Basic Exercise

1.	Red and yellow phosphorus are :				
	(1) Allotropes	(2) Isobars	(3) Isomers	(4) Isotopes	
Ans.	(1)				
2.	Phosphorus is kept in	:			
	(1) Kerosene oil	(2) Alcohol	(3) Water	(4) Ammonia	
Ans.	(3)				

Nitrogen Family

3.	Nitrogen reacts with ca	lcium carbide to give -						
	(1) Calcium nitride	(2) Calcium c	eyanide	(3) Calcium cy	anamide	(4) Calcium nitrate		
Ans.	(3)							
4.	Which is less hydrolys	ied :						
	$(1) PCl_3$	$(2) \operatorname{NCl}_{3}$	(3)As	sCl ₃	(4) SbC	21 ₃		
Ans.	(4)							
5.	P_2O_5 is used extensively	as a :						
	(1) Dehydrating agent	(2) Catalytic agent	(3) Re	educing agent	(4) Pre	servative		
Ans.	(1)							
6.	PH ₃ produces smoky rings when it comes in contact with air. This is because :							
	(1) It is inflamable	(1) It is inflamable			(2) It combines with water vapours			
	(3) It combines with nitr	ogen	(4) It	contains impurity	of P ₂ H ₄			
Ans.	s. (4)							
7.	Which of the following is the correct statement for PH ₃							
	(1) It is less basic than NH_3			(2) It is less poisonous than NH_3				
	(3) Bond angle of $PH_3 > NH_3$		(4) It does not show reducing properties					
Ans.	(1)							
8.	Ammonia reacts with ex	cess of chlorine to form	:					
	(1) N_2 and NH_4Cl	(2) NCl_3 and HCl	(3) N	H ₄ Cl and NCl ₃	$(4) N_2$	and HCl		
Ans.	(2)							
9.	Concentrated nitric acid	l reacts with iodine to give	/e:-					
	(1) HI	(2) HOI	(3) H0	DIO ₂	(4) HO	IO ₃		
Ans.	(3)							
10.	Each of the following is true of white and red phosphorus except that they							
	(1) Are both soluble in	CS_2	(2) C	(2) Can be oxidised by heating in air				
	(3) Consist of the same	kind of atoms	(4) C	(4) Can be converted into one another				
Ans.	(1)							
11.	A gas which is used as	anaesthetic in dental sur	gery is :					
	$(1)N_2$ (2)CC)	$(3) N_2$	O_2	(4) NH	¹ 3		
Ans.	(3)							
12.	The wrong statement al	bout NH ₃ is :						
	(1) It is oxidised with or	(1) It is oxidised with oxygen at 700°C in the presence of platinum						
	(2) It gives black precip	tate with calomel (Hg ₂ Cl ₂	2)					
	(3) It can be dried by P_2	O_5 , H_2SO_4 and $CaCl_2$						
	(4) It gives white fumes	with HCl						

13.	Which one of the follo	wing acid possesses oxidi	sing, reducing and comple	ex forming properties ?
	(1) HNO ₃	(2)HCl	(3) H ₂ SO ₄	(4) HNO ₂
Ans.	(4)		2 4	×
14.	NO ₂ is formed when			
	(1) Cu reacts with cond	2. HNO,	(2) Zn reacts with con-	c. HNO,
	(3) $Pb(NO_3)$, is heated	3	(4) All	3
Ans.	(4)			
15.		g does not produce NO ₂ g	as with conc. HNO, ?	
	(1) Cu	(2) I,	(3) Ag	(4) Au
Ans.	(4)			
Oxyg	en Family			
16.	SO_2 can acts as -			
	(1) Reducing agent	(2) Oxidising agent	(3) Bleaching agent	(4) All
Ans.	(4)			
17.		owing reactions cannot be	used for the preparation of	the halogen acid?
	(1) 2 KBr + H_2 SO ₄ (Conc.	•	1 1	C
	(2) $2NaCl + H_{s}SO_{4}(Conc$	2 .		
	(3) NaHSO ₄ + NaCl \rightarrow	4		
	(4) CaF_2 + H ₂ SO ₄ (conc.)	2 4		
Ans.	(1) (1)	, , , , , , , , , , , , , , , , , , , ,		
18.	Ozone acts as			
	(1) Oxidising agent	(2) Reducing agent	(3) Bleaching agent	(4)All
Ans.	(4)			
19.	A black sulphide when	treated with ozone becomes	s white. The white compour	nd is :
	(1) ZnSO ₄	(2) CaSO ₄	(3)BaSO ₄	(4) $PbSO_4$
Ans.	(4)			
20.	H ₂ S gas changes a filter	paper dipped in lead aceta	te solution into :	
	(1) Black	(2) Red	(3) Green	(4) Yellow
Ans.	(1)			
21.	The number of S–S bond	ds in sulphur trioxide trimer	$(S_{3}O_{9})$ is:	
	(1) Three	(2) Two	(3) One	(4) Zero
Ans.	(4)			
22.	Dry bleaching is done b	у:		
	(1)Cl ₂	$(2) \operatorname{SO}_2$	$(3)O_{3}$	(4) None
Ans.	(3)			
23.	When KBr is treated w	with conc. H_2SO_4 reddish but	rown gas is evolved. The g	as is :
	$(1) \operatorname{Br}_2$	$(2) \operatorname{Br}_2 + \operatorname{HBr}$	$(3)NO_2$	$(4) \operatorname{H}_2\operatorname{O}_2$
Ans.	(1)			
24.	-	-	luction while the other by	
	(1) CO and CO_2	(2) H_2S and Br_2	(3) SO_2 and Cl_2	(4) NH_3 and SO_3
Ans.	(3)			
25.	On addition of conc. H_2 S out. This is because :-	SO_4 to a chloride salt, colour	rless fumes are evolved but i	n case of iodide salt, violet fumes come
	(1) H_2SO_4 reduces HI to	I ₂	(2) HI is of violet colour	ſ
	(3) HI gets oxidised to I	2	(4) HI changes to HIO_3	

