PROBLEM SOLVING TECHNIQUES OF PHYSICAL CHEMISTRY FOR NEET

BY JITENDRA HIRWANI

LIQUID SOLUTION

Plot No. 38, Near Union Bank of India, Rajeev Gandhi Nagar, Kota, Rajasthan – 324005 Mob. : 9214233303 CONCENTRATION TERMS

BASIC EXERCISE

CUNCI	ENTRALION LERVIS			
1.	8 g NaOH is dissolved in (1)0.8 M	one litre of solution, its mol (2) 0.4 M	arity is : (3) 0.2 M	(4) 0.1 M
Ans.	(3)			
2.	If 18 g of glucose is prese	nt in 1000 g of solvent, the	solution is said to be :	
	(1) 1 molar	(2) 0.1 molar	(3) 0.5 molar	(4) 0.1 molal
Ans.	(4)			
3.	For preparing 0.1 M solut (1) 0.98 g	ion of H_2SO_4 in one li (2) 4.9 g	tre, we need H_2SO_4 : (3)49.0 g	(4) 9.8 g
Ans.	(4)			
4.	Mole fraction of glycerin((1)0.46	$C_{3}H_{5}(OH)_{3}$) in a solution of (2) 0.36	² 36 g of water and 46 g of gl (3)0.20	lycerine is : (4) 0.40
Ans.	(3)			
5.	1000 g aqueous solution	of CaCO, contains 10 g of o	calcium carbonate concentr	ation of the solution is :
	(1) 10 ppm	(2) 100 ppm	(3) 1000 ppm	(4) 10,000 ppm
Ans.	(4)			
6.	How much volume of 3.0	$M H_2 SO_4$ is required for the	preparation of 1.0 litre of 1	.0 M solution ?
	(1) 300 ml	(2) 320 ml	(3) 333.3 ml	(4) 350.0 ml
Ans.	(3)			
7.	What is the normality of 1			
	(1) 0.5 N	(2) 1.0 N	(3)2.0 N	(4) 3.0 N
Ans.	(4)			
8.	The molarity of 0.2 N Na_2 (1) 0.05 M	CO ₃ solution will be : (2) 0.2 M	(3) 0.1 M	(4) 0.4 M
Ans.	(3)			
9.	A molal solution is one th	at contains one mole of a s	olute in	
	(1) 1000 g of the solvent (2) and litra of the solvent		(2) one litre of the solution	
	(3) one litre of the solvent		(4) 22.4 litres of the soluti	on
Ans.	(1)			
10.	Molarity of 720 gm of pur (1) 40M	e water - (2) 4M	(3) 55.5M	(4) Can't be determined
Ans.	(3)	(-)	(-)	
	(-)			

Ans. 12.	The mole fraction of oxy (1) $\frac{8}{15}$ (2) Normality of 0.3 M phos (1) 0.15	(2)0.5	of nitrogen and 8g of oxyg (3)0.25	(4) 1.0		
Ans. 12.	(2) Normality of 0.3 M phos		(3)0.25	(4) 1.0		
12.	Normality of 0.3 M phos	nhorous opidis:				
		phorous agid is:				
	(1)0.15	photous actu is				
Ans		(2)0.6	(3)0.9	(4)0.1		
AII3 .	(2)					
13.	Which of the following s	tatement is true :-				
	(a) Molarity is the no. of moles of solute dissolved per litre of solvent.					
	(b) The molarity and no	ormality of a solution o	f sodium carbonate are san	ne.		
	(c) Molality (m) of a sol	lution is defined as the	number of moles of solute	e dissolved is 1000 gm of solution		
	(d) The ratio of mole fraction of solute and solvent is in the ratio of there respective moles.					
	(1) a & c	(2) a & d	(3) b & c	(4) Only d		
	(4)					
	The molarity of a solution of sodium chloride (mol wt. = 58.5) in water containing 5.85 gm of sodium chloride in 5 ml of solution is :-					
	(1)0.25	(2)2.0	(3) 1.0	(4)0.2		
Ans.	(4)					
15.	$25 \text{ ml} \frac{\text{N}}{10} \text{ NaOH solution}$	n will exactly neutraliz	e which of the following so	olution :-		
	(1) 25 ml $\frac{N}{10}$ KOH solut	ion	(2) 25 ml N H_2SO_4	solution		
	(3) 25 ml $\frac{N}{10}$ HCl solution	m	(4) 2.5 ml $\frac{N}{10}$ HN	O ₃ solution		
Ans.	(3)					
16.	The volume of water add	ed to 500 ml., 0.5 M N	aOH so that its strength be	ecomes 10 mg NaOH per ml.		
	(1)100 ml	(2) 200 ml	(3) 250 ml	(4) 500 ml		
Ans.	(4)					
17.		d KCl are dissolved se	parately in equal volumes	of solutions molarity of the two solutions		
	(1) Equal					
	(2) That of NaCl will be	e less than that of KCl				
	(3) That of NaCl will be	more than that of KCl	Solution			
		half of that of KCl sol				
	(3)					

18 .	How much water sh	nould be added to 200 cc of	seminormal solution of Na	OH to make it exactly decinormal :-				
	(1) 1000 cc	(2)400 cc	(3) 800 cc	(4) 600 cc				
Ans.	(3)	(_)	(1) *** **					
19.		W\V) H ₂ SO ₄ solution is nea	arly					
	(1)0.1	(2)0.2	(3)0.5	(4)2				
Ans.	(1) 0.1	(2) 0.2		(!)-				
20.		solution is mixed with 200	ml of 0.6 N H_2SO_4 solution	what is the normality of H_2SO_4 in the fina				
	(1)0.9	(2)0.6	(3)0.5	(4) 0.4				
Ans.	(4)							
21.	In a solution of 7.8 g	g benzene (C_6H_6) and 46.0g	toluene $(C_6H_5CH_3)$ the mo	le fraction of benzene is:-				
	$(1)\frac{1}{6}$	(2) $\frac{1}{5}$	$(3)\frac{1}{2}$	$(4)\frac{1}{3}$				
Ans.	(1)							
22.	An X molal solution	n of a compound in benzen	e has mole fraction of solu	te equal to 0.2. The value of X is:-				
	(1) 14	(2) 3.2	(3)1.4	(4) 2				
Ans.	(2)							
23.	A 500 g tooth paste : level:-	sample has 0.02 gm fluorid	e concentration. What is the	e concentration of fluorine in terms of ppi				
	(1) 250	(2) 40	(3) 400	(4) 1000				
Ans.	(2)							
24.				mately 5.0 gm H_2O_2 per 100 mL of th lution is approximately:-				
	(1)0.15 M	(2) 1.5 M	(3) 3.0 M	(4) 3.4 M				
Ans.	(2)							
25.	Mole fraction of eth mixture is :-	anol in ethanol water mixt	ture is 0.25. Hence percenta	age concentration of ethanol by weight of				
	(1)25%	(2) 75%	(3)46%	(4) 54%				
Ans.	(3)							
26.	Two bottles of A an	d B contains 1M and 1m a	queous solution (d =1 g/ m	s solution (d =1 g/mL) of sulphuric acid respectively-				
		(1) A is more concentrated than B		(2) B is more concentrated than A				
	(3) Concentration of	of A = conc. of B	(4) It is not possib	le to compare the concentration				
	s. (1)							
				Molar concentration of a solution in water is :				
	Molar concentratio			le l'école de la coloridad				
Ans. 27.		normality	(2) More than mol	lality of the solution nolality of the solution				

