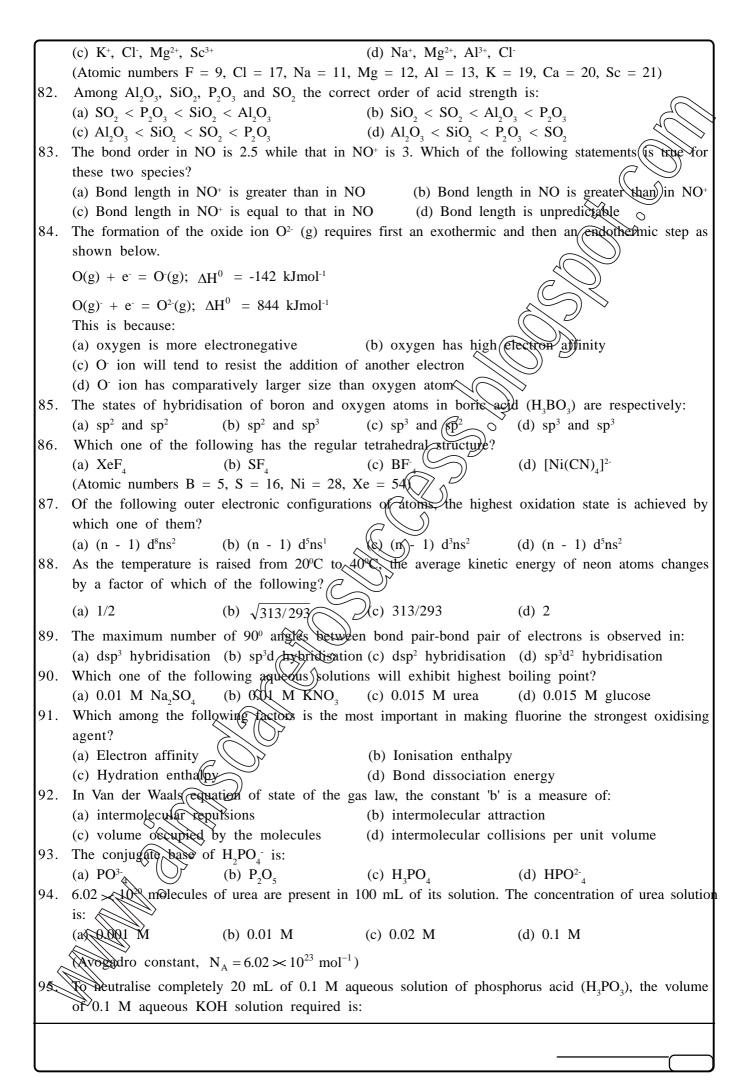
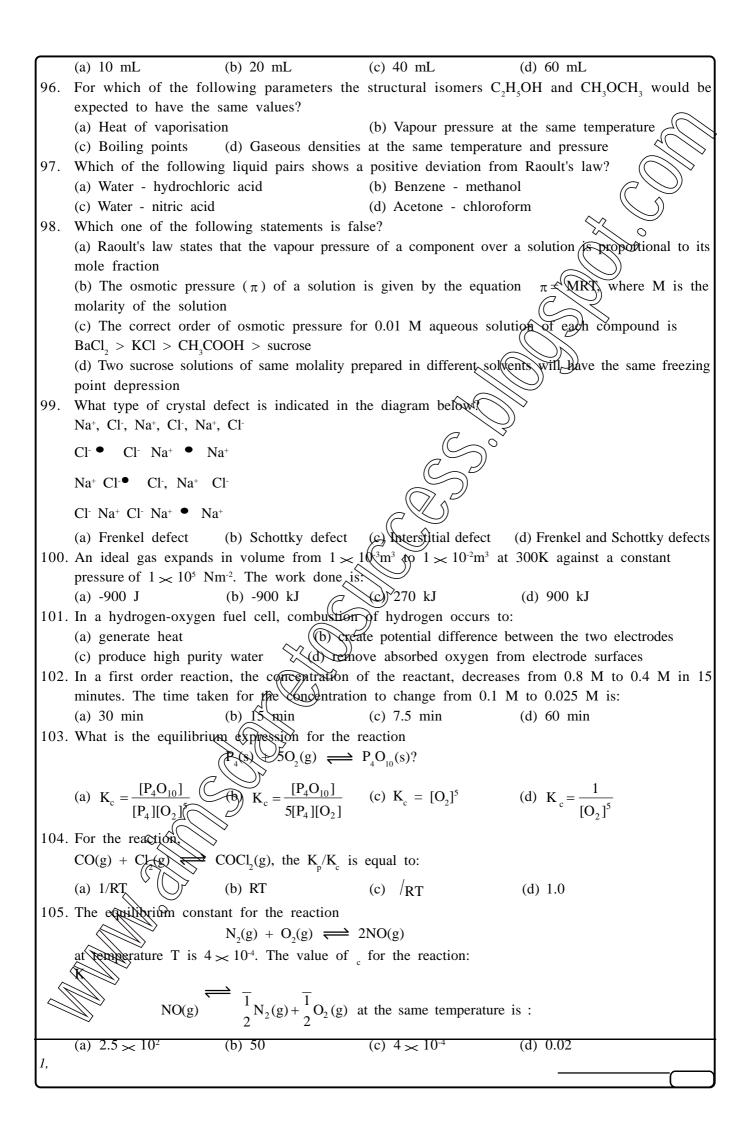
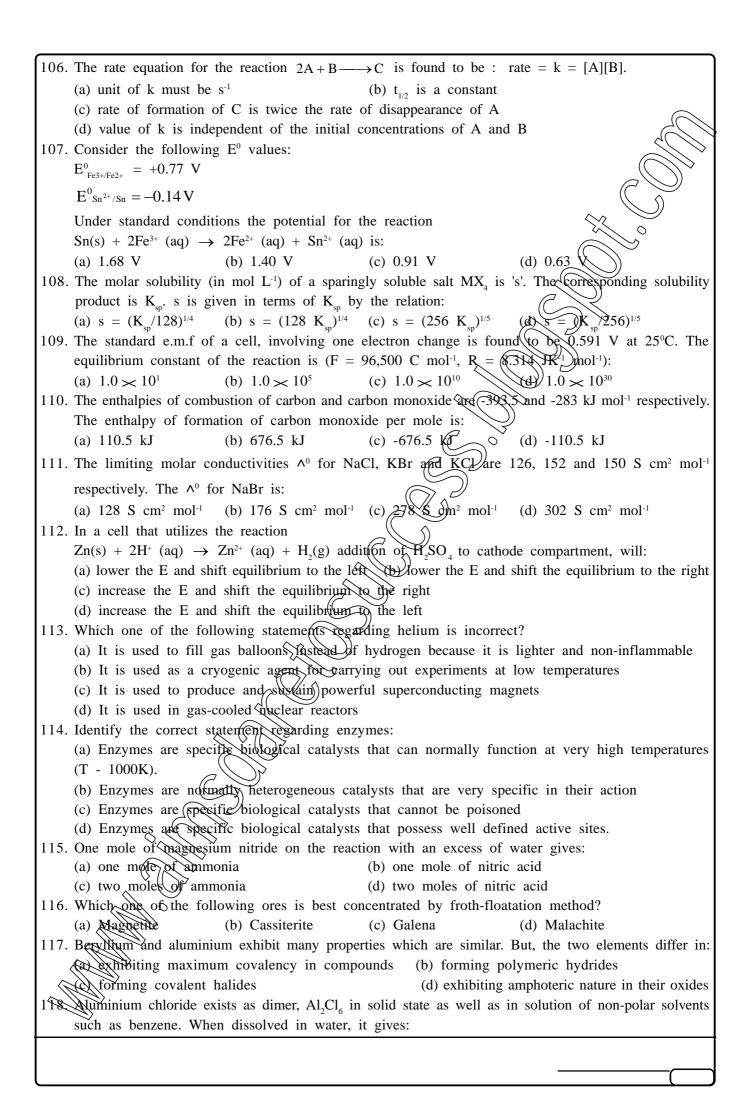
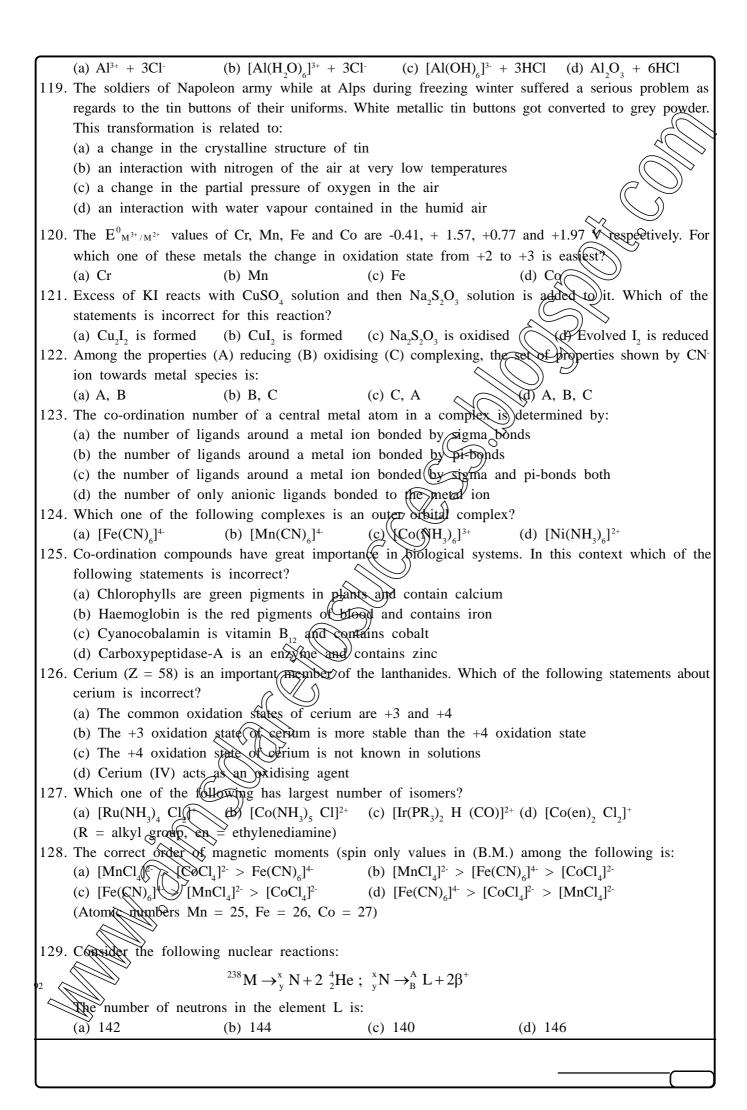