26.	Which of the follow	ring is responsible for turr	ning starch-iodide paper bl	lue when it is brought in contact with O ₃ ?			
	(1) Liberation of iod		(2) Liberation of				
	(3) Formation of alka	ali	(4) Reaction of oz	zone with litmus paper			
Ans.	(1)						
27.	Which one of the following property is not correct for ozone ?						
	(1) It oxidises lead s	ulphide	(2) It oxidises por	tassium iodide			
	(3) It oxidises mercu	iry	(4) It cannot act a	as bleaching agent in dry state			
Ans.	(4)						
28.	By which of the foll	owing SO ₂ is formed ?					
	(1) Reaction of dilu	ite H_2SO_4 with O_2					
	(2) Heating $Fe_2(SO)$	$(4)_{3}$					
	(3) Reaction of con	centrated H_2SO_4 with Cu					
	(4) None						
Ans.	(3)						
Halog	en Family & Iner	t Gas					
29.	Select the correct sta	atement(s) from the follow	ving -				
	(1) Fluorine displa	ces other halogens from t	he corresponding halides				
	(2) Fluorine reacts	slowly with halogens					
	(3) Fluorine does r	not decompose water					
	(4) Except fluorine	, other halogens directly c	combine with carbon				
Ans.	(1)						
30.	Which one of the fo	llowing oxy acid of fluori	ne exists?				
	(1) HOF	(2) HFO ₃	(3) HFO ₄	(4) HFO_2			
Ans.	(1)						
31.		ving statements is correct	?				
	(1) All form $HOXO_3$			and bromine form oxyacids			
	(3) All halogens for	n oxyacids	(4) Only iodine for	orms oxyacid			
Ans.	(3)						
32.		ring is a false statement?					
	(1) Halogens are str						
		nly-1 oxidation state					
		om intermolecular hydrog	ne bonding				
	(4) Fluorine is highl	yreactive					
Ans.	(2)						
33.		bes not give a precipitate	5				
	$(1) F^{-}$	(2) Cl-	(3) Br-	(4) I [_]			
Ans.	(1)						
34.	Volatile nature of ha	-	2				
		ules are bonded by strong	-				
		ules are bonded by electr					
	(3) The forces exis	ting between the discrete	molecule are only weak v	ander Waals force.			
	(4) Halogen molec	ules are more reactive					
Ans.	(3)						

35.	Iodine gas turns starch	iodide paper :						
	(1)Blue	(2) Red	(3) Colourless	(4) Yellow				
Ans.	(1)							
36.	BrF_5 is a :							
	(1) Interhalogen compo	und	(2) Pseudohalogen comp	oound				
	(3) Both the above		(4) None of the above					
Ans.	(1)							
37.	Chlorine is liberated wh							
	(1) KMnO ₄ + NaCl	(2) $K_2 Cr_2 O_7 + MnO_2$	$(3) \operatorname{Pb(NO_3)}_2 + \operatorname{MnO}_2$	$(4) \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} + \mathrm{CuCl}$				
Ans.	(1)							
38.	Which one of the follow	ving halogen liberates oxyge	m on reacting with H_2O					
	$(1) I_2$	$(2) \operatorname{Cl}_{2}$	$(3) \operatorname{Br}_{2}$	$(4) F_2$				
Ans.	(4)							
39.		gases can be dried by conce	entrated H_2SO_4 ?					
	(1)HCl	(2) HBr	(3)HI	$(4) \operatorname{H_2S}$				
Ans.	(1)							
40.	Helium is added to oxy	ygen used by deep sea dive	rs because :					
	(1) It is less soluble in	blood than nitrogen under	high pressure					
	(2) It is lighter than nitrogen							
	(3) It is readily miscible with oxygen							
	(4) It is less poisonous than nitrogen							
Ans.	(1)							
41.	Which of the following	; is not correct :						
	(1) XeO ₃ has four σ an	d four π bonds						
	(2) The hybridization of							
		, the occurrence of argon is	highest in air					
	(4) Liquid helium is us	_						
Ans.	(1)	ed us el yogenie ilquid						
42.	XeF_{2} reacts with SbF_{2} t	o form :						
72.	2 5		(2) $V_{2} = [D_{1}E_{1}]^{+}$	(A) V ₂ E				
A mg		$(2) [XeF_3]^{-} [SbF_4]^{-}$	(5) $\operatorname{Ae}\left[\operatorname{Ftr}_{6}\right]$	(4) XeF_4				
Ans. 43.	(1) Which factor is most re	sponsible for the increase ir	boiling points of poble gas	as from Ha to Va ?				
43.	(1) decrease in I.E	sponsible for the merease h	•••	es nom ne to xe ?				
	(1) decrease in 1.1.2 (3) decrease in polarisal	nility	(2) Monoatomic nature					
Ans.	(3) decrease in polarisat	Jiity	(4) increase in polarisabil	iity				
Alls. 44.		not be formed by xenon is						
	(1) XeO_3	(2) XeF_4	(3) XeCl ₄	(4) XeO ₂ F ₂				
Ans.	(1) AcO ₃ (3)	(2) 2001 4	(<i>J)</i> ² 1 (4)	$(\tau)^{2} \cdots ^{2} 2^{1} 2$				
45.		drous HF to give a good cor	ducting solution which cor	ntains				
		(2) HF_2^- and XeF_5^+ ions		(4) none of these				
Ans.	(1) 11 und 700 7 1011 (1)	(-) $(-)$	(-)	(.) here of these				
4 111,70	(-)							