28 .	What volume of 0.1	N HNO, solution can be pr	repared from 6.3 g of HNO	,?		
	(1) 1 litre	(2) 2 litre	(3) 0.5 litre	(4) 5 litre		
Ans.	(1)					
29.	100 ml of 0.5 N NaO	H solution is added to 10 m	$1 \text{ of } 3 \text{ N H}_2 \text{SO}_4 \text{ solution and } 2$	20 ml of 1 N HCl solution. The mixture is		
	(1) Acidic	(2)Alkaline	(3) Neutral	(4) None of these		
Ans.	(3)					
30.	0.7 g of Na ₂ CO ₃ . xH	I_2O is dissolved in 100 ml	, 20 ml of which required	19.8 ml of 0.1 N HCl. The value of x is		
	(1)4	(2)3	(3)2	(4) 1		
Ans.	(3)					
31.	The normality of 10	ml of a '20 V' H_2O_2 solution	is			
	(1) 1.79	(2) 3.58	(3) 60.86	(4) 6.086		
Ans.	(2)					
32.	If 8.3 ml of a sample is	of H_2SO_4 (36 N) is diluted by	991.7 ml of water, the appro	oximate normality of the resulting solution		
	(1)0.4	(2)0.2	(3)0.1	(4)0.3		
Ans.	(4)					
33.	10 ml of an HCl sol ^a solution is :	ution gave 0.1435 gm of A	gCl when treated with exc	ess of $AgNO_3$. The normality of the HC		
	(1)0.1	(2)3	(3)0.3	(4)0.2		
Ans.	(1)					
34.	If 20ml, $2M H_2SO_4$ i	s diluted to 1 litre. Normali	ty of the resulting solution			
	(1)0.08	(2) 0.04	(3)40	(4)0.4		
Ans.	(1)					
SOLUE	BILITY (HENRY'S LA	W)				
35.	Henry law constant benzene at 298 K un		enzene at 298 K is 2×10^5 n	nm of Hg. Then solubility of CH_4 to		
	$(1) 1.2 \times 10^{-5}$	$(2) 3.8 \times 10^{-3}$	$(3)4 \times 10^{-4}$	(4) 1 × 10 ⁻³		
	(2)					
Ans.						
Ans. 36.	Which of the follow	ing gas will have most solu	bility in water?			
	Which of the follow (1) NH ₃	ing gas will have most solu (2) H ₂	$(3) O_2$	(4) He		

	OSINDIA			J.H. SIR	
VAPOU	IR PRESSURE (LIQUID-LI	QUID MIXTURE)			
37.	1 mole of heptane (V. P. = 92 m ideal solution is :	nm of Hg) was mixed with 4 mo	les of octane (V. P.=31mm of H	g). The vapour pressure of resulting	
	(1)46.2 mm of Hg	(2) 40.0 mm of Hg	(3) 43.2 mm of Hg	(4) 38.4 mm of Hg	
Ans.	(3)				
38.	At 88 °C benzene has a vapour pressure of 900 torr and toluene has a vapour pressure of 360 torr. What is the mole fraction of benzene in the mixture with toluene that will boil at 88 °C at 1 atm. pressure, benzene - toluene form an ideal solution :				
	(1) 0.416	(2) 0.588	(3) 0.688	(4) 0.740	
Ans.	(4)				
39.	If P_{A}^{0} and P_{B}^{0} are 108 and fraction in solution 0.5	1 36 torr respectively. What	will be the mole fraction o	f A is vapour phase if B has mole	
	(1)0.5	(2)0.75	(3)0.60	(4) 0.35	
Ans.	(2)				
40.	What is correct relation between mole fraction in vapour phase (Y_A) of A in terms of X_A . If mole fraction in solution of A is (X_A) (If P_A^{0} is vapour pressure of A in pure state)				
	(1) $(1 - X_A)P_A^0$	$(2) \frac{X_A}{1 - X_A} P_A^0$	$(3) \frac{1-X_A}{X_A} P_A^0$	$(4) \ \frac{P_A^0 X_A}{P_S}$	
Ans	(4)				
IDEAL	AND NON-IDEAL SOLUT	TONS			
41.	Among the following, that	at does not form an ideal sol	ution is :		
	(1) C_6H_6 and $C_6H_5CH_3$	(2) C_2H_5Cl and C_6H_5OH	(3) C_6H_5Cl and C_6H_5Br	(4) C_2H_5Br and C_2H_5I	
Ans.	(2)				
42.	Which condition is not sa	atisfied by an ideal solution			
	$(1)\Delta$ Hmixing=0	(2) $\Delta V \text{ mixing} = 0$	(3) Δ S mixing = 0	(4) Obeyance of Raoult's law	
Ans.	(3)				
COLLI	GATIVE PROPERTIES				
43.	The relative lowering of v given by :	rapour pressure is equal to the	ne mole fraction of the nonv	volatile solute, This statement was	
	(1) Raoult	(2) Henry	(3) Joule	(4) Dalton	
Ans.	(1)				
44.	If Raoult's law is obeyed,	the vapour pressure of the	solvent in a solution is dire	ctly proportional to :	
	(1) Mole fraction of the se	olvent	(2) Mole fraction of the so	olute	
	(3) Mole fraction of the s	olvent and solute	(4) The volume of the solu	ution	
Ans.	(1)				

ETOOSINDIA INDIA'S NO. 1 ONLINE COACHING

45. Which one of the following is the incorrect form of Raoult's law (1) $\frac{P_s}{P^0} = \frac{N}{n+N}$ (2) $\frac{P^0}{P^0 - P_s} = 1 + \frac{N}{n}$ (3) $\frac{P^0 - P_s}{P_s} = \frac{n}{n+N}$ (4) $\frac{P_s}{P^0 - P_s} = \frac{N}{n}$ Ans. (3) 46. The vapour pressure of a solution having solid as solute and liquid as solvent is : (1) Directly proportional to mole fraction of the solvent (2) Inversely proportional to mole fraction of the solvent (3) Directly proportional to mole fraction of the solute (4) Inversely proportional to mole fraction of the solute Ans. (1) **47**. One mole of non volatile solute is dissolved in two moles of water. The vapour pressure of the solution relative to that of water is $(1)\frac{2}{3}$ $(4)\frac{3}{2}$ $(2)\frac{1}{3}$ $(3)\frac{1}{2}$ (1) Ans. 48. The vapour pressure of a pure liquid 'A' is 70 torr at 27°C. It forms an ideal solution with another liquid B. The mole fraction of B is 0.2 and total vapour pressure of the solution is 84 torr at 27°C. The vapour pressure of pure liquid B at 27ºC is -(3)140(1)14(4)70(2)56Ans. (3) 49. The vapour pressure of water at room temperature is 23.8 mm of Hg. The vapour pressure of an aqueous solution of sucrose with mole fraction 0.1 is equal to : (1) 23.9 mm Hg (2) 24.2 mm Hg (3) 21.42 mm Hg (4) 31.44 mm Hg (3) Ans. 50. The vapour pressure of pure A is 10 torr and at the same temperature when 1 g of B is dissolved in 20 gm of A, its vapour pressure is reduced to 9.0 torr. If the molecular mass of A is 200 amu, then the molecular mass of B is : (1) 100 amu (2) 90 amu (3) 75 amu (4) 120 amu (2) Ans. 51. Which is not a colligative property? (1) Osmotic pressure (2) Lowering in vapour pressure (3) Depression in freezing point (4) Refractive index Ans. (4) 52. The lowering of vapour pressure of a solvent by addition of a non-volatile solute to it is directly proportional to : (2) The nature of the solute in the solution (1) The strength of the solution (3) The atmospheric pressure (4)All(1) Ans.