AIEEE 2004 Question Paper

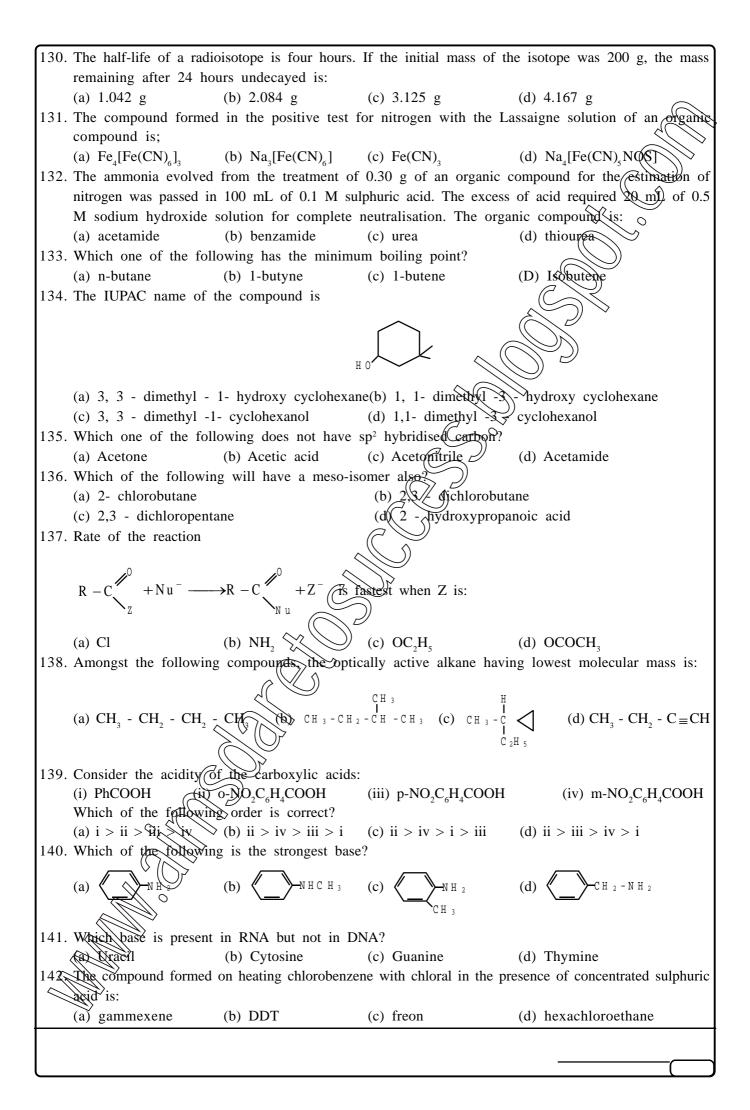
	PHYSICS & CHEMISTRY (PART - I)
1.	Which one of the following represents the correct dimensions of the coefficient of viscosity
	(a) $[ML^{-1} T^{-2}]$ (b) $[MLT^{-1}]$ (c) $[ML^{-1} T^{-1}]$ (d) $[ML^{-2} T^{-2}]$
2.	A particle moves in a straight line with retardation proportional to its displacement. Its loss of
	kinetic energy for any displacement x is proportional to:
	(a) x^2 (b) e^x (c) x (d) $\log_e x$
3.	A ball is released from the top of a tower of height h metres. It takes T seconds to reach the ground.
	What is the position of the ball in T/3 seconds?
	(a) h/9 metre from the ground (b) 7h/9 metre from the ground
	(c) 8h/9 metre from the ground (d) 17h/18 metre from the ground
4.	If $A \times B = B \times A$, then the angle between A and B is:
	(a) π (b) $\pi/3$ (c) $\pi/2$
5.	A projectic can have the same range R for two angles of projection LET, and T2 be the time of
	flights in the two cases, then the product of the two times of flights is directly proportional to:
	(a) $1/R^2$ (b) $1/R$ (c) R
6.	Which of the following statements is false for a particle moving in a circle with a constant angular
	speed?
	(a) The velocity vector is tangent to the circle
	(b) The acceleration vector is tangent to the circle
	(c) The acceleration vector points to the centre of the circle
_	(d) The velocity and acceleration vectors are perpendicular to each other
7.	An automobile travelling with a speed of 60 km/h can brake to stop within a distance of 20 m.
	If the car is going twice as fast, i.e. 120 km/s, the stopping distance will be:
0	(a) 20 m (b) 40 m (d) 80 m A machine gun fires a bullet of mass 40 g with a velocity 1200 ms ⁻¹ . The man holding it, can exert
8.	a maximum force of 144 N on the gun. How many bullets can he fire per second at the most?
	(a) One (b) Four (c) Two (d) Three <i>unumum</i>
9.	Two masses $m_1 = 5$ kg and $m_2 > 4.8$ kg tied to a string are hanging over a light
·	frictionless pulley. What is the acceleration of the masses when lift is free to move?
	$(g = 9.8 \text{ m/s}^2)$
	(a) 0.2 m/s^2
	(b) 9.8 m/s ²
	(c) 5 m/s ²
	(d) 4.8 m/s^2
10.	A uniform chain of length 2 m is kept on a table such that a length of 60 cm hangs freely from
	the edge of the table. The total mass of the chain is 4 kg. What is the work done in pulling the
	entire challe (on the table?
	(a) 7.2 (b) 3.6 J (c) 120 J (d) 1200 J
11.	A block rests on a rough inclined plane making an angle of 30° with the horizontal. The coefficient
	of static friction between the block and the plane is 0.8. If the frictional force on the block is 10
<	N, the mass of the block (in kg) is (take $g = 10 \text{ m/s}^2$):
(F)	(b) 4.0 (c) 1.6 (d) 2.5
F2	force $\hat{F} = (5\hat{i} + 3\hat{j} + 2\hat{k})$ N is applied over a particle which displaces it from its origin to the point
`	▽


