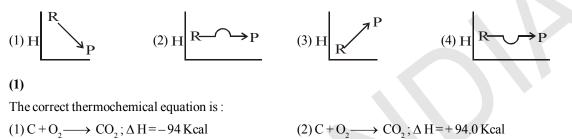
PROBLEM SOLVING TECHNIQUES OF PHYSICAL CHEMISTRY FOR NEET

BY JITENDRA HIRWANI

THERMOCHEMISTRY

Plot No. 38, Near Union Bank of India, Rajeev Gandhi Nagar, Kota, Rajasthan – 324005 Mob. : 9214233303


BASIC EXERCISE

EXOTHERMIC/ENDOTHERMIC REACTION/THERMOCHEMICALEQUATION

- 1. The formation of water from $H_2(g)$ and $O_2(g)$ is an exothermic process because :
 - (1) The chemical energy of $H_2(g)$ and $O_2(g)$ is more than that of water
 - (2) The chemical energy of $H_2(g)$ and $O_2(g)$ is less than that of water
 - (3) The temperature of $H_2(g)$ and $O_2(g)$ is higher than that of water
 - (4) The temperature of $H_2(g)$ and $O_2(g)$ is lower than that of water

(1) Ans.

2. Which plot represents for an exothermic reaction:

- (1) C + O₂ \longrightarrow CO₂; Δ H = -94 Kcal
- $(3) C(s) + O_2(g) \longrightarrow CO_2(g); \Delta H = -94 \text{ Kcal}$
- Ans. (3)

Ans.

3.

4. ΔH for transition of carbon in the diamond form to carbon in the graphite form is -453.5 cal. This suggests that :

(4) $C(s) + O_2(g) \longrightarrow CO_2(g); \Delta H = +94 \text{ Kcal}$

(2) $H_2O(g) + C(s) \rightarrow CO(g) + H_2(g), \Delta E = 131.2KJ$ $(4) 2Zn(s) + O_2(g) \rightarrow 2ZnO(s), \Delta E = -693.8 \text{ KJ}$

- (1) Graphite is chemically different from diamond (2) Graphite is as stable as diamond
- (3) Graphite is more stable than diamond (4) Diamond is more stable than graphite

Ans. (3)

- 5. Which of the following values of heat of formation indicates that the product is least stable
 - $(1) 94 \, \text{K cal}$ (2) - 231.6 K cal (3) + 21.4 K cal (4) + 64.8 K cal
- (4) Ans.
- 6. According to the following reaction
 - $C(S) + 1/2 O_2(g) \rightarrow CO(g), \Delta H = -26.4 \text{ Kcal}$ (1) CO is an endothermic compound (2) CO is an exothermic compound
 - (3) The reaction is endothermic (4) None of the above

Ans. (2)

- 7. Which of the following represents an exothermic reaction:-
 - (1) $N_2(g) + O_2(g) \rightarrow 2NO(g), \Delta H = 180.5 \text{ KJ}$
 - (3) 2HgO(s) + 180.4 KJ \rightarrow 2Hg(ℓ) + O₂(g)

Ans. (4)

- 8. Consider the reaction $3O_2 \rightarrow 2O_3$; $\Delta H = + Ve$, from the reaction, we can say that :-
 - (1) Ozone is more stable then oxygen
 - (2) Ozone is less stable then oxygen and ozone decomposes forming oxygen readily
 - (3) Oxygen is less stable than ozone and oxygen decomposes forming ozone readily
 - (4) None of the above
- (2) Ans.

