there is no change of temperature.

In the second part, p V" = % Po2Vp)' = 277 1Po 144

Vo Yo
f ZY—IPngdV 27'1p0V{,V1_Y K
2% 2V, <
" —-y+1 y-1
B L 1 B TR N2 il VR Aoy
RT,
Thus AU= Up-U, = ;—_—‘11(2*‘1-1)

The entropy change AS = AS, + AS,
AS;= RIn2 and AS, = 0 as the process is reversible adiabatic. Thus AS = Rln 2.

In all adiabatic processes
by virtue of the first law of thermodynamics. Thus,
Uf = Ui "A
v

For a slow process, A’ = f pdV where for a quasistatic adiabatic process pV" = constant.
VO
On the other hand for a fast process the external work done is A" <A'. In fact A” = 0

for free expansion. Thus U’y (slow) <U" (fast)
Since U depends on temperature only, T’y < T";
Consequently, p”’ ;> j 4 f

(From the ideal gas equation pV = RT) o
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Let Vi =V, V,= nV,

Since the temperature is the same, the required entropy change can be calculated by con-
sidering isothermal expansion of the gas in either parts into the whole vessel.

V,+V,

Vi+V,
Thus AS= AS,+AS;= v;RIn +v,RIn 7
2

Vi
1+

= v RIn(1+n)+v,RIn —2 = 51J/K

Letc, = spcciﬁc heat of copper specific heat of water = ¢,
97+273

czmsz mlcldT
Then AS = '”2"21“280 m, 1ln-i_(-)—

7+273

T, is found from
280myc, +370m; ¢

cymy (Ty-280) = myc; (370-Ty) or Ty= c,my +my c,

using c;=039J/g °K, c,= 41871/g°K,

Ty~ 300°K and AS = 28-4-24-5« 39J/°K
For an ideal gas the internal energy depends on temperature only. We can consider the

process in question to be one of simultaneous free expansion. Then the total energy

U= U, +U,. Since

T, +T,
2

entropy change is obtained by considering isochoric processes because in effect, the gas
remains confined to its vessel

u,=¢,T1, U,=C,T, U= 2C,

and (T, +T,)/2 is the final temperature. The

(T, + T,
C,dT f (T1+T2)
Cv =CV
T 4T, T,
(T,+T,)2
Since (T,+T)*= (T,-T,)* +4T,T,, AS>0

(a) Each atom has a probability % to be in either campartment. Thus

p=27"

(b) Typical atomic velocity at room temperature is~ 10° cm/s so it takes an atom

107 sec to cross the vessel. This is the relevant time scale for our problem. Let

T= 10> sec, then in time ¢ there will be £/T crossing or arrangements of the atoms. This
will be large enough to produce the given arrangement if

2N g or N BT _ g5
T In2
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The statistical weight is

- N _10x9x8x7x6
N/Z!%V! 8x4x3x2

Con = 252
The probability distribution is
Ne 27V =252%x27"= 246 %
The probabilites that the half A contains # molecules is
N!
n!(N-n)!
The probability of one molecule being confined to the marked volume is

Ne x 27%-= 27N

p = ’.Z
Yo
We can choose this molecule in many (N ) ways. The probability that » molecules get
1
confined to the marked volume is cearly
e N! -
Ncp" (1 -p) "= m?”(l -p)' "
In a sphere of diameter d there are

3
N-= %"o molecules

where nj = Loschmidt’s number = No. of molecules per unit volume (1 cc) under NTP.

The relative fluctuation in this number is

Y WV L
6 \°
or %a%dsno o &= 3 o ds( 2 ) = 0-41 pm
n TN TN

The average number of molecules in this sphere is —12 = 108

For a monoatomic gas Cy, = %R per mole

The entropy change in the process is
T+ AT

As,s-so=fcvg-gm(1 s

To
Now from the Boltzmann equation
S=kInQ

N, 3x6 P

2 2
2 _ -y (1,807 (1, L = 108 x 102
Q, 0

T, 300

Thus the statistical weight increases by this factor. o
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2.5 LIQUIDS. CAPILLARY EFFECTS

2.160 1 1 )- 4a

@ 4p=a (m *an|ma
-3
= wﬂ%—% = 1:307x10° -112 = 13 atmosphere
1-5x10 m m

(b) The soap bubble has two surfaces
1 1 8a
% Ap'za(d/z*d/z)’ d
8 x 45

= “Tx 1073 = 12x1073 atomsphere.
X

2.161 The pressure just inside the hole will be less than the outside pressure by 4 a./d. This can
support a height 4 of Hg where

4a 4a
pgh= 4 h= ogd
4x 490 x 10°3 200

- - ~ 21 m of H,
136x10°x98x70x10~% 13:6x70 g

2.162 By Boyle’s law

3
8a
or Py 1'!,],‘)" ‘d—("lz-l)
1 ni 2
Thus o= §Pod 1- 3 n°-1)

2.163 The pressure has terms due to hydrostatic pressure and capillarity and they add

4a
P’Po"'Pgh*"J"

5x98x10° 4x-73x1073
= {1+ 3 + o3
10 4x10

x 10 "5) atoms = 2:22 atom.

2.164 By Boyle’s law
4o 40
(Po*’th*‘d—)g’dB‘ (po-'»-n?)%n?'d3
4a
or [ge - po o -1)]= F -1

or h= [Po n*-1)+ -;4;1 (n*- l)rl /g p = 498 meter of water
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2.165 Clearly

2.166 In a capillary with diameter d = 0-5 mm water

2.167

2.168

2.169

Downloaded From : www.EasyEngineering.net

Mipg=dalcos0|(3 -2 R
pg=4alcosO|[5 - ===zl |==—
(dl dz) :‘:_:_: =N
=] | ===
40 cos 0| (d,-d,) ———=| ==
Ah = = 11 mm - = —-==
d,d, pg - —-_=

11
'l||

i
i
|

will rise to a height

2a. - 40
pgr pgd
-3
___4xT3x10 - 596 mm

10°x 9-8x0-5x 102
Since this is greater than the height
(= 25 mm) of the tube, a meniscus of radius
R will be formed at the top of the tube, where
20 2x73x107°
Pgh  10°x98x25x1073

R = =~ 0:6 mm

Initially the pressure of air in the cppillary is p, and it’s length is /. When submerged
under water, the pressure of air in the portion above water must be p, + 4E, since the

level of water inside the capillary is the same as the level outside. Thus by Boyle’s law
4a
(Po*'_d_) (I-x)=pyl

40 l

or 7(l—x)=pox or x= : pod
+ 4o
We have by Boyle’s law
4 acos 0
(po—pgh+-—7— (I-h)=pl
. 4ocos@ h+Poh
Poh d
Hence, a= (pgh+l—h)4cose

Suppose the liquid rises to a height A. Then the total energy of the liquid in the capillary
is

h
E(W= 7 (d-d) hxpgxs-n(d-d,)oh

Minimising E we get
-4 _6cm
pg (dy-d,) o
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2.170 Let h be the height of the water level at a
distance x from the edge. Then the total energy
of water in the wedge above the level outside is.

E=fx6q>~dx'h-pg%—Zfdx'hwxcosO

=fdx%xpg6q>(h2—2ms—eh) -

xpgdo

2
-fdx'l-x 5 _2acos0) 4 o cos® 0 4
B AR h | WRET YY) BEEPEyEr e

P gdy

20 cos 0

xpgdo \/

2.171 From the equation of continuity

This is minimum when A =

41\n
We then apply Bernoulli’s theorem

2,1
P

2
Jtd2 =—(— 'V or V=n?v.

2 v' + @ = constant

The pressure p differs from the atmospheric pressure by capillary effects. At the upper
section
20
P=pyt d
neglecting the curvature in the vertical plane. Thus,

200 2na
pO"’T 1 p0+ d
+_i_ +gl- ——-—————p +5nv

'\/2 gl- 312 m-1)

or V= __9_‘1_.__.._.
n*-1

Finally, the liquid coming out per second is,

ndzvzgl__(n 1)

n*-1
2.172 The radius of curvaturc of the drop is R, at the upper end of the drop and R, at the lower

end. Then the pressurc inside the drop is py + i at the top end and p, + _2___ at the bottom
1

R,
end. Hence
2a(R,- 1)

2a= 2°'+ h or ———— l
pO pO P8 RlR p g

To a first approximation R, =~ R, =~ ;—l so R,-R;= gpgh */a. = 020 mm
if h=23mm, a=73mN/m
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2.173 We must first calculate the pressure difference inside the film from that outside. This is

2.174

2.175

2.176

p=a (L+ L). 6
Here 27 |cos O = h and r, . - R the radius
of the tablet and can be neglected. Thus the

total force exerted by mercury drop on the upper h
glass plate is
2nR%a cos 8| .
h typically

We should put 2/ n for /i because the tablet is compresed 7 times. Then since Hg is nearly,
incompressible, mR> ) = constants so R — RVr . Thus,

2nR%>alcos 0] 2

— "

Part of the force is needed to keep the Hg in the shape of a table rather than in the shape
of infinitely thin sheet. This part can be calculated being putting n = 1 above. Thus

2 R*a|cos 0| - 2uR2a|coseln2

total force =

mE ¥ h h
2
or Y M(nz—l) = 07kg
hg
The pressure inside the film is less than that outside by an amount o l+ .3 where

rnnon
r, and r, are the principal radii of curvature of the meniscus. One of these is small being

given by h= 2r cos @ while the other is large and will be ignored. Then

F= &%ﬁga where A = area of the water film between the plates.

Now A= 2 so F= -2-—'2-;-1— when 0 (the angle of contact) = 0
ph ph

This is analogous to the previous problem except that : A= nR 3

2
So F-%E-o-sm

The energy of the liquid between the plates is
E<ldhpgh-2atha SpgldR-2all

1
byl
iy

|

lm
)

't

|
!
!
,‘

I
1
!

— ————

— — —— —

2 2 T S ———|== - T—
1 2a 201l T iy plluiig
2P8 ( pgd) pgd ST e ===
This energy is minimum when, /4 = gad and IRl et E e
. . . . 2021
the minimum potential energy is then £ = - ogd

The force of attraction between the plates can be obtained from this as

-9E, . _20.21

F= = {minus sign means the force is attractive.)
ad pgd

Thus F= -2 _ 43N
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2.177 Suppose the radius of the bubble is x at some instant. Then the pressure inside is

Do+ 4?(1. The flow through the capillary is by Poiseuille’s equation,

nr 4(1 2dx
81\1 x 4 dt
nr‘a 4
Integrating 2l t= xR -x ) where we have used the fact that = 0 where x = R.

4
This gives ¢ = 2Zn lfi as the life time of the bubble corresponding to x = 0
ar

2.178 1If the liquid rises to a height 4, the energy of the liquid column becomes

2 2
1 2aa
E= xrPh- ——2nrha- ~pgnirh-2—| -—
Pg P& ( pg) P8
This is minimum when rh = _ZP_% and that is relevant height to which water must rise.
20’
At this point, E .= -
4 y P8 )

Since E = 0 in the absence of surface tension a heat Q = 2xa must have been liberated.

2.179 (a) The free enecrgy per unit area being o,
F=nad?=3W
(b) F= 2n0d? because the soap bubble has two surfaces. Substitution gives
F =10 pnJ

2.180 When two mercury drops each of diameter d merge, the resulting drop has diameter d,;
where %dfs %dsxz or, dy=2"4d

The increase in free energy is
AF= n27%d%a-2nd*a=2nd*a (27 -1) = =143 7
2.181 Work must be done to stretch the soap film and compress the air inside. The former is

simply 2 o x 4nR?= 8 xR, there being two sides of the film. To get the latter we

note that the compression is isothermal and work done is
V=V

fpdV where V,p, = (p0+4 ) V, V= ==R?
| 0
or Vo= 2, pm g+ 5_2
Py
and minus sign is needed becaue we are calculatmg work done on the system. Thus since
PV remains constants, the work done is
pVin Yo pvin &
14 Py
So A =8aR*a+pVin L
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When heat is given to a soap bubble the temperature of the air inside rises and the bubble
expands but unless the bubble bursts, the amount of air inside does not change. Further
we shall neglect the variation of the surface tension with temperature. Then from the gas
cquations
4
Po+ Ta) %‘-r} = vRT, v= Constant
Differentiating
8
(p0+ §)4nr2dr= VRdT

vRdT

,8a
Po* 3,

or dV=4anridr=

Now ftrom the first law
& Q=vCdT=vC,dT+ VR‘Z : (po+ﬂ)

8 r
Po* 3,
4a.
Pot
or C=C,+R ™
Po3,
IR
using C,=Cy+R, C= CP+——-§;—;
14—
8a

Consider an infinitesimal Carnot cycle with isotherms at 7 - dT and 7. Let A be the work

done during the cycle. Then }}
A= [a(T-dT)-a(T)]do0= —Z—c;,dTéo
Where d0 is the change in the area of film

T=dT

we are considering only one surface). .
g only
Y
Then n= A _dr by Carnot therom. L
r T

do. T
or——deT&O--éZ or -—T—qg- 486 E 1}
gdc T = -%ar 3 >

As before we can calculate the heat required. It, is taking into account two sides of the
soap film

do
dq = —TdT60x2

_Y_ _,da

Thus AS T 2dT6cr
da

Now AF=20d0 so, AU= AF+TAS= 2|a-T—-|d0

dar
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2.6

2.185

2.186

2.187

2.188

2.189
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PHASE TRANSFORMATIONS

The condensation takes place at constant pressure and tcmperature and the work done is
PAV
where AV is the volume of the condensed vapour in the vapour phase. It is

Am
AV= —RT = 12067J
pAV =0
where M = 18 gm is the molecular weight of water.
The specific volume of water (the liquid) will be written as V', Since V', > > V’;, most of
the weight is due to water. Thus if m, is mass of the liquid and m, that of the vapour then
m=m+m,
VamyV,+m,V, or V-mV,=m,(V -V)

V-mV,

————= 20 gm in the present case. Its volume is m, V', = 1.01
Vv D Vl

So m,=
The volume of the condensed vapour was originally V, -V at temperature 7= 373 K.
Its mass will be given by

Mp(Vy-V)

RT = 2gm where p= atmospheric pressure

p(Vy-V)= %RT or m=

We let V', = specific volume of liquid. V', = N V';= specific volume of vapour.
Let V= Original volume of the vapour. Then

PV R Y L
MRT m,+mv-NV,l or — (m,+Nm) V',
1 Vv mV, n-1
So N-1)mV = V(l—n)-n(n—l) or M= o= N1

In the case when the final volume of the substance corresponds to the midpoint of a
horizontal portion of the isothermal line in the p, v diagram, the final volume must be

|4
(1+N) 7’- per unit mass of the substance. Of this the volume of the liquid is V';/2 per unit

total mass of the substance.
1
M= 1+n¥
From the first law of thermodynamics
AU+A=Q=mgq

where g is the specific latent heat of vaporization
Now A=p(V'V..V'l)m_—_ m%]_‘

Thus AU=m(q-%)

For water this gives = 2:08 x 10°% Joules. L
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Some of the heat used in heating water to the boiling temperature
T = 100°C = 373 K. The remaining heat

=Q-mcAT
(c = specific heat of water, AT= 100 K) is used to create vapour. If the piston rises to
a height & then the volume of vapour will be ~ sh(neglecting water). Its mass will be

Posh PoshMgq
RT x M and heat of vapourization will be ~RT - To this must be added the work

done in creating the saturated vapour » p, sh. Thus

Q—chT-poSh(1+g—I-,M) or h= L-mecAl _ 20 cm

R
PoS (1 + %’)
mc (T - Tp)
A quantity ——— of saturated vapour must condense to heat the water to boiling

point T= 373°K
(Here ¢ = specific heat of water, T, = 295 K = initial water temperature).
The work done in lowering the piston will then be

mc(T-T,) RT
—q———'x—j—l— = 25],

since work done per unit mass of the condensed vapour is p V= RET

m

GivenAP-&E-P—"xﬁanp -nMRT-ﬂp
ppr o d vap Vi M Y
- - 4aM
P RTn

For water a.= 73 dynes/cm, M = 18gm, p,= gm/cc, T= 300K, and with =~ 0-01, we
get
de 02um

In equilibrium the number of "liquid" molecules evaporoting must equals the number of
"vapour" molecules condensing. By kinetic theory, this number is

x£n<v>= x}-nx §k—T‘
nxg nx7nxV o

‘/ kT .‘/ m
U= mxmxnx 2nm-r|nkT xkt
\/_L : 2,
=M"PV 3 kT 0-35 g/cm” s.

where p, is atmospheric pressure and T= 373K and M = molecular weight of water.
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2.194 Here we must assume that p is also the rate at which the tungsten filament loses mass
when in an atmosphere of its own vapour at this temperature and that vy (of the previous

problem) =~ 1. Then
p=n VEERL _ 46 1P

M
from the previous problem where p = pressure of the saturated vapour.

2.195 From the Vander Waals equation
RT a
P=v_p- V2
where V= Volume of one gm mole of the substances.
For water V= 18 c.c. per mole = 1-8 x 10~ Aitre per mole

a= 547 atmos lltre22
mole
If molecular attraction vanished the equation will be
., _RT
P=voe

for the same specific volume. Thus
a 5-47

= = 4 - 4 4
Ap V2 18x18 x 10" atmos =~ 1-7 x 10" atmos

2.196 The internal pressure being ;,l%’ the work done in condcnsation is

\4
8
a a a a
f V2‘W= v,"V, "y,
Vv

i
This by assumption is Mg, M being the molecular weight and V), Vx being the molar
volumes of the liquid and gas. .
a _ Mg
Th = — = -
us p, sz v, Paq
where p is the density of the liquid. For water p; s« 3-3 x 10" atm

2.197 The Vandar Waal’s equation can be written as (for one mole)
RT a

p(V) = V_b V2
2
At the critical point L)\ and 2-22 vanish. Thus
Ve ve),

0o _RT 2 _ RT _2a
V-br V?  w-b V°
2RT 6a RT 3a

= — e )] —_——
Wby V' WbV
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2.200
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Solving these simultaneously we get on division
2
V-b= 3 V, V=3buV,,

This is the critical molar volume. Putting this back

R TCr _ 2a T. = 8a
4b2  27b3 Cr 27bR
RT, a 4a a a

Finall = - = - =
g P V-5 V2. T 2762 952 2757

PCrVMCr_ a/9% _ 3

RT,  8a/27b 8

From these we see that

Pe, a/27b% _ 1
RT, 8a/27b 8b

Te, 0082 x304
8p;,  73x8

(RTC,)2 _ 6_451_
PCr A 27

Thus b= R = 0 -043 litre/mol

atm litre?
(mol)2

and or a= g(RTCr)z/pC, = 3-59

Specific volume is molar volume divided by molecular weight. Thus

Vier 3RT;, 3 x-082x562 litre cc
V’Cf- = - —_— 4.71_
M 8Mp,, 8x78x47 g g
p+—=|(V,-b)= RT
Y
p+ y
or V’Exv”'_b= 8.!_.
PCr VMCr 3TCr
or n+—2 x|v- = =T
PaVa Vmer| 37
\Z
where J[=L’ v= _'n—"[gl.
pCr VMCr TCr
or J\:+27b2 v-l-gv or Jt+i —-1—-§-1:
147 3l 37 V2 373
When n= 12 and V-%,T-%x24xé--%

(a) The ciritical Volume V), is the maximum volume in the liquid phase and the minimum
volume in the gaseous. Thus

v 1000

T x 3 x <030 litre = S litre
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2.203

2.204

2.205
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(b) The critical pressure is the maximum possible pressure in the vapour phase in equilibrium
with liquid phase. Thus
- e _ 547
Pmax™ 572" 27x 03 % 03

= 225atmosphere

;. _8a_ 8 _ 36
Cr~ 27bR 27 -043 x -082

M4
Per= 35~ 3% 43

~ 304K
gm/c.c. = 0-34gm/c.c.

The vessel is such that either vapour or liquid of mass m occupies it at critical point. Then
its volume will be

The corresponding volume in liquid phase at room temperature is

y=2
p
where p = density of liquid ether at room tmeperature. Thus
v _ 8Mp,

=== = 0254
L VCr 3 RTCr P

using the given data (and p = 720gm per litre)
We apply the relation (T = constant)

Tf ds-f dU+_:f pdV

to the cycle 1234531. P A
Here dS = dU=0
§ as-§ y

So _zf pdV=0

This implies that the areas I and II are equal. Ve 3
This reasoning is inapplicable to the cycle 1231,
for example. This cycle is irreversible because
it involves the irreversible transition from a 2

single phase to a two-phase state at the point 3. >\

When a portion of supercool water turns into ice some heat is liberated, which should
heat it upto ice point. Neglecting the variation of specific heat of water, ‘the fraction of
water turning inot ice is clearly

_c_ .
f= =025

where ¢ = specific heat of water and g ~ latent heat of fusion of ice, Clearly
f=1att =-80°C
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2.206 From the Claussius-Clapeyron (C-C)equations

ar_ T (V2- Vs
dp 912
qy,is the specific latent heat absorbed in 1 — 2 (1 = solid, 2 = liquid)

v,-V,
AT= (" V‘“} Ap__273x-091xlatmxcm3xK

412 333 joule

10N

3
atm x cm ~ m
Joule Joule

x10 m
=10"!, AT= --0075K

2.207 Here 1 = liquid, 2 = Steam

T(V,-V,
AT =
912

AP

92 AT _ 2250 09 38 3
or | 4 T ap- 373 X332 % x10*m’/g = 1-7m’/kg

2.208 From C-C equations

51_2 - 912 g 912
ar T(V,-V,) TV

Assuming the saturated vapour to be ideal gas

1 _m L Mg
Z—RT’ Thus A_p-R 2pAZ
Mg .
and P=py|l+ 72 AT|=x 104 atmosphere

2.209 From C-C equation, neglecting the voolume of the liquid

g I Mg =
dT IV2 RI{Z pv (q ql2)

or dp _ Mg dT
p RTT
m MpV
Now pV= MRT or m= "o for a perfect gas
So g -2 d—T (V is Const = specific volume)
Mq 18 x 2250 15
(RT 1) T (83x373 -1)x 373" ~ 485 %
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2.210 From C-C equation

. 4 .M,
dl TV, RrT?

Integrating Inp= constant - l}:—l%

Mg(l1 1
So P = Pyexp —_—-=
This is reasonable for |T - T;| << T, and far below critical temperature.

2.211 As before (2.206) the lowering of melting point is given by

T AV
q

The superheated ice will then melt in part. The fraction that will melt is

CTAV
n=Tg P 03

AT = P

2.212 (a) The equations of the transition lines are

log p= 905 — 18%: Solid gas

= 678 - 13—7,1—0-: Liquid gas
At the triple point they intersect. Thus
490 490
227 = T, or T, = 227 216 K

corresponding p,, is 5.14 atmosphere.

In the formula log p= a —!1’-,, we compare b with the corresponding term in the equatien

in 2.210. Then
Inp=ax2303 - 23036 So, 2:303 = Mq
T R
or, ostimasion ™ 2-303 x 148‘:)0 x 831 _ 783 1/gm

2-303 x 1310 x 8-31
qliquid—gm = 44

= 570 J/gm

Finally qo54_ tiguia = 213 J/gm on subtraction

283 ¥ 373

= 10° (4-18 In 313 g(')_:) ~ 72kI/K
Downloaded
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qm T2 qv
2214 AS = T—1+clnT+-I-;2—
333 373 o
= 273+418]n283--- 8:56 J/°K

2.215 ¢ = specific heat of copper = O~39-g—.J—IE'Suppose all ice does not melt, then

heat rejected = 90 x 0-39 (90 - 0) = 3159 J

heat gained by ice = 50 x 2-09 x 3 + x x 333

Thus x=85gm

The hypothesis is correct and final temperature will be T = 273K.
Hence change in entropy of copper piece

273
= mcIn 363 = -10J/K.

2.216 (a) Here t, = 60°C. Suppose the final temperature is ¢ °C. Then
heat lost by water = m,c (¢, - ¢t)
heat gained by ice = m, g, + m; c (t-1t,), if all ice melts
In this case m, q,, = m,x4-18 (60 - 1), for m, = m,

So the final temperature will be 0°C and only some ice will melt.
Then 100 x 4-18 (60) = m'; x 333

m'; = 75:3 gm = amount of ice that will melt

Finally AS = 75'3)(%%-* 100 x 418 hl%%g'
AS = m;,lq"'+m2cln%
e b

T I,
T, T,
=m,C T—l—l--lnT1 = 8:8J/K

(b) If m,ct,>m, q, then all ice will melt as one can check and the final temperature
can be obtained like this
myc(Tp-1)= myqu+mc(T-T,)

(my T+ my Ty) ¢ = my gy = (my +my) cT

it
myT,+m T, - —lcq"'
or T= = 280 K
my +my
mq T T,
and AS = T +c(mllnT1—m21n Tr)- 19J/K
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mq, I, Mg,
2217 AS —'Tz— mclnz,l+-—Tl——
where Mg, = m(q2+c(T2-T1))‘

= m -l---l— +mc T2 - 1- T2
% I, 7, T1 T1
= 0-2245 + 02564 ~ 0-48J/K

2.218 When heat dQ is given to the vapour its temperature will change by d7T, pressure by dp
and volume by dV, it being assumed that the vapour remains saturated.

Then by C-C equation

dj
= 1 Vo >> V'), o1 dp= T
on the other hand, pV’ = R—-;
So pdV' +V @ = @Z
Hence pdV’ = (—— - )dT
finally dQ = CdT = dU + pdV'’

T g q
-CVdT+(M T)dT C,dI - 7dT

(Cp, Cy refer to unit mass here). Thus

= 9
o} CP—T
For water C,_ = Ry 1 with y= 132 and M= 18
P y-1 M
So C,= 190J/gmK
and C= -413]/gm°K= - 74]/mole K

2.219 The required entropy change can be calculated along a process in which the water 1s
heated from T, to T, and then allowed to evaporate. The entropy change for this is

T, gM
12 ¢
AS= cmTI»,T2

where g = specific latent heat of vaporization.
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2.7 TRANSPORT PHENOMENA

2.220

2221

2.222

2.223

2.224

2.225

(a) The fraction of gas molecules which traverses distances exceeding the mean free path
without collision is just the probability to traverse the distance s = A without collision.

Thus P=el= %- 037
(b) This probability is

From the formula

1o o aa AL
n

n

(a) Let P (t) = probability of no collision in the interval (0, z). Then
P(t+d)=P()(1-ad)

or %?—- -aP() or P()= e~

where we have used-P(0) = 1

(b) The mean interval between collision is also the mean interval of no collision. Then

@ A= 1 b kT
V2 nd?n \/2_nd2p
1-38 x 10~ 2 x 273
T VZr(037x10°° 2 x10°
A 62x10"8
<v> 454

= 62x10"%m

s= :136ns

A=62x10°m
®) n=136x 10*s = 3-8 hours
The mean distance between molecules is of the order

6

This is about 18.5 times smaller than the mean free path calculated in 2.223 (a) above.
We know that the Vander Waal’s constant b is four times the molecular volume. Thus

14 14
. -3
(%) = (&2—4—) x 10~ % meters = 334 x 10~ meters
X

b= 41\/“%‘41a or d= (2:::’;\/)
A

a s (Ko (27 73
ence =
V2 np,\ 3b _
Dovinloaded Frém : www.EasyEngineering.net
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2.229

2.230
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The volocity of sound in N, is
N TR
P M
5o, Y A T P
v V2 nd PN,

M

or, v=nd’p,N, M_%LTO

kT
a) A>Ilif p<——
@ LN ey

Now for O, of Ois 0-7 Pa.

kT
V2 ndl
The corresponding n is obtained by dividing by kT and is 1-84 x 10% per
®) ponding y g by p

m = 1-84“per c.c. and the corresponding mean distance is L

n1/3'
1072 -
- m- 1-8x10" m =~ 0-18 ym.
1 1 <y >
@ [ V> I}

=V2rndin<w>= 74x10"5"! (see 2.223)
(b) Total number of collisions is

-l-nv = 10x10®sem™?

2
Note, the factor :,12- When two molecules collide we must not count it twice.
1
) A= ———
® V2 nd*n

d is a constant and » is a constant for an isochoric process so A is constant for an isochoric
process.

<v> M
V= = A aVT

®) A= ﬁl 7 kp—Ta T for an isobaric process.
n

<v>a[1_'
A T

(a) In an isochoric process A is constant and

vaVT aVpV aVp aVn

k. . . . .
) A= ﬁ must decrease n times in an isothermal process and v must increase
ndp .

--L for an isobaric process
VT

n times because <v > is constant in an isothermal process.
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1 1 | %4

@ Ao =FVN
TV
Thus AaV and vaT

But in an adiabatic process (y - %here)

TV'~!a constant so VY3 « constant

or T2 oV Thus vaV-%"
T
Aa—
®) 7
]
But p(— = constant or Iap'l/’ or Tap!~
p P
Thus rap Ve p=37
1 11
<v> p 1_/2"‘2_1 % 6/7
v ——q o] - =
'Y 7; p p p
(© AaV
But TV?3 = constant or Va T~ %2
Thus ra T2

VGTTQTS

In the polytropic process of index n
pV" = constant, TV" " = constant and p' " T" = constant
(a) AaV
12 l-n -n+l

T™° vz y-t 2
vu.'V \'4 |4 \'4

1
®) Aa%, T"ap"! or Tap'™s

so Aap
1.1 n+l
v= ﬁa%apl'TE-pT
T 2
() ha= paT"!
p
1-2 L 1
raT nl T n-1_ Tl-n

a1l ael
P aT.-l'z_ T20-1)

va
VT Downloaded From : www.EasyEngineering.net
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(a) The number of collisions between the molecules in a unit volume is
lnv-- 1 nd*n’ <v>aﬁ
2" e v?

This remains constant in the poly process pV'3 = constant
Using (2.122) the molar specific heat for the polytropic process

pV® = constant,

. 1
is C= RFI o 1)

1 5 1 11
Thus C-R( +) R(Z 4)- 4R

It can also be written as %R (1+42i)where i= 5
(b) In this case g- constant and so pV ™! = constant
so0 c=- R(Y—-+-l-) R(-5—+l)-3R

It can also be written as %(i +1)

We can assume that all molecules, incident on the hole, leak out. Then,

-dN=-d((nV)= -‘lzn<v>Sdt

or dn= -n—-——gt—-—- -nﬂ
/S <v> T
X "y 8RT
Integrating n= nye”"*. Hence <v>= T

If the temperature of the compartment 2 is 7} times more than that of compartment 1, it
must contain % times less number of molecules since pressure must be the same when
the big hole is open. If M = mass of the gas in 1 than the mass of the gas in 2 must be

%. So immediately after the big hole is closed.

M o M

0n =, = —
M= v T

where m = mass of each molecule and n‘l), ng are concentrations in 1 and 2. After the
big hole is closed the pressures will differ and concentration will become n; and n, where

M
v L+

On the other hand
n<v;>=n,<v,> ie. ny= Vi,
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Thus n2'(1+\/1?)- -;:—:;'—]-(1+n)- ng(l +n)
So - Om_

" n21+\/1_|
We know

1 1 1
= ~<y>Ap= T<v> maVT
=3 P=3 V2 nd?

