DAILY PRACTICE PROBLEM OF PHYSICAL CHEMISTRY FOR NEET

BY JITENDRA HIRWANI

MOLE CONCEPT

Plot No. 38, Near Union Bank of India, Rajeev Gandhi Nagar, Kota, Rajasthan – 324005 Mob. : 9214233303

			DPP-1			
1.		A sample of ammonium phosphate $(NH_4)_3PO_4$ contains 3.18 moles of hydrogen atoms. The number of moles of oxygen atoms in the sample is				
	(1) 0.265	(2) 0.795	(3) 1.06	(4)4.00		
Ans.	(3)					
2.	The total number of electrons im 1.6 g of CH_4 to that in 1.8 g of H_2O					
	(1) Double	(2) Same	(3) Triple	(4) One fourth		
Ans.	(2)					
3.	Which has maximur	n molecules ?				
	$(1)7 g N_2 O$	(2) 20 g H_2	(3) $16 g NO_2$	(4) 16 g SO ₂		
Ans.	(2)					
4.	The maximum number of molecules is present in					
	(1) 15 L of H_2 gas at	STP	(2) 5 L of N_2 gas at S	TP		
A	(3) 0.5 g of H_2 gas		(4) 10 g of O_2 gas			
Ans. 5.	(1) The number of atoms in 0.1 mol of a tetraatomic gas is $(N_A = 6.02 \times 10^{23} \text{ mol}^{-1})$					
5.	$(1) 2.4 \times 10^{22}$	$(2) 6.026 \times 10^{22}$	$(3) 2.4 \times 10^{23}$) (4) 3.600×10^{23}		
Ans.	(1)2.11110	(2) 0.020 ~ 10	(5)2.11110	(1)5.000 + 10		
6.		t NTP is equivalent to –				
	(1) 1 mole (2) $\frac{1}{2}$ mole (3) $\frac{1}{4}$ mole (4) 1/8 mole					
Ans.	(3)					
7.		e the formula (CO). It's VD	is 70 the value of x must be:-			
/ .			t's VD is 70 the value of x must be:-			
	(1)7	(2)4	(3)5	(4)6		
Ans.	(3)					
8.		present in 1.7 gms of ammo				
	(1) N _A	(2) $N_A / 10 \times 4$	$(3)(N_A/10) \times 7$	$(4) N_A \times 10 \times 7$		
Ans.	(3)					
9.	The number of atoms present in 0.5g atom of nitrogen is same as the atoms in –					
	(1) 12g of C	(2) 32g of S	(3) 8g of oxygen	(4) 24g of Mg		
Ans.	(3)					
10.	The weight of one atom of Uranium is 238 amu. Its actual weight is gm.					
	$(1) 1.43 \times 10^{26}$	$(2) 3.94 \times 10^{-22}$	$(3) 6.99 \times 10^{-23}$	(4) None of these		
Ans.	(2)					

DPP-2

1.	Two metallic oxides contain 27.6% and 30% oxygen respectively. If the formula of the first oxide is $X_{3}O_{4}$, that of the second will be					
	(1) XO	$(2) XO_2$	$(3) X_2 O_5$	$(4) X_2 O_3$		
Ans.	(4)					
2.	Calculate the molality of solution containing 3 g glucose dissolved in 30 g of water. (molar mass of glucose =180)					
	(1)0.50 m	(2) 0.56 m	(3) 0.091 m	(4) 0.05 m		
Ans.	(2)					
3.	How many gram	How many grams of NaOH should be added to water to prepare 250 ml solution of 2 M NaOH?				
	$(1)9.6 \times 10^{3}$	$(2) 2.4 \times 10^{3}$	(3) 20	(4) 24		
Ans.	(3)					
4.	Haemoglobin contains 0.334% of iron by weight. The molecular weight of haemoglobin is approximately 67200. The number of iron atoms (Atomic weight of Fe is 56) present in one molecule of haemoglobin is					
	(1)4	(2)6	(3)3	(4) 2		
Ans.	(1)					
5.	The number of atoms of Cr and O are 4.8×10^{10} and 9.6×10^{10} respectively. Its empirical formula is –					
	$(1) \operatorname{Cr}_2 \operatorname{O}_3$	(2) CrO ₂	$(3) Cr_2 O_4$	(4) None		
Ans.	(2)					
6.	The density of a	ir is 0.001293 g ml ⁻¹ . It's v	apour density is –			
	(1) 143	(2) 14.3	(3) 1.43	(4) 0.143		
Ans.	(2)					
7.	Cortisone is a molecular substance containing 21 atoms of carbon per molecule. The mass percentage of carbon in cortisone is 69.98%. Its molar mass is :					
	(1) 176.5	(2) 252.2	(3) 287.6	(4) 360.1		
Ans.	(4)					
8.	12 g of alkaline	12 g of alkaline earth metal gives 14.8 g of its nitride. Atomic weight of metal is -				
	(1) 12	(2) 20	(3)40	(4) 14.8		
Ans.	(3)					
9.	The density of a solution prepared by dissolving 120 g of urea (mol. mass = 60 u) in 1000 g of water is 1.15 g/mL. The molarity of this solution is :-					
Ans.	(1) 2.05 M (1)	(2) 0.50 M	(3) 1.78 M	(4) 1.02 M		

