PROBLEM SOLVING TECHNIQUES OF PHYSICAL CHEMISTRY FOR NEET

BY JITENDRA HIRWANI

REDOX REACTION

Plot No. 38, Near Union Bank of India, Rajeev Gandhi Nagar, Kota, Rajasthan – 324005 Mob.: 9214233303

BASIC EXERCISE

Oxidation Number

1.	In Ni(In Ni(CO) ₄ , the oxidation state of Ni is:							
	(1)4		(2)0		(3)2	(4)8			
Ans.	2								
2.	Of the	following elemen	ts, which on	e has the same o	oxidation state in all of its o	ompounds?			
	(1) Hy	drogen	(2) Fluori	ne	(3) Carbon	(4) Oxygen			
Ans.	2								
3.	Oxida	tion number of fluc	orine in OF ₂	is:					
	(1)+1		(2)+2		(3)-1	(4)-2			
Ans.	3								
4.	Phosp	horus has the oxid	ation state o	of +3 in:					
	(1) Or	tho phosphoric aci	d		(2) Phosphorus acid				
	(3) Me	eta phosphoric acid	i		(4) Pyrophosphoric acid				
Ans.	2								
5.	Oxida	tion state of oxyge	n in hydroge	en peroxide is					
	(1)-1		(2)+1		(3)0	(4)-2			
Ans.	1								
6.	The ox	The oxidation number of Pt in $[Pt(C_2H_4)Cl_3]^{-}$ is:							
	(1)+1		(2)+2		(3)+3	(4)+4			
Ans.	2								
7.	Which	Which one of the following statements is not correct?							
	(1) Ox	(1) Oxidation state of S in $(NH_4)_2S_2O_8$ is +6							
	(2) Ox	idation number of	Os in OsO ₄ i	s+8					
	(3) Ox	idation state of S in	n H ₂ SO ₅ is +	8					
				1					
	(4) Ox	idation number of	O in KO ₂ is-	$-\frac{1}{2}$					
				-					
Ans.	3								
8.		_	_	st oxidation nun	nber in combined state :				
	(1) Os		(2) Ru		(3) Both (1) and (2)	(4) None			
Ans.	3								
9.	Oxida	tion state of nitrog		, ,					
	74 5	Compound	(Oxidation State					
	(1)	[Co(NH ₃) ₅ Cl]Cl ₂		-3					
	(2)	NH ₂ OH		-1					
	(3)	$(N_2H_5)_2SO_4$		+2					
	(4)	Mg_3N_2		-3					
Ans.	3								
10.	Oxidat	tion number of C in	HNC is:						
	(1)+2		(2)-3		(3)+3	(4) Zero			
Anc	1								

1

III O	TO. I SINLINI	LOOACIIIIO							
11.	Oxida	ation nun	nber of Fe	e in Fe _{0.94}	O is:				
	(1) 200	0		(2) 20	(2) 200/94		(3) 94/200	(4) None	
Ans.	2								
12.	Oxida	Oxidation number of carbon in carbon suboxide (C ₃ O ₂) is:							
	$(1)\frac{+2}{3}$	2_		(2) $\frac{+}{3}$	43		(3)+4	$(4)\frac{-4}{3}$	
Ans.	2								
13.	Oxida	ation nur	nber of su	ılphur in	Na ₂ S ₂ O ₃	would be :	-		
	(1)+2			(2)+4			(3)–2	(4) 0	
Ans.	1								
14.	Two c	oxidation	states fo	r chlorin	e are four	d in the c	ompound:		
	(1) Ca	OCl ₂		(2) Kc	Cl		(3) KClO ₃	$(4) \operatorname{Cl}_2 \operatorname{O}_7$	
Ans.	1								
15.			pounds			O.N.			
	(A)	KMn	•		(1)	+4			
	(B)	Ni*(0	•		(2)	+7			
	(C)		NH ₃)Cl ₂]C		(3)	0			
	(D) $Na_2O_2^*$ (4) -1								
	The correct code for the O.N. of aster				d atom w	ould be :			
		A	В	C	D				
	(1)	1	2	3	4				
	(2)	4	3	2	1				
	(3)	2	3	1	4				
	(4)	4	. 1	2	3				
Ans.	1/2	vi dati ar	a stata of	nitraaan	vrill bo ob	tainad in	and of:		
16.	-1/3 oxidation state of nitrogen will be obtained in case of: (1) Ammonia (NH ₃) (2) Hydrazoic acid (N ₃ H)								
		tric oxide	,				(4) Nitrous oxide	3	
Ans.	2	oxide	5 (110)				(4) Nitrous oxide	(N ₂ O)	
17.	Compound YBa ₂ Cu ₃ O ₇ is a super conductor Y=+3]		luctor. T	he O.N. of the cop	per in the compound will be:[O.No. of				
	(1)+7			(2) ze	ro		(3)+2	(4)+1	
Ans.	1			() -			(-)		
18.	Theo	xidation	state of i	odine in	H ₄ IO ₆ is	:-			
	(1)+7			(2)-1			(3)+5	(4)+1	
Ans.	1						. /	· /	
19.	Amor	ngst the f	following	, identify	the specie	es with an	atom in + 6 oxidation	on state:-	
	(1) M	nO_4^-		(2) C	r(CN) ₆ ³⁻		(3) NiF_6^{2-}	$(4) \operatorname{CrO_2Cl_2}$	

