PROBLEM SOLVING TECHNIQUES OF PHYSICAL CHEMISTRY FOR NEET

BY JITENDRA HIRWANI

MOLE CONCEPT

Plot No. 38, Near Union Bank of India, Rajeev Gandhi Nagar, Kota, Rajasthan – 324005 Mob. : 9214233303

Basic Exercise

1. Que	1. Question Based on Moles					
1.	The volume of a gas in d	ischarge tube is 1.12×10^{-7}	ml. at STP. Then the numbe	er of molecule of gas in the tube is -		
	$(1) 3.01 \times 10^4$	$(2)3.01 \times 10^{15}$	$(3)3.01 \times 10^{12}$	$(4) 3.01 \times 10^{16}$		
Ans.	(3)					
2.	Vapour density of gas is 11.2 volume occupied by 2.4 gms of this at STP will be -					
	(1)11.2 lt	(2) 2.24 lt.	(3) 22.4 lt.	(4) 2.4 lt.		
Ans.	(4)					
3.	Which of the following c	contains the least number of	f molecules ?			
	$(1)4.4 \text{ gm CO}_{2}$	(2) 3.4 gm NH_{3}	$(3) 1.6 \mathrm{gm}\mathrm{CH}_4$	$(4) 3.2 \text{ gm SO}_{2}$		
Ans.	(4)					
4.		orm two compounds B_{2^2} 10 gms atomic weight of A a		s of B_2A_3 weight 9.0 gms and		
	(1) 20 and 30	(2) 30 and 40	(3) 40 and 30	(4) 30 and 20		
Ans.	(3)					
5.	The number of molecule	in 4.25 gms of NH_3 is -				
	$(1) 1.505 \times 10^{23}$	$(2) 3.01 \times 10^{23}$	$(3) 6.02 \times 10^{23}$	(4) None of these		
Ans.	(1)					
6.	4.4 gm of an unknown gas occupies 2.24 litres of volume at STP. The gas may be :-					
	(1)N ₂ O	(2)CO	(3) CO ₂	(4) 1 & 3 both		
Ans.	(4)					
7.	Which contains least no.	of molecules :-				
	(1) 1 gm. CO ₂	(2) 1 gm. N ₂	(3) 1 gm. O ₂	(4) 1 gm. H ₂		
Ans.	(1)					
8.	If 3.01×10^{20} molecules	are removed from 98 mg. of	$\mathrm{FH}_2\mathrm{SO}_4$, then the number of	moles of H_2SO_4 left are :-		
	$(1) 0.1 \times 10^{-3}$	$(2) 0.5 \times 10^{-3}$	$(3) 1.66 \times 10^{-3}$	$(4) 9.95 \times 10^{-2}$		
Ans.	(2)					
9.	If V ml of the vapours of	substance at NTP weight W	g. Then molecular wt. of sub	ostance is:-		
	(1)(W/V)× 22400	$(2) \frac{V}{V} \times 224$	$(3)(W-V) \times 22400$	$(4) = \frac{W \times 1}{W \times 1}$		
	$(1)(W/V)^{22400}$	$(2) W^{22.4}$	$(3)(W - V) \wedge 22400$	(4) V×22400		
Ans.	(1)					
10.	Number of oxygen atoms	s in 8 gms of ozone is -				
	$(1)6.02 \times 10^{23}$	(2) $\frac{6.02 \times 10^{23}}{2}$	$(3) \frac{6.02 \times 10^{23}}{3}$	$(4) \ \frac{6.02 \times 10^{23}}{6}$		
Ans.	(2)					

	NO. 1 ONLINE COACHING			J.H. SIR
11.	5.6 lt. of oxygen at STP co	ontains -		
	(1) 6.02×10^{23} atoms	(2) 3.01×10^{23} atoms	(3) 1.505×10^{23} atoms	(4) 0.7525×10^{23} atoms
Ans.	(2)			
12.	Which of the following co	ontains largest number of	atoms ?	
	$(1)4 \text{ gm. of H}_2$	(2) 16 gm. of O_2	(3) 28 gm. of N ₂	(4) 18 gm. of H_2O
Ans.	(1)			
13.	The number of atoms pre	sent in 16 g of oxygen is		
	$(1) 6.02 \times 10^{11.5}$	$(2)3.01 \times 10^{23}$	$(3) 3.01 \times 10^{11.5}$	$(4) 6.02 \times 10^{23}$
Ans.	(4)			
14.	Which of the following c	ontains greatest number o	f oxygen atoms ?	
	(1) 1 g of O		(2) 1 g of O ₂	
	$(3) 1 g of O_{3}$		(4) all have the same num	ber of atoms
Ans.	(4)			
15.	5. The total number of ions persent in 1 ml of 0.1 M barium nitrate $Ba(NO_3)_2$ solution is -		on is -	
	$(1)6.02 \times 10^{18}$	$(2) 6.02 \times 10^{19}$	$(3) 3.0 \times 6.02 \times 10^{19}$	(4) $3.0 \times 6.02 \times 10^{18}$
Ans.	(3)			
16.	A person adds 1.71 gram mass of sugar = 342)	of sugar $(C_{12}H_{22}O_{11})$ in ord	er to sweeten his tea. The nur	nber of carbon atoms added are (mol
	$(1) 3.6 \times 10^{22}$	$(2) 7.2 \times 10^{21}$	(3)0.05	$(4) 6.6 \times 10^{22}$
Ans.	(1)			
17.	The number of atoms in n	mole of gas can be given by	/:-	
	(1) n × Av. No. × atomicity	(2) $\frac{n \times Av.No.}{Atomicity}$	(3) $\frac{\text{Av.No.} \times \text{Atomicity}}{n}$	(4) None
Ans.	(1)			
18.	Sum of number of protons	, electrons and neutrons in	$12 \text{gm of} {}^{12}_{6} \text{C} \text{ is:-}$	
	(1)1.8	(2) 12.044 × 10 ²³	$(3) 1.084 \times 10^{25}$	$(4)10.84\times10^{23}$
Ans.	(3)			
19.	The actual weight of a mo	blecule of water is -		
	(1) 18 gm		(2) 2.99×10^{-23} gm	
	(3) both (1) & (2) are corr	ect	(4) None of these	
Ans.	(2)			
20.	What is the mass of a mo	lecule of CH ₄ :		
	(1)16 g	(2) 26.6×10^{22} g	$(3) 2.66 \times 10^{-23} \text{ g}$	(4) 16 N _A g
Ans.	(3)	-	. –	7X -

