DAILY PRACTICE PROBLEM OF PHYSICAL CHEMISTRY FOR NEET

BY JITENDRA HIRWANI

THERMOCHEMISTRY

Plot No. 38, Near Union Bank of India, Rajeev Gandhi Nagar, Kota, Rajasthan – 324005 Mob. : 9214233303 DPP-1

1.	If the heat of formation of heat of reaction $2NO_{(g)}$ +	$^{\circ}NO_2$ is 'x' $[^{1}/_2 N_2(g) + O_2(g)$ $O_{2(g)} \rightarrow 2NO_{2(g)}$ is z, then	$\rightarrow NO_{2(g)}$] the heat of react	ion $N_{2(g)} + O_{2(g)} \rightarrow 2NO_{2(g)}$ is y and the
	(1)2x+z=y	(2) 2y + z = x	(3) 2x - z = y	(4) 2z + x = y
Ans.	(3)			
2.	$S (rhombic) + O_2(g) \rightarrow SO_2(g)$	$D_2(g); \Delta H = -297.5 kJ$		
	S (monoclinic) + $O_2(g) \rightarrow$	$SO_2(g); \Delta H = -300 \text{ kJ}$		
	The above data can pred	ict that		
	(1) Rhombic sulphur is y	ellow in colour.	(2) Monoclinic sulphur h	as metallic lustre
	(3) Monoclinic sulphur	is more stable	(4) $\Delta H_{(Transition)}$ of S (R) to	S (M) is endothermic process.
Ans.	(4)			
3.	If $S + O_2 \rightarrow SO_2$;	$\Delta H = -298.2 \text{ kJ}$		
	$SO_2 + 1/2 O_2 \rightarrow SO_3;$	$\Delta H = -98.7 kJ$		
	$SO_3 + H_2O \rightarrow H_2SO_4;$	$\Delta H = -130.2 \text{ kJ}$		
	$H_2 + 1/2 O_2 \rightarrow H_2O;$	$\Delta H = -287.3 \text{ kJ}$		
	then the enthalpy of form	ation of H_2SO_4 at 298 K is		
	(1)-814.4 kJ	(2)-650.3 kJ	(3)-320.5 kJ	(4)-433.5 kJ
Ans.	(1)			
4.	When 1 g of anhydrous or acid : $C_2H_2O_4$)	xalic acid is burnt at 25°C, th	ne amount of heat liberated	is 2.835 kJ. ΔH combustion is (oxalic
	(1)–255.15 kJ	(2)-445.65 kJ	(3)–295.24 kJ	(4)–155.16 kJ
Ans.	(1)			
5.	Which one of the following	ng is not applicable for a the	ermochemical equation :	
	(1) It tells about physical	state of reactants and prod	lucts	
	(2) It tells whether the re	action is spontaneous		
	(3) It tells whether the rea	ction is exothermic or endo	thermic	
	(4) It tells about the allot	opic form (if any) of the rea	octants	
Ans.	(2)			
6.	The enthalpy changes of	formation of the gaseous or	xide of nitrogen $(N_2O \text{ and } P_2O an$	NO) are positive because of :
		of the nitrogen molecule	(2) The high electron aff	
	(3) The high electron affi	nity of nitrogen atoms	(4) The tendency of oxyg	en to form O ²⁻
Ans.	(1)			
7.	Heat of formation, $\Delta H_{\rm f}^{\rm o}$	of an explosive compound l	ike NCl_3 is –	
	(1) Positive	(2) Negative	(3) Zero	(4) Positive or negative
Ans.	(1)			
8.	Enthalpy of a compound	is equal to its :- (Who	en it is formed from constit	uent particles)
	(1) Heat of combustion	(2) Heat of formation	(3) Heat of reaction	(4) Heat of solution
Ans.	(2)			

