BASIC EXERCISE

Intro	luction				
1.	Thermodynamics is con	ncerned with :-			
	(1) Total energy of a sy	stem	(2) Energy changes in a system		
	(3) Rate of a chemical change		(4) Mass changes in nu	uclear reactions	
Ans.	(2)				
2.	A well stoppered thermos flask contains some ice cu		bes. This is an example o	of :	
	(1) Closed system		(2) Open system		
	(3) Isolated system		(4) Non-thermodynam	ic system	
Ans.	(3)				
3.	In which of the followi	ng process work behaves as	state function :		
	(1) Isothermal	(2) Isochoric	(3) Adiabatic	(4) Isobaric	
Ans.	(3)				
4.	When a gas is compres	sed adiabatically and reversil			
	(1) Higher than the initi	-	(2) Lower than the initi	•	
	(3) The same as initial t	emperature	(4) Dependent upon th	e rate of compression	
Ans.	(1)				
5.	Which one is a state function :-				
	(1) Heat supplied at co	nstant pressure	(2) Heat supplied at constant volume		
A mg	(3) Enthalpy		(4) All of the above		
Ans. 6.	(4) Out of bailing point (I)	entropy (II), pH (III) and em	fof a cell (IV) intensive n	roparties are	
0.	(1) I, III, IV	(2) I, II	(3) I, II, III	(4) All of these	
Ans.	(1)1,11,11v (1)	(2)1,11	(5)1,11,111	(4) An of these	
7.		eightless piston in causing a	n expansion Δ V (at cons	stant temperature), when the opposing	
	pressure P is variable, i	• • •			
	(1) W= $-\int P\Delta V$	(2) $W = 0$	$(3) W = -P\Delta V$	(4) None	
Ans.	(1)				
8.	The work done by 100 o	calorie of heat in isothermal e	expansion of ideal gas is :-	-	
	(1)418.4 J	(2)4.184 J	(3)41.84 J	(4) None	
Ans.	(1)				
9.	Temperature and heat a				
	(1) Extensive properties		(2) Intensive properties		
		sive properties respectively	(4) Extensive and intensive properties respectively		
Ans.	(4)				
10.	q = -w is not true for :-				
	(1) Isothermal process	(2) Adiabatic process	(3) Cyclic process	(4) 1 and 3 both	
Ans.	(2)				
11.	-	deal gas increase in an -			
	(1) Adiabatic compress		(2) Adiabatic expansion		
	(3) Isothermal expansio	n	(4) Isothermal compression	n	
Ans.	(1)				

12.	Enthalpy of 1 mole mon	oatomic ideal gas is equals	to :	
	$(1) \frac{3}{2} \mathrm{RT}$	(2) $\frac{5}{2}$ RT	(3) RT	(4) 2 RT
Ans.	(2)			
FIRST	LAW OFTHERMODYNA	AMICS		
	$(\Delta E = q + W)$			
13.	Both q & w are	_ function & q + w is a _	function :-	
		(2) State, path		(4) Path, path
Ans.	(3)			
14.	If work done by the synthe process is :-	stem is 300 joule when 10	00 cal. heat is supplied to it.	The change in internal energy during
	$(1) - 200 \mathrm{J}$	(2)400 J	(3) 720 J	(4) 120 J
Ans.	(4)			
15	A system has internal en of the system will be -	ergy equal to E_1 , 450 J of heat	at is taken out of it and 600 J	of work is done on it. The final energy
	$(1)(E_1 + 150)$	$(2)(E_1 + 1050)$	$(3)(E_1 - 150)$	(4) None of these
Ans.	(1)			
16.	If a gas absorbs 100 J of h energy is:-	neat and expands by 500cm ³	against a constant pressure of	of 2×10^5 Nm ⁻² , the change in internal
	(1) - 300 J	(2) - 100 J	(3) + 100 J	(4) None of these
Ans.	(4)			
ENTH	$\mathbf{ALPY} \left[\Delta \mathbf{H} = \Delta \mathbf{E} + \mathbf{P} \Delta \mathbf{V} / \Delta \mathbf{I} \right]$	$H = \Delta E + \Delta n_g RT$		
17.	Internal energy change of	during a reversible is isother	rmal expansion of an ideal g	gas is :-
	(1) Always negative		(2) Always positive	
	(3)Zero		(4) May be positive or ne	egative
Ans.	(3)			
18.		wing conditions is the relat	ion, $\Delta H = \Delta E + P\Delta V$ valid	-
	(1) Constant pressure		(2) Constant temperature	
	(3) Constant temperatur	e and pressure	(4) Constant temperature	e, pressure and composition
Ans.	(1)			
19.	pressure		-	\rightarrow CO ₂ (g) at constant temperature and
	$(1)\Delta H = \Delta E$	(2) $\Delta H \leq \Delta E$	$(3)\Delta H > \Delta E$	(4) None of the above
Ans.	(2)			
20.	-	-	which one of the following is	
	$(1)\Delta H = \Delta E$	(2) $\Delta H = \frac{1}{2} \Delta E$	$(3)\Delta H \leq \Delta E$	$(4) \Delta H > \Delta E$
Ans.	(4)			
21.		carbon monoxide and one mage and ΔE is the change in		ssel is ignited to get carbon dioxide. If
	$(1)\Delta H \ge \Delta E$	(2) $\Delta H < \Delta E$	$(3) \Delta H = \Delta E$	(4) Not definite
Ans.	(2)			
22.	For the gaseous reaction	n involving the complete co	ombustion of isobutane -	
	$(1)\Delta H = \Delta E$	(2) $\Delta H > \Delta E$	$(3) \Delta H = \Delta E = 0$	(4) $\Delta H < \Delta E$
Ans.	(2)			