9.	NO. 1 ONLINE COACHING			J.H. SIR				
	From the reaction P(Whi	ite) \rightarrow P(Red); Δ H = -18.4	KJ, it follows that :-					
	(1) Red P is readily forme	ed from white P						
	(2) White P is readily for	(2) White P is readily formed from red P						
	(3) White P can not be converted to red p							
	(4) White P can be conv	(4) White P can be converted into red P and red P is more sable						
Ans.	(4)							
FACTO	ORS WHICH AFFECTING	AHOFTHE REACTION						
0.	In Kirchoff's equation w	hich factor affects the heat	of reaction :					
	(1) Pressure	(2) Temperature	(3) Volume	(4) Atomicity				
Ans.	(2)							
1.	For the reaction; $H_2(g) + \Delta H at 100^{\circ}C$:	$-\frac{1}{2} O_2(g) = H_2O(\ell), \Delta C_p = 7$	$V.63 \text{ cal/deg}; \Delta \text{ H}_{25^0\text{C}} = 68.2$	3 Kcal, what will be the value (in Kcal)				
	$(1)7.63 \times (373 - 298) - 68$	8.3	(2) $7.63 \times 10^{-3} (373 - 29)$	98)-68.3				
	$(3)7.63 \times 10^{-3} (373 - 298)$		$(4)7.63 \times (373 - 298) +$					
ns.	(3)							
2.	The enthalpy of a reaction at 273 K. is – 3.57 KJ. what will be the enthalpy of reaction at 373 K if $\Delta C_p = z$							
				P				
	(1)-3.57	(2) Zero	$(3) - 3.57 \times \frac{373}{273}$	(4)-375				
	(1)		215					
ans.								
3.	For the reactions,							
		(i) $H_2(g) + Cl_2(g) \longrightarrow 2HCl(g) + xKJ$ (ii) $H_2(g) + Cl_2(g) \longrightarrow 2HCl(\ell) + yKJ$						
		ing statement is correct :						
	(1)x > y	$(2) \mathbf{x} < \mathbf{y}$	$(3) \mathbf{x} = \mathbf{y}$	(4) More data required				
Ans.	(2)							
IEAT	OFFORMATION							
4.	Since the enthalpy of the elements in their standard states is taken to be zero. The heat of formation (ΔH_f) of compounds :							
	(1) Is always negative	(2) Is always positive	(3) Is zero	(4) May be positive or negative				
Ans.	(4)							
		\rightarrow 2HI; Δ H = 12.40 Kcal.	According to this, heat of	formation of HI will be –				
		\rightarrow 2HI; Δ H = 12.40 Kcal. (2)-12.40 Kcal	According to this, heat of (3)–6.20 Kcal	formation of HI will be – (4) 6.20 Kcal				
15.	Reaction $H_2(g) + I_2(g) -$							
15. Ans.	Reaction $H_2(g) + I_2(g) - (1) 12.40$ Kcal (4) At 300K the satandard e	(2)–12.40 Kcal	(3) - 6.20 Kcal ${}_{6}H_{5}COOH_{(5)}$, $CO_{2(g)}$ and H	(4) 6.20 Kcal H ₂ O ₂₍₁₎ are –408, –393 and –286 kJ mo				
15. Ans.	Reaction $H_2(g) + I_2(g) - (1) 12.40$ Kcal (4) At 300K the satandard e	(2)–12.40 Kcal enthalpies of formation of C	(3) - 6.20 Kcal ${}_{6}H_{5}COOH_{(5)}$, $CO_{2(g)}$ and H	(4) 6.20 Kcal H ₂ O ₂₍₁₎ are –408, –393 and –286 kJ mo				
5. Ans. .6.	Reaction $H_2(g) + I_2(g) - (1) 12.40$ Kcal (4) At 300K the satandard erespectively. Calculate the	(2)–12.40 Kcal enthalpies of formation of C he heat of combustion of be	(3) - 6.20 Kcal ${}_{6}H_{5}COOH_{(s)}$, CO _{2(g)} and I enzoic acid at contant vol-	(4) 6.20 Kcal $H_2O_{2(1)}$ are -408, -393 and -286 kJ mo ume :				
15. Ans. 16. Ans.	Reaction $H_2(g) + I_2(g) - (1) 12.40$ Kcal (4) At 300K the satandard e respectively. Calculate the (1)+3201 kJ (4)	(2)–12.40 Kcal enthalpies of formation of C he heat of combustion of be (2)+3199.75 kJ	(3) - 6.20 Kcal ${}_{6}H_{5}COOH_{(s)}$, CO _{2(g)} and Henzoic acid at contant vol- (3) - 3201 kJ	(4) 6.20 Kcal $H_2O_{2(1)}$ are -408, -393 and -286 kJ mo ume : (4)-3199.75 kJ				
5. Ans. 6. Ans.	Reaction H ₂ (g) + I ₂ (g)	(2)–12.40 Kcal enthalpies of formation of C he heat of combustion of be (2)+3199.75 kJ	(3) - 6.20 Kcal ${}_{6}H_{5}COOH_{(s)}$, CO _{2(g)} and Henzoic acid at contant vol- (3) - 3201 kJ are - 94.0 KJ and - 152	(4) 6.20 Kcal $H_2O_{2(1)}$ are -408, -393 and -286 kJ mo ume : (4)-3199.75 kJ KJ respectively and the enthalpy of the				
5. Ans. 6. Ans.	Reaction H ₂ (g) + I ₂ (g)	(2) – 12.40 Kcal enthalpies of formation of C he heat of combustion of be (2)+3199.75 kJ ation of CO ₂ (g) and CaO(s)	(3) - 6.20 Kcal ${}_{6}H_{5}COOH_{(s)}$, CO _{2(g)} and Henzoic acid at contant vol- (3) - 3201 kJ are - 94.0 KJ and - 152	(4) 6.20 Kcal $H_2O_{2(1)}$ are -408, -393 and -286 kJ mo ume : (4)-3199.75 kJ KJ respectively and the enthalpy of t				
5. Ans. 6. Ans. 7.	Reaction $H_2(g) + I_2(g) - (1) 12.40 \text{ Kcal}$ (4) At 300K the satandard errespectively. Calculate the respectively. Calculate the respect	 (2) – 12.40 Kcal enthalpies of formation of C he heat of combustion of be (2)+3199.75 kJ ation of CO₂(g) and CaO(s) + CO₂(g) is 42 KJ. The enthal 	(3) - 6.20 Kcal ${}_{6}H_{5}COOH_{(s)}$, CO _{2(g)} and F mzoic acid at contant volt (3) - 3201 kJ are - 94.0 KJ and - 152 alpy of formation of CaCC	(4) 6.20 Kcal $H_2O_{2(1)}$ are -408, -393 and -286 kJ mo ume : (4)-3199.75 kJ KJ respectively and the enthalpy of t $D_3(s)$ is				
5. Ans. 6. Ans. 7.	Reaction $H_2(g) + I_2(g) - (1) 12.40$ Kcal (4) At 300K the satandard errespectively. Calculate the constraints of the satandard errespectively. Calculate the constraints of the constraint of the constraints of the cons	 (2) – 12.40 Kcal enthalpies of formation of C he heat of combustion of be (2)+3199.75 kJ ation of CO₂(g) and CaO(s) + CO₂(g) is 42 KJ. The enthal (2) – 202 KJ 	(3) - 6.20 Kcal ${}_{6}H_{5}COOH_{(s)}$, CO _{2(g)} and Henzoic acid at contant vol- (3) - 3201 kJ are - 94.0 KJ and $- 152alpy of formation of CaCC(3) + 202$ KJ	(4) 6.20 Kcal $H_2O_{2(1)}$ are -408, -393 and -286 kJ mo ume : (4)-3199.75 kJ KJ respectively and the enthalpy of t $D_3(s)$ is (4)-288KJ				
Ans. 15. Ans. 16. Ans. 17. Ans. 18.	Reaction $H_2(g) + I_2(g) - (1) 12.40$ Kcal (4) At 300K the satandard errespectively. Calculate the constraints of the satandard errespectively. Calculate the constraints of the constraint of the constraints of the cons	 (2) – 12.40 Kcal enthalpies of formation of C he heat of combustion of be (2)+3199.75 kJ ation of CO₂(g) and CaO(s) + CO₂(g) is 42 KJ. The enthal (2) – 202 KJ 	(3) - 6.20 Kcal ${}_{6}H_{5}COOH_{(s)}$, CO _{2(g)} and Henzoic acid at contant vol- (3) - 3201 kJ are - 94.0 KJ and $- 152alpy of formation of CaCC(3) + 202$ KJ	(4) 6.20 Kcal $H_2O_{2(1)}$ are -408, -393 and -286 kJ mo ume : (4)-3199.75 kJ KJ respectively and the enthalpy of t $D_3(s)$ is (4)-288KJ				
15. Ans. 16. Ans. 17.	Reaction $H_2(g) + I_2(g) - (1) 12.40$ Kcal (4) At 300K the satandard errespectively. Calculate the respectively. Calculate the respectivel	 (2) – 12.40 Kcal enthalpies of formation of C he heat of combustion of be (2)+3199.75 kJ ation of CO₂(g) and CaO(s) + CO₂(g) is 42 KJ. The enthal (2) – 202 KJ 	(3) - 6.20 Kcal ${}_{6}H_{5}COOH_{(s)}$, CO _{2(g)} and Henzoic acid at contant vol- (3) - 3201 kJ are - 94.0 KJ and $- 152alpy of formation of CaCC(3) + 202$ KJ	(4) 6.20 Kcal $H_2O_{2(1)}$ are -408, -393 and -286 kJ mo ume : (4)-3199.75 kJ KJ respectively and the enthalpy of t $D_3(s)$ is				