).	The enthalpy of formation of ammonia is $-46.0 \text{ KJ mol}^{-1}$. The enthalpy change for the reaction $2\text{NH}_3(g) \rightarrow \text{N}_3(g) + 3\text{H}_3(g)$ is:					
	$N_2(g) + 3H_2(g)$ is : (1) 46.0 KJ mol ⁻¹	(2) 92.0 KJ mol ⁻¹	$(3) - 23.0 \mathrm{KJ}\mathrm{mol}^{-1}$	$(4) - 92.0 \text{ KJ mol}^{-1}$		
Ans.	(1) 40.0 KS mor (2)	(2) 72.0 KJ mor	(5) = 25.0 KJ mor	(+) = 52.0 K3 mor		
0.	Standard enthalpy of	formation is zero for				
0.		(2) $\operatorname{Br}_{(g)}$	(3) C	(4) O _{3(g)}		
	$(1) C_{diamond}$	$(2) \operatorname{Dr}_{(g)}$	(3) C _{graphite}	(+) O _{3(g)}		
Ans. 1.	(3) Civen standard on the	$1_{\rm max}$ of formation of CO (-110	V L m a = 1 and $C O (204)$	KImal-1) The heat of combustion when		
1.	one mole of graphite		KJ more thank $CO_2(-394)$	KJ mol ⁻¹). The heat of combustion when		
	(1)–110 KJ	(2) – 284 KJ	(3) – 394 KJ	(4) – 504 KJ		
.ns.	(3)					
2.		luring the combustion of I	12 litre of water gas at STF	$P(\text{mixture of equal volume of H}_2 \text{ and CO})$		
	$H_2(g) + \frac{1}{2} O_2(g) = H_2$	$O(g); \Delta H = -241.8 \text{ KJ}$				
	$CO(g) + \frac{1}{2} O_2(g) = CO(g)$					
	(1)241.8 KJ	(2) 283 KJ	(3) 1312 KJ	(4) 1586 KJ		
ns.	(3)					
3.						
	(1) 23.5 K cals	(2) 2.35 K cals	(3) 94.0 K cals	(4) 31.3 K cals		
ns.	(1)					
4.	Given $C(s) + O_2(g)$ —	$\rightarrow CO_2(g) + 94.2 \text{ Kcal}$				
	$H_2(g) + \frac{1}{2} O_2(g) \longrightarrow H_2O(\ell) + 68.3 \text{ Kcal}$					
	2 2	$CO_{2}(g)+2H_{2}O(\ell)+210.8$ Kcal				
	4 2	of methane in Kcal will be				
	(1)-45.9	(2)-47.8	(3)-20.0	(4)-47.3		
ns.	(3)		(0) 2000			
5.		HCl(g); Δ H ⁰ = −44 Kcal \Rightarrow 2NaCl(s) + H ₂ (g);				
	Then, $Na(s) + 0.5 Cl_2$	$g) \longrightarrow \text{NaCl}(s); \Delta H^0 = ?$				
	(1) 108 Kcal	(2) 196 Kcal	(3)-98 Kcal	(4) 54 Kcal		
ns.	(3)					
6.	Given that :					
	$Zn + \frac{1}{2} O_2 \rightarrow ZnO + 84000 cal$ 1					
	$Hg + \frac{1}{2}$ $O_2 \rightarrow HgO + 21700 cal$ 2					
	The heat of reaction (Δ H) for,					
	$Zn + HgO \rightarrow ZnO + ZnO +$	Hg is :-				
	(1) 105700 cal	(2) 62300 cal	(3)-105700 cal	(4) - 62300 cal		
ns.	(4)					
		or				

	$AO + \frac{1}{2} O_2 \rightarrow AO_2$ is 1	00 Kcal. The heat of reaction	on for $A + O_2 \rightarrow AO_2$ is:-					
	(1) - 50 K cal.	(2) + 50 K cal.	(3) 100 K cal.	(4) 150 K cal.				
Ans.	(2)							
18.	Using the following therr	nochemical data:						
	$C(S) + O_2(g) \rightarrow CO_2(g),$	$\Delta H = -94.0$ Kcal						
	$\mathrm{H_2(g)} + 1/2\mathrm{O_2(g)} \rightarrow \mathrm{H_2C}$	$O(\ell), \Delta H = -68.0 \text{ Kcal}$						
	CH ₃ COOH (ℓ) + 2O ₂ (g) → 2CO ₂ (g) + 2H ₂ O(ℓ), Δ H = - 210.0 Kcal The heat of formation of acetic acid is:-							
	(1)116.0 Kcal	(2) - 116.0 Kcal	(3) - 114.0 Kcal	(4)+114.0 K cal				
Ans.	(3)							