23.	For the reversible isothern	nal expansion of one mole o	f an ideal gas at 300 K, from	a volume of 10 dm ³ to 20 dm ³ , Δ H is-
	(1)1.73 KJ	(2)–1.73 KJ	(3) 3.46 KJ	(4) Zero
Ans.	(4)			
24.	For $CaCO_3(s) \rightarrow CaO(s)$	$+ CO_2(g)$ at 977°C, $\Delta H =$	174 KJ/mol ; then ΔE is :-	
	(1) 160 KJ	(2) 163.6 KJ	(3) 186.4 KJ	(4) 180 KJ
Ans.	(2)			
25.	Heat of reaction for , CO(g P at 17°C is :-	g) + $\frac{1}{2}$ O ₂ (g) \rightarrow CO ₂ (g) at co	onstant V is –67.71 K cal at	17°C. The heat of reaction at constant
	(1)-68.0 K cal	$(2) + 68.0 \mathrm{K} \mathrm{cal}$	(3) - 67.42 K cal	(4) None
Ans.	(1)			
26.	The reaction :-			
	$\text{NH}_2\text{CN}(\text{S}) + \frac{3}{2}\text{O}_2(\text{g}) \rightarrow$	$N_2(g) + CO_2(g) + H_2O(\ell)$		
	was carried out in a bomb be :-	caloriemeter. The heat relea	sed was 743 KJ mol ⁻¹ . The v	value of ΔH_{300k} for this reaction would
	$(1) - 740.5 \text{KJ} \text{mol}^{-1}$	$(2) - 741.75 \text{ KJ mol}^{-1}$	$(3) - 743.0 \mathrm{KJ}\mathrm{mol}^{-1}$	$(4) - 744.25 \text{ KJ mol}^{-1}$
Ans.	(2)			
27.		bustion of sucrose $(C_{12}H_{22}C_{12})$		
	$(1)\Delta H > \Delta E$	$(2)\Delta H \leq \Delta E$	$(3)\Delta H = \Delta E$	(4) None
Ans.	(3)			
28.	for the reaction :-			ls mole ⁻¹ at 25°C. What is ΔH at 25°C
		(2)-671.08 K. Cals.	(3) - 670.48 K Cals.	(4) + 670.48 K. Cals.
Ans.	(2)			
29.			nethane at 25°C would be :-	
	(1) Zero	$(2) 2 \times 298 \times -2 \text{ Cals.}$	$(3) 2 \times 298 \times -3 \text{ Cals.}$	$(4) 2 \times 25 \times -3 \text{ Cals.}$
Ans.	(2)			
30.		g reactions ΔH is less than A		
	$(1) C_{12} H_{22} O_{11}(s) + 6O_2(g)$	$\rightarrow 6 \text{CO}_2(g) + 6 \text{H}_2 \text{O}(\ell)$	$(2) 2SO_2(g) + O_2(g) \rightarrow 2S$	-
	$(3) \operatorname{N}_2\operatorname{O}_4(g) \to 2\operatorname{NO}_2(g)$		$(4) \operatorname{N}_2(g) + \operatorname{O}_2(g) \to 2\operatorname{NO}(g)$	(g)
Ans.	(2)			
31.	For a reaction $2X(s) + 2Y(s)$			
	The q_p at 27°C is – 28 K C			
	The q _V is K. Cal.			
	(1)-27.4	(2)+27.4	(3) - 28.6	(4)28.6
Ans.	(3)			
	COONE IN DIFFERENT PH			
32.	The work done in ergs for at 25°C is :	a reversible expansion of o	ne mole of an ideal gas from	a volume of 10 litres to 20 litres
	$(1)-2.303 \times 8.31 \times 10^{7} \times 2^{7}$	98 log2	$(2)-2.303 \times 0.0821 \times 298$	log2
	$(3) - 2.303 \times 0.0821 \times 2981$	log 0.5	$(4)-2.303 \times 2 \times 298 \log 2$	
Ans.	(1)			

