AIEEE 2003

(a) each of these decreases

(c) copper strip decreases and that of germanium increases

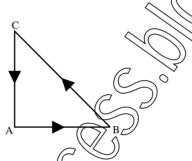
PH	IYSICS & CH	IEMISTRY			
1.	-	_	Q moving with velocity nagnetic field of induction	-	
	completes one fu	ull circle is	_		
	$(a)\left(\frac{Mv^2}{R}\right)2\pi R$	(b) Zero	(c) BQ2πR	(d) BQ $v2\pi R$	
2.	a magnetic field negative z-axis.	arge - 16×10 ⁻¹⁸ cou l of induction B is If the charged par	alomb moving with veloci along the y-axis, and an e ticle continues moving alo	ty 10ms ⁻¹ along the x-axis electric field of magnitud ong the x-axis, the magnit	enters a region where e 10 V/m is along the
	(a) 10^3 Wb/m ²	(b) 10^5Wb/m^2	(c) 10^{16} Wb/m ²	(d) 10^{-3} Wh m ²	\searrow
3.	equal halves (ea	ch having half of	ded freely has a period of the original length) and o	- () ()	
	field. If its perio	d of oscillation is	T' , the ratio $\frac{T'}{T}$ is		
	(a) $\frac{1}{2\sqrt{2}}$	(b) $\frac{1}{2}$	(c) 2	$\frac{1}{4}$	
4.			to a magnetic field required to the desired to the		rn it through 60°. The
	(a) $\sqrt{3}$ W	(b) W	(c) $\frac{\sqrt{3}}{2}$	(d) 2W	
5.	The magnetic lin	nes of force inside	a bar magnet		
	(a) are from nort	th-pole to south-po	ole of the magnet		
	(b) do not exist				
	(c) depend upon	the area of cross-	section of the bar magnet		
	(d) are from sou	th-pole to north-po	ole of the magnet		
6.	Curie temperatu	re is the temperate	ire above which		
	(a) a ferromagne	etic material becor	nes paramagnetic (b)	a paramagnetic material	becomes diamagnetic
	(c) a ferromagne	tic material becom	diamagnetic (d)	a paramagnetic material b	ecomes ferromagnetic
7.	A spring balance	e is attached to the is stationary. If the	ceiling of a lift. A man han e lift moves downward w		
	(a) 24 N	(D) TAN	(c) 15 N	(d) 49 N	
8.	The length of a	wire of a potention	neter is 100 cm, and the e.	m.f. of its standard cell is	E volt. It is employed
	to measure thee	m.f.of a battery w	hose internal resistance is	0.5Ω . If the balance poi	nt is obtained at $1 = 30$
	cm from the pos	itive end, the e.m.	f. of the battery is		
	(a) $\frac{300}{1000}$	$\frac{230E}{(100-0.5)}$ (c) $\frac{30}{(100-0.5)}$	$\frac{O(E-0.5i)}{100}$, where i is the	current in the potentiom	eter wire (d) $\frac{30E}{100}$

A strip of copper and another of germanium are cooled from room temperature to 80 K. The resistance of

(b) copper strip increases and that of germanium decreases

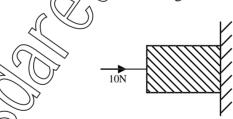
(d) each of these increases

	(a) Optical fibres can be of graded refractive index				
	(b) Optical fibres are subjective to electromagnetic interference from outside				
	(c) Optical fibres have extremely low transmission loss				
	(d) Optical fibres may have homogeneous core with a suitable cladding.				
11.	The thermo e.m.f. of a thermo-couple is $25 \muV/^{0}C$ at room temperature. A galvanometer of $40 \mathrm{chm}$ resis-				
	tance, capable of detecting current as low as 10-5 A, is connected with the thermo couple. The smallest				
	temperature difference that can be detected by this sytem is				
	(a) 16° C (b) 12° C (c) 8° C (d) 20° C				
12.	The negative Zn pole of a Daniell cell, sending a constant current through a circuit decreases in mass by 0.13 g in 30 minutes. If the electrochemical equivalent of Zn and Cu are 32.5 and 31.5 respectively, the increase in the mass of the positive Cu pole in this time is				
	(a) 0.180 g (b) 0.141 g (c) 0.126 g (d) 0.242				
	1				
13.	Dimension of $\frac{1}{\mu_0 \epsilon_0}$, where symbols have their usual meaning, are				
1.4	(a) $[L^{-1}T]$ (b) $[L^{-2}T^2]$ (c) $[L^2T^{-2}]$				
14.	A circular disc X of radius R is made from an iron plate of thickness t, and another disc Y of radius 4R is				
	made from an iron plate of thickness $\frac{t}{4}$. Then the relation between the moment of inertia I_x and I_y is				
	(a) $I_Y = 32 I_X$ (b) $I_Y = 16 I_X$ (c) $I_Y = I_X$ (d) $I_Y = 64 I_X$				
15.	The time period of a satellite of earth is 5 hours. If the separation between the earth and the satellite is				
	increased to 4 times the previous value, the new time period will become				
	(a) 10 hours (b) 80 hours (c) 40 hours (d) 20 hours				
16.	A particle performing uniform circular motion has angular frequency is doubled & its kinetic energy halved, then the new angular momentum is				
	(a) $\frac{L}{4}$ (b) $2L$ (d) $\frac{L}{2}$				
17.	Which of the following radiations has the east wavelength?				
	(a) γ -rays (b) β -rays (c) α -rays (d) X -rays				
18.	When a U ²³⁸ nucleus originally at rest, decays by emitting an alpha particle having a speed 'u', the recoil speed of the residual nucleus is				
	(a) $\frac{4u}{238}$ (b) $\frac{4u}{234}$ (c) $\frac{4u}{234}$ (d) $-\frac{4u}{238}$				
19.	Two spherical bodies of mass M and 5M & radii R & 2R respectively are released in free space with initial				
	separation between their centres equal to 12 R. If they attract each other due to gravitational force only, then the distance covered by the smaller body just before collision is				
	(a) 2.5 R (b) 4.5 R (c) 7.5 R (d) 1.5 R				
20.	The difference in the variation of resistance with temperature in a metal and a semiconductor arises essen-				
	tially due to the difference in the				
	(a) crystal structure (b) variation of the number of charge carriers with temperature				
	(cxtype of bonding (d) variation of scattering mechanism with temperature				
21.	A car moving with a speed of 50 km/hr, can be stopped by brakes after at least 6 m. If the same car is moving				
4	at a speed of 100 km/hr, the minimum stopping distance is				
	(a) 12 m (b) 18 m (c) 24 m (D) 6 m				


10. Consider telecommunication through optical fibres. Which of the following statements is **not** true?

A boy playing on the roof of a 10 m high building throws a ball with a speed of 10m/s at an angle of 30° with the horizontal. How far from the throwing point will the ball be at the height of 10 m from the ground?