	NO. 1 ONLINE COACHING			J.H. SIR
21.	Which of the following	ng has the highest mass ?		
	(1) 1 g atom of C	(2) $\frac{1}{2}$ mole of CH ₄	(3) 10 ml of water	(4) 3.011×10^{23} atoms of oxygen
Ans.	(1)			
22.	The weight of 1 mole	of a gas of density 0.1784 g/	l at NTP is -	
	(1) 0.1784 g	(2) 1 g	(3) 4 g	(4) Can not be Calculate
Ans.	(3)			
23.	Given that one mole of	of N_2 at NTP occupies 22.4 li	tre the density of N_2 is -	
	(1)1.25 g/litre	(2) 0.80 g/litre	(3) 2.5 g/litre	(4) 1.60 g/litre
Ans.	(1)			
24.	The number of gm mol	lecules of oxygen in 6.02×10	²³ CO molecules is:-	
	(1) 1 gm molecule	(2) 0.5 gm molecule	(3)5 gm molecule	(4) 10 gm molecule
Ans.	(2)			
2. Que	stion based on Percenta	ge, Empirical Formula & M	Iolecular Formula	
25.	Caffine has a molecu molecule of it -	lar weight of 194. It contair	ns 28.9% by mass of nitrog	gen Number of atoms of nitrogen in one
	(1)2	(2)3	(3)4	(4)5
Ans.	(3)			
26.	A giant molecule contains 0.25% of a metal whose atomic weight is 59. Its molecule contains one atom of that meta minimum molecular weight is -			
	(1) 5900	(2)23600	(3)11800	(4) $\frac{100 \times 59}{0.4}$
Ans.	(2)			
27.	Insulin contains 3.4% su	llphur. The minimum mol. wt. c	finsulin is-	
	(1)941.176	(2)944	(3)945.27	(4) None
Ans.	(1)			
28.	A compound of X and of that compound	Y has equal mass of them. If	their atomic weights are 3	0 and 20 respectively. Molecular formula
	(its mol. wt. is 120) co	ould be -		
	$(1)X_{2}Y_{2}$	$(2)X_{3}Y_{3}$	$(3)X_{2}Y_{3}$	$(4)X_{3}Y_{2}$
Ans.	(3)			
29.	An oxide of sulphur co	ontains 50% of sulphur in it.	Its empirical formula is -	
	(1) SO ₂	(2) SO ₃	(3) SO	$(4) S_2 O$
Ans.	(1)			
30.	A hydrocarbon contai	ins 80% of carbon, then the	hydrocarbon is -	
	(1)CH ₄	$(2) C_2 H_4$	$(3) C_2 H_6$	$(4) C_2 H_2$
Ans.	(3)			

ETC INDIA'S	NO. 1 ONLINE COACHING			J.H. SIR	
31.	Emperical formula of	f glucose is -			
	$(1) C_6 H_{12} O_6$	$(2) C_{3}H_{6}O_{3}$	$(3) C_2 H_4 O_2$	(4) CH ₂ O	
Ans.	(4)				
32.	An oxide of metal M	has 40% by mass of oxyger	n. Metal M has atomic mas	ss of 24. The emperical formula of the oxid	
	$(1) M_2 O$	$(2) M_2 O_3$	(3) MO	$(4) M_{3}O_{4}$	
Ans.	(3)				
33.	The simplest formula	of a compound containing 5	0% of element X(at wt. = 1)	0) and 50% of element $Y(at wt. = 20)$ is:-	
	(1)XY	$(2)X_{2}Y$	(3)XY ₂	$(4)X_{3}Y$	
Ans.	(2)				
34.	Which of the following	ng compounds has same em	pirical formula as that of g	lucose:-	
	(1)CH ₃ CHO	(2) CH ₃ COOH	(3) CH ₃ OH	$(4)C_{2}H_{6}$	
Ans.	(2)				
35.	A gas is found to con	tain 2.34 gms of Nitrogen a	and 5.34 gms of oxygen. S	simplest formula of the compound is -	
	(1)N ₂ O	(2)NO	$(3)N_2O_3$	$(4) \operatorname{NO}_2$	
Ans.	(4)				
36.	6. 2.2 gm of a compound of phosphorous and sulphur has 1.24 gms of 'P' in it. Its empirical formula is -				
	$(1) P_2 S_3$	(2) $P_{3}S_{2}$	$(3) P_{3}S_{4}$	(4) $P_4 S_3$	
Ans.	(4)				
37.	• On analysis, a certain compound was found to contain iodine and oxygen in the ratio of 254:80. The fo compound is :				
	(At mass I = 127 , O =	16)			
	(1)IO	(2) I ₂ O	$(3) I_5 O_2$	(4) I_2O_5	
Ans.	(4)				
3. Que	stion Based on Stoichic	ometry			
38.	In a gaseous reaction	n of the type			
	$aA + bB \longrightarrow cC +$	dD,			
	which statement is w	rong ?			
	(1) a litre of A comb	oines with b litre of B to give	e C and D		
	(2) a mole of A com	bines with b moles of B to g	give C and D		
	(3) a gm of A combi	nes with b gm of B to give	C and D		
	(4) a molecules of A	combines with b molecule	es of B to give C and D		
Ans.	(3)				
39.	Assuming that petro consume.	l is octane (C_8H_{18}) and has	density 0.8 g/ml, 1.425 l	itre of petrol on complete combustion wi	
	(1) 50 mole of O_2	(2) 100 mole of O_2	(3) 125 mole of O_2	(4) 200 mole of O_2	
Ans.	(3)				

ETOOSINDIA INDIA'S NO. 1 ONLINE COACHING

40. 9 gms of Al will react, with

$$2\mathrm{Al} + \frac{3}{2}\mathrm{O}_2 \to \mathrm{Al}_2\mathrm{O}_3$$

 $(1) 6 \operatorname{gms} O_2$

 $(2) 8 \operatorname{gms} \operatorname{O}_2$

 $(3)9 \operatorname{gms} O_2$

 $(4)4 \operatorname{gms} O_2$

Ans. (2)

41. The equation :

$$2Al(S) + \frac{3}{2} O_2(g) \rightarrow Al_2O_3(S)$$
 shows that :-

(1) 2 mole of Al reacts with $\frac{3}{2}$ mole of O₂ to produce $\frac{7}{2}$ mole of Al₂O₃

(2) 2gm of Al reacts with $\frac{3}{2}$ g of O₂ to produce one mole of Al₂O₃

(3) 2 gm mole of Al reacts with
$$\frac{3}{2}$$
 litre of O₂ to produce 1 mole of Al₂O₃