	(1)-504.2 joule	(2)-405.2 joule	(3)+810.4 joule	(4)-810.4 joule		
ns.	(1) 504.2 joure (4)	(2) 405.2 joure	(<i>5)</i> + 010.4 joure	(+) 010.+joure		
4.		pying 3dm ³ expands against	a constant external pressu	re of 1 atm to a volume of 13 lit. The work		
	$(1) - 10 \text{ atm } \text{dm}^3$	$(2)-20 \text{ atm } \text{dm}^3$	$(3) - 39 \text{ atm } \text{dm}^3$	$(4) - 48 \text{ atm } \text{dm}^3$		
ns.	(1)					
NTR	OPY/SECOND LAW OFT	THERMODYNAMICS				
5.	An adiabatic reversibl	e process is one in which :-				
	(1) Temperature of the system does not change		(2) The system is not	closed to heat transfer		
	(3) There is no entrop	y change	(4) None of these			
ns.	(3)					
5.	Entropy means					
	(1) Disorderness	(2) Randomness	(3) Orderness	(4) both 1 & 2		
ns.	(4)					
7.	Change in entropy is negative for					
	(1) Bromine $(\ell) \longrightarrow$ Bromine (g)		$(2) C(s) + H_2O(g) \longrightarrow CO(g) + H_2(g)$			
	$(3) N_2(g, 10 \text{ atm}) \longrightarrow$	$N_2(g, 1 atm)$	$(4) \operatorname{Fe}(\operatorname{at} 400 \operatorname{K}) \longrightarrow$	Fe(at 300 K)		
ns.	(4)					
38.	In which reaction ΔS is positive :-					
	$(1) \operatorname{H}_{2}O(\ell) \to \operatorname{H}_{2}O(s)$		(2) $3O_2(g) \to 2O_3(g)$			
	$(3) \operatorname{H}_{2}O(\ell) \to \operatorname{H}_{2}O(g)$		$(4) \operatorname{N}_2(g) + 3\operatorname{H}_2(g) \to 3$	$2\mathrm{NH}_3(\mathrm{g})$		
ns.	(3)					
).	When the egg is hard	boiled, there is-				
	(1) Increase in disorde	r	(2) Decrease in disord	(2) Decrease in disorder		
	(3) No change in disor	der	(4) ΔG is negative			
ns.	(1)					
).	If S^0 for H_2 , Cl_2 and I the reaction	HCl are 0.13, 0.22 and 0.19	KJK ⁻¹ mol ⁻¹ respectively	7. The total change in standard entropy for		
	$H_2 + Cl_2 \longrightarrow 2HCl \text{ is}$					
	$(1) 30 JK^{-1} mol^{-1}$	$(2) 40 \text{ JK}^{-1} \text{ mol}^{-1}$	(3) 60 JK ⁻¹ mol ⁻¹	(4) 20 JK^{-1} mol ⁻¹		
ns.	(1)					
	Which has the least end	ntropy :				
	(1) Graphite	(2) Diamond	$(3) N_2(g)$	$(4) N_2 O(g)$		
ns.	(2)					
2.	The enthalpy of vapor	isation of per mole of ethanol	(b.p. = 79.5° C and Δ S =	109.8 JK ⁻¹ mol ⁻¹) is :-		
	(1)27.35 KJ/mol	(2) 32.19 KJ/mol	(3) 38.70 KJ/mol	(4) 42.37 KJ/mol		
ns.	(3)					
3.	If 900J/g of heat is exc	hanged at boiling point of wat	ter, then what is increase i	n entropy?		
	(1)43.4 J/K-mole	(2) 87.2 J/K mole	(3)900 J/K-mole	(4) Zero		