INDIA'S	NO. 1 ONLINE COACHING			J.H. SIR			
19.				and water(ℓ) are respectively			
		Kcal. The standard molar h					
A	(1) - 372 Kcal	(2)–162 Kcal	(3)-240 Kcal	(4)–183.5 Kcal			
Ans.	(1)						
20.		The ΔH_{f}^{o} for $CO_{2(g)}$, $CO_{(g)}$ and $H_{2}O_{(g)}$ are -393.5, -110.5 and -241.8 KJ mol ⁻¹ respectively the standard enthalpy changes of the standard					
	(in KJ) for the reaction	$\mathrm{CO}_{2(g)} + \mathrm{H}_{2(g)} \rightarrow \mathrm{CO}_{(g)} + \mathrm{H}_{2}\mathrm{O}_{(g)}$)is -				
	(1) 524.1	(2)41.2	(3)-262.5	(4)-41.2			
Ans.	(2)						
21.	The standard heat of f	Formation of $CS_2(\ell)$ will	be; given that the standa	rd heat of combustion of carbon (s)			
	sulphur(s) and $\mathrm{CS}_2(\ell)$ a	are -393.3, -293.72 and -1	108.76 KJ mol ⁻¹ respectivel	yis			
	$(1) - 128.02 \text{ KJ mole}^{-1}$	(2) + 12.802 KJ mol ⁻¹	(3)+128.02 KJ mol ⁻¹	$(4)-12.802 \text{ KJ mol}^{-1}$			
Ans.	(3)						
22.		ion of $CH_{4 (g)}$, $C_{(s)}$ and H formation of CH_{4} will be -	at 25 °C are -212.4	K cal, -94.0 K cal and -68.4 K ca			
	(1)+54.4 K cal	(2)-18.4 K cal	(3)–375.2 K cal	(4)+212.8 K cal			
Ans.	(2)						
23.	The standard heats of for of NO_2 in KCal is	rmation of $NO_2(g)$ and N_2O	$_4(g)$ are 8.0 and 2.0 Kcal mo	ol ⁻¹ respectively the heat of dimerization			
	(1) 10.0	(2)-6.0	(3)-12.0	(4)-14.0			
Ans.	(4)						
HEAT	OFCOMBUSTION						
24.	According to equation,						
	$C_{6}H_{6}(\ell) + 15/2 O_{2}(g)$ — in air will be -	$\rightarrow 6 \text{CO}_2(g) + 3 \text{H}_2 \text{O}(\ell); \Delta \text{H}_2$	$I = -3264.4 \text{ KJ mol}^{-1}$ the end	ergy evolved when 7.8 g benzene is burn			
	(1) 163.22 KJ	(2) 32.64 KJ	(3) 3.264 KJ	(4) 326.4 KJ			
Ans.	(4)						
25.	Heat of combustion of CH_4 , C_2H_6 , C_2H_4 and C_2H_2 gases are -212.8 , -373.0 , -337.0 and -310.5 Kcal respectively at the same temperature. The best fuel among these gases is :						
	(1)CH ₄	$(2) C_2 H_6$	$(3) C_2 H_4$	$(4) C_2 H_2$			
Ans.	(1)						
26.	The heat of combustion of carbon and carbon monoxide are -394 and -285 KJ mol ⁻¹ respectively. The heat of formation of CO in KJ mol ⁻¹ is:-						
	(1) + 109	(2)-109	(3)+218	(4)-218			
Ans.	(2)						
27.		thylene is 1411 KJ when a c that entered into the reaction		as burnt 6226 KJ heat was evolved. The			
	(1)296.5 ml	(2) 296.5 litre	$(3) 6226 \times 22.4$ litre	(4) 22.4 litre			
Ans.	(2)						
28.	A person requires 2870 his daily consumption c		al daily life. If heat of comb	ustion of cane sugar is –1349 Kcal, the			
	(1) 728g	(2) 0.728g	(3) 342 g	(4) 0.342 g			
	(1)						

	NO. 1 ONLINE COACHING			J.H. SIR	
29.	-	stion of 2 gm methane 263 on of CO_2 and H_2O are – 970	-	The heat of formation of methane will b ctively) :	
	(1) + 20400 cals	(2) + 20600 cals	(3) - 20400 cals	(4) - 2000 cals	
Ans.	(3)				
30. X gm of ethanal was subjected to combustion in a bomb calorimeter and the heat pr				e heat produced is Y Joules. Then -	
	(1) $\Delta E_{(combustion)} = -XJ$		(2) $\Delta E_{(combustion)} = -YJ$		
	(3) $\Delta E_{(combustion)} = -\frac{44}{X}$	Y J mol ⁻¹	(4) $\Delta H_{(combustion)} = -\frac{44}{2}$	$\frac{4 \text{ Y}}{\text{X}} \text{ J mol}^{-1}$	
Ans.	(3)				
31.	The following are the	heats of reactions -			
	(i) ΔH_{f}° of $H_{2}O_{(\ell)} = -68.3 \text{ K cal mol}^{-1}$ (ii) $\Delta H_{comb.}^{\circ}$ of $C_{2}H_{2} = -337.2 \text{ K cal mol}^{-1}$				
	(iii) $\Delta H^{o}_{comb.}$ of $C_2 H_4 =$	-363.7 K cal mol ⁻¹			
	Then heat change for t	the reaction $C_2H_2 + H_2 \rightarrow 0$	C_2H_4 is -		
	(1)-716.1 K cal	(2) + 337.2 K cal	(3)-41.8 K cal	(4)–579.5 K cal	
Ans.	(3)				
32.	The heat of combustion of a substance is :-				
	(1) Always positive		(2) Always negative		
	(3) Numerically equal	to the heat of formation	(4) 1 and 3 both		
Ans.	(2)				
33.	The value of ΔH for th	e combustion of C(s) is –94	4 Kcal. The heat of forma	tion of $CO_2(g)$ is :-	
	(1)-49.5 K cal	(2)–94.4 K cal	(3)–188.0 K cal	(4) More data required	
Ans.	(2)				
34.	In the combustion of 0	.4 g. of CH ₄ , 0.25 Kcal. of h	eat is liberated. The heat o	of combustion of CH_4 is	
	(1)-20 K. Cals.	(2) – 10 K. Cals.	(3)-2.5 K. Cals.	(4)–5 K. Cals.	
Ans.	(2)				
35.	If $C_6H_{12}O_6(s) + 9O_2(g)$	$\rightarrow 6CO_2(g) + 6H_2O(g); \Delta H$	H= - 680 Kcal The weight o	$f CO_2(g)$ produced when 170 Kcal of hea	
	is evolved in the comb	oustion of glucose is:-			
	(1)265 gm	(2) 66 gm	(3)11 gm	(4) 64 gm	
Ans.	(2)				
36.	Which of the followin	g equations corresponds to	the enthalpy of combustic	on at 298 K :-	
	$(1) C_2 H_6(g) + 7/2 O_2(g)$	$\rightarrow 2CO_2(g) + 3H_2O(g)$	(2) $2C_2H_6(g) + 7O_2(g)$	$) \rightarrow 4CO_2(g) + 6H_2O(g)$	
	$(3) C_2 H_6(g) + 7/2 O_2(g)$	$\rightarrow 2CO_2(g) + 3H_2O(\ell)$	$(4) 2C_{2}H_{6}(g) + 7O_{2}(g)$	$\rightarrow 4CO_2(g) + 6H_2O(\ell)$	
Ans.	(3)		2 0 2		
	OFNEUTRILIZATION				
37.		perated when one mole of N	H ₄ OH reacts with one mol	e of HCl is	
	(1) 13.7 Kcal		(2) More than 13.7 Kc		
	(3) Less than 13.7 Kcal	l	(4) Cannot be predict		
	(3)		-		