46.	6. SbF ₅ reacts with XeF_4 to form an adduct. The shapes of cation and anion in the adduct are res				
	(1) square planar, trigonal bipyramidal		(2) T-shaped, octahedral		
	(3) square pyram	idal, octahedral	(4) square planar	; octahedral	
Ans.	(2)				
47.	Which of the following noble gas does not form clathrate compound ?				
	(1)Kr	(2) Ne	(3) Xe	(4)Ar	
Ans.	(2)				

Analytical Exercise

v	tical Exci cisc						
1.	-		on with an excess of water gives				
	(1) Two moles of ammonia(3) One mole of ammonia		(2) One mole of nitric acid				
			(4) Two moles of nitric a	cid			
Ans.	(1)						
2.	-	oxides of nitrogen is solid		(0			
	$(1)NO_2$	$(2) N_2 O$	$(3) N_2 O_3$	$(4) N_2 O_5$			
Ans.	(4)						
3.	Which has no S-S bond		(2) 2 2 2				
	$(1) S_2 O_4^{2-}$	(2) $S_2 O_5^{-2}$	(3) $S_2 O_3^{-2}$	$(4) S_2 O_7^{-2}$			
Ans.	(4)						
4.			yields a basic as well as an				
	$(1) \mathrm{NH}_4 \mathrm{NO}_3$	(2) NaNO ₃	(3) KClO ₃	(4) CaCO ₃			
Ans.	(4)						
5.	Which of the following s	•					
		weaker than the single P–P	bond				
		 (2) N₂O₄ has two resonance structures (3) The stability of hydrides increases from NH₃ to BiH₃ in group 15 of the periodic table 					
	(4) Nitrogen cannot form	BIR ₃ in group 15 of the pe					
Ans.	(4) Nitrogen cannot form (3)	i an-ph bolia					
6.	Which one of the followi	ng reacts with glass ?					
0.			(2) UNIO	$(A) V C_r O$			
Ans.	(1) $H_2 SO_4$ (2)	(2) HF	(3) HNO ₃	$(4) \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$			
		NC1 VE VDr substienes					
7.	-	h KCl, KF, KBr sulutions :					
	(1) Cl_2 and Br_2 are evolve		(2) Cl_2 is evolved				
	(3) Cl_2 , Br_2 , F_2 are evolved	1	(4) None of these				
Ans.	(4)						
8.	Ammonia can be dried by						
	(1) Conc. H_2SO_4	$(2) P_4 O_{10}$	(3)CaO	(4) Anhydrous $CaCl_2$			
Ans.	(3) Which of the following :	raduat is not formed by th	e reaction of PH_4 I and KC	<u>)</u> П ·			
9.	(1) KI	(2) PH ₃	(3) H ₂ O	$(4) P_2 O_3$			
Ans.	(1) Ki (4)	$(2)^{11}$	(5)1120	$(4)1_2O_3$			
10.		ch does not liberate N ₂ gas	s on heating :-				
	(1) NaNO ₂ + NH ₄ Cl	$(2) Ba(N_3)_2$	$(3) O_3 + NO$	$(4) (NH_4)_2 Cr_2 O_7$			
Ans.	(3)	\$ 32		4221			
11.	Hypo is used in photogra	aphy because of it					
	(1) Reducing behaviour		(2) Oxidising behaviour				
	(3) Complex forming beha	viour	(4) Reaction with light				
Ans.	(3)						
12.	Which of the following is	incorrect?					
	$(1) O_{2}$ is weaker oxidant t		(2) O_2 has small bond length than O_3				
	(3) Both O_2 and O_3 are part	5	(4) O_3 is angular in shape				
Ans.	(3)	-	, , , 1				