20.	The oxidation state of $+ 1$ for phosphorous is found in:-								
	(1) Phosphorous acid (H ₃ PO ₃)					(2) Orthophosphor	(2) Orthophosphoric acid (H ₃ PO ₄)		
	(3) H	(3) Hypo phosphorous acid (H ₃ PO ₂)				(4) Hypo phosphor	ric acid $(H_4(P_2O_6)$		
Ans.	3								
21.		Match List - I (compound) with list - II (Oxidation below the list:-				ation state of N) and select	the correct answer using the	e codes given	
	List -	- I		List-	-II				
	(A) K	NO_3		(a)-	1/3				
	(B) H	NO_2		(b)-	3				
	(C) N	H ₄ Cl		(c) 0					
	(D) N	aN ₃		(d) +	3				
				(e) +	5				
	Code	s are:-							
		A	В	C	D				
	(1)	e	d	b	a				
	(2)	e	b	d	a				
	(3)	d	e	a	c				
	(4)	b	c	d	e				
Ans.	1								
22.	In wh	In which of the following pair oxidation number of Fe is same:-							
	(1) K	$(1) K_3 Fe(CN)_6, Fe_2O_3$				(2) Fe(CO) ₅ , Fe ₂ O ₃	$(2) \operatorname{Fe}(\operatorname{CO})_5, \operatorname{Fe}_2\operatorname{O}_3$		
	(3) Fe ₂ O ₃ , FeO				(4) Fe ₂ $(SO_4)_3$, K ₄ Fe				
Ans.	1	2 3				21 43 4			
23.	In wh	ich of th	e followir	ng compo	unds of Cr, the	e oxidation number of Cr is	not +6 :-		
	(1) Cr	(1) CrO ₃				$(2) \operatorname{CrO}_2 \operatorname{Cl}_2$			
	(3) Cr	,O ₃				(4) K2Cr2O7			
Ans.	3					2 2 ,			
24.	Oxida	tion state	e of cobalt	in [Co(N	H ₃) ₄ (H ₂ O)Cl]S	SO_4 is			
	(1)0			(2)+4		(3)–2	(4)+3		
Ans.	4								
25.	Oxida	ition nun	nber of 'N	' in N ₃ H (hydrazoic acid	f) is :-			
				J			2		
	$(1)-\frac{1}{2}$	<u>1</u>		(2)-3	3	(3)+3	$(4)+\frac{2}{3}$		
	•	,					3		
Ans.	1		1 0						
26.			number of		om in H ₃ AsO ₄ i		(A) . 5		
	(1)-1			(2)-3	3	(3)+3	(4)+5		
Ans.	4		. /****			077			
27.		ostance N	Mg(HXO ₃		dation numbe		(1) . (
	(1)0			(2)+2	2	(3)+3	(4)+4		
Ans.	3								

28.	The oxidation number of phosphorus in PH ₄ ⁺ , PO ₂ ³⁻ , PO ₄ ³⁻ and PO ₃ ³⁻ are respectively:-								
	(1)-3,+1,+3,+5	(2)-3,+3,+5,+1	(3)+3,-3,+5,+1	(4) –3, +1, +5, +3					
Ans.	4								
29.	Which of the following compounds are arranged in increasing oxidation number of S:-								
	$(1) H_2SO_3, H_2S, H_2SO_3$	O_4 , $H_2S_2O_3$	$(2) H_2 S_2 O_3, H_2 SO_3, H_3 SO_3$	H_2S, H_2SO_4					
	$(3) H_2S, H_2SO_3, H_2SO_3$	O_4 , $H_2S_2O_3$	$(4) H_2S, H_2S_2O_3, H_2S_3$	SO_3, H_2SO_4					
Ans.	4								
30 .	Iodine shows the high	nest oxidation state in the o	compound :-						
	(1)KI	$(2) KI_3$	(3) IF ₅	$(4) \text{KIO}_4$					
Ans.	4								
31.	The sum of the oxidat	tion states of all the carbon	atoms present in the comp	ound C ₆ H ₅ CHO is :					
	(1)–4	(2)3	(3) + 5	(4)-4/7					
Ans.	1								
Appli	ication of Redox Re	action							
32.	The reaction $H_2S + H_2$	$_{2}O_{2} \rightarrow S + 2H_{2}O$ manifests	:						
	(1) Oxidising action of	$of H_2O_2$	(2) Reducing nature	$of H_2O_2$					
	(3) Acidic nature of H	$\mathbf{I_2O_2}$	(4) Alkaline nature o	(4) Alkaline nature of H ₂ O ₂					
Ans.	1								
33.	In a reaction of H_2O (steam) + C (glowing) $\rightarrow CO + H_2$								
	(1) H_2O is the reducing	g agent	(2) H_2O is the oxidisi	ing agent					
	(3) carbon is the oxid	ising agent	(4) oxidation-reduct	ion does not occur					
Ans.	2								
34.	The compound that c	an work both as an oxidisi	ng as well as reducing age	nt is:					
	$(1) \text{KMnO}_4$	(2) H2O2	$(3) \operatorname{Fe}_{2}(\operatorname{SO}_{4})_{3}$	$(4) K_2 Cr_2 O_7$					
Ans.	2								
35.		$I_2O_2 \rightarrow SO_4^{2-} + 4H_2O$							
	(B) $\text{Cl}_2 + \text{H}_2\text{O}_2 \rightarrow 2\text{HCl} + \text{O}_2$								
	The true statement re	The true statement regarding the above reactions is:							
	2 2	(1) H ₂ O ₂ acts as reductant in both the reactions.							
	(2) H ₂ O ₂ acts as oxidant in reaction (A) and reductant in reaction (B).								
	(3) H_2O_2 acts as an oxidant in both the reactions.								
	(4) H_2O_2 acts as reduce	etant in reaction (A) and ox	tidant in reaction(B)						
Ans.	2								
36.		ins atoms A, B and C formula of the compound in		er of A is +2, of B is +5 and of					
	(1)ABC ₂	$(2) B_2(AC_3)_2$	$(3) A_3 (BC_4)_2$	$(4) A_3 (B_4 C)_2$					
Ans.	3								

