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Introduction

Why another book on applied deep learning? That is the question I asked myself before 

starting to write this volume. After all, do a Google search on the subject, and you will 

be overwhelmed by the huge number of results. The problem I encountered, however, 

is that I found material only to implement very basic models on very simple datasets. 

Over and over again, the same problems, the same hints, and the same tips are offered. 

If you want to learn how to classify the Modified National Institute of Standards and 

Technology (MNIST) dataset of ten handwritten digits, you are in luck. (Almost everyone 

with a blog has done that, mostly copying the code available on the TensorFlow web 

site). Searching for something else to learn how logistic regression works? Not so easy. 

How to prepare a dataset to perform an interesting binary classification? Even more 

difficult. I felt there was a need to fill this gap. I spent hours trying to debug models 

for reasons as silly as having the labels wrong. For example, instead of 0 and 1, I had 

1 and 2, but no blog warned me about that. It is important to conduct a proper metric 

analysis when developing models, but no one teaches you how (at least not in material 

that is easily accessible). This gap needed to be filled. I find that covering more complex 

examples, from data preparation to error analysis, is a very efficient and fun way to learn 

the right techniques. In this book, I have always tried to cover complete and complex 

examples to explain concepts that are not so easy to understand in any other way. It is 

not possible to understand why it is important to choose the right learning rate if you 

don’t see what can happen when you select the wrong value. Therefore, I always explain 

concepts with real examples and with fully fledged and tested Python code that you 

can reuse. Note that the goal of this book is not to make you a Python or TensorFlow 

expert, or someone who can develop new complex algorithms. Python and TensorFlow 

are simply tools that are very well suited to develop models and get results quickly. 

Therefore, I use them. I could have used other tools, but those are the ones most often 

used by practitioners, so it makes sense to choose them. If you must learn, better that it 

be something you can use in your own projects and for your own career.

The goal of this book is to let you see more advanced material with new eyes. I cover 

the mathematical background as much as I can, because I feel that it is necessary for a 

complete understanding of the difficulties and reasoning behind many concepts. You 
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cannot comprehend why a large learning rate will make your model (strictly speaking, 

the cost function) diverge, if you don’t know how the gradient descent algorithm works 

mathematically. In all real-life projects, you will not have to calculate partial derivatives 

or complex sums, but you will have to understand them to be able to evaluate what 

can work and what cannot (and especially why). Appreciating why a library such as 

TensorFlow makes your life easier is only possible if you try to develop a trivial model 

with one neuron from scratch. It is a very instructive thing to do, and I will show you how 

in Chapter 10. Once you have done it once, you will remember it forever, and you will 

really appreciate libraries such as TensorFlow.

I suggest that you really try to understand the mathematical underpinnings 

(although this is not strictly necessary to profit from the book), because they will allow 

you to fully understand many concepts that otherwise cannot be understood completely. 

Machine learning is a very complicated subject, and it is utopic to think that it is possible 

to understand it thoroughly without a good grasp of mathematics or Python. In each 

chapter, I highlight important tips to develop things efficiently in Python. There is no 

statement in this book that is not backed up by concrete examples and reproducible 

code. I will not discuss anything without offering related real-life examples. In this way, 

everything will make sense immediately, and you will remember it.

Take the time to study the code that you find in this book and try it for yourself. As 

every good teacher knows, learning works best when students try to resolve problems 

themselves. Try, make mistakes, and learn. Read a chapter, type in the code, and try to 

modify it. For example, in Chapter 2, I will show you how to perform binary classification 

recognition between two handwritten digits: 1 and 2. Take the code and try two different 

digits. Play with the code and have fun.

By design, the code that you will find in this book is written as simply as possible. It 

is not optimized, and I know that it is possible to write much better-performing code, 

but by doing so, I would have sacrificed clarity and readability. The goal of this book is 

not to teach you to write highly optimized Python code; it is to let you understand the 

fundamental concepts of the algorithms and their limitations and give you a solid basis 

with which to continue your learning in this field. Regardless, I will, of course, point out 

important Python implementation details, such as, for example, how you should avoid 

standard Python loops as much as possible.

All the code in this book is written to support the learning goals I have set for each 

chapter. Libraries such as NumPy and TensorFlow have been recommended because 

they allow mathematical formulations to be translated directly into Python. I am aware 
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of other software libraries, such as TensorFlow Lite, Keras, and many more that may 

make your life easier, but those are merely tools. The significant difference lies in your 

ability to understand the concepts behind the methods. If you get them right, you can 

choose whatever tool you want, and you will be able to achieve a good implementation. 

If you don’t understand how the algorithms work, no matter the tool, you will not be able 

to undertake a proper implementation or a proper error analysis. I am a fierce opponent 

of the concept of data science for everyone. Data science and machine learning are 

difficult and complex subjects that require a deep understanding of the mathematics 

and subtelties behind them.

I hope that you will have fun reading this book (I surely had a lot in writing it) and 

that you will find the examples and the code useful. I hope, too, that you will have many 

Eureka! moments, wherein you will finally understand why something works the way 

you expect it to (or why it does not). I hope you will find the complete examples both 

interesting and useful. If I help you to understand only one concept that was unclear to 

you before, I will be happy.

There are a few chapters of this book that are more mathematically advanced. In 

Chapter 2, for example, I calculate partial derivatives. But don’t worry, if you don’t 

understand them, you can simply skip the equations. I have made sure that the main 

concepts are understandable without most of the mathematical details. However, you 

should really know what a matrix is, how to multiply matrices, what a transpose of a 

matrix is, and so on. Basically, you need a good grasp of linear algebra. If you don’t 

have one, I suggest you review a basic linear algebra book before reading this one. If 

you have a solid linear algebra and calculus background, I strongly advise you not to 

skip the mathematical parts. They can really help in understanding why we do things in 

specific ways. For example, it will help you immensely in understanding the quirks of 

the learning rate, or how the gradient descent algorithm works. You should also not be 

scared by a more complex mathematical notation and feel confident with an equation 

as complex as the following (this is the mean square error we will use for the linear 

regression algorithm and will be explained in detail later, so don’t worry if you don’t 

know what the symbols mean at this point):
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You should understand and feel confident with such concepts as a sum or a 

mathematical series. If you feel unsure about these, review them before starting the 

book; otherwise, you will miss some important concepts that you must have a firm 
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grasp on to proceed in your deep-learning career. The goal of this book is not to give 

you a mathematical foundation. I assume you have one. Deep learning and neural 

networks (in general, machine learning) are complex, and whoever tries to convince you 

otherwise is lying or doesn’t understand them.

I will not spend time in justifying or deriving algorithms or equations. You will have 

to trust me there. Additionally, I will not discuss the applicability of specific equations. 

For those of you with a good understanding of calculus, for example, I will not discuss 

the problem of the differentiability of functions for which we calculate derivatives. 

Simply assume that you can apply the formulas I give you. Many years of practical 

implementations have shown the deep-learning community that those methods and 

equations work as expected and can be used in practice. The kind of advanced topics 

mentioned would require a separate book.

In Chapter 1, you will learn how to set up your Python environment and what 

computational graphs are. I will discuss some basic examples of mathematical 

calculations performed using TensorFlow. In Chapter 2, we will look at what you can 

do with a single neuron. I will cover what an activation function is and what the most 

used types, such as sigmoid, ReLU, or tanh, are. I will show you how gradient descent 

works and how to implement logistic and linear regression with a single neuron and 

TensorFlow. In Chapter 3, we will look at fully connected networks. I will discuss matrix 

dimensions, what overfitting is, and introduce you to the Zalando dataset. We will 

then build our first real network with TensorFlow and start looking at more complex 

variations of gradient descent algorithms, such as mini-batch gradient descent. We will 

also look at different ways of weight initialization and how to compare different network 

architectures. In Chapter 4, we will look at dynamic learning rate decay algorithms, 

such as staircase, step, or exponential decay, then I will discuss advanced optimizers, 

such as Momentum, RMSProp, and Adam. I will also give you some hints on how to 

develop custom optimizers with TensorFlow. In Chapter 5, I will discuss regularization, 

including such well-known methods as l1,l2, dropout, and early stopping. We will look at 

the mathematics behind these methods and how to implement them in TensorFlow. In 

Chapter 6, we will look at such concepts as human-level performance and Bayes error. 

Next, I will introduce a metric analysis workflow that will allow you to identify problems 

having to do with your dataset. Additionally, we will look at k-fold cross-validation as a 

tool to validate your results. In Chapter 7, we will look at the black box class of problems 

and what hyperparameter tuning is. We will look at such algorithms as grid and random 

search and at which is more efficient and why. Then we will look at some tricks, such 
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as coarse-to-fine optimization. I have dedicated most of the chapter to Bayesian 

optimization—how to use it and what an acquisition function is. I will offer a few tips, 

such as how to tune hyperparameters on a logarithmic scale, and then we will perform 

hyperparameter tuning on the Zalando dataset, to show you how it may work. In  

Chapter 8, we will look at convolutional and recurrent neural networks. I will show 

you what it means to perform convolution and pooling, and I will show you a basic 

TensorFlow implementation of both architectures. In Chapter 9, I will give you an 

insight into a real-life research project that I am working on with the Zurich University of 

Applied Sciences, Winterthur, and how deep learning can be used in a less standard way. 

Finally, in Chapter 10, I will show you how to perform logistic regression with a single 

neuron in Python—without using TensorFlow—entirely from scratch.

I hope you enjoy this book and have fun with it.
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CHAPTER 1

Computational Graphs 
and TensorFlow
Before we delve into the extended examples later in this book, you will require a Python 

environment and a working knowledge of TensorFlow. Therefore, this chapter will show 

you how to install a Python environment ready to run the code in this book. Once that’s 

in place, I’ll cover the basics of the TensorFlow machine-learning library.

 How to Set Up Your Python Environment
All the code in this book was developed with the Python distribution Anaconda and 

Jupyter notebooks. To set up Anaconda, first download and install it for your operating 

system. (I used Windows 10, but the code is not dependent on this system. Feel free to 

use a version for Mac, if you prefer.) You may retrieve Anaconda by accessing  

https://anaconda.org/.

On the right side of the web page, you will find a Download Anaconda link, as shown 

in Figure 1-1 (top right).

Figure 1-1. On the Anaconda web site, at the top right of the page, you will find a 
link to download the required software

Simply follow the instructions to install it. When you start it after the installation, you 

will be presented with the screen shown in Figure 1-2. In case you don’t see this screen, 

simply click the Home link on the navigation pane at left.

https://anaconda.org/
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Python packages (like NumPy) are updated regularly and very often. It can happen 

that a new version of a package makes your code stop working. Functions are deprecated 

and removed, and new ones are added. To solve this problem, in Anaconda, you can 

create what is called an environment. This is basically a container that holds a specific 

Python version and specific versions of the packages you decide to install. With this, 

you can have a container for Python 2.7 and NumPy 1.10 and another with Python 3.6 

and NumPy 1.13, for example. You may have to work with existing code that has been 

developed with Python 2.7, and, therefore, you must have a container with the right 

Python version. But, at the same time, it may be that you require Python 3.6 for your 

projects. With containers, you can ensure all this at the same time. Sometimes different 

packages conflict with each other, so you must be careful and avoid installing all packages 

you find interesting in your environment, especially if you are developing packages under 

a deadline. Nothing is worse than discovering that your code is no longer working, and 

you don’t know why.

Figure 1-2. The screen you see when you start Anaconda

Chapter 1  Computational Graphs and tensorFlow
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Note when you define an environment, try to install only the packages you really 
need, and pay attention when you update them, to make sure that any upgrade 
does not break your code. (remember: Functions are deprecated, removed, added, 
or frequently changed.) Check the documentation of updates before upgrading, and 
do so only if you really need the updated features.

You can create an environment from the command line, using the conda command, 

but to get an environment up and running for our code, everything can be done 

from the graphical interface. This is the method I will explain here, because it is the 

easiest. I suggest that you read the following page on the Anaconda documentation, to 

understand in detail how to work within its environment: https://conda.io/docs/

user-guide/tasks/manage-environments.html.

 Creating an Environment
Let’s get started. First, click the Environments link (the one that has a small icon 

representing a box) from the left navigation panel (Figure 1-3).

Figure 1-3. To create a new environment, you first must go into the Environments 
section of the application, by clicking the related link from the left navigation pane 
(indicated in the figure by a black rectangle)

Chapter 1  Computational Graphs and tensorFlow

https://conda.io/docs/user-guide/tasks/manage-environments.html
https://conda.io/docs/user-guide/tasks/manage-environments.html
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Then click the Create button in the middle navigation pane (as indicated in  

Figure 1- 4).

Figure 1-4. To create a new environment, you must click the Create button 
(indicated with a plus sign) from the middle navigation pane. In the figure, a red 
arrow indicates the location of the button.

Chapter 1  Computational Graphs and tensorFlow
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When you click the Create button, a small window will pop up (see in Figure 1-5).

Figure 1-5. The window you will see when you click the Create button indicated in 
Figure 1-4

You can choose any name. In this book, I used the name tensorflow. As soon as 

you type a name, the Create button becomes active (and green). Click it and wait a few 

minutes until all the necessary packages are installed. Sometimes, you may get a pop- 

up window telling you that a new version of Anaconda is available and asking if you 

want to upgrade. Feel free to click yes. Follow the on-screen instructions until Anaconda 

navigator starts again, in the event you received this message and clicked yes.

Chapter 1  Computational Graphs and tensorFlow
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We are not done yet. Click again the Environments link on the left navigation pane 

(as shown in Figure 1-3), then click the name of the newly created environment. If you’ve 

followed the instructions until now, you should see an environment named “tensorflow.” 

After a few seconds, you will see on the right panel a list of all installed Python packages 

that you will have at your disposal in the environment. Now we must install some 

additional packages: NumPy, matplotlib, TensorFlow, and Jupyter. To do this, first select 

Not installed from the drop-down menu, as illustrated in Figure 1-6.

Figure 1-6. Selecting the Not installed value from the drop-down menu

Next, in the Search Packages field, type the package name you want to install 

(Figure 1-7 shows that numpy has been selected).

Chapter 1  Computational Graphs and tensorFlow
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Anaconda navigator will automatically show you all packages that have the word 

numpy in the title or in the description. Click the small square to the left of the name of 

the package that has the name numpy. It will become a small downward-pointing arrow 

(indicating that it is marked for installation). Then you can click the green Apply button 

at the lower right corner of the interface (see Figure 1-8).

Figure 1-7. Type “numpy” in the search field, to include it in the package 
repository

Figure 1-8. After you have selected the numpy package for installation, click the 
green Apply button. The button is at the lower right of the interface.
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Anaconda navigator is smart enough to determine if other packages are needed 

by numpy. You may get an additional window asking if it is OK to install the additional 

packages. Just click Apply. Figure 1-9 shows what this window looks like.

Figure 1-9. When installing a package, the Anaconda navigator will check if 
what you want to install depends on other packages that are not installed. In such 
a case, it will suggest that you install the missing (but necessary) packages from 
an additional window. In our case, 52 additional packages were required by the 
NumPy library on a newly installed system. Simply click Apply to install all of 
them.
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You must install the following packages to be able to run the code in this book. 

(I added within parentheses the versions I used for testing the code in this book; 

subsequent versions are fine.)

• numpy (1.13.3): For doing numerical calculations

• matplotlib (2.1.1): To produce nice plots, as the ones you will see in 

this book

• scikit-learn (0.19.1): This package contains all the libraries related 

to machine learning and that we use, for example, to load datasets.

• jupyter (1.0.0): To be able to use the Jupyter notebooks

 Installing TensorFlow
Installing TensorFlow is slightly more complex. The best way to do this is to follow the 

instructions given by the TensorFlow team, available at the following address:  

 www.tensorflow.org/install/.

On this page, click your operating system, and you will receive all the information 

you need. I will provide here instructions for Windows, but the same can be done using 

a macOS or Ubuntu (Linux) system. The installation with Anaconda is not officially 

supported but works perfectly (it is community supported) and is the easiest way to get 

up and running and check the code in this book. For more advanced applications, you 

may want to consider other installation options. (For that, you will have to check the 

TensorFlow web site.) To begin, go to the Start menu in Windows and type “anaconda.” 

Under Apps, you should see the Anaconda Prompt item, as in Figure 1-10.
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Start the Anaconda Prompt. A command line interface should appear (see Figure 1- 11). 

The difference between this and the simple cmd.exe command prompt is that here, all the 

Anaconda commands are recognized, without setting up any Windows environment variable.

Figure 1-10. If you type “anaconda” in the Start menu search field in Windows 10,  
you should see at least two entries: Anaconda Navigator, where you created the 
TensorFlow environment, and Anaconda Prompt

Figure 1-11. This is what you should see when you select Anaconda Prompt. Note 
that the user name will be different. You will see not umber (my username) but your 
username.
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At the command prompt, you first must activate your new “tensorflow” environment. 

This is necessary to let the Python installation know in which environment you want 

to install TensorFlow. To do this, simply type the following command: activate 

tensorflow. Your prompt should change to this: (tensorflow) C:\Users\umber>.

Remember: Your username will be different (you will see not umber in your prompt 

but your username). I will assume here that you will install the standard TensorFlow 

version that uses only the CPU (and not the GPU) version. Just type the following 

command: pip install --ignore-installed --upgrade tensorflow.

Now let the system install all the necessary packages. This may take a few 

minutes (depending on several factors, such as your computer speed or your Internet 

connection). You should not receive any error message. Congratulations! Now you have 

an environment in which you can run code using TensorFlow.

 Jupyter Notebooks
The last step to be able to type code and let it run is to start a Jupyter notebook. The 

Jupyter notebook can be described (according to the official web site) as follows:

The Jupyter Notebook is an open-source web application that allows you to 
create and share documents that contain live code, equations, visualiza-
tions and narrative text. Uses include: data cleaning and transformation, 
numerical simulation, statistical modeling, data visualization, machine 
learning, and much more.

It is widely used in the machine learning community, and it is a good idea to learn 

how to use it. Check the Jupyter project web site at http://jupyter.org/.

This site is very instructive and includes many examples of what is possible. All the 

code you find in this book has been developed and tested using Jupyter notebooks. 

I assume that you already have some experience with this web-based development 

environment. In case you need a refresher, I suggest you check the documentation you 

can find on the Jupyter project web site at the following address: http://jupyter.org/

documentation.html.

To start a notebook in your new environment, you must go back to Anaconda 

navigator in the Environments section (see Figure 1-3). Click the triangle to the right of 

your “tensorflow” environment (in case you have used a different name, you will have to 

click the triangle to the right of your new environment), as shown in Figure 1-12. Then 

click Open with Jupyter Notebook.
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Your browser will start with a list of all the folders you have in your user folder. (If you 

are using Windows, this is usually located under c:\Users\<YOUR USER NAME>, within 

which you must substitute <YOUR USER NAME> with your username.) From there, you 

should navigate to a folder where you want to save your notebook files and from which 

you can create a new notebook by clicking the New button, as illustrated in Figure 1-13.

Figure 1-12. To start a Jupyter notebook in your new environment, click the 
triangle to the right of the “tensorflow” environment name and click Open with 
Jupyter Notebook

Figure 1-13. To create a new notebook, click the New button located at the  
top- right corner of the page and select Python 3
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A new page will open that should look like the one in Figure 1-14.

For example, you can type the following code in the first “cell” (the rectangular box in 

which you can type).

a=1

b=2

print(a+b)

To evaluate the code, simply press Shift+Enter, and you should see the result (3) 

immediately (Figure 1-15).

Figure 1-14. When you create an empty notebook, an empty page will open that 
should look like this one

Figure 1-15. After typing some code in the cell, pressing Shift+Enter will evaluate 
the code in the cell

The preceding code gives the result of a+b, that is, 3. A new empty cell for you to type 

in is automatically created after the result is given. For more information on how to add 

comments, equations, inline plots, and much more, I suggest that you visit the Jupyter 

web site and check the documentation provided.
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Note in case you forget the folder your notebook is in, you can check the 
url of the page. For example, in my case, i have http://localhost:8888/
notebooks/Documents/Data%20Science/Projects/Applied%20
advanced%20deep%20learning%20(book)/chapter%201/AADL%20-%20
Chapter%201%20-%20Introduction.ipynb. You will notice that the url is 
simply a concatenation of the folders in which the notebook is located, separated 
by a forward slash. a %20 character simply means a space. in this case, my 
notebook is in the folder: Documents/Data Science/Projects/… and so forth. 
i often work with several notebooks at the same time, and it is useful to know 
where each notebook is located in case you forget (i sometimes do).

 Basic Introduction to TensorFlow
Before starting to use TensorFlow, you must understand the philosophy behind it. 

The library is heavily based on the concept of computational graphs, and unless you 

understand how those work, you cannot understand how to use the library. I will give 

you a quick introduction to computational graphs and show you how to implement 

simple calculations with TensorFlow. At the end of the next section, you should 

understand how the library works and how we will use it in this book.

 Computational Graphs
To understand how TensorFlow works, you must understand what a computational graph 

is. A computational graph is a graph in which each node corresponds to an operation 

or a variable. Variables can feed their values into operations, and operations can feed 

their results into other operations. Usually, nodes are plotted as a circle (or ellipsis), with 

variable names or operations inside, and when one node’s value is the input to another 

node, an arrow goes from one to another. The simplest graph that can exist is simply one 

with a single node that is simply a variable. (Remember: A node can be a variable or an 

operation.) The graph in Figure 1-16 simply computes the value of the variable x.

x

Figure 1-16. The simplest graph that we can build, showing a simple variable
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Not very interesting! Now let’s consider something slightly more complex, such 

as the sum of two variables x and y: z = x + y. It can be done as in the following graph 

(Figure 1-17):

x

y

z=x+y

Figure 1-17. A basic computational graph for the sum of two variables

The nodes at the left of Figure 1-17 (the ones with x and y inside) are variables, 

while the bigger node indicates the sum of the two variables. The arrows show that 

the two variables, x and y, are inputs to the third node. The graph should be read (and 

computed) in topological order, which means that you should follow the arrows that will 

indicate in which order you have to compute the different nodes. The arrow will also tell 

you the dependencies between the nodes. To evaluate z, you first must evaluate x and y. 

We can also say that the node that performs the sum is dependent on the input nodes.

An important aspect to understand is that such a graph only defines the operations 

(in this case, the sum) to perform on two input values (in this case, x and y) to obtain a 

result (in this case, z). It basically defines the “how.” You must assign values to the input 

x and y and then perform the sum to obtain z. The graph will give you a result only when 

you evaluate all the nodes.

Note in this book, i will refer to the “construction” phase of a graph, when 
defining what each node is doing, and the “evaluation” phase, when we will 
actually evaluate the related operations.

This is a very important aspect to understand. Note that the input variables do not 

need to be real numbers. They can be matrices, vectors, and so on. (We will mostly use 

matrices in this book.) A slightly more complex example can be found in Figure 1-18 and 

uses a graph to calculate the quantity A(x + y), given three input quantities: x,  y, and A.
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We can evaluate this graph by assigning values to the input nodes (in this case, x, y, 

and A) and evaluate the nodes through the graph. For example, if you consider the graph 

in Figure 1-18 and assign the values x = 1, y = 3, and A = 5, we will get the result b = 20  

(as plotted in Figure 1-19).

A neural network is basically a very complicated computational graph, in which 

each neuron is composed by several nodes in the graph that feed its output to a certain 

number of other neurons, until a certain output is reached. In the next section, we will 

build the simplest neural network of all: one with a single neuron. Even with such a 

simple network, we will be able to do some pretty fun stuff.

x

y

z=x+y

A

b=Az

Figure 1-18. A computational graph to calculate the quantity A(x + y), given three 
input quantities: x, y, and A

x=1

y=3

z=x+y=4

A=5

b=Az=20

Figure 1-19. To evaluate the graph in Figure 1-18, we must assign values to the 
input nodes x, y, and A and then evaluate the nodes through the graph
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TensorFlow allows you to build very complicated computational graphs very easily. 

And by construction, it separates their evaluation from the construction. (Remember 

that to compute a result, you must assign values and evaluate all the nodes.) In the next 

sections, I will show you how this works: how to build computational graphs and how to 

evaluate them.

Note remember that tensorflow first builds a computational graph (in the  
so-called construction phase) but does not automatically evaluate it. the library 
keeps the two steps separate, so that you can compute your graph several times 
with different inputs, for example.

 Tensors
The basic unit of data handled by tensorflow is—try to guess from its name—a tensor.  

A tensor is simply a collection of primitive types (such as, for example, floating numbers) 

shaped as an n-dimensional array. Here are some examples (with relative Python 

definitions) of tensors:

• 1  a scalar

• [1,2,3]  a vector

• [[1,2,3], [4,5,6]]  a matrix or a two-dimensional array

A tensor has a static type and dynamic dimensions. You cannot change its type 

while evaluating it, but the dimensions can be changed dynamically before evaluating 

it. (Basically, you declare the tensors without specifying some of the dimensions, and 

tensorflow will infer the dimensions from the input values.) Usually, one talks about 

the rank of a tensor, which is simply the number of dimensions of the tensor (whereas 

a scalar is intended to have a rank of 0). Table 1-1 may help in understanding what the 

different ranks of tensors are.
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Supposing you import tensorflow with the statement import tensorflow as tf, 

the basic object, a tensor, is the class tf.tensor. A tf.tensor has two properties:

• data type (for example, float32)

• shape (for example, [2,3], meaning a tensor with two rows and three 

columns)

An important aspect is that each element of a tensor always has the same data type, 

while the shape need not be defined at declaration time. (This will be clearer in the 

practical examples in the next chapters.) The main types of tensors (there are more) that 

we will see in this book are

• tf.Variable

• tf.constant

• tf.placeholder

The tf.constant and the tf.placeholder values are, during a single-session run 

(more on that later), immutable. Once they have a value, they will not change. For 

example, a tf.placeholder could contain the dataset you want to use for training your 

neural network. Once assigned, it will not change during the evaluation phase. A  

tf.Variable could contain the weights of your neural networks. They will change during 

training, to find their optimal values for your specific problem. Finally, a tf.constant 

will never change. I will show you in the next section how to use the three different types 

of tensors and what aspect you should consider when developing your models.

Table 1-1. Examples of Tensors with Ranks 0, 1, 2, and 3

Rank Mathematical Entity Python Example

0 scalar (for example, length or weight) l=30

1 a vector (for example, the speed of an object in a  

two- dimensional plane)

s=[10.2,12.6]

2 a matrix m=[[23.2, 44.2], [12.2, 55.6]]

3 a 3d matrix (with three dimensions) C = [[[1],[2]],[[3],[4]], [[5], [6]]]
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 Creating and Running a Computational Graph
Let’s start using tensorflow to create a computational graph.

Note remember: we always keep the construction phase (when we define what 
a graph should do) and its evaluation (when we perform the calculations) separate. 
tensorflow follows the same philosophy: first you construct a graph, and then 
you evaluate it.

Let’s consider something very easy: the sum of two tensors

x x1 2+

that can be calculated with the computational graph depicted in Figure 1-20.

Figure 1-20. The computational graph for the sum of two tensors

 Computational Graph with tf.constant
As discussed, first we must create this computational graph with tensorflow. 

(Remember: We begin with the construction phase.) Let’s start using the tf.constant 

tensor type. We need three nodes: two for the input variables and one for the sum. This 

can be achieved with the following code:

x1 = tf.constant(1)

x2 = tf.constant(2)

z = tf.add(x1, x2)

The preceding code creates the computational graph in Figure 1-20 and, at the same 

time, tells tensorflow that x1 should have the value 1 (the value in the parentheses in 

the declaration), and x2 should have the value 2. Now, to evaluate the code, we must 
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create what tensorflow calls a session (wherein an actual evaluation can take place), 

and then we can ask the session class to run our graph with the following code:

sess = tf.Session()

print(sess.run(z))

This will simply give you the evaluated result of z that is, as expected, 3. This version 

of the code is rather simple and does not require much, but it is not very flexible. x1 and 

x2 are fixed and cannot be changed during the evaluation, for example.

Note in TensorFlow, you first must create a computational graph, then create a 
session, and finally run your graph. these three steps must always be followed to 
evaluate your graph.

Remember: You can also ask tensorflow to evaluate only an intermediate step. For 

example, you might want to evaluate x1 (not very interesting, but there are many cases 

in which it will be useful, for example, when you want to evaluate your graph and, at the 

same time, the accuracy and the cost function of a model), as follows: sess.run(x1).

You will get the result 1, as expected (you expected that, right?). At the end, 

remember to close the session with sess.close() to free up used resources.

 Computational Graph with tf.Variable
The same computational graph (the one in Figure 1-20) can be created with variables, 

but that requires a bit more work. Let’s re-create our computational graph.

x1 = tf.Variable(1)

x2 = tf.Variable(2)

z = tf.add(x1,x2)

We want to initialize the variables with the values 1 and 2, as before.1 The problem is 

that when you run the graph, as we did before, with the code

sess = tf.Session()

print(sess.run(z))

1 To learn more about variables, check the official documentation at  
www.tensorflow.org/versions/master/api_docs/python/tf/Variable.
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you will receive an error message. It is a very long error message, but near the end, you 

will find the following message:

FailedPreconditionError (see above for traceback): Attempting to use 

uninitialized value Variable

This occurs because tensorflow does not automatically initialize the variables.  

To do this, you could use this approach:

sess = tf.Session()

sess.run(x1.initializer)

sess.run(x2.initializer)

print(sess.run(z))

This works now without errors. Line sess.run(x1.initializer) will initialize the 

variable x1 with the value 1, and the line sess.run(x2.initializer) will initialize the 

variable x2 with the value 2. But this is rather cumbersome. (You don’t want to write a 

line for each variable you need to initialize.) A much better approach is to add a node to 

your computational graph that has the goal of initializing all the variables you define in 

your graph with the code

init = tf.global_variables_initializer()

and then again create and run your session, running this node (init) before evaluating z.

sess = tf.Session()

sess.run(init)

print(sess.run(z))

sess.close()

This will work and give you the result 3, as you would expect.

Note when working with variables, remember always to add a global initializer 
(tf.global_variables_initializer()) and run the node in your session at 
the beginning, before any other evaluation. we will see in many examples during 
the book how this works.
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 Computational Graph with tf.placeholder
Let’s declare x1 and x2 as placeholders.

x1 = tf.placeholder(tf.float32, 1)

x2 = tf.placeholder(tf.float32, 1)

Note that I have not provided any value in the declaration.2 We will have to assign a 

value to x1 and x2 at evaluation time. That is the main difference between placeholders 

and the other two tensor types. The sum, then, is given again by

z = tf.add(x1,x2)

Note that if you try to see what is in z using, for example, print(z), you will get

Tensor("Add:0", shape=(1,), dtype=float32)

Why this strange result? First, we have not given tensorflow the values for x1 

and x2 and, second, TensorFlow has not yet run any calculation. Remember: Graph 

construction and evaluation are separate steps. Now let’s create a session in TensorFlow, 

as before.

sess = tf.Session()

Now we can run the actual calculation, but to do that, we must first have a way of 

assigning values to the two inputs x1 and x2. This can be achieved by using a Python 

dictionary that contains all the placeholders’ names as keys and assign to them values. In 

this example, we assign to x1 the value 1 and to x2 the value 2.

feed_dict={ x1: [1], x2: [2]}

Feeding this code to the TensorFlow session can be done with the following 

command:

print(sess.run(z, feed_dict))

2 It is always a good idea to check the official documentation for the datatypes:  
www.tensorflow.org/versions/master/api_docs/python/tf/placeholder.
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You finally get the result you expected: 3. Note that tensorflow is rather smart and 

can handle more complicated inputs. Let’s redefine our placeholder to be able to use 

arrays with two elements. (Here, we report the entire code, to make it easier to follow the 

example.)

x1 = tf.placeholder(tf.float32, [2])

x2 = tf.placeholder(tf.float32, [2])

z = tf.add(x1,x2)

feed_dict={ x1: [1,5], x2: [1,1]}

sess = tf.Session()

sess.run(z, feed_dict)

This time, you will get an array with two elements as output.

array([ 2., 6.], dtype=float32)

Remember that x1=[1,5] and x2=[1,1] meaning that z=x1+x2=[1,5]+[1,1]=[2,6], 

because the sum is done element by element.

To summarize, here are some guidelines on when to use which tensor type:

• Use tf.placeholder for entities that will not change at each 

evaluation phase. Usually, those are input values or parameters that 

you want to keep fixed during the evaluation but may change with 

each run. (You will see several examples later in the book.) Examples 

include input dataset, learning rate, etc.

• Use tf.Variable for entities that will change during the calculation, 

for example, the weights of our neural networks, as you will see later 

in the book.

• Use tf.constant for entities that will never change, for example, fix 

values in your model that you don’t want to change anymore.

Figure 1-21 depicts a slightly more complex example: the computational graph for 

the calculation x1w1 + x2w2.
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In this case, I defined x1, x2, w1, and w2 as placeholders (they will be our inputs) 

containing scalars (remember: when defining placeholders, you must always pass the 

dimensions as second input parameters, in this case, the 1).

x1 = tf.placeholder(tf.float32, 1)

w1 = tf.placeholder(tf.float32, 1)

x2 = tf.placeholder(tf.float32, 1)

w2 = tf.placeholder(tf.float32, 1)

z1 = tf.multiply(x1,w1)

z2 = tf.multiply(x2,w2)

z3 = tf.add(z1,z2)

Running the calculations means simply (as before) defining the dictionary 

containing the input values, creating a session, and then running it.

feed_dict={ x1: [1], w1:[2], x2:[3], w2:[4]}

sess = tf.Session()

sess.run(z3, feed_dict)

As expected, you will get the following result:

array([ 14.], dtype=float32)

Figure 1-21. The computational graph for the calculation x1w1 + x2w2
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This is simply 1 × 2 + 3 × 4 = 2 + 12 = 14 (remember that we have fed the values 

1, 2, 3, and 4 in feed_dict, in the previous step). In the Chapter 2, we will draw the 

computational graph for a single neuron and apply what we have learned in this chapter to 

a very practical case. Using that graph, we will be able to do linear and logistic regression 

on a real dataset. As always, remember to close the session with sess.close() when you 

are done.

Note in TensorFlow, it can happen that the same piece of code runs several 
times, and you can end up with a computational graph with multiple copies of the 
same node. a very common way of avoiding such a problem is to run the code  
tf.reset_default_graph() before the code that constructs the graph. 
note that if you separate your construction code from your evaluation code 
appropriately, you should be able to avoid such problems. we will see later in the 
book in many examples how this is working.

 Differences Between run and eval
If you look at blogs and books, you may find two ways of evaluating a computational 

graph with tensorflow. The one we have used up to now is sess.run(), in which the 

function wants as argument the name of the node you want to evaluate. We have chosen 

this method because it has a nice advantage. To understand it, consider the following 

code (the same you have seen previously)

x1 = tf.constant(1)

x2 = tf.constant(2)

z = tf.add(x1, x2)

init = tf.global_variables_initializer()

sess = tf.Session()

sess.run(init)

sess.run(z)

This will only give you the evaluated node z, but you can also evaluate several nodes 

at the same time, using the following code:

sess.run([x1,x2,z])
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This will give you

[1, 2, 3]

And that is very useful, as will become clear in the next section about the life cycle 

of a node. Additionally, evaluating many nodes at the same time will make your code 

shorter and more readable.

The second method of evaluating a node in a graph is to use the eval() call.  

This code

z.eval(session=sess)

will evaluate z. But this time, you must explicitly tell TensorFlow which session you want 

to use (you may have several defined). This is not very practical, and I prefer to use the 

run() method to get several results at the same time (for example, the cost function, 

accuracy, and F1 score). There is also a performance reason to prefer the first method, as 

explained in the next section.

 Dependencies Between Nodes
As I mentioned before, TensorFlow evaluates a graph in topological order, which means 

that when you ask it to evaluate a node, it automatically determines all the nodes that 

are required to evaluate what you are asking and evaluate them first. The problem is that 

TensorFlow might evaluate some nodes multiple times. Consider the following code, for 

example:

c = tf.constant(5)

x = c + 1

y = x + 1

z = x + 2

sess = tf.Session()

print(sess.run(y))

print(sess.run(z))

sess.close()
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This code will build and evaluate the computational graph in Figure 1-22.

As you can see, z and y both depend from x. The problem with the code as we have 

written, is that TensorFlow will not reuse the result of the previous evaluation of c and x.  

This means that it will evaluate the node for x one time when evaluating z and again 

when evaluating y. In this case, for example, using the code yy, zz = sess.run([y,z]) 

will evaluate y and z in one run, and x only once.

 Tips on How to Create and Close a Session
I showed you how to create a session with the template

sess = tf.Session()

# Code that does something

At the end, you should always close a session, to free up used resources. The syntax is 

quite easy:

sess.close()

Figure 1-22. The computational graph that the code cited at the beginning of the 
section builds
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Keep in mind that the moment you close the session, you cannot evaluate anything else. 

You must create a new session and perform your evaluation again. In a Jupyter environment, 

this method has the advantage of allowing you to split your evaluation code in several cells 

and then close the session at the very end. But it is useful to know that there is a slightly more 

compact way of opening and using a session, using the following template:

With tf.Session() as sess:

# code that does something

For example, the code

sess = tf.Session()

print(sess.run(y))

print(sess.run(z))

sess.close()

from the previous section could have been written as

with tf.Session() as sess:

    print(sess.run(y))

    print(sess.run(z))

In this case, the session would automatically be closed at the end of the with clause. 

Using this method makes using eval() easier. For example, the code

sess = tf.Session()

print(z.eval(session=sess))

sess.close()

will look like this with the with clause

with tf.Session() as sess:

    print(z.eval())

There are some cases in which the explicit declaration of the session is preferred. 

For example, it is rather common to write a function that performs the actual graph 

evaluation and that returns the session, so that additional evaluation (for example, of 

the accuracy or similar metrics) can be done after the main training has finished. In this 

case, you cannot use the second version, because it would close the session immediately 

after finishing the evaluation, therefore making additional evaluations with the session 

results impossible.

Chapter 1  Computational Graphs and tensorFlow
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Note if you are working in an interactive environment such as Jupyter notebooks 
and you want to split your evaluation code on multiple notebook cells, it is easier to 
declare the session as sess = tf.Session(), perform the calculations needed, 
and then, at the end, close it. in this way, you can intercalate evaluations, graphs, 
and text. in case you are writing code that will not be interactive, it is sometimes 
preferable (and less error-prone) to use the second version, to make sure that the 
session is closed at the end. additionally, with the second method, you don’t have 
to specify the session when using the eval() method.

The material covered in this chapter should give you all you need to build your 

neural networks with tensorflow. What I explained here is by no means complete or 

exhaustive. You should really take some time and go on the official TensorFlow web site 

and study the tutorials and other materials there.

Note in this book i use a lazy programming approach. that means that i explain 
only what i want you to understand, nothing more. the reason is that i want you to 
focus on the learning goals for each chapter, and i don’t want you to be distracted 
by the complexity that lies behind the methods or the programming functions. 
once you understand what i am trying to explain, you should invest some time and 
dive deeper into the methods and libraries, using the official documentation.

Chapter 1  Computational Graphs and tensorFlow
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CHAPTER 2

Single Neuron
In this chapter, I will discuss what a neuron is and what its components are. I will clarify 

the mathematical notation we will require and cover the many activation functions that 

are used today in neural networks. Gradient descent optimization will be discussed in 

detail, and the concept of learning rate and its quirks will be introduced. To make things 

a bit more fun, we will then use a single neuron to perform linear and logistic regression 

on real datasets. I will then discuss and explain how to implement the two algorithms 

with tensorflow.

To keep the chapter focused and the learning efficient, I have left out a few things on 

purpose. For example, we will not split the dataset into training and test parts. We simply 

use all the data. Using the two would force us to do some proper analysis, and that would 

distract from the main goal of this chapter and make it way too long. Later in the book, 

I will conduct a proper analysis of the consequences of using several datasets and see 

how to do this properly, especially in the context of deep learning. This is a subject that 

requires its own chapter.

You can do wonderful, amazing, and fun things with deep learning. Let’s start to 

have fun!

 The Structure of a Neuron
Deep learning is based on large and complex networks made up of a large number of 

simple computational units. Companies on the forefront of research are dealing with 

networks with 160 billion parameters [1]. To put things in perspective, this number is 

half that of the stars in our galaxy, or 1.5 times the number of people who ever lived. 

On a basic level, neural networks are a large set of differently interconnected units, 

each performing a specific (and usually relatively easy) computation. They recall LEGO 

toys, with which you can build very complex things using very simple and basic units. 

Neural networks are similar. Using relatively simple computational units, you can build 
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very complex systems. We can vary the basic units, changing how they compute the 

result, how they are connected to each other, how they use the input values, and so on. 

Roughly formulated, all those aspects define what is known as the network architecture. 

Changing it will change how the network learns, how accurate the predictions are, and 

so on.

Those basic units are known, due to a biological parallel with the brain [2], as 

neurons. Basically, each neuron does a very simple thing: takes a certain number of 

inputs (real numbers) and calculates an output (also a real number). In this book, our 

inputs will be indicated by xi ∈ ℝ (real numbers), with i = 1, 2, …, nx, where i ∈ ℕ is an 

integer and nx is the number of input attributes (often called features). As an example 

of input features, you can imagine the age and weight of a person (so, we would have 

nx = 2). x1 could be the age, and x2 could be the weight. In real life, the number of features 

easily can be very big. In the dataset that we will use for our logistic regression example 

later in the chapter, we will have nx = 784.

There are several kinds of neurons that have been extensively studied. In this book, 

we will concentrate on the most commonly used one. The neuron we are interested 

in simply applies a function to a linear combination of all the inputs. In a more 

mathematical form, given nx, real parameters wi ∈ ℝ (with i = 1, 2, …, nx), and a constant 

b ∈ ℝ (usually called bias), the neuron will calculate first what is usually indicated in 

literature and in books by z.

 
z w x w x w x bn nx x
= + + + +1 1 2 2   

It will then apply a function f to z, giving the output ˆ.y

 
ŷ f z f w x w x w x bn nx x
= ( ) = + + + +( )1 1 2 2   

Note Practitioners mostly use the following nomenclature: wi refers to weights, b 
bias, xi input features, and f the activation function.

Owing to a biological parallel, the function f  is called the neuron activation function 

(and sometimes transfer function), which will be discussed at length in the next sections.

ChaPter 2  Single neuron
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Let’s summarize the neuron computational steps again.

 1. Combine linearly all inputs xi, calculating 
z w x w x w x bn nx x
= + + + +1 1 2 2  ;

 2. Apply f to z, giving the output 

ŷ f z f w x w x w x bn nx x
= ( ) = + + + +( )1 1 2 2 

.

You may remember that in Chapter 1, I discussed computational graphs. In Figure 2- 1, 

you will find the graph for the neuron described previously.

Figure 2-1. The computational graph for the neuron described in the text

This is not what you usually find in blogs, books, and tutorials. It is rather 

complicated and not very practical to use, especially when you want to draw networks 

with many neurons. In the literature, you can find numerous representations for 

neurons. In this book, we will use the one shown in Figure 2-2, because it is widely 

used and is easy to understand.

ChaPter 2  Single neuron
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Figure 2-2 must be interpreted in the following way:

• The inputs are not put in a bubble. This is simply to distinguish them 

from nodes that perform an actual calculation.

• The weights’ names are written along the arrow. This means that 

before passing the inputs to the central bubble (or node), the input 

first will be multiplied by the relative weight, as labeled on the arrow. 

The first input, x1, will be multiplied by w1, x2, by w2, and so on.

• The central bubble (or node) will perform several calculations at the 

same time. First, it will sum the inputs (the xiwi for i = 1, 2, …, nx), 

then sum to the result the bias b, and, finally, apply to the resulting 

value the activation function.

All neurons we will deal with in this book will have exactly this structure. Very often, 

an even simpler representation is used, as in Figure 2-3. In such a case, unless otherwise 

stated, it is understood that the output is

 
ŷ f z f w x w x w x bn nx x
= ( ) = + + + +( )1 1 2 2   

Figure 2-2. The neuron representation mostly used by practitioners
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 Matrix Notation
When dealing with big datasets, the number of features is large (nx will be big), and so it 

is better to use a vector notation for the features and the weights, as follows:

 

x =

æ

è

ç
ç
ç

ö

ø

÷
÷
÷

x

xnx

1



 

where we have indicated the vector with a boldfaced x. For the weights, we use the same 

notation:

 

w =

æ

è

ç
ç
ç

ö

ø

÷
÷
÷

w

wnx

1



 

For consistency with formulas that we will use later, to multiply x and w, we will use 

matrix multiplication notation, and, therefore, we will write

 

w xT
n

n

n nw w

x

x

w x w x w x
x

x

x x
= ¼( )

æ

è

ç
ç
ç

ö

ø

÷
÷
÷
= + + +1

1

1 1 2 2� �

 

Figure 2-3. The following representation is a simplified version of Figure 2-2.  
Unless otherwise stated, it is usually understood that the output is 
ŷ f z f w x w x w x bn nx x
= ( ) = + +¼+ +( )1 1 2 2 . The weights are often not explicitly 

reported in the neuron representation.
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where wT indicates the transpose of w. z can then be written with this vector notation as

 z bT= +w x  

and the neuron output ŷ  as

 
ˆ #y f z f bT= ( ) = +( ) ( )w x 3  

Let’s now summarize the different components that define our neuron and the 

notation we will use in this book.

• ŷ  → neuron output

• f(z) → activation function (or transfer function) applied to z

• w → weights (vector with nx components)

• b → bias

 Python Implementation Tip: Loops and NumPy
The calculation that we have outlined in the equation (3) can be done in Python by 

standard lists and with loops, but those tend to be very slow, as the number of variables 

and observations grows. A good rule of thumb is to avoid loops, when possible, and to 

use NumPy (or TensorFlow, as we will see later) methods as often as possible.

It is easy to get an idea of how fast NumPy can be (and how slow loops are). Let’s start 

by creating two standard lists of random numbers in Python with 107 elements in each.

import random

lst1 = random.sample(range(1, 10**8), 10**7)

lst2 = random.sample(range(1, 10**8), 10**7)

The actual values are not relevant for our purposes. We are simply interested in 

how fast Python can multiply two lists, element by element. The times reported were 

measured on a 2017 Microsoft surface laptop and will vary greatly, depending on the 

hardware the code runs on. We are not interested in the absolute values, but only on how 

much faster NumPy is in comparison with standard Python loops. To time Python code 

ChaPter 2  Single neuron



37

in a Jupyter notebook, we can use a “magic command.” Usually, in a Jupyter notebook, 

these commands start with %% or %. A good idea is to check the official documentation, 

accessible from http://ipython.readthedocs.io/en/stable/interactive/magics.html,  

to better understand how they work.

Going back to our test, let’s measure how much time a standard laptop takes to 

multiply, element by element, the two lists with standard loops. Using the code

%%timeit

ab = [lst1[i]*lst2[i] for i in range(len(lst1))]

gives us the following result (note that on your computer, you will probably get a 

different result):

2.06 s ± 326 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

Over seven runs, the code needed roughly two seconds on average. Now let’s try to 

do the same multiplication, but, this time, using NumPy where we have first converted the 

two lists to NumPy arrays, with the following code:

import numpy as np

list1_np = np.array(lst1)

list2_np = np.array(lst2)

%%timeit

Out2 = np.multiply(list1_np, list2_np)

This time, we get the following result:

20.8 ms ± 2.5 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

The numpy code needed only 21 ms, or, in other words, was roughly 100 times faster 

than the code with standard loops. NumPy is faster for two reasons: the underlying 

routines are written in C, and it uses vectorized code as much as possible to speed up 

calculations on big amounts of data.

ChaPter 2  Single neuron
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Note Vectorized code refers to operations that are performed on multiple 
components of a vector (or a matrix) at the same time (in one statement). Passing 
matrices to NumPy functions is a good example of vectorized code. NumPy will 
perform operations on big chunks of data at the same time, obtaining a much 
better performance with respect to standard Python loops, which must operate on 
one element at a time. note that part of the good performance NumPy is showing is 
also owing to the underlying routines being written in C.

While training deep learning models, you will find yourself doing this kind of 

operation over and over, and, therefore, such a speed gain will make the difference 

between having a model that can be trained and one that will never give you a result.

 Activation Functions
There are many activation functions at our disposal to change the output of our neuron. 

Remember: An activation function is simply a mathematical function that transforms z 

in the output ŷ . Let’s have a look at the most used.

 Identity Function

This is the most basic function that you can use. Usually, it is indicated by I(z). It returns 

simply the input value unchanged. Mathematically we have

 f z I z z( ) = ( ) =  

This simple function will come in handy when I discuss linear regression with one 

neuron later in the chapter. Figure 2-4 shows what it looks like.

ChaPter 2  Single neuron
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Implementing an identity function in Python with numpy is particularly simple.

def identity(z):

    return z

 Sigmoid Function

This is a very commonly used function that gives only values between 0 and 1. It is 

usually indicated by σ(z).

 
f z z

e z( ) = ( ) =
+ -s 1

1  

It is especially used for models in which we must predict the probability as an 

output (remember that a probability may only assume values between 0 and 1). You 

can see its shape in Figure 2-5. Note that in Python, if z is big enough, it can happen 

that the function returns exactly 0 or 1 (depending on the sign of z) for rounding 

errors. In classification problems, we will calculate logσ(z) or log(1 − σ(z)) very often, 

and, therefore, this can be a source of errors in Python, because it will try to calculate 

log 0, which is not defined. For example, you can start seeing nan appearing while 

calculating the cost function (more on that later). We will see a practical example of this 

phenomenon later in the chapter.

Figure 2-4. The identity function
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Note although σ(z) should never be exactly 0 or 1, while programming in Python, 
the reality can be quite different. due to a very big z (positive or negative), Python 
may round the results to exactly 0 or 1. this could give you errors while calculating 
the cost function (i will give you a detailed explanation and practical example later 
in the chapter) for classification, because we will need to calculate log σ(z) and 
log(1 − σ(z)) and, therefore, Python will try to calculate log0, which is not defined. 
this may occur, for example, if we don’t normalize our input data correctly, or if we 
don’t initialize our weights correctly. For the moment, it is important to remember 
that although mathematically everything seems under control, the reality while 
programming can be more difficult. it is something that is good to keep in mind 
while debugging models that, for example, give nan as a result for the cost 
function.

The behavior with z can be seen in Figure 2-5. The calculation can be written in this 

form using numpy functions:

s = np.divide(1.0, np.add(1.0, np.exp(-z)))

Figure 2-5. The sigmoid activation function is an s-shaped function that goes 
from 0 to 1
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Note it is very useful to know that if we have two numpy arrays, A and B, the 
following are equivalent: A/B is equivalent to np.divide(A,B), A+B is equivalent to 
np.add(A,B), A-B is equivalent to np.subtract(A,B), and A*B is equivalent to 
np.multiply(A,B). in case you are familiar with object-oriented programming, we 
say that in numpy, basic operations, such as /, *, +, and -, are overloaded. note also 
that all of these four basic operations in numpy act element by element.

We can write the sigmoid function in a more readable (at least for humans) form as 

follows:

def sigmoid(z):

    s = 1.0 / (1.0 + np.exp(-z))

    return s

As stated previously, 1.0 + np.exp(-z) is equivalent to np.add(1.0, np.exp(-z)), 

and 1.0 / (np.add(1.0, np.exp(-z))) to np.divide(1.0, np.add(1.0, np.exp(-z))). 

I want to draw your attention to another point in the formula.  np.exp(-z) will have 

the dimensions of z (usually a vector that will have a length equal to the number of 

observations), while 1.0 is a scalar (a one-dimensional entity). How can Python sum 

the two? What happens is what is called broadcasting.1 Python, subject to certain 

constraints, will “broadcast” the smaller array (in this case, the 1.0) across the larger 

one, so that at the end, the two have the same dimensions. In this case, the 1.0 becomes 

an array of the same dimension as z, all filled with 1.0. This is an important concept 

to understand, as it is very useful. You don’t have to transform numbers in arrays, 

for example. Python will take care of it for you. The rules on how broadcasting works 

in other cases are rather complex and beyond the scope of this book. However, it is 

important to know that Python is doing something in the background.

 Tanh (Hyperbolic Tangent Activation) Function

The hyperbolic tangent is also an s-shaped curve that goes from -1 to 1.

 f z z( ) = ( )tanh  

1 You can find a more extensive explanation of how numpy uses broadcasting in the official 
documentation, available at https://docs.scipy.org/doc/numpy-1.13.0/user/basics.
broadcasting.html.
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In Figure 2-6, you can see its shape. In Python, this can be easily implemented, as 

follows:

def tanh(z):

    return np.tanh(z)

Figure 2-6. The tanh (or hyperbolic function) is an s-shaped curve that goes 
from -1 to 1

 ReLU (Rectified Linear Unit) Activation Function

The ReLU function (Figure 2-7) has the following formula:

 f z z( ) = ( )max 0,  

ChaPter 2  Single neuron
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It is useful to spend a few moments exploring how to implement the ReLU function 

in a smart way in Python. Note that when we will start using TensorFlow, we will have 

it already implemented for us, but it is very instructive to observe how different Python 

implementations can make a difference when implementing complex deep-learning 

models.

In Python, you can implement the ReLU function in several ways. Listed below are 

four different methods. (Try to understand why they work before proceeding.)

 1. np.maximum(x, 0, x)

 2. np.maximum(x, 0)

 3. x * (x > 0)

 4. (abs(x) + x) / 2

The four methods have very different execution speeds. Let’s generate a numpy array 

with 108 elements, as follows:

x = np.random.random(10**8)

Figure 2-7. The ℝeLU function
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Now let’s measure the time needed by the four different versions of the ReLU 

function when applied to it. Let the following code run:

x = np.random.random(10**8)

print("Method 1:")

%timeit -n10 np.maximum(x, 0, x)

print("Method 2:")

%timeit -n10 np.maximum(x, 0)

print("Method 3:")

%timeit -n10 x * (x > 0)

print("Method 4:")

%timeit -n10 (abs(x) + x) / 2

The results follow:

Method 1:

2.66 ms ± 500 μs per loop (mean ± std. dev. of 7 runs, 10 loops each)
Method 2:

6.35 ms ± 836 μs per loop (mean ± std. dev. of 7 runs, 10 loops each)
Method 3:

4.37 ms ± 780 μs per loop (mean ± std. dev. of 7 runs, 10 loops each)
Method 4:

8.33 ms ± 784 μs per loop (mean ± std. dev. of 7 runs, 10 loops each)

The difference is stunning. The Method 1 is four times faster than the Method 4. 

The numpy library is highly optimized, with many routines written in C. But knowing 

how to code efficiently still makes a difference and can have a great impact. Why is  

np.maximum(x, 0, x) faster than np.maximum(x, 0)? The first version updates x in 

place, without creating a new array. This can save a lot of time, especially when arrays 

are big. If you don’t want to (or can’t) update the input vector in place, you can still use 

the np.maximum(x, 0) version.

An implementation could look like this:

def relu(z):

    return np.maximum(z, 0)
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Note remember: When optimizing your code, even small changes may make 
a huge difference. in deep-learning programs, the same chunk of code will be 
repeated millions and billions of times, so even a small improvement will have a 
huge impact in the long run. Spending time to optimize your code is a necessary 
step that will pay off.

 Leaky ReLU

The Leaky ReLU (also known as a parametric rectified linear unit) is given by the formula

 
f z

z for z

z for z
( ) =

<
³

ì
í
î

a 0

0  

with α a parameter typically of the order of 0.01. In Figure 2-8, you can see an example 

for α = 0.05. This value has been chosen to make the difference between x > 0 and x < 0 

more marked. Usually, smaller values for α are used, but testing with your model is 

required to find the best value.

Figure 2-8. The Leaky ℝeLU activation function with α = 0.05
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In Python, for example, this can be implemented if the relu(z) function has already 

been defined as

def lrelu(z, alpha):

  return relu(z) - alpha * relu(-z)

 Swish Activation Function

Recently, Ramachandran, Zopf, and Le at Google Brain [4] studied a new activation 

function, called Swish, that shows great promise in the deep-learning world. It is defined as

 f z z z( ) = ( )s b  

where β is a learnable parameter. In Figure 2-9, you can see how this activation 

function looks for three values of the parameter β: 0.1, 0.5, and 10.0. The team’s studies 

have shown that simply replacing ReLU activation functions with Swish improves 

classification accuracy on ImageNet by 0.9%. In today’s deep-learning world, that is a lot. 

You can find more information on ImageNet at www.image-net.org/.

Figure 2-9. The Swish activation function for three different values of the 
parameter β

ImageNet is a large database of images that is often used to benchmark new network 

architectures or algorithms, such as, in this case, networks with a different activation 

function.
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 Other Activation Functions

There are many other activation functions, but these are rarely used. As a reference, 

following are some additional ones. The list is by no means comprehensive but should 

serve the purposes of giving you an idea of the variety of activation functions that can be 

used when developing neural networks.

• ArcTan

 f z z( ) = -tan 1  

• Exponential Linear unit (ELU)

 

f z
e for z

z for z

z

( ) =
-( ) <

³

ì
í
ï

îï

a 1 0

0  

• Softplus

 
f z ez( ) = +( )ln 1  

Note Practitioners almost always use only two activation functions: the sigmoid 
and the relu (the relu probably most often). With both, you can achieve good 
results, and, given a complex enough network architecture, both can approximate 
any nonlinear function [5,6]. remember that when using tensorflow, you will not 
have to implement the functions by yourself. tensorflow will offer an efficient 
implementation for you to use. But it is important to know how each activation 
function behaves, to understand when to use which one.

 Cost Function and Gradient Descent: The Quirks 
of the Learning Rate
Now that you understand clearly what a neuron is, I will discuss what it means for it 

(and, in general, for a neural network) to learn. This will allow us to introduce concepts 

such as hyperparameters and learning rate. In almost all neural network problems, 

learning simply means finding the weights (remember that a neural network is 
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composed of many neurons, and each neuron will have its own set of weights) and 

biases of the network that minimize a chosen function, which is usually called the cost 

function and typically indicated by J.

In calculus, there are several methods for finding the minimum of a given function 

analytically. Unfortunately, in all neural network applications, the number of weights is 

so big that it is not possible to use these methods. Numerical methods must be relied on, 

the most famous being gradient descent. It is the easiest method to understand, and it 

will give you the perfect basis from which to understand the more complex algorithms 

that you will see later in the book. Let me give a brief overview on how it works, because 

it is one of the best algorithms in machine learning to introduce the reader to the 

concept of learning rate and its quirks.