Thus 1 changing o times implies T changing a’times.
On the other hand

8kT kT
p=1as A= —_—_—
3 m V2 xd? P
13/2
Thus D changing $ times means T changing P times

3
So p must change 2 times

B
Da\a—-fctVﬁ, nazﬁ

(a) D will increase n times
m will remain constant if T is constant

3/2 3/2
(b) Dap (”V’ YD .p2y¥?

navpV

. . o 12 . /e
Thus D will increase n>? times, 7} will increase n " “ times, if p is constant

DaVVT, naVT

In an adiabatic process
TV’ 1= constant, or T V! =

Now V is decreased % times. Thus

3 _il
DaVia (l) - (l)
n n

naofV? =

So D decreases n*’times and 7 increase nYtimes.

@@ DaVVT aVpy?

Thus D remains constant in the process st = constant
So polytropic index n= 3

®) naVT aVpV
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So m remains constant in the 1sothermal process
pV = constant, n= 1, here

(c) Heat conductivity k = 1 C,,

and C,, is a constant for the ideal gas

Thus n= 1 here also,
=l 8 kT m ,2. mkT 1
2240 M 3 xm \/fndz 3 © d2
174
o de (2)(mEn 2 ) (4x831x273x 107
3n e 3x189 7 x 36 x 10*
12 14
—wf 2 4 x 831 x 273 )
10 (3x18~9) ( ©x 36 ) ~ 0178 nm
2241 x-%<v>)\,pcv
1 8kT . Cv
\li:rtd2 M

Cy
C\ is the specific heat capacity which is M) Now C,, is the same for all monoatomic
gases such as He and A. Thus

1
KO
VM d?
K VM, d? d?
or Hen 87 = “-»’ﬁﬁ
H

Ka ;MH dH

d, 87
4. \/——— = 1658 ~ 1.7
dy Y10 a

2.242 In this case

AL
N, =4xnw
s
3
or NIZII:“AR-MH](» or N1-2—u%£y—z—

To decrease Ny, n times 1) must be decreased n times. Now 1) does not depend on pressure

until the pressure is so low that the mean free path equals, say, %AR Then the mean free

path is fixed and 1 decreases with pressure. The mean free path cquals %AR when

—‘/-2# = AR (ny= concentration)
nd“n
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Corresponding pressure is p, M
°" nd’AR
The sought pressure is n times less
V2 kT 10-2
- —————a 707 x — =~ 0-71 P:
P RdnaR 10-%x 103 y

The answer is qualitative and depends on the choice -;-AR for the mean free path.

We neglect the moment of inertia of the gas in a shell. Then the moment of friction forces
on a unit length of the cylinder must be a constant as a function of r.

dw N, (1 1

S —= - —1 (2 _=
0, ansndr N, or @(r) 4’”‘("3 r2)
and W= M —1—--1— or n= M l———l-
N 47\:1‘] r’i rg n 4w rf rg

We consider two adjoining layers. The angular velocity gradient is % So the moment of

the frictional force is

a
4

= é ool i R O
N fr 2xradr nry oh
0

In the ultrararefied gas we must determine 1 by taking A= %h. Then

1 8kT (L, mp_ M
3 25T 3 <RT P

Loatp /2
so, N 3map RT

Take an infinitesimal section of length dx and apply Poiseuilles equation to this. Then

n=

d_z_ -na' ap
dt 8 ox
From the formula pV=RT- %
pav= 2L am
4
or dm _ . %4 Mpdp

dt """ T8qRT dx

This equation implies that if the flow is isothermal then p % must be a constant and so

|72-7i|
equals in magnitude.

21

4 2 2
_ na'M |P3-pi|
Thus, n= 6nRT' 1
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2.247 Let T= temperature of the interface.
Then heat flowing from left = heat flowing into right in equilibrium.

T KT,
i1, 22
,-T T-T, L g
Thus, x, = K, or T=
L b K1, K
1,22
Loh
2.248 We have
I,-T T-T, T,-T,
K = K. = K
Loy 2, L+l
or using the previcus result
17y kT,
Ky L b T,-T,
=1, - =
1 K. K L+l
i e §
)
=T -T)
6, 5 (A T,-T, L+,
or SR = K ofr K= —m—
L % x L+l L
R — _— —
L L Ky K,
2.249 By definition the heat flux (per unit area) is
. daT d InT,/T,
Q—-de-—adxlnT= constant =+ i
] x, I
Integrating InT==In—+InT,
1T,
where T, = temperature at the end x = 0
S 7 A 16 ATV,
0 =T T, and Q = ]
2.250 Suppose the chunks have temperatures T, T, at time ¢ and T, - dT,, T, +dT, at time
dt+1.
XS
Thus daT= - X3 (L L) ATdr where AT= T,-T,
l1c G,
i 1_ks(l 1
Hence AT = (AT)ye where " 1 |c; + c,
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- 9T T
2251 Q= xo-= —Aﬁax

3/2
= - %A %, (A = constant)

(113

3 1
Thus T3 - constant—%(Tf/z-T;/z)
or using T=T, at x=0

32
T = T2 42 (T2 T3 or TY 1% L
! ( ) T, ! T

x T2 372

T= Tl 1+7 (‘T;) -1
|

2252 . L/ 8T __1_2_,,,,,]_(_-__372__2_____

3° oM V2md?n M 3x¥24°YMN,

R3/2 i T3/2

I\.)lv-.

Then from the previous problem

q= o 3/2d2\/—N T i= 3 here.

2.253 At this pressure and average temparature = 27°C = 300K = T =

- =X 2330x10 °m = 233mm > > 5-0mm = I
V2 nd? p

The gas is ultrathin and we write A = %I here

T,-T

Then q"‘%-x 21 :
_1 1, MP R  1__p<v>
where K-3<v>x21"RT"Y_1xM 6T(Y"1)I

<V>
1" sr(y-1) 27T

‘/ T,+T,
where <v>= %%—Z: We have used T, - T; << 2

and
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2.254 In equilibrivm 2mr ar -A = constant. So T= B - A
dr 2nx

But T'= T, when 7= R; and T= T,. when r=R,.

,-T, r
In —
le r
nR—1

From this we find T= T, +

2.255 In equilibrium 47 r%x Z—f = —A = constant

r-p+ AL
4nx r

Using T= T, when r= R, and T= T, when r= R,,

T-T+T2—T1(-1- 1)
1

1_1(r R
R, R,
2.256 The heat flux vector is — k grad T and its divergence equals w. Thus
vir= -2
K
or el rﬂ =-%in cylindrical coordinates.
r or ar K
or T-B+Alnr--§)7r2
Since T is finite at 7= 0,A= 0. Also T= T, atr= R
w 2
so B= To*z;R
W p2_ 2
Thus T= To*Z;(R -r4)

r here is the distance from the axis of wire (axial radius).
2.257 Here again

vir- X%
K

So in spherical polar coordinates,
i i(r2£)= Yo rzﬂ_ Y 344

r% or ar K ar 3k
or T= B-é—-lv—r2
r 6k
Again A= 0 and B=To+6l"ER2
so finally T= T0+i(R2—r2)

K L
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PART THREE

ELECTRODYNAMICS

3.1 CONSTANT ELECTRIC FIELD IN VACUUM

2
3.1 F, (for electorns) = ‘L‘Z and F, = 7_";_.

4neyr r
Thus fi (for electrons) = L,
e dneyym

=19 ~\2
) (1602 x 10~ C) - ax10%

(9 x1109) x 6:67x 10~ ' m’ / (kg - s?) x (911 x 10~ * kg)?

F 2
Similarly F—d (for proton) = Z—;;qwz
& 9

. -19 ~y2
S (1-602 x 10~ C) - 1x10%
( 9) x 667 x 10~ m®/(kg - s?) x (1672 x 10~ 7 kg)?

9x10

FOI' Fd- F"

2
S 7. P NN v
4nsor2 r m

-1
- Ves7x10 m,(kg"s) = 086 x 10”1 C/kg
9x 10

3.2 Total number of atoms in the sphere of mass 1 gm = & 5 B5a < 6:023 x 10%

6:023 x 10”
63-54
Now the charge on the sphere = Tetal nuclear charge — Total electronic charge
Downloaded From : www.EasyEngineering.net
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- 6—0263—3;:—°Bx 16 x 10'”&%’%- 4298 x 10 C
Hence force of interaction between these two spheres,

1 [4398 x 10*}
4me, 12
Let the balls be deviated by an angle 6, from the vertical when separtion between them
equals x.

F= N=9x10°x10*x 19348 N = 1-74 x 10°N

Applying Newton’s second law of metion for any one of the sphere, we get,
Tcos®=mg 1)

and Tsin®= F, )
From the Egs. (1) and (2)

tan 0 < 3
= mg ( )
But from the figure

X

tan 0 = "X as x <<l “)

2_(X
2VIt- )
From Egs. (3) and (4)
mgx q mgx
F, = or =
c 2 dnex® 20

Thus e ©)

Differentiating Eqn. (5) with respect to time

2ne,m
dg_ 27eomg . o dx
2% 1 3"2d:

According to the problem % = v = a/Vx (approach velocity is %:— )

12
so, (2neomgx3) dg 3m-:omgx2_£_

! a- 1 Vx
dq _3.1 / 2ne,mg
Hence, a-2°Y 71 A 'ﬁ
Let us choose coordinate axes as shown in the 4. > >

figure and fix three charges, q,, ¢, and ¢,
. ses - —> B

having position vectors r;, 7, and ry

respectively.

Now, for the equilibrium of g,

- —» . - — qz
+qyq3(rp-r3) qyq3(ry-r3) N
- =33 - —»3 =0 0 'X‘
[ry-rsl [ry=rsl
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9, 91
or, —- 2" 3= -2
|ry-15] |y =r5l
n-r -
because _2, _3; = - i _3.
|7y -15] |7 =75l
or, Vg, (71-73) = Vg, (73-7;)
_ L VeV
> 3
Vg, +Vg,

Also for the equilibrium of g,

43(’73";1’) ‘12(’72:’71.)

— —» 3 — —3
|ry-ri] fry-ril
-q, — —»2
or, ‘13=—::2'|’1"'3|
ry-rl

Substituting the value of 73', we get,

-4:9;

BT Vg +Va, P

When the charge g, is placed at the centre of df"e

the ring, the wire get stretched and the extra Va
tension, produced in the wire, will balance the 4
electric force due to the charge g, Let the @ 9

tension produced in the wire, after placing the
charge g, be T. From Newton’s second law ,

in projection form F, = mw,.

Tde-—l—-@(—q—rde)- (dm) 0,

dmey 2 |27
949,
or, T —— ——
8 € r
Sought field strength
= _1 q
dmeg | r2ry

=45 kV/m on putting the values.

Let us fix the coordinate system by taking the point of intersection of the diagonals as

the origin and let l-c-. be directed normally, emerging from the plane of figure.
Hence the sought field strength :
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> g _litxk —q I1(=i)+xk .
k- dme, (12+x2)3/2+ dne, (1242272 +q(l,00) +q y
oma kg 1C])exk (01,0)
dmey (124302 4dmey (124577 > 0
e —9 ol
dme, (1% +x%)7? (25-24 ] 4 q (.00
! (0-1,0
Thus E = q ,
* V2 me, (12 +x% )2 x

3.8 From the symmetry of the problem the sought field.

E=dex

where the projection of field strength along
x — axis due to an elemental charge is

dE dgcos® gqRcos0d0
*" AmegRE 4mle R
0 €

/2

Hence

q f 9
E=—2 _ | cos0d9

4:;281)112”2 27 ¢, R?

3.9 From the symmetry of the condition, it is clear that, the field along the normal will be

zero
i.e. E,=0and E= E,
Now dE, = 5 —7-cos O
dmey(R°+1°)
But dg= =1 _dx and cos 0= _
9= 7R TR
Hence 4
X
2xR A
l dx £
E-= f dE, = f q . A
! 2nR 4mey(R*+1%)7? R
’ Z
orE = 1 q! 0‘
= Ine, (l2+R2)3/2 . < 7 __)\
and for />> R, the ring behaves like a point >
charge, reducing the field to the value, ’dE
-1 9
dme, |2
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For E ., we should have %f—— 0

So,(12+R2)3/2—%l(l2+R2)1/221- 0 or I?+R?-31%=0

Thus [ =

R and E_ = 9
V2 ™% 6V3 e R
3.10 The electric potential at a distance x from the given ring is given by,

_ q
¢ = 4ﬂ80x 41::50(Rz+x)1/2

Hence, the field strength along x-axis (which is the net field strength in ‘our case),

F=_9__q 1_ e
* de  dmegx* dme,(R?+x%)7
R%\32
q 3 (1+—2') —1]
4atsox .
L R+ )2
3R2 3R
4mox’ L+ o+ at]

x (R2 N x2)3/2
Neglecting the higher power of R/x, as x>>R.
3 qR2

-
8meyx

E=

Note : Instead of @ (x), we may write E (x) directly using 3.9

3.11 From the solution of 3.9, the electric ficld strength due to ring at a point on its axis (say
x-axis) at distance x from the centre of the ring is given by :

qx
Ex)=
( 4me,(R +Jc)3/2

And from symmetry E at every point on the axis is directed along the x-axis (Fig.).

Let us consider an element (dx) on thread which
carries the charge (A dx). The electric force
experienced by the element in the field of ring.

A gxdx
dF = (\dx)E (x) = W
Thus c‘t‘,he sought interaction R >
->
F=Jv hgxde ‘. —XC 3 ~:———>E
4me, (R +x)*? dx

0

i i - M
On integrating we get, F AnegR
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3.12 (a) The given charge distribution is shown in Fig. The symmetry of this distribution

-

implies that vector E at the point O is directed to the right, and its magnitude is equal to
— —>

the sum of the projection onto the direction of E of vectors dE from elementary charges

—> —
dq. The projection of vector dE onto vector E is

dq
4neoR2COS(p’

where dg= ARdop= A; Rcos pd .
Integrating (1) over ¢ between 0 and 2 & we

find the magnitude of the vector E:
2x

) f 2 M
E= aner] <049 L R
0

It should be noted that this integral is evaluated
in the most simple way if we take into account

that <cos® ¢ >= 1/2. Then
2=z

dE cos @ =

fcos2cpdq)- <cosz(p>2n- .

0
(b) Take an element S at an azimuthal angle @ from the x-axis, the element subtending

an angle d @ at the centre.
The elementary field at P due to the element is

MycospdoR
4neo(x2+R2)
Agcospd @R
4neo(x2+R2)

along SP with components
x { cos 6 along OP,sin 0 along OS}

where cos O = (—-2——2—;1-/—2-
2n

The component along OP vanishes on integration as f cospdp=10
0
The component alon OS can be broken into the parts along OX and OY with

MR*cospdo .
4neo(x2+R2)3/2 x { cos ¢ along OX, sin ¢ along OY }

On integration, the part along OY vanishes.

Finally \
S R

)‘0R2 \ —
E-E, = e (2. p2\32
* 4g,(x*+R?)

34

E = Z—P—s where p = )»onR2 X
TLELNX
’ Downloaded From : www.EasyEngineering.net

For x>>R


http://Easyengineering.net
http://Easyengineering.net

Downloaded From : www.EasyEngineering.net 273

3.13 (a) It is clear from symmetry considerations that vector E must be directed as shown in
the figure. This shows the way of solving this problem : we must find the component
dE, of the field created by the element dl of the rod, having the charge dg and then

integrate the result over all the elements of the rod. In this case

dE, = dE cos o=

1
4me, r(z, cos &,

where\ = -2% is the linear charge density. Let us reduce this equation of the form convenient

. . . r
for integration. Figure shows that d/ cos o = rodo and ry= ;

COS a0
Consequently,
1 Argda A
dE - =
Todmey gl 4n£0rcosada dd

d l T'Odoc

This expression can be easily integrated :

%
E= A 2fcosada= A 2sin ay !
dmeyr dne,r
0

where a,, is the maximum value of the angle o,

sinao- a/Vaz.',rz
q/2a 2 a q
a

=
dmeyr 4/ v
g 2err AmegrValyp?

Note that in this case also E = _;_‘1__2_ for r >> a as of the field of a point charge.
weyr

(b) Let, us consider the element of length d! at a distance / from the centre of the rod,
as shown in the figure. dl
Then field at B due to this element. - T 7 }—

Thus, E =

QY

Adl o r
= - pil
dme,(r-1) ke 7d >|
if the element lies on the side, shown in the
diagram, and dE = Adl , if it lies on
4ney(r+l)

other side.
a a

Hence E-de-f hdl 2+f Adl 7
4ney(r-1I) A 4nmey(r+0)

0

. . . -9 -4 1
On integrating and putting A 27 we get, E Ane, (r2 - a2)

q

For r>>a, E~4—7
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The problem is reduced to finding E, and E, viz. the projections of E in Fig, where it is
assumed that A > 0.
Let us start with E. The contribution to E, from the charge element of the segment dx is
_ 1 Adx
* 4mey 2
Let us reduce this expression to the form convenient for integration. In our case,
dx = rdo/cosa, r= y/cosa. Then

sin a €))

sin o d a.

A
* 4meyy
Integrating this expression over a between
G and /2, we find

E = MAnegyy.

In order to find the projection E, it is
sufficient to recall that dE, differs from dE,
in that sina in (1) is simply replaced
by cos a.

This gives

dE, = (Acosada )/4neyy and E = N Ameyy.
We have obtained an interesting result :

E, = E, independently of y,

ie. E is oriented at the angle of 45° to the rod. The modulus of E is

E = vEx2+Ey2 = )»\/E/4neoy.

(a) Using the solution of 3.14, the net electric field strength at the point O due to straight
parts of the thread equals zero. For the curved part (arc) let us derive a general expression
i.e. let us calculate the field strength at the centre of arc of radius R and linear charge
density A and which subtends angle 6, at the centre.
From the symmetry the sought field strength al
will be directed along the bisector of the angle
0, and is given by ‘ '
+6,2 0@
0
E=fMR—de)2cos9= A sin 22 "/
4me R 2meyR 2
N )
In our problem 0, = /2, thus the field strength >
due to the turned part at the point < E
A
0= —1/—-2_—— which is also the sought result. &
4meyR

(b) Using the solution of 3.14 (a), net field strength at O due to stright parts equals

V2 V2 h = A and is directed vertically down. Now using the solution of 3.15
4negR| 2meyR

Downloaded From : www.EasyEngineering.net


http://Easyengineering.net
http://Easyengineering.net

3.16

3.17

Downloaded From : www.EasyEngineering.net 275

(a), field strength due to the given curved part (semi-circle) at the point O becomes

—2«-;};—; and is directed vertically upward. Hence the sought net field strengh becomes
0

Zero.

Given charge distribution on the surface g = a7 is shown in the figure. Symmetry of
this distribution implies that the sought E at the centre O of the spherc is opposite to a_

dg=oQ2nrsin@)rdo= @ 7')2:rtr sin0d0=2xar sin0cos 040
Agam frgm symmetry, field strength due to any ring element dE is also opposite to
aie. dE 1t a. a. Hence

= dqrcose
dE =
41\:80(r25m 0 + > cos” 0)

-a, ..
372 —a-(Usmg the result of 3.9)

(2rarsinB®cos0dB)rcosd (-a)

4:;n30r3 a
ar
= sin 6 cos®d 6 >
2¢,

n
us
F-de’- L_—‘?)——Efsinecoszﬁde
280
0

Integrating, we get E —ﬁ—z— _?_r
grating, g %, 3 3

We start from two charged spherical balls each of radius R with equal and opposite charge
— —

densities + p and - p. The centre of the balls are at + % and- 521- respectively so the

] . - a a a -
equation of their surfaces are |r - 5l = Ror r- -2—cos9as Randr + Ecoseu R, considering
a to be small. The distance between the two' surfaces in the radial direction at angle 8 is
| acosB | and does not depend on the azimuthal angle. It is seen from the diagram that

the surface of the sphere has in effect a surface density o = 0, cos® when

= pa.
Inside any uniformly charged spherical ball, the field is radial and has the magnitude given
by Gauss’s theorm

4nr’E = 4—;‘—r3p/ €

pr
3e,

or

In vector notation, using the fact the V must
be measured from the centre of the ball, we
get, for the present case
—> —>
- — —
E = PR D By s
3¢, 2] 3e,
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3.19

3.20
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Oo
3¢ k

o

When k’is the unit vector along the polar axis from which 0 is measured.

=-pa)/3e, =

Let us consider an elemental spherical shell of thickness dr. Thus surface charge density
of the shell o= pdr= (a7 )dr.
Thus using the solution of 3.16, field strenglh due to this sperical shell

—
dE = - 2L dr
3 €
Hence the sought field strength
R
- 2
= a a
= "3 rdr= - 6ey
0

From the solution of 3.14 field strength ata perpendicular distance r < R from its left end

i)+ (e)

E(r)=

4meyr 4:r|:er

Here 2, is a unit vector along radial direction.
Let us consider an elemental surface, dS = dydz = dz(rd©) a figure. Thus
flux of E (r) over the element d.? is given by

(5)+g "or(‘e,)]-dr(rde)‘i_'

d®=E-dS= [
4me,r

drdel( ase, L i")

afefeit

then ® were AR
2¢g,

4me,

The sought flux, $ = - Are

If we have taken d.g'-’H (- i—>),

AR
1= 3%,
0

Hence

Let us consider an elemental surface area as shown in the figure. Then flux of the vector

E through the elemental area,
d®=E-dS=EdS=2E,cospdS(as E11dS)

2q l 2glrdrdd
= rd0)dr=

4nso(12+r2)(12+r2)1/2( ) dme, (P + 12 )7
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where E; = is magnitude of

_q
4me,(l 240 )
field strength due to any point charge at the
point of location of considered elemental area.

R 2x
_ 2qlf rdr f

Thus & = aneg Ze12p7 do >C
0 0

R

_2qlx2nf rdr _4fy 1

T dme, (P +1%7 g VE+R?
0

It can also be solved by considering a ring element or by using solid angle.

3.21 Let us consider a ring element of radius x and thickness dx, as shown in the figure. Now,
flux over the considered element,

- —
d®=E-dS=E, dScos©

ButE, = % from Gauss’s theorem,
0

)y
and dS=2mnxdx , cosO = —rg

T, Y,
Thus  d®d= 2 2mxdr 2= 2100 i rdr
350 r 360

Hence sought flux

Vep2_ 2
R°-ry .
2Jtpr0f 2nproR*-ry) mpry, ,
a1 JSE-LOBEFE dn,neprygefifld

0

3.22 The field at P due to the threads at A and B are both of magnitude M

2me, (F +12/4)?

and directed along AP and BP. The resultant is along OP with
_ 2hcos @ - Ax
2 me n + n1/2)1/2 nE (x2 +1 2/4)

A

I? !
neg|x+==2-—=Vx +1

A
i 2
2\/2) ”}

This is maximum when x = I/2 and then E= E =
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3.23 Take a section of the cylinder perpendicular to its axis through the point where the electric

3.24

3.25

field is to be calculated. (All points on the axis are equivalent.) Consider an element S
with azimuthal angle ¢. The length of the element is Rdp , R being the radius of cross

section of the cylinder. The element itself is a section of an infinite strip. The electric field
at O due to this strip is

o, cos ¢ (R dp) : 5o Rd(f
2me,R 1 O"8 R
This can be resolved into 0 ¢
0y cos 9dQ (cos ¢ along OX towards O
2me, sin ¢ along YO ‘f’
On integration the component along YO dE
vanishes. What remains is
2

2
gpcos“@dyp 0o ) ..
f TS =3 e along XO i.e. along the direction ¢ = .

23

0

Since the field is axisymmetric (as the field :
QL 2 oy thurped hamen), we conclude
that the flux through the sphere of radius R is
equal to the flux through the lateral surface of
a cylinder having the same radius and the height
_—>/R

2R, as arranged in the figure.

— —
Now, <p-§ E-dS=E,S

But E =

Thus &= %s= %ZnR-ZR- 4naR

(a) Let us consider a sphere of radius » < R then charge, inclosed by the considered sphere,

r r
q,-,,c,md=f4nr2drp=f4nr2p0(1-%)dr 1)
0 0
Now, applying Gauss’ theorem,
E 4n P= M, (where E, is the projection of electric field along the radial line.)
%o
= Bo 4nr? (1 - _r__) dr
£ R
0
Po [ 37
o E - 3£0Lr Tar
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And for a point. outside the sphere r > R.
R

9, oed ™ f anrdr Po (1 - -Rf—)(as there is no charge outside the ball)
0
Again from Gauss’ theorem,

R
r
4Jtr2drp0(1"ﬁ)

E,4nr2=
)

0
po [R R'] PR
or, E=—5—|%-"5=—5—
rreg |3 4R| 12r%,

(b) As-magnitude of electric field decreases with increasing r for r > R, field will be
maximum for r <R. Now, for E, to be maximum,

d 37 3r 2R
dr(_4R)-0 or 1-2R—0 or r=r,= 3

PoR
Hﬁnce Emax = m
3.26 Let the charge carried by the sphere be g, then using Gauss’ theorem for a spherical surface
having radius r > R, we can write.

r

Ednr= Lo i+—1—fg4nr2dr
R

On integrating we get,
(q—2naR2) +4:rcar2

2=
Ednr % Zeg

The intensity E does not depend on r when
the experession in the parentheses is equal to
zero. Hence

a

2
g=2naR” and E = Teg

3.27 Let us consider a spherical layer of radius r and thickness dr, having its centre coinciding
with the centre of the system. Then using Gauss’ theorem for this surface,

r
qinclmedg pdV

L0 €
0

E,4:tr2=

3
-1 poe * 4nridr
€

0
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After integration ¢
47 3 -
4 2_ par _-ar
E d4nr Jegat [1-e ]
Po

o, E-= l1-e -ar’
’ 3ear[ ]

Now when a.r° <<l1, E~g°—
. 3¢,

Po
3gpa r2

And when ar3>>1, E =

Using Gauss theorem we can easily show that the electric field strength within a uniformly
charged sphere is E = ( )r
3¢,

The cavity, in our problem, may be considered
as the superposition of two balls, one with the
charge density p and the other with - p.

Let P be a point inside the cavity such that its
position vector with respect to the centre of
cavity be 7> and with respect to the centre of

the ball 7: Then from the principle of

superposition, field inside the cavity, at an

arbitrary point P,

Note : Obtained cxpression for E shows that it is valid regardless of the ratio between
the radii of the sphere and the distance between their centres.

Let us consider a cylinderical Gaussian surface of radius r and height / inside an infinitely
long charged cylinder with charge density p. Now from Gauss theorem :

E2nrh= Tinclosed .
)
(where E, is the field inside the cylinder at a <—r> A
distance r from its axis.) P -+

2 *l
_pwrr-h _ pr - @\J

o, E 2nrh B or E = 5— ” PN :
|

Now, using the method of 3.28 field at a point -
P, inside the cavity, is L

EEE—P—-——P—" <— \
+ (r,-r2) D

Downloaded From : www.EasyEngineering.net



http://Easyengineering.net
http://Easyengineering.net

Downloaded From : www.EasyEngineering.net 281

3.30 The arrangement of the rings are as shown in the figure. Now, potential at the point 1,

331

3.32

@, = potential at 1 due to the ring 1 + potential at 1 due to the ring 2.
__, -9
T dneyR ame, (R*+aH?

Similarly, the potential at point 2,

q a
= +
R EDY AP PINCYOr ‘ a d

Hence, the sought potential difference,
‘Pl“Pz‘A‘P'Z( T+ ~1 )

1

4megR * Amey (R +a)?

q 1

= 1-
2negR|” [T -5
o 1+ (a/R)?

We know from Gauss theorem that the electric field due to an infinietly long straight wire,

at a perpendicular distance r from it equals, E, = . So, the work done is

A
2meyr

E dr=

(where x is perpendicular distance from the thread by which point 1 is removed from it.)
A
Hence Agy,= mg Inm

Let us consider a ring element as shown in the figure. Then the charge, carried by the
element, dg= (2t RsinB)Rd 0O o,
Hence, the potential due to the considered element at the centre of the hemisphere,

1 1‘1_ ZJtcRsianB ch in08d0
4ne, R 4ne, T 2, 0 4‘%

do=

So potential due to the whole hemisphere

@ = TN sin0d0=—

€
Now from the symmetry ‘of the problem, net
electric field of the hemisphere is directed o a8
towards the negative y-axis. We have

1 d_qcose o R X
dEy —4n£0 e 2OschosOdG O

n/2 n/2

Thus E = E/ = ;— fsmecosed() = —fsxn26d9= T along YO
0
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Letus consider an elementary ring of thickness ‘dy
dy and radius y as shown in the figure. Then T~
potential at a point P, at distance / from the
centre of the disc, is

o2nydy

dpm=
® 4:|:t=1,(y2+12)1/2 /,
Hence potential due to the whole disc,
R

(p-f oZnydy ol (V1+(R/1) )

4Jteo(y +1 )V2 260

<N,
\

S

A

-
Lo -~

I
-~

From symmetry

d

,of 2t _J]l.oefjo— 1t
2¢ \/2 2- 2, _‘/
2VR +1 1+(R/l)2

when [— 0, ¢~ -"—R , E= =2 and when I>>R,

2 €
o R? y/ o R?
deyl’ 48012

(pﬂ

By definition, the potential in the case of a surface charge distribution is defined by integral
= anme f ——. In order to simplify integration, we shall choose the area element dS
0
in the form of a part of the ring of radius r and width dr in (Fig.). Then dS = 20 rdr,
r= 2R cos 8 and dr= -2Rsin 0d 0. After substituting these expressions into integral
Q= 1 fg_d_S we obtain the expression for ¢ at the point O:
4me, r
0
9= _Eﬁfesinede. e
nE,
»2 g
We integrate by parts,
denoting 0 = u and sin0d 0 = dv : /
stinGdO--—OcosB 0 0
+fcos0d0=-ecose+sin6 0

which gives -1 after substituting the limits of
integration. As a result, we obtain

@ = OR/m g,
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In accordance with the problem @ = a7

—> —
Thus from the equation : E= -V ¢

bd

E’ d 4 > 4d k I I'c"’ —
= - ax(axx)u»ay(ayy)]+az(azz)‘]--[ax1+ay1+z ]= -a

. 2 2

(a) Given, @ = a(x" - y_)’ “ -

So, E=-Vyp=-2a(xi-yj)

The sought shape of field lines is as shown in the figure (a) of answersheet assuming
a>0:

(b) Since ¢ = axy - - -

So, E=-Vop=-ayi-axj

Plot as shown in the figure (b) of answersheet.

Given, o= a (Jc2 + y2) +b?

— — - - —>
So, E= -Vp=-[2axi+2ayj+2bzk]
Hence |I?|- 2V +y)+ 22
Shape of the equipotential surface :

Put E’sx;:yror p2=.132+y2

Then the equipotential surface has the equation

ap’+bz* = constant = @
Ifa>0, b>0 then @ >0 and the equation of the equipotential surface is

which is an ellipse in p, z coordinates. In three dimensions the surfacc is an ellipsoid of
revolution with semi- axis Vo/a , Vo/a , Vo/b.

Ifa>0, b<0 then ¢ can be 20. If ¢ > 0 then the equation is

I
¢/a  o/|b]
This is a single cavity hyperboloid of revolution about z axis. If ¢ = 0 then
ap*-|b|Z=0
or z= 21/ P
ol

is the equation of a right circular cone.
If ¢ <0 then the equation can be written as

bl Z-ap’ = ol
2
ol /16l lo| /a

This is a two cavity hyperboloid of revolution about z-axis. o
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From Gauss’ theorem intensity at a point, inside the sphere at a distance r from the centre
. _pr S e - q
is given by, E, 3¢, and outside it, is given by E, " Il i
(a) Potential at the centre of the sphere,
- 2
fE drsf-e—dr+ —q——zdr= _&R_+__q__
dmeyr 3e 2 4meR
0 R
.4 qg _ _3q __3q )

as 8ne°R+4n€0R 8meyR (asp 47‘R3J

{b) Now, potential at any point, inside the sphere, at a distance r from it s centre.