38.		Kcal, then heat of comple	te neutralisation of one gran	m mole of H_2SO_4 with strong base will be			
	(1) 13.7 Kcal	(2) 27.4 Kcal	(3) 6.85 Kcal	(4) 3.425 KCal			
Ans.	(2)						
39.	Heat of neutralisation of a strong dibasic acid in dilute solution by NaOH is nearly:						
	(1)-27.4 Kcal/eq	(2) - 13.7 Kcal / eq	(3) 13.7 Kcal/eq.	(4)-13.7 Kcal/mol			
Ans.	(2)						
40.	The heat of neutralizati KJ/mol. The energy of di	-	55.9 KJ/ mol. If the heat of	neutralization of HCN by NaOH is – 12.1			
	(1)-43.8 KJ	(2)43.8 KJ	(3) 68 KJ	(4)-68 KJ			
Ans.	(2)						
41.	The change in the enthal	py of					
	$NaOH + HCl \longrightarrow NaCl$	$+ H_2O$ is called :					
	(1) Heat of neutralisation	(2) Heat of reaction	(3) Heat of hydration	(4) Heat of solution			
Ans.	(1)						
42.	Heat of neutralisation of o	oxalic acid is –106.7 KJm	ol ⁻¹ using NaOH hence ∆H	lof:			
	$H_2C_2O_4 \longrightarrow C_2O_4^{2-} + 2H$	$H_2C_2O_4 \rightarrow C_2O_4^{2-} + 2H^+ is:-$					
	(1) 5.88 KJ	(2)-5.88 KJ	(3)–13.7 K cal	(4) 7.5 KJ			
Ans.	(4)						
HEAT	OFHYDROGENATION						
43.	The heat of combustion of ethene is -	fC_2H_4, C_2H_6 and H_2 are -1	409.5 KJ, –1558.3 KJ and	-285.6 KJ. The heat of hydrogenation of			
	(1)-136.8 KJ	(2)-13.68 KJ	(3)273.6 KJ	(4) 1.368 KJ			
Ans.	(1)						
44.	The enthalpy of combustion of cyclohexane, cyclohexene and H_2 are respectively - 3920, - 3800 and - 241 KJ mol ⁻¹ . The heat of hydrogenation of cyclohexene is:-						
	$(1) - 121 \text{ KJ mol}^{-1}$	(2) 121 KJ mol ⁻¹	$(3) - 242 \text{ KJ mol}^{-1}$	(4) 242 KJ mol ^{-1}			
Ans.	(1)						
BOND	ENERGY/RESONANCE EN	NERGY					
45.	Bond energy of a molecul	le :					
	(1) Is always negative		(2) Is always positive				
	(3) Either positive or nega	ative	(4) Depends upon the	physical state of the system			
Ans.	(2)						
46.	Among the following for which reaction heat of reaction represents bond energy of HCl						
	$(1) \operatorname{HCl}(g) \longrightarrow \operatorname{H}^{+}(g) + C$		(2) HCl(g) $\longrightarrow \frac{1}{2} H_2(g) + \frac{1}{2} Cl_2(g)$				
	$(3) 2HCl(g) \longrightarrow H_2(g) +$	$\operatorname{Cl}_2(g)$	$(4) \operatorname{HCl}(g) \longrightarrow \operatorname{H}(g)^{-}$	+ Cl(g)			
Ans.	(4)						
47.	The bond energies of F_{2} , (1) F – F	Cl ₂ , Br ₂ and I ₂ are 155.4, 2 (2)Cl-Cl	243.6, 193.2 and 151.2 KJn (3) Br – Br	nol ⁻¹ respectively. The strongest bond is : (4) I – I			
Ans.	(2)						
48.	Heat evolved in the reacting respectively. The $H - Cl$		182 KJ. Bond energies of l	H–H and Cl–Cl are 430 and 242 KJ/ mol			
	$(1) 245 \text{ KJ mol}^{-1}$	$(2) 427 \text{ KJ mol}^{-1}$	(3) 336 KJ mol ⁻¹	(4) 154 KJ mol ⁻¹			
Ans.	(2)		· ·				