INDIA'S I	NO. 1 ONLINE COACHING			J.H. SIR
53.		nstant is the ratio of the elev		
	(1) Molarity		(2) Molality	
	(3) Mole fraction of sol	lute	(4) Mole fraction of sol	vent
Ans.	(2)			
54.	Molal depression constan in freezing point of :	t of water is 1.86 K Kg mol ⁻¹ . 0.	02 mol of urea dissolved in 10	00 g of water will produce a depression
	(1)0.186 °C	(2)0.372 °C	(3) 1.86 °C	(4) 3.72 °C
Ans.	(2)			
55.	A solution of 1.25 g of a wt. of the solute is :	non-electrolyte in 20 g of wat	er freezes at 271.94 K. If K_{f} =	= 1.86K molality ⁻¹ then the molecular
	(1) 207.8 g/mol	(2) 179.79 g/mol.	(3) 209.6 g/mol.	(4) 109.6 g/mol.
Ans. 56.	(4) Elevation in boiling poi of x is : $(K = 5.2 \text{ K mol}^{-1})$	-	a compound x was dissolved	l in 100 g of water. Molecular weight
	(1) 120	(2)60	(3) 100	(4) 342
Ans. 57.	(2) Pure benzene freezes at 3.55 °C. The K _f for ben	-	ut a 0.374 m solution of tetr	achloroethane in benzene freezes at
Ans.	(1) 5.08 K Kg mol ⁻¹ (1)	(2) 508 K Kg mol ⁻¹	(3) 0.508 K Kg mol ⁻¹	(4) 50.8 °C Kg mol ⁻¹
58.	An aqueous solution co same volume will boil a		00.25 °C. The aqueous solu	ation containing 3g of glucose in the
	(1) 100.75 °C	(2)100.5 °C	(3)100 °C	(4) 100.25 °C
Ans.	(4)			
59.	An aqueous solution fit $0.186 ^{\circ}\text{C} (\text{K}_{\text{f}} = 1.86^{\circ}; \text{K}_{\text{f}})$	reezes at $-$ $K_b = 0.512^\circ$). What is the elev	ation in boiling point ?	
			0.512	
	(1) 0.186	(2) 0.512	$(3) \ \frac{0.512}{1.86}$	(4) 0.0512
Ans.	(4)			
60.	If a thin slice of sugar l	beet is placed in concentrate	d solution of NaCl then	
	(1) Sugar beet will lose		(2) Sugar beet will abso	
	(3) Sugar beet will neit	her absorb nor lose water	(4) Sugar beet will dissolve in solution	
Ans.	(1)			
61.	At constant temperature	re the osmotic pressure of a	solution is :	
	(1) Directly proportion	al to the concentration		
	(2) Inversely proportio	nal to the concentration		
	(3) Directly proportion	al to the square of concentration	ation	
	(4) Directly proportion	al to the square root of cond	centration	
Ans.	(1)			
	(-)			

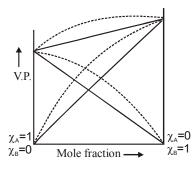
ETC INDIA'S N	NO. 1 ONLINE COACHING			J.H. SIR		
62 .	Which inorganic pre	ecipitate acts as semipermeab	le membrane ?			
	(1) Calcium sulphate	e (2) Barium oxalate	(3) Nickel phosphate	(4) Copper ferrocyanide		
Ans.	(4)					
63.		glucose and 0.1 M urea solution be correct to say that :	on are placed on two sides of a	semipermeable membrane to equal		
	(1) There will be not net movement across the membrane					
	(2) Glucose will flow	v towards urea solution				
	(3) Urea will flow to	wards glucose solution				
	(4) Water will flow f	rom urea solution towards gl	ucose solution.			
Ans.	(1)					
64.	If mole fraction of the	ne solvent in solution decreas	ses then :			
	(1) Vapour pressure	(1) Vapour pressure of solution increases				
	(3) Osmotic pressure	e increases	(4) All are correct			
Ans.	(3)					
65.	The osmotic pressu	The osmotic pressure of a solution increases if :				
	(1) Temperature is lo	owered	(2) Volume is increased			
	(3) Number of solute molecules is increased (4) None					
Ans.	. (3)					
66.	Osmotic pressure of at 15°C is :	a solution (density is 1g/ml)	containg 3 g of glucose (mole	cular weight = 180) in 60 g of water		
	(1) 0.34 atm	(2) 0.65 atm	(3) 6.25 atm	(4) 5.57 atm		
Ans.	(3)					
67.	Osmotic pressure of	a sugar solution at 24°C is 2.5	atmosphere. The concentration	on of the solution in mole per litre is:		
	(1) 10.25	(2) 1.025	(3) 1025	(4) 0.1025		
Ans.	(4)					
68.	A solution containir	ng 4 g of a non volatile organ y at 27°C. The molecular weig		d to have an osmotic pressure equal		
	(1) 14.97	(2) 149.7	(3) 1697	(4) 1.497		
Ans.	(2)					
69 .		ol.) solution of cane-sugar on the molecular weight of t		with 1.52% (wt./vol.) solution of		
	(1) 152	(2) 76	(3) 60	(4) 180		
Ans.	(2)					
70.			isotonic with a solution contai	ning 3.42 g of sucrose per litre. The		
Ans.	(1)5 (4)	(2) 146	(3) 34200	(4) 50000		