B 9 dr
? () f3€0rdr 4ne, P2
r r

3 P
4 = 2] = @

8meyR

On integration : ¢ (r) =
gr e O

2
1 - —
3 Rz]
Let two charges +g and -g be separated by a distance . Then electric potential at a point
at distance r > >/ from this dipole,

e Pl (—] )

dmegr, 4dmeyr. 4me,

But r_—r#slcos()amdr+r_-|r2 ér
From Egs. (1) and (2),

- —>
glcos® pcos®  p-r

r)= .
® ) 41[807'2 4:r|:t=,0r2‘p 4Jtz-:0r3 +4

where p is magnitude of electric moment vector.
E = - 99 _2pcosB T

Now,

or 4Jtt=,0r3 i
_ 09 _ psin0 l
and Eg= rae—-—”neor -q¢

So E=VE+E2 = —L - Vacos?0+sin’0
dme,r

From the results, obtained in the previous problem,

psin®

and Egy = 3
4me,r 4me,r

E 2pcosB
P

r

From the given figure, it is clear that,

E,= E cos0- Eesmes —L(3 cos? 0 - 1)
4ne, 7
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and E‘L-ESi119<t'E0(:()59=3_pﬁche
4me)r
When EJ.p IEI'E and E,= 0
1
So 3cos’0=1 and cos 0= ——
V3

—
Thus E, p'at the points located on the lateral surface of the cone, having its axis, coinciding
with the direction of z-axis and semi vertex angle 0 = cos™11/V3.

Let us assume that the dipole is at the centre of the one equipotential surface which is

spherical (Fig.). On an equipotential surface the net electric field strength along the tangent
of it becomes zero. Thus

14 sin 0

-E;sin@+Eg=0 or -E;sin0+
:rteor

173
(P
Hence r ( Aney Eo )

Alternate : Potential at the point, near the dipole is given by,

Q= —L—— E0 r ¥ constant, -
ame,r f\
——E—— E,| cos 6 + Const
41:80
For ¢ to be constant, / t 7'
E®
p
-E,=0 or = E
4ﬂ:eor3 o dme ? 0
173
Thus = (47\:80E0)
Let P be a point, at distace 7 >> [/ and at an angk:’ to O the vector l—zFig.).
—>
=L ~1
Thus Eat P= A _2, - A .2_.
r+5 -’2‘ P
A Fri]2 Fii]2
2 2 - 72 5
%o r2+lz-+rlc050 r2+%-rlcosﬁ /(' n
- 6
A (1 217 >
- 2neo(r2_ P cose) A 0 . |B
- A
Hence E = EI:Lyr>>l A
2meyr ‘
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—-»

ln| 1/2]

Also, P= 2:% lnl7”+172|-

A 1 P+rlcos@+P/4 Alcos0
= n 2 -
dne, P_rlcos0+1%/4 2meyr

, r>>1

The potential can be calculated by superposition. Choose the plane of the upper ring as
x = 1/2 and that of the lower ring as x= - I/2.

q q
The: = -
T e BV dne, R+ s V2T

9 _ q
- 41n':0[R2-wc2-bc]V2 4:\:80[R24-J3+I.Jtt]l/2

- ;! 14—2 - 9 1-—E&
4ne,R2+x)2| 2R*+D) | dnggB+D)V?| 2R*+XD)

4ne, (Rz +?)3: Z
For |x|>>R, @m= q!
4 n?
The electric ficld is £ = - %
- ql 3 ql P w qgl2x*-R?
41::»:0(R2-o-x2)372 2(R2-o-x2)3/24;vu0 4ney (R + 1)
For |x{>>R, E~ —li—g The plot is as given in the book.
2neyx

The field of a pair of oppositely charged sheets with holes can by superposition be reduced
to that of a pair of unifosm opposite charged sheets and discs with opposite charges. Now
the charged sheets do not contribute any field outside them. Thus using the result of the
previous problem

R
P (-o)2nrdrx
4neg, (r2 -o-.u:z)EV2
0
Rz«txz
- oxl _L oxl

480 ys/z VRz+x2 té L
E=_%_ _o_l 1 _._._0_”32_
V_—+x—2 (R2+x2)3/2 250 (R2*x2)3/2'

x ax 2¢,
The plot is as shown in the answersheet.
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3.45 For x > 0 we can use the result as given above and write
Pt ol (1 - X )
26| R+HV?
for the solution that vanishes at a. There is a discontinuity in potential for | x| = 0. The
solution for negative x is obtained by o — - 0. Thus

ol

———5 7,5 + constant
2eg(R+ )2

(p = -
Hence ignoring the jump
op ol R?

ax 2, R+ x9?

for large f| @~z —Lz and E ~ -—-——2—-—3— (where p= nR*0])

4meyx 2meg | x|
A E
—
346 Here E, = Tmegr’ Eg=E,= 0 and Fsp%—l

(_a’) p along the thread.
E does not change as the point of oRservation is moved along the thread.

F=0
— —
(b) p along r,
F=F e == e = — On using —e, = 0
T 2megrr T 2meyr? "8 ar o )
(c) p along
= 3 A
FsPrBBZneore’
—
ef

- e 3G, Pheoe Pk,
2 90 A5 2neor2

nE,T 2reyr

3.47 Force on a dipole of moment p is given by,

o
F=lo7y

In our problem, field, due to a dipole at a distance I, where a dipole is placed,
—>
|E|- —£—
2neyl
Hence, the force of interaction,
2
Fe—F . 21x10"%N
2me,l
348 -do=FE-dr=a(yde+xdy)= ad(xy)

On integrating, o= -axy+C

3 _4p= E-dr= [2axyi_;2(x2-y2).r]'[dxi—:»dyj—.]

or, dtp-2axydx+a(xz- 2)dy-- ad(xzy)-aélzdy o
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On integrating, we get,
2

Q= ay(%-x2)+c
Given, again
—> —> —> —> —> —> —>
~do=E-dr= (ayi+(ax+bz)j+byk)-(dci+dyj+dxk)
= a(ydc+axdy)+b(zdy +ydz) = ad (xy) + bd (y2)
On integrating,
o= —(axy+byz)+C
Field intensity along x-axis.
2
E,.= -%s 3ax )

Then using Gauss’s theorem in differential from

E, p
x e 0, p (x) = 6agyx.
In the space between the plates we have the Poisson equation
Fo_ P
ox €
or, Q= -ﬁ)—x2+Ax+B
2¢,
where p, is the constant space charge density between the plates.
We can choose ¢(0)=0s0B=0
2
Pod Agp FPo d
Then (D(d)—Aq)—Ad-ZEO or, A—T+2_e()
Now E=-22.80, 4.0 forx=0
Ix g
d
- A Pod
if A d +3 e 0
2¢,A
then Po= - :iz @
d
Also E@= 2"
€
Field intensity is along radial line and is
e
E, o 2ar @)
From the Gauss’ theorem,
4nr’E, = f dq
€,

where dgq is the charge contained between the sphere of radii r and r +dr.

r
Hence anr? E =4n r* x (-2ar) = %JL fr'2 p (¥)ar ¥
09

Differentiating (2) p= -6¢5a
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3.2 CONDUCTORS AND DIELECTRICS IN AN ELECTRIC FIELD
3.54 When the ball is charged, for the equilibrium

of ball, electric force on it must counter balance
the excess spring force, exerted, on the ball
due to the extension in the spring.

Thus F,, = F,, T +4q

2

or, ——q—g = x x, (The force on the charge ¢
4me,(2) :‘!

q might be considered as arised from attraction

by the electrical image)

or,g= 4lVreyxx, i Image
sought charge on the sphere. -9
3.55 By definition, the work of this force done upon an elementry displacement dx (Fig.) is
given by
7
dA= F dx= - 7 dx, 7
4 me,(2x) 7
where the expression for the force is obtained 2 F q
with the help of the image method. Integrating S 4 < > —>X
this equation over x between / and %, we find 4 X dx
/
/]
/]

16usofx2 T 16meyl”

3.56 (a) Using the concept of electrical image, iit is clear that the magnitude of the force acting
on each charge,

PP 7 7
F|=V2 -
¥l aneyl® 4me, V217
-—1—-@V2-1
8meyl

(b) Also, fr“om the figure, magnitude of
electrical field strength at P

—qk N|
E=2[1--1_ —a_ q H
5V5 |n gyl
3.57 Using the concept of electrical image, itis easily Gt _g‘— L /Tq

seen that the force on the charge q is,

_ V2 f (- 9)°
4ne0(21)! 41(80(2\/—[)

__.,__..._.._
\
\\
ANADNNNNN
\3

1
(2—3228—:}251— (It is attractive) -4 jé____-_l______\% g
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Using the concept of electrical image, force on the dipole P
— aE —
F=p R where E is field at the location of
pdue to (- )

—~ |k 3p BT |-z
or, lF I' _l_ pP= 4 P

9 32me,l
as, |E|= —2—
4 ey (2)

To find the surface charge density, we must know the electric field at the point P (Fig.)
which is at a distance r from the point O .
Using the image mirror method, the field at P,

l
] —r—2 —>

+4
E=2Ecosa=2—1 21- qzl 537
dnex" X 2me (I°+r7)
Now from Gauss’ theorem the surface charge l
density on conductor is connected with the 777
electric field near its surface (in vaccum) 0
through the relation o = ¢ E,, where E, is the

=
projection of E onto the outward normal ﬁzwith
respect to the conductor).

As our field strength E’H n so -Q
ql
O A
(a) The force F, on unit length of the thread is given by
F, = MNE|
where E| is the field at the thread due to image
charge : 4

Y 1
E, = W %1

- a2
- 4ne, !

Thus F,

minus singn means that the force is one of
attraction. !
(b) There is an image thread with charge L/PL/
density— A behind the conducting plane. We
calculate the electric field on the conductor. It is

E(®=E, ()=

M

nE, (1:2 +1%

on considering the thread and its image.

Thus

M

n(+1%)
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361 (a) AtO,

-4

Adx A
E O - Zf -

A
So 0(0)= ¢ E, = 2nl

Adx x A xdx
®) E, (=2 f‘“‘ﬁo e (BrA 2 2380_[(1;*’2)3/2

] 1

A d .
= f ;s%,on putting y = x* + 7, de'7\

4xe

1 +r x
A 1 /
2.2 1

2re, Vi +f2 oLx /
A
Hence o (r)= ¢)E, = —————
2aVi?+r? -

3.62 It can be easily seen that in accordance with the image method, 2 charge —g must be
located on a similar ring but on the other side of the conducting plane. (Fig.) at the same
perpendicular distance. From the solution of 3.9 net electric field at O,

F=2—2 () where 7
= -n) where n'is

dmey(R*+1%2 ﬂjq
outward normal with respect to the condycting
plane.

. o l
Now E = ;:; I 0
l 17777
Hence o= -4
2x (EZ +1 !)3: Z

where minus sign indicates that the induced
carge is opposite in sjgn to that of charge -4
g>0.

3.63 Petential @ is the same for all the points of the sphere. Thus we calculate its value at the
centre O of the sphete. Thus we can calculate its value at the centre O of the sphere,

because only for this point, it can be calculated in the most simple way.

q '
4nsol+q) @
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where the first term is the potential of the charge

g, while the second is the potential due to the
charges induced on the surface of the sphere.
But since all induced charges are at the same o
distance equal to the radius of the circle rom 19
the point C and the total induced charge is

equal to zero, ¢’ = 0, as well. Thus equation

(1) is reduced to the form,

1
4meyl

q):

As the sphere has conducting layers, charge
—q is induced on the inner surface of the sphere
q and consequently charge + g is induced on
the outer layer as the sphere as a whole is
uncharged.

Hence, the potential at O is given by,
-1, AN 4
dmeyr 4meyR, 4meyR,

Do

It should be noticed that the potential can be
found in such a simple way only at O, since
all the induced charges are at the same distance
from this point, and their distribution, (which
is unknown to us), does not play any role.

Potential at the inside sphere,

__ 4 I a2
Pa 4nega 4meyb
) b
Obviously ¢,= 0 for g, = e ®
When rz b,
91 q2 9 b .
o= 4nsor+4neor— 4neo(1_a)/ r, using Eq. (1).
And when r< b
__4 + 2 _ o1 1
r 4ne,r 4meyb dAmey\r a

(a) As the metallic plates 1 and 4 are isolated and conncted by means of a conductor,
@, = @,. Plates 2 and 3 have the same amount of positive and negative charges and due
to induction, plates 1 and 4 are respectively negatively and positively charged and in

addition to it all the four plates o lo at%d K '§mall but at fqua istance. d relative to each
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other, the magnitude of electric field strength between 1 - 2 and 3 - 4 are both equal in
magnitude and direction (say E ). Let E’ be the field strength between the plates 2 and 3,

which is directed form 2 to 3. Hence E H E (Fig.).
According to the problem

E'd= Ap= 9~ 5 ) o
In addition to 1‘171 1 +
P1-Ps= 0= (P; = @) + (9~ P3) + (@3- ) S m 2
or, 0= -Ed+Ap-Ed 4‘; l3
Ap , 4
or, Ap= 2Ed or E = > 8
Hence  E-= 57= %3 @)

(b) Since E o 0, we can state that according to equation (2) for part (a) the charge on
the plate 2 is divided into two parts; such that 1/3rd of it lies on the upper side and
2/31d on its lower face.

Thus charge density of upper face of plate 2 or of plate 1 or plate 4 and lower face of

A
30=¢yE= 02d‘P and charge density of lower face of 2 or upper face of 3
o'= g E' = ¢ A%
Jgde .
Hence the net charge density of plate 2 or 3 becomes G + G’ = >4 which is obvious

from the argument.

The problem of point charge between two conducting planes is more easily tackled (if we

want only the total charge induced on the planes) if we replace the point charge by a

uniformly charged plane sheet.

Let o be the charge density on this sheet and E,, E, outward electric field on the two

sides of this sheet.

Then E, +E,= 2z M
€

The conducting planes will be assumed to be
grounded. Then E, x = E, (I - x).

Hence E = I—(Z(;(l—x)’ E,= loTox

This means that the induced charge density on
the plane conductors are

I
[
i
01=-%(1—x), o, = -%x k :

Hence g, = —%(l—x), q,= —% x
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3.68 Near the conductor E= E = eg
0
This ficld can be written as the sum of two parts E; and E,. E, is the electric field due
to an infinitesimal area dS.

. o
Very near it E; = = ——

2¢g,
The remaining part contributes E, = 2 on \
i ds E
both sides. In calculating the force «on the T h

element dS we drop E; (because it is a
self-force.) Thus
aF_ . o _ o
ds 28, 2¢
3.69 The total force on the hemisphere is

V2
o2
F= ——-cos0-2nRsinORdIO
2¢,
0

x2
2 2
= MJ‘cosesinede
2¢, 4

2xR? 1 q > Vd
X =X | =
2¢ 2 |4=mR 32neyR
3.70 We know that the force acting on the area element dS of a conductor is,
- 1 —>
dF = -z—oE ds 1)

It follows from symmetry considerations that
the resultant force F is directed along the z-axis,
and hence it can be represented as the sum
(integral) of the projection of elementary forces
(1) onto the z-axis :

dF,= dF cos © )
For simplicity let us consider an element area

dS = 2 xR sin O R d 6(Fig.). Now considering
that E = o/¢; Equation (2) takes the from

2 p?
aF, = 22X sin 0 cos 00
0
2 p2
"R
--( 9 )cossedcose
£
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Integrating this expression over the half sphere (i.e. with respect to cos 0 between 1 and 0),

. noaR?
we obtain F=F,6 = P
0

n
The total polarizationis P = (& - 1) &, E. This must equals _12V£ where njis the concerntation

of water molecules. Thus

no P

N= (e-1)eoE

= 293 x 10° on putting the values

From the general formula
—>» —»2

_’E 1 3p-rr-pr
=
4me,

o 12y
4mey 13’

where r= [ and 7> 11 P

This will cause the induction of a dipole moment.

Thus the force,

The electric field E at distance x from the centre of the ring is,

gx .
E@)= ————37y
" dne, (R +x)7

d ] : qpx
The induced dipole moment is p= B¢ E =
P p 0 A7 (RE+ D72 (R +x )3/2

The force on this molecule is

F-p—-a—E- qﬁx 75 q —a_ X = q22ﬁ x(lgz_%xj)
ox 4n R+ 4nsoax(R2+x2 161" e, (R°+x°)

This vanishes for x = % (apart from x = 0, x = )

It is maximum when

3 x(R*-¥x2)
o  (R*+x)
or, (R2-2x2)(R2+x2)—4x2(R2+x2)-8x2(R2—2x2)= 0
2
or, R*-13x*R*+10x*= 0 or, X*= 1;—0(13: V129)

orx = % Vi3 = Vﬁg (on either side), Plot of F, (x) is as shown in the answersheet.
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3.74 Inside the ball

-
-4 r_
D) an 7 eggE
—_—
Also £0—>+_>=D or =€;15=£;1‘—‘q;%
r
, - —*=_e-1_g_f _-e-l
Also, q ﬁPd T am dQ= " q
o
375 Dyu= €e0Egu= Dppiyior= 0 05, Eyy= 8—80
e-1
P =(c-1)¢yE , = — °
0’-—P,,-—£_10

3
This is the surface density of bound charges.

3.76 From the solution of the previous problem gq',, = charge on the interior surface of the
conductor

e-1
= —(s—l)/efodS: ———E—q

Since the dielectric as a whole is neutral there must be a total charge equal to

/

£-1 ¢ A
9 ower= +*—, g 00 the outer surface of the dielectric.

3.77 (a) Positive extraneous charge is distributed uniformly over the internal surface layer. Let
o, be the surface density of the charge.

Clearly, E=0, forr<a
Fora<r

g Ex4n P = 4na’ o, by Gauss theorem.

2

o
or, E=—0—(-q-) ,a<r<b
goe |7
For r > b, similarly
2
o
E= = (E) , r>b
g \7
Now, E= - 2?-.
ar
So by integration from infinity where ¢ () = 0,
oga* b
¢= g r r>

Downloaded From : www.EasyEngineering.net


http://Easyengineering.net
http://Easyengineering.net

)
a<r<b o=
eer

or by continuity, ¢ =
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+B, B is a constant

00a21 1 ooa2
(———) a<r<b

+ )
gt \r b| ¢gub

For r<a. ¢= A= Constant

By continuity, ¢ =

0,d* (1 1| Opd?
=-=+
€€ (a b) g b

297

(b) Positive extraneous charge is distributed uniformly over the internal volume of the

dielectric

Let p, = Volume density of the charge in the dielectric, for a <r <b.

Ofr,

or,

By integration,

or,

By continuity

or,

Finally

E=0, r<a

soe4nr2E=- 43—ﬂ(r3-a3)po,(a<r<b)

3
E= ﬂ——(f—%)
egye r

E = g—n(b3—as)po/eo4ﬂr2, r>b

b -a
E= -(—)229- for r>b
3e,r

_ B -d)p
3eyr

2 3
P ra

—2 (L& ,a<r<b
€ r

for r>b

b’ -a _p__Po _bj+_a_3_
3e,b O 3egel|2 b

P [e’-a’) (b 4
B 3808{ b (27

2
Po a_2 2 Po @
q)-B—3eoe(2+a B ee,r<a

On the basis of obtained expressions E () and () (r) can be plotted as shown in the

answer-sheet.
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3.78 Let the field in the dielectric be E making an angle o with 7. Then we have the boundary

3.79

3.80

conditions,
Eycos og= e Ecos o and E,sincy= Esina

. 1
So E=E, s1n2010+—2cos2 o, and tana = etanaq,
€

In the dielectric the normal component of the

induction vector is / n

D,=¢yeE, = gge Ecosa= g;E;cos o Lo
1 / >Lo
'.— - - —

o'=P =D, -¢E, = (l—s)eoEocosao 7
7z
Iy

e-1
or, o= g, E, cos a,

. , e-1 /
From the previous problem,c’ = g, . Eycos 0

Eo
7 o 1 leng{hl
j T
R / 2/
i

@) Theni E-d5-= —EI—Q= % K Eq cos 0 2=
0

() f D-di= (D,,-D,,) 1= (ggEysin 0 - ¢ &g Eysin 0) = ~ (¢ - 1) e, E, I sin 0

- 9dD,
(a) divD = =P and D= p!

E = —LI, l<d and E = pd constant for I>d
£g, €

2
- -a-pld -pdf, 4 _
¢ (x) 2,“30,I<dand px)=A 80,l>dt.hentp()c) e d e 1],

by continuity.

On the basis of obtained expressions E, (x) and ¢ (x) can be plotted as shown in the figure

of answersheet.
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®) p'= -div P= -div (e-1)¢, E=—p 8-1)

o'= P, - P, , where n is the normal ftom 1to2.
—_

=P, , (P,= 0 as 2 is vacuum.)
¢

= (pd-pd/e)= pd =2

A=0as D, = « at r=0 ,Thus, E = 3pr

€g
B
For r>R, D, = —
r
R3
By continuity of D, at r= R ; B= 1’—3—
R
S0, E = —L, r>R
3g
R3 2
Q= LT y>Rand p= - _icCr<R
3gyr 6¢¢

C= %& i , by continuity of ¢.

See answer sheet for graphs of E () and @ (r)
3
oo . 1 8T )| _p-1
(b) p' = div P= #ar{ p(l s)} .
o'sPlr-Pz,st-%pR(l-%)

Because there is a discontinuity in polarization at the boundary of the dielectric disc, a
bound surface charge appears, which is the source of the electric field inside and outside
the disc.

We have for the electric field at the origin.

E’- _f Odgs;,b
4meyr

where 7 = radius vector to the origin from the element dS.
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o' = P, = Pcos 0 on the curved surface
(P, = 0 on the flat surface.)

— —
Here 0 = angle between r and P

— —>
By symmetry, £ will be parallel to P. Thus
2x

Eu - PcosBRdB;ooSB.d
4me R

0

where, r= R if d<<R.

—

Pd - d
ae,R ™ E" " TR

So, Ew -

Since there are no free extranecous charges anywhere

. — dD,
divD= v 0 or, D = Constant

But D, = 0 at ©, so, D = 0, every where.
By 2 Py( &
ndl [ F B AL R
€ d & d
Pyx  Py©
So, = —- 7 + constant
€y 3 €
Hence,

2P,d 2P,d 4P,d
&g 3d’e, 3%

P(+d) -9 (-d)=

(a) We have D, = D,, or, ¢ E,= E,

Also, E1;+E2g- Eyd or, E\+E,= 2E,
2Eo ZGEO 2850Eo
Hence, E,= 8+1:m 1" 71 and D= D, = T
(®) D= Dy or, tEy= Ey= = E,
0
Ey
Thus, E,=Ey, E,= ry and D, = D, = ¢, E,

Downloaded From : www.EasyEngineering.net


http://Easyengineering.net
http://Easyengineering.net

385

3.86

3.87

3.88

Downloaded From : www.EasyEngineering.net 301

(a) Constant voltage acros the plates;

E = E,= Ey, D;= ¢ E;,, D,= g,c E,
(b) Constant charge across the plates;

E =E,, D =¢E,D,=eeyEy= eD,

2E,

E(1+¢)=2E, or E,=E,=

e+1

At the interface of the dielectric and vacuum,
E,=E,

The electric field must be radial and

E/ =E,= a<r<b

2
EgET

Now, 9= 22 (2nR2)+ (2:tR2)

-A(l +-1—)2n
€

o, E =E, = Em—rCL I
! 2 2:n:£0r2(1+s)

In air the forces are as shown. In K-oil,
F— F = F/¢ and mg—»mg(l —%q).

Since the inclinations do not change

)
€ p
or, &-l—l-l’:_1
[ € (3 ;
I mg mg
> p poe__l

where py is the density of K-oil and p that of the material of which the balls are made.

Within the ball the electric field can be resolved into normal and tangential components.
E,= Ecos0,E,= Esin@

Then, D,= e¢yEcos®
and P,=(c-1) egEcos O

or, o'=(e-1)egyEcos B

S0, Op, = (e-1)gE

and total charge of one sign,
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1

q’af(e-l)eoEco592nR2d(cos6)- ﬂsto(ﬁ—l)E
0

(Since we are interested in the total charge of one sign we must intergrate cos 6 from 0
to 1 only).

The charge is at A in the medium 1 and has an image point at A’ in the medium 2. The
electric field in the medium 1 is due to the actual charge g at A and the image charge
q' at A'. The electric field in 2 is due to a corrected charge ¢’ at A. Thus on the boundary
between 1 and 2,
!
E,k = —L— cos 0 - —1— cos
YETNG 4neg, r

E, = —91" 0
x 4:u=,0r2

!

E,= —21—sin0+—L—sin0

B dmeyr RTINS
E -——-q:-——sinﬂ
x 4n50r2

The boundary conditions are
D,,=D,, and E, = E,,

eq'=q-¢q
q'=q+q
" o E f-_s—l
S0, 1 e+1’q s+1q

(a) The surface density of the bound charge on the surface of the dielectric
0' = P2"= D2n - EoEzn' (8 - 1)‘50E2n

e-1 g¢q e-1 gl

e 22 T T 2

. €-1 e-1
(b) Total bound charge 1s,—8+qu 2n(12+x2)3’22nxdx_ o719

The force on the peint charge g is due to the bound charges. This can be calculated from
the field at this charge after extracting out the self field. This image field is

e-1 q

image =~ T { m

2

Thus, F= = 1 ———‘!—-—2

e+116me,!l
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e ,—>
qar qar,

3 3
dreyr; 4dmry g,
s
q'n .
E =————— Pin2
P 4 3
meyry

2q
h "a '- ’I-
where g c+1’ 9=q9 -9

-
In the limit / — 0

P gF

3 3> in either part.
4ne,r 2meg(l+¢€)r

Thus, E = .——i—
P 2mey(1 +e)r

A
¢ 2ney(l+€)r

D= _q_x 1 in vacuum
2mey(1+¢€) r ¢ in dielectric

— —>
= qr; ary .
™ 3; Pin 2

3
4rxeger, dmeyr)

— q"?
E,= —5;Pin1
4neyr,

Using the boundary conditions,
E\=¢Ey, Eyy= Ey

This implies

q-¢qd=q" and g+eq' = eq"’

So, ¢'= 29 e-1gq

e+1’ e+1lce

q=
Then, as earlier,

of._gl_.(u).l

ans e+1 €

To calculate the electric field, first we note that an image charge will be needed to ensure

that the electric field on the metal boundary is normal to the surface.
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The image charge must have magnitude —%

so that the tangential component of the electric
field may vanish. Now,

(—q—)ZcosB- _____ql___3
er

2reyEr
e-1)qgl ,
Then P, = D, -¢,E, = gmlrg—- o

E,= 4:e,

This is the density of bound charge on the
surface.

Since the condenser plates are connected,
E,h+E,(d-h)=0

and P+eyE = ¢y E,

rE2

Ph Ph
Thus, E2d—§= 0, or, E,= ;‘;o—d T
P h

Given F =ar, Wwhere r= distance from the axis. The space density of charges is given
by, p'= -div P= -2a

. . - 1 9 —
On using. div r= = ar(r =2
In a uniformly charged sphere,
r
E = Ll or, E= ﬁo_;-
3¢, 3¢g,

The total electric field is

- 1 - 1 -
E= 3¢, PoT = 3e, (F=37) py
-—
= 1 or= .._P—
3¢, Po 3e,
—> =g .
where pd r= — P (dipole moment is defined
with its direction being from the -ve charge
to +ve charge.)

The potential outside is -

r
1 Q_A_FQ_AW ,:_P_o___,r>R
dney\r |r-or dme,r

dn
3

qjs

R p, 7 is the total dipole moment.
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The electric field E0 in a spherical cavity in a uniform dielectric of permittivity e is related
to the far away field E in the following manner. Imagine the cavity to be filled up with
the dielectric. Then there will be a uniform field E everywhere and a polarization P, given
by, N -

P= (e-1)¢g E
Now take out the sphere making the cavity,

the_glectric field inside the sphere will be
P

-E

P =

By superposition. Eo 36, = E
€9

or,EI,: E+-§(s—1)E= §(£+2)E

By superposition the field E inside the ball is given by
—_ - P
E=E,- 3%
On the other hand, if the sphere is not too small, the macroscopic equation

F= (e-1)¢g, Emust hold. Thus,

El1+le-1))=-E £ 2k
(*3(8‘)’0“’ )

Also I—;-3£0;T

This is to be handled by the same trick as in 3.96. We have effectively a two dimensional
situation. For a uniform cylinder full of charge with charge density p, (charge per unit

volume), the eleetric field E at an inside point is along the (cylindrical) radius vector r

and equal to,
gL,

r
Zeo

S Ee L9 L
divE rw (rE,) 80, hence, E, 28or

Therefore the polarized cylinder can be thought of as two equal and opposite charge dis-
tributions displaced with rmpcct to each other

—

P
E=25 pr~-2 p(r=dr)= — p&r-—-zs—o

Since }—” =-pdr (dlrcctlon of clectric dipole moment vector being from the negative
charge to positive charge .)
P
0
using here the result of the forfgoing problerll;
Also P= (e-1)¢yE

- —>
As in 3.98, we write E = E; -

So,  E[N)eE o Fe 2B ana P 2ylE
’ 2 0> T e+l O%¢+1 ©
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ELECTRIC CAPACITANCE ENERGY OF AN ELECTRIC FIELD

3.101 Let us mentally impart a charge g on the conductor, then

3.102

3.103

2 L
Q- ¢_= -——-q—zdr+ ——q—2
4neyer 4ne,r
1
-9 (L_1], g 1
4neye [R;, R,| 4meyR,

-—4 [E-1D 1
4neye R, R,

Hence the sought capacitance,
co_4 gdmneye 4ne e R,

Q-9 [E-D, 1] R,
q R2 Rl (6—1)R2+1

From the symmetry of the problem, the voltage across each capacitor, Ap = £/2 and
charge on each capacitor g= C E/2 in the absence of dielectric.

Now when the dielectric is filled up in one of the capacitors, the equivalent capacitance
of the system,

’ Ce
1+¢
and the potential difference across the capacitor, which is filled with dielectric,

,=_g’__ Ce & _ E
Ap eC (1+€)Ce (1+¢)

But pak

Ch

So, as @ decreases -12-(1 + &) times, the field strength also decreases by the same factor

and flow of charge,Aq= ¢' - ¢q

Ce _Q 1 (e-1)
"W+ 257256+

(a) As it is series combination of two capacitors,
1 d d, &S

== + or, C=————1T—F57—
C ge S ge,S (d,/¢,) +(d,y/&,)
(b) Let, o be the initial surface charge density,
then density of bound charge on the boundary
plane.

o'= o(l—-l—)-o(l-—l—)- OC———I-)
31 L] & g
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CV_  _&S&1& Vv
“’ O" ST S T ed+e,d, S

T ey dy+e,d,

(a) We point the x-axis lowards right and place the origin on the left hand side plate.
The left plate is assumed to be positively charged.
Since € varies linearly, we can write,
e(x)= a+bx
where a and b can be determined from the boundary condition. We have
e=¢ at x=0and e= ¢, at x= 4,

So,

d
Now potential difference between the plates

' -8
Thus, ex)= ¢, + x

d
<% o
_tp_=f E-Jﬂfﬁoe(x)dx /
0 0 /
o dy = cd | & /
( €, - & ) (e,-8)e, € /
0 gl & +—7—x /
oS (e-e)gS /4

{
!