[g = 10m/s², sin30⁰ =
$$\frac{1}{2}$$
, cos30⁰ = $\frac{\sqrt{3}}{2}$]


- (a) 5.20m
- (b) 4.33m
- (c) 2.60m
- (d) 8.66m
- An ammeter reads up to 1 ampere. Its internal resistance is 0.81 ohm. To increase the range to $\sqrt[4]{Q}$ 23. of the required shunt is
 - (a) 0.03Ω
- (b) 0.3Ω
- (c) 0.9Ω
- (d) 0.09Ω
- The physical quantities not having same dimensions are
 - (a) torque and work

- (b) momentum and Planck's constant
- (c) stress and Young's modulus
- (d) speed and $(\mu_0 \varepsilon_0)^{-1/2}$
- Three forces start acting simultaneously on a particle moving with velocity. These forces are represented in magnitude and direction by the three sides of a triangle ABC. The particle will now move with velocity

- (a) less than \vec{v} (b) greater than \vec{v} (c) |v| in the direction of the largest force BC (d) \vec{v} , remaining unchanged
- 26. If the electric flux entering and leaving an enclosed surface respectively is ϕ_1 and ϕ_2 , the electric charge inside the surface will be

 - (a) $(\phi_2 \phi_1)\epsilon_0$ (b) $(\phi_1 + \phi_2)/\epsilon_0$
- $(\epsilon)(\phi) \phi_1 / \epsilon_0$
- (d) $(\phi_1 + \phi_2) \varepsilon_0$
- A horizontal force of 10 N is necessary to just hold a block stationary against a wall. The co-efficient of friction between the block and the wall is 0.2. The weight of the block is

- (a) 20 N
- (c) 100 N
- (d) 2 N
- 28. A marble block of mass 2 kg lying on ice when given a velocity of 6 m/s is stopped by friction in 10 s. Then the coefficient of friction is
 - (a) 0.02
- (18) 0.03
- (c) 0.04
- (d) 0.01

- Consider the following two statements: 29.
 - (A) Linear momentum of a system of particles is zero
 - (B) Knietic energy of a system of particles is zero
 - Then (a) A does not imply B and B does not imply A
 - Amplies B but B does not imply A
 - (c) A does not imply B but B implies A
- (d) A implies B and B implies A

	(a) the rates at which currents are changing in the two coils				
	(b) relative posit	ion and orientation of tl	ne two coils	(c) the materials of the wires of the coils.	
	(d) the currents i	n the two coils			
31.	A block of mass	M is pulled along a hori	zontal frictionless surfa	ace by a rope of mass m. If a force P is applied	
		f the rope, the force exe			
	Pm	Pm		PM (
	$(a)\frac{Pm}{M+m}$	(b) $\overline{M-m}$	(c) P	$(d) \frac{PM}{M+m}$	
32.		lance hangs from the ho		ring balance and a block of mass M kg hangs eading is	
	(a) Both the scal	es read M kg each (b) The scale of the low	er one reads M kg and of the upper one zero	
	(c) The reading of	of the two scales can be	e anything but the sum	of the reading will be M kg	
	(d) Both the scal	es read M/2 kg each			
33.		d vertically from one of ches the wire by 1 mm.		attaching a weight of 200 N to the lower end. y stored in the wire is	
	(a) 0.2 J	(b) 10 J	(c) 20 J	~ (DD)	
34.	The escape veloc	city for a body projected	d vertically upwards fro	om the surface of earth is 11 km/s. If the body	
	is projected at an	angle of 45° with the v	vertical, the escape vel	will be	
				11	
	(a) $11\sqrt{2} \text{ km/s}$	(b) 22 km/s	(c) 11 km/s	$\int (d) \frac{11}{\sqrt{2}} \text{ km/s}$	
35.			((^	bring is pulled a little and then released so that	
	the mass execute	es SHM of time period	Γ. If the mass is increas	ed by m, the time period becomes $\frac{5T}{3}$. Then	
	the ratio of $\frac{m}{M}$ is	S			
	3	25	16	5	
	(a) $\frac{3}{5}$	(b) $\frac{25}{9}$	9	(d) $\frac{5}{3}$	
36.	"Heat cannot by	itself flow from abody	at lower temperature to	a body at higher temperature" is a statement	
	or consequence	of			
	(a) second law or	f thermodynamics	(b) conservation of	momentum	
	(c) conservation	of momentum	(d) first law of them	nodynamics	
37.				massless springs of spring constant k_1 and k_2 ,	
	respectively. If the	he maximum velocities	, during oscillation, are	e equal, the ratio of amplitude of A and B is	
	$\sqrt{\mathbf{k}_{\cdot}}$		$\sqrt{\mathbf{k}_{2}}$	k.	
	(a) $\sqrt{\frac{k_1}{k_2}}$	(b) x	(c) $\sqrt{\frac{k_2}{k_1}}$	(d) $\frac{\mathbf{k}_1}{\mathbf{k}_2}$	
38.	' - (imple pendulum avagu	uting simple harmonia	motion is increased by 21%. The percentage	
30.		me period of the pendu			
	(a) 11%	(b) 21%	(c) 42%	(d) 10%	
			, ,		
39.				given by $y = 10^{-4} \sin \left(600t - 2x + \frac{\pi}{3} \right)$ metres	
4	/4/		_	the wave-motion, in ms ⁻¹ , is	
	(a) 300	(b) 600	(c) 1200	(d) 200	
				(Δ)	

30. Two coils are placed close to each other. The mutual inductance of the pair of coils depends upon

40.		t changes from +2A to E-induction of the coil is	-2A in 0.05 second, ar	n e.m.f. of 8V is induced in a coil. The
	(a) 0.2 H	(b) 0.4 H	(c) 0.8 H	(d) 0.1 H
41.	U		charge on the capacitor is tric and magnetic field is	s Q. The charge on the capacitor when the
	2	(b) $\frac{Q}{\sqrt{3}}$	(c) $\frac{Q}{\sqrt{2}}$	(d) Q
42.	The core of any tr	ransformer is laminated	so as to	
	(a) reduce the ene(c) make it robust	ergy loss due to eddy cur and strong	rents	(b) make it light weight (d) increase the secondary voltage
43.	Let \vec{F} be the forcorigin. Then	e acting on a particle ha	ving position vector \vec{r} and	and \vec{T} be the torque of this force about the
	(a) $\vec{r} \cdot \vec{T} = 0$ and \vec{F}	$\vec{T} \cdot \vec{T} \neq 0$	(b) $\vec{r} \cdot \vec{T} \neq 0$ and $\vec{F} \cdot \vec{T} = 0$	
	(c) $\vec{r} \cdot \vec{T} \neq 0$ and \vec{F}	$\vec{T} \neq 0$	(d) $\vec{r} \cdot \vec{T} = 0$ and $\vec{F} \cdot \vec{T} = 0$	
44.		=	s disintegration rate 5000 ninute. Then, the decay c	disintegrations per minute. After 5 min- constant (per minute) is
	(a) 0.4 ln 2	(b) 0.2 ln 2	(c) 0.1 ln 2	(a) 0.8 ln 2
45.	A nucleus with Z	= 92 emits the following	g in a sequence:	
	$\alpha, \beta^-, \beta^- \alpha, \alpha, \alpha, \alpha$	$\alpha, \alpha, \beta^-, \beta^-, \alpha, \beta^+, \beta^+, \alpha . T$	hen Z of the resulting nu	icleus is
	(a) 76	(b) 78	(c) 82	(d) 74
46.	Two identical phomass m) coming of	otocathodes receive light out are respectively v_1 and	of frequencies f_1 and f_2 .	If the velocities of the photo electrons (of
	(a) $v_1^2 - v_2^2 = \frac{2h}{m}$ ($f_1 - f_2$)	$v_1 = \left[\frac{2h}{m}(f_1 + f_2)\right]$	$\left[f_{2}\right]^{1/2}$
	(c) $V_1^2 + V_2^2 = \frac{2h}{m}$	$(\mathbf{f}_1 + \mathbf{f}_2)$	(d) $v_1 - v_2 = \left[\frac{2h}{m} (f_1 - f_2) \right]$	$\left[\left(f_{2}\right) \right] ^{1/2}$
47.	Which of the follo	owing cannot be emitted	by radioactive substanc	es during their decay?
	(a) Protons	(b) Neutrinoes	(c) Helium nuclei	(d) Electrons
48.			resistance is connected	in a circuit as shown in the figure. The
	current I, in the ci	rcuit will be		
		Г		
			7 >	
	(Tr	T^3	$SV \qquad \qquad \begin{array}{ccc} 3\Omega Z^2 & Z^2 \end{array}$	3Ω •
			/	
		_	$ 3\Omega$	 •
	(2) 1	(b) 1.5 Δ	(c) 2 A	(d) 1/3 A

A sheet of aluminium foil of negligible thickness is introduced between the plates of a capacitor. The capacitance of the capacitor