	(b) directly proportion	al to both radius R at	nd velocity v	
	(c) inversely proportion		•	
	·		proportional to velocity	V
24.	If two soap bubbles of	•		
21.	•		smaller bubble till the	sizes become equal
			iller bubble till the size	
	(c) air flows from the	-		s are interenanged
	(d) there is no flow of		015501	
25.	* *		ale harmonic motion in	water with a period t, while the
23.		_		orce of water and given that the
			What relationship between	
	t	(1/3) × 1000 kg/m: V	That Telationship between	
	(a) $t = t_0$	(b) $t = t_0/2$	(C) $t = 2t$	(d) = 4t
26.	A particle at the end	of a spring executes	simple harmonic mot	ion with a period t, while the
	corresponding period for	or another spring is t ₂ .	If the period of oscillati	ion with the two springs in series
	is T then:	_	(
	(a) $T = t_1 + t_2$	(b) $T = t^2 + t^2$	(c) $T^{-1} = t_1^1 + t_2^1$	$T^{-2} = t^2 + t^2$
27.			nple harmonic motion	. \
		(b) $\propto x^2$	(c) independent of x	1)
	(a) $\propto x$ where x is the displace			(u) & x
20	-		\sim 11	
28.	The displacement y of	a particle ili a illedit	im can be expressed as	
	$y = 10^{-6} \sin(100t + 20x)$	$(\frac{\pi}{\pi})$ m where t is in	second and the in metro	e. The speed of the wave is:
	y = 10 Sm(100t + 20x	4	i second with in men	e. The speed of the wave is.
	(a) 2000 m/s	(b) 5 m/s	(C) 20 m/s	(d) $5\pi \text{ m/s}$
20				
29.				d has a natural angular frequency
	ω_0 . An external force	e F(t) proportional 70	$\cos \omega t \ (\omega \neq \omega_0)$ is approximation	blied to the oscillator. The time
	displacement of the os	scillator will be propo	rtional to:	
	(a) $\frac{m}{\omega_0^2 - \omega^2}$	(b)	(c) $m\left(\omega_0^2 + \omega^2\right)$	(d) $\frac{m}{\omega_0^2 + \omega^2}$
	$\omega_0 - \omega$	$m(w) \rightarrow w$	$m(\omega_0 + \omega)$	$\omega_0 + \omega$
30.	In forced oscillation of	a particle, the amplitu	ide is maximum for a f	Frequency ω_1 of the force while
				ω ₁
	the energy is maximus	for a frequency ω_2	of the force, then:	
	(a) $\omega_1 = \omega_2$			(b) $\omega_1 > \omega_2$
	(()			
	(c) $\omega_1 < \omega_2$ when dan	nping is small and $\omega_{_{1}}$	$> \omega_2$ when damping is	s large (d) $\omega_1 < \omega_2$
31.	One mole of ideal mo	⇒ noatomic gas (v = 5/3) is mixed with one m	ole of diatomic gas $((\gamma = 7/5)$.
				stant pressure, to that at constant
		ture: 7 denotes the rati	o of specific fleat at con	istant pressure, to that at constant
	volume.	(b) 22/15	(C) 25/22	(4) 4/2
32.	(a) 3/2	(b) 23/15	(C) 35/23	(d) 4/3 s radius from R to 2R, then the
32.			to what it was previo	
	(a)	(b) 16	(c) 32	(d) 64
33.~	Which of the following		t for any thermodynam	
		y changes in all proce	•	ie system.
	(b) Internal energy an			
	(c) The change in ent			
	,	1,5 201		