44.	5 mole of an ideal gas expand reversibly from a volume of 8 dm ³ to 80dm ³ at a temperature of 27°C. The change in entropy is :-			at a temperature of 27°C. The change in	
	(1)41.57 JK ⁻¹	$(2) - 95.73 \text{ JK}^{-1}$	$(3)95.73 \text{ JK}^{-1}$	$(4) - 41.57 \mathrm{JK}^{-1}$	
Ans.	(3)				
45.	The total entropy char	nge for a system & its surr	oundings increases if the p	rocess is :	
	(1) Reversible	(2) Irreversible	(3) Exothermic	(4) Endothermic	
Ans.	(2)				
46.	Calculate the entropy HBr is 130.6 and 198.5	-	$H_2(g) + Br_2(g) \rightarrow 2HBr(g)$), $\Delta S^{\circ} = 20.1 J K^{-1}$ given, entropy of H_2 and	
	(1)246.3 JK ⁻¹	(2) 123.15 JK ⁻¹	(3) 24.63 JK ⁻¹	(4) 20 KJK ⁻¹	
Ans.	(1)				
47.	Ammonium chloride when dissolved in water leads to cooling sensation. The dissolution of NH_4Cl at contemperature is accompanied by :-				
	(1) Increase in entropy	T	(2) Decrease in entrop	ру	
	(3) No change in entro	рру	(4) No change in enth	alpy	
Ans.	(1)				
48.	In which of the follow	ring case entropy decrease	-S-		
	(1) Solid changing to li	iquid	(2) Expansion of a gas	S	
	(3) Crystals dissolve		(4) Polymerisation	(4) Polymerisation	
Ans.	(4)				
49.	Which of the followin	g state function is not zero	o at standard state :		
	(1) Enthalpy	(2) Entropy	(3) Free energy	(4) None	
Ans.	(2)				
50.	Entropy of an adiabati	c reversible process is:-			
	(1) Positive	(2) Zero	(3) Negative	(4) Constant	
Ans.	(4)				
		GIBBS	SFREE ENERGY		
51.	A gas is allowed to expand under reversible adiabatic conditions what is zero for such a process:-				
	$(1)\Delta G=0$	$(2)\Delta T=0$	$(3)\Delta S=0$	(4) None of these	
Ans.	(3)				
52.	For a reaction at 25°C respectively. The react		ad entropy change (ΔS) are	-11.7×10^3 Jmol $^{-1}$ and -105 J mol $^{-1}$ K^{-1}	
	(1) Spontaneous		(2) Non spontaneous		
	(3) At equilibrium		(4) Can't say anything	y	
Ans.	(2)				
53.	entropy change at that	temperature		tion occurs spontaneously at 298 K, the	
	• •	t numerically larger than x			
	• •	t numerically smaller than	x/298 cal K ⁻¹ mol ⁻¹		
	(3) Cannot be negative				
	(4) Cannot be positive				
Ans.	(2)				