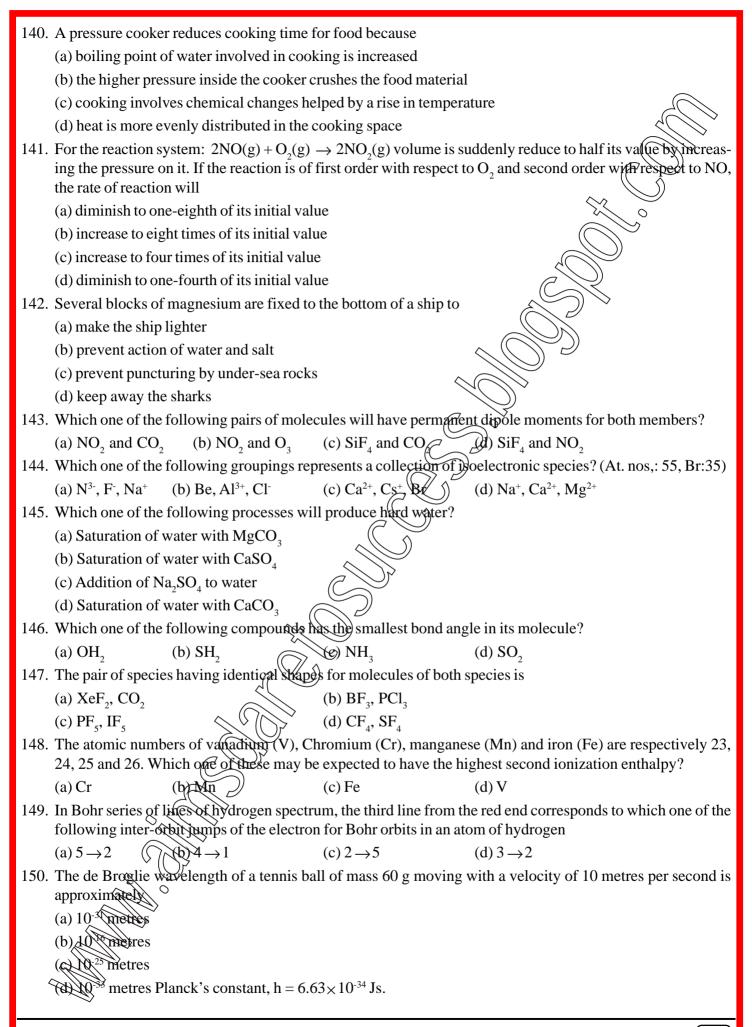
(d) increases

(b) remains unchanged (c) becomes infinite

(a) decreases

50.	The displacement particle is	at of a particle varies acc	ording to the relation x	= $4(\cos \pi t + \sin \pi t)$. The amplitude of the
	(a) -4	(b) 4	(c) $4\sqrt{2}$	(d) 8
51.				ther charge Q is placed at the centre of the
	shell. The electro	ostatic potential at a poin	t P a distance $\frac{R}{2}$ from the	he centre of the shell is
	(a) $\frac{2Q}{4\pi\epsilon_0 R}$	(b) $\frac{2Q}{4\pi\epsilon_0 R} - \frac{2q}{4\pi\epsilon_0 R}$	(c) $\frac{2Q}{4\pi\epsilon_0 R} + \frac{q}{4\pi\epsilon_0 R}$	(d) $\frac{(q+Q)2}{4\pi\epsilon_0 R}$
52.		n placing a charge of $8 \times$ e (b) 3.1×10^{-26} joule		denser of capacity 100 micro-farad is (d) 32 × 10 ⁻³² foule
53.	particle at time 't	' is given by		by $x = \alpha t^3$ and $y = 3t^3$. The speed of the
	(a) $3t\sqrt{\alpha^2 + \beta^2}$	(b) $3t^2\sqrt{\alpha^2+\beta^2}$	(c) $t^2 \sqrt{\alpha^2 + \beta^2}$	(d) $(\alpha + \beta)$
54.		atic process, the pressure ratio C_p/C_v for the gas i		e proportional to the cube of its absolute
	(a) $\frac{4}{3}$	(b) 2	(c) $\frac{5}{3}$	$(3)\frac{3}{2}$
55.	Which of the foll	owing parameters does r	not characterize the ther	modynamic state of matter?
	(a) temperature	(b) Pressure	(c) Work	(b) Volume
56.	A Carnot engine done by the engine	takes 3×10^6 cal. of heat ne is		C, and gives it to a sink at 27°C. The work
	(a) $4.2 \times 10^6 \mathrm{J}$	(b) $8.4 \times 10^6 \mathrm{J}$	(c) 16.8×10° J	(d) Zero
57.	work required to	stretch it further by anot	her 5 cm is	em from the unstretched position. Then the
	(a) 12.50 N-m	(b) 18.75 N-m	(c) 25.00 N-m	(d) 6.25 N-m
58.	supports 1 metre	apart. The wire passes a	t its middle point betwe	a tension of 10 kg-wt between two rigid en the poles of a permanent magnet, and it uency n. The frequency n of the alternating
	(a) 50 Hz	(b) 100 Hz	(c) 200 Hz	(d) 25 Hz
59.	beat frequency de		cond when the tension in	nd with the vibrating string of a piano. The n the piano string is slightly increased. The
	(a) $256 + 2 \text{ Hz}_{2}$	(b) 256 - 2 Hz	(c) 256 - 5 Hz	(d) $256 + 5 \text{ Hz}$
60.	· /^ `	\ \ \ \		(P.E), the kinetic energy (K.E) and total th of the following statements is true?
	(a) K.E. is maxin)	(b) T.E is zero when x	
	(c) K.E is maxim	um when x is maximum	(d) P.E. is maximum v	when $x = 0$
61.	In the nuclear fus	ion reaction ${}_{1}^{2}H + {}_{1}^{3}H \rightarrow$	$\frac{4}{2}$ He + n given that the r	epulsive potential energy between the two
				e heated to initiate the reaction is nearly
4		onstant $k = 1.38 \times 10^{-23} \text{ J/}$		
	(a) 10^7 K	(b) 10^5 K	(c) 10^3 K	(d) 10^9 K

62.	Which of the foll	owing atoms has the lo	owest ionization potentia	al?
	(a) $_{7}^{14}$ N	(b) $_{55}^{133}$ Cs	(c) $^{40}_{18}$ Ar	(d) $_{8}^{16}$ O
63.	The wavelengths	involved in the spectr	rum of deuterium $\binom{2}{1}$ D	are slightly different from that of hydrogen
	spectrum, becaus	e	ν,	
	(a) the size of the	two nuclei are differe	nt (b) the nuclear force	es are different in the two cases
	(c) the masses of	the two nuclei are diff	erent	
	(d) the attraction	between the electron a	and the nucleus is differen	ent in the two cases
64.	In the middle of t	he depletion layer of a	reverse biased p-n junc	ction, the
	(a) electric field i	s zero	(b) potential is maxim	mum
	(c) electric field i	s maximum	(d) potential is zero	
65.		nergy of the electron in first excited state of L		13.6eV, the energy required to remove the
	(a) 30.6eV	(b) 13.6 eV	(c) 3.4 eV	(d) 122 4 eV
66.	A body is moved body in time 't' is		y a machine delivering a	a constant power. The distance moved by the
	(a) $t^{3/4}$	(b) $t^{3/2}$	(c) $t^{1/4}$	(d) t/2
67.	A rocket with a li initial thrust of th	ft-off mass 3.5×10^4 kg e blast is	g is blasted upwards wit	th an initial acceleration of 10m/s ² . Then the
	(a) 3.5×10^5 N	(b) $7.0 \times 10^5 \text{ N}$	(c) 14.0×10^5 N	(d) 1.75×10 ⁵ N
68.	To demonstrate t	he phenomenon of inte	erference, we require tw	sources which emit radiation
	(a) of nearly the		of the same frequency	
	(c) of different w			and having a definite phase relationship
69.	Three charges -q	q_1 , $+q_2$ and $-q_3$ are place	ed as shown in the figu	are. The x-component of the force on $-q_1$ is
	proportional to			
		-q		
		4. •->		
		3		
			θ b —	→
				→ X
			$-q_1 + q_2$	Λ Λ
	$(a) \frac{q_2}{b^2} - \frac{q_3}{a^2} \cos \theta$	(b) $\sin \theta$	$(c) \frac{q_2}{b^2} + \frac{q_3}{a^2} \cos \theta$	$(d) \frac{q_2}{b^2} - \frac{q_3}{a^2} \sin \theta$
70.	A 220 volt, 1000	want bulb is connected	d across a 110 volt mair	ns supply. The power consumed will be
	(a) 750 watt	(b) 500 watt	(c) 250 watt	(d) 1000 watt
71.	The image forme	a by an objective of a	compound microscope	is
	(a) virtual and di	minished (b) real and	diminished (c) real and	enlarged (d) virtual and enlarged
72.		•	n of the spectrum. The s	spectrum is correctly given by
	(a) Rayleigh Jear		(b) Planck's law of r	adiation
	(c) Steran's law o		(d) Wien's law	
73.	To get three imag		-	ne mirrors at an angle of
	(a) 600°	(b) 90°	(c) 120°	(d) 30°