INDIA'S	NO. 1 ONLINE COACHING							
37.	Equivalent weight of N_2 in the change $N_2 \rightarrow NH_3$ is							
	$(1)\frac{28}{6}$	(2) 28	$(3)\frac{28}{2}$	$(4) \frac{28}{3}$				
Ans.	1							
38 .	In the reaction, 2S ₂ C	$O_3^{2-} + I_2 \rightarrow S_4 O_6^{2-} + 2I^-$, the eq. w	vt. of Na ₂ S ₂ O ₃ is equal t	o its:				
	(1) Mol. wt.	(2) Mol. wt./2	(3) 2 x Mol. wt.	(4) Mol. wt./6				
Ans.	1							
39.	In the reaction, VO	$+ \operatorname{Fe_2O_3} \rightarrow \operatorname{FeO} + \operatorname{V_2O_5}$, the eq. v	vt. of V_2O_5 is equal to it	s:				
	(1) Mol. wt.	(2) Mol. wt./8	(3) Mol .wt./6	(4) None of these				
Ans.	3							
40 .	The eq. wt. of iodine	$\sin I_2 + 2S_2O_3^{2-} \rightarrow 2I^- + S_4O_6^{2-}$ is	3:					
	(1) Its Mol. wt.	(2) Mol. wt./2	(3) Mol. wt./4	(4) None of these				
Ans.	2							
41.	Molecular weight of	FKBrO ₃ is M. What is its equiva	lent weight, if the react	cion is:				
	$BrO_3^- \rightarrow Br^-(acid$	$BrO_3^- \rightarrow Br^-$ (acidic medium)						
	(1) M	(2) M/4	(3) M/6	(4) 6M				
Ans.	3							
42 .	In the reaction : A^{-n_2}	$+ xe^{-} \rightarrow A^{-n}1$, here x will be						
	$(1)\mathbf{n}_1^{} + \mathbf{n}_2^{}$	$(2) n_2 - n_1$	$(3) n_1 - n_2$	$(4) n_1 . n_2$				
Ans.	3							
43.		equivalent weight of the reducta	nt in the reaction :					
	$[Fe(CN)_6]^{-3} + H_2O_2 + 2OH^- \rightarrow 2[Fe(CN)_6]^{4} + 2H_2O + O_2$							
		12, N = 14, O = 16, H = 1						
	(1) 17	(2) 212	(3) 34	(4) 32				
Ans.	1							
44.	The eq. wt. of $Na_2S_2O_3$ as reductant in the reaction, $Na_2S_2O_3+H_2O+Cl_2 \rightarrow Na_2SO_4+2HCl+S$ is:							
	(1) (Mol. wt.)/1	(2) (Mol. wt.)/2	(3) (Mol. wt.)/6	(4) (Mol. wt.)/8				
Ans.	4		- 2					
45.		$fFeC_2O_4$ in the change : FeC_2O_4		(0.3.7/4				
	(1) M/3	(2) M/6	(3) M/2	(4) M/1				
Ans.	1							
46.		f substance Na ₃ AsO ₃ would be	(2) 1 0 1	(1) 1, 0, 2				
	$(1) \text{As}_2 \text{O}_3^{3-}$	$(2) AsO_3^{-3}$	$(3) AsO_2^{-4}$	$(4) \text{AsO}_4^{-3}$				
Ans.	4 The amoint to the same in th	1.4 - CM - CO : - 1 1C - C:4 1						
47.		ht of MnSO ₄ is half of its molecular						
	$(1) \operatorname{Mn_2O_3}$	$(2) \operatorname{MnO}_2$	$(3) \operatorname{MnO}_4^-$	$(4) \mathrm{MnO_4^{-2}}$				
Ans.	2							
48.		wing reaction H ₂ O ₂ acts as redu						
	-	$H_2O_2 \rightarrow 2FeCl_3 + 2H_2O$	$(2) \operatorname{Cl}_2 + \operatorname{H}_2 \operatorname{O}_2 \to 2\operatorname{HG}$	~				
A	$(3) 2HI + H_2O_2 \rightarrow 2H$	I_2O+I_2	$(4) H2SO3 + H2O2 \rightarrow$	$H_2SO_4 + H_2O$				
Ans.	2							