54.	Which of the following	g is true for the reaction H	$H_2O(\ell) \Longrightarrow H_2O(g) \text{ at } 100^\circ$	C and 1 atmosphere
	$(1)\Delta S=0$	$(2)\Delta H=0$	$(3)\Delta H = \Delta E$	$(4) \Delta H = T\Delta S$
Ans.	(4)			
55.	For hypothetical reversi	ble reaction		
	$\frac{1}{2} A_2(g) + \frac{3}{2} B_2(g) - \frac{3}$	$AB_3(g); \Delta H = -20 \text{ KJ if st}$	and and entropies of A_2 , B_2	and AB_3 are 60, 40 and 50 JK ⁻¹ mole ⁻¹
	respectively. The above i	eaction will be in equilibriu	ım at :	
	(1)400K	(2) 500K	(3)250K	(4)200K
Ans.	(2)			
56.	For the precipitation of A	AgCl by Ag ⁺ ions and HCl		
	$(1)\Delta H=0$	$(2)\Delta G=0$	$(3) \Delta G = -ve$	$(4) \Delta H = \Delta G$
Ans.	(3)			
57.	What is the free energy cl and 1 atm pressure :	hange ΔG , when 1.0 mole of	water at 100°C and 1 atm pr	essure is converted into steam at 100°C
	(1) 540 Cal	(2)–9800 Cal	(3)9800 Cal	(4) 0 Cal
Ans.	(4)			
58.	A reaction $A + B \longrightarrow C$	2 + D + q is found to have a	positive entropy change, th	e reaction will be -
	(1) Possible at high temp	perature	(2) Possible only at low	temperature
	(3) Not possible at any to	emperature	(4) Possible at any temp	erature
Ans.	(4)			
59.	Equilibrium constant of			
	(1) Standard free energy	change ΔG^0	(2) Free energy change	ΔG
	(3) Entropy change		(4) None	
Ans.	(1)			
60.	The Vant Hoff equation		2 .	
		(2) $-\Delta G^{\circ} = \operatorname{RT} \log_{e} K_{p}$	$(3) \Delta G^{\circ} = RT^{2} \ell n K_{p}$	(4) None
Ans.	(2)			
61.	If $\Delta G^0 > 0$ for a reaction	then :		
	$(1) K_{p} > 1$			
	(2) $K_p < 1$			
	.,	inate in the equilibrium mix	ture	
Ang	(4) None			
Ans. 62.	(2)	Int for a reaction is 10, then	the value of ΛG^0 will be	
02.	$(R = 8JK^{-1} mol^{-1}, T = 300)$			
	$(1) + 5.527 \text{ KJ mol}^{-1}$	K)	$(2) - 5.527 \mathrm{KJ}\mathrm{mol}^{-1}$	
	$(3)+55.27 \text{ KJ mol}^{-1}$		$(2) = 5.327 \text{ KJ mol}^{-1}$ $(4) = 55.27 \text{ KJ mol}^{-1}$	
Ans.	(2)		(1) 55.27 Ki mor	
63.		ion of a liquid is accompan	ied by:	
	(1) Increase in enthalpy		(2) Decrease in free ener	rgv
	(3) Increase in entropy		(4)All	
Ans.	(4)		× /	
	. /			

64.	For the process, $CO_2(s) \longrightarrow CO_2(g)$:				
	(1) Both ΔH and ΔS are +ve		(2) ΔH is negative and Δ	(2) Δ H is negative and Δ S is +ve	
	(3) ΔH	is +ve and ΔS is -	-ve	(4) Both ΔH and ΔS are -	-ve
Ans.	(1)				
65.	Which	of the following p	provide exceptions to third	law of thermodynamics	
	(1)CO		(2) ice	(3) CO ₂	(4) All the above
Ans.	(4)				
66.	The Gil	obs free energy char	nge of a reaction at 27°C is –2	6 Kcal. and its entropy change	is -60 Cals/K . ΔH for the reaction is :-
	(1)-44	K. Cals.	(2)-18 K. Cals.	(3) 34 K. Cals.	(4)-24 K. Cals.
Ans.	(1)				
67.	Which	of the following	reaction is expected never	to be spontaneous :-	
	(1)	$2O_3 \rightarrow 3O_2$			
		$\Delta H = -Ve, \Delta S =$	=+Ve		
	(2)	$Mg + H_2 \rightarrow Mg$	gH ₂		
		$\Delta H = -Ve, \Delta S =$	=-Ve		
	(3) $\operatorname{Br}_2(I) \to \operatorname{Br}_2(g)$				
		$\Delta H = + Ve, \Delta S =$	=+Ve		
	(4)	$2Ag + 3N_2 \rightarrow 2$	AgN ₃		
		$\Delta H = + Ve, \Delta S =$	=-Ve		