	NO. 1 ONLINE COACHING			J.H. SIR		
49.	The enthalpy change f	or the reaction				
	$H_2(g) + C_2 H_4(g) \rightarrow C_2 H_4(g)$	$I_6(g)$ is The bond en	ergies are,			
	H-H = 103, C-H=99	9, C-C=80 &				
	$C = C = 145 \text{ K cal mol}^{-1}$					
	$(1)-10 \text{ K cal mol}^{-1}$	$(2)+10 \mathrm{K} \mathrm{cal} \mathrm{mol}^{-1}$	$(3) - 30 \text{ K cal mol}^{-1}$	$(4) + 30 \mathrm{K} \mathrm{cal} \mathrm{mol}^{-1}$		
Ans.	(3)					
50.			are 436.0 kJ mol ⁻¹ and 941.8 alpy of atomization of NH ₃ (g	8 kJ mol^{-1} respectively and enthalpy of 3 s ?		
	(1) 390.3 kJ mol ⁻¹	(2) 1170.9 kJ mol ⁻¹	(3) 590 kJ mol ⁻¹	(4) 720 kJ mol^{-1}		
Ans.	(2)					
51.	From the reactions :					
	$C(s) + 2H_2(g) \rightarrow CH_4(g)$	g) $\Delta H = -X$ Kcal				
	$C(g) + 4H(g) \rightarrow CH_4(g)$	g), $\Delta H = -X_1$ Kcal				
	$CH_4(g) \rightarrow CH_3(g) + H(g)$	1				
	Bond energy of C–H b					
	Bond energy of C 110					
	(1) $\frac{X}{4}$ K cal. mol ⁻¹	(2) Y K cal. mol^{-1}	(3) $\frac{X_1}{4}$ K cal. mol ⁻¹	(4) X_1 K cal. mol ⁻¹		
Ans.	(3)					
52.	The enthalpy changes	at 298 K in successive brea	king of O–H bonds of water	are		
	$H_2O \longrightarrow H(g) + OH(g); \Delta H = 498 \text{ KJ mol}^{-1}$					
	$OH(g) \longrightarrow H(g) + O(g)$	g); Δ H = 428 KJmol ⁻¹				
	the bond enthalpy of	D–H bond is				
	(1) 498 KJ mol ⁻¹	(2) 428 KJ mol ⁻¹	(3) 70 KJ mol ⁻¹	(4) 463 KJ mol ⁻¹		
Ans.	(4)					
53.			s is 5535 KJ mol ⁻¹ . The t Resonance energy of benzene	bond enthalpies of $C - C$, $C = C$ and e is		
	(1)1.51 KJ	(2) 15.1 KJ	(3) 151 KJ	(4) 1511 KJ		
Ans.	(3)					
SOME	OTHER HEAT OFREA	CTIONS				
54.	The enthalpy change for	or the reaction				
	$2C(\text{graphite}) + 3H_2(g)$ -					
	(1) Enthalpy of formation	2 0	(2) Enthalpy of combus	tion		
	(3) Enthalpy of hydrog	enation	(4) Enthalpy of vaporisa	ation		
Ans.	(1)					
55.	The magnitude of heat	of solution on addition	n of solvent to solution			
	(1) Decreases	(2) Increases	(3) Remains constant	(4) Increases or decreases		
Ans.	(3)					
56.		= 104 Kcal, than heat of ato	misation of hydrogen is :			
	(1) 52 Kcal	(2) 104 Kcal	(3) 208 Kcal	(4) None of these		
	(1)0=1100			()		

	NO. 1 ONLINE COACHING	J.H. SIR					
57.	For the change C (diamond) \longrightarrow C(graphite); Δ F to yield CO ₂ the heat liberated in first case is :	I = -1.89 KJ, if 6 g of diamond and 6g of graphite are seperately b					
	(1) Less than in the second case by 1.89 KJ	(2) Less than in the second case by 11.34 KJ					
	(3) Less than in the second case by 14.34KJ	(4) More than in the second case by 0.945KJ					
Ans.	(2)						
58.	$2\mathrm{CO}_{(\mathrm{g})} + \mathrm{O}_{2(\mathrm{g})} \longrightarrow 2\mathrm{CO}_{2(\mathrm{g})} + \mathrm{X}\mathrm{KJ}$						
	In the above equation X KJ refers to :						
	(1) Heat of formation of CO_2	(2) Heat of vapourisation					
	(3) Heat of reaction	(4) Heat of sublimation					
Ans.	(2)						
59.	Which of the following reactions represents ΔH (hydration) :-						
	(1) $\operatorname{CuSO}_4(s) + (aq) \rightarrow \operatorname{CuSO}_4(aq); \Delta H = -xKJ$						
	(2) $\operatorname{BaCl}_2(s) + 2\operatorname{H}_2O(\ell) \to \operatorname{BaCl}_2 \cdot 2\operatorname{H}_2O(s); \Delta H = -x' \operatorname{KJ}$						
	(3) $\operatorname{CuSO}_4(s) + 5\operatorname{H}_2O(\ell) + (aq) \rightarrow \operatorname{CuSO}_4 \cdot 5\operatorname{H}_2O(aq); \Delta H = -y' \text{KJ}$						
	(4) None of the above						
Ans.	(2)						
60.	ΔH for the reaction, $I_{(g)} + I_{(g)} \rightarrow I_2(g)$ will be:-						
	(1) Zero (2) – ve	$(3) + ve \qquad (4) \infty$					
Ans.	(2)						
61.	Given that :						
	$A(s) \rightarrow A(\ell); \Delta H = x, A(\ell) \rightarrow A(g) - y$						
	The heat of sublimation of A will be:-						
	(1)x + y $(2)x - y$	(3) x or y (4) - $(x + y)$					
Ans.	(2)						
HESS'	VS LAW						
62.	The enthalpy change of a reaction does not depend o	n					
	(1) State of reactants and products	(2) Nature of reactants and products					
	(3) Different intermediate reactions	(4) Initial and final enthalpy change of reaction					
Ans.	(2)						
63.	From the thermochemical reactions,						
	C(graphite) + $\frac{1}{2}$ O ₂ \longrightarrow CO; Δ H=-110.5 KJ						
	$CO + \frac{1}{2} O_2 \longrightarrow CO_2; \Delta H = -283.2 \text{ KJ}$						
	the heat of reaction of C(graphite) + $O_2 \longrightarrow CO_2$	is:					
	(1) 393.7 KJ (2) -393.7 KJ	(3) - 172.7 KJ $(4) + 172.7 KJ$					
Ans.	(2)						
64.	If $H_2 + \frac{1}{2} O_2 \longrightarrow H_2O$; $\Delta H = -68.39$ Kcal						
	$K + H_2O + water \longrightarrow KOH(aq) + \frac{1}{2} H_2; \Delta H = -2$	8.0 Kcal					
	$KOH + water \longrightarrow KOH (aq) \Delta H = -14.0 \text{ Kcal th}$						
	(1) - 68.39 + 48 - 14.0	(2) - 68.39 - 48.0 + 14.0					
	(3)+68.39-48.0+14.0	(4) + 68.39 + 48.0 - 14.0					
Ans.	(2)						