74.	According to Newton's law of cooling, the rate of cooling of a body is proportional to $(\Delta\theta)^n$, where $\Delta\theta$ is
	the difference of the temperature of the body and the surroundings, and n is equal to
	(a) two (b) three (c) four (d) one
75.	The length of a given cylindrical wire is increased by 100%. Due to the consequent decrease in diameter the change in the resistance of the wire will be
	(a) 200% (b) 100% (c) 50% (d) 300%
76.	Which of the following could act as apropellant for rockets?
	(a) Liquid oxygen + liquid argon (b) Liquid hydrogen + liquid oxygen
	(c) Liquid nitrogen + liquid oxygen (d) Liquid hydrogen + liquid nitrogen
77.	The reaction of chloroform with alcoholic KOH and p-toluidine forms
	(a) $H_3C \longrightarrow N_2Cl$ (b) $H_3C \longrightarrow NHCHCl_2$ (c) $H_3C \longrightarrow NC$ (d) $H_3C \longrightarrow CN$
78.	Nylon threads are made of
	(a) polyester polymer (b) polyamide polymer (c) polyethylene polymer (d) polyvinyl polymer
79.	The correct order of increasing basic nature for the bases NH ₃ , CH ₃ NH ₂ and (CH ₃) ₂ NH is
	(a) $(CH_3)_2NH < NH_3 < CH_3NH_2$ (b) $NH_3 < CH_3NH_2 < (CH_3)_2NH$
	(c) $CH_3NH_2 < (CH_3)_2NH < NH_3$ (d) $CH_3NH_2 < NH_3$ (TH) (TH) (TH) (TH) (TH) (TH) (TH) (TH)
80.	Bottles containing C ₆ H ₅ l and C ₆ H ₅ CH ₂ I lost their original labels. They were labelled A and B for testing A
	and B were separately taken in test tubes and boiled with NaOH sortion. The end solution in each tube was
	made acidic with dilute HNO ₃ and then some AgNO ₃ solution was added. Substance B gave a yellow
	precipitate. Which one of the following statements is true for this experiment?
	(a) A and $C_6H_5CH_2I$ (b) B and C_6H_5I
0.1	(c) Addition of HNO ₃ was unnecessary (d) A was C ₆ H ₅ I The interval are produced as the control of the co
81.	The internal energy change when a system goes from state A to B is 40 kJ/mole. If the system goes from A to B by a reversible path and returns to state A by an ineversible path what would be the net change in internal energy?
	(a)> 40 kJ (b) $< 40 \text{kJ}$ (c) Zero) (d) 40 kJ
82.	If at 298 K the bond energies of C-H. C-C. CzCand H-H bonds are respectively 414, 347, 615 and 435 kL
	mol ⁻¹ , the value of enthalpy change for the reaction $H_2C = CH_2(g) + H_2(g) \rightarrow H_3C - CH_3(g)$ at 298 K will be (a) -250 kJ (b) + 125 kJ (d) + 250 kJ
83.	The radionucleide $^{234}_{90}$ Th undergoes two successive β -decays followed by one α -decay. The atomic num-
	ber and the mass number respectively of the resulting radionucleide are
	(a) 94 and 230 (b) 90 and 230 (c) 92 and 230 (d) 92 and 234
84.	The half-life of a radioactive (sortope is three hours. If the initial mass of the isotope were 256 g, the mass of
	it remaining undecayed after 18 hours would be (a) 8.0 g (b) 12.0 g (c) 16.0 g (d) 4.0 g
85.	If liquids A and B form an ideal solution
05.	(a) the entropy of mixing is zero (b) the free energy of mixing is zero
	(c) the free energy as well as the entropy of mixing are each zero (d) the enthalpy of mixing is zero
86.	The radius of La Atomic number of La = 57) is 1.06Å. Which one of the following given values will be
	closest to the taking of Lu^{3+} (Atomic number of $Lu = 71$)?
07	(a) 1.40Å (b) 1.06Å (c) 0.85Å (d) 1.60Å
87.	Ammonia forms the complex ion $[Cu(NH_3)_4]^{2+}$ with copper ions in alkaline solutions but not in acidic solutions. What is the reason for it?
	(a) In acritic solutions protons coordinate with ammonia molecules forming NH ₄ ions and NH ₃ molecules
	are not available
	(b) In alkaline solutions insoluble Cu(OH) ₂ is precipitated which is soluble in excess of any alkali
4	tel Copper hydroxide is an amphoteric substance
	(d) În acidic solutions hydration protects copper ions.

88.	One mole of the complex compound $\text{Co(NH}_3)_5\text{Cl}_3$, gives 3 moles of ions on dissolution in water. One mole of the same complex reacts with two moles of AgNO_3 solution to yield two moles of $\text{AgCl}(s)$. The structure of the complex is
	(a) $[Co(NH_3)_3Cl_3]$. $2NH_3$ (b) $[Co(NH_3)_4Cl_2]$ Cl. NH_3 (c) $[Co(NH_3)_4Cl]$ Cl ₂ . NH_3 (d) $[Co(NH_3)_6Cl]$ Cl ₂
89	In the coordination compound, $K_4[Ni(CN)_4]$, the oxidation state of nickel is
	(a) 0 (b) $+1$ (c) $+2$ (d) -1
90.	In curing cement plasters water is sprinkled from time to time. This helps in
	(a) developing interlocking needle-like crystals of hydrated silicates
	(b) hydrating sand and gravel mixed with cement
	(c) converting sand into silicic acid (d) keeping it cool
91.	Which one of the following statements is not true?
	(a) pH + pOH = 14 for all aqueous solutions (b) The pH of 1 × 10 8 M HCI is 8
	(c) 96,500 coulombs of electricity when passed through a CuSO ₄ solution deposits 1 gram equivalent of copper at the cathode
	(d) The conjugate base of H ₂ PO ₄ is HPO ² - ₄
92.	On mixing a certain alkane with chlorine and irradiating it with ultravioletlight, it forms only one
	monochloroalkane. This alkane could be
02	(a) pentane (b) isopentane (c) neopentane (d) propane
93.	Butene-1 may be converted to butane by reaction with
0.4	(a) Sn - HCI (b) Zn - Hg (c) Pd/H ₂ (d) Zn - HCI
94.	What may be expected to happen when phosphine gas is mixed with chlorine gas?
	(a) PCI ₃ and HCI are formed and the mixture warms up
	(b) PCI ₅ and HCI are formed and the mixture cools down (c) PII. Cl. is formed with warming up. (d) The mixture only so als down
05	(c) PH ₃ .Cl ₂ is formed with warming up (d) The mixture only cools down The number of delectrons rateined in Fe2+ (A trace) ion is
95.	The number of d-electrons retained in Fe^{2+} (At.no.of) $Fe = 26$) ion is (a) 4 (b) 5 (d) 3
06	
90.	Concentrated hydrochloric acid when kept in open air sometimes produces a cloud of white fumes. The explanation for it is that
	(a) oxygen in air reacts with the emitted HCI gas to form a cloud of chlorine gas
	(b) strong affinity of HCI gas for miosture in air results in forming of droplets of liquid solution which appears like a cloudy smoke.
	(c) due to strong affinity for water concentrated hydrochloric acid pulls moisture of air towards it self. This moisture forms droplets of water and hence the cloud.
	(d) concentrated hydrochloric acid emits strongly smelling HCI gas all the time.
97.	An ether is more volatile than an alcohol having the same molecular formula. This is due to
	(a) alcohols having resonance structures (b) inter-molecular hydrogen bonding in ethers
	(c) inter-molegatar hydrogen bonding in alcohols (d) dipolar character of ethers
98.	Graphite is a soft soled lubricant extremely difficult to melt. The reason for this anomalous behaviour is that
	graphite
	(a) is an all tropic form of diamond (b) has molecules of variable molecular masses like polymers
	(c) has carbon atoms arranged in large plates of rings of strongly bound carbon atoms with weak interplate bonds
	(d) is a non-crystalline substance
99.	According to the Periodic Law of elements, the variation in properties of elements is related to their
	(a) nuclear masses (b) atomic numbers (c) nuclear neutron-proton number ratios (d) atomic masses