3

INDIA 0 I	NO. I ONLINE COACITING								
49 .	A sulphur containing species that can not be a reducing agent is :-								
	(1) SO ₂	(2) SO_3^{-2}	(3) H ₂ SO ₄	(4) $S_2O_3^{2-}$					
Ans.	3								
50.	Which one is the oxidis	sing agent in the reaction gi	ven below						
	$2\text{CrO}_4^{2-} + 2\text{H}^+ \rightarrow \text{Cr}_2\text{O}_7^{-2} + \text{H}_2\text{O}$								
	(1) H ⁺	$(2) \operatorname{Cr}_2 \operatorname{O}_7^{-2}$	(3) Cr ⁺⁺	(4) None					
Ans.	4	- '							
51.	In the following change,	$3Fe + 4H_2O \rightarrow Fe_3O_4 + 4H_2$							
		If the atomic weight of iron is 56, then its equivalent weight will be:-							
	(1)42	(2) 21	(3) 63	(4) 84					
Ans.	2								
52.	$Cr_2O_7^{-2} + I^- + H^+ \rightarrow Cr$	$^{+3} + I_2 + H_2O$							
	The equivalent weight	The equivalent weight of the reductant in the above equation is :–(At. wt. of Cr=52, I=127)							
	(1) 26	(2) 127	(3) 63.5	(4) 10.4					
Ans.	2								
Redo	x Reaction								
53.	How many moles of KN	MnO_4 are reduced by 1 mole	of ferrous oxalate in acidio	e medium:-					
	1	5	1	3					
	$(1)\frac{1}{5}$	(2) $\frac{5}{3}$	$(3)\frac{1}{3}$	$(4) \frac{3}{5}$					
Ans.	4								
54.	The reaction								
	$2K_2MnO_4 + Cl_2 \rightarrow 2KMn$	$nO_4 + 2KCl$ is an example of							
	(1) Redox	(2) Reduction only	(3) Neutralization	(4) Disproportionation					
Ans.	1								
55.	Which one of the follow	Which one of the following is a redox reaction?							
	$(1) H_2 + Br_2 \rightarrow 2HBr$		$(2) 2NaCl + H_2SO_4 \rightarrow 1$	$Na_2SO_4 + 2HC1$					
	$(3) HCl + AgNO_3 \rightarrow Ag$	$SCl + HNO_3$	$(4) \text{ NaOH} + \text{HCl} \rightarrow \text{NaCl} + \text{H}_2\text{O}$						
Ans.	1								
56.	Which of the following	g is not a redox change?							
	$(1) 2H_2S + SO_2 \rightarrow 2H_2O$	0+3S	$(2) 2BaO + O_2 \rightarrow 2BaO_2$						
	$(3) BaO2 + H2SO4 \rightarrow Ba$	$SO_4 + H_2O_2$	$(4) 2KClO_3 \rightarrow 2KCl +$	·3O ₂					
Ans.	3								
57 .	In the reaction 4Fe + 3	$O_2 \rightarrow 4Fe^{3+} + 6O^{2-}$ which of	the following statements	is incorrect?					
	(1) It is a redox reaction	1	(2) Metallic iron is a r	(2) Metallic iron is a reducing agent					
	(3) Fe ³⁺ is an oxidising	agent	(4) Metallic iron is red	duced to Fe ³⁺					
Ans.	4								
58 .	In the reaction, $Cl_2 + O$	$H^- \rightarrow Cl^- + ClO_4^- + H_2O$, chlo	orine is :						
	(1) Oxidised		(2) Reduced						
	(3) Oxidised as well as	reduced	(4) Neither oxidised nor reduced						

59. Which of the following example does not represent disproportionation -

(1) MnO₂ + 4HCl
$$\rightarrow$$
 MnCl₂ + Cl₂ + 2H₂O

$$(2) 2H_2O_2 \rightarrow 2H_2O + O_2$$

$$(3) 4KClO_3 \rightarrow 3KClO_4 + KCl$$

(4)
$$3Cl_2 + 6NaOH \rightarrow 5NaCl + NaClO_3 + 3H_2O$$

Ans. 1

60. The decomposition of KClO₃ to KCl and O₂ on heating is an example of:

(1) Intermolecular redox change

- (2) Intramolecular redox change
- (3) Disproportionation or auto redox change
- (4) None

Ans. 2

61. Which of the following change represents a disproportionation reaction (s):

(1)
$$Cl_2 + 2OH^- \rightarrow ClO^- + Cl^- + H_2O$$

(2)
$$Cu_2O + 2H^+ \rightarrow Cu + Cu^{2+} + H_2O$$

(3)
$$2HCuCl_2 \xrightarrow{\text{dilution with}} Cu + Cu^{2+} + 4Cl + 2H^+$$

(4) All of the above

Ans. 4

62. One mole of iron [55.8 gm], when oxidised to +2 oxidation state gives up :

(1) 1N_A electron

(2) 2N_A electron

(3) 3N_A electron

(4) 0.5 mole of electron

Ans. 2

63. How many electrons should X_2H_4 liberate so that in the new compound X shows oxidation number of $-\frac{1}{2}$ (E.N. X>H)