Hence, the sought capacitance,C = =
g P 9, -9 (Ilneye )d

(b)D=%andP .49

S Se(x)
and the space density of bound charges is
€,—-¢€
p’-—divP-—————~q( 22 1)
Sde” (x)

Let, us mentally impart a charge g to the conductor. Now potential difference between the

plates,
RZ
-p_= f E-dr
Rl

—q 1,._49
dnega/r p2 2 dneya InRy/R,

1
Hence, the sought capacitance,
q q 4n 90 a 4dmneya

-9 _

C-=
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3.106 Lct A be the linear charge density then,
A

Ein= 2neyR €,

A

and, B 32 g Ry g,
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6

@

The breakdown in either case will occur at the smaller value of r for a simultaneous

breakdown 'of both dielectrics.
From (1) and (2)

E, R ¢, = E, R,¢, which is the sought relationship.

3.107 Let, A be the linear charge density then, the sought potential difference,

K R,

P, -Q -f*-—-—):—dr+ f
o 2reye
R,

R,

A

2nege,r

42 [—l—ln Ry/Ry+ 2 In Rs/Rz]
2

2ne, | g
Now, as, E R, e<E,R,¢,, so
A
2me,

- EIRI 81

is the maximum acceptable value, and for values greater than E, R, ¢,, diclectric breakdown

will take place,

Hence, the maximum pdtential difference between the plates,

€

2

9, -9_=E R ¢ -:—11111!2/1!1 + slz-lnR3/R2 ] = E\R, [ InR,/R, + e—llnRs/Rz]

3108 Let us supposc that lincar charge density of
the wires be A then, the potential difference,
@, -9_= ¢ - (- 9) = 2 . The intensity of the
clectric field created by one of the wires at a
distance x from its axis can be easily found
with the help of the Gauss’s theorem,

A
E- 2reyx
b-a
- A b-a
Thcn,qa-fde- 2x€01n 2

‘Hence, capacitance, per unit length,

A2
9,~9. Inb/a
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The field in the region between the conducting plane and the wire can bt ebtained by
using an oppositely charged wire as an image on the other side.

Then the potential difference between the wire

and the plane, JJ_*_ |
Ap= f E-dr ' %
b b
I g |
. f A2 o £
2megr  2mey(2b-1) | - :
SV S | i
2ne, a 2mey 2b-a B b L b g:
A 2b-a -
- m ==2 [ I
2me, a 1
- A In 2 , as b>>a
2me, a
Hence, the sought mutual capacitance of the system per unit length of the wire

A 2me,y
[ A(p= In2b/a

When b >> a, the charge distribution on each
spherical conductor is practically unaffected by
the presence of the other conductor. Then, the
potential @, ( @_) on the positive (respectively

negative) charged conductor i

s+ —
+—1 i (g
dnesea |  4dngyea
e A B
Thus @, - @ 2neeqa

and C=—21—« 2me Ea.

+ -

. . a T
Note : if we require tetms which depend on Ve have to take account of distribution

of charge on the conductors.

As in 3.109 we apply the method of image.
Then the potentical difference between the +Q -4
+vely charged sphere and the conducting plane
is one half the nominal potential difference
between the sphere and its image and is

B¢, -g )m—l E !

2 4neqa /
Thus [—>

C= qu)_ = 4nega. for [>>a.
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G|l 6 G

(a) Since p; = @z and @, = @,

VAN

R

81

)

The arrangement of capacitors shown in the problem is equivalent to the arrangement

shown in the Fig.

D

C\/\c

A —=c »B &

C\E/\c

and hence the capacitance between A and B is,

o)

(B) From the symmetry of the problem, there is no P.d. between D and E.. So, the
combination reduces to a simple arrangement shown in the Fig and hence the net capacitance,

(a) In the given arrangement, we have three

€95
capacitors of equal capacitance C = id— and

the first and third plates are at the same
potential.

Hence, we can resolve the network into a simple
form using series and parallel grouping of
capacitors, as shown in the figure.
Thus the equivalent capacitance

(c+c)Cc 2

Co= (C+C)+C 3¢
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(b) Let us mentally impart the charges +q and -q to the plates 1 and 2 and then distribute
them to other plates using charge conservation and electric induction. (Fig.).

As the potential difference between the plates 1 and 2 is zero,

€,5
q1+ﬁ-ﬁ- 0, (wherc C= —0——)

c Cc C d
0[, q2= 2bq1’
The potential difference between A and B,
P= 0 -9p= ¢/C

Hence the sought capacitane,

q_Nt%_ 3aq .3 _3805

9 g,/C 2q1/C 2 2d

Amount of charge, that the capacitor of capacitance C, can withstand, g, = C, V, and

CO-

similarly the charge, that the capacitor of capacitance C, can withstand, g, = C, V,. But
in series combination, charge on both the capacitors will be same, so, g, ., that the combination
can withstand = C, V,,

as C; V; <C,V,, from the numerical data, given.

Now, net capacitance of the system,

C.= _C_l_c_'?_
0" C,+C,
9max CV;
and hence, V_, = C, = C,C,/C,+ G, =V 1+C,2 = 9kV

Let us distribute the charges, as shown in the figure.
Now, we know that in a closed circuit, - A(p =0

-So, in the loop, DCFED,

1 1
Bt S A - 2 = —_—— 1

Again in the loop DGHED,

9 4,t+4q,
Rl @

G- G - c
T L L
+ -
& Cy =" Cz:qu
“‘ -((11‘*"12)
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Using Egs. (1) and (2), we get

@ ¢ " E; * %) G,
. 7} E 1
N e
o R A A B
Cl C2 C22
g g
or, -Qg= - =10V
Pa=%s c? 3¢ +3n+1
12 G

3.116 The infinite circuit, may be reduced to the circuit, shown in the Fig. where, C; is the net
capacitance of the combination.

1 1 1 C

SO, —— e B e
Cc+C, C C, ” i .
Solving the quadratic, _I_ _J_
2 2 ¢ Co

CCy+C2=C%n 0, T T

we get, '
(¥5-1)

Co= C, taking only +ve value as C, can not be negative.

2
3.117 Let, us make the charge distribution, as shown in the figure.

-2 _ e, 9
Now, @,-@p C, §+C2

g= (Ps-9p)+ &

A* 1F
C,+C, €6

or,

Hence, voltage across the capacitor C;

_ 9. ((PA"PB)"' 13

C,” G+, C2ml0V

and voltage across the capacitor, C,

.4 e s
C c,+Cc, ! G
2 1*%2 A “qu'l"‘l B

3.118 Let &, > &, then using — Ap = 0 in the closed
ircuit, (Fig. _
circuit, (Fig.) _q_+§2__q__§1_0
¢ %

1
or - (5,-8)C Gy
> 1= T, +C)

|
D -—qlf g C
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Hence the P.D. accross the left and right plates
of capacitors,

_q_GE-5G
Y= T, T e +G,

and similarly

-q_E-5C
C, C +C,

Taking benefit of tHe foregoing problem, the amount of charge on each capacitor

I l= |§2_§1|C1C2
1 C,+C,

Make the charge distribution, as shown in the figure. In the circuit, 12561.
- Ap = 0 yields

G C2
9 9 0 gC,.C, 4 —42“4'42 A —qzll}+QZ3
Gt 50 o 4

and in the circuit 13461,

5 I 11
B24+8 ko0 o g 56,5 —qlt+q, =g g |2
G G C,+C G Cr
9 9 |
Now Py —Pg= C—I—Z’—; 6 l'& .
C, @, c,C;-C,C,
"8CG, GG, || Gr e G 0D

It becomes zero, when
Cl C3
(C2C3—CIC4)= 0. or —C"-;= 6—4‘
Let, the charge g flows through the connecting wires, then at the state of equilibrium,

charge distribution will be as shown in the Fig. In the closed circuit 12341, using
-Ap=0

¢ ¢ G Cr
HCV-9) —Tq
or, g = 14 = 0:06 mC G +49
' =g G
Initially, charge on the capacitor C; or C,, I-q’
&G,

, as they are in series combination (Fig.-a)

C,+C,
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when the switch is closed, in the circuit CDEFC 'from - Ap = 0, (Fig. b))

§- 2= 0 o gy= Gy )
And in the closed loop BCFAB from - Ap= 0
“hLB gl @
¢ G
__S\.N/ ‘1 ll+ D C ‘f‘q“"lt B
t4
&+ ="Cs —T&_ & &1 T
~q T
1 2 E A
@ (b)

From (1) and (2) ¢, = 0
Now, charge flown through section 1= (g, +¢q,)-0= C,&

and charge tlown through section 2= -g,-g= - §—CI—C2
C +C,
3.123 When the switch is open, (Fig-a)
28C,C,
9= 7 1+C,
! 1

Y

e lrgg ik |
5 -|- Sw/ _F'QCZ & '|> o \ ~ti’
1
.l.

& C2 &
| T+4,
and when the switch is closed,

q,= EC, .and q,= EC,
Hence, the flow of charge, due to the shortening of switch,

N
N
Y

through section 1= ¢, -g,= EC, C‘_Cz] =-24uC
C, +C,
through the section 2= - g, -(gq,) = §C, L C2] = -36uC
C,+C,

and through the section 3= ¢, -(g,-¢,)-0=§(C,-C;) = -60uC
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3.124 First of all, make the charge distribution, as shown in the figure.

3125

3.126

In the loop 12341, using -Ap=0

__El _0

@

Similarly, in the loop 61456, using — Ap = 0

%,
C2

-9
C;

-5=0

From Egs. (1) and (2) we have
5.C-8C
. G

E;+—+1

-4 =

qz‘ql_

@

3

2

_‘_qql+¢l 1
G

G

A-Gy1 +42 6

19492

1992

5C;-5.C

Hence, Q4 -Pp=

Cs

In the loop ABDEA, using - Ap= 0
£+ a . 4G+
A ¢
Similarly in the loop ODEF, O
9u+9 £?)
¢, thhte -t
Solving Egs. (1) and (2), we get,
E;Cr-5Cr-§ C3+E3C5
G G

C—+'6;+1

+& =0

9tq=

(9, + )
Cl

Now, @, ~@p= @, = - , as (@p=

C,+C,+Cy

o £

‘(‘iﬁ"lz)
n%—‘lz

315

C/

11

D

@ F

0)

1=
‘izczqz

2

JL
T9,11=
3 7%%91

_ E1(C2+C3)- §2C2—§3C3
B C,+C,+C,

Ez (C1 + C3) - §1 Cl 'Es G,

And using the symmetry, @, = C.+C,+C
1+Ca+C;3

& (C,+C)-§C

=50

and $s= C,+C,+C,4

The answers have wrong sign in the book.

Taking the advantage of symmetry of the problem charge distribution may be made, as

shown in the figure.
In the loop, 12561, < Ap= 0
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or 2-2-+q2 ! ql—O
C c, C,
2o 6 4:“-41 5 42“—42 4

9, C,(C5+C)

or —+o 32 1 C
w GGe O T —?22 B
/
Now, capacitance of the network, A = ¢
+ ?2‘?/

C = ht+d _ 9+ 4q;
" @, -9p 4,/C,+q/C,

} 11
1 gyli- g =g, 3
ZCZ- T2 2 & 9

_ (1+q,/9,) @)
wel
G, ¢,C,
From Egs. (1) and (2)
2C,C,+C4(C +Cy)
0% TTC+C,+2C,

My 5 9 9
3.127 (a) Interaction energy of any two point charges g, and g, is given by yi :i 52r where r
0

is the separation between the charges.

ANV RO ] N +4
i o A i
|

: o L |
' I, L o |
-Ht‘ “'a"-“’j?— —q 7T ¥g =g

Hence, interaction energy of the system,
q2 2
U=4 +2
¢ 4neya 43‘580(\/_2-(1)

2
Uy=4-—1—42 7

+
dneya 4:teo(\/_2-a)

7 24 24 V2 7
and U.,=2 -
4ngyga 4meya 4n£0(\/§a) ETY.
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As the chain is of infinite length any two charge of same sign will occur symmetrically
to any other charge of opposite sign.
So, interaction energy of each charge with all the others,

U= -Z—L loc+s-5+ .. up to o ¢))

But in (1 +x)=x-%x2+%x3 ......... up to %
. 1.1
and putting x=1wegetin2= 1—5+§+ ......... up to % )
From Egs. (1) and (2),
U= —2f1n2
4neya

Using electrical image method, interaction energy of the charge g with those induced on

the plane.
% 411:1-:,_-,(21)=‘= T 8meyl

Consider the interaction energy of one of the balls (say 1) and thin spherical shell of the

other. This interaction energy can be written as f dogq

x

2.
q, 2 . f p,(r) g, r°sin0d 0O dr
= | — r)2nr'sin@d0dr=
J"”“"OR P2 (") A 280(12+r2+21rcos9)1/2
l+r
ar f
28Oldrl dx p, (r)
ar
= 280ldr 2rpy(r) -2

-4 l /
T (@Y

Hence finally integrating

949
ot = Tsol where, q2=.£4ﬂ:r2p2(r)dr
Charge contained in the capacitor of capacitance C;is g = C, @ and the energy, storcd
init:’

Now, when the capacitors are connected in parallel, equivalent capacitance of the system,

C = C, +C, and hence, energy stored in the system : . .
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" sz cp2
7 2(C,+Cy)°
So, increment in the energy,
C’¢’ 1 1) ~G 6@
2 |C,+C, C 2(C,+Cy)

as charge remains conserved during the process.

= —-0:03mJ

3.132 The charge on the condensers in position 1 are as shown. Here

q_ % _ 9+
C~C,” C+cC,

1 C(C+CyE
and g+q9) | == C+C, C =E§ o, g+¢qy= ——C0+2C
H 2 p CCy§

enas, 1= ¢ ,v2¢c M D= ¢ ioc

, -9 % |
+4 l‘f‘QO -4-Go +49+40 o_:qo—) :I:q'

—C (o =i/ —C ¢ T ¢
-4 =% +9+9 "% L4, +9
G 0

1 2 1 2 !
4
CY 1'}5 : (b) = — ,Lg =

After the switch is thrown to position 2, the charges change as shown in (Fig-b).
A charge g, has flown in the right loop through the two condensers and a charge g,

through the cell, Because of the symmetry of the problem there is no change in the energy
stored in the condensers. Thus

H (Heat produced) = Energy delivered by the cell

_coE

3.133 Initially, the charge on the right plate of the capacitor, g = C (§, - &,) and finally, when
switched to the position, 2. charge on the same plate of capacitor ;
qg=Cg
So, Ag= g = CE,
Now, from energy conservation,

AU + Heat liberated = A _;;, where AU is the electrical energy.
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1 1
2 CE-5C (& -E)"+ Heat liberated = Ag¥§,
as only the cell with e.m.f. §, is responsible for redistribution of the charge. So,

CE &, - %C g% + Heat liberated = C§, ;.

Hence heat liberated = %C Eg

Self energy of each shell is given by -qi?, where @ is the potential of the shell, created
only by the charge g, on it.
Hence, self energy of the shells 1 and 2 are :
2 2

9 9
————and Wy= —=—
8meyR, and ™ 8neyR,
The interaction energy between the charged shells equals charge g of one shell, multiplied
by the potential ¢, created by other shell, at the point of location of charge g.

q; 9.9

So, Wig= ql4neoR2= 4neyR,

W, =

Hence, total enegy of the system,
U=W,+W,+W,

¢ ¢ qq
+ +

2R, 2R, R,

- 1
4ne,

Electric fields inside and outside the sphere with the help of Gauss thcorem :
E,= —2L —(rs R),E,=
' 4n &R 2 g
Sought self energy of the ball

9 1
ane, 2 (r>R)

U= W, +W,
R ®
feOElz‘t 24 f€°E224 2gre —L (L1
= > nridr+ > nridr= SnsoR(5+)
0 R

3f W, 1
Hence, U= Ane,SR and W,- 5

(a) By the expression le eE*dV = le ¢, E* 4 nr* dr, for a spherical layer.
270 2770

To find the electrostatic energy inside the dielectric layer, we have to integrate the upper
expression in the limit [a, b]
b
2
U= leoej‘ —4 ) 4nrPdr= ——L 1_1], 27 m)
2 47‘805"2 87580!5 a b
a Downloaded From : www.EasyEngineering.net
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3.137 As the field is conservative total work done by the field force,

1
Ajd= U;_Uf= E‘I(QH'(Pz)

_ld 1 1) g (L 1
24mey|R; R,| 8mey|R;, R,

3.138 Inmitially, energy of the system,
U;= W, +W,, where, W, is the self energy

and W,, is the mutual energy.

1 & 99,
S U= =
0’ ! 24n£0R1+4neoRl

and on expansion, energy of the system,
U= Wi+W,,

_l_ @ 9%
24meyR, 4meyR,

Now, work done by the field force, A equals the decrement in the electrical energy,

) q9(@+9/2) (1 1
b A=WU-Up= dme, (Rl—Rz)

Alternate : The work of electric forces is equal to the decrease in electric energy of the
system,

A=U-U;
In order to find the difference U; - U, we note that upon expansion of the shell, the electric

field and hence the energy localized in it, changed only in the hatched spherical layer

consequently (Fig.).

R,

€
U, - Uf=f?0(E12—E22)-4nr2dr

R,

where E; and E, are the field intensities (in the hatched region at a distance r from the
centre of the system) before and after the expansion of the shell. By using Gauss’ theorem,
we find

1 49+9 1 4
= d B ce— —
1% T Py and E, Aney 2

As a result of integration, we obtain

+q/2)
g Io*a2 1 1

4me, R, R,
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Energy of the charged sphere of radius 7, from the equation

loo-Ll, 4 s
v 2q£p—2q4nsor 8meyr

If the radius of the shell changes by dr then work done is
4nr*F,dr = -dU = ¢*/8 ne,r
Thus sought force per unit area,
- q2 - 4n rzcr)2 - o?

“ Anr@neyr) 4nrx8meyr 2g
Initially, there will be induced charges of magnitude —q and +g on the inner and outer
surface of the spherical layer respectively. Hence, the total electrical energy of the system
is the sum of self energies of spherical shells, having radii a and b, and their mutual

energies including the point charge q.

2 2
Ll _a 1 (9 -99 99 , -49
Y 24megd 24mega 4dmega 4mnegh 4meyd
’ 2
or ve-94 (1_1
' 8meylb a

Finally, charge g is at infinity hence, U;= 0
Now, work done by the agent = increment in the energy

- 02 uk _52_[1_1}

' 8meyla b

(a) Sought work is equivalent to the work performed against the electric field created by
one plate, holding at rest and to bring the other plate away. Therefore the required work,

A= qE (x;, - x,),

where E = 2—% is the intensity of the field created by one plate at the location of other.

0
2
c q
So, Aggens = 4 E;; (xy-xy) = 2¢,5 (xy - xy)
Alternate : A, = AU (as field is potential)
2 2 2

q __9 = -1
T 26,5 2T 26,5 T 2¢,8

(xz -X;)

(b) When voltage is kept const., the force acing on each plate of capacitor will depend

on the distance between the plates.

So, elementary work done by agent, in its displacement over a distance dx, relative to the
other,
dA = -F dx
o(x)

. gV
But, F, =- (K)So(x) and o(x) = -
0

*
2
1 Sv? &ESVir1 1
Hence, A=fdA=f5€0 = de= = P
X,
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Alternate : From energy Conservation,
U-U;j= Ay +A

agent
or 1S 2 105, [0S @S,
2 x, 2 x X, X A g
(88 Agy = (g-q)V = (C,-C)V?)
sOS v?
So A agent ™ - ]
(a) When metal plate of thickness nd is inserted inside the capacitor, capacitance of the
€S
system becomes Cy= ————
y 0" d(1-m)
Now, initially, ch th it v 22V
ow, initially, charge on the capacitor, gy = C, V = d(l-m)
€S
Finally, capacitance of the capacitor, C = T

As the source is disconnected, charge on the plates will remain same during the process.
Now, from energy conservation,
U;-U;= A, ., (as cell does no work)

2
T pass,

€5V 2
HenceA‘m' [ 0 ][1 a- TI)] 1CV’“:-I-SmJ

d(1-m) 2(1-y)?
(b) Initially, capacitance of the system is given by,
Co= Ce (this is the capacitance of two capacitors in series)

nl-¢g)+e
So, charge on the plate, gy = C, V

Capacitance of the capacitor, after the glass plate has been removed equals C
From energy conservation,

Aapnt=qf_[]i
1 1 _1CcVien(e- )
- =gl|=-= 0-8 mJ
2q°[c | 2e-nE-DF

When the capactior which is immersed in water is connected to a constant voltage source,
it gets charged. Suppose g, is the free charge density on the condenser plates. Because

water is a dielectric, bound charges also appear in it. Let o’ be the surface density of
bound charges. (Because of homogeneity of the medium and uniformity of the field when
we ignore edge effects no volume density of bound charges exists.) The electric field due

0 ’
to free charges only -e—o; that due to bound charges is S— and the total electric field is
0 0

o
e—:-. Recalling that the sign of bound charges is opposite of the free charges, we have

0 L
Downloaded From : www.EasyEngineering.net


http://Easyengineering.net
http://Easyengineering.net

314

Downloaded From : www.EasyEngineering.net 323

, e-1
—=—-— o, 0= (e

€e, €, € €
Because of the field that exists due to the free charges (not the total field; the field due
to the bound charges must be excluded for this purpose as they only give rise to self
energy effects), there is a force attracting the bound charges to the near by plates. This
force is

per unit area.

The factor % needs an explanation. Normally the force on a test charge is gE in an

electric field E. But if the charge itself is produced by the electric filed then the force
must be constructed bit by bit and is

F=j.q(E’)dE’
0
if q(E') xE’ then we get

1
F=>q(E)E

This factor of L5 is well known. For example the energy of a dipole of moment 1_7 in an
— —>
electric field E; is — p * E, while the energy per unit volume of a linear dielectric in an
. .
electric field is - -;—P : E:) where I_” is the polarization vector (i.e. dipole moment per unit

volume). Now the force per unit area manifests ifself as excess pressure of the liquid.

, V G
Noting that ris a
goe(e - 1)V2
We get Ap= —F

Substitution, using € = 81 for water, gives Ap = 7-17 k Pa = 0-07 atm.

One way of doing this problem will be exactly as in the previous case so let us try an
alternative method based on energy. Suppose the liquid rises by a distance A. Then let us
calculate the extra energy of the liquid as a sum of polarization energy and the ordinary
gravitiational energy. The latter is

%h ‘pg:Sh= —;-pgSh2
If o is the free charge surface density on the plate, the bound charge density is, from the
previous problem,

, €-1
o'=—""0

This is also the volume density of induced dipole moment i.e. Polarization. Then the
energy is, as before
Lyl g0 _=-€-1d
~3 k=g " 2e0e o
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and the total polarization energy is

Then, total energy is
-1) o?
U(h)=- (e-1)0"
(h)=-S(a+h) Fog
The actual height to which the liquid rises is determined from the formula
au

1 2
+ ngSh

e U'(h)=0
2
This gives h= 18—-1)—0—.
2e,€ pg
2
‘We know that energy of a capacitor,U = 'ng .
Hence, from F, = Y we have, F, = g o / c? @
0x | g-Const. 2 ax

Now, since d << R, the capacitance of the given capacitor can be calculated by the formula
of a parallel plate capacitor. Therefore, if the dielectric is introduced upto a depth x and
the length of the capacitor is /, we have,

2negeRx 2mRey(I-x)

C= d + 4 )]
From (1) and (2), we get,
2
F,= gye- ) ZRY

When the capacitor is kept at a constant potential difference V, the work performed by
the moment of electrostatic forces between the plates when the inner moveable plate is
rotated by an angle dp equals the increase in the potential energy of the system. This
comes about because when charges are made, charges flow from the battery to keep the
potential constant and the amount of the work done by these charges is twice in magnitude
and opposite in sign to the change in the energy of the capacitor Thus

Ny= Lo

ap 2 99
Now the capacitor can be thought of as made up two parts (with and without the dielectric)
in parallel.

BOR2Q)+808(7|:—(p)R2
2d 2d

as the area of a sector of angle @ is %Rz ¢. Differentiation then gives

Thus C=

(e-1)e,RWV?
The negative sign of N, indicates that the moment of the

force is acting clockwise (i.e. trying to suck in the-dielectric).
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ELECTRIC CURRENT

The convection current is
-9
1= 4 W
here, dq = hdx, where A is the linear charge density.
But, from the Gauss’ theorem, electric field at the surface of the cylinder,
A

2neya

Hence, substituting the value of A and subsequently of dg in Egs. (1), we get
2E w &, adx
IJ= —————
dt

dx
=2neyEav, as p7iald

Since d << r, the capacitance of the given capacitor can be calculated using the formula
for a parallel plate capacitor. Therefore if the water (permittivity €) is introduced up to a
height x and the capacitor is of length /, we have,
eeg2nrx gy (I-x)2nr g 2mr
= 7t = == (ex+1-x)
Hence charge on the plate at that instant, g = CV

Again we know that the electric current intensity,

- d9_dEn
at dt
Vea2ar dex+1-x) V2nrrg 3 dx
ST 4 dr REEFISE iz
dx
But, -E—v,
2nre,(e-1)V
So, I= —g = 011pA

We have, R,= R, (1 + o¢),(1)
where R, and R, are resistances at£° C and 0° Crespectively and o is the mean temperature
coefficient of resistance.

So, R, =Ry(1+0,2) and Ry= R, (1 +0,1)
(a) In case of series combination, R = 2R,
so R= R +R,= Ry[A+m) +(a; +may) ] @
o, +
=R0(1+n)L1+2—11—:]T-‘&t @)
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Comparing Egs. (1) and (2), we conclude that temperature co-efficient of resistance of the

circuit, a; +na,
a= ————
1+7m
(b) In parallel combination
Ry(1+o;)Rym (1 +0,1) NR,

= R ) .
" Ry(I+oy ) +nRy(1+0,1) R'(1+a’t), where R Tom

R

Now, neglecting the terms, proportional to the product of temperature coefficients,
very small, we get,
’ , Moty
- — L2

1+m

as being

3.150 (a) The currents are as shown. From Ohm’s law applied between 1 and 7 via 1487 (say)

6 {/3 T 6 Ip-I3 7
T "5 7 i
2 i 2 2ty \ 2(I2-I3)
I S % (R
AI3
gl s "ol Jrllg
> 8
2 4 I?- -1
I/3 , I/é I/6 1 ? y I-I3
1 7 2
] /. L+21,
/ @ (b)
IR = §R+£R+§R= %RI
Thus, Req‘ S?R

(b) Between 1 and 2 from the loop 14321,

ILLR=2LR+IR or, I,=1;+2I,

From the loop 48734,
(L-L)R+2(U,-1;)R+(,-13)R= L3R

aUy-L)=1y or L= 21,

or, 3
14

S0 I = ?Iz

Then, (1, +25) R oy = 25 Rq= [;R= 211K
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! b7
= f
o Ra= 2R 6 b 7
(c) Between 1 and 3 9 I 1 e L I+21.
From the loop 15621 2 3 1mel2
LR=LR+2R o, =31 T
= Y ’ = 5 3
2 1t ) or, I, ) LA [/2 h
Then, (I, +2)R,,= 4R, /5 8
0
= LR+LR= 3R R
L 4
Hence, R,= % R. Lt21, (©

3.151 Total resistance of the circuit will be independent of the number of cells,

2R A

Ag
R Rx <———> Rx
B— B

» (R.+2R)R

: *= R +2R+R

or, R*+2RR -2R*=0

On solving and rejecting the negative root of the quadratic equation, we have,
R.= R(V3-1)

3.152 Let R, be the resistance of the network,

A
Rr

Ry Ko :'> Ro
B B

Ry R,
Ry+R,

On solving we get,

or Rj-RyR,-R,R, = 0

Rl R?.
Ry= 2|1+ V14422 |= 62

2 . .
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Suppose that the voltage V is applied between the points A and B then
V=1IR=I)R,
where R is resistance of whole the grid, J, the current through the grid and I, the current

through the segment AB. Now from symmetry, /4 is the part of the current, flowing
through all the four wire segments, meeting at the point A and similarly the amount of
current flowing through the wires, meeting at B is also /4. Thus a current I/2 flows
through the conductor AB, i.e.

Hence, R=—

Let us mentally isolate a thin cylindrical layer
of inner and outer radii r and r+dr

respectively. As lines of current at all the points  _ 1 S
of this layer are perpendicular to it, such a 7
y perp: . / - _____~_J,74-dr__ —

layer can be treated as a cylindrical conductor [ /A~ —~—=-=x— --——7‘—- +
of thickness dr and cross-sectional area T,, !
2w rl. So, we have, + | 0
1

dr dr
R= P~ Ponrl

and integrating between the limits, we get,

_p b
R Zallna

Let us mentally isolate a thin spherical layer of inner and outer radii 7 and r + dr. Lines
of current at all the points of the this layer are perpendicular to it and therefore such a
layer can be treated as a spherical conductor of thickness dr and cross sectional area

anrt So

dr
4nr’ @

And integrating (1) between the limits [a, b], we get,
R=JL£_%

dR=p

4n|a b
Now, for b — », we have

R-_P_

T 4na

In our system, resistance of the medium R = e |1 1 ,
4x|la b

where p is the resistivity of the medium

The current i= L.
R pJ1 1

4nla bl) . .
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Also, i= ::?ti'_' _4Cq) =-C dl; , aS capacitance is constant. )]

dt
So, equating (1) and (2) we get,
— 9% ___c9
e f1_1 dr -
4xla b

d At
o ‘f CReTs 1_ 1]
4n|a b
or in 1 = At4mab
’ Cp((b-a)
Hence, resistivity of the medium,
4 Atab

P=Cl-ann

Let us mentally impart the charge +q and —q to the balls respectively. The electric field
strength at the surface of a ball will be determined only by its own charge and the charge
can be considered to be uniformly distributed over the surface, because the other ball is
at infinite distance. Magnitude of the field strength is given by,
E= _q_z.
4neya

q

——— and electric current
neya
I=fj_-,d§>= S= —q—2'4na2= 4
pdneya (]
But, potential difference between the ballis,
: 4

4neya

So, current density j = %

P, -9
Hence, the sought resistance,

9, -Q. 29/4mea

R=—=7—= q/pe, 2ma

B

(a) The potential in the unshaded region beyond the conductor as
charge and its image and has the form

e potential of the given

//// e
poaf L1 S tr.
ron 222228
// -
where r,, r, are the distances of the point from ‘. 22 //;2 h
the charge and its image. The potential has 9 2 AR
been taken to be zero on the conducting plane < 2z 77
o 7l Pl
and on the ball 1mag€,’/ g/l, ,//:
7 s
p~A (l i) -V =
a 2l
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So A = Va. In this calculation the conditions a <</ is used to ignore the variation of
@ over the ball.

The electric field at P can be calculated similarly. The charge on the ball is

Q = 4neyVa
and Ep, = g- 2cosO = g
Then j =
pr
(b) The total current flowing into the conducting plane is
I-f 27txdxj=f mxd —2V__
0 0 p (7‘2 + 12}

(On putting y = x2+12)

Hence R -Z-_&

(a) The wires themselves will be assumed to
be perfect conductors so the resistance is
entirely due to the medium. If the wire is of
length L, the resistance R of the medium is

1 ) . .
a I because different sections of the wire are

connected in parallel (by the medium) rather
than in series. Thus if R, is the resistance per
unit length of the wire then R = R,/L. Unit
of R, is ohm-meter.