INDIA'S I	NO. 1 ONLINE COACHING			J.H. SIR			
55.			$(OH)_2(s)$ at 18°C is Kca	ıl.			
	(i) $CaO(s) + H_2O(\ell) =$	-					
	$\Delta H_{180}C = -15.$	26 Kcal					
	(ii) $H_2O(\ell) = H_2(g) + \frac{1}{2} O_2(g)$	g);					
	$\Delta H_{180}C = 68.37 K$	cal					
	(iii) $Ca(s) + \frac{1}{2} O_2(g) = Cac$	O(s);					
	$\Delta H_{180}C = -151.5$	30 Kcal					
	(1)-98.69	(2)-235.43	(3) 194.91	(4) 98.69			
ns.	(2)						
6.	(i) $S(s) + 3/2 O_2(g) = SO_3(g)$	(y) + 2x K cal					
	(ii) $SO_2(g) \frac{1}{2} O_2(g) = SO_3$	(g) + y Kcal find out the h	eat of formation of SO_2 :				
	(1)(2x+y)	(2) - (2x - y)	(3)x + y	(4) 2x / y			
Ans.	(2)						
67.	Given that -						
	$2C(s) + 2O_2(g) \rightarrow 2CO_2(g)$	$2C(s) + 2O_2(g) \rightarrow 2CO_2(g) \Delta H = -787 \text{ KJ}$					
	$\mathrm{H}_{2}(\mathrm{g}) + \frac{1}{2} \mathrm{O}_{2}(\mathrm{g}) \rightarrow \mathrm{H}_{2}\mathrm{O}(\ell)$) $\Delta H = -286 \text{ KJ}$					
	$C_2H_2(g) + \frac{5}{2}O_2(g) \rightarrow 2CO_2(g)$	g)+ $H_2O(\ell)\Delta H$ =-1310 KJ					
	Heat of formation of acety	lene is :-					
	(1)+1802 KJ	(2)-1802 KJ	(3) – 800 KJ	(4) + 237 KJ			
Ans.	(4)						
8.	Find the heat change in th	e reaction : $NH_3(g) + HCl$	$(g) \rightarrow NH_4Cl(s)$				
	from the following data						
	$NH_3(g) + aq \rightarrow NH_3(aq),$	$\Delta H = -8.4 \text{ K. Cal.}$					
	$HCl(g) + aq \rightarrow HCl(aq),$	$\Delta H = -17.3 \text{ K. Cal.}$					
	$NH_3(aq)+HCl(aq)\rightarrow NH_4Cl(aq)$	$Cl(aq), \Delta H = -12.5 \text{ K. Cals.}$					
	$NH_4Cl(s) + aq \rightarrow NH_4Cl(a)$	q), $\Delta H = +3.9$ K.Cal.					
	(1)-42.1	(2)-34.3	(3)+34.3	(4)+42.1			
Ans.	(1)						
59 .	$C(s) + O_2(g) \rightarrow CO_2(g) +$	94.0 K cal.					
	1						
	$\operatorname{CO}(g) + \frac{1}{2}\operatorname{O}_2(g) \to \operatorname{CO}_2(g)$	(g), $\Delta H = -67.7 \text{ K cal.}$					
	from the above reaction	ns find how much heat (Kcal mole ⁻¹) would be p	produced in the following react			
	$C(a) + \frac{1}{2} O(a) + CO(a)$						
	$C(s) + \frac{1}{2}O_2(g) \rightarrow CO(s)$	g)					

Ans. (2)

ET(NO. 1 ONLINE COACHING			J.H. SIR		
70.	$H_2(g) + \frac{1}{2} O_2(g) = H_2O(\ell)$; $\Delta H_{298K} = -68.32$ Kcal. Heat of vapourisation of water at 1 atm and 25°C is 10.52 Kcal. The standard heat of formation (in Kcal) of 1 mole of water vapour at 25°C is					
	(1) 10.52	(2)-78.84	(3)+57.80	(4)-57.80		
Ans.	(4)					
71.		ous salt AB dissolves in water at of dissolution of hydrated sa		of heat. The value of $\Delta H_{(hydration)}$ of AB is –		
	$(1) 50.4 \mathrm{J} \mathrm{mol}^{-1}$	(2) 8.4 J mol ⁻¹	$(3)-50.4 \mathrm{J}\mathrm{mol}^{-1}$	$(5) - 8.4 \mathrm{J}\mathrm{mol}^{-1}$		
Ans.	(2)					
72.	Which of the following expressions is true:-					
	(1) H_{f}^{0} (CO,g) = $\frac{1}{2}$	$\Delta H_{f}^{0}(CO_{2},g)$	(2) ΔH_{f}^{0} (CO,g)= ΔH	$_{\rm f}^0$ (C,graphite) + $\frac{1}{2}$ $\Delta H_{\rm f}^0(O_{2},g)$		
	(3) ΔH_{f}^{0} (CO,g)= ΔH	$H_{f}^{0}(CO_{2},g) - \frac{1}{2} \Delta H_{f}^{0}(O_{2},g)$	$(4)\Delta H_{f}^{0} (CO,g) = \Delta H_{c}^{0}$	Δ_{comb}^{0} (C,graphite)- $\Delta H_{\text{comb}}^{0}$ (CO,g)		
Ans.	(4)					

ANALYTICAL EXERCISE

1.	ΔS° will be highest for the reaction				
	$(1) \operatorname{Ca} + \frac{1}{2} \operatorname{O}_2(g) \to \operatorname{CaO}(g)$	s)	(2) $CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$		
	$(3) C(s) + O_2(g) \rightarrow CO_2(g)$)	$(4) N_2(g) + O_2(g) \rightarrow 2NO(6)$	(g)	
Ans.	(2)				
2.	In an irreversible process	s, the value of $\Delta S_{system} + \Delta S_s$	is is		
	(1)+ve	(2) -ve	(3) Zero	(4) All of these	
Ans.	(1)				
3.	The enthalpy and entrop nature of reaction at 298		ction are -2.5×10^3 cal and	17.4 cal K ⁻¹ respectively. Predict the	
	(1) Spontaneous	(2) Reversible	(3) Irreversible	(4) Non-spontaneous	
Ans.	(1)				
4.	of NO_2 in kcal is			respectively. The heat of dimerisation	
	(1) -12 kcal	(2) 12 kcal	(3) 4 kcal	(4) 16 kcal	
Ans.	(1)				
5.	If $\frac{1}{2}X_2O(s) \to X(s) + \frac{1}{4}$	$O_2(g); \Delta H = 90 \text{ kJ}.$			
	Then heat change during	reaction of metal X with one	e mole of O_2 to form oxide to	o maximum extent is	
	(1) 360 kJ	(2) - 360 kJ	(3)–180 kJ	(4) + 180 kJ	
Ans.	(2)				
6.		$g) + 3B(g) \rightarrow 3C(g) + 3D(g)$ suming R = 2 cal K ⁻¹ mol ⁻¹		reproduction will be	
	(1) 15.8 kcal	(2) 16.4 kcal	(3) 18.2 kcal	(4) 20.0 kcal	
Ans.	(3)	(2) 10.1 Real	(5) 10.2 Rout	(1) 20:0 Roar	
7.		$f NH_3$ is $-X$ kJ and ΔH_{H-H} , ΔH_{H-H}	M_{N-H} are respectively Y k.	J mol ⁻¹ and Z kJ mol ⁻¹ . The value of	
	(1) $Y - 6Z + \frac{X}{3}$	(2) - 3Y + 6Z - 2X	(3) 3Y + 6Z + X	(4) Y + 6X + Z	
Ans.	(2)				
8.		n for strong acid and strong	-	ater is	
	$(1) - 2 \times 57.1 \text{kJ}$		(2)–57.1 kJ		
	$(3) - \frac{57.1}{2} kJ$		(4) Strong acid and stron	g base will not go neutralisation	
Ans.	(1)				
9.	The value of ΔH° in kJ f $CS_2(l) + 4NOCl(g) \rightarrow CC$	For the reaction will be $Cl_4(l) + 2SO_2(g) + 2N_2(g)$ if			
	$\Delta H^o_f(CS_2) = -x$	$\Delta H_{f}^{o}(NOCl) = -y$			
	$\Delta H_{f}^{o}(CCl_{4}) = +z$	$\Delta H_{f}^{o}(SO_{2}) = -r$			
	(1) $x + 4y - z - 2r$	(2) $r + z + 4y - x$	(3) 2r + z + 4y + x	(4) x + 4y + z - 2r	
Ans.	(4)				