Given a generic function J(w), where w is a vector of weights, the minimum location 

in weight space (meaning the value for w for which J(w) has a minimum) can be found 

with an algorithm based on the following steps:

 1. Iteration 0: Choose a random initial guess w0

 2. Iteration n + 1 (with n starting from 0): The weights at iteration 

n + 1, wn + 1 will be updated from the previous values at iteration 

n, wn, using the formula

 w w wn n nJ+ = - Ñ ( )1 g  

With ∇J(w), we have indicated the gradient of the cost function, which is a vector 

whose components are the partial derivatives of the cost function with respect to all the 

components of the weight vector w, as follows:
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To decide when to stop, we could check when the cost function J(w) stops changing 

too much, or, in other words, you could define a threshold ϵ and stop at any iteration 

q > k (with k an integer that you have to find) that satisfies | J(wq + 1) − J(wq) | < ϵ for all 

q > k. The problem with this approach is that it is complicated, and this check is very 
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expensive in terms of performance when implemented in Python (remember: you will 

have to do this step a very large number of times), so, usually, people simply let the 

algorithm run for a fixed big number of iterations and check the final results. If the result 

is not what is expected, they increase the fixed big number. How big? Well, that depends 

on your problem. What you do is choose a certain number of iterations (for example, 

10,000 or 1,000,000) and let the algorithm run. At the same time, you plot the cost 

function vs. the number of iterations, and you check that the number of iterations you 

have chosen is sensible. Later in this chapter, you will see a practical example in which 

I will show you how to check if the number you chose was big enough. For the moment, 

you should know that you simply stop the algorithm after a fixed number of iterations.

Note Why this algorithm converges toward the minimum (and how to show it) 
is beyond the scope of this book, would make this chapter too long, and distract 
the reader from the main learning goal, which is to make you understand what the 
effect of choosing a specific learning rate is and what the consequences are of 
choosing too big or too small a rate.

We will assume here that the cost function is differentiable. This is not usually the 

case, but a discussion of this issue goes well beyond the scope of this book. People 

tend to use a practical approach in this case. The implementations work very well, 

and so these kinds of theoretical problems are usually ignored by a large number of 

practitioners. Remember that in deep-learning models, the cost function becomes an 

incredibly complex function, and studying it is almost impossible.

The series wn will hopefully converge toward the minimum location, after a 

reasonable amount of iterations. The parameter γ is called the learning rate and is one 

of the most important parameters required in the neural network learning process.

Note to distinguish it from weights, the learning rate is called a hyperparameter. 
We will encounter more of those. a hyperparameter is a parameter whose value is 
not determined by training and usually set before the learning process begins. in 
contrast, the values of parameters w and b are derived via training.
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The word hopefully, has been chosen for good reason. It is possible that the 

algorithm will not converge toward the minimum. It is even possible that the series wn 

will oscillate between values without converging at all—or diverge outright. Choose 

γ too big or too small, and your model will not converge (or converge too slowly). To 

understand why this is the case, let’s consider a practical case and see how the method 

works while choosing different learning rates.

 Learning Rate in a Practical Example
Let’s consider the dataset formed by m = 30 observations y generated by the code.

m = 30

w0 = 2

w1 = 0.5

x = np.linspace(-1,1,m)

y = w0 + w1 * x

As a cost function, we choose the classical mean squared error (MSE)
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where we have indicated with the superscript (i) the ith observation. Remember that 

with the subscript i (xi), we have indicated the ith feature. To recap our notation, we have 

indicated with x j
i( )  the jth feature and the ith observation. In the example here, we have 

just one feature, so we don’t need the subscript j. The cost function can be implemented 

in Python easily as

np.average((y-hypothesis(x, w0, w1))**2, axis=2)/2

where we have defined

def hypothesis(x, w0, w1):

    return w0 + w1*x

Our goal is to find the values for w0 and w1 that minimize J(w0, w1).
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To apply the gradient descent method, we must calculate the series for w0, n and w1, n. 

We have the following equations:
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Simplifying equations by calculating the partial derivatives gives
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Because ∂f(w0, w1, xi)/∂w0 = 1 and ∂f(w0, w1, xi)/∂w1 = xi, the previous equations are 

the ones that must be implemented in Python, if we want to code the gradient descent 

algorithm by ourselves.

Note the derivation of the equations in (2.11) has the goal of showing how the 
equations for gradient descent become very complicated very quickly, even for a 
very easy case. in the next section, we will build our first model with tensorflow. 
one of the best aspects of the library is that all those formulas are calculated 
automatically, and you don’t have to bother calculating anything. implementing 
equations such as the ones in shown here and debugging them can take quite 
some time and prove to be impossible the moment you are dealing with large 
neural networks of interconnected neurons.

I have omitted in this book the complete Python implementation of the example, 

because it would require too much space.
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It is instructive to check how the model works, by varying the learning rate. In 

Figures 2-10, 2-11, and 2-12, the contour lines2 of the cost functions have been drawn, 

and on top of these, the series (w0, n, w1, n) has been plotted, as points to visualize how the 

series converges (or doesn’t). In the figures, the minimum is indicated by a circle placed 

approximately at the center. We will consider the values γ = 0.8 (in Figure 2-10), γ = 2 (in 

Figure 2-11), and γ = 0.05 (in Figure 2-12). The different estimates, wn, are indicated with 

points. The minimum is indicated by the circle approximately in the middle of the image.

In the first case (in Figure 2-10), the converging is well behaved, and in just eight 

steps, the method converges toward the minimum. When γ = 2 (Figure 2-11), the method 

makes steps that are too big (remember: the steps are given by −γ∇J(w) and therefore 

the bigger γ the bigger the steps) and unable to get close to the minimum. It keeps 

oscillating around it, without reaching it. In this case, the model will never converge. In 

the last case, when γ = 0.05 (Figure 2-12), the learning is so slow that it will take many 

more steps to get close to the minimum. In some cases, the cost function may be so flat 

around the minimum that the method takes such a big number of iterations to converge 

that, practically, you will not get close enough to the real minimum in a reasonable 

amount of time. In Figure 2-12, 300 iterations are plotted, but the method is not even 

very close to the minimum.

Note Choosing the right learning rate is of paramount importance when coding 
the learning part of a neural network. Choose too big a rate, and the method may 
just bounce around the minimum, without ever reaching it. Choose too small a 
rate, and the algorithm may become so slow that you will not be able to find the 
minimum in a reasonable amount of time (or number of iterations). a typical sign 
of a learning rate that is too big is that the cost function may become nan (“not a 
number,” in Python slang). Printing the cost function at regular intervals during the 
training process is a good way of checking such kind of problems. this will give 
you a chance to stop the process and avoid wasting time (in case you see nan 
appearing). a concrete example appears later in the chapter.

2 A contour line of a function is a curve along which the function has a constant value.
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Figure 2-10. Illustration of a gradient descent algorithmwith well-behaved 
convergence

In deep-learning problems, each iteration will cost time, and you will have to perform 

this process several times. Choosing the right learning rate is a key part of designing a good 

model, because it will make training much faster (or make it impossible).
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Figure 2-11. Illustration of a gradient descent algorithm when the learning rate is 
too big. The method is not able to converge toward the minimum.
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Sometimes it is efficient to change the learning rate during the process. You 

start with a bigger value to get close to the minimum faster, and then you reduce it 

progressively, to make sure that you get as close as possible to the real minimum. I will 

discuss this approach later in the book.

Note there are no fixed rules on how to choose the right learning rate. it 
depends on the model, on the cost function, on the starting point, and so on. a 
good rule of thumb is to start with γ = 0.05 and then see how the cost function 
behaves. it is rather common to plot J(w) vs. the number of iterations, to check 
that it decreases and the speed at which it is decreasing.

A good way of checking the convergence is to plot the cost function vs. the number 

of iterations. In this way, you can check its behavior. How the cost function looks in our 

three learning rates for the preceding example is shown in Figure 2-13. You can clearly 

Figure 2-12. Illustration of a gradient descent algorithm when the learning rate 
is too small. The method is so slow that it will take a huge number of iterations to 
converge toward the minimum.
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see how the case with γ = 0.8 goes to zero rather quickly, indicating that we have reached 

a minimum. The case with γ = 2 does not even start to go down. It continues to remain at 

almost the same initial value. And, finally, the case with γ = 0.05 starts to go down, but it 

is a lot slower than the first case.

Figure 2-13. The cost function vs. the number of iterations (only the first eight are 
considered)

So, here are the conclusions we should draw from Figure 2-13 for the three cases:

• γ = 0.05 → J is decreasing, which is good, but after eight iterations, we 

have not reached a plateau, so we must use many more iterations, 

until we see that J is not changing much anymore.

• γ = 2 → J is not decreasing. We should check our learning rate to see if 

it helps. Trying smaller values would be a good starting point.

• γ = 0.8 → The cost function decreases rather quickly and then remains 

constant. That is a good sign and indicates that we have reached a 

minimum.

Remember also that the absolute value of the learning rate is not relevant. What is 

important is the behavior. We can multiply our cost function by a constant, and that 

would not influence our learning at all. Don’t look at the absolute values; check how 

fast and how the cost function is behaving. Additionally, the cost function will almost 

never reach zero, so don’t expect it. The value of J at its minimum is almost never zero (it 

depends on the functions itself). In the section about linear regression, you will see an 

example in which the cost function will not reach zero.
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Note When training your models, remember to always check the cost function 
vs. the number of iterations (or number of swipes over the entire training set, 
called epochs). this will give you an efficient way of estimating if the training is 
efficient, if it is working at all, and give you hints on how to optimize it.

Now that we have defined the basis, we will use a neuron to solve two simple 

problems with machine learning: linear and logistic regression.

 Example of Linear Regression in tensorflow
The first type of regression will offer an opportunity to understand how to build a model 

in tensorflow. To explain how to perform linear regression efficiently with one neuron, 

I must first explain some additional notation. In the previous sections, I discussed 

inputs x = ¼( )x x xnx1 2, , , . These are the so-called features that describe an observation. 

Normally, we have many observations. As briefly explained before, we will use an upper 

index to indicate the different observations between parentheses. Our ith observation will 

be indicated with x(i), and the jth feature of the ith observations will be indicated as x j
i( ). 

We will indicate the number of observations with m.

Note in this book, m is the number of observations, and nx is the number of 
features. our jth feature of the ith observation will be indicated with x j

i( ) . in deep-
learning projects, the bigger the m the better. So be prepared to deal with a huge 
number of observations.

You will remember that I have said many times that numpy is highly optimized to 

perform several parallel operations at the same time. To get the best performance 

possible, it is important to write our equations in matrix form and feed the matrices to 

numpy. In this way, our code will be as efficient as possible. Remember: Avoid loops at 

all costs whenever possible. Let’s spend some time now in writing all our equations in 

matrix form. In this way, our Python implementation will be much easier later.
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The entire set of inputs (features and observations) can be written in matrix form. We 

will use the following notation:
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where each column is an observation and each row represents a feature in the matrix X, 

which has dimensions nx × m. We can also write the output values ŷ i( )  in matrix form. If 

you recall our neuron discussion, we have defined a z(i) = wTx(i) + b for one observation i. 

Putting each observation in a column, we can use the following notation:

 
z w b= ¼( ) = +( ) ( ) ( )z z z Xm T1 2

 

where we have b = (b b…b). We will define ŷ  as

 
ˆ ˆ ˆ ˆy z= ¼( ) = ( ) ( ) ¼ ( )( ) = ( )( ) ( ) ( ) ( ) ( ) ( )y y y f z f z f z fm m1 2 1 2

 

where with f (z), we intend the function f  be applied element by element to the matrix z.

Note although z has dimensions 1 × m, we will use the term matrix for it and not 
vector, to use consistent names in the book. this will also help you to remember 
that we should always use matrix operations. For our purposes, z is simply a 
matrix with just one row.

You know from Chapter 1 that in tensorflow, you must declare explicitly the 

dimensions of our matrices (or tensors), so it is a good idea to have them well under 

control. Here is an overview of the dimensions of all the vectors and matrices we will use:

• X has dimensions nx × m

• z has dimensions 1 × m

• ŷ  has dimensions 1 × m

• w has dimensions nx × 1

• b has dimensions 1 × m

Now that the formalism is clear, we will prepare the dataset.
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 Dataset for Our Linear Regression Model

To make things a bit more interesting, let’s use a real dataset. We will use the so- called 

Boston dataset.3 This contains information collected by the US Census Bureau 

concerning housing around Boston. Each record in the database describes a Boston 

suburb or town. The data was drawn from the Boston Standard Metropolitan Statistical 

Area (SMSA) in 1970. The attributes are defined as follows [3]:

• CℝIM: Per capita crime rate by town

• Zℕ: Proportion of residential land zoned for lots over 25,000 square 

feet

• IℕDUS: Proportion of non-retail business acres per town

• CHAS: Charles River dummy variable (= 1 if tract bounds river; 0 

otherwise)

• ℕOX: Nitric oxides concentration (parts per 10 million)

• ℝM: Average number of rooms per dwelling

• AGE: Proportion of owner-occupied units built prior to 1940

• DIS: Weighted distances to five Boston employment centers

• ℝAD: Index of accessibility to radial highways

• TAX: Full-value property-tax rate per $10,000

• PTℝATIO: Pupil-teacher ratio by town

• B - 1000(Bk - 0.63)^2 - Bk: Proportion of blacks by town

• LSTAT: % lower status of the population

• MEDV: Median value of owner-occupied homes in $1000s

Our target variable MEDV, the one we want to predict, is the median price of the 

house in $1000s for each suburb. For our example, we don’t have to understand or 

study the features. My goal here is to show you how to build a linear regression model 

with what you have learned. Normally, in a machine-learning project, you would first 

3 Delve (Data for Evaluating Learning in Valid Experiments), “The Boston Housing Dataset,”  
www.cs.toronto.edu/~delve/data/boston/bostonDetail.html, 1996.
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study your input data, check their distribution, quality, missing values, and so on; 

however, I will skip this part to concentrate on how to implement what you learned 

with tensorflow.

Note in machine learning, the variable we want to predict is usually called the 
target variable.

Let’s import the usual libraries, including sklearn.datasets. Importing the data and 

getting features and target is very easy with the help of the sklearn.datasets package. 

You don’t have to download CSV files and import them. Simply run the following code:

import matplotlib.pyplot as plt

%matplotlib inline

import tensorflow as tf

import numpy as np

from sklearn.datasets import load_boston

boston = load_boston()

features = np.array(boston.data)

labels = np.array(boston.target)

Every dataset in the sklearn.datasets package comes with a description. You can 

check it with the following command:

print(boston["DESCR"])

Now let’s check how many observations and features we have.

n_training_samples = features.shape[0]

n_dim = features.shape[1]

print('The dataset has',n_training_samples,'training samples.')

print('The dataset has',n_dim,'features.')

Linking the mathematical notation with the Python code n_training_samples is m 

and n_dim is nx. The code will give the following results:

The dataset has 506 training samples.

The dataset has 13 features.
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It is a good idea to normalize each numerical feature defining normalized features 

xnorm j
i

,
( )  according to the formula
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where x j
i( )  is the average of the jth feature, and s j

i( )  is its standard deviation. This can 

be easily calculated in numpy with the following function:

def normalize(dataset):

    mu = np.mean(dataset, axis = 0)

    sigma = np.std(dataset, axis = 0)

    return (dataset-mu)/sigma

To normalize our features numpy array, we must simply call the function features_

norm = normalize(features). Now each feature contained in the numpy array 

features_norm will have an average of zero and a standard deviation of one.

Note it is generally a good idea to normalize the features, so that their average is 
zero, and the standard deviation is one. Sometimes, some features are much bigger 
than others and can have a stronger influence on the model, thus bringing wrong 
predictions. Particular care is needed when the dataset is split into training and test 
datasets, to have consistent normalizations.

For this chapter, we will simply use all the data for the training, to concentrate on 

implementation details.

train_x = np.transpose(features_norm)

train_y = np.transpose(labels)

print(train_x.shape)

print(train_y.shape)

The last two prints will give us the dimensions of our new matrices.

(13, 506)

(506,)
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The train_x array has dimensions of (13, 506), and that is exactly what we expect. 

Remember for our discussion that X has dimensions nx × m.

The training target train_y has dimensions of (506,), which is how numpy describes 

one-dimensional arrays. tensorflow wants to have dimensions of (1, 506) (remember 

our previous discussion?), so we must reshape the array in this way:

train_y = train_y.reshape(1,len(train_y))

print(train_y.shape)

and our print statements give us what we need:

(1, 506)

 Neuron and Cost Function for Linear Regression

A neuron that can perform linear regression uses the identity activation function. The 

cost function that needs to be minimized is the MSE (mean square error) that can be 

written as
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where the sum is over all m observations.

The tensorflow code to build this neuron and define the cost function is actually 

very simple.

tf.reset_default_graph()

X = tf.placeholder(tf.float32, [n_dim, None])

Y = tf.placeholder(tf.float32, [1, None])

learning_rate = tf.placeholder(tf.float32, shape=())

W = tf.Variable(tf.ones([n_dim,1]))

b = tf.Variable(tf.zeros(1))

init = tf.global_variables_initializer()

y_ = tf.matmul(tf.transpose(W),X)+b

cost = tf.reduce_mean(tf.square(y_-Y))

training_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
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Note that in tensorflow, you don’t have to explicitly declare the number of observations. 

You can use None in the code. In this way, you will be able to run the model on any dataset 

independently of the number of observations, without modifying your code.

In the code, we have indicated the neuron output ŷ  as y_, because we don’t have a 

hat in Python. Let me clarify a bit which line of code does what.

• X = tf.placeholder(tf.float32, [n_dim, None]) → contains the 

matrix X, which must have dimensions nx × m. Remember that in our 

code, n_dim is nx and that m is not declared explicitly in tensorflow. 

In its place, we use None.

• Y = tf.placeholder(tf.float32, [1, None]) → contains the output 

values ŷ , which must have dimensions 1 × m. Here, this means 

that instead of m, we use None, because we want to use the same 

model for different datasets (that will have a different number of 

observations).

• learning_rate = tf.placeholder(tf.float32, shape=()) → 

contains the learning rate as a parameter instead of a constant, so 

that we can run the same model varying it, without creating a new 

neuron each time.

• W = tf.Variable(tf.zeros([n_dim, 1])) → defines and initializes 

the weights, w, with zeros. Remember that the weights, w, must have 

dimensions nx × 1.

• b = tf.Variable(tf.zeros(1)) → defines and initializes the bias, b, 

with zero.

Remember that in tensorflow, a placeholder is a tensor that will not change during 

the learning phase, whereas a variable is one that will change. Weights, w, and bias, 

b, will be updated during the learning. Now we must define what to do with all those 

quantities. Remember: We must calculate z. The chosen activation function is the 

identity function, so z will also be the output of our neuron.
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• init = tf.global_variables_initializer() → creates a piece of 

the graph that initializes the variable and adds it to the graph.

• y_ = tf.matmul(tf.transpose(W),X)+b → calculates the output 

of the neuron. The output of a neuron is ŷ z w= ( ) = +( )f f X bT . 

Because the activation function for linear regression is the identity, 

the output is ŷ w= +T X b. Remember that b being a scalar is not a 

problem. Python broadcasting will take care of it, expanding it to 

the right dimensions, to make the sum between a vector wT X and a 

scalar b possible.

• cost = tf.reduce_mean(tf.square(y_-Y)) → defines the cost 

function. tensorflow provides an easy and efficient way of calculating 

the average—tf.reduce_mean()—that simply performs the sum 

of all the elements of the tensor and divides it by the number of 

elements.

• training_step = tf.train.GradientDescentOptimizer 

(learning_rate).minimize(cost) → tells tensorflow which 

algorithm to use to minimize the cost function. In tensorflow 

language, the algorithms used to minimize the cost function are 

called optimizers. We now use gradient descent with the given 

learning rate. Later in the book, other optimizers will be extensively 

studied.

You will remember from the introduction in Chapter 1 that the previous code will 

not run any model. It simply defines the computational graph. Let’s define a function 

that will perform the actual learning and will run our model. It is easier to define it in a 

function, so that we can rerun it, changing, for example, the learning rate or the number 

of iterations we want to use.

def run_linear_model(learning_r, training_epochs, train_obs, train_labels, 

debug = False):

    sess = tf.Session()

    sess.run(init)

    cost_history = np.empty(shape=[0], dtype = float)
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    for epoch in range(training_epochs+1):

         sess.run(training_step, feed_dict = {X: train_obs, Y: train_labels, 

learning_rate: learning_r})

         cost_ = sess.run(cost, feed_dict={ X:train_obs, Y: train_labels, 

learning_rate: learning_r})

        cost_history = np.append(cost_history, cost_)

        if (epoch % 1000 == 0) & debug:

             print("Reached epoch",epoch,"cost J =", str.format('{0:.6f}', 

cost_))

    return sess, cost_history

Let’s go through the code again, line by line.

• sess = tf.Session() → creates a tensorflow session.

• sess.run(init) → runs the initialization of the different element of 

the graphs.

• cost_history = np.empty(shape=[0], dtype = float) → creates an 

empty vector (for the moment with zero elements) in which the value 

of our cost function at each iteration is stored.

• for loop... → In this loop, tensorflow performs the gradient descent 

steps that we have discussed earlier and updates the weights and 

the bias. In addition, it will save in the array cost_history the value 

of the cost function each time: cost_history = np.append(cost_

history, cost_).

• if (epoch % 1000 == 0)... → Every 1000 epochs we will print the 

value of the cost function. This is an easy way of checking if the cost 

function is really decreasing or if nans are appearing. If you perform 

some initial tests in an interactive environment (such as a Jupyter 

notebook), you can stop the process if you see that the cost function 

is not behaving as you expect.

• return sess, cost_history → returns the session (in case you 

want to calculate something else) and the array containing the cost 

function values (we will use this array to plot it).
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Running the model is as easy as using the call.

sess, cost_history = run_linear_model(learning_r = 0.01,

                                training_epochs = 10000,

                                train_obs = train_x,

                                train_labels = train_y,

                                debug = True)

The output of the command will be the cost function every 1000 epochs (check in the 

function definition the if, starting with if (epoch % 1000 == 0)).

Reached epoch 0 cost J = 613.947144

Reached epoch 1000 cost J = 22.131165

Reached epoch 2000 cost J = 22.081099

Reached epoch 3000 cost J = 22.076544

Reached epoch 4000 cost J = 22.076109

Reached epoch 5000 cost J = 22.07606

Reached epoch 6000 cost J = 22.076057

Reached epoch 7000 cost J = 22.076059

Reached epoch 8000 cost J = 22.076059

Reached epoch 9000 cost J = 22.076054

Reached epoch 10000 cost J = 22.076054

The cost function clearly decreases and then reaches a value and stays almost 

constant. You can see a plot of it in Figure 2-14. That is a good sign, indicating that the 

cost function has reached a minimum. That does not mean that our model is good 

or that it will give good predictions. This tells us only that the learning has worked 

efficiently.
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It would be nice to be able to visualize graphically how good our fit is. Because we 

have 13 features, it is not possible to plot the price vs. the other features. However, it is 

helpful to get a feel of how good the model predicts the observed values. This can be 

done by plotting our predicted target variable vs. the observed one, as I have done in 

Figure 2-15. If we can perfectly predict our target variable, all the points should be on a 

diagonal line in the plot. The more spread the points are around the line, the worse our 

model is at predicting. Let’s check how our model is doing.

Figure 2-14. The cost function resulting in our model applied to the Boston 
dataset with a learning rate of γ=0.01. We plot only the first 500 epochs, since the 
cost function has almost already reached its final value.
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The points lay reasonably well around the line, so it seems we can predict our 

price to a certain degree. A more qualitative method for estimating the accuracy of our 

regression is the MSE itself (which, in our case, is simply our cost function). Whether the 

value we are obtaining (22.08 in 1000 USD) is good enough depends on the problem you 

are trying to solve, or the constraint and requirements you have been given.

 Satisficing and Optimizing a Metric

We have seen that it is not easy to decide whether a model is good. Figure 2-15 will not 

allow us to describe quantitively how good (or not good) our model is. For this, we must 

define a metric.

The easiest way is to set up what is called a single number evaluation metric. That 

means that you calculate one single number and base your model evaluation on that 

number. It is easy and very practical. For example, you could use the accuracy or the 

F1 score, in the case of classification, or the MSE, in the case of regression. Normally, 

in real life, you will receive goals and constraints for your model. For example, your 

Figure 2-15. The predicted target value vs. the measured target value for our 
model, applied to our trianing data
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company may want to predict house prices with an MSE < 20 (in 1000 USD), and your 

model should be able to run on an iPad, or in less than 1 second. It is useful, therefore, to 

distinguish between two types of metrics:

• Satisficing metric → Searching through available alternatives until an 

acceptability threshold is met, for example, code running (RT) time, 

which minimizes the cost function subject to RT < 1 sec, or choosing 

among modes the one that has an RT < 1 sec

• Optimizing metric → Searching through available alternatives to 

maximize a specific metric, for example, choosing the model (or the 

hyperparameters) that maximize accuracy

Note if you have several metrics, you should always choose one optimizing and 
the rest satisficing.

We have written our code to be able to run our model with different parameters. It is 

very instructive now to do that. Here is how the cost function behaves for three different 

learning rates: 0.1, 0.01, and 0.001. You can check the different behaviors in Figure 2-16.

Figure 2-16. The cost function for linear regression applied to the Boston dataset 
for three learning rates: 0.1 (solid line), 0.01 (dashed line), and 0.001 (dotted line). 
The smaller the learning rate, the slower the learning process.

ChaPter 2  Single neuron



70

As expected for very small learning rates (0.001), the gradient descent algorithm is 

very slow in finding the minimum, whereas with a bigger value (0.1), the method works 

quickly. This kind of plot is very useful for giving you an idea of how fast and how good 

the learning process is going. You will see cases later in the book where the cost function 

is much less well behaved. For example, when applying dropout regularization, the cost 

function will not be smooth anymore. 

 Example of Logistic Regression
Logistic regression is a classic classification algorithm. To keep it simple, we will 

consider here a binary classification. This means that we will deal with the problem of 

recognizing two classes, which we will label as 0 or 1, only. We will need an activation 

function different from the one we used for linear regression, a different cost function to 

minimize, and a slight modification of the output of our neuron. Our goal is to be able to 

build a model that can predict if a certain new observation is of one of two classes.  

The neuron should give as output the probability P(y = 1| x) of the input x to be of class 1.  

We will then classify our observation as of class 1, if P(y = 1| x) > 0.5, or of class 0, if 

P(y = 1| x) < 0.5.

 Cost Function
As a cost function, we will use the cross entropy.4 The function for one observation is

 
L y y y y y yi i i i i iˆ ˆ ˆlog log( ) ( ) ( ) ( ) ( ) ( )( ) = - + -( ) -( )( ), 1 1  

In the presence of more than one observation, the cost function is the sum over all 

observations

 
J b

m
L y y

i

m
i iw, ,( ) = ( )

=

( ) ( )å1

1

ˆ
 

4 A discussion of the meaning of cross-entropy is beyond the scope of this book. A nice 
introduction can be found at https://rdipietro.github.io/friendly-intro-to-cross-
entropy-loss/ and in many introductory books on machine learning.
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In Chapter 10, I will provide a complete derivation of logistic regression from scratch, 

but for the moment, tensorflow will take care of all the details—derivatives, gradient 

descent implementation, and so on. We only have to build the right neuron, and we will 

be on our way.

 Activation Function
Remember: We want our neuron to output the probability of our observation to be 

of class 0 or 1. Therefore, we need an activation function that can assume only values 

between 0 and 1. Otherwise, we cannot regard it as a probability. For our logistic 

regression, we will use the sigmoid function as the activation function.

 
s z

e z( ) =
+ -

1

1  

 The Dataset
To build an interesting model, we will use a modified version of the MNIST dataset. You 

will find all relevant information from the following link: http://yann.lecun.com/exdb/

mnist/.

The MNIST database is a large database of handwritten digits that we can use to 

train our model. The MNIST database contains 70,000 images. “The original black and 

white (bilevel) images from NIST were size normalized to fit in a 20×20 pixel box while 

preserving their aspect ratio. The resulting images contain grey levels as a result of the 

anti-aliasing technique used by the normalization algorithm. The images were centered 

in a 28×28 image by computing the center of mass of the pixels, and translating the 

image so as to position this point at the center of the 28×28 field” (source: http://yann.

lecun.com/exdb/mnist/).

Our features will be the gray value for each pixel, so we will have 28 × 28 = 784 

features whose values will go from 0 to 255 (gray values). The dataset contains all ten 

digits, from 0 to 9. With the following code, you can prepare the data to use in the 

sections below. As usual, let’s first import the necessary library.

from sklearn.datasets import fetch_mldata
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Then let’s load the data.

mnist = fetch_mldata('MNIST original')

X,y = mnist["data"], mnist["target"]

Now X contains the input images and y the target labels (remember that the value 

we want to predict is called target in machine-learning jargon). Just typing X.shape will 

give you the shape of X: (70000, 784). Note that X has 70,000 rows (each row is an image) 

and 784 columns (each column is a feature, or a pixel gray value, in our case). Let’s check 

how many digits we have in our dataset.

for i in range(10):

    print ("digit", i, "appears", np.count_nonzero(y == i), "times")

That gives us the following:

digit 0 appears 6903 times

digit 1 appears 7877 times

digit 2 appears 6990 times

digit 3 appears 7141 times

digit 4 appears 6824 times

digit 5 appears 6313 times

digit 6 appears 6876 times

digit 7 appears 7293 times

digit 8 appears 6825 times

digit 9 appears 6958 times

It is useful to define a function to visualize the digits, to get an idea of how they look.

def plot_digit(some_digit):

    some_digit_image = some_digit.reshape(28,28)

     plt.imshow(some_digit_image, cmap = matplotlib.cm.binary, interpolation 

= "nearest")

    plt.axis("off")

    plt.show()
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For example, we can plot one randomly (see Figure 2-17).

plot_digit(X[36003])

Figure 2-17. The 36,003rd digit in the dataset. It is easly recognizable as a 5

The model we want to implement here is a simple logistic regression for binary 

classification, so the dataset must be reduced to two classes, or in this case, to two digits. 

We choose ones and twos. Let’s extract from our dataset only the images that represent a 

1 or a 2. Our neuron will try to recognize if a given image is of class 0 (a digit 1) or of class 

1 (a digit 2).

X_train = X[np.any([y == 1,y == 2], axis = 0)]

y_train = y[np.any([y == 1,y == 2], axis = 0)]

Next, the input observations must be normalized. (Remember: You don’t want your 

input data to be too big when using the sigmoid activation function, because you have 

784 of them.)

X_train_normalised = X_train/255.0

We chose 255, because each feature is the gray value of a pixel in the image, and gray 

levels in the source images go from 0 to 255. Later in the book I will discuss at length why 

we need to normalize the input features. For now, trust me that this is a necessary step. 

In each column, we want to have an input observation, and each row should represent a 

feature (a pixel gray value), so we must reshape the tensors
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X_train_tr = X_train_normalised.transpose()

y_train_tr = y_train.reshape(1,y_train.shape[0])

and we can define a variable n_dim to contain the number of features

n_dim = X_train_tr.shape[0]

Now comes a very important point. The labels in our dataset as imported will be 1 or 2 

(they simply tell you which digit the image represents). However, we will build our cost 

function with the assumptions that our class’s labels are 0 and 1, so we must rescale our 

y_train_tr array.

Note When doing binary classification, remember to check the values of the 
labels you are using for training. Sometimes, using the wrong labels (not 0 and 1) 
may cost you quite some time in understanding why the model is not working.

y_train_shifted = y_train_tr - 1

Now all images representing a 1 will have a label of 0, and all images representing a 2 

will have a label of 1. Finally, let’s use some proper names for our Python variables.

Xtrain = X_train_tr

ytrain = y_train_shifted

Figure 2-18 shows some of the digits we are dealing with.

ChaPter 2  Single neuron



75

 tensorflow Implementation
The tensorflow implementation is not difficult and is almost the same as for the linear 

regression. First, let’s define placeholders and variables.

tf.reset_default_graph()

X = tf.placeholder(tf.float32, [n_dim, None])

Y = tf.placeholder(tf.float32, [1, None])

learning_rate = tf.placeholder(tf.float32, shape=())

W = tf.Variable(tf.zeros([1, n_dim]))

b = tf.Variable(tf.zeros(1))

init = tf.global_variables_initializer()

Figure 2-18. Six random digits chosen from the dataset. The relative rescaled 
labels (remember: labels in our dataset are now 0 or 1) are given in brackets.
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Note that the code is the same we used for the linear regression model. However, we 

must define a different cost function (as discussed earlier) and a different neuron output 

(the sigmoid function).

y_ = tf.sigmoid(tf.matmul(W,X)+b)

cost = - tf.reduce_mean(Y * tf.log(y_)+(1-Y) * tf.log(1-y_))

training_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)

We have used the sigmoid function for the output of our neuron, with tf.sigmoid(). 

The code that will run the model is the same as that we have used for the linear 

regression. We have only changed the name of the function.

def run_logistic_model(learning_r, training_epochs, train_obs,  

train_labels, debug = False):

    sess = tf.Session()

    sess.run(init)

    cost_history = np.empty(shape=[0], dtype = float)

    for epoch in range(training_epochs+1):

         sess.run(training_step, feed_dict = {X: train_obs, Y: train_labels, 

learning_rate: learning_r})

         cost_ = sess.run(cost, feed_dict={ X:train_obs, Y: train_labels, 

learning_rate: learning_r})

        cost_history = np.append(cost_history, cost_)

        if (epoch % 500 == 0) & debug:

             print("Reached epoch",epoch,"cost J =", str.format('{0:.6f}', 

cost_))

    return sess, cost_history

Let’s run the model and see the results. We will choose to start with a learning rate 

of 0.01.

sess, cost_history = run_logistic_model(learning_r = 0.01,

                                training_epochs = 5000,

                                train_obs = Xtrain,

                                train_labels = ytrain,

                                debug = True)
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The output of our code (stopped after 3000 epochs) follows:

Reached epoch 0 cost J = 0.678598

Reached epoch 500 cost J = 0.108655

Reached epoch 1000 cost J = 0.078912

Reached epoch 1500 cost J = 0.066786

Reached epoch 2000 cost J = 0.059914

Reached epoch 2500 cost J = 0.055372

Reached epoch 3000 cost J = nan

What happened? Suddenly, at some point, our cost function assumes the value 

nan (not a number). It seems that the model does not do well after a certain point. 

If the learning rate is too big, or you initialize your weights wrongly, your values for 

ŷ P yi i i( ) ( ) ( )= =( )1|x  may get very close to zero or one (the sigmoid function assumes 

values very close to 0 or 1 for very big negative or positive values of z). Remember that in 

the cost function, you have the two terms tf.log(y_) and tf.log(1-y_), and because 

the log function is not defined for a value of zero, if y_ is 0 or 1, you will get a nan, 

because the code will try to evaluate tf.log(0). As an example, we can run the model 

with a learning rate of 2.0. After only one epoch, you already will get a nan value for the 

cost function. And it is easy to understand why, if you print out the value for b before 

and after the first training step. Simply modify your model code and use the following 

version:

def run_logistic_model(learning_r, training_epochs, train_obs, train_

labels, debug = False):

    sess = tf.Session()

    sess.run(init)

    cost_history = np.empty(shape=[0], dtype = float)

    for epoch in range(training_epochs+1):

        print ('epoch: ', epoch)

         print(sess.run(b, feed_dict={X:train_obs, Y: train_labels, 

learning_rate: learning_r}))

         sess.run(training_step, feed_dict = {X: train_obs, Y: train_labels, 

learning_rate: learning_r})
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         print(sess.run(b, feed_dict={X:train_obs, Y: train_labels, 

learning_rate: learning_r}))

         cost_ = sess.run(cost, feed_dict={ X:train_obs, Y: train_labels, 

learning_rate: learning_r})

        cost_history = np.append(cost_history, cost_)

        if (epoch % 500 == 0) & debug:

             print("Reached epoch",epoch,"cost J =", str.format('{0:.6f}', 

cost_))

    return sess, cost_history

You will get the following result (after stopping the training after just one epoch):

epoch:  0

[ 0.]

[-0.05966223]

Reached epoch 0 cost J = nan

epoch:  1

[-0.05966223]

[ nan]

You see how b goes from 0 to -0.05966223 and then to nan? Therefore, z = wTX + b turns 

into nan, then y = σ(z) also turns into nan, and, finally, the cost function, being a function of 

y, will also result in nan. This is simply because the learning rate is way too big.

What is the solution? You should try a different (read: much smaller) learning rate.

Let’s try and see if we can get a result that is more stable after 2500 epochs. We run 

the model with the call, as follows:

sess, cost_history = run_logistic_model(learning_r = 0.005,

                                training_epochs = 5000,

                                train_obs = Xtrain,

                                train_labels = ytrain,

                                debug = True)
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The output of the command is

Reached epoch 0 cost J = 0.685799

Reached epoch 500 cost J = 0.154386

Reached epoch 1000 cost J = 0.108590

Reached epoch 1500 cost J = 0.089566

Reached epoch 2000 cost J = 0.078767

Reached epoch 2500 cost J = 0.071669

Reached epoch 3000 cost J = 0.066580

Reached epoch 3500 cost J = 0.062715

Reached epoch 4000 cost J = 0.059656

Reached epoch 4500 cost J = 0.057158

Reached epoch 5000 cost J = 0.055069

No more nan in our output. You can see a plot of the cost function in Figure 2-19. To 

evaluate our model, we must choose an optimizing metric (as discussed before). For a 

binary classification problem, a classical metric is the accuracy (which we can indicate 

with a) that can be understood as a measure of the difference between a result and its 

“true” value. Mathematically, it can be calculated as

 
a

number of cases correctly identified

total number of case
=

    

   ss  

To get the accuracy, we can run the following code. (Remember: We will classify an 

observation i of class 0 if P(y(i) = 1| x(i)) < 0.5, or in class 1 if P(y(i) = 1| x(i)) > 0.5.)

correct_prediction1 = tf.equal(tf.greater(y_, 0.5), tf.equal(Y,1))

accuracy = tf.reduce_mean(tf.cast(correct_prediction1, tf.float32))

print(sess.run(accuracy, feed_dict={X:Xtrain, Y: ytrain, learning_rate: 

0.05}))

With this model, we reach an accuracy of 98.6%. Not bad for a network with only one 

neuron.
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You could also try to run the previous model (with a learning rate of 0.005) for more 

epochs. You will discover that at about 7000 epochs, the nan will reappear. The solution 

here would be to reduce the learning rate with an increasing number of epochs. A simple 

approach, such as halving the learning rate every 500 epochs, will get rid of the nans. I 

will discuss a similar approach in more detail later in the book.
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CHAPTER 3

Feedforward Neural 
Networks
In Chapter 2, we did some amazing things with one neuron, but that is hardly flexible 

enough to tackle more complex cases. The real power of neural networks comes to 

light when several (thousand, even million) neurons interact with each other to solve 

a specific problem. The network architecture (how neurons are connected to each 

other, how they behave, and so on) plays a crucial role in how efficient the learning of a 

network is, how good its predictions are, and what kind of problems it can solve.

There are many kinds of architectures that have been extensively studied and are 

very complex, but from a learning perspective, it is important to start from the most 

simple kind of neural network with multiple neurons. It makes sense to begin with so- 

called feedforward neural networks, in which data enters at the input layer and passes 

through the network, layer by layer, until it arrives at the output layer. (This gives the 

networks their name: feedforward neural networks.) In this chapter, we will consider 

networks in which each neuron in a layer gets its input from all neurons from the 

preceding layer and feeds their output into each neuron of the next layer.

As is easy to imagine, with more complexity come more challenges. It is more 

difficult to achieve fast learning and good accuracy; the number of hyperparameters 

that are available grows, due to the increased network complexity; and a simple gradient 

descent algorithm will no longer cut it when dealing with big datasets. When developing 

models with many neurons, we will need to have at our disposal an expanded set of 

tools that will allow us to deal with all the challenges that these networks present. In this 

chapter, we will start to look at some more advanced methods and algorithms that will 

allow us to work efficiently with big datasets and big networks. These complex networks 

become good enough to do some interesting multiclass classification, one of the most 
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frequent tasks that big networks are required to perform (for example, handwriting 

recognition, face recognition, image recognition, and so on), so I have chosen a dataset 

that will allow us to do some interesting multiclass classification and study its difficulties.

I will start the chapter by discussing the network architecture and the needed matrix 

formalism. A short overview of the new hyperparameters that come with this new type 

of network is then given. How to implement multiclass classification using the softmax 

function, and what kind of output layer is needed, is then explained. Then, before 

starting with Python code, a brief digression is taken to explain in detail what exactly 

overfitting is, with a simple example, and how to conduct a basic error analysis with 

complex networks. Then we will start to use TensorFlow to construct bigger networks, 

applying them to a MNIST-similar dataset, based on images of clothing items (which 

will be lots of fun). We will look at how to make the gradient descent algorithm covered 

in Chapter 2 faster, introducing two new variations: stochastic and mini-batch gradient 

descent. Then we will look at how to add many layers in an efficient way and how to 

initialize the weights and the biases in the best way possible, to make training fast and 

stable. In particular, we will look at Xavier and He initialization for sigmoid and the ReLU 

activation function, respectively. Finally, a rule of thumb on how to compare complexity 

of networks going beyond only the number of neurons is offered, and the chapter 

concludes with some tips on how to choose the right networks.

 Network Architecture
Neural network architecture is quite easy to understand. It consists of an input layer  

(the inputs x j
i( ) ), several layers (called hidden, because they are sandwiched between 

the input and the output layers, so they are “invisible” from the outside, so to speak), and 

an output layer. In each layer, you may have one to several neurons. The main property 

of such a network is that each neuron receives input from each neuron in the preceding 

layer and feeds its output to every neuron in the next layer. In Figure 3-1, you can see a 

graphical representation of such a network.
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To jump from one neuron, as in Chapter 2, to this is quite a big step. To build the 

model, we will have to work with matrix formalism, and, therefore, we must get all the 

matrix dimensions right. First, I’ll discuss some new notation.

• L: Number of hidden layers, excluding the input layer but including 

the output layer

• nl: Number of neurons in layer l

In a network such as the one in Figure 3-1, we will indicate the total number of 

neurons with Nneurons, which can be written as

 N n n nneurons x
i

L

i
i

L

i= + =
= =
å å

1 0

 

where, by convention, we defined n0 = nx. Each connection between two neurons will 

have its own weight. Let’s indicate the weight between neuron i in layer l and neuron j in 

layer l − 1 with wi j
l[ ] . In Figure 3-2, I have drawn only the first two layers (input and layer 1)  

of our generic network of Figure 3-1, with the weights between the first neuron in the 

input layer and all the others in layer 1. All other neurons are grayed out for clarity.

Figure 3-1. Diagram of a multilayered deep feedforward neural network, in 
which each neuron receives input from each neuron in the preceding layer and 
feeds its output to every neuron in the subsequent layer

Chapter 3  FeedForward Neural Networks



86

The weights between the input layer and layer 1 can be written as a matrix, as 

follows:
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This means that our matrix W[1] has dimensions n1 × nx. Of course, this can be 

generalized between any two layers l and l − 1, meaning that the weight matrix between 

two adjacent layers l and l − 1, indicated by W[l], will have dimensions nl × nl − 1. By 

convention, n0 = nx is the number of input features (not the number of observations that 

we indicate with m).

Figure 3-2. The first two layers of a generic neural network, with the weights of 
the connections between the first neuron in the input layers and the others in the 
second layer. All other neurons and connections are drawn in light gray, to make 
the diagram clearer.
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Note the weight matrix between two adjacent layers l and l − 1, which we 
indicate with W[l ], will have dimensions nl × nl − 1, where, by convention, n0 = nx is 
the number of input features.

The bias (indicated by b in Chapter 2) will be a matrix this time. Remember that each 

neuron that receives inputs will have its own bias, so when considering our two layers, l 

and l − 1, we will require nl different values of b. We will indicate this matrix with b[l], and 

it will have dimensions nl × 1.

Note the bias matrix for two adjacent layers l and l − 1, which we indicate with 
b[l], will have dimensions nl × 1.

 Output of Neurons
Now let’s start considering the output of our neurons. To begin, we will consider the 

ith neuron of the first layer (remember that our input layer is by definition layer 0). 

Let’s indicate its output with ŷi
1[ ]  and assume that all neurons in layer l use the same 

activation function, which we will indicate by g[l]. Then we will have

 ŷ g z g w x bi i
i

j

n

ij j i

x
1 1 1

1

1 1[ ] [ ] [ ] [ ]

=

[ ] [ ]= ( ) = +( )æ

è
ç

ö

ø
÷å  

where we have indicated, as you will remember from Chapter 2, zi as

 z w x bi
j

n

ij j i

x
1

1

1 1[ ]

=

[ ] [ ]= +( )å  

As you can imagine, we want to have a matrix for all the output of layer 1, so we will 

use the notation

 Z W X b1 1 1[ ] [ ] [ ]= +  

where Z[1] will have dimensions n1 × 1, and where with X, we have indicated our matrix 

with all our observations (rows for the features, and columns for observations), as I have 

already discussed in Chapter 2. We assume here that all neurons in layer l will use the 

same activation function that we will indicate with g[l].
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We can easily generalize the previous equation for a layer l

 Z W Z bl l l l[ ] [ ] -[ ] [ ]= +1  

because layer l will get its input from layer l − 1. We just need to substitute X with Z[l − 1]. 

Z[l] will have dimensions nl × 1. Our output in matrix form will then be

 
Y g Zl l l[ ] [ ] [ ]= ( )  

where the activation function acts, as usual, element by element.

 Summary of Matrix Dimensions
Following is a summary of the dimensions of all the matrices we have described so far.

• W[l] has dimensions nl × nl − 1 (where we have n0 = nx by definition)

• b[l] has dimensions nl × 1

• Z[l − 1] has dimensions nl − 1 × 1

• Z[l] has dimensions nl × 1

• Y[l] has dimensions nl × 1

In each case, l goes from 1 to L.

 Example: Equations for a Network with Three Layers
To make this discussion a bit more concrete, let’s consider an example of a network with 

three layers (so L = 3), with n1 = 3, n2 = 2, and n3 = 1, as depicted in Figure 3-3.
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In this case, we will have to calculate the following quantities:

• Ŷ g W X b1 1 1 1[ ] [ ] [ ] [ ]= +( ) , where W[1] has dimensions 3 × nx, b has 

dimensions 3 × 1, and X has dimensions nx × m

• Ŷ g W Z b2 2 2 1 2[ ] [ ] [ ] [ ] [ ]= +( ) , where W[2] has dimensions 2 × 3, b has 

dimensions 2 × 1, and Z[1] has dimensions 3 × m

• Ŷ g W Z b3 3 3 2 3[ ] [ ] [ ] [ ] [ ]= +( ) , where W[3] has dimensions 1 × 2, b has 

dimensions 1 × 1, and Z[2] has dimensions 2 × m

and your network output, Ŷ 3[ ] , will have, as expected, dimensions 1 × m.

All this may seem rather abstract (and, in fact, it is). You will see later in the chapter 

how easy it is to implement in TensorFlow, simply by building the right computational 

graph, based on the steps just discussed.

Figure 3-3. A practical example of a feedforward neural network
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 Hyperparameters in Fully Connected Networks
In networks such as the ones just discussed, there are quite a few parameters that you 

can tune to find the best model for your problem. You will remember from Chapter 2 

that parameters that you fix at the beginning and then don’t change during the training 

phase are called hyperparameters. You will have to tune the additional following 

hyperparameters for feed forward networks:

• Number of layers: L

• Number of neurons in each layer: ni for i from 1 to L

• Choice of activation function for each layer: g[l]

Then, of course, you still have the following hyperparameters that you encountered 

in Chapter 2:

• Number of iterations (or epochs)

• Learning rate

 sof tmax Function for Multiclass Classification
You will still have to suffer a bit more theory before getting to some TensorFlow code. 

The kinds of networks described in this chapter start to be complex enough to be able to 

perform some multiclass classification with reasonable results. To do this, we must first 

introduce the softmax function.

Mathematically speaking, the softmax function S is one that transforms a k 

dimensional vector into another k dimensional vector of real values, each between 0 

and 1, and that sum up to 1. Given k real values zi for i = 1, …, k, we define the vector 

z = (z1, …, zk), and we define the softmax vector function S(z) = (S(z)1 S(z)2… S(z)k) as
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Because the denominator is always bigger than the nominator, S(z)i < 1. Additionally, 
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So, S(z)i behaves like a probability, because its sum over i is 1, and its elements are all 

less than 1. We will consider S(z)i as a probability distribution over k possible outcomes. 

For us, S(z)i will simply be the probability of our input observation of being of class i. 

Let’s suppose we are trying to classify an observation into three classes. We may get the 

following output: S(z)1 = 0.1, S(z)2 = 0.6, and S(z)3 = 0.3. That means that our observation 

has a 10% probability of being of class 1, a 60% probability of being of class 2, and 30% 

probability of being of class 3. Normally, one chooses to classify the input observation 

into the class with the higher probability, in this example, class 2, with 60% probability.

Note we will look at S(z )i as a probability distribution over k with i = 1, …, k 
possible outcomes. For us, S(z )i will simply be the probability of our input observation 
being of class i.

To be able to use the softmax function for classification, we will have to use a specific 

output layer. We will have to use ten neurons, each of which will give zi as its output, 

and then one neuron that will output S(z). This neuron will have the softmax function 

as activation function and will have as inputs the 10 outputs, zi, of the last layer with 10 

neurons. In TensorFlow, you use the tf.nn.softmax function applied to the last layer 

with 10 neurons. Remember that this tensorflow function will act element by element. 

Later in the chapter, you will find a concrete example showing how to implement this 

from start to finish.

 A Brief Digression: Overfitting
One of the most common problems that you will encounter when training deep neural 

networks will be overfitting. What can happen is that your network may, owing to its 

flexibility, learn patterns that are due to noise, errors, or simply wrong data. It is very 

important to understand what overfitting is, so I will give you a practical example of what 

can happen, to give you an intuitive understanding of it. To make it easier to visualize,  

I will work with a simple two-dimensional dataset, which I will create for the purpose.  

I hope that at the end of the next section, you will have a clear idea of what overfitting is.
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 A Practical Example of Overfitting
Networks described in the previous sections are rather complex and can easily lead to 

overfitting of the dataset. Let me explain briefly the concept of overfitting. To understand 

it, consider the following problem: find the best polynomial that approximates a 

given dataset. Given a set of two-dimensional points (x(i), y(i)), we want to find the best 

polynomial of degree K in the form

 
f x a xi

j

K

j
i j( )

=

( )( ) =å
0

 

that minimizes the mean square error
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where, as usual, m indicates the number of data points we have. I don’t want only to 

determine all the parameters aj, but also the value of K that best approximates our data. 

K, in this case, measures our model complexity. For example, for K = 0, we simply have 

f (x(i)) = a0 (a constant), the simplest polynomial we can think of. For higher K, we have 

higher order polynomials, meaning that our function is more complex, having more 

parameters available for training.

Here is an example of our function for K = 3:

 
f x a x a a x a x a xi
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where we have four parameters that can be tuned during our training models. Let’s 

generate some data, starting from a second order polynomial (K = 2)

 1 2 3
2

+ +( ) ( )x xi i
 

and adding some random error (this will make overfitting visible). Let’s first import our 

standard libraries with the addition of the curve_fit function, which will minimize 

automatically the standard error and find the best parameters. Don’t worry too much 

about this function. The goal here is to show you what can happen when you use a 

model that is too complex.
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import numpy as np

import matplotlib.pyplot as plt

from scipy.optimize import curve_fit

Let’s define a function for a second-degree polynomial

def func_2(p, a, b, c):

    return a+b*p + c*p**2

then let’s generate our dataset

x = np.arange(-5.0, 5.0, 0.05, dtype = np.float64)

y = func_2(x, 1,2,3)+18.0*np.random.normal(0, 1, size=len(x))

To add some random noise to the function, we have used the function np.random.

normal(0, 1, size=len(x)), which generates a numpy array of random values from a 

normal distribution of length len(x), with average 0 and standard deviation 1.

In Figure 3-4, you can see what the data looks like for a = 1, b = 2, and c = 3.

Figure 3-4. The data we have generated with a = 1, b = 2, and c = 3, as described 
in the text
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Now let’s consider a model that is too simple to capture the feature of the data, 

meaning that we will see what a model with high bias1 can do. Let’s consider a linear 

model (K = 1). The code will be

def func_1(p, a, b):

    return a+b*p

popt, pcov = curve_fit(func_1, x, y)

That will give the best values for a and b that minimize the standard error. In 

Figure 3-5, it is clear how this model completely misses the main feature of the data, 

being too simple.

Let’s try to fit a two-degree polynomial (K = 2). The results appear in Figure 3-6.

1 Bias is a measure of the error originating from models that are too simple to capture the real 
features of the data.

Figure 3-5. The linear model misses the main feature of the data, being too 
simple. In this case, the model has high bias.
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That is better. This model seems to capture the main features of the model, ignoring 

the random noise. Now let’s try a very complex model—a 21-degree polynomial (K = 21). 

The results are shown in Figure 3-7.

Figure 3-6. The results for a 2-degree polynomial 

Figure 3-7. The results for a 21-degree polynomial model 
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Now, this model shows features that we know are wrong, because we created our 

data. These features are not present, but the model is so flexible that it captures the 

random variability that we have introduced with noise. Here, I am referring to the 

oscillations that have appeared using this high-ordered polynomial.

In this case, we talk about overfitting, meaning we start capturing with our 

model features owing, for example, to random error. It is easy to understand that this 

generalizes quite badly. If we applied this 21-degree polynomial model to new data, it 

would not work well, because the random noise would be different in new data, and so 

the oscillations we see in Figure 3-7 would make no sense on new data. In Figure 3-8,  

I have plotted the best 21-degree polynomial models obtained by fitting data generated 

with 10 different random noise values added. You can clearly see how much it varies. It 

is not stable and is strongly dependent on the random noise present. The oscillations are 

always different! In this case, we are talking about high variance.

Figure 3-8. Result of our model, with a 21-degree polynomial fitted to 10 different 
datasets generated with different random noise values added

Now let’s create the same plot with our linear model, while varying our random 

noise, as we did in Figure 3-8. You can check the results in Figure 3-9.
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You can see that our model is much more stable. Our linear model does not capture 

any feature that is dependent on our noise, but it misses the main features of our data 

(the concave nature). We are talking here of high bias.

Figure 3-10 should help you to gain an intuitive understanding of bias and variance. 

Bias is a measure of how close our measurements are to the true values (the center of 

the figure), and variance is a measure of how spread the measurements are around the 

average (not necessarily the true value, as you can see on the right).

Figure 3-9. Results of our linear model applied to data in which we have 
randomly changed the random noise. For easier comparison with Figure 3-8,  
I have used the same scale.
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In the case of neural networks, we have many hyperparameters (number of layers, 

number of neurons in each layer, activation function, and so on), and it is very difficult to 

know in which regime we are. How can we tell if our model has a high variance or a high 

bias, for example? I will dedicate an entire chapter to this subject, but the first step in 

performing this error analysis is to split our dataset into two different ones. Let’s see what 

this means and why we do it.

Note the essence of overfitting is to have unknowingly extracted some of the 
residual variation (i.e., the noise) as if that variation represented the underlying 
model structure (see Burnham, k. p.; anderson, d. r., Model Selection and 
Multimodel Inference, 2nd ed., New York; springer-Verlag, 2002). the opposite is 
called underfitting—when the model cannot capture the structure of the data.

The problem with overfitting and deep neural networks is that there is no way 

of visualizing easily the results, and, therefore, we require a different approach to 

determine if our model is overfitting, underfitting, or is just right. This can be achieved 

by splitting our dataset into different parts and evaluating and comparing the metrics on 

all of them. Let’s explore the basic idea in the next section.

Figure 3-10. Bias and variance
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 Basic Error Analysis
To check how our model is doing, and to do a proper error analysis, we must split our 

dataset into the following two parts:2

• Training dataset: The model is trained on this dataset, using the inputs 

and the relative labels, by an optimizer algorithm such as gradient 

descent, as we did in Chapter 2. Often, this set is called the “train set.”

• Development (or validation) set: The trained model will then be used 

on this dataset, to check how it is doing. On this dataset, we will test 

different hyperparameters. For example, we can train two different 

models with a different number of layers on the training dataset and 

test them on this dataset, to check how they are doing. Often, this set 

is termed the “dev set.”

I will devote an entire chapter to error analysis, but it is a good idea to offer you an 

overview of why it is important to split the dataset. Let’s suppose we are dealing with 

classification, and let’s suppose that the metric we use to judge the quality of our model 

is 1 minus the accuracy, or, in other words, the percentage of the cases that are wrongly 

classified. Let’s consider the following three cases (Table 3-1):

• Case A: Here, we are overfitting (high variance), because we are doing 

very well on the training set, but our model generalizes very badly to 

our dev set (refer again to Figure 3-8).

• Case B: Here, we see a problem with high bias, meaning that our 

model is not doing very well generally, on both datasets (refer again 

to Figure 3-9).

2 To conduct a proper error analysis, we will require at least three parts, perhaps four. But to get a 
basic understanding of the process, two parts suffice.

Table 3-1. Four different cases to show how to recognize overfitting from the 

training and the dev set error

Error Case A Case B Case C Case D

training set error 1% 15% 14% 0.3%

dev set error 11% 16% 32% 1.1%
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• Case C: Here, we have a high bias (the model cannot predict very well 

the training set) and high variance (the model does not generalize 

well on the dev set).

• Case D: Here, everything seems OK. The error is good on the train set 

and good on the dev set. That is a good candidate for our best model.

I will explain all these concepts more thoroughly later in the book, where I will 

provide recipes for how to solve problems of high bias, high variances, both, or even 

more complex cases.

To recap: To perform a very basic error analysis, you will have to split your dataset 

into at least two sets: train and dev. You should then calculate your metric on both sets 

and compare them. You want to have a model that has low error on the train set and 

on the dev set (as in Case D, in the preceding example), and the two values should be 

comparable.

Note Your main takeaways from this section should be (1) a set of recipes and 
guidelines is required for understanding how your model is doing (is it overfitting, 
underfitting, or is it just right?); (2) to answer the preceding questions, you must 
split your dataset in two, to perform the relevant analysis. later in the book, you 
will see what you can do with a dataset split into three, or even four, parts.