100.	Which one of the following	ing statements is o	correct?			
	(a) From a mixed precipitate of AgCl and AgI, ammonia solution dissolves only AgCl					
	(b) Ferric ions give a deep green precipitate on adding potassium ferrocyanide solution					
	(c) On boiling a solution having K^+ , Ca^{2+} and HCO_3 ions we get a precipitate of $K_2Ca(CO_3)_2$.					
	(d) Manganese salts give					
101.	Glass is a					
	(a) super-cooled liquid	(b) gel	(c) polymeric mixture	(d) micro-crystalline solid		
102.	The orbital angular momentum	entum for an elect	ron revolving in an orb	it is given by $\sqrt{l(l+1)}$. This momentum		
	for an s-electron will be	given by				
	(a) zero (b) $\frac{h}{2\pi}$	$\frac{1}{\pi}$	(c) $\sqrt{2} \cdot \frac{h}{2\pi}$	$(d) + \frac{1}{2} \cdot \frac{h}{2a}$		
103.	How many unit cells are [Atomic masses: Na = 2.	_	shaped ideal crystal of	NaCl of mass 1,00 g?		
	(a) 5.14×10^{21} unit cells		(b) 1.28×10^{21} unit ce	ls		
	(c) 1.71×10^{21} unit cells		(d) 2.57×10^{21} unit cell	Ts ()		
104.	In the anion HCOO- the t	two carbon-oxyge	en bonds are found to b	e of equal length. What is the reason for it?		
	(a) The $C = O$ bond is w	eaker than the C-	O bond			
	(b) The anion HCOO- ha	as two resonating	structures			
	(c) The anion is obtained	d by removal of a	proton from the acid n	olecule		
	(d) Electronic orbitals of	carbon atom are l	hybridised (
105.	Which one of the following	ing characteristics	s is not correct for phys	ical adsorption?		
	(a) Adsorption increases	with incresae in to	emperature			
	(b) Adsorption is spontar	neous	(c) Both enthalpy and	entropy of adsorption are negative		
	(d) Adsorption on solids	is reversible				
106.	For a cell reaction involve 25°C. The equilibrium co			l e.m.f. of the cell is found to be 0.295 V at		
	(a) 29.5×10^{-2} (b) 10		$(c) 1 \times 10^{10}$	(d) 1×10^{-10}		
107.				which only pressure-volume work is being by (dS), satisfy the criteria		
	(a) $(dS)_{V,E} > 0$, $(dG)_{T,P} < 0$	0 (a) (d) (d)	$(dG)_{T,P} = 0$ (c) $(dS)_{V,E}$	$=0, (dG)_{T,P} > 0$ (d) $(dS)_{V,E} < 0, (dG)_{T,P} < 0$		
108.	The solubility in water of a	sparingly soluble s	alt AB_2 is 1.0×10^{-5} mol I	¹ . Its solubility product number will be		
	(a) 4×10^{-10} (b) 1	. 11	(c) 1×10^{-10}	(d) 4×10^{-15}		
109.	elemental boron (atomic	mass = 10.8) froi	X and 1 atm, pressure m the reducti on of bor	will be consumed in obtaining 21.6 g of on trichloride by hydrogen?		
	(a) 67.2 L	1.8 L	(c) 22.4 L	(d) 89.6 L		
110.	For the reaction equilibri	$iumN_2O_4(g) \Longrightarrow$	$rac{1}{2}$ NO ₂ (g) the concent	rations of N_2O_4 and NO_2 at equilibrium are		
	4.8×10^{-2} and 1.2×10^{-2} m	nol L-1 respectivel	y. The value of K_c for	the reaction is		
	(a) 3×10^{-1} (b) 3×10^{-1}	< 10 ⁻³ mol L ⁻¹	(c) $3 \times 10^3 \text{ mol } L^{-1}$	(d) $3.3 \times 10^2 \text{ mol } L^{-1}$		
111.	Consider the reaction equippinciple, the condition f			1 H ⁰ = -198 kJ. On the basis of Le Chatelier's		
4	talincreasing temperatu			e temperature and increasing the pressure		
	(c) any value of temperat	-		temperature as well as pressure		
		-		1		

112.	Which one of the	following is an amphote	eric oxide?		
	(a) Na ₂ O	(b) SO ₂	(c) B_2O_3	(d) ZnO	
113.	solid in a test tube		some violet coloured fu	some KI is added to water times and droplets of a m	•
	(a) HgI ₂	(b) HgO	(c) Pb_3O_4	(d) $(NH_4)_2 Cr_2 O_7$	
114.	reducing, powers	of these metals are	f three metals A,B&C ar	re respectively +0.5 V, -3	.0 V & -1)2 V. The
	(a) A > B > C	(c) C > B > A	(c) A > C > B	(d) $B > C > A$	
115.	Which one of the	following substances ha	s the highest proton affi	nity?	\gg
	(a) H_2S	(b) NH ₃	(c) PH ₃	(d) H ₂ O)
116.		eous solution of a weak of the solution will be n		onization is 0.3. Taking k	for water as 1.85
	(a) -0.360° C	(b) -0.260° C	$(c) +0.480^{\circ}C$	(d) -0.480°C	
117.		etrolysis of a solution of silver deposited on the c		s of charge pass through	the electroplating
	(a) 10.8 g	(b) 21.6 g	(c) $108 g$	(d) 1.08 g	
118.		()	$I) \rightarrow Zn^{2+}(1M) + Cu(s)$	taking place in a cell, E_{ce}^0	is 1.10 volt. E_{cel}
	for the cell will be	$e\left(2.303 \frac{RT}{F} = 0.0591\right)$		<i>)</i>)	
	(a) 1.80 volt	(b) 1.07 volt	(c) 0.82 volt	(d) 2.14 volt	
119.	In respect of the ed	quation $k = Ae^{-E_a/RT}$ in	chemical kinetics which	one of the following stat	ements is correct?
	(a) A is adsorption	n factor	(b) Existenergy of activ	vation	
	(c) R is Rydberg's		(d) R is equilibrium con		
120.	A reduction in ato	omic size with increase in	n atomic number is a cha	aracteristic of element of (d) high atomic masses hyl-2-butanone (d) Isopro	•
	(A) d-block	(b) f-block	(c) radioactive series	(d) high atomic masses	
121.	The IUPAC name	e of CH ₃ COCH(CH ₃)	\sim		
	(a) 2-methyl-3-bu	tanone (b) 4-methylixor	propyl ketone (c) 3-metl	hyl-2-butanone (d) Isopro	opylmethyl ketone
122.	When $CH_2 = CH$	- COOH is reduced with	h LiAlH ₄ , the compoun	d obtained will be	
	(a) $CH_2 = CH - C$	CH ₂ OH	(b) CH ₃ - CH ₂ - CH ₂ C)H	
	(c) CH ₃ - CH ₂ - C	сно	(d) CH ₃ - CH ₂ - COO	Н	
123.	According to the travels	kinetic theory of gases,	in an ideal gas, betweer	n two successive collisio	ns a gas molecule
				rated velocity (d) in a ci	rcular path
124.		what $C_nH_{2n}O_2$ could be fo			
125.	(a) carboxylic acid Among the follow	ving four structures I to	(b) diols IV.	(c) dialdehydes	(d) deketones
		$\begin{array}{c} O & CH_3 \\ O & CH_3 \\ CH_3-C & -CH-C_2H_5 \end{array} \begin{array}{c} H \\ H - C \\ H \\ (iii) \end{array}$, CH_3 , C_2H_5 - CH - C_2H_5 (iv)	. It is true that	
4		re chiral compounds	(b) only III i a chiral co	-	
	(c) only II and IV	are chiral compounds	(d) all four are chiral co	ompounds	