DPP-3

1.	4 g of hydrogen reacts wi	4 g of hydrogen reacts with 20 g of oxygen to form water. The mass of water formed is				
	(1) 24 g	(2) 36 g	(3) 22.5 g	(4) 40 g		
Ans.	(3)					
2.	In the reaction,					
	$2SO_2 + O_2 \rightarrow 2SO_3$					
	-	when 1 mole of SO_2 and 1 mole of O_2 are made to react to completion				
	(1) All the oxygen will b (3) 0.5 mole of SQ is re-		(2) 1.0 mole of SO ₃ will (4) All of these	be produced		
Ans.	 (3) 0.5 mole ofd SO₂ is remained (4) All of these (2) 					
3.	Consider the following reaction sequence :					
	$S_8(s) + 8O_2(g) \rightarrow 8SO_2(g)$					
	$2SO_2(g) + O_2(g) \rightarrow 2$	-				
	How many grams of SO_3	are produced from 1 mole S	5 ₈ ?			
	(1) 1280 g	(2)960 g	(3) 640 g	(4) 320 g		
Ans.	(3)					
4.	One litre of CO_2 is passed	d over hot coke. The volum	e becomes 1.4 litre. The con	nposition of products is-		
	(1) 0.6 litre CO		(2) 0.8 litre CO_2			
	(3) 0.6 litre CO_2 and 0.8 lit	re CO	(4) None			
Ans.	(3)					
5.	The number of litres of ai	r required to burn 8 litres of	fC_2H_2 is approximately-			
	(1)40	(2) 60	(3)80	(4) 100		
Ans.	(4)					
6.	4 gms. of hydrogen are ig	gnited with 4 gms of oxygen	. The weight of water form	ed is -		
	(1) 0.5 gm	(2) 3.5 gm	(3) 4.5 gm	(4) 2.5 gm		
Ans.	(3)					
7.	For the reaction $2P + Q -$	\rightarrow R, 8 mol of P and excess	of Q will produce :			
	(1) 8 mol of R	$(2) 5 \mod of R$	$(3)4 \mod R$	(4) 13 mol of R		
Ans.	(3)					
8.		·	6 g of Mg. Calculate % yield	of Ti if 32 g of Ti is actually obtained		
	[At. wt. Ti = 48, Mg = 24]	[Hint: $\frac{358}{190} = 1.88$]				
	(1) 35.38%	(2) 66.6 %	(3) 100 %	(4) 60 %		
Ans.	(1)					
9.	What weights of P_4O_6 and O_2 .	$d P_4 O_{10}$ will be produced by	the combustion of $31g$ of P	in 32g of oxygen leaving no P_4 and		
	(1)2.75g, 219.5g	(2) 27.5g, 35.5g	(3) 55g, 71g	(4) 17.5g, 190.5g		
Ans.	(2)					
10.		How many mole of $Zn(FeS_2)$ can be made from 2 mole zinc, 3 mole iron and 5 mole sulphur.				
	(1)2 mole	(2) 3 mole	(3)4 mole	(4) 5 mole		
Ans.	(1)					

DPP-4

1.	If the weight of metal chloride is x gram containing y gram of metal, the equivalent weight of metal will be					
	(1) $E = \frac{x}{y} \times 35.5$	$(2) E = \frac{8(y-x)}{x}$	$(3) E = \frac{y}{(x-y)} \times 35.5$	$(4) E = \frac{8(x-y)}{y}$		
Ans.	(3)					
2.	0.5 gm of a base was com	0.5 gm of a base was completely neutralised by 100 ml. of 0.2 N acid. Equivalent weight of the base is -				
	(1)50	(2) 100	(3)25	(4) 125		
Ans.	(3)					
3.	1.0 gm of a metal combin	1.0 gm of a metal combines with 8.89 gms of Bromine. Equivalent weight of metal is nearly: (at.wt. of $Br = 80$)				
	(1)8	(2)9	(3)10	(4)7		
Ans.	(2)					
4.	0.84 gms. of metal hydride contains 0.04 gms of hydrogen. The equivalent wt. of metal is					
	(1)80	(2)40	(3)20	(4) 60		
Ans.	(3)					
5.	The weights of two elements which combine with one another are in the ratio of their :-					
	(1) At wt.	(2) Mol. wt.	(3) Eq. wt.	(4) None		
Ans.	(3)					
6.	The oxide of a metal has 32% oxygen. It's equivalent weight would be:-					
	(1)34	(2)32	(3)17	(4)16		
Ans.	(3)					
7.	Specific heat of a solid element is 0.1Cal/gm °C and its equivalent weight is 31.8. Its exact atomic weight is -					
	(1)31.8	(2)63.6	(3)318	(4)95.4		
Ans.	(2)					
8.	Relative density of a vola	tile substance with respect	to CH_4 is 4 ($CH_4 = 1$). Its me	olecular weight would be –		
	(1)8	(2) 32	(3)64	(4) 128		
Ans.	(3)					
9.	5 litre of gas at STP weig	hs 6.25 gms. What is its gran	m molecular weight?			
	(1)1.25	(2) 14	(3)28	(4) 56		
Ans.	(3)					
10.	Equivalent weight of biva	alent metal is 32.7. Molecula	ar weight of its chloride is :-	-		
	(1)68.2	(2) 103.7	(3) 136.4	(4) 166.3		
Ans.	(3)					
11.		ns, two gases have the same		ey must		
	(1) be noble gases (2) have equal volumes					
	(3) have a volume of 22.4 dm ³ each (4) have an equal number of			r of atoms		
Ans.	(2)					
12.	3g of a hydrocarbon on combustion in excess of oxygen produces 8.8 g of CO_2 and 5.4 g of H_2O . The data illustrates the law of :					
	(1) conservation of mass					
	(3) constant proportions		(4) none of these			
Ans.	(1)					