 The Zalando Dataset
Zalando SE is a German e-commerce company based in Berlin. The company 

maintains a cross-platform store that sells shoes, clothing, and other fashion items.3  

For a kaggle competition (if you don’t know what this is, check the website  

www.kaggle.com, from which you can participate in many competitions that have the 

goal of solving problems with data science), Zalando prepared a MNIST-similar dataset 

of images of its clothing, for which they provided 60,000 training images and 10,000 test 

images. As in MNIST, each image was 28 × 28 pixels in grayscale. Zalando grouped all 

images in ten different classes and provided the labels for each image. The dataset has 

785 columns. The first column is the class label (an integer going from 0 to 9), and the 

3 Wikipedia, “Zalando,” https://en.wikipedia.org/wiki/Zalando, 2018.
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remaining 784 contain the pixel gray value of the image (you can calculate that as 28 × 

28 = 784), exactly as we have seen in Chapter 2, in the discussion related to the MNIST 

dataset of handwritten digits.

Each training and test sample is assigned one of the following labels (per the 

documentation):

• 0: T-shirt/top

• 1: Trouser

• 2: Pullover

• 3: Dress

• 4: Coat

• 5: Sandal

• 6: Shirt

• 7: Sneaker

• 8: Bag

• 9: Ankle boot

In Figure 3-11, you can see an example of each class, chosen randomly from the 

dataset.
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Figure 3-11. One example from each of the ten classes in the Zalando dataset
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The dataset has been provided under the MIT License.4 The data file can be 

downloaded from kaggle (www.kaggle.com/zalando-research/fashionmnist/data) or 

directly from GitHub (https://github.com/zalandoresearch/fashion-mnist). If you 

choose the second option. you will have to prepare the data a bit. (You can convert it to 

CSV with the script located at https://pjreddie.com/projects/mnist-in-csv/.) If you 

download it from kaggle, the data will already be in the correct format. You will find two 

CSV files zipped on the kaggle web site. When unzipped, you will have fashion- mnist_

train.csv, with 60,000 images (roughly 130MB), and fashion-mnist_test.csv, with 

10,000 (roughly 21MB). Let’s fire up a Jupyter notebook and start coding!

We will need the following imports in our code:

import pandas as pd

import numpy as np

import tensorflow as tf

%matplotlib inline

import matplotlib

import matplotlib.pyplot as plt

from random import *

Put the CSV files in the same directory as your notebook. Then, you can simply load 

the files with the pandas function.

data_train = pd.read_csv('fashion-mnist_train.csv', header = 0)

You can also read the file with standard NumPy functions (such as loadtxt()), but 

using read_csv() from pandas gives you a lot of flexibility in slicing and analyzing your 

data. Additionally, it is a lot faster. Reading the file (that is, roughly 130MB) with pandas 

takes about 10 seconds, while with NumPy, it takes 1 minute, 20 seconds on my laptop. 

So, if you are dealing with big datasets, keep this in mind. It is common practice to use 

pandas to read and prepare the data. If you aren’t familiar with pandas, don’t worry. All 

you need to understand will be explained in detail.

4 Wikipedia, “MIT License,” https://en.wikipedia.org/wiki/MIT_License, 2018.
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Note remember: You should not focus on the python implementation. Focus on 
the model, on the concepts behind the implementation. You can achieve the same 
results using pandas, Numpy, or even C. try to concentrate on how to prepare the 
data, how to normalize it, how to check the training, and so on.

With the command

data_train.head()

you can see the first five lines of your dataset, as shown in Figure 3-12.

Figure 3-12. With data_train.head() the command, you can check the first five 
rows of your dataset

You will see that each column has a name. pandas retrieves it from the first line in 

the file. Checking the column name, you know immediately what is in which column. 

For example, in the first, we have the class label. Now we must create an array with the 

labels and one with the 784 features (remember that we have all the pixel gray values as 

features). For this, we can simply write the following:

labels = data_train['label'].values.reshape(1, 60000)

train = data_train.drop('label', axis=1).transpose()

Let’s discuss briefly what the code does, starting with the labels. In pandas, each column 

has a name (as you can see in Figure 3-12), which in our case, is automatically inferred from 

the first line of the CSV file. The first column (“label”) contains the class label, an integer  

from 0 to 9. In pandas, to select this column only, we can simply use the following syntax:

data_train['label']

giving the column name in square brackets.
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If you check the shape of this array with

data_train['label'].shape

you get the value (60000), as expected. As we have already seen in Chapter 2, we want a 

tensor for our labels with the dimensions 1 × m, where m is the number of observations 

(in this case 60000). So, we must reshape it with the command

labels = data_train['label'].values.reshape(1, 60000)

Now the tensor labels have the dimension (1, 60000), as we want.

The tensor that should contain the features should contain all columns, except the 

labels. So, we simply remove the label column with drop('label', axis=1), take all the 

others, and then transpose the tensor. In fact, data_train.drop('label', axis=1) has 

the dimensions (60000, 784), and we want a tensor with the dimensions nx × m, where 

here nx = 784 is the number of the features. Following is a summary of our tensors so far.

• Labels: This has the dimensions 1 × m (1 × 60000) and contains the 

class labels (integers from 0 to 9).

• Train: This has the dimensions nx × m (784 × 60000) and contains the 

features, in which each row contains the grayscale value of a single 

pixel in the image (remember 28 × 28 = 784).

Refer again to Figure 3-11 for an idea of how the images look. Finally, let’s normalize 

the input, so that instead of having values from 0 to 255 (the grayscale values), it has only 

values between 0 and 1. This is very easy to do with the following code:

train = np.array(train / 255.0)

 Building a Model with tensorflow
Now it is time to expand what we did with TensorFlow in Chapter 2 with one neuron to 

networks with many layers and neurons. Let’s first discuss the network architecture and 

what kind of output layer we need, and then let’s build our model with TensorFlow.
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 Network Architecture
We will start with a network with just one hidden layer. We will have an input layer with 

784 features, then a hidden layer (in which we will vary the number of neurons), then 

an output layer of ten neurons that will feed their output into a neuron that will have 

as an activation function the softmax function. See first Figure 3-13, for a graphical 

representation of the network, and then I will spend some time explaining the various 

parts, especially the output layers.

Figure 3-13. The network architecture with a single hidden layer. During our 
analysis, we will vary the number of neurons, n1, in the hidden layer.

Let me explain why there is this strange output layer with ten neurons and why there is 

a need for an additional neuron for the softmax function. Remember that for each image, 

we want to be able to determine to which class it belongs. To do this, as explained when 

discussing the softmax function, we will have to get ten outputs for each observation: each 

being the probability of the image of being of each of the classes. So, given an input x (i), 

we will need the ten values: P( y (i) = 1| x (i)), P( y (i) = 2| x (i)), …., P( y (i) = 10| x (i)) (probability of 

the observation class y (i) being one of the ten possibilities given the input x (i)), or, in other 

words, our output should be a tensor of dimensions 1 × 10 in the form

 
ŷ x x x= =( ) =( ) ¼ =( )( )( ) ( ) ( ) ( ) ( ) ( )P y P y P yi i i i i i1 2 10| | |  
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Figure 3-14. The final neuron in our network that transforms the ten inputs in 
probabilities

And because the observation must be of one single class the condition

 j

i iP y j
=

( ) ( )å =( ) =
1

10

1|x
 

must be satisfied. This can be understood as follows: the observation has a 100% 

probability of being of one of the ten classes, or, in other words, all the probabilities must 

add to 1. We solve this problem in two steps:

• We create an output layer with ten neurons. In this way, we will have 

our ten values as output.

• Then we feed the ten values to a new neuron (let’s call it “softmax” 

neuron) that will take the ten inputs and give as output ten values 

that are all less than 1 and that add up to 1.

Figure 3-14 shows our “softmax” neuron in detail.
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Calling zi the output of the ith neuron in the last layer (with i going from 1 to 10), we 

will have
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That is exactly what the tensorflow function tf.nn.softmax() does. It takes a tensor 

as input and returns a tensor with the same dimensions as the input but “normalized,” as 

discussed previously. In other words, if we feed z = (z1  z2 …  z10) to the function, it will 

return a tensor with the same dimensions as z, meaning 1 × 10, where each element is 

the last equation.

 Modifying Labels for the softmax Function—One-Hot 
Encoding
Before developing our network, first we must solve another problem. You will remember 

from Chapter 2 that in classification, we will use the following cost function:

cost = - tf.reduce_mean(Y * tf.log(y_)+(1-Y) * tf.log(1-y_))

where Y contains our labels and y_ is the result of our network. So, the two tensors 

must have the same dimensions. In our case, I explained to you that our network will 

give as output a vector with ten elements, while a label in our dataset is simply a scalar. 

Therefore, we have y_ that has dimensions (10,1) and Y that has dimensions (1,1). This 

will not work if we don’t do something smart. We must transform our labels in a tensor 

that has dimensions (10,1). A vector with a value for each class is also required, but what 

value should we use?

We must perform what is known as one-hot encoding.5 This means that we will 

transform our labels (integers from 0 to 9) to tensors with dimensions (1,10) with the 

following algorithm: our one-hot encoded vector will have all zeros, except at the index 

of the label. For example, for a label 2, our 1 × 10 tensor will have all zeros, except at 

the position of index 2, or, in other words, it will be (0,0,1,0,0,0,0,0,0,0). Try some other 

examples (see Table 3-2), and the concept will become clear immediately.

5 As a side note, this technique is often used to feed categorical variables to machine-learning 
algorithms.
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Figure 3-15. Graphical representation of the process of one-hot encoding a label

In Figure 3-15, you can see a graphical representation of the process of one-hot 

encoding a label. In the figure, two labels (2 and 5) are one-hot encoded in two tensors. 

The grayed element of the tensor (in this case, a one-dimensional vector) is the one that 

becomes one, while the white ones remain zero.

Table 3-2. Examples of How One-Hot Encoding 

Works (Remember that labels go from 0 to 9 as 

indexes.)

Label One-Hot Encoded Label

0 (1,0,0,0,0,0,0,0,0,0)

2 (0,0,1,0,0,0,0,0,0,0)

5 (0,0,0,0,0,1,0,0,0,0)

7 (0,0,0,0,0,0,0,1,0,0)
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Sklearn has several ways of doing this automatically (check, for example, the function 

OneHotEncoder()), but I think it is instructive to undertake the process manually, to 

really see how it is done. Once you understand why you need it, and in which format you 

need it, you can use the function you like most. The Python code to do this is very simple 

(the last line just converts the pandas data frame into a NumPy array):

labels_ = np.zeros((60000, 10))

labels_[np.arange(60000), labels] = 1

labels_ = labels_.transpose()

labels_ = np.array(labels_)

First, you create a new array with the right dimensions: (60000,10), then you fill it 

with zeros with the NumPy function np.zeros((60000,10)). Next, you set to 1 only the 

columns related to the label itself, using pandas functionalities to slice data frames with 

the line labels_[np.arange(60000), labels] = 1. Then you transpose it, to have the 

dimensions we want at the end: (10, 60000), where each column indicates a different 

observation.

Now in our code, we can finally compare Y and y_, because both now have the 

dimensions (10,1) for one observation, or when considering the entire training dataset of 

(10, 60000). Each row in y_ will now represent the probability of our observation as being 

of a specific class. At the very end, when calculating the accuracy of our model, we will 

assign the class with the highest probability to each observation.

Note our network will give us the ten probabilities for the observation as being 
of each of the ten classes. at the end, we will assign to the observation the class 
that has the highest probability.

 The tensor  flow Model
Now is time to build our model with tensorflow. The following code will do the job:

n_dim = 784

tf.reset_default_graph()

# Number of neurons in the layers

n1 = 5 # Number of neurons in layer 1

n2 = 10 # Number of neurons in output layer
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cost_history = np.empty(shape=[1], dtype = float)

learning_rate = tf.placeholder(tf.float32, shape=())

X = tf.placeholder(tf.float32, [n_dim, None])

Y = tf.placeholder(tf.float32, [10, None])    

W1 = tf.Variable(tf. truncated_normal ([n1, n_dim], stddev=.1))

b1 = tf.Variable(tf.zeros([n1,1]))

W2 = tf.Variable(tf. truncated_normal ([n2, n1], stddev=.1))

b2 = tf.Variable(tf.zeros([n2,1]))

# Let's build our network...

Z1 = tf.nn.relu(tf.matmul(W1, X) + b1)

Z2 = tf.nn.relu(tf.matmul(W2, Z1) + b2)

y_ = tf.nn.softmax(Z2,0)

cost = - tf.reduce_mean(Y * tf.log(y_)+(1-Y) * tf.log(1-y_))

optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cost)

init = tf.global_variables_initializer()

I will not go through each line of code, because you should understand by now what 

a placeholder or a variable is. But there are a few details of the code that I would like you 

to notice.

• When we initialize the weights, use the code tf.Variable(tf. 

truncated_normal ([n1, n_dim], stddev=.1)). The truncated_

normal() function will return values from a normal distribution, with 

the peculiarity that values that are more than 2 standard deviation 

from the average will be dropped and repicked. The reason for 

choosing a small stddev of 0.1 is to avoid that the output of the 

ReLU activation function becomes too big and, therefore, nans start 

to appear, owing to Python not being able to calculate properly 

numbers that are too big. I will discuss a better way of choosing the 

right stddev later in the chapter.

• Our last neuron will use the softmax function: y_ = tf.nn.

softmax(Z2,0). Remember that y_ will not be a scalar but a tensor of the 

same dimensions as Z2. The second parameter, 0, tells tensorflow that 

we want to apply the softmax function along the vertical axis (the rows).
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• The two parameters n1 and n2 define the number of neurons in the 

different layers. Remember that the second (output) layer must have 

ten neurons to be able to use the softmax function. But we will play 

with the value for n1. Increasing n1 will increase the complexity of the 

network.

Now let’s try to perform the training, as we did in Chapter 2. We can reuse the code 

we already wrote. Try to run the following code on your laptop:

sess = tf.Session()

sess.run(tf.global_variables_initializer())

training_epochs = 5000

cost_history = []

for epoch in range(training_epochs+1):

     sess.run(optimizer, feed_dict = {X: train, Y: labels_, learning_rate: 

0.001})

     cost_ = sess.run(cost, feed_dict={ X:train, Y: labels_, learning_rate: 

0.001})

    cost_history = np.append(cost_history, cost_)

    if (epoch % 20 == 0):

        print("Reached epoch",epoch,"cost J =", cost_)

You should immediately notice one thing: it is very slow. Unless you have a very 

powerful CPU or have installed TensorFlow with GPU support and you have a powerful 

graphic card, this code will take, on a 2017 laptop, a few hours (from a couple to several, 

depending on the hardware you have). The problem is that the model, as we coded it, 

will create a huge matrix for all observations (that is 60,000) and then will modify the 

weights and bias only after a complete sweep over all observations. This requires quite 

some resources, memory, and CPU. If that were the only choice we had, we would be 

doomed. Keep in mind that in the deep-learning world, 60,000 examples of 784 features 

is not a big dataset at all. So, we must find a way of letting our model learn faster.
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The last piece of code you need is the one you can use to calculate the accuracy of 

your model. You can do it easily with the following code:

correct_predictions = tf.equal(tf.argmax(y_,0), tf.argmax(Y,0))

accuracy = tf.reduce_mean(tf.cast(correct_predictions, "float"))

print ("Accuracy:", accuracy.eval({X: train, Y: labels_, learning_rate: 

0.001}, session = sess))

The tf.argmax() function returns the index with the largest value across axes of a 

tensor. You will remember that when I discussed the softmax function, I said that we  

will assign an observation to the class that has the highest probability (y_ is a tensor  

with ten values, each containing the probability for the observation of being of each 

class). So, tf.argmax(y_,0) will give us the most probable class for each observation. 

tf.argmax(Y,0) will do the same for our labels. Remember that we one-hot encoded  

our labels, so that, for example, class 2 will now be (0,0,2,0,0,0,0,0,0). Therefore,  

tf.argmax([0,0,2,0,0,0,0,0,0],0) will return 2 (the index with the highest value, in 

this case, the only one different than zero).

I have shown you how to load and prepare the train dataset. To do some basic error 

analysis, you will also need the dev dataset. Following is the code that you can use. I will 

not discuss it, since it is exactly the same as that we used for the train dataset.

data_dev = pd.read_csv('fashion-mnist_test.csv', header = 0)

labels_dev = data_test['label'].values.reshape(1, 10000)

labels_dev_ = np.zeros((10000, 10))

labels_dev_[np.arange(10000), labels_dev] = 1

labels_dev_ = labels_dev_.transpose()

dev = data_dev.drop('label', axis=1).transpose()

Don’t get confused by the fact that the file name contains the word test. Sometimes, 

the dev dataset is called test dataset. Later in the book, when I discuss error analysis, we 

will use three datasets: train, dev, and test. To remain consistent throughout the book, 

I prefer to stick with the name dev, so as not to confuse you with different names in 

different chapters.
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Finally, to calculate accuracy on the dev dataset, you simply reuse the same code  

I provided previously.

correct_predictions = tf.equal(tf.argmax(y_,0), tf.argmax(Y,0))

accuracy = tf.reduce_mean(tf.cast(correct_predictions, "float"))

print ("Accuracy:", accuracy.eval({X: dev, Y: labels_dev_, learning_rate: 

0.001}, session = sess))

A good exercise would be to include this calculation in your model, so that your 

model() function automatically returns the two values.

 Gradient Descent Variations
In Chapter 2, I described the very basic gradient descent algorithm (also called batch 

gradient descent). This is not the smartest way of finding the cost function minimum. 

Let’s have a look at the variations that you need to know, and let’s compare how efficient 

they are, using the Zalando dataset.

 Batch Gradient Descent
The gradient descent algorithm described in Chapter 2 calculates the weights and bias 

variations for each observation but performs the learning (weights and bias update) only 

after all observations have been evaluated, or, in other words, after a so-called epoch. 

(Remember that a cycle through the entire dataset is called an epoch.)

Following is an advantage:

• Fewer weights and bias updates mean a more stable gradient, which 

usually results in a more stable convergence.

Here are the downsides:

• Usually, this algorithm is implemented in such a way that all the 

datasets must be in memory, which computationally is quite 

intensive.

• This algorithm is typically very slow for very big datasets.
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A possible implementation could look like this:

sess = tf.Session()

sess.run(tf.global_variables_initializer())

training_epochs = 100

cost_history = []

for epoch in range(training_epochs+1):

     sess.run(optimizer, feed_dict = {X: train, Y: labels_, learning_rate: 

0.01})

     cost_ = sess.run(cost, feed_dict={ X:train, Y: labels_, learning_rate: 

0.01})

    cost_history = np.append(cost_history, cost_)

    if (epoch % 50 == 0):

        print("Reached epoch",epoch,"cost J =", cost_)

Running the code for 100 epochs would give a result similar to the following:

Reached epoch 0 cost J = 0.331401

Reached epoch 50 cost J = 0.329093

Reached epoch 100 cost J = 0.327383

This code ran in roughly 2.5 minutes, but the cost function barely changed. To see 

the cost function start decreasing, you must run your training for a few thousand epochs, 

and that will require quite some time. With the following code we can calculate the 

accuracy:

correct_predictions = tf.equal(tf.argmax(y_,0), tf.argmax(Y,0))

accuracy = tf.reduce_mean(tf.cast(correct_predictions, "float"))

print ("Accuracy:", accuracy.eval({X: train, Y: labels_, learning_rate: 

0.001}, session = sess))

After 100 epochs, we only reached an accuracy of 16% on our training set!
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 Stochastic Gradient Descent
The Stochastic6 gradient descent (abbreviated SGD) calculates the gradient of the cost 

function and then updates weights and biases for each observation in the dataset.

The advantages are that

• The frequent updates allow an easy check on how the model learning 

is going. (You don’t have to wait until all the datasets have been 

considered.)

• In a few problems, this algorithm may be faster than batch gradient 

descent.

• The model is intrinsically noisy, and that may allow it to avoid local 

minima when trying to find the absolute minimum of the cost function.

Among the downsides are that

• On large datasets, this method is quite slow, because it is very 

computationally intensive, owing to the continuous updates.

• The fact that the algorithm is noisy can make it hard for it to settle on 

a minimum for the cost function, and the convergence may not be as 

stable as expected.

A possible implementation could look like this:

sess = tf.Session()

sess.run(tf.global_variables_initializer())

cost_history = []

for epoch in range(100+1):

    for i in range(0, features.shape[1], 1):

        X_train_mini = features[:,i:i + 1]

        y_train_mini = classes[:,i:i + 1]

        sess.run(optimizer, feed_dict = {X: X_train_mini,

                                         Y: y_train_mini,

                                         learning_rate: 0.0001})

6 Stochastic means that the updates have a random probability distribution and cannot be 
predicted exactly.
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        cost_ = sess.run(cost, feed_dict={ X:features,

                                           Y: classes,

                                           learning_rate: 0.0001})

    cost_history = np.append(cost_history, cost_)

    if (epoch % 50 == 0):

        print("Reached epoch",epoch,"cost J =", cost_)

If you let the code run, you will get a result that should look like the following (the 

exact numbers will be different each time, because we initialize the weights and biases 

randomly, but the speed of decrease should be the same):

Reached epoch 0 cost J = 0.31713

Reached epoch 50 cost J = 0.108148

Reached epoch 100 cost J = 0.0945182

As mentioned, this method can be quite unstable. For example, using a learning 

rate of 1e-3 will make nan appear before having reached epoch 100. Try to play with the 

learning rate and see what happens. You require a rather small value for the method to 

converge nicely. In comparison, with bigger learning rates (as big as 0.05, for example), 

a method such as batch gradient descent converges without problems. As I mentioned 

before, the method is quite computationally intensive and for 100 epochs, requires 

roughly 35 minutes on my laptop. With this variation, after only 100 epochs, we already 

would have reached an accuracy of 80%. With this variation, learning is, in terms of 

epochs, very efficient but also very slow.

 Mini-Batch Gradient Descent
With this variation of the gradient descent, datasets are split into a certain number of 

small (from here the term mini is used) groups of observations (called batches), and 

weights and biases are updated only after each batch has been fed to the model. This is 

by far the method most commonly used in the field of deep learning.
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The advantages are that

• The model update frequency is higher than with batch gradient 

descent but lower than SGD. Therefore, allow for a more robust 

convergence.

• This method is computationally much more efficient than batch 

gradient descent, or SGD, because fewer calculations and resources 

are needed.

• This variation is by far (as we will see later) the fastest of the three.

Among the downsides are that

• The use of this variation introduces a new hyperparameter that must 

be tuned: the batch size (number of observations in the mini-batch).

A possible implementation could look like this for a batch size of 50:

sess = tf.Session()

sess.run(tf.global_variables_initializer())

cost_history = []

for epoch in range(100+1):

    for i in range(0, features.shape[1], 50):

        X_train_mini = features[:,i:i + 50]

        y_train_mini = classes[:,i:i + 50]

        sess.run(optimizer, feed_dict = {X: X_train_mini,

                                         Y: y_train_mini,

                                         learning_rate: 0.001})

        cost_ = sess.run(cost, feed_dict={ X:features,

                                           Y: classes,

                                           learning_rate: 0.001})

    cost_history = np.append(cost_history, cost_)

    if (epoch % 50 == 0):

        print("Reached epoch",epoch,"cost J =", cost_)

Note that the code is the same as that for the stochastic gradient descent. The only 

difference is the size of the batches. In this example, we use 50 observations each time 

before updating weights and biases. Running it will give you a result that should look like 
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this (remember that your numbers will be different, due to the random initialization of 

weights and biases):

Reached epoch 0 cost J = 0.322747

Reached epoch 50 cost J = 0.193713

Reached epoch 100 cost J = 0.141135

In this case, we have used a learning rate of 1e-3—much bigger than the one in 

SGD—and reached a cost function value of 0.14—a bigger value than the 0.094 reached 

with SGD but much smaller than the 0.32 value reached with batch gradient descent—

and it requires only 2.5 minutes. So, with a factor of 14, it is faster than SGD. After 100 

epochs, we achieved an accuracy of 66%.

 Comparison of the Variations
Following is a summary of the findings for our three variations of gradient descent for 

100 epochs (Table 3-3).

Table 3-3. Summary of the Findings for Three Variations of Gradient Descent for 

100 Epochs

Gradient Descent Variation Running Time Final Value of Cost Function Accuracy

Batch gradient descent 2.5 min 0.323 16%

Mini-batch gradient descent 2.5 min 0.14 66%

stochastic gradient descent (sGd) 35 min 0.094 80%

Now you can see that SGD is the algorithm that achieves the lowest value of cost 

function with the same number of epochs, although it is by far the slowest. For the  mini- 

batch gradient descent to reach a value of 0.094 for the cost function, it takes 450 epochs 

and roughly 11 minutes. Still, this is a huge improvement over SGD—31% of the time for 

the same results.
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In Figure 3-16, you can see the difference in how the cost function decreases with 

different mini-batch sizes. It is clear how, with respect to the number of epochs, the 

smaller the mini-batch size, the faster the decrease (though not in time). The learning 

rate used for this figure was γ=0.001. Note that the time required in each case is not the 

same, and the smaller the mini-batch size, the more time is required for the algorithm.

Figure 3-16. Comparison of the speed of convergence of a mini-batch gradient 
descent algorithm with different mini-batch sizes

Note the best compromise between running time and convergence speed (with 
respect to number of epochs) is achieved by mini-batch gradient descent. the 
optimal size of the mini-batches is dependent on your problem, but, usually, small 
numbers, such as 30 or 50, are a good option. You will find a compromise between 
running time and convergence speed.

To give you an idea of how the running time depends on the value the cost function 

can reach after 100 epochs, see Figure 3-17. Each point is labeled with the size of the 

mini-batch used in that run. Note that the points are single runs, and the plot is only 

indicative of the dependency. Running time and cost function value have a small variance 

when evaluated over several runs. This variance is not shown in the plot. You can see that 

decreasing the mini-batch size from 300 quickly decreases the value of J after 100 epochs, 

without increasing the running time significantly, until you arrive at a value for the mini-

batch size that is about 50. At that point, the time starts to increase quickly, and the value 
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for J after 100 epochs no longer decreases as quickly and flattens out. Intuitively, the best 

compromise is to choose a value for the mini-batch size when the curve is closer to zero 

(small running time and small cost function value), and that is at a mini-batch size value 

between 50 and 30. This is why those are the values chosen most frequently. After that 

point, the increase in running time becomes very quick and is no longer worth decreasing 

the mini-batch size. Note that for other datasets, the optimal value may be very different. 

So, it is worth trying different values, to see which one works best. In very big datasets, 

you may want to try bigger values, such as 200, 300, or 500. In our case, we have 60,000 

observations and a mini-batch size of 50, which gives 1200 batches. If you have much 

more data, for example 1e-6 observations, a mini-batch size of 50 would give 20,000 

batches. Keep that in mind and try different values, to see which works best.

Figure 3-17. Plot for the Zalando dataset, showing the value of the cost function 
after 100 epochs vs. the running time required to run through 100 epochs

It is good programming practice to write a function that runs your evaluations. In this 

way, you can tune your hyperparameters (such as the mini-batch size) without copying 

and pasting the same chunk of code over and over. The following function is one you can 

use to train our model:

def model(minibatch_size, training_epochs, features, classes, logging_step 

= 100, learning_r = 0.001):

    sess = tf.Session()

    sess.run(tf.global_variables_initializer())
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    cost_history = []

    for epoch in range(training_epochs+1):

        for i in range(0, features.shape[1], minibatch_size):

            X_train_mini = features[:,i:i + minibatch_size]

            y_train_mini = classes[:,i:i + minibatch_size]

            sess.run(optimizer, feed_dict = {X: X_train_mini,

                                             Y: y_train_mini,

                                             learning_rate: learning_r})

         cost_ = sess.run(cost, feed_dict={ X:features, Y: classes, 

learning_rate: learning_r})

        cost_history = np.append(cost_history, cost_)

        if (epoch % logging_step == 0):

                print("Reached epoch",epoch,"cost J =", cost_)

    return sess, cost_history

The model() function will accept the following parameters:

• minibatch_size: The number of observations we want in each batch. 

Note that if we choose for this hyperparameter a number q that is not 

a divisor of m (number of observations), or, in other words, m/q is not 

an integer, we will have the last mini-batch with a different number 

of observations than all the others. But this will not be an issue for the 

training. For example, suppose we have a hypothetical dataset with 

m=100, and you decide to use mini-batch sizes of 32 observations. 

Then, with m=100, you will have 3complete mini-batches with 32 

observations and 1 with just 4, since 100 = 3*32+4. Now you may 

wonder what will happen with a line such as

X_train_mini = features[:,i:i + 32]

when i=96 and features has only 100 elements. Are we not 

going over the limits of the array? Fortunately, Python is nice to 

programmers and takes care of this. Consider the following code:

l = np.arange(0,100)

for i in range (0, 100, 32):

print (l[i:i+32])
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The result is

[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

21 22 23 24 25 26 27 28 29 30 31]

[32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 

50 51 52 53 54 55 56 57 58 59 60 61 62 63]

[64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 

82 83 84 85 86 87 88 89 90 91 92 93 94 95]

[96 97 98 99]

And as you see, the last batch has only four elements, and we don’t 

get any error. So, you should not worry about this, and you can 

choose any mini-batch size that works better for your problem.

• training_epochs: The number of epochs we want

• features: The tensor that contains our features

• classes: The tensor that contains our labels

• logging_step: This tells the function to print the value of the cost 

function every logging_step epoch

• learning_r: The learning rate we want to use

Note writing a function with the hyperparameters as inputs is common 
practice. this allows you to test different models with different values for the 
hyperparameters and check which one is better.

 Examples of Wrong Predictions
Running the model with batch gradient descent, one hidden layer with 5 neurons for 

1000 epochs, and learning rate of 0.001 will give us an accuracy on the training set of 

82.3%. You can increase the accuracy by using more neurons in your hidden layer. For 

example, using 50 neurons, using 1000 epochs and a learning rate of 0.001, will allow you 

to reach 86.4% on the training set and 86.1% on the test set. It is interesting to check a few 

examples of wrongly classified images, to see if we can understand something from the 
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errors. Figure 3-18 shows an example of wrongly classified images for each class. Over 

each image, the True class (labeled as “True:”) and the predicted (labeled as “Pred:”) 

class are reported. The model used here has one hidden layer with five neurons and has 

been run for 1000 epochs with a learning rate of 0.001.

Figure 3-18. Example of wrongly classified images for each class

Some errors are understandable, such as, for example, that at the lower left of the 

figure. A shirt has been wrongly classified as a coat. It is also difficult to determine which 

item is which, and I could easily have made the same mistake. The wrongly classified bag 

is, on the other hand, easy for a human to sort out.
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 Weight Initialization
If you have tried to run the code, you will have realized that the convergence of the 

algorithm is strongly dependent on the way you initialize your weights. You will 

remember that we use the following line to initialize weights:

W1 = tf.Variable(tf.truncated_normal([n1, n_dim], stddev=.1))

But why choose a standard deviation of 0.1?

You will surely have wondered why. In the previous sections, I wanted you to focus 

on understanding how such a network works, without the distraction of additional 

information, but it is now time to look at this problem a bit more closely, because it 

plays a fundamental role with many layers. Basically, we initialize the weights with a 

small standard deviation to prevent the gradient descent algorithm from exploding and 

starting to return nans. For example, in our first layer for the ith neuron, we will have 

to calculate the ReLU activation function of the quantity (refer to the beginning of the 

chapter for an explanation, if you’ve forgotten why), as follows:
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Normally in a deep network, the number of weights is quite big, so you can easily 

imagine that if the wi j
1[ ]  are big, the quantity zi, too, can be quite big, and the ReLU 

activation function can return a nan value, because the argument is too big for Python 

to calculate it properly. So, you want the zi to be small enough to avoid an explosion of 

the output of the neurons and big enough to prevent the outputs from dying out and, 

therefore, making the convergence a very slow process.

The problem has been researched extensively,7 and there are different initialization 

strategies, depending on the activation function you are using. A few are outlined in 

the Table 3-4, in which it is assumed that the weights will be initialized with a normal 

distribution with mean 0 and standard deviation. (Note that the standard deviation will 

depend on the activation function you want to use.)

7 See, for example, Xavier Glorot and Yoshua Bengio, “Understanding the Difficulty of Training 
Deep Feedforward Neural Networks,” available at https://goo.gl/bHB5BM.
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In a layer l, the number of inputs will be the number of neurons of the preceding 

layer l − 1, and the number of outputs will be the number of neurons in the layer coming 

next: l + 1. So, we will have

 
n ninputs l= -1  

and

 
n noutputs l= +1  

Very often, deep networks such as the one discussed before will have several layers, 

all with the same number of neurons. Therefore, you will have, for most of the layers, 

nl − 1 = nl + 1, and, therefore, you will have the following for Xavier initialization:

 s Xavier l ln or n= + -1 11 1/ /  

For the ReLU activation functions, the He initialization will be

 sHe l ln or n= + -2 21 1/ /  

Let’s consider the ReLU activation function (the one we have used in this chapter). 

Every layer, as has been discussed, will have nl neurons. A way of initializing the weights 

for layer 3, for example, would be

stddev = 2 / np.sqrt(n4+n2)

W3=tf.Variable(tf.truncated_normal([n3,n2], stddev = stddev)

Table 3-4. Different Initialization Strategies, Depending on Activation Functions

Activation Function Standard Deviation σ for a Given Layer

sigmoid s =
+
2

n ninputs outputs

  usually called Xavier Initialization

relu s =
+
4

n ninputs outputs

  usually called he Initialization
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Or, if all layers have the same number of neurons, and, therefore, n2=n3=n4, you 

could simply use the following:

stddev = 2 / np.sqrt(2.0*n2)

W3=tf.Variable(tf.truncated_normal([n3,n2], stddev = stddev)

Typically, to make evaluation and construction of networks easier, the most typical 

initialization form used is for ReLU activation function

 sHe ln= -2 1/  

and

 s Xavier ln= -1 1/  

For a sigmoid activation function, for example, the code for the weight initialization 

for the network we have used previously with one layer would look like this:

W1 = tf.Variable(tf.random_normal([n1, n_dim], stddev= 2.0 / np.sqrt 

(2.0*n_dim)))

b1 = tf.Variable(tf.ones([n1,1]))

W2 = tf.Variable(tf.random_normal([n2, n1], stddev= 2.0 / np.sqrt(2.0*n1)))

b2 = tf.Variable(tf.ones([n2,1]))

Using this initialization can speed up training considerably and is the standard way 

in which many libraries initialize weights (for example, the Caffe library).

 Adding Many Layers Efficiently
Repeatedly typing all this code each time is a bit tedious and error-prone. Usually, what 

one does is define a function that creates a layer. This can be done easily with this code:

def create_layer (X, n, activation):

    ndim = int(X.shape[0])

    stddev = 2 / np.sqrt(ndim)

    initialization = tf.truncated_normal((n, ndim), stddev = stddev)

    W = tf.Variable(init)

    b = tf.Variable(tf.zeros([n,1]))

    Z = tf.matmul(W,X)+b

    return activation(Z)
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Let’s go through the code:

• First, we get the dimension of the inputs, to be able to define the right 

weight matrix.

• Then, we initialize the weights with the He initialization discussed in 

the previous section.

• Next, we create the weights W and bias b.

• Then, we evaluate the quantity Z and return the activation function 

evaluated on Z. (Note that in Python, you can pass functions as 

parameters to other functions. In this case, activation may be  

tf.nn.relu.)

So, to create our networks, we can simply write our construction code (in this 

example, with two layers), as follows:

n_dim = 784

n1 = 300

n2 = 300

n_outputs = 10

X = tf.placeholder(tf.float32, [n_dim, None])

Y = tf.placeholder(tf.float32, [10, None])

learning_rate = tf.placeholder(tf.float32, shape=())

hidden1 = create_layer (X, n1, activation = tf.nn.relu)

hidden2 = create_layer (hidden1, n2, activation = tf.nn.relu)

outputs = create_layer (hidden2, n3, activation = tf.identity)

y_ = tf.nn.softmax(outputs)

cost = - tf.reduce_mean(Y * tf.log(y_)+(1-Y) * tf.log(1-y_))

optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
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To run our model, we again define a model() function, as discussed previously.

def model(minibatch_size, training_epochs, features, classes, logging_step 

= 100, learning_r = 0.001):

    sess = tf.Session()

    sess.run(tf.global_variables_initializer())

    cost_history = []

    for epoch in range(training_epochs+1):

        for i in range(0, features.shape[1], minibatch_size):

            X_train_mini = features[:,i:i + minibatch_size]

            y_train_mini = classes[:,i:i + minibatch_size]

             sess.run(optimizer, feed_dict = {X: X_train_mini, Y: y_train_

mini, learning_rate: learning_r})

         cost_ = sess.run(cost, feed_dict={ X:features, Y: classes, 

learning_rate: learning_r})

        cost_history = np.append(cost_history, cost_)

        if (epoch % logging_step == 0):

                print("Reached epoch",epoch,"cost J =", cost_)

    return sess, cost_history

Now the code is much easier to understand, and you can use it to create networks as 

big as you wish.

With the preceding functions, it is very easy to run several models and compare 

them, as I have done in Figure 3-19, which illustrates five different tested models.

• One layer and ten neurons each layer

• Two layers and ten neurons each layer

• Three layers and ten neurons each layer

• Four layers and ten neurons each layer

• 4 layers and 100 neurons each layer
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In case you are wondering, the model with four layers, each with 100 neurons, which 

seems much better than the others, is starting to go in the overfitting regime, with a train 

set accuracy of 94% and of 88% on the dev set (after only 200 epochs).

 Advantages of Additional Hidden Layers
I suggest you play with the models. Try varying the number of layers, number of neurons, 

how to initialize the weights, and so on. If you invest some time, you can achieve an 

accuracy of more than 90% in a few minutes of running time, but that requires some 

work. If you try several models, you may realize that in this case, using several layers 

does not seem to accrue benefits vs. a network with just one. This is often the case.

Theoretically speaking, a one-layer network can approximate every function you 

can imagine, but the number of neurons needed may be very large, and, therefore, the 

model becomes much less useful. The catch is that the ability to approximate a function 

does not mean that the network is able to learn to do it, owing, for example, to the sheer 

number of neurons involved or the time required.

Empirically, it has been shown that networks with more layers require much smaller 

numbers of neurons to reach the same results and usually generalize better to unknown data.

Figure 3-19. The cost function vs. epochs for five models, as described in the 
legend
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Note theoretically speaking, you don’t need to have multiple layers in your 
networks, but often, in practice, you should. It is almost always a good idea to try 
a network of several layers with a few neurons in each, instead of a network with 
one layer populated by a huge number of neurons. there is no fixed rule on how 
to decide how many neurons or layers are best. You should try starting with low 
numbers of layers and neurons and then increase these until your results stop 
improving.

In addition, having more layers may allow your network to learn different aspects of 

your inputs. For example, one layer may learn to recognize vertical edges of an image, 

and another, horizontal ones. Remember that in this chapter, I have discussed networks 

in which each layer is identical (up to the number of neurons) to all the others. You will 

see later, in Chapter 4, how you can build networks in which each layer performs very 

different tasks and is also structured very differently from another, making this kind of 

network much more powerful for certain tasks that have been discussed previously in 

this chapter.

You may remember that in Chapter 2, we tried to predict the selling prices of 

houses in the Boston area. In that case, a network with several layers might reveal more 

information about how the features relate to the price. For example, the first layer might 

reveal basic relationships, such as bigger houses equal higher prices. But the second 

layer might reveal more complex relationships, such as big houses with a smaller 

numbers of bathrooms equal low selling prices.

 Comparing Different Networks
Now you should know how to build neural networks with a huge number of layers or 

neurons. But it is relatively easy to lose yourself in a forest of possible models without 

knowing which are worth trying. Suppose you start with a network (as I have done in the 

previous sections) with one hidden layer with five neurons, one layer with ten neurons 

(for our “softmax” function) and our “softmax” neuron. Suppose you have reached some 

accuracy and would like to try different models. At first, you should try increasing the 

number of neurons in your hidden layers, to see what you can achieve. In Figure 3-20, 

I have plotted the cost function as it decreases for different numbers of neurons. The 

calculations have been performed with a mini-batch gradient descent with a batch 
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size of 50, one hidden layer with respectively 1, 5, 15, and 30 neurons, and a learning 

rate of 0.05. You can see how moving from one neuron to five immediately makes the 

convergence faster. But further increasing the number of neurons doesn’t result in 

much improvement. For example, increasing the neurons from 15 to 30 adds almost no 

improvement.

Figure 3-20. Cost function decrease vs. epochs for a neural network of one hidden 
layer with, respectively, 1, 5, 15, and 30 neurons, as indicated in the legend. The 
calculations have been performed with mini-batch gradient descent, with a batch 
size of 50 and a learning rate of 0.05.

Let’s first try to find a way of comparing these networks. Comparing only the number 

of neurons can be very misleading, as I will show you shortly. Remember that your 

algorithm is trying to find the best combinations of weights and biases to minimize your 

cost function. But how many learnable parameters do we have in our model? We have 

the weights and the biases. You will remember from our theoretical discussion that we 

can associate a certain number of weights to each layer, and the number of learnable 

parameters in our layer l that we will indicate with Q[l] is given by the total number of 

elements in the matrix W[l], that is, nlnl − 1 (where we have n0 = nx by definition), plus the 

number of biases we have (in each layer we will have nl biases). The number Q[l] can then 

be written as

 Q n n n n nl
l l l l l

[ ]
- -= + = +( )1 1 1  
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so that the total number of learnable parameters in our network (indicated here with Q) 

can be written as

 
Q n n

j

L

l l= +( )
=

-å
1

1 1
 

where by definition n0 = nx. Please note that the parameter Q of our network is strongly 

architecture-dependent. Let’s calculate it in some examples, so that you understand 

what I mean (Table 3-5).

Table 3-5. A comparison of the values of Q for different network architectures

Network Architecture Parameter Q (Number of learnable 
parameters)

Number of 
Neurons

Network A: 784 features, 2 layers: 

n1 = 15, n2 = 10

QA = 15(784 + 1) + 10 ∗  

(15 + 1) = 11935

25

Network B: 784 features, 16 layers: 

n1 = n2 = … = n15 = 1, n16 = 10

QB = 1 ∗ (784 + 1) + 1 ∗ (1 + 1) + … +  

10 ∗ (1 + 1) = 923

25

Network C: 784 features, 3 layers: 

n1 = 10, n2 = 10, n3 = 10

QC = 10 ∗ (784 + 1) + 10 ∗ (10 + 1) +  

10 ∗ (10 + 1) = 8070

30

I would like to draw your attention to networks A and B. Both have 25 neurons, but 

the parameter QA is much bigger (more than a factor of ten) than QB. You can easily 

imagine how network A will be much more flexible in learning than network B, even if 

the number of neurons is the same.

Note I would be misleading you if I told you that this number Q is a measure 
of how complex or how good a network is. this is not the case, and it may well 
happen that of all the neurons, only a few will play a role. therefore, calculating 
only as I told you will not tell the entire story. there is a vast amount of research 
on the so-called effective degrees of freedom of deep neural networks, but that 
goes way beyond the scope of this book. Nonetheless, this parameter will provide 
a good rule of thumb in deciding if the set of models you want to test are in a 
reasonable complexity progression.
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Checking Q for the model you want to test may give you some hints on which you 

should neglect and which you should try. For example, let’s consider the cases we have 

tested in Figure 3-20 and calculate the parameter Q for each network (Table 3-6).

Table 3-6. A comparison of the values of Q for different network architectures

Network Architecture Parameter Q Number of 
Neurons

784 features, 1 layer with 1 

neuron, 1 layer with 10 neurons

Q = 1 ∗ (784 + 1) + 10 ∗ (1 + 1) = 895 11

784 features, 1 layer with 5 

neuron, 1 layer with 10 neurons

Q = 5 ∗ (784 + 1) + 10 ∗ (5 + 1) = 3985 15

784 features, 1 layer with 15 

neuron, 1 layer with 10 neurons

Q = 15 ∗ (784 + 1) + 10 ∗ (15 + 1) = 11935 25

784 features, 1 layer with 30 

neuron, 1 layer with 10 neurons

Q = 30 ∗ (784 + 1) + 10 ∗ (30 + 1) = 23860 40

From Figure 3-20, let’s suppose we choose the model with 15 neurons as our 

candidate as our best model. Now let’s suppose we want to try a model with 3 layers, all 

with the same number of neurons, that should compete (and possibly be better) than 

our (for the moment) candidate model with 1 layer and 15 neurons. What should we 

choose as a starting point for the number of neurons in the three layers? Let’s indicate 

as model A the one with 1 layer with 15 neurons and as B a model with 3 layers with an 

(as of yet) unknown number of neurons in each layer, indicated with nB. We can easily 

calculate the parameter Q for both networks

 QA = * +( )+ * +( ) =15 784 1 10 15 1 11935  

and

 Q n n n n n n n nB B B B B B B B B= * +( )+ * +( )+ * +( )+ * +( ) = + +784 1 1 1 10 1 2 797 102  

What value for nB will give QB ≈ QA? We can easily solve the equation.

 2 797 10 119352n nB B+ + =  
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You should be able to solve a quadratic equation, so I will only give the solution 

here (hint: try to solve it). This equation is solved for a value of nB = 14.4, but because we 

cannot have 14.4 neurons, we will have to use the closest integer, which would be nB = 14. 

For nB = 14, we will have QB = 11560, a value very close to 11935.

Note please let me say it again. the fact that the two networks have the same 
number of learnable parameters does not mean that they can reach the same 
accuracy. It does not even mean that if one learns very fast the second will learn at all!

Our model with 3 layers with each 14 neurons could, however, be a good starting 

point for further testing.

Let’s discuss another point that is important when dealing with a complex dataset. 

Consider our first layer. Suppose we consider the Zalando dataset and we create a 

network with two layers: the first with one neuron and the second with many. All the 

complex features that your dataset has may well be lost in your single first neuron, 

because it will combine all features in one single value and pass the same exact value to 

all other neurons of the second layer.

 Tips for Choosing the Right Network
I hear you crying, “You’ve discussed a lot of cases, given us a lot of formulas, but how can 

we decide how to design our network?”

Unfortunately, there is no fixed set of rules. But you may consider the following tips:

• When considering a set of models (or network architectures) that you 

want to test, a good rule of thumb is to start with the less complex one 

and move to more complex ones. Another is to estimate the relative 

complexity (to make sure that you are moving in the right direction) 

of the use of the parameter Q.

• In case you cannot achieve good accuracy, check if any of your layers has 

a particularly low number of neurons. This layer may kill the effective 

capacity of learning from a complex dataset of your network. Consider, 

for example, the case with one neuron in Figure 3-20. The model cannot 

reach low values for the cost function because the network is too simple 

to learn from a dataset as complex as the Zalando one.
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• Remember that a low or high number of neurons is always relative 

to the number of features you have. If you have only two features in 

your dataset, one neuron may well be sufficient, but if you have few 

hundred (like in the Zalando dataset where nx = 784), you should not 

expect one neuron to be enough.

• Which architecture you need is also dependent on what you want to 

do. It is always worth checking online literature to see what others 

have already discovered about specific problems. For example, it is 

well known that for image recognition, convolutional networks are 

very good, so they would be an excellent choice.

Note when moving from a model with L layers to one with L + 1 layers, it is 
always a good idea to start with the new model, using a slightly lower number 
of neurons in each layer, and then increasing them step by step. remember that 
more layers have a chance of learning complex features more effectively, so if 
you are lucky, fewer neurons may be enough. It is something worth trying. always 
keep track of your optimizing metric (remember this from Chapter 2?) for all your 
models. when you are no longer getting much improvement, it may be worth trying 
completely different architectures (maybe convolutional neuronal networks, etc.).

Chapter 3  FeedForward Neural Networks



137
© Umberto Michelucci 2018 
U. Michelucci, Applied Deep Learning, https://doi.org/10.1007/978-1-4842-3790-8_4

CHAPTER 4

Training Neural Networks
Building complex networks with TensorFlow is quite easy, as you have probably realized 

by now. A few lines of code are enough to construct networks with thousands (and even 

more) parameters. It should be clear by now that problems arise while training such 

networks. It is difficult, unstable, and slow to test hyperparameters, because a run over a 

few hundred epochs may take hours. This is not only a performance problem; otherwise, 

it would suffice to use faster and faster hardware. The problem is that very often, the 

convergence process (the learning) does not work at all. It stops, it diverges, or it never 

gets close to the minimum of the cost function. We need ways of making the training 

process efficient, fast, and reliable. You will look at two of the main strategies that will help 

with the training of complex networks: dynamic learning rate decay and optimizers that 

are smarter than plain gradient descent ([GD] such as RMSProp, Momentum, and Adam).

 Dynamic Learning Rate Decay
I mentioned several times that the learning rate γ is a very important parameter and 

that choosing it badly will make your model not perform. Refer again to Figure 2-12, 

which shows you how choosing a learning rate that is too big will make your gradient 

descent algorithm bounce around the minimum and not converge. Without discussing 

them, let’s rewrite the equations that describe the weight and bias update described in 

Chapter 2 when discussing the gradient descent algorithm. (Remember: I described the 

algorithm for a problem with two weights w0 and w1.)
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As a reminder, following is an overview of the notation. (Please refer again to  

Chapter 2, if you don’t remember how the gradient descent is working.)

• w0, [n]: Weight 0 at iteration n

• w1, [n]: Weight 1 at iteration n

• J(w0, [n], w1, [n]): Cost function at iteration n

• γ: Learning rate

To show the effect of what I will discuss, we will consider the same problem described 

in the section “Learning Rate in a Practical Example,” in Chapter 2. Plotting the weights 

w0, n, w1, n on the contour lines of the cost function for γ = 2 (see Figure 4-1) shows (as you 

will remember from Chapter 2) how the values of weights oscillate around the minimum 

of (w0, n, w1, n). Here, the problem of a learning rate that is too big is clearly visible. The 

algorithm cannot converge, because the steps that it takes are too big to be able to get close 

to the minimum. The different estimates wn are indicated with points in Figure 4-1. The 

minimum is indicated by the circle approximately in the middle of the image.

Figure 4-1. Illustration of the gradient descent algorithm. Here, the learning rate 
of γ = 2 has been chosen
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But you may have noticed that in our algorithm, we made a pretty important decision 

(without stating it explicitly): we keep the learning rate constant for each iteration. But 

there is no reason for doing so. On the contrary, it is quite a bad idea. Intuitively, a big 

learning rate will make the convergence move fast at the beginning, but as soon as you 

are around the minimum, you will want to use a much smaller learning rate, to allow 

the algorithm to converge in the most efficient way toward the minimum. We want to 

have a learning rate that starts (relatively) big and then decreases with the iterations. 

But how should it decrease? There are several methods that are used today, and in the 

next section, we will look at those used most frequently and how to implement them in 

Python and TensorFlow. We will use the same problem with which Figure 4-1 and 2-12 

were generated and compare the behavior of the different algorithms. Please take some 

time to review the section in Chapter 2 on gradient descent, to have the material clear in 

your head before reading the next sections.

 Iterations or Epochs?
Before looking at the various methods, I would like to shed some light on the question: 

what are the iterations we are talking about? Are they epochs? Technically, this is not 

the case. An iteration is when you update your weights. Consider, for example, mini- 

batch gradient descent. In that case, an iteration occurs after each mini-batch (when 

you update the weights). Consider the Zalando dataset in Chapter 3: 60,000 training 

cases and a mini-batch size of 50. In that case, you would have 1200 iterations in an 

epoch. What is important for the decrease of the learning rate is the number of updates 

you perform on the weights, not the number of epochs. If you used stochastic gradient 

descent (SGD) on the Zalando dataset (update the weights after each observation), you 

would have 60,000 iterations, and you might need to decrease the learning more than 

with mini-batch gradient descent, because it is updated more often. In the case of batch 

gradient descent, where you update your weight after one complete sweep over the 

training data, you would update the learning rate exactly once each epoch.

Note iterations in dynamic learning rate decay refer to the step in the algorithm 
in which the weights are updated. For example, if you use sgD on the Zalando 
dataset in Chapter 3, with a mini-batch size of 50, in one epoch (a sweep over the 
60,000 training observations), you have 1200 iterations.
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This is very important to understand correctly. If you do, you can choose the 

parameters of the different algorithms for learning rate decay properly. If you choose 

them thinking that the learning rate is updated only after each epoch, you may make big 

mistakes.

Note For each algorithm that decreases dynamically, the learning rate will 
introduce new hyperparameters that you must optimize, adding some complexity 
to your model-selection process.

 Staircase Decay
The staircase decay method is the most basic one to use. It consists of reducing the 

learning rate manually in the code and hard-coding the changes, based on what seems 

to work. For example, how can we make the GD algorithm converge in Figure 4-1, 

starting with a γ = 2? Let’s consider the following decay (in which we have indicated with 

j the iteration number):

 
g =

<
³

ì
í
î

2 4

0 4 4

j

j.  

Simply including this with the Python code

gamma0 = 2.0

if (j < 4):

        gamma = gamma0

    elif j>=4:

        gamma = gamma0 /5.0

will give a converging algorithm (see Figure 4-2). Here, the initial learning rate of γ0 = 2 

has been chosen, and from the iteration 4, γ = 0.4 has been used. The different estimates 

wn are indicated with points. The minimum is indicated by the circle approximately in 

the middle of the image. The algorithm is now able to converge. Each point has been 

labeled with the iteration number, to make following the weights update easier.
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The first steps are big, and then, as we decrease the learning rate to 0.4 at iteration 4,  

they become smaller, and the GD is able to converge toward the minimum. With this 

simple modification, we have achieved a nice result. The problem is that when dealing 

with complicated datasets and models (such as we did in Chapter 3), this process 

requires (if it works) a lot of tests. You will have to reduce the learning rate several 

times, and finding the right iteration and values for the learning rate decrease is a really 

challenging task, so much so that it is actually not usable, unless you are dealing with 

very easy datasets and networks. The method is also not very stable, and, depending on 

the data you have, may require continuous tuning. TL;DR1: don’t use it.

1 In case you don’t know, TL;DR is short for “too long; didn’t read.” This is Internet slang to describe 
text that has been ignored because it is too long. (Source: https://en.wikipedia.org/wiki/TL;DR)

Figure 4-2. Illustration of gradient descent algorithm with a staircase decay 
method
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 Step Decay
Something slightly more automatic is the so-called step decay. This method reduces the 

learning rate by a constant factor every certain number of iterations. Mathematically, it 

can be written as

 
g

g
=

+êë úû
0

1j D/  

where ⌊a⌋ indicates the integer part of a, and D (indicated in the code later with  

epoch_drop) is an integer constant that we can tune. For example, using the following 

code:

epochs_drop = 2

gamma = gamma0 / (np.floor(j/epochs_drop)+1)

will again give a convergent algorithm. In Figure 4-3, the initial learning rate of γ0 = 2 has 

been chosen, and every 2 iterations, the learning rate decreases according to γ0/⌊j/2+1⌋. 

The different estimates wn are indicated with points. The minimum is indicated by the 

circle approximately in the middle of the image. The algorithm is now able to converge. 

Each point has been labeled with the iteration number, to make following the weights 

update easier.

Table 4-1. Additional Hyperparameters Introduced

Hyperparameter Example

the iteration at which the algorithm will 

update the learning rate

in this example, we choose iteration number 4

the values of the learning rate after each 

change (multiple values)

in this example, we had, from iteration 1 to 3, γ = 2, 

and, from iteration 4, γ = 0.4.
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It is important to have an idea of how fast the learning rate is decreasing. You don’t 

want to have a learning rate close to zero after only a few iterations; otherwise, your 

convergence will never succeed. In Figure 4-4, you can see a comparison of how fast  

(or slow) the learning rate is decreasing for three values for D.

Figure 4-3. Illustration of gradient descent algorithm with step decay
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Note, for example, how with D = 10, the learning rate is roughly 10 times smaller after 

only 100 iterations! If you make your learning rate decrease too fast, you may see your 

convergence grind to a halt after only a few iterations. Always try to get an idea of how 

fast your γ is decreasing.

Note a good way of getting a feel for how fast your learning rate is decreasing 
is to try to determine after how many iterations γ is ten times smaller than the 
initial value. keep in mind that if you get a γ = γ0/10 after 10D iterations, you will 
get γ = γ0/100 after only 100D iterations, and γ = γ0/103 after only 103D iterations, 
and so on. if this occurs, what is needed can be answered only by testing the rate 
properly with several values of D.

Let’s consider a concrete example. Suppose you are training your model with 1e-5 

observations for 5000 epochs, with a mini-batch sizes of 50 and a starting learning rate of 

γ0 = 0.2. If you choose D = 10 without thinking, you will have
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Figure 4-4. Decrease in the learning rate for three values of D: 10, 20, and 50, 
using the step decay algorithm
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after only 100 epochs, so you will not gain much by using 5000 epochs if you reduce the 

learning rate so quickly.

Table 4-2. Additional Hyperparameters Introduced

Hyperparameter Example

parameter D D = 10

 Inverse Time Decay
Another way of updating the learning rate is with the formula called inverse time decay

 
g

g
n

=
+

0

1 j  

where ν is a parameter called the decay rate. In Figure 4-5, you can see a comparison of 

the learning rate decrease for three parameters of ν: 0.01, 0.1, and 0.8. In Figure 4-5, you 

also can see how the learning rate decreases for the three different values of ν. Note that 

the y axis has been plotted in logarithmic scale, to make the entity of the changes easier 

to compare. Note that the y axis is logarithmic.

Figure 4-5. Decreased learning rate for three values of ν: 0.01, 0.1, and 0.8, using 
the inverse time decay algorithm
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This method also makes the GD algorithm discussed in Chapter 2 converge. In 

Figure 4-6, you can see how the weights converge toward the minimum location after 

only a few iterations when choosing ν = 0.2. In Figure 4-6, the initial learning rate of γ0 = 2 

has been chosen, and an inverse time decay algorithm with ν = 0.2 has been used. The 

different estimates wn are indicated with points. The minimum is indicated by the circle 

approximately in the middle of the image. The algorithm is now able to converge. Each 

point has been labeled with the iteration number, to make following the weights update 

easier.

It is very interesting to see what happens if we choose a bigger value for ν. In 

Figure 4-7, the initial learning rate of γ0 = 2 has been chosen, and an inverse time decay 

algorithm with ν = 1.5 has been used. The different estimates wn are indicated with 

points. The minimum is indicated by the circle approximately in the middle of the image. 

The algorithm is now able to converge. Each point has been labeled with the iteration 

number, to make following the weights update easier.