(4) 2 mole of Al reacts with $\frac{3}{2}$ mole of O₂ to produce 1 mole of Al₂O₃

Ans. (4)

42. 26 CC of CO_2 are passed over red hot coke. The volume of CO evolved is :-(1) 15 CC (2) 10 CC (3) 32 CC (4) None of these

Ans. (4)

43. If 1/2 moles of oxygen combine with Aluminum to form Al_2O_3 then weight of Aluminum metal used in the reaction is (Al= 27)-

(1) 27 gm (2) 18 gm (3) 54 gm (4) 40.5 gm Ans. (2) 44. If 8 ml, of uncombined O₂ remain after exploding O₂ with 4 ml, of hydrogen, the number of ml

If 8 ml. of uncombined O_2 remain after exploding O_2 with 4 ml. of hydrogen, the number of ml. of O_2 originally were - (1) 12 (2) 2 (3) 10 (4) 4

Ans. (3) 45. For the reaction $A + 2B \longrightarrow C$, 5 mole of A and 8 mole of B will produce

 $(1) 5 \text{ mole of C} \qquad (2) 4 \text{ mole of C} \qquad (3) 8 \text{ mole of C} \qquad (4) 13 \text{ mole of C}$

Ans. (2)

Ans. 47. Ans. 48.	 (1) Only 'S' and 'H₂O (3) 'SO₂' will remain i (2) If 0.5 mol of BaCl₂ is a (1)0.7 (2) 	ion. Which of the followin ' remain in the reaction ves n excess mixed with 0.1 mole of Na ₃ F (2)0.05	(4) None	fmole of Ba ₃ (PO ₄) ₂ that can be formed is:- (4)0.10	
47. Ans.	proceeds to completi (1) Only 'S' and 'H ₂ O (3) 'SO ₂ ' will remain i (2) If 0.5 mol of BaCl ₂ is 1 (1) 0.7 (2) 12 lit. of H ₂ and 11.2 (1) 24 lit. of HCl (g)	ion. Which of the followin ' remain in the reaction ves n excess mixed with 0.1 mole of Na ₃ F (2)0.05	essel. (2) ' H_2S' will remain (4) None PO ₄ , the maximum number of (3) 0.30	fmole of Ba ₃ (PO ₄) ₂ that can be formed is:- (4)0.10	
47. Ans.	 (1) Only 'S' and 'H₂O (3) 'SO₂' will remain i (2) If 0.5 mol of BaCl₂ is 1 (1)0.7 (2) 12 lit. of H₂ and 11.2 (1) 24 lit. of HCl (g) 	' remain in the reaction ves n excess mixed with 0.1 mole of Na ₃ F (2)0.05	essel. (2) ' H_2S' will remain (4) None PO ₄ , the maximum number of (3) 0.30	fmole of Ba ₃ (PO ₄) ₂ that can be formed is:- (4)0.10	
47. Ans.	 (3) 'SO₂' will remain i (2) If 0.5 mol of BaCl₂ is 1 (1)0.7 (2) 12 lit. of H₂ and 11.2 (1) 24 lit. of HCl (g) 	n excess mixed with 0.1 mole of Na ₃ F (2)0.05	(4) None PO ₄ , the maximum number of (3)0.30	fmole of Ba ₃ (PO ₄) ₂ that can be formed is:- (4)0.10	
47. Ans.	 (2) If 0.5 mol of BaCl₂ is a (1)0.7 (2) 12 lit. of H₂ and 11.2 (1) 24 lit. of HCl (g) 	mixed with 0.1 mole of Na ₃ F (2)0.05	(3)0.30	(4)0.10	
Ans.	If $0.5 \text{ mol of BaCl}_2$ is r (1)0.7 (2) 12 lit. of H ₂ and 11.2 (1) 24 lit. of HCl (g)	(2)0.05	(3)0.30	(4)0.10	
	(1)0.7 (2) 12 lit. of H ₂ and 11.2 (1) 24 lit. of HCl (g)	(2)0.05	(3)0.30	(4)0.10	
	12 lit. of H ₂ and 11.2 (1) 24 lit. of HCl (g)	lit. of Cl_2 are mixed and e	xploded. The composition b	y volume of mixture is-	
48.	(1) 24 lit. of HCl (g)	lit. of Cl_2 are mixed and e	xploded. The composition b	y volume of mixture is-	
		-			
	(3) 0.8 lit. H ₂ and 22.4		(2) 0.8 lit. Cl ₂ and 20	0.8 lit. HCl (g)	
		lit. HCl (g)	(4) 22.4 lit. HCl (g)		
Ans.	(3)				
49 .	10 ml of gaseous hyd	lrocarbon on combustion g	give 40 ml of CO ₂ (g) and 50	ml of H ₂ O (vap.). The hydrocarbon is -	
	$(1)C_4H_5$	$(2) C_8 H_{10}$	$(3) C_4 H_8$	$(4) C_4 H_{10}$	
Ans.	(4)				
50.	500 ml. of a gaseous hydrocarbon when burnt in excess of O_2 gave 2.5 lt. of CO_2 and 3.0 lt. of water vapours un conditions. Molecular formula of the hydrocarbon is -				
	$(1) C_4 H_8$	$(2) C_4 H_{10}$	$(3) C_5 H_{10}$	$(4) C_5 H_{12}$	
Ans.	(4)				
4.	Question Based on E	Equivalent Weight			
51.	Molecular weight of	tribasic acid is W. Its equi	valent weight will be :		
	$(1)\frac{W}{2}$	(2) $\frac{W}{3}$	(3) W	(4) 3W	
Ans.	(2)				
52.	A, E, M and n are threlation is :	ne atomic weight, equivale	ent weight, molecular weig	ht and valency of an element. The correct	
	(1) $A = E \times n$	(2) A = $\frac{M}{E}$	(3) A = $\frac{M}{n}$	$(4) \mathbf{M} = \mathbf{A} \times \mathbf{n}$	
Ans.	(1)				
53.	Sulphur forms two c sulphur in S_2Cl_2 is -	hlorides S_2Cl_2 and SCl_2 . T	he equivalent mass of sulpl	hur in SCl_2 is 16. The equivalent weight of	
	(1)8	(2)16	(3) 32	(4)64	
Ans.	(3)				
54.	If equivalent weight	of S in SO_2 is 8 then equiv	alent weight of S in SO_3 is -		
	$(1)\frac{8\times 2}{3}$	$(2) \ \frac{8 \times 3}{2}$	$(3) 8 \times 2 \times 3$	$(4) \frac{2 \times 3}{8}$	
Ans.	(1)				