13.	 Which of the following statements regarding sulphur is incorrect ? (1) At 600°C the gas mainly consists of S₂ molecules (2) The oxidation state of sulphur is never less than +4 in its compounds (3) S₂ molecule is paramagnetic 						
	(4) The vapour at 200°C consists mostly of S_8 ring	<u>z</u> S					
Ans.	(2)						
14.	The correct order of acidic strength is :						
	$(1) Cl_2O_7 > SO_2 > P_4O_{10}$	$(2) \mathrm{CO}_2 > \mathrm{N}_2 \mathrm{O}_5 > \mathrm{SO}_3$					
	$(3) \operatorname{Na_2O} > \operatorname{MgO} > \operatorname{Al_2O_3}$	(4) $K_2O > CaO > MgO$					
Ans.	(1)						
15.	Which of the following property is not related with	PH ₃					
	(1) It is a colourless gas having rotten fish smell						
	(2) It is non poisonous						
	(3) It is slightly soluble in water						
	(4) It is a weak Lewis base						
Ans.	(1)						
16.	Which of the following is a mixed anhydride						
	(1) $P_4 O_{10}$ (2) SO_3	(3)Cl ₂ O ₆	$(4) \operatorname{SO}_2$				
Ans.	(3)						
17.	In which of the following phosphorous atoms are at	t the corner of tetrahydron					
	(1) P_4 (2) P_4O_6	$(3) P_4 O_{10}$	(4) All of these				
Ans.	(1)						
18.	In which of the following option product gas X and	Y (other than water vapour)) are same ?				
	(1) $Mg_2C_3 + H_2O \rightarrow X$; $Al_4C_3 + H_2O \rightarrow Y$						
	(2) $\mathrm{NH}_4\mathrm{NO}_3 \xrightarrow{\Delta} X$; $(\mathrm{NH}_4)_2\mathrm{Cr}_2\mathrm{O}_7 \xrightarrow{\Delta} Y$						
	(3) $\operatorname{NH}_4\operatorname{Cl} \xrightarrow{\Delta} X$; $\operatorname{UREA} \xrightarrow{\operatorname{H}_2\operatorname{O}} Y$						
	(4) $Zn + dil. HNO_3 X; Ag + dil. HNO_3 \rightarrow Y$						
Ans.	(3)						
19.	Which of the following statements are correct for Se	O_2 gas ?					
	(1) It acts as bleaching agent in moist conditions.						
	(2) It's molecule has linear geometry						
	(3) It's dilute solution is used as lubricant						
	(4) It can be prepared by the reaction of dilute H_2SC	D_4 with metal sulphide					
Ans.	(1)						
20.	Which of the following is the wrong statement?						
	(1) ONCl and ONO^- are not isoelectronic.	(2) O_3 molecule is bent					
	(3) Ozone is violet-black in solid state	(4) Ozone is diamagnetic	gas.				
Ans.	(1)						
21.	The pair in which phosphorous atoms have a formal	oxidation state of +3 is :					
	(1) Pyrophosphorous and hypophosphoric acids						
	(2) Orthophosphorous and hypophosphoric acids						
	(3) Pyrophosphorous and pyrophosphoric acids						
	(4) Orthophosphorous and pyrophosphorous acids						

22.	The reaction of zinc with	n dilute and concentrated n	itric acid, respectively, pro-	duces:				
	(1) NO, and NO	(2) NO and N_2O	(3) NO ₂ and N ₂ O	(4) N_2O and NO_2				
Ans.	(2)	-	2 2					
23.	The geometry with resp	pect to the central atom of	the following molecules	are				
	$N(SiH_3)_3$, Me_3N , $(SiH_3)_3$	$N(SiH_3)_3$, Me_3N , $(SiH_3)_3P$						
	(1) planar, pyramidal, pl	anar	(2) planar, pyramidal, p	yramidal				
	(3) pyramidal, pyramidal	, pyramidal	(4) pyramidal, planar, p	yramidal				
Ans.	(2)							
24.	In which of the following to back bonding	ng compounds, observed	bond angle is found to b	e greater than expected, but not due				
	$(1) \operatorname{N}(\operatorname{SiH}_3)_3$	(2) $O(CH_3)_2$	$(3) \operatorname{O(SiH}_{3})_{2}$	(4) All of these				
Ans.	(2)							
25.	-	halids cannot be hydroly						
	(i) TeF ₆	(ii) SF_6	(iii) NCl ₃	(iv) NF ₃				
	Choose the correct cod							
	(1) iii and iv	(2) i, ii and iii	(3) i, ii and iv	(4) ii and iv				
Ans.	(4)			X E O				
26.		is an uncommon hydroly	2	1				
A ma	(1) Xe	(2) XeO_3	(3) HF	$(4) O_2$				
Ans. 27.	(2) Consider the ever eaided	UCIO soria hara valua of	n is 1 to 1. Thon incorroo	t statement regarding these ever aside				
21.	is	ncio _n sens, here value of	II IS I to 4. Then incorrec	t statement regarding these oxy acids				
		oxy acids increases with i	increasing value of n.					
	(2) oxidising power of	oxy acids increases with	decreasing value of n.					
	(3) thermal stability of	oxy acids decreases with	increasing value of n					
	(4) Cl–O bond order d	ecreases with decreasing	value of n					
Ans.	(3)							
28.	$2P \xrightarrow{-H_2O} O \xrightarrow{-[O]} R$							
	If P is parent phosphor	ic acid then according to	given information the inc	correct statement is				
		R is hypo form of given						
	(2) Number of H-atom	s present in each given or	xy acid is equal to its bas	sicity				
	(3) In P, Q, R oxy acid	s, oxidation state of centra	al atom remains same					
	(4) All given oxy acids	s have $p\pi$ -d π bond(s) in the	neir structure					
Ans.	(3)							
29.	On heating, ammonium	dichromate and barium as	zide separately, we get :-					
	(1) N_2 with ammonium	dichromate and NO with	barium azide					
	-	m dichromate and NO ₂ wit						
	-	m dichromate and NO with	n barium azide					
	(4) N_2 in both cases							
Ans.	(4)							
30.	$P-oxide \xrightarrow{H_2O} A \xrightarrow{H_2}$	$\xrightarrow{\text{sating}} \underbrace{B}_{\text{P-H bond}} + \underbrace{C}_{\text{Acid}} \xrightarrow{200^{\circ}\text{C}} \rightarrow$	D					
	Incorrect statement is :-							
	(1) Gas B is PH ₃		(2) D is pyrophosphor	ic acid				
	(3) A is H_3PO_3		(4) D on strong heating	ng gives P_2O_3				
Ans.	(4)							