(1)10

(2)4

(3)3

(4)2

Ans. 3

64. Which of the following reaction represents the oxidising behaviour of H₂SO₄:-

- (1) $2PCl_5 + H_2SO_4 \rightarrow 2POCl_3 + 2HCl + SO_2Cl_2$
- (2) $2NaOH + H_2SO_4 \rightarrow Na_2SO_4 + 2H_2O$
- (3) NaCl + H₂SO₄ \rightarrow NaHSO₄ + HCl
- $(4) 2HI + H_2SO_4 \rightarrow I_2 + SO_2 + 2H_2O$

Ans. 4

65. Which one of the following is not a redox reaction:

(1) $CaCO_3 \rightarrow CaO + CO_2$

 $(2) 2H_2 + O_2 \rightarrow 2H_2O$

(3) Na + H₂O \rightarrow NaOH + $\frac{1}{2}$ H₂

 $(4) \operatorname{MnCl}_{3} \to \operatorname{MnCl}_{2} + \frac{1}{2} \operatorname{Cl}_{2}$

Ans. 1

Balancing of Redox Reaction

66. In the balanced equation

$$MnO_4^- + H^+ + C_2O_4^{2-} \rightarrow Mn^{2+} + CO_2 + H_2O$$
, the moles of CO_2 formed are:

(1)2

(2)4

(3)5

(4) 10

Ans. 4

67. Balance given following half reaction for the unbalanced whole reaction :

$$CrO_4^{2-} \to CrO_2^{-} + OH^{-} is:$$

- (1) $CrO_4^{-2} + 2H_2O + 3e^- \rightarrow CrO_2^- + 4OH^-$
- (2) $2 \text{CrO}_{4}^{-2} + 8 \text{H}_{2} \text{O} \rightarrow \text{CrO}_{2}^{-} + 4 \text{H}_{2} \text{O} + 8 \text{OH}^{-}$
- $(3) \text{CrO}_{4}^{-2} + \text{H}_{2}\text{O} \rightarrow \text{CrO}_{7}^{-} + \text{H}_{2}\text{O} + \text{OH}^{-}$
- $(4) 3 \text{CrO}_4^{-2} + 4 \text{H}_2 \text{O} + 6 \text{ e}^- \rightarrow 2 \text{CrO}_2^{-1} + 8 \text{OH}^-$

68. Choose the set of coefficients that correctly balances the following equation :

$$x Cr_2O_7^{2-} + yH^+ + z e^- \rightarrow a Cr^{+3} + bH_2O$$

	X	У	\mathbf{Z}	a	b
(1)	2	14	6	2	7

Ans. 2

69. In the reaction: $MnO_4^- + xH^+ + ne^- \rightarrow Mn^{2+} + yH_2O$

What is the value of n:

(4)3

Ans.

70. The number of electrons required to balance the following equation –

$$NO_3^- + 4H^+ + e^- \longrightarrow 2H_2O + NO$$
 is

(4)2

Ans. 3

71. The molar mass of CuSO₄.5 H₂O is 249. Its equivalent mass in the reaction (a) and (b) would be

- (a) Reaction $CuSO_4 + KI \rightarrow product$
- (b) Electrolysis of CuSO₄ solution.

(4) (a) 124.5 (b) 249

Ans. 3

72. $2KMnO_4+5H_2S+6H^+\rightarrow 2Mn^{2+}+2K^++5S+8H_2O$. In the above reaction, how many electrons would be involved in the oxidation of 1 mole of reductant?

(4) One

Ans. 1

73. The value of *n* in : $MnO_4^- + 8 H^+ + ne \rightarrow Mn^{2+} + 4 H_2O$ is

$$(2)_4$$

(4)2

Ans. 1

74. For the redox reaction

 $Zn + NO_3^- \rightarrow Zn^{2+} + NH_4^+$ in basic medium, coefficients of Zn, NO_3^- and OH^- in the balanced equation respectively are :

(4)1,4,10

Ans.

75. In the following reaction the value of 'X' is

$$H_2O + SO_3^{2-} \rightarrow SO_4^{2-} + 2H^+ + X$$

$$(1) 4e^{-}$$

$$(2) 3e^{-}$$

$$(3) 2e^{-}$$

 $(4) 1e^{-}$

ANALATYCICAL EXERCISE

- 1. The ratio of number of moles of KMnO₄ and K_2 Cr₂O₇ required to oxidise 0.1 mol Sn²⁺ to Sn⁺⁴ in acidic medium
 - (1)6:5

(1)

- (2)5:6
- (3)1:2
- (4)2:1

Ans.

2. $Cl_2 \xrightarrow{NaOH} NaCl + NaClO_3 + H_2O$

The equivalent mass of Cl₂ in the above reaction is

(1) M

- (2) $\frac{M}{3}$
- $(3) \frac{M}{2}$
- (4) $\frac{3M}{5}$

Ans. (4)

- **3.** KCl is used as an electrolyte in salt bridge because
 - (1) K⁺ and Cl⁻ are isoelectronic

- (2) Monovalent ions are required
- (3) Both the ions have almost same velocity
- (4) They are having similar size

Ans. (3)

4. EMF of the given cell, $A_{(s)} \mid A_{(aq)}^{2+} \parallel B_{(aq)}^{2+} \mid B_{(s)}$

Given $E^{o}_{_{A/A}{}^{2+}}$:+1.4V and $E^{o}_{_{B/B}{}^{2+}}$:-1.4V

- (1) 2.8 V
- (2) 1.8 V
- (3)0V

(4) - 1.8 V

Ans. (1)