55.	Which property of an	element is not variable :					
	(1) Valency	(2) Atomic Weight	(3) Equivalent Weight	(4) None			
Ans.	(2)						
56.	One gm equivalent of	a substance is present in -					
	(1) 0.25 mole of O_2	(2) 0.5 mole of O_2	(3) 1.00 mole of O_2	(4) 8.00 mole of O_2			
Ans.	(1)						
57.	In a compound AxBy,						
	(1) Mole of $A = mole c$	fB = mole of Ax By					
	(2) eq. of $A = eq$ of $B =$	eq. of AxBy					
	(3) yx mole of $A = yx n$	nole of $B = (x + y) \times mole$ of	AxBy				
	(4) $y \times mole of A = y \times$	mole of B					
Ans.	(2)						
58.	0.45 gm of acid (mole	cular wt. = 90) was exactly n	eutralised by 20 ml. of 0.5 NM	NaOH. Basicity of the acid is -			
	(1)1	(2)2	(3)3	(4)4			
Ans.	(2)						
59.	0.126 g of an acid requ	iires 20 ml of 0.1 N NaOH fo	or complete neutralisation. Eq	. wt. of the acid is –			
	(1)45	(2) 53	(3)40	(4) 63			
Ans.	(4)						
60.	2g of a base whose eq.	wt. is 40 reacts with 3 g of	an acid. The eq. wt. of the ac	id is			
	(1)40	(2)60	(3) 10	(4)80			
Ans.	(2)						
61.	Equivalent weight of a divalent metal is 24. The volume of hydrogen liberated at STP by 12 gms of the same metal whe added to excess of an acid solution is -						
	(1) 2.8 litres	(2) 5.6 litres	(3)11.2 litres	(4)22.4 litres			
Ans.	(2)						
62.	0.84 gm of a metal car	bonate react's exactly with 4	$0 \text{ ml of N/2 H}_2\text{SO}_4$. The equiva	alent weight of the metal carbonate is -			
	(1)84	(2) 64	(3)42	(4) 32			
Ans.	(3)						
63.		d and one of its salt is NaH into Na_3PO_4 ? (at.wt of P=3		aOH solution should be added to 12 g			
	(1) 100 ml	(2) 200 ml	(3) 80 ml	(4) 300 ml			
Ans.	(2)						
64.	The ratio of amount of is	$^{2}\text{H}_{2}\text{S}$ needed to precipitate al	l the metal ions from 100 ml o	$f 1M AgNO_3$ and 100 ml of 1 M CuSO ₄			
	(1)1:2	(2)2:1	(3) Zero	(4) Infinite			
Ans.	(1)						
65.		$e A_2$ g of its oxide. The equ	ivalent mass of the element is	5 –			
	$(1) \frac{\mathbf{A}_2 - \mathbf{A}_1}{\mathbf{A}_1} \times 8$	$(2) \frac{A_2 - A_1}{A_2} \times 8$	$(3) \frac{A_1}{A_2 - A_1} \times 8$	$(4) (A_2 - A_1) \times 8$			
Ans	(3)						

	NO. 1 ONLINE COACHING		200/-64111	J.H. SIR			
66.	be –	orms an oxide in which oxyg	gen is 20% of the oxide by m	ass, the equivalent mass of the element will			
	(1)32	(2)40	(3)60	(4) 128			
Ans.	(1)						
67.	If 1.2 g of a metal d	isplaces 1.12 litre of hydrog	gen at NTP, equivalent mass	s of the metal would be –			
	(1) 1.2 × 11.2	(2) 12	(3)24	(4) 1.2 + 11.2			
Ans.	(2)						
68.		n is found to combine with 8 uivalent weight of calcium i		f calcium (valency = 2) combines with 4 gm d^{2}			
	(1)10	(2)20	(3)40	(4)80			
Ans.	(2)						
69.		2.8 gm of iron displaces 3.2 gm of copper from a solution of copper suphate solution. If the equivalent mass of iron is 28, then equivalent mass of copper will be –					
	(1)16	(2) 32	(3)48	(4) 64			
Ans.	(2)						
70.	A metal oxide is reduced by heating it in a stream of hydrogen. It is found that after compete reduction 3.15 gm of the oxide have yielded 1.05 gm of the metal. We may conclude that.						
	(1) Atomic weight of	of the metal is 4	(2) Equivalent weig	th of the metal is 8			
	(3) Equivalent weig	(3) Equivalent weight of the metal is 4 (4) Atonic weight of the metal is 8					
Ans.	(3)						
71.	If m_1 gm of a metal A displaces m_2 g of another metal B from its respectively then the equivalent weight of A can be expressed			and if their equivalent weights are E_2 and E_1			
	(1) $\frac{\mathrm{m_1}}{\mathrm{m_2}} \times \mathrm{E_2}$	(2) $\frac{\mathrm{m}_2}{\mathrm{m}_1} \times \mathrm{E}_2$	(3) $\frac{\mathrm{m_1}}{\mathrm{m_2}} \times \mathrm{E_1}$	$(4) \ \frac{\mathrm{m_2}}{\mathrm{m_1}} \times \mathrm{E_1}$			
Ans.	(3)						
72.	14 g of element X combines with 16 g of oxygen. On the basis of this information, which of the following is a correct statement:-						
	(1) The element X could have an atomic wt. of 7 and its oxide is XO						
	(2) The element X could have an atomic weight of 14 and its oxide is X_2O						
	(3) The element X could have an atomic weight of 7 and its oxide is X_2O						
	(4) The element X c	ould have an atomic weight o	of 14 and its oxide is XO_2				
Ans.	(3)						
73.	45 gm of acid of mo	l. wt. 90 neutralised by 200 n	nL of 5N caustic potash. The	basicity of acid is:-			
	(1)1	(2)2	(3)3	(4) None			
Ans.	(2)						
74.	-	60 gm of Zn when treated wi ht of Zn is 32.6, what is the e	-	y, produced the same amount of hydrogen. If			
	(1)10	(2)20	(3)40	(4)5			