71.	-	of blood is 7.65 atm. at 310 I	K. an aqueous solution of G	lucose that will be isotonic with blood		
	iswt/Vol :	(2) 54 10/		(4) 4 520/		
Ans.	(1)5.41% (1)	(2) 54.1%	(3) 3.5%	(4)4.53%		
72.	Which of the following	g solutions at the same temp	perature will be isotonic :			
	(1) 3.42 g of cane suga	r in one litre water and 0.18	g of glucose in one litre wa	iter.		
	., .	r in one litre water and 0.18				
		r in one litre water and 0.585 r in one litre water and 1.17	-			
		infone fifte water and 1.17	g of Naci in one nuc water			
Ans. 73	(2) The bailing point of a	n aqueous solution of a no	n volatila soluta is 100.15	°C. What is the freezing point of ar		
13.		ned by diluting the above so		The values of K_b and K		
	(1)-0.544 °C	(2)-0.512 °C	(3)-0.272 °C	(4)–1.86 °C		
Ans.	(3)					
74.	In the depression of fre	ezing point experiment, it i	s found that :-			
	(1) The vapour pressure of solution is more than of pure H_2O .					
	(2) The vapour pressure of solution is more than of pure solute.					
	(3) Only solute molecules solidify at freezing point.					
	(4) Only solvent mole	ecules solidify at freezing po	bint.			
Ans.	(4)					
ABNO	RMALCOLLIGATIVE	PROPERTIES				
75.		semipermeable. Find osmot		M (approximate) and the membrane cell were removed from blood plasma		
	(1) 7.34 atm	(2) 1.78 atm	(3) 2.34 atm	(4) 0.74 atm		
Ans.	(1)					
76.	Phenol associates in b	enzene as				
	$C_6H_5OH \rightleftharpoons \frac{1}{2}(C_6H_5OH)_2$					
	If degree of association	n of phenol is 40%, Van't H	off factor i is			
	(1)1	(2)0.8	(3) 1.4	(4)0.6		
Ans.	(2)					
7.	If α is the degree of dis	sociation of $K_4[Fe(CN)_6]$, the	nen abnormal mass of com	plex in the solution will be :-		
	(1) $M_{normal} (1+2\alpha)^{-1}$	(2) $M_{normal} (1+3\alpha)^{-1}$	(3) $M_{normal} (1+\alpha)^{-1}$	(4) M_{normal} (1+4 α) ⁻¹		
Ans.	(4)					

78.	-	of A and B show depression i	in freezing point in the rat	tio of 2 : 1. A remains in normal state in	
	(1) Normal	(2) Associated	(3) Hydrolysed	(4) Dissociated	
Ans.	(2)				
79.	Van't Hoff factor is :				
	(1) Less than one in	case of dissociation	(2) More than one in	n case of association	
	(3) Always less than	one	(4) Less than one in	case of association	
Ans.	(4)				
80.		(i) for a dilute solution of K_3	$[Fe(CN)_6]$ is :		
	(1)10	(2)4	(3)5	(4) 0.25	
Ans.	(2)				
81.	The experimental molecular weight of an electrolyte will always be less than its calculated value because the value of vant Hoff factor, 'i' is :				
	(1) Less than 1	(2) Greater than 1	(3) One	(4) Zero	
Ans.	(2)				
82.	The vant Hoff factor	(i) for a dilute aqueous solut	tion of Glucose is :		
	(1) Zero	(2) 1.0	(3) 1.5	(4)2.0	
Ans.	(2)				
83. The substance A when dissolved in solvent B shows the molecular mass corresp factor will be -				corresponding to A_3 . The vant Hoff	
	(1)1	(2)2	(3)3	(4) $\frac{1}{3}$	
Ans.	(4)				
84.	The ratio of the value time :	of any colligative property fo	or KCl solution to that for s	sugar solution is nearly	
	(1)1	(2) 0.5	(3)2	(4)2.5	
Ans.	(3)				
85.	The lowering of vapo	ur pressure of 0.1M aqueou	s solutions of NaCl. CuSC) and K.SO are:	
	(1) All equal		(2) In the ratio of $1:1:1.5$		
	(2) In the ratio of $3:2$:1	(4) In the ratio of 1.5 : 1 : 2.5		
Ane					
Ans.	(2)			· · · · · · · · ·	
86.	The freezing point $(K_f = 1.86 \text{ K Molality})$		-	be 100% dissociated in water is	
	(1)–1.86 °C	(2)-3.72 °C	(3)+1.86 °C	(4)+3.72°C	
Ans.	(2)				
87.	The molal elevation of (1) 100.05 °C	constant of water is 0.51. The (2) 100.1 °C	e boiling point of 0.1 mola (3) 100.2° C	ll aqueous NaCl solution is nearly : (4) 101.0° C	
	(2)				

INDIA'S	NO. 1 ONLINE COACHING		ry 1 1', 1 mmt 1 '4' '	J.H. SIR	
88.		n constant of water = 0.52 e dissociation of KCl), shou		of 1.0 molal aqueous KCl solution	
	(1) 100.52°C	(2) 101.04°C	(3) 99.48°C	(4) 98.96°C	
Ans.	(2)				
89.	2	2	non-electrolyte. If 0.1 M soluti same temperature will produce	on of solute B produces an osmotic an osmotic pressure equal to :	
	(1) P	(2) 1.5 P	(3) 2 P	(4) 3 P	
Ans.	(4)				
90.	The values of observed and calculated molecular weight of calcium nitrate are respectively 65.6 and 164. The of dissociation of calcium nitrate will be :				
Ans.	(1)25% (3)	(3) 50	(3) 75%	(4) 60%	
91.	A 0.004M solution of Na_2SO_4 is isotonic with a 0.010M solution of glucose at the 25°C temperature. The appared gree of dissociation of Na_2SO_4 is				
Ans.	(1)25% (3)	(2) 50%	(3) 75%	(4) 85%	
92. A 5.8% (wt./vol.) NaCl solution will exert an osmotic pressure closest to which one of the				n one of the following :	
	(1) 5.8% (wt./vol) sucrose solution (2) 5.8% (wt./vol) glucose solution				
Ans.	(3) 2 M sucrose solution (3)		(4) 1 M glucose solutio	(4) 1 M glucose solution	
93.	Which salt shows m	naximum osmotic pressure i	n its 1M solution :		
	(1) AgNO ₃	$(2) \operatorname{Na}_2 \operatorname{SO}_4$	$(3)(NH_4)_3PO_4$	(4) MgCl ₂	
Ans.	(3)				
94.	Which solution will	l exert highest osmotic pres	sure?		
	(1) 1M glucose solu	ition (2) 1M urea solution	n (3) 1M Alum solution	(4) 1M NaCl solution	
Ans.	(3)				
95.	(1) The osmotic pre	essure of Na_2SO_4 is less than ssure Na_2SO_4 is more than N osmotic pressure		and 0.1M Na ₂ SO ₄ solution ?	
Ans.	(2)				
96.	The osmotic pressu	re of equimolar solutions of	BaCl ₂ , NaCl, and glucose will	be in the order :	
	(1) Glucose > NaCl		(2) $BaCl_2 > NaCl > Gluc$		
	$(3) \operatorname{NaCl} > \operatorname{BaCl}_2 > 0$	Glucose	(4) NaCl>Glucose>Ba	Cl ₂	
Ans.	(2)				