Figure 4-6. Illustration of gradient descent algorithm with inverse time decay for 
ν = 0.2
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What we observe in Figure 4-7 makes perfect sense. Increasing ν makes the learning 

rate decrease faster, and, therefore, more steps are required to reach the minimum, 

because the learning rate is increasingly smaller, in comparison to what happens in 

Figure 4-6. We can compare the behavior of the cost functions for the two values of ν. 

In Figure 4-8, you can see in plot (A) the cost function vs. the number of epochs. At first 

sight, the two seem to converge equally as fast. But let’s zoom around J = 0 in plot (B). 

You can clearly see how with ν = 0.2 the convergence is much faster, because the learning 

rate is bigger than for ν = 1.5.

Figure 4-7. Illustration of the gradient descent algorithm for ν = 1.5
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Figure 4-8. Cost function vs. the number of epochs. In plot (A), the entire range 
of values that the cost functions assume are plotted. In plot (B), the area around 
J = 0 has been zoomed in to show how the cost functions decrease much faster for 
smaller values of ν.

Table 4-3. Additional Hyperparameters Introduced

Hyperparameter Example

Decay rate v v = 0.2

 Exponential Decay
Another way of reducing the learning rate is according to the formula called exponential 

decay

 g g n= 0
j T/  

See Figure 4-9 to get an idea of the speed of the learning rate. Note that the y axis has 

been plotted in logarithmic scale, to make the entity of the changes easier to compare. 

Note how for ν = 0.01, after 200 iterations (not epochs), the learning rate is already a 

factor 1000 smaller than that at the start!
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We can apply this method to our problem with ν = 0.2 and T = 3 and, again, the 

algorithm converges. In Figure 4-10, the initial learning rate of γ0 = 2 has been chosen, 

and an exponential decay algorithm with ν = 0, 2 and T = 3 has been used. The different 

estimates wn are indicated with points. The minimum is indicated by the circle 

approximately in the middle of the image. The algorithm is now able to converge. Each 

point has been labeled with the iteration number, to make following the weights update 

easier.

Figure 4-9. Decrease in the learning rate for three values of ν: 0.01, 0.1, and 0.8, 
and T = 100, using the exponential decay algorithm
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Table 4-4. Additional Hyperparameters Introduced

Hyperparameter Example

Decay rate v v = 0.2

Decay steps T T = 3

 Natural Exponential Decay
Another way of reducing the learning rate is according to the formula called natural 

exponential decay

 g g n= -
0e

j  

This case is particularly interesting because it allows you to learn a few important 

things. Consider first Figure 4-11, to compare how different values of ν relate to different 

decreases in speed for the learning rate.

Figure 4-10. Illustration of the gradient descent algorithm for exponential decay
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I would like to draw your attention to the values on the y axis (note that it is using a 

logarithmic scale). For ν = 0.8 after 200 iterations, the learning rate is a factor of 10−64 of 

the initial value! Practically zero. That means that already after a few iterations, no more 

updates can occur, because the learning rate is too small. To give you an idea of the scale 

of 10−64, a hydrogen atom is “only” roughly 10−11 m! So, unless you are very careful with 

the choice of ν, you will not get very far.

Consider Figure 4-12, for which I have plotted our weights, as they are updated with 

the GD algorithm, for two values of the learning rate: 0.2 (dotted) and 0.5 (continuous).

Figure 4-11. Decreased learning rate for three values of ν: 0.01, 0.1, and 0.8 
and T = 100, using the natural exponential decay algorithm. Note that the y axis 
has been plotted in logarithmic scale, to make the entity of the changes easier to 
compare. Note how for ν = 0.8 after 200 iterations (not epochs), the learning rate is 
already a factor 1064 smaller than that at the start.
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To check the convergence, we need to zoom in around the minimum. You’ll see that 

in Figure 4-13. In case you are wondering why the minimum seems to be in a different 

position relative to the contour lines as in Figure 4-12, this is because the contour lines 

are not the same, because in Figure 4-13, we are much closer to the minimum.

Figure 4-12. Illustration of the gradient descent algorithm with natural 
exponential decay
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Now we see something that makes again sense. The continuous line is for ν = 0.5; 

therefore, the learning rate decreases much faster and does not manage to reach the 

minimum. In fact, after only 7 iterations, we have γ = 0.06, and after 20 iterations, we 

have γ = 9 · 10−5, a value so small that the convergence no longer manages to proceed at a 

reasonable speed! Again, it is very instructive to check the cost function decrease for the 

two parameters (see Figure 4-14).

Figure 4-13. Illustration of the gradient descent algorithm zoomed in around the 
minimum. The same method and parameters used in Figure 4-12 have been used 
here.
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We see with plot (B) how the cost function for ν = 0.5 does not reach zero and 

becomes practically constant, because the learning rate is too small. You may think 

that by using more iterations, the method will eventually converge, but that is not the 

case. Refer to Figure 4-15 to see that the convergence process actually stops, owing to 

the learning rate being almost zero after a while. In the figure, the initial learning rate 

of γ0 = 2 has been chosen, and an exponential decay algorithm with ν = 0.5 has been 

used. The GD does not manage to reach the minimum. The different estimates wn are 

indicated with points. The minimum is indicated by the circle approximately in the 

middle of the image. The algorithm is now able to converge. Each point has been labeled 

with the iteration number, to make following the weights update easier.

Figure 4-14. Cost function vs. the number of epochs for natural exponential decay 
for two values of ν = 0.2 and 0.5. In plot (A), the entire range of values that the cost 
functions assume are plotted. In plot (B), the area around J = 0 has been zoomed in 
to show how the cost functions decrease much faster for smaller values of ν.
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Let’s check the learning rate during this process for ν = 0.5 (see Figure 4-16). Check 

the values along the y axis. The learning rate reaches 10−40 after roughly 175 iterations. 

For all practical purposes, it is zero. The GD algorithm will not update the weights 

anymore, regardless of how many iterations you let it run.

Figure 4-15. Illustration of the gradient descent algorithm zoomed in around the 
minimum for 200 iterations

Chapter 4  training neural networks



156

To finish, let’s compare the methods by putting them on the same plot, to get an idea 

of the relative behavior. In Figure 4-17, you can see three plots tracking the learning rate 

decay for each method with different parameters.

Figure 4-16. Learning rate vs. the number of iterations with natural exponential 
decay for ν = 0.5. Note that the y axis is in logarithmic scale, to better highlight the 
change of γ.
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Note You should be aware of how fast your learning rate is decreasing, to avoid it 
becoming practically zero and stopping your convergence altogether.

Figure 4-17. Comparison of different parameters of the learning rate decay for the 
algorithm indicated
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 tensorflow Implementation
I should briefly talk about how tensorflow implements the methods I just explained, 

because there are a few details that you should know. In tensorflow, you can find the 

following functions to perform dynamic learning rate decay:2

• Exponential decay  tf.train.exponential_decay  (https://goo.

gl/fiE2ML)

• Inverse time decay  tf.train.inverse_time_decay (https://goo.gl/

GXK6MX)

• Natural exponential decay  tf.train.natural_exp_decay 

(https://goo.gl/cGJe52)

• Step decay  tf.train.piecewise_constant (https://goo.gl/

bL47ZD)

• Polynomial decay  tf.train.polynomial_decay (https://goo.gl/

zuJWNo)

Polynomial decay is a slightly more complex way of decreasing the learning rate. This 

had not been discussed, because it is rarely used, but you can read the documentation 

on the TensorFlow web site, to get an idea of how it works.

TensorFlow uses an additional parameter to give you a bit more flexibility. Take, for 

example, the inverse time decay method. Our equation for the learning rate decay was

 
g

g
n

=
+

0

1 j  

where we have two parameters: γ0 and ν. TensorFlow uses three parameters:

 

g
g
n
n
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1
j

ds  

2 Check the overview in the official TensorFlow documentation at https://goo.gl/vpFNp7.
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where νds is called in TensorFlow code decay_step. The formula you will find in the 

TensorFlow official documentation in Python code is

decayed_learning_rate = learning_rate / (1 + decay_rate * global_step / 

decay_step)

to link TensorFlow language with our notation, as follows:

• global_step  j (number of iterations)

• decay_rate  ν

• decay_step  νds

• learning_rate  γo (initial learning rate)

You may ask yourself why you want to have this additional parameter. The 

parameter, mathematically speaking, is redundant. We can simply set our ν to the 

same value of ν/νds, and we would get the same result. The problem, practically, is that 

j (the number of iterations) gets very big very quickly, and, therefore, our ν may need 

to assume very small values, to be able to get a reasonable learning rate decrease. The 

goal of the parameter νds is to scale the number of iterations. For example, you can set 

this parameter to νds = 105, thereby making the decrease of the learning rate occur on a 

scale of 105 iterations, instead of every single iteration. If you have a huge dataset with 108 

observations, and you use a mini-batch size of 50, you will get 2 · 106 iterations for each 

epoch. Suppose you then want your learning rate to be 1/5 of the initial value after 100 

epochs. For this, you would need a ν = 2 · 10−8, a rather small value that, more important, 

depends on the size of your dataset and the mini-batch size. If you “normalize,” so to 

speak, the number of iterations, you can choose a value for ν that can remain constant, 

if you choose to change, for example, the mini-batch size. There is an additional 

practical reason (more important than that I just discussed), which is the following: the 

tensorflow function has an additional parameter: staircase, which can assume the 

values of True or False. If set to True, the following function is used:

 

g
g

n
n
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And, therefore, you get an update only for each νds iteration, instead of continuously. 

In Figure 4-18, you can see the difference for ν = 0.5 and νds = 20 for 200 iterations. You 

may want to keep your learning rate constant for ten epochs before updating it.

Figure 4-18. Learning rate decay with the two variations obtained with 
tensorflow with staircase = True and False

The same parameters are needed by the functions tf.train.inverse_time_decay, 

tf.train.natural_exp_decay, and tf.train.polynomial_decay. They work in the 

same way, and the purpose of the additional parameter is what I just described. Don’t 

be confused when implementing the methods in tensorflow, if you need this additional 

parameter. I will show you how to implement it for inverse time decay, but it works in the 

same exact way for all the other types. You need the following additional lines of code:

initial_learning_rate = 0.1

decay_steps = 1000

decay_rate = 0.1

global_step = tf.Variable(0, trainable = False)

learning_rate_decay = tf.train.inverse_time_decay(initial_learning_rate, 

global_step, decay_steps, decay_rate)
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and then you must modify the line of code in which you specify the optimizer you are 

using with this.

optimizer = tf.train.GradientDescentOptimizer(learning_rate_decay).

minimize(cost, global_step = global_step)

The only difference is the additional parameter in the minimize function: global_

step = global_step. The minimize function will update the global_step variable with 

the iteration number with each update. That’s all. It works in the same way for the other 

functions.

The only difference is for the function piecewise_constant, which requires 

different parameters: x, boundaries, and values. For example (from the TensorFlow 

documentation):

…use a learning rate that’s 1.0 for the first 100000 steps, 0.5 for steps 100001 
to 110000, and 0.1 for any additional steps

This would require

boundaries = [100000, 110000]

values = [1.0, 0.5, 0.1]

The code

boundaries = [b1,b2,b3, ..., bn]

values = [l1,l12,l23,l34, ..., ln]

will give a learning rate of l1 before b1 iterations, l12 between b1 and b2 iterations, l23 

between b2 and b3 iterations, and so on. Keep in mind that with this method, you must 

set manually all the values and boundaries in the code. This will require quite some 

patience, if you want to test each combination to see whether it is working well. An 

implementation of the step decay algorithm in TensorFlow would look like this:

global_step = tf.Variable(0, trainable=False)

boundaries = [100000, 110000]

values = [1.0, 0.5, 0.1]

learning_rate = tf.train.piecewise_constant(global_step, boundaries, 

values)
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 Applying the Methods to the Zalando Dataset
Let’s try to apply the methods you just learned to a realistic scenario. For this, we will 

employ the Zalando dataset used in Chapter 3. Please check Chapter 3 again, to see how 

to load the dataset and how to prepare the data. At the end of the chapter, we wrote the 

functions to construct a model with many layers and a function to train it. Let’s consider 

a model with 4 hidden layers, each containing 20 neurons. Let’s compare how the model 

learns with a starting initial learning rate of 0.01, keep that constant, and then apply the 

inverse time decay algorithm, starting with a γ0 = 0.1, ν = 0.1, and νds = 103 (see Figure  4- 19).

So, even with a starting learning rate ten times larger, the algorithm is much more 

efficient. Is has been proven in several research papers that applying a dynamic learning 

rate makes learning faster and more efficient, as we have noted in this case.

Note unless you are using optimization algorithms that include a learning rate 
change during training (you will see them in the next sections), it is generally a 
good idea to use dynamic learning rate decay. this makes learning stable and 
usually faster. the downside is that you have more hyperparameters to tune.

Figure 4-19. Cost function behavior for a neural network of 4 layers, each having 
20 neurons, applied to the Zalando dataset. The continous line is for a model with 
a constant learning rate of γ = 0.01. A dashed line is for a network in which we 
have used the inverse time decay algorithm, with a γ0 = 0.1, ν = 0.1, and νds = 103.
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Normally, it is a good idea, when using dynamic learning rate decay, to start with an 

initial learning rate γ0 bigger than you would normally use. Because γ is decreasing, this 

won’t normally create problems and will make the convergence at the beginning (one 

hopes) faster. As you should now expect, there are no fixed rules on which method works 

better. Each case and dataset is different, and some testing is always required, to see 

which parameter value yields the best results.

 Common Optimizers
Until now, we have used gradient descent to minimize our cost function. That is not the 

most efficient way to proceed, and there are some modifications to the algorithm that 

can make it much faster and more efficient. This is a very active area of research, and 

you will find an incredible number of algorithms, based on different ideas, to make the 

learning faster. I will cover here the most instructive and well-known ones: Momentum, 

RMSProp, and Adam. Additional material that you can consult to investigate the most 

exotic algorithms has been written by S. Ruder, in a paper titled An overview of gradient 

descent optimization algorithms (available at https://goo.gl/KgKVgG). The paper is 

not for beginners and requires an extensive mathematical background, but it gives an 

overview of such unusual algorithms as Adagrad, Adadelta, and Nadam. Additionally, 

it reviews weights update schemes applicable in distributed in such environments as 

Hogwild!, Downpour SGD, and many more. Surely, it is a read worth your time.

To understand the basic idea of Momentum (and partially, too, RMSProp and 

Adam), you first must understand what exponentially weighted averages are.

 Exponentially Weighted Averages
Let’s suppose that you are measuring a quantity θ (it could be the temperature where 

you live) over time—once a day, for example. You will have a series of measurements 

that we can indicate with θi, where i goes from 1 to a certain number N. Bear with me, 

if, at the beginning, this does not make much sense; however, let’s define recursively a 

quantity vn as
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and so on, with β, a real number with 0 < β < 1. Generally, we could write the nth term as

 v vn n n= + -( )-b b q1 1  

Now let’s write all the terms, v1, v2, and so on, just as a function of β and θi (so, not 

recursively). For v2, we have

 
v v2 0 1 2

2
1 21 1 1= + -( )( ) + -( ) = + -( ) +( )b b b q b q b b bq q  

for v3,

 
v3

3 2
1 2 31= + -( ) + +éë ùûb b b q bq q  

Generalizing, we obtain
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- -b b b q b q q1 1
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Or, more elegantly (without the three dots),
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-åb b b q1
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Now let’s try to understand what this formula means. First, note that the term βn 

disappears if we choose v0 = 0. Let’s do that (we set v0 = 0) and consider now what 

remains:
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Are you still with me? Now comes the interesting part. Let’s define the convolution 

between two sequences.3 Consider two sequences: xn and hn. The convolution between 

the two (which we indicate with the symbol ∗) is defined by

 
x h x hn n

k
k n k* =

=-¥

¥

-å  

3 Generally speaking, a sequence is an enumerated collection of objects.
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Now, because we have only a finite number of measurements for our quantity θi, we 

will have

 qk k n k= > £0 0,  

Therefore, we can write vn as a convolution as

 v bn n n= *q  

where we have defined

 bn
n= -( )1 b b  

To get an idea of what that means, let’s plot together θn, bn, and vn. To do this, 

let’s assume that θn has a Gaussian shape (the exact form is not relevant, it is only for 

illustrative purposes), and let’s take β = 0.9 (see Figure 4-20).

Figure 4-20. A plot (left) showing θn (solid line) and bn (dotted line) together, and 
one (right) showing the points that must be summed to obtain vn for n = 50
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Now I’ll discuss briefly Figure 4-20. The Gaussian curve (θn) will be convoluted with 

bn to obtain vn. The result can be seen in the plot at right. All those terms, (1 − β)βn − iθi for 

i = 1, …, 50 (plotted at right), will be summed to obtain v50. Intuitively, vn is the average of 

all θn for n = 1, …, 50. Each term is then multiplied by a term (bn) that is 1 for n = 50 and 

then decreases rapidly for n, decreasing toward 1. Basically, this is a weighted average, 

with an exponentially decreasing weight (thus the name). The terms farther from n = 50 

are less and less relevant, while the terms close to n = 50 get more weight. This is also 

a moving average. For each n, all the preceding terms are added, each multiplied by a 

weight (bn).

I would like now to show you why there is this factor 1 − β in bn. Why not choose only 

βn? The reason is very simple. The sum of bn over all positive n is equal to 1. Let’s see why. 

Consider the following equation:

 k
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where we have used the fact that for β < 1, we have limb N

N

+

®¥
=1 0, and that for a geometric 

series, we have
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The algorithm we described to calculate vn is nothing else than the convolution of 

our quantity θi, with a series the sum of which is equal to 1 and has the form (1 − β)βi.

Note the exponentially weighted average vn of a series of a quantity θn is the 
convolution vn = θn ∗ bn of our quantity θi, with bn = (1 − β)βn, where bn has the 
property that its sum over the positive values of n is equal to 1. it has the intuitive 
meaning of a moving average, in which each term is multiplied by weights given 
by the sequence bn.

As you choose β smaller and smaller, the number of points θn that have a weight 

significantly different from zero decreases, as you can see in Figure 4-21, in which the 

series bn for different values of β is plotted.
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This method is at the very core of the Momentum optimizer and more advanced 

learning algorithms, and you will see in the next sections how it works in practice.

 Momentum
You will remember that in plain gradient descent, the weights updates are calculated 

with the equations
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Figure 4-21. The series bn for three values of β: 0.9, 0.8, and 0.3. Note that as β gets 
smaller, the series is significantly different from zero for an increasingly smaller 
number of values around n = 0.
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The idea behind the Momentum optimizer is to use exponentially weighted averages 

of the corrections of the gradient and then use them for the weights updates. More 

mathematically we calculate
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and we will then perform the updates with the equations
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where usually vw, [0] = 0 and vb, [0] = 0 are chosen. That means, as you can now understand 

from the discussion about exponentially weighted averages from the previous section, 

that instead of using the derivatives of the cost functions with respect to the weights, we 

update the weights with a moving average of the derivatives. Usually, experience shows 

that a bias correction could theoretically be neglected.

Note the Momentum algorithm uses an exponential weighted average of the 
derivatives of the cost function with respect to the weights for the weights updates. 
in this way, not only the derivatives at a given iteration are used, but also the past 
behavior is considered. it may happen that the algorithm oscillates around the 
minimum, instead of converging directly. this algorithm can escape from plateaus 
much more efficiently than standard gradient descent.

Sometimes, you find in books or blogs a slightly different formulation (I provide here 

only the equation for the weights, w, for brevity).

 
v v ww n w n n nJ b, ,+[ ] [ ] [ ] [ ]= + Ñ ( )1 g h w ,  
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The idea and meaning remain the same. It is simply a slightly different mathematical 

formulation. I find that the method I described is easier to understand intuitively 

with the notion of sequence convolution and of weighted averages than this second 

formulation. Another formulation that you will find (and one that TensorFlow uses) is

 
v v J bw n

t
w n n n, ,+[ ] [ ] [ ] [ ]= +Ñ ( )1 h w w ,  

where ηt is called by TensorFlow Momentum (the superscript t indicates that this 

variable is used by TensorFlow). In this formulation, the weight update assumes the form
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where, again, the superscript t indicates that the variable is the one used by TensorFlow. 

Although it seems different, this formulation is completely equivalent to the formulation 

I gave you at the beginning of this section.
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The TensorFlow formulation and the one I discussed previously are equivalent, if we 
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That can be seen by simply comparing the two different equations for the weights 

updates. Typically, values around η = 0.9 in TensorFlow implementations are used, and 

they generally work well.

Implementing Momentum in TensorFlow is extraordinarily easy. Just replace the 

GradientDescentOptimizer with tf.train.MomentumOptimizer(learning_rate = 

learning_rate, momentum = 0.9).

The Momentum almost always converges faster than plain gradient descent.
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Note Comparing the different parameters in the different optimizers is wrong. 
the learning rate, for example, has a different meaning in the different algorithms. 
what you should compare is the best convergence speed you can achieve with 
several optimizers, regardless of the choice of parameters. Comparing the gD for a 
learning rate of 0.01 with adam (covered later) for the same learning rate does not 
make much sense. You should compare the optimizers with the parameters that 
give you the best and fastest convergence, to decide which one to use.

In Figure 4-22, you can see the cost function for the problem discussed in the 

previous section for plain gradient descent (with γ = 0.05) and for Momentum (with 

γ = 0.05 and η = 0.9). You can see how the Momentum optimizer oscillates around the 

minimum. What is difficult to see on the y scale is that with Momentum, J reaches a 

much lower value.

Figure 4-22. Cost function vs. the number of epochs for plain gradient descent 
(with γ = 0.05) and for Momentum (with γ = 0.05 and η = 0.9). You can see how the 
Momentum optimizer oscillates a bit around the minimum.
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More interesting is to check how the Momentum optimizer chooses its path along 

the cost function surface. In Figure 4-23, you can see a 3D surface plot of the cost 

function. The continuous line is the path that the gradient descent optimizer chooses, 

along the maximum steepness, as expected. The dashed line is the one that the 

Momentum optimizer chooses as it oscillates around the minimum.

Figure 4-23. 3D surface plot of the cost function J. The continuous line is the path 
that the gradient descent optimizer chooses—along the maximum steepness, as 
expected. The dashed line is the one that the Momentum optimizer chooses as it 
oscillates around the minimum.
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I want to convince you that Momentum is faster and better at converging. To do 

that, let’s check in the weights plane how the two optimizers behave. In Figure 4-24, you 

can see the path that the two optimizers have chosen. On the right plot, you can see a 

zoom around the minimum. You can see how gradient descent after 100 epochs does 

not manage to reach the minimum, although it seems to choose a more direct path 

toward the minimum. It gets very close, but not close enough. The Momentum optimizer 

oscillates around the minimum and reaches it very efficiently.

Figure 4-24. Path that the two optimizers have chosen. The right plot shows a 
zoom around the minimum. You can see how Momentum reaches the minimum 
after oscillating around it, while GD does not manage to reach it in 100 epochs.

 RMSProp
Let’s move to something a bit more complex, but usually more efficient. Let me give you 

the mathematical equations, and then we will compare them to the others we have seen 

so far. At each iteration, we need to calculate
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where the symbol ∘ indicates an element-wise product. Then we will do the update of 

our weights with the equations
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So, first you determine an exponential weighted average of the quantities Sw, [n + 1] 

and Sb, [n + 1] and then use them to modify the derivatives that you use to do your weights 

updates. The ϵ, usually ϵ = 10−8, is there to avoid the denominator going to zero in case 

the quantities Sw, [n + 1] and Sb, [n + 1] go to zero. The intuitive idea is that if the derivative is 

big, then the S quantities are big; therefore, the factors 1 1/ ,Sw n+[ ] +  or 1/ ,Sb n[ ] +  will 

be smaller and the learning will slow down. The reverse is also true, so if the derivatives 

are small, the learning will be faster. This algorithm will make the learning faster for the 

parameters that are slowing it down. In TensorFlow, it is again particularly easy to use it 

simply with the following code:

optimizer = tf.train.RMSPropOptimizer(learning_rate, momentum = 0.9).

minimize(cost)

Let’s check what path this optimizer chooses. In Figure 4-25, you can see that 

RMSProp oscillates around the minimum. While the GD does not reach it, the RMSProp 

algorithm has time to do several loops around it before reaching it.

Figure 4-25. Path chosen toward the cost function minimum by plain gradient 
descent and RMSProp. The latter makes loops around the minimum and then 
reaches it. In the same number of epochs, the GD does not even get that close. 
Note the scale of the plot on the right. The zoom level is very high. We are looking 
at an extreme close-up (the GD path is not even visible on this scale) around the 
minimum.

Chapter 4  training neural networks



174

In Figure 4-26, you can see in 3D the same path along the cost function surface.

Figure 4-26. Path choosen by the GD (γ = 0.05) and RMSProp (γ = 0.05, η = 0.9, 
ϵ = 10−10) along the surface of the cost function. The red dot indicates the minimum. 
RMSProp, especially at the beginnig, chooses a more direct path toward the 
minimum than GD.
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In Figure 4-27, you can see GD, RMSProp and Momentum paths. You can see how 

the RMSProp path is much more direct toward the minimum. It gets close to it very 

quickly and then oscillates closer and closer. It overshoots a bit at the beginning but then 

corrects itself quickly and comes back.

Figure 4-27. Path toward the minimum choosen by GD, RMSProp, and 
Momentum. You can see how the RMSProp path toward the minimum is much 
more direct. It gets around it very quickly and then oscillates closer and closer.

 Adam
The last algorithm we will look at is called Adam (Adaptive Moment estimation). It 

combines the ideas of RMSProp and Momentum in one optimizer. Like Momentum, it 

uses an exponential weighted averages of past derivatives, and like RMSProp, it uses the 

exponentially weighted averages of past squared derivatives.

You will have to calculate the same quantities that you need for Momentum and for 

RMSProp, and then you must calculate the following quantities:
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Similarly, you must calculate
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Where we have used β1 for the hyperparameter, we will use it in Momentum and 

β2 for the one we used in RMSProp. Then, as we did in RMSProp, we will update our 

weights with the equations
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TensorFlow does everything for us, if we simply use the following line:

optimizer = tf.train.AdamOptimizer(learning_rate = learning_rate, beta1 = 

0.9, beta2 = 0.999, epsilon = 1e-8).minimize(cost)

where, in this case, the typical values for the parameters have been chosen: γ = 0.3, 

β1 = 0.9, β2 = 0.999, and ϵ = 10−8. Note that because this algorithm adapts the learning rate 

to the situation, we can start with a bigger learning rate, to speed up the convergence.

In Figure 4-28, you can see the path around the minimum chosen by GD and the 

Adam optimizer. Adam, too, oscillates around the minimum, but it reaches it without 

problems. On the right plot (a zoom around the minimum), you can see how the 

algorithm gets very close to the minimum. To give you an idea of how good the optimizer 

is, after just 200 epochs, the weights and bias get to 0.499983, 2.000047, which is really 

close to the minimum (remember that the minimum is at w = 0.5 and b = 2.0).
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I haven’t shown you all the optimizers together, since you would see a lot of loops, 

and that would not really teach you anything.

 Which Optimizer Should I Use?
In short, you should use Adam. It is generally considered faster and better than other 

methods. This does not mean that is always the case. There are recent research papers 

that indicate how these optimizers could generalize poorly on new datasets (see, for 

example, Ashia C. Wilson, Rebecca Roelofs, Mitchell Stern, Nathan Srebro, and Benjamin 

Recht, “The Marginal Value of Adaptive Gradient Methods in Machine Learning,” at 

https://goo.gl/Nzc8bQ). And there are other papers that endorse use of GD with a 

dynamical learning rate decay. It mostly depends on your problem. But, generally, Adam 

is a very good starting point.

Note if you are unsure about which optimizer to start with, use adam. it is 
generally considered faster and better than other methods.

Figure 4-28. Path that GD and Adam optimizers choose after 200 epochs. Note the 
amount of loops that Adam takes around the minimum. Regardless, the opimizer 
is really efficient compared to the plain GD.
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To give you an idea of how good Adam can be, let’s apply it to the Zalando dataset. 

We will use a network with 4 hidden layers, each with 20 neurons. The model we 

will use is the one discussed at the very end of Chapter 3. Figure 4-29 shows how 

the cost function converges faster when using Adam optimization, compared to 

GD. Additionally, in 100 epochs, GD reaches an accuracy of 86%, while Adam reaches 

90%. Note that I have not changed anything in the model, except the optimizer! For 

Adam, I have used the following code:

optimizer = tf.train.AdamOptimizer(learning_rate = learning_rate,  

beta1 = 0.9, beta2 = 0.999, epsilon = 1e-8).minimize(cost)

As I suggested, when testing complex networks on big datasets, the Adam optimizer 

is a good place to start. But you should not limit your tests only to this optimizer. A test of 

other methods is always worthwhile. Perhaps another approach will work better.

Figure 4-29. Cost function of the Zalando dataset for a network with 4 hidden 
layers, each with 20 neurons. The continous line is plain GD, with a learning 
rate of γ = 0.01, and the dashed line is Adam optimization, with γ = 0.1, β1 = 0.9, 
β2 = 0.999, and ϵ = 10−8.
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 Example of Self-Developed Optimizer
Before completing this chapter, I want to show you how to develop your own optimizer, 

using TensorFlow. This is very useful when you want to use an optimizer that is not 

directly available. Take, for example, the paper from Neelakantan et al.4 In their research, 

they show how adding random noise to the gradients when training complex networks 

allows plain gradient descent to become very effective. They show how a 20-layer deep 

network can be trained efficiently with standard GD, even starting with poor weight 

initialization.

If you want to test this method, for example, you cannot use the  

tf.GradientDescentOptimizer function, because this implements a plain GD, without 

the noise described in the paper. To test it, you must have access to the gradients in the 

code, add the noise to them, and then update the weights with the modified gradients. 

We will not test their method here; that would require too much time and would go 

beyond the scope of this book, but is instructive to see how to develop plain gradient 

descent without using the tf.GradientDescentOptimizer and without calculating any 

derivative manually.

Before constructing our network, we must know the dataset we want to use and 

what problem (regression, classification, etc.) we want to solve. Let’s make something 

new with a known dataset. Let’s use the MNIST dataset we used in Chapter 2, but this 

time, lets perform multiclass classification using the softmax function, as we did on 

the Zalando dataset in Chapter 3. In Chapter 2, I discussed at length how to load the 

MNIST dataset with sklearn, so let’s do it in a different (and more efficient) way here. 

TensorFlow has a method to download the MNIST dataset, including labels already one- 

hot encoded. This can be done simply with the following lines:

from tensorflow.examples.tutorials.mnist import input_data

mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)

4 A. Neelakantan et al., “Adding Gradient Noise Improves Learning for Very Deep Learning,” 
conference paper presented at ICLR 2016, available at https://arxiv.org/abs/1511.06807.
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This gives you the output

Successfully downloaded train-images-idx3-ubyte.gz 9912422 bytes.

Extracting /tmp/data/train-images-idx3-ubyte.gz

Successfully downloaded train-labels-idx1-ubyte.gz 28881 bytes.

Extracting /tmp/data/train-labels-idx1-ubyte.gz

Successfully downloaded t10k-images-idx3-ubyte.gz 1648877 bytes.

Extracting /tmp/data/t10k-images-idx3-ubyte.gz

Successfully downloaded t10k-labels-idx1-ubyte.gz 4542 bytes.

Extracting /tmp/data/t10k-labels-idx1-ubyte.gz

You will find the files in the folder (if you are using Windows) c:\tmp\data. If you 

want to change the location where the files are stored, you must change the "/tmp/

data" parameter of the function read_data_sets. Now, as you probably remember from 

Chapter 2, the MNIST images are 28 × 28 pixels (784 pixels in total) images, in grayscale, 

so each pixel can assume a value from 0 to 254. Having this information, we can now 

construct our network.

X = tf.placeholder(tf.float32, [784, None]) # mnist data image of shape 

28*28=784

Y = tf.placeholder(tf.float32, [10, None]) # 0-9 digits recognition => 10 

classes

learning_rate_ = tf.placeholder(tf.float32, shape=())

W = tf.Variable(tf.zeros([10, 784]), dtype=tf.float32)

b = tf.Variable(tf.zeros([10,1]), dtype=tf.float32)

y_ = tf.nn.softmax(tf.matmul(W,X)+b)

cost = - tf.reduce_mean(Y * tf.log(y_)+(1-Y) * tf.log(1-y_))

grad_W, grad_b = tf.gradients(xs=[W, b], ys=cost)

new_W = W.assign(W - learning_rate_ * grad_W)

new_b = b.assign(b - learning_rate_ * grad_b)

The line

grad_W, grad_b = tf.gradients(xs=[W, b], ys=cost)
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The preceding code gives you the tensors that contain the gradients of the cost node 

with respect to W and b, respectively. TensorFlow calculates them for you automatically! 

If you are interested to know how, check the official documentation of the tf.gradients 

function at https://goo.gl/XAjRkX. Now we must add nodes to the computational graph 

that updates the weights, and that is what we do with the lines

new_W = W.assign(W - learning_rate_ * grad_W)

new_b = b.assign(b - learning_rate_ * grad_b)

When we ask TensorFlow to evaluate the nodes new_W and new_b during our session, 

the weights and bias get updated. Finally, we must modify the function that evaluates the 

graph, using (for the mini-batch GD) the line

_, _, cost_ = sess.run([new_W, new_b , cost], feed_dict = {X: X_train_mini, 

Y: y_train_mini, learning_rate_: learning_r})

In this way, the new nodes new_W and new_b get evaluated, and, in doing so, 

TensorFlow updates the weights and bias. The following lines are no longer required:

sess.run(optimizer, feed_dict = {X: X_train_mini, Y: y_train_mini, 

learning_rate_: learning_r})

because we don’t have the optimizer node anymore. The entire function you require 

is the following:

def run_model_mb(minibatch_size, training_epochs, features, classes, 

logging_step = 100, learning_r = 0.001):

    sess = tf.Session()

    sess.run(tf.global_variables_initializer())

    total_batch = int(mnist.train.num_examples/minibatch_size)

    cost_history = []

    accuracy_history = []

    for epoch in range(training_epochs+1):

        for i in range(total_batch):

            batch_xs, batch_ys = mnist.train.next_batch(minibatch_size)

            batch_xs_t = batch_xs.T

            batch_ys_t = batch_ys.T
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            _, _, cost_ = sess.run([new_W, new_b ,

                                     cost], feed_dict = {X: batch_xs_t, 

Y: batch_ys_t, learning_rate_: 

learning_r})

        cost_ = sess.run(cost, feed_dict={ X:features, Y: classes})

        accuracy_ = sess.run(accuracy, feed_dict={ X:features, Y: classes})

        cost_history = np.append(cost_history, cost_)

        accuracy_history = np.append(accuracy_history, accuracy_)

        if (epoch % logging_step == 0):

                print("Reached epoch",epoch,"cost J =", cost_)

                print ("Accuracy:", accuracy_)

    return sess, cost_history, accuracy_history

This function is slightly different than those we have used before, because here, I 

used some features of TensorFlow to make our life a bit easier. In particular, the line

total_batch = int(mnist.train.num_examples/minibatch_size)

calculates the total number of mini-batches that we have, because the variable 

mnist.train.num_examples contains the number of observations we have at our 

disposal. Then to get the batches, we use

batch_xs, batch_ys = mnist.train.next_batch(minibatch_size)

This returns two tensors, containing the training input data (batch_xs) and the 

one-hot encoded labels (batch_ys). We then simply have to transpose them, because 

TensorFlow returns the array with observations as rows. We do that with the lines

batch_xs_t = batch_xs.T

batch_ys_t = batch_ys.T

I also added to the function the accuracy calculation, to make it easier to see how 

well we are doing. Letting the model run with the python call

sess, cost_history, accuracy_history = run_model (100, 50, X_train_tr, 

labels_, logging_step = 10, learning_r = 0.01)
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will give you the following output:

Reached epoch 0 cost J = 1.06549

Accuracy: 0.773786

Reached epoch 10 cost J = 0.972171

Accuracy: 0.853371

Reached epoch 20 cost J = 0.961519

Accuracy: 0.869357

Reached epoch 30 cost J = 0.956766

Accuracy: 0.877814

Reached epoch 40 cost J = 0.953982

Accuracy: 0.883143

Reached epoch 50 cost J = 0.952118

Accuracy: 0.886386

This model will work exactly as the one with the gradient descent optimizer provided 

by TensorFlow. But now, you have access to the gradients, and you can modify them, add 

noise to them (if you want to try), and so on. In Figure 4-30, you can see the cost function 

behavior (on the right side) and the accuracy vs. the epochs (on the left side) that we get 

with this model.

Note tensorFlow is a great library, because it gives you the flexibility to build 
your models basically from scratch. But it is important to understand how the 
different methods work, to be able to use the library to its fullest. You need to have 
a very good understanding of the mathematics behind the algorithms, to be able to 
tune them or to develop variations.
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Figure 4-30. Cost function behavior (right) and the accuracy vs. epochs (left) for 
the neural network with one neuron and with the gradient descent developed with 
the tf.gradients function
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CHAPTER 5

Regularization
In this chapter, you will look at a very important technique often used when training 

deep networks: regularization. You will look at techniques such as the ℓ2 and ℓ1 methods, 

dropout, and early stopping. You will see how these methods help avoid the problem of 

overfitting and achieve much better results from your models, when applied correctly. 

You will look at the mathematics behind the methods and at how to implement it in 

Python and TensorFlow correctly.

 Complex Networks and Overfitting
In the previous chapters, you have learned how to build and train complex networks. 

One of the most common problems you will encounter when using complex networks is 

overfitting. Review Chapter 3 for an overview of what overfitting is. In this chapter, you 

will face an extreme case of overfitting, and I will discuss a few strategies to avoid it.  

A perfect dataset to study this problem is the Boston housing price dataset discussed in 

Chapter 2. Let’s review how to get the data (for a more detailed discussion, please refer  

to Chapter 2). Start with the packages we need.

import matplotlib.pyplot as plt

%matplotlib inline

import tensorflow as tf

import numpy as np

from sklearn.datasets import load_boston

import sklearn.linear_model as sk
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Then import the dataset.

boston = load_boston()

features = np.array(boston.data)

target = np.array(boston.target)

The dataset has 13 features (contained in the features NumPy array) and the house 

price contained in the target NumPy array. As in Chapter 2, to normalize the features, we 

will use the function

def normalize(dataset):

    mu = np.mean(dataset, axis = 0)

    sigma = np.std(dataset, axis = 0)

    return (dataset-mu)/sigma

To conclude our dataset preparation, let’s normalize it and then create training and a 

dev dataset.

features_norm = normalize(features)

np.random.seed(42)

rnd = np.random.rand(len(features_norm)) < 0.8

train_x = np.transpose(features_norm[rnd])

train_y = np.transpose(target[rnd])

dev_x = np.transpose(features_norm[~rnd])

dev_y = np.transpose(target[~rnd])

The np.random.seed(42) is there so that you will always get the same training and 

dev dataset (this way, your results will be reproducible). Now, let’s reshape the arrays we 

need.

train_y = train_y.reshape(1,len(train_y))

dev_y = dev_y.reshape(1,len(dev_y))

Next, let’s build a complex neural network with 4 layers and 20 neurons for each 

layer. Define the following function to build each layer:

def create_layer (X, n, activation):

    ndim = int(X.shape[0])

    stddev = 2.0 / np.sqrt(ndim)

    initialization = tf.truncated_normal((n, ndim), stddev = stddev)
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    W = tf.Variable(initialization)

    b = tf.Variable(tf.zeros([n,1]))

    Z = tf.matmul(W,X)+b

    return activation(Z), W, b

Note that this time, we return the weights tensor W and the bias b. We will need them 

when implementing regularization. You have already seen this function at the end of 

Chapter 3, so you should understand what it does. We use the He initialization here, 

because we will use ReLU activation functions. The network can be created with the 

following code:

tf.reset_default_graph()

n_dim = 13

n1 = 20

n2 = 20

n3 = 20

n4 = 20

n_outputs = 1

tf.set_random_seed(5)

X = tf.placeholder(tf.float32, [n_dim, None])

Y = tf.placeholder(tf.float32, [1, None])

learning_rate = tf.placeholder(tf.float32, shape=())

hidden1, W1, b1 = create_layer (X, n1, activation = tf.nn.relu)

hidden2, W2, b2 = create_layer (hidden1, n2, activation = tf.nn.relu)

hidden3, W3, b3 = create_layer (hidden2, n3, activation = tf.nn.relu)

hidden4, W4, b4 = create_layer (hidden3, n4, activation = tf.nn.relu)

y_, W5, b5 = create_layer (hidden4, n_outputs, activation = tf.identity)

cost = tf.reduce_mean(tf.square(y_-Y))

optimizer = tf.train.AdamOptimizer(learning_rate = learning_rate, beta1 = 

0.9, beta2 = 0.999, epsilon = 1e-8).minimize(cost)
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In our output layer, we have one neuron with the identity activation function for 

regression. Additionally, we use the Adam optimizer, as suggested in Chapter 4. Now let’s 

run the model with this code:

sess = tf.Session()

sess.run(tf.global_variables_initializer())

cost_train_history = []

cost_dev_history = []

for epoch in range(10000+1):

     sess.run(optimizer, feed_dict = {X: train_x, Y: train_y, learning_rate: 

0.001})

     cost_train_ = sess.run(cost, feed_dict={ X:train_x, Y: train_y, 

learning_rate: 0.001})

     cost_dev_ = sess.run(cost, feed_dict={ X:dev_x, Y: dev_y, learning_

rate: 0.001})

    cost_train_history = np.append(cost_train_history, cost_train_)

    cost_dev_history = np.append(cost_test_history, cost_test_)

    if (epoch % 1000 == 0):

        print("Reached epoch",epoch,"cost J(train) =", cost_train_)

        print("Reached epoch",epoch,"cost J(test) =", cost_test_)

As you may have noticed, there are a few differences from what we did before. To 

make things simpler, I avoided writing a function and simply hard-coded all the values 

in the code, because, in this case, we don’t need to tune the parameters much. I am not 

using mini-batches here, because we have only a few hundred observations, and I am 

calculating the MSE (mean squared error) for both training and dev datasets with the 

following lines:

cost_train_ = sess.run(cost, feed_dict={ X:train_x, Y: train_y, learning_

rate: 0.001})

cost_dev_ = sess.run(cost, feed_dict={ X:dev_x, Y: dev_y, learning_rate: 

0.001})
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In this way, we can check what is happening on both datasets at the same time. Now 

if you let the code run and plot the two MSEs, one for the training, which we will indicate 

by MSEtrain, and one for the dev dataset, indicated by MSEdev, we get Figure 5-1.

You will notice how the training error goes down to zero, while the dev error remains 

constant at around a value of roughly 20, after dropping rapidly at the beginning. If you 

remember the introduction to basic error analysis, you should know that this means 

that we are in a regime of extreme overfitting (when MSEtrain ≪ MSEdev). The error on 

the training dataset is practically zero, while the one for the dev dataset is not. The 

model cannot generalize at all when applied to new data. In Figure 5-2, you can see the 

predicted value plotted vs. the real value. You will notice how in the plot at the left, for 

the training data, the prediction is almost perfect, while the plot on the right, for the 

dev dataset, is not that good. You will remember that a perfect model would give you 

predicted values exactly equal to the measured ones. So, while plotting one vs. the other, 

they would all lie on the 45 degree line of the plot, as in Figure 5-2, on the left.

Figure 5-1. MSE for the training (continuous line) and the dev dataset (dashed 
line) for the neural network with 4 layers, each having 20 neurons
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What can we do in this case to avoid the problem of overfitting? One solution, of 

course, would be to reduce the complexity of the network, that is, reducing the number 

of layers and/or the number of neurons in each layer. But, as you can imagine, this 

strategy is very time-consuming. You must try several network architectures to see how 

the training error and the dev error behave. In this case, this is still a viable solution, but 

if you are working on a problem for which the training phase takes several days, this can 

be quite difficult and extremely time-consuming. Several strategies have been developed 

to deal with this problem. The most common is called regularization, the focus of this 

chapter.

 What Is Regularization?
Before going into the different methods, I would like to quickly discuss what the deep- 

learning community understands by the term regularization. The term has deeply (pun 

intended) evolved over time. For example, in the traditional sense (from the ’90s), the 

term is reserved only to as a penalty term in the loss function (Christopher M. Bishop, 

Neural Networks for Pattern Recognition, New York: Oxford University Press, 1995). Lately 

the term has gained a much more broader meaning. For example, Ian Goodfellow et al. 

(Deep Learning, Cambridge, MA, MIT Press, 2016) define it as “any modification we make 

Figure 5-2. Predicted value vs. the real value for the target variable (the house 
price). You will notice how in the left-hand plot, for the training data, the 
prediction is almost perfect, while on the plot on the right, for the dev dataset, the 
predictions are more spread.
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to a learning algorithm that is intended to reduce its test error but not its training error.” 

Jan Kukačka et al. (“Regularization for deep learning: a taxonomy,” arXiv:1710.10686v1, 

available at https://goo.gl/wNkjXz) generalize the term even further and offer the 

following definition: “Regularization is any supplementary technique that aims at making 

the model generalize better, i.e., produce better results on the test set.” So, be aware when 

using the term, and always be precise about what you mean.

You may also have heard or read the claim that regularization has been developed 

to fight overfitting. This is also a way of understanding it. Remember: A model that 

is overfitting the training dataset is not generalizing well to new data. This definition 

can also be found online, along with all the others. Although merely definitions, it is 

important to have a familiarity with them, so that you may better understand what is 

meant when reading papers or books. This is a very active research area, and to give 

you an idea, Kukačka et al., in their review paper referenced above, list 58 different 

regularization methods. Yes, 58; that is not a typo. But it is important to understand 

that in their general definition, SGD (stochastic gradient descent) also is considered a 

regularization method, something not everyone agrees on. So be warned, when reading 

research material, check what is understood by the term regularization.

In this chapter, you will look at the three most common and well-known methods: 

ℓ1, ℓ2, and dropout, and I will briefly discuss early stopping, although this method does 

not, technically speaking, fight overfitting. ℓ1 and ℓ2 achieve a so-called weight decay, 

by adding a so-called regularization term to the cost function, while dropout simply 

removes, in a random fashion, nodes from the network during the training phase. To 

understand the three methods properly, we must study them in detail. Let’s start with 

probably the most instructive one: ℓ2 regularization.

At the end of the chapter, we will explore a few other ideas about how to fight 

overfitting and get the model to generalize better. Instead of changing or modifying the 

model or the learning algorithm, we will consider strategies with the idea of modifying 

the training data, to make learning more effective.

 About Network Complexity
I would like to spend a few moments discussing briefly a term I’ve used very often: 

network complexity. You have read here, as you can almost anywhere, that with 

regularization, you want to reduce network complexity. But what does that really mean? 

Actually, it is relatively difficult to give a definition of network complexity, so much 

so that no one does it. You can find several research papers on the problem of model 
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complexity (note that I did not say network complexity), with roots in information 

theory. You will see in this chapter how, for example, the number of weights that is 

different than zero will change dramatically with the number of epochs, with the 

optimization algorithm, and so on, therefore making this vaguely intuitive concept of 

complexity dependent also on how long you train your model. To make a long story 

short, the term network complexity should be used only on an intuitive level, because, 

theoretically, it is a very complex concept to define. A complete discussion of the subject 

would be way beyond the scope of this book.

 ℓp Norm
Before we start studying what ℓ1 and ℓ2 regularization are, I must introduce the ℓp norm 

notation. We define the ℓp norm of a vector x with xi components as
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i

p
p x p= Îå 

 

where the sum is performed over all components of the vector x.

Let’s begin with the most instructive norm: the ℓ2.

 ℓ2 Regularization
One of the most common regularization methods, ℓ2 regularization consists of adding 

a term to the cost function that has the goal of effectively reducing the capacity of the 

network to adapt to complex datasets. Let’s first have a look at the mathematics behind 

the method.

 Theory of ℓ2 Regularization
When doing plain regression, you will remember from Chapter 2, our cost function is 

simply the MSE
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where yi is our measured target variable, ŷi  is the predicted value, w is the vector of all 

the weights of our network, including the bias, and m is the number of observations. 

Now let’s define a new cost function �J bw, ( ).
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This additional term,
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is called a regularization term and is nothing else than the ℓ2-norm squared of  

w multiplied by a constant factor λ/2m. λ is called the regularization parameter.

Note the new regularization parameter, λ, is a new hyperparameter that you 
must tune to find the optimal value.

Now let’s try to get an intuitive understanding of what the effect of this term on the 

GD (gradient descent) algorithm is. Let’s consider the updated equation for the weight wj
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This is the equation that we must use for the weights update. The difference with 

the one we already know from plain GD is that, now, the weight wj, [n] is multiplied with 

a constant 1 1- <
gl
m

, and, therefore, this has the effect of effectively shifting the weight 

values during the update toward zero, making the network less complex (intuitively), 

thus fighting overfitting. Let’s try to see what is really happening to the weights, by 

applying the method to the Boston housing dataset.

 tensorflow Implementation
The implementation in tensorflow is quite easy. Remember: We must calculate the 

additional term w 2
2 , then add it to the cost function. The model construction remains 

almost the same. We can do it with the following code:

tf.reset_default_graph()

n_dim = 13

n1 = 20

n2 = 20

n3 = 20

n4 = 20

n_outputs = 1

tf.set_random_seed(5)

X = tf.placeholder(tf.float32, [n_dim, None])

Y = tf.placeholder(tf.float32, [1, None])

learning_rate = tf.placeholder(tf.float32, shape=())

hidden1, W1, b1 = create_layer (X, n1, activation = tf.nn.relu)

hidden2, W2, b2 = create_layer (hidden1, n2, activation = tf.nn.relu)

hidden3, W3, b3 = create_layer (hidden2, n3, activation = tf.nn.relu)

hidden4, W4, b4 = create_layer (hidden3, n4, activation = tf.nn.relu)

y_, W5, b5 = create_layer (hidden4, n_outputs, activation = tf.identity)

lambd = tf.placeholder(tf.float32, shape=())

reg = tf.nn.l2_loss(W1) + tf.nn.l2_loss(W2) + tf.nn.l2_loss(W3) + \

          tf.nn.l2_loss(W4) + tf.nn.l2_loss(W5)

cost_mse = tf.reduce_mean(tf.square(y_-Y))

cost = tf.reduce_mean(cost_mse + lambd*reg)
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optimizer = tf.train.AdamOptimizer(learning_rate = learning_rate, beta1 = 

0.9, beta2 = 0.999, epsilon = 1e-8).minimize(cost)

For our new regularization parameter λ, we create a placeholder.

lambd = tf.placeholder(tf.float32, shape=())

Remember that in Python, lambda is a reserved word, so we cannot use it. This is the 

reason we use lambd. Then we calculate our regularization term w 2
2
.

reg = tf.nn.l2_loss(W1) + tf.nn.l2_loss(W2) + tf.nn.l2_loss(W3) + \

          tf.nn.l2_loss(W4) + tf.nn.l2_loss(W5)

with the useful TensorFlow function tf.nn.l2_loss(), and then we add it to the MSE 

function cost_mse.

cost_mse = tf.reduce_mean(tf.square(y_-Y))

cost = tf.reduce_mean(cost_mse + lambd*reg)

Now our cost tensor will contain the MSE plus the regularization term. Then we 

simply need to train the network and observe what happens. To train the network, we 

use this function:

def model(training_epochs, features, target, logging_step = 100, learning_r 

= 0.001, lambd_val = 0.1):

    sess = tf.Session()

    sess.run(tf.global_variables_initializer())

    cost_history = []

    for epoch in range(training_epochs+1):

         sess.run(optimizer, feed_dict = {X: features, Y: target, learning_

rate: learning_r, lambd: lambd_val})

         cost_ = sess.run(cost_mse, feed_dict={ X:features, Y: target, 

learning_rate: learning_r, lambd: lambd_val})

        cost_history = np.append(cost_history, cost_)

        if (epoch % logging_step == 0):

                 pred_y_test = sess.run(y_, feed_dict = {X: test_x, Y: 

test_y})

                print("Reached epoch",epoch,"cost J =", cost_)
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                print("Training MSE = ", cost_)

                 print("Dev MSE      = ", sess.run(cost_mse, feed_dict = {X: 

test_x, Y: test_y}))

    return sess, cost_history

This time, I printed the MSE coming from the training (MSEtrain) and dev (MSEdev) 

datasets, to check what is going on. As mentioned, applying this method makes many 

weights go to zero, effectively reducing the complexity of the network and, therefore, 

fighting overfitting. Let’s run the model for λ = 0, without regularization, and for λ = 10.0. 

We can run our model with the following code:

sess, cost_history = model(learning_r = 0.01,

                                training_epochs = 5000,

                                features = train_x,

                                target = train_y,

                                logging_step = 5000,

                                lambd_val = 0.0)

which gives us

Reached epoch 0 cost J = 238.378

Training MSE = 238.378

Dev MSE = 205.561

Reached epoch 5000 cost J = 0.00527479

Training MSE = 0.00527479

Dev MSE = 28.401

As expected, we are in an extreme overfitting regime (MSEtrain ≪ MSEdev) after 5000 

epochs. Now let’s try it with λ = 10.

sess, cost_history = model(learning_r = 0.01,

                                training_epochs = 5000,

                                features = train_x,

                                target = train_y,

                                logging_step = 5000,

                                lambd_val = 10.0)
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This gives the result

Reached epoch 0 cost J = 248.026

Training MSE = 248.026

Dev MSE = 214.921

Reached epoch 5000 cost J = 23.795

Training MSE = 23.795

Dev MSE = 21.6406

Now we are no more in an overfitting regime, because the two MSE values are of 

the same order of magnitude. The best way of checking what is going on is to study the 

weights distribution for each layer. In Figure 5-3, the weights distribution for the first 

4 layers are plotted. The light gray histogram is for the weights without regularization, 

and the darker (and much more concentrated around zero) area is for the weights with 

regularization. I neglected layer 5, since it is the output layer.

Figure 5-3. Weights distribution for each layer
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You can clearly see how the weights, when we apply regularization, are much more 

concentrated around zero, meaning they are much smaller than without regularization. 

This makes the weight decay effect of regularization very evident. I would like to briefly 

take the chance to make another brief digression on network complexity. I said that this 

method reduces the network complexity. I told you in Chapter 3 that you can consider 

the number of learnable parameters an indication of the complexity of a network, but I 

also warned you that this can be very misleading. Now I would like to show you why. You 

will remember from Chapter 3 that the total number of learnable parameters we have in 

a network like the one we are using here is determined by the formula
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where nl is the number of neurons in layer l, and L is the total number of layers, including 

the output layer. In our case, we have an input layer with 13 features, then 4 layers, each 

with 20 neurons, and then an output layer with 1 neuron. Therefore, Q is given by

 Q = ´ +( )+ ´ +( )+ ´ +( )+ ´ +( )+ ´ +( ) =20 13 1 20 20 1 20 20 1 20 20 1 1 20 1 1561  

Q is quite a big number. But already, without regularization, it is interesting to note 

that we have roughly 48% of the weights that after 10,000 epochs are less than 10−10, so, 

effectively, zero. This is the reason I warned you about talking about complexity in terms 

of numbers of learnable parameters. Additionally, using regularization will change the 

scenario completely. Complexity is a difficult concept to define: it depends on many 

things, among others, architecture, optimization algorithm, cost function, and number 

of epochs trained.

Note Defining the complexity of a network only in terms of number of weights 
is not completely correct. the total number of weights gives an idea, but it can 
be quite misleading, because many may be zero after the training, effectively 
disappearing from the network, and making it less complex. it is more correct to 
talk about “Model Complexity,” instead of network complexity, because many more 
aspects are involved than simply how many neurons or layers the network has.

Chapter 5  regularization



199

Incredibly enough, only half of the weights play a role in the predictions in the end. 

This is the reason I told you in Chapter 3 that defining the network complexity only with 

the parameter Q is misleading. Given your problem, your loss function, and optimizer, 

you may well end up with a network that when trained is much simpler than it was 

at construction phase. So be very careful when using the term complexity in the deep 

learning world. Be aware of the subtleties involved.

To give you an idea of how effective regularization is in reducing the weights, see 

Table 5-1, in which the percentage of weights less than 1e-3 is compared with and 

without regularization after 1000 epochs in each layer.

Table 5-1. Percentage of Weights Less Than 1e-3 with and Without Regularization 

After 1000 Epochs

Layer % of Weights Less Than 1e-3 for λ = 0 % of Weights Less Than 1e-3 for λ = 3

1 0.0 20.0

2 0.25 41.5

3 0.75 60.5

4 0.25 66.0

5 0.0 35.0

But how should we choose λ? To get an idea (repeat after me: “In the deep learning 

world, there is no universal rule.”), it is useful to see what is happening when varying the 

parameter λ to your optimizing metric (in this case, the MSE). In Figure 5-4, you can see 

the behavior of MSEtrain (continuous line) and MSEdev (dashed) datasets for our network 

varying λ after 1000 epochs.
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As you can see with small values of λ (effectively without regularization), we are in 

an overfitting regime (MSEtrain ≪ MSEdev): slowly the MSEtrain increases, while the MSEdev 

remains roughly constant. Until λ ≈ 7.5, the model overfits the training data, then the 

two values cross, and the overfitting finishes. After that, they grow together, at which 

point the model cannot capture the fine data structures anymore. After the crossing 

of the lines, the model becomes too simple to capture the features of the problem, 

and, therefore, the errors grow together, and the error on the training dataset gets 

bigger, because the model doesn’t even fit the training data well. In this specific case, 

a good value to choose for λ would be about 7.5, nearly the value when the two lines 

cross, because there, you are no longer in an overfitting region, as MSEtrain ≈ MSEdev. 

Remember: The main goal of having the regularization term is to get a model that 

generalizes in the best way possible when applied to new data. You can look at it in 

an even different way: a value of λ ≈ 7.5 gives you the minimum of MSEdev outside the 

overfitting region (for λ ≲ 7.5); therefore, it would be a good choice. Note that you may 

observe for your problems a very different behavior for your optimizing metric, so you 

will have to decide on a case-by-case basis what the best value for λ is that works for you.

Figure 5-4. Behavior of the MSE for the training (continuous line) dataset and for 
the dev (dashed) dataset for our network varying λ.

Chapter 5  regularization



201

Note a good way to estimate the optimal value of the regularization parameter λ 
is to plot your optimizing metric (in this example, the MSe) for the training and dev 
datasets and observe how they behave for various values of λ. then choose the 
value that gives the minimum of your optimizing metric on the dev dataset and, at 
the same time, gives you a model that no longer overfits your training data.