	NO. 1 ONLINE COACHING			J.H. SIR
75.	-	_	orine. The equivalent mas of	the metal is –
	(1) 19.5	(2) 35.5	(3) 39.0	(4) 78.0
Ans.	(3)			
5.	Question Based on Cal	culation of Atomic Weigh	t and Molecular Weight	
76.	The equivalent weight of	of an element is 4. It's chlo	ride has a V.D. 59.25. Then the	he valency of the element is –
	(1)4	(2)3	(3)2	(4)1
Ans.	(2)			
77.	The specific heat of an e	element is 0.214 cal/gm°C.	The approximate atomic weight	ght is -
	(1)0.6	(2)12	(3)30	(4) 65
Ans.	(3)			
78.		hate which is isomorphou e solution, then the atomic	. –	8 gm of metals M displaced 2.16 gm o
	(1) 32.61	(2) 56.82	(3) 65.38	(4) 74.58
Ans.	(3)			
79.	The carbonate of a meta nearly -	al is isomorphous with Mg	gCO_3 and contains 6.091% of	carbon. Atomic weight of the metal i
	(1)48	(2) 68.5	(3) 137	(4) 120
Ans.	(3)			
80.	71 gm of chlorine combines mass of the metal is:-	s with a metal giving 111 gm o	fits chloride. The chloride is ison	morphous with $MgCl_2$. $6H_2O$. The atomic
	(1)20	(2)30	(3)40	(4)69
Ans.	(3)			
81.	The atomic weight of a n	netal (M) is 27 and its equiv	valent weight is 9, the formula	of its chloride will be:-
	(1)MCl	$(2) \mathrm{MCl}_{2}$	(3) M ₃ Cl	(4) None
Ans.	(4)			
82.	The chloride of a metal c will be:-	contains 71% chlorine by w	eight and the vapour density of	fits is 50, the atomic weight of the meta
	(1)29	(2)58	(3)35.5	(4)71
Ans.	(1)			
83.	The specific heat of a m	etal M is 0.25. Its eq. wt. i	s 12. What is it's correct at wt	:-
	(1)25.6	(2)36	(3)24	(4) 12
Ans.	(3)			
84.	Vapour density of a gas then its atomic weight i		heat at constant pressure to s	specific heat at constant volume is 1.4
	(1)8	(2)16	(3)24	(4) 32
Ans.	(2)			
85.	The weight of substance	e that displace 22.4 litre ai	r at NTP is :	
	(1) Molecular Weight	(2) Atomic Weight	(3) Equivalent Weight	(4)All
Ans.	(1)			

	0.20 are af a liquid on some			J.H. SIR		
86.			vapour at STP. Its molecular			
		(2) 18.5	(3)78	(4) 112		
Ans.	(3)		1 1 1 1 1 1			
87.	weight is -	-	-	6 ml. of vapour at STP. Its molecula		
	(1)40	(2)60	(3)80	(4) 120		
Ans.	(3)					
88.	510 mg of a liquid on vapou weight of liquid is -	risation in Victor Mayer's	s apparatus displaces 67.2 CO	Cs of dry air (at NTP). The molecula		
	(1)130	(2)17	(3) 1700	(4) 170		
Ans.	(4)					
89.	0.44 gms of a colourless oxi	ide of nitrogen occupies 2	224 ml. at STP. The compour	nd is -		
	$(1)N_{2}O$	(2)NO	$(3) N_2 O_4$	(4)NO ₂		
Ans.	(1)					
90.	One litre of a certain gas weighs 1.16 gm at STP. The gas may posibly be -					
	$(1)C_{2}H_{2}$	(2)CO	(3)O ₂	(4) NH ₃		
Ans.	(1)					
91.	The oxide of an element post of the oxide will be –	sess the molecular formula	${\rm a}{ m M}_2{ m O}_3$. If the equivalent mas	s of the metal is 9, the molecular mas		
	(1)27	(2)75	(3) 102	(4)18		
Ans.	(3)					
6.	Question Based on Law of	Chemical Combination				
92.	Which one of the following	pairs of compounds illus	strate the law of multiple pro	oportions ?		
	(1) H ₂ O, Na ₂ O	(2) MgO, Na ₂ O	(3) Na ₂ O, BaO	(4) SnCl ₂ , SnCl ₄		
Ans.	(4)					
93.	In the reaction $N_2 + 3H_2$ —	\longrightarrow 2 NH ₃ , ratio by vo	lume of N_2 , H_2 and NH_3 is 1	: 3 : 2. This illustrates law of -		
	(1) Definite proportion	(2) Multiple proportion	(3) Reciprocal proportion	(4) Gaseous volumes		
Ans.	(4)					
94.	Different proportions of oxygen in the various oxides of nitrogen prove the law of -					
	(1) Equivalent proportion	(2) Multiple proportion	(3) Constant proportion	(4) Conservation of matter		
Ans.	(2)					
95.	Oxygen combines with two	isotopes of carbon ¹² C ar	nd ¹⁴ C to form two sample of	carbon dioxide. The data illustrates		
	(1) Law of conservation of mass		(2) Law of multiple proportions			
	(3) Law of reciprocal propo	rtions	(4) None of these			
Ans.	(4)					
96.	The law of conservation of	mass holds good for all o	of the following except -			
	(1) All chemical reactions		(2) Nuclear reactions			
	(3) Endothermic reactions		(4) Exothermic reactions			
Ans.	(2)					

	NO. 1 ONLINE COACHING			J.H. SIR		
97.	Number of molecule	es in 100 ml of each of O_2 , N	H_3 and CO_2 at STP are –			
	(1) in the order CO_2	$< O_2 < NH_3$	(2) in the order NH_3	$$		
	(3) the same		(4) $NH_3 = CO_2 < O_2$			
Ans.	(3)					
98.		y equal to that of one litre of		drogen is CH_2 . The mass of one litre of th pressure. Therefore, the molecular formu		
	$(1)C_{2}H_{4}$	$(2) C_{3} H_{6}$	$(3) C_6 H_{12}$	$(4) C_4 H_8$		
Ans.	(1)					
99.			he gases hydrogen, helium f these gases present in the	oxygen and ozone at same room temp. an different flasks would be -		
	(1)1:1:1:1	(2)1:2:2:3	(3)2:1:2:3	(4)2:1:3:2		
Ans.	(3)					
100.	A container of volume V, contains 0.28 gm of N_2 gas. If same volume of an unknown gas under similar condition of temperature and pressure weighs, 0.44 gm, the molecular mass of the gas is					
	(1)22	(2)44	(3)66	(4) 88		
Ans.	(2)					
101.	A and B are two identical vessels. A contains 15 gm ethane at 1 atm and 298 K. The vessel B contains 75 gm of a X_2 at same tamperature and pressure. The vapour density of X_2 is –					
	(1)75	(2) 150	(3) 37.5	(4)45		
Ans.	(1)					
102.		with chlorine to form HCl. other, they will do so in the ra		m to form NaH. If sodium and chlorine als		
	(1)23:35.5	(2) 35.5 : 23	(3) 1: 1	(4) 23 : 1		
Ans.	(1)					
03.	When 100 g of ethyl	lene polymerizes to polythy	lene according to equation			
	$nCH_2 = CH_2 \rightarrow (-CH_2 - CH_2 -)_n$. The weight of polyethylene produced will be:-					
	$(1)\frac{n}{2}$ gm	(2) 100 gm	$(3) \frac{100}{n} \text{gm}$	(4) 100ngm		
Ans.	(2)					
104.	If law of conservation 7.3 gm. of HCl and 1		then 20.8 gm. of BaCl ₂ on re	eaction with 9.8 gm. of H_2SO_4 will produce		
	(1)11.65 gm.	(2) 23.3 gm.	(3) 25.5 gm.	(4) 30.6 gm.		
Ans.	(2)					
105.	A chemical equation	n is balanced according to th	e law of –			
	(1) Multiple proport	ions	(2) Constant propor	tions		
	(3) Reciprocal propo	ortions	(4) Conservation of	mass		