	OSINDIA			J.H. SIR
97.	The correct relationship same molar concentration		s of very dilute solutions c	of AlCl ₃ (T_1) and CaCl ₂ (T_2), having the
Ans.	(1) $T_1 = T_2$ (2)	(2) $T_1 > T_2$	(3) $T_2 = T_1$	(4) $T_2 \ge T_1$
98.	Which of the following 0	.1 M aqueous solutions w	ill have the lowest freezir	ng point :
Ans.	(1) Potassium Sulphate(1)	(2) Sodium Chloride	(3) Urea	(4) Glucose
99 .	Which aqueous solution	has minimum freezing po	nt	
Ans.	(1) 0.01 M NaCl (1)	(2) 0.005 M C_2H_5OH	(3) 0.005 M MgI ₂	(4) 0.005 M MgSO ₄
100.	Which solution will have (1) 0.1 M BaCl,	e least vapour pressure : (2) 0.1 M urea	(3) 0.1 M Na, SO ₄	$(4) 0.1 \text{ M Na}_{3} \text{PO}_{4}$
Ans.	(4)		2 4	
101.		zing point ·		
101.	Which has maximum freezing point : (1) 1 molar of NaCl solution (3) 1 molar of CaCl ₂ solution		(2) 1 molar of KCl solution(4) 1 molar of urea solution	
Ans.	(4)			
102.	The freezing point of 1% aqueous solution of calcium nitrate will be : (1) 0° C (2) Above 0° C (3) 1° C (4) Below 0° C			
Ans.	(4)			
103.		olution in the correct orde	r of decreasing freezing r	point is -
1001	(1) 0.2M BaCl,, 0.2M KCl		(2) 0.2M KCl, 0.1M N	
Ans	(3) $0.1 \text{M} \text{Na}_2 \text{SO}_4, 0.2 \text{M} \text{K} \text{O}_4$	Cl, 0.2M BaCl ₂	$(3) 0.1 \text{M} \text{Na}_2 \text{SO}_4, 0.2 \text{M}$	1 BaCl ₂ , 0.2M KCl
Ans.	(3)			
104.	Which of the following s (1) 1% Glucose in water	olutions will have highest	boiling point ? (2) 1% Sucrose in wat	-a v
	(1) 1% Olucose in water (3) 1% NaCl in water		(4) 1% Urea in water	
Ans.	(3)			
105.	The freezing point of equ	imolal aqueous solution v	vill be highest for :	
Ans	(1) $C_6H_5NH_3Cl$ (4)	$(2) \operatorname{Ca(NO_3)}_2$	$(3) \operatorname{La}(\operatorname{NO}_3)_3$	$(4) C_6 H_{12} O_6 (Glucose)$
Ans. 106.		s added to the aqueous so	lution of Potassium Iodid	e ?
1000	(1) The boiling point doe	1	(2) Freezing point is r	
	(3) The freezing point is l	owered	(4) Freezing point does not change	
Ans.	(2)			
107.	The molecular weight of to:	penzoic acid in benzene as	determined by depression	in freezing point method corresponds
	(1) Ionisation of benzoic	acid	(2) Dimerization of be	nzoic acid
	(3) Trimerization of benze		(4) Solvation of benze	
Ans.	(2)			


		Analytic	al Exercise		
1.		tions is heated in a beaker. I in lost, calculate the norma		e volume of the solution was reduce	
	(1)1.70	(2) 0.685	(3) 0.018	(4) 0.009	
Ans.	(2)				
2.	The molality of a solution	obtained by mixing 750 m	L of 0.5(M)HCl with 250 mI	L of 2(M)HCl will be :-	
	(1) 0.875 M	(2) 1.00 M	(3) 1.75 M	(4) 0.975 M	
Ans.	(1)				
3.	A 0.2 molal aqueous solut (given $K_b = 0.52$ °C kg mo		s 20% ionised. The elevation	n in boiling point of this solution is	
	(1)0.81	(2) 0.125	(3) 0.48	(4) 1.3	
Ans.	(2)				
4.	Consider separate solution of 0.500 M $C_2H_5OH(aq)$. 0.100 M $Mg_3(PO_4)_2(aq)$, 0.250 M KBr(aq) and 0.125 M $Na_3PO_4(aq)$ at 25°C. Which statement is true about these solutions, assuming all salts to be strong electrolytes ?				
	(1) $0.125 \text{ M Na}_{3}\text{PO}_{4}(aq)$) has the highest osmotic p	ressure.		
	(2) $0.500 \text{ M C}_2\text{H}_5\text{OH}$ (aq) has the highest osmotic pressure.				
	(3) They all have the same osmotic pressure.				
	(4) $0.100 \text{ M Mg}_3(\text{PO}_4)_2$ (aq) has the highest osmotic pressure.				
Ans.	(3)				
5.	Which of the following solutions has the highest normality :-				
	(1) 8 grams of KOH per litre (2) 1N phosphoric acid				
	(3) 6 gms of NaOH per 10	0 ml	$(4) 0.5 \mathrm{MH_2SO_4}$		
Ans.	(3)				
6.	Hydrochloric acid solution and B required to make 2		tion of 0.5 N and 0.1 N respo	ectively. The volume of solutions A	
	(1) 0.5 lit. of A+1.5 lit. of	Ъ	(2) 1.5 lit. of A+0.5 lit. of	fB	
	(3) 1.0 lit. of A+1.0 lit. of	B	(4) 0.75 lit. of A+1.25 lit.	ofB	
Ans.	(1)				
7.	An aqueous solution of g	lucose is 10% in strength.	The volume in which 2gm r	nole of it is dissolved will be:-	
	(1) 18 litre	(2) 3.6 litre	(3) 0.9 litre	(4) 1.8 litre	
Ans.	(2)				
8.	The relationship between	the values of osmotic pres	sure of solutions obtained by	dissolving 6.00 gL ⁻¹ of CH ₃ COOH	
	(π_1) and 7.45 gL ⁻¹ of KC	$1(\pi_2)$ is :-			
	(1) $\pi_1 > \pi_2$	(2) $\pi_1 < \pi_2$	(3) $\pi_1 = \pi_2$	(4) None of these	
Ans.	(2)				
9.	A mixture of liquid show	ing positive deviation in Ra	aoult's law is :-		
	$(1) (CH_3)_2 CO + C_2 H_5 OH$		$(3) (C_2 H_5)_2 O + CHCl_3$	$(4)(CH_3)_2CO + C_6H_5NH_2$	
Ans.	(1)				