The potential at a point P is by symmetry and
superposition

(for I >> a)
Ap_ Al
?=2 2
4 In il
2 n
Then @, -‘21 = 42— % (for the potential of 1)
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or, A=-V/In L
a
|4
and QP = - m In rl/rz

We then calculate the field at a point P which is equidistant from 1 & 2 and at a distance
r from both :

\4 1 .
Then E-21nl/a (r)x 2 sinB
-1
2Inl/a ;2
1 Vv 1

d J = - =

an oF o Znl/a 2
. . vV 1
(b) Near either wire E = Ynl/a a
1 |4
and J=0E-p Sinl/a
\ 4 |4
Then I—R-LR1=12ML
Which gives Ry =2mua
Let us mentally impart the charges +q and -q to the plates of the capacitor.
Then capacitance of the network,
egy | E, dS
c=4. _21__3___ 1)
? ?
Now, electric current,
i=[j dS= [oE,dSas j11 E. @)

Hence, using (1) in (2), we get,
im= g.‘BU= Lo _ 15pA
€€, p Egg

Let us mentally impart charges +g and -q to the conductors. As the medium is poorly
conducting, the surfaces of the conductors are equipotential and the field configuration is
same as in the absence of the medium.

Let us surround, for example, the positively charged conductor, by a closed surface S, just
containing the conductor,

then, R=$= ?__ P ; as ]_hf

and

So, RC= —= peg,
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The dielectric ends in a conductor. It is given that on one side (the dielectric side) the
electric displacement D is as shown. Within the conductor, at any point A, there can be
no normal component of electric field. For if there were such a field, a current will flow
towards depositing charge there which in turn will set up countering electric field causing
the normal component to vanish. Then by Gauss theorem, we easily derive

o= D,= Dcosa where o is the surface charge density at A.

The tangential component is determined from
the circulation theorem

fi’-dr‘;o

It must be continuous across the surface of the
conductor. Thus, inside the conductor there is
a tangential electric field of magnitude,

Dsin a

¥ AConductor)

at A .

This implies a current, by Obhm’s law, of

D sin o

508 P
The resistance of a layer of the medium, of thickness dx and at a distance x from the first
plate of the capacitor is given by,

1 dx
dR = o) S M
Now, since o varies linearly with the distance from the plate. It may be represented as,
o,-0
o= 0;+ ( 2 y l)x , at a distance x from any one of the plate.
From Eq. (1)
dR - } I\LEYY
o, +( . )
d
o
or, R= -l-f de = d In =2
S o,-0; S(o,~-0)) o,
0 Op¥|—o—|*x
SV(o,-o
Hence, i=z= -(2—1)=5nA
R o,
dln—
oy

By charge conservation, current j, leaving the medium (1) must enter the medium (2).
Thus

Jjicosa, = j,cos o,
Another relation follows from

Ey=E,, ) . .
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e
which is a consequence of ﬁ E-dr=20

n

1. . 1. .
Thus 0—1)1sma1- ;2-;2 sin a,

tana; tana,

or,

9 b))
tana; O,

- —
tan a, O,

The electric field in conductor 1 is

or,

1
and that in 2 is E,= 22
TR

Applying Gauss’ theorem to a small cylindrical pill-box at the boundary.

I I
_012d3+ Pzzds_ odS
R nR €

1
Thus, O= ¢ -
o (P2-p1) -y

and charge at the boundary= ¢, (p, - p,) /
We have,E, d, +E,dy= V

and by current conservation

1 1
p, 1 op, 2
4

Thus, = —
! p1d+pyd,

PV
prdy+ P4,
At the boundary between the two dielectrics,
o=D,-D = ¢g,e,E, -¢gy¢, E;
gV
prdi+ P24,
By current conservation

2

(e, p, - € p1)

E3

E(x)_ E(x)+dE(x)_ dE (x) 4

p(x) pW+dp(x) dp) ’ 0
This has the solution, ray £ /, ?1:15 ;I
E@=Cp()= 28 i
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Hence charge induced in the slice per unit area
do= eO/{[ (e +de(@)} {p@W+dp )} -e@p()]= eofd[e ) p @]

Thus, dQ=¢eyld[e(x)p(x)]
Hence total charge induced, is by integration,
Q= el(e;p-8,p1)
3.168 As in the previous problem
E@x)=Cp(x)= C(py+p,X)

m-1)py
where po+pd=mpy, or, p,= 7
d
By integration V = pr x)de=C pod(l +n£—1) = %C pod(n+1)
2V
Thus =2
pod(m+1)
Thus volume density of charge present in the medium
_ 40
= Sae = %o dE (x)/dx
~ 2,V x(n—l)po_-Z:soV(n-l)
Pod(m+1) d n+1)d

3.169 (a) Consider a cylinder of unit length and divide it into shells of radius r and thickness
dr Different sections are in parallel. For a typical section,
d(L)— 2nrdr 2nrdr

R (/) «
' 1 =R s?
Integrating, R, T 20 2na
) .
or, R, = _;t_,;z, where S= nR’

(b) Suppose the electric filed inside is E, = E_ ( Z axis is along the axiz of the conductor).

This electric field cannot depend on r in steady conditions when other components of E
are absent, otherwise one violates the circulation theorem

- —
E-dr=20
The current through a section between radii (7 +dr, r) is
andr e E = 2:rrr3dr£
4
Thus f 2:tr3dr — = RE
x d
Hence E = = nR?
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The formula is,
g=CV,(1-e "R

q -t/RC |4 -YRC
or, V=Z==V,(1-¢ ) o, —=1-e¢
(o) 0 Vo
-vRC v V-V
or, e =1- T/—o- __‘;E)_
Yo
Hence, t = RC In =RCInl10, if V=209V,
Vo-V
Thus ¢ = 0.6 puS.
The charge decays according to the foumula
q= qoe-t/RC
Here, RC = mean life = Half-life/In 2
So, half life= T= RC In2
ggg A pd
But, C= PR R= A
-— T — 13 .
Hence, p= eegIn 2 =14x10°Q-m

Suppose q is the charge at time ¢. Initially g= CE, at = 0.
Then at time ¢,

£
H-iR-5=0 It
. Mg ! |
But, 3 (- sign because charge decreases) . 5
-1R q
g, pda_ 4
So C +R 2t g (s
9, ,. 5§
a*RCITR
d tW/RC E twWRC
or, -d_l: qge R'e
or, q= €8, germre
n
A= Cg(l—;ll-), from g= CE at t=0
Hence, g=CEgE 1, (1-L)e-nvre
n n
. .__dg_EMm-1) _iyrc
Finally, l " R e

Let r = internal resistance of the battery. We shall take the resistance of the ammeter to
be = 0 and that of voltmeter to be G.

- e __&
InitiallyV=E-1Ir, I e
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G
So, V=g M
Aftcr the voltmeter is shunted
Y e- ——5—— (Voltmeter) @)
r R + G
g g
and ) 2G - "7iC (Ammeter) 3)
R+G
From (2) and (3) we have
V e w8
n r+G

From (1) and (4)

T

—©

A

4)

=r+G-nrorG=nr

Then (1) gives the required reading

Assume the current flow, as shown. Then potentials are as shown. Thus,

= @, -IR -IR, - -
9= ¢ —IR; +§, - IR, - §, @-IR, £ @-IR &,
. L E-D _
’ R, +R,
Rr
And Py = ‘Pl‘IRl*’El ! 6 % 2
A
E - I £
So, -+ R, R R 7’______' ‘ 2 |
= (R, + §R,)/(R, + R,) = -4V ¢-IR+6-IR,
Let, us consider the current i, flowing through the circuit, as shown in the figure.
Applying loop rule for the circuit, -A = 0
-2E+iR;+iR,+iR=0 £
& 2
or, iR, +R)+R)= 2E (AL :|.82.;
I 1
—_— —>
or i: i—_.
’ R+R, +R,
Now, if P -9,=0
-E+iR; =0 AAAN— Z<
R
28R, d 2R, = R,+R +R
or, m’ E an 1= M+ K+ Ry
or, R = R, - R,, which is not possible as R, > R,
Thus, Q,-@3= -E+iR,= 0
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2E&R,
or, —_—i—
R+R,+R,
So, R = R, - R,, which is the required resistance.

3.176 (a) Current, i= ——§- NNaRR = a, as §= aR (given)

(®) 9,-93=nE-niR=naR-naR=0

3.177 As the capacitor is fully charged, no current
flows through it. So, current

§-§ '_E:',i' RI' l

R +R, (as §;>§)

And hence, ¢, ~pyz= E, -§,+iR,

=5 -5+ ? % i4

5,___-—/\AN\,~_J
_ &-ER —

1. _0- Rz
R, +R, g

3.178 Let us make the current distribution, as shown in the figure.

S
R, R
R+ _1_2_
R, +R,
So, current through the resistor R, J- “
i-__ & Ry ETR R, Ry
1 R,R, R +R, {
R+ —
R, +R,
) ER,
RR,+RR,+RR,
and similary, current through the resistor R,,

iy= 5 Ry SRy = 08A
2 RiR, R,+R, RR +R,R,+RR,

R1+R2

N
[
I

<
<

Current i = (using loop rule)

=12A

xR,

l-x l
3.179 i =
Total resistance ] Ry + *Rq o Vo

R+—
1 Ro

l-x xRR,
= T Rt iR, —x—t

l-x XR
'Rﬂ’"“_“ﬂ R

l IR+xR
®IDownloaded From : www.EasyEngineering.net
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xR X XR X
Then V= V°lR+xR0 /(1-l+xR0+lR)- VoRx/{IR+ROx(1—I)}

For R>>R0,V- Vozcl‘

Let us connect a load of resistance K between the points A and B (Fig.)
From the loop rule, A ¢ = 0, we obtain

iR =% - iR (1) Tl
and iR=% - (i-i)R i
2 17742 A B
or i(R+Ry=F§+ iR, (2
Solving Egs. (1) and (2), we get 52 Ra
R, + &R R,R ]
i=§11 §22/R+ 172 ) 3) l
R, +R, R, +R, R + R,
EiR, + § R,y R R, R
where E—'O = _R-;—-FT and RO = m

Thus one can replace the given arrangement of the cells by a single cell having the
emf E; and internal resistance R,.

Make the current distribution, as shown in the

diagram. 6 Ry N2
Now, in the loop 12341, applying - A= 0 +1'= -
iR+i,R,+& =0 ) P K
- 1
and in the loop 23562, 1—-—{I-t—~W—+ZT— 4
iR~ +(i-i)Ry=0 @) 2
Solving (1) and (2), we obtain current through inm = 2.4 Yo 3
the resistance R, 2 ) R
(2R, -§1R)
ie 5 R, -5 Ry - 002A
RR, +RR,+R,R,

and it is directed from left to the right

At first indicate the currents in the branches using charge conservation (which also includes
the point rule).

In the loops 1 BA 61 and B34AB from the 6 A i 4
loop rule, - Ag = 0, we get, respectively J_ 1 ¢
“E+ (-iPRy + § - 4R =0 ® &
iRy + & - (i-i) R, + &, = 0 @) Ry R,
On solving Egs (1) and (2), we obtain Ri izg(i-i.)
- R, + R + &

i = (E - &R, 2 5 + &) = 006 A ] < 192 o

RiR, + RyR; + Ry R, & B i 3

Thus @, - @5 = &, - LR, = 09V
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3.183 Indicate the currents in all the branches using charge conservation as shown in the figure.
Applying loop rule, - A@ = 0 in the loops 1A781, 1B681 and B456B, respectively, we
get R .
8o = (i - i) Ry - 1 8 < 7 'vvzv\,ZLG 5
3Ry + LR, -5, =0 (2) and

-—

((, -3)R-E-L R =0 3) gé::" ':,_—'g,
Solving Egs. (1), (2) and (3), t Rr , Rs

we get the sought current i) B R

iy ER T RY L GR —————wlE
178 = RR, 7Ry + BR, b ! 3 4=(-13)

3.184 Indicate the currents in all the branches using charge conservation as shown in the figure.
Applying the loop rule (- A = 0) in the loops
12341 and 15781, we get

- iR, - (i;-)R, =0 1
%1+'31 (,-B)R, ® s R3 5 K 6
and (i, i) Ry- & + ijR, = 0 @ T Al'B
1
Solving Egs. (1) and (2), we get p Ry ]'5’2
1 AAANAA ArAAA~—— 4
; E, Ry + Ry) + &, R, L5 Ri &
> R/R, + RyR; + RyR,
2 i} > 3
Hence, the sought p.d. ) i

Pa - 95 =8 - 3R,

_ §2R3 (R1+R2) - El Rl (RZ + R3)
R R, + R,Ry + RyR,

-1V

3.185 Let us distribute the currents in the paths as
shown in the figure.

Now, ¢,-¢, = iR, + iR, @.
and @; — @3 = iR, + (i-i)R, ()]
Simplifying Egs. (1) and (2) we get
Ry (91 -9) + Ry (91 -93) -

T " R,R, + RyR, + RyR, 024
3.186 Current is as shown. From Kirchhoff’s Second law ,,.Rn’.. C i
. urrent 1s HSS? n. rrom rchnoil’s Secon R
ilR =i2R3, N ‘, 2
o) A 1% & B
iR+ (ij-iy)Ry=V, 4
. . . ) . .
iRy +(i3+i))Ry=V i R3 D i+is
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Eliminating i,
(R +Ry))-i3R, =V

R,
llR (R3+R4)+13R =V

Hence iy

R1R2
R, (R, +R2)+7.3—(R3+R4)

R,
-V[(R,+R2)-§;(R3+R4)]

3 RR,(R,+R,)+RR,(Ry+R,)
On substitution we get i3 =10 A from C to D

or,

From the symmetry of the problem, current
flow is indicated, as shown in the figure.

Now, @, -@p=i,r+(i-i)R 1)

In the loop 12561, from - A= 0
(i-i)R+({E-2i)r-ir=20

(R+r)

3r+R @)

Equivalent resistance between the terminals
A and B using (1) and (2),

or, i =

R+r
3r+R

(r-R)+R]i

‘PA“PB:[ r(3R+r)

Ro= i i " T3r+R

Let, at any moment of time, charge on the plates be +g and —gq respectively, then voltage
across the capacitor, ¢ = q/C 1)

Now, from charge conservation,

Jd 3 6
i= i +1i, where i,= % ) / - i
2
In the loop 65146, using -Ag= 0. i q
= C=—F
4,(; .9 & -t
Z +( dt)R E=0 3)
[using (1) and (2)] 1 —é""’}‘é‘”‘ 2 14 5
In the loop 25632, using -A@= 0
-Z4iR=0 o ilR-% @)

Downloaded From : www.EasyEngineering.net


http://Easyengineering.net
http://Easyengineering.net

3.189

Downloaded From : www.EasyEngineering.net 341

From (1) and (2),

dg,_. 29 dg__ dt
dt R %1 C or, _ —2-1 R (5)
C
On integrating the expression (5) between suitable limits,
9 . E 21
f _dq _1 f _C_,n _ L
_29 R A § R
an
C
9_y_1 _ _-2URC
Thus C \%4 ) E ( l1-e )

(a) As current i is linear function of time, and at r= 0 and Az, it equals i, and zero
respectively, it may be represented as,

At Ar
Th f‘d f’ltdt ol
us qg= | idt= 10( _At) =3
0 0
So, iy= %
=24 L
Hence, i i (1 AL
The heat generated.
M
[ i 4R
| 2 ] 2q I\ iG] 2 4g° R
n- [ era- [ [Bf1-) | na - 458
0 0
(b) Obviously the current through the coil is given by
/At
= afY)
=h
2
iy At
Then charge q=fidt=fi02"'mdt= L
In2
0
So, iy= 1—:;2

And hence, heat generated in the circuit in the time interval ¢ [0, =},

o

® 2
H=fi2Rdt=f[M-2"/N} Rdi= -‘1—’“—2R
. At
0
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The equivalent circuit may be drawn as in the figure.
Resistance of the network = R, + (R/3) R
Let, us assume that e.m.f. of the cell is €, then
current R
ANANA
i E
Ry + (R/3) R

Now, thermal power, generated in the circuit

= i?R/3 _§______2 /3) \1.
(Ry +(R/3))

For P to be maximum, aP = 0, which yields 1

We assume current conservation but not Kirchhoff’s second law. Then thermal power
dissipated is R

P(iy)=i’R, +(i-i)) R,

i,?(R, +R,) - 2ii,R, + IR,

2
R2 . 2 R1R2 . 4
_[R1+R2] —R1+R21] +1i m =27,
The resistances being positive we see that the power dissipated is minimum when
RRET
1" "R, +R,

This corresponds to usual distribution of currents over resistance joined is parallel.

Let, internal resistance of the cell be r, then

V=E-ir (6]
where i is the current in the circuit. We know
that thermal power generated in the battery.

Q=i ) R
Putting r from (1) in (2), we obtain,
Q= (E&-Vi=06W i A

In a battery work is done by electric forces
(whose origin lies in the chemical processes
going on inside the cell). The work so done 1
is stored and used in the electric circuit outside. &r
Its magnitude just equals the power used in

the electric circuit. We can say that net power

developed by the electric forces is

P=cIV =-2-0W
Minus sign means that this is gepgratre, 80§ EPARYMkw. EasyEngineering.net
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3.193 As far as motor is concerned the power delivered is dissipated and can.be represented by
a load, R, . Thus

4 R
I R+R, _—
V2R
and  P=I*Ry= — 4 Ro
(Ry+R)
This is maximum when R, = R and the current . A - --
I is then
|4
I= 2R
The maximum power delivered is
V2
AR ™ Poux
y? 2
The power input is ITRO and its value when P is maximum is R

The efficiency then is %- 50%
3.194 If the wire diameter decreases by 0 then by the information given
- 2
P = Power input = %- = heat lost through the surface, H.

Now, H x (1 - ) like the surface area and

R (1-8)2
v? 2 2
So, F—(l—é) =A(1-98) or, V°(1-3)= constant
0
But Vxl+m so (1+n)2(1—6)= Const = 1
Thus O0=2n=2%
3.195 The equation of heat balance is
v? dT
R -k(T-Ty)=C ”
Put T—Tos g
v? k. V?
So, CE+kt= R0 §+C = R
d . we V? we
or, E(’ée ) Z‘—Re
we V2 o
or, Ee ‘-—kEe ‘+A

where 4 is a constant. Clearly
2

E=Qatt=0, so A= ——ZEand hence,

2
Tm T+ Lo (1- e
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Let, @u-9p=9
Now, thermal power generated in the resistance R,,
R 2
P= i’R,= cﬁzzxx R, +2Rx Ro
Ry ok, e
For P to be independent of R, i
Ry Rx

dapP . .
iR - 0, which yeilds

x

R, R
R, = 1%,
R, +R,
Indicate the currents in the circuit as shown in the figure.

=12Q

Appying loop rule in the closed loop 12561, - Ap = 0 we get

LR-E +iR =0 @)
and in the loop 23452,
(E-i)Ry+&-i,R=0 €) 6 4
Solving (1) and (2), we get, J J.
. iR, + 5 R, & 2
17 RR,+R,R,+RR,
So, thermal power, generated in the resistance R,
2
P=i2R= E Ry +EyR, R R
G RR,+R, R, +RR, K R
For P to be maximum, % = 0, which fields [1
R,R, d 2y
" R, +R,
R,+% R )2

max " 4R R, (R, +R,)

Let, there are x number of cells, connected in series in each of the n parallel groups

N
then, nx= N or, x = - 0))] R
e A 2 2 2 Ve

Now, for any one of the loop, consisting of x
cells and the resistor R, from loop rule g %"

. ]

iR+ixr—x‘g-0 bl
&, |xr
N, F

So,i = x5 __m , using (1)
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Heat generated in the resistor R,

2
0= 2R= [5X2E | g @
n“"R+NR
and forQtobe maximum,g2 = 0, which yields
Nr
n= R - 3
‘When switch 1 is closed, maximum charge accumulated on the capacitor,
Imax= €&, )
and when switch 2 is closed, at any arbitrary ,C
instant of time, "
R, +Ry) (- %)= g/c, R
dt R
because capacitor is discharging. Sw SrAeE
q , i
1 1 f
or, —dg= - ——— | at ,
f 44" "®R,)C 4
P 0
Integrating, we get
-t
n q -1 e (R, +R)C (2)

qm = (R1+R2)C Ol', q- qmax
Differentiating with respect to time,

(0= G s @i (-———1——-—)

R;+R)C
-t
. - 9 E (R,+R)C
or, l(t) = W e 12
Negative sign is ignored, as we are not interested in the direction of the current.
-1
thus, i(f)= 5 &mC 3)
( (R, +Ry)

When the switch (Sw) is at the position 1, the charge (maximum) accumalated on the
capacitor is,

q=C8%
When the Sw is thrown to position 2, the capacitor starts discharging and as a result the
electric energy stored in the capacitor totally turns into heat energy tho’ the resistors R

and R, (during a very long interval of time). Thus from the energy conservation, the total
heat liberated tho’ the resistors.
H=U = 7 =.;_c§2

2C
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During the process of discharging of the capacitor, the current tho’ the resistors R, and
R, is the same at all the moments of time, thus

H, x R, and H, = R,

S H = 28 (as H=H, + H
0, 1 = (Rl + R 9) as =i, + i,

1 CR, 2

Hence H, = IR+ R

‘When the plate is absent the capacity of the condenser is

€S

C= d

When it is present, the capacity is
g5 C

C’: —— | Stee—
d(l1-m) 1-nm

(a) The energy increment is clearly.

AU= Lev2_leoyz. €My

2 2 2(1-7m)
(b) The charge on the plate is

cv ...
%= 7o 5 initially and g,= CV finally.

2

A charge IQV——:-‘l has flown through the battery charging it and withdrawing glz—:ll units

of energy from the system into the battery. The energy of the capacitor has decreased by

2
just half of this. The remaining half i.e. %gli—nﬂ must be the work done by the external

agent in withdrawing the plate. This ensures conservation of energy.

Initially, capacitance of the system = C &.

So, initial energy of the system : U; = %-(C ) V2

and finally, energy of the capacitor : U, = %C v?

Hence capacitance energy increment,
LY
“levi liecgvialeov e -1)--05mw
2 2 2
From energy conservation
A U - Aceu +A
(as there is no heat liberation)

But A= (C;-C, V= (C-Ce)V*
Downloaded From : www.EasyEngineering.net
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= 2C(-) V= 05mJ
If C, is the initial capacitance of the condenser before water rises in it then
gy 2ItR
U, = %Con , where Cj = 0 4

(R is the mean radius and !/ is the length of the capacitor plates.)

Suppose the liquid rises to a height A in it. Then the capacitance of the condenser is
eegh2nR . e (I - h) 2nR _ g2nR
d d d

and energy of the capacitor and the liquid (including both gravitational and electrosatic
contributions) is

C = I+ @E-1h)

1 & 2nR

2 d

If the capacitor were not connected to a battery this energy would have to be minimized.
But the capacitor is connected to the battery and, in effect, the potential energy of the
whole system has to be minimized. Suppose we increase /# by dk. Then the energy of the
capacitor and the liquid increases by

(+ (e~ DRV + pg 2R hd) g

€y 2nR

oh >d

(e-1)V + pg(zama)h)

and that of the cell diminishes by the quantity A_,, which is the product of charge
flown and V

g, (2nR)
d

In equilibrium, the two must balance; so

gy (e - 1) V2
pgah = =7

dh (e-1)V?

gg (e - 1)V?

Hence h = >
2pgd

(a) Let us mentally islolate a thin spherical layer with inner and outer radii
r and r + dr respectively. Lines of current at all the points of this layer are perpendicular
to it and therefore such a layer can be treated as a spherical conductor of thickness dr

and cross sectional area 4 © r2. Now, we know that resistance,

dr dr
dR=2 0= 1
p"s(') p4nr2 @

Integrating expression (1) between the limits,
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faufrct

Capacitance of the network,C =

or,

4nr

4meye

-3

- where q is the charge
and 9=Ce [at any arbitrary moment]
also, Q= —_gﬂ R, as capacitor is discharging.

From Egs. (2), (3), (4) and (5) we get,

S S
= q

Integrating

Hence

P
R= 4n[a b]

dt
peeg,

(b) From energy conservation heat generated, during the spreading of the charge,

(@)

©)

@

©)

1 9 J1 1] ‘10 b-a
24x¢egeja b T 8n €€ “ab
(a) Let, at any moment of time, charge on the plates be (g, - ¢) then current through
. . digo-4q) T .
the resistor, i = - —a because the capacitor is discharging.
-4
or . -(9-4) | (o9 )
Now, applying loop rule in the circuit, ! l
o -4 C
R - c - 0
dg, -4 R
or, dtR— C AANAA o
i=d4
or, _dq_ = L dt E—'
9%-9 RC t
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At t=0,g=0and at t=17, g= g

-9 -=
So, A
0 In o RC
Thus q= qo(l-e"/Rc)= 0-18 mC

(b) Amount of heat generated = decrement in capacitance energy

[qo_qo(l_e-,/RC)]z

_1% 1
2C 2 o)
2 2t
1% 4, ‘ﬁ] -
27C [1 e 82 mJ
Let, at any moment of time, charge flown be g then current i = ‘—;%
Applying loop rule in the circuit, - Ap = 0, we get :
g CVo-9 g _
d:IR C +.C 0
or _d9 _ 1 . ———va,\e/w—a-—-
? CV,-29 RC 'q -
(CVo-4)
CV,- - .
So, In ——— e 2q 2— for 0<t<t ""'C -
cv, RC +4 Clo—G
- <=
or q= CVo(l_eRc) Z-ﬁ
’ 2 at
._dq _ CV, 2 ‘WRC Vo _avrc
Hence, i= Vil RC = Fe

Now, heat liberaled, -

© d 4

0 RC 1 2
f =—2 fe”cdt=ZCVo
0 0

In a rotating frame, to first order in w, the main effect is a coriolis force 2 m vV x

—
This unbalanced force will cause electrons to react by setting up a magnetic field B so
—
that the magnetic force e v'’x B balances the coriolis force.

Thus ——e—B=(o or, B-— _2_m5.
2m e

The flux associated with this is

®=Nnr’B= Nnrzz—m—m
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where N = # is the number of turns of the ring. If @ changes (and there is time for

the electron to rearrange) then B also changes and so does ®. An emf will be induced
and a current will flow. This is

I=Nzr —2—;"— /R
The total charge flowing through the ballastic galvanometer, as the ring is stopped, is

g= N:rtrz/ 2—;"-(x)/R

e 2Nnr2m=l_(25

So, m qR qR
Let, ny be the total number of electorns then, total momentum of electorns,
p= ny me vd (1)
e
Now, I=pS,v,= -"%-sx vy= T, )

Here S, = Cross sectional area, p = electron charge density, V = volume of sample
From (1) and (2)

mC
p= -Z-Il- 0-40 p Ns

By definition
nev,= j (where v, is the drift velocity, »n is number density of electrons.)
Then T= L M

Va J

So distance actually travelled

nel<v>
S=<v>tm —

(<v> = mean velocity of thermal motion of an electron)

Let, n be the volume density of electrons, then from I = pS_v,,

I=neS |<v>|= nesxé

So, t= 7 = 3 ps.
(b) Sum of electric forces
= | (nv) el?l =|nSle pjT, where p is resistivity of the material.

= nSIep-I-- nelpl= 10uN
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3.210 From Gauss theorem ficld strength at a surface of a cylindrical shape equals,

, Where A is the linear charge density.

2xe,r
1 2 2eV
Now, eV = Smv. or v= . 1)
- 99 2%
Also, dg= Adx so, at )"dt
or, I=Av or A.-{-- ——I——’using(l)
2eV
m

I \/ m,
Hence E = 32V/m

T 2n ey 2eV
(b) For the point, inside the solid charged cylinder, applying Gauss’ theorem,
2nrhE=nh—I

ggR21
or, E= i 5T = A5 5
2negyR 2meyR
So,from E= -%?',
9, R
f—dqa-f L rdr
2meyR
®, 0
A [P A
or, P1-P 2ne R2 2 0 43‘50
|24 ‘v m
Hence, P P2™ e 5oy = 080V
3211 Between the plates @ = ax*?
or, %x?- axgxl/s
dz(p 4 _on
_37- e = —p/g
4¢e5a
or, p= - 90 x-2/3

Let the charge on the electron be - ¢, _ )
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then %mv2 -e@= Const. = 0,

as the electron is initially emitted with neligible energy.

2262 /29
m m

. 4":0"1/_2_9 -273
So, }=-pv=—9— p x 7.

(j is measued from the anode to cathode, so the - ve sign.)

=Y

d
So by the definition of the mobility

vi=u'y :l‘{’ Vo= u"o—-g—

and j= (n+u$+n_u(‘,)%

(The negative ions move towards the anode and the positive jon towards the cathode and
the total current is the sum of the currents due to them.)

On the other hand, in equilibrium n,_= n_

1 + - €V
So, n_,=n_=h—s;/ (u0+u0)7

1d

Tevs (ug + uy )
Velocity = mobility x field

=23x10%cm 3

V,
or,v=u —lo-sin ¢, which is positive for 0 s wts x

So, maximum displacement in one direction is
n

Vo . 2uV,
Xmax= | U sinwtdt =
0

lo

2uV,
lw

= I, so,

At o= oy, X, =

wl?
2V,

When the current is saturated, all the ions, produced, reach the plate.

Thus u

.
Then, n; = -:T; =6 x 10° cm3s™

(Both positive ions and negative ions are counted here)

The equation of balance is, %;= n; - m
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The first term on the right is the production rate and the second term is the recombination

rate which by the usual statistical arguments is proportional to n? (= no of positive ions
x no. of -ve ion). In equilibrium,
dn

a0

1 /h.
so, n =V—-+ =6x10 cm3
“q r

Initially n = ny= Vn; /r

Since we can assume that the long exposure to the ionizer has caused equilibrium to be
set up. Afer the ionizer is switched off,

dn m2
dt
dn 1
or rdt= -—, or, rt= —+constant
n r
1 1
But n=nyatt=0s0, rt= ———
n n

The concentration will decrease by a factor 1 when
Sl 7/ Y
ny/n ng ny

or, t0=-3.% = 13 ms

re,

Tons produced will cause charge to decay. Clearly,
. €

1N CV = decrease of charge = n;eAdt= -—od-A—Vn

g Vn

ned?