	(d) The work done in	an adiabatic proce	ss is always ze	ero		
34.	Two thermally insulated vessels 1 and 2 are filled with air at temperature (T ₁ , T ₂), volume (V					
	and pressure (P_1, P_2)					
	inside the vessel at eq		3		•	
	(a) $T_1 + T_2$	(b) $(T_1 + T_2)/2$	(c) $\frac{T_1T_2(1)}{T_2}$	$P_1V_1 + P_2V_2)$	(d) $\frac{\mathbf{I}_{1}^{*}\mathbf{I}_{2}(\mathbf{P}_{1}\mathbf{V}_{1})}{\mathbf{I}_{1}^{*}\mathbf{I}_{2}(\mathbf{P}_{1}\mathbf{V}_{1})}$	$+P_2$
	7 1 2	. , , 1 2,	P_1V_1	$T_2 + P_2 V_2 T_1$	$P_1V_1T_1+I$	P_2 \downarrow \uparrow \uparrow
35.	A radiation of energy	E falls normally or	n a perfectly re	eflecting surface	ce. The momen	nturn transferred
	to the surface is:		r	8	52	
	(a) E/c	(b) 2E/c	(c) Ec		(d) E/c^2	\searrow
		()	())
	of two materials having	g coefficients of the	rmal conductiv	ity K and 2K		4x>
	and thickness x and 4x			-		
						7 × 1
	of heat transfer through	n the slab, in a stea	dy state is $\left(\frac{A}{A}\right)$	$\frac{(T_2-T_1)K}{f}$		
		, , , , , , , , , , , , , , , , , , , ,		x \		
	with f equals to:					
	(a) 1	(b) 1/2	(c) 2/3		(d) 1/3	. ↓
37.	A light ray is incident	perpendicular to or	ne face of a 90	0° prism and	is totally g	,
	internally reflected at	the glass-air interfa	ce. If the angl	le (of reflection	n is 45°,	
	we conclude that the	refractive index n:	(0			1 45° C
	1	_	1		,	
	(a) $n < \frac{1}{\sqrt{2}}$ (b)	$n > \sqrt{2}$ (c) n	> 1	$4\sqrt{n} < \sqrt{2}$		450
			11 \		ı	/
38.	A plano-convex of re-	fractive index 1.5	and radius of	curvature 30	cm is silvered	d at the curved
	surface. Now this lens	has been used to fo	orm the image of	of an object. A	At what distance	e from this lens,
	an object be placed in	order to have a re	eal image of th	ne size of the	object?	
	(a) 20 cm	(b) 30 cm	60 cm		(d) 80 cm	
39.	The angle of incidence	e at which reflected	l light is totall	y polarized fo	or reflection fro	om air to glass
	(refractive index n), is	»: <	\supset			
	(a) $\sin^{-1}(n)$	(b) sin ⁻¹ (1/n)	(c) tan ⁻¹ ((d) tan-1 (n)	
40.	The maximum number		nce maxima for	r slit-separation	n equal to twice	e the wavelength
	in Young's double-slit	experiment, is,				
	(a) infinite	(b) five	(c) three		(d) zero	
41.	An electromagnetic wa		= 3.0 MHz pa	sses from vac	ruum into a die	electric medium
	with permittivity $\varepsilon = 4$	Q. Then:				
	(a) wavelength is dou	bled and frequency	remains unch	nanged		
	(b) wavelength is dou	bled and frequency	becomes half	•		
	(c) wavelength is halv			inged		
	(d) wavelength and fr		_			
42.	Two spherical conductor					
	other with a force F			_		-
	radius as that of B but		-		-	
	finally removed away	from both. The ne	w force of rep	ulsion between	n B and C is:	
	(DELL)	3F	. F		3F	
^	(19) D	(b) $\frac{3F}{4}$	(c) $\frac{F}{8}$		(d) $\frac{3F}{8}$	
43	A charged particle q i	s shot towards anot	ther charged na	orticle O which	h is fixed with	h a speed v It
	approaches Q upto a					-
	II Cabes a			-1		,




	of the coil will be:			
	(a) nB	(b) n^2B	(c) 2nB	(d) 2n ² B
56.	The magnetic field due	to a current carrying	circular loop of radius	3 cm at a point on the axis at
	a distance of 4 cm fro	m the centre is 54 μ T	. What will be its value	ne at the centre of the loop?
	(a) 250 μT	(b) 150 μT	(c) 125 μT	(d) 75 μT
57.	Two long conductors, s	separated by a distance	d carry currents I ₁ and	I_{2} in the same direction. They
				increased to two times and its
		he distance is also inc	reased to 3d. The new	value of the force between them
	is: (a) -2F	(b) F/3	(c) -2F/3	(d) -F/3
58.	` '	` '	` '	The time period of its oscillation
50.				into three equal parts and three
		-	-	time period of this combination
	will be:			
	(a) 2 s	(b) 2/3 s	(c) $2\sqrt{3}$ s	(d) 2/43 s
59.	The materials suitable	_	- //(//	\searrow
	(a) high retentivity and	-	(b) low retentivity and	/
60	(c) high retentivity and	-	(d) low retentivity and	
60.			oss each of the compon	ents. L, C and R is 50 V. The
	voltage across the LC			
	(a) 50 V	(b) $50\sqrt{2} \text{ V}$	(C) 100 X	(d) 0 V (zero)
61.	combination is moved is	in time t seconds from	magnetic field W ₁ w	ometer of resistance $4R\Omega$. This reber to W_2 weber. The induced
	(a) $\frac{W_2 - W_1}{5Rnt}$	(b) $-\frac{n(W_2-W_2)}{5Rt}$	$(W_{2} - W_{1})$ Rnt	$(d) - \frac{n\left(W_2 - W_1\right)}{Rt}$
62.		11 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	/	nicircle of radius r rotates about
				sistance of the circuit is R, the
	mean power generated	per period of rotation	is:	
	$B\pi r^2 \omega$	$B\pi x^2 \omega$	$(B\pi r\omega)^2$	$(B\pi r\omega^2)^2$
	(a) $\frac{B\pi r^2\omega}{2R}$	(b) 8R	(c) $\frac{\left(B\pi r\omega\right)^{2}}{2R}$	(d) $\frac{\left(B\pi r\omega^2\right)^2}{8R}$
63.	In an LCR circuit, ca	pacitance is changed	from C to 2C. For the	e resonant frequency to remain
	unchanged, the inducta	ance should be change	d from L to:	
	(a) 4L	(b) 2L	(c) L/2	(d) L/4
64.				nds at angular velocity 5 radians
	emf developed between			eld is 0.2×10^{-4} T, then the
	(a) $5\mu V$	(b) $50 \mu V$	(c) 5 mV	(d) 50 mV
65.	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		` '	ergy of the emitted photoelectrons
	() ()		ent radiation gives a str	
		•	(b) depends on the in	-
	(e) depends both on the	ne intensity of the rad	iation and the metal us	ed
(4		-	nt of the intensity of the	
66			-	light that can cause photoelectron
	emission from this sub	ostance is approximate	ly:	