126.	What would happen when a solution of po	otassium chromate is tre	ated with an excess of dilute nitric acid?
	(a) Cr_2O^{2-} and H_2O are formed	(b) CrO ²⁻ ₄ is reduced to	0 +3 state of Cr
	(c) CrO ² - ₄ is oxidized to +7 state of Cr	(d) Cr^{3+} and Cr_2O^{2-} are	e formed
127.	For making good quality mirrors, plates of over a liquid metal which does not solidify	_	- / (- /)
	(a) tin (b) sodium	(c) magnesium	(d) mercury
128.	The substance not likely to contain CaCO	θ_3 is	
	(a) calcined gypsum (b) sea shells	(c) dolomite	(d) a marble statue
129.	Complete hydrolysis of cellulose gives		
	(a) D-ribose (b) D-glucose	(c) L-glucose	(d) D-fructose
130.	Which one of the following nitrates will le	eave behind a metal on s	trong heating
	(a) Copper nitrate (b) Manganese nitrate	(c) Silver nitrate	(d) Ferric pitrate
131.	During dehydration of alcohols to alkenes	s by heating with conc. I	H ₂ SO ₄ the initiation step is
	(a) formation of carbocation	(b) elimination of water	r
	(c) formation of an ester	(d) protonation of alcoh	not molecule
132.	The solubilities of carbonates decrease do	wn the magnesium grou	p due to a decrease in
	(a) hydration energies of cations	(b) inter-ionic attraction	i
	(c) entropy of solution formation	(d) lattice energies of se	ebiles
133.	When rain is accompanied by a thunderste	orm, the collected rain v	yater will have a pH value
	(a) slightly higher than that when the thun	derstorm is not there	
	(b) uninfluenced by occurence of thunders	storm	
	(c) which depends on the amount of dust i	in air	
	(d) slightly lower than that of rain water w	ithout thunderstorm	
134.	The reason for double helical structure of	DNA is operation of	
	(a) dipole-dipole interaction (b) hydrogen		
135.	25 ml of a solution of barrium hydroxide litre value of 35 ml. The molarity of barrium	on titration with a 0.1 mm hydroxide solution wa	olar solution of hydrochloric acid gave a as
	` '	(c) 0.35	(d) 0.07
136.	The correct relationship between free ene stant K _c is		
	(a) $-\Delta G = RT \ln K_c$ (b) $\Delta G = RT \ln K_c$	(c) $-\Delta G^0 = RT In K$	K_c (d) $\Delta G = RT \ln K_c$
137.	The rate law for a reaction between the su		
	concentration of A and halving the conce	entration of B, the ratio	of the new rate to the earlier rate of the
	reaction will be as		
	$(a) (m+n) \qquad (b) (n-m)$	(c) $2^{(n-m)}$	(d) $\frac{1}{2^{(m+n)}}$
138.	Ethyl isocyanide on hydrolysis in acidic m	nedium generates	
	\ \(\cup \)	(b) ethanoic acid and an	mmonium salt
	(c) methylamine salt and ethanoic acid	(d) ethylamine salt and	methanoic acid
139.	The enthalpy change for a reaction does n	ot depend upon	
	(a) use of different reactants for the same	product (b) the	e nature of intermediate reaction steps
4	(The differences in initial or final temper	ratures of involved subst	ances
	(d) the physical states of reactants and pro-	ducts	

AIEEE 2003

MATHEMATICS

- Let $\frac{d}{dx}F(x) = \left(\frac{e^{sinx}}{x}\right), x > 0$. If $\int_{-\infty}^{4} e^{sinx^3} dx = F(k) F(1)$ then one of the possible values of k, is
 - (a) 64
- (b) 15
- (c) 16
- (d) 63
- The median of a set of 9 distinct observations is 20.5. If each of the largest 4 observations of the set is 2. increased by 2, then median of the new set
 - (a) remains the same as that of the original set

(b) is increased by 2

(c) is decreased by 2

(d) is two times the original median

- $\lim_{n \to \infty} \frac{1 + 2^4 + 3^4 + \dots n^4}{n^5} \lim_{n \to \infty} \frac{1 + 2^3 + 3^3 + \dots n^3}{n^5}$
- (b) $\frac{1}{20}$

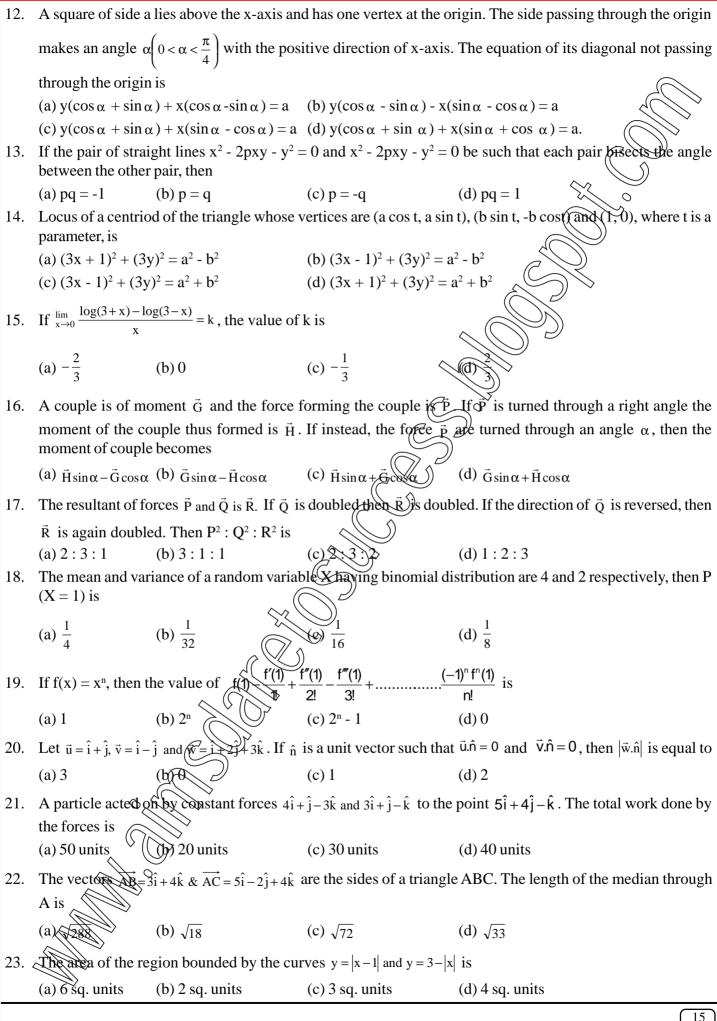
- The normal at the point (bt₁², 2bt₁) on a parabola meets the parabola again in the point (bt₂², 2bt₂), then
 - (a) $t_2 = t_1 + \frac{2}{t_1}$ (b) $t_2 = -t_1 \frac{2}{t_1}$ (c) $t_2 = -t_1 + \frac{2}{t_1}$

- If the two circles $(x-1)^2 + (y-3)^2 = r^2$ and $x^2 + y^2 8x + 2y + 8 = 0$ intersect in two distinct point, then 5.