Note, that n,, here, is the number of ion pairs produced.

or, t= = 4-6 days

If v = number of electrons moving to the anode at distance x, then

dv
——=ov or v=vye®”

dx
Assuming saturation, /= ev,e®

Since the electrons are produced uniformly through the volume, the total current attaining
saturation is clearly,

d

d
ad
1-fe(h,.Adx)e“"- e;.,.A(e ‘1)
0

_1_ ead - 1
A i a
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3.5 CONSTANT MAGNETIC FIELD. MAGNETICS

3.219

3.220

(a) From the Biot - Savart law,
dB = Yo . i dix7”

4n rs 380
ag= 1o RAOR i1 7y
4x R3

From the symmetry
2n

B- [ 8- —-—"9%

4n R 63T

R™

(b) From Biot-Savart’s law :

pd l‘-o dl r - =F
B L 3 (here 7= R +XxJ

So, B~ ——l[f dlxR+f dlxx]

Since x’is a constant vector and |R| is also constant

So, f dle’- (f dljx)?c 0 (becauscf dl- 0)
and ¢ dz_;E’-f RAIW

- r?kf dl= 2xR*n"

Here 7 is a unit vector perpendicular to the plane containing the current loop (Fig.) and
in the direction of X

B 2xR%i .
4n (2+R2)?
2%

As LAOB= par OC or perpendicular distance of any segment from centre equals

—
Thus we get B=

R cos% . Now magnetic induction at O, due to the right current carrying element AB

‘ i -/
P Tt
R cos —

(From Biot—Savart’s law, the magnetic field at O due to any section such as AB is perpendicular
to the plane of the figure and has the magnitude.)
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As there are n number of sides and magnetic induction vectors, due to each side at O,
are equal in magnitude and direction. So,

ni
2 sm = n

Bo=
4“Rcosu
2"‘0;‘;““& and for n —» o
Y T \Q
0" 2R, n/m

3.221 We know that magnetic induction due to a straight current carrying wire at any point, at
a perpendicular distance from it is given by :

o i . .
B= 4nr(sm91+sm62),

where r is the perpendicular distance of the wire from the point, considered, and 6, is the

angle between the line, joining the upper point of straight wire to the considered point
and the perpendicular drawn to the wire and 6, that from the lower point of the straight

wire.
Here, B, = By= h;t——l-—---—{cosg)-ﬂ:os92‘)-}
@) sin%’-
and 32=B4=°&————-l-——-(sin-(22+sm§)
@) %
Hence, the magnitude of total magnetic
induction at O,
By= B, +B,+B, +B, e
® snl
_Mo 4i |%F3 D x> 3
4xd/2 sin? cos? 1] o 5
2 2
Y 7]
4p,i 1
= ———= 010 mT
ndsin g
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3.222 Magnetic induction due to the arc segment at O,
B, = TE(ZJ! 29)

and magnetic induction due to the line segment
at g,

B
Bline 4 1t R cos P [ sin (p]

So, total magnetic induction at O,

By= B, .+B

. =
line

Bo i
TR [x~p+tang]= 28T

3.223 (a) From the Biot-Savart law,

So, magnetic field induction due to the segment 1 at O,

B, = G;(ZN -9) 4

—>

also B,=B,=0, as dl—}‘t r

and By= Z""Ei

Hence, Bo’ Bl +82+Bs +B4
-t [2x-9 0]
4x a b

W i3n —

(b) Here,B = -—E;T Bz- 0,
B, = —isin45°
3" 4nb ’
uo . o
B,= 4nbsm45,
and Bs=0

So, By= B,+B,+B;+B,+B;s

Mo i3mn MPoi . o, Pl . .
® Ana 2 +0+4nbsm45 +4“bsm45 +0
Mo .[3x \/5]
= —i|—+—
4
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The thin walled tube with a longitudinal slit can be considered equivalent to a full tube
and a strip carrying the same current density in the opposite direction. Inside the tube, the
former does not contribute so the total magnetic field is simply that due to the strip. It is

Mo (I/2xR)h  Wolh
2n r 47’Rr
where 7 is the distance of the field point from the strip.

B=

—
First of all let us find out the direction of vector B at point O. For this purpose, we divide
the entire conductor into elementary fragments with current di. It is obvious that the sum
of any two symmetric fragments gives a resultant along B shown in the figure and con-

sequently, vector B will also be directed as shown

So,  |B]= [dBsing )

W . .
szJtR e
E

f 200
2R

[

isinpdg, (as di= idcp)

Hence B= pyi/m*R

(a) From symmetry
By= B, +B, + B,

W i o i 2 3,
[ i g
=0+ R O TR 0
(b) From symmetry 9
B,= B, + B, + B; 5.
. R 3
l‘-o_+l*0t3n 0= Mot[1+3_n] 2
4nR 2rR 2 4n R 2 0
1

(c) From symmetry
By= B, +B,+B,

Ko 1 Mo ¢ Ko ¢ Ko i
“2aR anR “taaR" anRC*M

— —>
B,= B, +B,

or, | By | = “‘”\/5 = 20T, (using 3.221)
Downloaded From : www.EasyEngineering.net


http://Easyengineering.net
http://Easyengineering.net

368 Downloaded From : www.EasyEngineering.net

- - — —
i ytoi A i 2
ax R R PCI) g CF)
Wi >
-—4nR[2 +mi]
So, | B, |- 41"-11(\/ -030uT
- - —>
(®) By= BI+B2+B3
M > B i,
= axg Rt Jt(‘)‘“41:R -7)
--——[k+(n+1)1]
So,
|By | = :—;’tﬁ\/u(mnz = 034uT
(c) Here using the law of parallel resistances
/AR L1
ii+i=1and —= —,
1th i
L+l 4
So, 5 =3
Hence 11-31 and i; = 714-1'
— 3;"; ‘1 — Ho (ﬁ/2)l2
Thus B, = (k) (})[43 R(—l \treSyal)
-u()l — —»
.= 4JtR(j-l-lc)+0
= M V2i
Thus, | Byl = ax R - 011 uT

3.229- (a) We apply circulation theorem as shown. The current is vertically upwards in the plane
and the magnetic field is horizontal and paralle] to the plane.

_cf B-di= 2Bl= pgil or, B= 2 /

2
(b) Each plane contributes p, % between the B<
planes and outside the plane that cancel.
Thus :>
B Ro i between the plane P
0 outside. Ky/
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We assume that the current flows perpendicular
to the plane of the paper, by circulation theorem,

520

2Bdl= py(2xdl)j ;
3

|

|

or, B=pyxj, |x|s d
N

Outside, 2B dl = p,(2ddl)j
or, B=p,dj |xzd

It is easy to convince oneself that both in the regions. 1 and 2, there can only be a circuital
magnetic field (i.e. the component B,). Any radial field in region 1 or any B, away from

the current plane will imply a violation of Gauss’ law of magnetostatics, B,, must obviously
be symmetrical about the straight wire. Then in 1,

B,2xr=p,l
o I I
or, Bw’ e 1
In 2, Bq,-ZJtr- 0, or Bq,-O < + >
2 O
On the axis,B 'P'OIRZ B, along the axi
n the axis,B = = alo e axis.
dRI+AyE PO
o uoIR? dx
Thus, E dr"-:[B,dx- ) o
x/2
IR? 2
= l‘«oz f R;gc 93‘199, on putting x= Rtan 0
sec
22
-uol-;-foosedes uol
-x/2

@

The physical interpretation of this result is thatf B, dx can be thought of as the circulation

of B over a closed loop by imaging that the two ends of the axis are connected, by a line
at infinity (e.g. a semicircle of infinite radius).

By circulation theorem inside the conductor

B,2nr= Roi,x7 or, B,= pyj,r/2
. = 1 ™
ie., B= FMojxr

Similarly outside the conductor, o
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B.2nre pjnR? of, B.=tp ke
2= Poj or, By= > Moj,~

—> — 2
So, B %l‘o (jxr Br_z-
2.234 We can think of the given current which will
be assumed uniform, as arising due to a negative
current, flowing in the cavity, superimposed
on the true current, everywhere including the %
cavity. Then from the previous problem, by 4
superposition.
1
2

-
If I vanishes so that the cavity is concentric

—_—
B=

o1l
p.o]x(AP—-BP)--Z-uo]xl

with the conductor, there is no magnetic field
in the cavity.
3.235 By Circulation theorem,

r

B,-2nr= uofj(r’)XZn:r’dr'
[}

or using B, = brinside the stream,

bt a uofj(r')r’dr’
(1]

So by differentiation,
(a+1)br’= pj(r)r
b ( a+ 1) ra- 1
Ko
3.236 On the surface of the solenoid there is a surface current density
E— nl 2,9

Hence, jr)=

A -
— e, X7,
Then, B-—llg-nlfRd(pdz—y—s—g
4n ro
where ;; is the vector from the current element to the field point, which is the centre of
the solenoid,

A A

Now, -ewxr_o’-Rez
ro= (22+R2)V2
-2

wonl 2f dz
Thus, B=B,= in x2nR R+ D2
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=%Mon1 fcosada (on putting z= R tan o)

—tan 'L
2R

= Yonlsinoa= pynl ————— 72 = U nI/ (ZR)
V(1/2)? + R?

3.237 We proceed exactly as in the previous problem. Then (a) the magnetic induction on the
axis at a distance x from one end is clearly,

Ml 2f & 1 2f &
B= x 2 7R ————=55= - WndR —535
an J RZ+G-2° " 5 Mo ) Z+RY
"2
1 1 x
= —onl cs0d0=—pynlil-——=
2 j_:i 3 V<2 +R?
tan R

x >0 menas that the field point is outside the solenoid. B then falls with x. x <0 means
that the field point gets more and more inside the solenoid. B then increases with (x) and
eventually becomes constant, equal to p,nl. The B - x graph is as given in the answer

script.

B,- B
(b) We have, ———=

1
B, 2|

X,
| W i (R S
VR2+x:
X,
or, madide 1 1-2n
VR2+x02
Since m is small (~1%), x, must be negative. Thus xo= - | x|
X
" ol _
VR + |x,|
2 2
% F=1-4n+4) R +|x, )
0= (1-2m)°R*-4m (1-n) | x
lxJ = (1-2m)R
2vn(1-n)

3.238 If the strip is tightly wound, it must have a pitch of . This means that the current will
flow obliquely, partly along e, and party along e, Obviously, the surface current density

=1-2n

or,

is,
7 L[VI—GrzarF o e
Jy= 7 1-(h/27R) e R
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By comparision with the case of a solenoid and a hollow straight conductor, we see that

field inside the coil
V1-(h/2xR)?

=l,|,0

=~

(Cf. B= pynl).
Outside, only the other term contributes, so

I h
B,px2ur= pozmeZﬂ:R

o 27
or, B =—-—.
* 4n r
Note - Surface current density is defined as current flowing normally acrgss a unit length
over a surface.

Suppose a is the radius of cross section of the core. The winding has a pitch 2aR/N, so
the surface current density is

o S S
S " 2nR/N ! 2ma 2
where e; is a unit vector along the cross section of the core and e, is a unit vector along
its length.
The magnetic field inside the cross section of the core is due to first term above, and is
given by

By2nR = py NI
(VI is total current due to the above surface current (first term.))
Thus, B, = wyNI/2nR.

The magnetic field at the centre of the core can be obtained from the basic formula.

? —>
—> U, X r,
0 Zs” 0 45 and is due to the second term.

47 r03
S B=pao=-at L 41 piox2
0, =Be=e 5 e p x 2na
or, BZ=%

alz

The ratio of the two magnetic field, is =

We need the flux through the shaded area.
Now by Ampere’s theorem, R

I 2
Bw27V'= Hom'ﬂr /
11
[
o Bo= ol 77 )

The flux through the shaded {98 Wiiloaded From : wwa .EasyEngineering.net
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P = f 1-drB,(r)

r
f I o 2% Rz 4n L
3.241 Using 3.237, the magnetic field is given by,

1 X
B= Zponl|1-—=2—
2 ( Vx2+R2)

At the end,B = %pton1= lBo, where By = p,nl,

2
is the field deep inside the solenoid. Thus,

= SupniS= ®y/2, where @ = o nlS

is the flux of the vector B through the cross section deep inside the solenid.

3.242 B, 2nr = wo NI
wNI

—_—

or, B,= 7 2

b

Then, <I>=wahdr,as rsb= %ZNlh Inm, where 1 = b/a

363

3.243 Magnetic moment of a current loop is given by p, = niS (where n is the number of

turns and S, the cross sectionl area.) In our problem, n= 1, S= nR?and B=

3
So, e 2BR“R2= 2xBR
Ko
3.244 Take an element of length rd © containing ﬁl—r_ - rd6 turns. Its magnetic moment is
Nie-Za2r
n 4

Ko i

2 R

normal to the plane of cross section. We resolve it along OA and OB. The moment along

OA integrates to
n

A
f%’dzzdecose- 0 o
0 0
while that along OB gives
k4
2
Pm’fNszian9= Lvatr 0
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(a) From Biot-Savart’s law, the magnetic induction due to a circular current carrying wire
loop at its centre is given by,

Ko .

B, = —i

T 2r

The plane spiral is made up of concentric circular loops, having different radii, varying
from a to b. Therefore, the total magnetic induction at the centre,

B, = f 2av )

where Zol is the contribution of one turn of radius r and dN is the number of turns in

the interval (r, r + dr)

ie. dN = dr

b-a
Substituting in equation (1) and integrating the result over r between @ and b, we obtain,
b
Mol N WiN b
= | — dr= In—
2r (b-a) 2(b-a) a

B,

(b) The magnetic moment of a turn of radius r is p,,= in® r* and of all turns,

b
.2 N niN (@ -ad)
P’fpmdN‘f‘“' b= 300

(a) Let us take a ring element of radius r and thickness dr, then charge on the ring element.,
dg=0o2nrdr
(o2nrdr)w -

dr
2 cwr

and current, due to this element, di =

. . . Ko di
So, magnetic induction at the centre, due to this element : dB = —2(1-;1

R

and hence, from symmetry : B = f dB-fM- -l-;ﬂomR
0
(b) Magnetic moment of the element, considered,
dp,, = (di) = cwdrart=onordr
Hence, the sought magnetic moment,

R
4

3 R
Pm=fd1’m=f°““" dr = CwrT -
Bownloaded From : www.EasyEngineering.net
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3.247 As only the outer surface of the sphere is charged, consider the element as a ring, as

3.248

3.249

shown in the figure.
The equivalent current due to the ring element,

. (0] . M ©
dl-—z;t—(27trsm6rd9)o 1) ?:d
and magnetic induction due to this loop element / Y
at the centre of the sphere, O, de 2 rsmn
Mo . 2mrsin@rsin® Mo . sin’0 36&)
dB= —di=———F—"—— = —di—
4n r 4n r
[Using 3.219 (b) ]

Hence, the total magnetic induction due to the
sphere at the centre, O,

/2

Mo o 2xr’sin0d0sin’00 . .

B= f dB-f A 2o . [using (1)]
0

2

Bowr 4 2
Hence, B-f an Sin Bd0-3uoomr 29 pT
0
The magnetic mament must clearly be along the axis of rotation. Consider a volume

element dV. It contains a charge 4—/95?—3 dV. The rotation of the sphere causes this charge
n

to revolve around the axis and constitute a current.

39 w0
4nR3dVX 2

Its magnetic moment will be

-—:;-q—deﬂxm‘zsinzB

4xR’ 2
So the total inagnetic moment is
R =n
39 2. o r*sin® @ 3g o R° 4 1 .5
p,_-ff—z—Rls-rzsmGdex——T—dr- —z—kq;xi-x—s—x;- EqR (O]
0 0

The mechanical moment is

M- %mRzm, So, Im. 4

Because of polarization a space charge ls. present within the cylinder. It’s density is
pp= —div P= - 2a
Since the cylinder as a whole is neutral a surface charge density o, must be present on

the surface of the cylinder also. This has the magnitude (algebraically)
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0,x2nR= 2anR? o, o,= oR

When the cylinder rotates, currents are set up which give rise to magnetic fields. The
contribution of p, and o, can be calculated separately and then added.

For the surface charge the current is (for a particular element)

aRxZanxx%- aR%wdx

Its contribution to the magnetic field at the centre is
uoR? (@ R?w dx)
2(*+R?)?

and the total magnetic field is

-0 o
B -f uoRz(aszdx)_ poaR4wf dx - anR4mx_- " o R

As for the volume charge density consider a circle of radius r, radial thickness dr and
length dx.

The current is-2ax2nrdrdxx2%= -2ardrodx

The tota] magnctic field due to the volume charge distribution is

Bs—fdrfdeJtru) 2 +:) fal*owrdrfdx(x+r)”2

=—fapomrdrx2-—uoacoR so, B=B +B,=0
0

Force of magnetic interaction,F,,, = e (vxB)
o
= MKpe(vxr
Where, B-= ﬁ J—s—j
r

2
So, Fm:= %%[?X(Txr_}]

L S o= (T x 7] = ——(—v )

an
And Feefm et
e €57 e4neo | 7P
1Pl W’ i
Hence, 8 = Ve = (— = 1:00x 10
IFelccncI ¢
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\

(a) The magnetic field at O is only due to the
—>

curved path, as for the line element, d/ }¢ r

n(-E)- BT Z.Ty

2
= 2 Wl = I
Thus F,= iB(-j)= 4R(—])

Mo i

H B
ence, " IxR

2 Ol

T _ o < >
So, F,= —== 020 N/m !

(b) In this part, magnetic induction Bato é
will be effective only due to the two semi
infinite segments of wire. Hence A y

— o0l

B=2 th
4n L2
g

Thus force per unit length, < > %

wl®> =

sin 2 (- k)

St/

F, =

Each element of length dl experiences a force BI dl. This causes a tension 7 in the wire.
For equilibrium,
Tdo= Bldl,

where da is the angle subtended by the element
at the centre.

Bldl

Then, T= BI%=BIR
The wire experiences a stress
BIR
nd%/4

This must equals the breaking stress o, for
rupture. Thus,
nd? o,
Buux= 7R
The Ampere forces on the sides OP and O' P’ are directed along the same line, in opposite
directions and have equal values, hence the net force as well as the net torque of these

forces about the axis OO’ is zero. The Ampere-force on the segment PP’ and the cor-

responding moment of this force about the axis OO’ is effective and is deflecting in nature.
Downloaded From : www.EasyEngineering.net



http://Easyengineering.net
http://Easyengineering.net

368

3.254

3.255

Downloaded From : www.EasyEngineering.net

In equilibrium (in the dotted position) the 2>
deflecting torque must be equal to the restoring B ,./,7
torque, developed due to the weight of the =70
shape. /7// \
Let, the length of each side be I and p be 0 j
the density of the material then, \ Al
izB(lcose)=(szp)gisine+(s1p)gisine J\ ‘
2 2 9 | \str9)
+(S1p)glsin® \ L B
|
or, il*BcosO=2Spgl®sin0 . \‘(Slf%) \"l:/rl
1
Hence, B= giﬂgtan 0 \‘ B 'L
We know that the torque acting on a magnetic dipole. P - ;KJ 18
. sy
N=p xB

But, 17; =iSn , Where n is the normal on the plane of the loop and is directed in the

direction of advancement of a right handed screw, if we rotate the screw in the sense of
current in the loop.

On passing a current through the coil, this torque

LUy
acting on the magnetic dipol, is counterbalanced N I
by the moment of additional weight, about O. "l"
Hence, the direction of current in the loop must P '“.‘__i r‘\ >
be in the direction, shown in the figure.

_‘"|, 0 A
E;x_B?-—.I_;AmE' S |
or, NiSB= Amgl

So, B= _Jg_Am L. 0-4 T on putting the values.

Nis
(a) As is clear from the condition, Ampere’s forces on the sides (2) and (4) are equal in
magnitude but opposite in direction. Hence the net effective force on the frame is the
resultant of the forces, experienced by the sides (1) and (3).

Now, the Ampere force on (1),

|
Mo iy 1————72(1———’1
Fi= o T 1 2
-z . l
and that on (3), . A |
@) . ToA [ 5
Foo Mol 1 |
w1 T 71
n 2 |
So, the resultant force on the frame !r
= F, - F,, (as they are opposite in nature. a V4 3
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2 g iy
n(@dn’-1)
(b) Work done in turning the frame through some angle, A = f id® = i(P;-P), where
®; is the flux through the frame in final position, and ®,, that in the the initial position.

= (0-40 u N.

Here, |<I>f|- | @)= ® and &= -®;
so, AD=2®d and A= i2 P
Hence, Asﬁfﬁﬁ'

a(nq-—;)
1 i,a 1 lya n +
00 d 0 ™0 ln( n 1)

z mr T x -1

-}

There are excess surface charges on each wire (irrespective of whether the current is

-—
flowing through them or not). Hence in addition to the magnetic force F,, we must take
—
into account the electric force F, Suppose that an excess charge A corresponds to a unit

length of the wire, then electric force exerted per unit length of the wire by other wire

can be found with the help of Gauss’s theorem.
1 2 2V

Fe- )\E- )\4ﬂ€o 1 -471,80 ’ (1)
where [/ is the distance between the axes of
the wires. The magnetic force acting per unit ~ t++++HHE+Hirt
length of the wire can be found with the help &
-_—
of the theorem on circulation of vector B E - R
Foo 2’ l Fe
™ 4n 1’ o 4
where i is the current in the wire. (2) TT T T TN 'Ff

Now, from the relation,

A = C @, where C is the capacitance of the wires per unit lengths and is given in problem
3.108 and ¢ = iR

nEy i Inm)
A= lnan o, += ey R 3)
Dividing (2) by (1) and then substuting the value of % from (3), we get,
in. - Ko (In n)2
F e €& 'R

The resultant force of interaction vanishes when this ratio equals unity. This is possible

= R, wh L
When R o Wihere Downloaded From : www.EasyEngineering.net
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o
Ry = o Inm _ 0-36 kQ
g T
3.257 Use 3.225

The magnetic field due to the conductor with semicircular cross section is

I
B= HZL
n“R
oF o l?
Then e BI=
ol R
3.258 We know that Ampere’s force per unit length on a wire element in a magnetic field is
glven by
dF =i (n x B') where n is the unit vector along the direction of current. (0]

Now, let us take an element of the conductor

I
&l
T

i,, as shown in the figure. This wire element

is in the magnetic field, produced by the current
i), which is directed normally into the sheet

I
|
: i
of the paper and its magnitude is given by, I 0\ | 4
| 117
E’ Mol | !
1Bl= o s ) -a—f !
11
From Egs. (1) and (2) «—b—>
- I, A - I,
dF, = b dr (n x B), (because the current through the element equals —b—dr
= WK I ) I dr
So, dF,= b , towards left (as nl’B )
Hence the magnetic force on thc conductor :
a+b .
LI I L
F‘n = —;J%—lbl f dr (towards left) = %—lb—zln atb (towards left).

a
Then according to the Newton’s third law the magnitude of sought magnetic interaction
force
Boli 1y Pol1la, a+b b
2n b a
3.259 By the circulation theorem B = wu,i,

where i = current per unit length flowing along the plane perpendicular to the paper. Currents
flow in the opposite sense in the two planes and produce the given field B by superposition.

The field due to one of the plates is just %B. The force on the plate is,

2
—1—B x i x Length x Breadth = B per unit area.
2 2u,

(Recall the formula F= Bll on a stratht wire)
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B, +B
(a) The external field must be . ) 2, which when superposed with the internal field
B, - B,
> (of opposite sign on the two sides of the plate) must give actual field. Now
B,-B, 21 ;
2 2
B,-B
or, i= 1 2
Ko
B?-B}
Thus, F= —l—z—u——z— Bi B2
0
B,-B, B, +B,
(b) Here, the external field must be 2 upward with an internal field, , upward
on the left and dewnward on the right. Thus,
B, +B B*-B;
i= 2 2ad F= L 2
Ko 2p,
(c) Our boundary condition following from pPAMMAL Y Y Y
Gauss’ law is, B, cos 0, = B, cos 0,.
Also,(B, sin 0, + B, sin 0,) = p i where
i = current per unit length. B B."_

B,sin 0, - B,sin 0,

The external field parallel to the plate must be

2

(The perpendicular component B, cos 0,, does

not matter since the corresponding force is
tangential)

B/*sin’ 0, - B sin” 0, )
Thus, F = o per unit area
’ 0

B?-B)
-1l 2 per unit area.
PATH

The direction of the current in the plane

conductor is perpendicular to the paper and
beyond the drawing.

The Current density is EIL—, where L is the length L

of the section. The difference in pressure 7

produced must be,

Ap = ﬁxBx(abL)/ab- % a
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Let t = thickness of the wall of the cylinder. Then,

J=1/2n Rt along z axis. The magnetic field due to this at a distance r

t ty . .
(R—2 <rcx< R+2), is given by,

1|2 1y
Bw(2nr)= u°2:thn{r —(R—Z) }

ol

% B"’s 4nxRrt

[P-®-27} R+E

— — —>
Now, F-f]deV

R+
F, 1 f Mol? £\2
and P= 5 RL™ 2nRL S2R272, rz-(R-2) x2nrLdr
t
R-3
: o [
Y f{2 o Lz}d, k! - (rotY,
8n*R3¢? 2 8 w?R3 12 3 2
rR-L
2

o 12 , uo 2
" 2R MO g
1
2
force on a current carrying straight wire in a magnetic induction B is BII. If the magnetic

induction B is due to the current itself then the force can be written as,
I

F-fB(I')dl’l
0

When self-forces are involved, a typical factor of = comes into play. For example, the

If B(I')or, then this becomes, F = %B (NIl

In the present case, B (I) = p,» [ and this acts on n/ ampere turns per unit length, so,
1 Ixnfx1xl 1

2,2
Area 2" TIx1 =--2—u0n1

The magnetic induction B in the solenoid is given by B = p, nl. The force on an element
dl of the current carrying conductor is,

dF = Lygnlldl= 2yonr®dl

pressure p =

This is radially outwards. The factor 1 is explained above.
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To relate dF to the tensile strength F), ~we

proceed as follows. Consider the equilibrium
of the element dl. The longitudinal forces F
have a radial component equatl to,

dF = 2Fsin§-Fd6

1
2

2Flim
This equals F},, when, I= [ = y —lim

wn R

Thus using d/= Rd 6, F= ~yu,nl*R

Note that F;, , here, is actually a force and not a stress.

3.265 Resistance of the liquid between the plates= %d
Voltage between the plates = Ed = v Bd,

Current through the plates = vid 7
R+E&
S
Power, generated, in the external resistance R,
Vv'B%d*R v’Bd* VB2 d?
P= P, o 2° 2 2
P4 pd 12
(R+S) (\/E+S\/IT) RVe_ (£l 2Ved
SVR -8
i) ) [22) v'B’sd
This is maximum when R = S and P = T

3.266 The electrons in the conductor are drifting with a speed of,

J I

ne” nR*ne’

where e = magnitude of the charge on the electron, n = concentration of the conduction
electorns.

Vd=

The magnetic field inside the conductor due to this current is given by,

Wo Ir
Ko oOr, B¢=E’Rj

' I
B (2nr)= nr?

A radial electric field vB, must come into being in equilibrium. Its P.D. is,
R

2
I Mo Ir I (Mo Mo/
A-f ——dr= ——|—I|= ———
v nR?ne 2n R? uRzne(‘m) 4R ne
0
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Here,v, = g- and j= nev,
200x10° 2 x 1T
m

B
so, n= = V/m
eE  1.6x10"Cx5x10™*

= 2:5x10% per m3 = 2:5 x 10 perc.c.

Atomic weight of Na being 23 and its density = 1, molar volume is 23 c.c. Thus number
6 x 10
23

Thus there is almost one conduction electron per atom.’

of atoms per unit volume is = 26x10%2 perc.c.

. o dirft velocity v
By definition, mobility = &) e ficld component causing this drift " Ej

On other hand,

E 1 32
E .= vB= — asgiven so, u= — = 32 x 10 m“/(V -s)
T n g TlB

1

Due to the straight conductor, B, = %
— —y =P >
We use the formula, F=(p,V)B

(2) The vector p,, is parallel to the straight conductor.

—

= d
F=p, Z B=0, %
because neither the direction nor the magnitude of B depends on z
(b) The vector fv: is oriented along the radius vector 7~
F=p, 28
= Py
—
The direction of B at r +dr is parallel to the direction at ~. Thus only the @ component
—>
of F will survive.
F 9 .“_OI_. -t TPm
= Pm 5 onr 2
(c) The vector p_; coincides in direction with the magnetic field, produced by the conductor

carrying current /

Fup, 0 tolos MlPn2%
rop 2r °  2m? 0

wolp de,
—
So, _ _Ho zmz: , _._£=_Z:

2 L
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]

3270 F,=p, =B,
2
) uolf Rdl___ WR
Bu, B.= — P+RY? 2P +RY?
Bo I2nR* 3
So F= ——>">_>>:2x'p
4 47 x2+R25/22 m
R X 7y

wp 6nR*Ip x
T An (x2+R2)5/2

327

_a_[l-lo ﬂ,ﬁ]= i“’Olef’?}n - 9 aN
2 nl

3.272 From 3.270, for x >> R,

M()I’R2
B, =~ 3
2B -5 -1_3
or, I'= = ;2 - 21"236" 11%_6“1(;‘_)2 m” | 0.5k
b x10™*x (10" m) - . S
3273 B
: >
B' = Bcosa, B’
1
H',= —Bsinaq, > L g
t - H' h
B',=pBsina
so, Yaccum

B' = B\/pt2 sin® a + cos’ a

e F — - — - =
3.274 (a)ﬁ H-dS=ﬁ (I*——J -dS= —f J+dS, since f B-dS=0
0
Now .?is nonvanishing only in the bottom half of the sphere.
B
-«
(2N
-
BH'
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, N S p . ) B
Here, B', = Bcos 0, H,= —Bsin 6, B',= wBsin0, H,= —cos 0
Yo

Ho
g,= B8 1) na - Bl pgno .
™ u Mo

Only J,, contributes the surface integral and

- — - - 2
_f J7-dS= _f J'dS=§ JndS=MM—B-1—}-
lower lower ’ “’0 "

®) ff B-d7= (B,-B,)l= (1-w)Blsin@

r
Inside the cylindrical wire there is an external current of density W This gives a magnetic

field H,, with

2
r Ir
H,2nr=1 iz o, H, = 577
. _l‘-l‘-oh _u=1Ir  xIr _ -
From this B = YT and J = = e S Magnetization.

Hence total volume molecular current is,

"d?—f A g g

The surface current is obtained by using the equivalence of the surface current density to

J x n, this gives rise to a surface current density in the z—-direction of - xR
The total molecular surface current is,
1
. - -
I, >R (2nR) xl.

The two currents have opposite signs.

We can obtain the form of the curves, required here, by qualitative arguments.

e
From f H-dl= ],
we get H(x>>0)= H(x<<0)= nl
Then B(x>>0)= up,nl

B(x <0)= pynl
Also,
B(x<0)= pyH(x<0)
J(x<0)=10
B is continuous at x = 0, H is not. These give the required curves as shown in the answer-

sheet.
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3.277 The lines of the B as well as H field are circles around the wire. Thus

3.278

H nr+H,nr=1 or, H,+H,= ;{7
Also Py, Hy= u,Hyuy= B;= B,= B
Thus H, = LL,
Uy + Uy T
Hy-—2—L
Wy + py nr
and B-= MOML-
Wy + Wy T

U

377

Mz,

The medium I is vacuum and contains a circular current carrying coil with current /. The
medium II is a magnetic with permeability y. The boundary is the plane z= 0 and the
coil is in the plane z = /. To find the magnetic induction, we note that the effect of the
magnetic medium can be written as due to an image coil in II as far as the medium I is
concerned. On the other hand, the induction in II can be written as due to the coil in I,
carrying a different current. It is sufficient to consider the far away fields and ensure that
the boundary conditions are satisfied there. Now for actual coil in medium 7,

Be ¢

Br
&i

AT

Bg

Bxﬂ

L XC

T\l
e
so, B,= P-Op,,, ——(2co - sin? @) and B, = P-Op,,, (-3 sin 0’ cos 0)
where Pu=1I(n a%), a = radius of the coil.

Similarly due to the imagc‘ coil,

I"’Op m

B,= — (2 cos 2o -

Uo P
siqz 9,), Bx_ 0 m

(3sm9’cose),pm— I'(na®)

As far as the medlum II is concerned, we wnte similarly

H'OP m
4x

z

—— (2 cos 9' - sin? 0'), B, =
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The boundary conditions are, p, +p', = p”, (from B, = B,)
’ 1 "
“PmtPm= - ;p m (from H,, = H2t)

Thus, =2 p_o Bl
n+1l p+l

In the limit, when the coil is on the boundary, the magnetic field enverywhere can be
obtained by taking the current to be M—z_f_il-l. Thus, 1_3> = ;—2%1‘1—3‘:

We use the fact that w_it>hin an isolated uniformly magnetized ball,
2pyJ

H = -J/3, B'= , where J is the magnetization vector. Then in a uniform magnetic

2,
field with induction Bj, we have by superposition,

—> —
—> 2].].0] - BO —

B,-B s Hyp==—2-J/3
SR T ™
—> -3 —
— —>
also, B, =y E‘.” -
g 3 BO - 3 w BO
Th H = ————— and B, =
e = hom+2) N TRT
The coercive force H, is just the magnetic field within the cylinder. This is by circulation
theorem, H_ = Il} = 6 kKA/m

—_>
(from f H-dr= I, total current, considering a rectangular contour.)