I would like now to show you the effects of ℓ2 regularization in an even more visual 

way. Let’s consider a dataset generated with the following code:

nobs = 30

np.random.seed(42)

xx1 = np.array([np.random.normal(0.3,0.15) for i in range (0,nobs)])

yy1 = np.array([np.random.normal(0.3,0.15) for i in range (0,nobs)])

xx2 = np.array([np.random.normal(0.1,0.1) for i in range (0,nobs)])

yy2 = np.array([np.random.normal(0.3,0.1) for i in range (0,nobs)])

c1_ = np.c_[xx1.ravel(), yy1.ravel()]

c2_ = np.c_[xx2.ravel(), yy2.ravel()]

c = np.concatenate([c1_,c2_])

yy1_ = np.full(nobs, 0, dtype=int)

yy2_ = np.full(nobs, 1, dtype=int)

yyL = np.concatenate((yy1_, yy2_), axis = 0)

train_x = c.T

train_y = yyL.reshape(1,60)
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Our dataset has two features: x and y. We generate two groups of points, xx1,yy1 and 

xx2,yy2, from a normal distribution. To the first group, we assign the label 0 (contained 

in the array yy1_), and to the second, the label 1 (in the array yy2_). Now let’s use a 

network such as that described before (with 4 layers, each having 20 neurons) to do 

some binary classification on this dataset. We can take the same code given before, 

modifying the output layer and the cost function. You will remember that for binary 

classification, we need one neuron in the output layer with the sigmoid activation 

function

y_, W5, b5 = create_layer (hidden4, n_outputs, activation = tf.sigmoid)

and the following cost function:

cost_class = - tf.reduce_mean(Y * tf.log(y_)+(1-Y) * tf.log(1-y_))

cost = tf.reduce_mean(cost_class + lambd*reg)

All the rest remains the same as was described earlier. Let’s plot the decision 

boundary1 for this problem. This means that we will run our network on our dataset with 

the code

sess, cost_history = model(learning_r = 0.005,

                                training_epochs = 100,

                                features = train_x,

                                target = train_y,

                                logging_step = 10,

                                lambd_val = 0.0)

In Figure 5-5, you can see our datasets where the white points are of the first class 

and the black of the second. The gray area is the zone that the network classifies as being 

of one class, and the white of the other. You can see that the network is able to capture 

the complex structure of our data in a flexible way.

1 In a statistical-classification problem with two classes, a decision boundary, or decision surface, 
is a surface that partitions the underlying space into two sets, one for each class. (Source: 
Wikipedia, https://goo.gl/E5nELL).
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Now let’s apply regularization to the network, exactly as we did before, and see how 

the decision boundary is modified. Here, we will use a regularization parameter λ = 0.1.

You can clearly see how in Figure 5-6 the decision boundary is almost linear and not 

able to capture the complex structure of our data anymore. Exactly what we expected: 

the regularization term makes the model simpler and, therefore, less able to capture the 

fine structures.

Figure 5-5. Decision boundary without regularization. White points are of the 
first class, and the black of the second.
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It is interesting to compare the decision boundary of our network with the result 

of logistic regression with just one neuron. I will not put the code here, for space 

considerations, but if you compare the two decision boundaries in Figure 5-7 (the one 

coming from the network with one neuron is linear), you can see that they are almost the 

same. A regularization term of λ = 0.1 gives effectively the same results as a network with 

just one neuron.

Figure 5-6. Decision boundary, as predicted by the network with ℓ2 regularization 
and with a regularization parameter λ = 0.1
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 ℓ1 Regularization
Now we will look at a regularization technique that is very similar to ℓ2 regularization. 

It is based on the same principle, adding a term to the cost function. This time, the 

mathematical form of the added term is different, but the method works very similarly to 

what I explained in the previous sections. Let’s again first have a look at the mathematics 

behind the algorithm.

Figure 5-7. Decision boundaries for a complex network with λ = 0.1 and for one 
with just one neuron. The two boundaries almost overlap completely.
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 Theory of ℓ1 Regularization and tensorflow 
Implementation
ℓ1 regularization also works when adding an additional term to the cost function
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The effect it has on the learning is effectively the same as was described with ℓ2 

regularization. TensorFlow does not have, as for ℓ2, a function ready to be used. We must 

code it manually, using the following code:

reg = tf.reduce_sum(tf.abs(W1))+tf.reduce_sum(tf.abs(W2))+tf.reduce_ 

sum(tf.abs(W3))+\

        tf.reduce_sum(tf.abs(W4))+tf.reduce_sum(tf.abs(W5))

The rest of the code discussed remains the same. We can again compare the 

weights distribution between the model without a regularization term (λ = 0) and with 

regularization (λ = 3, Figure 5-8). We have used the Boston dataset for the calculation. We 

have trained the model with the following call:

sess, cost_history = model(learning_r = 0.01,

                                training_epochs = 1000,

                                features = train_x,

                                target = train_y,

                                logging_step = 1000,

                                lambd_val = 3.0)

once with λ = 0, and once with λ = 3.
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As you can see, ℓ1 regularization has the same effect as ℓ2. It reduces the effective 

complexity of the network, reducing many weights to zero.

To give you an idea of how effective regularization is in reducing the weights, see 

Table 5-2, which compares the percentage of weights less than 1e-3 with and without 

regularization after 1000 epochs.

Figure 5-8. Weights distribution comparison between the model without the ℓ1 
regularization term (λ = 0, light gray) and with ℓ1 regularization (λ = 3, dark gray)
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 Are Weights Really Going to Zero?
It is very instructive to see how weights are going to zero. In Figure 5-9, you can see 

weight w12 5
3
,

[ ]  (from layer 3) plotted vs. the number of epochs for our artificial dataset 

with two features, ℓ2 regularization, γ = 10−3, λ = 0.1, after 1000 epochs. You can see how 

it quickly decreases to zero. The value after 1000 epochs is 2 · 10−21, so, for all purposes, 

zero.

Table 5-2. Comparison of Percentage of Weights Less Than 1e-3 with and Without 

Regularization

Layer % of Weights Less Than 1e-3 for λ = 0 % of Weights Less Than 1e-3 for λ = 3

1 0.0 52.7

2 0.25 53.8

3 0.75 46.3

4 0.25 45.3

5 0.0 60.0

Figure 5-9. Weight w12 5
3
,

[ ]  plotted vs. the epochs for our artificial dataset with two 
features, ℓ2 regularization, γ = 10−3, λ = 0.1, trained for 1000 epochs
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In case you are wondering, the weight goes to zero almost exponentially. A way of 

understanding why this is the case is the following. Let’s consider the weight update 

equation for one weight.
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Let’s now suppose that we find ourselves close to the minimum, in a region where 

the derivative of the cost function J is almost zero, so that we can neglect it. In other 

words, let’s suppose
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We can rewrite the weight update equation as
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Now the equation can be read as follows: the rate of variation of the weight with 

respect to the iteration number is proportional to the weight itself. For those of you with 

knowledge of differential equations, you may realize that we can draw a parallel to the 

following equation:
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This can be read as the rate of variation of x(t) with respect to time is proportional to 

the function itself. For those of you who know how to solve this equation, you may know 

that a generic solution is
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You can now see why the weight decay will have a decay similar to that of an 

exponential function, by drawing a parallel between the two equations. In Figure 5-10, 

you can see the weight decay already discussed, with a pure exponential decay. The two 

curves are not identical, as expected, because, especially at the beginning, the gradient 

of the cost function is surely not zero. But the similarity is remarkable and gives us an 

idea of how fast the weights can go to zero (read: really fast).

Figure 5-10. Weight w12 5
3
,

[ ]  plotted vs. the epochs for our artificial dataset with two 
features, ℓ2 regularization, γ = 10−3, λ = 0.1, trained for 1000 epochs (continuous 
line) together with a pure exponential decay (dashed line), provided for illustrative 
purposes

Note that when using regularization, you end up having tensors with a lot of zero 

elements, called sparse tensors. You can then profit from special routines that are 

extremely efficient with sparse tensors. This is something to keep in mind when you start 

moving toward more complex models, but a subject too advanced for this book and that 

would require too much space.
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 Dropout
The basic idea of dropout is different: during the training phase, you remove nodes from 

layer l randomly with a probability p[l]. In each iteration, you remove different nodes, 

effectively training at each iteration a different network (when using mini-batches, 

you train a different network for each batch, for example). Usually, the probability 

(often called keep_prob in Python) is set the same for all the network (but, technically 

speaking, it can be layer-specific). Intuitively, let’s consider the output tensor Z of a layer 

l. In Python, we can define a vector such as

d = np.random.rand(Z.shape[0], Z.shape[1]) < keep_prob

and then simply multiply the layer output Z by d, as follows:

Z = np.multiply(Z, d)

This effectively removes all elements that have a probability less than keep_prob. Of 

much importance when doing predictions on a dev dataset is that no dropout be used!

Note During training, dropout removes nodes randomly each iteration. But when 
doing predictions on a dev dataset, the entire network without dropout must be 
used. in other words, you must set keep_prob=1.

Dropout can be layer-specific. For example, for layers with many neurons, keep_prob 

can be small. For layers with a few neurons, one can set keep_prob = 1.0, effectively 

keeping all neurons in such layers.

The implementation in TensorFlow is easy. First, you define a placeholder that will 

contain the value of the keep_prob parameter

keep_prob = tf.placeholder(tf.float32, shape=())

and then for each layer, you add a regularization operation in this way:

hidden1, W1, b1 = create_layer (X, n1, activation = tf.nn.relu)

hidden1_drop = tf.nn.dropout(hidden1, keep_prob)
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Then, when creating the next layer, instead of using hidden1, you use hidden1_drop. 

The entire construction code looks like this:

tf.reset_default_graph()

n_dim = 13

n1 = 20

n2 = 20

n3 = 20

n4 = 20

n_outputs = 1

tf.set_random_seed(5)

X = tf.placeholder(tf.float32, [n_dim, None])

Y = tf.placeholder(tf.float32, [1, None])

learning_rate = tf.placeholder(tf.float32, shape=())

keep_prob = tf.placeholder(tf.float32, shape=())

hidden1, W1, b1 = create_layer (X, n1, activation = tf.nn.relu)

hidden1_drop = tf.nn.dropout(hidden1, keep_prob)

hidden2, W2, b2 = create_layer (hidden1_drop, n2, activation = tf.nn.relu)

hidden2_drop = tf.nn.dropout(hidden2, keep_prob)

hidden3, W3, b3 = create_layer (hidden2, n3, activation = tf.nn.relu)

hidden3_drop = tf.nn.dropout(hidden3, keep_prob)

hidden4, W4, b4 = create_layer (hidden3, n4, activation = tf.nn.relu)

hidden4_drop = tf.nn.dropout(hidden4, keep_prob)

y_, W5, b5 = create_layer (hidden4_drop, n_outputs, activation = 

tf.identity)

  

cost = tf.reduce_mean(tf.square(y_-Y))

optimizer = tf.train.AdamOptimizer(learning_rate = learning_rate, beta1 = 

0.9, beta2 = 0.999, epsilon = 1e-8).minimize(cost)
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Now let’s analyze what happens to the cost function when using dropout. Let’s run 

our model applied to the Boston dataset for two values of the keep_prob variable: 1.0 

(without dropout) and 0.5. In Figure 5-11, you can see that when applying dropout, the 

cost function is very irregular. It oscillates wildly. The two models have been evaluated 

with the calls

sess, cost_history05 = model(learning_r = 0.01,

                                training_epochs = 5000,

                                features = train_x,

                                target = train_y,

                                logging_step = 1000,

                                keep_prob_val = 1.0)

for keep_prob_val = 1.0 and for 0.5.

Figure 5-11. Cost function for the training dataset for our model with two values 
of the keep_prob variable: 1.0 (no dropout) and 0.5. The other parameters are: 
γ = 0.01. The models have been trained for 5000 epochs. No mini-batch has been 
used. The oscillating line is the one evaluated with regularization.
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In Figure 5-12, you can see the evolution of the MSE for the training and the dev 

dataset in the case of dropout (keep_prob=0.4).

Figure 5-12. MSE for the training and dev datasets with dropout (keep_prob=0.4)

In Figure 5-13, you can see the same plot but without dropout. The difference is quite 

striking. Very interesting is the fact that without dropout, MSEdev grows with epochs, 

while using dropout, it is rather stable.

Figure 5-13. MSE for the training and dev datasets without dropout (keep_prob=1.0)
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In Figure 5-13, the MSEdev grows after dropping at the beginning. The model is in 

clear extreme overfitting regime (MSEtrain ≪ MSEdev), and it generalizes worse and worse 

when applied to the new data. In Figure 5-12, you can see how MSEtrain and MSEdev are 

of the same order of magnitude, and the MSEdev does not continue to grow. So, we have 

a model that is a lot better at generalizing than the one whose results are shown in 

Figure 5-13.

Note When applying dropout, your metric (in this case, the MSe) will oscillate, so 
don’t be surprised when trying to find the best hyperparameters, if you see your 
optimizing metric oscillating.

 Early Stopping
There is another technique that is sometimes used to fight overfitting. Strictly speaking, 

this method does nothing to avoid overfitting; it simply stops the learning before the 

overfitting problem becomes too bad. Consider the example in last section. In Figure 5- 14,  

you can see MSEtrain and MSEdev plotted on the same plot.

Figure 5-14. MSE for the training and the dev datasets without dropout (keep_
prob=1.0). Early stopping consists in stopping the learning phase at the iteration 
when the MSEdev is minimum (indicated with a vertical line in the plot). At right, 
you can see a zoom of the left plot for the first 1000 epochs.
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Early stopping simply consists of stopping the training at the point at which the 

MSEdev has its minimum (see Figure 5-14, the minimum is indicated by a vertical line 

in the figure). Note that this is not an ideal way to solve the overfitting problem. Your 

model will still most probably generalize very badly to new data. I usually prefer to use 

other techniques. Additionally, this is also time-consuming and a manual process that 

is very error-prone. You can get a good overview of the different application contexts by 

checking the Wikipedia page for early stopping: https://goo.gl/xnKo2s.

 Additional Methods
All the methods I discussed so far consist, in some form or another, in making the model 

less complex. You keep the data as it is and modify your model. But we can try to do the 

opposite: leave the model as it is and work on the data. Here are two common strategies 

that work for fighting overfitting (but not very easily applicable):

• Get more data. This is the simplest way of fighting overfitting. 

Unfortunately, very often in real life, this is not possible. Keep in mind 

that this is a complicated matter that I will discuss at length in the next 

chapter. If you are classifying cat pictures taken with a smartphone, you 

may think of getting more data from the Web. Although this may seem 

a perfectly good idea, you may discover that the images have varying 

quality, that possibly not all the images are really of cats (what about 

cat toys?). Also, you may find only images of young white cats, and so 

on. Basically, your additional observations may probably come from 

a very different distribution than your original data, and that will be a 

problem, as you will see. So, when getting additional data, consider the 

potential problems well before proceeding.

• Augment your data. For example, if you are working with images, you 

can generate additional ones by rotating, stretching, shifting, etc., your 

images. That is a very common technique that may really be useful.

Resolving the problem of making the model generalize better on new data is one of 

machine learning’s biggest goals. It is a complicated problem that requires experience 

and tests. Lots of tests. Much research is going on that tries to solve these kinds of bugs 

when working on very complex problems. I will discuss additional techniques in the next 

chapter.
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CHAPTER 6

Metric Analysis
Let’s consider the problem we analyzed in Chapter 3 for which we performed 

classification on the Zalando dataset. While doing all our work, we made a strong 

assumption without explicitly saying it: we assumed that all the observations were 

correctly labeled. We cannot say that with certainty. To perform the labelling, some 

manual intervention was needed, and, therefore, a certain number of images were 

surely wrongly classified, as humans are not perfect. This is an important revelation. 

Consider the following scenario: in Chapter 3, we achieved roughly 90% accuracy with 

our model. One could try to get better and better accuracy, but when is it sensible to 

stop trying? If your labels are wrong in 10% of cases, your model, as sophisticated as it 

may be, will never be able to generalize to new data with very high accuracy, because it 

will have learned wrong classes for many images. We spent quite some time checking 

and preparing the training data, normalizing it, for example, but we never spent any 

time checking the labels themselves. We also assumed that all classes have similar 

characteristics. (I will discuss later in this chapter what this exactly means, for the 

moment, an intuitive understanding of the concept will suffice.) What if the quality of 

the images for specific classes is worse than for others? What if the number of pixels 

whose gray value differs from zero is dramatically different for different classes? We also 

did not check if some images are completely blank. What happens in that case? As you 

can imagine, we cannot check all images manually, attempting to detect such issues. 

Suppose we have millions of images, a manual analysis is surely not possible.

We need a new weapon in our arsenal to be able to spot such cases and to be able to 

tell how a model is doing. This new weapon is the focus of this chapter, and it is what I 

call “metric analysis.” Very often, people in the field refer to this array of methods as “error 

analysis.” I find that this name is very confusing, especially for beginners. Error may refer to 

too many things: Python code bugs, errors in the methods, in algorithms, errors in the choice 

of optimizers, and so on. You will see in this chapter how to obtain fundamental information 

on how your model is doing and how good your data is. We will do this by evaluating your 

optimizing metric on a set of different datasets that you can derive from your data.
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You have already seen a basic example previously. You will remember that we 

discussed, with regard to regression, how in the case of MSEtrain ≪ MSEdev, we are in a 

regime of overfitting. Our metric is the MSE (mean squared error), and evaluating it on 

two datasets, training and dev, and comparing the two values, can inform you whether 

the model is overfitting. I will expand on this methodology in this chapter, to allow you to 

extract much more information from your data and model.

 Human-Level Performance and Bayes Error
In most of the datasets that we use for supervised learning, someone must have 

labeled the observations. Take, for example, a dataset in which we have images that are 

classified. If we ask people to classify all images (imagine this being possible, regardless 

of the number of images), the accuracy obtained will never be 100%. Some images may 

be too blurry to be classified correctly, and people make mistakes. If, for example, 5% of 

the images are not classifiable correctly, owing, for example, to how blurry they are, we 

must expect that the maximum accuracy people can reach will always be less than 95%.

Let’s consider a classification problem. First, let’s define what we mean by the word 

error. In this chapter, the word error will be used to indicate the following quantity, 

represented by ϵ:

  º -1 Accuracy  

For example, if, with a model, we achieve an accuracy of 95%, we will have 

ϵ = 1 − 0.95 = 0.05 or, expressed as a percent, ϵ = 5%.

A useful concept to understand is human-level performance, which can be defined 

as follows:

Human-level performance (definition 1): The lowest value for the error ϵ that can be 

achieved by a person performing the classification task. We will indicate it with ϵhlp.

Let’s devise a concrete example. Suppose we have a set of 100 images. Now let’s 

suppose we ask three people to classify the 100 images. Imagine that they obtain 95%, 

93%, and 94% accuracy. In this case, human-level performance accuracy will be ϵhlp = 5%. 

Note that someone else may be much better at this task, and, therefore, it is always 

important to consider that the value of ϵhlp we get is always an estimate and should only 

serve as a guideline.
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Now let’s complicate things a bit. Suppose we are working on a problem in which 

doctors classify MRI scans in two classes: with signs of cancer and without. Now let’s 

suppose we calculate ϵhlp from the results of untrained students obtaining 15%, from 

doctors with a few years of experience obtaining 8%, from experienced doctors obtaining 

2%, and from experienced groups of doctors obtaining 0.5%. What then is ϵhlp? You 

should always choose the lowest value you can get, for reasons I will discuss later.

We can now expand the definition of ϵhlp with a second definition.

Human level performance (definition 2): The lowest value for the error ϵ that can be 

achieved by people or groups of people performing the classification task

Note you don’t have to decide which definition is right. Just use the one that 
gives you the lowest value of ϵhlp.

Now I’ll talk a bit about why we must choose the lowest value we can get for ϵhlp. 

Suppose that of the 100 images, 9 are too blurry to be correctly classified. This means 

that the lowest error any classifier will be able to reach is 9%. The lowest error that can be 

reached by any classifier is called the Bayes error. We will indicate this with ϵBayes. In this 

example, ϵBayes = 9%. Usually, ϵhlp is very close to ϵBayes, at least in tasks at which humans 

excel, such as image recognition. It is commonly said that human-level performance 

error is a proxy for the Bayes error. Normally it is impossible or very hard to know ϵBayes, 

and, therefore, practitioners use ϵhlp assuming the two are close, because the latter is 

easier (relatively) to estimate.

Keep in mind that it makes sense to compare the two values and assume that ϵhlp is a 

proxy for ϵBayes only if persons (or groups of persons) perform classification in the same way 

as the classifier. For example, it is OK if both use the same images to do classification. But, 

in our cancer example, if the doctors use additional scans and analysis to diagnose cancer, 

the comparison is no longer fair, because human-level performance will not be a proxy for 

a Bayes error anymore. Doctors, having more data at their disposal, clearly will be more 

accurate than the model that has as input only the images at its disposal.

Note ϵhlp and ϵBayes are close to each other only in cases in which the 
classification is done in the same way by humans and from the model. so, always 
check if that is the case, before assuming that human-level performance is a proxy 
for the Bayes error.

Chapter 6  MetriC analysis



220

Something else that you will notice when working on models is that with relatively 

little effort, you can achieve a quite low rate of error and often (almost) reach ϵhlp. After 

passing human-level performance (and, in several cases, that is possible), progress tends 

to be very, very slow, as is illustrated in Figure 6-1.

As long as the error of your algorithm is bigger than ϵhlp, you can use the following 

techniques to get better results:

• Get better labels from humans or groups, for example, from groups of 

doctors, as in the case of medical data in our example.

• Get more labeled data from humans or groups.

• Do a good metric analysis to determine the best strategy for getting 

better results. You will learn how to do this in this chapter.

As soon as your algorithm exceeds human-level performance, you cannot rely on 

those techniques anymore. So, it is important to get an idea of those numbers, to decide 

what to do to obtain better results. Taking our example of MRI scans, we could get 

better labels by relying on sources that are not related to humans, for example, checking 

diagnoses a few years after the date of the MRI, when it is usually clear whether a patient 

Figure 6-1. Typical values of accuracy that can be achieved vs. amount of time 
invested. At the beginning, it is very easy to achieve quite a good accuracy with 
machine learning often reaching ϵhlp. This is intuitively indicated by the line in the 
plot. After that point, the progress tends to be very slow.
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has developed cancer. Or, for example, in the case of image classification, you may 

decide yourself to take a few thousands of images of specific classes. This is not usually 

possible, but I wanted to make the concept clear: you can get labels by means other than 

by asking humans to perform the same kind of task that your algorithm is performing.

Note human-level performance is a good proxy for Bayes error for tasks at 
which humans excel, such as image recognition. For tasks that humans are very 
bad at, performance can be very far from the Bayes error.

 A Short Story About Human-Level Performance
I want to tell you a story about the work that Andrej Karpathy has done while trying to 

estimate human-level performance in a specific case. You can read the entire story on 

his blog post (a long post, but one that I suggest you read) at https://goo.gl/iqCbC0. 

Let me summarize what he did, since it is extremely instructive concerning what  human- 

level performance really is. Karpathy was involved in the ILSVRC (ImageNet Large Scale 

Visual Recognition Challenge) in 2014 (https://goo.gl/PCHWMJ). The task was made up 

of 1.2 million images (training set) classified in 1000 categories, including such objects 

as animals, abstract objects such as a spiral, scenes, and many more. Results were 

evaluated on a dev dataset. GoogleLeNet (a model developed by Google) reached an 

astounding 6.7% error. Karpathy wondered how humans would compare.

The question is a lot more complicated than it may seem at first sight. Because the 

images were all classified by humans, shouldn’t ϵhlp = 0%? Well, actually, no. In fact, 

the images were first obtained with a web search, then they were filtered and labeled 

by asking people binary questions, for example, Is this a hook or not? The images were 

collected, as Karpathy mentions in his blog post, in a binary way. People were not asked 

to assign to each image a class, choosing from the 1000 available, as the algorithms were 

doing. You may think that this is a technicality, but the difference in how the labeling 

occurs makes the correct evaluation of a ϵhlp quite a complicated matter. So, Karpathy 

set to work and developed a web interface that consisted of an image on the left, and 

the 1000 classes with examples on the right. You can see an example of the interface 

in Figure 6-2. You can try the interface (and I suggest you do so) at https://goo.gl/

Rh8S6g, to understand how complicated such a task is. People trying the interface kept 

missing classes and making mistakes. The best error that was reached was about 15%. 
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So, Karpathy did what every scientist at some point in his/her career must do: he bored 

himself to death and did a careful annotation himself, sometimes requiring 20 minutes 

for a single image. As he states in his blog post, he did it only #forscience. He was 

able to reach a stunning ϵhlp = 5.1%, 1.7% better than the best algorithm at the time. He 

listed sources of errors to which GoogLeNet is more susceptible than humans, such as 

problems with multiple objects in an image, and sources of errors to which humans 

are more susceptible than GoogLeNet, such as problems with classes with a huge 

granularity (dogs are classified in 120 different subclasses, for example).

Figure 6-2. Web interface developed by Karpathy. Not everyone would find it 
amusing to look at 120 breeds of dogs, to try to classify the dog on the left (which, 
by the way, is a Tibetan mastiff ).

If you have a few hours to spare, I suggest you try. You will gain a whole new 

appreciation of the difficulties of evaluating human-level performance. Defining and 

evaluating human-level performance is a very tricky task. It is important to understand 

that ϵhlp is dependent on how humans approach the classification task, which is dependent 

on the time invested, the patience of the persons performing the task, and on many factors 

that are difficult to quantify. The main reason for it being so important, apart from the 

philosophical aspect of knowing when a machine becomes better than humans, is that it is 

often taken as a proxy for the Bayes error, which gives a lower limit of our possibilities.
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 Human-Level Performance on MNIST
Before moving on to the next subject, I would like to give you another example of 

human-level performance on a dataset we have analyzed together: the MNIST dataset. 

Human-level performance has been widely analyzed, and it has been found that 

ϵhlp = 0.2%. (You can read a good review on the subject by Dan Cireşan: “Multi-column 

Deep Neural Networks for Image Classification,” Technical Report No. IDSIA-04-12, 

Dalle Molle Institute for Artificial Intelligence, https://goo.gl/pEHZVB.) Now you may 

wonder why a human cannot achieve 100% accuracy classifying simple digits, but see 

Figure 6-3, and attempt to identify which digits are in the images. I surely cannot. You 

may, therefore, better understand why ϵhlp = 0% is not possible, and why a person cannot 

achieve 100% accuracy. Other reasons may be related to which culture people come 

from. In some countries, the digit representing seven is written in a very similar way to 

that for ones, for example, and in some cases, mistakes can be made. In other countries, 

the digit seven has a small dash along the vertical bar, making it easier to distinguish 

from a one.

Figure 6-3. A set of digits from the MNIST dataset that are almost impossible to 
recognize. Such examples are one of the reasons why ϵhlp cannot be zero.

 Bias
Now let’s start with a metric analysis: a set of procedures that will give you information 

on how your model is doing and how good or bad your data is, by evaluating your 

optimizing metric on different datasets.

Note Metric analysis consists of a set of procedures that will give you 
information on how your model is doing and how good or bad your data is, by 
looking at your evaluating your optimizing metric on different datasets.
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To start, we must first define a third error: the one evaluated on the training dataset, 

indicated with ϵtrain.

The first question we want to answer is if our model is not as flexible or complex as 

needed to reach human-level performance. Or, in other words, we want to know if our 

model has a high bias, with respect to human-level performance.

To answer the previous question, we can do the following: calculate the error from 

our model from our training dataset ϵtrain and then calculate |ϵtrain − ϵhlp|. If the number is 

not small (bigger than a few percent), we are in the presence of bias (sometimes called 

avoidable bias), that is, our model is too simple to capture the real subtleties of our data.

Let’s define the following quantity

 
D  Bias train hlp= -  

The bigger ΔϵBias is, the more bias our model has. In this case, you want to do better 

on the training set, because you know you can do better on your training data. (We 

will look at the problem of overfitting in a moment.) The following techniques work to 

reduce bias:

• Bigger networks (more layers or neurons)

• More complex architectures (convolutional neural networks, for 

example)

• Training your model longer (for more epochs)

• Using better optimizers (such as Adam)

• Doing a better hyperparameter search (covered in Chapter 7)

There is something else you need to understand. Knowing ϵhlp and reducing the bias 

to reach it are two very different things. Suppose you know the ϵhlp for your problem. 

This does not mean that you have to reach it. It may well be that you are using the wrong 

architecture, but you may not have the skills required to develop a more sophisticated 

network. It may even be that the effort required to achieve the desired error level would 

be prohibitive (in terms of hardware or infrastructure). Always keep in mind what 

your problem requirements are. Always try to understand what is good enough. For an 

application that recognizes cancer, you may want to invest as much as possible to achieve 

the highest accuracy possible: you don’t want to send someone home only to discover the 

presence of cancer months later. On the other hand, if you build a system to recognize cats 

from web images, you may find a higher error than ϵhlp completely acceptable.
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 Metric Analysis Diagram
In this chapter, we look at different problems that you will encounter when developing 

your models and how to spot them. We have looked at the first one: bias, sometimes 

also called avoidable bias. We have seen how this can be spotted by calculating ΔϵBias. 

At the end of this chapter, you will have a few of those quantities that you can calculate 

to spot problems. To make understanding them easier, I use what I like to call the 

metric analysis diagram (MAD). It is simply a bar diagram, in which each bar represents 

a problem. Let’s start to build one with (for the moment) the only quantity we have 

discussed: bias. You can see it in Figure 6-4. At the moment, it is a pretty dumb diagram, 

but you will see how useful it is to keep things under control when you have several 

problems at the same time.

Figure 6-4. Metric analysis diagram (MAD) with only one of the quantities we 
will encounter in this chapter: ΔϵBias

 Training Set Overfitting
Another problem we have discussed at length in the previous chapters is overfitting of 

training data. You will remember in Chapter 5, while executing regression, we saw an 

extreme case of overfitting, in which MSEtrain ≪ MSEdev. The same applies in classification 

problems. Let’s indicate with ϵtrain the error our model has on our training dataset and 
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with ϵdev the one on the dev dataset. We can then say we are overfitting the training set if 

ϵtrain ≪ ϵdev. Let’s define a new quantity

 
D  overfitting train train dev = -  

With this quantity, we can say that we are overfitting the training dataset 

if Δϵoverfitting train is bigger than a few percent.

Let’s summarize what we have defined and discussed so far. We have three errors:

• ϵtrain: The error of our classifier on the training dataset

• ϵhlp: Human-level performance (as discussed in the previous 

sections)

• ϵdev: The error of our classifier on the dev dataset

With those three quantities, we have defined

• ΔϵBias = |ϵtrain − ϵhlp|: Measuring how much “bias” we have between the 

training dataset and human-level performance

• Δϵoverfitting train = |ϵtrain − ϵdev|: Measuring the amount of overfitting of the 

training dataset

In addition, up to now, we have used two datasets

• Training dataset: The dataset that we use to train our model (you 

should know it by now)

• Dev dataset: A second dataset that we use to check the overfitting on 

the training dataset

Now let’s suppose our model has bias and is slightly overfitting the training dataset, 

meaning we have ΔϵBias = 6% and Δϵoverfitting train = 4%. Our MAD now becomes what is 

depicted in Figure 6-5.
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As you can see in Figure 6-5, you can have a quick overview of the relative gravity of 

the problems we have, and you may decide which one you want to address first.

Usually when you are overfitting the training dataset, it is commonly known as a 

variance problem. When this happens, you can try the following techniques to minimize 

this problem:

• Get more data for your training set

• Use regularization (review Chapter 5 for a complete discussion of the 

subject)

• Try data augmentation (for example, if you are working with images, 

you can try rotating them, shifting them, etc.)

• Try “simpler” network architectures

As usual, there are no fixed rules, and you must test which techniques work best on 

your problem.

Figure 6-5. MAD diagram for our two problems: bias and overfitting of training 
dataset
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 Test Set
I would like to quickly mention another problem you may encounter. We will look at 

it in detail in Chapter 7, because it is related to hyperparameter search. Recall how 

you choose the best model in a machine-learning project (this is not specific to deep 

learning, by the way)? Let’s suppose we are working on a classification problem. First, 

we decide which optimizing metric we want, let’s suppose we decide to use accuracy. 

Then we build an initial system, feed it with training data, and see how it is doing on 

the dev dataset, to check if we are overfitting our training data. You will remember 

that in previous chapters, we have talked often about hyperparameters—parameters 

that are not influenced by the learning process. Examples of hyperparameters 

are the learning rate, regularization parameter, etc. We have seen many of them 

in the previous chapters. Let’s say you are working with a specific neural network 

architecture. You need to search the best values for the hyperparameters, to see how 

good your model can get. To do this, you train several models with different values 

of the hyperparameters and check their performance on the dev dataset. What can 

happen is that your models work well on the dev dataset but don’t generalize at all, 

because you select the best values using only the dev dataset. You incur the risk of 

overfitting the dev dataset by choosing specific values for your hyperparameters. To 

check if this is the case, you create a third dataset, called the test dataset, cutting a 

portion of the observations from your starting dataset, which you use to check the 

performance of your models.

We must define a new quantity

 
D  overfitting dev dev test= -  

where ϵtest is the error evaluated on the test set. We can add it to our MAD diagram 

(Figure 6-6).
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Note that if you are not doing any hyperparameter search, you will not need a test 

dataset. It is only useful when you are doing extensive searches; otherwise, in most 

cases, it is useless and takes away observations that you may use for training. What 

we discussed so far assumes that your dev and test set observations have the same 

characteristics. For example, if you are working on an image recognition problem and 

you decide to use images from a smartphone with high resolution for training and the 

dev dataset, and images from the Web in low resolution for your test dataset, you may 

see a big |ϵdev − ϵtest|, but that will probably be owing to the differences in the images 

and not to an overfitting problem. I will discuss later in the chapter what can happen 

when different sets come from different distributions (another way of saying that the 

observations have different characteristics), what exactly this means, and what you can 

do about it.

Figure 6-6. The MAD diagram for the three problems we may encounter: bias, 
overfitting of training data, overfitting of dev data
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 How to Split Your Dataset
Now I would like to discuss briefly how to split your data in both a general and deep- 

learning context.

But what exactly does “split” mean? Well, as discussed in the previous section, you 

will require a set of observations to make the model learn, which you call your training 

set. You also will need a set of observations that will constitute your dev set, and a final 

set called the test set. Typically, you would see splits such as 60% of observations for the 

training set, 20% of observations for the dev set, and 20% of observations for the test set. 

Usually, these kinds of splits are indicated in the following form: 60/20/20, where the 

first number (60) refers to the percentage of the entire dataset that makes up the training 

set, the second (20) to the percentage of the entire dataset that makes up the dev set, and 

the last (20) to the percentage that makes up the test set. In books, blogs, or articles, you 

may encounter sentences such as “We will split our dataset 80/10/10.” You now have an 

explanation of what this means.

Usually, in the deep-learning field, you will deal with big datasets. For example, if we 

have m = 106, we could use a split such as 98/1/1. Keep in mind that 1% of 106 is 104—a 

big number! Remember that the dev/test set must be big enough to give high confidence 

to the performance of the model, but not unnecessarily big. Additionally, you will want 

to save as many observations as possible for your training set.

Note When deciding on how to split your dataset, if you have a big number of 
observations (for example, 106 or even more), you can split your dataset 98/1/1 
or 90/5/5. so, as soon as your dev and test dataset reach a reasonable size 
(depending on your problem), you can stop. When deciding how to split your 
dataset, keep in mind how big your dev/test sets must be.

Now remember that, as you may know, size is not everything. Your dev and test 

datasets should be representative of your training dataset and problem. Let’s create 

an example. Let’s consider the ImageNet challenge described earlier. There, you want 

to classify images in 1000 different classes. To know how your model is performing in 

your dev and test datasets, you will require enough images for each class in each set. If 

you decide to take only 1000 observations for the dev or test dataset, you are not going 

to get any reasonable result, because, in case all classes are represented in the dev set, 

you will only have one observation for each class. You should decide to build your dev 
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and test dataset choosing, for example, 100 images for each class at least, building two 

datasets (dev and test), each containing 105 observations in total (remember we have 

1000 classes). In this case, it would not be sensible to go below this number. This is not 

only relevant in a deep-learning context but in machine learning in general. You should 

always try to build a dev/test dataset reflecting the same distribution of observations 

you have in your training set. To understand what I mean, take the MNIST dataset, for 

example. Let’s load the dataset (as we have done before) with the following code:

import numpy as np

from sklearn.datasets import fetch_mldata

mnist = fetch_mldata('MNIST original')

X,y = mnist["data"], mnist["target"]

total = 0

then we can check how often (in %) each digit appears in the dataset.

for i in range(10):

    print ("digit", i, "makes", np.around(np.count_nonzero 

(y == i)/70000.0*100.0, decimals=1), "% of the 70000 observations")

This gives us the result

digit 0 makes 9.9 % of the 70000 observations

digit 1 makes 11.3 % of the 70000 observations

digit 2 makes 10.0 % of the 70000 observations

digit 3 makes 10.2 % of the 70000 observations

digit 4 makes 9.7 % of the 70000 observations

digit 5 makes 9.0 % of the 70000 observations

digit 6 makes 9.8 % of the 70000 observations

digit 7 makes 10.4 % of the 70000 observations

digit 8 makes 9.8 % of the 70000 observations

digit 9 makes 9.9 % of the 70000 observations
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Not every digit appears the same number of times in the dataset. When building our 

dev and test datasets, we should check that our distributions reflect this one; otherwise, 

when applying our model to the dev or test dataset, we could get a result that does not 

make much sense, because the model has learned from a different class distribution. You 

may remember that in Chapter 5, we created a dev dataset with a code like this one:

np.random.seed(42)

rnd = np.random.rand(len(y)) < 0.8

train_y = y[rnd]

dev_y = y[~rnd]

In this case, for the sake of clarity, I just split the labels, to see how the algorithm is 

working. In real life, you also would have to split the features, of course. Because our 

original distribution is almost uniform, you should expect a result that is very similar to 

the original one. Let’s check it with the following code:

for i in range(10):

     print ("digit", i, "makes", np.around(np.count_nonzero 

(train_y == i)/56056.0*100.0, decimals=1), "% of the 56056 

observations")

This gives us the result

digit 0 makes 9.9 % of the 56056 observations

digit 1 makes 11.3 % of the 56056 observations

digit 2 makes 9.9 % of the 56056 observations

digit 3 makes 10.1 % of the 56056 observations

digit 4 makes 9.8 % of the 56056 observations

digit 5 makes 9.0 % of the 56056 observations

digit 6 makes 9.8 % of the 56056 observations

digit 7 makes 10.4 % of the 56056 observations

digit 8 makes 9.8 % of the 56056 observations

digit 9 makes 9.9 % of the 56056 observations

You can compare these results with those from the entire dataset. You will notice 

that they are very close—not the same (compare, for example, digit 2), but close enough. 

In this case, I would simply proceed without worries. But let’s create a slightly different 
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example. Suppose that instead of choosing randomly the observations to create your 

training and dev datasets, you decide to take the first 80% of the observations and assign 

it to the training set and the last 20% and assign it to the dev set, because you assume 

that your observations are randomly distributed in your original NumPy arrays. Let’s try 

and see what happens. First, let’s build our train and dev datasets, using the first 56,000 

(0.8*70000) observations for the training set and the rest for the dev set.

srt = np.zeros_like(y,  dtype=bool)

np.random.seed(42)

srt[0:56000] = True

train_y = y[srt]

dev_y = y[~srt]

We can again check how many digits we have with the following code:

 total = 0

for i in range(10):

     print ("class", i, "makes", np.around(np.count_nonzero 

(train_y == i)/56000.0*100.0, decimals=1), "% of the 56000 

observations")

This gives us the result

class 0 makes 8.5 % of the 56000 observations

class 1 makes 9.6 % of the 56000 observations

class 2 makes 8.5 % of the 56000 observations

class 3 makes 8.8 % of the 56000 observations

class 4 makes 8.3 % of the 56000 observations

class 5 makes 7.7 % of the 56000 observations

class 6 makes 8.5 % of the 56000 observations

class 7 makes 9.0 % of the 56000 observations

class 8 makes 8.4 % of the 56000 observations

class 9 makes 2.8 % of the 56000 observations

Do you notice anything different? The biggest difference is that now, class 9 is only 

appearing in 2.8% of the cases. Before, it was appearing in 9.9% of the cases. Apparently, 

our hypothesis that the classes are distributed according to a random uniform distribution 
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was not right. This can be quite dangerous when checking how the model is doing or 

because your model may end up learning from a so-called unbalanced class distribution.

Note Usually, an unbalanced class distribution in a dataset refers to a 
classification problem in which one or more classes appear a different number of 
times than others. Generally, this becomes a problem in the learning process when 
the difference is significant. a few percent difference is often not an issue.

If you have a dataset with three classes, for example, where you have 1000 

observations in each class, then the dataset has a perfectly balanced class distribution, 

but if you have in class 1 only 100 observations, in class 2 10,000 observations, and 

in class 3 5000, then we talk about an unbalanced class distribution. You should not 

think that this is a rare occurrence. Suppose you have to build a model that recognizes 

fraudulent credit card transactions. It is safe to assume that those transactions are a very 

small percent of the entire amount of transactions that you will have at your disposal.

Note When splitting your dataset, you must pay great attention not only to the 
number of observations you have in each dataset but also to which observations 
go in each dataset. note that this problem is not specific to deep learning but is 
important generally in machine learning.

To go into details on how to deal with unbalanced datasets would be beyond the scope 

of this book, but it is important to understand what kind of consequences they may have. 

In the next section, I will show you what can happen if you feed an unbalanced dataset to a 

neural network, so that you gain a concrete understanding of the possibility. At the end of 

the section, I will offer a few hints on what to do in such a case.

 Unbalanced Class Distribution: What Can Happen
Because we are talking about how to split our dataset to perform metric analysis, it is 

important to grasp the concept of unbalanced class distribution and how to deal with it. 

In deep learning, you will find yourself very often splitting datasets, and you should be 

aware of the problems you may encounter if you do this in the wrong way. Let me give 

you a concrete example of how bad things can go if you do it wrongly.
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We will use the MNIST dataset, and we will do basic logistic regression (as we did in 

Chapter 2) with a single neuron. Let’s look very quickly again at how to load and prepare 

the data. We will do it in a similar way as in Chapter 2, apart from some modifications 

that I will point out to you. First, we load the data

import numpy as np

from sklearn.datasets import fetch_mldata

from sklearn.metrics import confusion_matrix

import tensorflow as tf

mnist = fetch_mldata('MNIST original')

Xinput,yinput = mnist["data"], mnist["target"]

Here comes the important part. We create a new label in this way: we assign to all 

observations for the digit zero the label 0, and to all other digits (1, 2, 3 ,4, 5, 6, 7, 8, and 9) 

the label 1, with the code

y_ = np.zeros_like(yinput)

y_[np.any([yinput == 0], axis = 0)] = 0

y_[np.any([yinput > 0], axis = 0)] = 1

Now the array y_ will contain the new labels. Note that now the dataset is heavily 

unbalanced. Label 0 appears roughly in 10% of the cases, while label 1 appears in 90% of 

the cases. Let’s split the data randomly in a train and a dev dataset.

np.random.seed(42)

rnd = np.random.rand(len(y_)) < 0.8

X_train = Xinput[rnd,:]

y_train = y_[rnd]

X_dev = Xinput[~rnd,:]

y_dev = y_[~rnd]

We then normalize the training data.

X_train_normalised = X_train/255.0

We then transpose and prepare the tensors.

X_train_tr = X_train_normalised.transpose()

y_train_tr = y_train.reshape(1,y_train.shape[0])
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Then we assign proper names to the variables.

Xtrain = X_train_tr

ytrain = y_train_tr

Then we build our network with one single neuron, exactly as we did in Chapter 2.

tf.reset_default_graph()

X = tf.placeholder(tf.float32, [n_dim, None])

Y = tf.placeholder(tf.float32, [1, None])

learning_rate = tf.placeholder(tf.float32, shape=())

W = tf.Variable(tf.zeros([1, n_dim]))

b = tf.Variable(tf.zeros(1))

init = tf.global_variables_initializer()y_ = tf.sigmoid(tf.matmul(W,X)+b)

cost = - tf.reduce_mean(Y * tf.log(y_)+(1-Y) * tf.log(1-y_))

training_step = tf.train.GradientDescentOptimizer(learning_rate).

minimize(cost)

If you don’t understand the code, review Chapter 2 for more details. I expect that you 

now understand this simple model well, as we have seen it several times. Next, we define 

the function to run the model (you have seen it several times in the previous chapters).

def run_logistic_model(learning_r, training_epochs, train_obs, train_

labels, debug = False):

    sess = tf.Session()

    sess.run(init)

    cost_history = np.empty(shape=[0], dtype = float)

    for epoch in range(training_epochs+1):

         sess.run(training_step, feed_dict = {X: train_obs, Y: train_labels, 

learning_rate: learning_r})

         cost_ = sess.run(cost, feed_dict={ X:train_obs, Y: train_labels, 

learning_rate: learning_r})

        cost_history = np.append(cost_history, cost_)
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        if (epoch % 10 == 0) & debug:

             print("Reached epoch",epoch,"cost J =", str.format 

('{0:.6f}', cost_))

    return sess, cost_history

Let’s run the model with the code

sess, cost_history = run_logistic_model(learning_r = 0.01,

                                training_epochs = 100,

                                train_obs = Xtrain,

                                train_labels = ytrain,

                                debug = True)

and check the accuracy with the following code (explained at length in Chapter 2, if you 

don’t remember):

correct_prediction=tf.equal(tf.greater(y_, 0.5), tf.equal(Y,1))

accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

print(sess.run(accuracy, feed_dict={X:Xtrain, Y: ytrain, learning_rate: 

0.05}))

We get an incredible 91.2% accuracy. Not bad, right? But are we sure that the result is 

that good? Now let’s check the confusion matrix1 for our labels with the code

ypred = sess.run(tf.greater(y_, 0.5), feed_dict={X:Xtrain, Y: ytrain, 

learning_rate: 0.05}).flatten().astype(int)

confusion_matrix(ytrain.flatten(), ypred)

When you run the code, you get the following result:

array([[ 659, 4888],

       [ 6, 50503]], dtype=int64)

1 In machine learning classification, the confusion matrix is one in which each column of the 
matrix represents the number of instances in a predicted class, while each row represents the 
number of instances in an actual class.
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Slightly more nicely formatted and with some explanatory information, the matrix 

looks like Table 6-1.

Table 6-1. Confusion Matrix for the model 

described in the text

Predicted Class 0 Predicated Class 1

Real class 0 659 4888

Real class 1 6 50503

How should we read the table? In the column “Predicted Class 0,” you will see the 

number of observations that our model predicts as being of class 0 for each real class. 

659 is the number of observations our model predicts as being of class 0 that are really in 

class 0. 6 is the number of observations that our model predicts in class 0 that are really 

in class 1.

It should be easy to see now that our model predicts effectively almost all 

observations to be in class 1 (a total of 4888 + 50,503 = 55,391). The number of correct 

classified observations is 659 (for class 0) and 50,503 (for class 1), for a total of 51,162 

observations. Because we have a total of 56,056 observations in our training set, we 

get an accuracy of 51162/56056 = 0.912, as our TensorFlow code above told us. This 

is not because our model is good; it is simply because it has classified effectively all 

observations in class 1. In this case, we don’t need a neural network to achieve this 

accuracy. What happens is that our model sees observations belonging to class 0 

so rarely that it almost doesn’t influence the learning, which is dominated by the 

observations in class 1.

What at the beginning seemed a nice result turns out to be a really bad one. This is 

an example of how bad things can go, if you don’t pay attention to the distributions of 

your classes. This, of course, applies not only when splitting your dataset, but in general, 

when you approach a classification problem, regardless of the classifier you want to train 

(it does not apply only to neural networks).

Note When splitting your dataset in complex problems, you must pay special 
attention not only to the number of observations you have in your datasets but also 
to what observations you choose and to the distribution of the classes.
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To conclude this section, let me give you a few hints on how to deal with unbalanced 

datasets.

• Change your metric: In the preceding example, you may want to use 

something else instead of accuracy, because it can be misleading. 

You could try using the confusion matrix, for example, or other 

metrics, such as precision, recall, or F1. Another important way of 

checking how your model is doing, and one that I strongly suggest 

you learn, is the ROC curve, which will help you tremendously.

• Work with an undersampled dataset. If, for example, you have 1000 

observations in class 1 and 100 in class 2, you may create a new 

dataset with 100 random observations in class 1 and the 100 you have 

in class 2. The problem with this method, however, is that you usually 

will have a lot less data to feed to your model to train it.

• Work with an oversampled dataset. You may try to do the opposite. 

You may take the 100 observations in class 2 mentioned above and 

simply replicate them 10 times, to end up with 1000 observations in 

class 2 (sometimes called sampling with replacement).

• Try to get more data in the class with less observations: This is not 

always possible. In the case of fraudulent credit card transactions, 

you cannot go around and generate new data, unless you want to go 

to jail…

 Precision, Recall, and F1 Metrics
Let’s look at some other metrics that are very useful when dealing with unbalanced 

datasets. Consider the following example. Suppose we are doing some tests to determine 

if a subject has a certain disease or not. Imagine that we have 250 test results. Consider 

the following confusion matrix (you should know what that is from our previous 

discussion):

 

Prediction NO Prediction YES

True value NO

True value YES

: :

:

:

 

 

75 15

110 150  
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We will indicate with N the total number of test results, in this case N = 250. We will 

use the following terminology:

• True positives (tp): Tests that predicted yes, and the subjects really 

have the disease

• True negatives (tn): Tests that predicted no, and the subjects do not 

have the disease

• False positives (fp): Tests that predicted yes, and the subjects do not 

have the disease

• False negatives (fn): Tests that predicted no, but the subjects do have 

the disease

This translates visually to the following:

 

Prediction NO Prediction YES

True value NO

: :

: TRUE NEGATIVES FALSEE POSITIVES

FALSE NEGATIVES TRUE POSITIVESTrue value YES :  

Let’s also indicate with ty the number of patients who really have a disease, in this 

example, ty = 10 + 150 = 160, and with tno, the number of patients who don’t have a 

disease, in this example, tno = 75 + 15 = 90. In the examples we would have

 tp =150  

 tn = 75  

 fp =15  

 fn =10  

We can express several metrics as functions of the previously discussed terms. For 

example:

• Accuracy: (tp + tn)/N, how often our test is right

• Misclassification rate: (fp + fn)/N, how often our test is wrong. Note 

that this is equal to 1 − accuracy.

• Sensitivity/Recall: tp/ty, how often the test really predicts yes when 

the subjects have the disease
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• Specificity: tn/tno, when the subjects have no disease, how often our 

test predicts no

• Precision: tp/(tp + fp), the portion of tests predicting correctly the 

subject having the disease with respect to all positive results obtained

All those quantities can be used as metrics, depending on your problem. Let’s create 

an example. Suppose your test should predict if a person has cancer or not. In this case, 

what you want is the highest sensitivity possible, because it is important to detect the 

disease. But at the same time, you also want the specificity to be high, because there is 

nothing worse than sending someone home without treatment when it is needed.

Let’s look a bit closer at precision and recall. Having a high precision means that 

when you say someone is sick, you are right. But you don’t know how many people really 

have the sickness, since the quantity is defined only by the result of your test. Precision 

is a measure of how your test is doing. Having a high recall means that you can identify 

all the sick people in your sample. Let me give you another example, to make the point 

even clearer. Suppose we have 1000 people. Only 10 are sick and 990 are healthy. Let’s 

suppose we want to identify healthy people (this is important), and we build a test 

that returns yes if someone is healthy and always predicts that people are healthy. The 

confusion matrix would look like this:

 

Prediction NO Sick Prediction YES Healthy

True NO Sick

: :

:

( ) ( )
( ) 0 10

TTrue YES Healthy: ( ) 0 990  

We would have

 tp = 990  

 tn = 0  

 fp =10  

 fn = 0  
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That means that

• Accuracy would be 99%.

• The misclassification rate would be 10/1000 or, in other words, 1%.

• Recall would be 990/990 or 100%.

• Specificity would be 0%.

• Precision would be 99%.

This looks good, right? If want to find healthy people, this test would be great. The 

only problem is that it is a lot more important to identify sick people! Let’s recalculate the 

preceding quantities, but this time, considering that a positive result is when someone is 

sick. In this case, the confusion matrix would like this:

 

Prediction NO Healthy Prediction YES Sick

True NO Healthy

: :

:

( ) ( )
( ) 9990 0

10 0True YES Sick: ( )  

because this time, a yes result means that someone is sick and not, as before, that 

someone is healthy. Let’s calculate the quantities above again.

 tp = 0  

 tn = 990  

 fp = 0  

 fn =10  

Therefore,

• Accuracy would still be 99%.

• The misclassification rate would still be 10/1000 or, in other  

words, 1%.

• Recall would now be 0/10 or 0%.

• Specificity would be 990/990 or 100%.

• Precision would be (0 + 0)/1000 or 0%.
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Note how the accuracy remains the same. If you look only at that, you would not be 

able to understand how your model is doing. We have simply changed what we want 

to predict and use only accuracy. We cannot say anything about the performance of 

our model. But look at how recall and precision changed. See the matrix below for a 

comparison.

 

Predicting healthy people Predicting sick people

Recall

    

100 0% %%

% %Precision 99 0  

Now we have something that changes that can give us enough information, 

depending on the question we pose. Note that changing what we want to predict will 

change how the confusion matrix will look. We can immediately say, looking at the 

preceding matrix, that our model that predicts that everyone is healthy works very well 

when predicting healthy people (not very useful) but fails miserably when trying to 

predict sick people.

There is another metric that is important to know, and that is the F1 score. It is 

defined as

 

F

Precision Recall

Precision Recall

Precision Recall
1

2
1 1

2=
+

=
+
·

 

An intuitive understanding is difficult to get, but it is basically the harmonic average 

of precision and recall. The example we created was a bit extreme and, having 0% for 

recall or precision, would not allow us to calculate F1. Let’s suppose that our model 

is bad at predicting sick people, but not that bad. Let’s suppose we have the following 

confusion matrix:

 

Prediction NO Healthy Prediction YES Sick

True NO Healthy

: :

:

( ) ( )
( ) 9985 5

9 1True YES Sick: ( )  
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In this case, we would have (I leave the calculation to you)

•  Precision: 54 5. %

•  Recall: 10%

We would have

 
F1 2

0 545 0 1

0 545 0 1
2
0 0545

0 645
0 16 9 16 9=

*
+

= = ®·
. .

. .

.

.
. . . %  

This quantity will give you information keeping precision (the portion of tests 

predicting correctly the subject having the disease with respect to all positive results 

obtained) and recall (how often the test really predicts yes when the subjects have the 

disease) in consideration. For some problems, you want to maximize precision, and for 

others, you want to maximize recall. If that is the case, simply choose the right metric. 

The F1 score will be the same for two cases in which you have Precision = 32% and 

Recall = 45% and one with Precision = 45% and Recall = 32%. Be aware of this fact. Use F1 

score, if you want to find a balance between Precision and Recall.

Note the F1 score is used when you want to maximize the harmonic average of 
Precision and Recall, or, in other words, when you don’t want to maximize either 
Precision or Recall alone, but you want to find the best balance between the two.

If we calculate F1 when predicting healthy people, as we did at first, we would have
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1 0 0 99
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This tells us that the model is quite good at predicting healthy people.

The F1 score is usually useful, because, normally, as a metric, you want one single 

number, and in this way, you don’t have to decide between precision or recall, as 

both are useful. Remember that the values of the metrics discussed will always be 

dependent on the question you are asking (what is yes and no for you). Be aware that an 

interpretation is always dependent on the question you want to answer.
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Note remember that when calculating your metric, whatever it may be, 
changing your question will change the results. you must be very clear at the 
beginning of what you want to predict and then choose the right metric. in the 
case of highly unbalanced datasets, it is always a good idea to use not accuracy 
but other metrics as recall, precision, or, even better, F1, it being an average of 
precision and recall.

 Datasets with Different Distributions
Now I would like to discuss another terminology issue, which will lead you to understand 

a common problem in the deep-learning world. Very often, you will hear sentences 

such as “The sets come from different distributions.” This sentence is not always easy to 

understand. Take, for example, two datasets formed by images taken with a professional 

DSLR, and a second one made up of images taken with a dodgy smartphone. In the 

deep-learning world, we would characterize those two sets as coming from different 

distributions. But what is the real meaning of the sentence? The two datasets differ for 

various reasons: resolution of images, blurriness resulting from different quality lenses, 

amount of colors, quality of the focus, and possibly more. All these differences are what 

is usually meant by distributions. Let’s look at another example. We could consider two 

datasets: one made of images of white cats and one made of images of black cats. Also, 

in this case, we are talking about different distributions. This becomes a problem when 

you train a model on one set and want to apply it to the other. For example, if you train a 

model on a set of images of white cats, you probably are not going to do very well on the 

dataset of black cats, because your model has never seen black cats during training.

Note When talking about datasets coming from different distributions, it is 
usually meant that the observations have different characteristics in the two 
datasets: black and white cats, high and low-resolution images, speech recorded 
in italian and German, and so on.
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Because data is so precious, people often try to create different datasets (train, dev, 

etc.) from different sources. For example, you may decide to train your model on a set 

made of images taken from the Web and check how good it is with a set made of images 

you’ve taken with your smartphone. It may seem like a good idea to be able to use as 

much data as possible, but this may give you many headaches. Let’s see what happens in 

a real case, so that you may get a feeling of the consequences of doing something similar.

Let’s consider the subset of the MNIST dataset that we have used in Chapter 2, 

made of the two digits: 1 and 2. We will build a dev dataset coming from a different 

distribution, shifting a subset of the images 10 pixels to the right. We will train our model 

on the images as they are in the original dataset and apply the model to images shifted 

10 pixels to the right and see what happens. Let’s first load the data (you can check for 

more details Chapter 2).

import numpy as np

from sklearn.datasets import fetch_mldata

%matplotlib inline

import matplotlib

import matplotlib.pyplot as plt

from random import *

mnist = fetch_mldata('MNIST original')

Xinput,yinput = mnist["data"], mnist["target"]

We will do the data preparation exactly as in Chapter 2. First, let’s select only digit  

1 and 2.

X_ = Xinput[np.any([y == 1,y == 2], axis = 0)]

y_ = yinput[np.any([y == 1,y == 2], axis = 0)]

We have 14,867 observations in our dataset. Now let’s create a train and a dev dataset 

with our random selection (as we have done before), as in this case, we have roughly the 

same number of ones and twos.

np.random.seed(42)

rnd_train = np.random.rand(len(y_)) < 0.8

X_train = X_[rnd_train,:]

y_train = y_[rnd_train]
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X_dev = X_[~rnd_train,:]

y_dev = y_[~rnd_train]

Then we normalize the features.