ĺ	(a) 540 nm (b) 400 nm (c)	310 nm	(d) 220 nm
67.	7. A charged oil drop is suspended in uniform field of	of 3×10^4 V/m so t	hat it neither falls nor rises.
	The charge on the drop will be: (take the mass of	of the charge $= 9.9$	$\sim 10^{-15} \text{ kg and g} = 10 \text{ m/s}^2$
	(a) 3.3×10^{-18} C (b) 3.2×10^{-18} C (c)	$1.6 \times 10^{-18} \text{ C}$	(d) $4.8 \times 10^{-18} \text{ C}$
68.			
	of their nuclear sizes will be:		
	(a) $2^{1/3}:1$ (b) $1:3^{1/2}$ (c)	$3^{1/2}:1$	(d) $1:2^{1/3}$
69.		and halium nuclaus	(4Ha) is 1.1 MeV and 7 MeV
07.	7. The billiang energy per indecedir of dediction (1H)	and herium nucleus	(2 He) is 1.4 vic v that / ivic v
	respectively. If two deuteron nuclei reacts to form is:	a single helium nu	cleus, then the energy released
	(a) 13.9 MeV (b) 26.9 MeV (c)	23.6 MeV	(d) 190 MeV
70.			' '
	of the closest approach is of the order of:		
		10 ⁻¹² cm	(d) 10-15 cm
71.		(
, 1.	(a) electrons move from base to collector (b)	holes move from	neither to base
		holes move from b	
72.		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
/ 2.	$h_{oe} = 25 \mu$ A/V), the current gain is:	guration for load 41	apedance of 1 ks2 ($n_{fe} = 30$ and
	**	-24.8	(d) -48.78
73.		\sim	
73.	resistance of :		om temperature to 77 K, the
		each of them dec	rreases
	(c) copper decreases and germanium increases	.\ ()	
74.	((and germaniam decreases
` ` `		Pauli's exclusion p	rinciple
		Boltzmann's law	······
75.			
	(a) the depletion region is reduced, and barrier h		
	(b) the depletion region is widened and barrier h	neight is reduced	
	(c) both the depletion region and partier height		
	(d) both the depletion region (and barrier height		
76.			electron in 4f orbital?
	$(C_{1}, C_{2}, C_{3}, C_{4}, C_{4},$	n = 4, 1 = 4, m = 4	
		n = 3, 1 = 2, m = -	
77.		e numbers of electro	ons with the azimuthal quantum
	numbers, $l = 1$ and $\sqrt{2}$ are respectively:		
	(a) 12 and 4 (b) 12 and 5 (c)	16 and 4	(d) 16 and 5
78.	3. Which one of the following ions has the highest	value of ionic radi	us?
	(a) Li^+ (b) B^{3+} (c)	O^{2-}	(d) F-
79.). The wavelength of the radiation emitted, when in	n a hydrogen atom	electron falls from infinity to
	stationary state 1, would be (Rydberg constant =	$1.097 \times 10^7 \text{ m}^{-1}$):	
	(a) 91 nm (b) 192 nm (c)	406 nm	(d) $9.1 \times 10^{-8} \text{ nm}$
80.). The correct order of bond angles (smallest first)	n H ₂ S, NH ₃ , BF ₃ a	nd SiH ₄ is:
	$SiH_4 < NH_3 < BF_3 $ (b)	$NH_3 < H_2S < SiH_4$	$< BF_3$
		$H_2S < NH_3 < BF_3$	
84	Which one of the following sets of ions represen	nts the collection of	isoelectronic species?
`	(a) K^+ , Ca^{2+} , Sc^{3+} , Cl^- (b)	N^+ , Ca^{2+} , Sc^{3+} , F^-	
 			

$\overline{}$			
143.	On mixing ethyl acetate with aqueous sodium	chl	oride, the composition of the resultant solution is:
	(a) CH ₃ COOC ₂ H ₅ + NaCl	(b)	$CH_3COONa + C_2H_5OH$
	(c) CH ₃ COCl + C ₂ H ₅ OH + NaOH	(d)	CH ₃ Cl + C ₂ H ₅ COONa
144.	Acetyl bromide reacts with excess of CH ₂ Mg	I fo	llowed by treatment with a saturated solution of
	NH ₂ Cl gives:		
	(a) acetone (b) acetamide	(c)	2-methyl-2-propanol (d) acetyl iodide
145.			and hydrochloric acid to give the corresponding
	hydrocarbon?		
	(a) Ethyl acetate (b) Acetic acid	(c)	Acetamide (d) Butan-2 one
146			with 50% sodium hydroxide solution to give the
1 10.	corresponding alcohol and acid?	1011	with 50% soulding hydroxide souldings give the
	(a) Phenol (b) Benzaldehyde	(c)	Butanal (d) Benzoic acid
147	Among the following compounds which can		
14/.	Among the following compounds which can	DC	deflydrated very easily
			0 H
	(a) CH,CH,CH,CH,OH	(b)	CH 3CH 2CH 2CH CH
		(-)	
	CH ₃	(1)	4())
	(c) CH 3CH 2CCH 2CH 3	(d)	CH 3CH 2CH CH 2CH 2DH
	ОН		- CH CO
1/18	Which of the following compounds is not cl	niral	
140.	(a) 1-chloropentane		2-(hlpropentane
	(c) 1-chloro-2-methyl pentane		3-chore 2-methyl pentane
140	· ·	(
149.			are responsible for the level of diabetes. This
	compound belongs to which of the following	///	-))
150	(a) A co-enzyme (b) A hormone	,);	An enzyme (d) An antibiotic
150.	The smog is essentially caused by the present	iee)	
	(a) O_2 and O_3 (b) O_2 and O_3)(c)	oxides of sulphur and nitrogen (d) O_3 and N_2
	0,4()		
	$\langle \gamma \rangle \rangle$		
(
	The smog is essentially caused by the present (a) O ₂ and O ₃ (b) O ₂ and N ₂		

	AIEEE	2004 Physics	& Chemistry	Answer Key	
1.	c	51.	С	101.	b
2.	a	52.	d	102.	
3.	c	53.	a	103.	$\binom{r}{d}$
4.		54.	b	104.	
+. 5.	a	55.			×
	C		b	105.	d vi
5. -	b	56.	a	106.	// - "
7.	d	57.	c	107.) c
3.	d	58.	b	108.	b
€.	a	59.	С	109	₹ c
10.	b	60.	d	110	→ d
11.	a	61.	b	(11)	a
12.	b	62.	b		c
13.	b	63.	c	(1 M).	c
14.	c	64.	b	114	d
15.	b	65.	d	Y15.	c
16.	a	66.	c	116.	c
17.	c	67.		V 117	
			a d	` `	a 1.
18.	d	68.	(-	118.	b
19.	a	69.	c	119.	a
20.	b	70.		120.	a
21.	a	71.		121.	b
22.	d	72.	((d o)	122.	c
23	b	73.		123	a
24.	c	74. <	())b	124.	d
25.	c	75.	c	125.	a
26.	b	76.	\bigvee c	126.	c
27.	c	77.) b	127.	d
28.	b	78	c	128.	a
29.	b	(70)	a	129.	b
30.	a		c	130.	c
31.					
	a		a	131.	a
32.	d	A 82.	d	132.	c
33.	b . (83.	b	133.	d
34.	c	84.	c	134.	c
35.	b	85.	b	135.	c
36	d C	∑ > 86	c	136	b
37.	b C	87.	d	137.	a
38.		88.	c	138.	c
39.		99.	d	139.	d
40.	0/10/10	90.	a	140.	d
41.		91.	c	141.	a
42.	() My	92.	c	142.	b
43.	d	93.	d	143.	a
44. (**	o b	93. 94.	b	143.	
	(1)	94. 95.			C d
45.	s c		C	145.	d
16:	c	96.	d	146.	b
1/2/11/2 ×	a	97.	b	147.	c
#8// ~	b	98.	d	148.	a
1 <i>9.</i> ~>	a	99.	b	149.	b
	c	100.	a	150.	c