10.	The heat liberated	on complete combustion of	1 mole of CH_4 gas to CO_2 (g) and $H_2O(l)$ is 890 kJ. Calculate the heat			
		$f CH_4$ on complete combust					
	(1) 95.3 kJ	(2) 8900 kJ	(3) 890 kJ	(4) 8.9 kJ			
Ans.	(1)						
11.	A schematic repres	sentation of enthalpy change	es for the reaction, $C_{(graphite)}$	+ $\frac{1}{2}O_2(g) \rightarrow CO(g)$ is given below. The			
	missing value is						
		$_{te}$ + O ₂ (g)					
		 ??					
		Ï	$O(\alpha) \pm 1/O(\alpha)$				
	-393.5 kJ	<u>+</u>	$CO(g) + \frac{1}{2}O(g)$				
	I		283.0 kJ				
		CO ₂ (g)					
	(1)+10.5 kJ	(2)–11.05 kJ	(3)–110.5 kJ	(4)–10.5 kJ			
Ans.	(3)	(2) 11.00 m	(5) 110.0 10				
12.	Which of the following equations represent standard heat of formation of CH_4 ?						
	(1) $C_{(diamond)} + 2H_2($		(2) $C_{(graphite)} + 2H_2(g)$				
	(3) $C_{(diamond)} + 4H(g$		(4) $C_{(graphite)} + 4H(g)$				
Ans.	(2)	, ₄ (c)	(graphite)	4 💭			
13.	Calorific value of	ethane, in kJ/g for the reac	tion				
	$2C_2H_6 + 7O_2 \rightarrow 40$	$CO_2 + 6H_2O$; $\Delta H = -74$	5.6 kcal				
	(1)-12.4	(2)-52	(3)-24.8	(4)-104			
Ans.	(2)						
14.		tion energies of XY, X_2 and $^{-200}$ kJ mol ⁻¹ . The bond disso	-	are in the ratio of $1 : 1 : 0.5$ and $\Delta_{t}H$ for the -			
	(1) 200 kJ mol ⁻¹	(2) 100 kJ mol ⁻¹	2	(4) 300 kJ mol ^{-1}			
Ans.	(3)						
15.	The standard enthl	apy of formation (Δ_{t} H°) at 29	8K for methane, $CH_4(g)$, is -	-74.8 kJ mol ⁻¹ . The additional information			
		ine the average energy for (-				
	(1) Latent heat of v	vapourization of methane					
	(2) The first four i	onization energies of carbon	n and electron gain enthalp	by of hydrogen			
	(3) The dissociation energy of hydrogen molecule H_2						
		on energy of H_2 and enthalp	y of sublimation of carbon				
Ans.	(4)						
16.		ges for the following proce	sses are listed below :				
	-	$Cl_2(g) = 2Cl(g), 242.3 \text{ kJ mol}^{-1}$ $I_2(g) = 2I(g), 151.0 \text{ kJ mol}^{-1}$					
	$I_2(g) = I(g) + Cl(g)$						
		$52.76 \mathrm{kJ}\mathrm{mol}^{-1}$					
	2() 2(0)		orine are $I_2(s)$ and $Cl_2(g)$, the	e standard enthalpy of formation for ICl(g)			
	is :-						
	$(1)-16.8 \text{ kJ mol}^{-1}$	$(2)+16.8 \text{ kJ mol}^{-1}$	$(3) + 244.8 \text{ kJ mol}^{-1}$	$(4) - 14.6 \text{ kJ mol}^{-1}$			
Ans.	(2)						

	NO. 1 ONLINE COACHING			J.H. SIR			
17.		In conversion of lime-stone to lime, $CaCO_3(s) \longrightarrow CaO(s) + CO_2(g)$					
				298 K and 1 bar. Assuming that ΔH° and of limestone to lime will be spontaneous			
	(1) 1008 K	(2) 1200 K	(3) 845 K	(4) 1118 K			
Ans.	(3)						
18.	e	0°C, (Given : Molar entha		J) when 1 mol of water is vapourised a er at 1 bar and 373 K = 41 kJ mol ^{-1} and			
	$(1)4.100 \text{ kJ mol}^{-1}$	(2) 3.7904 kJ mol ⁻¹	(3) 37.904 kJ mol ⁻¹	$(4) 41.00 \text{ kJ mol}^{-1}$			
Ans.	(3)						
19.	Identify the correct s	tatement regarding a spon	taneous process :-				
	(1) For a spontaneou	s process in an isolated sy	stem, the change in entropy	y is positive			
	(2) Endothermic prod	cesses are never spontaned	Dus				
	(3) Exothermic proce	esses are always spontaned	ous				
	(4) Lowering of energy	gy in the reaction process	is the only criterion for spo	ntaneity			
Ans.	(3)						
20.	Oxidising power of c	hlorine in aqueous solution	n can be determined by the	parameters indicated below:			
	$\frac{1}{2}\operatorname{Cl}_2(g) \xrightarrow{\frac{1}{2}\Delta_{diss}H\circ} \rightarrow$	$Cl(g) \xrightarrow{\Delta_{eg}H \circ} Cl^{-}(g) $	$\xrightarrow{\Delta_{hyd}H \circ} Cl^{-}(aq)$				
		in the conversion of $\frac{1}{2}$ Cl					
	(using the data Δ_{diss} F	$H_{Cl_2}^{\Theta} = 240 \text{ kJ mol}^{-1}, \Delta_{eg} H_{Cl}^{\Theta}$	$\Delta_{\rm hyd} = -349 \text{kJ mol}^{-1}, \Delta_{\rm hyd} \mathrm{H}_{\rm Cl}^{\Theta} = -100 \text{kJ}^{-1}$	381 kJ mol ⁻¹) will be:-			
Ans.	(1)–610 kJ mol ⁻¹ (3)		$(3) + 120 \text{ kJ mol}^{-1}$				
21.	On the basis of the following thermochemical data : $\left(\Delta H_{f}^{0}H_{(aq)}^{+}=0\right)$						
	$H_2O(\ell) \rightarrow H^+(aq) + Q$	$DH^{-}(aq); \Delta H = 57.32 \text{ kJ}$					
	$\mathrm{H}_{2}(\mathrm{g}) + \frac{1}{2} \mathrm{O}_{2}(\mathrm{g}) \to \mathrm{H}_{2}(\mathrm{g})$	$H_2O(\ell)$; ΔH = -286.20 kJ					
	The value of enthalpy	of formation of OH- ion a	at 25°C is :-				
	(1)+228.88 kJ	(2)-343.52 kJ	(3)–22.88 kJ	(4)-228.88 kJ			
Ans.	(1) <u>11</u> 0100 III (3)	(_) 0 10.02 10	(0) 22:00 14				
22.		ol is used as fuel and oxyg	en gas is used as an oxidize	er. The reaction is			
	$CH_3OH(\ell) + \frac{3}{2}O_2(g)$	\longrightarrow CO ₂ (g) + 2H ₂ O(ℓ)					
	-394.4 kJmol ⁻¹	-	tandard enthalpy of) and CO ₂ (g) are -166.2, -237.2 and combustion of methanol is			
	(1) 000 ((2) 070/	(2) 0.00/	(4) 070/			
	(1)90%	(2)97%	(3)80%	(4) 87%			