X_train_normalized = X_train/255.0

X_dev_normalized = X_dev/255.0

And then we transform the matrices to have them with the right dimensions.

X_train_tr = X_train_normalized.transpose()

y_train_tr = y_train.reshape(1,y_train.shape[0])

n_dim = X_train_tr.shape[0]

dim_train = X_train_tr.shape[1]

X_dev_tr = X_dev_normalized.transpose()

y_dev_tr = y_dev.reshape(1,y_dev.shape[0])

Finally, we shift the labels to have 0 and 1 (if you don’t remember why, you can 

quickly review Chapter 2).

y_train_shifted = y_train_tr - 1

y_dev_shifted = y_dev_tr - 1

Now let’s give the arrays reasonable names.

Xtrain = X_train_tr

ytrain = y_train_shifted

Xdev = X_dev_tr

ydev = y_dev_shifted

We can check the sizes of the arrays with the code

print(Xtrain.shape)

print(Xdev.shape)

This gives us

(784, 11893)

(784, 2974)
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We have 11,893 observations in our training set and 2974 in the dev set. Now let’s 

duplicate the dev dataset and shift each image to the right by 10 pixels. We can do it 

quickly with the following code:

Xtraindev = np.zeros_like(Xdev)

for i in range(Xdev.shape[1]):

    tmp = Xdev[:,i].reshape(28,28)

    tmp_shifted = np.zeros_like(tmp)

    tmp_shifted[:,10:28] = tmp[:,0:18]

    Xtraindev[:,i] = tmp_shifted.reshape(784)

ytraindev = ydev

To make the shift easy, I first reshaped the images in a 28 × 28 matrix, then simply 

shifted the columns with tmp_shifted[:,10:28] = tmp[:,0:18], and then I simply 

reshaped the images in a one-dimensional array of 784 elements. The labels remain the 

same. In Figure 6-7, you can see a random image from the dev dataset on the left and its 

shifted version on the right.

Figure 6-7. One random image from the dataset (left) and its shifted version 
(right)
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Now let’s build a network with a single neuron and see what happens. We build the 

model as we have in Chapter 2.

tf.reset_default_graph()

X = tf.placeholder(tf.float32, [n_dim, None])

Y = tf.placeholder(tf.float32, [1, None])

learning_rate = tf.placeholder(tf.float32, shape=())

W = tf.Variable(tf.zeros([1, n_dim]))

b = tf.Variable(tf.zeros(1))

init = tf.global_variables_initializer()

y_ = tf.sigmoid(tf.matmul(W,X)+b)

cost = - tf.reduce_mean(Y * tf.log(y_)+(1-Y) * tf.log(1-y_))

training_step = tf.train.GradientDescentOptimizer(learning_rate).

minimize(cost)

To train the model, we will use the same function you have already seen

def run_logistic_model(learning_r, training_epochs, train_obs, train_

labels, debug = False):

    sess = tf.Session()

    sess.run(init)

    cost_history = np.empty(shape=[0], dtype = float)

    for epoch in range(training_epochs+1):

         sess.run(training_step, feed_dict = {X: train_obs, Y: train_labels, 

learning_rate: learning_r})

         cost_ = sess.run(cost, feed_dict={ X:train_obs, Y: train_labels, 

learning_rate: learning_r})

        cost_history = np.append(cost_history, cost_)

        if (epoch % 10 == 0) & debug:

             print("Reached epoch",epoch,"cost J =", str.format('{0:.6f}', 

cost_))

    return sess, cost_history
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and we will train the model with the code

sess, cost_history = run_logistic_model(learning_r = 0.01,

                                training_epochs = 100,

                                train_obs = Xtrain,

                                train_labels = ytrain,

                                debug = True)

This gives us the output

Reached epoch 0 cost J = 0.678501

Reached epoch 10 cost J = 0.562412

Reached epoch 20 cost J = 0.482372

Reached epoch 30 cost J = 0.424058

Reached epoch 40 cost J = 0.380005

Reached epoch 50 cost J = 0.345703

Reached epoch 60 cost J = 0.318287

Reached epoch 70 cost J = 0.295878

Reached epoch 80 cost J = 0.277208

Reached epoch 90 cost J = 0.261400

Reached epoch 100 cost J = 0.247827

Next, let’s calculate the accuracy of the three datasets: Xtrain, Xdev, and Xtraindev, 

with the code

correct_prediction=tf.equal(tf.greater(y_, 0.5), tf.equal(Y,1))

accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

print(sess.run(accuracy, feed_dict={X:Xtrain, Y: ytrain, learning_rate: 

0.05}))

simply using the right feed_dict for the three datasets. We get the following results 

after 100 epochs:

• For the training dataset, we get 96.8%.

• For the dev dataset, we get 96.7%.

• For the train-dev (you will see later why it is called like this), the one 

with the shifted images, we get 46.7%. A very bad result.
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What has happened is that the model has learned from a dataset where all images 

are centered in the box and, therefore, could not generalize well to images shifted and no 

longer centered.

When training a model on a dataset, usually you will get good results for 

observations that are like the ones in the training set. But how can you find out if you 

have such a problem? There is a relatively easy way of doing that: expanding our MAD 

diagram. Let’s see how to do it.

Suppose you have a training dataset and a dev dataset in which the observations 

have different characteristics (come from different distributions). What you do is 

create a small subset from the training set, called the train-dev dataset, ending up with 

three datasets: a training and a train-dev from the same distribution (the observations 

have the same characteristics) and a dev set, for which the observations are somehow 

different, as I have discussed previously. What you do now is train your model on your 

training set and then evaluate your error ϵ on the three datasets: ϵtrain, ϵdev, and ϵtrain − dev. 

If your train and dev sets come from the same distributions, so does the train-dev set. In 

this case, you should expect ϵdev ≈ ϵtrain − dev. If we define

 D train dev train dev- -=  

we should expect Δϵtrain − dev ≈ 0. If the train (and train-dev) and the dev set come from 

different distributions (the observations have different characteristics), we should expect 

Δϵtrian − dev to be big. If we consider the MNIST example we have created before, we have, 

in fact, Δϵtrain − dev = 0.437, or 43.7%, which is a huge difference. Let’s recap what you 

should do to determine if your training and your dev (or test) dataset have observations 

with different characteristics (come from different observations).

 1. Split your training set in two—one that you will use for training 

and one we will call the train set—and a smaller one that you will 

call train-dev set.

 2. Train your model on the train set.

 3. Evaluate your error ϵ on the three sets: train, dev, and train-dev.

 4. Calculate the quantity Δϵtrain − dev. If it is big, this will provide 

strong evidence that the original training and dev sets come from 

different distributions.
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In Figure 6-8, you can see an example of the MAD diagram with the added problem 

just discussed. Don’t look at the numbers; they are there only for illustrative purposes 

(read: I just put them there).

Figure 6-8. Example of the MAD diagram with the data mismatch problem 
added. Don’t look at the numbers; they are there strictly for illustrative purposes.

The MAD diagram in Figure 6-8 can tell us the following things. (I highlight in the 

bulleted list only a few items. For a more complete list, review the previous sections.)

• The bias (between training and human-level performance) is quite 

small, so we are not that far from the best we can achieve (let’s assume 

here that human-level performance is a proxy for the Bayes error). 

Here, you could try bigger networks, better optimizers, and so on.

• We are overfitting the datasets, so we could try regularization or get 

more data.

• We have a strong problem with data mismatch (sets coming from 

different distributions) between train and dev. At the end of this 

section, I suggest what you could do to solve this problem.

• We are also slightly overfitting the dev dataset, during our 

hyperparameter search.

Note that you don’t need to create the bar plot, as I have done here. Technically, you 

require only the four numbers, to draw the same conclusions.
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Note Once you have your MaD diagram (or simply the numbers), interpreting it 
will give you hints on what you should try to get better results, for example, higher 
accuracy.

You can try the following techniques to address data mismatch between sets:

• You can conduct manual error analysis, to understand the difference 

between the sets, and then decide what to do (in the last section of 

the chapter, I will give you an example). This is time-consuming and 

usually quite difficult, because once you know what the difference is, 

it may be very difficult to find a solution.

• You could try to make the training set more like your dev/test sets. 

For example, if you are working with images and the test/dev sets 

have a lower resolution, you may decide to lower the resolution of the 

images in the training set.

As usual, there are no fixed rules. Just be aware of the problem and think about the 

following: your model will learn the characteristics from your training data, so when 

applied to completely different data, it (usually) won’t do well. Always get training data 

that reflect the data you want your model to work on, not vice versa.

 K-Fold Cross-Validation
Now I would like to finish this chapter with another technique that is very powerful and 

should be known by any machine-learning practitioner (not only in the deep-learning 

world): k-fold cross-validation. The technique is a way of finding a solution to the 

following two problems:

• What to do when your dataset is too small to split it in a train and 

dev/test set

• How to get information on the variance of your metric
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Let’s describe the idea with pseudo-code.

 1. Partition your complete dataset in k equally big subsets: f1, f2, …, fk.  

The subsets are also called folds. Normally the subsets are not 

overlapping, that means that each observation appears in one and 

only one fold.

 2. For i going from 1 to k:

• Train your model on all the folds except fi

• Evaluate your metric on the fold fi. The fold fi will be the dev set in 

iteration i

 3. Evaluate the average and variance of your metric on the k results

A typical value for k is 10, but that depends on the size of your dataset and the 

characteristic of your problem.

Remember that the discussion we did on how to split a dataset applies here also.

Note When you are creating your folds, you must take care that they reflect  
the structure of your original dataset. For example, if your original dataset has  
10 classes, you must make sure that each of your folds has all the 10 classes, with 
the same proportions.

Although this may seem a very attractive technique to deal generally with datasets 

with less than optimal size, it may be quite complex to implement. But, as you will see 

shortly, checking your metric on the different folds will give you important information 

on possible overfitting of your training dataset.

Let’s try it on a real dataset and see how to implement it. Note that you can 

implement k-fold cross-validation easily in with the sklearn library, but I will develop it 

from scratch, to show you what is happening in the background. Everyone (well, almost) 

can copy code from the Web to implement k-fold cross-validation in sklearn, but not 

many can explain how it works or understand it, therefore being able to choose the right 

sklearn method or parameters. As a dataset, we will use the same we used in Chapter 2:  

the reduced MNIST dataset containing only digits 1 and 2. We will perform a simple 

logistic regression with one neuron, to make the code easy to understand and to let us 
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concentrate on the cross- validation part and not on other implementation details that 

are not relevant here. The goal of this section is to let you understand how k-fold cross-

validation works and why it is useful, not on how to implement it with the smallest 

number of lines of code possible.

Let’s import the necessary libraries, as usual.

import numpy as np

from sklearn.datasets import fetch_mldata

%matplotlib inline

import matplotlib

import matplotlib.pyplot as plt

from random import *

Then let’s import the MNIST dataset.

mnist = fetch_mldata('MNIST original')

Xinput_,yinput_ = mnist["data"], mnist["target"]

Remember that the dataset has 70,000 observations and is made of grayscale images, 

each 28 × 28 pixels in size. You can again check Chapter 2 for a detailed discussion. Then 

let’s select only digits 1 and 2 and rescale the labels, to make sure that digit 1 has label 0 

and digit 2 has label 1. You will remember from Chapter 2 that the cost function we will 

use for logistic regression expects the two labels to be 0 and 1.

Xinput = Xinput_[np.any([yinput_ == 1,yinput_ == 2], axis = 0)]

yinput = yinput_[np.any([yinput_ == 1,yinput_ == 2], axis = 0)]

yinput = yinput - 1

We can check the number of observations with the code

Xinput.shape[0]

We have 14,867 observations (images). Now we perform a small trick. To keep the 

code simple, we want each fold to have the same number of observations. Technically 

speaking, this is not required, and you will often end up with the last fold having a 

number of observations that is smaller than the others. In this case, if we want 10 folds, 

we cannot have in each fold the same number of observations, because 14,867 is not a 

multiple of 10. To make things easier, let’s simply remove the last seven images from the 
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dataset. (From an aesthetic point of view, this is horrible, but it will make our code much 

easier to understand and write.)

Xinput = Xinput[:-7,:]

yinput = yinput[:-7]

Now let’s create 10 arrays, each containing a list of indexes that we will use to select 

images.

foldnumber = 10

idx = np.arange(0,Xinput.shape[0])

np.random.shuffle(idx)

al = np.array_split(idx,foldnumber)

In each fold, we will have, as expected, 1486 images. Now let’s create the arrays 

containing the images.

Xinputfold = []

yinputfold = []

for i in range(foldnumber):

    tmp = Xinput[al[i],:]

    Xinputfold.append(tmp)

    ytmp = yinput[al[i]]

    yinputfold.append(ytmp)

Xinputfold = np.asarray(Xinputfold)

yinputfold = np.asarray(yinputfold)

if you think this code is convoluted, you are right. There are faster ways of doing it 

with the sklearn library, but it is very instructive to see how to do it manually, step by 

step. I am convinced that the preceding code, in which each step is isolated, makes 

understanding it easier. We first create empty lists: Xinputfold and yinputfold. Each 

element of the list will be a fold, that is, an array of images or labels. So, if we want to get 

all images in fold 2, we will simply use Xinputfold[1]. (Remember: In Python, indexes 

start from zero.). Those listed, converted with the last two lines in numpy arrays, will 

have three dimensions, as you can easily see with the statements

print(Xinputfold.shape)

print(yinputfold.shape)
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This gives us

(10, 1486, 784)

(10, 1486)

In Xinputfold, the first dimension indicates the fold number, the second the 

observation, and the third the gray values of the pixels. In yinputfold, the first 

dimension indicates the fold number and the second the label. For example, to get an 

image with index 1234 from fold 0, you would have to use the following code:

Xinputfold[0][1234,:]

Remember: You should check that you still have a balanced dataset in each fold or, 

in other words, that you have as many ones as twos. Let’s check for fold 0 (you can do the 

same check for the others).

for i in range(0,2,1):

    print ("label", i, "makes", np.around(np.count_nonzero(yinputfold[0] == 

i)/1486.0*100.0, decimals=1), "% of the 1486 observations")

This gives us

label 0 makes 51.2 % of the 1486 observations

label 1 makes 48.8 % of the 1486 observations

That, for our purposes, is balanced enough. Now we need to normalize the features 

(as we did in Chapter 2).

Xinputfold_normalized = np.zeros_like(Xinputfold, dtype = float)

for i in range (foldnumber):

    Xinputfold_normalized[i] = Xinputfold[i]/255.0

You could normalize the data in one shot, but I would like to make it evident that we 

are dealing with folds, to make it clear for the reader. Now let’s reshape the arrays as we 

need them.

X_train = []

y_train = []

for i in range(foldnumber):
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    tmp = Xinputfold_normalized[i].transpose()

    ytmp = yinputfold[i].reshape(1,yinputfold[i].shape[0])

    X_train.append(tmp)

    y_train.append(ytmp)

X_train = np.asarray(X_train)

y_train = np.asarray(y_train)

The code is written in the easiest way possible, for instructive purposes, not in the 

most optimized way. Now we can check the dimensions of the final arrays with

print(X_train.shape)

print(y_train.shape)

This gives us

(10, 784, 1486)

(10, 1, 1486)

Exactly what we need. Now we are ready to build our network. We will use a one- 

neuron network for logistic regression, with the sigmoid activation function.

import tensorflow as tf

tf.reset_default_graph()

X = tf.placeholder(tf.float32, [n_dim, None])

Y = tf.placeholder(tf.float32, [1, None])

learning_rate = tf.placeholder(tf.float32, shape=())

#W = tf.Variable(tf.zeros([1, n_dim]))

W = tf.Variable(tf.random_normal([1, n_dim], stddev= 2.0 / np.sqrt(2.0*n_

dim)))

b = tf.Variable(tf.zeros(1))

y_ = tf.sigmoid(tf.matmul(W,X)+b)

cost = - tf.reduce_mean(Y * tf.log(y_)+(1-Y) * tf.log(1-y_))

training_step = tf.train.AdamOptimizer(learning_rate = learning_rate, beta1 

= 0.9, beta2 = 0.999, epsilon = 1e-8).minimize(cost)

init = tf.global_variables_initializer()
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Here, we have used the Adam optimizer, but the gradient descent would work as 

well. This is a very easy case. We will use our well-known function to train the model.

def run_logistic_model(learning_r, training_epochs, train_obs, train_

labels, debug = False):

    sess = tf.Session()

    sess.run(init)

    cost_history = np.empty(shape=[0], dtype = float)

    for epoch in range(training_epochs+1):

         sess.run(training_step, feed_dict = {X: train_obs, Y: train_labels, 

learning_rate: learning_r})

         cost_ = sess.run(cost, feed_dict={ X:train_obs, Y: train_labels, 

learning_rate: learning_r})

        cost_history = np.append(cost_history, cost_)

        if (epoch % 200 == 0) & debug:

             print("Reached epoch",epoch,"cost J =", str.format('{0:.6f}', 

cost_))

    return sess, cost_history

At this point, we will have to iterate through the folds. Remember our pseudo 

code at the beginning? Select one fold as the dev set and train the model on all other 

folds concatenated. Proceed in this way for all the folds. The code could look like 

that following. (It is a bit long, so take a few minutes to understand it.) In the code, I 

have added comments indicating which step we are talking about, since you will find 

following a corresponding numbered list of explanatory steps.

train_acc = []

dev_acc = []

for i in range (foldnumber): # Step 1

    # Prepare the folds - Step 2

    lis = []

    ylis = []
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    for k in np.delete(np.arange(foldnumber), i):

        lis.append(X_train[k])

        ylis.append(y_train[k])

        X_train_ = np.concatenate(lis, axis = 1)

        y_train_ = np.concatenate(ylis, axis = 1)

    X_train_ = np.asarray(X_train_)

    y_train_ = np.asarray(y_train_)

    X_dev_ = X_train[i]

    y_dev_ = y_train[i]

    

    # Step 3

    print('Dev fold is', i)

    sess, cost_history = run_logistic_model(learning_r = 5e-4,

                                training_epochs = 600,

                                train_obs = X_train_,

                                train_labels = y_train_,

                                debug = True)

    # Step 4

    correct_prediction=tf.equal(tf.greater(y_, 0.5), tf.equal(Y,1))

    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

     print('Train accuracy:',sess.run(accuracy, feed_dict={X:X_train_, Y: 

y_train_, learning_rate: 5e-4}))

     train_acc = np.append( train_acc, sess.run(accuracy, feed_dict={X:X_

train_, Y: y_train_, learning_rate: 5e-4}))

    correct_prediction=tf.equal(tf.greater(y_, 0.5), tf.equal(Y,1))

    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

     print('Dev accuracy:',sess.run(accuracy, feed_dict={X:X_dev_, Y: y_

dev_, learning_rate: 5e-4}))

     dev_acc = np.append( dev_acc, sess.run(accuracy, feed_dict={X:X_dev_, 

Y: y_dev_, learning_rate: 5e-4}))

    sess.close()
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The code follows these steps:

 1. Do a loop over all the folds (in this case, from 1 to 10), iterating 

with the variable i from 0 to 9.

 2. For each i, use the fold i as the dev set, and concatenate all other 

folds and use the result as train set.

 3. For each i, train the model.

 4. For each i, evaluate the accuracy on the two datasets (train and 

dev) and save the values in the two lists: train_acc and dev_acc.

If you run this code, you will get an output that will look like the following, for each 

fold (you will get 10 times the following output, once for each fold):

Dev fold is 0

Reached epoch 0 cost J = 0.766134

Reached epoch 200 cost J = 0.169536

Reached epoch 400 cost J = 0.100431

Reached epoch 600 cost J = 0.074989

Train accuracy: 0.987289

Dev accuracy: 0.984522

You will notice that you will get for each fold slightly different accuracy values. It is 

very instructive to study how the accuracy values are distributed. Because we have 10 

folds, we have 10 values to study. In Figure 6-9, you can see the distribution of the values 

for the train set (left) and for the dev set (right).
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The image is quite instructive. You can see that the accuracy values for the training 

set are quite concentrated around the average, while the ones evaluated on the dev set 

are much more spread. This shows how the model on new data behaves less well than on 

the data it has trained on. The standard deviation for the training data is 5.4 · 10−4 and for 

the dev set 2.4 · 10−3, 4.5 times larger than the value on the train set. In this way, you also 

get an estimate of the variance of your metric when applied on new data, and on how it 

generalizes. If you are interested in learning how to do this quickly with sklearn, you can 

check the official documentation for the KFold method here: https://goo.gl/Gq1Ce4. 

When you are dealing with datasets with many classes (remember the discussion on how 

to split your sets?), you must pay attention and do what is called stratified sampling.2 

sklearn provides a method to do that too: stratifiedKFold, which can be accessed here: 

https://goo.gl/ZBKrdt.

You can now easily find averages and standard deviations. For the training set, we 

have an average accuracy of 98.7% and a standard deviation of 0.054%, while for the dev 

set, we have an average of 98.6% with a standard deviation of 0.24%. So, now you can 

even give an estimate of the variance of your metric. Pretty cool!

2 Wikipedia, “Stratified sampling,” https://goo.gl/Wd8fuD,2018. “In statistical surveys, 
when subpopulations within an overall population vary, it is advantageous to sample each 
subpopulation (stratum) independently. Stratification is the process of dividing members of the 
population into homogeneous subgroups before sampling.”

Figure 6-9. Distribution of the accuracy values for the train set (left) and for the 
dev set (right). Note that the two plots use the same scale on both axes.
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 Manual Metric Analysis: An Example
I mentioned earlier that sometimes it is useful to do a manual analysis of your data, to 

check if the results (or the errors) you are getting are plausible. I would like to give you a 

basic example here, to give you a concrete idea of what is involved and how complicated 

it can be. Let’s consider the following: our very simple model (remember, we are using 

only one neuron) can get 98% of accuracy. Is the problem of recognizing digits that easy? 

Let’s try to see if that is the case. First, note that our training set does not even have the 

two-dimensional information of the images. If you remember, each image is converted 

in a one-dimensional array of values: the gray values of each pixel, starting on the top 

left and going row by row from top to bottom. Are the ones and the twos so easy to 

recognize? Let’s check how the real input for our model might look. Let’s start analyzing 

the digit 1. Let’s take an example from fold 0. In Figure 6-10, you can see the image on 

the left and a bar plot of the gray values of 784 pixels, as they are seen from our model. 

Remember that as observations, we have a one-dimensional array of the 784 gray values 

of the pixels of the image.

Figure 6-10. Example from fold 0 for the digit 1. The image on the left is a bar 
plot of the gray values of the 784 pixels, as they are seen in our model on the right. 
Remember that as inputs, we have a one-dimensional array of the 784 gray values 
of the pixels of the image.
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Remember that we reshape our 28 × 28 pixels image in a one-dimensional array, 

so when reshaping the digit 1 in Figure 6-10, we will find black points roughly each 28 

pixels, because the 1 is almost a vertical column of black points. In Figure 6-11, you can 

see other ones, and you will notice how, when reshaped as one dimensional, they all 

look the same: several bars roughly equally spaced. Now that you know what to look for, 

you can easily say that all the images in Figure 6-11 are all of digit 1.

Figure 6-11. Four examples of the digit 1 reshaped as one-dimensional arrays. All 
look the same: a number of bars roughly equally spaced.
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Now let’s look at the digit 2. In Figure 6-12, you can see an example, similar to what 

we had in Figure 6-10.

Figure 6-12. Example from fold 0 for the digit 2. The image on the left is a bar plot 
of the gray values of the 784 pixels, as they are seen in our model. Remember that 
as observations, we have a one-dimensional array of the 784 gray values of the 
pixels of the image.

Now things look different. We have two regions in which the bars are much denser, 

seen in the plot on the right in Figure 6-12. This is the case between pixels 100 and 200 

and especially after pixel 500. Why? Well, the two areas correspond to the two horizontal 

parts of the image. In Figure 6-13, I have highlighted how different parts look when 

reshaped as one-dimensional arrays.
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Horizontal parts (A) and (B) are clearly different from part (C) when reshaped as a 

one-dimensional array. The vertical part (C) looks like the digit 1, with many equally 

spaced bars, as you can see in the lower right bar plot labeled (C), while the more 

horizontal parts appear as many bars clustered in groups, as can be seen in the upper 

right and lower left bar plots labeled (A) and (B). So, when reshaped, if you find those 

clusters of bars, you are looking at a 2. If you see only equally spaced small groups of 

bars, as in the plot (C) in Figure 6-13, you are looking at a 1. You don’t even have to see 

the two-dimensional image, if you know what to look for. Note that this pattern is very 

constant. In Figure 6-14, you can see four examples of the digit 2, and you can clearly see 

the wider clusters of bars.

Figure 6-13. How different parts of the images look when reshaped as one- 
dimensional arrays. Horizontal parts are labeled (A) and (B), and the more 
vertical part is labeled (C).
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As you can imagine, this is an easy pattern to spot for an algorithm, and so it is to 

be expected that our model works well. Even a human can spot the images, even when 

reshaped, without any effort. Such a detailed analysis would not be necessary in a real- 

life project, but it is instructive to see what you can learn from your data. Understanding 

the characteristics of your data may help you in designing your model or understanding 

why it is not working. Advanced architectures, such as convolutional networks, will be 

able to learn those two-dimensional features exactly in a very efficient way.

Let’s also check how the network learned to recognize digits. You will remember that 

the output of our neuron is

 
ŷ z w x w x w x bn nx x
= ( ) = + +¼+ +( )s s 1 1 2 2  

Figure 6-14. Four examples of the digit 2, reshaped as one-dimensional arrays. 
The wider clusters of bars can be seen clearly.
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where σ is the sigmoid function, xi for i = 1, …, 784 are the gray values of the pixel of the 

image, wi for i = 1, …, 784 are the weights, and b is the bias. Remember that when ˆ .y > 0 5 ,  

we classify the image in class 1 (so, digit 2), and if ˆ .y < 0 5 , we classify the image in class 0  

(so, digit 1). Now from the discussion of the sigmoid function in Chapter 2, you will 

remember that σ(z) ≥ 0.5 when z ≥ 0 and σ(z) < 0.5 for z < 0. This means that our network 

should learn the weights in such a way that for all the ones, we have z < 0, and for all the 

twos, z ≥ 0. Let’s see if that is really the case. In Figure 6-15, you can see a plot for a digit 1,  

from which you can find the weights wi (solid line) of our trained network after 600 

epochs (and after reaching an accuracy of 98%) and the gray value of the pixel xi rescaled 

to have a maximum of 0.5 (dashed line). Note how each time xi is big, wi is negative. And 

when wi > 0, the xi are almost zero. Clearly, the result w x w x w x bn nx x1 1 2 2+ +¼+ +  will be 

negative, and, therefore, σ(z) < 0.5, and the network will identify the image as a 1. In the 

image, I zoomed in to make this behavior more evident.

Figure 6-15. Plot for a digit 1, from which you can find the weights wi (solid line) 
of our trained network after 600 epochs (and after reaching an accuracy of 98%) 
and the gray value of the pixel xi rescaled to have a maximum of 0.5 (dashed line)
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In Figure 6-16, you can see the same plot for a digit 2. You will remember from the 

previous discussion that for a 2, we can see many bars clustered together in groups up to 

pixel 250 (roughly). Let’s check how the weights in that region are. Now you will see that 

where the pixel gray values are big, the weights are positive, giving, then, a positive value 

of z and, therefore, σ(z) ≥ 0.5, and so the image would be classified as a 2.

Figure 6-16. Plot for a digit 2, from which you can find the weights wi (solid line) 
of our trained network after 600 epochs (and after reaching an accuracy of 98%) 
and the gray value of the pixel xi rescaled to have a maximum of 0.5 (dashed line)

As an additional check, I plotted wi · xi for all values of i for a digit 1, shown in 

Figure 6-17. You can see how almost all points lie below zero. Note also that b =  − 0.16, 

in this case.
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As you can see, in very easy cases, it is possible to understand how a network learns 

and, therefore, it is much easier to debug strange behaviors. But don’t expect this to 

be possible when dealing with much more complex cases. The analysis we have done 

would not be so easy, for example, if you tried to do the same with digits 3 and 8, instead 

of 1 and 2.

Figure 6-17. wi · xi for i = 1, …, 784 for a digit 1. You can see how almost all values 
lie below zero. The thick line at zero is made of all the points i, such that wi · xi = 0.
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CHAPTER 7

Hyperparameter Tuning
In this chapter, you will look at the problem of finding the best hyperparameters to get 

the best results from your models. First, I will describe what a black-box optimization 

problem is, and how that class of problems relate to hyperparameter tuning. You will see 

the three best-known methods to tackle these kind of problems: grid search, random 

search, and Bayesian optimization. I will show you, with examples, which one works 

under which conditions, and I will give you a few tricks that are very helpful for improving 

optimization and sampling on a logarithmic scale. At the end of the chapter, I will show 

you how you can use those techniques to tune a deep model, using the Zalando dataset.

 Black-Box Optimization
The problem of hyperparameter tuning is just a subclass of a much more general type of 

problem: black-box optimization. A black-box function f (x)

 f x n( ) ®:   

is a function whose analytic form is unknown. A black-box function can be evaluated 

to obtain its value for all values of x that are defined, but no other information (such as 

its gradient) can be obtained. Generally, by the term global optimization of a black-box 

function (sometimes called a black-box problem), we mean that we are trying to find 

the maximum or minimum of f (x), sometimes under certain constraints. Here are some 

examples of this kind of problem:

• Finding the hyperparameter for a given machine-learning model that 

maximizes the chosen optimizing metric
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• Finding the maximum or minimum of a function that can only be 

evaluated numerically or with code that we cannot look at. In some 

industry contexts, there can be legacy code that is very complicated, 

and there are some functions that must be maximized, based on its 

outcome.

• Finding the best place to drill for oil. In this case, your function would 

be how much oil you can find and x your location.

• Finding the best combination of parameters for situations that are too 

complex to model, for example, when launching a rocket in space, 

how to optimize the amount of fuel, diameter of each stage of the 

rocket, precise trajectory, etc.

This is a very fascinating class of problems, which has produced smart solutions. You 

will see three of them: grid search, random search, and Bayesian optimization. If you are 

curious about the subject, you can check out the black-box optimization competition 

at https://goo.gl/LY7huY. The rules of the competition mirror real-life problems. 

A problem is set up for which you must optimize a function (find the maximum or 

minimum) through a black-box interface. You can get the value of the function for all 

values of x, but you cannot get any other information, as its gradients, for example.

Why does finding the best hyperparameters for neural networks constitute a black- 

box problem? Because we cannot calculate information, such as the gradients of our 

network output, with respect to the hyperparameters, especially when using complex 

optimizers or custom functions, we require other approaches, to be able to find the 

best hyperparameters that maximize the chosen optimizing metric. Note that if we 

could have the gradients, we could use an algorithm as the gradient descent to find the 

maximum or minimum.

Note Our black-box function f will be our neural network model (including things 
such as the optimizer, cost function form, etc.) that gives as output our optimizing 
metric, given the hyperparameters as input, and x will be the array containing the 
hyperparameters.

The problem may seem quite trivial. Why not try all the possibilities? Well, this 

may be possible in the examples you have looked at in previous chapters, but if you 

are working on a problem and training your model takes a week, this may present 
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a challenge. Because, typically, you will have several hyperparameters, trying all 

possibilities will not be feasible. Let’s consider an example to understand this better. 

Suppose we are training a model of a neural network with several layers. We may decide 

to consider the following hyperparameters, to see which combination works better:

• Learning rate: Suppose we want to try the values n · 10−4 for n = 1, …, 

102. (100 values)

• Regularization parameter: 0, 0.1, 0.2, 0.3, 0.4, and 0.5 (6 values)

• Choice of optimizer: GD, RMSProp, or Adam (3 values)

• Number of hidden layers: 1, 2, 3, 5, and 10 (5 values)

• Number of neurons in the hidden layers: 100, 200, and 300 (3 values)

Consider that you will need to train your network

 100 6 3 5 3 27000´ ´ ´ ´ =  

times, if you want to test all possible combinations. If your training takes 5 minutes, you 

will require 13.4 weeks of computing time. If the training takes hours or days, you will not 

have any chance. If the training takes one day, for example, you will require 73.9 years to 

try all possibilities. Most of the hyperparameter choices will come from experience. For 

example, you can always use Adam safely, because it is the better optimizer available 

(in almost all cases). But you will not be able to avoid trying to tune other parameters, 

such as the number of hidden layers or learning rate. You can reduce the number of 

combinations you need with experience (as with the optimizer), or with some smart 

algorithm, as you will see later in this chapter.

 Notes on Black-Box Functions
Black-box functions are usually classified into two main classes:

• Cheap functions: Functions that can be evaluated thousands of times

• Costly functions: Functions that can only be evaluated a few times, 

usually less than 100 times
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If the black-box function is cheap, the choice of the optimization method is not 

critical. For example, we can evaluate the gradient with respect to the x numerically, 

or simply search the maximum evaluating the functions on a high number of points. 

If the function is costly, we need much smarter approaches. One of these is Bayesian 

optimization, which I will discuss later in this chapter, to give you an idea of how these 

methods work and how complex they are.

Note especially in the deep-learning world, neural networks are almost always 
costly functions.

For costly functions, we must find methods that solve our problem with the smallest 

number of evaluations possible.

 The Problem of Hyperparameter Tuning
Before looking at how we can find the best hyperparameters, I would like to quickly go 

back to neural networks and discuss what can we tune in deep models. Typically, when 

talking about hyperparameters, beginners think only of numerical parameters, such as 

the learning rate or regularization parameter, for example. Remember that the following 

also can be varied, to see if you can get better results:

• Number of epochs: Sometimes, simply training your network longer 

will give you better results.

• Choice of optimizer: You can try choosing a different optimizer. If you 

are using plain gradient descent, you may try Adam and see if you get 

better results.

• Varying the regularization method: As discussed previously, there are 

several ways of applying regularization. Varying the method may well 

be worth trying.

• Choice of activation function: Although the activation function always 

used in the previous chapters for neurons in hidden layers was ReLU, 

others may work a lot better. Trying sigmoid or Swish, for example, 

may help you get better results.
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• Number of layers and number of neurons in each layer: try different 

configurations: Try layers with different numbers of neurons, for 

example.

• Learning rate decay methods: Try (if you are not using optimizers that 

do this already) different learning rate decay methods.

• Mini-batch size: Vary the size of mini-batches. When you have little 

data, you can use batch gradient descent. When you have a lot of 

data, mini-batches are more efficient.

• Weight initialization methods

Let’s classify the parameters we can tune in our models in the following three 

categories:

• Parameters that are continuous real numbers or, in other words, 

that can assume any value. Example: learning rate, regularization 

parameter

• Parameters that are discrete but can theoretically assume an infinite 

number of values. Example: number of hidden layers, number of 

neurons in each layer, or number of epochs

• Parameters that are discrete and can only assume a finite number of 

possibilities. Example: optimizer, activation function, learning rate 

decay method.

For category 3, there is not much to do except try all possibilities. Typically, these 

parameters will completely change the model itself, and, therefore, it is impossible to 

model their effects, making a test the only possibility. This is also the category for which 

experience may help the most. It is widely known that the Adam optimizer is almost 

always the best choice, for example, so you may concentrate your efforts somewhere else 

at the beginning. For categories 1 and 2, this is a bit more difficult, and we will have to 

come up with some smart ideas to find the best values.

 Sample Black-Box Problem
To try our hands at solving a black-box problem, let’s create a “fake” black-box problem. 

The problem is the following: find the maximum of the function f(x) given by the formula
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pretending not to know the formula itself. The formula will allow us to check our results, 

but we will pretend they are unknown. You may wonder why we use such a complicated 

formula. I wanted to have something with a few maxima and minima, to give you an idea 

of how the methods work on a non-trivial example. f(x) can be implemented in Python 

with the code

def f(x):

    tmp1 = -np.cos(x/4.0)-np.sin(x/4.0)-2.5*np.cos(2.0*x/4.0)+0.5*np.

sin(2.0*x/4.0)

    tmp2 = -np.cos(x/3.0)-np.sin(x/3.0)-2.5*np.cos(2.0*x/3.0)+0.5*np.

sin(2.0*x/3.0)

    return 10.0+tmp1+0.5*tmp2

In Figure 7-1, you can see how f(x) looks.

Figure 7-1. Plot of the function f(x), as described in the text
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The maximum is at an approximate value x = 69.18 and has a value of 15.027. Our 

challenge is to find this maximum in the most efficient way possible, without knowing 

anything about f(x), except its value at any point we want. When we say “efficient,” we 

mean, of course, with the smallest number of evaluations possible.

 Grid Search
The first method we look at, grid search, is also the least “intelligent.” Grid search entails 

simply trying the function at regular intervals and seeing for which x the function f(x) 

assumes the highest value. In this example, we want to find the maximum of the function 

f(x) between two x values xmin and xmax. What we will do is simply take n points equally 

spaced between xmin and xmax and evaluate the function at these points. We will define a 

vector of points
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where we defined Δx = xmax − xmin. Then we evaluate the function f(x) at those points, 

obtaining a vector f of values
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The estimate of the maximum  x f,( )  will then be

 
f f
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£ £ -
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0 1  

and, assuming the maximum is found at i i= , we will also have
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D
 

Now, as you may imagine, the more points you use, the more accurate your 

maximum estimation will be. The problem is that, if the evaluation of f(x) is costly, you 

will not be able to take as many points as you might like. You will need to find a balance 

between number of points and accuracy. Let’s explore an example with the function  
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f(x) that I described earlier. Let’s consider xmax = 80 and xmin = 0, and let’s take n = 40 

points. We will have 
Dx
n

= 2 . We can create the vector x easily in Python with the 

following code:

gridsearch = np.arange(0,80,2)

The array gridsearch will look like this:

array([ 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 

34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 

70, 72, 74, 76, 78])

In Figure 7-2, you can see the function f(x) as a continuous line; the crosses mark the 

points we sample in the grid search; and the black square marks the precise maximum of 

the function. The right plot shows a zoom around the maximum.

You can see how the points we sample in Figure 7-2 get close to the maximum but 

don’t get it exactly. Of course, sampling more points would get us closer to the maximum 

but would cost us more evaluations of f(x). We can find the maximum  x f,( )  easily with 

the trivial code

Figure 7-2. Function f(x) on the range [0, 80]. The crosses mark the point we 
sample in the grid search, and the black square marks the maximum.
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x = 0

m = 0.0

for i, val in np.ndenumerate(f(gridsearch)):

    if (val > m):

        m = val

        x = gridsearch[i]

print(x)

print(m)

This gives us

70

14.6335957578

This is close to the actual maximum (69.18, 15.027) but not quite right. Let’s try the 

previous example, varying the number of points we sample, and then see what results 

we get. We will vary the number of points sampled n from 4 to 160. For each case, we will 

find the maximum and its location, as described earlier. We can do it with the code

xlistg = []

flistg = []

for step in np.arange(1,20,0.5):

    gridsearch = np.arange(0,80,step)

    x = 0

    m = 0.0

    for i, val in np.ndenumerate(maxim(gridsearch)):

        if (val > m):

            m = val

            x = gridsearch[i]

    xlistg.append(x)

    flistg.append(m)

In the lists xlistg and flistg, we will find the position of the maximum found and 

the value of the maximum for the various values of n.

In Figure 7-3, we plot the distributions of the results. The black vertical line is the 

correct value of the maximum.
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As you can see, the results vary quite a lot and can be very far from the correct value, 

as far as 10. This tells us that using the wrong number of points can yield very wrong 

results. As you can imagine, the best results are the ones with the smallest step Δx, 

because it is more probable to get closer to the maximum. In Figure 7-4, you can see how 

the value of the found maximum varies with the step Δx.

Figure 7-3. Distribution of the results for f  obtained by varying the number 
of points n sampled in the grid search. The black vertical line indicates the real 
maximum of f(x).

Figure 7-4. Behavior of the found value of the maximum vs. the x step Δx
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In the zoom in the right plot in Figure 7-4, it is evident how smaller values of Δx get 

you better values of f . Note that a step of 1.0 means sampling 80 values of f(x). If, for 

example, the evaluation takes 1 day, you will have to wait 80 days to get all the 

measurements you require.

Note grid search is a method that is efficient only when the black-box function is 
cheap. to get good results, a big number of sampling points is usually needed.

To make sure you are really getting the maximum, you should decrease the step Δx, 

or increase the number of sampling points, until the maximum value you find does not 

change appreciably anymore. In the preceding example, as you see from the right plot 

in Figure 7-4, we are sure we are close to the maximum when our step Δx gets smaller 

than roughly 2.0, or, in other words, when the number of sampled points is greater or 

roughly equal to 40. Remember: 40 may seem quite a small number at first sight, but if 

f(x) evaluates the metric of your deep-learning model, and the training takes 2 hours, for 

example, you are looking at 3.3 days of computer time. Normally, in the deep-learning 

world, 2 hours is not much for training a model, so make a quick calculation before 

starting a long grid search. Additionally, keep in mind that when doing hyperparameter 

tuning, you are moving in a multidimensional space (you are not optimizing only one 

parameter, but many), so the number of evaluations needed gets big very fast.

Let’s create a quick example. Suppose you decide you can afford 50 evaluations of 

your black-box function. If you decide you want to try the following hyperparameters:

• Optimizer (RMSProp, Adam, or plain GD) (3 values)

• Number of epochs (1000, 5000, or 10,000) (3 values)

you are already looking at nine evaluations. How many values of the learning rate can 

you then afford to try? Only five! And with five values, it is not probable to get close to the 

optimal value. This example has the goal of helping you to understand how grid search 

is viable only for cheap black-box functions. Remember that often time is not the only 

problem. For example, if you are using the Google cloud platform to train your network, 

you are paying for the hardware you use by the second. Maybe you have lots of time at 

your disposal, but costs may exceed your budget very quickly.
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 Random Search
A strategy that is as “dumb” as grid search but works amazingly a lot better is random 

search. Instead of sampling x points regularly in the range (xmin, xmax), you sample the 

points randomly. We can do it with the code

Import numpy as np

randomsearch = np.random.random([40])*80.0

The array randomsearch will look like this:

array([ 0.84639256, 66.45122608, 74.12903502, 36.68827838, 61.71538757, 

69.29592273, 48.76918387, 69.81017465, 1.91224209, 21.72761762, 

22.17756662, 9.65059426, 72.85707634, 2.43514133, 53.80488236, 5.70717498, 

28.8624395 , 33.44796341, 14.51234312, 41.68112826, 42.79934087, 

25.36351055, 58.96704476, 12.81619285, 15.40065752, 28.36088144, 

30.27009067, 16.50286852, 73.49673641, 66.24748556, 8.55013954, 

29.55887325, 18.61368765, 36.08628824, 22.1053749 , 40.14455129, 

73.80825225, 30.60089111, 52.01026629, 47.64968904])

Depending on the seed you used, the actual numbers you get may be different. As 

we have done for grid search, you can see in Figure 7-5 the plot of f(x), where the crosses 

mark the sampled points, and the black square the maximum. On the right plot, you see 

a zoom around the maximum.

Figure 7-5. Function f(x) on the range [0, 80]. The crosses mark the point we 
sampled with random search, and the black square marks the maximum.
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The risk with this method is that if you are very unlucky, your random chosen points 

are nowhere close to the real maximum. But that probability is quite low. Note that if 

you take a constant probability distribution for your random points, you have the same 

probability of getting the points everywhere. It is interesting to see how this method 

performs. Let’s consider 200 different random sets of 40 points, obtained by varying the 

random seed used in the code. The distributions of the maximum found f  is plotted in 

Figure 7-6.

As you can see, regardless of the random sets used, you get, in the most cases, very 

close to the real maximum. In Figure 7-7, you can see the distributions of the maximum 

found with random search varying the number of points sampled, from 10 to 80.

Figure 7-6. Distribution of the results for f  obtained by 200 different random sets 
of 40 points sampled in the random search. The black vertical line indicates the 
real maximum of f(x).
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If you compare it with grid search, you can see that random search is consistently 

better at getting results closer to the real maximum. In Figure 7-8, you can see a 

comparison between the distribution you get for your maximum f  when using a 

different number of sampling points n with random and grid searches. In both cases, the 

plots were generated with 38 different sets, so that the total count is the same.

Figure 7-7. Distribution of the results for f  obtained by varying the number 
of points n sampled in the random search, from 10 to 80. The black vertical line 
indicates the real maximum of f(x).

Figure 7-8. Comparison of the distribution of f  between grid (right) and random 
(left) searches, while varying the number of sampling points n. Both plots count 
sums to 38, the number of different numbers of sampling points used. The correct 
value of the maximum is marked by the vertical black line in both plots.
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It is easy to see how on average random search is better than grid search. The values 

you get are consistently closer to the right maximum.

Note random search is consistently better than grid search, and you should 
use it whenever possible. the difference between random search and grid search 
becomes even more marked when dealing with a multidimensional space for 
your variable x. hyperparameter tuning is practically always a multidimensional 
optimization problem.

If you are interested in a very good paper on how random search scales for high 

dimensional problems, read James Bergstra and Yoshua Bengio, Random Search for 

Hyper-Parameter Optimization, available at https://goo.gl/efc8Qv.

 Coarse-to-Fine Optimization
There is still an optimization trick that helps with grid or random search. It is called coarse-

to-fine optimization. Suppose we want to find the maximum of f(x) between xmin and xmax. 

I will explain the concept behind random search, but it works the same way for grid search. 

The following steps give you the algorithm you require to follow for this optimization.

 1. Do a random search in the region R1 = (xmin, xmax). Let’s indicate the 

maximum found with (x1, f1).

 2. Consider now a smaller region around x1, R2 = (x1 − δx1, x1 + δx1), 

for some δx1, which I will discuss later, and again do a random 

search in this region. The hypothesis is, of course, that the real 

maximum lies in this region. We will indicate the maximum you 

find here with (x2, f2).

 3. Repeat step 2 around x2, in the region we will indicate with R3, 

with a δx2 smaller than δx1, and indicate the maximum you find in 

this step with (x3, f3).

 4. Now repeat step 2 around x3, in the region we will indicate with R4, 

with a δx3 smaller than δx2.

 5. Continue in the same way as often as you require, until the 

maximum (xi, fi) in the region Ri + 1 no longer changes.
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Usually, just one or two iterations are used, but, theoretically, you could go on for a 

large number of iterations. The problem with this method is that you cannot be really 

sure that your real maximum lies in your regions Ri. But this optimization has a big 

advantage, if it does. Let’s consider the case in which we do a standard random search. 

If we want to have on average a distance between the sampled points of 1% of xmax − xmin, 

we would need about 100 points, if we decided to perform only one random search, and, 

consequently, we had to perform 100 evaluations. Now let’s consider the algorithm I just 

described. We could start with just 10 points in region R1 = (xmin,  xmax). Here, we will 

indicate the maximum we find with (x1, f1). Then let’s take 2
10

d x
x x

=
-max min  and take 

again 10 points in region R2 = (x1 − δx, x1 + δx). In the interval (x1 − δx, x1 + δx), we will 

have on average a distance between the points of 1% of xmax − xmin, but we just sampled 

our functions only 20 times, instead of 100, so by a factor 5 fewer! For example, let’s just 

sample the function we used previously between xmin = 0 and xmax = 80 with 10 points, 

with the code

np.random.seed(5)

randomsearch = np.random.random([10])*80

x = 0

m = 0.0

for i, val in np.ndenumerate(f(randomsearch)):

    if (val > m):

        m = val

        x = randomsearch[i]

This gives us the maximum location and value of x1 = 69.65 and f1 = 14.89, not bad, 

but not yet as precise as the real ones: 69.18 and 15.027. Now let’s again sample 10 points 

around the maximum we have found in the regions R2 = (x1 − 4, x1 + 4).

randomsearch = x + (np.random.random([10])-0.5)*8

x = 0

m = 0.0

for i, val in np.ndenumerate(maxim(randomsearch)):

    if (val > m):

        m = val

        x = randomsearch[i]
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This gives us the result 69.189 and 15.027. Quite a precise result, with only 20 

evaluations of the function. If we do a plain random search with 500 (25 times more than 

what we just did) sampling points, we get x1 = 69.08 and f1 = 15.022. This result shows 

how this trick can be really helpful. But remember the risk: If your maximum is not in 

your regions Ri, you will never be able to find it, since you are still dealing with random 

numbers. So, it is always a good idea to choose the regions (xi − δxi, xi + δxi), which are 

relatively big, to make sure that they contain your maximum. How big depends, as 

almost everything in the deep-learning world, on your dataset and problem, and these 

may be impossible to know in advance. Unfortunately, testing is required. In Figure 7-9, 

you can see the sampled points on the function f(x). In the plot on the left, you see the 

first 10 points, and on the right, the region R2 with the additional 10 points. The small 

rectangle on the left plot marks the x region R2.

Now the choice of how many points you should sample at the beginning is crucial. 

We had luck here. Let’s consider a different seed when choosing our initial 10 random 

points and then see what can happen (see Figure 7-10). Choosing the wrong initial 

points leads to disaster!

Figure 7-9. Function f(x). The crosses mark the sampled points: on the left, the 10 
points sampled in the regions R1 (entire range), on the right, the 10 points sampled 
in R2. The black square marks the real maximum. The plot on the right is a zoom of 
the region R2.

Chapter 7  hyperparameter tuning



288

Note, in Figure 7-10, how the algorithm finds the maximum at around 16, because 

in the initial sampled points, the maximum value is about x = 16, as you can see on the 

plot at the left in Figure 7-10. No points are close to the real maximum, about x = 69. 

The algorithm finds a maximum very well, simply not the absolute maximum. That is 

the danger you face when using this trick. Things can even be worse than that. Consider 

Figure 7-11, in which only one single point is sampled at the beginning. You can see on 

the plot at the left in Figure 7-11 how the algorithm completely misses any maximum. It 

simply gives as a result the highest values of the points marked by crosses on the points 

on the right plot: (58.4, 9.78).

Figure 7-10. Function f(x). The crosses mark the sampled points: on the left, the 10 
points sampled in the regions R1 (entire range), on the right, the 10 points sampled 
in R2. The black square marks the real maximum. The algorithm finds a maximum 
very well around 16, simply not the absolute maximum. The small rectangle on the 
left marks the region R2. The plot on the right is a zoom of the region R2.
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If you decide to use this method, keep in mind that you will still require a good 

number of points at the beginning, to get close to the maximum, before refining your 

search. After you are relatively sure to have points around your maximum, you can use 

this technique to refine your search.

 Bayesian Optimization
In this section, we will look at a specific and efficient technique for finding the minimum 

(or maximum) of a black-box function. This is a rather clever algorithm that basically 

consists of choosing the sampling points from which to evaluate the function in a much 

more intelligent way than simply choosing them randomly or on a grid. To understand 

how this works, you must first look at a few new mathematical concepts, because the 

method is not trivial and requires some understanding of more advanced concepts. Let’s 

start with the Nadaraya-Watson regression.

Figure 7-11. Function f(x). The crosses mark the sampled points: on the left, the 
1 point is sampled in the regions R1 (entire range), on the right, the 10 points are 
sampled in R2. The black square marks the real maximum. The algorithm does not 
find any maximum, because none is present in the region R2. The plot on the right 
is the zoom of the region R2.
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 Nadaraya-Watson Regression
This method was developed in 1964 by Èlizbar Akakevič (E. A.) Nadaraya in “On 

Estimating Regression,” published in the Russian journal Theory of Probability and Its 

Applications. The basic idea is quite simple. Given an unknown function y(x), and given 

N points xi = 1, …, N, we indicate with yi = f(xi), with i = 1, …, N, the value of the function 

calculated at the different xi. The idea of the Nadaraya-Watson regression is that we can 

evaluate the unknown function at an unknown point x using the formula

 
y x w x y

i

N

i i( ) = ( )
=
å

1  

where wi(x) are weights that are calculated according to the formula
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where K(x, xi) is called a kernel. Note that given how the weights are defined we have
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N
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=
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In the literature, you can find several kernels, but the one we are interested in is the 

Gaussian one, often called the radial basis function (RBF)

 K x x ei
l

x xi
,( ) =

- -
s 2

1

2 2
2

 

The parameter l makes the Gaussian shape wider or narrower. The σ is typically 

the variance of your data, but, in this case, it plays no role, because the weights are 

normalized to one. This is at the basis of Bayesian optimization, as you will see later.
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 Gaussian Process
Before talking about Gaussian processes, first I must define what a random process is. A 

random process refers to any point x ∈ Rd to which we assign a random variable f(x) ∈ R. 

A random process is Gaussian, if for any finite number of points, their joint distribution 

is normal. This means that ∀n ∈ N, and for ∀x1, …xn ∈ Rd, the vector is
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where with the notation we intend that the vector components follow a normal 

distribution, indicated with  . Remember that a random variable with a Gaussian 

distribution is said to be normally distributed. From this comes the name Gaussian 

process. The probability distribution of the normal distribution is given by the function
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where μ is the mean or expectation of the distribution, and σ is the standard deviation.  

I will use the following notation from here on:

 Mean value of f m  :  

and the covariance of the random values will be indicated here by K.

 
cov f x f x K x x1 2 1 2( ) ( )éë ùû = ( ), ,  

The choice of the letter K has a reason. We will assume in what follows that the 

covariance will have a Gaussian shape, and we will use for K the RBF function defined 

previously.
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 Stationary Process
For simplicity, we will consider here only stationary processes. A random process is 

stationary if its joint probability distribution does not change with time. That means also 

that mean and variance will not change when shifted in time. We will also consider a 

process whose distribution depends only on the relative position of the points. This leads 

to the conditions

 

K x x K x x

Var f x K
1 2 1 2

0

,( ) = -( )
( )éë ùû = ( )



  

Note that to apply the method we are describing, first you must convert your data to 

be stationary, if that is not already the case, eliminating seasonality or trends in time, for 

example.

 Prediction with Gaussian Processes
Now we have reached the interesting part: given the vector f, how can we estimate 

f(x) at an arbitrary point x? Because we are dealing with random processes, what we 

will estimate is the probability that the unknown function assumes a given value f(x). 

Mathematically, we will predict the following quantity:

 p f x( |( ) f )  

Or, in other words, the probability of getting the value f(x), given the vector f, 

composed by all the points f(x1), …, f(xn).

Assuming that f(x) is a stationary Gaussian process with m = 0, the prediction can be 

shown to be given by
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Where, with  ( , , , |f x f x f x Cn( ) ( ) ¼ ( )1 0, ) , we have indicated the normal 

distribution calculated on the points with average 0 and covariance matrix C  of 

dimensions n + 1 × n + 1, because we have n + 1 points in the numerator. The derivation 

is somewhat involved and is based on several theorems, such as Bayes’ theorem.  
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For more information, you can refer to the (advanced) explanation by Chuong B. Do in 

“Gaussian Processes” (2007), available at https://goo.gl/cEPYwX, in which everything 

is explained in elaborate detail. To understand what Bayesian optimization is, we can 

simply use the formula without derivation. C will have dimensions n × n, because we 

have only n points in the denominator.

We have

 C
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It can be shown1 that the ratio of two normal distributions is again a normal 

distribution, so that we can write

 p f x f x( | ( |( ) = ( )f ) , ) m s2  

with
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The derivation of the exact form for μ and σ is quite long and would be beyond the 

scope of the book. Basically, we know now that, on average, our unknown function will 

assume the value μ in x, with a variance σ. Let’s now see how this method really works in 

practice in Python. Let’s first define our kernel K(x).

def K(x, l, sigm = 1):

    return sigm**2*np.exp(-1.0/2.0/l**2*(x**2))

1 Remember that a normal distribution has an exponential form, and the ratio of two exponentials 
is still an exponential.
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Let’s simulate our unknown function with an easy one

 f x x x x x( ) = - + + +2 3 43 10 0 07.  

which can be implemented as

def f(x):

    return x**2-x**3+3+10*x+0.07*x**4

Let’s consider the function in the range (0, 12). In Figure 7-12, you can see how the 

function looks.

Let’s build first our f vector with five points, as follows:

randompoints = np.random.random([5])*12.0

f_ = f(randompoints)

where we have used the seed 42 for the random numbers: np.random.seed(42). In 

Figure 7-13, you can see the random points marked with crosses on the plot.

Figure 7-12. Plot of our unknown test function, as described in the text
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We can apply the method described earlier with the following code:

xsampling = np.arange(0,14,0.2)

ybayes_ = []

sigmabayes_ = []

for x in xsampling:

    f1 = f(randompoints)

    sigm_ = np.std(f1)**2

    f_ = (f1-np.average(f1))

    k = K(x-randompoints, 2 , sigm_)

    C = np.zeros([randompoints.shape[0], randompoints.shape[0]])

    Ctilde = np.zeros([randompoints.shape[0]+1, randompoints.shape[0]+1])

    for i1,x1_ in np.ndenumerate(randompoints):

        for i2,x2_ in np.ndenumerate(randompoints):

            C[i1,i2] = K(x1_-x2_, 2.0, sigm_)

    Ctilde[0,0] = K(0, 2.0, sigm_)

    Ctilde[0,1:randompoints.shape[0]+1] = k.T

    Ctilde[1:,1:] = C

    Ctilde[1:randompoints.shape[0]+1,0] = k

Figure 7-13. Plot of the unknown function. The crosses mark the random point 
chosen in the text.
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    mu = np.dot(np.dot(np.transpose(k), np.linalg.inv(C)), f_)

     sigma2 = K(0, 2.0,sigm_)- np.dot(np.dot(np.transpose(k), np.linalg.

inv(C)), k)

    ybayes.append(mu)

    sigmabayes_.append(np.abs(sigma2))

ybayes = np.asarray(ybayes_)+np.average(f1)

sigmabayes = np.asarray(sigmabayes_)

Now please take some time to understand it. In the list ybayes, we will find the 

values of μ(x) evaluated on the values contained in the array xsampling. Here are some 

hints that will help you to understand the code:

• We do a loop over a range of x points, where we want to evaluate our 

function, with the code for x in xsampling:.

• We build our k and f vectors with the code for each element of 

the vectors: k = K(x-randompoints, 2 , sigm_) and f1 = 

f(randompoints). For the kernel, we have chosen a value for the 

parameter l, as defined in the function of 2. We have subtracted, in 

the vector f, the average to obtain m(x) = 0, to be able to apply the 

formulas as derived.

• We build the matrices C and C .

• We calculate μ with mu = np.dot(np.dot(np.transpose(k), 

np.linalg.inv(C)), f_) and the standard deviation.