	NO. 1 ONLINE COACHING			J.H. SIR		
10.		For 0.1 M Ba(NO_3) ₂ solution		sociation is :-		
	(1)91.3%	(2) 87%	(3) 100%	(4) 74%		
Ans.	(2)					
11.	Osmosis of A into solution B will not take place if :-					
	(1) A is hypertonic	(2) A is hypotonic	(3) A is isotonic	(4) Either 1 or 3 may correct		
Ans.	(4)					
12.		Among 0.1M solutions of urea, Na ₃ PO ₄ and $Al_2(SO_4)_3$:-				
	(b) The vapour pressure and freezing point are the highest for urea					
		poiling point is the highest f				
		freezing point is the highe	2 . 5			
	(1) Only a	(2) b & c both	(3) b, c and d	(4) a, b, c and d		
Ans.	(3)					
13.	Glucose is added to 1	litre water to such an extent	that $\frac{\Delta T_{\rm f}}{K_{\rm f}}$ becomes equal	to $\frac{1}{1000}$, the wt. of glucose added is:-		
	(1) 180 g	(2) 18 g	(3) 1.8 g	(4) 0.18 g		
Ans.	(4)					
14.				nter at a particular temperature is 2985 ne molecular weight of the solute is :-		
	(1) 180	(2)90	(3) 270	(4) 200		
Ans.	(1)					
15.	How many grams of a non volatile solute having a molecular weight of 90 are to be dissolved in 97.5 g water in orde to decrease the vapour pressure of water by 2.5 percent :-					
	(1)25	(2) 18	(3) 12.5	(4)9		
Ans.	(3)					
16.	Colligative properties depend on the :-					
	(1) Relative no. of solute molecules in soln. and the nature of the solvent					
	(2) Relative no. of solute molecules in solvent and the nature of solute					
	(3) Relative no. of solute molecules and the nature of solute and solvent					
	(4) Relative no. of solute molecules, irrespective of the nature of solvent and solute					
Ans.	(1)					
Ans. 17.	The vapour pressure	of two pure liquids (A) and hixing 2 mol of (A) and 3 m		respectively. The total pressure of the		
	The vapour pressure			respectively. The total pressure of the (4) 180 torr		
	The vapour pressure of solution obtained by n	nixing 2 mol of (A) and 3 m	ol of (B) would be			
17.	The vapour pressure of solution obtained by n (1) 20 torr (3) When equimolar aqu	nixing 2 mol of (A) and 3 m (2) 36 torr	ol of (B) would be (3) 88 torr sodium chloride and bari	(4) 180 torr		
17. Ans.	The vapour pressure of solution obtained by n (1) 20 torr (3) When equimolar aqu	nixing 2 mol of (A) and 3 m (2) 36 torr eous solutions of glucose, ns will be in the following o	ol of (B) would be (3) 88 torr sodium chloride and bari	um nitrate are compared the vapour		
17. Ans.	The vapour pressure of solution obtained by m (1) 20 torr (3) When equimolar aqu pressure of the solution	hixing 2 mol of (A) and 3 m (2) 36 torr eous solutions of glucose, ns will be in the following of $Ba(NO_3)_2$	ol of (B) would be (3) 88 torr sodium chloride and bari	(4) 180 torr turn nitrate are compared the vapour $Ba(NO_3)_2$		

	DOSINDIA			J.H. SIR		
19 .	What is the freezing point of a solution containing 8.1 gm. of HBr is 100gm. water assuming the acid to be 90% ionised (K_f for water = 1.86 K molality ⁻¹):-					
	(1)0.85°C	(2)-3.53°C	(3)0°C	(4)-0.35°C		
Ans.	(2)					
20.	The concentration o (1)22.4	f a solution of H ₂ O ₂ is 6.8% (2) 11.2	then the volume concentr (3)20	ration of the solution is:- (4) 5		
Ans.	(1)					
21.	For a solution of two	liquids A and B, it was prov	ed that $P = X_A (P_A^0 - P_B^0)$	$+ P_B^{0}$. The solution is:-		
	(1) Ideal	(2) Non ideal	(3) Semiideal	(4) None of the above		
Ans.	(1)					
22.	The molar mass of N	aCl determined by the osmo	tic pressure method will b	be :-		
	(1) Higher than the theoretical value		(2) Lower than the	theoretical value		
Ans.	(3) The same as the (2)	theoretical value	(4) None of these			
23.	The vapour pressure of pure benzene and toluene are 160 and 60 torr respectively. The mole fraction of toluene in vapour phase in contact with equimolar solution of benzene and toluene is:					
	(1)0.50	(2)0.6	(3)0.27	(4) 0.73		
Ans.	(3)					
24.	The vapour pressure of ethanol and methanol are 42.0 mm and 88.5 mm Hg respectively. An ideal solution is formed at the same temperature by mixing 46.0 g of ethanol with 16.0 g of methanol. The mole fraction of methanol in the vapour is :					
	(1) 0.467	(2) 0.502	(3) 0.513	(4) 0.556		
Ans.	(3)					
25.	Azeotropic mixture are :					
	(1) Mixture of two solids		(2) Those which boil at different temperatures			
	(3) Those which can be fractionally distilled (4) Constant boiling mixtures					
Ans.	(4)					
26.	The azeotropic mixture of water (B.P 100°C) and HCl (B.P. 85°C) boils at 108.5°C. When this mixture is distilled, it is possible to obtain :					
	(1) Pure HCl		(2) Pure water			
	(3) Pure water as well	l as HCl	(4) Neither HCl nor	H_2O in their pure states		
Ans.	(4)					
27.	Insulin $(C_2H_{10}O_5)_n$	Insulin $(C_2H_{10}O_5)_n$ is dissolved in a suitable solvent and the osmotic pressure (π) of solutions of various				
	concentrations (g/cm ³) C is measured at 20 °C. The slope of a plot of π against C is found to be 4.65 × 10 ⁻³ . The molecular weight of the insulin is					
	$(1)4.8 \times 10^{5}$	$(2)9 \times 10^{5}$	$(3) 3 \times 10^{5}$	$(4) 5.16 \times 10^{6}$		
Ans.	(4)					

28. Ans. 29.	Density of a 2.05 M so (1) 1.14 mol kg ⁻¹	olution of acetic acid in wate	er is 1.02 g/mI The molali	treaf the colution is :		
	(1) 1 14 mol ka=1	Density of a 2.05 M solution of acetic acid in water is 1.02 g/mL. The molality of the solution is :				
	(1) 1.14 mor kg ·	(2) 3.28 mol kg ⁻¹	(3) 2.28 mol kg ⁻¹	$(4) 0.44 \text{ mol kg}^{-1}$		
29.	(3) 18g of glucose (C ₆ H ₁₂ 100°C is :	$_{2}O_{6}$) is added to 178.2g of	water. The vapour pressure	e of water for this aqueous solution a		
	(1) 759.00 torr	(2) 7.60 torr	(3) 76.00 torr	(4) 752.40 torr		
Ans. 30.	(4) A 5.25% solution of a substance is isotonic with a 1.5% solution of urea (molar mass=60g mol ⁻¹) in the same solvent. If the densities of both the solutions are assumed to be equal to 1.0 gcm ⁻³ , molar mass of the substance will be.					
	(1) 115.0 g mol ⁻¹	(2) 105.0 g mol ⁻¹	(3) 210.0 g mol ⁻¹	(4) 90.0 g mol ⁻¹		
Ans. 31.	mol ⁻¹) by mass will b	be		s 29% H_2SO_4 (Molar mass = 98		
	(1) 1.88	(2) 1.22	(3) 1.45	(4) 1.64		
Ans. 32.	(2) A mixture of ethyl alcohol and propyl alcohol has a vapour pressure of 290 mm at 300 K. The vapour pressure of propyl alcohol is 200 mm. If the mole fraction of ethyl alcohol is 0.6, its vapour presure (in mm) at the same temperature will be					
	(1)300	(2)700	(3) 360	(4) 350		
Ans. 33.	(4) The degree of dissociation (α) of a weak electrolyte, $A_x B_y$ is related to van't Hoff factor (i) by the expression :-					
	(1) $\alpha = \frac{x+y-1}{i-1}$	$(2) \ \alpha = \frac{x+y+1}{i-1}$	$(3) \alpha = \frac{i-1}{(x+y-1)}$	$(4) \alpha = \frac{i-1}{x+y+1}$		
Ans. 34.			-	ne glycol which should be added to K kgmol ⁻¹ , and molar mass of ethylen (4) 204.30 g		
Ans.	(1) 100100 g	(_) = = = = = = = = = = = = = = = = = = =	(0) 00	() = 0 0 g		
35.		a solution in which 0.0100g (2) 5.55×10^{-4} m	of urea, [(NH ₂) ₂ CO] is add (3) 33.3 m	led to 0.3000 dm ³ of water at STP is : (4) 3.33×10^{-2} m		
Ans. 36.	•	ns prepared by taking equal tial pressure of the nitroge (2) 0.8 atm	-	otal pressure of the mixture was foun (4) 1 atm		
Ans. 37.	(1) K_f for water is 1.86 K kg mol ⁻¹ . If your automobile radiator holds 1.0 kg of water, how many grams of ethylene glyco $(C_2H_6O_2)$ must you add to get the freezing point of the solution lowered to -2.8°C?					
	(1)27 g	(2) 72 g	(3) 93 g	(4) 39 g		