8

31. Which of the following statements is not correct when a mixture of NaCl and $K_2Cr_2O_7$ is gently warmed with conc. H_2SO_4 :

(1) A deep red vapour is evolved

- (2) The vapour when passed into NaOH solution gives a yellow solution of Na_2CrO_4
- (3) Chlorine gas is evolved

(4) Chromyl chloride is formed

- Ans. (3)
- 32. Which of the following does not decolourise iodine ? (1) Na₂SO₃ (2) Na₂S₂O₃ (3) NaCl (4) NaOH Ans. (3)

Previous Year Questions

					Prev	vious Yea	ar Questions	
1.	Match	the inte	rhalogen	compou	nds of Co	olumn I wi	th the geometry in colum	n II and assign the correct code
		Colun	nn I				Column II	[NEET- 2017]
	(a)	XX'				(i)	T-shape	
	(b)) XX' ₃				(ii)	Pentagonal bipyramidal	
	(c)	XX'5				(iii)	Linear	
	(d)) XX' ₇				(iv)) Square-pyramidal	
						(v)	Tetrahedral	
	Code :							
		(a)	(b)	(c)	(d)			
	(1)	(iii)	(iv)	(i)	(ii)			
	(2)	(iii)	(i)	(iv)	(i)			
	(3)	(v)	(iv)	(iii)	(ii)			
	(4)	(iv)	(iii)	(ii)	(i)			
Ans.	(2)							
2.					5	it produce		[NEET - 2016]
		$(NO_3)_2 a$	and N ₂ O	(2) Ci	$u(NO_3)_2$ at	nd NO_2	(3) $Cu(NO_3)_2$ and NO	(4) $Cu(NO_3)_2$ NO and NO_2
Ans.	(2)	·				.1		
3.					-	ven acids f	? nonic acids is a monoprot	[NEET-2016]
		-		-			osphonic acid is a diprotic	
		-	iprotic ac	-		white pite	sphonic dela is a aprotic	
			iprotic a					
Ans.	(1) D(, in are ti	ipione a	cius				
4.		the foll	lowing t	he correc	et order of	f acidity is		[NEET-2016]
	-	-	$ClO_2 < HC$				(2) $HClO_3 < HClO_4 < HClO_4$	
	(3) HC	10 < HC	$ClO_2 < HO$	ClO3 < H0	ClO ₄		(4) $HClO_2 < HClO < HC$	$ClO_3 < HClO_4$
Ans.	(3)							
5.	Which	of the f	ollowing	orders is	s correct f	for the bon	d dissociation enthalpy of	f halogen molecules [NEET- 2016]
	(1) F ₂ >	$> Cl_2 > H$	$\operatorname{Br}_2 > \operatorname{I}_2$	(2) I ₂	$> \operatorname{Br}_2 > C$	$\mathrm{Pl}_2 > \mathrm{F}_2$	(3) $Cl_2 > Br_2 > F_2 > I_2$	(4) $\operatorname{Br}_2 > \operatorname{I}_2 > \operatorname{F}_2 > \operatorname{Cl}_2$
Ans.	(3)							
6.		-	pounds gi	ven in Co	olumn - I v	with the hy	bridisation and shape give	n in Column - II and mark the correct
	option.					Colum	. П	[NEET-2016]
	Colum							
	(a) (b)	XeF ₆				(i) (ii)	Distorted octahedral	
	(b)	XeO ₃				(ii)	Square planar	
	(c) (d)	XeOF	4			(iii) (iv)	Pyramidal Square pyramidal	
	(d)	XeF_4			(4)	(iv)	Square pyrannual	
	(1)	(a) (iv)	(b)	(c) (ii)	(d) (iii)			
	(1)	(1V)	(i)	(11)	(III)			

(2)

(3)

(4)

(i)

(i)

(iv)

(iii)

(ii)

(iii)

(ii)

(iii)

(ii)

(iv)

(iv)

(i)