• At the end, we reapply all the transformation that we have done to 

make our process stationary in the opposite order, simply adding the 

average of f(x) again to the evaluated surrogate function ybayes = 

np.asarray(ybayes_)+np.average(f1).

In Figure 7-14, you can see how this method works. The dashed line is the predicted 

function obtained by plotting μ(x), as calculated in the code, when we have five points at 

our disposal (n = 5). The gray area is the region between the estimated function and +/- σ.
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Given the few points we have, it is not a bad result. Now keep in mind that you still 

need a few points, to be able to get a reasonable approximation. In Figure 7-15, you can 

see the result, if we have only two points at our disposal. The result is not as good. The 

gray area is the region around the estimated function and +/- σ. You can see how, as far 

as we are from the points we have, the higher the uncertainty, or the variance, of the 

predicted function.

Figure 7-14. Predicted function (dashed line), calculated by evaluating μ(x). The 
gray area is the region between the estimated function and +/- σ.

Figure 7-15. Predicted function (dashed line), when we have only two points at 
our disposal. The gray area is the region between the estimated function +/- σ.
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Let’s stop for a second and think about why we do all this. The idea is to find a so- 

called surrogate function f  that approximates our function f and has the property

 max maxf f»  

This surrogate function must have another very important property: it must be cheap 

to evaluate. In this way, we can find easily the maximum of f , and, using the previous 

property, we will have the maximum of f, which, by hypothesis, is costly.

But as you have seen, it may be very difficult to know if we have enough points to find 

the right value of the maximum. After all, by definition, we don’t have any idea how our 

black-box function looks. So, how to solve this problem?

The main idea behind the method can be described by the following algorithm:

 1. We start with a small number of sample points randomly chosen 

(how small it should be will depend on your problem).

 2. We use this set of points to get a surrogate function, as described.

 3. We add an additional point to our set, with a specific method that 

I will discuss later, and reevaluate the surrogate function.

 4. If the maximum we find with the surrogate function continues 

to change, we will continue adding points, as in step 3, until the 

maximum does not change anymore, or we run out of time or 

budget and cannot perform any further evaluation.

If the method I hinted at in step 3 is smart enough, we will be able to find our 

maximum relatively quickly and accurately.

 Acquisition Function
But how to choose the additional points I mentioned in step 3 in the previous section? 

The idea is to use a so-called acquisition function. The algorithm works in this way:

 1. We choose a function (and we will see a few possibilities in a 

moment) called an acquisition function.

 2. Then we choose, as additional point x, the one at which the 

acquisition function has a maximum.
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There are several acquisition functions we can use. I will describe here only one that 

we will use to see how this method works, but there are several that you may want to 

check out, such as entropy search, probability of improvement, expected improvement, 

and upper confidence bound.

 Upper Confidence Bound (UCB)
In the literature, you find two variations of this acquisition function. We can write the 

function as

 a x f x xUCB ( ) = ( ) + ( ) hs  

where we have indicated with f x( )  the “expected” value of the surrogate function 

on the x-range we have in our problem. The expected value is nothing other than the 

average of the function over the given x range. σ(x) is the variance of the surrogate 

function that we calculate with our method at point x. The new point we select is the one 

in which aUCB(x) is maximum. η > 0 is a trade-off parameter. This acquisition function 

basically selects the points where the variance is biggest. Review Figure 7-15. The 

method selects the points at which the variance is greater, so, points as far as possible 

from the points we have already. In this way, the approximation tends to get better and 

better.

Another variation of the UCB acquisition function is the following:

 


a x f xUCB ( ) = ( ) + ( )x hs  

This time, the acquisition function will make a trade-off between choosing points 

around the surrogate function maximum and points where its variance is biggest. This 

second method works best to find quickly good approximation of the maximum of f, 

while the first tends to give good approximation of f over the entire x range. In the next 

section, we will see how these methods works.
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 Example
Let’s start with the complex trigonometric function, as described at the beginning 

of the chapter, and consider the x range [0, 40]. Our goal is to find its maximum and 

approximate the function. To facilitate our coding, let’s define two functions: one to 

evaluate the surrogate function and one to evaluate the new point. To evaluate the 

surrogate function, we can use the following function:

def get_surrogate(randompoints):

    ybayes_ = []

    sigmabayes_ = []

    for x in xsampling:

        f1 = f(randompoints)

        sigm_ = np.std(f_)**2

        f_ = (f1-np.average(f1))

        k = K(x-randompoints, 2.0, sigm_ )

        C = np.zeros([randompoints.shape[0], randompoints.shape[0]])

        Ctilde = np.zeros([randompoints.shape[0]+1, randompoints.shape[0]+1])

        for i1,x1_ in np.ndenumerate(randompoints):

            for i2,x2_ in np.ndenumerate(randompoints):

                C[i1,i2] = K(x1_-x2_, 2.0, sigm_)

        Ctilde[0,0] = K(0, 2.0)

        Ctilde[0,1:randompoints.shape[0]+1] = k.T

        Ctilde[1:,1:] = C

        Ctilde[1:randompoints.shape[0]+1,0] = k

        mu = np.dot(np.dot(np.transpose(k), np.linalg.inv(C)), f_)

         sigma2 = K(0, 2.0, sigm_)- np.dot(np.dot(np.transpose(k), 

np.linalg.inv(C)), k)

        ybayes_.append(mu)

        sigmabayes_.append(np.abs(sigma2))

    ybayes = np.asarray(ybayes_)+np.average(f1)

    sigmabayes = np.asarray(sigmabayes_)

    return ybayes, sigmabayes
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This function has the same code I have already discussed in our example in the 

previous sections, but it is packed in a function that returns the surrogate function, 

contained in the array ybayes, and the σ2, contained in the array sigmabayes. 

Additionally, we require a function that evaluates the new points, using the acquisition 

function aUCB(x). We can get it easily with the function

def get_new_point(ybayes, sigmabayes, eta):

    idxmax = np.argmax(np.average(ybayes)+eta*np.sqrt(sigmabayes))

    newpoint = xsampling[idxmax]

    return newpoint

To make things simpler, I decided to define the array that contains all the x values we 

want at the beginning outside the functions. Let’s start with just six randomly selected 

points. To check how our method is doing, let’s start with some definitions.

xmax = 40.0

numpoints = 6

xsampling = np.arange(0,xmax,0.2)

eta = 1.0

np.random.seed(8)

randompoints1 = np.random.random([numpoints])*xmax

In the array randompoints1, we will have our first six selected random points. We can 

easily get the surrogate function of our function with

ybayes1, sigmabayes1 = get_surrogate(randompoints1)

In Figure 7-16, you can see the result. The dotted line is the acquisition function 

aUCB(x), normalized to fit in the plot.
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The surrogate function is not yet very good, because we don’t have enough points, 

and the big variance (the gray area) makes this evident. The only region that is well 

approximated is the region x ≳ 35. You can see how the acquisition function is big when 

the surrogate function is not approximating the black-box function well and small 

when it does, as, for example, for x ≳ 35. So, intuitively choosing as a new point the one 

where aUCB(x) is maximum is equivalent to choosing the points where the function is 

less well approximated, or, in more mathematical terms, where the variance is bigger. 

By comparison, in Figure 7-17, you can see the same plot as in Figure 7-16, but with the 

acquisition function a xUCB ( )  and with η = 3.0.

Figure 7-16. Overview of the black-box function f(x) (solid line), the randomly 
selected points (marked by crosses), the surrogate function (dashed line), and the 
acquisition function aUCB(x) (dotted line), shifted to fit in the plot. The gray area is 
the region contained between the lines f (x) (x)+s  and f (x) (x)-s .

Chapter 7  hyperparameter tuning



303

As you can see, a xUCB ( )  tends to have a maximum around the maximum of the 

surrogate function. Keep in mind that if η is big, the maximum of the acquisition function 

will shift toward regions with high variance. But this acquisition function tends to find 

“a” maximum slightly faster. I said “a,” because it depends on where the maximum of the 

surrogate function is, and not where the maximum of the black-box function is.

Let’s see now what happens while using aUCB(x) with η = 1.0. For the first additional 

point, we must simply run the following three lines of code:

newpoint = get_new_point(ybayes1, sigmabayes1, eta)

randompoints2 = np.append(randompoints1, newpoint)

ybayes2, sigmabayes2 = get_surrogate(randompoints2)

Figure 7-17. Overview of the black-box function f(x) (solid line), the randomly 
selected points (marked by crosses), the surrogate function (dashed line), and the 
acquisition function a (x)UCB  (dotted line), shifted to fit in the plot. The gray area is 
the region contained between the lines f (x) (x)+s  and f (x) (x)-s .
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For the sake of simplicity, I named each array for each step differently, instead of 

creating a list. But, typically, you should make these iterations automatic. In Figure 7-18, 

you can see the result with the additional point, marked with a black circle.

Figure 7-18. Overview of the black-box function f(x) (solid line), the randomly 
selected points (marked with crosses), and with the new selected point around 
x ≈ 27 (marked by a circle), the surrogate function (dashed line), and the 
acquisition function aUCB(x) (dotted line), shifted to fit in the plot. The gray area is 
the region contained between the lines f (x) (x)+s  and f (x) (x)-s .
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The new point is around x ≈ 27. Let’s continue to add points. In Figure 7-19, you can 

see the results after adding five points.

Note the dashed line. Now our surrogate function approximates the black-box 

function quite well, especially around the real maximum. Using this surrogate function, 

we can find a very good approximation of our original function with just 11 evaluations 

in total! Keep in mind that we don’t have any additional information about f, except the 

11 evaluations.

Figure 7-19. Overview of the black-box function f(x) (solid line), the randomly 
selected points with the six selected new points (marked by crosses), the surrogate 
function (dashed line), and the acquisition function a (x)UCB  (dotted line), shifted 
to fit in the plot. The gray area is the region contained between the lines  
f (x) (x)+s  and f (x) (x)-s .
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Now let’s see what happens with the acquisition function a xUCB ( ) , and let’s check 

how fast we can find the maximum. In this case, we’ll use η = 3.0, to get a better balance 

between the maximum of the surrogate function and its variance. In Figure 7-20, you can 

see the result after just adding one single additional point, marked by a black circle. We 

have already a quite good approximation of the real maximum!

Figure 7-20. Overview of the black-box function f(x) (solid line), the randomly 
selected points with the additional selected points (marked by crosses), the 
surrogate function (dashed line), and the acquisition function a (x)UCB (dotted line), 
shifted to fit in the plot. The gray area is the region contained between the lines 
f (x) (x)+s  and f (x) (x)-s .
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Now let’s add an additional point. You can see in Figure 7-21 that the additional 

point is now still close to the maximum but shifted in the direction of the area with a 

high variance around 30.

Figure 7-21. Overview of the black-box function f(x) (solid line), the randomly 
selected points with the additional selected points (marked by crosses), the 
surrogate function (dashed line), and the acquisition function a (x)UCB  (dotted 
line), shifted to fit in the plot. The gray area is the region contained between the 
lines f (x) (x)+s  and f (x) (x)-s .
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If we choose to make η smaller, the point would be closer to the maximum, and if we 

choose to make it bigger, the point would be closer to the point with the highest variance, 

between 25 and roughly 32. Now let’s add an additional point and see what happens. In 

Figure 7-22, you can see how the method now chooses a point close to another region 

with high variance, between 10 and roughly 22, again, marked by a black circle.

Figure 7-22. Overview of the black-box function f(x) (solid line), the randomly 
selected points (marked by crosses), and the additional selected point (marked by a 
black circle), the surrogate function (dashed line), and the acquisition function 
a (x)UCB  (dotted line), shifted to fit in the plot. The gray area is the region contained 

between the lines f (x) (x)+s  and f (x) (x)-s .
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And, finally, the method refines the maximum area around 15, as you can see in 

Figure 7-23, adding a point around 14, marked by the black circle.

The previous discussion and comparison of the behavior of the two types of 

acquisition functions should have made clear how, depending on what strategy you want 

to apply to approximate your black-box function, you should choose the right acquisition 

function.

Note Different types of acquisition functions will give different strategies in 
approximating the black-box function. For example, aUCB(x) will add points in 
regions with the highest variance, while a xUCB ( )  will add points finding a balance, 
regulated by η, between the maximum of the surrogate function and areas with 
high variance.

Figure 7-23. Overview of the black-box function f(x) (solid line), the randomly 
selected points with the additional selected points (marked by crosses), the 
surrogate function (dashed line), and the acquisition function a (x)UCB  (dotted 
line), shifted to fit in the plot. The gray area is the region contained between the 
lines f (x) (x)+s  and f (x) (x)-s .
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An analysis of all the different types of acquisition functions would exceed the scope 

of this book. A good deal of research and reading of published papers is required to gain 

sufficient experience and understand how different acquisition functions work and behave.

If you want to use Bayesian optimization with your TensorFlow model, you don’t have 

to develop the method completely from scratch. You can try the library GPflowOpt that 

is described in a paper by Nicolas Knudde et al., “GPflowOpt: A Bayesian Optimization 

Library using TensorFlow,” available at https://goo.gl/um4LSy or arXiv.org.

 Sampling on a Logarithmic Scale
There is a last small subtlety that I would like to discuss. Sometimes, you will find yourself 

in a situation in which you want to try a big range of possible values for a parameter, 

but you know from experience that the best value of it is probably in a specific range. 

Suppose you want to find the best value for the learning rate for your model, and you 

decide to test values from 10−4 to 1, but you know, or at least suspect, that your best value 

probably lies between 10−3 and 10−4. Now let’s suppose you are working with grid search, 

and you sample 1000 points. You may think you have enough points, but you will get

• 0 points between 10−4 and 10−3

• 8 points between 10−3 and 10−2

• 89 points between 10−1 and 10−2

• 899 points between 1 and 10−1

You get a lot more points in the less interesting ranges, and zero where you want 

them. In Figure 7-24, you can see the distribution of the points. Note that on the x axis, 

I am using a logarithmic scale. You can clearly see how you get much more points for 

bigger values of the learning rate.
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You probably want to sample in a much finer way for smaller values of the learning 

rate than for bigger ones. What you should do is sample your points on a logarithmic 

scale. Let me explain. The basic idea is that you want to sample the same number of 

points between 10−4 and 10−3, 10−3 and 10−2, 10−1 and 10−2, and 10−1 and 1. To do this, you 

can use the following Python code. First, select a random number between 0 and subtract 

the absolute value of the highest number of the power of 10 you have, in this case -4.

r = - np.arange(0,1,0.001)*4.0

Then your array with the selected points can be created with

points2 = 10**r

In Figure 7-25, you can see now how the distributions of the points contained in the 

array points2 is completely flat, as we wanted.

Figure 7-24. Distribution of 1000 points selected with grid search on a logarithmic 
x scale
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You get 250 points in each region, as you can easily check with this code for the range 

10−3 and 10−4 (for the other ranges simply change the numbers in the code):

print(np.sum((alpha <= 1e-3) & (alpha > 1e-4)))

Now you can see how you have the same number of points between the different 

powers of 10. With this simple trick, you can ensure that you also get enough points 

in the region of your chosen range, where, otherwise, you would get almost no points. 

Remember that in this example, with 1000 points, with the standard method, we get zero 

points between 10−3 and 10−4. This range is the most interesting for the learning rate, so 

you want to have enough points in this range to optimize your model. Note that the same 

applies to random search. It works in the exact same way.

 Hyperparameter Tuning with the Zalando Dataset
To give you a concrete example of how hyperparameter tuning works, let’s apply what we 

have learned in a simple case. Let’s start with the data, as usual. We’ll use the Zalando 

dataset from Chapter 3. For a complete discussion, please refer to that chapter. Let’s 

quickly load and prepare the data and then discuss tuning.

Figure 7-25. Distribution of 1000 points selected with grid search on a logarithmic 
x scale, with the modified selection method
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First, as usual, load the necessary libraries.

import pandas as pd

import numpy as np

import tensorflow as tf

%matplotlib inline

import matplotlib

import matplotlib.pyplot as plt

from random import *

You will require the necessary CSV files in the folder in which your Jupyter notebook 

is. To get them, refer again to Chapter 3. Once you have the files in the same folder as 

your notebook, you can simply load the data with

data_train = pd.read_csv('fashion-mnist_train.csv', header = 0)

data_dev = pd.read_csv('fashion-mnist_test.csv', header = 0)

Remember: We have 60,000 observations in the train dataset and 10,000 in the dev 

dataset. For example, printing the shape of the data_train array with

print(data_train.shape)

will give you (60000, 785). Remember that one of the columns in the data_train array 

contains the labels, and 784 are the gray values of the image pixels (that have a size of 

28 × 28 pixels). We must separate the labels from the features (the gray values of the 

pixels), then we need to reshape the arrays.

labels = data_train['label'].values.reshape(1, 60000)

labels_ = np.zeros((60000, 10))

labels_[np.arange(60000), labels] = 1

labels_ = labels_.transpose()

train = data_train.drop('label', axis=1).transpose()

Checking the dimensions with

print(labels_.shape)

print(train.shape)
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will give us

(10, 60000)

(784, 60000)

as desired. (For a detailed discussion on data preparation for this dataset, refer to 

Chapter 3.) We must, of course, do the same for the dev dataset.

labels_dev = data_test['label'].values.reshape(1, 10000)

labels_dev_ = np.zeros((10000, 10))

labels_dev_[np.arange(10000), labels_test] = 1

labels_dev_ = labels_test_.transpose()

dev = data_dev.drop('label', axis=1).transpose()

Now let’s normalize the features and transform everything in a numpy array.

train = np.array(train / 255.0)

dev = np.array(dev / 255.0)

labels_ = np.array(labels_)

labels_dev_ = np.array(labels_dev_)

We have prepared the data as required. Now let’s move on to the model. Let’s start 

with something easy. As the metric, we’ll use accuracy for this example, because the 

dataset is balanced. Let’s consider a network with just one layer and see what number 

of neurons gives us the best accuracy. Our hyperparameter in this example will be the 

number of neurons in the hidden layer. Basically, we will have to build a new network for 

each value of the hyperparameter (the number of neurons in the hidden layer) and train 

it. We will require two functions: one to build the network and one to train it. To build 

the model, we can define the following function:

def build_model(number_neurons):

    n_dim = 784

    tf.reset_default_graph()

    # Number of neurons in the layers

    n1 = number_neurons # Number of neurons in the hidden layer

    n2 = 10 # Number of neurons in output layer

    cost_history = np.empty(shape=[1], dtype = float)
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    learning_rate = tf.placeholder(tf.float32, shape=())

    X = tf.placeholder(tf.float32, [n_dim, None])

    Y = tf.placeholder(tf.float32, [10, None])

    W1 = tf.Variable(tf.truncated_normal([n1, n_dim], stddev=.1))

    b1 = tf.Variable(tf.constant(0.1, shape = [n1,1]) )

    W2 = tf.Variable(tf.truncated_normal([n2, n1], stddev=.1))

    b2 = tf.Variable(tf.constant(0.1, shape = [n2,1]))

    # Let's build our network...

     Z1 = tf.nn.relu(tf.matmul(W1, X) + b1) # n1 x n_dim * n_dim x n_obs = 

n1 x n_obs

    Z2 = tf.matmul(W2, Z1) + b2 # n2 x n1 * n1 * n_obs = n2 x n_obs

    y_ = tf.nn.softmax(Z2,0) # n2 x n_obs (10 x None)

    cost = - tf.reduce_mean(Y * tf.log(y_)+(1-Y) * tf.log(1-y_))

     optimizer = tf.train.GradientDescentOptimizer(learning_rate).

minimize(cost)

    init = tf.global_variables_initializer()

    return optimizer, cost, y_, X, Y, learning_rate

You should understand this function, since we have used the code several times 

in the book already. This function has an input parameter: number_neurons, that will 

contain, as the name indicates, the number of neurons in the hidden layer. But there is 

a small difference: the functions return the tensors we must refer to during the training, 

for example, when we want to evaluate the cost tensor during training. If we don’t return 

them to the caller, they will be visible only inside this function, and we will not be able to 

train this model. The function to train the model will look like this:

def model(minibatch_size, training_epochs, features, classes, logging_step 

= 100, learning_r = 0.001, number_neurons = 15):

    opt, c, y_, X, Y, learning_rate = build_model(number_neurons)

    sess = tf.Session()

    sess.run(tf.global_variables_initializer())

    cost_history = []
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    for epoch in range(training_epochs+1):

        for i in range(0, features.shape[1], minibatch_size):

            X_train_mini = features[:,i:i + minibatch_size]

            y_train_mini = classes[:,i:i + minibatch_size]

             sess.run(opt, feed_dict = {X: X_train_mini, Y: y_train_mini, 

learning_rate: learning_r})

         cost_ = sess.run(c, feed_dict={ X:features, Y: classes, learning_

rate: learning_r})

        cost_history = np.append(cost_history, cost_)

        if (epoch % logging_step == 0):

                print("Reached epoch",epoch,"cost J =", cost_)

                

    correct_predictions = tf.equal(tf.argmax(y_,0), tf.argmax(Y,0))

    accuracy = tf.reduce_mean(tf.cast(correct_predictions, "float"))

     accuracy_train = accuracy.eval({X: train, Y: labels_, learning_rate: 

learning_r}, session = sess)

     accuracy_dev = accuracy.eval({X: dev, Y: labels_dev_, learning_rate: 

learning_r}, session = sess)

    return accuracy_train, accuracy_dev, sess, cost_history

You have already seen a function very similar to this one several times. The main 

parts should be clear. You will find a few things that are new. First, we build the model in 

the function itself with

opt, c, y_, X, Y, learning_rate = build_model(number_neurons)

and, additionally, we evaluate the accuracy on the train dataset and on the dev dataset 

and return the values to the caller. In this way, we can run a loop for several values of the 

number of neurons in the hidden layer and get the accuracies. Note, this time, that the 

function has an additional input parameter: number_neurons. We must pass this number 

to the function that builds the model.

Let’s suppose we choose the following parameters: minibatch size = 50, we train 

for 100 epochs, the learning rate =0.00 , and we build our model with 15 neurons in the 

hidden layer.
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We then run the model.

acc_train, acc_test, sess, cost_history = model(minibatch_size = 50,

                              training_epochs = 100,

                              features = train,

                              classes = labels_,

                              logging_step = 10,

                              learning_r = 0.001,

                              number_neurons = 15)

print(acc_train)

print(acc_test)

For the train dataset, we get 0.75755 accuracy and for the dev dataset 0.754 accuracy. 

Can we do better? Well, we can surely do a grid search to start with.

nn = [1,5,10,15,25,30, 50, 150, 300, 1000, 3000]

for nn_ in nn:

    acc_train, acc_test, sess, cost_history = model(minibatch_size = 50,

                              training_epochs = 50,

                              features = train,

                              classes = labels_,

                              logging_step = 50,

                              learning_r = 0.001,

                              number_neurons = nn_)

     print('Number of neurons:',nn_,'Acc. Train:', acc_train, 'Acc. Test', 

acc_test)

Keep in mind that this will take quite some time. Three thousand neurons is quite a 

high number, so be warned, in case you want to attempt this. We get the results, as found 

in Table 7-1.
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Not surprisingly, more neurons deliver better accuracy, with no signs of overfitting of 

the train dataset, because the accuracy on the dev dataset is almost equal to that of the 

train dataset. In Figure 7-26, you can see a plot of the accuracy on the test dataset vs. the 

number of neurons in the hidden layer. Note that the x axis uses a logarithmic scale, to 

make the changes more evident.

Table 7-1. Overview of the Accuaracy on the Train and Test Datasets for a 

Different Number of Neurons

Number of Neurons Accuracy on the Train Dataset Accuracy on the Test Dataset

1 0.201383 0.2042

5 0.639417 0.6377

10 0.639183 0.6348

15 0.687183 0.6815

25 0.690917 0.6917

30 0.6965 0.6887

50 0.73665 0.7369

150 0.78545 0.7848

300 0.806267 0.8067

1000 0.828117 0.8316

3000 0.8468 0.8416
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If your goal was to reach 80% accuracy, you could well stop here. But there are a few 

things to consider. First, we may be able to do better, and, second, training the network 

with 3000 neurons takes quite some time—on my laptop, roughly 35 minutes. We should 

see if we can get the same result in a fraction of the time. We want a model that trains as 

fast as we can. Let’s try a slightly different approach. Because we want to be faster, let’s 

consider a model with four layers. Actually, we could also tune the number of layers, 

but let’s stick to four for this example and tune the other parameters. We will try to find 

the optimal value for learning rate, mini-batch size, number of neurons in each layer, 

and number of epochs. We will use random search. For each parameter, we will select 

randomly 10 values.

• Number of neurons: Between 35 and 60

• Learning rate: We will use the search on the logarithmic scale 

between 10−1 and 10−3.

• Mini-batch size: Between 20 and 80

• Number of epochs: Between 40 and 100

Figure 7-26. Accuracy on the test dataset vs. the number of neurons in the hidden 
layer
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We can create arrays with the possible values with this code:

neurons_ = np.random.randint(low=35, high=60.0, size=(10))

r = -np.random.random([10])*3.0-1

learning_ = 10**r

mb_size_ = np.random.randint(low=20, high=80, size = 10)

epochs_ = np.random.randint(low = 40, high = 100, size = (10))

Note that we will not try all possible combinations, but we will consider only ten 

possible combinations: the first value of each array, the second value of each array, and 

so on. I want to show you how efficient random search can be with just ten evaluations! 

We can test our model with the following loop:

for i in range(len(neurons_)):

    acc_train, acc_test, sess, cost_history = model_layers(minibatch_size = 

mb_size_[i],

                              training_epochs = epochs_[i],

                              features = train,

                              classes = labels_,

                              logging_step = 50,

                              learning_r = learning_[i],

                              number_neurons = neurons_[i], debug = False)

    print('Epochs:', epochs_[i], 'Number of neurons:',neurons_[i],'learning 

rate:', learning_[i], 'mb size',mb_size_[i],

          'Acc. Train:', acc_train, 'Acc. Test', acc_test)

If you run this code, you will get a few combinations that end up in nan, and, 

therefore, it gets you an accuracy of 0.1 (basically random, because we have ten classes) 

and a few good combinations. You will find that the combinations with 41 epochs, 41 

neurons in each layer, a learning rate of 0.0286, and a mini-batch size of 61 gives you an 

accuracy on the dev dataset of 0.86. Not bad, considering that this run took 2.5 minutes, 

so 14 times faster than the model with 1 layer and 3000 neurons and 6% better. Our 

naive initial test gave us an accuracy of 0.75, so with hyperparameter tuning, we got 

11% better than our initial guess. Eleven percent increased accuracy in deep learning 

is an incredible result. Even 1% or 2% better is considered a great result, normally. 

What we did should give you an idea of how powerful hyperparameter tuning can be, if 

done properly. Keep in mind that you should spend quite some time doing it, thinking 

especially about how to do it.
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Note always think about how you want to do your hyperparameter tuning, and 
use your experience, or ask for help from someone with experience. it is useless 
to invest time and resources to try combinations of parameters that you know will 
not work. For example, it is better to spend time testing learning rates that are very 
small than to test learning rates around one. remember that every training round 
of your network will cost time, even if the results are not useful!

The point of this last section is not to get the best model possible but to give you an 

idea of how the tuning process may work. You could continue, trying different optimizers 

(for example Adam), considering wider ranges for the parameters, more parameter 

combinations, and so on.

 A Quick Note on the Radial Basis Function
Before completing this chapter, I would like to discuss a minor point about the radial 

basis function
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It is important that you understand what the role of the parameter l is. In the 

examples, I have chosen l = 2, but I have not discussed why. The reason is the following. 

Choosing l too small will make the acquisition function develop very narrow peaks 

around the points we already have, as you can see in the left plot in Figure 7-27. Big 

values for l will have a smoothing effect on the acquisition function, as you can see in the 

center and right plots in Figure 7-27.
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Usually, it is good practice to avoid values for l that are too small or too big, to be able 

to have a variance that varies in a smooth way between known points, as in Figure 7-27, 

for l = 1. Having a very small l will make the variance between points almost constant 

and, therefore, make the algorithm almost always choose the middle point between 

points, as you can see from the acquisition function. Choosing a big l will make the 

variance small and, therefore, with some acquisition functions, difficult to use. As you 

can see for l = 5 in Figure 7-27, the acquisition function is almost constant. Typical values 

that are used are around 1 or 2.

Figure 7-27. Effect of changing the parameter l in the radial basis function
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CHAPTER 8

Convolutional and 
Recurrent Neural 
Networks
In the previous chapters, you have looked at fully connected networks and all the 

problems encountered while training them. The network architecture we have used, one 

in which each neuron in a layer is connected to all neurons in the previous and following 

layer, is not really good at many fundamental tasks, such as image recognition, speech 

recognition, time series prediction, and many more. Convolutional neural networks 

(CNNs) and recurrent neural networks (RNNs) are the advanced architectures most 

often used today. In this chapter, you will look at convolution and pooling, the basic 

building blocks of CNNs. Then you will check how RNNs work on a high level, and you 

will look at a select number of examples of applications. I will also discuss a complete, 

although basic, implementation of CNNs and RNNs in TensorFlow. The topic of CNNs 

and RNNs is much too vast to cover in a single chapter. Therefore, I will cover here only 

the fundamental concepts, to show you how those architectures work, but a complete 

treatment would require a separate book.

 Kernels and Filters
One of the main components of CNNs are filters—square matrices that have dimensions 

nK × nK, where, usually, nK is a small number, such as 3 or 5. Sometimes, filters are also 

called kernels. Let’s define four different filters and check their effect later in the chapter, 
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when they are used in convolution operations. For these examples, we will work with 

3 × 3 filters. For the moment, consider the following definitions just for reference; you 

will see how to use them later in the chapter.

• The following kernel will allow the detection of horizontal edges:
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• The following kernel will allow the detection of vertical edges:
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• The following kernel will allow the detection of edges when 

luminosity changes drastically:
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• The following kernel will blur edges in an image:
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In the next sections, we will apply convolution to a test image with the filters, and 

you will see what its effect is.

Chapter 8  Convolutional and reCurrent neural networks



325

 Convolution
The first step toward understanding CNNs is to understand convolution. The easiest 

way to see it in action is in a few simple cases. First, in the context of neural networks, 

convolution is done between tensors. The operation gets two tensors as input and 

produces a tensor as output. The operation is usually indicated with the operator ∗.  

Let’s see how it works. Let’s get two tensors, both with dimensions 3 × 3. The convolution 

operation is performed by applying the following formula:
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In this case, the result is simply the sum of each element ai, multiplied by the 

respective element ki. In a more typical matrix formalism, this formula could be written 

with a double sum as
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But the first version has the advantage of making the fundamental idea very clear: each 

element from one tensor is multiplied by the corresponding element (the element in the 

same position) of the second tensor, and then all the values are summed to get the result.

In the previous section, I mentioned kernels, and the reason is that convolution 

is usually done between a tensor, which we may indicate here with A, and a kernel. 

Typically, kernels are small, 3 × 3 or 5 × 5, while the input tensors A are normally bigger. 

In image recognition, for example, the input tensors A are the images that may have 

dimensions as high as 1024 × 1024 × 3, where 1024 × 1024 is the resolution, and the last 

dimension (3) is the number of the color channels, the RGB (red, green, blue) values. In 
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advanced applications, the images may have even higher resolution. How do we apply 

convolution when we have matrices with different dimensions? To understand how, let’s 

consider a matrix A that is 4 × 4.
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And let’s see how to do convolution with a kernel K, which, for this example, we will 

take to be 3 × 3.
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The idea is to start at the top-left corner of matrix A and select a 3 × 3 region. In our 

example, that would be
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or the elements marked in boldface following.
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Then we perform the convolution, as explained at the beginning, between this 

smaller matrix A1 and K, getting (we will indicate the result with B1)

 B A K a k a k a k k a k a k a k a k a k a1 1 1 1 2 2 3 3 4 5 5 5 6 7 7 9 8 10 9 11= * = + + + + + + + +  
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Then we must shift the selected 3 × 3 region in matrix A by one column to the right 

and select the elements marked in boldface following.
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That will give us the second sub-matrix A2
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and we perform again the convolution between this smaller matrix A2 and K

 B A K a k a k a k a k a k a k a k a k a k2 2 2 1 3 2 4 3 6 4 7 5 8 6 10 7 11 8 12 9= * = + + + + + + + +  

Now we cannot shift our 3 × 3 region any more to the right, because we have reached 

the end of matrix A, so what we do is shift it one row down and start again from the left 

side. The next selected region would be
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Again, we perform the convolution of A3 with K

 B A K a k a k a k a k a k a k a k a k a k3 3 5 1 6 2 7 3 9 4 10 5 11 6 13 7 14 8 15 9= * = + + + + + + + +  

As you may have guessed by this point, the last step is to shift our 3 × 3 selected 

region to the right by one column and perform the convolution again. Our selected 

region will now be
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and the convolution will give the result

 B A K a k a k a k a k a k a k a k a k a k4 4 6 1 7 2 8 3 10 4 11 5 12 6 14 7 15 8 16 9= * = + + + + + + + +  

Now we cannot shift our 3 × 3 region any more, neither right nor down. We have 

calculated 4 values: B1, B2, B3, and B4. Those elements will form the resulting tensor of the 

convolution operation, giving us the tensor B.
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The same process can be applied when the tensor A is bigger. You will simply get 

a bigger resulting B tensor, but the algorithm to get the elements Bi is the same. Before 

moving on, there is still a small detail that I must discuss, and that is the concept of 

stride. In the preceding process, we always have moved our 3 × 3 region one column 

to the right and one row down. The number of rows and columns, in this example 1, is 

called stride and is often indicated with s. Stride s = 2 means simply that we would shift 

our 3 × 3 region two columns to the right and two rows down. Something else that I must 

discuss is the size of the selected region in the input matrix A. The dimensions of the 

selected region that we shifted around in the process must be the same as that of the 

kernel used. If you use a 5 × 5 kernel, then you must select a 5 × 5 region in A. In general, 

given a nK × nK kernel, you will select a nK × nK region in A.

A more formal definition is that convolution with stride s, in the neural network 

context, is a process that takes a tensor A of dimensions nA × nA and a kernel K of 

dimensions nK × nK and gives as output a matrix B of dimensions nB × nB with
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where we have indicated with ⌊x⌋ the integer part of x (in the programming world, this is 

often called the floor of x). A proof of this formula would take too long to discuss, but it 

is easy to see why it is true (try to derive it). To make things a bit easier, we will suppose 

that nK is odd. You will see soon why this is important (although not fundamental).  
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Let me begin explaining formally the case with a stride s = 1. The algorithm generates a 

new tensor B from an input tensor A and a kernel K, according to the formula
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The formula is cryptic and very difficult to understand. Let’s see some more 

examples, to grasp the meaning better. In Figure 8-1, you can see a visual explanation 

of how convolution works. Suppose you have a 3 × 3 filter. Then, in the figure, you can 

see that the top left nine elements of the matrix A, marked by a square drawn with a 

black continuous line, are the ones used to generate the first element of the matrix B1, 

according to the preceding formula. The elements marked by the square drawn with a 

dotted line are the ones used to generate the second element B2, and so on. To reiterate 

what I discussed in the example at the beginning, the basic idea is that each element of 

the 3 × 3 square from matrix A is multiplied by the corresponding element of the kernel 

K, and all the numbers are summed. The sum is then the element of the new matrix B. 

After having calculated the value for B1, you shift the region you are considering in the 

original matrix by one column to the right (the square indicated in Figure 8-1 with a 

dotted line) and repeat the operation. You continue to shift your region to the right, until 

you reach the border, and then you move one element down and start again from the left 

and continue in this fashion until reaching the lower right angle of the matrix. The same 

kernel is used for all the regions in the original matrix.

Figure 8-1. Visual explanation of convolution
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Given the kernel IH , for example, you can see in Figure 8-2 which element of A gets 

multiplied by which element in IH  and the result for the element B1, that is nothing else 

as the sum of all the multiplications

 B11 1 1 2 1 3 1 1 0 2 0 3 0 4 1 3 1 2 1 3= ´ + ´ + ´ + ´ + ´ + ´ + ´ -( ) + ´ -( ) + ´ -( ) = -  

Figure 8-2. Visualization of convolution with the kernel IH

Figure 8-3. Visual explanation of convolution with stride s = 2

In Figure 8-3, you can see an illustrative example of convolution with stride s = 2.
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The reason why the dimension of the output matrix takes only the floor (the integer 

part) of 
n n

s
A K-

+1  can be seen intuitively in Figure 8-4. If s > 1, what can happen, 

depending on the dimensions of A, is that at a certain point, you cannot shift your 

window on matrix A (the black square in Figure 8-3, for example) anymore, and you 

cannot cover all of matrix A completely. In Figure 8-4, you can see how you would 

need an additional column on the right of matrix A (marked by many Xs), to be able to 

perform the convolution operation. In Figure 8-4, s = 3, and since we have nA = 5 and 

nK = 3, B will a scalar as a result.
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Figure 8-4. Visual explanation of why the floor function is required when 
evaluating the resulting matrix B dimensions

You can easily see from Figure 8-4 how with a 3 × 3 region you can only cover the 

top-left region of A, because with stride s = 3, you would end up outside A and, therefore, 

could consider only one region for the convolution operation, thereby ending up with a 

scalar for the resulting tensor B.
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Let’s now consider a few additional examples, to make this formula even clearer. 

Let’s start with a small matrix 3 × 3.
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And let’s consider the kernel
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and the stride s = 1. The convolution will be given by

 B A K k k k k k k k k k= * = × + × + × + × + × + × + × + × + ×1 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 9  

and the result B will be a scalar, because nA = 3, nK = 3, therefore
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If you consider now a matrix A with dimensions 4 × 4, or nA = 4, nK = 3 and s = 1, you 

will get as output a matrix B with dimensions 2 × 2, because
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For example, you can verify that given
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and
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we have with stride s = 1
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Let’s verify one of the elements, B11, with the formula I gave you. We have
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Note that the formula I gave you for the convolution works only for stride s = 1 but 

can be easily generalized for other values of s.

This calculation is very easy to implement in Python. The following function can 

evaluate the convolution of two matrices easily enough for s = 1. (You can do it in Python 

with already existing functions, but I think it is instructive to see how to do it from 

scratch.)

import numpy as np

def conv_2d(A, kernel):

     output = np.zeros([A.shape[0]-(kernel.shape[0]-1), A.shape[1]-(kernel.

shape[0]-1)])

    for row in range(1,A.shape[0]-1):

        for column in range(1, A.shape[1]-1):

             output[row-1, column-1] = np.tensordot(A[row-1:row+2,  

column- 1:column+2], kernel)

    return output
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Note that the input matrix A does not even need to be a square one, but it is assumed 

that the kernel is, and that its dimension nK is odd. The previous example can be 

evaluated with the following code:

A = np.array([[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]])

K = np.array([[1,2,3],[4,5,6],[7,8,9]])

print(conv_2d(A,K))

This gives the result

[[ 348. 393.]

[ 528. 573.]]

 Examples of Convolution
Now let’s try to apply the kernels we have defined at the beginning to a test image and 

see the results. As a test image, let’s create a chessboard having the dimensions 160 × 160 

pixels, with the code

chessboard = np.zeros([8*20, 8*20])

for row in range(0, 8):

    for column in range (0, 8):

        if ((column+8*row) % 2 == 1) and (row % 2 == 0):

            chessboard[row*20:row*20+20, column*20:column*20+20] = 1

        elif ((column+8*row) % 2 == 0) and (row % 2 == 1):

            chessboard[row*20:row*20+20, column*20:column*20+20] = 1

In Figure 8-5, you can see how the chessboard looks.
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Now let’s try to apply convolution to this image with the different kernels with stride 

s = 1.

Using the kernel IH  will detect the horizontal edges. This can be applied with the 

code

edgeh = np.matrix('1 1 1; 0 0 0; -1 -1 -1')

outputh = conv_2d (chessboard, edgeh)

In Figure 8-6, you can see what the output looks like.

Figure 8-5. Chessboard image generated with code
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Now you can understand why I said that this kernel detects horizontal edges. 

Additionally, this kernel detects if you go from light to dark or vice versa. Note that this 

image is only 158 × 158 pixels, as expected, because
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Now let’s apply IV  with the code

edgev = np.matrix('1 0 -1; 1 0 -1; 1 0 -1')

outputv = conv_2d (chessboard, edgev)

This gives the result shown in Figure 8-7.

Figure 8-6. Result of performing a convolution between the kernel IH  and the 
chessboard image
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Now we can use the kernel IL

edgel = np.matrix ('-1 -1 -1; -1 8 -1; -1 -1 -1')

outputl = conv_2d (chessboard, edgel)

This gives the result shown in Figure 8-8.

Figure 8-7. Result of performing a convolution between the kernel IV  and the 
chessboard image
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And, finally, we can apply the blurring kernel IB .

edge_blur = -1.0/9.0*np.matrix('1 1 1; 1 1 1; 1 1 1')

output_blur = conv_2d (chessboard, edge_blur)

In Figure 8-9, you can see two plots: on the left, the blurred image, and on the right, 

the original one. The images show only a small region of the original chessboard, to 

make the blurring clearer.

Figure 8-8. Result of performing a convolution between the kernel IL  and the 
chessboard image
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To finish this section let’s try to understand better how the edges can be detected. 

Let’s consider the following matrix with a sharp vertical transition, because the left part 

is full of tens and the right part full of zeros.

ex_mat = np.matrix('10 10 10 10 0 0 0 0; 10 10 10 10 0 0 0 0; 10 10 10 10 0 

0 0 0; 10 10 10 10 0 0 0 0; 10 10 10 10 0 0 0 0; 10 10 10 10 0 0 0 0; 10 10 

10 10 0 0 0 0; 10 10 10 10 0 0 0 0')

The result looks like this.

matrix([[10, 10, 10, 10, 0, 0, 0, 0],

        [10, 10, 10, 10, 0, 0, 0, 0],

        [10, 10, 10, 10, 0, 0, 0, 0],

        [10, 10, 10, 10, 0, 0, 0, 0],

        [10, 10, 10, 10, 0, 0, 0, 0],

        [10, 10, 10, 10, 0, 0, 0, 0],

        [10, 10, 10, 10, 0, 0, 0, 0],

        [10, 10, 10, 10, 0, 0, 0, 0]])

Figure 8-9. Effect of the blurring kernel IB . On the left is the blurred image, and 
on the right, the original one.
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Now let’s consider the kernel IV . We can perform the convolution with the code

ex_out = conv_2d (ex_mat, edgev)

The result is

array([[ 0., 0., 30., 30., 0., 0.],

       [ 0., 0., 30., 30., 0., 0.],

       [ 0., 0., 30., 30., 0., 0.],

       [ 0., 0., 30., 30., 0., 0.],

       [ 0., 0., 30., 30., 0., 0.],

       [ 0., 0., 30., 30., 0., 0.]])

In Figure 8-10, you can see the original matrix (on the left) and the output of the 

convolution (on the right). The convolution with the kernel IV  has clearly detected 

the sharp transition in the original matrix, marking with a vertical black line where the 

transition from black to white occurs. For example, consider B11 = 0.
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Note that in the input matrix
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there is no transition, as all the values are the same. On the contrary, if you consider B13, 

you must consider this region of the input matrix
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where there is a clear transition, because the rightmost column is made up of zeros, and 

the rest of tens. You get now a different result.
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And this is exactly how, as soon as there is a big change in values along the horizontal 

direction, the convolution will return a high value, because the values multiplied by the 

column with 1 in the kernel will be bigger. When, conversely, there is a transition from 

small to high values along the horizontal axis, the elements multiplied by -1 will give a 

result that is bigger in absolute value, and, therefore, the final result will be negative and 

big in absolute value. This is the reason why this kernel can also detect if you pass from 

a light color to a darker color or vice versa. In fact, if you consider the opposite transition 

(from 0 to 10) in a hypothetical different matrix A, you would have
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because, this time, we move from 0 to 10 along the horizontal direction.

Figure 8-10. Result of the convolution of the matrix ex_mat with the kernel IV , as 
described in the text
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Note how, as expected, the output matrix has dimensions 5 × 5, because the original 

matrix has dimensions 7 × 7, and the kernel is 3 × 3.

 Pooling
Pooling is the second operation that is fundamental to CNNs. This operation is much 

easier to understand than convolution. To understand it, let’s again consider a concrete 

example and what is called max pooling. Let’s again use the 4 × 4 matrix from our 

discussion of convolution.
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To perform max pooling, we must define a region of size nK × nK, analogous to what 

we did for convolution. Let’s consider nK = 2. What we must do is start at the top-left 

corner of our matrix A and select a nK × nK region, in our case, 2 × 2, from A. Here, we 

select
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or the elements marked in boldface in matrix A, as follows:
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From the elements selected, a1, a2, a5, and a6, the max pooling operation selects the 

maximum value, giving a result that we will indicate with B1.
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Now we must shift our 2 × 2 window two columns, typically the same number of 

columns the selected region has, to the right and select the elements marked in boldface
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or, in other words, the smaller matrix.
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The max-pooling algorithm will then select the maximum of the values, giving a 

result that we will indicate with B2.
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At this point, we cannot shift the 2 × 2 region to the right anymore, so we shift it two 

rows down and start the process again, from the left side of A, selecting the elements 

marked in boldface and getting the maximum and calling it B3, as follows:
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The stride s in this context has the same meaning already covered in the discussion 

on convolution. It is simply the number of rows or columns you move your region when 

selecting the elements. Finally, we select the last region, 2 × 2, in the bottom lower part of 

A, selecting the elements a11, a12, a15, and a16. We then get the maximum, and we then call 

it B4. With the values we obtain in this process, in our example, the four values B1, B2, B3 

and B4, we will build an output tensor.
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In the example, we have s = 2. Basically, this operation takes as input a matrix A, a 

stride s, and a kernel size nK (the dimension of the region we selected in the previous 

example) and return a new matrix B, with dimensions given by the same formula we 

applied in the discussion of convolution.

 
n

n n

sB
A K=
-

+1  

To reiterate, the idea is to start from the top left of your matrix A, take a region of 

dimensions nK × nK, apply the max function to the selected elements, then shift the 

region of s elements toward the right, select a new region—again of dimensions nK × nK—

apply the function to its values, and so on. In Figure 8-11, you can see how you would 

select the elements from a matrix A with a stride s = 2

Figure 8-11. Visualization of pooling with stride s = 2

For example, applying max pooling to the input A
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will get you the result (it is very easy to verify)
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because 4 is the maximum of the values marked in boldface

 

A =

æ

è

ç
ç
ç
ç

ö

ø

÷
÷
÷
÷

1 3

4 5

5 7

11 3

4 1 21 6

13 15 1 2  

11 is the maximum of the values marked in boldface, as follows:
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and so on. It is worth mentioning another way of doing pooling, although not as widely 

used as max pooling: average pooling. Instead of returning the maximum of the selected 

values, it returns the average.

Note the most used pooling operation is max pooling. Average pooling is not as 
widely used but can be found in specific network architectures.

 Padding
Worth mentioning is the concept of padding. Sometimes, when dealing with images, it 

is not optimal to get a result from a convolution operation that has dimensions that are 

different from those of the original image. So, sometimes, you do what is called padding. 

Basically, the idea is very simple: it consists of adding rows of pixels at the top, bottom, 

and columns of pixels on the right and on the left of the final images, filled with some 
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values to make the resulting matrices the same size as the original one. Some strategies 

are to fill the added pixels with zeros, with the values of the closest pixels, and so on. In 

our example, our ex_out matrix with zero padding would look like this:

array([[ 0., 0., 0., 0., 0., 0., 0., 0.],

       [ 0., 0., 0., 30., 30., 0., 0., 0.],

       [ 0., 0., 0., 30., 30., 0., 0., 0.],

       [ 0., 0., 0., 30., 30., 0., 0., 0.],

       [ 0., 0., 0., 30., 30., 0., 0., 0.],

       [ 0., 0., 0., 30., 30., 0., 0., 0.],

       [ 0., 0., 0., 30., 30., 0., 0., 0.],

       [ 0., 0., 0., 0., 0., 0., 0., 0.]])

The use and reasons behind padding are beyond the scope of this book, but it is 

important to know that it exists. Only as a reference, in case you use padding p (the width 

of the rows and columns you use as padding), the final dimensions of the matrix B, in 

case of both convolution and pooling, is given by
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Note when dealing with real images, you always code color images in three 
channels: rGB. this means that you must execute convolution and pooling in three 
dimensions: width, height, and color channel. this will add a layer of complexity to 
the algorithms.

 Building Blocks of a CNN
Basically, convolutions and pooling operations are used to build the layers that are used 

in CNNs. Typically in CNNs, you can find the following layers:

• Convolutional layers

• Pooling layers

• Fully connected layers
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Fully connected layers are exactly what you have seen in all previous chapters: a 

layer in which neurons are connected to all neurons of previous and subsequent layers. 

You already familiar with the layers listed, but the first two require some additional 

explanation.

 Convolutional Layers
A convolutional layer takes as input a tensor (it can be three-dimensional, due to the 

three color channels), for example, an image of certain dimensions; applies a certain 

number of kernels, typically 10, 16, or even more; adds a bias; applies ReLU activation 

functions (for example), to introduce nonlinearity to the result of the convolution; and 

produces an output matrix B. If you remember the notation we used in the previous 

chapters, the result of the convolution will have the role of W[l]Z[l − 1] that was discussed in 

Chapter 3.

In the previous sections, I have shown you some examples of applying convolutions 

with just one kernel. How can you apply several kernels at the same time? Well, the 

answer is very simple. The final tensor (I now use the word tensor, because it will not 

be a simple matrix anymore) B will now have not 2 dimensions but 3. Let’s indicate the 

number of kernels you want to apply with nc (the c is used, because people sometimes 

refer to these as channels). You simply apply each filter to the input independently and 

stack the results. So, instead of a single matrix B with dimensions nB × nB, you get a final 

tensor �B  of dimensions nB × nB × nc. That means that

 
�B i j ni j B, , ,1 1" Î[ ],  

will be the output of convolution of the input image with the first kernel,

 
�B i j ni j B, , ,2 1" Î[ ],  

will be the output of convolution with the second kernel, and so on. The convolution 

layer is nothing other than something that transforms the input into an output tensor. 

But what are the weights in this layer? The weights, or the parameter, that the network 

learns during the training phase, are the elements of the kernel themselves. We have 

discussed that we have nc kernels, each of dimensions nK × nK. That means that we have 

the n nK c
2  parameter in a convolutional layer.
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Note the number of parameters that you have in a convolutional layer, n nK c
2 ,  

is independent of the input image size. this fact helps in reducing overfitting, 
especially when dealing with big size input images.

Sometimes, this layer is indicated with the word POOL and a number. In our case, 

we could indicate this layer with POOL1. In Figure 8-12, you can see a representation of 

a convolutional layer. The input image gets transformed by applying convolution with nc 

kernels in a tensor of dimensions nA × nA × nc.

A convolutional layer does not necessarily have to be placed immediately after the 

inputs. A convolutional layer may get as input the output of any other layer, of course. 

Keep in mind that usually your input image will have dimensions nA × nA × 3, because 

an image in color has three channels: RGB. A complete analysis of the tensors involved 

in a CNN when considering color images is beyond the scope of this book. Very often in 

diagrams, the layer is simply indicated as a cube or square.

Figure 8-12. Representation of a convolutional layer1

1Cat image source: www.shutterstock.com/.

Chapter 8  Convolutional and reCurrent neural networks

https://www.shutterstock.com/


349

 Pooling Layers
A pooling layer is usually indicated by POOL and a number: for example, POOL1. It takes 

as input a tensor and gives as output another tensor, after applying pooling to the input.

Note a pooling layer has no parameter to learn, but it introduces additional 
hyperparameters: nK and stride s. typically, in pooling layers, you don’t use 
any padding, because one of the reasons to use pooling is often to reduce the 
dimensionality of the tensors.

 Stacking Layers Together
In CNNs, you usually stack convolutional and pooling layers together, one after the other. 

In Figure 8-13, you can see a convolutional and a pooling layer stack. A convolutional 

layer is always followed by a pooling layer. Sometimes, the two together are called a layer. 

The reason is that a pooling layer has no learnable weights, and, therefore, it is seen as a 

simple operation that is associated with the convolutional layer. So, be aware when you 

read papers or blogs, and verify what they intend.

Figure 8-13. Representation of how to stack convolutional and pooling layers

To conclude this discussion of CNNs, in Figure 8-14, you can see an example of a 

CNN. It is similar to the very famous LeNet-5 network, on which you can read more here: 

https://goo.gl/hM1kAL. You have the inputs, then two convolution-pooling layers 

twice, three fully connected layers, and an output layer, in which you may have your 

softmax function, in case, for example, you perform multiclass classification. I put some 

arbitrary numbers in the figure, to give you an idea of the size of the different layers.
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 Example of a CNN
Let’s try to build one such network, to give you a feel for how the process would work 

and what the code looks like. We will not do any hyperparameter tuning or optimization, 

to keep the section understandable. We will build the following architecture with the 

following layers, in this order:

• Convolution layer 1, with six filters 5 × 5, stride s = 1

• Max pooling layer 1, with a window 2 × 2, stride s = 2

• We then apply ReLU to the output of the previous layer.

• Convolution layer 2, with 16 filters 5 × 5, stride s = 1

• Max pooling layer 2, with a window 2 × 2, stride s = 2

• We then apply ReLU to the output of the previous layer.

• Fully connected layer, with 128 neurons and activation function ReLU

• Fully connected layer, with 10 neurons for classification of the 

Zalando dataset

• Softmax output neuron

We will import the Zalando dataset, as we did in Chapter 3, as follows:

data_train = pd.read_csv('fashion-mnist_train.csv', header = 0)

data_test = pd.read_csv('fashion-mnist_test.csv', header = 0)

See Chapter 3 for a detailed explanation of how to get the files. Next, let’s prepare the 

data.

labels = data_train['label'].values.reshape(1, 60000)

labels_ = np.zeros((60000, 10))

labels_[np.arange(60000), labels] = 1

Figure 8-14. Representation of a CNN similar to the famous LeNet-5 network
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labels_ = labels_.transpose()

train = data_train.drop('label', axis=1)

and

labels_dev = data_test['label'].values.reshape(1, 10000)

labels_dev_ = np.zeros((10000, 10))

labels_dev_[np.arange(10000), labels_dev] = 1

test = data_dev.drop('label', axis=1)

Note that in this case, unlike in Chapter 3, we will use the transpose of all tensors, 

meaning that in each row, we will have an observation. In Chapter 3, each observation 

was in a column. If you check the dimensions with the code

print(labels_.shape)

print(labels_dev_.shape)

you will get the following results:

(60000, 10)

(10000, 10)

In Chapter 3, the dimensions were exchanged. The reason is that to develop the 

convolutional and pooling layers, we will use functions that are provided by TensorFlow, 

because developing them from scratch would require too much time. In addition, for 

some TensorFlow functions, it is easier if the tensors have different observations along 

the rows. As in Chapter 3, we must normalize the data.

train = np.array(train / 255.0)

dev = np.array(dev / 255.0)

labels_ = np.array(labels_)

labels_test_ = np.array(labels_test_)

We can now start to build our network.

x = tf.placeholder(tf.float32, shape=[None, 28*28])

x_image = tf.reshape(x, [-1, 28, 28, 1])

y_true = tf.placeholder(tf.float32, shape=[None, 10])

y_true_scalar = tf.argmax(y_true, axis=1)
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The one line that requires an explanation is the second: x_image = tf.reshape(x, 

[-1, 28, 28, 1]). Remember that the convolutional layer will require the two- 

dimensional image and not a flattened list of gray values of the pixel, as was the case in 

Chapter 3, where our input was a vector with 784 (28 × 28) elements.

Note one of the biggest advantages of Cnns is that they use the two- 
dimensional information contained in the input image. this is why the input of 
convolutional layers are two-dimensional images and not a flattened vector.

When building CNNs, it is typical to define functions to build the different layers. In 

this way, hyperparameter tuning later will be easier, as we have seen previously. Another 

reason is that when we put all the pieces together with the functions, the code will be 

much more readable. The function names should be self-explanatory. Let’s start with a 

function to build the convolutional layer. Note that TensorFlow documentation uses the 

term filter, so this is what we will use in the code.

def new_conv_layer(input, num_input_channels, filter_size, num_filters):

    shape = [filter_size, filter_size, num_input_channels, num_filters]

    weights = tf.Variable(tf.truncated_normal(shape, stddev=0.05))

    biases = tf.Variable(tf.constant(0.05, shape=[num_filters]))

     layer = tf.nn.conv2d(input=input, filter=weights, strides=[1, 1, 1, 1], 

padding='SAME')

    layer += biases

    return layer, weights

At this point, we will initialize the weights from a truncated normal distribution, the 

biases as a constant, and then we will use stride s = 1. The stride is a list, because it gives 

the stride in different dimensions. In our examples, we have gray images, but we could 

also have RGB, for example, thereby having more dimensions: the three color channels.

The pooling layer is easier, since it has no weights.

def new_pool_layer(input):

     layer = tf.nn.max_pool(value=input, ksize=[1, 2, 2, 1], strides=[1, 2, 

2, 1], padding='SAME')

    return layer
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Now let’s define a function that applies the activation function, in our case a ReLU, to 

the previous layer.

def new_relu_layer(input_layer):

    layer = tf.nn.relu(input_layer)

    return layer

Finally, we need a function to build the fully connected layer.

def new_fc_layer(input, num_inputs, num_outputs):

     weights = tf.Variable(tf.truncated_normal([num_inputs, num_outputs], 

stddev=0.05))

    biases = tf.Variable(tf.constant(0.05, shape=[num_outputs]))

    layer = tf.matmul(input, weights) + biases

    return layer

The new TensorFlow functions that we have used are tf.nn.conv2d, which builds a 

convolutional layer, and tf.nn.max_pool, which builds a pooling layer with max pooling, 

as you can imagine from the name. We don’t have the space here to go into detail in what 

each function does, but you can find a lot of information in the official documentation. 