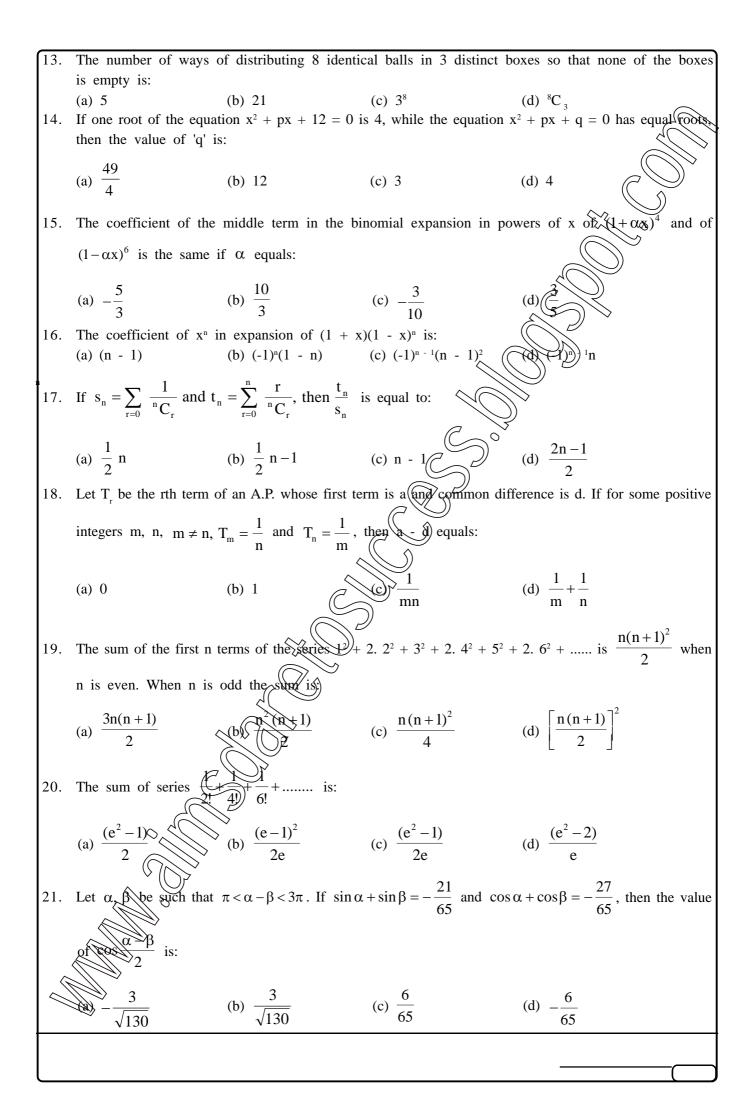
AIEEE 2004 Question Paper

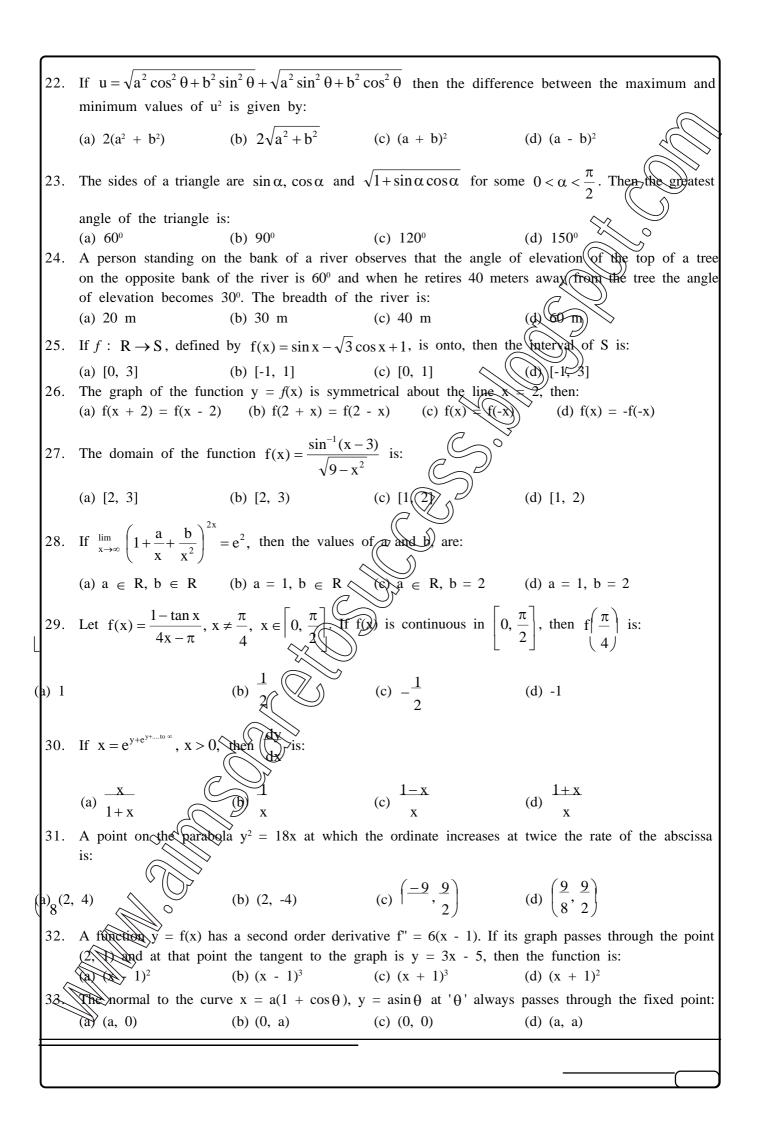
MATHEMATICS (PART - II)