Ans. (4)

ANALYTICAL EXERCISE

1. For one mole of an ideal gas

(C_n and C_v are molar heat capacities at constant pressure and constant volume respectively)

(1)
$$C_p - C_v = R$$
 (2) $C_p - C_v = \frac{R}{2}$ (3) $C_p - C_v = 2R$ (4) $C_p - C_v = 0$

Ans. (1)

2. ΔS° will be highest for the reaction

(1)
$$Ca + \frac{1}{2}O_2(g) \rightarrow CaO(s)$$

(2) $CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$
(3) $C(s) + O_2(g) \rightarrow CO_2(g)$
(4) $N_2(g) + O_2(g) \rightarrow 2NO(g)$

Ans. (2)

- **3.** A closed flask contains a substance in all its three states, solids, liquids and vapour at its triple point. In this situation the average KE of the water molecule will be
 - (1) Maximum in vapour state
 - (2) Maximum in solid state
 - (3) Greater in the liquid than in vapour state
 - (4) Same in all the three states

Ans. (4)

- 4. In thermodynamics a process is called reversible when
 - (1) System and surrounding change into each other
 - (2) There is no boundary between system and surrounding
 - (3) The surroundings are always in equilibrium with the system
 - (4) The system changes into the surroundings spontaneously

Ans. (3)

- 5. The molar heat capacity of water at constant pressure P is 75 J K⁻¹ mol⁻¹. When 1.0 kJ of heat is supplied to 1000 g of water, which is free to expand, the increase in temperature of water is
 - (1)1.2 K (2)2.4 K (3)4.8 K (4)0.24 K

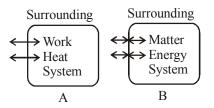
Ans. (4)

- 6. 16 kg oxygen gas expands at STP (1 atm) isobarically to occupy double of its original volume. The work done during the process is nearly
 - (1) 260 kcal (2) 180 kcal (3) 130 kcal (4) 271 kcal

Ans. (4)

- 7. The enthalpy and entropy change for a chemical reaction are -2.5×10^3 cal and 7.4 cal K⁻¹ respectively. Predict the nature of reaction at 298 K is
 - (1) Spontaneous (2) Reversible (3) Irreversible (4) Non-spontaneous

Ans. (1)


8. The temperature at which the given reaction is at equilibrium

$$Ag_2O(s) \rightarrow 2Ag(s) + \frac{1}{2}O_2(g)$$

 $\Delta H = 30.5 \text{ kJ mol}^{-1} \text{ and } \Delta S = 0.06 \text{ kJ mol}^{-1} \text{ K}^{-1}$ (1)462.12 K (2)362.12 K (3)262.12 K (4)562.12 K

Ans. (1)