1.	Consider the following r C (graphite) + $O_2(g) \rightarrow$					
	$C (diamond) + O_2 (g) \rightarrow CO_2(g); \Delta H = -x, cal$					
	-	sition of graphite into diam	nond?			
	$(1) x_1 + x_2$	$(2) x_2 - x_1$	$(3) x_1 - x_2$	$(4) x_1 x_2$		
Ans.	(2)					
2.	The heat of combustion of yellow P and red P are –9.91 kJK and –8.78 kJ respectively. The heat of transition of yellow to red phosphorus is					
	(1)–18.69 kJ	(2)+1.13 kJ	(3)+18.69 kJ	(4)–1.13 kJ		
Ans.	(4)					
3.	$\Delta H_{f} C_{2} H_{4} = 12.5 \text{ kcal}$					
	Heat of atomisation of C					
	Bond energy of $H_2 = 104$					
	Bond energy of $C - H =$					
	What is $C = C$ bond energy	rgy?				
	(1) 140.9 kcal	(2) 49 kcal	(3) 40 kcal	(4) 76 kcal		
Ans.	(1)					
4.	$H_2(g) + \frac{1}{2}O_2(g) \longrightarrow H_2(g)$	D (<i>l</i>)				
	$H_2O_{(l)} \rightarrow H_2O_{(g)}; \Delta H = x$	4				
	Given,					
	$E_{H-H} = x_1$					
	$E_{0=0} = x_2$					
	$E_{0-H} = x_3$					
	$\Delta H_{\rm F}$ of H ₂ O vapour is					
	(1) $x_1 + \frac{x_2}{2} - x_3 + x_4$	(2) $2x_3 - x_1 - \frac{x_2}{2} - x_4$	$(3) x_1 + \frac{x_2}{2} - 2x_3 - x_4$	$(4) x_1 + \frac{x_2}{2} - 2x_3 + x_4$		
Ans.	(4)					
5.	$H(g) + O(g) \rightarrow O - H(g);$	ΔH for this reaction is				
	(1) Heat of formation of $O - H$		(2) Bond energy of $O - H$			
	(3) Heat of combustion of H,		(4) Zero at all temperatures			
Ans.	(2)	2	() _ · · · · · · · · · · · · · · · · · ·			
6.		nciate 4 g of gaseous H in	to free gaseous atoms is 8	72 kJ at 25°C. The bond energy of		
0.	H–H bond will be	-				
	(1) 8.72 kJ	(2) 4.36 kJ	(3) 436 kJ	(4) 43.6 kJ		
Ans.	(3)					
7.	The enthalpy of reaction	,				
	$2HC \equiv CH + 5O_2 \rightarrow 4$	$CO_2 + 2H_2O$				
	If the bond energies of C–H, C=C, O=O, C=O and O–H bonds are p, q, r, s, t respectively.					
	(1)[8s+4t]-[4p+q+5r]		(2) $[4p+2q+5r]-[8s+4]$	4t]		
	(3) [4p + 2q + 5r + 8s + 4t]]	(4) [2p+q+5r] - [8s+4t]]		
Ans.	-(2)	Diat Na 20 No Uniter P	uk of India. Raieev Gandhi	Nagar Page#5		