- (a) r > 2 (b) 2 < r < 8 (c) r < 2 (d) r = 2. The degree and order of the differential equation of the tamely of all parabolas whose axis is X-axis, are respectively.
 - (a) 2, 3
- (b) 2, 1
- (d) 3, 2
- The foci of the ellipse $\frac{x^2}{16} + \frac{y^2}{b^2} = 1$ and the hyperbolic $\frac{x^2}{144} \frac{y^2}{81} = \frac{1}{25}$ coincide. Then the value of b^2 is 7.
 - (a) 9
- (b) 1

- (d)7
- If $f(y) = e^y$, g(y) = y; y > 0 and F(t)
- (b) $F(t) = 1 te^{-t}(1 + t)$ (c) $F(t) = e^{t} (1 + t)$ (d) $F(t) = te^{t}$.

- The function $f(x) = \log x + x$
 - (a) neither an even nor an odd function


(b) an even function

(c) an odd function (d

- (d) a periodic function
- 10. If the sum of the cots of the quadratic equation $ax^2 + bx + c = 0$ is equal to the sum of the squares of their reciprocals, then $\frac{a}{b}$ and $\frac{c}{b}$ are in
 - (a) Arithmetic Geometric Progression
- (b) Arithmetic Progression
- (c) Geometric Progression
- (d) Harmonic Progression
- If the system of linear equations
 - $x \neq 2ax + az = 0$

- x + 3by + bz = 0
- x + 4cy + cz = 0

- has a non-zero solution, then a, b, c
- (a) satisfy a + 2b + 3c = 0
- (b) are in A.P.
- (c) are in G.P.
- (d) are in H.P.

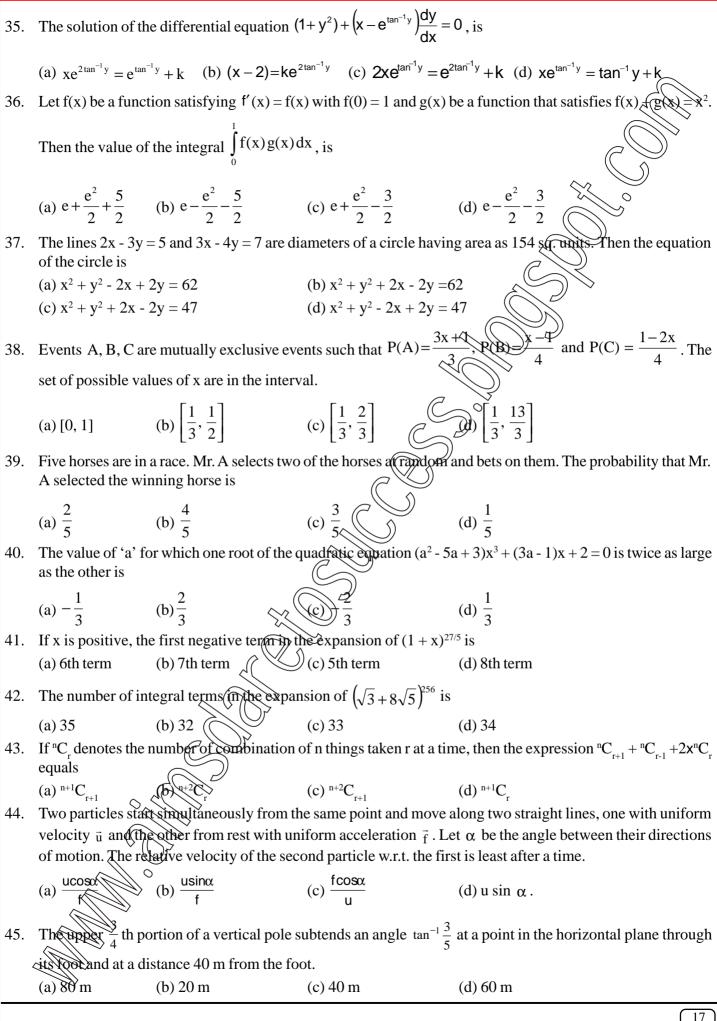
24.	The shortest dista	ance from the plane 12x	+4y + 3z = 327 to the s	sphere $x^2 + y^2 + z^2 + 4x - 2y - 6z = 155$ is
	(a) 39	(b) 26	(c) $11\frac{4}{13}$	(d) 13
25.	The two lines $x =$	= ay + b, $z = $ cy + d and z	x = a'y + b'z = c'y + d	will be perpendicular, if and only it
	(a) $a a' + c c' + 1$	= 0	(b) aa' + bb' + cc' +	1=0
	(c) a a' + b b' + c	c'=0	(d)(a + a')(b + b') +	$(\mathbf{c} + \mathbf{c'}) = 0$
26.	The lines $\frac{x-2}{1}$ =	$\frac{y-3}{1} = \frac{z-4}{-k} \text{ and } \frac{x-1}{k}$	$= \frac{y-4}{1} = \frac{z-5}{1} \text{ are copl}$	anar if
	(a) $k = 3 \text{ or } -2$	(b) $k = 0$ or -1	(c) $k = 1$ or -1	(d) $k = 0$ or -3
27.	If $f(a+b-x) = f(a+b-x)$	(x) then $\int_{a}^{b} x f(x) dx$ is equ	ual to	
	(a) $\frac{a+b}{2}\int_{a}^{b}f(a+b)$	$(a-x)dx$ (b) $\frac{a+b}{2}\int_a^b f(b-a)$	(c) $\frac{a+b}{2} \int_{a}^{b} f(x) dx$	$(d) = a \int_{a}^{b} f(x) dx$
28.				ds at rest. In the first part of the journey, it retardation r. The value of t is given by
	(a) $\sqrt{2s\left(\frac{1}{f} + \frac{1}{r}\right)}$	(b) $2s\left(\frac{1}{f} + \frac{1}{r}\right)$	(c) $\frac{2s}{\frac{1}{f} + \frac{1}{r}}$	$\int \int $
29.				h the same speed u, so as to hit the ground
	at the same spot.	If one of the stones is pr	ojected at an angle θ to	the horizontal then the θ equals
	(a) $u\sqrt{\frac{2}{gh}}$	(b) $\sqrt{\frac{2u}{gh}}$	G2gh	(d) $2h\sqrt{\frac{u}{g}}$
30.	If 1, ω , ω^2 are the	e cube roots of unity, the	$\mathbf{n} \mathbf{A} = \begin{vmatrix} 1 & \omega^{n} & \omega^{2n} \\ \omega^{n} & \omega^{2n} & 1 \\ \omega^{2n} & 1 & \omega^{n} \end{vmatrix}$	is equal to
	(a) ω^2	(b) 0	(c) 1	(d) w
31.	The sum of the ra			n sided regular polygon of side a, is
	(a) $\frac{a}{4}\cot\left(\frac{\pi}{2n}\right)$	(b) a cot n	(c) $\frac{a}{2}\cot\left(\frac{\pi}{2n}\right)$	(d) $a \cot \left(\frac{\pi}{2n}\right)$
32.	If x_1, x_2, x_3 and y_0	y_2 , y_3 are both in G.P. w	ith the same common ra	tio, then the points (x_1, y_1) , (x_2, y_2) and (x_3, y_2)
	y_3)			ellinse (d) lie on a circle