9.	One mole of a non ideal gas undergoes a change of state (2.0 atm, 3.0 L, 95 K) \rightarrow (4.0 atm, 5.0 L, 245 K) with a change in internal energy $\Delta U = 30.0$ L atm. The change in enthalpy of the process in L atm is				
	(1)40.0	(2)42.3	(3)44.0	(4) 56.0	
Ans.	(3)				
10.	Which of the following c	an be zero for isothermal re	eversible expansion ?		
	(1)ΔE	(2) ΔH	(3)ΔT	(4) All of these	
Ans.	(4)				
11.	In an insulated container	water is stirred with a rod t	to increase the temperature.	Which of the following is true?	
	$(1) \Delta U = W \neq 0, q = 0$	(2) $\Delta U = W = q \neq 0$	$(3) \Delta U = 0, W = q \neq 0$	(4) W = 0, $\Delta U = q \neq 0$	
Ans.	(1)				
12.	Two atoms of hydrogen of	combine to form a molecule	e of hydrogen gas the energy	y of the H_2 molecule is	
	(1) Greater than that of se	eparate atoms	(2) Equal to that of separ	ate atoms	
	(3) Lower than that of se	parate atoms	(4) Sometimes lower and	sometimes higher	
Ans.	(3)				
13.	The temperature of 15 ml mixed, temperature shou		y 2°C when 15 ml of a strong	g base is added to it. If 5 ml of each are	
	(1) 0.6°C	(2) 0.3°C	(3)2°C	(4)6°C	
Ans.	(3)				
14.	If x mole of ideal gas at 2	7°C expands isothermally a	-	e of y to 10 y, then the work done is	
	$(1) w = x R 300 \ln y$		(2) w = $-300 \text{ x R ln} \frac{\text{y}}{10 \text{ y}}$		
	$(3) w = -300 x R \ln 10$		$(4) w = 100 x R \ln \frac{1}{y}$		
Ans.	(3)				
15.	A system X undergoes for				
		\rightarrow Z \longrightarrow X			
		$(P_3V_2T_2)$ $(P_1V_1T_1)$			
	The overall process may				
	(1) Reversible process	(2) Cyclic process	(3) Cyclic reversible proc	cess (4) Isochoric process	
Ans.	(2)				
16.			12 g iron reacts with dil H0	2	
	(1) 1.1 kcal	(2) 0.6 kcal	(3) 0.3 kcal	$(4) 0.2 \mathrm{kcal}$	
Ans.	(1)				
17.	Which statement is corr	ect?			
	$(1)\left(\frac{\mathrm{dH}}{\mathrm{dT}}\right)_{\mathrm{P}} < \left(\frac{\mathrm{dE}}{\mathrm{dT}}\right)_{\mathrm{V}}$		$(2)\left(\frac{dH}{dT}\right)_{P} + \left(\frac{dE}{dT}\right)_{V} = R$		
	(3) $\left(\frac{dE}{dV}\right)_{T}$ for ideal gas	is zero	(4) All of these		
Ans.	(3)				

The A and B systems respectively are

	The T and D systems	respectively are				
	(1) Open system, Clos	sed system	(2) Isolated system, C	losed system		
	(3) Adiabatic system,	Isolated system	(4) Closed system, Iso	lated system		
Ans.	(4)					
19.	Set of intensive properties is shown by					
	(1) Mole fraction, standard electrode potential, heat capacity.					
	(2) Viscosity, refractiv	e index, specific heat.				
	(3) Density, Gibbs fre	e energy, internal energy.				
	(4) Number of moles,	molarity, electrode potent	ial.			
Ans.	(2)					
20.	For the expansion occu	urring from initial to fina	l stage in finite time, which	is incorrect ?		
	(1) Equilibrium exist i	n initial and final stage				
	(2) Work obtained is n	naximum				
	(3) Driving force is m	nuch greater than the opp	oosing force			
	(4) Both (1) & (2)					
Ans.	(2)					
21.			d out at constant temperatur eaction, which of the follow	e and pressure. If ΔH and ΔU are the ving expressions is true ?		
	(1) Δ H < Δ U	(2) Δ H > Δ U	$(3) \Delta H = 0$	(4) Δ H = Δ U		
Ans.	(1)					
22.	For a reversible process is isothermal -	s at $T = 300$ K, the volume	is increased from $V_i = 1L$ to	$V_f = 10L$. Calculate ΔH if the process		
	(1) 11.47 kJ	(2) 4.98 kJ	(3)0	(4)–11.47 kJ		
Ans.	(3)					
23.	The conversion A to B	is carried out by the follow	ving path :			
	$\begin{array}{c} C \longrightarrow D \\ \uparrow \\ A \end{array} \qquad \qquad$					
	$\Delta S_{(C \rightarrow D)} = 30 \text{ e.u., } \Delta S_{(C \rightarrow D)}$					
	where e.u. is entropy					
	(1) + 100 e.u.	(2) + 60 e.u.	(3) - 100 e.u.	(4) - 60 e.u.		
Ans.	(2)					

24. For the process $H_2O(\ell)$ (1 bar , 373K) $\rightarrow H_2O(g)$ (1 bar , 373K), the correct set of thermodynamic parameters is: (1) $\Delta G = 0$, $\Delta S = +ve$ (2) $\Delta G = 0$, $\Delta S = -ve$ (3) $\Delta G = +ve$, $\Delta S = 0$ (4) $\Delta G = -ve$, $\Delta S = +ve$

25. The entropy change involved in the isothermal reversible expansion of 2 moles of an ideal gas from a volume of 10 dm³ to a volume of 100 dm³ at 27°C is :-