7.	The variation of the boili	ng points of the hydrogen h	alides is in the order HF > H	II > HBr > HCl.			
	What explains the higher	r boiling point of hydrogen	fluoride ?	[Re-AIPMT-2015]			
	(1) The bond energy of	3.					
	(2) The effect of nuclear shielding is much reduced in fluorine which polarises the HF molecul						
		y of fluorine is much higher		the group.			
		rogen bonding between HF	molecules.				
Ans.	(4)						
8.		given below is incorrect?		[Re-AIPMT-2015]			
	(1) ONF is isoelectronic v	2	(2) OF_2 is an oxide of fluo	rine			
	(3) Cl_2O_7 is an anhydride	of perchloric acid	(4) O_3 molecule is bent				
Ans.	(2)						
9.	Strong reducing behavior			[Re-AIPMT-2015]			
	(1) High oxidation stat						
		H groups and one P – H b					
	(3) Presence of one $-O$	H group and two P – H bo	onds				
	(4) High electron gain	enthalpy of phosphorus					
Ans.	(3)						
10.	Which of the following a	allotrope of phosphorous ha	s tetrahedral discrete unit?	[AIIMS-2015]			
	(1) Red black P	(2) White P	(3) Red P	(4) Red, Black & white P			
Ans.	(2)						
11.	Which one of the following	ng element can shown +7 or	xidation state with fluorine	[AIIMS-2015]			
	(1)I	(2) Mn	(3)F	(4) Br			
Ans.	(1)						
12.	S-S linkage absent in			[AIIMS-2015]			
	$(1) \operatorname{H}_2 \operatorname{S}_2 \operatorname{O}_7$	$(2) \operatorname{H}_2 \operatorname{S}_2 \operatorname{O}_3$	$(3) H_2 S_2 O_5$	$(4) \operatorname{H}_2 \operatorname{S}_2 \operatorname{O}_6$			
Ans.	(1)						
13.	-	sodium phosphate in presen	•	llow ppt, than X is [AIIMS-2015]			
	$(1) \text{MnO}_4^{2-}$	(2) MoCl ₄	(3) MoO_4^{2-}	$(4) AlO_2^-$			
Ans.	(3)						
14.	Lowest oxidation state of			[AIIMS-2015]			
	(1) H ₃ PO ₂	$(2) \operatorname{H_{3}PO}_{4}$	$(3) \mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$	$(4) \operatorname{H_{3}PO_{3}}$			
Ans.	(1)						
15.	Rhombic sulphur is solut			[AIIMS-2014]			
	(1)CS ₂	(2) Benzene	(3) Alcohol	(4) Ether			
Ans.	(1)	1 0 1	1 (101)				
16.	•	alogen form only one oxyac	· · · · · ·	[AIIMS-2014]			
	(1)F	(2)Br	(3) I	(4) Cl			
Ans.	(1)						
17.		in aqueous solutions incre		[AIPMT-2014]			
		(2) $H_2Se < H_2S < H_2Te$	$(3) H_2 Te < H_2 S < H_2 Se$	$(4) H_2 Se < H_2 Te < H_2 S$			
Ans.	(1)						
18.	Bleaching powder does			[AIIMS-2013]			
	(1)CaCl ₂	$(2) \operatorname{Ca(OH)}_2$	$(3) \operatorname{Ca(OCl)}_2$	$(4) \operatorname{Ca}(\operatorname{ClO}_3)_2$			
Ans.	(4)						

19.	Which is the strongest	acid in the following?			[NEET-2013]		
	(1) HClO ₃	(2) HClO ₄	(3) H ₂ SO ₃	(4) H ₂ SO ₄			
Ans.	(2)						
20.	and causes great damag	Roasting of sulphides give the gas X as by product. This is a colourless gas with choking sme and causes great damages to respiratory organs as a result of acid rain. Its aqueous solution is acidic agent and its acid has never been isolated. The gas X is					
	(1) SO ₂	(2) CO ₂	$(3) SO_3$	$(4) H_2 S$			
Ans.	(1)						
21.	XeF ₂ is isostructural wi	th			[NEET-2013]		
	(1) ICI_2^-	(2) $SbCl_3$	(3)BaCl ₂	(4) TeF_2			
Ans.	(1)						
22.	Which of the following	does not give oxygen on he	ating ?		[NEET-2013]		
	(1) $Zn(ClO_3)_2$	$(2) \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$	$(3)(NH_4)_2Cr_2O_7$	(4) KClO ₃			
Ans.	(3)						
23.	Which of the following	g species contains three bo	nd pairs and one lone pa	ir around the cen	tral atom ?		
				[AIP]	MT(Prelims) - 2012]		
	(1) NH_2^{-}	(2) PCl_3	$(3) H_2O$	$(4) BF_{3}$			
Ans.	(2)						
24.	When Cl_2 gas reacts with from	h hot and concentrated sodiu	Im hydroxide solution, the		of chlorine changes MT(Prelims) - 2012]		
	(1) Zero to -1 and zero to	to + 3	(2) Zero to +1 and zero t	to – 3			
	(3) Zero to $+1$ and zero	to – 5	(4) Zero to -1 and zero t	o + 5			
Ans.	(4)						
25.	A mixture of potassium of maximum change in the	chlorate, oxalic acid and sulp oxidation number ?	huric acid is heated. During		n element undergoes MT(Prelims) - 2012]		
	(1)Cl	(2) C	(3) S	(4) H			
Ans.	(1)						
26.	Sulphur trioxide can be	obtained by which of the fol	lowing reaction	[AIPN	MT(Prelims) - 2012]		
	$(1) \mathrm{S} + \mathrm{H}_2 \mathrm{SO}_4 \xrightarrow{\Delta} $	$(2) \operatorname{H}_{2}\operatorname{SO}_{4} + \operatorname{PCl}_{5} \xrightarrow{\Delta} $	$(3) \operatorname{CaSO}_4 + C \xrightarrow{\Delta} $	(4) $\operatorname{Fe}_{2}(\operatorname{SO}_{4})_{3} =$	$\xrightarrow{\Delta}$		
Ans.	(4)						
27.	Which of the following	statements is not valid for c	oxoacids of phosphorus?	[AIPM	MT(Prelims) - 2012]		
	(1) All oxoacids contain	in tetrahedral four coordinat	ed phosphorus.				
	(2) All oxoacids contain at least one $P = O$ unit and one $P - OH$ group.						
	(3) Orthophosphoric a	cid is used in the manufactu	re of triple superphosphate	e .			
		cid is a diprotic acid.					
Ans.	(4)						
28.	In which of the followin it?	g arrangements the given se	equence in not strictly accord		ty indicated against MT(Prelims) - 2012]		
		HI: Increasing acidic strengt	-h		vii(riennis)-2012j		
		< H,Te : Increasing actual strengt					
	2 2 2	< SbH ₃ : Increasing acidic ch					
	5 5 5	$< PbO_2$: Increasing oxidising					
	$(1) CO_2 OO_2 OO_2 \\ (2) OO_2 OO_2 \\ (3) OO_2 \\ (4) OO_2 \\ (5) OO$	100_2 . Increasing oxidising	5 POWOI				