	DOSINDIA 10. 1 ONLINE COACHING	J.H. SIR
106.	Two flask A & B of equal capacity of volu has more no. of moles –	me contain NH_3 and SO_2 gas respectively under similar conditions which flask
	(1)A	(2)B
	(3) Both have same moles	(4) None
Ans.	(3)	

_ . . . _

- -

Analytical Exercise

1.	An organic compound having molecular mass 60 is found to contain C=20%, H=6.67% and N=46.67% while rest is oxygen. On heating it gives NH_3 along with a solid residue. The solid residue give violet colour with alkaline copper sulphate solution. The compound is -					
	$(1)(NH_2)_2CO$	(2) $CH_3CH_2CONH_2$	$(3) CH_{3}NCO$	(4) CH_3CONH_2		
Ans.	(1)					
2.	How many moles of ma	gnesium phosphate, Mg ₃ (F	$(O_4)_2$ will contain 0.25 mo	le of oxygen atoms?		
	(1) 2.5×10^{-2}	(2) 0.02	$(3) 3.125 \times 10^{-2}$	(4) 1.25×10^{-2}		
Ans.	(3)					
3.	Percentage composition	of an organic compound	is as follows :			
	C=10.06, H=0.84, Cl=89.	10				
	Which of the following	corresponds to its molecu	lar formula if the vapour of	density is 60.0		
	$(1) \operatorname{CH}_2 \operatorname{Cl}_2$	(2) CHCl_{3}	(3) CH ₃ Cl	(4) None		
Ans.	(2)					
4.	A litre of air containing	1% Ar is repetedly passed of	over hot Cu and hot Mg till	no reduction of volume takes place.		
	The final volume of Ar shall be :					
	(1)0 ml	(2) 230 ml	(3) 770 ml	(4) 10 ml		
Ans.	(4)	(2) 250 m	(5) // 0 III			
Alls. 5.		trons in 4.2 g of N³− ion is (N	J is the Avogadro's number	r)		
3.	(1) 2.1 N_A	$(2) 4.2 N_{A}$	(3) 3 N_A	$(4) 3.2 N_{A}$		
Ans.	(1) 2.1 1 _A (3)	(2) + 2 + A	(5) 51 A	(-) 5.2 $(-)$		
6.		itrogen in one litre of air con	ntaining 10% nitrogen by v	olume, under standard conditions, is		
	(1) 0.03 mole	(2) 2.10 mole	(3) 0.186 mole	$(4) 4.46 \times 10^{-3}$ mole		
Ans.	(4)					
7.	Liquid benzene (C_6H_6) bu	Irns in oxygen according to 2	$2C_{2}H_{6}(l) + 15O_{2}(g) \rightarrow 12CO_{2}(l)$	$O_2(g) + 6H_2O(g)$		
	How many litres of O_2 at	STP are needed to complet	e the combustion of 39 g of	liquid benzene?		
	(1) 74 L	(2)11.2 L	(3)22.4 L	(4) 84 L		
Ans.	(4)					
8.	1 mol of KClO ₃ is therma Al_2O_3 are formed ?	lly decomposed and excess	of aluminum is burnt in the	gaseous product. How many moles of		
	(1)1	(2)2	(3) 1.5	(4) 3		
Ans.	(1)					
9.	The amount of zinc requi	red to produce 1.12 ml of H		ilute HCl will be :		
	(1) 65 g	(2) 0.065 g	(3) 32.5×10^{-4} g	(4) 6.5 g		
Ans.	(3)					
10.	-	at STP by the complete deco	_	-		
	(1)2.24 litre	(2) Zero	(3) 0.85 litre	(4) 0.56 litre		
Ans.	(2)					