— —> H
We use, f Hdl=0 /

Neglecting the fringing of the lines of force,

we write this as ‘l B

H(nd-—b)+£b= 0
Ko

-Bb
Ko
The sense of H is opposite to B

or, H=

= 101 A/m

- - Bb NI}I.O—Bb
Here,§ Hdl= NI or, H@nR)+22= NI, s0, H= ——0—
T 2R p,

B _2nRB
W= WH wNI-Bb

Hence, = 3700

One has to draw the graph of p = versus H from the given graph. The u — H graph

B
w H
starts out horizontally, and then rises steeply at about H = 0-04 k A/m before falling agian.
It is easy to check that p_, = 10,000.
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3.284 From the theorem on circulation of vector .;I_’ .

Hxd+BRo NI o po 2L %4

Mo b b
where B is in Tesla and H in kA/m. Besides, B and H are interrelated as in the Fig. 3.76
of the text. Thus we have to solve for B, H graphically by simultaneously drawing the
two curves (the hysterisis curve and the straight line, given above) and find the point of
intersection. It is at

H = (1:51 - 0-987) H,

Hwm 026kA/m, B= 125T
- 4000.

B
Then, -
] o H
3.285 From the formula,
— - > > = — —> —>
F- (7, V)E—F-P[ ("V)Buv,

Thus F= —X—f(ﬁ)E’dV
)

.
or since B is predominantly along the x-axis,
2

9B = 2
Fx-_X_fo__dex__xi_ [ap? - X5E _%SE
H Ko dx 2uyy o 2upy 2w
3.286 The force in question is,
F = .V\ B = X&¥ 48
(p"' ) Hu, dx

since B is essentiatlly in the x-direction.

2 5BV : » x By’
~!VdB=Xo _4_ -2ax-_4 - OV
So, F, 2 == ou by & (e ) axe —-———zuo
This is maximum when its derivative vanishes
| 1
i.e. 16a*x*-4a= 0, or, x = —F7—
"™ Y4a

The maximum force is,
2 2
1 _1pXByV xByV_ /[a
= 4a e = -
Vda PATH Ko e

So, X~ (qum\/f ) / VB, = 36 x 107

- = BV dB V dB?
F = .V)B = XBYab XV a5
3287 F.= (p,,"V)B, Wpg dx - 2pg dr

This force is attractive and an equal force must be applied for balance. The work done
by applied forces is,

Fmax

2 1y 07 2,

x=1L
2
A=f -F,dx= ﬂ(-B2 x:L~ x VB
x=0 . .
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3.6 ELECTROMAGNETIC INDUCTION. MAXWELL’S EQUATIONS

3.288 Obviously, from Lenz’s law, the induced current and hence the induced e.m.f. in the loop

is anticlockwise.
N\

From Faraday’s law of electromagnetic indcution,
dd @ Ay
Ein= 7 B
Here, d®=B-dS= -2Bxdy, _ ______7}.._
’ Y

and from y= ax’, x = '\/:Z-_ \ T T

%

- y dy
Hence, E, P
/ > X
= By S, , using gX= V2 wy 0
a dt
3.289 Let us assume, Bis directed into the plane of the loop. Then the motional e.m.f.
E,= -(vxB)-dl | = vBIl
and directed in the same of (v'x B) (Fig.) _L R Ro>
So. i= & _ Bvi g}ﬂ, R1tR;
; R, R R+R 1
R+ 1742 u R

R, +R,

As R; and R, are in parallel connections.

3.290 (a) As the metal disc rotates, any free electron also rotates with it with same angular
velocity , and that’s why an electron must have an acceleration w’r directed towards the
disc’s centre, where r is separation of the electron from the centre of the disc. We know
from Newton’s second law that if a particle has some acceleration then there must be a
net effecetive force on it in the direction of acceleration. We also know that a charged
particle can be influenced by two fields electric and magnetic. In our problem magnetic
field is absent hence we reach at the conslusion that there is an electric field near any
electron and is directed opposite to the acceleration of the electron.

If E be the electric field strength at a distance 7 from the centre of the disc, we have from

Newton’s second law.
F,.=mw,

ma)zr

e

eE = mrmz, o, E=

’

and the potential difference,

- - p 2 —
o= Pin= [E-dr= [P ar o5 Eryar
0

e
Downloaded From : www.EasyEngineering.net


http://Easyengineering.net
http://Easyengineering.net

3.291

3.292

Downloaded From : www.EasyEngineering.net 381

2 2

mo
. 2 - 3-0nV

-
(b) When field B is present, by definition, of motional e.m.f. :

Thus Peen =~ Prin = A ¢=

2
%—%-f—(ﬂl_f)'d?
1

Hence the sought potential difference,

(Pc,,."(P,.'m'f-VBdr-f—erdr, (as v= wr)
0 0

Thus (pr,-m—cpm=q>=% Ba*= 20mV

(In general w < % so we can neglect the effect discussed in (1) here).

By definition,

—>- ..(\7)x—>)
c c d
= > - T —>
So, fE-dr=f—(v>< )-dr=f-—}der
A A 0
But, v= wr, where r is the perpendicular distance of the point from A.
c d
Hence, fE-dﬂf—mBrdr= —%de2= -10 mV
A 0

This result can be generalized to a wire AC of arbitary planar shape. We have

C c C )

- —> - — — — —>
fE-dr=—f(va)-dr=-f(((oxr) x B)-dr
A A A

d being AC and rt being measured from A.

Flux at any moment of time,
— > 1 2
|@,|= |B-d5]= B(5R v
where @ is the sector angle, enclosed by the field.

Now, magnitude of induced e.m.f. is %iven bz, ) )
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£ - d%,| |BR?dg| BR* w
= dr 2 dt | 2 7
where o is the angular velocity of the disc. But as it starts rotating from rest at ¢ = 0 with
an angular acceleration P its angular velocity w (£) = pt. So,
BR?
a=— B

According to Lenz law the first half cycle current in the loop is in anticlockwise sense,
and in subsequent half cycle it is in clockwise sense.

”BRZ

Thus in general, §,, = (- 1)" =——p ¢, where » in number of half revolutions.
The plot E,, (¢), where ¢, = V2 nn/B is shown in the answer sheet.

Field, due to the current carrying wire in the region, right to it, is directed into the plane
of the paper and its magnitude is given by,

B= -;—J%i where r is the perpendicular distance from the wire.
As B is same along the length of the rod thus motional e.m.f.

-

.2
& = |- [ (7xB)-al’| =vB1
1

> =
and it is directed in the sense of (vx B)
So, current (induced) in the loop,

Field, due to the current carrying wire, at a perpendicular distance x from it is given by,

Ko &
Bl)= 2n%
. - 72 g
Motional e.m.f is given by -(vxB)-dl

There will be no induced e.m.f. in the segments (2) and (4)
as, v1td l and magnitude of e.m.f. induced in 1 and 3, will be

Ko i W i
g = v(z—n-;)a and &, = v(21t(a+x))

respectively, and their sense will be in the direction of (VX B ).
So, e.m.f,, induced in the network = &, -§,[as &, > §, ]

avpyi 11 vatu,i
2n |x a+x 2nx(a+x)
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As the rod rotates, an emf.
a1 5., 1
x2° 0-B 54 Bw

E() - —a Bw

R

A magnetic force will then act on the conductor of magnitude BI per unit length. Its
direction will be normal to B and the rod and its torque will be
a

E@) - --a ‘Bw
-—-——-—R;—-——- dcBx

o

Obviously both magnetic and mechanical torque acting on the C.M. of the rod must be
equal but opposite in sense. Then

for equilibrium at constant @

is induced in it. The net current in the conductor is then

E(t)-%azBm

-Baz-—-masinwt
R 2 - 28
o, E()= —a Bm+—gB—smmt—2—§(aBzm+2ngsmwt)

(The answer given in the book is incorrect dimensionally.)

From Lenz’s law, the current through the connector
is directed form A to B. Here ’g’, = vBI between

A and B
where v is the velocity of the rod at any moment.

For the rod, from F,.= mw,

or, mgsina -ilB= mw

For steady state, acceleration of the rod must
be equal to zero.

Hence, mgsina=ilB @)
8s_ vBI
But, i= R~ R
From (1) and (2) v mgsina R
B2[2 oV

From Lenz’s law, the current through the copper
bar is directed from 1 to 2 or in other words,
the induced crrrent in the circuit is in clockwise
sense.

Potential difference across the capacitor plates,

1 = &. = .
C E.Im 01’, q C §m

— o — ——— o - N
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Hence, the induced current in the loop,
_dq_ 95
dr dt
But the variation of magnetic flux through the loop is caused by the movement of the bar.
So, the induced e.m.f. §, =B lv

i

dg,, dv
and, e Bl-d—t= Blw
Hence, i= ng—tg= CBlw

Now, the forces acting on the bars are the weight and the Ampere’s force, where
F,.,= ilB(CBIw) B= CI’B’w.

amp

From Newton’s second law, for the rod, F, = mw,

or, mgsina—Cl2B2w= mw
Hence w= }7%51211(1 = gsnznozt
Cl“B°+m 1“B°C
14—
g . .
Flux of B, at an arbitrary moment of time ¢ :
2
P, = FEL Bﬁg—coswt,
s . do
From Faraday’s law, induced e.m.f., §, = - a
2
Brnlcoswt
d 2 2
_- =B:|:a ® ot
dt 2 )
§w Bnd
i [ = — = i t.
and induced current, Ly R R o sin
Now thermal power, generated in the circuit, at thc moment ¢ = ¢ :
2
. Brnd’w) 1 .
P)=§, xi,= (—-2——) g Sin wt
and mean thermal power generated,
s T
Barol L fGre
2 R
0 1
<P>= T -—
. 2g
Twa
?j" —_—
[« )
0

Note : The claculation of §, which can also be checked by using motional emf is correct
even though the conductor is not a closed semicircle , for the flux linked to the rectangular
part containing the resistance R is not changing. The answer given in the book is off by

a factor 1/4. ) )
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The flux through the coil changes sign. Initially it is BS per turn.

Finally it is — BS per turn. Now if flux is & at an intermediate state then the current at
that moment will be

So charge that flows during a sudden turning of the coil is

g= [idi= -R(@-(-9))- 28BS /R

Hence, B= 51%-&- = 05T on putting the values.
According to Ohm’s law and Faraday’s law of induction, the current i, appearing in the
frame, during its rotation, is determined by the formula,

do Ldi,

10= - E -

dt dt
Hence, the required amount of electricity (charge) is,

g= [igdt= - [(@®+Ldi)= -1 (A®+L i)

Since the frame has been stopped after rotation, b — 0

the current in it vanishes, and hence A i; = 0. i ¥ ity I

]

It remains for us to find the increment of the T :

flux A @ through the frame (A ® = &, - P,). a 1

A4 {

Let us choose the normal 7°to the plane of the l !

frame, for instance, so that in the final position, H

n’is directed behind the plane of the figure | T4 A T 4

rec pla e figur | a | o

(along B).

* Then it can be easily seen that in the final position, @, > 0, while in the initial position,

®, <0 (the normal is opposite to B ), and A ® turns out to be simply equal to the fulx
through the surface bounded by the final and initial positions of the frame :

b+a

A®= 0,+| 9= [ Baar,
b-a
where B is a function of r, whose form can be easily found with the help of the theorem
of circulation. Finally omitting the minus sign, we obtain,

AD Modi b+a

R " 2xR “b-a

As E: due to the straight current carrying wire, varies along the rod (connector) and enters
linerarly so, to make the calculations simple, B is made constant by taking its average
value in the range [a, b].
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b b g@
[ Bar fi“’—i-"dr <
2w r ,’_? - p
<B>=% - am <>V,
.—..)F
ext
fd' fd’ > X
a a
. a |b
Yo b b <
or, <B>= 2“(b_a)lna Eo

-
(a) The flux of B changes through the loop due to the movement of the connector. According
to Lenz’s law, the current in the loop will be anticlockwise. The magnitude of motional

e.n.f.,
E,=v<B>(b-a)

[T b dex Mo .
S [ —— l L— -— —
2n(b—a)na(b a)dt 2n
So, induced current

En WMo bV b

i — =

" R"2x R a

(b) The force required to maintain the constant velocity of the connector must be the
magnitude equal to that of Ampere’s acting on the connector, but in opposite direction.

: Mo o b Mo o b
So, Fw=zb,l<B>-(Znvana)(b—a)(zn(b_a)lna)

2
v(Wko . b L . ) |
- E(Z <o In 2 ) , and will be directed as shown in the (Fig.)

(a) The flux through the loop changes due to the movement of the rod AB. According to
Lenz’s law current should be anticlockwise in sense as we have assumed B is directed
into the plane of the loop. The motion e.m.f &, ()= Blv

and induced current i, = %—l A
From Newton’s law in projection form F, = mw, 'Vo
vdv _ -
-Famp = m“—ax— R Famp B ®
. vB*1?
But F,, =i,lB= B
So - !_le_zr =my .d_v
’ R dx
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x 0

fdx- -”;—szdv or, x=
Bl

0 Vo

(b) From equation of energy conservation; E, - E; + Heat liberated = A + A,

387

mRv,
B?1?

or,

[0 - %m v02] + Heat liberated = 0 +0

1 2
=mv,

So, heat liberated = 3

With the help of the calculation, done in the previous problem, Ampere’s force on the
connector,

2,2
= YL directed towards left
Now from Newton’s second law, A
dv
- —_ -
FoFopp=m dt 8 ® R
272 - >
So, F= YBL pd Famp< T 7F
R dt /4
>\
t v
dv =
or, {dt= m{F vB212 B
" R
Fo v B2
or, LA R In R
’ m  B4? F
-tB%*\ RF
Thus V= (1 —€ " pm ) 21

According to Lenz, the sense of induced e.m.f. is such that it opposes the cause of change
of flux. In our problem, magnetic field is directed away from the reader and is diminishing.

(@) (b) (¢) (d)

So, in figure (a), in the round conductor, it is clockwise and there is no current in the
connector

In figure (b) in the outside conductor, clockwise.
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In figure (c) in both the conductor, clockwise; and there is no current in the connector to
obey the charge conservation.

In figure (d) in the left side of the figure, clockwise.

The loops are connected in such a way that if the current is clockwise in one, itis anticlockwise
in the other. Hence the e.m.f. in loop b opposes the e.m.f. in loop a.

. d 2 2d .
e.m.f. in loop a = P (@B)=a Z(B0 sin wr)

Similarly, e.m.f. in loop b = b B, o cos wt.

Hence, net e.m.f. in the circuit = (a° - b2) B, w cos ot, as both the e.m.f’s are in opposite

sense, and resistance of the circuit = 4 (a +b) p

Therefore, the amplitude of the current
(@®-b)Byw

4(a+b)p 05 A.

The flat shape is made up of concentric loops, having different radii, varying from 0 to
a.
Let us consider an elementary loop of radius r, then e.m.f. induced due to this loop
- —
-d(B-S)

2
= ——%= nr“ B, w cos wt.
dt W

and the total induced e.m.f.,

a

§M=f(nr2Bomcos wt)dN, o)
0

where 7t 72 @ cos wt is the contribution of one turn of radius r and dN is the number of
turns in the interval [r, r + dr}].

So, dN = (%’) dr )

From (1) and (2), = f ~(m rzBomcos u)t)!-;[-dr =
0

:nBOmcosu)tl\/a2
3

Maximum value of e.m.f. amplitude §_,, = %nBo wN a*
The flux through the loop changes due to the variation in F with time and also due to the
movement of the cornector.

d(B-5)
So, Sin = dt

as S and B are colliniear

. ld(BS)

But, B, after ¢ sec. of beginning of motion = Bt, and S becomes = / % wt2, as connector

starts moving from rest with a constant acceleration w.

So, E,= 2Blwi?
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We use B= pnynl

Then, from the law of electromagnetic induction

-  — dd

So, for r<a

E 2nr= —nrzp.oni o, E = -%uonr}. (where I = dl/dr)

For r>a
E2xr= —nazuonf o, E = -uoniaz/Zr

The meaning of minus sign can be deduced from Lenz’s law.

. g2
The e.m.f. induced in the turn is pynrt nd—

4
The resistance is %d p-
- _moniSd } e
So, the current is ——Z—p—— = 2m A, where p is the resistivity of copper.

The changing magnetic field will induce an e.m.f. in the ring, which is obviously equal,
in the two parts by symmetry (the e.m.f. induced by electromagnetic induction does not
depend on resistance). The current, that will flow due to this, will be different in the two
parts. This will cause an acceleration of charge, leading to the setting up of an electric
field E which has opposite sign in the two parts. Thus,

§--awE= rI and §-+JcaE-= nrl,

2 72
where & is the total induced e.m.f. From this,
E= m+1)7],

. .1 mn-1
and E- 2nam = 2m1'r]+1E
But by Faraday’s law,E = nt a’b

=Llpn-1
S0, E= > ab nel

Go to the rotating frame with an instantaneous angular vélocity @ (). In this frame, a
Coriolis force, 2mv" ‘x @ ®

—
acts which must be balanced by the magnetic force, e v’x B (1)

Thus, &)= - ﬁz? .

(It is assumed that ® is small and varies slowly, so o’ and @ can be neglected.)
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The solenoid has an indudtance,
L=p,n’nb?l,
where n = number of turns of the solenoid per unit length. When the solenoid is connected

to the source an e.m.f. is set up, which, because of the inductance and resistance, rises
slowly, according to the equation,

RI+LI=V
This has the well known solution,
= %(1 —e Ry,
Corresponding to this current, an e.m.f. is induced in the ring. Its magnetic field
B = pgnlin the solenoid, produces a force per unit length, -tji—? =Bi= u;‘; n’ratil/r

2 2y72
JWmVE () i eikn
r RL ’

acting on each segment of the ring. This force is zero initially and zero for large ¢ Its
maximum value is for some finite £. The maximum value of

2
e_,R/L(l_e—tR/L)= l_(l_e—lR/L) is l

47 |2 4
S dF_, wind®V?: 2 uoa v?
© d - 7  ARL_ arRIbZ

The amount of heat generated in the loop during a small time interval dt,
dQ = E/Rdt, but, E= -d—dt?i- 2at-ax,
(2 at - av)?
—d!
R

and hence, the amount of heat, generated in the loop during the time interval 0 to <.

T
2 2.3
Q=f(2at aTt) di = la’t
R 3 R
0

Take an elementary ring of radius r and width dr. dr

So, dQ=

The e.m.f. induced in this elementary ring is nr’ B

Now the conductance of this ring is. D
1 hdr hrdr
—| = I=
d(R) p2xnr s0.d 2p B ' b
Integrating we get the total current,

b

_ | hrar, _ mp@®*-d)
]_f 2p P 4p
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3315 Given L = p, V= Mo n? LR 2, where R is the radius of the solenoid.

L

1
Thus, n= Moloﬂ R

So, length of the wire required is,

\/4r Ll
I=nly2nR= = 010 km.

)

3.316 From the previous problem, we know that,

I’ = length of the wire needed= Lld= , where /= length of solenoid here.
Ko
ll
Now, R = BOS__’ (where S = area of crossection of the wire. Also m= pSI')
Thus, l'=5;s= Rm’ or I'= Rm
Po PPyl PPo

where p, = resistivity of copper and p = its density.

o Rm_ Ll
’ PPy  Mp/4T
- - YomR
‘ 4w ppyl

3.317 The current at time ¢ is given by,

1= F1-e"M)

The steady state value is, I, = RV_'

and &=n=1—e"R/Lor,e"R”‘=1-n
1,
or, 0§=lnlfn or, t"-f_ilnlfn = 149s
3.318 The time constant T is given by
L__L
R L’
Po Ky
where, p, = resistivity, /; = length of the winding wire, S = cross section of the wire.
But m=1lp, S
L mL
So eliminating S;v = = —
Polo  ppoly
m/pl,
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4xlL

From problem 3.315 I, =

(note the interchange of ! and [, because of difference in notation here.)

Thus, T=———= }4dn

3.319 Between the cables, where a < r < b, the magnetic field E satisfies

I
H¢2n7=1 or, Hvxm
uu !
So B, = 2nr
r=b
. , . Mol kel b
The associated flux per unit length is,® = f 2 B 1xdr= o In a2
r=a
Hence, the inductance per unit length L, = %= %E— n 1, where 1 = %

We get L, = 026 _qu

e . I NI
3.320 Within the solen01d,Hw2nr= NI or H‘p— Ixr’ B u“"Zﬂ:r
a+b
and the flux,®= N®,, = N ﬂ'”31\/1 "f’
b
Finally, L= """N aln ( b)

3.321 Neglecting end effects the magnetic field B,
between the plates, which is mainly parallel

to the plates, is B = Noi‘

(For a derivation see 3.229 b)

Thus, the associated flux per unit length of the
plates is,

o= uoéxhxls (l"o%)’(I

So,L, = inductance per unit length = p, h = 25 nH/m.
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For a single current carrying wire,Bw = (r > a). For the double line cable, with current,

2nr
flowing in opposite directions, in the two conductors,

uo
B-v = —0—, between the cables, by superposition. The associated flux is,
nr

d-a
I I
¢=f."f°_. drx1 _"O_m d_ _!»‘_o]n 1 x I, per unit length
% r T a =w
Hence, L= %gh”l

is the inductance per unit length.

In a superconductor there is no resistance, Hence,

dl do
La=*a
So integratin [- 42 _nd'B
grating, L A
because AD= @~ D, P, = na’B,D,;= 0
: dd 1 2 1 wa B?
Also, the work done 1s,A-f§Idt—fIdt i/ 2LI =371
. . 2 N%s
In a solenoid, the inductance L = ppyn” V= py, T

where S = area of cross section of the solenoid, / = itslength, V= SI, N= nl = total number
of turns.

When the length of the solenoid is increased, for example, by pulling it, its inductance
will decrease. If the current remains unchanged, the flux, linked to the solenoid, will also
decrease. An induced e.m.f. will then come' into play, which by Lenz’s law will try to
oppose the decrease of flux, for example, by increasing the current. In the superconducting
state the flux will not change and so,

= constant

1

~I~

Hence,

S|

l
, or, I= I°E= I,1+m)

The flux linked to the ring can not change on transition to the superconduction state, for
reasons, similar to that given above. Thus a current / must be induced in the ring, where,

n a’B _ nwtaB

S W S
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We write the equation of the circuit as,

Ri + L i = g
for t = 0. The current at £ = 0 just aftcr inductance is changed, is
i=m 1% » so that the flux through the inductance is unchanged.

We look for a solution of the above equation in the form

i=A+Be "C

Substituting C = _F ,B=n-1A= 1%

_§ _ 1\ -NRIL
Thus, i R(1+(n e )

Clearly, L d =R{I-i)= E-RI

d .
S _—= —
o, 2L r E-Ri

This equation has the solution (as in 3.312)
._E . _-tRAL
i= 2 1-e )

The equations are,

diy _, do R
let=L2dt—E R(ll'i'lz) )
I )

d., . oy ——— 5550 05—
Then, ar (L1 L, -L5)=0 i L) J
or, L;i -L,i= constant { S
But initially at t= 0, i;= i,= 0 i+, I
so constant must be zero and at all times, 3 R

Liy=Li
In the final steady atate, current must obviously be i, +i,= % . Thus in steady state,

i, = __ELz and ———ng
17 R +Ly) = R@,+L)

wol
Here, B = 5"; at a distance r from the wire. The flux through the frame is obuined as,

[%‘L pe b0 1n(1+—‘11) I b

D, pb a (_.Z —
Thus, Ly, = T =2 In (1+—I')

a
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b

uol hdr
Here also, B = > mr and &= uop.znf

Thus, L,=

The direct calculation of the flux ®, is a rather complicated problem, since the configuration
of the field itself is complicated. However, the application of the reciprocity theorem
simplifies the solution of the problem. Indeed, let the same current i flow through loop
2. Then the magnetic flux created by this current through loop 1 can be easily found.

i
Magnetic induction at the centre of the loop, : B = %
Yyl
So, flux throug loop 1, : ®,, = nazz—([))
and from reciprocity theorem,
2.
Mo ma’i
Pr2= P, Pr= 5 2

So, L= -?.z—ls lp(,:rtaz/b
i 2
Let 17; be the magnetic moment of the magnet M. Then the magnetic field due to this
magnet is,
3@ D7 B
(17 5]
The flux associated with this, when the magnet is along the axis at a distance x from the
centre, is

3(,r)r
[(pjp,..dsq)(pz
41t

ER

a

__E(L andp _ u'Opm l__ 1
where,®, = 2xPm f (x2+p2)m_ 2 (x 2, P

X +

3 uop,,. 2npdp
and ¢, = f (x2 " p2)5/2 f 7

2
_ Hopp (_1__ 1 ) x
3 3/2

2 (xz + a2)

—WoPp (12

R YS
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‘When the flux changes, an e.m.f. - N o is induced and a current - Ndod flows. The

dt R a
total charge g, flowing, as the magnet is removed to infinity from x = 0 is,
N N WPy,
q= Rd)(x- 0)= R 22
2aqR
or, Py m

If a current I flows in one of the coils, the magnetic field at the centre of the other coil
is,
[T a’l Ko ail
C20%+ay? 2137

The flux associated with the second coil is then approximately pgn adrn2r

as [>>a.

4
U, na
Hence, L,=
12 PYE
. dl, -
When the current in one of the loop is /; = at, an e.m.f. L12-Jt-= L, a, is induced in

the other loop. Then if the current in the other loop is I, we must have,
dl,
L2?+R[2 = lea

This familiar equation has the solution,

~ L,a

L
I,= R

(1 -e? ) which is the required current

Initially, after a steady current is set up, the current is flowing as shown.

In steady condition i,, = -§~, o= o+ ] L
B R  ATTSETE A —

When the switch is disconnected, the current )
through R, changes from i, to the right, to Hh
i5 to the left. (The current in the inductance - I3
cannot change suddenly.). We then have the ] 0
equation, A;

di, _ 4

L —‘-1';'+(R+R0)l2= 0. Sw
This equation has the solution i, = i,y e ®*F* [
The heat dissipated in the coil is,
0= [i?Rai= 3R [ 2@ RV g
0 0
.2 L L §2
= Rij x =3ul

2(R+Ry)~ 2R(R+Ry)
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3.336 To find the magnetic field energy we recall that the flux varies linearly with current. Thus,
when the flux is @ for current i, we can write ¢ = A i. The total energy inclosed in the
field, when the current is 7, is

W-fgidt-fzv %‘?—;d:

1

-de(Di-fNAidi- %NAIZ- %N@I
0

The characteristic factor % appears in this way.

3.337 We apply circulation theorem,
H2nb= NI, or, H= NI/2nb.
Thus the total energy,

W= %BH 2mb-ma?= n2a®bBH.

Given N, I, b we know H, and can find out B from the B - H curve. Then W can be
calculated.

3338 meﬁ H-dF= NI,
H-nd+L be NI, (d>>b)

Ko

NI
nd + pb’
Since B is continuous across the gap, B is given by,

Also, B= pup H. Thus, H=

NI : .
B=pup, Y pb,both in the magnetic and the gap.
2
—B—xbe
gap 21
() - = -
Wmagnenc B xS x nd
2 pyy
, = - NI SNI
®) Theﬂux1stBdS—Nuu0M+ub S=
u
SN?
So, L = a -
b+—
u

Energy wise; total energy
2 N%s
B (md s L 2,
2up | M
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The L, found in the onc way, agrees with that, found in the other way. Note that, in
calculating the flux, we do not consider the field in the gap, since it is not linked to the
winding. But the total energy includes that of the gap.

‘When the cylinder with a linear charge density
A rotates with a circular frequency w, a surface
current density (charge / length x time) of

i= Ao is set u
2% P-

The direction of the surface current is normal

to the plane of paper at Q and the contribution as

of this current to the magnetic field at P is l/

. p—>

dB = :—;ﬂg;:—ads where e is the Q
-> -»> -

direction of the current. In magnitude, dB A dBlL %

|é'>x 71=r, since e is normal to 7 and the Q

direction of dB is as shown. > p

dBn

It’s component, d Eﬁ cancels out by cylindrical

symmetry. The component that survives is,

o td S
|B,1= 3> e=——fdsz o i
dScos 0 .
where we have used ————=dQ and | dQ = 4, the total solid angle around any
r

point.
The magnetic field vanishes outside the cylinder by similar argument.
The total energy per unit length of the cylinder is,

2
W--l— 2(Ao x 7 a’ = E(laz)\.zooz
1= 20 |2 8

W = %eoE 2, for the electric field,

wp = —1——82 for the magnetic field.

)
1 .2 1 2
Th —B = =
us, ™ B ) g E”,

when E 5_ . 3 x 10° V/m
VEg Uy

The electric field at P is,
ql

?" Ame, @+ 12)
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To get the magnetic field, note that the rotating ring constitutes a current i = g w/2 7, and
the corresponding magnetic field at P is,
B uoa’i
P 2@+ 12y

cotoE’ qix2 )2 a

.1 (_1_)’ / P
€o o (a® o

M
or, — = g Uy 2a*/12
Wg

The total energy of the magnetic ficld is,
-
L G iave L[5 (2.
2 (B-H)dv > B (P'o ‘)dV

1 (5F lf"."
-3 B-BdV-5|J-BdV.

Ko
The second term can be interpreted as the energy of magnetization, and has the density
1—>—
2J B.

(a) In series, the current I flows through both coils, and the total e.m.f. induced. when
the current changes is,

dr ,dI
P
or, L'=2L

(b) In parallel, the current flowing through either coil is, -21- and the e.m.f. induced is

Equating this. to - L' —— I we find L' = -2—L .

dt b
We use L, = uonle,Lzs u0n22V \
So, L,=pyn n,V=vVL L,
The interaction energy is

1 - 1 2 1 - 2
mf|31+32|zdv- 2—u§f |E| dV—mlezl av
=LJ‘;§:.§;W

Hcre, if B is the magnetic field produced by the first of the current carrying loops and

Bz, that of the second one, then the magnetic field due to both the loops will be B +82
Downloaded From : www.EasyEngineering.net


http://Easyengineering.net
http://Easyengineering.net

400

Downloaded From : www.EasyEngineering.net

3.346 We can think of the smaller coil as constituting a magnet of dipole moment,

3.347

3.348

3.349

2
Pp=ma’l;

Its direction is normal to the loop and makes an angle 0 with the direction of the magnetic
field, due to the bigger loop. This magnetic field is,

woly
The interaction energy has the magnitude,
woli 1
2b
Its sign depends on the sense of the currents.

% a’cos O

W=

(a) There is a radial outward conduction current. Let Q be the instantaneous charge on
the inner sphere, then,

- 24 oz __1 dOo-
Jx4nr'= a °v ) anr dt r.

s
On the other hand Jj= %—?= dit (4Qr2;)= -?
n

(b) At the given moment, E=—21 7

4n%e#
> E
A
and by Ohm’s law,j = — = _9_2,.
P 4dmezepr
Th o L A
en, = -
B 4:rce(,tzpr2
dr q dScos@ _ q
and ﬁ Ja ds-_41te epf 2 TggEp
0 r 0

- ™, .
The surface integral must be —ve because j,, being opposite of j, is inward.