- 5. Electrode potential depends upon
 - (1) Size of electrode

(2) Surface area of electrode

(3) Temperature

(4) Shape of electrode

Ans. (3)

- 6. Oxidation number of Cr atom in CrO₅ and K₃CrO₈ respectively
 - (1)+6,+6
- (2)+5,+6
- (3)+6,+5
- (4)+5,+5

Ans. (3)

- 7. Number of electrons involved in the reaction when 0.1 mol NH, dissolved in water
 - (1)2

- (2)0.4
- (3)0.9

(4) Zero

Ans. (4)

- 8. $\frac{1}{2}F_2 + e^- \longrightarrow F^-$
- $E^{\circ} = +3.02 \text{ V}$

Electrode potential for given reaction

$$\mathrm{F_2} + 2\mathrm{e}^{\scriptscriptstyle{-}} \rightarrow 2\mathrm{F}^{\scriptscriptstyle{-}}$$

- (1)3.02 V
- (2)6.04 V
- (3)1.5 V
- (4)-3.02 V

Ans. (1)

- 9. Three metals A, B and C are arranged in increasing order of standard reduction electrode potential, hence their chemical reactivity order will be
 - (1)A < B < C
- (2) A > B > C
- (3) B > C > A
- (4) A = B = C

Ans.

s. (2)

10.	Find the incorrect sta	tement							
	(1) Higher reduction potential of non-metal means stronger reducing agent								
	(2) Lower oxidation potential of a metal means strong oxidising agent								
	(3) Oxidation state of	of oxygen in O_3 is -1							
	(4) All of these								
Ans.	(4)								
11.	When an alkali metal	l is reacted with hydrogen	then metallic hydride is t	formed. In this reaction					
	(1) Hydrogen is oxidised								
	(2) Hydrogen is red	uced							
	(3) Hydrogen is neit	her oxidised nor reduced							
	(4) Hydrogen is oxid	dised as well as reduced							
Ans.	(2)								
12.	In case of CH ₃ COOH	f, the oxidation number of	carbon of carboxylic gro	up is					
	(1)-3	(2) Zero	(3)+1	(4)+3					
Ans.	(4)								
13.	How many moles of I	KMnO ₄ are required to oxid	dise one mole of SnCl ₂ in	acidic medium?					
	1	2	3	4					
	$(1)\frac{1}{5}$	(2) $\frac{2}{5}$	$(3)\frac{5}{5}$	$(4)\frac{4}{5}$					
Ans.	(2)								
14.		ts as oxidising agent only	?						
	(1) SO,	(2) H,S	(3) H ₂ SO ₄	(4) HNO,					
Ans.	(3)		2 4	2					
15.	The average oxidation state of chlorine in bleaching powder is								
	(1)–1	(2)+1	(3) Zero	(4) -2 as well as $+2$					
Ans.	(3)		,						
16.		is oxidised to give benze	oic acid then the oxidat	ion state of carbon of aldehydic ş	group is				
	(1)+2 to +3	(2)+1 to +3	(3) Zero to $+2$	(4) No change					
Ans.	(2)	· /	,	()					
17.		ng is incorrect regarding s	alt bridge solution?						
	(1) Solution must be a strong electrolyte								
	(2) Solution should be inert towards both electrodes								
	(3) Size of cations and anions of salt should be much different								
	(4) Salt bridge solut	ion is prepared in gelatin o	or agar-agar to make it se	mi-solid					
Ans.	(3)								
18.		otentials of redox couples of these is best oxidising a		D^{2+}/D are 0.3 V, -0.5 V, -0.75 V are trespectively?	nd 0.9 V				
	(1) D^{2+}/D and B^{2+}/B	(2) B^{2+}/B and D^{2+}/D							
Ans.	(1)								

19.	The number of mo	les of H ₂ O ₂ required to comp	letely react with 400 ml of 0	0.5 N KMnO ₄ in acidic medium are					
	(1)0.1	(2) 0.2	(3) 1.0	(4) 0.5					
Ans.	(1)								
20.	$Cl_2(g) + XOH \rightarrow Y$	$ClO_3^- + ZH_2O + 10e^-$							
	The coefficient X,	The coefficient X, Y and Z are							
	(1) 6, 2, 2	(2) 5, 1, 3	(3) 12, 2, 6	(4) 12, 1, 6					
Ans.	(3)								
21 .	In the reaction CH	$I_3OH \rightarrow HCOOH$, the numb	er of electrons that must be	added to the right is:-					
	(1)4	(2)3	(3) 2	(4) 1					
Ans.	1								
22 .	Which statement i	s wrong :-							
	(1) Oxidation num	ber of oxygen is +1 in peroxi	ides						
	(2) Oxidation num	ber of oxygen is +2 in oxyge	n difluoride						
	(2) 0	1.							
	(3) Oxidation num	ther of oxygen is $-\frac{1}{2}$ in super	eroxides						
	(4) Oxidation num	(4) Oxidation number of oxygen is –2 in most of its compound							
Ans.	1								
23.	In the reaction $8Al + 3Fe_3O_4 \rightarrow 4Al_2O_3 + 9Fe$, the number of electrons transferred from reductant to oxidant is :-								
	(1)8	(2)4	(3) 16	(4) 24					
Ans.	4								
24.	In which of the fol	In which of the following reaction hydrogen is acting as an oxidising agent:-							
	(1) With iodine to	(1) With iodine to give hydrogen iodide							
	(2) With lithium to give lithium hydride								
	(3) With nitrogen to give ammonia								
	(4) With sulphur to give hydrogen sulphide								
Ans.	2								
25.	Oxidation number	of Xein XeF is:							
		2	(2) +2	(4) +4					
A	(1)+1 4	(2)+2	(3)+3	(4)+4					
Ans.		description of the behavious	afhroming in the recetion	airan halarr					
26.	Which is the best description of the behaviour of bromine in the reaction given below:- $H_2O + Br_2 \rightarrow HOBr + HBr$								
	(1) Both oxidized a	and reduced	(2) Oxidized only	(2) Oxidized only					
	(3) Reduced only		(4) Proton accepto	or only					
Ans.	1								
27.	In the following re	eaction							
	$2\text{FeCl}_3 + \text{H}_2\text{S} \longrightarrow$	2FeCl ₂ + 2HCl + S							
	(1) FeCl ₃ is oxidan	t	(2) $FeCl_3 \& H_2S$ and	re oxidised					
	(3) FeCl ₃ is oxidis	ed & H ₂ S is reduced	(4) None of these						
Ans.	1								