Ans. (2)

29.	The correct order of increasing bond angles in the following species are			[AIPMT(Prelims) - 2010]		
	$(1) \operatorname{Cl}_2 O < \operatorname{ClO}_2 < \operatorname{ClO}_2^-$	$(2) \operatorname{ClO}_2 < \operatorname{Cl}_2 O < \operatorname{ClO}_2^-$	$(3) \operatorname{Cl}_2 O < \operatorname{ClO}_2^{-} < \operatorname{ClO}_2$	$(4) \operatorname{ClO}_2^{-} < \operatorname{Cl}_2 O < \operatorname{ClO}_2$		
Ans.	(3)					
30.	How many bridging oxy	gen atoms are present in P_4	O ₁₀ ?	[AIPMT(Mains) - 2010]		
	(1)6	(2)4	(3)2	(4)5		
Ans.	(1)					
31.	Among the following whether the second secon	nich is the strongest oxidising	ng agent ?	[AIPMT(Prelims) - 2009]		
	$(1) \operatorname{Br}_{2}$	$(2)I_{2}$	(3) Cl ₂	$(4) F_{2}$		
Ans.	(4)					
32.	Which one of the following orders correctly represents the increasing acid strengths of the given acids ? [AIPMT(Prelims) - 2007]					
	(1) HOClO ₃ < HOClO ₂ <	HOClO < HOCl	(2) HOCl $<$ HOClO $<$ HOClO ₂ $<$ HOClO ₃			
	(3) HOClO ₃ < HOCl < HOCl	OCIO ₃ < HOCIO ₂	(4) $HOClO_2 < HOClO_3 < $	HOCIO < HOCI		
Ans.	(2)					
33.	Which of the following i	s most basic oxide ?		[AIPMT(Prelims) - 2006]		
	$(1)Al_2O_3$	$(2) \operatorname{Sb}_2 \operatorname{O}_3$	(3)Bi ₂ O ₃	(4) SeO_2		
Ans.	(3)					
34.	Which of the following i	s not isostructural with SiC	l ₄ ?	[AIPMT(Prelims) - 2006]		
	(1) SCl ₄	$(2) SO_4^{2-}$	$(3) PO_4^{3-}$	$(4) \operatorname{NH}_{4}^{+}$		
Ans.	(1)					
35.		g molecules are all the bond	-	[AIPMT(Prelims) - 2006]		
	(1)ClF ₃	$(2) BF_{3}$	$(3)AlF_{3}$	$(4) \operatorname{NF}_{3}$		
Ans.	(1)					
36.	Which one of the follow	ing orders is not in accorda	nce with the property stated	-		
		o		[AIPMT(Prelims) - 2006]		
	(1) $F_2 > Cl_2 > Br_2 > I_2$: Oxidising power					
		F : Acidic property in water				
	(3) $F_2 > Cl_2 > Br_2 > I_2 : E$					
A	(4) $F_2 > Cl_2 > Br_2 > I_2$: Bond dissociation energy					
Ans.	(4) tion called union to N	Andinal End. Examp	0005			
	-	Iedical Ent. Exams. 2				
37.		annot be reduced to metal b	-			
A	(1) Fe_2O_3	(2)Al ₂ O ₃	(3) PbO	(4) ZnO		
Ans. 29	(2)	a compounds nitrogon orbi	hits high ast avidation state	9		
38.		g compounds, nitrogen exhi	-			
A	(1) N_3H	$(2) NH_2OH$	$(3) N_2 H_4$	$(4) \operatorname{NH}_3$		
Ans.	(1) Which of the following	lianta ana Dr. furur ru r	no colution containing 1	uida iona D		
39.		displaces Br_2 from an aqueo				
	(1) I_2	(2) I_3^{-}	(3) Cl ₂	(4) Cl ⁻		
Ans.	(3)					