8.	Using bond energy data	, calculate heat of formation	on of isoprene	
	$5C(s) + 4H_2(g) \longrightarrow 1$	$H_2C = C - CH = CH_2$		
		CH ₃		
	Given C–H, H–H, C–C,	$C = C$ and $C(s) \rightarrow C(g)$ resp	ectively as 98.8 kcal, 104 kca	l, 83 kcal, 147 kcal, 171 kcal
	(1)–21 kcal	(2)21 kcal	(3) 40 kcal	(4) 50 kcal
Ans.	(2)			
9.	Entropy of vaporisation	of water at 100°C, if molar	heat of vaporisation is 9710	cal mol ⁻¹ will be
	$(1) 20 \text{ cal mol}^{-1} \text{K}^{-1}$	(2) 26.0 cal mol ⁻¹ K^{-1}	$(3)24 \text{ cal mol}^{-1} \text{ K}^{-1}$	(4) 28.0 cal mol ⁻¹ K^{-1}
Ans.	(2)			
10.	If ΔH_{f}^{o} of $ICl_{(g)}$, $Cl_{(g)}$, ar	nd $I_{(g)}$ is 17.57, 121.34 and 10	6.96 J mol ⁻¹ respectively. Th	en bond dissociation energy of ICl bond
	is -			
	(1) 35.15 J mol ⁻¹	(2) 106.69 J mol ⁻¹	$(3) 210.73 \text{ J mol}^{-1}$	(4) 420.9 J mol ⁻¹
Ans.	(3)			
11.	The enthalpy of vapour	isation of liquid water using	g the data:	
	$\mathrm{H}_{2}(\mathrm{g}) + 1/2 \mathrm{O}_{2}(\mathrm{g}) \longrightarrow \mathrm{H}_{2}\mathrm{O}$	$(\ell); \Delta H = -285.77 K Jmol^{-1}$		
	$\mathrm{H}_{2}(\mathrm{g}) + 1/2 \mathrm{O}_{2}(\mathrm{g}) \longrightarrow \mathrm{H}_{2}\mathrm{O}(\mathrm{g})$	g);∆H=-241.84KJmol ⁻¹		
	(1)+43.93 KJ mol ⁻¹	(2) - 43.93 KJ mol ⁻¹	$(3) + 527.61 \text{ KJ mol}^{-1}$	(4) - 527.61 KJ mol ⁻¹
Ans.	(1)			

DPP - 3

		1	/11-5				
1.	In the reactions						
	$HCl + NaOH \rightarrow NaCl + H_2O + x cal$						
	$H_2SO_4 + 2NaOH \rightarrow Na_2$	$_{2}$ SO ₄ + 2H ₂ O + y cal					
	(1)x = y	(2) x = 2y	$(3) x = \frac{y}{2}$	(4) $x = \sqrt{y}$			
Ans.	(3)						
2.	The difference between	ΔH and ΔE for the reaction	$2C_6H_6(l) + 15O_2(g) \rightarrow 12$	$CO_2(g) + 6H_2O(l)$ at 25°C in kJ is			
	(1)-7.43 kJ	(2)+3.72 kJ	(3)-3.72 kJ	(4)+7.43 kJ			
Ans.	(1)						
3.	The heat of neutralization	on of LiOH and HCl at 25°	C is 34.868 kJ mol ⁻¹ . The he	eat of ionisation of LiOH will be			
	(1)44.674 kJ	(2) 22.232 kJ	(3) 32.684 kJ	(4) 96.464 kJ			
Ans.	(2)						
4.	-	absorb the maximum amou C in kcal/mol of each solut		in the same amount of water ? (Integral			
	(1) HCl $(\Delta H = -17.74)$		(2) $\text{HNO}_{3}(\Delta \text{H} = -7.85)$)			
	$(3) \text{NH}_4 \text{NO}_3 (\Delta \text{H} = +16.0)$)8)	(4) NaCl (Δ H = +1.02)				
Ans.							
5. $HA + OH^- \rightarrow H_2O + A^- + q_1kJ$							
	$H^+ + OH^- \rightarrow H_2O + q_2 kJ$						
	The enthalpy of ionisation of HA is						
	$(1)(q_1 + q_2)$	$(2)(q_1 - q_2)$	$(3)(q_2 - q_1)$	$(4) - (q_1 + q_2)$			
Ans.	(3)			· · · · · · · · · · · · · · · · · · ·			
6.	For strong acid strong base neutralisation energy for 1 mole H_2O formation is -57.1 kJ. If 0.25 mole of strong monop acid is reacted with 0.5 mole of strong base then enthalpy of neutralisation of						
	(1) $-(0.25 \times 57.1)$	$(2) 0.5 \times 57.1$		-(0.5 × 57.1)			
Ans.	(1)						
7.		n of solid benzoic acid at	constant volume is -321.3	kJ at 27°C. The heat of combustion at			
	The heat of combustion of solid benzoic acid at constant volume is -321.3 kJ at 27°C. The heat of combustion at constant pressure is						
	(1)-321.3-300R	(2) - 321.30 + 300R	(3)-321.3-150R	(4) - 321.3 + 900R			
Ans.	(3)						
8.	The standard entropies of $N_2(g)$, $H_2(g)$ and $NH_3(g)$ are 191.5, 130.5, 192.6 JK ⁻¹ mol ⁻¹ . The value of ΔS° of formation ammonia is						
	$(1)-98.9 \text{ JK}^{-1} \text{ mol}^{-1}$	(2) Zero	$(3) + 129.4 \text{JK}^{-1} \text{mol}^{-1}$	$(4) - 29.4 \text{ JK}^{-1} \text{ mol}^{-1}$			
Ans.	(1)						
9.	Given $S^{o}_{C_{2}H_{6}} = 225 \text{ J mol}^{-1} \text{ K}^{-1}$						
	$S^{o}_{C_{2}H_{4}} = 220 \text{ J mol}^{-1} \text{ K}^{-1}, \ S^{o}_{H_{2}} = 130 \text{ J mol}^{-1} \text{ K}^{-1}$						
	$S_{C_2H_4} = 220$ J mor K	2	Then ΔS° for the process C H + H \rightarrow C H is				
	Then ΔS° for the proce						
			(3) 135 J	(4) 315 J			