28. Consider the following reaction

$$xMnO_4^- + yC_2O_4^{-2} + zH^+ \rightarrow xMn^{+2} + 2yCO_2 + z/2H_2O$$
. The values of x, y, z in the reaction are

Ans. 1

29. Which of the following act both as oxidant & reductant :-

$$(1) H_2 S$$

$$(2)$$
 SO₃

$$(3) H_{2}O_{2}$$

$$(4) F_{2}$$

Ans. 3

30. Which of the following reaction is spontaneous oxidation–reduction reaction

(1)
$$Mn^{+2} + 5Fe^{+3} + 4H_2O \rightarrow MnO_4^- + 5Fe^{+2} + 8H^+$$

(2)
$$MnO_4^- + 5Fe^{+3} + 8H^+ \rightarrow Mn^{+2} + 5Fe^{+2} + 4H_2O$$

(3)
$$MnO_4^- + 5Fe^{+2} + 8H^+ \rightarrow Mn^{+2} + 5Fe^{+3} + 4H_2O$$

(4)
$$Mn^{+2} + 5Fe^{+2} + 4H_2O \rightarrow MnO_4^{-} + 5Fe^{+3} + 8H^{+}$$

Ans. 3

31. In Redox reaction :

$$Fe + HNO_3 \rightarrow Fe(NO_3)_2 + NH_4NO_3 + H_2O$$

the coefficient of HNO₃, Fe(NO₃)₂, NH₄NO₃ is :-

Ans. 2

32. From the following statements regarding H₂O₂ choose the incorrect statement.

- (1) It can act only as an oxidising agent.
- (2) It decomposed on exposure to light.
- (3) It has to be stored in plastic or wax lined glass bottles in dark.
- (4) It has to be kept away from dust.

Ans. (1)

33. In which of the following reactions, hydrogen peroxide acts as an oxidizing agent?

(1)
$$HOCl + H_2O_2 \rightarrow H_3O^+ + Cl^- + O_2$$

$$(2) I_1 + H_2O + 2OH^- \rightarrow 2I^- + 2H_2O + O_2$$

$$(3)$$
 PbS + 4H₂O \rightarrow PbSO₄ + 4H₂O

$$(4) 2MnO_4 + 3O_2 + 2H_2O + 2OH_2$$

Ans. (3)

34. Which of the following reactions is an example of a redox reaction?

(1)
$$XeF_4 + O_2F_2 \rightarrow XeF_6 + O_2$$

(2)
$$XeF_2 + PF_5 \rightarrow [XeF]^+ PF_6^-$$

(3)
$$XeF_6 + H_2O \rightarrow XeOF_4 + 2HF$$

(4)
$$XeF_6 + 2H_2O \rightarrow XeO_2F_2 + 4HF$$

Ans. (1)

35. Consider the reaction

$$H_2SO_{3(aq)} + Sn_{(aq)}^{4+}H_2O_{(1)} \rightarrow Sn_{(aq)}^{2+} + HSO_{4(aq)}^{-} + 3H_{(aq)}^{+}$$

Which of the following statements is correct?

- (1) H₂SO₃ is the reducing agent because it undergoes oxidation
- (2) H₂SO₃ is the reducing agent because it undergoes reduction
- (3) Sn⁴⁺ is the reducing agent because it undergoes oxidation
- (4) Sn⁴⁺ is the oxidizing agent because it undergoes oxidation

Ans. (1)

Ans.

(1)

(1) reducing agent, oxidising agent(3) oxidising agent, oxidising agent.