ETC INDIA'S I	NO. 1 ONLINE COACHING			J.H. SIR		
11.	One litre of CO_2 is passed through red hot coke. The volume becomes 1.4 litres at same temperature and pressure. The composition of products is					
	(1) 0.8 litre of CO ₂ and 0.6 litre of CO		(2) 0.7 litre of CO_2 a	nd 0.7 litre of CO		
	(3) 0.6 litre of CO ₂ and 0.8 litre of CO		(4) 0.4 litre of CO_2 a	(4) 0.4 litre of CO_2 and 1.0 litre of CO		
Ans.	(3)					
12.	When 100 ml of $\frac{M}{10}$ H ₂ SO ₄ is mixed with 500 ml of $\frac{M}{10}$ NaOH then nature of resulting solution and normality of excess					
	of reactant left is					
	(1)Acidic, $\frac{N}{5}$	(2) Basic, $\frac{N}{5}$	(3) Basic, $\frac{N}{20}$	(4) Acidic, $\frac{N}{10}$		
Ans.	(3)					
13.	Mole fraction of solvent in aqueous solution of NaOH having molality of 3 is					
	(1)0.3	(2) 0.05	(3)0.7	(4) 0.95		
Ans.	(4)					
14.	Concentrated aqueous sulphuric acid is 98% H_2SO_4 by mass and has a density of 1.80 gmL ⁻¹ . Volume of acid required to make one litre of 0.1 M H_2SO_4 solution is					
	(1)16.65 mL	(2) 22.20 mL	(3) 5.55 mL	(4) 11.10 mL		
Ans.	(3)					
15.	Number of significant figures in 6.62×10^{-34} .					
	(1) Two	(2) Three	(3) Four	(4) One		
Ans.	(2)					
16.	Ammonia gas is passed into water, yielding a solution of density 0.93 g/cm^3 and containing $18.6\% \text{ NH}_3$ by weight. The mass of NH, per cc of the solution is					
	$(1) 0.17 \text{g/cm}^3$	$(2) 0.34 \text{ g/cm}^3$	$(3) 0.51 \text{ g/cm}^3$	$(4) 0.68 \text{ g/cm}^3$		
Ans.	(1)					
17.	A certain amount of a metal whose equivalent mass is 28 displaces 0.7 L of H_2 at S.T.P. from an acid hence mass of the element is					
	(1) 1.75 g	(2) 0.875 g	(3) 3.50 g	(4) 7.00 g		
Ans.	(1)					
18.	Number of Fe atoms in 100 g Haemoglobin if it contains 0.33% Fe. (Atomic mass of Fe = 56)					
Ans.	$(1)0.035 \times 10^{23}$	(2)35	$(3) 3.5 \times 10^{23}$	$(4) 7 \times 10^8$		
	(1)					
19.	An organic compound containing C and H gave the following analysis $C = 40\%$, $H = 6.7\%$. Its empirical formula would be					
	(1)CH ₄	(2) CH ₂ O	$(3) C_2 H_4 O_2$	$(4) C_2 H_4$		
Ans.	(2)	-	~			
20.	The number of electr	cons in 1.6 g of CH_4 is approximately constant of the second	oximately			
	(1) 25×10^{24}	(2) 1.5×10^{24}	$(3) 6 \times 10^{23}$	$(4) 3.0 \times 10^{24}$		
Ans.	(3)					
21.	6.025×10^{20} molecules of acetic acid are present in 500 ml of its solution. The concentration of solution is					
-	(1)0.002 M	(2) 10.2 M	(3)0.012 M	(4) 0.001 M		
Ans.	(1)	~ /	~ /			

	NO. 1 ONLINE COACHING			J.H. SIR		
22.	How many litre of oxy	gen at STP is required to but	$cn 60 g C_2 H_6$			
	(1)22.4 L	(2)11.2 L	$(3) 22.4 \times 7 L$	(4) 8.5 L		
Ans.	(3)					
23.	For the formation of 3.65 g of HCl gas, what volume of hydrogen gas and chlorine gas are required at NTP condition					
	(1) 1 L, 1 L	(2) 1.12 L, 2.24 L	(3) 3.65 L, 1.83 L	(4) 1.12 L, 1.12 L		
Ans.	(4)					
24.	Specific volume of cylindrical virus particle is 6.02×10^{-2} cc/gm whose radius and length are 7 Å and 10 Å respectively If N _A = 6.02×10^{23} , find molecular weight of virus.					
	(1) 15.4 kg/mol	(2) 1.54×10^4 kg/mol	(3) 3.08×10^4 kg/mol	(4) 3.08×10^3 kg/mol		
Ans.	(1)					
25.	The crystalline salt Na_2SO_4 . xH_2O on hearting loses 55.9% of its mass and becomes anhydrous. The formula of crystal- line salt is					
	(1) Na ₂ SO ₄ .5H ₂ O	(2) Na, SO ₄ .7H,O	(3) Na ₂ SO ₄ .2H ₂ O	(4) Na ₂ SO ₄ .10H ₂ O		
Ans.	(4)	2 7 2	2 7 2			
26.	The atomic mass of an element is 27. If valency is 3, the vapour density of the volatile chloride will be:-					
	(1)66.75	(2) 6.675	(3)667.5	(4)81		
Ans.	(1)					
27.	Two elements X (at-mass 16) and Y (at-mass 14) combine to form compounds A, B and C. The ratio of different masses of Y which combines with a fixed mass of X in A, B and C is 1 : 3 : 5. If 32 parts by mass of X combines with 84 parts by mass of Y in B, then in C 16 parts by mass of X will combine with :					
	(1) 14 parts by mass of	Y	(2) 42 parts by mass of Y	Z.		
	(3) 70 parts by mass of	Y	(4) 84 parts by mass of Y			
Ans.	(3)					
28.	1 L of a hydrocarbon weighs as much as one litre of CO_2 Under similar conditions. Then the molecular formula of the hydrocarbon is -					
	$(1)C_{3}H_{8}$	$(2) C_2 H_6$	$(3)C_{2}H_{4}$	$(4) C_{3} H_{6}$		
Ans.	(1)					
29.	There are two oxides of sulphur. They contain 50% and 60% of oxygen respectively by weights. The weights o sulphur which combine with 1 gm of oxygen in the ratio of -					
	(1)1:1	(2)2:1	(3)2:3	(4)3:2		
Ans.	(4)					
30.	Number of HCl molecules present in 10 ml of 0.1 M solution is :					
	$(1) 6.022 \times 10^{23}$	$(2) 6.023 \times 10^{22}$	$(3) 6.022 \times 10^{21}$	$(4) 6.022 \times 10^{20}$		
Ans.	(4)					
31.	The volume of a gas at	t 0°C and 700 mm pressure is	s 760 CC. The no. of molecu	ales present in this volume is		
	$(1) 1.88 \times 10^{22}$	$(2) 6.022 \times 10^{23}$	(3) 18.8 × 10 ²³	(4) 18.8 × 10 ²²		
Ans.	(1)					
32.	Rearrange the following (I to IV) in the order of increasing masses and choose the correct answer. (Atomic masses : $N = 14$, $O = 16$, $Cu = 63$)					
	I 1 molecule of oxygen II 1 atom of Nitrogen III $1 \times 10^{-10} \times (\text{gm molecular weight of oxygen})$					
	IV $1 \times 10^{-10} \times (\text{gm atomic weight of copper})$					
	(1)II < I < III < IV	(2) IV < III < II < I	(3)II <iii<i<iv< td=""><td>(4)III$<$IV$<$I$<$II</td></iii<i<iv<>	(4)III $<$ IV $<$ I $<$ II		
Ans.	(1)		(-,	× / · · ·		
Alls. 33.	The number of moles of carbon dioxide which contain 8 gm of oxygen is –					
55.	(1) 0.5 moles	(2) 0.20 moles	(3) 0.40 moles	(4) 0.25 moles		
Ans.	(4)					