Now let’s put everything together and actually build the network described at the 

beginning.

layer_conv1, weights_conv1 = new_conv_layer(input=x_image,  

num_input_channels=1, filter_size=5, num_filters=6)

layer_pool1 = new_pool_layer(layer_conv1)

layer_relu1 = new_relu_layer(layer_pool1)

layer_conv2, weights_conv2 = new_conv_layer(input=layer_relu1,  

num_input_channels=6, filter_size=5, num_filters=16)

layer_pool2 = new_pool_layer(layer_conv2)

layer_relu2 = new_relu_layer(layer_pool2)

We must create the fully connected layer, but to use layer_relu2 as input, we first 

must flatten it, because it is still two-dimensional.

num_features = layer_relu2.get_shape()[1:4].num_elements()

layer_flat = tf.reshape(layer_relu2, [-1, num_features])
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Then we can create the final layers.

layer_fc1 = new_fc_layer(layer_flat, num_inputs=num_features,  

num_outputs=128)

layer_relu3 = new_relu_layer(layer_fc1)

layer_fc2 = new_fc_layer(input=layer_relu3, num_inputs=128, num_outputs=10)

Now let’s evaluate the predictions, to be able to evaluate the accuracy later.

y_pred = tf.nn.softmax(layer_fc2)

y_pred_scalar = tf.argmax(y_pred, axis=1)

The array y_pred_scalar will contain the class number as a scalar. Now we need to 

define the cost function, and, again, we will use an existing TensorFlow function to make 

our life easier, and to keep the length of this chapter reasonable.

cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=layer_

fc2, labels=y_true))

As usual, we need an optimizer.

optimizer = tf.train.AdamOptimizer(learning_rate=1e-4).minimize(cost)

Now we can finally define the operations to evaluate the accuracy.

correct_prediction = tf.equal(y_pred_scalar, y_true_scalar)

accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

It is time to train our network. We will use mini-batch gradient descent with a batch 

size of 100 and train our network for just ten epochs. We can define the variables as follows:

num_epochs = 10

batch_size = 100

The training can be achieved with

with tf.Session() as sess:

    sess.run(tf.global_variables_initializer())

    for epoch in range(num_epochs):

        train_accuracy = 0
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        for i in range(0, train.shape[0], batch_size):

            x_batch = train[i:i + batch_size,:]

            y_true_batch = labels_[i:i + batch_size,:]

            sess.run(optimizer, feed_dict={x: x_batch, y_true: y_true_batch})

             train_accuracy += sess.run(accuracy, feed_dict={x: x_batch, 

y_true: y_true_batch})

        train_accuracy /= int(len(labels_)/batch_size)

         dev_accuracy = sess.run(accuracy, feed_dict={x:dev,  

y_true:labels_dev_})

If you run this code (it took roughly ten minutes on my laptop), it will start, after just 

one epoch, with a training accuracy of 63.7%, and after ten epochs, it will reach a training 

accuracy of 86% (also on the dev set). Remember that with the first dumb network we 

developed in Chapter 3 with five neurons in one layer, we reached 66% with mini-batch 

gradient descent. We have trained our network here only for ten epochs. You can get 

much higher accuracy if you train longer. Additionally, note that we have not done any 

hyperparameter tuning, so this would get you much better results, if you spent time 

tuning the parameters.

As you may have noticed, every time you introduce a convolutional layer, you will 

introduce new hyperparameters for each layer.

• Kernel size

• Stride

• Padding

These will have to be tuned, to get optimal results. Typically, researchers tend to 

use existing architectures for specific tasks that already have been optimized by other 

practitioners and are well documented in papers.

 Introduction to RNNs
RNNs are very different from CNNs and, typically, are used when dealing with sequential 

information, in other words, for data for which the order matters. The typical example 

given is a series of words in a sentence. You can easily understand how the order of 

words in a sentence can make a big difference. For example, saying “the man ate the 
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rabbit” has a different meaning than “the rabbit ate the man,” the only difference being 

the order of the words, and who gets eaten by whom. You can use RNNs to predict, 

for example, the subsequent word in a sentence. Take, for example, the phrase “Paris 

is the capital of.” It is easy to complete the sentence with “France,” which means that 

there is information about the final word of the sentence encoded in the previous 

words, and that information is what RNNs exploit to predict the subsequent terms in 

a sequence. The name recurrent comes from how these networks work: they apply the 

same operation on each element of the sequence, accumulating information about the 

previous terms. To summarize

• RNNs make use of sequential data and use the information encoded 

in the order of the terms in the sequence.

• RNNs apply the same kind of operation to all terms in the sequence 

and build a memory of the previous terms in the sequence, to predict 

the next term.

Before trying to understand a bit better how RNNs work, let’s consider a few 

important use cases in which they can be applied, to give you an idea of the potential 

range of applications.

• Generating text: Predicting probability of words, given a previous 

set of words. For example, you can easily generate text that looks 

like Shakespeare with RNNs, as A. Karpathy has done on his blog, 

available at https://goo.gl/FodLp5.

• Translation: Given a set of words in a language, you can get words in 

a different language.

• Speech recognition: Given a series of audio signals (words), we can 

predict the sequence of letters forming the words as spoken.

• Generating image labels: With CNNs, RNNs can be used to generate 

labels for images. Refer to A. Karpathy’s paper on the subject: “Deep 

Visual-Semantic Alignments for Generating Image Descriptions,” 

available at https://goo.gl/8Ja3n2. Be aware that this is a 

rather advanced paper that requires an extensive mathematical 

background.

• Chatbots: With a sequence of words given as input, RNNs try to 

generate answers to the input.
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As you can imagine, to implement the preceding, you would require sophisticated 

architectures that are not easy to describe in a few sentences and call for a deeper (pun 

intended) understanding of how RNNs work, which is beyond the scope of this chapter 

and book.

Notation
Let’s consider the sequence “Paris is the capital of France.” This sentence will be fed 

to a RNN one word at a time: first “Paris,” then “is”, then “the,” and so on. In our example,

• “Paris” will be the first word of the sequence: w1 = 'Paris'

• “is” will be the second word of the sequence: w2 = 'is'

• “the” will be the third word of the sequence: w3 = 'the'

• “capital” will be the fourth word of the sequence: w4 = 'capital'

• “of” will be the fifth word of the sequence: w5 = 'of'

• “France” will be the sixth word of the sequence: w6 = 'France'

The words will be fed into the RNN in the following order: w1, w2, w3, w4, w5, and w6. 

The different words will be processed by the network one after the other, or, as some like 

to say, at different time points. Usually, it is said that if word w1 is processed at time t, 

then w2 is processed at time t + 1, w3 at time t + 2, and so on. The time t is not related to a 

real time but is meant to suggest the fact that each element in the sequence is processed 

sequentially and not in parallel. The time t is also not related to computing time or 

anything related to it. And the increment of 1 in t + 1 does not have any meaning. It 

simply means that we are talking about the next element in our sequence. You may find 

the following notations when reading papers, blogs, or books:

• xt: the input at time t. For example, w1 could be the input at time 1 x1, 

w2 at time 2 x2, and so on.

• st: This the notation with which the internal memory, that we have 

not defined yet, at time t is indicated. This quantity st contains the 

accumulated information on the previous terms in the sequence 

discussed previously. An intuitive understanding of it will have to 

suffice, because a more mathematical definition would require too 

detailed an explanation.
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• ot is the output of the network at time t or, in other words, after all the 

elements of the sequence until t, including the element xt, have been 

fed to the network.

 Basic Idea of RNNs
Typically, an RNN is indicated in the literature as the leftmost part of what is illustrated in 

Figure 8-15. The notation used is indicative—it simply indicates the different elements of 

the network: x refers to the inputs, s to the internal memory, W to one set of weights, and 

U to another set of weights. In reality, this schematic representation is simply a way of 

depicting the real structure of the network, which you can see at the right of Figure 8- 15. 

Sometimes, this is called the unfolded version of the network.

Figure 8-15. Schematic representation of an RNN

The right part of Figure 8-15 should be read left to right. The first neuron in the figure 

does its evaluation at an indicated time t, produces an output ot, and creates an internal 

memory state st. The second neuron, which evaluates at a time t + 1, after the first neuron, 

gets as input both the next element in the sequence, xt + 1, and the previous memory state, 

st. The second neuron then generates an output, ot + 1, and a new internal memory state, 

st + 1. The third neuron (the one at the extreme right of Figure 8-15) then gets as input the 

new element of the sequence xt + 2 and the previous internal memory state st + 1, and the 

process proceeds in this way for a finite number of neurons. You can see in Figure 8-15 that 
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there are two sets of weights: W and U. One set (indicated by W) is used for the internal 

memory states, and one, U, for the sequence element. Typically, each neuron will generate 

the new internal memory state with a formula that will looks like this:

 s f Ux Wst t t= +( )-1  

where we have indicated with f() one of the activation functions, we have already seen as 

ReLU or tanh. Additionally, the previous formula will, of course, be multidimensional. st 

can be understood as the memory of the network at time t. The number of neurons (or 

time steps) that can be used is a new hyperparameter that must be tuned, depending on 

the problem. Research has shown that when this number is too big, the network has big 

problems during training.

Something very important to note is that at each time step, the weights do not 

change. The same operation is being performed at each step, simply changing the inputs 

every time an evaluation is performed. Additionally, in Figure 8-15, I have an output in 

the diagram (ot, ot + 1 and ot + 2) for every step, but, typically, this is not necessary. In our 

example, in which we want to predict the final word in a sentence, we may only require 

the final output.

 Why the Name Recurrent?
I would like to discuss very briefly why the networks are called recurrent. I have said that 

the internal memory state at a time t is given by

 s f Ux Wst t t= +( )-1  

The internal memory state at time t is evaluated using the same memory state at time 

t − 1, the one at time t − 1 with the value at time t − 2, and so on. This is at the origin of 

the name recurrent.

 Learning to Count
To give you an idea of their power, I would like to give you a very basic example of 

something RNNs are very good at and standard fully connected networks, such as the 

one you saw in the previous chapters, are really bad at. Let’s try to teach a network to 

count. The problem we want to solve is the following: given a certain vector, which we 
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will assume as being made of 15 elements and containing just 0 and 1, we want to build 

a neural network that is able to count the amount of 1s we have in the vector. This is a 

difficult problem for a standard network, but why? To understand intuitively why, let’s 

consider the problem we have analyzed of distinguishing the one and two digits in the 

MNIST dataset.

If you remember that discussion of metric analysis, you will recall that the learning 

happens because the ones and the twos have black pixels in fundamentally different 

positions. A digit one will always differ (at least in the MNIST dataset) in the same way 

as the digit two, so the network identifies these differences, and as soon as they are 

detected, a clear identification can be made. In our case, this is no longer possible. 

Consider, for example, the simpler case of a vector with just five elements.

In this case, a one appears exactly one time. We have five possible cases: 

[1,0,0,0,0], [0,1,0,0,0], [0,0,1,0,0], [0,0,0,1,0], and [0,0,0,0,1]. There is 

no discernible pattern to be detected here. There is no easy weight configuration that 

could cover these cases at the same time. In the case of an image, this problem is similar 

to the problem of detecting the position of a black square in a white image. We can 

build a network in TensorFlow and check how good such networks are. Owing to the 

introductory nature of this chapter, however, I will not spend time on a discussion of 

hyperparameters, metric analysis, and so on. I will simply give you a basic network that 

can count.

Let’s start by creating our vectors. We will create 105 vectors, which we will split into 

training and dev sets.

import numpy as np

import tensorflow as tf

from random import shuffle

Now let’s create our list of vectors. The code is slightly more complicated, and we will 

look at it in a bit more detail.

nn = 15

ll = 2**15

train_input = ['{0:015b}'.format(i) for i in range(ll)]

shuffle(train_input)

train_input = [map(int,i) for i in train_input]

temp  = []
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for i in train_input:

    temp_list = []

    for j in i:

            temp_list.append([j])

    temp.append(np.array(temp_list))

train_input = temp

We want to have all possible combinations of 1 and 0 in vectors of 15 elements. So, 

an easy way to do this is to take all numbers up to 215 in a binary format. To understand 

why, let’s suppose we want to do this with only four elements: we want all possible 

combinations of four 0 and 1. Consider all numbers up to 24 in binary that you can get 

with this code:

['{0:04b}'.format(i) for i in range(2**4)]

The code simply formats all the numbers that you get with the range(2**4) function, 

from 0 to 2**4, in binary format, with {0:04b}, limiting the number of digits to 4. The 

result is the following:

['0000',

 '0001',

 '0010',

 '0011',

 '0100',

 '0101',

 '0110',

 '0111',

 '1000',

 '1001',

 '1010',

 '1011',

 '1100',

 '1101',

 '1110',

 '1111']
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As you can easily verify, all possible combinations are listed. You have all possible 

combinations of the one appearing one time ([0001], [0010], [0100], and [1000]), of 

the ones appearing two times, and so on. For our example, we will simply do this with 15 

digits, which means that we will do it with numbers up to 215. The rest of the preceding 

code is there to simply transform a string such as '0100' in a list [0,1,0,0] and then 

concatenate all the lists with all the possible combinations. If you check the dimension of 

the output array, you will notice that you get (32768, 15, 1). Each observation is an array 

of dimensions (15, 1). Then we prepare the target variable, a one-hot encoded version of 

the counts. This means that if we have an input with four ones in the vector, our target 

vector will look like [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0]. As expected, the train_

output array will have the dimensions (32768, 16). Now let’s build our target variables.

train_output = []

for i in train_input:

    count = 0

    for j in i:

        if j[0] == 1:

            count+=1

    temp_list = ([0]*(nn+1))

    temp_list[count]=1

    train_output.append(temp_list)

Now let’s split our set into a train and a dev set, as we have done now several times. 

We will do it here in a “dumb” way.

train_obs = ll-2000

dev_input = train_input[train_obs:]

dev_output = train_output[train_obs:]

train_input = train_input[:train_obs]

train_output = train_output[:train_obs]

Remember that this will work, because we have shuffled the vectors at the beginning, 

so we should have a random distribution of cases. We will use 2000 cases for the dev set 

and the rest (roughly 30,000) for the training. The train_input will have dimensions 

(30768, 15, 1), and the dev_input will have dimensions (2000, 15,1).
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Now you can build a network with this code, and you should be able to understand 

almost all of it.

tf.reset_default_graph()

data = tf.placeholder(tf.float32, [None, nn,1])

target = tf.placeholder(tf.float32, [None, (nn+1)])

num_hidden_el = 24

RNN_cell = tf.nn.rnn_cell.LSTMCell(num_hidden_el, state_is_tuple=True)

val, state = tf.nn.dynamic_rnn(RNN_cell, data, dtype=tf.float32)

val = tf.transpose(val, [1, 0, 2])

last = tf.gather(val, int(val.get_shape()[0]) - 1)

W = tf.Variable(tf.truncated_normal([num_hidden, int(target.get_shape()

[1])]))

b = tf.Variable(tf.constant(0.1, shape=[target.get_shape()[1]]))

prediction = tf.nn.softmax(tf.matmul(last, W) + b)

cross_entropy = -tf.reduce_sum(target * tf.log(tf.clip_by_

value(prediction,1e-10,1.0)))

optimizer = tf.train.AdamOptimizer()

minimize = optimizer.minimize(cross_entropy)

errors = tf.not_equal(tf.argmax(target, 1), tf.argmax(prediction, 1))

error = tf.reduce_mean(tf.cast(errors, tf.float32))

Then let’s train the network.

init_op = tf.global_variables_initializer()

sess = tf.Session()

sess.run(init_op)

mb_size = 1000

no_of_batches = int(len(train_input)/mb_size)

epoch = 50

for i in range(epoch):

    ptr = 0
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    for j in range(no_of_batches):

         train, output = train_input[ptr:ptr+mb_size], train_

output[ptr:ptr+mb_size]

        ptr+=mb_size

        sess.run(minimize,{data: train, target: output})

incorrect = sess.run(error,{data: test_input, target: test_output})

print('Epoch {:2d} error {:3.1f}%'.format(i + 1, 100 * incorrect))

The new part that you probably will not recognize is the following piece of code:

num_hidden_el = 24

RNN_cell = tf.nn.rnn_cell.LSTMCell(num_hidden_el,state_is_tuple=True)

val, state = tf.nn.dynamic_rnn(RNN_cell, data, dtype=tf.float32)

val = tf.transpose(val, [1, 0, 2])

last = tf.gather(val, int(val.get_shape()[0]) - 1)

For performance reasons, and to let you realize how efficient RNNs are, I am using 

here a long short-term memory (LSTM) kind of neuron. This has a special way of 

calculating the internal state. A discussion of LSTMs is well beyond the scope of this 

book. For the moment, you should focus on the results and not on the code. If you let the 

code run, you will get the following result:

Epoch 0 error 80.1%

Epoch 10 error 27.5%

Epoch 20 error 8.2%

Epoch 30 error 3.8%

Epoch 40 error 3.1%

Epoch 50 error 2.0%

After just 50 epochs, the network is right in 98% of the cases. Just let it run for more 

epochs, and you can reach incredible precision. After 100 epochs, you can achieve an 

error of 0.5%. An instructive exercise is to attempt to train a fully connected network (as 

the ones we have discussed so far) to count. You will see how this is not possible.

You should now have a basic understanding of how CNNs and RNNs work, and on 

what principles they operate. The research on those networks is immense, since they are 

really flexible, but the discussion in the previous sections should have given you enough 

information to understand how these architectures work.
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CHAPTER 9

A Research Project
Typically, when talking about deep learning, people think about image recognition, 

speech recognition, image detection, and so on. These are the most well-known 

applications, but the possibilities of deep neural networks are endless. In this chapter, 

I will show you how deep neural networks can be successfully applied to a less 

conventional problem: the extraction of a parameter in sensing applications. For this 

specific problem, we will develop the algorithms for a sensor, which I will describe later, 

to determine the oxygen concentration in a medium, for example, a gas.

The chapter is organized as follows: first, I will discuss the research problem to be 

solved, then I will explain some introductory material required to solve it, and, finally,  

I will show you the first results of this ongoing research project.

 The Problem Description
The functioning principle of many sensor devices is based on the measurement of a 

physical quantity, such as voltage, volume, or light intensity, that is typically easy to 

measure. This quantity must be strongly correlated with another physical quantity, 

which is the one to be determined and, typically, difficult to measure directly, such as 

temperature or, in this example, gas concentration. If we know how the two quantities 

are correlated (typically, via a mathematical model), from the first quantity, we can 

derive the second, the one we are really interested in. So, in a simplified way, we 

can imagine a sensor as a black box, which, when given an input (temperature, gas 

concentration, and so on), produces an output (voltage, volume, or light intensity). The 

dependence of the output from the input is characteristic of the type of sensing and 

may be extremely complex. This makes the implementation of the necessary algorithms 

in real hardware very difficult, or even impossible. Here, we will use the approach to 

determine the output from the input, using neural networks instead of a set of formulas.
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This research project deals with the measurement of oxygen concentration, using 

the principle of “luminescence quenching”: a sensitive element, a dye substance, 

is in contact with a gas, of which we want to measure the oxygen content. The dye 

is illuminated with a so-called excitation light (typically, in the blue part of the light 

spectrum) and, after absorbing a part of it, it reemits light in a different part of the 

spectrum (typically, in the red part). The intensity and duration of the emitted light 

is strongly dependent on the oxygen concentration in the gas in contact with the dye. 

If the gas has some oxygen in it, part of the emitted light from the dye is suppressed, 

or “quenched” (from here, the name of the measurement principle), this effect being 

strongest the higher the amount of oxygen in the gas. The goal of the project is to 

develop new algorithms to determine the oxygen concentration (input) from a measured 

signal, the so-called phase shift (output) between the exciting and emitted light. If you 

don’t understand what this means, don’t worry. it is not required in order for you to 

understand the content of this chapter. It is enough to intuitively understand that this 

phase shift measures the change between the light exciting the dye and the one emitted 

after the “quenching” effect and that this “change” is strongly affected by the oxygen 

contained in the gas.

The difficulty in the sensor realization is that the response of the system depends 

(nonlinearly) on several parameters. This dependency is, for most dye molecules, 

so complex that it is almost impossible to write down equations for the oxygen 

concentration as a function of all these influencing parameters. The typical approach 

is, therefore, to develop a very sophisticated empirical model, with many parameters 

manually tuned.

The typical setup for luminescence measurements is shown schematically in 

Figure 9-1. This setup was used to get the data for the validation dataset. A sample 

containing the luminescent dye substance is illuminated by an excitation light (the blue 

light in the figure), emitted by a light-emitting diode, or laser, focused with a lens. The 

emitted luminescence (the red light at the right of the figure) is collected by a detector 

with the help of another lens. The sample holder contains the dye and the gas, indicated 

with the sample in the figure, for which we want to measure the oxygen concentration.
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The luminescence intensity collected by the detector is not constant in time but, 

rather, decreases. How fast it decreases depends on the amount of oxygen present, 

typically quantified by a decay time, indicated with τ. The simplest description of this 

decay is by a single exponential decay function, e−t/τ, characterized by a decay time, τ. 

A common technique used in practice to determine such a decay time is to modulate 

the intensity of the excitation light, or, in other words, to vary the intensity in a periodic 

way, with a frequency f = 2πω, where ω is the so-called angular frequency. The reemitted 

luminescence light has an intensity that is also modulated, or, in other words, it varies 

periodically but is characterized by a phase shift θ. This phase shift is related to the decay 

time τ as tanθ = ωτ. To give you an intuitive understanding of what this phase shift is, 

consider the light to be represented (if you are a physicist reading this, forgive me), in its 

simplest form, as a wave with an amplitude varying as a trigonometric function.

 sin w qt +( )  

The quantity θ is called the phase constant of the wave. Now what happens is 

that the light that excites the dye has a phase constant θexc, and the light emitted has 

a different phase constant, θemitted. The measurement principle measures exactly this 

phase change, θ ≡ θexc − θemitted, because this change is strongly influenced by the oxygen 

content in the gas. Please keep in mind that this explanation is highly intuitive and, from 

a physics point of view, not completely correct, but it should give you an approximate 

understanding of what we are measuring.

Figure 9-1. Schematic setup of a luminescence measurement system

Chapter 9  a researCh projeCt



368

To summarize, the measured signal is this phase shift θ, simply called phase in the 

following text, while the searched quantity (the one we want to predict) is the oxygen 

concentration in the gas in contact with the dye.

In real life, the situation is, unfortunately, even more complicated. The light phase 

shift not only depends on the modulation frequency ω and the oxygen concentration 

O2 in the gas but also nonlinearly on the temperature and chemical composition of the 

surrounding of the dye molecule. Additionally, only rarely can the decay of the light 

intensity be described by only one decay time. Most frequently, at least two decay times 

are needed, further increasing the number of the parameters required to describe the 

system. Given a laser modulation frequency ω, a temperature T in degrees Celsius, and 

an oxygen concentration O2 (expressed in % of oxygen contained in air), the system 

returns the phase θ. In Figure 9-2, you can see a plot of a typical measured tanθ for 

T = 45∘ C and O2 = 4%.

The idea of this research project is to be able to get the oxygen concentration from 

data without the need of developing any theoretical model for the behavior of the sensor. 

To do this, we will try to use deep neural networks and let them learn from artificially 

created data what the oxygen concentration in the gas is for any given phase, and then 

we will apply our model to real experimental data.

Figure 9-2. Plot of the measured tanθ for T = 45∘ C and O2 = 4%
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 The Mathematical Model
Let’s look at one of the mathematical models that can be used to determine the oxygen 

concentration. For one thing, it gives an idea of how complicated it is, and for another, 

it will be used in this chapter to generate the training data set. Without going into the 

physics involved in the measurement technique, which is beyond the scope of this book, 

a simple model describing how the phase θ is linked to the oxygen concentration O2 can 

be described by the following formula:
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The quantities f(ω, T), KSV1(ω, T), and KSV2(ω, T) are parameters whose analytical 

form is unknown and that are specific to the dye molecule used, how old it is, how the 

sensor is built, and other factors. Our goal is to train a neural network in the laboratory 

and later deploy it on a sensor that can be used in the field. The main problem here is 

to determine the frequency- and temperature-dependent function form of f, KSV1, and 

KSV2. For this reason, commercial sensors usually rely on polynomial or exponential 

approximations, with enough parameters and on fitting procedures to determine a good 

enough approximation of the quantities.

In this chapter, we will create the training dataset with the mathematical model just 

described, then we will apply it to experimental data, to see how well we can predict the 

oxygen concentration. The goal is a feasibility study to check how well such a method works.

Preparing the training dataset in this case is a bit tricky and convoluted, so before 

starting, let’s look at a similar but much easier problem, so that you get an understanding 

of what we want to do in the more complicated case.

 Regression Problem
Let’s consider first the following problem. Given a function L(x) with a parameter A, we 

want to train a neural network to extract the parameter value A from a set of values of 

the function. In other words, given a set of values of the input variable xi for i = 1, …, N, 

we will calculate an array of N values Li = L(xi) for i = 1, …, N and use them as input for a 
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neural network. We will train the network to give us as output A. As a concrete example, 

let’s consider the following function:

 
L x

A

A x
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+

2

2 2  

This is the so called Lorentzian function, with a maximum in x = 0 and with L(0) = 1. 

The problem we want to solve here is to determine A, given a certain number of data 

points of this function. In this case, this is rather simple, because we can do it, for 

example, with a classical nonlinear fit, or even by solving a simple quadratic equation, 

but suppose we want to teach a neural network to do that. We want a neural network to 

learn how to perform a nonlinear fit for this function. With all you learned in this book, 

this will not prove to be too difficult. Let’s start by creating a training dataset. First, let’s 

define a function for L(x)

def L(x,A):

    y = A**2/(A**2+x**2)

    return y

Let’s now consider 100 points and generate an array of all the x points we want to 

use.

number_of_x_points = 100

min_x = 0.0

max_x = 5.0

x = np.arange(min_x, max_x, (max_x-min_x)/number_of_x_points )

Finally, let’s generate 1000 observations, which we will use as input for our network.

number_of_samples = 1000

np.random.seed(20)

A_v = np.random.normal(1.0, 0.4, number_of_samples)

for i in range(len(A_v)):

    if A_v[i] <= 0:

        A_v[i] = np.random.random_sample([1])

data = np.zeros((number_of_samples, number_of_x_points))

targets = np.reshape(A_v, [1000,1])
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for i in range(number_of_samples):

    data[i,:] = L(x, A_v[i])

The array data will now contain all observations, each one on a row. Note that to 

avoid having negative values for A, we have built a check into the code.

if A_v[i] <= 0:

        A_v[i] = np.random.random_sample([1])

In this way, if the random value chosen for A is negative, a new random value is 

assigned instead. You may have noticed that in the equation for L(x), the quantity A 

always appears squared, so on first sight, a negative value would not be a problem. But 

remember that this negative value will be the target variable we want to predict. When 

first developing this model, I had a few negative values for A. The network was not able 

to distinguish between positive and negative values, thus getting wrong results.

If you check the shape of the array A_v, you get

(1000, 100)

This translates as 1000 observations, each having 100 values that are the different 

value of L, are calculated at the values of x that we have generated. We also need a dev 

dataset, of course.

number_of_dev_samples = 1000

np.random.seed(42)

A_v_dev = np.random.normal(1.0, 0.4, number_of_samples)

for i in range(len(A_v_dev)):

    if A_v_dev[i] <= 0:

        A_v_dev[i] = np.random.random_sample([1])

data_dev = np.zeros((number_of_samples, number_of_x_points))

targets_dev = np.reshape(A_v_dev, [1000,1])

for i in range(number_of_samples):

    data_dev[i,:] = L(x, A_v_dev[i])

In Figure 9-3, you can see four random examples of the functions we will use as input.

Chapter 9  a researCh projeCt



372

Now let’s build a simple network with one layer and ten neurons, to try to extract this 

value.

tf.reset_default_graph()

n1 = 10

nx = number_of_x_points

n2 = 1

W1 = tf.Variable(tf.random_normal([n1,nx]))/500.0

b1 = tf.Variable(tf.ones((n1,1)))/500.0

W2 = tf.Variable(tf.random_normal([n2,n1]))/500.0

b2 = tf.Variable(tf.ones((n2,1)))/500.0

Figure 9-3. Four random examples of the function L(x). In the legend, you see the 
values used for A for the plot.
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X = tf.placeholder(tf.float32, [nx, None]) # Inputs

Y = tf.placeholder(tf.float32, [1, None]) # Labels

Z1 = tf.matmul(W1,X)+b1

A1 = tf.nn.sigmoid(Z1)

Z2 = tf.matmul(W2,A1)+b2

y_ = Z2

cost = tf.reduce_mean(tf.square(y_-Y))

learning_rate = 0.1

training_step = tf.train.AdamOptimizer(learning_rate).minimize(cost)

init = tf.global_variables_initializer()

Note that we have initialized the weights randomly, and we will not use mini-batch 

gradient descent. Let’s train the network for 20,000 epochs.

sess = tf.Session()

sess.run(init)

training_epochs = 20000

cost_history = np.empty(shape=[1], dtype = float)

train_x = np.transpose(data)

train_y = np.transpose(targets)

cost_history = []

for epoch in range(training_epochs+1):

    sess.run(training_step, feed_dict = {X: train_x, Y: train_y})

    cost_ = sess.run(cost, feed_dict={ X:train_x, Y: train_y})

    cost_history = np.append(cost_history, cost_)

    if (epoch % 1000 == 0):

        print("Reached epoch",epoch,"cost J =", cost_)

The model converges very fast. The MSE (the cost function) goes from 1.1 at the 

beginning to ca. 2.5 · 10−4 after 10,000 epochs. After 20,000 epochs, the MSE reaches 10−6. 

We can plot the predicted vs. the real values, to get a visual check on how the system is 

doing. In Figure 9-4, you can see how well the system is working.
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By the way, the MSE on the dev set is 3 · 10−5, so we are probably slightly overfitting 

the training dataset. One of the reasons is that we are considering a relatively narrow 

x range: only from 0 to 5. Therefore, when you are dealing with very big values of A (of 

the order of 2.5, for example), the system tends not to do so well. If you check the same 

plot as in Figure 9-4 but for the dev dataset (Figure 9-5), you can see how the model has 

problems with big values of A.

Figure 9-4. Predicted vs. real values of A

Figure 9-5. Predicted vs. real values of A for the dev dataset
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There is another reason for these bad predictions at higher values of A. When we 

generated the training data, we used the following line of code for the values of A:

A_v = np.random.normal(1.0, 0.4, number_of_samples)

This means that the chosen values for A are distributed according to a normal 

distribution, with an average of 1.0 and a standard deviation of 0.4. There will be very few 

observations with A bigger than 2.0. You can redo the entire exercise we have done, but 

this time, choose the values of A from a uniform distribution with the code

A_v = np.random.random_sample([number_of_dev_samples])*3.0

This line of code will give you random numbers between 0 and 3.0. After 20,000 

epochs, now we will get MSEtrain = 3.8 · 10−6 and MSEdev = 1.7 · 10−6. This time, our 

predictions on the dev dataset are much better, and there appears to be no overfitting.

Note When you are generating training data artificially, you should always check 
it for extreme values. Your training data should cover all possible cases that you 
expect to see in real life; otherwise, your predictions will fail.

 Dataset Preparation
Now let’s start to generate the dataset we will need for the project. This is going to be 

slightly more difficult, and, as you will see, we will have to spend more time doing this 

than developing and tuning our network. The goal of this chapter is to show you how you 

can use neural networks for research projects that are outside the “classical” use-case 

basis, such as for image recognition. The experimental data consists of 50 measurements 

of θ; 5 temperatures: 5∘C, 15∘C, 25∘C, 35∘C, and 45∘C; and 10 different oxygen concentration 

values: 0%, 4%, 8%, 15%, 20%, 30%, 40%, 60%, 80 % , and 100%. Each measurement is 

composed of 22 frequency measurements for the following values of ω:

0 62.831853

1 282.743339

2 628.318531

3 1256.637061

4 3141.592654
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5 4398.229715

6 6283.185307

7 9424.777961

8 12566.370614

9 18849.555922

10 25132.741229

11 31415.926536

12 37699.111843

13 43982.297150

14 50265.482457

15 56548.667765

16 62831.853072

17 75398.223686

18 87964.594301

19 100530.964915

20 113097.335529

21 125663.706144

For the training dataset, we will use only frequencies between 3000 Hz and 

100,000 Hz. Owing to the limitations of the experimental setup, artifacts and errors 

begin to appear below 3000 Hz and above 10,000 Hz. Trying to use all the data made the 

network perform much worse. That will not be a limitation.

Even if you don’t have the data files, I will explain how I prepared them, so that you 

can reuse the code for your case. First, the files were saved in one folder called data. I 

created a list with the names of all the files we wanted to load:

files = os.listdir('./data')

Such information as the temperature and oxygen concentration are encoded in the 

file name, so we must extract them from it. The file’s name looks like this: 20180515_ 

PST3-1_45C_Mix8_00.txt. The 45C is the temperature, and 8_00 is the oxygen 

concentration. To extract the information, I wrote one function.

def get_T_O2(filename):

    T_ = float(filename[17:19])

    O2_ = float(filename[24:-4].replace('_','.'))

    return T_, O2_
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This will return two values, one containing the temperature value (T_), and one 

containing the value of oxygen concentration (O2_). Then I convert the content of the file 

in a panda data frame, to be able to work with it.

def get_df(filename):

    frame = pd.read_csv('./data/'+filename, header = 10, sep = '\t')

    frame = frame.drop(frame.columns[6], axis=1)

    frame.columns=['f', 'ref_r', 'ref_phi', 'raw_r', 'raw_phi', 'sample_phi']

    return frame

This function was written this way, according to how the files were structured, of 

course. This is how the first rows of a file look:

StereO2

Probe: PST3-1

Medium: N2+Mix, Mix 0 %

Temperatur: 5 °C

Detektionsfilter: LP594 + SP682

HW Config Ref:

D:\Projekt\20180515_Quarzglas_Reference_00.ini

HW Config Sample: D:\Projekt\20180515_PST3_Sample_00.ini

Date, Time: 15.05.2018, 10:37

Filename: D:\Projekt\20180515_ PST3-1_05C_Mix0_00.txt

$Data$

Frequency (Hz)  Reference R (V)  Reference Phi (deg)  Sample Raw R (V)   

Sample Raw Phi (deg)  Sample Phi (deg)

10.00E+0        247.3E-3         18.00E-3             371.0E-3          

258.0E-3              240.0E-3

45.00E+0        247.4E-3         72.00E-3             371.0E-3          

1.164E+0              1.092E+0

100.0E+0        248.4E-3         108.0E-3             370.9E-3          

2.592E+0              2.484E+0

200.0E+0        247.5E-3         396.0E-3             369.8E-3          

5.232E+0              4.836E+0
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If you want to do something similar, naturally you may have to modify the functions. 

Now let’s loop over all the files and create lists with the values of T, O2, and the data 

frames. In the folder data there are 50 files.

frame = pd.DataFrame()

df_list = []

T_list = []

O2_list = []

for file_ in files:

    df = get_df(file_)

    T_, O2_ = get_T_O2(file_)

    df_list.append(df)

    T_list.append(T_)

    O2_list.append(O2_)

We can check the content of one of the files. Let’s type, for example,

get_df(files[2]).head()

You can see in Figure 9-6 the first five records of the file with index 2.

The file contains more information than we require.

Figure 9-6. First five records of the file with index 2
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We have the frequency f, which we must convert to the angular frequency ω (there is 

a factor 2π between the two), and we must calculate the tangent of θ. We do this with the 

following code:

for df_ in df_list:

    df_['w'] = df_['f']*2*np.pi

    df_['tantheta'] = np.tan(df_['sample_phi']*np.pi/180.0)

adding, in this way, two new columns to each data frame. At this point, we must find a 

good approximation for f, KSV1, and KSV2, to be able to create our dataset. To give you 

an example and to make this chapter more concise, let’s consider only one temperature: 

T = 45∘C. Let’s filter from all our data only that which were measured at this temperature. 

To do this, we can use the following code:

T = 45

Tdf = pd.DataFrame(T_list, columns = ['T'])

Odf = pd.DataFrame(O2_list, columns = ['O2'])

filesdf = pd.DataFrame(files, columns = ['filename'])

files45 = filesdf[Tdf['T'] == T]

filesref = filesdf[(Tdf['T']==T) & (Odf['O2']==0)]

fileref_idx = filesref.index[0]

O5 = Odf[Tdf['T'] == T]

dfref = df_list[fileref_idx]

First, we convert the lists T_list and O2_list to pandas data frames, because, in 

this format, it is easier to select the right data. Then you may notice that we select all 

files with T = 45∘C in a data frame files45. Additionally, we select the data frame for 

T = 45∘C and O2 = 0%, and we call it dfref. The reason is that at the beginning, I gave you 

a formula for θ that involved tan θ (ω, T, O2 = 0). dfref will contain exactly the measured 

data for tan θ (ω, T, O2 = 0). Remember that we must model the quantity
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I know this is getting complicated, but hold on, we are almost done. Selecting the 

right data frame from the list of data frames is slightly more complicated but can be done 

in this way:

from itertools import compress

A = Tdf['T'] == T

data = list(compress(df_list, A))

B = (Tdf['T']==T) & (Odf['O2']==0)

dataref_ = list(compress(df_list, B))

compress is easy to understand. You can find more information on the official 

documentation page, available at https://goo.gl/xNZEHH. Basically, the idea is that 

given two lists, d and s, the output of compress(d,s) is given by a new list equal to [(d[0] 

if s[0]), (d[1] if s[1]), ...]. In our case, A and B are lists made up of Boolean 

values, so the code returns only the values of df_list for the position in the list A that 

have True.

Using nonlinear fitting, we will find the values for f, KSV1, and KSV2 for each value of 

ω we have at our disposal. We must loop over all the values of ω, fit the function
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with respect to O2, using the function

def fitfunc(x,  f, KSV, KSV2):

    return (f/(1.0+KSV*x)+ (1.0-f)/(1+KSV2*x))

to extract f, KSV1, and KSV2 for each O2 value. I did it with this code:

f = []

KSV = []

KSV2 = []

for w_ in wred:

    # Let's prepare the file

    O2x = []

    tantheta = []
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    #tantheta0 = float(dfref[dfref['w']==w_]['tantheta'])

    tantheta0 = float(dataref_[0][dataref_[0]['w']==w_]['tantheta'])

    # Loop over the files

    for idx, df_ in enumerate(data_train):

        O2xvalue = float(Odf.loc[idx])

        O2x.append(O2xvalue)

        tanthetavalue = float(df_[df_['w'] == w_]['tantheta'])

        tantheta.append(tanthetavalue)

     popt, pcov = curve_fit(fitfunc_2, O2x, np.array(tantheta)/tantheta0,  

p0 = [0.4,0.06, 0.003])

    f.append(popt[0])

    KSV.append(popt[1])

    KSV2.append(popt[2])

Take some time to study the code. The code is so convoluted because each file 

contains data at a fixed O2 value. We want to build, for each frequency value, an array 

containing the values we want to fit as a function of O2. That is why we must do some 

data wrangling. In the lists f, KSV, and KSV2, we now have the values we found with 

respect to the frequency. Let’s first select only the values for angular frequencies between 

3000 and 100,000.

w_ = w[4:20]

f_ = f[4:20]

KSV_ = KSV[4:20]

In Figure 9-7, you can see how f, KSV1, and KSV2 depend on the angular frequency.

Figure 9-7. Dependency of f, KSV1, and KSV2 on the angular frequency
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There is another small problem we must overcome. We must be able to calculate f, 

KSV, and KSV2 for any value of ω, not only for the ones we have obtained. To do this, we 

must use interpolation. To save some time, we will not develop the interpolation functions 

from scratch. Instead, we will use the interp1d function from the SciPy package.

from scipy.interpolate import interp1d

We will do it in this way:

finter = interp1d(wred, f, kind='cubic')

KSVinter = interp1d(wred, KSV, kind = 'cubic')

KSV2inter = interp1d(wred, KSV2, kind = 'cubic')

Note that finter, KSVinter, and KSV2inter are functions that accept as input a 

value for ω, as a NumPy array and return the value of f, KSV1, and KSV2, respectively. The 

continuous line in Figure 9-8 shows the interpolated functions obtained by the points in 

Figure 9-7.

At this point, we have all the ingredients we need. We can finally create our training 

dataset with the formula
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Figure 9-8. Dependency of f, KSV1, and KSV2 on the angular frequency. The 
continous line is the interpolated function.
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Let’s now create 5000 observations for random values of O2.

number_of_samples = 5000

number_of_x_points = len(w_)

np.random.seed(20)

O2_v = np.random.random_sample([number_of_samples])*100.0

We need the preceding mathematical function

def fitfunc2(x, O2, ffunc, KSVfunc, KSV2func):

    output = []

    for x_ in x:

        KSV_ = KSVfunc(x_)

        KSV2_ = KSV2func(x_)

        f_ = ffunc(x_)

        output_ = f_/(1.0+KSV_*O2)+(1.0-f_)/(1.0+KSV2_*O2)

        output.append(output_)

    return output

to calculate
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for a value of the angular frequency and of O2. The data can be generated with the code

data = np.zeros((number_of_samples, number_of_x_points))

targets = np.reshape(O2_v, [number_of_samples,1])

for i in range(number_of_samples):

    data[i,:] = fitfunc2(w_, float(targets[i]), finter, KSVinter, 

KSV2inter)

In Figure 9-9, you can see a few random examples of the data we generated.

Chapter 9  a researCh projeCt



384

 Model Training
Let’s start to build the network. We will limit ourselves here, for space reasons, to a 

simple three-layer network with five neurons in each layer.

tf.reset_default_graph()

n1 = 5 # Number of neurons in layer 1

n2 = 5 # Number of neurons in layer 2

n3 = 5 # Number of neurons in layer 3

nx = number_of_x_points

n_dim = nx

n4 = 1

stddev_f = 2.0

tf.set_random_seed(5)

X = tf.placeholder(tf.float32, [n_dim, None])

Y = tf.placeholder(tf.float32, [10, None])

W1 = tf.Variable(tf.random_normal([n1, n_dim], stddev=stddev_f))

b1 = tf.Variable(tf.constant(0.0, shape = [n1,1]) )

W2 = tf.Variable(tf.random_normal([n2, n1], stddev=stddev_f))

Figure 9-9. Random examples of the data we generated
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b2 = tf.Variable(tf.constant(0.0, shape = [n2,1]))

W3 = tf.Variable(tf.random_normal([n3,n2], stddev = stddev_f))

b3 = tf.Variable(tf.constant(0.0, shape = [n3,1]))

W4 = tf.Variable(tf.random_normal([n4,n3], stddev = stddev_f))

b4 = tf.Variable(tf.constant(0.0, shape = [n4,1]))

X = tf.placeholder(tf.float32, [nx, None]) # Inputs

Y = tf.placeholder(tf.float32, [1, None]) # Labels

# Let's build our network

Z1 = tf.nn.sigmoid(tf.matmul(W1, X) + b1) # n1 x n_dim * n_dim x n_obs = n1 

x n_obs

Z2 = tf.nn.sigmoid(tf.matmul(W2, Z1) + b2) # n2 x n1 * n1 * n_obs = n2 x 

n_obs

Z3 = tf.nn.sigmoid(tf.matmul(W3, Z2) + b3)

Z4 = tf.matmul(W4, Z3) + b4

y_ = Z2

This, at least, is how I began. I chose as output of the network a neuron with an 

identity activation function y_= Z2. Unfortunately, the training was not working and very 

unstable. Because I had to predict a percentage, I needed an output between 0 and 100. 

So, I decided to try a sigmoid activation function multiplied by 100.

y_ = tf.sigmoid(Z2)*100.0

Suddenly, the training worked beautifully. I used the Adam optimizer.

cost = tf.reduce_mean(tf.square(y_-Y))

learning_rate = 1e-3

training_step = tf.train.AdamOptimizer(learning_rate).minimize(cost)

init = tf.global_variables_initializer()

This time, I used mini-batches of size 100.

batch_size = 100

sess = tf.Session()

sess.run(init)

training_epochs = 25000

cost_history = np.empty(shape=[1], dtype = float)
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train_x = np.transpose(data)

train_y = np.transpose(targets)

cost_history = []

for epoch in range(training_epochs+1):

    for i in range(0, train_x.shape[0], batch_size):

        x_batch = train_x[i:i + batch_size,:]

        y_batch = train_y[i:i + batch_size,:]

        sess.run(training_step, feed_dict = {X: x_batch, Y: y_batch})

    cost_ = sess.run(cost, feed_dict={ X:train_x, Y: train_y})

    cost_history = np.append(cost_history, cost_)

    if (epoch % 1000 == 0):

        print("Reached epoch",epoch,"cost J =", cost_)

You should understand this code now without too many explanations. It is basically 

what we have used several times previously. You may have noticed that I have initialized 

the weights randomly. I tried several strategies, but this seemed to be the one that 

worked best. It is very instructive to check how the training is going. In Figure 9-10, you 

can see the cost function evaluated on the training dataset and on the experimental dev 

dataset. You can see how it oscillates. There are mainly two reasons for this.

• The first is that we are using mini-batches, and, therefore, the cost 

function oscillates

• The second reason is that the experimental data is noisy, because 

the measuring apparatus is not perfect. The gas mixer, for example, 

has an absolute error of roughly 1–2%, which means that if we have 

an experimental observation for O2 = 60%, it could be as low as 58% 

or 59% and as high as 61% or 62%.

Given this error, one should expect to have, on average, an absolute error of ca. 1% in 

our prediction.
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Note roughly speaking, the output of a well-trained network will never be able 
to exceed the accuracy of the target variables used. remember to always check 
the errors you may have on your target variables, to estimate how accurate they 
are. In the preceding example, because our target values for O2 have a maximum 
absolute error of ±1% (that is, the experimental error), the expected error for the 
results of the network will be of this order of magnitude. 

Caution the network will learn the function that produces a certain output, given 
a specific input. If the output is wrong, the learned function will also be wrong.

Finally, let’s check how the network performs.

You should keep in mind that our dev dataset is tiny, making the oscillations even 

more evident. In Figure 9-11, you can see the predicted value for O2 vs. the measured 

value. As you can see, they lie beautifully on the diagonal.

Figure 9-10. Cost function vs. the epochs evaluated on the training and on the dev 
dataset
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In Figure 9-12, you can see the absolute error calculated on the dev dataset for 

O2 ∈ [0,100].

Figure 9-11. Predicted value for O2 vs. the measured value

Figure 9-12. Absolute error calculated on the dev dataset for O2 ∈ [0,100]
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The results are stunningly good. For all values of O2, except for 100%, the error lies 

below 1%. Remember that our network learned from an artificially created dataset. This 

network could now be used in this type of sensor without the need of implementing 

complicated mathematical equations for the estimation of O2. The next phase of this 

project will be to get automatically ca. 10,000 measurements at various values of the 

temperature T and the oxygen concentration O2 and use those measurements as a 

training set to predict both T and O2 at the same time.
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CHAPTER 10

Logistic Regression 
from Scratch
In Chapter 2, we developed a logistic regression model for binary classification with one 

neuron and applied it to two digits of the MNIST dataset. The actual Python code for 

the computational graph construction was just ten lines of code (excluding the part that 

performs the training of the model; review Chapter 2, if you don’t remember what we did 

there).

tf.reset_default_graph()

X = tf.placeholder(tf.float32, [n_dim, None])

Y = tf.placeholder(tf.float32, [1, None])

learning_rate = tf.placeholder(tf.float32, shape=())

W = tf.Variable(tf.zeros([1, n_dim]))

b = tf.Variable(tf.zeros(1))

init = tf.global_variables_initializer()

y_ = tf.matmul(tf.transpose(W),X)+b

cost = tf.reduce_mean(tf.square(y_-Y))

training_step = tf.train.GradientDescentOptimizer(learning_rate).

minimize(cost)

This code is very compact and very quick to write. There is really a lot going on 

behind the scenes that you don’t see with this Python code. TensorFlow does a lot of 

things in the background that you may not be aware of. It will be very instructive to try 

to develop this exact model completely from scratch, mathematically and in Python, 

without using TensorFlow, to observe what is really going on. The next sections lay out 

the entire mathematical formulation required, and its implementation in Python (with 

just numpy). The goal is to build a model that we can train for binary classification.
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I will not spend too much time on the notation or the ideas behind the mathematics, 

because you have seen these several times in previous chapters. The discussion of 

dataset preparation will also be very brief, as it has already been described in Chapter 2.

I will not go through all the Python code line by line, because, if you read the previous 

chapters, you should have quite a good grasp of the practices and ideas used here. There 

are no real new concepts; you have already seen almost everything. Consider this chapter 

as a reference, to learn how to implement a logistic model completely from scratch. I 

strongly suggest that you try to understand all the mathematics and implement it in 

Python once. It is very instructive and will teach you a lot about debugging, about how 

important it is to write good code, and how comfortable libraries such as TensorFlow are.

 Mathematics Behind Logistic Regression
Let’s start with some notation and a reminder of what we are going to do. Our prediction 

will be a variable ŷ  that can only be 0 or 1. (We will indicate with 0 and 1 the two classes 

we are trying to predict.)

 Prediction y® Î{ }ˆ 0 1,  

What our method will give as output, or as a prediction, will be the probability of  

ŷ  being 1, given the input case x. Or, in a more mathematical form,

 ŷ P y x= =( )1|  

We will then define an input observation to be of class 1, if ˆ . ,y ³ 0 5  and of class 0, 

if ˆ .y < 0 5 . As we have in Chapter 2 (see Figure 2-2), we will consider nx inputs and one 

neuron with the sigmoid (indicated with σ) activation function. Our neuron output ŷ  

can be easily written for observation i as
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To find the best weights and bias, we will minimize the cost function that is written 

here for one observation
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where, with y, we have indicated our labels. We will use the gradient descent algorithm, 

as described in Chapter 2, so we will need the partial derivatives of our cost function 

with respect to the weights and the bias. You will remember that at iteration n + 1 (we 

will indicate here the iteration with an index in square brackets as subscript), we will 

update our weights from iteration n with the equations

 w w
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and, for the bias,
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where γ is the learning rate. The derivatives are not so complicated and can be calculated 

easily with the chain rule
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Now, calculating the derivatives, you can verify that
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When we put all this together, we get
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These equations are valid only for one training case; therefore, as we have already 

done, let’s generalize them to many training cases, remembering that we define our cost 

function J for many observations as

 J b
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where, as usual, we have indicated the number of observations with m. The bold w is 

simply a vector of all the weights w = ¼( )w w wnx1 2, , , . We will also need our beloved 

matrix formalism here (which you have seen several times in previous chapters)

 Z W X BT= +  

where we have indicated with B a matrix of dimensions (1, nx) (to make it consistent 

with the notation we are using now here) and with all elements equal to b (in Python, we 

will not have to define it, because broadcasting will take care of it for us). X will contain 

our observations and features and have dimensions (nx, m) (observations on columns, 

features on rows), and WT will be the transpose of the matrix containing all the weights, 

which, in our cases, has the dimensions (1, nx), because it is transposed. Our neuron 

output in matrix form will be

 Ŷ Z= ( )s  

where the sigmoid function acts element by element. The equations for the partial 

derivatives now become
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These equations can be written in matrix form (where ∇w indicates the gradient with 

respect to w) as

 Ñ ( ) = -( )w wJ b
m

X Y Y
T

, 
1 ˆ  

and for b,
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Finally, the equation we need to implement for the gradient descent algorithm is

 w wn n

T

m
X Y Y+[ ] [ ]= - -( )1

1
g ˆ  

and for b,

 b b
m

Y Yn n
i

m

i i+[ ] [ ]
=

= - -( )å1
1

1
g ˆ  

At this point, you should already have gained a completely new appreciation of 

TensorFlow. The library does all this for you in the background, and, more important, all 

automatically. Remember: We are dealing here with just one neuron. You can easily see 

how complicated it can get when you want to calculate the same equations for networks 

with many layers and neurons, or for something as a convolutional or recurrent neural 

network.

We now have all the mathematics we need to implement logistic regression 

completely from scratch. Let’s move on to some Python.

 Python Implementation
Let’s start importing the necessary libraries.

import numpy as np

%matplotlib inline

import matplotlib.pyplot as plt

Note that we don’t import TensorFlow. We will not need it here. Let’s write a function 

for the sigmoid activation function sigmoid(z).
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def sigmoid(z):

    s = 1.0 / (1.0 + np.exp(-z))

    return s

We will also require a function to initialize the weights. In this basic case, we can 

simply initialize everything with zeros. Logistic regression will work anyway.

def initialize(dim):

    w = np.zeros((dim,1))

    b = 0

    return w,b

Then we must implement the following equations, which we have calculated in the 

previous section:

 Ñ ( ) = -( )w wJ b
m

X Y Y
T

, 
1 ˆ  

and
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def derivatives_calculation(w, b, X, Y):

    m = X.shape[1]

    z = np.dot(w.T,X)+b

    y_ = sigmoid(z)

    cost = -1.0/m*np.sum(Y*np.log(y_)+(1.0-Y)*np.log(1.0-y_))

    dw = 1.0/m*np.dot(X, (y_-Y).T)

    db = 1.0/m*np.sum(y_-Y)

    derivatives = {"dw": dw, "db":db}

    return derivatives, cost

Now we need the function that will update the weights.

def optimize(w, b, X, Y, num_iterations, learning_rate, print_cost = False):

    costs = [] for i in range(num_iterations):

        derivatives, cost = derivatives_calculation(w, b, X, Y)
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        dw = derivatives ["dw"]

        db = derivatives ["db"]

        w = w - learning_rate*dw

        b = b - learning_rate*db

        if i % 100 == 0:

            costs.append(cost)

        if print_cost and i % 100 == 0:

            print ("Cost (iteration %i) = %f" %(i, cost))

    derivatives = {"dw": dw, "db": db}

    params = {"w": w, "b": b}

    return params, derivatives, costs

The next function, predict(), creates a matrix of dimensions (1, m) that contains the 

predictions of the model given the inputs w and b.

def predict (w, b, X):

    m = X.shape[1]

    Y_prediction = np.zeros((1,m))

    w = w.reshape(X.shape[0],1)

    A = sigmoid (np.dot(w.T, X)+b)

    for i in range(A.shape[1]):

        if (A[:,i] > 0.5):

            Y_prediction[:, i] = 1

        elif (A[:,i] <= 0.5):

            Y_prediction[:, i] = 0

    return Y_prediction

Finally, let’s put everything together in the model() function.

def model (X_train, Y_train, X_test, Y_test, num_iterations = 1000, 

learning_rate = 0.5, print_cost = False):

    w, b = initialize(X_train.shape[0])

     parameters, derivatives, costs = optimize(w, b, X_train, Y_train,  

num_iterations, learning_rate, print_cost)
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    w = parameters["w"]

    b = parameters["b"]

    Y_prediction_test = predict (w, b, X_test)

    Y_prediction_train = predict (w, b, X_train)

    train_accuracy = 100.0 - np.mean(np.abs(Y_prediction_train- Y_train)*100.0)

    test_accuracy = 100.0 - np.mean(np.abs(Y_prediction_test-Y_test)*100.0)

     d = {"costs": costs, "Y_prediction_test": Y_prediction_test, "Y_

prediction_train": Y_prediction_train, "w": w, "b": b, "learning_rate": 

learning_rate, "num_iterations": num_iterations}

    print ("Accuracy Test: ", test_accuracy)

    print ("Accuracy Train: ", train_accuracy)

    return d

 Test of the Model
After building the model, we must see what results it can achieve with some data. In the 

next section, I will first prepare the dataset we have already used in Chapter 2, the two 

digits one and two from the MNIST dataset, and then train our neuron on the dataset 

and check what results we get.

 Dataset Preparation
As an optimizing metric, we chose accuracy, so let’s see what value we can reach with 

our model. We will use the same dataset as in Chapter 2: a subset of the MNIST dataset 

consisting of the digits one and two. Here, you can find the code to get the data without 

explanation, because we have already dissected it extensively in Chapter 2.

The code we require is the following:

from sklearn.datasets import fetch_mldata

mnist = fetch_mldata('MNIST original')

X,y = mnist["data"], mnist["target"]
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X_12 = X[np.any([y == 1,y == 2], axis = 0)]

y_12 = y[np.any([y == 1,y == 2], axis = 0)]

Because we loaded all images in one block, we must create a dev and a train dataset 

(the split being 80% train and 20% dev), as follows:

shuffle_index = np.random.permutation(X_12.shape[0])

X_12_shuffled, y_12_shuffled = X_12[shuffle_index], y_12[shuffle_index]

train_proportion = 0.8

train_dev_cut = int(len(X_12)*train_proportion)

X_train, X_dev, y_train, y_dev = \

    X_12_shuffled[:train_dev_cut], \

    X_12_shuffled[train_dev_cut:], \

    y_12_shuffled[:train_dev_cut], \

    y_12_shuffled[train_dev_cut:]

As usual, we normalize the inputs,

X_train_normalised = X_train/255.0

X_dev_normalised = X_test/255.0

bring the matrices in the right format,

X_train_tr = X_train_normalised.transpose()

y_train_tr = y_train.reshape(1,y_train.shape[0])

X_dev_tr = X_dev_normalised.transpose()

y_dev_tr = y_dev.reshape(1,y_dev.shape[0])

and define some constants.

dim_train = X_train_tr.shape[1]

dim_dev = X_dev_tr.shape[1]

Now let’s shift our labels (remember this from Chapter 2?). We have here 1 and 2, 

and we need 0 and 1.

y_train_shifted = y_train_tr - 1

y_test_shifted = y_test_tr - 1
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 Running the Test
Finally, we can test the model with the call

d = model (Xtrain, ytrain, Xtest, ytest, num_iterations = 4000, learning_

rate = 0.05, print_cost = True)

Although your numbers may vary, you should get an output similar to the following, 

in which I have omitted a few iterations for space reasons:

Cost (iteration 0) = 0.693147

Cost (iteration 100) = 0.109078

Cost (iteration 200) = 0.079466

Cost (iteration 300) = 0.067267

Cost (iteration 400) = 0.060286

.........

Cost (iteration 3600) = 0.031350

Cost (iteration 3700) = 0.031148

Cost (iteration 3800) = 0.030955

Cost (iteration 3900) = 0.030769

Accuracy Test: 99.092131809

Accuracy Train: 99.1003111074

Not so bad for a result.1

1 In case you are wondering why we get a different result that we had in Chapter 2, remember that 
we are using a slightly different training set for learning, giving rise to this difference.
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 Conclusion
You should really try to understand all the steps I have outlined in this chapter, to 

understand how much is done for you by a library. Remember: We have here an 

incredibly simple model with just one neuron. Theoretically, you could write all the 

equations for more complex network architectures, but this would be very difficult and 

extremely error-prone. TensorFlow calculates all the derivatives for you, regardless of the 

complexity of the network. In case you are interested in learning what TensorFlow can 

do, I suggest you read the official documentation, available at https://goo.gl/E5DpHK.

Note You should now appreciate a library such as tensorflow and realize how 
much is going on in the background when you use it. You should also be aware of 
the complexity of the calculations and the importance of understanding the details 
of the algorithm and how these are implemented, to optimize and debug your 
models.
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