0.	For the melting of NaCl heat required is 7.26 kcal mol ⁻¹ and ΔS increases by 6.73 cal mol ⁻¹ k ⁻¹ . The melting point of the salt is						
			(2) 500 K	(3) 1.77 K	(4) 1.77°C		
Ans.	(1)						
1.		The ΔS for the reaction $2H_2(g) + O_2(g) \rightarrow 2H_2O(1)$ at 300 K when					
	$S_{H_2}^{o}(g) = 126.6$, $S_{O_2}^{o}(g) = 201.20$, $S_{H_2O}^{o}(l) = 68.0 \text{ JK}^{-1}\text{mol}^{-1}$ respectively is						
	(1)-3	18.4 JK ⁻¹ mol ⁻¹	(2) 318.4 JK ⁻¹ mol ⁻¹	(3) 31.84 JK ⁻¹ mol ⁻¹	$(4) 3.184 \mathrm{JK}^{-1} \mathrm{mol}^{-1}$		
Ans.	(1)						
2.	Whic	h of the following	is correct?				
		ΔH	ΔS	Nature of reaction			
	(1)	(-)	(+)	Spontaneous only at high temp	perature		
	(2)	(+)	(-)	Nonspontaneous regardless of	temperature		
	(3)	(+)	(+)	Spontaneous only at low temp	erature		
	(4)	(-)	(-)	Spontaneous at all temperature	es		
Ans.	(2)						
3.	A particular reaction at 27°C for which $\Delta H > 0$ and $\Delta S > 0$ is found to be non-spontaneous. The reaction may proceed spontaneously if						
	(1) The temperature is decreased		(2) The temperature is	sincreased			
	(3) The temperature is kept constant		(4) It is carried in open vessel at 27°C				
Ans.	(2)						
4.	It is ir	npossible for a rea	action to take place if				
	(1) ΔH is +ve and ΔS is +ve		(2) ΔH is –ve and ΔS				
	(3) Δ H is +ve and Δ S is –ve			(4) ΔH is –ve and ΔS	is –ve		
Ans.	(3)						
5.	The sole criterion for the spontaneity of a process is						
	(1) Tendency to acquire minimum energy						
	(2) Tendency to acquire maximum randomness						
	(3) Tendency to acquire minimum energy and maximum randomness						
	(4) Tendency to acquire maximum stability						
Ans.	(4)						
6.		If water is formed from H ⁺ ions and OH ⁻ the heat of formation of water is :					
	(1) - 1	.3.7 Kcal	(2)13.7 KCal	(3)–63.4 Kcal	(4) More data required		
Ans.	(1)						
7.			anhydrous CuSO ₄ and f anhydrous CuSO ₄ ?		.80 Kcal mol ⁻¹ respectively. What will be		
	(1)-1	8.69 KCal	(2) 18.69 Kcal	(3)-28.96 Kcal	(4) 28.96 Kcal		
	(1)						