34.	If 221 ml of a triatani	c gas has a mass of 1 a at $27'$	K and 1 atm programs that	n the mass of one atom is				
34.	If 224 ml of a triatomic gas has a mass of 1g at 273 K and 1 atm pressure, then the mass of one atom is – (1) 8.30×10^{-23} gm (2) 2.08×10^{-23} gm (3) 5.53×10^{-23} gm (4) 6.24×10^{-23} gm							
Ans.	(1) 8.50 × 10 gm (3)	$(2)2.06 \times 10^{\circ}$ gm	$(5)5.55 \times 10^{\circ}$ gm	(4) 0.24 × 10 gm				
35.	22.4 litre of water vapour at NTP, When condensed to water occupies an approximate volume of -							
00.	(1) 18 litre	(2) 1 litre	(3) 1 ml	(4) 18 ml				
Ans.	(4)	(2) 1 1110	(5) 1 m					
36.	0.01 mole of iodoform (CHI ₃) reacts with Ag to produce a gas whose volume at NTP is							
	2 CHI ₃ + 6Ag \rightarrow C ₃ H ₂ + 6Ag I(s)							
	(1)224 ml	(2) 112 ml	(3) 336 ml	(4) None of these				
Ans.	(2)	()						
37.	The minimum quantity in grams of H ₂ S needed to precipitate 63.5 g of Cu^{2+} will be nearly :							
•	$Cu^{+2} + H_2S \rightarrow CuS + H_2$							
	(1)63.5 g	(2) 31.75 g	(3) 34 g	(4) 20 g				
Ans.	(3)							
38.	2.76 g of silver carbonate on being strongly heated yields a residue weighing –							
	Ag ₂ CO ₃ \rightarrow 2Ag + CO ₂ + ½ O ₂							
	(1)2.16 g	(2)2.48 g	(3)2.32 g	(4)2.64 g				
Ans.		(2)2.40 g	(5)2.52 g	(1)2.01 g				
	(1) The web was of goes at NTD produced by 100 cm of CoC, with water							
39.		The volume of gas at NTP produced by 100 gm of CaC_2 with water:-						
	2 2	$\rightarrow \text{Ca(OH)}_2 + \text{C}_2\text{H}_2$						
	(1) 70 litre	(2) 35 litre	(3) 17.5 litre	(4) 22.4 litre				
Ans.	(2)							
40.	90 ml. of pure dry O_2 is subjected to silent electric discharge. If only 10% of it is converted to O_3 , volume of the mixture of gases (O_2 and O_3) after the reaction will be and after passing through turpentine oil will be							
	(1) 84 ml and 78 ml		(3) 78 ml and 84 ml					
Ans.		(2) 81 ml and 87 ml	(<i>3</i>) / 8 IIII and 84 IIII	(4) 87 ml and 81 ml				
Ans. 41.	(4) Element 'A' reacts with oxygen to form a compound A_2O_3 . If 0.359 gram of 'A' react to give							
71.		pound, atomic weight of 'A'	2 5	0.557 grain of A feact to give				
	(1)51	(2) 43.08	(3)49.7	(4)47.9				
Ans.	(2)							
42.	1.12 mL of a gas is produced at STP by the action of 4.12 mg of alcohol ROH with methyl magnesium iodide. The molecular mass of alcohol is –							
	R-OH+CH	$R-OH+CH_{3}MgI \rightarrow CH_{4}+Mg(OR)I$						
	(1)16	(2)41.2	(3) 82.4	(4) 156.0				
Ans.	(3)							
43.	$CaCO_3$ is 90% pure. V	$CaCO_3$ is 90% pure. Volume of CO_2 collected at STP when 10 gms of $CaCO_3$ is decomposed is -						
	(1)2.016 litres	(2) 1.008 litres	(3) 10.08 litres	(4) 20.16 litres				
Ans.	(1)							
44.	50 gm CaCO ₃ will react with gms of 20% HCl by weight.							
	(1) 36.5 gm	(2) 73 gm	(3) 109.5 gm	(4) 182.5 gm				
Ans.	(4)							

ASSERTION & REASON EXERCISE

These questions consist of two statements each, printed as *Assertion* and *Reason*. While answering these Questions you are required to choose any one of the following four responses.

- A. If both Assertion & Reason are True & the Reason is a correct explanation of the Assertion.
- B. If both Assertion & Reason are True but Reason is not a correct explanation of the Assertion.
- C. If Assertion is True but the Reason is False.
- D. If both Assertion & Reason are False.
- 1. Assertion :- 16 gm each of O_2 and O_3 contains $\frac{N_A}{2}$ and $\frac{N_A}{3}$ atoms respectively

Reason :- 16 gm O_2 and O_3 contains same no. of molecules.

- Ans. (D)
- Assertion :- Carbon and oxygen combined together only in one fixed ratio.
 Reason :- In a chemical compound the elements are combined together in a fixed ratio.

Ans. (D)

3. *Assertion :-* The mass of the products formed in a reaction depends upon the limiting reactant. *Reason :-* Limiting reactant reacts completely in the reaction.

Ans. (A)

4. Assertion :- Volume occupied by $1 \mod H_2O_{(1)}$ is equals to 22400 cc. at NTP. Reason :- 1 mol of any substance occupies 22.4 lit volume at N.T.P.

Ans. (D)

5. Assertion :- At same temp & pressure 1lit O₂ and 1lit SO₂ contains equal no. of molecules.
 Reason :- Acc. to avogadros hypothesis equal volume of all gases under similar condition of temp and pressure contains equal no. of molecules.

Ans. (A)

6. Assertion :- 44 gm of CO₂ 28 gm of CO have same volume at STP. *Reason* :- Both CO₂ and CO are formed by C and oxygen.

Ans. (B)

Assertion :- Equivalent wt. of Cu in both CuO and Cu₂O is 31.75
 Reason :- Equivalent wt. of an element is constant.

Ans. (D)

8.

Assertion :- On compressing a gas to half the volume, the number of moles is halved. Reason :- Number of moles present decreases with decrease is volume.

Ans. (D)

9. Assertion :- Law of conservation of mass hold good for nuclear reaction.
 Reason :- Law states that mass can be neither created nor destroyed in a chemical reaction.

Ans. (D)

10. Assertion :- The balancing of chemical equations is based on law of conservation of mass.
 Reason :- Total mass of reactants is equal to total mass of products.

Ans. (A)

11. *Assertion :-* Pure water obtained from different sources such as, river, well, spring, sea etc. always contains hydrogen and oxygen combined in the ratio 1 : 8 by mass

Reason :- A chemical compound always contains elements combined together in same proportion by mass, it was discovered by French chemist, Joseph Proust (1799).

Ans. (A)