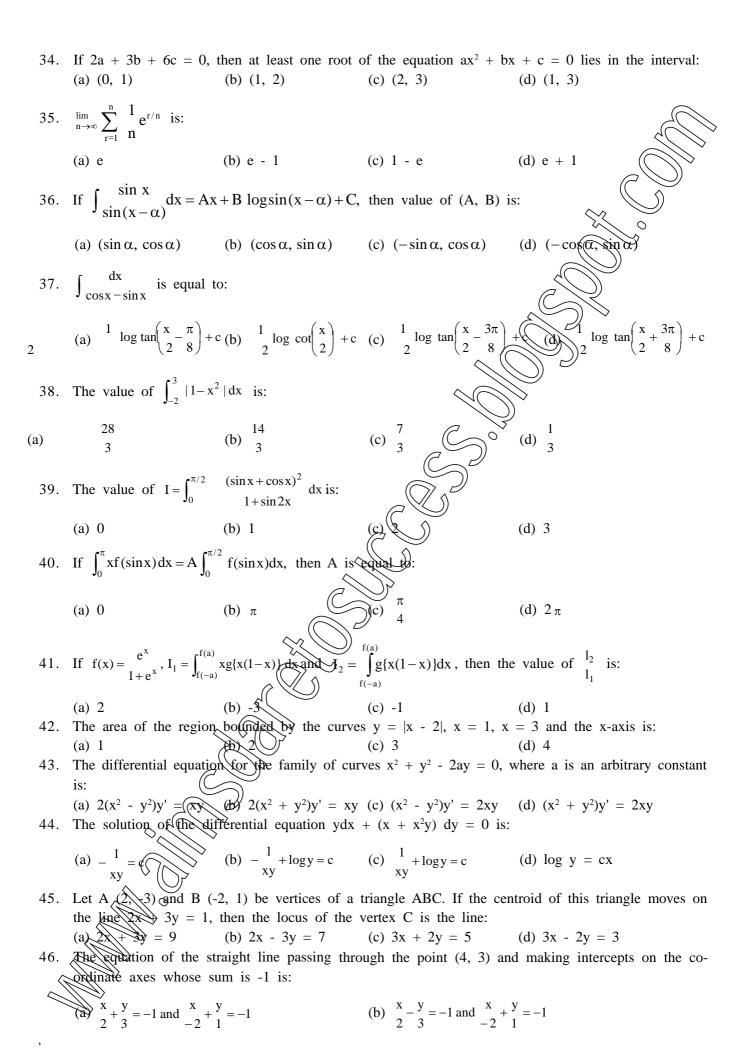
- Let $R = \{(1, 3), (4, 2), (2, 4), (2, 3), (3, 1)\}$ be a relation on the set $A = \{1, 2, 3, 4\}$. The relation
 - (a) a function
- (b) transitive
- (c) not symmetric
- (d) reflexive

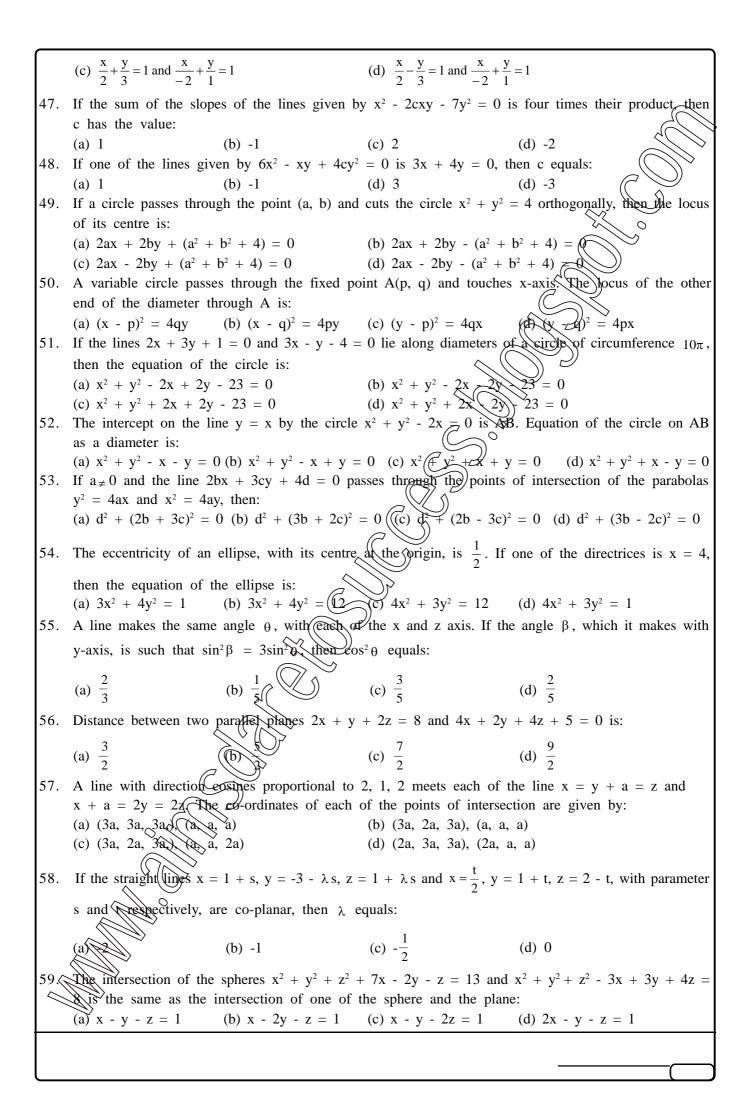
- The range of the function $f(x) = {}^{7-x}P_{x-3}$ is: 2.
- (b) {1, 2, 3, 4, 5, 6} (c) {1, 2, 3, 4} (d) {1, 2, 3, 4}
- Let z, w be complex numbers such that z+iw=0 and arg $zw=\pi$. Then avg3.
 - (a) $\pi/4$
- (b) $\pi/2$
- (c) $3\pi/4$
- (d) 5π
- If z = x iy and $z^{\frac{1}{3}} = p + iq$, then $\left(\frac{x}{p} + \frac{y}{q}\right) / (p^2 + q^2)$ is equal to:

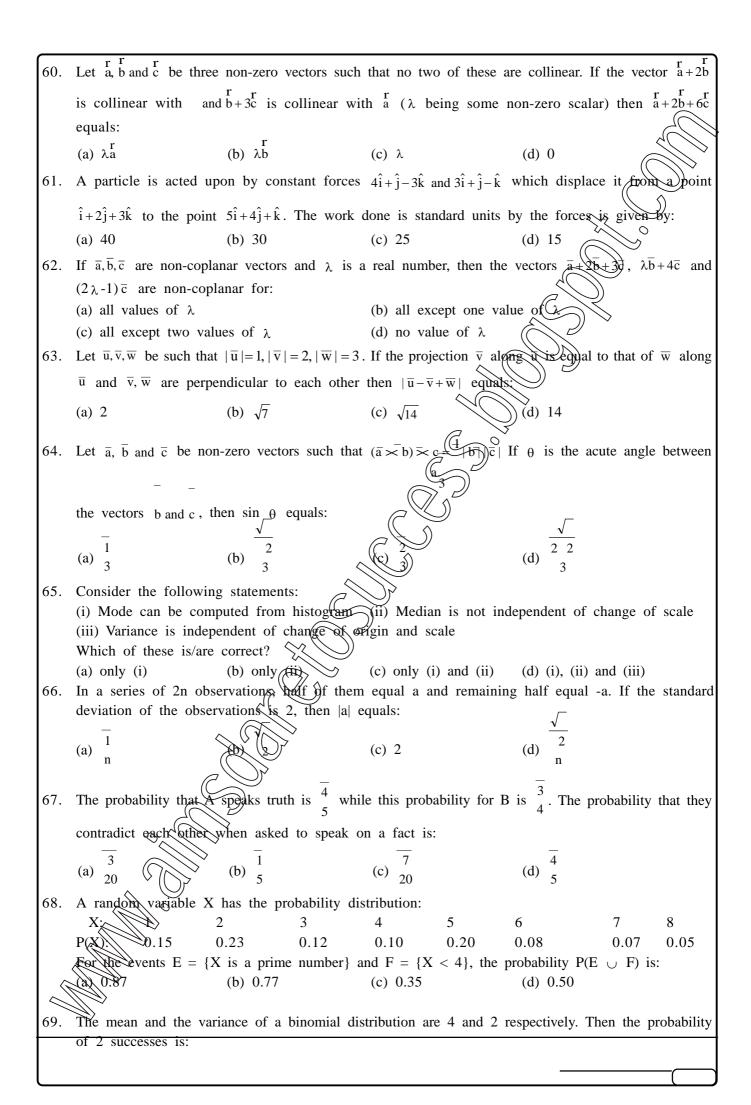
- (c) 2
- 5. If $|z^2 - 1| = |z|^2 + 1$, then z lies on:
- (a) the real axis (b) the imaginary axis (c) a circle
- √d) an ellipse
- Let $A = \begin{pmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \end{pmatrix}$. The only correct statement about the matrix A is:
 - (a) A is a zero matrix