20	100 ml of 1 MN-C					
38.	100 ml of 1 M NaOH is mixed with 50 ml of 1 N KOH solution. Normality of mixture is $(1) 1 N$ $(2) 0.5 N$ $(3) 0.25 N$ $(4) 2 N$					
Ans.	(1) I N (1)	(2)0.3 N	(5)0.25 N	(4)21		
39.		rked as A and B are separa	ted through seminermeable	membrane as below. The phenomenor		
• • •	Two solutions marked as A and B are separated through semipermeable membrane as below. The phenomenor undergoing					
		0.01 M Na	aCl 0.01 M NaCl			
		solution				
		A	В			
			SPM			
		om solution A to solution B Cl ⁻ moves from solution (A) to colution (\mathbf{P})			
		Cl ⁻ moves from solution (A				
		cules moves from solution (
Ans.	(4)					
40.	Correct observation	on				
	I					
	===:=:					
	0.1 M Urea 0.1 M NaCl 0.01 M CaCl ₂					
	(1) Vapour pressure of solution I is lowest					
	(2) Relative lowering of vapour pressure is maximum in III					
	(3) Freezing point is maximum for III					
		s minimum for II				
Ans.	(2)					
41.	An aqueous solution of sugar is taken in a beaker. A freezing point of solution					
	(1) Crystals of sugar separated					
	(2) Crystals of glucose and fructose are separated(2) Crystals of five expected					
	(3) Crystals of ice separated					
	(4) Mixture of ice and some sugar crystals separated					
Ans.	(3)					
42.			-	. Mole fraction of NaOH in the mixture		
	(1) 0.036	(2) 0.62	(3)0.5	(4) 0.4		
Ans.	(1)					
43.		Which of the following concentration terms is temperature independent?				
	I. Molarity	II. Molality	III. Normality	IV. Mole fraction		
	(1) I & II	(2) I & III	(3) II only	(4) II & IV		
	(4)					

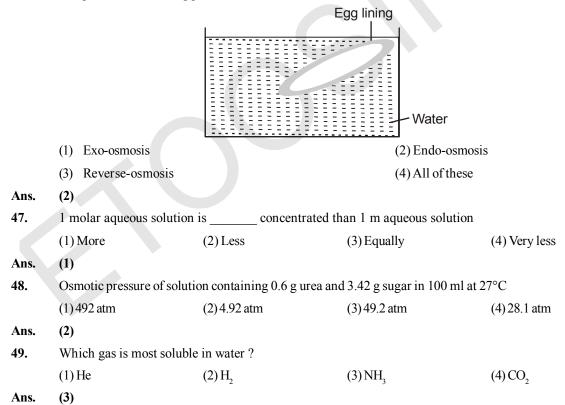
Correct observation for this solution

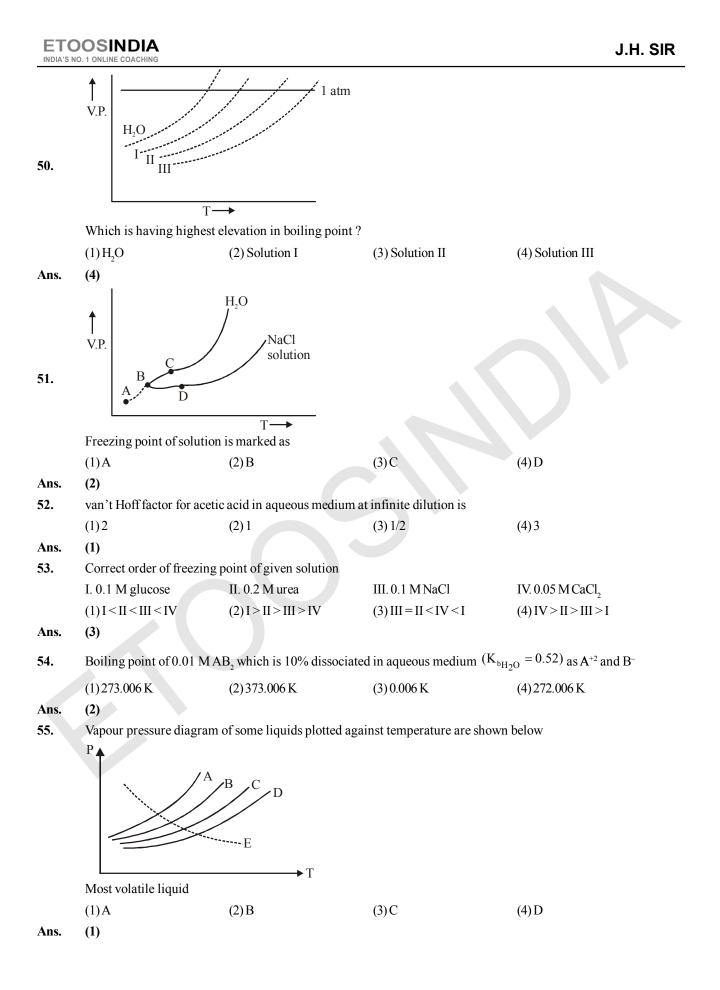
(1) ΔH_{mix} : +ve (2) ΔS_{mix} : +ve (3) ΔV_{mix} : +ve (4) All of these

Ans. (4)

ETOOSINDIA

INDIA'S NO. 1 ONLINE COACHING


45. A mixture of two liquids A and B having boiling point of A is 70°C, and boiling point of B is 100°C, distills at 101.2° as single liquid, hence this mixture is


- (1) Ideal solution
- (3) Non ideal solution showing –ve deviation

Ans. (3)