ETOOSINDIA J.H. SIR INDIA'S NO. 1 ONLINE COACHING The standard enthalpy of formation of NH_3 is -46.0 kJ mol⁻¹. If the enthalpy of formation of H_2 from its atoms is -23. 436 kJ mol⁻¹ and that of N₂ is -712kJ mol⁻¹, the average bond enthalpy of N-H bond in NH₃ is :-(1)-1102 kJ mol-1 (2)-964 kJ mol-1 $(3) + 352 \text{ kJ mol}^{-1}$ (4)+1056 kJ mol-1 (3) Ans. 24. The value of enthalpy change (ΔH) for the reaction $C_2H_5OH_{(\ell)} + 3O_{2(g)} \rightarrow 2CO_{2(g)} + 3H_2O_{(\ell)}$ at 27°C is -1366.5 kJ mol-1. The value of internal energy change for the above reaction at this temperature will be:-(1)-1371.5 kJ (2)-1369.0 kJ (3)-1364.0 kJ (4)-1361.5 kJ Ans. (3) 25. Consider the reaction : $4NO_{2(g)} + O_{2(g)} \rightarrow 2N_2O_{5(s)}, \Delta_r H = -111kJ.$ If $N_2O_{5(s)}$ is formed instead of $N_2O_{5(g)}$ in the above reaction, the $\Delta_r H$ value will be :-(given, ΔH of sublimation for N₂O₅ is 54 kJ mol⁻¹) (4) - 219 kJ(1)-165 kJ (2)+54 kJ(3)+219 kJ

Ans. (4)

	ASSERTION & REASON EXERCISE These questions consist of two statements each, printed as <i>Assertion</i> and <i>Reason</i> . While answering these Questions you are required to choose any one of the following four responses.
A.	If both Assertion & Reason are True & the Reason is a correct explanation of the Assertion.
В.	If both Assertion & Reason are True but Reason is not a correct explanation of the Assertion.
C.	If Assertion is True but the Reason is False.
D.	If both Assertion & Reason are False.
1.	Assertion :- The enthalpies of neutralisation of strong acids and strong bases are always same.
	Reason :- neutralization is heat of formation of water.
Ans.	(C)
2.	Assertion :- Heat of neutralization of perchloric acid, HClO ₄ with NaOH is same as is that of HCl with NaOH.
	Reason :- Both HCl and HClO ₄ are strong acids.
Ans.	(A)
3.	Assertion :- For the combustion of methane, $\Delta E > \Delta H$
	Reason :- ΔH is released by ΔE by expression. $\Delta H = \Delta E + \Delta nRT$
Ans.	(C)
4.	Assertion :- Heat of neutralization for HF is -68.552 kJ/eq. where as for HCl it is -57.26 kJ/eq.
	Reason : The acid of HF is weak acid.
Ans.	(D)
5.	Assertion :- In a diatomic molecule involving two like atoms covalently bonded with each other, bond energy = $2 \times$ heat of formation of atom.
	Reason :- $H \longrightarrow 2H$; $e_{H-H} = \Delta H$
Ans.	(C)
6.	Assertion :- Bond energy for breaking up a bond is endothermic.
	Reason :- Heat is required to overpower the attractions between two atoms.
Ans.	(C)
7.	Assertion :- Heat of combustion are always exothermic.
	Reason :- Combustion of N_2 to give NO is exothermic.
Ans.	(A)
8.	Assertion :- Standard heat enthalpy of a compound is its heat of formation at 25°C and 1 atm.
	Reason :- Standard heat enthalpy of pure elements have arbitrarily assumed to be zero.
Ans.	(C)
9.	Assertion :- The variation of heat of reaction with temperature are given in terms of Kirchhoff's equation.
	Reason : - The Kirchhoff's equation is : $\Delta H = \Delta U + \Delta nRT$
Ans.	(A)
10.	Assertion :- Heat of neutralization can be given as :
	$H^+ + OH^- \longrightarrow H_2O$; $\Delta H = -13.6$ kcal
	Reason :- Heat of neutralization can be alternatively defined as heat of formation of water.

Ans. (A)

ETOOSINDIA INDIA'S NO. 1 ONLINE COACHING

11.	Assertion :- The dissolution of NaCl in water is endothermic, though it is spontaneous process.
	Reason :- ΔG for the process is -ve because ΔH_{sol} is very low and thus $T\Delta S > \Delta H$.
Ans.	(C)
12.	Assertion :- Heat of combustion of C_2H_6 is -341.1 kcal mol ⁻¹ and heat of combustion of C_2H_2 is -310 kcal mol ⁻¹ but C_2H_2 is better fuel.
	Reason :- The better fuel has high calorific value.
Ans.	(C)
13.	Assertion :- There is no reaction known for which ΔG is positive, yet it is spontaneous.
	Reason :- For photochemical reactions, ΔG is negative.
Ans.	(D)
14.	Assertion :- Enthalpy of graphite is lower than that of diamond.
	Reason :- Entropy of graphite is greater than that of diamond.
Ans.	(B)
15.	Assertion :- For a particular reaction, heat of combustion at constant pressure (q_p) is always greater than that at constant volume (q_v) .
	Reason :- Combustion reactions are invariably accomplished by increase in no. of moles.

(D) Ans.