(I)I, where I is a unit matrix


- (c) A-1 does not exist
- Let $A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{pmatrix}$ and (10) B =
- \mathcal{Y}_{α} . If B is inverse of matrix A, then α is:


- (a) -2
- (b) 1
- (c) 2


- If a_1 , a_2 , a_3 ,, a_n , are (a_1, b_2, b_3) , then the value of the determinant
 - $\log a_n \quad \log a_{n+1} \quad \log a_n$ $\log a_{n+3} \quad \log a_{n+4} \quad \log a_n$
 - $\log a_{n+6} \quad \log a_{n+7}$


- (c) 2
- (d) -2
- Let two numbers have arithmetic mean 9 and geometric mean 4. Then these numbers are the roots of the quadratic equation:
 - (a) $x^2 + 18x + 16 \neq 0$ (b) $x^2 18x + 16 = 0$ (c) $x^2 + 18x 16 = 0$ (d) $x^2 18x 16 = 0$
- 10. If (1 p) is a quadratic equation $x^2 + px + (1 p) = 0$ then its roots are:
 - (a) 0, **\(\hat{\chi}\)**
- (b) -1, 1
- (c) 0, -1
- (d) -1, 2
- 11. Let $S(K) = 1 + 3 + 5 + \dots + (2K 1) = 3 + K^2$. Then which of the following is true?
 - (a) S(1) correct
- (b) $S(K) \Rightarrow S(K + 1)$ (c) $S(K) \neq S(K + 1)$
- d Principle of mathematical induction can be used to prove the formula
- How many ways are there to arrange the letters in the word GARDEN with the vowels in alphabetical
 - (a) 120
- (b) 240
- (c) 360
- (d) 480

	(a) $\frac{37}{256}$ (b)	$\frac{219}{256}$	(c)	$\frac{128}{256}$	(d)	$\frac{28}{256}$	
70.	With two forces acting at act at right angles, then t	-				eir resultant	is 4N. If they
	(a) $(2+\sqrt{2})N$ and $(2-\sqrt{2})N$		(b)	$(2+\sqrt{3})$ N and ($(2-\sqrt{3})$ N		
	(c) $ 2 + \frac{1}{2}\sqrt{2} $ N and $ 2 - \frac{1}{2} $	$\frac{1}{2}\sqrt{2} \mid N$	(d)	$\begin{vmatrix} 2+-\sqrt{3} \mid N \text{ at } \\ 1 \\ 2 \end{vmatrix}$	and $\begin{vmatrix} 2 - \sqrt{3} \\ 1 \\ 2 \end{vmatrix}$	N S	
71.	In a right angle ΔABC, ∠A	$A = 90^0$ and sides a,	b, c	are respective	ely, 5cm, 4	cm and 3	cm. If a force
	$\stackrel{\mathbf{r}}{F}$ has moments 0, 9 and of $\stackrel{\mathbf{r}}{F}$ is:				vertices A	B and C,	the magnitude
72.	(a) 3 (b) Three forces P, Q and R a		(c)		is the inc	entre of a	ΔABC, are in
	equilibrium. Then $P:Q:R$	is:				_	
	(a) $\cos \frac{A}{2} : \cos \frac{B}{2} : \cos \frac{C}{2}$ (b)	$) \sin \frac{A}{2} : \sin \frac{B}{2} : \sin \frac{C}{2}$	(c)	$\sec \frac{A}{2} : \sec \frac{B}{2} = \sec \frac{A}{2}$	(d)	$\csc \frac{A}{2} : \csc$	$c \frac{B}{2} : cosec \frac{C}{2}$
73.	A particle moves towards north from B to C at rate journey from A to C and	of 5 km/h. If AB =	= 12	km and BC =	5 km, the	en its averag	e speed for its
	(a) $\frac{17}{4}$ km/h and $\frac{13}{4}$ km/h	<		13 km/h and $\frac{1}{4}$	7 km/h		
	(c) $\frac{17}{9}$ km/h and $\frac{13}{9}$ km/h			$\frac{13}{9}$ km/h and $\frac{1}{9}$	7 km/h		
74.	A velocity $\frac{1}{4}$ m/s is reso						s 30° and 45°
	respectively with the give			_			,
75.	(a) $\frac{1}{8}$ m/s (b) If t ₁ and t ₂ are the times			4		$\frac{1}{8}(6-2)$ m	
73.	the horizontal, then $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$	/h>	10103	naving the sa	me mitiai v	refocity a an	id failge it on
[a)	u ² g (b	$\frac{4u^2}{g^2}$	(c)	u ² 2g	(d)	1	

	AI	EEE 2004 Matl	<u>hematics Ans</u>	<u>wer Key</u>	
	c	26.	b	51.	a((
	a	27.	b	52.	(a)
	c	28.	b	53.	
	d	29.	c	54.	b
	b	30.	c	55.	$\left\langle \right\rangle$ c
	d	31.	d	56.	c
	d	32.	b	57.	b
	a	33.	a	58.	a
	b	34.	a C	59.	d
0.	c	35.		60.	d
· •	b	36	(b)	61.	a
2.	c	37.		62.	c
	b	38.	a	63.	c
·.	a	39) c	64.	d
5.	c	40	b	65.	c
5 .	b		a	66.	c
	a (42.	a	67.	c
8.	a	43.	c	68.	b
).		944.	b	69.	d
0.		45.	a	70.	c
1.	() 9	46.	d	71.	c
	o d	47.	c	72.	a
36	c	48.	d	73.	a
	a	49.	b	74.	d
5.	d	50.	a	75.	b