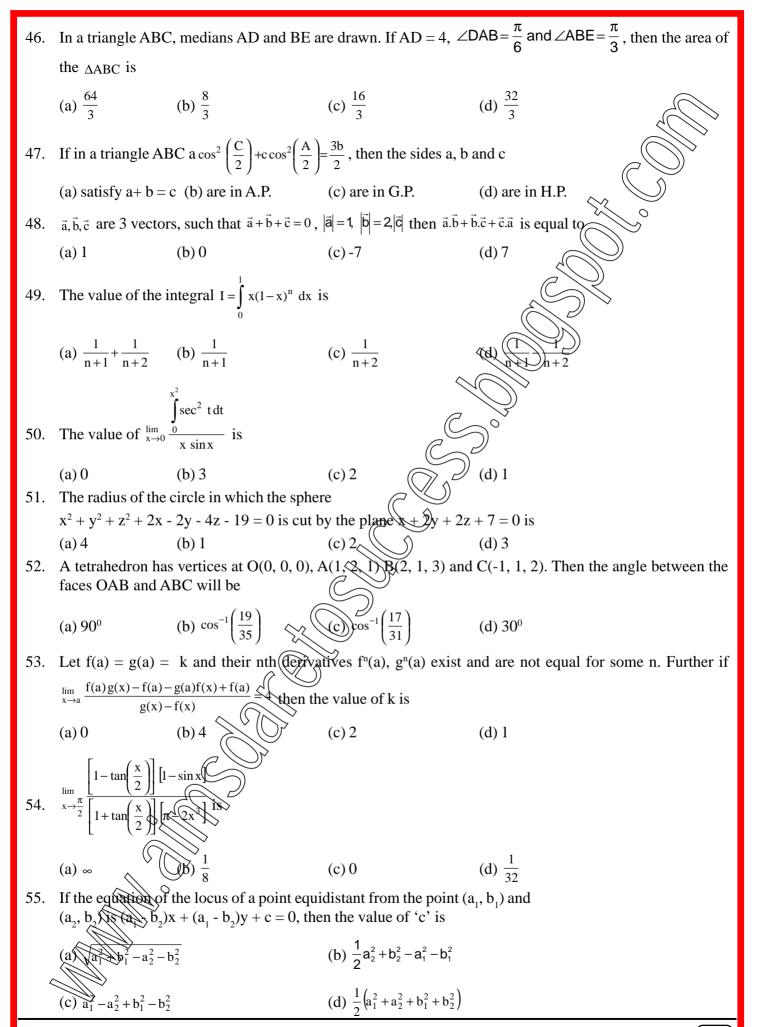
If z and ω are two non-zero complex numbers such that $|z\omega|=1$ and $Arg(z)-Arg(\omega)=\frac{\pi}{2}$, then $\bar{z}\omega$ is equal to

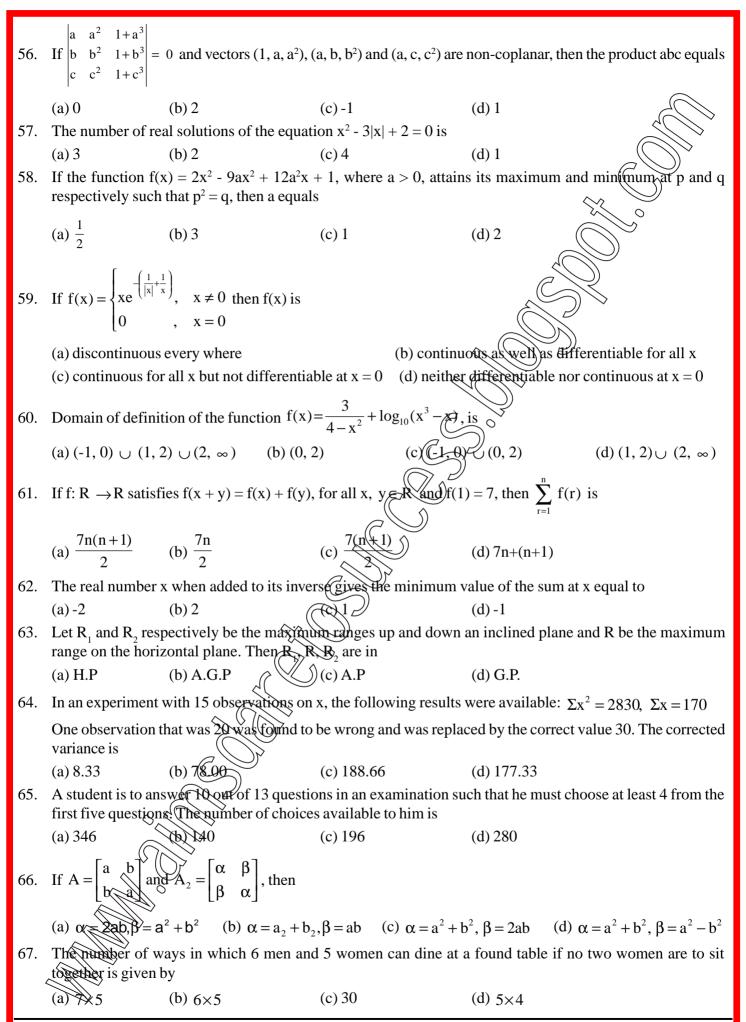
Let X_1 and Z_2 be two roots of the equation $x^2 + aZ + b = 0$ being complex. Further, assume that the origin, Z_1 and Z_2 form an equilateral triangle. Then

(d) i.

(d) $a^2 = 3b$


(c) -1


(c) $a^2 = 2b$


(b) 1

(b) $a^2 = b$

(a) $a^2 = 4b$

- Consider points A, B, C and D with position vectors $7\hat{i} 4\hat{j} + 7\hat{k}$, $\hat{i} 6\hat{j} + 10\hat{k}$, $-\hat{i} 3\hat{j} + 4\hat{k}$ and $5\hat{i} \hat{j} + 5\hat{k}$ respectively. Then ABCD is a
 - (a) parallelogram but not a rhombus
- (b) square
- (c) rhombus
- (d) rectangle
- 69. If \vec{u}, \vec{v} and \vec{w} are three non-coplanar vectors, then $(\vec{u} + \vec{v} \vec{w}) \cdot (\vec{u} \vec{v}) \times (\vec{v} \vec{w})$ equals
 - (a) $3\vec{u}.\vec{v}\times\vec{w}$
- (b) 0

- (c) $\vec{\mathbf{n}} \cdot \vec{\mathbf{v}} \times \vec{\mathbf{w}}$
- (d) $\vec{u}.\vec{w}\times\vec{v}$
- The trigonometric equation $\sin^{-1} x = 2\sin^{-1} a$ has a solution for

 - (a) $|a| \ge \frac{1}{\sqrt{2}}$ (b) $\frac{1}{2} < |a| < \frac{1}{\sqrt{2}}$ (c) all real values of a (d) $|a| < \frac{1}{2}$
- Two system of rectangular axes have the same origin. If a plane cuts them at distances a,b,c and a',b',c' from the origin then
 - (a) $\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} \frac{1}{a'^2} \frac{1}{b'^2} \frac{1}{c'^2} = 0$ (b) $\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} + \frac{1}{a'^2} + \frac{1}{b'^2} + \frac{1}{c'}$
 - (c) $\frac{1}{a^2} + \frac{1}{b^2} \frac{1}{c^2} + \frac{1}{a'^2} + \frac{1}{b'^2} \frac{1}{c'^2} = 0$ (d) $\frac{1}{a^2} \frac{1}{b^2} \frac{1}{c^2} + \frac{1}{a'^2} \frac{1}{b^2}$

- 72. If $\left(\frac{1+i}{1-i}\right)^2 = 1$ then
 - (a) x = 2n+1, where n is any positive integer
 - (c) x = 2n, where n is any positive integer

- = 4n, where n is any positive integer
- (\vec{a}) x = 4n+1, where n is any positive integer
- A function f from the set of natural numbers to integers defined by $f(n) = \begin{cases} \frac{n-1}{2}, & \text{when n is odd} \\ \frac{n}{2}, & \text{when n is even} \end{cases}$
 - (a) neither one-one nor onto
 - (b) one-one but not onto (d) one-one and onto both. (c) onto but not one-one
- 74. Let f(x) be a polynomial function of second degree. If f(1) = f(-1) and a, b, c are in A.P, then f'(a), f'(c) are
 - (a) Arithmetic-Geometric Progression
- (b) A.P.
- (c) G.P.
- (d) H.P.

- The sum of the series $\frac{1}{1}$up to ∞ is equal to

- $(c) \log_{a} 2-1$
- $(d) \log_{a} 2$