 $(1) 32.3 \text{ J} \text{ mol}^{-1} \text{ K}^{-1} \qquad (2) 42.3 \text{ J} \text{ mol}^{-1} \text{ K}^{-1} \qquad (3) 38.3 \text{ J} \text{ mol}^{-1} \text{ K}^{-1} \qquad (4) 35.8 \text{ J} \text{ mol}^{-1} \text{ K}^{-1}$

- Ans. (3)
- 26. The incorrect expression among the following is :-

(1) K =
$$e^{-\Delta G^{\circ}/RT}$$
 (2) $\frac{\Delta G_{system}}{\Delta S_{total}} = -T$

(3) In isothermal process,
$$W_{\text{reversible}} = -nRT \ln \frac{V_f}{V_i}$$
 (4) $\ln K = \frac{\Delta H^\circ - T\Delta S^\circ}{RT}$

Ans. (4)

ASSERTION & REASON QUESTIONS

EXERCISE-4

These questions consist of two statements each, printed as Assertion and Reason. While answering these Questions you are required to choose any one of the following four responses. A. If both Assertion & Reason are True & the Reason is a correct explanation of the Assertion. B. If both Assertion & Reason are True but Reason is not a correct explanation of the Assertion. C. If Assertion is True but the Reason is False. D. If both Assertion & Reason are False. Assertion :- The heat absorbed during the isothermal expansion of an ideal gas against vacuum is zero. 1. **Reason** :- The volume occupied by the molecules of an ideal gas is zero. [AIIMS 2002] **(C)** Ans. 2. Assertion :- For an isothermal reversible process Q = -w i.e. work done by the system equals the heat absorbed by the system. **Reason** :- Enthalpy change (ΔH) is zero for isothermal process. Ans. **(C)** 3. Assertion :- The increase in internal energy (ΔE) for the vapourization of one mole of water at 1 atm and 373 K is zero. [AIIMS-2003] **Reason :-** For all isothermal processes $\Delta E=0$ Ans. **(D)** 4. Assertion:- Water in liquid state is more stable than ice at room temperature. [AIIMS-2006] **Reason:**- Water in liquid from has higher entropy than ice. Ans. (B) 5. Assertion:- In an isolated system the entropy increases due to spontaneous process. [AIIMS-2006] **Reason:**- The processes in an isolated system are adiabatic. Ans. (A) 6. Assertion :- Absolute value of enthalpy can not be determined. *Reason* :- Enthalpy is defined as H=E+PV, and value of internal energy can not be determined absolutely therefore absolute value of enthalpy can not be determined. Ans. **(A)** 7. Assertion :- When a rubber band is stretched entropy increases. **Reason** :- During expansion entropy increases. **(D)** Ans. 8. Assertion :- At constant pressure for the change $H_0(s) \rightarrow H_0(g)$ work done is negative. **Reason** :- During phase transition work done is always negative. Ans. **(C)** 9. Assertion :- The enthalpy of formation of gaseous oxygen molecules at 298K and under a pressure of one atm. is zero. **Reason** :- The entropy of formation of gaseous oxygen molecules under the same condition is zero. Ans. **(C)**

10.	Assertion :- Many endothermic reactions that are not spontaneous at room temp. becomes spontaneous at high
	temp.

Reason :- Entropy of the system increases with increase in temperature.

Ans. (B)

Assertion :- Mass, Volume and pressure are extensive properties.
 Reason :- Extensive properties depend upon the amount of the substance.

Ans. (D)

12. Assertion :- At constant temp 0°C and 1atm, the change $H_2O(s) \rightarrow H_2O(l) \Delta H$ and ΔE both are zero. *Reason :-* During isothermal process H and E both remains constant.

Ans. (D)

 13. Assertion :- Entropy is always constant for a closed system.
 [AIIMS-2011]

 Reason :- Closed system is always reversible
 [AIIMS-2011]

Ans. (D)

 14.
 Assertion :- The change in entropy during melting of ice is negligible in comparison to change in entropy during vaporization

 [AIIMS 2015]

Reason :- The volume occupied by solid and liquid is too less in comparison to volume occupied by gas.

Ans. (A)