40.	Repeated use of which one of the following fertilizers would increase the acidity of the soil?						
	(1) Ammonium sulphate		(3) Superphosphate of lime				
	(3) Urea		(4) Potassium nitrat	te			
Ans.	(1)						
41.	Which of the following oxides is most acidic ?						
	(1)As ₂ O ₅	(2) P_2O_5	$(3) N_2 O_5$	$(4) \operatorname{Sb}_2\operatorname{O}_5$			
Ans.	(3)						
42.	Which of the following phosphorus is the most reactive ?						
	(1) Scarlet phospho	Drus	(2) White phospho	rus			
	(3) Red phosphoru	S	(4) Violet phosphor	us			
Ans.	(2)						
43.	Nitrogen forms N ₂ , but phosphorus does not form P ₂ , however, it forms P ₄ , reason is						
	(1) Triple bond pr	(1) Triple bond present between phosphorus atom					
	(2) $p\pi$ - $p\pi$ bonding	(2) $p\pi$ - $p\pi$ bonding is weak					
	(3) $p\pi$ - $p\pi$ bonding is strong						
	(4) Multiples bond	ls form easily					
Ans.	(2)						
44.	Which reaction is r						
	$(1) 2KI + Br_2 \rightarrow 2K$	-	$(2) 2KBr + I_2 \rightarrow 2K$				
	$(3) 2KBr + Cl_2 \rightarrow 2H$	$\mathrm{KCl} + \mathrm{Br}_2$	$(4) 2H_2O + 2F_2 \rightarrow 4$	$HF + O_2$			
Ans.	(2)		2				
45.		Which one of the following statements is not true ?					
	(1) Among halide ions, iodide is the most powerful reducing agent						
	(2) Fluorine is the only halogen that does not show a variable oxidation state						
	(3) HOCl is a stronger acid than HOBr(4) HF is a stronger acid then HCl						
4		er acid then HCI					
Ans. 46.	(4) Ovidation states of	$P \text{ in } H_4 P_2 O_5, H_4 P_2 O_6, H_4 P_2$	O are respectively				
40.	(1)+3,+4,+5		(3)+5,+3,+4	(4)+5,+4,+3			
Ans.	(1) + 5, +4, +5	(2) + 5, + 5, + 4	(3) + 3, + 3, + 4	(4) - 3, -4, -3			
47.		e following species the cen	tral atom has the type of h	vbridisation which is not the same as that			
	In which one of the following species the central atom has the type of hybridisation which is not the same as that present in the other three ?						
	(1) PCl ₅	(2) SF_4	$(3)I_{3}^{-}$	(4) $SbCl_5^{2-}$			
Ans.	(4)						
48.	Least volatile hydro	ogen halide is					
	(1)HF	(2)HCl	(3) HBr	(4) HI			
Ans.	(1)						
49.	Which has ability to	o release bromine from KBr	?				
	(1) I ₂	$(2)Br_2$	$(3) F_2$	(4) SO ₂			
Ans.	(3)	-	··· -				
50.		ving has P–P linkage ?					
	$(1) H_4 P_2 O_6$	$(2) H_4 P_2 O_7$	(3) HPO ₃	$(4) H_{3}PO_{4}$			
Ans.	(1)	· · · · · · · ·	· · J				
	× /						

51.	Bonds present in	N ₂ O ₅ are		
	(1) Only covalent	t	(2) Only ionic	
	(3) Covalent and coordinate		(4) Covalent and ionic	
Ans.	(3)			
52.	Which of the following dissolves in water but does not gives any oxyacid solution ?			
	(1) SO ₂	(2) OF ₂	(3) SCl ₄	(4) SO ₃
Ans.	(2)			

ASSERTION & REASON QUESTIONS

These questions consist of two statements each, printed as *Assertion* and *Reason*. While answering these Questions you are required to choose any one of the following four responses.

- A. If both Assertion & Reason are True & the Reason is a correct explanation of the Assertion.
- B. If both Assertion & Reason are True but Reason is not a correct explanation of the Assertion.
- C. If Assertion is True but the Reason is False.
- D. If both Assertion & Reason are False.

1.	Assertion	:	Nitrogen is unreactive at room temperature but becomes reactive at elevated temperature (on heating or in the presence of catalysts).
	Reason	:	In nitrogen molecule, there is extensive delocalization of electrons.
Ans.	(C)		
2.	Assertion	:	H_3PO_2 can act as strong reducing agent and gives disproportionation reaction on heating.
	Reason	:	Due to presence of one –OH group and two P–H group, H_3PO_2 is a monobasic bronsted acid.
Ans.	(B)		
3.	Assertion	:	NO ₂ is paramagnetic in gaseous state but become diamagnetic solid on cooling.
	Reason	:	In gaseous state, NO_2 exists as monomer odd electron species but on cooling it dimerise to N_2O_4 .
Ans.	(A)		
4.	Assertion	:	In preparation of H_2SO_4 by contact process, SO_3 is not absorbed directly in water to from H_2SO_4 .
	Reason	:	SO ₃ forms acid fog with water which is difficult to condense.
Ans.	(A)		
5.	Assertion	:	NH ₃ can be dried by quick lime.
	Reason	:	Quick lime is also basic in nature and no reaction take place with NH ₃ .
Ans.	(A)		
6.	Assertion	:	Cl ₂ + H ₂ O reaction is a disproportionation reaction and HOCl is formed.
	Reason	:	Increase in pH will increase the yield of HOCl.
Ans.	(C)		
7.	Assertion	:	NO ₂ and ClO ₂ both being odd electron molecule dimerise.
	Reason	:	On dimerisation, NO_2 is converted to stable N_2O_4 molecule with even number of electrons.
Ans.	(B)		
8.	Assertion	:	All inter halogens are diamagnetic.
	Reason	:	AB type of interhalogen undergoes hydrolysis giving a halide ion derived from the smaller halogen and a hypohalite ion derived from the larger halogen.
Ans.	(B)		
9.	Assertion	:	Anhyd. calcium chloride cannot be used to dry NH ₃ .
	Reason	:	Anhyd. CaCl ₂ forms a adduct CaCl ₂ .6NH ₃ with NH ₃
Ans.	(A)		
10.	Assertion	:	The solubility of I ₂ increases in water in presence of KI.
	Reason	:	I_2 forms ionic polyhalide with KI.
Ans.	(A)		