36.	How many electrons are involved in the following redox reaction?							
	$\text{Cr}_2\text{O}_7^{2-} + \text{Fe}^{2+} +$	$Cr_2O_7^{2-} + Fe^{2+} + C_2O_4^{2-} \rightarrow Cr^{3+} + Fe^{3+} + CO_2$ (Unbalanced)						
	(1)3	(2)4	(3) 5	(4) 6				
Ans.	(4)							
37.	In the standardi	sation of Na ₂ S ₂ O ₃ using K ₂	Cr ₂ O ₇ by iodometry, the ed	quivalent weight of K ₂ Cr ₂ O ₇ i				
	(1) (Molecular v	weight) / 2	(2) (Molecular v	(2) (Molecular weight) / 6				
	(3) (Molecular v	weight) / 3	(4) Same as molecular weight					
Ans.	(B)							
38.	In basic medium I^- oxidises by MnO_4^- . In this process I^- replaces by :							
	(1) IO_3^-	(2) I ₂	(3) IO_4^-	(4) IO ⁻				
Ans.	(1)							
39.	The oxidation number of Mn in the product of alkaline oxidative fusion of MnO ₂ is:							
	(1)2	(2)4	(3) 6	(4) 8				
Ans.	(1)							
40.	Hydrogen perox	ide in its reaction with KIO	and NH ₂ OH respectively,	is acting as a				
	(1) reducing age	ent, oxidising agent	(2) reducing agent, reducing agent					

(4) oxidising agent, reducing agent

7. **Assertion**: In NH_4NO_3 , the oxidation number of the two N-atoms is not equal.

Reason: One N atom is present in the ammonium ion while the other is present in the nitrate ion.

Ans. A

8. Assertion: Oxidation state of Hydrogen is +1 in H₂O while -1 in CaH₂.

Reason: CaH, is a metal hydride and for metal hydrides, hydrogen is assigned the oxidation number of -1.

Ans. A

9. Assertion: Oxidation number of carbon in CH₂O is zero.

Reason: - CH₂O (formaldehyde) is a covalent compound.

Ans. B

10. Assertion: - Nitrous acid (HNO₂) may act as an oxidising agent as well as a reducing agent.

Reason: The oxidation number of Nitrogen remains same in all the compounds.

Ans. C

11. Assertion: Oxidation number of Ni in [Ni(CO)₄] is zero.

Reason: Nickel is bonded to neutral ligand, carbonyl.

Ans. A

12. Assertion: A reducing agent is a substance which accepts electron.

Reason: A substance which helps in oxidation is known as reducing agent.

Ans. D

13. Assertion: Bromide ion is serving as a reducing agent in the reaction.

$$2MnO_{3}(aq.) + Br^{-}(aq.) + H_{2}O \longrightarrow 2MnO_{3}(aq.) + BrO_{3}(aq.) + 2OH^{-}(aq.)$$

Reason: Oxidation number of Br increases from -1 to +5.

Ans. A

14. Assertion: Equivalent weight of NH₃ in the reaction N, \rightarrow NH₄ is 17/3 while that of N, is 28/6.

Reason: Equivalent weight =
$$\frac{\text{Molecular weight}}{\text{number of e}^{-} \text{ lost or gained/ mole}}$$

Ans. A

15. Assertion :- In acidic medium, equivalent weight of K₂Cr₂O₂ is equal to 294/6.

Reason: In acidic medium, $Cr_2O_7^{-2}$ is reduced in Cr^{+3} .

Ans. A

16. Assertion:— In a redox reaction, the oxidation number of the oxidant decreases while that of reductant increases.

Reason: Oxidant gains electron(s) while reductant loses electron(s).

Ans. A

17. Assertion :- H₂SO₄ can not act as reducing agent.

Reason: Sulphur can not increase its oxidation number beyond +6.

Ans. A

18. Assertion: In $HClO_4$, Chlorine has the oxidation number of +4.

Reason: – HClO₄ (perchloric) acid has two peroxide linkages.

Ans. D

19. Assertion :- Oxidation number of S in HSO₃⁻ is +4.

Reason: - Sulphur is in different oxidation state in different compounds.

Ans. B

20. Assertion: Oxidation number of Carbon in all it's compounds is +4.

Reason: An element has a fixed oxidation state.

Ans. D

21. Assertion: - H₂ is the reducing agent and Cl₂ is reduced in the reaction.

$$H_2 + Cl_2 \longrightarrow 2HCl$$

Reason: - Reducing agent is the one which has been oxidised and decrease of oxidation number means reduction.

Ans. A

22. Assertion :– MnO_4^- is always reduced to Mn^{+2} .

Reason: - Decrease in oxidation number or gaining of electron means oxidation.

Ans. I

23. Assertion :– $KClO_3 \longrightarrow KClO_4 + KCl$

This is a disproportionation type reaction.

Reason: The reaction in which one substance oxidise or reduce is known as disproportionation reaction.

Ans. C

24. Assertion :- Oxidation number of Cr in CrO₅ is +6.

Reason: In CrO₅, four oxygen atoms are involved in peroxide linkage.

Ans. A

25. Assertion: Oxidation number of Cr in Cr(CO)₆ is zero.

Reason :- Cr is a metal.

Ans. B

26. Assertion: $-\operatorname{Cr}^{+2}$ is a reducing agent and Mn^{+3} is oxidising agent.

Reason: $-Mn^{+3}$ has d^5 configuration.

Ans. C

27. Assertion: The formal oxidation no. of sulphar in Na₂S₄O₆ is 2.5

[AIIMS-2011]

Reason: Two S-atoms are not directly linked with O-atoms

Ans. A