46. The phenomenon taking place

- (2) Non ideal solution showing +ve deviation
- (4) Immiscible solution

	IO. 1 ONLINE COACHING			J.H. SIR	
56.	At higher altitude, the boiling point of water is lowered because				
	(1) Atmosphere	pressure is low	(2) Temperature is	low	
	(3) Atmospheric	pressure increase	(4) Water solidifies	s to ice	
Ans.	(1)				
57.	During evaporation of liquid				
	(1) The temperature of liquid rises		(2) The temperatur	e of liquid falls	
	(3) The temperat	ture of liquid remains uneffected	(4) The liquid mole	ecules becomes inert	
Ans.	(2)				
58.	What is the concentration of NO_3^- ions when equal volumes of 0.1 M AgNO ₃ and 0.1 M NaCl are mixed together				
	(1)0.1 N	(2) 0.25 M	(3) 0.05 M	(4) 0.2 M	
Ans.	(3)				
	If any solute 'A' di	imerises in water at 1 atm pressure of water and k _b for water is 0.52°C	• •	of this solution is 100.52°C. If 2 moles of percentage association of A	
	If any solute 'A' di	-	• •		
59.	If any solute 'A' di A is added to 1 kg	of water and k_b for water is 0.52°C	C/molal, calculate the	percentage association of A	
59. Ans.	If any solute 'A' di A is added to 1 kg (1) 50% (4) Substance A tetran	of water and k_b for water is 0.52°C (2) 30%	C/molal, calculate the (3)25%	percentage association of A	
59. Ans.	If any solute 'A' di A is added to 1 kg (1) 50% (4) Substance A tetran	of water and k _b for water is 0.52°C (2) 30% merises in water to the extent of 80°	C/molal, calculate the (3)25%	percentage association of A (4) 100%	
59. Ans. 50.	If any solute 'A' di A is added to 1 kg (1) 50% (4) Substance A tetran point by 0.3°C. Th	of water and k_b for water is 0.52°C (2) 30% merises in water to the extent of 80% ne molar mass of A is	C/molal, calculate the (3) 25% %. A solution of 2.5 g	percentage association of A (4) 100% of A in 100 g of water lowers the freezing	
59. Ans. 50. Ans.	If any solute 'A' di A is added to 1 kg (1) 50% (4) Substance A tetran point by 0.3° C. Th (1) 122 (4) K_{4} [Fe(CN) ₆] is su	of water and k _b for water is 0.52°C (2) 30% merises in water to the extent of 80° ne molar mass of A is (2) 31 pposed to be 40% dissociated who	C/molal, calculate the (3) 25% %. A solution of 2.5 g (3) 244 en 1M solution prepa	percentage association of A (4) 100% of A in 100 g of water lowers the freezing	
Ans. 59. Ans. 60. Ans. 61.	If any solute 'A' di A is added to 1 kg (1) 50% (4) Substance A tetran point by 0.3° C. Th (1) 122 (4) K_{4} [Fe(CN) ₆] is su	of water and k _b for water is 0.52°C (2) 30% merises in water to the extent of 80° ne molar mass of A is (2) 31 pposed to be 40% dissociated who	C/molal, calculate the (3) 25% %. A solution of 2.5 g (3) 244 en 1M solution prepa	percentage association of A (4) 100% of A in 100 g of water lowers the freezing (4) 62 red. Its boiling point is equal to anothe	

ASSERTION & REASON QUESTIONS

These questions consist of two statements each, printed as Assertion and Reason. While answering these Questions you are required to choose any one of the following four responses.

- A. If both Assertion & Reason are True & the Reason is a correct explanation of the Assertion.
- B. If both Assertion & Reason are True but Reason is not a correct explanation of the Assertion.
- C. If *Assertion* is True but the *Reason* is False.
- D. If both Assertion & Reason are False.

1.	Assertion :- The molality of the solution doesn't change with change in temperature.	
	Reason :- The molality is expressed in units of moles per 1000 ml. solution.	
Ans.	(C)	

- 2. Assertion :- Isotonic solution don't show net phenomenon of osmosis. **Reason** :- Isotonic solution have equal osmotic pressure at constant temp. Ans. **(A)** 3. Assertion :- When Benzoic acid is dissolved in benzene its Vant Hoff factor is less than one. **Reason** :- In benzene, benzoic acid has tendency to form dimer. Ans. (A) 4. Assertion :- The sum of the mole fraction of all the components are unity. **Reason** :- Mole fraction is a temperature dependent mode of concentration. Ans. **(C)**
- 5. Assertion :- In positive deviation of non-ideal solution attraction between solute solvent is less than the attraction between solute-solute & solvent-solvent.

Reason:- In negative deviation of non-ideal solution attraction between solute-solvent is more than the attraction between solute-solute & solvent-solvent.

(B) Ans.

6. Assertion :- A solution which contains one gram equivalent of solute per litre of the solution is called normal solution.

Reason :- A normal solution mean a solutions in which the solute doesn't associate or dissociate.

Ans. (C)

7. Assertion :- Non-ideal solutions form azeotropic mixture.

Reason :- Boiling point of azeotropic mixture is only higher than boiling points of both the components.

Ans. **(C)**

8. Assertion :- Van't Hoff factor for benzoic acid in benzene is one.

Reason :- Benzoic acid behaves as a weaker electrolyte in benzene.

- **(D)** Ans.
- 9. Assertion :- Ideal solutions are one which obeys raoult's law at all temp. & concentration. **Reason** :- Very dilute solution can be treated as ideal solution.
- **(B)** Ans.
- 10. Assertion :- Van't Hoff factor is always more or equal to one.

Reason :- Van't Hoff factor is the ratio of experimental C.P. to observed C.P.

Ans. **(D)**

11.	Assertion :- Azeotropic mixture can't be separated by fractional distillation.
	<i>Reason :</i> – Azeotropic mixtures are constant boiling mixtures.
Ans.	(A)
12.	Assertion :- ΔH_{mix} & ΔV_{mix} for the preparation of ideal solution is zero.
	Reason :- A-B interaction in ideal solution are same as between A-A & B-B in the two liquids before mixing
Ans.	(A)
13.	Assertion :- The molarity & normality of a solution of sodium carbonate are same.
	Reason :- Normality is the product of molarity & valency factor.
Ans.	(D)
14.	Assertion :- 0.1M solution of NaCl have low freezing point than 0.1M urea solution.
	Reason :- Van't Hoff factor for NaCl is more than urea.
Ans.	(A)
15.	Assertion :- A non volatile solute is mixed in a solution then elevation in boiling point and depression in freezing poing both are 2K. [AIIMS-2011]
	Reason :- Elevation in boiling point and depression in freezing point both depend on melting point of non-volatile solute
Ans.	(D)
16.	Assertion :- Elevation in boiling point of 0.1 M KCl and 0.1 M CaCl ₂ is same.
	Reason :- Because colligative properties depends on molarity only.
Ans.	(D)
17.	Assertion :- Hexane and heptane forms ideal solution.
	Reason :- ΔH , ΔS and ΔG are zero for such type of solution.
Ans.	(C)
18.	Assertion :- Observed molecular mass of $CaCl_2$ determined by any colligative property is less than ideal molecular mass.
	Reason :- CaCl ₂ gets ionised in water as it is a strong electrolyte.
Ans.	(A)
19.	Assertion :- Raoult's law applicable for dilute solution only.
	Reason :- Henry's law is applicable for solution of gas in liquid.
Ans.	(B)