—> —
Here also we sce that neglecting edge effects, j, = —j. Thus Maxwell’s equations reduce
—> — - —

todiv B=0, Cutl H= 0, B = pH
— -  —

A general solution of this equation is B = constant = B, * B, can be thought of as an
—>

extraneous magnetic field. If it is zero, B = 0.

Given I = I, sin wt. We see that

= Psinot= —j,= -2
=% Ja ot

WS

m
or, D= — coswt, so, E, =

wS
7V/cm

is the amplitude of the electric field and is
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3.350 The electric field between the plates can be written as,

v . v
E= ReTMe”’", instead of—dﬂcos .

This gives rise to a conduction current,
. o i
jo=CE= ReEV,,_e”"‘
and a displacement current,

v, .
Ja= %ltl- Reeoeim—df-e“’"

The total current is,

jr= %VUZ«'-(eoem)z cos (w £+ o)

where, tano= — o on taking the real part of the resultant.

€
The corresponding magnetic field is obtained by using circulation theorem,
H2nr=nrj,

rVa.

2 2
2 Vo +(gpt )

or, H= H, cos (wt + ), where, H, =

3.351 Inside the solenoid, there is a magnetic field,
B = pynl, sinot.

Since this varies in time there is an associated electric field. This is obtained by using,

ff Edi- -1f§’-d§’
dr
C S

For r<R 2nrE= —b'ﬂ:lz, or, E= —%’—'
np2

For r>R E= _BR
2r

The associated displacement current densxty 1s,

'-e-a-E-- —eoBr/2
Ja= %05 ™ | _e,B RY2r

The answer, given in the book, is dimensionally incorrect without the factor &,

3.352 In the non-relativistic limit.
E-—1 .7
4ne, r

(a) On a straight line coinciding with the charge path,

—_ _q_ V _3rr o dr
Ja= e“ at R J’ (usmg, a- "
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-

But in this case, 7= -v and vZ= ¥ s0, j;= iq%

r 4xr
(b) In this case,s = 0, as, 7. v. Thus,

pp—

4 4nr
We have, Ep- ———%x——;,sﬁ

4ney(a” +x°)

then ja= 3D 3E (az-sz)

= g,— =

a P an(d+x)”?
This is maximum, when x= x, = 0, and minimum at some other value. The maximum
displacement current density is

: qv
Volows = G

: dJq
To check this we calculate T 3

%

- %[(-u(a%x’)-s;c(a%zf)]

This vanishes for x= 0 and for x = V §2- a. The latter is easily shown to be a smaller
local minimum (negative maximum).

We use Maxwell’s equations in the form,
SF E’-d;":- eouoft- f EdE:

when the conduction current vanishes at the site.
‘We know that,

- A

—». a= q fds.r

fE as 4ne, 7~
-9 -1 -

fd.Q 4ﬂEOZ:r(l cos 0),

where, 25 (1 - cos 0) is the solid angle, formed by the disc like surface, at the charge.

Thus, § B-dr=27aB= Tpyq-sin0-0

On the other hand,x = a cot 0

differentiating and using Pl
v= acosec’00
Poqvrsin®
Thus, B= .%3__
nr
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- Ug(x7)
This can be written as, B = 0—3

4nr
and I? = Z‘I;V_t_i (The sense has to be checked independently.)
r
(a) If B= B (z), then,
cn E-=2.0
at

— )
So, E cannot vanish.

- ol = .
(b) Here also, curl E = 0, so E cannot be uniform.

(c) Suppose for instance, E= ) @

where a is spatially and temporally fixed vector. Then — ——= curl E = 0. Generally

dar

—

speaking this contradicts the other equation curl H- {;—? = 0 for in this case the left

hand side is time independent but RHS. depends on time. The only exception is when

. —>
f (2) is linear function. Then a uniform field E can be time dependent.

. = dD :
From the equation Curl H - ETi J
We get on taking divergence of both sides
d di B avi
=5 v D=div
- . T>3p
But div D= p and hence div j + vl 0

B
- —»
From VxE = - i
ot
we get on taking divergence
;) -
= -—divB
- ot
This is compatible with div B= 0

A rotating magnetic field can be represented by,
B,= Bycoswt;B,= Bysinwt and B,= B,
—

Then curl, E— - -a—Bi-
ot
-
So, -(CurlE), = -wB,sinwt= - wB,

—(CurlE)ys w B, cos wt = wB, and —(Curll?)zs 0
— —_ =
Hence, Curl E= -wxB,

where ®= 0
=60. . .
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Consider a particle with charge e, moving with velocity v, in frame K. It experiences a
=2
force F= evx B
In the frame K’, moving with velocity v, relative to K, the particle is at rest. This means
—
that there must be an electric field E in K/, so that the particle experinces a force,
—> —> — - =
F'= ¢E'= F= evxB
Thus, E’ - X F

Within the plate, there will appear a (V'x 1_3. ) force, which will cause charges inside the
plate to drift, until a countervailing electric field is set up. This electric field is related to
B, by E = e B, since v & B are mutually perpendicular, and E is perpendicular to both.
The charge density = o, on the force of the plate, producing this electric field, is given
by

E= eg or O=¢,vB = 0-40pC/m2
0

Choose @ 11 B along the z-axis, and choose 7, as the cylindrical polar radius vector of
a reference point (perpendicular distance from the axis). This point has the velocity,

- - —>
V= X7,

and experiences a (\7' x F ) force, which must be counterbalanced by an electric field,
—> = — A e TS
E= -(@xr)xB= -(0-B)r.

There must appear a space charge density,

= > = 3
p=¢gdiv E= ~2¢y0 B = -8pC/m

Since the cylinder, as a whole is electrically neutral, the surface of the cylinder must

acquire a positive charge of surface density,

2¢ (c_u" E’)Jta2
* e
o=+ 7T . eoa(T)'-B = +-2pC/m2
2xa
In the reference frame K', moving with the particle,
—>
A L
4meyr

— — —_
B « B-voxE /c*= 0.
{
Here, \70’ = velocity of K', relative to the K frame, in which the particle has velocity v

Clearly, v, = . From the second equation,

> TXE g VX7 o g7 F)

B-’cz -eouox4ﬂ80 pj 4n rs
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—
3.363 Suppose, there is only electric field E, in K. Then in K’, considering nonrelativistic velocity

— =
- — —»
WE=E,B= _vsz,
c —_ —>
So, E'-B=0
In the relativistic case,
— —> —> —
E = E By= B,=0
== - ==
E = EL 7 - -vxE/c?
| - ——_—
Vi1-v/e Vi1-v¥/c
Now, E’E= E.'"-F’"+E7_L-§7L-0, since
E,-B,=-E,-GXxE)/(1-")= -E, (FXE, ) (1-§)= 0
3364 In'K,B~= by—z—l b= constant.
X +y
Aoa -
= - -xi r
In K, E'= vXB=bv = bv =
2 +y r

A A
The electric field is radial (7= x i+ vj).

3365 In K,E = ar%, F= (i+yj)

In ,B=-

The magnetic lines are circular.

8,
o
[ ]
o

3.366 In the non relativistic limit, we neglect v¥/c* and write,

—
B-f ) B-§
E -El+va B, « B, -vxE/c

These two equations can be combined to give,
—> - —> —> —>
E=E+vXB, B =B-vXxE/?
3.367 Choose E in the direction of the Z-axis, E = (0, 0, E). The frame K’ is moving with velocity
V= (vsin o, 0, v cos ), in the x — z plane. Then in the frame K',
Ey=E By=0
= ===
— =
= L g ovxE/C
L= L=
V1-v/c V1-v/c2
The vector along vis e= (sin a, 0, cos a) and the perpendicular vector in the x - z plane
is,

f—; (- cos a, 0, sin o),
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—> — . —
(a) Thus using E= Ecosa e+Esina f,

Esina

V1-2/c ’

/ 22
So E=E l;%g-andtana'- tana

V1 -v/e?

E,” = FE cos o and E," -

— > 2
(b) B'"=O, E’l= VXEgcz
V1-v/c

B = B E sin o

) c\/l—B2

3.368 Choose E’ in the z direction, and the velocity V= (vsina, 0, v cos a) in the x - z plane,
then in the X' frame,

— — -—7 —
Ey=E=0_ | By=5
7 - VX B 7 B,
l L By
1-v/c V1-v/c

B'=8B

- —
=E B+ 2
1-=
C2
— — E,-B,-W%B) - GXE)/c
=EyBy+ —y
— — E,-B,-(XB,) - FXE, )/
=E B+ 3
1Y
- —> —> —> C2
But, w«B-CxD=A-CB-D-A-DB-C,
2
- = = = - —> - —
SO, E'-B = E"‘B"'FE‘LB_L 3 =F-B
v
1-z

®) E?*-B?= E} - BT+ E} - B
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B-?B+— | E BY-3(B, EY
= "-C " ‘; (_L+VX )-C 1 c2
-3
1 — T 1 -
= E - B + = [Ei—czBi-f(vaJ_)Z-?(vxEl)z]
1-3
2 292 1 2 2p2 V2 2 252
=E"-c B"+"‘7[E_L—C B{] 1—:2- = E“-c“B°,
1-—
2
since, (WX A, = vai

3.370 In this case, E- B = 0, as the fields are mutually perpendicular. Also,
2

E’-*B- —ZOxIOS(%) is - ve.

Thus, we can find a frame, in which £’ = 0, and

4 2
B = 1Vc32 2-8V1- 020\/1( 4 <44 ) = 015 mT

3x10%x2x107*

3.371 Suppose the charge g moves in the positive direction of the x-axis of the frame K. Let
us go over to the moving frame K’, at whose origin the charge is at rest. We take the
x and x' axes of the two frames to be coincident, and the y & y’ axes, to be parallel.

- 1 gqr
In the K’ frame, E = x
4me,

and this has the following components,

1 gx 1 gy
= E,=_'"' .
E dmey 37 7 dmey 3

/

Now let us go back to the frame K. At the moment, when the origins of the two frames
coincide, we take ¢ = 0. Then,

x=rcos0=x' VI—? ,y=rsin@=y

Also, =E'E=E’/\/1—v2/c2

From these equations, r’= M

1-p’
A 1 PRz Y y 2
Amey P (1- s e)”[(1 #) (XHw/I__;s”)]
grii-p)

4meyr (1-p*sin’0)”2
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MOTION OF CHARGED PARTICLES IN ELECTRIC AND
MAGNETIC FIELDS

Let the electron leave the negative plate of the capacitor at time ¢= 0
4o g a
AS, Ex dx ’ E I I’
and, therefore, the acceleration of the electron,
we E_cat dv_ eat
m oml 7 dt ml
v t
ea 1 ea ;
- - - 1
or, fdv lftdt, or, v 2mlt 1
0 0
But, from s = f vdr,
' 1
3

Putting the value of ¢ in (1),

2 1
1 ea (6 ml%\? 9 ale\3
v-2ml( = ) -(2 m) = 16 km/s.

(8]

The electric field inside the capacitor varies with time as,
E= at
Hence, electric force on the proton,
F = eat
and subsequently, acceleration of the proton,
eat
w= —
m

Now, if t is the time elapsed during the motion of the proton between the plates, then

t= —l—, as no acceleration is effective in this direction. (Here vn is velocity along the length
Y
of the plate.)
dv

From kinematics, El-s w

Vl ¢
so, f dv, = f wdt,
0 0
(as initially, the component of velocity in the direction, L to plates, was zero.)
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or b o f eat’ el
L m2m 2m.?
0 I
v
Now, tano = —= ea13
2my
I I
1
eal® . 2 eV)2 .
=3 sy~ |7, from energy conservation.
2
om (2 eV)
m
al? [ m
4 2V
3.374 The equation of motion i,
dv v _q
@~ i mEom
Integrating
1. g 1.2-
A (Eox - i ) = constant.
But initially v= 0 when x = 0, so “constant” = 0
Thus, V= 2q (on - %axz)

Thus,v = 0, again for x = x, = L

The corresponding acceleration is,
dv q qE,
(dt)x m(E0—2E0).. -

3.375 From the law of relativistic conservation cf energy
2

myc

—————-eEx= ?,
mex myc

as the electron is at rest (v= 0 for x = 0) initially.

Thus clearly T= ekEx.
2
myc
On the other hand,V1 - (v2 /D) = _20—
myc” +eEx
or v \/(m0 &+ e Ex)* -m ¢
’ c my c* + eEx
(myg e eEx) dx
or, ct= f cdt=
\/m & + eEx)’ - % 4
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\/(mo ¢ + eEx)* - mZ c* + constant

dem

The “constant” = 0, at t= 0, for x= 0,

So, Ctm -e;li\r(mocz + eEx)2 - mg .

Finally, using T= eE x,

VT(T+2mQ )

ceE ty= VT (T+2myc? or, t,=

eEc
3.376 As before, T= eEx
Now in linear motion,
d myv myw myw v
= = + W
12 Vi-veE -V e
m (T +myc?? E
= W= A w= eL,
(A -v¥/H? mg c®
2.6 -3

eEm;c
So, o € eE (1 T )

(T +my ci)3 my m, c?

3.377 The equations are,

—d— ————————-—-mo Vx =0 and i ————Lmo # =ek
dt \/1_(}7/,;2) dt 1/1—v2/c2
H 2z tant 0
ence, ——————= constant = F————5=
Vi1-1/¢t Vi-(3/)
Also, by energy conservation,
2 2
my ¢ myc
0 = 0 +eEy
Vi-0%7d Vi-(d)
2
Dividing y= 0% Tl
* gy+eEy’ \/1—(v§/c2)
Al my ggteEy
so, - —_
Vi- (vz / cz) ?
Thus, (e; + e Ey) v, = c* e E t + constant.

“constant” = 0 as v, = 0 at t= 0.
Integrating again,
gy + -;— eEy2 = %czE ¢2 + constant.
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“constant” = 0, as y= 0, at t= 0.
Thus,(ce E £)° = (eyE) +2 ggeEy+ eg - eg

or, ceEt= V(g + eEy)? - 83
or, ggteby= Ve(z,+(:2e2E2t2

Vo € cteEt
Hence, V,= —————— also, V=
Ved+c* 2 E* 1? eo+cl e’ E2t?
v, eEt
and tan@= <= Vl—(vg/cz).
x MoVe

From the figure,

sino = %= dqB

mv’

As radius of the arc R = q—;’ where v is the

velocity of the particle, when it enteres into
the field. From initial condition of the problem,

qV = %mv2 o, v= 2}%‘,

Hence, sina = _d_qﬁ__= dB v E—'Z—‘;
V227
m

and o = sin”? (dB V_1_ )= 30° on putting the values.

2mV

411

(a) For motion along a circle, the magnetic force acted on the particle, will provide the

centripetal force, necessary for its circular motion.

. mv? eBR
ie. ——=evB of, v= —
R m
and the period of revolution,T = n_2ZmR_2=n
® v eB
a7
(b) Generally, - F
d_’ d m v m v m ‘7'(

Bu - +
i di /1 - (v2/c) Vi-Rh D (1-¢* /c))
For transverse motion, V=0 S0,
é}? me v mgy 2
" Vi-(P1) Vi- P/ c) 7

— here.
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Thus ——m—o-vz—— Bev or v/e = Ber
rV1-0% " Vi-0?1H ™€
v Ber
on ¢ N 2 2
B ér+mic
2nm
Finally, T=2%- 0 2 B 2P e md

v T Vi@ Be

3.380 (a) As before,p= Bgr.

b)) T= \/cp +mo \/cszqr+mg 4
¢

r [1 +(myc /qu)2 ]

using the result for v from the previous problem.

3.381 From (3.279),

V
() w="T=

2

2rmyc
_ 2me P Ty= ——— (nonrelativistic),
c“eB
Here, m, C2/ 1-v/*=E
e, 87= 2L (r- K.E)
cZeB
oT T 2
Now, = m=——, so, T=nmyc
T, n myc ol

3382 72 ev= —;-mv2

(The given potential difference is not large enough to cause significant deviations from
the nonrelativistic formula).

Thus, V= 2V
m
1 /ZeV 1 /2eV .
So, v, = cosa, v, = — sina
| m m
mv? my
Now, * = Bev, or, r= —L,

Be

and T=—=

Pitch 2:mmv 2eV\cos0.- ZnV Cos o
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3.383 The charged particles will traverse a helical trajectory and will be focussed on the axis

3.384

after traversing a number of turms. Thus
) 2 um

—~n = +1
Vo 9B, v ) B,
n n+1 1
5o B," B, " 5,-B,
) 2 tm
Hence, — - ———
Vo Q(Bz"Bﬂ
o 1? 2 n)? 1
’ 2qVIm” B,-BY (q/m)
2
or, q._ 8V

m  1?(B,-B,)*

Let us take the point A as the origin O and the axis of the solenoid as z-axis. At an
arbitrary moment of time let us resolve the velocity of electron into its two rectangular
components, 5[ along the axis and \7I to the axis of solenoid. We know the magnetic

force does no work, so the kinetic cnergy as well as the speed of the electron |V: | will
remain constant in the x-y plane. Thus vL can change only its direction as shown in the
Fig.. v vy will remain constant as it is parallel to B

Thus at t =
V, = V, COS Wl = Vsin Q& cos wi,
v, = v, sinwt = vsinasinwt
eB
and v, = vcosa, where o = —
m

As att = 0, wehave x = y = z = 0, so the motion law of the electron is.
Z=vcosot
vsina, .
x= ——sinwt
w

vsin o
= — -1
y P (coswz-1)

(The equation of the helix)

On the screen, z=1 so t= .
v cos o
2.2
2v°sin” a wl
Then, r2=x2+y2= —— |1 -cos
o v cos o
2vsina .
= sin

2 mv cos o

w
: WWW.EasyEngileering.net

in wl =2 6na
2vcos o eB
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3.385 Choose the wire along the z-axis, and the initial direction of the electron, along the x-axis.
Then the magnetic field in'the x - z plane is along the y-axis and outside the wire it is,

B-5 - 2L -
= B,= >, (B,= B,= 0, if y= 0)

The motion must be confined to the x - z plane. Then the equations of motion are,

d
—mv,= -ev,B,

dt
d(mv)
F7anie +ev, B,
Multiplying the first equation by v, and the second by v, and then adding,
dv, dv,
e Ve~ O
or, vf+v§-v(2,,say, or, v,= vf,—vz
dvx e 2 2 u'OI
Then, vx-zx—=—;\/v0—vx2—m;
v, av, uole dy
vo-V;
po le
Integrating, vg— 3 - 20 ln%

on using,v, = v, if x= a(i.e. initially).

Now, v,= 0, when x= x,

y uole

/b
S0, x,=ae " where b=2

3.386 Inside the capacitor, the electric field follows a %law, and so the potential can be written as

_Vinr/a -V 1
~ Inb/a’ Inb/ar
Here r is the distance from the axis of the capacitor.

Also, m?_ gV 1 o _qV
r Inb/arr Inb/a

On the other hand,
my = q B r in the magnetic field.
q_ v |4

|4
Y= Brmb/a ™ W™ B B2 PIn(b/a)
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3.387 The equations of motion are,

dv, dv, av.
m— qBv,, m 2t gE and m a qv.B
These equations can be solved easily.
. E qE 2
First =L,y Ly
irst, Vy= by
Then, v2 +12 = constant = v} as before.

In fact, v, = v, cos ot and v,= v,sin ot as one can check.

Integrating again and using x=z= 0, at t=0

Vo ., Vo
x= —sinwt, z= — (1 - cos wf)
® ®

Thus, x=2z=0 for t==t,,==ngmE
2 2
. _9E 2=x 2, 2x _2x"mEn
At that instant, y, > qulmxn qu/m e
v
Also, tan o, = f—, (v,= 0 at this moment)
y

my, mxﬁ 1 By,

“4Et," GE “m “2mn 2mEn’

3.388 The equation of the trajectory is,

v v
x= Eosm wt, Z= 50(1 -coswi), y= 2512 as before see (3.384).

2m
Now on the screen x = [, so
. wl . -1l
sinof= > or, wt=sin !
Vo Vo

y 10)[
2mw

/ 2
S0, m—l-sin ——szw = sin 29By

At that moment,

Vo gE Em
and z= —Zsm 2 ltan _(n_t
) 2
1[, 10l \/ﬂzx
-ltanz[sm ] = [tan > mE
For small
2 2
gB’y -12) 22
5 2mE " (m z) 2
2mE
or, y= Zisa parabola.
qB
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In crossed field,

eE = evB, so v=£

B
1 E mlE
Then,F = force exerted on the plate = e m 3= eB

When the electric field is switched off, the path followed by the particle will be helical.
and pitch, Al = vII T, (where v" is the velocity of the particle, parallel to B, and 7, the

time period of revolution.)

=vcos(90-@)T= vsingT
2 um
= vsin as T= — 1
? 4B ( B @
Now, when both the fields were present, gE = qvB sin (90 - @), as no net force was effective
on the system.

E

= 2
or, V= Bcos P @
From (1) and (2), Al= % Zq’;” tan @ = 6 cm.

When there is no deviation, iy =
-gE=q(vxB)
or, in scalar from, E = vB (as v.L F) or, v= % (6]
Now, when the magnetic field is switched on, let the deviation in the field be x. Then,
x= (1B 2
2l m

where ¢ is the time required to pass through this region.

also, t= 4
v
2 2 p2
1(quB\(a) 1494 B 2
Thus x Z(m)(v) 2m E @
For the region where the field is absent, velocity in upward direction
- (ﬂfi), 4,p ©)
m m
Now, Ax-x= 98 t
m
2
- 49Bb b BB 4
p— when ¢ il ©)

From (2) and (4),

_l_q_asz== 1a82b
2m E m E
q 2F Ax

m- 4B (a +2b) o
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3.392 (a) The equation of motion is,

dz? == > =
;2-= (E+vxB)
- —» —»
—> l J k —> —>
Now, vxB=|x y z|=iBy-jBx
0 0B

dt m dt m m'* dt

Here, v, = x, v,= y, v,= z The last equation is easy to integrate;

v, = constant = 0,
since v, is zero initially. Thus integrating again,

z= constant = 0,

417

and motion is confined to the x — y plane. We now multiply the second equation by ¢ and

add to the first equation.

E= v, +iy,
we get the equation,
98

E_iwE_; a
el Ing o= ™

B

This equation after being multiplied by e'“'can be rewritten as,
d
dr

and integrated at once to give,

ioty_ o _iotE
Ee'¥)=iwe 3

g_ %+Ce—imt-iu’

where C and o are two real constants. Taking real and imaginary parts.

v, = §-+Ccos(mt+a) and v, = - Csin (of + 0)_

. E
Since v, = 0, when 7= 0, we can take o= 0, then v, = 0 at t= 0 gives, C = -3

and we get,

v, = %—(1 -cos f) and v, = %sin wt.

Integrating again and using x= y = 0, at t= 0, we get
E (t sin ot

x(t)=B 0

This is the equation of a cycloid.

(b) The velocity is zero, when wt = 2 n . We see that
2

V= V:+Vy2- %J (2 -2 cos wt)
Down

), y(@)= %(1 - cos wt).
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ds 2E|. ot
or, v=—= — |sin —

d B 2

The quantity inside the modulus is positive for 0 < oz < 2 w. Thus we can drop the modulus
and write for the distance traversed between two successive zeroes of velocity.

4F wt
S = wB(l-cos 2)

Putting ot= 2x, we get
8E 8mE

wB q B2

(c) The drift velocity is in the x—direction and has the magnitude,

<y, >= < g—(l—coswt)>= =

W .
When a current [ flows along the axis, a magnetic field B, = 2; is set up where

p2 - x4+ y2. In terms of components,

Holy Mo Ix
B -_———I’B =———-—2-andB =0
¥ 2np Y 2mp z
Suppose a p.d. V is set up between the inner cathode and the outer anode. This means a
potential function of the form
A Inp/b
=Wl % BB

as one can check by solving Laplace equation.

The electric field corresponding to this is,

E,= -——— Vx , E,= L , E,= 0.
p°lnal/b p’lna/b’

The equations of motion are,

d le|Vz Iel ol
——mv + 2

dt P lna/b 2 5 p?
d |e|vy Ieluo

. my.

"y plna/b 27 p?

d uol . . Ho !
and dtmv-—lelznpz(xx+)’)’)‘-|| p Inp

(-|e|) is the charge on the electron.
Integrating the last equation,

1 .
myv,= -|e| %lnp/u- mz.
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since v, = 0 where p = a. We now substitute this z in the other two equations to get

4 lmv2+ L mv
dt 2

2 2 . .
le|V |_f_|__(l101) ln'p/b].xx+yz

Ina/b m 2

2x

2 2
eV _lel (mol)" ol 1 4 ,
me m 2n dt

lelV lef oD\’ pla. o
—a 7(‘1) ngla™s

- lg_ 2x b
"5
Integrating and using V2= 0, at p= b, we get,
2
Lo o teVie 1 oftd) (o
mv= = alnb—2m|e| o (lnb)
lng

The RHS must be positive, for all a > p > b. The condition for this. is
2

_1_ lel Po n

*2m 2n b

This differs from the previous problem in (a <*b) and the magnetic field is along the

3.394 i
z-direction. Thus B,= B,= 0, B,= B
Assuming as usual the charge of the electron to be - | e |, we write the equation of motion
e|V, . elV .
—d—mv - le1¥, -|le|By, 4 oy, = I——'—y—+|e|Bx
dt 212 A ey )
ping ping
and 'g—tmvz=0‘-> z=10
The motion is confined to the plane z = 0. Eliminating B from the first two equations
lelV xx+yy
2

dt(va) Inb/a p

2_ Inp/a
or, v Ie'Vlnb/a

so, as expected, since magnetic forces do not work,

2]elv , at p= b.
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On the other hand, eliminating V, we also get,
%m(xvy—yvx)- | e| B (xx +yy)
ie. (v, -yv,) = L—-l— p? + constant

The constant is easily evaluated, since v is zero at p = a. Thus,

leIB )
v, -yv)= =, —(p°-a)> 0

At p=b, (xvy—yv,‘)s vb
Thus, vb 2 J-?2;|n£(b2-az)
or, Bs< 2 mb Zle Vx—l—
’ /b2-a2 m le]
> Bs -2 /2B
’ b* - a? lel

3.395 The equations are as in 3.392.
dv,

dv, 4B dv, qE
e s 2 i ] g8 Zz
= m Yy, 2t = —Ccos Wt - - v, and &

with w-g—- E= v, +iv, we get,

y’
E
%= i;"'-mcosmt-im&
or multiplying by ei“",

d i .Em i
= €)= lz—B-(n(e2 “ +1)

: E
. : iot . “m it m .
or integrating, Ee 2B € *38 it
; Em it . ik it
or, E= ZE(e +2inte’”)+Ce
since E=0atr=0, C-_4_B-
m . .Em iot
Thus, E= is% smmt+tfé-mte
E

or, v, = -?:gmtsin ot and v, = isinmt+5?mtcos ot

Integrating again,

a . a .
X = 5 (sin ot - wt cos o), y= ——tsin ot.
2w 20
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9E,
where a= o and we have used x= y= 0, at = 0.
The trajectory is an unwinding spiral.

3.396 We know that for a charged particle (proton) in a magnetic field,
m?

- = Bev or mv = Ber

But, w-Q’
m
1 2_1 2
Thus E 2mv-2mw .
So, AE = mo’r Ar= 472V’ mr Ar

On the other hand AE = 2 eV, where V is the effective acceleration voltage, across the
Dees, there being two crossings per revolution. So,

Va 2102 vimr Ar/e
mv?
3397 (a) From 5 Bev, or, mv= Ber

Bery 1 5
and T o > mv 12 MeV
(b) From 2=. 222
v 14T
we get, Snin = - Y om 15 MHz
3.398 (a) The total time of acceleration is,
o ip
C2v
where n is the number of passages of the Dees.
B2 2
But, T= nevV=
2m
o Ber
K 2mV
S f= 5 szerz_nBr2_n2mvr2_30 s
° “eBim v v v W
- : 1
(b) The distance covered is, s = 2 Va'3y

But, v = V 2eV \/—,

-V Y-V [vrane VL 2
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2 2
B 2m@imvi it

But, "= eVm eV
411: vimr?
Thus, S= 3.7 = 124 km

2nr,
3.399 In the nth orbit,

n

v,= c. Also W= cp = cBer,.

n . .
=nT,= v We ignore the rest mass of the electron and write

Thus, ZnI;V- n
Bec v
2 Wv
or, Nm= '———2— = 9
Bec

3.400 The basic condition is the relativistic equation,

2 myv
LA Bqv, or, mv= R Bgr.
% V112
Or calling, W= Bq s
m
,
we get, w=———-—°——, m0=§-‘1r
1 g ¥ o
+
2

is the radius of the instantaneous orbit.
The time of acceleration is,

EZV Z—-Eq&

N is the number of crossing of either Dee.

But, W, = m, e I;W,

2: 7 myc? 2: JtAW,I
So, t= a2
gB c* 29Bc

n N(N+1)nAW 2 TAW
—_— N 2
CI’0 4 gB c* 4 qBc

there being two crossings of the Dees per revolution.

=N

(N>>1)

rer VN < at AW
”u)N n oN " 2gBc
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©
Hence finally, o= g
1 2232 AW2 N2
Yt 2 X 222
myc® 4q°B°c
2 2 Vitar’
\/1+ (AW’ 4qBc
amict mAW
qB AW
a= 3 2
nmyc

When the magnetic field is being set up in the solenoid, and electric field will be induced
in it, this will accelerate the charged particle. If B is the rate, at which the magnetic field
is increasing, then.

J\:rzﬁ- 2nrE or E= %rB

av_1 . gBr
Thus, moa= 2qu, or V=

After the field is set up, the particle will execute a circular motion of radius p, where
mv= Bgp, or p= %r

The increment in energy per revolution is e , so the number of revolutions is,

w
4/ ed
The distance traversed is, s = 2 nrN
On the one hand,
r
dp _ _-e_ﬂgLif 'B () dr
" E & Twd ) 2nr' B (') dr

On the other ,
p= B(r)er, r= constant.

_ 4 ;
so, i er B(r)= erB(r)
: e d
Hence, erB(r)- %nrzz<3>
: 1d
SO, B(r):zdt<B>

This equations is most easily satisfied by taking B (ry) = %< B >.

o

3.404 The condition, B (ry) = %< B>= %f B 2nwr dr/m'g
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o

or, B(ry= % | Brar
%0

This gives r,.

In the present case,

By-ars= -’lif(B-arz)rdr- %(Bo--lz-ar%)
0o

or, -ar2- B0 or ry= v3—a°.

The induced electric field (or eddy current field) is given by,

E(r)y= — —-f2m' (rYB(r)dr
Hence,
dE 1 d N .. (r!
—= -—— — | 2 B(r)dr +
ar o d:.o[
-——%<B>+d8dt(r)

This vanishes for r = r, by the betatron condition, where 7, is the radius of the equilibrium
orbit.
From the betatron condition,

1d B
&< B> I (ro) = yr
d 2B
Thus, Z <B>= AL
and do _ d<B>_ 2n’B
dt dt At
So, energy increment per revolution is,
4@ _2nrB
dt At

(a) Even in the relatjvistic case, we know that : p = Ber
Thus, W= Vp*+mic* -my?= myc (Vl + (Ber / my)” - 1)
(b) The distance traversed is,
w w WAt
2 ed 2,[,-233 / At Ber’

on using the result of the previous problem.
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